
Gradient-Free Gradient Boosting

Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossi-
etzky Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von Herrn Tino Werner

geboren am 23.10.1993 in Varel

ii

Gutachter: Prof. Dr. Peter Ruckdeschel

Weiterer Gutachter: Prof. Dr. Matthias Schmid

Datum der Einreichung: 26. September 2019

Tag der Disputation: 8. Januar 2020

iii

Zusammenfassung

Moderne Techniken des maschinellen Lernens sind im Zeitalter der Digitalisierung nicht mehr
wegzudenken und ermöglichen die effiziente Analyse großer Datenmengen. Die quasi unbe-
grenzten Einsatzgebiete solcher Lernmethoden umfassen auch Anwendungen im Kontext der
Betrugsdetektion. Angesichts der begrenzten Kapazitäten von Finanzämtern ist eine ri-
gorose Überprüfung aller eingegangenen Steuererklärungen nicht möglich, sodass möglichst
geschickt eine entsprechende Auswahl im Vorfeld getroffen werden muss.

Dieses Vorgehen nennt sich „Risk-based auditing” und hat sich in etlichen Studien (z.B.
Alm et al. [1993], Gupta and Nagadevara [2007]) als deutlich effizienter erwiesen als eine
zufällige Auswahl von zu überprüfenden Steuererklärungen. Das zugrunde liegende Problem
lässt sich auf zwei Arten mathematisch erfassen. Wird die Auswahl der zu überprüfenden
Steuererklärungen anhand der Wahrscheinlichkeit, dass eine steuerpflichtige Person zu wenig
Einkommen angibt, getroffen, so führt dies auf ein sogenanntes binäres Rankingproblem. Soll
die Entscheidung allerdings an der zu erwartenden Schadenhöhe getroffen werden, so muss
ein stetiges Rankingproblem gelöst werden.

Eine weitere Schwierigkeit bei hochdimensionalen Daten ergibt sich aus der Vielzahl der
möglichen Prädiktoren. In diesem Kontext sind Lernverfahren, die eine Modellwahl treffen,
unabdingbar, was in der Regel durch die Optimierung regularisierter empirischer Risiken
oder durch den Einsatz von sogenannten Forward-Selektions-Techniken erreicht wird. Als
besonders effizient haben sich Gradienten-Boosting-Algorithmen herausgestellt, die zu den
Forward-Selektions-Techniken zählen und iterativ einfache Modelle, sogenannte Baselearner,
kombinieren. Besonders herauszustellen ist der L2−Boosting-Algorithmus (Bühlmann and
Yu [2003]), welcher den quadratischen Abstand der vorhergesagten Responses zu den wahren
Responses durch sparsame Modelle minimiert und sowohl attraktive theoretische Eigen-
schaften (Bühlmann and Yu [2003], Bühlmann [2006], Bühlmann and Van De Geer [2011])
besitzt als auch höchst effizient implementiert wurde (Hothorn et al. [2017]).

Allerdings neigen selbst derart geschickte Verfahren dazu, in der Praxis mehr Prädiktoren
als nötig auszuwählen, was man als „Overfitting” bezeichnet, wodurch nicht nur die Qualität
des Modells und damit der Prädiktionen, sondern auch die Interpretierbarkeit leidet. Dieser
Schwierigkeit kann begegnet werden, indem man mehrere, auf unterschiedlichen Teilmengen
des Datensatzes berechnete Modelle betrachtet und die aggregierten Selektionshäufigkeiten
der Prädiktoren geeignet kombiniert. Anschließend werden durch die Vorgabe eines Cutoffs
am Ende die Prädiktoren selektiert, die eine hinreichend große aggregierte Selektionshäu-
figkeit besitzen. Dieses Verfahren nennt sich Stabilitätsselektion und wurde ursprünglich in
Meinshausen and Bühlmann [2010] für Lasso-artige Verfahren entwickelt, in Hofner et al.

iv

[2015] aber für die Anwendung auf Boosting-Modelle übertragen. Zusätzlich zu der weiteren
Ausdünnung der ausgewählten Prädiktormenge stabilisiert das Verfahren diese, d.h., auch
unter anderen Daten, die aber der gleichen Verteilung wie die gesehenen Daten entstammen,
würde die dort berechnete Prädiktormenge kaum davon abweichen.

Obgleich bereits Lernverfahren für binäre Rankingprobleme existieren, die zu Modellselek-
tion fähig sind, so gibt es für stetige Rankingprobleme bisher nur einen Ansatz, der einen
Baum-artigen Algorithmus verwendet (Clémençon and Achab [2017]). Boosting-Techniken
für stetige Rankingprobleme sind aufgrund der Nicht-Regularität der zugehörigen Verlust-
funktionen nicht direkt einsetzbar.

Diese Arbeit beschäftigt sich mit der allgemeineren Frage, wie man für hochdimensionale
Daten effektiv Lösungen für statistische Lernprobleme, welche auf irregulären Verlustfunktion
basieren, finden kann, die zudem interpretierbar sind, stabile Modellselektion ermöglichen
sowie effizient implementiert werden können. Der Kern dieser Arbeit besteht darin, Spalten-
und Zeilenselektionsverfahren einheitlich mathematisch durch ein neues Framework zu er-
fassen. Dazu definieren wird das sogenannte „Spaltenmaß”, welches auf den Spalten einer
Datenmatrix definiert ist und die Wichtigkeit jeder Spalte bemisst. Da der Spaltenselektion
ein Optimierungsproblem bezüglich einer gegebenen Verlustfunktion zugrunde liegt, sind
Spaltenmaße abhängig von der konkreten Verlustfunktion. Das führt dazu, dass auch die
von uns postulierten theoretischen Spaltenmaße abhängig von der Verlustfunktion sind.

Da das stetige Rankingproblem durch den bedingten Erwartungswert von der abhängigen
Variable gegeben der Prädiktoren gelöst wird, wird durch L2−Boosting bereits eine Lösung
des Problems genähert. Das naive Vorgehen, dass man das L2−Boosting-Modell direkt als
Lösung des stetigen Rankingproblems verwendet, berücksichtigt allerdings nicht den Um-
stand, dass das theoretische Spaltenmaß bezüglich der quadratischen Verlustfunktion von
dem theoretischen Spaltenmaß bezüglich einer Ranking-Verlustfunktion abweicht. Mathe-
matisch lassen sich Spalten, die durch die Lösung bezüglich einer Verlustfunktion L̃ selek-
tiert werden, aber nicht durch die Lösung bezüglich einer Verlustfunktion L gewählt werden
können, als Singulärteile zwischen (empirischen) Spaltenmaßen auffassen.

Darüber hinaus können wir nachweisen, dass die Verwendung von paarweisen Surrogat-
Verlustfunktionen für stetige Rankingprobleme und eines daraus resultierenden Boosting-
Algorithmus kein sinnvolles Vorgehen darstellt, sowohl hinsichtlich der Qualität der Ergeb-
nisse als auch der benötigten Rechnerkapazitäten.

Wir begegnen Singulärteilen zwischen Spaltenmaßen durch einen speziellen auf L2−Boosting
basierenden Boosting-Algorithmus, den wir SingBoost nennen und der die Möglichkeit bietet,
auch solche Spalten in das Modell aufzunehmen. Wir beweisen statistische Eigenschaften

v

des Algorithmus und implementieren diesen in R. Da auch SingBoost bei hochdimensionalen
Daten zum Overfitting neigt, entwickeln wir eine spezielle Stabilitätsselektion, die verlustab-
hängig durch eine geeignete Gittersuche das optimale stabile Modell aus der Aggregation
verschiedener, auf Unterstichproben berechneter Modelle, bestimmt. Diese ist auch für den
Fall verrauschter Daten einsetzbar. Durch Verknüpfung mit SingBoost ergibt sich der Al-
gorithmus CMB-3S und durch Kombination mit einer Kreuzvalidierung der Algorithmus
CV.CMB-3S, den wir sehr flexibel in R implementieren. Als Nebenprodukt bei der Stabi-
litätsselektion ergeben sich Zeilenmaße, die analog zu den Spaltenmaßen auf den Zeilen der
Datenmatrix definiert sind.

Unsere Beiträge zu Rankingproblemen reichen von einer systematischen Untersuchung der
verschiedenen Rankingprobleme inklusive ihrer Verlustfunktionen über Vorschläge für In-
fluenzkurven und einer Diskussion existierender Ansätze. Darüber hinaus zeigen wir, wie man
die in der Arbeit relevanten Verlustfunktionen schnell auswerten kann. Am Ende wenden wir
unsere Algorithmen auf das sogenannte harte stetige Rankingproblem an und können zeigen,
dass wir den L2−Boosting-Ansatz hinsichtlich des kreuzvalidierten Testverlustes schlagen
können. Ein wesentlicher Beitrag besteht darin, dass wir zeigen, dass Rankingfunktionale
elizitierbar sind, sodass verschiedene konkurrierende Ranking-Modelle objektiv miteinander
vergleichbar sind, selbst in dem Fall, dass das optimale Ranking nicht eindeutig ist.

Wir erweitern unsere Konzepte für den Fall multivariater Responses und zeigen, dass ein
SingBoost-Algorithmus auch in diesem Kontext über analoge statistische Eigenschaften ver-
fügt wie im univariaten Fall. Wir zeigen, dass wir auch unterschiedlichste Lernverfahren
wie Ausreißerdetektion, Kovarianzschätzung und sogenanntes „Consensus Ranking”, bei dem
partielle Rankings zu einem gemeinsamen Ranking kombiniert werden, in unser Framework
einbetten können. Wir identifizieren robuste Kovarianz-Schätzverfahren und ein spezielles
robustes Regressionsverfahren als verallgemeinerte Boosting-Varianten und stellen prototy-
pisch ein verallgemeinertes L2−Boosting auf.

Für den Fall heterogener Daten, beispielsweise durch strukturell fehlende Werte oder Kon-
tamination, entwickeln wir Ideen, wie wir unsere Algorithmen anpassen können, sodass sie
auch auf derartige Daten anwendbar sind.

Über die Verknüpfung von sparsamen Modellen, Stabilität und Robustheit durch unser
Framework hinaus liefern wir theoretische Resultate, die zeigen, dass regularisierte Regres-
sionsverfahren wie das Lasso oder das Adaptive Lasso, wenngleich die zugehörigen statis-
tischen Funktionale hochgradig nichtlinear sind, sich asymptotisch linear entwickeln lassen,
sodass sich diese Verfahren als Aggregation über die Zeilen und über die Spalten der Daten-
matrix auffassen lassen.

vi

Abstract

Modern machine learning techniques are indispensable in the era of digitization and enable
the efficient analysis of big data. The nearly limitless applications of such learning methods
include the field of fraud detection. Given the limited capacities of tax offices which restrict
the number of income tax statements which can be reviewed, one needs to make a sophisti-
cated selection of income tax statements for review beforehand.

This procedure is called ”risk-based auditing” and has been shown to be much more efficient
than a simple random selection of income tax statements (see for example Alm et al. [1993],
Gupta and Nagadevara [2007]). The underlying problem can be described mathematically in
two ways. If the selection is based on the probability that the respective person misreports
her or his income, we get a so-called binary ranking problem. If the decision is based on the
expected amount of damage, one has to solve a continuous ranking problem.

Another issue when analyzing high-dimensional data arises from the large number of possible
predictors. In this setting, learning algorithms which include model selection are indispens-
able which generally either corresponds to the optimization of regularized empirical risks or
to so-called forward selection techniques. A very efficient class of models are Gradient Boost-
ing algorithms which are special forward selection procedures that iteratively combine simple
models, referred to as baselearners. A Boosting algorithm which has to be highlighted is the
L2−Boosting algorithm (Bühlmann and Yu [2003]) which minimizes the quadratic distance
of the predicted responses to the true responses by means of sparse models and which has
attractive theoretical properties (Bühlmann and Yu [2003], Bühlmann [2006], Bühlmann and
Van De Geer [2011]), besides being implemented very efficiently (Hothorn et al. [2017]).

However, even these sophisticated learning strategies tend to select more predictor variables
than necessary in practical applications which is referred to as ”overfitting” which not only
decreases the quality of the resulting model and therefore of the predictions but also causes
the model to be less interpretable. To handle this issue, one considers different models which
have been computed on different subsets of the data and suitably combines the aggregated
selection frequencies of the predictors. By defining some cutoff, one finally selects only those
predictor variables whose aggregated selection frequency is sufficiently high. This strategy
is referred to as Stability Selection and originates from Meinshausen and Bühlmann [2010]
where it has been applied to Lasso-type algorithms. It has been generalized to the application
to Boosting models in Hofner et al. [2015]. Apart from reducing the number of predictors
again, the predictor set gets stabilized by the Stability Selection, i.e., when concerning other
observations from the same distribution as the given ones, the corresponding predictor set

vii

would only marginally differ from the stable predictor set.

Despite there already exist learning algorithms for binary ranking problems, even with model
selection, there do not yet exist strategies for continuous ranking problems but a tree-type
approach (Clémençon and Achab [2017]). The application of Boosting algorithms to contin-
uous ranking problems is not directly possible due to the non-regularity of the corresponding
loss functions.

This work concerns about the more general question how one could effectively find inter-
pretable solutions for statistical learning problems on high-dimensional data, based on non-
regular loss functions, that perform stable model selection and that can be implemented
efficiently. The heart of this thesis consists of a unified mathematical treatment of row and
column selection procedures. We propose a so-called ”column measure” which is defined on
the columns of a data matrix and which quantifies the importance of each column. Since
column selection is based on an optimization problem w.r.t. a given loss function, the column
measures depend on the concrete loss function. Therefore, even the postulated theoretical
column measures depend on the loss function.

Since continuous ranking problems are solved by the conditional expectation of the response
variable given the predictor variables, L2−Boosting already approximates a solution for this
problem. However, the naïve approach to use L2−Boosting models directly as solution of
continuous ranking problems does not respect the issue that the theoretical column measure
w.r.t. the squared loss differs from the theoretical column measure w.r.t. some ranking loss.
The set of columns which are selected when solving the problem w.r.t. some loss function
L̃ and which are not selected for some underlying loss function L can be mathematically
described as singular parts between the (empirical) column measures.

Additionally, we show that using pair-wise surrogate loss functions for continuous ranking
problems to get a corresponding Boosting algorithm is not meaningful regarding the quality
of the results and the computational costs.

To handle singular parts between column measures, we propose a special algorithm which
we call SingBoost and which is based on L2−Boosting and allows to include even those
columns. We prove statistical properties of SingBoost and provide an implementation in R.
Since SingBoost also tends to overfit in the presence of high-dimensional data, we propose a
loss-based Stability Selection which includes the aggregation of models computed on different
subsets of the data and which computes the optimal stable model by the application of a grid
search. This Stability Selection can also handle noisy data. Combining it with SingBoost
results in the algorithm CMB-3S and combining this again with a cross validation, we get

viii

the algorithm CV.CMB-3S of which we provide a very flexible implementation in R. As a
by-product of the Stability Selection, we get row measures which are defined on the rows of
the data matrix, analogously to the column measures.

Our contributions to ranking problems range from a systematic investigation of the different
types of ranking problems, including their loss functions, to proposals for influence curves and
a discussion of existing approaches. Additionally, we show how such ranking loss functions
can be evaluated efficiently. We apply our algorithms to the so-called hard continuous rank-
ing problem at the end and show that we can outperform the L2−Boosting approach w.r.t.
the cross-validated test loss. A major contribution is that we show that ranking functionals
are elicitable so that different competing ranking models can be compared in an objective
way, even in the case that the optimal ranking is not unique.

We extend our concepts to the case of multivariate responses and show that a SingBoost
algorithm would have analogous statistical properties as in the case of univariate responses.
We show that we can embed inherently different learning algorithms like outlier detection,
covariance estimation and so-called ”consensus ranking” which combines different partial
rankings to an overall ranking into our framework. We identify robust covariance estimation
procedures and a special robust regression procedure as generalized Boosting variants and
provide a prototype of a Generalized L2−Boosting.

In the case of heterogeneous data, for example due to structural missings or contamination,
we provide ideas how we could modify our algorithms to handle those peculiarities.

Apart from the connection of sparse models, stability and robustness by our framework, we
provide theoretical results that show that regularized regression procedures like the Lasso or
the Adaptive Lasso, although the corresponding statistical functionals are highly non-linear,
can be asymptotically linearly expanded so that these algorithms can be identified with an
aggregation over both the rows and the columns of the data matrix.

ix

Vorwort

Eine Konstante, die sich zunächst durch meine Schul- und später durch meine Studienlauf-
bahn zog, war die Irritation anderer Personen über mein Alter. Selbst die in meinen Augen
gar nicht mehr so ungewöhnliche Tatsache, dass ich noch als 25-Jähriger meine Dissertation
eingereicht habe, scheint immer noch für Verwunderung zu sorgen.

Diesen Weg haben mir insbesondere meine Eltern ermöglicht, die sich dafür eingesetzt haben,
dass ich trotz vorgebrachter Bedenken und Widerstände vorzeitig eingeschult werden konnte.
Mit der Unterstützung meiner ersten Klassenlehrerin, Talea ter Hell-Zorn, konnte ich im Ok-
tober 2000 noch vor meinem siebten Geburtstag in die dritte Klasse überspringen.

Bezüglich meiner Schulzeit ist hier meine Klassenlehrerin der 9. und 10. Klasse, Beate Led-
din, hervorzuheben. Auch verdient Erwähnung, dass der Lehrer meines Mathematik-Kurses
in der Oberstufe, Hartwig Brüning, als Erster die Idee hatte, dass ich anschließend Mathe-
matik studieren soll.

Den ersten Anstoß in Richtung Promotion habe ich während meines Masterstudiums von Dr.
Frank Schöpfer, der meine Bachelor- und Masterarbeit betreut hat, bekommen. Es sei hier
die Anekdote erwähnt, dass Prof.Dr. Peter Ruckdeschel mich am 25.1.2016 vorsichtig gefragt
hat, ob ich mir generell vorstellen könne, zu promovieren, was ich noch sehr entschlossen
verneint habe. Die ganze Idee musste lange in mir reifen, bis ich mich dann doch für eine
Promotion entschieden habe.

An dieser Stelle möchte ich mich bei Prof. Dr. Peter Ruckdeschel für die Möglichkeit der
Promotion bedanken, für die Ideen, die ich ausarbeiten und erweitern durfte sowie für die
Hilfestellung bei der Gestaltung von Konferenzbeiträgen und Einreichungen für Publikatio-
nen.

Ein Dank geht an Prof. Dr. Matthias Schmid für die Zweitbegutachtung der Dissertation
sowie an Prof. Dr. Marcus C. Christiansen und Prof. Dr. Thorsten Dickhaus für die Be-
reitschaft, der Prüfungskommission beizuwohnen.

Abschließend möchte ich noch M. Sc. Jörg Thomas Best erwähnen, mit dem ich mir ein
Büro geteilt habe und der mir die Zeit mit dem einen oder anderen nicht-mathematischen
Gespräch bereichert hat.

x

How to read this thesis

To help navigating through this thesis and its parts and chapters, we provide illustrative
diagrams.

The diagram on the next page gives an overview of the structure of this thesis. At the begin-
ning of each part, the same diagram will be presented, but only the relevant substructures
of the respective part will be highlighted.

Green boxes indicate major contributions of this thesis while blue boxes indicate minor con-
tributions. Purple boxes refer to ideas, first approaches or open questions for future research.

After this bird’s eye’s view figure is placed at the beginning of each part, a more detailed
figure, zooming into the respective part’s topics follows.

xi

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

Contents

Zusammenfassung iii

Abstract vi

Vorwort ix

How to read this thesis x

Contents xii

List of Figures xviii

List of Tables xix

List of algorithms xx

Glossary xxi

1 Introduction 2
1.1 Background and motivation . 2
1.2 Outline of the thesis . 6

2 Learning sparse and stable models 14
2.1 A brief review on model fitting and validation 14
2.2 Regularization and model complexity . 16
2.3 Stability Selection . 19
2.4 Boosting and variable selection . 21
2.5 Boosting with categorical predictors and interactions 27

I Regularized M-estimators and their asymptotic linear expansion 29

3 Robust statistics 34
3.1 Functional derivatives . 35

xii

CONTENTS xiii

3.1.1 Excursus: Further concepts of functional differentiability 37
3.2 Basic concepts of quantitative robustness . 39

3.2.1 Influence curves . 39
3.2.2 Asymptotic linearity . 41
3.2.3 The breakdown point . 46

3.3 Contamination models . 46
3.4 Robustness properties of existing variable selection procedures 49
3.5 One-Step estimators . 51

4 Compact differentiability of regularized M-functionals 55
4.1 M-estimators and M-functionals . 56
4.2 Weak derivatives and the density method . 59
4.3 Asymptotic linearity of M-estimators . 61
4.4 Regularized M-functionals . 64

4.4.1 L2−differentiability of linear regression models 66
4.5 Asymptotic linearity of regularized M-estimators 68

4.5.1 Compactness assumption of the parameter space 68
4.5.2 Twice differentiable Z-function . 71
4.5.3 Twice continuously differentiable loss function, non-differentiable penalty

term . 72
4.5.4 Extension to ranking . 74

4.6 Examples for asymptotically linear estimators in machine learning 77
4.6.1 Lasso . 77
4.6.2 Elastic net . 79
4.6.3 Adaptive Lasso . 80

4.7 Concrete influence curves for the Lasso and the Adaptive Lasso 81
4.8 Data-driven penalty parameters . 83
4.9 Conclusion . 84

II Mathematics of ranking problems 86

5 Ranking 91
5.1 Different types of ranking problems . 91
5.2 Ranking by empirical risk minimization . 94
5.3 Existing algorithms for ranking problems . 101
5.4 Other ranking approaches with model selection 104
5.5 Ranking with continuous outcomes . 106
5.6 Ranking vs. ordinal regression . 107

xiv CONTENTS

6 Some properties of ranking 109
6.1 Fast computation of the hard ranking loss 109
6.2 Quantitative robustness of ranking . 112

6.2.1 L2−differentiability of generalized linear regression models 112
6.2.2 The logit model and the ordered logit model 114
6.2.3 A proposal for the hard ranking problem 116
6.2.4 A proposal for weak ranking problems 117

7 Elicitability: Comparing competing models 118
7.1 Elicitability of ranking . 118
7.2 Strong elicitability of ranking . 121

8 Gradient Boosting for ranking problems? 124
8.1 Arising problems . 124
8.2 An exponential surrogate . 126
8.3 A Hinge surrogate . 128
8.4 A piece-wise linear surrogate . 128
8.5 Could we speed it up? . 129
8.6 Conclusion . 130

III The row measure and the column measure on a data matrix 132

9 The row measure and the column measure 137
9.1 The induction of randomness: Option pricing with the binary model 138
9.2 A simple observation . 139
9.3 A Riesz representation result . 139
9.4 Rejection sampling . 142
9.5 The row measure . 144
9.6 The definition of a column measure . 145
9.7 The column measure framework . 147
9.8 Connecting the column measure with k−Step estimators 151
9.9 Time-dependent row and column measures 154
9.10 Conclusion . 155

10 Singular parts of column measures 156
10.1 Singular parts and domination . 156
10.2 Consequences to model selection . 159
10.3 SingBoost: Boosting with singular parts for any target loss 163
10.4 Variable selection and updating . 171
10.5 Asymptotic properties of SingBoost . 175

CONTENTS xv

10.6 Coefficient paths for SingBoost . 183
10.7 Conclusion . 186

IV Column Measure Boosting, its variants and applications 187

11 Aggregating SingBoost models 191
11.1 The Random Lasso . 191
11.2 Block forests . 193
11.3 Has L̃ already been respected appropriately? 195
11.4 Column Measure Boosting: SingBoost aggregation 196
11.5 If the loss is very expensive to evaluate... 200

12 Interplay of row and column measures 209
12.1 A modified, loss-based Stability Selection . 210
12.2 Final coefficients and CV.CMB-3S . 214

12.2.1 Induced empirical row measures . 214
12.2.2 Computing the coefficients of CMB-3S 216

12.3 The choice of M . 217
12.4 Stabilized Stability Selection and cross validation 222
12.5 A systematic view of ν(L2)−approximating techniques 225

12.5.1 Column measure framework ; Group (CM) 225
12.5.2 Row measure framework ; Group (RM) 226
12.5.3 Row measure framework with random sampling from column measures

; Group (sRM) . 226
12.5.4 Row column measure framework ; Group (RCM) 226
12.5.5 Adding noise to the regressor matrix ; Group (NX) 227
12.5.6 Concluding remarks . 229

12.6 Some possible extensions for future work . 230

V Extensions of the RCM framework 233

13 Multivariate ranking and regression 238
13.1 Consensus ranking . 238
13.2 Multivariate Boosting . 242

13.2.1 Multivariate L2−Boosting . 242
13.2.2 SingBoost for multivariate responses? 244

13.3 Higher-order elicitability . 245

xvi CONTENTS

14 Connecting robustness, stability and sparsity 247
14.1 The cell measure . 247
14.2 Cell-wise outliers and missings . 251
14.3 Connecting robustness and sparsity? . 255
14.4 Stability Selection for rows . 262
14.5 Outlook . 268

VI Numerical demonstration 270

15 Application to real data sets 274
15.1 Application to the iris data set . 274

15.1.1 singboost . 274
15.1.2 cmb . 283
15.1.3 CMB3S . 284
15.1.4 CV.CMB3S . 287

15.2 Application to the bodyfat data set . 290
15.2.1 singboost . 290
15.2.2 CMB3S . 291

15.3 Application to a large genomic data set . 295
15.4 An ultrahigh-dimensional data set . 300

16 Some simulation studies 304
16.1 Singular parts for hard ranking . 304
16.2 The power of our loss-based Stability Selection 309

16.2.1 Availability of the R code . 317

VII Outlook 318

17 Learning with missing data 321
17.1 Types of missings . 321
17.2 Handling non-structural missings . 322
17.3 Structural missings . 323

17.3.1 Related work . 323
17.3.2 Estimation using an asymptotic linear expansion 324
17.3.3 MissBoost? . 326

17.4 Are NA’s just contamination? . 328

18 Miscellanea 331
18.1 Beyond parametric models? . 331

CONTENTS xvii

18.2 Robustifying SingBoost? . 334

19 Summarizing conclusion 338
19.1 Theoretical contributions of this work . 338
19.2 Conceptual contributions of this work . 339
19.3 Algorithmic contributions of this work . 341

Appendix 345
A.1 Coercivity . 345
A.2 Uniform integrability . 346
A.3 Tools from measure theory . 347
A.4 Topological spaces . 350
A.5 Riesz representation theorems and dual spaces 351
A.6 Distribution theory . 352
A.7 Tools from asymptotic statistics . 353
A.8 Functional Gradient Boosting . 356
A.9 Code for table 1.1 . 357

Index 359

Bibliography 363

Wissenschaftlicher Werdegang 388

Eidesstattliche Erklärung 390

List of Figures

5.1 Ranking and informativity . 93
5.2 Strictly increasing transformations and ranking 100

6.1 Computational cost: Hard and localized ranking loss 112

8.1 Surrogates for the 0/1−loss . 125

10.1 Computational cost: SingBoost vs. HingeBoost 170
10.2 Computational cost: L2−Boosting vs. SingBoost 170
10.3 Coefficient paths provided by glmboost . 185
10.4 Coefficient paths provided by singboost . 185

12.1 CMB stability paths . 220
12.2 SingBoost stability paths . 220
12.3 CV.CMB-3S diagram . 224

16.1 Hofner’s vs. our Stability Selection . 310
16.2 Performance of our Stability Selection; Scenarios B-E 312
16.3 Performance of our Stability Selection; Scenarios F-I 313
16.4 Performance of our Stability Selection; Scenarios J-M 314
16.5 Performance of our Stability Selection; Scenarios N-O 315

xviii

List of Tables

1.1 Example: Profit-based auditing . 4
1.2 Example: Exploding number of possible models 6

16.1 Comparison of L2, CMB-2S and CMB-3S models for the hard ranking loss . 306
16.2 Comparison of L2, CMB-2S and CMB-3S models for the hard ranking loss . 308

xix

List of Algorithms

1 Component-wise least squares Boosting . 23

2 ExpBoost with component-wise linear baselearners 127

3 A naïve rejection sampling strategy for the hard ranking problem 143
4 Lasso Stability Selection in the language of the column measure 148
5 Boosting Stability Selection in the language of the column measure 148

6 SingBoost . 165

7 Column Measure Boosting . 198
8 Parallelized Column Measure Boosting . 200
9 SingBoost-u . 202
10 Best Subset Column Measure Boosting (BSCMB) 202
11 Two Stage Column Measure Boosting (TSCMB) 206

12 CMB-3S . 213
13 SLTS . 215
14 CMB with empirical row measures . 216
15 CMB-3S with coefficients . 218
16 CV.CMB-3S . 223

17 Fast-MCD in L2−Boosting form . 258
18 SLTS in L2−Boosting form . 259
19 SLTS in L2−Boosting form, second version 260
20 Generalized L2−Boosting . 261

21 MissBoost . 327

22 RobSingBoost . 336

23 Generic functional Gradient Boosting . 357

xx

Glossary

We do not list all defined variables, abbreviations etc. here, but only the recurring or im-
portant ones. We made use of hebrew symbols due to the shortness of the (classical) greek
alphabet.

General notation

(·)T Transposed object
〈f, g〉 Inner product in L2 in the Temlyakov scheme
〈f, g〉(n) Empirical version of 〈f, g〉 in the Temlyakov scheme
∂ (Partial) Derivative
∇ Gradient (vector of partial derivatives)
0k k−dimensional vector only containing zeroes
β̂(0) Initial coefficient in Boosting algorithms
β̂(k) Estimated coefficient after the k−th Boosting iteration
β̂init Initially computed coefficient vector in multi-stage procedures
B Number of Bootstrap samples / subsamples
Bsing Number of SingBoost models computed in Column Measure Boosting
i Coefficient matrix
ג RCM matrix
stabג̂ Stable empirical RCM matrix
dB Bouligand functional derivative
dF Fréchet or bounded functional derivative
dG Gâteaux or weak functional derivative
dH Hadamard or compact functional derivative
dR General R−derivative
δx Dirac measure at x
∆ Mesh size for the grid πgrid

xxi

GLOSSARY

k Coefficient matrix corresponding to the baselearner in multivariate Boosting
ej ∈ Rp j−th unit vector of dimension p
ε Error term
E Error matrix
ηθ General notation for a partial influence function at Pθ
F General notation for a cumulative distribution function
γ∗(T, P) Gross error sensitivity of the functional T w.r.t. distribution P
h Cardinality of ”clean” subsets in concentration steps
Iθ0 Fisher information at θ0

ĵk Selected coefficient in the k−th Boosting iteration
Jλ Penalty term depending on λ
Jmλ Element of an approximating sequence of penalty terms
κ Step size / learning rate in Boosting algorithms
λ Regularization parameter
Λθ0 L2−derivative / score at θ0

miter Number of Boosting iterations
M Frequency of singular iterations in SingBoost
M final Frequency of singular iterations in SingBoost applied to the stable predictor set
n General notation for the number of observations (rows) of a data set
nCC Number of complete rows in the data
nsing Number of observations used for SingBoost
nCMB Number of observations used for Column Measure Boosting
ntrain Number of observations of the training set
nval Number of observations of the validation set
ntest Number of observations of the test set
o, O Landauer o− and O−terms
oP , OP Stochastic o− and O−terms
p Number of variables (columns) of a data set
pθ Parametric density at θ
Pθ Element of a parametric distribution family
πthr Threshold that defines the stable set of predictors
π General notation for a permutation
π∗ Consensus ranking

q
Number of variables chosen by each Boosting model in Hofner’s Stability Selec-
tion; number of final variables chosen in our Stability Selection

r Contamination radius
ψθ General notation for an influence function at the model Pθ
r(k) Residual vector after the k−th Boosting iteration

xxii

GLOSSARY

R̂m
n f

Residual after the m−th iteration of a greedy algorithm based on n observa-
tions in the Temlyakov scheme

R Residual matrix in multivariate regression
s0 True sparsity, i.e., number of non-zero entries of the true coefficient vector
ŝ Number of non-zero entries of the estimated coefficient vector
ŝinit Number of non-zero entries of an estimated initial coefficient
ŝ(b) Score assigned to the Boosting model fitted on the b−th subsample
Sn General notation for an estimator based on n observations
Skn k−Step estimator
IEν̂n [Skn] Expected k−Step estimator w.r.t. some empirical column measure ν̂n
Skn,J k−Step estimator based on the columns with index in J
Σ General notation for a covariance matrix
τ(·, ·) Kendall’s τ concordance measure between two vectors
V Number of different partitions of the data into training, validation and test set

ϕ
General notation for the derivative of a parametric loss function w.r.t. the para-
meter

ϕθ Short notation for ϕ(·, θ)

ϕλ
General notation for the derivative of a regularized parametric loss function w.r.
t. the parameter

ŵ(b) Weight assigned to the Boosting model fitted on the b−th subsample
χ Forgetting factor in Generalized Boosting

Special measures

ν(L) Column measure w.r.t. loss function L

ν̂(L)
n

Empirical column measure w.r.t. loss function L based on n observations
(n may be suppressed)

ν̂vec Column measure written as p−dimensional vector
ν̂t Column measure at time t
(ν̂(L))stab Stable empirical column measure w.r.t. loss function L
ν̂(L)(ζ) Empirical column measure w.r.t. loss function L induced by row measure ζ
ν̂L
L̃

Empirical column measure computed by Column Measure Boosting
(ν̂L
L̃

)ultrastable Ultra-stable empirical column measure

(ν̂L
L̃

)(CMB,b) Empirical column measure computed by CMB in the b−th stability itera-
tion

xxiii

GLOSSARY

(ν̂L
L̃

)CMB Aggregated column measure computed by aggregating the empirical column
measures computed by CMB in each stability iteration

(ν̂L
L̃

)(b) Empirical column measure computed by Column Measure Boosting on the
b−th subsample

ν̂cons Empirical consensus column measure
ν̂block Block column measure
ν̌L
L̃

Empirical column measure computed by TSCMB on the first stage
νinit Initial/prior column measure
ζ Row measure
ζ̂n Empirical row measure
ζ init Initial/prior row measure
ζt Row measure at time t
ζ̂block Block row measure
ζ̂L
L̃

Empirical row measure computed by CMB
(ζ̂i, ν̂j) Empirical RCM pair
ℵ Cell measure
ℵ̂ Empirical cell measure
ℵ̂stab Stable cell measure
ℵ̂(ζ̂ , ν̂) Empirical cell measure induced by the empirical RCM pair (ζ̂ , ν̂)
ℵt Cell measure at time t

Sets and data

⊂⊂ Compact subset
xi:n i−th smallest component of vector x
(Ω,A, P) General notation for a measure space
A Action domain
IBp Borel sigma algebra in p dimensions
BestK The index set of the top K instances
B̂estK Estimated sets of top K instances
Cp(Θ) Space of all continuous bounded Rp−valued functions on Θ
D General notation for a data set
Dtrain Training data
D(b,train) General notation for the training set of the b−th subsample
Dtest Test data
D(b,test) General notation for the test set of the b−th subsample

xxiv

GLOSSARY

DCC Subset of complete cases of the data
Dsing Data set used for SingBoost
D(sing,b,train) Training set for the b−th SingBoost model in Column Measure Boosting
D(sing,b,test) Test set for the b−th SingBoost model in Column Measure Boosting
DCMB Data set used for Column Measure Boosting

D(CMB,b) Data set used for Column Measure Boosting in the b−th stability itera-
tion

Fβ Parametric function class containing linear models
Θ Parameter space (subset of Rp)
I(b) Set of row indices used for the b−th SingBoost model in CMB
JL
L̃

Indices that form the singular part of νL̃ w.r.t. ν(L)

L(X, Y) Space of continuous linear maps from X into Y
Λ Subset of R≥0 in which the regularization parameter can take values
O Observation domain
P(A) Power set of A
Perm(x) Set of all permutations of the finite-dimensional vector x
P Parametric distribution family
P(A) Power set of a set A

Π̂J(λ) Probability to select every variable with column index contained in J
using a regularized learning method with penalty parameter λ

πgrid Grid of thresholds for our Stability Selection
Ψ2(θ) Set of suitably regular influence functions at Pθ

ΨD
2 (θ) Set of suitably regular partial influence functions at Pθ according to Jaco-

bian D
qgrid Grid of numbers of final coefficients for our Stability Selection
S0 True set of predictors
Ŝ Estimation of S0

Srel0 True set of relevant variables
Ŝstab Estimated stable predictor set

Ŝ(λ) Estimated set of predictors when regularization with penalty parameter λ is
concerned

Ŝinit(λ) Initial estimation for Ŝ(λ)

Ŝcell,λ
Empirical cell set computed by the Graphical Lasso with regularization
parameter λ

Ŝcell,0 True cell set
Ŝcell,stab Estimated stable cell set
Ŝrow,stab Estimated stable row set
Ŝcons Predictor set corresponding to a consensus ranking

xxv

GLOSSARY

Ŝcons,stab Stable predictor set corresponding to a consensus ranking
ŜL
L̃

Set of predictors selected by Column Measure Boosting
(ŜL

L̃
)stab(πthr) Stable model reported by our Stability Selection based on a grid πgrid

(ŜL
L̃

)stab(q) Stable model reported by our Stability Selection based on a grid qgrid
U∗(θ0, r) Contamination ball with radius r around Pθ0

U cell(θ0, r) Cell-wise contamination ball with radius r around Pθ0

U∗(θ0) Set of contamination balls with different radii around Pθ0

W 2,2 Sobolev space
X Subset of Rp in which the predictor variables take values
X train Regressor variables of the training set
X test Regressor variables of the test set
Xi i−th row of X
X·,j j−th column of X
X(l) Columns of the regressor matrix corresponding to the l−th block/group
xI Subvector of x only containing the indices i ∈ I

Y
Subset of R (at identified places Rk) in which the response variables take
values

Y train Response vector of the training set
Y test Response vector of the test set

Functions

◦ Composition of maps
◦H Hadamard product
◦vec Component-wise composition of maps
C(·) Cost operator
η General notation for the target function of a Z-estimator
ηλ General notation for the target function of a regularized Z-estimator
ηr,λ General notation for the target function of a regularized ranking Z-estimator
f̂ (m) Strong model computed in the m−th Boosting iteration
f̂ (b) Final model computed by Boosting on the b−th subsample
ĝ(m) Weak model computed in the m−th Boosting iteration
I(·) Indicator function
IC(x, T, P) Influence function of functional T at x for distribution P
L General notation for a loss function

xxvi

GLOSSARY

L(y, ŷ) Loss w.r.t. loss function L for y and the corresponding prediction of y
L2 Squared loss function
Lτ Check loss function w.r.t. τ
Lhardn Hard ranking loss
Lloc,Kn Localized ranking loss for the K best instances
Lloc,K,normn Standardized localized ranking loss for the K best instances
Lweak,Kn Weak ranking loss for the K best instances
Lweak,K,normn Standardized weak ranking loss for the K best instances
Mπ Special matrix-vector-vector product operator respecting a block partition π
M1(A) Set of all probability measures on the sigma algebra A
r Ranking rule
R General notation for the risk, i.e., the expected loss
Rn General notation for the empirical risk
ρπ Special vector-vector product operator respecting a block partition π
s Scoring function
Tπ Special vector-vector product operator respecting a block partition π
Zn General notation for the target function of an empirical Z-estimator

Zλ
n

General notation for the target function of an empirical regularized Z-esti-
mator

Zr,λ
n

General notation for the target function of an empirical regularized ranking
Z-estimator

Abbreviations

AUC(s) Area under the ROCs curve
BIC Bouligand influence curve
CMB Column Measure Boosting
CMB-2S Column Measure Boosting with Stability Selection
CMB-3S Column Measure Boosting with SingBoost and Stability Selection
ERM Empirical risk minimization
FPR False positive rate
FSBDP Finite sample breakdown point
GLM Generalized linear model
IAUC Volume under the integrated ROC curve
IC Influence curve, more precisely Gâteaux influence curve

xxvii

GLOSSARY

IROCs Integrated ROC curve of a scoring function s
LocAUC Area under the localized ROC
MAR Missing at random
MCAR Missing completely at random
MNAR Missing not at random
pIC Partial influence curve
RSS Residual sum of squares
ROCs Receiver operation characteristic of a scoring function s
SNR Signal-to-noise ratio
SRM Structural risk minimization
TPR True positive rate

xxviii

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

Chapter 1

Introduction

1.1 Background and motivation

When talking about supervised learning problems, one usually thinks of regression or classi-
fication tasks. While both of them are often the appropriate ones in nearly all application
domains, there is another natural goal when performing data analysis, namely to order the
instances. Such tasks arise for example in search engines when documents have to be ranked
according to their relevance for a respective query (Cao et al. [2006], Herbrich et al. [1999],
Page et al. [1999]). Other applications include credit-risk screening where potential borrowers
are ranked by their creditworthiness (Clémençon et al. [2013b]). Ranking also plays a crucial
role in medicine where patients are ranked by their chance of suffering a specific illness or
cancer (Clémençon et al. [2011], Clémençon et al. [2013b]).

In general, the responses in data sets corresponding to those problems are binary, therefore
a natural criterion for such binary ranking problems is the probability that an instance be-
longs to the class of interest. While ranking can be generally seen in between classification
and regression, those binary ranking problems are very closely related to binary classification
tasks (see also Balcan et al. [2008]). For binary ranking problems, there exists vast literature,
including theoretical work as well as learning algorithms that use SVMs (Brefeld and Scheffer
[2005], Herbrich et al. [1999], Joachims [2002]), Boosting (Freund et al. [2003], Rudin [2009]),
neural networks (Burges et al. [2005]) or trees (Clémençon and Vayatis [2008], Clémençon
and Vayatis [2010]).

As for the document ranking, the labels may also be discrete, but with d > 2 classes, for
example in the OHSUMED data set (Hersh et al. [1994]). For such general d−partite ranking
problems, there also has been developed theoretical work (Clémençon et al. [2013c]) as well as

2

1.1. BACKGROUND AND MOTIVATION 3

tree-based learning algorithms (Clémençon and Robbiano [2015a], Clémençon and Robbiano
[2015b], see also Robbiano [2013]).

Recently, Clémençon investigated a new branch of ranking problems, namely the continuous
ranking problems where the name already indicates that the response variable is continuous.
He already thought of applications in natural sciences or quantitative finance (Clémençon
and Achab [2017]). This continuous ranking problem can be located on the other flank of
the spectrum of ranking problems that is closest to regression.

The continuous ranking problem is especially interesting when trying to rank instances whose
response is difficult to quantify. A common technique is to introduce latent variables which
are used for example to measure or quantify intelligence (Borsboom et al. [2003]), personality
(Anand et al. [2011]) or the familiar background (Dickerson and Popli [2016]). While in these
cases, the latent variables are treated as features, a continuous ranking problem would arise
once a response variable which is hard to measure is implicitly fitted by replacing it with
some latent score which is much more general than ranking binary responses by means of
their probability of belonging to class 1. An example is given in Lan et al. [2012] where
images have to be ranked according to their compatibility to a given query.

The motivation of this work is to develop machine learning algorithms for risk-based auditing
to detect tax evasion, using the restricted personal resources of tax offices as reasonably as
possible. Risk-based auditing can be seen as a general strategy for internal auditing, fraud de-
tection and resource allocation that incorporates different types of risks to be more tailored
to the real-world situation, see Pickett [2006] for a broad overview, Moraru and Dumitru
[2011] for a short survey of different risks in auditing and Khanna [2008] and Bowlin [2011]
for a study on bank-internal risk-based auditing resp. for a study on risk-based auditing for
resource planning.

Until here, we did not yet point out why we actually need new statistical learning techniques
to tackle our problem. Indeed, if we formulate the problem as a binary ranking problem
where the response variable is either tax compliance or a wrong report of the tax liabili-
ties, we could just use the existing methods. However, different problems lead to a different
amount of information granted by its solution. As classification is not as informative as
ranking since the classes do not have to be ordered while ranking also incorporates an or-
dering, ranking in turn is less informative than regression since regression tries to predict
the actual response values themselves where ranking just tries to find the right ordering. An
analogous argument is true for binary ranking problems and continuous ranking problems.
If we state a binary ranking problem, we would just get information which taxpayer is most
likely to misreport his or her income without providing any information on its amount. On

4 CHAPTER 1. INTRODUCTION

the other hand, if we set up a continuous ranking problem where the amount of damage is
the variable of interest, we can directly get information about the compliance of the taxpayer
by looking at the sign of the response value. In particular, if information on the compliance
is available, then one can assume that the information on the amount of additional payment
or back-payment has also been collected, so imposing a binary ranking problem would lead
to a large loss of information.

We will now briefly recapitulate existing work on risk-based strategies for tax audit planning.
Alm et al. [1993] compares the effect of different auditing rules, ranging from pure random
auditing where each taxpayer’s income tax statement gets reviewed with a fixed probability
which is equal for all taxpayers over a deterministic cutoff rule which leads to auditing ex-
actly if less income than this cutoff is reported to deterministic strategies that incorporate
the behaviour of each taxpayer in the past. The cited reference, though not examining how
to detect fraud, concludes with a strong recommendation of risk-based auditing rules since
there mere existence leads the taxpayers to be more honest.

Gupta and Nagadevara [2007] exactly addressed to the problem of fraud detection in the
tax auditing context using data mining techniques, despite they formulated the problem as
a binary classification problem. They applied discriminant rules, decision trees and logistic
regression as well as hybrids of trees and discriminant rules to compare those methods that
have already been applied to the problem in different references cited therein. As in Gupta
and Nagadevara [2007], the goal was to achieve a high strike rate, i.e., the relative part of
the fraudulent income tax statements in the whole set of audited instances should be high,
in contrast to Hsu et al. [2015], who validated their models (ranging from Naïve Bayes over
SVM and Boosting to neural networks) by a profitability criterion, using the revenues from
subsequent payments of taxes divided by the costs of the auditing process. The latter also
recommended the application of such learning techniques to improve the efficiency of tax
auditing.

Random 0.02
Classification+random 16.05
Regression 35.41

Table 1.1: Simple example of the average profit achieved by randomly drawing instances to review, by
using binary classification (here: LogitBoost) and by using linear regression based on 10000 replications with
ntrain = 100 = ntest, p = 5

Although the cited references identified the problem as a classification problem, the lack of

1.1. BACKGROUND AND MOTIVATION 5

informativity causes it to be insufficient for audit planning since classification only results in
a bunch of instances that is predicted to be contained in the fraud class. But if this number
is N and there are only enough capacities for K < N auditing processes, the final decision
may again gets random. Therefore, the ranking problem is exactly the right task for such
applications since the K most suspicious instances can be identified.

An example on how this lack of informativity affects the profit made after the auditing pro-
cess is given in table 1.1. We have run a very simple simulation on a data set with n = 100
and p = 5 for both the training and the test data and continuous-valued responses that
represent the damage, i.e., a positive value indicates a fraud. The first strategy is just to
randomly sample K = 10 instances from the test data without replacement a cumulating the
damage. More sophisticated is to apply a classification algorithm, in our case LogitBoost,
and to concentrate on the instances of the test data that have been predicted as fraud class.
Since the number of these instances exceeds K, we randomly draw K instances. The last
scenario is an application of a regression model, in our case standard linear regression and
the selection of the K instances with the highest predicted damage.

Ranking all instances in this fashion is referred to as ”hard ranking problem” in this thesis.
A binary classification task which should end up in predicting exactly K instances to the
fraud class is called ”weak ranking problem”. A compromise, a ”localized ranking problem”,
has been introduced in Clémençon and Vayatis [2007] with the task to predict the correct
ordering of the K ”best” instances (in our case: the most suspicious ones in terms of the
predicted amount of damage), neglecting the ordering of the remaining ones. The advantage
over the hard ranking problem is that it is less difficult since one only focuses on the relevant
part of the list. One may ask what happens if a set of K instances is predicted as the set of
best instances but after auditing, the tax office still has capacities left. Then the predictions
of the localized ranking problem for the next instances may should not be trusted, so either
K needs to be chosen suitably high at the beginning or the hard ranking problem has to be
applied in such insecure cases.

Furthermore, a good learning algorithm does not only require to have good predictive perfor-
mance but also provide interpretability of the resulting model and computational feasibility
as well as theoretical statistical foundations. The interpretability is closely connected to
the number of predictors that enter the model, but a sparse model is not necessarily well-
interpretable, for example RandomForests are hard to interpret. Sparse variable selection is
especially indispensable in real-world applications when working with high-dimensional data
which are a frequently faced issue particularly when having data coming from medicine or
genomics (see e.g. Wang et al. [2011], Hofner et al. [2015]), but also if one invokes higher
order interaction terms or if there are many multicategorical predictors, the total number

6 CHAPTER 1. INTRODUCTION

of variables can be large and the total number of possible models rapidly explodes as em-
phasized in table 1.2. Ideally, the set of predictors in the model should only contain a few
variables and needs to be stable. Additionally, the data sets that an analyst faces are often
not ”clean”, i.e., they contain heterogeneities like outliers or missings.

p # models 25;4 # PI #
4 17 7 129 10 1025
8 257 14 16385 36 ≈ 6.87 · 1010

20 ≈ 106 35 ≈ 3.44 · 1010 210 ≈ 1.65 · 1063

40 ≈ 1.1 · 1012 70 ≈ 1.2 · 1021 820 ≈ 6.99 · 10246

Table 1.2: Number of possible models (containing an intercept each) if one allows to select categorical
variables partially. The column 25;4 indicates the case that 25% of the predictors are discrete-valued with 4
values each, PI refers to the case that we are in the setting of column 1, but that all pair-wise interactions
additionally enter the model

The properties of interpretability, stability and computational efficiency are overwhelmingly
satisfied by Boosting-type algorithms (see Hothorn et al. [2017]) combined with a so-called
Stability Selection (Meinshausen and Bühlmann [2010], Hofner et al. [2015]). However, those
Boosting algorithms are so far tailored to regression and classification since they require cer-
tain regularity conditions on the loss function which are not fulfilled by ranking loss functions.
Notably, the loss function does not have to be smooth to make Gradient Boosting available
as for example the squared loss since piece-wise differentiable losses like the L1−loss are also
allowed, but ranking loss functions are not even continuous, so Gradient Boosting cannot
be accessible at the first glance. The goal of this work is to make Boosting available for
potentially highly non-regular loss functions.

Summing up, our task is to provide a profit-based Boosting-type ranking algorithm which
makes reliable predictions of the amount of damage due to fraudulent declaration of tax
liabilities and which achieves stable and sparse model selection and ends up with a well-
interpretable model.

1.2 Outline of the thesis

The thesis starts with a pilot chapter which shortly summarizes common machine learning
paradigms such as penalization or cross validation that will be important throughout this
work. We describe the component-wise least squares Boosting algorithm (Bühlmann [2006])

1.2. OUTLINE OF THE THESIS 7

which is fundamental for the whole thesis. Apart from referring to popular competitors like
the Lasso and variants, we recapitulate the famous Stability Selection, originally introduced
in Meinshausen and Bühlmann [2010], which is an ensemble model selection method relying
on the Lasso, which has been transferred to model selection by ensembles of Boosting algo-
rithms in Hofner et al. [2015].

The rest of the thesis is divided into seven parts.

The first part is a theoretical part which addresses to the question if general penalized
statistical M-estimators can be asymptotically linearly expanded, resulting in the respective
M-estimators being representable as arithmetic mean of influence curves, up to a starting
estimator and a remainder term.

This part starts with an introductory chapter where several concepts of robust statistics are
defined, ranging from influence curves and asymptotic linear estimators to the breakdown
point and examples for (non-)robustness of a few selected popular sparse learning algorithms.
This chapter provides much more content than we need in the first part, but we also gather
further elements of robust statistics like contamination models and k−Step estimators which
we will need later in the thesis.

The second and last chapter of the first part first recapitulates results on compact differen-
tiability of M-functionals which lead to the asymptotic linear expansion of the corresponding
M-estimators which means that the estimators are representable as an arithmetic means of
influence curves in the sense that θ̂n − θ = meani(ψθ̂n) + rn for some remainder term rn and
an influence curve ψ̂θn corresponding to the initial estimator θ̂n. Based on the results in the
classical setting (Rieder [1994]), i.e., in absence of a penalty term., we provide our theoretical
results concerning the requirements for compact differentiability of penalized M-functionals
and asymptotic linearity of regularized M-estimators, carefully investigating each of the new
conditions that we need to impose. We will see that these requirements depend on the reg-
ularity of the penalty term so that the Lasso fails to be asymptotically linear at the first
glance since the l1−penalty term is not differentiable, so even the translation from the M-
estimator to a Z-estimator would need further investigation. However, we are able to use an
approximation lemma from Avella-Medina [2017] that elegantly ensures asymptotic linearity
under slightly stricter conditions but such that the concrete shape of the non-differentiable
regularization term is no longer important but only the fact if there exists a smooth approxi-
mation term. We concretize our results for the Lasso, the elastic net and the Adaptive Lasso
using the influence curves that already have been provided in literature (Öllerer et al. [2015],
Avella-Medina [2017]) where for the latter, we can identify the corresponding influence curve
with a partial influence curve. These results ensure that the regularized M-estimators can

8 CHAPTER 1. INTRODUCTION

also be identified with procedures that collect information separately w.r.t. the rows and the
columns as Boosting-type algorithms, so they can be embedded into the framework that we
introduce in this work.

The second part is devoted to ranking problems and contains, apart from a detailed review
on ranking problems and of existing ranking algorithms, proposals for influence curves for
ranking problems to embed them into the framework of part I, results on elicitability of rank-
ing functionals as well as arguments why a simple Gradient Boosting for continuous ranking
problems using surrogate losses is not reasonable.

The part starts with a detailed chapter on ranking problems where we carefully distinguish
between binary (bipartite), d−partite and continuous ranking problems by the nature of the
response variables and between weak, hard and localized ranking problems by the learning
goal. We will see that the three latter types of ranking problems lead to special loss functions
(Clémençon et al. [2008], Clémençon and Vayatis [2007]), so that a ranking problem can be
solved by empirical risk minimization as theoretically proven in Clémençon et al. [2008]. For
better comparison of these losses, we normalize them so that they always take values in [0, 1].
We close the chapter with a broad overview of existing algorithms for bipartite, d−partite
and continuous ranking problems with and without model selection and with a short discus-
sion of similarities and differences of d−partite ranking problems and ordinal regression.

The second chapter gathers some properties of ranking losses and ranking problems that we
derived. First, we solved the main computational issue of how to evaluate the hard and
the localized ranking loss since it requires pair-wise comparisons, so a naïve implementation
would be of complexity O(n2) resp. O(K2), if n is the total number of observations and K
the number of best instances. Afterwards, we make proposals for influence functions for the
weak, the localized and the hard ranking problem based on the ordered logit model.

The third chapter provides a lemma where we show that hard ranking functionals satisfy
the property of elicitability (Gneiting [2011]). Furthermore, in cases where multiple true
rankings occur, in other words, where the empirical hard ranking loss does not have a unique
minimizer, for example when having ties, we prove that the respective ranking functional is
even strongly or exhaustively elicitable (Fissler et al. [2019]). These results allow an objective
comparison of competing ranking models to decide which one was the best.

The last chapter provides very enlightening results concerning the applicability of Boosting
to the continuous ranking problem. A very common technique in classification settings is
to use convex and sufficiently regular surrogate losses for the non-differentiable and non-
convex 0/1−loss. Moreover, surrogate losses have already been applied to the binary ranking

1.2. OUTLINE OF THE THESIS 9

problem, resulting in Boosting-type algorithms like RankBoost (Freund et al. [2003]) or p-
Norm-Push (Rudin [2009]). Surprisingly, we will see that a similar technique is not applicable
to continuous ranking problems due to the range of the response variable, aside from being
computationally nearly intractable due to the pair-wise structure of the surrogate losses and
their gradients.

The third part is the main conceptual part of the thesis. We will introduce a measure on
the columns of a data matrix which we call ”column measure”, its cousin, the ”row measure”,
and the eponymous ”gradient-free Gradient Boosting” algorithm ”SingBoost” that can cap-
ture singular parts between column measures.

The first chapter starts with a recapitulation of the binary option pricing model where one
models the option price as an expectation w.r.t. a risk-neutral measure. We continue to state
a theoretical Riesz-type result, but do not proceed working with it. The next section briefly
recapitulates rejection sampling which leads to a very simple idea to perform L2−Boosting
on subsampled data and to choose the model which has the best test performance according
to some ranking loss movitated by the fact that the conditional expectation IE[Y |X] is an
optimal ranking rule (Clémençon and Achab [2017]). Before showing why this strategy may
not be meaningful when performing (sparse) variable selection, we identify weights assigned
to the rows of a data matrix as a ”row measure” and mention different examples where es-
sentially empirical row measures are fitted, though they have not been called so yet. The
main conceptual contribution of the chapter is the column measure which is similar to the
row measure, but which is defined on the columns of a data matrix, assigning importance to
the respective predictor variables. Clearly, the column measure depends on the loss function,
hence we introduce the notation ν̂(L)

n for the empirical column measure w.r.t. a loss function
L on a data set with n observations. The column measure leads to our so-called ”column
measure framework” in which we identify all learning procedures based on (a selection of)
predictor variables. Furthermore, we state the first type of a connection between row and
column measures by emphasizing that models based on subsamples or Bootstrap samples
essentially lead to empirical column measures which are induced by a prior row measure.
Our main theoretical contribution of this chapter is the Expected One-Step which can be
seen as generalization of the usual One-Step estimator in the sense that it cannot only handle
variable selection but any relevance allocation for the predictors according to some empiri-
cal column measure. We close the chapter by mentioning Online Learning algorithms that
include time-dependent row and column measures.

The second chapter finally mathematically describes why a rejection sampling strategy cannot
be meaningful when computing sparse models according to one loss function L but regarding
another loss function L̃ as target loss function. The problem can be described as facing

10 CHAPTER 1. INTRODUCTION

singular parts of column measures, in our special case the singular parts JL
L̃

of the column
measure ν(L̃) w.r.t. the column measure ν(L). We see that the situation is even worse than
it looks at the first glance because we cannot control à priori for singular parts since both
(theoretical) column measures are unknown and if L̃ is a complicated loss function which
in our case is some ranking loss function, we additionally have no chance to approximate
ν(L̃) at all. We introduce SingBoost, a ”gradient-free Gradient Boosting” strategy that alter-
natingly finds the optimal simple least squares baselearner according to either the standard
squared loss L2 and the target loss L̃. We provide some comments on the implementation of
this algorithm, on the updating scheme and how we get the coefficient paths. As the main
theoretical contribution of this part, we adapt the two theorems [Bühlmann, 2006, Thm. 1]
and [Bühlmann and Van De Geer, 2011, Thm. 12.2] to prove that SingBoost has the prop-
erties of estimation and prediction consistency even in very high dimensions provided that a
Corr-min condition for the selection of the predictor variable in each singular iteration holds.

The fourth part is the heart of the thesis and combines Stability Selection and SingBoost
with a new framework, the so-called ”row column measure (RCM) framework”, resulting in
an algorithm which we call CMB-3S, providing sparse and stable L̃−adapted model selection
and L̃−adapted coefficients.

The first chapter is again devoted to empirical column measures. After shortly identifying
the Random Lasso (Wang et al. [2011]) and the BlockForest (Hornung and Wright [2018])
as examples for algorithms that partially perform sampling from some column measure, we
discuss that a single SingBoost algorithm does, besides neither providing stable nor sparse
models, not compute appropriate empirical column measures w.r.t. L̃. Since we do not have
invoked a fixed loss function like standard Stability Selection, the possibly selected variables
from singular parts are inherently disadvantaged in terms of selection frequencies, so we do
not adapt the column measure w.r.t. L̃ sufficiently. Therefore, we need to run SingBoost on
subsamples of the data which gives us the opportunity to aggregate them in an L̃−adaptive
way. More precisely, we will assign weights to each SingBoost model and therefore to each
empirical column measure, depending on the out-of-sample-performance of the computed
coefficients w.r.t. L̃. Furthermore, we will only concentrate on the best few models which
results in performing a change of measure. We call this procedure which finally provides
an aggregated column measure ”Column Measure Boosting (CMB)”. The rest of the chapter
concerns about possible accelerations of CMB by combining sampling from an empirical col-
umn measure and optimization in a stage-wise manner.

The second chapter starts with showing how an L̃−based Stability Selection can be realized.
We mimic the standard Stability Selection, but instead of just fixing a threshold for the selec-
tion frequencies, we perform an optimization w.r.t. L̃, for one of those parameters, on a grid

1.2. OUTLINE OF THE THESIS 11

of reasonably chosen values by computing the out-of-sample-performance on a validation set.
Therefore, we provide three different variants how the coefficients may be computed. One of
those variants will directly include an empirical row measure which is merely a by-product of
Column Measure Boosting, assigning relevance w.r.t. L̃ to the rows of the data and maybe
being able to identify suspicious observations which surely should be downweighted. We call
the Column Measure Boosting algorithm with Stability Selection ”CMB-3S”. For reasonably
evaluating the performance of the resulting CMB-3S model, we also provide an algorithm
which we call CV.CMB-3S which is able to compare competitor CMB-3S models (and Boost-
ing models as a special case) in terms of their cross-validated test performance according to
L̃ by applying the underlying algorithm to different partitions of the data. We also mention
that CV.CMB-3S leads to an ultra-stable empirical column measure by aggregating the sta-
ble column measures computed w.r.t. each partition. Working simultaneously with row and
column measures is the meaning of our RCM framework in which we can at least embed all
learning algorithms with univariate response. A popular example which perfectly fits into
it is the SLTS algorithm of Alfons et al. [2013] which alternatingly works with empirical
row and column measures. We go even further and propose a systematization of learning
algorithms which enables us to express the paradigms of sparsity, stability and robustness in
terms of row and column measures. At the end, we briefly list some ideas how one maybe
could deal with grouped predictors and row weights.

The fifth part extends our former results and concepts to the case of multivariate respones
and provides deeper insights into the connection of robustness, stability and sparsity.

The first chapter of this part is devoted to ranking and regression problems with multivariate
responses. For ranking problems, we can identify the rankings w.r.t. each response column
as a partial ranking which leads to the question if there is an overall ranking, i.e., a so-called
”consensus ranking”, which finally provides an ordering of the regressor rows. We provide an
idea how to get an overall stable empirical column measure which can be thought of defining
a stable predictor set corresponding to the consensus ranking. As for regression problems
with multivariate responses, we recapitulate the multivariate L2−Boosting algorithm (Lutz
and Bühlmann [2006b]) and provide a first simple idea how a suitable SingBoost algorithm
(”MultiSingBoost”) may look like. We are already able to adapt [Lutz and Bühlmann, 2006b,
Thm. 1] to this case, showing that this MultiSingBoost would be estimation consistent in
very high dimensions under an additional suitable Corr-min condition. We close the chapter
by extending our results on elicitability and strong elicitability of hard ranking functionals to
(strong) k−elicitability of multivariate hard ranking functionals in the case of uncorrelated
response columns.

The second and last chapter of this part starts with introducing the cell measure which is

12 CHAPTER 1. INTRODUCTION

related to (sparse) covariance and precision matrix estimation. We will see that the cell mea-
sure is essentially induced by RCM pairs and that Meinshausen and Bühlmann [2010] already
worked with stable cell measures and corresponding stable cell sets. The next section gives
a brief overview of robust covariance estimation, especially the MCD estimator (Rousseeuw
[1985]), and of outlier detection procedures that are able to detect cell-wise outliers. We
provide two examples where we identify the MCD estimator and the DDC procedure for cell-
and case-wise outlier detection and imputation (Rousseeuw and Van Den Bossche [2018])
as instances of our RCM framework. In the third section, we restate a classical outlier de-
tection algorithm from Rocke and Woodruff [1996], the Fast-MCD algorithm and the SLTS
algorithm (Alfons et al. [2013]) in L2−Boosting form with multivariate responses resp. uni-
variate responses (for SLTS). This motivates an idea for Generalized L2−Boosting where
concentration steps and forgetting factors are included and which may select more than one
predictor in each iteration. Finally, we propose a Stability Selection for the rows, based on
either robust algorithms or some Generalized Boosting and provide conceptual ideas how to
find a suitably stable row set.

The sixth part is the practical part which demonstrates the vast flexibility of our imple-
mented algorithms.

The first chapter provides an overview of the main functionalities of our algorithms by apply-
ing it to small data sets like the iris data set and the bodyfat data set from the R−package
TH.data. We show that our CV.CMB3S function can also be applied to the high-dimensional
Real.2 data set from the package PRIMsrc and to the ultrahigh-dimensional riboflavin
data set from the package hdi.

The second chapter compares the performance of our CMB-3S algorithm (i.e., respecting
singular parts) with the performance of L2−Boosting and L2−Boosting combined with our
Stability Selection in terms of the hard ranking loss and see that our algorithm reliably beats
L2−Boosting in the majority of cases. We also study the performance of our loss-based Sta-
bility Selection, without considering singular parts (”CMB-2S”), for the squared, the Huber
and the hard ranking loss by comparing its cross-validated test loss with the respective test
loss resulting from L2−Boosting resp. Huber-Boosting resp. L2−Boosting. We observe that
our models outperform the simple Boosting models. Additionally, we learn that Hofner’s
Stability Selection (Hofner et al. [2015]) gets unreliable on high-dimensional noisy data sets
but that our Stability Selection can indeed cope with such situations.

The last part is devoted to different ideas for future research.

The first chapter deals with the problem of missings in the data. We will not provide any

1.2. OUTLINE OF THE THESIS 13

new ideas for dealing with common missings, but we try to find solutions for data sets with
structural missings that are especially interesting in audit and medicine applications. The
first idea that we present is based on asymptotically linear estimators while the second one
is a Boosting approach where we recommend to treat the missings column-wisely, separately
for each column-specific baselearner. We see that the second approach has the potential to
be applicable for data sets with arbitrary missing structures, but some theoretical work is
still required to reasonably choose the required weights for an aggregation of the losses.

The second chapter shows the basic steps that were required to transfer Column Measure
Boosting to nonparametric models where smoothing splines would be used as baselearners.
We also shortly discuss if non-linearity is an issue if one is interested in ranking. Addition-
ally, we provide an idea how to robustify the SingBoost algorithm by using optimally-robust
influence curves. Again, more theoretical work is necessary.

The last chapter of this thesis summarizes again the theoretical, conceptual and algorithmic
contributions of this thesis.

At the very end, an appendix containing several definitions, tools from (functional) analysis
and asymptotic statistics follows.

Chapter 2

Learning sparse and stable models

This chapter recapitulates important paradigms of computing and selecting models as well as
sophisticated variable selection procedures that will be fundamental throughout this thesis.

The first two sections are not meant to be a survey on concepts of data analysis but just to
resume the very basic ideas behind the common concepts of machine learning in the notation
of this work.

The last sections are devoted to sparse and stable models that play a crucial role for the whole
thesis. At the end, we present two important algorithms that can efficiently and flexibly pro-
vide well-interpretable models: Stability Selection and Boosting. Since our contributions
are built on those techniques and require some recommendations on tuning parameters and
sampling paradigms, the respective subsections are rather deeply detailed.

Note that all the algorithms that we recapitulate here require loss functions that satisfy some
regularity conditions that do not hold for the ranking losses that we are actually interested
in.

2.1 A brief review on model fitting and validation

Let D := (X, Y) ∈⊗m
i=1X ×

⊗m
i=1 Y ⊂ Rm×(p+1) for some subsets X ⊂ Rp, Y ⊂ R be a data

set consisting of p−dimensional predictors and one-dimensional responses. The predictors
can be either continuous or discrete. Throughout the thesis, we assume models of the form

Y = f(X) + ε (2.1.1)

14

2.1. A BRIEF REVIEW ON MODEL FITTING AND VALIDATION 15

for an error term ε ∈ Rm with εi i.id.∼ Fε with IE[εi] = 0 and Var(εi) = σ2 ∈]0,∞[for all i. The
function f may be any measurable function mapping from X into Y . An important special
case on which we will focus nearly throughout the whole thesis is that f is an element of the
parametric function class

Fβ := {fβ(X) = Xβ | β ∈ Θ ⊂ Rp}.

Remark 2.1.1 (Intercept). Note that if not explicitly specified, the first column of the
regressor matrix X is allowed to consist only of ones, which means that the first component
of the parameter is the intercept. At important places, especially when concerning about
Boosting models, we generally highlight the inclusion of intercepts by defining the parameter
as (p+ 1)−dimensional vector.

We always denote the i−th row of the predictor matrix X by Xi. Then, the pair (Xi, Yi)
is referred to as the i−th instance. The j−th column of X is denoted by X·,j. There are
two different types of design for the regressor matrix X. Either one assumes a stochastic
design, so the rows Xi of X are modelled as i.id. random variables, or the regressor matrix
is assumed to be fixed which leads to the disadvantage that the rows cannot be regarded as
being identically distributed anymore (cf. [Pupashenko et al., 2015, Sec. 2.2]). In this work,
the stochastic design will more likely be assumed, except for theoretical results on ranking
problems where a random design would not be meaningful.

In the case that the response is continuous, we face a regression or a ranking problem whereas
discrete-valued responses lead to classification or ranking problems. Those types of problems
are summarized as supervised learning problems. Unsupervised learning problems do not
include response variables and the main task is to find structures in the data like dividing
them into clusters (see any statistical learning reference, e.g. Friedman et al. [2001]). For
details on ranking problems, see chapter 5.

A widely spread technique to fit models is the empirical risk minimization (ERM) principle
(see any statistical learning reference, e.g. Devroye et al. [2013]) that manifests itself in
defining a suitable loss function and a (parametric) class of models. Having data, one tries to
pick the model that minimizes the empirical counterpart of the risk, typically an arithmetic
mean of the given loss function comparing each component of the predicted vector Ŷ with
the corresponding component of the true response vector Y in the case of regression or classi-
fication problems. Loss functions that are tailored to ranking problems are more complicated
due to their global nature and compare permutations of the true and the predicted response
vector.

16 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

Assumption 2.1.1 (Loss function). In a regression setting, a loss function is given by a
function L : Y × Y → R≥0. Throughout the thesis, we assume L(y, y) = 0 for all y.

Of course, the more instances are available, the more evidence we have, but using the whole
data set for training a model does not provide any opportunity to test how the model works
on other data following the same distribution. A standard approach (see e.g. Friedman et al.
[2001]) is to divide the data set into a training set Dtrain = (X train, Y train) ∈ Rn×(p+1) and
a test set Dtest = (X test, Y test) ∈ R(m−n)×(p+1). Then the validation of the fitted model on
Dtrain is done by predicting a vector Ŷ ∈ Rm−n based on the predictors X test and evaluating
the empirical risk on Dtest. In general, the error made on the training set is referred to as
the training error and the error on the test set as the test error.

This approach is in general insufficient since dividing the data only once just provides one
test set which generally does not lead to enough statistical evidence. An extended approach
that is very popular if one has to compare competing models or to adjust hyperparameters
is the cross validation technique (see. e.g. Arlot et al. [2010]). The main idea is to simply
divide the data set into V almost equally sized parts and to train V models, each on the
whole data set except one part, respectively. Then, the single part that was not included
in the training set serves as the test set. Aggregating the test errors provides the cross-
validated test error, so the model whose cross-validated test error is the smallest will be
finally selected. If the data contain heterogeneities like possible outliers, it is recommended
to use a randomized cross validation where one generates V times a subsample of the
data and uses the remaining part, respectively, as test set.

A simple example for cross validation arises when hyperparameters have to be tuned. The
most straightforward way to choose the hyperparameters is to define a grid on (a subset
of) the cartesian product of the sets in which the hyperparameters can take values and to
train models with each of the configurations defined by the grid in the spirit of cross val-
idation. The model with the combination of hyperparameters that resulted in the lowest
cross-validated test error is then taken.

2.2 Regularization and model complexity

In our parametric setting, the complexity of a model is given by the number of predictors
that are included. The more complex the model is, the more functions can be represented,

2.2. REGULARIZATION AND MODEL COMPLEXITY 17

but usually it is more likely to model the stochastic errors in this case. Additionally, more
complex models are less interpretable.

Motivated by these issues, regularized regression methods penalize certain quantities depend-
ing on the parameter β and a regularization parameter λ > 0. Combining regularization
with ERM is referred to as structural risk minimization (SRM) going back to Vapnik (Vap-
nik [2013], Vapnik [1998]). There exists vast literature studying the theoretical aspects of
regularization including the Vapnik-Chervonenkis dimension, the fat shattering dimensions,
Gaussian and Rademacher complexities and risk bounds (see e.g. Vapnik [1998], Duan [2011],
Bartlett and Mendelson [2002], Koltchinskii and Panchenko [2002], Boucheron et al. [2005],
Bartlett et al. [2002]).

Two well-known criteria that penalize the complexity of a model are the Akaike informa-
tion criterion and the Bayes information criterion. While the Akaike information criterion
can be seen as an unbiased approximant of the Kullback-Leibler divergence of the true and
the predicted model, the Bayes information criterion approximates the Bayes factor. Yang
[2005] already showed that the benefits of each criterion, more precisely, the consistency of
the Bayes information criterion and the minimax-rate optimality of the Akaike information
criterion, cannot be combined, so there is no overall best choice.

For practical applications, both information criteria provide a ranking of the quality of the
fitted models, but of course, these models have to be fitted first. A naïve approach is the
best subset selection where all 2p possible models (not counting the model containing only an
intercept) are fitted and compared. More sophisticated extensions are step-up and step-down
procedures.

Another approach to incorporate the model complexity is to directly intervene into the fitting
procedure, say, the optimization process by adding a regularization term to the loss function.
A well-known regularized regression technique is the Ridge regression (cf. p.e. Friedman
et al. [2001]) which penalizes the l2−norm of β, i.e.,

β̂ridge = argmin
β∈Θ

(1
n
||Y −Xβ||22 + λ||β||22

)
,

resulting in shrunken but usually still non-zero coefficients. A popular method that produces
sparse models is the Lasso (cf. Bühlmann and Van De Geer [2011]) which penalizes the
l1−norm of β, i.e., it solves

β̂lasso = argmin
β∈Θ

(1
n
||Y −Xβ||22 + λ||β||1

)
.

It theoretically would be even more effective to penalize the l0−norm of β itself, but the
l1−norm is the best convex surrogate of it which is crucial for numerical optimization of the

18 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

regularized loss. From a geometric point of view which is graphically given in Tibshirani
[1994], it is evident that much more coefficients will be shrunken towards zero than for Ridge
regression. Nevertheless, lq−penalization for 0 < q < 1 is a popular technique for example
in compressed sensing (see p.e. Elad [2010]).

Nonconvex regularization like the already mentioned lq−penalty has been tackled by Zou
and Li [2008] using a local linear approximation, resulting in certain weights than enter the
penalty term. Even more sophisticated is the Multistep Adaptive Lasso introduced in
Bühlmann et al. [2008] which is an extension of the Adaptive Lasso proposed by Zou (Zou
[2006]). The Adaptive Lasso first performs an initial estimation step which provides an initial
coefficient β̂init. Then, in the second step, one solves

β̂ = argmin
β∈Θ

 1
n
||Y −Xβ||22 + λ

∑
j

|βj|
|β̂initj |

 .
Zou [2006] propose to use a

√
n−consistent algorithm in the first step. Bühlmann and Van

De Geer [2011] recommend to apply the Lasso where an optimal λ is chosen by cross vali-
dation. This increases the sparsity since an initial coefficient of zero directly leads to a zero
coefficient in the second step. The Multistep Adaptive Lasso just invokes more steps where
the regularization parameter is updated between each step and enters also as a weight. It
is shown in Bühlmann et al. [2008] that the Multistep Adaptive Lasso essentially performs
ln−regularized least squares minimization asymptotically.

For other work on nonconvex regularization, see for example Breheny and Huang [2011] for
regression and logistic regression, Laporte et al. [2014] for document retrieval with SVMs
or Loh and Wainwright [2015] and Loh et al. [2017] for magnificent results on local optima
resp. on model selection consistency when both loss and penalty can be nonconvex. Further-
more, in Mazumder et al. [2011], an algorithm called SparseNet is proposed to minimize the
squared loss with some nonconvex penalty, in Taddy [2017], the penalty is weighted in each
iteration according to the current coefficients, Wang et al. [2013] provide further theoretical
results for least squares regression with nonconvex penalty in very high dimensions and Wei
and Zhu [2012] extend the usage of popular nonconvex penalties like SCAD (Fan and Li
[2001]) and MCP (Zhang et al. [2010]) to grouped variables.

In this work, we will focus on regularized regression techniques rather than on information
criteria for the following reasons:
i) The information criteria are independent of the concrete setting where regularized regres-
sion procedures have an additional penalty parameter that can be suitably chosen;
ii) Subset selection gets infeasible if p > n except for the step-up procedure that starts with
an empty model and successively adds one predictor whereas regularized methods are basi-

2.3. STABILITY SELECTION 19

cally designed for the high-dimensional case.

Besides many modifications of the Lasso like the already mentioned adaptive Lasso to correct
the overestimation behaviour of the standard Lasso (Zou [2006]) or the elastic net (Zou and
Hastie [2005]) where the penalty term is a convex combination of an l1− and an l2−penalty,
there exists vast literature on regularized methods for other learning tasks. Examples range
from robust regression methods like sparse MM-estimators (Smucler and Yohai [2017]) or
sparse least trimmed squares (Alfons et al. [2013]) to the estimation of a precision matrix via
the Graphical Lasso (Banerjee et al. [2008] and Friedman et al. [2008], see also Bühlmann
and Van De Geer [2011] or Van de Geer [2016]), and the Sparse-Group Lasso from Simon
et al. [2013] which, in contrast to the Group Lasso of Yuan and Lin [2006], does not only
select a few groups of variables but even only a few variables in the selected groups.

Remark 2.2.1 (Sparsity). One should always keep in mind that applying regularization
techniques implicitly states the assumption that the true underlying model is sparse, i.e., that
the true coefficient vector β0 has s0 � p non-zero entries, thus ||β0||0 = s0.

2.3 Stability Selection

For the rest of the thesis, let Λ ⊂ R≥0 always be the set of regularization parameters λ.
For a variable selection technique in which λ enters as penalty parameter, we denote the
estimated set of variables by this algorithm with a specified λ by Ŝ(λ). When tuning the
algorithm, usually by defining a grid of candidate values for λ and fitting a model for each
element of the grid, one essentially would pick one of the indexed models which behaves best
w.r.t. some quality criterion. Following Meinshausen and Bühlmann [2010] or [Bühlmann
and Van De Geer, 2011, p. 346], variable selection by just choosing one element of the set
{Ŝ(λ) | λ ∈ Λ} does generally not suffice due to the overestimation behaviour of algorithms
like the Lasso. Instead, the data is resampled many times randomly with a sample size of
around bn/2c and only the variables that have most frequently been chosen are ultimately
selected. Bühlmann and Meinshausen recommend to generate around 100 subsamples.

In general, one defines the set of relevant variables by

Ŝrel0 (C) := {j | |βj| ≥ C},

i.e., the set of variables whose true coefficients have an absolute value far away enough from

20 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

zero. Define the probability that the set J ⊂ {1, ..., p} of indices will be included in the set
of selected variables by

Π̂J(λ) := P (J ⊂ Ŝ(λ)).

These probabilities are empirically computed many times by resampling and counting the
relative number of subsamples that led to the covariable set J .

Then, by defining a cutoff πthr, the Stability Selection results in the set

Ŝstab := {j | max
λ∈Λ

(Π̂j(λ)) ≥ πthr}.

So, instead of choosing one element of {Ŝ(λ) | λ} as in the traditional setting, one takes a
look at the stability paths of each predictor. They are given by the selection probabilities of
each variable, given the regularization parameter, as an analog to regularization paths which
show the evolution of the coefficients in dependence of λ (see for instance Rosset and Zhu
[2007]). Graphically, Stability Selection chooses every predictor whose stability path (par-
tially) exceeds the cutoff. Those stability paths are implemented in the R−package stabs
(Hofner and Hothorn [2017], Hofner et al. [2015], Thomas et al. [2018]).

An important issue is always the type I error, i.e., the amount of falsely selected variables.
[Meinshausen and Bühlmann, 2010, Thm. 1] show a bound for the expected value of false
positives. They additionally show that exact error control is possible with Stability Selection
even in high-dimensional settings whereas otherwise, it is very difficult to even estimate the
noise level.

Another idea which is also presented in [Meinshausen and Bühlmann, 2010, App. A] is the
following one. Instead of randomly choosing a subset of around bn/2c observations of the
data, one may split the sample into two equally sized disjoint parts with index sets I1, I2.
Then the simultaneous selection probability is defined as

Π̂simult,λ
J := P (J ⊂ Ŝsimult,λ) = P (J ⊂ ŜI1(λ) ∩ ŜI2(λ))

where ŜIk , k = 1, 2, are the estimated sets of true predictors, respectively. One can show
([Meinshausen and Bühlmann, 2010, Lem. 1]) that

Π̂simult,λ
J ≥ 2Πλ

J − 1.

An extension of the Stability Selection is introduced in Shah and Samworth [2013] where the
selection strategy is essentially the same as above with simultaneous selection, but Shah and
Samworth [2013] provide bounds for the type I error that are free from the exchangeability
assumption and the assumption that the selection procedure is better than random guessing
needed in Meinshausen and Bühlmann [2010]. This exchangeability assumption was already
discussed in the discussion section of Meinshausen and Bühlmann [2010] and in Hofner et al.

2.4. BOOSTING AND VARIABLE SELECTION 21

[2015] who point out that this implies that every noise variable would have the same selection
probability and therefore the same correlation with the response vector.

Helpful recommendations how to set the cutoff πthr are also given in the practical section of
Hofner et al. [2015].

An algorithm called Bolasso (Bach [2008]) can be seen as related work, but with the main
difference that no subsampling strategy but a Bootstrap strategy is used. Then the final set
of selected variables is the intersection of all selected sets. Therefore, one may think of a
”cutoff” which would be 1 for the Bolasso.

We close this subsection by recapitulating two important definitions in the context of variable
selection which can be found in the book of Bühlmann and Van de Geer (Bühlmann and Van
De Geer [2011]) which is an excellent reference for the theory of the Lasso, including other
variants, and their oracle properties as well as for Boosting.

Definition 2.3.1. Assume that S0 is the true set of variables, Srel0 the set of relevant variables
and Ŝ is the set of parameters selected by the model selection procedure.
a) The model selection procedure has the screening property if

P (Ŝ ⊃ Srel0) −→ 1

for n→∞.
b) The model selection procedure is variable selection consistent if

P (Ŝ = S0) −→ 1

for n→∞.

2.4 Boosting and variable selection

The idea behind Boosting is to combine simple models (”weak learners”, ”baselearners”)
that are easy to compute in order to generate a final ”strong” learning model. The first
algorithm of this kind was the Adaboost algorithm (Freund and Schapire [1997]) for binary
classification problems. It has been shown in Breiman [1999] that AdaBoost can be seen as
a gradient descent algorithm for the exponential loss. Friedman et al. [2000] showed that
AdaBoost can also be identified with a Forward Stage-wise procedure.

22 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

In general, one can think of a loss function L(y, f) where y represents a response component
and f is the selected model. This loss function should be smooth and convex in the second
argument (see Bühlmann and Yu [2003]). Then Gradient Boosting is an iterative proce-
dure that computes the negative gradients −∂fL(Yi, f) for every i in the (m+1)−th step and
evaluates it at the current model f̂ (m) that has been fitted in the previous iteration and that
supplies a predicted value for Yi. Then a new weak learner ĝ(m+1) is fitted using this negative
gradient as response and the current model f̂ (m) is updated via f̂ (m+1) = f̂ (m) + κ̂(m+1)ĝ(m+1)

where the step sizes or learning rates κ̂(m) are possibly chosen adaptively, often a fixed learn-
ing rate κ is used. The general functional gradient descent (FGD) algorithm can be
found in the appendix (A.8).

The weak learners can for example be either trees, smoothing splines or simple least squares
models. Depending on the problem that has to be solved, one uses different loss functions
like the negative binomial log-likelihood loss

log2(1 + exp(−2yf))

for binary classification (LogitBoost), the exponential loss

exp(−yf)

as a convex surrogate of the 0/1−loss (AdaBoost) or the absolute resp. the quadratic loss
for L1− resp. Least Squares Boosting. For an overview of Gradient Boosting algorithms and
their paradigms, we refer to Bühlmann and Yu [2003] and Bühlmann and Hothorn [2007].

In this work, we will rather concentrate on Least Squares Boosting, hereafter always
L2−Boosting, which has been shown to be estimation and prediction consistent even for
very high dimensions ([Bühlmann, 2006, Thm. 1], [Bühlmann and Van De Geer, 2011, Thm.
12.2]). It can be extremely efficiently computed using a component-wise linear regression
procedure as described in algorithm 1 (cf. Bühlmann [2006]).

Since it is easier to understand for this Boosting algorithm, we directly expressed the steps
through coefficients. Bühlmann himself uses different notation, calling variants like the one
above ”coefficient version” and those like algorithm 23 ”function version” (see Lutz and
Bühlmann [2006a]).

The update step has to be understood in the sense that every j−th component of β̂(k)

remains unchanged for j /∈ {1, ĵk} and that only the intercept and the (ĵk)−th component
are modified (recall that if an intercept is fitted, we have X·,1 = 1n). If one computes
intercept-free models, only the ĵk−th component changes. However, in algorithm 1 and
other Boosting pseudo-codes, we always assume to include intercepts. Note that the formula

2.4. BOOSTING AND VARIABLE SELECTION 23

to compute the residuals indicates that one is interested in following the steepest gradient.
This is true in component-wise L2−Boosting since for the standardized loss function

L(y, f) := 1
2(y − f)2,

the negative gradient w.r.t. f is given by (y − f).

Initialization: Data (X, Y), step size κ ∈]0, 1], number miter of iterations and
parameter vector β̂(0) = 0p+1;
Compute the offset Ȳ and the residuals r(0) := Y − Ȳ ;
for k = 1, ...,miter do

for j = 1, ..., p do
Fit the current residual r(k−1) by a simple least squares regression model using
the predictor variable j;
Compute the residual sum of squares;

end
Take the variable ĵk whose simple model β̂ĵk ∈ Rp+1 provides the smallest residual
sum of squares;
Update the model via β̂(k) = β̂(k−1) + κβ̂ĵk ;
Compute the current residuals r(k) = Y −Xβ̂(k)

end
Algorithm 1: Component-wise least squares Boosting

There are still two tuning parameters that we did not concern about yet. The step size or
learning rate κ decides how much weight we assign to a new baselearner compared to the
weight assigned to the current model (which is 1). As suggested by Friedman [2001] and
done for L2−Boosting in Bühlmann and Yu [2003], one can choose its value adaptively by
performing a line search, i.e., with the current model β̂(k−1) and the new base model β̂ĵk ,
one chooses κ such that the combined model provides the minimal loss over a grid of step
sizes. However, Bühlmann [2006] recommend a small step size which causes the necessity
of more iterations miter, but giving the resulting models in general a better out-of-sample
performance. Bühlmann and Hothorn [2007] found out that a line search is not necessary
because for reasonably small step sizes, its influence is fairly small. Therefore, we do not
experiment with the learning rate throughout this thesis and generally use the default value
of κ = 0.1 in our practical applications.

The other tuning parameter is miter, the number of Boosting iterations. Contrary to the step
size, the number of Boosting iterations becomes very important if a pure Boosting algorithm
is applied without further variable selection criteria due to a general overfitting behaviour
of Boosting (see e.g. Bühlmann and Hothorn [2007]). More precisely, a small number of

24 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

miter leads to biased models with a low variance whereas performing many iterations reduces
the bias but increases the variance (Mayr et al. [2012b]). While Bühlmann and Yu [2003]
used the relative difference of mean squared errors as a stopping criterion, Bühlmann [2006]
invoked the corrected AIC, minimizing it over a suitable set of values for miter. In fact,
stopping criteria that are not based on loss differences (which is a convergence criterion) are
often referred to as ”early stopping” criteria (see Bühlmann and Hothorn [2007] and Mayr
et al. [2012b]). Mayr et al. [2012b] complain that early stopping criteria often require a very
high initial number of iterations. Then, in a cross validation scheme, one proceeds computing
the Boosting model, comparing some criterion like an AIC for every model and choosing the
model that achieves the best value, so an optimal number for miter is found just afterwards.
Thus, due to potentially many iterations and evaluations that were made in vain, this pro-
cedure is not computationally effective. They themselves propose to set miter initially to 40.
Then they search for the AIC-optimal number of iterations afterwards by subsampling and
cross validation. If this number is sufficiently far away from the current miter (they propose
to use 0.9 times this current number as threshold), the algorithm has finished, otherwise they
set miter = miter + 40 and repeat the procedure.

Boosting with component-wise least-squares as baselearners, among a variety of other Boost-
ing algorithms, is implemented in the R−package mboost (Hothorn et al. [2017], Hofner et al.
[2014], Hothorn et al. [2010], Bühlmann and Hothorn [2007], Hofner et al. [2015], Hothorn
and Bühlmann [2006]).

Remark 2.4.1 (Lasso vs. L2−Boosting). Some work has been done to detect and to
understand similarities and differences of Lasso and L2−Boosting, for example Efron et al.
[2004], Bühlmann and Hothorn [2007]. A considerable difference of variable selection via
Boosting compared to Lasso variable selection is pointed out in [Bühlmann, 2006, Sec. 4.3].
The Lasso cannot pick more than min(n, p + 1) variables while the number of the variables
selected by Boosting is not restricted in advance. Empirically, Bühlmann and Hothorn [2007]
argue that it is not clear if Lasso or L2−Boosting are to be preferred. Additionally, Mein-
shausen et al. [2007] empirically compared Lasso and L2−Boosting to the Dantzig Selector
proposed by Candès et al. [2008]. As Efron et al. [2007] concluded that the Dantzig Selector
is inferior to the Lasso, Meinshausen et al. [2007] recommended to use rather L2−Boosting
or Lasso than the Dantzig Selector.

Recently, Freund et al. [2017] deepened the understanding of the relation of L2−Boosting and
the Lasso by providing a new unifying framework. They proposed the convex optimization
problem

min
r∈Pres

(f(r)) := ||XT r||∞

2.4. BOOSTING AND VARIABLE SELECTION 25

where Pres := {r | r = Y −Xβ ∃β ∈ Rp}, i.e., the space of attainable residuals (for Θ = Rp).
In other words, the maximal absolute correlation of the residuals with the predictors has to be
minimized, but the optimization variable is r and not β! Since the target function is convex
but not differentiable, they provided a subgradient descent method to solve the problem. Fur-
thermore, they showed that Forward Stage-wise Regression and L2−Boosting are special cases
of this subgradient descent. Apart from these results, they even proceeded further, showing
that the Lasso is equivalent to the solution of a subgradient descent for a regularized version
of the correlation minimization problem where the target function is additionally penalized
by ||r − Y ||22, scaled with a regularizing factor such that the original problem is just the un-
regularized special case. In summary, Freund et al. [2017], besides many new theoretical and
practical insights, unified both Lasso and L2−Boosting as instances of the same underlying
optimization procedure.

A great benefit of Boosting is the opportunity to perform variable selection again afterwards.
One simply invokes the relative selection frequency of all predictors and only includes those
in the final model whose selection frequency exceeds some predefined threshold. In fact,
Hofner et al. [2015] provided a Stability Selection for Boosting models. As in the Stabil-
ity Selection setting, one generates a number of subsamples and performs Boosting on each
subsample. Each Boosting model is iterated until a predefined number q of variables is se-
lected, respectively for each subsample. Then one counts the absolute selection frequencies
of each variable. Aggregating over the subsamples, the overall absolute selection frequen-
cies are determined and only those variables whose relative selection frequency exceeds some
threshold is ultimately chosen. The number q and the threshold πthr are related by the
per-family error-rate, so holding two of these quantities fixed, the third can be reasonably
set (Hofner et al. [2015]). In general, Meinshausen and Bühlmann [2010] recommend to set
πthr ∈]0.6, 0.9[, but mention the low importance of this parameter since the resulting models
are only insignificantly affected. Hofner et al. [2015] think of]0.5, 1[as a reasonable interval
for πthr. Again, this strategy is implemented in the R−package stabs (Hofner and Hothorn
[2017], Hofner et al. [2014], Thomas et al. [2018]).

Remark 2.4.2. In a pure theoretical scenario, Stability Selection could even lead to less
sparse models than all the single Boosting models. Consider B = 100 and let q = 8. If it
happened that for example the union of all sets of selected variables contained 10 variables
and that each of these variables had been chosen by exactly 80 models, then a Stability Selec-
tion with a cutoff not larger than 0.8 would select all 10 variables.

However, this scenario is very unlikely to occur in practice.

26 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

Remark 2.4.3. L2−Boosting just means that the squared loss is minimized by Boosting.
Aside from component-wise linear models, there are other possible baselearners such as stumps
or smoothing splines (Bühlmann and Yu [2003]). Note that when referring to L2−Boosting
in the first parts, we always think of component-wise linear baselearners. Smoothing splines
will be mentioned shortly in the last part.

Remark 2.4.4. Although L2−Boosting is adapted to regression problems, Bühlmann and Yu
[2003] provided a modified version which they called L2−WC-Boosting (”with constraints”)
which can also handle classification problems. An example which is given in [Bühlmann and
Yu, 2003, Ch. 5.1] assumes that the responses take values in {−1, 1}. Then, L2−Boosting is
applied, but the predicted responses are always enforced to be contained in the interval [−1, 1]
so that the classification is done by discretization. [Bühlmann and Yu, 2003, Ch. 5.2] de-
scribes how even multi-class problems can be solved.

A more sophisticated result is given in Bühlmann [2006], showing that applying L2−Boosting
to binary classification problems by modelling Yi = fn(Xi)+ εi with fn(x) = IE[Y |X = x] (the
subscript n emphasizes that the number n can grow) and heteroskedastic but centered errors
εi is consistent.

Remark 2.4.5. For the case of L2−Boosting, Lutz and Bühlmann [2006a] derived an al-
gorithm that does not necessarily proceed along steepest gradients but that searches for a
direction which is conjugate to all directions in the iterations before. The authors show ex-
perimentally that their CDBoost algorithm can outperform Lasso or standard L2−Boosting
in certain settings.

Remark 2.4.6. Boosting has been extended to the case of fitting generalized additive models
with more than one parameter (see Mayr et al. [2012a]). The idea is to compute baselearn-
ers for the predictor corresponding to each parameter separately by fitting negative partial
residuals w.r.t. these predictors.

Remark 2.4.7 (Online Learning). We note that Online Boosting algorithms already have
been developed, starting with the pioneering work of Oza [2005]. Until now, there has been
done much work on Online Boosting, see for example Chen et al. [2012], Beygelzimer et al.
[2015b] and Leistner et al. [2009] for binary classification or Chen et al. [2014] for multiclass
classification in the bandit setting which all essentially have a similar structure as AdaBoost.
We also note that for the regression context with smooth convex loss functions, proposals for
Online Gradient Boosting have been made, see Beygelzimer et al. [2015a] or Hu et al. [2017].

However, we restrict ourselves to the Batch Learning framework in this thesis.

2.5. BOOSTING WITH CATEGORICAL PREDICTORS AND INTERACTIONS 27

2.5 Boosting with categorical predictors and interactions

Categorical predictors or even interactions can easily be encoded by generating extra columns
in the model matrix. If a variable corresponding to column X·,j has d levels, then one just
introduces (d− 1) columns where the k−th of them has ones exactly where the (k + 1)−th
level is observed and replaces the original column by these artificial columns. In the following
simple example, the encoding is as follows:



A

B

C

C

D

A

B

D



7→



0 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0
1 0 0
0 0 1



.

This works since the intercept already contains all information for class A. A first-order inter-
action term between two variables X·,j and X·,k is encoded by adding a column whose entries
are (XijXik)ni=1. In cases where one of the variables is categorical with d levels, we addition-
ally need (d−1) columns since each of the artificial columns corresponding to the categorical
variable is component-wisely multiplied with the other column. If both are categorical with dj
resp. dk levels, we summa summarum need (dj−1)+(dk−1)+(dj−1)(dk−1) extra columns.

As described in [Bühlmann and Van De Geer, 2011, Ch. 4], solving the Lasso exactly defines
such a model matrix and runs the respective algorithm on it. However, issues can occur
both when applying Lasso or component-wise Boosting. Following Gertheiss et al. [2010],
the variable selection may depend on the coding scheme, i.e., which variable is chosen as base
category. Therefore, they provide a penalty term that incorporates the absolute differences
of the coefficients corresponding to each level of a categorical variable, thus it resembles the
fused Lasso penalty (see Tibshirani et al. [2005]). This results in uniting categories implicitly
by motivating them to have nearly the same coefficient. A similar idea from Gertheiss and
Tutz [2009] is to define a Ridge-type penalization for the coefficients of adjacent categories
which is implemented in the Boosting package mboost.

Alternatively, an approach called BlockBoost (see Gertheiss et al. [2011]) was provided.
For metric variables, nothing changes compared to standard Boosting techniques. In other
words, each metric variable itself forms a block. But concerning categorical variables, all ar-
tificial columns that have been used for encoding are treated as one block. On these blocks, a

28 CHAPTER 2. LEARNING SPARSE AND STABLE MODELS

Ridge-regularized weak learner is computed and if one of those models improves the current
strong model the most, all coefficients corresponding to this block are updated. This can be
formalized by ”structured terms” as done in Tutz [2011] or in the discussion paper Bühlmann
et al. [2014].

Apart from linear techniques, Bühlmann and Hothorn [2007] state that interactions can be
represented by smoothing splines if one uses pair-wise splines instead of component-wise
splines for first-order interactions and so on, whereas trees can handle interactions up to
level k if they have at least (k + 1) terminal nodes (see Friedman [2001]).

Since this work mainly restricts itself to linear underlying models, varying coefficients (see
e.g. Hastie and Tibshirani [1993], Fan and Zhang [1999], Fan and Zhang [2008]) that are
capable to represent interactions between variables in nonlinear models should not be a topic
here.

Part I

Regularized M-estimators and their
asymptotic linear expansion

29

30

31

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

32

This theoretical part of the thesis is devoted to M-estimators which are a well-known type of
estimators in statistics, especially the maximum likelihood estimator is a prominent exam-
ple. However, a weakness of M-estimators is that they generally do not have an analytical
solution in closed form, so one needs iterative procedures to approximate them. But indeed,
estimators that correspond to the SRM principle like for example the Lasso from the pre-
vious section belong to the class of regularized M-estimators, so it is adequate to study the
asymptotic properties of general regularized M-estimators.

In this sense, this part gives an approach to the following problem:

Can regularized M-estimators be asymptotically linearly expanded?

Estimators from sophisticated learning algorithms that are capable to analyze high-dimensio-
nal data where the number of predictors exceeds the number of observations like the Lasso
(Tibshirani [1994]), the elastic net (Zou and Hastie [2005]) and the adaptive Lasso (Zou
[2006]) can be represented by regularized M-functionals. Therefore, studying the asymptoti-
cally linear expansion of estimators corresponding to such functionals could give insights into
asymptotic properties of modern machine learning techniques.

Related contributions concern about the computation of the Gâteaux derivative of regular-
ized M-functionals (Öllerer et al. [2015], Avella-Medina [2017]) and the asymptotic linearity
of a few selected estimators (Van de Geer [2016], LeDell et al. [2015]). Apart from this,
impressive results in the nonconvex setting are provided in literature (Loh [2017]). Our con-
tribution should go into the direction of a general theory for the asymptotic linear expansion
of regularized M-functionals.

This part is organized as follows. Before presenting our results, an introductory chapter on
robust statistics is provided that contains the main definitions of robust statistics and their
connections to the asymptotic theory of M-estimation. A short guide how these techniques
can enter practical estimation problems closes this chapter.

The second chapter addresses to the initially posed question and shows under which con-
ditions general regularized M-estimators are asymptotically linear. Concrete examples of
estimators that satisfy these requirements like the Adaptive Lasso are provided at the end.

33

Few potential predictorsHigh-dimensional data

Sparse model selection Traditional models

Standard regressionRegularized regression

M-estimators

M-functionals

Regularized M-estimators

Robustness criteria

Breakdown point

Penalized M-functionals Influence function

Compact
differentiability

Asymptotic
linear expansion

Compact differentiability

Asymptotic linear expansion

Existing robust algorithms

Regular penalty term
Lasso-type

penalty term

Consistency
Approximation
in Sobolev space

k−Steps

Examples: Lasso, Elas-
tic net, Adaptive Lasso

Chapter 3

Robust statistics

This chapter recapitulates important concepts of robust statistics that we will need as pre-
liminaries for our own results presented in the next chapter as well as for later purposes.

A key step when working with empirical data is to define an underlying model to estimate the
distribution of the given data. However, the quality of the resulting estimator often suffers
from wrong model assumptions that lead to the real data appear as being contaminated.
Since this is a frequently faced problem in real-data analysis, it is necessary to make use of
the concepts of robust statistics (Huber and Ronchetti [2009], Hampel et al. [2011], Rieder
[1994], Maronna et al. [2006]) to handle these phenomena without just removing “outliers”
which is definitely not the right track (see Hampel et al. [2011]).

A general functional-analytic approach is to write an estimator as a statistical functional
(Von Mises [1947], Reeds [1976]) and to investigate its directional differentiability (Averbukh
and Smolyanov [1967]). The influence function or influence curve (Hampel et al. [2011]) of
an estimator can be regarded as a special Gâteaux derivative (Christmann and Steinwart
[2004]) of the corresponding functional and is a popular tool provided by robust statistics
that quantifies the infinitesimal influence of a single observation on the estimator. A neces-
sary condition for robustness is the boundedness of the influence curve. Robustness results
by proving this boundedness have been established for example for kernel-based regression
problems (Christmann and Steinwart [2004], Christmann and Steinwart [2007]), especially
for support vector machines (Hable and Christmann [2011]). Sophisticated approaches to
determine optimally-robust influence curves have been developed by Rieder et al. (Rieder
[1994], Rieder et al. [2008]).

This chapter gives a broad overview of these concepts. Starting with the abstract definition of
R−differentiability of maps between normed vector spaces, we continue to provide the main
properties of functional derivatives, carefully distinguishing between Gâteaux-, Hadamard-,

34

3.1. FUNCTIONAL DERIVATIVES 35

Bouligand- and Fréchet-derivatives. The next section contains the most important defini-
tions of quantitative robust statistics like the influence curve, the L2−differentiability of a
parametric statistical model, the breakdown point of an estimator and asymptotically linear
estimators, i.e., estimators that can be represented by an arithmetic mean of influence curves,
up to an error term of order oP (n−1/2). Afterwards, we present a short survey on existing
regularized machine learning algorithms and their robustness properties.

The last section transfers the concept of asymptotically linear estimators to practical situ-
ations, by showing how robust estimators with given influence curves can be achieved via
a k−step construction. We also show how influence curves that arise when estimating a
transformation of the parameter of interest, so called ”partial influence curves”, are related
to (sparse) model selection via k−Step estimators.

3.1 Functional derivatives

We begin to defineR−differentiability of maps between (possibly infinite-dimensional) normed
real vector spaces (cf. Rieder [1994], Averbukh and Smolyanov [1967]).

Definition 3.1.1. Let X, Y be normed real vector spaces. A map T : X → Y isR−differenti-
able in x ∈ X if there exists dRT (x) ∈ L(X, Y), s0 > 0, such that

T (x+ sh) = T (x) + dRT (x)sh+ ρ(sh) ∀|s| ≤ s0,

where the remainder term ρ satisfies the following conditions:
i) ρ(0) = 0,
ii) ρ ∈ R(X, Y) where R(X, Y) is a real vector subspace of Y X with R(X, Y) ∩ L(X, Y) =
{0}.

Then the continuous, linear map (w.r.t. h per definition) dRT (x) is referred to as the
R−derivative of T at x.

The following definition of Rieder [1994] is helpful to distinguish between different types of
R−differentiation.

Definition 3.1.2. Let X, Y , T be as in definition 3.1.1. Let S be a covering of X. Define
the remainder class

36 CHAPTER 3. ROBUST STATISTICS

RS(X, Y) :=
{
ρ : X → Y

∣∣∣∣∣ lim
t→0

(
sup
h∈S

(
||ρ(th)||

t

))
= ρ(0) = 0 ∀S ∈ S

}
.

By definition 3.1.2, it is clear that R−differentiability can be seen as a linear approximation
of some functional T such that the remainder term converges uniformly on all sets S ∈ S.
We now define three special concepts of R−differentiability (cf. Rieder [1994]).

Definition 3.1.3. Let X, Y , T be as above. Then the functional T is
i) Gâteaux or weakly differentiable if S = {S ⊂ X | S finite},
ii) Hadamard or compactly differentiable if S = {S ⊂ X | S compact},
iii) Fréchet or boundedly differentiable if S = {S ⊂ X | S bounded}.

In the case of Gâteaux differentiability, it is convenient to write SG and dGT , in the case of
Hadamard differentiability, we write SH and dHT , and in the case of Fréchet differentiability,
the notation is SF and dFT . By compactness resp. boundedness of the elements of SH resp.
SF , we can equivalently define Hadamard differentiability of T by the existence of a map
dHT ∈ L(X, Y) such that for any tn → 0, hn → h, it holds that

T (x+ tnhn)− T (x)
tn

−→ dHT (x)h,

and Fréchet differentiability of T by the existence of a map dFT ∈ L(X, Y) such that for any
||h|| → 0, it holds that ∣∣∣∣∣

∣∣∣∣∣T (x+ h)− T (x)− dFT (x)h
||h||

∣∣∣∣∣
∣∣∣∣∣ −→ 0

which is equivalent to

||ρ(h)|| = ||T (x+ h)− T (x)− dFT (x)h|| = o(||h||).

We continue to list some properties of these functional derivatives which we borrowed from
Rieder [1994], Shapiro [1990], Zajíček [2015].

Remark 3.1.1. Let X, Y be normed real vector spaces and let T : X → Y .
i) If X = R, all R−derivatives coincide with the usual derivatives. If X = Rn, Fréchet and
Hadamard differentiability are equivalent.
ii) Fréchet differentiability implies Hadamard differentiability which implies Gâteaux differ-
entiability. The derivatives then coincide. The reverse implications do not hold in general.
iii) If T is continuously Gâteaux differentiable, i.e., the derivative dGT is continuous
in x, then it is Fréchet differentiable.

3.1. FUNCTIONAL DERIVATIVES 37

For later purposes, roughly speaking, for connecting empirical estimation with statistical
functionals, it is necessary to investigate whether the chain rule holds for functional deriva-
tives. The following theorem can be found in [Rieder, 1994, Prop. 1.2.6+Thm. 1.2.9] and
[Averbukh and Smolyanov, 1967, Thm. 1.6].

Theorem 3.1.1 (Chain rule). Let X, Y , Z be normed real vector spaces and let T : X → Y ,
U : Y → Z. If T and U are compactly differentiable, then the chain rule holds, i.e.,

dH(U ◦ T)(x) = dHU(T (x)) ◦ dHT (x).

Conversely, if the chain rule holds, then the maps T and U are already compactly differen-
tiable.

The chain rule does not hold for Gâteaux differentiable maps in general. Counterexamples
can be found in Averbukh and Smolyanov [1967] or Fréchet [1937]. Thus, regarding these
concepts of functional derivatives one can state that compact differentiability is the weakest
form of R−differentiability such that the chain rule holds. Moreover, the composition of
a Fréchet differentiable map and a Gâteaux differentiable map does not need to be even
Gâteaux differentiable. An example can be found in Averbukh and Smolyanov [1967]. But
the following assertion holds (cf. Averbukh and Smolyanov [1967]).

Lemma 3.1.1. Let T , U , X, Y , Z be as in the theorem. If T is compactly differentiable at
x and if U is continuously compactly differentiable at T (x), then the composition T ◦ U is
continuously compactly differentiable at x.

3.1.1 Excursus: Further concepts of functional differentiability

This small subsection gives an overview of functionals where Hadamard differentiability fails.
Moreover, additional differentiability concepts for functionals are reviewed, but they do not
help us for results on differentiability of regularized M-functionals.

We begin with the recapitulation of examples where Hadamard differentiability fails. One
typical example are L-statistics where the underlying distribution has an unbounded support
as pointed out in Van der Vaart [2000]. Then, compact differentiability is impossible w.r.t.
|| · ||∞. Such functionals are studied in Beutner and Zähle [2010] and written in the form

38 CHAPTER 3. ROBUST STATISTICS

Tg(F) := −
∫
xdg(F (x)),

so it is required that g has a compact support in]0, 1[to ensure compact differentiability.
It is shown in Beutner et al. [2016] that if the support of g contains at least one of the
boundary points of [0, 1], even the negative expectation value (set g := id) is not compactly
differentiable.

The functional Tg covers relevant statistical functionals like the Value at Risk or the Average
Value at Risk as remarked in Beutner and Zähle [2010]. In fact, Krätschmer et al. [2012]
stated that tail-dependent functionals are in general not compactly differentiable w.r.t. uni-
form norms.

We note that Beutner and Zähle [2010] proposed a weaker form of compact differentiability
which they called quasi-Hadamard differentiability and a corresponding functional delta
method (Beutner and Zähle [2010]) as well as a Bootstrapped version (Beutner et al. [2016])
for such maps.

Moreover, the functional that maps two Borel probability measures defined on the same
underlying complete metric space (X, d) onto their Wasserstein distance is not compactly
differentiable (cf. Sommerfeld and Munk [2018]).

There exist other notions of functional differentiability that differ from the abovely men-
tioned concepts. This is the so-called Bouligand differentiability that was investigated by
Robinson (Robinson [1988]) and the Hadamard directional differentiability introduced
by Römisch [2004].

Definition 3.1.4. Let X, Y be normed real vector spaces and let T : X → Y . Then T

is Bouligand differentiable at x ∈ U ⊂ X if there exists a positively homogeneous map
dBT (x) : X → Y satisfying

T (x+ h) = T (x) + dBT (x)h+ o(h).

Definition 3.1.5. Let X, Y be linear topological spaces and let T : XT ⊂ X → Y . Then T
is Hadamard directionally differentiable at x ∈ XT if there exists a map T ′ : X → Y

such that for all tn ∈ R, hn ∈ X with tn ↘ 0, hn → h ∈ X and x + tnhn ∈ XT for all n, it
holds that

T (x+ tnhn)− T (x)
tn

−→ T ′(h).

3.2. BASIC CONCEPTS OF QUANTITATIVE ROBUSTNESS 39

Note that the Bouligand derivative and the Hadamard directional derivative do not have
to be linear in contrast to the other concepts, so Bouligand differentiability and Hadamard
directional differentiability do not belong to the concept of R−differentiability.

3.2 Basic concepts of quantitative robustness

Every real data analysis requires model assumptions. However, these assumptions are in gen-
eral not fulfilled, hence the real data differ from data that would have been generated by the
ideal model (i.e., under the assumed conditions). Therefore, fitting models by using the real
data can be seen as if one analyzed a contaminated data set which affects the quality of the
fitted model. This is the main reason to invoke robust statistics (Maronna et al. [2006],Huber
and Ronchetti [2009]). In this thesis, we only concern about quantitative robustness. There
also exists the concept of qualitative robustness (Hampel [1971]).

The concepts of robust statistics are focused to detect data points that are outliers under
the ideal model. It is not desirable to exclude these points from the data set (due to the loss
of information) but to find strategies that downweight them, like iteratively reweighted least
squares (IRWLS) (Huber and Ronchetti [2009]).

Large parts of this section are based on the book of Rieder (Rieder [1994]), including most
of the notation.

3.2.1 Influence curves

We start with the important definition of influence functions that can be found in Hampel
et al. [2011] and that was originally stated in Hampel [1968].

Definition 3.2.1. Let X be a normed function space containing distributions on a probability
space (Ω,A) and let Θ be a normed real vector space. Let T : X → Θ be a statistical
functional. The influence function or influence curve of T at x for a probability
measure P is defined as the derivative

IC(x, T, P) := lim
t→0

(
T ((1− t)P + tδx)− T (P)

t

)
= ∂t [T ((1− t)P + tδx)]

∣∣∣∣∣
t=0

where δx denotes the Dirac measure at x.

40 CHAPTER 3. ROBUST STATISTICS

This is just a special Gâteaux derivative with h := δx − P . This is easily seen since

T ((1− t)P + tδx) = T (P + t(δx − P)) = T (P + th).

The influence curve can be regarded as an estimate for the infinitesimal influence of a single
observation. If the IC is unbounded, then a single observation can have an infinite impact
on the resulting estimator which definitely disagrees with the meaning of ”robustness”. For
robustness properties, it is necessary that the influence curve fulfills at least the condition in
the following definition (see. e.g. [Hampel et al., 2011, Sec. 2.1]).

Definition 3.2.2. Let the assumptions in definition 3.2.1 hold and let IC(x, T, P) be some
influence function. Then the gross-error sensitivity

γ∗(T, P) := sup
x

(| IC(x, T, P)|)

can be regarded as a worst-case non-robustness measure for the functional T based on the
distribution P . T is called B-robust (”bias-robust”) at F if γ∗(T, P) is finite.

Remark 3.2.1. B-robustness of T at P means that a single observation coming from dis-
tribution P cannot have an infinite impact on T . There is a related concept for the change-
of-variance function of an M-estimator ([Hampel et al., 2011, Sec. 2.5a, Def. 1]) that gives
insights into the behaviour of its asymptotic variance. An M-estimator is called V-robust
(”variance-robust”) if the impact on the change-of-variance function is bounded.

For the sake of completeness, note that there exists a similar concept for Bouligand-differenti-
able functionals. Then the Bouligand influence curve BIC is a special Bouligand deriva-
tive satisfying

lim
t→0

(
||T ((1− t)P + tδx)− T (P)− BIC(x, T, P)||

t

)
= 0.

Analogously, robustness can be achieved if the Bouligand influence curve is bounded which
has been shown in Christmann and Van Messem [2008], Christmann et al. [2009] to prove
robustness of support vector machines. Another differentiability property of functionals is
the so-called Hellinger differentiability (see [Rieder, 1994, Ex. 4.2.14]).

The robustification of an estimator can be done by robustifying its influence function. Min-
imax results for optimally robust influence curves have been established in several works
(Rieder [1994], Rieder et al. [2008], Hampel et al. [2011], Fraiman et al. [2001]). However,
for guaranteeing optimality of these approaches, it is crucial that the estimator is asymp-
totically linear and that the model is L2−differentiable.

3.2. BASIC CONCEPTS OF QUANTITATIVE ROBUSTNESS 41

3.2.2 Asymptotic linearity

The L2−differentiability of a statistical model goes back to Le Cam (LeCam [1970]). As-
sume for the moment for simplicity that there exist densities. Given a parametric statistical
model consisting of probability measures Pθ, one would like to have the following first order
expansion of the densities:

pθ = pθ0 + (∂θpθ0)T (θ − θ0) + oL2(||θ − θ0||).

Since the remainder term is an L2−remainder term, writing it down explicitly would require
the densities to be square integrable w.r.t. some dominating measure. Of course, this is
generally not true, so Le Cam had the idea to go over to the square roots of the densities
which are always defined since pθ ≥ 0 almost surely for all θ. Assuming for simplicity that
∂θpθ(x) = 0 if pθ(x) = 0 and defining

Λθ := ∂θpθ
pθ

,

so that we get

∂θ
√
pθ = 1

2
∂θpθ√
pθ

= 1
2Λθ
√
pθ,

then setting h := θ − θ0 leads to
√
pθ0+h = √pθ0 + 1

2ΛT
θ0h
√
pθ0 + oL2(||h||)

=⇒ √pθ0+h = √pθ0

(
1 + 1

2ΛT
θ0h
)

+ oL2(||h||).

This heuristically explains the following definition of Le Cam. For part b), we refer to Pu-
pashenko et al. [2015].

Definition 3.2.3. a) Let P := {Pθ | θ ∈ Θ} be a family of probability measures on some
measurable space (Ω,A) and let Θ be a subset of Rp. Then P is L2−differentiable at θ0 if
there exists Λθ0 ∈ L

p
2(Pθ0) such that∣∣∣∣∣∣∣∣√dPθ0+h −

√
dPθ0

(
1 + 1

2ΛT
θ0h
)∣∣∣∣∣∣∣∣

L2

= o(||h||)

for h→ 0. In this case, the function Λθ0 is the L2−derivative and

Iθ0 := IEθ0 [Λθ0ΛT
θ0]

is the Fisher information of P at θ0.

b) P is continuously L2−differentiable at θ0 if for any h→ 0, it holds that

42 CHAPTER 3. ROBUST STATISTICS

sup
t∈Rp,||t||2≤1

(∣∣∣∣∣∣∣∣√dPθ0+hΛT
θ0+ht−

√
dPθ0ΛT

θ0t
∣∣∣∣∣∣∣∣
L2

)
= o(1).

Note that the L2−differentiability is a special case of the wider concept of Lr−differentiability
(definition A.7.4). The following lemma provides conditions that ensure continuous L2−diffe-
rentiability that were originally stated in Hájek [1972] (see also Pupashenko et al. [2015]).

Lemma 3.2.1 (Hájek’s Lemma). Let θ0 ∈ Θ and let U be an open neighborhood of θ0. Let
P := {pθ | θ ∈ Θ}. If
i) the densities pθ are absolutely continuous for every θ ∈ U and for Pθ0−a.e. x,
ii) ∂θpθ = Λθpθ exists for every θ ∈ U and Pθ0−a.e. x,
iii) the Fisher information Iθ = Cov(Λθ) exists and is continuous on U (in θ),
then the model P is continuously L2−differentiable in θ0 with L2−derivative Λθ0 and Fisher
information Iθ0.

The L2−differentiability holds for many distribution families, including normal location and
scale families, Poisson families, Gamma families, and even for ARMA, ARCH and GPD fam-
ilies (Rieder et al. [2008], Pupashenko [2015]).

A classical example of a distribution family that is not L2−differentiable is the following one
where the support depends on θ.

Example 3.2.1. Consider the model P := {Pθ = U [0, θ] | θ > 0} and let µ be some
dominating measure. Assume that this model was L2−differentiable at any θ0 ∈ Θ. Then
there would exist Λθ0 and∫ (√

pθ0+h −
√
pθ0

(
1 + 1

2Λθ0h
))2

dµ ≥
∫ θ0+h

θ0
(√pθ0+h)2dµ

= 1
θ0 + h

∫ θ0+h

θ0
dµ = h

θ0 + h
= o(h)

since the density of Pθ0 is zero on [0, θ0]c. Since the remainder is of order o(h) instead of
o(h2), the L2−differentiability is not valid.

Remark 3.2.2. Note that in the case of GPD families where the support varies in dependence
of the mean, scale and shape parameters µ, σ and ξ, respectively, L2−differentiability also
covers singular parts in the sense that pθ+h may have a different support than pθ (here, we
have θ = (µ, σ, ξ)), provided that the singular mass is not too large (which requires ξ > −0.5
in the notation of Pupashenko [2015]).

3.2. BASIC CONCEPTS OF QUANTITATIVE ROBUSTNESS 43

Assumption 3.2.1 (L2−differentiability). When working with influence curves in this
thesis, we always assume L2−differentiability of the underlying model. Other types of dif-
ferentiability of the model are possible and lead to other types of influence curves (see p.e.
[Rieder, 1994, Ex. 4.2.15]), but we do not concern about these techniques in this thesis.

The next definition is borrowed from [Rieder, 1994, Def. 4.2.16].

Definition 3.2.4. Let (Ωn,An) be a measurable space and let Sn : (Ωn,An) → (Rp, IBp) be
an estimator. Then the sequence (Sn)n is asymptotically linear at Pθ0 if there exists an
influence curve ψθ0 ∈ Ψ2(θ0) such that the expansion

Sn = θ0 + 1
n

n∑
i=1

ψθ0(xi) + oPn
θ0

(n−1/2)

holds. The family Ψ2(θ0) of influence curves is defined by the set of all maps ηθ0 that satisfy
the conditions

i) ηθ0 ∈ L
p
2(Pθ0), ii) IEθ0 [ηθ0] = 0, iii) IEθ0 [ηθ0ΛT

θ0] = Ip

where Ip denotes the identity matrix of dimension p× p.

In this definition, condition i) is vital for integrability and for the application of a central
limit theorem to conclude that Sn is asymptotically normal, i.e.,

√
n(Sn − θ0) ◦ P n

θ0 =
(

1√
n

n∑
i=1

ψθ0(xi) + oPn
θ0

(n0)
)
◦ P n

θ0

w−→ Np(0, IEθ0 [ψθ0ψ
T
θ0]).

Condition ii) ensures unbiasedness of the asymptotically linear estimator. The third condition
leads to uniform unbiasedness (w.r.t. θ0), more precisely, if ψθ0 satisfies i) and ii), [Rieder,
1994, Lemma 4.2.18] shows that the condition iii) is equivalent to

√
n(Sn − θ0)(P n

θ0+tn/
√
n) w−→ Np(t, IEθ0 [ψθ0ψ

T
θ0])

for all tn → t where tn, t ∈ Rp, so the asymptotic normality granted by a central limit
theorem will hold locally uniformly over compacts (Rieder [1994]).

The advantages of the ALE are obvious: The arithmetic mean can be computed very fast, it
is linear, easy to understand and can be updated rapidly if new observations appear without
requiring to refit the whole model.

44 CHAPTER 3. ROBUST STATISTICS

An extension of this concept arises if one wants to estimate the transformed parameter τ(θ)
leading to so-called ”partial” influence curves in the (to be honest: rather confusing) termi-
nology of Rieder ([Rieder, 1994, Def. 4.2.10], Rieder et al. [2008]).

Definition 3.2.5. Let (Ωn,An) be a measurable space and let Sn : (Ωn,An) → (Rq, IBq)
be an estimator for the transformed quantity of interest τ(θ). Assume that τ : Θ → Rq is
differentiable at θ0 ∈ Θ where Θ ⊂ Rp and q ≤ p. Denote the Jacobian by ∂θ0τ =: Dθ0 ∈ Rq×p.
Then the set of partial influence curves (pIC) is defined by

ΨD
2 (θ0) := {ηθ0 ∈ L

q
2(Pθ0) | IEθ0 [ηθ0] = 0, IEθ0 [ηθ0ΛT

θ0] = Dθ0}.

Then the sequence (Sn)n is asymptotically linear at Pθ0 if there exists a partial influence curve
ηθ0 ∈ ΨD

2 (θ0) such that the expansion

Sn = τ(θ0) + 1
n

n∑
i=1

ηθ0(xi) + oPn
θ0

(n−1/2)

is valid.

Remark 3.2.3. Since it holds that

ΨD
2 (θ0) = {Dθ0ψθ0 | ψθ0 ∈ Ψ2(Pθ0)} (3.2.1)

(see [Rieder, 1994, Rem. 4.2.11 e)]), the asymptotically linear expansion of transformed
estimators in terms of partial influence curves clearly mimics the traditional delta-method
(lemma A.7.1).

Asymptotic linearity has been proven for example for asymptotically normal M-, R- and
MD-estimators ([Rieder, 1994, Rem. 4.2.17]), so especially for maximum likelihood estima-
tors, quantiles or least squares estimators. An important example for an influence curve is
the following one for general M-estimators, see e.g. [Huber and Ronchetti, 2009, Ch. 3.2] or
[Maronna et al., 2006, Sec. 3.1].

Theorem 3.2.1. Suppose that the functional T is implicitly defined by the Z-equation (see
also Def. 4.1.1) ∫

ψ(x, T (F))dF (x) = 0 (3.2.2)

for some distribution F and some function ψ that is differentiable w.r.t. the second argument.
Then the influence curve of T is

IC(x, T, F) = ψ(x, T (F))
−IEF [∂θψ(x, θ)|θ=T (F)]

,

so it is proportional to the score function ψ.

3.2. BASIC CONCEPTS OF QUANTITATIVE ROBUSTNESS 45

Example 3.2.2 (Linear regression). An important example is the influence curve for linear
regression which is clearly

IC((x, y), βLS, F) =
(
IEF [xxT]

)−1
xT (y − xTβ0)

for the coefficient vector β0 supplied by the ideal joint distribution F of (x, y). Just for reasons
of completeness, we refer to [Öllerer et al., 2015, Prop. 4.1] where the influence curves of
penalized regression estimators have been derived. With ρ(r) = r2, so ψ(r) = 2r, ψ′(r) = 2
and J ≡ 0, we – of course – get the same influence curve since the term ψ′(y − xTβ0) is
nothing but 2 and the expectation of the score is zero, so the nominator in the equation (16)
of Öllerer et al. [2015] is only the score evaluated at (x, y).

Example 3.2.3 (Quantile regression). The aim of quantile regression (Koenker and Bas-
sett Jr [1978]) is to fit the conditional τ−quantile of the response vector given the predictors,
for τ ∈]0, 1[. The corresponding empirical risk minimization problem is

min
β

(
n∑
i=1

τ(yi − xiβ)+ + (1− τ)(yi − xiβ)−
)

(3.2.3)

which can be directly written as

min
β

(
n∑
i=1

Lτ (y, x, β)
)

for the loss function Lτ (y, x, β) = ρτ (y − xβ) where

ρτ (u) := u(τ − I(u < 0))

is the check function, sometimes called pinball function (Christmann et al. [2009]). Koenker
and Portnoy ([Koenker and Portnoy, 1996, Ch. 3.4]) provided the influence function

IC((x, y), βquant, FXY) = (IEFX [xxTfY |X(xβ0)])−1x sign(y − xβ0). (3.2.4)

Of course, the L1−regression that fits the median of the data is the special case of quantile

regression for τ = 0.5 (note that in the influence curve, the beta’s are essentially depending
on τ).

Remark 3.2.4. At this point, regarding these influence curves, we want to emphasize once
more that we made no assumptions on the intercept. So, p is just the number of columns of
the regressor matrix. It is allowed that there are only (p − 1) predictors and that the first
column represents the intercept.

46 CHAPTER 3. ROBUST STATISTICS

3.2.3 The breakdown point

Another concept of quantitative robustness that generalizes investigating the changes of the
estimator with respect to a single observation is the breakdown point which is a rather
global object. There exists a functional version of the breakdown point ([Hampel, 1971, Sec.
6]) for sequences of estimators which indicates the minimal deviation of a distribution from
the ideal distribution in terms of the Prokhorov distance such that the estimator becomes
unreliable.

For our purposes, the finite-sample version in the following definition (see e.g. [Maronna
et al., 2006, Sec. 3.2.5], introduced in Donoho and Huber [1983]), is more appropriate.

Definition 3.2.6. Let Sn : ⊗n
i=1X → Θ be an estimator based on the sample x := (x1, ..., xn).

Then the finite-sample breakdown point (FSBDP) is defined as
1
n

max{m ∈ {1, ..., n} | sup
y

(|Sn(y)|) <∞∧ inf
y

(d(∂Θ, Sn(y))) > 0 ∀y ∈ Xm}

for some distance d on Θ and for the set Xm of samples y that have exactly (n −m) points
in common with x. In other words, the FSBDP of Sn is the largest amount of data that can
be arbitrarily replaced such that the estimator still stays reliable.

Remark 3.2.5. Note that the FSBDP does not depend on the sample x. The condition that
the estimator needs to stay away from the boundary is necessary since for example a scale
estimator breaks down if inliers let the estimated scale become zero.

Remark 3.2.6. If an estimator is not B-robust, a single observation can have infinite impact,
so manipulating a fraction of 1/n of the length of sample x lets the estimator break down,
thus resulting in a breakdown point of 1/n → 0 asymptotically (see [Huber and Ronchetti,
2009, Sec. 3.2.3]).

Remark 3.2.7. The maximal breakdown point for equivariant location estimators is 1/2
([Maronna et al., 2006, Sec. 3]).

3.3 Contamination models

We already mentioned that a goal of robust statistics is to find reliable estimators even on
contaminated data and we already worked with some kind of contaminated distribution when

3.3. CONTAMINATION MODELS 47

having concerned about influence curves (see definition 3.2.1), without giving a concrete def-
inition of ”contamination”. This section is not proposed give an overview of all existing
contamination models but only to show the mathematical framework for working with con-
taminated models which is necessary for the rest of this thesis.

We begin with the definition of contamination balls ([Rieder, 1994, Sec. 4.2]).

Definition 3.3.1. Let P := {Pθ | θ ∈ Θ} be a parametric model on some measurable space
(Ω,A). Let Pθ0 be the ideal distribution (”model distribution”, [Rieder, 1994, Sec. 4.2]).
Then a contamination model is the set of all distributions given by the system

U∗(θ0) := {U∗(θ0, r) | r ∈ [0,∞[}

of contamination balls

U∗(θ0, r) = {Q ∈M1(A) | d∗(Pθ0 , Q) ≤ r}.

The radius r is also called ”contamination radius”.

To emphasize different standard types of contamination balls, a subscript (here represented
by the ”∗”) is usually added to concretize the contamination model.

Example 3.3.1. A convex contamination model Uc(θ0) is the system of contamination balls

Uc(θ0, r) = {(1− r)+Pθ0 + min(1, r)Q | Q ∈M1(A)}.

Thus, the contamination models that we already defined in the previous section were convex
contamination models. Many other metrics have entered the theory of robust statistics, see
[Rieder, 1994, Sec. 4.2] for an overview.

The convex contamination model is very simple to simulate from (see e.g. Kohl [2005]).
Having a realization xi from the ideal distribution Pθ0 , one fixes a distribution Q on the same
measurable space and generates the data point

(1− ui)xi + uix̃i

for a realization x̃i of Q and a realization ui of Ui ∼ Bin(1, r). Thus, with a probability of
r, we get an observation of the distribution Q, otherwise from the ideal distribution.

While in standard estimation problems like estimating a location or scale parameter we just
have a sample of observations, there is far more flexibility to define outliers in for example
regression settings. See Kohl [2005] and Rieder [1994] for the following definition and more
details.

48 CHAPTER 3. ROBUST STATISTICS

Definition 3.3.2. Let Pθ0(dx, dy) be a distribution on the Borel set IBp+1. Writing Pθ0(dx, dy)
= Pθ0(dy|x)Pθ0(dx), the conditional convex contamination neighborhood (error-
free-variables neighborhood) is the set of all distributions

Q(dy|x) = (1− rε(x))Pθ0(dy|x) + rε(x)M(dy|x)

for any Markov kernel M(dy|x) mapping from Rp into IB and any contamination curve ε (see
[Rieder, 1994, Sec. 7.2.2]). In contrast, unconditional convex contamination neigh-
borhoods (errors-in-variables neighborhoods) allow also Pθ0(dx) to be contaminated.

Remark 3.3.1 (Regression outliers). We will always refer to y−outliers when facing
contaminated observations from error-free-variables neighborhoods and to x−outliers if the
regressors are contaminated.

Remark 3.3.2 (Leverage points). It is evident that errors-in-variables are harder to deal
with than just contaminated responses. This has been mentioned for example in Alfons et al.
[2013] and was studied in detail in Maronna et al. [2006]. As explained in the latter reference,
x−outliers can be seen as leverage points, but it is hard to decide whether a leverage point is a
”good” leverage point or a ”bad” leverage point. While the first type of leverage points are still
concordant with the regression hyperplane, i.e., they produce only small residuals, bad leverage
points can be treated as outliers w.r.t. the regression model, so that they would drastically
mislead the regression hyperplane if they were not downweighted (see also Rousseeuw and
Hubert [2011]).

Note that we restricted ourselves so far to case-wise outliers, i.e., either a whole row in the
regressor matrix or in the response follows the ideal distribution or not, but Alqallaf and
co-authors (Alqallaf et al. [2009]) proposed a more realistic scenario which allows the entries
of the regressor matrix to be independently perturbed. See also Agostinelli et al. [2015] for
the notation.

Definition 3.3.3. Let Rp 3 X ∼ Pθ0. Let U1, ..., Up ∼ Bin(1, r) i.id.. Then the cell-wise
convex contamination model consists of all sets

U cell(θ0, r) := {Q | Q = L(UX + (1− U)X̃)}

where X̃ ∼ Q̃ for any distribution Q̃ on the same measurable space as Pθ0 and the matrix U
with diagonal entries Ui.

Remark 3.3.3. In the regression setting, we assume each row Xi of the regressor matrix
comes from a cell-wise contamination model. As pointed out by Alqallaf et al. [2009], if all
Uj are perfectly dependent, one either gets the original row or a fully contaminated row which
is the classical convex contamination model of Tukey and Huber in definition 3.3.1.

3.4. ROBUSTNESS PROPERTIES OF EXISTING VARIABLE SELECTION PROCEDURES 49

The cell-wise contamination model should reflect the curse of dimensionality since the prob-
ability that at least one case is contaminated increases with the dimension p of the rows. Of
course, robust estimation in the presence of cell-wise outliers can be much harder than with
case-wise outliers since a single contaminated cell already makes an observation an outlier
(see Öllerer and Croux [2015], Croux and Öllerer [2016]). While the cited references, includ-
ing Loh et al. [2018], concentrated on precision matrix estimation, Agostinelli et al. [2015]
studied location and scatter estimation in multivariate data. Leung et al. [2016] and Leung
et al. [2017] proposed robust methods for regression and scatter estimation for data with
cell-wise contamination.

3.4 Robustness properties of existing variable selection procedures

This section reviews some selected popular sparse learning algorithms and summarizes their
robustness properties. Note that some of these algorithms claim robustness, but in fact they
are only robust against y−outliers but not against leverage points. We admit that the raw
algorithms that are presented in the subsequent chapters except for section 18.2 are also not
robust, not even against y−outliers.

The standard Lasso, i.e.,

β̂Lasso = argmin
β

 1
n

∑
i

(Yi −Xiβ)2 + λ
∑
j

|βj|

 ,
is of course not robust due to its non-robust loss function. In addition, it has been shown in
Alfons et al. [2013] that the FSBDP (see definition 3.2.6) for the Lasso is 1/n by applying
[Alfons et al., 2013, Thm. 1]. That is, a single outlier in the data can cause the Lasso
estimator to become worthless. The same is true for the adaptive Lasso (Zou [2006])

β̂ALasso = argmin
β

 1
n

∑
i

(Yi −Xiβ)2 + λ
∑
j

|βj|
|β̂initj |


for the coefficient vector β̂init fitted by a

√
n−consistent procedure or especially by the stan-

dard Lasso in the first step.

Implementations of the Lasso in R are given in the package lars (Hastie and Efron [2013])
using the least angle procedure from Efron et al. [2004] and in the package glmnet (Friedman
et al. [2010]) where the coordinate-descent algorithm from Friedman et al. [2007] has been
realized.

50 CHAPTER 3. ROBUST STATISTICS

The LAD-Lasso introduced in Wang et al. [2007] solves the problem

β̂LADL = argmin
β

 1
n

∑
i

|Yi −Xiβ|+ λ
∑
j

|βj|

 .
Consistency results are presented inWang et al. [2007]. While being robust against y−outliers,
it is sensible to x−outliers (Chang et al. [2018]). Additionally, using once more [Alfons et al.,
2013, Thm. 1], its FSBDP is 1/n. Besides its insufficient robustness properties, Lambert-
Lacroix et al. [2011] and Chang et al. [2018] point out that LAD-Lasso is less efficient than
standard least squares and the adaptive Lasso in the ideal model. An implementation can
be found in the R−package flare (Li et al. [2018]).

The robustified LARS (RLARS) (Khan et al. [2007]) is based on a plug-in approach
replacing the non-robust estimates mean, covariance and correlation by their robust coun-
terparts. The robust correlation uses a multivariate winsorization provided in Khan et al.
[2007]. There are no theoretical results about oracle properties of RLARS. An implemen-
tation is given in the package robustHD (Alfons [2016]). Despite having empirically been
shown to be robust against x− and y−outliers (Chang et al. [2018]), due to its main weak-
ness that there is no objective function (Alfons et al. [2013]), it is inappropriate for regarding
asymptotic linearity and it does not fit into the framework that we will propose later in the
thesis.

Sparse Least Trimmed Squares (SLTS) is the regularized counterpart of LTS (Rousseeuw
[1984]) provided in Alfons et al. [2013] and solving

β̂SLTS = argmin
β

1
h

h∑
i=1

(r2(β))i:n + λ
∑
j

|βj|


where r(β)i:n is the i−th smallest residual corresponding to the coefficient vector β. The al-
gorithm essentially computes Lasso models and performs a concentration step (cf. Rousseeuw
and Van Driessen [1999] for MCD, Rousseeuw and Van Driessen [2006] for LTS) to choose
the instances producing the lowest residuals. A reweighted version of SLTS is also provided
in Alfons et al. [2013] to improve the false positive rate and the efficiency in data sets with-
out outliers. Alfons et al. [2013] did not provide asymptotic properties of SLTS, but they
showed that a clever choice of the subset size h leads to reasonably high breakdown points.
The STLS is robust against x− and y−outliers, but it turns out that it gets rather slow for
a large number of predictors (cf. Chang et al. [2018]). An R−implementation of SLTS is
available in the package robustHD.

The Huberized Lasso (HLasso), originally introduced in Rosset and Zhu [2007] and stud-
ied in Chen et al. [2010a] and Chen et al. [2010b], is a variant of the Lasso where the quadratic
loss function is replaced by Huber’s loss function. [Chen et al., 2010a, Cor. 2.2+Thm. 2.3]

3.5. ONE-STEP ESTIMATORS 51

show under which conditions the HLasso is
√
n−consistent resp. variable selection consis-

tent (see definition 2.3.1) and asymptotically normal. Furthermore, an adaptive version, the
AHLasso, is provided by combining the ALasso with the Huber loss. The HLasso is highly
efficient and robust against y−outliers, but not against x−outliers (see Chang et al. [2018]).
An implementation of the HLasso using a semi-smooth Newton coordinate descent algorithm
(see Yi and Huang [2017]) is available in the package hqreg (Yi [2017]).

The Tukey-Lasso (TLasso) (Chang et al. [2018]) can be regarded as a robustification of
the ALasso. It solves

β̂TLasso = argmin
β

2
n∑
i=1

ρT

(
Yi −Xiβ

σ̂

)
+ λ

∑
j

ŵj|βj|


where ρT is Tukey’s biweight function (cf. [Maronna et al., 2006, Sec. 2.2.4]). The scale
σ̂ is computed via an S-estimator whereas the weights ŵj = 1/|β̂MM

j | come from an MM-
regression estimator, hence the adaptive nature of this approach. The TLasso is robust
against x− and y−outliers and provides variable selection consistency as well as asymptotic
normality under conditions given in [Chang et al., 2018, Thm. 1]. Following the experiments
in Chang et al. [2018], the TLasso outperforms all other Lasso algorithms. Compared to
SLTS and RLARS, the computation time of TLasso is significantly lower. It is implemented
in MATLAB using an accelerated proximal gradient (APG) method.

3.5 One-Step estimators

Suppose we have a parametric model P and a ”nice” influence curve ψθ ∈ Ψ2(θ).

Is it possible to derive an estimator Sn that has exactly this influence curve?

The following theorem ([Rieder, 1994, Thm. 6.4.8a)]) provides the answer.

Theorem 3.5.1. Let P be L2−differentiable at θ0 ∈ Θ. Let θ̂n ∈ Θ be a
√
n−consistent

estimator for θ0. Let (ψθ,n)n∈N be an approximating sequence for ψθ0 ∈ Ψ2(θ0) with the
following properties:

i) lim
n

(∫
||ψn,θ̂n − ψθ0||2dPθ0

)
= 0, ii) sup

x∈X
(||ψn,θ̂n(x)||) = o(4

√
n),

iii)
∫
ψn,θ̂ndPθ̂n = o

(
1√
n

)
.

52 CHAPTER 3. ROBUST STATISTICS

Then, the estimator

S1
n := θ̂n∗ + 1

n

n∑
i=1

ψn,θ̂n∗(xi) (3.5.1)

for a discretized version θ̂n∗ of θ̂n (cf [Rieder, 1994, Ch. 6.4.2]) is asymptotically linear at
Pθ0 with influence curve ψθ0.

Definition 3.5.1. We call the estimator S1
n in equation (3.5.1) One-Step estimator or

just One-Step.

In fact, [Rieder, 1994, Thm. 6.4.8] has much more implications, but theorem 3.5.1 already
clarifies that given a suitable

√
n−consistent initial estimator for θ0, one can simply construct

an ALE for θ0 with a pre-determined influence curve.

Remark 3.5.1. As described in Kohl et al. [2010], one can show that the estimator Sn
inherits the breakdown point of θ̂n if the initial estimator is already asymptotically linear.

The One-Step estimator can be identified with a Newton iteration as described in Bickel
[1975] for the linear model. According to Green [1984], the idea of using a Newton method
essentially goes back to Fisher (Fisher [1925]). Following [Ruckdeschel, 2001, Ch. 9.5.3], we
write

zero
θ

(
1
n

∑
i

ψθ(xi)
)

and given an initial estimator θ̂n, the Newton step would be

S̃1
n = θ̂n −

[
∂θ

(
1
n

∑
i

ψθ̂n(xi)
)]−1

· 1
n

∑
i

ψθ̂n(xi).

Since the arithmetic mean tends to the expectation of the influence curve, it asymptotically
holds that

∂θ

(
1
n

∑
i

ψθ̂n(xi)
)

= ∂θIEθ[ψθ̂n] = −IEθ[ψθ̂nΛT
θ].

The second equality is true if the L2−differentiability of the parametric model holds (see
also lemma 4.1.2) and in the case of consistency of θ̂n, the right hand side equals −Ik due to
property iii) of the influence curve in definition 3.2.4. Putting everything together, one once
more gets the One-Step estimator

S1
n = θ̂n + 1

n

∑
i

ψθ̂n(xi).

3.5. ONE-STEP ESTIMATORS 53

One can easily extend the One-Step construction principle if the One-Step estimate is taken
as initial estimator.

Definition 3.5.2. Let the estimator S1
n be the One-Step estimator for θ0. Then define

S2
n := S1

n + 1
n

∑
i

ψS1
n
(xi).

Generally, for k ≥ 2,

Skn := Sk−1
n + 1

n

∑
i

ψSk−1
n

(xi)

is called k−Step estimator or just k−Step.

Given the initial estimator, the computation of the k−Step is clearly extremely fast since it
just requires the evaluation of an arithmetic mean. This is especially useful if training points
are added after computing the estimator like in Online Learning contexts. Then, instead
of performing cumbersome computation again, the estimator can be easily updated by a
k−Step.

Furthermore, these types of estimators are especially important if one works with optimally
robust influence curves, i.e., robust versions of given influence curves that solve a certain op-
timization problem. Usually, one solves a Hampel-type optimization problem that requires
to find the (partial) influence curve in the set Ψ2(θ0) (or ΨD

2 (θ0)) whose trace of covariance
under Pθ0 is minimal subject to a bound on the supremal bias on the respective contami-
nation neighborhood (see Chapter 5 of Rieder [1994] for details and solutions for different
metrics). For numerous applications of the One-Step construction principle, we refer to Kohl
[2005].

The adaption of k−Step estimation to model selection is straightforward. Having selected a
set J ⊂ {1, ..., p} of columns, w.l.o.g. ordered in an ascending sense, the starting estimator
is a
√
n−consistent estimator which is essentially based on the reduced data set (X·,J , Y).

This is the usual procedure for estimation. We just have to account for the influence curve.

In fact, by the previously performed model selection, we just have to estimate the reduced
parameter θJ . This reduction can be thought of the mapping

τ : Rp → R|J |, θ 7→ (θj)j∈J .

Since τ is differentiable and |J | =: q ≤ p, we can compute the partial influence curve

∂θτ(θ)ψθ = (ψθ)J .

54 CHAPTER 3. ROBUST STATISTICS

Due to the relation (3.2.1), this influence curve is already admissible if ψθ ∈ Ψ2(Pθ).

Thus, the One-Step estimator for θJ is given by

S1
n,J = (̂θJ)n + 1

n

∑
i

(ψ(̂θJ)n
)J(Xi, Yi). (3.5.2)

The extension to the k−Step is straightforward. Formally, given the k−Step Skn,J for the
parameter θJ , the resulting p−dimensional parameter is clearly given by

Skn = τ−1(Skn,J).

Remark 3.5.2. Assume for simplicity that J = {1, ..., q}. Note that due to remark 3.2.3,
the partial influence curve (ψθ)J satisfies

IE[(ψθ)JΛT
θ] = (Iq, 0p−q) ∈ Rq×p

which indeed is obviously true since the last (p− q) rows of Iq just have been dropped.

Remark 3.5.3. For very large data sets, the computation of the One-Step may take a long
time due to expensive evaluation of the influence curve and/or many observations. Since one
just has to compute an arithmetic mean, one can parallelize it as usual, i.e., divide the vectors
X and Y into partitions and compute the corresponding summands separately on different
cores, so that they just need to be aggregated to get the arithmetic mean.

Chapter 4

Compact differentiability of
regularized M-functionals

Modern data analysis frequently requires working with high-dimensional data where the num-
ber of predictors is much larger than the number of observations. Model fitting consists of
minimizing some loss function by structural risk minimization, i.e., the loss is penalized by
a term that encourages sparsity of the predicted parameter. Popular choices of this penalty
term include the Lasso penalty (Tibshirani [1994]) or the elastic net penalty (Zou and Hastie
[2005]), among a vast variety of other variants which we touched on before.

Estimators of this kind can be represented as statistical functionals, more precisely as regu-
larized M-functionals. Such functionals are highly non-linear. But in fact, if the functional
satisfies some regularity properties which in our case will be compact differentiability, then
an infinite-dimensional Delta-method provides an asymptotic linear expansion in terms of
influence curves up to some error term depending on the number of observations so that the
estimator is essentially representable as an arithmetic mean of influence curves.

Although there are already results on asymptotic linearity for certain estimators (Van de
Geer [2016], LeDell et al. [2015]), there does not yet seem to be a general theory on compact
differentiability of regularized M-estimators which is the intention of this chapter. Öllerer
et al. [2015] indeed provided influence curves for regularized M-estimators like the Lasso, but
compact differentiability of the corresponding statistical functional is needed to use them
for the asymptotic linear expansion. Additionally, our results can also handle sequences of
regularization parameters.

The rest of this chapter is organized as follows. In section 4.1, we introduce M-estimators
and M-functionals by their formal definition. Then, we concentrate on the task under which

55

56 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

conditions an M-estimator can be rewritten as a Z-estimator, even if the integrand is not
differentiable. The next section is devoted to a result that proves compact differentiability of
M-functionals and the validity of the resulting asymptotic linear expansion as well as asymp-
totic normality (Rieder [1994], Jain and Marcus [1975]).

In the main theoretical part of this chapter, section 4.5, we use these preliminary results to
determine the conditions that are necessary to expand regularized M-estimators asymptot-
ically linearly. We investigate each of the respective conditions and transfer them into the
statistical learning context with convex loss functions and convex regularization terms and
extend the results to ranking problems. We will heavily make use of an approximation lemma
of Avella-Medina [2017]. Concrete examples of machine learning algorithms that fit into this
framework are given afterwards.

4.1 M-estimators and M-functionals

We start with the definition M-estimators and M-functionals in the spirit of Van der Vaart
[2000] and Rieder [1994]. Since this concept is not restricted to regression settings, we think
of L as a general loss or goodness function in this section which does not need to satisfy the
property in definition 2.1.1.

Definition 4.1.1. Let L : Rm ×Θ→ R. Then an estimator solving

max
θ∈Θ

(
θ 7→

∫
Rm

L(x, θ)dF (x)
)

or min
θ∈Θ

(
θ 7→

∫
Rm

L(x, θ)dF (x)
)

is called an M-estimator of θ. If L is differentiable w.r.t. θ with derivative ϕ : Rm ×Θ→
Rp, then the maximization resp. minimization can be done solving the estimating equation

zero
θ∈Θ

(
θ 7→

∫
Rm

ϕ(x, θ)dF (x)
)
.

A functional T : C(Θ,Rp)→ Θ is called an (vector-valued) M-functional if T finds a zero
of f ∈ C(Θ,Rp), i.e., if a zero exists, it holds that

f(T (f)) = 0.

Note that the solution of the estimating equation that intends to find the zero is sometimes
referred to as a Z-estimator (Van der Vaart [2000]).

4.1. M-ESTIMATORS AND M-FUNCTIONALS 57

Remark 4.1.1 (Empirical counterparts). If data xi, i = 1, ..., n are given, the empirical
M-estimator of θ is the solution of

max
θ∈Θ

(
θ 7→ 1

n

n∑
i=1

L(xi, θ)
)

or min
θ∈Θ

(
θ 7→ 1

n

n∑
i=1

L(xi, θ)
)
.

In the case of Z-estimators, one solves

zero
θ∈Θ

(
θ 7→

∫
ϕ(x, θ)dF̂n(x1, ..., xn) = 1

n

n∑
i=1

ϕ(xi, θ)
)

where F̂n denotes the empirical cumulative distribution function defined by x1, ..., xn.

Remark 4.1.2. Note that a standard example of M-estimation is maximum likelihood esti-
mation. In this case, L is given by the log-likelihood and ϕθ is the partial derivative of the
log-likelihood w.r.t. the parameter θ.

It remains to investigate under which conditions the integral and the derivative are allowed to
be interchanged when going over to Z-estimators. We recap the following well-known result.

Lemma 4.1.1. Let (X ,A, µ) be a measure space. Let f : X×Ω→ R be integrable w.r.t. x for
any ω ∈ Ω where Ω ⊂ Rp is an open subset. If the partial derivative ∂ω(x, ω) exists for every
x ∈ X and if there exists g ∈ L1(µ) such that for any ω ∈ Ω it holds that |∂ω(x, ω)| ≤ g(x),
then

∂ωi

∫
f(x, ω)dµ =

∫
∂ωif(x, ω)dµ.

Trivially, if f is continuously partially differentiable w.r.t. ω, then the derivation under the
integral sign is allowed. However, the regularity assumptions made on f can be weakened
by regarding the difference quotients and making use of the notion of uniform integrability
(definition A.2.1).

Concerning the M-estimator from definition 4.1.1, let us denote the difference quotients w.r.t.
the second argument by

1
h

(∫
L(x, θ + hej)dF (x)−

∫
L(x, θ)dF (x)

)

=
∫ L(x, θ + hej)− L(x, θ)

h
dF (x) =:

∫
fh,j(x)dF (x).

Then the following lemma answers the question when the expectation of these difference
quotients converges to IEF [ϕ].

58 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Lemma 4.1.2. Let L : Rm × Θ → R be differentiable w.r.t. θ with partial derivative
ϕ := ∂θ(L(x, y), θ). Let F be a cumulative distribution function on (Rm, IBm) with the corre-
sponding probability measure P . Let ϕ be measurable w.r.t. the image measure µ := P ◦X−1.
If the families {fh,j} are uniformly integrable w.r.t. µ for all j = 1, ..., p, then it holds that∫

fhdµ
h→0−→

∫
ϕdµ

where fh denotes the vector with components fh,j.

Proof. For the sake of notional simplicity, we just proof the one-dimensional case and sup-
press the double subscript. By the transformation formula, we have the equality∫

fh ◦XdP =
∫
fhd(P ◦X−1) =

∫
fhdµ

and µ is a finite measure on the image space (Ω,A).

Since L is partially differentiable w.r.t. θ, the difference quotients fh converge pointwise to
ϕ for h→ 0. Then, Egorov’s theorem (theorem A.3.1) states that the convergence even holds
almost uniformly, that is, for any δ > 0 there exists A ∈ A with µ(A) < δ such that (fh)h
converges uniformly on the complement of A, i.e.,

lim
h→0

(
sup
ω∈Ω\A

(|fh(ω)− ϕ(ω)|)
)

= 0.

Thus, for any ε > 0 there exists h0 such that for every h ≤ h0 it holds that {|fh−ϕ| ≥ ε} ⊂ A,
so we have

µ({|fh − ϕ| ≥ ε}) < δ

and hence the sequence (fh)h converges in measure (cf. p.e. [Bogachev, 2007a, Thm. 2.2.3]).

By assumption, ϕ is µ−measurable. Since µ is a finite measure, {fh} is uniformly integrable
and fh → ϕ in measure, the theorem of Lebesgue-Vitali (theorem A.2.1) is applicable and
supplies integrability of ϕ w.r.t. µ, so the expression

∫
ϕ(x)dF (x) is reasonable and the

desired convergence fh → ϕ in L1(µ) holds.

2

Remark 4.1.3. Note that the uniform integrability of the family {fh} in the previous lemma
really is an assumption. It does not suffice to assume just the integrability of each fh because
in this case, uniform integrability of this set would require that fh converges to ϕ uniformly,
but as seen in the proof, only almost uniform convergence can be concluded.

However, if the assumption of integrability is sharpened in the following way, then the uniform
integrability is also given and the lemma is valid.

4.2. WEAK DERIVATIVES AND THE DENSITY METHOD 59

Remark 4.1.4. The assumption of uniform integrability of the family {fh} in the previous
lemma can be equivalently replaced by the assumption that each fh is integrable w.r.t. µ and
that the closure of this family is compact in L1(µ) by using the criterion of Dunford-Pettis
(theorem A.2.2).

4.2 Weak derivatives and the density method

In contrast to the case above, there also exists an approach to deal with non-differentiable
integrands. This typically occurs in the context of option pricing where the expectation over
a non-differentiable payoff function is taken (see Khedher [2011]). This procedure is referred
to as the density method and was originally stated in Broadie and Glasserman [1996]. In
the framework of Khedher [2011], the goal is to differentiate functionals of the form

F (x) := IE[f(x+ Y)]

for a random variable Y and a measurable function f such that f ∈ L1(µ) w.r.t. x and to
write the derivative as

F ′(x) = IE[f(x+ Y)w]

for some weight function w. Khedher argued that in the case f ∈ L1(R), one needs a strictly
positive and differentiable density pY of Y w.r.t. the Lebesgue measure λ. Then, provided
that f(·)p′Y (· − x) is uniformly bounded by an integrable function on R, one can represent
the desired derivative by

F ′(x) = ∂x

∫
f(x+ y)pY (y)λ(dy) =

∫
∂xf(y)pY (y − x)λ(dy) =

−
∫
f(y)p′Y (y − x)λ(dy) = IE[f(x+ Y)(−∂y ln(pY (Y)))]

using integration by parts.

Clearly, this idea mimics the concept of weak derivatives (see definition A.6.1) where integra-
tion by parts transfers the derivative of f to the derivative of the test function. However, the
density method requires the existence of such a density. The question whether a density w.r.t.
to some measure exists is strongly related to absolute continuity (Capatina et al. [2014]) and
the Radon-Nikodym property of the image space (cf. e.g. Bárcenas [2003], Diestel and Uhl
[1977]).

Remark 4.2.1. We need a further extension since we have to deal with parametric densities.
One way out would be to assume that the required conditions that are needed for the existence

60 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

of the Radon-Nikodym density hold for every fixed θ in the parameter space. We would like
to refer to [Bogachev, 2007b, 6.10.72] where already an extension of the Radon-Nikodym
theorem is provided. Putting this theorem into our framework, we see that (Θ, IB ∩ Θ) is a
measurable space and that the sigma-algebra A of X is countably generated. The latter is
true since Borel sigma-algebras of separable metric spaces are countably generated (see e.g.
[Bogachev, 2007b, Ex. 6.5.2]) and since we always assume that X ⊂ Rp. Then, because Rp

is separable and subspaces of separable metric spaces are separable (see. e.g. Werner [2006]),
the assertion follows.

Following an idea in the proof of [Rieder, 1994, Thm. 6.2.5] or [Ruckdeschel, 2001, Ch.
9.5.3], an interesting special case is given by the parametric densities of the underlying
L1−differentiable (see definition A.7.4) statistical model.

Lemma 4.2.1. Let P = {Pθ | θ ∈ Θ} be L1−differentiable at θ0 with L1−derivative Λθ0.
Let the densities pθ w.r.t. the Lebesgue-measure λ on (X ,A) for X ⊂ Rp be continuously
differentiable and let f : X × Θ → R be some function such that fθ := f(·, θ) is integrable
w.r.t. λ and such that IEθ[fθ] = c for every θ in a neighborhood of θ0. If for every h in a
neighborhood of 0, fTθ0+hΛθ0pθ0 is bounded by a λ−integrable function, then

∂θIEθ0 [fθ0] = IEθ0 [−fTθ0Λθ0].

Proof. We restrict ourselves to the one-dimensional case. By L1−differentiability in θ0, we
get

pθ0+h = pθ(1 + Λθ0h)⇐⇒ pθ0+h − pθ0

h
= pθ0Λθ0 (4.2.1)

where we suppressed the o(h) term. Then, assuming that IEθ[fθ] = c in a neighborhood of θ0,
we have

∂θIEθ0 [fθ0] = lim
h→0

(∫ fθ0+h(x)− fθ0(x)
h

pθ0(x)dλ(x)
)

= lim
h→0

(∫ fθ0+h(x)pθ0(x)
h

dλ−
∫ fθ0(x)pθ0(x)

h
dλ

)

= lim
h→0

(∫ fθ0+h(x)pθ0(x)
h

dλ−
∫ fθ0+h(x)pθ0+h(x)

h
dλ

)

= lim
h→0

(
−
∫
fθ0+h(x)pθ0+h(x)− pθ0(x)

h
dλ

)

(4.2.1)= lim
h→0

(
−
∫
fθ0+h(x)pθ0(x)Λθ0(x)dλ(x)

)
= IEθ0 [−fθ0Λθ0]

4.3. ASYMPTOTIC LINEARITY OF M-ESTIMATORS 61

by the regularity assumptions.

2

Remark 4.2.2. Obviously, one can list conditions under which the integrability as required
in the lemma are satisfied, but we restrict ourselves to the stated result.

Remark 4.2.3. The abovely stated lemma is especially useful if fθ = ψθ is an influence
function. By standard assumptions (see definition 3.2.4), IEθ[ψθ] = 0 for every θ, so the
expectation of an influence curve in its ideal model should always be centered to make the
asymptotic linear expansion unbiased. Furthermore, a general assumption is ψθ ∈ L2(Pθ), so
the integrability condition is valid. Since we always assume L2−differentiable models when
concerning about influence curves, the L1−differentiability directly follows from lemma A.7.2.

However, we will see in section 4.5 that we will find a much more elegant way to deal with
non-differentiable target functions.

4.3 Asymptotic linearity of M-estimators

This section very closely follows [Rieder, 1994, Ch. 1], including most of the notation.
Throughout this section, let F be a distribution on (Rp, IBp) and let X1, ..., Xn

i.id.∼ F . For
some Θ ⊂ Rp (p finite), denote by Cp(Θ) the space of all continuous Rp−valued functions on
Θ w.r.t. the supremum norm.

Remark 4.3.1. We carefully note that Rieder used a different notation, by denoting the
space of all continuous and bounded Rp−valued functions by Cp(Θ). In light of assumption
(A1) below which already bounds the space Θ, it suffices to assume that the function η below
is continuous in our context, immediately providing boundedness.

Assumption 4.3.1. Respecting the statements of subsection 3.2, a general assumption through-
out this section is
(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2.

With the definitions A.7.1, A.7.2, A.7.3, we are ready to list the assumptions under which
Rieder proved the asymptotic linearity of M-estimators. First, define the function

62 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

η : Θ→ Rp, η(θ) :=
∫
ϕ(x, θ)dF (x) = IEF [ϕ(X, θ)].

Furthermore, define its empirical counterpart

Zn(x1, ..., xn, θ) := 1
n

n∑
i=1

ϕ(xi, θ) =
∫
ϕ(x, θ)dF̂n(x1, ..., xn) (4.3.1)

with the empirical cumulative distribution function F̂n.

Assumption 4.3.2. Two assumptions throughout this section are
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior.
(A2) The function ϕ satisfies

ϕ(x, ·) ∈ Cp(Θ) F (dx)− a.e., ϕθ := ϕ(·, θ) ∈ Lp2(F) ∀θ ∈ Θ.

The following theorem was proven by Jain and Marcus ([Jain and Marcus, 1975, Thm. 1]).
We use the notation of [Rieder, 1994, Prop. 1.4.3].

Theorem 4.3.1. Under (A2), assume that:
(A3) There exists a pseudo-distance d on Θ such that d(θ, θ0)→ 0 as θ converges to θ0 and
such that the metric integral ∫ 1

0

√
H(ε)dε

is finite.
(A4) There exists M ∈ L2(F) such that

|ϕ(x, ζ)− ϕ(x, θ)| ≤ d(ζ, θ)M(x) ∀ζ, θ ∈ Θ

F (dx)−a.e..

Then there exists a Gaussian process Z on Cp(Θ) such that

IE[Z(θ)] = 0, IE[Z(ζ)ZT (θ)] = Cov
F

(ϕζ , ϕθ) ∀ζ, θ ∈ Θ

and such that
√
n(Zn − η) ◦ F n w−→ L(Z)

in Cp(Θ). Moreover, the sequence
√
n(Zn − η) ◦ F n is tight in Cp(Θ).

The main theorem that we borrow from [Rieder, 1994, Thm. 1.4.2] proves compact differen-
tiability of M-functionals under certain conditions.

4.3. ASYMPTOTIC LINEARITY OF M-ESTIMATORS 63

Theorem 4.3.2 (Compact differentiability of M-estimators). Under (A1), (A2), as-
sume additionally that:
(A5) There exists a zero θ0 ∈ Θ◦ of η and η ∈ Cp(Θ). Moreover, η is locally homeomorphic
at θ0 with bounded and invertible derivative dη(θ0).

Then there exists a neighborhood V ⊂ Cp(Θ) of η and a functional T : V → Θ satisfying

f(T (f)) = 0 ∀f ∈ V.

T is compactly differentiable at η with derivative given by

dHT (η) = −(dη(θ0))−1 ◦ Πθ0 ,

where Πθ0 is the evaluation functional at θ0.

This result is proven in [Rieder, 1994, p. 12 f.] using an implicit function theorem and the
Arzéla-Ascoli theorem.

Combining theorems 4.3.1 and 4.3.2 and all the assumptions, Rieder showed the following
corollary (cf. [Rieder, 1994, Cor. 1.4.5]).

Corollary 4.3.1. Under the assumptions (A0)-(A5), the sequence (Sn)n := (T ◦ Zn)n of
M-estimators has the asymptotic linear expansion

√
n(Sn − θ0) = 1√

n

n∑
i=1

ψθ(xi) + o(Fn)∗(n0)

where the influence function is given by

ψθ(x) := −(dη(θ0))−1ϕ(x, θ0).

If the Sn are measurable, then asymptotic normality follows, i.e.,
√
n(Sn − θ0) ◦ F n w−→ N (0, ACAT)

where

A := (dη(θ0))−1, C := IEF [ϕθ0ϕ
T
θ0].

Remark 4.3.2. Rieder introduced inner probabilities to be safe against non-measurable func-
tions Zn since these probabilities always exist (see remark A.7.1). Indeed, prominent non-
measurable maps include the empirical cumulative distribution function and the empirical
process (see Van der Vaart and Wellner [2013]).

64 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Remark 4.3.3 (Fréchet differentiability). The proof uses an infinite-dimensional version
of the delta method (see e.g. Van der Vaart and Wellner [2013], [Rieder, 1994, Thm. 1.3.3])
that requires the chain rule. By theorem 3.1.1, the functionals have to be at least compactly
differentiable. Since the chain rule holds for Fréchet differentiable maps, one may ask if the
gap between compactly and Fréchet differentiable statistical functionals is considerable. The
following two examples provide an answer.

Example 4.3.1. We refer to [Rieder, 1994, Thm. 1.5.1] who shows that for distribution
functions F that are continuous in some neighborhood U around a = F−1(α), the location
quantile is compactly but not boundedly differentiable along C(U)∩D(R), provided that f(a) >
0, where D(R) denotes the Skorohod space, i.e., the space of all real-valued càdlàg functions.

Example 4.3.2. Another example is given by the functional T (F,G) :=
∫
FdG for dis-

tribution functions F , G. It is shown that this functional is compactly differentiable with
Hadamard-derivative

dHT (x, y) =
∫
xdG−

∫
ydF,

and the empirical version corresponding to the Wilcoxon statistic is compactly differentiable
as well (cf. Gill et al. [1989], Van der Vaart and Wellner [2013]). This fact has been used to
prove asymptotic linearity of the area under the curve (AUC) and the cross-validated AUC
as it has been done in LeDell et al. [2015]. However, Wellner [1992] showed that T is not
Fréchet differentiable if one considers the || · ||∞−norm. The given counterexample relies on
the fact that in the case of Fréchet differentiability, the derivative dFT coincides with the
Hadamard derivative dHT , so dHT would be the only candidate for dFT , but dHT does not
supply the o−term in the first-order expansion in every case.

For completeness, we refer to Dudley [1992] who showed that Fréchet differentiability of the
functional in the latter example is true if the distribution functions provide special bounded
variation properties and if the integral is replaced by a Young integral. Note also that loss
functions like the ε−insensitive loss or the check loss (in quantile regression) are not Fréchet
differentiable (cf. Christmann and Van Messem [2008]).

4.4 Regularized M-functionals

Fitting a model based on a training set by minimizing some loss function without any restric-
tion generally leads to overfitting, especially in the case of high-dimensional data. This issue

4.4. REGULARIZED M-FUNCTIONALS 65

has been investigated by Vapnik (Vapnik [1998]) who introduced the structural risk min-
imization principle which performs an optimization on structures that have finite Vapnik-
Chervonenkis dimension. In practice, this idea manifests itself when penalizing the loss
function by a regularization term.

In the regression context, we have a model

Y = f(X) + ε

as introduced in equation (2.1.1).

Assumption 4.4.1. Assume that the pair (X, Y) follows some distribution F on (X ×
Y ,B(X × Y)), hence we have a random design of X and Y .

Define the (essentially complete) parametric function class

Fθ := {fθ : X → Y | θ ∈ Θ}.

When facing such a function class, we can recover the true map fθ by estimating the param-
eter θ. This is done by defining a loss function L : (Y × Y)×Θ→ [0,∞[.

Assumption 4.4.2. To be notionally consistent with the previous section, we may write

L((x, y), θ) := L(y, fθ(x))

in some situations in this chapter. For practical applications, we will again assume that
L((x, y), θ) = 0 if fθ(x) = y as it was done for example in Christmann et al. [2009].

Assumption 4.4.3. The penalty term Jλ : Θ→ [0,∞[that should enforce sparseness of the
solution has to satisfy the following conditions:
(A6) Jλ is non-negative with Jλ(0p) = 0 and Jλ is convex.

The assumption that a regularization term must be non-negative is natural. On the other
hand, since it penalizes the model complexity, the assumption that Jλ(0p) = 0 is reasonable
since the parameter θ = 0p leads to a model consisting at most of the intercept which would
not make sense to penalize. The convexity assumption is needed for practical applications to
prevent the solution from overfitting and, of course, to guarantee the existence of a unique
solution in combination with a convex loss function.

Given this notation, we can write the problem of minimizing the risk w.r.t. θ as

R(θ) := IEF [L((X, Y), θ)] + Jλ(θ) =
∫
X×Y

L((x, y), θ)dF (x, y) + Jλ(θ) = min
θ∈Θ

!.

66 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Since in practice we do not know the true distribution F , but the observed data lead to an
empirical distribution F̂n, one minimizes the empirical counterpart of the risk, i.e.,

Rn(θ) :=
∫
X×Y

L((x, y), θ)dF̂n(x, y) + Jλ(θ) = 1
n

n∑
i=1

L((Xi, Yi), θ) + Jλ(θ)

w.r.t. θ. The corresponding Z-equation is, as stated above,

Zλ
n(θ) := 1

n

n∑
i=1

ϕ((Xi, Yi), θ) + J ′λ(θ) := ϕλ((Xi, Yi), θ) != 0

where ϕ = ∂θL is the score function, thus the first term of Zλ
n is the empirical counterpart of

the expected score and Zλ
n itself is the empirical counterpart of

ηλ(θ) :=
∫
X×Y

ϕ((x, y), θ)dF (x, y) + J ′λ(θ).

If the penalty term is not of a particular interest, we suppress the superscript and just write
Zn or η, running into the framework of the previous section.

4.4.1 L2−differentiability of linear regression models

One may ask which requirements our general assumption of L2−differentiability of the un-
derlying model (A0) actually implies in the regression context. The derivation of sufficient
conditions for L2−differentiability of linear regression models (cf. [Rieder, 1994, Ch. 2.4]) as
the definition of L2−differentiability itself depends on the underlying design of the regressor
matrix X.

If one assumes a stochastic or random design of X, we have the model

Yi = Xiβ + εi (4.4.1)

where the rows Xi of the regressor matrix are i.id. realizations of the X−valued distribution
FX on IBp. Independently from the regressor variables, the error variables ε1, ..., εn are i.id.
distributed and follow some R−valued absolute continuous distribution Fε with density fε
w.r.t. some dominating measure µ. Then Rieder defines the parametric linear regression
model family

{Pβ(dx, dy) = Fε(dy − xTβ)FX(dx) = fε(y − xTβ)µ(dy)FX(dx) | β ∈ Θ} (4.4.2)

for some parameter space Θ ∈ Rp.

Introducing the score function and the Fisher information of F ,

4.4. REGULARIZED M-FUNCTIONALS 67

Λfε = −f
′
ε

fε
, Ifε = IEFε [Λ2

fε],

respectively, the L2−differentiability of the family (4.4.2) of linear regression models is guar-
anteed by the following conditions (cf. [Rieder, 1994, Thm. 2.4.7]).

Theorem 4.4.1. The family of linear regression models (4.4.2) is L2−differentiable at every
β ∈ Θ with L2−derivative

Λβ(x, y) = Λfε(y − xTβ)x

and Fisher information

Iβ = Ifε

∫
X
xxTFX(dx)

if Ifε <∞ and if

rk
(∫

xxTFX(dx)
)

= p.

In the case of a fixed or deterministic design of the regressor matrix, one can no longer treat
the rows as identically distributed (see [Pupashenko et al., 2015, Sec. 2.2]), so one essentially
needs some Lindeberg condition. Therefore, the model is

Yn,i = Xn,iβ + εn,i (4.4.3)

for n ≥ 1, i = 1, ..., in, Xn,i ∈ Rp and εn,1, ..., εn,in
i.id.∼ Fε for each n. Similarly, the chain rule

leads to the score function

Λn,i,β(y) = Λfε(y − xTn,iβ)xn,i

and the Fisher information

In,β :=
in∑
i=1

IEn,i,β[Λn,i,βΛT
n,i,β] = IfεX

T
nXn

with regressor matrix Xn at time n. The parametric regression model is then

{Pn,i,β(dy) = fε(y − xn,iβ)µ(dy) | β ∈ Θ}. (4.4.4)

Rieder shows (see [Rieder, 1994, Thm. 2.4.2]) that if the condition Ifε < ∞ stays the same
and if the rank condition is replaced by rk(Xn) = p for any n, a necessary and sufficient
condition for L2−differentiability of the linear regression model is uniformly smallness of the
hat matrix, i.e.,

lim
n

(max
i

((Xn(XT
nXn)−1XT

n)i,i)) = 0.

In this case, one needs L2−differentiability of parametric arrays (see definition A.7.5).

68 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

4.5 Asymptotic linearity of regularized M-estimators

This section provides our main theorems concerning the asymptotic linear expansion of reg-
ularized M-estimators.

4.5.1 Compactness assumption of the parameter space

Assuming compactness of the parameter space is in general problematic if we only minimize
the loss function.

Example 4.5.1. Assume that we have the squared loss, i.e., L((x, y), θ) = (y−xθ)2. Then the
loss is zero if y = xθ holds. But under this restriction, the loss is always zero, independently
of the concrete value of θ, even if ||θ|| → ∞. Thus, we cannot ensure that the minimizer of
the loss function is contained in any compact.

Taking a look at this example, we may conclude that this loss function does not provide a
coercivity property (cf. definition A.1.1 and lemma A.1.1). In the presence of a suitable
regularization term, this issue does not appear.

Lemma 4.5.1. Let X , Y, Θ be real vector spaces. Let L : X×Y×Θ→ [0,∞[be a continuous
loss function and let Jλ : Θ→ [0,∞[be a convex penalty function where Jλ 6≡ 0. Let F be a
distribution on IB(X ×Y). Then the risk function IEF [L((X, Y), θ)] + Jλ(θ) is coercive w.r.t.
θ, so the parameter space can be restricted to a compact.

Proof. By convexity, the penalty terms always must satisfy lim||θ||→∞(Jλ(θ)) =∞ , otherwise
it would have to be constantly zero which we excluded by assumption. The coercivity is
inherited from the penalty term since the loss function is convex and by linearity of the
integral, its expectation is as well, so the risk is coercive w.r.t. θ (lemma A.1.1). In fact, we
get R(θ)→∞ for ||θ|| → ∞, so we are allowed to restrict the parameter space to a compact
due to lemma A.1.1.

2

Remark 4.5.1. Note that the lemma just guarantees the existence of at least a minimum in a
compact. The assumptions of the lemma however do not provide uniqueness of the minimizer

4.5. ASYMPTOTIC LINEARITY OF REGULARIZED M-ESTIMATORS 69

which would require the loss function to be strictly convex (see e.g. Peypouquet [2015]) or the
loss function to be convex and the penalty to be strictly convex since the sum of a convex and
a strictly convex function is strictly convex.

This reasoning is of course not new and has been already done to show the existence of solu-
tions for the Huberized Lasso (Lambert-Lacroix et al. [2011]), for regularized kernel methods
in Vito et al. [2004] or in De los Reyes et al. [2016] for regularized functionals in the context of
image restoration. Analogously, Le et al. [2017] use the non-negativity of a family of penalty
terms Jnλ to show that the corresponding family {L+ Jnλ } is equi-coercive (definition A.1.2)
if the loss L is already coercive and lower semi-continuous.

Remark 4.5.2. It is easy to see that the usual penalty terms like the l1−, l2− or elastic
net penalty are coercive (see p.e. [Aravkin et al., 2013, Cor. 11]). On the other hand, non-
convex penalties do not have to be coercive, for example the SCAD (smoothly clipped absolute
deviation) penalty (cf. Fan and Li [2001]) is constant outside a neighborhood of zero whose
width depends on the penalty parameter.

In fact, since we are now allowed to assume compactness of the parameter space, we face
another potential issue. The compactness assumption leads to the problem that the M-
estimator θ̂n may be located at the boundary of Θ. We invoke the idea of general One-Step
estimators from Van der Vaart [2000] to resolve this problem.

Having a
√
n−consistent preliminary solution θ̃n of the estimating equation Zn(θ) = 0, then

an application of the Newton-Raphson algorithm leads to an improved One-Step solution

θ̂n := θ̃n − (Z ′n,0(θ̃n))−1Zn(θ̃n)

where Z ′n,0 is regular and converges in probability to a regular matrix Z ′0. The following
theorem can be found in [Van der Vaart, 2000, Thm. 5.45].

Theorem 4.5.1. Let the notation be as above. Let the condition that for every constant M
it holds that

sup√
n||θ−θ0||<M

(
||
√
n(Zn(θ)− Zn(θ0))− Z ′0

√
n(θ − θ0)||

)
P−→ 0 (4.5.1)

be satisfied for a regular matrix Z ′0. If it holds additionally that
√
n(Zn(θ0)) converges to

some limit, then the One-Step estimator θ̂n is already
√
n−consistent.

70 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Using this theorem, we can state the following result.

Lemma 4.5.2. Let all the notation be as above. Under (A2), (A5) and the additional
assumptions
(A7) The learning procedure is

√
n−consistent,

(A8a) The function Zn is twice differentiable w.r.t. θ,

the One-Step estimator is not located at the boundary of the parameter space.

Proof. Since condition (4.5.1) is weaker than differentiability of Zn at θ, this part is already
satisfied by (A8a).

The only condition of theorem 4.5.1 that remains to be proven is the convergence of
√
n(Zn(θ0))

to some limit Z. But we already know by (A7) that the learning algorithm is
√
n−consistent,

so θ̂n − θ0 = oF (n−1/2), hence we get
√
n(θ0 − θ̂n) = oF (n0).

An application of a delta method (A.7.1) which is possible under (A8a) provides that
√
n(Zn(θ0)− Zn(θ̂n))

has a limiting distribution (which is the Dirac measure at zero) and we note that by definition,
it holds that Zn(θ̂n) = 0, so the convergence of

√
nZn(θ0) has been established and theorem

4.5.1 applies.

2

Remark 4.5.3. We admit that it is not common to assume learning rates like we did in
assumption (A7). Since functions that are too complex may not be able to be approximated
with a pre-determined rate, this assumption results in the class of approximable functions
getting smaller.

Regarding carefully the condition for consistency of the One-Step estimator, (A8a) may seem
a bit too strict since the differentiability of the whole function is not needed. On the other
hand, the score function ϕ has to exist and has to be square-integrable due to (A2), so the
additional regularity condition of twice differentiability is justifiable since the loss functions
that are used in machine learning are in general either non-differentiable or smooth. In ad-
dition, the same argumentation holds for the regularization term and we will see that for
non-differentiable penalty terms, approximation methods can be applied.

Remark 4.5.4. We note that non-differentiable loss functions have already been studied in
Christmann and Van Messem [2008]. It is worthy to mention that Hable [2012] derived

4.5. ASYMPTOTIC LINEARITY OF REGULARIZED M-ESTIMATORS 71

results on asymptotic normality of kernel-based regression methods by first showing that the
corresponding functional is Gâteaux differentiable and that the derivative is continuous which
is a sufficient condition for Fréchet differentiability (see remark 3.1.1), hence also for compact
differentiability. Then he applied an infinite-dimensional Delta method to prove asymptotic
normality.

Since the One-Step estimation guarantees that the estimator is not located at the boundary
of the parameter space, assuming compactness of Θ is fine in the presence of the assumptions
(A2), (A5), (A7) and (A8a). Note that disregarding this argumentation, (A7) and (A8a) are
not absolutely necessary for the results in the next subsections.

Remark 4.5.5. We note that in the case of convex risk functions, one maybe could use
Alexandroff’s theorem (cf. Rockafellar [1999]) that provides almost everywhere a second-
order expansion of a convex function f : Rn → R̄ to ensure condition (4.5.1). However, we
will not pursue this idea any further in this work.

4.5.2 Twice differentiable Z-function

In this subsection, we assume twice differentiability of the target function Zλ
n which leads to

the following result.

Theorem 4.5.2. Under the conditions
(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
(A2’) ϕλ(·, θ) ∈ Lp2(F) ∀θ ∈ Θ,
(A5’) ηλ(θ0) = 0 for a θ0 ∈ Θ◦ and ηλ is locally homeomorphic at θ0 with bounded and
invertible derivative dηλ(θ0),
(A6) Jλ is non-negative with Jλ(0p) = 0 and Jλ is convex.
(A7) The learning procedure is

√
n−consistent,

(A8a) L is convex and Zλ
n is twice differentiable,

the sequence (Sλn)n := (T ◦ Zλ
n)n of regularized M-estimators is asymptotically linear.

72 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Proof. As a byproduct of (A1), we immediately get (A3). This is true since Rp is a normed
space, hence the pseudo-distance is just the standard euclidean norm on Rp and by bounded-
ness of Θ and since p is finite, we can conclude that the metric integral is finite. Even more
general, the metric integral is finite provided that d(θ, θ0) = ||θ−θ0||δ2 for some δ ∈]0,∞[(see
[Rieder, 1994, Rem. 1.4.6.b)]).

From twice differentiability of ηλ, the first part of (A2) is trivially satisfied and the derivative
ϕ of L is continuous w.r.t. θ. By (A6), (A7), (A8a) and lemma 4.5.2, the assumption that
we can restrict the parameter space Θ to a compact set is justifiable. Using this compactness
of Θ, we deduce that the function ϕ(x, ·) is Lipschitz-continuous, thus there exists a constant
(w.r.t. θ) such that

|ϕ(x, ξ)− ϕ(x, θ)| ≤ Lx||ξ − θ||

where the Lipschitz constant Lx must be finite by compactness of Θ. We conclude that (A4)
holds.

Thus, corollary 4.3.1 is applicable and we get the desired result.

2

The influence curve for regularized regression M-estimators with twice differentiable penalty
term and twice differentiable loss function has been derived in [Öllerer et al., 2015, Prop.
4.1]. If one can write L((x, y), β) = L(y − xβ), then it is given by

IC((x0, y0), β, F) =
(IEF0 [ψ′(y − xβ)xTx] + 2λ diag(J ′′(β)))−1(ψ(y0 − x0β)x0 − IEF0 [ψ(y − xβ)x])

(4.5.2)

4.5.3 Twice continuously differentiable loss function, non-differentiable penalty
term

If the penalty term is non-differentiable, like the Lasso loss, then we invoke a result of Avella-
Medina [2017]. Note that despite we cannot assume differentiability of the penalty term, we
can at least assume continuity. For the very basic definitions from distribution theory that
we need in this subsection, see section A.6.

The following lemma is a combination of [Avella-Medina, 2017, Lemma 2] and [Avella-Medina,
2017, Prop. 1].

4.5. ASYMPTOTIC LINEARITY OF REGULARIZED M-ESTIMATORS 73

Lemma 4.5.3 (Approximating influence curves). Assume that the parameter space Θ ⊂
Rp is compact and that the loss function is twice continuously differentiable w.r.t. θ. If there
exists a sequence (Jmλ)m with Jmλ ∈ C∞(Θ) that converges to Jλ in the Sobolev space W 2,2(Θ),
i.e.,

||Jmλ − Jλ||W 2,2 =
∑
|α|≤2

∫
Θ
|∂α(Jmλ (θ)− Jλ(θ))|2dθ

1/2

−→ 0,

then

lim
m

(Tm) = T

where Tm denotes the M-functional that intends to find the zero of the Z-equation correspond-
ing to Rm where Rm denotes the risk function where Jλ is replaced by Jmλ . This does not
depend on the particular choice of the approximating sequence Jmλ .

The proof of lemma 4.5.3 relies on a result presented in [Berge, 1963, Ch. VI] which was
referred to as ”Berge’s maximum theorem”, theorem A.6.1. The main idea is essentially to
define a set of parameters θ in dependence of the penalty term Jλ and to show that the
map that translates Jλ into the set of optimal parameters that lead to minimal risk is upper
semi-continuous. Then, for a convergent sequence of penalty terms as in lemma 4.5.3, auxil-
iary lemmas from [Berge, 1963, Ch. VI] guarantee convergence of these optimal sets to the
optimal set for Jλ.

This has a very nice consequence for our task.

Theorem 4.5.3. Assume that there exists a sequence (Jmλ)m with Jmλ ∈ C∞(Ω) of regular-
ization functions that converge to Jλ in the Sobolev space W 2,2(Θ). Under the conditions
(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
(A2’) ϕλ(·, θ) ∈ Lp2(F) ∀θ ∈ Θ,
(A5’) ηλ(θ0) = 0 for a θ0 ∈ Θ◦ and ηλ is locally homeomorphic at θ0 with bounded and
invertible derivative dηλ(θ0),
(A6) Jλ is non-negative with Jλ(0p) = 0 and Jλ is convex.
(A7) The learning procedure is

√
n−consistent,

(A8b) The loss function L is convex and twice continuously differentiable w.r.t. θ,

the sequence (Sλn)n of regularized M-estimators is asymptotically linear.

74 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

Proof. From theorem 4.5.2, we can conclude that the estimator has an asymptotic linear
expansion and that it is asymptotically normal if the respective assumptions collected there
are satisfied. But since this is just an asymptotic property up to a remainder term of order
n−1/2, it suffices to approximate Jλ by Jmλ such that the difference in the respective influence
functions is negligible, i.e., the aggregated difference is already of order n−1/2. Note that by
continuity of the Gâteaux derivative w.r.t. the direction and by the abovely stated lemma, it
holds that limm(IC(x, Tm, P)) = IC(x, T, P).

Finally, we can conclude that we can work with infinitely differentiable penalty terms satis-
fying the conditions of the previous subsection but that this results in the same asymptotic
linear expansion as if we used the true non-differentiable penalty term. Thus, we only need
the existence of an approximating sequence of penalty terms.

2

Remark 4.5.6. [Öllerer et al., 2015, Lemma 5.4] showed for the Lasso and a concrete
hyperbolic tangent approximation of the penalty term that the influence function of the ap-
proximating estimator derived by [Öllerer et al., 2015, Prop. 4.1] converges to the influence
function of the Lasso. So, Avella-Medina generalized their result with 4.5.3 for any losses
and penalties satisfying the given conditions.

4.5.4 Extension to ranking

In the ranking setting (see part II of this thesis), we assume the same underlying model as in
the first part of this section, with the only difference that we have to invoke a joint distribu-
tion Fr : (X×Y)×(X×Y) on the measurable space ((X×Y)×(X×Y),B((X×Y)×(X×Y)))
where the notation Fr is introduced to distinguish it from the joint distribution in the pre-
vious part of this section.

In contrast to prediction problems, it is not the goal to recover the true values of the Yi but
just to predict their true order. Therefore, the ranking model can be fitted by defining a
ranking loss function Lr : (X × Y)× (X × Y)×Θ→ [0,∞[which quantifies a ranking loss,
that is some loss of a misranking of a pair of instances. Defining a penalty term and the
ranking risk analogously to the risk R in section 4.4, the corresponding Z-equation resulting
from the problem to minimize the regularized risk is

Zr,λ
n (θ) := 1

n(n− 1)
∑∑
i 6=j

ϕr(((Xi, Yi), (Xj, Yj)), θ) + J ′λ(θ)
!= 0

4.5. ASYMPTOTIC LINEARITY OF REGULARIZED M-ESTIMATORS 75

where ϕr = ∂θL
r is the score function, hence the first term of Zr,λ

n is the empirical counterpart
of the expected score.

We can easily adapt the theorem of Rieder [1994] to the ranking setting and conclude compact
differentiability of regularized ranking functionals and asymptotic linearity of the sequence
(Sr,λn)n := (T ◦ Zr,λ

n)n of regularized ranking M-estimators.

Theorem 4.5.4. Define

ηr,λ : Θ→ Rp, ηr,λ(θ) :=
∫
ϕr(((x, y), (x′, y′)), θ)dF r(((x, y), (x′, y′))) + J ′λ(θ).

Then, under the conditions

(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
((A2r)’) ϕr(·, θ) + J ′λ(θ) ∈ L

p
2(F r) ∀θ ∈ Θ,

(A5) There exists a zero θ0 ∈ Θ◦ of ηr,λ and ηr,λ ∈ Cp(Θ). Moreover, ηr,λ is locally homeo-
morphic at θ0 with bounded and invertible derivative dηr,λ(θ0),
(A6) Jλ is non-negative with Jλ(0p) = 0 and Jλ is convex.
(A7) The learning procedure is

√
n−consistent,

(A8a) Lr is convex and Zr,λ
n is twice differentiable,

there exists a neighborhood V ⊂ Cp(Θ) of ηr,λ and a functional T : V → Θ satisfying

f(T (f)) = 0 ∀f ∈ V.

T is compactly differentiable at ηr,λ with derivative given by

dHT (ηr,λ) = −(dηr,λ(θ0))−1 ◦ Πθ0 ,

where Πθ0 is the evaluation functional at θ0.

Moreover, the sequence (Sr,λn)n := (T ◦ Zr,λ
n)n of regularized ranking M-estimators is asymp-

totically linear.

Proof. This directly follows from corollary 4.3.1 since the optimization is done w.r.t. θ

whereas the dimension of the space of the other arguments of ϕ is not explicitly used in the
proof.

2

76 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

In the case of non-differentiable loss functions, we would once more make use of the smooth
approximation of the penalty term.

Theorem 4.5.5. Assume that there exists a sequence (Jmλ)m with Jmλ ∈ C∞(Ω) of regulariza-
tion functions that converge to Jλ in the Sobolev space W 2,2(Θ). Then, under the conditions

(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
((A2r)’) ϕλ(·, θ) + J ′λ(θ) ∈ L

p
2(F r) ∀θ ∈ Θ,

(A5’) ηr,λ(θ0) = 0 for a θ0 ∈ Θ◦ and ηr,λ is locally homeomorphic at θ0 with bounded and
invertible derivative dηr,λ(θ0),
(A6) Jλ is non-negative with Jλ(0p) = 0 and Jλ is convex.
(A7) The learning procedure is

√
n−consistent,

(A8b) The loss function Lr is convex and twice continuously differentiable w.r.t. θ,

there exists a neighborhood V ⊂ Cp(Θ) of ηr,λ and a functional T : V → Θ satisfying

f(T (f)) = 0 ∀f ∈ V.

T is compactly differentiable at ηr,λ with derivative given by

dHT (ηr,λ) = −(dηr,λ(θ0))−1 ◦ Πθ0 ,

where Πθ0 is the evaluation functional at θ0.

Moreover, the sequence (Sr,λn)n := (T ◦ Zr,λ
n)n of regularized ranking M-estimators is asymp-

totically linear.

Remark 4.5.7. It is important to emphasize that ranking loss functions like the hard rank-
ing loss (see (5.2.3)) and other losses that we introduce in part II are not continuous and
not convex, so they fail the assumptions of these theorems. However, the hard ranking loss
is bounded, so combining it with a suitable regularity term again leads to a coercive target
function.

Examples for which the regularity conditions hold are smooth convex surrogates of those rank-
ing losses that we will also discuss later.

4.6. EXAMPLES FOR ASYMPTOTICALLY LINEAR ESTIMATORS IN MACHINE LEARNING 77

4.6 Examples for asymptotically linear estimators in machine learn-
ing

The conditions for asymptotic linearity of the regularized M-estimators in the previous sec-
tion are quite general. The goal of this section is to provide examples for machine learning
algorithms to which the derived results can be applied and to specify the required conditions
for each of them.

4.6.1 Lasso

Lasso regression (cf. Bühlmann and Van De Geer [2011]) is an l1−penalized least squares
regression, i.e.,

β̂lasso = argmin
β∈Θ

(1
n
||Y −Xβ||22 + λ||β||1

)
.

The Lasso regression results in a shrinkage of the coefficients and in a sparse fitted model.
The score function for the unregularized loss is given by

ϕ(·, β) = 2
n
XT (Y −Xβ). (4.6.1)

We invoke the approximation of the non-differentiable penalty term. There exists an example
of such a smooth penalty term converging to the absolute value in Avella-Medina [2017] and
another one in Öllerer et al. [2015].

Theorem 4.6.1. Assume that
(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
((A2Lasso)’) The ideal distribution F has finite fourth moments,
(A5’) The true solution β0 lies in the interior of Θ and the derivative dηλ(β0) is invertible,
(A7Lasso) ||β0||1 = o(

√
n/ ln(p)) and that the regularization parameter in dependence of n is

chosen in the range of λn =
√

ln(p)/n.

Then the sequence (SLasson)n := (T ◦ ZLasso
n)n of Lasso estimators is asymptotically linear.

Proof. We need to verify the conditions of theorem 4.5.3. Consider a smooth approximation
Jmλ of the absolute value in the sense of the Sobolev space W 2,2, as given in Öllerer et al.
[2015] or Avella-Medina [2017], respectively. Then we set

78 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

J̃mλ (x) :=
∑
i

Jmλ (xi) −→
∑
i

|xi| = ||x||1,

and thus

∇xJ̃
m
λ (x) = (∂x1 J̃

m
λ (x), ..., ∂xp J̃mλ (x)) −→ (sign(x1), ..., sign(xp)) = ∇x||x||1

and the (component-wise) convergence of the Hessian holds as well due to the properties of
W 2,2. For this idea, we refer to [Öllerer et al., 2015, Lemma 5.4]. The loss function and the
approximating penalty term are smooth, hence (A8b) is satisfied and lemma 4.5.3 is applica-
ble.

The target function is coercive w.r.t. β (see definition A.1.1). This holds because as ||β|| →
∞, the penalty will tend to infinity and so does the target function. Note that this does not
hold for the loss function itself since ||β|| → ∞ can result in a small loss, cf. example 4.5.1.
One may argue that even in the penalized case, it can happen that ||(x, y, β)|| → ∞ without
resulting in the target function growing as well. If for example Y = 0 and X is large, then
Y = Xβ for β = 0p. But in this case, we do not lose anything if we restrict the parameter
space. Furthermore, we can write the optimization problem in the form

min(||Y −Xβ||22/n) s.t. ||β||1 ≤ cλ

for some constant cλ depending on λ. So we have a convex optimization problem with a
continuous, strictly convex and coercive target function, so by Werner [2006], there definitely
exists a solution β0 of ηλ and the local homeomorphicity around the solution follows.

Combining ((A2Lasso)’) with equation (4.6.1), we derive that the score function is square-
integrable w.r.t. the distribution F . Then (A2’) is satisfied and by boundedness of the inte-
gral by the previous assumption and by compactness of the parameter space, this derivative
is bounded.

The Lasso is generally inconsistent, but under (A7Lasso), it follows from Bühlmann and Van
De Geer [2011] that the Lasso is

√
n−consistent in this case. Note that despite we solve a

convex optimization problem assuming that the true solution is already located in the interior
of Θ, that does not suffice to guarantee that the computed solution does not lie on the boundary
of the parameter space. Finally, theorem 4.5.3 applies and the assertion is proven.

2

Note that a suitable influence function has already been derived in Öllerer et al. [2015] and
by the considerations of our approximation theorem, the corresponding asymptotic linear
expansion holds for the Lasso.

4.6. EXAMPLES FOR ASYMPTOTICALLY LINEAR ESTIMATORS IN MACHINE LEARNING 79

4.6.2 Elastic net

The elastic net (cf. Zou and Hastie [2005]) can be regarded as a compromise between Lasso
and Ridge regression. Given two penalty parameters λ1, λ2, the elastic net solution is given
by

β̂EN = argmin
β

(1
n
||Y −Xβ||22 + λ1||β1||1 + λ2||β||22

)

and by defining α := λ2
λ1+λ2

, this can be rewritten as a convex combination of l1− and l2−
penalties, i.e.,

β̂EN = argmin
β

(1
n
||Y −Xβ||22 + (1− α)||β1||1 + α||β||22

)

where (1− α)||β||1 + α||β||22 is referred to as the elastic net penalty.

Corollary 4.6.1. Under the assumptions of theorem 4.6.1, the sequence (SorthENn)n := (T ◦
ZorthEN
n)n of elastic net estimators with orthonormal design is asymptotically linear.

Proof. Note that for orthonormal design, the EN solution is just a rescaled Lasso solution
with factor 1

1+λ2
. In this case, we can simply rescale the influence function derived in Öllerer

et al. [2015], proving the result.

2

Corollary 4.6.2. Under the assumptions of theorem 4.6.1, the sequence (SENn)n := (T ◦
ZEN
n)n of elastic net estimators is asymptotically linear.

Proof. It is shown in Zou and Hastie [2005] that the elastic net can be rewritten as a special
Lasso with the augmented data

X∗ := 1√
1 + λ2

 X
√
λ2Ip

 , y∗ :=
 y

0p


and the penalty γ := λ1√

1+λ2
. If β̂Lasso is the respective Lasso solution, the elastic net solution

is a rescaling with factor 1
1+λ2

as before.

Using these results and the idea of Öllerer et al. [2015], the respective influence curve of
the elastic net can been computed by just adapting the already calculated influence curve and
theorem 4.6.1.

2

80 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

4.6.3 Adaptive Lasso

The adaptive Lasso (cf. Zou [2006]) is a two-stage estimator that first computes a
√
n−consis-

tent starting estimator (or, as suggested in Bühlmann and Van De Geer [2011], the standard
Lasso estimator), denoted by β̂init, and then in a second step, one minimizes

β̂adapt = argmin
β

 1
n
||Y −Xβ||22 + λ

∑
j

|βj|
|β̂initj |

 .
Borrowing the consistency requirements for the adaptive Lasso from Zou [2006], we have the
following result.

Theorem 4.6.2. Assume that
(A0) The parametric model P = {Pθ | θ ∈ Θ} is L2−differentiable and if ψθ is an influence
curve, it belongs to the set Ψ2,
(A1) The parameter space Θ ⊂ Rp is nonempty, compact and equals the topological closure
of its interior,
((A2Lasso)’) The ideal distribution F has finite fourth moments,
(A5’) The true solution β0 lies in the interior of Θ and the derivative dηλ(β0) is invertible,
(A7ALasso) The regularization parameter in dependence of n satisfies λn = o(

√
n) and

λnn
(γ−1)/2 →∞ for γ > 0.

Then the sequence (Sadaptn)n := (T ◦ Zadapt
n)n of Adaptive Lasso estimators is asymptotically

linear and the influence curve of the j−th component of β̂adapt is given by

IC((x0, y0), β̂adaptj (λ), Pθ0) =


0, β̂initj (λ) = 0

0, β̂adaptj (λ) = 0

IC((x0, y0), β̂Lassoj (λ/|β̂initj (λ)|)), otherwise

.

where we denote by β̂Lasso(λ) the Lasso estimator using the penalty factor λ.

Proof. Obviously, if β̂initj = 0, we immediately know that β̂adaptj = 0. Hence, if we have the
initial solution, we can rewrite the adaptive Lasso optimization problem as

β̂adapt
Ŝinit
λ

= argmin
βŜinit(λ)

 1
n

n∑
i=1

∑
j∈Ŝinit(λ)

(Yi −XT
ijβj)2 + λ

∑
j∈Ŝinit(λ)

|βj|
|β̂initj |


where Ŝinit(λ) := {j | β̂initj 6= 0}. Then this optimization problem is just a Lasso optimization
problem with a weighted penalty term which can be approximated coordinate-wisely in the spirit
of Avella-Medina [2017].

4.7. CONCRETE INFLUENCE CURVES FOR THE LASSO AND THE ADAPTIVE LASSO 81

The corresponding influence function has implicitly been derived in Avella-Medina [2017].
Note that by our method, we would only derive |Ŝinit(λ)| components of the influence func-
tion. However, it was proven in Öllerer et al. [2015] that the components of the influence
function corresponding to the coefficients that are excluded from the model are zero, i.e., if
the Lasso in the first step already sets some coefficients to zero, the final coefficients will be
zero, so we can just plug in zeroes into the respective components of the influence function,
providing the usual asymptotic linear expansion.

Since the first step does not compute the final non-zero coefficients but just regularizing
weights, its influence implicitly arises in this expansion as a factor, leading to the stated
result.

2

Remark 4.6.1 (Partial influence curves). Note that the influence curves derived in the-
orem 4.6.2 correspond to the concept of ”partial” influence functions (see definition 3.2.5).
This is true since in the proof of theorem 4.6.2, we are implicitly using the smooth trans-
formation β 7→ βŜinit

λ
to derive the components of the influence curve corresponding to the

coefficients that not already have been excluded from the model in the initialization step. In
other words (after suitable renumeration of the columns), we get the matrix DβŜinit(λ)

:=
(diag(1, ŝinit), 0p−ŝinit) ∈ Rŝinit×p where ŝinit := |Ŝinit(λ)|. See also section 3.5.

Remark 4.6.2 (Asymptotic normality). Note that the additional assumption of measura-
bility of the sequences of estimators provides asymptotic normality of the estimating sequence
due to corollary 4.3.1. Of course, we are not the first ones with results on asymptotic nor-
mality. See for example [Loh et al., 2017, Sec. 3] where Corollary 1 shows under which
conditions regularized M-estimators of a very general form, including the Lasso, are asymp-
totically normal.

4.7 Concrete influence curves for the Lasso and the Adaptive Lasso

We already mentioned that the influence curve for the Lasso has been computed in Öllerer
et al. [2015]. However, working with them requires the knowledge of the positions of the
non-zero coefficients of the Lasso model. We always consider the general case where p > 1
and note that the influence curve for the simple Lasso regression model which is very handy
has been derived in [Öllerer et al., 2015, Lemma 5.1].
Let

Y = Xβ + ε (4.7.1)

82 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

be a linear regression model and let F be the true joint distribution of (X, Y). Then [Öllerer
et al., 2015, Lemma 5.2] and [Öllerer et al., 2015, Prop. 5.3] provide the influence functions
stated in the following two lemmas.

Lemma 4.7.1. Assume that the Lasso is solved using the coordinate descent algorithm from
Friedman et al. [2007]. Then the influence function for the j−th coordinate of the Lasso
parameter is

IC((x0, y0), β, F) =

0, |IEF [xj ỹ(j)]| < λ

−IEF [xj(x(j))T IC((x0,y0),(β∗)(j),F)]+(y0−(x(j)
0)T (β∗)(j)(F))(x0)j

IEF [x2
j]

− IEF [xj ỹ(j)
j](x0)2

j

(IEF [x2
j])2 −

−λIEF [x2
j]−(x0)2

j

(IEF [x2
j])2 sign(IEF [xj ỹ(j)]), otherwise

,

where

z(j) := (z1, ..., zj−1, zj+1, ..., zp), ỹ(j) := y − (x(j))T (β∗)(j)(F)

and where (β∗)(j) is the functional that takes the value of the last iteration of the algorithm.

Despite the coordinate decent algorithm converges for any starting value (Friedman et al.
[2007]), it is not clear how to work with this influence curve. If the position of the non-zero
entries is already known, the following influence curve is valid.

Lemma 4.7.2. Let w.l.o.g. the true coefficients be zero for j > k and nonzero for 1 ≤ j ≤
k ≤ p. Then

IC((x0, y0), β, F) =(IEF [x1:kx
T
1:k])−1((x0)1:k(y0 − xT0 β(F))− IEF [x1:k(y − xTβ(F))])

0p−k


where x1:k is the subvector of x containing only the first k components.

This result is shown by computing first order conditions for the solution where the derivative
of the penalty term is derived using subgradient calculus. The proof is similar to the proof
of lemma 2.1 in Bühlmann and Van De Geer [2011] with the difference that Alfons et al.
used the derivative of the expected loss function instead of the loss function itself. Then the
influence curve of [Öllerer et al., 2015, Lemma 5.2] and the convergence properties of the

4.8. DATA-DRIVEN PENALTY PARAMETERS 83

coordinate gradient algorithm lead to the stated result.

One can work with the latter influence curve if model selection is performed before. Similarly,
this strategy can be pursued when working with approximating influence curves. Then the
idea would be to compute an approximating influence curve using equation (4.5.2) and to set
all components of this influence curve to zero whose corresponding coefficients are excluded
from the selected model.

The advantage of the approximating influence curves over the one in equation (4.7.2) is that
the penalty parameter λ is directly included in the formula, so the computation of the influ-
ence curve of the corresponding Adaptive Lasso estimator using theorem 4.6.2 is possible.

4.8 Data-driven penalty parameters

It is common that asymptotic results for regularized methods respect the case that the
regularization parameter is data-driven which manifests itself in a sequence (λn)n of regular-
iztion parameters. The same is true for Boosting where the amount of regularization does
not depend on a penalty parameter but implicitly on the number of iterations such that a
diverging sequence of iterations is the analogue to a sequence (λn)n with λn → 0 for n→∞.

To keep the asymptotic results valid uniformly for n → ∞, results for Lasso methods as in
Bühlmann and Van De Geer [2011] or Zou [2006] and for Boosting methods as for example in
Bühlmann [2006] require penalty parameters which fall into a suitable range in dependence
of n or numbers of iterations that grow sufficiently slow w.r.t. n.

As for our results, we would need a suitable degree of approximation, i.e., a suitable sequence
(mn)n, leading to a sequence of regularization terms of the form (Jmnλn

)n, to get similar state-
ments.

In fact, we already used sequences (mn)n implicitly when proving theorem 4.5.3. Our argu-
ment was to set mn sufficiently large to get a degree of approximation that leads to an error
term which is already absorbed by oP (n−1/2).

If we concern about sequences of penalty terms, we essentially need to have a sequence (mn)n
which again grows sufficiently fast to keep the error term small enough. Since we assumed
that Jλ is approximable by a sequence of smooth penalty terms Jmλ and since λ usually just

84 CHAPTER 4. COMPACT DIFFERENTIABILITY OF REGULARIZED M-FUNCTIONALS

enters as a factor, a diminishing sequence of regularization terms still keeps the approxima-
bility valid since for smaller penalty parameters, the regularization term gets „less wiggly”,
so we assume that for fixed n, one would generally need a smaller number m for a smaller λ
than for a large λ.

However, we do not think that a general approximation statement that provides a universal
result for arbitrary penalty terms would be possible to derive. But for a concrete penalty
term with an existing approximating sequence, one could derive conditions on the sequence
(mn)n in dependence on the sequence of the regularization terms, especially for the Lasso or
the Adaptive Lasso.

4.9 Conclusion

Avella-Medina (Avella-Medina [2017]) already discussed whether one can expand regularized
M-estimators asymptotically linearly. However, he did not provide a rigorous theory in his
work. Furthermore, he concentrated on Fréchet differentiability which, as we pointed out, is
not necessary but only Hadamard differentiability.

For non-differentiable penalty terms, we faced the problem that the interchangeability of
integration and differentiation to transfer M-estimation into Z-estimation is not given and
that one needs techniques like the density method. Instead of requiring a tedious case-wise
analysis of each of the regularization terms that we discussed, we invoked the approximation
result of Avella-Medina [2017] to elegantly derive a general theory.

First, we showed under which conditions regularized M-functionals are compactly differen-
tiable and extended existing results on compact differentiability of standard M-functionals.
For ”nice” penalization terms, this has been combined with another existing result, so that
we directly got conditions for asymptotic linearity of regularized M-estimators with such a
regularization term.

Then, for regularization terms that are not differentiable like the l1−norm, we provided sim-
ilar results for the price of relatively weak extra conditions.

As for the case of data-dependent regularization parameters, we discussed that our results
can be extended to this case if we use a sequence of indices mn, corresponding to the approxi-
mating functions for the penalty term, according to the sequence of regularization parameters

4.9. CONCLUSION 85

w.r.t. n.

An open problem for future work is the following:

How can the ALE of certain regularized M-estimators be used in practice, for
example by constructing suitable k−Step estimators or for updating an existing
estimator if one gets new observations?

Part II

Mathematics of ranking problems

86

87

88

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

89

This intermediary part of the thesis is divided into four chapters.

The first chapter contains the mathematical formulation of ranking problems as empirical
risk minimization problems (in the spirit of Clémençon et al. [2008]). We will further see
that we should not refer to ”the” ranking problem since there exist various variants that are
distinguished by either the goal or the response values. This chapter also gathers relevant
existing algorithms that have been developed to solve different types of ranking problems.

In the second chapter, we analyze some properties of ranking problems, including the com-
putation of the losses and the derivation of possible influence curves.

The third chapter concerns about the question if different competing models for the hard
ranking problem can be reasonably compared to determine which one has been the best
model. This directly corresponds to a property of the risk minimization problem, repre-
sented by a statistical functional itself, namely elicitability. We show that the hard ranking
problem is elicitable and even strong elicitable which means that even in the case of ties, a
comparison of different models is possible.

In the last chapter, we try pragmatic approaches to solve the hard ranking problem using
Gradient Boosting algorithms. More precisely, we use standard surrogate losses for the
indicator function as it has already been done in classification settings and transfer those
ideas to get surrogates of the hard ranking loss. Simulations show that this rather naïve
approach is not meaningful at all, indicating that the ranking problems that are relevant in
this thesis require a lot of further work which will be done in the subsequent parts.

90

Types of ranking problems

Distinguished by the response Y Distinguished by the goal

Bipartite ranking problem

d−partite ranking problem

Continuous ranking problem Hard ranking problem

Localized ranking problem

Weak ranking problem

Existing algorithms Different losses
Empirical

risk minimization

Fast computation of
hard and localized ranking loss

Possible influence functionsElicitability

Strong elicitability

Sufficiently regular surrogate
losses for the hard ranking loss

Exponential surrogate Hinge surrogate Piece-wise linear surrogate

Gradient Boosting
is not reasonable!

Direct Gradient Boosting for
hard/localized ranking problems

Gradient Boosting

Chapter 5

Ranking

Finding the most suspicious individuals based on machine learning techniques is the main
motivation for this work. This task can be embedded into the framework of ranking prob-
lems.

Starting with the definition of several different ranking problems that are distinguished by the
goal of the analyst, it becomes evident that suitable loss functions have at least a pair-wise
structure in this case. We show how these loss functions look like and provide standardized
versions of them for better interpretability. The respective part is closed with a very simple
but illustrative example and short definitions of quality measures that originally come from
classification but which also entered the ranking setting.

The formal setup is followed by two lengthy sections where we refer to related work concern-
ing ranking problems with discrete-valued outcomes, for example in document retrieval. We
also list current approaches for high-dimensional data resulting in ranking algorithms that
explicitly focus on model selection.

The last part introduces the continuous ranking problem which is exactly our problem when
ranking different tax payers based on the real-valued amount of damage. This kind of prob-
lem has recently been mathematically formulated, so there is not much related work yet.

5.1 Different types of ranking problems

Solutions to ranking problems do not necessarily need to recover the responses Yi based on
the observations Xi. In fact, the goal is in general to predict the right ordering of the re-

91

92 CHAPTER 5. RANKING

sponses albeit there exist some relaxations of this (hard) ranking problem, e.g., only the top
K instances have to be ranked exactly while the predicted ranking of the other instances is
not a quantity of interest. Clémençon et al. [2005] and Clémençon et al. [2008] provided the
theoretical statistical framework for empirical risk minimization in the ranking setting.

In the spirit of our work, we try to rank the instances Xi by comparing their predicted re-
sponse, i.e., Xi will be ranked higher than Xj if Ŷi > Ŷj. Then, Clémençon et al. [2008]
provide the following definitions.

Definition 5.1.1. With the convention above,

a) a ranking rule is a mapping r : X ×X → {−1, 1} where r(x, x′) = 1 indicates that x is
ranked higher than x′ and vice versa.
b) a ranking rule induced by a scoring rule s is given by

r(x, x′, s) = 2I(s(x) ≥ s(x′))− 1

with a scoring function s : X → R where r(x, x′) = 1 precisely if s(x) ≥ s(x′).

Remark 5.1.1. We will always denote the index set of the true best K ≤ n instances by
BestK and its empirical counterpart, i.e., the indices of the instances that have been predicted
to be the best K ones, by B̂estK.

In this work, we will refer to the problem to correctly rank all instances as the hard ranking
problem which is a global problem. A weaker problem is the localized ranking problem
that intends to find the correct ordering of the best K instances, so misrankings at the bot-
tom of the list are not taken into account. However, misclassifications have to be additionally
penalized in this setting. It is obvious that these two problems are stronger problems than
classification problems.

In contrast, sometimes it suffices to tackle the weak ranking problem where we only
require to reliably detect the best K instances but where their pair-wise ordering is not a
quantity of interest. For example, in the tax fraud detection context, we try to find the K
most suspicious tax payers whose income tax statements need to be rigorously verified. If one
knew that one exactly will review K instances, it would not be necessary to try to predict
which of them is the most suspicious one. This problem has been identified in Clémençon
and Vayatis [2007] as a classification problem with a mass constraint, since we require
to get exactly K class 1 objects if class 1 is defined to be the ”interesting” class.

5.1. DIFFERENT TYPES OF RANKING PROBLEMS 93

Worked out theory for the weak and localized ranking problem is given in Clémençon and
Vayatis [2007].

On the other hand, one distinguishes between three other types of ranking problems in de-
pendence of the set Y . If Y is binary-valued, w.l.o.g. Y = {−1, 1}, then a ranking problem
that intends to retrieve the correct ordering of the probabilities of the instances to belong to
class 1 is called a bipartite ranking problem (binary ranking problem). If Y can take
d different values, a corresponding ranking problem is referred to as a d−partite ranking
problem and for continuously-valued responses, one faces a continuous ranking prob-
lem.

Further discussions on possible combinations of these types of ranking problems and their
relation to classification and regression follow in section 5.6.

Regression

R
anking

spectrum
Classification

Clustering

Continuous ranking problem

Bipartite ranking problem

Hard ranking problem

Loc.
ranking

problem
s

Weak ranking problem

Informativity

Figure 5.1: Informativity of different types of ranking problems

In figure 5.1, we illustrate how the ranking problems are related to other machine learning
problems in terms of informativity. Since we do not have responses in the clustering setting,
the only information that a computed clustering delivers is that the observations from a
specific cluster are more ”similar” to each other than to all other observations. Classifica-
tion problems are comparable, but they have labels, so the ”clusters” can be distinguished.
Regression problems even provide information on the values of the responses which is not
necessarily the case for ranking problems, so ranking problems are less informative than re-
gression problems. For further discussion on the informativity of ranking problems compared

94 CHAPTER 5. RANKING

to classification problems, see section 5.6.

The right part of the figure 5.1 is obvious since the higher the K in the localized ranking
problem is, the more informative it is, with the hard ranking problem as limit case for K = n.

5.2 Ranking by empirical risk minimization

Empirical risk minimization needs the definition of a suitable risk function. The hard ranking
risk, i.e., the risk function of the hard ranking problem, introduced in Clémençon et al. [2005]
is given by

Rhard(r) := IE[I((Y − Y ′)r(X,X ′) < 0)], (5.2.1)

so in fact, this is nothing but the probability of a misranking of X and X ′. Thus, empirical
risk minimization intends to find an optimal ranking rule by solving the optimization problem

min
r∈R

Lhardn (r) = 1
n(n− 1)

∑∑
i 6=j

I((Yi − Yj)r(Xi, Xj) < 0)
 (5.2.2)

where R is some class of ranking rules r : X × X → {−1, 1}. For the sake of notation, the

additional arguments in the loss functions are suppressed. Note that Lhardn , i.e., the hard
empirical risk, is also the hard ranking loss function which reflects the global nature of hard
ranking problems.

The optimization problem above suffers from the difficulty that one had to optimize over
a set of ranking rules whose cardinality grows with the number n of observations. This
leads to a combinatorial nature of the optimization which gets infeasible for data with many
observations. Additionally, just taking the ranking of the response vector of the training set
obviously does not use any information of the regressors Xi, so even such a trivial approach
which indeed would be a solution of the combinatorial problem (without computing scoring
functions!) would not provide any predictive power. It would be comparable to the absolutely
meaningless classification rule

s(x) =

Yi, x = Xi ∃i = 1, ..., n

0, otherwise

from [Devroye et al., 2013, p. 188] (which could be analogously defined in a regression
setting).

5.2. RANKING BY EMPIRICAL RISK MINIMIZATION 95

In this thesis, we restrict ourselves to ranking rules that are induced by scoring rules. Consid-
ering some parameter space Θ ⊂ Rp, it suffices to empirically find the best scoring function
(and with it, the empirically optimal induced ranking rule) by solving the parametric opti-
mization problem

min
θ∈Θ

Lhardn (θ) = 1
n(n− 1)

∑∑
i 6=j

I((Yi − Yj)(sθ(Xi)− sθ(Xj)) < 0)
 . (5.2.3)

For the weak ranking problem, Clémençon and Vayatis [2007] introduce the upper (1 −
u)−quantile Q(s, 1 − u) for the random variable s(X). To emphasize that this corresponds
to a classification problem, we introduce the transformed responses

Ỹ
(K)
i := 2I(rk(Yi) ≤ K)− 1

where the ranks refer to a descending ordering. Then the misclassification risk corresponding
to the weak ranking problem is given by

Rweak,u(s) := P (Ỹ (s(X)−Q(s, 1− u)) < 0)

with the empirical counterpart

Lweak,Kn (s) = 1
n

n∑
i=1

I(Ỹ (K)
i (s(Xi)− Q̂(s, 1− u(K))) < 0)

for the empirical quantile Q̂(s, 1−u(K)). To approximate the (1−u)−quantile, we need to set
u(K) = K/n, i.e., for a given quantile (1− u), we look at the top K instances that represent
this upper quantile.

Remark 5.2.1. Due to the mass constraint, each false positive generates exactly one false
negative, so the loss can be equivalently written as

Lweak,Kn (s) = 2
n

∑
i∈BestK

I(Ỹi(s(Xi)− Q̂(s, 1− u(K))) < 0).

Note that the weak ranking loss is not standardized, i.e., it does not necessarily take values
in the whole interval [0, 1]. More precisely, its maximal value is always 2K

n
, so we can only

hit the value one if K = n
2 for even n and if all instances that belong to the ”upper half”

and predicted to be in the ”lower half” and vice versa. For better comparison of the losses,
we propose the standardized weak ranking loss

Lweak,K,normn (s) = 1
K

∑
i∈BestK

I(Ỹi(s(Xi)− Q̂(s, 1− u(K))) < 0). (5.2.4)

96 CHAPTER 5. RANKING

Remark 5.2.2. Having get rid of the ratio K/n, the standardized weak ranking loss function
has a very intuitive interpretation. For a fixed K, a standardized weak ranking loss of c/K
means that c of the instances of BestK did not have been recovered by the model.

A suitable loss function for the localized ranking problem was proposed in Clémençon and
Vayatis [2007], too. In our notation, it is given by

Lloc,Kn (s) := n−
n
Lweak,Kn (s)+

1
n(n− 1)

∑∑
i 6=j

I((s(Xi)− s(Xj))(Yi − Yj) < 0,min(s(Xi), s(Xj)) ≥ Q̂(s, 1− u(K)))

(5.2.5)
In the second summand, n− indicates the number of negatives, so the quotient is just an
estimation for P (Y = −1). Note that Clémençon and Vayatis [2007] introduced this loss for
binary-valued responses. We propose to set n− := (n−K) for continuously-valued responses
since localizing artificially labels the top K instances as class 1 objects, hence we get (n−K)
negatives. Again, the second summand may be rewritten as

2
n(n− 1)

∑∑
i<j,i,j∈B̂estK

I((s(Xi)− s(Xj))(Yi − Yj) < 0).

As the weak ranking loss, this loss is not [0, 1]−standardized. Taking a closer look on it, the
maximal achievable loss given a fixed K is

max(Lloc,Kn (s)) = K(K − 1)
n(n− 1) + n−K

n
· 2K
n

=: mK ,

so a standardized version is simply

Lloc,K,normn (s) := 1
mK

Lloc,Kn (s).

Remark 5.2.3. Note that even in the case K = n
2 for even n, the localized ranking loss

cannot take the value one. This is true since

Lloc,n/2n (s) ≤
n
2

(
n
2 − 1

)
n(n− 1) +

n
2
n
· 1 <

1
2n(n− 1)
n(n− 1) + 1

2 = 1.

A simple example for clarification is given below in example 5.2.1. We insist to once more
take a look on the U-statistics that arise for the hard and the localized ranking problem. Clé-
mençon et al. [2008] already mentioned that these pair-wise loss functions can be generalized
to loss functions with m input arguments. This leads to U-statistics of order m. But if the
whole permutations that represent the ordering of the response values should be compared
at once (i.e., m = n), then this again boils down to a U-statistic of order 2. Let

5.2. RANKING BY EMPIRICAL RISK MINIMIZATION 97

Perm(1 : n) := {π | π is a permutation of {1, ..., n}}

and let π, π̂ ∈ Perm(1 : n) be the true resp. the estimated permutation, then the empirical
hard ranking loss can be equivalently written as

Lhardn (π, π̂) = 2
n(n− 1)

∑∑
i<j

I((πi − πj)(π̂i − π̂j) < 0). (5.2.6)

Example 5.2.1. Assume that we have a data set with the true response values

Y := (−3, 10.3,−8, 12, 14,−0.5, 29,−1.1,−5.7, 119)

and the fitted values

Ŷ := (0.02, 0.6, 0.1, 0.47, 0.82, 0.04, 0.77, 0.09, 0.01, 0.79).

Then we order the vectors according to Y , so that Y1 ≥ Y2 ≥ ... and get the permutations

π = (1, 2, ..., 10), π̂ = (2, 3, 1, 5, 4, 8, 7, 9, 10, 6).

For example, Y10 = 119 is the largest value of Y , having rank 1. So we reorder Ŷ such that
Ŷ10 = 0.79 is the first entry. But since this is only the second-largest entry of Ŷ , we have a
rank of 2, leading to the first component π̂1 = 2 and so forth.

Setting K = 4, we obviously get

Lweak,4n (π, π̂) = 2
10 = 0.2.

The standardized weak ranking loss is then

Lweak,4,normn (π, π̂) = 10
8 ·

2
10 = 0.25

which is most intuitive since one of the indices of the four true best instances is not contained
in the predicted set B̂est4. The second part of the localized loss is then

2
90[0 + 1 + 0 + 1 + 0 + 0] = 2

45 .

This makes it obviously why the misclassification loss has to be included since this loss would
be same if the instances of rank 4 and 5 were not switched. The complete localized ranking
loss is

Lloc,4n (π, π̂) = 2
45 + 6

10 · 0.2 = 37
225 .

The standardized localized ranking loss is then

Lloc,4,normn (π, π̂) = 75
46 ·

37
225 ≈ 0.268.

Finally, the hard ranking loss is

98 CHAPTER 5. RANKING

Lhardn (π, π̂) = 2
90 · 8 = 16

90 .

Setting K = 5, the weak ranking loss is zero and the localized ranking loss is

Lloc,5n (π, π̂) = 2
90[0 + 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1] + 5

10 · 0 = 1
15 .

The standardized localized ranking loss is

Lloc,5,normn (π, π̂) = 18
13 ·

1
15 ≈ 0.092.

The hard ranking loss is a global loss and does not change when changing K.

This nice and simple example has shown how important the selection of K can be.

So far, we presented loss functions for ranking problems that lead to algorithms in the spirit
of the ERM paradigm. On the other hand, there also exists quality measures that are popu-
lar in classification settings but which already have been transferred to the ranking setting.
Before we go into detail, we recapitulate the definition of a common quality criterion for
classification.

Definition 5.2.1. Let Y1, ..., Yn take values in {−1, 1} where the total number of positives is
n+ and the total number of negatives is n−. Let Ŷi ∈ {−1, 1}, i = 1, ..., n, be predicted values.

a) The true positive rate (TPR) and the false positive rate (FPR) are given by

TPR = 1
n+

∑
i

I(Ŷi = 1)I(Yi = 1), FPR = 1
n−

∑
i

I(Ŷi = 1)I(Yi = −1).

b) The Receiver Operation Characteristic Curve (ROC Curve) is the plot of the
true positive rate against the false positive rate.

c) The AUC is the abbreviation for the area under the ROC curve.

For theoretical aspects of the empirical AUC and its optimization, we refer to Agarwal et al.
[2005], Cortes and Mohri [2004] and Calders and Jaroszewicz [2007]. We continue presenting
the reparametrization of the ROC curve as it has been introduced in Clémençon et al. [2008]
and used in subsequent papers of Clémençon and coauthors.

Definition 5.2.2. For a scoring function s, the true positive rate and the false positive rate
are given by

5.2. RANKING BY EMPIRICAL RISK MINIMIZATION 99

TPR
s

(x) = P (s(X) ≥ x | Y = 1), FPR
s

(x) = P (s(X) ≥ x | Y = −1).

Setting

qs,α := inf{x ∈]0, 1[| FPR
s

(x) ≤ α},

the ROC curve is the plot of TPRs(qs,α) against the level α.

The ROC curve is a standard tool to validate binary classification rules. If the classification
depends on a threshold, different points of the ROC curve are generated by changing the
threshold and calculating the TPR and the FPR. Since the goal is to achieve a TPR as
high as possible for the price of a FPR as low as possible, one usually chooses the threshold
corresponding to the upper-leftmost point of the empirical ROC curve. A combined quality
measure that incorporates all points of the ROC curve is the AUC where a classification rule
is better the higher the empirical AUC is. Random guessing clearly has a theoretical AUC
of 0.5.

The following result that connects the AUC with ranking via a scoring rule was shown in
[Clémençon et al., 2008, Lemma B2].

Lemma 5.2.1. Let (X, Y), (X ′, Y ′) be independently distributed where Y , Y ′ take values in
{−1, 1} and X, X ′ are X−valued for some measurable space X . Let s : X → R be a scoring
function. Then

AUC(s) = P (s(X) ≥ s(X ′) | Y = 1, Y ′ = −1).

For the localized ranking problem, Clémençon and Vayatis [2007] provide the following lo-
calized version of the AUC.

Definition 5.2.3. The localized AUC is defined as

LocAUC(s, α) := P (s(X) > s(X ′), s(X) ≥ Q(s, 1− α) | Y = 1, Y ′ = −1).

Remark 5.2.4 (Optimal ranking rules). It has been shown in Clémençon and Achab
[2017] that IE[Y |X] is an optimal scoring rule for the hard continuous ranking problem.

Furthermore, as also pointed out in Clémençon and Achab [2017], if there is some optimal
scoring rule for the continuous ranking problem, clearly any strictly increasing transformation

100 CHAPTER 5. RANKING

of the scoring rule is also optimal.

Figure 5.2 illustrates this for a very simple example with p = 1.

Figure 5.2: The linear regression line (orange) approximates IE[Y |X] and therefore is an optimal scoring rule.
Each of the linear models corresponding to the other lines provide optimal scoring rules, too, and result in
the same ranking performance

In contrast, for p > 1, the choice of the coefficients indeed affects the ranking of the fitted
values. For large p, small changes in the coefficients and therefore in the regression hyperplane
can have significant effects. The following example demonstrates the effect for p = 10.

r e qu i r e (mvtnorm)
s e t . s e e d (144)
X← rmvnorm(10 ,mean=rep (0 ,10))
s e t . s e e d (17)
beta← rnorm (10 ,mean=0.5 , sd=2)

5.3. EXISTING ALGORITHMS FOR RANKING PROBLEMS 101

rank (X%∗%beta)

[1] 8 4 7 1 5 2 10 6 9 3

s e t . s e e d (73)
m← rnorm (10 ,mean=1, sd=0.25)
betam← beta ∗m
rank (X%∗%betam)

[1] 6 2 8 1 9 3 10 4 7 5

s e t . s e e d (37)
m2← rnorm (10 ,mean=1, sd=0.25)
betam2← beta ∗m2
rank (X%∗%betam2)

[1] 8 3 9 1 7 2 10 5 6 4

5.3 Existing algorithms for ranking problems

The existing methods to solve ranking problems make use of standard machine learning al-
gorithms like Support Vector Machines (SVM), Boosting, trees or linear regression.

First, we note that there also exist Bayes-type algorithms where a distribution on the set of
possible permutations is computed. Two prominent models are the Mallows model and the
Plackett-Luce model. The Mallows model (Mallows [1957]) is based on distances between
different permutations, in general based on Kendall’s Tau, which leads to a maximum like-
lihood approach. The Plackett-Luce model (Luce [1959], Plackett [1975]) performs a Bayes
estimation. However, we do not go into detail since the types of algorithms that we encounter
in this work are different.

In the case of bipartite ranking, the sometimes called ”plug-in approach” that estimates
the conditional probability P (Y = 1|X = x) can be realized for example by LogitBoost,
i.e., minimizing the loss

1
n

∑
i

log2(1 + exp(−2Yis(Xi))).

The resulting function s is then used as a ([0, 1]−valued) scoring function for the rank-
ing. However, the plug-in approach has disadvantages when facing high-dimensional data

102 CHAPTER 5. RANKING

and when trying to establish an approximation of the true ROC curve in certain norms as
pointed out in Clémençon and Vayatis [2008], Clémençon and Vayatis [2010].

Remark 5.3.1. Taking a closer look on this loss function, it is indeed a convex surrogate of
the misclassification loss. Concerning informativity, one just applies an algorithm that solves
a classification problem which is less informative than a ranking problem which is another
aspect why this approach may not be optimal.

One approach to solve the bipartite ranking problem is to empirically maximize the AUC.
This has been done in Rakotomamonjy [2004] and Ataman and Street [2005] by defining a
formula of Mann-Whitney-type to calculate the empirical AUC resulting in an SVM-type
ranking algorithm. A similar idea was presented in Brefeld and Scheffer [2005], providing the
SVM-type algorithm AUC-SVM.

A Boosting-type algorithm that essentially minimizes the empirical pair-wise exponential loss
1

n(n− 1)
∑∑
i<j

exp(−(Yi − Yj)(s(Xi)− s(Xj)))

for some scoring rule s is the RankBoost algorithm developed in Freund et al. [2003]. It is
shown in Rudin and Schapire [2009] that in the case of binary outcome variables, RankBoost
and the well-known classifier AdaBoost (Freund and Schapire [1997]) are equivalent under
very weak assumptions. Therefore, RankBoost can also be seen as an AUC maximizer when
concerning the bipartite ranking problem. Another algorithm that includes gradients is the
RankNet of Burges et al. [2005] that applies neural networks.

Note that there is a small mistake in Section 3.2.1 of Clémençon et al. [2013b] since the minus
sign in the exponential function is missing. But if Yi > Yj and s(Xi) > s(Xj), the sign of
the product is positive which would imply a high loss due to a positive exponent without the
minus sign.

Clémençon and coauthors provided two tree-type algorithms, TreeRank and RankOver
(Clémençon and Vayatis [2008], Clémençon and Vayatis [2010]). The idea behind the Tree-
Rank algorithm is to divide the feature space X into disjoint parts Cj and to construct a
piece-wise constant scoring function

sN(x) =
N∑
j=1

ajI(x ∈ Cj)

for a1 > ... > aN . This results in a ROC curve that is piece-wise linear with (N−1) nodes (not
counting (0, 0), (1, 1)) as shown in [Clémençon and Vayatis, 2008, Prop. 13]. The TreeRank

5.3. EXISTING ALGORITHMS FOR RANKING PROBLEMS 103

algorithm then adaptively adds nodes between all existing nodes such that the ROC curve
approximates the optimal ROC curve by splitting each region Cj in two parts. Extensions
by combining the TreeRank algorithm with bagging in a RandomForest-like sense are given
in Clémençon et al. [2009], Clémençon et al. [2013a]. The question how to prune a ranking
tree was tackled in Clémençon et al. [2011].

Similarly, the RankOver algorithm constructs a piece-wise linear approximaton of the op-
timal ROC curve by computing a piece-wise constant scoring function, too, but instead of
partitioning the feature space, it generates a partition of the ROC space.

Theoretically, these tree-type algorithms provide an advantage over the algorithms that op-
timize the AUC since they approximate the optimal ROC curve in an L∞−sense while the
competitors just optimize the ROC in an L1−sense (see [Clémençon and Vayatis, 2010, Sec.
2.2]). On the other hand, they suffer from strong assumptions since it is required that the
optimal ROC curve is known. Additionally, this optimal ROC curve has to fulfill some reg-
ularity conditions which is differentiability and concavity for the TreeRank algorithm and
twice differentiability with bounded second derivatives for the RankOver algorithm.

It is pointed out in Clémençon et al. [2013b] that ranking algorithms that intend to maxi-
mize the global AUC like RankBoost are not expected to be good candidates for the localized
ranking problem whereas TreeRank is also constructed to solve that problem.

There are some other ranking algorithms that directly follow the ERM principle. As an
extension of RankBoost, Rudin [2009] modified the exponential loss of RankBoost to the
power loss

1
n(n− 1)

∑∑
i<j

(exp((Yi − Yj)(s(Xi)− s(Xj))))p

for some p ≥ 1. This algorithm is called the p-Norm-Push. The case p = ∞ has been
studied in Rakotomamonjy [2012].

The RankingSVM algorithm (see Herbrich et al. [1999], Joachims [2002]) minimizes the
empirical Hinge-type loss

2
n(n− 1)

∑∑
i<j

[1− (Yi − Yj)(f(Xi)− f(Xj))]+ + λ||f ||2HK .

where HK is some Reproducing Kernel Hilbert Space (RKHS) defined by a kernel K (see
Schölkopf et al. [2001]).

Note that RankBoost, p-Norm-Push and RankingSVM essentially use surrogates for the hard
ranking loss. For theoretical work on surrogate losses for the bipartite ranking problem, see

104 CHAPTER 5. RANKING

Agarwal [2014].

Another approach is to try to predict the differences of pair-wise responses by the differences
of the corresponding features. This can be achieved by minimizing the least-squares-type
criterion

1
n(n− 1)

∑∑
i<j

((f(Xi)− f(Xj))− (Yi − Yj))2 + λ||f ||2Hk .

for some function f : X → R and some kernel K with corresponding RKHS HK (Pahikkala
et al. [2007]). Using the representer theorem (see e.g. Schölkopf et al. [2001]), the solution
has the form

f(X) =
N∑
i=1

aiK(X,Xi)

for some ai ∈ R. The algorithm is called RankRLS (”regularized least squares”).

For a useful overview and empirical comparison of some of these ranking algorithms, we refer
to Clémençon et al. [2013b].

The d−partite ranking problem, i.e., where the responses can take d different values, has
been theoretically studied in Clémençon et al. [2013c] and Clémençon and Robbiano [2014].

First, an extension of the AUC in the multipartite case was adapted to the concrete setting in
Clémençon et al. [2013c]. The AUC is generalized to the volume under the ROC surface
(VUS) where the ROC surface is the continuous extension of discontinuity points based on
hyperplane parts (note that the ROC surface originally was introduced in Yang and Carlin
[2000]). Clémençon and Robbiano [2015b] provide the algorithm TreeRank Tournament
which is based on RankTree and locally optimizes the ROC surface. A bagged and random-
ized version of TreeRank Tournament has been studied in Clémençon and Robbiano [2015a].

Remark 5.3.2. Note that approaches that require the computation of the ROC curve and
therefore of the AUC get infeasible in high dimensions due to the curse of dimensionality
affecting numerical quadrature.

5.4 Other ranking approaches with model selection

The LogitBoost approach already performs model selection, but as we pointed out, it is just
a plug-in approach optimizing a surrogate loss function. Pan et al. [2009] mention that it

5.4. OTHER RANKING APPROACHES WITH MODEL SELECTION 105

also has been tried to combine the RankBoost algorithm with stumps, but that this strategy
has weaknesses in their search engine context. The first work on solving a ranking problem
while explicitly concerning on sparse model selection was done by Geng et al. (Geng et al.
[2007]). They propose to assign an importance score to every single feature by computing
a ranking based on each of them and computing a measure like the MAP (mean average
precision) or NDCG (normalized discounted cumulative gain). Furthermore, a similarity
measure between the features based on Kendall’s τ is computed. Geng et al. [2007] solve
an optimization problem to maximize the importance while minimizing the similarity to get
a reduced feature set and eventually perform RankingSVM or RankNet on it. A similar
strategy is spelled out in Pan et al. [2009] where stumps are used as baselearners and where
the importance measure of [Friedman, 2001, Sec. 8] is used to find the most relevant features.

A robust and sparse ranking algorithm has been established in Sun et al. [2009], called
RSRank for binary responses. They make use of a result in Balcan et al. [2008] that allows
to reduce the binary ranking problem to weighted pair-wise classification. The goal in Sun
et al. [2009] is to directly optimize the ranking loss measured by NDCG by minimizing the
loss function ∑∑

i<j

w(Yi, Yj, c)I(Yi > Yj)c(Xi, Xj)

where c is a pair-wise classifier and w a suitably chosen importance weight. For optimization,
the indicator function is replaced by the Huber function and an l1−penalty term is added. The
minimization of the objective function is done by a truncated Gradient Boosting algorithm.

A pointed out in Tsivtsivadze and Heskes [2013], RankingSVM can also provide sparse solu-
tions but they suffer from the lack of interpretability inherited from support vector machines.
The objective function of RankingSVM is essentially l2−constrained. Therefore, Lai et al.
[2013a] replace this penalty with an l1−regularization term and solve the problem by invoking
Fenchel duality. Their algorithm is hence called FenchelRank which has been empirically
shown to be even superior to RSRank in terms of precision. An iterative gradient procedure
for this problem has been developed in Lai et al. [2013b] and shows comparable performance.
As an extension of FenchelRank, Laporte et al. [2014] tackle the same problem with non-
convex regularization to get even sparser models. They solve the problem with a so-called
majorization minimization method where the nonconvex regularization term is represented
by the difference of two convex functions. In addition, for convex regularization, they present
an approach that relies on differentiability and Lipschitz continuity of the penalty term so
that the ISTA-algorithm can be applied.

Of course, trees like the ones Clémençon and co-authors provided, also perform feature
selection.

106 CHAPTER 5. RANKING

5.5 Ranking with continuous outcomes

All the presented existing algorithms are tailored to ranking problems with discrete labels
since most of them are motivated by information retrieval or document ranking. To the best
of our knowledge, the only approach explicitly designed for ranking real-valued responses was
recently proposed by Clémençon (Clémençon and Achab [2017]).

Let w.l.o.g. Y ∈ [0, 1]. Then each subproblem

max
s

(P (s(X) > t|Y > y)− P (s(X) > t|Y < y))

for y ∈ [0, 1], i.e., s(X) given Y > y should be stochastically larger than s(X) given
Y < y, is a bipartite ranking problem, so the continuous ranking problem can be regarded as
a so-called ”continuum” of bipartite ranking problems (Clémençon and Achab [2017]).

As a suitable performance measure, they provide the area under the integrated ROC curve

IAUC(s) :=
∫ 1

0
IROC

s
(α)dα :=

∫ 1

0

∫
ROC
s,y

(α)dFy(y)dα

where ROCs,y indicates the ROC curve of scoring function s for the bipartite ranking prob-
lem corresponding to y ∈]0, 1[and where Fy is the marginal distribution of Y . Alternatively,
they make use of Kendall’s τ as a performance measure for continuous ranking.

The approach presented in Clémençon and Achab [2017] manifests itself in the tree-type
CRank algorithm that divides the input space and therefore the training data into disjoint
regions. In each step/node, the binary classification problem corresponding to the median
of the current part of the training data is formulated and solved. Then, all instances whose
predicted label was positive are delegated to the left children node, the others to the right
children node. Stopping when a predefined depth of the tree is reached, the instance of the
leftmost leaf is ranked highest and so far, so the rightmost leaf indicates the bottom instance.

Remark 5.5.1 (Interpretability). Note that single trees in general lack the properties
of stability and robustness (see for example Friedman et al. [2001]). On the other hand,
when aggregating trees like it has been done for trees that solve the bipartite ranking problem
(Clémençon et al. [2009], Clémençon et al. [2013a]), one essentially faces partial rankings
predicted by each single tree. To aggregate them, they compute a so-called consensus ranking
(see section 13.1 for more details) from these partial rankings and a median scoring rule. As
for RandomForests, it would be very hard to interpret this combined model in the sense of
quantifying the impact of a single predictor on the consensus ranking.

5.6. RANKING VS. ORDINAL REGRESSION 107

Remark 5.5.2 (High-dimensional data). Furthermore, it is not evident if the tree-type
algorithms provided by Clémençon and coauthors are designed for very high-dimensional data,
i.e., for very large p. In Clémençon et al. [2013b] where different ranking algorithms have
been applied to real data sets, the number of variables is never larger than 34. We note that
in Dhanjal and Clémençon [2014], there indeed has been analyzed high-dimensional data by
using forest-type algorithms, but with a fairly large number of observations.

5.6 Ranking vs. ordinal regression

Ordinal regression problems are indeed very closely related to ranking problems. As already
pointed out in Robbiano [2013], especially multipartite ranking problems (Clémençon et al.
[2013c]) share the main ingredient, i.e., the computation of a scoring function that should
provide pseudo-responses with a suitable ordering. However, the main difference is that the
multipartite ranking problem is already solved once the ordering of the pseudo-responses is
correct while the ordinal regression problem still needs thresholds such that a discretization
of the pseudo-responses into the d classes of the original responses is correct.

Note that due to the discretization, ordinal regression problems can also be perfectly solved
even if the rankings provided by the scoring function are not perfect. For example, consider
observations with indices i1, ..., imk that belong to class k. If for a scoring rule s we had the
predicted ordering s(Xi1) < s(Xi2) < ... < s(Ximk

) but the true ordering is different, then we
can still choose thresholds such that all mk instances that belong to class k (and no other in-
stance) are classified into this class, provided that s(Xi) /∈ [s(Xi1), s(Ximk

)] ∀i /∈ {i1, ..., imk}.
Though, as Robbiano [2013] already pointed out, the ordinal regression is based on another
loss function.

Concerning informativity, one can state that multipartite ranking problems are more infor-
mative than ordinal regression problems due to the chunking that is done in the latter ones.
But in fact, in an intermediary step, i.e., when having computed the scoring function, the
ordinal regression problem is as informative as multipartite ranking problems. This is also
true for standard logit or probit models (the two classes generally are not ordered, but when
artificially replacing the true labels by −1 and +1 where the particular assignment does not
affect the quality of the models, they can indeed be treated as ordinal regression models)
where the real-valued pseudo-responses computed by the scoring function are discretized at
the end to have again two classes.

108 CHAPTER 5. RANKING

The continuous ranking problem can be treated as a special case where no pseudo-responses
are needed since the original responses are already real-valued, but again, instead of opti-
mizing some regression loss function, the goal is actually to optimize a ranking loss function.

For further discussions on the relation of ranking and ordinal regression (also called ”ordinal
classification” and ”ordinal ranking” in the reference), see Lin [2008].

From this point of view, the three combined problems for the continuous case, i.e., weak,
hard and localized continuous ranking problems, are easy to distinguish and are all mean-
ingful. Hard bipartite and hard d−partite ranking problems are essentially optimized by the
corresponding algorithms that we listed earlier in section 5.3 and localized bipartite ranking
problems can be solved using the tree-type algorithms of Clémençon as pointed out for in-
stance in Clémençon et al. [2013b].

Clearly, these localized bipartite problems directly reflect the motivation from risk-based au-
diting or document retrieval. It has been mentioned in Clémençon and Robbiano [2015b]
that their tree-type algorithm is not able to optimize the VUS locally. To the best of our
knowledge, this has not been achieved until now. But indeed, localized d−partite ranking
problems can also be interesting in document retrieval settings where the classes represent
different degrees of relevance. Then it would be interesting for example to just recover the
correct ranking of the relevant instances, i.e., the ones from the ”best” (d− 1) classes.

As mentioned earlier, weak ranking problems can be identified with binary classification with
a mass constraint. In the case of weak bipartite ranking problems, it may sounds strange
to essentially mix up two classification paradigms, but one can think of performing binary
classification by computing a scoring function and by predicting each instance as element
of class 1 whose score exceeds some threshold, as it is done for example in logit or probit
models. One can think of choosing the threshold such that there are exactly K instances
classified into class 1 instead of optimizing the AUC or some misclassification rate.

The only combination that does not seem to be meaningful at all would be weak d−partite
ranking problems. By its inherent nature, a weak ranking problem imposes are binarity which
cannot be reasonably given for the d−partite case. Even in the document retrieval setting,
a weak d−partite ranking problem may be thought of trying to find the K most important
documents which implied that the information that is already given by the d classes would
be boiled down to essentially two classes, so this combination is not reasonable.

Chapter 6

Some properties of ranking

Note that a naïve evaluation of the hard ranking loss requires O(n2) comparisons. This will
surely become infeasible for data sets with many observations. We provide a solution so that
the number of necessary evaluations will boil down to O(n ln(n)).

In the second section, we gather some small results on properties of ranking. First, we pro-
pose an influence function for a general ranking functional by approximating the ranking by
a special generalized linear model (GLM). For a suitable link function, we will transfer the
existing methods of quantitative robustness for GLMs to ranking. Therefore, we recap re-
sults on extensions of L2−differentiability of parametric linear regression models (cf. Rieder
[1994], section 4.4) from Pupashenko [2015], Pupashenko et al. [2015] for GLMs where the
distribution of the error term does not necessarily stem from an exponential family.

6.1 Fast computation of the hard ranking loss

A key question concerning the implementation of ranking algorithms arises when the hard
ranking loss of 5.2.3, equivalently formulated for predictions Ŷi instead of a ranking rule r by

Lhardn (Y, Ŷ) = 1
n(n− 1)

∑∑
i 6=j

I((Yi − Yj)(Ŷi − Ŷj) < 0),

needs to be evaluated several times which indeed will be required later in this thesis.

The naïve way is to compute all pair-wise differences, separately for the vectors Y and Ŷ ,
by using the R−command outer. Then all cells where the signs of the differences do not
coincide are counted as one misranking, leading to the following code for the case that neither

109

110 CHAPTER 6. SOME PROPERTIES OF RANKING

Y nor Ŷ have ties:

l o s s=func t i on (y , yhat) {
m← l ength (y)
oopt← outer (y , y , f unc t i on (x , z)z−x)
ohat← outer (yhat , yhat , f unc t i on (x , y)y−x)
re turn (sum(s i gn (oopt)−sign (ohat) !=0) /m/ (m−1))

}

Unfortunately, the computation is very time-consuming for high numbers n of observations,
making this approach noncompetitive.

We take a look at the concordance measure

τ(Y, Ŷ) := 1
n(n− 1)

∑∑
i 6=j

sign((Yi − Yj)(Ŷi − Ŷj))

called Kendall’s Tau. Unlike the ranking loss which is high if there are many misrankings
and which is [0, 1]−valued, the Kendall’s Tau is high if many pairs are concordant, i.e., if the
pair-wise ranking is correct in most cases and takes values in [−1, 1].

This leads to a bijection between these two quantities if we do not face ties.

Lemma 6.1.1 (Hard ranking loss and Kendall’s Tau). Assume the vectors x and y

have the same length n and do not contain ties. Then it holds that

Lhardn (x, y) = 1− τ(x, y)
2 .

Proof. In the case of a perfect concordance, the ranking loss function is zero whereas Kendall’s
τ takes the value 1. If we produce one misranking, w.l.o.g. by swapping the largest and the
second largest entry xj1 resp. xj2 of x, the indicator function in the ranking loss jumps from
zero to 1 for (i, j) ∈ {(j1, j2), (j2, j1)}, increasing the total ranking loss by 2

n(n−1) . The same
manipulation results in the summands for the same indices in the Kendall’s τ changing from
1 to -1, decreasing it by 4

n(n−1) .

By induction, the claimed formula is valid.

2

Luckily, there exists an R−command that provides fast computation of Kendall’s τ , namely
the command cor.fk from the package pcaPP (Filzmoser et al. [2018]). The algorithm essen-
tially goes back to Knight (Knight [1966]) and relies on the idea of fast ordering algorithms.
So in fact, we first compute Kendall’s Tau using cor.fk and then, we use the bijection to

6.1. FAST COMPUTATION OF THE HARD RANKING LOSS 111

compute the hard ranking loss which results in the number of calculations necessary for the
computation of the hard ranking loss decreasing from O(n2) in the naïve implementation to
O(n ln(n)). Thus, the code for evaluating the hard ranking loss just looks like this:

r e qu i r e (pcaPP)
l o s s=func t i on (y , f) {

re turn ((1 −cor . fk (y , f)) / 2)
}

In figure 6.1, we have data sets with n observations and p regressor columns and compute
several localized ranking losses, including the hard ranking loss as limit case, for the predicted
response vector computed by simple linear models, separately for each column, w.r.t. the
original responses. This is already called ”singular step” in the title of the graphic. For more
details, see part III.

It is expected that the cost grows linearly with p which results in the concave-shaped parts
as we see in the figure. Furthermore, for different n we expect that the cost satisfies the
complexity O(n2) for the naïve computation (black) and O(n ln(n)) otherwise which does
not exactly in the figure due to the very low times for these computations.

Remark 6.1.1. By the same arguments, one can show that if either the sorted vector x or
the sorted vector y has k consecutive ties, then we get the mapping

Lhardn (x, y) = 1− τ(x, y)
2 − k(k − 1)

2n(n− 1) .

This is true since any such tie produces a zero difference in two summands, hence not affecting
the ranking loss but indeed Kendall’s τ . If a sequence of k equal entries of x or y occurs, one
gets k(k − 1) such defects. By halving, there is still a discrepance of k(k−1)

2n(n−1) which must be
subtracted to get the ranking loss.
Although the implementation of cor.fk can also handle the case of ties, we restrict ourselves
to the case without ties because finding a bijection in the case where both vectors contain ties
or where the ties are not consecutive gets much more difficult and since we are interested in
the continuous ranking problem anyways.

For the localized ranking loss 5.2.5, which includes the computation of the hard ranking loss
restricted on the estimated set of best instances B̂estK (though differently standardized), we
can use this function again. However, since K is usually small in comparison with n, the
benefit of the accelerated computation may be smaller. See also figure 6.1.

112 CHAPTER 6. SOME PROPERTIES OF RANKING

Figure 6.1: Time consumption: Naïve computation of the hard ranking loss and our computations of the
hard and some localized ranking losses, exemplary on one data set for each allocation

6.2 Quantitative robustness of ranking

In this section, we try to derive influence functions for the ranking problems that have been
introduced in the previous section.
After defining L2−differentiability of GLMs, we compute the score of the ordered logit model
and show how it can be used to get influence curves for ranking problems.

6.2.1 L2−differentiability of generalized linear regression models

In the following subsection, we try to get influence functions for ranking problems through
ordered logit models. Since we always assume L2−differentiability of the underlying model
when concerning about influence functions, we briefly recap results of Pupashenko et al. [2015]
on L2−differentiability of generalized linear model families even if the error distribution is not
part of an exponential family, for example, if the error term follows a generalized extreme
value distribution (GEVD) or a generalized Pareto distribution (GPD) as in Pupashenko
[2015]. In fact, Pupashenko et al. [2015] extended the results of Rieder that we needed in
section 4.4 to the case of generalized linear models with an arbitrary error distribution.

Suppressing the subscript, let x ∈ R1×p always be a row of the regressor matrix and let

6.2. QUANTITATIVE ROBUSTNESS OF RANKING 113

β ∈ Θ ⊂ Rp. The rest of the notation is as before in 4.4. Pupashenko et al. [2015] respected
the case that the parameter β may be partitioned into d blocks of length ph, h = 1, ..., d, and
introduced the maps

Tπ : Rp × Rp → Rd, Tπ(a, b) :=
∑

j

ah,jbh,j


h=1,...,d

,

ρπ : Rd × Rp → Rp, ρπ(c, a) := (chah,j)h=1,...,d,j=1,...,ph

Mπ : Rd×d × Rp × Rp → Rp×p, Mπ(C, a, b) := (Ch1,h2ah1,j1bh2,j2)h1,h2=1,...,d;j1,j2=1,...,ph

to elegantly describe matrix and vector multiplications with such partitions π.

Essentially, the goal is to estimate some parameter ϑ ∈ Υ ⊂ Rd. Defining the parametric
model

Q := {Qϑ | ϑ ∈ Υ} ⊂ M1(A)

and a continuously differentiable link function ` : Rd → Υ such that

ϑ = `(θ) := `(Tπ(x, β)) (6.2.1)

where in the standard case Tπ(x, β) = xβ, the parametric generalized linear regression model
is given by

P := {Pβ(dx, dy) := Q`(θ)(dy|x)F (dx) | β ∈ Θ, Qϑ ∈ Q}. (6.2.2)

By the chain rule, the score function w.r.t. β is given by

ΛPβ (x|y) = ∂β`(θ)∂ϑQϑ(y|x) = ∂θ`(θ)xΛQϑ (y)

which in the case of a block partition can be rewritten as

ΛPβ (y) = ρπ((∂θ`(θ))TΛQϑ (y), x).

Pupashenko et al. worked out conditions (see [Pupashenko, 2015, Thm. 6.1], [Pupashenko
et al., 2015, Thm. 2.3]) that are sufficient for the model (6.2.2) to be continuously L2−differen-
tiable in some β0 with L2−derivative ΛPβ using Vitali’s theorem. They guaranteed the conti-
nuity by invoking the lemma of Hájek (3.2.1) where the definition A.3.5 was used for absolute
continuity in more than one dimension in the case of a block partition structure.

We note that [Pupashenko et al., 2015, Thm. 2.6] also provide a result extending [Rieder,
1994, Thm. 2.4.2], i.e., the case of deterministic design of the regressor matrix, to the GLM
case.

Note that there is a small mistake in [Pupashenko et al., 2015, Rem 2.4] where |IPϑ0| should
be replaced by |IQϑ0 | in the first integrability condition.

114 CHAPTER 6. SOME PROPERTIES OF RANKING

6.2.2 The logit model and the ordered logit model

Binary-valued outcomes cannot be directly predicted by a linear model since the latter pro-
duces real-valued predictions. Therefore, one uses a GLM where the link function is the logit
function logit :]0, 1[→ R, resulting in the logit model

logit(q) =
(

ln(q)
ln(1− q)

)
= xβ ⇐⇒ q = expit(Xβ) = eXβ

1 + eXβ

with expit = logit−1 : R→]0, 1[and q := P (Y = 1|X).

A different situation occurs if the responses are ordinal and take w.l.o.g. values in {1, ..., d}.
Then a so-called threshold model or ordered discrete choice model is applicable (cf.
Berridge and Crouchley [2011], Fahrmeir et al. [2007], Fahrmeir and Tutz [2013]). Defining
the linear model

Y ′ = Xβ + ε (6.2.3)

for ε ∼ Fε and a pseudo-response Y ′, one defines the predicted response Ŷ by

Ŷ = r ⇐⇒ Y ′ ∈]γr−1, γr]

for threshold values −∞ =: γ0 < γ1 < ... < γd := ∞. This approach can be identified with
a binomial model when going over to predict the probabilities P (Y ≤ r) for r ∈ {1, ..., d}.
Rearranging and using the definition of the model in equation (6.2.3), it obviously holds that

P (Y ≤ r) = P (Y ′ ≤ γr) = P (ε ≤ −Xβ + γr) = Fε(γr −Xβ).

Assuming that the errors are logistically distributed, one has the ordered logit model

P (Y ≤ r|X) = exp(γr −Xβ)
1 + exp(γr −Xβ) = expit(γr −Xβ) (6.2.4)

and inverting the expit, one gets

ln
(
P (Y ≤ r|X)
P (Y > r|X)

)
= γr −Xβ.

With the error variance σ2
ε , the likelihood is

L(γ, σ2
ε |Y,X) =

∏
r

P (Y = r|X)I(Y=r) =
∏
r

[Fε(γr −Xβ)− Fε(γr−1 −Xβ)]I(Y=r).

Remark 6.2.1. By the chain rule, the score function for the logit model is given by

Λlogit
β (x, y) =

(
ΛBin(1,q)
q (y|x) exβxj

(1 + exβ)2

)p
j=1

6.2. QUANTITATIVE ROBUSTNESS OF RANKING 115

= ρπ
(
∂θ expit(θ)|θ=xβΛBin(1,q)

q (y|x), x
)
.

Again, x and y represent an arbitrary row of X resp. Y for the sake of simple notation.
Then by theorem 3.2.1, the influence curve for the logit model is directly given.

For general cases with block partition, the link function is a mapping from Rd into (maybe
a subset of) Rd and θ = Tπ(x, β) ∈ Rd. Then the score, as computed in equation (2.6) of
Pupashenko et al. [2015], is

ΛPβ (x, y) = ρπ
(
(∂θ`(θ))TΛQϑ (y|x), x

)
(6.2.5)

since the derivative ∂θ` of a d−dimensional function w.r.t. a d−dimensional variable is a
d× d−matrix.

We will use the notation of Pupashenko et al. to directly write down the estimation the
d−dimensional parameter

ϑi :=


P (Yi = 1|X)

...
P (Yi = d|X)


by an ordered logit model. Then we have


P (Yi ≤ 1|X)

...
P (Yi ≤ d|X)

 = expit ◦vec(−1)Tπ





−1
Xi,1
...

Xi,p

...
−1
Xi,1
...

Xi,p



,



γ1

β1
...
βp
...
γd

β1
...
βp





, (6.2.6)

where ◦vec denotes the component-wise ◦. We face the disadvantage that the regressor and
the parameter have changed into d(p+ 1)−dimensional vectors. Therefore, we introduce the
notation

T̃π : Rp × Rp × Rd × Rd → Rd, T̃π(Xi, β, 1d, γ) :=


γ1 −Xi,1β1 − ...−Xi,pβp

...
γd −Xi,1β1 − ...−Xi,pβp

 , (6.2.7)

where 1d denotes the vector consisting only of d ones and γ := (γr)dr=1.

116 CHAPTER 6. SOME PROPERTIES OF RANKING

We now suppress the subscript i. By (6.2.4), we see that

P (Y = r|X) = expit(γr −Xβ)− expit(γr−1 −Xβ).

In light of (6.2.7), the estimation of ϑ can be written as

ϑ =


P (Y = 1|X)

...
P (Y = d|X)

 :=


p1
...
pd

 =
(
expit ◦vecT̃π(X, β, 1d, γ)− expit ◦vecT̃π(X, β, 1d, γ̃)

)
(6.2.8)

where γ̃ := (γr)d−1
r=0.

Mimicking the score for the logit model, the r−th component of the score for the ordered
logit model, r = 1, ..., d, is then

(Λordlog
p (X, Y))r =

n∑
i=1

ρπ
(
∂θ expit(θ)|θ=γr−XiβΛBin(1,pr)

pr (Yi|Xi), Xi

)
. (6.2.9)

Remark 6.2.2. Again, by theorem 3.2.1, the influence curves can be computed using the
scores.

6.2.3 A proposal for the hard ranking problem

Although there already exist some work on influence curves for the AUC (LeDell et al. [2015]),
there are, to the best of our knowledge, no results on influence curves for the ranking problem
as stated in this work yet.

Trivially, the hard ranking task is perfectly achieved if the ordering of the instances coincides
with the ordering of the predicted values. In our ordinal regression model, we want to enforce
that

P (Yi:n = i|Xi:n) = Fε(γi −Xi:nβ)− Fε(γi−1 −Xi:nβ)

is maximized for every i, so equivalently, we try to maximize∏
i

[Fε(γi −Xi:nβ)− Fε(γi−1 −Xi:nβ)]

which coincides with the likelihood of the ordered logit model in the case that d = n and
each class i is attended only by Yi:n. Since this is just a variant of the likelihood of the

6.2. QUANTITATIVE ROBUSTNESS OF RANKING 117

ordered logit, the score of the hard ranking is computed analogously, so its i−th component,
i = 1, ..., n, is

(Λhardrank
β (X, Y))i =

n∑
i=1

ρπ
(
∂θ expit(θ)|θ=γi−Xi:nβΛBin(1,pi)

pi
(Yi:n|Xi:n), Xi:n

)
. (6.2.10)

In the case of the localized ranking problem, i would just run through B̂estK instead of
{1, ..., n} and the score for the weak ranking has to be taken into account as in equation
(5.2.5) (see also (6.2.13) below).

Again, given these scores, one can derive influence curves using theorem 3.2.1.

6.2.4 A proposal for weak ranking problems

We remind that the weak ranking problem with a pre-specified number K is solved if the set
BestK of indices corresponding to the original K best instances coincides with its predicted
counterpart B̂estK . Therefore, in the notation of ordinal regression, the goal is to achieve
Ŷi ≥ n−K + 1 for every i ∈ BestK . Using the model from the previous subsection, we can
write

P (Yi ≥ n−K + 1|Xi) = 1− Fε(γn−K+1 −Xiβ)

leading to the M-estimation

max
β

 ∏
i∈BestK

[1− Fε(γn−K+1 −Xiβ)]
 . (6.2.11)

Invoking the log-transformation, differentiating w.r.t. β yields the Z-equation

∑
i∈BestK

1
1− Fε(γn−K+1 −Xiβ)fε(γn−K+1 −Xiβ) · (−Xi) != 0, (6.2.12)

and assuming that Fε is the distribution function of the logistic distribution, we get the
(negative) weak ranking score

Λweak
β (X) =

∑
i∈BestK

1
1− exp(γn−K+1−Xiβ)

1+exp(γn−K+1−Xiβ)

exp(γn−K+1 −Xiβ)
(1 + exp(γn−K+1 −Xiβ))2Xi =

∑
i∈BestK

expit(γn−K+1 −Xiβ)Xi.
(6.2.13)

Remark 6.2.3. Of course, other choices of Fε are possible which would lead to other scores
and therefore to other influence functions. Block partitions can be handled analogously as
before.

Chapter 7

Elicitability: Comparing competing
models

We show that the hard ranking problem is both elicitable and strongly elicitable, so there
are consistent loss functions such that different models can be compared, even in the case of
ties. This is vital for determining which model had performed best.

7.1 Elicitability of ranking

Fitting different forecast models leads to the question which one or which ones was resp. were
the best, i.e., the forecaster is interested in the ranking of the models (which of course
has nothing to do with the problem of ranking instances as in this work). Two situations can
be distinguished:
i) A probabilistic forecast model, say, a density, is fitted;
ii) A point forecast is made, based on a set of observations.

Then the quality of the forecast has to be assessed once new observations are available.

The first situation requires some kind of distance between a density and point observations,
leading to the concept of proper scoring rules like the CRPS score (Gneiting and Raftery
[2007]), while the second situation needs consistent loss functions (Gneiting [2011]).

Definition 7.1.1. Let F be a family of probability distributions and let A,O be some action
resp. observation domain. Then a loss function L : A× O → [0,∞[is consistent for the

118

7.1. ELICITABILITY OF RANKING 119

statistical functional T : F → A if

IEF [L(t, Y)] ≤ IEF [L(x, Y)] (7.1.1)

for all F ∈ F , t ∈ T (F), x ∈ A. It is strictly consistent if equality holds if and only if
x ∈ T (F).

As shown in [Gneiting, 2011, Thm. 2.4], the function S(F, Y) := L(T (F), Y) is a proper
scoring rule if L is a consistent loss function. Both concepts have a common main property,
namely that predicting the true density or the true observations provides the greatest bene-
fit, encouraging the forecaster to make honest predictions (see Gneiting and Raftery [2007]).
This motivates the importance to know whether a suitable loss function exists.

Definition 7.1.2. A statistical functional T : F → A is elicitable relative to the class
F if there exists a loss function that is strictly consistent for T relative to F .

Trivially, each constant loss function is automatically consistent, so only the requirement
of strict consistency is reasonable. It can be shown that elicitable functionals have convex
level sets ([Lambert et al., 2008, Lemma 1]), but the other direction is not true since the
mode functional has convex level sets without being elicitable (Heinrich [2013]). Elicitability
attracted the attention of forecasters once Gneiting showed that the Conditional Value at
Risk is not elicitable (see [Gneiting, 2011, Thm. 3.5]). That was the starting point for the
generalization of elicitability to functionals mapping into a subset of Rk and calling them
k−elicitable if a strictly consistent loss function exists. Among others, one of the most
striking results was that the pair (VaR,CVaR) is 2−elicitable despite the Conditional Value
at Risk itself is not elicitable (Fissler et al. [2016], Frongillo and Kash [2015]).

We are actually interested in the question if ranking functionals are elicitable. We propose
the following definition.

Definition 7.1.3. Let n ∈ N, n ≥ 2 be fixed. We define the ranking functional as a
mapping T : F → Perm(1 : n) for any family F of probability distributions on the space
Yn ⊂ Rn such that for T (F) = π, it holds that

πi < πj ⇐⇒ P (Yi ≤ Yj) ≥ 0.5 (7.1.2)

for Y ∼ F .

120 CHAPTER 7. ELICITABILITY: COMPARING COMPETING MODELS

This coincides with the setting in Clémençon et al. [2008] with the small difference that we
allow Y to be discrete-valued, so the probability that some components of Y coincide is not
zero. The value T (F) of the ranking functional may be regarded as the expected ranking
w.r.t. F .

Theorem 7.1.1. Let n ∈ N, n ≥ 2 be fixed. Let A := O := Perm(1 : n) and let F be any
class of probability distributions on Yn ⊂ Rn with the restriction that P (Yi > Yj) > 0.5 for
at least one index pair (i, j) ∈ {1, ..., n} × {1, ..., n} with i 6= j. Then the ranking functional
T : F → A is elicitable relative to F .

Proof. Let n = 2. Let P (Y1 ≥ Y2) > 0.5. Then, according to definition 7.1.3, the ranking
functional takes the permutation π∗ = T (F) = (2, 1). Then invoking one summand of the
hard ranking loss Lhardn , we have

IEF [I(((T (F))1 − (T (F))2)(Y1 − Y2) < 0)]

= P (((T (F))1 − (T (F))2)(Y1 − Y2) < 0) = P (Y1 < Y2) < 0.5

and analogously,

IEF [I((π1 − π2)(Y1 − Y2) < 0)] > 0.5

for all π /∈ T (F) (which is just the permutation (1, 2)).

Using the assumption that P (Yi > Yj) 6= 0.5 for at least one pair (i, j), i 6= j, the induction
for arbitrary n is straightforward by the linearity of the expectation. So, a suitable strictly
consistent loss function has been found, therefore the elicitability property is valid.

2

Remark 7.1.1. Note that the strictly consistent loss function that leads to the elicitability
of ranking is the hard ranking loss already proposed in Clémençon et al. [2008].

Remark 7.1.2. Clearly, we think of F in the theorem as the conditional distribution of Y
given X.

Remark 7.1.3. Without the assumption in the last theorem, we cannot guarantee strict con-
sistency but only consistency. This issue may occur if all components of Y are identically
distributed. The assumption that the regressor matrix is designed fixed in the regression con-
text is hence necessary but not sufficient for elicitability of the ranking functional. However,
in real data analysis, the regressor matrix is unlikely to lead to an identical distribution of
the responses, and discussing something like an expected ranking of identically distributed
variables is also not meaningful.

7.2. STRONG ELICITABILITY OF RANKING 121

It is obvious that the finiteness of the action space beneficially affects the proof. Another
advantage will be shown in the next section.

7.2 Strong elicitability of ranking

Fissler and coauthors introduced the following definitions if the best action is not unique.

Definition 7.2.1. Let A be the action domain, O the observation domain and let F be a
class of probability distributions. Let P(A) be the power set of A.
i) The functional T : F → P(A) is weakly elicitable if there exists a loss function L :
A×O → [0,∞[such that

IEF [L(t, Y)] < IEF [L(x, Y)]

for all F ∈ F , t ∈ T (F), x ∈ A \ T (F).
ii) The functional T : F → P(A) is strongly elicitable if there exists a loss function
L : P(A)×O → [0,∞[such that

IEF [L(T (F), Y)] < IEF [L(x, Y)]

for all F ∈ F , x ∈ P(A) with x 6= T (F).

Acknowledgement: Tobias Fissler kindly delivered us the slides of the presentation from
which we learned the definition of weak and strong elicitability.

The main difference is that weak elicitability just requires that finding one best action is
possible while strong elicitability requires that the set of all best actions can be found using
the loss function, not just a subset of it.

Focusing on the ranking problem, we can face the situation of multiple best actions if ties
can occur with a probability greater than zero, for example when the responses are discrete-
valued or when we have Bootstrap samples. We propose the following theorem for strong
elicitability of ranking functionals with ties.

Theorem 7.2.1. Let A := O := Perm(1 : n) for n ≥ 2, n ∈ N be fixed. Let F be a class of
probability distributions and let the ranking functional T : F → A be elicitable relative to F
with the loss function L which takes vales in [0, 1]. Then TP : F → P(A) is strongly elicitable
relative to F .

122 CHAPTER 7. ELICITABILITY: COMPARING COMPETING MODELS

Proof. We introduce the quantity c(Y) which is the number of common entries of Y . Then
set

LP : P(A)×O → [0,∞[, LP (B, Y) := (|B| − c(Y)!)2 +
|B|∑
i=1

L(Bi, Y)

where B is the set of predicted permutations Bi ∈ A. Then strong consistency of L provides

IEF

 |B|∑
i=1

L(Bi, Y)
 > IEF

|T (F)|∑
j=1

L((T (F))j), Y)
 (7.2.1)

for any B with |B| = |T (F)|. If |B| > |T (F)|, this part of the loss function LP would already
suffice since every summand is non-negative.

In the case that |B| < |T (F)|, we clearly could find B such that the inequality (7.2.1) does
not hold. This issue is corrected by the first part. We have

argmin
|B|

(IEF [(|B| − c(Y)!)2]) = IEF [c(Y)!] = |T (F)|.

Since the expected squared difference cannot be explicitly computed without specifying F , we
establish the lower bound for the difference between these expected differences

IEF [(|B| − c(Y)!)2]− IEF [(IEF [c(Y)!]− c(Y)!)2] (7.2.2)

= |B|2−2IEF [|B|c(Y)!]+IEF [(c(Y)!)2]−IEF [IE2
F [c(Y)!]]+2IEF [c(Y)!IEF [c(Y)!]]−IEF [(c(Y)!)2]

= |B|2 − 2|B|IEF [c(Y)!] + IE2
F [c(Y)!] = (|B| − IEF [c(Y)!])2 = (|B| − |T (F)|)2 ≥ |T (F)| − |B|

for any |B| < |T (F)|.

Combining inequalities (7.2.2) and (7.2.1), we get for |B| < |T (F)| that

IEF [LP (B, Y)] ≥ IEF

 |B|∑
i=1

L(Bi, Y)
+ |T (F)| − |B|

> IEF

 |B|∑
i=1

L(Bi, Y)
+ IEF

 |T (F)|∑
i=|B|+1

L((T (F))i, Y)
 = IEF [LP (T (F), Y)]

where the second inequality is true since L is [0, 1]−valued which proves the theorem.

2

We only considered the ranking with possible ties. Maybe there exist similar situations for
which this result can be adapted.

7.2. STRONG ELICITABILITY OF RANKING 123

Remark 7.2.1. The proposed loss function highlights the necessity of the finiteness of the
cartesian product of action and observation domain. Otherwise the sum would not be mean-
ingful (besides diverging).

Remark 7.2.2. The very last step of the proof uses the fact that the hard ranking loss is
always bounded from above by 1. The cardinality penalty would not suffice if the loss function
could potentially be infinite. However, we think that loss functions on a finite set A × O

should always take finite values.

Remark 7.2.3. A major difficulty is to avoid that a subset of the best action set is expected
to be preferred over the whole best action set w.r.t. F . We only were able to correct this issue
thanks to the exact knowledge of the cardinality of the actions provided that the number c(Y)
of common entries of Y is known. We also remark that the quadratic loss invoked for the
penalty term is a strictly consistent loss function for the expectation (of the true cardinality
|T (F)| is this setting) although the strictness is not actually needed since it is superimposed
by the strictness of the loss function L.

Remark 7.2.4. We restricted ourselves to distributions on the space Yn. Clearly, in a
ranking setting with predictors, we think of conditional distributions of Y given X, but the
proof would not change.

Remark 7.2.5. Just requiring weak elicitability in the case of ties in the responses would not
reflect this issue sufficiently. A ranking rule can indeed be perfect if one of the best rankings
has been predicted, but with the requirement of strong elicitability, a ranking model has to
detect these ties implicitly by proposing all perfect rankings. With the results in this section
and in the previous section, we are ready to reasonably compare different hard ranking models
computed by competing algorithms.

Acknowledgement: Very recently, Fissler and coauthors published their results (Fissler
et al. [2019]) where the former denotation of ”weak” and ”strong” elicitability has been re-
placed by ”selective” resp. ”exhaustive” elicitability.

Chapter 8

Gradient Boosting for ranking
problems?

Since there does not yet exist a Gradient Boosting method for the continuous ranking prob-
lem, despite there are the RankBoost and the p-Norm-Push for the binary ranking problem
(Freund et al. [2003], Rudin and Schapire [2009]), we try to embed the ranking problem into
the Gradient Boosting framework of Bühlmann (Bühlmann and Hothorn [2007]).

We will see that the hard ranking loss function itself does not satisfy the required regularity
properties to make Gradient Boosting applicable. Motivated by standard surrogate losses
from classification, we try to define some kind of pair-wise surrogate losses for the hard rank-
ing loss and to construct three Gradient Boosting algorithms, each for another surrogate loss.

At the end, we provide heuristic arguments why Gradient Boosting algorithms of this type
always suffer from the pair-wise nature of the loss functions, resulting in a very poor speed,
aside from the empirically revealed fact that their ranking performance on test data is rather
poor due to other issues that arise from the choice of the surrogates.

8.1 Arising problems

As introduced in equation (5.2.3), the loss function for the hard ranking problem may be
rewritten as

1
n(n− 1)

∑∑
i 6=j

L((Yi, Yj), f), L((Yi, Yj), f) := I((Yi − Yj)(f(Xi)− f(Xj)) < 0) (8.1.1)

124

8.1. ARISING PROBLEMS 125

Figure 8.1: Some surrogates for the 0/1−loss

to mimic the notation of Bühlmann and Hothorn [2007]. Usually, one would compute the
gradient by differentiating the loss function L with respect to f . However, as pointed out in
[Bühlmann and Hothorn, 2007, Ch. 2], L has to be convex and differentiable in f which is ob-
viously not the case. So, the hard ranking loss function is not suitable for Gradient Boosting.

In such cases, e.g. when facing the 0/1−loss in a classification setting, one commonly defines
some convex surrogate loss function, for example by the exponential loss or the Hinge loss. See
figure 8.1 for (convex and non-convex) surrogate losses. Invoking the exponential surrogate
for the indicator function in the ranking setting has already been done in Freund et al. [2003],
Rudin and Schapire [2009] which led to the RankBoost algorithm and its modification, the
p-Norm-Push, which we already mentioned before. However, their algorithms (see the two
former references or the survey Clémençon et al. [2013b]) are tailored to binary classification
problems.

126 CHAPTER 8. GRADIENT BOOSTING FOR RANKING PROBLEMS?

8.2 An exponential surrogate

The question that arises from the nature of the hard ranking loss function as double sum of
indicator functions is if the approximation of the indicator function by suitable surrogates
can lead to a Gradient Boosting procedure for the hard ranking problem. In this section, we
replace the indicator functions by exponential functions. To write down the empirical risk in
the form of Bühlmann and Hothorn [2007], we define

Lexpi (Y, f) := 1
n− 1

∑
j 6=i

exp(−(Yi − Yj)(f(Xi)− f(Xj))) (8.2.1)

so that the empirical loss is the empirical mean of all Li over i.

Remark 8.2.1. It does not matter if we include the factor (n− 1)−1 in the single losses Li
or not when searching the best predictor. But it scales the gradients and it seems much more
reasonable to include the factor to mimic Bühlmann and Hothorn [2007] as best as possible.

We also made experiments where we only used the exponential term, but as anticipated, the
gradients exploded for certain surrogates, leading to a complete breakdown of the algorithm
after even one step.

The most natural way to define the required gradients (see section A.8) is to set

U exp
i := −∂fLexpi (Y, f)|f=f̂ (m) = 1

n− 1
∑
j 6=i

(Yi − Yj) exp(−(Yi − Yj)(f̂ (m)(Xi −Xj))) (8.2.2)

provided that f is a linear function, so that f(Xi−Xj) equals f(Xi)−f(Xj). This resembles
the usual Gradient Boosting, the only difference is that all components of Y and f(X) have
to enter the gradient in our case.

Due to the sum structure of the losses, even each of the Li inherits the combinatorial nature
of the ranking problem, therefore we cannot determine an exact minimizer, i.e., a suitable
baselearner which is tailored to the exponential surrogate. Algorithmically, we proceed as
in the component-wise L2−Boosting where a regression w.r.t. every single predictor, i.e., a
simple regression, is performed and the predictor that decreased the RSS most is taken. The
difference in our case is that we evaluate the exponential loss instead of the RSS and that
we have to evaluate the gradient (8.2.2) instead of the least squares residual. Additionally,
we are not able do define an offset as in other Boosting methods. The offset is an empirical
population minimizer and usually the mean or the median of the responses in the case of L2−

8.2. AN EXPONENTIAL SURROGATE 127

or L1−Boosting which does clearly not make any sense in the ranking case since a constant
always leads to a perfect zero ranking loss. Therefore, we decided to start which the original
values of Y in the first step. Just for internal reference, we call the proposed algorithm
ExpBoost.

Initialization: Data (X, Y), step size κ ∈]0, 1], number miter of iterations and
parameter vector β̂(0) = 0p+1;
Set r(0) := Y ;
for k = 1, ...,miter do

for j = 1, ..., p do
Fit the current gradients r(k−1) by a simple least squares regression model using
the predictor variable j;
Compute the exponential loss;

end
Take the variable ĵk whose simple model β̂ĵk ∈ Rp+1 provides the smallest
exponential loss;
Update the model via β̂(k) = β̂(k−1) + κβ̂ĵk ;
Compute the current gradients r(k) = (−∂fLexpi (Y, f)|f=β̂(k))ni=1 as in (8.2.2)

end
Algorithm 2: ExpBoost with component-wise linear baselearners

Experiments show that, as expected, it performs rather poor. The reason is the highly non-
robust exponential loss function which is a really bad approximant of the indicator function
for small values since in contrast to classification, its argument takes values in R instead of
{±1}. Furthermore, the function does not take a minimum in R.

Surprisingly, the algorithm can even break down after one single iteration on a moderate
data set! We also tried an expit transformation of the response values before applying the
algorithm or a further scaling of the gradients by n−1, but after some iterations, the gradients
also diverged. Evidently, the exponential loss is definitely not appropriate for the continuous
ranking problem.

Remark 8.2.2. This is no contradiction to the RankBoost algorithm since RankBoost pro-
ceeds in the same manner as AdaBoost, so the iterations compute weights assigned to the
observations (more precisely, a distribution on the pairs of the observations is updated). The
gradients are not evaluated explicitly.

128 CHAPTER 8. GRADIENT BOOSTING FOR RANKING PROBLEMS?

8.3 A Hinge surrogate

Next, we try to use the Hinge loss that at most grows linearly for decreasing values. In the
same manner as before, we propose

Lhingei (Y, f) := 1
n− 1

∑
j 6=i

max(0, 1− (Yi − Yj)(f(Xi)− f(Xj))). (8.3.1)

The gradient is given by

Uhinge
i := −∂fLhingei (Y, f)|f=f̂ (m) = 1

n− 1
∑
j 6=i

Yi − Yj, (Yi − Yj)(f̂ (m)(Xi −Xj)) < 1

0, otherwise
.

(8.3.2)
We rely on the argument of [Bühlmann and Hothorn, 2007, Ch. 3.2] for the L1−loss that the
region of nondifferentiability of the loss is just a single point that has zero probability which
indeed holds for the Hinge loss.

However, the running time of this algorithm that we refer to as HingeBoost is still very
high due to the pair-wise structure of the single gradients and losses. Compared to the
L2−Boosting with component-wise linear baselearners, it is absurdly slow.

8.4 A piece-wise linear surrogate

We propose the much tighter surrogate

Lci(Y, f) := 1
n− 1

∑
j 6=i


1, (Yi − Yj)f(Xi −Xj) < 0

1− (Yi−Yj)f(Xi−Xj)
c

, 0 ≤ (Yi − Yj)f(Xi −Xj) ≤ c

0, (Yi − Yj)f(Xi −Xj) > c

,

so we approximate the indicator function in a piece-wise linear manner, for c ∈]0, 1] (cf.
figure 8.1). The probability of the product of the differences being located at 0 or c is zero,
so the differentiability is still valid almost-everywhere. Although we violate the convexity
assumption, this loss function is still piece-wise convex.

The gradient is

U c
i = −∂fLci(Y, f)|f=f̂ (m) = 1

n− 1
∑
j 6=i

Yi − Yj
c

I((Yi − Yj)f̂ (m)(Xi −Xj) ∈]0, c[).

8.5. COULD WE SPEED IT UP? 129

Besides its very slow running time, this algorithm is completely worthless due to an astound-
ing issue. In each iteration, the algorithm selects the variable which is exactly the one whose
column ranking of the data matrix already is at most comparable with either the response
or the negative response, i.e., it selects predictor variable j0 with

j0 = argmin
j

(min(Lhardn (Y,X·,j), Lhardn (−Y,X·,j))).

The coefficient is positive or negative, depending on the fact if the column ranking resembles
the ranking of the response vector or of the negative response vector most, respectively (which
is clearly inherited from the fact that the simple regression slope estimator is a standardized
covariance between the response and the respective column in the regressor matrix). It does
not necessarily happen, but one issue that sometimes occurs is that this variable is again
chosen in the subsequent iterations, and in this case, the whole Boosting model just contains
one variable (and the intercept), so its performance on test data is likely to be very bad.
Taking a closer look on it, we clearly see that the gradients that are computed are likely to
be zero. Only in the small region]0, c[, we get a non-zero gradient. This is the reason why
the algorithm sometimes ends up in just having selected one single variable.

Remark 8.4.1 (Comparison with L2−Boosting). Maybe it looks irritating that this al-
gorithm does not perform well since L2−Boosting selects in each step the variable which is
most correlated with the current residual. If there was a column whose ranking was exactly
the same as the ranking of the residual column, L2−Boosting would clearly select this column.
But one has to keep in mind that concordance and correlation are only identical in the case of
perfect concordance or perfect discordance and that L2−Boosting and our proposed Boosting
algorithm proceed along very different gradients.

We will discuss the variable selection procedure of L2−Boosting later again in terms of cor-
relation of the predictor columns with the current residual vector (see remark 10.4.4)

8.5 Could we speed it up?

One may ask if we can accelerate the evaluation of the Hinge loss in the HingeBoost algo-
rithm benefitting from the constant part. An idea could be to find a partial ordering of the
products of the pair-wise differences. If for some product f(Xi−Xj)(Yi− Yj) the Hinge loss
is zero, then for all other products of pair-wise differences that are larger, the Hinge loss is
also zero. There exists work where such partial ordered sets, so-called ”posets”, are treated,

130 CHAPTER 8. GRADIENT BOOSTING FOR RANKING PROBLEMS?

see e.g. Daskalakis et al. [2011] and references therein, but sorting them cannot be achieved
with a lower complexity than O(n ln(n)), to the best of our knowledge.

We can deduct that there will always be a loss in performance w.r.t. the L2− or L1−Boosting
when having pair-wise loss functions. Since the algorithms are nearly identical, we only need
to concern the cost of evaluating the loss function in and evaluating the gradient at the end
of each iteration. The cost is of order O(pn) for Gradient Boosting with standard losses in
each Boosting iteration. In the way we implemented ExpBoost and HingeBoost, it is O(pn2).
Even if one could invoke fast sorting algorithms for our case, the cost would be a least of or-
derO(pn ln(n)). That does not look bad, but this would be an absolutely idealistic situation.

Assume that we have a poset P of the products of pair-wise differences as above, in an as-
cending order. In fact, the poset contains all quadruples (Xi, Xj, Yi, Yj). To benefit from the
idea, we would need to determine the element Pi0 of the poset which leads to the smallest
product of pair-wise differences that exceeds one, so we would need to find this element in a
set of cardinality

(
n
2

)
. Furthermore, the usage of a partial order in this HingeBoost setting

is only meaningful in the area in which the loss function is constant. But for the Hinge loss,
we still have to evaluate the loss for any element Pk, k < i0, of the poset.

Remark 8.5.1. Therefore, we expect that no Gradient Boosting algorithm with a pair-wise
loss function could be competitive with Gradient Boosting with standard losses in terms of
time consumption.

8.6 Conclusion

We can conclude that a Gradient Boosting with a pair-wise loss to solve the continuous rank-
ing problem is not feasible.

The first great issue is the choice of a suitable loss function. Loss functions that are too
”loose” like the exponential or the Hinge loss do not lead to acceptable ranking perfor-
mances. Experiments have revealed that the Boosting models from ExpBoost or HingeBoost
do not imply small ranking losses.

The 0/1−loss itself or a very close surrogate lead to models that are not reasonable since
only one predictor is likely to be selected.

8.6. CONCLUSION 131

Robust regular losses as for example a sign-reversed, shifted and tied arcus tangens or a sig-
moid function (see figure 8.1) are more complicated than the piece-wise linear loss (though
not even convex), so the time consumption would be even higher. Moreover, those loss
functions are also nearly flat outside a neighborhood of zero, a due to the fact the we have
real-valued and not {±1}−valued responses, the product of pair-wise differences is likely to
take values in that region, so there will be problems when trying to fit the new negative
gradients. On the other hand, we must not allow the loss function to be unbounded.

However, if we had such pair-wise loss functions, each iteration of Boosting required p times
the computation of this loss function that needs O(n2) operations, and at the end, the eval-
uation of the pair-wise gradient whose computation time is also of order O(n2) has to be
performed. This indeed is the second great issue of Gradient Boosting with pair-wise losses.
The desirable case to have a data set with many observations turns out to be clearly disad-
vantageous for the running time.

Even some sort of subgradient descent (see e.g. Shor [2012]) is not possible due to the non-
convexity of the ranking losses.

These issues motivate us to solve the following problem:

Is there another, more efficient way to find a Gradient Boosting procedure that
solves an approximated problem tailored to the ranking problem?

Part III

The row measure and the column
measure on a data matrix

132

133

134

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

135

In this conceptual part, we formalize resampling and model selection strategies in the lan-
guage of measures.

We identify resampling procedures that essentially assign weights to each row of a data matrix
with the concept of a ”row measure”. Based on this definition, we define a similar measure
which we refer to as ”column measure” to describe variable selection, i.e., column selection,
w.r.t. some loss function L as a realization of a such a measure.

Since the true column measure w.r.t. some loss function is not known, we will make key as-
sumptions for the rest of the thesis on its nature and of approximating properties of suitable
model selection algorithms.

The column measure defines a whole framework in which all learning procedures that some-
how invoke columns of a data matrix can be embedded. This framework can be extended to
the case of time-dependent column measures. Moreover, we connect k−Step estimators with
the empirical column measure and define a new estimator, the Expected k−Step.

Another key assumption that real applications directly motivate is that true column mea-
sures for different loss functions are not identical. This shows that a simple rejection sampling
strategy where optimization of a complicated loss function L̃ should be replaced by the op-
timization of a simple loss function in the sense of comparing different solutions by their
performance w.r.t. L̃ is not recommended and potentially leads to mis-specified models. In
fact, it becomes inevitable to perform some kind of rejection step already during the Boosting
algorithm.

We close this part with an extension of Gradient Boosting to cases where either the gra-
dients are computationally very intensive or where they do not even exist. We introduce
a ”gradient-free Gradient Boosting” algorithm which we call SingBoost which is a first ap-
proach to combine L2−Boosting with rejection sampling w.r.t. L̃, respecting possible singular
parts. We can show that under a Corr-min condition that ensures that each chosen variable is
sufficiently correlated with the current residual, SingBoost enjoys estimation and prediction
consistency properties.

Further extensions of this algorithm concerning stable model selection, the computation of
final coefficients w.r.t. a stable model and especially approaches to approximate the column
measure w.r.t. L̃ are discussed in the next part.

136

Identification as expecta-
tion w.r.t. some measure

Binary option pricing model Regularized M-estimator

ALE
General option
pricing model

Ensemble/aggregation models

Resampling strategies

Row measure ζ

(Sparse) model selection

Importance for
each predictor

Theoretical column
measure ν(L) w.r.t. L

Empirical column measure ν̂(L)

Assumption: ν̂(L) → ν(L)

Expected k−Step

Assumption:
ν(L) 6= ν(L̃) ∀L 6= L̃

Singular partsSimple rejection sampling

Column measure induced
by an initial row measure

SingBoost singboost implementation

Coefficient paths

Estimation consistency

Prediction consistency

Risk-neutral valuation

Girsanov Riesz

L2−Boosting

Chapter 9

The row measure and the column
measure

We already have seen that suitable model selection is a crucial concept in machine learning.
Regardless of the regularization procedure, the final model is always based on a ”hard” de-
cision whether a certain variable enters it or not. One may ask if there is any possibility to
loose these constraints. This rather conceptual part is organized as follows.

After proving a theoretical result that identifies regularized M-estimation with integration of
the regularized score function Zλ

n w.r.t some vector measure, we describe a simple rejection
sampling strategy and point out the difficulties that arise when trying to apply Gradient
Boosting to ranking problems in the spirit of such a simple rejection sampling.

We see that aggregation procedures that are based on subsampled or bootstrapped data es-
sentially depend on some row measure through the selected samples. This can be identified
with usual weights that are given to rows when resampling. The question whether a similar
concept may be thought of for the columns leads to the definition of a measure that indicates
the relevance of each predictor variable which we will call ”column measure”.

We will identify all existing learning procedures which incorporate columns of a data matrix,
including Online Learning algorithms, as limiting case of our column measure framework and
restate some popular model selection strategies in the language of the column measure.

The main theoretical contribution will be the introduction of the ”Expected One-Step esti-
mator” which is proven to be a natural aggregated form of usual One-Step estimators when
fitting models invoking an empirical column measure.

137

138 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

9.1 The induction of randomness: Option pricing with the binary
model

Model selection is a crucial concept in this thesis. However, model selection is done by opti-
mization and hence there is no randomness. But at the second glance, we can indeed treat the
model selection afterwards as it had been randomly, especially in Boosting models. This will
be discussed in the sequel. For now, we recapitulate the binary option pricing model where
the stock movement and therefore the fair option price can also be written as an expectation
w.r.t. some suitable measure to illustrate this principle.

Consider the well-known one-period binary model for the determination of a fair option price.
One has the current stock price S0 and assumes that the price can either rise to Su or decrease
to Sd in the next time step. One strategy is to buy x stocks and to save an amount of y, where
the other strategy is to buy a call option on the respective stock. Since there should not be
any arbitrage opportunity, the call price C0 has to be determined to be ”fair”, i.e., the payoff
after the first period has to be the same for both strategies, regardless in which direction the
stock price will move. Denoting the value of the call by Vu resp. Vd, the equations

xSu + y = Vu, xSd + y = Vd

must hold. Solving this system, one gets

x = Vu − Vd
Su − Sd

, y = SuVd − SdVu
Su − Sd

.

Since the first strategy requires an amount of xS0 + y of money, the fair call price C0 must
equal this quantity. Inserting the solutions for x and y, one gets

C0 = Vu(S0 − Sd) + Vd(Su − S0)
Su − Sd

.

But when defining

q := S0 − Sd
Su − Sd

,

the call price C0 can be rewritten as the expectation IEQ[V] w.r.t. the Bernoulli measure Q
corresponding to q, where V is the random variable modelling the value of the call. For fur-
ther details, see any reference on financial mathematics or option pricing, e.g. Björk [2009].

Much more sophisticated techniques concerning a risk-neutral measure invoke the Girsanov
theorem ([Björk, 2009, Thm. 11.3]) that allows a change of measure from the real to the risk-
neutral measure by a Radon-Nikodym derivative. Special cases arise in incomplete markets
where the derivative is irreplicable by other underlyings. Standard examples are weather or
catastrophy indices. To compute the price of those objects, Girsanov’s or related theorems

9.2. A SIMPLE OBSERVATION 139

are applied to derive a risk-neutral measure (see e.g. Alexandridis and Zapranis [2013], Här-
dle et al. [2012], Cabrera et al. [2013]).

Why do we refer to option pricing in this thesis? The key idea, namely to identify some
quantity as an expectation value w.r.t. a certain measure, will be applied when performing
model selection with Boosting-type algorithms, leading to a measure on the columns of the
regressor matrix.

9.2 A simple observation

The prediction step in a linear regression model is simply

Ŷ = Xβ̂n

for the estimated parameter β̂n. Assume that we have an asymptotically linear estimator
(3.2.4). Then it holds that

Ŷ = Xβ̂n + 1
n

∑
i

Xψβ̂n(Xi) (9.2.1)

with influence curve ψβ̂n w.r.t. the model corresponding to β̂n. For the size n of the training
data tending to infinity, the prediction asymptotically tends to

Ŷ = Xβ̂n +
∫
X
xψβ̂n(x)dFX(x)

where the distribution from which the predictors arise is denoted by FX as in the previous
parts. So, taking a closer look on this expression, the prediction reveals itself to be essentially
an expectation value.

In the following subsection, we present a result that goes into a different direction by using
a Riesz representation theorem.

9.3 A Riesz representation result

We now try to apply an appropriate Riesz representation theorem to identify the regular-
ized M- and Z-functionals from section 4.4 with certain vector measures. An absolutely
necessary requirement for all Riesz-type theorems is the linearity of the functional. In fact,
asymptotically linear M-functionals are not linear themselves due to the summand θ0, but

140 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

the ”centered” or ”shifted” version Ť := T − θ0 is linear as the following theorem shows.

Lemma 9.3.1. Let Θ be a normed real vector space, let T : Cp(Θ)→ Θ and define

Z := {Zn((X1, Y1), ..., (Xn, Yn), ·) | n ∈ N, (X1, Y1), ..., (Xn, Yn) i.id.∼ F}.

Let Sn = T ◦ Zn be an asymptotically linear (regularized) M-estimator. Then Ť := T − θ0 is
linear on the restriction of Cp(Θ) on the set Z for fixed ϕ : Rp ×R×Θ→ Rp and Zn in the
sense of (4.3.1).

Proof. The asymptotic linear expansion of Ť restricted on Z is given by

Ť (Zn) = 1
n

n∑
i=1

ψθ0(Xi, Yi) + oPn
θ0

(n−1/2)

for any Zn ∈ Z. Additionally, by restriction on Z, we ensure that the limiting function
of each element of this family for n tending to infinity equals η = IEF [ϕ((X, Y), ·)], so the
optimal parameter θ0 = Tη and therefore the shifting does not change over functions in Z.
Then the equation Ť (af + bg) = aŤ f + bŤ g is true for any f, g ∈ Z and a, b ∈ R since the
ψθ0 is an influence curve, so in fact a special Gâteaux derivative which itself is just a special
R−derivative. By definition 3.1.1, the map dRT : Cp(Θ) → Θ is linear in the direction of
the derivation, hence Ť is linear since the o−classes are of course linear.

2

The restriction on the family of the empirical counterparts Zn of η for a fixed score ϕ is no
problem since we want to find the measure corresponding to the regularized risk correspond-
ing to a certain structural risk minimization problem, so combining different loss or penalty
functions would not be reasonable for our purposes.

Remark 9.3.1. We mention that in addition to the vital linearity, one-dimensional Riesz
representation theorems sometimes require positivity (definition A.5.1) or boundedness of the
functional.

Even for functionals that are not positive, there exist results by invoking a minimal decompo-
sition (”Minimalzerlegung”, see [Elstrodt, 2006, Satz 2.25]) of the functional that corresponds
to a Jordan decomposition of the related signed measure (definition A.3.1). We do not need
this positivity for our work, but in the case of asymptotically linear estimators, one could
always separately handle the positive and negative parts of the influence curves.

Boundedness is not required for this work, too, but since we restrict ourselves to compacts
Θ ⊂⊂ Rp, the boundedness of T resp. Ť mapping onto Θ is always valid.

9.3. A RIESZ REPRESENTATION RESULT 141

The main assertion of this subsection is the following theorem.

Theorem 9.3.1. With the notation as before, let Zλ be the analogue to Z from lemma 9.3.1
where a fixed penalty term Jλ : Θ → R is invoked with L 6≡ 0 6≡ J . Let Sλn = T ◦ Zλ

n be
an asymptotically linear regularized M-estimator for Zλ

n ∈ Zλ. Then there exists a unique,
weakly regular set function µ : IBp∩Θ→ Cf (Rp,Rp) (see also definitions A.3.2, A.3.4 A.4.3)
with compact support such that

Sλn − θ0 = Ť (Zλ
n) = T (Zλ

n)− θ0 =
∫

Θ
Zλ
ndµ =

∫
Θ

[
1
n

n∑
i=1

ϕ(Xi, Yi, θ) + J ′λ(θ)
]
dµ (9.3.1)

for any Zλ
n ∈ Zλ.

Proof. Trivially, Z := Θ is a locally compact Hausdorff space (since it is non-empty by
assumption (A1), see definition A.4.1). Then Z is an S-space (see e.g. [Reiter, 1972, Ex.
1.2+Thm. 2.1]). W.l.o.g., we set E := F := Rp, so E and F are Banach spaces.

The shifted functional Ť : C(Z,E)→ F is linear on Zλ by lemma 9.3.1 since it corresponds
to an asymptotically linear regularized M-estimator. Moreover, Θ is compact, hence Ť is
bounded (see also remark 9.3.1), so ||Ť f ||F < ∞ for any f ∈ Zλ. Thus, there exists a con-
stant M > 0 and a compact K ⊂⊂ E providing ||Ť f ||F ≤M ||f ||K for any f ∈ Zλ. Grace to
the correspondence of the family Zλ to a penalized loss function, we conclude that 0 /∈ Zλ,
otherwise the sum of loss and penalty would have to be perfectly flat, so by the assumption
that J(0) = L(0) and the non-negativity, they would both equal zero everywhere which def-
initely does not make sense and has been excluded by assumption. Hence, Ť is continuous
with respect to the compact-open topology on C(Z,E) (see definition A.4.2).

Hence, theorem A.5.2 provides such a representing set function µ : IBp → Cf (E,F ′′). Since
the dimension p is finite, the space Rp is reflexive (see e.g. [Werner, 2006, Ch. III.3]), so
F ′′ = F = Rp and the theorem is proven.

2

Remark 9.3.2. We have seen in the proof of the last theorem that the zero function could be
an issue. We argued that this case does not make sense. Alternatively, one could define that
the M-estimator for an empirical Z-function Zn ≡ 0 provides a coefficient vector that only
contains zeroes itself. Then the continuity is still valid.

Theorem 9.3.1 theoretically replaces an optimization step by an integration step over the
whole parameter space. Nicely, the integrand is just the empirical regularized Z-function but

142 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

unfortunately, we cannot explicitly get the representing measure µ which differs for different
function classes Zλ, i.e., for different losses and penalties. But, the heuristic approaches in
this subsection motivate that an ALE can indeed be identified with an expectation w.r.t. a
certain measure.

In the subsequent sections, we will provide another measure which is directly connected to
model selection and which provides a framework for all existing model selection techniques.

9.4 Rejection sampling

Consider the easiest kind of a rejection sampling situation: One has a density f which is
known and which has a bounded support, but drawing samples according to it is difficult. If
supx∈supp(f)(f(x)) = M <∞, then one can draw samples x and u from X ∼ U(supp(f)) and
U ∼ U([0,M]). The realization x is accepted if u ≤ f(x), otherwise the sample is rejected.
Since the area under f has the size 1, the acceptance rate, i.e., the expected rate of accepted
realizations, is obviously (M | supp(f)|)−1.

A more sophisticated strategy to increase the acceptance rate, especially if the density f is
highly non-uniform, is to find a suitable density g with supp(g) ⊃ supp(f) and from whose
cumulative distribution function one can easily draw samples. If again supx∈supp(f)(f(x)) <
∞, then there exists c > 1 such that f(x) ≤ cg(x) for all x ∈ supp(f). In fact, f is dominated
by cg. The rejection sampling strategy manifests itself in sampling a pair (z, v) where z is a
realization of Z ∼ U([0, 1]) and v is a realization of V ∼ G with the cumulative distribution
function G corresponding to g. The realization x is accepted if

z ≤ f(v)
cg(v) .

The acceptance rate in this case is c−1.

Remark 9.4.1. Note that in both cases, although we do not directly sample according to it,
the (complicated) density f at least has to be evaluated.

Example 9.4.1 (Best Subset Selection). Certain variable selection procedures may also
be identified with a rejection sampling. The naïve brute-force best subset selection (see p.e.
Friedman et al. [2001]) indeed proposes all 2p possible subsets of predictors and chooses the
best one by evaluating a complexity-penalized goodness function like the Akaike Information
Criterion or the Bayes Information Criterion. Therefore, from another point of view, the

9.4. REJECTION SAMPLING 143

best subset selection can be seen as a rejection sampling with deterministic acceptance ratio
2−p which is very poor.

Inspired by this reasoning, a naïve rejection sampling strategy to solve the hard continuous
ranking problem can be described by the following algorithm:

Initialization: Data D, step size κ ∈]0, 1], number miter of iterations, number B of
subsamples, size ntrain of the training sets;
for b = 1, ..., B do

Draw a subsample D(b,train) of size ntrain from the data. The non-selected rows
form the training set D(b,test);
Perform L2−Boosting with parameters miter and κ on D(b,train);
Evaluate the model on D(b,test) by computing the hard ranking loss as given in
(5.2.3);

end
Take the model whose empirical ranking loss was minimal;

Algorithm 3: A naïve rejection sampling strategy for the hard ranking problem

Remark 9.4.2. By replacing the hard ranking loss function by either the weak or the lo-
calized ranking loss function, one would get a similar strategy for solving them relying on
L2−Boosting. In fact, any loss function L̃ would be allowed for evaluation. Obviously, the
acceptance rate is B−1.

Remark 9.4.3. Obviously, one can also invoke a Stability Selection and take the model whose
out-of-sample ranking loss based on a stable predictor set is minimal.

Remark 9.4.4. Of course, this method is trivial and leads to justified criticism. The ranking
loss itself is not optimized in any sense and it is hard to decide whether the best L2−Boosting
solution is ”near” to the optimal linear model that really would minimize the ranking loss.
The only aspect that encourages this strategy is that the regression function IE[Y |X = x]
that is approximated by L2−Boosting has been shown to be an optimal scoring rule for the
continuous ranking problem ([Clémençon and Achab, 2017, Prop. 1]).

Remark 9.4.5. One aspect that we want to highlight is that subsampling (and also Boot-
strapping) of rows of a data set in combination with a model selection procedure essentially
randomizes column selection to some extent. More precisely, the immanent random-
ness of sampling rows is transferred to the selection of columns through the model selection
algorithm.

144 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

9.5 The row measure

When sampling rows of data sets, there exists a vast variety of sampling procedures, for
example when up- or downsampling in imbalanced data sets (for a survey, see e.g. More
[2016]). This can be identified with some kind of row measure that is sampled from.

Definition 9.5.1. Suppose we have n observations X1, ..., Xn ∈ X where X is some space.
W.l.o.g., we think of X := (X1, ..., Xn) as an (n× 1)−dimensional column vector or, in the
case of multivariate observations, as matrix with n rows. Then we define the row measure
as the map

ζ : ({1, ..., n},P({1, ..., n}))→ ([0, 1], IB ∩ [0, 1]),

ζ : {i} 7→ ζ({i}) =: ζi ∈ [0, 1] ∀i ∈ {1, ..., n}

which assigns a weight to each row.

In other words, special sampling techniques replace the uniform distribution on the row in-
dices, i.e., the uniform row measure to some other measure which is tailored to those data
sets.

Example 9.5.1. For example, imbalanced data, i.e., classification data where the relative
class occurences in the training data are far away from being considered as being equal, lead to
the problem of giving too low attention to the classes which are underrepresented. Therefore,
one considers up- and downsampling approaches where one takes large Bootstrap samples from
the underrepresented classes resp. only takes subsamples from the over-represented classes in
order to force nearly equal relative frequencies. In each class, one may still perform sampling
from a uniform row measure, but from the view of the whole data, the resulting complete
resample can be seen as a realization from a non-uniform row measure. More sophisticated
approaches like over-sampling from the underrepresented classes may also be identified with
some empirical row measure, fitted implicitly by learning algorithms, see SMOTE (Chawla
et al. [2002]) and extensions (Elrahman and Abraham [2013] and references therein).

Example 9.5.2. A natural algorithm based on non-uniform row measures is the IRWLS
algorithm which is well-known for fitting generalized linear models. Furthermore, the IRWLS
algorithm is used to fit robust M- and S-estimators (see Maronna et al. [2006]) whereas for
example a similar strategy, an iteratively reweighted Ridge regression algorithm, is used for
performing robust Ridge regression based on an MM-estimator (Maronna [2011], originally
introduced in Yohai et al. [1987]).

9.6. THE DEFINITION OF A COLUMN MEASURE 145

Example 9.5.3. A combination of both concepts of interpreting the row measure, i.e., as
sampling weights or as fitting weights, manifests itself in fast and robust bootstrap (FRB),
cf. Salibián-Barrera et al. [2002] and Salibián-Barrera et al. [2008]. The idea behind this
algorithm is to avoid the expensive computation of robust estimators, therefore the estimators
are being updated iteratively according to robust weights.

Example 9.5.4. Since the coefficients computed by support vector machines (Vapnik [1998])
only depend on the support vectors, one can interpret the selection of these support vectors
also as a {0, 1}−valued empirical row measure.

Remark 9.5.1. Note that the row measures that we mentioned in these examples are data-
based, therefore we need to interpret them as (robust) empirical row measures whereas
the uniform row measure can be regarded as a prior (non-empirical, though depending clearly
on n) row measure ζ init.

This can be translated to a similar concept for the columns of a data matrix, although far
less intuitive. We try to investigate whether it is possible to develop similar strategies when
sampling columns.

9.6 The definition of a column measure

Definition 9.6.1. Suppose we have a data set D := (X, Y) ∈ Rn×(p+1) and a loss function
L : (Y×Y)→ R≥0 that should be minimized empirically. Then the column measure w.r.t.
L is defined as the map

ν(L) : ({1, ..., p},P({1, ..., p}))→ ([0, p],B ∩ [0, p]),

ν(L) : {j} 7→ ν(L)({j}) =: ν(L)
j ∈ [0, 1] ∀j ∈ {1, ..., p}

and assigns an importance to each predictor.

Remark 9.6.1. Note that the column measure is not a probability measure. However, for
each singleton {j} ∈ {1, ..., p}, the quantity may be seen as a probability for the corresponding
predictor to be chosen. Of course, in the case that p → ∞, we do no longer have a finite
measure but still a sigma-finite measure.

Remark 9.6.2. We used this definition primarily because of the easy interpretation that the
value assigned to each singleton can be interpreted as a probability. For theoretical purposes,

146 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

it may be handy to normalize the column measure to get a probability measure for finite p.
Thus, one would just divide each ν(L)({j}) by ν(L)({1, ..., p}). A third variant would map the
index set {1, ..., p} into the p−dimensional hypercube [0, 1]p, but we do not see any advantages
of this vector-wise definition over the proposed one.

Remark 9.6.3. By invoking the superscript on the column measure, we would like to empha-
size that the column measure may depend on the loss function. This will be further discussed
in the subsequent chapters. In fact, the column measure clearly depends on the data set itself,
but since it only makes sense to compare different empirical column measures for the same
data set but for different loss functions, we do not include the data set in the notation. The
superscript will be suppressed if we concern about a column measure w.r.t. some loss function
which is not further specified. Additionally, we suppress the dependence of empirical column
measures on the number n of training samples if it is not explicitly required.

Definition 9.6.2. We call the column measure ν sparse if ν({j}) > 0 for only a few
j = 1, ..., p.

Of course, we do not know the true column measure ν for any loss function. But we will
make the following assumption throughout this thesis.

Assumption 9.6.1. Let L be a loss function as before and let ν̂(L)
n (with ν̂(L)

n,j := ν̂(L)
n ({j}))

be the empirical column measure that has been computed by a variable selection consistent,
L−adapted learning procedure. Then we assume that

ν̂(L)
n

w−→ ν(L).

Remark 9.6.4 (Weak convergence). Note that by the Portmanteau theorem (see e.g.
[Elstrodt, 2006, Thm. 4.10]), weak convergence stated in 9.6.1 is equivalent to the condition

ν̂(B) −→ ν(B)

for all ν−continuity sets B (see definition A.3.6). Therefore, when concerning about column
selection, we can think of the simpler condition

ν̂
(L)
n,j

n→∞−→ ν
(L)
j ∀j ∈ {1, ..., p}.

Remark 9.6.5. Assumption 9.6.1 is no contradiction to variable selection consistency since
this property only means that the true model is chosen asymptotically. This has to be under-
stood in the language of column measures that asymptotically, we have

ν̂
(L)
n,j −→ 0 ∀j /∈ S0

ν̂
(L)
n,j −→ c

(L)
j > 0 ∀j ∈ S0

(9.6.1)

for n→∞.

9.7. THE COLUMN MEASURE FRAMEWORK 147

Remark 9.6.6. By the assumption of weak convergence in 9.6.1, we potentially could extend
the definition of column measures on subsets of N to ”column measures” on subsets of R or
other uncountable sets.

For instance, assume that we had time-dependent measurements where the time index t can
be treated as element of the uncountable interval [0, T] for some T ∈ R>0 and the goal is to
represent this sequence of measurements by a sparser sequence. Then we essentially had to
work with ”column measures” on R.

9.7 The column measure framework

All classical existing data analysis methods where columns of a data matrix play a role can
be identified as limit cases of the column measure framework. One can also define the column
measure for these methods, always leading to an empirical column measure ν̂ taking values
in {0, 1} instead of [0, 1] in each component.

Example 9.7.1. Non-sparse models like ordinary linear regression simply correspond to
ν̂({j}) = 1 ∀j ∈ {1, ..., p}.

Example 9.7.2. Non-aggregated variable selection procedures like the Lasso, SVMs with vari-
able selection (e.g. Zhu et al. [2004], Wang et al. [2006], Zhang et al. [2016]) or l1−penalized
maximum likelihood methods (cf. Park and Hastie [2007]) result in a concrete predictor set,
i.e., all columns that are not contained in it are ignored. The column measure is zero for the
ignored columns, 1 otherwise.

Example 9.7.3. Since the definition of the column measure does not require the existence
of a response column, clustering algorithms also fall into this framework. Classical cluster-
ing algorithms like k−means again provide the column measure ν̂({j}) = 1 ∀j ∈ {1, ..., p}
whereas the column measure given by clustering methods with variable selection (see Witten
and Tibshirani [2010] and references therein) again is {0, 1}−valued.

The identification of a predicted set of variables with an empirical column measure is not
restricted to non-ensemble methods like in the examples above. Stability Selection with Lasso
models can be directly embedded into the column measure framework. Let Lλ := L+ Jλ be
the penalized loss function used in algorithm 4.

148 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

In the same manner, the selection frequencies of a Boosting algorithm are given and of course,
Stability Selection with Boosting as an ensemble (of Boosting models) of ensembles (of weak
learners) is also part of the column measure framework. For completeness, we express the
Stability Selection with Boosting proposed by Hofner (Hofner et al. [2015]) in terms of col-
umn measures.

Initialization: Data D, number B of subsamples, row measure ζ init, size ntrain < n

of the subsamples, discretization Λ∗ of Λ, threshold πthr;
for b = 1, ..., B do

Get a subsample D(b,train) of size ntrain from the data according to ζ init;
for λ ∈ Λ∗ do

Fit a Lasso model with loss function Lλ and get the set S(b)
Lλ
;

Get the raw column measure (ν̂(Lλ))(b) = (I(j ∈ ŜL2))pj=1;
end

end
Get the averaged column measure

ν̂(Lλ) =
(

1
B

∑
b

(ν̂(Lλ)
j)(b)

)p
j=1

Get the stable column measure

(ν̂(Lλ))stab = (I(max
λ∈Λ∗

(ν̂Lλj) ≥ πthr))pj=1

Algorithm 4: Lasso Stability Selection in the language of the column measure

Initialization: Data D, number B of subsamples, row measure ζ init, step size
κ ∈]0, 1], size ntrain < n of the subsamples, number q, threshold πthr ;
for b = 1, ..., B do

Get a subsample D(b,train) of size ntrain from the data according to ζ init ;
Fit a Boosting model with early stopping with learning rate κ once q variables
with indices j(b)

1 < ... < j(b)
q are chosen. Get the raw column measure

(ν̂(L))(b) = (I(j ∈ {j(b)
1 , ..., j(b)

q }))
p
j=1

end
Get the averaged column measure

ν̂(L) =
(

1
B

∑
b

(ν̂(L)
j)(b)

)p
j=1

Get the stable column measure

(ν̂(L))stab = (I(ν̂(L)
j ≥ πthr))pj=1

Algorithm 5: Boosting Stability Selection in the language of the column measure

9.7. THE COLUMN MEASURE FRAMEWORK 149

Remark 9.7.1. Per default, the initial row measure ζ init is the uniform measure on {1, ..., n},
but this can be altered in stabs.

Remark 9.7.2 (Convergence of column measures?). Asymptotic results on variable se-
lection algorithms are often spelled out in terms of the screening property and the variable
selection property, see definition 2.3.1.

Additionally, Meinshausen and Bühlmann [2010] and Hofner et al. [2015], among others,
provide results where type I error control, that is, where the control of the probability that a
variable with low selection probability is included in the stable predictor set, is possible.

Note that these achievements refer to the ”hard decision case” where variables either en-
ter or do not enter the final model. The situation here is different and it remains unclear
if one could provide results to show weak convergence of the empirical to the real column
measure for B → ∞. Since the measure is discrete, this would be equivalent to show that
ν̂(L)({j})→ ν(L)({j}) for every j ∈ {1, ..., p}.

However, treating the appearance of each single variable in the final model as a Bernoulli
random variable, it is the most natural way to estimate the selection probability by computing
the relative number of occurences as in algorithms 4 and 5.

Let us come back to the question how row measures and column measures are related. As we
have seen, empirical column measures that are able to assign values to singletons in
the whole interval [0, 1] can only be computed by aggregation of different models.
If these different models were fitted on different subsamples or Bootstrap samples of the
data, then we actually induced an empirical column measure in the sense of the following
definition.

Definition 9.7.1. Let D := (X, Y) ∈ Rn×(p+1) be a data matrix and let ζ be a row measure
on the row indices. Assume that a fitting procedure that optimizes some empirical loss cor-
responding to a loss function L : Y × Y → R≥0 is given. Let B be the number of samples
drawn from ζ. Let (ν̂(L))(b) be the empirical column measure fitted on the data set reduced
to the rows given by the b−th realization of ζ. Then we call the resulting empirical column
measure ν̂(L)(ζ) with

ν̂(L)(ζ)({j}) := 1
B

∑
b

(ν̂(L))(b)({j})

the empirical column measure induced by the row measure ζ.

Remark 9.7.3. In fact, aggregating over all b autonomizes against the concrete realizations

150 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

of the row measure ζ. With a little abuse of notation, one can see this empirical column
measure induced by ζ as empirical expectation of ν̂(L) w.r.t. ζ.

Remark 9.7.4. Without calling them measures, Meinshausen and Bühlmann [2010] implic-
itly spoke of induced column measures when emphasizing that for a given penalty parameter
λ, the set of selected predictors w.r.t. λ also depends on the subsample.

Note that not all variable selection strategies produce such induced empirical column mea-
sures. There already exist strategies that perform sampling from a column measure
without anyone ever had it called like this, to the best of our knowledge.

Example 9.7.4. In component-wise Boosting, each iteration performs sampling from p col-
umn measures on the set {1, ..., p}, more precisely, column measure νj assigns mass 1 to
column j and mass zero to each other column, so ”sampling” once from each of them ensures
that each column will be selected once.

Example 9.7.5. Again, naïve best subset selection can be seen as sampling from generalized
column measures on the power set P({1, ..., p}) in the same manner as in the example
above.

Remark 9.7.5. Note that the column measures that are sampled from in the two examples
above are given in advance without further knowledge. They have to be treated as initial or
prior column measures νinit.

Example 9.7.6. In mixed models, we have again a regressor matrix X of fixed effects but
also a matrix Z of random effects. The linear mixed model is given by

Y = Xβ + Zγ + ε

where Z ∈ Rn×q, γ ∈ Rq and where all εi are independent and also independent from
the γi. Then a GLMM-Lasso (Schelldorfer et al. [2014]) provides simultaneously an em-
pirical {0, 1}−valued column measure ν̂(fixed) for the fixed effects as well as an empirical
{0, 1}−valued column measure ν̂(rand) for the random effects. Similarly, Boosting for GLMMs
(bGLMM, see Tutz and Groll [2010]) provides empirical column measures ν̂(fixed), ν̂(rand)

which generally can take more different values in [0, 1] than just zero and one.

Remark 9.7.6. There also exist algorithms that combine sampling from column measures
and row measures. We postpone them to parts IV and V.

So, the key question that arises is the following:

Can we find strategies to sample from reasonable empirical column measures
to mirror sophisticated sampling techniques from row measures?

9.8. CONNECTING THE COLUMN MEASURE WITH K−STEP ESTIMATORS 151

9.8 Connecting the column measure with k−Step estimators

The main difficulty up to this point is the question how empirical column measures can be
incorporated into model fitting and prediction. As their corresponding empirical column
measure is the ”0/1−limit case”, any existing model selection method requires at least the
decision if a predictor variable enters the final model or not. Here, we try to explicitly ac-
count for the relative importance of each variable.

Therefore, we present an estimator that is based on k−Step estimators (see definition 3.5.2)
on whose improvement property we rely.

Observe the following fact: We have done model selection and have gotten a subset J ⊂
{1, ..., p} of relevant variables. In the ”0/1−setting”, this corresponds to the column measure
ν̂(L) with ν̂(L)({j}) = 1 for all j ∈ J and zero otherwise. Due to equation (3.5.2), the
One-Step S1

n is asymptotically equal to

IEν̂(L)

[
θ̂n + 1

n

∑
i

ψθ̂n(Xi, Yi)
]

:=
((

(θ̂n)j + 1
n

∑
i

(ψθ̂n(Xi, Yi))j
)
I(j ∈ J)

)p
j=1

,

where θ̂n is the estimated coefficient on the complete data set. This is true since the starting
estimator is

√
n−consistent, so the difference in the components of the parameter corre-

sponding to J gets negligible. The same is true for the influence curve by property i) in
theorem 3.5.1. The components corresponding to J c are zero in both cases. Implicitly, the
One-Step estimator that is computed after model selection is asymptotically an expectation
of the ”original” One-Step estimator (i.e., without model selection) w.r.t. a suitable column
measure taking values in {0, 1}. Note again that this leads to partial influence curves (see
remark 3.5.2).

Remark 9.8.1. Similar as in the option pricing case in section 9.1, we wrote our quantity
as an expectation w.r.t. a certain measure.

We now investigate the following problem:

Can we combine the concept of k−Step estimators with any column measure?

Assume that we already have drawn B samples from the data and computed the One-Step

152 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

estimator θ̂(b) for each b = 1, ..., B. Then averaging leads to the estimator

θ̂(avg) := 1
B

∑
b

θ̂(b) + 1
n

∑
i

1
B

∑
b

ψθ̂(b)(Xi, Yi). (9.8.1)

What does actually happen? Assume there is a subset K ⊂ {1, ..., B} such that a variable
j0 is chosen in all iterations b ∈ K. Then the j0−th component of the estimated coefficient
in equation (9.8.1) would be

θ̂
(avg)
j0 = 1

B

∑
b∈K

θ̂
(b)
j0 + 1

n

n∑
i=1

∑
b∈K

(ψθ̂(b)(Xi, Yi))j0 . (9.8.2)

Note that the empirical column measure is ν̂({j0}) = |K|
n

in this case. This leads to the
following proposal.

Definition 9.8.1. Let D := (X, Y) ∈ Rn×(p+1) be a data matrix. Let ν̂n be some empir-
ical column measure on the set {1, ..., p} and let S1

n be a One-Step estimator based on n

observations. Then we define the Expected One-Step estimator

IEν̂n [S1
n] := ν̂n,vec ◦H S1

n (9.8.3)

where ◦H is the component-wise (Hadamard) product and

ν̂n,vec := (ν̂n({j}))pj=1.

However, note that stochastic convergence is not convex in the sense that for a triangular
scheme (Xi;n)i=1,...,n;n∈N, one may encounter the situation that

meani=1,...,n(Xi;n) 6−→ 0

for n → ∞ while it still holds that Xi;n → 0 stochastically for n → ∞ and for each i.
To deal with such cases, we have to sharpen the assumptions on the remainder term in the
asymptotically linear expansion that the one-step construction principle leads to (cf. theorem
3.5.1). If the remainder term is denoted by Rn, we now have to assume that

√
nRn −→ 0 (9.8.4)

in L1(Pθ0). In fact, this is a matter of uniform integrability and can be warranted in
many cases by suitable exponential concentration bounds (see [Ruckdeschel, 2010a, Prop.
2.1b)+Thm. 4.1]).

Theorem 9.8.1. Assume that the variable selection procedure that leads to the empirical
column measure ν̂n is variable selection consistent and that the learning procedure that leads to

9.8. CONNECTING THE COLUMN MEASURE WITH K−STEP ESTIMATORS 153

the estimated coefficients is
√
n−consistent. Then the Expected One-Step estimator is variable

selection consistent and is
√
n−estimation consistent for the coefficients j with ν̂n({j}) =

1 ∀n assuming (9.8.4).

Proof. a) By assumption, the variable selection procedure is variable selection consistent
(see definition 2.3.1), so Ŝ = S0 asymptotically. Then the empirical column measure is,
asymptotically, zero in all entries j /∈ S0, so the Expected One-Step is already correct in
these components.

The learning procedure is
√
n−consistent, so any estimated coefficient θ̂(b) falls into an

oP (n−1/2)−neighborhood of the true coefficient, hence the arithmetic mean over all b also
does. That implies, as for the initial estimator, it does not depend if it is chosen as arith-
metic mean over all θ̂(b) or if it is computed once since its distance to the true coefficient gets
negligible for n → ∞. The same holds for the arithmetic mean of influence curves due to
property i) in theorem 3.5.1, provided that the variable is chosen with an empirical probability
of one as assumed.

b) By the variable selection consistency, a growing number of observations guards against
false negatives. Thus, asymptotically this case does not have to be treated. The same is true
for false positives.

2

Remark 9.8.2. The Expected One-Step can be thought of weighting each component of the
coefficient by its empirically estimated relevance. Since these weights only take values in
[0, 1], we essentially perform a shrinkage of the coefficients that are not chosen with an
empirical probability of one.

Remark 9.8.3. This technique generalizes the former concept of combining One-Steps with
variable selection. In fact, the One-Step estimator with variable selection that we considered
in section 3.5 is the special case for a 0/1−column measure.

Remark 9.8.4. The usual One-Step is constructed to get an estimator with a given influence
curve. The Expected One-Step can be seen as an extension in the sense that the resulting
estimator both has the desired (partial) influence curve and is based on a given column mea-
sure.

Remark 9.8.5. The extension of the Expected One-Step to the Expected k−Step IEν̂n [Skn] is
straightforward.

154 CHAPTER 9. THE ROW MEASURE AND THE COLUMN MEASURE

9.9 Time-dependent row and column measures

In the Online Learning context (see for instance Rakhlin et al. [2011]), a new regressor Xt is
consecutively provided and a forecast for Yt has to be computed, based on the information
given by (X0, Y0), ..., (Xt−1, Yt−1) is the most simple case.

This Online Learning context has two interesting features that directly correspond to time-
dependent versions of row and column measures, i.e., adaptively forgetting observations and
updating the model selection.

In contrast to the standard Batch Learning where n instances are observed and where a model
is computed based on these observations, the mechanism of Online Learning to repeatedly
get new regressors and with some delay, also the corresponding responses, directly leads to
a sequence (ζ initt)t of initial row measures where the row measure ζ initt is a measure on
the set {1, ..., t}.
As for example discussed in Yu et al. [2007] in the context of financial time series, recent
information is generally more important than information which is rather old, so an Online
Learning algorithm needs to adaptively forget information to handle structural changes in
the data which clearly is a usual issue in financial time series. However, they proposed a
weighted loss criterion instead of adaptively chosen row measures.

Forgetting factors have for example also been used for Online LDA and Online QDA which
essentially rely on recursive and computationally efficient updates of mean, covariance, prior
probabilities etc. (Anagnostopoulos et al. [2012]).

Another strategy has been proposed in Duchi et al. [2011] where the informativity of the
observations is used to adjust the learning rates in a subgradient descent algorithm. Ribeiro
and Cano [2014] discussed several approaches and decided to drop the observations with the
smallest learning rates proposed by the procedure of Duchi et al. [2011], i.e., where some
kind of row selection is performed, or in other words, where empirical row measures ζ̂t
with zero entries are generated.

Even more suitable for our framework are for example Streaming Lassos as discussed in
Monti et al. [2016]. The aim is to adaptively update the regularization parameter once a new
observation appears which clearly leads to a sequence of empirical {0, 1}−valued column
measures (ν̂(L2)

t)t. Another online variable selection procedure, namely the adaptive random
forest (Gomes et al. [2017]), also provides sequences of empirical column measures which are
not necessarily {0, 1}−valued.

9.10. CONCLUSION 155

9.10 Conclusion

Starting with connecting resampling strategies with a row measure, we proceeded in defining
a similar measure, a so-called column measure, on the columns of a data matrix. This col-
umn measure has the natural interpretation of assigning relevance to each predictor in the
same manner as a row measure assigns a weight to each observation. We have seen that the
aggregation of model selection procedures based on resampling essentially leads to empirical
column measures that are induced by the underlying row measure.

The true column measure is clearly unknown. However, a key assumption throughout the
thesis is that suitable model selection algorithms tend to approximate the true column mea-
sure for the number of observations growing to infinity.
The major difficulty when working with column measures is the dependence of the column
measure on the underlying loss function. In subsequent chapters, we will investigate how to
work with column measures for different loss functions.

A theoretical result that connected k−Step estimators with the column measure has been
given by the introduction of the Expected One-Step which can easily be extended to Ex-
pected k−Steps.

Online learning algorithms lead to time-dependent row and column measures.

Acknowledgement: The concept of the column measure and its relation to rejection sam-
pling and to the Lebesgue decomposition were suggested by the supervisor of this thesis, P.
Ruckdeschel. These concepts however were worked out in detail and much extended inde-
pendently by the present author.

Chapter 10

Singular parts of column measures

Whenever we have two or more measures on the same measurable space, the question arises
if they are equivalent or if there exist at least singular parts of one measure w.r.t. another
one. Singular parts are an issue if changes of measures have to be performed.

In the first section, we briefly apply those standard concepts on the column measure, more
precisely, we define singular parts of one column measure w.r.t. a loss function L w.r.t an-
other column measure w.r.t. a different loss function L̃. This is especially relevant for sparse
model selection algorithms that usually select a subset of the true set S0 of relevant variables.

The rest of this chapter occupies itself with the consequences to the already proposed re-
jection sampling strategy. We will see that some change of measure needs to be performed
already during the Boosting procedure itself. At the end, a new algorithm which we call
SingBoost which is a first approach to handle situations where singular parts may occur is
provided. We list the requirements that SingBoost imposes as well as the main computa-
tional issues that we faced and solved and discuss the updating scheme for L2−Boosting and
SingBoost.

We rely on existing results on estimation and prediction consistency of L2−Boosting (see
[Bühlmann, 2006, Thm. 1] resp. [Bühlmann and Van De Geer, 2011, Thm. 12.2]) to show
that SingBoost also has these asymptotic properties if a so-called Corr-min condition holds.

10.1 Singular parts and domination

When performing Gradient Boosting w.r.t. different loss functions, it becomes evident that
the selection frequencies of the variables differ from loss function to loss function. Therefore,

156

10.1. SINGULAR PARTS AND DOMINATION 157

we cannot assume that the column measure ν̂(L) is identical to the column measure ν̂(L̃) for
two different loss functions L and L̃. So why should equality be even true for the theoretical
column measures ν(L) and ν(L̃)? Ideas related to the rejection sampling algorithm (alg. 3)
may still work if these two measures still coincide in terms of which variables are important
and only differ in the concrete selection probabilities.

An issue would appear if one applied Gradient Boosting w.r.t loss function L and evaluated
the performance in the loss function L̃, but if some relevant variables for loss function L̃ are
not selected by Gradient Boosting w.r.t. L. In this case, rejection sampling can never succeed
in finding all relevant variables for loss function L̃. The leads to the following question:

Is it realistic to assume that suitable model selection algorithms for different
loss functions select different variables?

Remark 10.1.1 (Empirical column measures). Let S0 be the true set of relevant vari-
ables. Then an algorithm with the screening property (see definition 2.3.1 a)) tends to select
a superset of S0, so it is prone to overfitting. If we compared two algorithms for different
loss functions that both have the screening property, it asymptotically may happen that they
select different noise variables. This would not be an issue as long as S0 is contained
in the selected sets of variables for both algorithms. If even the variable selection property
(definition 2.3.1 b)) is valid, then the true set S0 is chosen asymptotically.

But once real data analysis is performed, i.e., we only have a finite and usually small number
of observations, these asymptotic properties clearly do not hold. One can easily run sophisti-
cated algorithms (see example 10.2.1), for example L2−Boosting and quantile Boosting with
possible Stability Selection on either real or simulated data, resulting in different variables
being chosen at the end. In the case of simulated data, one instantaneously can find examples
where different subsets of S0 are being selected.

On may object that the L2− resp. Lτ−Boosting models are not stable, so it would not be fair
to compare them. This is true and it happens that Stability Selection applied to both on the
same data set leads to the same stable set of coefficients, but this cannot be generalized to
arbitrary data. Additionally, for those loss functions, there exist Boosting algorithms. In the
case of continuous ranking, we have no chance to check if a stable sparse ranking algorithm
would select the same predictors as L2−Boosting with Stability Selection does.

In view of the fact that one can find data sets such that even L1− and L2−Boosting with
Stability Selection choose different variables at the end, one should not dare to assume that
the empirical column measures w.r.t. L2 and w.r.t. some ranking loss were equivalent, not

158 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

even that this would hold for the theoretical column measures.

Assumption 10.1.1. We assume that even the true column measures for different loss func-
tions L and L̃ differ, i.e.,

ν(L) 6= ν(L̃).

This motivates to adapt the definition of domination and singular parts for our column mea-
sure framework.

Definition 10.1.1. Let L, L̃ be loss functions as before and let D := (X, Y) ∈ Rn×(p+1) be a
data set.
a) We call the column measure ν(L) dominated by ν(L̃), written ν(L̃) � ν(L) if

ν(L̃)({j}) = 0 =⇒ ν(L)({j}) = 0 ∀j ∈ {1, .., p}.

b) We say that ν(L) and ν(L̃) are equivalent, ν(L) ∼ ν(L̃), if

ν(L) � ν(L̃) and ν(L̃) � ν(L),

or just written differently, if

ν(L)({j}) = 0⇐⇒ ν(L̃)({j}) = 0.

c) If ν(L̃) � ν(L) and if the measures are not equivalent, then we call the greatest set JL
L̃
⊂

{1, ..., p} such that

ν(L)({j}) = 0 6= ν(L̃)({j}) ∀j ∈ JLL̃

the singular part of ν(L̃) w.r.t. ν(L).

Remark 10.1.2. One could extend the definition of the column measure by invoking the
learning procedure that is used to perform risk minimization.

It certainly will make a difference if the quadratic loss is minimized by ordinary least squares
or by L2−Boosting where the latter will generally result in a much sparser model, generating
a singular part, too.

We do not think that this extension would be meaningful. If one is interested in the sparsity
of the models computed by different algorithms for the same loss function, one does not really
need the column measure. On the other side, of course the empirical column measure from the
ordinary least squares model would ”dominate” every other model’s empirical column measure,
but if every variable is selected anyways, thinking of a column measure is superfluous, leading
every singleton {j} to get the probability 1.

10.2. CONSEQUENCES TO MODEL SELECTION 159

Assumption 10.1.2. If we compare the relevant sets of predictors for different loss functions,
we always consider that a suitable learning algorithm performing (sparse) variable selection
has been applied without accounting for it specifically.

Since we face discrete measures on the same finite measurable space, we can easily find the
Lebesgue decomposition (see theorem A.3.3) of either measure if none of them dominates the
other one.

Example 10.1.1 (Lebesgue decomposition). Assume we have a set J where both mea-
sures are nonzero for every singleton contained in J . Additionally, we have singular parts
JL
L̃
, J L̃L , so the union of all three sets is {1, ..., p}. Then we trivially get the Lebesgue decom-

positions

ν(L̃) = ν(L̃)|
JL̃L∪J

+ ν(L̃)|JL
L̃
,

νL = νL|JL
L̃
∪J + ν(L)|

JL̃L
.

Then ν(L̃)|JL
L̃
⊥ ν(L) and νL|

JL̃L
⊥ ν(L̃).

Assumption 10.1.3. We even go further as in assumption 10.1.1 and assume that the col-
umn measures ν(L) and ν(L̃) already differ on the set S0 while not necessarily having singular
parts, so we assume

ν(L)|S0 6= ν(L̃)|S0 , i.e., ∃j ∈ S0 : ν(L)
j 6= ν

(L̃)
j .

We always keep in mind that we generally assume sparsity of the underlying model, see
assumption 2.2.1.

10.2 Consequences to model selection

With the definition of the column measure w.r.t. different loss functions and their potential
singular parts, we once more take a look at the rejection sampling idea.

Each proposed model (e.g. a Boosting model or a model determined by Stability Selection
with Boosting or with the Lasso) provided a ”raw” empirical column measure, though not
necessarily stable. However, this measure corresponds to the selected loss function, i.e., the
loss L. Performing rejection sampling by evaluating the model w.r.t. the loss function L̃

160 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

effectively picks one of these proposed raw column measures. The resulting column measure
thus differs from the one that we would have gotten for the original target loss L̃. Mathe-
matically spoken, through rejection sampling, we implicitly made a change of measure.

In the same way as a change of measure requires that the initial measure dominates the
target measure, we get a similar requirement for our rejection sampling strategy.

Remark 10.2.1 (Rejection sampling and domination). A rejection sampling strategy
as algorithm 3 where models are fitted w.r.t. a loss function L and evaluated in another loss
function L̃ is inadequate if

JLL̃ 6= ∅, (10.2.1)

or in other words, if the measure ν(L̃) has a singular part w.r.t. ν(L).

In turn, our strategy can only be meaningful if

ν(L) � ν(L̃). (10.2.2)

Evidently, singular parts of ν(L) w.r.t. ν(L̃) can lead to false positives (w.r.t. L̃), but the
rejection sampling strategy can still work if these false positives can be appropriately neglected
in subsequent stabilization steps.

Remark 10.2.2 (Domination and variable selection consistency). Even if there exist
algorithms for L resp. L̃ that both have the variable selection consistency property (definition
2.3.1), there would be no guarantee that there would be no empirical singular parts in real
applications, i.e., for finite n.

Remark 10.2.3 (Surrogate losses and singular parts). Although the usage of surrogate
loss functions is common for example in classification settings, we are not sure if a ”wrong”
surrogate may even lead to singular parts of the column measure corresponding to the original
loss (e.g. the 0/1−loss) w.r.t. the column measure corresponding to the surrogate loss.

Remark 10.2.4 (Time-dependent singular parts). In the Online Learning context (see
section 9.9), one usually is provided with a new regressor Xt at time t with the goal to predict
the corresponding response Yt which is revealed afterwards. Clearly, if we try to optimize a
loss w.r.t. some loss function L̃ using an L−adapted algorithm, we may get a singular part
(JL
L̃

)t. In the case of facing structural changes in the data, for example when having financial
data (see Yu et al. [2007]), the relevance of the predictors w.r.t. the losses L and L̃ may also
vary over time, leading to a sequence of true column measures (ν(L)

t)t and (νL̃t)t.

10.2. CONSEQUENCES TO MODEL SELECTION 161

We cannot exclude that even the singular parts vary over time due to the following two
reasons. First, if new observations let predictors which did not yet appear to be relevant for
L indeed become relevant, then the cardinality of the singular part can decrease over time.
On the other hand, a particular forgetting scheme can also cause the converse direction if
predictors which were relevant for L are no longer relevant for the newer observations. But
if these predictors are still relevant for L̃, the cardinality of the singular part would increase.
Therefore, one has to be aware of potentially encountering a sequence of singular parts
((JL

L̃
)t)t which does not need to be constant.

Remark 10.2.5. Note that singular parts between column measures lead to a deficiency in
the sense of definition A.3.7 when concerning about model selection. Without model selec-
tion, i.e., having non-zero coefficients for all predictors, we may find a suitable transition
which translates the coefficients w.r.t. L into coefficients w.r.t. L̃. Once model selection is
performed, the presence of a singular part JL

L̃
does not allow such a transition.

Remark 10.2.6. Clearly, any learning procedure can produce false positives, so it is not
impossible to select variables from the singular part of ν(L̃) w.r.t. ν(L) in practice. However,
theoretically (say, asymptotically) this kind of ”useful mistake” would become more unlikely
the more n grows, apart from the fact that no model should ever rely on errors.

Example 10.2.1. Not concerning about singular parts for the moment, let us take a look at
the following simple example where we apply the Stability Selection of Hofner et al. [2015]
implemented in stabs to Boosting models with different loss functions:

r e q u i r e (mboost)
r e q u i r e (s t a b s)
r e q u i r e (pcaPP)

load (’ StabSelEx.RData ’)
D1←Data$D
r e s l 2← g lmboos t (Y∼. ,D1)
reshub← g lmboos t (Y∼. , D1 , f a m i l y=Huber ())
r e s l 1← g lmboos t (Y∼. , D1 , f a m i l y=Lap lace ())
r e s t a u← g lmboos t (Y∼. , D1 , f a m i l y=QuantReg (tau=0.75))
a t t r i b u t e s (varimp (r e s l 2)) $ s e l f

[1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.04 0.00 0.00

[15] 0.00 0.00 0.00 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.12

[29] 0.05 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15

[43] 0.05 0.00 0.00 0.13 0.03 0.00 0.00 0.02 0.01

p r i n t (" L2−Boosting ")

[1] "L2 - Boosting "

162 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

s e t . s e e d (7983216)
s t a b s e l (r e s l 2 , q=8,PFER=1)$ s e l

X10 X27 X41 X45

11 28 42 46

p r i n t (" Huber−Boosting ")

[1] "Huber - Boosting "

s e t . s e e d (7983216)
s t a b s e l (reshub , q=8,PFER=1)$ s e l

Warning in stabsel . mboost (reshub , q = 8, PFER = 1): ’mstop ’ too small in 1

of the 100 subsampling replicates to select ’q’ base - learners ;

Increase ’mstop ’ bevor applying ’stabsel ’

X10 X41 X45

11 42 46

p r i n t (" L1−Boosting ")

[1] "L1 - Boosting "

s e t . s e e d (7983216)
s t a b s e l (r e s l 1 , q=8,PFER=1)$ s e l

Warning in stabsel . mboost (resl1 , q = 8, PFER = 1): ’mstop ’ too small in 75

of the 100 subsampling replicates to select ’q’ base - learners ;

Increase ’mstop ’ bevor applying ’stabsel ’

X10 X41 X45

11 42 46

p r i n t (" Ltau−Boosting , tau=0.75 ")

[1] "Ltau -Boosting , tau =0.75"

s e t . s e e d (7983216)
s t a b s e l (re s tau , q=8,PFER=1)$ s e l

Warning in stabsel . mboost (restau , q = 8, PFER = 1): ’mstop ’ too small in

99 of the 100 subsampling replicates to select ’q’ base - learners ;

Increase ’mstop ’ bevor applying ’stabsel ’

(Intercept)

1

10.3. SINGBOOST: BOOSTING WITH SINGULAR PARTS FOR ANY TARGET LOSS 163

We see that even for this unspectacular data set with n = 100, p = 50 and s0 = 10, there is
no consensus concerning a stable model for these four loss functions. Note that the warning
appeared in all cases except for the L2−Boosting-based Stability Selection, meaning that miter

should be increased since even after 100 iterations since some Boosting algorithms did not
select q predictors. However, since this issue just happened one time for Huber Boosting, we
can ignore it. One the other hand, the issue that the major fraction of Boosting models for
the L1− and the Lτ−loss for τ = 0.75 did not select q predictors indicates the low relevance
of the non-selected predictors for these loss functions. Especially for Lτ−Boosting, we do not
see any reasonability to thoughtlessly just increase the number of iterations as long as the
warning does not appear anymore.

However, we note that the ordering of the relevances of the four selected stable variables w.r.t.
the squared loss is identical to the respective ordering w.r.t. the other losses, disregarding the
intercept as leading variable for quantile Boosting. So, when trying different cutoffs, one may
would get identical stable models. But this is a contradiction to the statement of Meinshausen
and Bühlmann [2010] and Hofner et al. [2015] that the cutoff is of minor importance. We
conclude that for example for the hard ranking loss, we had no chance to get a suitable stable
model but to try different models of the stated ones above since although the quantity IE[Y |X]
that L2−Boosting approximates is an optimal ranking rule, there is no evidence that a stable
L2−based predictor set would be more suitable to the ranking problem than some stable L1−
or Lτ−based predictor set.

Summing up, a vital question when trying to solve the problem of sparse empirical mini-
mization of L̃ by such a rejection sampling scheme is the following: How can we control for
singular parts of the (unknown) column measure ν(L̃) w.r.t. the (unknown) column measure
ν(L)?

10.3 SingBoost: Boosting with singular parts for any target loss

The relevance of a certain predictor in a Boosting model w.r.t. a loss L is simply determined
by dividing the number of iterations in which this variable has been selected by the number
of Boosting iterations.

Remark 10.3.1 (Boosting and rejection sampling). More precisely, each Boosting it-

164 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

eration is a rejection sampling step itself, comparing weak learners w.r.t. each predictor
and selecting the one that performs best, evaluated by the loss L. For example in L2−Boosting,
all p predictors are chosen and the RSS of the corresponding simple least squares regression
fit is computed, thus only accepting the single predictor with the lowest resulting RSS. The
acceptance ratio is clearly p−1.

Remark 10.3.2 (Elicitability). Note that although L2−Boosting also compares different
(simple) models in each iteration, this concept is not directly related to the strict consistency
of the squared loss (cf. Gneiting [2011]). The basic idea behind consistent loss functions and
therefore elicitability (chapter 7) is that the best forecast can be identified, so honest predic-
tions are rewarded (see also Gneiting and Raftery [2007]).

In a Boosting algorithm, we never expect a single column to perfectly model the current
residuals. However, elicitability is usually related to a ranking of forecasts (see e.g. Fissler
et al. [2015], Ziegel [2016]) which indeed can be transferred to Boosting when treating the
predicted values of the simple linear models as ”forecasts” for the current residual vector.

Since trying to control for singular parts on the level of whole Boosting models is inappropri-
ate in the presence of singular parts, we need to interfere deeper into the Boosting algorithm
itself and force that L̃ is already respected there.

This motivates the following idea to perform a singular Boosting step w.r.t L̃ where L̃ may do
not even have a (unique) gradient: Fit simple least squares models as in L2−Boosting
and evaluate them in the target loss L̃ in each M−th iteration.

Heuristically, we are getting a chance to have variables that correspond to a singular part
of ν(L̃) w.r.t ν(L) being detected as well as keeping the efficient structure of component-wise
L2−Boosting.

Remark 10.3.3 (Change of measure). Note that we essentially already perform a change
of measure in the innermost level of the whole resulting learning algorithm. In terms of
column measures, if in such a singular iteration k a variable j̃k has been selected, we can
think of the ”empirical column measure” ej̃k , i.e., the j̃k−th p−dimensional unit vector. But
if we had performed a usual Boosting iteration, we had gotten variable ĵk, i.e., by performing
a rejection step in the singular iteration, we enforced a change of measure from the ”empirical
column measure” eĵk to the ”empirical column measure” ej̃k .

We will call this algorithm SingBoost:

10.3. SINGBOOST: BOOSTING WITH SINGULAR PARTS FOR ANY TARGET LOSS 165

Initialization: Data Dsing, step size κ ∈]0, 1], number miter of iterations, number
M ≤ miter (each M−th iteration is a singular iteration), target loss L̃ (as part of a
family object singfamily) and binary variable LS;
Set

runs =
⌊
miter

M

⌋
Set f (0) := 0;
for k = 1, ..., runs do

if LS==F then
Perform a single step of Gradient Boosting w.r.t. L̃ on the residuals of model
f̂ ((k−1)M);

else
Evaluate all simple least squares fits on the residuals of model f̂ ((k−1)M) w.r.t.
L̃ and take the best one;

end
Get the weak model ĝ((k−1)M+1) and update the model via
f̂ ((k−1)M+1) = f̂ ((k−1)M) + κĝ((k−1)M+1);

Perform (M − 1) steps of L2−Boosting starting with the residuals w.r.t. the
model f̂ ((k−1)M+1);
Get the updated model f̂ (kM)

end
Algorithm 6: SingBoost

Remark 10.3.4. The argument LS=F which performs a single Gradient Boosting step w.r.t.
L̃ is only meaningful in simulation settings if one wants to compare the performance of
different baselearners. In general (and when we actually need SingBoost), L̃ does not have
a corresponding ”pure” Boosting algorithm. Then setting LS=T uses simple least squares
baselearners in the singular steps, but compares them according to L̃.

Remark 10.3.5. We will see at the end that the whole cross-validated CMB-3S algorithm
that we propose (see subsection 12.4) includes different training, validation and test sets on
each level. Therefore, we decided that tedious notation, here starting with the superscript in
Dsing, is indeed indispensable to avoid confusion.

Remark 10.3.6. The only property of L̃ that we require to get a computationally tractable
algorithm is that L̃ is easy to evaluate. Note that no (local) differentiability property, not
even continuity of L̃ is required, so especially the existence of a (sub)gradient is needless!
This is the reason why we think of SingBoost as gradient-free Gradient Boosting.

Remark 10.3.7. Again, note the strong similarity to performing rejection sampling in order

166 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

to generate samples according to a density f (section 9.4). Although one does not directly
sample from the cumulative distribution function corresponding to f , one at least has to
evaluate the density in the random number drawn according to the density g as we evaluate
the loss function L̃ at the baselearners, e.g., the ”samples”.

Remark 10.3.8. The hard or the localized ranking loss are such complicated loss functions
that are not even continuous, but can be evaluated in O(n ln(n)) steps thanks to lemma 6.1.1.

Remark 10.3.9 (Why L2−Boosting?). So far, it is not evident why we take L2−Boosting
as basis algorithm. Of course, just the argument that L2−Boosting approximates IE[Y |X] and
that this is already an optimal scoring rule for ranking is too weak since we do not restrict
SingBoost to ranking applications and since this conditional expectation gets approximated
by a subset of the column space of the regressor matrix which potentially provokes that the
selected variables, despite being relevant, are not the best relevant variables for the ranking
problem or generally for loss L̃.

The main initial reason why we used L2−Boosting is its excellent implementation which is
very efficient and extremely fast. However, we will see at the end of this chapter (section
10.5) that there is indeed a solid theoretical foundation of this L2 − L̃−hybrid algorithm.

Remark 10.3.10 (Sparse Boosting). Although not intended to detect potential singular
parts by tailoring the model selection to another loss function, the Sparse Boosting algorithm
(Bühlmann and Yu [2006]) can be regarded as related work. The aim of this algorithm is to
provide sparser models by trying to minimize the out-of-sample prediction error. Since this
is not directly possible, they use the degrees of freedom defined as tr(Bm) for the Boosting
operator

Bm = I − (I − κHĵm
) . . . (I − κHĵ1

)

to estimate the model complexity where Hĵk
is the hat matrix corresponding to the weak

model which is based on variable ĵk (see also Bühlmann and Yu [2003] for further details
on the Boosting operator). In fact, they choose the variable that minimizes the residual
sum of squares, penalized by the model complexity, and then proceed as in L2−Boosting.
As they pointed out, this leads to possibly different choices of the best variable in
each iteration which in some sense can also be understood as some kind of SingBoost with
a sequence of target loss functions L̃(k) that equal their penalized criterion in every
iteration k = 1, ...,m.

Remark 10.3.11. The analogy to Sparse Boosting leads to the question if there are cases
where working with varying loss functions in SingBoost is meaningful when concerning about
detecting potential singular parts. We postpone this discussion to section 12.3.

10.3. SINGBOOST: BOOSTING WITH SINGULAR PARTS FOR ANY TARGET LOSS 167

Now, we briefly list the main implementation steps and issues:

1.) We include the function argument singfamily to provide flexibility. For standard
families that are implemented in the R−package mboost, the singular step is one iteration of
glmboost with the corresponding loss function using the commands LS=F and boost_control
to set the number of Gradient Boosting iterations for this loss function to one, otherwise the
component-wise least squares approach is applied.

2.) If the target loss L̃ is discrete-valued, it can happen that more than one simple least
squares model lead to the same loss, so the optimal predictor cannot be uniquely determined.
We use the command sample to randomly choose one of the considered columns with equal
probability.

3.) After the singular steps, we save the coefficients but only want to insert the residuals in
the glmboost function. This can be an issue if they are not approximately mean-centered.
Therefore, we mean-center them manually so that glmboost skips the computation of the
offset in the first iteration. After the (M − 1) iterations, we again add the mean to the
intercept. This is not a problem since this shifting does neither change the selected variables
nor their non-intercept coefficients.

4.) We count the overall selection frequencies of all variables. The ones in the non-singular
steps are internally saved and can be retrieved with the command

attributes(varimp(...))$selfreqs

where the mboost object needs to be inserted into the brackets. We also display the selected
variables as output of singboost.

5.) We insert a value for the step size κ at the beginning. As suggested p.e. by Friedman
(Friedman [2001]), one can even perform a line search by taking the value for κ for which
the loss of the resulting combined model is minimal. Bühlmann and Hothorn [2007] argued
that this technique is not needed when optimizing the squared loss. However, one can think
about a line search when invoking singular iterations w.r.t. a loss L̃. The reasonability of
this step depends on L̃ because with a loss which is still rather expensive to evaluate like a
ranking loss, the line search would again decelerate the whole algorithm and should not be
recommended. Therefore, a line search is not contained in our implementation.

6.) For details concerning the selection of the best variable in the singular steps, see below
(section 10.4).

168 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

7.) We call the number of iterations miter to distinguish between the number mstop in
L2−Boosting where indeed mstop iterations according to L2 are performed in contrast to the
respective number Mbmiter/Mc − runs in SingBoost. It is hard to decide when one should
stop the algorithm. Approaches for early stopping standard Boosting algorithms do not
work here since they are either in general loss-based (convergence criteria) or based on an
AIC (Bühlmann and Yu [2003], Bühlmann [2006], Mayr et al. [2012b], see also section 2.4).
But the latter penalizes the model complexity which contradicts the intention to find more
variables, i.e., those that form the singular part JL

L̃
. We are sure that the optimal number

of iterations is not only dependent from κ but also from the number M for which we also
do not make universal recommendations. In our applications, we therefore just try different
numbers of miter and M and leave this problem as an open question for future research.

8.) In its current implementation, a data frame has to be inserted as singboost input.
Then, the last column of the data frame is automatically treated as response column and a
regression of this column based on the rest of the data frame is performed. If the regression
should only be done w.r.t. several selected columns, one just has to insert the reduced data
frame.

9.) SingBoost can easily handle categorical variables, interactions and basis functions. One
just has to insert the model matrix where extra columns or transformed columns already have
been added to represent those objects. Note that the column corresponding to the intercept
containing only ones which is generated by model.matrix needs to be deleted before running
SingBoost since this column is generated automatically in singboost. See also part VI for
a demonstration of our implemented functions.

10.) We do not provide any weighted version of SingBoost (we discuss it again later, see
remark 12.6.3). It would not be that clear if the same weights for two different loss functions
would be appropriate. However, the next part will reveal that our final algorithm indeed can
handle weights, but in an adapted fashion in the sense that some empirical row measure will
be computed. If there are rows that appear to be outliers, either delete them in advance or
use a possible robust extension of SingBoost (see section 18.2 for further details and ideas).

11.) To provide a quick overview on the relevant input arguments, see the following command
line that is used to apply singboost with M = 10, miter = 100 and κ = 0.1 (all defaults)
with hard ranking singular steps:

s i ngboos t (D,M, m_iter , kap , s i ng f am i l y=Rank () ,LS=T)

10.3. SINGBOOST: BOOSTING WITH SINGULAR PARTS FOR ANY TARGET LOSS 169

Remark 10.3.12 (Grouped variables). To the best of our knowledge, the BlockBoost
algorithm (Gertheiss et al. [2011]) has not been implemented under this name in R. But in
fact, Hofner et al. [2014] describe that one can assign multiple variables to the baselearner
when using the function gamboost. These variables are treated as a group, so the baselearner
is built on all these variables together and either all corresponding coefficients are updated
in the Boosting iteration or none of them. The same is true for the function mboost. If
a categorical variable appears, both functions automatically treat all corresponding columns
as group and perform block-wise updates. So in the case of group-wise variables that enter
SingBoost, it is rather a programming task to automatically flag variables as groups. It may
be a topic for future work to implement it in a way that it runs reasonably fast for SingBoost
which would make our algorithm capable to handle block-wise updates for categorical variables
and even grouped variables.

Remark 10.3.13. Of course, if the singular family is set to Gaussian() which corresponds
to the squared loss, SingBoost delivers exactly the same coefficients and selection frequencies
as L2−Boosting with the same number of iterations. Note that the reported intercept indeed
differs, but just because glmboost performs a centering step in advance which results in a
so-called offset value (see algorithms 1 and 23). For unknown reasons, this function reports
the offset value and the intercept separately in the sense that the true intercept which is used
for prediction is the sum of both. This sum is reported by singboost.

Remark 10.3.14. The SingBoost algorithm is implemented in R as singboost. In its cur-
rent implementation, it consumes much more computational time than glmboost, depending
on M . Maybe a neat memory handling or outsourcing code chunks using C or FORTRAN as
done for mboost and glmboost could improve the running time.

However, SingBoost is significantly faster than our first approach using surrogate losses in
a pair-wise fashion. Figure 10.1 shows the computational performance of SingBoost in com-
parison with HingeBoost.

We want to be honest and provide a similar plot (figure 10.2) that compares the time con-
sumption for L2−Boosting as implemented as glmboost and SingBoost for L1− and ranking
singular iterations as well as for the case where we artificially invoke Gaussian ”singular” iter-
ations, i.e., we use glmboost in each iteration. Clearly, there is no chance to beat glmboost.

As for the complexity of SingBoost, see the following lemma.

Lemma 10.3.1 (Complexity of SingBoost). Assume that the evaluation of the target loss
function L̃ requires O(cn) operations for some cn ≥ n ∀n. Then the complexity of SingBoost
is O(mcnp).

170 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

Figure 10.1: Time consumption: SingBoost with different values of M vs. HingeBoost on several allocations
of (p, n) and only miter = 10

Figure 10.2: Time consumption: SingBoost with different singular families and L2−Boosting, miter = 100

10.4. VARIABLE SELECTION AND UPDATING 171

Remark 10.3.15. Since L2−Boosting is of complexity O(mnp), the loss in performance
(assuming an equally excellent implementation) for SingBoost compared to L2−Boosting gets
negligible if cn = O(n).

In the case of the hard ranking loss, we have cn = O(n ln(n)) due to lemma 6.1.1, so for real-
data applications where n is usually rather small, the complexity of SingBoost is comparable
with that of L2−Boosting, also reminding that not each iteration is a singular iteration.

10.4 Variable selection and updating

Essentially, each singular step of SingBoost is still a Gradient Boosting step w.r.t. the squared
loss. This is true since fitting simple least squares models and evaluating them in L̃ does not
contradict the requirements on the base procedure from Bühlmann [2006]. Indeed, we have
a real-valued baselearner that fits the residuals, i.e., the negative functional gradient of the
squared loss.

Of course, according to Bühlmann [2006], a base procedure has to be specified before running
the algorithm so that the base procedure performed in each iteration is the same which is
not true for SingBoost due to the different evaluations, either in L or in L̃. Therefore, the
theoretical results that already have been established for L2−Boosting in Bühlmann and Yu
[2003] and Bühlmann [2006] are not one-to-one transmissible to SingBoost. However, we
establish asymptotic results in the next section.

Let us illustrate more computational details of SingBoost. We did not yet really specify the
term ”taking the best one” in algorithm 6. In standard L2−Boosting with component-wise
least squares, we select column ĵk with

ĵk = argmin
j

(∑
i

(r(k−1)
i −Xi,jβ̂(j))2

)
(10.4.1)

in the k−th iteration where β̂(j) is the baselearner w.r.t. column j. This is only valid because
the squared loss L2 just depends on the residuals, i.e.

L2(y, f) =: L2(y − f) = L2(|r|). (10.4.2)

Note that by the linearity of our model, it does not matter if we compute the residual sum of

172 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

squares by comparing the predicted responses from the baselearner with the current residuals
or the predicted responses from the whole model, including the new base model, with weight
1 instead of κ, with the original responses if the loss function has a structure as in (10.4.2).
After the (k − 1)−th iteration, the resulting residual vector is

r(k−1) = Y −Xβ̂(k−1).

Let ĵk be the selected predictor in the k−th iteration, let g(k) be the base model and β̂ be
the corresponding coefficient. Then, obviously, we have

r
(k−1)
i − g(k)(Xi) = Yi −Xiβ̂

(k−1) − (κ(β̂(ĵk))0 + κ(β̂(ĵk))ĵkXi,ĵk
)

= Yi −Xi(β̂(k−1) + κβ̂(ĵk))

where the sum of the coefficients in the brackets is what we meant by ”whole model”. There-
fore, we can just compare the simple models w.r.t. each column by quantifying their pre-
diction performance w.r.t. the current residuals which is computationally easier and faster
since no large matrix enters the matrix-vector-multiplication. But nevertheless, the selection
scheme in 10.4.1 can be equivalently written as

ĵk = argmin
j

(∑
i

(Yi −Xi(β̂(k−1) + κβ̂(j)))2
)

(10.4.3)

which is also faced in literature, but we think that 10.4.1 reflects even more the principle of
Boosting.

Remark 10.4.1 (Maximal absolute correlation with the residual). Note that, due to
the learning rate κ, it is not evident at the very first glance that choosing ĵk such that the
loss ∑

i

(r(k−1)
i −Xiβ̂(ĵk))2

is minimized w.r.t. j implies that the loss∑
i

(Yi −Xi(β̂(k−1) + κβ̂(ĵk))))2

from the aggregated model w.r.t. κ is also minimal compared to the losses that we had gotten
for any other j 6= ĵk where again the notation β̂(ĵk) just artificially highlights the dependence
of the coefficient on column ĵk (and possibly the intercept column).

But indeed, this is true due to the fact that for L2−Boosting, the optimal variable is al-
ways the variable with the maximal absolute correlation with the current resid-
ual. This has been proven in an old version of a work of Zhao and Yu (Zhao and Yu [2004]),
but was not published in the final version Zhao and Yu [2007]. Therefore, we recapitulate

10.4. VARIABLE SELECTION AND UPDATING 173

the proof using our notation. As in Zhao and Yu [2004], we assume for simplicity that each
column of X is normalized, i.e., ∑

i

Xij = 0,
∑
i

X2
ij = 1,

and that we do not include intercepts in the baselearners. Then we take a look at the L2−loss
difference of two subsequent iterations:∑

i

(Yi − f̂ (k+1)(Xi))2 −
∑
i

(Yi − f (k)(Xi))2

=
∑
i

(Yi −Xi(β̂(k) + κejβ̂(j)))2 − (Yi −Xiβ̂
(k))2

=
∑
i

(r(k)
i − κejXiβ̂(j))2 − (r(k)

i)2 =
∑
i

(κejXiβ̂(j))2 − 2κβ̂(j)r(k)
i ejXi

=
∑
i

(κXijβ̂(j))2 − 2κβ̂(j)r(k)
i Xij

where the last summand clearly depends on the correlation of X·,j and r(k) since it holds that

β̂(j) = Corr(X·,j, r(k))
√

Var(r(k)) = Cov(X·,j, r(k))

due to the assumption that the columns of X are normalized, so the sign of the last summand
stays negative. More precisely, we can write the last line of the previous display as

κ2β̂(j)2∑
i

X2
ij − 2κβ̂(j)

∑
i

r
(k)
i Xij

= κ2(Corr(X·,j, r(k))
√

Var(r(k)))2 − 2κCorr(X·,j, r(k))
√

Var(r(k)) Cov(X·,j, r(k))

= κ2(Corr(X·,j, r(k))
√

Var(r(k)))2 − 2κ(Corr(X·,j, r(k))
√

Var(r(k)))2

= (κ2 − 2κ)(Corr(X·,j, r(k))
√

Var(r(k)))2

which is non-positive since κ ∈]0, 1]. Even more, this again shows why a larger step size
leads to faster convergence and indeed that L2−Boosting would not be able to reduce the RSS
any more once all columns had a perfect correlation of zero with the current residual (which
clearly would never happen in practice).

This proves why for L2−Boosting, the variable with the most absolute correlation with the
current residual is selected and why L2−Boosting gradually decreases the training error. In
fact, the consistency result of L2−Boosting in [Bühlmann, 2006, Thm. 1] does not incorporate
the learning rate κ since it can be bounded from above by 1 as shown in [Bühlmann, 2006,
Sec. 6.3]. Further results on the decreasing behaviour of the training error in L2−Boosting
are also given in [Freund et al., 2017, Thm. 2.1].

174 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

Remark 10.4.2 (Fast update formula). As stated in Zhao and Yu [2007], in the case of
L2−Boosting where the best variable is the one with the highest absolute correlation with the
current residual, the computational time can be significantly decreased by using the update
formula

(r(k+1))TX·,j = (r(k) − κβ̂(ĵk)X·,ĵk)
TX·,j = (r(k))TX·,j − κβ̂(ĵk)XT

·,ĵkX·,j

for the correlations (again assuming normalized columns).

We cannot proceed in the same manner if L̃ is a loss function that for example belongs to
the hard or a localized ranking problem. Why should a good ranking performance of the
baselearner with the residuals as responses be related to a good ranking performance of the
strong model for the original response values?

Thus, for any loss function L̃ which has a structure as in (10.4.2) such that L̃(|r|) is monoton-
ically increasing, we can transfer the selection criterion from component-wise least squares
Boosting to SingBoost by taking

ĵk = argmin
j

(∑
i

L̃(r(k−1)
i −Xi,jβ̂(j))

)
.

For losses that cannot be written as in (10.4.2) like ranking losses, we propose the following
criterion:

ĵk = argmin
j

(∑
i

L̃(Yi, Xiβ̂
(k−1) + κβ̂(j))

)
, (10.4.4)

in other words, we directly evaluate the ranking performance of the resulting strong model
respecting the learning rate κ. This criterion directly corresponds to some kind of secant
approximation of ∇L̃.

Remark 10.4.3. An approach where secants are used in literature may be found in Gulcehre
et al. [2017], but in a different setting. They used a secant approximation of gradients to
extend a stochastic gradient descent to their AdaSecant algorithm. Thus, the two main
differences to our work are that their target function has a unique gradient and that the
secants are used to approximate it whereas we do not face unique gradients and therefore the
term ”secant” should only be used implicitly.

Remark 10.4.4 (Concordance and correlation). Let us once more concern the Gradient
Boosting algorithm with the piece-wise linear surrogate, see section 8.4. The algorithm ended
up selecting the column which itself or whose negative is most concordant with the current

10.5. ASYMPTOTIC PROPERTIES OF SINGBOOST 175

residual. Of course, if a noise variable by chance has the property that its order or its nega-
tive order perfectly resembles that of the current residual, it would be chosen by the Gradient
Boosting algorithm. But in fact, in this case, the absolute value of the correlation of the
current residual and the respective column is 1, so L2−Boosting would also select this
variable!

However, this clearly does not disprove either SingBoost or L2−Boosting since this case is
an extreme one which is unlikely to happen. But it is important to note the strong relation
of correlation- and concordance-based variable selection. Coming back to the proposed strat-
egy in (10.4.4), it is not meaningless since firstly, we do not restrict ourselves to ranking
losses but allow L̃ to be an arbitrary loss function and secondly, experiments showed that
L2−Boosting, SingBoost with the variable selection as in (10.4.4) and SingBoost where we
indeed compared the least squares baselearner models based on each single column with the
current residual actually do not lead to the same empirical column measures.

This may be constituted since correlation and concordance, although being closely related, are
not the same statistical measures of agreement.

10.5 Asymptotic properties of SingBoost

Although SingBoost seems to be quite different from standard L2−Boosting, we are able to
modify the theorems of estimation and prediction consistency (see [Bühlmann, 2006, Thm.
1] resp. [Bühlmann and Van De Geer, 2011, Thm. 12.2]) by adding a so-called Corr-min
condition.

[Bühlmann, 2006, Thm. 1] use the following scheme going back to Temlyakov (Temlyakov
[2000]): For

〈f, g〉(n) := 1
n

∑
i

f(Xi)g(Xi),

i.e., an empirical version of the inner product 〈f, g〉 on the space L2. Bühlmann identifies
L2−Boosting as the iterative scheme

R̂0
nf = f, R̂1

nf = f − 〈Y, g
ĵ1
〉(n)gĵ1 ,

R̂m
n f = R̂m−1

n f − 〈R̂m−1
n f, g

ĵm
〉(n)gĵm ∀m ≥ 2,

(10.5.1)

where gj represents the baselearner w.r.t. variable j (it is assumed that 〈gj, gj〉(n) = 1 for all

176 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

j) and R̂m
n is the empirical residual after the m−th iteration.

For the special case of L2−Boosting, the selected variables are, as described in Bühlmann
[2006],

ĵ1 = argmax
j

(|〈Y, gj〉(n)|), ĵm = argmax
j

(|〈R̂m−1
n f, gj〉(n)|) ∀m ≥ 2. (10.5.2)

So, the only difference between L2−Boosting in SingBoost in the language of the Temlyakov
scheme is the variable selection in the singular iterations, leading to other residuals accord-
ing to (10.5.1). We mimic [Bühlmann, 2006, Thm. 1] and propose the following result for
random design of the regressor matrix:

Theorem 10.5.1 (Estimation consistency of SingBoost). Let us define the model

Yi = fn(Xi) + εi =
pn∑
j=1

βn,jXi,j + εi

for Xi ∈ Rpn i.id. with IE[||X·,j||2] = 1 for all j = 1, ..., pn and error terms ε1, ..., εn that are
i.id., independent from all Xi and mean-centered. Let X denote a new observation which
follows the same distribution as the Xi, independently from all Xi. Assume

(E1) ∃ξ ∈]0, 1[, C ∈]0,∞[such that pn = O(exp(Cn1−ξ)) for n→∞,

(E2) supn
(∑pn

j=1 |βn,j|
)
<∞,

(E3) supj,n(||X·,j||∞) <∞,

(E4) IE[||ε||δ] <∞ for δ > 4
ξ
with ξ from (E1),

(E5) ∃a > 0 ∀m,n ∃C̃ ≥ a :

|〈R̂m−1
n f, g

ĵm
〉(n)| ≥ C̃ sup

j
(|〈R̂m−1

n f, gj〉(n)|). (10.5.3)

Then, denoting the SingBoost model after the m−th iteration based on n observations by
f̂ (m)
n , it holds that

IEX [||f̂mnn (X)− fn(X)||2] = oP (n0)

for n→∞ provided that (mn)n satisfies that mn →∞ sufficiently slowly for n→∞.

10.5. ASYMPTOTIC PROPERTIES OF SINGBOOST 177

Proof. The proof follows the same steps as the proof of [Bühlmann, 2006, Thm. 1]. Lemma
1 of Bühlmann [2006] does not include variable selection and indeed holds for our case.
[Bühlmann, 2006, Lem. 2] also holds since an upper bound of the expression 〈g

ĵm
, gj〉(n) is

used which is independent of ĵm.

Using (E5), equation (6.13) in Bühlmann [2006] changes to

|〈R̃m
n f, gĵm+1

〉| ≥ C̃ sup
j

(|〈R̃m
n f, gj〉|)− (1 + C̃)(2.5)mζnC∗ (10.5.4)

with ζn, C∗ from [Bühlmann, 2006, Lem. 2], on the set An := {ω | |ζn(ω)| < 0.5}. Now, we
have to consider an analog of the set Bn defined on p. 580 in Bühlmann [2006], namely

B̃n := {ω | sup
j

(|〈R̃m
n f, gj〉|) > 2(C̃)−1(1 + C̃)(2.5)mζnC∗}, (10.5.5)

and can conclude that, using (10.5.4), it holds that

|〈R̃m
n f, gĵm〉| ≥ 0.5C̃ sup

j
(|〈R̃m

n f, gj〉|)

on An∩B̃n. That means, we have b = 0.5C̃ ≥ 0.5a > 0 in equation (6.2) of Bühlmann [2006].
This is less than the constant 0.5 established in Bühlmann [2006], but it does not matter as
long as it is bounded away from zero. Then, we get an analog of (6.15) of Bühlmann [2006]
which is

||R̃m
n f || ≤ B(1 +mb2)−b/2(2+b) = o(n0)

for n→∞ provided that mn →∞ as assumed.

On B̃c
n, we proceed in the same manner as Bühlmann [2006] since B̃n can be identified with

the set notated as A(D, bm) in Temlyakov [2000] which supplies a recursive scheme, leading
to the same upper bound as in (6.16) in Bühlmann [2006] since the variable selection is ab-
sorbed when applying the ”norm-reducing property” given in (6.3) in Bühlmann [2006].

The rest of the proof follows exactly the same steps as the proof in Bühlmann [2006] since
ĵm does only appear again when bounding the quantity An(m) = ||R̂m

n f − R̃m
n f ||, but ||gĵm|| is

bounded by one and [Bühlmann, 2006, Lem. 2] holds anyway, delivering the last inequality
on page 580 in Bühlmann [2006].

2

Note that the equality in the second last display on page 579 in Bühlmann [2006] is not correct
and would imply that the residual after the m−th iteration would be most correlated with

178 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

the column selected in this iteration (which clearly had the consequence that L2−Boosting
selected the same variable in each iteration). Replacing ĵm by ĵm+1, inequality (6.13) in
Bühlmann [2006] also slightly changes as well as (6.14) which then proves inequality (6.2) in
Bühlmann [2006].

Remark 10.5.1 (Step size). The proof implicitly assumed the learning rate κ = 1. Of
course, we can follow the same lines as in [Bühlmann, 2006, Sec. 6.3] to extend the main
result to the case of learning rates κ < 1.

Remark 10.5.2. We did not explicitly use the fact that only each M−th iteration is a
singular iteration, i.e., for all other m, nothing changes compared to [Bühlmann, 2006, Thm.
1]. Indeed, asymptotically, the statement of the theorem does not change, only the bound for
finite n would be affected, but we do not see an advantage in a tedious case-by-case-analysis.

The constant a > 0 from the Corr-min condition (E5) was absorbed during the proof when
one forced the sequence (mn)n to grow sufficiently slowly to get an upper bound of order
oP (n0) for ||R̃m

n f ||. However, in the following theorem that is based on [Bühlmann and Van
De Geer, 2011, Thm 12.2], a bit more work is necessary to adapt it to SingBoost, directly
appearing in the convergence rate at the end.

Theorem 10.5.2 (Prediction consistency of SingBoost). Let us define the model

Yi = fn(Xn;i) + εi =
pn∑
j=1

βn,jXn;i,j + εi

for fixed design of the regressor matrix and error terms ε1, ..., εn that are i.id., independent
from all Xi and mean-centered. Let X denote a new observation which is independent from
all Xi. Assume

(P1) The number pn satisfies ln(pn)
n
→ 0 for n→∞,

(P2) The true coefficient vector is sparse in terms of the l1−norm, i.e.,

||βn||1 =
∑
j

|βn,j| = o

(√
n

ln(pn)

)

for n→∞,

(P3) It holds that
1
n

∑
i

X2
n;i,j = 1 ∀j = 1, ..., pn

10.5. ASYMPTOTIC PROPERTIES OF SINGBOOST 179

and
||Xβ||22
n

= 1
n

∑
i

f 2
n(Xn;i) ≤ C <∞

for all n ∈ N,

(P4) The errors are i.id. N (0, σ2)−distributed for all n ∈ N

and the Corr-min condition (E5) of the previous theorem. Then for

mn −→∞, mn = o

(√
n

ln(pn)

)
for n→∞, it holds that

||X(β̂(mn)
n − βn)||22
n

= oP (n0)

as n→∞ where β̂(mn)
n is the coefficient vector based on n observations and after the mn−th

SingBoost iteration.

Proof. We follow the same steps as in the proof of [Bühlmann and Van De Geer, 2011,
Thm. 12.2] which again is based on a Temlyakov scheme as before. First, [Bühlmann and
Van De Geer, 2011, Lem. 12.1] needs to be modified to:

Lemma 10.5.1. If there exists 0 < φ < 0.5 such that

max
j

(|〈R̂m−1f,X·,j〉(n)|) ≥ 2∆nφ
−1(C̃)−1,

then it holds that

|〈R̂m−1f,X·,ĵm〉(n)| ≥ C̃(1− φ) max
j

(|〈R̂m−1f,X·,j〉(n)|),

|〈Y − f̂ (m−1), X·,ĵm〉(n)| ≥ C̃(1− φ/2) max
j

(|〈R̂m−1f,X·,j〉(n)|).

The proof just modifies the proof of [Bühlmann and Van De Geer, 2011, Lem. 12.1] at obvi-
ous places.

The quantities ak and dk defined on page 422 in Bühlmann and Van De Geer [2011] indeed
depend on the selected column, but the inequality in (12.28) in Bühlmann and Van De Geer
[2011] holds as well and since the relationship of ak and dk does not change with the concrete
column selection and since both are bounded from above at the end, the singular iterations do
not affect the proof structure when facing ak and dk.

[Bühlmann and Van De Geer, 2011, Lem. 12.2] has to be modified to:

180 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

Lemma 10.5.2. If there exists 0 < φ < 1/2 such that

max
j

(|〈R̂m−1f,X·,j〉(n)|) ≥ 2∆nφ
−1(1− φ/2)−1(C̃)−1,

then it holds that

am ≤ am−1 − (1− φ)d2
m.

The proof also follows the same lines as the proof of [Bühlmann and Van De Geer, 2011,
Lem. 12.2]. As we see in the following steps, it would not be meaningful to absorb C̃ (or a)
already in φ.

(12.33) in Bühlmann and Van De Geer [2011] changes to

dk ≥
(1− φ/2)ak−1C̃

bk−1

and instead of (12.34) in Bühlmann and Van De Geer [2011], we get

akb
−2
k ≤ ak−1b

−2
k−1(1− C2

φak−1b
−2
k−1C̃)

with Cφ as in Bühlmann and Van De Geer [2011]. Instead of Bn(m) in (12.36), we define

B̃n(m) :=
m⋂
k=1
{max

j
(|〈R̂k−1f 0, X·,j〉(n)|) ≥ 2(C̃)−1φ−1(1− φ/2)−1∆n}

and, analogously to (12.37) in Bühlmann and Van De Geer [2011], we conclude that

amb
−2
m ≤ ||β0

n||−2
1 (1 + C2

φmC̃)−1.

Inequality (12.38) in Bühlmann and Van De Geer [2011] is modified to

am ≤ am−1

(
1− DφdmC̃

bm−1

)
where we define

D̃φ := (1− φ)(1− φ/2)C̃

so that C̃ gets absorbed. One may ask if one could proceed also with Dφ, but then the third-last
display on page 424 in Bühlmann and Van De Geer [2011] would require

1 +Dφdm/bm−1 −DφdmC̃/bm−1 −D2
φd

2
mC̃/b

2
m−1 ≤ 1

which is not evident (note that the same recursion for the bm as in [Bühlmann and Van
De Geer, 2011, p. 424] is valid). Maybe one could distinguish between the case where the
inequality holds, i.e., where

C̃ ≥ 1
1 +Dφdmbm−1

10.5. ASYMPTOTIC PROPERTIES OF SINGBOOST 181

holds and the other case, but we do not see any advantage.

However, we can also apply Temlyakov’s lemma [Bühlmann and Van De Geer, 2011, Lem.
12.3] and get

a2+Dφ
m ≤ (1 + C2

φmC̃)−D̃φ

as analog to the last inequality on page 424 in Bühlmann and Van De Geer [2011]. The bound
C
−2D̃φ
φ ≤ 2 is still valid and we get the inequality

a2+D̃φ
m ≤ 2m−D̃φ

on the set B̃n(m).

On the complement of B̃n(m), we follow exactly the same steps as in Bühlmann and Van
De Geer [2011], resulting in the factor (C̃)−1 before the first summand of the right hand side
in the last display on page 425.

Finally, we get

||R̂mf ||2(n) ≤ max
(

2m−
(1−φ)(1−φ/2)C̃

2+(1−φ)(1−φ/2)C̃ , 2(C̃)−1φ−1(1− φ/2)−1∆n(||βn||1 +mγn) +m∆n

)
with γn as in (12.30) in Bühlmann and Van De Geer [2011].

Using the fact that φ and Dφ are fixed, that γn = OP (n0) and ∆n = OP
(√

ln(pn)/n
)
and

invoking (P2) and the assumptions on (mn)n, we asymptotically conclude that

||R̂mf ||2(n) = oP (n0).

2

Remark 10.5.3. The last line in the proof of theorem 10.5.2 means that although the con-
vergence rate is indeed slower for a fixed n due to the constant C̃ that enters the exponent
resp. that enters as factor in the arguments of the maximum, we asymptotically do not
lose anything compared to L2−Boosting when performing SingBoost!

Remark 10.5.4. Again, we did not perform a case-by-case-analysis w.r.t. m using that
only each M−th iteration is a singular iteration. However, since we get a bound for each
||Rmf ||2(n), we do not see any advantage in distinguishing cases w.r.t. m here.

Remark 10.5.5 (Discussion of the Corr-min condition (E5)). We admit that we do
not know if the Corr-min condition excludes some loss functions to be used as target loss L̃.
Assuming for the moment that we had a Gradient Boosting algorithm for L̃ or maybe even

182 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

another learning strategy that selects variables which lead to a good (still training!) perfor-
mance w.r.t. L̃, then we generally cannot guarantee that these variables, although improving
the performance, are strongly enough correlated with the current residual to satisfy the Corr-
min condition.

This is already true if one concerns quantile Boosting. If one uses the implementation of
quantile Boosting in the package mboost by using either QuantReg() or, in the case of
L1−Boosting, Laplace() as family object, then one faces the issue that only the intercept
is being selected in some (or even in all) iterations. Therefore, if we based SingBoost on
quantile Boosting, there would have been no chance to justify the Corr-min condition as long
as selecting only the intercept is allowed.

But in fact, the SingBoost algorithm always uses simple least squares models as baselearners
which are directly based on the correlation of the current residual with each single variable.
Therefore, if we have variables that are (nearly) perfectly uncorrelated with the current resid-
ual, then the resulting coefficient would be (in a very close neighborhood of) zero. Although
we cannot exclude this case, it would be very unlikely that such a quasi-zero-baselearner would
pass the rejection step and enter the SingBoost model.

Remark 10.5.6. Until here, we motivated the application of L2−Boosting as basis algorithm
for SingBoost with the computational performance, see 10.3.9. Now, we see that L2−Boosting
is indeed a very good candidate algorithm to serve as the underlying algorithm in SingBoost
to get a solid theoretical foundation.

Remark 10.5.7 (Variable selection consistency). In contrast to the Lasso for which
there exist results on variable selection consistency requiring a beta-min condition and an
irrepresentability condition (see Bühlmann and Van De Geer [2011]), Vogt [2018] recently
showed that even if the regressor matrix satisfies the restricted nullspace property, i.e., the
intersection set of the nullspace of X and the cone

C(S, L) := {β ∈ Rp | ||β(S0)c ||1 ≤ L||βS0||1}

is just the element 0p, L2−Boosting is not variable selection consistent. They pro-
vided an example for a regressor matrix with the restricted nullspace condition but where
L2−Boosting reliably selects the wrong columns.

However, the proof is based on the fact that L2−Boosting always selects the variable which
is most correlated with the current residual vector. It is not evident that SingBoost would
always fail on their example for each loss function L̃.

10.6. COEFFICIENT PATHS FOR SINGBOOST 183

10.6 Coefficient paths for SingBoost

Implementations of sparse learning algorithms like the Lasso or the elastic net are capable
to supply the user with a regularization path of the coefficients, like in the package glmnet
(Friedman et al. [2010]). Those paths show the evolution of the coefficients for different val-
ues of the regularization parameter λ, more precisely, in the cited package, one can (amongst
other options) let the values of the non-zero coefficients be plotted against the natural log-
arithm of the sequence of regularization parameters (in an ascending order, i.e., the paths
evolve from the right to the left). We already mentioned the concept of stability paths for
Stability Selection in the R−package stabs (Hofner and Hothorn [2017], Hofner et al. [2015],
Thomas et al. [2018]) in section 2.3.

For Boosting, similar coefficient paths are available in the package mboost. Since Boosting
does not incorporate a regularization parameter, those Boosting coefficient paths are given
by the values of the (non-zero) coefficients vs. the current Boosting iteration. Clearly, since
only one variable, not counting the intercept, changes in one Boosting iteration, the coeffi-
cient paths, except one, are flat when jumping from on iteration to the next.

Since coefficient or stability paths are a very useful graphical tool for visualizing the be-
haviour of the model, it is desirable to plot the coefficient paths for SingBoost in a similar
fashion. The difficulty in the implementation is not how to handle the coefficients in the
singular iterations but how to extract the evolution of the coefficients from the output of
glmboost when performing the L2−Boosting iterations.

We briefly list some details:

1.) We start with an empty matrix coeffpath with two rows and columns as many as the
Boosting iterations. In each iteration, we want to insert the fitted coefficient in the first row
in the respective column and in the second row, the variable name has to be inserted as a
dictionary for later plotting.

2.) We use the command coef(res,aggregate=’none’) after running glmboost to get a list
with as many elements as non-zero coefficients, including the intercept. Each list element is a
vector having as many entries as the number of iterations. For each iteration, the computed
variable enters as the corresponding component in the vector in the respective list, so most
entries of these vectors are zero. In other words, the m−th components is zero for all but one
list (not counting the intercept list), for all m = 1, ...,miter. We extract the relevant entries
corresponding to the (M − 1) Boosting iterations of glmboost as well as the variables that
have been chosen in each iteration.

184 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

3.) We implemented the function path.singboost which is just SingBoost but where the
coefficients paths are saved. The reason why we essentially copied the singboost implemen-
tation is that we will perform a Stability Selection later, so the coefficient paths of the single
SingBoost models are useless in this context, but the computation (though just consuming
very little time) cannot be easily avoided.

4.) Getting the matrix coeffpath as part of the path.singboost output, we can apply the
function singboost.plot to obtain the plotted coefficient paths. In the latter function, we
determine the number of different non-zero coefficients, not counting the intercept, generat-
ing a list containing as many empty lists as the respective number, each indicated with one
of the variable names. For each variable, we fill the components of the respective matrix
corresponding to the iteration number in which the coefficient has been updated with the
computed coefficient, resulting in a similar structure as in the output of glmboost.

5.) We let path.singboost also report the intercept path, but do not intend to plot it
since it may differ from the one of L2−Boosting even if we perform L2−Boosting using
singboost. By default, using the plot command for an mboost object draws the path of the
intercept disregarding the offset value which indeed can be avoided using the extra argument
off2int=TRUE which results in adding the offset value to the intercept. However, there is no
sense in defining a cutoff for SingBoost, so the cutoff computed by glmboost is already con-
tained in the SingBoost intercept, therefore we avoid confusion by not plotting the intercept
path when running singboost.plot, besides that we do not think the intercept path to be
interesting at all. Nonetheless, we think that reporting the fitted intercept is more reasonable
than the intercept in the glmboost output which is not the intercept used for prediction, but
differs from it by the offset value. See again 10.3.13.

6.) We essentially just need three input arguments (mod refers to a path.singboost model) :

s i n g b o o s t . p l o t (mod ,M, m_iter)

The coefficient paths in figure 10.3 have been drawn using the plot command in the package
glmboost. The coefficient paths in figure 10.4 were generated by our function singboost.plot
on the same data set and with the same configurations as in glmboost (especially setting
singfamily=Gaussian()).

Remark 10.6.1 (Behaviour of coefficient paths). One may ask if the coefficient paths,
not regarding the intercept path, are always monotonic. This is not true. One can easily get
non-monotonic coefficient paths when using a high step size in L2−Boosting. The reason is

10.6. COEFFICIENT PATHS FOR SINGBOOST 185

Figure 10.3: Coefficient paths for L2−Boosting

Figure 10.4: Coefficient paths for SingBoost

186 CHAPTER 10. SINGULAR PARTS OF COLUMN MEASURES

that large step sizes lead to a fast de-correlation of the variables with the residuals. Once
the correlations are very close to zero, a sign change is possible and if the variable whose
sign has changed becomes the most correlated variable in an absolute sense with the current
residual, its coefficient path will lose the monotonic behaviour. There is some literature where
the (non-)monotonicity of coefficient paths for stage-wise procedures has been discussed (see
Efron et al. [2004], Tibshirani [2015], Ehrlinger et al. [2012]). As for the effect of the step
size, Rosset et al. [2004] emphasize that a smaller step size just causes the non-monotonicity
to occur later than with a low learning rate.

Remark 10.6.2. Since SingBoost just potentially selects different variables but the compu-
tation of the coefficients is the same as in L2−Boosting, SingBoost coefficient paths can be
non-monotone due to the same reasons, and the non-monotonicity can also occur in singular
iterations.

10.7 Conclusion

This chapter provided deeper insights into (sparse) model selection, especially for the case
that the solutions of algorithms based on different loss functions have to be compared. We
have seen that domination and singular parts similarly can be defined for the corresponding
empirical column measures. Moreover, we provided arguments that this phenomenon is a
standard issue when applying sparse model selection procedures.

We provided and implemented the ”gradient-free Gradient Boosting” algorithm SingBoost
that combines standard L2−Boosting and rejection sampling to account for loss functions L̃ 6=
L2. We showed that the SingBoost algorithm is also applicable for ranking problems although
the loss functions do not satisfy the regularity requirements that are needed for Boosting
and provided coefficient paths for SingBoost and discussed how the coefficient updates of
L2−Boosting and SingBoost are performed, including the case where the loss function is not
a strictly monotonically increasing function of the absolute value of the residual.

As a theoretical foundation of SingBoost, we provided asymptotic results on estimation and
prediction consistency even in very high dimensions (the number of predictors is allowed to
grow (nearly) as fast as exp(n)) that are based on similar results provided by Bühlmann for
L2−Boosting. We have seen that these results require an additional Corr-min condition for
SingBoost which we think is not too strict for our L2−Boosting-based algorithm due to the
direct dependence of the coefficients on the correlation with the residual.

It remains to investigate how the models proposed by SingBoost have to be worked with.

Part IV

Column Measure Boosting, its
variants and applications

187

188

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

189

This both conceptual and theoretical part combines SingBoost with Stability Selection and,
more abstractly, the concept of row measures and column measures.

So far, we developed the algorithm SingBoost that may select variables that L2−Boosting
does ignore. But just applying one SingBoost model and taking the computed empirical
column measure does not suffice since this empirical column measure is not yet sufficiently
adapted to the target loss L̃, not yet sparse enough and - as Boosting or Lasso models gen-
erally are - highly unstable.

To fix the first problem, we aggregate several empirical SingBoost column measures in a
special manner to better account for L̃ and to stabilize the empirical singular part. In fact,
this ”Column Measure Boosting” (CMB) reweights the priority of the selected variables, so
we essentially perform a change of measure.

For cases in which the target loss L̃ is expensive to evaluate, we provide an idea for multi-step
approaches to combine sampling from empirical column measures and optimization.

After reweighting, our aggregated column measure will be sparsified and stabilized by per-
forming a modified Stability Selection where either the threshold for the selection frequencies
or the number of final variables is computed by a grid search and optimization w.r.t. L̃.
The whole algorithm will be called CMB-3S. We connect the column measure with the row
measure which leads to a so-called ”Row column measure (RCM) framework” in which we
can exactly embed all learning algorithms with univariate response or without response. We
propose a systematic overview of learning algorithms which can be related to sparsity, sta-
bility and robustness properties.

To assess the quality of CMB-3S which itself runs on a single subset of the data, one clearly
needs to compute some cross-validated error. Mimicking the notation in the R−package
glmnet, we will refer to the combination of cross validation and CMB-3S as CV.CMB-3S.

At the end, we list some directions for future research concerning CMB-3S.

190

Two-Stage CMB Multi-Stage CMB?

Best Subset CMB

Sampling from a column measure

Random Lasso

Singular parts

SingBoost

Column Measure
Boosting (CMB)

Aggregated
column measure ν̂L

L̃

Aggregated
row measure ζ̂L

L̃

Empirical
row measures

Empirical
column measures

Row-Column-Measure (RCM) framework

Induced row and
column measures

Example: SLTS

CMB-3S

CV.CMB-3S

Grouped variables Weighted ranking?

Loss-based Stability Selection

Cross validation

Chapter 11

Aggregating SingBoost models

This chapter starts with the algorithms called Random Lasso (Wang et al. [2011]) and Block-
Forest (Hornung and Wright [2018]) which already follow the paradigm of sampling from
empirical column measures.

As a conceptual contribution, we show that a single SingBoost model is not sufficient since
although the singular steps are already based on L̃, a subsequent Stability Selection may
delete possibly detected variables from singular parts. Therefore, we essentially need some
reweighting according to the loss L̃ which leads to a change of measure, based on special
weights that we use to compute an aggregated empirical column measure. This algorithm
will be called ”Column Measure Boosting” (CMB).

We use the idea of sampling from an empirical column measure at the end of this chapter
and propose a two-stage strategy to accelerate CMB if the evaluation of the loss L̃ is com-
putationally expensive which may be extended to a multi-stage procedure.

11.1 The Random Lasso

Stable variable selection in a high-dimensional setting has been considered in Wang et al.
[2011]. Their intention was to fix two major weaknesses of the Lasso, namely its property to
choose in general at most one predictor when facing highly correlated variables which may
not be appropriate in microarray data. Secondly, in such very high-dimensional data with
only a few observations, the limitation of the Lasso to select at most n predictors may lead
to models that are too sparse for this application area. They proposed an algorithm that
overcomes these issues.

191

192 CHAPTER 11. AGGREGATING SINGBOOST MODELS

In fact, Wang et al. [2011] introduced a two-stage procedure which they called the Random
Lasso. In the first stage, there are B Bootstrap samples generated from the data (according
to the row measure ζ init = U({1, ..., n})) and for each of the samples, one randomly picks
some of the columns (say, from a prior uniform column measure νinit). Then, a Lasso is
applied, providing coefficients β̂(b,init)

j . These coefficients are used to compute a measure of
importance for each variable which in this case is

ν̂
(L2)
j = 1

B

∣∣∣∣∣∑
b

β̂
(b,init)
j

∣∣∣∣∣ .
Note that ν̂(L2) can be seen as an empirical column measure corresponding to the
squared loss. The intuition behind the definition of this measure is that relevant predic-
tors usually get coefficients bounded away from zero in each run where the corresponding
columns have been chosen. On the other hand, noise variables get rather low coefficients or
even coefficients with different signs on different Bootstrap samples so that their importance
measure will be low, especially when they nearly compensate each other in the sum.

The second stage again starts by generating B Bootstrap samples from the data according
to the same row measure ζ init, but instead of using some uniform prior column measure,
one draws columns from the column measure ν̂(L2) computed in the first stage
and applies the Lasso to the reduced data! Referring to those coefficients as β̂(b), the final
coefficients are computed by bagging (Breiman [1996]), i.e.,

β̂j = 1
B

∑
b

β̂
(b)
j .

According to Wang et al. [2011], one may replace the Lasso in the second stage by an Adap-
tive Lasso.

Experiments on microarray data in Wang et al. [2011] show that this Random Lasso can
both select more than n predictors and that it can simultaneously choose different highly
correlated variables, but assigning appropriately different coefficients to them in contrast to
algorithms like the elastic net (Zou and Hastie [2005]).

We referred to this related work because the Random Lasso explicitly works with an
empirical column measure and therefore perfectly fits into our framework. Additionally,
sampling columns is a technique that we will use in section 11.5.

On the other hand, the Random Lasso is adapted to the squared loss and thus not applicable
to some other loss L̃. Obviously, Wang et al. [2011] could not use the relative selection
frequency as importance criterion like in Stability Selection (Meinshausen and Bühlmann
[2010]) since it depends on the random sampling scheme of the columns.

11.2. BLOCK FORESTS 193

Remark 11.1.1. Taking the averaged coefficient as importance measure seems to be promis-
ing and clever. However, we do not see any possibility to adapt this criterion such that it
depends on the loss function L̃ and therefore, we do not see how we could generalize the
Random Lasso to other losses like the hard ranking loss.

11.2 Block forests

Note that reducing data by drawing columns is also done by Random Forests (Breiman
[2001]) where for each split, the optimal splitting variable is chosen to be optimal from only
a few randomly selected predictors instead of all predictors. The fitted trees on different
Bootstrap samples are then aggregated by bagging (Breiman [1996]), i.e., by averaging the
predictions for regression or by following the majority vote in classification settings. In fact,
the random selection of a subset of columns can be identified with sampling from a prior
uniform column measure without replacement.

Hornung and Wright [2018] compared different RandomForest-type learning algorithms for
so-called multi-omics data. A priority-based approach is to distribute block-specific weights
or even different weights within the blocks for variables which are randomly chosen in ad-
vance for each tree to account for the difference in the importance of information of the
blocks. The variant RandomBlock selects one block and variables from only this block to
enforce that the different trees are based on different variables in order to profit from the
randomization and to get de-correlated trees. The combination of all approaches is referred
to as BlockForest, i.e., let every block enter with probability 0.5 each (if no block is chosen,
repeat) and then sample only variables from the selected blocks to compute a tree on the
reduced data.

A major difference of the Random Lasso and Block Forests is that the column measure from
which variables are randomly chosen in the second stage of the Random Lasso is already an
empirical column measure which has been computed by aggregating Lasso models. Block
Forests do not include such a step, so the column measures from which samples are drawn
need to be chosen by cross validation (or maybe even by incorporating expert knowledge).

In fact, let L be the number of blocks (or groups) where each block contains pl variables. Note
that in algorithms that respect a block-wise structure as the Group Lasso (Yuan and Lin
[2006]), the Sparse-Group Lasso (Simon et al. [2013]) or BlockForest, a block-wise structure
of the regressor matrix as well as of the coefficient vector is given, i.e., we have

194 CHAPTER 11. AGGREGATING SINGBOOST MODELS

β =
L⊗
l=1

β(l), X = (X(1), ..., X(L)),

with β(l) ∈ Rpl and X(l) ∈ Rn×pl for l = 1, ..., L, see also section 6.2.1 for block structures.

However, as the sampling scheme for BlockForeset is indeed as two-stage procedure, a simple
block-wise structure of some column measure does not suffice here. More precisely, we have
to work with a block column measure which is essentially the same as a column measure
but which works with blocks in the same sense as the column measure works with columns.
In our notation, we have

νblock : ({1, ..., L},P({1, ..., L}))→ ([0, L], IB ∩ [0, L]),

i.e., νblockl is the probability of selecting block l, that is, all columns that correspond to block
l. After having sampled blocks in BlockForest, one proceeds by sampling from usual initial
column measures νinit,l, l = 1, ..., L.

Remark 11.2.1 (Block-wise column and row measures). The partition into different
block-specific column measures and block measures is necessary due to the sampling scheme
in BlockForest. In the ”usual” setting where predictors may appear as groups like in the case
of categorical predictors, we can similarly define column measures with a block-wise structure
provided that either a whole group is selected or not by setting

ν =
L⊗
l=1

ν(l) (11.2.1)

where the ν(l) are based on the sets {j(l)
1 , ..., j(l)

pl
} and where j(l)

k represents the column indices
of the l−th group, so j(l)

k 6= j
(m)
h ∀k 6= h or l 6= m.

But this notation clearly has the disadvantage that the ν(l) are no longer measures for pl > 1
since the additivity does not hold since we essentially have a relation like

ν(l)({j(l)
1 , ..., j(l)

pl
}) = ν(l)(J)

for any J ⊂ {j(l)
1 , ..., j(l)

pl
} which is true due to the perfect dependency that either all variables

from a group are selected or none.

This issue does not appear in BlockForest since the selection probabilities within the blocks
are independent.

The block measure that we introduced above exactly accounts for this dependency since it
either selects a whole block or not.

11.3. HAS L̃ ALREADY BEEN RESPECTED APPROPRIATELY? 195

The same concept would be necessary when working with block row measures ζblock, for
example when performing some kind of cluster sampling. It is essentially the same strategy
as for blocks of columns, i.e., we need block row measures that select a whole block of rows
and then we maybe need block-specific row measures to select observations from the blocks,
respectively.

Finding a suitable theory for working with block-wise column measures and block-wise row
measures may be a topic for future research.

11.3 Has L̃ already been respected appropriately?

As briefly shown in sections 2.3 and 2.4, Stability Selection is a sophisticated strategy to
reduce the number of false positives that have been chosen either by Boosting or by a Lasso-
type algorithm. In fact, one generates a number B of subsamples of the data according to
some row measure ζ init, fits a Boosting or Lasso-type model on each of them and defines an
appropriate aggregation of the selected models computed on each subsample.

A naïve way to derive this would be to exactly copy the Stability Selection, i.e., to draw
subsamples, to compute a SingBoost model on each of them (perhaps until q variables are
chosen in each model) and to use the same variable aggregation procedure as for the original
Stability Selection by replacing the empirical column measures with 0/1−column measures
and computing their empirical mean.

But this would not reflect our goal appropriately. Firstly, setting the number of variables
selected in each Boosting model to q would be counterproductive when trying to find addi-
tional predictors in the singular steps and would need some balancing of the frequency M
of singular iterations, the number miter of iterations and q. Secondly, we have a Boosting
procedure for the loss L2, but we want to solve a structural risk minimization problem
w.r.t. the target loss L̃. This loss function L̃ can easily (or at least in a reasonable time)
be evaluated, but fails to have a corresponding Boosting algorithm, e.g. due to the lack of
differentiability. Up to now, L̃ only appears in the singular iterations whereas the rest of the
Boosting is still an L2−Boosting. But this does not guard against cases where the singular
iterations did not provide (new) useful variables.

Motivated by this issue, we need to modify SingBoost by evaluating the whole model again
w.r.t. L̃. In other words, a score needs to be assigned to each model that has been computed

196 CHAPTER 11. AGGREGATING SINGBOOST MODELS

on a subsample and our final variable selection must rely on these scores. The next section
addresses to the following question:

How can we suitably aggregate the models to a final model using these scores?

11.4 Column Measure Boosting: SingBoost aggregation

Definition 11.4.1. To emphasize that SingBoost intends to respect the singular parts JL2
L̃
, we

will denote the empirical column measure fitted by SingBoost on the subsamples D(sing,b,train)

by (ν̂L2
L̃

)(b), respectively for each b = 1, ..., Bsing.

The question remains how to evaluate these models. We already denoted the subsamples by
D(sing,b,train), insisting that there will be Bsing test sets as well. We think of these test sets
D(sing,b,test) as the rows that are not contained in D(sing,b,train). This gives us an opportunity
to test the out-of-sample performance of each of the SingBoost models w.r.t. L̃.

Let Ŷ (sing,b,test) be the prediction of the Y−column of the test set D(sing,b,test) based on the
model f̂ (b) which has been trained on the respective training set D(sing,b,train). Then, we define
the scores assigned to each model as

ŝ(b) := L̃(Y (sing,b,test), Ŷ (sing,b,test)). (11.4.1)

These scores are used to aggregate the selection frequencies of the variables represented by
the empirical column measures (ν̂L2

L̃
)(b). Of course, models that have performed better w.r.t.

L̃ should get a higher weight than those which have a rather bad out-of-sample performance.
One may think of two strategies to combine the empirical column measures:

i) Take the best relative part of around α of the models and assign equal weight to all models
in this quantile. Then, we get weights

ŵ(b) = I(ŝ(b) ≤ (ŝ(b))dαBsinge:Bsing). (11.4.2)

As for the notation, writing xi:n for some vector x of length n indicates that we refer to the
i−th smallest component.

11.4. COLUMN MEASURE BOOSTING: SINGBOOST AGGREGATION 197

ii) Assign a weight to each of the best models which is anti-proportional to the respective
losses, i.e.,

ŵ(b) := dαBsinge
(ŝ(b))−1I(ŝ(b) ≤ (ŝ(b))dαBsinge:Bsing)∑
b(ŝ(b))−1I(ŝ(b) ≤ (ŝ(b))dαBsinge:Bsing)

. (11.4.3)

Remark 11.4.1. By assumption 2.1.1, it is unlikely to face zero losses in practical applica-
tions. However, discrete-valued losses like the hard ranking loss may be zero with a probability
greater than zero. Therefore, we recommend to use the weights in (11.4.2) if such a loss is
chosen as target loss L̃.

In the last step, we only need to aggregate the empirical column measures according to the
weights, so we get an aggregated column measure

ν̂L2
L̃

=
(

1
dαBsinge

∑
b

ŵ(b)I((ν̂LL̃)(b)
j > 0)

)p
j=1

. (11.4.4)

Actually, this is nothing but the relative part of the best models in which the j−th variable
is contained, respectively. We use this aggregation instead of a simple weighted sum because
the overall selection frequency of variables in potential singular parts is clearly limited from
above where the bound depends on M . Thus, a simple weighted sum would not reflect the
importance of predictors that are only chosen in the singular steps. Note that we indeed
again used 0/1-column measures in the aggregation step.

We put all these ideas into the following algorithm. Since the computed model at the end is
still unstable but since we can interpret the aggregation as some sort of Boosting iteration
(where not necessarily the best weak model but a set of best models is being selected, see
also part V for further details on that approach) to get an improved approximant of the col-
umn measure ν(L̃) (roughly speaking, the raw SingBoost models may be regarded as ”weak
models”), we call this procedure Column Measure Boosting (CMB) (algorithm 7).

Remark 11.4.2. If there already exists a L̃−Boosting, we replace the step (SING) by a step
(GLMBOOST) which is just standard L̃−Boosting instead of SingBoost to benefit from the
faster glmboost implementation. We will later see that this enables us to use our Stability
Selection for standard Boosting models. Since neither Meinshausen and Bühlmann [2010]
nor Hofner et al. [2015] mention how to compute the final coefficients after having performed
the Stability Selection, we will provide an own strategy in the next chapter. With our imple-
mentation, we can directly apply our Stability Selection to existing Boosting methods as well
as for SingBoost models by altering the sing argument. More details about the flexibility of
our implementation can be found in part VI.

198 CHAPTER 11. AGGREGATING SINGBOOST MODELS

Remark 11.4.3. As already announced in section 2.4, we do not choose the learning rate
adaptively. We usually set κ := 0.1.

Initialization: Data DCMB ∈ Rncmb×(p+1), number Bsing of subsamples, initial row
measure ζ init := U({1, ..., n}), number nsing < ncmb of training instances used for the
subsamples, binary variable sing, variable wagg for the type of weight aggregation,
level α, binary variable robagg and lower bound 0 ≤ lower; other hyperparameters
as in SingBoost (algorithm 6);
for b = 1, ..., Bsing do

Draw a subsample D(sing,b,train) ∈ Rnsing×(p+1) from the data according to ζ init.
The non-selected rows form the test data D(sing,b,test);
if sing==TRUE then

Step (SING): Perform SingBoost on D(sing,b,train) with the given input
parameters and get model f̂ (b) and empirical column measure (ν̂L2

L̃
)(b);

else
Step (GLMBOOST): Perform standard Gradient Boosting on D(sing,b,train)

w.r.t. L̃ with the given input parameters and get model f̂ (b) and empirical
column measure (ν̂(L̃))(b);

end
Step (CoM): Compute the scores ŝ(b) as in (11.4.1);
Compute the weights ŵ(b) either as in (11.4.2) or (11.4.3)

end
if robagg==T then

Step (ROB): Winsorize score vector ŝ according to lower
end
Step (W-AGG): Compute the aggregated column measure ν̂L2

L̃
as in (11.4.4);

Algorithm 7: Column Measure Boosting

Remark 11.4.4 (Stabilization of the singular part). CMB mimics in some sense the
Stability Selection since models based on Bsing subsamples from the data are aggregated.
However, the resulting model is clearly neither sparse nor stable yet, but one can think of
CMB as an L̃−adapted stabilization of the singular part JL2

L̃
. We recommend to use

Bsing < B subsamples for reasons of computational feasibility. However, it may not be
necessary to set Bsing > 1 if we 0/1-transform the computed empirical column measure as in
(11.4.4), but we will see in the next chapter that using Bootstrap samples generally may be
beneficial when encountering contamination.

Remark 11.4.5 (Inliers). The step (ROB) should partially guard against contamination,
i.e., if there are inliers in the data that let a model appear as being too well-suited and

11.4. COLUMN MEASURE BOOSTING: SINGBOOST AGGREGATION 199

therefore get a very low score which leads to a very high weight when using the weights as in
11.4.3. An upper bound for winsorization is obsolete as we only focus on the dαBsinge models
with the smallest scores.

Remark 11.4.6 (Bootstrapping vs. subsampling). We used subsamples of the data.
Algorithmically, one could also think about using Bootstrap samples, i.e., each row can be
selected more than once. Our motivation for using subsamples arises from the goal to solve
the hard ranking problem. As we have seen in remark 6.1.1, the computation of the hard
ranking loss gets difficult if our response vector contains ties which would clearly be the very
likely in Bootstrap samples. Aside from this issue, we want to let our algorithm resemble
standard Stability Selection that also uses subsamples instead of Bootstrap samples.

Remark 11.4.7. To better understand which input arguments have to be inserted , see the
following command line to apply CMB on a data set DCMB where the best 3 of 10 SingBoost
models with hard ranking singular iterations that are computed on subsamples containing 80
observations of DCMB are aggregated, per default as in 11.4.2 and without winsorizing:

CMB(D, ns ing =80, Bsing =10, a lpha=0.3 , s ing fam=Rank () , eva l fam=Rank () , s i n g=T, LS=T)

For further details on the meaning of evalfam, see part VI.

Remark 11.4.8. We admit that it may look strange to use just one test set resp. just
one partition of the data into a training and a test set for the SingBoost models in Column
Measure Boosting. We will see later that this issue gets overlain by an overriding partitioning
scheme (see especially section 12.4).

Remark 11.4.9 (Parallelization). We admit that this algorithm can be time-consuming
(especially as long as singboost is not implemented sophistically, see section 10.3), de-
pending clearly on the number Bsing. However, since all models are computed separately on
different subsamples, we could parallelize it, i.e., distribute these calculations on differ-
ent independent computational cores and gather the results. The same is true for standard
Stability Selection which has been implemented by Hofner in the R−package stabs in a par-
allelized manner. Exemplary for a parallelized algorithm, we provide the pseudocode for the
parallelized Column Measure Boosting (without referring again to the extra features like the
(ROB) step) in algorithm 8.

Note that the distribution of the index sets requires some kind of dictionary so that each score
reported by each core can be uniquely identified with one of the index sets. Of course, the
respective packages in R satisfy these requirements.

200 CHAPTER 11. AGGREGATING SINGBOOST MODELS

Initialization: Data DCMB ∈ Rncmb×(p+1), number Bsing of subsamples, initial row
measure ζ init := U({1, ..., n}), number nsing < ncmb of training instances used for the
subsamples, binary variable sing, variable wagg for the type of weight aggregation
and level α; other hyperparameters as in SingBoost (algorithm 6);
for b = 1, ..., Bsing do

Draw a subsample i(sing,b,train) from the row indices {1, ..., n} according to ζ init;
end
(Step Prll): Distribute the index sets to cores C1, ..., Cz such that core k gets bk
index sets, ∑k bk = Bsing;
for k = 1, ..., z do

for l = 1, ..., bk do
Form the sets D(sing,b,train) and D(sing,b,test) according to the corresponding
index set;
Apply SingBoost;
Get the empirical column measure (ν̂L

L̃
)(l,k);

Compute the score ŝ(l,k)

end
Gather all scores as in (11.4.1) and report the score vector ŝ(k) := (ŝ(l,k))bkl=1;

end
Gather the scores from each core;
Compute the weights ŵ(b) either as in (11.4.2) or (11.4.3);
Step (W-AGG): Compute the aggregated column measure ν̂L2

L̃
as in 11.4.4;

Algorithm 8: Parallelized Column Measure Boosting

11.5 If the loss is very expensive to evaluate...

A key assumption to keep the computational complexity of SingBoost as stated in lemma
10.3.1 and remark 10.3.15 was that the loss function L̃ is easy to evaluate. Each M−th
SingBoost iteration requires evaluating the target loss p times, letting the combined costs
may get very high.

Can one think of another way to get the singular parts by avoiding cumbersome
evaluation?

In other words, we still want to use L2−Boosting, but somehow need to include variables that
this algorithm does not select. Having the techniques of Random Forests (Breiman [2001])

11.5. IF THE LOSS IS VERY EXPENSIVE TO EVALUATE... 201

and Random Lasso (Wang et al. [2011]) in mind, this leads to the following sampling idea:
In each singular iteration, get a realization ui, i = 1, ...,M , from the initial column measure
νinit ∼ U({1, ..., p}) and fit the baselearner w.r.t. the corresponding variable.

So we replaced the rejection sampling step from the original SingBoost where we took the
variable whose baselearner granted the best improvement, evaluated in L̃, with a simple sam-
pling step where we randomly choose one variable in each singular iteration.

The heuristic behind this idea is that in the cases where we have chosen variables which are
relevant for the loss L̃, the resulting performance on the test set is well enough for the whole
model being selected by the aggregation step in CMB. But in fact, this approach is not yet
meaningful.

Since the probability for each variable to be chosen is always p−1, the expected number of
singleton samples that we need until every variable has been chosen at least once is pHp where
Hp is the harmonic series up to summand p since we face a coupon collector problem.
More precisely, let s0 be the number of true nonzero coefficients. Then the probability that
this strategy yields a model where at least one of those variables is included is clearly

1−
(
p− s0

p

)M
.

But on the other side, the probability that we do not include any noise variable in the model
is just

p̃ =
(
s0

p

)M
which is extremely small even with standard parameters. For example, this quantity is around
10−13 for p = 200, s0 = 10, M = 10. Therefore, this approach implies the risk that select-
ing noise variables nullifies possible advantages in out-of-sample performance when including
relevant variables (even from the assumed singular part JL2

L̃
) in other singular iterations.

These issues can be partially fixed if one generates a realization u from U ∼ U({1, ..., p}) in
advance and then fits a baselearner w.r.t. the column u in each singular iteration.

Then we are in the coupon collector setting regarding the expected number B of subsamples
needed. But again, there is a great issue. Assume for example that p = 1000, Bsing = 10000
(for this sampling strategy, Bsing must clearly be chosen much higher than we would require
for CMB with standard SingBoost) and α = 0.01. If there is a variable which is contained
in the singular part JL2

L̃
such that it cannot be selected by L2−Boosting, then we will only

get this variable in the cases where we draw the respective column. But in fact, with a

202 CHAPTER 11. AGGREGATING SINGBOOST MODELS

probability of 99.5%, we did not draw it in more than 19 cases, thus the variable would at
most get a relative importance of 0.19 and therefore it ultimately gets deleted due to the
cutoff in the subsequent Stability Selection, see next section.

Our final proposal is therefore the following algorithm:

Initialization: Data Dsing, step size κ ∈]0, 1], number miter of iterations, number
M ≤ miter (each M−th iteration is a singular iteration), target loss L̃ (as part of a
family object singfamily), binary variable LS and column index vector u ;
Set

runs =
⌊
miter

M

⌋
Set f̂ (0) := 0;
for k = 1, ..., runs do

Fit the baselearner on the residuals of model f̂ ((k−1)M) w.r.t. the variable
corresponding to column udkM−1e;
Get the weak model ĝ((k−1)M+1) and update the model via
f̂ ((k−1)M+1) = f̂ ((k−1)M) + κĝ((k−1)M+1);

Perform (M − 1) steps of L2−Boosting starting with the residuals w.r.t. the
model f̂ ((k−1)M+1);
Get the updated model f̂ (kM);

end
Algorithm 9: SingBoost-u

So, we directly get the following Best Subset CMB (BSCMB) algorithm:

Initialization: Same as in CMB (algorithm 7);
Same as CMB, but replace step (SING) with
Step (SING-u): Get u and perform SingBoost-u on D(sing,b,train) with the given
input parameters and get the model f̂ (b) and the empirical column measure (ν̂L2

L̃
)(b);

Algorithm 10: Best Subset Column Measure Boosting (BSCMB)

What have we done? We pre-specified a vector u for the columns w.r.t. which the baselearn-
ers in the singular iterations should be computed. As already indicated by the name of the
latter algorithm, we may combine some sort of Best Subset Selection with SingBoost. If for
example we select columns j1 < j2 and set uk = jk(mod2)+1, we may choose all p(p − 1)/2
possible pairs of columns and run SingBoost with the suitable singular iterations. The idea
behind this procedure is that we need to resolve the issue that a relevant variable may not
pass the cutoff in a subsequent Stability Selection. With this pair-wise strategy and with α

11.5. IF THE LOSS IS VERY EXPENSIVE TO EVALUATE... 203

low enough, even singular variables may enter the final model of Best Subset CMB.

Clearly, this approach is only meaningful if L̃ is really expensive because the number of dif-
ferent models needs to be drastically increased to some B̃sing � Bsing, so that Best Subset
CMB is only faster than CMB if the additional computation time that arises due to the large
B̃sing is smaller than the computation time that was needed for evaluating all p simple least
squares baselearners w.r.t L̃ in CMB.

Let us take a closer look on the computational cost of standard CMB and Best Subset
CMB. Let us denote by C(·) a cost operator which represents the computational cost of the
operation in the brackets. Let

M̃ :=
⌊
miter

M

⌋

be the number of performed singular iterations. Then we get

C(SingBoost) ∼ M̃(pC(bl) + pC(evalL̃(nsing))) + (miter − M̃)C(glmboost(M − 1)),

C(CMB) ∼ BsingC(SingBoost) +BsingC(evalL̃(ncmb − nsing))

where glmboost(M − 1) represents (M − 1) steps of L2−Boosting, C(bl) is the cost of fitting
a baselearner and evalL̃(n) emphasizes the cost of evaluating the loss L̃ where both input
vectors have the length n. Minor computations like getting the final weights or the residuals,
generating the subsamples, finding the index of the minimal loss or doing simple assignments
are ignored here.

Similarly, we get

C(SingBoost−u) ∼ M̃C(bl) + (miter − M̃)C(glmboost(M − 1)),

C(BSCMB) ∼ B̃singC(SingBoost−u) + B̃singC(evalL̃(ncmb − nsing))

so that we get

C(CMB)− C(BSCMB) ∼ [pBsing − B̃sing]M̃C(bl)︸ ︷︷ ︸
1©

+ (Bsing − B̃sing)(miter − M̃)C(glmboost(M − 1))︸ ︷︷ ︸
2©

+ (Bsing − B̃sing)C(evalL̃(ncmb − nsing))︸ ︷︷ ︸
3©

+BsingM̃pC(evalL̃(ncmb − nsing))︸ ︷︷ ︸
4©

.

204 CHAPTER 11. AGGREGATING SINGBOOST MODELS

We proceed analyzing each component of the cost gap.

The sign of 1© is undetermined. If one sets B̃sing to p(p−1)/2, then the summand is negative
for large p. Other sampling strategies can also lead the summand to be positive.

2© is clearly negative and represents the extra costs of Best Subset CMB due to the increased
number of baselearners to be computed in the non-singular iterations.

3© is clearly negative, so Best Subset CMB has extra costs concerning the computation of
the loss L̃ on the test set.

4© is, especially for losses that are expensive to compute, the main trigger of computational
costs that are additionally necessary for CMB when performing a rejection step w.r.t. L̃ in
the singular iterations. Due to the factors M̃ and p, its amount can be immense on large
data sets and when performing many singular steps.

Note also that in SingBoost we need to compute M̃p times the baselearner which may be
expensive if the baselearner is costly to compute (which may be the case when fitting non-
linear baselearners, see section 18.1). But on the other hand, due to its computation in each
non-singular iteration, this rather is a disadvantage of Best Subset CMB than of CMB.

To get further insights into which algorithm would be faster, let us assume for the moment
that we can write

C(glmboost(M − 1)) ∼ (M − 1)pC(bl),

i.e., we ignore any other computational costs and only concentrate on the costs for comput-
ing the baselearners. Now one can think of different scenarios concerning the costs of the
baselearners and of the evaluation of L̃.

Example 11.5.1. Assume that the cost of fitting a baselearner on a column with n entries is
C(bl) ∼ n and that the evaluation of L̃ based on two vectors of length n is also proportional
to n, so C(evalL̃(n)) ∼ n. Then we get

C(CMB)− C(BSCMB) ∼ [BsingM̃p− B̃singM̃]nsing

+(Bsing − B̃sing)(M − 1)(miter − M̃)pnsing + (Bsing − B̃sing)(ncmb − nsing)

+BsingM̃p(ncmb − nsing)

= nsingB
sing[(M − 1)(miter − M̃)p+ M̃p] +Bsing(ncmb − nsing) +BsingM̃p(ncmb − nsing)

−nsingB̃sing[(M − 1)(miter − M̃)p+ M̃]− B̃sing(ncmb − nsing)

11.5. IF THE LOSS IS VERY EXPENSIVE TO EVALUATE... 205

∼ nsingpB
sing[(M − 1)(miter − M̃) + 2M̃]− nsingpB̃sing[(M − 1)(miter − M̃)]

since the difference (ncmb − nsing) can be considered to be low in comparison to p, hence we
see that in general, i.e., for B̃sing � Bsing, this quantity is negative.

Example 11.5.2. Let everything be as in the previous example except that we assume here
that C(evalL̃(n)) ∼ n2. Then we similarly get a cost difference proportional to

nsingpBsing

[
(M − 1)(miter − M̃) + M̃ + M̃

(ncmb − nsing)2

nsing

]

−nsingpB̃sing[(M − 1)(miter − M̃)]

which may be positive since the last summand in the first angular brackets can be the leading
term for large ncmb and therefore a considerable difference (ncmb − nsing). So, if we perform
many singular steps and if we have a data set where nsing > p, the additional costs when
letting the algorithm run B̃sing � Bsing times is more than compensated due to the expensive
loss L̃.

Remark 11.5.1. In the two scenarios like in the examples but where we assume that comput-
ing a baselearner causes costs proportional to n2, the loss differences are negative in general.
That means that even in the case where the loss function L̃ is expensive to evaluate, the
additional cost for computing the baselearners in the non-singular steps for B̃sing � Bsing in
Best Subset CMB is more relevant.

Remark 11.5.2. In Best Subset CMB, it maybe suffices if one samples sufficiently often
from the set

{(j1, j2) | j1, j2 ∈ {1, ..., p}, j1 < j2}

to avoid vast computational costs for really high-dimensional data.

One may ask if one could apply some two-stage procedure to avoid sampling from the uniform
distribution in order to respect the column measure itself like the Random Lasso of Wang
et al. [2011]. A two-stage algorithm can indeed be a method to decrease the computational
costs for expensive evaluations of L̃. The former may not be realizable since sampling from
the empirical column measure in a second stage would require to approximate it in the first
stage. Therefore, in order to account for L̃, one had to apply CMB less than B times, to
compute the empirical column measure to sample column w.r.t. to this measure in a second
stage and to apply CMB again. Clearly, the computational costs of the later runs are far
lower than for the runs in the first stage due to the reduced number of columns, but since we

206 CHAPTER 11. AGGREGATING SINGBOOST MODELS

need enough statistical evidence in the first stage, B cannot be significantly reduced. More-
over, this requires two parameters that control the fraction of best models to account for L̃,
say, α(1) and α(2), that enter as tuning parameters as well as the proportion of subsamples
in the first and second stage. Additionally, since the second stage performs sampling in the
singular iterations instead of optimization w.r.t. L̃, we suspect that we lose quality compared
to the original CMB.

As for the question if any two-stage procedure could be possible, we may turn the order of
the stages discussed above. Our motivation for preferring the Best 2-Subset Selection over a
Best Singleton Selection was the issue that the final aggregation step in a Stability Selection
would nevertheless delete all relevant variables again that were not chosen by L2−Boosting.

We consider the following algorithm:

Initialization: Same as in CMB (algorithm 7), but with levels α(1), α(2);
for b1 = 1, ..., p do

Same as in CMB, but replace step (SING) with step (SING-u) with u := b1;
Step (CoM): Compute the scores ŝ(b1) as in (11.4.1);
Compute the weights analogously as in ŵ(b1) as in (11.4.2) w.r.t. α(1)

end
if robagg==T then

Step (ROB): Winsorize score vector ŝ according to lower
end
Step (W-AGG): Compute the aggregated column measure ν̌L2

L̃
in the sense of

(11.4.4);
for b2 = 1, ..., Bsing do

Reduce the data to the support of the column measure ν̌L2
L̃
;

Draw a subsample D̃(sing,b2,train) from the reduced data according to the support of
ν̌L2
L̃
. The non-selected rows form the test data D̃(sing,b2,test);

Step (SING): Perform SingBoost on D̃(sing,b2,train) with the given input
parameters and get model f̂ (b2) and empirical column measure (ν̂L2

L̃
)(b2);

Step (CoM): Compute the scores ŝ(b2) as in (11.4.1);
Compute the weights ŵ(b2) either as in (11.4.2) or (11.4.3) using α(2)

end
if robagg==T then

Step (ROB): Winsorize score vector ŝ according to lower
end
Step (W-AGG): Compute the aggregated column measure ν̂L2

L̃
as in (11.4.4)

Algorithm 11: Two Stage Column Measure Boosting (TSCMB)

11.5. IF THE LOSS IS VERY EXPENSIVE TO EVALUATE... 207

Similarly, we can calculate the computational costs in terms of their major triggers. Let p(2)

be the number of columns that have been selected in the second stage, i.e.,

p(2) = #{j | (ν̌L2
L̃

)j > 0}.

Then the costs for TSCMB are of order

C(TSCMB) ∼ p[MC(bl) + (miter −M)C(glmboost(M − 1))] + pC(evalL̃(ncmb − nsing))

+Bsing[Mp(2)C(bl) +Mp(2)C(evalL̃(nsing)) + (miter −M)C(glmboost(M − 1))]

+BsingC(evalL̃(ncmb − nsing)).

If one compares these costs with the costs of CMB and BSCMB with the same parame-
ters, one can conclude that, in general, TSCMB is cheaper than BSCMB if the number of
SingBoost runs in BSCMB is very large compared to p which may be the case for high values
of p. It is hard to determine whether CMB or TSCMB is more expensive if the computa-
tional costs of fitting the baselearner and evaluating the loss are both of order O(n). But
in fact, if the loss is expensive to evaluate, say the costs are of order O(n2), then one can
easily find realistic parameter specifications such that each of them may be superior to the
other, for small values for p as well as for large values of p. We skip tedious calculations here.

Remark 11.5.3 (A multilevel procedure?). We already have proposed a two-stage pro-
cedure that is able to reduce the computational costs of Column Measure Boosting in certain
settings. This may be a starting point to think about another extension. In TSCMB, we
perform two different approaches on each stage, since an optimization w.r.t. L̃ in the singu-
lar steps is only done in the second stage whereas the first stage only respects the target loss
function when finding the best whole models.

In contrast to the relation of precision in the sense of a reduced set of columns and compu-
tational costs where increased precision reduces the cost, the number of singular iterations
is proportionally related to the computational costs. It is evident that a high number of sin-
gular iterations may reflect the structure of L̃ better than a low number M̃ . One faces a
related problem for example in numerical integration where a fine grid dramatically increases
the costs. In this setting, one can strikingly increase the efficiency if one uses a Multilevel
Monte Carlo (MLMC) approximation (see Heinrich [2001]). The idea behind this method is
to combine different degrees of precision (here in the sense of how many nodes are chosen for
interpolation) in order to find an optimal tradeoff between costs and variance.

Transferring this idea to CMB, this would imply to increase the number of singular iterations
in each level which produces an empirical column measure through aggregation and therefore

208 CHAPTER 11. AGGREGATING SINGBOOST MODELS

reduces the number of columns for the next level. However, apart from the practical problem
how to choose the numbers Bsing

l of subsamples and M̃l of singular iterations for each level
l = 1, ..., L, it is debatable if this approach would yield the risk of discarding columns in the
earlier levels due to too few singular iterations that would have been selected if one ran the
algorithm with more singular steps. We leave this open as a direction for future research.

Chapter 12

Interplay of row and column measures

So far, our CMB algorithm delivers us the aggregated relevance of each variable, i.e., an ag-
gregated empirical column measure ν̂L2

L̃
. Choosing a threshold πthr or a number q of variables

for our final model, we could get a sparse set of selected variables. But since the computed
coefficients clearly got lost during the aggregation process, it remains to investigate how we
can get the coefficients for the (few) variables in our final model.

This model is of course not stable since it has been trained on one single subset DCMB of
the data. Thus, we need a modified Stability Selection that finds a stable set of predictors
according to B different CMB models. More precisely, we do not only have to account for
the reported empirical column measures of CMB but also need to tailor the selection to the
target loss L̃.

Traditionally, one first performs model selection, resulting in a set Ŝ of relevant predictors.
Then, standard linear regression on the reduced data DŜ := (X·,Ŝ, Y) is used to estimate the
corresponding coefficients. For example, this procedure is applied when using best subset
selection (see [Friedman et al., 2001, Ch. 3.3]). However, modern model selection algorithms
like Lasso or Boosting already provide reliable coefficients which can be directly used. An-
other method is averaging the coefficients fitted on different Bootstrap samples as done in
the Random Lasso (Wang et al. [2011]).

Concerning models that have been derived by a Stability Selection, it is no longer that ev-
ident how the final coefficients for the predictors in the stable resulting model should be
computed. Note that neither Meinshausen and Bühlmann [2010] nor Hofner et al. [2015]
provide any recommendations for that. Averaging coefficients does not make any sense since
the coefficients were fit for generally more than q variables, if q represents the number of
selected predictors after the Stability Selection. We assume that one just applies the tradi-
tional algorithm corresponding to the respective loss function on the reduced data set, i.e.,

209

210 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

using all rows but only the columns corresponding to the stable predictor set.

For our setting, it is again more difficult since we do not even have a simple standard al-
gorithm to compute a model according to L̃ on the reduced data. One may ask if Column
Measure Boosting could be seen as a pre-processing step to apply the CRank algorithm of
Clémençon and Achab [2017] on the reduced data. This has to be negated since the intention
of this work is to remedy some of the weaknesses of tree-type algorithms that we already
discussed in section 5.5. Furthermore, especially if we assume a linear underlying model,
there is no need to use trees as they would only cause that effects of single predictors to be
less interpretable than in a linear regression model.

We will see in this chapter that we even got more information from Column Measure Boosting
than we concerned about yet. We present the algorithm CMB-3S which takes L̃−adapted
empirical row and column measures into account and produces a stable predictor set as well
as final coefficients.

As a computational tool, we also provide an algorithm (which we call CV.CMB-3S) that
computes the cross-validated error according to the target loss and an ”ultra-stable” empiri-
cal column measure.

In light of our RCM framework, we try to find a systematization of sparse learning algorithms
in order to get deeper insights into the relation of sparsity, stability and robustness.

At the end, we show some possible extensions of our CMB-3S algorithm for particular situ-
ations that we did not yet treated.

12.1 A modified, loss-based Stability Selection

Note that CMB still leads to a possibly non-sparse and unstable empirical column
measure. The first step is to randomly split the data set into a training set Dtrain and
a validation set Dvalid. Then, we draw B subsamples D(CMB,b) from Dtrain and perform
Column Measure Boosting on them, resulting in empirical aggregated column measures.
These measures are averaged and form an empirical column measure (ν̂L

L̃
)CMB with a little

abuse of notation (see the pseudocode 16 of our final algorithm where we again spell out each
step with appropriate sub- and superscripts). This aggregated column measure is the analog
of the aggregated column measure ν̂(L) in Hofner’s Stability Selection (algorithm 5).

12.1. A MODIFIED, LOSS-BASED STABILITY SELECTION 211

We propose the following strategy: We either only take all variables whose corresponding
component of (ν̂L2

L̃
)CMB exceeds some threshold πthr, or we rank the components in a de-

scending order and take the first q ones. Thus, we produce one of the final sets of selected
predictors

(ŜL2
L̃

)stab(q) := {j | (ν̂L2
L̃

)CMB({j}) ≥ (ν̂L2
L̃

)CMB
(p−q+1):p} (12.1.1)

(ŜL2
L̃

)stab(πthr) := {j | (ν̂L2
L̃

)CMB({j}) ≥ πthr} (12.1.2)

where the notation with the sub- and superscript already emphasizes that these sets are

produced by our algorithm, cf. the notation in Meinshausen and Bühlmann [2010].

Remark 12.1.1 (Discussion of q). Note that the usage of q is quite different in our context
than in Hofner’s Stability Selection. While the latter lets each Boosting algorithm run until
q variables have been selected, we think of q as the number of final variables for the following
two reasons. If we run SingBoost until it selects q variables, the variable set reported by
CMB has at least q variables, so we could not control the number of variables that enter the
Stability Selection. Secondly, due to the rather expensive computation, we need to avoid the
case that our Stability Selection just ends up in having chosen no variable at all costs. This
can indeed be controlled by treating q as the final number of variables, see also part VI for
further details and issues that the Stability Selection from stabs can face.

Until now, we did not specify the parameters q or πthr. Although Meinshausen and Bühlmann
[2010] and Hofner et al. [2015] recommend not to give too much attention to the cutoff πthr
as long as it falls into a reasonable interval, we propose to ensure that the Stability Selection
that we perform is adapted to the loss function L̃.

We choose either q or πthr by cross validation, or more precisely, by a grid search, by using
a validation data set Dvalid ∈ Rnval×(p+1) that is drawn in advance from the given data set D
to adjust either the parameter q or πthr by comparing the out-of-sample performance w.r.t.
L̃ of the respective models.

In the case of adjusting q, we need a reasonable subset of N which clearly satisfies

qgrid ⊂ {1, 2, ...,#{j | (ν̂L2
L̃

)CMB
j > 0}}. (12.1.3)

In the case of adjusting πthr, we discretize a reasonable interval (w.l.o.g. the one suggested
in Hofner et al. [2015], but with the boundaries, i.e. [0.5, 1]) according to some mesh size

212 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

∆ > 0, so we get the grid

πgrid = {0.5, 0.5 + ∆, ..., 1−∆, 1}. (12.1.4)

Remark 12.1.2. Setting ∆ = 0.05 seems to be a reasonable compromise between the fineness
of the grid and the computational time. However, maybe it is possible to choose ∆ in an
adaptive fashion.

Remark 12.1.3 (Another Stability Selection variant?). The Stability Selection of
Hofner (Hofner et al. [2015]) is based on Boosting models that are iterated until q predictors
are chosen and counting just the number of Boosting models in which a particular variable
has been selected. The intention behind this strategy is that very relevant variables tend to
be selected early, so iterating too long will cause noise variables to enter the Boosting models.

On the other hand, this Stability Selection ignores how often a variable has been cho-
sen in the Boosting models. Assume that each Boosting algorithm has miter iterations.
Then the Boosting models are prone to include noise variables, but their relative selection
frequency can be considered to be rather low. Therefore, simply taking the arithmetic mean
of the selection frequencies over all Boosting models can indeed lead to a similar empirical
column measure such that a suitable cutoff defines a stable model which is comparable to the
stable models that are computed by Hofner’s Stability Selection.

As for the computational time, Hofner’s Stability Selection is clearly better in the case of
strong signals, i.e., high signal-to-noise ratios, since the relevant variables generally enter
the models quickly. As we will see in part VI (and have already seen in example 10.2.1), a
low signal-to-noise ratio can severely irritate the Boosting models, especially for other losses
than the squared loss, so Hofner’s Stability Selection fails and requires to even increase the
iteration number until the Boosting models finally indeed select q variables. Therefore, this
strategy to enforce a selection of q variables can be a restriction in both directions, i.e., that
very few Boosting iterations are performed as well as the number of iterations has to be man-
ually modified.

However, when concerning SingBoost models, only counting the relative selection frequency
would be disadvantageous for variables which can only be detected in singular iterations since
their selection frequency is bounded from above in advance according to the proportion of the
number of singular iterations and miter. Therefore, it is necessary to find a way to adapt the
Stability Selection to SingBoost.

Since we assume that this kind of Stability Selection can be promising but since it may be more

12.1. A MODIFIED, LOSS-BASED STABILITY SELECTION 213

suitable to be combined with standard Boosting models rather than with SingBoost models, we
do not pursue this idea any further in this work but leave this open for future work.

Our ideas from above result in the following algorithm which we call CMB-3S as acronym
for ”Column Measure Boosting with SingBoost and Stability Selection”:

Initialization: Data Dtrain, Dvalid, size ncmb of subsamples, binary variable
gridtype, grid, hyperparameters as in algorithm 7;
for b=1,...,B do

Draw a subsample DCMB ∈ Rncmb×(p+1);
Perform Column Measure Boosting on DCMB and get an aggregated empirical
column measure;

end
Step (SUB-AGG): Average the B column measures and get the aggregated
empirical column measure (ν̂L2

L̃
)CMB;

Step (STAB):
if gridtype==’qgrid’ then

for k = 1, ..., |qgrid| do
Get the stable model (ŜL2

L̃
)stab((qgrid)k) according to 12.1.1;

Compute the coefficients on the reduced data

D(train,k) = Dtrain(ŜL2
L̃

)stab((qgrid)k)

and get the loss (L̃n)(valid,k) on the validation data Dvalid
end

else
for k = 1, ..., |πgrid| do

Get the stable model (ŜL2
L̃

)stab((πgrid)k) according to 12.1.2;
Compute the coefficients on the reduced data

D(train,k) = Dtrain(ŜL2
L̃

)stab((πgrid)k)

and get the loss (L̃n)(valid,k) on the validation data Dvalid
end

end
Choose the model corresponding to kopt = argmink((L̃n)(valid,k));
Step (COEF): Get final coefficients

Algorithm 12: CMB-3S

Remark 12.1.4. According to Hofner et al. [2015], it suffices to set B to 100 as it has

214 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

been done in Meinshausen and Bühlmann [2010]. This seems to be also appropriate for our
algorithm. So, we mimic the implementation in the package stabs (Hofner and Hothorn
[2017], Hofner et al. [2015], Thomas et al. [2018]) where this is referred to as ”Meinshausen-
Bühlmann sampling scheme” which is the default (sampling.type=’MB’). We do not regard
sampling disjoint subsamples as proposed by Shah and Samworth [2013] which nevertheless
is available in stabs (sampling.type=’SS’).

Remark 12.1.5. The major difficulty and the main difference between our Stability Selection
and the Stability Selection proposed in Meinshausen and Bühlmann [2010] or Hofner et al.
[2015] is that we perform an optimization of either q or πthr whereas the cited Stability
Selections choose πthr in advance. Since we actually want to optimize L̃, it is most natural to
compare the out-of-sample performances w.r.t. L̃. This is the reason why we had to separate
the set Dvalid in advance. The procedure in the stability iterations is basically the same as
in the stability iterations in the standard Stability Selections. We also compute our (CMB)
model on a subsample of the data and get an (in our case aggregated) empirical column
measure which is aggregated at the end. The non-selected rows in each stability iteration are
ignored, as in the cited references.

Remark 12.1.6 (Singlar parts revisited). It is very important to remind that even if
the true column measures ν(L) and ν(L̃) were equivalent, i.e., there do not exist singular
parts, and even if the empirical column measures ν̂(L)

n and ν̂(L̃)
n were equivalent, there would

be no guarantee that the stable sets were the same due to the different mass distributed to
the relevant predictors. That means that even the selection of the true coefficients in real
applications, i.e., for finite n, is insufficient for the equality of stable predictor
sets.

12.2 Final coefficients and CV.CMB-3S

We did not yet reveal how we compute the coefficients. There are several reasonable ap-
proaches, but one of them will require more theoretical background which we discuss in this
section.

12.2.1 Induced empirical row measures

In definition 9.7.1, we emphasized that the empirical column measure that we get from our
algorithm essentially depends on the initial row measure ζ init which has been used for subsam-

12.2. FINAL COEFFICIENTS AND CV.CMB-3S 215

pling. In our former examples concerning empirical row measures, especially in the context
of robust statistics (examples 9.5.2, 9.5.3), they solely depended on some empirical loss, i.e.,
the row measures may be thought of being induced by the coefficients.

This is not the whole truth yet for robust learning procedures with model selection from
which kind we shortly analyze the already mentioned algorithms FRB (Salibián-Barrera and
Van Aelst [2008]), see also example 9.5.3, and SLTS (Alfons et al. [2013]). FRB with model
selection effectively performs Best Subset Selection combined with FRB. In other words, one
starts with an initial 0/1-column measure νinit and applies the FRB algorithm as usual,
but on the reduced data, resulting in an empirical row measure ζ̂ for each choice of νinit.
Therefore, ζ̂ is an empirical row measure induced by a column measure, so one may write
ζ̂(νinit) which we will suppress if possible. Note that Salibián-Barrera and Van Aelst [2008]
also provided a backward subset selection strategy which may be identified with adaptively
choosing initial column measures such that the number of columns to which a zero is assigned
increases by one in each step.

Even more interesting for our row column measure (RCM) framework is the SLTS
algorithm which is a sparse variant of the usual LTS (”Least Trimmed Squares”) going
back to Rousseeuw (Rousseeuw [1984]). While LTS searches for the best ”clean” subset
H ⊂ {1, ..., n} such that the least squares model based on the rows corresponding to H and
all columns provides the smallest L2−loss, the SLTS algorithm replaces the least squares fits
with Lasso fits. Since the algorithm works iteratively, one can state it in our language in the
following form:

Initialization: Data D, hyperparameters λ, h;
Set k = 0;
Get set H0 and the corresponding empirical row measure ζ̂(0);
while not converged do

Compute a Lasso model on the rows defined by ζ̂(k−1) and get coefficients β̂(k) and
the corresponding empirical column measure ν̂(k);
Find the set Hk of size h to which the rows resulting in the smallest h
(unpenalized) squared residuals belong. Get the corresponding empirical row
measure ζ̂(k);

end
Algorithm 13: SLTS

Note that SLTS starts with different initial subsets H0 which are based on the rows belonging
to the smallest h residuals of an initial Lasso fit on three randomly selected (from a uniform
initial row measure ζ init) instances. Despite SLTS can be identified as a limit case of the
general RCM framework, it is an exemplar of sophisticatedly constructing a learning model

216 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

based on an adapted interplay of empirical row measures and column measures.

Remark 12.2.1 (RCM pairs). In general, we want to construct learning algorithms that
provide RCM pairs resulting in mappings of the form

(i, j) 7→ (ζ̂i, ν̂j), i = 1, ..., n, j = 1, ..., p. (12.2.1)

SLTS is a limit case in the sense that both the final empirical row measure as well as the final
empirical column meausure are 0/1−valued which means a hard decision in the sense that a
row or column enters the model or not.

12.2.2 Computing the coefficients of CMB-3S

Inspired by the RCM framework, we take a closer look at CMB and reveal that we indeed
have empirical row measures that are induced by empirical column measures.

In CMB, we compute the weights in the sense of (11.4.2) or (11.4.3) for each fitted model.
Since the model is clearly represented by its coefficients and the empirical column measure,
it implicitly also depends on the selected rows. More precisely, the b−th model is based on
the set

I(b) = {i(b)1 , ..., i(b)nsing}

and we assign a weight ŵ(b) based on the score ŝ(b) according to (11.4.1) to it. Similarly to
the empirical column measure ν̂L2

L̃
from CMB as in (11.4.4), we can compute an aggregated

empirical row measure by

ζ̂L2
L̃

({i}) := 1
dαBsinge

∑
b

ŵ(b)I(i ∈ I(b)) (12.2.2)

so that ζ̂L2
L̃
∈ Rncmb where we emphasize again with the notation that it is based on L2, but

L̃−adapted.

Therefore, we propose the following modification of CMB:

Same as Column Measure Boosting (algorithm 7);
Step (W-AGG): Compute the aggregated column measure ν̂L2

L̃
as in (11.4.4) and

the aggregated row measure ζ̂L2
L̃

as in (12.2.2)
Algorithm 14: CMB with empirical row measures

Remark 12.2.2. Since the empirical column measures essentially depend on the initial row
measure ζ init, an accurate notation would be ζ̂L2

L̃
(ν̂L2
L̃

(ζ init)) which we will suppress in the rest
of the thesis whenever it is not absolutely necessary.

12.3. THE CHOICE OF M 217

Thus, we already have L̃−adapted row weights in the sense that a high row weight indicates
that the computed coefficients based on these rows are well-suited w.r.t. L̃. Therefore, one
of our recommendations of how to compute the coefficients of CMB-3S is weighted least
squares with the weights according to the aggregated row measure (ζ̂L2

L̃
)CMB averaged by

the B CMB models on each subsample of Dtrain.

More formally, let

pk := |(ŜL2
L̃

)stab(∗k)|

for ∗ ∈ {qgrid, πgrid}. Then, for any k ranging from 1 to the cardinality of the grid, we
compute

β̂WLS,k := [(X train

·,(ŜL2
L̃

)stab(∗k))
T (ŴL2

L̃
)−1X train

·,(ŜL2
L̃

)stab(∗k)]
−1(X train

·,(ŜL2
L̃

)stab(∗k))
T (ŴL2

L̃
)−1Y train (12.2.3)

where

ŴL2
L̃

:= diag((ζ̂L2
L̃

)i).

We also keep the option of computing unweighted least squares models. Then we just have

β̂LS,k := [(X train

·,(ŜL2
L̃

)stab(∗k))
TX train

·,(ŜL2
L̃

)stab(∗k)]
−1(X train

·,(ŜL2
L̃

)stab(∗k))
TY train (12.2.4)

Since the first variant is just L̃−adapted in the sense of a row measure, we propose a third
variant which is even more adapted to the target loss L̃, i.e., we apply SingBoost again on
the reduced data, i.e.,

(X train

·,(ŜL2
L̃

)stab(∗k), Y
train) SingBoost7−→ β̂sing,k (12.2.5)

Since the reduced data is usually rather small, the costs of this last SingBoost step are low,
so we propose to use M final < M for the singular iteration frequency.

Finally, the decrypted CMB-3S algorithm looks as in algorithm 15.

12.3 The choice of M

So far, we did not make any recommendation for the choice of M . As we have seen, a single
SingBoost model is in general neither stable nor sparse, so approaches like cross validation do
not seem reasonable at that stage. Moreover, since CMB only reports an empirical column
measure but no coefficients, there is no chance to perform cross validation for CMB.

218 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

The only chance that we have is to compute a cross-validated performance of the CMB-3S
models. Maybe it would already be suitable to perform the cross validation on a CMB-3S
model based on one single partition of the data (see section 12.4 for more details) to get
an intuition if the data set with the particular choice of L̃ requires many singular iterations
or not to save computational time compared to a cross validation with whole CV.CMB-3S
procedures.

Initialization: Same as in 12, additional binary variables useZeta and singcoef,
frequency M final;
Same as in CMB-3S until step (STAB);
if singcoef==TRUE then

Compute the coefficients in step (STAB) according to (12.2.5)
else

if useZeta==TRUE then
Compute the coefficients in step (STAB) according to (12.2.3)

else
Compute the coefficients in step (STAB) according to (12.2.4)

end
end
Step (COEF): if singcoef==TRUE then

Compute the final coefficients in the sense of (12.2.5) on D(train,kopt)

else
if useZeta==TRUE then

Compute the final coefficients in the sense of (12.2.3) on D(train,kopt)

else
Compute the final coefficients in the sense of (12.2.4) on D(train,kopt)

end
end

Algorithm 15: CMB-3S with coefficients

Meinshausen and Bühlmann [2010] already introduced stability paths for the Lasso Stability
Selection. These stability paths are understood, similarly as coefficient paths, as the (empir-
ically estimated) probability that a variable j is selected by the Lasso, in dependence of the
regularization parameter λ. These stability paths provide a useful visualization that directly
clarifies which variables will be chosen for which cutoff. Note that in the case of Lasso Stabil-
ity Selection, a variable is included in the stable set if for any λ, the corresponding empirical
selection frequency exceeds the threshold, i.e., if the stability path intersects with the graph
of f(λ) ≡ πthr anywhere or if it is even located above this graph everywhere, i.e., for all λ in
the grid Λ.

For Boosting with Stability Selection (Hofner et al. [2015]), there also exist stability paths

12.3. THE CHOICE OF M 219

which describe the relative selection frequency in dependence of the number miter of Boost-
ing iterations. More precisely, for each m = 1, ...,miter, the value of the stability path of
variable j corresponding to m is the relative selection frequency of variable j, averaged over
all B models, if the respective Boosting models were artificially truncated after the m−th
iteration.

For SingBoost, stability paths are problematic since they make no difference between a stan-
dard iteration and a singular iteration. Moreover, the stability paths of Meinshausen and
Bühlmann [2010] and Hofner et al. [2015] illustrate, in our language, the empirical column
measure which enters the Stability Selection which would not be true for CMB-3S since
a CMB column measure enters the Stability Selection and no SingBoost column measure.
Therefore, an analog to stability paths for CMB-3S would be the relative selection frequencies
of the variables after CMB which indeed enter the Stability Selection.

Since the selection of variables of a potential singular part itself depends on the frequency
M of singular iterations performed in SingBoost, our CMB stability paths must depend
on M , so we need some grid Mgrid. We propose indeed to plot the components of |Mgrid|
different empirical column measures provided by CMB on the same subsamples but with
different M ∈Mgrid against the elements of Mgrid.

Admittedly, these plots do not look nice since the CMB column measures are in general
not yet sparse. The heuristic intuition behind the singular stability paths is that for a high
frequency of singular parts, i.e., for decreasing M , we get more chances to detect variables
from singular parts, i.e., there may exist some paths in the plot that evolve from the right to
the left.

To save computational time, it may indeed suffice to think of a compromise between sta-
bility paths and coefficient paths. Since we are primarily interested in detecting singular
parts, we propose to draw B subsamples from the data and to perform several SingBoost
models on each subsample, with different M , respectively. We define SingBoost stabil-
ity paths in the sense that we plot the aggregated relative selection frequencies against
the frequencies of the singular steps. Although the aggregated selection probabilities are
not 0/1−normed and there is no chance to distinguish between noise variables and relevant
variables (which we tried to partially achieve in CMB by taking only the variables from the
best models w.r.t. their out-of-sample performance), the shape of these SingBoost stabil-
ity paths can be a useful indicator for singular parts (when some paths increase from the
right to the left) and is computationally rather cheap, compared to the CMB stability paths.

See figures 12.1 and 12.2 for an example with L̃ = L1.

220 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

Figure 12.1: CMB stability paths on a data set with p = 25, n = 150 and L̃ = L1

Figure 12.2: SingBoost stability paths on a data set with p = 50, n = 250 and L̃ = L1

12.3. THE CHOICE OF M 221

Remark 12.3.1 (Monotonicity). Note that our stability paths are non-monotonic since
they describe the evolvement of the relative selection frequencies for sequences of values of
M . In contrast, the stability paths for Boosting (see Hofner et al. [2015]) are monotonically
increasing since the Boosting-specific relative selection frequency is not accounted for but only
the indicator if a variable is contained in the model is used. More precisely, if a variable had
been chosen by l of the Boosting models in the first k−th iterations, it clearly has also been
chosen by at least l of the Boosting models in the first k̃ > k iterations.

Remark 12.3.2 (Measuring a similarity of loss functions). Throughout this thesis, we
assumed that there are potential singular parts between column measures of loss functions L
and L̃ in the sense that the corresponding true column measures are not equivalent.

We postulate that the approximation of a measure ν(L̃) that is ”more similar” to ν(L2) than
ν(L) requires less singular iterations in SingBoost. The CMB stability paths, the SingBoost
stability paths and the cross validation w.r.t. M are initial heuristic methods to get a closer
look on the necessary degree of adaption to the target loss function in order to reasonably
perform the change of measure.

If we were able to determine this kind of similarity between loss functions through the sim-
ilarity of their corresponding column measures in advance (probably given a particular data
set), we could optimize L̃ by using only very few singular steps, i.e., the loss in performance
w.r.t. L2−Boosting would be rather low. If one even knew that the column measure w.r.t. a
standard loss function L dominates the column measure w.r.t. L̃, we could replace SingBoost
by L−Boosting and only perform the change of measure in CMB and the L̃−adapted Stability
Selection without having to perform any singular iteration.

Once similarity quantifications were available, one could even think of clustering loss func-
tions in the sense that the loss functions from a cluster have no or negligible singular mass.
Then one could define some representant or centroid loss function which is the computation-
ally cheapest.

Remark 12.3.3 (Sequences of loss functions). We already mentioned Sparse Boosting
(Bühlmann and Yu [2006]) where the best variable in each iteration is determined by a pe-
nalized L2−loss, leading to possibly different choices. Let us assume the case that L̃ is very
difficult to evaluate, but that there is some loss function Ľ which is close to L̃ in the sense of
the previous remark. Then it could be beneficial to use Ľ in the most singular iterations, but
to also use L̃ itself in a very few iterations to even respect minor singular mass of ν(L̃) w.r.t.
ν(Ľ). An extension would be to define a whole sequence of loss functions that approximate L̃.

222 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

12.4 Stabilized Stability Selection and cross validation

The CMB-3S algorithm is already completed by the techniques stated in the previous sub-
section and the previous section. But the whole algorithm is still based on one partition into
Dtrain, Dvalid and Dtest of the data D.

In order to reasonably compare the performance of CMB-3S to the performance of a com-
petitor algorithm, we need numerous different partitions of the data in the sense of cross
validation. This leads to the following CV.CMB-3S algorithm. To make it perfectly clear
which objects we have at each step, we spell out all sub- and superscripts that we previously
suppressed (see algorithm 16 and figure 12.3). Due to space constraints, we skip the (ROB)
step.

Remark 12.4.1. Computing the cross-validated hard ranking loss of a final model which is
based on the hard ranking loss with already specified parameters nsing, ncmb, Bsing, B and
α, with defaults for M , miter and κ and with a Stability Selection based on a π−grid with a
pre-specified grid grid and a given allocation of partitions into training, validation and test
data represented by an object CVind and with final coefficients computed by SingBoost where
each second iteration is a singular iteration would be done by the following command line:

CV.CMB3S(D, ns ing=nsing , Bsing=Bsing ,B=B, a lpha=alpha , s ing fam=Rank () , eva l fam=
Rank () , s i n g=T, LS=F, wagg=wagg , g r i d t y p e=’ p i g r i d ’ , g r i d=gr id , ncmb=ncmb , CVind=
CVind , t a r g e t f am=Rank () , useZeta=F, s i n g c o e f=T, Mfina l =2)

For further details on its flexibility and the meaning of evalfam and targetfam, see part
VI.

Remark 12.4.2 (Parallelization). When facing a rather complicated loss function L̃ like
a ranking loss, it requires parallelized architecture to run CV.CMB-3S. A parallelization is
evidently possible at each stage, i.e., the inner CMB can be parallelized as already spelled out
in algorithm 8, but also the CMB-3S and the outer cross validation can be parallelized.

Remark 12.4.3 (V−fold cross validation). As usual, the partition into training, valida-
tion and test data does not have to be randomly (though it is recommended to do so to guard
against peculiarities) but can also be done in the sense of V−fold validation where the v−th
fold forms the test data and the remaining rows are similarly split up into folds, thus for
every fixed v, we essentially may have more than one partition into validation and training
data.

12.4. STABILIZED STABILITY SELECTION AND CROSS VALIDATION 223

Initialization: Hyperparameters as in algorithm 15, number V of cross validation steps;
for v=1,...,V do

Get D(v,train) ∈ Rntrain×p, D(v,valid) ∈ Rnval×p and D(v,test) ∈ Rntest×p;
for b = 1, ..., B do

Draw a subsample D(v,b,CMB) ∈ Rncmb×(p+1) from the data according to ζinit;
for bsing = 1, ..., Bsing do

Draw a subsample D(v,sing,b,train) ∈ Rnsing×(p+1) from D(v,b,CMB) according to ζinit. The
non-selected rows form the set D(v,sing,b,test) ;

if sing==TRUE then
Step (SING): Perform SingBoost on D(v,sing,b,train) with the given input parameters
and get model f̂ (v,b,bsing) and empirical column measure (ν̂L2

L̃
)(v,b,bsing);

else
Step (GLMBOOST): Perform standard Gradient Boosting on D(sing,b,train) w.r.t.
L̃ with the given input parameters and get model f̂ (v,b,bsing) and empirical column
measure (ν̂(L̃))(v,b,bsing);

end
Step (CoM): Compute the scores ŝ(v,b,bsing) in the sense of (11.4.1);
Compute the weights ŵ(v,b,bsing) either in the sense of (11.4.2) or (11.4.3)

end
Step (W-AGG): Compute the aggregated column measure (ν̂L2

L̃
)(v,b) in the sense of (11.4.4)

and the aggregated row measure (ζ̂L2
L̃

)(v,b) in the sense of (12.2.2);
end
Step (SUB-AGG): Average the B column measures and get the aggregated empirical column
measure (ν̂L2

L̃
)(v,CMB) and the aggregated empirical row measure (ζ̂L2

L̃
)(v,CMB);

Step (STAB): if gridtype==’qgrid’ then
for k = 1, ..., |qgrid| do

Get the stable model (ŜL2
L̃

)(v,stab)((qgrid)k) according to (12.1.1);
Compute the coefficients on the reduced data D(v,train,k) = D(v,train)

·,(ŜL2
L̃

)(v,stab)((qgrid)k

in the

sense of (12.2.3) , (12.2.4) or (12.2.5) depending on useZeta and singcoef and get the
loss (L̃n)(v,valid,k) on the validation data D(v,valid)

end
else

for k = 1, ..., |πgrid| do
Get the stable model (ŜL2

L̃
)(v,stab)((πgrid)k) according to (12.1.2);

Compute the coefficients on the reduced data D(v,train,k) = D(v,train)
·,(ŜL2

L̃
)(v,stab)((πgrid)k)

in the

sense of (12.2.3), (12.2.4) or (12.2.5) depending on useZeta and singcoef and get the
loss (L̃n)(v,valid,k) on the validation data D(v,valid)

end
end
Choose the model corresponding to kopt = argmink((L̃n)(v,valid,k));
Step (COEF): Compute the final coefficients on D(v,train,kopt) according to (12.2.3), (12.2.4) or
(12.2.5) with M = Mfinal depending on useZeta and singcoef. Call this final model f̂ (v);
Get the test loss L̃(v,test)

n of model f̂ (v) w.r.t. L̃ on D(v,test);
end
Get the cross-validated loss and the ultra-stable column measure according to (12.4.2), (12.4.1)

Algorithm 16: CV.CMB-3S

224 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

Data D ∈ Rn×(p+1)

Partition 1 ... Partition V

D(1,valid) D(1,train) D(1,test)

D(1,1,CMB) ... D(1,B,CMB)

D(1,sing,1,train) ... D(1,sing,Bsing,train)

f̂ (1,1,1) (ν̂L2
L̃

)(1,1,1)

ŝ(1,1,1)

(ζ̂L2
L̃

)(1,1) (ν̂L2
L̃

)(1,1)

SingB
oost

C
olum

n
M
easure

B
oosting

(ζ̂L2
L̃

)(1,CMB) (ν̂L2
L̃

)(1,CMB)

(ŜL2
L̃

)(1,stab)(∗1) (ŜL2
L̃

)(1,stab)(∗k) (ŜL2
L̃

)(1,stab)(∗|grid|)

D(1,train,1) ... D(1,train,|grid|)

Loss (L̃n)(1,valid,1) ... Loss (L̃n)(1,valid,|grid|)

kopt

f̂ (1)

Loss L̃(1,test)
n

C
M
B
-3S

Cross-validated test error Ultra-stable column measure ν̂L2
L̃

SingBoost

Figure 12.3: CV.CMB-3S diagram

12.5. A SYSTEMATIC VIEW OF ν(L2)−APPROXIMATING TECHNIQUES 225

Remark 12.4.4 (Stabilizing the Stability Selection). As already mentioned, the final
model and the final coefficients still depend on the partition of the data set D into training,
validation and test data. If one really wants to stabilize even the Stability Selection, one can
use the computed test losses from CV.CMB-3S as scores for one final aggregation step.

We already have computed the sets

(ŜL2
L̃

)(v,stab)(∗
k

(v)
opt

)

of cardinalities pkopt for ∗ ∈ {πgrid, qgrid} where we denote the optimal element index of the
grid in the v−th loop by k(v)

opt. Combining this with the computed test losses L̃(v,test)
n , we would

finally get an ultra-stable L̃−adapted empirical column measure via

(ν̂L2
L̃

)ultrastable :=
∑
v

1
L̃

(v,test)
n∑

w
1

L̃
(w,test)
n

(I(j ∈ ŜL2
L̃

)(v,stab)(∗
k

(v)
opt

))pj=1 (12.4.1)

which generally is not a 0/1-measure (we may alternatively also take equal weights). Obvi-
ously, the cross-validated test loss w.r.t. L̃ is given by

L̃testn = 1
V

∑
v

(L̃n)(v,test). (12.4.2)

12.5 A systematic view of ν(L2)−approximating techniques

This section again gives an overview of several strategies to approximate the true L2−column
measure ν(L2).

Since we assume thoughout this thesis that the true underlying model is sparse, traditional
models that do not perform variable selection need not to be mentioned here.

12.5.1 Column measure framework ; Group (CM)

Algorithms that fall into this class are those which propose empirical column measures with-
out any resampling of rows. In fact, for the loss L2, we have for example:
i) Best Subset Selection,
ii) Lasso / LAD-Lasso / Huberized Lasso,
iii) Group Lasso,

226 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

iv) Sparse-Group Lasso,
v) L2−Boosting and SingBoost,
vi) Clustering with model selection (with an L2−distance).

This of course does not give any further insights into the similarity of Lasso and L2−Boosting.

12.5.2 Row measure framework ; Group (RM)

Algorithms that fall into the row measure framework need some initial row measure ζ init to
sample from. Algorithms of this kind surely are able to provide aggregated column measures
that are no longer necessarily 0/1-measures. Examples are:
i) Lasso with Stability Selection,
ii) L2−Boosting with Stability Selection.

It is not surprising that aggregating several models leads to a stabilization of the set of
selected variables, but we highlight the fact that stabilizing a column measure is only
possible through row measures.

12.5.3 Row measure framework with random sampling from column measures
; Group (sRM)

Those algorithms form the important subset of (RM)-algorithms that also incorporate ran-
dom sampling from column measures. With the terminology ”random sampling”, we exclude
algorithms like L2−Boosting which performs some kind of ”deterministic sampling” in each
iteration by checking the performance of all p baselearners. Examples are:
i) Random forests,
ii) Block forests,
iii) Random Lasso.

12.5.4 Row column measure framework ; Group (RCM)

This type of algorithm does not only compute several column measures but also provides
some kind of empirical row measures. Examples are:

12.5. A SYSTEMATIC VIEW OF ν(L2)−APPROXIMATING TECHNIQUES 227

i) Sparse Least Trimmed Squares,
ii) FRB,
iii) Tukey-Lasso,
iv) CMB-3S.

Those empirical row measures are not only useful for weighted sampling but also provide
outlyingness evidence or even more precisely, outlyingness w.r.t. some loss function.
Classical outlier detection procedures generally compute some robust distance of each row to
some (robust) centroid in order to detect observations whose robust distance exceeds some
threshold, indicating outlyingness. But for example in linear regression settings, one dis-
tinguishes between ”good” and ”bad” leverage points, so the first type of rows may have a
large robust distance w.r.t. the remaining rows or some ”clean” subset, but they fit to the
regression hyperplane anyway, so outlyingness w.r.t. the squared loss would not be given.
See part V for further insights into robust procedures and their relation to variable selection
strategies.

Modern approaches like FRB and SLTS indeed compare predictions and true responses, let-
ting their empirical row measures get L2−based.

Remark 12.5.1. Even more precisely, the cited robust approaches that are based on residuals
are essentially L−adapted for any loss function L that satisfies

L(y, ŷ) = f(|y − ŷ|) = f(|r|)

for a monotonically increasing function f . As the ranking loss function does not belong to
that class of loss functions (see section 10.4), we cannot anticipate that those techniques from
robust statistics are tailored to ranking losses.

We want to emphasize that it is a quite surprising fact that computing an empirical row
measure requires the induction of this measure by a column measure.

12.5.5 Adding noise to the regressor matrix ; Group (NX)

We would like to mention two techniques that also perform sparse model selection for the
squared loss and therefore propose some column measure, but which manipulate the regressor
matrix itself internally.

228 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

The first algorithm is the Lasso-Zero (lass0) from Descloux and Sardy [2018] that enriches
the regressor matrix with additional noise columns that are meant to fit the error term ε.
They work with the model

Y = Xβ +Gγ

where G is a random matrix. The goal is to solve the Lasso-type problem

min(||β||1 + ||γ||1) s.t. Y = Xβ +Gγ.

The random matrix G is generated randomly several times, so a bunch of Lasso-Zero so-
lutions is provided. Since the noise variables that are presumed to model the error term
should have small coefficients in contrast to the true variables that model the response, the
median of the coefficients is taken and some threshold function is applied to exclude vari-
ables whose median coefficient is too small. Their algorithm provides a 0/1-column measure.

The major difference of Lasso-Zero compared to the algorithms that we already listed is that
the randomness does neither arise from sampling from some row measure nor from sampling
from some column measure but in adding q columns with random entries to the regressor
matrix.

A somewhat different approach is given in Davies and Duembgen [2018] and Davies [2018].
They define

SSJ := ||Y − ŶJ || = ||Y ||2 − ||ŶJ ||2

where J ⊂ {1, ..., p} and where ŶJ is the orthogonal projection of Y onto the column space of
the reduced matrix. Without assuming any distribution for Y , they derived a formula which
allows to compute a p−value for the null hypothesis that all coefficients w.r.t. the columns
in J c are zero by evaluating the F−distribution.

This is used to quantify the importance of each variable. In fact, the authors propose a
Forward Step-wise procedure where the residual sum of squares of the model including all
still chosen variables and one of the remaining variables, say Xj0 , is compared with the
residual sum of squares obtained by replacing all columns corresponding to the yet inactive
variables with white noise and to use the already chosen variables and all noise variables to
determine if the variable Xj0 has more predictive power than the white noise, i.e., if the null
hypothesis that the true corresponding coefficient βj0 is zero can be rejected or not.

12.5. A SYSTEMATIC VIEW OF ν(L2)−APPROXIMATING TECHNIQUES 229

12.5.6 Concluding remarks

Remark 12.5.2. It is obvious that the inclusions (CM) ⊂ (RM) and (sRM) ⊂ (RM) hold.
The group (CM) can be identified as a special case of (RM) where all rows are treated as
”sample”. The major difference of (sRM) and (RM)\ (sRM) is that algorithms of type (sRM)
always compute models on data sets whose columns have been reduced, potentially including
a prioritization of certain columns according to extra knowledge which has been achieved by
aggregation of Lasso models in the case of the Random Lasso or by using cross validation as
in the case of Block forests.

Remark 12.5.3 (Stability vs. robustness). We have seen that ”stability” is essentially
a property of empirical column measures which cannot be achieved but by computing models
on subsampled or bootstrapped data according to some (prior) row measure. More precisely,
stability of an empirical column measure means that its variability is low concerning other
realizations from the same distribution which the pairs (Xi, Yi) follow. Just regarding the
terminology, we face the word ”stabilization” in asymptotic statistics when computing a so-
called variance-stabilizing transformation (using the delta method) of an estimator such that
the asymptotic variance is independent from the estimated value, hence it is stabilized.

In contrast to stability, ”robustness” of a column measure in fact means that its variability is
low even concerning realizations from other distributions. For example in regression settings,
the quantification of outlyingness always requires the knowledge of residuals, so an interplay
of row and column measures is inevitable when trying to robustify a supervised learning pro-
cedure. This is the reason why robustness of regression models is sometimes thought of being
a property of the loss function which is not yet the whole truth since a ”robust loss function”
just truncates the residuals (to some extent) beforehand while concepts of regression MM-
estimators or FRB iteratively propose weighted estimators, resulting in new residual-based
weights (though also depending on robust loss functions). Note again that the Huberized
Lasso just replaces the squared loss with the ”robust” Huber loss function whereas the Tukey
Lasso (see section 3.4) is a stage-wise algorithm that first computes an MM-estimator that
produces weights, so it indeed internally computed empirical row measures!

We can summarize that robustness is a stricter property than stability which has been clarified
by our framework. In fact, the group (RCM) is clearly a subset of the group (RM), but other
inclusions do not hold.

Remark 12.5.4 (Robustness and sparsity). Our systematic view also provides answers
on how robustness and sparsity are related. Again, sparsity is clearly a weaker property of

230 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

an empirical column measure than stability or robustness since even the models from group
(CM) already are able to provide sparse column measures, not accounting for stability nor
robustness.

We can even go deeper into detail: From the perspective of robust statistics, the procedure
proposed by Davies (Davies and Duembgen [2018], Davies [2018]) which replaces columns by
white noise columns can be seen as invoking a dependent contamination model (see 3.3),
but where the dependency does not mean that whole rows are either contaminated or not as
in the classical contamination setting but in the sense that a whole column is contaminated,
so it is evidently a special case of cell-wise contamination.

Therefore, we can state that the cited procedure works well since it implicitly is based on the
relation of sparsity and robustness, i.e., when assuming a sparse underlying model, contami-
nation of cells of the regressor matrix which are not related to the response at all should not
affect an estimator. For further insights, see part V.

12.6 Some possible extensions for future work

Remark 12.6.1 (False positives). We do not provide theoretical results that connect the
number of the variables that are selected in each Boosting model and the threshold πthr with
some quality criterion of the selected set of predictors as Meinshausen and Bühlmann [2010],
Shah and Samworth [2013] or Hofner et al. [2015] do. While the true coefficients are known in
a simulation setting, this is not the case for potential singular parts JL

L̃
which are completely

unknown in advance. Therefore, finding an appropriate criterion can be a topic for future
research. However, we clearly also want to select a subset of the true set S0 of variables, but
the subset that better fits to L̃ instead of L2. Therefore, false positives are the same in our
setting, but the main difference is that the number q does refer to the final variable number
in CMB-3S, so we cannot transfer the results from Hofner et al. [2015] to our setting that
easily.

Remark 12.6.2. SingBoost and therefore CMB-3S is not yet capable to handle grouped
variables. We already mentioned the Boosting variant BlockBoost (see section 2.5) which has
to be transferred to SingBoost. Clearly, the structure is the same, i.e., in the singular steps,
we fit a least squares model (or some other baselearner) which is based on all variables of a
group, resulting in either selecting every variable in the group for a joint update or none of
them.

12.6. SOME POSSIBLE EXTENSIONS FOR FUTURE WORK 231

Taking a closer look on the resulting empirical column measure, we can conclude that all vari-
ables that form a group get the same selection probabilities, therefore the final stable model
either includes the whole group of variables or the group is not represented at all.

Since we were able to represent the column measure on p columns essentially as p−dimensional
vector, incorporating grouped variables leads to some block-wise structure, considering each
non-grouped variable as single block, leading to the situation that we already described in
remark 11.2.1.

Remark 12.6.3 (Weighted SingBoost?). So far, we considered the initial row measure
ζ init as vector of sampling weights. Clearly, if we knew that some instances may be contami-
nated, it is reasonable to downweight them. If those instances are furthermore bad predictors
for the ranking structure, the corresponding empirical row measure ζ̂L

L̃
would be very low for

those instances either. Similarly, imbalanced data may require better initial row measures
than the uniform measure for resampling. But in fact, we did not directly incorporate those
weights in fitting SingBoost models which we also avoided when fitting the final coefficients
with a weighted least squares model according to this empirical row measure.

If one would like to incorporate weights in SingBoost, one should first concern about the
question if weighting is reasonable for ranking losses. Indeed, we propose to define weights
w1, ..., wn (i.e., an initial row measure) with

wi ≥ 0 ∀i,
∑∑
i 6=j

wiwj = n(n− 1)

where the last condition should guarantee that the weighted empirical hard ranking loss

Lw,hardn = 1
n(n− 1)

∑∑
i 6=j

wiwjI((Ŷi − Yj)(Yi − Yj) < 0)

is [0, 1]−standardized. The interpretation is straightforward, i.e., a misranking of two less
important instances does not hurt much.

As for the localized ranking problem, note that the second summand in the localized ranking
loss (see (5.2.5)) already distributed weights wi = I(i ∈ BestK). However, we may face a
conceptual problem: Assuming that some of the best instances actually have low weights, then
it is not evident how one should proceed when fitting a weak or a localized ranking model. This
emphasizes the problem which we face for the continuous localized ranking problem when we
actually want to predict which responses are the highest ones but where we have to be aware
that these responses are not just outliers.

Generally, one could also pose the question if the weights that could be used to provide
weighted L̃−losses in the singular steps should be the same as the ones that are used in
the L2−iterations.

232 CHAPTER 12. INTERPLAY OF ROW AND COLUMN MEASURES

Remark 12.6.4 (The localized ranking problem). Of course, it would be algorithmically
possible to insert the localized ranking loss into CMB-3S. As hyperparameter, we do not insert
a fixed K but the proportion of the best instances, i.e., K/n. But since we were forced to
use this fixed proportion also on the subsamples and especially on the internal test sets, the
whole models would rely on potentially very few observations which destabilizes the algorithm.

To overcome this issue, we recommend for now to solve the hard ranking problem. For com-
parison of those hard ranking models according to some localized ranking loss, one can use
different family objects for singfam, evalfam and targetfam, see part VI for details con-
cerning the flexibility of our algorithms.

Another idea can be to use some sort of weighted hard ranking loss as in remark 12.6.3 where
for Y(1) ≥ ... ≥ Y(n), we would distribute weights satisfying w(1) ≥ ... ≥ w(n) > 0 such that we
still use all observations for fitting. This can be seen as a compromise between the theoretical
results of Clémençon (Clémençon and Vayatis [2007]) for the localized ranking problem and
the hard ranking problem itself. The generalized localized ranking loss would be the same as
the localized ranking loss except for the fact that the hard ranking loss in the first summand
would be replaced by some weighted hard ranking loss.

This would nullify the issue that we do not want to include weights in the L2−iterations of
SingBoost since the weights would only be used for computing the respective ranking losses.

Part V

Extensions of the RCM framework

233

234

235

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

236

High-dimensional ranking and regression is not restricted to the case of univariate responses
which we treated until here. For example, multivariate responses are not uncommon in bio-
logical studies (Wille et al. [2004], Kriegel et al. [2004]). This setting is indeed very interesting
from our column measure perspective since the response columns may have different rele-
vant variables, leading to singular parts between response-column-specific column measures.

The first chapter transfers the concept of singular parts and Stability Selection to the case
of multivariate responses. We will see that ranking problems lead to a so-called consensus
ranking which can be seen as an aggregation of partial rankings. We provide ideas how to
suitably aggregate the empirical column measures in order to get a stable aggregated column
measure representing the importances of the variables w.r.t. the consensus ranking.

We furthermore investigate the multivariate L2−Boosting algorithm of Lutz and Bühlmann
[2006b] and adapt the consistency proof to a prototype multivariate SingBoost variant.

The chapter ends with two lemmas that show that multivariate hard ranking functionals are
k−elicitable and strongly k−elicitable if the response columns are uncorrelated.

The second chapter introduces the cell measure which becomes relevant when performing
sparse covariance or precision matrix estimation.

We continue to show that even outlier detecting algorithms like the DDC procedure and
the Fast-MCD estimator for robust covariance estimation can be embedded into our RCM
framework.

We furthermore identify the Fast-MCD estimator, a classical outlier detecting procedure as
well as the SLTS algorithm as special instances of some Generalized L2−Boosting algorithm
which we propose at the end of the third section.

The last section provides an idea for a stabilization of SLTS in the sense of performing a
Stability Selection for the columns and for the rows. We discuss this Stability Selection for
the rows in the general case and make suggestions how one could combine it with outlier
detecting algorithms or Generalized L2−Boosting.

237

Response-column-specific column measures

Multivariate responseRanking problem Regression problem

Consensus ranking

Stable model

Multivariate
L2−Boosting

MultiSingBoost

Estimation consistency

k−elicitability

Strong k−elicitability

Seemingly unre-
lated regression

Singular parts

RCM pairs

Cell measure Stability Selection for columns

Stable cell set

Stability Selection for cells

Sparse covariance estimation Covariance estimation

Robust covariance estimation

Fast-MCD estimator

Outlier detection

DDC procedure

SLTS

Generalized
L2−Boosting?

Stabilized SLTS?Stability Selection for rows

RCM matrixStable RCM matrix

Coefficient matrix

Chapter 13

Multivariate ranking and regression

The first section of this chapter is devoted to the so-called consensus ranking problem where
the task is to find an overall ranking based on partial rankings. We address to the question
how one could reasonably select an overall set of relevant predictors using our CMB-3S algo-
rithm and takes column measures into account. We will see that the multivariate responses
lead to a new potential source of singular parts between column measures when concerning
column-specific column measures, separately for each response column.

The second section starts with a short recapitulation of the multivariate L2−Boosting algo-
rithm from Lutz and Bühlmann [2006b] which is also capable to handle the case of correlated
responses. We propose a first idea how to construct a multivariate SingBoost algorithm and
show that this algorithm would be consistent even in very high dimensions.

The chapter ends with a very brief review on higher-order elicitability. We show that in the
case of uncorrelated responses, multivariate ranking functionals indeed satisfy the properties
of k−elicitability and strong k−elicitability.

13.1 Consensus ranking

There are many situations where we have partial rankings and want to get a suitable com-
bined ranking based on these partial rankings. Such situations range from the ranking of
websites by different search engines (Dwork et al. [2001]) to the combination of judge grades
in competitions (Davenport and Lovell [2005]) and even to applications in nanotoxicology
(Patel et al. [2013]). The aggregation of the partial rankings gets even more difficult if the
quality of the partial rankers is different (Deng et al. [2014]).

238

13.1. CONSENSUS RANKING 239

Therefore, suppose that the response variable is multivariate, i.e., in this section we have
Y ⊂ Rk, k ≥ 2. Then we can clearly get partial rankings which are rankings for each column
of Y separately. However, since we are actually interested in the ranking of the rows Xi which
in the case of univariate responses just equals the ranking of the Yi, it remains to find an
overall ranking for the Xi in the case that each response column corresponds potentially to a
different ranking. A standard technique to get a so-called consensus ranking is the Kemeny
ranking aggregation (Kemeny [1959]). Having predicted permutations π(r), r = 1, ..., k, for
each column of Y , the goal is to find a overall ranking via

π∗ = argmin
π∈Perm(1:n)

(
k∑
r=1

Lhardn (π(r), π)
)
.

Korba et al. [2017] identified this problem as statistical learning problem since the term in
the brackets is an empirical loss (they even allowed to replace the hard ranking loss by other
distance measures d between permutations). We do not see any reason why a localized or
even weak ranking losses as distance measure should not be allowed which would imply that
the consensus ranking is the permutation that resembles the partial rankings most only con-
centrating on the top of the list. However, there does not seem to be an algorithm yet that
can compute the consensus ranking for arbitrary distance measures between permutations.

Note that Korba et al. [2017] worked with an i.id. assumption of the π(r) which in the case of
a multi-response problem obviously does not need to be true, neither our following assump-
tion that we state for simplicity.

Assumption 13.1.1. Throughout this section, we assume that the response columns are
uncorrelated.

Although there exist algorithms that are able to compute such a consensus ranking, all the
information provided by the predictive models that led to each of the partial rankings, re-
spectively, is lost, i.e., there is no coefficient vector that models the consensus ranking and no
empirical column measure for the consensus ranking. We already referred to this weakness
in the context of ranking forests which required to compute a consensus ranking based on
the partial rankings provided by each ranking tree (see section 5.5).

Even worse, if our predictive models are sparse, they do not necessarily have selected the
same variables. But if the ranking model r has selected the predictor set Ŝ(r), r = 1, ..., k, we
cannot directly determine a set Ŝcons which corresponds to the consensus ranking. Taking
the union of all sets Ŝ(r) would be problematic especially in cases like that there exists a
variable j∗ which appears in only one of these predictor sets. Finally, a simple computation

240 CHAPTER 13. MULTIVARIATE RANKING AND REGRESSION

of selection frequencies in the sense of Stability Selection, i.e., the relative number of the
subsets Ŝ(r) in which a particular variable is contained, would delete all the information on
the degree of importance of that variable in the models in which it is contained.

We provide the following approach to compute a sparse and stable parametric consen-
sus ranking model by using our CMB-3S algorithm. Given training data Dtrain where the
rankings for each column of the response vector are already known, we can directly compute
a consensus ranking using the R−package ConsRank (D’Ambrosio et al. [2017]). One possible
way to proceed would be to treat the n−dimensional vector π∗ as pseudo-response and to
compute an ordinal regression model like Ordered logit or (more likely) an Ordinal Boosting
model (which is implemented in mboost and corresponds to the family object propOdds()).
This would be a naïve approach since the original continuous responses would be replaced
by discrete-valued responses in the last stage, so there is no reason to assume that even the
model selection performed by the Boosting model would still be appropriate for the original
responses. In other words, the task is to find a suitable pseudo-response for the con-
sensus ranking.

A first approach to address to this problem is to determine

r∗ := argmin
r

(d(π(r), π∗)),

so we search for the permutation which has the smallest distance d to the consensus ranking.
Then, we only use the response column Y·,r∗ and proceed with computing a CMB-3S ranking
model using only Y·,r∗ , so we are again in the usual case with one-dimensional responses. This
could be seen as some kind of dimension reduction of the response matrix Y . Since we are in
the position that we have distances, we can identify our problem as a variant of a clustering
problem in the sense that Y·,r∗ is the centroid or representant for the whole response
Y in terms of hard ranking. This approach would directly lead to a new issue. If there are
relevant variables for the ranking loss L̃ corresponding to response column r1 which is not
relevant when concerning response column r2 6= r1, we face a new type of singular parts
between column measures, this time not in dependence of some loss function but w.r.t.
components of the response. We call our column measures ν(r) in this section (we suppress
the usual sub- and superscript since we always use the hard ranking loss as loss L̃).

We propose to perform an aggregation of ultra-stable column measures. First, we can easily
use CV.CMB-3S separately for each response column Y·,r, r = 1, ..., k, to get coefficients
β̂

(r)
j and ultra-stable empirical column measures (ν̂(r))ultrastable. With the distances dr :=
d(π(r), π∗), we define the weights

wr :=
1
dr∑k
s=1

1
ds

13.1. CONSENSUS RANKING 241

that lead to the consensus column measure

ν̂cons({j}) :=
∑
r

wr(ν̂(r))ultrastable({j}). (13.1.1)

Then we again perform a Stability Selection for ν̂cons and get a stable set Ŝcons,stab. The final
model is a least squares or SingBoost model with ranking singular steps using only the data
(X·,Ŝcons,stab , Yr∗).

Remark 13.1.1. Since Kendall’s τ and the hard ranking loss are closely related in the sense
of lemma 6.1.1, the distance-based aggregation of empirical column measures can still be seen
as loss-based aggregation as it has been done in CMB with weights as in (11.4.3).

Remark 13.1.2. To save computational time, it may also be reasonable to aggregate CMB
column measures (ν̂(r))CMB instead of ultra-stable column measures in (13.1.1). Then the
Stability Selection either would be similar or we maybe even would use different cutoffs
π

(r)
thr for each CMB column measure. Note that for a reasonable optimization, the second

strategy would cause an immense grid search since we must visit all elements of ×rπ(r)
thr.

However, this approach would still be cheaper than computing ultra-stable column measures
for each response column if p and k are large.

Remark 13.1.3. So far, we considered the computation of a model that represents the im-
portant variables for the consensus ranking on the training set. On a test set, we would apply
this model to instantaneously get a predicted consensus ranking there. This strategy is a direct
consequence of the nature of ranking problems since we are not interested in predicting some
sort of aggregated response value but only an aggregated ranking. Note that a combination of
the true values of the response columns would not be reasonable at all since different scalings
of them would lead to the issue that the values of a single column can dominate all other
values due to a larger scale.

Apart from the already presented strategy, we think that there can be an alternative way to
work on test sets. We may apply the models that we computed based on each column of
the response matrix separately, represented by the coefficient vectors β̂(r), to predict the k
response columns of the test data. Then, we proceed as we did on the training set by finding
the empirical response column whose ranking has the smallest distance to the (empirical!)
consensus ranking on the test set which we also compute using ConsRank. Combining the
empirical column measures and generating a model for the consensus ranking works analo-
gously as on the training set. The disadvantage of the second approach is that, unless on the
training data where the consensus ranking can be treated as known if we rely on ConsRank,
the consensus model cannot be validated since neither the partial rankings nor the consensus
ranking are known on the test set. Furthermore, the prediction errors from the models on the

242 CHAPTER 13. MULTIVARIATE RANKING AND REGRESSION

training set may accumulate when computing the consensus model.

Remark 13.1.4 (Ranking and hierarchical clustering?). The main difficulty was to
find a suitable centroid w.r.t. the ranking of the response columns. However, if k is rather
large or if no column of the response vector has a reasonable small distance to the consensus
ranking, this approach may get unreliable.

Whenever we have (pair-wise) distances, we can think of applying clustering methods (see e.g.
Friedman et al. [2001]). Maybe we can proceed as in hierarchical clustering in an agglom-
erative manner to cluster the response columns by means of the pair-wise distances of their
rankings. Then we may compute models on response columns corresponding to the cluster of
rankings in which the consensus ranking is contained. Since this cluster may in general do
not correspond to enough different response columns, we think of convex combinations of the
respective columns in order to artificially construct more pseudo-response columns on which
we compute a CMB(-3S) model (w.r.t. an aggregated, stable column measure) in order to
aggregate these models to get final coefficients. A concrete recommendation of which distance
one should use, how many clusters one should compute (i.e., which evolution step of the hier-
archical clustering has to be chosen) and how to generate the pseudo-responses can be a topic
for future work.

13.2 Multivariate Boosting

13.2.1 Multivariate L2−Boosting

The multivariate L2−Boosting algorithm goes back to Lutz and Bühlmann [2006b] and can
be seen as the extension of L2−Boosting to multivariate response vectors, i.e., response ma-
trices, which is more sophisticated than just applying L2−Boosting on each response column
separately.

We mainly follow the notation as in Lutz and Bühlmann [2006b]: A linear model for this
case is given by

Y = Xi + E

for Y ∈ Rn×k, X ∈ Rn×p, a coefficient matrix i ∈ Rp×k with entries βj,r and the error matrix
E ∈ Rn×k which satisfies IE[Ei] = 0k and Cov(Ei) = Σ where the unknown quantity Σ is

13.2. MULTIVARIATE BOOSTING 243

replaced by a suitable proxy Γ for example when evaluating the loss function (13.2.1).

The multivariate L2−Boosting algorithm iteratively selects the cell of the coefficient ma-
trix whose least squares fit w.r.t. the corresponding predictor improves the current fit most,
quantified by a suitable multivariate analog of the squared loss of the form

1
n

∑
i

L(Yi, Ŷi) = 1
n

∑
i

(Yi − Ŷi)TΓ−1(Yi − Ŷi), (13.2.1)

so one compares the differences of the (1 × k)−dimensional rows of the response matrix

and their predictions Ŷi = Xiî ∈ R1×k, respecting a potential correlation structure of the
response columns. After having detected the best cell (ĵ, r̂) in the coefficient matrix which
means that the whole r̂−th predicted response or residual column was fitted by a simple
model based exclusively on the ĵ−th regressor column, the coefficient matrix is updated by
adding the fitted coefficient

β̂ĵ,r̂ =
∑k
r=1R

T
·,rX·,jΓ−1

rr̂

XT
·,jX·,jΓ−1

r̂r̂

(13.2.2)

to the component in the respective cell of the current coefficient matrix, maybe respecting

some learning rate κ. The residual matrix R is given by R = Y − Xî with the current
coefficient matrix î. After updating the coefficient, the r̂−th column of the residual matrix
is updated and the algorithm proceeds until some stopping criterion gets valid which is con-
sidered to be a corrected AIC criterion. For further details on updating and how (ĵ, r̂) is
determined, see Lutz and Bühlmann [2006b].

As a variant of multivariate L2−Boosting, they additionally propose an idea for a so-called
”row-Boosting” which updates rows of î and not just cells which means that the whole
predicted response matrix and therefore the whole residual matrix is updated after each it-
eration but that the baselearner is still computed using one single regressor column.

As pointed out in Lutz and Bühlmann [2006b], multivariate L2−Boosting with updating
cells is suitable for the case of seemingly unrelated regression going back to Zellner
[1962] which implies that the different response columns are potentially based on different
predictors. This is obvious since a row-wise update of the coefficient matrix means that a
predictor variable has been selected simultaneously for all response columns. The concept
of seemingly unrelated regression opens the door for the column measure framework, in
which this phenomenon results in singular parts of column measures w.r.t. different
response columns as in the previous section where the partial rankings may depend on
different variables, respectively.

244 CHAPTER 13. MULTIVARIATE RANKING AND REGRESSION

13.2.2 SingBoost for multivariate responses?

As a first approach, a SingBoost variant for multi-response data (MultiSingBoost) can be
the straightforward extension of SingBoost for univariate data, i.e., we similarly determine
the baselearners w.r.t. each cell of the coefficient matrix as multivariate L2−Boosting does,
but we do not evaluate the fit in a multivariate analog of the squared loss but we take another
loss function into account.

Clearly, the computational time in the singular steps when updating cells would be enor-
mous, especially if k is also very large. Row-wise updates can only be useful if one knew
in advance that there are no singular parts or at least very few singular mass between the
column measures w.r.t. each response column. It remains to investigate how one could test
for it without wasting too much computational resources. The question if one could perform
row-wise updates in a ranking setting obviously directly corresponds to the rank aggregation
problem from the previous section since it is not evident if one should just sum up the ranking
losses for all r = 1, ..., k or if an overall criterion should be invoked.

However, if a Corr-min condition as in section 10.5 is satisfied, we can conclude that a Mul-
tiSingBoost is consistent even for diverging dimensions pn and kn (i.e., for Yi;n, Ei;n ∈ Rkn ,
in ∈ Rpn×kn and Xi;n ∈ Rpn with i.id. rows) as the following theorem that we adapt from
[Lutz and Bühlmann, 2006b, Thm. 1] states.

Theorem 13.2.1. If the assumptions

(M1) ∃0 < ξ < 1, 0 < C <∞ : pn = O(exp(Cn1−ξ)), kn = O(exp(Cn1−ξ)) for n→∞,

(M2) supn
(∑pn

j=1
∑k
r=1 |ij,r;n|

)
<∞,

(M3) The proxy Γ for the error covariance satisfies

sup
n,r

 kn∑
l=1
|Γ−1
r,l;n|

 <∞, inf
n,r

(Γ−1
r,r;n) > 0,

(M4) supj(||X1,j;n||∞) <∞,

(M5) supr(IE[|E1,r;n|s]) <∞ ∃s > 2
ξ
with ξ from (M1),

(M6) ∃a > 0 ∀m,n ∃C̃ ≥ a :

13.3. HIGHER-ORDER ELICITABILITY 245

|〈R̂m−1
n f, g

ĵm,r̂m
〉(n)| ≥ C̃ sup

j,r
(|〈R̂m−1

n f, gj,r〉(n)|)

for the baselearner gj,r corresponding to the cell (j, r) of the coefficient matrix and for the
empirical counterpart 〈·, ·〉(n) of the inner product

〈f, g〉 =
∫
fT (x)Γ−1g(x)dP (x),

then for the estimated regression function f̂ (mn) from the MultiSingBoost algorithm, it holds
that

IEX [||f̂ (mn) − f ||2] = IEX [(f̂ (mn)(x)− f(x))TΓ−1(f̂ (mn)(x)− f(x))] = oP (n0)

provided that (mn)n is a sequence with mn →∞ for n→∞ sufficiently slowly and for a new
observation x that follows the same distribution as the Xi, independently from them.

Proof. [Lutz and Bühlmann, 2006b, Lem. 1] does not depend on a specified cell selection,
so it holds anyway for a MultiSingBoost. According to the proof of [Lutz and Bühlmann,
2006b, Thm. 1], the rest of the proof for their theorem follows exactly the same steps as the
proof of [Bühlmann, 2006, Thm. 1], so the Corr-min condition (M6) guarantees that the
selection performed by MultiSingBoost is still well enough in terms of correlation with the
current response which it does not alter the statement of the theorem asymptotically.

2

13.3 Higher-order elicitability

The first work which extended the definition of elicitability to multivariate cases was, to the
best of our knowledge, Lambert et al. [2008] who defined the property of k−elicitability. This
concept became indeed popular once [Fissler et al., 2016, Cor. 5.5] showed that despite the
Expected Shortfall is not elicitable (see [Gneiting, 2011, Thm. 11]), the pair (VaRα,ESα) is
indeed elicitable, more precisely 2−elicitable.

In the language of Lambert et al. [2008] or Frongillo and Kash [2015], the elicitation complex-
ity of the expected shortfall is 2 which means that it is 2−elicitable but not ”1−elicitable”
(which corresponds to standard elicitability).

One result that we can directly apply for our context is [Fissler et al., 2016, Lemma 2.6]
which we recapitulate for illustration using their notation.

246 CHAPTER 13. MULTIVARIATE RANKING AND REGRESSION

Lemma 13.3.1. Let Tm : F → Am be km−elicitable functionals relative to the class F
with Am ⊂ Rkm and km ≥ 1 for all m = 1, ..., l. Let T = (T1, ..., Tl) : F → A with
A = ⊗

mAm ⊂ Rk for k = k1 + k2 + ...+ kl. Then T is k−elicitable relative to the class F .

The proof is based on the linearity of the expectation, letting all loss functions ∑m aiLi for
ai > 0 ∀i be strictly consistent for T if Li is strictly consistent for Ti, respectively.

For multi-response ranking problems, we state the following results under assumption 13.1.1.

Lemma 13.3.2. Let n ∈ N, n ≥ 2 be fixed. Let T1, ..., Tk : F → Perm(1 : n) be ranking
functionals in the sense of definition 7.1.3. Then the functional T = (T1, ..., Tk) : F →⊗
m Perm(1 : n) corresponding to the multi-response ranking is k−elicitable relative to the

class F .

Lemma 13.3.3. Let n ∈ N, n ≥ 2 be fixed and let T1, ..., Tk : F → A for A = Perm(1 : n)
be ranking functionals in the sense of definition 7.1.3. Let (Tm)P : F → P(A) for all
m = 1, ..., k. Then the functional TP := ((T1)P , ..., (Tk)P) : F → ⊗

mP(A) is strongly
k−elicitable relative to the class F .

The proofs just apply lemma 13.3.1 in combination with our own results on elicitability and
strong elicitability of ranking functionals (theorems 7.1.1 amd 7.2.1).

Remark 13.3.1. Note that these results basically rely on the fact the we assume the partial
rankings to be uncorrelated (see assumption 13.1.1). Therefore, the estimation of a multi-
variate response boils down to the separate estimation of each component. Under the stated
assumption, one clearly can also generalize results on elicitability of regression functionals to
the multi-response case by using the same arguments.

However, it is not evident if one could prove a general result on k−elicitability of regression
or ranking functionals if there is a correlation structure that has to be accounted for. Maybe
one could also use the concepts of Maume-Deschamps et al. [2017] who proposed a general
definition of multivariate elicitability of vector-valued functionals. This would exceed the scope
of this work, but seems to be a promising direction for future research.

Chapter 14

Connecting robustness, stability and
sparsity

The first section introduces the cell measure which is related to sparse estimation of covari-
ance or precision matrices.

The second section restates sophisticated algorithms for outlier detection, robust estimation
of covariance matrices and robust regression procedures, even in the case of cell-wise con-
tamination. We show that these algorithms also fall into our RCM framework.

The third section is an approach to connect all three paradigms of stability, robustness
and sparsity. We start with identifying classical outlier detection and even the MCD esti-
mator as special multivariate L2−Boosting algorithms. Additionally, we restate the SLTS
algorithm as special L2−Boosting algorithm in two different ways to motivate some Gener-
alized L2−Boosting which extends the variable selection and updating scheme of standard
L2−Boosting and which includes forgetting factors and a concentration step to guard against
case-wise outliers. We go even further and provide initial ideas for Stability Selection for the
columns selected by the Generalized L2−Boosting and even for some kind of Stability Selec-
tion for the rows.

14.1 The cell measure

The row measure and the column measure are useful to represent the importance of obser-
vations resp. predictors, especially in regression settings, but as we already emphasized, the
row measure is in particular useful whenever classical (row-wise) contamination appears and

247

248 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

the column measure is also used in the clustering context when performing feature selection
there. We also mentioned that multivariate responses lead to new potential singular parts
since each response column can have its own column measure.

So far, we have not concerned about (the estimation of) covariance matrices, but it is obvious
to ask if the RCM framework is also suitable in this context. At the first glance, this has to
be negated since the partition of a covariance matrix into cells and rows is not meaningful
due to its inherent structure which can be regarded as either cell- or diagonal-based. More
precisely, reducing the number of observations does not affect the dimension of the estimated
covariance or precision matrix, but reducing the number of columns clearly leads to smaller
matrices. But in fact, we will see in this section that the RCM framework is still important
when performing variable selection first or when contamination or missings are present.

Nevertheless, covariance matrices are related to cell measures in the sense of the following
definition.

Definition 14.1.1. Suppose we have a matrix Σ ∈ Rp×p. Then the cell measure is defined
as the map

ℵ : ({1, ..., p}2,P({1, ..., p}2))→ ([0, p2],B ∩ [0, p2]),

ℵ : {(i, j)} 7→ ℵ({(i, j)}) =: ℵ(i,j) ∈ [0, 1] ∀(i, j) ∈ {1, ..., p}2

and assigns an importance to each cell.

The cell measure is specifically interesting when Σ is an estimated (sparse) covariance or
precision matrix. Straightforward examples for the cell measure are the following ones.

Example 14.1.1. Let Σ̂ ∈ Rp×p be a classical estimator of a covariance matrix, based on a
data set D = X ∈ Rn×p. Then the cell measure is given by ℵ̂(i,j) = 1 for all (i, j) ∈ {1, ..., p}2.

Example 14.1.2. Let Σ̂ ∈ Rp×p be some sparse covariance or precision matrix, e.g., by
having applied the Graphical Lasso (see Banerjee et al. [2008] and Friedman et al. [2008]).
Then, ℵ̂(i,j) = 0 for all (i, j) ∈ {1, ..., p}2 where Σ̂i,j = 0 and ℵ̂(i,j) = 1 otherwise.

Example 14.1.3 (Initial cell measures). Of course, if a matrix is only partially observed
which is a standard issue for example in matrix completion problems that are especially im-
porant in image recognition applications (see for instance Candès and Recht [2009], Candès
et al. [2011]), one can think of an initial cell measure ℵinit which is zero where the cell is
missing and one otherwise.

14.1. THE CELL MEASURE 249

Example 14.1.4 (Stable cell measures). Meinshausen and Bühlmann [2010] applied their
Stability Selection to Graphical Lassos, i.e., with the cell set Ŝcell,λ = {(i, j) | (Σ̂−1

ij)λ 6= 0}
where (Σ̂−1)λ denotes the estimated precision matrix provided by the Graphical Lasso with
regularization parameter λ. Clearly, averaging the corresponding cell measures w.r.t. each
subsample leads to a cell measure which can take more values in [0, 1] than {0, 1} and the
Stability Selection provides a stable {0, 1}−valued cell measure ℵ̂stab and a corresponding
stable empirical cell set Ŝcell,stab.

Until here, the concept of cell measures seems to be just a trivial extension of the former
concepts without any relevance, specifically the third example is nothing but the description
of a missingness pattern. But in fact, the cell measure framework in the context of covari-
ance or precision matrix estimation is closely connected to the RCM framework and can be
thought of a second stage.

Let us take a closer look on the examples, not counting the third one. Clearly, the cell mea-
sures depend on the empirical row and column measures, so we can identify the (empirical)
cell measures as being induced by RCM pairs, i.e.,

ℵ̂ = ℵ̂(ζ̂ , ν̂) i.e., ℵ̂(i,j) = ℵ̂(i,j)(ζ̂i, ν̂j).

For the case that there is done variable selection in the first stage, leading to ŝ selected
variables, represented by the set Ŝ, an estimated covariance or precision matrix on the reduced
data would clearly be a matrix in Rŝ×ŝ. We think that it would not be fair to also reduce
the space {1, ..., p}2 to the subspace corresponding to the selected columns since it would not
reflect the variable selection in the cell measures. In this case, we prefer to define the cell
measure in the sense

ℵ̂(i,j) = I({i ∈ Ŝ} ∩ {j ∈ Ŝ})

with the corresponding cell set

Ŝcell = {(i, j) | i ∈ Ŝ ∧ j ∈ Ŝ}.

One can interpret this in artificially setting all components of the matrix where the cell mea-
sure is zero to NA. Note the close connection to cell-wise outliers and structural missings,
see definition 3.3.3 and chapter 17.

Remark 14.1.1. The definition of a cell measure is not reasonable for a coefficient matrix
i as for example in multivariate regression as in the previous chapter. To rationally describe
the pattern of such a coefficient matrix, one has to work with column-specific column

250 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

measures, i.e., for each response column Y·,r, r = 1, ..., k, one has to compute an empirical
column measure ν̂(r), especially in the case of seemingly unrelated regression (Zellner [1962]).

Since the column measure ν̂(r) corresponds to the r−th column of the coefficient matrix i
and since an overall empirical row measure ζ̂ would affect whole rows of i, cell measures for
a coefficient matrix would be obsolete.

For the case that we have cell-wise outliers in the response matrix which would lead to
column-specific row measures and column-specific column measures, we refer to
the following sections.

Remark 14.1.2. Note that sparse covariance or sparse precision matrix estimation is a
concept related to the sparseness of cell measures and in general not to the sparseness of
column measures!

Remark 14.1.3 (Time-dependent cell measures). In Monti et al. [2014], the SINGLE
algorithm has been proposed and has been adapted in Monti et al. [2015] to the inclusion
of adaptively chosen forgetting factors which can be seen as online variant of the Graphical
Lasso, providing sparse estimates of the precision matrix in order to estimate brain connec-
tivity structures for fMRI data.

This is indeed a very interesting algorithm which perfectly fits into our framework. The for-
getting factors, no matter if they are chosen adaptively or not, can be seen as an empirical
row measure, more precisely, in each time step t, one proposes an empirical row measure
ζ̂t, cf. section 9.9. In the special case of using sliding windows, the corresponding empirical
row measure is {0, 1}−valued which is not true for row measures resulting from the usage of
forgetting factors or when using soft kernels as described in Monti et al. [2014].

Concerning cell measures, [Monti et al., 2015, Sec. 3.2] describe that in each time step t,
there is a set of true connections in the graph corresponding to true non-zero cells of the
precision matrix, i.e.,

Scell,0t = {(i, j) | Σ−1
i,j 6= 0}

for each t = 1, ..., T . This clearly corresponds to a sequence (ℵt)t of true cell measures
ℵt. The application of the SINGLE procedure provides a sequence (ℵ̂t)t of empirical cell
measures ℵ̂t where each empirical cell measure is induced by the empirical row measure ζ̂t,
respectively.

14.2. CELL-WISE OUTLIERS AND MISSINGS 251

14.2 Cell-wise outliers and missings

If one had independent response columns, one easily could replace the column-specific univari-
ate linear regression models by suitable robust counterparts. The same is true for missings,
since a missing in a response column would usually result in deleting the respective row from
the training set which can be done separately for each univariate regression model if the
response matrix has non-structural missings.

But once the response columns are dependent, more sophisticated approaches have to be
found, as the multivariate L2−Boosting from Lutz and Bühlmann [2006b] which is still non-
robust since the linear regression coefficients directly depend on the columns of the regressor
matrix and the columns of the response matrix which potentially both contain outliers. Ad-
ditionally, the estimated covariance matrix would need to be robustified.

Robust estimation strategies for covariance matrices include first fruitful approaches like the
OGK estimator (Gnanadesikan and Kettenring [1972]) that reduces the robust covariance
estimation to robust variance estimation combined with an orthogonalization step, the MVE
estimator from Rousseeuw [1985] (first mentioned in Rousseeuw [1984]) where first the ellip-
soid with minimal volume that covers at least the half of the data points is determined, so
that the covariance of these data points is the final MVE estimator, or the MCD estimator
(Rousseeuw [1984], Rousseeuw [1985]) which is the covariance of a subset of observations
that also covers at least the half of the total observations such that the determinant of the
covariance matrix is minimal.

However, these techniques are tailored to row-wise contamination (cf. definition 3.3.1). In
the presence of potential cell-wise outliers (see definition 3.3.3), it would be more appropriate
to apply recent methods like in Agostinelli et al. [2015] or Rousseeuw and Van Den Bossche
[2018]. We describe the algorithms a little bit more detailed in the examples 14.2.2 and
14.2.3. Essentially, they rely on suitable filtering steps to detect cell-wise (and case-wise)
outliers. The outliers are flagged as NA, creating missings which are imputed in the DDC
procedure. For the estimation of covariance matrices based on the data containing NA’s,
Agostinelli et al. [2015] invoke a so-called GSE estimator.

Remark 14.2.1 (Generalized S-estimator). Note that Danilov et al. [2012] provided a
generalized S-estimator (GSE) which is based on partial Mahalanobis distances that are the
Mahalanobis distances computed on the reduced data set using the corresponding mean vec-
tors and reduced covariance matrices. For each observation i, they introduced a missingness
vector ui which has a zero where an NA appears and a one otherwise. Then, the score

252 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

function on the left hand side of the S-equation, apart from the scale which has to be opti-
mized and a standardization, depends on these partial Mahalanobis distances according to ui.

Evidently, no imputation is done anywhere, but nevertheless, Danilov et al. [2012] assume
a MCAR missing scheme (see chapter 17). Additionally, Rousseeuw and Van Den Bossche
[2018] pointed out that the GSE requires at least n > p and Leung et al. [2017] mentioned
that this estimator can no longer considered to be robust for p > 10.

Leung et al. [2017] replace this GSE estimator with a generalized Rocke-S-estimator to
keep the robustness for larger p. Although this estimator and the DDC procedure (which
can be a pre-processing step for covariance estimation as described in Rousseeuw and Van
Den Bossche [2018]) are also applicable for high-dimensional data, the covariance estimators
are not sparse in the sense that many entries are zero. Note that there already exist a lot
of work on sparse estimation of precision matrices like the Graphical Lasso (see Banerjee
et al. [2008] and Friedman et al. [2008]), CLIME (Cai et al. [2011]) or MissGLasso (Städler
and Bühlmann [2012]) as well as sparse estimation techniques for covariance matrices, e.g.
Bickel and Levina [2008]. See Fan et al. [2016] for an overview of robust or sparse estimation
techniques for covariance and precision matrices. Also note that Öllerer and Croux [2015]
proposed a robustification of the Graphical Lasso by replacing the classical covariance ma-
trix in the target function by a robust counterpart which is computed cell-wisely by using
Cov(X, Y) = sd(X) sd(Y) Corr(X, Y) where each of the three factors is replaced by a robust
counterpart.

When concerning missing imputation, response matrices lead to additional issues. As de-
scribed in Bárcena Ruiz and Tusell Palmer [2002], imputing missings in multivariate responses
is problematic once the imputation would be done separately for all cells. They recommend
to perform row-wise imputations to address for the potential correlations of the response
columns. Indeed, the DDC procedure of Rousseeuw and Van Den Bossche [2018] predicts
each cell using the available cells in the same row that are not flagged as outliers and whose
columns are sufficiently correlated with the respective column (see example 14.2.3 for more
details). It would be interesting to see if their procedure also works well for response matrices
whose correlation structure is inherited from both the correlation structure of the regressors
Xi and of the errors Ei.

Concerning multivariate L2−Boosting, a robustification cannot be done by just replacing
the covariance matrix in (13.2.2) by a suitable robust counterpart. More precisely, the whole
regression procedure has to be robustified. There are already approaches for robust regression
with multivariate responses, for example robust estimation via FRB based on S-estimators

14.2. CELL-WISE OUTLIERS AND MISSINGS 253

(Pison et al. [2003], Van Aelst and Willems [2005]) or by replacing the means resp. the
scatter

µ =
µx
µy

 , Σ =
Σxx Σxy

Σyx Σyy



by suitable robust counterparts (Rousseeuw et al. [2004], Hubert et al. [2008]). Maybe it is
possible to combine the algorithms from Leung et al. [2017] or Rousseeuw and Van Den Boss-
che [2018] with this strategy in order to get a robust regression with multivariate responses
even in the presence of cell-wise contamination and missings in both the regressor and the
response matrix. Note that Leung et al. [2016] indeed proceeded in this manner with their
”three-step regression”, but only for univariate responses.

However, even if one would replace the cell-wise simple least squares fit in multivariate
L2−Boosting as in (equation 13.2.2) by a robust counterpart in the sense of Leung et al.
[2016], we clearly would get problems concerning computational feasibility since the robust
estimates had to be updated due to the updating step for the current residuals and since
only one single cell would be updated in each iteration, so the number of required iterations
would be very high. Maybe a one-step approach based on optimally-robust influence curves
as we will discuss in section 18.2 or an FRB-type strategy will turn out to be promising in
the future.

Remark 14.2.2. It does not seem that there already exists a covariance/precision matrix
estimation or multivariate regression method which provides sparsity, robustness against cell-
wise contamination and missing handling simultaneously. In the context of covariance or
precision matrix estimation, one has to check if one could just combine the covariance esti-
mation of Rousseeuw and Van Den Bossche [2018] or Leung et al. [2016] with the Graphical
Lasso. For regression, one could just apply variable selection algorithms after a pre-processing
step like the DDC procedure from Rousseeuw and Van Den Bossche [2018]. But as multivari-
ate regression would also require an analogous pre-processing step for the response matrix, it
needs to be validated if the DDC procedure can also be applied to response matrices.

Remark 14.2.3 (Structural missings in multivariate responses). We cannot exclude
the case that even a response matrix can have structural missings. We indeed think that this
is a rather usual case for example in questionnaires. Assume that we have a questionnaire
concerning medical data with the structural missings that we will discuss in chapter 17. But if
there exist response columns that are only based on the predictors that may lead to structural
missings, then the response for the respective column has indeed a structural missing in all
rows where a structural missing in the regressor matrix appeared.

254 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

Then, we are of course in the context of seemingly unrelated regression since each response
column is based on different predictors. Structural missings is responses should never appear if
we are not in this context, otherwise we would just have the information that the questionnaire
was awfully designed.

Even more interesting for the relation of the cell measure framework and the RCM framework
is therefore the robust estimation of covariance matrices.

Example 14.2.1 (MCD/MVE). Both the MCD and the MVE covariance estimators try
to find a subset H of h ”clean” observations and compute the covariance of these data
points. Therefore, we can identify these strategies with a procedure providing an empirical
{0, 1}−valued row measure in the first stage, followed by a standard covariance estimation in
the second stage, providing a full cell measure on the subset H, i.e., ℵ̂(i,j) = 1 for all i, j.

Astoundingly, the computation of the C-step (Rousseeuw and Van Driessen [1999]) for the
MCD estimator can be identified with the RCM framework although there are no
responses! This is true since the original observations Xi ∈ Rp are taken as pseudo-
responses while the estimated mean vector and covariance matrix based on the subset of
cardinality h are treated as ”fitted values”. The C-step then iteratively chooses the h rows
corresponding to the smallest Mahalanobis distances. In this sense, the Mahalanobis dis-
tance can be seen as a loss function itself. We will investigate this relation again in
the next section.

Example 14.2.2. The filtering step in Agostinelli et al. [2015] can also be embedded into
our framework. The detection of cell-wise outliers is performed column-wisely, i.e., for each
fixed column j, the observations are robustly standardized. The vector of standardized values
is approximated with a standard normal distribution, leading to an adaptive choice for the
cutoff so that each observation is treated as cell-wise outlier if the absolute value of its stan-
dardized value is greater than the cutoff. In our language, they compute column-specific
empirical row measures ζ̂(j) for each column j = 1, ..., p.

In the second step, the GSE estimator that we already discussed (remark 14.2.1) is applied,
based on the modified data set where cell-wise outliers have been replaced by NA’s. The GSE
is actually computed by an iterative procedure which provides weights, i.e., empirical row
measures, in each iteration.

Example 14.2.3 (DDC). The DDC procedure (Rousseeuw and Van Den Bossche [2018])
is even more interesting since it is actually based on a very sophisticated combination of
different row and column measures.

14.3. CONNECTING ROBUSTNESS AND SPARSITY? 255

The first step of DDC includes a column-wise standardization and cutoffs based on a χ2
1−dist-

ribution to flag cells as outliers, providing column-specific empirical row measures ζ̂(j) in a
similar manner as in Agostinelli et al. [2015].

To overcome the issue that cell-wise outliers may not be detectable by investigating each col-
umn separately, an additional row-based detection step is performed. More precisely, they
first compute a robust correlation for all variable pairs, based on the non-flagged components.
Afterwards, a predicted value for each cell based on an intercept-free robust regression is per-
formed in the sense that a cell is predicted by all cells in the same row that have not been
flagged as cell-wise outliers (including the cell itself), but only from the columns which are
sufficiently correlated with the column of the respective cell. In other words, the prediction
step invokes variable selection by column-specific empirical column measures ν̂(j)

and also the column-specific empirical row measures ζ̂(j) (which indicated the NA’s). Af-
ter computing suitably robustly standardized residuals, all cells whose absolute value of the
standardized residual is too large are additionally treated as cell-wise outliers and replaced
by NA’S . At the end, all NA’s are replaced by the predicted values whereas the other cells
remain unchanged.

To determine row-wise outliers, the distribution of the standardized residuals is approximated
by a χ2

1−distribution which leads to a similar cutoff as in the first step. More precisely,
they average the values of the distribution function of the χ2

1−distribution at the residuals,
separately for each row, and treat a row as row-wise outlier if this empirical mean is too large.
This delivers finally an empirical {0, 1}−valued row measure.

14.3 Connecting robustness and sparsity?

The intention behind sparse model selection is to find a small fraction of predictors (columns
of the data matrix) which already contain most of the relevant information to provide well-
generalizing models that are less likely to include noise variables. The goal of outlier detection
is to find a rather large fraction of observations (rows of the data matrix) that represent the
”clean” data such that the deleted rows are most likely to be outliers.

In this section, we discuss an idea that the row selection performed by outlier detecting
algorithms can be regarded as modified (L2−)Boosting. We start with a classical outlier
detection procedure (i.e., which is designed for row-wise contamination) proposed in Rocke

256 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

and Woodruff [1996].

Example 14.3.1 (Classical outlier detection). Given data X1, ..., Xn ∈ R1×p, the first
”phase” of the outlier detection procedure consists of determining robust estimates for the
mean and the covariance. In the second ”phase”, after a suitable rescaling of the covariance
estimator to get an estimator Σ̂ ∈ Rp×p and after updating the estimator for the mean to get
µ̂ ∈ R1×p, one computes robust Mahalanobis distances

Li =
√

(Xi − µ̂)T (Σ̂)−1(Xi − µ̂)

and only keeps the observations whose distance does not exceed some cutoff.

In fact, the distances can be thought of an (robust) L2−loss of the same type as (13.2.1) since
we indeed compute suitable differences between the rows Xi and the ”row” µ̂. We can rewrite
the problem such that the similarities to Boosting and variable selection are easier to see. Let
Ď ∈ Rp×2n be the model matrix


X1,1 . . . Xn,1 X1,1 . . . Xn,1
...

X1,p . . . Xn,p X1,p . . . Xn,p

 = (XT
1 , ..., X

T
n |XT

1 , ..., X
T
n) = (XT |XT). (14.3.1)

This can be interpreted as to explain the rows Xi using the rows Xi. Since this would just imply
the optimal solution for a coefficient matrix i in a linear model to be the identity matrix which
addressed neither sparsity nor robustness, one replaces the (p × n)−dimensional ”response
matrix” by n copies of the (p×1)−dimensional initial ”residual” r(0) which admittedly abuses
the notation of Boosting. However, we can think of this matrix as residual matrix R ∈ Rp×n.
This ”residual” r(0) is a robust estimator for the mean. Nevertheless, if we use the robust
estimate µ̂ as residual vector, we get the updated model matrix

(XT
1 , ..., X

T
n |r(0),, r(0)) = (XT |R) (14.3.2)

so that the task is now to explain each residual vector by the corresponding regressor column
Xi = XT

·,i. The outlier detection procedure of Rocke and Woodruff [1996] is the special case
where one computes a robust L2−loss separately for each column, i.e., we have

Li = L(Xi, r
(0)) =

√
(Xi − r(0))T (Σ̂)−1(Xi − r(0)),

but since
√
· is strictly increasing on the positive halfaxis and since we are only interested in

the ordering of the losses, we can also use the multivariate L2−loss (13.2.1) proposed by
Bühlmann with Γ = Σ̂ to compute the losses. The last step can be treated as rejection step
in the sense that we only select the columns whose loss does not exceed some threshold. In

14.3. CONNECTING ROBUSTNESS AND SPARSITY? 257

the language of Boosting, this would correspond to a generalized component-wise base
procedure where not only the best column is selected in each iteration but in general the
”best majority” of columns according to the multivariate L2−loss (or equivalently, to the Ma-
halanobis distance). Although the outlier detection does not need coefficients, we can think of
getting rows containing only zeroes in the coefficient matrix where a column is
not selected, so the artificial coefficient matrix i ∈ Rn×n has rows containing only zeroes
and all other rows contain also only zeroes except for the cell corresponding to the diagonal
which takes the value one.

Summarizing, the outlier detection in Rocke and Woodruff [1996] may be seen as multivariate
L2−Boosting with only one Boosting iteration and without reasonable coefficients where the
robust mean serves as the residual in the first and only iteration.

Remark 14.3.1. Other classical outlier detection algorithms which are also capable to han-
dle high dimensions like the PCDIST algorithm from Shieh and Hung [2009] may include
additional steps, in this case a dimension reduction via principal component analysis, but the
rationale behind it essentially stays the same as in the procedure we discussed above.

Although it is not exactly L2−Boosting, it is surprising that we can rewrite a robust (row
selection) procedure in a way that we are basically in the same setting as usual with mut-
livariate responses. Even more astoundingly, Rousseeuw’s Fast-MCD estimator can indeed
also be treated as a special L2−Boosting!

Example 14.3.2 (Fast-MCD estimator). We propose the same initial model matrix Ď
as in the previous example (equation (14.3.1)). The construction of the initial subset H0 of
size h (see for example Hubert and Debruyne [2010]) can be seen as offset procedure to get
initial ”residuals”. Since the robust estimates in each iteration are in truth the classical mean
and covariance estimators based on the current subset, we indeed have coefficients. More
precisely, if the initial subset H0 of size h is chosen, one implicitly has the coefficient matrix
î(0) ∈ Rn×n that only contains zero rows and rows where each entry is h−1. The zero rows
are exactly those rows whose row indices are not contained the set H0.

Starting from this initialization, we compute the current ”residual” r(0) ∈ Rp which is the
mean of the Xi with i ∈ H0, i.e.,

XT î(0) =


X̄H0,1 . . . X̄H0,1

...
X̄H0,p . . . X̄H0,p

 =: (r(0), ..., r(0)) (14.3.3)

where X̄H0,j is the mean of the j−th component of the Xi with i corresponding to the set H0.

258 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

Additionally, we compute the covariance matrix Σ̂(0) ∈ Rp×p based on H0. Then, as in the
previous example, we compute the losses

Li = L(Xi, r
(0)) =

√
(Xi − r(0))T (Σ̂(0))−1(Xi − r(0)),

leading to a new set H1 consisting of the h indices corresponding to the h smallest losses.
The set H1 directly leads to a ”base model” k̂ which consists of zero rows and rows where
each entry is h−1 and where the latter type of rows exactly correspond to the indices contained
in H1. The coefficient update may be thought of being a special case of a generalized update
scheme of the form

î(1) = (1− χ)î(0) + κk̂ (14.3.4)

where κ is a learning rate and χ is a forgetting factor in the sense that, in contrast to
Boosting, the current ”strong model” does not get weight 1. Clearly, for the Fast-MCD esti-
mator, we have to set κ = 1 = χ.

Converting this prosaic description into an algorithm, we propose the following pseudocode
for the Fast-MCD algorithm in Boosting form:

Initialization: Observations X1, ..., Xn ∈ Rp, cardinality h of best subsets, learning
rate κ = 1 and forgetting factor χ = 1;
Compute an initial set H0 of size h;
Compute the mean r(0) and the covariance Σ̂(0) based on H0;
Compute det(Σ̂(0));
Get the initial coefficient matrix î(0);
Set k = 0;
while not converged do

Set k = k + 1;
Compute the L2−losses Li based on X1, ..., Xn, r(k−1) and Σ̂(k−1);
Compute Hk containing the indices corresponding to the h lowest losses;
Get the base model k̂ corresponding to Hk;
Compute r(k) and Σ̂(k);
Compute det(Σ̂(k));
Update the coefficients via

î(k) = (1− χ)î(k−1) + κk̂.

end
Algorithm 17: Fast-MCD in L2−Boosting form

Convergence occurs once the determinant of the current covariance matrix is the same as the
determinant of the previous one. Of course, we note that one usually runs the whole algorithm

14.3. CONNECTING ROBUSTNESS AND SPARSITY? 259

several times with different initial subsets to get a chance to reach a global minimum. This can
again be seen as some kind of rejection step itself, only accepting the subset of cardinality
h delivered by the different runs of the algorithm which leads to the minimal covariance
determinant.

The LTS estimator which can also be computed using concentration steps (see Rousseeuw
and Van Driessen [2000]) can be rewritten as a generalized L2−Boosting algorithm as well
which we do not spell out here. We rather show one more example where sparsity and ro-
bustness are already connected. This is again the already mentioned SLTS algorithm (see
algorithm 13).

Example 14.3.3 (SLTS). Two major differences between the Fast-MCD algorithm and the
Fast-SLTS algorithm are that the latter includes response variables which remain stationary
throughout the whole process and that the target loss criterion changes from a multivariate
L2−loss to

L(Yi, Ŷi) = (Yi −Xiβ̂)2 + λ
∑
j

|β̂j|.

Initialization: Data D = (X, Y) ∈ Rn×(p+1), cardinality h of best subsets, learning
rate κ and forgetting factor χ;
Compute an initial subset H0;
Compute the Lasso estimator β̂ based on H0;
Set k = 0;
while not converged do

Set k = k + 1;
Compute the usual squared losses for each of the n response columns separately;
Compute Hk containing the indices corresponding to the h smallest squared losses;
Get the base model k̂ by applying the Lasso on the set Hk;
Update the coefficients via

î(k) = (1− χ)î(k−1) + κk̂.

end
Algorithm 18: SLTS in L2−Boosting form

In each iteration, one computes a Lasso model based on the current subset of h rows. The
new subset consists of the indices of the h rows corresponding to the minimal unregularized
squared losses. This can indeed again be artificially understood as a multivariate Boosting
where on uses the model matrix

260 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY


X1,1 . . . Xn,1 Y1 . . . Yn
...

... . . .
...

X1,p . . . Xn,p Y1 . . . Yn


so that we again compute the losses for each column separately, but with the difference that
our model is ”transposed” in the sense that we compute iXT for i ∈ Rn×p. In Boosting
language, the pseudocode is given in algorithm 18.

Example 14.3.4 (SLTS again). The last example may look too artificial. However, we
can also use the usual data matrix D = (X, Y) and write down the SLTS algorithm in the
following Boosting-type form:

Initialization: Data D = (X, Y) ∈ Rn×(p+1), cardinality h of best subsets, learning
rate κ and forgetting factor χ;
Compute an initial subset H0;
Compute the Lasso estimator f̂ (0) based on H0;
Set k = 0;
while not converged do

Set k = k + 1;
Compute the usual squared losses;
Compute Hk containing the indices corresponding to the h smallest residuals;
Get the base model ĝ(k) by applying the Lasso on the set Hk;
Update the coefficients via

f̂ (k) = (1− χ)f̂ (k−1) + κĝ(k).

end
Algorithm 19: SLTS in L2−Boosting form, second version

Note again that we never replace the response vector Y in SLTS.

Remark 14.3.2 (Robustness and sparsity). One could ask why we stated two Boosting-
type versions which essentially just rewrite the SLTS algorithm. Both versions motivate a
generalized Boosting algorithm that combines both sparse model selection and
robustness in terms of ”clean” subsets of observations.

The first extension of standard L2−Boosting is motivated by algorithm 18 which artificially
treats the regressor columns as rows and vice versa. Although this rewriting does not change
the SLTS procedure which still automatically selects predictors (i.e., rows) by the Lasso and
selects observations (i.e., columns) by the concentration step, one may think of extending
L2−Boosting in the sense that not only the best variable is selected in each iteration but the
best l variables for some l ≥ 1 or even depending on the iteration by taking the lk best ones

14.3. CONNECTING ROBUSTNESS AND SPARSITY? 261

in iteration k.

The second extension is motivated by both algorithms 18 and 19 concerning the updating step.
In standard L2−Boosting, it is not possible to forget coefficients computed in earlier itera-
tions. This is related to the statement of Zhao and Yu [2007] who pointed out that forward
selection procedures like Boosting cannot correct mistakes which they already made. Writing
down SLTS as Boosting-type algorithms, we used a forgetting factor since the coefficients
computed in any but the last iteration are deleted afterwards.

The third and most important extension is motivated by algorithm 19 which performs addi-
tional concentration steps within the Boosting algorithm. Indeed, this algorithm can be seen
as special case of a generalized Boosting algorithm in the sense that it deletes all
information which has been derived in previous steps which needs not to be the true for a
Generalized Boosting.

Summing up, our proposal for a Generalized L2−Boosting would be the following algo-
rithm.

Initialization: Data (X, Y), step sizes κk ∈]0, 1], forgetting factors χk ∈ [0, 1],
number miter of iterations, cardinality h of best subsets, numbers pk of chosen
predictors;
Compute an offset f̂ (0);
Compute the current residual vector r(0);
Compute an initial subset H0;
for k = 1, ...,miter do

Compute a generalized baselearner ĝ based on subset Hk−1 that selects the best pk
predictors;
Compute the gradient vector r(k);
Update the model via

f̂ (k) = (1− χk)f̂ (k−1) + κkĝ

Compute the squared losses w.r.t. model f̂ (k);
Compute the subset Hk corresponding to the smallest h residuals;

end
Algorithm 20: Generalized L2−Boosting

Remark 14.3.3. Clearly, this generalized L2−Boosting algorithm leads to a bunch of ques-
tions, for example concerning the choice of the pk, the generalized base-procedure or the choice
of the forgetting factors. As for the base procedures, one may either take standard base pro-
cedures like simple least squares and select the best pk predictors. On the other hand, SLTS

262 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

uses Lasso baselearners which seems to be reasonable as well in this context.

The main question that arises seems to be the paradigm which computation has to be per-
formed when. We suggested to update the model first and to determine which rows belong to
the new clean subset by the resulting losses w.r.t. the combined model. Note the similarity
to the updating step in SingBoost for losses like the hard ranking loss (see section 10.4). It
could also be possible to use the losses of the baselearner to make this decision, but we think
that this gets unreliable, especially in later iterations where the correlation of the predictors
to the current residual vector gets rather low.

14.4 Stability Selection for rows

In this thesis, we mainly concentrated on Stability Selection for the columns and mentioned
that there also exists a Stability Selection for cells (see example 14.1.4). But to the best of
our knowledge, there does not yet seem to be some kind of Stability Selection for the rows.

We start with the following motivating example.

Example 14.4.1 (Stabilized SLTS?). When concerning about stable predictor selection
and SLTS, it would be straightforward to apply Stability Selection to SLTS by drawing sub-
samples and performing SLTS on each subsample and by aggregating the selection frequencies.

However, SLTS in its current form loses information since it does never account for the vari-
ables that already have been chosen by the Lasso in the previous steps, i.e., for the iteration-
specific empirical column measures w.r.t. L2 provided by the Lasso. Therefore, a
simple modification where the selection frequencies are saved in each iteration of SLTS may
lead to a better final predictor selection. However, note that for the Fast-LTS algorithm, 10
iterations are usually sufficient, see Rousseeuw and Van Driessen [2006], and Alfons et al.
[2013] only perform two C-steps (as also suggested in Rousseeuw and Van Driessen [2006])
for the most initial subsets and proceed with further C-steps only on the best 10 resulting
models, so this procedure would not lead to enough evidence for column selection. But in
fact, since the algorithm converges to a local minimum, one needs a large number of differ-
ent initial subsets which is 500 in Alfons et al. [2013]. Therefore, we can simply average
the selection frequencies over all SLTS runs and iterations. In other words, the

14.4. STABILITY SELECTION FOR ROWS 263

aggregation of the empirical column measures would be nothing but a Stability Selection
since one essentially has B subsamples with h observations on which the algorithm has been
applied. This can be regarded as an extension of the Stability Selection for Lasso models in-
troduced in Meinshausen and Bühlmann [2010] in the sense that more than one Lasso model
is applied to each subsample in an iterative manner.

This directly leads to the question how the final model can be computed. At the end of the
whole SLTS procedure (i.e., where we have as many models as different initial subsets), one
takes the model which led to the lowest value of the objective function. Therefore, it is not
clear how one could get a final stable model. If one takes the set H∗ with h observations corre-
sponding to the best SLTS model, one may perform standard least squares based on the subset
Ŝstab of stable predictors and on the subset H∗ of observations, but it is not evident if the re-
striction of the columns to Ŝstab would lead to subset H∗ if one ran SLTS on the reduced data.

But so far, we only concerned about stable column selection. We indeed have more informa-
tion, namely an aggregated empirical row measure which we can compute by averaging the
selection frequencies of the rows. One approach would be to average the selection frequencies
respecting each single SLTS iteration as we proceeded when computing the aggregated column
measure. However, in this case, it seems more reasonable to average the selection frequencies
based on the final SLTS subsets corresponding to the (in the case of Alfons et al. [2013], the
best 10) models since the objective function, here the regularized squared loss, decreases in
each iteration by the property of the C-step, so one can definitely state that the final subset
is the best of all, making it useless to incorporate the former ones.

This leads to the new concept of Stability Selection for rows which means that we only
keep the rows in the final subset whose aggregated selection frequencies exceed some threshold.
Maybe in the special case of SLTS which is based on subsets of cardinality h, it would suffice
to take the h rows with the highest aggregated importances. Then, the final stable SLTS
estimator would be weighted least squares on the selected final rows which takes the aggregated
row measure into account.

Example 14.4.2. The Generalized L2−Boosting algorithm (see algorithm 20) would indeed
be a perfect candidate for a Stability Selection both for the rows and for the columns. This
would answer the question how the final model for the Generalized L2−Boosting algorithm
would look like, i.e., it would also be a weighted least squares model based on the stable rows
and the stable columns.

We believe that such a Stability Selection for rows may turn out to be a new milestone in

264 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

machine learning. Historically, one began to perform a brute-force best subset selection when
trying to select the best predictors in a data set. Up to this point, it has been the best op-
portunity due to the lack of an ordering of the predictor columns. Concerning backward and
forward step-wise selection, one began some kind of local ordering by deleting the variable
with the largest p−value or by including the variable with the highest correlation with the
response. The breakthrough in model selection has been achieved with algorithms like the
Lasso that automatically perform sparse model selection and like Boosting which combine
baselearners and end up with sparse models. The Stability Selection (for the columns) used
the ordering of the columns in terms of selection frequencies generated by Lasso or Boosting
models computed on different subsamples of the data.

A Stability Selection for cells when estimating a sparse covariance matrix follows essentially
the same paradigms: Repeatedly apply an algorithm which computes a sparse covariance
matrix (and therefore, a sparse empirical cell measure ℵ̂) and use the resulting ordering in
terms of selection frequencies corresponding to the cells to select a stable cell set.

When concerning a row selection, why don’t we proceed in a similar manner? Obviously,
we do not have an ordering of the rows initially and the most learning algorithms do not
help in defining one. When pre-defining a number h of observations that should be kept, a
”best subset selection” for the rows would require to take all subsets of cardinality h and to
take the subset where the objective criterion is minimal. For the MCD estimator, Rousseeuw
already solved this problem in a very clever way by invoking the concentration steps. How-
ever, these concentration steps themselves require an ordering of the rows which is implied
by the ordering of the Mahalanobis distances w.r.t. the mean and the covariance matrix of
the current subset. In other words, an analog to the multivariate L2−loss is used, so the
algorithm is essentially L2−based.

Therefore, our proposal for a Stability Selection for rows is as follows. Having an or-
dering of the rows based on different subsamples of the data, e.g., by having computed a
row-selecting learning algorithm on each subsample or by suitable concentration steps as in
Generalized Boosting (cf. algorithm 20, analogously for other losses than the squared loss)
or even by a loss-based aggregation of the final models computed on each subsample in the
spirit of the loss-based aggregation for CMB (cf. equation (11.4.3)), we select the h rows
whose aggregated selection frequencies are the highest. Another possibility is to
invoke thresholds and proceed as in the usual Stability Selection for columns or cells, basi-
cally just by replacing the aggregated empirical column or cell measure by the aggregated
empirical row measure.

When concerning a Stability Selection for rows, one has to keep in mind that in contrast to

14.4. STABILITY SELECTION FOR ROWS 265

column selection which should be sparse, row selection should not be sparse since that would
delete too much information. Therefore, natural questions that may be answered in future
works are for example how a suitable threshold (or the analog h to our q) may be chosen.
The main purpose of a Stability Selection for rows is that one wants to keep the most ”clean”
observations, deleting or downweighting observations that appear to be contaminated.

Remark 14.4.1 (Elbow plot). When performing principal component analysis or cluster-
ing, one usually draws so-called scree plots or elbow plots to choose the number of principal
components or the number of clusters (as for the latter, see for example [Friedman et al.,
2001, Sec. 14.3.11]).

A simple graphical approach for robust algorithms to determine the number h of rows in a
Stability Selection would be to apply the already computed stable model (based on a stable
column set) and to calculate the losses for each row. Since the models are assumed to be
robust, rows containing outliers would be expected to correspond to higher losses than the
”clean” rows, so the elbow in a plot that maps the ordered losses (ascending) w.r.t. h (running
from some m < n to n) could help to choose the final number of rows.

Remark 14.4.2. It can sound confusing to select rows since any empirical row measure
is obviously tailored to the training set and gets meaningless once new observations appear.
However, the Stability Selection for the rows follows the same paradigm as the one for the
columns in the sense that it is expected to improve the out-of-sample performance of the
model. While the Stability Selection for the columns is a variable selection procedure, the
Stability Selection for the rows improves the coefficients to avoid the case that outliers lead
to meaningless coefficients.

Remark 14.4.3 (Masking and swamping). One may ask if it would suffice to apply some
algorithm like a Generalized Boosting with a concentration step to determine the empirical
row measure that is used for a Stability Selection for the rows. However, in cases where
the underlying algorithm is not some sophisticated robust outlier-detecting algorithm that
can handle situations with multiple outliers, one indeed needs subsamples due to masking
and swamping effects of multiple outliers (see e.g. Rousseeuw and Hubert [2011]). Roughly
speaking, a swamping effect of outliers lets observations which are not outliers appear to
be outliers. In contrast, the masking effect lets outliers appear not to be outliers due to
other outliers. For example, a vast outlier can cause a masking effect on other outliers (see
[Maronna et al., 2006, Ex. 1.2]). By subsampling, we ge a chance to split up these structures
in order to circumvent swamping and masking effects.

Remark 14.4.4 (Stability is not stability!). So far, we defined stable column measures
as column measures with the property that their variability is low w.r.t. other observations
from the same distribution. The same is true for stable cell measures. At the first glance, the

266 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

definition of a stable row measure seems to be inappropriate.

However, throughout section 14.3, we already pointed out that outlyingness is essentially de-
termined by some loss based on either some robust mean as pseudo-response or on the true
responses where the ”prediction” depends on several columns of the regressor matrix. Indeed,
since row measures are induced by column measures, stable row measures need to be defined
as row measures whose variability is low w.r.t. different stable column mea-
sures. Assume that there is a cell-wise outlier in a particular row . But if the corresponding
variable is not relevant, there would be no need to downweight or even to delete this row since
the outlier is ignored in model-fitting when using a sophisticated robust learning algorithm.
The fact that column measures depend on the rows themselves lets this strategy appear to be
unrealiable since the outlier may already have affected the column selection. But this is not
true for stable column measures where the subsampling procedure already (partially) guards
against contamination. We are always assuming that a significant majority of rows reduced
to the columns corresponding to the stable variables do not contain outliers.

Finally, let us formally define the stable row set.

Definition 14.4.1. Let D ∈ Rn×(p+1) be a data matrix and let ζ̂ be some aggregated row
measure. Then the stable row set is defined as

Ŝrow,stab := {i | ζ̂i ≥ πthr}

for some threshold πthr.

Remark 14.4.5. Note that when using a pre-defined number h as analog to our q in the
context of Stability Selection for columns, we implicitely define a threshold which can be
defined as the entry of the empirical aggregated row measure corresponding to the h−th most
relevant row.

Remark 14.4.6. Note that once a Stability Selection for both the rows and the columns has
been performed, one finally gets stable empirical RCM pairs (ζ̂stab, ν̂stab) where ζ̂stab is
the 0/1-row measure corresponding to Ŝrow,stab and the stable column measure as before, e.g.,
algorithm 5.

Remark 14.4.7 (Ranking rows). The goal of the ranking problems from part II was to
(partially) recover the true ordering of the instances (Xi, Yi) or basically the Xi which is
induced by the ordering of the responses Yi in the case of supervised learning. The ranking
of rows that is done as pre-processing step for the Stability Selection for rows is motivated
from another paradigm and has (in its raw form) nothing to do with the problem to rank

14.4. STABILITY SELECTION FOR ROWS 267

instances. However, a combination seems to be both possible and reasonable if the data are
contaminated. Then the (predicted) ranking itself would also be prone to be misspecified due
to the contamination, i.e., a stable row set should be computed first.

The stable empirical RCM pairs from the previous section still have a weakness. Let us first
introduce the following definition.

Definition 14.4.2. Let D ∈ Rn×(p+1) be a data matrix. Then we define the corresponding
RCM matrix as

ג = i=1,...,n,j=1,...,p(ijג) = ((ζi, νj))i,j

for a row measure ζ and a column measure ν.

The weakness of stable empirical RCM pairs is that once one performed variable selection,
leading to a stable empirical column measure ν̂stab and row selection which delivers a stable
empirical row measure ζ̂stab, the non-zero entries of the stable empirical RCM matrix stabג̂

are represented by the submatrix corresponding to the selected rows resp. columns. One can
think of ג as an (n × p × 2)−dimensional array where both entries of ·,i,jג are zero if one of
them is zero. Transferring this to the computation of the final model, one just applies the
respective learning algorithm to the corresponding subset of D by deleting the non-selected
rows and columns.

Inspired by the column-specific row and column measures that arise in the DDC procedure
(Rousseeuw and Van Den Bossche [2018], see section 14.3), it would be an interesting topic
for future research to develop a cell-wise procedure that allows for arbitrary structures of
the RCM matrix which results in working with heterogeneous data where the rows depend
on different columns (or vice versa), so that NA’s appear in the modified data matrix. For
suggestions how one could proceed when facing missings, we refer to chapter 17.

Remark 14.4.8 (Ranking is not ranking!). We essentially have faced seven different
types of ranking in this work:

1.) The ranking of columns which we encounter in each Boosting iteration when taking the
column whose baselearner improves the model most w.r.t. a given loss criterion;

2.) The ranking of columns again in the column measure framework when columns are rank-
ing according to their importance (in contrast to the loss-based ranking in 1.)) which becomes

268 CHAPTER 14. CONNECTING ROBUSTNESS, STABILITY AND SPARSITY

relevant especially in Stability Selection where only the most important part of the columns
is chosen;

3.) The ranking problem that motivated our work which is nothing but a ranking of rows
induced by the ranking of the responses (in supervised learning);

4.) The ranking of rows for some kind of Stability Selection for rows depending on relative
selection frequencies;

5.) The ranking of rows based on losses or distances, in particular in concentration steps
and when concerning about robustness;

6.) The ranking of whole models which is done when selecting the best part of the models
computed in CMB and when choosing the best element of the respective grid in CMB-3S. This
is basically a within-ranking since we compare models based on the same algorithm, but with
other data resp. other predictor sets. A cross-ranking is done once one compares for instance
CMB-3S models with competitors, e.g., L2−Boosting models with Stability Selection. Note
the relation to elicitability;

7.) The ranking of cells when concerning about Stability Selection for the cells of estimated
covariance matrices.

14.5 Outlook

However, going deeper into detail how MultiSingBoost has to be constructed, how a Stability
Selection for rows can be performed, how the RCM framework can be reasonably extended
to the case of multivariate responses and how similar frameworks can be defined for other
structures definitely goes beyond the scope of this work.

It would be a very interesting and promising topic for future work to get answers to the
following questions:

How can we extend the RCM framework to the case of multivariate responses?
Does the RCM framework help to find better algorithms when facing a highly
non-regular loss function in the context of multivariate responses?
How do we account for cell-wise outliers in multivariate responses?

14.5. OUTLOOK 269

Can response-column-specific column measures be correlated themselves and
how can we quantify this?
Do highly correlated response columns provide similar column measures?
How can we perform a Stability Selection in the case of multivariate responses?

If it was possible to get the answers, one would have a tool to unify all peculiarities like
response-column-specific variable selection, case-wise and cell-wise outliers both in the vari-
ables as well as in the responses, structural missings (in both the regressor and the response
matrix!) and block-wise structures into one single framework.

Part VI

Numerical demonstration

270

271

272

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

273

This part is devoted to the implementation of the algorithms SingBoost, CMB, CMB-3S and
CV.CMB-3S that have been developed during the creation of this thesis.

The first chapter demonstrates the application to real data sets. We first consider small data
sets, i.e., the well-known iris data set and the bodyfat data set from the package TH.data.
This allows us to go into detail and to show many features of our implementation. Then, we
provide an example for the application to a large real data set, i.e., the Real.2 data set from
the package PRIMsrc. Due to the computational costs, the demonstrated features are far less
here. We close the chapter with a short application to the very high-dimensional data set
riboflavin from the package hdi.

It is important to note that the first chapter should just show how the algorithm works and
how a user can handle it, but we do not regard any form of sorting different strategies by
their performance.

In the second chapter, we indeed compare our proposed algorithms with L2−Boosting and
Hofner’s Stability Selection. We will see that our CMB-3S algorithm can beat L2−Boosting
in the majority of cases when considering the hard ranking loss function after applying it to
high-dimensional simulated data.

We will see that our loss-based Stability Selection outperforms Hofners’s Stability Selection
when facing high-dimensional noisy data. We further show that our Stability Selection can
easily handle even very high-dimensional data and leads to sophisticated stable models that
significantly outperform models computed by simple Boosting algorithms.

Chapter 15

Application to real data sets

In this chapter, we apply the CV.CMB3S function to the rather small iris and the bodyfat
data set as well as to the larger Real.2 and the riboflavin data set.

Since the first both data sets are very small, we can demonstrate a lot of the functionalities
of this algorithm and its sub-functions. As for the large data sets, we restrict ourselves to
some basic features of our algorithm due to the high computational time.

15.1 Application to the iris data set

The well-known iris data set consists of n = 150 observations with p = 5 variables where
one variable is categorical with three classes, the others are metric.

15.1.1 singboost

In the first example, we also show the output of glmboost. Due to the formula argument that
we inserted, this function applies L2−Boosting (default) with the variable Sepal.Length as
response variable with miter = 100 and κ = 0.1 (defaults). As output, we first get a short
summary of the main input components. The reported offset value is nothing but the mean
of Sepal.Length since the mean is the minimizer of the empirical squared error (see the
definition of the offset in algorithm 23). At the bottom, the fitted non-zero coefficients and
again the offset are displayed. The selection frequencies are not automatically returned and
need to be called separately.

274

15.1. APPLICATION TO THE IRIS DATA SET 275

As for singboost, we always require that the last column of the inserted data set is the
response column. We also require that the regressor matrix is already a model matrix, so
that we do not need a formula argument. To use singboost, we first have to suitably apply
the command model.matrix and to insert the corresponding data matrix as input argument.
glmboost can also be used by providing a model matrix in a similar way where the response
column must be entered separately. Note that we automatically create the intercept column in
singboost so that we delete the intercept column created by model.matrix which is needed
for glmboost. In the following experiment, we just use the default singfamily=Gaussian(),
so SingBoost is nothing but standard L2−Boosting.

As we see, the results are the same. We highlight once more that we do not compute an
offset value, so we must compare our intercept with the sum of the computed intercept and
the offset value reported by glmboost.

The fourth list element of our output is maybe the most interesting one for a user while the
second list element may not be needed for visualization but for further computations in cmb
or CMB3S. The selection frequencies are automatically displayed when using singboost and
need to be called with an extra command line for glmboost.

Note that using LS=T does not change anything since we just compute the baselearners using
lm instead of using glmboost which results in the same model for singfamily=Gaussian().

glmres← glmboost (Sepal .Length∼. , i r i s)
g lmres

Generalized Linear Models Fitted via Gradient Boosting

Call:

glmboost . formula (formula = Sepal. Length ∼ ., data = iris)

Squared Error (Regression)

Loss function : (y - f)∧2

Number of boosting iterations : mstop = 100

Step size: 0.1

Offset : 5.843333

276 CHAPTER 15. APPLICATION TO REAL DATA SETS

Coefficients :

(Intercept) Sepal.Width Petal. Length Speciesvirginica

-3.36560001 0.53639026 0.46090783 -0.01924627

attr (," offset ")

[1] 5.843333

a t t r i b u t e s (varimp (glmres)) $ s e l f

[1] 0.00 0.38 0.57 0.00 0.00 0.05

a t t r i b u t e s (varimp (glmres)) $var

[1] (Intercept) Sepal.Width Petal. Length Petal.Width

[5] Speciesversicolor Speciesvirginica

6 Levels : (Intercept) < Petal.Width < ... < Petal. Length

f i r i s ← as . f o rmu la (Sepal .Length∼.)
X i r i s←model .matr ix (f i r i s , i r i s)
D i r i s← data . f rame (X i r i s [,−1] , i r i s $ Sepal .Length)
colnames (D i r i s) [6]← "Y"
co e f (glmboost (X i r i s , i r i s $ Sepal .Length))

(Intercept) Sepal.Width Petal. Length Speciesvirginica

-3.36560001 0.53639026 0.46090783 -0.01924627

attr (," offset ")

[1] 5.843333

s i ngboos t (D i r i s)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica "

$Coefficients

[1] 2.47773332 0.53639026 0.46090783 0.00000000 0.00000000

-0.01924627

$Freqs

[1] 0.00 0.38 0.57 0.00 0.00 0.05

$VarCoef

Intercept Sepal.Width Petal. Length Speciesvirginica

2.47773332 0.53639026 0.46090783 -0.01924627

s i ngboos t (Di r i s , LS=T)

15.1. APPLICATION TO THE IRIS DATA SET 277

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica "

$Coefficients

[1] 2.47773332 0.53639026 0.46090783 0.00000000 0.00000000

-0.01924627

$Freqs

[1] 0.00 0.38 0.57 0.00 0.00 0.05

$VarCoef

Intercept Sepal.Width Petal. Length Speciesvirginica

2.47773332 0.53639026 0.46090783 -0.01924627

To include interaction terms, to handle categorical variables or transformations of the regres-
sors, one just needs to deliver the corresponding model matrix to singboost.

We restrict ourselves to a simple example with one interaction term.

glmres2← glmboost (Sepal .Length∼Peta l .Length+Sepal.Width : Spec ie s , i r i s)
f i n t e r← as . f o rmu la (Sepal .Length∼Peta l .Length+Sepal.Width : Species−1)
Xinter←model .matr ix (f i n t e r , i r i s)
Dinter← data . f rame (Xinter , i r i s $ Sepal .Length)
s ingboos t (Dinter)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width. Speciessetosa >= Sepal.Width. Speciesvirginica

"

$Coefficients

[1] 4.00831289 0.45662497 0.08896750 0.00000000 0.01751541

$Freqs

[1] 0.00 0.60 0.36 0.00 0.04

$VarCoef

Intercept Petal. Length

4.00831289 0.45662497

Sepal.Width. Speciessetosa Sepal.Width. Speciesvirginica

0.08896750 0.01751541

co e f (glmres2)

278 CHAPTER 15. APPLICATION TO REAL DATA SETS

(Intercept) Petal. Length

-1.83502045 0.45662497

Sepal.Width: Speciessetosa Sepal.Width: Speciesvirginica

0.08896750 0.01751541

attr (," offset ")

[1] 5.843333

The number of Boosting iterations and the step size can be easily changed in singboost
while glmboost requires to modify boost_control.

In this example, we set miter = 250 and κ = 0.05.

glmres3← glmboost (X i r i s , i r i s $ Sepal .Length , c on t r o l=boost_contro l (mstop=250 ,nu=0
.05))

c o e f (glmres3)

(Intercept) Sepal.Width Petal. Length Petal.Width

-3.428469064 0.550913963 0.468866896 -0.002836468

Speciesvirginica

-0.043375444

attr (," offset ")

[1] 5.843333

a t t r i b u t e s (varimp (glmres3)) $ s e l f

[1] 0.000 0.348 0.540 0.012 0.000 0.100

s i ngboos t (Di r i s , m_iter=250 ,kap=0.05)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica >= Petal.Width"

$Coefficients

[1] 2.414864269 0.550913963 0.468866896 -0.002836468 0.000000000

[6] -0.043375444

$Freqs

[1] 0.000 0.348 0.540 0.012 0.000 0.100

$VarCoef

Intercept Sepal.Width Petal. Length Petal.Width

2.414864269 0.550913963 0.468866896 -0.002836468

Speciesvirginica

15.1. APPLICATION TO THE IRIS DATA SET 279

-0.043375444

s i ngboos t (Di r i s , LS=T, m_iter=250 ,kap=0.05)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica >= Petal.Width"

$Coefficients

[1] 2.414864269 0.550913963 0.468866896 -0.002836468 0.000000000

[6] -0.043375444

$Freqs

[1] 0.000 0.348 0.540 0.012 0.000 0.100

$VarCoef

Intercept Sepal.Width Petal. Length Petal.Width

2.414864269 0.550913963 0.468866896 -0.002836468

Speciesvirginica

-0.043375444

In the first of the two following examples, we show how we can plot coefficient paths for
glmboost. We just need to apply plot to the glmboost object.

For SingBoost, we use the function path.singboost which exactly makes the same compu-
tations as singboost, but it additionally saves the path coordinates which would be wasted
storage capacities for standard singboost since in general, this function is just called inter-
nally in cmb or CMB3S, so in these cases, saving the path coordinates would not be meaningful.

We apply singboost.plot to the path.singboost object where we also need to insert M
and miter in order to activate the grid to better visualize the coefficient updates in the sin-
gular iterations.

Note that we do not include an intercept path since we do not think that it would be inter-
esting in the context of model selection. The intercept path for glmboost does not include
the offset per default, but it can be added to the intercept at each iteration when using
off2int=TRUE as input argument for plot.

p lo t (glmres)

280 CHAPTER 15. APPLICATION TO REAL DATA SETS

0 20 40 60 80 100

−
3

−
2

−
1

0

glmboost.formula(formula = Sepal.Length ~ ., data = iris)

Number of boosting iterations

C
oe

ffi
ci

en
ts

(Intercept)

Speciesvirginica

Petal.LengthSepal.Width

s ingpath← path . s i ngboo s t (D i r i s)
s i n g b o o s t . p l o t (s ingpath ,10 , 100 , subnames=F)

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Singboost coefficient paths
 Squared Error (Regression)

Number of iterations

C
oe

ffi
ci

en
ts

Speciesvirginica

Petal.Length

Sepal.Width

15.1. APPLICATION TO THE IRIS DATA SET 281

An mboost family object can be handled over to singboost by assigning it to the input
variable singfamily. Clearly, the results of singboost differ from that of glmboost once
another family object than Gaussian() is used. We show the empirical column measures for
singfamily=QuantReg(tau=0.75), i.e., for the Lτ−loss with τ = 0.75 (see example 3.2.4),
and the coefficients forM = 10 (default) andM = 2. Remind that we forbid that singboost
selects the intercept when LS=T.

glmquant← glmboost (Sepal .Length∼. , i r i s , f ami ly=QuantReg (tau=0.75))
c o e f (glmquant)

(Intercept) Sepal.Width Petal. Length

-3.1274211 0.5191849 0.4756341

attr (," offset ")

50%

5.8

a t t r i b u t e s (varimp (glmquant)) $ s e l f

[1] 0.24 0.27 0.49 0.00 0.00 0.00

s i ngboos t (Di r i s , s i n g f am i l y=QuantReg (tau=0.75) ,LS=T)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica "

$Coefficients

[1] 2.47836568 0.53612658 0.46095525 0.00000000 0.00000000

-0.01925953

$Freqs

[1] 0.00 0.38 0.57 0.00 0.00 0.05

$VarCoef

Intercept Sepal.Width Petal. Length Speciesvirginica

2.47836568 0.53612658 0.46095525 -0.01925953

s i ngboos t (Di r i s , s i n g f am i l y=QuantReg (tau=0.75) ,LS=T,M=2)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica "

$Coefficients

[1] 2.44900980 0.54702733 0.45925162 0.00000000 0.00000000

-0.01196688

282 CHAPTER 15. APPLICATION TO REAL DATA SETS

$Freqs

[1] 0.00 0.42 0.55 0.00 0.00 0.03

$VarCoef

Intercept Sepal.Width Petal. Length Speciesvirginica

2.44900980 0.54702733 0.45925162 -0.01196688

The last example is an example for the hard ranking loss. We see for the first time that
the variable Speciesversicolor has been selected. Of course, we cannot say if the in-
clusion of this variable is meaningful until here. However, as the mean of Sepal.Length
significantly differs over the three groups defined by the Species variable, we can assume
that the Species variable indeed yields predictive power when concerning ranking problems.

s i ngboos t (Di r i s , s i n g f am i l y=Rank () ,LS=T)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesvirginica >= Speciesversicolor "

$Coefficients

[1] 2.485989684 0.534163798 0.460436981 0.000000000 0.000344599

[6] -0.018630537

$Freqs

[1] 0.00 0.38 0.56 0.00 0.01 0.05

$VarCoef

Intercept Sepal.Width Petal. Length Speciesversicolor

2.485989684 0.534163798 0.460436981 0.000344599

Speciesvirginica

-0.018630537

s i ngboos t (Di r i s , s i n g f am i l y=Rank () ,LS=T,M=2)

$‘ Selected variables ‘

[1] "Petal.Length >= Sepal.Width >= Speciesversicolor >= Speciesvirginica "

$Coefficients

[1] 2.492415136 0.535364028 0.455576905 0.000000000 0.010499819

[6] -0.004278119

$Freqs

[1] 0.00 0.43 0.50 0.00 0.04 0.03

15.1. APPLICATION TO THE IRIS DATA SET 283

$VarCoef

Intercept Sepal.Width Petal. Length Speciesversicolor

2.492415136 0.535364028 0.455576905 0.010499819

Speciesvirginica

-0.004278119

15.1.2 cmb

In the following larger example, we demonstrate the functionalities of our cmb function.
Again, Sepal.Length is our response variable. In the first example, we apply CMB to de-
termine an aggregated empirical column measure for Bsing = 50 subsamples with α = 0.2,
so we will only use the information provided by the ten best models w.r.t. the hard ranking
loss (inserted as evalfam) at the end. For each of the Bsing subsamples of size ncmb = 100,
we apply SingBoost with hard ranking singular steps, learning rate κ = 0.1 and with 100
iterations each and M = 10. We use the aggregation method as in (11.4.2) and do not con-
cern about winsorizing the score vector as proposed in (11.4.5). The interesting parts of the
output are the empirical aggregated column measure which clearly can only take values in
{0, 0.1, ..., 1} since αBsing = 10. The row measure reflects the frequencies of each row having
been contained in the ten subsamples corresponding to the best models.

In the second example, we just changed M to 2. The third example shows the effect of using
(11.4.3) which are loss-weighted, so we do no longer have a perfect 0.1 step size of the entries
of the empirical aggregated column measure.

s e t . s e e d (19931023)
cmb1←CMB(Dir i s , ns ing=100 ,Bsing=50, alpha=0.2 , s ingfam=Rank () , evalfam=Rank () ,

s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, wagg=’ weights1 ’ , robagg=F, lower=0)
cmb1

$‘ Column measure ‘

[1] 0.0 1.0 1.0 0.1 0.7 0.9

$‘ Selected variables ‘

[1] "Sepal.Width >= Petal.Length >= Speciesvirginica >= Speciesversicolor >= Petal

.Width"

$‘ Variable names ‘

[1] " Intercept " "Sepal.Width" "Petal. Length "

[4] "Petal.Width" " Speciesversicolor " " Speciesvirginica "

284 CHAPTER 15. APPLICATION TO REAL DATA SETS

[7] "Y"

$‘Row measure ‘

[1] 0.8 0.4 0.4 0.6 0.7 0.4 1.0 0.9 0.7 0.6 0.9 0.7 0.8 0.4 0.8 0.6 1.0

[18] 0.7 0.8 0.7 0.4 0.7 0.4 0.8 0.7 0.8 0.8 0.6 0.6 0.8 0.7 0.9 0.6 0.6

[35] 0.4 0.8 0.7 0.5 0.7 0.6 0.4 0.4 0.6 0.6 0.4 0.5 0.5 0.6 0.6 0.6 0.6

[52] 0.7 1.0 0.2 0.7 0.4 0.8 0.7 0.9 0.9 0.6 0.7 0.6 0.8 0.7 0.7 0.7 0.9

[69] 0.7 0.7 0.8 0.8 0.6 0.5 0.4 0.8 0.7 0.5 0.6 0.6 0.7 0.6 0.4 0.6 0.9

[86] 0.6 0.7 1.0 0.8 0.7 0.7 0.5 0.7 0.6 0.6 0.5 0.8 0.5 0.9 0.6 0.7 0.7

[103] 0.6 0.6 0.7 0.9 0.8 0.6 0.6 0.6 0.9 0.5 0.6 0.8 0.5 0.8 0.7 0.7 0.7

[120] 0.7 0.7 0.8 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.5 0.8 0.5 0.9 0.5

[137] 0.6 0.6 0.6 0.7 0.8 0.7 0.9 0.5 0.6 0.7 0.7 0.8 0.8 0.6

s e t . s e e d (19931023)
cmb2←CMB(Dir i s , ns ing=100 ,Bsing=50, alpha=0.2 , s ingfam=Rank () , evalfam=Rank () ,

s i ng=T,M=2,m_iter=100 ,kap=0.1 , LS=T, wagg=’ weights1 ’ , robagg=F, lower=0)
cmb2 [[1]]

[1] 0.0 1.0 1.0 0.2 1.0 0.9

s e t . s e e d (19931023)
cmb3←CMB(Dir i s , ns ing=100 ,Bsing=50, alpha=0.2 , s ingfam=Rank () , evalfam=Rank () ,

s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, wagg=’ weights2 ’ , robagg=F, lower=0)
cmb3 [[1]]

[1] 0.0000000 1.0000000 1.0000000 0.1033739 0.6953329 0.8964527

15.1.3 CMB3S

In this example, we demonstrate how one applies L2−Boosting to real data using CMB3S. As
before, we need to compute the model matrix for the training data and of course, the same
has to be done for the validation set. The first example is nothing but the application of
L2−Boosting (since sing=F, so singfam is not used anyway) to the training subsample Dtrain

since Bsing = 1, B = 1 and ncmb = nsing = ntrain, so the ”subsample” is the whole training
sample. Since we are forced to define the input arguments gridtype and grid, we enter the
π−grid which just contains the one. Indeed, if we just apply L2−Boosting once, we clearly
get empirical selection frequencies which are either zero or one, so this special π−grid does
nothing but enforcing to include all selected variables into our final model.

At the end, we inserted singcoef=T and Mfinal=10. If we had inserted singcoef=F, the final
coefficients had been the coefficients computed by lm on the reduced data w.r.t. the columns

15.1. APPLICATION TO THE IRIS DATA SET 285

chosen by L2−Boosting. Our chosen input arguments let the final coefficients be computed by
L2−Boosting (due to singfam=Gaussian()) and Mfinal does not have any effect here since
the ”singular” steps are standard L2−Boosting steps. As demonstrated below, the coefficients
are exactly the same as if one had applied L2−Boosting directly to the training set. Clearly,
this example seems to be totally meaningless, but it shows how easily our Stability Selection
can be applied to L2−Boosting (and once we set B � 1, we can indeed speak of ”stability”).

The CMB3S algorithm reports the final coefficients, the aggregated empirical column measure
and the selected coefficients. In our example, the aggregated empirical column measure is
{0, 1}−valued and the grid is πgrid = {0.8, 0.9, 1}, i.e., only the three variables to which the
column measure assigns weight 1 are ultimately selected and form the stable predictor set.
CMB3S also reports the aggregated row measure as CMB, but we did not show it here since it
is of minor interest for now.

s e t . s e e d (19931023)
ind← sample (1 : 150 , 120 , r ep l a c e=F)
Dtrain← Di r i s [ind ,]
Dvalid← Di r i s [−ind ,]
s e t . s e e d (19931023)
cmb3s←CMB3S(Dtrain , ns ing=120 ,Dvalid=Dvalid , ncmb=120 ,Bsing=1,B=1, alpha=1,

s ingfam=Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
wagg=’ weights1 ’ , g r id type=’ p i g r i d ’ , g r i d=seq (0 .8 , 0 .9 , 1) , useZeta=F, robagg=F,
lower=0, s i n g c o e f=T, Mfinal=10)

cmb3s$Fin

Intercept Sepal.Width Petal. Length Petal.Width

2.441957843 0.546653819 0.462775638 -0.005221617

cmb3s$Stab

[1] 0 1 1 1 0 0

cmb3s$ Se l

[1] 1 2 3

glmres4← glmboost (Sepal .Length∼. , i r i s [ind ,])
c o e f (glmres4)

(Intercept) Sepal.Width Petal. Length Petal.Width

-3.343875490 0.546653819 0.462775638 -0.005221617

attr (," offset ")

[1] 5.785833

286 CHAPTER 15. APPLICATION TO REAL DATA SETS

In the next example, we apply L2−Boosting to subsamples of the training data of size 80 for
each b = 1, ..., B = 100 and count the selection frequencies in the best αBsing = 5 models in
each stability iteration, i.e., for each subsample. These empirical column measures are ag-
gregated and the final coefficients are L2−Boosting coefficients, applied to the reduced data.
Note that we essentially aggregate 500 (= BαBsing) different models, so the aggregated col-
umn measure using the weights proposed in (11.4.2) can take values in {0, 0.002, ..., 0.998, 1}.

s e t . s e e d (19931023)
cmb3s1←CMB3S(Dtrain , ns ing=80,Dvalid=Dvalid , ncmb=100 ,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
wagg=’ weights1 ’ , g r id type=’ p i g r i d ’ , g r i d=seq (0 .8 , 0 .9 , 1) , useZeta=F, robagg=F,
lower=0, s i n g c o e f=T, Mfinal=10)

cmb3s1$Fin

Intercept Sepal.Width Petal. Length

2.4120982 0.5548308 0.4625010

cmb3s1$Stab

[1] 0.000 1.000 1.000 0.590 0.312 0.408

Clearly, using sing=T and LS=T, we apply the CMB-3S algorithm for complicated loss func-
tions like the hard ranking loss function as in the following example. Note that the aggregated
selection frequencies for the variables Speciesversicolor and Speciesvirginica are sig-
nificantly different from the one in the previous example. The final coefficients are SingBoost
coefficients.

Also note that the last three variables get empirical selection frequencies smaller than 0.8
which excludes them from the stable model since πgrid = {0.8, 0.9, 1}.

s e t . s e e d (19931023)
cmb3s2←CMB3S(Dtrain , ns ing=80,Dvalid=Dvalid , ncmb=100 ,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Rank () , evalfam=Rank () , s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, wagg=’
weights2 ’ , g r id type=’ p i g r i d ’ , g r i d=seq (0 .8 , 0 .9 , 1) , useZeta=F, robagg=F, lower=0,
s i n g c o e f=T, Mfinal=10)

cmb3s2$Fin

Intercept Sepal.Width Petal. Length

2.4135578 0.5543613 0.4624923

cmb3s2$Stab

[1] 0.0000000 1.0000000 1.0000000 0.5033688 0.6124791 0.5775526

15.1. APPLICATION TO THE IRIS DATA SET 287

Remark 15.1.1. Thanks to the additional input argument sing, we are able to apply our
loss-adapted Stability Selection to any existing Boosting algorithm for regression by just setting
sing=F and using the respective family object for singfam and evalfam. Note again that the
combination of sing=F with some singfam object representing loss L leads to the application
of L−Boosting in the stability iterations.

We present an example where we use the Huber loss function. Note again that the stable
empirical column measure is somewhat different from the ones that we saw before.

s e t . s e e d (19931023)
cmb3s3←CMB3S(Dtrain , ns ing=80,Dvalid=Dvalid , ncmb=100 ,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Huber () , evalfam=Huber () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, wagg=’
weights2 ’ , g r id type=’ p i g r i d ’ , g r i d=seq (0 .8 , 0 .9 , 1) , useZeta=F, robagg=F, lower=0,
s i n g c o e f=F, Mfinal=10)

cmb3s3$Fin

Intercept Sepal.Width Petal. Length

2.2575367 0.5939522 0.4722634

cmb3s3$Stab

[1] 0.070623411 1.000000000 1.000000000 0.040396108 0.002665918

0.284898682

15.1.4 CV.CMB3S

The CV.CMB-3S algorithm (algorithm 16) is nothing but the application of CMB-3S to
different partitions of the data into training, validation and test set to estimate the out-of-
sample error of the whole algorithm. To randomly divide the data into these three parts, we
wrote a simple function called random.CVind where we insert the number of observations,
the number of training and validation observations that we require and the number V of
partitions. The partitions are generated randomly and not in a V−fold manner.

In this first example, we just demonstrate that this is exactly what we implemented for the
case of the squared loss. Due to Bsing=1, B=1 and sing=F, we did nothing but applying
standard L2−Boosting to the training set generated by random.CVind since the validation
set is actually not needed since we just have a one-elemental grid. The fitted model is ap-
plied to the test set (which contains 150 − 100 − 25 = 25 observations). At the end, the

288 CHAPTER 15. APPLICATION TO REAL DATA SETS

cross-validated test loss as well as the ultra-stable column measure suggested in section 12.4
are provided, in this part always with equal weights.

The lines below perform the same steps and therefore produce the same loss.

s e t . s e e d (19931023)
CVind← random.CVind (150 ,100 ,25 ,1)
CV.CMB3S(D, ns ing=100 ,Bsing=1,B=1, alpha=1, s ingfam=Gaussian () , evalfam=Gaussian ()

, s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, gr id type=’ p i g r i d ’ , g r i d =1, useZeta=F,
Dvalid=Dvalid , ncmb=100 , robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind ,
target fam=Gaussian () , p r i n t=F)

$‘Cross - validated loss ‘

[1] 3.205182

$‘Ultra - stable column measure ‘

[1] 0 1 1 1 0 0

Dtrain←D[which (CVind [[1]]== ’ t r ’) ,]
Dvalid←D[which (CVind [[1]]== ’v ’) ,]
Dtest←D[which (CVind [[1]]== ’ te ’) ,]
g lmres← glmboost (Y∼. , Dtrain)
Gaussian () @risk (p r ed i c t (glmres , Dtest) , Dtest $Y)

[1] 3.205182

Now, we perform the same experiment, but with 50 different partitions of the data, again
with 100 instances used for training, 25 for validation and 25 for testing. The first run is
again a simple L2−Boosting model, the second run uses a SingBoost model with hard ranking
singular iterations. As we see, there is essentially no difference in the test losses.

The third run uses 25 subsamples for each training set where on each subsample, we again
use 5 subsamples and only keep the three best SingBoost models for further aggregation of
the empirical column measures. The last run reveals that evalfam is indeed an interesting
functionality since we compute L2−Boosting models, but for the change of measure and for
the selection of the optimal threshold resp. the optimal final number of variables, we use the
loss L̃, here the hard ranking loss.

Due to the fact that the data set just contains five regressor columns (since the column
corresponding to Sepal.Length is considered to be the response column and the variable
Species is represented by two columns), there are no differences in the results of the first

15.1. APPLICATION TO THE IRIS DATA SET 289

and fourth resp. of the second and third run since the Stability Selection does not reduce
the sparsity compared to the L2−Boosting model any further.

s e t . s e e d (19931023)
CVind← random.CVind (150 ,100 ,25 ,50)
s e t . s e e d (19931023)
lo s sg lm←CV.CMB3S(D, ns ing=100 ,ncmb=100 ,Bsing=1,B=1, alpha=1, s ingfam=Gaussian () ,

evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, gr id type=’ p i g r i d ’ ,
g r i d =1, useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind ,
target fam=Rank () , p r i n t=F) [[1]]

mean(lo s sg lm)

[1] 0.1264753

s e t . s e e d (19931023)
losscmb←CV.CMB3S(D, ns ing=100 ,ncmb=100 ,Bsing=1,B=1, alpha=1, s ingfam=Rank () ,

evalfam=Rank () , s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, gr id type=’ p i g r i d ’ , g r i d
=1, useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind , target fam=
Rank () , p r i n t=F) [[1]]

mean(losscmb)

[1] 0.1262814

s e t . s e e d (19931023)
losscmb3s←CV.CMB3S(D, ns ing=100 ,ncmb=100 ,Bsing=5,B=25, alpha=0.6 , s ingfam=Rank ()

, evalfam=Rank () , s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, gr id type=’ p i g r i d ’ , g r i d
=1, useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind , target fam=
Rank () , p r i n t=F) [[1]]

mean(losscmb3s)

[1] 0.1262814

s e t . s e e d (19931023)
l o s s g lmeva l←CV.CMB3S(D, ns ing=100 ,ncmb=100 ,Bsing=5,B=25, alpha=0.6 , s ingfam=

Gaussian () , evalfam=Rank () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, gr id type=’
p i g r i d ’ , g r i d =1, useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind ,
target fam=Rank () , p r i n t=F) [[1]]

mean(l o s s g lmeva l)

[1] 0.1264753

The ultra-stable column measure is indeed also computed by the function CV.CMB3S and is
delivered to the user as second output argument which we suppressed here since there would
be nothing to see.

290 CHAPTER 15. APPLICATION TO REAL DATA SETS

15.2 Application to the bodyfat data set

The bodyfat data set from the R−package TH.data (Hothorn [2019]) contains n = 71 ob-
servations with p = 10 metric variables.

15.2.1 singboost

We just apply glmboost and singboost with hard ranking singular iterations to the data,
treating the column DEXfat as response column, implying that nine variables enter as regres-
sor variables.

r e qu i r e (TH.data)
f← as . f o rmu la (DEXfat∼. ,)
Xmod←model .matr ix (f , bodyfat)
D← data . f rame (Xmod[,−1] , bodyfat $DEXfat)
colnames (D) [1 0]← "Y"
glmfat← glmboost (Y∼. ,D)
s i n g f a t← s i ngboos t (D, s i ng f am i l y=Rank ())
s i n g f a t 2← s i ngboos t (D, s i ng f am i l y=Rank () ,M=2)
co e f (g lmfat)

(Intercept) age waistcirc hipcirc elbowbreadth

-98.8166077 0.0136017 0.1897156 0.3516258 -0.3841399

kneebreadth anthro3a anthro3b anthro3c

1.7365888 3.3268603 3.6565240 0.5953626

attr (," offset ")

[1] 30.78282

s i n g f a t $Var

Intercept age waistcirc hipcirc elbowbreadth

-67.79070097 0.01338179 0.19482863 0.34748391 -0.39690915

kneebreadth anthro3a anthro3b anthro3c

1.73242999 3.32686027 3.66769186 0.55192720

s i n g f a t 2 $Var

Intercept age waistcirc hipcirc elbowbreadth

-68.3973928 0.0240473 0.2064258 0.3562216 -0.2028520

kneebreadth anthro3a anthro3b anthro3c anthro4

1.6339704 0.5153067 2.9598198 0.8530612 1.9505952

15.2. APPLICATION TO THE BODYFAT DATA SET 291

a t t r i b u t e s (varimp (glmfat)) $ s e l f

[1] 0.00 0.11 0.06 0.10 0.19 0.30 0.03 0.15 0.06 0.00

s i n g f a t $Freq

[1] 0.00 0.11 0.06 0.09 0.19 0.31 0.03 0.15 0.06 0.00

s i n g f a t 2 $Freq

[1] 0.00 0.20 0.11 0.09 0.10 0.22 0.05 0.18 0.01 0.04

15.2.2 CMB3S

Since the abovely computed models contain eight resp. nine predictors, a Stability Selection
is expected to reduce the number of selected variables in the final model this time. A demon-
stration of cmb seems not to be exciting again.

The first example is essentially borrowed from the documentation of the R−package stabs
(Hofner and Hothorn [2017]) where the functionalities of the stabsel function are shown.
We just recapitulate it here for comparison.

r e qu i r e (s tabs)
mod← glmboost (DEXfat∼. , data=bodyfat)
s e t . s e e d (19990904)
stab← s t a b s e l (mod , q=3,PFER=1, sampl ing . type="MB")
stab

Stability Selection without further assumptions

Selected variables :

waistcirc hipcirc

3 4

Selection probabilities :

(Intercept) age elbowbreadth kneebreadth anthro3c

0.00 0.00 0.00 0.01 0.14

anthro4 anthro3b anthro3a waistcirc hipcirc

0.19 0.23 0.47 0.96 1.00

Cutoff : 0.95; q: 3; PFER: 1

PFER corresponds to signif . level 0.1 (without multiplicity adjustment)

292 CHAPTER 15. APPLICATION TO REAL DATA SETS

Again, we have to generate the model matrix in advance before applying CMB3S. In this ex-
ample, we apply our Stability Selection to standard L2−Boosting models. We use a grid
for the number q of final variables where we include at most the five most frequently chosen
variables into the final stable model.

Note that for both variables waistcirc and hipcirc, the aggregated selection frequency is
one. For q = 1, our algorithm picks one of those variables.

Interestingly, our Stability Selection leads to the same stable model as Hofner’s Stability
Selection from the previous example, although the aggregated column measures are signifi-
cantly different.

s e t . s e e d (19990904)
ind← sample (1 : 71 , 15 , r ep l a c e=F)
Dtrain←D[−ind ,]
Dvalid←D[ind ,]
s e t . s e e d (19990904)
stab2←CMB3S(Dtrain , ns ing=30,Dvalid=Dvalid , ncmb=45,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ qgr id ’ , g r i d =1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10)

stab2 $Fin

Intercept waistcirc hipcirc

-45.5756329 0.3630883 0.4203918

stab2 $Stab

[1] 0.000 0.914 1.000 1.000 0.932 0.844 0.680 0.676 0.992 0.740

In the next two examples, we apply CMB-3S with ranking singular steps and with the input
argument evalfam=Rank(), i.e., the determination of the best models as well as the Stability
Selection are based on the hard ranking loss.

The first example uses M = 10 and miter = 100 which we changed to M = 5 and miter = 25
in the second example since the data set is very small, so letting the Boosting algorithms
perform 100 iterations may select too many predictors.

Indeed, the first example resulted in the three equally-stable predictors age, waistcirc and
hipcirc. This is astounding since the predictor age has never been selected when performing
Hofner’s Stability Selection as we have seen in the example before the previous example. In

15.2. APPLICATION TO THE BODYFAT DATA SET 293

the second example, we just got the stable variable hipcirc. Taking a look at the stable
column measure, we see that the variable waistcirc has almost equal selection frequency,
but the grid search obviously favoured the sparser stable model.

s e t . s e e d (19990904)
stab3←CMB3S(Dtrain , ns ing=30,Dvalid=Dvalid , ncmb=45,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Rank () , evalfam=Rank () , s i ng=T,M=10,m_iter=100 ,kap=0.1 , LS=T, gr id type=
’ qgr id ’ , g r i d =1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10)

stab3 $Fin

Intercept age waistcirc hipcirc

-46.86178368 0.07121778 0.34514754 0.41312129

stab3 $Stab

[1] 0.0000000 1.0000000 1.0000000 1.0000000 0.9210238 0.8566429 0.7310317

[8] 0.7572579 0.9723810 0.7534008

s e t . s e e d (19990904)
stab4←CMB3S(Dtrain , ns ing=30,Dvalid=Dvalid , ncmb=45,Bsing=10,B=100 , alpha=0.5 ,

s ingfam=Rank () , evalfam=Rank () , s i ng=T,M=5,m_iter=25,kap=0.1 , LS=T, gr id type=’
qgr id ’ , g r i d =1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10)

stab4 $Fin

Intercept hipcirc

-45.9687408 0.7243226

stab4 $Stab

[1] 0.0000000 0.5979524 0.9983333 1.0000000 0.2425476 0.3130714 0.6117500

[8] 0.7710357 0.9449048 0.6815952

In the final example for the bodyfat data set, we apply the CV.CMB3S function in three dif-
ferent ways.

The first example applies our loss-based Stability Selection to L2−Boosting models and uses
the squared loss to determine the optimal grid element and the corresponding stable model,
but where the test losses are computed w.r.t. the hard ranking loss as target loss.

In the second example, we indeed use SingBoost and perform the aggregation in CMB and the
Stability Selection w.r.t. the hard ranking loss. The last example is a compromise where we
compute L2−Boosting models and perform the CMB aggregation and our Stability Selection
w.r.t. the hard ranking loss.

294 CHAPTER 15. APPLICATION TO REAL DATA SETS

In all examples, we set ntrain = 45, nval = 13, ntest = 13, ncmb = 35 and nsing = 25. We draw
B = 50 subsamples in each stability iteration and use the best 5 of 10 models computed
by CMB. Note that the final coefficients are based on standard L2−Boosting in the first
and third example while we use final coefficients computed by SingBoost with hard ranking
singular iterations and M final = 2 in the second example. The variable M final (and M as
well) does not have any effect in the first and third example.

Due to the long computational time (of the second example), we ran these simulations on
the University’s HPC cluster, hence we load the data in subsequent command lines which
has been saved as TH4.RData.

s e t . s e e d (19990904)
CVind← random.CVind (71 ,45 ,13 ,50)
s e t . s e e d (19990904)
lo s sg lm←CV.CMB3S(D, ns ing=25,ncmb=35,Bsing=10,B=50, alpha=0.5 , s ingfam=Gaussian

() , evalfam=Gaussian () , s i ng=F,M=2,m_iter=100 ,kap=0.1 , LS=F, gr id type=’ qgr id ’ ,
g r i d =1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind ,
target fam=Rank () , p r i n t=F)

s e t . s e e d (19990904)
losscmb3s←CV.CMB3S(D, ns ing=25,ncmb=35,Bsing=10,B=50, alpha=0.5 , s ingfam=Rank () ,

evalfam=Rank () , s i ng=T,M=2,m_iter=100 ,kap=0.1 , LS=T, gr id type=’ qgr id ’ , g r i d
=1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=2,CVind=CVind , target fam=
Rank () , p r i n t=F)

s e t . s e e d (19990904)
l o s s g lmeva l←CV.CMB3S(D, ns ing=25,ncmb=35,Bsing=10,B=50, alpha=0.5 , s ingfam=

Gaussian () , evalfam=Rank () , s i ng=F,M=2,m_iter=100 ,kap=0.1 , LS=F, gr id type=’
qgr id ’ , g r i d =1:5 , useZeta=F, robagg=F, lower=0, s i n g c o e f=T, Mfinal=10,CVind=CVind
, target fam=Rank () , p r i n t=F)

LTH24← l i s t (lossg lm , losscmb3s , l o s s g lmeva l)
save (LTH24 , f i l e="TH4.RData ")

load ("TH4.RData ")
mean(LTH24 [[1]] $Cross)

[1] 0.1099664

mean(LTH24 [[2]] $Cross)

15.3. APPLICATION TO A LARGE GENOMIC DATA SET 295

[1] 0.1007495

mean(LTH24 [[3]] $Cross)

[1] 0.1084214

LTH24 [[1]] $Ultra

[1] 0.00000 0.87584 0.98144 0.99760 0.88792 0.95952 0.81040 0.77168

[9] 0.73384 0.35320

LTH24 [[2]] $Ultra

[1] 0.0000000 0.9885492 0.9978956 0.9996651 0.9292798 0.9530768 0.8505351

[8] 0.9195646 0.8471244 0.4917235

LTH24 [[3]] $Ultra

[1] 0.0000000 0.8794121 0.9864963 0.9984119 0.8781105 0.9321749 0.7664462

[8] 0.7999610 0.7595124 0.4001568

Note that if we indeed performed an ”outer Stability Selection”, i.e., a Stability Selection
based on the ultra-stable column measures, we would again get the same model as Hofner’s
Stability Selection has computed when considering q = 2 or a suitable threshold. However,
a further step like this one is definitely not necessary for a data set with p = 10 variables.

15.3 Application to a large genomic data set

We analyze the data set Real.2 from the package PRIMsrc (Dazard et al. [2015]) which
contains n = 123 observations and p = 946 variables of which five are nominal (according to
the str command in R). Note that the nominal variables are not yet declared as factors, so
we use the R−command as.factor.

We first apply standard L2−Boosting using the variable y as response variable which repre-
sents the time until relapse after the patients were cured from lung cancer by surgery. We
then apply Hofner’s Stability Selection with different adjustments.

In all cases, the variable delta is the only stable variable. The warning that appeared in-
dicates that the L2−Boosting algorithm did not succeed in selecting the required number q

296 CHAPTER 15. APPLICATION TO REAL DATA SETS

of predictors on 13 of the B = 100 subsamples since the maximal number of iterations is
miter = 100. It is recommended to increase the number of iterations so that the Boosting
models may select sufficiently enough variables. However, instead of increasing miter, we just
try other input arguments here.

r e qu i r e (PRIMsrc)
dim(Rea l .2)

[1] 123 946

Real .2 $Type← a s . f a c t o r (Rea l .2 $Type)
Rea l .2 $ de l t a← a s . f a c t o r (Rea l .2 $ de l t a)
Rea l .2 $KRAS.status← a s . f a c t o r (Rea l .2 $KRAS.status)
Rea l .2 $EGFR.status← a s . f a c t o r (Rea l .2 $EGFR.status)
Rea l .2 $ P53 . s ta tus← a s . f a c t o r (Rea l .2 $ P53 . s ta tus)
glmres← glmboost (y∼. , Rea l .2)
glmres

Generalized Linear Models Fitted via Gradient Boosting

Call:

glmboost . formula (formula = y ∼ ., data = Real .2)

Squared Error (Regression)

Loss function : (y - f)∧2

Number of boosting iterations : mstop = 100

Step size: 0.1

Offset : 3.246341

Coefficients :

(Intercept) delta1 Type2 ebv.miR. BART19 .5p

-3.87180108 -2.43275583 -0.11616139 -0.17330521

hsa.miR .1255a bkv.miR.B1.3p hsa.miR .942 hsa.miR .600

-0.18204381 0.02102917 -0.04936648 0.07823421

hsa.miR .449b hsa.miR .508.5 p hsa.miR .1911 hsa.miR .1226

0.02850915 0.01861387 -0.02605721 -0.02493188

hsa.miR .1294 hsa.miR .935 hsa.miR .593 hsa.miR .382

0.03772344 0.17583207 0.02648411 -0.07033468

hsa.miR .30b. hsa.miR .564 hsa.miR .486.5 p hsa.miR .140.3 p

0.03109510 0.16999100 0.13116255 0.25070291

15.3. APPLICATION TO A LARGE GENOMIC DATA SET 297

hsa.miR .1269 hsa.miR .1248 hsa.miR .758 hsa.miR .339.3 p

-0.17667881 0.08496770 -0.06818442 0.01951349

ebv.miR. BART12 hsa.miR .518e hsa.miR .195. hsa.miR .548m

0.14007022 0.02829978 0.02607871 -0.05189332

attr (," offset ")

[1] 3.246341

s e t . s e e d (20111017)
stab← s t a b s e l (glmres , c u t o f f=0.6 ,PFER=2)

Warning in stabsel . mboost (glmres , cutoff = 0.6, PFER = 2): ’mstop ’ too

small in 13 of the 100 subsampling replicates to select ’q’ base -

learners ; Increase ’mstop ’ bevor applying ’stabsel ’

stab $ s e l

delta1

2

s e t . s e e d (20111017)
stab2← s t a b s e l (glmres , c u t o f f=0.55 ,PFER=2)
stab2 $ s e l

delta1

2

glmres← glmboost (y∼. , Real .2 , c on t r o l=boost_contro l (mstop=200))
s e t . s e e d (20111017)
stab3← s t a b s e l (glmres , c u t o f f=0.6 ,PFER=2)
stab3 $ s e l

delta1

2

s e t . s e e d (20111017)
stab4← s t a b s e l (glmres , c u t o f f=0.6 , q=8)
stab4 $ s e l

delta1

2

In the next larger example, we apply our CV.CMB3S function to this data set. The first appli-
cation compares the cross-validated squared test loss of L2−Boosting with the cross-validated
squared test loss for CMB-3S using ntrain = 90 instances for training, nval = 18 for validation

298 CHAPTER 15. APPLICATION TO REAL DATA SETS

and ntest = 15 for testing. The third simulation is basically identical, but uses 100 partitions
of the data according to ntrain = 80, nval = 20 and ntest = 23.

The second application is based on the same partition as the first one, but the target loss
is the hard ranking loss. We compare the performance of L2−Boosting with the perfor-
mance of CMB-3S where the hard ranking loss function is also used for validation (since
evalfam=Rank()).

f← as . f o rmu la (y∼.)
X←model .matr ix (f , Rea l .2)
D← data . f rame (X[,−1] , Rea l .2 $y)
colnames (D) [9 4 8]← "Y"
r e qu i r e (mboost)
mod← glmboost (y∼. , Rea l .2)
glmboost (X, Rea l .2 $y)

s e t . s e e d (20111017)
CVind← random.CVind (123 ,90 ,18 ,100)
s e t . s e e d (20111017)

L2Boostmod←CV.CMB3S(D, ns ing=60,ncmb=75,Bsing=1,B=1, alpha=1, s ingfam=
Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ p i g r i d ’ , g r i d=0.001 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T)

s e t . s e e d (20111017)
L2stabmod←CV.CMB3S(D, ns ing=60,ncmb=75,Bsing=10,B=25, alpha=0.5 , s ingfam=

Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, gr id type=
’ qgr id ’ , g r i d =1:10 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F, Mfinal=10,CVind=
CVind , target fam=Gaussian () , p r i n t=T)

L201907092← l i s t (L2Boostmod , L2stabmod)
save (L201907092 , f i l e=" 20190709(2) .Rdata ")

s e t . s e e d (20111017)
CVind← random.CVind (123 ,90 ,18 ,100)
s e t . s e e d (20111017)

L2Boostmod←CV.CMB3S(D, ns ing=60,ncmb=75,Bsing=1,B=1, alpha=1, s ingfam=
Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ p i g r i d ’ , g r i d=0.001 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Rank () , p r i n t=F)

15.3. APPLICATION TO A LARGE GENOMIC DATA SET 299

s e t . s e e d (20111017)
L2stabmod←CV.CMB3S(D, ns ing=60,ncmb=75,Bsing=10,B=25, alpha=0.5 , s ingfam=

Gaussian () , evalfam=Rank () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F, gr id type=’
qgr id ’ , g r i d =1:10 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F, Mfinal=10,CVind=
CVind , target fam=Rank () , p r i n t=F)

L201907093← l i s t (L2Boostmod , L2stabmod)
save (L201907093 , f i l e=" 20190709(3) .Rdata ")

s e t . s e e d (20111017)
CVind← random.CVind (123 ,80 ,20 ,100)
s e t . s e e d (20111017)

L2Boostmod←CV.CMB3S(D, ns ing=45,ncmb=60,Bsing=1,B=1, alpha=1, s ingfam=
Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ p i g r i d ’ , g r i d=0.001 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T)

s e t . s e e d (20111017)
L2stabmod←CV.CMB3S(D, ns ing=45,ncmb=60,Bsing=10,B=25, alpha=0.5 , s ingfam=

Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ qgr id ’ , g r i d =1:10 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T)

L201907094← l i s t (L2Boostmod , L2stabmod)
save (L201907094 , f i l e=" 20190709(4) .Rdata ")

load (" 20190709(2) .Rdata ")
mean(L201907092 [[1]] $Cross)

[1] 54.22331

mean(L201907092 [[2]] $Cross)

[1] 31.86205

load (" 20190709(3) .Rdata ")
mean(L201907093 [[1]] $Cross)

[1] 0.2945601

mean(L201907093 [[2]] $Cross)

[1] 0.1957148

300 CHAPTER 15. APPLICATION TO REAL DATA SETS

load (" 20190709(4) .Rdata ")
mean(L201907094 [[1]] $Cross)

[1] 80.75813

mean(L201907094 [[2]] $Cross)

[1] 51.03435

The results are not surprising since p is large here, so the performance of a standard Boost-
ing model is expected to be worse than that of a stable (and therefore also sparser) model.
Furthermore, the performances in the first application are better than in the third one, pre-
sumably since the training sets are larger in the first example.

15.4 An ultrahigh-dimensional data set

We consider the riboflavin data set from the package hdi (Dezeure et al. [2015]) which
contains n = 71 observations with p = 4088 metric predictor variables.

First, we use glmboost to apply standard L2−Boosting using variable y which is the log-
transformed riboflavin production rate as response variable. We see that a lot of predictor
variables (more precisely, 32) have been chosen.

Then, we apply Hofner’s Stability Selection to see which stable predictor set this algorithm
provides. We try two different input arguments for the PFER and set q = 8. The stable
predictor set just consists of one resp. two variables which seems too sparse keeping in mind
that we initially had 4088 variables. Therefore, we apply stabsel once more with q = 20
and see that five resp. four variables are considered to be stable.

r e qu i r e (hdi)
data (r i b o f l a v i n)
D← r i b o f l a v i n
s t r (D)

’data.frame ’: 71 obs. of 2 variables :

$ y: num -6.64 -6.95 -7.93 -8.29 -7.31 ...

$ x: AsIs [1:71 , 1:4088] 8.49 7.64 8.09 7.89 6.81 ...

15.4. AN ULTRAHIGH-DIMENSIONAL DATA SET 301

..- attr (*, " dimnames ")=List of 2

.. ..$: chr " b_Fbat107PT24 .CEL" " b_Fbat107PT30 .CEL" " b_Fbat107PT48 .CEL

" " b_Fbat107PT52 .CEL" ...

.. ..$: chr " AADK_at " " AAPA_at " " ABFA_at " " ABH_at " ...

glmres← glmboost (y∼. ,D)
glmres

Generalized Linear Models Fitted via Gradient Boosting

Call:

glmboost . formula (formula = y ∼ ., data = D)

Squared Error (Regression)

Loss function : (y - f)∧2

Number of boosting iterations : mstop = 100

Step size: 0.1

Offset : -7.159432

Coefficients :

(Intercept) xARGF_at xDNAJ_at xLYSC_at xRPLL_at

4.720422068 -0.124673455 -0.030993712 -0.338737893 -0.018434318

xSPOIISA_at xSPOVAA_at xXHLA_at xXTRA_at xYBFI_at

0.045914863 0.141241666 0.180029364 0.210879579 0.248836246

xYCGN_at xYCKE_at xYCLB_at xYDDK_at xYEBC_at

-0.029512538 0.173682086 0.083365177 -0.146928903 -0.495306082

xYEZB_at xYFHE_r_at xYFIO_at xYHCL_at xYHDS_r_at

0.109183594 0.049961166 0.067321325 -0.071138363 0.097810962

xYKBA_at xYOAB_at xYODH_at xYQJU_at xYRVJ_at

0.055341307 -0.524017879 0.026687917 0.080636690 -0.031748532

xYURQ_at xYUSP_at xYWRO_at xYXEH_at xYXIE_at

0.050937499 0.064700361 -0.037745645 -0.026031617 -0.009495365

xYXLD_at xYXLE_at xYYDA_at

-0.229846312 -0.035332669 -0.056751692

attr (," offset ")

[1] -7.159432

stab← s t a b s e l (glmres , q=8,PFER=2)
stab $ s e l

xXHLA_at xYXLD_at

302 CHAPTER 15. APPLICATION TO REAL DATA SETS

1279 4004

stab← s t a b s e l (glmres , q=8,PFER=1)
stab $ s e l

xXHLA_at xYCKE_at xYOAB_at xYXLD_at

1279 1517 2565 4004

stab← s t a b s e l (glmres , q=20,PFER=2)
stab $ s e l

xLYSC_at xYCKE_at xYOAB_at xYXLD_at

625 1517 2565 4004

stab← s t a b s e l (glmres , q=20,PFER=1)
stab $ s e l

xLYSC_at xXHLA_at xYCKE_at xYOAB_at xYXLD_at

625 1279 1517 2565 4004

Due to the large number of variables, we restrict the demonstration of our algorithms to a
simple application of our Stability Selection which we apply to standard L2−Boosting mod-
els. We try two q−grids here, namely qgrid = {1, 2, ..., 10} and qgrid = {11, 12, ..., 20}.

f← as . f o rmu la (y∼.)
X←model .matr ix (f , r i b o f l a v i n)
D← data . f rame (X[,−1] , r i b o f l a v i n $y)
colnames (D) [4 0 8 9]← "Y"
s e t . s e e d (20160307)
CVind← random.CVind (71 ,50 ,10 ,100)
s e t . s e e d (20160307)

L2Boostcv loss←CV.CMB3S(D, ns ing=30,ncmb=40,Bsing=1,B=1, alpha=1, s ingfam=
Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ p i g r i d ’ , g r i d=0.001 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T) $Cross

s e t . s e e d (20160307)
L2s tab l o s s←CV.CMB3S(D, ns ing=30,ncmb=40,Bsing=1,B=25, alpha=1, s ingfam=

Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ qgr id ’ , g r i d =1:10 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T) $Cross

s e t . s e e d (20160307)

15.4. AN ULTRAHIGH-DIMENSIONAL DATA SET 303

L2s tab lo s s2←CV.CMB3S(D, ns ing=30,ncmb=40,Bsing=1,B=25, alpha=1, s ingfam=
Gaussian () , evalfam=Gaussian () , s i ng=F,M=10,m_iter=100 ,kap=0.1 , LS=F,
gr id type=’ qgr id ’ , g r i d =11:20 , useZeta=F, robagg=F, lower=0, s i n g c o e f=F,
Mfinal=10,CVind=CVind , target fam=Gaussian () , p r i n t=T) $Cross

R i b o l i s t← l i s t (L2Boostcvloss , L2stab los s , L2s tab lo s s2)
save (R ibo l i s t , f i l e=" Ribo.RData ")

load (" Ribo.RData ")
mean(R i b o l i s t [[1]])

[1] 5.617294

mean(R i b o l i s t [[2]])

[1] 7.85972

mean(R i b o l i s t [[3]])

[1] 3.435842

We think that the performance of the stable model corresponding to the grid qgrid = {1, ..., 10}
is worse than that of L2−Boosting since the number of predictors is too small compared to
the very large p.

Chapter 16

Some simulation studies

This chapter starts with a comparison of the out-of-sample performance of L2−Boosting, of
L2−Boosting combined with our loss-based Stability Selection and of CMB-3S where we use
the hard ranking loss as target loss. The goal of this simulation study is to get empirical
evidence that we indeed benefit from taking singular parts into account. We usually use data
sets of different size and with a low signal-to-noise ratio, but we also provide two results for
a high signal-to-noise ratio.

The second section is devoted to a closer look on our Stability Selection. We start with a fairly
small but noisy data set and apply Hofner’s Stability Selection combined with L2−Boosting,
L2−Boosting in its pure form and our Stability Selection combined with L2−Boosting with
the squared loss as target loss. We see that Hofner’s Stability Selection dramatically suffers
from the low signal-to-noise ratio and that even a grid search for the best input arguments
does not suffice to cope with such situations.

We provide further scenarios where we apply our Stability Selection to high-dimensional noisy
data sets and compare the performance of the resulting model with L2−Boosting when we
have the squared loss and for the hard ranking loss as target loss and with Huber-Boosting
when taking the Huber loss as target loss. We see that our Stability Selection is indeed able
to compute reliable models which outperform standard Boosting models for low signal-to-
noise ratios.

16.1 Singular parts for hard ranking

In this section, we perform the following experiment for different scenarios: We compute a

304

16.1. SINGULAR PARTS FOR HARD RANKING 305

standard L2−based empirical column measure using Column Measure Boosting with stan-
dard L2−Boosting models and a L̃−based empirical column measure with singfam=Rank()
and evalfam=Rank(). Then, we perform our loss-based grid search and compute the perfor-
mance of the model based on the reduced predictor set using standard L2−Boosting resp.
SingBoost with hard ranking singular iterations on a validation set. For simplicity, we always
consider B = 1 and ncmb = ntrain, i.e., we do not combine CMB column measures but only
use one CMB column measure, based on a relatively large number Bsing of resamples.

This is repeated for several different realizations of the data and the out-of-sample losses are
compared. We furthermore compute the test losses of L2−Boosting where the model is based
on only the training set for comparability since the validation set is only used for the grid
search when applying the other algorithms, so their coefficients are also based only on the
training set.

More precisely, having computed two empirical column measures ν̂(L2) and (ν̂L2
L̃

)CMB, we
proceed in exactly the same way as when computing our stable models with the only difference
that one model is based on ν̂(L2) when applying the grid search and the other one on (ν̂L2

L̃
)CMB

for the hard ranking loss L̃. At the end, the coefficients for the latter model are computed by
SingBoost, the other ones by standard linear regression. In other words, the models differ
by the paradigm if one accounted for singular parts or not .

Remark 16.1.1 (CMB-2S). To emphasize that we do not perform singular iterations but
only apply our Stability Selection to standard Boosting models, we call the procedure CMB-
2S (the ”S” in CMB-3S corresponding to the word ”singular” is missing) for the rest of this
work.

Scenario 1: We have p = 500, n = 250, s0 = 20, SNR = 0.5 and the non-zero coefficients
are N (2.5, 1)−distributed. The rows of the regressor matrix are multivariate normal without
correlation. We use ntrain = 160, ncmb = ntrain, nval = 40 and ntest = 50, B = 1, Bsing = 100,
α = 0.2, miter = 100, κ = 0.1, M = 10 and M final = 2 for the final SingBoost coefficients.
For the Stability Selection, we use a grid πgrid = {0.5, 0.55, ..., 1}. We consider 1000 different
data sets and V = 25 partitions into training and validation data as described above.

Scenario 2: Same as scenario 1, but we have SNR = 1 and we use M final = 5 and a grid
qgrid = {1, 2, ..., 20}.

Scenario 3: Same as scenario 1, but with M final = 5.

306 CHAPTER 16. SOME SIMULATION STUDIES

Scenario 4: Same as scenario 3, but with s0 = 10.

Scenario 5: Same as scenario 4, but with p = 1000.

Scenario 6: Same as scenario 5, but with M final = 2.

Scenario 7: Same as scenario 1, but with s0 = 10 and M final = 5.

Scenario 8: Same as scenario 7, but with p = 1000.

Scenario 9: Same as scenario 8, but with M final = 2.

The results can be found in table 16.1.

Scenario CMB-2S>GLM CMB-3S>CMB-2S CMB-3S>GLM
Scenario 1 57% 53% 65%
Scenario 2 64% 50% 75%
Scenario 3 58% 55% 66%
Scenario 4 49% 73% 78%
Scenario 5 49% 72% 79%
Scenario 6 51% 71% 77%
Scenario 7 45% 75% 77%
Scenario 8 50% 73% 80%
Scenario 9 52% 71% 78%

Table 16.1: First column: Relative number of data sets on which CMB-2S performed better than
L2−Boosting; analogous interpretation of the second and third column

Remark 16.1.2. It may sound unfair at the first glance to compare models whose coeffi-
cients have been computed by linear regression resp. by SingBoost since the latter performs
model selection. But in our setting, both computations are based on a subset of the selected
variables which has been optimized separately. Even if for, say, πthr = 0.6, the SingBoost
model again deleted some variables when computing the coefficients which leads to a sparser
model, the same sparsity may be achieved for a higher threshold πthr. Since the grid πgrid is
chosen sufficiently fine, the respective sparsity may also be available for the stable L2−based
model based on which the linear regression coefficients are computed.

To guard against possible weaknesses, we let our grid run from 0.5 to 1 in suitably small
steps (step size ∆ = 0.05). The change of measure performed by CMB indeed states that a

16.1. SINGULAR PARTS FOR HARD RANKING 307

column measure component of 1 means that the corresponding variable has been detected by
all SingBoost algorithms before, so running SingBoost on a set corresponding to such a high
threshold with a usually lower value for M final than for M should not delete (a considerable
amount of) variables in the last step since a SingBoost algorithm with a higher frequency of
singular iterations is expected to select even more variables than with a lower frequency of
singular iterations.

Apart from this, although Meinshausen and Bühlmann [2010] and Hofner et al. [2015] did
not make recommendations how to compute the coefficients on the model that the Stability
Selection has chosen, it would be unlikely that they would perform another Lasso or Boost-
ing step after the Stability Selection. This again motivates the computation of our final least
squares coefficients in the CMB-2S experiments since it resembles the original Stability Selec-
tion most and is expected to perform not worse thanks to the grid search for the parameters.

Finally, we remind that the grid search is based on aggregated selection frequencies computed
by different SingBoost models, so we can expect that performing model selection by choosing
a higher threshold in the grid search would lead to a more sophisticated model than in the
case that SingBoost itself selects variables in the final step.

Note the considerable difference between the results from scenarios 1-3 and scenarios 4-9. In
the first three scenarios, CMB-2S already beats L2−Boosting in the majority of cases and
CMB-3S is better than L2−Boosting in even more cases, but on approximately the half of
the data sets, CMB-3S cannot beat CMB-2S in terms of hard ranking performance. On the
other hand, CMB-2S is not better than L2−Boosting in the latter six scenarios but CMB-3S
outperforms CMB-2S and L2−Boosting on a clear majority of data sets.

We try to explain these results. In the first three scenarios, there are already 20 out of
500 variables which are relevant. Maybe even if there was a singular part JL2

L̃
, the gain in

performance when selecting variables from it would be superimposed by the other variables,
even when considering stable sets. In scenarios 4-9, the relative importance of a singular
part in terms of ranking performance may be higher compared to the importance of all 10
relevant variables. Therefore, our interpretation of the results is that in scenarios 1-3, we do
not significantly benefit from accounting for singular parts but that this is indeed the case
for scenarios 4-9. It is interesting to see that even a stable model does not improve the hard
ranking performance here if it ignores potential singular parts.

The latter aspect is indeed a very strong result which justifies our assumption 10.1.3 that the
true column measures differ on the stable sets and which once more demonstrated that issues

308 CHAPTER 16. SOME SIMULATION STUDIES

as shown in example 10.2.1 are not just a consequence of the analyst’s input arguments for
model selection algorithms but that there is indeed more theoretical background.

To be honest, we once more take a look at scenarios 1 and 6, but where we generate data
sets with a rather high signal-to-noise ratio.

Scenario 10: Same as scenario 1, but with SNR = 2.5.

Scenario 11: Same as scenario 6, but with SNR = 2.5.

Scenario CMB-2S>GLM CMB-3S>CMB-2S CMB-3S>GLM
Scenario 10 92% 26% 94%
Scenario 11 63% 63% 92%

Table 16.2: First column: Relative number of data sets on which CMB-2S performed better than
L2−Boosting; analogous interpretation of the second and third column

The results in 16.2 show that in cases of strong signals, a Stability Selection already leads to
a better hard ranking performance than simple L2−Boosting models do in the majority of
cases. This is no contradiction to the results in the next section which we discuss there.

An interesting case appears in scenario 10 where CMB-3S performs worse than CMB-2S on
the most data sets. We are not sure how this can be explained since the argumentation why
CMB-3S performs better only one the half of the data sets as in scenarios 1-3 does not suffice.
We think that in the case of a strong signal and a large number of true non-zero coefficients,
the Boosting models are rather greedy and select many (relevant) variables. The change
of measure that is performed when invoking singular iterations may cause some aggregated
selection frequencies becoming too low (when some SingBoost models do not contain the re-
spective variables) to let the corresponding variables enter the stable model which essentially
leads to false negatives induced by CMB-3S. That could explain that CMB-3S performs worse
than CMB-2S in the most cases. Note that CMB-3S indeed beats L2−Boosting in nearly all
cases. If one takes a look at the hard ranking losses themselves, we see that the aggregated
hard ranking loss of the CMB-3S models over all data sets is lower than the loss of the
L2−Boosting models but higher than the aggregated loss of the CMB-2S models.

The results of scenario 11 are different to that of scenario 6 in the sense that CMB-2S
beats L2−Boosting on a clear majority of data sets and that CMB-3S performs better than

16.2. THE POWER OF OUR LOSS-BASED STABILITY SELECTION 309

L2−Boosting on nearly all data sets.

However, our experiments confirm that respecting singular parts or at least performing a suit-
able change of measure is indeed recommended since in each scenario, CMB-3S beats
L2−Boosting in the majority of cases, even if a pure Stability Selection does not
improve the out-of-sample performance.

16.2 The power of our loss-based Stability Selection

In this section, we show that our Stability Selection is indeed capable to handle high-
dimensional noisy data. In contrast, the Stability Selection proposed by Hofner (Hofner
et al. [2015]) fails in such cases, especially if the signal-to-noise ratio is very low. The rea-
son is that in such cases, there are seldom clearly dominating variables in terms of selection
frequencies, or in other words, the Boosting algorithm gets irritated by the noise variables,
resulting in no variable at all passing the threshold in the Stability Selection.

One can argue that one just has to modify either q, the PFER or the threshold when applying
stabsel, but as we show in scenario A, even that does not result in good models.

Scenario A: We have p = 100, n = 250, s0 = 5, SNR = 0.5 and the non-zero coefficients
are standard normally distributed. The rows of the regressor matrix are multivariate normal
without correlation. We use ntrain = 150, nval = 50 and ntest = 50, Bsing = 20, α = 0.5,
B = 25, miter = 100 , ncmb = 120, nsing = 100 and κ = 0.1. For the Stability Selection,
we use a grid qgrid = {1, 2, ..., 10}. We consider 200 different data sets and V = 10 different
partitions into training, validation and test part for each data set.

For a fair comparison, we use two grids, i.e., the grid {1, ..., 10} for Hofner’s q and the grid
{1, ..., 5} for the PFER. For each combination, we apply stabsel and compute the cross-
validated test loss based on the V = 10 partitions. At the end, we only report the minimal
test loss.

310 CHAPTER 16. SOME SIMULATION STUDIES

Figure 16.1: Cross-validated test losses of L2−Boosting, Hofner’s Stability Selection combined with linear
regression and our Stability Selection combined with linear regression

16.2. THE POWER OF OUR LOSS-BASED STABILITY SELECTION 311

We see in the first plot in figure 16.1 that even on such a small data set, Hofner’s Stability
Selection already fails due to the low signal-to-noise ratio. Our Stability Selection does not
improve the L2−Boosting models significantly as seen in the second plot in figure 16.1, but
since we just have p = 100, however, we do not expect a great benefit from the Stability
Selection.

Therefore, we propose some other scenarios where we only compute the cross-validated
test losses for the model arising from our Stability Selection and for standard Boosting (or
L2−Boosting in the case of the hard ranking loss), not regarding Hofner’s Stability Selection
anymore since the data that we use are at least equally noisy and at least as large as in Sce-
nario A. We do not concern about singular iterations here, so in fact we apply the algorithm
CMB-2S.

Scenario B: Same as scenario A with 1000 other data sets and without Hofner’s Stability
Selection.

Scenario C: Same as scenario B, but with the Huber loss function instead of the squared
loss.

Scenario D: Same as scenario B, but with the hard ranking loss function instead of the
squared loss. Note that since we do not have a standard Boosting procedure for the hard
ranking loss, we compare the cross-validated test loss of our stable model with the cross-
validated test loss of standard L2−Boosting.

Scenario E: Same as scenario A, but with p = 500 and s0 = 10 and without Hofner’s Sta-
bility Selection.

Scenario F: Same as scenario E, but with the Huber loss function instead of the squared
loss.

Scenario G: Same as scenario E, but with p = 1000 and 500 different data sets.

Scenario H: Same as scenario G, but with the Huber loss function instead of the squared
loss.

Scenario I: Same as scenario H, but with the hard ranking loss function instead of the
squared loss.

312 CHAPTER 16. SOME SIMULATION STUDIES

Figure 16.2: Upper left: Scenario B; Upper right: Scenario C; Bottom left: Scenario D; Bottom right:
Scenario E

We see in figures 16.2 and 16.3 that the models resulting from our loss-based Stability Se-
lection always outperform the standard Boosting models in terms of the cross-validated test
loss w.r.t. L̃. As expected, the improvement w.r.t. the squared and the Huber loss is even
better the higher the number p of predictors is.

Despite we also significantly beat L2−Boosting w.r.t. the hard ranking loss, the difference is
not as significant as for the other losses in the sense that the highest losses exceed the highest
losses produced by L2−Boosting. This highlights again the anomality of the hard ranking loss
since although the L2−Boosting model may select several noise variables, the hard ranking

16.2. THE POWER OF OUR LOSS-BASED STABILITY SELECTION 313

performance does not necessarily suffer. However, if one desires to have a well-interpretable
model, a stable and therefore sparser and more reliable predictor set is the better choice.

Figure 16.3: Upper left: Scenario F; Upper right: Scenario G; Bottom left: Scenario H; Bottom right:
Scenario I

Note that these results are no contradiction to the results of the previous section since
we compare inherently different strategies. In the previous section, we first computed an
L2−based column measure and a column measure which respects singular parts and com-
puted the reduced predictor set using our Stability Selection. In contrast, the experiments
in this section did not invoke singular parts but a pure investigation of the performance of

314 CHAPTER 16. SOME SIMULATION STUDIES

our Stability Selection. As we have seen, both approaches are promising, so it is expected
that their combination. i.e., our complete CMB-3S algorithm, would outperform standard
approaches even more significantly.

To be honest, we also provide some simulation results where we used data with a much
stronger signal.

Figure 16.4: Upper left: Scenario J; Upper right: Scenario K; Bottom left: Scenario L; Bottom right: Scenario
M

Scenario J: Same as scenario G, but with SNR = 2.

16.2. THE POWER OF OUR LOSS-BASED STABILITY SELECTION 315

Scenario K: Same as scenario H, but with SNR = 2.

Scenario L: Same as scenario I, but with SNR = 2.

Scenario M: Same as scenario J, but with SNR = 5.

Scenario N: Same as scenario K, but with SNR = 5.

Scenario O: Same as scenario L, but with SNR = 5.

Figure 16.5: Left: Scenario N; Right: Scenario O

As we see in figures 16.4 and 16.5, the improvement of the performance when using our
Stability Selection is no longer significant for SNR = 2.5. However, the result from scenario
L does not contradict the result from scenario 11 since a mean of the test losses of our sta-
ble models which is not significantly smaller than the respective mean for the L2−Boosting
models does not imply that we did not beat L2−Boosting on the majority of data sets.

Remark 16.2.1 (Future simulation studies). In particular, one of the most interest-
ing simulation studies would be the performance of a fully-tuned CMB-3S algorithm for hard
and localized continuous ranking problems where no corresponding Boosting algorithm already
exists. One would need at least two competitors for each setting: L2−Boosting with Stabil-

316 CHAPTER 16. SOME SIMULATION STUDIES

ity Selection which sparsely approximates the conditional expectation IE[Y |X] and therefore
delivers the approximation of an optimal scoring rule ([Clémençon and Achab, 2017, Prop.
1]), but with a model that is not L̃−adapted, and clearly the CRank algorithm of Clémençon
and Achab [2017] which indeed fits no linear model but a step function. Although a sparse
linear model beats tree-based algorithms in terms of interpretability, we are curious how the
algorithms would be ranked in terms of their out-of-sample ranking performance, especially
on very high-dimensional noisy data.

However, a universal comparison of CMB-3S with competitors is out of scope for this work
since CMB-3S can be adapted to probably any loss function L̃ and rather forms a whole family
of algorithms. Remind again that, to the best of our knowledge, it is not even known if for a
given data set, one should either apply L2−Boosting or the Lasso (Meinshausen et al. [2007],
Bühlmann and Hothorn [2007]).

Remark 16.2.2. Let us remind again that the computational time of the algorithms invok-
ing singular iterations is rather expensive due to a simple R−implementation. Once this
cost has been massively reduced by calling C and FORTRAN code, the additional complex-
ity caused by the singular iterations is negligible, compare lemma 10.3.1 and remark 10.3.15.

The Stability Selection causes essentially nothing but a scaling of the complexity of the un-
derlying Boosting algorithm by the number B of subsamples for the usual Stability Selection
and by the product BBsing for CMB-3S.

We did not yet point out how we would proceed in the case of extremely high p such that
even L2−Boosting gets infeasible. Such dimensions can indeed occur in practice especially
in the presence of categorical variables and interactions, see table 1.2. In this case, we would
need a suitable pre-processing step.

Remark 16.2.3 (Handling ultra-high dimensions). If p is extremely large, we recom-
mend to use the (Iterative) Sure Independence Screening ((I)SIS) procedure from Fan and Lv
[2008] to perform a screening step such that all but d < n variables are eliminated first which
is implemented in R in the package SIS (Saldana and Feng [2018]).

SIS is based on the correlations of each predictor column with the response and only selects
the d variables with the highest absolute correlation with the response. ISIS is an iterative
procedure to address issues like correlation of noise variables with predictors or multicollinear-
ity. After selecting a set of variables like in SIS, the corresponding responses w.r.t. a linear
regression model are computed and SIS is again performed w.r.t. the set of remaining predic-

16.2. THE POWER OF OUR LOSS-BASED STABILITY SELECTION 317

tors and so forth, where finally the union of all selected sets (with cardinality d) is taken.

After having performed screening using SIS or ISIS, a variable selection method like the Lasso
is then performed on the reduced predictor set according to Fan and Lv [2008]. In contrast,
we would proceed by applying CMB-3S on the reduced data.

There is no contradiction to the variable selection respecting singular parts that we want to
perform since (I)SIS selects a predictor set which asymptotically contains the true predictor
set with probability 1. This is exactly the property which we need since we try to select a
stable subset of the true predictor set which is L̃−adapted and therefore potentially different
from an L2−adapted stable predictor set, but both should be subsets of the true predictor set.

We remind again that SingBoost uses simple least squares models as baselearners, so a very
low correlation of a predictor column with the response vector indeed indicates that the cor-
responding predictor is not relevant at all. See also our discussion in sections 10.4 and 10.5.

16.2.1 Availability of the R code

The R code for the algorithms developed in this thesis are available in the Cloud-Storage of
the Carl von Ossietzky Universität Oldenburg at

https://cloudstorage.elearning.uni-oldenburg.de/s/DJt5FLxKHC8WYRB.

Part VII

Outlook

318

319

320

High-dimensional data

Fraud detection
(Risk-based auditing)Document retrieval Medicine

Ranking problem Sparse and consis-
tent model selection

Fast (parallelizable) algorithm

Regularized regression

Direct Gradient Boosting for ranking

Stability Selection

Gradient Boosting Penalized M-functionals

Asymptotic
linear expansion

k−Step estimators

Properties of ranking

Column measure framework

Relevance for each variable Expected k−Step

SingBoost

Algorithm CMB-3S

Structural missings

Singular parts

Robust CMB?

Contamination model?

Nonparametric models?

Row measure

Consensus ranking

Multivariate response

Cell measure

RCM (row column
measure) framework

Challenges

Change of measure

Chapter 17

Learning with missing data

Missings are a frequently faced problem in many real-world data sets (see e.g. Little and
Rubin [2014]) ranging from astronomic (Wagstaff [2004]) to click-through data (Haffari et al.
[2008]), but they are especially relevant for biological or medical data (see e.g. Stekhoven
and Bühlmann [2011], Städler et al. [2014]).

In the following sections, we carefully distinguish between two main types of missings: struc-
tural and non-structural missings. Since there already exist a lot of work on non-structural
missings, we propose two possible strategies to work with data containing structural miss-
ings. Although our proposals are not yet theoretically founded, they could be superior to any
complete case algorithm for certain missingness patterns, aside from the fact that imputation
algorithms are meaningless in the presence of structural missings.

The last section of this chapter proposes a new concept that tries to connect missings with
contamination balls borrowed from robust statistics.

17.1 Types of missings

Usually, one distinguishes between three types of missing values (see e.g. Friedman et al.
[2001]). We just repeat these (unfavorably named) definitions informally.

A missing is of type MCAR (”missing completely at random”) if the missing scheme, i.e.,
the distribution of the missingness, is independent from the observed as well as from the
unobserved values. If the distribution of the missingness is still independent from the unob-
served, but dependent from the observed data, then one calls the missings of type MAR

321

322 CHAPTER 17. LEARNING WITH MISSING DATA

(”missing at random”). In contrast, a missing scheme where the missingness also depends on
the unobserved data is referred to as of type MNAR (”missing not at random”).

Example 17.1.1. There are many standard examples for these situations in literature. If
a person which is old refuses to answer a question because of his or her age (but the age is
reported), then the missing is of type MAR since it only depends on the (observed) variable
age. On the other hand, if a person does not want to report her or his income because the
income is very low or very high, then we face a missing of type MNAR since the reason for
non-reporting, i.e., the variable income, remained unobserved. A MCAR missingness pattern
can be interpreted in the sense that this information somehow got lost, as if one had randomly
distributed inkblots on the questionnaires.

Apart from the three types of missingness already listed, there is another one that seems
not having gained too much attention yet. Consider a medical questionnaire where there is
a question about the pregnancy duration. If the answering person is male or a child, there
clearly has to be a missing. In contrast to MAR (note that the missing here depends on the
age resp. the sex of the person), there is no randomness since if we knew that we have a
male person or a child, we could have predicted with (nearly?) certainty that this missing
occurred which is not true for a missingness scheme of type MAR. Note also that if the
answering person is female and an adult, the missingness of the pregnancy duration variable
can be of each type (MCAR, MAR, MNAR) without additional information.

Those non-random missings are, to the best of our knowledge, seldomly treated in literature
and are referred to under different names. For example, those missingness schemes are called
skip patterns (Arslanturk et al. [2012]) or conditional missing patterns (Cohen and Huang
[2000]). Other variants are cited in Manewitsch [2013]. We think that the names STMIS
(”strukturelle missings”, Manewitsch [2013]) and ”structurally absent” values (Chechik et al.
[2008]) are the most appropriate to reflect their nature, thus we will refer to such missings
as structural missings and to the other types of missings as non-structural missings.
Note that, as already pointed out in Manewitsch [2013], structural missings are informative.

17.2 Handling non-structural missings

There are tons of literature concerning methods to deal with non-structural missings. In
fact, a crucial part is often to decide of which type the missingness pattern is. A complete

17.3. STRUCTURAL MISSINGS 323

case analysis which just deletes rows containing missings is only justifiable if the missingness
scheme is of type MCAR or if it is of type MAR with extra conditions (see Dimou [2011],
Boyko [2013]).

A common strategy is imputation which means to replace the missings by plausible values.
As already stated in Friedman et al. [2001], many imputation methods require a missingness
pattern of type MCAR. There is a vast variety of imputation methods ranging from mul-
tiple imputation by chaining equations (MICE, see Azur et al. [2011]) to Boosting- (Wang
and Feng [2009]), SVM- (Pelckmans et al. [2005]) and RandomForest-type (Stekhoven and
Bühlmann [2011]) methods.

Other techniques include the famous EM-algorithm (Dempster et al. [1977]), see also Loh
and Wainwright [2012] for theoretical properties in high-dimensional settings, or tree-based
algorithms. The latter are capable to deal with missings without deleting them nor imputing
them. In fact, for CART, missings in columns corresponding to a categorical variable just
count as an extra category where in the case of metric variables, surrogate splits are per-
formed (see Breiman [2017], Feelders [1999]).

Though, since there exist a lot of strategies to deal with missing values, we do not propose
an own one for our ranking problems.

Assumption 17.2.1 (Missingness assumption). We always assume that there are no
non-structural missings in our data set, either since there never have been any or they have
been imputed or our data set is the complete case data set.

17.3 Structural missings

17.3.1 Related work

To the best of our knowledge, there is only very few work on structural missings, including
the references already cited. Since standard imputation is obviously not meaningful (while
Manewitsch [2013] found out that the imputation with zeroes can work in linear regression
settings, though he does not provide any proof), the naïve way to deal with structural miss-
ings is still the complete case analysis, i.e., one has to delete all rows containing at least one

324 CHAPTER 17. LEARNING WITH MISSING DATA

missing. Clearly, such a procedure can result in deleting every row, especially in microarray
data with a huge number of predictors but only very few observations.

Manewitsch [2013] also tried some kind of graphical modelling, but did not formulate it in a
general setting, disregarding that his thesis is rather non-mathematical. There is one com-
pletely different work (Wagstaff [2004]) where missings are handled without imputing nor
ignoring them in a clustering setting. The motivation was that imputed values are always
handled as equal informative as the observed ones. Therefore, Wagstaff [2004] translated the
missings into constraints for the distance minimization.

If there are only very few variables that lead to structural missings, simple stratification, for
example by dividing a medical data set into two data sets containing only the men resp. the
women can be a strategy. In the already given example, the column containing the pregnancy
duration would just be deleted in the subset containing the men.

We propose two different strategies that are motivated by the fact that these structural miss-
ings should not enter model fitting, but without skipping too much valid data.

Remark 17.3.1. We do not know how one would distinguish between structural and non-
structural missings in practice. It seems to be the only possibility to detect structural missings
by checking if there are columns that are likely to contain a structural missing, i.e., a missing
due to the reported values of the other columns. But this would lead to a possible overesti-
mation of the number of structural missings, depending on the design of the data acquisition
process. If p.e. a female does not answer the question about pregnancy duration, it can still
be a non-structural missing if she also had not reported her age, so if she is an adult but the
non-reporting of the pregnancy duration had other reasons.

In case of doubt, we think that it would be more reasonable to treat possibly structural missings
always as structural missings to avoid imputing meaningless information.

17.3.2 Estimation using an asymptotic linear expansion

Let DCC be the subset of the data set D consisting of the rows which do not contain any
missings (probably after pre-processing like imputation where it was meaningful). Let nCC
be the number of rows of DCC . Now, assume that an empirical risk minimization problem
which can be implicitly represented as a statistical functional by a corresponding Z-equation

17.3. STRUCTURAL MISSINGS 325

has to be solved. Let θ̂nCC be an n−1/2
CC −consistent estimator on the data DCC .

In other words, this is nothing but a coefficient fitted on the complete cases. Based on this
estimator, we can compute the influence curve of the statistical functional for the estimator
θ̂nCC , say, ψθ̂nCC . Consider the following question:

Is our estimator θ̂nCC already ”good enough” to use it as starting estimator for
a k−Step?

As already pointed out in section 3.5, we need n−1/2−consistency of our initial estimator to
reasonably update it to a k−Step estimator. But if θ̂nCC was already n−1/2−consistent, we
could use it as starting estimator for the whole data set D. Thus, our One-Step estimator
on D is just

S1
n = θ̂nCC + 1

n

∑
i

ψθ̂nCC
(Xi, Yi). (17.3.1)

Since the influence curve measures the infinitesimal influence of an observation on the esti-

mator, it is very intuitive that for any influence function ψθ, we just define

ψθ(Xi, Yi) := 0 (17.3.2)

if Yi is missing or if Xi contains at least one structural missing where the respective com-
ponent of the coefficient θ is non-zero since a structural missing cannot have any influence
on the model by its inherent nature. It can be regarded as an approach to combine cell
measures (see definition 14.1.1) with a influence curves.

Remark 17.3.2. Though it still depends on the data providing a reasonable number of com-
plete cases, this version of One-Step estimators (the extension to k−Steps is straightforward)
also incorporates information which has been gathered in the non-complete part of the data.

Remark 17.3.3. In fact, it has been revealed in an oral discussion with P. Ruckdeschel
that in the case of k−Step estimators, it essentially suffices that the starting estimator is
n−γ−consistent with a γ ∈]0, 0.5]. More precisely, one can show by incorporating a higher-
order Taylor expansion that for any 0 < γ < 0.5 there exists k such that this starting estimator
is valid for a k−step construction.

Theoretical results concerning the required quality of the initial estimator and reasonable
ranges for the proportion of nCC compared to n could be a subject of future research.

326 CHAPTER 17. LEARNING WITH MISSING DATA

17.3.3 MissBoost?

Surprisingly, to the best of our knowledge, the implementation of L2−Boosting seems not to
be capable to deal with structural missings.

There is an input argument which indicates how missings are treated. Its default is na.omit
which results in deleting all rows that contain missings. Clearly, if every row has at least one
missing value, no model can be computed and the algorithm fails. Another possibility is the
argument na.pass which means that the algorithm is not affected by missings. However,
this can indeed result in only an intercept term being fitted if there are too many missings.

This issue as well as high-dimensional data with only a few observations that make a strat-
ification invalid due to too little evidence on each stratum is the starting point for our idea
of how sophisticated models may be fitted on data sets with structural missings.

Let us translate the zero imputation strategy in the context of L2−Boosting which we already
mentioned in the beginning of this section for linear regression. We replace all missings with
zeroes and in each iteration of the Boosting algorithm, we compute a simple least squares
model on each column. Effectively, we created a bias in the simple least squares models in
all cases where zeroes have been imputed. This leads us to the questions:

If Boosting fits baselearners separately on each column, why should we treat
structural missings at all?
More precisely, cannot we just ignore the missings separately in each column
when fitting the component-wise base models?

We implement exactly this strategy and call the resulting algorithm MissBoost (see algo-
rithm 21).

Clearly, just comparing the raw residual sums of squares would not be fair since the models
are built based on different numbers of observations. Naïvely, one could think about scaling
the loss corresponding to the simple model based on column j with (ñj)−1 to make the losses
comparable. However, this technique would also not provide a fair comparison.

More formally, we should compare the MSE, i.e., the expected squared loss. By the well-
known bias-variance-decomposition of the MSE, we essentially need to adjust the component-
wise losses such that the MSE’s are comparable. Since deleting rows of the data set clearly
also deletes the corresponding response components, the variance of the response vector de-

17.3. STRUCTURAL MISSINGS 327

pends on ñj for the base model computed on column j, j = 1, ..., p, which would motivate a
scaling with ñ2

j . The other ingredient is the bias which in our algorithm can be seen as an
omitted variable bias. This is true since we only compute the baselearner on one single
column, ignoring valid and necessary information of the other columns. So, it is evident that
one has to account for it.

Initialization: Data (X, Y), step size κ ∈]0, 1], number miter of iterations and
parameter vector β̂(0) = 0p+1;
Generate a matrix Z which has zeroes where X has missing values;
Compute ñj := #{i | Xij 6= NA}) for all j;
Compute the offset Ȳ and the residuals r(0) := Y − Ȳ ;
for k = 1, ...,miter do

for j = 1, ..., p do
Fit the current residual r(k−1) corresponding to the non-missing entries of
column j by a simple least squares regression model using the predictor
variable j and only the valid information;
Compute an ñj−adjusted residual sum of squares;

end
Take the variable ĵk whose model β̂ĵk ∈ Rp+1 provides the smallest adjusted
residual sum of squares;
Update the model via β̂(k) = β̂(k) + κβ̂ĵk ;
Compute the current residuals r(k) = Y − Zβ̂(k)

end
Algorithm 21: MissBoost

Remark 17.3.4. It is evident that we need a suitable row measure that accounts for miss-
ingness in the respective rows. Since the missingness structure is arbitrary, we cannot expect
to get theoretical results that let us select a fixed initial row measure which is already appro-
priate to any given data set. Therefore, the required extension of the MissBoost algorithm is
a perfect candidate for our RCM framework.

Remark 17.3.5. Although each simple least squares model is biased itself, L2−Boosting after
imputing the missings with zeroes indeed provides reliable models in simulations. By refitting
models on the current residual, Boosting seems to gradually correct this bias.

However, along with the qualitative weaknesses of illegally imputing structural missings and
treating those imputations as on par with the real observations (by not accounting for the
number of missings per column), simulations may do not reflect the missingness scheme ade-
quately because when generating simulated data where the regressor matrix contains missings,
one essentially replaces the missings with zeroes in the data generation step to compute the

328 CHAPTER 17. LEARNING WITH MISSING DATA

response, replacing the imputed zeroes by NA’s again afterwards. So, it is likely to anticipate
that the imputation strategy works on such a data set.

Remark 17.3.6. For categorical variables, MissBoost deletes the NA’s when fitting the base-
learner based on the respective column. Since a simple least squares model which is based
only on a categorical variable just computes the class-specific means, the coefficients are the
same if we delete all missing cases as well as if we treat them as an extra category. But in
fact, leaving standard multiple regression, we even get a difference in the coefficients if our
model matrix includes interaction terms between a categorical and a metric variable. Thus,
treating the NA’s as extra category affects the computed coefficients in such a case!

Remark 17.3.7. It is straightforward to combine MissBoost with Column Measure Boost-
ing. This could open an opportunity to perform model selection by optimizing nearly
arbitrary complicated loss functions on data sets with almost arbitrary missing
structure.

Remark 17.3.8. Note that when applying the GSE estimator of Danilov et al. [2012] (see
also remark 14.2.1), no imputation is done anywhere, but nevertheless, Danilov et al. [2012]
assume a MCAR missing scheme. Additionally, it is not designed for high-dimensional data
as we already mentioned in remark 14.2.1.

The question that we pose for future work therefore is the following:

Can we find a way based on empirical row and column measures to adjust the
losses in MissBoost in order to adaptively get a fair comparison of the base-
learners?

17.4 Are NA’s just contamination?

We already mentioned that contamination balls (definition 3.3.1) are used to describe the
outlier mechanism of contaminated data sets. Now, we address the question whether one
could even identify missing values with such a contamination model.

Contamination and missings are artificially connected since one option after detecting an
outlier in a data set is to replace it by ”NA” (see for example Agostinelli et al. [2015], Leung
et al. [2016] and Rousseeuw and Van Den Bossche [2018]). A strategy to proceed can be to
impute these artificial missing values in order to get an observation that is more likely to

17.4. ARE NA’S JUST CONTAMINATION? 329

stem from the true underlying distribution.

Assume for the moment that we face missings of type MCAR. Since, as the definition says,
the missingness scheme is completely random, we can identify this with a cell-wise convex
contamination model, i.e., we have contamination balls

U cell,NA
r = {Q | Q = L(UX + (1− U)(X̃)NA)} (17.4.1)

where in this special case of cell-wise contamination with U as in definition 3.3.3, (X̃)NA

is a matrix whose entries follow the Dirac distribution on the element NA which has to be
included in the image space of the distribution of X to make the definition valid.

In other words, randomly replacing existing values by NA’s with a given probability r is the
same as putting cell-wise convex contamination on the data with contamination radius r.
More precisely, we can think of contamination since there exist data which got lost, so the
NA’s are ”wrong” values in the data set, i.e., the contaminated values.

Remark 17.4.1. Note that Loh et al. [2018] already worked with this idea and embedded it in
their theoretical results. They describe that missing values are treated as outliers, motivating
to fill them by samples from any distribution which has to be the same for each row.

However, transferring this concept to structural missings, the argumentation has to be re-
versed. The NA’s that arise from structural absence are the ”right” values. If they are
replaced by any other object, of course including the zero, one can treat this disallowed im-
putation as contamination as well. In this framework, one maybe can still allow to replace
NA’s by zeroes to use standard robust learning algorithms if these imputations are appropri-
ately downweighted. Note that Hubert et al. [2019] who provided a robust PCA algorithm
that can simultaneously handle missings and cell-wise as well as case-wise outliers relied on
an MCAR missingness scheme to allow imputations which is clearly not given in the presence
of structural missings.

Remark 17.4.2. More precisely, our proposal it to replace the structural missings indeed ar-
tificially by real numbers, but to account for this forbidden imputation. It is very important to
emphasize that convex contamination balls do not incorporate any distance between the ideal
and the contaminating distribution. In fact, the contamination radius r in standard convex
contamination balls (cf. example 3.3.1) represents how many observations are expected to be
contaminated where in the case of cell-wise outliers (cf. definition 3.3.3), it quantifies the
expected fraction of contaminated cells. This is not true for other types of contamination balls

330 CHAPTER 17. LEARNING WITH MISSING DATA

(see [Rieder, 1994, Sec. 4.2]) where indeed a distance between distributions is represented.

It the case of structural missings, it seems to be unevitable to incorporate two radii: One
for the expected fraction of cells containing structural missings in the cell-wise convex con-
tamination setting, the other one for representing some distance of the value ”NA” to some
imputed value. It would be interesting to know if the distance of the value ”NA” to any real
value is equal or if there are real values that are ”closer ” to NA than other ones. In this case,
imputed values for structural missings that are less close to them need to be downweighted
more severely in the spirit of robust statistics.

This leads to the following questions for future research:

Can existing robust estimation methods for cell-wise contamination be adapted
for the case of structural missings?
How can a distance between missings and real values be defined?
Are the weights given to former NA-cells all equal resp. are the distances of
an NA to any real value equal?

Chapter 18

Miscellanea

Our proposed algorithms are based on the assumption that the class of parametric mod-
els is essentially complete, i.e., that the reduction to the class of parametric models is not
too restrictive. Another weakness is their non-robustness against wrong model assumptions.

The first section shortly addresses to techniques for non-parametric models. The second
section just illustrates starting points to develop robust variants of SingBoost.

18.1 Beyond parametric models?

During parts III and IV of this thesis, we mostly considered a true linear parametric model,
i.e.,

Y = Xβ + ε.

However, in real-world applications, we more likely face nonlinear effects (see p.e. Friedman
et al. [2001]), thus our model should be

Y = f(X) + ε

where f is some nonparametric function (read f(X) as the vector with components f(Xi)).
More generally, a function f with the structure

f(Xi) :=
∑
j

fj(Xij)

yields an additive model which provides far more flexibility than the standard linear model.

331

332 CHAPTER 18. MISCELLANEA

Note that SingBoost and therefore CMB-3S can also compute nonlinear models by using
basis functions as already discussed in section 10.3. So far, these models are still parametric,
i.e., we pick an element of the parametric function class

Fθ = {fθ : X → Y | θ ∈ Θ}.

One standard approach to construct nonparametric models when optimizing the squared
loss for regression is to use smoothing splines (Reinsch [1967]). In fact, a smoothing spline
minimizes the residual sum of squares penalized by the bending of the function, i.e.,

f̂ = argmin
f

(
1
n

∑
i

f(Xi) + λ
∫

(f ′′(t))2dt

)
. (18.1.1)

Clearly, the penalty term should enforce smoothness of the resulting function. In the con-
text of Boosting, we get nonparametric models when considering these smoothing splines as
baselearners instead of simple linear models.

Sparse modelling with smoothing splines has already been done by Bühlmann and Yu in
Bühlmann and Yu [2003] with L2−Boosting, but with component-wise smoothing splines as
baselearners instead of component-wise linear baselearners as we used in this thesis up to
now. They were even able to prove minimax optimality of L2−Boosting with smoothing
splines in [Bühlmann and Yu, 2003, Thm. 3] and showed experimentally that this algorithm
outperforms former state-of-the-art techniques like MARS.

Since L2−Boosting with smoothing splines computes a smoothing spline solution separately
for each column and chooses the base model which best approximates the current residual
in each iteration, SingBoost and therefore Column Measure Boosting could be straightfor-
wardly adapted to nonlinear models. In a former implementation, the function mboost of
the package mboost provided the input argument bss() which corresponded to smoothing
splines. This option is no longer available because the computation time can be reduced
when using P-Splines instead of smoothing splines.

P-Splines have been introduced in Eilers and Marx [1996]. In the right-hand side of equation
(18.1.1), replace f(Xi) with ∑j ajBj(Xi) for coefficients aj and B-Splines Bj (for B-Splines,
see De Boor [1978]). The penalty term is similarly adapted. Then, Eilers and Marx [1996]
point out that the computation of the penalty term is rather time-consuming and that the
second derivative could even be replaced by the first or by higher-order derivatives. For any
degree k, they propose a discrete approximation of the penalty term by replacing the integral
of the k−th derivative by the difference of order k of contiguous B-Splines, i.e., our penalty
term is

λ
n∑

j=k+1
(∆kaj)2, ∆aj = aj − aj−1,∆2aj = ∆∆aj, ...

18.1. BEYOND PARAMETRIC MODELS? 333

Schmid and Hothorn [2008] showed how P-Splines can be used as component-wise baselearn-
ers for L2−Boosting and empirically proved the good performance of this algorithm.

Though, the pseudocode for SingBoost (algorithm 6) stays essentially the same as before
(without the LS option). While we used the function lm to compute our linear baselearners,
we now have to use the function bbs that is contained in the package mboost. For a given
response vector y and the regressor x, we would write

bbs(x,...)$dpp(rep(1,n))$fit(y)$model

to get the coefficients where we can input various arguments to bbs like the position of the
knots of the B-Splines, the degree of the splines or the order of the differences in the penalty
term. If we can get the model matrix for the P-Spline (it is computed when running bbs, of
course, though not returned to the best of our knowledge), then we can compute the fitted
values and choose the variable whose baselearner improves the aggregated model
most, evaluated in L̃.

Remark 18.1.1. Note that the number of coefficients depends on the number of knots and
the degree of the regression spline. The number of coefficients is p times the sum of the
number of knots and the degree plus one, so we have to store all these coefficients which is
realized as a list in the function mboost. Aside from these rather large storage costs, fitting a
P-Spline is clearly much more expensive than fitting a simple least squares model. Therefore,
it is not recommended to use this kind of SingBoost if there are other possibilities.

Recall again that for ranking problems it is not necessary to predict the responses themselves.
For example, consider the regression model

Yi = β0 + βX2
i + εi

for regressor dimension p = 1 and error terms εi as usual. If X ⊂ R≥0, then working with a
linear model can also predict the correct ranking of the responses despite the values them-
selves would may be gravely mis-specified (cf. also figure 5.2).

Maybe one could even extend this idea. Suppose that the true underlying function is highly
nonlinear. Then in order to reasonably solve the regression task, one needs to set up a non-
linear model. But in fact, for the ranking problem, it suffices to know the true sign of
each partial derivatives. Therefore, there is no necessity to build a nonlinear model when
concerning the ranking problem. Of course, a single linear model would be not appropriate
but piece-wise linear models that capture the main slope structure. Concerning the example
above, when the regressors take values in R≥0 as well as in R<0, one could use one linear

334 CHAPTER 18. MISCELLANEA

model on the negative and one on the positive halfspace instead of a quadratic polynomial.
Solving the ranking problem in this manner would not only replace optimizing a pair-
wise loss function by optimizing a standard loss function but also reduce the
degree of nonlinearity. The latter may be interpreted as approximating a non-linear true
relation of X and Y by a linear function in the same sense as in [Bühlmann and Van De Geer,
2011, Ch. 6.2.3].

Future researchers may find answers to the following problems:

If the true model is nonlinear, under which conditions a piece-wise linear model
is still appropriate when considering a ranking problem?
What consequences would this approach have on model selection, i.e., can the
true relevant variables still be selected when working with a simplified struc-
ture?
More precisely, are there analoga to singular parts, here in the sense of singular
parts of the column measure w.r.t. a ranking loss function using a nonlinear
resp. a linear model?

18.2 Robustifying SingBoost?

It is evident that standard L2−Boosting (here w.l.o.g. again with component-wise linear
baselearners) is highly non-robust due to the non-robustness of each baselearner.

This problem has already been addressed in Lutz et al. [2008] where numerous robustifica-
tions of L2−Boosting have been developed that we briefly recapitulate.

Their first approach is to replace the non-robust squared loss by the Huber loss, resulting
in fitting huberized residuals. Since this procedure clearly only guards against y−outliers
(cf. section 3.4), they proposed downweighting leverage points, where their proposed weight
wij for Xij depends on an outlyingness quantification w.r.t. the corresponding column X·,j.
These weights are optionally also used to correct for the residuals by severely downweighting
only bad leverage points. However, this method would be inappropriate when concerning
singular steps where a ranking loss has to be evaluated, since it is unclear how weights could
be reasonably combined with such a loss function as it has been done in Lutz et al. [2008]
for the residual sum of squares (cf. remark 12.6.3). The other quality measure in Lutz et al.
[2008] which is the Qn−estimator (Rousseeuw and Croux [1993]) on the respective column

18.2. ROBUSTIFYING SINGBOOST? 335

multiplied with the absolute value of the fitted coefficient also contradicts the intention of
the singular steps.

Another proposal of Lutz et al. [2008] was to replace the simple least squares fits by robust
fits, but they already mentioned the high computational costs. Additionally, they used the
property of the simple least squares estimator that the slope is just the correlation of the
regressor and the response, weighted with the quotient of the standard deviations. Thus,
they replaced those ingredients by robust substitutes and recommend to choose the variable
with the highest robust correlation with the current residual.

We think that the latter approaches better reflect the structure of SingBoost. According
to [Lutz et al., 2008, Prop. 1], a Boosting procedure inherits the breakdown point of the
baselearner. Though SingBoost is not a standard Boosting procedure, it is evident that even
if the iterations w.r.t. the squared loss were robustified, the whole procedure gets worthless
if the singular steps are sensitive to outliers. For example, let w.l.o.g. the first component of
the original response be contaminated. If the current model is robust, we can expect the first
component of the current residual to be rather large. Thus, the contaminated component
”passes” the robust iterations and lets the models in the singular steps become unreliable. It
is easy to see that x−outliers affect the Boosting procedure even worse.

Summing up, robustifying SingBoost and therefore Column Measure Boosting requires ro-
bust baselearners, but additionally we need a variable selection criterion that still depends
on the loss function L̃. Maybe a direction of future research can use the following idea.

Replace L2−Boosting by one of the variants proposed by Lutz et al. [2008] which are both
robust against y− and x−outliers in the first (M −1) iterations. Use the robust current esti-
mate β̂(M−1) as initial estimator in the M−th iteration. If it would be reasonable to assume
that this estimator is already well enough, one could construct a One-Step estimator based
on each column separately. To get the required influence curve, we mimic the idea of Öllerer
et al. [2015] where they computed the influence curve of the Lasso solved by coordinate de-
scent. Since this algorithm is based on simple Lassos on the columns of the regressor matrix,
they write this simple Lasso estimator in the usual form, replacing the original response by
the partial residuals implying that the influence function always depends on the previous
coefficients.

Similarly, we may compute each component of our required influence function by

(IC((x, y), β̂(M−1), Fβ̂(M−1)))j =
x
(
y −

[∑
k xkβ̂

(M−1)
k

]
− xjβ̂(M−1)

j

)
IEF

β̂(M−1) [x2] (18.2.1)

336 CHAPTER 18. MISCELLANEA

where we denote by Fβ̂(M−1) the regression model corresponding to β̂(M−1) in the sense of
(4.4.2). Roughly spoken, instead of measuring the influence of a whole new observation on
the estimator, we progress as in Boosting or in the coordinate descent algorithm for the Lasso
(Friedman et al. [2007], Öllerer et al. [2015]) and treat the influences of each column of a new
regressor separately. Since the full residuals are fitted in each Boosting iteration, it is more
appropriate in our case to include full residuals rather than partial residuals.

Remark 18.2.1. Since the influence curve (18.2.1) depends on all previously fitted coeffi-
cients through the residuals (and also on the step size κ), it can be regarded as an influence
curve for L2−Boosting.

Initialization: Data (X, Y), step size κ ∈]0, 1], number miter of iterations, number
M ≤ miter (each M−th iteration is a singular iteration) and target loss L̃ (as part of
a family object singfamily);
Set

runs =
⌊
miter

M

⌋
Define f̂ (0) := 0, thus r(0) = Y ;
for k = 1, ..., runs do

Perform (M − 1) steps of a robust version of L2−Boosting starting with the
residuals w.r.t. the model f̂ ((k−1)M);
Get the model f̂ ((k−1)M+M−1);
Compute the component-wise influence function in (18.2.1) w.r.t. the joint
distribution corresponding to f̂ ((k−1)M+M−1);
Compute an optimally-robust version ψ̃;
Compare the One-Steps in (18.2.2) w.r.t. L̃;
Get the weak model ĝ(kM) and update the model via

f̂ (kM) = f̂ ((k−1)M+M−1) + κĝ(kM)

end
Algorithm 22: RobSingBoost

Of course, this standard influence curve is unbounded. As we already mentioned in section
3.5, there exist techniques to find optimally-robust influence curves. This is also possible for
influence curves in regression, see [Rieder, 1994, Sec. 7] and [Kohl, 2005, Sec. 7]. Hence,
let ψ̃ be an optimally-robust influence curve (depending on the chosen optimization problem
and the contamination model). Then we propose to proceed computing the One-Steps

β̂1
j := β̂

(M−1)
j + 1

n

∑
i

ψ̃j(Xi, r
(M−1)
i). (18.2.2)

18.2. ROBUSTIFYING SINGBOOST? 337

In the last step, we investigate the performance w.r.t. loss L̃ and update the component of
the coefficient that improves it most. The residuals serve as the responses for the subsequent
robust L2−Boosting iteration and so forth.

Note that we do not have robustified Column Measure Boosting yet. If we assume that
there are contaminated observations in the training data, we also would get contaminated
test data since the training observations for one SingBoost algorithm may be the validation
observations of another one. Without referring to all existing techniques of outlier detection
again (see for instance Filzmoser et al. [2008]), we just assume here that we have separated
a test set before drawing subsamples to get training data and that this test set is already
clean. Then we get a robust version of Column Measure Boosting (say Robust Column
Measure Boosting; RCMB). Clearly, handing over the respective data to each core, a
parallelized version of RCMB is designed straightforwardly.

Questions for future work include:

Is the definition of the influence curve in (18.2.1) allowed?
Is it meaningful to compute One-Steps as in (18.2.2)?
Is the proposed Robust Column Measure Boosting feasible concerning compu-
tational cost?
How efficient are the robustifications in the ideal model?

Chapter 19

Summarizing conclusion

We list our main theoretical and conceptual contributions in the following two sections. The
third section is a more detailed overview of the power of our implementations.

19.1 Theoretical contributions of this work

The first major theoretical contribution of this work was the extension of the theory of asymp-
totic linearity of M-estimators to the case of regularized M-estimators for both differentiable
(theorem 4.5.2) and non-differentiable (theorem 4.5.3) regularization terms. By specifying
the theoretical requirements, we identified the Lasso, the elastic net and the Adaptive Lasso
as regularized M-estimators that can be asymptotically linearly expanded. We additionally
pointed out that our results can even handle the case of data-driven penalty parameters
which manifests itself in a sequence of penalty parameters which depend on the sample size
and which converge to zero as the sample size grows to infinity.

We provided minor results where we computed influence curves for the ranking problems
via ordered discrete choice models (section 6.2) and where we proved a Riesz representation
result for functionals corresponding to asymptotically linear estimators (theorem 9.3.1). The
technically very simple lemma 6.1.1 connected the evaluation of the hard ranking loss with
the evaluation of Kendall’s Tau in the absence of ties in a bijective way which indeed has a
great impact for practically working with ranking losses of this kind, significantly reducing
the computational time for large n.

Furthermore, the Expected One-Step estimator extended the connection of the theory of
asymptotically linear estimators with variable selection through partial influence curves (sec-

338

19.2. CONCEPTUAL CONTRIBUTIONS OF THIS WORK 339

tion 3.5) to a simultaneous treatment of influence curves that are related to the rows with
empirical column measures which correspond to the columns of a data matrix (section 9.8).

The major theoretical statement of this work is that SingBoost keeps the estimation consis-
tency and the prediction consistency of L2−Boosting when assuming a Corr-min condition
in the sense that each singular iteration selects a variable whose corresponding column is
at least sufficiently enough correlated with the current residual compared to the correlation
of the most correlated column with the current residual (theorems 10.5.1+10.5.2). These
theorems guarantee that SingBoost asymptotically computes the true coefficients, even if
the variables selected in the singular steps are not the same as L2−Boosting had selected
which is exactly the theoretical property that we need to justify our strategy. Moreover, in
an asymptotic sense, the number of predictors is allowed to grow nearly exponentially fast
w.r.t. the number of observations.

In section 13.2.2, we already were able to show that a MultiSingBoost, i.e., a SingBoost
procedure for multivariate responses, would also keep the estimation consistency of multi-
variate L2−Boosting under an additional Corr-min condition without yet having constructed
a worked-out algorithm.

Finally, to reasonably compare different ranking models, the elicitation property of the cor-
responding statistical ranking functionals is required. We showed that both for univariate
and uncorrelated multivariate responses, the hard ranking functionals are indeed elicitable
(lemmas 7.1.1 and 13.3.2). In the case of ties in the response vector which causes multiple
true rankings, we proved that the corresponding ranking functional for univariate responses
is strongly (exhaustively) elicitable (lemma 7.2.1). When having multiple responses which
are uncorrelated, we showed that the corresponding multivariate hard ranking functional
satisfies the property of strong (exhaustive) k−elicitability (lemma 13.3.3).

19.2 Conceptual contributions of this work

The first main conceptual contribution was to show that Gradient Boosting for the continuous
ranking problem cannot be achieved by simply replacing the hard ranking loss with a (piece-
wise) convex and (piece-wise) differentiable pair-wise surrogate loss (see chapter 8). This
demonstrated a further difference between the continuous and the bipartite ranking problem
since the latter can indeed be solved by optimizing a suitable pair-wise surrogate loss.

340 CHAPTER 19. SUMMARIZING CONCLUSION

The introduction of the row measure and the column measure in definitions 9.5.1 and 9.6.1
formed the root for a new view on variable selection that initially enabled us to treat tra-
ditional learning procedures without model selection and variable selection procedures as
special cases of our column measure framework. We provided a combination of the One-Step
estimators with the column measure, namely the Expected One-Step (section 9.8) which uni-
fied the column-based variable importances with the row-based influence curves. Together
with our theoretical results on asymptotic linear expansions of regularized M-estimators, even
estimators like the Lasso or the Adaptive Lasso can be identified as aggregation procedures
that can be divided into row-wise and column-wise aggregation.

The column measure framework revealed a great issue when performing model selection w.r.t.
different loss functions which we mathematically identified with singular parts between col-
umn measures (definition 10.1.1) that we postulated to exist. That warns us to be very
cautious when trying to perform model selection for some loss function L̃ by using an algo-
rithm that is tailored to another loss function L.

Identifying each iteration of component-wise Boosting as a rejection step itself, we proposed
the algorithm SingBoost (algorithm 6) that includes singular steps where a linear baselearner
is evaluated in the target loss L̃, so that we get the chance to select variables from potential
singular parts. We provided arguments that raw SingBoost models are either not sufficient
for stable models including potential singular parts or that the column measure w.r.t. L̃ will
not be sufficiently adapted. Therefore, we proposed Column Measure Boosting (algorithm
7) that leads to a stabilization of such a potential singular part for further analysis. We also
provided ideas to overcome computationally intensive evaluations in section 11.5.

We learned that a sparse learning technique, performed on different subsamples of the data,
indeed also supplies an empirical row measure, see equation (12.2.2). We finally proposed
a loss-based Stability Selection which we combined with the CMB algorithm resulting in
the CMB-3S algorithm (algorithm 12). As a simple extension to immunize against a given
partition of the data, we provided the CV.CMB-3S algorithm (algorithm 16 and figure 12.3)
which can be used to compute an ultra-stable sparse column measure (equation (12.4.1)).
Note that when applying one of these algorithms to a ranking problem, we essentially replace
a pair-wise loss function by a univariate loss function.

One of our major conceptual contributions was the simultaneous treatment of row and column
measures which led to RCM-pairs which assign at least importances to cells of the regressor
matrix. In section 12.5, we identified sparsity as a property of empirical column measures as-
sociated with the column measure framework whereas stability of empirical column measures
is essentially related to the row measure framework. The row column measure framework

19.3. ALGORITHMIC CONTRIBUTIONS OF THIS WORK 341

therefore unifies sparsity, stability and even robustness which eventually is connected to the
interplay of row and column measures. We indeed embedded inherently different algorithms
like Lasso, BlockForest, SLTS and CMB-3S into this framework.

We also provided a first approach to achieve a parametric consensus ranking model (sec-
tion 13.1) and a first idea how to extend SingBoost to multivariate responses where we
highlighted that the extension of our row column measure framework to the case of multi-
variate responses indeed produces new singular parts (section 13.2.2). To describe the sparse
estimation of covariance or precision matrices, we introduced the cell measure (section 14.1).

One of our most striking conceptual contributions was to embed outlier detection algorithms
like the DDC prodecure and robust algorithms like the Fast-MCD and SLTS into our RCM
framework. Even more astoundingly, we were able to rewrite these algorithms in Boosting
form (sections 14.2 and 14.3). We provided a first idea for a Generalized L2−Boosting al-
gorithm (algorithm 20) and suggested a Stability Selection for the rows in combination with
Stability Selection for the columns in order to simultaneously account for sparsity, stability
and robustness (section 14.4). We assume that if one succeeded in generalizing the RCM
framework for univariate responses to multivariate responses, we had tools to describe and
to handle any possible peculiarity or heterogeneity in the data.

Without yet having worked-out theory or algorithms, we provided first ideas how to use
Boosting or asymptotically linear estimators to handle structural missings (chapter 17) and
how SingBoost may be robustified (section 18.2). Furthermore, we discussed how CMB-3S
could be extended to nonparametric baselearners and if it would be necessary to model non-
linearities when concerning ranking problems (section 18.1).

19.3 Algorithmic contributions of this work

We implemented the SingBoost algorithm (algorithm 6) as the R−function singboost, the
CMB algorithm (algorithm 7) as cmb, the CMB-3S algorithm (see algorithms 12, 15) as CMB3S
and finally the CV.CMB-3S procedure (see algorithm 16 and figure 12.3) as CV.CMB3S.

Our CV.CMB3S function uses three mboost-type families instead of one which is the case for
standard Boosting algorithms and for SingBoost.

342 CHAPTER 19. SUMMARIZING CONCLUSION

The singfam family is, as its name suggests, representing the loss function L̃sing that appears
in the singular steps of SingBoost. The evalfam family manifests itself in the Column Mea-
sure Boosting as well as in the Stability Selection. Concretely, the evaluation loss function
L̃eval is used to compute the out-of-sample performance of the SingBoost models in order
to determine the best dαBsinge SingBoost models to get appropriately aggregated empirical
row and column measures. Furthermore, the sparse and stable model selection needs the
computation of the out-of-sample performance on a validation set Dvalid to choose either the
best threshold from the grid πgrid or the best number of variables from the grid qgrid. This
is also done by using L̃eval. Finally, L̃target which is represented by the targetfam object
delivers us the cross-validated test loss of our final model.

This implementation gives us the opportunity of a very flexible usage of our CV.CMB3S imple-
mentation. Inserting different family objects at each step or special combinations of hyperpa-
rameter settings lead to the opportunity to easily compare CMB-3S with classical approaches.

Indeed, we can perform an analog of the classical Stability Selection. Setting ncmb = ntrain

means that no CMB-type subsampling is necessary to get an aggregated column measure, but
instead, we outsource the subsampling procedure to the Column Measure Boosting where we
draw subsamples of size nsing = 0.5ntrain as suggested in Meinshausen and Bühlmann [2010].
The number Bsing is exactly the number of subsamples that have to be generated for CMB.
Setting sing=F and singfam=Gaussian() means that we indeed perform L2−Boosting in-
stead of SingBoost so that M does not influence the result. m_iter and kap are the usual
hyperparameters of L2−Boosting. Setting α = 1 implies that the selection frequencies of all
fitted models are used for aggregation. Therefore, it is indifferent how to choose evalfam
here. Performing a Stability Selection in the sense of Bühlmann and Meinshausen would
be realized if one just proposed an one-elemental grid, so we essentially choose a fixed πthr
instead of optimizing it via a grid search, so evalfam has again no influence. The reason
why we just ”nearly” perform standard Stability Selection with L2−Boosting is that Hofner
et al. [2015] recommend to let the Boosting procedure only run as long as q variables have
been selected which is not the case for the given settings in our algorithm.

Much more relevant is the application of our loss-based Stability Selection for any existing
Boosting procedure (for regression) that is possible by just using the argument evalfam which
has to be the same family object as singfam, and defining some grid with more than one ele-
ment to perform the suggested grid search. By changing the argument singfam=Gaussian()
to any other yet existing mboost family object (until now, just for regression) representing
some loss L, we aggregate the respective L−Boosting models instead of L2−Boosting mod-
els. This may sound contradictory, but together with the arguments sing=F and LS=F (both

19.3. ALGORITHMIC CONTRIBUTIONS OF THIS WORK 343

defaults), we run glmboost with the respective singfam object in cmb and therefore get an
empirical glmboost column measure which enters our Stability Selection.

As (partially) demonstrated in part VI, our algorithm can easily cope with categorical vari-
ables, interaction terms or basis functions since we just need to insert a model matrix and not
some formula argument, so generating the model matrix with the command model.matrix
already suffices as pre-processing step to apply our algorithms.

Apart from these functionalities, we provided the function path.singboost that enables us
to draw coefficient paths for SingBoost models by applying the function singboost.plot.

More detailed, illustrative examples of our algorithms can be found in part VI.

Let us highlight again that our loss-based Stability Selection can be applied to models based
on high-dimensional and noisy data where Hofner’s Stability Selection is no longer meaning-
ful and that the resulting models significantly outperform the standard Boosting models (see
chapter 16) and that it can easily be applied to very high-dimensional data (see section 15.4).

Admittedly, the computational time is very high once we invoke singular iterations. This
is a direct consequence of the pure R−implementation and no weakness of the underlying
SingBoost algorithm since its theoretical complexity essentially just differs from the com-
plexity of L2−Boosting by an additional factor ln(n) in cases where the loss function needs
O(n ln(n)) operations to be evaluated based on two vectors of length n, and equals the com-
plexity of L2−Boosting in cases of loss functions that can be evaluated in O(n) steps, see
again lemma 10.3.1 and remark 10.3.15. Invoking C and FORTRAN code in a future imple-
mentation can make our algorithms competetive with Boosting and Stability Selection from
mboost and stabs.

Appendix

A.1 Coercivity

An important property of real-valued functions that is used to show the existence of mini-
mizers is coercivity or coerciveness. We note that the definition of coercivity is not unique
in literature. We use the following definition of Werner [2006].

Definition A.1.1. Let X be a normed space. A function f : X → R is coercive if

lim
||x||→∞

(f(x)) =∞.

In fact, Rockafellar and Wets [1998] define coercivity by

lim inf
||x||→∞

(
f(x)
||x||

)
=∞

with an additional boundedness condition where a related property (with the limit inferior
replaced by the limit and allowing f to map into R̄) is referred to as supercoercivity in
[Bauschke and Combettes, 2011, Def. 11.11].

Roughly spoken, a function is coercive if the function value grows to infinity when the norm
of the input argument grows to infinity. This property is used to guarantee the existence
of a minimum in the interior domain. More precisely, one can state that a coercive and
continuous function f : Rn → R has a minimizer (cf. Butenko and Pardalos [2014]). This
also holds if the continuity assumption is weakened to lower semi-continuity for convex f (cf.
[Werner, 2006, Satz III.5.8]).

Note that the definition can be reversed in the sense that the function tends to −∞ to show
the existence of maximizers (cf. Levitin and Tichatschke [1998]).

345

APPENDIX A

The notion of coercivity can be concretized to certain arguments of f . For the following
lemma, we refer to Evgrafov and Patriksson [2004] and Levitin and Tichatschke [1998].

Lemma A.1.1. Let f : X × Y × Θ → R be continuous, where X ⊂ Rn, Y ⊂ Rm, Θ ⊂ Rk.
Define Ξ(x, y) := argminθ(f(x, y, θ)). If f is coercive w.r.t. θ, i.e., the sets

{θ ∈ Θ | f(x, y, θ) ≤ c}

are bounded for all c ∈ R for every x ∈ X , y ∈ Y, then minθ(f(x, y, θ)) > −∞ and Ξ(x, y)
is nonempty and compact for any x, y.

For a generalization to families of functions, we refer to the following definition of equi-
coercivity of Dal Maso [2012].

Definition A.1.2. Let X be a topological space and let fn : X → R̄. Then the family
{fn | n ∈ N} is said to be equi-coercive if for any c ∈ R there exists Kc ⊂⊂ X such that
{x | fn(x) ≤ c} ⊂ Kc for every n.

This definition is equivalent to the existence of a lower semi-continuous, coercive function
Ψ : X → R such that fn ≥ Ψ for all n which is used in Le et al. [2017].

A.2 Uniform integrability

See e.g. Rieder [1994] for the following definition of uniform integrability of a sequence of
random variables.

Definition A.2.1. Let (Ωn,An, Pn) be probability spaces for n ≥ 0. A sequence Xn :
(Ωn,An, Pn)→ (Rp,Bp) of random variables is uniformly integrable if

lim
c→∞

(
sup
n

(∫
{|Xn|≥c}

|Xn|dPn
))

= 0.

When investigating the conditions that are necessary to interchange the derivative and the
integral, we make use of the theorem of Lebesgue-Vitali (cf. [Bogachev, 2007a, Thm. 4.5.4])

346

APPENDIX A

and the Dunford-Pettis criterion (cf. [Attouch et al., 2014, Thm. 2.4.5]).

Theorem A.2.1 (Lebesgue-Vitali). Let (Ω,A, µ) be a finite measure space. Let f be
µ−measurable and let the family {fn} consist of µ−integrable functions. Then fn → f in
L1(µ) with integrable limit f if and only if {fn} is uniformly integrable and fn → f in
measure.

Theorem A.2.2 (Dunford-Pettis criterion). Let (Ω,A, µ) be a probability space and let
F ⊂ L1(µ) be bounded. Then F is uniformly integrable if and only if F is a relatively compact
subset of L1(µ) w.r.t. the weak topology, i.e., if the closure of F is compact in L1(µ)

Note that although the last theorem is often called ”Dunford-Pettis theorem” in literature,
we referred to it as the ”Dunford-Pettis criterion” to avoid confusion with the Dunford-Pettis
theorem that characterizes the spaces that provide the Radon-Nikodym property (cf. e.g.
Dunford and Pettis [1940] or [Diestel and Uhl, 1977, III.Lemma 9]).

A.3 Tools from measure theory

We start with the definition of signed measures (see e.g. Elstrodt [2006]).

Definition A.3.1. Let (Ω,A) be a measurable space. A map µ : A → R is called a signed
measure if µ is sigma-additive and if µ(∅) = 0.

Remark A.3.1. In fact, a signed measure µ can be represented by two measures µ−, µ+ by
setting µ = µ+ − µ− and can take values in [−∞,∞[or]−∞,∞].

The following definition generalizes R−valued measures to vector-valued measures, see e.g.
Diestel and Uhl [1977] or Blasco and Gregori [2002].

Definition A.3.2. Let (Ω,A) be a measurable space and let X be a Banach space. Then a
map µ : A → X is a countably additive vector measure if for any countable index set
J it holds that

µ

⋃
j∈J

Aj

 =
∑
j

µ(Aj)

347

APPENDIX A

for disjoint Aj ∈ A for all j. For A ∈ A let Π be the set consisting of all partitions of A.
Then the function

|µ|(A) := sup
π∈Π

(∑
B∈π
||µ(B)||

)

is the variation of µ. In the case |µ|(Ω) < ∞, the vector measure µ is said to be of
bounded variation.

The following definitions of [Brooks and Lewis, 1974, Def. 2.3+Def. 2.6] are needed for a
special Riesz representation theorem. See also definition A.4.3 for the notation.

Definition A.3.3. Let X , Y be locally convex spaces. Let (Ω,A) be a measurable space and
let ρ : A → Cf (X ,Y) be finitely additive. Then, for any A ∈ A, the (p, q)−semi-variation
of ρ is defined by

sup
π∈Π, ||xi||X≤1

∣∣∣∣∣
∣∣∣∣∣∑
B∈π

ρ(B)xi
∣∣∣∣∣
∣∣∣∣∣
Y


where Π denotes the set of all partitions of A and || · ||X , || · ||Y are a semi-norms on X resp.
Y.

Definition A.3.4. Let (Ω,A) be a measurable space and let E, F be Banach spaces. Then
a finitely additive function ρ : A → Cf (E,F ′′) with finite (p, q)−semi-variation is weakly
regular if for any x ∈ E, i ∈ F ′ the function

ρ(x,i)(·) := 〈m(·)x, i〉

is a finite Radon measure.

There are certain types of convergence of functions with respect to a measure. Egorov’s
theorem below connects pointwise convergence with almost uniform convergence ([Bogachev,
2007a, Thm. 2.2.1]). Thereafter, we state the well-known Radon-Nikodym theorem as it is
presented in [Bauer, 1992, Satz 17.10].

Theorem A.3.1 (Egorov). Let (Ω,A, µ) be a finite measure space with non-negative mea-
sure µ. Let {fn | n ∈ N} be a family of µ−measurable functions. If the pointwise convergence
fn → f for some µ−measurable function f holds µ−almost everywhere, then the sequence
(fn)n converges to f µ−almost uniformly.

348

APPENDIX A

Theorem A.3.2 (Radon-Nikodym). Let (Ω,A) be a measurable space. Let µ and ρ be
measures on A where µ is sigma-finite. Then ρ � µ if and only if there exists f ∈ L1(µ)
such that

ρ(A) =
∫
A
fdµ

for any A ∈ A.

Remark A.3.2. Note that absolute continuity of a measure ρ on A w.r.t. a measure µ on
A is usually defined in the sense that ρ is dominated by µ, i.e., ρ(A) = 0 if µ(A) = 0 for
any A ∈ A. By the Radon-Nikodym theorem, this is in fact equivalent to the existence of a
density f of ρ w.r.t. µ.

For the case that domination does not hold, there exists the following decomposition (see e.g.
Elstrodt [2006]). The definition below of absolute continuity in more than one dimension is
borrowed from Pupashenko et al. [2015].

Theorem A.3.3 (Lebesgue decomposition). Let (Ω,A) be a measurable space and let
ρ be a σ−finite signed measure and µ be a σ−finite measure on A. Then there exists a
decomposition

ρ = ρc + ρs

where ρc, ρs are signed measures of A with ρc � µ and ρs ⊥ µ.

Definition A.3.5. A function f : Rp → R is absolutely continuous in p dimensions
if for any x, y ∈ Rp, the function

G : [0, 1]→ R, G(s) := f(x+ s(y − x))

is absolutely continuous in the usual sense.

Note that there exists another definition that comes from Ruckdeschel [2010b] which is more
evolved since it respects Lebesgue zero sets. The following definition of continuity sets is
borrowed from [Elstrodt, 2006, Def. 4.9].

Definition A.3.6. Let Z be a topological space and let µ be a Borel measure on Z. Then
B ∈ IB(Z) is called µ−continuity set if µ(B̄ \ B◦) = 0, i.e., if the boundary of B is a
µ−null set.

349

APPENDIX A

In an even more abstract setting, Le Cam (Le Cam [1986]) defines when two experiments
which are understood as maps from a set Θ of ”theories” into a so-called L−space ([Le Cam,
1986, p. 4]) such that each θ is mapped to some positive Pθ with unit norm ([Le Cam, 1986,
Def. 1]). We borrow the following definitions from [Le Cam, 1986, Ch. 2] and [Le Cam,
1986, Ch. 6].

Definition A.3.7. Let E, F be two experiments defined on the same set Θ where E maps
each θ into some Pθ and F maps each θ into some Qθ.

a) The deficiency of the two experiments is given by

δ(E,F) = inf
T

(
sup
θ

(1
2 ||Qθ − TPθ||

))
where T is a transition, i.e., a norm-preserving, positive linear map.

b) The experiments E and F are equivalent if both δ(E,F) = 0 and δ(F,E) = 0.

c) An experiment E = {Pθ | θ ∈ Θ} with Pθ ∈ L for some L−space L is dominated by
λ ∈ L if each Pθ is dominated by λ.

In other words, two experiments are equivalent if there exists a suitable transition that
linearly transforms the probability measures Pθ of experiment E into the counterparts Qθ for
experiment F .

A.4 Topological spaces

The following definition ([Rudin, 1987, Def. 2.3] and [Brooks and Lewis, 1974, Lemma 2.3])
concerns about general topological spaces. The definition of continuity in the compact-open
topology is also borrowed from Brooks and Lewis [1974].

Definition A.4.1. a) A topological space Z is called a Hausdorff space if for any x,
y ∈ Z such that x 6= y there exist neighborhoods Ux of x and Uy of y satisfying Ux ∩ Uy = ∅.
b) A topological space Z is locally compact if every x ∈ Z has a neighborhood whose closure
is compact.
c) Let E be a Banach space and Z be a Hausdorff space. Then Z is called an S-space if
C(Z,E)|K = C(K,E) for each K ⊂⊂ Z or equivalently, if Z is separated by C(Z).

350

APPENDIX A

Definition A.4.2. Let E, F be Banach spaces and let Z be a Hausdorff space. Then T :
C(Z,E) → F is continuous in the compact-open topology if there exists a constant
M ≥ 0 and K ⊂⊂ Z such that for any f ∈ C(Z,E) it holds that

||Tf ||F ≤M ||f ||K

for ||f ||K := sup{||f(t)||E | t ∈ K}.

When we talk about spaces of certain continuous functions, we will always have the following
notation (cf. [Rudin, 1987, Def. 3.16], see [Rudin, 1987, Thm. 3.17])).

Definition A.4.3. a) The space Cf (Z) contains all functions on Z that vanish at infinity,
i.e., for any ε > 0 there exists a compact K ⊂⊂ Z such that |f(x)| < ε for every x /∈ K.
b) The space C0(Z) contains all functions f on Z with a compact support, i.e., {z ∈
Z | f(z) 6= 0} ⊂ K ⊂⊂ Z.

Remark A.4.1. A typical example of a function in Cf (R) is the density of a standard normal
distribution which obviously does not have compact support. In fact, Cf (Z) is the completion
of C0(Z) with respect to the supremum norm if Z is a locally compact Hausdorff space.

A.5 Riesz representation theorems and dual spaces

Definition A.5.1. A functional T : X → R is called positive if Tf ≥ 0 for any f ≥ 0.

The classical Riesz representaton theorem (cf. [Rudin, 1987, Thm. 6.16]) connects Lp−spaces
with their dual spaces Lq for q = p

p−1 . However, Riesz representation theorems that are used
in measure theory are more likely to provide representing measures than representing func-
tions. A standard example is the following one of [Rudin, 1987, Thm. 2.14], [Elstrodt, 2006,
2.5]. Compare with definitions A.4.1, A.5.1 and A.4.3 for the notation.

Theorem A.5.1. Let Z be a locally compact Hausdorff space and let T : C0(Z) → R be a
positive linear functional. Then there exists a unique Radon measure µ such that

Tf =
∫
Z
fdµ

for any f ∈ C0(Z).

351

APPENDIX A

Riesz representation theorems of this kind identify the duals of spaces of continuous func-
tions with spaces of certain Radon measures. So, the previous theorem relates the dual space
(C0(Z))∗ with the space of all Radon measures. Analogously, for a locally compact Hausdorff
space Z, the space (Cf (Z))∗ can be shown to be isometrically isomorphic to the space of all
finite Radon measures (cf. [Elstrodt, 2006, 2.23+2.26]).

Since we are interested in vector-valued functionals, we need multidimensional representation
theorems. In fact, we borrow the following one from [Brooks and Lewis, 1974, Thm. 2.7],
see also definitions A.4.2 A.3.4, A.4.1.

Theorem A.5.2. Let Z be an S-space and let E, F be Banach spaces. Let T : C(Z,E)→ F

(where C(Z,E) is equipped with the compact-open topology) be linear and continuous. Then
there exists a unique, weakly regular function ρ : IBZ → Cf (E,F

′′) such that

Tf =
∫
Z
fdρ

for any f ∈ C(Z,E) where IBZ denotes the sigma algebra of all Borel sets on Z.

A.6 Distribution theory

The following definitions and properties concerning weak derivatives can be found in stan-
dard textbooks of functional analysis or partial differential equations, e.g. Werner [2006].

Definition A.6.1. Let A ⊂ Rn open and let f ∈ L2(A). Then g ∈ L2(A) is the weak
derivative of f of order |α| if for all test functions ϕ on A, i.e., smooth real-valued
functions with compact support in A, it holds that

〈g, ϕ〉L2(A) :=
∫
A
g(x)ϕ(x)dx =

∫
A
f(x)Dαϕ(x)dx

where α denotes a multi-index, so

Dαϕ = ∂α1
x1 . . . ∂

αn
xn ϕ.

Clearly, if the weak distributional derivative exists, then it is unique since two weak derivatives
g, h of f would lead to 〈g − h, ϕ〉L2(A) = 0 for all test functions ϕ on A, so by denseness of
the space of all test functions on A in Lp(A) for 1 ≤ p <∞ (see e.g. [Werner, 2006, Lemma
V.1.10], g = h is valid.

352

APPENDIX A

Definition A.6.2. Let A ⊂ Rn be open. The Sobolev space W 2,2(A) is defined as

W 2,2(A) :=

f ∈ L2(A)
∣∣∣∣∣ ∑
|α|≤2
||Dαf ||2L2(A) <∞

,
where Dαf again is the weak distributional derivative.

The following theorem ([Berge, 1963, p. 116]) is referred to as ”Berge’s maximum theorem”
in Avella-Medina [2017]. We directly use the notation as in chapter 4.

Theorem A.6.1 (Berge’s maximum theorem). Let R : Θ → R be continuous and let
Γ : W 2,2 → Θ be a mapping such that Γ(J) 6= ∅ for all J ∈ W 2,2. Then

M : W 2,2 → R, M(J) := max{−R(θ) | θ ∈ Γ(J)},

is continuous and

Φ : W 2,2 → Θ, Φ(J) := {θ ∈ Γ(J) | R(θ) = M(J)},

is upper semi-continuous.

A.7 Tools from asymptotic statistics

We recapitulate the well-known delta method as presented in Van der Vaart [2000]. The
subsequent definitions from asymptotic statistics stem from Rieder [1994] and De la Peña
and Giné [2012], respectively.

Lemma A.7.1 (Delta-Method). Let (Xn)n≥0 be a sequence of random variables taking
values in X ⊂ Rp. Let f : X → Rk be a differentiable function. If for a sequence sn →∞, it
holds that

sn(Xn − θ) w−→ Y,

then

sn(f(Xn)− f(θ)) w−→ f ′(θ)Y.

Definition A.7.1. Let (Pn)n be a family of probability measures on measurable spaces (Ωn,An).
Then (Pn)n is tight if for any ε > 0 there exists a compact set K ⊂⊂ Ωn such that

lim sup
n

(Pn(Ωn \K)) < ε.

353

APPENDIX A

Definition A.7.2. Let (Θ, d) be a metric space. Then the minimal number of balls of radius
ε that are necessary to cover Θ is called the covering number and is denoted by N(Θ, d, ε).
The logarithm of the covering number,

H(ε) := ln(N(Θ, d, ε)),

is referred to as the metric entropy of Θ.

We recall following definition from Van der Vaart and Wellner [2013] for working with non-
measurable functions.

For example, neither the empirical distribution function nor the uniform empirical process,
written as mappings from [0, 1] into the Skorohod space D([0, 1]), are measurable (Van der
Vaart and Wellner [2013]).

Definition A.7.3. Let (Ω,A, P) be a probability space and let T : Ω→ R̄ be a map. Then

IE∗[T] := inf{IE[U] | U ≥ T, U : Ω→ R̄ measurable, IE[U] ex.}

is called the outer integral or outer expectation of T w.r.t. P . The outer probability
of a set B ⊂ Ω is given by

P ∗(B) := inf{P (A) | A ⊃ B,A ∈ A}.

Analogously, the inner integral or inner expectation of T w.r.t. P is given by

IE∗[T] := sup{IE[S] | S ≤ T, S : Ω→ R̄ measurable, IE[S] ex.}

and the inner probability of a set B ⊂ A is given by

P∗(B) := sup{P (C) | C ⊂ B, C ∈ A}.

In these cases, the random variable U that is taken for the computation of IE∗[T] is referred
to as minimal measurable majorant whereas in the inner expectation case, the respective
variable S is the maximal measurable minorant.

We continue to list some simple properties of inner and outer expectations and probabili-
ties (cf. [Kosorok, 2007, Lemma 6.3+6.4+6.5], [Van der Vaart and Wellner, 2013, Lemma
1.2.1+1.2.3]).

354

APPENDIX A

Remark A.7.1. Let (Ω,A, P) be a probability space and T : Ω→ R̄.
i) There exists a minimal measurable majorant U : Ω → R̄ and a maximal measurable
minorant S : Ω→ R̄.
ii) The relations

IE∗[T] = IE∗[−T] and P∗(B) = 1− P ∗(Ω \B)

hold, where B ∈ A.
iii) It holds that

IE∗[IB] = P ∗(B) and IE∗[IB] = P∗(B)

for any B ∈ A.

The general Lr−differentiability of which the frequently used L2−differentiability is just a
special case for r = 2 is defined as follows (cf. Rieder and Ruckdeschel [2001]). The subse-
quent lemma was proven in chapter 3.1 of the cited reference.

Definition A.7.4. Let P := {Pθ | θ ∈ Θ} be a family of probability measures on some
measurable space (Ω,A) and let Θ be a subset of Rp. Then P is Lr−differentiable at θ0 if
there exists Λθ0 ∈ Lpr(Pθ0) such that∣∣∣∣∣∣∣∣ r√dPθ+h − r

√
dPθ

(
1 + 1

r
ΛT
θ h
)∣∣∣∣∣∣∣∣r

Lr

=
∫ ∣∣∣∣ r√dPθ+h − r

√
dPθ

(
1 + 1

r
ΛT
θ h
)∣∣∣∣r = o(||h||r).

Lemma A.7.2. If the situation of definition A.7.4 the model P is Lr−differentiable in θ0

with Lr−derivative Λθ0, then it is also Ls−differentiable in θ0 with the same derivative for
any 1 ≤ s ≤ r.

If one faces parametric arrays of the form

Pn,i := {Pn,i,β | β ∈ Rp} ⊂ M1(An,i)

on measurable spaces (Ωn,i,An,i) for n ∈ N, i = 1, ..., in, L2−differentiability can be defined
in the following way (see [Rieder, 1994, Def. 2.3.8], [Pupashenko et al., 2015, Def. 2.5]).

Definition A.7.5. Let Λn,i,β0 ∈ L
p
2(Pn,i,β0) satisfy IEn,i,β0 [Λn,i,β0] = 0 for any i, n. Let

In,β0 :=
∑
i

In,i,β0

and for t ∈ Rp, define

355

APPENDIX A

tn := (In,β0)−1/2, Un,i := tTnΛn,i,β0 .

If it holds for any ε ∈]0,∞[and any t ∈ Rp that

lim
n

(∑
i

∫
{|Un,i|>ε}

U2
n,idPn,i,β0

)
= 0,

and if for every b ∈]0,∞[it holds that

lim
n

(
sup
|t|≤b

(∑
i

∣∣∣∣∣∣∣∣√dPn,i,β0+tn −
√
dPn,i,β0

(
1 + 1

2Un,i,β0(t)
)∣∣∣∣∣∣∣∣2

L2

))
= 0,

then the parametric array P := ⊗in
i=1Pn,i is L2−differentiable in β0 ∈ Rp at time n

with L2−derivative Λn,i,β0 and Fisher information In,i,β0. If additionally for any hn → 0 the
property

lim
n

(
sup
|t|≤b

(∑
i

∣∣∣∣∣∣√dPn,i,β0+hnUn,i,β0+hn(t)−
√
dPn,i,β0Un,i,β0(t)

∣∣∣∣∣∣2
L2

))
= 0

holds, then the parametric array P is continuously L2−differentiable in β0 ∈ Rp at
time n.

Rieder shows that L2−differentiability of a parametric array in this sense suffices to guarantee
that the log-likelihoods of local alternatives are asymptotically normal by using the theorem
of Lindeberg-Feller.

A.8 Functional Gradient Boosting

The following generic functional Gradient Boosting algorithm goes back to Friedman (Fried-
man [2001]). We use the notation of Bühlmann and Hothorn [2007].

The function L is concerned to be a loss function with two arguments. One is the response,
the other one is the predicted response, understood in a functional way as the model that
is used for prediction. The loss function has to be differentiable and convex in the second
argument. The main idea behind this algorithm is to iteratively proceed along the steepest
gradient.

356

APPENDIX A

Initialization: Data (X, Y), step size κ ∈]0, 1], number miter of iterations and

f̂ (0)(·) ≡ argmin
c

(
1
n

∑
i

L(Yi, c)
)

as offset value;
for k = 1, ...,miter do

Compute the negative gradients and evaluate them at the current model:

Ui = −∂fL(Yi, f)|f=f̂ (k−1)(Xi)

for all i = 1, ..., n;
Treat the vector U = (Ui)i as response and fit a model

(Xi, Ui)i
base procedure−→ ĝ(k)(·)

with a preselected real-valued base procedure;
Update the current model via

f̂ (k)(·) = f̂ (k−1)(·) + κĝ(k)(·)

end
Algorithm 23: Generic functional Gradient Boosting

As pointed out in Bühlmann and Hothorn [2007], the models ĝ(k) can be regarded as an
approximation of the current negative gradient vector.

A.9 Code for table 1.1

sumrand← 0
sumclass← 0
sumreg← 0
B← 10000
c l a s s v e c← numeric (B)
f o r (i in 1 :B) {

s e t . s e e d (i)
D← genData0 (5 ,200 , s=1, snr=0. 5) $D
Dclass←D
Dclass $Y[Dclass $Y>0]← 1
Dclass $Y[Dclass $Y≤ 0]← 0
Dtr←D[1 : 1 0 0 ,]
Dc l a s s t r←Dclass [1 : 1 0 0 ,]

357

APPENDIX A

Dte←D[1 0 1 : 2 0 0 ,]
Dc la s s t e←Dclass [1 0 1 : 2 0 0 ,]
Yhat← p r ed i c t (lm(Y∼. , Dtr) ,Dte)
r e s l o g i t←glm (Y∼. , Dc las s t r , f ami ly=’ binomial ’)
Yhatlog← 1∗ (p r ed i c t (r e s l o g i t , Dte) ≥ 0)
ind log← sample (which (Yhatlog==1) ,10 , r ep l a c e=F)
c l a s s v e c [i]←sum(Yhatlog==1)
sumrand← sumrand+sum(Dte$Y[sample (1 : 100 , 10 , r ep l a c e=F)])
sumclass← sumclass+sum(Dte$Y[ind log])
sumreg← sumreg+sum(Dte$Y[order (Yhat , de c r ea s ing=T) [1 : 1 0]])

}
cat ("The average p r o f i t made by randomly rev i ewing i s " , sumrand/B)
cat ("The average p r o f i t made by c l a s s i f i c a t i o n and randomly r ev i e v i n g from the

pred i c t ed fraud c l a s s i s " , sumclass /B)
cat ("The average p r o f i t made by r e g r e s s i o n and rev i ewing the i n s t an c e s that

are p r ed i c t ed to be the most p r o f i t a b l e i s " , sumreg/B)

358

Index

L2−Boosting
Robustification, 334

L2−differentiability, 41–43, 61
L1−differentiability, 60–61
of GLM families, 113
of regression models, 66–67

k−Step estimator, 52–53, 325, 336
Expected, 152
with model selection, 54

Asymptotic linearity, 43–44, 139–141
of M-estimators, 63
of regularized M-estimators, 71, 73
of regularized ranking M-estimators, 75–

76
of the Adaptive Lasso, 80
of the Elastic net, 79
of the Lasso, 77

Boosting, 21
L2−, 22, 166, 305–313
Estimation consistency, 175
Generalized, 261
Prediction consistency, 175
Step size, 173, 178
Update, 171–172
Variable selection inconsistency, 182

glmboost, 167–183
mboost, 24, 27, 167–333
and prior column measures, 150
Baselearners, 21
Change of measure, 164
Coefficient paths, 183–185

Early stopping, 24, 148
Generalized, 260
L2−, 261
Concentration step, 261
Forgetting factor, 258, 261
Generalized base procedure, 257, 260

Gradient Boosting, 22, 356–357
LogitBoost, 101
MissBoost, 326
Multivariate L2−, 242
Number of iterations, 23
p-Norm-Push, 103
RankBoost, 102, 127
Selection frequencies, 167
Sparse Boosting, 166
Stability Selection, 25, 148–161
Step size, 23

Breakdown point, 46

Cell measure, 248
Cell set, 249
Empirical, 248
Induced by RCM pairs, 249
Sequence of, 250
Sparse, 249
Stable, 249
Stable cell set, 249
Time-dependent, 250

CMB
Complexity, 316

CMB-2S, 305–312
CMB-3S, 213, 218, 305–309

359

360 INDEX

Coefficients, 217–218
Complexity, 316

Column measure, 145
Aggregated, 197
and variable selection consistency, 146
Block column measure, 194
Column-specific, 250, 255
Consensus, 241
Domination, 158
Empirical, 146, 192, 196–198
Online, 154

Equivalence, 158
for fixed effects, 150
for random effects, 150
Generalized, 150
Group (CM), 225
Group (NX), 227
Group (RM), 226
Group (sRM), 226
Induced by a row measure, 149
Initial, 150
Interpretation, 145
Iteration-specific, 164, 262
Lebesgue decomposition, 159
Sampling from, 192
Seemingly unrelated regression, 243
Sequence of, 154
Sequence of singular parts, 161
Singular parts, 158, 214, 240, 243, 305–

307
Sparse, 146
Stable, 148
Time-dependent, 154
Time-dependent singular parts, 161
Ultra-stable, 225
Weak convergence, 146

Column Measure Boosting, 197–200, 216
Complexity, 203
Stability paths, 219

Consensus ranking, 106, 239
Kemeny ranking aggregation, 239
Partial ranking, 238–242

Contamination
x−outliers, 48, 50
y−outliers, 48, 50
Cell-wise contamination ball, 329
Cell-wise contamination model, 48
Cell-wise outliers, 49, 251–255
Contamination ball, 47, 328
Contamination model, 47
Contamination radius, 329
Convex contamination, 47, 329
Leverage points, 48
Structural missings, 329

CV.CMB-3S, 223–224

DDC procedure, 251–255

Elicitability, 119
k−, 119, 245
Exhaustive, see Strong
Selective, see Weak
Strong, 121
Strong k−, 246
Weak, 121

Functional differentiability
R−derivative, 35
R−, 35
Bouligand, 38, 40
Chain rule, 37, 64
Compact/Hadamard, 36, 64
Fréchet, 36, 64, 71
Gâteaux, 36, 71
of regularized M-functionals, 71, 73
of regularized ranking M-functionals, 75–

76

Influence curve/function, 39–40, 43, 45, 63
Approximation in Sobolev space, 73

INDEX 361

for hard ranking functionals, 117
for localized ranking functionals, 117
for the Lasso, 82
for the logit model, 115
for weak ranking functionals, 117
of linear regression, 45
of M-estimators, 44
of quantile regression, 45
of the Adaptive Lasso, 80
of the ordered logit model, 116
Partial, 44, 54, 81

Lasso, 17, 49
Asymptotic linear expansion, 77

Loss function, 16, 65
Consistency, 119
Strict consistency, 119

M-estimator, 56, 61
Asymptotic linearity, 63
Compact differentiability, 63
Differentiation and integration, 58
Empirical counterpart, 57, 62
M-functional, 56
Regularized Z-equation, 66
Riesz representation, 141

MCD estimator, 251, 254, 257–259
Missings

MAR, 321–323
MCAR, 321–323
MissBoost, 326
MNAR, 322–323
Structural, 322

Model matrix
Basis functions, 168
Categorical variables, 27, 168
for SingBoost, 168
Interaction terms, 27, 168
Intercept, 15, 22, 45, 168

P-Splines, 332

Random Lasso, 191–193
Ranking losses

cor.fk, 110
Hard, 94–98, 109–111, 239, 305–313
Hard ranking risk, 94
Localized, 96–98, 111
Standardized localized, 96–98
Standardized weak, 95–97
Weak, 95–98

Ranking problems
d−partite, 93–108
Bipartite, 93–108
Continuous, 93–108
Hard, 92–108
Localized, 92–108, 232
Weak, 92–108

RCM framework, 215, 254
Group (RCM), 226
RCM matrix, 267
Stable, 267

RCM pair, 216, 249
Stable RCM pair, 266

Rejection sampling, 142–143
L2−Boosting, 164
Domination, 160

Robustness, 229–230
Row measure, 144

Aggregated, 216
Block row measure, 195
Column-specific, 250, 254
Empirical, 145
Online, 154

Group (RM), 226
Group (sRM), 226
Induced by a column measure, 215, 216
Initial, 145
Robust, 145
Sequence of, 154
Stable, 266

362 INDEX

Time-dependent, 154, 250

Screening property, 21
Seemingly unrelated regression, 243, 250
SingBoost, 164–170

path.singboost, 184
singboost.plot, 184
Complexity, 169, 203
Corr-min condition, 175–182
Model matrix, 168
MultiSingBoost, 244
Number of iterations, 168
Number of singular iterations, 217
Prediction consistency, 178
Pseudocode, 165
Stability paths, 219
Step size, 167, 178
Update, 174
with P-spline baselearners, 333

Singboost
Coefficient paths, 183–186

SLTS, 50, 215, 259, 262
Smoothing splines, 332–334
Sparsity, 19, 229
Stability, 229
Stability Selection, 195–316

stabs, 20, 25, 149, 161, 183, 214
Boosting, 25, 161
CMB-3S, 213
Cutoff, 20, 211
for Boosting, 25
for Boosting models, 148
for Graphical Lasso models, 249
for Lasso models, 20, 148
for rows, 262–268
for SLTS, 263
Hofner’s q, 25, 195, 211, 309
Our q, 211
Stability paths, 20, 218

Stabilized, 225
Surrogate losses, 102–105, 125–131

Variable selection consistency, 21
of the expected One-Step, 153

Z-estimator, see M-estimator

Bibliography

S. Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper losses. The
Journal of Machine Learning Research, 15(1):1653–1674, 2014.

S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for
the area under the ROC curve. Journal of Machine Learning Research, 6(Apr):393–425,
2005.

C. Agostinelli, A. Leung, V. J. Yohai, and R. H. Zamar. Robust estimation of multivariate
location and scatter in the presence of cellwise and casewise contamination. Test, 24(3):
441–461, 2015.

A. Alexandridis and A. Zapranis. Wind derivatives: Modeling and pricing. Computational
Economics, 41(3):299–326, 2013.

A. Alfons. robustHD: Robust Methods for High-Dimensional Data, 2016. URL https://
CRAN.R-project.org/package=robustHD. R package version 0.5.1.

A. Alfons, C. Croux, and S. Gelper. Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1):226–248, 2013.

J. Alm, M. B. Cronshaw, and M. McKee. Tax compliance with endogenous audit selection
rules. Kyklos, 46(1):27–45, 1993.

F. Alqallaf, S. Van Aelst, V. J. Yohai, R. H. Zamar, et al. Propagation of outliers in multi-
variate data. The Annals of Statistics, 37(1):311–331, 2009.

C. Anagnostopoulos, D. K. Tasoulis, N. M. Adams, N. G. Pavlidis, and D. J. Hand. Online
linear and quadratic discriminant analysis with adaptive forgetting for streaming classifica-
tion. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(2):139–166,
2012.

P. Anand, J. Krishnakumar, and N. B. Tran. Measuring welfare: Latent variable models for
happiness and capabilities in the presence of unobservable heterogeneity. Journal of public
economics, 95(3-4):205–215, 2011.

363

https://CRAN.R-project.org/package=robustHD
https://CRAN.R-project.org/package=robustHD

364 BIBLIOGRAPHY

A. Y. Aravkin, J. V. Burke, and G. Pillonetto. Sparse/robust estimation and Kalman smooth-
ing with nonsmooth log-concave densities: Modeling, computation, and theory. The Journal
of Machine Learning Research, 14(1):2689–2728, 2013.

S. Arlot, A. Celisse, et al. A survey of cross-validation procedures for model selection.
Statistics surveys, 4:40–79, 2010.

S. Arslanturk, M.-R. Siadat, T. Ogunyemi, K. Demirovic, and A. Diokno. Skip pattern
analysis for detection of undetermined and inconsistent data. In Biomedical Engineering
and Informatics (BMEI), 2012 5th International Conference on, pages 1122–1126. IEEE,
2012.

K. Ataman and W. N. Street. Optimizing area under the ROC curve using ranking SVMs.
In Proceedings of International Conference on Knowledge Discovery in Data Mining, 2005.

H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV spaces:
applications to PDEs and optimization. SIAM, 2014.

M. Avella-Medina. Influence functions for penalized M-estimators. Bernoulli, 23(4B):3178–
3196, 2017.

V. Averbukh and O. Smolyanov. The theory of differentiation in linear topological spaces.
Russian Mathematical Surveys, 22(6):201–258, 1967.

M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf. Multiple Imputation by Chained Equa-
tions: What is it and how does it work? International journal of methods in psychiatric
research, 20(1):40–49, 2011.

F. R. Bach. Bolasso: Model consistent lasso estimation through the bootstrap. arXiv preprint
arXiv:0804.1302, 2008.

M.-F. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, and G. B. Sorkin.
Robust reductions from ranking to classification. Machine learning, 72(1-2):139–153, 2008.

O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation for multivariate gaussian or binary data. Journal of Machine learning
Research, 9(Mar):485–516, 2008.

M. J. Bárcena Ruiz and F. J. Tusell Palmer. Multivariate data imputation using trees. 2002.

D. Bárcenas. The Radon-Nikodym theorem for reflexive banach spaces. Divulgaciones
Matemáticas, 11(1):55–59, 2003.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

BIBLIOGRAPHY 365

P. L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine
Learning, 48(1):85–113, 2002.

H. Bauer. Maß-und Integrationstheorie. Walter de Gruyter, 1992.

H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in
Hilbert spaces, volume 408. Springer, 2011.

C. Berge. Topological Spaces: Including a treatment of multi-valued functions, vector spaces,
and convexity. Courier Corporation, 1963.

D. M. Berridge and R. Crouchley. Multivariate generalized linear mixed models using R. CRC
Press, 2011.

E. Beutner and H. Zähle. A modified functional delta method and its application to the
estimation of risk functionals. Journal of Multivariate Analysis, 101(10):2452–2463, 2010.

E. Beutner, H. Zähle, et al. Functional delta-method for the bootstrap of quasi-hadamard
differentiable functionals. Electronic Journal of Statistics, 10(1):1181–1222, 2016.

A. Beygelzimer, E. Hazan, S. Kale, and H. Luo. Online gradient boosting. In Advances in
neural information processing systems, pages 2458–2466, 2015a.

A. Beygelzimer, S. Kale, and H. Luo. Optimal and adaptive algorithms for online boosting.
In International Conference on Machine Learning, pages 2323–2331, 2015b.

P. J. Bickel. One-step Huber estimates in the linear model. Journal of the American Statistical
Association, 70(350):428–434, 1975.

P. J. Bickel and E. Levina. Regularized estimation of large covariance matrices. The Annals
of Statistics, pages 199–227, 2008.

T. Björk. Arbitrage theory in continuous time. Oxford university press, 2009.

O. Blasco and P. Gregori. Vector measures with variation in a Banach function space. In
Proceedings of the Sixth Conference Function Spaces, pages 65–79, 2002.

V. I. Bogachev. Measure theory, volume 1. Springer Science & Business Media, 2007a.

V. I. Bogachev. Measure theory, volume 2. Springer Science & Business Media, 2007b.

D. Borsboom, G. J. Mellenbergh, and J. Van Heerden. The theoretical status of latent
variables. Psychological review, 110(2):203–219, 2003.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some recent
advances. ESAIM: probability and statistics, 9:323–375, 2005.

K. Bowlin. Risk-based auditing, strategic prompts, and auditor sensitivity to the strategic
risk of fraud. The Accounting Review, 86(4):1231–1253, 2011.

366 BIBLIOGRAPHY

J. Boyko. Handling Data with Three Types of Missing Values. PhD thesis, University of
Connecticut, 2013.

U. Brefeld and T. Scheffer. AUC maximizing support vector learning. In Proceedings of the
ICML 2005 workshop on ROC Analysis in Machine Learning, 2005.

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. The Annals of Applied Statistics, 5(1):232–
253, 2011.

L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

L. Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517,
1999.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

L. Breiman. Classification and regression trees. Routledge, 2017.

M. Broadie and P. Glasserman. Estimating security price derivatives using simulation. Man-
agement science, 42(2):269–285, 1996.

J. K. Brooks and P. W. Lewis. Linear operators and vector measures. Transactions of the
American Mathematical Society, 192:139–162, 1974.

P. Bühlmann. Boosting for high-dimensional linear models. The Annals of Statistics, pages
559–583, 2006.

P. Bühlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and model
fitting. Statistical Science, pages 477–505, 2007.

P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: Methods, theory and
applications. Springer Science & Business Media, 2011.

P. Bühlmann and B. Yu. Boosting with the l2 loss: Regression and Classification. Journal
of the American Statistical Association, 98(462):324–339, 2003.

P. Bühlmann and B. Yu. Sparse boosting. Journal of Machine Learning Research, 7(Jun):
1001–1024, 2006.

P. Bühlmann, L. Meier, and H. Zou. Discussion of “One-step sparse estimates in nonconcave
penalized likelihood models” by H. Zou and R. Li. The Annals of Statistics, 36:1534–1541,
2008.

P. Bühlmann, J. Gertheiss, S. Hieke, T. Kneib, S. Ma, M. Schumacher, G. Tutz, C.-Y.
Wang, Z. Wang, and A. Ziegler. Discussion of “The evolution of boosting algorithms”
and “Extending statistical boosting”. Methods of information in medicine, 53(06):436–445,
2014.

BIBLIOGRAPHY 367

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In Proceedings of the 22nd international conference
on Machine learning, pages 89–96. ACM, 2005.

S. Butenko and P. M. Pardalos. Numerical Methods and Optimization: An Introduction.
CRC Press, 2014.

B. L. Cabrera, M. Odening, and M. Ritter. Pricing rainfall futures at the CME. Journal of
Banking & Finance, 37(11):4286–4298, 2013.

T. Cai, W. Liu, and X. Luo. A constrained l1−minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106(494):594–607, 2011.

T. Calders and S. Jaroszewicz. Efficient AUC optimization for classification. In PKDD,
volume 4702, pages 42–53. Springer, 2007.

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal
of the ACM (JACM), 58(3):11, 2011.

E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Found.
Comput. Math., 9(6):717–772, Dec. 2009. ISSN 1615-3375. doi: 10.1007/s10208-009-9045-5.

E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted
l1−minimization. Journal of Fourier analysis and applications, 14(5):877–905, 2008.

Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking SVM to
document retrieval. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 186–193. ACM, 2006.

A. Capatina et al. Variational inequalities and frictional contact problems. Springer, 2014.

L. Chang, S. Roberts, and A. Welsh. Robust lasso regression using tukey’s biweight criterion.
Technometrics, 60(1):36–47, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

G. Chechik, G. Heitz, G. Elidan, P. Abbeel, and D. Koller. Max-margin classification of data
with absent features. Journal of Machine Learning Research, 9(Jan):1–21, 2008.

S.-T. Chen, H.-T. Lin, and C.-J. Lu. An online boosting algorithm with theoretical justifi-
cations. arXiv preprint arXiv:1206.6422, 2012.

S.-T. Chen, H.-T. Lin, and C.-J. Lu. Boosting with online binary learners for the multiclass
bandit problem. In International Conference on Machine Learning, pages 342–350, 2014.

368 BIBLIOGRAPHY

X. Chen, Z. J. Wang, and M. J. McKeown. Asymptotic analysis of the Huberized lasso esti-
mator. In 2010 IEEE International Conference on Acoustics Speech and Signal Processing
(ICASSP),, pages 1898–1901. IEEE, 2010a.

X. Chen, Z. J. Wang, and M. J. McKeown. Asymptotic analysis of robust lassos in the
presence of noise with large variance. IEEE Transactions on Information Theory, 56(10):
5131–5149, 2010b.

A. Christmann and I. Steinwart. On robustness properties of convex risk minimization
methods for pattern recognition. Journal of Machine Learning Research, 5(Aug):1007–
1034, 2004.

A. Christmann and I. Steinwart. Consistency and robustness of kernel-based regression in
convex risk minimization. Bernoulli, pages 799–819, 2007.

A. Christmann and A. Van Messem. Bouligand derivatives and robustness of support vector
machines for regression. Journal of Machine Learning Research, 9(May):915–936, 2008.

A. Christmann, A. Van Messem, and I. Steinwart. On consistency and robustness properties
of support vector machines for heavy-tailed distributions. Statistics and Its Interface, 2(3):
311–327, 2009.

S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical minimization of U-statistics.
The Annals of Statistics, pages 844–874, 2008.

S. Clémençon and M. Achab. Ranking data with continuous labels through oriented recursive
partitions. In Advances in Neural Information Processing Systems, pages 4603–4611, 2017.

S. Clémençon and S. Robbiano. Building confidence regions for the ROC surface. Pattern
Recognition Letters, 46:67–74, 2014.

S. Clémençon and S. Robbiano. An ensemble learning technique for multipartite ranking. In
Proceedings, pages 397–402. Presses universitaires de Louvain, 2015a.

S. Clémençon and S. Robbiano. The TreeRank Tournament algorithm for multipartite rank-
ing. Journal of Nonparametric Statistics, 27(1):107–126, 2015b.

S. Clémençon and N. Vayatis. Ranking the best instances. Journal of Machine Learning
Research, 8(Dec):2671–2699, 2007.

S. Clémençon and N. Vayatis. Tree-structured ranking rules and approximation of the optimal
ROC curve. In Proceedings of the 2008 conference on Algorithmic Learning Theory. Lect.
Notes Art. Int, volume 5254, pages 22–37, 2008.

S. Clémençon and N. Vayatis. Overlaying classifiers: a practical approach to optimal scoring.
Constructive Approximation, 32(3):619–648, 2010.

BIBLIOGRAPHY 369

S. Clémençon, G. Lugosi, N. Vayatis, P. Aurer, and R. Meir. Ranking and scoring using
empirical risk minimization. In Colt, volume 3559, pages 1–15. Springer, 2005.

S. Clémençon, M. Depecker, and N. Vayatis. Bagging ranking trees. In Machine Learning
and Applications, 2009. ICMLA’09. International Conference on, pages 658–663. IEEE,
2009.

S. Clémençon, M. Depecker, and N. Vayatis. Adaptive partitioning schemes for bipartite
ranking. Machine Learning, 83(1):31–69, 2011.

S. Clémençon, M. Depecker, and N. Vayatis. Ranking forests. Journal of Machine Learning
Research, 14(Jan):39–73, 2013a.

S. Clémençon, M. Depecker, and N. Vayatis. An empirical comparison of learning algorithms
for nonparametric scoring: the TreeRank algorithm and other methods. Pattern Analysis
and Applications, 16(4):475–496, 2013b.

S. Clémençon, S. Robbiano, and N. Vayatis. Ranking data with ordinal labels: optimality
and pairwise aggregation. Machine Learning, 91(1):67–104, 2013c.

M. Cohen and G. Huang. Analyzing survey data by complete-case and available case methods.
Proceedings of the Survev Research Methods, pages 289–294, 2000.

C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. In Advances in
neural information processing systems, pages 313–320, 2004.

C. Croux and V. Öllerer. Robust and sparse estimation of the inverse covariance matrix
using rank correlation measures. In Recent Advances in Robust Statistics: Theory and
Applications, pages 35–55. Springer, 2016.

G. Dal Maso. An introduction to Γ-convergence, volume 8. Springer Science & Business
Media, 2012.

A. D’Ambrosio, S. Amodio, and G. Mazzeo. ConsRank: Compute the Median Ranking(s)
According to the Kemeny’s Axiomatic Approach, 2017. URL https://CRAN.R-project.
org/package=ConsRank. R package version 2.0.1.

M. Danilov, V. J. Yohai, and R. H. Zamar. Robust estimation of multivariate location and
scatter in the presence of missing data. Journal of the American Statistical Association,
107(499):1178–1186, 2012.

C. Daskalakis, R. M. Karp, E. Mossel, S. J. Riesenfeld, and E. Verbin. Sorting and selection
in posets. SIAM Journal on Computing, 40(3):597–622, 2011.

A. Davenport and D. Lovell. Ranking pilots in aerobatic flight competitions. Technical
report, Technical report, IBM Research Report RC23631 (W0506-079), TJ Watson . . . ,
2005.

https://CRAN.R-project.org/package=ConsRank
https://CRAN.R-project.org/package=ConsRank

370 BIBLIOGRAPHY

L. Davies. Lasso, knockoff and Gaussian covariates: a comparison. arXiv preprint
arXiv:1805.01862, 2018.

L. Davies and L. Duembgen. A model-free approach to linear least squares regression with
exact probabilities. arXiv preprint arXiv:1807.09633, 2018.

J.-E. Dazard, M. Choe, M. LeBlanc, and J. S. Rao. R package PRIMsrc: Bump hunting
by patient rule induction method for survival, regression and classification. In Proceed-
ings/American Statistical Association. American Statistical Association. Meeting, volume
2015, pages 650–664. NIH Public Access, 2015.

C. De Boor. A practical guide to splines, volume 27. Springer-Verlag New York, 1978.

V. De la Peña and E. Giné. Decoupling: from dependence to independence. Springer Science
& Business Media, 2012.

J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen. The structure of optimal parameters
for image restoration problems. Journal of Mathematical Analysis and Applications, 434
(1):464–500, 2016.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological),
pages 1–38, 1977.

K. Deng, S. Han, K. J. Li, and J. S. Liu. Bayesian aggregation of order-based rank data.
Journal of the American Statistical Association, 109(507):1023–1039, 2014.

P. Descloux and S. Sardy. Model selection with lasso-zero: adding straw to the haystack to
better find needles. arXiv preprint arXiv:1805.05133, 2018.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

R. Dezeure, P. Bühlmann, L. Meier, and N. Meinshausen. High-dimensional inference: Con-
fidence intervals, p-values and R-software hdi. Statistical Science, 30(4):533–558, 2015.

C. Dhanjal and S. Clémençon. On recent advances in supervised ranking for metabolite
profiling. arXiv preprint arXiv:1402.1054, 2014.

A. Dickerson and G. K. Popli. Persistent poverty and children’s cognitive development:
evidence from the UK millennium cohort study. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 179(2):535–558, 2016.

J. Diestel and J. Uhl. Vector Measures. Surveys, 1977.

I. N. Dimou. Design and Implementation of Support Vector Machines and Information Fusion
Methods for Bio-medical Decision Support Systems. PhD thesis, Technical University of
Crete, 2011.

BIBLIOGRAPHY 371

D. L. Donoho and P. J. Huber. The notion of breakdown point. A Festschrift for Erich L.
Lehmann, pages 157–184, 1983.

H. H. Duan. Bounding the fat shattering dimension of a composition function class built
using a continuous logic connective. arXiv preprint arXiv:1105.4618, 2011.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

R. Dudley. Fréchet differentiability, p-variation and uniform donsker classes. The Annals of
Probability, pages 1968–1982, 1992.

N. Dunford and B. J. Pettis. Linear operations on summable functions. Trans. Amer. Math.
Soc, 47:323–392, 1940.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web.
In Proceedings of the 10th international conference on World Wide Web, pages 613–622.
ACM, 2001.

B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least angle regression. The Annals
of Statistics, 32(2):407–499, 2004.

B. Efron, T. Hastie, and R. Tibshirani. Discussion: The Dantzig selector: Statistical estima-
tion when p is much larger than n. The Annals of Statistics, 35(6):2358–2364, 2007.

J. Ehrlinger, H. Ishwaran, et al. Characterizing l2Boosting. The Annals of Statistics, 40(2):
1074–1101, 2012.

P. H. Eilers and B. D. Marx. Flexible smoothing with B-splines and penalties. Statistical
Science, pages 89–102, 1996.

M. Elad. Sparse and Redundant Representations - From Theory to Applications in Signal
and Image Processing. 2010. ISBN 978-1-4419-7010-7.

S. M. A. Elrahman and A. Abraham. A review of class imbalance problem. Journal of
Network and Innovative Computing, 1(2013):332–340, 2013.

J. Elstrodt. Maß-und Integrationstheorie. Springer-Verlag, 2006.

A. Evgrafov and M. Patriksson. On the existence of solutions to stochastic mathematical
programs with equilibrium constraints. Journal of Optimization Theory and Applications,
121(1):65–76, 2004.

L. Fahrmeir and G. Tutz. Multivariate statistical modelling based on generalized linear models.
Springer Science & Business Media, 2013.

L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression. Springer, 2007.

372 BIBLIOGRAPHY

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911,
2008.

J. Fan andW. Zhang. Statistical estimation in varying coefficient models. Annals of Statistics,
pages 1491–1518, 1999.

J. Fan and W. Zhang. Statistical methods with varying coefficient models. Statistics and its
Interface, 1(1):179–195, 2008.

J. Fan, Y. Liao, and H. Liu. An overview of the estimation of large covariance and precision
matrices. The Econometrics Journal, 19(1):C1–C32, 2016.

A. Feelders. Handling missing data in trees: surrogate splits or statistical imputation? Prin-
ciples of Data Mining and Knowledge Discovery, pages 329–334, 1999.

P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions. Com-
putational Statistics & Data Analysis, 52(3):1694–1711, 2008.

P. Filzmoser, H. Fritz, and K. Kalcher. pcaPP: Robust PCA by Projection Pursuit, 2018.
URL https://CRAN.R-project.org/package=pcaPP. R package version 1.9-73.

R. A. Fisher. Theory of statistical estimation. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 22, pages 700–725. Cambridge University Press, 1925.

T. Fissler, J. F. Ziegel, and T. Gneiting. Expected shortfall is jointly elicitable with value at
risk-implications for backtesting. arXiv preprint arXiv:1507.00244, 2015.

T. Fissler, J. F. Ziegel, et al. Higher order elicitability and Osband’s principle. The Annals
of Statistics, 44(4):1680–1707, 2016.

T. Fissler, J. Hlavinová, and B. Rudloff. Elicitability and identifiability of systemic risk
measures and other set-valued functionals. 07 2019.

R. Fraiman, V. J. Yohai, R. H. Zamar, et al. Optimal robust m-estimates of location. The
Annals of Statistics, 29(1):194–223, 2001.

M. Fréchet. Sur la notion de différentielle dans l’analyse générale, 1937.

R. M. Freund, P. Grigas, R. Mazumder, et al. A new perspective on boosting in linear
regression via subgradient optimization and relatives. The Annals of Statistics, 45(6):
2328–2364, 2017.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

https://CRAN.R-project.org/package=pcaPP

BIBLIOGRAPHY 373

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research, 4(Nov):933–969, 2003.

J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression: A statistical view
of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28
(2):337–407, 2000.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

J. Friedman, T. Hastie, H. Höfling, R. Tibshirani, et al. Pathwise coordinate optimization.
The Annals of Applied Statistics, 1(2):302–332, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software, 33(1):1, 2010.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

R. Frongillo and I. A. Kash. On elicitation complexity and conditional elicitation. arXiv
preprint arXiv:1506.07212, 2015.

X. Geng, T.-Y. Liu, T. Qin, and H. Li. Feature selection for ranking. In Proceedings of
the 30th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 407–414. ACM, 2007.

J. Gertheiss and G. Tutz. Penalized regression with ordinal predictors. International Statis-
tical Review, 77(3):345–365, 2009.

J. Gertheiss, G. Tutz, et al. Sparse modeling of categorial explanatory variables. The Annals
of Applied Statistics, 4(4):2150–2180, 2010.

J. Gertheiss, S. Hogger, C. Oberhauser, and G. Tutz. Selection of ordinally scaled independent
variables with applications to international classification of functioning core sets. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 60(3):377–395, 2011.

R. D. Gill, J. A. Wellner, and J. Præstgaard. Non- and semi-parametric maximum likelihood
estimators and the von mises method (part 1)[with discussion and reply]. Scandinavian
Journal of Statistics, pages 97–128, 1989.

R. Gnanadesikan and J. R. Kettenring. Robust estimates, residuals, and outlier detection
with multiresponse data. Biometrics, pages 81–124, 1972.

374 BIBLIOGRAPHY

T. Gneiting. Making and evaluating point forecasts. Journal of the American Statistical
Association, 106(494):746–762, 2011.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger, G. Holmes, and
T. Abdessalem. Adaptive random forests for evolving data stream classification. Machine
Learning, 106(9-10):1469–1495, 2017.

P. J. Green. Iteratively reweighted least squares for maximum likelihood estimation, and
some robust and resistant alternatives. Journal of the Royal Statistical Society: Series B
(Methodological), 46(2):149–170, 1984.

C. Gulcehre, J. Sotelo, M. Moczulski, and Y. Bengio. A robust adaptive stochastic gradient
method for deep learning. arXiv preprint arXiv:1703.00788, 2017.

M. Gupta and V. Nagadevara. Audit selection strategy for improving tax compliance–
Application of data mining techniques. In Foundations of Risk-Based Audits. Proceedings
of the eleventh International Conference on e-Governance, Hyderabad, India, December,
pages 28–30, 2007.

R. Hable. Asymptotic normality of support vector machine variants and other regularized
kernel methods. Journal of Multivariate Analysis, 106:92–117, 2012.

R. Hable and A. Christmann. On qualitative robustness of support vector machines. Journal
of Multivariate Analysis, 102(6):993–1007, 2011.

G. Haffari, Y. Wang, S. Wang, G. Mori, and F. Jiao. Boosting with incomplete information.
In Proceedings of the 25th international conference on Machine learning, pages 368–375.
ACM, 2008.

J. Hájek. Local asymptotic minimax and admissibility in estimation. In Proceedings of
the sixth Berkeley symposium on mathematical statistics and probability, volume 1, pages
175–194, 1972.

F. Hampel. Contributions to the theory of robust estimation. PhD thesis, University of
California, Berkeley, Calif, USA, 1968.

F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel. Robust statistics: The approach
based on influence functions, volume 114. John Wiley & Sons, 2011.

F. R. Hampel. A general qualitative definition of robustness. The Annals of Mathematical
Statistics, pages 1887–1896, 1971.

W. K. Härdle, B. L. Cabrera, and M. Ritter. Forecast based pricing of weather derivatives.
2012.

BIBLIOGRAPHY 375

T. Hastie and B. Efron. lars: Least Angle Regression, Lasso and Forward Stagewise, 2013.
URL https://CRAN.R-project.org/package=lars. R package version 1.2.

T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the Royal Statistical
Society. Series B (Methodological), pages 757–796, 1993.

C. Heinrich. The mode functional is not elicitable. Biometrika, 101(1):245–251, 2013.

S. Heinrich. Multilevel Monte Carlo methods. In International Conference on Large-Scale
Scientific Computing, pages 58–67. Springer, 2001.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression.
1999.

W. Hersh, C. Buckley, T. Leone, and D. Hickam. OHSUMED: an interactive retrieval eval-
uation and new large test collection for research. In SIGIR’94, pages 192–201. Springer,
1994.

B. Hofner and T. Hothorn. stabs: Stability Selection with Error Control, 2017. URL https:
//CRAN.R-project.org/package=stabs. R package version 0.6-3.

B. Hofner, A. Mayr, N. Robinzonov, and M. Schmid. Model-based Boosting in R: A Hands-on
Tutorial Using the R Package mboost. Computational Statistics, 29(1-2):3–35, 2014.

B. Hofner, L. Boccuto, and M. Göker. Controlling false discoveries in high-dimensional
situations: Boosting with stability selection. BMC Bioinformatics, 16(1):144, 2015.

R. Hornung and M. N. Wright. Block forests: random forests for blocks of clinical and omics
covariate data. 2018.

T. Hothorn. TH.data: TH’s Data Archive, 2019. URL https://CRAN.R-project.org/
package=TH.data. R package version 1.0-10.

T. Hothorn and P. Bühlmann. Model-based boosting in high dimensions. Bioinformatics, 22
(22):2828–2829, 2006.

T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner. Model-based boosting 2.0.
Journal of Machine Learning Research, 11(Aug):2109–2113, 2010.

T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-Based
Boosting, 2017. URL https://CRAN.R-project.org/package=mboost. R package version
2.8-1.

K.-W. Hsu, N. Pathak, J. Srivastava, G. Tschida, and E. Bjorklund. Data mining based tax
audit selection: a case study of a pilot project at the Minnesota department of revenue. In
Real world data mining applications, pages 221–245. Springer, 2015.

https://CRAN.R-project.org/package=lars
https://CRAN.R-project.org/package=stabs
https://CRAN.R-project.org/package=stabs
https://CRAN.R-project.org/package=TH.data
https://CRAN.R-project.org/package=TH.data
https://CRAN.R-project.org/package=mboost

376 BIBLIOGRAPHY

H. Hu, W. Sun, A. Venkatraman, M. Hebert, and J. A. Bagnell. Gradient boosting on
stochastic data streams. arXiv preprint arXiv:1703.00377, 2017.

P. J. Huber and E. Ronchetti. Robust Statistics. Wiley, 2009.

M. Hubert and M. Debruyne. Minimum covariance determinant. Wiley interdisciplinary
reviews: Computational statistics, 2(1):36–43, 2010.

M. Hubert, P. J. Rousseeuw, and S. Van Aelst. High-breakdown robust multivariate methods.
Statistical Science, pages 92–119, 2008.

M. Hubert, P. J. Rousseeuw, and W. Van den Bossche. MacroPCA: An all-in-one PCA
method allowing for missing values as well as cellwise and rowwise outliers. Technometrics,
pages 1–18, 2019.

N. Jain and M. Marcus. Central limit theorems for C(S)-valued random variables. Journal
of Functional Analysis, 19(3):216–231, 1975.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
133–142. ACM, 2002.

J. G. Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.

J. A. Khan, S. Van Aelst, and R. H. Zamar. Robust linear model selection based on least angle
regression. Journal of the American Statistical Association, 102(480):1289–1299, 2007.

V. K. Khanna. Risk-based internal audit in Indian banks: A modified and improved approach
for conduct of branch audit. ICFAI Journal of Audit Practice, 5(4), 2008.

A. Khedher. Sensitivity and robustness to model risk in Lévy and jump-diffusion setting.
PhD thesis, University of Oslo, 2011.

W. R. Knight. A computer method for calculating Kendall’s tau with ungrouped data.
Journal of the American Statistical Association, 61(314):436–439, 1966.

R. Koenker and G. Bassett Jr. Regression quantiles. Econometrica: Journal of the Econo-
metric Society, pages 33–50, 1978.

R. Koenker and S. Portnoy. Quantile regression. ABE, 1996.

M. Kohl. Numerical contributions to the asymptotic theory of robustness. PhD thesis, Uni-
versity of Bayreuth, 2005.

M. Kohl, P. Ruckdeschel, and H. Rieder. Infinitesimally robust estimation in general smoothly
parametrized models. Statistical Methods & Applications, 19(3):333–354, 2010.

BIBLIOGRAPHY 377

V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the gener-
alization error of combined classifiers. The Annals of Statistics, pages 1–50, 2002.

A. Korba, S. Clémençon, and E. Sibony. A learning theory of ranking aggregation. In
Artificial Intelligence and Statistics, pages 1001–1010, 2017.

M. R. Kosorok. Introduction to empirical processes and semiparametric inference. Springer
Science & Business Media, 2007.

V. Krätschmer, A. Schied, and H. Zähle. Qualitative and infinitesimal robustness of tail-
dependent statistical functionals. Journal of Multivariate Analysis, 103(1):35–47, 2012.

H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Using support vector machines
for classifying large sets of multi-represented objects. In Proceedings of the 2004 SIAM
International Conference on Data Mining, pages 102–113. SIAM, 2004.

H. Lai, Y. Pan, C. Liu, L. Lin, and J. Wu. Sparse learning-to-rank via an efficient primal-dual
algorithm. IEEE Transactions on Computers, 62(6):1221–1233, 2013a.

H. Lai, Y. Pan, Y. Tang, and N. Liu. Efficient gradient descent algorithm for sparse models
with application in learning-to-rank. Knowledge-Based Systems, 49:190–198, 2013b.

N. S. Lambert, D. M. Pennock, and Y. Shoham. Eliciting properties of probability distribu-
tions. In Proceedings of the 9th ACM Conference on Electronic Commerce, pages 129–138.
ACM, 2008.

S. Lambert-Lacroix, L. Zwald, et al. Robust regression through the Huber’s criterion and
adaptive lasso penalty. Electronic Journal of Statistics, 5:1015–1053, 2011.

T. Lan, W. Yang, Y. Wang, and G. Mori. Image retrieval with structured object queries
using latent ranking SVM. In European conference on computer vision, pages 129–142.
Springer, 2012.

L. Laporte, R. Flamary, S. Canu, S. Déjean, and J. Mothe. Nonconvex regularizations for
feature selection in ranking with sparse SVM. IEEE Transactions on Neural Networks and
Learning Systems, 25(6):1118–1130, 2014.

L. Le, R. Kumaraswamy, and M. White. Learning sparse representations in reinforcement
learning with sparse coding. arXiv preprint arXiv:1707.08316, 2017.

L. Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Series in Statistics.
Springer New York, 1986.

L. LeCam. On the assumptions used to prove asymptotic normality of maximum likelihood
estimates. The Annals of Mathematical Statistics, 41(3):802–828, 1970.

378 BIBLIOGRAPHY

E. LeDell, M. Petersen, and M. van der Laan. Computationally efficient confidence intervals
for cross-validated area under the ROC curve estimates. Electronic Journal of Statistics, 9
(1):1583, 2015.

C. Leistner, A. Saffari, P. M. Roth, and H. Bischof. On robustness of on-line boosting-
a competitive study. In 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, pages 1362–1369. IEEE, 2009.

A. Leung, H. Zhang, and R. Zamar. Robust regression estimation and inference in the
presence of cellwise and casewise contamination. Computational Statistics & Data Analysis,
99:1–11, 2016.

A. Leung, V. Yohai, and R. Zamar. Multivariate location and scatter matrix estimation under
cellwise and casewise contamination. Computational Statistics & Data Analysis, 111:59–76,
2017.

E. Levitin and R. Tichatschke. On smoothing of parametric minimax-functions and general-
ized max-functions via regularization. Journal of Convex Analysis, 5:199–220, 1998.

X. Li, T. Zhao, L. Wang, X. Yuan, and H. Liu. flare: Family of Lasso Regression, 2018. URL
https://CRAN.R-project.org/package=flare. R package version 1.6.0.

H.-T. Lin. From ordinal ranking to binary classification. PhD thesis, California Institute of
Technology, 2008.

R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume 333. John Wiley
& Sons, 2014.

P.-L. Loh. Statistical consistency and asymptotic normality for high-dimensional robust
M-estimators. The Annals of Statistics, 45(2):866–896, 2017.

P.-L. Loh and M. J. Wainwright. High-dimensional regression with noisy and missing data:
Provable guarantees with nonconvexity. The Annals of Statistics, 40(3):1637–1664, 2012.

P.-L. Loh and M. J. Wainwright. Regularized M-estimators with nonconvexity: Statistical
and algorithmic theory for local optima. Journal of Machine Learning Research, 16:559–
616, 2015.

P.-L. Loh, M. J. Wainwright, et al. Support recovery without incoherence: A case for
nonconvex regularization. The Annals of Statistics, 45(6):2455–2482, 2017.

P.-L. Loh, X. L. Tan, et al. High-dimensional robust precision matrix estimation: Cellwise
corruption under ε-contamination. Electronic Journal of Statistics, 12(1):1429–1467, 2018.

R. D. Luce. Individual choice behavior. 1959.

https://CRAN.R-project.org/package=flare

BIBLIOGRAPHY 379

R. W. Lutz and P. Bühlmann. Conjugate direction boosting. Journal of Computational and
Graphical Statistics, 15(2):287–311, 2006a.

R. W. Lutz and P. Bühlmann. Boosting for high-multivariate responses in high-dimensional
linear regression. Statistica Sinica, 16(2):471, 2006b.

R. W. Lutz, M. Kalisch, and P. Bühlmann. Robustified L2boosting. Computational Statistics
& Data Analysis, 52(7):3331–3341, 2008.

C. L. Mallows. Non-null ranking models. I. Biometrika, 44(1/2):114–130, 1957.

V. Manewitsch. Statistische Methoden zur Analyse von Daten mit strukturell fehlenden
Werten: Mit Anwendungen aus der Marktforschung. PhD thesis, Friedrich-Alexander-
Universität Erlangen-Nürnberg, 2013.

R. Maronna, R. Martin, and V. Yohai. Robust statistics: Theory and methods. Annals of
Statistics, 30:17–23, 2006.

R. A. Maronna. Robust ridge regression for high-dimensional data. Technometrics, 53(1):
44–53, 2011.

V. Maume-Deschamps, D. Rullière, and K. Said. Multivariate extensions of expectiles risk
measures. Dependence Modeling, 5(1):20–44, 2017.

A. Mayr, N. Fenske, B. Hofner, T. Kneib, and M. Schmid. Generalized additive models for
location, scale and shape for high dimensional data—a flexible approach based on boosting.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(3):403–427, 2012a.

A. Mayr, B. Hofner, and M. Schmid. The importance of knowing when to stop. Methods of
Information in Medicine, 51(02):178–186, 2012b.

R. Mazumder, J. H. Friedman, and T. Hastie. SparseNet: Coordinate descent with nonconvex
penalties. Journal of the American Statistical Association, 106(495):1125–1138, 2011.

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4):417–473, 2010.

N. Meinshausen, G. Rocha, and B. Yu. Discussion: A tale of three cousins: Lasso, L2Boosting
and Dantzig. The Annals of Statistics, 35(6):2373–2384, 2007.

R. P. Monti, P. Hellyer, D. Sharp, R. Leech, C. Anagnostopoulos, and G. Montana. Estimat-
ing time-varying brain connectivity networks from functional MRI time series. NeuroImage,
103:427–443, 2014.

R. P. Monti, R. Lorenz, C. Anagnostopoulos, R. Leech, and G. Montana. Measuring the
functional connectome "on-the-fly": towards a new control signal for fMRI-based brain-
computer interfaces. arXiv preprint arXiv:1502.02309, 2015.

380 BIBLIOGRAPHY

R. P. Monti, C. Anagnostopoulos, and G. Montana. A framework for adaptive regularization
in streaming lasso models. arXiv preprint arXiv:1610.09127, 2016.

M. Moraru and F. Dumitru. The risks in the audit activity. Annals of the University of
Petrosani. Economics, 11:187–194, 2011.

A. More. Survey of resampling techniques for improving classification performance in unbal-
anced datasets. arXiv preprint arXiv:1608.06048, 2016.

V. Öllerer and C. Croux. Robust high-dimensional precision matrix estimation. In Modern
Nonparametric, Robust and Multivariate Methods, pages 325–350. Springer, 2015.

V. Öllerer, C. Croux, and A. Alfons. The influence function of penalized regression estimators.
Statistics, 49(4):741–765, 2015.

N. C. Oza. Online bagging and boosting. In 2005 IEEE international conference on systems,
man and cybernetics, volume 3, pages 2340–2345. IEEE, 2005.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web. Technical report, Stanford InfoLab, 1999.

T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski. Learning to rank
with pairwise regularized least-squares. In SIGIR 2007 workshop on learning to rank for
information retrieval, volume 80, pages 27–33, 2007.

F. Pan, T. Converse, D. Ahn, F. Salvetti, and G. Donato. Feature selection for ranking using
boosted trees. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 2025–2028. ACM, 2009.

M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):659–677,
2007.

T. Patel, D. Telesca, R. Rallo, S. George, T. Xia, and A. E. Nel. Hierarchical rank aggregation
with applications to nanotoxicology. Journal of agricultural, biological, and environmental
statistics, 18(2):159–177, 2013.

K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor. Handling missing values in
support vector machine classifiers. Neural Networks, 18(5):684–692, 2005.

J. Peypouquet. Convex optimization in normed spaces: theory, methods and examples.
Springer, 2015.

K. S. Pickett. Audit planning: a risk-based approach. John Wiley & Sons, 2006.

G. Pison, S. Van Aelst, and G. Willems. Small sample corrections for LTS and MCD. In
Developments in Robust Statistics, pages 330–343. Springer, 2003.

BIBLIOGRAPHY 381

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 24(2):193–202, 1975.

D. Pupashenko. Robustness for regression models with asymmetric error distribution. PhD
thesis, Technische Universität Kaiserslautern, 2015.

D. Pupashenko, P. Ruckdeschel, and M. Kohl. L2 differentiability of generalized linear models.
Statistics & Probability Letters, 97(C):155–164, 2015.

A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Beyond regret. In Proceedings of
the 24th Annual Conference on Learning Theory, pages 559–594, 2011.

A. Rakotomamonjy. Optimizing area under Roc curve with SVMs. In ROCAI, pages 71–80,
2004.

A. Rakotomamonjy. Sparse support vector infinite push. arXiv preprint arXiv:1206.6432,
2012.

J. Reeds. On the definition of von Mises functionals. PhD thesis, Harvard University, 1976.

C. H. Reinsch. Smoothing by spline functions. Numerische Mathematik, 10(3):177–183, 1967.

H. Reiter. Spaces with compact subtopologies. The Rocky Mountain Journal of Mathematics,
2(2):239–247, 1972.

M. T. Ribeiro and I. Cano. Keeping things that matter: An exploration on delayed feedback
online learning, 2014.

H. Rieder. Robust asymptotic statistics, volume 1. Springer Science & Business Media, 1994.

H. Rieder and P. Ruckdeschel. Short proofs on Lr-differentiability. Statistics & Risk Modeling,
19(4):419–426, 2001.

H. Rieder, M. Kohl, and P. Ruckdeschel. The cost of not knowing the radius. Statistical
Methods & Applications, 17(1):13–40, 2008.

S. Robbiano. Méthodes d’apprentissage statistique pour le ranking théorie, algorithmes et
applications. PhD thesis, Télécom ParisTech, 2013.

S. Robinson. An implicit-function theorem for B-differentiable functions. 1988.

R. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg, Berlin,
New York, 1998.

R. T. Rockafellar. Second-order convex analysis. Journal of Nonlinear and Convex Analysis,
1(1-16):84, 1999.

D. M. Rocke and D. L. Woodruff. Identification of outliers in multivariate data. Journal of
the American Statistical Association, 91(435):1047–1061, 1996.

382 BIBLIOGRAPHY

W. Römisch. Delta method, infinite dimensional. Encyclopedia of statistical sciences, 3, 2004.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
pages 1012–1030, 2007.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin
classifier. Journal of Machine Learning Research, 5(Aug):941–973, 2004.

P. J. Rousseeuw. Least median of squares regression. Journal of the American Statistical
Association, 79(388):871–880, 1984.

P. J. Rousseeuw. Multivariate estimation with high breakdown point. Mathematical Statistics
and Applications, 8(283-297):37, 1985.

P. J. Rousseeuw and C. Croux. Alternatives to the median absolute deviation. Journal of
the American Statistical Association, 88(424):1273–1283, 1993.

P. J. Rousseeuw and M. Hubert. Robust statistics for outlier detection. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 1(1):73–79, 2011.

P. J. Rousseeuw and W. Van Den Bossche. Detecting deviating data cells. Technometrics,
60(2):135–145, 2018.

P. J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance deter-
minant estimator. Technometrics, 41(3):212–223, 1999.

P. J. Rousseeuw and K. Van Driessen. An algorithm for positive-breakdown regression based
on concentration steps. In Data Analysis, pages 335–346. Springer, 2000.

P. J. Rousseeuw and K. Van Driessen. Computing LTS regression for large data sets. Data
mining and knowledge discovery, 12(1):29–45, 2006.

P. J. Rousseeuw, S. Van Aelst, K. Van Driessen, and J. A. Gulló. Robust multivariate
regression. Technometrics, 46(3):293–305, 2004.

P. Ruckdeschel. Ansätze zur Robustifizierung des Kalman-Filters. PhD thesis, University of
Bayreuth, 2001.

P. Ruckdeschel. Uniform integrability on neighborhoods. Technical report, Fraunhofer
ITWM, 2010a.

P. Ruckdeschel. Fisher information in group-type models. arXiv preprint arXiv:1005.1027,
2010b.

C. Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the
top of the list. Journal of Machine Learning Research, 10(Oct):2233–2271, 2009.

BIBLIOGRAPHY 383

C. Rudin and R. E. Schapire. Margin-based ranking and an equivalence between AdaBoost
and RankBoost. Journal of Machine Learning Research, 10(Oct):2193–2232, 2009.

W. Rudin. Real and complex analysis. Tata McGraw-Hill Education, 1987.

D. F. Saldana and Y. Feng. SIS: An R package for sure independence screening in ultrahigh-
dimensional statistical models. Journal of Statistical Software, 83(2):1–25, 2018. doi:
10.18637/jss.v083.i02.

M. Salibián-Barrera and S. Van Aelst. Robust model selection using fast and robust boot-
strap. Computational Statistics & Data Analysis, 52(12):5121–5135, 2008.

M. Salibián-Barrera, R. H. Zamar, et al. Bootrapping robust estimates of regression. The
Annals of Statistics, 30(2):556–582, 2002.

M. Salibián-Barrera, S. Van Aelst, and G. Willems. Fast and robust bootstrap. Statistical
Methods and Applications, 17(1):41–71, 2008.

J. Schelldorfer, L. Meier, and P. Bühlmann. GLMMLasso: an algorithm for high-dimensional
generalized linear mixed models using l1-penalization. Journal of Computational and
Graphical Statistics, 23(2):460–477, 2014.

M. Schmid and T. Hothorn. Boosting additive models using component-wise P-splines.
Computational Statistics & Data Analysis, 53(2):298–311, 2008.

B. Schölkopf, R. Herbrich, and A. Smola. A generalized representer theorem. In Computa-
tional learning theory, pages 416–426. Springer, 2001.

R. D. Shah and R. J. Samworth. Variable selection with error control: Another look at sta-
bility selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
75(1):55–80, 2013.

A. Shapiro. On concepts of directional differentiability. Journal of optimization theory and
applications, 66(3):477–487, 1990.

A. D. Shieh and Y. S. Hung. Detecting outlier samples in microarray data. Statistical
applications in genetics and molecular biology, 8(1):1–24, 2009.

N. Z. Shor. Minimization methods for non-differentiable functions, volume 3. Springer Science
& Business Media, 2012.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of
Computational and Graphical Statistics, 22(2):231–245, 2013.

E. Smucler and V. J. Yohai. Robust and sparse estimators for linear regression models.
Computational Statistics & Data Analysis, 111:116–130, 2017.

384 BIBLIOGRAPHY

M. Sommerfeld and A. Munk. Inference for empirical Wasserstein distances on finite spaces.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):219–238,
2018.

N. Städler and P. Bühlmann. Missing values: sparse inverse covariance estimation and an
extension to sparse regression. Statistics and Computing, 22(1):219–235, 2012.

N. Städler, D. J. Stekhoven, and P. Bühlmann. Pattern alternating maximization algorithm
for missing data in high-dimensional problems. The Journal of Machine Learning Research,
15(1):1903–1928, 2014.

D. J. Stekhoven and P. Bühlmann. MissForest—non-parametric missing value imputation
for mixed-type data. Bioinformatics, 28(1):112–118, 2011.

Z. Sun, T. Qin, Q. Tao, and J. Wang. Robust sparse rank learning for non-smooth ranking
measures. In Proceedings of the 32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 259–266. ACM, 2009.

M. Taddy. One-step estimator paths for concave regularization. Journal of Computational
and Graphical Statistics, 26(3):525–536, 2017.

V. N. Temlyakov. Weak greedy algorithms. Advances in Computational Mathematics, 12
(2-3):213–227, 2000.

J. Thomas, A. Mayr, B. Bischl, M. Schmid, A. Smith, and B. Hofner. Gradient boosting
for distributional regression: faster tuning and improved variable selection via noncyclical
updates. Statistics and Computing, 28(3):673–687, 2018.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society, Series B, 58:267–288, 1994.

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(1):91–108, 2005.

R. J. Tibshirani. A general framework for fast stagewise algorithms. The Journal of Machine
Learning Research, 16(1):2543–2588, 2015.

E. Tsivtsivadze and T. Heskes. Semi-supervised ranking pursuit. arXiv preprint
arXiv:1307.0846, 2013.

G. Tutz. Regression for categorical data, volume 34. Cambridge University Press, 2011.

G. Tutz and A. Groll. Generalized linear mixed models based on boosting. In Statistical
Modelling and Regression Structures, pages 197–215. Springer, 2010.

BIBLIOGRAPHY 385

S. Van Aelst and G. Willems. Multivariate regression S-estimators for robust estimation and
inference. Statistica Sinica, pages 981–1001, 2005.

S. Van de Geer. Estimation and testing under sparsity. Springer, 2016.

A. Van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.

A. Van der Vaart and J. Wellner. Weak convergence and empirical processes: With applica-
tions to statistics. Springer Science & Business Media, 2013.

V. Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.

V. Vapnik. The nature of statistical learning theory. Springer science & Business media,
2013.

E. D. Vito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized
kernel methods. Journal of Machine Learning Research, 5(Oct):1363–1390, 2004.

M. Vogt. On the differences between L2-boosting and the lasso. arXiv preprint
arXiv:1812.05421, 2018.

R. Von Mises. On the asymptotic distribution of differentiable statistical functions. The
Annals of Mathematical Statistics, 18(3):309–348, 1947.

K. Wagstaff. Clustering with missing values: No imputation required. In Classification,
Clustering, and Data Mining Applications, pages 649–658. Springer, 2004.

C. Wang and Z. Feng. Boosting with missing predictors. Biostatistics, 11(2):195–212, 2009.

H. Wang, G. Li, and G. Jiang. Robust regression shrinkage and consistent variable selection
through the LAD-lasso. Journal of Business & Economic Statistics, 25(3):347–355, 2007.

L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statistica
Sinica, 16(2):589, 2006.

L. Wang, Y. Kim, and R. Li. Calibrating non-convex penalized regression in ultra-high
dimension. Annals of Statistics, 41(5):2505, 2013.

S. Wang, B. Nan, S. Rosset, and J. Zhu. Random lasso. The Annals of Applied Statistics, 5
(1):468, 2011.

F. Wei and H. Zhu. Group coordinate descent algorithms for nonconvex penalized regression.
Computational Statistics & Data Analysis, 56(2):316–326, 2012.

J. A. Wellner. Empirical processes in action: A review. International Statistical Review/Revue
Internationale de Statistique, pages 247–269, 1992.

D. Werner. Funktionalanalysis. Springer, 2006.

386 BIBLIOGRAPHY

A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler, L. Hennig, A. Prelić,
P. von Rohr, L. Thiele, et al. Sparse graphical gaussian modeling of the isoprenoid gene
network in arabidopsis thaliana. Genome Biology, 5(11):R92, 2004.

D. M. Witten and R. Tibshirani. A framework for feature selection in clustering. Journal of
the American Statistical Association, 105(490):713–726, 2010.

H. Yang and D. Carlin. ROC surface: a generalization of ROC curve analysis. Journal of
biopharmaceutical statistics, 10(2):183–196, 2000.

Y. Yang. Can the strengths of AIC and BIC be shared? A conflict between model indentifi-
cation and regression estimation. Biometrika, 92(4):937–950, 2005.

C. Yi. hqreg: Regularization Paths for Lasso or Elastic-Net Penalized Huber Loss Regression
and Quantile Regression, 2017. URL https://CRAN.R-project.org/package=hqreg. R
package version 1.4.

C. Yi and J. Huang. Semismooth newton coordinate descent algorithm for elastic-net penal-
ized Huber loss regression and quantile regression. Journal of Computational and Graphical
Statistics, 26(3):547–557, 2017.

V. J. Yohai et al. High breakdown-point and high efficiency robust estimates for regression.
The Annals of Statistics, 15(2):642–656, 1987.

L. Yu, S. Wang, and K. K. Lai. An online learning algorithm with adaptive forgetting factors
for feedforward neural networks in financial time series forecasting. Nonlinear dynamics
and systems theory, 7(1):51–66, 2007.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

L. Zajíček. Hadamard differentiability via Gâteaux differentiability. Proceedings of the Amer-
ican Mathematical Society, 143(1):279–288, 2015.

A. Zellner. An efficient method of estimating seemingly unrelated regressions and tests for
aggregation bias. Journal of the American Statistical Association, 57(298):348–368, 1962.

C.-H. Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

X. Zhang, Y. Wu, L. Wang, and R. Li. Variable selection for support vector machines in
moderately high dimensions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(1):53–76, 2016.

P. Zhao and B. Yu. Boosted lasso. Technical report, California University Berkeley Departe-
ment of Statistics, 2004.

https://CRAN.R-project.org/package=hqreg

BIBLIOGRAPHY 387

P. Zhao and B. Yu. Stagewise lasso. Journal of Machine Learning Research, 8(Dec):2701–
2726, 2007.

J. Zhu, S. Rosset, R. Tibshirani, and T. J. Hastie. 1-norm support vector machines. In
Advances in neural information processing systems, pages 49–56, 2004.

J. F. Ziegel. Coherence and elicitability. Mathematical Finance, 26(4):901–918, 2016.

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418–1429, 2006.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models.
Annals of Statistics, 36(4):1509, 2008.

Wissenschaftlicher Werdegang

seit 10/2016 Carl von Ossietzky Universität Oldenburg
Wissenschaftlicher Mitarbeiter am Institut für Mathematik

10/2016 bis 9/2019 Promotion bei Prof. Dr. Peter Ruckdeschel
10/2014 bis 6/2016 Master Studium an der Carl von Ossietzky Universität Oldenburg

Thema der Masterarbeit: Theorie, Vergleich und Anwendung des
PCP- und Fast-PCP-Algorithmus in der Bildverarbeitung
Mit Auszeichung bestanden

10/2011 bis 8/2014 Bachelor-Studium an der Carl von Ossietzky Universität Oldenburg
Thema der Bachelorarbeit: Der NESTA-Algorithmus für Compres-
sed Sensing

8/2004-7/2011 Besuch des Lothar-Meyer-Gymnasiums in Varel

Folgende Konferenzbeiträge sind aus dieser Arbeit hervorgegangen:

Werner, T.: The ranking problem in statistical learning (oral presentation), Joint PhD Sem-
inar in Statistics and Stochastics, Bremen

Werner, T.: Compact differentiability of regularized M-functionals (oral presentation), Statis-
tische Woche 2017, Rostock

Werner, T.: Asymptotic linear expansion of regularized M-estimators (oral presentation),
13th German Probability and Statistics Days, Freiburg

Werner, T.: Asymptotic linearity, robustness and sparsity: From regularized regression to
ranking (oral presentation), Joint PhD Seminar in Statistics, Actuarial and Financial Math-
ematics, Oldenburg

Werner, T.; Ruckdeschel, P.: L2−Boosting for complicated loss functions by means of the
column measure (poster presentation), DAGStat 2019, Munich

Folgende Arbeiten wurden eingereicht:

Werner, T.: Asymptotic linear expansion of regularized M-estimators, arXiv: 1909.00579,
2019 (eingereicht)

388

BIBLIOGRAPHY 389

Werner, T.: A review on ranking problems in statistical learning, arXiv: 1909.02998, 2019
(eingereicht)

Werner, T.; Ruckdeschel, P.: The column measure and Gradient-Free Gradient Boosting,
arXiv: 1909.10960, 2019 (eingereicht)

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt und die allgemeinen Prinzipien wis-
senschaftlicher Arbeit und Veröffentlichungen, wie sie in den Leitlinien guter wissenschaftlicher
Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe.

390

	Title: Gradient-Free Gradient Boosting
	Zusammenfassung
	Abstract
	Vorwort
	How to read this thesis
	Contents
	List of Figures
	List of Tables
	List of algorithms
	Glossary
	Introduction
	Background and motivation
	Outline of the thesis

	Learning sparse and stable models
	A brief review on model fitting and validation
	Regularization and model complexity
	Stability Selection
	Boosting and variable selection
	Boosting with categorical predictors and interactions

	I Regularized M-estimators and their asymptotic linear expansion
	Robust statistics
	Functional derivatives
	Excursus: Further concepts of functional differentiability

	Basic concepts of quantitative robustness
	Influence curves
	Asymptotic linearity
	The breakdown point

	Contamination models
	Robustness properties of existing variable selection procedures
	One-Step estimators

	Compact differentiability of regularized M-functionals
	M-estimators and M-functionals
	Weak derivatives and the density method
	Asymptotic linearity of M-estimators
	Regularized M-functionals
	L2-differentiability of linear regression models

	Asymptotic linearity of regularized M-estimators
	Compactness assumption of the parameter space
	Twice differentiable Z-function
	Twice continuously differentiable loss function, non-differentiable penalty term
	Extension to ranking

	Examples for asymptotically linear estimators in machine learning
	Lasso
	Elastic net
	Adaptive Lasso

	Concrete influence curves for the Lasso and the Adaptive Lasso
	Data-driven penalty parameters
	Conclusion

	II Mathematics of ranking problems
	Ranking
	Different types of ranking problems
	Ranking by empirical risk minimization
	Existing algorithms for ranking problems
	Other ranking approaches with model selection
	Ranking with continuous outcomes
	Ranking vs. ordinal regression

	Some properties of ranking
	Fast computation of the hard ranking loss
	Quantitative robustness of ranking
	L2-differentiability of generalized linear regression models
	The logit model and the ordered logit model
	A proposal for the hard ranking problem
	A proposal for weak ranking problems

	Elicitability: Comparing competing models
	Elicitability of ranking
	Strong elicitability of ranking

	Gradient Boosting for ranking problems?
	Arising problems
	An exponential surrogate
	A Hinge surrogate
	A piece-wise linear surrogate
	Could we speed it up?
	Conclusion

	III The row measure and the column measure on a data matrix
	The row measure and the column measure
	The induction of randomness: Option pricing with the binary model
	A simple observation
	A Riesz representation result
	Rejection sampling
	The row measure
	The definition of a column measure
	The column measure framework
	Connecting the column measure with k-Step estimators
	Time-dependent row and column measures
	Conclusion

	Singular parts of column measures
	Singular parts and domination
	Consequences to model selection
	SingBoost: Boosting with singular parts for any target loss
	Variable selection and updating
	Asymptotic properties of SingBoost
	Coefficient paths for SingBoost
	Conclusion

	IV Column Measure Boosting, its variants and applications
	Aggregating SingBoost models
	The Random Lasso
	Block forests
	Has already been respected appropriately?
	Column Measure Boosting: SingBoost aggregation
	If the loss is very expensive to evaluate...

	Interplay of row and column measures
	A modified, loss-based Stability Selection
	Final coefficients and CV.CMB-3S
	Induced empirical row measures
	Computing the coefficients of CMB-3S

	The choice of M
	Stabilized Stability Selection and cross validation
	A systematic view of (L2)-approximating techniques
	Column measure framework Group (CM)
	Row measure framework Group (RM)
	Row measure framework with random sampling from column measures Group (sRM)
	Row column measure framework Group (RCM)
	Adding noise to the regressor matrix Group (NX)
	Concluding remarks

	Some possible extensions for future work

	V Extensions of the RCM framework
	Multivariate ranking and regression
	Consensus ranking
	Multivariate Boosting
	Multivariate L2-Boosting
	SingBoost for multivariate responses?

	Higher-order elicitability

	Connecting robustness, stability and sparsity
	The cell measure
	Cell-wise outliers and missings
	Connecting robustness and sparsity?
	Stability Selection for rows
	Outlook

	VI Numerical demonstration
	Application to real data sets
	Application to the iris data set
	singboost
	cmb
	CMB3S
	CV.CMB3S

	Application to the bodyfat data set
	singboost
	CMB3S

	Application to a large genomic data set
	An ultrahigh-dimensional data set

	Some simulation studies
	Singular parts for hard ranking
	The power of our loss-based Stability Selection
	Availability of the R code

	VII Outlook
	Learning with missing data
	Types of missings
	Handling non-structural missings
	Structural missings
	Related work
	Estimation using an asymptotic linear expansion
	MissBoost?

	Are NA's just contamination?

	Miscellanea
	Beyond parametric models?
	Robustifying SingBoost?

	Summarizing conclusion
	Theoretical contributions of this work
	Conceptual contributions of this work
	Algorithmic contributions of this work

	Appendix
	Coercivity
	Uniform integrability
	Tools from measure theory
	Topological spaces
	Riesz representation theorems and dual spaces
	Distribution theory
	Tools from asymptotic statistics
	Functional Gradient Boosting
	Code for table 1.1

	Index
	Bibliography
	Wissenschaftlicher Werdegang
	Eidesstattliche Erklärung

