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Abstract 

 

Current loudness models for natural stimuli such as speech or music still provide predictions that differ from 

subjective loudness perception. This is also evident in practice, where simple level measures are often 

preferred for loudness evaluation.  

Loudness models are based on the processing of the auditory system. While models can already reproduce 

the processing in the ear relatively well, neuronal processing is not well understood yet. However, cognitive 

effects seem to have a major influence on the perception of music. This thesis focuses on the evaluating 

current loudness models and finding approaches for modifications to improve their performance.      

In the first part of the thesis, overall loudness judgements of music excerpts from different genres were 

collected by paired comparison. Level measures initially showed better predictions than loudness models. 

However, the loudness models could be significantly improved by specific pre-processing by applying a low-

pass filter on the instantaneous loudness and including the psychoacoustic sharpness of music excerpts into 

the prediction procedure. Furthermore, a loudness transformation into categorical units showed a better 

representation of the loudness judgements.   

In the second part of the thesis, neuronal loudness processing was investigated by electroencephalography. 

Two studies were carried out for this purpose. In the first study, a correlation between the amplitude of 

cortical potentials and modelled loudness of a music excerpt was found. In particular, Sone-loudness 

correlated better with early potentials, whereas categorical loudness correlated better with later potentials.  

In the second study a paradigm was implemented to study correlations between neurophysiological 

responses and contextual loudness effects that are associated with central processing rather than peripheral 

processing. The cortical correlates found in the previous study showed a significant correlation with loudness.          

This thesis has shown that loudness judgements and their neuronal representation reflects a complex 

hierarchical process with neurosensory processing steps as well as more central adaptation and recalibration 

processes that will have to be incorporated into more sophisticated loudness models of the future. 
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Zusammenfassung  

 

Aktuelle Lautheitsmodelle liefern für natürliche Stimuli wie Sprache oder Musik noch immer abweichende 

Vorhersagen von der subjektiven Lautheitswahrnehmung. Dies zeigt sich auch in der Praxis, wo für die 

Lautheitsbewertung einfachen Pegelmaßen oft der Vorzug gegeben wird.  

Lautheitsmodelle orientieren sich an der Verarbeitung des auditorischen Systems. Während die Prozesse der 

Verarbeitung im Ohr bereits relativ gut modelliert sind, ist das Wissen über Prozesse der neuronalen 

Verarbeitung eher schlicht. Allerdings scheinen gerade kognitive Effekte einen großen Einfluss auf die 

Wahrnehmung von Musik zu haben. Im Kern dieser Arbeit wird die Qualität aktueller Lautheitsmodelle auf 

den Prüfstand gebracht, um danach nach Möglichkeiten zu schauen, auf welchen Stufen diese Modelle für 

bessere Vorhersagen modifiziert werden können.      

Im ersten Teil der Arbeit wurden Gesamtlautheitsurteile von Musikausschnitten unterschiedlicher Genres 

durch einen Paarvergleich erhoben. Pegelmaße zeigten zunächst bessere Vorhersagen als Lautheitsmodelle. 

Jedoch durch gezielte Vorverarbeitung durch Tiefpassfilterung der instantanen Lautheit und 

Berücksichtigung der psychoakustischen Schärfe der einzelnen Musikausschnitte, konnten die 

Lautheitsmodelle deutlich verbessert werden. Außerdem konnte gezeigt werden, dass eine 

Lautheitstransformation in kategoriale Einheiten die Lautheitsurteile besser abgebildet hat.   

Im zweiten Teil der Arbeit wurde die neuronale Lautheitsverarbeitung durch Elektroenzephalographie 

untersucht. Hierfür wurden zwei Studien durchgeführt. In der ersten Studie wurde eine Korrelation zwischen 

der Amplitude kortikaler Potentiale mit modellierter Lautheit eines Musikausschnittes gefunden. 

Insbesondere zeigte sich, dass Sone-Lautheit besser mit frühen Potentialen korrelierte, wohingegen 

kategoriale Lautheit besser mit späteren.  Zur weiteren Untersuchung der neuronalen Lautheitskorrelate 

wurde in der zweiten Studie ein Paradigma entworfen, deren Ursache eher in der zentralen Verarbeitung 

anstatt der peripheren verortet wird. Die in der vorherigen Studie gefundenen kortikalen Korrelate zeigten 

auch hier einen signifikanten Zusammenhang mit der Lautheit.          

Diese Arbeit hat gezeigt, dass Lautheitsurteile und ihre neuronale Repräsentation einen komplexen, 

hierarchischen Prozess darstellen mit neurosensorischen Verarbeitungsschritten sowie zentraleren 

Anpassungs- und Rekalibrierungsprozessen, die in Lautheitsmodellen der Zukunft integriert werden müssen. 
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1 Introduction 

The energy density of an audible pressure wave in the direction of its propagation is called sound intensity. 

Loudness is its perceptual correlate. While for physical quantities there are more or less precise ways to 

measure and to model data, perceptual quantities like loudness are much harder to deal with. The reason is 

that in most cases measurements are only feasible by asking subjects about their inferred sensory 

impression. Nevertheless, models of loudness perception can be realized by imitating the essential stages of 

physiological processing of sound along the auditory pathway.  

First attempts were made in Weber-Fechner's logarithmic law - which is one of the most important laws of 

psychophysics - by considering the relationship between stimulus and sensation. Stevens (1957) developed 

a similar transfer function (Steven’s power-law) which, however, reflects the transformation from intensity 

to loudness. Related to this is a loudness growth function with the unit ‘Sone’ whose parameters are obtained 

by psychoacoustic measurements using the ratio-scaling method for magnitude estimation. An alternative 

loudness growth function can be derived from categorical loudness scaling, as proposed by Heller (1985). 

Categorical loudness scaling determines the loudness with the unit ‘CU’ in the full auditory dynamic range in 

terms of categories like ‘soft’ and ‘loud’ as a function of the sound level. There are conceptual differences 

between the two scaling methods that historically led to the formation of opposing groups (Hellbrück, 1993). 

Nevertheless, both loudness functions provide reasonable loudness scales that differ only in the 

transformation of low and high intensities and in the degree of compression (Launer, 1995; Heeren et al., 

2013).  

The spectral properties of the sound have also a major impact on loudness perception. The frequency-

dependent contribution to loudness was clearly illustrated in the equal loudness contours by Fletcher and 

Munson (1933). By referring pure tones of different frequencies to a 1 kHz pure tone in dB SPL the unit ‘phon’ 

is derived (DIN ISO 226; 2006). Based on the equal loudness contours and the concept of loudness summation 

across frequencies, Zwicker (ISO 532B, 1975) developed a multiband model (DIN 45631) for stationary sounds 

that predicts the loudness of narrowband as well as broadband signals. Recently, loudness models were 

developed with improvements in dealing with non-stationary stimuli (Chalupper and Fastl, 2002; Glasberg 

and Moore, 2002; Rennies et al., 2009). Furthermore, physiologically motivated models suggest modeling 

the inner ear mechanics in more detail, involving a serial processing as realized in a transmission line model 

for the cochlea (Epp et al., 2010; Pieper et al., 2016).  

Despite these considerable efforts and progress in improving loudness models, in practice, they have not yet 

replaced simpler level measures. This is clearly illustrated by the fact that in almost every sound device the 

loudness adjustment is based on dB increments. Beyond that, there are some areas where the loudness is 

mainly projected from levels. For example, loudness of traffic noise is treated by using the equivalent 

continuous sound level in dB(A). Another example occurs in the treatment of loudness prediction of music 

where newly developed level measures were commercially used by broadcast stations (e.g. EBU R-128, 2014) 
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supported by recent studies that have shown that there are deficiencies of loudness models predicting the 

loudness of music (Skovenborg and Nielsen, 2004; Vickers, 2010a). Fastl et al. (2003) showed that the dB(A) 

level cannot discriminate loudness differences between railway noise and road traffic noise (also known as 

‘railway bonus’, i.e. the preference of railway noise to road traffic noise at the same A-weighted energy-

equivalent level). With their study, they also raise the question whether such preference phenomena are due 

to loudness differences in music. Therefore, the research of loudness perception of music is of particular 

interest.  

However, it is a rather complex task to define the term music in a few words. There are many kinds of sounds 

that are collectively referred to as music, like various interactions of running speech respectively singing 

voices, harmonic, percussive and synthetic instruments, everyday noises and various sound samples. 

Furthermore, the broad spectrum of sound scenarios requires the consideration of various parameters that 

determine the loudness. These include spectral and temporal loudness integration as well as effects caused 

by amplitude modulation. Moreover, it is suggested that for music there are also effects at higher stages of 

auditory processing that affect the loudness judgment, e.g. preferences (Cullari and Semanchick, 1989), pitch 

(Neuhoff et al., 1999), increased musical experience with age (Fucci, 1999), hearing expectation for different 

music genres (Barrett & Hodges, 1995), or context effects (Arieh and Marks, 2003a). The diversity of the 

sounds and the amount of loudness effects to be considered demonstrate the difficulty of modeling the 

loudness of music. 

To analyze loudness effects at higher stages of auditory pathway, insights into the processing between the 

inner ear and the perceptual judgment would be beneficial. Therefore, a deep understanding of the neural 

processing of loudness would be necessary. Unfortunately, neural sound processing is not completely 

understood yet. However, in the past many studies suggested correlations between neural activity and 

loudness (Pratt and Sohmer, 1977; Hegerl et al., 1994; Serpanos et al., 1997; Langers et al., 2007; Cai et al., 

2008; Soeta and Nakagawa, 2008; Röhl and Uppenkamp 2012; Behler and Uppenkamp, 2016). Neural activity 

can be studied by measuring quantities that correlate with it, such as the change of the electric field by 

electroencephalography (EEG). Studies about investigating correlations between loudness and such neural 

derived sizes are essentially done by comparing conditions in which only the loudness changes. A popular 

approach that is based on this idea is to search for a neural correlate of the loudness growth function. 

Therefore, neural representations are examined searching for a similar compression as the loudness 

transformation using stimuli with different acoustic levels (e.g. Ménard et al., 2008; Florentine et al., 2011; 

Silva and Epstein, 2010; Behler and Uppenkamp, 2016; Eeckhoutte et al., 2016). Evidence was found that 

loudness is reflected in the brainstem (Serpanos et al. 1997; Silva and Epstein, 2010), thalamus (Madell and 

Goldstein, 1972) and in parts of the auditory cortex (Hegerl et al.; 1994; Röhl and Uppenkamp, 2012; Behler 

and Uppenkamp; 2016). However, there is still some dispute whether these correlates reflect the sensorially 

processed intensity or already the loudness perception (Näätänen and Picton, 1987; Darling and Price, 1990; 

Hart et al., 2002; Röhl and Uppenkamp, 2012).  
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There are numerous neuroscience studies on the perception of music, but hardly any of these studies deals 

with the perception of loudness. This is due to the fact that in most cases evoked neural responses to acoustic 

stimuli can only be sufficiently analyzed in subsequent silence. This complicates the analysis of continuous 

stimuli. However, it is well studied that music often elicits several features that are measurable by EEG or 

MEG, e.g. event related potentials (Besson and Macar, 1987; Patel et al., 1998; Miranda and Ullman, 2007) 

or brain oscillations related to the spectral properties of the stimulus (Doelling and Poeppel, 2015).  

The central question of this thesis is: Can current loudness models provide more reliable predictions for the 

loudness of music in comparison to level measures, and if so, at what stages should the models be modified 

in order to improve their predictions? In order to find indications about the stage in which the respective 

model should be modified it would be useful to identify neural representations of the loudness of music or 

loudness in general along the auditory pathway. Consequently, the question arises whether a respective 

neural representation of loudness is corresponding more closely to the sensorially processed intensity of the 

sound or rather to more final processing stages representing the perceived loudness.  

In order to address this question, three aspects have to be clarified which determine the methodological 

procedure: (i) Which method should be used to measure loudness judgments? (ii) Which loudness models 

should be examined? (iii) Which measurement method should be used to investigate the neural processing 

of loudness? (iv) How should the relationship between the neural correlate and loudness be demonstrated? 

(i) In assessing the loudness of music, the estimation of one value representing the overall loudness of the 

stimulus is of particular interest, e.g. in the broadcasting where different pieces of music should be set equally 

loud (Vickers, 2010b) or in medical research where the hearing loss is related to one equivalent continuous 

sound level (Gunderson et al. 1997). Scaling methods such as matching, magnitude estimation or categorical 

scaling provide their own scale. It is to be expected that models adapted to one scale will work less well for 

the other scale, e.g. sone-models will predict the loudness of categorically scaled stimuli worse than CU-

models. Therefore, a paired comparison method was used which provides an interval scale of the overall 

loudness of respective music pieces using the Bradley-Terry-Luce model. Thus, level measures, sone-models 

as well as CU-transformed models can be assessed objectively. Moreover, due to the difficulty of the task of 

reducing the loudness of such a multi-faceted stimulus as music to one overall value, the paired comparison, 

which requires little effort, seems to be an excellent method. This method is used in the first study (Chapter 

3) to compare loudness models and level measures. 

(ii) In this thesis, the current standard loudness models are examined. Therefore, the recommendations of 

the International Organization for Standardization (ISO) are considered that propose two models for loudness 

evaluation of time-varying sounds: those based on measurements from Stevens, ISO 532A, and the Zwicker-

based ISO 532B. These two models are also proposed in respective national standards: ANSI-S3.4 and DIN 

45631 / A1. Apart from the DIN 45631 / A1, there are other Zwicker-based models: the Dynamic Loudness 

Model (DLM) by Fastl and Chalupper (2002) and its extension by Rennies et al. (2009). These models are 

compared with the standard level measures. The unweighted and A- and B-weighted level measures are used 
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as well as the recommendation of the european broadcasting union, the EBU R-128 standard, for level-based 

loudness evaluation of music. In Chapter 3, all these measures are used. The second study (Chapter 4) uses 

only the DLM, the A-weighted and unweighted sound pressure level and the EBU R-128 recommendation. 

(iii) In studies on the neural activity of humans non-invasive monitoring methods are required. The most 

prominent representatives are functional magnetic resonance imaging (fMRI), electroencephalography (EEG) 

and magnetoencephalography (MEG). Each of these methods enhances different aspects in terms of 

temporal and spatial resolution. For the neural investigations of this thesis only EEG measurements were 

considered. EEG, as opposed to fMRI, provides a higher temporal resolution taking care of particularly 

complex time-varying sounds such as music. Of course, MEG also provides high temporal resolution and, in 

addition, high spatial resolution for the cortex. However, EEG requires a much simpler measurement setup, 

which initially favors the EEG over the MEG method. Finally, neural loudness research for EEG is most 

advanced comparing these three methods. Therefore, the choice of the EEG method appears to be the most 

plausible. The EEG method was used in Chapter 4 and Chapter 5 (third study). 

(iv) In this thesis, two approaches are used to explain the relationship between loudness and its neural 

correlate. In the first approach, the (cortical) EEG response to an excerpt of a piece of music is investigated 

at different sound levels to find a representation of the loudness growth function. This approach is described 

in Chapter 4. In the second approach, the neural representation of loudness recalibration is examined which 

is assumed to be associated with central processing of loudness (Arieh and Marks, 2003a). To illustrate this 

relatively small loudness effect, a matching paradigm is used for a few conditions. A change in parts of the 

EEG response as the condition changes is an indication of a correlate of neural loudness processing. This 

approach is reflected in Chapter 5. 

The thesis is divided into two major sections. The first section deals with research concepts and employed 

methods with the focus on the basics of loudness and EEG processing (Chapter 2). These topics are treated 

with special consideration to their relevance for music. The second section is divided into three chapters 

(Chapter 3-5). In this section, several experimental studies are described and discussed that have been 

designed to provide contributions to the two research problems stated above. 

In Chapter 3 the prediction performance of level measures and loudness models is investigated by comparing 

these measures with psychoacoustic results from a scaling procedure. The aim is to improve the performance 

of loudness predictions and to understand where the deficiencies in sound processing of the models are. The 

purpose of the study in Chapter 4 is to expose the neural processing of the loudness of music. Therefore, the 

relationship between the loudness of a music stimulus and spectro-temporal features of the EEG response 

with regard to amplitude and latency is investigated, while also differences of the correlations with loudness 

models and level measures are shown. The study in Chapter 5 focuses on the neural representation of central 

loudness effects, more exactly: loudness recalibration, to address the question whether these neural 

correlates are related to sensorially processed intensity of the sound or rather to the loudness perception. 

Hence, the cortical EEG response is investigated during a psychoacoustical loudness recalibration experiment 
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with different inter-stimulus intervals. Finally, the last Chapter 6 gives a summary, some concluding remarks 

and an outlook to the intended future research in the field of loudness modelling of music. 

 



Research concepts and methods employed   6 

2 Research concepts and methods employed 

2.1 Loudness 

Loudness is an auditory measure of perception and can be essentially defined as the perceived intensity of a 

sound. However, loudness is not just constituted by the transformation of sound intensity. The spectral 

content of the sound and its fluctuations over time strongly affect the processing in the auditory system. At 

the peripheral level, i.e. the outer ear, middle ear and inner ear, various transformation processes take place 

containing spectral shaping, forming a filter bank and amplitude compression. This processing of the sound 

intensity at early stages of the auditory system results in the specific loudness of respective frequency 

channels. Spectral and temporal integration arise at later stages.  

There are three temporal types of loudness (Fig. 2.1) that are important for classifying the perception of time-

varying sounds: (1) short-term loudness, (2) long-term loudness and (3) overall loudness. (1) The short-term 

loudness represents the momentary impression of the loudness of a short segment of sound. Hence it 

includes the fine structure of the loudness. (2) Long segments of sound are reflected by the long-term 

loudness. The fine structure of loudness becomes secondary while the average loudness of the segment is 

highlighted. (3) The overall loudness corresponds to a summary assessment of the entire experience profile 

converted from a stream of long-term loudness judgements. Several transformation processes in the outer, 

middle and inner ear result in a quantity called ‘instantaneous loudness’ that cannot be consciously 

perceived. At later stages in the auditory system temporal integration occurs, transforming instantaneous 

loudness into short-term loudness and long-term loudness.  

The development of loudness models is intended to predict the loudness of sounds. Essentially, these models 

combine some contributing factors for loudness and apply them based on the simulation of series of 

processing stages in the auditory system. These contributing factors will now be considered in more detail. 

The following subchapters were mostly based on Zwicker and Fastl (1999), Florentine et al. (2011), Moore 

(2013) and Kießling et al. (2018). They give a good review of research in this field. 
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Fig. 2.1: Example of the temporal types of loudness and overall loudness. Instantaneous loudness is presumed to be the 

last form of processing before conscious perception. The short-term loudness represents the momentary impression. 

The long-term loudness rather reflects the average loudness of a sound segment. The overall loudness corresponds to 

a summary assessment of the entire experience. 

2.1.1 Compression 

The transformation of the physical magnitude of a sound stimulus into the perceived magnitude corresponds 

to a non-linear transfer function. The Weber-Fechner-law (2.1) is a well-known approximation to this transfer 

function and serves as a motivation of the sound level measures. The physical magnitude, the intensity I, is 

logarithmically transformed to perceived magnitude, the sensation S, with some scaling factor a, b. 

𝑆 = log(𝑎 ∙ 𝐼𝑏)          (2.1) 

The corresponding setting of the parameters results in the representation of the sound intensity level 𝐿𝐼 in 

dB (1.2): 

𝐿𝐼 = 10 ∙ log10 (
𝐼

𝐼0
)         (2.2) 

However, the sound intensity level is not a ratio scale. This means that, for example, a doubling of the level 

does not cause a doubling of the perceived loudness. In fact, the empirical 10-dB rule (2.4) tends to apply 
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where doubling of the loudness is caused by a level increase of 10 dB. In this rule, a ratio is transformed into 

a distance. This is owed to the logarithmic transformation of Eq. (2.1). Therefore, S. Stevens (1957) proposed 

an experiment in which the loudness of a sinusoidal tone was determined by absolute magnitude estimation 

(see section 2.3). The resulting functional relationship between estimated magnitudes and sound levels 

corresponds to a power law as a transfer function Eq. (2.3) with a scaling factor k and a compressive factor 

α. 

 𝑆 = 𝑘 ∙ 𝐼𝛼          (2.3) 

If the exponent α ≈ 0.3 this transfer function provides a similar compressive characteristic as in Eq. (2.2). In 

this case, S represents the perceived loudness in Sone. Generally, k shall be such that, S = 1 Sone for a 

sinusoidal tone at 1 kHz and 40 dB SPL (see Fig. 2.2). The compression satisfies the 10-dB rule which can be 

seen by in Eq.’s (2.4) and (2.5). 

 

Fig. 2.2: The loudness function of a 1 kHz sinusoidal tone according to Stevens power-law, α =0.3. 

2 ∙ 𝑆 ≙ 10 ∙ log (
𝐼

𝐼0
) + 10 = 10 ∙ log (

10∙𝐼

𝐼0
)      (2.4) 

𝑘 ∙ (10 ∙ 𝐼)0.3 = 100.3 ∙ 𝑘 ∙ 𝐼0.3 ≈ 2 ∙ 𝑘 ∙ 𝐼0.3 = 2 ∙ 𝑆     (2.5) 

Doubling the loudness S can be achieved by a tenfold increase of the sound intensity I, i.e. the 10-dB rule Eq. 

(2.4). Substituting this intensity into Equation (2.3) the loudness is only twice as high, Eq. (2.5). A compression 

takes place. However, at absolute hearing threshold, the loudness should be zero, which is not met by Eq. 

(2.3). Moreover, it is questionable whether humans are really able to judge the ratios of loudness. 

Another way to determine the loudness perception is to use categorical scaling (Heller, 1985; Brand and 

Hohmann, 2002), in which the loudness is scaled by categories (e.g. "very quiet", "quiet", "medium", "loud" 
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and "very loud"). In a second step, these rough categories are divided into finer categorical units (CU). 

Categorical scaling seems a bit more sensible than magnitude estimation, since it is not clear whether a 

person is able to transfer the perceived loudness to a ratio scale at all (Heller, 1985). Nevertheless, the 

transfer function from sound pressure level to CU-loudness is similar to the Sone scale. Deviations from the 

loudness in sone occur especially at very low and at very high levels (Launer, 1995). In Heeren et al. (2013), 

the difference in scaling is summarized by a transformation from sone to CU Eq. (2.6).   

CU = 2,6253 ∙ lg(sone + 0,0887)3 + 0,7799 ∙ lg(sone + 0,0887)2 

 +8,0856 ∙ lg(sone + 0,0887) + 13,4493    (2.6) 

2.1.2 Spectral effects 

The loudness is highly dependent on the frequency. This is illustrated very clearly by the equal loudness 

contours (Fig. 2.3). They are an array of curves which represent equal loudness for sinusoidal tones of 

different frequencies and sound pressure levels. Each contour corresponds to a loudness value whose unit is 

represented in phon. An alternative approach to model the frequency dependence of loudness is possible by 

considering k and α in Eq. (2.3) as function of a frequency.  

There are several causes of this frequency dependence. At early stages, the transmission of the signal from 

free-field through outer and middle ear has to be considered by a correction factor.  

Further, it has been suggested that in the inner ear sound evokes a spread of excitation along the basilar 

membrane (Zwicker, 1958). The spectral content of the sound is represented by the resulting excitation 

pattern. From this consideration, physiologically motivated frequency scales were derived such as the Bark-

scale or the equivalent rectangular bandwidth (ERB) scale. Traunmüller (1990) proposed a decent 

transformation of the frequency from Hz to Bark in Eq. (2.7). A transformation to ERB is proposed by Moore 

and Glasberg (1996) in Eq. (2.8). However, recent experiments showed that loudness models based on ERB 

scale (e.g. ANSI S3.4, 2007) overestimate the loudness of broadband sounds (Schlittenlacher et al., 2012).  

𝑓𝐵𝑎𝑟𝑘 = (
26.81∙𝑓𝐻𝑧

1960+𝑓𝐻𝑧
) − 0.53        (2.7) 

𝑓𝐸𝑅𝐵 = 24.7 ∙ (4.37 ∙ 𝑓𝐻𝑧 + 1)        (2.8) 
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Fig. 2.3: The Equal loudness contours for loudness levels from 10 to 100 phons (ISO 226, 2003). The curves < 20 phon 

and at 100 phon (dashed) are based on interpolation and extrapolation.  

The specification of the frequency scale is the concept of critical bandwidth. The incoming sound is separated 

in the inner ear in a bank of overlapping critical band filters that are adjusted corresponding to those 

physiological frequency scales. A nonlinear compression in each filter transforms the excitation into specific 

loudness. By integrating the specific loudness across frequencies total loudness can be derived. This 

relationship between bandwidth and loudness is called spectral loudness summation. As the bandwidth of a 

signal widens, the loudness increases for a constant total signal power. This can be demonstrated by 

considering the difference of the integrated loudness between a narrow band 𝑆𝑁 and broadband 𝑆𝐵 tone 

complex in Eq. (2.9). Due to the fact that a compression α < 1 constitutes a concave function, the Jensen 

inequality applies (Rennies et al., 2009).  

𝑆𝐵 = ∑ 𝐼𝛼 > 𝑆𝑁 = (∑ 𝐼𝑚
𝑛=1 )

𝛼 ,𝑚
𝑛=1       α < 1.      (2.9) 

Spectral loudness summation can also occur with amplitude modulation. If the spectral sidebands of the 

modulation signal lie in adjacent auditory filter, this effect occurs. 
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There is also a complex masking interaction of signals with different frequencies. It is known from everyday 

life that communication almost always takes place with background noises. When the spectral content of 

this noise coincides with the actual signal, masking takes place and the loudness of the signal decreases. This 

effect is called spectrally partial masked loudness. This masking even affects adjacent frequency ranges, i.e. 

when the spectral range of the masker is adjacent to that of the signal.    

2.1.3 Temporal effects 

Loudness takes some time to build up. If the exposure time of a stimulus is less than a certain critical value – 

around 100 ms – its loudness increases with duration (Scharf, 1978; Zwicker and Fastl, 1999). This effect is 

commonly known as temporal integration. The duration of a stimulus also affect the spectral loudness 

summation (Verhey and Kollmeier, 2001). They showed that the level difference between narrowband noise 

and equally loud broadband noise is larger for 10-ms bursts than for 1000-ms bursts. 

Spectral partial masking also occurs temporally and is referred to as pre- and post-masking. A masker can 

influence the loudness perception of the previously presented content up to about 50 ms and the subsequent 

content up to about 150 ms.  

2.1.4 Contextual effects 

Equal loudness judgments may be evaluated as being very unequal under a different set of contextual 

conditions. Therefore these contexts seem to have biasing effects on the loudness judgment. If a preceded 

context determines the condition under which judgements are given this context has a preceding effect. An 

extreme case of such a preceding context effect is the temporary loudness shift. Continued high level sound 

exposure causes a decreased perception in the range of 20-40 dB with varying recovery times over at least 

several minutes (Hirsh and Ward, 1952). In this extreme case, more peripheral causes seem to be responsible 

for the altered loudness perception. Multiple mechanisms can be the cause of this loss of perception or at 

least can be interactively involved: a change in hair cell activity, a reduction of stereocilia rootlet length 

(Liberman and Dodds, 1987), a reduction in neural activity and temporary sensory-cell degradation due to 

the rapid production of metabolic waste products during increased activity. However, preceding context 

effects might also have a central origin caused by processes of judgment. In a study of Marks (1988) 

magnitude estimation was performed for the loudness of 500 Hz and 2.5 kHz tones. In one contextual 

condition, the 500 Hz tone was presented at low and the 2.5 kHz tone at high SPLs. In the other condition, 

these level settings were reversed (Fig. 2.4). It was demonstrated that the assessments of the low SPLs were 

overrated compared to the high SPLs. This effect induced by the context is called “loudness recalibration” by 

Arieh and Marks (2003a). It has remarkable consequences for the measurement of equal loudness contours 

with the usual matching methods, since the interval of the level range produces context effects that generate 

biases (Gabriel, 1996). Loudness recalibration does not happen instantaneously but needs some time for 
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temporal adaptation. Arieh and Marks (2003a) showed that this adaptation process can last over 2 seconds 

and make up 10 dB of differences in loudness perception. Contextual biasing also happens when the 

preceding information exceeds the subsequent one, also known as primacy effect (Fiebig and Sottek, 2015). 

For example, this effect was studied by Ponsot et al. (2013) by examining the loudness of a series of 1 kHz 

pure tone segments with similar length of 125 ms but varying in sound level. They found a primacy effect for 

flat sound level profiles. 

 

Fig. 2.4: Context effect compared to the corresponding equal loudness contour (see Fig. 2.3); the perceived loudness of 

500 Hz and 1500 Hz tones with different contextual sets of stimuli (Marks, 1993). 

Similar observations have been made by other studies (Susini et al., 2002; Oberfeld and Plank, 2005; Pedersen 

and Ellermeier, 2008). However, an opposite effect is also well known, where the subsequent information 

exceeds the preceding one. This subsequently contextual biasing is called recency effect and it is often 

allocated to a cognitive distortion of memory. Höger et al., 1988 found that the recency effect could 

significantly bias loudness assessments. 

2.1.5 Cognitive processing 

At the highest stages of auditory processing, sounds are consciously perceived and reflected. Therefore, it is 

associated with cognitive processing. Due to the complexity, this processing stage has only an effect on the 

overall judgments or at least long-term judgements. On the other hand, short-term judgments happen too 

spontaneously as impressions on this level of consciousness can be included quickly enough. At this level, 

different perceptual parameters are reflected in parallel, which can lead to confusion and mixing of them. It 

is suggested that for music cognitive processing may considerably affect the loudness judgment. There are 

several perceptual or psychological parameters that have been shown to interfere with loudness. Some of 

them, which are related to music, are to be mentioned now. 
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Cullari and Semanchick (1989) investigated whether or not the loudness of music is affected by how much 

music is subjectively liked, i.e. preference, and found a negative correlation between loudness and 

preference. Similar findings were made by Kuwano et al. (1992) when they investigated the relationship 

between loudness and annoyance, which is nearly the counterpart to preference. They found a positive 

correlation between loudness and annoyance for a number different stimuli (music, speech, traffic noise,…). 

Toepken and Weber (2013) demonstrated in an elaborated measurement method the discrimination 

between influence of loudness and preference in the case of multi-tone stimuli. They were able to reduce 

the shared variance of both parameters from 35% to 8%. Barrett and Hodges (1995) even went one step 

further. They identified differences in the preferred sound levels for several music genres. For example, 

subjects preferred to listen to heavy metal at 92.9 dB while country music was preferred at much lower sound 

levels of 73.8 dB. This shows that there are specific hearing expectations in loudness of different music 

genres, which finally could influence the loudness judgments of music sounds.  

Music is also received in different loudness depending on age (Barrett and Hodges, 1995) but furthermore, 

this age dependency applies also directly to the loudness judgement (Fucci, 1999). Fucci (1999) investigated 

how different age groups estimated the loudness of rock music which was presented at different sound 

levels. Older subjects perceived rock music louder at each level than younger subjects. However, at the 

highest presented levels (80-90 dB) the children surpass the older subjects and showed the highest loudness 

estimation.  

Changes in auditory pitch are not always easy to distinct perceptually from changes in loudness. For example, 

the perceived pitch of an approaching train can rise due to the appearing rising dynamic intensity change 

while the observed frequency actually falls (Neuhoff and McBeath, 1996). The rising dynamic make it difficult 

to accurately track the falling frequency. Hence, pitch and loudness interact under dynamic conditions. 

Neuhoff et al., 1999 confirmed this result and presumed that this interaction is centrally processed in the 

auditory system. It may be an analytic process and has derived from the benefit of recognizing naturally 

occurring covariation of frequency and intensity. Regardless of this interpretation, the interaction between 

pitch and loudness could obviously complicate the loudness judgment while listening to music.  

2.2 Loudness measures 

All loudness measures are designed to estimate the loudness perception (often) by imitating the physiology 

of hearing. However, the mathematical complexity of these measures can be very different.. In the following 

the functioning of different level measures and loudness models is presented. Here we use the term 'level 

measure' in contrast to ‘loudness model’ rather than the term 'single-band model' versus 'multi-band model' 

as it is frequently found in the literature (Skovenborg and Nielsen, 2004; Vickers, 2010a). The common single-

band models have no spectral signal separation and are unlike loudness models "less" physiologically 

motivated, but show a successful input-output characteristic. Furthermore, they are all based on logarithmic 

level representation, which is why we prefer this choice of conceptual terms.  
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2.2.1 Level measures 

Basically, all the level measures share a logarithmic compression as described in section 2.1.1. Another 

common feature is the use of frequency weightings. In general, these are frequency weightings that 

attenuate the low-frequency part of the spectrum (Fig. 2.5). This is the region where the hearing is least 

sensitive, particularly concerning sounds below 100 Hz. For some frequency weightings, high frequency 

regions are also attenuated so that only the region is amplified, where the hearing is most sensitive (around 

1-4 kHz). The frequency dependent sensitivity of hearing is also affected by the absolute levels of the sound. 

Therefore, the frequency weighting is generally dependent on the range of the sound pressure level. The 

most popular frequency weightings are modeled on the (historic!) equal loudness contours from the old 

Fletcher & Munson curves (cf. section 2.1.2). The A-weighting corresponds to the 30-phon contour, that 

means to soft sounds. The B-weighting corresponds to the 70-phon contour and at high levels where all 

frequencies contribute more or less equally to the loudness sensation the C-weighting is usually considered. 

However, there are several other frequency weightings that were developed to serve other purposes, e.g. 

several perceptual measures (loudness, annoyance, etc.) of a certain category of sounds. For the loudness of 

music the Revised Low-frequency B-weighting (RLB) (Soulodre and Norcross, 2003) is frequently 

recommended (Skovenborg and Nielsen, 2004; Vickers, 2010a; Ponsot et al., 2016) and is used in the ITU 

(ITU-R BS.1770-2, 2011) and EBU standards (EBU R-128, 2014).  

Level meters imply a common approach for short-/long-term loudness prediction which is based on long-

term energy integration, the equivalent sound level Leq in dB (Eq. 2.10). It allows an envelope extraction of 

the signal. Basically, Equation (1.9) is just another expression for the Root-Mean-Square level (RMS). 

𝐿𝑒𝑞(𝑡) = 10 ∙ log10 (
1

𝑇
∫ (

𝑝(𝑡)

𝑝𝑟𝑒𝑓
)
2

𝑑𝑡
𝑇

0
)       (2.10) 

The time constant T represents the time interval of interest and it also corresponds to low-pass filtering. The 

commonly used time constants are the ’fast’ weighting, T = 125 ms, and the ‘slow’ weighting, T = 1 s. The 

gradual integration of the sound signal generates a low-pass filtered signal Leq(t) . 

Beyond these similarities in the processing of the level measures, there usually follow further processing 

steps, serving to estimate the overall loudness. Leq(t) can be described by the distribution of dB values across 

time. The peak (RMS-peak) of such a distribution is often used as the representative of the overall level.  
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Fig. 2.5: Frequency weighting filters of different level measures (A, B, C, D, M, RLB). (Skovenborg and Nielsen, 2004) 

2.2.2 Loudness models 

Loudness models are designed to reproduce the complex process of auditory processing with respect to 

loudness (which may be quite distinct from other auditory effects, such as, e.g. masking, scene analysis or 

spatial hearing). There are different degrees of imitation of physiological processes. The simplest models 

show a focus on the frequency-place transformation in the inner ear, while more complex models also 

include the mechanics in the middle and inner ear (Epp et al., 2010; Pieper et al., 2016). Furthermore, 

auditory models exist which mimic other parts of the auditory pathway, e.g. mimicking the chemical 

processes in the hair cells (Meddis, 1988). In this section, only the ‘simple’ (dynamic) loudness models are 

briefly explained, since only those were used in the studies. 

In recent years, three loudness models have received particular interest: (1) the time varying loudness model 

(TVL) of Glasberg and Moore (2002), (2) the Zwicker model for instationary sounds (DINA1) recommended in 

the DIN 45631 / A1 standard (2010), and (3) the dynamic loudness model (DLM) of Chalupper and Fastl 

(2002). Furthermore, Rennies et al. (2009) performed a major extension of the DLM (DLMext). These models 

are able to estimate the loudness of time varying sounds and basically the structure of their processing steps 

are almost similar. One of the main differences resides in the choice of critical bandwidth, which is discussed 

in section 2.1.2. The ERB scale is applied by the TVL whereas the DINA1 and the DLM rely on the Bark scale. 

Besides these essential differences, there are other minor aspects such as some filter processes that are 

handled differently. A detailed comparison of the model structures is provided by Appell et al. (2001) or 
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Rennies et al. (2010). A brief summary of the processing steps of these models is given below. A schematic 

diagram of two models (DLM and TVL) is shown in Fig. 2.6.  

(1) In the first stage, a high-pass filter is used for the outer and middle transformation of the sound. (2) 

Subsequently, a critical-band filter bank is applied to separate the sound into different filtered time signals 

and envelopes are calculated. (3) In the next stage, the excitation is determined by a correction factor.  

Temporal (forward) and spectral (upward spread) masking effects can be accounted. Furthermore, the 

specific loudness can be calculated (loudness transformation). (4) Spectral loudness summation is applied by 

integrating the specific loudness-time pattern along the frequency dimension resulting in the instantaneous 

loudness. (5) Finally, short-term loudness can be derived by the temporal integration using a low-pass filter. 

Therefore, the cut-off frequency is approximately between about 8 and 14 Hz. A further stage is 

recommended by Glasberg and Moore (2002) for transforming short-term loudness into long-term loudness 

by applying another low-pass filter with a cut-off frequency at 0.5 Hz.  

 

Fig. 2.6: Schematic structure of two loudness models: DLM (left) and TVL (right) (Rennies et al., 2010). 
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There are different propositions to scale the short-term loudness down to overall loudness. A reasonable 

approach is to use distribution parameters like the peak, the mean (Glasberg and Moore, 2002) or certain 

percentiles, e.g. the 95-percentile N5 (Chalupper and Fastl, 2002), representing the distribution of the 

loudness. It is assumed that mainly loud frames affect the overall loudness. However, there is still 

disagreement on the question of whether peak or high percentiles are generally best suited for this purpose 

(Fiebig and Sottek, 2015). On the other hand, there are weighted averaging methods in the process of which, 

for example, periods with louder frames are weighted more heavily. This method seems particularly useful 

in order to reduce the influence of periods of silence on the estimation of the overall loudness (silence 

gating). This approach is implemented in the EBU R-128 standard as an extension to the ITU-R-BS. 1770. Both 

standards use a modified RLB weighting ("K-weighting") and silent gating calculates for 400 ms blocks each 

by a threshold criterion. In contrast to the ITU recommendation, the EBU R-128 offers an estimator for the 

overall loudness as well as an estimator for the true loudness peak.     

2.3 Psychophysical methods 

Loudness is a perceptual quantity and is usually measured by psychophysical methods. There are several 

approaches to classify these methods. A simple one is to differentiate the generated scaling level and the 

scaling method (Rajamanickam, 2002). 

The scaling level can be either: A) nominal, B) ordinal, C) interval or D) ratio.  

A) The nominal type differentiates between items or subjects based only on their categories. The categories 

have neither measurable distance to each other nor a preferred order. The nominal type represents the 

lowest level of scale information. B) The ordinal type provides a rank order by which data can be sorted. Yet, 

there is a lack of information about the distance between the ranks as well as any proposition about the 

relationship to values beyond the data. C) The interval type informs about the distance between items. D) 

The ratio type provides information about the ratio between items. It is also a metric scale.  

The scaling method can be either: A) production, B) estimation or C) comparison. A) Production is an active 

scaling method in which the subject is required to adjust a certain category or magnitude of a perceptual 

size. B) Estimation is a passive scaling method in which the subject is presented a configuration of a particular 

category or magnitude of a perceptual size and then asked to make an assessment. C) Comparison is also a 

passive method in which the subject has to compare the perceptual size of several items to each other.  

The most popular methods for loudness measurement are the following: (1) magnitude estimation which is 

assumed to provide a ratio scale level. This method was preferred by S. Stevens. (2) Categorical loudness 

scaling which allows interval scale level. (3) Matching, a comparison method which in general provides 

interval or in some cases ratio scale level. (4) Paired comparison which allows ordinal and, under certain 
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conditions, interval and ratio scale level. In this thesis only method 3 and 4 were used. Therefore, these 

methods are explained in more detail in the next two sections.  

2.3.1 Matching 

Probably the most frequently used matching-method is the ‘Two Alternative Forced Choice’ method (2-AFC) 

perhaps beside from cross modality matching. However, at this point we will only further look at the 2-AFC 

procedure, since it is used in this thesis (cf. Chapter 5). The 2-AFC procedure is a method to find the point of 

subjective equality of two stimuli. It was already used in the 19th century in the beginning of psychophysics 

by G. Fechner and has been modified many times in the course of time (e.g. the introduction of the staircase 

procedure by G. Békésy in 1960 or implementations of different transformed up-down methods by Levitt in 

1971).  

Both, a test signal and a reference signal are presented at intervals to a subject in successive trials. The subject 

must then decide which of these two intervals has been perceived as louder. The subject is forced to choose 

one of the two alternatives (“forced choice”) excluding the option of two equally loud intervals. This method 

aims at approaching the point of equal loudness. An adaptive procedure with a staircase procedure is mostly 

used. The sound level of the test signal is changed by a predetermined level increment (staircase) after each 

trial, depending on the response of the subject while the reference signal is continuously retained on a fixed 

level. The level change depending on the response is described by the up-down rule. The level of the test 

signal should be increased if it is perceived to be softer than the reference signal and vice versa. However, 

the accuracy of the point of equal loudness can be increased if level adaptation is performed only in the case 

of multiple constant responses of the subject. This can be time consuming, though. Hence, the up-down rule 

should be chosen based on the level of difficulty of the loudness judgment which depends on the use of the 

specific stimulus and paradigm. After a certain number of trials, the level increment is reduced to enhance 

accuracy. This usually depends on a predetermined critical number of reversals. Reversals are those trials 

where the sequence of stimulus presentations changes from an ascending to a descending sequence of 

stimulus intensities, or the reverse pattern. These turnaround points are recorded and their average defines 

the stimulus threshold value. Furthermore, having achieved a number of trials or a specified number of 

reversals the procedure will be terminated. To increase the accuracy it is useful to repeat the measurement 

or at least to select the starting value as a high-level and once as a low-level. Moreover, it is recommended 

to interleave the AFC-sequences of several conditions in order to disguise the up-down rules for the test 

subjects. The result of this method provides sound levels of multiple test signals relative to a common 

reference at the point of equal loudness. 
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2.3.2 Paired comparison 

Rankings are ubiquitous these days: the current table in the football league, the top ten lists of most popular 

movies, the music charts, or the list of top manager salaries. In almost all areas of life comparable objects or 

their properties are evaluated and put into rankings. Paired comparison is the easiest way to bring non-

directly measurable variables into an unambiguous ranking. It is important to mention that other methods 

(magnitude estimation, ratio production, categorical scaling) have a higher degree of difficulty in 

accomplishing the task. These methods presume that subjects can fall back on a widespread inner scale that 

are used to measure items. If the task is too demanding the subjects, it can easily lead to extreme 

inaccuracies.  

The advantage of paired comparison is that it breaks down the task of creating a ranking to the lowest level 

of difficulty. On the other hand, there are some well-known disadvantages: (1) Paired comparisons require a 

great deal of time in implementation. m items to be compared result in (
𝑚
2
) pairs for comparisons, in which 

the subjects must examine the items for the feature to be scaled. It should be noted that with regard to the 

effort, the 2-AFC method mentioned in the previous section exceeds this simple paired comparison by far. 

(2) Contradictory statements manifested as cyclic triads (A > B, B > C, C > A) indicate some uncertainty in the 

rating of the feature. However, cyclic triads could also be a sign of multi-dimensionality of a feature. (3) Paired 

comparisons usually only provide an ordinal scale level. This may mean that in some cases scale information 

unnecessarily remains unused although it could have been provided by the subjects when using another 

psychophysical method. Therefore, the Bradley-Terry-Luce method (BTL-method) is often recommended to 

increase the scale level (e.g. Ellermeier et al., 2004; Wickelmaier and Schmid, 2004; Tsukida and Gupta, 2011). 

The BTL method starts with the result from the pairwise comparisons. This is a count matrix M of the number 

of times that each option was preferred over every other option (Eq. 2.11). 

𝑀𝑖𝑗 = {
# of times option 𝑖 preferred over option 𝑗,      𝑖 ≠ 𝑗 
0,                                                                                    𝑖 = 𝑗

    (2.11) 

Sorting the sums of each row 𝑀𝑖 by size the ranking order can easily be obtained. Obviously, transforming M 

into ordinal scaled data leads to an information loss. Hence, we apply the BTL-method that is used to establish 

data on a ratio scale level by postulating a relationship between preference probabilities and scale values 

(Ellermeier et al., 2004): 

𝑝𝑖𝑗 =
𝜋(𝑖)

𝜋(𝑖)+𝜋(𝑗)
          (2.12) 

in which 𝑝𝑖𝑗  is the probability that a subject prefers the option i over j and where 𝜋 is the scale value. The 

scale values can be estimated, for example, by using an iterative maximum likelihood method. A common 

approach is to use the distance 𝜇𝑖𝑗  between 𝜋(𝑖) and 𝜋(𝑗) to build the BTL-scale (Elo, 1965). This can be done 

by applying the logit-transformation (Tsukida and Gupta, 2011) which is realized by the logarithm of the scale 

values, 
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𝜇𝑖𝑗 = 𝑠 ∙ (𝑙𝑜𝑔(π(i)) − 𝑙𝑜𝑔(𝜋(𝑗)))        (2.13) 

in which s is a scale parameter. In literature 𝑙𝑜𝑔(𝜋) is sometimes called the log-BTL scale value (e.g. Dittrich 

et al., 2000). Furthermore, it is important to notice that equations (2.12) and (2.13) implicate that to gain 

decent distances it has to be applied: 

𝑝𝑖𝑗 ≠ 0 ∧  𝑝𝑗𝑖 ≠ 0         (2.14) 

Therefore, it is sometimes necessary to divide the matrix M into subgroups, i.e. submatrices 𝑀𝑖𝑗
(𝑘)
 in which 

every member i, j satisfies Eq. (2.14). The quality distance of the group 𝑀(𝑘) to 𝑀(𝑘±1) is calculated using the 

quality distance of the common members of these groups. 

2.4 Electroencephalography 

Neural activation in the brain generates an electric field on the scalp. This field can be measured by 

electroencephalography (EEG). This non-invasive imaging technique makes it possible to measure neural 

activity at a high temporal resolution (Teplan, 2002). However, the local resolution is rather low. This is due 

to the fact that temporal superposition of many neural processes and the electric field shielded by the skull 

and skin restrain the separation of sources.  

 

Fig. 2.7: Schematic representation of the formation of dipole fields on pyramidal cells. Exciting postsynaptic potentials 

(EPSP) indicate an influx (-) in the area of the apical dendritic branches (Scherg, 1991). 
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2.4.1 Anatomical basics 

Changes in the electrical potential of a neuron are caused by synaptic excitation. In the process, transmitters 

are released inducing a local membrane current. This results in the depolarization of the nerve cell. The 

electric charge transfer can be described as a dipole. EEG mainly measures excitatory postsynaptic potentials 

(EPSP), which are caused by an influx of ions in the region of the apical dendritic branches (Fig. 2.7). The 

activity of pyramidal neurons in the celebral cortex mostly contributes to the macroscopic field due to their 

architecture and rather symmetric orientation. A similar orientation of the neurons towards each other is 

essential, since in the far field on the scalp individual dipoles generated by single cells are hardly recordable 

– contrary to a collective dipole of large populations of active neurons. However, only nerve endings and 

bends contribute to the far field, since an asymmetric intraaxial current flow is necessary for dipole formation 

(Scherg, 1991).  The dipole clusters are not activated synchronously resulting in dispersion effects. This slight 

desynchronization produces low-pass filter effects, especially for brain regions where late neuronal 

processing operations take place (Scherg, 1991). The electric field of these dipole clusters on the scalp is 

essentially affected by the intervening layers: scalp, skull and brain. These layers have different electrical 

conductivities. Especially the low conductivity of the skull has a shielding effect on the electric field. As a 

result, the field appears on the scalp spatially widened with attenuated intensity. Finally, these weak 

electrical signals can be detected on the scalp as potential difference by using at least two electrodes.  

2.4.2 Auditory evoked potentials 

Electrical activity on the scalp evoked by acoustic stimuli originates from different dipole sources which are 

characterized by corresponding delay times and their measurability by respective groups of electrodes. This 

relationship is well studied for the EEG response to stimuli of clicks and tone bursts (Picton et al., 1974; 

Radeloff et al., 2014). These stimuli evoke significant voltage fluctuations known as auditory evoked 

potentials (AEP), illustrated in Fig. 2.8. These potentials are assigned to three areas of the brain. However, 

these assignments have not been conclusively clarified yet. The auditory brainstem response (ABR) includes 

the wave I-V, which are components with an early latency (0-10 ms). The middle latency response (MLR) 

consisting of P0, Na, Pa, Nb and P1 arises at 10-80 ms and is associated with the Thalamus (P0, Na) and Cortex 

(Pa, Nb, P1). Late latency (> 80 ms) AEPs are cortical in origin and are composed of N1, P2 and N2. All of these 

components range from 0.1 µV to 2.5 µV in amplitude, provided that voltage is measured by electrodes 

between vertex and mastoids. 
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Fig. 2.8: Schematic illustration of the auditory evoked potential (AEP) and event related potentials (ERP: MMN, P300). 

(Cahn and Polich, 2006). 

2.4.3 Event related neural activity 

Beyond the AEPs, perceptible events can elicit neural activity. A distinction is made between neural 

oscillations and event related potentials (ERP).  

Neural oscillation is repetitive neural activity that is commonly sinusoidal (Teplan, 2002). It has been 

categorized into five basic groups: delta (0.5-4 Hz), theta (4-8 Hz), alpha (7.5-13 Hz), beta (13-30 Hz) and 

gamma (> 30 Hz). Usually, the amplitude is measured from peak to peak and may reach a magnitude of up 

to 100 µV. Event related neural oscillation is mainly found in alpha activity. Often, an abruptly increasing 

alpha activity is related to closing the eyes and a decreasing alpha activity correlates with eye opening or is 

induced by cognitive mechanisms like thinking and calculating. The latter plays an essential role in EEG 

paradigms that involve a task. However, mental states like relaxation, stress, alertness, resting, hypnosis and 
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sleep can also induce neural oscillations. In fact, they are even more associated with them. It should be 

mentioned that the transition of the meaning of events to the mental states is smooth.  

Event related potentials can be induced by specific sensory, cognitive, or motor events. They often appear as 

additional components next to the AEP. The most well-known ERP, the P300 (Fig. 2.8), is a central-parietal 

component with a latency of 300 ms (Polich, 2007). It is triggered by events that attract attention. Therefore, 

they need stimulation paradigms that repeatedly involve attention tasks (usually oddball-paradigms). 

Furthermore, there are ERPs that are elicited auditorily. The mismatch negativity (MMN) belongs to this type. 

The MMN is a change-specific component of the auditory ERP which can be elicited either by the brain’s 

automatic response to any change in auditory stimulation or by different kinds of abstract changes in auditory 

stimulation, e.g. grammar violations (Näätänen et al., 2007). The MMN is a frontocentral component seen as 

a negative displacement with a latency of 150 - 250 ms (Fig. 2.8).  

2.4.4 Neural entrainment 

Neural entrainment is the capacity of the brain to synchronize the neural activity with the frequency and the 

modulation of a stimulus. It is assumed that different coupling mechanisms exist between stimulus and EEG 

response (Schnitzler and Gross, 2005). However, the discourse of the question how these coupling 

mechanisms work is still in process. Most studies deal with two entrainment phenomena: frequency 

following response (FFR) and envelope following response (EFR).  

The FFR encodes spectral features of the stimulus. It reflects particularly well the pitch of the stimulus which 

is associated with the fundamental frequency (Krishnan et al., 2004). It is suggested that phase-locked activity 

in a population of neural elements within rostral brainstem underlies the FFR generation (Worden and Marsh, 

1968; Glaser et al., 1976). The modulation of the fundamental frequency in the stimulus provides 

appropriately modulated FFRs and, surprisingly, a low-frequency response corresponding to the envelope of 

the frequency modulation (Rance and Rickards, 2002). This additional coded response to the frequency 

modulation is related to the EFR (John et al., 2001). Krishnan et al. (2004) has impressively shown that FFRs 

can be found for the pitch of different words. 

The EFR encodes the envelope of the stimulus (Picton et al., 2003; Aiken and Picton, 2008). In part, this also 

includes the envelope of the frequency modulation, but mainly this term refers to the temporal envelope of 

the stimulus (Ding and Simon, 2014). The term auditory steady state response (ASSR) is also frequently used, 

but Purcell et al., 2004 rightly argued that this choice of terminology is not appropriate due to the instationary 

nature of the response. A popular hypothesis for the origin of EFR is the "onset tracking hypothesis". The 

temporal envelope of a natural sound usually has many acoustic “edges”, e.g. onsets and offsets. These edges 

can elicit AEPs (see section 2.4.2.). Hence, it has been proposed that EFRs are superpositions of edge-related 

AEPs (Howard and Poeppel, 2010). However, this hypothesis is currently controversial (Simon and Ding, 
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2014). The findings of Thwraites et al. (2016) undermine this hypothesis by showing that loudness even better 

represents the EFR than the envelope does.  

2.4.5 Correlates to loudness in the encephalogram 

For a considerable time there have been attempts to find a physiological and objective correlate to loudness 

that can be determined passively without a report of the subject. There are several approaches that differ 

mainly in searching for sources at different stages of the auditory pathway. For example, otoacoustic 

emissions provide a correlate of the compressed intensity related to loudness of the outer hair cells (Neely 

et al., 2003; Epstein and Florentine, 2005). However, it is suggested that loudness perception is primarily 

generated cortically in the region at the posterior medial Heschl’s gyrus (e.g. Röhl and Uppenkamp, 2012; 

Behler and Uppenkamp, 2016; Thwaites et al., 2016). Therefore, correlates from earlier sources of the 

auditory pathway are rather intermediate results of loudness processing and may be associated with 

instantaneous and/or partial loudness.  

Already many decades ago, the encephalogram was examined for correlates of loudness. Bauer et al., 1974 

tried to determine a perceptual correlate of loudness within the AEP. Further studies on the topic provided 

results with contradictory evidence (Bauer, 1974; Babkoff et al., 1984; Darling and Price, 1990; Serpanos, 

1997; Fobel and Dau, 2004; Junius and Dau, 2005; Dau et al., 2005; Silva and Epstein, 2010; Silva and Epstein, 

2012). Most authors agreed on the fact that sound intensity is reflected in the strength and the latency of 

the ABR (Pratt and Sohmer, 1977; Serpanos et al., 1997). However, there is evidence that further components 

of the AEP are related to loudness. Madell and Goldstein (1972) discovered correlations between the peak-

to-peak strength of some MLR components and loudness estimates. They emphasized the early components 

P0 and Na. Furthermore, the peak-to-peak strength of the cortical components N1 and P2 also correlates 

with sound intensity (Pratt and Sohmer, 1977; Hegerl et al., 1994).  

 The EEG response to continuous stimuli often does not allow the examination of AEPs, as the elicited 

potentials tend to overlap or cancel each other out. However, this EEG response often shows a relationship 

to the envelope of the stimulus and is therefore associated with envelope following response (EFR). In a 

simple scenario in which amplitude modulated sinusoids evoke the EFR, the modulation frequency and their 

harmonics are present in the long-term spectrum of the EEG. Several studies showed an interdependence 

between the amplitude of the fundamental frequency of the EFR and categorically scaled loudness (Ménard 

et al., 2008; Castro et al., 2008; Emara and Kolkaila, 2010; Eeckhoutte et al., 2016). Moreover, in an MEG 

study, Thwaites et al. (2016) found several components of the EFR corresponding to the loudness of speech. 

They used cross correlation to find the best correlating latencies and found four components at 45 ms, 100 

ms, 165 ms and 275 ms. Furthermore, they were able to prove that the last component shows higher 

correlation to the short-term loudness than to the instantaneous loudness. 
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2.4.6 Signal distortions in the encephalogram 

During the EEG recording of a specific brain response to a stimulus, interfering signals from different sources 

superimpose on other to produce the measured signal. Neural processes always take place in the brain 

independently of any stimuli and produce spontaneous brain activity that is not correlated with the stimulus. 

This is called background activity. The voltage measured in the EEG of this background activity is in the range 

of 40-50 μV (peak-to-peak). This is ten times higher compared to the strength of the components in the AEP. 

By assuming that the brain responds equally to the same stimulus, the uncorrelated background activity can 

be attenuated by the factor 1
√𝑁
⁄  by averaging over the repetitions N. The mean power of the background 

activity may change over the course of repetitions. Therefore, it is recommended to use weighted averaging 

according to the inverse mean power of each repetition. Riedel et al. (2001) proposed a method that uses 

this kind of averaging. Furthermore, they modified this method by estimating the mean power iteratively.  

There is also recorded activity that is not of cerebral origin. This activity is termed artifact. Artifacts can be of 

physiological or extraphysiological origin. Physiological artifacts are generated by the body except the brain. 

Extraphysiological artifacts arise from sources of the environment or the equipment. However, if background 

activity is evoked by clearly attributable processes identifiable by conspicuous patterns, cerebral artifacts are 

the appropriate term. 

The three most common extraphysiological artifacts are: (1) change of electrical conductivity between skin 

and electrode, (2) AC power and traction supply and (3) electrical devices. (1) The contact between electrodes 

and scalp is usually ensured by using contact gel with a high electrical conductivity. The change in skin 

resistance due to sweat or the change in electrode positioning slowly causes changes in the measured voltage 

over several hundred volts. This artifact can be reduced by using a high-pass filter with a low-cut frequency 

between 0.3 and 1 Hz. Electrode artifacts can be reduced by averaging across a cluster of adjacent electrodes. 

The electrical field of the environment is decisively influenced (2) by the AC power supply in the walls of 

houses and often in cities by traction supply. These artifacts superimpose the EEG recordings with an 

oscillation corresponding to the respective AC power supply. In Germany, for example, AC power supply 

generates an oscillation of 50 Hz and the traction supply an oscillation of 16 Hz. An electrically screened booth 

can reduce these two environmental artifacts. Alternatively, notch filters or bandpass filters can be used. (3) 

Electronic devices to stimulate and record the EEG should also be placed outside the booth. They also contain 

the AC power supply. In order to prevent measuring the electrical field of a headset that may be similar to 

the stimulus, tube headphones should be used. 

Physiological artifacts are dominated by muscle movement. The heartbeat generated by the heart muscle 

can be found in the EEG recording. Furthermore, the movements of the jaw (e.g. chewing), neck and facial 

muscles seriously interfere the EEG recording due to their short distance to the electrodes. These artifacts 

occur spectrally broadband with a peak-to-peak strength of 100-200 μV. It is very difficult to reduce muscle 

artifacts in the EEG. Therefore, it is recommended to instruct participants to avoid muscle movement as far 
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as possible during the recording. Otherwise affected repetitions disturb the averaged result due to the high 

strength of these artifacts. To prevent this, repetitions that are affected by such artifacts are typically 

removed. Reducing the number of repetitions, however, would also reduce the signal to noise ratio. 

Alternatively, a spectral averaging method introduced by Vardi and Zhang (2000) that applies the multivariate 

L1-median might be considered to reduce artifacts. This averaging method is extremely robust with regard 

to artifacts because it allows keeping repetitions which are affected by artifacts (more details in chapter 4).  

Another important class of physiological artifacts is associated with eye movement. These ocular artifacts 

include: Eye blinks, roving eye movement and eye flutter (can also be counted to the facial muscles), just to 

mention the most prominent ones. Eye blinks are considered to be a major problem for EEG recording: firstly 

because of the high strength of the elicited fluctuation (100 μV) and secondly because of the need to moisten 

the eyes regularly. The same methods (removing and reducing) as in the other muscle artifacts can be used 

to reduce the influence of these artifacts. However, the use of artifact rejection is recommended due to the 

clearly local definition of these artifacts. The most common approaches are: (1) to regress the interfering 

signals using an electrode near the eye that records the regressor or (2) to separate and remove the eye 

components by using independent component analysis (Makeig et al., 1996). This method can also be used 

to reject the heart beat artifact. 

Cerebral artifacts are evoked potentials or brain waves that are not primarily related to the perceptual 

processing of the stimulus. Sometimes experimental paradigms can cause these artifacts to correlate with 

the stimulus. Paradigms with a task that involves the use of a button box elicit motor evoked potentials. Using 

screens that change in sync with acoustic stimulation trigger correlated with visual evoked potentials. These 

potentials show a very small fluctuation (< 10 μV). Hence, they are difficult to remove afterwards. Instead, 

such artifacts should be anticipated and avoided when designing an experimental paradigm. Finally, 

increased alpha activity is often an undesirable phenomenon in EEG recording. Alpha waves (8-13 Hz, 10-20 

µV, sinusoidal activity) often occur during tasks, mental states of relaxed wakefulness or when participants 

close their eyes (Hughes and Crunelli, 2005). This artifact is usually treated by removing repetitions affected 

by alpha waves using a threshold criterion. Parietal and frontal electrodes are mainly affected by alpha waves. 

However, the central electrodes show contours which are less affected by the alpha waves. The choice of the 

measuring electrodes can therefore reduce the effect of the alpha waves. 
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3 Deficiencies of models for overall loudness estimation of 

music 

 

Abstract 

Despite considerable progress in improving models for loudness perception, sound level measures are in 

common use for many practical applications, like, e.g., estimating the loudness of musical stimuli, due to 

their simple implementation and decent performance (Skovenborg and Nielsen, 2004; Vickers, 2010a). This 

is in part owed to the familiarity with the characterization of sounds along a decibel scale, which, as a 

technical measure, sometimes may suggest a certain grade of objectivity, as it can be read from a sound level 

meter. In fact, improved level measures have recently been developed and commercially used to predict the 

loudness perception of music [e.g. EBU R 128-2014]. However, the origin of the performance deficiencies of 

loudness models when used for real-life applications is still unclear. In this study we compare the prediction 

performance of level measures and loudness models with psychoacoustic results from a scaling procedure, 

with the aim to try and improve the performance of loudness predictions. In a paired comparison paradigm 

29 listeners were doing overall loudness judgments of 14 music sequences with 10 s duration each. The 

Bradley-Terry-Luce model was used to construct a scale of loudness judgments. To improve the validity, 

leave-one-out cross validation with multiple regressions was employed. Our findings confirm the superior 

performance of level measures, but also approaches to modify existing loudness models can be derived. The 

prediction performances of loudness models can be improved by using a low-pass filter around 4 Hz for 

instantaneous loudness in the preprocessing. Furthermore, overall loudness judgements seem to be strongly 

affected by the perceived sharpness of the sound. 

3.1 Introduction 

The prediction of loudness, i.e. the perceptual correlate of sound intensity, for complex sounds like music is 

still a challenge (e.g. Skovenborg, 2004; Vickers 2010a). This is particularly evident in the fact that, for 

commercial applications, simple level measures are preferred to sophisticated loudness models (EBU R 128-

2014). Indeed, there are many kinds of sounds that are collectively referred to as music, like various 

interactions of running speech respectively singing voices, harmonic, percussive and synthetic instruments, 

everyday noises and various sound samples. It is a rather complex task to define the term music in a few 

words. Furthermore the broad spectrum of sound scenarios requires the consideration of various parameters 

that determine the loudness. These include spectral and temporal loudness integration as well as effects 

caused by amplitude modulation. Moreover it is suggested that for music there are also effects at a higher 

stages of auditory processing that affect the loudness judgment, e.g. preferences (Cullari and Semanchick, 
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1989), pitch (Neuhoff et al., 1999), increased musical experience with age (Fucci, 1999), hearing expectation 

for different music genres (Barrett and Hodges, 1995), or context effects (Arieh and Marks 2003).  

In recent years loudness models have undergone a great improvement in dealing with non-stationary stimuli 

(Fastl and Chalupper, 2002; Glasberg and Moore, 2002; Rennies et al., 2009). In the case of the loudness 

prediction of music the main objectives are to determine the momentary stream of loudness, i.e. the 

instantaneous loudness, as well as the resulting overall loudness which is assumed to be the instantaneous 

loudness combined across certain time windows to a summary assessment. It is unclear how the overall 

loudness transformation proceeds because of the complexity of the task to integrate changes in loudness to 

one representative value. Many suggestions have already been made to formulate a general, robust 

approach. Recently, it has become very popular to consider the instantaneous loudness stream as a time-

independent distribution and to use parameters of the distribution, e.g. percentiles, as an estimator of the 

overall loudness (e.g. Chalupper and Fastl, 2002; Rennies et al., 2015, Fiebig and Sottek, 2015). The 95% 

percentile is recommended as a robust measure (Fastl and Chalupper, 2002). An alternative approach is the 

use of a weighted average of the instantaneous loudness. The simplest realization for example is to ignore 

the silent sections of the stimulus for assessment, often called as “silence gating” (EBU R 128-2014). Glasberg 

and Moore (2002) introduced two more stages while processing the instantaneous loudness which they 

called ‘short-term loudness’ and long-term loudness’. For the realization they recommended different 

adapted low-pass filters. Rennies et al. (2015) showed that for the overall loudness prediction of fluctuating 

technical sounds the performance of some loudness models can be improved by using longer time constants, 

an approach equivalent to low-pass filtering. Finally, it should be noted that the overall loudness may also be 

influenced by a composite of several other perceptual parameters, or at least they can be influenced by other 

parameters than just the loudness.  

In our study we test the performance of overall loudness predictions of different loudness models and level 

measures. We hypothesized that the loudness models perform the task better due to the consideration of 

loudness effects relevant to music. However, deficiencies of these models have already been reported 

(Skovenborg, 2004; Vickers 2010a). Hence we also want to optimize the adjustments of the models to 

improve their performance. Therefore, we follow the recommendations of Glasberg and Moore (2002) and 

Rennies et al. (2015) and implement a short-term loudness stage from which the overall loudness is 

estimated. Finally, we investigate the influence of one other perceptual measure on the overall loudness, 

that is, psychoacoustic sharpness, because this bears some resemblance to timbre, which is one central 

feature of musical sounds. Using multiple regression methods it is tested to what extent the overall loudness 

judgement of music is influenced by sharpness perception.  
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3.2 Methods 

3.2.1 Participants 

29 listeners, fourteen females and fifteen males, aged 18 to 32, participated in the study. All of them had 

normal audiograms (i.e. absolute thresholds in quiet ≤ 15 dB HL for frequencies between 125 Hz and 10 kHz), 

with no previous history of any hearing problems. Written informed consent was obtained and all 

participants were paid volunteers. The study was carried out in accordance with the Declaration of Helsinki 

2008.  

3.2.2 Stimuli and apparatus 

All participants listened to 14 music examples of different music genres (classical music, jazz, rock, hip hop, 

pop) which each had a duration of 10 s. The RMS level of all music examples was between 70 and 85 dB SPL 

(RMS). The music examples were chosen according to their dynamic range, which should be comparatively 

low to make the task easy to perform. All stimuli were stored digitally with a sampling rate of 44.1 kHz and a 

resolution of 16 bit. During the experiments, the participants sat in a double-walled hearing booth. The 

sounds were D/A-converted by an external audio interface (RME-Fireface UC), digitally attenuated with 

Matlab R2015b and presented diotically via headphones (Sennheiser HD 650). 

3.2.3 Procedure 

The stimuli were compared in loudness with each other as pairs. In each trial two 10-s music examples were 

successively presented, separated by a 500 ms silent interval. After the presentation the listeners were 

forced to indicate which of the two signals was louder by clicking with the mouse on the corresponding dialog 

button on a computer screen. During the measurement each trial was repeated once in reversed order to 

prevent primacy- and recency-effects. All trials were presented in pseudo-randomized order. After finishing 

the loudness comparisons, the subjects were asked to evaluate the preference of the played music sequences 

according to their individual taste.  

The full experiment with 14*13 comparisons of 10-s stimuli took approximately two hours including the 

response times and one or two short breaks. Therefore, to reduce the amount of time needed for this 

procedure, only 10 participants did the full experiment. After that, the number of comparisons was reduced 

for the rest of the participants by omitting those judgements that had a univocal outcome for the initial group 

of 10 listeners (e.g., the softest vs. the loudest music samples), as these were assumed to be the same for all 

participants. 



Deficiencies of models for overall loudness estimation of music  

 30 

3.2.4 Data evaluation 

A: BTL-method 

The result of the pairwise comparisons is a count matrix M of the number of times that each option was 

preferred over every other option, 

𝑀𝑖𝑗 = {
# of times option 𝑖 preferred over option 𝑗,      𝑖 ≠ 𝑗 
0,                                                                                    𝑖 = 𝑗

    (3.1) 

Sorting the sums of each row 𝑀𝑖 by size we obtain easily the rank order in loudness averaged across all 

subjects. Obviously, transforming M into ordinal scaled data leads to an information loss. Hence we applied 

the Bradley-Terry-Luce method (BTL) that establish data on a ratio scale level by postulating a relationship 

between preference probabilities and scale values (Ellermeier, 2004): 

𝑝𝑖𝑗 =
𝜋(𝑖)

𝜋(𝑖)+𝜋(𝑗)
          (3.2) 

where 𝑝𝑖𝑗  is the probability that a subject prefers the option i over j and where 𝜋 is the scale value. In our 

study we used a maximum likelihood method of Wickelmaier and Schmid (2004) to estimate the BTL scale 

values. The distance 𝜇𝑖𝑗between 𝜋(𝑖) and 𝜋(𝑗) can be determined by applying the logit-transformation 

(Tsukida and Gupta, 2011) which is simply realized by the logarithm of the scale values, 

𝜇𝑖𝑗 = 𝑠 ∙ (𝑙𝑜𝑔(𝜋(𝑖)) − 𝑙𝑜𝑔(𝜋(𝑗)))         (3.3) 

where s is a scale parameter. In literature 𝑙𝑜𝑔(𝜋) is sometimes called the log-BTL scale value (e.g. Dittrich et 

al., 2000). In our study this logarithmised value is the scale value we mainly deal with (henceforth referred 

to as BTL-value). Equations 3.2 and 3.3 implicate that to gain decent distances it has to apply: 

𝑝𝑖𝑗 ≠ 0 ∧  𝑝𝑗𝑖 ≠ 0         (3.4) 

Therefore the matrix M has to be divided into groups i.e. submatrices 𝑀𝑖𝑗
(𝑘)
 where every member i, j satisfies 

condition (4). The quality distance of the group 𝑀(𝑘) to 𝑀(𝑘+1) is calculated using the quality distance of the 

common members of these groups. 

B: Loudness models, level measures and sharpness 

Different models and level measures were used to predict overall loudness. On the one hand the level 

measures were: sound pressure level (dB SPL), A-weighted and B-weighted sound pressure level (dB(A), 

dB(B)) and the EBU R-128 standard (EBU R-128, 2014) that is applied by the European Broadcasting Union 

and is based on the ITU-R BS 1770-2 recommendation with the addition of a silent gating function. On the 

other hand the loudness models were: the dynamic loudness model (DLM) of and Chalupper and Fastl (2002), 

an extension of this model that includes the consideration of temporal effects of spectral loudness 

summation (DLMext, Rennies et al., 2009), the time varying loudness model (TVL) of Moore and Glasberg, 

2002 and the newest revision of the Zwicker model, the DIN 45631 / A1 standard (DIN 45631 / A1, 2010). 
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Loudness models predict the temporal change of loudness, i.e. instantaneous loudness. On the other hand 

the common method to estimate the change of level over time is to use the root mean square (RMS) value 

of different integration times: ‘fast’ corresponds to a 125 ms time constant and ‘slow’ corresponds to a time 

constant of one second. In our study different time constants from 10 ms to 1 s were used. There are different 

propositions to scale the instantaneous loudness resp. level down to overall loudness resp. level. A 

reasonable approach is to use statistical parameters like the percentiles that represent the distribution of the 

loudness resp. level over time. In our study percentiles from 70% to 100% (maximum peak) were considered 

for optimization. The EBU R-128 standard provides three loudness parameters: Maximum true peak level, 

loudness range and the so-called program loudness. In our case program loudness is recommended because 

it represents the integrated loudness over the duration of a radio program. 

For the consideration of sharpness as one additional parameter to improve the prediction of loudness 

judgements, we used the sharpness model DIN 45692 (DIN 45692, 2009) that is recommended by the DIN 

standard.  

All models were taken from the Fraunhofer IDMT Sound Quality and Speech Intelligibility Prediction Toolbox 

(SIP-Toolbox).  

C: Leave-one-out cross validation  

The prediction performance of the different models and level measures was evaluated by doing regression 

analysis between BTL-values and predictions. We used leave-one-out cross validation which is a robust 

method to test model ability (Todeschini, 2010). By comparing the Predictive Error Sum of Squares PRESS 

with the Total Sum of Squares TSS (i.e. the variance) the cross validated coefficient of determination 𝑅𝑐𝑣
2  can 

be derived. 

𝑅𝑐𝑣
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑ (𝑦𝑖−�̂�𝑖)²
𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)²
𝑛
𝑖=1

       (3.5) 

where 𝑦𝑖  represents the ith- left-out sample of the experimental response (BTL-value) whether  �̂�𝑖  is the 

predicted response of the regression model, which in our case is a linear model.  

ŷ =  𝑎1 ∙ 𝑥 + 𝑎2          (3.6) 

where the vector �⃗� = (𝑎1, 𝑎2) represents the model parameters. Furthermore, repetitions of this procedure 

are necessary i to estimate the bias of 𝑅𝑐𝑣
2 . Therefore, we select the permutations of n-2 samples as a subset 

of our total set (n = 14 music sequences) and perform the leave-one-out cross validation with 
14
2
=

91 repititions. Including other variables into the prediction only the regression model has to be extended to 

a multiple regression model: 

y =  ∑(𝑎1𝑖 ∙ 𝑥) + 𝑎2         (3.7) 
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where now a matrix 𝑎1𝑖 represents the ith model parameter. Including too many independent variables would 

of course result in overfitting. But overfitting is easily recognized as it is reflected in a decrease of 𝑅𝑐𝑣
2  with 

an increasing variance. In contrast to that a significant increase of 𝑅𝑐𝑣
2  will be interpreted as an indicator for 

more explained variance by the variables. However, it became apparent that the number of variables may 

not exceed i = 2 owed to the low number of samples. In our study we carry out a 1-sided T-test to compare 

the loudness models with their variable extensions (in our case: + sharpness). 
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3.3 Results 

3.3.1 Short-term loudness 

The adjustment of the modeled short-term loudness is done by adjusting the optimal cut-off frequency of 

the low-pass filter. The overall loudness is then gained by selecting the distinct percentile from the provided 

distribution of short-term loudness values. As mentioned, the maximum or the 95%-percentile had been 

recommended before to be the best choice (see above, Chalupper and Fastl, 2002). We varied both, the cut-

off frequency and the employed percentile and compared the achieved prediction performance by 

calculating the averaged cross-validated R² for the loudness models and level meters. The results of this 

optimization procedure are shown for the loudness models in Fig. 1.  

 

Fig. 3.1: The prediction performance represented by leave-one-out cross-validated coefficient of determination 𝑅𝑐𝑣
2  of 

the loudness models: the Zwicker model DIN 45631 / A1 - DINA1 (top left), the time-varying loudness model - TVL (top 

right) the dynamic loudness model - DLM (bottom left) and the extended dynamic loudness model – DLMext (bottom 

right). The low-cut filtering frequency was varied from 1 Hz to 10.5 Hz and also the percentile of the loudness distribution 

over time from 70% to 100% (i.e. the maximum). 

It becomes clear that low-pass filtering as well as high percentiles improve the processing performance of 

the models. The DLM, the extended DLM and the TVL show optimal performance around 4 Hz cut-off 

frequency whereas the Zwicker model DINA1 performs well at higher cut-off frequencies around 8 Hz. In Fig. 

4 the improved prediction power using a low-pass filtering stage in contrast to the use of no filter is well 

demonstrated. All models had in common that the 97%-percentile seems to predict the overall loudness best. 
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For the following analysis the optimal adjustments of low-cut frequency and percentile were calculated for 

each model and level measure. 

3.3.2 Sound level measures vs loudness models 

Our leave-one-out cross validation procedure provides averaged 𝑅𝑐𝑣
2  and corresponding standard deviations 

which can be used for statistical comparison. By using the same approach as above we were searching for 

the optimal cut-off frequency respectively time constant and percentile for the overall loudness prediction 

of the sound level measures (Fig. 2).  

 

Fig. 3.2: Prediction performance of the A-weighted sound pressure level: leave-one-out cross-validated coefficient of 

determination 𝑅𝑐𝑣
2  for different time constants and different percentiles. The time constant is reciprocal to the low-pass 

filter cutoff frequency. The percentile represents a location parameter of the intensity distribution over time. 

Unlike the models, the optimal percentiles differ considerably. The unweighted sound pressure level and the 

B-weighted level show best performance at a percentile around 55 %, which is quite similar to the mean. The 

A-weighted level, on the other hand, is similar to the models and shows best performance at a percentile at 

97 %. The optimal time constant for the unweighted sound pressure level as well as the A-weighted level is 

smaller than 100 ms, which is often referred to as the “fast” measuring mode for sound level meters. The B-

weighted level is optimally adjusted with a time constant of around 1 s which is often referred as the “slow” 
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measuring mode for sound level meters. Figure 3 provides an overview of the prediction performance of 

each model and level measure after low-pass filtering and percentile extraction. The plot demonstrates that 

the frequency weighted sound level measures (dB(A), dB(B) and EBU R-128) outperform all the loudness 

models (T-test: p < 0.01) in terms of their prediction performance. The unweighted sound pressure level and 

the time varying loudness model show the worst performance to predict the results from the BTL scaling 

experiment. 

 

Fig. 3.3: An overview of the prediction performance represented by leave-one-out cross-validated coefficient of 

determination 𝑅𝑐𝑣
2  of the loudness models: the Zwicker model DIN 45631 / A1 (DINA1), the time-varying loudness model 

(TVL), the dynamic loudness model (DLM) and the extended dynamic loudness model (DLMext); and of the level 

measures: sound pressure level (dB SPL), A-weighted sound pressure level (dBA), B-weighted sound pressure level (dBB) 

and the EBU R-128 standard (EBU).The error bars represent the standard deviation of 𝑅𝑐𝑣
2 . 

3.3.3 The influence of sharpness to the overall loudness  

In order to determine the influence of sharpness on the overall loudness judgement we have extended the 

input parameters of the regression model by adding the modeled sharpness as one additional regressor. The 

results in Fig. 4 show that the prediction performance of the loudness models strongly increases (T-test: p < 

0.01). However, level measures show no degradation in their performance. An overview of this is shown in 

Table 1. Furthermore the results indicate that there is a stronger improvement of the model performance by 

including sharpness to the prediction process than by adjusting only the low-pass filter.  
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Fig. 3.4: An overview of the prediction performance represented by leave-one-out cross-validated coefficient of 

determination 𝑅𝑐𝑣
2  of the loudness models: the Zwicker model DIN 45631 / A1 (DINA1), the time-varying loudness model 

(TVL), the dynamic loudness model (DLM) and the extended dynamic loudness model (DLMext). Modifications to the 

“standard” procedure of overall loudness prediction (black): a short-term loudness stage done by low-pass filtering (LP, 

blue) and furthermore including modeled sharpness to the prediction process (red). The error bars represent the 

standard deviation of 𝑅𝑐𝑣
2 . 

3.4 Discussion 

In this study we compared the prediction performance of different level measures and loudness models for 

the overall loudness of music of various genres. We considered the effect of low-pass filtering - as one 

implementation of short-term loudness transformation at an intermediate stage of preprocessing - on the 

prediction performance of overall loudness. Furthermore we included sharpness into the prediction 

procedure as one example for a psychoacoustic parameter that might influence the overall loudness 

judgement.  

It has been shown that low-pass filtered instantaneous loudness resp. level is an improved basis for overall 

loudness estimation. This finding indicates that the fine structure of the instantaneous loudness has no big 

effect on the overall judgement, as determined in the BTL scaling experimnet. For the loudness models 

considerd here it seems to be sensible to transform instantaneous loudness into short-term loudness before 

using them to estimate the overall loudness. This is in line with the results of Rennies et al. (2015). They found 

that for predicting the loudness of technical sounds the time constants of loudness models should be much 

longer than commonly used. We confirm that this observation is also valid for music sounds.  
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Prediction quality / 𝑅𝑐𝑣

2   
 

  + modifications 

Model, Sound 
Level meter 

Loudness + Low-pass filtering 
+ Low-pass filtering 

 + Sharpness 

DIN 45631 / A1 0,87 
± 0,02 

0,89** 
± 0,02 

0,92** 
± 0,02 

TVL 0,85 
± 0,02 

0,86* 
± 0,03 

0,94** 
± 0,01 

DLM 0,87 
± 0,02 

0,90** 
± 0,02 

0,95** 
± 0,01 

DLMext 0,88 
± 0,02 

0,90** 
± 0,02 

0,95** 
± 0,01 

dB SPL 0,83 
± 0,03 

0,87** 
± 0,01 

0,83 
± 0,03 

dBA 0,89 
± 0,03 

0,93** 
± 0,01 

0,91** 
± 0,02 

dBB 0,93 
± 0,01 

0,94* 
± 0,01 

0,93 
± 0,01 

EBU R-128 0,92 
± 0,02 

-  -  

* p < 0.05 (significant)   ** p < 0.001 (highly significant) 

Table 3.1: Model comparison. Prediction quality of different loudness models and sound level measures including 

modified low-pass filtering and the combination with sharpness for the BTL scaled loudness judgements represented by 

the 𝑅𝑐𝑣
2  as a function of statistical location parameters. 

Although low-pass filtering improves the prediction of loudness models our investigations showed that the 

level measures considered in this study outperform them. We found that that the A- and B-weighted level 

and the EBU R-128 standard surpass all our provided loudness models in prediction performance. Comparing 

them to each other the performance was equally well. The lower performance of the loudness models against 

level measures is in line with the results of Skovenberg and Nielsen (2004) who observe similar poor findings 

for models based on the loudness model ISO 532B by Zwicker (ISO 532B, 1975). These consistent findings are 

rather surprising given that loudness models provide a much more accurate frequency weighting than the 

implementations in level measures. One explanation for this might be that, in contrast to the level measures, 

there is an loss of information about the temporal structure in the loudness models that has a stronger effect 

on the overall loudness than the inaccuracies in evaluating the spectral structure. And indeed, deficiencies in 

modelling the temporal loudness change by overrating the spectral structure were seen in further studies 

(Verhey and Kollmeier, 2002; Heeren et al., 2011; Rennies et al., 2015). But at this point it is hard to see why 

level measures should be closer to the real temporal structure of the loudness. 

All loudness models provided improved performance by considering the estimated sharpness of the music 

samples as one additional parameter. Sharpness is strongly related to the spectral structure of the stimulus. 

Hence, this indicates that this parameter supplies the loudness models additional information about the 
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spectrum. On the other hand the predicition performance of level measures is not improved by this additional 

information.  

It may also be possible that sharpness plays an important role in estimating the overall loudness of music. As 

mentioned before, other perceptual measures can influence the loudness judgements (Barrett, 1995; Cullari, 

1989; Kantor-Martynuska, 2009). Skovenborg and Nielsen (2004) did a similar study comparing the quality of 

many level measures and loudness models with each other. They used speech and music stimuli with 

durations  of 10 to 15 s and with a dynamic range similar to those used in our study. However, they used a 

different method with the task to adjust equal loudness between pairs of stimuli. Finally the level differences 

in dB were compared with the predictions. Their findings emphasised that standard frequency weighted level 

measures (e.g. dB(A)) show the worst performance. However, Zwicker-based loudness models were also 

achieving only mediocre results. A level meter similar to the EBU R-128 standard was rated as considerably 

better, just behind some self-developed level measures. The slight discrepancy between their finding and our 

results may be attributed to the selection of the stimuli. In their case the audio material widely varied from 

speech stimuli to music which led to a diminished performance that apparently affected the level measures.  

Vickers (2010a) emphasised that level measures had done surprisingly well against the more sophisticated 

loudness models in many listening tests. Still, he also stated that he was limited because compromises had 

to be made in the choice of frequency weighting. This can be critical when the audio material is too different 

as argued beforeThere might be different optimal addapted frequency weightings for different sound 

scenarios. Furthermore, Vickers (2010a) highlighted the difficulty of estimating the loudness of music 

because of the wide variety of effects that can affect the loudness perception (dynamic compression, 

clipping, listening fatigue…). In his study he presented the most popular level measures and loudness models 

and showed different strategies for estimating the loudness for dynamic signals. His recommanded selection 

of models coincides with our choice. Besides the statistical approach of estimating overall loudness which 

was also used here he suggested alternatively a frame weighted averaging method where the ‘long-term 

loudness matching level’ is calculated. In some situations the statistical approach reaches its limits where the 

frame weighting approach is more robust, e.g. by evaluating stimuli including periods of silence. Silence 

gating is already implemented in the EBU R-128 standard. However, in our study stimuli were carefully 

selected to avoid this problem.  

We already mentioned that Rennies et al. (2015) recently presented a similar study in which loudness models 

were tested for a variety of technical sounds. These sounds are non-stationary and they can be distinguished 

to be either dominated by temporal properties or rather by spectral properties in a much better way than 

music stimuli. The investigation of sounds within the transition of being dominated by spectral and temporal 

properties is important as for these it is especially challenging to predict their loudness. In general, temporal 

properties are crucial for the examination of music, but in the course of loudness compression (“loudness 

war”, Vickers, 2010b) also spectral characteristics become a more important issue.  
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3.5 Summary 

The main findings of the current study are: 

 Low-pass filtering improves the prediction performance of the loudness models and level 

measures.  

 Using loudness models a low-cut frequency of around 4 Hz and a percentile at 97% provide 

appropriate predictions.  

 The A- and B-weighted sound level and the EBU R-128 standard outperform the loudness models in 

prediction performance. 

 Including sharpness into the prediction the performance of the loudness models could be 

considerably improved 

3.6 Appendix 

3.6.1 A general numerical approach to validate the BTL-method 

There are a few limitations where the BTL model cannot estimate a reasonable interval scale, for example if 

the set of stimuli has some natural structure (Debreu, 1960; Luce and Suppes, 1965). In most critical cases, 

the information used to estimate the binomial likelihood function is too small or inaccurate. A simulation of 

the paired comparison with random numbers can test at what point the BTL model becomes inaccurate. 

Therefore, real scale values 𝑁𝑠 are randomly generated from a distribution D (e.g., uniform distribution). 

When these scale values are compared with each other, normal distributed random numbers 𝑋(𝜇, 𝜎) are 

generated for each comparison. The scale values correspond to μ while σ is freely selectable parameter. In 

this way, a matching matrix can be generated with any desired number of repetitions 𝑁𝑟  of the pair 

comparison. Hereafter, a few limiting cases of the BTL model are considered by applying parameter variation 

(𝜎, D, 𝑁𝑟). The prediction power of the BTL-model is determined by evaluation the linear fit between 

estimated and real scale values. The mean squared error (MSE) of the fit represents the quality of the model 

prediction. Furthermore, the BTL-model is compared with two other (simple) scaling models: the ordinal 

ranking and the average of the binomial probability 
1

𝑛
∑ 𝑝𝑖𝑗
𝑛
𝑗  (pbin).  
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Fig. 3.5: Variation of repetitions (subjects). Comparison of the quality of different scale estimates in a pair comparison: 

Ranking of stimuli (green) mean binomial probability (red) and Bradley-Terry-Luce scale (blue). 

Figure 3.5 illustrates the prediction power of the BTL-model by varying the numbers of repetitions. The real 

scale values are generated from a uniform distribution of the range of 0 to 100. Furthermore, the other 

parameter were set to 𝑁𝑠 = 20 and 𝜎 = 12 (the unit of the standard deviation corresponds to the units of 

the real scale values). The MSE are the averaging of repetitions by a Monte Carlo procedure with n = 50. The 

result demonstrates that in all conditions the BTL-model outperforms the two simple scaling models. 

However, with decreasing numbers of repetitions (< 15) the accuracy of BTL-model decreases rapidly. 

Therefore, it can be deduced that for this procedure the number of subjects should be high enough. 
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Fig. 3.6: Variation of the variance of the (normalized) real scale values. Comparison of the quality of different scale 

estimates in a pair comparison: Ranking of stimuli (green, ranking) mean binomial probability (red, pbin) and Bradley-

Terry-Luce scale (BTL, blue). 

The next simulation shows the prediction power of the BTL-model for varying variance of the scale values 

during the simulated pair comparison (Fig. 3.6). As before, the real scale values are generated from a uniform 

distribution of the range of 0 to 100 and the parameter were similarly set: 𝑁𝑠 = 20 and 𝑁𝑟 = 30. The MSE 

are averaging of repetitions by a Monte Carlo procedure with n = 50. With a low spread (< 5), the accuracy 

of the estimated BTL-values highly decreases. The performance of the BTL-model is even below the accuracy 

of the other two models. This case will occur in a paired comparison if the set of stimuli has some natural 

structure (s. a.). With increasing spread beyond the optimum of ~12, the accuracy decreases slightly due to 

the difficulty of discriminating the estimated scale values. This effect can be compensated by increasing the 

number of repetitions. 

In the third simulation two different distributions for the real scale values are considered: a uniform 

distribution and an exponential distribution with two accumulation points. While for uniformly distributed 

stimuli the equidistance of the ranks in an ordinal scale does not significantly affect the quality of the 

prediction (Fig. 3.7A) large deviations are produced for non-uniform distributions (Fig. 3.7B). On the other 

hand, the BTL-method again outperforms both other methods. The MSE-statistic shows that in both cases 

the BTL method provides robust predictions. The binomial-based method also provides satisfactory results. 

However, it shows deviations at the edges of the scale for non-uniform distributed stimuli. 
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Fig. 3.7: Comparison of the distributions of the scale values of the stimuli. A. Uniformly distributed stimuli are robustly 

determined by all three estimators. B. Distributions with accumulation points (here two combined exponential 

distributions) are much less well estimated by rank order (Rang, red) or mean binomial probability (pbin, blue) than by 

the BTL model (BTL, black). 

A 

B 
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3.6.2 Results of the loudness scaling using pair comparison and the BTL 

method from Chapter 3 (amendments) 

In the third chapter of this work, the overall loudness of different music sequences was scaled by a 

pairwise comparison. Due to the framework of the publication, some aspects could not be dealt with, 

which should now be made up. The experiment originally used 20 stimuli (cf. Chapter 3.2.2). However, 

to compare the models in a cross-validated (multiple) linear regression analysis, each modeled loudness 

scale must be approximately linear to the experimental loudness scale. This is only possible for a small 

loudness range. Hence, the number of stimuli at the edges of the scale has been reduced.  

 

Fig. 3.8: Log-BTL scale of a pair comparison from chapter 3. The loudness of 20 different pieces of music is determined 

by a pair comparison. The error bars represent the standard error of the estimate. 

Considering all 20 stimuli, the loudness scale shown in Fig. 3.8 is obtained using the method in Section 

Appendix A. The error bars can be derived by Eq. (A.5). The goodness of the fit was tested by using Eq. (A.6) 

with 𝜒2 = 170,3 and f = 171 (freedom of degree) which results in not refusing the calculated scale. The unit 

of the log BTL scale is not fixed (size and zero position). Only the linearity of the scale can be assumed. 

Therefore, for model comparisons, the scale can be transformed arbitrarily linearly.  

In Fig. 3.9, levels, the Sone-models and the CU-transformed models are compared with the BTL scale. The 

level measure shows a slight convex nonlinearity, while the sone-models show concave nonlinearities. In 

contrast, the CU-transformed models show almost a linear course. In conclusion, the results indicate that in 

terms of linearity categorical loudness best matches BTL loudness. Furthermore, it is well demonstrated in 
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Fig. A5 that for the Sone-models and the level measures linearity can only apply on the 14 stimuli in the 

middle loudness range. 

 

Fig. 3.9: Comparison of the continuous sound level with Sone and CU models. The level measure shows a slight convex 

nonlinearity, while the Sone-models show concave nonlinearities. In contrast, the CU-transformed models show almost 

a linear course. 

 



Cortical entrainment to the loudness of music in the amplitude and latency of the envelope following 
response   45 

4 Cortical entrainment to the loudness of music in the 

amplitude and latency of the envelope following response  

 

Abstract 

Recent studies have indicated that loudness is represented in the human auditory cortex by the envelope 

following response (EFR). However, it is not entirely clear whether there is a specific feature of the EFR which 

allows estimating the loudness of an arbitrary stimulus. In this study we investigate the relationship between 

the loudness of a music stimulus and spectro-temporal features of the EFR with regard to amplitude and 

latency. EEG-data of nine normal hearing subjects listening to an excerpt of a Tchaikovsky piano concert were 

recorded and evaluated. Using cross correlation techniques we found cortical correlates to the overall 

loudness around 50 ms at 11 Hz and around 150 ms at 4 Hz as well as to the instantaneous loudness of the 

stimulus around 145 ms at 10 Hz and around 240 ms at 2 Hz. Furthermore the amplitude long-term spectrum 

of the EEG response shows proportional relationship between the amplitude at the 1.25 Hz modulation 

frequency of the stimulus and the overall loudness. The results suggest that amplitudes and latencies of 

certain frequency bands may be used to estimate loudness growth for music stimuli. 

4.1 Introduction 

Loudness is the perceived intensity of a sound. It is assumed that the momentary stream of loudness, i.e. the 

instantaneous loudness, is combined to a summary assessment, determining the overall loudness of a non-

stationary stimulus. In Bauer et al. (1974) tried to determine a perceptual correlate of loudness within the 

auditory evoked potential (AEP). Further studies on the topic provided results with contradictory evidence 

(Pratt and Sohmer, 1977; Babkoff et al., 1984; Darling and Price, 1990; Serpanos et al., 1997; Silva and Epstein, 

2010, 2012). Most authors agreed however that sound intensity is reflected in the strength and the latency 

of the auditory brainstem response (ABR) (Pratt and Sohmer, 1977; Serpanos et al., 1997). It was further 

noticed that for late evoked (cortical) potentials with latencies of 100 ms or more, thought to be associated 

with cognitive processes, the strength also correlates with sound intensity (Pratt and Sohmer, 1977; Hegerl 

et al., 1994).  

Nowadays, new paradigms allow evoking and analyzing the continuous EEG response which is strongly 

affected by the envelope of the stimulus (Picton et al., 2003; Aiken and Picton 2008). In a simple scenario 

where amplitude modulated sinusoids evoke the envelope following responses (EFR), the modulation 

frequency and their harmonics are present in the long-term spectrum of the EEG. This response is also called 

auditory steady state response. Several studies showed an interdependence between EFR and categorically 

scaled loudness (Ménard et al., 2008; Castro et al., 2008; Emara and Kolkaila, 2010; Eeckhoutte et al., 2016). 
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Beyond that, EFR are also found for speech (Thwaites et al., 2016, Aiken and Picton, 2008; Ding and Simon, 

2014; Liberto et al., 2015) and music stimuli (Doelling and Poeppel, 2015). For example, Doelling and Poeppel 

(2015) found in an MEG study cortical entrainment while their participants were listening to music. They 

demonstrated that the modulation frequency of the stimulus needs to be at least 1 Hz or above to allow for 

an MEG correlate of cortical entrainment.  

Although there are a substantial number of publications dealing with the EFR, the analysis of those responses 

has to be handled with care because their shape varies widely across subjects and for different stimuli. On 

the other hand there is no “gold standard” in measuring loudness (magnitude estimation, comparison, 

categorical scaling) and also, there is up to now no general model of loudness perception available that is 

valid for all types of complex stimuli. The latter is well reflected by misjudgments of currently used loudness 

models (e.g. Rennies et al. 2015; Skovenborg and Nielsen, 2004). Central processing beyond the cochlea like 

context effects (Arieh and Marks, 2003a) may also contribute to the general discrepancy between empirical 

data and modelled loudness. In summary there is no complete understanding of the loudness of complex 

sounds as well as of their evoked EEG response.  

Common features of the auditory evoked potentials are the latencies and amplitudes of the various peaks of 

the evoked potential generated along the ascending auditory pathway and by processing in auditory cortex. 

In this study we aim to find features of the envelope-following response that correlate with the envelope or 

the overall intensity of a music stimulus. We investigate the energy of the EEG-response at several latencies 

and in several frequency bands. For this, a short music sequence with a certain periodicity in acoustic features 

is used as a stimulus. It has a high dynamic range within the sequence with steep attack times on each beat 

and hence with the expectation to record distinct stimulus related features in the EEG-response. One 

question is also whether these EEG features are actually correlates of loudness perception or possibly simply 

reflect the changes in sound intensity. Different measures in terms of sound level as well as in terms of 

loudness will be applied which reflect on the one hand sound intensity and on the other hand loudness. 

Correlation coefficients will be compared to assess which of the applied measures is best represented in the 

EEG response. This approach somehow follows the study by Thwaites et al., 2016 who were comparing the 

correlation coefficients between MEG-responses to running speech and short-term and long-term loudness 

determined by a loudness model to identify the areas of loudness processing in the brain. 

4.2 Materials and methods 

4.2.1 Stimulus 

The auditory stimulus used in the experiments was a music excerpt of the piano concert in B flat minor No 1 

of P. Tchaikovsky (Fig. 4.1a), taken from an audio CD recording. The duration of the stimulus was 20 s. At the 
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begin and the end Hanning ramps of 30 ms length were used to reduce sharp on- and offsets. The tempo of 

the orchestral per¬formance was 75 beats per minute which corresponds to 1.25 Hz (Fig. 4.1b).  

 

Fig. 4.1a-b: a: Wavform and modelled loudness (employing DLM) of the stimulus: a music excerpt (measures 13-21) of 

the first movement of the piano concert in B flat minor No. 1 of P. Tchaikovsky. b: Amplitude modulation spectrum of 

the stimulus exhibiting a peak modulation frequency at 1,25 Hz and its harmonics. 

The stimulus was converted via a digital-analog converter(RME ADI-8 DS, sampling frequency: 44.1 kHz) and 

presented diotically using an RME-Digi 96-8 PAD soundcard in six different level conditions (40, 50, 60, 70, 80 

and 90 dB SPL) and digitally attenuated with MATLAB (7.3.0 R2006b). The stimulus presentation was 

performed via a Trucker-Davis HB7 headphone amplifier and insert tube- headphones (Etymotic Research 

ER-2). For comparability with previous ASSR-loudness studies (Ménard et al., 2008; Eeckhoutte et al., 2016), 

a block paradigm was chosen. Each block represents 50 repetitions of one condition. A pause between the 

repetitions was set at 500 ms with a maximal time-jitter of 50 ms. The order of the six blocks was pseudo 

randomized for each subject. 

4.2.2 EEG data acquisition 

The EEG-response was recorded with a Biosemi Active Two system using 68 channels with the electrodes 

placed according to the international 10-20 system, using an electrode cap. Contact gel (Parker typ no. 15-

25) was used to ensure good contact between electrodes and scalp. The recordings were collected and 

digitalized with ActiView (6.03) at a sampling frequency of 1024 Hz without using any filters. 

4.2.3 Subjects 

Nine volunteers, five male (S2, S3, S4, S5, S7) and four female (S1, S6, S8, S9), with normal hearing 

participated in the experiments. All were right-handed, between 20-30 years old, and they were paid for their 
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participation. During the EEG recordings, the participants watched a silent movie of their choice. They did 

not have a specific task to perform. 

All experimental procedures were approved by the ethics committee of the University of Oldenburg. 

4.2.4 Data processing 

All data were processed offline using MATLAB Version R2011b and the corresponding signal processing 

toolbox. The averaged responses of the A1- and A2-electrode were used as virtual reference between the 

mastoids. The response at the Cz-electrode was considered for further data evaluation. After high pass 

filtering at 0.3 Hz to reduce the electrode drift, the data were downsampled to 256 Hz sampling frequency. 

The data were then separated into epochs of 20 s length and a baseline correction was performed by 

subtracting the averaged response of the 100 ms before each epoch.  

Usually epochs affected by artefacts have to be removed because the arithmetic average is vulnerable to 

high amplitudes. Reducing the number of epochs, however, would also reduce the signal to noise ratio. In 

our study we used a spectral averaging method introduced by Vardi and Zhang (2000) applying the 

multivariate L1-median to reduce artefacts:  

𝐹𝑛(𝜔) = 𝐹𝐹𝑇(𝑥𝑛(𝑡))         (4.1) 

𝐿1(𝜔) →
1

𝑁
∑ (‖𝐹𝑛(𝜔) − 𝐿1(𝜔)‖)𝑛        (4.2) 

〈𝑥(𝑡)〉𝐿1 = 𝑖𝐹𝐹𝑇(𝐿1(𝜔))        (4.3) 

In Eq. 4.1 𝐹𝑛(𝜔) is the discrete complex spectrum of the n-th epoch of the time signal 𝑥𝑛(𝑡) provided by the 

Fast Fourier transform algorithm (FFT). The L1-median 𝐿1(𝜔) is the minimized averaged distance between 

𝐹𝑛(𝜔) in the complex plane (Eq. 4.2). Finally, the averaged time signal (Eq. 4.3) can be calculated by 

transforming 𝐿1(𝜔) back into the time domain using the inverse FFT (iFFT). We used the L1-median algorithm 

implemented in the the LIBRA Matlab-toolbox (Verboven and Hubert, 2005). Essentially, this averaging 

method is extremely robust with regard to artefacts, and it allows keeping epochs which are affected by 

artefacts.  

4.2.5 Statistical analysis 

Four different measures for sound intensity or loudness, respectively, were examined in this study. In 

addition to the sound pressure level (dB SPL) we applied two further quantities based on a certain frequency 

weighting: the A-weighted sound pressure level (dBA) and the EBU R-128 standard (European Broadcasting 

Union) that has been recommended to predict the loudness of music (EBUR-128, 2014). For the different 
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measures based on the level we used a 125 ms time constant (‘fast’) to derive an envelope. For the overall 

level the root mean square (RMS) over the full range was applied. A more physiological approach to predict 

the loudness would be to use models that take effects of spectral and temporal loudness integration into 

account. Here the dynamic loudness model (DLM) developed by Chalupper and Fastl (2002) was used. This 

loudness model provides an estimation of the time course of loudness (instantaneous loudness).  

A common approach to analyze EEG-data is to measure a stimulus related response (e.g. auditory evoked 

potentials, event related potentials or in our case: the EFR), identify specific components and then investigate 

the changes of the amplitude and the latency of these components by changing the stimulus condition.  

In this study the data were analyzed and evaluated with respect to their relationship to loudness in three 

ways: A) EFR-amplitude and overall loudness B) EFR-amplitude and instantaneous loudness C) EFR-latency 

and overall loudness. 

A) EFR-amplitude and overall loudness  

The EFR for music stimuli is dominated by certain frequencies (Doelling and Poeppel, 2015). Mainly the 

fundamental frequency of the stimulus envelope and its harmonics can be found in the EFR. It is therefore 

appropriate to investigate the strength of these frequencies in the EEG long-term spectrum to find the 

relationship between EFR and overall loudness. This idea is encouraged by several studies showing a 

relationship between loudness and the amplitude spectrum by use of sinusoidally amplitude-modulated 

stimuli (Ménard et al., 2008; Castro et al., 2008; Emara and Kolkaila, 2010; Eeckhoutte et al., 2016). Finally 

the significance of the relationship can be tested by performing an ANOVA across sound level conditions and 

amplitudes over the subjects.     

B) EFR-amplitude and instantaneous loudness  

The relationship between the EFR amplitude and the instantaneous loudness can be investigated by analyzing 

the temporal envelope of the loudness of the stimulus and its corresponding EEG response. The EFR is 

expected to follow largely the beats of the music excerpt because of their sharp onset shape. Now measuring 

the amplitude peaks in different time frames provides the requested characteristic quantities for the evoked 

peaks in the EFR. However, according to the complexity of the EEG response to continuous stimuli and due 

the low number of available epochs caused by the comparatively long stimulus duration, a specific procedure 

for data analysis is required. In this study a new approach is introduced to perform this task.  

Time-frequency analysis was applied to the current EEG-signal (z) to create a spectrogram 𝑥(∆𝑓)(𝑡, 𝑓) by 

calculating the envelope of frequency bands between f = 3 Hz and f = 28 with Δf = 5 Hz bandwidth (bandpass 

filtering (BP∗. ..) by doing forward-backward-filtering with an elliptical filter) using the absolute value of the 

Hilbert Transformation (|H{…}|) (Eq. 4.4).  

𝑥(  ∆𝑓)(𝑡, 𝑓) = |H{BP(𝑓, ∆𝑓) ∗ 𝑧}|       (4.4) 
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This procedure is also illustrated in Fig. 4.2. To create the cross spectrogram𝜌(𝜏, 𝑓), 𝑥(  ∆𝑓)(𝑡, 𝑓) is correlated 

with the stimulus loudness 𝑦(𝑡) (Eq. 4.7). On the stimulus side for the correlation we only consider the 

maximum loudness values 𝑦𝑖  (Eq. 4.5) which are the onset peaks at 𝑡𝑖 = 𝑡𝑖−1 + 800 ms, 𝑡0 = 330 ms when 

the beat occurs (see Fig. 4.2 at the top left). 

𝑦𝑖 = max(𝑦(𝑛)), {𝑛𝜖[𝑡𝑖 − 15 𝑚𝑠, 𝑡𝑖 + 15 𝑚𝑠]}, 𝑖 = 1,…,25.    (4.5) 

 

Fig. 4.2: Procedure to create cross spectrograms. Loudness peaks at the beat (top left) were exemplary correlated with 

their corresponding EEG peaks extracted from a 30 ms time frame 90 ms delayed to the beat and bandpass filtered 

between 11,5 Hz and 15,5 Hz (middle left). These loudness peaks and EEG amplitude peaks are plotted over time 

(bottom left). The calculated Pearson correlation coefficient R (top right) is used to create a cross spectrogram for 

different delays (latency) and frequency bands (bottom right). 

On the EEG side we extract the same number of amplitude values but only those which are temporally 

attributed to the beat by a physiologically reasonable delay τ of not more than 400 ms. Now, for each 

frequency band amplitude peaks 𝑥𝑖(𝜏, 𝑓) (Eq. 4.6) in a short time frame of 30 ms were collected. 

𝑥𝑖(𝜏, 𝑓) = max (𝑥
(∆𝑓)(𝑛, 𝑓)) , {𝑛𝜖[𝑡𝑖 + 𝜏 − 15 𝑚𝑠, 𝑡𝑖 + 𝜏 + 15 𝑚𝑠]} , 𝑖 = 1,…,25. (4.6) 

In this way N = 25 EEG amplitude peaks and stimulus onset peaks were correlated with each other giving a 

correlation coefficient 𝜌(𝜏, 𝑓) (Eq. 4.7). But as mentioned above this procedure was repeated for different 

frequency bands f and time frames τ. 

𝜌(𝜏, 𝑓) =
∑ (𝑥𝑖(𝜏, 𝑓) − 𝜇𝑥) ∙ (𝑦𝑖 − 𝜇𝑦)
𝑁
𝑖=1

𝜎𝑥(𝜏, 𝑓) ∙ 𝜎𝑦
⁄ , with    (4.7) 
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𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖(𝜏, 𝑓)
𝑁
𝑖=1  and in a similar way to 𝜇𝑦, 𝜎𝑥(𝜏, 𝑓) and 𝜎𝑦.   (4.8) 

C) EFR latency and overall loudness. 

In a similar way as in section B) EFR latency was examined by considering cross spectrograms. This time, 

however, we considered the entire temporal information 𝑦(𝑡)  and 𝑥(∆𝑓)(𝑡, 𝑓) for correlation and not only 

the maximum loudness peaks. In this way N = 256*20 samples of the EEG signal and the stimulus signal were 

correlated with each other, respectively with repetitions for different frequency bands f and time frames τ. 

Apart from this the signal processing to provide the cross spectrograms was done just the same as above 

(Eq. 4.9).  

𝜌(𝜏, 𝑓) =
∑ (𝑥(∆𝑓)(𝑖 + 𝜏, 𝑓) − 𝜇𝑥) ∙ (𝑦𝑖 − 𝜇𝑦)
𝑁
𝑖=1

𝜎𝑥(𝜏, 𝑓) ∙ 𝜎𝑦
⁄     (4.9) 

By varying the sound level condition we expect to derive cross spectrograms with almost similar correlation 

patterns. Comparing these patterns for temporal shifts provides a relationship between EFR latency and 

overall loudness represented by the sound level conditions. Finally by performing an ANOVA between sound 

level conditions and the latency shifts over the subjects the significance of the relationship can be tested.     
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4.3 Results 

4.3.1 EEG-response to the stimulus 

Figure 4.3a shows the individual long-term amplitude spectrum of the EEG response to the stimulus at 

70 dB SPL. For all subjects, the spectrum is dominated by a fundamental frequency at 1.25 Hz and their 

corresponding harmonics. Note that the fundamental frequency is identical to the tempo of the music 

(75 beats/min). This provides evidence that the EFR has a periodic structure in this case. Similar observations 

were made for the EEG responses at the other sound levels employed. 

In Fig. 4.3b a short time segment of 450 ms duration of the EEG response for each beat is shown (-50 to 

400 ms) for subject 5. The 25 beats of the music excerpt are plotted over time where 0 ms represents position 

of the beat. Within the subjects the EFR to every beat shows resemblances to each other. It is striking that 

the EFR latency tends to decrease with ongoing stimulation.  

 

Fig. 4.3a-b: a: Amplitude long-term spectrum of the EEG-response at 70 dB SPL RMS (top left) of subject 3 b: EEG-

response to the beats of the stimulus averaged over 50 epochs of subject 5. The color represents the normalized 

amplitude of the EEG response (top right). 

4.3.2 Instantaneous loudness dependency of the EEG amplitude 

Figure 4.4 shows the cross spectrograms for the four different measures for sound intensity resp. loudness 

described in the methods section: Sound pressure level, A-weighted sound pressure level, Dynamic loudness 

model and the EBU R-128 standard. Each cross spectrogram depicts the correlation between the respective 

measure and the EEG response for different latencies and frequency bands. The results indicate that there 

are two components in the EFR which show significant correlation: (DLM) 𝑅140 𝑚𝑠,9 𝐻𝑧 = 0.43, 

p = 0.000016, 𝑅236 𝑚𝑠,5,6 𝐻𝑧 = 0.41, p = 0.00039 with the modelled loudness of the stimulus (top right) 
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whereas there was no significant correlation with the sound pressure level (top left). Frequency-weighted 

levels like dBA (bottom left) and the EBU R-128 standard (bottom right) achieved similarly good results dBA: 

𝑅144 𝑚𝑠,9 𝐻𝑧 = 0.47, p = 0.0000071, 𝑅240 𝑚𝑠,5,7 𝐻𝑧 = 0.42, p = 0.00039; EBU R-128: 𝑅132 𝑚𝑠,9 𝐻𝑧 = 0.44, 

p = 0.00012, 𝑅240 𝑚𝑠,5,6 𝐻𝑧 = 0.44, p = 0.00019. Generally speaking the early component that correlates with 

loudness occurs in the alpha-band of the EEG signal around 140 ms and 9 Hz. The late component occurs in 

the theta-band of the EEG signal around 240 ms and 5.6 Hz.  

 

 

Fig. 4.4: Cross spectrogram between EEG-response and stimulus loudness: a) dB SPL b) DLM c) dBA and d) EBU R-128. 

4.3.3 Dependency of the long-term amplitude spectrum on overall level 

Figure 4.5 shows the relationship between the sound pressure levels of the stimulus (40 dB, 50 dB, 60 dB, 

70 dB, 80 dB, 90 dB) and the overall amplitude of the EFR represented by their fundamental frequency at 

1.25 Hz averaged over the nine participants and 50 repetitions. With increasing level the EFR-amplitude 

increases too, but decreases at higher levels (ANOVA: F = 5.919, p = 0.0002). Other frequencies of the long-

term spectrum did not show significant differences between their amplitude and sound pressure level.  
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Fig. 4.5: Amplitude at 1.25 Hz of the long-term spectrum of the EEG-response averaged over 9 subjects and 50 epochs 

as a function of sound pressure level of the stimulus. Error bars indicate standard errors. The amplitude was normalized 

for every subject. 

4.3.4 Dependency of the latency of the EFR on overall level 

Figure 4.6a shows cross spectrograms between stimulus envelope and the respective EEG response of an 

exemplary subject at two different levels (50 dB and 80 dB). The red and the black circles mark a significant 

correlation at two positions in the time-frequency plane between stimulus envelope and EEG response. 

These correlating components can be extracted for all subjects and conditions and can be put into context 

with the overall level of the stimulus (Fig. 4.6b). The red circles are representing the component around 50 ms 

and 11 Hz, the black circles the component at 150 ms and 4 Hz. With increasing level the latency of these two 

components decreases significantly (ANOVA: 𝐹50 𝑚𝑠,11 𝐻𝑧 = 3.01, p = 0.0027, 𝐹150 𝑚𝑠,4 𝐻𝑧 = 2.55, p = 0.0477).  
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Fig 4.6a-c: a) Cross spectrograms between stimulus envelope (exemplary at 50 dB and 80 dB) and their EEG responses 

(left). Two correlating components are marked (red and black circles) b) The latencies of the correlating components 

over sound intensity of the stimulus.  Error bars indicate standard errors. (top right) c) schematic representation of late 

auditory evoked potentials temporal and spectro-temporal (bottom right). 

4.4 Discussion 

We analysed the amplitudes of the EFR as a function of loundess change within the stimulus and as a function 

of six different sound level conditions, by evaluating the EFR long-term spectrum. The results indicate that 

the EFR amplitude increases with increasing sound level from 40 dB to 80 dB at the modulation frequency of 

1.25 Hz in the EEG long-term spectrum, as expected. At higher levels, however, the intensity of the amplitude 

seems to saturate. Up to a certain point saturation is expected because the overall EEG amplitude is limited 

by saturation of firing neural activity. 
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Further the correlation between EFR amplitude and stimulus intensity could be shown by evaluating their 

cross spectrograms as demonstrated in Figure 4.4. Two correlating components were identified, one around 

145 ms at 10 Hz, and a second one around 240 ms at 2 Hz. These components can be associated with cortical 

neural activity due to their comparatively long latencies. This result is in line with some earlier studies that 

show that the amplitude of cortical evoked potentials is sensitive to changes in sound intensity (Hegerl et al., 

1994). Comparing the cross spectrograms (Fig. 4b-d) with an idealized spectrogram of an auditory evoked 

potential as sketched in Fig. 4.6c, the components identified with our procedure are in line with the spectro-

temporal appearance of AEP. The first component can be associated with the N1-P2 complex of the AEP 

whereas the second component is linked with the P2-N2 complex. 

By evaluating the cross spectrograms between stimulus envelope and the EFR spectrogram as demonstrated 

in Figure 4.6 for all conditions a correlation between overall level and the latencies of two EFR components 

was demonstrated. These two components were found around 40-70 ms at 11 Hz and around 120-150 ms at 

4 Hz (Fig. 6a). Again, the components may be associated with the AEP complexes: the first component with 

the P1-N1 complex in AEP whereas the second component with the N1--P2 complex (Fig. 6c). We cannot rule 

out that in this analysis using the overall level we are dealing with the same components as in the analysis 

employing the instantaneous level resp. loudness, irrespective of the difference in latencies as the deviations 

may simply be caused by the different approaches of the two methods. Nevertheless, it appears that there 

are three different components that correlate with the level resp. loudness. Both methods were able to 

detect one common component (N1-P2) and each of them one unique component (P2-N2, P1-N1). However, 

the cross correlation of the time signal of the whole stimulus with its corresponding EEG response holds the 

risk to detect only correlating activation of certain distinct events in the stimulus rather than a relationship 

to the stimulus loudness. Therefore we prefer the method making use of the processed and thereby reduced 

data to correlate only values that represent the loudness of the stimulus in the corresponding activation. 

Our results confirm the results of previous studies that the amplitude of the EFR correlates with level resp. 

loudness (Ménard et al., 2008; Castro et al., 2008; Emara and Kolkaila, 2010; Eeckhoutte et al., 2016). 

However, most of these studies dealt with simple stimuli like amplitude modulated sinusoids (e.g. Ménard et 

al., 2008; Eeckhoutte et al., 2016). To our knowledge, our data represent the first demonstration of loudness 

correlation with a rather complex music stimulus for a parametric change of stimulation level. But our 

findings match closely with previous studies. The dominance of cortical components in the EFR is in line with 

the observations of Doelling and Poeppel (2015). The modulation frequency of our music sequence was 

1.25 Hz which is above this limit suggested by Doelling and Poeppel (2015). Beyond that we were able to 

show that this cortical response correlates with the stimulus loudness and can be separated in two 

components.  

Other studies also suggested that loudness perception is primarily done cortically (e.g. Röhl and Uppenkamp, 

2012; Behler and Uppenkamp, 2016). They showed in an fMRI study that the correlation between the BOLD 

signal and perceived loudness increases at later stages of the ascending auditory pathway and reaches its 
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peak at the posterior medial Heschl’s gyrus. Similar observations were done by Thwaites et al., 2016. They 

found in an MEG study several cortical components corresponding to the loudness of speech. They used cross 

correlation to find the best correlating latencies and found four components at 45 ms, 100 ms, 165 ms and 

275 ms. Furthermore they were able to prove that the latest component shows higher correlation to the 

short-term loudness (i.e. low pass filtered) than to the instantaneous loudness. Hence they concluded that 

the latest component represent a percept that already reflects processing at a higher stage in the hierarchy 

of loudness processing. The loudness related latencies in our study were in the same range as the ones 

reported by Thwaites et al. (2016) although we could identify only two components instead of four. This 

might be owed to the use of EEG instead of MEG data in our study, the difference in length and type of the 

stimulus, or the difference in the processing strategy of the data. 

4.5 Conclusion 

The main findings of the current study are: 

 There is a relationship between the overall level of the stimulus and the amplitude at 1.25 Hz of the 

EFR long-term spectrum. The EFR amplitude increases with increasing sound level from 40 dB to 

80 dB and seems to saturate from 80 dB to 90 dB. 

 Two components of the cortical response are correlated to the instantaneous stimulus loudness, 

one around 145 ms at 10 Hz, and a second one around 240 ms at 2 Hz.  

 Without any frequency weighting the envelope of stimulus is not correlated to the strength of the 

cortical response.  

 The overall level is also correlated to the latency of two components of the cortical response, one 

around 50 ms at 11 Hz and a second one around 150 ms at 4 Hz.   

In conclusion, the current data suggest that the main factor on which level resp. loudness correlates in EEG 

data are based on is the type of frequency weighting employed. The finding that even a comparatively simple 

measure like e.g. EBU R-128 results in a reasonable correlation with recorded EEG responses might at some 

stage allow for the implementation of an EEG-based brain-computer interface, which may be of use in an 

adaptive hearing aid with automatic adjustment of amplification, based on the perceived loudness of 

fluctuating stimuli. 
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4.6 Appendix: Neural loudness processing of perceived 

music by ERP 

Previously, the EEG response to music was investigated to find neural loudness correlates. A sequence from 

a classical piece of music lasting 20 s was presented at 6 different sound levels (cf. Chapter 4.2.1). 

Furthermore, in Chapter 4.2.5B the amplitude of the envelope following response (EFR) was correlated to 

the instantaneous loudness of the stimulus at different frequency bands and latency shifts. However, only 

one level condition was considered in this study. In the concluding discussion in Chapter 4.4, it was pointed 

out that EFR is dominated by auditory evoked potentials (AEP). This is not surprising. It is well studied that 

music often elicits several features that are measurable by event related potentials that correspond to the 

cortical deflections of the AEPs. In this section, it is examined whether the peak amplitude of the P1, N1, P2 

and N2 of the ERP of all 6 conditions correlates with the loudness of the eliciting events.  

 

Fig. 4.7: EEG response (0 - 2.5 s) to the stimulus for all levels. Stimulus onset and three events on the beat characterized 

by high loudness change elicit an ERP. The ERP of the first event is superimposed by the N2 of the onset ERP. 

4.6.1 Level versus loudness 

The first 4 ERPs of the 6 different conditions elicited by the stimulus are illustrated in Figure 4.7. The first ERP 

is the onset response, i.e. the response of the beginning of the stimulation. After that, mainly the beat 

generates the subsequent ERPs. It can be seen from the onset response that both latencies and the amplitude 

peaks of the individual potentials depend on the stimulus level. For further analysis, the peaks of the 

potentials for each event are extracted. The onset response is not used for the analysis. Furthermore, the 

ERP of the first event is not used because the ERP is adapted by the onset response. After peak extraction, 

the amplitude values of each potential can be correlated with the calculated levels and the modeled loudness 

(Dynamic loudness model) of these events. In Figure 4.8 a comparison between level and loudness is shown 

by illustrating their correlations with the individual potentials. Significant correlations were mainly found for 
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correlations between the loudness model and the amplitude of N1 and P2 potentials. The R-values for each 

condition and the corresponding p-values can be found in Table B1. 

 

Fig. 4.8: Comparison of the correlation of level and loudness model with the peak amplitude of the cortical potentials 

of the ERP (P1, N1, P2 and N2). The error bars represent the standard deviation across the conditions.  

 

 
 

Condition 
/ dB SPL 
(RMS) 

                  Cortical potentials  

P1 N1 P2 N2 

  40 -0,13   -
0,69** 

   
0,60** 

 0,02 

D
LM

 (
So

n
e)

  50 -0,18  -0,42*  0,51* -0,09 
 60 -0,03  -0,43* 0,35 -0,34 
 70 -0,18 -0,36  0,48* -0,15 
 80 -0,15 -0,24 0,40 -0,07 
 90 -0,18 -0,27  0,47* -0,27 

  40 -0,28 -0,26 0,06  0,15 

So
u

n
d

 le
ve

l 
 (

d
B

 S
P

L)
  50  0,04 -0,19 0,25 -0,22 

 60  0,24 -0,27 0,30 -0,39 

 70 -0,19  0,05 0,14 -0,11 

 80 0,29   0,47* 0,02 -0,16 

 90 -0,04  0,37 -0,07  0,01 

Tab. 4.2: Correlation of level and loudness model with the peak amplitude of the cortical potentials (P1, N1, P2 and N2) 

for different six different level conditions. * p < 0.05 (significant), ** p < 0.01 (highly significant). 
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4.6.2 Loudness change  

The research on N1 and P2 suggests that they reflect a matching process, that is, whenever a stimulus is 

presented, it is matched with previously experienced stimuli (Sur et al., 2009). Hence, it makes sense to 

consider the loudness change instead of the loudness at the time of the event. The loudness change is the 

loudness at a certain time minus the average loudness over a recent time range. The recent time range is 

defined by a period of remembrance. Therefore, we use the term memory-time to describe this period. By 

varying the memory time, it can be examined which time range has to be considered for the matching process 

of the N1 and P2. Figure 4.9 illustrates this analysis by plotting the R values of the Pearson correlation for 

both potentials over the memory-time. The black vertical lines in this figure show the moment of the previous 

event. If the memory-time exceeds this value, the loudness change value contains the loudness of the 

previous event. The correlation between the loudness change and the N1 increases until the period of 

memory-time reaches the moment of the previous event. Thereafter, the correlation decreases again. This 

indicates that the loudness change should contain the recent loudness up to the previous event. This 

conclusion is even more marked if the correlation function between loudness change and the P2 is 

considered. A large increase in correlation is shown for memory-times containing the previous event. 

 

Fig. 4.9: Correlation between the peak amplitude of cortical potentials N1 and P2 and the loudness change with variation 

of memory-time. The memory-time is the time range whose mean loudness serves as a reference for the calculation of 

the loudness change. The events (black) are the time frames when strong loudness changes in the stimulus elicit ERPs. 
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Fig. 4.10: The peak amplitude of N1 of all event-triggered ERPs of the stimulus for different level conditions plotted 

against different loudness transformations. A. Calculated Sone-loudness of the DLM; Circles are the N1 of the ERPs of 

the stimulus onset; Squares are the N1 of the ERPs of the first event, which is still superimposed by the N2 of the onset 

response. B. Loudness change instead of loudness using a memory-time of 0.95 s. C. Recalibrated (or normalized) 

loudness change in Sone calculated by considering the ratio of loudness and overall loudness (95 percentile) of the 

respective condition. D. The Sone-loudness is transformed into CU-loudness by using the transformation function from 

Heeren et al. (2013). 

A 

B 

C 

D 
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4.6.3 Normalized loudness 

The Previous analyses have shown that loudness, and especially loudness change, are best related to 

maximum deflections of N1 and P2 potentials. However, so far the conditions were examined individually 

and not interrelated. Using the example of N1, the first (A) and second (B) plots in Figure 4.10 show that 

loudness or loudness change as variables are not sufficient to explain all conditions together. The amplitudes 

of the EEG response seem to be at about the same level, regardless of condition. This suggests that a 

recalibration process is taking place, i.e. a charge to the averaged received loudness. This can simply be 

modeled by normalizing the loudness change to the overall loudness of each condition: 

EEG ∝
𝐿(𝑡)−<𝐿>𝜏,𝑡

<𝐿>
       (4.10) 

where τ represents the memory-time, L the loudness and EEG the amplitude of the N1 and P2 peaks. In Fig. 

4.10C it can be shown that in this way all N1 peaks can be explained by one model. Furthermore, even the 

onset response (circles) can be integrated into the model. An integration of the adapted ERP (squares, the 

ERP influenced by the onset response) can possibly succeed if the influence of the onset response is 

regressed. 

 

Fig. 4.11: Correlation of the peak amplitude of N1 (red, bottom) and P2 (blue, top) with the modeled Sone (right) and 

CU loudness (left). Normalized loudness means recalibrated loudness change as in Fig. 4 C-D. 
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Finally, the question arises whether the peaks of N1 and P2 can be better explained by Sone or CU-loudness 

growth function. Therefore, the normalized loudness change in Sone and CU is correlated with the amplitude 

peaks of the two potentials. The CU-loudness was derived from the Sone-loudness using the transformation 

function from Heeren et al. (2013).  

CU = 2,6253 ∙ lg(sone + 0,0887)3 + 0,7799 ∙ lg(sone + 0,0887)2 

+8,0856 ∙ lg(sone + 0,0887) + 13,4493      (4.11) 

Figure 4.11 illustrates that the N1 is more related to the Sone-loudness (R = -0,49), while the P2 is more 

related to the CU-loudness (R = 0,52).  

4.6.4 Summary 

The results have shown that the peak of the excursion of N1 and P2 is not related to the level, but to the 

loudness. As already mentioned in Chapters 4 and 5, this claim is still controversial, as studies with pure tone 

pulses miss the expected compression that occurs with loudness (Näätänen and Picton, 1987; Hegerl et al. 

1994). The problem of these studies is the use of narrowband sounds, which induce neural adaptation 

(Chapter 5), and the disregard of the matching function of N1 and P2 (Sur et al., 2009), which has also been 

shown in this experiment. Here, it was found that the normalized loudness change can explain the N1 and P2 

together across all conditions. Surprisingly, music proves to be an extremely suitable stimulus for 

investigating the relationship between loudness and cortical potentials because it is a broadband sound and 

is evidently quite robust to neural adaptation. Bearing in mind the matching function of N1 and P2, a 

fundamental problem arises for almost all EEG paradigms: the analysis of the auditory evoked potentials is 

only possible by repeating the presentation of the conditions. A paradigm with repetitions has the 

undesirable effect of affecting the beginning of the epoch of an EEG response from the end of the previous 

epoch. This is especially a problem for potentials like the N1 and P2 that compare current events with 

previous ones. Paradigms involving repetitions also recalibrate the cortical potentials to a averaged received 

loudness. This is ignored in almost every EEG loudness study. However, there were differences in the strength 

of the correlation in the choice of loudness growth function.  

In this experiment, it turned out that the N1 rather represents the Sone-loudness whereas the P2 rather 

represents the CU loudness. This implies that categorical loudness is a processing step at later stages in which 

sensory processed loudness is categorized into categories like ‘soft’, ‘loud’ or ‘too loud’. It is also indicates 

that the transition from N1 to P2 also represents the transition from sensory to perceptual loudness. 
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5 Neural representation of loudness: Cortical evoked 

potentials in a loudness recalibration experiment 

 

Abstract 

Loudness recalibration comprises differences in loudness judgments of a target stimulus according to the 

presence of a preceding recalibrating tone. Increasing the inter-stimulus intervals (ISI) between recalibrating 

tone and target typically enhances the effect of the recalibrating tone which then reduces the loudness of 

the target stimulus. On the one hand the recalibration effect is interesting for loudness research in 

neuroscience since identical stimuli show different loudness, thus providing evidence whether neural EEG 

responses indicate a coding of physical intensity or if they provide a loudness correlate. On the other hand, 

finding neural stages that provide loudness correlates may help to segregate whether loudness recalibration 

is a change in the decisional process - represented on rather late processing stages - or if the underlying 

reason is a specific sensory adaptation of the neural stimulus representation. To find out if any cortical 

response in the latency range of 75 to 510 ms behave like a loudness correlate, we investigated the EEG 

response during a psychoacoustical loudness recalibration experiment with different ISI. With increasing ISI 

the strength of the N1-P2 deflection of the respective electroencephalography response decreases in a 

similar way as the loudness perception of the target tone pulse. This indicates a representation based on 

loudness rather than on intensity at the corresponding processing stage. Assuming that the N1-P2 deflection 

does not represent a decision-processing stage this indicates furthermore that context effects cause an 

adaptive change of the neural stimulus representation rather than changing only the decisional processes.  

5.1 Introduction 

Loudness is an auditory measure of perception and can essentially be defined as the perceived intensity of a 

sound. However, it is well known for decades that besides intensity other physical parameters such as 

spectral and temporal properties contribute to loudness perception (Stevens, 1957; Zwicker, 1958; Zwicker 

and Fastl, 1999; Moore, 2013). It is assumed that crucial steps of loudness processing are located in the 

peripheral parts of the auditory system (i.e. outer and inner ear, brainstem and thalamus). While many 

loudness effects are linked to the physical properties of the stimulus there are experiments indicating 

loudness differences for identical stimuli caused by changeable contexts (for a review see, e.g., Arieh and 

Marks, 2011). In psychophysics the common idea for a long time was that these contextual effects reflect 

relatively late processes of judgment, i.e., a bias in response, rather than changes in the internal perceptual 

representation of sound intensity (Anderson 1975; Stevens 1958; Treisman, 1984). However, more recent 

psychoacoustical research on contextual effects of loudness show that besides decisional processes there is 

evidence for explicit changes in the underlying loudness representation (e.g., Schneider and Parker, 1990; 
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Algom and Marks, 1990). Neurophysiological indications, confirming those changes of loudness 

representation would provide important information for the understanding of loudness processing. 

Neurophysiological correlates of contextual loudness effects that are related to processing stages which are 

not explicitly involved in decision processing or are even known to be not consciously accessible would 

provide clear evidence for a context related adaptation of neural loudness representation.  

From the neurophysiological side many studies have shown that the change of sound intensity is represented 

by respective changes of neural activity, in the brainstem (Bauer et al., 1974; Serpanos et al., 1997; Fobel and 

Dau, 2004; Junius and Dau, 2005; Dau et al., 2005) as well as in the auditory cortex (Näätänen and Picton, 

1987; Hegerl et al., 1994; Hoppe et al., 2001; Mulert et al., 2002; Mariam et al., 2012; Potter et al., 2017). 

Both can be measured indirectly by electroencephalography (EEG). Generally, those studies treated the 

analysis of auditory evoked potentials (AEP) that can be simply generated by clicks or tone pulses. While most 

authors agree on the representation of sound intensity in AEPs it remains rather unclear whether the 

observations are indicating only a correlation to intensity or a link to the perceived loudness. Studies 

investigating this topic provide results with contradictory evidence (Pratt and Sohmer, 1977, Babkoff et al., 

1984, Näätänen and Picton, 1987; Darling and Price, 1990, Serpanos et al., 1997, Hoppe et al., 2001; Silva 

and Epstein, 2010, 2012). Since sound intensity is the factor with the greatest influence on loudness, intensity 

and loudness show a close covariation making it rather difficult to distinguish whether a neural response is 

better correlated  with one or the other. Previous studies typically tried to detect compression effects in the 

neural response to distinguish loudness from sound intensity (Menard et al., 2008; Castro et al., 2008; Emara 

and Kolkaila, 2010; Eeckhoutte et al., 2016; Behler and Uppenkamp, 2016). It can be assumed that a major 

part of the compression of the auditory dynamic range takes place in the cochlear. Consequently, these 

studies are not clear on whether this peripherally compressed intensity is coded in the respective AEPs (which 

may be expanded at other stages). On the contrary, correlations between neurophysiological responses and 

contextual loudness effects might provide evidence for the representation of loudness rather than sound 

intensity on the corresponding processing stages.  

Studies of the context effects of loudness typically show that the presentation of a relatively strong inducing 

tone reduces the loudness of a succeeding weaker tone of the same frequency (Marks, 1988; Mapes-Riordan 

and Yost, 1999; Marks, 1994; Scharf, 2002; Nieder et al., 2003; Wagner and Scharf, 2006).  The amount of 

reduction depends on the duration between successive tones which was shown by Arieh and Marks (2003). 

They used a paradigm that investigated loudness perception of a 2500 Hz tone pulse at 60 dB SPL – referred 

to as target tone - while varying the loudness context. The respective loudness context is realized by a prior 

presented tone pulse at 80 dB SPL of the same frequency – referred to as recalibrating tone. The loudness in 

a given context is then measured by adjusting a third tone pulse (comparison tone) at 500 Hz - presented 1 s 

after the target tone – to be equally loud (cf. Fig. 1).  
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Fig. 5.1: The stimulus sequences used to measure the adaptation of loudness recalibration. The recalibrating tone 

creates the context of the target tone. By varying the inter-stimulus interval (ISI) between the recalibrating tone and 

the target tone the adaptation process of the loudness recalibration is measured. The Comparison tone level was 

adjusted in an adaptive procedure to determine the loudness of the target tone. 

They showed that high level contexts result in a reduced loudness of the target tone. They termed this 

loudness adjustment to the previous context as recalibration effect1. Furthermore, they investigated the time 

course of the loudness recalibration by varying the length of the inter-stimulus intervals (ISI), i.e. the intervals 

between the two tone pulses. The result of this study was that loudness recalibration decreases with 

increasing length of the interval until it converges after about 2 s to a fixed loudness value. They suggested 

that the prior tone pulse determines the context of the loudness while the human auditory system needs 

some time to complete this recalibrating process.  

Previous EEG studies investigated the change of the cortical AEP for a series of tone pulses using the same 

frequency with varying stimulus onset asynchrony and ISI (Davies et al., 1966; Nelson and Lassman, 1968; 

Lanting et al., 2013). These studies found a strong decrease of the neural response strength to the second 

and later presented tone pulses with respect to the first tone. This decrease of strength is referred to as 

“repetition suppression”. It can be assumed to be a consequence of an overloading-related reduction of 

synchronous firing neurons or specific neural circuits. Furthermore, they found that by increasing the length 

of the intervals between tone pulses, the repetition suppression decreases, i.e. the related cortical 

AEPs/responses increase again. Assuming that the strength of the cortical components correlates positively 

with loudness as has been proposed in the EEG literature (Näätänen and Picton, 1987; Hegerl et al., 1994; 

Hoppe et al., 2001; Mulert et al., 2002; Mariam et al., 2012; Potter et al., 2017) these findings appear to 

contradict the psychoacoustical results of Arieh and Marks (2003a). However, Lanting et al., (2013) showed 

that the different cortical components have different adaptation properties. They suggested that mainly 

cortical components at later stages, particularly the vertex-positive deflection around 200 ms (P2), are 

involved in the decrease of the repetition suppression. Therefore, it might be possible to observe loudness 

recalibration to less affected components, for example the N1. A magnetoencephalographic study performed 

                                                           

1 More recent literature often refers to this effect as induced loudness reduction (ILR). However, we keep the nomenclature used in the study by 

Arieh and Marks which is partially reproduced here 
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by Lu et al. (1992) supports this idea by suggesting a relationship between loudness recalibration and the 

vertex-negative deflection around 100 ms, the N1m. However, the relationship found by Lu et al. (1992) is 

based on the observation of a similar time constant for the increase of N1m and the observed changes in 

loudness, independent of observing psychoacoustically an increase or decrease in loudness. Another study 

by Oberfeld (2010) measured the cortical response to a target tone and its loudness for two different level 

conditions (30 and 60 dB) with a recalibrating tone at 90 dB and an ISI of 120 ms. Their results showed that, 

in addition to repetition suppression, there was a similar change in N1 amplitude and, furthermore, P2 

amplitude with loudness.  

The goal of the current study is to find features in the cortical AEP responses that possibly correlate directly 

with the loudness differences caused by context effects. Therefore, we included the psychoacoustic paradigm 

of Arieh and Marks (2003a) directly into an EEG experiment. The synchronous measurement of both provides 

two possible advantages: (a) The recorded EEG data is directly linked to the psychoacoustic outcome – no 

effects have to be considered due to different attention or physiologic status of the subject, which may occur 

when performing EEG and psychoacoustic measurements at different times. (b) A possible enhancement of 

the neural activation, since recent studies recommended active listening tasks to enhance neural activation 

related to the investigated features (Öhman and Lader, 1972; Bennington and Polich, 1999; O’Sullivan et al., 

2015). 

The features we investigate are the condition-related changes of strength and latency of the cortical 

components in the AEP. The cortical components that we consider are the vertex-negative deflection around 

100 ms (N1), the vertex-positive deflection around 200 ms (P2) and the vertex-negative deflection around 

250 ms (N2). These selected components are popular candidates to represent cortical activation at different 

stages. We tested if (1) the strength of cortical components increase with increasing loudness; and (2) the 

latency of cortical components is changing with loudness. 

The eliciting target stimulus is identical in the different ISI-conditions and due to the sufficiently long ISIs, 

effects caused by peripheral interactions of recalibrating tone and target tone (e.g. forward masking) appear 

unlikely. Therefore, a relationship between cortical AEPs and context-related loudness changes would 

provide evidence for the neural representation of loudness rather than a representation of intensity input 

on this processing stage. The N1-P2 deflection is assumed to be associated with sensory evoked potentials 

that are most probably not representing conscious processes such as attention or decision making (Polich, 

2007) while later AEPs, like N2 may already reflect as well “cognitive control” mechanisms (Folstein and 

Petten, 2008). Therefore, a correlation between earlier cortical AEPs and the contextual loudness would 

provide some evidence that the neural representation of the stimulus loudness is adapted rather than 

observing a bias in response only, whereas a correlation only with N2 or later AEPs would indicate the 

opposite. 
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5.2 Methods 

5.2.1 Subjects 

Twelve subjects, six male (S1, S3, S6, S7, S10, S11) and six female (S2, S4, S5, S8, S9, S12), with clinically normal 

hearing participated in the experiments. All had hearing thresholds ≤ 15 dB HL at standard audiometric 

frequencies between 125 and 8000 Hz. The subjects were right-handed, between 20-30 years old and were 

paid volunteers.  

All experimental procedures were approved by the ethics committee of the University of Oldenburg. 

5.2.2 Stimulation and recording 

The stimuli used in the experiment are different sequences of sinusoidal tone pulses with overall duration of 

50 ms including 5 ms cosine rise and decay. A sequence generally consisted of one 2500 Hz recalibrating tone 

at 80 dB SPL, one 2500 Hz target tone at 60 dB SPL and one 500 Hz comparison tone with adjustable sound 

level. The four tested conditions were presented in pseudo-randomized order and differ in the length of the 

ISI between recalibrating and target tone: (i) without a recalibrating tone, and with a recalibration tone at (ii) 

150, (iii) 525, and (iv) 1650 ms. For all conditions the ISI between target and comparison tone was 1000 ms. 

Signal generation and conditioning including attenuation was performed digitally on a PC by a MATLAB 

R2006b (the Mathworks) based custom made software. The stimuli were digital-to-analog converted at a 

sampling frequency of 44,1 kHz using a Fireface UCX (RME) as external sound device and were presented 

diotically via ER 2 insert earphones (Etymotic Research) driven by a HB7 headphone buffer (Tucker Davies 

Technologies).  

The subjects response to the psychoacoustic task via a button-response box, which sends a response specific 

trigger signal to the EEG recording system to be stored in the EEG data and gives back the response to the 

stimulation PC to control the psychoacoustic measurement procedure. 

Similar to the study of Arieh & Marks (2003), a randomized and adaptive two-alternative forced choice two-

up, two-down (2-AFC-2up-2down) procedure was used for every track, based on the framework of the AFC 

software package, a tool designed to run psychoacoustic measurements in Matlab (Ewert, 2013). This 

adaptive rule converges to the target probability of 50 % on the psychometric function. The loudness of the 

2500-Hz target tone at 60 dB SPL was estimated from the results for the measurement of two interleaved tracks, 

referred to as ascending and descending track respectively. The step size of the sound level of the comparison tone 

changed stepwise during the adaptive process. After three reversals of direction, i.e. the transition points of the 

staircase procedure, the step size of 4 dB decreased to 2 dB. The whole procedure ended after nine reversals in each 

track. The ascending track started with a comparison tone sound level at 40 dB SPL, the descending track at 80 dB SPL. 
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Due to the adaptive 2-AFC procedure, the numbers of trials in each run varied. The average number of runs was 156, 

but varied between 77 and 210. 

Parallel to the loudness estimation procedure EEG was recorded with a Biosemi Active Two system using 64 

channels with the electrodes placed according to the international 10-20 system. Contact gel (Signa gel 

Electrode Gel, Parker) was used to ensure good contact between electrodes and scalp. The electrode offset 

was not higher than 10mV. The recordings were collected and digitalized on a second PC using the ActiView 

software (6.03, Biosemi) at 1024 Hz sampling frequency without using any filters. Each session lasted 10–

15 min. A 10 min break separated consecutive sessions.  

5.2.3 Data processing and analysis 

The psychoacoustic data from the adaptive loudness matches provide a series of loudness judgments that 

gradually converge to the value of equal loudness. The point of equal loudness between the target and 

reference was calculated by averaging the last six reversal points. Subsequently, the mean value was 

determined from the ascending and descending track. The listeners were instructed to ignore the 

recalibrating tone and judge which tone was louder, the target or the comparison. 

All EEG data was processed offline using MATLAB. The average of all electrodes was used as virtual reference 

electrode. For data evaluation a cluster of nine electrodes around the Fcz-electrode (Fcz, F1, F2, Fz, C1, C2, 

C3, C4, Cz) was considered. Generally, diotical stimulation favors the recording at central electrodes. 

Furthermore, the findings of Lanting at al. (2013) regarding the topographic activation of the responses N1 

and P2 to the target tone showed that some of the frontal electrodes were most appropriate to measure the 

AEP to the consecutive tone pulse. After applying a high-pass filtering at 0.5 Hz to reduce the electrode drift 

and a low-pass filtering at 8 Hz to reduce alpha-wave artefacts, the data were down-sampled to 64 Hz 

sampling frequency. Further artefact reduction caused by eye movement was done by using independent 

component analysis. (MATLAB toolbox eeglab 4.4b). For the two short ISI-conditions (150 ms, 525 ms) there 

was a temporal overlap between the auditory evoked potentials of the recalibrating and the target tone. 

Therefore, the response to the recalibrating tone from the longest ISI-condition (1650 ms) was subtracted 

from these conditions.  Afterwards the data were separated to epochs. The epochs were averaged using an 

iterated weighted averaging procedure (Riedel and Kollmeier, 2003) with two iterations. This procedure 

provides weights for each epoch according to the estimated amount of noise contamination in it.  

In the focus of our investigation were the amplitudes and latencies of the cortical components N1, P2 and 

N2. We considered using the peak-to-peak amplitude between the P2 and N1 deflections and between the 

N2 and P2 deflections as well as the mean amplitude over different time windows as representations of these 

components. Peak-to-peak amplitudes of the components were extracted by selecting the minimum 

amplitude for the negative components (N1, N2) or the maximum for the positive component (P2) within 

physiologically reasonable time windows, respectively. The respective time windows were chosen for N1 
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from 75 to 170 ms, for P2 from 170 to 310 ms and for N2 from 200 to 510 ms. The width of these windows 

was chosen based on the measured temporal occurrence of the components in the mean EEG response to 

the target tone. The position of each peak was used as representation of the latency of the respective cortical 

component. 

5.2.4 Statistical analysis 

We aim to test whether the trend of the evoked responses of the target tone is driven by a decrease of the 

repetition suppression, or driven by the adaptation of the loudness recalibration. Therefore, we compared 

the order of the averaged AFC judgements for the different ISI-conditions with the order of the strength of 

the cortical components. An analysis of variance for repeated measures (rANOVA) including the Mauchly-

test for sphericity and a corresponding Greenhouse-Geisser correction was done to find out whether the 

means of the prospective neural correlates over subjects differ about conditions. This was also done for the 

sound levels derived from the AFC judgements. Furthermore, we compared the changes in the loudness 

matches to the changes in the EEG amplitudes within subjects. We used the approach of Bland and Altman 

(1995) for the calculation of correlation coefficients with repeated observations.  This method allows to 

investigate the direct relationship between individual loudness matches and individual EEG responses. 
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5.3 Results 

Figure 5.2 illustrates the results of the AFC judgements for the three ISI-conditions. By increasing the ISI 

between the recalibrating tone and the target tone the level of the adjusted comparison tone decreases. This 

implies a decrease in loudness of the target tone. The level difference between the ISI-conditions 150 ms and 

525 ms is about 4 dB, whereas it amounts to only 2.5 dB between 525 ms and 1650 ms. The decreasing effect 

of the recalibrating tone on the loudness perception of the target tone shows high significance (rANOVA: F = 

8.789, p < 0.004, epsilon = 0.862, dfbetween = 1.724, dferror = 18.973). 

 

 

Fig. 5.2: The level of the comparison tones was adjusted in equal loudness to the 60 dB target tone for the baseline 

condition and several inter-stimulus interval conditions. ∆L represents the level difference between the adjusted 

comparison tone level under baseline condition and the comparison tone levels under ISI condition. The error bars 

indicate the standard errors across subjects. If ∆L > 0 the target tone of this ISI condition is perceived louder than in the 

baseline condition and vice versa. 

The recalibrating tone has also a considerable effect on the EEG-response of the target tone. The strength of 

cortical components is clearly reduced for all conditions compared with the baseline-response (Fig. 5.3). But 

across the ISI-conditions the mean amplitudes of the different cortical components show disparate behavior 

(Fig. 5.4). The mean amplitude difference of N1-P2 decreases with increasing ISI significantly (rANOVA: F =4.9, 

p = 0.023, epsilon = 0.862, dfbetween = 1.724, dferror = 18.963). On the other hand, the mean amplitude 

difference of P2-N2 increases proportionally with the ISI (rANOVA: F = 4.68, p = 0.02 epsilon = 1, dfbetween =

2, dferror = 22). However, these significant effects could only be shown for the mean amplitude not for the 

peak-to-peak amplitude. The recalibrating tone seems to have no significant effect on the latencies of the 

cortical components (Fig. 4). The results are summarized in more detail in Table 1 including the absolute 

amplitudes of the cortical components for peak-to-peak and mean amplitude methods as well as their 

corresponding latencies. 
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Fig. 5.3: The averaged EEG-response to the target tone (starting at 0ms) and to the loudness-adjusted comparison tone 

(starting at 1050 ms) for the different ISI-conditions. The averaged EEG response to a 60 dB tone pulse and to a 

corresponding adjusted comparison tone with the absence of a recalibrating tone is represented by the black line 

(Baseline condition). Both tone pulses have a similar cortical response, characterized by a pronounced N1 with a peak 

at 100 ms, a pronounced P2 with a peak 190 ms, and an N2 with a peak at 320 ms with an extended reload. Comparing 

the conditions, for all inter-stimulus intervals a reduced strength of the target tone response is shown. Furthermore, 

the strength of their N1-P2 deflections shows a decrease with increasing inter-stimulus interval. 

Correlation analysis between individual loudness matches and individual EEG responses showed a significant 

correlation between N1-P2 amplitude and loudness matches (𝑅peak−to−peak = 0.31, p = 0.03; 𝑅mean = 0.38, 

p = 0.01). There was no significant correlation between the P2-N2 amplitude individual loudness. The 

latencies of the cortical components also do not correlate with the individual loudness matches. 

Figure 5.5 provides the topographic activation (topoplot) of the EEG responses to the target tone (Fig. 5a), 

the comparison tone (Fig 5b) and to the target tone of the baseline condition. This was done by applying a 

principal component analysis (PCA) across the 64 electrodes and the time range of 350 ms after each tone 

pulse. This method is a common approach to find out which electrodes have the highest portion of the 

evoked potentials (Tremblay et al., 2014). For the purpose of visualization, the weightings of the first PCA-

component are displayed as topoplots. The topoplots represent the activation of the electrodes that are 

involved in the first component. When comparing the activation resulting from the target tone with the one 

from the comparison tone or from the target tone of the baseline condition, respectively, a shift of the 

relevance of electrodes is visible from the frontal to the central electrodes. 
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Fig. 5.4: Boxplots of the investigated features of the EEG response to the target tone for the three different ISI-

conditions. At the top amplitude differences between the N1-P2 (top left) and P2-N2 (top right) are depicted. The 

amplitudes were extracted by using the mean amplitude method. At the bottom the latencies of the N1 (left) and of the 

P2 (right) are displayed. The mean values across the subjects are marked by black triangles.         

Figure 5.5 provides the topographic activation (topoplot) of the EEG responses to the target tone (Fig. 5.5a), 

the comparison tone (Fig 4.5b) and to the target tone of the baseline condition. This was done by applying a 

principal component analysis (PCA) across the 64 electrodes and the time range of 350 ms after each tone 

pulse. This method is a common approach to find out which electrodes have the highest portion of the 

evoked potentials (Tremblay et al., 2014). For the purpose of visualization, the weightings of the first PCA-

component are displayed as topoplots. The topoplots represent the activation of the electrodes that are 

involved in the first component. When comparing the activation resulting from the target tone with the one 

from the comparison tone or from the target tone of the baseline condition, respectively, a shift of the 

relevance of electrodes is visible from the frontal to the central electrodes. 
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Fig. 5.5a-c: Topographic map of the PCA weightings / eigenvector of the first component to represent the neural activity 

of each tone response over the scalp; a. target tone response; b. comparison tone response c. target tone response at 

the baseline condition. Comparing the weightings of the responses to target tone (a) and the comparison tone (b) in the 

case of the occurrence of a recalibrating tone a shift of the most relevant electrodes towards the front of the scalp can 

be seen. In comparison, the response to target tone of the baseline condition (c) shows a similar activation pattern as 

the response to the comparison tone (b). The change from a frontocentral to a more central topographic representation 

may indicate a change in the underlying neural sources involved in the processing of the first and the second of two 

successive tones at the same frequency. 

5.4 Discussion 

The recalibration effect for loudness found by Arieh and Marks (2003a) was successfully reproduced for the 

three tested conditions in the psychoacoustical experiment. However, level differences between the 

conditions are slightly lower than found in Arieh and Marks (2003a). This result can be related to the different 

experimental context, given, e.g., by the additional task to keep eye and muscle movement as low as possible 

in the EEG recording setup while performing the loudness judgment. In addition, the task performed here 

did not include visual feedback which differs from the task provided by Arieh and Marks (2003a). This 

difference in the experimental design is necessary, since EEG responses evoked by visual stimuli could 

interfere with the recordings. It is noticeable that the loudness of the target tone at an ISI of 150 ms to the 

recalibration tone is perceived higher than without the recalibration tone (baseline condition). This special 

case is in line with the observations of other studies. Within ISI shorter than about 200 ms, recalibrating and 

target tone can interact in a way that leads to loudness enhancement of the target tone. This is particularly 

the case when the level of the recalibrating tone is higher than the target tone level (Elmasian et al., 1980; 

Oberfeld, 2007).   

The amplitude of the P2-N2 deflection - as part of the cortical response to the target tone – increase with 

increasing duration of the ISI. This decrease of repetition suppression is in line with the expectations of 

previous studies  (Davis et al., 1966; Nelson and Lassman, 1968, Lanting et al., 2013). However, comparing 
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the loudness matches with the amplitudes of the P2-N2 deflection within subjects no correlation was found.  

On the contrary, the amplitude of the N1-P2 deflection decreases with increasing duration of the ISI which is 

in line with the psychoacoustically measured decrease in loudness. This effect was most evident when 

examining the mean amplitude, since the peak-to-peak amplitude only showed significant correlation when 

compared with the individual loudness matches. In addition, the correlation coefficient for the peak-to-peak 

amplitude was slightly lower than for the mean amplitude. This is probably due to the fact that peak 

extraction cannot take temporally wider deflections into account. The reduction of the N1-P2 deflection with 

decreasing loudness is in agreement with the findings by Hoppe et al. (2001) in CI users. For the different ISI 

the target stimuli are identical in the current study. That means that the changes in loudness as well as in the 

coinciding N1-P2 deflection, as observed here, are not related to the physical stimulus intensity. Since the ISI 

used here should have a sufficient long duration to rule out cochlear interactions between recalibrating tone 

and target tone this holds as well for the magnitude of the neural input to the auditory system. 

  ISI-conditions  ANOVA results 

cortical components 
150 

ms 
525 ms 1650 ms  F-value p-value 
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µV 
1.35 

± 0.25 

1.10 

± 0.21 
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± 0.20 3.12 .06 
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µV 
0.94 

± 0.10 

1.21 

± 0.18 

1.25 

± 0.14 2.67 .09 
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P2-N1 / 

µV 
0.59 

± 0.21 

0.37 

± 0.20 

1.11 

± 0.20 6.1 .006 

 N2-P2 / 

µV 

0.001 

± 

0.061 

0.18 

± 0.074 

0.229 

± 0.095 7.65 .002 

La
te

n
cy

 N1 / ms 
132.8 

± 30 

136.7 

± 29 

125 

± 27 0.5 .61 

P2 / ms 
252.6 

± 39 

234.4 

± 31 

229.2 

± 41 1.29 .29 

Table 5.1: Cortical features of the EEG-response to the target tone for different ISI to the recalibrating tone and their 

corresponding ANOVA results. The N1-P2 and N2-P2 deflections were extracted by using two different approaches: 

peak-to-peak and mean amplitude. Latencies were extracted at the position of the peaks of N1 and P2 components. 

One-way ANOVA was performed across ISI-conditions and 12 subjects.         

 Compared to the expected strength of a normal cortical response (1-2 µV for the deflections of individual 

components, e.g. the response to the comparison tone) a strong reduction in the strength of the cortical 

response was observed for both N1-P2 as well as P2-N2 deflections. This generally coincides with the results 

of previous studies where a decrease of repetition suppression for the cortical components was observed 

(Davis et al., 1966; Nelson and Lassman, 1968, Lanting et al., 2013). The N1-P2 deflection shows this overall 
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reduction as well2 but providing no decrease of repetition suppression with increasing ISI. Therefore, it might 

be possible that the change in the underlying AEP component (related to the time course of loudness 

recalibration) is even larger than observed here but that it is partially masked by the general trend of a 

decrease of repetition suppression. Nevertheless, the representation of the recalibration effect in the N1-P2 

deflection suggests that loudness is represented in the auditory cortex. This finding is in agreement with the 

results of some previous studies (Röhl and Uppenkamp 2012; Behler and Uppenkamp 2016, Thwaites et al., 

2016). Behler and Uppenkamp (2016) showed in a functional magnetic resonance imaging study that the 

correlation between the blood oxygenation level dependent (BOLD) signal and loudness increases at later 

stages in the auditory pathway. Maximum correlation was reached at the posterior medial Heschl’s gyrus. 

Similar observations have been done by Thwaites et al. (2016). They found in an MEG study several cortical 

components corresponding to the loudness of speech estimated by a loudness model. Using a cross 

correlation analysis, they found four components with significant correlation at latencies of 45 ms, 100 ms, 

165 ms and 275 ms. The latest of these components provides a higher correlation with short-term loudness 

(i.e. low-pass filtered) than with the instantaneous loudness. Hence they concluded that the latest 

component represents short-term loudness, which is seen as a more final loudness representation on higher 

auditory stages. At latencies between 75 ms and 310 ms we even found that the N1-P2 deflection correlated 

to contextual effects in loudness, suggesting as well that in this range of latencies the neural representation 

of loudness is fairly complete.  

Loudness recalibration reflects central rather than peripheral processing of sound intensity. However, it is 

not clear whether this effect still belongs to the sensory processing or is rather an issue of a shift in response 

criteria (Schneider and Parker, 1990; Algom and Marks, 1990, Arieh and Marks, 2003b). Investigating the time 

neural of processing can be useful to clarify this issue. For example, in Arieh and Marks (2003b) listeners had 

to detect weak tones in a choice decision task. They found that in conditions that produce loudness 

recalibration, the listeners show increased response times and higher error rates compared to control 

conditions. According to Luce (1986), a positive relation between response time and error rate is a strong 

indicator for a sensory rather than for a decisional change. That means, from the psychoacoustical point of 

view, the effect of loudness recalibration is - at least partially - a change in the sensory representation of the 

target-tone rather than a response bias. From the neurophysiological side the N1-P2 deflection is not 

                                                           

2 With respect to the effect strength of the repetition suppression for tone pulses of either different or same frequencies the current results are in 

line with the considerations of Lanting et al. (2013). They argued that for consecutive tones with different features, e.g. frequency, the subsequent 

tone will recruit unadapted neurons and thus show almost no repetition suppression while this shall not apply for similar tones. This is line with 

psychoacoustic findings indicating the largest loudness reduction when the recalibration tone and the target fall within the same critical band 

(Marks and Warner, 1991). However, Lanting et al. (2013) contradicts other AEP studies on prepulse inhibition (e.g. Schall et al., 1996) who 

measured frequency-independent repetition suppression. In our results this is reflected by comparing the amplitude of the responses of the target 

and the comparison tone. It can be clearly seen that the strengths of the cortical responses to the comparison tone are higher than to the target 

tone. The target tone response is a subsequent tone pulse to the recalibrating tone and both have the same frequency. The comparison tone, 

however, is the subsequent tone pulse to the target tone with a different frequency than its predecessor. This observation is best illustrated by 

comparing the cortical responses for the baseline condition where the strength is of the same order of magnitude. 
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expected to reflect processing stages that are already involved into decisional processes but more in 

providing specific feature traces of the stimuli and maybe to some extent complete stimulus representations 

(for a review see Näätänen and Winkler, 1999). Under this premise the found relation between N1-P2 

deflection and loudness recalibration time course provide some neurophysiological evidence, that loudness 

recalibration causes a context-related adaption of the sensory stimulus representation.  

It should be noted, that in the current EEG-analysis a low-pass filter is used with a relatively low adjusted 

cutoff frequency of 8 Hz which reduces the amplitudes of the measured cortical components. Highly affected 

by this filtering is the P1 component. Similar to Hoppe et al. (2001) who used a cut off frequency at 10 Hz this 

makes a quantitative analysis of the P1 amplitude almost impossible. Therefore, only the N1-P2 and P2-N2 

deflections are investigated here. This has two major drawbacks: (1) it significantly reduces the temporal 

resolution of the components; (2) it impedes a separate consideration of the deflections. In particular, it 

would be interesting to investigate the N1 and P2 separately, since they represent different dipole sources 

(Crowley and Colrain, 2004). The reason why this filtering adjustment is necessary are frequently observed 

alpha waves during the experiment presumable induced by the effort of the AFC-task processing. This is in 

agreement with the findings by Klimesch (1999), who showed that cognitive and memory performance was 

reflected by an increase of alpha activity. This has to be seen as a clear drawback of the synchronous 

measurement of AEP and psychoacoustic tasks. Indeed, other factors could influence the current AEP results 

as well. The recalibrating tone pulse as the prior to the target tone has a higher sound level than the sound 

level of the target tone as a prior to the comparison tone which was adjusted to equal loudness. Therefore, 

the prior tone with the higher sound level generates repetition suppression with more strength. 

Furthermore, the cognitive load differs during the presentation of the target and comparison tone. Both 

disparities could alter the results in some way. We also compared the total activity across the scalp of the 

responses to the target tone with the comparison tone by determining their activation patterns. These 

patterns were obtained from the weightings of the principal components. Figure 5 shows the weightings on 

a topographic map across the scalp of the first component to the target tone and the comparison tone 

response of the conditions using a recalibrating tone and to the target tone response of the baseline 

condition. In all cases the central sources were accountable for the evoked potentials. However, if a 

recalibrating tone has been presented, a shift of the most relevant electrodes towards the front of the scalp 

can be seen. This change from a frontocentral to a more central topographic representation on the scalp 

suggest a change of the underlying neural sources involved in the processing of the first and the second of 

two successive tones at the same frequency. More details on these aspects as well as on an identification of 

possibly counteractive AEP components reflecting a release of neural repetition suppression and loudness 

recalibration as discussed above are needed to provide a deeper understanding of the underlying 

mechanisms. This might be possible by a detailed source reconstruction obtained from less noisy data in 

future studies, e.g., by MEG measurements using a similar paradigm. 
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5.5 Summary and Conclusion 

Neural representation of the loudness recalibration effect in the EEG response was demonstrated by using 

an AFC paradigm during the EEG recordings. The strength of the N1-P2 deflection shows the same trend with 

the time course of loudness recalibration, i.e., a decrease with increasing ISI; whereas the P2-N2 deflection 

shows a recovery from repetition suppression indicated by a relative increase with increasing ISI. In the 

presence of a conditioner tone at 80 dB SPL both deflections for all ISI are clearly reduced - compared to the 

baseline condition. The following conclusions are drawn: 

a) Since the target stimuli for all ISI are identical the processing stages reflected by N1-P2 deflection 

provide a representation of loudness- rather than only physical sound intensity. 

b) The finding that loudness recalibration is already reflected as early as in the N1-P2 deflection 

provides neurophysiological evidence that context effects cause an adaption of the neural loudness 

representation of the stimulus and not (only) a shift in the decisional processes. 
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6 Summary and outlook 

One objective of this thesis was to examine how well current models can predict loudness for music, in 

comparison to more basic level measures, and what kind of modifications would need to improve the 

predictions. The second objective was to supplement the psychoacoustical judgements and model 

predictions with potential neural correlates of loudness in order to obtain an insight how sound intensity is 

transformed into a loudness impression by the different stages of auditory processing. 

For this purpose, firstly, in Chapter 3 a paired comparison task was implemented and analyzed using the 

Bradley-Terry-Luce method (BTL). This allows to transform the rank-scaled comparison data obtained for the 

overall loudness judgements of various sequences of music pieces to an interval scale. Subsequently, the 

resulting BTL-scale was compared with the predictions of models and level measures. This was done by 

considering the linearity of the function representing the relationship between the derived loudness scale 

and the models resp. the level measures. The results showed that for all investigated Sone-models this 

functional relationship is not linear. Transforming the Sone-scales of the models into categorical units, this 

relationship is largely linear. For the sound pressure level, the shape of the function shows also a high degree 

of linearity, however, with a slight curvature at low levels. The discrepancy between the experimentally 

determined BTL scale and the Sone-models can only be modelled if one of two alternative explanations is 

valid: Either the respective loudness models or the Sone scale are not fully suitable for estimating the overall 

loudness of music. However, the high degree of linearity between the BTL scale and the model results when 

transformed into CU indicates that the Sone-transformation would need to be corrected.  

Based on this, only parts of the BTL scale were considered for further analysis. This was done to ensure 

linearity for all measures and models. The leave-one-out cross-validated R² served as a measure of the 

goodness of the prediction. It was shown that the standard frequency-weighted sound level (e. g., dB(A)) 

outperforms the considered loudness models. This was even the case when optimizing those parameters 

that are partially adjustable for an overall loudness assessment: the cut-off frequency of the low-pass filter 

to simulate the short-term loudness transformation, and the percentile as a measure of the distribution of 

the overall loudness. However, the parameter variation showed that the predictive power of loudness 

models still increases at a cut-off frequency around 4 Hz and a percentile at 97%. Incorporating a modeled 

overall sharpness of the music stimuli into the predictions of the loudness models the accuracy of the 

prediction increased further. 

These findings hint towards necessary modifications of loudness models that have not been considered in 

previous studies on model comparisons (Skovenborg et al., 2004, Vickers, 2010). After all, such an application 

of a low-pass filter to mimic a short-term loudness stage was proposed in some previous studies (Chalupper 

and Fastl, 2002; Glasberg and Moore, 2002), although not at such a low filter cut-off frequency as used here, 

i.e., 4 Hz in contrast to 8 Hz (Chalupper and Fastl, 2002) and 15 Hz (Glasberg and Moore, 2002). Similar 

findings were reported by Rennies et al. (2015). They showed that the estimation of the overall loudness of 
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some fluctuating technical sounds could be improved by using a cut-off frequency of around 2 Hz. The 

improvement of the performance by processing the information of overall sharpness is in line with the 

findings of Fastl (2007) who assumed that sharpness affects the loudness perception of music. However, due 

to the fact that the investigated frequency-weighted level measures performed so well in the current study 

with no use of information about the sharpness of the music pieces, one could also assume that rather 

spectral cues are the reason for improvement of the loudness models since sharpness implies information 

about the spectral envelope of the respective sound.  

In Chapter 4, the investigation of loudness processing of music is continued by supplementing the subjective 

loudness data with objective measurements. This was attempted by analyzing neural activity recorded by 

cortical EEG responses. Therefore, a sequence from a classical piece of music lasting 20 s was presented at 

six different sound levels. The peak amplitude of the deflections P1, N1, P2 and N2 in the event related 

potentials were correlated to the predicted loudness of these eliciting events. The results demonstrate that 

the peak of the deflections N1 and P2 show a higher correlation to the loudness of the stimuli - as predicted 

by the dynamic loudness model of Chalupper and Fastl (2002) - than to the sound pressure level. This finding 

supports the hypothesis from previous fMRT- and MEG-studies that loudness perception is mainly processed 

in auditory cortex (Röhl and Uppenkamp, 2012; Behler and Uppenkamp, 2016; Thwaites et al., 2016). 

It should be noted that for the loudness prediction of single conditions, even simple frequency weightings 

like the A-weighted sound pressure level or the EBU-R128 standard provide a correlation similar to that of 

the loudness model, although being merely a very rough approximation of auditory processing. For 

correlation across all conditions, it is loudness that is best related to the N1 and P2. This relation was less 

distinct for the level measures. However, a correlation across all conditions could only be carried out in a 

meaningful way by considering the ratio between the loudness change and overall loudness as derived from 

the loudness model instead of considering the absolute loudness. The overall loudness was determined by 

the average across the course of the instantaneous loudness for the complete stimulus. The loudness change 

was determined by the difference between the instantaneous loudness and the mean value of a time-

window of 1 s prior to the current instant in time. A better representation of the neural activity of N1 and P2 

by loudness change than by absolute loudness is in line with previous research on event related potentials 

that suggests that N1 and P2 reflect a matching process. Whenever a stimulus is presented it is matched with 

previously experienced stimuli (Sur et al., 2009). Furthermore, it was found that the N1 characteristics show 

the best correlation to Sone-loudness whereas the P2 response shows a closer link to the CU-loudness. This 

finding allows the interpretation that the transition from N1 to P2 reflects a logarithmic transformation of 

purely sensory processing into the perception of loudness.   

Most previous studies that investigated whether sound level or loudness is represented by specific neural 

responses compared the different growth characteristics of sound level and perceived loudness with the 

growth characteristics of respective neural responses (e. g. Ménard et al., 2008; Silva and Epstein, 2010; 

Behler and Uppenkamp, 2016). These approaches can provide some evidence at which specific processing 
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stage the neural representation matches better the loudness rather than the physical level of an acoustic 

stimulus. It remains still unclear whether a closer correlation between perceived loudness and neural 

representation is just reflecting modifications by the ongoing sensory (pre-) processing of the neural stimulus 

representation or actually constitutes a (completed) loudness perception process including a kind of 

judgment or classification. However, when dealing with stimuli like music for which loudness judgments are 

strongly affected by individual preferences and experiences, a clear discrimination line is desirable between 

neural responses representing already a kind of judged loudness in contrast to neural responses reflecting 

just a stimulus representation being optimized for loudness perception - and therefore showing properties 

closely linked to loudness for most types of less complex stimuli. 

If we assume that physical identical stimuli result in almost the same neural (pre)processing before a kind of 

loudness-classification processing is done, the recording of neural responses within a paradigm during which 

identical stimuli are judged as different loud by the same subject would provide useful information about the 

question if a specific neural response is representing indeed ‘perceived’ loudness or not. In Chapter 5, 

therefore, a paradigm was implemented to study correlations between neurophysiological responses and 

contextual loudness effects, i.e. loudness recalibration. Arieh and Marks (2003a) showed that loudness 

recalibration is subject to an adaptation process. The adaptation of the recalibration can be demonstrated 

by the variation of the inter-stimulus interval (ISI) between two tone pulses. A subsequent tone pulse of 

different frequency can be used for loudness matching. This procedure was performed during the EEG 

recording. While the strength of a large part of the cortical response to the target tone was attenuated 

according to the neural repetition suppression effect, it was shown that the strength of the N1-P2 component 

was sensitive to the recalibration effect. Loudness as well as the strength of the N1-P2 component decreased 

with increasing magnitude of the ISI. In conclusion, loudness changes due to recalibration are represented 

on the stage of the auditory cortices at the respective latencies in the range of 75 to 310 ms. This finding 

coincides with the results in Chapter 4, where the amplitude of N1 and P2 were identified as loudness 

correlates. The results from Chapter 5 provide stronger evidence that the interpretation of N1 and P2 as 

indicators for perceived loudness is correct. The N1 and P2 components not only reflect level effects and 

spectral effects, but also central loudness effects. Hence, level measures cannot adequately represent these 

cortical potentials with generators beyond primary auditory cortex.  

Although the effect of loudness recalibration and its adaptation process has hardly been studied enough for 

series of tone pulses or tone pulse complexes to allow detailed predictions for music (or at least periodic 

repetitions of tone complexes as stylized music) it may be assumed that some of the deviations between 

predictions from loudness models and neural representation found in Chapter 4 (as reflected in low 

correlation) can be explained by the loudness recalibration process. Therefore, the loudness recalibration 

effect might be a good and relevant starting point to include aspects of neural processing into loudness 

models for complex stimuli in order to improve the accuracy and applicability of loudness models for complex 

stimuli such as music. Several psychoacoustical findings on loudness recalibration already provide insight into 

basic properties of loudness generation (Marks and Warner, 1991; Mapes-Riordan and Yost, 1999; Nieder et 
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al., 2003; Arieh and Marks, 2003b; Arieh et al., 2005). Based on these findings a new effective processing 

stage at the end of sensory processing for loudness modeling appears conceivable since loudness judgement 

seems to change according to the history of the stimulus perceived so far. One feature of such a processing 

stage would probably be that it essentially operates on specific loudness because recalibration affects mainly 

stimuli with the same comparable spectral content as stimuli presented before. For further improvements of 

such a stage, additional psychoacoustic investigations would be needed, especially to examine how level 

differences and the interval between masker and masked sound affect loudness specifically in different 

frequency bands.  

Outlook 

In summary, this thesis has shown that current loudness models are deficient in the treatment of music. This 

was reflected by deviations in the prediction of the overall loudness of various pieces of music (Chapter 3) as 

well as in the prediction of instantaneous loudness on the level of neural representation (Chapter 4). The 

observation that frequency-weighted level measures (A-weighted, B-weighted, ITU-R BS.1770-2) not only 

kept up in loudness prediction, but even partially outperformed the psychoacoustical loudness models (DIN 

45631/A1, TVL, DLM, DLMext) indicates that a more detailed modeling of processes in the auditory periphery 

provides no benefit for loudness predictions of complex stimuli like music. These models have been adjusted 

for pure tones and for broadband noise. They are apparently not capable for loudness predictions of stimuli 

strongly affected by central processing due to preferences and experiences of the listener. In this thesis 

various suggestions were made to modify or extend these loudness models. The findings in Chapter 3 suggest 

that the CU scale provide a better matching scale for the loudness of complex stimuli than the Sone scale. 

This is in line with the results in Chapter 4. The P2 component of the event related response shows a closer 

link to the CU loudness than to the Sone loudness. This suggests that the loudness transformation of current 

models should be based on categorical units which can be done for example by adding a subsequent CU 

transformation (Appell et al., 2001; Heeren et al., 2013) to Sone-models. 

Operating on overall loudness predictions of music sequences, a modified short-term loudness stage 

simulated by a low-pass filter around 4 Hz was recommended in Chapter 3. However, it is unclear if this can 

be seen as a relevant part reflecting the integration process needed to derive the overall loudness estimate 

from an internal instantaneous loudness process, or if such a low-pass filter is already an integral part of 

continuous loudness processing, or if it is a combination of both. An experiment is needed in which this aspect 

can be tested for the continuous loudness judgment of music. This experiment should contain both: 

continuous loudness judgements and overall loudness judgements similar to those described by 

Schlittenlacher et al. (2014). The variation of differently adjusted low-pass filters as in this thesis could then 

shed light on this issue. Furthermore, the overall loudness of music seems to be affected by the perceived 

sharpness. It could be shown that a linear combination of the estimated overall loudness and estimated 

sharpness could increase the prediction power for the real overall loudness (see Chapter 3). It is unclear 

whether the influence of sharpness on loudness is a judgment bias or indeed a necessary contribution to the 
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sensory processed intensity in the calculation of loudness. The overall sharpness and some measure of 

'instantaneous' sharpness should be tested by multiple regressions if they may help to improve the estimated 

short-term loudness of the models of music sequences. 

Finally, it has been found that there are neural correlates to loudness context effects, that is, the adaptation 

process of recalibration of loudness appears to be coded in the EEG responses. Further experiments should 

examine the brainstem response to see if the loudness recalibration effect is already related to early stages 

of processing. Moreover, the effect should be demonstrated for more inter-stimulus intervals to strengthen 

the validity of the findings presented here. It should be further examined whether the inclusion of the 

psychoacoustical paradigm into the EEG experiment was crucial for the elicitation of the founded neural 

correlate to loudness. This can be tested by using a paradigm in which the tone pulse series were passively 

presented. The last experiment gives some evidence that complex processes like the contextual loudness 

effects, which are beyond neural signal preprocessing, are represented in the cortical deflections N1 and P2. 

However, it cannot be excluded that the final neural representation of a loudness percept for stimuli as 

complex as music (which are affected by very specific individual preferences) is firstly finalized on even higher 

processing stages. Therefore, a transfer of the tone-pulse paradigms from Marks (1993) or Arieh and Marks 

(2003a) to paradigms with more complex and periodic sounds and, after all, to music would be desirable.  

Taken together, this thesis contributes to reducing the deficiencies of current loudness models in dealing 

with music. Focus of this work was not the modeling of the periphery of loudness processing but rather 

central aspects. Psychoacoustical and neural findings emphasize the benefit of categorical loudness scaling. 

Estimating the overall loudness of music requires correct preprocessing of short-term loudness and, 

furthermore, sharpness must be integrated into the model. In the EEG, the loudness change is reflected in 

the N1 (by Sone) and in the P2 (by CU). At this cortical level there is also a neural representation of loudness 

recalibration. Hence, loudness judgements and its neural representation has been shown in this thesis to be 

a complex, hierarchical process that assumedly requires neurosensory processing steps (including a 

logarithmic transform and an appropriate spectral weighting) as well as more central adaptation and 

recalibration processes that will have to be incorporated into more sophisticated loudness models of the 

future. 
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7 Appendix: Bradley-Terry-Luce method 

The result of a pairwise comparison experiment is a count matrix M of the number of times that each option 

was preferred over every other option, 

(1) 𝑀𝑖,𝑗 = {
# of times option 𝑖 preferred over option 𝑗,      𝑖 ≠ 𝑗 
0,                                                                                    𝑖 = 𝑗

 

Since pair comparisons correspond to a binomial process, the probability 𝑝𝑖,𝑗  that a subject prefers the option 

i over j can be estimated from 𝑀𝑖,𝑗 and the number of comparisons. The Bradley-Terry-Luce method (BTL) 

that establishes data on an interval scale level by postulating a relationship between preference probabilities 

and scale values (Ellermeier, 2004): 

𝑝𝑖𝑗 =
𝜋𝑖

𝜋𝑖+𝜋𝑗
         (A.1) 

where 𝜋𝑖is a value associated to each option. However, the real scale values corresponding to the stimuli can 

only be obtained by logarithmisation (Tsukida and Gupta, 2011) 

𝜇𝑖 = 𝑠 ∙ 𝑙𝑜𝑔(𝜋𝑖)       (A.2) 

where s is a scale parameter. In order to estimate 𝜋𝑖 the likelihood function of the model has to be set up 

and maximized. For binomially distributed random variables, the likelihood function takes the shape: 

𝐿 = ∏ 𝑝
𝑖𝑗

𝑀𝑖,𝑗 ∙ (1 − 𝑝𝑖𝑗)
𝑀𝑗,𝑖

𝑖<𝑗       (A.3) 

For this, we recommend the numerical method proposed by Wickelmaier and Schmid (2004). The confidence 
intervals e for the maximum likelihood estimated scale values can be estimated by determining the 
covariance matrix (A5) of the inverse negative Hessian matrix H (A.4). The Hessian matrix of the log-likelihood 
function is defined as the square matrix of second partial derivatives with respect to the model parameters: 
 

H =

(

 
 

𝜕2 log 𝐿

𝜕𝜋1
2 ⋯

𝜕2 log 𝐿

𝜕𝜋1𝜕𝜋𝑘

⋮ ⋱ ⋮
𝜕2 log 𝐿

𝜕𝜋𝑘𝜕𝜋1
⋯

𝜕2 log 𝐿

𝜕𝜋𝑘
2
)

 
 

      (A.4) 

 
 

C =  [
−𝐻 1
1 0

]
−1

  𝑒 = 1,96 ∙ √Diag(cov(𝐶))    (A.5) 

 
 

Furthermore, the goodness of the fit can be derived by comparing the likelihood of the model with the 

saturated model that fits the data perfectly (Wickelmaier and Schmid, 2004). This can be done by applying 

the likelihood ratio test (Eq. A6).  

𝜒2 = −2 log (
𝐿

𝐿𝑠𝑎𝑡
)        (A.6) 
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This value can be compared with a critical value of the 𝜒2-distribution that corresponds to a defined level of 

significance with the degree of freedom 𝑓 =  (
𝑛
2
) − 𝑛 + 1. 
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