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A B S T R A C T

Networks of dynamical systems model a broad range of complex phe-
nomena in natural and technological systems. The analysis of the in-
terplay of dynamics and topology is divided into two major classes
of problems: While forward approaches deduce properties of the dy-
namical evolution from the topology and the system parameters, in-
verse methods infer system properties from observations of the dy-
namics. With this thesis, we contribute to both fields: First, we analyze
the spreading of fluctuations in power grids. In recent years, more
and more conventional generators have been replaced with renewable
sources among which wind power plays a key role. In contrast to the
steady production of conventional power plants, wind power genera-
tion shows correlated and non-Gaussian fluctuations that are related
to the intermittent fluctuations of turbulent flows. With power grid
frequency measurements from two different places in Germany, we
demonstrate that the short-term grid frequency fluctuations locally
increase with increasing share of volatile wind power feed-in. We con-
sider frequency increment statistics and provide analytical results for
the propagation of their variance as a function of the distance to the
feed-in and the system parameters. For the specific case of chains of
synchronous machines, we show how reducing grid inertia impacts
the type of the decay of the variance of frequency increment statistics.
Second, we consider the case in which a network dynamical system,
not necessarily a power grid, is only partially accessible for observa-
tions and derive a novel method to detect nodes that are hidden from
measurement. We test our approach on systems with various, possi-
bly noisy, dynamics, including periodic and chaotic collective motion,
and demonstrate successful detection and quantification of hidden
nodes even in the case where only very few nodes are measured. Our
method is model-free and relies on fundamental relations of linear
algebra.
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Z U S A M M E N FA S S U N G

Netzwerke dynamischer Systeme modellieren eine Vielzahl komple-
xer Phänomene in natürlichen und technischen Systemen. Die Ana-
lyse der Interaktion von Topologie und Dynamik lässt sich in zwei
dominierende Klassen einteilen: Während forwärtsgerichtete Ansät-
ze die dynamische Entwicklung aus Eigenschaften der Topologie und
der Systemparameter ableiten, schlussfolgern inverse Methoden die
Systemparameter aus Beobachtungen der Dynamik. Mit dieser Ar-
beit tragen wir zu beiden Klassen bei: Erstens untersuchen wir die
Ausbreitung von Fluktuationen in Stromnetzen. In den letzten Jahren
wurden mehr und mehr konventionelle Stromerzeuger durch erneu-
erbare Quellen ersetzt, bei denen die Windenergie eine Schlüsselrolle
einnimmt. Im Gegensatz zur kontinuierlichen Produktion konventio-
neller Kraftwerke zeigt die Windenergieproduktion korrelierte und
nicht gaußförmige Fluktuationen, die in Zusammenhang zu den in-
termittenten Fluktuationen turbulenter Strömungen stehen. Mit Fre-
quenzmessungen im Stromnetz an zwei verschiedenen Standorten in
Deutschland demonstrieren wir, dass die Kurzzeitfluktuationen lo-
kal zunehmen, wenn der Anteil volatiler Windenergieeinspeisung zu-
nimmt. Wir betrachten Inkrementstatistiken der Frequenz und zeigen
analytische Ergebnisse für die Ausbreitung ihrer Varianz als Funktion
des Abstands zur Einspeisung und den Systemparametern. Für den
spezifischen Fall von Ketten aus Synchronmaschinen zeigen wir, wie
die Reduktion der Trägheit im Netz die Art des Abfalls der Varianz
der Inkrementstatistik der Frequenz beeinflusst. Zweitens betrachten
wir den Fall, in dem ein Netzwerk dynamischer Systeme, nicht not-
wendigerweise ein Stromnetz, nur teilweise zugänglich für Beobach-
tungen ist und leiten eine neuartige Methode her, mit der Knoten, die
nicht messbar sind, detektiert werden können. Wir testen unseren An-
satz mit Systemen mit verschiedenartiger, möglicherweise verrausch-
ter, Dynamik, einschließlich periodischer und chaotischer kollektiver
Bewegung, und demonstrieren die erfolgreiche Detektion und Quan-
tifizierung versteckter Knoten selbst wenn nur sehr wenige Knoten
messbar sind. Unsere Methode ist modellfrei und beruht auf funda-
mentalen Zusammenhängen linearer Algebra.
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1
I N T R O D U C T I O N

Networks model a broad range of systems of interconnected units [1].
Applications include the spreading of diseases through contact net-
works [2, 3], the complex interaction of spiking neurons [4], networks
of gene regulation [5, 6], and technological networks such as electric
power grids [7].

The structure of a network critically affects its function [8]. In most
cases, one cannot conclude on the functioning of the overall system
only from properties of the isolated units. The collective, often com-
plex, behavior of a networked system arises from the interplay of
individual dynamics at each unit and the network structure. Often,
desired collective states, such as the synchronization of the dynamics
at all nodes, is robust against perturbations on some networks and
very fragile on others [9]. So, how does network structure interact
with the dynamic evolution of each node? How does that affect the
collective behavior of the units? The concept of network dynamical
systems allows for a systematic analysis of the collective dynamics as
a function of local dynamics and the network [10].

We differentiate between two major directions of research in net-
work dynamical systems [11]: First, forward problems enquire proper-
ties of the system from the structure of the network and the individ-
ual dynamics [10, 12, 13]. Questions like how fast a disease spreads
on a given aviation network or how a gene regulatory network reacts
to silencing a specific component fall under this category. The sec-
ond important field constitute the inverse problems which deal with
the case in which information on the network is retrieved from mea-
sured or desired dynamics [11, 14–16]. To stick to our examples, one
may want to trace back how a disease spreads from one population
to another from a data set of infections at different places. One pos-
sible outcome would be that the aviation network is responsible for
the spreading. In gene regulation, one may want to infer which gene
activates or represses the expression levels of other genes in the cell.

In this thesis, we want to contribute to both fields. First, we ana-
lyze how fluctuations of renewable power generators spread in power
grids (which is a forward problem) and, second, we show how un-
known units, hidden to measurements, can be inferred from th dy-
namics of the accessible units (which is an inverse problem).

The dynamics of high-voltage alternating current (AC) power grids
is governed by the dynamics of large, conventional generators that
can be modeled as inert phase-coupled oscillators [7]. Reliable energy
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8 introduction

supply is only possible if all nodes in the network show synchronous
frequencies. Hence, the stability of the collective synchronous state
is of particular importance for power systems. In 2008, Filatrella et
al. [7] drew the analogy between synchronization in power grids and
the Kuramoto model [17], a celebrated model for the study of syn-
chronization of phase-coupled oscillators [13]. Since then, the collec-
tive dynamics of power grids is a rapidly evolving field in theoretical
physics [7, 18–22].

The ongoing replacement of conventional with renewable gener-
ators imposes new challenges and risks upon reliable operation of
power grids. The fact that wind (and also solar) power fluctuates on
various timescales, from hours down to seconds [23], makes us won-
der how such fluctuations impact on and spread in power grids. The
problem of signal propagation in network dynamical systems is not
only relevant to power grids, but of interest for various systems, from
viral spreading to neuronal or biochemical signal propagation [24].
In this thesis, we focus on the propagation of fluctuations from wind
power generators in power grids.

Time series of wind power production show heavily correlated and
non-Gaussian fluctuations that are related to statistical properties of
turbulent flows [25–27]. It is convenient to analyze fluctuations of
a signal x(t) in terms of increments ∆τx(t) := x(t + τ) − x(t) on
timescale τ. This viewpoint on fluctuations is popular in turbulence
research [28, 29] and allows for a separation of effects on timescales τ
in the signal x(t). While several recent studies analyze the impact of
fluctuating feed-in on the synchronization of inert oscillators in power
grids with numerical and analytic methods [30–37], it still lacks (i) a
direct relation to measured data from real-world power grids and (ii)
a theory to describe the propagation of fluctuations in power grids in
terms of increment statistics.

An important inverse problem in network dynamics deals with the
task of revealing the underlying network from measured data of the
dynamics at each unit. This view on network dynamical systems not
only helps to reveal physical structures from data but also contributes
to designing optimal networks for desired dynamics or redesigning
natural processes, such as gene and protein networks, in lab experi-
ments [11, 38]. Established methods to reconstruct a network involve
repeated measurements of the dynamics at each node in the network
[11, 15, 38–50]. For a review, we refer to Ref. [11]. However, complete
measurements of the entire network are rare and often, only a sub-
set of units are accessible for measurement. The other, inaccessible,
units are referred to as “hidden” in this thesis. In a realistic setup, an
immediate question is how many hidden units exist: In a network of
interconnected neurons, for example, we may ask how many other
neurons are affecting those that are measured. Analogously, it might
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not be clear at all how many other genes impact the expression levels
of those genes that are monitored in a gene regulatory network. Yet,
there is no theory that reliably quantifies the number of hidden units
in network dynamical systems.

This thesis is structured as follows. In Chapter 2, we introduce the
basic notion of network dynamical systems. We give a brief historical
introduction to the concept of networks (Sec. 2.1) and formalize our
view on them (Sec. 2.2). We then introduce the concept of dynami-
cal systems which is widely used among physicists and mathemati-
cians in the field of complex systems (Sec. 2.3). We show how linear
stability analysis allows to gain an insight into the stability of fixed
points and other, possibly desired, dynamical states of complex sys-
tems in Sec. 2.4. We introduce this concept not only for the purpose
of stability assessment: As we will show in the following chapters
of this thesis, linearization of dynamical systems in a small vicinity
of some reference point in state space helps us to explore both, fluc-
tuation spreading in power grids and the detection of hidden units.
In Sec. 2.5, we show how coupling dynamical systems on networks
leads to the powerful concept of network dynamical systems. As an
example, we demonstrate how the interaction of dynamics and struc-
ture promotes or hinders the emergence of collective dynamical states
such as symmetric fixed points or full synchronization. To conclude
this section, we introduce the Kuramoto model to explore the effect
of phase locking, that is the synchronization process that takes place
in power grids.

In Chapter 3, we present our view of wind power fluctuations
in power grids. We begin with a discussion on statistical proper-
ties of turbulent flows in Sec. 3.1. Further, we demonstrate how the
fluctuations of atmospheric turbulence impact wind power genera-
tion (Sec. 3.2). Finally, we introduce the synchronous motor model of
power grids which captures the short-term response of high-voltage
AC grids to perturbations and constitutes the basis of our further
analysis of fluctuation spreading in power grids (Sec. 3.3) and pro-
vide technical details on our frequency measurement setup (Sec. 3.4).

The following Chapters 4–6 comprise the original manuscripts of
the papers published prior to the publication of this thesis. To main-
tain the original character of the articles, we keep their structure.
However, we adjusted the formatting and added some additional ref-
erences to other chapters in this thesis. In Chapter 4, we show how
the short-term fluctuations of locally measured grid frequency time
series increase with increasing share of wind power fed to the grid
and provide a model for their increment distributions. Motivated by
this finding, we performed a second measurement of the grid fre-
quency in another region with less wind power injection than in the
first region (Chapter 5). We find that the effect of wind power on the
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frequency fluctuations cannot be seen in the second measurement.
Further, we analytically derive a theory for the propagation of fluctu-
ations in power grids in terms of frequency increment statistics. We
evaluate our results as a function of the system parameters of the
power grid. In Chapter 6, we provide a novel theory for the detection
and quantification of hidden units in network dynamical systems. We
demonstrate the successful inference of hidden units in various sys-
tems, in particular in coupled Kuramoto oscillators. We discuss our
results and give an outlook on further research in Chapter 7.



2
N E T W O R K D Y N A M I C A L S Y S T E M S

If we think of a network simply as a system of interconnected en-
tities, many examples instantly come to our minds: Transportation
networks such as a railway system, communication networks such as
the telephone system, or even biological networks such as intercon-
nect neurons in human brains [10, 51]. However, apart from systemati-
cally grouping these systems under the term “network”, what are key
methods and results from network science that lead to substantial sci-
entific progress in a such broad range of disciplines? To understand
the interdisciplinary power of networks, we give a brief historic intro-
duction to the field and then provide the formal definitions. Further,
we introduce the concept of dynamical systems and demonstrate how
coupling dynamical systems on networks gives insights to the inter-
play of dynamics and structure of complex networked systems.

2.1 a brief history

In 1741, Leonhard Euler published his famous solution to the prob-
lem of the seven bridges in Königsberg1 [52, 53]. The sketch in his
original manuscript, Fig. 1, shows the branches of river Pregel, divid-
ing the city into four domains (A-D) connected by seven bridges. The
problem he picked up from discussions with the inhabitants was the
following: Is it possible to take a walk through all domains in the
city using each bridge exactly once? In Ref. [53], E. Estrada gives an
interesting interpretation which we would like to follow here: Euler
was not so much interested in the solution itself (which probably had
only limited relevance) but more in the fact that by then no mathemat-
ical concept existed to solve the problem except for explicit listing of
all possible paths. He solved the problem (which he referred to as the
“geometry of position”) with a conceptually new answer which lies in
the number of bridges connected to each domain: An aforementioned
walk crossing all bridges once is always possible if an even (nonzero)
number of bridges ends in each domain. If there are domains with
odd numbers of ending bridges, the walk is only possible if there are
exactly two such domains which form starting and ending point of
the walk. Otherwise, the walker would pass by domains with odd
number of bridges during his walk that he would have to enter and
leave– which is impossible if bridges must be used exactly once.

1 The today’s Kaliningrad in Russia. Due to destruction in World War II, the modern
city has a different number of bridges than in 1741.

11



12 network dynamical systems

Figure 1: Original sketch of the seven Königsberg bridges from Lenhard Eu-
ler [52] in 1741. The Pregel river divides the city into four domains
(A-D). Can you find a path through all domains in the city taking
each bridge exactly once?

Euler reduced the complex problem to a new conceptual thinking
which we refer to as network, or graph, theory today. Another exam-
ple, also taken from Ref. [53], are the early works of Gustav Kirch-
hoff [54], who derived his famous laws for electricity networks from
the finding that the current flowing into some point needs to flow
out of the same point again. Other applications of network theory
where found in molecule structures in the 19th century [53]. Instead
of discussing further examples in detail, we now provide the formal
definitions and notations of networks that we need for our further
analyses.

2.2 formal definitions

So far, we have considered a network simply as a system of inter-
connected entities. We now want to formally elaborate the concept of
networks and provide basic definitions and notations of networks [10,
53, 55]. We define the entities as nodes or units and the connections as
links. Sometimes the entities are also referred to as vertices connected
by edges. In the mathematical literature, a network is called graph and
the corresponding field is referred to as graph theory.

The adjacency matrix A ∈ RN×N comprises the core information
about the network structure of N ∈N nodes. It is defined as

Aij :=

1, if a link from node j to i exists, and

0, if not.
(1)

A network can be either directed or undirected. In the undirected case,
a link from i to j implies a link from j to i; the adjacency matrix is
hence symmetric (A = AT ). In directed networks, a link from i to
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Figure 2: Sketch of an example network with N = 7 numbered nodes and
(a) undirected and (b) directed links. In the undirected case, the
network is connected, because there is a path between any pair
(i, j) of nodes. Further, the adjacency matrix is symmetric (A =

AT ). In the directed example, the network is not strongly connected
because not all pairs (i, j) are connected by directed paths. Note,
for example, that there is no directed path from node 2 to node
4 (even though a path from 4 to 2 exists). Further, the adjacency
matrix is not symmetric, as can be seen from A74 = 1 and A47 = 0.

j may well exist without a link in the opposite direction and hence,
in general, A 6= AT . Further, the links may be not equally weighted;
some can be “stronger” than others. In this case, the adjacency matrix
is weighted which results in entries different from 1 for existing links
(but still 0 for absent links).

The number of links that are adjacent to a node i is called the degree
d(i) of node i. In the undirected, unweighted case it simply follows
from

d(i) =

N∑
j=1

Aij. (2)

In the directed case, we differentiate between the sum of all incoming
links (in-degree) and of all outgoing links (out-degree).

A path is defined as a sequence of connected nodes in which each
node appears only once. It can be seen as a walk through the network
which passes each node only once. Consequently, the shortest path
distance d(i, j) is defined as the length of the shortest path between
nodes i and j. A network in which a path exists for each pair of nodes
(i, j) is called connected. A directed network is referred to as strongly
connected if for each pair (i, j) a directed path from i to j and from j to
i exists.

We visualize these important definitions in Fig. 2. Until this point,
our discussion was focused on structure. We now introduce the con-
cept of dynamical systems to include time-dependent behavior of com-
plex networked systems in our description.
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2.3 dynamical systems

Dynamical systems model the evolution of a broad range of (possi-
bly complex) systems. Indeed, the definition of the term itself can
be as general as in Ref. [56]: “A dynamical system is a mathematical
formalization for any fixed rule that describes the dependence of the
position of a point in some ambient space on a parameter.” With this
definition, the construction of arbitrarily abstract systems is possible
(as probably intended by the authors), however, in this work we will
restrict ourselves to cases where the parameter is “time”, the ambient
space is referred to as “state space”, i. e. the set of all possible states
the system can be in at any parameter value, and the fixed rule is ex-
pressed by an ordinary differential equation (ODE) [56]. With these
specifications in mind, we may define a dynamical system as the triple
(S, R+,Φ) comprising the state space S, the time domain R+, and a
flow

Φ : R+ × S→ S (3)

which describes the evolution of the ODE system

ẋ = F(x). (4)

Here, x(t) = [x1(t), . . . , xn(t)] ∈ S is the state vector of the system at
time t, F : S → S a smooth function, and ẋ = dx/dt. The flow Φ is a
formal notation of the solution of the initial value problem (4) with
x(t = 0) = x0:

Φt(x0) = x(t). (5)

It has the following properties [57]: (i) Φ0(x0) = x0, (ii) Φt1+t2(x0) =
Φt1(Φt2(x0)), and (iii) Φt(x0) is a differentiable map for t ∈ R+.

2.4 linear stability analysis

Let us consider a simple example of a dynamical system described by
a linear ODE with F(x) =Mx, where M ∈ RN×N is a constant matrix
and x ∈ RN. Such a system is called linear time-invariant (LTI) or linear
autonomous [56]:

ẋ =Mx. (6)

Clearly, x∗ = [0, . . . , 0]T is a fixed point, that is a stationary solution
x(t) = x∗ for all times if x0 = x∗. The key question now is how we
can judge if small perturbations of x(t) = x∗ will lead to a relaxation
of x(t) back to x∗ or rather to completely different behavior such as
divergence in one or more components xi. Such small perturbations
are omnipresent in real-world problems, often induced by thermal
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noise [58]. In the linear case, we have the advantage that the general
solution x(t) for initial value x0 is given by

x(t) = exp(Mt)x0, (7)

where exp(·) denotes the matrix exponential function [56]. In anal-
ogy to the scalar-valued exponential function, exp(Mt) converges to
[0, . . . , 0]T for t → ∞, if all eigenvalues λn of M have negative real
part, <(λn) < 0 for all n = 1, . . . ,N. Hence, we find that in this case,
for linear systems, x∗ = [0, . . . , 0]T is a stable fixed point, that is the
system asymptotically approaches x∗ irrespective of the initial con-
ditions. If, in contrast, at least one eigenvalue λk has positive real
part, <(λk) > 0, then x∗ = [0, . . . , 0]T is an unstable fixed point which
the system will leave for any finite perturbation. Purely imaginary
eigenvalues, <(λk) = 0, can lead to more complex behavior such
as periodic motion. However, their treatment is more difficult and
system-dependent [56, 59].

Real-world problems are rarely linear. For a nonlinear system in
the sense of Eq. (4), it can be challenging to even find a fixed point x∗.
If found, it fulfills

F(x∗) = [0, . . . , 0]T . (8)

For a small perturbation ε(t) such that x(t) = x∗ + ε(t), we find

ẋ = ε̇ = F(x∗ + ε(t)). (9)

If we want the system to asymptotically approach x∗ with t→∞, we
need ε(t) to decay to zero with t→∞. If the initial perturbation ε(0)
is small enough so that the linear term in the Taylor expansion of F(x)
centered on x∗ dominates, we find

ε̇ ≈ DF · ε(t), (10)

where we introduced the Jacobian matrix DFij = ∂Fi/∂xj|x∗ ∈ RN×N

evaluated at x∗. Eq. (10) now has the form of Eq. (6) and we can gener-
alize the stability criteria deduced above for M to the local lineariza-
tion DF, that is the Poincaré-Lyapunov Theorem [56]: If all eigenvalues
of DF have negative real part, then x∗ is locally asymptotically stable.
If at least one eigenvalue has positive real part, then x∗ is unstable.

2.5 network dynamical systems

We have introduced the concept of networks to capture structural
properties in terms of an adjacency matrix A. We have seen how dy-
namical systems can be modeled in terms of ODEs and how the stabil-
ity criteria of fixed points x∗ can be deduced. The purpose of network
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dynamical systems is to link dynamics with structure. A convenient
notation is the following:

ẋi = fi(xi) +

N∑
j=1

Aijgij(xi, xj) (11)

[10], where fi is a smooth function that models the local dynamics at
each node and gij is another smooth function modeling the coupling
among nodes. Note that for the moment, we use heterogeneous fi
and gij for the nodes i. Mathematically speaking, Eq. (11) has the
form of Eq. (4) with nonlinear function F(x). However, the notation
(11) allows us to reveal the interplay between structure and dynamics;
as we will see in the following.

2.5.1 Symmetric fixed points

The stability of fixed points x∗ = [x∗1, . . . , x∗N] of heterogeneous sys-
tems like (11) can generally be assessed with the techniques discussed
above. To obtain a more systematical insight, let us now consider an
example systems with homogeneous dynamics f = fi and g = gij
for all i and j and symmetric fixed point x∗ = [x∗, . . . , x∗] on an undi-
rected, unweighted network (A = AT ) without self-links (Aii = 0 for
all i) [10]:

ẋi = f(xi) +

N∑
j=1

Aijg(xj) (12)

We have further restricted the coupling to act only on node j and not
on node i itself. If we introduce a small perturbation of the system
close to the fixed point, x(t) = x∗ + ε(t), we find

ε̇ = (αIN + γA)ε, (13)

where IN is the N ×N-identity matrix, α = ∂f(y)/∂y|x∗ and γ =

∂g(y)/∂y|x∗ . Just as before, the asymptotic stability of the symmetric
fixed point x∗ depends on the eigenvalues of αIN + γA. If vk is an
eigenvector of Awith eigenvalue µk, it is also an eigenvector to αIN+

γA with eigenvalue α+ γµk. Hence, x∗ is stable if

α+ γµk < 0 (14)

for all k [10]. Because A = AT and A ∈ RN×N, all eigenvalues µk of
A are real. Further, there are positive as well as negative eigenvalues2.
To fulfill (14), α < 0. This is an intuitive result, because it states that
the local dynamics is stable in x∗. We then find −α/γ < µk if γ < 0

2 In networks without self-links, Aii = 0 for all i. Hence tr(A) = 0 =
∑N
k=1 µk. If

there is at least one link in the network, there must be both negative and positive
eigenvalues.
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and −α/γ > µk if γ > 0. If we denote µ1 > 0 as the largest and
µN < 0 as the smallest eigenvalue, we find [10]

1

µN
< −

γ

α
<
1

µ1
. (15)

Condition (15) is referred to as master stability condition. It can take
much more complicated forms if not all the aforementioned condi-
tions apply, but we deduced this explicit example to demonstrate the
interplay between structure and dynamics in network dynamical sys-
tems: While α = ∂f(y)/∂y|x∗ and γ = ∂g(y)/∂y|x∗ depend only on
the local and coupling dynamics, respectively, the eigenvalues µk de-
pend only on the adjacency matrix, i.e. the network structure. When-
ever (15) is fulfilled, x∗ is linearly stable.

Example 1: Nonlinear coupling function. Let us consider the network
dynamical system

ẋi = −xi +

N∑
j=1

Aij ·K
xj

1+ xj
. (16)

In fact, Eq. (16) is a simple model for biochemical reaction networks,
the Michaelis-Menten Kinetics [5], in which xi(t) specifies the chem-
ical abundance or expression level of molecular species i. It shows
an asymmetric fixed point and we will later in this thesis use devia-
tions from such an asymmetric fixed point to infer hidden nodes in
networks (Chapter 6). However, let us for the moment consider the
symmetric fixed point x∗ = [0, . . . , 0]T which has only subordinate rel-
evance in biochemical reactions, but nicely illustrates our previously
derived condition (15) from a mathematical perspective. We choose a
homogeneous coupling constant K on the unweighted adjacency ma-
trix A. For the symmetric fixed point x∗ = [0, . . . , 0]T , we have α = −1

and γ = K. We integrate Eq. (16) on a small network of five nodes,
Fig. 3 a, and show the eigenvalues µk of A in Fig. 3 b. The master
stability condition, Eq. (15), reads

−
1

1.7491
≈ −0.57 < K <

1

2.6855
≈ 0.3724. (17)

In this example, the structural properties of the network, expressed
by the eigenvalues µk of the adjacency matrix A, lead to the fact that
x∗ becomes instable once the coupling K exceeds K = 0.3724. For
illustration, we show the evolution of xi(t) for the unstable (K = 0.4,
Fig. 3 c) and stable regime (K = 0.3, Fig. 3 d).

2.5.2 Synchronous trajectories

Network dynamical systems can show much more complex collective
phenomena than simple symmetric fixed points x∗. One important ex-
ample is full synchronization, where the trajectories xi(t) of all nodes
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Figure 3: Examples of collective dynamics in network dynamical systems
(a) Example network of five nodes. (b) Eigenvalues of the corre-
sponding adjacency matrix A and graph Laplacian L. (c,d) In net-
work with nonlinear coupling function, Eq. (16), the symmetric
fixed point x∗ = [0, . . . , 0]T becomes instable, once the coupling
K exceeds Kc = 0.3724. Line colors correspond to node colors in
(a). (e,f) Diffusively coupled van der Pol systems, Eq. (26), fully
synchronize for couplings stronger than Kc = 1.232. (g,h) Ku-
ramoto oscillators coupled on the network, Eq. (37), phase-lock
if K > Kc = 3.25; according to the condition derived in [60].



2.5 network dynamical systems 19

are exactly equal, xi(t) = s(t) for all i [12]. Note that s(t) is still a
time-dependent, possibly chaotic, trajectory and no stationary fixed
point. A common notation to analyze synchronization in network dy-
namical systems is the following [12]:

ẋi = f(xi) +K ·
N∑
j=1

Aij(g(xj) − g(xi)). (18)

Here, we have introduced a coupling strength K ∈ R (which could
technically be absorbed in g) and a slightly different coupling g(xj) −
g(xi) than before. However, we can re-write Eq. (18) as

ẋi = f(xi) +K ·
N∑
j=1

Aijg(xj) −K ·
N∑
j=1

Aijg(xi)

= f(xi) +K ·
N∑
j=1

Aijg(xj) −K · g(xi)
N∑
j=1

Aij

= f(xi) +K ·
N∑
j=1

Aijg(xj) −K · g(xi)d(i)

= f(xi) −K ·
N∑
j=1

(d(i)δij −Aij)g(xj)

=: f(xi) −K ·
N∑
j=1

Lijg(xj), (19)

which has the form of Eq. (12) except that here, in Eq. (19), the newly
defined matrix

Lij := d(i)δij −Aij, (20)

with Kronecker-δij and degree d(i) of node i, takes over the role of
the adjacency matrix Aij. L is called the graph Laplacian matrix of the
network [10, 12].

In fact, L is closely related to the Laplacian operator ∆ :=
∑
i ∂
2
i

in continuous systems: Let us consider for a moment the diffusive
spreading of a scalar quantity φ(u, v, t) on a two-dimensional space
(u, v) ∈ R2 described by the heat equation

∂tφ = ∆φ = ∂2uφ+ ∂2vφ. (21)

If we discretize the partial derivation in space, we find

∂tφ(u, v, t) = lim
h→0

[
φ(u− h, v, t) +φ(u+ h, v, t)

h2

+
φ(u, v− h, t) +φ(u, v+ h, t)

h2

−
4φ(u, v, t)

h2

]
. (22)
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The Laplace operator ∆ sums up the values of φ at neighboring po-
sitions in space in all 4 directions with infinitesimal distance h and
subtracts 4 times the value of φ at the position itself. If we now look
at the simplest version of Eq. (19) without local dynamics (f(x) = 0)
and linear coupling (g(x) = x), we find that (−L) is doing the exact
same thing– except that the summation runs over all adjacent nodes.
Eq. (19) hence describes a reaction-diffusion process on a network
[10].

The Laplacian L of an undirected network has some important
properties of which we only list a few: First, it always has one eigen-
value λ1 = 0 with corresponding eigenvector 1 = [1, . . . , 1]T . This can
be deduced straight-forwardly from the definition of L and the nodal
degree d(i) (Eq. (2)). Second, all other eigenvalues are real (L = LT )
and positive. A convenient notation is hence λ1 = 0 6 λ2 6 · · · 6 λN.
And, third, λ2 is referred to as algebraic connectivity: If λ2 6= 0, the
network is connected, otherwise it has at least two disconnected com-
ponents [10].

But now back to our system (19). How can we find a condition
under which the trajectories xi(t) converge to the same synchronous
trajectory s(t)? We begin with an ansatz which generalizes from the
analysis of symmetric fixed points. We consider a time-dependent
perturbation εi(t) of the synchronous trajectory, xi(t) = s(t) + εi(t),
and write [12]

ε̇(t) = f(s(t) + ε(t)) −K · Lg(s(t) + ε(t))

≈ ∂f(y)
∂y

∣∣∣∣∣
s(t)

ε(t) −K · L∂g(y)
∂y

∣∣∣∣∣
s(t)

ε(t). (23)

Eq. (23) is a variational equation in ε(t) and much more difficult
to treat than Eq. (13); note that the derivatives have to be evaluated
along the trajectory s(t). Projecting Eq. (23) into the eigenspace of L,
Qw(t) = ε(t) with Q ∈ RN×N the matrix of eigenvectors of L, yields
[12]

ẇ(t) =
∂f(y)

∂y

∣∣∣∣∣
s(t)

w(t) −K · diag(λ1, . . . , λN)
∂g(y)

∂y

∣∣∣∣∣
s(t)

w(t) (24)

or, element-wise,

ẇi(t) =

∂f(y)
∂y

∣∣∣∣∣
s(t)

−Kλi
∂g(y)

∂y

∣∣∣∣∣
s(t)

wi(t). (25)

If all trajectories xi(t) converge to s(t), all eigenmodes wi(t) for i >
1 must converge to zero for t → ∞. For convenience, we define
σi := Kλi. Note that the mode w1 corresponds to the eigenvector
1 = [1, . . . , 1]T which represents a global shift of all nodes and does
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therefore not affect the synchronized state. For all other modes, one
has to numerically compute the largest Lyapunov exponent Λmax(σ)

of the variational equation (25) as a function of σ. All modes wi(t)
damp out if Λmax(σi) < 0 for all σi = Kλi, i = 2, . . . ,N. Λmax(σ) is
referred to as the master stability function [9, 12].

Example 2: Forced van der Pol system. Consider the system

ẍi = −xi + d(1− x
2
i )ẋi + F sin(ηt) +K ·

N∑
j=1

Aij(xj − xi) (26)

of diffusively coupled van der Pol systems with d = 3, F = 15, and
η = 4.065 [61]. In fact, this is a second order differential equation.
However, if we define two-dimensional nodal dynamics xi = [ẋi, xi]T ,
it can be brought to the form of Eq. (18) and the derivation of the
Master Stability Function Λmax(σ) generalizes straight-forwardly for
multidimensional nodal dynamics [12]. The numerical calculations
to obtain Λmax(σ) were performed in Ref. [61] with the result that
Λmax < 0 for σ > 1.232. Hence, for a stable full synchronization, we
need to fulfill

Kλi > 1.232 (27)

for all nonzero Laplacian eigenvalues λi, i > 2. Given that in our
example system, Figs. 3 a&b, min

i>2
λi = 1, full synchronization occurs

for K > 1.232. As in the previous example, we show the evolution of
the nodal dynamics in the unstable (K = 0.1, Fig. 3 e) and stable case
(K = 3, Fig. 3 f).

2.5.3 Phase locking of coupled oscillators

Master stability functions, as discussed in the previous chapter, are
powerful tools due to their broad applicability. However, non-trivial
and possibly expensive numerical calculations are necessary to obtain
Lyapunov exponents of systems like Eq. (25). Hence, the insight to the
systematic dependence of synchronization on structure and dynam-
ics is limited. A deeper theoretical insight is obtained from a model
proposed by Kuramoto [13, 17]. The dynamics read [13]

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) (28)

and model a set of N oscillators with phase θi(t) and natural fre-
quency ωi which are globally, i.e. all-to-all, coupled with coupling
strength K/N. The natural frequencies ωi are distributed according
to a given probability density function, ω ∼ g(ω).
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Kuramoto oscillators synchronize under certain circumstances. Let
us first consider frequency synchronization, i.e. θ̇i(t) = Ω for all i
and t. Then, summing up Eq. (28) for all i yields

N∑
i=1

θ̇i = NΩ =

N∑
i=1

ωi +
K

N

N∑
i=1

N∑
j=1

sin(θj − θi) (29)

Since sin(θj − θi) + sin(θi − θj) = 0, we find

Ω =
1

N

N∑
i=1

ωi. (30)

The common frequency Ω is hence the average of the natural fre-
quencies ωi. However, the phases θi(t) are not necessarily the same
everywhere. Let us go back to Eq. (28) for some fixed i in the case
where all frequencies are synchronous (θ̇i(t) = Ω):

Ω = ωi +
K

N

N∑
j=1

sin(θj − θi) (31)

Synchronized phases θi would imply θj − θi = 0 and hence Ω = ωi
for all i. Thus, we find that phase synchronization in the Kuramoto
model is only possible for systems with identical oscillators, ωi = Ω.

The case where all frequencies are the same, θ̇i = Ω for all i, but
the phases θi show a constant phase difference θj− θi =: ∆ij = const.
is referred to as the phase-locked or frequency-synchronized state [62]; in
contrast to the previously discussed full synchronization.

In the case of global coupling, Eq. (28), the transition from asyn-
chronous to phase-locked dynamics can be derived analytically [13]:
Let us consider the order parameter

Z(t) :=
1

N

N∑
j=1

exp(iθj(t)). (32)

By definition, |Z| 6 1. Z measures the coherence of the phases θi(t): If
all phases evolve asynchronously with independent frequencies, they
will cancel out each other and |Z|→ 0. If coupling K is increased, more
and more oscillators will, eventually, join the phase-locked cluster
and sum up coherently; resulting in |Z| → 1. Defining R := |Z| and
Ψ := arg(Z) allows us to formulate a mean field theory for the system
(28):

θ̇i = ωi +KR sin(Ψ− θi). (33)

We omit the detailed calculations here and present only the result [13]
manifested in a self-consistent equation for R:

R = KR

π/2∫
−π/2

dϕ cos2(ϕ)g [KR sin(ϕ)] . (34)
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R↘ 0 yields

Kc =
2

πg(0)
, (35)

which is the critical coupling above which R starts to grow because
more and more oscillators phase-lock and sum up coherently. Close
to Kc, R grows, in leading order, as

R ∼

√
−16(K−Kc)

πK4cg
′′(0)

, (36)

that is R ∝ (K−Kc)
1/2 – in analogy to a second-order phase transition

[13].
The original model (28), as proposed by Kuramoto, can be general-

ized to complex networks by replacing the global coupling in Eq. (28)
with an adjacency matrix A [13]:

θ̇i = ωi +K

N∑
j=1

Aij sin(θj − θi) (37)

In this case, analytical synchronization conditions for arbitrary topolo-
gies are rare and usually depend on the algebraic connectivity λ2, or
nodal degrees d(i). For a summary of the state-of-the-art, we refer to
Refs. [62] or [13]. Here, we present only one recent result which ap-
plies to a broad range of network types and was derived by Dörfler
et al. in Ref. [60]. The authors define solutions {θi(t)} as phase cohesive
if each pair of connected oscillators (i, j) has a bounded phase differ-
ence |θi − θj| 6 γ < π/2. Then, there exists a stable phase-locked and
phase cohesive solution if

||L†ω||A,∞ 6 sin(γ), (38)

where L† denotes the Moore-Penrose pseudo inverse of the graph
Laplacian L and ω = [ω1, . . . ,ωN]T . Further, for some state vector
x ∈ RN, ||x||A,∞ := max

(i,j)
|xi − xj| where (i, j) is a link in the network

represented by A. ||x||A,∞ is hence the “worst-case dissimilarity” [60]
for x over the links.

Example 3: Kuramoto oscillators on a network. We now couple Ku-
ramoto oscillators, Eq. (37), on our example network, Figs. 3 a&b,
with ω = [10, 5,−5,−2,−3]T . We obtain

(KL)†ω =
1

K
L†ω =

1

K
[1.8, 1.3,−1.45,−1.2,−0.45]T . (39)

The largest difference of this result along an existing edge is hence
1/K(1.8− (−1.45)) = 1/K · 3.25. If we formulate condition (38) in its
least strict fashion, γ = π/2, we obtain that phase-locked behavior
occurs for K > 3.25. In Figs. 3 g&f, we show asynchronous phase evo-
lution for K = 1 and phase-locked evolution for K = 4, respectively.





3
F L U C T U AT I O N S O F W I N D P O W E R I N P O W E R
G R I D S

We begin this chapter with a discussion of basic properties of fluctua-
tions in turbulent flows. Further, we show how wind turbines react to
turbulent inflow conditions by comparing specific statistical proper-
ties of the power output of wind turbines to those of ideal turbulence.
We will then introduce a simple power grid model which captures
the dynamics of high-voltage AC grids and constitutes the basis for
our further analysis of fluctuation spreading in power grids.

3.1 a statistical approach to turbulence

Throughout this section, we follow the reasoning of Ref. [29]. The
evolution of a velocity field u(x, t) of an incompressible Newtonian
fluid is governed by Navier Stokes equation:

∂tu(x, t) + (u(x, t) · ∇)u(x, t)

= −∇p(x, t) + ν∆u(x, t) + f(x, t), (40)

where ν denotes kinematic viscosity and p(x, t) = P(x, t)/ρ the pres-
sure field P(x, t) divided by the constant density ρ. f(x, t) is a body
acceleration term (such as gravity) [29].

Eq. (40) models the spatial and temporal evolution of a velocity
field u(x, t). Yet, in most cases, there is no general analytical solution
known. Hence, the analysis of statistical properties of the velocity
field u(x, t) cannot be derived from an explicit solution of Eq. (40).
However, why is it so difficult to derive, for example, the probability
density function p(|u|, t) or at least moments thereof?

Let us consider the two-point correlator

Cij(x, x ′, t) = 〈(ui(x, t)uj(x ′, t)〉 (41)

which comprises important statistical information on the flow: For
x = x ′, it gives the second-order moments of p(|u|, t) and for r = x−x ′,

25
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we obtain information on the correlation of the velocity field on scale
r. Directly from Eq. (40), one obtains

∂

∂t
〈(ui(x, t)uj(x ′, t)〉+

3∑
k=1

∂

∂xk
〈(uk(x, t)ui(x, t)uj(x ′, t)〉

+

3∑
k=1

∂

∂x ′k
〈(uk(x ′, t)ui(x, t)uj(x ′, t)〉

= −
∂

∂xi
〈(p(x, t)uj(x ′, t)〉−

∂

∂x ′j
〈(p(x ′, t)ui(x, t)〉

+ ν[∆x +∆x ′ ]〈ui(x, t)uj(x ′, t)〉+Qij(x, x ′, t) (42)

[29]. Here, Qij denotes a source term which stems from the acceler-
ation f. The main difficulty arises from the fact that Eq. (42), whose
solution would principally reveal Cij, includes both second and third
moments. In fact, one can show that each equation for the Nth mo-
ment depends on the (N + 1)th moment as well– thus hindering a
direct analytical solution for Cij. This problem is referred to as the
closure problem of turbulence [29].

In 1922, L.F. Richardson developed a phenomenological descrip-
tion of turbulent fluids [29, 63]: Stimulated by the observation that
turbulent velocity fields consist of a multitude of eddies of different
sizes which dynamically appear and decay, he presented his view
of the energy cascade. In this model, energy is injected to the fluid at
large spatial scales evoking large eddies of size L. Those rapidly be-
come instable and decay into smaller eddies to which the energy of
the original, large eddy is transferred. Thus, the energy is transferred
down the cascade of ever smaller eddies until the structures become
so small that the energy dissipates.

We will consider turbulent flows that are stationary, homogeneous,
and isotropic. Stationarity is obtained if energy is injected with con-
stant rate on large scales to maintain a stable energy cascade. Homo-
geneity, that is spatial invariance, states that the flow is large enough
to minimize the impact of boundary conditions on scales l � L.
Isotropy means rotational invariance. The two-point correlator Cij(x,
x ′, t), Eq. (41), then only depends on distance r = |r| = |x − x ′| and
is stationary as well. Further, it is sufficient to consider only a single
velocity component u(x, t):

C(r) = 〈u(x + r, t)u(x, t)〉. (43)

We may then define the integral length scale L which was phenomeno-
logically discussed above as

L :=

∞∫
0

C(r)

C(0)
dr (44)
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[29]. Further, the length scale λ below which dissipation dominates is
defined by the curvature of the parabolic decay of C(r) close to r = 0
through

C(r)

C(0)
= 1−

1

2

r2

λ2
(45)

[29]. The length scale λ is referred to as the Taylor length. The scales
λ � l � L constitute the inertial range. In 1941, Kolmogorov postu-
lated that within the inertial range, turbulent structures are homoge-
neous, isotropic and independent of dissipation effects [29, 64].

In the spectral domain, two-point correlations manifest in the spec-
tral energy density E(k), where k is a wave number. E(k) quantifies
the energy contained in structures of wave number k. One important
result, independently obtained1 by Obukhov [65], Kolmogorov [66],
Heisenberg [67], and Weizäcker [68] is that E(k) of the turbulent ve-
locity field scales as

E(k) ∝ k−
5
3 . (46)

Despite the various aforementioned discoverers, Eq. (46) is often re-
ferred to as the Kolmogorov spectrum of turbulence.

Of particular interest for our analysis of turbulent fluctuations is
the statistics of increments. Let us define the longitudinal increment

∆ru(x, t) := er · (u(x + r, t) − u(x, t)), (47)

where r with r = |r| is the distance vector and er the unit vector in
r-direction. Due to the assumed isotropy, ∆ru(x, t) depends only on
the distance r and not the spatial orientation. The moments of the
longitudinal increments are called structure functions

Sn(r) := 〈∆run〉 (48)

of order n. Here, 〈·〉 refers to statistical averaging. For S3(r), Kol-
mogorov derived one of the very few results directly from Navier
Stokes:

S3(r) = −
4

5
〈ε〉r (49)

[29], where 〈ε〉 is the mean energy dissipation rate. This is the fa-
mous 4/5 law for turbulent flows which is valid for scales within
the inertial range in which dissipation can be neglected. Further, Kol-
mogorov postulated self-similarity of the increment distributions. A
probability density p(∆ru) is considered as self similar if it scales as

1 See Ref. [28], from where the original references were taken, for a historical discus-
sion.
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Figure 4: Breaking of self-similarity of increment statistics. Increment
PDFs (p(∆ru) ≡ p(v, r)) of velocity measurements in the turbu-
lent region of a round free jet. Each PDF is shown in units of its
respective standard deviation σr and vertically shifted to enhance
differentiability. Spatial scales r are given in units of the integral
length scale L. Figure reprinted from Ref. [69] with permission
from Cambridge University Press.

p(u, r) = λζp(λζu, λr) with appropriate scaling parameter ζ. Figura-
tively speaking, this is the case when the increment distributions have
the same shape for different scales r. For the structure functions, self
similarity – together with Eq. (49) – results in

Sn(r) = Cn〈ε〉
n
3 rζn (50)

with ζK41

n = n/3. This is the main result from Kolmogorov in 1941 [29,
64].

Experimental results refute the hypothesis of self similarity of struc-
ture functions in the inertial range. Probability density functions p(
∆ru/σr) of increments (in units of their respective standard devia-
tions σr = 〈∆ru2〉) follow an almost Gaussian distribution on large
scales r and deform towards more heavy-tailed shapes on small scales
r, Fig. 4. This effect is termed intermittency in turbulence research2

[29].
The scaling of structure functions Sn(r) with r has been a field

of intensive research since Kolmogorv’s results from 1941. In 1962,
Kolmogorov replaced the mean dissipation rate 〈ε〉 in his original
theory by a log-normally distributed random variable. Therewith he
obtained for the scaling exponent

ζK62

n =
n

3
−
µ

18
n(n− 3), (51)

2 We emphasize that the term “intermittency” has a different meaning in other dis-
ciplines and may, for example, also refer to intermittent availability of renewable
energies or a specific behavior of dynamical systems [29].
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[29, 70] where the constant µ was experimentally estimated as µ ≈
0.26. While this nonlinear exponent ζK62

n fits experimental data bet-
ter than ζK41 = 1/3, She and Leveque derived an even better fitting
expression [29, 71]

ζSL
n =

n

9
+ 2

(
1−

(
2

3

)n
3

)
. (52)

In summary, we have seen that statistical properties of turbulent
velocity fields are difficult to obtain directly from Navier Stokes equa-
tion. Experiments show that such properties highly depend on the
spatial scale r and are not self-similar. Increments ∆ru characterize
fluctuations in terms of velocity differences on a fixed scale r and
underlie the effect of intermittency, that is the deformation of a Gaus-
sian p(∆ru) on large scales towards heavy-tailed shapes of p(∆ru)
with decreasing r. Several theoretical frameworks model the effect of
intermittency decently, but not perfectly.

3.2 fluctuations in wind power measurements

In the previous Sec. 3.1, we discussed non-Gaussian increment statis-
tics of homogeneous and isotropic turbulence. While such theoretical
analyses usually focus on spatial increments at fixed times, experi-
mental setups often only allow to measure time-wise increments at
a fixed spot of an Eulerian observer. However, if the measured ve-
locity fluctuations are small compared to the mean velocity, Taylor’s
hypothesis [29] applies and properties of spatial increments trans-
late into properties of time-wise increments. Even though the ideal-
ized conditions of homogeneous isotropic turbulence apply mainly to
lab experiments, also wind speed measurements show non-Gaussian
increment statistics on short timescales which deform towards less
heavy-tailed shapes on larger scales, Fig. 5 a [23, 25, 26].

How do intermittent wind speed fluctuations affect the power pro-
duction of wind turbines? Interestingly, time series of wind power
generation show even more pronounced tails, Fig. 5 b [23, 25, 26]. In
units of their respective standard deviations στ, the τ = 1 s incre-
ments of wind power last up to approximately 20στ, while those of
wind speed are smaller than 10στ. However, the deformation towards
a Gaussian distribution with increasing time lag τ is less obvious in
the power time series.

Wind turbines convert kinetic energy of the wind into electric power.
Modern turbines allow for variable rotational speed and decouple the
rotating mechanical parts from the frequency of the alternating cur-
rent fed to the grid through AC-DC-AC converters (see [25] with ref-
erences therein). Such power converters apply complex control strate-
gies to maximize the power output in a fluctuating wind field. In
many cases, controllers freely follow wind speed variations and may
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Figure 5: Non-Gaussian increment statistics of wind speed and wind
power measurements. Increment PDFs of (a) wind speed mea-
surements ∆τu ≡ uτ and (b) the power output of a wind turbine
∆τP ≡ Pτ for different timescales (symbols, timescales τ in sec-
onds). The Gaussian distribution is given as the solid reference
curve. Each PDF is vertically shifted to enhance differentiability.
Figures reprinted from Ref. [23] with permission from Springer
Nature.

therewith transfer statistical properties of the incoming wind field to
the power output [25].

Regardless of how exactly the controller is programmed, there is
one principal argument why short-term fluctuations appear stronger
in wind power than in wind speed measurements. In a laminar and
incompressible flow with constant speed u and density ρ, the kinetic
power P̃wind(u) which passes through a rotor plane A, perpendicular
to the wind direction, is

P̃wind(u) =
d
dt
Ekin =

1

2
ṁu2, (53)

where ṁ = ρuA is the mass flow rate [23]. Inserting ṁ yields

P̃wind(u) =
1

2
ρAu3 (54)

[23]. Eq. (54) relates wind speed u to theoretically available power
P̃wind(u) through a power law with exponent 3. This nonlinear trans-
formation can principally explain the different shapes between p(∆τu)
and p(∆τP), see Fig. 5, by itself.

Non-Gaussian short-term fluctuations persist in the aggregated out-
put of 12 turbines, Fig. 6 a. This is an experimental hint that the effect
of geographic smoothing, that is the decrease of fluctuations due to
aggregation of spatially distributed turbines, does not critically af-
fect the shape of the short-term increment distributions. Further, we
find the turbulent energy spectrum E(k) ∝ k−5/3, Eq. (46), in both,
the power spectral density of wind speed and power output time se-
ries, Fig. 6 b. This indicates that the long-ranging spatial correlations
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Figure 6: Increment statistics of aggregated power output and power spec-
tral densities. (a) Increment PDFs p(∆τP ≡ Xτ) of power produc-
tion of a single turbine (◦) and the aggregation of 12 turbines (•)
for different time lags τ in seconds. The Gaussian distribution is
given as the solid reference curve. Each PDF is vertically shifted
to enhance differentiability. (b) Power spectral densities of wind
speed and power production time series in comparison to the tur-
bulent energy spectrum, Eq. (46). Figures reprinted from Ref. [26]
(published under CC BY 3.0 license).

of turbulent flows manifest in time-wise fluctuations of wind power
generation. In a recent Letter [27], M.M. Bandi suggests that due to
the long-ranging correlations in atmospheric turbulence, there exists
a natural bound for geographic smoothing beyond which fluctuations
do not further decrease among aggregation.

3.3 power grids as network dynamical systems

We have seen that wind power shows specific non-Gaussian and cor-
related fluctuations on time scales as short as seconds. In this section,
we want to derive the simplistic model for high-voltage alternating
current (AC) grids that was introduced to the community of theoreti-
cal physics by Filatrella et al. [7] and captures the phase and frequency
dynamics on such timescales. We remark that our main purpose is to
derive a theoretical framework which allows us to understand the
physical interaction of fluctuations with the power grid. We do not
intend to perform an analysis or even make predictions for existing
power grids. In the following, we briefly sketch the derivation of our
network dynamical model [72–74]. For a more detailed discussion,
we refer to the power system literature [72, 75, 76].

3.3.1 Power flow equations

Let us consider a power grid with i = 1, . . . ,N nodes connected by
lines with admittance yij. Given that in high-voltage grids, the three
phases of the alternating current are usually symmetrically loaded,
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we only consider a single phase in our calculations [34]. To each node,
we may assign a complex voltage

Ui = Eie
iϕi (55)

with amplitude Ei and phase ϕi. Following Ohm’s law, the current
Iij from node j to node i along line ij is

Iij = yij(Ui −Uj). (56)

We remark that the admittances yij can be interpreted as a weighted
adjacency matrix in the sense of Eq. (1): yij takes some, generally
complex, nonzero value if a line between nodes i and j exists. Oth-
erwise, yij = 0. For the apparent power Sinj

i injected into node i, we
find

S
inj
i =

N∑
j=1

UiI
∗
ij = Ui

N∑
j=1

y∗ij(U
∗
i −U

∗
j ) (57)

Here, “∗” refers to complex conjugation. In Eq. (57), we observe that
the voltages Ui couple diffusively to the power injection at node i; in
analogy to Eq. (18). We can therefore express the coupling in Eq. (57)
in terms of the graph Laplacian matrix, Eq. (20), of the admittances
yij. In analogy to Eq. (20), we define

Yij :=


−yij if i 6= j
N∑
k=1

yik if i = j
(58)

which is referred to as the nodal admittance matrix [72, 74] and is by
construction a graph Laplacian. Therewith we find

S
inj
i = Ui

U∗i N∑
j=1

y∗ij −

N∑
j=1

y∗ijU
∗
j

 (59)

= Ui

N∑
j=1

Y∗ijU
∗
j . (60)

We further define the conductance Gij as the real and the susceptance
Bij as the imaginary part of the admittance matrix,

Yij = Gij + iBij, (61)
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and write

S
inj
i = Ui

N∑
j=1

(
Gij − iBij

)
U∗j (62)

= Eie
iϕi

N∑
j=1

(
Gij − iBij

)
Eje

−iϕj (63)

=

N∑
j=1

EiEj
(
Gij − iBij

)
ei(ϕi−ϕj) (64)

=

N∑
j=1

EiEj
(
Gij − iBij

) (
cos(ϕi −ϕj) + i sin(ϕi −ϕj)

)
. (65)

Finally, we obtain for the active power Pinj
i injected to node i

P
inj
i = <(S

inj
i )

=

N∑
j=1

EiEj
(
Gij cos(ϕi −ϕj) +Bij sin(ϕi −ϕj)

)
. (66)

Eq. (66) and the analogue expression for the reactive power, Qinj
i =

=(S
inj
i ), are referred to as the load flow equations [72].

3.3.2 Swing equation

The dynamics of today’s high-voltage AC power grids are governed
by the rotating masses of synchronous generators in large conven-
tional power plants. Synchronous generators consist of a rotor and
a stator. The rotor is driven by a turbine and establishes a rotat-
ing magnetic field which induces alternating voltages and currents
in the (usually three) stator windings. Mechanical rotor angle and
electric phase angle are synchronous [74–76]. From a simplistic stand-
point, such generators convert mechanical power Psource

i into electrical
power Pinj

i injected into the grid and rotational energy of the rotating
mass. Due to mechanical friction, some fraction of the power is lost
in dissipation. An adequate power balance is hence given by

Psource
i =

d
dt

(
1

2
Jiϕ̇

2
i

)
+ γiϕ̇

2
i + P

inj
i , (67)

where we introduced the moment of inertia Ji of the rotating mass
and the damping constant γi [7, 30]. We approximate high-voltage
AC transmission lines as purely inductive, that is

Gij = 0. (68)

In normal, unperturbed operation, the synchronous generator rotates
at fixed frequencyω0 and locked phase differencesϕ0i −ϕ

0
j = ϑ

0
i −ϑ

0
j
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to adjacent nodes j. Let us define the phase variation with respect to
the phase-locked state as αi(t) = ϕi(t)−ω0t+ϑ0i . If the variations of
αi(t) are only small compared to the reference frequency, α̇i � ω0,
their dynamics are governed by

α̈i + 2
γi
Ji
α̇i =

Pi
Jiω0

−

N∑
j=1

EiEjBij

Jiω0
sin(ϕi −ϕj), (69)

that is the swing equation for synchronous generators, combined with
the load flow Eq. (66) [7, 30]. Pi now stands for the effectively pro-
duced power at generator i. Throughout this thesis, we neglect volt-
age fluctuations of the synchronous machines and refer to [74] for a
dynamical model which includes voltage fluctuations.

3.3.3 The synchronous motor model

In the previous section, we have derived a differential equation for the
phase variations αi(t) of synchronous generators. The synchronous
motor model, which we use for our analyses, represents the loads
in the grid as synchronous motors which function similar to syn-
chronous generators only that electrical energy is converted to me-
chanical energy, that is Pi < 0. This load representation is not the only
possible one. Other options are the effective network or the structure-
preserving model [77]. In the former, loads are represented as con-
stant impedances rather than oscillators. The latter models loads as
first-order oscillators without inertia, that is Ji = 0 for all loads [77].

The synchronous motor model has the advantage that both, gener-
ators and motors/loads, follow Eq. (69). It is widely used among the
literature (e.g. [7, 18, 30, 31]). We emphasize the close relation of the
frequency synchronization and phase locking in this model with our
earlier discussion on Kuramoto’s model, Sec. 2.5.3.

For simplicity, we assume homogeneous machine parameters, Ji ≡
J and γi ≡ γ. Further, we define the coupling matrix Kij := EiEjBij.
We can then model the dynamics at each node i as

α̈i + 2
γ

J
α̇i =

Pi
Jω0

−

N∑
j=1

Kij

Jω0
sin(ϕi −ϕj), (70)

or, introducing the timescale τ = J/γ,

τ2α̈i + 2τα̇i =
J

γ2ω0
Pi −

N∑
j=1

J

γ2ω0
Kij sin(ϕi −ϕj). (71)

3.4 experimental setup for grid frequency measurements

In this thesis, we analyze the impact of fluctuating wind power injec-
tion on the grid frequency also in experimentally measured data. We
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measure time series of the voltage U(t) after a toroidal transformer
(Talema Ta60, 115V/115V to 7V/7V, 5VA each) which the electronic
workshop of the University of Oldenburg constructed for us explic-
itly for that purpose (order numbers 176/16 and 131/17). The trans-
former allows us to sample the voltage with an NI cRIO-9014 real-
time controller with an NI 9215 analogue input module.

We explain our data analysis techniques in the published papers
which constitute the following chapters.
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abstract

Fluctuating wind energy makes a stable grid operation challenging.
Due to the direct contact with atmospheric turbulence, intermittent
short-term variations in the wind speed are converted to power fluc-
tuations that cause transient imbalances in the grid. We investigate
the impact of wind energy feed-in on short-term fluctuations in the
frequency of the public power grid, which we have measured in our
local distribution grid. By conditioning on wind power production
data, provided by the ENTSO-E transparency platform, we demon-
strate that wind energy feed-in has a measurable effect on frequency
increment statistics for short time scales (< 1 sec) that are below the
activation time of frequency control. Our results are in accordance
with previous numerical studies of self-organized synchronization in
power grids under intermittent perturbation and give rise to new chal-
lenges for a stable operation of future power grids fed by a high share
of renewable generation.

4.1 introduction

Wind energy is one of the core elements of renewable power produc-
tion with increasing feed-in to the central European power grid: In
2016, an installed capacity of 153.7 GW in the EU generated almost
300 TWh and covered 10.4% of the EU electricity demand [78]. In
the first days of 2018, even more than 20% (60%) of the EU (German)
daily electricity demand was covered [79].

A stable and reliable supply with electrical power is essential for
both, society and economy. The power grid frequency reflects the tran-
sient ratio of production to demand in the grid and thus serves as an
instantaneous and locally inferable stability parameter. Mismatch of

37
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production and consumption causes frequency deviations from the
nominal frequency [75]. Load frequency control of the grid operator
restores the frequency after perturbations: The fastest control (“pri-
mary control”) sets in seconds after a deviation from the nominal
frequency to stabilize, but not yet restore, the frequency. Restoration
is achieved by secondary control which operates on time scales of 30

seconds and beyond [80].
Wind energy feed-in is known to be highly volatile. Fluctuations

of a process x(t) on a time scale τ are often characterized by means
of increments ∆τx := x(t) − x(t+ τ)1. Traditional analysis and predic-
tion of wind speed considers variations in 15 minutes and longer [26,
81]. However, recent findings in the analysis of short-term increments
of renewable power generation reveal strongly non-Gaussian fluctu-
ations even on scales of one second [25, 26]. But, where does this
short-term behavior result from?

The atmospheric boundary layer is known to be non-stationary
and turbulent [82–84]. Turbulent flows show scale-dependent incre-
ment statistics: In an hierarchical cascade process, kinetic energy is
transferred from large- to small-scale structures [69]. Specifically, this
implies pronounced tails in short-term increment statistics; an effect
termed intermittency in turbulence research [28]. Due to the intermit-
tent increment statistics, severe wind-speed fluctuations are much
more likely than expected from a normal distribution.

A wind turbine transforms the kinetic energy of the wind to electric
power. Even though ac-dc-ac converters decouple wind speed from
power output dynamics, turbine controllers maximize the power out-
put and follow wind speed variations [25]. Hence, atmospheric fluc-
tuations even within a second propagate into the power output of
wind farms and are fed to the grid. In fact, intermittency is found in
production time series of wind (and also photovoltaic) power plants
[25, 26]. Consequently, power quality is a major challenge for the grid
integration of renewable generators [85].

The transient short-term reaction of power grids to perturbations
has attracted great attention in theoretical physics: Simple models of
high-voltage ac-grids correspond to complex networks of Kuramoto-
like, phase-coupled oscillators [7, 74]. Such models have been used
to analyze aspects of synchronization [18] and the interplay of sta-
bility and topology [21], as well as relaxation after singular [30] and
stochastic [31, 32] perturbations. The impact of intermittent feed-in
on power grids has been addressed in [32, 33]: Numerical results
indicate that intermittency propagates in a power grid and affects
the frequency increment distributions of nodes distant to the feed-in.
Stochastic models for non-Gaussian frequency fluctuations are pre-

1 We remark that, unfortunately, we used a definition of the increment in this paper
which deviates from the convention ∆τx := x(t+ τ) − x(t) we use throughout the
rest of this thesis. This does not impact the results. (Additional comment not from
the paper).
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Figure 7: Atmospheric intermittency is preserved in power time series of
a single wind turbine and also in the average output of a farm
of twelve turbines. (a) Distribution of wind speed increments
∆τv = v(t) − v(t + τ) for τ = 1 sec. Due to the turbulent condi-
tions in the atmosphere, the increment distribution shows large
deviations from the normal distribution (gray). (b) Distribution of
power increments ∆τP for τ = 1 sec of a single turbine (blue) and
of the average power of twelve turbines (orange). The deviations
from the normal distribution are even more pronounced than for
the wind speed increments and do not average out. The increment
PDF for the single turbine is not symmetric which, to our interpre-
tation, results from operations close to the rated power Pr ≈ 2MW.
All increments are given in units of their respective standard devi-
ations; these are σ(∆τv) = 0.29 m/s, σ(∆τP) = 0.0067 MW for the
single turbine, and σ(∆τP) = 0.0292 MW for the average of twelve
turbines. PDFs are vertically shifted for convenience of presenta-
tion. Figures are similar to those in [26] and were produced from a
freely available [89] data set of 1 Hz-recordings of twelve onshore
turbines during one month; kindly provided by WPD Windman-
ager GmbH, Bremen, Germany. A detailed stochastic analysis can
be found in [25] and [26].

sented in [86]. However, none of the prior results relates the intermit-
tent feed-in to transient stochastic properties of the grid frequency.

It is often believed that intermittency vanishes when power time
series of many turbines are averaged. To support this hypothesis, usu-
ally the central limit theorem is referred to. Velocity time series v(t)
are, however, highly correlated [87] and so are the resulting power
time series [26]. The lacking statistical independence makes this theo-
rem inapplicable. Intermittency is, in fact, observed in power outputs
of entire wind farms [26] and withstands even country-wide averag-
ing [88]. We show, as an example, the increment distribution for the
mean power output of twelve turbines in comparison to the one of a
single turbine in Fig. 7. But, what exactly is the impact of wind power
feed-in on the grid frequency?

In this Letter, we complement the previous numeric and analytic
work and show that the feed-in of intermittent wind power has a
measurable effect on the increment statistics of the frequency mea-
sured in the distribution grid. Instead of focusing on the frequency



40 footpr . of atm . turb . in power grid frequency meas .

response to singular, large-deviation events, as for example in [90],
we use the full statistical information encoded in the increment statis-
tics of the grid frequency and focus on time scales that lie below the
activation of primary control.

This paper continues as follows: We first introduce our measure-
ment and data processing techniques. Subsequently, we show our
stochastic analysis and its interpretation. Finally, we conclude and
give an outlook on further research.

4.2 methods

Publicly available measurements of the frequency of the public power
grid have, to our knowledge, only a time resolution of 1 second or
above. We, however, want to observe the self-organized, transient be-
havior of the grid and thus need a higher time resolution.

We took 10 kHz voltage samplings u(t) of a single phase of the
distribution grid in our lab in Oldenburg, northern Germany, from
November 8, 2016, till March 23, 2017 (see also Sec. 3.4). Subsequently,
we applied the method of Instantaneous Frequency (IF) [91] to estimate
the frequency time series f(t) from the sinusoidal voltage signal u(t).

The IF reveals the dominant frequency component at each time in-
stant t and is thus suited for signals composed of one major frequency
component. The method makes use of the fact that real-valued sig-
nals, such as the voltage signal u(t), have conjugate symmetric Fourier
representations, F[u](−ω) = F[u](ω)∗. Here, F denotes Fourier trans-
form. The complex-valued analytic signal z(t) is the inverse Fourier
transform of the positive frequencies ω > 0. Discarding the redun-
dant negative frequency components makes the IF accessible. It is
defined as the time derivative of the phase Φ(t) of the analytic signal
z(t):

f(t) =
1

2π

d
dt
Φ(t) =

1

2π

d
dt

arg(z(t)). (72)

In practice, z(t) is obtained from the Hilbert transform H[u](t) of the
original signal: z(t) := u(t) + iH[u](t). The Hilbert transform can be
obtained from H[u](t) = (u ∗ 1/πt ′)(t), where “∗” denotes convolu-
tion.

To estimate the derivative in Eq. (72) numerically, the phase Φ(t)

was calculated for every time step in the voltage signal. Subsequently,
the time derivative was estimated by linear fits of Φ(t) in disjoint
blocks of 2000 samples. This procedure gives a frequency time series
f(t) with a time resolution of 200 ms. The 2σ-confidence bounds of
the linear fits are, in average, of size ± 1 mHz. We show one example
hour from our measurements in Fig. 8.
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Figure 8: Detrending isolates the short-term behavior of the signal. Origi-
nal frequency signal f(t) (blue) and kernel-smoothed signal fks(t)
(orange) in one example hour. The kernel standard deviation is
σ = 30 s. Inset: Detrended signal fd(t).

Frequency measurements of the public power grid are influenced
by many factors that overlay the influence of renewable generation.
The signal shows severe deviations from the nominal frequency each
full and half hour caused by power trading. Further, it is influenced
by long-term correlations in demand and production. Thus, we ap-
plied kernel detrending to isolate the short-term behavior of the fre-
quency signal f(t): A kernel-smoothed signal fks(t) was subtracted
from the original signal to obtain the detrended signal fd(t) = f(t) −
fks(t). We used a 30-seconds Gaussian kernel. The kernel-smoothed
signal is obtained from convolving the original signal with a Gaussian
curve gσ(t) with standard deviation σ = 30 s and zero mean:

fd(t) = f(t) − fks(t) = f(t) − (f ∗ gσ)(t). (73)

Again, “∗” denotes convolution. We illustrate the detrending in Fig.
8. In the following, we use the detrended data and drop the index d.

4.3 results

To evaluate the fluctuations of the grid frequency we focus on proba-
bility density functions (PDFs) of increments, p(∆τf). As shown in
Fig. 9 a, the increment distribution p(∆τf) is, for a time scale of
τ = 200 ms, not Gaussian. Its tails cause strong deviations from the
normal distribution. This means that large increments occur much
more frequently than expected from a normal distribution.
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Figure 9: Large short-term increments accumulate on days with a high
share of wind power fed to the grid. (a) Frequency increment dis-
tribution p(∆τf) for τ = 200 ms. Tails (violet squares) deviate from
the normal distribution (gray). (b) Kurtosis k(τ) of p(∆τf) as a
function of the time lag τ. While for a Gaussian distribution k = 3,
larger kurtosis values correspond to heavier tails. p(∆τf) has the
highest kurtosis on time scales below one second. (c) Left axis
and violet boxes: Histogram of occurrences of large increments
|∆τf| > 2 mHz (τ = 200 ms) binned for two days for the first 70

days of our measurement. Right axis and orange curve: Amount
of onshore wind power fed to the grid in Germany. Production
data are taken from [92] and smoothed with moving average of
two days.

The kurtosis k(τ) = 〈(∆τf− 〈∆τf〉)4〉/σ4 measures how heavy-tailed
a distribution is. Here, σ denotes the standard deviation of p(∆τf).
The kurtosis takes the value k = 3 for a Gaussian distribution and in-
creases for more heavy-tailed shapes. We observe that the increment
PDFs p(∆τf) deform to less heavy-tailed shapes for increasing time
lags τ (Fig. 9 b). On time scales below one second, we find the most
extreme tails. Even though this effect is similar to turbulent intermit-
tency, can we – at all – relate such short-term fluctuations to wind
power injection?

The grid frequency measurements are, obviously, influenced by
many possibly non-Gaussian and/or correlated processes. To inves-
tigate a possible dependence of grid fluctuations on wind energy in-
jection, we extract statistical properties of the detrended frequency
signal f(t) which we condition on the amount of onshore wind en-
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ergy Pw(t) that is fed to the European grid in Germany. We use time
series provided by the ENTSO-E Transparency Platform [92], specif-
ically the dataset “actual generation per production type” for Ger-
many and production type “onshore wind”. This data set has a time
resolution of 15 minutes. Hence, it does not allow for an analysis of
the short-term behavior of the feed-in but still enables us to condition
our high-frequency measurements on the amount of wind power fed
to the grid. We focus on the generation in Germany because, first, it
had, in 2016, by far the highest installed capacity of wind power [78]
and, second, the provided data of other countries have an even lower
time resolution.

We begin with a visual comparison of the increments ∆τf and Pw:
In Fig. 9 c, we show the time instants at which large increments occur
as well as the amount of wind power Pw fed to the grid in Germany.
We consider, for the moment, data aggregated for two days. Large
increments ∆τf coincide with high values of Pw. This is a first in-
dication that wind power feed-in affects grid frequency fluctuations.
In the following, we will provide a detailed analysis of the impact of
wind power feed-in on frequency increment distributions on different
time scales.

Instationary stochastic processes are known to potentially produce
heavy tails in their probability distributions (e.g. [93]). Wind turbu-
lence, in particular, shows characteristic turbulent behavior only when
wind speed increments are conditioned on the absolute wind speed
[94]. Motivated by such findings, we pinpoint the impact of wind
power injection on the grid frequency by the analysis of conditioned
increment PDFs p(∆τf|Pw). Thus, we learn how likely an increment
∆τf is if an amount Pw of wind energy is fed to the grid. We show
this PDF for a short (τ = 200 ms) and a long (τ = 10 s) time scale
for different ranges of Pw in Figs. 10 a & b. First, we observe that on
the short scale, the tails deviate from the normal distribution (gray
reference curve), whereas the increment PDF is very close to normal
on the long scale. Second, for the long time scale, the PDFs are almost
identical, irrespectively of Pw. On the short time scale, however, we
observe a broadening of the distribution with increasing Pw.

We quantify the time scale dependent impact of the feed-in Pw on
the increment PDF by means of width and shape of the conditioned
PDFs. In Fig. 10 c, we show that the variance

σ2(τ,Pw) :=
∫
(∆τf− 〈∆τf〉Pw)

2p(∆τf|Pw)d∆τf (74)

of the conditioned increment PDF increases with Pw for τ = 200 ms.
For increasing time lags τ, this effect quickly diminishes. On time
scales of τ = 800 ms and above, the variances show no clear trend
with Pw.
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Figure 10: Wind energy feed-in affects the short-term statistics of the
power grid frequency. (a) PDF of increments ∆τf on the time
scale τ = 200 ms for different intervals of Pw (color-coded) nor-
malized by the standard deviation σ1 of the smallest Pw interval.
Increasing feed-in Pw broadens the increment distribution result-
ing in a tenfold higher probability for a 5σ1-event (black arrow).
(b) Increment PDF for a larger time scale, τ = 10 s. The increments
follow the same, almost Gaussian, distribution; independent of
the amount of wind energy Pw fed to the grid. (c) Variances of in-
crement distributions plotted against Pw for different time scales
(color-coded). On the shortest time scale, τ = 200ms, the distribu-
tion becomes broader with increasing Pw. This effect diminishes
with increasing time lags τ. On the longest scale, τ = 10 s, the
variance shows no clear trend with Pw. For all time scales, the
variances were normalized with the respective smallest Pw bin.
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An increased probability of large fluctuations may result not only
from an increased variance but also from non-Gaussian, heavy-tailed
shapes of the PDFs. To quantify the shape development of p(∆τf|Pw)
with Pw, we use a model which was proposed by Castaing for the
characterization of intermittency in turbulence [95].

Castaing uses superimposed Gaussian PDFs with log-normally dis-
tributed variances to grasp the tails in intermittent increment PDFs.
The standard deviation λ2 of the log-normal distribution,

λ2 =
1

4
ln
(
〈(∆τf− 〈∆τf〉)4〉

3 · 〈(∆τf− 〈∆τf〉)2〉2

)
=
1

4
ln
(
k(τ)

3

)
, (75)

governs the shape of the thus obtained PDF pc(∆τf|Pw) and is called
shape parameter [96]. Due to its close relation to the kurtosis k(τ), it
serves as a measure for the heavy-taildness of the Castaing PDF: For
a Gaussian PDF, λ2 is zero. It increases the larger the deviations of the
tails from the Gaussian PDF become. In wind speed measurements,
we find λ2 in the range of 0.2 – 0.3 for increment PDFs on short time
scales [94].

We calculate λ2 from our measurements with Eq. (75) and follow
the steps in [94] to obtain the explicit expression of pc(∆τf|Pw). The
results match the data very well as shown in Fig. 11 a, where we com-
pare the conditioned increment PDFs for a small and a large Pw on
the short scale (τ = 200 ms). With this result we are now able to ana-
lyze the change in shape as a function of the wind power Pw, see Fig.
11 b. In accordance with Figs. 10 a and b, we observe lower λ2-values
for τ = 10 s than for τ = 200 ms; i.e. the PDFs are closer to the Gaus-
sian distribution on the longer time scale. In contrast to the variance
(Fig. 10 c), we do not observe a clear trend of λ2 with Pw. This means
that wind energy feed-in mainly broadens the conditioned increment
PDF on short scales without much affecting its shape.

The Castaing parametrizations pc(∆τf|Pw) can be used to estimate
the impact of Pw on extreme fluctuations of the frequency: In Fig.
11 a, we compare the probability of a 5σ-event during high wind
energy feed-in Pw to a Gaussian model. We observe a factor 900 be-
tween the Castaing model and the Gaussian (black arrow in Fig. 11

a). Note that this probability factor increases further by many orders
of magnitude for larger σ-events which for the Gaussian statistics are
expected to almost never occur – even though we observe them al-
ready in our relatively short data set. This stresses the importance of
a correct non-Gaussian modeling of frequency fluctuations in power
grids with intermittent feed-in.

4.4 conclusions and discussion

We have shown that wind power feed-in impacts the power grid fre-
quency on time scales that lie below one second. The time range up
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Figure 11: Castaing curves grasp the tails of conditioned increment PDFs.
(a) Conditioned PDFs p(∆τf|Pw) for τ = 200 ms estimated
from measurements (squares) and Castaing curves pc(∆τf|Pw)
(straight lines) using the shape parameter λ2 (Eq. (75)) for a low
(blue) and a high (orange) amount of wind energy feed-in Pw.
Both PDFs are normalized with the standard deviation σ = 0.53
mHz of the (unconditioned) PDF p(∆τf). The Castaing curves
emphasize the importance of a correct modeling of the increment
PDFs: Within this model, the probability of a 5σ event is increased
by a factor 900 as compared to a Gaussian model (black arrow).
(b) Shape parameter λ2 used to derive pc(∆τf|Pw) for τ = 200 ms
plotted against Pw. For comparison, we have included the evolu-
tion of λ2 also for τ = 10 s. The shape parameter shows no clear
trend with Pw. (c) PDF of the wind energy feed-in p(Pw) during
our measurements (data available in [92]).
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to approximately one second is interesting in two aspects: First, it
lies in the range of activation of primary frequency control [80]. This
suggests that fluctuations by wind power injection on longer time
scales are successfully compensated. Second, in the context of Small
Signal Stability Analysis, one second is approximately the time scale
that separates local modes, which affect only a localized subset of
nodes in the grid, from so-called interarea modes [97]. This suggests
that the effect we measure is local; a result which is in accordance
with our analysis in so far as the used German wind power data are
dominated by the northern region of Germany where our frequency
measurements were made.

Power quality is a key challenge for the grid integration of renew-
able generators [85]. Although the absolute size of the fluctuations we
consider is small (∆τf < 20mHz for τ = 200ms), a precise knowledge
of the fluctuation statistics is essential to correctly estimate the prob-
ability of large, possibly critical, increments. In future power grids
with a high share of renewable energy sources, the amount of rota-
tional inertia will be much lower than today. This will lead to faster
frequency dynamics with larger amplitudes [98]. If grid design and
control strategies are not properly adapted, such frequency fluctua-
tions may become highly critical for the grid stability [31]. Thus, an
explicit expression for increment probabilities is desirable to correctly
quantify these risks.

Our analysis offers a new tool to quantify the impact of renewable
generation on the frequency increment statistics: The conditioned in-
crement PDFs p(∆τf|Pw) are well described by Castaing’s parametriza-
tion. For a given distribution of the feed-in p(Pw) (Fig. 11 c), the con-
ditioned PDFs may be assumed to follow pc(∆τf|Pw) with, in the
simplest model, constant shape parameter (Fig. 11 b) and variance
increasing with Pw (Fig. 10 c). If shape parameter and variance evolu-
tion are inferred from calibration measurements, the increment PDF

p(∆τf) =

∫
p(Pw)pc(∆τf|Pw)dPw (76)

describes the overall impact of wind energy feed-in on the fluctua-
tion characteristics of a given grid and may be helpful for the design
of new control strategies for grids with a high share of renewable
sources.

We want to point out that the non-Gaussian increment statistics
p(∆τf) may also be fitted with other heavy-tailed distributions, such
as q-Gaussians or α-stable distributions, which have successfully been
applied to single-point PDFs of grid frequency data [86] as well as to
other complex systems like stock markets [99] or biological systems
[100]. An important property of such distributions is, besides the sta-
bility, the fact that they have diverging moments for wide parameter
ranges. We use here the turbulence-like finite-moment approach be-
cause, first, we see that power fluctuations are driven by wind tur-
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bulence and, second, we observe that frequency increment PDFs are
not stable: The sum of two consecutive increments is per definition
an increment of a larger scale. However, with increasing time lag, the
kurtosis of the increment PDF decreases (Fig. 9 b). Hence, the hypoth-
esis of stability is violated.

Independently of the question about the best model of the incre-
ment statistics, our main finding is that we observe a broadening
of frequency increment PDFs with increasing share of wind power
generation. There remains an open question, i.e., to what extend the
shape of the increment PDFs is caused by the turbulent wind statis-
tics 2 or by other collective effects of interacting grid components. We
conclude that a deep understanding of the non-Gaussian fluctuations
of renewable energy sources and their interaction with the grid is an
important field of further research.

2 In principle, we expect also photovoltaic feed-in to cause similar frequency fluctua-
tions. However, we leave this as a question for further research because, first, during
our winter time measurements only small amounts of PV energy were generated
and, second, intermittency in PV power time series depends not only on the amount
of produced energy but also on cloud structures. Hence, a similar analysis for PV
requires additional data sets.
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abstract

Renewable generators perturb the electric power grid with heavily
non-Gaussian and time correlated fluctuations. While changes in gen-
erated power on timescales of minutes and hours are compensated by
frequency control measures, we report subsecond distribution grid
frequency measurements with local non-Gaussian fluctuations which
depend on the magnitude of wind power generation in the grid. Mo-
tivated by such experimental findings, we simulate the sub-second
grid frequency dynamics by perturbing the power grid, as modeled
by a network of phase coupled nonlinear oscillators, with syntheti-
cally generated wind power feed-in time series. We derive a linear
response theory and obtain analytical results for the variance of fre-
quency increment distributions. We find that the variance of short-
term fluctuations decays, for large inertia, exponentially with distance
to the feed-in node, in agreement with numerical results both for a
linear chain of nodes and the German transmission grid topology. In
sharp contrast, the kurtosis of frequency increments is numerically
found to decay only slowly, not exponentially, in both systems, indi-
cating that the non-Gaussian shape of frequency fluctuations persists
over long ranges.

5.1 introduction

For the transition of electric energy supply towards renewable sources,
wind power plays a crucial role. Alone in 2017, 15.6 GW of new wind
power capacity was installed in the European Union (EU), now sum-
ming up to 168.7 GW, that is 18% of the total installed power genera-
tion capacity in the EU [101].

49
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Figure 12: (a) Distribution of power increments ∆θP = P(t + θ) − P(t) of
the aggregated output P(t) of 12 wind turbines in a wind park
(timescale θ = 1 s) [89] and Gaussian distribution as a reference
in black. Each turbine has a rated power Pr ≈ 2 MW. Power incre-
ments are given in units of the standard deviation σ∆P = 0.023
MW of p(∆θP). (b) Frequency increment distribution p(∆θf|Pw)
conditioned on wind energy generation Pw in Germany, mea-
sured in Oldenburg (θ = 0.2 s). p(∆θf|Pw) broadens with increas-
ing Pw. (c) Simultaneously measured data in Göttingen. Standard
deviations of p(∆θf) are σ∆f,o = 0.58 mHz in Oldenburg and
σ∆f,g = 0.73 mHz in Göttingen. (d) Variance evolution of the
distributions in (b) and (c) with Pw, normalized with the first
Pw-bin.1

In contrast to the steady production of conventional power sources,
wind power generation is highly volatile. Due to its continuing and in-
creasing integration to the European power grid, maintaining a high
power quality despite such fluctuations has become an important task
[85]. For the analysis of fluctuations on a timescale θ of a stochastic
process x(t), we study the statistics of increments ∆θx(t) = x(t+ θ) −
x(t) as quantified by their moments 〈(∆θx− 〈∆θx〉)n〉 which contain
information about time correlations. Time series of wind power gen-
eration P(t) show non-Gaussian increment probability density func-
tions (PDFs) p(∆θP) on timescales of few seconds [25, 26]. The tails

1 We obtain different values for the standard deviation σ∆P of the increments of the
aggregated power output than in our earlier publication, Fig. 7, because we applied
another treatment of missing values in the data set. Earlier (Fig. 7) we treated miss-
ing values of single turbines as zeros which causes an increased volatility in the
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of such PDFs deviate from the Gaussian distribution even after aggre-
gation of several turbines in a wind farm, Fig. 12 a, and are related to
the turbulent nature of wind speed fluctuations [25].

On larger timescales, frequency control measures compensate feed-
in fluctuations of renewable generators– thereby maintaining stable
grid operation [80]. However, how does the grid respond to the char-
acteristic non-Gaussian short-term fluctuations when its dynamics
is governed by the inertia of rotating masses? How does that affect
power quality? Recent results from local distribution grid frequency
measurements show that on timescales below 1 s, grid frequency fluc-
tuations actually increase with increasing wind power production
[102]. Further, the timescale separating local from interarea modes
in Small Signal Stability Analysis lies in the order of 1 s [97]. The ques-
tion arises if such wind-power-induced fluctuations are a local feature
resulting from high wind power injection close to the measurement
or if they rather have a long-range effect to the grid.

Dynamical systems driven by non-Gaussian, turbulence-like noise
model a broad range of natural and manmade phenomena [103]. Up
to a few seconds, the dynamics of high-voltage AC-grids are cap-
tured by networks of inert phase-coupled oscillators [7, 75, 76]. For
such models, the spreading of singular [30, 34], harmonic [104], and
stochastic [36] perturbations were analyzed and evaluated. Modified
Fokker-Planck equations have shown to be useful to predict steady
state frequency distributions obtained from measurements in highly
meshed grids [86]. Further, the probability of outages caused by fluc-
tuating perturbations was evaluated in Refs. [31, 32]. While these re-
sults indicate that locally induced perturbations affect the dynamics
and synchronization of coupled oscillators, it is not yet understood if
stochastic perturbations affect the grid only locally or if they rather
propagate throughout the grid and how that depends on the param-
eters and intrinsic timescales of the power grid.

Our work combines experimental and theoretical analyses of short-
term increments ∆θf = f(t+θ)− f(t) of the grid frequency f(t) which
allows us to analyze fluctuations on timescales θ. We present grid
frequency measurements at two different locations in Germany: Old-
enburg, in the northwestern region of Germany with a high share
of wind energy injection close to the measurement, and, in 213 km
straight line distance towards the center of Germany, Göttingen, with
smaller proportion of wind energy injection [105]. We show that the
statistics of the fluctuations depends qualitatively differently on wind
power feed-in at the two measurement positions. Motivated by these
observations, we study the propagation of fluctuations in power grids
by performing numerical simulations of the subsecond grid frequency
dynamics, as modeled by a network of phase-coupled nonlinear oscil-

aggregated output. As we use this data set only for motivation purposes, this effect
has no impact on our results (Additional comment not from the paper).
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lators, and derive a linear response theory to obtain analytical results
for the variance of frequency increment distributions as a function of
the increment timescale, the distance from the feed-in node, and the
system parameters, most importantly, the inertia in the grid.

5.2 data analysis

We use 10 kHz voltage samplings simultaneously measured in Olden-
burg and Göttingen from 25 July 2017 until 13 March 2018, to derive
a grid frequency time series f(t) with a time resolution of 5 Hz. We
provide details on our measurement techniques in the Supplemental
Material (Sec. 5.8).

We characterize the short-term frequency fluctuations in terms of
width (variance) and shape (kurtosis) of their increment PDFs. We use
publicly available power generation data [92] to obtain conditioned
PDFs p(∆θf|Pw). In an earlier measurement period ([102], Chapter
4), we have observed that p(∆θf) with θ = 0.2 s broadens with an
increased amount of wind energy Pw fed to the grid in Germany. In
our new data set, we were able to reproduce our earlier results in
Oldenburg, Fig. 12 b, while in the parallel Göttingen measurements,
we see no such effect, Fig. 12 c. For comparison, we show the evo-
lution of the conditioned variance σ2(θ,Pw) := var(p(∆θf|Pw)) with
Pw (Fig. 12 d) clearly confirming the different short-term response to
wind power feed-in at the two measurement spots.

Both short-term increment PDFs p(∆θf), θ = 0.2 s, show non-
Gaussian tails, characterized by a kurtosis k > 3, where

k =
〈(∆θf− 〈∆θf〉)4〉
〈(∆θf− 〈∆θf〉)2〉2

. (77)

We observe a higher kurtosis of p(∆θf) in Oldenburg (k = 4.1) than
in Göttingen (k = 3.4). However, k shows no clear trend with Pw (not
shown here).

In summary, we find that the impact of wind power generation on
the short-term frequency fluctuations which is present in Oldenburg
cannot be seen in Göttingen. Further, the PDFs p(∆θf) are slightly
more heavy-tailed in Oldenburg than in Göttingen. To explore how
the width and shape of p(∆θf) evolve with distance to the volatile
feed-in, we now consider a simple power grid model driven by a
stochastic signal and derive an analytic expression for the variance of
the increment statistics from linear response theory.
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5.3 power grid modeling

We consider the Synchronous Motor Model [7] for high-voltage AC
grids. The phase angle ϑi(t) is, in this model, governed by the Swing
Equation,

τ2α̈i + 2τα̇i =
J

γ2ω0
Pi

−

N∑
j=1

J

γ2ω0
Kij sin(ϑ0i − ϑ

0
j +αi −αj). (78)

where αi(t) = ϑi(t) − ϑ0i is the deviation of ϑi(t) from the fixed point
ϑ0i on a co-moving reference frame. Pi denotes the generated or con-
sumed power at node i. Further, Kij = K · Aij, where Aij denotes
the adjacency matrix. In the following we fix the damping γ = 105

kgm2/s and line capacity K = 0.5GW. The reference frequency is
ω0 = 2π · 50Hz and the internal timescale τ follows from τ = J/γ.
We use homogeneous parameters. For a derivation of Eq. (78), we
refer to Sec. 3.3.

Let us now consider the case in which a subset of nodes {j} is driven
by a noisy signal Pj(t). The production or consumption at one of the
perturbed nodes j decomposes as Pj(t) = P0j + δPj(t) into a constant
value P0j corresponding to the fixed point and a stochastic perturba-
tion δPj(t) with 〈δPj(t)〉 = 0.

If the system stays close to its fixed point of operation, |αi| � 1 2,
we may calculate the response of phase αi(t) to the signal δΠj(t) :=
J/(γ2ω0)δPj(t) in first-order approximation as

αi(t) =

t∫
−∞

dt ′

τ

∑
j

δΠj(t
′)Gij(t

′ − t) (79)

where the propagator is defined by

Gij(t
′ − t) =

N−1∑
n=0

∑
σ=±1

φniφ
∗
nj

2
√
1−Λn

(−σ)e(1+σ
√
1−Λn)

t ′−t
τ , (80)

see Eqs. (93)-(102) in the Supplemental Material (Sec. 5.8) for the
derivation. Here, Λn ∈ R are eigenvalues and φn ∈ RN the corre-
sponding eigenvectors of the generalized graph Laplacian matrix Λ
with Λij = − J

γ2ω0
Kij cos(ϑ0i − ϑ

0
j ) and Λii =

J
γ2ω0

∑
j Kij cos(ϑ0i −

ϑ0j ) which is related to the stability matrix used in small signal sta-
bility analysis [72, 97], see also Sec. 2.5. In contrast to prior results
[33, 34, 36], our expression applies to any stochastic signal δΠj(t) and

2 See Eq. (S2) in the Supplement of [34] for a more accurate condition for the validity
of linear response.
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does not rely on a pure analysis of power spectra. An expression sim-
ilar to Eq. (79) has been deduced in Ref. [106] independently from
our work.

For simplicity, we now focus on the case where the system (78) is
driven at a single node j. With the help of Eq. (79), we derive an ex-
pression for the variance of the frequency increment PDF on timescale
θ, which only depends on the auto-correlation function of the incre-
ment time series acf(|δ|) = 〈∆θΠj(t)∆θΠj(t+ δ)〉,

〈∆θω2i 〉 =
0∫

−∞
dt̃

τ

∞∫
t̃

dδ

τ
acf(|δ|)∂tGij(t̃)∂tGij(t̃− δ), (81)

where ∂tGij denotes the partial derivative of the propagator Gij(t ′ −
t) with respect to t andωi = α̇i the frequency at node i. See Eqs. (104)-
(110) in the Supplemental Material (Sec. 5.8) for the derivation.

5.4 localization of increment pdf variances

We now test our approach (81) numerically and analyze the propaga-
tion and localization of frequency increment statistics in linear chains
of N coupled oscillators obeying Swing Eq. (78). We emphasize that
our linearization approach is principally applicable to more complex
networks.

In our setup, solely node j = 1 is driven by a stochastic signal δPj(t),
which we obtain by means of a stochastic differential equation and
subsequent modification of the power spectrum [32] (details in the
Supplemental Material, Sec. 5.8). As a result, the time series δPj(t) re-
produces key features of wind power generation data: extreme events,
temporal correlations, characteristic power spectrum with -5/3 decay,
and heavy-tailed increment statistics. We have var(δPj) = 2.3 MW
and choose a grid with no initial power transfer, i.e., P0i = 0 for all i.
Increment variances obtained from direct numerical simulations of a
chain of N = 20 oscillators show good agreement with the response
theory, Eq. (81), see Fig. 13. The absolute amplitude of fluctuations de-
creases exponentially – apart from boundary effects – with distance
from the perturbation, confirming the localization of the fluctuations.

The impact of reduced grid inertia J is of considerable importance
for future power grids fed by a high share of renewable sources pro-
viding no inertia per se [98]. Decreasing the inertia J in our model
system leads, as expected, to higher fluctuation amplitudes, Fig. 13 in-
set. However, as the semilogarithmic plot reveals, decreasing J while
letting the damping γ remain constant causes a faster decay of the in-
crement variance. So, how exactly does the exponential decay depend
on the system parameters?

Increasing the inertia J while keeping γ constant increases the Lapl-
ace eigenvaluesΛn. For chain-like grids with a large number of nodes
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Figure 13: Evolution of the variance 〈∆θω2i 〉 of increment PDFs p(∆θωi)
(θ = 0.01 s) in a chain system of N = 20 oscillators from lin-
ear response theory Eq. (81) (solid lines) and direct Runge-Kutta
simulations (symbols). Node j = 1 is driven by the perturbation
signal δP(t). We choose θ = 0.01 s because δP(t) shows the largest
deviations from the Gaussian distribution on small timescales.

N � 1 and all nonzero Λn > 1, we find that the variance of short-
term frequency increments, Eq. (81), can be approximated by

〈∆θω2i 〉 ≈
1

JKω0
exp

(
−
i− 1

ξ

)
〈∆θδP21〉, (82)

where 〈∆θδP21〉 is the second moment of the increment PDF of the dis-
turbance at site j = 1. We have used the Kolmogorov power spectrum
S(f) ∝ f−5/3 of δP1(t). For the derivation, see Eqs. (111)-(123) in the
Supplemental Material (Sec. 5.8). Thus, we confirm analytically that
the second moment of the frequency increments is exponentially de-
caying with distance i from the position of the disturbance and find
the correlation length

ξ = vτ/2 =
√
JK/(2

√
ω0γ). (83)

We confirm the correlation length ξ with numerical investigations
of slightly longer chains (N = 50) to reduce finite-size effects, Fig. 14:
Once J exceeds a critical value Jc = ω0γ

2N2/π2K ≈ 1.6 · 106 kgm2,
all nonzero eigenvalues Λn are larger than one (Fig. 14 b) and the
slope m of the exponential decay is well fitted by m = −1/ξ (Fig. 14

c), where ξ is given by Eq. (83). In the case of low inertia J < Jc, there
are eigenvalues with 0 < Λn < 1. Such Λn cause modes which de-
cay more slowly with relaxation rates Γn < 1/τ. If all Λn < 1, the
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Figure 14: (a) Variance 〈∆θω2i 〉 from Runge-Kutta simulations of a chain of
N = 50 oscillators (symbols) compared to an exponential decay
with slope m = −1/ξ = −2

√
ω0γ/

√
JK (straight lines). (b) Eigen-

values Λn for increasing inertia J (color coded, Λn increase with
increasing J). The dashed line marks Λn = 1. (c) Exponential fits
(orange data with errorbars) of m converge to our analytical pre-
diction m = −1/ξ (Eq. (83), solid blue line) for increasing inertia
J. The vertical dashed line marks Jc. Error bars correspond to the
2σ confidence bound of the exponential fit.
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Figure 15: Kurtosis k of p(∆θωi) in a longer chain of N = 100 oscilla-
tors. The frequency increment distribution p(∆θωi) deforms only
slowly towards an (almost) Gaussian distribution (insets, from
left to right i = 2, 20, 50, θ = 0.01 s). Results were obtained from
direct Runge-Kutta simulations.

propagator Eq. (80) gets the form of a diffusion propagator [30] for
which we expect that the variance of frequency increments decays
with distance more slowly, with a power law. We observe the transi-
tion to such diffusive behavior in Fig. 14 a for J = 105 kg m2, where
the exponential decay only lasts up to node i ≈ 15. Farther away, the
slowly decaying soft modes dominate.

5.5 kurtosis evolution

Finally, we analyze the evolution of the shape of the increment PDFs
in terms of their kurtosis k. Interestingly, the non-Gaussian shape
persists much longer than the absolute fluctuation amplitudes (see
Fig. 15 in comparison to the Fig. 13 inset). In numerical simulations
of a chain of N = 100 oscillators, we observe that the short-term in-
crement PDF deforms towards an almost Gaussian distribution only
after approximately 40 nodes, see also the insets of Fig. 15. Surpris-
ingly, we observe only a linear decay of the kurtosis k with distance
until it approaches k ≈ 3, which corresponds to a Gaussian distribu-
tion. This slow decay is in strong contrast to the exponential decay
of the fluctuation amplitude observed until approximately node 15,
Fig. 14, confirming that the non-Gaussian shape persists over long
ranges. Again, the grid inertia seems to play a crucial role: Decreas-
ing the inertia leads to higher kurtosis values, which means heavier
tails, but also to a faster deformation towards a Gaussian distribution.
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Figure 16: (a) SciGrid topology of the 380 kV grid in Germany [107] with
homogeneous parameters as in the preceding simulations. The
fluctuating perturbation δPi(t) is injected at node j = 109 (high-
lighted in red). (b) Variance of the short-term increments ∆θωi
plotted against distance d(i, j) to the perturbation. Here, we
choose the shortest path distance and average the variances for
all nodes with the same d(i, j). The timescale is θ = 0.01 s. (c)
Evolution of the kurtosis k(i) of the increments ∆θωi. The error-
bars correspond to the standard deviation of the kurtosis of nodes
with the same distance d(i, j). In (b), we omit errorbars due to the
logarithmic y-axis.

5.6 complex network

In a numerical study, we show that the propagation of fluctuations
is qualitatively similar on a complex topology, Fig. 16. We choose the
SciGrid topology [107] which we perturb at a single node, Fig. 16 a.
The decay of the variance of short term increments ∆θωi is getting
steeper with decreasing inertia J and approximately follows an expo-
nential curve, Fig. 16 b. Similar to our observation in linear chains,
the non-Gaussian shape persists over long ranges: The kurtosis val-
ues are larger for low inertia and decrease slowly, not exponentially,
with distance to the perturbation, Fig. 16 c.

5.7 conclusions

In this article, we have analyzed the spreading of short-term fre-
quency fluctuations in power grids induced by wind power feed-in.
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While the influence of wind power is clearly visible in the short-term
fluctuations in Oldenburg (with a large installed capacity of wind
power generators [105]), the Göttingen measurements (with a rather
small installed capacity [105]) do not show such an effect. Our an-
alytical and numerical investigations show that the amplitudes of
such short-term fluctuations damp out exponentially fast and form
a local stochastic property of the frequency– as expected from our
measurement. In contrast, the non-Gaussian shape of the frequency
increment PDFs persists much wider in the grid and decays, in terms
of kurtosis, only linearly with distance to the perturbation. Effects
of topology and heterogeneity could further contribute to the effect
we observe in the data, and that will be a subject of further research.
Here, we focused on the most basic mechanism, namely, if the spatial
propagation can explain our observation.

The amplitudes of the frequency fluctuations we observe are small
(few mHz, Fig. 12). Hence, they do not cause risks for outages. Short-
term fluctuations are expected to further decrease when the feed-in
of many wind farms is aggregated. However, in future power grids
mainly fed by wind and solar power, the interplay between the lo-
cality of short-term fluctuations and wide-scale averaging will be of
interest for maintaining a high power quality. Further, we emphasize
the subtle role of long-ranging soft modes induced by reducing the
inertia in the grid.

Our analytical expressions help to estimate the timescale-dependent
impact of fluctuations on power grids: For short timescales, this con-
cerns, for example, the configuration of power converters feeding
wind power to the grid. However, our analysis could be extended to
longer timescales of minutes when the dynamics of primary and sec-
ondary control are included. On such timescales, the amplitudes of
power increments ∆θP of wind turbines are much larger and, hence,
our theory may then help to develop different strategies for decentral
frequency control. Further, our analysis of small-signal fluctuations in
power grid frequency measurements, well situated within the linear
response regime, will help to elaborate general results on networks
of coupled oscillators, such as transient spreading dynamics [108] or
optimal noise-canceling topologies [109].

5.8 supplemental material

5.8.1 Grid frequency measurements in the public power grid

We measured the grid frequency at two locations in the public dis-
tribution grid, namely our own lab in Oldenburg (Küpkersweg 70,
26129 Oldenburg, Germany) as well as a lab at Max Planck Institute
for Dynamics and Self-Organization in Göttingen (Am Fassberg 17,
37077 Göttingen, Germany). We used identical setups at both sites
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and data evaluation techniques originating from our earlier work
[102]:

We took 10 kHz voltage samplings u(t) of a single phase. Subse-
quently, we applied the method of Instantaneous Frequency (IF) [91]
to estimate the frequency time series f(t) from the sinusoidal voltage
signal u(t).

The IF reveals the dominant frequency component at each time in-
stant t and is thus suited for signals composed of one major frequency
component. The method makes use of the fact that real-valued sig-
nals, such as the voltage signal u(t), have conjugate symmetric Fourier
representations, F[u](−ω) = F[u](ω)∗. Here, F denotes Fourier trans-
form. The complex-valued analytic signal z(t) is the inverse Fourier
transform of the positive frequencies ω > 0. Discarding the redun-
dant negative frequency components makes the IF accessible. It is
defined as the time derivative of the phase Φ(t) of the analytic signal
z(t):

f(t) =
1

2π

d
dt
Φ(t) =

1

2π

d
dt

arg(z(t)). (84)

In practice, z(t) is obtained from the Hilbert transform H[u](t) of the
original signal: z(t) := u(t) + iH[u](t). The Hilbert transform can be
obtained from H[u](t) = (u ∗ 1/πt ′)(t), where “∗” denotes convolu-
tion.

To estimate the derivative in Eq. (84) numerically, the phase Φ(t)

was calculated for every time step in the voltage signal. Subsequently,
the time derivative was estimated by linear fits of Φ(t) in disjoint
blocks of 2000 samples. This procedure gives a frequency time series
f(t) with a time resolution of 200 ms. The 2σ-confidence bounds of
the linear fits are, in average, of size ± 1 mHz.

5.8.2 Stochastic process for synthetic wind power production data

Power production time series P(t) of renewable generators show cer-
tain statistic similarities to turbulence [25, 26]: We find long-range
correlations and a characteristic Kolmogorov power spectrum S(f)

decaying with f−5/3. Further, on small time scales θ, the PDFs of in-
crements ∆θP(t) = P(t+θ)−P(t) show heavy tails severely deviating
from the Gaussian distribution. Such tails describe the increased prob-
ability of extreme fluctuations on short scales, an effect often referred
to as intermittency in turbulence research [110].

In our numerical studies, we perturb the power grid with syntheti-
cally generated wind power feed-in timeseries which show the above-
mentioned key properties. Such properties were shown to be essential
for adequate modeling of frequency fluctuations induced by stochas-
tic feed-in [32, 33]. To isolate the effect of perturbation spreading in
our simulations, we use grids with no initial power, i.e. P0i = 0 for all



5.8 supplemental material 61

i, and perturb the system with signals δPj(t) at node j. We remark
that all our results are as well applicable to grids with initial loads.

The dimensionless perturbation timeseries δΠj(t) is decomposed
into a stochastic part x(t) and an amplitude P̂ for which we chose
P̂ = 1 MW.

δΠj(t) =
J

γ2ω0
P̂ · x(t). (85)

The stochastic part x(t) is obtained by means of the procedure in-
troduced in [32]: First, a time series x̃(t) is generated integrating the
Langevin-type system of equations

ẏ = −γy+ Γ(t), (86)

˙̃x = x̃
(
g−

x̃

x0

)
+
√
Dx̃2y, (87)

with γ = 1.0, g = 0.5, x0 = 2.0 and Γ being white Gaussian noise. The
parameter D serves to tune the degree of intermittency. Here we set
D = 2.0, which corresponds to strongly intermittent noise.

In a next step, the resulting Fourier spectrum is modified so that the
final power spectrum reproduces the Kolmogorov -5/3 decay: S(f) ∝
f−5/3. Transforming back to real space and normalization eventually
yields x(t).

We show a short part of the time series δPi(t) accompanied by
the short-term increment PDF and power spectrum in Fig. 17. In the
numerical simulations, we use a time step dt = 0.01 sec and integrate
the system with intermittent noise δPi(t) of length 19,800 sec with a
Runge-Kutta scheme of order 4.

5.8.3 Linear response theory of power grids exposed to stochastic perturba-
tions

We start from the Swing Equation,

τ2α̈i + 2τα̇i

=
J

γ2ω0
Pi(t) −

N∑
j=1

J

γ2ω0
Kij sin(ϑ0i − ϑ

0
j +αi −αj), (88)

which models the deviations αi(t) = ϑi(t) − ϑ
0
i of the phase ϑi(t)

at node i and time t from the stable fixed point ϑ0i . Here, J is the
inertia at each node, γ = J/τ is the damping constant and τ is the
relaxation time scale. We consider time dependent production and
consumption Pi(t) = P0i + δPi(t), where the P0i ’s correspond to the
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Figure 17: Synthetic wind power time series reproduce key stochastic fea-
tures of real wind power generation data. (a) Short part of syn-
thetic time series δPj(t) used for the numerical investigations.
(b) The PDF of short-term (θ = 0.01 sec) increments ∆θδP(t) =

δP(t+ θ) − δP(t) shows severe deviations from the Gaussian dis-
tribution (black curve) in its tails. x-axis is plotted in units of the
standard deviation σ of increments ∆θδP(t). (c) The power spec-
tral density decays as S(f) ∝ f−5/3 (orange reference curve). This
reproduces the characteristic Kolmogorov spectrum from turbu-
lence.

stable fixed point. For small deviations |αi|, we may linearize Eq. (88)
about the stable fixed point and find

τ2α̈i + 2τα̇i

= −

N∑
j=1

J

γ2ω0
Kij cos(ϑ0i − ϑ

0
j )(αi −αj) +

J

γ2ω0
δPi(t). (89)

We define the generalized Laplacian Λ as

Λij =

− J
γ2ω0

Kij cos(ϑ0i − ϑ
0
j ) if i 6= j

J
γ2ω0

∑
j Kij cos(ϑ0i − ϑ

0
j ) if i = j

(90)

and write

τ2α̈i + 2τα̇i +

N∑
j=1

Λijαj =
J

γ2ω0
δPi(t). (91)
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Further, we introduce δΠi(t) = JδPi(t)/(γ2ω0) to obtain

τ2α̈i + 2τα̇i +

N∑
j=1

Λijαj = δΠi(t). (92)

We now write the phase deviation αi(t) as a generalized Fourier se-
ries by writing its time dependence as a Fourier integral and expand-
ing its spatial dependence in terms of the eigenvectors φn of the
generalized Laplacian Λ, defined by Λφn = Λnφn, where Λn are its
eigenvalues [30, 34, 77, 111]. Thereby we obtain [30, 112]

αi(t) =

∞∫
−∞

dε

N−1∑
n=0

cn(ε)φnie
−iεt. (93)

Expanding the disturbance likewise in a generalized Fourier series
we get

δΠi(t) =

∞∫
−∞

dε

N−1∑
n=0

ηn(ε)φnie
−iεt. (94)

Here, the Fourier components of the disturbance are defined by

ηn(ε) =

∞∫
−∞

dt ′

2π
eiεt ′

N∑
i=1

δΠi(t
′)φ∗ni. (95)

We now insert the expansions for αi(t) and δΠi(t) into Eq. (92) and
find, requiring that the equation is fulfilled for each term of the
Fourier series, [34](

−τ2ε2 − i2τε+Λn
)
cn(ε) = ηn(ε). (96)

For a given disturbance, the Fourier component of the phase devi-
ation cn(ε) is thus given in response to the one of the disturbance
ηn(ε). Inserting that expression for cn(ε) back into the Fourier series
we get [34]

αi(t) =

∞∫
−∞

dε

N−1∑
n=0

(
−τ2ε2 − i2τε+Λn

)−1
ηn(ε)φnie

−iεt. (97)

The integral over the angular frequency ε can be performed by means
of the residuum theorem, noting that there are two poles in the lower
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complex plane, εn± = −i(1 ±
√
1−Λn)1/τ. Inserting Eq. (95) into

Eq. (97) yields

αi(t) =

∞∫
−∞

dε

∞∫
−∞

dt ′

2π

N−1∑
n=0

(−τ2ε2 − 2iτε+Λn)−1

×
N∑
j=1

δΠj(t
′)φ∗njφnie

iε(t ′−t) (98)

=

t∫
−∞

dt ′

2π
(−2πi)

N−1∑
n=0

∑
±

−eiε±(t ′−t)

τ2(ε± − ε∓)

N∑
j=1

δΠj(t
′)φ∗njφni (99)

=

t∫
−∞

dt ′
N−1∑
n=0

∑
±

i eiε±(t ′−t)

τ2(ε± − ε∓)

N∑
j=1

δΠj(t
′)φ∗njφni. (100)

We have closed the integration path of ε clock-wise in the lower com-
plex plane for t ′ < t. For t ′ > t, the path must be closed in the upper
complex plane where no poles are present. Hence there are no contri-
butions “from future” (t ′ > t) to the integral [34]. We remark that for
n = 0, Λ0 = 0 and hence ε0− = 0. Given that this pole lies on the real
axis, its contribution must be multiplied with a factor 1/2. However,
this contribution corresponds to a constant phase shift which does
not impact the frequency ωi(t) which we analyze in the following.

By replacing ε± − ε∓ = ∓2i
τ

√
1−Λn we obtain the expression

αi(t) =

t∫
−∞

dt ′

τ

N∑
j=1

δΠj(t
′)Gij(t

′ − t) (101)

where the propagator Gij(t ′ − t) is defined by

Gij(t
′ − t) =

N−1∑
n=0

∑
σ=±1

φniφ
∗
nj

2
√
1−Λn

(−σ)e(1+σ
√
1−Λn)

t ′−t
τ . (102)

For the frequency ωi(t) = α̇i(t) we find

ωi(t) =
d

dt

 t∫
−∞

dt ′

τ

N∑
j=1

δΠj(t
′)Gij(t

′ − t)

 (103)

=

t∫
−∞

dt ′

τ

N∑
j=1

δΠj(t
′)∂tGij(t

′ − t). (104)
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We remark that the boundary terms are equal to zero because Gij(0)
vanishes due to the summation over σ = ±1. For the t-derivative of
the propagator we find

∂tGij(t
′ − t) =

N−1∑
n=0

∑
σ=±1

φniφ
∗
nj

2
√
1−Λn

(−σ)

×
(
−

(
1+ σ

√
1−Λn
τ

))
e(1+σ

√
1−Λn)

t ′−t
τ (105)

=

N−1∑
n=0

∑
σ=±1

φniφ
∗
nj

2
√
1−Λn

(
σ

τ
+

√
1−Λn
τ

)
e(1+σ

√
1−Λn)

t ′−t
τ .

(106)

To derive an expression for the variance of the frequency increment
statistics 〈∆θω2i 〉, we first evaluate Eq. (104) at time t+ θ and, subse-
quently, substitute t̂ = t ′ − θ:

ωi(t+ θ) =

t∫
−∞

dt̂

τ

N∑
j=1

δΠj(t̂+ θ)∂tGij(t̂− t). (107)

Therewith, the increment ∆θωi(t) = ωi(t+ θ) −ωi(t) follows as

∆θωi(t) =

t∫
−∞

dt ′

τ

N∑
j=1

∆θδΠj(t
′)∂tGij(t

′ − t). (108)

Finally, we focus on the case where a single node j is driven by noise.
We multiply Eq. (108) with itself and apply an ensemble average 〈·〉
over noise realizations to obtain

〈∆θω2i 〉 =
t∫

−∞
dt ′

τ

t∫
−∞

dt ′′

τ

〈
∆θδΠj(t

′)∆θδΠj(t
′′)
〉

×∂tGij(t ′ − t)∂tGij(t ′′ − t). (109)

We find acf(|t ′ − t ′′|) :=
〈
∆θδΠj(t

′)∆θδΠj(t
′′)
〉
, define δ := t ′ − t ′′

and t̃ = t ′ − t and finally obtain

〈∆θω2i 〉 =
0∫

−∞
dt̃

τ

∞∫
t̃

dδ

τ
acf(|δ|)∂tGij(t̃)∂tGij(t̃− δ). (110)

5.8.4 Analytical derivation of frequency increment moments for a chain of
nodes

For the chain with open boundary conditions we find the eigenval-
ues of the generalized Laplacian to be Λn = 2ΠK(1 − cos(kn)) =

4ΠK sin(kn/2)2, for n = 0, ..,N− 1. Here, ΠK = JK/(ω0γ
2) and kn =
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nπ/N. The eigenvectors φn are φ0i = 1/
√
N for n = 0 and φni =√

2/
√
N cos(kn(i− 1/2)), for n = 1, ..,N− 1.

We consider the case of large inertia Jwhen all nonzero eigenvalues
are much larger than one, Λn � 1. Given that Λ1 = 4ΠK sin2(π/(2N))

≈ 4ΠKπ2/(4N2) is the smallest nonzero eigenvalue, we find this con-
dition fulfilled for J � Jc = ω0γ

2N2/(π2K). In this regime, we ap-
proximate

√
1−Λn ≈ i

√
Λn. Inserting eigenvectors φn and eigenval-

ues Λn into the expression for the propagator Gij(t ′ − t), Eq. (102),
yields

Gij(∆t = t− t
′) =

1

2N

(
1− e−2∆t/τ

)
+ e−∆t/τ

1

N
√
ΠK

×
N−1∑
n=1

cos πn(i−
1
2 )

N cos πn(j−
1
2 )

N sin
(
2
√
ΠK sin(π2

n
N)∆tτ

)
sin(π2

n
N)

. (111)

For large N � 1 we can turn the summation in an integral over
x = n/N with dx = 1/N. Thus, we get

Gij(∆t)|N�1 =
e−∆t/τ√
ΠK

1∫
0

dx
cos(πx(i− 1

2)) cos(πx(j− 1
2))

sin(π2x)

× sin
(
2
√
ΠK sin(

π

2
x)
∆t

τ

)
. (112)

Noting that 0 < x < 1, we further approximate sin(π2x) ≈
π
2x and

perform the integrals to get

Gij(∆t)|N�1 =
e−∆t/τ√
ΠK

g(i, j,∆t), (113)

where

g(i, j,∆t) =
1

2π
(Si[π(v∆t− i+ j)] + Si[π(v∆t+ i− j)])

+
1

2π
(Si[π(v∆t− i− j+ 1)] + Si[π(v∆t+ i+ j− 1)]) . (114)

Si(x) = ∫x0 sin(y)/ydy is the Sine Integral. Further, we have intro-
duced the velocity v =

√
ΠK/τ.

In this article, we consider perturbations at one end of the chain,
i.e., site j = 1. Hence, we need to know the propagator from site 1 to
i. The function g(i, 1,∆t) turns out to be a step function in i− 1− v∆t
with only weak superimposed oscillations. Thus, we can approximate
g(i, 1,∆t) ≈ 1 for i− 1 < v∆t and 0 otherwise, that is, it is a unit step
down function. Inserting this into Eq. (101), we find the change of
phase in response to the perturbation at site j = 1 to be

αi(t) =
1

vτ

t−(i−1)/v∫
−∞

dt ′

τ
δΠ1(t

′)e−(t−t ′)/τ. (115)
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Taking the time derivative we find for the frequency deviation at node
i

ωi(t) = −
1

τ
αi(t) +

1

vτ2
δΠ1(t− (i− 1)/v)e−

i−1
vτ . (116)

In this approximation, we find for the variance of the frequency in-
crement statistics

〈∆θω2i 〉 =
1

τ2
〈∆θα2i 〉

+
2

vτ3
〈∆θαi(t)∆θδΠ1(t− (i− 1)/v)〉e−

i−1
vτ

+
1

v2τ4
〈∆θδΠ21〉e−

2(i−1)
vτ . (117)

The signal δΠ1(t) we are perturbing the system with has a power
spectral density S(f) ∝ f−5/3. Following Wiener-Khinchin theorem,
we obtain for the variance of the increment statistics

〈∆θδΠ21〉 = cθ2/3. (118)

This allows us to calculate also the increments of frequency fluctua-
tions and their moments: Inserting Eq. (115) into Eq. (117), we obtain
for the second moment of the frequency increments

〈∆θω2i 〉 =
1

τ2ΠK
cτ2/3e−2

i−1
vτ L(θ/τ), (119)

where the function L(θ/τ) is given by

L(x = θ/τ) = x2/3

+ 2

∫0
−∞ ds1

∫0
−∞ ds2es1+s2

(
|s1 − s2|

2/3 − |s1 − s2 − x|
2/3
)

+ e−x
∫x
0

dsess2/3 − 2Γ(5/3)(1− cosh x). (120)

The integrals can be expressed in terms of incomplete Gamma func-
tions Γ(5/3, x) as

L(x = θ/τ) = x2/3 +
2π√

3Γ(−2/3)
(e−x − 2)

− exΓ(5/3, x) − 2Γ(5/3)(1− cosh x). (121)

For θ/τ < 1, the leading order is L(x = θ/τ) = x2/3+ 3/5x5/3+O(x2)
and hence we find for θ < τ

〈∆θω2i 〉 ≈
1

τ2ΠK
exp

(
−
i− 1

ξ

)
〈∆θδΠ21〉 (122)

≈ 1

JKω0
exp

(
−
i− 1

ξ

)
〈∆θδP21〉, (123)

where ξ =
√
JK/(2

√
ω0γ).
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At low inertia J < Jc = ω0γ
2N2/π2K, there appear modes which

decay more slowly with relaxation rates Γn < 1/τ. Then, keeping only
those slowly decaying modes with Λn < 1, we find

Gij(∆t = t− t
′ > τ)|N ≈

1

2N
+

∑
{n|0<Λn<1}

φniφ
∗
nj

2(1−Λn/2)
e−

1
2Λn

t−t ′
τ . (124)

Approximating Λn ≈ ΠKa2k2n and using for large N � 1 the contin-
uum approximation kn → k, we can perform the integral over k and
find

Gi1(∆t = t− t
′ > τ)|N ≈
1√

2πΠKa2(t− t ′)/τ
exp

(
−

(i− 1)2

2ΠK(t− t ′)/τ

)
, (125)

which has the form of a diffusion propagator with diffusion constant
D = ΠKa

2/τ [30],

Gi1(∆t = t− t
′ > τ)|N ≈
1√

2πD(t− t ′)
exp

(
−
(i− 1)2a2

2D(t− t ′)

)
. (126)

In the last step, we have introduced a spatial scale a, the length of
a transmission line, to define the diffusion constant D in the com-
mon way. However, we note that one could principally perform these
calculations in terms of node indices as distance measure as before.
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abstract

The number of units of a network dynamical system, its size, ar-
guably constitutes its most fundamental property. Many units of a
network, however, are typically experimentally inaccessible such that
the network size is often unknown. Here we introduce a detection
matrix that suitably arranges multiple transient time series from the
subset of accessible units to detect network size via matching rank
constraints. The proposed method is model-free, applicable across
system types and interaction topologies and applies to nonstationary
dynamics near fixed points, as well as periodic and chaotic collective
motion. Even if only a small minority of units is perceptible and for
systems simultaneously exhibiting nonlinearities, heterogeneities and
noise, exact size detection is feasible. We illustrate applicability for a
paradigmatic class of biochemical reaction networks.

6.1 introduction

Networks of interacting dynamical units prevail across natural and
human-made systems [1, 8, 10]. Examples range from intracellular
gene-regulatory networks critical for survival [5, 6] to power grids
supplying electric energy on demand [7, 18–22] and to social and
transportation networks determining how ideas and diseases spread
[2, 113, 114]. Key properties of the physical interaction topology in
such networks fundamentally underlie their function such that re-
vealing them from measurements of the collective network dynamics
constitutes a topical field of research [11, 15, 39–41, 43–49, 115].

However, dynamical data from many networks are often only in-
completely accessible, because many of their units are hidden from
measurements. Thus the dynamics of a possibly small subset of units

69
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Figure 18: Revealing network size from the dynamics of perceptible units.
(a) Scheme of a network of N units where only n < N units
(colored disks, encircled by dashed line) are accessible for mea-
surement (perceptible). (b) Transient time series measured from
accessible units, started from different initial conditions (trajec-
tory colors match observable units in (a)). (c) Observed nonlin-
ear, multidimensional time series are arranged into the detection
matrix Tk, satisfying the condition rank (Tk) = N if and only if
kn > N and M > N, according to (132) introduced below.

might be available only. Such hidden units typically complicate the
inference of direct interactions by correlating or decorrelating the dy-
namics of measured units in unpredictable ways [116, 117]. Never-
theless, partial information about a networked system may provide
hints about overall features of the network. For instance, approximat-
ing the network dynamics via model differential equations may help
to detect the existence and location of a single hidden unit through
heuristics performed on reconstructed connectivity matrices for dif-
ferent time windows [118–120]. Other schemes exploit dynamics to
determine paths from observed, via hidden, to observed units [121–
123] and typically require to know the exact number of hidden units a
priori. Yet, how to reveal the number of many hidden units, or equiv-
alently, the overall network size from time series recorded from the
collective dynamics of accessible units remains generally unknown.

Here, we show that measuring the transient collective dynamics
of a subset of perceptible network units (accessible to measurement)
may robustly reveal the exact number of hidden units and thus iden-
tify the network size. We demonstrate how specifically grouping dif-
ferent transient time series obtained from perceptible units into a de-
tection matrix yields bounds relating the rank of such matrix to the
size of the full network, see Fig. 18. We propose a simple detection
algorithm to exactly find the number of hidden units. The number of
time series necessary to reliably identify network size only linearly
scales with network size, thus making size detection scalable. The
proposed method generalizes from linear and linearized dynamics
near fixed points to dynamics near periodic orbits as well as to col-
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lective irregular and chaotic dynamics, without requiring knowledge
of a system model. Even for systems simultaneously exhibiting non-
linearities, heterogeneities, and noise detection may be feasible and
exact.

6.2 theory of detecting network size from observed dy-
namics

Consider a network dynamical system

ż = F(z), (127)

of an unknown number N of coupled units i ∈ {1, . . . ,N}, where
z(t) := [z(t), z2(t), . . . , zN(t)]T ∈ RN is the system’s state at time
t ∈ R and F : RN → RN an unknown smooth function that defines its
rate of change and thereby the collective network dynamics. For sim-
plicity, we first present the idea of identifying network size for noise-
free linear dynamics close to fixed points and below discuss how it
generalizes to more complex dynamics, including periodic and ape-
riodic, irregular dynamics, e.g., noisy and collective chaotic motion.
Close to a fixed point z∗ where F(z∗) = 0, a first order approximation
of (127) in terms of x(t) = z(t) − z∗ yields

ẋ(t) = Ax(t) (128)

where A ∈ RN×N with elements Aij = ∂Fi/∂xj (z
∗) is the Jacobian

matrix of F evaluated at z∗ and defines an unknown proxy for the
connectivity of the system, i.e. Aij 6= 0 if unit j directly acts on i and
Aij = 0 otherwise. Solving (128) yields x(t) = exp(At)x(0), where
x(0) ∈ RN is a vector of initial conditions at t = 0 and exp(·) denotes
the matrix exponential function.

How can we uncover network size, i.e. find how many dynami-
cal variables N the system has if we measure the dynamics of only
n < N variables? Without loss of generality, we observe the first n
components of x(t) and all other h = N− n state variables are hid-
den from measurement. The time series of measured states y(t) :=

[x1(t), x2(t), . . . , xn(t)]
T ∈ Rn then satisfy the projection

y(t) =
[
In 0

]
x(t) =

[
In 0

]
exp(At)x(0), (129)

where In is the n×n identity matrix and 0 represents the n×hmatrix
full of zeros. Thus we obtain the constraint

yi(t) =

N∑
j=1

θij(t)xj(0) (130)

for every component i ∈ {1, 2, . . . ,n}, where θij(t) = [exp (At)] ij is
some unknown, time-dependent function and xj(0) is the jth compo-
nent of the initial state, equally unknown for j ∈ {n+ 1, . . . ,N}. Our
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central question is now: can we find h = N− n despite these many
unknowns?

Rewriting the constraint (130) in matrix form yields

y(m)(t) = Θ(t)x(m)(0), (131)

where Θ(t) ∈ Rn×N and y(m)(t) is the mth observable trajectory at
time t generated from complete initial conditions x(m)(0), different
for different m. Considering M different trajectories yields a system
Y(t) = Θ(t)X0, where Y(t) :=

[
y(1)(t),y(2)(t), . . . ,y(M)(t)

]
∈ Rn×M

is the matrix of known dynamical states at time t and the matrix
X0 :=

[
x(1)(0), x(2)(0), . . . , x(M)(0)

]
∈ RN×M collects different initial

conditions. If these trajectories are sampled at k different time points
t1, . . . , tk, for each trajectory measured relative to its initial time, we
group all values of Y(t) evaluated up to time tk into a detection matrix

T(k,M) = Θ(k)X0, (132)

where T(k,M) (t1, . . . , tk) :=
[
Y(t1)

T, . . . , Y(tk)T
]T ∈ Rkn×M and

Θ(k) (t1, . . . , tk) :=
[
Θ(t1)

T, . . . ,Θ(tk)T
]T ∈ Rkn×N.1 We note that

here the lower indices k,M refer to the size (kn×M) of the detection
matrix, not to any element of a matrix.

Equation (132) linearly relates the detection matrix T(k,M) assem-
bled from the M different time series sampled at k different times
each, to unknown maps Θ(k) encoding the dynamical evolution (i.e.
consequences of the flow of the system) and to the initial conditions
X0 with also (N − n)M unknown elements. Despite little is known
about Θ(k) and X0, the time series merged into the linear system
(132) already provide valuable information about the network size N.
Specifically,

rank
(
T(k,M)

)
6 min

{
rank

(
Θ(k)

)
, rank (X0)

}
, (133)

and the rank of T(k,M) generically increases with increasing the num-
ber M of time series (rank(X0) = min (N,M)), as well as with increas-
ing the number of sampling points k on each of them, because the
rank of Θ(k) increases (rank(Θ(k)) = min (kn,N)), until the rank is
maximal and equals N. Merging sufficiently many time series, M >

N, of sufficient length k > N/n we obtain rank
(
Θ(k)

)
= rank (X0) =

rank
(
T(k,M)

)
= N. At this point, adding more time series, i.e. increas-

ing M, or extending observations on each of them, i.e. increasing k,
does not further increase rank

(
T(k,M)

)
so computing the rank of the

detection matrix T(k,M) assembled from time series of the subset of
the n measured units yields the network size N via (132). Thus,

ĥ = rank
(
T(k,M)

)
−n (134)

1 We remark that double transposition is required and that T(k,M) (t1, . . . , tk) 6=
[Y(t1), . . . , Y(tk)]
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is the estimated number of hidden units. Interestingly, there is no
principal lower bound on how small n must be for this relation to
hold theoretically. In practice, measurement errors, noise and limits
in the detection matrix condition number [124] limit feasible ratios
n/N; see our analyses below.

6.3 algorithm for detecting network size from time se-
ries data

One practical way of inferring network size through the rank in-
equality (133) is to numerically compute the ordered singular values
σ = (σ1, . . . ,σb) of T(k,M) such that σ1 > σ2 > ... > σb , where
b = min{kn,M} specifies the number of singular values, and to de-
tect the largest ∆max of the gaps

∆j = log(σj) − log(σj+1) (135)

on the logarithmic scale. To safely detect the network size N given a
known number n of measured units from iteratively increasing the
number of measurements M (see Fig. 18c), we propose the following
algorithm:

1. Start, given the lower bound n 6 N, with a set of M = n+ 1

measurement trajectories y(m)(t), m ∈ {1, . . . ,M}.

2. Choose k =
⌈
M
n

⌉
different time instants tκ ∈ {t1, . . . , tk} sepa-

rated by ∆t = ttot/k, where ttot is the total duration of each time
series considered and t1 its start time.

3. Construct the detection matrix

T(k,M) =


y(1)(t1) . . . y(M)(t1)

...
...

y(1)(tk) . . . y(M)(tk)

 (136)

from the measurements y(m)(t) and compute its b = min{kn,M}

=M singular values σ
(
T(k,M)

)
.

4. Compute logarithmic gaps ∆j as in (135).

5. Save the largest gap Ñ
(M)
n := max{∆j}, where j > n and j 6∈

{n, 2n, . . .}∪ {n+ 1, 2n+ 1, ...}, avoiding gaps at integer multiples
of n.

6. To robustly identify size also in case N is such an integer mul-
tiple, repeat steps 2–5 for n− 1, ...,n− 4measured units (thus ig-
noring actually measured units) and take as the estimate N̂(M) :=

median{Ñ(M)
n }.
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7. If N̂(M) does not increase further, stop and define N̂ := N̂(M)

as an estimate of network size; otherwise, repeat steps 2–6 with
one additional measurement, M→M+ 1;

Here, step 2 ensures that finally, we will have kn > N becauseM > N,
see the examples below.

6.4 performance of network size detection

To test the predictive power of our theory combined with the sim-
ple algorithm provided we inferred the network size for five differ-
ent classes of network dynamics: (i) noiseless, diffusively coupled
one-dimensional linear units collectively converging to stable fixed
points, (ii) phase-oscillator networks close to periodic phase-locked
states, systems of N three-dimensional coupled oscillatory units that
exhibit (iii) regular periodic as well as (iv) irregular chaotic collec-
tive dynamics, and (v) noisy, heterogeneous systems with nonlin-
ear dynamics. For settings (i) and (ii), we define the class of diffu-
sively coupled systems of single-variable units via (127) with Fi(z) =
ωi +

∑N
j=1Aijf

(
zj − zi

)
, where f : R → R is a smooth function and

ωi ∈ R is a constant driving signal. We provide all model and simu-
lation details in the Supplemental Material (Sec. 6.6).

For the simplest setting of linear noiseless systems, we take f(x) =
cx with stable fixed point z∗ (Fig. 19a-c). The estimated rank of the
detection matrix (132) indicated by a pronounced gap in its singular
value spectrum accurately predicts network size (Fig. 19a) and is re-
liable already if only about 10% of the units are measured (Fig. 19b).
Measuring larger fractions n/N of units rapidly further improves dis-
tinguishing the largest gap ∆N from other gaps ∆j. For nonlinearly
coupled systems of phase-oscillators (f(x) = c sin(x), ωi ∈ [−0.1, 0.1],
see Sec. 6.6), performance is similarly high despite locally linear ap-
proximations (Fig. 19d-f). We expected this similarity in performance,
because phase-locked states map to fixed points in a corotating frame
of reference and linearization of the sine function constitutes a well-
conditioned approximation for |x|� π/2.

Complex transient dynamics and biological networks. The idea intro-
duced above is readily generalized to systems of higher-dimensional
units and more complex forms of collective dynamics, including, in
principle, arbitrary periodic or chaotic motion. Now consider that z∗

is not a fixed point of the dynamics (127) but any point in state space.
We locally approximate near z∗ the nonlinear flow Φt(·) [57] defined
for all solutions z(t) of the original nonlinear differential equation
(127) via z(t) = Φt(z(0)) from some initial conditions z(0), see also
Sec. 2.3. The difference vector δz(t) = z(1)(t)−z(2) (t) of two close-by
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Figure 19: Singular values of detection matrix yield network size. (a),(b)
Singular values σj of detection matrix T(k,M) displayed for net-
works of (a,c,e) linear, diffusively coupled units and (b,d,f) nonlin-
early coupled Kuramoto oscillators near a phase-locked state (di-
rected random graphs of N = 100 units with in-degree g = N/10,
n = 30 measured, see Supplemental Material, Sec. 6.6, for more
details). The largest gap ∆N reveals network size. Insets: Example
trajectories. (c),(d) Size of ∆N relative to largest ∆j for j < N rises
above detection threshold at unity (horizontal dashed line). Ev-
ery data point averaged over 20 independent random networks
(M = 1.5N). (e),(f) For increasing number of experiments M, the
inferred number N̂(M) of units proportionally increases until it
stays constant at N̂(M) = N once M > N. Inset: Minimum num-
ber Mmin of experiments to achieve N̂(M) = N for networks of
different sizes N (red squares, n = N/3 measured units). All re-
sults well fit the prediction Mmin = N + 1 (solid line). For Ku-
ramoto dynamics, the prediction is Mmin = N + 2 as one mea-
surement time series is used as a reference.
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trajectories indexed 1 and 2 then satisfies (see Supplemental Material,
Sec. 6.6, for a step-by-step derivation)

δz(t)
.
= DΦt−t∗

∣∣∣
z∗
δz(t∗) (137)

where DΦt−t∗
∣∣∣
z∗

denotes the Jacobian matrix of Φt−t∗(·) evaluated

at z∗ and the symbol “ .
=” indicates first order approximation in the

components of δz(t∗). Employing a projection equivalent to (129)
above, we now take the time series of the measured units to be

y(t) =
[
In 0

]
δz(t), (138)

the matrix generating the dynamics to have elements

θij(t) :=
(
DΦt−t∗

∣∣∣
z∗

)
ij
=
∂Φi,t−t∗

∂zj

∣∣∣
z∗

(139)

and re-obtain (130) for the difference variables. We emphasize that the
resulting equations are mathematically identical to (130) such that
combining time series data as before into a detection matrix yields
the network size exploiting the same principles and steps as above.
In simulations, we consider z(2)(0) = z∗ for simplicity and thus con-
sider t∗ = 0 and positive times t > 0. Figure 20 illustrates successful
network size identification for high-dimensional periodic motion and
for collective chaotic dynamics.

To illustrate applicability to biological circuits, we tested networks
displaying Michaelis Menten kinetics, a paradigmatic model of bio-
chemical reaction dynamics (see Figure 21 and Supplemental Mate-
rial, Sec. 6.6). Intriguingly, exact size detection is feasible even in such
systems simultaneously exhibiting nonlinearities, heterogeneities and
noise. Most interestingly, detection may be exact despite noise. An in-
creasing number of time series taken into account still enables exact
size identification, N̂ = N. See also Supplemental Fig. 22 for a system-
atic evaluation of the influence of noise 2.

6.5 discussion and conclusions

In summary, we proposed a theory for determining the network size
from time series data sampled from a potentially small subset of per-
ceptible units. The novel perspective offers a generic tool for detecting
the network size from a fundamental theorem of linear algebra ap-
plied to linear constraints on a suitably constructed detection matrix.
The main conditions for applicability are that (i) M > N trials are
experimentally feasible and that (ii) the sampling is such that data
points on a given trajectory are sufficiently close in state space for
the dynamics obtained from local linearization to well approximate

2 We use a modified Euler scheme [125] for simulating systems with noise.
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Figure 20: Network size from complex transient dynamics. Projection of
sample trajectories of one unit i for (a) periodic and (b) chaotic
dynamical regimes. Each time, the system passes a certain region
on the attractor (highlighted by a dashed square), a random per-
turbation is applied to the components z1,i (insets). (c,d) Using de-
viations δz(m)

1,i (t) = z
(m)
1,i (t− t∗m) − z

(1)
1,i (t− t

∗
1) for each perturba-

tion experiment m to construct T(k,M) reveals the correct system
size N̂(M) = N, if a sufficient fraction n/N of units is measured.
All data points averaged over 20 random network realizations of
N = 100 units with degree ten, exhibiting Rössler oscillatory dy-
namics, with state zi(t) = (z1,i(t), z2,i(t), z3,i(t)), and diffusive
coupling between z2 components. In the examples shown, the z1
components of units i are perturbed and measured. Despite the
coupling being in the z2 components, network size identification
is accurate at N̂/N = 1.
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Figure 21: Exact size detection in biological circuits simultaneously ex-
hibiting nonlinearities, heterogeneities, and noise. (a) Adja-
cency matrix of a coupled Michaelis Menten kinetic network
(N = 100, link weights in gray scale) and (b) its collective noisy
dynamics (units of ten randomly selected units displayed, η =

10−4). As for coupled periodic and chaotic systems, deviations
δz

(m)
i (t) = z

(m)
i (t − t∗m) − z

(1)
i (t − t∗1) are used for the recon-

struction. (c) Increasing the number M of measurements taken
into account in the detection matrix reveals the network size once
M > N in the absence of noise. (d) The minimum numberMmin of
experiments required to obtain an exact size prediction N̂(M) = N

for M >Mmin, in dependence of the noise level η > 0.
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the real dynamics. While the time steps t2 − t1, . . . , tk − tk−1 need
to be the same in each measurement, we emphasize that only very
few, down to k = 2, are needed in principle. Moreover, even in mod-
ular networks where most perceptible units are located in one mod-
ule, network size detection may work reliably (see also Supplemental
Fig. 24).

Compared to the state of the art, the conditions underlying network
size identification can be considered mild, for at least two reasons.
First, because so far only one or potentially a few individual hidden
nodes are identifiable at all [118–120] whereas our approach enables
the identification of an extensive number of simultaneously hidden
nodes. These may even be the majority of all nodes in the network.
Second, because time series analysis methods of finding the attractor
dimension (that constitutes a lower bound of and sometimes could
equal the dimensionality of state space, and thus the number N of
active variables) require M ′ � N data points and in addition are
typically limited to moderate or even small N of the order of 10 or
lower [126]. For example, to obtain faithful attractor dimensions that
constitute lower bounds on N, as many as M ′ > 104 data points may
be required for systems with N = 3 active variables [127], whereas
our method requires M ′ = kM data points with moderate or small
k > 2 and M just slightly larger than N.

A related challenge is network observability [128–131], that is to
identify a sufficient set of units such that measuring these units’ states
reveals the collective state of the entire network. In contrast, our work
aims at identifying the number of units in a network, not their states.
It is thus conceptually different and exhibits much weaker require-
ments.

Previous approaches to detect hidden nodes are capable of detect-
ing a single hidden node in an otherwise completely perceptible net-
work: Some [132] employ nonlinear Kalman filters to fit the param-
eters of a given model and use the covariance matrix of the fitting
error; others first approximate the dynamics via differential equa-
tions and then determine the existence and location of the hidden
unit through heuristic methods [118–120]. Our theory instead reli-
ably captures many hidden units, is data driven, relies on sampled
time series and thereby requires no model a priori. Furthermore, it
provides a mechanistic perspective that not only determines the exis-
tence but also reveals the exact number of hidden units. It may thus
also complement embedding methods for determining attractor di-
mensions [126] that identify the number of active variables from sta-
tionary time series, thereby opening up a way to broaden insights
about the collective dynamics of multidimensional complex systems.
[131].
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6.6 supplemental material

6.6.1 Simulating network dynamical systems

To evaluate our identification method, we consider five different clas-
ses of network dynamical systems, (i-v). To study the exact linear
dynamics near fixed points and linearized dynamics near periodic
orbits in systems with one variable per unit, we consider two model
classes (i) and (ii) of type

żi = ωi +

N∑
j=1

Aijf
(
zj − zi

)
, (140)

where f : R → R is a smooth function and ωi ∈ R is a constant
driving signal. The units interact via directed random graphs with in-
degree g and adjacency matrix A ∈ {0, 1}N×N. Here, we take g =

N/10. As measured units which are not reachable via paths con-
taining hidden units cannot provide information about those hidden
units, we consider strongly connected networks such that each unit is
reachable from every other in the network. To study the dynamics of
networks with higher-dimensional units, we consider Rössler oscilla-
tors interacting via diffusive coupling on undirected random graphs
with degree g = N/10, exhibiting (iii) periodic and (iv) chaotic collec-
tive dynamics. (v) As an example for biological systems, we analyze
a network dynamical system with Michaelis-Menten kinetics.

(i) Exactly linear systems without noise, f(zj − zi) = c × (zj − zi),
ωi ≡ 0 for all i, and c = 10/g. Initial conditions z0 are randomly
drawn from the uniform distribution in [−1, 1]N. We compute the tra-
jectories z(t) for t ∈ [0, 1] with the exact solution using MATLAB’s
expm() function to calculate matrix exponentials. Here, we have lin-
ear dynamics such that the time series used for reconstruction via
Eq. (129) and Eq. (132) equal those directly measured, i.e. xi(t) = zi(t)
for unit i and ẋ = −cLx with the Graph Laplacian matrix L = gIN−A.

(ii) Networks of Kuramoto oscillators, f(zj − zi) = c × sin(zj − zi),
and c = 10/g. The natural frequencies ωi were drawn from the
uniform distribution in [−0.1, 0.1]N. Long simulations starting from
zi(−100) = 0 for all i and t ∈ [−100, 0], result in the system being
in some phase-locked state, where we pick z∗ = z(0), a point on the
periodic orbit. The common frequency

Ω = (1/N)
∑
i

[ωi + c
∑
j

Aij sin(z∗j − z
∗
i )] (141)

is not generally zero as the sum over j does not generally equate to
zero for directed networks and thus asymmetric Aij . The trajectories
xi(t) for the hidden nodes detection are obtained from simulations
in t ∈ [0, 1] with z0,j = z∗j + sj and the sj independently drawn from
the uniform distribution on [−10−2, 10−2]. Given that Ω is, in general,
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unknown, we use the deviations x(m)
i (t) = z

(m)
i (t) − z

(1)
i (t) of experi-

ment m from a reference experiment to obtain the trajectories used to
construct the inference relation Eq. (132) via Eq. (129). For numerical
integration, we use the MATLAB ODE45 solver.

(iii & iv) Networks of diffusively coupled Rs̈sler oscillators. Each node
i has a state vector zi(t) = (z1,i(t), z2,i(t), z3,i(t)) and the dynamical
system reads

ż1,i = −z2,i − z3,i (142)

ż2,i = z1,i +αz2,i −

N∑
j=1

Lijz2,j (143)

ż3,i = β+ (z1,i − γ) · z3,i. (144)

We test our method in two dynamical regimes: We explore (iv) a pe-
riodic attractor with α = 0.2,β = 1.7,γ = 4 and (v) a chaotic attractor
with α = β = 0.2,γ = 5.7. We start the integration at zi(0) = (1, 1, 1)
for all i and let the system move on the respective attractor in a single,
long trajectory. For the reference point z∗ in phase space we choose
(iv) z∗i = (−3, 0, 0.24) and (v) z∗i = (−6, 0, 0.17), see Fig. 20a,b. When-
ever the system is sufficiently synchronous (maxi,j |z2,i− z2,j| < 10

−5)
and passes the value z2 = 0 in the region (iv) −3.1 6 z1 6 −2.9
or (v) −6.1 6 z1 6 −5.9, respectively 3, we apply an instantaneous
perturbation of the z1-components: z1,i(t

∗
m)→ z1,i(t

∗
m) + si. Here, si

is independently drawn from the uniform distribution in [−0.1, 0.1].
We use the fourth-order Runge-Kutta scheme with dt = 5 · 10−3
for the numerical integration. For a precise determination of z(t∗m)

at which z2,i ≈ 0 for all i, we choose one intermediate time step
from a linear interpolation between the two regular Runge-Kutta
steps that cross z2,i = 0. For the construction of T(k,M), we calculate

δz
(m)
i (t) = z

(m)
1,i (t− t∗m) − zref

1,i(t− t
∗
ref) for t∗m 6 t 6 t∗m+ 3, where t∗m

denotes the mth perturbation time instant and “ref” names a refer-
ence trajectory for which we choose the first observed perturbation.

(v) Noisy Michaelis-Menten kinetics. Michaelis-Menten kinetic mod-
els serve as simple standard paradigms for the dynamics of biochem-
ical reaction networks [5] that we use to illustrate successful size de-
tection in systems simultaneously exhibiting nonlinearities, stochas-
ticity, and heterogeneities. For directed random networks N = 100

nodes with g = 10 incoming connections each, we consider noisy
time evolution defined by the coupled equations of motion

żi = −zi +

N∑
j=1

Jij
zj

1+ zj
+ ξi(t). (145)

3 As the synchronization of the z3-components takes place very fast, we need no re-
striction for z∗ on the z3,i’s.
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Here, J ∈ RN×N denotes the weighted adjacency matrix with el-
ements Jij 6= 0 if there is a direct influence of molecular species j
onto the rate of change of the abundance zi(t) of molecular species i.
Link weights are heterogeneous and drawn from the uniform distri-
bution in [0.2, 0.5] such that their largest values may be up to 250% of
their lowest values. ξi represents external i.i.d Gaussian noise acting
on unit i, with correlation

〈
ξi(t)ξj(t

′)
〉
= η2δ(t− t ′)δij and average

zero, 〈ξi(t)〉 = 0. In the absence of noise, the system exhibits a stable
fixed point z∗; For times t ∈ [−100, 0], we evolve the system towards
z∗. We record time series starting from t = t∗ = 0, after applying ran-
dom perturbations zj = z∗j + sj, with the sj drawn from the uniform
distribution in [−10−2, 10−2]. To avoid an extensive number of rows
in T(k,M) in the presence of noise (η > 0), we only use k = 3 time
steps to set up T(k,M). As demonstrated in the main manuscript, this
is already sufficient to reveal network size reliably.

6.6.2 Noisy linear systems

To systematically investigate the influence of noise, we extend (140)
to

żi = ωi +

N∑
j=1

Aijf
(
zj − zi

)
+ ξi(t), (146)

where ξi represents external i.i.d Gaussian noise acting on unit i, with
correlation

〈
ξi(t)ξj(t

′)
〉
= η2δ(t− t ′)δij and average zero, 〈ξi(t)〉 =

0. We choose pure linear dynamics, f(zj − zi) = c× (zj − zi), ωi ≡ 0
for all i and η 6= 0. With otherwise the same set-up as for (i), we
use a modified Euler scheme [125] with time step dt = 10−3 to solve
the stochastic differential equation. However, to avoid an extensive
number of rows kn in T(k,M), we use only k = 3 time steps separated
with ∆t = 0.08 to set up T(k,M).

Although the quality of performance is generally reduced with in-
creasing noise levels, perfect prediction of network size from noisy
time series is still possible if more trajectories are recorded, Fig. 22.
While for noise-free dynamics, M > N observable trajectories are
sufficient to correctly determine N, the minimum number Mmin of
measurements to perfectly determine N increases with greater noise
strength η, Fig. 22a. Fig. 22b illustrates that prediction quality in-
creases with larger fractions n/N of units measured, and that for each
noise level (at fixed number of measured time series), prediction ul-
timately becomes exact, i.e. the predicted equals the actual network
size, N̂/N = 1.
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Figure 22: Exact size prediction in noisy systems. (a) Minimum number
Mmin of measurements to exactly determine network size for
different noise strengths η and N = 100. The effects of noise
may be compensated by increasing the number of time series. (b)
Normalized predicted size Ñ/N versus fraction n/N of observed
units for different system sizes for different noise levels η at fixed
M = 1000. Every point represents an average over 20 random
network realizations. The dashed line indicates the number of
nodes predicted simply as the number of observed units, N̂ = n,
i.e. prior knowledge provided by the observation itself without
using any dynamical information.

6.6.3 Generalization to systems without stable fixed point

Our method is based on the idea to interpret measured data y(t) ∈
Rn as linear combinations of the full set of N initial conditions xj(0),
j = 1, . . . ,N, Eq. (130). In the main text, we have shown how this
is achieved in the vicinity of stable fixed points. However, in a gen-
eral network dynamical system ż = F(z), we may obtain similar
expressions– thus making our method applicable to a general class
of network dynamical systems.

We relate the time evolution z(t) ∈ RN to the initial conditions z(0)
through the nonlinear flow Φt(·):

z(t) =Φt(z(0)). (147)

Besides the fact that only the first 1, . . . ,n components of z(t) are mea-
surable, only little is known aboutΦt. In particular, we will generally
find no explicit expression.

Let us, instead, consider two trajectories z(1)(t) and z(2)(t) which
are close to some point z∗ at time t∗

z(ν)(t∗) = z∗ +∆z(ν)(t∗) (148)
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for ν ∈ 1, 2. We emphasize that z∗ needs not to be a fixed point.
If we now take into account the difference δz(t) := z(1)(t) − z(2)(t)

between two such trajectories at times t > t∗, we obtain

δz(t) = z(1)(t) − z(2)(t) (149)

=Φt−t∗(z
(1)(t∗)) −Φt−t∗(z

(2)(t∗)) (150)

=Φt−t∗(z
∗ +∆z(1)(t∗)) −Φt−t∗(z

∗ +∆z(2)(t∗)) (151)
.
=Φt−t∗(z

∗) +DΦt−t∗
∣∣∣
z∗
∆z(1)(t∗)

−Φt−t∗(z
∗) −DΦt−t∗

∣∣∣
z∗
∆z(2)(t∗) (152)

= DΦt−t∗
∣∣∣
z∗
(∆z(1)(t∗) −∆z(2)(t∗)) (153)

= DΦt−t∗
∣∣∣
z∗
δz(t∗). (154)

Here,DΦt−t∗
∣∣∣
z∗

denotes the Jacobian matrix ofΦt−t∗(·) evaluated at

z∗ and the symbol “ .
=” denotes first order approximation in ∆z(ν)(t∗).

6.6.4 Example with k = 2 measured time points per trajectory

If more than half of the units are perceptible, the singular values of
the detection matrix T(k,M) reveal the network sizeN even if only two
time instants per trajectory are used (k = 2). To derive this limit of
low number of time steps, we consider that under ideal conditions,
M > N+ 1 measured trajectories are sufficient to reveal network size.
Thus if the number n of perceptible units is larger than half the net-
work size, n > N+1

2 , according to step 2 in the algorithm explained in
the main manuscript, k =

⌈
M
n

⌉
= 2. Intuitively, only two time instants

may contain sufficient information about the state space dimension-
ality because repeated measurements of independently randomly ini-
tialized trajectories of the same system maximize linear independence
among data vectors, therefore sampling high-dimensional volumes of
the phase space. We illustrate an example of such minimal data usage
in Fig. 23.

6.6.5 Example of decreased performance due to clustering of measured
nodes

We illustrate a possible limitation of our method in cases where all
or most perceptible units are much closer to each other (measured
in terms of path length on the underlying graph) than they are to
those units that are not perceptible. Fig. 24 illustrates a graph with
loosely connected modules. Clustering of perceptible nodes in one of
the modules (Figs. 24 a-d) can lead to a reduced size of the gap ∆N in
the singular value spectrum (Figs. 24 e-h) and hence a more difficult
detection of the network size N. In the example shown, the most
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Figure 23: Inference of number of network size is feasible with only two
time instants per measurement (k=2). (a) Trajectories y(t) from
which only y(t1 = 0) and y(t2) = 0.5 are used. Here, we use
a deterministic linear system (case (i)) with N = 100 and n =

80. (b) Detection matrix T(k,M) after M = 130 experiments. The
upper half are the y(m)(t1) with large amplitudes and the lower
half consists of the y(m)(t2) with smaller amplitudes. (c) Singular
values of the detection matrix shown in (b): A clear and large gap
correctly reveals N = 100.

extreme case of all perceptible units being part of one module and not
being part of the second, the largest gap size between singular values
does not reveal network size. An estimator resulting from the index
j where the singular values reach the level of numerical resolution
would here indicate Nnum = 28, still close to the real N = 30.
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Figure 24: Clustering of perceptible units can hinder network size detec-
tion in specific topologies. (a-d) Directed Graph (N = 30) with
linear dynamics (case (i)) with different choices of n = 10 mea-
sured units marked in red color. The graph has two modules
which are only connected through one bidirectional link. (e-h) Sin-
gular values of T(k,M) with M = 45 measurements. The gap ∆N
after N singular values diminishes the more the perceptible units
(red) cluster on one side of the link connecting the two modules.
Even if no unit is present in the second module (d), the singular
values σj reach numerical resolution at Nnum = 28, still close to
the real N = 30.
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In this thesis, we discussed two specific problems in the field of net-
work dynamical systems. First, we presented our analytical, numeri-
cal, and experimental results on how fluctuating wind power feed-in
affects the short-term fluctuations of the power grid frequency. Sec-
ond, we provided a novel theoretical approach for the detection and
quantification of hidden units in network dynamical systems which is
not restricted to networks of phase-coupled oscillators, such as power
grids, but applies to a much broader class of systems.

With our experimental setup to measure the grid frequency, we
showed that wind power injection directly influences frequency fluc-
tuations in Oldenburg, but not in Göttingen. We further worked out
an analytical theory for the propagation of fluctuations in power grids
which indicates a strong localization of such fluctuations in the vicin-
ity of the volatile injection. We deduced analytical expressions for
the width of frequency increment statistics at nodes distant to the
injection. For the specific case of chain-like grids, we discussed how
the eigenvalues Λn of the generalized Laplacian determine type and
steepness of the decay of fluctuations in the grid. Most importantly
for future grids with fewer rotational inertia, emerging soft modes, in-
duced by eigenvalues Λn < 1, may lead to wider ranging fluctuations
and must therefore be carefully considered.

We generalized earlier applications of linear response theory to the
swing equation [30, 34, 36, 104] to arbitrary signals and increment
statistics. Therewith we can directly link the statistical analysis of
grid frequency fluctuations to properties of turbulent flows without
neglecting effects of intermittency and correlations in fluctuations of
wind power production.

Our research gives rise to numerous questions for further research.
Yet, the interaction of wind turbines, including their ac-dc-ac con-
verters, with atmospheric turbulence is not fully understood. Where
exactly do the fluctuations in the power output stem from? How can
controllers contribute to a smoothening of the generated power on
timescales as short as seconds? Second, we suggest to explore the
exact technical mechanisms that lead to the broadening of frequency
increment statistics in our measurements. Which grid component con-
tributes to transporting such fluctuations, which other component
could be better configured to absorb them? Further, the impact of our
technique to estimate the frequency from voltage samplings could be
compared to other methods.

87
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The shape of increment distributions plays a key role in the theory
of intermittency in turbulence and is – unfortunately – much more
difficult to treat than the width. Our numerical results indicate that
the shape, quantified in terms of kurtosis, of frequency increment
distributions lasts on much wider spatial scales in the grid than their
width. However, what makes the analytical treatment so challenging?
Let us consider, once again, our generalized Fourier expansion of the
phase angle

αi(t) =

t∫
−∞

dt ′

τ
δΠj(t

′)Gij(t
′ − t), (155)

that is Eq. (79) for a single source of perturbation δΠj(t ′). Differentia-
tion of Eq. (155) with respect to t, multiplication with itself and subse-
quent application of statistical averaging 〈·〉 allows us to express the
variance 〈∆τω2i 〉 of frequency increments as a function of the correla-
tor 〈∆τδΠj(t ′)∆τδΠj(t ′′)〉, that is the autocorrelation function of the
increment time series. If we now try to do the same for the kurtosis,
we find that this involves fourth order correlators

〈∆τδΠj(t ′)∆τδΠj(t ′′)∆τδΠj(t ′′′)∆τδΠj(t ′′′′)〉.

Such terms are much more difficult to treat if we cannot make sim-
plifying assumptions on the signal δΠj(t ′). The problem of higher
order correlations which arises here is directly related to the closure
problem of turbulence as discussed in Sec. 3.1. Recent results show
the way towards a multi-point statistics of turbulence through Fokker-
Planck modeling of cascade processes [133]. Principally, such a multi-
point approach is promising to solve the problem of higher-order cor-
relations also in power grids.

The novel approach for detecting hidden units in network dynami-
cal systems gives rise to many new applications. While in previous ap-
proaches, if at all the existence of few hidden units could be detected
[118–120], we now provide a framework to reveal the exact number
of hidden units. We applied the new method to various types of sys-
tems including noisy and chaotic dynamics as well as heterogeneous
couplings.

A very interesting generalization of our approach would be the
application to discrete-time systems: Let us think of a network of in-
terconnected neurons with membrane potential Vi(t). If the potential
exceeds a certain threshold, it fires a spike which affects the potentials
of connected neurons. A typical dynamical model for such a network
is the leaky integrate-and-fire model

τV̇i = −Vi + RiIi + τ

N∑
j=1

∑
m∈Z

Aijδ(t− tj,m − τij) (156)
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[38], where τ, τij, and Ri are constants and Ii(t) is an external driving
signal. δ(·) denotes the delta function. Further, tj,m denotes the mth
spiking instant of neuron j. Recent results show how systems of kind
(156) can be linearized continuously in terms of inter-spike intervals
∆Ti,m := ti,m+1 − ti,m:

∆Ti,m −∆Ti,r =
[
Ãy
]
i

, (157)

where Ã comprises the connectivity of neurons and y the cross-spike
intervals, that is the time difference between spikes of different neu-
rons [38, 50]. Even though Eq. (157) is not a identical to the systems
we consider (such as Eq. (128)), it still gives an exciting starting point
for possible future applications of our method– in this case to infer
hidden neurons.

We hope that our contributions to the field of network dynamical
systems will help to better understand the complex dynamics of net-
worked system in terms of both, forward and inverse problems.
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