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Zusammenfassung

In den letzten Jahren hat die Integration von erneuerbaren Energien, wie beispielsweise Strom
durch Wind- oder Sonnenenergie, deutlich zugenommen. Dies ist unter anderem auf technol-
ogische Entwicklungen zurückzuführen, die gleichermaßen dazu beigetragen haben die Tech-
nik kostengünstiger als auch effizienter werden zu lassen. Um den Anteil an Sonnenenergie
im Energiemix weiter zu erhöhen und auf diese Weise dafür zu sorgen weniger auf fossile
Brennstoffe angewiesen zu sein, ist eine gesteigerte und sichere Integration der erneuerbaren
Energien notwenig. Dabei stehen die Betreiber von Energiesystemen vor der Herausforderung
die Stromversorgung und Netzstabilität trotz der Volatilität erneuerbarer Energien zu erfüllen.
Aus diesem Grund ist es zwingend notwendig, vielversprechende Prognosemethoden für die
Vorhersage an zu erwartendem Strom aus Quellen wie Sonne oder Wind stetig weiterzuent-
wickeln und zu analysieren. Methoden des maschinellen Lernens und künstlicher neuronaler
Netzwerke bieten hierbei hohes Potential. Insbesondere Netzwerkarchitekturen wie Long Short-
Term Memory (LSTM) Netzwerke, die zu den rekurrenten neuronalen Netzen gehören, tragen
im Wesentlichen dazu bei, präzise Vorhersagen von Zeitreihen zu generieren, da sie in der Lage
sind, längerfristige Abhängigkeiten sequentieller Daten zu erfassen. Solche Netzwerke wurden
bereits genutzt um Windgeschwindigkeiten in einem raum-zeitlichen Verfahren zu prognos-
tizieren. Folglich liegt eine Übertragung auf die Prognose von Solarenergie nahe.
Gegenstand der vorliegenden Masterarbeit ist die Entwicklung und Analyse von LSTMs für

die kurzfristige Vorhersage von Photovoltaik-Leistung. In einem raum-zeitlichen Ansatz ist PV-
Strom für eine einzelne Anlage in einen Zeithorizont von bis zu 5 Stunden vorhergesagt worden.
Dafür sind Messwerte der Anlage selbst sowie umgebender PV Anlagen herangezogen worden.
Eine Persistenzprognose diente als initiale Referenz, die es zu übertreffen galt. Die LSTM-
Architektur, der Einfluss durch die Anzahl der benachbarten Systeme und deren Abstand sowie
die Fähigkeit der LSTMs mit anderen maschinellen Lernmethoden zu konkurrieren, wurden
sukzessive untersucht. Die erzielten Ergebnisse zeigen, dass bereits eine simple, einschichtige
LSTM-Architektur in der Lage ist, kurzfristige Prognosen für eine und auch für mehrere PV-
Anlagen gleichzeitig erzeugen zu können. Der Fehler der Prognosen wurde mit dem Root Mean
Square Error (RMSE) bestimmt. In einem Vergleich mit anderen maschinellen Verfahren wie
der Support Vector Regression (SVR) konnte gezeigt werden, dass LSTMs der SVR für die
Prognose von Solarstrom mehrer Anlagen überlegen ist.
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Abstract

In recent years, the integration of renewable energy sources like energy from wind power and
solar irradiation has significantly increased due to more efficient and affordable techniques.
In order to further increase the share of solar energy in the energy mix and thus reduce the
reliance on fossil fuels, an extended and secure integration of renewable energies is necessary.
The challenge of energy system operators thereby is to meet the requirements of ensured power
supply and grid stability by keeping the power production and consumption in balance. There-
fore, a development and analysis of most promising forecasting methods becomes inevitable.
Deep neural networks and especially recurrent neural networks have shown major contributes
to accurately predict time series. Most promising is the use of long short-term memory (LSTM)
networks (a type of recurrent neural networks) on this task, because of their ability to cap-
ture long-term dependencies in sequential data. Applying those networks for the prediction
in a spatio-temporal setup has been done for wind speed predictions so that a transfer to
photovoltaic (PV) power forecasts is closely related.
This thesis develops and analyses the capability of LSTMs in a spatio-temporal setup for

short-term PV power predictions. On the basis of PV measurements, predictions for mainly
one PV system are carried out using additional data from neighboring PV systems. The initial
reference to assess model performance is a persistence forecast that had to be outperformed. The
LSTM architecture, the impact due to the number of neighboring systems as well as the ability
of LSTMs to compete with other machine learning methods has been successively explored.
The results show that a simple, one layered LSTM architecture is able to make short-term
predictions for one PV system as well as more PV systems at the same time. Error values of
the forecasts were determined with the root mean square error (RMSE). In a comparison with
other machine learning methods like the support vector regression (SVR) it could be shown
that LSTMs are superior to SVR for the prognosis of power of several PV plants.
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1 Introduction

The subject of renewable energy plays an increasingly important role nowadays. Using wind
power and solar irradiation to generate power, offers an alternative to nuclear power or fossil
fuels. The energy sector is with the use of fossil fuels, such as coal, mineral oil and natural gas,
one of the main sources of anthropogenic greenhouse gas emissions. Any development towards
an extended use of renewable energy sources is one step further in terms of the energy transition
– away from fossil fuels towards a sustainable energy supply.
One promising key player in this shift are photovoltaic (PV) systems. Besides the technical

improvement in terms of their efficiency for example, decreasing prices also have contributed to
their attractiveness. Nonetheless they depend on environmental conditions and their expected
power production remains uncertain to some extent. One way to guarantee safe operation as
well as integration into the electricity grid is, by accurately forecasting the expected amount of
power using time series. From a methodically point of view the use of machine learning methods
and artificial neural network architectures has gained popularity as they provide promising
results [Wol17; Sal+17]. The aim of this master thesis therefore is to utilize recurrent neural
networks (RNNs) for short-term power predictions. More precisely long short-term memory
(LSTM) networks are to be developed, since they have been capable of handling temporal
changes in various applications [AM17].

1.1 Motivation

The energy transition in Germany implies a structural shift from large single power plants
towards a higher number of distributed, renewable energy generation units. Germany aims at
increasing the share of renewables up to 65% of the total energy production by 2030. Currently
the energy mix for public power supply splits into approximatly 38% renewables and 62%
non-renewables [Bur18]. In order to achieve a rise of renewables and at the same time meet
the present demand, it is (amongst others) necessary to increase the installed capacity of PV
systems.
Photovoltaics account for the third largest share of electricity generated by renewable energies

(see Fig. 1.1). 2017 Germany had a total amount of installed PV capacity of around 43 GW
[ISE18; Bur18], producing around 38.4 TWh of electricity [Bur18]. Compared to 2016, this
refers to approximately 2.3 GW newly installed PV systems in that year [Bur18]. The growth
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1 Introduction

Figure 1.1: Share of the produced electricity by renewables from 2002 - 2017 in Germany. [Bur18]
.

had been possible due to evolving investments and a decrease in module prices. Overall in
2017 a total of around 16.2 billion euro has been invested in renewables, 10.6% of them into
photovoltaics [Bad18]. Additionally, module prices have dropped by around 75% in total since
2006 [ISE18]. Those trends over the last decade show the potential of renewable energies and
particularly of photovoltaics.

In order to fully use sources like wind and solar power as a replacement of fossil fuels some
challenges remain. Wind power and solar irradiation are inherently volatile resources. Fluc-
tuations due to unforeseen weather changes can lead to over- or under-production of power
and thus become a challenge for the safe integration of renewables into the electricity grid.
The european electricity network does only tolerate minimal frequency deviations and any ex-
ceedance needs to be compensated. This is either at the cost of compensatory energy (mostly
of expensive and quickly available resources) or economic losses due to negative energy prices.
In order to meet the requirements of ensured power supply and grid stability accurate power
generation forecasts become indispensable.

1.2 Related Work

Many methods and models have been developed and tested to address the issue of solar power
forecasting. The prediction of the electricity production to be expected from PV systems is a
subject that has extensively been researched. The variety of approaches differ in terms of the
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1.3 Research Question and Thesis Structure

used data, the type of modeling and the forecasted time horizon. Generally the approaches are
classified into three categories: physical, statistical and hybrid methods.

An extensive overview of PV power forecasting methods is given in Chaturvedi and Isha
[CI16] and Pelland et al. [Pel+13]. Both provide a comprehensive description of state-of-
the-art solar and PV forecasting. The former includes a presentation of certain models and
metrics to evaluate model performance, while the latter discusses the importance of measured
weather and PV data. Physical methods use parametric PV and solar models, while statistical
methods subsumize a number of regressive models and the use of artificial intelligence methods.
Machine learning (ML) plays an interesting role thereby, since the use of ML algorithms on
several problems has steadily increased. In addition to this artificial neural network (ANN)
architectures have evolved and further improved predictions with learning algorithms. One
advantage of ML or statistical approaches compared to physical ones is that they purely learn
from data. By this researchers can analyze a system (like a PV system in this case) without
the need of any additional information and the system can be seen as black box.

In the following some research on artificial intelligence (AI) and PV will be presented.
Voayant et al. for example provide an analyzation on several statistical and ML techniques
[Voy+17]. They examine 11 techniques and compare them in terms of error metrics. Mellit
et al. present an introduction to the operation of AI methods and show several applications
(such as forecasting or control) in the field of PV systems [MK08]. Another review on ANNs
can be found at Yadav and Chandel [YC14]. They researched on the identification of suitable
methods for solar radiation forecast and the accuracy of the presented methods with regard to
parameter combinations, training algorithm and architecture configurations.

Further, more specified research on the topic of ANNs and PV also exists, due to the fact
that there are different kinds of ANNs and certain optimization possibilities. Xiao et al. for
example investigated on the number of hidden neurons for an accurate solar power prediction
[Xia+17], whereas Mandal et al. combined wavelet transform and AI techniques to generate
a one-hour-ahead power output prediction [Man+12]. One special type of ANN, which is par-
ticularly suitable for predicting solar electricity, are so-called RNN. Their advantage compared
to feedforward neural network (NN) is the ability to reuse relevant past information and to
incorporate them into current predictions. This way they can be developed to make predic-
tions based on time-series and become capable of modeling dynamics of the data. Abdel-Nasser
and Mahmoud published a LSTM network (a certain kind of RNN), to accurately forecast the
output power of PV systems [AM17].

1.3 Research Question and Thesis Structure

The aim of this thesis is to investigate on solar power prediction using machine learning meth-
ods. By this it is part of environmental and machine learning research areas. Previous work
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1 Introduction

by Björn Wolff [Wol17] investigated the usability of ML for solar power prediction and this
thesis is a further specification. In contrast to this preliminary work, the present approach
aims at utilizing ANNs for this task. The exploration on solar power prediction with LSTMS
enables the analysis of a large amount of data and provides an alternative to statistical (like
regressive or autoregressive models) and other machine learning methods (like support vector
regression (SVR)) for solar power prediction. Analyzing the forecasting capability of LSTMs
extends applicable approaches for this task. In most cases the historic data of a targeted system
is used. Special to this approach is the additional use of surrounding PV systems power data,
leading to a spatio-temporal experimental setting, as proposed in Woon et al. for wind power
predictions [WOK17]. The focus will lie on regional short-term PV power forecasts, just like
the foundational research by B. Wolff [Wol17]. Improvements in accuracy could lead to more
reliable forecasts and thus to a safe, enlarged integration of renewable energy into to electricity
grid.

Altogether the work concentrates on the following research questions:

• How are LSTMs capable of predicting short-term solar power generation?

• Is a spatio-temporal approach with LSTMs able to outperform predictions made with a
persistence forecast?

• How does spatio-temporal information contribute to PV power forecasts?

• Are PV power predictions made with LSTMs comparable to other supervised machine
learning methods such as SVR?

The thesis is structured as follows. First of all the theoretical foundations are covered.
Therefore Chapter 2 concentrates on solar power prediction techniques. The following Chapter 3
then covers machine learning and ANNs, including architectures and training algorithms of
ANNs. Those basics are followed by a practical application of LSTMs for solar power prediction.
Thus in Chapter 4 are three experiments conducted, covering an analysis of LSTM network
architecture (Section 4.3), a study on temporal and spatial impacts of the experimental setup
(Section 4.4 and Section 4.5), and a comparison of LSTMs capabilities on solar power prediction
with SVR (Section 4.6). The thesis closes with an overall summary, general remarks on the
performance of LSTMs in the field of PV forecasting, and an outline of possible further research
areas in Chapter 5.
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2 Solar Power Prediction

The bright variety of PV forecast methods can be seperated from different points of view.
First of all they can be devided by their temporal and spatial resolution. In terms of the
forecasted time horizon the distinction can be made into intra-hour and intra-day forecasts.
Some methods forecast most accurate for several minutes to one to two hours ahead, whereas
other methods are more suitable to provide forecasts for several days in advance. The spatial
resolution determines whether one single PV system is predicted, compared to a larger number
of systems distributed across a geografical area. From another point of view any method can
only be used, when the prerequisites are fulfilled. In other words, the available data defines
which model is suitable. Some methods require the output from other models (such as PV,
solar or atmospheric models), data from weather stations, satellites or PV system data, other
rely purely on past PV measurements. Furthermore, models provide different kind of outputs,
so the forecast can focus on the PV power output or on the so-called ramp rate, which describes
how the power production changes over time [Pel+13]. Table 2.1 summarizes the connection
between forecast focus and temporal resolution.

Table 2.1: Relation between forecasting time horizon and application of forecast [CI16].

Intra-hour Intra-day Day ahead

Forecasted time horizon 15 min to 2 hours 1 to 6 hours 1 to 4 days

Focus of forecast ramping events PV power output

2.1 Physical Methods

Solar power plants convert solar radiation into electricity, thus the main influencing variables
in PV power forecasting are the incoming irradiation and the characterization of a PV system
[Pel+13; CI16]. PV systems are either concentrating or non-concentrating, which specifies
the relevant required irradiation. Concentrating panels concentrate the sunlight from a larger
panel area onto a smaller area (the solar cell) with the help of an optical device [Fed18]. Those
systems require direct normal irradiation (DNI), which describes the amount of solar radiation
that is perpendicularly received by a surface area. Non-concentrating panels rely on global
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2 Solar Power Prediction

horizontal irradiation (GHI), which is composed of DNI in addition with diffuse irradiation (see
Eq. (2.1)).

IGHI = IDNI + Idiff (2.1)

The array plane of the PV panel thereby determines the area of received irradiation (Gi),
which is only a fraction of GHI or DNI respectively. Another relevant variable in the forecasting
process is the panel temperature Tm at the back of the module [Pel+13]. Both variables can
be derived with the help of other forecast models and the knowledge about the PV system
specification. Thus physical modeling techniques rely on solar or PV models to forecast PV
power.
Irradiation values can be obtained by different approaches. Common sources are either

numerical weather prediction (NWP) models or cloud observation models.

2.1.1 Numerical Weather Prediction

Numerical weather prediction models predict how the atmosphere will evolve. On the basis of
an initial weather state (captured by measurements) the future condition is calculated with the
help of physical equations (such as fluid dynamic or thermodynamic equations). Differences in
models arise in terms of their spatial resolution. Generally the approximation of the atmospheric
state is done on the basis of a three-dimensional grid that expands vertically from the earth’s
surface [Pel+13]. Models with larger distanced grid points consider the earth as a whole and
are called Global models, whereas fewer spaced grid points result in higher resolutions and are
used to capture regional areas more precisely (called Regional models) [CI16]. Over all, this
process is highly computationally expensive, as hundreds of variables are predicted, with GHI
being one of them. With GHI at hand, DNI can be derived using post-processing techniques,
which also can increase forecasting accuracy [Pel+13]. As Chaturvedi et al. denoted, the focus
of NWP models is on atmospheric processes rather than on radiation forecasts, thus “biased
forecasts commonly result” [CI16]. Model runs of NWP models are started twice to four times
a day1 and the resulting time horizon of the prediction lies within 3 hours to 15 days ahead
[Wol17].

2.1.2 Cloud Observation

Another physical approach for the determination of solar radiation is the identification of clouds
and prediction of cloud movement. This can be done by taking pictures of the sky – either
from satellites or with ground based so-called total sky imagers. The aim is to identify cloud
patterns and structures in an image and compare two successive images with each other. Each
pixel is bound to the information of a clouds optical depth (the specification of how thin or

1E.g., the ECMWF (European Centre for Medium-Range Weather Forecasts) NWP model is started at 00 and
12 UTC [Wol17].
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2.2 Statistical Methods

thick a cloud is), which is referred to as cloud index. The detection of a cloud feature in two
sequential images allows to define a cloud motion vector (CMV) that describes the speed and
direction of the cloud movement. This method is quite short-termed, as cloud formation and
movement can be very spontaneously. Furthermore the distance between clouds and the image
taking object (thus the hight of a cloud field) confines the time that is available to capture
cloud patterns. Thus CMV methods are best for time horizons from 3 minutes to 30 minutes
ahead. The approach is based on the finding that cloud cover accounts for one of the main
sources for irradiation extinction. According to Chaturvedi et al. both GHI and DNI can be
forecasted through CMV [CI16].

2.2 Statistical Methods

Statistical solar power prediction refers to data driven methods. On the basis of historical data,
autoregressive or ANN models are trained to predict PV power. Autoregressive methods are
differentiated whether a time series is stationary or non-stationary.
A time series is defined as a (finite) sequence of observations that is either made at discrete

or continuous time steps. If a time series does not markedly change within its fluctuations it is
called stationary. This is true, when the statistical first and second order characteristics remain
unchanged when shifted in time [CI16; BDC02]. Such data can be used for linear predictions,
such as autoregressive, moving average or mixed autoregressive moving average models.
The counterpart of stationary are non-stationary time series. Such time series are time

dependent, as their characteristics (like mean, variance and/or covariance) change over time.
This is most commonly the case for environmental, economical or financial data [Li13]. The
modeling of non-stationary time series focuses on homogeneous pattern. Examples might be
seasonal reoccurring observations or trends, where some parts of the data are quite similar
and thus are able to be treated as stationary data. Forecast models for such time series are
ARIMA (auto-regressive integrated moving average) models. Further information for both kind
of models can be found at Chaturvedi et al. [CI16].
AI techniques do not need the stationary/non-stationary differentiation in a manner that time

series models do. Architectures of ANN that are or can be used to forecast PV power either
recognize pattern or perform a regression task [CI16]. The former results in a classification,
while the latter maps inputs (such as PV measurements for example) to outputs. The actual
explanation of ANN will be discussed in Chapter 3.

2.3 Accuracy Metrics and Performance Comparison

There are several ways to capture the accuracy of a forecast. The necessity of calculating the
error between a measurement and a predicted value is given in order to analyze the reliability
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2 Solar Power Prediction

and capability of the used method. Furthermore an evaluation of the model output will help
to estimate the suitability for an application purpose or whether the forecast is useful at all.
The statistical metrics for this task can be differentiated by their focus, because each of them
expresses different components of the error. The most common ones for evaluating the forecast
quality in terms of PV power prediction will shortly be presented.

The mean absolute error (MAE) gives a first insight in the accuracy of a forecast, by ex-
pressing the average magnitude of the forecast errors [Pel+13]. Some more information can be
gained with the help of the mean bias error (MBE or BIAS). The BIAS is the average forecast
error and intends to specify whether the model produces systematic over- or under-predictions.
Thus in comparison to MAE, it includes the direction of an error. Both are defined as fol-
lows (MAE and BIAS respectively), where N denotes the total number of observations and
forecasted values and the symbolˆdefines predicted values versus observed measurements:

MAE =
1

N

N∑
i=1

|ŷi − yi| (2.2)

BIAS =
1

N

N∑
i=1

ŷi − yi. (2.3)

The mean squared error (MSE) and root mean square error (RMSE) are two more metrics
for assessing the average deviation between two time series. Both calculate the average of the
squared differences between prediction and observation, whereas the RMSE is the square root
of the MSE:

MSE =
1

N

N∑
i=1

(ŷi − yi)2 (2.4)

RMSE =
√
MSE. (2.5)

By squaring the deviation, large errors gain more impact. This way the MSE is a useful measure
for grid operators, since the amount of deviation contributes disproportionately to the costs
for grid stability [Pel+13]. The RMSE on the contrary is more suitable for the assessment of
prediction performance, as pulling the root returns the values to their original range [Wol17].

Another way of telling whether a method is more or less capable of providing qualitative
forecasts can be done by comparing their accuracy metrics against each other. A comparison
can be accomplished by calculating the so-called skill score. The skill score describes the relative
improvement of any given accuracy metric with regard to a reference model. The difference
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2.4 Concluding Remarks

between the forecast and the reference is divided by the difference between a perfect forecast
and the reference, resulting in a relative improvement:

skill score =
metricforecast −metricreference

metricperfect forecast −metricreference
. (2.6)

Skill scores range between (−∞, 1], where positive values indicate improvement, negative values
deterioration and 0 alikeness. E.g., a skill score of 0.32 represents an improvement of 32% of
one metric compared to the reference. [Pel+13; Voy+17; Mur88]
Usually any reference model is easy to accomplish. The term easy thereby refers to certain

characteristics of a reference model that produces a baseline forecast. Those characteristics are
simplicity, reproducibility and calculation rapidity [Pel+13]. A common example is a so-called
persistence forecast. The approach of a persistence forecast relies on the assumption that any
given condition will remain the same the next time step [Pel+13]. Taking the weather as an
example, a persistence forecast would predict sunshine for the next moment, if the sun is shining
right now. Thus a persistence forecast can be written as follows:

x(t+ 1) := x(t). (2.7)

2.4 Concluding Remarks

This part covered an introduction of several PV forecast methods. Physical as well as statis-
tical approaches have been presented and appropriate error measurements have been outlined.
Those methods have different strenghts compared to each other. In terms of the forecasted
time horizon, NWP predictions are most appropriate for long-term predictions, whereas sta-
tistical approaches outperform models that rely on NWP outputs, for shorter periods of time
[Pel+13]. Satellite-based CMV models take an intermediate place in between very short-termed
and long-termed prediction methods. The shortest temporal horizon can be covered by a persis-
tence forecast, which is one of the most straight-forward, reproducable and accessible methods.
Therefore it is often used as a baseline and will serve as such in the present master thesis.
The preceding work by [Wol17] assessed the usability of machine learning for PV power

forecasting, by comparing SVR with physical modeling (namely using forecasted irradiance
from NWP and CMV models as input in a parametric PV model and PV measurements for a
persistence model) [Wol17]. Thus those methods have been introduced more thoroughly. Using
the same data like B. Wolff (which will be described in Section 4.1) the usability of another
machine learning approach will be investigated in this work. In the following an introduction
and explanation for machine learning techniques for PV power forecasting will be given.
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3 Artificial Neural Networks

Artificial neural networks (ANNs) are part of artificial intelligence (AI) and by this part of
machine learning (ML). The aim of ML is to teach machines to extract information from
(mostly huge amounts of) data, in order to gain knowledge [Dey16]. The data thereby is
separated into an input space X and an output space Y . Each data point x ∈ X is called
pattern and each pattern has certain characteristics, which are called features. The amount
of features x1, . . . , xd is the dimensionality of X and each pattern holds a corresponding label
y ∈ Y in the output space. [Wol17]
The objective of learning algorithms is to find a function that maps input to output: f : X → Y ,

in order to predict a label y on a pattern x that the algorithms has not seen before. Therefore
any investigated dataset of input-output pairs is split into a training set P and test set R. The
first one represents that part of the data the algorithm is shown to adapt, while the second
one is used to tune and optimize model and parameter [Wol17]. Sometimes a validation set
Q is separated from the training set P , to generate an unbiased evaluation of the model fit
during the training process [Gra12]. So P influences the model directly, whereas Q influences
the model indirectly.
Learning is usually divided into supervised and unsupervised learning, referring to the influ-

ence on the learning process. The amount of information about the pattern label association
available is the decisive factor. Supervised learning algorithms are build upon the information
of pattern label relation and thus are commonly used for regression and classification tasks.
Unsupervised learning algorithms, on the other hand, miss out on any labeling information and
aim at finding similarities in the data, in order to build cluster or reduce the dimension of the
data [Wol17].

3.1 Foundations of ANNs

Artificial neural networks refer to nature inspired computing systems. The aim with the de-
velopment of ANNs has been to use the foundational concept of a biological neuron to solve
complex tasks in contrast of replicating the biological system [BH00].
One of the first ANNs is the so-called simple perceptron (SP) (developed by Rosenblatt

1958), which basically is the implementation of the signal transfer from one neuron to another.
A biological unit of the nervous system (a neuron) is separated into axon with cell body and
dentrites. Several dentrites are connected, resulting in multiple incoming signals of one neuron.
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Figure 3.1: Schematic representation of
a simple perceptron with
x1, . . . , xn inputs and one
output.

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.2: Architecture of a multilayer feedfor-
ward perceptron with several input
and hidden layer nodes.
(adapted from [Fau06])

The signal transfer is initiated through an electrical impulse traveling within the dentrites
towards (and in form of neurotransmitters into) the synapsis and depending on the magnitude
of the impulse, the neuron is forced to transmit a signal itself. Artificially the axon, dentrites
and synapsis are represented by nodes (x) and weights (w) respectively. [BH00]
For a neuron to be activated (both the biological and artificial one), a threshold has to be

exceeded, otherwise the connection is inhibitory. Mathematically this can be expressed by
an binary function, with 1 indicating “on”, 0 indicating “off” and b being the threshold (see
Eq. (3.1)).

ϕ(x) =

1, if
∑n

i=1wixi ≥ b

0, else
(3.1)

The output of ϕ(x) is dependent on a function (here a weighted sum), which combines the
incoming inputs x1, . . . , xn to form one “net input” [BH00].

The SP is also referred as a single layer network, consisting of one neuron with n inputs and
a single output (see Fig. 3.1). This limitates the network in its application possibilites. With
only one node to compute the activation of the neuron, the SP can only solve linear separable1

problems.
An extension of the networks’ architecture, such as additional nodes in between the input

and the output layer, enables to cope with non-linear separable tasks. One example for such
networks, with so-called hidden layers and hidden nodes, is a multilayer perceptron (MLP) (see
Fig. 3.2). All connections between nodes are directed to successive layers and the output of

1E.g., Data points in a two-dimensional space can be separated by a straight line. Those points have the
property of linear separability.[Kra09]
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each neuron is dependent on preceding ones. So the overall ANN solution depends on previous
hidden layer neuron outputs and the forward directed flow of information leads to the name
feedforward network.

3.2 The Backpropagation Algorithm

Artificial neural networks are modified during the training process in order to solve a specific
task correctly. In supervised learning, adaptation of the network is initiated with the help of
the correct solution (cf. Chapter 3). The weights of an ANN are the changeable, adaptable
(i.e., learnable) factor. Learning rules determine how these weights should be adjusted, so that
the ANN solution comes closer to the correct one.

The so called backpropagation (BP) algorithm is one well known algorithm for (supervised)
training of ANNs [Wer74; HRW86]. Backpropagation is a method to change the weights with
the goal to find an optimal set of weights for generating the desired ANN solution. In a
MLP with BP (called backpropagation network) the data is fed forward, whereas the error is
propagated backwards, from output over hidden to input layer [BH00; Kra09; Gal15]. This is
how the name backpropagation comes about.

In order for the error backpropagation, the magnitude of the error is determined by comparing
the predicted ŷ with the correct solution y. The weights are then updated by determining the
direction in which the weights have to be altered, so that the error gets minimized. Hence
why BP uses an optimization procedure of first order to calculate the direction of change.
The gradient descent (GD) is one example of such an optimization procedure. Generally, GD
maximizes or minimizes a n-dimensional function [Kri07]. The gradient is the deviation of
each dimension of a function, thus the gradient g of a (differentiable) two dimensional function
f(x1, x2) is defined as follows:

g(x1, x2) = ∇f(x1, x2). (3.2)

The negative norm of g (−||g||2) refers to the direction of the steepest descent, i.e., the
direction of a minimum. Transferred to ANN and BP, the algorithm aims at changing the
weights w ∈W in the direction of the steepest descent. The error thereby can be considered as
a function of all weights E(W ) and minimizing the error refers to deviating the error function
to w: ∂E

∂w . Formally speaking, the goal is to approximate ∀p : Ep ≈ 0, with p ∈ P being a
sample of the training set P , whereas P is a subset of the input set X: P ⊂ X.

∆W = −η∇Ep(W ), (3.3)

with η being a proportionality constant called the learning factor. A typical function to deter-
mine the error is the sum of squared differences as defined in Eq. (2.4) [Kra09; Bia+17].
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Figure 3.3: Commonly used activation functions ϕ(x). From top to bottom are displayed (a) the binary
threshold function, (b) the logarithmic sigmoid function σ(x) and (c) the hyperbolic tangent
function tanh(x).

There are three variants of the GD algorithm for optimizing ANNs [Rud16]. The variant
explained above is also referred to as batch gradient descent (BGD). In order to perform one
weight update, the gradient of the cost function E is calculated for the entire dataset. Thus in
each iteration the gradients for each sample are computed and summed. This can be highly,
computationally costly for large datasets, as the sum scales linearly with the training dataset
size. One alternative to BGD, is the stochastic gradient descent (SGD). In contrast to BGD,
this version uses only one sample of the training data set (uniformly at random) at each iteration
to update the weights [Ber+15]. The third version is the mini batch SGD that uses a number
of samples instead of one, compared to SGD [Rud16].

The activation function ϕ(x) is responsible for the output of each neuron, it can be inserted
into the error function. Commonly the sigmoid or logistic function σ(x) and the hyperbolic
tangent function tanh(x) are used for the activation (see Fig. 3.3), because of their complaisant
first derivation:

σ′(x) =
1

1 + e−x
, (3.4)

tanh′(x) = 1− tanh2(x). (3.5)
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3.3 Recurrent Neural Networks

With that, the adjustment of the weights by the partial derivation from E to w is nothing
more than the use of the chain rule to calculate the size of the weight adjustment δ [Guo13].
With the use of σ(x) as activation function, a weight update for a hidden layer neuron k and
an output layer neuron z is obtained as follows2:

δz = (yz − ŷz)ŷz(1− ŷz), (3.6)

δk = ŷk(1− ŷk)
∑
z

(wzkδz). (3.7)

This shows, that exactly like the output of a MLP depends on preceding outputs of each
neuron in forward direction, the same is true backwards for the change of weights. Each output
neuron contributes to the error of a hidden layer neuron [Guo13].

Usually training ends when one of the following criteria is met: (i) the error has reached a
tolerable value ε ≤ γ, (ii) the gradient of error is smaller or equal to a defined value ∇E ≤ ζ.
The learning rate η thereby impacts the course of training. A high value for η ensures that
the training progresses quickly, as the weights are changed significantly from one cycle to the
next. The downside of large values for η is that it may not be possible to find an optimal set
of weights. The changes of the weights during training may be too large and as a consequence
exceed a minimum. A very small η on the other hand leads to a very slow but continuous
convergence towards a minimum. In general, the error decreases with an increasing number of
trainings cycles, also called epochs. An epoch describes a complete forward and backward pass
over the entire training set [Ben12]. [BH00]

3.3 Recurrent Neural Networks

Recurrent neural networks have especially been developed to process sequential data. While
feedforward neural networks (such as MLPs) can and have been successfully developed to
model time series (see [Bia+17]), they might not be as efficient and accurate as RNNs for that
particular task. Multilayer perceptrons are fixed in their number of input and output nodes,
while RNNs adapt dynamically to the length of a sequence or time series. In order to accurately
model time series with MLPs, a a-priori knowledge of the system is required for the choice of
the number of inputs, representing the length of a sequence [Bia+17]. This can be problematic
in time series modeling, when the temporal dependencies of interest exceed the chosen number
of inputs.
Recurrent neural networks provide a more flexible approach. Through recurrent connections

they are capable of creating dependencies from previous results to the next. Those connections

2The single steps of the derivation can be looked up at [Kra09].
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Input
layer

Hidden
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Figure 3.4: Architecture of a recurrent neural net-
work. The hidden layer nodes are con-
nected through recurrent connections (red),
allowing the informaion to persist.
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=
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Figure 3.5: A simple rolled / fold RNN layer and its corresponding unrolled / unfold over time. xt refers
to the current input of time step t, ht to the output of that time step and A to recurrently
connected unit of the network. The output of the previous time step is passed to the next
time step and used as additional input. Either the last hidden state ht forms the output yt,
or in case a dense layer is following ht is passed and processed to form yt.

allow the information to loop around and underlying temporal dependencies in time series or
other sequential data can be detected. The results of one time step remains by being memorized
in a hidden state variable ht. Thus each step t of a sequence or time series of lenght T gets
processed and stored in the same way [Bia+17].
Other than in MLPs, the connections between nodes of a hidden layer in RNNs can be to

a node itself, to nodes of prior or within the same layer (see Fig. 3.4). Those hidden layer
connections can get depicted as one block (a RNN unit) with one self-influencing link (see
Fig. 3.5). Such an abstraction allows a less complex illustration of the flow of information over
time. This is also known as unrolled or unfold RNN.
A walk-through to get from input to output of a simple RNN is composed as follows: In a first

step the input of a time step t is used to compute an ouput ht, which then is used to generate
results of the succeeding time step t+1. So the input of one step assembles of the current input
xt and the hidden state of the previous time step ht−1. Those inputs are concatenated and
multiplied with a weight matrix W . So the update of a hidden state is defined as in (Eq. (3.8)).
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The overall output of a RNN depends on the last layer of the network. If it is a RNN layer,
the overall output is the last hidden state update: yt = ht. Typically the last RNN layer (if
several RNN layers are used) is followed by a dense layer (a fully connected feed-forward layer)
to compute an overall output yt as defined in Eq. (3.9).

ht = σ(W hi · xt + W hh · ht−1), (3.8)

yt = σ(W oh · ht), (3.9)

with W hi being the input weight matrix, W hh the hidden state matrix, W oh the output
weight matrix and σ a sigmoid function for activation of the neurons.

3.4 Backpropagation Through Time

An unfolded RNN can be considered as a MLP with many layers (also refered to as deep neural
network) (cf. Section 3.3) [Guo13]. Thus RNNs can exactly like MLPs be trained with BP.
While for MLPs the gradient for adjusting the weights is calculated independently for one
input (cf. Section 3.2), for RNNs the gradient is computed for each individual time step. For a
sequence of length T , this means that the error is the sum of all time steps t:

∂E

∂w
=

∑
1≤t≤T

∂Et
∂w

. (3.10)

The weight change of each time step contributes evenly to one update of the weights. This is
why BP for RNNs is also called backpropagation through time (BPTT).
One issue that arises during training RNNs is the vanishing or exploding gradient problem3.

Such event occurs with regard to long term components, where the norm of the gradient ex-
ponentially grows or goes to 0 [PMB12]. This happens, due to the characteristics of the used
activation function, whether |ϕ′ > 1| or |ϕ′ < 1|. The sum in Eq. (3.10) can be extended to:

∂E

∂w
=

∑
1≤t≤T

∂Et
∂ht
· ∂ht
∂hT

· ∂hT
∂w

, (3.11)

whereas the partial derivates of one state with regard to the previous state can be factorized
as follows:

∂ht
∂hT

=
∂ht
∂ht−1

· . . . · ∂hT+1

∂hT
= ϕ′t · . . . · ϕ′T+1 (3.12)

[Bia+17]. The case |ϕ′ < 0| leads to a convergence to 0 with an increase in the difference of
t − T and consequently to a vanishing gradient. The opposite is the case for |ϕ′ > 1|, leading

3This problem can equally arise in Deep MLPs.
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to an exploding gradient and an unstable model. In either case, the model is unable to capture
underlying distanced temporal dependencies [PMB12].

In general some strategies have been developed to handle and reduce the effect of the phe-
nomenon (for example see [Bia+17] for details), whereas in particular the development of
LSTMs adressed this issue.

3.5 Long Short-term Memory Networks

Long short-term memory networks refer to a more refined architecture of the beforehand de-
scribed simple RNNs. Thus they equally belong to RNNs. They were first introduced by
Hochreiter and Schmidthuber in 1997 [HS97] and have shown accurate performance in mod-
eling both long and short term dependencies of sequential data [Bia+17]. In principle, they
were developed specifically for the purpose of long-term dependencies, in order to overcome the
vanishing/exploding gradient problem.

Special to them is their inner implementation for the computation of the hidden state. Instead
of using one activation function (as done in the simple RNN), the computation is separated and
done with the help of additional layers [Bia+17]. Therefore a cell state Ct is introduced and
modified during the computation of the hidden state variable. This leads to the name memory
cell for a LSTM unit (see Fig. 3.6). Structurally three so-called gates refine the processing of
the input, by adding or removing information to the cell state: the input, output and forget
gate. Each gate fulfills its own task:

• The forget gate ft decides which information of the previous time step should be omitted.

• The input gate it decides which parts of the cell state should be updated. In a first step
the parts of Ct to be changed are selected and in a second step new candidates (C̃t) for
each part of Ct are calculated. The combination of the first and second step results in
an update of Ct.

• The output gate ot decides what parts of Ct will form the output, so the output ht will
not be perturbated by irrelevant inputs [HS97].

Consequently, the activation and update of the cell state can formally be described as follows:
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Figure 3.6: A LSTM unit. Blue rectangles indicate a layer operation, while yellow circels / the ellipse
represent a pointwise operation to combine outputs of several layers with the cell state. The
symbols × and + illustate multiplication, and addtion respectively.
The hidden input (ht−1) and input (xt) are each time concatenated, before activated by
different layers. The activation of the respective gates (ft, it, ot) are commonly performed
by a sigmoid function (σ), whereas tanh symbolizes once the activation to generate new
candidates (C̃t) by a hyperbolic tangent function and another time to update (Ct) [Bia+17].
(adapted from [Leo18])

ft = σ(W f · [ht−1,xt]), (3.13)

it = σ(W i · [ht−1,xt]), (3.14)

C̃t = tanh(WC · [ht−1,xt]), (3.15)

Ct = ft ·Ct−1 + it · C̃t, (3.16)

ot = σ(W o · [ht−1,xt]), (3.17)

ht = ot · tanh(Ct), (3.18)

whereas for simplicity [·, ·] replaces a concatenated multiplication. E.g., Eq. (3.13) can alter-
natively been written as ft = σ(W f · ht−1 + W f · xt). Thus the vectors xt and ht−1 are
concatenated and multiplied with the weight matrix W f .

Thus LSTMs overvome the vanishing/exploding gradient problem due to the implementation
of gates. The gradients can persist unchanged and flow through the memory, as long as the
gates are shut [Sut13].
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3.6 Hyperparameter Optimization

There are three possible scenarios for outcomes after the end of training ANNs: the model
is underfitted, overfitted or well fitted. A model is considered to be sufficiently or well fitted
if it has learned to generalize from known training data and is able to predict unknown data
most accurate. In such a case, both the loss on the training and the test set become minimal.
Curves of the losses then converge to zero over the course of epochs. This ability to adequately
generalize does not apply to neither an under- nor an overfitted model.

Underfitting is revealed by a downward trend of both training and validation loss, but the
performance on the training set is better than on the validation set. Any room for improvements
on training and validation loss to approach zero indicates underfitting. Wether or not the
accuracy is sufficient in such case highly depends on the data and the purpose of the model.

Overfitting occurs when the model has adapted too strongly on the training data. That is,
the model is not able to generalize from what it has learned. Consequently, an overfitted model
can produce virtually perfect predictions for the known training data, but fails on predictions
with little error on unknown data. This becomes apparent when the loss on the training set
becomes minimal, but the loss on the test set begins to increase again after a decline.

Those outcomes (under- and overfitting) indicate the direction in which the researcher needs
to adapt the model he or she is building. Each learning algorithm has certain parameters called
hyperparameters. The choice of these defines the actual learning algorithm [BB12]. For ANNs,
for example, this is the number of neurons, epochs, batch size, or when using gradient descent
as optimization procedere the learning rate η (cf. Section 3.2). Values derived during training
do not count as hyperparameter (e.g., the weights). For LSTMs some hyperparameters seem
to be more important than others with regard to the performance to minimize the generaliza-
tion error [RG17; BB12]. All in all, hyperparameters determine whether a neural network is
able to produce “good or even state-of-the-art results” [RG17]. The search for good or even
optimal values for any hyperparameter is called hyperparameter optimization and can be done
manually, as a grid search or a random search. When the search is done manually, a number of
individually determined values is tested. In grid search, a set of values for each hyperparameter
is defined and every possible combination is tested. Grid search is an extensive search, as the
number of joint values increase exponentially with the number of hyperparameter values. This
is why the method suffers from the course of dimensionality. In contrast, random search uses
randomly drawn examples from a defined set of values for each parameter for a certain number
of iterations. Although not all possibilities are examined by this method, it achieves almost as
good results as grid search with lower computational effort. [RG17; BB12]

As mentioned before, some hyperparameters are more or less important than others. As so, a
short recap corresponding to some hyperparameters and their influence on the neural network
will be given.
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• Nodes. The number of nodes defines how wide a network is [RG17]. More nodes increase
the complexity of the network or rather extend the model’s capacity [Ben12]. According
to [Ben12] and [RG17] the impact of this hyperparameter is low and does not influence
the generalization performance of a network much.

• Batch Size. The batch size represents that chunk of the training data used during one
epoch to update the weights. A large batch size for example requires more memory,
which results in an improvement of computational time. A small batch size provides the
opposite. Additionally, according to [Ben12] variance in this hyperparameter “does not
hurt generalization performance much”.

• Epochs. The number of epochs represent the number of iterations for training a neural
network through the entire training dataset. With regard to computing time and effort,
the number of epochs that is desirable is the one that is both as small as possible and as
large as necessary to learn the requested function.

• Optimizer. The optimization algorithm, as explained in Section 3.2, is responsible for
minimizing the error between predicted and correct solution. According to [RG17] the
impact on generalization capabilities of the network is high. On the one hand the algo-
rithm itself plays a role, on the other hand settings of the algorithm (i.e., the learning
rate) are important.

• Dropout. Dropout is a regularization method used to prevent and address overfitting. By
randomly dropping out nodes and their connections it simulates training several ANNs
with different architectures (e.g., number of nodes per layer) in one ANN. By this less
computational effort is required, as one instead of many ANNs is trained. By defining a
dropout, the probability of masking a unit is determined. In RNN dropout can be applied
to omit the same neurons and connections at each time step. Thus a dropout of 0.2 refers
to 20% probability of a neuron being left out. [GG16]

This is only a selection of hyperparameters and this list does not claim to be exhaustive4.
As a concluding remark, hyperparameter and the choice of their values determine the model
performance. Each influences training and output in one or another direction. For example an
underfittet model could be addressed with further optimization of the hyperparameters in order
to obtain more accurate results, whereas an overfittet model could potentially be compensated
by a reduced number of epochs or the use of a dropout rate.

4See [RG17] for example, for further information on hyperparameters and their impact.
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One goal of this thesis lies within testing the capability of LSTMs for solar power prediction.
This puts the prediction in the area of statistical modeling, more precisely in the area of
supervised learning, as the LSTMs will be trained in a supervised manner. As described in
Section 2.2, PV power can be forecasted regressively, previous measurements or solar irradiation
values given. Those prior values are the pattern, whereas the forecasted data is the label. In this
thesis only measurements (and no irradiation) of a predefined number of preceding time-steps
will be used for forecasting. Thus previous time steps will serve as feature input of LSTMs.
In addition to forecasts with LSTMs, a persistence forecast will be generated that serves as a
baseline. Results achieved with each forecast will be evaluated using the RMSE (cf. Section 2.3)
and the skill score will serve as a metric for comparability of those forecasts against each other.

The present chapter begins with a general assessment of LSTMs for solar power prediction.
The first LSTM architecture will be based on [AM17], while the first experimental setup will be
similar to [WOK17]. In successive investigations it will be tested whether different architecture
desings might lead to improvements in prediction accuracy. The results recieved will be carried
along in further experiments. After the structural analysis, temporal and spatial information is
examined. By this, the goal is to assess, if additional data might lead to forecast improvements.
The chapter closes with a comparison of the forecast capabilites of LSTMs and SVR for solar
power predictions. All those experimentes have the purpose to evaluate the extent of LSTMs
to make reliable short term PV power predictions.

The implementation is done in Python. The LSTMs are implemented using Keras libary
[Cho+15] on top of TensorFlow framework [Mar+15]. Additionally the libraries Pandas [McK10],
Numpy [Oli06] and scikit-learn [Ped+11] are utilized for data preparation and preprocessing. In
the following, the data, the preprocessing steps, experimental setups and parameters (alongside
with their initialization) will be described.

4.1 Data and Preprocessing

The data of investigation is provided by meteocontrol GmbH, a company offering worldwide all-
round solutions regarding PV monitoring and control [met19]. The data covers measurements
of PV systems all across Germany over a period from 2012 to 2016. The temporal resolution
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is 15 minutes. For each PV system, the location (coordinates in longitudes and latitudes),
an identification number (ID) and information about installed capacity (kWp

1) are given. In
preprocessional steps, the extent of data has been reduced, in order to base the research on
as high-quality data as possible. First it was ensured that measurements and coordinates
match, so that for all entries of coordinates measurements were available as well as the other
way around. Afterwards all PV systems were removed that had too many missing measured
values in their dataset. Finally, the forecasts are build upon daytime values, excluding every
measurements outside a time frame from 09:00 am to 4:00 pm. Since the PV systems are of
varying installed capacity, covering a broad range of power, the output of each system has been
scaled to its installed capacity for better comparability2. Furthermore any missing values are
either replaced by the preceding value or zero, depending on the lenght of sequence that is
missing. The previous value is used if no more than one hour or four time steps are missing,
while 0 is used if a longer sequence is missing. This type of treatment is based on the assumption
that short periods of missing data may be due to missing measurements, while longer periods
may indicate plant failure. In preparation for the LSTMs the data has been (i) normalized into
the value range of the used sigmoid activation function, i.e., in between 0 and 1, (ii) split into
training and test set, in a ratio of 60% to 40% respectively, whereas 10% of the training set has
been used for validation during the training process.

4.2 Spatial Experimental Setup

The spatial experimental setup is designed to predict the future current of a single PV plant
τ . The forecast is based on the past measurements of the target as well as measurements of N
surrounding PV plants in a distance of radius r to the target (see Fig. 4.1). The selection of the
target and its neighboring plants is done using the euclidean distance from a randomly selected
PV system to any other system (cf. Eq. (4.1) and Fig. 4.2). If the defined minimal number of
N neighbors within the maximal distance r is satisfied, the random plant becomes the target
τ and the measurements of the closest neighbors become the additional features for prediction.
If the number of surrounding plants cannot be met, the search for a suitable target continues.
For reasons of reproducibility, a random seed is used in this process in the frist experiments.
The euclidean distance is calculated using the positional data of the plants. Since all facilities

are located within Germany, the spatial area can be assumed to be a flat surface. Any larger
distances need the incorporation of the Earth’s curvature for accurate distance calculations,
since the accuracy of the Euclidean distance decreases with increasing distance between two
locations. In such cases, methods of spherical geometry provide more accurate distance mea-

1kWp refers to kilo watt peak and denotes the measured nomial power of a PV system under standard test
conditions. Those conditions are 25°C temperature and 1000 W

m2 irradiation. [na19]
2This scaling for better comparability is the meaning whenever the term “percentage of installed capacity”
throughout the whole further thesis is used.
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τ

r

Figure 4.1: Spatio experimental setup. N surrounding PV systems (yellow circles) serve as additional
feature to predict the future power output of a targeted PV system τ (blue circle). More
distanced PV systems are not considered in the forecast (grey circles).

Figure 4.2: Distribution of PV systems across Germany. For the determination of a target plant one has
been selected randomly and has been tested to meet certain criteria (minimum distance r to
N neighboring systems).

surements [MH11]. The differences between the respective longitudes and latitudes are each
multiplied by a factor that represents the distance from one longitude or latitude to another
within Germany [SU18; SL41]. The root from the sum of the squared differences then results
in the distance of one plant to another:

longitudedistance = 71.5 · (longitudeτ − longituden),

latitudedistance = 111.3 · (latitudeτ − latituden),

distance =

√
longitude2distance + latitude2distance. (4.1)

One targeted PV system that fulfilled the requirements of N = 6 neighbors in a distance of
r = 10 km has the ID 23526 and is located in “Unterfeld” (South Germany) with 10.6288◦ lon-
gitude and 48.0385◦ latitude. The neighboring systems are within 0.08 and 2.7 km. Figure 4.3
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shows the location and the distribution of the selected subset of PV plants to each other and
reveals that almost every compass direction is covered.

(a)
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Figure 4.3: Location of a targeted PV system τ in Germany (red) with N = 6 neighboring systems (blue)
at a distance of radius r = 10 km. The left picture (a) shows a map of Germany (small spots
mark some lakes) and the location of the subset. The right picture (b) shows an enlarged
view of the location and reveals the distributions of the PV plants to each other. Each PV
system is labeld with its own ID.

4.3 Simple LSTM Setup

For the first LSTM configuration a setup as found in [AM17] is chosen. The authors of the
referenced work investigated on several LSTMs for solar power prediction. A model with several
previous time steps as one input feature achived best results in their work. According to this
foundation three previous time steps will serve as one input feature to predict the next time
step. Different to [AM17], the granularity in this work is 15 minutes. This means three past
steps amount to 45 minutes as feature to predict 15 minutes ahead. In [AM17] one time step
accounts to one hour, thus three prior time steps account for three hours in the past to predict
one hour in advance3. Furthermore a spatio-temporal approach is investigated as described in
Section 4.2. This results in an overall dimensionality composed of measurements, per input
time steps for each of the N + 1 PV systems. The so-called sliding window thereby has a total
of 3 time steps, referring to the cohesive input time steps, to predict 1 output (see Fig. 4.4).

The simulation of the first experiment has been as close to [AM17] as possible. Therefore
the initial configuration of the LSTM network has been chosen to consist of one LSTM layer
with 4 neurons and one dense layer to compute one output (identical to [AM17]). One time,
incremental training has been tried (updating the weights after one example, cf. Section 3.2),

3In Section 4.4 the discrepancy of the granularity will be adressed, as different time horizons will be investigated.
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. . . t - µ . . . t - 1 t t+1 . . .

window size

Figure 4.4: General representation of the sliding window approach. The window size is labeled in
tourquise and a total of t − µ steps is marked in gray. The input data for the prediction of
the blue marked time step t stays the same for predictions further ahead (t+ 1, t+ 2, . . . ).

but due to quite unpleasant runtime and model performance the batch size has been set to 72.
This setup has been run for several times for different numbers of epochs (see Table 4.1), due
to the stochastic initialization of the network weights in the beginning of the learning process.

Table 4.1: Error measurements of a LSTM trained several times for an increasing number of epochs.
Displayed are the calculated average RMSE in percentage of installed capacity and the corre-
sponding standard deviation (SD). The average error is compared with a skill score (cf. Sec-
tion 2.3). The baseline for comparison builds a persistence forecast that achieved a RMSE of
2.33%. A skill score > 0 indicates an improvement of the forecast over the reference.

Epochs ø RMSE (± SD) Skill Score (± SD) [%]

20 2.68 (± 0.41) -15.27 (± 17.79)
30 2.53 (± 0.14) -8.64 (± 6.21)
40 2.42 (± 0.14) -4.19 (± 6.07)
50 2.41 (± 0.08) -3.69 (± 3.65)
60 2.31 (± 0.10) 0.87 (± 4.36)
70 2.28 (± 0.08) 1.94 (± 3.27)
80 2.25 (± 0.07) 3.37 (± 2.82)
90 2.23 (± 0.06) 4.21 (± 2.46)
100 2.22 (± 0.05) 4.39 (± 2.19)
1000* 2.13 8.53

* The network trained for 1000 epochs has only be simulated once
in contrast to each other number of epoch.

Table 4.1 shows the outcomes of the first experiments. Over the course of increasing epochs
the average RMSE and its standard deviation decreases. This means, the longer the model
is trained, the more accurate the predictions become. Additionaly, the decline in standard
deviation along of more epochs denotes more stability in the results. The more narrow the
standard deviation, the less impact is in the stochastic element due to randomly initialized
network weights.
Overall the experiments produced pleasantly low RMSE values and the results achieved rank

in a scale comparable to [AM17]. Converted into percent, the RMSE in their work ranks
between 2 and 2.7%. The reference in the present thesis for comparison of the LSTM model
performance is a persistence forecast. This baseline resulted in a RMSE of 2.33%. Thus, from
a trainings duration of 60 epochs onwards the LSTMs have in average been able to beat the
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Figure 4.5: Model history of the simple LSTM trained for 1000 epochs. In the picture are the loss on
the training set (blue) as well as on the validation set (orange) displayed. The validation loss
remains low, so that overfitting has been avoided.

naive approach. An absolute superiority can be confirmed after 80 training epochs. The skill
score, including its standard deviation, is always higher than zero at this time.
In difference to the model runs of 20 to 100 epochs, the simulation with 1000 epochs has

only been run once. This setup has been chosen whether or not the model would overfit
on the trainings data with enough learning time. With 1000 epochs, the trend of a decreasing
RMSE could be continued without overfitting (see Fig. 4.5), showing improvements in prediction
accuracy with longer trainings periods in this setup.

Differences in model design of the present model and the template model of [AM17] are in
(i) the batch size (ii) the used optimizer. The template is one of several LSTM configurations
that had been investigated. The batch size has been set to one and Adam (short for adaptive
moment estimation) has been used as optimizer. The present model in comparison used SGD
in its package defaults settings as optimizer and a significantly bigger batch size of 72. Both
optimizers are able to converge as [AM17] as well as the present model are able to predict PV
power with low RMSE. In general Adam is an optimization algorithm with adaptive learning
rate and has been designed in order to improve speed of training [KB14].
[AM17] evaluated training times of 20, 50 and 100 epochs and with the present outcomes

it seems that Adam converges more quickly than SGD. Whether or not this is true might be
revealed in the following section, where some hyperparameters will be evaluated.

4.3.1 Hyperparameter Investigation

The model has been altered by setting the optimizer to Adam as done in [AM17]. Further the
model’s hyperparameters have been evaluated by changing the number of neurons, batch size
and epochs iteratively. Instead of a grid search or random search, those hyperparameters have
been evaluated manually one at a time (cf. Section 3.6). In one model run one parameter is
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changed, while the others remain in the initial configuration. Due to the small impact by the
weight initialization (cf. Section 4.3), those experiments are carried out once.
Table 4.2 displays the differences from the initial model design (1 LSTM layer, 4 neurons,

batch size of 72, several epochs), by just changing the optimizer from SGD to Adam. As can
been seen each RMSE drops below the ones achieved using SGD as optimizer (cf. Table 4.1).
In contrast to the results with SGD, there is no obvious trend that more epochs lead to lower
error measurements. Rather a fluctuation can be observed: The RMSE values in Table 4.2 of
20, 50 and 100 epochs are almost identical with ∼ 2.1%, but in epochs 30, 40, 60, 70, 80, and 90
slightly lower values could be achieved (∼ 2.05%). The smallest training duration of 20 epochs
has a lower RMSE with Adam than with SGD (2.11% compared to 2.68%). Even 1000 epochs
cannot undercut this value (2.11% at 20 epochs compared to 2.13% at 1000 epochs).
The skill scores fluctuate to the RMSEs accordingly, but remain always greater than zero.

Consequently, the improvement over the reference is still given. These results validate that
the change from SGD to Adam represents an improvement in speed of training as well as in
prediction accuracy. Or more precisely, an adapted learning rate had been able to improve the
results.

Table 4.2: Error measurements and skill scores of a LSTM using Adam as optimizer for an increasing
number of epochs. Displayed is the RMSE in percentage of installed capacity. The reference
is a persistence forecast that achieved a RMSE of 2.33%. A skill score > 0 indicates an
improvement.

Epochs RMSE Skill Score [%]

20 2.11 9.11
30 2.06 11.56
40 2.05 11.96
50 2.13 8.65
60 2.05 11.88
70 2.05 12.05
80 2.04 12.17
90 2.06 11.51
100 2.10 9.53
1000 2.07 10.91

The evaluation of the neurons and batch size was carried out analogously to the evaluation
of the epochs. One of the parameters has been changed while the initial configuration of one
layer with 4 neurons, a batch size of 72 and a training time of 50 epochs remains. The choice
of 50 epochs, despite the outcomes above, has been set, due to the findings in [AM17]. Their
best results were obtained by this training time. Furthermore, 50 epochs provide a suitable
compromise with regard to the computing time.
A change in neurons resulted in a lowest RMSE of 2.07% (bold marked in Table 4.3). Both 72

and 150 numbers of neurons achieved this due to roundings. The skill scores, being calculated
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without roundings, reveal that the most performant model occurs having 72 neurons. By this
the model had been superior by about almost 11% over the persistence forecast, as the skill
score indicates. The batch size could not achieve as much improvements in model skill or
RMSE reduction. The minimal reached RMSE value is slightly higher and the model’s biggest
improvement is observed for a batch size of 32 with a skill score of 10.35%. As can be seen in
Table 4.4 a batch size of 1 (incremental learning) also resulted in a minimal RMSE of 2.09%.
This is again due to rounding. Differences in the skill scores reveal a marginally better model
performance with a batch size of 32.

Table 4.3: Overview of the RMSE values (in % of
installed capacity) and the skill scores
to a varied number of neurons. Other
hyperparameters, such as the number of
epochs, batch size and the optimization
algorithm are set as follows: 50 epochs,
72 batches, Adam as optimizer. Mini-
mal RMSE and maximal skill score val-
ues are marked bold.

Neurons RMSE Skill Score
[%]

4 2.13 8.65
8 2.12 9.07
12 2.12 9.06
16 2.10 9.73
24 2.09 10.26
36 2.08 10.51
72 2.07 10.95
100 2.11 9.38
150 2.07 10.89

Table 4.4: Outcomes of error measurements (in
percent of installed capacity of the tar-
geted PV system) and skill scores ac-
cording to different batch sizes. The
used optimization algorithm, number of
neurons and, number of epochs remain
as used before: Adam, 4 and, 50, re-
spectively. Minimal RMSE and maxi-
mal skill score values are marked bold.

Batch
Size

RMSE Skill Score [%]

1 2.09 10.28
16 2.10 9.76
32 2.09 10.35
64 2.11 9.23
128 2.12 8.92
256 2.10 9.88
512 2.14 8.19

Despite the improvements, the influence of both hyperparameters is small. The neurons
only reduce the error value by 0.06% compared to the RMSE according to the initial amount
of neurons. The batch size has again less impact and achieves a lowest RMSE of 2.09%.
Consequently, both the neurons and the batch size did not improve the prediction accuracy
much, as no new low in RMSE values was reached. Those findings suit the outcomes in [RG17].

Finally, a combination of hyperparameter values resulting in a lowest RMSE4 was tested.
A runtime of 200 epochs had been chosen, in order to limit runtime but potentially reveal
overfitting. Again several model simulations were initiated because of the stochastic initial
weight selection to find out about model stability. A combination of each value that produced

4See Table 4.3 and Table 4.4, lowest RMSE values have been achieved with 72 neurons and a batch size of 32.
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best results with the other parameters in the initial state did not improve the model accuracy.
Indeed, the outcomes show an overfitting of the model (see Fig. 4.6).

Figure 4.6: Model history of several model simulations with the LSTM layer configuration of 72 neurons,
batch size of 32, trained for 200 epochs. In the picture are the loss on the training set (blue)
as well as on the validation set (orange) displayed for each simulation run.

Figure 4.6 shows an initial drop in loss on the training set and a slight downturned loss on
the validation set until approximately epoch 25. While the trainings loss keeps decreasing,
the validation loss of all experiments starts to increase beginning from approximately epoch
25 onwards. This indicates an overfitting of the model on the trainings data. As a result, the
hyperparameters can each be optimized individually to improve model performance. However,
this is not sufficient to achieve an overall optimal combination. The result shows that single
improvements did not add up. Rather the opposite is true, the combination of each hyperpa-
rameter that achieved lowest RMSE values yielded a RMSE of 2.59%. Alternatively, the newly
found optimum value of each individual hyperparameter has to be set to this value before op-
timizing the following hyperparameters (i.e. in this case the number of neurons found to be
optimal would have to be set to the new value when optimizing the batch size).

The incorporation of a dropout rate to the model architecture has been tested to purposely
address the issue of overfitting. The same rates from 20 to 80% probability of units being
droped on each time step have been tried for both the inputs as well as the recurrent states
seperately. Table 4.5 shows the outcomes.

The middle column “Inputs” clearly shows that adding a dropout rate to the inputs has a
worsening effect on the results, as the error values increase the higher the probability of units
are dropped. Even the lowest percentage probability rate (20% in the first row) does not
improve in the form of a lower RMSE value. Consequently, the combination of the individually
optimized values could not be compensated by a dropout of this kind. The input sequences are
quite short with 3 time steps. Dropping anything out of those sequences deprives the model of
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Table 4.5: Overview of the RMSE values (in % of installed capacity) that had been achieved by adding
dropout rates. The model architecuture is the one derived by evaluation of neurons and
batch sizes. Dropped are (i) the units of “the linear transformation of the inputs” (displayed
in column “Inputs”) and (ii) the units for “the linear transformation of the recurrent state”
[Cho+15] (displayed in column “Recurrent States”).

Probability
of dropped
units [%]

RMSE

Inputs Recurrent
States

20 2.59 2.32
40 4.01 2.19
60 5.52 2.11
80 8.04 2.13

Figure 4.7: Overview of loss on trainings (blue lines) and test set (orange lines) for several simulation
runs. The model architecture has been extended by the incorporation of dropout on the
recurrent states to adress overfitting.

the basis to approximate the desired function. This could explain the RMSE values rising with
the dropout rate.

The situation is different for dropout applied on the recurrent states. A lowest RMSE of
2.11% is reached along a probability of 60% dropped units. This error value is as good as a
network configuration trained for 20 epochs of one LSTM layer with 4 neurons, a batch size
of 72 and Adam used as optimizer (Table 4.2). However, training that reference for longer
achieved lower RMSEs. Consequently, evaluating and optimizing some hyperparameter did not
improve the models generalization capacities on this specific task. Changing them only showed
an overfitting to the training data. Adding dropout to the recurrent states could regulate this
(cf. Fig. 4.7), but not achieve higher prediction accuracy. This statement does not apply on
the optimization algorithm. Changing from SGD to Adam helped to reduce the error value.
By this, less epochs and thus less computational time were required.
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As a conclusion, an investigation of the LSTM architecture showed to be ideal in a configu-
ration as in [AM17] when predicting PV power in a spatial experimental setup as in [WOK17].
A manual change in hyperparameters could not lead to more accurate forecasts. The only
exception is the change from SGD to Adam as used optimization algorithm. Each hyperpa-
rameter optimized on its own achieved small improvements, but an overall ideal combination
for most accurate forecasts had not been retrieved this way. By this it can be concluded that
the initial LSTM architecture, with one LSTM layer, 4 neurons, a batch size of 72, trained for
in between 50 and 100 epochs, an optimization algorithm with adaptive learning rate, such as
Adam, can produce reliable short term PV power predictions in a spatial experimental setup.
In the following, the impact of additional data on forecast accuracy will be analyzed. Therefore
both, the temporal as well as the spatial variables will be altered in further experiments.

4.4 Time Horizons Experiment

The temporal resolution in this work accounts to 15 minutes for one time step. This granularity
is different to the one used in [AM17]. In order to close the gap between different temporal
resolutions both, the window size and forecast time horizon will be modified. Three more
approaches have been set up to analyze the impact of the granularity and assess the importance
of input as well as output sequence length for PV power predictions with LSTMs. The first
approach will be referred to as experiment 1-A, the second one will be denoted with experiment
1-B and the third one with experiment 1-C. Once, a window size of 12 time steps has been
selected to use 3 hours as feature input for the prediction of 1 hour or 4 corresponding time
steps ahead. (1-A)

In another investigation, the window size has been reset to the initial size of 3 time steps,
making up 45 minutes as feature again. Other than in the first experiment (cf. Section 4.3),
instead of forecasting the directly subsequent time step, the time step corresponding to one
hour ahead has been selected. Consequently, the model’s task resulted in learning the pattern
of time step t+ 4 on the basis of time steps t− 2, t− 1 and t (see Fig. 4.8). (1-B)

The last study is also about predicting a distanced time step. It is a compound of experiment
1-A and 1-B, by taking 3 hours or 12 time steps á 15 minutes as feature to predict a single time
step in distance ν = 1 hour. (1-C)

The used architecture for all experiments is equal to the initial configuration described in
Section 4.3. Again Adam is used as optimizer, due to its improvements on error measurements.
The experiments are run for an increasing number of epochs. The number of neurons and batch
sizes stay the same, as the evaluation of hyperparameters in Section 4.3.1 did not improve the
prediction capability much. Experiment 1-A investigates on the impact of using more feature
information in form of longer input sequences. Further the capability of predicting more than
one time step is explored. Experiment 1-B and 1-C on the contrary, explore the capability to
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predict a distanced time step. See Figure 4.8 for visualization. The variation with respect to the
sliding window approach that results for the approaches is shown. Overall the selected period
of time still remains in the range of short term prediction and does not exceed the investigated
time frame of [AM17].

. . . t - µ . . . t - 1 t t+1 . . . t+ν . . .

window size forecast horizon ν

(a) Sliding window of experiment 1-A

. . . t - µ . . . t - 1 t t+1 . . . t+ν . . .

window size forecast horizon ν

(b) Sliding window of experiment 1-B and 1-C

Figure 4.8: Representation of the sliding window approach adapted to predict different time horizons.
On time a each time step of a sequence length ν is forecasted (a), whereas another time one
single time step in distance ν is forecasted (b). The window size remains of constant amount
of time steps.

The RMSE values and skill scores of experiment 1-A, corresponding to the epoch and time
steps are listed in Table 4.6. For each individual time horizon the RMSE falls and rises over
the course of epochs. This behavior is similar to the ones derived in Section 4.3. Besides the
ascents an overall decrease can be observed. The longer the time horizon, the larger the error
values. On the contrary, it is noticeable that the increase of the error along the time horizon
becomes smaller. Thus the average differences from one time step to another decline.
Comparing the RMSE of time step t of this experiment with the prediction accuracy made in

Section 4.35 an overall lower RMSE can be seen. On average a reduction of ∼ 0.05% has been
achieved by taking a larger number of prior time steps as feature. Different to prior outcomes
the lowest RMSE values are attaind after 100 epochs. This means, the model needs longer
learning time with more inputs and outputs.
As can be seen, the skill scores reveal an overall improvement against the persistence forecasts

for each time horizon. The highest improvements are achieved for predictions of 30 minutes
ahead. The values of almost all skill scores are highest for this time step. This great superiority
might be caused by the relatively high increase in the RMSE of the persistence forecast from
the first to the second forecast time step (time horizon of 15 and 30 minutes). All in all, the
skill score first rises to a high and then decreases again. Similarly to the RMSE, the skill score
of this experiment for time step t compared to the skill score of the same time step of the
previous investigation when Adam was used, the skill score is higher here.

5when using Adam as optimizer
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Table 4.6: Outcomes of experiment 1-A. Shown are the RMSE values (in % of installed capacity) and
skill scores according to each time horizon for several numbers of epochs. The reference is a
persistence forecast, which RMSE values according to the time horizon are listed in the last
row. Minimal RMSE and maximal skill score values are marked bold.

RMSE Skill Score [%]

Time Horzion [minutes]
Epochs 15 30 45 60 15 30 45 60

20 2.08 2.64 3.01 3.32 10.45 12.24 11.73 11.20
30 2.05 2.62 3.00 3.28 12.08 12.80 12.12 12.17
40 2.06 2.63 2.98 3.26 11.44 12.69 12.57 12.62
50 2.06 2.63 2.99 3.28 11.39 12.53 12.46 12.25
60 2.07 2.62 2.96 3.25 11.17 13.06 13.15 13.07
70 2.05 2.61 2.99 3.29 12.07 13.12 12.47 12.07
80 2.09 2.64 2.98 3.27 10.12 12.17 12.47 12.45
90 2.10 2.64 3.00 3.30 9.80 12.24 12.14 11.64
100 2.04 2.59 2.94 3.23 12.52 13.91 13.87 13.57

Persistence 2.33 3.01 3.41 3.74

Both of these outcomes, RMSE and skill score respectively, indicate the importance of the
sequence length for learning. Nevertheless, the influence in this short time frame is still to be
considered marginal, since the deviations of the error values due to changes in hyperparameters
(especially of the neurons and batch size, see Section 4.3.1) are similarly low.

The RMSE outcomes of experiment 1-B rise and fall similarly to previous RMSE results
(cf. Table 4.7). A low of 3.31% is reached at epoch 50 and epoch 80. Due to roundings of the
RMSEs, the skill score of epoch 50 is higher than the one of epoch 80. Thus the model has
already been sufficiently adapted on the predictions of that time step (t+ 3) by this number of
epochs. All in all the fluctuation over the epochs remains in a small range.
The skill scores behave accordingly to outcomes of the RMSEs. They are all above zero,

indicating an improvement of LSTM predictions over persistence predictions. Consequently,
the model can predict a more distant time step without the information about the directly
preceding time steps.

The skill scores and RMSEs derived in experiment 1-C are presented in Table 4.8. This
investigation is done for comparability of the forecast accuracy of time step t + 4 with and
without the time steps t+ 1, t+ 2, and t+ 3 on the base of an equally long input sequence of
12 time steps. Thus outcomes of the present experiment (1-C) will be compared with outcomes
of time horizon according to 60 minutes in experiment 1-A.
Most of the RMSE values in 1-C (Table 4.8) are lower than the corresponding ones in 1-A

(Table 4.6). This means the model had been able to approximate the prediction of that certain
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Table 4.7: Outcomes of experiment 1-B. Shown are the RMSE values (in % of installed capacity) and
skill scores according to a number of epochs. Bold marked values indicate minimal RMSE or
maximal skill score respectively.

Epochs RMSE Skill Score [%]

20 3.34 10.72
30 3.32 11.04
40 3.32 11.25
50 3.31 11.49
60 3.33 10.98
70 3.32 11.13
80 3.31 11.33
90 3.34 10.65
100 3.32 11.08

time step more properly, when less time steps had to be learned. As a consequence, the amount
of output time steps are as important as the amount of input time steps. The more predictions
are requested, the more the model has to reproduce.
The importance of the feature information is supported by the comparison of the RMSE

values from 1-B with 1-C. In both experiments the model had to learn the prediction of a single
distanced time step. They differ in the used amount of feature information. RMSE results of
1-C are almost overall lower as the ones of 1-B. This leads to the conclusion that a longer input
sequence allows the LSTMs to better approximate the function of PV power at that time step.

Table 4.8: Outcomes of experiment 1-C according to different training times. Displayed are the RMSEs
in % of installed capacity and the skill scores. The values refer to predictions of a time step
in distance ν = 4 on the basis of a window size of 12 steps. The model configuration is
set as follows: 1 LSTM layer with 4 neurons, a batch size of 72, and Adam as optimization
algorithm. Bold marked values indicate minimal RMSE and maximal skill score.

Epochs RMSE Skill Score [%]

20 3.28 12.33
30 3.23 13.60
40 3.27 12.50
50 3.22 13.95
60 3.34 10.67
70 3.25 12.93
80 3.18 14.87
90 3.25 12.95
100 3.24 13.41

Summarizing the results of the time horizon experiments, it can be said that the model is
able to predict both a longer sequence and a distanced time step. Additionally, both the length
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of input and output sequence impact the extent of prediction accuracy. Longer input sequences
result in more precise predictions as the model is supplied with more information. A single
distanced, predicted time step on the other hand, changes the model’s task and the predictions
become more accurate due to the increased focus.

4.4.1 Extended Time Horizon

The following experiment intends to investigate the limitations of short-term power predictions
with LSTMs. Up to now, predictions of maximum one hour ahead have been investigated
and this time horizon is to be extended. The goal is to predict as long sequences as possible.
The forecast horizon will remain within the scope of short-termed PV power predictions and is
therefore between 1 and 5 hours (cf. Chapter 2). The input sequence will remain at 3 hours,
corresponding to outcomes of previous investigations. Thus the prediction of 5 hours equals 20
time steps of 15 minutes and is build upon an input or window size of 3 hours or 12 time steps
á 15 minutes.
The LSTM configuration as described in Section 4.3 will be used and be trained for 20 to

100 epochs. Further the spatial experimental setup of one target with 6 neighboring systems
within a radius of 10 km will remain (cf. Section 4.2). Figure 4.9 displays the distribution
of predicted power values of the targeted power plant in percent of installed capacity for each
hour ahead. The use of violin plots in contrast to box plots additionally illustrates the values’
probability distribution along the vertical axis with regard to the percentage power of installed
capacity. The measured power values are displayed for comparison. Thus, the representation
for both true and predicted values correspond to the test set, starting from October 2014 to
October 2016.
Most noticeable is that the maximum predicted values decrease with increasing time horizon.

For example, the maximum measured values exceed all of the predictions. However, these max-
imum values in the measurement series appear to be outliers. Predicted PV power at forecast
horizon of 2 and 3 hours inherit similarly many outliners, but the amplitude of overall percent-
age installed capacity starts to decrease. At forecast horizon 4 and 5 hours, less outliners and
a more narrow range of values can be seen. Thus the variance in the predicted values becomes
less and more general values are being predicted. Additionally, the overall low maximum output
of the system is noticeable. The targeted PV plant generates only up to ∼ 22% power of its
installed capacity. Reasons for this might be the weather conditions in Germany on the one
hand or local geografical circumstances, such as mountains causing shade, on the other hand.
The distribution of values also changes along the forecast horizons. While the true measure-

ments have most values in between zero and five percent of installed capacity, the distribution
of data points at horizon 2, 3, and 4 hours seem to appear the other way round. A high
accumulation at the upper end becomes visible. Only at 5 hours ahead, a slightly more even
distribution returned. Consequently, the power outputs have been overestimated. Altogether
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Figure 4.9: Violin plot with displayed medians of different predicted time horizons. Shown is the prob-
ability distribution according to all time steps of the test set for the measurements (true
measurements) and predictions for several time horizons in percent of installed capacity of
the targeted PV plant (cf. Section 4.2). The notation for the predictions can be read as
follows: ’+1h’ remarks all predicted values of the time step at one hour in the future.

more mid-ranged power values have been predicted instead of single peak loads. This can also
be seen by the medians, which slightly increase with the time horizons. The predictions become
more broad and less precise.

An insight into the annual and daily cycles might provide more information about the dis-
tributions. Figure 4.10 shows the annual course for the entire test set for each of the predicted
time horizons as well as the measured values of the targeted PV plant. The predictions made
with the LSTMs show the same course of the year that can be seen in the measured values.
The values begin to rise in January, reach their highest values in June/July and fall again
from October. The amplitudes of the predicted values drop along with the increase in time
horizons. This matches the outcomes displayed in the violin plots. The shorter the predicted
time horizon, the more close the predictions are to the measurements. Whereas, in the other
way round the longer the time horizon, the more generic the predictions become.

It is also noticeable that at the beginning of October 2015 no or hardly any electricity was
produced. This can be seen in the true measurements and had been approximately reproduced
in the predictions. A reason could be that the plant had been out of operation.
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Figure 4.10: Overview of all predictions of different time horizons on the test set. The outcomes are
referring to one PV plant and after 100 epochs of training, due to best results in previous
experiments.

In Figure 4.11 the power curve of several different days is displayed. Shown are four days out
of the test set, one for each season in 2015: winter (A), spring (B), summer (C), and autumn
(D). Each day begins at 9 am and ends at 4 pm as described in the preprocessing of the data.
This is due to the investigation of daytimes only. Those pictures give closer insight whether or
not the course over day is met.

A The winter day has overall low power values in both the predictions and measurements.
This is due to the overall lower sun position in the middle latitudes. While the true
measurements (blue) start to rise in the morning, all predicted values remain low. An
increase in the predicted PV power starts at midday, when the measurements decline.
Thus the power curves of measurements and predictions are virtually opposite.

B The day in spring shows overall higher measured power values with a lot of fluctuations.
The predictions of each forecast horizon in contrast are quite similar. Strong changes in
the true power values from large to small values are not imitated by the predictions.

C During the day in summer, the PV system appears to supply power steadily. A slight rise
in the values shows a typical course of the sun over the day. In the predictions, however,
the power values remain evenly with minor changes at the end of the day.
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Figure 4.11: Comparison of the prediction accuracy of different time horizons displayed for one day at a
time. Each day begins at 9 am and ends at 4 pm. Thus, each day is 7 hours. By this, only
daytimes are evaluated (cf. Section 4.1).

D The day in autumn shows a decrease in PV output over the course of the day. The
predictions of each time horizon start below the true measurements and approach them
at the end of the day. Overall, similar changes in the curves can be seen, comparable to
the day in spring (B).

All together, each seasonal daily plot has in common that the curves of the predictions share
a similar pattern. The actual power curves change, if other days had been picked, due to
different weather and radiation conditions. Still, the order of magnitude of the predicted values
equals the one of the measurements. Thus, daily trends have been identified. The selection
of daytimes as described in Section 4.1 led to power curves that miss an expected rise in the
beginning of a day. The selection had been done to ensure that the sun had been risen for any
season equally. As the pictures show this had been achieved, but on the downside inhibits a
more comprehensive comparison. Overall there is still room for improvement for the predictions
to match the course of the day of the measurements. Visible differences between predictions and
true measurements are in the range of the RMSE values, which are presented in the following.
The RMSE values increase with the hours of the time horizon (see Fig. 4.12). The increase,

in turn, decreases over time. For example, the increase from the first to the second hour is
greater than the increase from the second to the third hour. This suits previous outcomes that
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with further time more general predictions are carried out. Overall the course over the epochs
is quite similar and 100 epochs of training resulted in lowest RMSE values for predictions of
time horizons further ahead. The model run has been done once for each epoch, since previous
results ensured model stability against model weight initialization.

Figure 4.12: Corresponding RMSE values to the extended time horzion experiment. The experimental
setup is as described in Section 4.1. The RMSE values are displayed depending on the
number of epochs and were calculated for the entire test set.

4.4.2 Autocorrelation

In addition to the exploration of the time horizons that have been investigated, the auto-
correlation of the time series of the targeted plant’s measurements gives further insight. An
autocorrelation describes the extent that a time step is useful for predicting a time step with
lag ν. On the x-axis in an autocorrelation plot the lagged time steps are listed. The corre-
sponding y-value displays the strength of correlation between lagged time step and all values of
the time series. Large current values correlate with (i) large values at the specified distance, if
the correlation is positive or (ii) small values at specified distance, if the correlation is negative
[Cen19]. Significant correlations exceed the light blue cone, which represents the confidence
interval (95% by default).
As visible in Figure 4.13 (a) the time step with lag ν = 1 correlates highly with the next

following time step. The correlation decreases over the course of a day and increases again
until the next day. Each day begins with a high, which is less than the high of the previous
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day. Consequently, a downward trend can be observed with increasing time lags. For three
days in advance significant correlations with large values are identified. This is different for an
extended perspective. Figure 4.13 (b) shows the correlation for time lags that amount to half
a year. The time steps with lags according to the first few days correlate strongly with large
values, but the overall correlation strength decreases until 3 month ahead. From that point,
a weak correlation with small values begins, which increases up to half a year ahead. After a
first decrease of the correlation strength, the measure for the correlation stays within a middle
range from approximately 0.4 to -0.4.

day 0 day 1 day 2 day 3
time steps

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

(a) Autocorrelation for time steps of 3 days.

month 0 month 1 month 2 month 3 month 4 month 5 month 6
time steps

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

(b) Autocorrelation for time steps of half a year.

Figure 4.13: The analyzed time series is the one of the target with ID 23526. Correlations that exceed
the blue cone are significant by a confidence interval of 95%.

The significance of the correlations is mostly given for time steps that amount to a total time
of one year6. After that time the significance vanishes. Additionally, a wave pattern can be
identified over the course of several years. This wave pattern indicates an autocorrelation term
in the time series. The so-called partial autocorrelation function thereby helps to determine the
order of the autoregressive term. The partial autocorrelation reveals the dependencies between
a time step and lagged time step by neglecting the influence caused by time steps in between.
In case of the time series of the targeted PV plant significant spikes are at lag 1, meaning that
this lag causes all higher-order autocorrelations7.

Those correlations can be able to explain outcomes of the time horizons experiments with
LSTM. As solar radiation and thus PV power generation data is non-stationary [AM17], LSTMs
are able to model those non-linear dependencies. Despite the low order of the autoregressive
term (order=1), predictions for longer short-term periods of time or distanced time steps turned

6A visualization of the autocorrelation according to all measurements from January 2012 to September 2016
of the target PV system can be found in the appendix in Figure B.1.

7A figure visualizing the partial auto-correlation of the time series can be found in Figure B.2 in the appendix.
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out to be closely to the measurements. All predicted values achieved relatively low RMSE
values.

4.5 Spatial Experiments

The previous section investigated on LSTM architectures as well as the temporal aspects of
solar power predictions. The other part in a spatio-temporal setup for solar power prediction
provides an exploration of the spatial dependencies. Therefore, the corresponding variables
(distance r and number of surroundings N) of the experimental setup described in Section 4.2
will successively be modified. A total of 3 experiments will be executed. Analogously to the
time horizon experiment (cf. Section 4.4) the experiments will be denoted as experiment 2-A,
2-B, and 2-C.

Experiment 2-A scrutinizes the impact on the forecast accuracy due to the number of sur-
rounding PV systems. An alteration of N in a constant distance r = 10 km is done. Starting
without any neighbors, the number will be incremented by 2 starting from 4 until 12. Equally
to the previous investigations, the closest neighbors will be selected.

Experiment 2-B will explore the impact of the distance r, in which the surrounding PV
systems are located. In addition to an alteration of the number of neighboring systems N ,
randomly selected systems within the distances of 5, 10, 15, and 20 km will be evaluated. This
setup aims at identifying the influence of the distance in combination with the number of sur-
rounding systems. The selection of randomly drawn systems in contrast to the closest systems
within a certain distance increases the probability that the requested distance is really covered.
Or in other words, drawing systems randomly enhances the chance that the neighboring sys-
tems are truly at a particular distance. E.g., a radius of 20 km is explored and some of the N
neighboring systems actualy are within 20 km instead of less kilometers.

In experiment 2-C the distance is investigated once more. A second radius is defined to
ensure that the surrounding systems do not fall below a certain distance to the targeted plant.
This way a minimal and maximal radius define an area in which additional PV systems can
be located. Figure 4.14 displays how the spatial experimental setup described in Section 4.2
is modified. The following pairs of radii (in km) will be investigated for a fixed number of
neighbors (N = 6): [5, 10], [10, 20], [15, 30], [20, 50]. The first number describes the minimal
distance that needs to be hold, whereas the second number defines the maximal distance that
has to be adhered. Only measurements of surrounding PV systems that meet those conditions
are considered as feature for prediction of PV power of the targeted plant. Or rather, only PV
systems that have neighbors in such conditions become selected as target.

The architecture of the LSTMs for all experiments (2-A, 2-B, 2-C) will stay in the configu-
ration that had turned out to perfom well (cf. Section 4.3): 1 LSTM layer with 4 neurons, a
batch size of 72, Adam as optimizer and a training time of 100 epochs. Each experiment will be
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τ

r1

r
2

Figure 4.14: Experimental setup of experiment 2-C. Two radii r1 and r2 are defined to enclose an area
within a certain distance from the targeted PV plant τ . Measurements of PV plants within
this area (yellow circles) are used as feature. Other PV plants remain unused (gray circles).

run for 10 samples and the time horizon is selected according to the information obtained from
the previous sections. Thus an input sequence of 3 hours assembled by 12 steps á 15 minutes
is chosen for the prediction of a single time step at t+ 1. Consequently, the directly succeeding
15 minutes are being predicted (cf. Section 4.3 Fig. 4.4). The model performance as well as

error measurements according to experiment 2-A are listed in Table 4.9. As can be seen, taking
surrounding systems as additional feature results in average RMSE values around 2.2 and 3.5
in percent of installed capacity. Those value ranges are similar to the results of prior investiga-
tions. More precisely the error measurements are a little greater here, than the ones attained
before. Only predictions for the targeted plant made by measurements of the targeted plant
(N = 0) have minimal error measurements. Hence why, an improvement in prediction accuracy
had not been achieved by increasing the number of surrounding system used as feature. This
holds almost regardless of the number of nearest neighbors within a distance of r = 10 km.

The skill score confirms this, as no clear superiority over the persistence forecast could be
achieved for any number ofN exceeding 4. The other positive values are too close to zero for this
to be seen as an improvement. This is especially true when looking at the standard deviation of
the skill scores. The standard deviation of the skill scores show large fluctuations. Consequently,
the model performance with regard to the baseline is anything but stable. Reasons for this can
possibly be found in the sample size, model architecture, and location as well as distribution
of the surrounding systems around the different targeted plants.

• Sample size. Only ten samples have been investigated, given the limited time and com-
putational duration of one model run. Ten samples might just be too little to reveal true
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Table 4.9: RMSE and skill scores of experiment 2-A and the corresponding standard deviation (SD). The
RMSE is listed as a percentage of the installed capacity of the targeted plants respectively.
The sample size is 10, thus this setup has been tested for 10 different PV plants. The LSTM
has been configured with 4 neurons, a batch size of 72, Adam as optimizer, and trained for
100 epochs. The outcomes are displayed for a varied number of closest neighbors N within a
distance of r = 10 km.

N ø RMSE (± SD) Skill Score (± SD) [%]

0 2.21 (± 0.63) 13.58 (± 13.83)
4 2,62 (± 0,39) 2,47 (± 11,83)
6 2,78 (± 0,76) -5,02 (± 24,79)
8 2,69 (± 0,53) 0,87 (± 13,89)
10 2,78 (± 0,31) 0,001 (± 13,28)
12 3,46 (± 2,34) -30,90 (± 104,94)

dependencies between the number of neighbors with regard to prediction accuracy. There
is a possibility that both those cases (a superiority of LSTM over persistence as well as
the other way round) are rare sinlge cases. A larger sample size is required to ensure
whether individual cases bias the results in one direction or the other.8

• Model architecture. The model architecture might be another reason for the divergent
outcomes, despite the analyzation conducted above. As models are designed and trained
for a specific task they can only retrieve adequate results for their purpose. The model
has been adapted on one PV plant. The arrangement of the systems to each other is
different depending on which target system is considered. The architecture might not
provide enough complexity to capture multiple or rather some kind of general PV system
arrangements.

• Location and distribution. The fluctuations might possibly be attributable to the location
and distribution of surrounding systems around the targeted PV plant. The impact on
prediction accuracy is most likely to be traced back to (i) whether or not the surround-
ing systems are covering each compass direction, and (ii) whether or not the compass
directions are covered by an equally amount of surrounding systems. An example and
explanation to this will be given in the following.

In Germany the average direction of the wind is western [Wol17], thus the cloud movement
is most likely in accordance to this. The wind direction and cloud movement in turn impact
the solar radiation. This means, the prediction accuracy might benefit or be harmed by the
location and distribution of surrounding systems. Each of the following scenarios is possible:

- The surrounding systems are equally distributed in each of the compass direction to the
target.

8The complete table of RMSE and skill scores per sample can be found in Table B.1.
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- The surrounding systems are covering each compass direction, but an agglomeration in
one (or few) compass direction(s) is given.

- The distances of the surrounding systems with regard to the compass directions are highly
divergent (i.e., the north is covered by neighbors within 1 km, whereas other directions
are covered by neighbors being 5 and more km away).

In accordance to the wind direction, the predictions of the target system might benefit from
surrounding systems that are located in the west. The weather conditions then first reach the
surrounding systems before moving forward to the target (in the east). A change in PV power
of the surrounding systems could then serve as precurse for the target. On the contrary, an
arrangement in which the target is surrounded by systems only in other than western compass
directions, the prediction accuracy might be declined. The impact then might rather be the
other way round: the target could improve predictions of neighbors in the east. This assumption
can only hold for restricted local areas around the target, since cloud movement appears on a
short term scale (depending on the wind speed, and the time for clouds to build and decay).
Exemplary the arrangement of four targets of samples in experiment 2-A are shown in Fig-

ure 4.15. Some of the samples happen to be the same target for almost any number of surround-
ing systems. Hence why, the visualization is done for those. Other samples resulted in different
targets, corresponding to the required amount of neighbors. Visualized are the distributions
in correspondance to the distances for N = 12 of the following PV system IDs: 27167, 23526,
17303, 21384.
The examples shown in Figure 4.15 demonstrate the variability of how the PV systems can be

locally arranged. It can be seen that some targets have their closest 12 neighbors within more
or less than 5 km, while other targets require the use of more space to meet the requirements of
12 closest neighbors (up to 8 km). Further, both scenarios occur in which surrounding systems
cover only a few compass directions as well as surrounding systems cover all compass directions
but are agglomerated in some. Whether or not the orientation and/or distribution are the
reason for the high fluctuation in the skill scores has to be explored in subsequent surveys.
A consideration of other additional data, such as wind direction and/or wind speed could be
beneficial for this.

Moving on to the outcomes of experiment 2-B. First of all the RMSE and skill scores for 4 up
to 8 neighboring systems (N) in all distances are similarly low. For more surrounding systems
as feature, the outcomes in varying distances to the targeted plant diverge. The highest RMSE
values are achieved by both, N = 10 and N = 12 in 5 and 10 km distance. Other RMSE
values in contrast in greater distances remain rather the same (i.e., all N in 20 km distance
have similar RMSE). Thus, the increase of RMSE might probably be traced back to the same
reasons denoted as explanation in experiment 2-A, as the standard deviation in accordance to
10 and 12 surrounding systems in 5 and 10 km distance are remarkably high.
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Figure 4.15: Exemplary representation of distributions from experiment 2-A. Shown are target systems
with 12 neighbors, which were the same for all tested numbers of neighbors. The maximum
possible distance is r = 10 km. Both the space used for meeting the requirements of the
experiment as well as the arrangement of surrounding systems in each compass direction is
different per target.

The overall error values are in an order of magnitude comparable to previous results. Further
information about the model performance is provided by the skill scores. Most outstanding is
the poor performance for any number of neighbors within a radius of 5 km around the target.
Not any of these skill scores achieve to beat the persistence forecast (all skill scores are below
0). Chances are high that either one or all of the following key points occur:

- The arrangement of surrounding PV systems around the target is unfortunate (see above).

- The network in its specified configuration is not able to capture and identify the depen-
dencies of too closely arranged PV systems.

- PV systems in immediate vicinity cannot improve prediction accuracy.
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Figure 4.16: The average RMSE and skill scores (solid lines) and standard deviations (dashed lines) are
displayed in A and B respectively. The experiment has been run on a sample size of 10.
The values are denoted to a corresponding number of neighboring systems. Each number
of neighbors can be located at random in different distances to the targeted plant. The
distance represents the radius in kilometers around the targeted plant.

Other two distances (r = 10 and r = 15 km) in contrast do not show a comparable un-
ambiguous outcome. The skill scores corresponding of those two distances are higher as well
as lower than zero for any number of neighboring system. Outstanding is the combination of
N = 10 and r = 10 km, which also marks a low point of the skill scores. The negative scores
come along with high standard deviations, whereas positive skill scores mostly do not. Thus,
maybe just a few targeted PV plants cannot receive accurate predictions in a spatio-temporal
approach. Or rather, some predictions for single plants could be outstandingly poor in contrast
to other well predicted ones. A complete table of all RMSE values and skill scores per sample
can be looked at in the Appendix in Table B.2.

In contrast to outcomes within 5 km, the outcomes for any N within 20 km are the most
stable. The skill scores are all higher than zero and the standard deviations are pleasantly
low. It is noticeable that the skill score is similar for each of the surrounding systems in that
distance. Thus, either there is no difference in the number of surrounding systems used at this
distance, or the arrangement of the plants was favorable for samples of PV systems at this
distance. A larger sample size would bring this out.

Further, the present representation of the results conceals the actual distance of the neigh-
boring systems to the target. The surrounding PV systems are allowed to be randomly located
within radii of 5, 10, 15, and 20 kilometers. In Table 4.10 the actual average distances are
listed, in which the surrounding sysmtes are located from the targets. As can be seen, the
space used per distance is similar regardless of how many neighbors are considered (similar

48



4.5 Spatial Experiments

values per column). Most interestingly, a radius of just under 12 km is not exceeded, even
though up to 20 km are allowed as maximum distance. Furthermore a shift in distances can be
seen. For example, the allowed radius of 10 km for example is rather an actual radius of about
5 km. Consequently, the distance of 20 km has not been truly investigated and the results
obtained refer rather to short distances of about 12 km around the respective target system.

Table 4.10: Table of the actual average distance (and standard deviation (SD)) in which the randomly
drawn surrounding PV systems of the target PV system are located. The actual distances
are listed in accordance to the number of surrounding systems N . Further the header denotes
the radius of maximal distance possible for each neighboring system. Radii of 5, 10, 15, and
20 kilometers have been tested.

N Distances (± SD) [km]
5 10 15 20

4 2.61 (± 1.06) 5.19 (±1.94) 7.93 (± 3.83) 10.43 (± 1.91)
6 2.53 (± 0.73) 5.44 (±1.16) 7.47 (± 1.97) 11.71 (± 2.83)
8 2.85 (± 0.66) 5.54 (±1.20) 7.49 (± 1.80) 11.34 (± 2.53)
10 2.40 (± 1.13) 5.48 (±1.79) 8.18 (± 1.90) 11.53 (± 2.85)
12 2.15 (± 1.15) 5.03 (±1.94) 8.45 (± 1.50) 10.23 (± 3.24)

The average actual distances reflect what had been assumed before. The model is well per-
formant for surrounding systems within 10 km and the number of neighbors seem to have little
impact. In contrast, the architecture might not provide enough complexity for additional data
of larger number of neighboring systems than N = 8 and is not able to distinguish measure-
ments of the target from too closely arranged surrounding systems. Those ones are troublesome
and cannot beat the persistence forecasts. Uncertainty remains whether the influence on the
prediction accuracy is due to the number and distance of the surrounding systems or due to
the distribution and arrangement of the neighbors.

The results of the last experiment 2-C are represented in Figure 4.17 and Table 4.11. The
figure displays the formation and distribution of surroundings around the target PV system,
whereas the table lists the RMSE, skill score, and average distances. Both representations are
according to each considered pair of radii. As can be seen in Figure 4.17, the 6 surrounding PV
systems of a randomly picked target are mostly located north-western or south-eastern. The
distribution varies whether more systems are north-western or south-eastern. Thus, even for
one sample that meets the requirements of different radii, the arrangement and distribution of
nearby systems is very different.
Each RMSE and skill score shows a superiority for the first three pair of radii above the

persistence forecast (skill score > 0). The first pair of radii ([5,10]) matches the results of the
previous two experiments (2-A and 2-B). The LSTM superiority is only just given with a small
skill score above zero. With further distances of the neighboring systems from the targeted
plant the RMSE first declines before rising again. The skill scores in contrast reveal an almost
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(b) Radii: 10, 20 [km]
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(c) Radii: 15, 30 [km]
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Figure 4.17: Distribution of a target and surrounding PV systems within different radii according to
experiment 2-C. The first radius determines the minimal distance that the neighbors have to
exceed, whereas the second radius determines the maximal distance in which the neighbors
have to be located around the target.

equally well model performance for the middle two pair of radii (radii [10,20] and [15,30]),
whilst the furthest tested distance (radii [20,50]) fails to beat the persistence.
Thus it cannot clearly be stated that further distanced surrounding PV systems exclusively

enhance or debase predictions of the targeted plant. Rather, the outcomes indicate sufficient
forecast accuracy when additional feature measurements are derived from plants in medium
distance to the target.
The average distances confirm that a certain distance has been hold. Those distances and the

resulting area led to the PV systems being wider distributed, because with an increased area
chances are higher for the PV systems being more apart. This circumstance might be the cause
for overall low RMSE values in this experiment. Further does it imply that the distribution
again plays a crucial role for helping to improve the error measurements by using measurements

50



4.6 Comparison to SVR

of surrounding PV systems. Once more, based on the sample size tested, it cannot be entirely
excluded that predictions for individual plants may be both very accurate and very poor.
In contrast, the low RMSE values might be due to the determined number of surrounding

systems instead of the defined radii. The use of N = 6 randomly drawn neighbors showed to
result in low RMSE values and a sufficient skill score, as long as the surrounding systems are not
too closely located around the target (cf. experiment 2-B). In addition, the model architecture
had been analyzed (and optimized) for a spatio-temporal setup using measurements of 6 PV
system as additional feature.

Table 4.11: RMSE in percentage of installed capacity, skill scores, and average distances of experiment
2-C. The displayed radii are in km and define an surrounding area around the targeted PV
plant.

Radii [min, max] RMSE Skill Score [%] Average Distances [km]

[5, 10] 2.60 (± 0.52) 3.54 (± 14.15) 7.48 (± 0.81)
[10, 20] 2.34 (± 0.32) 9.14 (± 10.05) 15.69 (± 1.23)
[15, 30] 2.26 (± 0.54) 9.02 (± 6.00) 22.88 (± 1.76)
[20, 50] 2.57 (± 0.54) -0.64 (± 14.76) 37.87 (± 3.41)

As a conclusion, the definition of another radius to set a minimal distance to be hold, specified
the investigation of the area around the target PV system. Nonetheless, in order to derive more
precise or unambiguous conclusions from the spatial contribution to the LSTM predictions,
further investigations need to be taken. Overall the spatial information can partly be used to
make sufficiently precise PV power predictions for some distances and number of surrounding
systems with LSTMs that are superior to persistence forecasts.

4.6 Comparison to SVR

As a conclusive assessment of the suitability of LSTMs for the prediction of solar power, a
methodological comparison will be carried out. In the previous chapters LSTMs are used in a
spatio-temporal approach making predictions for one single PV system. The LSTM architec-
ture and temporal as well as spatial aspects have been analyzed. For a more comprehensive
impression of the capabilities of LSTMs for solar power prediction, this section focuses on pre-
dictions for more than one PV system and compares predictions of LSTMs with predictions
made with SVR. As described in Section 1.3, the present thesis is inspired by studies on solar
power production using machine learning methods from B. Wolff.
B. Wolff assessed the “general usefulness of machine learning, and especially support vector

regression (SVR) as a modeling technique for PV power forecasting.” [Wol17]. Therefore his
predictions made with SVR will serve as reference for comparison. The data used in this
thesis as well as in [Wol17] is the same, thus foundation of the comparability builds the data
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availability. In the following, a short introduction to SVR will be given as well as a description
of the experimental setup and data preprocessing.

4.6.1 Support Vector Regression

The SVR is a machine learning method that evolved from support vector machine (SVM) and
has been introduced by Smola and Schölkopf in 2004 [Wol17]. Support vector machines are a
class of supervised learning algorithms for solving classification problems and SVR represents
an adaption of SVM for regression tasks. The basic idea of SVR is to find a hyperplane in a
continuous input space that represents the data points best in compliance with user-defined
constrains. [Wol17]
A hyperplane thereby defines a (n-1) dimensional subspace in a n-dimensional space. More

precisely, a hyperplaneH is a subset of an n-dimensional space Rn, which is shifted by a support
vector s ∈ Rn from the coordinate origin, with v ∈ Rn {0} as the normal vector of H,

H = {x ∈ Rn|〈v, x− s〉 = 0}. (4.2)

Examples of hyperplanes are a plane in a space, or a line in a plane. [Dür12]
When SVM is being used to solve a classification problem, the goal is to place a hyperplane

in a way that all data points of the input space are assigned to classes whose distances are to
be maximal. When reformulating SVM to SVR, the hyperplane supports predicting continuous
values. The difficulty thereby is due to infinite possibilities of predictable values. Therefore
a margin of tolerance is set in which the predicted values are acceptable. The principal of
the method then is to minimize the error (of the loss function) and choose a hyperplane that
maximizes the margin with respect to the tolerated error. [Say19]
Futher information can be found in [SS04] and [Wol17].

4.6.2 Experimental Setup

The SVR predictions in [Wol17] are based on measurement data from 921 PV systems. The
PV systems had been chosen after an assessment of the data quality. Systems with as high
quality data as possible got selected. The training set included the measured values from year
2012, while the test set consists of measurements of year 2013. [Wol17]
Consequently, the present investigation rebuilds the experimental setup as in [Wol17]. Thus,

other than preceding experiments in this thesis, the present study trains and predicts for more
than one single PV system. The IDs of the PV systems served as attribute to make a congruent
selection of the PV systems with the ones in B. Wolff’s work. Training and test sets are defined
in accordance to [Wol17] as year 2012 and 2013, respectively. Missing values are replaced by
either the value of a preceding time step as long as no more than four successive time steps are
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missing or by zero (cf. Section 4.1). Analogously, the power values of each PV system are scaled
to their installed capacity for better comparability of various sized PV systems. Predictions of
one time step (t+ 1 and t+ 4) will be generated and compared, as previous results have shown
highest accuracy for a single time step. The architecture of the LSTM will remain as described
before. Thus, one LSTM layer with 4 neurons, a batch size of 72, Adam as optimizer and 100
epochs of training will be used. As before the predictions will be assessed by calculating the
RMSE values between each of the predicted time series with the true measurements. Further
the model performances will be evaluated using the skill score. One time the skill score for both
methods is calculated with the persistence forecast as reference. Another time, the performance
of LSTMs is evaluated using the skill score with regard to SVR forecasts as a reference.

The results are presented in Table 4.12 and Table 4.13. In the first table the average RMSE
values and standard deviations are shown in accordance to the two predicted time steps. The
average thereby is formed from the RMSE values achieved per PV plant per time series of the
entire test set. Only one plant has been excluded from the calculations, as unrealistic results
had been obtained for this plant9.

Table 4.12: RMSEs from the comparison of SVR and LSTM. Shown are the average RMSEs and standard
deviations (SD) in % of installed capacity per prediction method and predicted time step.
The averages were build with regard to (i) the RMSEs for each system and each predicted
time step of the test set and (ii) the averages over all 920 PV systems. P is the abbreviation
for persistence forecast here.

Time
Horizon

RMSE
P (± SD) SVR (± SD) LSTM (± SD)

15 min (t+ 1) 8.35 (± 1.30) 5.20 (± 0.54) 4.21 (± 1.41)
60 min (t+ 4) 10.28 (± 2.56) 7.35 (± 0.80) 4.66 (± 1.40)

The second table shows the average skill scores and standard deviation analogously. The
first two columns (“SVR over P”, “LSTM over P”) represent the skill score with the persistence
forecast as reference for SVR and LSTM respectively, whereas the last column represents the
skill score for the LSTM performance with SVR as reference.

As can be seen, the RMSE values rise with increased predicted time horizon (vertical com-
parison). Conspicuously, the increase in the RMSE of the LSTMs from one time step to the
other is the lowest in comparison with the other methods. Thus, predictions of the LSTMs
hardly deteriorate and are similarly close to the true values within the time horizon of one
hour. Further, the LSTMs achieve overall lowest RMSE values. The table shows that SVR
beats persistence by lower RMSEs, and that the LSTMs even undercut RMSE values of the
SVR.

9 The outcomes of PV plant with the ID 17738 are excluded. See appendix Table B.3 for those outlined
outcomes.
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Table 4.13: Skill scores from the comparison of SVR and LSTM and the corresponding standard devia-
tions (SD). Here P is the abbreviation for persistence forecast. The column names are read
as follows: method 1 over method 2 represents that method 2 builds the reference for method
1.

Time
Horizon

Skill Score [%]
SVR over P (± SD) LSTM over P (± SD) LSTM over SVR (± SD)

15 min (t+ 1) 37.00 (± 6,35) 49.15 (± 16,66) 19.00 (± 27,09)
60 min (t+ 4) 27.19 (± 7.12) 53.78 (± 13.70) 36.48 (± 17.45)

The skill scores show that both, SVR as well as LSTMs, have higher model performance than
the naive approach, as their skill scores are positive values. The LSTMs perform even better
than the SVR, because the LSTMs achieve higher skill scores than SVR in that comparison
(column 1 and 2 in Table 4.13). Most interestingly, the change in skill scores from one time
step to the other is different for SVR and LSTMs when persistence is the baseline. The skill
score for SVR decreases, as the difference in RMSE increase for SVR is larger than for the
persistence from t + 1 to t + 4. Consequently, the superiority of model performance for SVR
over persistence is less for the predictions of one hour ahead compared with predictions of
the successive 15 minutes. This is the other way round for skill scores of the LSTMs over
persistence. The LSTM skill scores increase from t+ 1 to t+ 4 due to the fact that the rise in
RMSE of LSTMs is marginal.
The direct comparison of model performance of LSTMs and SVR shows a superiority of

LSTMs over SVR (column 3 in Table 4.13). The relative improvement of LSTMs over SVR is
given for both time steps, whereas the advantage is even greater for predictions of one hour
ahead. An explanation for this is again the alteration of the RMSE from one time step to
another. Predictions of both methods lead to higher error values with a larger predicted time
horizon, but the increase in RMSE for the LSTMs is considerably smaller. This means, despite
a decline in prediction accuracy for both methods, the relative improvement for LSTMs over
SVR had been enhanced by this.
As a conclusion, LSTMs had been able to beat persistence forecasts as well as SVR predic-

tions. The comparison shows that LSTMs had been able to improve short-term predictions of
solar power, by being more accurate than the referenced methods.
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A reduction of CO2 emission through an enlarged integration of renewable energies such as solar
power requires accurate forecasts. A development of novel methods or improvements in forecast
accuracy of proven methods can take major contributions to energy system transformation. By
this, the energy grid can be kept stable by energy system operators and the energy supply
remains ensured. This thesis focused on improvements of solar power prediction by assessing
the use of LSTMs for this task.

5.1 Summary

There are several methods for solar power prediction. The difference of the methods lies within
the purpose of the forecasts, whether short-term or long-term predictions are requested. Further
the data required and its accessibility limits the possibilities for generating a forecast. Deep
learning methods and especially LSTM networks offer high potential to improve predictions
of renewable energies and solar power in particular. Their capability to identify long-term
dependencies in sequences enables to generate most accurate short-term forecasts.
In this thesis a spatio-temporal approach had been chosen to assess the capability of LSTMs

to predict PV power of one single system. First an evaluation of the LSTM architecture
had been done by manually experimenting with values of the following hyperparameters: the
optimization algorithm, the duration of training, the number of neurons, and the batch size.
Almost all configurations had been able to score lower RMSE values than the reference model.
The most outstanding improvement had been achieved by changing the optimization algorithm
from SGD to Adam. The resulting architecture used to predict most accurately for one PV
system is the one with one LSTM layer with 4 neurons, a batch size of 72, a training duration of
between 50 to 100 epochs, and Adam as used algorithm. Consequently, LSTMs with a simple
architecture are able to outperform a persistence forecast.

Further, an investigation of different predicted time horizons helped to estimate the impact
of both, input and output sequence length on the prediction accuracy. The prediction of a
single time step achieved most accurate results, even if the time step is distanced from the
feature sequence. The results show that with further distanced predicted time steps (a time
horizon of several hours), predictions become more general. This can be traced back to the
time series of PV measurements themselves as the autocorrelation function as well as partial
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autocorrelation function revealed very short-term dependencies. Thus, the first two research
questions that aim at identifying the configuration of a LSTM architecture and assessing the
performance of LSTMs in a spatio-temporal setup have shown that LSTMs are able to generate
reliable short-term predictions of solar power.

The analysis of the spatial experimental setup focused on the identification of spatial de-
pendencies and whether or not additional various amount of feature information can help to
improve the forecast accuracy for one PV system. This had been adressed by the third re-
seach question that asked "How does spatio-temporal information contribute to PV power
predictions?". Experiments in Section 4.5 compared different spatial setups and evaluated the
contribution of the number and distance of surrounding PV systems. The LSTMs were able to
process additional data from surrounding PV systems and to make predictions for a targeted
PV plant. However, an assignment to specified importance of neighboring systems cannot be
extracted. The results achieved revealed spatial dependencies that need further and more de-
tailed studies, such as optimized models for any N − r constellation. The surrounding systems’
compass direction as well as distribution around a targeted system seem to have a larger im-
pact on the outcome of forecasts than the amount of surrounding systems and their distance.
On that account the contribution due to the spatio-temporal information is dependant on a
specifically adapted model architecture (for the N − r combination of interest) as well as the
arrangement and distribution of the surrounding systems around a target, since some N − r
constellations were superior and other were inferior to the persistence forecasts.

Finally, a methodological comparison was accomplished in order to classify the capability
of the LSTMs for solar power prediction in comparison with other machine learning methods.
Results of B. Wolff’s doctoral thesis [Wol17] served as a reference for a comparison of LSTMs
with SVR, since the used data in both is the same. The experimental setup reflected a more
general methodical assessment and predictions for more than one PV system had been carried
out. The comparison had been assessed by the incorporation of prior results on training and
configuring the LSTMs. So, predictions of a single time step have been compared with each
other. The results show a superiority of LSTMs over SVR by achieving lower RMSE values and
positive skill scores. Consequently, the last research question can be answerd by the findings
that LSTMs as a prediction method for solar power can keep up with and even surpass other
machine learning methods, such as SVR.

5.2 Outlook

The topic of solar power prediction using LSTMs and an analysis of how to improve forecasts
even more offers further reaseach possibilities. This section serves as an introdution and in-
spiration of related research topics, more in-depth analysis possibilities, and subsequent open
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questions. The aspects and open questions mentioned below remark logical next steps for
assessing the use of LSTMs for solar power prediction.

In this thesis, the predictions are exclusively based on historical PV power measurements. A
use of further related weather data, such as irradiation, temperature, wind speed and wind di-
rection could be used to investigate whether or not such data can help to increase the prediction
accuracy. The mentioned data could be provided by numerical weather prediction and/or cloud
movement forecasts. Depending on the source and data accessibility predictions with LSTMs
might benefit from this. Results of Section 4.4 suggest an increase in predictions accuracy by
providing the model longer input sequences.

A more outstanding role in additional data might be related to wind speed and wind di-
rection data. In Section 4.5 the spatial dependencies have been investigated. The conducted
experiments suggest a high impact to the distribution and compass direction location of sur-
rounding PV systems related to the targeted PV system. Additional wind data could help to
reveal whether or not such impact is related to wind and cloud movement.
Further spatial correlations could be investigated by separating the experimental steps into

a model with two components: one for the spatial information and one for the temporal infor-
mation. A specified approach that analyzes the spatial dependencies could be the use of convo-
lutional neural networks. Convolutional RNNs have been used in video application to handle
both, spatial and temporal relations [Zia+17]. A transfer application on spatio-temporal PV
power predictions marks a further research topic. This would bring out more in-depth informa-
tion about forecast improvements depending on the location of surrounding PV systems whose
measurements are used as feature in a spatio-temporal setting.

A consecutive comparison of LSTMs with further reference models extends the analysis of
LSTMs more deeply. In this thesis the focus lied on assessing the capability of LSTMs in a
spatio-temporal setup. Main comparisons have been against a persistence forecast as that kind
of reference is easily and quickly available. Comparing LSTMs with more complex models can
help to classify methods of solar power predictions. The comparison with SVR in Section 4.6
served as a first insight. Ongoing comparisons could bring out strengths and weaknesses of
each method in relation to each other. The importance of LSTMs and whether or not their
predictions are superior over most methods could be assessed by this.

In terms of LSTMs or RNNs in general, the architectures provide elements of adjustment
to achieve improvements. The results of Section 4.3 confirmed that some hyperparameters
have more impact on prediction accuracy than others. Overall, endless opportunities on tuning
LSTMs exist. Beginning by the values tested, moving on to the hyperparameters to be tested
and ending with the method used for optimization. Thus, three starting points for further
research that have not been considered in this work yet, could be the following:
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- The use of other optimization techniques for hyperparameter optimization, such as ran-
dom search or genetic algorithms.

- The consideration of other and/or more hyperparameters, such as the number of layers
or the activation functions used.

- The choice of other modeling approaches like ensemble setups or other RNN architectures
such as gated recurrent units (GRUs) or temporal convolutional networks (TCNs).

Altogether, using and analyzing more and different data sources as well as other references
and comparative methods could help to find out about the possibilites to improve PV power
forecasts. Any improvement in forecast accuracy is helpful for large-scale integration of PV
power as a power supply source, scheduling power demands for safe energy system operation
when integrating PV power, and last but not least minimize unnecessary costs due to power
fluctuations. A comprehensive overview on the methods could then provide the opportunity
to select the appropriate method with regard to the forecast purpose and the data availability
as well as accessibility. The thesis contributed to such by investigating the use of LSTMs in a
spatio-temporal setting and by comparing the capability of LSTMs with SVR.
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A Appendix of Software

A.1 Software requirements

• Programming Language:

– Python 3.6

• Dependencies:

– Tensorflow 1.7.0

– Keras 2.1.5

– Numpy 1.14.2

– Pandas 0.24.2

– Scikit-learn 0.20.3

– Scipy 1.0.0

• optional Packages:

– Matplotlib 2.2.0

– Basemap 1.2.0

– Geos 3.6.2

– Statsmodels 0.9.0

– h5py 2.9.0
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B Appendix of Experiments

B.1 Autocorrelation of whole time series

year 0 year 1 year 2 year 3 year 4
time steps

0.4
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0.0
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0.8

1.0

Autocorrelation

Figure B.1: Autocorrelation of whole time series of a targeted PV plant with ID 23526. A wave pattern
indicates an autoregressive term in the time series. The order of that autoregressive term
can be found out with the partial autocorrelation function.
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B Appendix of Experiments

B.2 Partial Autocorrelation

day 0 day 1 day 2 day 3
time steps

0.0
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Figure B.2: Partial autocorrelation of a targeted PV plant with ID 23526. The partial autocorrelation
function reveals the dependencies between a time step and a lagged time step by neglecting
the influence caused by time steps in between.
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B.3 RMSEs and Skill Scores per sample of experiment 2-A
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B Appendix of Experiments

B.4 RMSEs and Skill Scores per sample of experiment 2-B

Table B.2: Overall outcomes of experiment 2-B. Shown are the RMSE values in percentage of installed
capacity and the skill score for each sample. One sample corresponds to one row. The
distance of each number of surrounding systems N is listed to a corresponding radius r
that is denoted in kilometer.

r
RMSE Skill Score [%]

N = 4 N = 6 N = 8 N = 10 N = 12 N = 4 N = 6 N = 8 N = 10 N = 12

5 km

2.13 2.86 1.41 2.13 3.37 8.59 -22.72 28.65 14.23 -13.98
2.50 2.16 2.48 5.39 7.68 3.96 11.20 -24.23 -82.07 -317.05
3.13 3.36 3.07 3.99 3.43 -3.47 -10.32 -5.83 -34.60 -11.40
2.59 2.32 2.90 2.65 2.81 8.73 4.86 -29.38 -8.89 2.03
3.15 3.41 3.36 2.86 3.59 -10.14 -19.33 -17.30 2.02 -24.36
2.66 2.03 3.16 2.23 2.88 -1.06 12.01 -12.56 1.28 -0.66
2.55 2.18 2.06 2.77 2.85 3.12 8.34 -2.80 3.08 -4.61
3.16 2.72 1.76 4.31 2.18 -22.40 -5.36 8.99 -44.54 3.63
1.90 3.02 2.16 2.28 2.79 -11.21 2.00 17.09 8.30 -1.57
3.30 2.53 3.11 4.28 3.62 -0.87 6.93 -5.55 -53.01 13.60

10 km

2.04 2.07 2.83 2.95 2.49 12.29 11.18 -2.54 -26.98 -3.36
2.71 2.54 2.35 2.20 3.23 2.02 8.21 12.84 17.63 2.69
2.39 2.42 2.61 2.53 4.01 11.95 10.91 -0.07 -18.31 4.01
2.59 1.51 2.85 7.40 7.10 8.73 22.76 -4.76 -150.4 93.84
3.02 3.22 3.33 3.60 3.85 -5.99 -12.98 -12.03 -26.23 -37.85
3.09 2.14 0.93 1.81 2.63 5.30 5.55 3.92 20.73 8.05
2.74 2.88 2.58 3.69 4.20 -8.38 8.20 12.44 -28.58 -80.09
2.28 2.48 2.64 2.73 3.21 12.03 7.51 5.21 10.40 4.45
2.46 2.98 2.82 2.87 3.01 11.97 -1.65 2.99 7.18 -1.75
3.23 1.76 2.28 2.39 2.70 -1.02 16.47 5.87 8.89 -0.01

15 km

2.07 2.02 2.00 2.00 1.99 11.13 13.16 13.96 13.99 14.37
2.84 2.97 2.89 2.72 2.66 -1.96 -6.60 -3.95 2.24 4.39
2.50 2.40 2.46 2.48 2.46 7.72 11.39 9.48 8.39 9.48
2.55 2.50 2.49 1.60 1.52 10.23 12.19 12.52 18.32 22.35
3.17 3.28 3.35 3.40 3.34 -10.84 -14.63 -17.18 -18.96 -16.83
2.48 2.05 2.46 2.16 3.02 2.76 15.52 14.29 12.34 64.2
1.87 2.25 1.89 2.72 2.21 9.18 7.55 15.76 5.20 -0.57
2.65 2.49 2.33 2.10 2.57 3.77 7.12 6.03 14.33 6.17
2.76 2.24 4.81 2.68 2.59 -6.87 13.47 -62.45 5.09 12.45
2.22 2.48 2.53 0.88 3.27 14.9 7.29 9.75 10.39 -11.09

20 km

2.09 2.09 2.07 2.02 2.03 10.30 10.32 10.97 13.18 12.81
2.48 2.48 2.52 2.64 2.51 10.46 10.97 9.48 5.18 9.84
2.51 2.45 2.45 2.36 2.39 7.66 9.55 9.80 13.17 11.82
2.59 2.59 2.58 2.59 2.58 8.80 8.72 9.32 8.98 9.23
3.35 3.26 2.07 2.02 2.03 -17.37 -14.06 10.97 13.18 12.81
3.15 2.47 2.37 3.07 2.05 -0.45 15.66 11.10 -30.62 8.46
2.28 2.51 2.74 2.40 2.33 11.68 7.03 11.76 -2.09 7.80
2.29 2.33 2.74 2.60 2.47 12.04 37.46 11.39 6.73 6.14
2.79 2.12 2.68 2.30 2.53 -7.94 10.67 -14.45 13.92 2.71
2.60 2.00 2.82 2.21 3.59 5.36 3.52 11.14 16.56 -21.24
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B.5 Excluded reults from comparison of LSTM with SVR

B.5 Excluded reults from comparison of LSTM with SVR

Table B.3: RMSEs and skill scores of PV system with ID 17738. Those results have been excluded in
the analysis in Section 4.6.2, where machine learning methods for solar power prediction
are being compared. The exclusion had been done due to most deviate LSTM outcomes.
The RMSEs are in percent of installed capacity. P is the abbreviation of persistence
forecast. The ’over’ in the column names of the skill scores indicates the reference.

Time
horizon

RMSE Skill Score [%]
P SVR LSTM SVR over P LSTM over P LSTM over SVR

t+ 1 9.25 5.56 4224.06 39.96 -45535.79 -75914.63
t+ 4 11.02 7.98 34725628.51 27.59 -315027267.13 -435036162.33
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