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Introduction

The complex interpolation method, which assigns to an interpolation couple [E0, E1] of com-
plex Banach spaces and 0 < θ < 1 a so-called “intermediate space” [E0, E1]θ, has its roots
in the famous Riesz–Thorin Interpolation Theorem for operators acting between Lp-spaces,
and was introduced around 1960 by Calderón and Lions; a related approach is due to Krein.
Throughout the last thirty years the theory of complex interpolation of Banach spaces has
proved to be a useful tool in several branches of functional analysis, in particular in the the-
ory of operator ideals. As a first starting point in this direction a famous result of Kwapień
[Kwa68] in 1968 may be seen: Using classical interpolation techniques (e. g. the Three-
Lines-Theorem which motivated large parts of the theory of complex interpolation of Banach
spaces), he showed that for 1 ≤ p ≤ ∞ and 1 ≤ r ≤ 2 defined by 1/r = 1− |1/2− 1/p| every
continuous operator T on `1 with values in `p is (r, 1)-summing, i. e. there exists C > 0 such
that for all x1, . . . , xn ∈ `1 the inequality(

n∑
k=1

‖Txk‖r`p

)1/r

≤ C · sup
‖x′‖`′1

≤1

n∑
k=1

|〈x′, xk〉|

holds. This improved upon a well-known result of Littlewood [Lit30] in 1930 which says
that there exists a constant C > 0 such that for every bilinear and continuous operator
ϕ : c0 × c0 → R (where c0 denotes the space of all zero sequences) the inequality ∞∑

k,`=1

|ϕ(ek, e`)|4/3
3/4

≤ C · ‖ϕ‖

holds; here ek denotes the k-th standard unit vector in c0. Littlewood’s inequality in modern
terminology means exactly that the embedding id : `1 ↪→ `4/3 is (4/3, 1)-summing, and obvi-
ously 3/4 = 1− |1/2− 3/4| as stated in Kwapień’s result. Moreover, the number 4/3 occurs
by a naive interpolation between 1 and 2: If we put θ = 1/2, then 3/4 = (1 − θ)/1 + θ/2.
This suggests to derive Kwapień’s formula via interpolation from the following two well-
known “border cases”: Every operator from `1 to `1 or `∞ is (2, 1)-summing, and the famous
Grothendieck Inequality [Gro56] implies that every operator from `1 to `2 is (1, 1)-summing;
this is exactly the idea of Kwapień’s proof.

The above leads us directly to the aim of this thesis: We show that many important results
occurring in the theory of absolutely summing operators and related fields are of interpola-
tive nature (concerning the complex interpolation functor) which has not been covered by
literature yet, and we use the same interpolation techniques to give generalizations of these
results or to derive completely new ones.

An essential question which arises within this context is whether spaces of operators
behave “well” under complex interpolation; more precisely, if 0 < θ < 1 and interpolation
couples [E0, E1] and [F0, F1] of complex Banach spaces are given, then do formulas such as

[L(E0, F0),L(E1, F1)]θ = L([E0, E1]θ, [F0, F1]θ)
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hold algebraically and topologically (where L(E,F ) denotes the space of all continuous linear
operators between Banach spaces E and F , endowed with the usual operator norm)? Kouba
proved in [Kou91] that under certain geometric assumptions on the Banach spaces Ei and Fi
related formulas for the injective tensor product of these Banach spaces such as

[E0⊗̃εF0, E1⊗̃εF1]θ = [E0, E1]θ⊗̃ε[F0, F1]θ

hold (where E⊗̃εF denotes the completion of the injective tensor product of the Banach
spaces E and F ). Kouba also treated the special case of Banach function spaces. In the
first section of this work we extend and unify Kouba’s results to tensor products of vector-
valued Banach function spaces as follows: We find conditions on the Banach function spaces
Xi(µ), Yi(µ) and the Banach spaces Ei, Fi such that

[X0(E0)⊗̃εY0(F0), X1(E1)⊗̃εY1(F1)]θ = [X0(E0), X1(E1)]θ⊗̃ε[Y0(F0), Y1(F1)]θ

holds. Moreover, based on variants of the Maurey–Rosenthal Factorization Theorem, our
approach offers an alternate proof of Kouba’s interpolation formula for tensor products of
Banach function spaces. Main ingredients are upper estimates of

‖L(`2, [N0, N1]θ) ↪→ [L(`2, N0),L(`2, N1)]θ‖ (0.1)

for an interpolation couple [N0, N1] of finite-dimensional complex Banach spaces.

In the two sections hereafter we apply “uniform estimates” of (0.1) to the theory of summing
operators. More precisely, we show how results for the complex interpolation of spaces of
operators can be used in order to obtain asymptotic upper estimates of summing norms of
single operators acting between finite-dimensional Banach spaces by complex interpolation.
It turns out that in many concrete cases these asymptotic upper estimates are precise—they
coincide with the associated asymptotic lower estimates which are derived by various other
methods.

Section 2 is devoted to the study of so-called “Bennett–Carl inequalities”, which were
independently proved by Bennett [Ben73] and Carl [Car74] in 1973/74: For 1 ≤ u ≤ 2 and
1 ≤ u ≤ v ≤ ∞ the identity operator id : `u ↪→ `v is absolutely (r, 2)-summing, i. e. there is
a constant C > 0 such that for each set of finitely many x1, . . . , xn ∈ `u(

n∑
k=1

‖xk‖r`v

)1/r

≤ C · sup
‖x′‖`′u≤1

(
n∑
k=1

|〈x′, xk〉|2
)1/2

,

if and only if 1/r ≤ 1/u−max(1/v, 1/2). This result improved upon older ones of Littlewood
(see above) and Orlicz, and is nowadays of extraordinary importance in the theory of eigen-
value distribution of power compact operators; a consequence of the above is e. g. that every
continuous operator T : `2 → `2 with values in `u (1 ≤ u < 2) lies in the Schatten-r-class,
1/r = 1/u − 1/2, which by Weyl’s inequality implies that T has an absolutely r-summing
sequence (λn(T )) of eigenvalues. Later in 1992 the Bennett–Carl inequalities were extended
within the setting of so-called mixing operators (originally invented by Maurey [Mau74]) by
Carl and Defant [CD92].

The crucial step in the proofs of Bennett and Carl is to establish the case 1 ≤ u ≤ v = 2 which
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in terms of finite-dimensional spaces reads as follows: For 1 ≤ u ≤ v = 2 and 2 ≤ r ≤ ∞
such that 1/r = 1/u− 1/2

sup
n
πr,2(`nu ↪→ `n2 ) <∞,

where πr,2(`nu ↪→ `n2 ) denotes the (r, 2)-summing norm of the embedding `nu ↪→ `n2 . Note that
the formula 1/r = 1/u− 1/2 occurs by “naive interpolation” of the parameter r between the
two well-known border cases

sup
n
π∞,2(`n2 ↪→ `n2 ) = sup

n
‖`n2 ↪→ `n2‖ <∞

sup
n
π2,2(`n1 ↪→ `n2 ) = sup

n
π2(`n1 ↪→ `n2 ) <∞

(π2 the 2-summing norm): For 1 ≤ u ≤ 2 choose 0 ≤ θ ≤ 1 with 1/u = (1− θ)/2 + θ/1, then
1/r = (1− θ)/∞+ θ/2 = 1/u− 1/2.

While Bennett and Carl used “Hardy–Littlewood techniques”, our proof given in this thesis
is heavily based on complex interpolation theory; in contrast to Kwapień’s result, here the
main point is complex interpolation in the range spaces, for which uniform upper estimates of
(0.1) turn out to be crucial. Although our proof—more precisely, the complex interpolation
theory behind it—is admittedly far from being simpler than the original ones, the used
techniques turn out to be quite fruitful in order to obtain various new results within the
framework of summing operators as can be seen in the sections afterwards. As a first example
our approach yields a “non-commutative” analogue for identities between finite-dimensional
Schatten classes Snu : For u and r as above we obtain

πr,2(Snu ↪→ Sn2 ) � n1/r.

Moreover, our techniques lead us to a more general study of Bennett–Carl inequalities within
the setting of symmetric Banach sequence spaces and unitary ideals, with applications to
Lorentz and Orlicz sequence spaces.

Section 3 focuses on so-called “(B, q, p)-summing operators”, a generalization of the class
Πγ of all “Gaussian-summing operators”, which was introduced by Linde and Pietsch in
1974. For 2 < p <∞ an infinite orthonormal system B in some L2(µ) ∩ Lp(µ) (where µ is a
probability measure) is called a Λ(p)-system if the L2-norm and the Lp-norm are equivalent on
the span of B, and then we denote Kp(B) := ‖(spanB, ‖·‖2) ↪→ (spanB, ‖·‖p)‖; for simplicity
we set K2(B) := 1. This notion goes back as “p-lacunary” to Kadec and Pe lczyński [KP62];
for sets of characters on a compact abelian group it coincides with that of Λ(p)-sets, which
were investigated e. g. by Rudin [Rud60] and Bourgain [Bou89], who solved the long-standing
“Λ(p)-set problem”. Now for an infinite orthonormal system B and 2 ≤ q < ∞ such that
Kq(B) < ∞, an operator T between Banach spaces X and Y is said to belong to the class
of (B, q, 2)-summing operators, ΠB,q,2, if there exists a constant C > 0 (the least of all these
constants is denoted by πB,q,2(T )) such that for all choices of b1, . . . , bn in B and x1, . . . , xn
in X (∫

Ω
‖

n∑
i=1

bi · Txi‖q dµ

)1/q

≤ C ·Kq(B) · sup
x′∈BX′

(
n∑
i=1

|〈x′, xi〉|2
)1/2

. (0.2)
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For q = 2 and a sequence (gi)i∈N of independent Gaussian variables one obtains the ideal of
all Gaussian-summing operators. Using similar interpolation techniques as before in Section 2
we show that if B is a Λ(p)-system for all 2 < p <∞, then the limit order of the ideal ΠB,q,2

coincides with the limit order of the ideal of Gaussian-summing operators for all 2 ≤ q <∞;
here, for 1 ≤ u, v ≤ ∞ the limit order λ(ΠB,q,2, u, v) is defined as usual:

λ(ΠB,q,2, u, v) := sup{λ > 0 | ∃ ρ > 0∀n : πB,q,2(`nu ↪→ `nv ) ≤ ρ · nλ}.

König [Kön74] showed a close connection of the limit order of a Banach operator ideal to
the behavior of embedding maps of Sobolev spaces and weakly singular integral operator
concerning this operator ideal. In the special case where B consists of characters on a
compact abelian group even a certain equivalence holds: We conclude—with the help of
results due to Baur—that B is a Λ(p)-system for all 2 < p <∞ if and only if λ(ΠB,2,2, u, v) =
λ(Πγ , u, v) for all 1 ≤ u, v ≤ ∞. Furthermore, we obtain precise asymptotic estimates for
the Gaussian-summing norm of identities between finite-dimensional Schatten classes Snu as
well as extensions of the Bennett–Carl inequalities within the setting of (B, 2, p)-summing
operators (just substitute in (0.2) the weak-2-norm by the weak-p-norm, 1 ≤ p ≤ 2).

In the last section we return to Kwapień’s result which was discussed above, and consider
complex interpolation of spaces of operators on `1. Pisier in [P79] gave an extension to Banach
lattices which satisfy certain convexity and concavity assumptions, and Carl and Defant in
[CD92] extended Kwapień’s result within the framework of mixing operators. Kwapień and
Pisier already used complex interpolation, whereas Carl and Defant’s result is based on a
certain tensor product trick. We show that the latter result can also be proved by the use of
complex interpolation techniques. Furthermore, we offer another generalization of Kwapień’s
result within the framework of (γ, p)-summing operators (this stands for (G, 2, p)-summing
operators, where G is a sequence of independent Gaussian variables): For 1 ≤ p ≤ 2 every
continuous operator on `1 with values in a p-convex Banach function space X with non-trivial
cotype is (γ, p)-summing, i. e.

L(`1, X) = Πγ,p(`1, X);

for p = 2 this is well-known. We conclude with a remark on a close relationship of the above
result to the type number p(X) := sup{1 ≤ p ≤ 2 |X is of type p} of a Banach function space
X.

Acknowledgments. I want to thank Prof. Dr. Andreas Defant for his guidance during the
preparation of this thesis, my sister Monika for some proof reading and my parents for their
support.
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Preliminaries

Banach spaces, operators and tensor products of Banach spaces

With N, R and C we denote all natural, real and complex numbers, respectively, and K stands
either for R or for C. If (an) and (bn) are scalar sequences we write an ≺ bn whenever there
is some c ≥ 0 such that an ≤ c · bn for all n, and an � bn whenever an ≺ bn and bn ≺ an. For
1 ≤ p ≤ ∞ the number p′ is defined by 1/p+ 1/p′ = 1.

The n-th Rademacher function rn on [0, 1] is defined as usual: rn(t) := (−1)k if t ∈
[k/2n, (k+ 1)/2n); we often use the fact that if we define Dn := {−1,+1}n, µn({ω}) := 1/2n

for ω ∈ Dn and εi to be the i-th projection, then (r1, . . . , rn) and (ε1, . . . , εn) have the same
distribution. In particular, in the left hand side of the forthcoming inequality (0.3) the ri’s,∫ 1

0 and dλ can be replaced by the εi’s,
∫
Dn

and dµn, respectively.

We use standard notation and notions from Banach space theory, as presented e. g. in
[DJT95], [LT77], [LT79] and [TJ89]. If E is a Banach space, then BE is its (closed) unit
ball and E′ its dual. As usual L(E,F ) denotes the Banach space of all (bounded and linear)
operators from E into F endowed with the operator norm ‖ · ‖; furthermore, if E1, . . . , En
and F are Banach spaces, then L(E1, . . . , En;F ) stands for the collection of all n-linear and
continuous operators T : E1 × · · · × En → F together with the norm

‖T‖ := sup{‖T (x1, . . . , xn)‖F |xi ∈ BEi , 1 ≤ i ≤ n}.

For 1 ≤ p ≤ 2 ≤ q <∞ a Banach space E is said to be of type p and cotype q if there exist
constants Cp, Cq > 0 such that for all finite sequences x1, . . . , xn in E∫ 1

0

∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
2

E

dλ

1/2

≤ Cp ·

(
n∑
i=1

‖xi‖pE

)1/p

(0.3)

and (
n∑
i=1

‖xi‖qE

)1/q

≤ Cq ·

∫ 1

0

∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
2

E

dλ

1/2

, (0.4)

respectively; with Tp(E) and Cq(E) we denote the smallest constants Cp and Cq which
satisfy (0.3) and (0.4), respectively.

We call a Banach space E ⊂ c0 (the space of all zero sequences) a symmetric Banach
sequence space if the i-th standard unit vectors ei form a symmetric basis, i. e. the ei’s form
a Schauder basis such that ‖x‖E = ‖

∑∞
i=1 εixπ(i)ei‖E for each x ∈ E, each permutation π

of N and each choice of scalars εi with |εi| = 1. Moreover, denote for each n the subspace
span{ei | 1 ≤ i ≤ n} of E by En. Together with its natural order a symmetric Banach sequence
space E forms a Banach lattice, and clearly its basis is 1-unconditional. The associated
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unitary ideal SE is the Banach space of all compact operators T ∈ L(`2, `2) with singular
numbers (si(T ))i in E endowed with the norm ‖T‖SE := ‖(si(T ))i‖E ; with SnE we denote
L(`n2 , `

n
2 ) together with the norm ‖T‖SnE := ‖(si(T ))ni=1‖En . For E = `u (1 ≤ u < ∞) one

gets the well-known Schatten-u-class Su; for simplicity put S∞ := L(`2, `2).

For all information on Banach operator ideals see e. g. [DF93], [DJT95] and [Pie80], and
for the theory of tensor norms on tensor products of Banach spaces we refer to [DF93]. Here
we would just like to introduce the injective tensor norm ε: For Banach spaces E,F and
z ∈ E ⊗ F we define

‖z‖E⊗εF := sup{|〈x′ ⊗ y′, z〉| |x′ ∈ BE′ , y′ ∈ BF ′},

and with E⊗̃εF we denote the completion of E ⊗ F with respect to the norm ‖ · ‖E⊗εF .
We will extensively use the fact that E′ ⊗ε F = L(E,F ) isometrically whenever one of the
involved spaces is finite-dimensional.

For a Banach operator ideal (A, A) and 1 ≤ u, v ≤ ∞ the limit order λ(A, u, v) is defined
as follows:

λ(A, u, v) := inf{λ > 0 | ∃ ρ > 0∀n ∈ N : A(`nu ↪→ `nv ) ≤ ρ · nλ}.

This notion was introduced by Pietsch; König showed in [Kön74] a non-trivial connection to
embedding maps of Sobolev spaces and weakly singular integral operators (see also [Pie80,
22.7]).

Banach function spaces

Let (Ω,Σ, µ) be a σ-finite and complete measure space, and denote all µ-a.e. equivalence
classes of real-valued measurable functions on Ω by L0(µ). A Banach space X = X(µ) of
(equivalence classes of) functions in L0(µ) is said to be a Banach function space if it satisfies
the following conditions:

(I) If |f | ≤ |g|, with f ∈ L0(µ) and g ∈ X(µ), then f ∈ X(µ) and ‖f‖X ≤ ‖g‖X .

(II) For every A ∈ Σ with µ(A) <∞ the characteristic function χA of A belongs to X(µ).

For 1 ≤ p ≤ ∞ we write as usual Lp(µ) for the space of measurable functions whose p-th
power is integrable if p < ∞, and essentially bounded if p = ∞. These are Banach function
spaces with respect to the norms

‖f‖p :=
(∫

Ω
|f |p dµ

)1/p

, (1 ≤ p <∞)

and
‖f‖∞ := ess-sup|f(ω)| <∞.

For 1 ≤ p ≤ q < ∞ a Banach function space X(µ) is said to be p-convex and q-concave
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if there exist constants Cp, Cq > 0 such that for all f1, . . . , fn ∈ X(µ)∥∥∥∥∥∥
(

n∑
i=1

|fi|p
)1/p

∥∥∥∥∥∥
X

≤ Cp ·

(
n∑
i=1

‖fi‖pX

)1/p

(0.5)

and (
n∑
i=1

‖fi‖qX

)1/q

≤ Cq ·

∥∥∥∥∥∥
(

n∑
i=1

|fi|q
)1/q

∥∥∥∥∥∥
X

; (0.6)

we denote by M(p)(X) and M(q)(X) the smallest constants Cp and Cq which satisfy (0.5)
and (0.6), respectively. Each Banach function space X is 1-convex with M(1)(X) = 1, and for
1 ≤ p <∞ the space Lp(µ) is p-convex and p-concave with M(p)(Lp(µ)) = M(p)(Lp(µ)) = 1;
L∞(µ) is p-convex for all 1 ≤ p <∞, but in general not p-concave for any 1 ≤ p <∞.

Let X0(µ), X1(µ) be Banach function spaces and 0 < θ < 1. Define the space X1−θ
0 Xθ

1

as the set of functions f ∈ L0(µ) for which there exist g ∈ X0 and h ∈ X1 such that
|f | = |g|1−θ · |h|θ. Together with the norm

‖f‖X1−θ
0 Xθ

1
:= inf{‖g‖1−θX0

· ‖h‖θX1
| |f | = |g|1−θ · |h|θ, g ∈ X0, h ∈ X1},

X1−θ
0 Xθ

1 becomes a Banach function space (with respect to (Ω,Σ, µ)). This space, originally
invented by Calderón in [Cal64], became an important tool within the framework of complex
interpolation of vector-valued Banach function spaces. It can be easily seen (see e. g. [TJ89,
p. 218/219]) that if for 1 ≤ r < ∞ the lattices X0, X1 are both r-convex or both r-concave,
then X1−θ

0 Xθ
1 also has this property, with

M(r)(X1−θ
0 Xθ

1 ) ≤M(r)(X0)1−θ ·M(r)(X1)θ, (0.7)

M(r)(X
1−θ
0 Xθ

1 ) ≤M(r)(X0)1−θ ·M(r)(X1)θ, (0.8)

respectively.

A finite-dimensional real Banach space X = (Rn, ‖ · ‖X) is called an n-dimensional lattice
if ‖ · ‖X is a lattice norm in the above sense. For 0 < r <∞ and an n-dimensional lattice X
with M(max(1,r))(X) = 1 we define the lattice norm

‖x‖r := ‖|x|1/r‖rX , x ∈ Rn;

the n-dimensional lattice (Rn, ‖ · ‖r) is denoted by Xr. Such “powers” of finite-dimensional
lattices will play an important role in Sections 1 and 4. Finally note that if X is an n-
dimensional lattice, then its dual X ′ is also an n-dimensional lattice, and one has

‖x‖X = sup
‖y‖X′≤1

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ = sup
‖y‖X′≤1

‖xy‖`n1 .
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Let X(µ) be a Banach function space and E a Banach space. A function x defined on Ω
with values in E is said to be strongly measurable if there exists a sequence of strictly simple
functions on Ω converging to x almost everywhere; here a function y on Ω with values in E is
called strictly simple if it assumes only finitely many non-zero values, each on a measurable set
with finite measure. Then by X(E) we denote the collection of strongly measurable functions
x with values in E for which ‖x(·)‖E ∈ X. Together with the norm ‖x‖X(E) := ‖‖x(·)‖E‖X
this becomes a Banach space (K-linear whenever E is K-linear). A complex Banach space Y
of the form Y = X(C) with some real Banach function space X is called a complex Banach
function space; for 1 ≤ p <∞ it is defined to be p-convex or p-concave whenever X has this
property, respectively.

Complex interpolation of Banach spaces

In the following we give a short introduction to the theory of interpolation of Banach spaces.
We extensively use the complex interpolation method, and therefore we keep the general case
short; for an introduction to interpolation theory we refer to [BL78] and [KPS82].

A pair [X0, X1] of Banach spaces is called an interpolation couple if there is a Hausdorff
topological vector space Y such that X0 and X1 are both continuously embedded in Y . With
X∆ and XΣ we denote X0 ∩ X1 and X0 + X1, respectively, equipped with their natural
norms. A Banach space X which is continuously embedded in Y is called an intermediate
space with respect to [X0, X1] whenever X∆ ⊂ X ⊂ XΣ continuously. If we speak of a
finite-dimensional interpolation couple [X0, X1], we always assume that X0 and X1 have the
same finite dimension.

From now on all Banach spaces are meant to be complex. Given an interpolation couple
[X0, X1], we consider the space F(X0, X1) of all functions f with values in XΣ, which are
bounded and continuous on the strip S := {z | 0 ≤ Re z ≤ 1} and analytic on the open strip
{z | 0 < Re z < 1}, and moreover, the functions t 7→ f(j + it) (j = 0, 1) are continuous
functions from the real line into Xj , which tend to zero as |t| → ∞ (for X0 = X1 = C we
denote the set of all these functions by A(S)). Equipped with the norm

‖f‖F(X0,X1) := max
(

sup
t∈R
‖f(it)‖X0 , sup

t∈R
‖f(1 + it)‖X1

)
,

F(X0, X1) becomes a Banach space. Then for 0 < θ < 1 the space [X0, X1]θ which consists
of all x ∈ XΣ such that x = f(θ) for some f ∈ F(X0, X1), provided with the quotient norm

‖x‖[X0,X1]θ := inf{‖f‖F(X0,X1) | f(θ) = x, f ∈ F(X0, X1)},

is an intermediate space with respect to [X0, X1]; it is called the complex interpolation space
with respect to [X0, X1] and θ. Note that for every complex Banach space X the isometric
equality [X,X]θ = X holds (see [BL78, 4.2.1]).

The duality theorem [BL78, 4.5.2] stated next is only needed for finite-dimensional inter-
polation couples, but it also holds in the infinite-dimensional case provided that one of the
involved spaces is reflexive.
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Proposition 0.1. Let [X0, X1] be a finite-dimensional interpolation couple and 0 < θ < 1.
Then [X0, X1]′θ = [X ′0, X

′
1]θ holds isometrically.

The following mapping property is often referred to as the “usual interpolation theorem”
([BL78, 4.1.2]).

Proposition 0.2. Let [X0, X1], [Y0, Y1] be interpolation couples and T ∈ L(XΣ, YΣ) such
that T |Xj ∈ L(Xj , Yj), j = 0, 1. Then T |[X0,X1]θ ∈ L([X0, X1]θ, [Y0, Y1]θ), and

‖T : [X0, X1]θ → [Y0, Y1]θ‖ ≤ ‖T : X0 → Y0‖1−θ · ‖T : X1 → Y1‖θ.

Another main tool is the following extension of the preceding proposition to multilinear
mappings ([BL78, 4.4.1]). Since in all our applications the involved couples consist of two
spaces which coincide algebraically with equivalent norms, our formulation is only for this
setting.

Proposition 0.3. Let [X(1)
0 , X

(1)
1 ], . . . , [X(n)

0 , X
(n)
1 ] and [Y0, Y1] be interpolation couples

for which each consists of algebraically equal and norm-equivalent spaces, and let
T ∈ L(X(1)

∆ , . . . , X
(n)
∆ ;Y∆). Then

‖T : [X(1)
0 , X

(1)
1 ]θ × · · · × [X(n)

0 , X
(n)
1 ]θ → [Y0, Y1]θ‖

≤ ‖T : X(1)
0 × · · · ×X(n)

0 → Y0‖1−θ · ‖T : X(1)
1 × · · · ×X(n)

1 → Y1‖θ.

The most common examples of complex interpolation spaces are (vector-valued) Lp-spaces
and Schatten classes: For 1 ≤ p0, p1 ≤ ∞, a σ-complete measure space (Ω,Σ, µ), an interpo-
lation couple [E0, E1] and 0 < θ < 1

[Lp0(µ,E0), Lp1(µ,E1)]θ = Lp(µ, [E0, E1]θ) (0.9)

and

[Sp0 ,Sp1 ]θ = Sp (0.10)

hold isometrically, where 1/p = (1 − θ)/p0 + θ/p1; but in the case p0 = p1 = ∞ we have
to assume that L∞(µ) = `n∞ for some n. For (0.9) see [BL78, 5.1.2], whereas (0.10) can
be deduced from e. g. [PT68, Satz 8] and the complex reiteration theorem [BL78, 4.6.1].
For 0 < θ < 1 a θ-Hilbert space is a complex interpolation space [E0, E1]θ where E1 is a
Hilbert space (this notion goes back to Pisier); in particular, Lp(µ) and Sp for 1 < p < ∞
are θ-Hilbert spaces for θ = 1− |1− 2/p|.

The following interpolation formula for vector-valued Banach function spaces is due to
Calderón; note that in [Cal64, 13.6] the space X1−θ

0 Xθ
1 is assumed to be σ-order continuous,

but in [KPS82, p. 245] it is shown that this requirement is satisfied if at least one of the
spaces X0 or X1 is σ-order continuous.
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Proposition 0.4. Let X0(µ), X1(µ) be Banach function spaces such that at least one is σ-
order continuous. Then for each interpolation couple [E0, E1] and 0 < θ < 1

[X0(E0), X1(E1)]θ = (X1−θ
0 Xθ

1 )([E0, E1]θ) (0.11)

holds isometrically.

Finally we would like to point out that, since we extensively use complex interpolation,
the underlying field is always C—important exceptions are mentioned explicitly. However,
many of our main results can be easily transferred to the real case; we leave this work to the
interested reader.
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1 A complex interpolation formula for tensor products of
vector-valued Banach function spaces

The following theorem for the complex interpolation of injective tensor products of vector-
valued Banach function spaces is proved:

Theorem 1.1. Let X0(µ), X1(µ), Y0(ν), Y1(ν) be real-valued Banach function spaces and
[E0, E1] and [F0, F1] interpolation couples of complex Banach spaces with dense intersections.
Then for 0 < θ < 1 the equality

[X0(E0)⊗̃εY0(F0), X1(E1)⊗̃εY1(F1)]θ = [X0(E0), X1(E1)]θ⊗̃ε[Y0(F0), Y1(F1)]θ, (1.1)

holds algebraically and topologically whenever the Banach lattices X0, X1, Y0, Y1 are 2-concave
and the Banach spaces Ei and Fi satisfy one of the following conditions:

(1) E′0, E
′
1, F

′
0 and F ′1 are type 2 spaces.

(2) E′0, E
′
1 are type 2 spaces and F0 = F1 is a cotype 2 space.

(3) E0 = E1 and F0 = F1 are cotype 2 spaces.

This is an extension of deep results due to Kouba [Kou91] who proved the preceding inter-
polation formula if one of the couples [X0, X1] and [E0, E1], and one of the couples [Y0, Y1]
and [F0, F1] is trivial (i. e. either X0 = X1 = R or E0 = E1 = C, and either Y0 = Y1 = R

or F0 = F1 = C). Moreover, following an idea of Pisier [P90] and based on variants of
the Maurey–Rosenthal Factorization Theorem (see [Def99]), our approach offers an alter-
nate proof of Kouba’s interpolation formula for complex-valued Banach function spaces: For
2-concave complex-valued Banach function spaces X0(µ), X1(µ), Y0(ν), Y1(ν) and 0 < θ < 1

[X0⊗̃εY0, X1⊗̃εY1]θ = [X0, X1]θ⊗̃ε[Y0, Y1]θ. (1.2)

The main ingredients of the proof will be “uniform estimates” of

dθ[M0,M1] := ‖L(`2, [M0,M1]θ) ↪→ [L(`2,M0),L(`2,M1)]θ‖, (1.3)

where [M0,M1] is a finite-dimensional interpolation couple. Such estimates proved to be
of independent interest: The facts supn dθ[`n1 , `

n
2 ] < ∞ (see [P90] and [Kou91]; here it is a

consequence of Proposition 1.5) and supn dθ[Sn1 ,Sn2 ] <∞ (due to Junge in [Jun96, 4.2.6] and
based on an extension of Kouba’s formulas for the Haagerup tensor product of operator spaces
due to [P96]) are used in Section 2 in order to study so-called “Bennett–Carl inequalities” for
identity operators between finite-dimensional symmetric Banach sequence spaces as well as
their “non-commutative analogues” for identity operators between finite-dimensional unitary
ideals. Part of this section is contained in [DM99].

1.1 The approximation lemma

First we show—similar to [Kou91, Section 4]—that equalities as stated in the above theorem
are of finite-dimensional nature. In order to make the following more readable, let us introduce
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the following notation: If [E0, E1] is an interpolation couple, E ⊂ E∆ a subspace which is
dense in E0, E1 and A ⊂ FIN(E) is cofinal (i. e. for every G ∈ FIN(E) there exists M ∈ A
with G ⊂ M), then the triple ([E0, E1], E,A) is called a cofinal interpolation triple. For
M ∈ FIN(E) we denote by M0 and M1 the subspace M of E0 and E1 endowed with the
induced norm, respectively.

The content of the following lemma is a well-known fact within the theory of complex
interpolation of Banach spaces (see e. g. [KPS82, Remark on p. 220] together with [KPS82,
Theorem 1.3 on p. 223]).

Lemma 1.2. Let [E0, E1] be an interpolation couple and E be a subspace of E∆ which is
dense in both E0 and E1. Then for all x ∈ E

‖x‖[E0,E1]θ = inf
f(θ)=x

‖f‖F(E0,E1),

where the infimum is taken over all f ∈ F(E0, E1) of the form

f(z) =
N∑
n=1

ψn(z) · xn, xn ∈ E,ψn ∈ A(S).

In particular, E is also dense in [E0, E1]θ.

The following two crucial lemmas are only slight modifications of [Kou91, 4.1 and 4.2],
but we state their proofs for the convenience of the reader.

Lemma 1.3. Let ([E0, E1], E,A) be a cofinal interpolation triple. Then for 0 < θ < 1, ε > 0
and each G ∈ FIN(E) there exists M ∈ A such that G ⊂M and for all x ∈ G

(1− ε) · ‖x‖[M0,M1]θ ≤ ‖x‖[E0,E1]θ ≤ ‖x‖[M0,M1]θ . (1.4)

Proof. Without loss of generality we may assume ε < 1. Then let 0 < δ < ε/2 and R =
{x1, . . . , xn} be a δ-net in the unit sphere of the finite-dimensional space (G, ‖ · ‖[E0,E1]θ). By
Lemma 1.2 there exists for every 1 ≤ k ≤ n a function Fk : S → E of the form

Fk(z) =
nk∑
r=1

ψr,k(z) · xr,k

where xr,k ∈ E, ψr,k ∈ A(S), Fk(θ) = xk and ‖Fk‖F(E0,E1) ≤ 1 + δ. Define the finite-
dimensional space

G̃ := span{xr,k | 1 ≤ k ≤ n, 1 ≤ r ≤ nk},

and choose M ∈ A such that G̃ ⊂ M ; clearly we have G ⊂ M . Now take x ∈ G with
‖x‖[E0,E1]θ = 1. Then one may write x = y0 +

∑∞
k=1 λk · yk with 0 ≤ λk < δk and yk ∈ R.

If yk = xj for some 1 ≤ j ≤ n we put Hk = Fj and define F := H0 +
∑∞

k=1 λk ·Hk. Then
F ∈ F(M0,M1), F (θ) = x and

‖F‖F(M0,M1) ≤

( ∞∑
k=0

δk

)
(1 + δ) =

1 + δ

1− δ
,
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hence
‖x‖[M0,M1]θ ≤

1
1− ε

,

which gives the first inequality. The second one is clear by the usual interpolation theorem.

If [M0,M1] and [N0, N1] are finite-dimensional interpolation couples, then we define for
0 < θ < 1

dθ[M0,M1;N0, N1] := ‖[M0,M1]θ ⊗ε [N0, N1]θ ↪→ [M0 ⊗ε N0,M1 ⊗ε N1]θ‖.

The following lemma—which for obvious reasons is called “approximation lemma”—reduces
the proof of Kouba type formulas (1.1) or (1.2) to uniform estimates of dθ[M0,M1;N0, N1]
for cofinally many suitable finite-dimensional subspaces of the underlying infinite-dimensional
spaces.

Approximation Lemma 1.4. Let ([E0, E1], E,A) and ([F0, F1], F,B) be cofinal interpola-
tion triples and 0 < θ < 1. If

dθ[E0, E1;F0, F1] := sup
M∈A

sup
N∈B

dθ[M0,M1;N0, N1] <∞,

then
[E0⊗̃εF0, E1⊗̃εF1]θ = [E0, E1]θ⊗̃ε[F0, F1]θ.

Proof. From the density assumptions we conclude that E⊗F is dense in [E0, E1]θ⊗̃ε[F0, F1]θ
and in [E0⊗̃εF0, E1⊗̃εF1]θ, hence it is sufficient to show that for a given z ∈ E ⊗ F

‖z‖[E0,E1]θ⊗̃ε[F0,F1]θ
≤ ‖z‖[E0⊗̃εF0,E1⊗̃εF1]θ

(1.5)

≤ dθ[E0, E1;F0, F1] · ‖z‖[E0,E1]θ⊗̃ε[F0,F1]θ
. (1.6)

We start with a simple observation to show (1.5). If [M0,M1] and [N0, N1] are finite-
dimensional interpolation couples, then for each 0 < θ < 1

‖[L(M0, N0),L(M1, N1)]θ ↪→ L([M0,M1]θ, [N0, N1]θ)‖ ≤ 1; (1.7)

indeed, consider for i = 0, 1 the bilinear mapping

φi : L(Mi, Ni)×Mi → Ni, (T, x) 7→ Tx,

which clearly has norm 1, hence (1.7) follows from the fact that by bilinear interpolation (see
[BL78, 4.4.1]) the interpolated mapping

φθ : [L(M0, N0),L(M1, N1)]θ × [M0,M1]θ → [N0, N1]θ

also has norm ≤ 1. Now (1.5) is a straightforward consequence: Obviously
C := {M ⊗N |M ∈ A, N ∈ B} ⊂ FIN(E ⊗ F ) is cofinal, hence, by Lemma 1.3 and the fact
that the injective norm respects subspaces, there exist M ∈ A andN ∈ B such that z ∈M⊗N
and

‖z‖[M0⊗εN0,M1⊗εN1]θ ≤ (1 + ε) · ‖z‖[E0⊗̃εF0,E1⊗̃εF1]θ
.
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Finally, by the mapping property of the injective norm and (1.7),

‖z‖[E0,E1]θ⊗̃ε[F0,F1]θ
≤ ‖z‖[M0,M1]θ⊗ε[N0,N1]θ

≤ ‖z‖[M0⊗εN0,M1⊗εN1]θ

≤ (1 + ε) · ‖z‖[E0⊗̃εF0,E1⊗̃εF1]θ
.

In order to show (1.6) let z ∈ G ⊗H for some G ∈ FIN(E),H ∈ FIN(F ), and choose by
Lemma 1.3 subspaces M ∈ A and N ∈ B such that G ⊂M,H ⊂ N and

‖(G, ‖ · ‖[E0,E1]θ) ↪→ [M0,M1]θ‖ ≤
√

1 + ε,

‖(H, ‖ · ‖[F0,F1]θ) ↪→ [N0, N1]θ‖ ≤
√

1 + ε.

Then, by the mapping property,

‖(G, ‖ · ‖[E0,E1]θ)⊗ε (H, ‖ · ‖[F0,F1]θ) ↪→ [M0,M1]θ ⊗ε [N0, N1]θ‖ ≤ 1 + ε,

hence, since the injective norm respects subspaces,

‖z‖[M0,M1]θ⊗ε[N0,N1]θ ≤ (1 + ε) · ‖z‖[E0,E1]θ⊗ε[F0,F1]θ .

By the usual interpolation theorem we obtain

‖z‖[E0⊗̃εF0,E1⊗̃εF1]θ
≤ ‖z‖[M0⊗εN0,M1⊗εN1]θ

≤ dθ[M0,M1;N0, N1] · ‖z‖[M0,M1]θ⊗ε[N0,N1]θ

≤ (1 + ε) · dθ[E0, E1;F0, F1] · ‖z‖[E0,E1]θ⊗ε[F0,F1]θ .

1.2 The Hilbert space case

Recall for a finite-dimensional interpolation couple [E0, E1] the definition of dθ[E0, E1] from
(1.3), and note that by the approximation lemma

dθ[E0, E1] = sup
n
dθ[`n2 , `

n
2 ;E0, E1].

The main step in the proof of (1.1) is the following estimate:

Proposition 1.5. Let X0, X1 be n-dimensional lattices and [E0, E1] a finite-dimensional in-
terpolation couple. Then for 0 < θ < 1

dθ[X0(E0), X1(E1)]

≤
√

2 ·C2([E0, E1]θ) ·M(2)(X0)1−θ ·M(2)(X1)θ · dθ[`n2 (E0), `n2 (E1)].
(1.8)

Before giving the proof we collect some facts about powers of finite-dimensional lattices.
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Lemma 1.6. Let X,X0, X1 be n-dimensional lattices, E a Banach space, λ ∈ R
n and

0 < θ < 1.

(a) If M(2)(X) = 1, then ‖Dλ ⊗ id : `n2 (E) → X(E)‖ ≤ ‖Dλ‖ = ‖λ‖(((X′)2)′)1/2, where
Dλ : `n2 → X denotes the diagonal operator associated with λ.

(b) (X1−θ
0 Xθ

1 )′ = (X ′0)1−θ(X ′1)θ holds isometrically.

(c) For 0 < r < ∞ let M(max(1,r))(X0) = M(max(1,r))(X1) = 1. Then
(
X1−θ

0 Xθ
1

)r
=

(Xr
0)1−θ(Xr

1)θ holds isometrically.

Proof. (a) For x ∈ `n2 (E)

‖(Dλ ⊗ id)x‖X(E) = ‖(λk · ‖xk‖)k‖X ≤ ‖Dλ : `n2 → X‖ ·

(
n∑
k=1

‖xk‖2
)1/2

,

and (note that M(2)(X ′) = M(2)(X) = 1)

‖λ‖(((X′)2)′)1/2 = ‖λ2‖1/2
((X′)2)′

= sup
‖µ‖(X′)2≤1

‖λ2µ‖1/2`n1
= sup
‖|µ|1/2‖X′≤1

‖λ2µ‖1/2`n1

= sup
‖ν‖X′≤1

‖λν‖`n2 = sup
‖ν‖X′≤1

sup
‖µ‖`n2≤1

∣∣∣∣∣
n∑
i=1

λiνiµi

∣∣∣∣∣
= sup
‖µ‖`n2≤1

sup
‖ν‖X′≤1

∣∣∣∣∣
n∑
i=1

λiµiνi

∣∣∣∣∣ = sup
‖µ‖`n2≤1

‖λµ‖X = ‖Dλ : `n2 → X‖.

(b) By the Calderón formula (0.11), the duality theorem (see Proposition 0.1) and the fact
that Y (C)′ = Y ′(C) holds isometrically for every finite-dimensional lattice Y , one arrives at
the isometric identity

(X1−θ
0 Xθ

1 )′(C) = ((X ′0)1−θ(X ′1)θ)(C),

which clearly implies the above statement.

(c) First note that by M(r)(X1−θ
0 Xθ

1 ) = 1 (see (0.7)) the power (X1−θ
0 Xθ

1 )r is normed. Let
V := (X1−θ

0 Xθ
1 )r and W := (Xr

0)1−θ(Xr
1)θ. Then, if |f |1/r = |g|1−θ · |h|θ,

‖f‖W ≤ ‖|g|r‖1−θXr
0
· ‖|h|r‖θXr

1
=
(
‖g‖1−θX0

· ‖h‖θX1

)r
,

which clearly implies ‖f‖W ≤ ‖f‖V . Conversely, let |f | = |g|1−θ · |h|θ. Then

‖f‖V = ‖|f |1/r‖r
X1−θ

0 Xθ
1

≤ ‖|g|1/r‖r(1−θ)X0
· ‖|h|1/r‖rθX1

= ‖g‖1−θXr
0
· ‖h‖θXr

1
,

hence ‖f‖V ≤ ‖f‖W .

Another important tool is a variant of the Maurey–Rosenthal Factorization Theorem
([Mau74]) for vector-valued Banach function spaces given in [Def99].
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Lemma 1.7. Let X(µ) be a 2-concave Banach function space and E a Banach space of
cotype 2. Then each T ∈ L(`2, X(E)) factorizes as follows:

`2 X(E)-T

L2(µ,E)

R
@
@
@
@R

Mg ⊗ id
�
�
�
�	

,

where R : `2 → L2(µ,E) is an operator and Mg : L2(µ) → X a multiplication operator with
respect to g ∈ L0(µ) such that ‖R‖ · ‖Mg‖ ≤

√
2 ·C2(E) ·M(2)(X) · ‖T‖.

Proof. For x1, . . . , xn ∈ `2∥∥∥∥∥∥
(

n∑
i=1

‖Txi(·)‖2E

)1/2
∥∥∥∥∥∥
X

≤
√

2 ·C2(E) ·

∥∥∥∥∥
∫
Dn

‖
n∑
i=1

εi(ω) · Txi(·)‖E µn(dω)

∥∥∥∥∥
X

≤
√

2 ·C2(E) ·
∫
Dn

∥∥∥∥∥‖(
n∑
i=1

εi(ω) · Txi)(·)‖E

∥∥∥∥∥
X

µn(dω)

=
√

2 ·C2(E) ·
∫
Dn

∥∥∥∥∥T (
n∑
i=1

εi(ω) · xi)

∥∥∥∥∥
X(E)

µn(dω)

≤
√

2 ·C2(E) · ‖T‖ ·

(
n∑
i=1

‖xi‖2`2

)1/2

(the constant
√

2 comes from the Khinchine–Kahane inequality for the case “L2 versus L1”),
hence by [Def99, 4.4] there exists 0 ≤ ω ∈ L0(µ) with

sup
y∈BL2(µ)

‖ω1/2 · y‖X ≤
√

2 ·M(2)(X) ·C2(E) · ‖T‖ (1.9)

such that for all x ∈ `2 (∫
Ω
‖Tx(·)‖2E/ω dµ

)1/2

≤ ‖x‖`2 . (1.10)

Define the operator R ∈ L(`2, L2(µ,E)) by Rx := Tx/ω1/2 for x ∈ `2 (well-defined by (1.10))
and the multiplication operator Mg : L2(µ) → X with g := ω1/2 (well-defined by (1.9)).
Clearly, this produces the desired factorization.

Now we are prepared for the Proof of Proposition 1.5. Its main idea—the use of factor-
izations of Maurey–Rosenthal type—is taken from [P90].

Without loss of generality we may assume that M(2)(X0) = M(2)(X1) = 1; in-
deed, let Y0 and Y1 be the associated renormed spaces such that M(2)(Yi) = 1 and
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‖Xi ↪→ Yi‖ · ‖Yi ↪→ Xi‖ ≤M(2)(Xi) for i = 0, 1 (see [LT79, 1.d.8]). Now consider the fac-
torization

`2 ⊗ε [Y0(E0), Y1(E1)]θ [`2 ⊗ε Y0(E0), `2 ⊗ε Y1(E1)]θ-
id⊗ id

`2 ⊗ε [X0(E0), X1(E1)]θ [`2 ⊗ε X0(E0), `2 ⊗ε X1(E1)]θ-id⊗ id

?

u := id⊗ id
?

v := id⊗ id

and observe that ‖u‖ · ‖v‖ ≤M(2)(X0)1−θ ·M(2)(X1)θ.

Put Xθ := X1−θ
0 Xθ

1 . Since [X0(E0), X1(E1)]θ = Xθ([E0, E1]θ) holds isometrically (see
(0.11)) and M(2)(Xθ) = 1 (see (0.8)), by Lemma 1.7 every operator T ∈ L(`2, Xθ([E0, E1]θ))
factors

`2 Xθ([E0, E1]θ)-T

`n2 ([E0, E1]θ)

R
@
@
@
@R

Dλ ⊗ id
�
�

�
�	

,

with ‖R‖ · ‖Dλ‖ ≤
√

2 · C2([E0, E1]θ) · ‖T : `2 → [X0(E0), X1(E1)]θ‖. Define Yη :=
(((X ′η)

2)′)1/2 for η = 0, 1, θ; by Lemma 1.6 (b),(c) and the Calderón formula (0.11) we have
[Y0(C), Y1(C)]θ = Yθ(C). By Lemma 1.6 (a) the mapping

Φη : Yη(C)→ L(`n2 (Eη), Xη(Eη)), µ 7→ Dµ ⊗ id

has norm ≤ 1, and consequently the interpolated mapping

[Φ0,Φ1]θ : [Y0(C), Y1(C)]θ → V := [L(`n2 (E0), X0(E0)),L(`n2 (E1), X1(E1))]θ

has norm ≤ 1. Moreover, by bilinear interpolation (see Proposition 0.3) the mapping

U × V →W, (u, v) 7→ v ◦ u,

where

U := [L(`2, `n2 (E0),L(`2, `n2 (E1))]θ and W := [L(`2, X0(E0)),L(`2, X1(E1))]θ,

also has norm ≤ 1. Since by definition ‖R‖U ≤ dθ[`n2 (E0), `n2 (E1)] · ‖R‖, we obtain altogether

‖T‖W = ‖(Dλ ⊗ id) ◦R‖W ≤ ‖R‖U · ‖Dλ ⊗ id‖V = ‖R‖U · ‖[Φ0,Φ1]θ(λ)‖V
≤ dθ[`n2 (E0), `n2 (E1)] · ‖R‖ · ‖λ‖Yθ
≤ dθ[`n2 (E0), `n2 (E1)] ·

√
2 ·C2([E0, E1]θ) · ‖T‖,

the desired inequality.

A quick look at (1.8) reveals that in the case E = E0 = E1 one has
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Corollary 1.8. Let X0, X1 be n-dimensional lattices and E a finite-dimensional normed
space. Then for 0 < θ < 1

dθ[X0(E), X1(E)] ≤
√

2 ·C2(E) ·M(2)(X0)1−θ ·M(2)(X1)θ. (1.11)

For the case that E0 and E1 have different norms, one can use the following upper estimate
for dθ[`n2 (E0), `n2 (E1)] in terms of type 2 constants, which is taken from [Kou91, 3.5]: Let
[F0, F1] be a finite-dimensional interpolation couple. Then

dθ[F0, F1] ≤ T2(F ′0)1−θ ·T2(F ′1)θ. (1.12)

Note that the estimate given in (1.12) is slightly different from that in Kouba’s work. It
follows from a short analysis of his proof in the finite-dimensional case: Since in our setting a
Hilbert space is involved, Kouba’s formula (3.8) on p. 47 can be changed into γz(T ) ≤ ‖|T‖|z.
Moreover, calculating the term WE(z) defined in Kouba’s Lemma 3.2 (use two spaces instead
of a family of Banach spaces, see also [CCRSW82, p. 218]), one obtains

WE(z) = T̃2(E0)1−θ(z) · T̃2(E1)θ(z)

(with θ(z) as in [CCRSW82, Corollary 5.1]), respectively. Together with the fact that the
Gaussian type 2 constant is smaller than the Rademacher type 2 constant, this leads to the
above estimates (note that E0 and E1 in Kouba’s formula, in our context have to be replaced
by F ′0 and F ′1).

Using the simple fact that T2(`n2 (E′i)) = T2(E′i) for i = 0, 1 (see e. g. [DJT95, 11.12]), (1.12)
gives dθ[`n2 (E0), `n2 (E1)] ≤ T2(E′0)1−θ · T2(E′1)θ. Furthermore, by the duality of type and
cotype (see e. g. [DJT95, 11.10]) and the interpolative nature of the type 2 constants (see
e. g. [TJ89, (3.8)]) C2([E0, E1]θ) ≤ T2([E′0, E

′
1]θ) ≤ T2(E′0)1−θ · T2(E′1)θ. Altogether we

arrive at

Corollary 1.9. Let X0, X1 be n-dimensional lattices and [E0, E1] a finite-dimensional inter-
polation couple. Then for 0 < θ < 1

dθ[X0(E0), X1(E1)] ≤
√

2 ·M(2)(X0)1−θ ·M(2)(X1)θ · (T2(E′0)1−θ ·T2(E′1)θ)2. (1.13)

1.3 The finite-dimensional case in general

Our estimates for dθ[X0(E0), X1(E1);Y0(F0), Y1(F1)] are as follows:

Proposition 1.10. Let X0, X1 and Y0, Y1 be n-dimensional and m-dimensional lattices, re-
spectively, and [E0, E1], [F0, F1] two arbitrary finite-dimensional interpolation couples. Then
for 0 < θ < 1

dθ[X0(E0), X1(E1);Y0(F0), Y1(F1)]

≤ 16 · [(M(2)(X0) ·M(2)(Y0))1−θ(M(2)(X1) ·M(2)(Y1))θ]5/2 · tθ[E0, E1] · tθ[F0, F1],
(1.14)

18



where, if G represents either E or F ,

tθ[G0, G1] :=

{
C2(G)5/2 if G=G0 = G1,
(T2(G′0)1−θ ·T2(G′1)θ)7/2 else.

(1.15)

The proof is based on the following “factorization lemma”, which will enable us to use
the estimates from the Hilbert space case derived in (1.11) and (1.13) in order to obtain
estimates for the general case. As usual we denote by Γ2 the Banach operator ideal of all
operators T which allow a factorization T = RS through a Hilbert space, together with the
norm γ2(T ) := inf ‖R‖ · ‖S‖.

Lemma 1.11. Let [E0, E1] and [F0, F1] be finite-dimensional interpolation couples. Then for
0 < θ < 1

‖Γ2([E0, E1]′θ, [F0, F1]θ) ↪→ [Γ2(E′0, F0),Γ2(E′1, F1)]θ‖ ≤ dθ[E0, E1] · dθ[F0, F1].

Proof. Let T : [E0, E1]′θ → [F0, F1]θ factorize as follows:

[E0, E1]′θ [F0, F1]θ-T

`2

R
@
@
@
@R

S
�
�
�
�	

,

and consider by bilinear interpolation the norm 1 mapping

U × V →W, (u, v) 7→ v ◦ u′,

where
U := [L(`2, E0),L(`2, E1)]θ, V := [L(`2, F0),L(`2, F1)]θ

and
W := [Γ2(E′0, F0),Γ2(E′1, F1)]θ.

Then
‖T‖W = ‖SR‖W ≤ ‖R′‖U · ‖S‖V ≤ dθ[E0, E1] · dθ[F0, F1] · ‖R′‖ · ‖S‖,

which clearly gives ‖T‖W ≤ dθ[E0, E1] · dθ[F0, F1] · γ2(T ).

Another ingredient needed for the proof of Proposition 1.10 is a simple fact about the
cotype 2 constant of vector-valued Banach function spaces.

Lemma 1.12. Let X be a 2-concave Banach function space and E a Banach space of co-
type 2. Then X(E) has cotype 2, and C2(X(E)) ≤

√
2 ·M(2)(X) ·C2(E).
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Proof. Let x1, . . . , xn ∈ X(E). Then(
n∑
i=1

‖xi‖2X(E)

)1/2

=

(
n∑
i=1

‖‖xi(·)‖E‖2X

)1/2

≤M(2)(X) ·

∥∥∥∥∥∥
(

n∑
i=1

‖xi(·)‖2E

)1/2
∥∥∥∥∥∥
X

≤
√

2 ·M(2)(X) ·C2(E) ·

∥∥∥∥∥
∫
Dn

‖
n∑
i=1

εi(ω) · xi(·)‖E µn(dω)

∥∥∥∥∥
X

≤
√

2 ·M(2)(X) ·C2(E) ·
∫
Dn

∥∥∥∥∥‖
n∑
i=1

εi(ω) · xi(·)‖E

∥∥∥∥∥
X

µn(dω)

=
√

2 ·M(2)(X) ·C2(E) ·
∫
Dn

‖
n∑
i=1

εi(ω) · xi‖X(E) µn(dω),

which clearly gives the claim.

With this the proof of Proposition 1.10 is straightforward:

Proof of Proposition 1.10. For the moment denote by Dγ the norm of the embedding

Γ2([X0(E0), X1(E1)]′θ, [Y0(F0), Y1(F1)]θ) ↪→ [Γ2(X0(E0)′, Y0(F0)),Γ2(X1(E1)′, Y1(F1))]θ

and dθ := dθ[X0(E0), X1(E1);Y0(F0), Y1(F1)]. Using Pisier’s Factorization Theorem ([P86a,
4.1] or [DF93, 31.4]), the Calderón formula (0.11), Lemma 1.12 and the interpolative nature
of the 2-concavity constants (see (0.8)) one has

dθ ≤ (2 ·C2([X0(E0), X1(E1)]θ) ·C2([Y0(F0), Y1(F1)]θ))3/2 ·Dγ

= (2 ·C2((X1−θ
0 Xθ

1 )([E0, E1]θ)) ·C2((Y 1−θ
0 Y θ

1 )([F0, F1]θ)))3/2 ·Dγ

≤ 8 · (M(2)(X
1−θ
0 Xθ

1 ) ·M(2)(Y
1−θ

0 Y θ
1 ) ·C2([E0, E1]θ) ·C2([F0, F1]θ))3/2 ·Dγ

≤ 8 · ((M(2)(X0) ·M(2)(Y0))1−θ · (M(2)(X1) ·M(2)(Y1))θ

·C2([E0, E1]θ) ·C2([F0, F1]θ))3/2 ·Dγ .

Now the estimates stated in the proposition follow from Lemma 1.11 together with (1.11)
and (1.13).

1.4 The proof of Theorem 1.1

To prove Theorem 1.1 we need some additional notation. For a σ-finite measure space
(Ω,Σ, µ) let FINχ(µ) be the set of all subspaces of S(µ)—the linear space of all strictly
simple functions—which are generated by a finite sequence of characteristic functions of
measurable, pairwise disjoint sets with finite non-zero measures, and with S(µ,E) we denote
the linear space of all strictly simple functions with values in a normed space E.

Now let us start the proof of Theorem 1.1. First observe that if we define

A := {U(M) |U ∈ FINχ(µ),M ∈ FIN(E∆)}
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and
B := {V (N) |V ∈ FINχ(ν), N ∈ FIN(F∆)},

then ([X0(E0), X1(E1)], S(µ,E∆),A) and ([Y0(F0), Y1(F1)], S(ν, F∆),B) are cofinal interpola-
tion triples whenever X0, X1 and Y0, Y1 have non-trivial concavity. Indeed (we only treat one
of the two cases), these assumptions together with [LT79, 1.a.5] and [LT79, 1.a.7] imply that
X0 and X1 are σ-order continuous, and by [KPS82, p. 211] it follows that S(µ,E∆) is dense
in X0(E0) and X1(E1); obviously each G ∈ FIN(S(µ,E∆)) is contained in some U(M) with
U ∈ FINχ(µ) and M ∈ FIN(E∆). Moreover, if U is generated by measurable, pairwise dis-
joint sets A1, . . . , An with finite non-zero measures, then χA1 , . . . , χAn is a 1-unconditional
basis for U , hence U is order isometric to Rn endowed with a lattice norm under the canonical
order.

This now puts us in the position to apply the Approximation Lemma 1.4 together with
our estimates obtained in the finite-dimensional case: For U ∈ FINχ(µ), V ∈ FINχ(ν),
M ∈ FIN(E∆) and N ∈ FIN(F∆)

dθ[U0(M0), U1(M1);V0(N0), V1(N1)]

≤ 16 · [(M(2)(U0) ·M(2)(V0))1−θ(M(2)(U1) ·M(2)(V1))θ]5/2

· tθ[M0,M1] · tθ[N0, N1]

≤ 16 · [(M(2)(X0) ·M(2)(Y0))1−θ(M(2)(X1) ·M(2)(Y1))θ]5/2

· tθ[E0, E1] · tθ[F0, F1],

where the latter inequality follows from the fact that M(2) respects sublattices, C2 subspaces
and T2 quotients; recall from (1.15) the definition of tθ[·, ·].
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2 Bennett–Carl inequalities

Recall from the introduction that in [Ben73] and [Car74] Bennett and Carl independently
proved the following inequalities: For 1 ≤ u ≤ 2 and 1 ≤ u ≤ v ≤ ∞ the identity operator
id : `u ↪→ `v is absolutely (r, 2)-summing, i. e. there is a constant c > 0 such that for each set
of finitely many x1, . . . , xn ∈ `u( n∑

k=1

‖xk‖r`v
)1/r ≤ c · sup

‖x′‖`u′≤1

( n∑
k=1

|〈x′, xk〉|2
)1/2

,

if (and only if) 1/r ≤ 1/u−max(1/v, 1/2).

Later in [CD92] the “Bennett–Carl inequalities” were extended within the setting of so-called
mixing operators (originally invented by Maurey [Mau74]): For 1 ≤ u ≤ 2 and 1 ≤ u ≤ v ≤ ∞
every s-summing operator T defined on `v has a 2-summing restriction to `u if (and only if)
1/s ≥ 1/2− 1/u+ max(1/v, 1/2).

Nevertheless literature so far has not offered an approach to the Bennett–Carl inequalities
within the framework of interpolation theory. We prove an abstract interpolation formula
for the mixing norm of a fixed operator, and obtain as an application not only the original
Bennett–Carl inequalities but also their “non-commutative” analogues for finite-dimensional
Schatten classes. Moreover, we consider Bennett–Carl inequalities in a more general setting
of symmetric Banach sequence spaces and unitary ideals, and apply these results to Orlicz
and Lorentz sequence spaces. Part of this section is contained in [DM98]. Further extensions
of the Bennett–Carl inequalities within the framework of Orlicz sequence spaces can be found
in a recent paper of Maligranda and Masty lo [MM99].

For all information on summing and mixing operators see e. g. [DF93], [DJT95] and
[Pie80]. An operator T ∈ L(E,F ) is called absolutely (r, p)-summing (1 ≤ p ≤ r ≤ ∞) if
there is a constant ρ ≥ 0 such that( n∑

i=1

‖Txi‖r
)1/r ≤ ρ · sup

{( n∑
i=1

|〈x′, xi〉|p
)1/p |x′ ∈ BE′}

for all finite sets of elements x1, . . . , xn ∈ E (with the obvious modifications for p or r =∞).
In this case, the infimum over all possible ρ ≥ 0 is denoted by πr,p(T ), and the Banach
operator ideal of all absolutely (r, p)-summing operators by (Πr,p, πr,p); the special case r = p
gives the ideal (Πp, πp) of all absolutely p-summing operators.

An operator T ∈ L(E,F ) is called (s, p)-mixing (1 ≤ p ≤ s ≤ ∞) whenever its composi-
tion with an arbitrary operator S ∈ Πs(F, Y ) is absolutely p-summing; with the norm

µs,p(T ) := sup{πp(ST ) |πs(S) ≤ 1}

the classMs,p of all (s, p)-mixing operators forms again a Banach operator ideal. Obviously,
(Mp,p, µp,p) = (L, ‖ · ‖) and (M∞,p, µ∞,p) = (Πp, πp). Recall that due to [Mau74] (see also
[DF93, 32.10–11]) summing and mixing operators are closely related:

(Ms,p, µs,p) ⊂ (Πr,p, πr,p) for 1/s+ 1/r = 1/p,
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and “conversely”

(Πr,p, πr,p) ⊂ (Ms0,p, µs0,p) for 1 ≤ p ≤ s0 < s ≤ ∞ and 1/s+ 1/r = 1/p.

Moreover, it is known that the identity map of a cotype 2 space is (2, 1)-mixing and therefore
every (s, 2)-mixing operator on a cotype 2 space is even (s, 1)-mixing (see again [Mau74] and
[DF93, 32.2]). Finally, a quick investigation of [TJ70] shows that if 1 ≤ q ≤ 2 ≤ r ≤ ∞
with 1/r = 1/q − 1/2 are given, then Πr,2(X, ·) = Πq,1(X, ·) for every Banach space X such
that idX is (2, 1)-mixing; by the above, this holds in particular for cotype 2 spaces, hence,
most of our main results in this section can also be formulated in terms of (q, 1)-summing
norms. However, we prefer using the (r, 2)-summing norm since on the one hand some of our
techniques require it, and on the other hand the (r, 2)-summing norm is deeply connected to
the eigenvalue distribution of power compact operators (as can be seen e. g. in (2.1) right
below).

For an operator T ∈ L(E,F ) the n-th Weyl number xn(T ) of T is defined by

xn(T ) := sup{an(TS) |S ∈ L(`2, E) with ‖S‖ = 1},

where an(TS) denotes the n-th approximation number of TS: For T ∈ L(E,F )

an(T ) := inf{‖T − Tn‖ |Tn ∈ L(E,F ), rankTn < n}.

We will use the following important inequality of König to obtain lower estimates:

n1/r · xn(T ) ≤ πr,2(T ), T ∈ Πr,2 (2.1)

(for all details on s-numbers and this inequality see [Kön86, 2.a.3] or [Pie87]).

2.1 Complex interpolation of mixing operators

The aim of this section is to prove the following complex interpolation formula for the mixing
norm of a fixed operator acting between two complex interpolation spaces:

Theorem 2.1. Let 2 ≤ s0, s1 ≤ ∞, 0 ≤ θ ≤ 1 and sθ given by 1/sθ = (1 − θ)/s0 +
θ/s1. Then for two finite-dimensional interpolation couples [E0, E1], [F0, F1] and each T ∈
L([E0, E1]θ, [F0, F1]θ)

µsθ,2(T : [E0, E1]θ → [F0, F1]θ) ≤ dθ[E0, E1] · µs0,2(T : E0 → F0)1−θ · µs1,2(T : E1 → F1)θ.

Proof. For the moment let Eθ := [E0, E1]θ and Fθ := [F0, F1]θ, and consider for η = 0, θ, 1
the bilinear mapping

Φn,m
η : `nsη(F ′η) × L(`m2 , Eη) −→ `m2 (`nsη)

(y′1, . . . , y
′
n) × S 7−→ ((〈y′k, TSej〉)k)j

,
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where (ej) denotes the canonical basis in Cm. By the discrete characterization of the mixing
norm (see [Mau74] or [DF93, 32.4]) µsη(T : Eη → Fη) is the infimum over all c ≥ 0 such that
for all n,m, all y′1, . . . , y

′
n ∈ F ′η and all x1, . . . , xm ∈ Eη m∑

j=1

(
n∑
k=1

|〈y′k, Txj〉|sη
)2/sη

1/2

≤ c ·

(
n∑
k=1

‖y′k‖
sη
F ′η

)1/sη

· sup
x′∈BE′η

 m∑
j=1

|〈x′, xj〉|2
1/2

.

Since for each S =
∑m

j=1 ej ⊗ xj ∈ L(`m2 , Eη)

‖S‖ = sup
x′∈BE′η

 m∑
j=1

|〈x′, xj〉|2
1/2

,

it clearly follows that
µsη ,2(T : Eη → Fη) = sup

n,m
‖Φn,m

η ‖.

Now the proof follows by bilinear complex interpolation: For the interpolated bilinear map-
ping

[Φn,m
0 ,Φn,m

1 ]θ : [`ns0(F ′0), `ns1(F ′1)]θ × [L(`m2 , E0),L(`m2 , E1)]θ −→ [`m2 (`ns0), `m2 (`ns1)]θ

by Proposition 0.3
‖[Φn,m

0 ,Φn,m
1 ]θ‖ ≤ ‖Φn,m

0 ‖1−θ · ‖Φn,m
1 ‖θ.

Since by the interpolation theorem for `p(E)’s (see (0.9)) together with the duality theorem
(see Proposition 0.1)

[`ns0(F ′0), `ns1(F ′1)]θ = `nsθ([F0, F1]′θ) and [`m2 (`ns0), `m2 (`ns1)]θ = `m2 (`nsθ)

(isometrically), we obtain

‖Φn,m
θ ‖ ≤ ‖L(`m2 , [E0, E1]θ) ↪→ [L(`m2 , E0),L(`m2 , E1)]θ‖ · ‖[Φn,m

0 ,Φn,m
1 ]θ‖.

Consequently

µsθ,2(T : [E0, E1]θ → [F0, F1]θ) = sup
n,m
‖Φn,m

θ ‖

≤ sup
n,m
{‖L(`m2 , [E0, E1]θ) ↪→ [L(`m2 , E0),L(`m2 , E1)]θ‖ · ‖Φn,m

0 ‖1−θ · ‖Φn,m
1 ‖θ}

≤ dθ[E0, E1] · µs0,2(T : E0 → F0)1−θ · µs1,2(T : E1 → F1)θ,

the desired result.

In the same way an analogous result for the (r, 2)-summing norm can be obtained.

Applications of Theorem 2.1 come from “uniform estimates” for dθ[E0, E1]. From Propo-
sition 1.5 we obtain

dθ[`1, `2] := sup
n
dθ[`n1 , `

n
2 ] ≤

√
2; (2.2)
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just take X0 = `n1 , X1 = `n2 , E0 = E1 = C and note that (trivially) M(2)(`n1 ) = M(2)(`n2 ) = 1.
Using an extension of Kouba’s formulas for the Haagerup tensor product of operator spaces
due to [P96], Junge in [Jun96, 4.2.6] proved an analogue of (2.2) for Schatten classes:

dθ[S1,S2] := sup
n
dθ[Sn1 ,Sn2 ] <∞. (2.3)

Finally we state a corollary on θ-Hilbert spaces which together with (2.2) and (2.3) is
crucial for our purposes.

Corollary 2.2. Let 0 ≤ θ ≤ 1, E = [E0, `
n
2 ]θ be an n-dimensional θ-Hilbert space and

2 ≤ sθ ≤ ∞ given by sθ = 2/θ. Then

µsθ,2(E ↪→ `n2 ) ≤ dθ[E0, `
n
2 ] · π2(E0 ↪→ `n2 )1−θ.

2.2 Bennett–Carl inequalities for symmetric Banach sequence spaces

As indicated above the preceding interpolation theorem implies the Bennett–Carl result and
its extension of Carl–Defant as an almost immediate consequence:

Corollary 2.3. Let 1 ≤ u ≤ 2 and 1 ≤ u ≤ v ≤ ∞. Then for 2 ≤ s ≤ ∞ such that
1/s = 1/2− 1/u+ max(1/v, 1/2)

sup
n
µs,2(`nu ↪→ `nv ) <∞.

In particular, for 2 ≤ r ≤ ∞ such that 1/r = 1/u−max(1/v, 1/2)

sup
n
πr,2(`nu ↪→ `nv ) <∞.

Proof. Only the case 1 ≤ u < v ≤ 2 has to be considered; the case 2 ≤ v ≤ ∞ then easily
follows by factorization through `n2 , and the case u = v is trivial anyway. In what follows we
use the complex interpolation formula for `np ’s without further reference.
i) Take first v = 2. It is well-known (see e. g. [Pie80, 22.4.8] or (2.7)) that

π2(`n1 ↪→ `n2 ) = 1.

For 1 ≤ u ≤ 2 choose 0 ≤ θ ≤ 1 such that 1/u = (1− θ)/1 + θ/2. Then sθ := 2/θ = u′, and
by Corollary 2.2 together with (2.2)

µu′,2(`nu ↪→ `n2 ) ≤ dθ[`1, `2] <∞.

ii) Let 1 ≤ u < v < 2. Combining case i),

µu′,2(`nu ↪→ `n2 ) ≤ dθ[`1, `2],

and
µ2,2(`nu ↪→ `nu) = ‖`nu ↪→ `nu‖ = 1,
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we arrive at
µsθ̃,2(`nu ↪→ `nv ) ≤ sup

n
dθ̃[`

n
u, `

n
u] · dθ[`1, `2]1−θ̃ <∞,

with θ̃ := (1/v− 1/2)/(1/u− 1/2) and 1/sθ̃ := (1− θ̃)/u′+ θ̃/2 = 1/2− 1/u+ 1/v = 1/s.

As in the original proofs of Bennett and Carl, the crucial step in the preceding proof is
to show that for the symmetric Banach sequence space E = `u

sup
n
πr,2(En ↪→ `n2 ) <∞, (2.4)

where 1 ≤ u ≤ 2 and 1/r = 1/u − 1/2. We will now prove a result within the frame-
work of symmetric Banach sequence spaces which shows that (2.4) is sharp in a very strong
sense. Take an arbitrary 2-concave and u-convex symmetric Banach sequence space E—
these geometric assumptions in particular imply that the continuous inclusions `u ⊂ E ⊂ `2
hold—which satisfies (2.4). The following result shows that there is only one such space:

Theorem 2.4. Let 1 ≤ u ≤ 2 and 1/r = 1/u − 1/2. For each 2-concave and u-convex
symmetric Banach sequence space E the following are equivalent:

(1) supn µu′,2(En ↪→ `n2 ) <∞.

(2) supn πr,2(En ↪→ `n2 ) <∞.

(3) E = `u.

Clearly we only have to deal with the implication (2)⇒(3); its proof is based on two lemmas.
For the first one we invent the notion of “enough symmetries in the orthogonal group”. Let
E = (Cn, ‖ · ‖) be an n-dimensional Banach space. We say that E has enough symmetries in
O(n) if there is a compact subgroup G in O(n) such that

∀u ∈ L(E)∀ g, g′ ∈ G : ‖u‖ = ‖gug′‖ (2.5)

and

∀u ∈ L(E) with ug = gu for all g ∈ G ∃ c ∈ K : u = c · idE . (2.6)

Basic examples of spaces with enough symmetries in the orthogonal group are the finite-
dimensional spaces En and SnE associated with a symmetric Banach sequence space E. The
following lemma extends the corresponding results in [CD97, p. 233, 236].

Lemma 2.5. Let En and Fn have enough symmetries in O(n). Then

π2(En ↪→ Fn) = n1/2 · ‖`
n
2 ↪→ Fn‖
‖`n2 ↪→ En‖

, (2.7)

and for 1 ≤ k ≤ n(
n− k + 1

n

)1/2

· ‖`
n
2 ↪→ Fn‖
‖`n2 ↪→ En‖

≤ xk(En ↪→ Fn) ≤
(n
k

)1/2
· ‖`

n
2 ↪→ Fn‖
‖`n2 ↪→ En‖

. (2.8)
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Proof. (2.7): Trace duality allows to deduce the lower estimate from the upper one:

n ≤ π2(`n2 ↪→ Fn) · π2(Fn ↪→ `n2 ) ≤ ‖`n2 ↪→ En‖ · π2(En ↪→ Fn) · n1/2 · ‖`n2 ↪→ Fn‖−1.

For the proof of the upper estimate it may be assumed without loss of generality that Fn = `n2
(factorize through `n2 ). In this case it suffices to show that

‖`n2 ↪→ En‖−1 ·B`n2
is John’s ellipsoid Dmax of maximal volume in BEn (see e. g. [P89, 3.8] or [DJT95, 6.30]).
By definition there is a linear bijection u : `n2 → En such that u(B`n2 ) = Dmax. In particular,
‖u‖ = 1 and N(u−1) = n (N denotes the nuclear norm, see e. g. [P89, 3.7] or [DJT95, 6.30]).
On the other hand by a standard averaging argument there is a linear bijection v : `n2 → En
with ‖v‖ = 1, N(v−1) = n and vg = gv for all g ∈ G, where G is a compact group in O(n)
satisfying (2.5) and (2.6) (see [P89, 3.5] which also holds in the complex case). By property
(2.6) of G and the fact that ‖v‖ = 1 we have v = ‖`n2 ↪→ En‖−1 ·id. Then by Lewis’ uniqueness
theorem v−1u ∈ O(n) ([P89, 3.7] or [DJT95, 6.25]). Altogether we finally obtain

‖`n2 ↪→ En‖−1 ·B`n2 = v(B`n2 ) = v[v−1u(B`n2 )] = u(B`n2 ) = Dmax.

(2.8): Recall from (2.1) that k1/2 · xk(T ) ≤ π2(T ) for every 2-summing operator T acting
between two Banach spaces. Together with (2.7) this gives the second inequality. The first
then follows from the basic properties of the Weyl numbers (see e. g. [Kön86]):

1 = xn(id`n2 )

≤ xk(`n2 ↪→ Fn) · xn−k+1(Fn ↪→ `n2 )

≤ ‖`n2 ↪→ En‖ · xk(En ↪→ Fn) ·
(

n

n− k + 1

)1/2

· ‖`n2 ↪→ Fn‖−1.

The following obvious examples will be useful later.

Corollary 2.6. For 1 ≤ u, v ≤ ∞

π2(Snu ↪→ Snv ) = n · max(1, n1/v−1/2)
max(1, n1/u−1/2)

(2.9)

and

x[n2/2](Snu ↪→ Snv ) � max(1, n1/v−1/2)
max(1, n1/u−1/2)

. (2.10)

The preceding lemma turns out to be of special interest in combination with a result due
to Szarek and Tomczak-Jaegermann [STJ80, Proposition 2.2] which states that for each 2-
concave symmetric Banach sequence space E

‖`n2 ↪→ En‖ � n−1/2 · ‖
∑n

1
ei‖En . (2.11)

The second lemma, which we need for the proof of Theorem 2.4, is based on (2.11) and an
important result about the interpolation of Banach lattices due to Pisier [P79].
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Lemma 2.7. For 1 ≤ u ≤ 2 let E be a u-convex and u′-concave symmetric Banach sequence
space. Then

‖En ↪→ `nu‖ �
n1/u

‖
∑n

1 ei‖En
. (2.12)

In particular, if E is even 2-concave, then

‖En ↪→ `nu‖ �
n1/u

‖
∑n

1 ei‖En
� n1/u−1/2

‖`n2 ↪→ En‖
. (2.13)

Proof. (2.13) follows directly from (2.12) and (2.11), and clearly n1/u ≤ ‖En ↪→ `nu‖ ·
‖
∑n

1 ei‖En . For the upper estimate in (2.12) we only have to consider 1 < u < 2: The
case u = 1 is stated below in (2.14), and a 2-convex and 2-concave symmetric Banach se-
quence space necessarily equals `2 with equivalent norms. Without loss of generality we may
assume M(u)(E) = M(u′)(E) = 1 (see [LT79, 1.d.8]). Then by [P79, Theorem 2.2] there ex-
ists a symmetric Banach sequence space E0 such that E = [E0, `2]θ with θ = 2/u′; moreover,
we have En = [En0 , `

n
2 ]θ with equal norms. The conclusion now follows by interpolation: It

can be shown easily that

‖En0 ↪→ `n1‖ ≤
n

‖
∑n

1 ei‖En0
(2.14)

(see e. g. [STJ80, Proposition 2.5]), hence

‖En ↪→ `nu‖ ≤ ‖En0 ↪→ `n1‖1−θ · ‖`n2 ↪→ `n2‖θ ≤
n1−θ

‖
∑n

1 ei‖
1−θ
En0

.

Since En = [En0 , `
n
2 ]θ is of J-type θ (i. e. ‖x‖En ≤ ‖x‖1−θEn0

· ‖x‖θ`n2 for all x ∈ En), we have

‖
∑n

1 ei‖En ≤ ‖
∑n

1 ei‖
1−θ
En0
· nθ/2,

and consequently

‖En ↪→ `nu‖ ≤
n1−θ/2

‖
∑n

1 ei‖En
=

n1/u

‖
∑n

1 ei‖En
.

Proof of the implication (2)⇒(3) in Theorem 2.4: Assume that supn πr,2(En ↪→ `n2 ) <∞. By
(2.1), (2.8) and (2.13)

πr,2(En ↪→ `n2 ) ≥ [n/2]1/r · x[n/2](En ↪→ `n2 ) � n1/r

‖`n2 ↪→ En‖
� ‖En ↪→ `nu‖, (2.15)

which by assumption shows that supn ‖En ↪→ `nu‖ <∞. This clearly gives the claim.

Note that (2.15) (except of the latter asymptotic) does not depend on the special choice of r.

If E is a 2-concave and u-convex (1 ≤ u ≤ 2) symmetric Banach sequence space different
from `u (i. e. the inclusion `u ⊂ E is strict), then by Theorem 2.4 for 1/r = 1/u− 1/2

πr,2(En ↪→ `n2 )↗∞.

The following result gives the precise asymptotic order of the sequence (πr,2(En ↪→ `n2 ))n:
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Corollary 2.8. For 1 ≤ u ≤ 2 let E be a 2-concave and u-convex symmetric Banach sequence
space. Then for 2 ≤ r, s ≤ ∞ such that 1/r = 1/u− 1/2 and 1/s = 1/2− 1/r

πr,2(En ↪→ `n2 ) � µs,2(En ↪→ `n2 ) � n1/r+1/2

‖
∑n

1 ei‖En
.

Proof. The lower estimate has already been shown in (2.15), and the upper estimate simply
follows by factorization through `nu, the Bennett–Carl inequalities and (2.13).

Remark 2.9. (a) Since a u-convex Banach lattice is p-convex for all 1 ≤ p ≤ u (see [LT79,
1.d.5]), the formula in the preceding theorem even holds for all 2 ≤ r ≤ ∞ such that
1/r ≥ 1/u− 1/2.

(b) For 1 ≤ u ≤ 2 let E be a 2-concave and u-convex symmetric Banach sequence space, F an
arbitrary symmetric Banach sequence space, and let 2 ≤ r ≤ ∞ such that 1/r ≥ 1/u−1/2.
Then—by factorization through `n2 for the upper estimate and (2.15) for the lower one—
the following formula holds:

πr,2(En ↪→ Fn) � n1/r · ‖`
n
2 ↪→ Fn‖
‖`n2 ↪→ En‖

;

in particular, if F is 2-concave, then

πr,2(En ↪→ Fn) � n1/r ·
‖
∑n

1 ei‖Fn
‖
∑n

1 ei‖En
.

Note that these results can be considered as extensions of (2.7).

(c) For the special case F = `v (1 ≤ u ≤ v ≤ 2) the formulas in (b) even hold for all
2 ≤ r ≤ ∞ such that 1/r ≥ 1/u − 1/v; simply repeat the proof of Corollary 2.8 for
1/r = 1/u− 1/v and use the argument from remark (a).

(d) Using the right-hand side of [STJ80, (2.2)] and [P89, 10.4], one can see that for (2.11)
it is sufficient to assume that E is of weak cotype 2 (for this notion we refer to [P89,
10.1]; note that 2-concavity (=cotype 2) implies weak cotype 2), but we decided to keep
on using the more common notion of 2-concavity.

2.3 Bennett–Carl inequalities for unitary ideals

We now use Junge’s counterpart (2.3) of (2.2) and Theorem 2.1 to show a “non-commutative”
analogue. Note first that for all 1 ≤ u, v ≤ ∞ and 2 ≤ r ≤ ∞

n1/r ≤ πr,2(Snu ↪→ Snv ), (2.16)

and hence also for 2 ≤ s ≤ ∞

n1/2−1/s ≤ µs,2(Snu ↪→ Snv );
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this is a consequence of the trivial estimate πr,2(`n2 ↪→ `n2 ) ≥ n1/r (insert ek’s) and the fact
that `n2 is 1-complemented in each Snu (assign to each x ∈ `n2 the matrix x ⊗ e1 ∈ Snu ). For
u, v considered in Corollary 2.3 this lower bound is optimal:

Corollary 2.10. Let 1 ≤ u ≤ 2 and 1 ≤ u ≤ v ≤ ∞. Then for 2 ≤ s ≤ ∞ such that
1/s = 1/2− 1/u+ max(1/v, 1/2)

µs,2(Snu ↪→ Snv ) � n1/2−1/s.

In particular, for 2 ≤ r ≤ ∞ and 1/r = 1/u−max(1/v, 1/2)

πr,2(Snu ↪→ Snv ) � n1/r.

Proof. The proof of the upper bound is analogous to that of Corollary 2.3: Of course the
complex interpolation formula for Snp ’s is needed instead of that for `np ’s, and in i) use
π2(Sn1 ↪→ Sn2 ) = n1/2 (see (2.9)) and Junge’s result (2.3) in order to obtain

µu′,2(Snu ↪→ Sn2 ) ≤ dθ[Sn1 ,Sn2 ] · n(1−θ)/2 ≤ dθ[S1,S2] · n1/u−1/2,

where θ = 2/u′. Then in ii) one arrives at

µsθ̃,2(Snu ↪→ Snv ) ≺ n(1−θ̃)(1/u−1/2) = n1/u−1/v,

with θ̃ := (1/v − 1/2)/(1/u− 1/2) and 1/sθ̃ = (1− θ̃)/u′ + θ/2 = 1/2− 1/u+ 1/v=1/s.

Exploiting the ideas of the preceding section one easily obtains the asymptotic order of
the (r, 2)-summing and the (s, 2)-mixing norm of identities between finite-dimensional unitary
ideals SnE and Sn2 :

Corollary 2.11. For 1 ≤ u ≤ 2 let E be a 2-concave and u-convex symmetric Banach
sequence space. Then for all 2 ≤ r, s ≤ ∞ such that 1/r ≥ 1/u− 1/2 and 1/s = 1/2− 1/r

πr,2(SnE ↪→ Sn2 ) � µs,2(SnE ↪→ Sn2 ) � n2/r+1/2

‖
∑n

1 ei‖En
.

Proof. Recall the simple fact that for all symmetric Banach sequence spaces E and F

‖SnE ↪→ SnF ‖ = ‖En ↪→ Fn‖, (2.17)

and by the same reasoning as in Remark 2.9 (a) it is enough to deal with the case 1/r =
1/u− 1/2. Then factorization through Snu and (2.13) give

µu′,2(SnE ↪→ Sn2 ) ≺ ‖SnE ↪→ Snu‖ · n1/u−1/2 � n2/u−1/2

‖
∑n

1 ei‖En
=

n2/r+1/2

‖
∑n

1 ei‖En
,

and in order to obtain the lower estimate apply again (2.8) together with (2.1) and the second
asymptotic in (2.13):

πr,2(SnE ↪→ Sn2 ) ≥ [n2/2]1/r · x[n2/2](SnE ↪→ Sn2 ) � n2/r

‖`n2 ↪→ En‖
� n2/r+1/2

‖
∑n

1 ei‖En
.
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2.4 Applications

Weyl numbers

The results of the preceding sections can be used to improve on the estimates for Weyl
numbers of identities on symmetric Banach sequence spaces and unitary ideals in (2.8): The
exponent 1/2 in each of the two inequalities there can be replaced by 1/u − 1/2 whenever
u-convexity and 2-concavity assumptions are made.

Corollary 2.12. For 1 ≤ u, v ≤ 2 let E and F be 2-concave symmetric Banach sequence
spaces where E is u-convex and F is v-convex. Then there exist constants Cu, Cv > 0 such
that for all 1 ≤ k ≤ n

C−1
v ·

(
n− k + 1

n

)1/v−1/2

·
‖
∑n

1 ei‖Fn
‖
∑n

1 ei‖En
≤ xk(En ↪→ Fn) ≤ Cu ·

(n
k

)1/u−1/2
·
‖
∑n

1 ei‖Fn
‖
∑n

1 ei‖En
,

and all 1 ≤ k ≤ n2

C−1
v ·

(
n2 − k + 1

n2

)1/v−1/2

·
‖
∑n

1 ei‖Fn
‖
∑n

1 ei‖En
≤ xk(SnE ↪→ SnF ) ≤ Cu ·

(
n2

k

)1/u−1/2

·
‖
∑n

1 ei‖Fn
‖
∑n

1 ei‖En
.

Proof. The upper estimates follow by using the inequality (2.1) and the results from the
preceding two sections, and the lower estimates then are immediate consequences of the
upper ones—simply repeat the proof of (2.8) with a different exponent.

Recall that for the embedding `nu ↪→ `n2 , 1 ≤ u ≤ 2 by [CD92, 2.3.3] even the following equality
is known: xk(`nu ↪→ `n2 ) = k1/2−1/u, 1 ≤ k ≤ n. The second estimate in Corollary 2.12 implies
that for 1 < u < 2

ak(Sn2 ↪→ Snu ) = xk(Sn2 ↪→ Snu ) ≥ C−1
u ·

(
n2 − k + 1

n

)1/u−1/2

;

this disproves the conjecture

ak(Sn2 ↪→ Snu ) � max

(
1,
(
n2 − k + 1

n2

)1/2

· n1/u−1/2

)

from [CD97, p. 249] (put k := [n2 − nα + 1], 1 < α < 2). We conjecture that

ak(Sn2 ↪→ Snu ) � max

(
1,
(
n2 − k + 1

n

)1/u−1/2
)

;

note that by the interpolation property of the Gelfand numbers [Pie80, 11.5.8] it would suffice
to prove the case u = 1.
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Identities on Orlicz and Lorentz sequence spaces

In the following we apply our results, in particular the corollaries 2.8 and 2.11, to two natural
examples of symmetric Banach sequence spaces: Orlicz and Lorentz sequence spaces. We
only treat the case where the image space of the embedding is the finite-dimensional Hilbert
space and leave the formulation for other spaces and the corollaries for Weyl numbers to the
reader.

We start with Orlicz sequence spaces `M . An Orlicz function M is a continuous non-
decreasing and convex function defined for t ≥ 0 such that M(0) = 0 and limt→∞M(t) =∞.
It is said to satisfy the ∆2-condition at zero if limt→0 supM(2t)/M(t) < ∞. To any Orlicz
function M we associate the space `M of all sequences of scalars x = (x1, x2, . . . ) such that∑n

i=1M(|xn|/ρ) <∞ for some ρ > 0. The space `M equipped with the norm

‖x‖ := inf

{
ρ > 0

∣∣ ∞∑
n=1

M(|xn|/ρ) ≤ 1

}

is a Banach space usually called an Orlicz sequence space; it is a symmetric Banach sequence
space if M satisfies the ∆2-condition at zero.

Corollary 2.13. Let 1 < u < 2 and M be a strictly increasing Orlicz function which satisfies
the ∆2-condition at zero. Assume that there exists K > 0 such that for all s, t ∈ (0, 1]

K−1 · s2 ≤M(st)/M(t) ≤ K · su. (2.18)

Then for 2 < r, s <∞ such that 1/r > 1/u− 1/2 and 1/s = 1/2− 1/r

πr,2(`nM ↪→ `n2 ) � µs,2(`nM ↪→ `n2 ) � n1/r+1/2

‖
∑n

1 ei‖`nM
� n1/r+1/2 ·M−1(1/n)

and

πr,2(Sn`M ↪→ Sn2 ) � µs,2(Sn`M ↪→ Sn2 ) � n2/r+1/2

‖
∑n

1 ei‖`nM
� n2/r+1/2 ·M−1(1/n).

Note that (2.18) together with the ∆2-condition assures that `M is 2-concave and p-convex
for all 1 ≤ p < u (see [LT79, 2.b.5]).

Now we state an analogue for Lorentz sequence spaces d(w, u). Let 1 ≤ u <∞ and w =
(wn)n be a non-increasing sequence of positive numbers such that w1 = 1, limn→∞wn = 0
and

∑∞
n=1wn =∞. The Banach space of all sequences of scalars x = (x1, x2, . . . ) for which

‖x‖ := sup
π

( ∞∑
n=1

|xπ(n)|uwn

)1/u

<∞,

where π ranges over all the permutations of the integers, is denoted by d(w, u) and it is called
a Lorentz sequence space.
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Corollary 2.14. Let 1 < u < 2 and w be such that n · wqn �
∑n

i=1w
q
i , where q = 2/(2− u).

Then for 2 < r, s <∞ such that 1/r ≥ 1/u− 1/2 and 1/s = 1/2− 1/r

πr,2(dn(w, u) ↪→ `n2 ) � µs,2(dn(w, u) ↪→ `n2 ) � n1/r+1/2−1/u · w−1/u
n .

and
πr,2(Snd(w,u) ↪→ S

n
2 ) � µs,2(Snd(w,u) ↪→ S

n
2 ) � n2/r+1/2−1/u · w−1/u

n .

Recall that the space d(w, u) is u-convex, and if 1 ≤ u < 2, it is 2-concave if and only if w
satisfies the condition in the assumption of the corollary (see [Rei81, p. 245–247]).

Schatten Limit Orders

Finally, we consider the asymptotic order of the sequences (πr,2(Snu ↪→ Snv ))n for arbitrary
2 ≤ r ≤ ∞, 1 ≤ u, v ≤ ∞. Define the limit orders

λ(Πr,2, u, v) := inf{λ > 0 | ∃ ρ > 0∀n : πr,2(`nu ↪→ `nv ) ≤ ρ · nλ}

and
λS(Πr,2, u, v) := inf{λ > 0 | ∃ ρ > 0∀n : πr,2(Snu ↪→ Snv ) ≤ ρ · nλ}.

Here we only handle the limit order of summing operators since—using the fact that Πr,2 and
Ms,2 for 1/s+1/r = 1/2 are almost equal—one can easily see that λ(Πr,2, u, v) = λ(Mr,2, u, v)
and λS(Πr,2, u, v) = λS(Mr,2, u, v) (with the obvious definition for the right sides of these
equalities; see [Pie80, 22.3.7]).

The calculation of the limit order λ(Πr,2, u, v) was completed in [CMP78]:

�
�
�

�
��
��
�

0
1
r + 1

2

− 1
u

1
r + 1

v −
1
u

1
r

1
v − (1− 2

r ) 1
u

1
r

1
2

1
2 + 1

r

1
r′

1/v

1/u

Moreover, the proof in [CMP78] shows that the limit order is attained: πr,2(`nu ↪→ `nv ) �
nλ(Πr,2,u,v). In view of Corollary 2.10 the following conjecture seems to be natural:

Conjecture: λS(Πr,2, u, v) = 1/r + λ(Πr,2, u, v).

For the border cases r = 2 (the 2-summing norm) and r = ∞ (the operator norm) this
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conjecture by (2.7) and (2.9) is true. In the following corollary we confirm the upper estimates
of this conjecture for all u, v and the lower ones for all u, v except those in the upper left
corner of the picture.

Corollary 2.15. Let 1 ≤ u, v ≤ and 2 < r <∞.

(a) λS(Πr,2, u, v) = 1/r + λ(Πr,2, u, v) for 1 ≤ u ≤ 2.

(b) λS(Πr,2, u, v) ≤ 1/r + λ(Πr,2, u, v) for 2 ≤ u ≤ ∞, with equality whenever
1/v ≤ 1/r + (1− 2/r)(1/u).

Proof. Let 1/s := 1/2 − 1/r. The upper estimates for the case 1 ≤ u ≤ 2 follow from
Corollary 2.10: Consider for u0 := (1/2− 1/r)−1 the following alternative: (i) 1/u ≤ 1/u0 or
(ii) 1/u > 1/u0. Then the conclusion in case (i) is a consequence of Corollary 2.10 and the
following factorization:

µs,2(Snu ↪→ Snv ) ≤ ‖Snu ↪→ Snu0
‖ · µs,2(Snu0

↪→ Sn2 ) · ‖Sn2 ↪→ Snv ‖ ≺ n2/r+1/2−1/u+max(0,1/v−1/2),

and for (ii) look with v0 := (1/u− 1/r)−1 ≤ 2 at

µs,2(Snu ↪→ Snv ) ≤ µs,2(Snu ↪→ Snv0
) · ‖Snv0

↪→ Snv ‖ ≺ n1/r+max(0,1/r+1/v−1/u).

Now let 2 ≤ u ≤ ∞. Although this part is very close to the calculations made in [CMP78,
Lemma 6], we give an outline of the proof for the convenience of the reader. By (2.9) and
Theorem 2.1 (with no interpolation in the range or the image),

µs,2(Snu ↪→ Sn2 ) ≤ π2(Snu ↪→ Sn2 )2/r · ‖Snu ↪→ Sn2 ‖1−2/r = n1/r+1/2−(1−2/r)(1/u),

hence, by factorization, for 1 ≤ v ≤ 2

µs,2(Snu ↪→ Snv ) ≤ n1/r+1/v−(1−2/r)(1/u).

Furthermore, for 1/v1 := 1/r + (1− 2/r)(1/u)

µs,2(Snu ↪→ Snv1
) ≤ π2(Snu ↪→ Sn2 )2/r · ‖Snu ↪→ Snu‖1−2/r = n2/r,

hence
µs,2(Snu ↪→ Snv ) ≤ n2/r

for all v1 ≤ v ≤ ∞. Finally, for all 2 < v < v1 and 0 < θ < 1 such that 1/v = (1−θ)/v1 +θ/2

µs,2(Snu ↪→ Snv ) ≤ µs,2(Snu ↪→ Snv1
)1−θ · µs,2(Snu ↪→ Sn2 )θ

≤ n1/r+(1−θ)/r+θ(1/2−(1−2/r)(1/u)) = n1/r+1/v−(1−2/r)(1/u).

Looking at the picture for λ(Πr,2, u, v) one can see that these are the desired results. For the
lower estimates recall (2.1):

[n2/2]1/r · x[n2/2](Snu ↪→ Snv ) ≤ πr,2(Snu ↪→ Snv ),
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hence (2.10) implies

πr,2(Snu ↪→ Snv ) �


n2/r+1/v−1/u if 1 ≤ u, v ≤ 2,
n2/r+1/2−1/u if 1 ≤ u ≤ 2 ≤ v ≤ ∞,
n2/r if 2 ≤ u, v ≤ ∞.

Using (2.16), these estimates can be improved upon, for those u, v for which λ(Πr,2, u, v) =
0.

Our results for λS(Πr,2, u, v) can be summarized in the following diagram:

�
�
�

�
��
��
�

1
r

2
r + 1

2

− 1
u

2
r + 1

v −
1
u

2
r

≤ 1
r + 1

v

−(1− 2
r ) 1
u

1
r

1
2

1
2 + 1

r

1
r′

1/v

1/u
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3 Complex interpolation of operators generated by orthonor-
mal systems

In this section we continue our work on interpolating ideal norms within the framework of
(B, q, p)-summing operators (1 ≤ p ≤ 2 ≤ q < ∞), where B is an orthonormal system in
some L2(µ), and either q = 2 or p = 2 and B is a so-called “Λ(q)-system”; for the case
p = q = 2 these Banach operator ideals became of interest recently in the theses of Baur
[Bau97] and Seigner [Sei95], and for the more special case of an orthonormal system generated
by Gaussian variables this notion goes back to Linde and Pietsch [LP74]. Our main result will
be a characterization of sets of characters on a compact abelian group which are Λ(p)-sets for
all 2 < p <∞ by means of the limit orders of the associated ideals of B-summing operators.
Moreover, we compute the asymptotic order of the Gaussian-summing norm of Schatten class
identities and shed some new light on the Bennett–Carl inequalities.

Henceforth, we only consider probability spaces (Ω,Σ, µ) such that L2(µ) is infinite-
dimensional. Moreover, B ⊂ L2(µ) always denotes an infinite orthonormal system. For
2 < p < ∞ an orthonormal system B ⊂ L2(µ) is said to be a Λ(p)-system if B ⊂ Lp(µ),
and there exists a constant C > 0 such that for each finite sequence a1, . . . , an of scalars and
b1, . . . , bn ∈ B ∥∥∥∥∥

n∑
i=1

aibi

∥∥∥∥∥
Lp(µ)

≤ C ·

(
n∑
i=1

|ai|2
)1/2

. (3.1)

We write Kp(B) for the smallest constant C satisfying (3.1). For simplicity we set
Kp(B) :=∞ whenever B is not a Λ(p)-system, and K2(B) := 1 for any orthonormal sys-
tem B.

The so-called “Khinchine inequalities” (see e. g. [DJT95, 1.10] or [DF93, 8.5]) imply that the
system of the Rademacher functions is a Λ(p)-system for all 2 < p < ∞: Let 1 ≤ p < ∞.
Then there exist constants ap and bp ≥ 1 such that for each finite sequence a1, . . . , an of
scalars

a−1
p

(
n∑
i=1

|ai|2
)1/2

≤

∥∥∥∥∥
n∑
i=1

airi

∥∥∥∥∥
Lp[0,1]

≤ bp

(
n∑
i=1

|ai|2
)1/2

. (3.2)

For Gaussian variables instead of Rademacher functions, the above inequalities even turn
into an equality (see e. g. [DF93, 8.7]).

For 1 ≤ p ≤ 2 ≤ q < ∞ and an orthonormal system B ⊂ L2(µ) such that either q = 2,
or p = 2 and Kq(B) < ∞, an operator T : X → Y between Banach spaces X and Y is said
to belong to the class of (B, q, p)-summing operators, ΠB,q,p, if there exists a constant c > 0
such that for all finite sequences b1, . . . , bn in B and x1, . . . , xn in X(∫

Ω
‖

n∑
i=1

bi · Txi‖qdµ

)1/q

≤ c ·Kq(B) · sup
x′∈BX′

(
n∑
i=1

|〈x′, xi〉|p
)1/p

. (3.3)
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We write πB,q,p(T ) for the smallest constant c satisfying (3.3). In this way we obtain the
injective and maximal Banach operator ideal (ΠB,q,p, πB,q,p); note that ΠB,2,p is defined for
every (infinite) orthonormal system B. Trivially, ΠB,2,p(idK) = Π2,p(idK) = 1, and for an
easy argument which shows ΠB,q,2(idK) = 1 we refer to [Sei95, 4.4]. The parameter q in the
above definition together with the Λ(q)-system assumption was inspired by the “q-Parseval-
Normen” in [Sei95], whereas the parameter p (instead of 2) seems to be new in this context.

The ideal (ΠB,2,2, πB,2,2) will also be denoted by (ΠB, πB), the ideal of all B-summing oper-
ators; this definition goes back to [Bau97] and [Sei95], and if G is a sequence of independent
standard Gaussian random variables (on (Ω̃, Σ̃, µ̃) whenever needed explicitly), then (ΠG , πG)
is the ideal (Πγ , πγ) of Gaussian-summing operators introduced in [LP74]. It is well-known
(see e. g. [DJT95, 12.12]) that (Πγ , πγ) coincides with the ideal (Πas, πas) of almost summing
operators which is generated by the system of Rademacher functions. Note that for q = 2
and the orthonormal system B := {2n/2 · χn |n ∈ N} ⊂ L2((0, 1]), where χn denotes the
characteristic function of the interval (2−n, 21−n], one has ΠB,2,p = Π2,p. We will also write
(Πγ,p, πγ,p) and (Πas,p, πas,p) instead of (Πγ,2,p, πγ,2,p) and (Πas,2,p, πas,2,p).

Note that—compare to the case of mixing operators (see the proof of Theorem 2.1)—the
(B, q, p)-summing norm of an operator T : E → F can be computed in the following way:
Consider for F = {b1, . . . , bm} ⊂ B the mapping

Φm,F : L(`mp′ , E) → Lq(µ, F )
S 7→ Kq(B)−1 ·

∑m
i=1 bi · TSei;

then T ∈ ΠB,q,p if and only if c := sup{‖Φm,F‖ |m ∈ N,F ⊂ B with |F| = m} < ∞, and in
this case πB,q,p(T ) = c.

Some simple consequences of the above definition are as follows:

Proposition 3.1. Let 1 ≤ p ≤ 2 ≤ q0 ≤ q1 ≤ q < ∞, B an orthonormal system with
Kq(B) <∞ and X,Y Banach spaces.

(a) ΠB,q1,2 ⊂ ΠB,q0,2, and πB,q0,2(T ) ≤ (Kq1(B)/Kq0(B)) · πB,q1,2(T ) for all T ∈ ΠB,q1,2.

(b) Πas,1 = L, and Πas,1(T ) ≤
√

2 · ‖T‖ for all T ∈ L.

(c) Πγ,p ⊂ Πas,p, and Πγ,p(X,Y ) = Πas,p(X,Y ) whenever Y has a finite cotype.

(d) Π2 ⊂ Πq ⊂ ΠB,q,2 ⊂ ΠB ⊂ Πγ, and all inclusions have norm 1, except the third one (see
(a)).

(e) If Y has cotype 2, then Π2(X,Y ) = ΠB,q,2 = Πγ(X,Y ) and Πγ,p(X,Y ) ⊂ ΠB,2,p(X,Y ).

Proof. (a) This is obvious since Lq1(µ) ⊂ Lq0(µ).
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(b) Let T ∈ L(X,Y ) and x1, . . . , xn ∈ X. Then(∫ 1

0
‖

n∑
i=1

ri · Txi‖2dλ

)1/2

≤
√

2 ·
∫ 1

0
‖

n∑
i=1

ri · Txi‖ dλ

≤
√

2 · ‖T‖ ·
∫ 1

0
sup

x′∈BX′
|
n∑
i=1

ri · 〈x′, xi〉| dλ

≤
√

2 · ‖T‖ · sup
x′∈BX′

n∑
i=1

|〈x′, xi〉|.

(c) This follows from [DJT95, 12.11] and [DJT95, 12.27].

(d) The first and the third inclusion are trivial, the second follows from the Pietsch Domi-
nation Theorem (see e. g. [DJT95, 2.12 and 12.5] and [Bau97, 7.10] or [Sei95, 4.9]), and the
last one can be found in [PW98, 4.15.3].

(e) The first part is a simple consequence of the definition together with (d), and the second
part follows from [LT91, 9.24 and 9.25].

3.1 Complex Interpolation of (B, q, p)-summing operators

Our main tool will be the following interpolation theorem which is a natural counterpart to
Theorem 2.1.

Theorem 3.2. Let 0 < θ < 1 and 1 ≤ p0, p1 ≤ 2 ≤ q < ∞ such that either p0 = p1 = 2
or q = 2. Then for two finite-dimensional interpolation couples [E0, E1] and [F0, F1], each
T ∈ L([E0, E1]θ, [F0, F1]θ) and each orthonormal system B ⊂ L2(µ) with Kq(B) <∞

πB,q,pθ(T : [E0, E1]θ → [F0, F1]θ)

≤ dθ[`p0 , `p1 ;E0, E1] · πB,q,p0(T : E0 → F0)1−θ · πB,q,p1(T : E1 → F1)θ,

where 1/pθ := (1− θ)/p0 + θ/p1.

Proof. For the moment set Eθ := [E0, E1]θ, Fθ := [F0, F1]θ, and consider for η = 0, θ, 1 and
F = {b1, . . . , bm} ⊂ B the mapping

Φm,F
η : L(`mp′η , Eη) → Lq(µ, Fη)

S 7→ Kq(B)−1 ·
∑m

i=1 bi · TSei;

then, as explained above,

πB,q,pη(T : Eη → Fη) = sup{‖Φm,F
η ‖ |m ∈ N,F ⊂ B with |F| = m}.

For the interpolated mapping

[Φm,F
0 ,Φm,F

1 ]θ : [L(`mp′0 , E0),L(`mp′1 , E1)]θ → [Lq(µ, F0), Lq(µ, F1)]θ
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by the usual interpolation theorem

‖[Φm,F
0 ,Φm,F

1 ]θ‖ ≤ ‖Φm,F
0 ‖1−θ · ‖Φm,F

0 ‖θ.

Since [Lq(µ, F0), Lq(µ, F1)]θ = Lq(µ, [F0, F1]θ) (isometrically) we obtain

‖Φm,F
θ ‖ ≤ ‖L(`mp′θ , [E0, E1]θ) ↪→ [L(`mp′0 , E0),L(`mp′1 , E1)]θ‖ · ‖[Φm,F

0 ,Φm,F
1 ]θ‖.

Consequently

πB,q,pθ(T : [E0, E1]θ → [F0, F1]θ)

= sup{‖Φm,F
θ ‖ |m ∈ N,F ⊂ B with |F| = m}

≤ sup{dθ[`mp0
, `mp1

;E0, E1] · ‖Φm,F
0 ‖1−θ · ‖Φm,F

0 ‖θ |m ∈ N,F ⊂ B with |F| = m}
≤ dθ[`p0 , `p1 ;E0, E1] · πB,q,p0(T : E0 → F0)1−θ · πB,q,p1(T : E1 → F1)θ,

the desired result.

In order to simplify future work, we will formulate two immediate corollaries of this
theorem.

Corollary 3.3. Let 0 < θ < 1 and [E0, E1], [F0, F1] be two finite-dimensional interpolation
couples. Then for each T ∈ L([E0, E1]θ, [F0, F1]θ)

πγ(T : [E0, E1]θ → [F0, F1]θ) ≤ dθ[E0, E1] · πγ(T : E0 → F0)1−θ · πγ(T : E1 → F1)θ.

Corollary 3.4. Let 1 < p < 2 and [E0, E1], [F0, F1] be two finite-dimensional interpolation
couples. Then for θ := 2/p′ and each T ∈ L([E0, E1]θ, [F0, F1]θ)

πas,p(T : [E0, E1]θ → [F0, F1]θ) ≤ dθ[`1, `2;E0, E1] · ‖T : E0 → F0‖1−θ · πas(T : E1 → F1)θ.

3.2 Λ(p)-systems and the limit order of (B, q, 2)-summing operators

In this part we show that for each 2 ≤ q < ∞ and each orthonormal system B which is a
Λ(p)-system for all 2 < p <∞ the limit order of the ideal ΠB,q,2 coincides with that of Πγ :

Theorem 3.5. Let B ⊂ L2(µ) be a Λ(p)-system for all 2 < p <∞. Then for all 2 < q <∞
and 1 ≤ u, v ≤ ∞

λ(ΠB,q,2, u, v) = λ(ΠB, u, v) = λ(Πγ , u, v) =

{
1/v if 2 ≤ u ≤ ∞,
max(0, 1/2 + 1/v − 1/u) if 1 ≤ u ≤ 2.

39



As a diagram:

�
�
�
�
�
�

1
v

1
2 + 1

v −
1
u

0

1/v

1/u1
2

1
2

The proof of the theorem requires the following lemma which gives for 2 ≤ u ≤ ∞ and
2 < q < ∞ lower and upper estimates of πB,q,2(`mu ↪→ `mq ) whenever B ⊂ L2(µ) is a Λ(q)-
system:

Lemma 3.6. For 2 ≤ u ≤ ∞ and 2 < q <∞ let B ⊂ L2(µ) be a Λ(q)-system. Then

Kq(B)−1 ·m1/q ≤ πB,q,2(`mu ↪→ `mq ) ≤ m1/q.

Proof. Let x(1) = (x(1)
i )m1 , . . . , x

(n) = (x(n)
i )m1 ∈ `mu . Then for all 1 ≤ i ≤ m

(
n∑
k=1

|x(k)
i |

2

)1/2

≤

(
n∑
k=1

|〈ei, x(k)〉|2
)1/2

≤ sup
x′∈B`m

u′

(
n∑
k=1

|〈x′, x(k)〉|2
)1/2

. (3.4)

Hence, for b1, . . . , bn ∈ B,

∫
Ω

∥∥∥∥∥
n∑
k=1

bk · x(k)

∥∥∥∥∥
q

`mq

dµ

1/q

=

(∫
Ω

m∑
i=1

∣∣∣∣∣
n∑
k=1

bk · x
(k)
i

∣∣∣∣∣
q

dµ

)1/q

=

(
m∑
i=1

∫
Ω

∣∣∣∣∣
n∑
k=1

bk · x
(k)
i

∣∣∣∣∣
q

dµ

)1/q

≤ Kq(B) ·

 m∑
i=1

(
n∑
k=1

|x(k)
i |

2

)q/21/q

≤ Kq(B) ·m1/q · sup
x′∈B`m

u′

(
n∑
k=1

|〈x′, x(k)〉|2
)1/2

.
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Consequently πB,q,2(`mu ↪→ `mq ) ≤ m1/q. For the lower estimate use Proposition 3.1 (d):

πB,q,2(`mu ↪→ `mq ) ≥ Kq(B)−1 · πB(`mu ↪→ `mq ) ≥ Kq(B)−1 · ‖`mq ↪→ `m2 ‖−1 · π2(`mu ↪→ `m2 )

= Kq(B)−1 ·m1/q.

(see also [PW98, 3.11.11] for the main part of this proof).

Proof of Theorem 3.5: For 1 ≤ v ≤ 2 the statement follows from the fact that `v has cotype 2
and consequently, by Proposition 3.1 (e), ΠB,q,2(·, `v) = Π2(·, `v). Now let 2 < v < ∞ and
2 ≤ u ≤ ∞. Then if v ≥ q, we conclude from Lemma 3.6

πB,q,2(`mu ↪→ `mv ) ≤ (Kv(B)/Kq(B)) · πB,v,2(`mu ↪→ `mv ) ≤ (Kv(B)/Kq(B)) ·m1/v,

and if v < q, one has

πB,q,2(`mu ↪→ `mv ) ≤ ‖`mq ↪→ `mv ‖ · πB,q,2(`mu ↪→ `mq ) ≤ m1/v,

hence λ(ΠB,q,2, u, v) ≤ 1/v; from the continuity of the limit order it follows that
λ(ΠB,q,2, u,∞) = 0.

Now consider the case 1 ≤ u ≤ 2 ≤ v ≤ ∞. Theorem 3.2 with p0 = p1 = 2 and the fact that
dθ[`m1 , `

m
2 ] ≤

√
2 give, for u, v0 such that 1/v0 = 1/u− 1/2 and θ := 2/u′,

λ(ΠB,q,2, u, v0) ≤ (1− θ) · λ(ΠB,q,2, 1, 2) + θ · λ(ΠB,q,2, 2,∞) = 0.

For arbitrary 1 ≤ u ≤ 2 ≤ v ≤ ∞ factorize through `mv0
:

πB,q,2(`mu ↪→ `mv ) ≤ mmax(0,1/v+1/2−1/u) · πB,q,2(`mu ↪→ `mv0
),

hence λ(ΠB,q,2, u, v) ≤ max(0, 1/v + 1/2 − 1/u). The upper estimates for λ(ΠB, u, v) now
follow by Proposition 3.1 (d); using the same argument it is sufficient to prove the lower
estimates for ΠB only. These can be obtained by factorization through `m2 :

πB(`mu ↪→ `mv ) ≥ ‖`mv ↪→ `m2 ‖−1 · πB(`mu ↪→ `m2 ) = mmax(1/v+min(1/2−1/u,0),0)

(recall that we only have to treat the case 2 ≤ v ≤ ∞).

Note that we have calculated the limit order of Πγ in particular, which is already known by
the results of [LP74].

For the case q = 2 Theorem 3.5 is sharp in the following sense: Let G be a compact abelian
group, mG its normalized Haar measure and Γ its dual group. Then every subset Λ ⊂ Γ is
an orthonormal system in L2(G,mG), and we have the following characterization:

Corollary 3.7. For every infinite subset Λ ⊂ Γ the following are equivalent:

(a) Λ is a Λ(p)-set for all 2 < p <∞.

(b) λ(ΠΛ, u, v) = λ(Πγ , u, v) for all 1 ≤ u, v ≤ ∞.
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Proof. The implication (a)⇒(b) has already been proved in Theorem 3.5, and the reverse one
follows from [Bau97]: (b) trivially implies λ(ΠB,∞,∞) = 0, and the comments after [Bau97,
7.12] then tell us that Πp ⊂ ΠΛ for all 2 < p < ∞. This in turn gives by [Bau97, 9.6] (see
also [Bau99, 5.1]) that Λ is a Λ(p)-set for all 2 < p <∞.

Note that this corollary is a natural counterpart to a recent result of Baur [Bau97, 9.5] (see
also [Bau99, 4.2]): Recall that a subset Λ ⊂ Γ is said to be a Sidon set if there exists θ > 0
such that for all Q =

∑
γ∈Λ αγ · γ ∈ span(Λ) we have

∑
γ∈Λ |αγ | ≤ θ · ‖Q‖∞.

Proposition 3.8. For every infinite subset Λ ⊂ Γ the following are equivalent:

(a’) Λ is a Sidon set.

(b’) ΠΛ = Πγ.

In order to see the strong relationship of Corollary 3.7 to Baur’s result the following charac-
terization of a Sidon set due to Pisier [P78] may be helpful: (a’) is equivalent to

(a”) Λ is a Λ(p)-set with constant Kp(Λ) ≤ κ√p for all 2 < p <∞ and some κ > 0.

Moreover, Proposition 3.8 shows that condition (b) in Corollary 3.7 cannot be replaced by
condition (b’): Γ contains subsets which are Λ(p)-sets for all 2 < p <∞ but fail to be Sidon
sets (see e. g. [LR75, 5.14]). Hence, Corollary 3.7 may be viewed as a weak version of Baur’s
result. However, while the implication (a)⇒(b) in Corollary 3.7 also holds in the general
case, it seems to be unknown whether (a”) implies (b’) for arbitrary orthonormal systems B.
Baur has recently informed us that her results (and therefore Corollary 3.7) also hold in the
non-abelian case.

Note that by using [Bau99, 5.1] the case q = 2 in Theorem 3.5 (and therefore Corollary 3.7)
can be proved without complex interpolation: If B is a Λ(p)-system for all 2 < p < ∞,
then ΠB(·, X) = Πγ(·, X) holds for any X quotient of a subspace of some Lp(µ) and some
1 ≤ p < ∞, which—together with the continuity of the limit order—clearly implies that
λ(ΠB, u, v) = λ(Πγ , u, v) for all 1 ≤ u, v ≤ ∞. Nevertheless, our concept of interpolating
(B, q, p)-summing norms will lead us in the following to some more new results for which we
do not have any alternative proofs without interpolation yet.

3.3 Schatten limit orders and Bennett–Carl inequalities revisited

Next we pick up the ideas from the proof of Theorem 3.5 in order to compute the Schatten
limit order of the ideal Πγ ; more precisely, we obtain asymptotic estimates for the sequence
(πγ(Snu ↪→ Snv ))n. It turns out that theses quantities are closely connected to the limit order
of Πγ :
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Proposition 3.9. For 1 ≤ u, v ≤ ∞

πγ(Snu ↪→ Snv ) �

{
n1/2+1/v if 2 ≤ u ≤ ∞,
n1/2+max(0,1/2+1/v−1/u) if 1 ≤ u ≤ 2.

In particular,
πγ(Snu ↪→ Snv ) � n1/2+λ(Πγ ,u,v).

As a diagram for the Schatten limit order λS(Πγ , u, v) we now get the following:

�
�
�
�
�
�

1
2 + 1

v

1 + 1
v −

1
u

1
2

1/v

1/u1
2

1
2

Proof. Since by [TJ74] Sv is of cotype 2 for 1 ≤ v ≤ 2 only the case 2 ≤ v ≤ ∞ has to be
considered. First let u = v =∞. Then by [PW98, 4.15.18] (a result of Pisier, see also [P89,
4.4] and [P86b]) and [FLM77, 3.3] for each ε > 0

πγ(Sn∞ ↪→ Sn∞) �
√
D(Sn∞, ε) � n1/2, (3.5)

where D(X, ε) denotes the Dvoretzky dimension of a Banach space X, i. e. the largest m
such that there exists an m-dimensional subspace Xm of X with Banach–Mazur distance
d(Xm, `

m
2 ) ≤ 1 + ε (see [PW98, 4.15.15]). Now the general case 2 ≤ u, v ≤ ∞ follows by

factorization:
πγ(Snu ↪→ Snv ) ≤ n1/v · πγ(Sn∞ ↪→ Sn∞) � n1/v+1/2,

and conversely
πγ(Snu ↪→ Snv ) ≥ n1/v−1/2 · πγ(Sn2 ↪→ Sn2 ) = n1/v+1/2.

The case 1 ≤ u ≤ 2 ≤ v ≤ ∞ is done by interpolation: We have (recall that π2(Sn1 ↪→ Sn2 ) =
n1/2)

πγ(Sn1 ↪→ Sn2 ) � πγ(Sn2 ↪→ Sn∞) � n1/2,

hence for 1 < u < 2 < v0 <∞ and 0 < θ < 1 such that 1/v0 = 1/u− 1/2 and θ = 2/u′

πγ(Snu ↪→ Snv ) ≤ dθ[Sn1 ,Sn2 ] · πγ(Sn1 ↪→ Sn2 )1−θ · πγ(Sn2 ↪→ Sn∞)θ � n1/2;

recall that due to [Jun96] supn dθ[Sn1 ,Sn2 ] < ∞. The remaining estimates now follow easily
from

πγ(Snu ↪→ Snv ) ≥ πγ(`n2 ↪→ `n2 ) = n1/2
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and analogous factorizations as in the corresponding part of the proof of Theorem 3.5.

Next we present an extension of the Bennett–Carl inequalities within the framework of
(γ, p)-summing operators.

Theorem 3.10. Let 1 ≤ u < 2, 1 ≤ v ≤ ∞ and 1 ≤ p ≤ 2. Then

πγ,p(`nu ↪→ `nv ) � nmax(0,1/p′+1/v−1/u).

In particular, for 1 ≤ u < 2, 1 ≤ u ≤ v ≤ ∞ and 1 ≤ p ≤ 2

(id : `u ↪→ `v) ∈ Πγ,p if and only if 1/p ≥ 1/u′ + 1/v.

As an (incomplete) diagram for the limit order of Πγ,p this gives the following:

�
�
�
�
�
�

?

1
p′ + 1

v −
1
u

0

1/v

1/u1
2

1
p

Proof. The case p = 1 is trivial, and the case p = 2 is due to [LP74]. Now fix 1 < p < 2 and
1 ≤ u < 2, and let 1/v2 := 1/u− 1/2, 1/vp := 1/u− 1/p′ and θ := 2/p′. Then

(1− θ)/u+ θ/v2 = 1/u− θ · (1/u− 1/v2) = 1/u− 1/p′ = 1/vp

and
(1− θ)/1 + θ/2 = 1− θ/2 = 1/p.

Recall from (1.14) that dθ[`1, `2; `nu, `
n
u] ≤ 16, hence by Corollary 3.4

πγ,p(`nu ↪→ `nvp) � πas,p(`
n
u ↪→ `nvp) ≤ dθ[`1, `2; `nu, `

n
u] · ‖`nu ↪→ `nu‖1−θ · πas(`nu ↪→ `nv2

)θ ≺ 1.

Now let 1 ≤ u < 2 and 1 ≤ u ≤ v ≤ ∞. Then

πγ,p(`nu ↪→ `nv ) ≤ ‖`nvp ↪→ `nv‖ · πγ,p(`nu ↪→ `nvp) � n
max(0,1/p′+1/v−1/u).

For the lower estimates consider first the case 1 ≤ v ≤ 2:

πγ,p(`nu ↪→ `nv ) � π2,p(`nu ↪→ `nv ) � nmax(0,1/p′+1/v−1/u),
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and for 2 ≤ v ≤ ∞ such that 1/v ≥ 1/u− 1/p′

πγ,p(`nu ↪→ `nv ) ≥ ‖`nv ↪→ `n2‖−1 · πγ,p(`nu ↪→ `n2 ) � nmax(0,1/p′+1/v−1/u).

We conjecture the following diagram for the limit order of Πγ,p:

�
�
�
�
�
�
�
��

1
v

1
p′ + 1

v −
1
u

0

1/v

1/u1
p′

1
p

The “if-part” of Theorem 3.10 now gives the Bennett–Carl inequalities within the more
general setting of (B, 2, p)-summing operators. Recall that there exists an orthonormal system
B such that Π2,p = ΠB,2,p for all 1 ≤ p ≤ 2.

Corollary 3.11. Let 1 ≤ u < 2, 1 ≤ u ≤ v <∞ and 1 ≤ p ≤ 2 such that 1/p ≥ 1/u′ + 1/v.
Then for all orthonormal systems B with Kmax(2,v)(B) <∞

(id : `u ↪→ `v) ∈ ΠB,2,p.

Proof. For the case v ≤ 2 the statement immediately follows from Theorem 3.10 together
with Proposition 3.1 (e). Now let 2 < v <∞ and B be a Λ(v)-system. Then by [Bau99, 5.1]
and the definition of ΠB,2,p and Πγ,p it follows that Πγ,p(·, `v) ⊂ ΠB,2,p(·, `v), and together
with the preceding theorem this gives the claim.

We conjecture that the above corollary even holds for all 1 ≤ u <∞.

Remark 3.12. Let 1 ≤ u ≤ 2. By (1.14) and the fact that Su is of cotype 2 we know that
supn dθ[`1, `2;Snu ,Snu ] <∞, hence, using Proposition 3.9 and similar arguments as in the proof
of Theorem 3.10, for 1 ≤ u ≤ 2, 1 ≤ p ≤ 2 and 1 ≤ u ≤ v ≤ ∞ such that 1/v ≤ 1/p − 1/u′

we obtain

πγ,p(Snu ↪→ Snv ) � n1/p′ (3.6)

(note that for all 1 ≤ u, v ≤ ∞ one has πγ,p(Snu ↪→ Snv ) ≥ πγ,p(`n2 ↪→ `n2 ) = n1/p′).
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4 Complex interpolation of spaces of operators on `1

In [Kwa68] it was shown that for 1 ≤ p ≤ ∞ and 1 ≤ r ≤ 2 defined by 1/r = 1− |1/2− 1/p|
every continuous operator on `1 with values in `p is (r, 1)-summing, i. e. L(`1, `p) =
Πr,1(`1, `p). Carl and Defant in [CD92] gave a generalization of Kwapień’s result within
the framework of mixing operators: For 2 ≤ s ≤ ∞ such that 1/s = |1/2 − 1/p| we have
L(`1, `p) =Ms,1(`1, `p). While Kwapień used interpolation techniques (e. g. the Three-Lines-
Theorem), Carl and Defant used a certain tensor product trick. Our aim in this section is to
show that their result can be proved by complex interpolation. Moreover, we show that the
same ideas can be carried over to the notion of (γ, p)-summing operators, and from this we
obtain another generalization of Kwapień’s result (at least for 1 ≤ p ≤ 2) which also gives a
link to the so-called type indices of Banach function spaces.

The following lemma is a reformulating of Kwapień’s interpolation trick for arbitrary
maximal Banach operator ideals, with an additional approximation part.

Lemma 4.1. Let ([F0, F1], F,B) be a cofinal interpolation triple, 0 < θ < 1 and (A, A) a
maximal Banach operator ideal with

cθ := sup
n

sup
M∈B

‖L(`n1 , [M0,M1]θ) ↪→ A(`n1 , [M0,M1]θ)‖ <∞.

Then
L(`1, [F0, F1]θ) = A(`1, [F0, F1]θ).

Proof. Denote by ε the injective tensor norm, by α the finitely generated tensor norm asso-
ciated to (A, A) and by

←
α its cofinite hull in the sense of [DF93, 17.3 and 12.4]. We prove

that

‖`n∞ ⊗ε (F, ‖ · ‖[F0,F1]θ) ↪→ `n∞ ⊗←α (F, ‖ · ‖[F0,F1]θ)‖ ≤ cθ. (4.1)

Then by density (see [DF93, 13.4])

‖`n∞ ⊗ε [F0, F1]θ ↪→ `n∞ ⊗←α [F0, F1]θ‖ ≤ cθ,

hence the claim follows by the Embedding Theorem [DF93, 17.6] and local techniques [DF93,
23.1].

For z ∈ `n∞ ⊗ F choose by Lemma 1.3 a subspace M ∈ B such that z ∈ `n∞ ⊗M and
‖(M, ‖ · ‖[F0,F1]θ) ↪→ [M0,M1]θ‖ ≤ 1 + ε. Then by the mapping properties of

←
α and ε and the

fact that the injective tensor norm respects subspaces we have

‖z‖`n∞⊗←α (F,‖·‖[F0,F1]θ
) ≤ ‖z‖`n∞⊗←α [M0,M1]θ and ‖z‖`n∞⊗ε[M0,M1]θ ≤ (1+ε)·‖z‖`n∞⊗ε(F,‖·‖[F0,F1]θ

),

hence (4.1) follows from the assumption and the Embedding Theorem.
In our applications the approximation lemma will be combined with what we call the “in-
terpolation trick”, due to Kwapień and based on complex interpolation of vector-valued `p’s
[BL78, 5.1.2]:

L(`n1 , [M0,M1]θ) = `n∞([M0,M1]θ) = [`n∞(M0), `n∞(M1)]θ = [L(`n1 ,M0),L(`n1 ,M1)]θ
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(isometrically).

4.1 Mixing operators on `1

Proposition 4.2. Let [E0, E1] and [F0, F1] be finite-dimensional interpolation couples and
2 ≤ s0, s1 ≤ ∞. Then for 0 ≤ θ ≤ 1 and 2 ≤ sθ ≤ ∞ defined by 1/sθ = (1− θ)/s0 + θ/s1

‖[Ms0,2(E0, F0),Ms1,2(E1, F1)]θ ↪→Msθ,2([E0, E1]θ, [F0, F1]θ)‖ ≤ dθ[E0, E1].

Proof. Consider for η = 0, 1 the trilinear norm 1 mappings

Φn,m
η : Msη ,2(Eη, Fη) × `nsη(F ′η) × L(`m2 , Eη) −→ `m2 (`nsη)

T × (y′1, . . . , y
′
n) × S 7−→ ((〈y′k, TSe`〉)k)`

.

Then for the interpolated mapping

[Φn,m
0 ,Φn,m

1 ]θ : [Ms0,2(E0, F0),Ms1,2(E1, F1)]θ × [`ns0(F ′0), `ns1(F ′1)]θ
× [L(`m2 , E0),L(`m2 , E1)]θ → [`m2 (`ns0), `m2 (`ns1)]θ,

by multilinear interpolation (Proposition 0.3) we also have ‖[Φn,m
0 ,Φn,m

1 ]θ‖ ≤ 1. It follows
that for each T : [E0, E1]θ → [F0, F1]θ, each S ∈ L(`m2 , [E0, E1]θ) and y′1, . . . , y

′
n ∈ [F0, F1]′θ m∑

j=1

(
n∑
k=1

|〈y′k, TSej〉|sθ
)2/sθ

1/2

≤ ‖T‖[Ms0,2(E0,F0),Ms1,2(E1,F1)]θ · ‖S‖[L(`m2 ,E0),L(`m2 ,E1)]θ · ‖(yk)k‖[`ns0 (F ′0),`ns1 (F ′1)]θ

≤ dθ[E0, E1] · ‖T‖[Ms0,2(E0,F0),Ms1,2(E1,F1)]θ · ‖S‖L(`m2 ,[E0,E1]θ) · ‖(yk)k‖`nsθ ([F0,F1]′θ),

hence
‖T‖Msθ,2

([E0,E1]θ,[F0,F1]θ) ≤ dθ[E0, E1] · ‖T‖[Ms0,2(E0,F0),Ms1,2(E1,F1)]θ .

A very profitable situation is given if E0 = E1 = `1 or `∞:

Corollary 4.3. Let F be a θ-Hilbert space, 0 ≤ θ < 1.

(a) L(`1, F ) =M 2
1−θ ,2

(`1, F ) = Π 2
θ
,2(`1, F ).

(b) L(`∞, F ) =M 2
1−θ ,2

(`∞, F ) = Π 2
θ
,2(`∞, F ).

(c) Every 2
1−θ -summing operator on F factorizes through a Hilbert space.

By local techniques (see e. g. [DF93, 23.1]) the spaces `1 and `∞ can be replaced by L1,λ-
spaces and L∞,λ-spaces, respectively. Since every 2-summing operator on `1 is 1-summing
(a) implies
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(a’) L(`1, F ) =M 2
1−θ ,1

(`1, F ) = Π 2
1+θ

,1(`1, F ).

Proof. (a) Let F = [F0, F1]θ where F1 is a Hilbert space and F∆ is dense in F0 and F1, and
let M ∈ FIN(F∆). Then by the Little Grothendieck Theorem (see e. g. [DF93, 11.11])

‖L(`n1 ,M1) ↪→M∞,2(`n1 ,M1) = Π2(`n1 ,M1)‖ ≤ KLG,

and trivially ‖L(`n1 ,M0) ↪→M2,2(`n1 ,M0) = L(`n1 ,M0)‖ ≤ 1, hence, by the usual interpolation
theorem together with Proposition 4.2, we have

‖[L(`n1 ,M0),L(`n1 ,M1)]θ ↪→M2/(1−θ),2(`n1 , [M0,M1]θ)‖ ≤ Kθ
LG.

The claim now follows by Lemma 4.1.

(c) follows from (a’) by trace duality: By local techniques (see again [DF93, 23.1]) state-
ment (a’) in terms of quotient ideals (see e. g. [DF93, 25.6]) reads as follows:

Π 2
1−θ

(F, ·) ⊂ (Π1 ◦ Γ−1
1 )(F, ·),

where Γp for 1 ≤ p ≤ ∞ stands for the Banach operator ideal of all T : F → Y such that

F
T→ Y ↪→ Y ′′ factorizes through some Lp(µ). Hence the abstract quotient formula from

[DF93, 25.7] and the fact that the adjoint Γ∗2 of Γ2 is contained in Γ1 ◦ Γ∞ (a result of
Kwapień, see e. g. [DJT95, 7.12]) imply the conclusion:

Π 2
1−θ

(F, ·) ⊂ (Γ1 ◦ Γ∞)∗ ⊂ Γ2.

Finally, (b) is an immediate consequence of (c): Take T ∈ L(`∞, F ) and some S ∈
Π 2

1−θ
(F, F ) ⊂ Γ2(F, F ) (by (c)). Then ST by the little Grothendieck theorem is 2-

summing.

For θ = 1 and F = `2 the statements (a) and (b) are the “Little Grothendieck Theorems”.
The special cases L(`1, `p) = Πr,1(`1, `p), 1/r = 1− |1/2− 1/p|, and L(`∞, `p) = Πp,2(`∞, `p),
2 ≤ p ≤ ∞, are due to Kwapień [Kwa68] and Lindenstrauss–Pe lczyński [LP68], respectively;
recall that `p is 1 − |1 − 2/p|-Hilbertian and that for 1 ≤ p ≤ 2 every T : `∞ → `p is even
2-summing. For mixing norms and θ-Hilbert spaces (a) was proved by Lermer [Ler94] (see
also [Hau97])—for F = `p this result can be found in [CD92]. The observations (b) and (c)
in the present form seem to be new (in the case F = `p see [DF93, Ex. 34.12] and [DJT95,
p. 168]).

We will finish with another result on Schatten classes.

Corollary 4.4. Let 2 ≤ r, s ≤ ∞ and 1/r = 1/2− 1/s.

(a) Sr = Πr,2(`2) =Ms,2(`2).

(b) Πr,2(E, `2) =Ms,2(E, `2) for every Banach space E.

The first equality in (a) is due to Mitiagin and was first published in [Kwa68] (see e. g.
[Kön86, 1.d.12] or [DJT95, 10.3] for an elementary proof). The second equality in (a) was
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proved in [CD92]—here is an alternative proof by interpolation: By Proposition 4.2 and the
first equality for θ defined by 1/r = (1− θ)/2 the embeddings in

Snr = [Sn2 ,Sn∞]θ = [M∞,2(`n2 ),M2,2(`n2 )]θ ↪→Ms,2(`n2 ) ↪→ Πr,2(`n2 ) = Snr

all have norm ≤ 1, and by localization this gives the claim. Now it is easy to prove (b),
which is a kind of extension of (a): SinceMs,2 = Is′ ◦Π−1

2 (see e. g. [DF93, 32.1]; Is′ denotes
the ideal of s′-integral operators), it suffices to show that TS ∈ Is′ whenever T ∈ Πr,2(E, `2)
and S ∈ Π2(X,E). But by the Grothendieck–Pietsch factorization theorem (see e. g. [DF93,
11.3]) we know that S = UV where V ∈ Π2(X,H), U ∈ L(H,E) and H a Hilbert space.
Then by (a) and local techniques TU ∈ Πr,2(H, `2) =Ms,2(H, `2), which gives TS ∈ Is′ .

4.2 (γ, p)-summing operators on `1

In this part we show that every continuous operator on `1 with values in a p-convex Banach
function space (1 ≤ p ≤ 2) with non-trivial cotype is (γ, p)-summing.

Proposition 4.5. Let [E0, E1] and [F0, F1] be finite-dimensional interpolation couples. Then
for each orthonormal system B, all 1 ≤ p0, p1 ≤ 2 and 0 < θ < 1

‖[ΠB,2,p0(E0, F0),ΠB,2,p1(E1, F1)]θ ↪→ ΠB,2,pθ([E0, E1]θ, [F0, F1]θ)‖ ≤ dθ[`p0 , `p1 ;E0, E1],

where 1/pθ = (1− θ)/p0 + θ/p1.

Proof. Consider for η = 0, 1 and F = {b1, . . . , bm} ⊂ B the bilinear mapping

Φm,F
η : ΠB,2,pη(Eη, Fη) × L(`mp′η , Eη) → L2(µ, Fη)

T × S 7→
∑m

i=1 bi · TSei.

By definition ‖Φm,F
η ‖ ≤ 1, hence for the interpolated mapping

[Φm,F
0 ,Φm,F

1 ]θ : [ΠB,2,p0(E0, F0),ΠB,2,p1(E1, F1)]θ × [L(`mp′0 , E0),L(`mp′1 , E1)]θ

→ [L2(µ, F0), L2(µ, F1)]θ(= L2(µ, [F0, F1]θ))

we obtain ‖[Φm,F
0 ,Φm,F

1 ]θ‖ ≤ 1. It follows that for each T : [E0, E1]θ → [F0, F1]θ and each
S ∈ L(`mp′θ

, [E0, E1]θ)

∥∥∥∥∥
m∑
i=1

bi · TSei

∥∥∥∥∥
L2(µ,[F0,F1]θ)

≤ ‖T‖[ΠB,2,p0 (E0,F0),ΠB,2,p1 (E1,F1)]θ · ‖S‖[L(`m
p′0
,E0),L(`m

p′1
,E1)]θ

≤ dθ[`mp0
, `mp1

;E0, E1] · ‖T‖[ΠB,2,p0 (E0,F0),ΠB,2,p1 (E1,F1)]θ · ‖S‖L(`m
p′
θ
,[E0,E1]θ),
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hence

‖T‖ΠB,2,pθ ([E0,E1]θ,[F0,F1]θ) ≤ dθ[`p0 , `p1 ;E0, E1] · ‖T‖[ΠB,2,p0 (E0,F0),ΠB,2,p1 (E1,F1)]θ .

We first state the following result for “θ-type 2 spaces”:

Theorem 4.6. Let [F0, F1] be a dense interpolation couple such that F1 is a type 2 space.
Then for 1 ≤ p ≤ 2 and θ := 2/p′

L(`1, [F0, F1]θ) = Πas,p(`1, [F0, F1]θ).

Proof. The cases p = 1 (trivial) and p = 2 (see e. g. [DJT95, 12.10]) are clear, so let 1 < p < 2
and M ∈ FIN(F∆). By [DJT95, p. 245] we know that

‖L(`n1 ,M1) ↪→ Πas,2(`n1 ,M1)‖ ≤ KG ·T2(F1),

where KG denotes the Grothendieck constant, and by Lemma 3.1 (b)

‖L(`n1 ,M0) ↪→ Πas,1(`n1 ,M0)‖ ≤
√

2,

hence, by the usual interpolation theorem together with Proposition 4.5, we obtain (recall
from (1.14) that dθ[`1, `2; `n1 , `

n
1 ] ≤ 16)

‖[L(`n1 ,M0),L(`n1 ,M1)]θ ↪→ Πas,p(`n1 , [M0,M1]θ)‖ ≤ 2(7−θ)/2 · (KG ·T2(F1))θ.

The claim now follows by Lemma 4.1.

As an immediate consequence of Theorem 4.6 we get an extension of Kwapień’s result for
the case 1 ≤ p ≤ 2 within the setting of (B, 2, p)-summing operators—recall that there
exists an orthonormal system B such that Π2,p = ΠB,2,p, and Π2,p(`1, `p) = Πr,1(`1, `p) for
1/r = 1/2 + 1/p′ (see [TJ70]).

Corollary 4.7. Let 1 ≤ p ≤ 2. Then for each orthonormal system B

L(`1, `p) = ΠB,2,p(`1, `p) and L(`1,Sp) = ΠB,2,p(`1,Sp).

Proof. By Theorem 4.6 the statement is clear for the system of Rademacher functions,
hence—since `p and Sp have cotype 2—also for Πγ,p, and consequently for all orthonormal
systems B by Proposition 3.1 (e).

The following “extrapolation lemma” will be useful to prove the result for Banach function
spaces indicated above.

Lemma 4.8. Let X0 and X1 be finite-dimensional lattices, and for 0 < r < 1 < p < ∞
assume that M(p)(X0) = 1. Then for 0 < θ < 1 such that p(1− θ) + rθ = 1

(Xp
0 )1−θ(Xr

1)θ = X
p(1−θ)
0 Xrθ

1

holds isometrically. In particular, if X is a finite-dimensional lattice with M(p)(X) = 1 for
1 < p < 2, then for θ := 2/p′

X = (Xp)1−θ(Xp/2)θ

holds isometrically.
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Proof. Let V := (Xp
0 )1−θ(Xr

1)θ and W := X
p(1−θ)
0 Xrθ

1 . Then, if |f | = |g|1−θ · |h|θ,

‖f‖W = ‖(|g|1/p)p(1−θ) · (|h|1/r)rθ‖W ≤ ‖|g|1/p‖p(1−θ)X0
· ‖|h|1/r‖rθX1

= ‖g‖1−θ
Xp

0
· ‖h‖θXr

1
,

hence ‖f‖W ≤ ‖f‖V . Conversely, let |f | = |g|p(1−θ) · |h|rθ. Then

‖f‖V = ‖(|g|p)1−θ · (|h|r)θ‖V ≤ ‖|g|p‖1−θXp
0
· ‖|h|r‖θXr

1
= ‖g‖p(1−θ)X0

· ‖h‖rθX1
,

hence ‖f‖V ≤ ‖f‖W . For the rest observe that X = X1−ηXη holds isometrically with equal
norms for each 0 < η < 1; this follows from the abstract Hölder inequality (see e. g. [LT79,
1.d.2]): Let |f | = |g|1−η · |h|η. Then

‖f‖X = ‖|g|1−η · |h|η‖X ≤ ‖g‖1−ηX · ‖h‖ηX .

Conversely, we have |f | = |f |1−η · |f |η, hence

‖f‖X1−ηXη ≤ ‖f‖1−ηX · ‖f‖ηX = ‖f‖X .

Clearly θ := 2/p′ satisfies p(1− θ) + pθ/2 = 1. Altogether we obtain that

(Xp)1−θ(Xp/2)θ = Xp(1−θ)Xpθ/2 = X

holds isometrically.

Theorem 4.9. For 1 ≤ p ≤ 2 let X(µ) be a p-convex Banach function space with non-trivial
cotype. Then

L(`1, X) = Πγ,p(`1, X).

Proof. Since X has finite cotype, it is enough to deal with Πas,p(`1, X) instead of Πγ,p(`1, X).
The case p = 1 is trivial anyway, and for p = 2 note that a 2-convex Banach function
space with finite cotype has type 2 (see e. g. [LT79, 1.f.13]). Fix 1 < p < 2, and without
loss of generality we may assume that M(p)(X) = 1. Since X has finite cotype it is σ-
order continuous by [LT79, 1.a.5] and [LT79, 1.a.7], hence S(µ) is dense in X. Now, by
Lemma 4.1 (with F0 = F0 = X(C) and B = FINχ(µ)), we can reduce the problem to the
finite-dimensional case, i. e. it is sufficient to show that there exists C > 0 such that for all
n and M ∈ FINχ(µ)

‖L(`n1 ,M(C)) ↪→ Πas,p(`n1 ,M(C))‖ ≤ C.

From Lemma 4.8 together with the Calderón formula (0.11) we know that M(C) =
[Mp(C),Mp/2(C)]θ holds isometrically for θ = 2/p′, and consequently—using the same argu-
ments as in the proof of Theorem 4.6—we arrive at

‖L(`n1 ,M(C)) ↪→ Πas,p(`n1 ,M(C))‖ ≤ 2(7−θ)/2 · (KG ·T2(Mp/2(C)))θ.

What now remains to be given is an appropriate estimate for T2(Mp/2(C)). Using [LT79,
1.d.6] one can easily see that for each q > 2

T2(Mp/2(C)) ≤ 2 ·T2(Mp/2) ≤ 2 · b2q/p ·M(2q/p)(M
p/2) ·M(2)(Mp/2)
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(with b2q/p from the Khinchine inequality (3.2)). By the definition of Mp/2 and the assump-
tion M(p)(M) = 1 a straightforward calculation shows that M(2)(Mp/2) = 1, and if X is
q-concave for some 2 < q <∞ (by assumption there exists such q), then

M(2q/p)(M
p/2) ≤M(q)(M)p/2 ≤M(q)(X)p/2

(see also [LT79, p. 54]). Altogether we obtain T2(Mp/2(C)) ≤ 2 · b2q/p ·M(q)(X)p/2. This
proves the theorem in the complex case; the real case now follows by complexification.

A Banach space X has type 2 if and only if L(`1, X) = Πγ(`1, X) (see e. g. [DJT95,
12.10]); Theorem 4.9 now reveals that the ideal Πγ,p might play the same role for the notion
of type p (1 < p < 2), at least for Banach function spaces. If we define as usual

p(X) := sup{1 ≤ p ≤ 2 |X has type p},

and in addition
pγ(X) := sup{1 ≤ p ≤ 2 | L(`1, X) = Πγ,p(`1, X)}

(with sup ∅ := 1 if necessary), then p(X) and pγ(X) coincide for a Banach function space X:

Corollary 4.10. Let X be a Banach function space. Then p(X) = pγ(X).

Proof. Let p(X) > 1. Then by [LT79, 1.f.9] and [LT79, 1.f.13] X is p-convex for all
1 ≤ p < p(X) and q-concave for some q <∞, hence by Theorem 4.9 the equality L(`1, X) =
Πγ,p(`1, X) holds for all 1 ≤ p < p(X), and consequently pγ(X) ≥ p(X). Conversely, if
pγ(X) > 1, then by similar arguments as in [DJT95, p. 237] the Banach space X is of type p
for all 1 ≤ p < pγ(X), hence p(X) ≥ pγ(X).

The preceding result leads to the following natural questions: Does p(X) = pγ(X) hold for
arbitrary Banach spaces X? Furthermore: Is for 1 < p < 2 a Banach space X of type p if
and only if L(`1, X) = Πγ,p(`1, X)?
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