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Speech comprehension requires effort in demanding listening situations. Selective
attention may be required for focusing on a specific talker in a multi-talker environment,
may enhance effort by requiring additional cognitive resources, and is known to enhance
the neural representation of the attended talker in the listener’s neural response. The
aim of the study was to investigate the relation of listening effort, as quantified by
subjective effort ratings and pupil dilation, and neural speech tracking during sentence
recognition. Task demands were varied using sentences with varying levels of linguistic
complexity and using two different speech rates in a picture-matching paradigm with
20 normal-hearing listeners. The participants’ task was to match the acoustically
presented sentence with a picture presented before the acoustic stimulus. Afterwards
they rated their perceived effort on a categorical effort scale. During each trial, pupil
dilation (as an indicator of listening effort) and electroencephalogram (as an indicator of
neural speech tracking) were recorded. Neither measure was significantly affected by
linguistic complexity. However, speech rate showed a strong influence on subjectively
rated effort, pupil dilation, and neural tracking. The neural tracking analysis revealed a
shorter latency for faster sentences, which may reflect a neural adaptation to the rate
of the input. No relation was found between neural tracking and listening effort, even
though both measures were clearly influenced by speech rate. This is probably due to
factors that influence both measures differently. Consequently, the amount of listening
effort is not clearly represented in the neural tracking.

Keywords: listening effort, neural tracking of speech, linguistic complexity, speech rate, time-compressed
sentences, time-expanded sentences, pupillometry, speech comprehension

INTRODUCTION

Speech comprehension in difficult listening environments can be very demanding and effortful.
Thus, the necessity to selectively steer attention may require more cognitive resources and therefore
enhance listening effort. Factors such as attention not only influence listening effort, but also result
in a stronger representation of the attended speech in the listener’s neural response (e.g., Mesgarani
and Chang, 2012; O’Sullivan et al., 2014). This connection leads to the question of how close the
amount of listening effort is reflected in the neural response. Therefore, the aim of the current study
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was to systematically manipulate task demands via linguistic
complexity and speech rate and to investigate the influence of
these two different manipulations on listening effort as quantified
by subjective ratings and pupillometry and on the neural response
in difficult multi-talker situations.

Listening effort has been of increasing research interest and
has been investigated using different techniques (e.g., Rudner
et al., 2012; McGarrigle et al., 2014). Perceived effort can be
measured by self-reporting, captured by means of questionnaires,
or rating scales (e.g., Gatehouse and Noble, 2004; Krueger
et al., 2017). On the other hand, pupillometry as a physiological
measure has long been known to reflect effort (Hess and Polt,
1964; Kahneman and Beatty, 1966); in this measure, changes in
pupil dilation, controlled by the sympathetic nervous system, are
recorded (Sirois and Brisson, 2014; Schmidtke, 2017 for a review).
Many recent studies investigated listening effort for different
listening situations using pupillometry (e.g., Kuchinsky et al.,
2013; Zekveld et al., 2014; Koelewijn et al., 2015; Wendt et al.,
2016). Increasing background noise and decreasing intelligibility
result in an increase in pupil dilation, indicating greater listening
effort (Zekveld et al., 2010, 2011). However, this is only the case
until a certain point: recent studies show signs that listeners
“give up” at performance levels below 50% correct recognition,
i.e., the peak pupil dilation decreases at low performance rates
(Wendt et al., 2018). Listening to speech masked by a single
talker requires more effort than listening to speech masked by
stationary noise (Koelewijn et al., 2012). Ohlenforst et al. (2017)
investigated in a comprehensive review whether listening effort
is increased for hearing-impaired listeners compared to normal-
hearing listeners. They could show that hearing impairment
increases listening effort but only when effort is captured with
the physiological measure of EEG and not with subjective or
behavioral measures. Furthermore, the review shows a lack of
consistency and standardization across studies that measured
listening effort.

The neural response of a listener can phase-lock to the slow-
amplitude modulations of a speech stream (e.g., Ahissar et al.,
2001) which is called neural entrainment. Neural entrainment
is modulated by high-level processes such as attention and
prediction, so that high excitability phases of neural oscillations
align to important events of the acoustic input (Schroeder and
Lakatos, 2009). Kösem et al. (2018) demonstrated that neural
entrainment persists after the end of a rhythmic presentation
and that the entrained rate influences the perception of a target
word. Thus, neural oscillations shape speech perception (e.g.,
Bosker and Ghitza, 2018). Many studies demonstrated that
selective attention modulates neural entrainment and leads to
a selectively enhanced representation of the attended stream
(e.g., O’Sullivan et al., 2014; Mirkovic et al., 2015, 2016;
Petersen et al., 2017; Müller et al., 2018). For instance, Petersen
et al. (2017) presented continuous speech either in quiet or
masked by a competing talker at different signal-to-noise ratios
(SNRs) to participants with hearing impairment and investigated
the influence of hearing loss, SNR, and attention on neural
tracking of speech. Neural tracking of speech is the phase-
locked neural response to the attended speech calculated as
the cross-correlation between the speech-onset envelope (SOE)

and the electroencephalogram (EEG) of the listener. Amplitude
and latencies of the resulting cross-correlation components
corresponding to the auditory evoked potentials (Horton et al.,
2013) are denoted P1crosscorr, N1crosscorr, and P2crosscorr (adopted
from Petersen et al., 2017). Greater hearing loss resulted in
a smaller difference in neural tracking between attended and
ignored speech. Furthermore, Petersen et al. (2017) reported a
reduced amplitude of neural tracking for lower SNRs as well as
for the ignored speech compared to the attended speech. The
contributions of acoustic properties and cognitive control on
neural tracking of speech are not fully investigated (Wöstmann
et al., 2016). Therefore, the question arises whether neural
tracking is only sensitive to changes in the acoustics (such as SNR)
and to attentional influences, or whether it is also affected by the
amount listening effort a participant experienced not caused by
attentional influences.

In order to answer the aforementioned question, we varied
task demands during a speech comprehension task by varying
linguistic complexity and speech rate of sentences. Pupillometry
and a categorical rating scale were applied to obtain two different
indicators of listening effort. EEG was applied to record neural
tracking of speech. The variation of linguistic complexity was
achieved using the Oldenburg Linguistically and Audiologically
Controlled Sentences (OLACS), which include seven sentence
structures that differ in their level of linguistic complexity (Uslar
et al., 2013) and linguistic processing. The speech rate of OLACS
was expanded and compressed to a 25% slower and a 25% faster
version which influences the signal properties. The reason for
time-expansion and time-compression is to have two speech rates
that clearly differ from each other to receive large differences in
task demands. The variations in task demands in combination
with recordings of listening effort and neural tracking allowed us
to investigate the following five hypotheses.

Previous studies showed a small influence of linguistic
complexity on speech intelligibility (Uslar et al., 2013) and on
listening effort, with larger effort for more complex sentence
structures (Piquado et al., 2010; Wendt et al., 2016). Based on
these studies, our first hypothesis (H1) was that listening effort
and speech intelligibility are influenced by the level of linguistic
complexity: higher complexity leads to higher listening effort
(quantified by effort rating and pupillometry) and higher speech
reception thresholds (SRTs).

Furthermore, Wingfield et al. (2006) reported that syntactic
complexity reduces speech comprehension, especially for
hearing-impaired and older listeners and that this effect is
increased for time-compressed sentences. Further studies
showed that speech comprehension is decreased for time-
compressed, faster sentences (e.g., Versfeld and Dreschler,
2002; Peelle and Wingfield, 2005; Ghitza, 2014; Schlueter
et al., 2014), whereas, time-expanded, slower sentences did
not influence speech recognition performance (Korabic et al.,
1978; Gordon-Salant and Fitzgibbons, 1997). Zhang (2017)
investigated the impact of task demand and reward on listening
effort quantified by pupillary data using five different speech rates
and demonstrated that effort was influenced by both. Since there
is a relation between speech intelligibility and listening effort and
the former is affected by speech rate, we also expected speech
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rate to influence the latter. Moreover, the study by Zhang (2017)
showed an impact of speech rate on pupillary data, with larger
peak-pupil dilations for faster speech than for speech that was
presented more slowly. Based on the previous studies, our second
hypothesis (H2) was that listening effort and speech intelligibility
are influenced by speech rate: faster speech leads to higher
listening effort (quantified by effort rating and pupillometry) and
higher speech reception thresholds (SRTs).

The influence of linguistic processing on neural entrainment
is comprehensively reviewed by Kösem and van Wassenhove
(2017). Linguistic processing may be reflected in high oscillatory
activity. The neural tracking considers the low-level fluctuations
in the EEG. The question remains, if low-frequency oscillations
also capture linguistic processing. Zoefel and VanRullen (2015)
investigated the importance of low-level acoustic features, such
as amplitude and spectral content, and higher-level features
of speech, such as phoneme and syllable onsets, for neural
entrainment to speech. They created three types of stimuli
that covered different features and demonstrated that neural
entrainment occurs to speech sounds even without fluctuations in
low-level features. Thus, entrainment reflects the synchronization
not only to fluctuations in low-level acoustic features but also
to higher-level speech features indicating that the brain builds
temporal predictions about upcoming events (Ding et al., 2017;
Kösem et al., 2018). Furthermore, they showed that linguistic
information is not required for neural entrainment: unintelligible
speech also entrains neural oscillations and this entrainment
is not enhanced by linguistic information (Millman et al.,
2015; Zoefel and VanRullen, 2015). Based on these findings,
we didn’t expect linguistic complexity to influence neural
tracking. To evaluate this expectation we tested the hypothesis
(H3) that neural tracking is affected by linguistic complexity.

The neural synchrony to time-compressed speech was
investigated by Ahissar et al. (2001). They reported that a
decrease in speech intelligibility produced by time-compression
is accompanied by a lower synchrony between the neural
response and the speech signal. This result was later confirmed
by Nourski et al. (2009), who found low-frequency phase-locking
only for intelligible speech rates. These studies demonstrate
that a reduction in neural synchrony is related to speech
comprehension using different speech rates. Other studies
confirmed the finding, that improved speech intelligibility
is associated with stronger neural entrainment (e.g., Gross
et al., 2013; Peelle et al., 2013; for a review see Kösem and
van Wassenhove, 2017) whereas others reported contradictory
results; no influence of intelligibility on neural entrainment
(Millman et al., 2015; Zoefel and VanRullen, 2015). The high
speech rate used in the current study significantly reduced speech
intelligibility compared to low and normal speech rate. Based on
the findings of Ahissar et al. (2001) our fourth hypothesis (H4)
was that the neural response is influenced by speech rate: faster
speech leads to a reduced neural response.

An essential advantage of varying linguistic complexity and
speech rate is the opportunity to create varying task demands
at constant SNR. This allowed us to investigate whether neural
speech tracking is only sensitive to variations in SNR and
attention, as shown by Petersen et al. (2017), or whether

listening effort as modulated by linguistic complexity and speech
rate is also reflected in the amplitude of neural tracking.
In order to investigate this research question, we correlated the
individual neural tracking with both measures of listening effort;
maximum pupil dilation and subjective ratings of effort. Since
we hypothesized that speech rate influences both measures of
listening effort as well as neural tracking, our fifth hypothesis
(H5) was that there is a relation between neural tracking
of speech and listening effort as quantified by effort rating
and pupillometry.

MATERIALS AND METHODS

Participants
Twenty normal-hearing participants took part in the study:
10 male and 10 female, average age of 25 years, ranging from
19 to 35 years. All participants were native German speakers,
were right-handed, and reported normal vision and no history of
neurological, psychiatric, or psychological disorders. The hearing
thresholds of all participants were verified to be below 20 dB at
the standard audiometric frequencies of 0.125, 0.25, 0.5, 0.75, 1,
1.5, 2, 3, 4, 6, and 8 kHz. One participant was excluded from the
final evaluation due to poor response accuracies of the picture-
matching paradigm. The exclusion criterion was an accuracy
below chance level, thus below 50% accuracy. Participants
were paid for their participation and informed that they could
terminate their participation at any time. The study was approved
by the local ethics committee of the University of Oldenburg.

Stimuli and Tasks
Speech Material
The Oldenburg Linguistically and Audiologically Controlled
Sentences (OLACS, Uslar et al., 2013) were used as auditory
speech material. OLACS consist of seven sentence structures
with different linguistic complexities. In this study we used
three structures: subject-verb-object (SVO), object-verb-subject
(OVS), and ambiguous object-verb-subject (ambOVS) sentences
(Uslar et al., 2013). Note that OVS and ambOVS are
grammatically possible in the German language, but not in many
other languages, such as English. The sentences describe two
entities: one is performing an action (agent) and the other is
affected by that action (patient). SVO sentences are considered
to be syntactically easier than OVS and ambOVS sentences
since SVO sentences represent a canonical word order and are
unambiguous. OVS sentences are more complex due to their
non-canonical word order: the object precedes the subject. OVS
sentences are unambiguous as well, whereas ambOVS sentences
are ambiguous. The word that disambiguates the sentence
(enables assignment of agent and patient roles) is the first noun
for SVO and OVS structures, and the article of the second noun
for the ambOVS structure; this word is denoted as point of target
disambiguation (PTD, see Table 1).

In order further to vary task demands, we time-expanded
and time-compressed sentences of the OLACS corpus to a 25%
slower and a 25% faster version. To do this, we used the pitch-
synchronous overlap-add (PSOLA) procedure implemented in
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TABLE 1 | The subject-verb-object (SVO), object-verb-subject (OVS), and
ambiguous object-verb-subject (ambOVS) sentence structures of the Oldenburg
Linguistically and Audiologically Controlled Sentences (OLACS).

SVO Der kluge Zauberer filmt den braven Postboten.

Thenom wisenom wizardmal films theacc honestacc mailmanmal.

OVS Den braven Postboten filmt der kluge Zauberer.

Theacc honestacc mailmanmal films thenom wisenom wizardmal.

ambOVS Die nasse Ente tadelt der treue Hund.

Theamb wetamb duckfem reprimands thenom loyalnom dogmal.

Relevant case markings are indicated by nom (nominative), acc (accusative), and
amb (ambiguous case). The gender of the entities is indicated by mal (male) and
fem (female). The point of target disambiguation (PTD), the point in time at which
an assignment of agent and patient is possible, is marked by underlined words.

FIGURE 1 | Example pictures for the OLACS sentence: “Thenom wisenom

wizardmal films theacc honestacc mailmanmal”. The target picture is shown on
the (left) panel. The competing picture is shown on the (right) panel for the
SVO sentence. Only one picture is presented per trial during the
picture-matching paradigm (see Section “Picture-Matching Paradigm”).

Praat (Boersma and van Heuven, 2001), which modifies the
duration of sentences. First, PSOLA divides the speech waveform
into overlapping segments and finally adds or deletes segments
to achieve an extended or compressed version of the stimulus.
Schlueter et al. (2014) compared different algorithms for the
creation of time-compressed speech and found that the PSOLA
algorithm did not produce audible artifacts to the original speech.
In the following we refer to the different speech rate conditions
as normal (original OLACS), slow (time-expanded OLACS), and
fast (time-compressed OLACS). The original OLACS used in this
study have a speech rate of 243 ± 24 syllables per minute (Uslar
et al., 2013). Thus, a 25% lower speech rate results in 182 syllables
per minute and a 25% higher speech rate results in 304 syllables
per minute. The average length is 3.68 ± 0.28 s for sentences
with a low speech rate and is 2.23 ± 0.23 s for sentences with a
high speech rate.

Visual Material
Sentences of the OLACS corpus were presented acoustically
after the visual presentation of either a target or competitor
picture (see Figure 1) during the picture-matching paradigm (see
“Picture-Matching Paradigm” section). The target picture shows
the entities and the action as described by the sentence, whereas
the competitor picture shows the same entities and action but
with interchanged agent and patient roles. The development
and evaluation of the OLACS pictures are described by
Wendt et al. (2014).

Speech Recognition Measurements
The individual speech reception threshold for 80% (SRT80) word
recognition for the OLACS was determined at the first session
for normal, slow, and fast sentences. OLACS (female voice)
were presented with a single talker masker (male voice) and
the participants’ task was to repeat the sentence, spoken by
the female voice, as accurately as possible. Random sequences
of concatenated sentences of the Oldenburg sentence test
(OLSA) presented at original speech rate were used as the
single talker masker. OLSA sentences consists of five words
(name, verb, number, object, and noun) and clearly differ from
OLACS sentences.

Measurements started at an SNR of−5 dB and were adaptively
adjusted according to the number of correctly repeated words
using an adaptive level adjustment procedure. The presentation
level of the subsequent sentence was calculated by

1L = −
f (i) ∗ (prev− tar)

slope
(1)

where tar denotes the target discrimination value, prev denotes
the discrimination value obtained in the previous sentence, and
the slope was set to 15% per dB (Brand and Kollmeier, 2002;
described as A1). Participants carried out 4 blocks of OLACS
with 60 sentences each (20 SVO, 20 OVS, and 20 ambOVS
in random order). In the first training block, participants
were familiarized with the procedure and with the sentence
structures presented in the single talker masker. After this
training, one block of each speech rate (normal, slow, and
fast) was measured to determine the individual SRT80 values.
The SNRs of the last five trials were averaged to obtain the
final SRT for each sentence structure individually. The final
SRT80s measured with the normal speech rate were averaged over
sentence structures and used in the picture-matching paradigm as
individual SRT80 across sentence structures and speech rates (see
“Picture-Matching Paradigm” section).

Picture-Matching Paradigm
The audio–visual picture-matching paradigm used by Wendt
et al. (2016) was conducted in the second session in this study.
One trial of the picture-matching paradigm is illustrated in
Figure 2. Each trial started with a silent baseline of 1 s while
a fixation cross was displayed at the center of the screen.
Afterwards, a picture with two entities (see “Visual Material”
section) was displayed for 2 s. The picture disappeared, the
fixation cross was displayed again, and the acoustic presentation
of the single talker masker started. The competing talker was
presented alone for 3 s, and then the OLACS sentence was
presented in addition. 3 s after sentence offset, the single talker
masker stopped, and the participants’ task was to match the
visually displayed picture with the acoustically presented OLACS,
while ignoring the competing talker. To indicate their decision,
participants pressed the right or left button on the computer
mouse. In the last step, participants rated their perceived
effort for that trial on a categorical scale ranging from “no
effort” to “extreme effort” (Krueger et al., 2017). The scale was
slightly modified by removing the top category, which normally
occurs when the stimulus is noise only; since our stimuli were
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FIGURE 2 | One trial of the picture-matching paradigm [modified from Wendt et al. (2016)]. A picture was displayed visually on the screen. After the picture
disappeared, the single talker masker was presented acoustically and a fixation cross was displayed visually. 3 s after masker onset, a sentence of the OLACS
corpus was presented acoustically. After sentence offset, the masker remained for 3 further seconds. The sound presentation ended and the participants’ task was
to identify whether picture and target sentence matched. In the last step, they rated their perceived effort for this trial on a categorical scale. The categorical scale
was modified from Krueger et al. (2017).

presented at a high SNR, a condition with only noise never
occurred in our experiment. The fixation cross was displayed
during sound presentation in order to reduce the occurrence of
disturbing eye movements.

The demand level of the task was varied using two parameters
(described in detail in the “Speech Material” section):

(1) The level of linguistic complexity was varied using three
different sentence structures of the OLACS corpus (SVO,
OVS, and ambOVS).

(2) The speech rate was varied using versions of the original
speech material that were 25% slower and 25% faster.

In total, 200 trials were performed during the picture-
matching paradigm: 30 of each of the six parameter combinations
(level of linguistic complexity × speech rate) and 20 filler
trials, where the figures or the action displayed on the
picture did not match the sentence, to keep the participants’
attention on the task. The filler trials were not analyzed.
The amount of “yes/match” and “no/no match” trials are
equal in all conditions. Approximately 28% of the OLACS
sentences were repeated in the picture-matching paradigm after
using them in the SRT80 procedure. The response accuracies
during the picture matching paradigm were very high for
19 of 20 participants. One participant was excluded from
the data analysis since the response accuracies were below
50%. Averaged across all participants, the highest response
accuracies were found for the SVO sentence structure (slow:
92.6 ± 4.8%, fast: 91.4 ± 5.6%), followed by the OVS

sentence structure (slow: 91.9 ± 4.6%, fast: 88.4 ± 5.8%)
and the ambOVS sentence structure (slow: 91.2 ± 4.5%, fast:
87.7± 8.1%). Even though linguistically more complex sentences
and faster presented speech produced numerically lower response
accuracies, statistical analysis revealed no significant difference in
response accuracies [χ2(5) = 8.65, p > 0.05].

Verbal Working Memory
At the end of the first session, participants performed the German
version of the reading span test (RST; Carroll et al., 2015).
The test determines the individuals’ verbal working memory
capacity (WMC). WMC reflects the cognitive abilities of a listener
when managing the processing of information (Besser et al.,
2013). Moreover, WMC is related to speech recognition and to
compensations of demands (Wendt et al., 2016). In the current
study, WMC was measured to relate differences in cognitive
abilities to measures of speech reception and listening effort.
Therefore, individual WMC scores were correlated with SRT,
PPD, and ESCU. The RST consists of 54 sentences with 4 to
5 words which were presented visually in short segments on a
screen. Participants were instructed to read out loud what was
displayed and to memorize the sentences. Furthermore, after
each sentence, they had to judge, within 1.75 s, whether the
sentence was plausible or not. After 3 to 6 sentences (randomized
selection) they were asked to recall the first or the last word
of the sentences. The score of the RST is the percentage of
correctly recalled words across all 54 sentences. In the first
training block, consisting of three sentences, participants became
familiar with the task.
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Apparatus
Measurements took place in a sound-isolated booth where the
participants were seated comfortably on a chair in front of a
monitor. The acoustical and visual presentations were controlled
via Matlab (Mathworks Inc., Natick, MA, United States) and
the Psychophysics Toolbox (PTB, Version 3; Brainard, 1997).
The acoustic signals were forwarded from the RME sound card
(Audio AG, Haimhausen, Germany) to ER2 insert earphones
(Etymotic Research Inc., Elk Grove Village, IL, United States).
The visually presented stimuli were displayed on a 22′′ computer
monitor with a resolution of 1920 pixels × 1080 pixels.
Pupillometry was conducted during the picture-matching
paradigm with the EyeLink1000 desktop mount eye-tracker (SR
Research Ltd., Mississauga, Canada) with a sampling rate of
500 Hz in remote configuration (without head stabilization).
A nine-point fixation calibration at the start of the recording was
completed. The illumination in the booth was kept constant for
all participants. EEG was recorded using the Biosemi ActiveTwo
system (BioSemi, Amsterdam, Netherlands) from an elastic cap
with 64 active electrodes positioned at 10–20 system locations
and two electrodes placed on the right and left mastoids. One
additional electrode was placed below the right eye to register eye
blinks. The impedances were kept below 20 k�. EEG data were
recorded with a sampling frequency of 512 Hz and filtered during
acquisition applying an online high pass filter at 0.16 Hz and a low
pass filter at 100 Hz.

Data Analysis and Statistical Analysis
EEG Data Processing and Calculation of Neural
Speech Tracking
The EEG data processing and the extraction of speech-
onset envelopes (SOEs) described in the following are similar
to Petersen et al. (2017). The EEG data were analyzed
using customized MATLAB (Mathworks Inc., Natick, MA,
United States) scripts, the EEGLAB toolbox (Delorme and
Makeig, 2004), and the FieldTrip toolbox (Maris and Oostenveld,
2007). First, the raw EEG data were re-referenced to the mean
of the electrodes placed on the left and right mastoids. Second,
independent component analysis (ICA) was applied to identify
eye blinks and lateral eye movements, which were then removed
from the EEG data of each participant using the EEGLAB plug-in
CORRMAP (Viola et al., 2009). The data were band-pass filtered
from 0.5 to 45 Hz, down-sampled to 250 Hz, and epoched from 6
before to 6 s after sentence onset.

Speech-onset envelopes (SOEs) were extracted from each
sentence presented in the picture-matching paradigm. To achieve
this, the absolute of the Hilbert transform was low-pass filtered
with a 3rd-order Butterworth filter with a cut-off frequency of
25 Hz. Afterwards, the first derivative was taken from the filtered
signal. In the last step, it was half-wave rectified, the negative
was half clipped, and the resulting signal was down-sampled to
a sampling rate of 250 Hz.

The neural tracking of speech is the phase-locked neural
response to the SOE of the corresponding sentences. Therefore,
neural tracking of speech was measured by calculating the cross-
correlation between the processed EEG epoch from sentence

onset until offset and the SOE of the corresponding sentence for
all 200 trials. The first 200 ms were omitted from the analysis in
order to avoid the strong influence of the onset response.

Statistical comparisons between the neural tracking of speech
for the sentence structures (SVO, OVS, and ambOVS) and speech
rates (slow and fast) were calculated using the cluster-based
permutation procedure implemented in the FieldTrip toolbox
(Maris and Oostenveld, 2007). First, this procedure calculated
dependent samples t-statistics between cross-correlations of
respective conditions (e.g., slow vs. fast, collapsed over sentence
structures) for each time sample and channel. Time samples with
t-statistics of p < 0.05 and with at least two neighboring channels
with t-statistics of p < 0.05 were constructed to connected
clusters. In the second step, the procedure calculated the cluster-
level statistics by taking the sum of t-values within each cluster.
To correct for multiple comparisons, the cluster-level statistic
was then compared to a reference distribution. The reference
distribution was obtained by randomly permuting trials of the
conditions and calculating the maximum of the summed t-values
for 1000 iterations. If the summed t-values of the identified
cluster exceeded the 95% percentile (p < 0.025, two-sided) of the
permutation distribution, the cluster was considered significant
(for more details, see Maris and Oostenveld, 2007).

Pupil Data Analysis
The pupil data analysis described in the following is similar to
the analysis performed by Wendt et al. (2016). Pupil data were
first cleaned by removing eye blinks: samples that were more
than three standard deviations below the average pupil dilation
were classified as eye blinks and removed from the data. The
deleted samples were linearly interpolated from 350 ms before
to 700 ms after the eye blink (Wendt et al., 2016). Trials that
required 20% or more interpolation were completely removed
from further analysis. Afterwards, a four-point moving average
filter with a symmetric rectangular window was used to smooth
the de-blinked trials and to remove any high-frequency artifacts.
Finally, data were normalized by subtracting the average of the
last second before sentence presentation as baseline from the
data. Differences in the individual peak-pupil dilations (PPDs)
were statistically analyzed using a repeated-measures analysis of
variance (ANOVA) with linguistic complexity and speech rate as
within-subject factors.

RESULTS

Speech Reception Thresholds (SRTs)
To investigate the influence of linguistic complexity and speech
rate on speech intelligibility (H1 and H2), SRT80s were measured
for OLACS presented at two different speech rates. Figure 3
shows boxplots of participants’ SRT80s. The horizontal line
inside the box represents the median, bottom and top edges of
the box represent the 25th and 75th percentiles (interquartile
range, IQR). The whiskers of the box are the maximum and
minimum values within 1.5 ∗ IQR. Outliers outside the range
of the whiskers are indicated with a “+” symbol. The SRT80s
were statistically analyzed using a repeated-measures analysis
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FIGURE 3 | Boxplots of participants’ SRT80s for normal (green), slow (blue),
and fast (red) speech rates and SVO, OVS, and ambOVS sentence structures.
Repeated measures ANOVA revealed a main effect of linguistic complexity
with significant lower SRT80s for SVO sentences compared to OVS and
ambOVS sentences and an effect of speech rate with higher SRT80s for fast
speech compared to normal and slow speech.

of variance (ANOVA) with linguistic complexity and speech
rate as within-subject factors. The statistical analysis revealed a
main effect of linguistic complexity [F(2,36) = 6.97, p = 0.003,
η2

p = 0.279] and speech rate [F(2,36) = 15.002, p < 0.001,
η2

p = 0.455]. No interaction effect between linguistic complexity
and speech rate was found. The Bonferroni corrected t-test
as post hoc analysis showed that the SRT80 of the SVO
sentence structure was significantly lower than the SRT80 of
the OVS (p = 0.03, mean difference −1.26, 95%-CI [−2.41,
−0.12]) and ambOVS (p = 0.02, mean difference −1.51,
95%-CI [−2.83, −0.195]) sentence structure. Furthermore, the
SRT80 was significantly higher for fast speech than for normal
speech (p = 0.001, mean difference 2.395, 95%-CI [0.959,
3.83]) and slow speech (p = 0.001, mean difference 2.51,
95%-CI [0.984, 4.04]).

Subjectively Rated Listening Effort of the
Picture-Matching Paradigm
To investigate the influence of linguistic complexity and speech
rate on listening effort (H1 and H2), participants rated their
perceived effort on a rating scale for OLACS presented at two
different speech rates. Figure 4 shows boxplots of participants’
perceived listening effort in effort scale categorical units (ESCUs)
for the picture-matching paradigm. Fast speech resulted in the
highest median perceived effort for all sentence structures (SVO:
5.9 ESCU, OVS: 6.57 ESCU, ambOVS: 6.47 ESCU) in comparison
to slow speech (SVO: 5.6 ESCU, OVS: 6.27 ESCU, ambOVS:
6.37 ESCU). The effort ratings were statistically analyzed
using a repeated-measures analysis of variance (ANOVA) with
linguistic complexity and speech rate as within-subject factors.
Statistical analysis revealed a main effect of linguistic complexity
[F(2,36) = 7.55, p = 0.002, η2

p = 0.296] and speech rate
[F(1,18) = 17.13, p = 0.001, η2

p = 0.488] with higher effort

FIGURE 4 | Boxplots of participants’ perceived effort for the picture-matching
paradigm for the slow (blue) and fast (red) speech and the SVO, OVS, and
ambOVS sentence structures. Repeated measures ANOVA revealed a main
effect of linguistic complexity with significant lower effort ratings for SVO
sentences compared to OVS and ambOVS sentences and an effect of speech
rate with higher effort ratings for fast speech compared to slow speech.

ratings for fast sentences. No interaction effect between linguistic
complexity and speech rate was found. The post hoc analysis
revealed that the subjectively rated effort was lower for the
SVO sentence structure compared to the OVS (p = 0.007, mean
difference −0.325, 95%-CI [−0.57, −0.08]) and the ambOVS
(p = 0.008, mean difference −0.353, 95%-CI [−0.618, −0.087])
sentence structure.

Pupil Dilation
To investigate the influence of linguistic complexity and speech
rate on listening effort (H1 and H2), participant’s pupil dilations
were recorded during the audio-visual paradigm. Figure 5
shows averages and boxplots of participants’ pupil dilation.
Figure 5A shows the averaged normalized pupil dilation over
time with the corresponding 95% confidence interval for
the six conditions (speech rate × linguistic complexity). For
statistically analyzing the influence of speech rate and linguistic
complexity on listening effort based on pupil dilations we
analyzed the individual peak-pupil dilations (PPDs, Figure 5B).
The statistical analysis revealed a main effect of speech rate
on PPDs [F(1,18) = 15.831, p = 0.001, η2

p = 0.468] with
higher PPDs for fast speech. No effect of linguistic complexity
on the PPDs [F(2,36) = 0.22, p = 0.8, η2

p = 0.012] and no
interaction effect between linguistic complexity and speech rate
was observed. Since linguistic complexity did not affect pupil
dilation, we collapsed the data across sentence structures for a
better visualization (Figures 5C,D).

Neural Tracking of Speech
To investigate the influence of linguistic complexity and speech
rate on neural tracking of speech (H3 and H4), neural tracking
was measured based on the recorded EEG. Figure 6 shows neural
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FIGURE 5 | Normalized pupil dilations across participants. Blue: slow speech; red: fast speech; solid lines: SVO; dashed lines: OVS; dotted lines: ambOVS.
(A) Shows the normalized pupil dilation over time with the corresponding 95% confidence interval. (B) Shows boxplots of peak-pupil dilations (PPDs). (C) Shows the
normalized pupil dilation over time with the corresponding 95% confidence interval collapsed across sentence structures. (D) Shows boxplots of PPDs collapsed
across sentence structures. The first two solid vertical lines in (A,C) indicate the range of the baseline used for normalization. The blue and red dashed vertical lines
indicate the averaged ends of slow and fast sentences. Repeated measures ANOVA revealed no main effect of linguistic complexity but a main effect of speech rate
with larger PPDs for fast speech compared to slow speech.

speech tracking for the three sentence structures (SVO, OVS,
and ambOVS) and for slow and fast speech. Figure 6A
shows the cross-correlations between EEG and SOE for the
six conditions (speech rate × linguistic complexity). Three
components, denoted as P1crosscorr, N1crosscorr, and P2crosscorr are
present. The cluster statistics revealed no significant difference
between sentence structures. The p-values for the different
clusters are in the range of 0.04 and 0.92 with an average of
0.6. Almost all clusters showed p-values of >0.2 except of the
comparison of SVO and ambOVS sentence structure of the
fast speech rate. Here, two clusters reached p-values of 0.04
and 0.08 (significant was reached if p < 0.025). Since linguistic
complexity did not affect neural tracking, we focused our analysis
on the influence of speech rate. Therefore, we collapsed the data
across sentence structures and calculated the cross-correlations
for slow and fast speech (Figures 6B,C). The cluster statistics
computed between cross-correlations of slow and fast speech

identified two significant time clusters where neural tracking of
fast and slow speech differed significantly: a significant negative
cluster N1crosscorr at 0.072–0.196 s (61 electrodes, p < 0.001,
see Figure 6C) and a positive cluster P2crosscorr at 0.244–0.352 s
(45 electrodes, p < 0.001, see Figure 6C). The difference in neural
tracking between slow and fast speech at the time of the positive
cluster P2crosscorr may have resulted from faster processing of
the faster sentences. The peak of P2crosscorr for fast speech
(M = 0.24, SE = 0.01) is on average earlier compared to slow
speech (M = 0.29, SE = 0.01) (see Figure 6B). This difference in
latency between slow and fast speech is significant [t(18) = 2.473,
p = 0.024]. Thus, fast speech influences the amplitude of neural
tracking as well as the processing duration. In other words,
the increase of speech rate accelerates the P2crosscorr occurrence
which might indicate a faster P2crosscorr related processing of the
brain. Faster presented speech might be processed faster in order
to receive all incoming information.
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FIGURE 6 | Neural tracking of speech averaged across participants. Blue: slow speech; red: fast speech; solid lines: SVO; dashed lines: OVS; dotted lines:
ambOVS. (A) Shows the averaged cross-correlations with the 95% confidence intervals between the speech-onset envelopes and the EEG signal. (B) Shows the
cross-correlations with the corresponding 95% confidence intervals collapsed across sentence structures. The results in (A,B) were averaged over 19 participants
and averaged over the 45 electrodes which were common for both significant clusters. The three components P1crosscorr, N1crosscorr, and P2crosscorr are marked.
(C) Shows the topographical plots of t-values for the two significant clusters calculated with the cluster-based permutation procedure. Time lags at which the slow
and fast speech differed significantly are indicated by black lines below the corresponding time intervals and topographical plots.

FIGURE 7 | (A) Shows correlations between P2crosscorr amplitudes of neural tracking and peak-pupil dilations (PPDs). (B) Shows correlations between P2crosscorr

amplitudes of neural tracking and subjective effort ratings in ESCUs. Pearson’s correlation revealed no correlation between PPDs and neural tracking (r = 0.29,
p = 0.21) or between ESCUs and neural tracking (r = 0.17, p = 0.48).

Correlation Between Listening Effort and
Neural Tracking of Speech
The goal of the current study was to investigate whether the
neural response is affected by listening effort as quantified
by effort rating and pupillometry. Therefore, the relation
between neural tracking and PPDs and perceived effort was
investigated. PPDs and perceived effort in ESCUs were larger for

sentences presented with a high speech rate, whereas neural
tracking showed smaller amplitudes at significant time clusters.
To investigate the relation of listening effort and neural
speech tracking, we correlated the differences between slow
and fast speech of individual PPDs and ESCUs with the
individual amplitude of the P2crosscorr of the neural tracking
response (see Figure 7). PPDs, ESCUs, and P2crosscorr amplitudes
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were collapsed across sentence structures. Pearson’s correlation
revealed no relation between PPDs and neural tracking
(r = 0.29, p = 0.21) or between ESCUs and neural tracking
(r = 0.17, p = 0.48).

Correlation Between WMC and
SRT80, PPD, and ESCU
The individuals’ WMC was examined for correlations with
SRT80, PPD, and ESCU for all speech rates and sentence
structures. Pearson’s correlation was conducted using Bonferroni
adjusted alpha levels of 0.003 per test (0.05/18). The statistical
analysis revealed no significant correlations.

DISCUSSION

In this study, participants listened to sentences with varying
degrees of linguistic complexity presented with a low or a high
speech rate during a picture-matching paradigm. We investigated
the impact of linguistic complexity and speech rate on listening
effort, measured with pupillometry and subjectively rated on a
categorical scale, and neural tracking of speech, measured with
EEG. Furthermore, the relation between listening effort and
neural tracking of speech was investigated.

The Impact of Linguistic Complexity and
Speech Rate on Speech Reception
Thresholds (SRT80s)
Earlier studies showed that processing of sentences that
are syntactically more complex results in decreased speech
comprehension (Uslar et al., 2013), increased processing effort
(Wendt et al., 2016), and increased processing duration (Wendt
et al., 2014, 2015; Müller et al., 2016). The present study showed
a systematic effect of complexity on speech intelligibility, with
the lowest SRT80 for the SVO sentence structure. Statistical
analysis revealed a significant difference between SVO sentence
structure and OVS and ambOVS sentence structure. Uslar et al.
(2013) measured SRT80 for SVO, OVS, and ambOVS sentence
structures in different background noises (quiet, stationary
noise, and fluctuating noise) and reported that the results
were influenced by the background noise. In fluctuating noise,
they reported that ambOVS sentences produced the highest
SRT80, which differed statistically from SRT80 for SVO and
OVS sentences. Our results are partly in line with results
reported by Uslar et al. (2013) with respect to the fluctuating
noise condition, since the competing talker situation in our
experiment is best comparable with their fluctuating noise
condition. In the present study, recognition performance of
the ambOVS structure differed from SVO but not that of
OVS sentence structure. The slightly different results between
studies can be explained by very small differences in SRT80
between sentence structures that are in the order of 1–2 dB
and by the different background noises. Uslar et al. (2013)
discussed that the strong difference between the fluctuating
listening condition and two others (quiet and stationary noise)
is presumably related to the ability to listen into the gaps of a

modulated noise masker, which improves speech intelligibility
for listeners with normal hearing (e.g., Festen and Plomp,
1990; Bronkhorst, 2000 for a review). They expected the effect
of linguistic complexity on speech intelligibility to be more
pronounced for a single talker masker. This expectation could not
be confirmed by our results.

Speech rate had a clear effect on speech intelligibility, with
higher SRT80s for fast speech than for normal and slow speech.
This result is in line with other studies that showed decreasing
speech comprehension with increasing speech rate (e.g., Versfeld
and Dreschler, 2002; Liu and Zeng, 2006; Schlueter et al., 2014).

Verbal Working Memory Capacity (WMC)
and Correlations With SRT80, PPD,
and ESCU
In this study WMC was determined with the German reading
span test (Carroll et al., 2015) and examined for correlations
with SRT80, PPD, and ESCU for individual participants. The
listeners’ cognitive ability is associated with speech in noise
performance in hearing impaired and normal-hearing listeners
(Dryden et al., 2017). However, no significant correlations
between WMC and SRT80, PPD, and ESCU were found. Those
result support the findings of Füllgrabe and Rosen (2016b),
that WMC might not be a good predictor of speech in noise
scores in younger normal-hearing listeners. They reported that
WMC, measured with the reading span test, predicts less than
2% of the variance in speech in noise intelligibility for young
normal-hearing listeners. However, higher correlations between
WMC and speech in noise scores were found for older listeners
(e.g., Füllgrabe and Rosen, 2016a).

According to previous literature, better cognitive abilities,
such as higher WMC, are associated with listening effort, as
indicated by pupil size (Zekveld et al., 2011; Wendt et al.,
2016). For example, Wendt et al. (2016) reported significant
correlations between WMC, as indicated with digit span scores,
and listening effort. However, those correlations were only
revealed for less complex sentence structures. Wendt and
colleagues argued that cognitive resources may be exhausted
for complex situations, which might explain the missing
correlations for more complex situations (Johnsrude and
Rodd, 2016). In contrast to previous studies, no significant
correlations between WMC and listening effort were found in
the current study.

The Impact of Linguistic Complexity and
Speech Rate on Listening Effort
The impact of linguistic complexity and speech rate on
listening effort (H1 and H2) was investigated based on
subjectively rated effort (perceived effort) and pupil dilation.
The ratings of perceived effort showed that the SVO sentence
structure was rated as least effortful. This result is in line
with other studies that reported larger perceived effort for
more complex sentence structures (Wendt et al., 2016). Thus,
the SVO sentence structure, considered to be the easiest
because of its word order and its common use in the
German language (Bader and Meng, 1999), produced the lowest

Frontiers in Psychology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 449

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00449 March 6, 2019 Time: 17:29 # 11

Müller et al. Speech Rate and Neural Tracking

speech comprehension thresholds and resulted in the lowest
perceived effort.

In contrast to previous studies, we did not observe an
influence of linguistic complexity on pupil dilation (Piquado
et al., 2010; Wendt et al., 2016). Wendt et al. (2016), who
used the corresponding speech material in the Danish language,
showed a clear influence of linguistic complexity on pupil
dilation, with increasing complexity resulting in lager pupil
dilations. As shown by earlier studies, linguistic complexity
had a strong influence on processing duration (Wendt et al.,
2014, 2015; Müller et al., 2016) and participants needed more
time to process more complex sentence structures. We also
expected to find such differences in processing duration in
the development of the pupil dilation. One reason for the
missing effect in our data might be the influence of speech rate
on pupil dilation.

Speech rate showed a significant influence on perceived effort.
Fast speech produced the highest SRT and was rated as most
effortful. Our results are in line with other studies that showed
a relation between perceived effort and SNR (Rudner et al., 2012;
Wendt et al., 2016). Nevertheless, differences in ratings among
sentence structures and speech rates were rather small, with
effects lower than 1 ESCU.

Looking closely at Figure 4, it turns out that one participant
produced outliers at an ESCU of one. This participant
rated every situation as “no effort,” independent of sentence
structure and speech rate. This may have resulted from
low motivation; Picou and Ricketts (2014) demonstrated that
perceived effort could be affected by the listeners’ motivation.
Furthermore, the framework for understanding effortful listening
(FUEL), introduced by Pichora-Fuller et al. (2016), nicely
demonstrates the relation between motivation, demands, and
effort. They suggest reduced motivation when demands are
constant, resulting in decreased effort. However, the exclusion
of the participant that produced the outliers from the
statistical analysis did not change the conclusion of the
statistical outcome.

The results of pupil dilations are in line with the subjective
effort ratings regarding speech rate. The pupil dilations showed
a significant difference between slow and fast speech: fast speech
resulted in larger pupil dilations. Moreover, the visual inspection
shows not only a faster but also a steeper development of pupil
size. This strong influence of speech rate seemed to dominate the
development of pupil size and may have eliminated the effect of
linguistic complexity.

Taken together, the impact of linguistic complexity and speech
rate on listening effort was not consistent between subjectively
rated effort and effort measured with pupil dilation. Linguistic
complexity had an effect on perceived effort but not on pupil
dilations. Our hypothesis (H1), that the amount of listening effort
is influenced by the level of linguistic complexity, with higher
complexity leading to higher listening effort, was confirmed
by the results of the current study for perceived effort but
not for pupil dilations. Differences between results measured
with subjectively rated effort and with pupil dilations were
also demonstrated by Wendt et al. (2016). Our hypothesis
(H2), that the amount of listening effort is influenced by

speech rate, with faster speech leading to higher listening effort,
was also confirmed.

The Impact of Linguistic Complexity and
Speech Rate on Neural Tracking of
Speech
The impact of linguistic complexity and speech rate on neural
tracking of speech (H3 and H4) was investigated based on EEG
recordings using the data analysis introduced by Petersen et al.
(2017). The time course of the neural tracking of attended speech
measured in our study is comparable with earlier studies (Ding
and Simon, 2012; Horton et al., 2013; Kong et al., 2014; O’Sullivan
et al., 2014; Zoefel and VanRullen, 2015; Petersen et al., 2017)
with a positive deflection at around 80 ms, denoted as P1crosscorr,
a negative deflection at around 150 ms, denoted as N1crosscorr,
and a second positive deflection at around 260 ms, denoted as
P2crosscorr. These denotations were adapted from Petersen et al.
(2017). The studies mentioned above investigated differences
in neural tracking between attended and ignored speech and
reported an attentional effect at N1crosscorr at around 150 ms
with a reduced amplitude of neural tracking for the ignored
stimulus. However, Ding and Simon (2012) showed earlier effects
at around 100 ms and Petersen et al. (2017) reported effects up to
200 ms. These variations may have arisen from different groups
of listeners with normal hearing and with impaired hearing
(Petersen et al., 2017). Our study investigated the influence of
linguistic complexity and speech rate on neural tracking. We
did not observe an influence of linguistic complexity on neural
tracking of speech. No significant differences in the amplitude
of neural tracking were identified between sentence structures.
Many studies investigated whether phase-locking to the speech
envelope reflects the synchronization to acoustical features of
the speech stimulus and/or the synchronization to phonetic
and linguistic features. Some studies reported an influence of
intelligibility on the amplitude of neural tracking, with a stronger
representation for intelligible speech compared to unintelligible
speech (e.g., Luo and Poeppel, 2007; Kerlin et al., 2010; Peelle
et al., 2013). However, other studies reported contradictory
results suggesting that entrainment is not driven by linguistic
features (e.g., Howard and Poeppel, 2010; Millman et al., 2015;
Zoefel and VanRullen, 2015; Baltzell et al., 2017). Since sentences
of our speech material only differ in their linguistic features, our
results are in line with the aforementioned studies suggesting that
linguistic features do not influence the neural tracking.

Speech rate had a strong influence on neural tracking: first,
the amplitude of neural tracking was reduced for fast speech,
and second, the neural tracking was delayed for slow speech.
Different studies investigated the neural phase-locking for time-
compressed speech (Ahissar et al., 2001; Nourski et al., 2009;
Hertrich et al., 2012). Ahissar et al. (2001) showed correlations
between phase-locking and comprehension for different time-
compression ratios. Nourski et al. (2009) confirmed the results
with lower temporal synchrony for compression ratios that
resulted in unintelligible speech and noted that time-compressed
sentences are also reduced in duration, which might elicit
large neural onset responses that disturbed the phase-locking.
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They compressed sentence durations up to extreme compression
ratios of 0.2, leading to sentence durations of down to 0.29 s.
Sentences in our experiment were reduced/expanded only
moderately to 25% of their original rate, which leads to a
minimum duration of 1.79 s and a maximum duration 4.66 s.
Thus, the influence of the neural onset response on phase-
locking as reported by Nourski et al. (2009) was reduced in
our experiment. Furthermore, to avoid the influence of the
neural onset response on the correlation, we excluded the first
200 ms of the sentences and the corresponding EEG from
the correlation analysis, as done by Aiken and Picton (2008)
and Horton et al. (2013), for example. Hertrich et al. (2012)
cross-correlated magnetoencephalography (MEG) recordings
and speech envelopes of moderately fast and ultrafast speech
and found a reduction for unintelligible ultrafast speech in the
M100, which is the magnetic counterpart of the electrical N100
or N1. The aforementioned studies found an influence of speech
rate on neural tracking with reduced neural tracking for time-
compressed and unintelligible speech. Even though sentences
presented with a high speech rate in our experiment are still
intelligible, we also found a reduction in neural tracking at
a time-lag of the significant negative cluster at N1crosscorr at
around 150 ms. These results indicate that the cross-correlation
at around 100–150 ms is not only influenced by the SNR or the
participants attention (as shown by Petersen et al., 2017) but
also by other stimulus properties and/or cognitive factors that
are influenced by speech rate. A further significant difference
that we found between slow and fast speech was at the positive
cluster P2crosscorr at around 250–300 ms. Here we also found a
significant reduction in amplitude of the cross-correlation for
fast speech. Only some of the studies that measured neural
tracking based on cross-correlations could observe a P2crosscorr
component and suggested that its development depends on task
difficulty (Horton et al., 2013; Petersen et al., 2017). Here the
combination of linguistic complexity and speech rate in order to
vary task demands may have increased task difficulty so that a
P2crosscorr was elicited. Interestingly, the differences in P2crosscorr
between slow and fast speech occurred not only for amplitude
but also for timing. The P2crosscorr of fast speech appeared earlier
than the P2crosscorr of slow speech. A difference in P2crosscorr
timing was observed before for attended versus ignored speech.
Petersen et al. (2017) measured cross-correlations for attended
and ignored speech and found earlier N1crosscorr and P2crosscorr
for the ignored condition. Since Petersen et al. (2017) did not
analyze this difference in timing, it remains unclear whether this
effect is caused by speech rate. It is very important to note that
in our study only the timing of the P2crosscorr was affected by
speech rate. The appearance of P1crosscorr and N1crosscorr were not
affected. To the authors’ knowledge, this adaptation hasn’t been
observed before in other studies.

Taken together, the different sentence structures did not
influence neural tracking of speech, which rejects our hypothesis
(H3) that neural tracking is affected by linguistic complexity.
However, speech rate affected neural tracking with a stronger
neural tracking for slow speech, which confirms our hypothesis
(H4) that neural speech tracking is influenced by speech rate, i.e.,
faster speech leads to a weaker neural tracking. Interestingly, not

only the amplitude but also the timing of the neural tracking was
influenced by speech rate. Fast speech was also processed faster,
which indicates that the processing adapts to the auditory input
for an optimal stimulus processing (Bosker and Ghitza, 2018).

Relation Between Listening Effort and
Neural Tracking of Speech
The focus of attention to a specific talker in difficult listening
environments may enhance effortful listening (Pichora-Fuller
et al., 2016), but also enhances the neural tracking of the attended
speech stream (e.g., O’Sullivan et al., 2014; Mirkovic et al.,
2015; Petersen et al., 2017). Since selective attention showed an
influence on neural tracking, we investigated whether listening
effort caused by linguistic complexity and speech rate and
quantified by subjective ratings and pupillometry is reflected on
neural tracking as well (H5). Petersen et al. (2017) investigated
the effect of background noise on neural tracking of attended
speech and reported a reduced amplitude of neural tracking
for lower SNR. Since we kept the individual SNR constant and
varied auditory task demands using linguistic complexity and
speech rate, we investigated whether neural speech tracking is
only sensitive to variations in SNR, as shown by Petersen et al.
(2017), or if listening effort as quantified by effort rating and
pupillometry may explain differences in neural tracking. Petersen
et al. (2017) also demonstrated that attention, which is known
to enhance listening effort, modulates neural tracking. However,
the selective filtering and the actual amount of effort, produced
by attention, is not differentiable. Therefore, we decided to
focus on further factors that modulates listening effort (ling.
complexity and speech rate) and to investigate if these factors
also lead to an influence on neural tracking. In this study,
speech rate showed a strong influence on neural tracking
and listening effort when considering results averaged across
participants. Therefore we correlated the individual amplitude
of neural tracking with individual results of listening effort
collapsed across sentence structures to investigate the impact of
effort on neural tracking. No significant correlations between the
amplitude of neural tracking and subjectively rated effort and
between the amplitude of neural tracking and pupil dilations
were measured, even though both measures were affected by
speech rate. The missing correlation might be explained by
other factors that influence these physiological measures (EEG
and pupil dilation) or the subjectively rated effort. For instance,
the pupillary response is sensitive to arousal, as summarized
by Johnsrude and Rodd (2016). Uncontrolled arousal caused
by the unfamiliar laboratory situation might have influenced
the pupillary response in a different way than the EEG of
the participants. Furthermore, neural tracking is represented by
the correlation of the speech-onset envelope of the presented
speech with the corresponding EEG signal. Thus, neural tracking
is strongly influenced by acoustic properties of the speech
stream and cognitive factors (like attention), whereas pupillary
responses and perceived effort may be more influenced by
cognitive factors.

Consequently, we could not demonstrate a significant
relation between the amplitude of neural tracking and

Frontiers in Psychology | www.frontiersin.org 12 March 2019 | Volume 10 | Article 449

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00449 March 6, 2019 Time: 17:29 # 13

Müller et al. Speech Rate and Neural Tracking

listening effort as quantified by subjective effort rating and
pupillometry. Therefore, our last hypothesis (H5), that there is
a relation between listening effort and neural tracking of speech,
is not supported.

CONCLUSION

First, we demonstrated that linguistic complexity for German
sentences did not affect neural tracking and listening effort
measured with pupil dilations. Second, speech rate showed a
strong influence on subjectively rated effort, pupil dilations,
and neural tracking of speech. Interestingly, not solely the
amplitude of neural tracking, but also the latency was
affected by speech rate. Sentences presented with a high
speech rate resulted in an earlier P2crosscorr. Thus, the
brain adapts to the auditory input for an optimal stimulus
processing. Third, we could not demonstrate a relation
between neural tracking and listening effort even though both
measures showed a clear influence of speech rate averaged
across participants.
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