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Abstract: It is still a challenge to provide spatially explicit predictions of climate parameters in
African regions of complex relief, where meteorological information is scarce. Here we predict
rainfall, temperature, and reference evapotranspiration (ETo) for the southern Mkomazi River Basin
in Northeastern Tanzania, East Africa, by means of regression-based, digital elevation models (DEM)
at 90 m spatial-resolution and geographic information systems (GIS) techniques. We mapped rainfall
for the period 1964–2010. The models accounted for orographic factors which strongly influenced
the spatial variability of rainfall in the region. According to orography, the area was divided into
three zones for modelling rainfall: windward, leeward, and transition zone. Rainfall indicates
high spatial and temporal variability dominated by equatorial East-African climate circulation
systems. Maximum and minimum temperatures were modelled for the period 1989–1994, the models
accounted only for the altitude gradient. Mean temperature was calculated by arithmetic mean of
maximum and minimum temperatures maps in ArcGIS. ETo was estimated in ArcGIS following
the method described by Hargreaves and Samani. The maps were made on a monthly basis for
rainfall, ETo, and mean, maximum, and minimum temperatures. The obtained maps are useful for
the purpose of agriculture, ecological, and water resources management.

Keywords: linear regression; mapping; rainfall; temperature; reference evapotranspiration (ETo);
digital elevation models (DEMs); geographic information systems (GIS); East Africa

1. Introduction

Accurate precipitation, temperature, and evapotranspiration maps at landscape scales are
needed for many applications in agriculture, climate forecasting, irrigation schemes, and water
provisioning. These climatic maps are important in ecological studies because precipitation,
temperature, and evapotranspiration strongly influence the transfer of moisture between the surface
and the atmosphere at local and regional levels. Precipitation is the main source of water in the
terrestrial water cycle, while evapotranspiration returns about 65% of precipitation into the atmosphere,
depending on the vegetation cover [1]. The sun as a black body emits energy at 5530 ◦C, averaged over
the year, and of all surfaces of the earth this amounts to 342 W m−2. Some amount of the solar energy
is used for all plant physiological processes and sets up large-scale climatic conditions and patterns.

Precipitation and temperature are mostly measured at meteorological stations. Evapotranspiration
is commonly assessed indirectly by either (i) considering the energy balance at land surface [2];
(ii) by measuring eddy covariance at some distance above the land surface [3]; (iii) by a water balance
approach for watersheds when precipitation, change in storage, and stream discharge are known [2];
or (iv) by estimating reference evapotranspiration (ETo) from a hypothetical surface of green grass
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cover of uniform height of 0.12 m adequately watered with surface resistance of 70 s m−1 and albedo
of 0.23 [4].

Precipitation and temperature patterns on the earth’s surface are determined by the combination
of geographic factors such as altitude, latitude, aspect and exposure, atmospheric circulations,
characteristics of ocean currents, and effects of continentality [5]. Mountain climates are controlled by
the same factors, with their hydrological and ecological systems being sensitive to climate variability [6],
confounded by local variety of combinations created by orientation, spacing, and steepness of slopes,
along with the presence of complex patterns of snow patches, shade, vegetation, and soil. By acting as
a barrier, mountains themselves affect local and regional climates and modify passing storms. When
mountain ranges are oriented perpendicular to the prevailing winds, forced ascent of air is usually
most effective; the more exposed the slope, the more rapidly air will be forced to rise and cool, which
results in precipitation. Great variations in precipitation and temperature occur over relatively short
distances; one slope may be excessively wet with more precipitation at higher elevations, while another
is relatively dry [7].

Different interpolation or extrapolation methods can be conceived to map climate variables in
a spatially explicit way. Over the last few decades, geostatistic interpolation methods [8] became
commonly used and recognized to have several advantages [9] over non-geostatistic methods such as
Thiessen polygon, inverse distance weighting, or isohyetal methods.

Many research studies have used geostatistic techniques which consider topographic variations
in mapping climatological variables on mountains terrain. Studies exemplifying these approaches
are [10] for precipitation and [11] for evapotranspiration. However, most of these interpolation
techniques do not take into account the effect of relief and other geographic factors. For that reason,
interpolation techniques should take into account the potential effects of topographical factors on the
spatial distribution of climatic variables. Such interpolation techniques (universal techniques) use
geographic information systems (GIS) and digital elevation models (DEMs) for spatial analyses [12].

Several researchers have demonstrated the potential of universal techniques on mapping
precipitation [13], temperature [14], and evapotranspiration [15]. In these regression-based techniques,
geographic and topographic factors that control the spatial distribution of climate are used as
independent variables [16], and dependence models are created between the climate data and
independent variables. The main advantage of this technique is that maps are compiled from
weather stations and auxiliary information that describe geographic and topographic variables
which improves the accuracy and spatial detail of the maps. A goal of the present study is to
apply universal interpolation methods and GIS technologies in mapping precipitation, temperature,
and evapotranspiration of the southern Mkomazi River Basin, an East-African mountainous region
including parts of the Pare and Usambara mountains. The region is typical for remote East-African
rural areas, where most of the population settles on the slopes of the mountains and in the vicinity of
the river, whereas the semi-arid plains are scarcely populated.

The climate of the southern Mkomazi River Basin is characterized by two distinct rainfall seasons.
Long-rains in March–May are commonly abundant [17], whereas short-rains in October–December
reveal more interannual variability [18]. This bimodal pattern is largely related to the seasonal
migration of the inter-tropical convergence zone (ITCZ) across the equator [19].

There are two essential phenomena influencing the interannual rainfall variability in this region:
(i) the El Niño-Southern Oscillation (ENSO) [20]; and (ii) the Indian Ocean dipole (IOD) [21] or Indian
Ocean zonal model (IOZM) [22]. Both extreme weather events can bring large floods [23] or strong
droughts [24], which severely affect the livelihoods of the people.

Therefore, better knowledge of the spatial distribution of precipitation, temperature,
and evapotranspiration is required, particularly in areas with strong variations in topography
and elevation [13,15]. To address this, the present study uses regression-based techniques and
GIS knowledge to construct monthly maps of precipitation, temperature, and evapotranspiration,
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accounting for major topographic influences, particularly elevation, surface orientation,
and obstruction by surrounding topographic features.

Unfortunately, the number of meteorological stations where precipitation, air temperature, wind
speed, humidity, and solar radiation are observed is limited in many parts of the globe, particularly
in developing countries. Many sub-Saharan countries continue to experience difficulties with the
availability of long-term climatic data, and available information is sparse with numerous prolonged
gaps both in time and space. These limitations in the quantity and quality of site observations impose
substantial constraints on studies of the climatic variability, particularly in the southern Mkomazi
River Basin in Tanzania. Therefore, our study involved additional efforts of data correction and dealing
with missing data.

2. Materials and Methods

2.1. Study Area

The southern Mkomazi River Basin, located at latitude (4◦10′ S–4◦50′ S) and longitude
(37◦50′ E–38◦20′ E) with a size of approximately 1188 km2 (Figure 1), is the mountainous sub-catchment
in the mid-reaches of the Pangani River Basin in Northern Tanzania. The elevation above sea level
ranges from 400 m along the Mkomazi valley to 2300 m and 2450 m in the West Usambara and South
Pare mountains. Both mountains are covered with tropical rainforests exhibiting a high diversity of
species [25]. Physiography varies from plains along the valley to rugged escarpments and steep slopes
formed by erosion in the surrounding mountainous range. Livelihoods of the people depend directly
or indirectly on agriculture and forest resources [26].
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2.2. Data Source and Data Cleaning

We used two climatic datasets: (i) monthly rainfall averages from 23 stations provided by
the Tanzania Meteorological Agency (TMA) (hereafter dataset1); and (ii) Pangani-NRM-version-2.0
(hereafter dataset2) daily rainfall and temperature records. Dataset2 consolidates climatological records
collected from the Tanzania Ministry of Water and Livestock Development, TMA, Pangani River Basin
district, and regional offices and institutions.

For rainfall, the two datasets of most but not all stations show similar characteristics in terms
of record lengths, monthly averages sums and missing data. We used datset1 for our analysis since
most of its record lengths spanned to recent years and used dataset2 to fill gaps in dataset1. With this
procedure, we were able to replace 10% of the missing rainfall data.

Both systematic and random errors exist in station data [27]. Errors can be caused by wind,
wetting, and evaporation losses, and type and location of the weather gauge station [28]. In addition,
there are human associated errors like misread and mistyped records [29]. Such erroneous station
data have been identified as inhomogeneous data or outliers [30]. Quality control of climatological
data constitutes a key point in climate research [31], and it depends on the quality of the reference
series [32], in which high correlation and vicinity is a general agreement on how to select neighbor
stations for reference series [33]. Some examples of statistical methods for identifying outliers include
the biweight mean and standard deviation method [34], and the traditional methods based on the
mean and standard deviation.

In the present study, all rainfall stations were selected for constructing reference series.
A traditional statistical method was used to identify outliers: estimate the mean and standard deviation,
and transform the original values through standardization into “Z-scores”, then discard all values
greater than a predefined limit. We used such a method for each calendar month of each year separately
based on the premise that an individual station’s value should be similar in a statistical sense. Knowing
that there is a sample size dependent on the largest Z-score that can occur in a finite sample [35],
we predefined a standard deviation limit of greater than 50% Z-score to pass for outliers.

Very few stations in dataset1 had complete records from the 1930s to recent years. Therefore, our
analysis concentrated on the period 1964–2010, as it comprised 75% of all rainfall records of dataset1.
Temperature was analyzed for the period 1989–1994 because of limited availability of temperature
records in higher altitudes. Note that we aimed to establish a relationship between climate variables
and altitude. Seven stations, of records end-date before 1964, and of less than 30% of available records
relative to the period 1964–2010, were not included into the dataset for analysis of rainfall. The dataset
(at month scale) included sixteen rainfall and three temperature stations (Table 1). We used mean values
(MVs) and standard deviations (SDs) to describe rainfall, and maximum and minimum temperatures
temporal variability.

Station elevations ranged from 488 m for station 14 in the Mkomazi valley to 2286 m for station 9
in the West Usambara mountains. Gauge altitude was corrected using a DEM at 90 m (www2.jpl.nasa.
gov/srtm/) spatial-resolution for discrepancy greater than 500 m for stations 2 and 10. The dataset
was cleaned for outliers, such as too high rainfall in February (1965 for station 1, 1984 and 1985 for
station 9), May 1975 for station 8, June (1966, 1969, 1971) for station 3, and zero values during the
entire year 1994 for station 9. Daily rainfall records were aggregated to monthly values for station 5,
and missing data for station 16 were filled by accumulated daily records. The dataset included eight
rainfall stations within the study area boundary, thus the network density was 74 km2 gauge−1 when
all rainfall stations in the dataset counted.

www2.jpl.nasa.gov/srtm/
www2.jpl.nasa.gov/srtm/


Climate 2018, 6, 63 5 of 20

Table 1. Rainfall and temperature gauge network. Temperature stations are marked *, whereas
superscripts ‘w’, ‘l’ and ‘r’ indicate windward, leeward, and ridge rainfall stations, respectively. Missing
data are described relatively to start-end-date for each gauge station, and values in parentheses are
relatively to the period 1964–2010 for rainfall and 1989–1994 for temperature.

Station
Number Gauge Name Gauge ID Elevation

(m a.s.l.) Latitude Longitude Record
Length

Missing
(%)

1 Suji Mission l 9437004 1371 −4.317 37.850 1923−2008 18 (32)
2 Mazinde Factory l 9438019 1996 −4.700 38.217 1929−2010 6 (7)
3 Hassan Sisal Estate l 9437001 914 −4.333 37.850 1933−2007 21 (29)
4 Same Met l 9437003 860 −4.083 37.733 1934−2011 1 (0)
5 Buiko Hydromet l 9438009 534 −4.650 38.050 1962−2005 1 (11)
6 Shume Forest l 9438012 1889 −4.700 38.200 1937−1997 5 (6)
7 Gologolo Forest House l 9438047 1920 −4.700 38.233 1964−2009 41 (41)
8 Gologolo l 9438037 1882 −4.700 38.233 1955−1986 7 (56)
9 Mlomboza r 9438046 2286 −4.700 38.250 1964−1997 1 (29)
10 Mtae Pr Court l 9438066 1559 −4.483 38.233 1971−2010 22 (22)
11 Shagavu Forest Nursery l 9438049 1981 −4.533 38.233 1964−2011 6 (6)
12 Shagavu l 9438034 1828 −4.533 38.217 1955−2011 5 (3)
13 Gonja Estate w 9438011 584 −4.300 38.033 1937−1988 10 (50)
14 Kalimawe w 9438040 488 −4.417 38.083 1963−2010 40 (41)
15 Ndungu Sisal Estate w 9438051 533 −4.367 38.050 1966−2002 16 (34)
16 Tia Dam w 9437010 1676 −4.233 37.950 1962−2010 32 (31)

101 * Lushoto Hydromet 9438076 1631 −4.783 38.267 1989−1994 1 (1)
102 * Moshi Airport 9337004 854 −3.350 37.333 1958−1993 2 (18)
103 * Same Met 9437003 860 −4.083 37.733 1958−2010 8 (2)

Unlike for rainfall data quality control and outlier’s limit rejection, monthly maximum and
minimum temperatures were compared only to ensure that the latter do not exceed the former,
as temperature possesses less spatial-temporal variability than does rainfall [33]. Missing data for
maximum and minimum temperatures (Ti,j), in which maximum temperature in February 1992 were
filled for station 101, was calculated as

Ti,j = 0.5
(
Ti,j−1 + Ti,j+1

)
(1)

where Ti,j−1 and Ti,j+1 are temperature (◦C) data followed and preceded by the missing data, and j is
the month of year i.

2.3. Spatial Interpolation of Rainfall

The precipitation–elevation relationships on mountains can vary noticeably from terrain to terrain,
and are influenced by factors such as steepness and orientation of the terrain, and upward wind effects,
among others. Rainfall stations were divided into three groups according to orographic barriers:
(i) stations on the eastern slopes of South Pare mountains (windward side); (ii) stations on the western
slopes of West Usambara mountains (leeward side); and (iii) stations located at the ridge. Grouped
stations resulted in strengthening precipitation–elevation relationships [13].

To effectively predict the spatial pattern of orographic precipitation in complex terrain, the model
should include physical elements such as airflow dynamics in both vertical and horizontal scales [36,37].
However, relatively high data demands limit the use of airflow dynamics in most areas of data scarcity
like in the Mkomazi River Basin. Therefore, to predict the spatial pattern of rainfall, we considered only
altitude and aspect correction, and assumed that condensed water falls immediately to the ground.

The landscape was divided into three topographic zones which reflect different orographic
precipitation regimes: windward, leeward, and transition zones. We used ArcGIS to hypothetically
determine the surface illumination and the shadow surface of the West Usambara mountains.
According to our field observations and the vegetation pattern, the transition zone (local variability
of rainfall distribution) is between the towns of Ndungu and Kihurio (see Figure 1 for the location),
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and increasing northward of the former while decreasing southward of the latter. The shadow surface
contours attained the best fit line between Ndungu and Kihurio towns, and the transition zone was
obtained as a buffered zone around the line.

Local increases in rainfall with elevation often approximate a linear or curved distribution [38]
in many regions. Under some conditions climate variables can best be estimated by non-linear
regression models [39]. However, the linear form is easy to use where there are precipitation–elevation
relationships and appears to be an acceptable approximation in most situations [13].

We modelled windward and leeward zones by means of linear regression-based interpolation,
and constructed rainfall maps using DEM at 90 m (www2.jpl.nasa.gov/srtm/) spatial resolution in
ArcGIS. Monthly precipitation, Pi, j (mm), for windward and leeward zones was calculated as

Pi,j = b0 + b1Ei,j (2)

where b1 and b0 are respectively, the monthly regression slopes (mm m−1) and intercepts, Ei,j is the
DEM elevation above sea level (m), and i is latitude of longitude j. We performed a leave-one-out test
to assess the sensitivity of the model goodness-of-fit to the number of stations included in the dataset.
Monthly rainfall maps for the transition zone were modelled by means of layer algebra in ArcGIS as a
function of the constructed windward and leeward monthly rainfall maps, latitude, and longitude.
Thus, the transition zone rainfall maps, Pti, j (mm), were calculated as

Pti,j = b0s + (bon − b0s)ω+ (b1s + (b1n − b1s)ω)Ei,j (3)

where b1n and b1s are monthly regression slopes (mm m−1) for windward and leeward zones, b0n

and b0s are regression intercepts, and ω is the distance weighting between windward or leeward and
transition zone at latitude i of longitude j.

2.4. Spatial Interpolation of Temperature and Evapotranspiration

Several methods such as Blaney–Criddle, Hargreaves and Samani, Penman–Monteith, Priestly–
Taylor and Thornthwaite were developed to calculate reference evapotranspiration (ETo). The Food
and Agriculture Organization of the United Nations (FAO-56) [4] has recommended Penman–Monteith
as the standard method for computing ETo from climate data. The Penman–Monteith model, which
incorporates thermodynamic and aerodynamic aspects, has proved to be a relatively accurate method
in both humid and arid climates. However, a relatively high data demand is a major drawback to
the application of Penman–Monteith. In addition to air temperature available at most meteorological
stations, Penman–Monteith requires measurements of wind speed, humidity, and solar radiation,
which are observed at relatively few African weather stations.

In locations like Mkomazi River Basin, where only maximum and minimum temperatures are
available, it is impractical to use the Penman–Monteith. Instead, methods considering only temperature
appeared feasible. Hargreaves and Samani (HS) [40] developed an empirical method using only
air temperature (mean, maximum, and minimum) and extraterrestrial radiation. The latter can be
calculated for a certain latitude and day of a year. Various studies showed that HS ranked best among
methods that require air temperature data only [41]. The HS method is defined as

ETo = 0.0023 ∗ 0.408Ra(Tmean + 17.8)
√

Tmax − Tmin (4)

where ETo is the monthly averaged reference evapotranspiration (mm day−1), Ra is the extraterrestrial
radiation (MJ m−2 day−1), Tmean is averaged monthly temperature (◦C), and Tmax (Tmin) are maximum
(minimum) monthly temperature (◦C). To obtain monthly evapotranspiration, ETo must be multiplied
by the number of days in the month.

www2.jpl.nasa.gov/srtm/
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Monthly maximum and minimum temperatures were modelled by means of regression-based
interpolation and from DEM at 90 m spatial-resolution in ArcGIS to obtain continuous temperature
maps, respectively. Such temperatures, T (◦C) were calculated as

T = b0 + b1Ei,j (5)

where b1 and b0 are respectively, the monthly regression slopes (◦C m−1) and intercepts, Ei,j is the
DEM elevation above sea level (m), and i is latitude of longitude j. Monthly mean temperature, Tmean

(◦C), was then calculated by arithmetic mean of maximum and minimum temperature as

Tmean = 0.5(Tmax + Tmin) (6)

Global solar radiation (Rs) was modelled in ArcGIS using DEM at 90 m spatial-resolution following
the hemispherical upward-viewshed algorithm developed by Reference [42], in which such radiation
is calculated as the sum of direct sun map and diffuse sky map solar radiations. Direct sun and diffuse
sky map solar radiations were measured for each feature on the topographic surface on a monthly
basis, assuming a clear sky for diffuse proportion and transmittivity. Extraterrestrial radiation (Ra)
was then calculated as

Ra = Rs/
(

as + bs
n
N

)
(7)

where as and bs are fractions of extraterrestrial radiation reaching the Earth. These Angstrom values
vary depending on atmospheric conditions (e.g., humidity) and solar declination such as latitude and
month. However, when no calibration has been carried out, the values as = 0.25 and bs = 0.50 are
recommended [4]. Also, the assumption n = N is recommended [4] where no number of sunshine hour
n of possible maximum N are available. The HS equation was then applied in ArcGIS to construct
continuous monthly ETo maps.

We used two statistical estimators to determine performance of the constructed models for
rainfall and maximum and minimum temperatures, the coefficient of determination (R2) [43], and the
probability of F distribution [44].

3. Results

3.1. Dataset

The mean values of monthly rainfall ranged from 1 mm (July) for station 15 (533 m a.s.l.) along
the Mkomazi valley to 250 mm (December) for station 16 (1676 m a.s.l.) in the South Pare mountains
(Table 2). Monthly rainfall variability was high for both long- and short-rains with standard deviations
approximating mean values for most stations. Monthly maximum temperatures in higher altitude
ranged from 21 ◦C (July) to 29 ◦C (February), and minimum 8 ◦C (August–September) to 14 ◦C (April)
for station 101 (1631 m a.s.l.) in the West Usambara mountains. In contrast, maximum temperatures
in low altitudes ranged from 26 ◦C (June–August) to 33 ◦C (February) and minimums from 16 ◦C
(July–September) to 19 ◦C (April) for station 102 (854 m a.s.l.) in Moshi town.
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Table 2. Statistical descriptions of gauge stations. Station number: see Table 1. MV is mean value and SD is standard deviation. Wet and dry months colored light blue
and orange, respectively.

January February March April May June July August September October November December Annual
Average

MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD MV ± SD

Station
Number Rainfall (mm)

1 92 ± 71 72 ± 53 142 ± 97 120 ± 61 52 ± 35 12 ± 14 5 ± 7 8 ± 11 10 ± 15 31 ± 40 129 ± 105 165 ± 89 838 ± 50
2 55 ± 58 57 ± 46 82 ± 62 142 ± 69 131 ± 77 31 ± 31 16 ± 21 15 ± 19 13 ± 29 41 ± 57 66 ± 46 75 ± 50 724 ± 47
3 60 ± 50 43 ± 35 87 ± 79 71 ± 45 40 ± 28 7 ± 17 5 ± 10 5 ± 15 8 ± 15 23 ± 29 63 ± 62 81 ± 59 493 ± 37
4 54 ± 53 43 ± 41 91 ± 89 107 ± 62 64 ± 52 12 ± 17 4 ± 7 10 ± 15 13 ± 22 39 ± 43 62 ± 62 63 ± 51 562 ± 43
5 42 ± 46 34 ± 32 59 ± 55 71 ± 46 46 ± 38 10 ± 13 7 ± 14 6 ± 10 4 ± 10 27 ± 34 32 ± 41 45 ± 56 383 ± 33
6 74 ± 60 56 ± 37 129 ± 83 149 ± 71 72 ± 40 14 ± 16 8 ± 17 5 ± 7 10 ± 18 37 ± 36 91 ± 59 95 ± 57 740 ± 42
7 64 ± 47 53 ± 39 101 ± 67 115 ± 59 67 ± 37 17 ± 16 12 ± 25 8 ± 19 13 ± 29 38 ± 34 85 ± 58 76 ± 56 649 ± 41
8 89 ± 80 75 ± 62 134 ± 91 170 ± 91 90 ± 59 22 ± 26 13 ± 26 11 ± 19 15 ± 33 50 ± 31 116 ± 53 102 ± 54 887 ± 52
9 86 ± 71 83 ± 51 141 ± 92 172 ± 70 142 ± 113 41 ± 41 20 ± 30 14 ± 23 15 ± 23 54 ± 58 113 ± 102 129 ± 90 1010 ± 64

10 47 ± 41 43 ± 36 75 ± 67 144 ± 61 92 ± 58 13 ± 13 9 ± 10 12 ± 14 15 ± 24 51 ± 46 100 ± 57 147 ± 101 748 ± 44
11 83 ± 58 61 ± 45 120 ± 72 140 ± 56 55 ± 36 7 ± 9 4 ± 5 5 ± 7 9 ± 13 52 ± 51 127 ± 71 167 ± 93 830 ± 43
12 102 ± 81 75 ± 55 132 ± 68 150 ± 51 61 ± 39 7 ± 10 4 ± 6 7 ± 9 9 ± 14 53 ± 51 140 ± 71 186 ± 108 926 ± 47
13 107 ± 67 84 ± 77 141 ± 124 118 ± 95 44 ± 36 8 ± 13 4 ± 8 9 ± 12 18 ± 24 39 ± 36 148 ± 82 229 ± 128 949 ± 59
14 47 ± 51 40 ± 36 63 ± 56 70 ± 51 25 ± 21 4 ± 5 2 ± 3 5 ± 6 13 ± 36 21 ± 15 38 ± 36 61 ± 45 389 ± 30
15 74 ± 84 62 ± 57 93 ± 98 86 ± 67 32 ± 31 3 ± 8 1 ± 4 3 ± 6 11 ± 20 28 ± 31 85 ± 77 127 ± 93 605 ± 48
16 117 ± 127 81 ± 75 153 ± 96 172 ± 70 62 ± 50 11 ± 16 5 ± 6 13 ± 16 22 ± 29 69 ± 59 244 ± 172 251 ± 162 1200 ± 73

Maximum Temperature (◦C)

101 28.1 ± 1.0 28.5 ± 0.8 27.6 ± 0.9 25.4 ± 0.4 23.2 ± 0.7 21.9 ± 0.6 21.4 ± 0.4 21.9 ± 0.4 23.9 ± 0.3 26.0 ± 0.6 26.6 ± 0.4 27.0 ± 0.4
102 31.3 ± 1.4 32.8 ± 1.2 32.2 ± 1.8 29.7 ± 1.3 27.3 ± 1.1 26.0 ± 0.4 25.5 ± 0.3 26.0 ± 0.5 28.5 ± 0.4 30.8 ± 0.5 31.9 ± 0.7 31.1 ± 0.8
103 30.9 ± 1.6 32.4 ± 1.2 31.7 ± 1.5 29.1 ± 1.0 26.7 ± 1.0 26.2 ± 0.5 25.8 ± 0.3 26.1 ± 0.6 28.2 ± 0.4 30.2 ± 0.5 30.7 ± 0.8 29.9 ± 1.1

Minimum Temperature (◦C)

101 12.9 ± 1.0 12.9 ± 0.3 12.2 ± 0.5 13.7 ± 0.7 13.2 ± 0.4 10.1 ± 1.1 8.7 ± 0.9 8.0 ± 0.5 7.6 ± 0.3 9.5 ± 1.4 10.8 ± 0.6 12.8 ± 0.9
102 17.7 ± 0.5 17.8 ± 0.9 18.5 ± 0.4 19.1 ± 0.2 18.5 ± 0.2 16.8 ± 0.4 16.0 ± 0.5 15.6 ± 0.5 16.0 ± 0.7 17.3 ± 0.4 18.3 ± 0.4 18.4 ± 0.7
103 18.4 ± 1.0 18.4 ± 0.9 18.3 ± 1.0 17.9 ± 0.8 16.9 ± 0.9 15.2 ± 0.9 14.4 ± 0.9 14.6 ± 1.0 15.1 ± 0.8 16.8 ± 1.0 18.1 ± 0.7 18.6 ± 0.8
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3.2. Spatial Modelling and Mapping of Rainfall, ETo, and Temperature

R2 values for rainfall and maximum and minimum temperatures showed that there was an overall
relationship between elevation and such climatic variables (Table 3). When modelling rainfall, station 9
was included into both windward and leeward groups based on the assumption that because station 9
was located at the ridge, it had both windward and leeward side’s rainfall characteristics. Subdividing
zones according to relief for spatial estimation of rainfall provided important information about rainfall
variability at the local scale, which can be shown by differences between R2 values for rainfall, both
for leeward and windward sides. This was particularly evident for the long-rains season (March,
April, May), in which R2 was greater for the windward-side (0.43, 0.83, 0.86) than for the leeward-side
(0.38, 0.76, 0.42). Likewise, R2 values increased towards the long-rains season except in May for the
leeward side, when it decreased. In contrast, for the short-rains season (October, November, December),
the strength of the relationship between elevation and rainfall decreased towards the short-rains season,
and R2 values in the windward-side (0.66, 0.21, 0.05) were smaller than in the leeward-side (0.52, 0.43,
0.22), except in October. Moreover, during the transition period towards the wet seasons in (February,
September), R2 values in the windward-side were smaller (0.36, 0.15) than the leeward-side (0.53, 0.32).
The analysis of probability of F distribution both for rainfall and temperature passed the F test at
significance level of 0.01, except for rainfall in August (leeward-side) and September (windward-side)
where it passed at 0.1. Due to the relatively low number of stations, R2 values varied considerably
when individual stations were removed from the dataset, as shown by Table S1 in comparison with
the values in Table 3. On the windward side, removing variation by leaving out a station strongly
increased the R2 value, particularly regarding October and November (Table S1).

Table 3. Goodness-of-fit of the relationship between monthly precipitation, maximum and minimum
temperature, and elevation by means of regression-based interpolation. R2 values in parentheses for
rainfall were calculated when leeward and windward rainfall groups were modelled with an absence
of the stations at the ridge.

Rainfall (mm) Temperature (◦C)

Leeward Windward Maximum Minimum

R2 F R2 F R2 F R2 F

January 0.32 (0.28) 81.0 0.17 (0.47) 17.8 0.99 28.6 0.98 33.1
February 0.53 (0.43) 128.9 0.36 (0.28) 29.8 0.99 38.6 0.98 39.3

March 0.38 (0.30) 145.9 0.43 (0.48) 76.3 0.99 38.5 0.99 27.1
April 0.76 (0.72) 543.7 0.83 (0.85) 333.9 0.98 27.9 0.96 20.1
May 0.42 (0.31) 187.7 0.86 (0.89) 373.2 0.98 25.9 0.93 13.1
June 0.31 (0.18) 41.1 0.79 (0.75) 94.0 0.99 68.6 0.95 20.9
July 0.35 (0.22) 24.2 0.77 (0.56) 42.6 0.99 51.0 0.96 25.7

August 0.12 (0.04) 4.5 0.75 (0.65) 24.0 0.99 66.6 0.98 48.4
September 0.32 (0.25) 14.2 0.15 (0.66) 2.6 0.99 92.4 0.99 65.9

October 0.52 (0.43) 84.0 0.66 (0.93) 76.5 0.98 33.3 0.99 40.4
November 0.43 (0.39) 199.4 0.21 (0.80) 66.1 0.95 17.2 0.99 45.4
December 0.22 (0.22) 123.0 0.05 (0.47) 14.8 0.91 9.6 0.99 44.8

The constructed rainfall maps showed that monthly rainfall ranged from 2 mm along the valley
to 194 mm on mountains (Figure 2). The results also showed that rainfall was abundant for the
long-rains season in March–May centered in April. Nevertheless, during such periods mountain
areas received more rainfall than in the valleys. In contrast, rainfall during the short-rains season in
October–December revealed higher spatial variability in the leeward-side than in the windward-side.
The valley in the windward-side received rainfall amounts similar as on mountains, particularly for
the period November to December.
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Figure 2. Monthly mean rainfall (mm) maps for the southern Mkomazi River Basin averaged for the
period 1964–2010.

The number of temperature records available within the study area was very low. Therefore,
it was necessary to include nearby meteorological stations to increase our understanding of the
temperature gradient, which resulted in highly satisfactory estimations for this variable, as shown
by high R2 values. However, although maximum and minimum temperatures are commonly more
easily modelled than rainfall because of low measurements uncertainties, the very high R2 values for
temperature were influenced by the little number of temperature stations used to model these climatic
variables. These few stations were located in high altitudes and low altitudes, which supported a
linear relation.
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Mean monthly temperature strongly decreased with altitude, as expected (Figure 3). This effect
was most pronounced in June–September, whereas the valley was characterized by similar
temperatures throughout the year. The mean temperatures ranged from 9 ◦C (July–September)
to 28 ◦C (February, March, and November). The period December–February was warmer where
the temperature in the South Pare and West Usambara mountains was above 15 ◦C. Figure 3 also
showed that the temperature was lower in July–September, particularly in higher altitudes. Moreover,
the results showed that temperature in the Mkomazi valley was higher than 23 ◦C throughout the year.
Maximum and minimum temperatures ranged from −1 to 35 ◦C (Figures 4 and 5) with patterns and
trends similar to that described for mean temperature.Climate 2018, 6, x FOR PEER REVIEW  11 of 19 
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The constructed monthly ETo maps values ranged from 28 to 165 mm (Figure 6). Results showed
that except for the period May–July, ETo surpassed 50 mm, and was greater than 150 mm in January,
March, and October–December, and below 150 mm in February, April, August, and September.
In May–July ETo ranged between 40 and 126 mm. Maximum ETo occurred in March in which the
lowest was 100 mm. In general, ETo decreases with altitude. The results also showed that in January,
November, and December some slopes had greater amounts of ETo than on the plains, which primarily



Climate 2018, 6, 63 14 of 20

was associated with the effects of seasonal variations in the position of the sun on the slopes than on
the plains. The constructed monthly extraterrestrial radiation maps are shown in Figure 7.Climate 2018, 6, x FOR PEER REVIEW  14 of 19 
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4. Discussion

In agronomic studies, calculations of reference evapotranspiration (ETo) following the Hargreaves
and Samani (HS) equation are generally performed using values of extraterrestrial radiation (Ra)
calculated assuming a planar surface and solely as a function of latitude, according to the method
described by Reference [4], which does not take relief into account. This study reveals the potential
of regression-based models, digital elevation models (DEM), and geographic information systems
(GIS) modelling techniques to map ETo, precipitation and temperature—the climate variables that
are important in many environmental and water resources studies [1–3]. We have modelled Ra using
DEM and ArcGIS. The usefulness of this approach might not be for flat terrain, in which relief does not
significantly affect Ra. However, in complex terrain, for high-resolution ETo maps used for ecological
and water resources management, spatial variations in relief are commonly very important and
significantly affect the values of Ra estimates because radiation flux are especially dependent on the
geometry of terrain [15], and this has a significant effect on local ETo values [45].

The dataset was collected from many institutions, and cleaned for inhomogeneous data. Obvious
outliers were removed by means of traditional methods based on the mean and standard deviation
and a predefined limit. The largest risk of making a type I error (i.e., erroneously removing good data)
was in the subjective decision to remove too high rainfall in dry months for dry years.

There was an overall relationship between elevation and both rainfall and temperature,
as expected. The results of the precipitation models showed that, for the long-rains season in
March–May, R2 values for the period March–April increased for leeward and windward, and were
great in April for both sides, in which rainfall peaked in April. In contrast, for short-rains season in
October–December, in which rainfall peaked in December, R2 values decreased and were very low
in December. From the constructed rainfall maps and the analysis of temporal rainfall variability,
precipitation patterns regimes agreed well with results from equatorial East African studies showing
that the rainfall is abundant in most areas for the long-rains season [17], while short-rains season reveal
more interannual variability [18]. High and low R2 values corresponded with the temporal patterns in
rainfall variability.

Rainfall was modelled in a linear form assuming that condensed water falls immediately to
the ground and no influence of horizontal movements was included, which is somewhat violating
mountain wave theory for modelling orographic precipitation [36]. It does not include the physical
elements such as airflow dynamics, advection and fallout, condensed water convection, and downslope
evaporation [46]. However, it is a usable assumption to obtain a relationship between elevation and
precipitation in most situations, an example showing such an assumption is shown in the study by
References [13]. In addition to general usable assumptions on climatic model development, one has to
increase the complexity and performance of such models upon availability of other parameters.

An attempt to improve R2 values for rainfall was to exclude stations at the ridge (station 9 in
this case) for analysis of elevation–rainfall relationship and seasonal trends. The results showed
significant improvement of R2 values for windward-side, particularly for the short-rains season
in comparison to the long-rains season. In contrast, there was no significant improvement of R2

values for the leeward-side, particularly in December. Also, the elevation-rainfall relationship for the
long-rains season for both windward and leeward models showed no significant R2 differences with
or without station 9. Low R2 values indirectly indicate climate mechanisms for rainfall distribution in
particular for the period November to January. The rainfall distribution form during this period is
yet unknown. However, the climate of the Mkomazi River Basin is largely influenced by equatorial
East African climate systems. Slingo and others [19] noted that over the Western Indian Ocean
the inter-tropical convergence zone (ITCZ) makes its greatest North–South excursions, dominated
by the Asian monsoon with its reversals of the wind from northeasterly in December–February to
southwesterly in June–August periods. As such, during the transition periods in March–May as
the northeast monsoon relaxes, the ITCZ from its southernmost position over the southern Western
Indian Ocean progresses northwards bringing equatorial East Africa long-rains season, and as the
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Asian summer monsoon retreats in September–November, the ITCZ progresses South again bringing
equatorial East Africa short-rains season. Therefore, we considered local prevailing winds, especially
their trend and strength, associated with the ITCZ excursions, also to be an important variable for
rainfall patterns.

We used the HS method to map ETo for the reason that, to construct reliable maps, it is necessary
to use a dense dataset of the climatic variables. Although the most accurate method is the one that
is physically based on the Penman–Monteith equation, it is impossible to produce reliable ETo maps
using the Penman–Monteith equation in the area of data scarcity because of a relatively high data
demand of such an equation. Apart from our specific study area, this may be the case for many Africa
regions. In addition, numerous researchers (e.g., [41,47]) have demonstrated that, for ETo estimates
for periods longer than one week, the HS method provides similar results to those obtained using the
Penman–Monteith equation.

As a caveat to our study, we note that the lack of climate stations and the sometimes discontinuous
maintenance of the existing stations pose a serious obstacle to the derivation of climate maps from data.
A small number of stations and the unavailability of additional climate parameters besides rainfall
decrease the reliability of the regression functions that relate rainfall and temperature to elevation.
Climate maps derived from sparse data must therefore considered with care. This problem will likely
persist in the near future in many parts of sub-Saharan Africa.

5. Conclusions

Our study has demonstrated the potential use of linear-regression-based, digital elevation
models (DEM), and geographic information systems (GIS) techniques in modelling and construction
of reliable climate maps. These maps were made on a monthly basis for rainfall, temperatures,
and evapotranspiration.

Both rainfall and temperature showed a linear correlation form with elevation. Temperature
linear correlation form with elevation was stronger than that showed by rainfall with elevation.
These temperature stations were located on two different altitudes (low and high), which supported
the linear form strongly. For rainfall, the linear form was more pronounced for the long-rains seasons
than for the short-rains season. For the long-rains season, the rainfall-elevation relationships showed
no significant changes in R2 values, both for the leeward- and windward-side, when the station at
the ridge was not included for the analysis of rainfall–elevation relationship. In contrast, for the
short-rains season, R2 values improved substantially when station at the ridge was not included into
rainfall models. Therefore, rainfall distribution for the southern Mkomazi River Basin particularly for
the short-rains season deserves further attention, when other variables affecting rainfall distribution
(e.g., wind speed and direction) become available.

The constructed maps for reference evapotranspiration (ETo), rainfall, and temperatures can be
useful for environment and water resources studies in the region as climate variability affects river
flows, which has in turn implications on livelihoods of the people which depend directly or indirectly
on rain-fed agriculture.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/6/3/63/
s1. Table S1: Goodness of fit of the relationship between monthly precipitation and elevation by means of
regression-based interpolation when one gauge station is removed from the population of available gauge stations.
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