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Abstract

Coral reefs are experiencing increasing anthropogenic impacts that result in substantial

declines of reef-building corals and a change of community structure towards other benthic

invertebrates or macroalgae. Reefs around Zanzibar are exposed to untreated sewage and

runoff from the main city Stonetown. At many of these sites, sponge cover has increased

over the last years. Sponges are one of the top spatial competitors on reefs worldwide. Their

success is, in part, dependent on their strong chemical defenses against predators, micro-

bial attacks and other sessile benthic competitors. This is the first study that investigates the

bioactive properties of sponge species in the Western Indian Ocean region. Crude extracts

of the ten most dominant sponge species were assessed for their chemical defenses

against 35 bacterial strains (nine known as marine pathogens) using disc diffusion assays

and general cytotoxic activities were assessed with brine shrimp lethality assays. The three

chemically most active sponge species were additionally tested for their allelopathic proper-

ties against the scleractinian coral competitor Porites sp.. The antimicrobial assays revealed

that all tested sponge extracts had strong antimicrobial properties and that the majority

(80%) of the tested sponges were equally defended against pathogenic and environmental

bacterial strains. Additionally, seven out of ten sponge species exhibited cytotoxic activities

in the brine shrimp assay. Moreover, we could also show that the three most bioactive

sponge species were able to decrease the photosynthetic performance of the coral symbi-

onts and thus were likely to impair the coral physiology.

Introduction

Coral reefs worldwide have experienced substantial losses of coral cover and species diversity

over the past decades in response to various anthropogenic drivers [1–3]. These declines in coral

cover have resulted in shifts of benthic community composition [4–6]. Non reef-building taxa

that can cope better with anthropogenic stressors, such as climate change, eutrophication, sedi-

mentation, and disease prevalence, continue to increase in abundance [4,5,7–10]. Additionally,
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organisms other than hard corals are released from top-down control through overfishing and

can undergo uncontrolled growth due to the absence of their predators [10–13]. Sponges are

one of the top spatial competitors for reef-building scleractinian corals and their abundance, as

well as biomass, on reefs worldwide is steadily increasing [6,14,15]. In the Caribbean, sponge

biomass and coverage is now equal to or even exceeding that of corals [10,16–18]. Their great

success can be partly explained by their ability to feed on a wide variety of nutritional sources

[19], the very low energetic costs of their filter-feeding activities [20] and their strong chemical

defenses [18].

Sponges produce the greatest diversity of secondary metabolites among benthic marine

organisms [21] with more than 5300 currently described [22]. The primary interest in sponge

secondary metabolites has been related to their potential pharmacological activity, but a grow-

ing number of studies have started to investigate the ecological functions of these compounds.

Their secondary metabolites give sponges the ability to deter predators [23–25], inhibit patho-

genic microbes [25–27] and demonstrate competitive dominance towards other sessile benthic

organisms [15,28,29].

A crucial factor contributing to the competitive success of sponges is their ability to combat

microbial attacks. Many sponges defend their surface from colonization by fouling organisms

as well as from potential pathogenic bacteria by producing secondary metabolites with antimi-

crobial properties [25,30–32]. Marine organisms are constantly exposed to potentially harmful

bacteria. In the Indian Ocean bacterial abundances range from 6x 104 ml-1 to 2.5x 106 cells ml-

1 in the surrounding seawater [33–35]. Sponges are additionally exposed to large quantities of

microbes passing through their bodies due to their filter feeding activities [20]. Given the expo-

sure of sponges to high numbers of bacteria in the marine environment and the relatively low

incidence of infection with diseases, chemical compounds in sponges are likely crucial in pro-

viding effective defenses against the invasion of pathogenic microbes after damage or injury

[7,25,36–38].

Over the last 20 years the prevalence and severity of marine diseases has increased substan-

tially, particularly impacting reef building corals [5,39,40]. Coral diseases have been correlated

with environmental stress caused by human activities and environmental alterations associated

with global climate change [39–41]. Diseased corals in the Caribbean were almost exclusively

found in anthropogenically impacted areas [42] and some coral diseases are assumed to be

caused by human faecal bacteria [43,44]. Sponges on the other hand, seem to be less suscepti-

ble to environmental conditions that are stressful for corals or might have better antimicrobial

defenses since sponge diseases are much less prevalent [5,7,45].

In addition to their strong defenses against microbial attacks, many sponges are assumed to

be competitively superior over other reef organisms [28,46–48]. One of the main factors shaping

the community composition of sessile, benthic assemblages is the competition for space [49].

Especially on coral reefs, free substratum space with adequate irradiance for photosynthesis and

exposure to food-providing water currents is one of the most limiting resources for benthic

organisms [50,51]. The high biodiversity on coral reefs results in high frequency of competitive

interactions between sessile organisms of the same and of different species [52,53]. Sponges have

not only the ability of rapidly overgrowing benthic reef organisms but they also release chemical

compounds that can harm and kill other competitors [15,28,46,48]. Cytotoxic secondary metab-

olites produced by sponges may be able to inhibit the growth of other competing organisms by

impairing their cell division and thus provide sponges with an advantage during competition for

space on crowded coral reef substratum [54,55]. The bioactivity, especially the cytotoxicity, of

sponge extracts seems to be a good proxy for their ability to overgrow corals in the field [56].

The four most bioactive sponges in the Spermonde Archipelago were also reported to cause

necrosis of corals in more than 85% of interactions observed in situ [15]. Bioactive compounds
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are released through tissue contact, via sponge mucus or directly into the surrounding water

causing bleaching and tissue necrosis in neighbouring corals thereby reducing their chances of

survival [28,46,57]. Several sponges have already been identified to use allelopathy in order to

inhibit the growth of other benthic organisms or were even able to cause bleaching and tissue

necrosis in neighbouring corals [15,28,46,48,58]. The competitive abilities of sponges may be

further enhanced with increasing anthropogenic disturbances that are stressful to corals but tol-

erable for sponges [59]. In the Western Indian Ocean (WIO) corals were greatly affected by the

1997/1998 El Niño Southern Oscillation (ENSO) resulting in mass coral bleaching and a decline

in coral cover [60–62]. This decline of coral species has led to a shift of the ecological balance in

favour of other space-competing functional groups especially corallimorpharians [4,63,64].

Additionally, the reefs on Zanzibar´s West Coast are heavily exposed to untreated sewage and

runoff from the main city which could represent a potential source for the introduction of a vari-

ety of bacteria and pathogens [65,66]. Multiple drainage pipes, some extending up to 55m from

the coast along the sea bottom, come from the 2289 septic tanks, and discharge daily 2.2 x 106 l

of wastewater [65]. Over the last 12 years an increase of the amount of 15N in common benthic

organisms, and an increased amount of fecal indicator bacteria (i.e. Enterococcus (ENT)) suggest

that water quality has deteriorated [65,67–70].

In this study we provide the first evaluation of chemical competitive defenses in Western

Indian Ocean (WIO) reef sponges. Our aim was to examine the organic extracts from the most

abundant sponge species on reefs around the West Coast of Zanzibar for ecologically significant

antimicrobial and cytotoxic activities. Additionally, extracts of the three most active sponge spe-

cies, Pseudoceratina sp., Callyspongia sp. andHaliclona atra, were tested for their allelopathic

properties in field experiments. Corals of the genus Porites were chosen for the field experiments

since the reefs at Bawe Island are dominated by large monostands of branching and massive

Porites following the El Niño in 1997/ 1998 and a Crown-of-Thorn Starfish (COTS) outbreak in

2002–2006 [8,71–74]. Furthermore, all three sponge species were observed to grow adjacent or

even in between branching Porites corals, making the study of interactions among these two

organisms ecologically relevant.

Material and methods

Ethics statement

This research was completed in accordance with permits issued by the Research Committee of

the Zanzibarian Government.

Study site

The field study was conducted from September to December 2014 at reefs around Bawe Island,

Zanzibar (Unguja), Tanzania (S1 Fig). Bawe (06˚ 09´25.56” S, 39˚ 08´0.96” E) is located on the

west side of the island in the Zanzibar channel, about 7km from the capital Stonetown [71].

The reef at Bawe is heavily influenced by fishing activities and untreated sewage discharge

from Stonetown and its harbour [8,65,66,75].

Collection and extraction procedure

Based on a sponge community survey [76], the ten most abundant sponge species were chosen

for the investigation of their antimicrobial and cytotoxic properties. This included Callyspon-
gia aerizusa, Callyspongia sp.,Haliclona atra, Haliclona fascigera, Biemna sp., Paratetilla sp.,

Pseudoceratina sp. Scopalina hapalia, Plakortis kenyensis and Tetrapocillon minor. The sponge

species were identified by Dr. Nicole de Voogd and vouchers have been registered in the
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sponge collection of the Naturalis Biodiversity Center in Leiden, Netherlands. Specimens of

the selected sponge species were sampled opportunistically by scuba-divers at 10m depth. Rep-

licates (3–5 individuals) of each sponge species were collected and transferred into zip block

bags filled with ambient seawater. There was a minimum distance of 20 m between replicates

to avoid collection of clones. Samples were immediately transferred in coolers to the laboratory

facilities at the Institute of Marine Sciences (IMS, Stonetown). After gently removing dripping

water, sponge pieces were weighed to the nearest 0.1 g to determine wet weight (WW), cut

into small pieces and secondary metabolites were extracted three times with 99.9% Ethanol.

The extracts were filtered to remove particles and the filtrate was kept at -20˚C for storage and

transport. Samples were filtered again and evaporated under reduced pressure using a rotary

evaporator (water bath temperature 35˚C) at the laboratories of the ICBM, University of

Oldenburg. The crude extracts were transferred into preweighted glass vials and evaporated to

complete desiccation with a Speed Vac. Natural extract concentrations were calculated as mg

extract per gram of sponge wet weight (see Table 1). Extracts from 3–5 replicate sponge indi-

viduals per species were pooled and used for the experiments to get a significant estimate of

the response parameters for this population. This has been done in many studies on chemical

defense (e.g. [76–80]). All extracts were stored at -20˚C until use.

Bacterial panel

The agar disc-diffusion assay was used to assess antibacterial activities of the sponge crude

extracts. 35 bacterial strains, representing a wide phylogenetic range (see Table 2), were tested

including nine known pathogens associated with marine diseases (Aurantimonas coralicida,

Acitenobacter pitiii, three strains of Vibrio alginolyticus, Vibrio owensii, two strains of Vibrio
coralliilyticus and Vibrio shilonii). Bacteria were considered pathogens if their closest match

was a bacterial strain associated with a marine disease and they further possessed sequence

similarities of>98% to known pathogens in the 16S NCBI BLAST database.

The bacterial strains were formerly isolated from the crustose coralline algaHydrolithon
reinboldii and from two sponges, namely Rhabdastrella globostellata (no.1334 and 1348) and

Pseudoceratina sp. (no.0852) from Guam, except for three marine pathogens (WHV0001,

WHV0002 and WHV0003) that were ordered from the Deutsche Sammlung von Mikroorga-

nismen und Zellkulturen GmbH, DMSZ, Braunschweig, Germany. The isolation, conservation

and identification of the various bacterial strains have been performed by our colleagues

Table 1. The most abundant sponge species at Bawe Island, Zanzibar, their percent coverage and natural extract yield. The data for the benthic cover of the different

sponge species were obtained by a previous study [76].

Order Species Number of Replicates Extract yield [mg g (WW)-1] a Benthic cover at 10m depth[%]

Haplosclerida Haliclona fascigera 5 13.00 (± 6.38) 0.17 (±0.90)

Haplosclerida Haliclona atra 3 26.51 (± 4.53) 2.33 (±4.70)

Haplosclerida Callyspongia aerizusa 5 19.35 (± 10.14) 0.37 (±1.32)

Haplosclerida Callyspongia sp. 3 22.90 (± 2.18) 0.13 (±0.48)

Verongida Pseudoceratina sp. 3 31.06 (± 18.63) 0.00 (±0.00)

Homosclerophorida Plakortis kenyensis 3 16.80 (± 13.25) 0.01 (±0.03)

Scopalinida Scopalina hapalia 3 17.14 (± 5.86) 0.04 (±0.14)

Poecilosclerida Biemna sp. 3 18.29 (± 2.84) 2.88 (±4.20)

Tetractinellida Paratetilla sp. 3 26.31 (± 3.66) 0.01 (±0.04)

Poecilosclerida Tetrapocil lon minor 4 18.39 (± 7.37) 0.11 (±0.24)

a Extracts yields in mg extract per g WW (wet weight) are given as the mean of 3–5 extractions (± STD).

https://doi.org/10.1371/journal.pone.0197617.t001
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Table 2. Description of the 35 bacterial strains used in the antimicrobial assay, including nine known pathogens for marine diseases percent similarity indicates

how close the bacterial sequence of the isolate is to the closest strain in the NCBI BLAST databank.

No. Phylum Class Family Accession

no. of

bacterial

isolate

Species (closest

NCBI hit)

Accession

no. of closest

NCBI hit

Similarity of

the closest

NCBI hit

1701 Actinobacteria Actinobacteria Micrococcaceae MG551787 Kocuria
halotolerance

NR_044025 98.888

1744 Actinobacteria Actinobacteria Micrococcaceae MG551810 Micrococcus
aloeverae

NR_134088 99.666

1682 Actinobacteria Actinobacteria Nocardiaceae MG551778 Rhodococcus
corynebacterioides

NR_119107 99.343

1656 Actinobacteria Actinobacteria Streptomycetaceae MG551768 Streptomyces
flavoviridis

NR_041218 100

1733 Proteobacteria Alphaproteobacteria Rhodobacteraceae Loktanella
pyoseonensis

NR_115100 98.684

1636 Bacteroidetes Flavobacteria Flavobacteriaceae MG551762 Aquimarina gracilis NR_113781 99.302

1686 Firmicutes Bacilli Bacillales Family XII.
Incertae

MG551781 Exiguobacterium
profundum

NR_043204 99.549

1694 Proteobacteria Alphaproteobacteria Rhodobacteraceae MG551784 Paracoccus
zeaxanthinifaciens

NR_025218 99.892

1754 Proteobacteria Gammaproteobacteria Rhodobacteraceae MG551813 Ruegeria areniliticus NR_109635 99.678

1668 Proteobacteria Alphaproteobacteria Rhodobacteraceae MG551772 Ruegeria areniliticus NR_109635 97.439

1792 Proteobacteria Alphaproteobacteria Rhodobacteraceae MG551832 Pseudovibrio
denitrificans

NR_113946 99.784

1721 Proteobacteria Gammaproteobacteria Alteromonadaceae MG551801 Microbulbifer
variabilis

NR_041021 99.78

1633 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551852 Pseudoalteromonas
phenolica

NR_113299 99.785

1783 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551825 Pseudoalteromonas
piscicida

NR_114190 99.251

1810 Proteobacteria Gammaproteobacteria Enterobacteriaceae MG551842 Pantoea eucrina NR_116246 99.299

1703 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551789 Pseudomonas
pseudoalcaligenes

NR_037000 98.168

1652 Proteobacteria Gammaproteobacteria Vibrionaceae MG551766 Vibrio maritimus NR_117551 98.28

1809 Proteobacteria Alphaproteobacteria Rhodobacteraceae MG551841 Ruegeria areniliticus NR_109635 98.072

1767 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551817 Pseudomonas
luteoviolacea

NR_026221 99.466

1727 Actinobacteria Actinobacteria Micrococcaceae MG551804 Kocuria sediminis NR_118222 99.024

1726 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551803 Pseudoalteromonas
piscicida

NR_114190 99.679

1722 Proteobacteria Gammaproteobacteria Halomonadaceae MG551802 Halomonas
aquamarina

NR_042063 99.465

1334 Proteobacteria Gammaproteobacteria Alteromonadaceae MG711595 Aliagarivorans
marinus

NR_044585 98

1348 Proteobacteria Gammaproteobacteria Vibrionaceae MG711594 Vibrio maritimus NR_117551 98

0852 Proteobacteria Gammaproteobacteria Moraxellaceae MG551849 Acitenobacter soli NR_044454 99

1659 Proteobacteria Gammaproteobacteria Pseudoalteromonadaceae MG551769 Pseudomonas
luteoviolacea

NR_114237 99.678

Known pathogens for marine diseases Info about

pathogens

1678 Proteobacteria Gammaproteobacteria Moraxellaceae MG551777 Acinetobacter pitii NR_117930 99.663 Fish pathogen [82]

and human

pathogen

(Pneumonia; [83])

(Continued)
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[25,81]. The comparison of the sequence data from the isolated strains with sequences in the

NCBI BLAST database was according to methods described by our colleagues [81].

Antimicrobial assay

Bacterial strains were grown in liquid marine broth medium for 24 hours at 25˚C before each

experiment. Crude extracts of the different sponge species were dissolved in aliquots of ethanol

at natural concentrations (see Table 1). 15 μl of crude extract were added to sterile filter paper

(Ø 6 mm, Whatman) and the solvent was allowed to completely evaporate. Control filters were

prepared in the same manner with 15 μl of solvent only. Each one of the 196 Marine broth agar

plates (1.5% agar, 3.75 g l-1 Difco Marine Broth 2216, filtered deionized water) was inoculated

with 200 μl of liquid culture of the respective test strains and spread evenly to provide a uniform

bacteria lawn. Up to seven extract discs and one solvent control disc per plate were randomly

assigned to the different plates and placed on the surface of agar plates with the extract side fac-

ing the plate. Three to six replicates of each pooled extract were tested, depending on the abun-

dance of the sponges in the field during collection. Following a 24 h and 48 h incubation period,

Table 2. (Continued)

No. Phylum Class Family Accession

no. of

bacterial

isolate

Species (closest

NCBI hit)

Accession

no. of closest

NCBI hit

Similarity of

the closest

NCBI hit

1621 Proteobacteria Gammaproteobacteria Vibrionaceae MG551759 Vibrio alginolyticus NR_113781 99.302 Marine pathogen,

associated with

several diseases in

fish and shrimp

[84–88]

1645 Proteobacteria Gammaproteobacteria Vibrionaceae MG551765 Vibrio owensii NR_117424 99.569 Tissue loss disease

"Montipora White

Syndrome" in the

Hawaiian reef coral

Montipora capitata
[89]

1675 Proteobacteria Gammaproteobacteria Vibrionaceae MG551775 Vibrio alginolyticus NR_113781 98.783 Marine pathogen,

associated with

several diseases in

fish and shrimp

[84–88]

1761 Proteobacteria Gammaproteobacteria Vibrionaceae MG551816 Vibrio coralliitycus NR_117892 99.57 Bacterial bleaching

and rapid tissue

destruction [90–

92]

1644 Proteobacteria Gammaproteobacteria Vibrionaceae MG551764 Vibrio alginolyticus NR_113781 99.785 Marine pathogen,

associated with

several diseases in

fish and shrimp

[84–88]

WHV0001 Proteobacteria Alphaproteobacteria Aurantimonadaceae Aurantimonas
coralicida

AY065627 DSMZ,

Germany

White plague type

II disease [93]

WHV0002 Proteobacteria Gammaproteobacteria Vibrionaceae Vibrio shilonii ATCC BAA-

91

DSMZ,

Germany

Bacterial bleaching

[94,95]

WHV0003 Proteobacteria Gammaproteobacteria Vibrionaceae Vibrio coralliilyticus AJ440005 DSMZ,

Germany

Bacterial bleaching

and rapid tissue

destruction [90–

92]

https://doi.org/10.1371/journal.pone.0197617.t002
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growth inhibition zones were scored as clear halos around the discs. The radius of the inhibition

zone (without disc) was measured to the nearest 0.5 mm.

Permutational multivariate analyses of variance (PERMANOVA) obtaining Monte Carlo

p-values (due to too low numbers of permutations) were conducted with the Primer software

(Version 6.1.13) and the PERMANOVA+ add-on (Version 1.03). The analyses were used to

test for significant activities of sponge extracts and to compare activities against environmental

and pathogenic bacteria [96,97]. Results were categorized as no effect (0), weak inhibition (0–

1mm), moderate inhibition (>1 to 3mm), strong inhibition (>3 to 7mm) and very strong

inhibition (>7 to 15mm) after [98].

Brine shrimp lethality assay

Brine shrimp (Artemia salina) eggs were placed in a hatching tank containing seawater with

strong aeration under continuous light at 24˚C for 12 hours. Photophilic nauplii were collected

approximately 12 hours after hatching. A stock solution of 10mg ml-1 was prepared for each

pooled extract of the ten sponge species. From the stock solutions 1000 and 100 μl were trans-

ferred to individual petri dishes and solvents were allowed to evaporate. The respective amount

of ethanol served as control. After the solvents had evaporated, 5 ml of filtered (0.45 μm), auto-

claved, seawater was added to each petri dish. The petri dishes were placed on a shaker for 30

minutes to ensure that the extracts dissolved in the seawater. Subsequently, ten brine shrimps

were added to each petri dish and the total volume was adjusted to 10 ml resulting in a final

extract concentration of 1 mg, 0.1 mg and 0.01 mg sponge crude extract per 10 ml seawater.

Larvae were not fed during the experiments as they still rely on their yolk-sac [99] and can sur-

vive for up to 48 hours without food [100]. Toxicity was determined after 48 hours (instar III/

IV stage) of exposure by counting the surviving nauplii. This time was chosen since most

extracts displayed an increasing activity up to 48 hours of exposure [101]. In addition, Artemia
nauplii have been shown to exhibit their greatest sensitivity to sponge compounds in the sec-

ond and third instar larval phase [100,102]. Extracts and controls were prepared in triplicates.

Larvae were considered dead if no internal or external movement could be observed.

A PERMANOVA obtaining Monte Carlo p-values (due to too low numbers of permuta-

tions) was conducted with the Primer software (Version 6.1.13) and the PERMANOVA+ add-

on (Version 1.03) to test for significant differences in mortality rates of brine shrimp between

the individual sponge extracts and the control (n = 6 for each sponge species and the control).

Allelopathic activities of sponge extracts

Field experiments determined the allelopathic activities of sponge extracts under natural con-

ditions. Assays with sponge extracts incorporated into phytagel were adapted from past studies

of sponge overgrowth experiments and sponge-coral interactions [28,48]. We incorporated

sponge extracts of Pseudoceratina sp., Callyspongia sp. and Haliclona atra at natural concentra-

tions into phytagel strips and placed them in contact around branches of the corals of the

genus Porites. Treatment phytagel strips with natural gravimetric concentrations of sponge

extracts and control phytagel strips with only the extract solvent were prepared as described in

[48]. Ethanol was used as solvent to extract allelopathic compounds of Pseudoceratina sp., Call-
yspongia sp. and H. atra. The phytagel was poured into a rectangular mold backed with a gaze.

The phytagel mixture was allowed to cool and harden onto the gaze before being cut into strips

with a small square patch of phytagel in the center of each strip. The gaze strips were trans-

ported in zip block bags on the same day to the reef of Bawe and fixed with rubber bands

around coral branches of different Porites individuals at depths of 4–6 m. Six colonies that dis-

played no signs of bleaching were chosen for the experiment and marked with numbered tags.
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For each sponge extract, one control (solvent only) and one treatment (with extract) strip

was attached to adjacent coral branches. For extracts ofH. atra and Pseudoceratina sp. six repli-

cate coral colonies, and for the extracts of Callyspongia sp. four replicate colonies were used (the

remaining two strips were lost during the dive limiting this to 4 replicates). Coral colonies were

from the same fringing reef and treatment occurred between 13:00 and 15:00 h. Measurements

of the photosynthetic efficiency of the zooxanthellae were taken by a diving PAM fluorometer

(Walz, Germany) after 16–18 hours, before sunrise of the next day, in order to estimate the

maximum quantum yield of the dark-adapted coral tissue. Under each phytagel patch, 6–8 mea-

surements were taken, as well as from coral branches of the same colony that had neither treat-

ment nor control phytagel strips attached to account for effects of shading, abrasion and the

physical presence of the gel. For all readings of the PAM fluorometer, a clip was used that kept

the probe at a distance of 1 cm from the coral surface. PAM fluorometry is a non-invasive tech-

nique and even though the use of the maximum photosynthetic yield as a proxy for intra- and

interspecific comparisons of coral health under different environmental conditions is conten-

tious, comparisons of coral tissue from the same coral branch are accepted [103,104]. Permuta-

tional multivariate analyses of variance (PERMANOVA) were conducted with the Primer

software (Version 6.1.13) and the PERMANOVA+ add-on (Version 1.03). The analysis was

used to test for significant differences of the effects of sponge extracts and for the effects of the

phytagel with the solvent [96,97].

Results

Antimicrobial assay

All tested sponge extracts showed antimicrobial activity while solvent control discs never inhib-

ited bacterial growth (Table 3). Antimicrobial effects of the extracts varied widely with respect

to the bacterial strains. The extract of Pseudoceratina sp. had the strongest antimicrobial activity

in terms of the size of the inhibition zones, as well as the number of bacteria inhibited (inhibited

all strains). Extracts of Callyspongia sp. andHaliclona atra revealed the second and third most

antibacterial activity (71% and 49% of all strains inhibited, respectively; Table 3). In contrast,

Paratetilla sp. and Tetrapocillon minor were the least chemically defended species inhibiting

Table 3. Degree of antimicrobial activity by crude extracts of ten sponge species.

Sponge species Number of bacterial strains inhibited (total 35)

Weak Moderate Strong Very strong Sum of strains inhibited

(% active)

T. minor 0 4 0 0 4 (11%)

Paratetilla sp. 0 4 0 0 4 (11%)

H. fascigera 1 7 0 0 8 (23%)

P. kenyensis 1 8 0 0 9 (26%)

S. hapalia 1 6 2 0 9 (26%)

C. aerizusa 2 8 1 0 11 (31%)

Biemna sp. 3 9 0 0 12 (34%)

H. atra 8 7 2 0 17 (49%)

Callyspongia sp. 2 18 5 0 25 (71%)

Pseudoceratina sp. 2 6 19 9 35 (100%)

Radius of inhibition zone: 0 no effect; >0–1mm: weak inhibition; >1–3mm: moderate inhibition; >3–7mm: strong inhibition; >7–15mm: very strong inhibition (after

Lippert et al. 2003).

https://doi.org/10.1371/journal.pone.0197617.t003
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only 11% of the bacterial strains and also showing the smallest inhibition zones. The other five

sponge species displayed all moderate antibacterial activity with 23–34% of the bacterial strains

inhibited (Table 3). When comparing the activity of the different sponge extracts against envi-

ronmental and pathogenic bacterial strains, most sponge species were equally defended against

potential pathogens. Only Pseudoceratina sp. and Callyspongia sp. were better defended against

environmental bacteria with respect to the size of the inhibition zones (Fig 1; PERMANOVA,

p< 0.05, S1 Table). Detailed results of the disc diffusion assays are presented in S2 Table.

S2 Fig shows the antimicrobial activities of the tested sponge species against all Vibrio spe-

cies (environmental as well as pathogenic strains). We choose to display the antimicrobial

activities of all sponge species against Vibrio spp. because many species of this genus have been

recognized as significant pathogens for marine organisms, including sponges [105–109].

Brine shrimp lethality assay

The results of the brine shrimp bioassay showed that seven out of the ten sponge species con-

tained cytotoxic compounds (Fig 2; PERMANOVA, p< 0.05, S3 Table). The highest lethality

was found for extracts of Callyspongia sp. at both concentrations, which exhibited Artemia
mortality rates of 100% after just 12 hours (data not shown). Scopalina hapalia caused high

Fig 1. Length of inhibition zones (mean radius, mm + SE) for environmental and pathogenic bacterial strains. Bacterial inhibition by sponge crude extracts for

environmental and pathogenic bacterial strains were compared. � indicates a significant difference between the inhibition of environmental vs. pathogenic bacterial strains

(PERMANOVA, p< 0.05).

https://doi.org/10.1371/journal.pone.0197617.g001

Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar

PLOS ONE | https://doi.org/10.1371/journal.pone.0197617 June 20, 2018 9 / 26

https://doi.org/10.1371/journal.pone.0197617.g001
https://doi.org/10.1371/journal.pone.0197617


mortality with 95% dead nauplii at a concentration of 1000 μg ml-1, but only non-significant

mortality (5%) at a concentration of 100μg ml-1.H. fascigera, Pseudoceratina sp., C. aerizusa,

H. atra and P. kenyensis all showed moderate lethality rates between 10.1% and 45% at the two

test concentrations. No significant mortality rates were obtained from extracts of Biemna sp.,

Paratetilla sp. and T.minor. No mortality of Artemia larvae could be detected in controls.

Detailed results of the brine shrimp assays can be found in S4 Table.

Fig 2. Mortality rates (+ SE) of the brine shrimp larvae in the lethality assay. The mortality rates of the brine shrimp larvae are displayed in response to exposure to the

different sponge crude extract concentrations at 1000μg ml-1 and 100μg ml-1 after 48 hours (mean + SE, n = 6). � indicates a significant mortality rate compared to control

(PERMANOVA, p< 0.05).

https://doi.org/10.1371/journal.pone.0197617.g002
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Allelopathic activities of sponge extracts

Effects of crude extracts from three Zanzibarian sponge species on the branching coral Porites
sp. are presented in Fig 3. PAM readings were taken under each sponge extract and control gel

band. Control phytagel strips had significant effects on the maximum photosynthetic yield of

corals. Nonetheless, phytagel strips with sponge extracts exhibited stronger impairments on

the corals photosynthetic performance and were also significantly different from the control

strips. The extracts of all three investigated sponges, H. atra, Callyspongia sp. and Pseudocera-
tina sp., showed significant effects on the photosynthetic yield of branching Porites corals

(PERMANOVA, p = 0.0001, df = 2). Metabolites produced by Callyspongia sp. had the most

pronounced effect on the photosynthetic yield, decreasing the maximum quantum yield by

Fig 3. In situ allelopathic effects of sponge extracts on the photosynthetic yield of a branching Porites coral. Phytagel strips containing natural concentrations of

sponge secondary metabolites reduced the maximum photosynthetic quantum yield (bars) of the symbiotic algae (zooxanthellae) in a branching Porites coral after 16–18 h

of exposure (mean + SE, n = 6, except Callyspongia sp., n = 4). Letters indicate significant differences between treatment, control strips and unexposed coral tissue (control

coral).

https://doi.org/10.1371/journal.pone.0197617.g003
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41% (PERMANOVA, p = 0.0039, t = 5.6076, df = 3). Extracts ofH. atra and Pseudoceratina sp.

had comparable negative effects on the effective quantum yield, reducing it by 22% and 19%

each (PERMANOVA, p = 0.0014, t = 5.1455, df = 5 forH. atra and p = 0.0018, t = 6.1752,

df = 5 for Pseudoceratina sp.). Detailed results of the effects of the different sponge extracts on

the maximum quantum yields of individual Porites corals are presented in S5 Table.

Sponge metabolites in the gel did not only affect the maximum photosynthetic yield of the

Porites corals, but caused also bleaching of the underlying coral tissue. Coral tissue exposed to

the metabolites of the extract of Callyspongia sp. andH. atra showed the most visibly

bleaching.

Discussion

Sponges are regarded as the richest source of secondary metabolites with diverse bioactive prop-

erties, contributing to nearly 40% of all marine biomedical compounds discovered [110,111].

This study is the first that investigated the chemical ecology of sponges from East-Africa, reveal-

ing high bioactivity with regards to antimicrobial, cytotoxic and allelopathic effects.

Antimicrobial assay

All investigated sponge species exhibited antimicrobial activity in varying degrees depending

on the number of inhibited test strains (11% up to 100% of strains inhibited). These results are

in accordance with other studies examining the antimicrobial activity of sponges in which all

sponge species from the Indian Ocean [112,113] and Antarctica [98] displayed antimicrobial

activity. All sponges, except for Pseudoceratina sp. and Callyspongia sp., were equally active

against known coral pathogens as well as against bacteria encountered in their environment.

However, both of them displayed also moderate to high antimicrobial activities against patho-

gens, including several Vibrio strains. In contrast to our study sponges in the Caribbean dis-

played weaker inhibition rates for seawater bacteria compared to bacteria inhabiting necrotic

sponge tissue or known pathogens [114]. However, other than the use of antimicrobial com-

pounds, sponges possess efficient defense mechanisms that recognize pathogens and initiate

an immune response. Sponges distinguish between infectious and non-infectious bacteria

through molecular responses, receptor molecules and membrane proteins [115–117]. Bacteria

associated with sponges are able to produce molecules which act on the sponge cells by inhibit-

ing its immune and apoptotic system [118–121]. Growth inhibition, which was tested in the

present study, is only one of the three stages in the colonization process by bacteria or potential

pathogens (attachment, growth and swarming). Secondary metabolites of sponges might inter-

fere with each of the three different colonization stages [27,32].

The strong activity against the variety of bacterial strains exhibited by Pseudoceratina sp. in

this study indicates that this sponge species produces broad-spectrum antimicrobial com-

pounds. Sponges of the genus Pseudoceratina contain bromotyrosine alkaloids and sterols of

the aplystane type which possess cytotoxic [122,123], antimicrobial [124,125] as well as anti-

HIV [126] and antimalarial [127] activities. Purealin C and its derivatives, which have been

isolated from another Pseudoceratina species, also exhibit broadspectrum antimicrobial activi-

ties [128]. The two Callyspongia sponges displayed strong to moderate antimicrobial activity.

Callyspongia species possess a variety of bioactive secondary metabolites, including Siphondiol

[129], Akaterpin [130] and Utenine [131] displaying antimicrobial properties. The third most

active sponge genus wasHaliclona, withH. atra andH. fascigera inhibiting 17 (47%) and eight

(22%) of the tested bacterial strains, respectively. Haliclona spp. produce Manzamine alkaloids

with antitumor and antimalarial activities [132,133], as well as the antifungal and the antimi-

crobial compounds Papuamine, Haliclonadiamide and Halaminoles [134,135]. Additionally,
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extracts from several Indo-Pacific Haliclona species inhibited various bacterial strains, empha-

sizing the overall antimicrobial activity of this genus [112,136,137]. However, there are also

someHaliclona species which possess weak or no antimicrobial activity [98,138,139]. The vari-

ability in sponge secondary metabolites of the same genus, or even of the same species, is not

uncommon as their production is influenced by genetic traits as well as environmental factors

and sponge-associated microbes [98,140–144]. Biemna sp. displayed moderate antimicrobial

activity, inhibiting 12 (33%) of the tested bacterial strains. Sponges of the genus Biemna are a

source for bioactive compounds with antimicrobial as well as cytotoxic activities, which in-

clude pyridoacridines (e.g. Labuanine), steroids (e.g. Ehrenasterol and Biemnasterol) as well as

polycyclic alkaloids (e.g. Biemnadin, Hydroxyascididemin and Netamines; [136,137,145]). The

sponges Plakortis kenyensis and Scopalina hapalia were active against nine (25%) of the exam-

ined bacterial strains. No reports of secondary metabolites of S. hapalia were found in the liter-

ature. The most prominent antimicrobial compounds isolated from plakinid sponges are

Plakinidones, Plakortide, Manzamenone and Plakortin, which showed activity against several

bacteria including Staphylococcus aureus, Escherichia coli and Bacillus subtilis [146–150]. No

bioactive properties have been reported for the sponges Paratetilla sp. and Tetrapocillon minor.
There is often no correlation between the antimicrobial activity of the sponge extract and the

epibacterial abundance in sponges or ascidians [151,152]. Therefore, it would be interesting to

test all colonization stages with the extracts of sponges from Zanzibar since T.minor was a

sponge that inhibited the growth of only 11% of the tested strains but had always a very clean

and smooth surface (personal observation). Instead of producing antimicrobial compounds,

sponges also attract bacteria to their surfaces that repel other biofilm-forming bacteria and

thus maintain a clean and smooth surface [153].

These examples also highlight one of the problems when evaluating sponge antimicrobial

activities from the literature. Many of the antimicrobial activities reported for sponges used

human pathogenic bacteria and not environmental bacteria to which the sponges are exposed

to and did not test marine pathogens which pose a potential risk to the sponge holobiont. Our

study on the contrary is one of a few that focused on marine environmental and marine patho-

gen bacteria to evaluate sponge antimicrobial defenses.

There is still a lack of knowledge about the main cause of sponge diseases and the role of

pathogenic bacteria [45,154,155] which is why in the present study we utilised pathogenic bac-

teria known to cause diseases in corals and other marine organisms. Marine pathogens seem

to affect not only one host (e.g. corals) but seem to be able to cause diseases also in other hosts

if conditions are opportune. For example, cyanobacteria, which were associated with coral dis-

eases, also replaced the Synechococcus/ Prochlorococcus clades in sponges affected by sponge

orange band disease [154]. Environmental perturbations including urban runoff, nutrient

enrichment, anthropogenic pollution and especially increase in temperature are linked to dis-

ease outbreaks in marine invertebrates [155–157]. The brown lesion disease in sponges is most

likely caused by terrestrial pathogens used in pest control management of insects and fungi

[158]. The high prevalence of antimicrobial defenses in the investigated sponges suggests that

pathogens are a common threat to sponges on Zanzibar’s reefs.

The coral reefs surrounding Stonetown are especially exposed to untreated sewage and run-

off from the main city [65,66]. Human fecal bacteria in wastewater are the etiological agent of

white pox and black band disease in corals [43,44]. Even if wastewater does not harbour etio-

logical agents for diseases of benthic invertebrates, the discharge of sewage introduces many

opportunistic microbial taxa, such as e.g. Vibrionaceae and Rhodobacteraceae, that can alter

the microbial community in coral as well as sponge holobionts resulting in the onset of disease

[90,106–108,159,160]. Nutrient enrichment, especially increase in nitrogen, can facilitate the

spread of diseases in corals because pathogens are normally nitrogen limited [39,161,162]. The
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reef around Bawe Island has higher phosphate and nitrate concentrations compared to other

reefs around Zanzibar, which could help to increase pathogen fitness and virulence [66].

Around Bawe only a few cases of sponge diseases have been reported (e.g. necrotic tissue spots

inH. fascigera; [161]), indicating that sponge antimicrobial defenses seem to be efficient in

defending sponges from pathogens. The high antimicrobial activity of the investigated extracts

might be a response of the sponges to a high prevalence of potential pathogens.

Brine shrimp lethality assay

The brine shrimp lethality assay is an easy, rapid and inexpensive bioassay to test for the gen-

eral toxicity of organisms. Brine shrimp are highly sensitive organisms in regard to sponge

crude extracts [163,164]. Additionally, there is a strong relationship between the toxicity of

brine shrimp assays and the potential anti-tumor activities of extracts [101,165].

In the present study, seven (70%) of the tested sponge species showed cytotoxicity in the

brine shrimp assay. In other studies, 59–75% of sponge species also showed cytotoxic activities

in brine shrimp or other cytotoxicity assays in line with our results [164–166]. Extracts from

all four sponges within the order Haplosclerida displayed significant cytotoxic activities in the

brine shrimp assay with Callyspongia sp. showing the highest cytotoxic activity followed by the

twoHaliclona species. Their cytotoxic activities were comparable to other Haplosclerida spe-

cies reported in the literature [167–169]. Significant cytotoxic activities were also detected in

extracts of S. hapalia and P. kenyensis at the highest test concentration, which is again in line in

literature reports [170–172]. The moderate cytotoxic activity of Pseudoceratina sp. can most

likely be ascribed to bioactive bromotyrosine derivatives in the crude extract [172–175], while

the lack of activity in Biemna sp. was contrary to previous studies [172,176–179].

Toxic sponge compounds are able to rapidly kill cells of competitors through apoptosis,

autophagocytosis and necrosis [54,55,180], thereby inhibiting the growth of other space com-

peting organisms. Allelochemicals with cytotoxic properties have the ability of inhibiting meta-

bolic processes in various coral species as well as killing live coral tissue within a few days

[46,181]. Other functions of cytotoxic compounds include the inhibition of photosynthesis in

the corals symbiotic zooxanthellae [28]. Therefore, we investigated the allelopathic activities of

the three most bioactive sponge species and assessed if the cytotoxic and antimicrobial proper-

ties provide them with a competitive advantage over corals.

Allelopathic activities of sponge extracts

Extracts of Callyspongia sp., Pseudoceratina sp. andH. atra, incorporated into phytagel, had

rapid negative effects on the maximum photosynthetic quantum yield of the zooxanthella that

live within the coral tissue. The three sponges revealed a decrease of the photosynthetic effi-

ciency in the corals by 19–41%. Additionally,H. atra as well as Callyspongia sp. also caused

bleaching in branching Porites corals. The allelopathic effects of the sponge extracts might have

been underestimated since the bioactive compounds were evenly distributed in the gel instead

of concentrated on its surface. Several studies have shown that compounds identified as allelo-

pathic agents had higher concentrations on the surface of the producing organism [57,182–

184]. This is in accordance with the optimal defense theory (ODT) which states that organisms

concentrate defensive compounds in parts that are especially exposed to predation or parts that

are important for the fitness of an organism, e.g. reproductive organs [185–188]. Furthermore,

it is likely that some reported bioactivities are slightly underestimated because non-polar com-

pounds would not be completely extracted by using ethanol. Due to the limited laboratory con-

ditions, ethanol was the only available solvent that could be used for the extraction of secondary

metabolites. Previous studies found bioactivities often in non-polar compounds as these do not
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easily dilute when exuded into the surrounding seawater [189,190]. Therefore, differences

which have been detected in the yield as well as bioactivity of sponge and seaweed extracts

might depend on the used solvent [26,191].

The maximum photosynthetic quantum yield is a proxy for the health of the zooxanthellae,

which provide corals with energy for growth and reef formation [192,193]. Thus, impairments

in the health of these symbiotic algae can lead to reduced growth and less available energy that

corals could invest otherwise in recruitment or spatial competition. It has already been demon-

strated that corals experience a reduction in their growth, fecundity, egg size, recruits and sur-

vival during competition with algae or other benthic organisms [59,194–198].

Some coral species seem to be more susceptible to allelopathic damage. Experiments with

extracts and live fragments of several algae species demonstrated that corals of the branching

genera Acropora and Pocillopora were especially sensitive to allelopathic agents while corals of

the massive genus Porites were not as much affected [183,199,200]. Some coral species differed

also in their recovery potential. Corals of the genus Porites recovered quickly while corals of

the genus Pocillopora showed no signs of recovery after the removal of aggressive alga individ-

uals in situ [201]. Many branching corals species are already more sensitive to natural and

anthropogenic disturbances and experience high mortality rates on reefs worldwide which

could be further intensified by aggressive spatial competitors [183,199,201].

The ten sponge species tested in this study were previously also tested for their deterrent

properties against fish predation [76]. Although, no relationship could be found between the

feeding deterrence of sponge extracts and their antimicrobial activity or toxicity, the two most

bioactive sponges (H. atra and Pseudoceratina sp.) were also defended against fish predators.

For two of them their role as a successful benthic competitor was confirmed by their high

abundances on the reef.H. atra was the most abundant sponge species at 5m depth, while

Pseudoceratina sp. exhibited patchy but high abundances on the reefs around Bawe Island at

10m depth ([76]; personal observation).

Conclusion

We demonstrated that sponges from Zanzibar possess strong growth inhibitory activities

against tropical marine environmental as well as pathogenic bacterial strains. The remarkable

antimicrobial activities could represent an adaptation to the high prevalence of bacteria caused

by sewage outflow from Stonetown. Moreover, the cytotoxic activities and the strong allelo-

pathic properties of Callyspongia sp.,H. atra and Pseudoceratina sp. might indicate that they

are important space competitors of scleractinian corals on the reef. The bioactive compounds

might exert negative effects on the fecundity, reproduction or even the coral microbiome mak-

ing corals even more vulnerable towards further natural or anthropogenic disturbances and

pathogenesis.

The increased sewage input in combination with other global and local stressors, such as

climate change, destructive fishing practices or damage to the reef through tourism activities,

will most likely result in more frequently occurring sponge-coral interactions. The chemical

defenses in the investigated sponges might be one reason explaining their increasing abun-

dances from < 1% up to 7.5% on the reef at Bawe Island in recent years [8,72,76]. Therefore,

the reef management around Zanzibar has to focus on mitigating anthropogenic caused dis-

turbances such as overfishing and especially focus on the establishment of a wastewater treat-

ment facility.
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S Nietzer and G Steinert), University of Oldenburg. We greatly appreciate the field and diving

assistance of NS Jiddawi, MS Shalli, FE Belshe, S Bröhl and U Pint. We would like to thank JG
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