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Abstract

As compared to the wave function ψ adopted previously (Adv. Stud.
in Theor. Phys. Vol.11, 2017, p.365), the new ansatz for ψ fulfills now
energy conservation rigorously with respect to a curve parameter w ≥ 0.
The symmetry of ψ implies that the mean position and mean velocity
are parallel or anti-parallel, always. The model describes the scattering
of a wave packet by the Coulomb potential over a finite time range,
where in the mean only forward and back scattering is possible. The
decisive point is to elaborate the definition interval of w as a time equiv-
alent curve parameter. The mean initial position and velocity are built
into ψ and form a two-dimensional parameter space P . As it turns out,
within a subspace A ⊂ P , curve parameter w and time t are in 1-1 corre-
spondence for all t ≥ 0; moreover, one observes mean forward scattering
when the mean initial velocity is directed towards the force center: the
mean trajectory ”tunnels” through the Coulomb singularity. On the
other hand, in the parameter space complementary to A, the definition
domain of the curve parameter is limited and ends before the singu-
larity is reached, which means that forward or backscattering cannot
be predicted by the given model where the time dependent Schrödinger
equation is not generally solved.

PACS: 03.65.Sq, 02.70.Wz, 31.15.-p
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1 Introduction

This work is to supplement the previous article [20] on the quantum mechan-
ics of rectilinear orbits. Essentially, energy conservation will be implemented
rigorously, which liberates us from resorting to an asymptotic approximation.
This means that we do not have any more restrictions on the magnitude pa-
rameter κ, which in the classical limit equals 2mX0V0/~; X0 and V0 denote
the mean initial position and velocity, respectively, with X0 taken from the
force center. We can consider now also non-relativistic microscopic models for
head-on collisions, in principle. By the definition of a rectilinear orbit, the
mean initial vectors x0 and v0 are parallel or antiparallel which we describe by

x0 = X0{1, 0, 0}, v0 = σV0{1, 0, 0}, σ = ±1, X0 > 0, V0 > 0. (1)

As in related studies on the quantum mechanics of the Coulomb-Kepler
problem, see [8, 16, 17, 18, 20] the wave function lives, at first, in the four-
dimensional Kustaanheimo-Stiefel space u ∈ R4 [14], abbreviated KS,

Ψw = C
4∏
j=1

Sj, Sj = exp
[
aj(w)uj − Γ(w)u2

j/2
]
, (2)

where Sj essentially is a coherent state of the reversed harmonic oscillator,
[2, 7, 16, 19]; C denotes the normalization constant. The complex number
aj corresponds to the complex quantum number of a coherent state, often
denoted by z. The parameter space a(0) ∈ C4 is sufficient to implement the
mean values of position and velocity, x0 and v0, at time t = 0 or w = 0; w ≥ 0
is a curve parameter which describes the evolution of the mean rectilinear
orbit. The connection between the KS and the ordinary three-dimensional
configuration space is described by [6, 16]

u1 =
√
r cos(θ/2) cos(ϕ− Φ); u2 =

√
r cos(θ/2) sin(ϕ− Φ);

u3 =
√
r sin(θ/2) cos(Φ); u4 =

√
r sin(θ/2) sin(Φ),

(3)

where
r > 0, 0 < θ < π, 0 ≤ ϕ < 2π, and 0 ≤ Φ < 2π; (4)

the KS phase Φ describes the extension to the fourth dimension. Eventually,
in physical 3D space, the wave function ψw is obtained by projecting out the
phase Φ as

ψw =

∫ 2π

0

dΦ Ψw(Φ). (5)

The curve parameter w is inherited from the time dependence of the basic
coherent harmonic oscillator states. In the classical limit of elliptic orbits, w
is the eccentric anomaly. The question is, how far into the quantum region
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w remains a time-equivalent curve parameter. As a matter of fact, the study
on quantum corrections to Kepler’s equation [18] predicted a finite definition
domain of w. Similarly, the asymptotically calculated mean rectilinear orbits
[20] were defined over a finite interval only, which, in particular, did not cover
the neighborhood of the Coulomb (gravitational) singularity. The motivation
for the present paper was that, if energy conservation is taken into account
rigorously, then the definition domain of w can be extended, possibly into the
region where the potential is singular, a hope which came true partially.

Energy conservation with respect to the curve parameter w is a necessary
requirement for the assumption that time t enters only via w. If it is fulfilled,
then we can profit from the mean value relation d〈x〉/dt = 〈vx〉, or

d〈x〉
dw

dw

dt
= 〈vx〉, (6)

which is an ordinary differential equation for w(t). In order that w is a time
equivalent curve parameter, the definition interval is determined by the mono-
tonicity property dw/dt > 0, more precisely

w ∈ {0, wc}, wc > 0,
dw

dt
> 0, for 0 ≤ w < wc; (7)

wc is either the first zero or the first singular point of dw/dt.
Clearly, the mean value relation (6) is not equivalent to the time dependent

Schrödinger equation. We have to concede that within the given model the
strict fulfillment of energy conservation with respect to w in many cases still
leads to a finite time interval where the orbits are well defined. This is in
particular true if σ = −1, i.e., when the initial velocity is in the direction of
the force singularity. An exceptional parameter region, the ”funnel domain”,
is shown in Fig. 1. where the mean trajectories are defined without restriction
on w and time t .

On the other hand, when the initial velocity points away from the force
center, i.e., if σ = +1, and when simultaneously the mean initial energy is
positive, then, as is rigorously proved in [24], the trajectories asymptotically
escape to infinity, a property which appears to be physically evident.

We have pondered on alternatives to describe the time dependence. In [18],
we briefly discussed selected literature on the time dependent Green function
[22, 10, 11, 3, 4, 12, 13, 21]. As to our opinion, corresponding results are not
feasible to analytically calculate mean values over finite rather than asymptot-
ically large time spans.

As a further possible tool, we explicitly derive in Appendix A time depen-
dent solutions of the transformed Hamiltonian in KS space, which produce, at
first, the discrete energy eigenvalues of the hydrogen atom. The latter were also
derived within the KS scheme e.g. in [5] and [8], however, without mentioning
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the problem with the corresponding eigenfunctions which are not orthogonal
to each other: The solutions for different principal quantum numbers n turn
out to belong to different Hamiltonians of harmonic oscillator type, so we do
not have the discrete spectrum in the usual sense. This situation is consistent
with the fact that the eigenfunctions of the discrete energy eigenvalues of the
hydrogen atom, though orthogonal, are, nevertheless, not complete.

Another possibility could be the direct numerical integration of the Schrödinger
equation. The method, certainly, will not amount to a routine task, mainly
due the presence of the Coulomb singularity. In [20] we mentioned that a reg-
ularized version [15] predicts an orbit which tunnels through the singularity
rather than correctly describing backscattering. In addition, in the classical
limit, the order of magnitudes differ extremely when the scales of a mean orbit
and its quantum fluctuations are compared.

Main results are formulated in Section (V.) by the Statements (I.) and (II.),
see subsection ”Rigorous results”, by Statement (III.) in subsection ”Numerical
Analysis”, and by Statement (IV.) in subsection ”Asymptotic approximation”.

2 Mean values of position, velocity, and po-

tential energy

In [20], these mean values were rigorously calculated, without asymptotic ap-
proximation. Thus, the results reported below are valid for all parameters

κ = 2mX0V0/~ [1 +O(1/κ)] . (8)

A more precise definition of κ is given below. We use the abbreviations

κ0 = γ0σ sinh(2w), κ1 = cosh(w)2 + γ2
0 sinh(w)2,

K = κ/κ1, Iκ = I0(κ)/I1(κ), σ = ±1, M = 2 +Kκ0 + κ Iκ, (9)

where In denotes the modified Bessel function of order n. As compared to [20],
we have set the disposable number ν = 1. From [20], we write down the mean
values as follows (we make use of the property Kκ1 = κ):

〈x〉 = r0

[
4κ0 + (3κ1 + 2κκ0)Iκ +Kκ2

0 + κκ1)
]
M−1, (10)

〈vx〉 = (~Kκ)/(4mr0γ0)
[
2γ0σ cosh(2w) + Iκ(1 + γ2

0) sinh(2w)
]
M−1, (11)

Epot = α〈1/r〉 = (α/r0)KM−1. (12)

The parameter γ0 is disposable for energy conservation.
At w = 0, the mean initial value X0 = 〈x〉w=0 has to be implemented which

amounts to fixing the parameter r0. After the substitutions w = 0 with K = κ,
one gets from (10)

X0 = r0
κ+ 3Iκ
2 + κ Iκ

, or r0 = X0
2 + κ Iκ
κ+ 3Iκ

. (13)
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For large κ, since Iκ = 1 +O(1/κ), we get

r0 = X0(1 +O(1/κ)) (14)

Furthermore, the mean initial velocity component V0 = σ〈vx〉w=0 results from
(11) as

V0 = v0κ
2(κ+ 3Iκ)/(2 + κIκ)

2, v0 = ~/(2mX0), (15)

which allows for fixing the width parameter κ in terms of the initial data X0

and V0. For large κ, one obtains

V0 =
~κ

2mX0

(1 +O(1/κ)) or κ = ζ(1 +O(1/ζ)), ζ = 2mV0X0/~, (16)

which is consistent with (8). As it is noticed, v0 has the dimension of a velocity
whereas ζ and κ are dimensionless.

3 Energy conservation

3.1 The overall energy

The mean kinetic energy, Ekin, is calculated in Appendix B. Whereas the
mean value of a single component, (m/2)〈v2

i 〉, could be simplified previously
up to an integral expression and then evaluated approximately only [16, 20],
the calculation of the full kinetic energy includes favorable compensations and
allows for a compact expression. In the formulas to follow, the symbols Fj,
j = 0, 1, 2, 3 denote factors which do not depend on the curve parameter w.

Ekin = F0Nw/Dw, F0 = hq2κ2 [3 + κIκ]
2 [16mX2

0γ
2
0(κ+ 2Iκ)

2
]−1

,

Nw = M1(2 + κIκ) + 2κκ0, M1 = −1 + γ2
0 + (1 + γ2

0) cosh(2w),

Dw = κ1(κIκ + 2) + κκ0. (17)

We add the potential energy according to (12). It is convenient to replace the
coupling constant α by the dimensionless number δ as follows

α = (~2κ2)/(8mX0) δ, (18)

which takes into account that the mean energy has the order of magnitude κ2.
After straightforward simplifications, we obtain

E ≡ Ekin + Epot = F1Enum/Eden, F1 = ~2/(16mX2
0 ), (19)

Enum = κ2(3 + Iκκ)
[
M1(6 + 5Iκκ+ I2

κκ
2) + 2κ(2Iκγ

2
0δ + γ2

0δκ+

3κ0 + Iκκκ0)] , Eden = γ2
0(κ+ 2Iκ)

2 [(2 + κIκ)κ1 + κκ0] .
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By setting w = 0, the mean initial energy results as

E0 ≡ E(w = 0) = 2F1F2 (κ2(3 + κIκ))
[
(κ+ 2Iκ)

2(2 + κIκ)
]−1

. (20)

with
F2 = 6 + δκ2 + (5 + 2δ)κIκ + κ2I2

κ). (21)

3.2 Condition for energy conservation

We require that the difference ∆E = E−E0 vanishes identically. With the help
of the Mathematica [23] commands Factor[...] and Simplify[...], the following
factorization is achieved:

∆E = F1F3Gw/Eden,

F3 = −6 + γ2
0(6 + δκ2) +

[
−5 + γ2

0(5 + 2δ)
]
κIκ + (−1 + γ2

0)κ2I2
κ,

Gw = −2κ2(3 + κIκ)
{

(1 + γ2
0)(κIκ + 2) sinh(w)2 + κκ0

}
. (22)

Obviously, ∆E = 0, if F3 = 0. Solving for γ2
0 , we find the following condition

on γ0, which guarantees energy conservation:

γ2
0 = F−1

2 (2 + κIκ)(3 + κIκ). (23)

Remarkably, γ2
0 does not depend on the curve parameter w.

From (20), it is noticed that E0 = 0, if F2 = 0. Considering δ as the control
parameter, the zero of F2 is at

δκ = −(2 + κIκ)(3 + κIκ) [κ(κ+ 2Iκ)]
−1 . (24)

The factor F2, which depends linearly on δ, changes sign at δ = δκ. The
parameter δκ separates, thus, positive and negative mean initial energies E0,
this means domains where unbounded and bounded mean orbits are expected.
Consistent with this, γ2

0 is positive and negative, respectively; in the latter
case γ0 is purely imaginary which implies that the curve parameter w has be
analytically continued to a purely imaginary one, w → w̃:

w = i w̃. (25)

Correspondingly, the hyperbolic functions which appear in the expressions of
the mean values, change to trigonometric functions which are bounded as a
function of w̃.

The function δκ is monotonically increasing with κ > 0 and covers the
interval −∞ < δκ < −1 with the limit δ∞ = −1, see dotted line of Fig. 1.
Clearly, E0 can vanish or become negative only for an attractive potential with
the coupling constant α < 0.
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Figure 1: Domains of bounded and unbounded trajectories, below and above
the dotted line, respectively. Within the ”funnel domain” which has the shape
of a lying funnel, the curve parameter w is in 1-1 correspondence with time t
for t ≥ 0, without restriction. In the complementary domain, w has a limited
definition interval and, thus, limits the applicability of the wave function used
in the given work. Note that the figure refers to the case σ = −1 where the
mean initial velocity points toward the force center. If the mean initial values
X0 and V0 are varied independently, then κ and δ are independent parameters.

To finish this subsection, we connect δ to the mean values of the initial
energy. From (12) and (17), one derives

D(κ) ≡ E
(0)
pot/E

(0)
kin = δ/|δκ| or δ = |δκ|D(κ). (26)

As a check, if E0 = 0, then E
(0)
pot = −E(0)

kin which implies D(κ) = −1 and, thus,
δ = −|δκ| = δκ.

3.3 The energy constant E0

In the limit κ → ∞, the mean initial energy E0, given in (20), attains the
classical form of the total initial energy

E0 → (1/2)mV 2
0 + α/X0. (27)

To see this, we use the property that limκ→∞ Iκ = 1 and obtain

E0 → 2F1κ
2(1 + δ)(1 +O(1/κ)). (28)
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With the aid of the asymptotic relation ~κ = 2mX0V0, see (16), and in view
of (18), we can express δ as follows:

δ = (α/X0) /
(
V 2

0 m/2
)
≡
(
E

(0)
pot/E

(0)
kin

)
asymp

, (29)

which, with 2F1κ
2 ≡ ~2κ2/(8mX2

0 ) = (m/2)V 2
0 , leads to the result (27).

It should be noted that, due to the independence of the initial values X0 and
V0, the parameters δ and κ are independent variables. By (15) and (16), κ =
κ(ζ) is a monotonous function of ζ = 2mX0V0/~, whereas, by the definition
(18), δ = 2α/(mX0V

2
0 ) ≡ 4α/(ζ V0). The functional determinant is

det

(
∂(δ, κ)

∂(X0, V0)

)
=

4α

~X0V 2
0

dκ

dζ
6= 0. (30)

4 Time dependence

For the given Hamiltonian, the commutator relation dx/(dt) ≡ (i /~)[H, x] =
px/m = vx implies the necessary condition

d〈x〉/(dt) = 〈vx〉, (31)

which holds true for any initial state which evolves by the operator exp[−iHt/~].
As a consequence of (31), one obtains the following first order differential equa-
tion for w(t):

∂tw ≡ F (w) = 〈vx〉/(∂w 〈x〉). (32)

In order that w and t are in 1-1 relation, we require that

∂tw > 0 for w ∈ (0, wc), wc > 0. (33)

The critical interval limit, wc, is determined by the property that ∂tw changes
sign or gets singular the first time for w > 0

Let us heuristically discuss the case of positive initial energy, E0 > 0,
and σ = −1 where the mass point initially moves towards the Coulomb sin-
gularity. If the mean (rectilinear) trajectory overcomes the singularity and
escapes asymptotically to arbitrary negative values 〈X〉, then both ∂w〈X〉 < 0
and 〈Vx〉 < 0, throughout, with the consequence that, by the definition (32),
F (w) > 0 for w > 0. In this case, w would be a well defined time equivalent
in the infinite interval w ≥ 0. As another scenario, the mean value 〈X〉 de-
creases to a minimum value at w = wx, which, classically, would imply sign
inversion of the velocity component. If sign inversion of 〈Vx〉 simultaneously
occurs at the extremum of 〈X〉, at the curve parameter wx, then ∂tw > 0 in
the neighborhood of wx and the definition domain of w covers the backscat-
tering process. However, as it will turn out, the minimum position wx differs,
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in general, from the instant wv where sign reversion of 〈Vx〉 is observed. For a
classical rectilinear trajectory, on the other hand, wx = wv always. In quantum
mechanics where we are dealing with mean values rather than with a sharp
trajectory, the two inversion points do not coincide, in general.

In the given model, when wx 6= wv, then the definition domain of the curve
parameter is limited either by wc = wx or by wc = wv, depending on which
value comes first. The decisive point for the limitation of the present model
are the quantum fluctuations of the orbit which prevent, in general, that the
inversion points of position and velocity coincide as in the classical case.

5 Analysis of mean orbits

5.1 Rigorous results

For positive mean values of the energy, E0 > 0, the mean values of an orbit
{〈x〉, 〈vx〉}, are stated in (10) and (11). We prefer using the dimensionless
magnitudes X and Vx, instead, as follows

〈X〉 = 〈x〉/r0, 〈Vx〉 = 〈vx〉(4mr0)/(~κ), (34)

to write

〈X〉 =
[
4κ0 +Kκ2

0 + κκ1 + (3κ1 + 2κκ0)Iκ
]
M−1, (35)

〈Vx〉 = K
[
2γ0σ cosh(2w) + (1 + γ2

0) sinh(2w) Iκ
]

[γ0M ]−1 , (36)

where the functions κ0, κ1, K, M are defined in (9).
If E0 < 0, then the formulas for the mean orbit are obtained by means of

the analytical continuation

w → i w̃, γ0 → −i γ̃0, γ̃0 > 0, w̃ ≥ 0, (37)

which implies the replacements

κ0 → κ̃0 = γ̃0σ sin(2w̃), K → K̃ = κ/[cos(w̃)2 + γ̃2
0 sin(w̃)2],

κ1 → κ̃1 = κ/K̃, M → M̃ = 2 + κIκ + K̃κ̃0, (38)

and gives rise to

〈X̃〉 =
[
4κ̃0 + K̃κ̃2

0 + κκ̃1 + (3κ̃1 + 2κκ̃0)Iκ

]
M̃−1, (39)

〈Ṽx〉 = K̃
[
2γ̃0σ cos(2w̃) + (γ̃2

0 − 1) sin(2w̃) Iκ
] [
γ̃0M̃

]−1

. (40)

We have the following two rigorous properties:



138 Alexander Rauh

Statement (I.) For any finite value of the curve parameter w ≥ 0, the
orbits are finite. This is true for both values σ = ±1 and all mean values of
the initial energy −∞ < E0 <∞.

Statement (II.) If the initial velocity is positive ( σ = +1) and the initial
energy E0 > 0, then the curve parameter w is in 1-1 correspondence with time
t for all w ≥ 0.

Property (I.) appears to be in contradiction to the classical limit κ → ∞
for σ = −1, where according to Eq.(42) of [20], the mean velocity becomes
infinite at the instant of backscattering. However, we meet a finite definition
interval of w ∈ (0, wc) for most values of the control parameters κ and δ: the
definition domain then ends before back scattering takes place.

To prove (I.), one first verifies that the numerators of the mean coordinates
are bounded in any closed interval of w, w̃, κ, δ. So, the main task consists in
showing that the denominators M(w) and M̃(w̃) cannot vanish. The proofs
are given in Appendix C.

Property (II.) is physically obvious. The mean coordinate 〈X〉 increases
away from the force center to escape to infinity. As a consequence, ∂w〈X〉 > 0
together with 〈Vx〉 > 0, and, thus, by (32) ∂tw > 0. However intuitive this
may appear, to be true, w has to be a proper time parameter with ∂tw > 0 for
all w > 0. By (36), the mean velocity component, 〈vx〉, is positively definite
for σ = +1 and, therefore, does not change its sign. The remaining proof that
in addition ∂w〈x〉 > 0, is recorded in [24].

5.2 Numerical evaluations

This subsection deals with the numerical elaboration of the funnel domain of
Fig. 1. In the corresponding parameter space with δ ∈ R, κ ≥ 0, and σ = −1,
the definition domain of the curve parameter is infinite with w ≥ 0. Outside
the domain, however, w is a faithful time equivalent in a finite interval only.
This means, the wave function adopted fails to describe the full time evolution.
In other words, the assumption, that the time evolution exclusively is through
w = w(t), cannot be maintained outside the funnel domain. We remind that
for σ = +1, when the mean initial velocity points away from the force center,
and if E0 > 0 , then the curve parameter w has an infinite definition domain.

In the case σ = −1, the funnel domain is relatively broad for small values of
κ, where the wave packet is relatively extended, so the Coulomb singularity has
a comparatively weak effect. With increasing κ, the funnel gets narrower, and
its width shrinks to zero proportional to 1/κµ with µ ≈ 1/4. As a consequence,
if σ = −1, then, in order to get to the classical limit κ → ∞, the only safe
path is along the line δ = 0, which by (26) corresponds either to an infinitely
large kinetic initial energy or the potential free case with α = 0.

We have the following numerically established property:
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Figure 2: Illustration of the graphical analysis adopted to generate the funnel
domain of Fig.1. The parameters are δ = 2 (positive energy), σ = −1, and
four values of κ. For the lowest two κ values, the curves of 〈X〉(w) have
no minimum and move with increasing curve parameter w to minus infinity,
whereas the mean velocity component 〈Vx〉 turns out (not shown) to stay
negative for all four values of κ. At κ = 4.495, the X curve is just before
bending upwards. At κ = 4.51, the existence of a minimum is manifest.

Statement (III.) For parameters within the funnel domain, the mean
orbits are not backscattered by the singularity, but rather go through and
eventually escape to 〈X〉 = minus infinity.

The contours of the funnel domain were produced from a set of discrete
data points (δj, κj), j = 1, . . . , 58, which were joined by the plot program used.
Each point was inferred graphically by plotting a family of curves of 〈X〉 as
a function of w, as is illustrated in Fig. 2. If 〈X〉 has a minimum, then by
(34), ∂tw becomes singular. Furthermore, the first zero of 〈Vx〉, at w = wv,
causes ∂tw = 0 and limits the definition domain of w; unless both w positions
coincide, which, however, appears remote. In the next subsection, we show
analytically that for large κ the minimum of 〈X〉 and the zero of 〈Vx〉 are at
different w points.

5.3 Asymptotic approximation for σ = −1

In the following, it is shown that for sufficiently large κ the definition domain
of the curve parameter w is finite. To this end, the minimum position w = wX
of 〈X〉 is determined together with the first zero position w = wV of 〈Vx〉.
Asymptotically in κ, both values are finite with wX 6= wV . As a consequence,
wc = Min(wX , wV ), and w is a faithful time parameter in the finite interval
w ∈ (0, wc).

It is convenient to replace the constant δ by the real parameters λ or λ̃, as
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follows:

λ = 1/
√

1 + δ, if δ > −1 and λ = −i λ̃, if δ < −1. (41)

We have to pay attention to the different signs of the potential. We remind that
δ < 0 for an attractive potential, and δ > 0 for a repellent one. Accordingly,

E0 > 0 : 0 ≤ λ < 1 if δ > 0 and λ > 1 if − 1 < δ < 0, (42)

E0 < 0 : λ̃ > 0 with δ < −1. (43)

As mentioned above, the line δ = 0, or equivalently λ = 1, is contained in
the funnel domain where the definition domain of w is infinite. As a matter of
fact, the asymptotic formulas to follow become singular at λ = 1. Therefore,
we keep us sufficiently far away from this singular point, which means that
we exclude mean values of the initial energy, where by (26) the kinetic part is
much larger than the absolute magnitude of the potential part.

The asymptotic expressions are obtained by means of Taylor expansion
with respect to ε ≡ 1/κ near ε = 0. They are obtained in an analytical form
with the aid of Mathematica [23].

5.3.1 E0 > 0

We confine ourself, exemplarily, to the case λ > 1, where the mean initial
energy, E0, is positive and the potential is attractive. The minimum position
of 〈X〉 and the zero position of 〈Vx〉 attain the following asymptotic forms

wX = w
(0)
X + w

(1)
X ε+O(ε2), wV = w

(0)
V + w

(1)
V ε+O(ε2), ε = 1/κ. (44)

One finds straightforwardly for λ > 1, E0 > 0, and σ = −1

w
(0)
X = tanh−1(1/λ), w

(1)
X = λ

61− 77λ2 + 46λ4

46(λ2 − 1)2
,

w
(0)
V = tanh−1(1/λ), w

(1)
V = λ

3− 3λ2 + 2λ4

2(λ2 − 1)2
. (45)

The leading part, w
(0)
X = w

(0)
V = tanh−1(1/λ), agrees with the results in [20]

for the classical limit, see there Eqs.(35), (42), and (53).
We ask for the value of the curve parameter w, where ∂tw changes sign, or

becomes singular, the first time. If λ is sufficiently far away from the value 1
and if ε ≡ 1/κ is sufficiently small, then

wX − wV = −(4/23)λ(1 + λ2)/(λ2 − 1)2 ε+O(ε2), λ > 1. (46)

This means that asymptotically wX < wV , so the definition domain of w is
limited by wX . As a consequence, we have the following:
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Statement (IV.): For negative initial velocity with σ = −1 and pos-
itive energy, E0 > 0 with λ > 1, ∂tw asymptotically becomes singular at
the minimum w = wX of 〈X〉. For small ε ≡ 1/κ, the minimum is near
wX = tanh−1(1/λ) +O(ε) provided λ is sufficiently far away from the value 1.

For illustration of a macroscopic example, see Fig. 3. As a technical remark,
the task for Mathematica to analytically calculate the Taylor expansions of the
mean values was subdivided by considering numerator and denominator of the
mean values separately; each part was expanded up to order two in ε, before
the quotient was expanded to the same order, and the following approximation
of the Bessel function quotient Iκ was used:

I(2)
κ = 1− 1/(2κ)− 1/(8κ2). (47)

<X>

→ w
0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

<Vx>

→ w
0.2 0.4 0.6 0.8

-40

-20

20

40

Figure 3: Macroscopic example with orbiter mass m = 1000 kg, central mass
M = 6×1024kg, X0 = 4×107m, V0 = 5000m/s which gives rise to κ = 4×1048

and λ = 2.2247. The minimum of 〈X〉 is near wX ≈ tanh−1(1/λ) ≈ 0.48407....
By the asymptotic theory, the sign change of 〈Vx〉 occurs at wV = wX + 3.7×
10−50, which is later in a principal mathematical sense. At w = wV the slope
of 〈Vx〉 is steep but, by statement (I.), not singular; so there exists a zero near
wV ≈ tanh−1(1/λ) ≈ 0.48407.

5.3.2 Negative energy

As it turns out, the first minimum position w̃x of 〈X̃〉 , and zero position w̃v of
〈Ṽx〉, can simply be obtained from (45) by means of the analytical continuation
(37) and (41). We find for σ = −1, λ̃ > 0

w̃(0)
x = w̃(0)

v = arctan(1/λ̃), w̃(1)
x = −λ̃61 + 77λ̃2 + 46λ̃4

46(1 + λ̃2)2
,

w̃(1)
v = −λ̃3 + 3λ̃2 + 2λ̃4

2(1 + λ̃2)2
; w̃x − w̃v = ε

4λ̃(1− λ̃2)

23(λ̃2 + 1)2
+O(ε2). (48)
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<X>
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Figure 4: Illustration of the case of negative mean energy, E0 < 0, and negative
mean initial velocity (σ = −1). The parameters are κ = 1000 and δ = −12
with λ̃ = 0.301511. Formerly, the mean values are periodic with respect to the
curve parameter w̃, but the definition domain is limited by the first zero of
〈Vx〉 which is close to the first minimum of 〈X〉 at wc ≈ 1.27795. The slopes
of 〈Vx〉 near the points of sign inversion are steep, but not infinite.

The crucial point is that the two positions differ and give rise to either ∂tw =∞
or ∂tw = 0 at finite values close to w = arctan(1/λ̃). From (48), we formulate
the following:

Statement (V.): If 0 < λ̃ < 1, then the definition interval of the curve
parameter w̃ is limited by wc = w̃v, the first zero of 〈Vx〉. Else, if λ̃ > 1,
then wc = w̃x, the first minimum position of 〈X〉. The interval is finite with
wc = arctan(1/λ̃) +O(ε).

6 Conclusions

With the wave function adopted, the rectilinear trajectory of a wave packet
is described by means of a curve parameter w. Within the ”funnel domain”
of Fig. 1, the curve parameter is in 1-1 correspondence with time t without
restriction. In particular, in the case of a head-on collision with positive initial
energy, the trajectory tunnels through the Coulomb singularity; there is no
backscattering. Outside the funnel domain, in the case of a head-on configu-
ration, the curve parameter w has a limited definition range which does not
allow to predict forward or backscattering. The two-dimensional parameter
space is formed by the mean initial position 〈X0〉 and the the mean initial
velocity 〈V0〉, which are generally built into the wave function.

Acknowledgement: The author expresses his gratitude to Jürgen Parisi
for his constant encouragement and support. He also profited from his critical
reading of the manuscript.
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A Special solutions of the Schrödinger equa-

tion in KS space

The transformed time dependent Schrödinger equation reads (for the station-
ary version, see, e.g., [5, 8] )

−~
i

∂

∂t
ψ = Hψ, H =

1

u2

[
− ~2

8µ
∆u + α

]
, u2 = u2

1 + u2
2 + u2

3 + u2
4, (A1)

where ∆u denotes the 4D Laplacian. For a dimensionless form, we introduce
the dimensionless variables ζj for uj, τ for t, and β for α:

ζj =
uj√
ξ0

, ξ0 =
1

Γ0

; τ =
t

T0

, T0 =
8µ

~Γ2
0

; β =
α

r0E0

E0 =
~2Γ0

8µr0

; (A2)

and obtain

i
∂

∂τ
(ζ2ψ) =

[
−

4∑
j=1

∂2

∂ζ2
j

+ β

]
ψ, ζ2 =

4∑
j=1

ζ2
j . (A3)

Let us first consider the one-dimensional case, with ζ1 → ζ,

i
∂

∂τ
(ζ2ψ) =

[
− ∂2

∂ζ2
+ β

]
ψ (A4)

and try to solve it by means of the separation ansatz

ψ = F (τ)G(ζ). (A5)

We divide the equation by F (τ) to obtain

+i
F ′(τ)

F (τ)
ζ2G =

[
− ∂2

∂ζ2
+ β

]
G(ζ). (A6)

Since the right hand side is a function of ζ only, the F part must be a constant:

iF ′(τ)/F (τ) = A = const. or F (τ) = F (0) exp[−iAτ ]. (A7)

So we have to solve the differential equation

0 =

[
−Aζ2 − ∂2

∂ζ2
+ β

]
G(ζ). (A8)

The general solutions of (A8) are parabolic cylinder functions, which generally
are not normalizable, see sections 9.24 - 9.25 in [9], except for the eigenfunc-
tions of the harmonic oscillator. In order to obtain such solutions, we scale
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ζ → ξ with ζ = s ξ and choose the constants A and s such that we get the
dimensionless eigenvalue equation of the harmonic oscillator[

− ∂2

∂ξ2
+ ξ2 − (2n+ 1)

]
G̃(ξ) = 0, n = 0, 1, 2, . . . . (A9)

To achieve the above equation, we have to stipulate

A < 0; β < 0; s2 = (−A)−1/2; s2 = −(1 + 2n)/β. (A10)

Since β < 0, our separation ansatz is possible only for an attractive potential.
By (A10), the constants s and A become n dependent:

s→ sn =
√

(2n+ 1)/(−β), A→ An = An = −β2/(1 + 2n)2. (A11)

The normalizable solution of (A9) is given in terms of the n-th order Hermite
polynomial (He)n

Gn(ξ) = C(He)n(ξ) exp[−ξ2/2], (A12)

where C is a normalization constant.
Now comes the crucial point: the coordinate ξ is actually n-dependent and

with it the Hamiltonian in (A9):

ξ = ζ/sn, H(ξ)G̃(ξ) = (2n+ 1) ˜G(ξ) → HnG(ζ) = (2n+ 1)G(ζ) (A13)

with

Hn = −s2
n

∂2

∂ζ2
+

1

s2
n

ζ2. (A14)

Simultaneously, in the original ζ space the eigenfunctions read

Gn(ζ) = Cn(He)n(ζ/sn)) exp[−ζ2/(2s2
n)], (A15)

which implies that eigenfunctions belonging to different quantum numbers
n and n′ are not any more orthogonal. Moreover, we cannot speak of the
spectrum of a Hamiltonian; rather, we have a family of Hamiltonians.

The extension to four dimension is readily obtained. Instead of (A8), one
has to consider

0 =

[
−

4∑
j=1

(
Aζ2

j −
∂2

∂ζ2
j

)
+ β

]
G(ζ1, ζ2, ζ3, ζ4) (A16)

With the separation ansatz G =
∏4

j=1Gj(ζj), one finds after division by G

0 =
4∑
j=1

Zj + β, Zj =
1

Gj

[
−Aζ2

j −
∂2

∂ζ2
j

]
Gj. (A17)
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Since Zj must be constant, we get for each j the previous differential equation
(A8), and to obtain eigenfunctions of the harmonic oscillator, we introduce
once more the scaling ζj = s ξj (with s independ of j),

s2Zj = 2nj + 1, nj = 0, 1, 2, . . . , A = −1/s4. (A18)

The constraint
∑4

j=1 Zj + β = 0 leads to

s2 = (−1/β)
4∑
j=1

(2nj + 1) = (−2/β)(n+ 2), n = n1 + ...n4, nj = 0, 1, 2, . . . .

(A19)
For A, which up to a constant is an eigenvalue of the KS Hamiltonian, we get

A→ An = −(1/4)
β2

(n+ 2)2
, n = {n1, n2, n3, n4}. (A20)

As it turns out, the projection of the KS space into the physical space allows
for even numbers nj only; so with nj = 2kj, kj = 0, 1, 2, . . . and abbreviating
k := k1 + k2 + k3 + k4, we arrive at

Ak = −(1/16)β2/(k + 1)2, k = 0, 1, 2, .., (A21)

which somehow miraculously coincides with the discrete spectrum of the hy-
drogen atom with respect to the principal quantum number N = k + 1,
N = 1, 2, .... Once more, different quantum numbers k belong to different
Hamiltonians.

B Mean kinetic energy

According to [17], the velocity observables in u space read

vj = ~/(im)Dj, j = x, y, z, (B1)

with

Dx = (1/(2u2)) [u3∂u1 − u4∂u2 + u1∂u3 − u2∂u4 ] ,

Dy = (1/(2u2)) [u4∂u1 + u3∂u2 + u2∂u3 + u1∂u4 ] ,

Dz = (1/(2u2)) [u1∂u1 + u2∂u2 − u3∂u3 − u4∂u4 ] . (B2)

In calculating the mean value 〈v2
i 〉, we shift one operator to the left hand wave

function which produces a minus sign:

〈v2
i 〉 = (F/2)

∫ 2π

0

dφ

∫
du1 . . . du4(8u2) [Diψ

∗] [Diψ]

= F

∫ 2π

0

dφ

∫
(1/u2) du1 . . . du4Qi exp

[
A · u− ΓRu

2
]

F = 2~2C2/m2, (B3)
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In view of (B3), the kinetic energy reads, with Q = Qx +Qy +Qz,

Ekin = (mF/2)

∫ 2π

0

dφ

∫
du1 . . . du4

[
Q/u2

]
exp

[
A · u− ΓRu

2
]
, (B4)

After some ordering efforts, the following form of Q is achieved

Q/u2 =
[
q0/u

2 + q1 + q2u
2
]
, u2 = u2

1 + u2
2 + u2

3 + u2
4,

q0 = −(a2u1 − a1u2 − a4u3 + a3u4)(a∗2u1 − a∗1u2 − a∗4u3 + a∗3u4),

q1 = a1a
∗
1 + a2a

∗
2 + a3a

∗
3 + a4a

∗
4 −

ΓR [(a1 + a∗1)u1 + (a2 + a∗2)u2 + (a3 + a∗3)u3 + (a4 + a∗4)u4] +

iΓI [(a1 − a∗1)u1 + (a2 − a∗2)u2 + (a3 − a∗3)u3 + (a4 − a∗4)u4] ,

q2 = Γ2
R + Γ2

I . (B5)

The factors 1/u2 and u2 in (Q/u2) are taken care by means of parameter
integration and differentiation, respectively. To this end, the parameter ΓR in
the exponent of the integrand is replaced by the variable g:

Ekin = (mF/2)

∫ 2π

0

dφ

[
q0

∫ ∞
ΓR

dg + q1 + q2∂g

]
IA(g) (B6)

The polynomials qi are expanded and each factor uk generated by differen-
tiation with respect to Ak. Then, the u-integrals are carried out which leads
to the generating function IA:

IA(g) ≡
∫

du1 . . . du4 exp
[
A · u− g u2

]
= (π2/g2) exp [(A ·A)/(4g)] (B7a)

= (π2/g2) exp
[
(r0Γ2

R/g) (κ0 + κ1 cos(φ))
]

(B7b)

= (π2s2/Γ2
R) exp [sK (κ0 + κ1 cos(φ))] , φ = Φ− Φ′, (B7c)

where in (B7c) we substituted g = ΓR/s. The differential operators qi({∂Ak
})

are applied to IA, in the form (B7a).
We will use the following relations, see [20]:

f(w) = cosh(w)− i γ0 sinh(w), K = κ/ [f(w)f ∗(w)] = κ/κ1,

ΓR = K/r0, ΓI = −(K/r0) sinh(2w) (1 + γ2
0)/(2γ0),

2κ = K
[
1− γ2

0 + (1 + γ2
0) cosh(2w)

]
, ρ0 = Γ0

√
r0/2; (B8)

furthermore, the symmetry

a1(w,Φ) = a3(w,Φ), a2(w,Φ) = −a4(w,Φ); A1 = A3, A2 = −A4, (B9)

and the normalization condition

1/C2 = 2(2πr0/K)3 exp(K κ0)I0(κ) [κ Iκ + 2 +Kγ0σ sinh(w)] . (B10)
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The evaluation of q2 leads to the expression

q2 ≡ Γ2
I + Γ2

R = K2/(4r2
0γ

2
0)
[
4γ2

0 + (1 + γ2
0)2 sinh(2w)2

]
. (B11)

Evaluation of q1 gives rise to the following forms:

q1 = −Kσ(γ2
0 − 1)

[
(ΓI + iΓR)f(w)2 + (ΓI − iΓR)f ∗(w)2

]
= −K2/(2r0γ0)σ(γ2

0 − 1) sinh(2w)
[
1− γ2

0 + (1 + γ2
0) cosh(2w)

]
= −2κK/(2r0γ0)σ(γ2

0 − 1) sinh(2w). (B12)

The contribution of q0 will vanish identically after the integration over the
KS phase φ. In the following, we will show this in some detail.

q0 = −(1/g2)
[
A2

1a2a
∗
2 − A1A2(a∗1a2 + a1a

∗
2) + a2a

∗
2g + a1a

∗
1(A2

2 + g)
]

= r0Γ2
0

[
−g cos(φ)/κ1 + r0Γ2

0 sin(φ)2
] [
g−2κ1

]
, (B13)

where φ = Φ − Φ′. We introduce the variable transformation g → s = ΓR/g
and use the relation ΓR = Γ0κ1 = (κκ1/r0) to obtain

q0 = (1/2)
[
s2κ2 − 2sκ cos(φ)− s2κ2 cos(2φ)

]
. (B14)

For the φ integration of the q0 term, we use the form (B7c) and write

Q0 : =

∫ 2π

0

dφ q0IA(g) = exp [sK(κ0 + κ1 cos(φ))]×

π2s2/(2Γ2
R)

∫ 2π

0

dφ
[
s2κ2 − 2sκ cos(φ)− s2κ2 cos(2φ)

]
. (B15)

The phase integrals amount to modified Bessel functions, In,∫ 2π

0

dφ cos(nφ) exp[cos(zφ)] = 2πIn(z), n = 0, 1, 2. (B16)

With the aid of the In, we can write using the the relation Kκ1 = κ

Q0 = (π3s2/Γ2
R) exp[sKκ0]

[
s2κ2I0(sκ)− 2sκI1(sκ)− s2κ2I2(sκ)

]
. (B17)

Eventually, we make use of the recurrence relation

I2(sκ) = −2/(sκ)I1(sκ) + I0(sκ), (B18)

to make evident that the square bracket factor of Q0 is identically zero.
We are left with the contributions of q1 and q2. Restoring the factor F =

2~2C2/m2, where C is the normalization constant, we have to consider

Ekin = (~2C2/m)

∫ 2π

0

dφ [q1 + q2∂g] IA(g) (B19)
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with IA defined in (B7c) (not to be confused with Bessel function). The q2

term, essential amounts to the normalization integral and we find

Q2 : = (~2C2/m)

∫ 2π

0

dφ q2∂gIA(g)

= ~2K2
[
4γ2

0 + (1 + γ2
0)2 sinh(2w)2)

]
/(32mr2

0γ
2
0). (B20)

The contribution of q1 gives rise to

Q1 := (~2C2/m)

∫ 2π

0

dφ q1IA(g) = − ~2K2(γ2
0 − 1)κκ0

8mr2
0γ

2
0(2 + κIκ +Kκ0)

. (B21)

With the aid of the renormalization r0 → X0, where X0 is the mean initial x
coordinate,

r0 = X0(2 + κIκ)/(κ+ 3Iκ) (B22)

one arrives at the expression for Ekin, as claimed in (17). As a check, for w = 0
and in the macroscopic limit κ→∞, one finds that

lim
κ→∞

Ekin(w = 0) =
~2κ2

8mX2
0 )

[1 +O(1/κ)] =
m

2
V 2

0 [1 +O(1/κ)] (B23)

with σV0 = 〈vx〉(w = 0) = ~κσ/(2mX0) [1 +O(1/κ)].

C Proof for the non vanishing of M and M̃

The functions M and M̃ are defined in (12) and (38), respectively. We intro-
duce the auxiliary functions F and F̃ as follows

M = 2 + κIκ + κσF (w), M̃ = 2 + κIκ + κσF̃ (w̃) (C1)

with

F =
2γ0 cosh(w) sinh(w)

cosh(w)2 + γ2
0 sinh(w)2

, γ0 > 0; F̃ =
2γ̃0 cos(w̃) sin(w̃)

cos(w̃)2 + γ̃0
2 sin(w̃)2

, γ̃0 > 0.

(C2)
With the aid of the substitutions w → z and w̃ → z̃ with z = sinh(w) and
z̃ = sin(w̃), one easily finds

0 ≤ F ≤ 2γ0

1 + γ2
0

≤ 1 for 0 ≤ γ0 < 1; 0 ≤ F ≤ 1 for γ0 ≥ 1; (C3)

−1 ≤ F̃ ≤ 1 for γ̃0 > 0. (C4)

Hence, both M ≥M0 and M̃ ≥M0 with

M0 = 2 + κIκ − κ > 1.39, (C5)

where the latter inequality is established numerically; the minimum of M0 is
at κ ≈ 1.70238; asymptotically, for κ → ∞, since Iκ → 1, one gets M0 = 2.
In any case, the denominators M and M̃ are larger 1, which proves Statement
(I.)
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