
Acknowledgements

The ideas presented in this thesis have been developed while I was working
for the EU projects REQUEST (no. 20616) and SQUASH (no. 28889).

I am grateful to my supervisor, Prof. Dr. Wolfgang Nebel, for enabling
this research and supporting my work.

I would like to thank Prof. Dr. Wolfgang Rosenstiel for the effort he spent
in examining this dissertation.

My colleagues, Dr. Guido Schumacher and Wolfram Putzke-Röming,
have reviewed the manuscript. Thanks again.

Many thanks also to all individuals and companies who have shared their
opinion, suggestions, and other input (such as LEDA’s Objective VHDL ana-
lyser) in the framework of the before-mentioned projects.

Not least, Ansgar Stammermann and Tiemo Fandrey have made valuable
contributions to the implementation of my ideas.

iv

Chapter 1

Introduction 1

Digital hardware is becoming increasingly complex at an exponential rate.
The number of primitive logic gates of which a processor is built has been
reported to approximately double every 18 months for a long time (Moore’s
law). Today, designs comprising tens of millions of transistors can be manu-
factured. In the Semiconductors Industry Association (SIA) roadmap [148],
it is foreseen that the exponential growth can be sustained over the next dec-
ade, physical limits of digital electronics being still not in sight. The techni-
cal progress will enable the production of devices with sophisticated
functionality at an affordable price and the integration of complete systems
on a single, miniature format chip instead of a printed circuit board.

To utilise that potential, our capabilities of designing electronic systems
must keep pace with the technology. Today, however, design productivity
rises at a much lower rate than necessary, opening the so-called design gap.
Since it is not feasible to scale up design teams indefinitely, future design
methods must provide a major productivity leap. This is likely to require a
paradigm shift. Hardware design will have to happen at a much higher level
of abstraction. Tasks that are performed manually today will have to become
automised. Reuse of previously designed components will have to take place
at a large scale and in an organised way.

Time-to-market is another pressing issue. A new or enhanced product
must become available to its potential consumers within a time interval
known as the market window. Premature and late market introduction both
incur a cost of lost profit. With product cycles shortening, the timely delivery
of a design becomes more and more important. Again, productivity increases
contribute to meeting this goal. Moreover, late design iterations must be
avoided. A design iteration is necessary when an error is detected. Often this
happens only after system integration since the system components, particu-

2 Introduction

larly software and hardware, are designed independent of another despite
their complex interactions. A more integrated and co-operative design style
and the reuse of tested components can help to reduce errors and meet time-
to-market requirements.

In the past, language-based design techniques from the software world
have already been adopted into hardware design methodologies. Hardware
description languages have largely replaced schematic-based design. The
software world, however, is one step ahead in that it widely employs object-
oriented techniques. These have been developed since the early 1980s as a
response to massive problems with software complexity and defects; prob-
lems similar to those faced in hardware design today.

It is expected that by utilising object-orientation in hardware design, we
can benefit from its abstraction and reuse techniques. Moreover, object-orien-
tation would then have the potential to unify software and hardware design.
To this end, a design methodology and a complete design flow supported by
tools must be developed. The work at hand makes a significant contribution
to this overall goal by investigating the synthesis of digital circuits from
object-oriented specifications.

Our goal is to provide a wide support for object-oriented features and
their use in concurrent hardware models while giving designers an idea of the
circuit structures that will be synthesized. Analysis and optimization tech-
niques shall be developed so as to reduce implementation inefficiencies that
might be a penalty of the more abstract, object-oriented description style.
Moreover, by generating standard hardware description language code from
a model described in an object-oriented language, we target at providing a
viable transition from the object-oriented world to current hardware design
flows.

The next chapter provides an overview of digital system design and
describes how object-orientation can contribute to it. This background is
used in chapter 3 to illustrate and classify existing approaches to hardware
design and synthesis based on object-oriented languages, and to distinguish
our contribution from the related work.

Chapter 4 presents object-orientation in detail, following the Unified
Modeling Language, a de facto standard for the diagrammatic specification
of object-oriented models. This allows to keep our view independent of a
specific implementation language. We devise a hardware interpretation and
implementation for all major object-oriented features and identify some nec-
essary restrictions on their use.

3

The following three chapters target at making object-oriented hardware
synthesis practicable. In chapter 5, the language Objective VHDL and its
application for specifying object-oriented synthesis models are presented.
Chapter 6 addresses analyses that enable an optimized hardware implementa-
tion, concentrating on the aspects related to object-orientation. In chapter 7,
we describe the generation of VHDL code to enable the interfacing with
existing design flows and tools.

Chapter 8 is devoted to design experiments that demonstrate and validate
our concepts and help to identify remaining weaknesses, leading to conclu-
sions summarising the contribution of this thesis and future work necessary.

4 Introduction

Chapter 2

Design of Digital Systems 2

This chapter provides relevant background on the industrial and research
state of the art in digital systems design. We briefly review models of the
design space and identify important design activities. Hardware design meth-
odologies currently in use in industry or subject of research are investigated.
Likewise, we highlight the predominant software engineering methodology,
object-orientation.

The advantages of using object-orientation are expected to be transferra-
ble from the software domain to systems design, including hardware design,
as we will point out. Object-orientation could become a unified methodology
for the specification of software and hardware. To this end, however, we will
need support for implementing hardware that is specified in an object-ori-
ented way. An object-oriented language applicable to hardware description
must be found or developed. Automated support for the generation of a hard-
ware implementation from a language based description must be provided
and should interface with present hardware design flows.

2.1 Design space

The design space of a digital system can be understood as the collection of
the views and abstraction levels relevant in the process of designing it. Sev-
eral approaches to capturing the digital system design space exist. These
include Gajski’s Y-chart, Ecker’s design cube, and the VSI taxonomy.

The Y-chart is discussed in its refined form presented in [46] and [149]. It
describes the hardware design space as spanned by three dimensions or
views, behaviour, structure, and geometry, which are represented by axes
arranged in a two-dimensional Y shape. On each axis, there are discrete
points that correspond to abstraction levels, namely, from the centre to the

6 Design of Digital Systems

outside, the switch, gate, register-transfer, algorithmic, and system level.
Concentric circles connecting the different views at the same level can be
drawn. Rammig [134] has refined the Y-chart into an X-chart by adding a test
view.

Ecker [46] has developed a design space characterisation that is particu-
larly suited for the design process of application specific integrated circuits
(ASICs) using hardware description languages (HDLs). Axes represent the
ways functionality, data, and timing are described. Functionality can be mod-
elled with a structural, concurrent, or sequential description style. Data can
be represented by single bits, bit-vectors, or abstract data types. Timing may
be a delay measured in physical units, related to clock cycles, or expressed
by causal relationships. Since these axes are orthogonal to each other, they
are arranged in a three-dimensional way. The 27 combinations of axis values
are represented as 27 points in the design cube.

The VSI taxonomy [163], similar to the RASSP taxonomy [135], targets
at taking not only hardware, but also software aspects into account. To this
end, it defines the orthogonal model characteristics of temporal, data value,
functional, and structural precision, for each of which an internal (implemen-
tation) and external (interface) view exist. A ninth dimension, programming
abstraction level, accounts for the software aspect. The axes are drawn one
below the other. A region of the design space is represented by a combination
of intervals on these axes.

2.2 Design activities

A design activity or design step is an action performed by a designer, possi-
bly with tool support, in the process of designing a digital system. Design
activities relevant to this work are modelling, exploration, synthesis, optimi-
zation, and validation. We will describe these activities in the following and
relate them to the design space.

By modelling, a view of a design is described at a level of abstraction
suitable for a given purpose, leaving out those details of the reality that are
irrelevant. For instance, a behavioural model at the algorithmic level (in the
Y-chart) can be suitable to express a desired functionality whereas a more
detailed geometric model at the physical level may be required to capture the
design data that is needed for the production of an integrated circuit.

Synthesis is the process of generating a model at a lower level of abstrac-
tion, calledimplementation, from a higher level model calledspecification.

Design methodologies 7

In hardware synthesis, the specification is typically a behavioural model at
some level of abstraction in the Y-chart, and the implementation is a struc-
tural model whose components are described one abstraction level lower.
While synthesis is controlled by a designer by providing constraints and
directives, large parts of this design activity are performed by tools. Hence,
the process of detailing a specification into an implementation is largely
automated, which helps to increase design productivity and reduce design
time. If the designer must perform this refinement manually, we speak of
(manual) implementation.

Closely related to synthesis are optimization, exploration, and estimation.
When refining a specification into an implementation, there are typically
many alternatives among which a choice must be made. This choice affects
the implementation’s efficiency with respect to hardware area, software code
size, performance, power dissipation, and testability, just to name the most
important criteria.Optimization means to make choices so that the imple-
mentation represents a good trade-off between these interrelated criteria,
compared to other possible implementations. In many cases, this cannot be
assessed in advance, so that the space of possible implementations must be
explored. However, complexity usually forbids to generate and analyse more
than a few alternative implementations, making it necessary to apply approx-
imative techniques (estimation).

Another important design activity is to validate that an implementation
behaves according to its specification.Validation deals not only with func-
tionality, but also timing and performance aspects. The most important vali-
dation technique has been to simulate the specification and implementation
models and compare the results. More recently, formal verification in the
sense of proving model equivalence has become popular. Other techniques,
model checking or theorem proving, can be applied to show that a model ful-
fils properties specified in a mathematical notation.

2.3 Design methodologies

A design methodology describes how to get from an initial specification to a
final implementation by systematically carrying out design activities. The
industrial state of the art in designing hardware and embedded systems is
outlined in this section and compared with advanced approaches currently
being researched.

8 Design of Digital Systems

2.3.1 Hardware design

Industrial hardware design today is largely based on the use of HDLs for
modelling and synthesis from register transfer level (RTL) models [26]. The
most prominent and widely used HDLs are VHDL [74] and Verilog [157].
RTL models are characterised by describing functionality as separate data-
paths and controllers. A behavioural view is taken for modelling each data-
path and controller, describing their functionality using a synthesizable sub-
set of HDL statements [75]. The classification of RTL modelling in the Ecker
cube is instructive: All timing is described in relation to a clock signal, and
data are typically bits and bit-vectors. The synthesis tools fully automate the
generation of a gate level netlist, yielding acceptable results in a time much
shorter than achievable with manual implementation. Further design steps
towards layout, such as placement and routing, are automated, too.

Research has taken the entry point to synthesis one abstraction level fur-
ther, to behavioural models at the algorithmic level [42][102]. At this level,
hardware functionality is modelled as a set of sequential processes. No sepa-
ration between control and data path is made in the specification. In the
design cube, the timing description can be classified as causal, being defined
by the order of statement execution. Data are typically modelled as bit-vec-
tors or with primitive data types such as integers.

An implementation is generated from an algorithmic description by so-
called high level synthesis (HLS) tools, also known as behavioural synthesis
tools. A HLS tool takes a sequential algorithm and schedules its operations
into time slots that correspond to clock cycles. It allocates modules that
implement the operations required, and binds operations to these resources.
The interconnection of resources according to the data flow yields a data
path. Furthermore, a finite state machine is generated after the schedule to
control the data path. The resulting implementation is suitable as a specifica-
tion for RTL synthesis.

Constraints play an important role to guide the HLS tool. Timing con-
strained and resource constrained synthesis algorithms are distinguished
[79]. Timing constrained scheduling attempts to minimize resources while
observing constraints on the algorithm’s execution time (latency). Resource
constrained scheduling minimizes the execution time of an algorithm given a
pre-allocated set of resources.

Commercial HLS tools have become available [84]. They are, however,
not as mature and widely accepted in industry as RTL synthesis tools. The
synthesis results cannot compete with a manual RTL design in many cases.

Design methodologies 9

On the other hand, by automating scheduling, allocation, and binding, HLS
allows to explore the RTL implementation space much more effectively than
manual RTL design. With growing design complexity and time-to-market
pressure, and further advances in the tool world, a wider acceptance of HLS
techniques can be anticipated.

Contemporary research targets system level modelling and synthesis [80],
dealing with hardware architectures that include microprocessors and micro-
controllers, digital signal processors (DSPs), application specific instruction
set processors (ASIPs), application specific integrated circuits (ASICs), and
memory hierarchies. Interfacing of and communication between these build-
ing blocks must be addressed. The creation, selection, and reuse of intellec-
tual property (IP) blocks is another important issue. Due to the consideration
of programmable processors, software comes into play at the system level.

2.3.2 System design

We use the term system to denote a unit that is comprised of software and
digital hardware. Other system components such as analog electronics and
mechanical parts are out of scope for our considerations.

In industry, such hardware/software or embedded systems are designed
using separate design methodologies for their software and hardware parts.
System functionality and constraints are specified in an informal way. There-
after, a partitioning decision is made on the system’s components to imple-
ment them in hardware and software, respectively. Until recently, a system
integration and test took place only after the software had been implemented
and the hardware been produced. Any errors in their interplay could not be
detected before this final phase and would in many cases require a large re-
design effort, causing significant delay and cost [4].

In the past years, techniques for the (non-formal) co-verification of hard-
ware and software have been developed and were adopted into industrial
design practice. These include the co-simulation of hardware components
together with software, rapid prototyping of hardware to allow an earlier
integration, and the employment of emulation techniques. However, while
earlier debugging has been enabled, other design activities continue to be dis-
connected.

Research addresses the co-operative design (co-design) of hardware and
software using an integrated methodology [50]. The heterogeneous approach
to co-design leaves traditional means for hardware and software design in
use, e.g. HDLs and high-level programming languages (HLLs), while pro-

10 Design of Digital Systems

viding a tighter coupling through an underlying integrated semantic model
that facilitates the automation of cross-domain design activities. The Solar
intermediate form [78] is an example of a multi-language co-design environ-
ment. The homogeneous approach, on the other hand, targets at making the
specification independent of an implementation in either hardware and soft-
ware by using a single language for both [56][114]. This allows to leave the
partitioning decision and further co-synthesis activities to an automated tool
such as the Cosyma system [48].

Given that software design is the dominant effort, accounting for an aver-
age of about 80% of a system’s engineering costs [8], it is reasonable to
adapt a software engineering methodology to hardware design when striving
for homogeneous system design. Among the software techniques, the object-
oriented paradigm represents an important, if not the most dominant, meth-
odology. Its application to system design has been suggested by several
researchers [67][109].

2.4 Object-oriented software engineering

Object-orientation relies on a couple of features for the abstraction of data,
functionality, and communication, which we present briefly in the following.
A more detailed examination will be performed in chapter 4, with a hardware
implementation in mind. In addition to features, we mention the software
development process describing their use for analysing, designing, and pro-
gramming software, as an integral part of an object-oriented methodology. A
special branch of object-orientation, concurrent object-oriented program-
ming, deals with a concurrent implementation of object-oriented models.
Since hardware is inherently parallel, the problems discovered in this context
are of high relevance to this work.

2.4.1 Notations and features

Theobject is the fundamental unit on which the object-oriented paradigm is
based. An object models a part of a system or of the system’s environment.
For this purpose, it has the capability of storing and processing information.
It defines an interface of services (operations, methods) that it provides,
while encapsulating its internal information and hiding implementation
details.

Object-orientation allows to classify similar objects. Aclass defines the
common properties of a set of objects, particularly its services and internal

Object-oriented software engineering 11

data storage capabilities. Objects can be created according to the blueprint
described by a class. Theinheritance of classes enables a designer to extend
the class for additional data and services and to redefine a service so as to
modify or adapt its functionality.

Message passing enables communication between objects. Messages cor-
respond to services. By addressing an object and sending it a message, an
object can requests the execution of a service from the target object.

Polymorphism allows to deal in a uniform way with objects of classes that
are related by inheritance. It allows to address an object regardless of its
exact class membership and to send it a message. The message is dispatched
to the corresponding service. Recall that the service’s functionality may be
redefined in derived classes. Since the exact class of the addressed object
may vary during system operation, it must be decided dynamically which
service version to execute. This is achieved by a mechanism known as
dynamic binding (late binding).

In our terminology, following Booch [28], all these features must be
present for a methodology to be object-oriented. In accordance with Wegner
[161], approaches that provide objects, classification, and message passing,
but lack inheritance or polymorphism, are classified as object-based.

2.4.2 Design process

An important aspect of object-orientation is that it covers not only implemen-
tation or programming, but also addresses and formalises preceding design
activities. According to Rumbaugh [137], object-oriented modelling consists
of three main phases. The first one is object-oriented analysis (OOA), during
which requirements are collected, potential objects are identified, and their
interrelations such as classification, inheritance, and composition, are deter-
mined. Analysis is followed by object-oriented design (OOD) which covers
the functional aspects such as data and control flow. Finally, object-oriented
programming (OOP) allows to implement the system using an object-ori-
ented programming language.

The object-oriented features are consistently available during analysis
and design and in the programming phase. In the last years, the Unified Mod-
eling Language (UML) [29][54][138], which has emerged from various other
OOA/D notations [27][76][137], has become a de facto standard for the
graphical representation of OOA/D specification models. It includes dia-
grammatic notations for objects, classes, inheritance, and composition.
Beyond these static properties, UML can represent a system’s dynamics such

12 Design of Digital Systems

as polymorphism, message exchange, data flow, and control. A specific
design process based on the UML, called Unified Process, has been devel-
oped recently [77]. For the implementation of object-oriented models, there
exist many object-oriented programming languages, including C++ [151],
Java [7], and Ada 95 [22].

Tool support is an important factor in the design process. There exist
computer-aided software engineering (CASE) tools that allow to capture an
OOA/D model. Many of these provide OOP language code generation so that
implementation can be partly automated. Furthermore, some CASE tools
have reengineering capabilities, allowing to create or modify an OOD model
from an OOP implementation. Thereby, the OOD model can be kept consist-
ent with changes introduced during programming. Finally, the optimized
compilation of OOP languages into machine code for execution on a proces-
sor or virtual machine is a fully automated and proven technology.

2.4.3 Object-orientation and concurrency

An OOA/D model does typically not preclude concurrency. Objects can in
principle operate concurrently with respect to each other, using message
passing for communication and synchronisation. However, many OOP lan-
guages, e.g. C++ and Eiffel [106], provide a sequential execution of object-
oriented programs. Yet there are approaches to concurrent object-oriented
programming (COOP). These should be taken into account for object-ori-
ented system design since components at the system level, particularly hard-
ware components, are of a parallel nature.

Important issues that arise when combining object-orientation and con-
currency are described in [103]. A particular research topic has been syn-
chronisation, of which two forms are relevant. First,mutual exclusion
synchronisation must be provided in order to avoid resource conflicts
between concurrent services of an object. Resources are, for instance, the
object’s data stores, whose integrity could be compromised by an uncon-
trolled access by concurrent services. Second,condition synchronisation is
necessary to avoid the invocation of a service that the object cannot execute
temporarily, while enabling other concurrent service requests. For instance, a
DRAM controller cannot provide a read or write service when it is in a
refresh state.

The problem is that any code that describes synchronisation is prone to
becoming invalid during inheritance, having to be re-written in a derived
class. Moreover, due to so-calledfeature interaction even the inherited meth-

Object-oriented systems engineering 13

ods may be compromised if they interfer with synchronisation via the
object’s internal state. Making it necessary to fully analyse the implementa-
tion of a parent class before making any derivations, these effects, subsumed
under the terminheritance anomaly, severely damage object-oriented encap-
sulation and reuse.

Major COOP languages, such as Java and Ada 95, provide constructs for
mutual exclusion synchronisation: synchronised methods and protected
objects, respectively. They do, however, not give the user any support for
condition synchronisation in combination with inheritance. COOP languages
from research have targeted atreflective modelling, giving the programmer
the means to describe the acceptance of messages and invocation of corre-
sponding services explicitly in a so-called body of an active object [112].
Whereas this does not prevent the user from running into inheritance anoma-
lies, other approaches based onguarded methods can avoid the known issues.
This concept, originally described by Ferenczi [53], has been taken further
and applied to hardware modelling by Schumacher [144].

2.5 Object-oriented systems engineering

Given the various aspects of object-orientation, we motivate in this section
the advantages expected from applying object-oriented techniques to systems
design. Initial approaches in this direction are investigated with attention to
their support for the object-oriented implementation of the hardware part. As
we will see, support for synthesis from object-oriented models is necessary
for an effective integration with established hardware design techniques. This
leads us to the classification of object-orientation in the digital circuit design
space and its integration into an object-oriented system design flow.

2.5.1 Advantages of object-orientation

The potential benefit from the use of object-oriented techniques in hardware/
software co-design has been highlighted by several authors, including Wolf
et al. [92] and Glunz et al. [59]. Gupta [63] mentions the need for data and
interface abstraction in systems design. It is expected that the advantages
identified in software engineering can be transferred to system design,
including hardware design. These are:
• Abstraction—Object-orientation provides abstract interfaces constituted

of methods, the abstract communication mechanism of message passing,
and data abstraction.

14 Design of Digital Systems

• Encapsulation—The internal properties of an object, particularly its data,
are encapsulated so that they cannot be compromised by the outside
world.

• Information hiding—Implementation details are hidden from the user of a
class. Ideally, understanding the class interface made up of methods is
sufficient to use a class.

• Reuse—The previous points ease the reuse of existing classes. Moreover,
inheritance allows to extend and adapt a class for a new purpose while
reusing the inherited features. Inheritance can be understood as a grey box
reuse technique providing controlled modifications as detailed in [123]. It
avoids the error-prone white-box, copy-and-paste style of reuse while not
being as restrictive and inflexible as unmodified black-box reuse [117].

• Extensibility—Polymorphism and dynamic binding allow to introduce
objects of new classes into a system without having to modify existing
code.

• Maintainability—The structuring and standardised documentation pro-
vided by an OOA/D model eases the maintenance of complex systems.

• Larger scale concepts—Object-oriented features are the basis for the
larger scale software reuse concepts of patterns [57], components [154],
and frameworks [52]. Their adaptation to hardware is beyond the scope of
this work, but may be of interest for future research.

For hardware modelling and simulation, the supposition of increased produc-
tivity [118] has been confirmed, although still on a small statistical basis, by
reports that the use of an object-oriented VHDL enables code size reductions
of an average 30% compared to plain VHDL [136]. Notably, since these
were initial modelling experiments, this has been achievedwithout reuse. An
even larger benefit can be expected once reuse libraries become available.

2.5.2 Object-oriented design of embedded systems

Several approaches employ object-orientation in the design of embedded sys-
tems. These can be classified into the real-time and co-design categories.
Real-time OO techniques such as ROOM [146], Real-Time UML [44], or the
object-based HRT-HOOD [68], allow to deal with soft and/or hard real-time
constraints in the design of embedded software. More relevant to this work
are the following co-design methodologies, which include hardware design.

Model-based object-oriented systems engineering (MOOSE) [109] facili-
tates an object-based system specification. At first, a target-independent, so-
called executable model is specified. Objects of this model are later commit-

Object-oriented systems engineering 15

ted to an implementation as software, hardware, or firmware. From the
resulting committed model, implementation activities start. A VHDL netlist
describing the interconnection of hardware objects can be created, and
objects can be mapped to existing hardware components. However, the
implementation of application specific hardware is not supported. In this
case, only empty VHDL templates are generated; the functionality has to be
filled in by the user.

In the INSYDE project [67], Rumbaugh’s Object Modeling Technique
(OMT) [137] has been utilised for system specification. OMT, being fully
object-oriented, includes support for inheritance and polymorphism. VHDL
code generation techniques for hardware objects and their interconnections
have been suggested, including coverage of the objects’ functionality. The
resulting code can be simulated, but it is not synthesizable. It would have to
be refined manually to respect the VHDL synthesis subset [75]. Furthermore,
we question that OOD models will be used in practice for a full specification
of functionality. Rather, a user will wish to add functional details using the
implementation language. This is difficult with the INSYDE approach since
VHDL lacks object-oriented features, making it impossible to maintain the
original model structure that employs inheritance and polymorphism.

To overcome the deficiencies of the purely graphical approaches MOOSE
and INSYDE, we suggest the use of an object-oriented implementation lan-
guages. Respective approaches are investigated in the next chapter. In the
remainder of this chapter, the use of such languages is assumed.

2.5.3 Object-orientation and synthesis

Once an OO model has been implemented in an OOP language or OO-HDL,
it is desirable to automate further processing as much as possible by tools. In
the software domain, this is achieved by compilation. For the hardware side,
synthesis technology must be developed. Otherwise, the user would have to
translate all object-oriented constructs manually into a non-object-oriented
form that can be expressed in a standard HDL and processed with current
tools. This would be a tedious and error prone task, which has to be repeated
each time a modification or correction is made in the OO model.

However, synthesis from object-oriented models is not only a “necessary
evil“ that follows due to the choice of object-oriented systems engineering.
Rather, the user can benefit from an object-oriented modelling style in sev-
eral ways, compared to modelling for HLS of algorithmic descriptions:

16 Design of Digital Systems

• The user does not have to deal with the synchronisation of processes.
These are synthesized independent of each other in HLS, which imposes
the task of describing their synchronisation, e.g. by handshaking, on the
user. Our object synthesis approach will generate the necessary communi-
cation automatically to implement the higher-level concept of message
passing between concurrent units.

• Object-orientation allows to model reusable hardware units that maintain
an internal state in a behavioural way. At the algorithmic level, this would
require the use of procedures together with external variables as it has
been described in [79] since procedures alone cannot maintain data values
between invocations. In an object-oriented model, the object stores (and
encapsulates) this data beyond the execution time of a method.

• Coding for HLS requires adherence to tool-specific coding styles and
templates. Particularly, the reset behaviour and eventual synchronisation
with a clock must be described explicitly. In the object-oriented model,
we need no clock and reset signals. These are generated in the synthesis
step. The initial (reset) state can be defined by default values or special
methods, constructors.

2.5.4 Object-orientation in the design flow

In this section, we discuss object-oriented hardware specification and synthe-
sis in the context of the complete design space, represented by both the Y-
chart and Ecker cube. We show how the design activity of synthesis from
object-oriented models—the subject matter of this thesis—is positioned in
the design space, and how it can be integrated with further design steps in an
HDL-based design flow.

Object-orientation allows to describe objects, which can be considered as
concurrent components, and their communications. While the internals of an
object may be modelled in an algorithmic style, the concurrency and commu-
nication aspects, as well as the potential integration with software design, let
us classify object-oriented hardware specifications to be at the system level.
An object-oriented specification in the sense of this work takes a behavioural
view of the system. Other approaches allow to specify a structural view. This
will be discussed in the next chapter.

The classification of object-oriented hardware modelling approaches in
the Ecker cube is addressed in [25]. We emphasize the potential of object-ori-
entation to advance the abstraction of data values.

Summary 17

Synthesis has been identified as a design activity that takes a behavioural
specification at some abstraction level and creates a structural model whose
components are one abstraction level lower. In this sense, synthesis of an
object-oriented model (behavioural view at the system level) would create a
structural description with components modelled at the algorithmic level.
This is exactly the approach taken in this work. We will show how an object-
oriented input description can be processed by a tool, theobject synthesizer,
that generates a netlist of components whose functionality is described by
algorithmic VHDL code. This enables the integration into an existing VHDL
based design flow for synthesizing the design to the level of abstraction
required for production. This hardware flow is shown in the right half of
figure 1. The further synthesis steps are high level synthesis (HLS) followed
by RTL synthesis, logic synthesis and technology mapping, and finally place-
ment and routing.

As we have motivated object-oriented hardware design with the applica-
tion of object-orientation to hardware-software systems, we shall now com-
plete the picture towards system design. It starts with an OOA/D model that
is implemented partly in hardware (HW) and partly in software (SW). The
partitioning decision may be manual or automated. Subsequent SW and HW
design activities create an OO program and an OO synthesis model, respec-
tively, including HW/SW interface parts. There may be tool support for code
generation from the OOA/D model. While the OO synthesis model serves as
input for synthesis as to be described, the OO program can be compiled for
execution on a development system, on a virtual machine, or cross-compiled
for an implementation platform. Co-simulation helps to validate the interplay
of software and hardware before the final system integration.

2.6 Summary

Systems design can benefit from object-orientation through its features sup-
porting abstraction, reuse, and extensibility. However, for a consistent and
uninterrupted design flow, the capability of synthesizing digital circuits from
an object-oriented description still has to be developed.

The direct synthesis from graphical OOA/D models has turned out
impractical. It is desirable to apply an implementation language to specify
object-oriented models in the detail necessary for synthesis. Respective
approaches exist, and the next chapter provides an overview of this related

18 Design of Digital Systems

work on language-based, object-oriented hardware description, putting
emphasis on synthesis-related aspects.

Likewise, the remainder of this work will be focused on the synthesis
aspect. We will develop an approach for the optimized synthesis of an algo-
rithmic level model from an object-oriented, behavioural specification at the
system level. This approach allows to delegate the synthesis of sequential
algorithms, including the exploration of register transfer level implementa-
tions, to a high-level synthesis tool and enables us to interface with estab-
lished hardware design flows.

Fig. 1: Object-oriented system design flow

OOA/D
model

SW design HW design

OO program OO synthesis
model

object synthesizer

HDL synthesis
model

compiler

system

algorithmic
level

level
co-
simulation

HLS

further synthesis steps

System integration

executable

production

partitioning

Chapter 3

Related Work 3

The related work on hardware description with object-oriented languages can
be classified according to the kind of language used and the style of language
usage. The most prominent hardware description languages, VHDL and Ver-
ilog, are not object-oriented, but proposals for respective extensions exist.
These are distinguished by their preference of a structural or behavioural
modelling style [13][110]. Both views are addressed in the next section.

Other approaches suggest the use of a programming language for system
specification, including hardware. Some of these employ object-orientation
to provide a class library that extends the programming language for con-
cepts necessary or at least useful for system description. Such system
description frameworks are presented in the second section.

An alternative is to synthesize programming language based, behavioural
object-oriented specifications directly into hardware. This requires a map-
ping of the object-oriented constructs into an implementation as a digital cir-
cuit. The work on this domain is described in a separate, third section.

3.1 Object-oriented HDLs

Many proposals on extending hardware description languages, in particular
VHDL, for object-orientation have been published. Only a few, among them
SUAVE [10], Objective VHDL [121], and Schumacher’s OO-VHDL [142]
continue to be actively pursued. All of these provide object-oriented data
types which are added to VHDL’s type system. Other approaches augment
the VHDL design entity with object-oriented features. These are either sim-
ple structural inheritance of ports, generics, and processes, or inheritance and
communication mechanisms based on more sophisticated interfaces. A com-

20 Related Work

ponent-like class construct can as well be found in V++, an object-based lan-
guage with syntax related to Verilog and C++.

These approaches to object-oriented HDLs are presented in the subse-
quent sections. Discussion shall be brief and focused on the synthesis aspect
relevant to this work. The interested reader can find more detailed reviews of
language aspects in [12][17][19][145].

3.1.1 V++

V++ [36] is a synchronous hardware description language based on a class
construct with methods and data elements similar to C++. The language has a
Verilog-like syntax of statements. Channels can be declared to connect
objects, allowing them to communicate by exchange of messages which do,
however, not directly correspond to methods. The language can be classified
as object-based; since it provides neither inheritance nor polymorphism, it is
not a full-featured object-oriented language.

With respect to “hardware semantics,“ the interesting point about V++ is
its mapping to a formal model of computation, a network of concurrent com-
municating finite state machines (FSMs). Each object can be understood as
an FSM. All FSMs are running in parallel and communicate as defined by the
message exchange in the object-oriented model. In their paper [36], the
authors do not detail the mapping from V++ to the formal model. It is there-
fore not clear how a method’s functionality, specified as an algorithm, is
translated into the FSM model. The details of communication synthesis are
not revealed either.

3.1.2 Structure based inheritance for VHDL

We classify an OO-VHDL dialect asstructure based if it augments VHDL’s
structure modelling constructs, entities and architectures, with inheritance
features while not introducing concepts such as methods and polymorphism.
The approaches of Ramesh [133] and Ecker [45], as well as some aspects of
Objective VHDL [128], belong to this category and are discussed in the fol-
lowing.

Ramesh [133] proposes a syntax for deriving a new entity from an exist-
ing one. This is called single inheritance since no more than a single ancestor
is allowed. An architecture of such a derived entity inherits from an architec-
ture of its entity’s ancestor. If this entity has several architectures, a problem
arises since it is not clear nor can be specified from which one to inherit. A

Object-oriented HDLs 21

derived entity can add generics and ports, and its architectures may specify
additional subprograms with respect to the parent. It is not clear whether
other declarations and concurrent statements are inherited and what happens
in the case of identifier redefinition. Furthermore there is no indication that in
this OO-VHDL dialect entity subprograms can be invoked from outside of
the entity. Finally, only VHDL’s subprogram overloading exists as a statically
resolved ad-hoc form of polymorphism.

Ecker [45] proposes a declaration of a tagged entity from which new enti-
ties can be derived. A similar mechanism exists for architectures. By explicit
definition of a parent architecture, the case of multiple possible parents is dis-
ambiguiated. Since more than one parent can be stated, multiple inheritance
is permitted. However, the proposal does not mention how to deal with the
arising problems of name conflicts and multiple inheritance of the same fea-
ture via reconverging inheritance paths. Features inherited include all availa-
ble constructs: generics, ports, any kind of declarations, and concurrent
statements. The redefinition of an inherited name in a derived unit is said to
overwrite the inherited item. The exact semantics of overwriting are not elab-
orated.

Objective VHDL [128], following Ecker’s approach in the structural
domain, permits the derivation of new entities and architectures from existing
ones, but is constrained to single inheritance. There is inheritance of gener-
ics, ports, declarations, and concurrent statements; the latter two can be rede-
fined in a derived unit. The redefinition of a name hides the inherited
definition of the same name, but does not replace it in the inherited code.
Thereby, the introduction of errors into inherited functionality is prevented.

By a flattening step that involves copying the content of a parent unit into
the derived unit and resolving any name conflicts, a model with structural
inheritance can be translated into plain VHDL code. Provided that the con-
tents of all entities and architectures, derived or non-derived, adhere to a syn-
thesizable style, the translation result can be processed by a VHDL synthesis
tool. This has been demonstrated in [124] for Objective VHDL. Thereby, the
structure based approach indeed allows to obtain synthesizable code in a
rather trivial way. However, due to the lack of methods that can be invoked
from outside an entity and for the missing concepts of polymorphism and
dynamic binding, VHDL dialects with structural inheritance do not support a
full object-oriented modelling style.

22 Related Work

3.1.3 Entity-object based OO-VHDL dialects

To overcome the limitations of structural inheritance, several approaches add
the missing features expected from an object to the VHDL design entity. We
call these approachesentity-object based after the keywordentity_object
that is used in the Vista OO-VHDL dialect [37] to distinguish the enhanced
entity from the traditional VHDL construct. Note that from the object-ori-
ented point of view an entity should rather be named a class while a compo-
nent instance is similar to an object. Another VHDL extension with entity
objects is the LaMI approach [24]. Finally, entity-object capabilities are
being developed for Objective VHDL, too. All these approaches have in
common entity and architecture inheritance features that are similar to those
of Objective VHDL described in the previous section. The major additions
and differences are pointed out in the following.

Vista Technologies’ entity-object [37] has an interface made up of not
only ports, but also so-called operations. The execution of an operation can
be requested from outside of an object by sending a corresponding message
and addressing the target object by means of an entity handle that is created
upon entity-object instantiation. Entity handles are not typed, can be
exchanged in a system via signals, and can be stored in variables. It is possi-
ble to send any message to a statically unknown entity-object designated by
an entity handle. Thereby, polymorphism is introduced. Dynamic binding of
a message to an operation takes place at the target object. If no operation cor-
responds to a message received, a run-time error is raised.

Since the entity-based description style involves concurrency, it is possi-
ble that several messages arrive at the same time at a target object, or that
new messages arrive while an operation is under execution. In this case, the
messages are buffered in a queue for later execution. There is an implicit
default mechanism that lets objects accept new messages from its queue
automatically, controlled by their arrival order and optional priorities. Alter-
natively, the user may implement an explicit process that accepts messages
using an Ada-like select statement and invokes the corresponding operation.
While this allows to model the conditional acceptance of service requests
depending on the object’s state, the modeling style incurs the risk of running
into inheritance anomalies as discussed extensively in [145].

The LaMI proposal [24] adds operation declarations to the features of the
regular entity, i.e., there is no special entity-object construct. Operations are
similar to VHDL processes rather than subprograms, being able to execute
concurrently in a single object. Compared to Vista, this makes the queuing of

Object-oriented HDLs 23

different concurrent service requests unnecessary. Still, requests of the same
method have to be queued. Concurrent accesses of operations to the object’s
data are an inherent problem of the concurrent operations. This problem has
not been addressed by the language designers.

Entity instances (objects) are addressed by the label of their component
instantiation statement instead of an entity handle. Such a label is invisible
and cannot be made visible outside of the declarative region of the instantia-
tion. Furthermore, it cannot be stored in variables nor transported via signals.
Hence, communication by message exchange can only take place from a
given level in the design hierarchy to the objects that are instantiated at this
level. This is a severe restriction compared to the communication capabilities
provided by object-oriented modelling in general. A further implication is
that polymorphism and dynamic binding cannot be enabled; only a broad-
casting feature that addresses all objects (instances) of an entity-class is pro-
vided as a replacement.

Objective VHDL enables entity-object based descriptions by suggesting a
modelling style for the external invocation of subprograms declared in an
entity [119][120]. The modelling style is based on the use of signals to trans-
port service requests to a target entity. This approach leaves all communica-
tion details, e.g. the communication protocol and the resolution of concurrent
service requests, to be implemented by the user. A tool has been developed to
automate some recurring routine tasks [51], but modelling is still cumber-
some. While there is work towards language support for constructs that ena-
ble easier message exchange, respective publications are not yet available at
the time of the submission of this thesis. We hope that these constructs will
enable the user to deal with synchronisation and conditional request accept-
ance without running into inheritance anomaly issues.

The existing entity-object based approaches impose significant problems
on a synthesis tool. Entity handles are even worse than pointers in VHDL
(variables of access types) in that they are untyped. Pointer synthesis is
known to be a difficult problem that involves worst-case analyses of the set of
potentially addressed objects [147]. Any object included in this set but not
actually addressed during system operation incurs a hardware overhead.
VHDL synthesis tools do not synthesize models that use pointers for this rea-
son. Similarly, we should avoid entity handles in object-oriented synthesis
models.

Message queues are another major issue. While it is possible to imple-
ment queues in hardware at a non-neglectable cost, a synthesis tool would
have to know the required number of entries in a queue. If this number is pro-

24 Related Work

vided by the user or determined by non-exhaustive simulations, it may turn
out too small during actual system operation. A worst-case analysis, if feasi-
ble at all, would be on the safe side but lead to hardware overhead.

3.1.4 Type based OO-VHDL dialects with class constructs

Class type basedapproaches to object-oriented VHDL are characterised by
defining classes as data types (instead of entities) and objects as VHDL data
objects such as variables or signals (as opposed to component instances). The
following approaches can be summarised under this category and are dis-
cussed in the remainder of this section: VHDL++ [58], VHDL_OBJ [171],
inheritance of protected types [164], Cabanis’ approach [33], and Salamunic-
car’s approach [139].

VHDL++ [58] adopts the class construct of C++ into VHDL. However, it
relies on a selected name mechanism rather than pointers to address objects
for inter-object communication. The language does not provide polymor-
phism. For communication between concurrent objects, classes are aug-
mented with ports that allow the user to implement a protocol based on
signals. The resolution of concurrent requests has to be modelled in the
object body (implementation). This is prone to inheritance anomaly issues.
Thanks to its construction, VHDL++ can be considered synthesizable; a
translation into VHDL has been suggested for large parts of the language.
However, due to the lack of support for message passing between concurrent
objects and polymorphism, the modelling power does not suffice for a hard-
ware implementation of general object-oriented models.

VHDL_OBJ [171] provides a similar C++ based class construct. Differ-
ent to VHDL++, methods can be declared as virtual to enable dynamic bind-
ing together with the use of pointers, which allows and is required to employ
polymorphism. Hence, synthesis is infeasible at least when this important
modelling feature is used. The instantiation of objects is limited to processes,
making the object-oriented features usable in a sequential context only. This
obviates the need to deal with concurreny issues, but also limits the value of
VHDL_OBJ for modelling concurrent hardware.

Protected types [165] are a proposed concept to control concurrent access
to shared variables, which have been introduced in VHDL’93 [74], by means
of a monitor concept [66]. Protected types are similar to a class in that they
encapsulate their instances’ internal state, allowing access only via opera-
tions declared in the type’s interface. The addition of inheritance [164] tar-
gets at making protected shared variables a means for object-oriented

Object-oriented HDLs 25

modelling. However, while the monitor concept provides mutual exclusion
semantics, it does not cover the need for condition synchronisation. Moreo-
ver, dynamic polymorphism is not provided. Since shared variables are not
included in the synthesizable VHDL subset [75], we must rule out this
approach for hardware synthesis.

Cabanis’ classification-oriented proposal [33][34] comes with a class
construct that can be used for declaring signals. Inheritance is provided, and
methods can be called similar to C++. Polymorphism and dynamic binding
are not available. With respect to concurrency, the language lacks a definition
of a mechanism that applies when multiple concurrent processes invoke
methods of the same object. The user has to model the resolution of such
concurrent accesses on his own. Hence, while synthesis is possible, we must
conclude that only limited support for concurrent object-oriented hardware
modelling is provided.

Salamuniccar [139] has proposed another class based approach with con-
current objects. Its distinguishing feature is the possibility to define processes
inside the class type. A process could be used like an object body in COOP
to model explicit acceptance of messages and condition synchronisation.
However, this incurs the problem of inheritance anomalies. Multiple proc-
esses could even introduce concurrency inside an object, but the user would
be responsible to take care of avoiding resource conflicts when, e.g.,
attributes are accessed. While there is no work on synthesis or a translation
into VHDL, the class features can be considered as synthesizable. Polymor-
phism, however, would have to be excluded from synthesis because it relies
on pointers.

3.1.5 Type based approaches with Ada 95 background

Since VHDL’s syntax and partly its semantics have been designed following
the example of Ada [60], it is obvious to consider the object-oriented exten-
sions introduced in Ada 95 [22] for OO-VHDL. Respective approaches have
been undertaken by Mills [108], Ashenden at al. [10], and Schumacher [142].

Mills’ proposal [108] focuses on the addition of Ada’s syntactic con-
structs for object-oriented modelling to VHDL’s grammar while not address-
ing their semantic integration. New features include extensible tagged types
for inheritance, private types and private parts in packages for encapsulation,
the declaration of subprograms as primitive operations (methods) of tagged
types, and a class-wide type for polymorphism. The feasibility of hardware
synthesis is limited since access types and pointer variables may be

26 Related Work

employed in object-oriented models. This is necessary in particular when
polymorphism and dynamic binding are to be used.

The focus of SUAVE [10][11][14][16][18], with its additional constructs
for communication modelling and dynamic process creation [15], is clearly
on system-level modelling. Work on synthesis or a translation into VHDL
has not been published. Still, the object-oriented mechanisms of the language
can largely be considered as synthesizable. Their syntax is similar to Mills’
approach; however, semantics is specified in detail and with some deviations
from Ada so as to be more suitable for hardware modelling. Particularly,
SUAVE permits the declaration of signals of an object-oriented type (tagged
record or class-wide type). This facilitates the use of object-orientation in a
concurrent context and allows to use polymorphism without pointers. Poly-
morphic variables, however, still have to be declared with an access type.

While SUAVE developers target the implementation of native tools for
their language, Schumacher describes for his Ada-based OO-VHDL dialect a
translation of the object-oriented extensions into plain VHDL [142][145].
This allows to use VHDL tools for further processing. The language itself is
similar to SUAVE, but advances synthesizability by avoiding access types
and the use of pointers completely. This involves a value-based semantics of
polymorphic variables, as opposed to pointers. It is claimed that the VHDL
constructs created during translation are synthesizable. Hence, a complete
object-oriented specification is synthesizable if it employs the object-oriented
extensions together with the synthesizable VHDL subset.

However, the generated VHDL is not optimised for synthesis. The trans-
lation of class-wide types can lead to a large register or memory overhead
because no bit-optimal encoding is used. Moreover, the limitations of VHDL
synthesis tools are not considered. Translation of primitive operations (meth-
ods) makes use of subprograms which are effectively inlined by synthesizers.
Therefore, a method is synthesized separately for every single call. It is not
feasible to synthesize it once and let the synthesis tool instantiate the result to
implement the method invocations, possibly mapping several invocations to a
common resource. Likewise, an object cannot be mapped to a previously
synthesized or designed library element. This holds even if vendor-specific
library mechanisms such as Synopsys’ Designware [153] are used since
these usually cannot deal with operations that have unbounded delay or bidi-
rectional (INOUT) parameters, which is typically the case for methods.

Another problem is that all operations that modify the state of a particular
object must be invoked from a single sequential process; otherwise, a non-
synthesizable resolution function would have to be introduced. Any concur-

System description frameworks 27

rent use requires the user to explicitly model inter-process communication
using signals. Schumacher describes a modelling style which allows to
implement this communication with an innovative approach for condition
synchronisation [144][145]. However, the modelling effort is large and the
modelling style is not synthesizable.

Finally, it is desirable to have a more detailed idea of (and control over)
the circuit structure resulting from synthesis in order to make the whole proc-
ess more transparent and predictable to designers. This requires the definition
of an at least informal “hardware semantics“ for object-oriented constructs.

3.1.6 The type aspect of Objective VHDL

Objective VHDL [122][126][129][130][131], while providing additional
entity-based inheritance as described before, is another VHDL dialect with
type-based object-orientation. The language employs a class construct like in
C++ instead of extensible records with separate operations. This choice has
been made for the convenience of programmers, most of which are more
familiar with C++ than Ada. Still, the intentions and mechanisms behind the
syntax are similar to those of Schumacher’s Ada-based approach.

Hence, Objective VHDL supports the full range of object-oriented con-
cepts: classes with data attributes and methods, inheritance of classes, poly-
morphism, message passing, and dynamic binding. Furthermore, concurrent
modelling is facilitated by supporting class-typed and polymorphic signals.
Following Schumacher’s approach, the concept of mutually exclusive
guarded methods can be provided for arbitration of concurrent requests and
condition synchronisation without inheritance anomaly issues.

Objective VHDL is employed in this work to implement object-oriented
models in a hardware description language based form and to demonstrate
the synthesis of such descriptions. The language and its application to con-
current object-oriented hardware modelling will be presented in more detail
in chapter 5.

3.2 System description frameworks

Hardware description languages have been designed to incorporate some
concepts that are not found in most programming languages: simulated time,
event-driven simulation, hardware-efficient data types, structure, concur-
rency, reactivity, and basic mechanisms for communication between concur-
rent domains. Many of the new synthesis tools for C/C++ are therefore

28 Related Work

restricted to the isolated synthesis of sequential algorithms, leaving concur-
rency and communication out of consideration. The tool C2VHDL from
CLevelDesign (formerly Compilogic) belongs to this category. The same
holds for Frontier Design’s ArtLibrary/ArtBuilder, which provides special
support for fixed-point numbers.

There are, however, approaches to including concurrency and communi-
cation aspects by either extending the programming language or providing a
library that adds the missing functionality. In some sense, this means aug-
menting the programming language with features that are readily available
with HDLs. Yet, advantages can be seen in possibly better execution per-
formance of programming languages and in easier connection of embedded
software and hardware development in a homogeneous framework.

In the following, we discuss these approaches according to the languages
used: early work using early object-oriented languages, approaches based on
C++, and Java based approaches. Another category describes approaches that
rely on knowledge and data bases rather than programming languages.

3.2.1 Early work

Takeuchi [155] was among the first to present the idea of object-oriented
CAD environments for hardware description. The basic concept is to provide
an object-oriented library of concepts common in hardware engineering,
such as state machines, netlists, and truth tables. These can be instantiated
and personalised by the CAD user. Furthermore, connections can be
described. The resulting structural description can be used as input for fur-
ther analysis, simulation, and synthesis.

Another early work was presented by Pawlak in [116], showing how the
object-oriented features of the programming language LOGLAN could be
used to model the instantiation and interconnection of gate-level primitives
and to execute a simulation. In addition, modelling of the layout was
addressed. However, this work does not cover the high-level modelling and
synthesis aspects relevant today and to be targeted by this work.

A slightly different approach has been proposed by Wolf [162]. The
building blocks of the so-called Fred environment are standard hardware
devices rather than standard concepts. They include, e.g., devices of the
TI 7400 series. Classification is utilised to group the objects into families
(e.g., TTL) and functional categories (e.g., primitive gate, ALU, or register).
The Flavors language, an object-oriented dialect of Lisp, is used for describ-
ing these relationships.

System description frameworks 29

In his dissertation [140], Sarkar describes an object-oriented design
framework named DOORS. Hardware components are modelled as objects
using OHDL, an object-oriented HDL developed by the author. From these
descriptions, data flow and control flow are extracted into intermediate forms
called object dependency graph (ODG) and message flow diagram (MFD),
respectively. A controller and datapath can be synthesized from these design
representations using high level synthesis techniques. Inheritance plays a role
to provide a pre-defined class hierarchy of design primitives. Primitive data
types such as bit and integer are polymorphic. However, nowhere the deriva-
tion of a new hardware object with additional or redefined methods from an
existing one is described. Likewise, polymorphism and dynamic binding are
not used with hardware objects. In consequence, no synthesis concepts are
presented for these object-oriented features.

3.2.2 Object-oriented modelling of design data

More recently, Wolf’s approach has been taken further by Agsteiner and
Monjau [1][2]. They describe a hierarchical object-oriented model of hard-
ware devices. A knowledge base and constraint nets are utilised to store the
information about classification and hierarchy relationships.

Object-oriented classification and data base management of hardware
devices have been applied to build reuse repositories. In [170], a system for
the the management of electronics design and production data is described.
Barna and Rosenstiel [20][21] focus on the management and retrieval of
intellectual property blocks in their Reuse Management System. The lan-
guage Objective VHDL has been used as well as plain VHDL to describe
interface information that allows to automatically assess the suitability of an
IP block for a given purpose by means of similarity metrics.

These approaches, while descring important characteristics with the help
of object-orientation, do not specify thefunctionality in an object-oriented
way. They are therefore out of scope for our further considerations on synthe-
sis from object-oriented models.

3.2.3 C++ based approaches

Recent approaches apply techniques similar to section 3.2.1 at a higher level
of abstraction, targeting HW/SW co-design, which includes the hardware
synthesis aspect covered by this thesis. Among the first in this direction has
been Scenic [99]. This environment is based on C++ and a programming

30 Related Work

library which uses the object-oriented features to provide concurrency, reac-
tivity, hardware-oriented data types, and the means to describe the intercon-
nection of components by port mapping. All static structure must be
modelled in the constructors, and a dedicated entry function describing
dynamic behavior must be provided. Hardware synthesis is possible by elab-
orating the constructors and implementing the entry function using register
transfer or high level synthesis.

Ocapi from IMEC [141] is another object-oriented programming environ-
ment based on C++. It facilitates hardware modelling with signal flow graphs
and finite state machines and provides a path to synthesis. However, the mod-
els being synthesized are flow graphs and state machines but no objects in the
object-oriented sense. The focus of CoWare [100][158][159] is on architec-
ture mapping and evaluation of system descriptions in C/C++. Its hardware
synthesis capabilities are limited to a subset of C called RT-C that is clearly
not object-oriented.

We shall also mention CynApps’ C++ based environment for hardware
description [38], which primarily targets event-driven simulation and RTL
design. Similar to Scenic and Ocapi, this library employs object-orientation
to provide an environment for hardware modelling. The objects of a descrip-
tion that uses any of these libraries serve to extend C++ so as to describe con-
cepts such as netlists and concurrency, but do not advance object-oriented
hardware specification.

PAM-Blox [105] is a C++ based object-oriented circuit generator for Xil-
inx FPGAs. It allows to describe parameterisable modules of hardware
objects such as counters, shifters, or adders, as well as their instantiation and
interconnection. A path to synthesis is provided by the tool PamDC, which
translates the structural C++ description into a Xilinx netlist file (XNF for-
mat). The hardware objects are mapped to corresponding Xilinx macros.

The Scenic environment has been continued by Synopsys under the name
Scenery. It has recently been brought into the SystemC initiative [23] which
is joined by other proponents of C based hardware design such as Coware
and Frontier Design. As of November 1999, there is no information available
about new technical advances.

3.2.4 Java based system modelling

A couple of approaches exist that apply Java for system level modelling and
partly synthesis, namely the Programmable System Architecture (PSA) from

System description frameworks 31

Improv Systems [97], JavaTime [167], Reactive Java [115], and the work of
Helaihel and Olukotun [64].

The approach of Improv Systems [97] is based on a system-on-chip mul-
tiprocessor architecture that can be programmed via a very long instruction
word (VLIW) instruction set [65]. A compilation environment named Solo
performs the mapping of a Java program to this architecture. Concrete archi-
tectures such as Jazz being defined and chips being supplied by Improv,
architecture synthesis itself is out of scope. Only software synthesis, but no
hardware synthesis is performed.

JavaTime [167][168][169] is a set of tools supporting the successive, for-
mal refinement of a Java program into a particular model of computation
called abstractable synchronous reactive (ASR) model, suitable for the speci-
fication and synthesis of reactive embedded systems. Since Java’s capabili-
ties go beyond what can be expressed as ASR, a policy of use must be
imposed on the source language. The policy forbids, for instance, the
dynamic instantiation of objects and demands that all objects be instantiated
during an initialisation phase. This can be considered a reasonable assump-
tion reflecting the static nature of hardware. However, object-orientation in
Java is based on dynamic mechanisms such as references (restricted-use
pointers) and virtual methods. It is therefore unlikely that the policy of use
can be formulated so that true object-oriented behaviour can be synthesized.
Instead, an example in [168] suggests that all behaviour of an object must be
specified in a dedicated method. Hence, the object itself is not synthesized. It
rather provides a framework for specification, similar to the Scenic approach,
but defined by a policy of use instead of a programming library.

With Reactive Java [115], a slightly different approach is taken. The
authors describe a class library that provides control structures for concur-
rency, sequencing and preemption that are closely related to those of the syn-
chronous language Esterel. Their use makes the translation into an abstract,
synchronous reactive representation easier compared to JavaTime. Again,
classes and objects provide a framework of hardware specification concepts,
but are themselves not synthesized into hardware.

Helaihel and Olukotun [64] describe the use of Java for algorithmic spec-
ification of HW/SW systems. Java bytecode is analysed to resolve memory
references, dynamic memory allocation, and the dynamic linking of Java pro-
grams. This allows to generate a control/dataflow graph which can be used as
input to hardware synthesis. The process of generating this graph and the
successive synthesis step are not detailed any further.

32 Related Work

3.3 Synthesis of OOP language features

There are several approaches which go beyond the programming frameworks
presented in the previous chapter in that they target to synthesize directly
from an object-oriented language. Thus, they have the potential to synthesize
hardware from a specification that employs full object-orientation for model-
ling behaviour. In the following, we will investigate how this goal is achieved
with JavaSynth [87], Matisse [86], and SystemC++ [104].

3.3.1 JavaSynth

In [87][88][89][90][91], Kuhn et al. describe the use of Java for hardware
modelling. While the emphasis of the publications is on simulation, there are
two interesting points with respect to hardware synthesis.

First, the authors describe a behavioural and a structural interpretation of
Java. In the behavioural interpretation, an object is understood as a state vari-
able whose value is transported via wires. A method corresponds to a hard-
ware component that implements the functionality described by the methods.
The object state and the method’s parameters are both inputs and outputs of
the hardware component since they may be read and modified. A return value
would become an output. The structural interpretation, on the other hand,
views the object itself as a hardware component that receives via wires infor-
mation about a method to be executed. Hence, the structural interpretation
has the potential to implement Java objects directly in hardware. On the other
hand, state is separated from functionality in the behavioural interpretation,
which reflects the problem presented in the second point of section 2.5.3.

Secondly, the authors mention a tool named javaSynth that applys the
structural interpretation to a Java program and creates a corresponding
VHDL netlist. The objects are mapped to existing, pre-synthesized VHDL
components. Moreover, behavioural VHDL code can be generated that is
equivalent to the methods and suitable for processing by VHDL synthesis
tools. However, details about the VHDL code generation and synthesis proc-
ess are not revealed in the published material.

3.3.2 Matisse

Matisse [39][40][41][86][160] targets the synthesis of the dynamic allocation
and access of complex memory data structures, with a focus on data-inten-
sive telecommunication applications. It employs C++ class types extended

Summary 33

for concurrency (“active classes“) for the specification of the data structures
and their manipulation through methods. The mapping of data to an address-
able memory allows to synthesize pointers as values to be put on the address
bus. This is close to the implementation of software on a processor and pro-
vides the potential to implement inheritance and polymorphism like a soft-
ware compiler would do. However, in contrast to the typical hardware model
of independent registers connected by combinational logic, the memory lim-
its concurrency because the number of values to be accessed at a time is con-
strained by the number of memory ports. This architecture is justified when
data structures are large or must be shared with software, but it is too special
to serve as a target for synthesis from general object-oriented descriptions.

3.3.3 SystemC++

SystemC++, described in [104], is based on an extension of C++ for concur-
rent objects and their communication. Dynamic object creation and dealloca-
tion are supported in hardware by a dynamic, hardware-controlled binding of
objects to a static set of resources. The hardware target architecture is similar
to software in that it implements a kind of run-time system for the execution
of an object-oriented model. Thereby, many software concepts can be imple-
mented in hardware.

Different to software, the architecture is not based on a global memory,
but on smaller, concurrent units to which objects are mapped. It reminds of
an application specific processor with multiple execution units running a
hard-wired program. This certainly extends the scope of hardware synthesis.
However, it is open whether the overhead for dynamic hardware resource
management is acceptable. Moreover, dynamic resource management
impairs predictability as the system may run out of resources. To avoid this
hazard, coding styles for embedded software development often discourage
dynamic resource allocation [32].

3.4 Summary

Various approaches to employing object-orientation in systems or hardware
design have been evaluated for their coverage and use of object-oriented con-
cepts as well as their synthesizability. It is important to note that synthesi-
zability refers to the feasibility of synthesis from the object-oriented
description, but does not imply actual work on tool support for synthesis. In
fact, there are only few reports on such activities.

34 Related Work

We have pointed out that augmenting hardware description languages
with simple structural inheritance is not powerful enough to support the con-
cepts used in OOA/D models. The support for more advanced concepts such
as message queuing and reference exchange between structural entities, on
the other hand, impairs the synthesizability of object-oriented models. Type
based approaches supporting a behavioural modelling style are more promis-
ing with respect to synthesis.

Many programming language based approaches use object-orientation as
a means to provide a framework that enables hardware modelling. However,
hardware synthesis of the object-oriented constructs themselves is not pro-
vided. The modelling style to be applied for hardware is quite different from
the way the OOP language would be used in software programming. Hence,
these approaches do not provide an integrated approach to co-design. While a
single language is used, hardware and software remain separated.

The hardware synthesis of object-oriented programming language con-
structs, comparable to their compilation into executable software, is
addressed by only a few researchers. Some propose special architectures that
ease the mapping of dynamic software concepts such as address dereferentia-
tion and object creation. Others rely on analysis techniques to transform
dynamic behaviour into static structures.

This work takes a different approach. We suggest an interpretation of
object-oriented models (i.e., a meta-model) that facilitates the direct imple-
mentation of object-oriented concepts as traditional, application-specific dig-
ital circuits. Hardware structures correspond to, e.g., derived objects,
polymorphism, and dynamic binding, and are transparent to the designer.

Emphasis will be put on the latest advances in concurrent object-oriented
modelling. We investigate the synthesis of condition synchronisation based
on guarded methods so as to enable designers to use inheritance and concur-
rency together while avoiding inheritance anomaly issues.

Our conceptual considerations abstract from a specific implementation
language in the formulation of concepts, hoping to overcome language barri-
ers. The later use of Objective VHDL, designed to match the staticness
requirements of hardware models, will allow us to present a practical imple-
mentation of our approach.

Chapter 4

Object-Orientation: A Hardware
Perspective 4

In the first half of this chapter, we develop a meta-model of object-orienta-
tion that is suitable for a digital circuit implementation. In order to achieve a
language-independent view on object-orientation, we consider the object-ori-
ented analysis and design notations of the Unified Modeling Language
instead of a specific object-oriented programming or hardware description
language. The features of an object-oriented model, namely objects and their
classification, communication between objects, and polymorphism, are
investigated in the three following sections.

In two further sections, hardware implementations are devised for the
meta-model’s aspects related to objects and their interconnections. Where
appropriate, language implementation mechanisms known from software
programming languages are adopted. Otherwise, a special hardware interpre-
tation of an object-oriented feature is devised, or a usage restriction pointed
out where necessary.

4.1 Objects and classes

An object is characterised by its state, which can take on a value out of the
state space defined by its class, and by the services it provides to its environ-
ment. We show how these properties are extracted from an object-oriented
model and captured in our meta-model. The presentation includes coverage
of derivation, associations such as composition and aggregation, and parame-
terization. A transformation into a finite state machine model shows the fea-
sibility of implementing an object in hardware.

36 Object-Orientation: A Hardware Perspective

4.1.1 Types and value sets

All high-level languages have a notion of types as an abstraction of values.
Typically, a language provides some primitive types and mechanisms for the
construction of user-defined types. Primitive types correspond to pre-defined
value sets; e.g., an integer type may represent the integer values –231, –
231+1, ..., 0, ..., 231–1. A user-defined type can be declared by defining its
value set explicitly (e.g., enumeration type), deriving it from an existing type,
or by composing types (e.g., as a record or array). In the latter case, the value
set is defined by the cartesian product of the types of the elements.

The notion of types and values is captured by the following definitions
which will be used in the remainder of this work:
• Types is the universal set of all types declared in a system.
• Values is the universal set of all possible values. Values may be scalar

(integer, real, enumeration value) or composite (record, array value). Non-
synthesizable values such as physical values and pointers [75] are
excluded from our considerations.

• is a meta-model variable that stands for some type. Concrete
type identifiers have a capital first letter to distinguish them from type var-
iables of the meta-model.

• is a mapping from the set of types into the
power set of values. The mapping yields for a type, , its corre-
sponding value set, .

Note that two types can share some or all of their values. The type is not
identified with its value set. It depends on the specific language whether two
different types with identical value sets are compatible. Likewise, a language
may allow the definition of compatible subtypes with narrowed value sets.
For the following, language-independent considerations, only the value set is
relevant, not the compatibility information. A subtype is therefore handled
like a type of its own.

Every data object such as a constant or a variable is declared with a type
and can take on any value from the type’s value set. The value set will also be
called thestate space of the data object. In the following, we will extend this
notion to object-oriented data types.

4.1.2 Object state space

Each object in an object-oriented model has an individual state which may
vary over time. The state space is defined by a class declaration which can be
understood as a template for the creation of similar objects. Figure 2 shows

t Types∈

S : Types ℘ Values()→
t Types∈

S t() Values⊆

Objects and classes 37

the UML notation of a class type, , which we assume to be a non-
derived class. The class specifies the state space of each of its objects as a
collection of so-called attributes. This term, to be told apart from VHDL
attributes, means the definition of a variable data field with a given type.

Be the number of attributes defined in classC. For the value
of each attribute holds: . The state
space defined by the class,S(C), follows as the cartesian product of the
attributes’ value sets:
(1) .

An initial value, , can be defined
explicitly for each attribute as shown in figure 2. The UML allows to omit the
explicit definition. In this case, a default value or random initialisation is
assumed according to the mechanisms of the implementation language. The
resulting initial state of an object of classC is:
(2) .

Note that accessibility levels such as public, private, and protected may
be specified. These affect the use of attributes in the object-oriented model,
but not the state space defined, and can therefore be ignored for our purposes.

4.1.3 Methods

By defining methods in a class declaration as shown in figure 3, the services
that each object of the class provides to its environment are specified. A
method, when invoked, may receive inputs required for the service and create
outputs as a result of the service. Moreover, a method can modify an object’s
state. In the strict sense of object-orientation, this should be the only way to
cause a state transition of an object.

A method is similar to a subprogram. Its interface is characterised by the
method’s name and parameter list. The parameter list can include input, out-

Fig. 2: Attributes defined in a UML class diagram

C Types∈

C

attributeC,1 : tC,1 = initC, 1
...
attributeC, n(C) : tC, n(C) = initC, n(C)

class name

attributes

methods (omitted)

n C() IN∈
attributeC i, S tC i,()∈ i 1 … n C(), ,{ }∈,

S C() S tC 1,() …× S tC n C(),()×=

initC i, S tC i,()∈ i 1 … n C(), ,{ }∈,

initC initC 1, … initC n C(),, ,() S C()∈=

38 Object-Orientation: A Hardware Perspective

put, and bidirectional parameters. In addition, a function-like method has a
return value. Each parameter, as well as the return value, is of a specified
type. The following considerations will be eased by considering a return
value as an output of a method, and by splitting each bidirectional parameter
into a separate input and output.

Be the number of methods specified for the class. From each
method,methodC, i, , parameter definitions are extracted as
follows:
• Input and bidirectional parameters, , of type , where

 and is the number of
these parameters. The type specifies a parameter’s state space, .
The overall input space, , ofmethodC, i follows as the cartesian
product of these individual parameter state spaces:

(3) .

• Output, bidirectional, and return value parameters, , of type ,
where and is the number
of these parameters. With parameter state spaces , the overall
output space, , is:

(4) .

If a method does not have input or output parameters, the respective space
is the empty set. With these notations, a method can be understood as a map-
ping from the current state of the object and the input parameters to the next
state and the output parameters:
(5) .

Depending on the implementation language, special methods called con-
structors may be defined to describe an initialisation of objects. Other meth-
ods may be pre-defined, for instance equality and assignment operators.

Fig. 3: Method specification in a UML class diagram

C

methodC,1(parameter_listC,1) [:]
...
methodC, m(C) (parameter_listC,m(C)) [:]

tC 1,
return

tC m C(),
return

class name

attributes (omitted)

methods

m C() IN∈
i 1 … m C(), ,{ }∈

pC i j, ,
in

tC i j, ,
in

j 1 … k methodC i,(), ,{ }∈ k methodC i,() IN∈
S tC i j, ,

in()
S inC i,()

S inC i,() S tC i 1, ,
in() … S tC i k methodC i,(), ,

in()××=

pC i j, ,
out

tC i j, ,
out

j 1 … l methodC i,(), ,{ }∈ l methodC i,() IN∈
S tC i j, ,

out()
S outC i,()

S outC i,() S tC i 1, ,
out() … S tC i l methodC i,(), ,

out()××=

methodC i, : S C() S inC i,()× S C() S outC i,()×→

Objects and classes 39

4.1.4 Derivation

Derivation is a mechanism for defining a new class by extending one or sev-
eral existing classes, the so-called parent classes. The derived class is said to
inherit from its parents. We speak ofsingle inheritance if only a single parent
class is allowed.Multiple inheritance from more than a single parent has
turned out to be problematic due to, e.g., name conflicts between declarations
inherited from different parents. Modern object-oriented languages such as
Ada 95 and Java therefore restrict the derivation mechanism to single inherit-
ance. The same assumption is made in this work. Application scenarios for
multiple inheritance can be handled well with the help of mechanisms like
interface inheritance and genericity which are discussed later in this chapter
(see section 4.1.8).

A derived class, , is defined by its parent class,P, and by its
own attributes and methods. The parent class can be a non-derived class or a
derived class. It is denoted by an arrow from the derived class to the parent
class in the graphical UML notation as shown in figure 4. The arrow repre-
sents theis-a relationship:D is-a P. This relationship can be interpreted in a
way that the derived classis a more specialised variant of the parent.

In order to be well-defined, a derived class must not be the parent of one
of its direct or indirect ancestors. If this were the case, the class definition
would be circular, i.e., depend on itself. Hence, the inheritance relationship
must not have cycles. This property, together with single inheritance, ensures
that theis-a relationship can be represented as a collection ofinheritance
trees. The root of each tree is a non-derived class, the other nodes represent
derived classes, and edges represent the parent-child relation.

Fig. 4: Derivation in UML

D Types∈

methodD,1 (parameter_listD,1) [:]
...
methodD, m(D) (parameter_listD,m(D)) [:]

tD 1,
return

tD m D(),
return

D

attributeD,1 : tD,1 = initD, 1
...
attributeD, n(D) : tD, n(D) = initD, n(D)

P

S(P)

...
methodP,i
...

40 Object-Orientation: A Hardware Perspective

The new attributes and methods of the derived class are specified in the
UML diagram in the same way as described in the previous sections. In addi-
tion, the derived class inherits all attributes and methods from its parent. The
state space defined by the derived class can therefore be expressed as an
extension of the parent’s state space:
(6) , and the initial state as:

(7) .

Similarly, the services available from objects of the derived class include
not only the methods specified in the class itself, but also those inherited
from the parent. This includes methods inherited by the parent if the parent is
another derived class. Using the transitive closure,is-a*, of theis-a relation-
ship, the services ofD can be expressed as the set of all methods declared in
any, direct or indirect, parentp of D, includingD:
(8) .

Note that the inherited methods operate on the state space of the class in
which they are defined. Their adaptation to the extended state space of the
derived class is covered in the following section.

Finally, it should be mentioned that an inherited service can be re-defined
in a derived class by defining a method with the same name and parameter
list. Depending on the semantics of the implementation language, the new
method may replace the inherited one (as with C++ virtual methods), or both
may co-exist (as in Ada 95). In this work, co-existence is assumed. Replac-
ing of re-defined services can still be modelled by delegating all invocations
of the service to the new method.

4.1.5 The object as a finite state machine

A finite state machine (FSM) is characterised by its sets of states, inputs, and
outputs, next state and output functions, and an initial state. Similar terms
have been used in the previous sections to define a mathematical meta-model
of classes. We will now show how the structures described by a class can be
expressed by an FSM model. FSMs are frequently used for hardware specifi-
cation, and their implementation is well understood.

The state space,S(C), of a class can be used directly as the set of states of
the corresponding FSM. The input spaces of all methods fromC and all its
parents are merged into an overall set of inputs,IC, of the FSM, and the ana-
logue is done to define the FSM’s set of outputs,OC:

S D() S P() S tD 1,() …× S tD n D(),()××=

initD initC initD 1, … initD n D(),, , ,() S D()∈=

MD methodp i, D is-a* p i 1 … m p(), ,{ }∈,{ }=

Objects and classes 41

(9) ; OC analogous.

In order to match the FSM model, each method, , is split
into separate next state and output functions,
and . These should compute the same state tran-
sitions and outputs as the original method for all states, , and all
inputs, :
(10) .

The next andoutp functions can be obtained by projection of the method’s
co-domain (range) to and , respectively.

Note that the domains and co-domains of the separate next state and out-
put functions have been adjusted to the FSM input and output sets,IC and
OC. These are supersets of the original method’s input and output spaces.
This is reflected in that theoutp function uses only part of the output space
and in that the function values ofnext andoutp are explicitly defined only for
a subset, , of their input domain. The other function values
may be chosen randomly.

Two things remain to be done: First, all inherited methods have to be
adapted to the state space of the class and its equivalent FSM. Secondly, the
multiple next state functions and output functions must be combined into a
single state transition function and output function of the FSM, respectively.
Both goals are achieved by defining and

 so that for all , for all
, and for all with holds:

(11) and

(12) .

These functions receive a service request via themethodp,i parameter and
compute the next state and output according to the individual method defini-
tion which corresponds to the request. Thenext function affects only that
portion,qp, of the state which belongs to the class,p, in which a method has
been defined. The other attributes,qext, are left unmodified.

Now an object of classC can be implemented by the finite state machine
(13) .

This FSM should be understood as a conceptual model. We will not target
direct synthesis from, e.g., its state table. In many practical cases, the state
space will be too large to apply typical FSM synthesis algorithms such as
state minimisation and encoding optimization. Likewise, methods may dis-

I C S inp i,()
i 1 … m p(), ,{ }∈

∪
C is-a* p

∪=

methodp i, MC∈
nextp i, : S p() I C× S p()→

out pp i, : S p() I C× OC→
qp S p()∈

r S inp i,()∈
method qp r,() next qp r,() outp qp r,(),()=

S p() OC

S inp i,() I C⊆

next : S C() MC I C×()× S C()→
outp : S C() MC I C×()× OC→ methodp i, MC∈
r S inp i,()∈ qC qp qext,() S C()∈= qp S p()∈

next qC methodp i, r,(),() nextp i, qp r,() qext,()=

outp qC methodp i, r,(),() out pp i, qp r,()=

FSMC S C() MC I C×() OC next outp initC, , , , ,()=

42 Object-Orientation: A Hardware Perspective

play complex, possibly data-dependent behaviour which cannot be computed
in a single clock cycle. Hence, the state transition and output functions may
require a sequential implementation. These issues are addressed in
section 4.4.

4.1.6 Object life-cycle

Objects are created by instantiating classes. This action is also called object
allocation. It is dynamic, i.e. performed at run-time, in most programming
languages. For example, Ada 95, C++ and Java provide thenew operator to
create an object. Storage for the object’s state is allocated in heap memory. A
special method, the constructor, is invoked by the run-time system in order to
initialise the object. The constructor may be implicitly defined or provided
by the user.

Similarly, objects can be destroyed while the system is at operation. A
destructor method, defined explicitly or by default rules, describes how the
object is finalised. This includes returning its state memory to the pool of free
resources maintained by the run-time system. The destructor may be invoked
explicitly by the user as in C++. An alternative is garbage collection as found
in Java, where a run-time routine occasionally inspects whether objects are
still being referenced and performs finalisation if this is not the case

In any real-world system, memory resources are limited. Object alloca-
tion fails if the number of objects created exceeds the available resources.
Moreover, it is difficult to assess the maximum resources needed if objects
are dynamically allocated. In many coding styles, especially for program-
ming of safety-critical systems, dynamic allocation is therefore restricted
[32]. Good practice includes to allocate all resources at system start-up so
that no failure can occur during normal operation.

Considering object-orientation for hardware, the static nature of hardware
discourages dynamic allocation even further. The dynamic allocation of hard-
ware resources would be possible only with a special circuit technology,
dynamically reconfigurable field programmable gate arrays (FPGAs). How-
ever, this work shall not be restricted to these devices. An alternative is the
static allocation of a pool of resources to which objects could be dynamically
bound as in the SystemC++ approach (cf. section 3.3.3). While being tech-
nology-independent, this approach still suffers from the inherent resource
limitations which may cause object binding to fail or to stall until an another
object is finalised. Both effects impair the predictability of system behaviour.

Objects and classes 43

Moreover, non-trivial run-time resource management would have to be
implemented in hardware.

Therefore, this work’s meta-model of object-orientation only provides
static allocation and binding of objects. It is assumed that objects created by
instantiating a class can be determined by some static analysis. Furthermore,
objects shall exist during the complete life-time of the system, i.e., there is no
finalisation. In the following, the classCi will be understood as the set of its
objects, . The static set of all objects,Ω, follows as the disjoint uni-
fication of all classes:

(14) .

4.1.7 Associations

Having considered individual objects up to now, we shall investigate their
relationships in this section. In the UML, these relationships are described as
associations between the objects’ classes. An association is characterised by
its name, the classes involved, and the roles and multiplicities of objects of
these classes:
• The association name indicates the meaning of the association.
• The classes constrain the objects involved in the association. An associa-

tion may include objects of two classes (binary association), three classes
(ternary association), or more.

• Objects of these classes have certain roles in the relationship.
• Multiplicities define how many objects of each class take part in an asso-

ciation. The UML provides the notations ’1’ (exactly one), ’0..1’ (option-
ally one), ’1..*’ (one or many), and ’*’ (any number, zero or many). For
the purpose of hardware modelling, it is useful to allow a more detailed
specification of multiplicities, in particular to provide an upper bound ’n’
instead of ’*’.

User-defined associations have a user-defined interpretation, particularly
regarding roles, but no meaning specified in the UML. Hence, they cannot
and need not be considered in the meta-model. However, there are two pre-
defined associations,composition andaggregation, which contribute to the
semantics of a UML model. The UML notation of these associations is
shown in figure 5.

Composition, also known ashas-parts relation, is a binary association
between exactly one composed object and any multiplicity of sub-objects.

ob j Ci∈

Ω Ci
i

.
∪=

44 Object-Orientation: A Hardware Perspective

The sub-objects are exclusively owned and fully encapsulated by the com-
posed object. Any access to the sub-objects must be via the composed
object’s methods. Hence, the sub-objects can be considered as a part of the
composed object’s state, i.e., as some of its attributes. In practice, attributes
and composition are used interchangeably in OOA/D models. During pro-
gramming, composed objects are to be implemented as attributes.

For the meta-model, the attribute representation of composition is
assumed. A single sub-object becomes an attribute declared with the sub-
object’s class type. Sub-object multiplicities larger than 1 can be transformed
into an attribute which stores an array of objects. Thereby, the sub-objects
become an exclusively owned and fully encapsulated part of the state of the
composed object. For the purpose of this work, it is not useful to consider
them as individual objects. Therefore, sub-objects do not occur in the set of
all objects,Ω, while the composed object does.

Aggregation is a relation between aggregating objects (also:clients) and
their used objects (also:server). It is similar to composition with the excep-
tion that a used object is not exclusively owned; that is, it can be shared by
several clients. Hence, a used object cannot be part of the state of any of its
aggregating objects. Instead, it exists on its own, being only referenced by
the clients. The possession of such a reference allows the client to communi-
cate with its server. These aspects of aggregation and their integration into
our meta-model will be addressed further in section 4.2.

4.1.8 Parameterization and interfaces

Object-oriented implementation languages provide several mechanisms to
ease the specification of object models. These are reflected by UML nota-
tions for interface inheritance, abstract classes, and class templates with
value and type parameters as shown in figure 6.

A class template facilitates the use of parameters in the definition of a
class. These parameters can be specified either (a) in a dashed box or (b) by
pointed brackets at the place of their use. Variant (a) is preferred in this work

Fig. 5: Associations defined in UML

Composition:

Aggregation: ServerClient

Sub-objectComposed object 1 any multiplicity

any multipl.1..*

Objects and classes 45

because it is more explicit. In the following, template parameters are distin-
guished into generic values and generic types. Generic values allow to
parameterize a value used in the class definition. Generic types provide
parameterization of types used in the definition of attributes and method
parameters. They can also be used for emulating multiple inheritance by
passing additional parent classes as generic types to a derived class. The
derived class can instantiate these parents and make their services available
to its environment. This modelling style is known asmix-in inheritance[30].

An interface (c) allows the specification of interface methods without
implementation. Attributes cannot be defined in an interface. A class can
inherit not only from a parent class, but also an arbitrary number of inter-
faces. By inheriting an interface, a class becomes committed to implement-
ing the interface methods. This mechanism can be used as a replacement for
multiple inheritance. It resolves the problems related to multiple inheritance
of implementations and attributes.

Finally, also an abstract class (d), marked by an italic name and the
optional keyword abstract, may include interface methods. However, as
opposed to an interface, the abstract class can define regular, implemented
methods and attributes, too. Hence, multiple inheritance from several abstract
classes can pose problems and is therefore ruled out in this work. A typical
application of abstract classes is to factor out common properties of derived
classes, while not having to implement all of them. Due to the missing imple-
mentations, abstract classes and interfaces cannot be instantiated.

While they may require significant implementation effort, particularly for
the parser and semantic analyser, the mentioned parameterization features are
no fundamental problem to hardware synthesis. Whenever a class template is
instantiated, actual values and types must be provided for the generic values

Fig. 6: UML notations for parameterization of classes

template
parametersClass

Class

Interface

interface methods
Class {abstract}

Class templates Interface inheritance Abstract class

Class

___<parameter>

(c) (d)
(a)

(b)

attributes

interface and
regular methods

46 Object-Orientation: A Hardware Perspective

and types, respectively. If the generics are replaced (at least conceptually) by
these actuals, the problem of synthesizing a class template reduces to the
problem of synthesizing a class. Interface inheritance commits a class to
implementing the interface methods. Semantic analysis has to check this, but
a subsequent synthesis step does not need to consider interfaces. Finally,
abstract classes have to be dealt with only when building an implementation
of a derived class. They do not have to be synthesized themselves since no
objects can be created from them.

4.1.9 Example

Having presented a hardware-oriented meta-model of object models and
some formal notations to be used in the remainder of this work, it may now
be the time for an example to illustrate these concepts. The example will be
extended subsequently to cover additional aspects, and it will later serve to
demonstrate synthesis.

A central part of the example (see figure 7) is an abstract, non-derived
class template,Buffer. It is parameterized with the buffer’s maximum number
of entries,size, a generic value which must be a positive integer. Another
parameter is the generic type of the items to be stored in the buffer,Item_t,
which is constrained to be a class type. The buffer has two interface methods,
put andget. The put method, when implemented in a non-abstract derived
class, accepts an input value of the item type and stores it in a buffer object.
The get method takes an item out of the buffer and returns it via its output
parameter. Since a buffer must be able to store a maximum ofsize entries, it
is composed of a respective multiplicity of item sub-objects.

Two classes,FIFO andLIFO, are derived fromBuffer. FIFO implements
the methods so that items are taken out in a first-in first-out order. For this
purpose, it has two attributes,first andnxt, in the integer range from 0 to
size–1, and a boolean attribute,empty. Note that the template parameters are
visible in the derived class, too, making it a class template effectively.LIFO
implements a last-in first-out buffer, i.e., a stack, and has an attribute,index,
in the range of 0 tosize as stack pointer. More aspects of the implementation
of functionality are addressed later.

Two further classes,Producer andConsumer, are defined. Each of them
aggregates one buffer object. On the other hand, a buffer object may be used
by one or more producers and one or more consumers. These multiplicities
do not include zero since a buffer with no producer or no consumer would
make no sense.

Objects and classes 47

The following state spaces are defined by the classes:
• sinceBuffer has an array attribute withsize

elements of typeItem_t, representing the composition of 0..size item sub-
objects (interpreting surplus array elements as unused).

• since FIFO
extendsBuffer with two attributes with state space and
one attribute of type boolean whose state space is .

• , analogous.
Note that these state spaces are parameterized with the generic value,size,
and the generic type,Item_t.

The methods ofFIFO have the following input and output spaces:
• put:
• get:
Input and output spaces are analogous for the methods ofLIFO. Note that no
input and output spaces have been extracted from the interface methods of
the abstract classBuffer since these are only syntactical artifacts without
implementation.

The resulting overall input spaces are the same forFIFO andLIFO. The
same holds for the overall output spaces:
•
•
The method sets are:
• and

Fig. 7: UML model of parameterized buffers with clients

Buffer
size : positive
Item_t : class type

put(in val : Item_t)
get(out val : Item_t)

Producer

Consumer

Item_t
1 0..size

1

11..*

1..*

FIFO

first, nxt : {0,...,size-1}
empty : boolean

LIFO

index : {0,...,size}

put(in val : Item_t)
get(out val : Item_t)

put(in val : Item_t)
get(out val : Item_t)

S Buffer() S Item_t()size
=

S FIFO() S Buffer() 0 … size 1–, ,{ }2
false true,{ }××=

0 … size 1–, ,{ }
false true,{ }

S LIFO() S Buffer() 0 … size, ,{ }×=

S inFIFO put,() S Item_t() S outFIFO put,(), ∅ (empty)= =
S inFIFO get,() ∅,= S outFIFO put,() S Item_t()=

I Buffer I FIFO I LIFO S Item_t() ∅∪ S Item_t()= = = =
OBuffer OFIFO OLIFO S Item_t() ∅∪ S Item_t()= = = =

MFIFO putFIFO getFIFO,{ }=

48 Object-Orientation: A Hardware Perspective

• .
After splitting these methods into individual next state and output functions,
the following overall next state and output functions meeting the condition of
Equations 11 and 12 can be defined forFIFO (LIFO analogous):

(15)

(16)

4.2 Communication

Having investigated single objects, we shall now consider the communication
between them. We first introduce the object-oriented communication mecha-
nism of message passing and classify different variants thereof. After dis-
cussing the interplay of communication with concurrency and
synchronisation, communication inside of an object and with an external
server object is addressed in detail. Finally, we deal with the situation of an
object that can receive messages from multiple concurrent clients.

4.2.1 Message passing

Exchange of messages is the object-oriented way of communication between
objects. The termmessage passing has been coined for this mechanism.
Although there are some similarities, object-oriented message passing should
be told apart from the notion of message passing found in multiprocessor
systems [71] and specification languages for concurrent systems such as
HardwareC [63] and C* [49]. In the latter contexts, the term denotes the
exchange of data via well-defined communication primitives such as send
and receive operations, as opposed to data exchange via shared memory. In
the object-oriented sense, message passing goes beyond data communication
by also transferring control to and by initiating actions of the receiver of a
message. The following considerations relate to this object-oriented concept.

By sending a message to a server object, a client object requests the exe-
cution of a method from the server. The message includes identification of
the requested method and values for its input parameters. When the server
object has performed the requested service, the values of the output parame-

MLIFO putLIFO getLIFO,{ }=

nextFIFO q m inp, ,()
nextFIFO put, q inp,() if m putFIFO=

nextFIFO get, q inp,() if m getFIFO=



=

outpFIFO q m inp, ,()
outpFIFO put, q inp,() if m putFIFO=

outpFIFO get, q inp,() if m getFIFO=



=

Communication 49

ters (if any) have to be transmitted back to the message sender. Using the ter-
minology established in section 4.1.5, message passing to an object of a class
C involves the following steps: First, providing a pair consisting of a method
identifier and an input value, , to the target object’s
implementation. Second, letting the object implementation perform state
transition and output computations. Third, providing the computed value,

, to the message sender. The last step can be omitted if
, i.e., the method has no output parameters. If it is not omitted,

the transmission of an empty reply can be understood as an acknowledge-
ment of the completion of method execution.

The above description corresponds to the understanding of message pass-
ing in OOA/D methodologies, which necessarily leave open many details
that depend on the implementation language chosen. The variants of message
passing are classified according to the following criteria:
• identification of the target object,
• synchronisation, and
• concurrency.
These dimensions are not orthogonal; that is, not all combinations of alterna-
tives make sense. In the following section, concurrency and synchronisation
aspects are addressed. Subsequently, several variants of message passing
suitable for a hardware implementation will be developed according the pos-
sible relations between message sender and message receiver shown in
figure 8. The case that an object sends a message to itself or an exclusively
owned sub-object (intra-object communication) is covered in section 4.2.3.
The communication between different objects,inter-object communication,
is discussed in section 4.2.4. The special and most involved case of objects
with several concurrent clients is addressed in section 4.2.5.

Fig. 8: Variants of object communication

m inp,() MC I C m,,()∈

out p OC m,∈
OC m, ∅=

message
receiver

same as
sender

different
object

sub-object

top-level
object

sequential

concurrent

no other con-
w.r.t. sender current clients

w.r.t. sender
has other con-

4.2.3

4.2.4

4.2.5current clients

50 Object-Orientation: A Hardware Perspective

4.2.2 Concurrency and synchronisation

To investigate the potential for concurrency and the need for synchronisation
in an object-oriented model, we distinguish concurrency inside a method,
concurrency of several method invocations with one object, and concurrency
of different objects.

A method has been defined as a subprogram with input and output param-
eters and access to the object’s state. A subprogram, in turn, is a sequential
piece of code in most languages. This is necessarily the case in sequential
programming languages. The concurrent hardware description language
VHDL has strictly sequential subprograms, too. Only few languages, e.g.
HardwareC, provide built-in mechanisms to allow sequential code to fork
into several concurrent execution threads. In line with the common under-
standing of object-orientation, a method is therefore considered to be sequen-
tial in this work.

Several methods of the same object have all access to the same state, a
shared resource. If they were allowed to execute concurrently, the state could
become inconsistent. For example, consider a method which modifies an
attribute value which has been read before by a second, concurrent method.
If the second method performs computations with the meanwhile invalidated
value and writes the result back to the attribute, the attribute’s state becomes
inconsistent. Several mechanisms exist to provide concurrency control.
These include Dijkstra’s semaphores [43], Hoare’s monitors [66], critical
regions [31] and path expressions [35]. Most widely, the monitor concept has
been adopted. Java’s synchronised classes, Ada’s protected objects, and the
draft standard for controlling access to shared variables in VHDL [165] are
all based on a monitor concept. A monitor controls a set of operations so that
no more than one can be active at the same time. In other words,mutual
exclusion synchronisation of the operations is performed. We adopt this con-
cept by defining monitor properties for objects. Hence, one object’s methods
cannot be invoked concurrently.

While each object itself is internally sequential, different objects can be
concurrent with respect to another. Each object has its individual state and
encapsulates it completely. Hence, concurrency does not give rise to shared
state conflicts. Furthermore, the message communication decouples the exe-
cution of different objects’ methods from another. A method of one object
sends a message to another object to request the execution of a method. Con-
ceptually, both objects can operate concurrently. This must be told apart from
the implementation of message passing in sequential OOP languages such as

Communication 51

C++, where only a single thread of computation exists and all object commu-
nication is implemented as subprogram calls. Issues related to message
exchange between objects are investigated further in the following sections.

4.2.3 Intra-object communication

Communication inside an object occurs when a method of the object requests
a service from the object itself or one of its exclusively owned sub-objects.
As explained in the previous section, all activity inside an object is sequen-
tial. Note that, even though the sub-objects have individual states, their meth-
ods cannot be modelled to operate concurrently because only a single thread
of computation exists in the complete object. Hence, concurrency does not
exist and there is no need for further mutual exclusion synchronisation inside
an object. When a message is passed internally within an object, control is
transferred to the invoked method. Upon completion of the service, control is
returned to the invoking method.

It remains to be answered how the message receiver is identified. A sub-
object can be identified by the attribute which implements the sub-object. If
this attribute stores an array of objects, an indexing operator of the imple-
mentation language can be used to identify a particular object.

Two mechanisms are defined for an object to address itself. First, the
object itself is assumed by default if no receiver is specified. Second, a self-
reference can be used if provided by the implementation language. For exam-
ple, self-referentiation is facilitated by the keywordthis in C++ and Java.
The two alternatives are differentiated later when dynamic binding is dis-
cussed (see section 4.3.4).

Be the class type of the object that receives the message,
 a method of this class, a value from the method’s

input space, and a value from its output space. The following
notations are defined to capture intra-object communication:
• indicates that methodm of the sub-object rep-

resented by is invoked with the input parametersinp and
returns the output parametersret.

• denotes the invocation of methodm of the object itself.
• means using the self-reference for invoking the

methodm.
Figure 9 illustrates the transfer of control (in the sense of possession of a
control thread) and data involved by the method invocation described above.

t Types∈
m Mt∈ inp S inm()∈

ret S outm()∈

attribute m inp,() ret, ,()
attribute

ε m inp,() ret, ,()
sel f m inp,() ret, ,()

52 Object-Orientation: A Hardware Perspective

4.2.4 Inter-object communication

In inter-object communication, the receiver of a message is no longer a part
of or identical to the sender, as it is the case with sub-objects or an object
itself. Hence, when considering communication between different individual
objects, we must clarify how the sender gets to know the receiver. The
answer lies in the aggregation relationship, which makes a server object
known to a client. Note that the server is not exclusively owned by the client;
it may have other clients as well (cf. section 4.1.7).

Several similar mechanisms for expressing aggregation exist in OOP lan-
guages. An aggregated object can be identified by an address variable, refer-
ence, or handle. Anaddress variable (pointer) denotes a memory location
where an object can be found. It can be manipulated using arithmetic opera-
tors. A reference is an address variable without address arithmetics. Finally,
handles abstract from memory locations. Thereby, they enable object com-
munication in distributed systems.

Pointer, reference, and handle values can be passed at run-time from
object to object, e.g., as method parameters, and they can be created dynami-
cally. This is necessary since their designated objects are subject to dynamic
allocation. In this work, however, a static set of objects is assumed. This
allows to express aggregation statically, too. Thereby, the problems related to
the synthesis of pointers (cf. [147]) are avoided.

The static representation of the aggregation of a client and a server is
called achannel in this work. The static set of all channels,ζ, is:
(17) .
A channel is a pair of objects, the client and the server:
(18) .

Fig. 9: Control and data transfer during method invocation

invoking method invoked method

time

transfer of control

transfer of data

inp

ret

data

activity

ζ Ω Ω×⊆

ch client server,() ζ∈=

Communication 53

Be the class of theserver object, a method of this class,
 a value from the method’s input space, and a

value from its output space. The notation
(19)
denotes message passing via channelch to request the execution of methodm
with input parametersinp from the server, and the transmission of the result-
ing output parameters,ret, to the client.

For discussing concurrency and synchronisation aspects of this message
exchange, it must be distinguished whether the client and the server are con-
current or sequential with respect to another. In the latter case, their methods
are executed by a single thread of computation. Hence, invocation of the
server’s method from a method of the client includes the transfer of control
as in the previous section (see figure 9). Yet, mutual exclusion synchronisa-
tion can be required. This is the case if the server object has other, concurrent
clients. This issue is addressed in the following section.

If client and server are concurrent, their respective methods are executed
by different threads of computation. Hence, message passing is reduced to
the transfer of data, but not control. This gives rise to the question whether a
client object can continue its operation while the server executes the
requested service. However, this is not possible in general because message
passing includes the sending of a request and the reception of the results in a
single action. Hence, as illustrated in figure 10, the client object must wait for
the results from the server before it can resume.

An exception to this blocking behaviour of message passing can be made
if the requested service does not have output parameters. In this case, after
sending the method identifier and the input parameters, the invoking method
could resume. In this work it is assumed that it waits for acknowledgement of

Fig. 10: Message passing between concurrent objects

t Types∈ m Mt∈
inp S inm()∈ ret S outm()∈

ch m inp,() ret, ,()

invoking method server object

time transfer of data

(m, inp)

ret

data

m

activity

waiting

finished

54 Object-Orientation: A Hardware Perspective

message receipt before resuming (see left hand of figure 11). Otherwise, the
client would be able to issue another message before the first one has been
accepted. This could cause inconsistencies or loss of the first message unless
a queuing mechanism exists.

Note that the user can apply a modelling style for asynchronous message
passing using only messages without output parameters. To transmit results,
a server would have to send a return message,rm, to its client, as shown on
the right hand of figure 11.

As we have seen, the potential for concurrency betweentwo communicat-
ing objects is limited. However, a server can have multiple clients. In this
case, which is considered in the following section, concurrent activities may
exist in the objects even if message passing includes transmission of output
parameters.

4.2.5 Concurrent service requests

While the previous discussions have been focused on the client of a single
client-server relationship (aggregation), we now take the view of a server
which has multiple clients. Figure 12 shows two situations in which a server,
S, receives requests from two clients,C1 andC2. On the left hand, the second
service request arrives after the first one has been completed. On the right
hand, a second request is issued while the server still is still busy serving
another client. As previously defined, mutual exclusion ensures that only a
single method is under execution at a time. Hence, the second service request
is put on hold until the first one has been completed. Note that concurrency
exists at a given time between two objects if they are not in the course of
mutual communication.

Fig. 11: Message passing without output parameters

invoking method server object

time

(m, inp)

mack

invoking object server object

(m, inp)

mack

(rm, ret)

Legend: see Fig. 10 ack
rm

im

Communication 55

However, mutual exclusion may not be sufficient. Even if a server is not
busy, it may be unable to service a request because it lacks other resources.
For example, a buffer which is full cannot accept aput request. Such condi-
tional acceptance of requests is referred to under the termcondition synchro-
nisation. Several techniques for modelling condition synchronisation have
been developed in COOP research (cf. section 2.4.3). These include:
• Object bodies which allow to model explicitly the acceptance of messages

and the invocation of the corresponding methods [112].
• Guarded methods which specify the conditions under which they can be

invoked as a guard expression [53][145]. Message acceptance and method
invocation are performed by the run-time system.

In this work, we abstract from such particular modelling mechanism. The
intention is to capture synchronisation conditions in an abstract way, regard-
less of the modelling philosophy.

Whether or not a message can be accepted by the
server object of some class type, , can depend on the following
information:
• The state of the server object, .
• The requested service, .
• The input parameter values of the service, .
• The history of previous service requests, which can be encoded as part of

the object’s state by the user following Schumacher’s modelling style
[144][145].

Hence, method acceptance is described by the synchronisation condition
(guard) function,
(20) ,

where if methodm can be invoked with the input
parametersinp when the object is in stateq, and oth-
erwise.

Fig. 12: Server receiving messages from concurrent clients

C1 S C2 C1 S C2

(m2, .)

(m1, .)

m1

m2
time

(m1, .)

m1

m2

(m2, .)
ret1

ret1

ret2 ret2

ch m inp,() ret, ,()
t Types∈

q S t()∈
m Mt∈

inp It∈

gt : S t() Mt× I t× false true,{ }→
gt q m inp, ,() true=

gt q m inp, ,() false=

56 Object-Orientation: A Hardware Perspective

Service acceptance may be independent of the input parameter values. If
this is the case for all services of the classt, the synchronisation condition
function can be simplified as follows:
(21) .

If a service cannot be accepted at some time, the client must be put on
hold until the object’s state has changed so that the service is acceptable. A
state change can only be caused by the execution of a service requested by
another, concurrent client1. This situation is illustrated in figure 13. ClientC1
sends a messagem1 to the server,S. The message is not accepted in the
server’s current state. Suppose that another messagem2 is issued by client
C2. This may cause a state transition of the server after which the first mes-
sage, still with the same input parameters, becomes acceptable. Hence, after
the execution of the servicem2, the first message can be accepted. Note that
condition synchronisation has caused a re-ordering of services. The service
requested first is executed after the other service which has been requested
later.

4.2.6 Example

Concurrency aspects shall now be investigated for the example of
section 4.1.9. In the example (cf. figure 7), aBuffer is aggregated by aPro-
ducer and aConsumer. It is assumed that these two clients and their common
server,Buffer, are concurrent. Note that the actual server must be either a
FIFO or aLIFO object since no objects of the abstract classBuffer can be
instantiated2. The following considerations are for aFIFO; LIFO is analo-

1. This is why condition synchronisation is relevant only in a concurrent con-
text.
2. The capacity of a derived object to take on tasks of a parent class is related
to the concept of polymorphism presented in section 4.3.

Fig. 13: Condition synchronisation of service requests

gt : S t() Mt false true,{ }→×

C1 S C2

(m1, inp1)
(m2, inp2)

ret1

ret2m2

m1

Polymorphism 57

gous. Following section 4.2.2, mutual exclusion is defined for the services of
FIFO. Condition synchronisation is required, too. AFIFO whose places for
storing item objects are all occupied cannot accept aput request. An empty
FIFO, in turn, cannot accept aget request. These synchronisation conditions
are independent of the input parameters of these services. Hence, a guard
function can be defined as:

(22)

A FIFO with put andget services for storing and retrieving several items
at a time can serve as an example for input-dependent synchronisation condi-
tions. It is assumed that the number of these items is part of the input space
of the object. In this case, aput service can be performed only if sufficient
free places exist for the number of items to be stored. Aget service is
accepted only if theFIFO contains at least the number of items to be
retrieved.

If a get request from aConsumer is not acceptable, this request is blocked
until one or severalput requests from aProducer have sufficiently filled the
FIFO. Vice versa, acceptance of a blockedput request is enabled afterget
requests have taken enough entries out of the buffer.

Finally, a sequential aspect of the object model shall be mentioned. The
exclusively owned item sub-objects of aBuffer are sequential with respect to
each other and to theBuffer according to the considerations of section 4.2.3
on intra-object communication. No mutual exclusion or condition synchroni-
sation is required for the sub-objects.

4.3 Polymorphism

Having explained the communication between objects, we can now deal with
polymorphism of objects and dynamic binding of service requests. We
present these concepts as available in programming languages first. For a
hardware implementation, a different interpretation and implementation is
required. This leads to the concepts of value-based polymorphism and chan-
nel switching. We detail dynamic binding in the framework of our meta-
model and finally present a refined finite state machine model that covers the
new concepts.

gFIFO q m,()
is_ full q() if m¬ put=

is_empty q() if m¬ get=



=

58 Object-Orientation: A Hardware Perspective

4.3.1 Polymorphism mechanisms

Polymorphism allows to send messages to an object whose class membership
is not or not exactly known. Moreover, it facilitates the run-time change of
the object addressed by a message passing operation. This object change can
occur between successive invocations of the operation. In consequence, the
class membership of the object addressed may change, too.

As an extreme case, a language may allow to send any message to any
object, regardless of whether or not the object implements a corresponding
service. If it does not, a run-time error occurs. Such un-typed polymorphism
can be found in Smalltalk [98] and in the Vista OO-VHDL dialect [37].

In this work, a variant of polymorphism calledinclusion polymorphism is
assumed. Inclusion polymorphism uses type information about the server
object, exploits properties of method inheritance, and imposes restrictions on
the messages that can be sent. By this combination, safe message passing can
be ensured; that is, message passing which by construction cannot lead to
run-time errors. Similar mechanisms are the basis for polymorphism in
Ada 95 and Java.

While the exact class membership of a server object may not be known
statically and may even change at run-time, we demand that the object is of a
givenroot class, R, or of any class derived fromR. Note thatR can be a non-
derived class or a derived class; the termroot refers toR’s role as root of the
inheritance subtree of classes involved in polymorphism (see figure 14). In
the UML, the use of a class in an association implicitly includes all its sub-
classes. For instance, while theProducer andConsumer in figure 7 aggregate
a Buffer, the actual object aggregated can be aFIFO or aLIFO derived from
Buffer.

The methods, , of the root class include the methods defined in
the class itself and all inherited methods (ifR is a derived class). All these
methods are, in turn, inherited by the classes derived fromR. It is therefore
safe to request these services from an object of classR or derived. However,
all other services, particularly those which are added inR’s subclasses, are
unavailable at least fromR. Hence, in the inclusion polymorphism frame-
work, it is permitted to request the methods, , and only these, from
an object of root classR. Figure 14 illustrates the locations where these
methods are defined.

A method can be redefined in a derived class. Thereby, the functionality
of a service can be adapted to the purpose of the derived class. When such a
service is requested from a polymorphic object, its execution must be dis-

m MR∈

m MR∈

Polymorphism 59

patched to the version of the redefined method that is valid for the object’s
current class. This has to be done at run-time by a mechanism calleddynamic
binding since the object’s class membership is not known statically.

The root class of a polymorphic object can be abstract. In this case, some
of the methods may be abstract, i.e., not have an implementation. However,
these methods must be implemented in all non-abstract derived classes. Fur-
thermore, no object of an abstract class can be created. Hence, we can be sure
that dynamic binding always finds a suitable method implementation.

4.3.2 Polymorphic objects

In OOP languages, the use of pointers, reference variables, or handle varia-
bles allows to designate objects whose class membership is statically
unknown. The assignment of a new value to one of these causes a change of
the designated object. As a result of that, also the class of the designated
object can change.

In the meta-model, static channels are defined (cf. section 4.2.4). A chan-
nel designates a server object that can be accessed by a client object. The
server object to which a channel connects has been defined to be invariable.
This implies that, in order to obtain a variable class membership of a server
object, the object itself must be able to change its class membership. We call
such an objectpolymorphic in the following.

The state space of a polymorphic object with root classR, ,
comprises the state space ofR, as far asR is non-abstract, and all the states of
the non-abstract classes derived fromR. In addition to representing these
states, it must be possible to determine the class membership of the polymor-

Fig. 14: Structural aspects of polymorphism

...

...

...

R (Root)

Parent

Derived 1

Derivedn

services
of polym. object
w/ root class R

possible class
membership of polym.
object w/ root class R

Sibling

S Rpoly()

60 Object-Orientation: A Hardware Perspective

phic object for dynamic binding. However, two states from different classes
are not always distinguishable. For instance, the states of a derived class
which adds no attribute are absolutely the same as the states of the class’
direct parent. Hence, additional class information is provided by extending
the state space with a class identifier:

(23) .

Assume that two different classes,t1 and t2 where , share a state,
 and . In the polymorphic state space, the state is distin-

guished by the class identifier: . Hence, the union in
equation 23 is disjoint.

A polymorphic object, , can have a state
of any non-abstract class derived fromR, includingR. Over time, the object
can switch class membership. The following properties always hold:
• A class c derived fromR, with , exists so that

, i.e., class membership is constrained to the classes allowed by
inclusion polymorphism.

• , i.e., the class identifier always indicates the correct
class membership.

• , i.e., the polymorphic object always has a state of the
class indicated by its class identifier.

Note that, while the set of all objects,Ω, remains static, individual objects
can switch between the classes whose union isΩ (cf. equation 14).

A polymorphic object can be an exclusive sub-object of another object. In
this case, it is designated by an attribute name instead of a channel. It does
not appear as an individual object inΩ. Still, the extension for a class identi-
fier applies to the sub-object’s state space.

A change of a polymorphic object’s class membership is caused by an
assignment. This requires the implicit definition or explicitly modelling of an
assignment operation (method). Restrictions may apply on the classes
between which an assignment is permitted. This depends on the target lan-
guage and will be addressed for Objective VHDL in the next chapter. Moreo-
ver, chapter 6 will address optimizations related to polymorphic objects.

The concepts presented are similar to variant records in Pascal [107] and
unions in C/C++ [151]. Differences are in the automatic management of a
discriminant (in the form of the class identifier) and the integration with a
dynamic binding mechanism provided for polymorphic objects.

S Rpoly() c{ } S× c() Types Values×⊆
c is-a* R abstract c()¬∧

.∪=

t1 t2≠
q S t1()∈ q S t2()∈

t1 q,() t2 q,()≠

ob j Rpoly∈ qR poly, id q,()=

c Types∈ c is-a* R
ob j c∈

obj c∈ id⇔ c=

id c q S c()∈⇒=

Polymorphism 61

4.3.3 Channel switching

Another approach to polymorphism which is feasible for a hardware imple-
mentation ischannel switching. Imagine that a client sends over a channel,
ch, a message to a polymorphic intermediate object (pseudo object) with root
classR. This object be connected via individual channels,ch1, ...,chn, to a set
of server objects (including, but not necessarily, polymorphic objects) each
of which is of classR or derived. If the pseudo object forwards an incoming
message to one of these channels, the message arrives at a server object
whose class membership is not known to the client. From the view of the cli-
ent, this is polymorphism. Figure 15 illustrates this scenario.

Channel switching becomes relevant when an object is passed as a
parameter of a method. The formal parameter can be understood as the inter-
mediate object of figure 15. At different invocations of the method, different
server objects are passed as actual parameters. Hence, messages sent via the
intermediate object arrive at different server objects. Note that, although
parameter passing is a run-time activity, objects and channels are still static.
Only the association of formal and actual channel, which is represented as a
channel switch, is dynamic.

4.3.4 Dynamic binding

Following the inclusion polymorphism concept, the services specified in
classR, and only these, can be requested from a polymorphic object with
root classR. Hence, we define the set of methods that can be invoked with
such an object as:
(24) .

Fig. 15: Channel switching

client

intermediate server 1

servern
... ...

ch1

chn

ch

MR poly, MR=

62 Object-Orientation: A Hardware Perspective

Assume that a method, , is not redefined in classes derived
from R. In this case, a corresponding service request is executed by the same
method,m, regardless of the current class membership of the object. Method
invocation is said to bestatically bound.

The opposite,dynamic binding (cf. section 4.3.1), can be defined as fol-
lows. We assume that a message,m, is sent to a polymorphic object,

, which may be a server object in an aggregation or an exclusive
sub-object. Be the class to which the object belongs at the time of
service invocation. The service is executed by the method’s latest redefinition
with respect to the classc. This method version,mlatest, is defined as follows:
• mlatest is a redefinition ofm, defined in a classd which is

– derived from the root classR of polymorphism and
– direct or indirect parent of the polymorphic object’s current class,c.

• There exists no other redefinition ofm in any classt which is betweend
andc in the inheritance relationship (includingc, but excludingd).

This is reflected in the formal definition: The latest redefinition of a method
m with respect to classc is
(25) where andmlatestredefines m and

mredefredefines m.

Note that this definition includes the following corner cases:
• R= d (andm = mlatest), i.e., there exists no redefinition ofm in the branch

of inheritance fromR to c. However, redefined methods requiring
dynamic binding may exist in other classes derived fromR.

• d = c, i.e., the latest redefinition ofm is in the current class itself.
Figure 16 gives an overview of the classes and methods involved in the above
definition, and of their relationships.

Up to now, requests to a polymorphic object have been considered. A sort
of dynamic binding can occur when an object sends a message to itself, too,
even if it is not polymorphic. Assuming that the message is sent from an
inherited method and that the service requested has been redefined in the
course of inheritance, two cases are differentiated (cf. section 4.2.3):

Fig. 16: Class relationships and method redefinitions in equation 25

m MR poly,∈

ob j Rpoly∈
c Types∈

mlatest Md∈ d is-a* R

t Types: t is-a* d c is-a* t t d mredef Mt :∈∃¬∧≠∧∧∈∃¬

R d ct

m = mp,i mlatest mredef

* * *

Polymorphism 63

• The message is sent to theε reference. In this case, the original method of
the parent class is invoked also by the derived object (static binding).

• The message is sent to theself reference. In this case, the latest redefini-
tion of the method is invoked to execute the service (dynamic binding).

4.3.5 FSM representation of polymorphic objects

The behaviour of a polymorphic object can be captured by defining an equiv-
alent finite state machine in a way similar to section 4.1.5 from which we use
the definition ofnext andoutp functions for each method (cf. equation 10).
These functions be adapted to the input and output spaces of the root class of
polymorphism,R; that is,R corresponds toC in section 4.1.5. The functions
still have to be adjusted to the state space of the polymorphic object and to be
combined into a single next state function and output function, respectively.
These global functions shall take dynamic binding into account.

This is done by defining
and so that for all methods,

, for all inputs of the method, and for all
states, , the following holds:

Be , be the latest redefinition of
 with respect to the object’s current class,c, and be

. The global functions fulfil:
(26) and

(27) .

The relationship betweenR, c, andd is as in figure 16. The polymorphic state
is first split into the class identifier,c, and a state of this class,qc. Then, the
latest redefinition of the requested method is determined with respect toc.
The state is further split into the portion,qd, which belongs to the class,d, in
which the latest redefinition has been found, and the state extensions,qext,
added in the inheritance steps towardsc. Only qd is taken into account by the
functions whileqext is ignored and remains unmodified. Note that the latest
redefinition of each method can be pre-computed statically for all possible
classes,c, in order to avoid performing this selection process in hardware.

With the above definitions, a polymorphic object with root classR can be
implemented by the finite state machine
(28) .

nextpoly : S Rpoly() MR I R×()× S Rpoly()→
outppoly : S Rpoly() MR I R×()× OR→

methodp i, MR∈ r S inp i,()∈
qR poly, S Rpoly()∈
qR poly, c qc,()= methodd j, Md∈

methodp i,
qc qd qext,()=

nextpoly qR poly, methodp i, r,(),() nextd j, qd r,() qext,()=

outppoly qR poly, methodp i, r,(),() outpd j, qd r,()=

FSMR poly, S Rpoly() MR I R×() OR nextpoly out ppoly init, , , , ,()=

64 Object-Orientation: A Hardware Perspective

4.3.6 Example

To illustrate polymorphism and dynamic binding, the buffer example is con-
sidered again. We explain the properties of a polymorphic object with root
type Buffer, . Note that a polymorphic object can be cre-
ated even if its root class is abstract. It cannot take on the state and class
membership of the abstract class,Buffer. However, it can take on the state
and class membership of any derived class, i.e.FIFO or LIFO. The specific
class membership may change over time.

The state space of the polymorphic buffer object,obj, is the union of the
state spaces defined by the non-abstract classesFIFO andLIFO, each aug-
mented with a class identifier:
(29) .

The services available fromobj areput andget, which are defined forBuffer.
Should the derived classes define additional services, these could not be
invoked withobj.
(30) .

As it has already been mentioned,obj can change betweenFIFO andLIFO
class membership. The methods,put andget, are implemented differently for
these classes. Hence, dynamic binding is applied. Aget request is dispatched
to the implementation ofget for FIFO if , and toget for LIFO if

. The analogue holds forput. A state transition function of the
polymorphic object FSM can be defined as follows; the output function is
analogous (replacenext by outp):

(31)

4.4 Hardware implementation of objects

In order to implement an object as a digital circuit, we must define a binary
encoding of its state space. This is done first for objects of a non-derived or
derived class, and subsequently for polymorphic objects. Likewise, the mes-

obj Bufferpoly∈

S Bufferpoly() FIFO{ } S× FIFO() LIFO{ } S× LIFO()∪=

MBuffer poly, MBuffer putBuffer getBuffer,{ }= =

obj FIFO∈
obj LIFO∈

next c qc,() m inp,(),() =

nextFIFO put, qc inp,() if c FIFO= m∧ putBuffer=

nextLIFO put, qc inp,() if c LIFO= m∧ putBuffer=

nextFIFO get, qc inp,() if c FIFO= m∧ getBuffer=

nextLIFO get, qc inp,() if c LIFO= m∧ getBuffer=







Hardware implementation of objects 65

sages an object can receive must be encoded, for which purpose the polymor-
phic techniques can be adapted.

After defining these encodings, we devise an implementation of non-
derived objects first. Two alternatives, delegation and expansion, are pre-
sented for the implementation of derived objects. While the methods are
treated as black boxes in our approach, to be synthesized by a HLS back-end,
we take a look into potential optimizations that could be applied. A polymor-
phic object can be synthesized in a way similar to a non-polymorphic one
under consideration of its different state space and encoding and with special
structures for dynamic binding.

4.4.1 Encoding of state spaces

For implementing an object as a digital circuit, a binary encoding of the
object’s state space must be chosen. This encoding is an injective mapping
from the state space into the set of bit-vectors of length (number of bits)

:

(32) .

The length must be chosen sufficiently large to allowencC to be injective;
that is, to map no two different states to the same encoded value. Since there
are 2b(C) different bit-vector values of lengthb(C), we must demand that the
number of states is smaller or equal:

(33) , which yields .

Note that the use of the shortest possible encoding length would imply that
attributes of the object-oriented description might have to share state bits. For
instance, a state space defined by an attribute with three values and a second
attribute with five values comprises a total of states, which can
be encoded with four bits. It is, however, desirable to encode each individual
attribute with its own set of bits, so as to ease the extraction of individual
attribute values. This means to encode the first attribute with two bits and the
second one with three bits, yielding a total of five bits.

Furthermore, it may not be desirable to encode an attribute with a mini-
mum of bits. For example, in order to allow an efficient implementation of
arithmetic operators, a four-bit two’s complement must be used to encode
integer values from –1 to 6, even if a minimal encoding of these eight values
would only require three bits.

b C() IN∈

encC : S C() 0 1,{ }b C()→

S C() 2
b C()≤ b C() S C()()2log≥

3 5⋅ 15=

66 Object-Orientation: A Hardware Perspective

The attribute-wise encoding is achieved by defining the encoding of a
state, , of a non-derived class,C, as the concatenation of the encodings of
the attribute values, :
(34) .

The encoding length follows as the sum of the attributes’ encoding lengths:

(35) .

For a derived class,D, the state encoding is again attribute-wise. In addition,
the part of the state space inherited from the direct parent class,P, is encoded
with the same encoding as inP:
(36)

The resulting encoding length is the sum of the parent’s encoding length and
the encoding lengths ofD’s attributes:

(37) .

Note that the above definitions are recursive in two ways:
• The encoding of a derived class is defined with the help of its direct par-

ent’s encoding. This parent may again be a derived class. Recursion ends
if a non-derived class is reached, which is always the case thanks to the
acyclic tree structure of the inheritance relationship (cf. section 4.1.4).

• Class encodings use the encoding of attributes. There is no recursion if an
attribute is of a primitive type3. However, an attribute may also be
declared with a class type so as to represent an exclusive sub-object. It
must be demanded that the sub-object does not include, directly or indi-
rectly, the state of the composed object. This implies, in particular, that
the sub-object must not be derived from or of the same class as the com-
posed object, and that the sub-object must not have another sub-object for
which this is the case.

The limitations described ensure that recursion always advances upwards the
inheritance tree towards a non-derived class. Under this condition, in the
absence of cycles, the recursive encoding is well-defined.

3. Implementation languages provide different choices of primitive types. In
this work, those of VHDL and their encoding are discussed in chapter 7.

qC
qtC i,

encC qC() enctC 1,
qtC 1,

() … enctC n C(),
qtC n C(),

(), ,()=

b C() b tC i,()
i 1=

n C()

∑=

encD qD() encP qP() enctD 1,
, qtD 1,

() … enc qtD n D(),
(), ,()=

b D() b P() b tD i,()
i 1=

n D()

∑+=

Hardware implementation of objects 67

4.4.2 Polymorphic objects

When encoding the state space of a polymorphic object, the class identifier
must be encoded in addition to the attributes. As in the case of the attributes,
it is desirable to encode the class identifier with an individual set of bits. This
allows to extract the class membership information of a polymorphic object
more easily compared to minimal encoding. Two main concepts exist for this
purpose: virtual tables and tagged types.

Virtual tables are used by C++ compilers to implement dynamic binding
of virtual functions (dynamically bound methods) [72]. Each object of a class
has a pointer to the virtual table of its class. This pointer can be understood
as a class identifier. Its dereferentiation yields the virtual table which con-
tains pointers to the latest redefinition of each virtual method of the class.
After looking up the address of the latest redefinition of a method, this
address is used for calling the method.

The virtual table approach has two important drawbacks. First, it implies
that virtual methods are always dynamically bound, even if the class mem-
bership of an object is statically known so that static binding could be
applied. Many performance concerns against the use of OOP languages stem
from this inherent overhead. Secondly, it is based not only on pointer derefer-
entiation but also on calling of pointer-addressed subprograms. Hence, the
concept is hard to implement with languages, such as VHDL, that do not
support these features. Likewise, implementation is problematic for target
systems which do not support pointers well, such as distributed systems with-
out common address space and, of course, digital circuits.

A different concept,tagged types, is employed in Ada 95. A tag is an
identifier of the class membership of an object, added by the compiler to the
object’s state space. It facilitates the implementation of dynamic binding
without pointers which is the reason for applying tags in this work. Moreo-
ver, it allows to apply dynamic binding only when the class membership of
an object is not statically known. Otherwise, the method to be invoked can be
determined statically, even for redefined (virtual) methods. If dynamic bind-
ing is not used at all with an object, even its tag can be omitted.

Since the tag, by indicating class membership, allows to tell apart states
of different classes, these can be mapped to the same encoded representation.
Only the states of each individual class need to be distinguished. This can be
achieved by choosing the same state encoding as for a non-polymorphic
object. Hence, we define the binary encoding of a polymorphic object with
root class R as the injective function

68 Object-Orientation: A Hardware Perspective

(38) ,

which encodes each state by the concatenation of the
class identifier’s encoding and the state encoding for classc:
(39) .

Note that an object with a short state vector may leave some bits unused. The
encoding length follows as the maximum of the sum of the tag encoding
length and the state encoding length of classc. The maximum is computed
over all classesc whose membership can be taken on by the polymorphic
object:
(40) .

This definition would allow to use a short tag encoding for a class with large
state space, and a longer tag for a class which needs less state bits. This
might help to reduce the overall encoding length of the polymorphic object’s
state by a few bits. However, non-uniform tag length complicates tag and
attribute extraction. In the following, we assume that all tags of a polymor-
phic object are encoded with the same number of bits. This allows to draw
tag length out of maximum computation:
(41)

Since the state space cannot diminish in the course of inheritance, it is suffi-
cient to consider leaf nodes (classes) of the inheritance tree during practical
computation of encoding length.

Again, the above definition is recursive. For computing , the
encoding length of classR and the classes derived fromR have to be known.
To avoid a cyclic, ill-defined encoding, these classes must have neither
directly nor indirectly a polymorphic sub-object with root classR.

4.4.3 I/O encoding

The encoding of the input and output spaces of an object’s methods is similar
to the encoding of state spaces. While a state is comprised of attribute values,
the input and output of a method is comprised of the input and output param-
eter values, respectively. As in the case of attributes, easy access to the indi-
vidual parameters is desirable. Hence, each input and output parameter is
encoded individually. Likewise, a non-minimal encoding may be applied to
the individual parameters.

This leads to the following definition of a binary encoding of the input
space of a method: Be a method of classC and

encR poly, : S Rpoly() 0 1,{ }
b Rpoly()

→
qR poly, c qc,()=

encR poly, c q, c() encTag c() encc qc(),()=

b Rpoly() max bTag c() b c() c is-a* R abstract c()¬∧+{ }=

b Rpoly() bTag Rpoly() max b c() c is-a* R abstract c()¬∧{ }+=

b Rpoly()

methodc i, MC∈

Hardware implementation of objects 69

 the number of the method’s input parameters. The input
encoding is the mapping

(42) , where

(43) and

(44) .

A binary output encoding is defined in analogy: Be a
method of classC and the number of the method’s output
parameters. The output encoding is the mapping

(45) , where

(46) and

(47) .

From here on, we identify each method by a unique number,
. In addition, the value 0 (zero) is used to iden-

tify the absence of a service request on a channel. An encoding of method
identifiers maps these values into the set of bit-vectors of the encoding length

:

(48)

This mapping can be chosen arbitrarily as long as it is injective. In this work,
the method identifier’s representation in the dual system is used. Hence,
(49) and .

Having defined the I/O encoding of each individual method, we must still
consider that any service of an object can be requested via a channel, one at a
time. Hence, the input space,IC, and output space,OC, of the object are to be
represented by a number of bits, and , that allow to encode the
largest input and output of any method:
(50) ,

k k methodc i,()=

encinc i,
: S inc i,() 0 1,{ }

b inc i,()
→

encinc i,
inp() enc

tc i 1, ,
in pc i 1, ,

in() … enc
tc i k, ,
in pc i k, ,

in(), , 
 =

b inc i,() b tc i j, ,
in()

j 1=

k

∑=

methodc i, MC∈
l l methodc i,()=

encoutc i,
: S outc i,() 0 1,{ }

b outc i,()
→

encoutc i,
outp() enc

tc i 1, ,
out pc i 1, ,

out() … enc
tc i l, ,
out pc i l, ,

out(), , 
 =

b outc i,() b tc i j, ,
out()

j 1=

l

∑=

methodc i, 1 … MC, ,{ }∈

b MC()

encMC
: 0 1 … MC, , ,{ } 0 1,{ }

b MC()
→

encMC
m() m 2()= b MC() 1 MC+()

2
log=

b IC() b OC()

b IC() max b inc i,() mc i, MC∈{ }=

70 Object-Orientation: A Hardware Perspective

(51) .

Note that this does not allow to speak of an encoding of the object’s input or
output space since inputs or outputs of different methods may be mapped to
the same bit representation. However, the method identifier enables the cor-
rect interpretation of these inputs or outputs. Therefore, the input encoding of
an object of classC is defined as follows:

(52) where

(53) .

An analogous encoding is defined for the output of an object of classC:

(54) where

(55) .

The method identifier in the above encodings can be understood as a kind of
tag that distinguishes the inputs and outputs of different methods. In this
sense, I/O encoding shows a duality with polymorphic encoding. This duality
has been exploited in [119][120] by implementing message passing between
Objective VHDL entities with the help of polymorphic message objects. In
the following, it will allow us to apply similar mechanisms for implementing
polymorphism and object I/O. Note that it will suffice to implement the mes-
sage identifier once, for the input encoding, since the sender of a message
knows what output response to expect.

4.4.4 Non-derived classes

An object of a non-derived class is implemented by the circuit shown in
figure 17. The interface of the circuit consists of the following signals:
• Inputs:

- CLK andRESET: Clock and reset signals, each one bit wide.
- SELECT_METHOD: Method identifier for selecting the service to be exe-

cuted, encoded as defined in equation 48 and 49.
- IN_PARAMS: Input parameters of the selected service, encoded as defined

in equation 42–44.
• Outputs:

- STATE_OUT: Output of the object’s current state, to be used for condition
synchronisation as described in section 4.5.

- OUT_PARAMS: Output parameters of the selected service, encoded as

b OC() max b outc i,() mc i, MC∈{ }=

encI C
: MC I C× 0 1,{ }

b MC() b IC()+
→

encI C
mc i, inp,() encMC

mc i,() encinc i,
inp(),()=

encOC
: MC OC× 0 1,{ }

b MC() b OC()+
→

encOC
mc i, outp,() encMC

mc i,() encoutc i,
outp(),()=

Hardware implementation of objects 71

defined in equation 45–47.
- DONE: A handshake signal for signalling request acceptance and comple-

tion of a method’s execution. The protocol details are described in
section 4.5.1.

• Bidirectional:
- CHANNELS: Compound signals connecting the object as a client to other

objects (servers). The details of channel structure and message exchange
are explained in section 4.5.1.

A memory element,object state, stores the object’s current state. The
state is encoded according to equation 32–35. Hence, the memory element
must provideb(C) state bits or more. Any surplus bits, caused e.g. by the
availability of memory sizes, would remain unused. In figure 17, the memory
element is depicted as an edge-triggered register. This shall also stand for any
other kind of memory, e.g. SRAM. The use of addressable memory may be
preferred over registers for storing (part of) the object’s state if the state
space is large or organised as an array.

The object’s current state and the input parameters,IN_PARAMS, are pro-
vided as inputs,Q and I, to a collection of sub-components, each of which
contains a data path that implements one of them(C) methods of the object.
The outputs of a sub-component are the method’s next state,Q+, and the out-
put parameters,O. These are computed according to the next state and output
functions as defined in equation 10.

Fig. 17: Implementation of an object of a non-derived class,C

ob
je

ct
 s

ta
te

CLK

method 1

method m(C)

...

.
.

IN_PARAMS

SELECT_METHOD

...
...

OUT_PARAMS

STATE_OUT. Q
I

Q+

O

Q
I O

Q+

controller

RESET

.
.

DONE

1

m

1

m

0
.

CHANNELS

72 Object-Orientation: A Hardware Perspective

As we know from the considerations on synchronisation and concurrency
in section 4.2.2, only a single method can be active at a time. This method is
selected by the method identifier present at theSELECT_METHOD input. A
multiplexer chooses the output computed by the one method under execution
and presents it at theOUT_PARAMS output. A second multiplexer selects the
next state computed by the active method, which is then fed back into the
state register’s input. A special situation occurs in the absence of a service
request, identified by a 0 at theSELECT_METHOD input. In this case, the
unmodified current state is selected as the next state, and the output parame-
ters may take on any, unspecified value.

The controller allows to execute complex methods, e.g. methods with
data-dependent loops, in multiple control steps. For this purpose, it has out-
put signals for steering the method’s data path, input signals for observing
conditions computed in the data path, and internal control states. The control-
ler reads theSELECT_METHOD input so as to know which method to exe-
cute. Furthermore, theDONE signal is used for signalling the completion of
method execution. The separation of data path and control corresponds to the
typical target architecture of high-level synthesis (HLS). We will later aim to
delegate data path and controller synthesis to a HLS system.

Both, controller and method data paths have access to theCHANNELS
that allow to send messages to server objects. Thereby, a data path can pro-
vide values for the input parameters of a service and receive the service’s
results. The controller, on the other hand, takes care of protocol issues such
as waiting for the completion of service execution (see section 4.5.1).

The structure of the object circuit is guided by the model of a finite state
machine implementation: There are a memory element for state storage, state
transition and output logic, and a feedback of the next state into the state
memory. However, the differences should be emphasized: A state transition
of the object FSM, defined by the complete execution of a method, can take
multiple clock cycles. During this period of time, intermediate state changes
can be caused by the sequential execution of attribute value modifications.
Note that the data path of the method under execution has continuous access
to the object’s state and may modify it in any control step via itsQ+ output. It
is not the case that the state can be changed only at the end of execution of a
method.

Finally, we mention that all object outputs will be registered by HLS.
This avoids combinational feedback cycles when objects are interconnected.

Hardware implementation of objects 73

4.4.5 Derived classes

Two major alternatives exist for the implementation of inheritance: delega-
tion and expansion.Delegation means building the extensions of a derived
class around an instance of its direct parent class.Expansion, on the other
hand, involves a flattening of the inheritance structure at compile time [67].
In the following, both alternatives are considered for implementing an object
of a derived class as a digital circuit.

In the delegation implementation of a derived class,D, an instance of its
direct parent class,P, provides the implementation ofP’s state space and
methods. Hence, only the state extension corresponding toD’s new attributes
and the methods defined in classD have to be added. The additional state bits
are stored in an extension register that corresponds toqext of equation 11.
The additional methods are implemented by new method sub-components.
Furthermore, a controller and multiplexing logic must be created for them.

This outline should suffice for discussing the implications of delegation.
Its advantage is that it eases the work of a synthesizer tool because only the
new methods and their controller have to be implemented. However, the
quality of the resulting circuit is impaired:
• Redundant functionality may be implemented in the separated controllers

of the parent instance and the derived class’s additions.
• Inherited methods which are never called, e.g. because they have been

redefined in the derived class, are implemented by the parent instance.
• A dynamically bound intra-object method invocation of the parent (self

reference, cf. section 4.2.3) cannot be adapted to invoke a redefined
method of the derived class.

• The possibility of sharing resources among methods ofP andD cannot be
exploited.

• Multiplexer chains of a length proportional to the depth of the inheritance
hierarchy are created and may contribute to the critical path.

We therefore exclude delegation from further considerations and focus on the
expansion technique, which facilitates optimizations across class boundaries
by flattening of the inheritance hierarchy. This approach has already been
used in the FSM definition in section 4.1.5, where the inherited methods have
been considered explicitly in the FSM of a derived class.

The structure of an expanded implementation of a derived class is the
same as the one that has been devised for a non-derived class in section 4.4.4.
It is shown in figure 18, where the parts printed in grey are new with respect
to the parent class’ implementation.

74 Object-Orientation: A Hardware Perspective

The interface consists of the inputs,CLK, RESET, SELECT_METHOD
andIN_PARAMS, the outputs,STATE_OUT, OUT_PARAMS, andDONE, and
the bidirectionalCHANNELS for communication with server objects. The
completeobject state, encoded according to equation 36, is stored in a single
memory element. All method data paths, including the inherited ones, are
implemented as sub-components at the same level. Their next state outputs
are multiplexed by a single, large multiplexer. The same holds for the param-
eter outputs. A single controller takes control over the execution of all meth-
ods.

By implementing the inherited state and functionality together with the
additional attributes and methods of the derived class, the problems of dele-
gation are avoided:
• The single controller can be optimized globally.
• Inherited methods that are never requested can be omitted.
• The inherited methods can share resources with the new ones.
• Multiplexer chains are not created; instead, a tree structure can be used for

implementing the large multiplexers in figure 18.
This comes at the cost of increased synthesis complexity compared to dele-
gation.

Fig. 18: Implementation of derived object by expansion

.

method m(P)+1

CLK

method 1

method m(D)

...

.

.

IN_PARAMS

SELECT_METHOD

...
OUT_PARAMS

STATE_OUT

controller

DONE
RESET

.
.

method m(P)...
...

...
...

ob
je

ct
 s

ta
te

CHANNELS

.
...

new aspects w.r.t.
the parent class

Hardware implementation of objects 75

4.4.6 Implementation of methods

We now investigate the implementation of the method sub-components. A
method’s functionality is defined by a sequential algorithm which can be syn-
thesized using high-level synthesis techniques. An outline of HLS has been
presented in section 2.3.1. Since we will aim to delegate method implemen-
tation to an HLS tool, only some basic considerations regarding the structure
of the object model and its implementation are made here. These include the
method’s access to attributes, resource sharing among methods, and the
implementation of intra-object method invocation.

The method’s algorithm has read and write access to an object’s
attributes. In section 4.4.1 and 4.4.2, the encoding of the object’s state has
been chosen so that each attribute is encoded with an individual set of state
bits. These are located at a statically known position within the complete
state vector. Hence, attribute access is easily implemented by selecting just
these known individual state bits.

Resource sharing among methods is enabled by the mutual exclusion of
method execution within an object. Hence, a resource can be used in all the
different methods of an object without the danger of resource conflicts. Fur-
ther potential for resource sharing comes from mutually exclusive sections,
e.g. branches of a conditional statement, within a method. Respective
resource sharing techniques are not further developed in this work because
the VHDL code generation to be described in chapter 7 allows to delegate
this task to an HLS tool.

To illustrate attribute access and resource sharing, the example of buffer
objects (cf. section 4.1.9) is continued. We implement aLIFO object as a
bounded stack whoseindex attribute designates the next free item above the
top of the stack. It is assumed that a service is performed only if its guard
expression (cf. section 4.2.6) is true. Hence,put andget do not need to con-
sider the error cases of a full or empty buffer, respectively. Theput method
stores the value that is to be inserted into the buffer in the item designated by
the index attribute, and incrementsindex thereafter. Theget method first dec-
rementsindex and then returns the designated item. Using intuitive pseudo-
code, this reads as:

put(val : in Item_t) { get(val : out Item_t) {
item[index] val ; index index – 1 ;
index index + 1 ; val item[index] ;

} }

← ←
← ←

76 Object-Orientation: A Hardware Perspective

Data paths that implement these methods are displayed in figure 19. The
ASSIGN andSELECT blocks implement the reading and assignment of an
array element, respectively. The object’s current state,Q, is split into the
attributes,INDEX and theITEM[] array. These are read and partly modified
by the data paths, and then joined again into the object’s next state,Q+.

Sinceput andget are executed mutually exclusive, their implementations
can share resources. For instance, anINC/DEC module can be used instead of
the separate incrementer and decrementer, which leads to the circuit shown
in figure 20. The individual method sub-components are dissolved after join-
ing them to form a common data path. Additional control inputs have to be
provided to switch between the modes of the data path (here: put vs. get) and
of its components (here: increment vs. decrement).

Finally, intra-object method invocation shall be considered. As described
in section 4.2.3, a method of an object can invoke a method of the same
object or of an exclusively owned sub-object. In the following, both cases
can be regarded as similar since sub-objects are defined and encoded as a part

Fig. 19: Datapaths forput andget methods ofLIFO

Fig. 20: Datapath implementingput andget with a shared resource

ASSIGN

INC

ITEM[]

INDEX .
Q

VAL

Q+

DEC

ITEM[]

INDEX

.Q Q+

SELECT

.

VAL

PUT

GET

ASSIGN

INC/DEC

ITEM[]

INDEX

Q

VALPUT

Q+
GET

PUT/GET

Q+
PUT

..

SELECT VALGET

.
..

MODE

Hardware implementation of objects 77

of their owners’ state space (cf. section 4.1.7 and 4.4.1). We implement intra-
object method invocation as a part of the invoking method. Note, it isnot
implemented by some communication between method sub-components.
Without optimization, this incurs the overhead of multiple implementation of
the invoked method: as part of the data path of the invoking method and in its
own method sub-component. However, resource sharing can merge these
implementations by using the same resources for all of them.

4.4.7 Polymorphic objects

A polymorphic object has been characterised in a way similar to objects with
fixed class membership. There were differences only in the structure and
encoding of the state space—a polymorphic object has a tag for identifying
its class membership—and in the dynamic binding of methods which are
redefined in derived classes. In this section, the implementation of these fea-
tures is described for a polymorphic object with root classR.

The basic circuit structure is the same as for a non-polymorphic object of
classR. That is, it follows figure 17 ifR is non-derived and figure 18 ifR is
derived. Moreover, the polymorphic object has the same method identifiers,
input and output spaces, and the corresponding encodings (cf. section 4.4.3).
Only the state space is encoded differently, as described in section 4.4.2.

Dynamic binding has been defined as the invocation of a method’s latest
redefinition with respect to the current class membership of a polymorphic
object. While for each class the latest redefinition of a method can be deter-
mined statically, the object’s class membership, identified by a tag, changes
during system operation. An implementation of dynamic binding therefore
has to select the next state and output according to the tag value as shown in
figure 21.

Fig. 21: Implementation of a dynamically bound method

...
...

...

.

.

.
Q

Q+

TAG

latest redefinition

latest redefinition
IN

OUT

for class C0

for class Cv

0

v

0

v

78 Object-Orientation: A Hardware Perspective

The duality of messages and polymorphic objects is reflected in the cir-
cuit structure. While at the top level of object implementation a service is
selected according to the method identifier of an incoming message, dynamic
binding employs an analogous structure for selecting the implementation of a
service depending on a polymorphic object’s tag.

Note that the previous section’s considerations on method implementa-
tion apply to dynamically bound methods. The latest redefinitions of a
method are mutually exclusive with respect to each other. Furthermore, they
are mutually exclusive with respect to all other methods of an object.

4.5 Implementation of inter-object communication

Having explained the structure of single objects, communication between
objects shall now be investigated. The first points to be addressed are the
implementation of channels and the description of the message exchange
protocol that is executed on these channels. Next, the arbitration of multiple
concurrent clients of a server object is explained. As a part of an arbiter cir-
cuit, a scheduler that selects a client whose request is granted must be imple-
mented. This leads to the discussion of applicable scheduling policies.

4.5.1 Channels and message passing

A channel connects one client object to one server object. It allows the trans-
mission of the following data:
• The method identifier of the requested service, , encoded accord-

ing to equation 49. The channel contains a signal,REQ, for transmitting
this service request. It is connected to theSELECT_METHOD input of the
server.

• The input parameters of the service, , encoded according to
equation 43. Their value is transmitted over theP_IN signal of the chan-
nel, which is connected to theIN_PARAMS input of the server object.

• The output parameters of the service, , encoded as
described by equation 46. Their value is transmitted back from the
server’sOUT_PARAMS output to the client via the channel’sP_OUT sig-
nal.

• A one-bit handshake signal,DONE, that allows the server to acknowledge
message reception and notify the client of the completion of service exe-
cution. This signal is connected to the server’sDONE output.

m MC∈

inp S inC()∈

outp S outC()∈

Implementation of inter-object communication 79

Note that, whereas the channel is classified as bidirectional (cf. figure 17 and
18), the signals of which it is composed are unidirectional. Some of these
signals lead from the client to the server, the others have the reverse direc-
tion. Hence, bidirectionality is not to be understood in the sense of an imple-
mentation with tri-stated signals.

The message exchange protocol performed via the channel is displayed in
the timing diagram of figure 22. The diagram shows the waveforms of the
channel signals. Since a synchronous, clocked implementation is assumed,
these waveforms are shown in relation to a global clock signal which is not
part of the channel.

A message passing operation is started by the client object by assigning
the identifier of the requested service to the channel’sREQ signal. In the
same clock cycle, the input parameters, if any, must be assigned toP_IN, too.
The server responds by setting itsDONE signal low as soon as it has accepted
the request. This takes at least one clock cycle, but may take longer as shown
in the second message exchange. After request acceptance, the client may set
the REQ signal back to zero. However, it must keep the input parameters
valid until service execution is completed. This is signalled by the server by
setting theDONE signal high. In the same clock cycle, the server assigns the
output parameters of the service to theP_OUT signal, where they remain
valid until the next message exchange begins. This leaves the client only one
clock cycle to read these output parameters. Note that, even if the client
under consideration initiates no new message exchange, this can be done by
another, concurrent client.

As soon as one message exchange is finished, i.e., one cycle after the
server has risen theDONE signal, the next message exchange may start. Note
that this requires the client to set theREQ signal back to zero (no request) in
time, i.e., at the latest in the cycle in whichDONE is set high (see second

Fig. 22: Message exchange protocol

time

REQ

DONE

P_IN

P_OUT

CLK

0m10

valid

m2 0

valid

validvalid

1st message exchange 2nd message exchange

80 Object-Orientation: A Hardware Perspective

message exchange). Otherwise, the server would assume that the same serv-
ice is requested again.

Only a single client of a server has been taken into account in the above
considerations. In the following section, we extend message passing to con-
sider multiple clients.

4.5.2 Arbiter

The arbiter acts as an agent that allows multiple channels to connect to a
server object, which has only a single communication interface. To this end,
the arbiter provides to each of the clients an exclusive server interface. With
respect to the actual server, the arbiter behaves like a single client.

If, at some time, only a single client has a communication request, the
arbiter simply connects this client with the server. If multiple clients issue a
request at the same time, the arbiter chooses one of these clients and puts it
through to the server. While doing so, the arbiter respects the synchronisation
conditions specified by the guard expressions of the server’s methods. That
is, it accepts a message only if the server is ready to execute the requested
service. This is the case if the service’s guard expression is true. Otherwise,
the respective client is put on hold until its request becomes acceptable.

Figure 23 illustrates the arbitration of three concurrent clients, two pro-
ducers and one consumer, of a buffer object. It is assumed that the producers
issueput requests while the consumer requests theget service at the same
time. The arbiter chooses one of these clients, in this case the second pro-
ducer, and establishes its connection with the server, i.e., the buffer object.
When the service is completed, the arbiter can grant one of the other
requests.

An implementation of an arbiter forN clients is shown in figure 24. Its
interface corresponds to the channel signals: TheN request, input parameter,
output parameter, and handshake (DONE) lines on the left hand allow to con-
nect channels fromN clients. The signalsS_REQ, S_P_IN, S_P_OUT, and
S_DONE on the right hand provide the interface to a server. In addition, the
server’s state is required as an input.

The state, the requests, and their input parameters enable the computation
of guard expressions in theGuards sub-component. Its output, theN bit wide
RDY signal, tells for each of theN clients whether or not the synchronisation
conditions allow to grant its request, if any. This result is passed on to the
scheduler sub-component. The scheduler decides which of the acceptable
requests is granted. This decision may require knowledge of the requests if,

Implementation of inter-object communication 81

for example, priorities are associated with requests. Hence, the requests are
further inputs to the scheduler. Another input is theS_DONE signal from the
server, which lets the scheduler know when the server has completed service
execution so that the next request can be accepted.

The scheduler’s output,GRANT, is used for controlling the multiplexing
and demultiplexing of the channel signals: The granted request and its input
parameter are put on theS_REQ andS_P_IN outputs and are thereby sent to
the server. The service’s output parameters,S_P_OUT, and the server’s hand-

Fig. 23: Communication of concurrent objects

Fig. 24: Arbiter circuit forN clients and one server

Producer2 Buffer

Producer1

Consumer

Arbiter

Channel

put

get

put

put
Service request

..C_REQ[1

C_REQ[N]

C_P_IN[1]

C_P_IN[N]

C_P_OUT[1]

C_P_OUT[N]

C_DONE[1]

C_DONE[N]

S_REQ

S_P_IN

S_P_OUT

S_DONE

S_STATE

.
.

.
.

...

...
...

...
...

...
...

...
...

RDY RDY

GRANT

1

N

1

N

1

N

1

N

SchedulerGuards N

REQ[] P_IN[] REQ[]

DONE

.

82 Object-Orientation: A Hardware Perspective

shake signal,S_DONE, are demultiplexed to the clients. This is trivial for the
output parameters, which can be presented to all clients. However, theDONE
signal must be forwarded only to the client whose request has been accepted.
The other clients must be provided a stable value ofC_DONE = 1. Other-
wise, they would all assume their requested service had been executed.

Arbitration is simplified significantly if the guard expressions do not
depend on the services’ input parameters. This allows to implement the
guards sub-component as a part of the server, where it has direct access to
the state. Instead ofS_STATE, theRDY signal is routed from the server to the
arbiter. This signal is nowM bit wide, where is the number
of the server’s services. Thei-th bit is high if the service addressed by
method identifieri can be accepted, i.e., its guard expression is true, and low
otherwise.

4.5.3 Scheduler

As described in the previous section, the basic functionality of the scheduler
is to determine the client whose request is granted. Scheduler functionality is
detailed with the following criteria in mind:
• Implementability—The scheduler is to be implemented as a digital circuit

with a reasonable, small amount of resources.
• Speed—The scheduler shall examine all requests in a single clock cycle.

When the server is ready to accept a request, this request shall be granted
in the same cycle so that its execution can start in the next cycle.

• Correctness—The scheduler never accepts a request when it cannot be
executed by the server.

• Fairness—A client shall not have to wait unnecessarily long for the
acceptance of its request.

The notion of fairness [55] has to be detailed further. It can be understood as
the absence of starvation; that is, a client that has a request must be served
after a finite waiting time. Alternatively, one may demand that requests be
served in the order they have been issued. However, ensuring fairness is com-
plicated by the need to take condition synchronisation into account. If a serv-
ice’s guard expression is false, a request of this service must not be accepted,
and this should not be regarded a violation of fairness. It may, however, be
understood as unfair if the acceptance of other requests prevents the guard of
a requested service from becoming true. Hence, we cannot rule out temporar-
ily unacceptable requests from fairness considerations.

M MServer=

Implementation of inter-object communication 83

For instance, assume that a buffer has run full. Its arbiter may acceptput
andget requests alternately. This may be fair for the clients that issue these
requests. However, assume there is a third client which wants to put two
items at a time. For this client, scheduling is unfair because its request never
becomes acceptable. It would be necessary to accept two successiveget
requests to give the third client a chance.

The example emphasizes that fairness can strongly depend on the object’s
state, the functionality of the requested services, and the order in which
requests are accepted. Different from scheduling of independent processes
performed by operating systems [156], the interdependence of object serv-
ices complicates fairness considerations. It is therefore not possible to imple-
ment a single scheduler that ensures fairness by construction nor to assess
fairness of a scheduling strategy statically. Instead, we have to provide a cou-
ple of scheduling policies from which users can choose according to their
judgement of suitability for the intended dynamics of an object-oriented
model.

4.5.4 Scheduling policies

Scheduling policies for VLSI hardware implementation have been analysed
in [62]. They have been classified according to the use of an equal-priority,
unequal-priority, rotating-priority, random-delay, or queuing protocol. The
assignment of priorities to tasks allows to guide scheduling. For instance, an
important service can be assigned statically a high priority. Or, a service
request which has already been waiting for a long time can be assigned a
higher priority during operation.

In this work, a similar classification is used; see figure 25. We distinguish
static and dynamic priority. Equal priority (or, no priority) and unequal prior-
ity are among the static priority schemes. Dynamic priority protocols include
rotating priority, queuing and externally changed priority.

Fig. 25: Classification of scheduling policies

scheduling
policy

static priority

dynamic priority

equal priority

unequal priority

rotating priority

externally changed priority

queuing

84 Object-Orientation: A Hardware Perspective

An equal priority protocol involves the non-deterministic choice between
simultaneous requests. This can be implemented in hardware with random
generators, e.g. linear feedback shift registers. The unequal priority protocol
gives each service or client a fixed priority level. A request of a high priority
service or from a high priority client is granted before a request of lower pri-
ority. If several services or clients share the same priority, a secondary crite-
rion must be applied such as random choice or one of the dynamic policies.

Rotating priority, or round-robin scheduling, shifts the highest priority
from one service to the next so that in a period of time each service has a slot
in which it has the highest priority. To implement a queuing (FIFO) protocol,
the highest priority is assigned to the oldest request. This requires to remem-
ber the order in which requests are issued. Finally, while priorities are man-
aged within the scheduler for round robin and queuing protocols, also a
protocol with externally changed priorities can be implemented.

4.6 Summary

In this chapter, we have developed a meta-model of the static aspects of
objects and their communication following UML constructs. With regard to
the parallel nature of hardware, emphasis has been given to concurrency
aspects. The concept of guarded methods has been adopted to enable a
description style of the condition synchronisation of methods that avoids the
problem of inheritance anomaly. A value-based notion of polymorphism and
dynamic binding feasible for a hardware implementation has been outlined.

In order to implement objects, their state space encoding has been
defined, covering objects of non-derived classes, of derived classes, and poly-
morphic ones. Likewise, an encoding of an object’s input and output spaces
has been developed. Circuits for non-derived, derived, and polymorphic
objects have been presented. Finally, we have addressed the implementation
of communication channels between objects and the arbitration of concurrent
requests. The implementation not only ensures mutual exclusion synchroni-
sation, but also respects the synchronisation conditions specified by the
methods’ guard expressions.

The practical description of an object system, covering its dynamics and
functional aspects, can be achieved using an object-oriented language. This
will be described in the following chapter. Properties captured by the meta-
model can be extracted from the language-based model and used as input for
object system synthesis.

Chapter 5

Specifying Object-Oriented Synthesis
Models in Objective VHDL 5

This chapter explains the use of an object-oriented hardware description lan-
guage, Objective VHDL, for the purpose of specifying object-oriented syn-
thesis models. After giving specific reasons for the choice of Objective
VHDL, we show how non-derived and derived classes and their functionality
are implemented with this language. Another section is devoted to the decla-
ration and use of objects. This involves a treatment of polymorphism and
message passing. Thereafter, concurrency and proposed mechanisms for
modelling condition synchronisation and request arbitration are discussed.
Finally, we present the integration of object synthesis into the architecture of
tools available for this language.

5.1 Language choice

The choice of an object-oriented language for hardware design should be a
matter of serious consideration since the language and its expressive power
impact not only the language’s ease-of-use, but also tool development. In this
work, a variant of the hardware description language VHDL has been pre-
ferred over the use of an object-oriented programming language.

The main reason for this decision is that the hardware meta-model of
object-orientation presented in the previous chapter is based on a notion of
static objects and channels to represent static hardware resources and their
fixed interconnection. VHDL provides concepts such as signals, generate
statements, generics, and the elaboration of models, that enable static model-
ling. These can be used in combination with new object-oriented features so
as to facilitate the modelling of static object systems. On the other hand,

86 Specifying Object-Oriented Synthesis Models in Objective VHDL

OOP languages, in particular C++ and Java, rely a lot on dynamic concepts
such as run-time object allocation and pointers or references. This makes the
extraction of static properties harder. Moreover, it requires to impose restric-
tions on the use of these languages. This affects not only the available model-
ling power, but also the language’s ease-of-use as designers have to pay
attention to the limitations.

We believe that the addition of object-oriented features to VHDL can
contribute to more abstract modelling of hardware objects and their commu-
nication. Their combination with VHDL’s concurrency features is inevitable
for modelling parallel hardware. Furthermore, VHDL’s structure modelling
features, that include entities, architectures, components, and their configura-
tions, are valuable for organising a complex system.

The synthesis of models that use the object-oriented extensions together
with the synthesizable subset of VHDL enables an automatic transition to
implementations at lower abstraction levels. These implementations can
again be expressed in object-oriented VHDL or its VHDL subset. This eases
not only the synthesis task, but also the joint simulation of models at differ-
ent description levels.

The choice of an object-oriented variant of VHDL is another issue. In this
work, Objective VHDL has been chosen for the demonstration of concepts.
The language design of Objective VHDL is not a subject of this thesis, nor
are modelling issues. It is not claimed that Objective VHDL as a language is
superior over other OO-VHDL dialects. However, we show that and how
Objective VHDL can be applied for describing object systems.

Our language choice is primarily based on the availability of an Objective
VHDL compiler front-end that has been developed as an extension of a com-
mercial VHDL product. Likewise, a prototype translator that creates VHDL
for simulation purposes is available. This degree and quality of tool support
makes Objective VHDL favourable for the purpose of demonstrating the
hardware synthesis of object-oriented descriptions. No other OO-VHDL dia-
lect is currently supported to this extent by tools, if any.

The Objective VHDL language and the VHDL translator have been
developed with the author’s contribution in the ESPRIT project REQUEST.
The language is defined in the same style as VHDL by an extension [101] to
VHDL’s language reference manual [74]. The tools are available for various
Unix operating systems and Windows 95/98/NT [127]. In the following, the
relevant portion of Objective VHDL and its tool architecture are outlined.
This provides the foundation for demonstrating the synthesis concepts of
chapter 4 in the remainder of this work.

Declaration of classes 87

5.2 Declaration of classes

Objective VHDL facilitates object-oriented modelling by adding class types
to VHDL’s type system. This is achieved by extending VHDL’s grammar so
that class types can be defined in addition to scalar, composite, access, and
file types:

type_definition ::=
scalar_type_definition
composite_type_definition
access_type_definition
file_type_definition
class_type_definition -- new

A class type definition can be the declaration of a non-derived class type, of a
derived class type, or of a class type body:

class_type_definition ::=
class_type_declaration

| derived_class_type_declaration
| class_type_body

These new language features of Objective VHDL are explained in the follow-
ing sections.

5.2.1 Class type declarations

A non-derived class is declared with Objective VHDL’s class type declara-
tion construct, where the optional keywordabstract can be used to declare
the class as an abstract one:

class_type_declaration ::=
[abstract] class

[formal_generic_clause]
{ class_type_declarative_item }

end class [class_type_simple_name]

This syntax is to be used in the context of a type declaration. Hence, the dec-
laration of a non-abstract class type, including the optional repetition of the
class type’s name, effectively reads as follows:

type name is class ... end class name;

88 Specifying Object-Oriented Synthesis Models in Objective VHDL

The optional generic clause allows to declare generics as known from VHDL
entities. Thereby, a class can be parameterized with generic values. The use
of generic types in the sense of section 4.1.8 is currently not supported by the
Objective VHDL language. Likewise, the language provides no interface
inheritance. These design decisions have been taken in order to limit the
complexity added to VHDL. Abstract classes can be used in most cases to
achieve the desired effects of interface specification and type genericity.

An arbitrary number of the following declarative items can be included in
the class type declaration:

class_type_declarative_item ::=
class_attribute_declaration

| class_type_common_declarative_item
| class_type_object_configuration

The class attribute declaration facilitates the declaration of attributes in the
object-oriented sense (cf. section 4.1.2). These are told apart from VHDL’s
attributes by using the keyword combinationclass attribute . In the follow-
ing, we speak of class attributes and attributes interchangeably and use the
term VHDL attribute if meant in the VHDL sense.

class_attribute_declaration ::=
class attribute identifier : subtype_indication [:= expression] ;

The identifier is the name with which a class attribute can be referenced. The
subtype indication specifies the (sub-)type of the class attribute, and thereby
defines its state space. An optional expression allows to assign the attribute’s
initial value explicitly. If it is omitted, the initial value is defined according to
VHDL rules as the leftmost value of the attribute’s type.

Further declarative items, common to all instances of a class, are:

class_type_common_declarative_item ::=
type_declaration

| subtype_declaration
| constant_declaration
| subprogram_declaration
| alias_declaration
| use_clause

This facilitates the declaration of types, subtypes, and constants which are
local to the class. Furthermore, it is possible to declare aliases and to import
declarations by means of a use clause. Most important for the object model

Declaration of classes 89

are subprogram declarations which facilitate the declaration of the class’
methods.

A class can be instantiated as a signal, variable, or constant object. A
class type object configuration allows to declare items which arenot com-
mon to all of these object kinds:

class_type_object_configuration ::=
for object_specification { , object_specification }

{ class_type_common_declarative_item }
end for ;

object_specification ::=
signal | variable | constant

The declarations permitted within such an object configuration are the same
as above. However, they are only available with the kind of objects specified
in the object specification list. For instance, the declaration of a method that
modifies the state of an object does not make sense for a constant object
because its state cannot be modified. Hence, this method would be declared
only for signal and variable objects:

for signal , variable
procedure modify;

end for ;

The following listing shows the declaration of the abstract classBuffer_t, cor-
responding to section 4.1.9. The example has been changed with respect to
its UML notation by removing the parameterization of stored items. Instead
of being of a generic type, the stored items are declared as integer values
with parameterized range. This shortens the example so that the Objective
VHDL code and generated VHDL code can be presented in this work. A
more generic implementation would declare the item type as an abstract class
and store polymorphic objects of that root class. By deriving several types of
stored items from the abstract root class, the user would be able to use the
buffer with all these types. Note that we cannot name the typeBuffer since
this is a reserved word in VHDL.

type Buffer_t is abstract class
generic (

size : Positive; -- Max. no. of entries in buffer
bits : Positive -- No. of bits per entry

);
subtype Item_t is Integer range 0 to 2**bits – 1;

90 Specifying Object-Oriented Synthesis Models in Objective VHDL

type Buffer_array is array (0 to size – 1) of Item_t;
class attribute item : Buffer_array := (others => 0);
function is_full return Boolean;
function is_empty return Boolean;
for variable , signal

procedure put(val : in Integer);
procedure get(val : out Integer);

end for ;
end class Buffer_t;

The class has two generic values, the maximal number of entries that the
buffer can store,size, and the bit-width of each entry,bits. It declares the
item typeItem_t as the range of non-negative integers that can be represented
with the generic number ofbits. Next, an array type withsize elements of the
item type is declared. The array type serves as the type of the class attribute
item which will later be used for storing the items. The array elements of this
attribute are initialised with zero.

Two boolean functions,is_full andis_empty, correspond to the respective
methods of the UML model. Since they do not modify the object’s state, they
are declared in the common part of the class which makes them applicable to
all kinds of objects. Theput andget procedures, on the other hand, perform a
state modification and are therefore declared only for signal and variable
objects. Note thatget cannot be implemented as a function with an integer
return value because it removes an item from the buffer, whereas a function
in VHDL and Objective VHDL, even if it is declared as impure, must not
perform any state modifications.

5.2.2 Derived class type declarations

The derived class type declaration of Objective VHDL provides the follow-
ing syntax for deriving a new class, optionally abstract, from an existing par-
ent class, and for augmenting it with additional declarative items:

derived_class_type_declaration ::=
new [abstract] class class_type_name with

[formal_generic_clause]
{ class_type_declarative_item }

end class [class_type_simple_name]

In the context of a type declaration, a classD is derived from a parent classP
as follows:

Declaration of classes 91

type D is new class P with ... end class D;

Again, the repetition of the class identifier at the end of the declaration is
optional. The parent class can be any class, abstract or non-abstract, derived
or non-derived, that is analysed before and visible to the derived class. This
ensures that inheritance is free of cycles by preventing the derived class from
also being a parent of its parent class.

Any generics declared in a derived class exist in addition to the generics,
if any, of the parent class. Objective VHDL employs the notion of an effec-
tive generic list for defining inheritance of generics. The effective generic list
of a derived class is the concatenation of the parent’s effective generic list
and the generics declared in the derived class. The effective generic list of a
non-derived class comprises only the class’ own generics.

The declarative items allowed in the derived class are the same as for a
non-derived class: class attributes, types, subtypes, constants, subprogram
declarations, aliases, and use clauses. As well, a derived class can contain
object configurations that allow to limit their contained declarations to signal,
variable, or constant objects, or a combination thereof. All these declarations
are additional to the declarations of the parent class.

An attribute declaration in a derived class therefore extends the inherited
state space. This holds even if the new attribute is declared with the same
name as an inherited one. In this case, both attributes co-exist while the new
attribute hides the inherited one so that in the derived class any use of the
name refers to the new attribute. Methods inherited from the parent class,
however, still reference the now hidden attribute.

A similar mechanism, combined with VHDL subprogram overloading, is
applied to methods. Method subprograms are distinguished not only by their
name, but also by the types of their parameters and return value, if any. If the
name and the parameter and return type profile of a new method declared in a
derived class are the same as those of an inherited method, the new method
hides the inherited one. It is a redeclaration if in addition the parameter
names, storage classes (signal, variable, constant) and modes (in, out, inout)
coincide.

The following listing shows the declaration of derived classes,LIFO and
FIFO, whose parent class isBuffer_t. LIFO declares and initialises one addi-
tional class attribute,index, while FIFO comprises three new attributes,first,
nxt, andempty. The meaning of these attributes is explained in section 5.2.4.
The subprograms declared in both classes are all redeclarations of the respec-
tive methods of the parent class.

92 Specifying Object-Oriented Synthesis Models in Objective VHDL

type LIFO is new class Buffer_t with
class attribute index : Natural range 0 to size := 0;
function is_full return Boolean;
function is_empty return Boolean;
for variable , signal

procedure put(val : in Integer);
procedure get(val : out Integer);

end for ;
end class LIFO;

type FIFO is new class Buffer_t with
class attribute first : Natural range 0 to size – 1 := 0;
class attribute nxt : Natural range 0 to size – 1 := 0;
class attribute empty : Boolean := true;
function is_full return Boolean;
function is_empty return Boolean;
for variable , signal

procedure put(val : in Integer);
procedure get(val : out Integer);

end for ;
end class FIFO;

5.2.3 Class type body

A class type body provides an implementation of a non-derived or derived
class type. It is defined by the following Objective VHDL grammar produc-
tion:

class_type_body ::=
class body

{ class_body_declarative_item }
end class body [class_type_simple_name]

As it appears as part of a type declaration, a complete class body reads:

type name is class body ... end class body name;

The name must be the same as the name of the class type declaration or
derived class type declaration to which the body belongs. It is an error if no
such corresponding declaration exists. A class body must be defined for each
non-abstract class. An abstract class may, but does not need to have a class
body.

Inside the class body, class attributes, common declarative items, and
object configurations can be declared:

Declaration of classes 93

class_body_declarative_item ::=
class_attribute_declaration

| class_body_common_declarative_item
| class_body_object_configuration

A class attribute of the class body contributes to an object’s state just like an
attribute declared in the class type declaration does. However, the former is
visible only in the class body itself (private in C++ terms) while the latter can
also be read and modified directly by new methods of derived classes (pro-
tected). Public attributes, which are accessible everywhere, are not provided
by Objective VHDL.

Types, subtypes, constants, subprogram declarations, subprogram bodies,
aliases, and use clauses are allowed as common declarative items of the class
body. That is, all common declarative items permitted in a (derived) class
type declaration may also occur in a class body. In addition, it is possible to
declare subprogram bodies, i.e., to implement a subprogram.

class_body_common_declarative_item ::=
type_declaration

| subtype_declaration
| constant_declaration
| subprogram_declaration
| subprogram_body
| alias_declaration
| use_clause

Like private class attributes, all these items are only visible in the class body
itself. This holds also for subprograms first declared within the class body.
Such subprograms are private methods. On the other hand, a subprogram that
is declared in a class type declaration is a public method. Protected methods
do not exist in Objective VHDL.

The implementation (body) of a method subprogram, be it public or pri-
vate, is always specified in a class body. It has access to the class’ attributes.
A procedure method can read and modify an attribute value while a function
method can only read, but not modify, the object’s state.

A class body object configuration enables the declaration of items that are
specific to signal, variable, or constant objects. This includes, in particular,
method implementations (subprogram bodies). In a non-abstract class, all
methods must have such an implementation. In an abstract class, the imple-
mentation is optional.

94 Specifying Object-Oriented Synthesis Models in Objective VHDL

class_body_object_configuration ::=
for object_specification { , object_specification }

{ class_body_common_declarative_item }
end for ;

In an object configuration for variable, a class attribute can and must be
accessed like a variable. In an object configuration for signal, the class
attribute appears to be a signal. This does not only imply the use of different
assignment operators. The semantics of assignments are different, too: A var-
iable assignment causes an immediate state transition while a signal assign-
ment takes at least one VHDL delta cycle to become effective. Moreover,
VHDL signal attributes such as’EVENT can be applied to a class attribute in
a signal object configuration and only there. Finally, the object configuration
for constant commits methods to considering the class attributes as constants.
These rules reflect the opportunities and restrictions related to class instantia-
tion as a variable, signal, or constant, respectively.

5.2.4 Example

This section demonstrates the use of Objective VHDL for implementing the
buffer data types known from previous examples. The organisation of the
internal data structures of LIFO and FIFO buffers is shown in figure 26. In
order to implement LIFO functionality, theitem array is managed as a stack.
The class attributeindex designates the next free item on top of the stack. In
the FIFO class, theitem array is organised as a circular buffer. The class
attributefirst stores the index of the oldest entry while the attributenxt desig-
nates the next free position in the buffer. Iffirst equalsnxt, the buffer is either
empty or full. This is distinguished with the additional boolean attribute
empty.

The implementation of methods must use the class attributes according to
the above description and maintain the correct organisation of data struc-
tures. This is achieved for class LIFO by declaring its class body as follows:

type LIFO is class body

function is_full return Boolean is
begin

return index = size;
end ;

function is_empty return Boolean is
begin

Declaration of classes 95

return index = 0;
end ;

-- for signal : see later

for variable

procedure put(val : in Integer) is
begin

assert not is_full report "LIFO overflow" severity failure;
item(index) := val;
index := index + 1;

end ;

procedure get(val : out Integer) is
begin

assert not is_empty report "LIFO underflow" severity failure;
index := index – 1;
val := item(index);

end ;

end for ;

end class body LIFO;

Note that different implementations of theput andget methods are provided
for signal and variable objects. Only the implementation for variables is
shown here. Signal objects and their concurrent use are addressed in
section 5.4.

Fig. 26: LIFO and FIFO data structures

FIRST

NXT
ITEM[]

occupied

free

INDEX

ITEM[]

element

 element

LIFO stack FIFO circular buffer

size – 1

0

96 Specifying Object-Oriented Synthesis Models in Objective VHDL

The class body of FIFO implements, in addition to the public methods
is_full, is_empty, put, and get, a private method,next_index. This method
increments an index modulo the buffer size so as to respect the buffer’s circu-
lar organisation. It can be synthesized even if the buffer size is not a power of
two, whereas VHDL’smod operator cannot.

type FIFO is class body

function next_index(index : in Integer) return Integer is
begin

-- synthesizable implementation of: return (index + 1) mod size;
if index + 1 < size then return index + 1;
else return index + 1 – size;

end ;

function is_full return Boolean is
begin

return nxt = first and not empty;
end ;

function is_empty return Boolean is
begin

return empty;
end ;

-- for signal : see later

for variable
procedure put(val : in Integer) is
begin

assert not is_full report "FIFO overflow" severity failure;
item(nxt) := val;
nxt := next_index(nxt);
empty := false;

end ;
procedure get(val : out Integer) is
begin

assert not is_empty report "FIFO underfl." severity failure;
val := item(first);
first := next_index(first);
empty := first = nxt;

end ;
end for ;

end class body FIFO;

Declaration and use of objects 97

No class body is declared for classBuffer. This is legal asBuffer is abstract. A
body declaration of an abstract class makes sense only if some functionality
can be factored out as it is to be implemented the same way for the derived
classes. This is not the case in this example.

5.3 Declaration and use of objects

Once a class is defined, it can be used with the VHDL mechanisms that are
part of Objective VHDL. This includes the declaration of class-typed signals,
variables, and constants, by which objects are instantiated. So-called class-
wide types facilitate the declaration of polymorphic objects. These aspects
are addressed subsequently in this section.

5.3.1 Instantiation of classes

A non-abstract class type or non-abstract derived class type can be used like
every VHDL type. This makes it possible to declare VHDL objects, i.e. sig-
nals, variables, and constants, with a class type. Such VHDL objects are con-
sidered as objects in the object-oriented sense. Their value represents the
object’s state.

Note that shared variables can be declared with a class type, too. In the
future, however, a re-standardisation of VHDL will likely include the shared
variables language change specification [165] as a part of the standard. This
will restrict shared variables to so-called protected types. Since shared varia-
bles are not synthesizable according to the draft VHDL synthesis standard
[75] and not supported by most synthesis and simulation tools, we exclude
them from further considerations.

It is also possible to declare an array of a non-abstract class type or a
record with non-abstract class-typed elements. The declaration of a signal,
variable, or constant with such a composite type yields a respective number
of objects.

Moreover, Objective VHDL permits the declaration of class access types
and the dynamic allocation of objects. Likewise, it is possible to declare a file
type of a class type and to use it in the declaration of file objects. Both,
access and file types, are not synthesizable and therefore excluded from fur-
ther considerations.

The previous instantiation mechanisms do not require any VHDL syntax
change. Only for the instantiation of generic classes, i.e., class types which

98 Specifying Object-Oriented Synthesis Models in Objective VHDL

have a non-empty effective generic list, an addition to the VHDL grammar is
required:

subtype_indication ::=
[resolution_function_name] type_mark [constraint] -- VHDL

| [resolution_function_name] generic_class_type_mark
generic_map_aspect -- new

This allows to provide actual values for the generics of a generic class type
when the class type is used in some other declaration. For instance, a variable
LIFO object with eight entries of three bits each can be declared as:

variable lifo_object : LIFO generic map (size => 8, bits => 3);

This is only a shortcut as a class type with a generic map is defined as an
anonymous constrained subtype of the more general unconstrained class type
without generic map. An explicit declaration using a named subtype can be
made as follows:

subtype LIFO_8_3 is LIFO generic map (size => 8, bits => 3);
variable lifo_object : LIFO_8_3;

5.3.2 Declaration of polymorphic objects

The declaration of polymorphic objects is enabled by Objective VHDL’s pre-
definedCLASS attribute, which is an attribute in the VHDL sense. If this
attribute is applied to a class typeT, it yields the so-called class-wide type of
T which comprisesT and all classes derived fromT. This is defined by the
following addition to VHDL’s predefined attributes [74]:

Predefined attribute: T’CLASS

Kind: Type
Prefix: class type T
Result type: type definition
Result: the class-wide type comprising T and its derived classes

A signal or variable declared with the class-wide typeT’CLASS is a polymor-
phic object with root classT. The same holds for an array element or record
element of class-wide type. Note that it is possible to declare a class-wide
constant, too.

The class-wide (polymorphic) object is uninitialized until it is assigned a
value, i.e. a state and class membership. For a constant object, an assignment
can be made only at the place of its declaration. This determines its unmodi-

Declaration and use of objects 99

fiable state and class membership. The state and class membership of a varia-
ble or signal of class-wide type, on the other hand, can change during system
operation. This makes class-wide signals and variables polymorphic objects.

A polymorphic object can be declared with an abstract root class. In this
case, the object cannot take on the state and class membership of the root
class, but of any non-abstract class derived from the root class. Likewise, a
polymorphic object can have a generic root class or a root class from which
generic classes are derived. Since all type instances of a generic type are con-
strained subtypes of the generic type, the class-wide type comprises them all.

The change of a polymorphic object’s class membership is caused by
assignments to the object. This topic is discussed in the next section.

5.3.3 Assignment

Assignment comprises the assignment of an initial value to a signal, variable,
or constant at the place of its declaration, the variable assignment ’:=’, and
the signal assignment ’<=’ of VHDL. An assignment involves a target and an
expression which yields the value to be assigned to the target. This section
deals with assignments whose target is an object.

We first considernon-polymorphic target objects. Such an object can be
assigned a value of its class type, and only of its class type. If the assigned
expression is of a class type, this can be checked by an analyser: If expres-
sion and target type are the same, the assignment is legal since the types are
compatible. Otherwise, the assignment is rejected since the types are incom-
patible.

If the assigned expression is of a class-wide type, its class membership is
not known during analysis. However, its root class is known. If the target
object’s class is the same as or derived from the expression’s root class, types
are potentially compatible since the current class membership of the assigned
expression may be, but does not necessarily need to be the same as the tar-
get’s class. Otherwise, the assignment is rejected as types are incompatible.
A potentially compatible assignment is accepted by the analyser, but can lead
to a run-time error when the expression’s type does not match the target type.

The above type considerations are the same if the target object’s type is
an instance of a generic class type. As in VHDL, analysis considers only the
types. A mismatch of subtype constraints, that is, a mismatch of the actual
generic values of the target and expression subtypes, is detected at run time.

When analysing an assignment that involves apolymorphic target object,
we take into account that this object can take on the class membership of its

100 Specifying Object-Oriented Synthesis Models in Objective VHDL

root class and all classes derived from it. Hence, an assignment of an expres-
sion whose type is one of these classes is compatible. The same holds if the
expression is of a class-wide type whose root class is the same as or derived
from the target’s root class. If, however, the expression’s root class is a parent
of the target object’s root class, the expression’s current class membership
may be, but is not necessarily acceptable for the target object. Hence, such an
assignment is potentially compatible only. In all other cases, the assignment
is incompatible.

Assignments with incompatible types must be rejected by a language
analyser. Potentially compatible assignments pass analysis, but may result in
run-time failure. Compatible assignments are always legal from the type per-
spective. Only if generic class types are involved, a run-time subtype error
may occur. A digital circuit implementation ignores such errors.

5.3.4 Tags

In accordance with the considerations of section 4.3.2, Objective VHDL
manages for each polymorphic object and for each class-wide expression a
tag that determines its class membership. Users do not have to care for the
introduction and updating of this information. They can, however, obtain the
tag value that is associated with a class type. For this purpose, the VHDL
attributeTAG is pre-defined in Objective VHDL:

Predefined attribute: T’TAG

Kind: Value
Prefix: class type T
Result type: universal_tag
Result: the tag (type identifier) that corresponds to class type T

The TAG attribute can be applied to an object, too. If the object is polymor-
phic, i.e. declared with a class-wide type, this yields the tag that represents its
current class membership. For a non-polymorphic object declared with a
class type, the class type’s tag is returned:

Predefined attribute: S’TAG, V’TAG, C’TAG

Kind: Function
Prefix: signal S, variable V, or constant C of a class type or

class-wide type
Result type: universal_tag
Result: if S, V, or C is class-wide: current value of the object’s

type tag

Declaration and use of objects 101

if S, V, or C is of a (derived) class type: the type tag
that corresponds to the (derived) class type

The tag values have a type,universal_tag, that is predefined in Objective
VHDL. The following relational operators are predefined, too, allowing to
compare tags:

function “=“ (anonymous, anonymous : universal_tag) return Boolean;
-- A = B is true if A and B are the same tags; otherwise: false.
function “/=“ (anonymous, anonymous : universal_tag) return Boolean;
-- A /= B is defined as not (A = B).
function “<“ (anonymous, anonymous : universal_tag) return Boolean;
-- A < B is true if class B is derived from A and A /= B; otherwise: false.
function “>“ (anonymous, anonymous : universal_tag) return Boolean;
-- A > B (A is parent of B) is defined as B < A.
function “<=“ (anonymous, anonymous : universal_tag) return Boolean;
-- A <= B is defined as A < B or A = B.
function “>=“ (anonymous, anonymous : universal_tag) return Boolean;
-- A >= B is defined as A > B or A = B.

Note that these relational operators represent the partial order defined by the
inheritance tree, not a total order. Hence,not (A < B) doesnot imply A >= B
sinceA andB may be unrelated by inheritance.

Users can apply tag comparison, for instance, in order to determine at
run-time whether or not a potentially compatible assignment can be exe-
cuted. This allows to invoke user-defined error handling code instead of caus-
ing a simulation failure.

Objective VHDL does not permit the user-defined modification of tags.
The only way to change the tag value of a polymorphic object is by assigning
a state of another class to the object. In the course of such an assignment, tag
updating is performed automatically. The definition of a tag assignment oper-
ation would facilitate the user-defined manipulation of class membership.
This would not pose a problem to synthesis, but might impair the integrity of
the object’s internal state.

5.3.5 Message passing

In Objective VHDL, methods are procedures and functions declared in a
class construct. The following extension of VHDL’s procedure and function
calls enables the invocation of methods with an object, i.e., message passing:

102 Specifying Object-Oriented Synthesis Models in Objective VHDL

procedure_call ::=
procedure_name [(actual_parameter_part)] -- VHDL

| prefix . class_procedure_name [(actual_parameter_part)] -- new

function_call ::=
function_name [(actual_parameter_part)] -- VHDL

| prefix . class_function_name [(actual_parameter_part)] -- new

The prefix must be an object. As explained in section 5.3.1 and 5.3.2, this
includes signals, variables, constants, record elements, and array elements
declared with a class type or class-wide type. Inside a class construct, the
prefix this is pre-defined and can be used for expressing self-referentiation in
the sense of section 4.2.3. Moreover, inside a class, a method of the class can
be invoked without prefix by using the VHDL syntax of a procedure or func-
tion call. This corresponds to sending a message to theε reference of
section 4.2.3.

Methods declared in an object configuration for signal, variable, or con-
stant can be invoked only with signal, variable, or constant objects, respec-
tively. Methods declared in the common part of the class can be invoked with
any kind of object.

If the object designated by the prefix is polymorphic, dynamic binding as
defined in section 4.3.4 is applied. The same holds if the prefixthis is used.

As messages are being sent to a server object that is identified by a prefix,
a channel construct does not exist in Objective VHDL. However, channels
can be extracted from an Objective VHDL model: Each external server
object1 that is addressed by means of a prefixed method invocation from
within a client object requires a channel from the client to the server.

A client gets to know an external server object if the server is passed as a
method parameter to the client. Objective VHDL does not allow the client to
memorise its server by storing a reference to it in a reference variable. Hence,
at each method invocation, all server objects that might be required for exe-
cuting the method must be passed as a parameter. This has already been iden-
tified as a modelling inconvenience in [143][166] for a related OO-VHDL
dialect. We therefore suggest an extension of Objective VHDL’s class type
and derived class type declaration for a port clause:

class_type_declaration ::=
[abstract] class

[formal_generic_clause]

1. As opposed to an exclusively owned sub-object.

Declaration and use of objects 103

[formal_port_clause] -- suggested extension of Obj. VHDL
{ class_type_declarative_item }

end class [class_type_simple_name]

derived_class_type_declaration ::=
new [abstract] class class_type_name with

[formal_generic_clause]
[formal_port_clause] -- suggested extension of Obj. VHDL
{ class_type_declarative_item }

end class [class_type_simple_name]

This would allow to pass signal objects via ports to a client. The inheritance
of ports would be defined in analogy to generics by means of an effective
port list. A port map would have to be provided when an object of a port-
equipped class is declared. This is enabled by a suggested extension of sub-
type indications, analogous to their extension for generic maps:

subtype_indication ::=
[resolution_function_name] type_mark [constraint] -- VHDL

| [resolution_function_name] class_type_mark
[generic_map_aspect] -- Objective VHDL
[port_map_aspect] -- suggested extension to Obj. VHDL

The servers used by a client object, and hence the channels from the client to
its servers, are
• all objects that are passed as actuals in the port map of the instantiation of

a client object and
• all objects that are passed as actuals in the parameter association list of

any invocation of a method of the client object.
Note that an association of a port with a server object establishes an
unchanging connection of the client with a server. Hence, a port most closely
corresponds to the notion of a channel. On the other hand, in different invo-
cations of the same method of a client, different servers may be passed via
the same formal parameter. We deal with this situation by considering the
formal subprogram parameter as a pseudo object that only connects with the
actual object the method has been invoked with. This is channel switching as
in section 4.3.3, ensuring the staticness of channels.

5.3.6 Example

The following listing shows the declarations of classes,Producer andCon-
sumer, that use a polymorphic object of root classBuffer_t as a server. While

104 Specifying Object-Oriented Synthesis Models in Objective VHDL

the Producer class is connected to its server through a port declaration, the
consumer receives its server by parameter passing at each invocation of its
methodconsume.

The possession of a channel to a server, be it via a port or a method
parameters, enables the classes to request services from this server. In itspro-
duce method, theProducer issues aput request to place a token into the
buffer. TheConsumer, on the other hand, gets a token from the server in its
consume method.

Note that these classes may have additional methods to define the token
value that is produced and to obtain a token value that has been received.

type Producer is class
port (server : inout Buffer_t’CLASS);
class attribute token : Integer := 0;
for variable

procedure produce;
end for ;

end class Producer;

type Producer is class body
for variable

procedure produce is
begin

server.put(token);
end;

end for;
end class body Producer;

type Consumer is class
class attribute token : Integer := 0;
for variable

procedure consume(signal server : inout Buffer_t’CLASS);
end for ;

end class Consumer;

type Consumer is class body
for variable

procedure consume(signal server : inout Buffer_t’CLASS) is
begin

server.get(token);
end ;

end for ;
end class body Consumer;

Concurrency 105

In the following code excerpt, objects are instantiated and used. One poly-
morphic buffer object is declared as a signal,buffer_obj. Two producer
objects are declared as variables of a process and connected to the buffer by
their port map. A third client, a consumer object, is instantiated as another
variable. It receives its server by parameter passing. Hence, the object system
is characterised as follows:
• Objects:Ω = {server, producer_obj1, producer_obj2, consumer_obj}
• Channels:ζ = { (producer_obj1, server), (producer_obj2, server),

(consumer_obj, server) }

signal buffer_obj: Buffer_t’CLASS;

process
variable producer_obj1 : Producer port map (server => buffer_obj);
variable producer_obj2 : Producer port map (server => buffer_obj);
variable consumer_obj : Consumer;

begin
...
producer_obj1.produce;
producer_obj2.produce;
consumer_obj.consume(buffer_obj);
...

end process ;

5.4 Concurrency

In the previous example, the server object has been used only from within a
single sequential process. This section now addresses the description of con-
currently used objects in Objective VHDL. The language does not currently
provide features to support modelling of concurrent objects. The definition of
such features is desirable, but not subject of this work. Instead, we devise a
modelling scheme that allows to express the observation of guard expres-
sions and the choice of a scheduling policy for acceptable requests in Objec-
tive VHDL as it is.

While the approach of defining a modelling guideline is similar to [145],
our technical choices are different. While Schumacher explicitly describes
the details of inter-object communication using VHDL signals, this work
focuses on a description style that allows to rely on method calls for commu-
nication between concurrent objects. Furthermore, this work is unique in
enabling the choice of a scheduling strategy for acceptable requests. Most

106 Specifying Object-Oriented Synthesis Models in Objective VHDL

importantly, the modelling style presented here allows to transform request
scheduling and the observation of guard expressions into a hardware imple-
mentation.

5.4.1 Modelling of guard expressions

Variables can be declared and used only in sequential parts of a VHDL or
Objective VHDL model, whereas signals can be used concurrently. Hence,
concurrent objects must be modelled as signals. The observation of guard
expressions is therefore to be integrated into the method implementation for
signals. For this purpose, the following procedure is pre-defined in the
Objective VHDL language environment:

procedure guard(expression : Boolean);

The procedure shall be called only as the first statement of a method. If the
boolean expression is true, the procedure returns control to its calling
method. If the expression is false, the procedure quits the execution of the
calling method and re-queues the service request which has lead to the
method’s invocation. This means that the service request is suspended, but
not finished. It is considered again for execution when the object’s state has
changed.

We assume that a method implementation for variable objects exists. Our
modelling style delegates the implementation of a service to this implemen-
tation by copying the state of the signal object into a variable, executing the
implementation with this variable object, and writing the resulting state back
to the signal object. This not only saves the effort of re-writing an implemen-
tation for variables with signal semantics in mind. It also avoids the short-
comings of signal synthesis present in the high-level synthesis tool that we
use as a back-end.

The template of a method implementation for signal objects is shown in
the following listing. The method first checks whether the guard expression
is fulfilled. If this is not the case, the guard procedure quits the method’s exe-
cution and re-queues its execution request. Otherwise, the method proceeds
immediately. It copies the object’s state, designated by the predefined symbol
this, into a variable,object_copy, of the object’s own class type. The method
implementation for variable is executed with the copy and the parameter val-
ues that have been passed to its signal implementation. Finally, the modified
state of the variable is copied back to the signal object.

Concurrency 107

for variable , signal
procedure method(<parameters>);

end for ;
...
for signal

procedure method(<parameters>) is
variable object_copy : <class_type>;

begin
guard(<guard_expression>);
object_copy := this;
object_copy.method(<parameters>);
this <= object_copy;

end ;

end for ;

It should be emphasized that the guard procedure used in the above template
cannot be implemented in Objective VHDL nor VHDL. Instead, it has to be
implemented by the run-time system of an Objective VHDL simulator. Like-
wise, it has to be recognised and transformed into a hardware structure by the
Objective VHDL synthesis tool. Synthesis, as it will be presented in
chapter 7, can avoid the copy and copy-back operations. Hence, the tem-
plates do not incur hardware overhead in terms of redundant state bits or
unnecessary delay for data transfer.

A class-typed signal does not have to have a VHDL resolution function if
only guarded methods are invoked with it from multiple processes. The
guard mechanism replaces the VHDL resolution mechanism.

5.4.2 Scheduling policy

To enable the user-defined choice of a scheduling policy and even the user-
defined implementation of schedulers, a library namedSCHEDULERS is
defined. This library contains the following interface of a scheduler entity:

entity Scheduler is
generic (

no_clients : Positive;
req_bits : Positive);

port (
clk : in Std_logic;
reset : in Std_logic;
rdy : in Std_logic_vector(1 to no_clients);

108 Specifying Object-Oriented Synthesis Models in Objective VHDL

req : in Std_logic_vector(0 to no_clients * req_bits – 1);
s_done : in Std_logic;
grant : out Integer range 0 to no_clients);

end Scheduler;

This entity corresponds to the scheduler component shown in section 4.5.2. It
is parameterized with the number of clients,no_clients, that can be handled
by the scheduler and with the width,req_bits, of the request encoding.

The scheduler receives the following inputs:
• The clock signal,clk, and the reset signal,reset.
• The rdy signal, whosei-th bit is ’1’ if the request of thei-th client can be

accepted, and ’0’ otherwise.
• The req signal, organised as a one-dimensional array that carries the

requests from all the clients. The request of thei-th client is encoded in
the slicereq((i–1)*req_bits to i*req_bits–1). A two-dimensional organisa-
tion or an array of request vectors would be more natural. However, the
first is not synthesizable, and the latter does not allow a parameterization
of the request vector width. Hence, a flat representation had to be chosen.

• The done signal from the server,s_done.
The scheduler’s output,grant, is the number of the client whose request is
granted, or the value zero if there is no acceptable request or no request at all.

A second entity is defined to represent scheduling for guard expressions
which only depend on the server’s state, but not the service input parameters.
As discussed in section 4.5.2, this requires anrdy signal whosei-th bit is ’1’
if the request encoded with the binary valuei can be accepted, and ’0’ other-
wise. The other inputs and outputs are the same as above:

entity Scheduler_State_Only is
...

rdy : in Std_logic_vector(0 to 2**req_bits – 1);
...

end Scheduler_State_Only;

The implementations of scheduling strategies are provided as architectures of
the scheduler entity, e.g.:

architecture Round_Robin of Scheduler is
begin

...
end Round_Robin;

Concurrency 109

These implementations can be in Objective VHDL, behavioural VHDL, or
RTL VHDL, but must be synthesizable. Alternatively, a gate level implemen-
tation can be provided.

The VHDL attributeSCHEDULING allows to specify the scheduling pol-
icy to be used for a concurrent object. This attribute can be imported from the
library SCHEDULERS, or can be declared locally by the user:

attribute SCHEDULING : String;

A scheduling policy is chosen for a concurrent object by specifying a sched-
uler architecture name as the string value of the object’sSCHEDULING
attribute; for example:

attribute SCHEDULING of buffer_obj : signal is “Round_Robin“;

5.4.3 Implementation of schedulers

The following scheduling policies, respectively scheduler architectures, have
been implemented and are included in theSCHEDULERS library:
• Static_Priority: For each client, a unique priority is defined. Of all accepta-

ble requests, the one that comes from the highest-priority client is granted.
• Round_Robin: The clients are organised in a circular order. The search for

the next request to be served begins from the client after the client whose
request has been served before. The first acceptable request found is exe-
cuted.

• Enhanced_Round_Robin: This strategy takes into account clients that
have a temporarily unacceptable request. If such client is found during the
round robin scheme, it is memorised and given the highest priority next
time; i.e., the next search starts from this client. This helps to avoid starva-
tion of requests that are disabled by other requests (cf. section 4.5.3).

The source code of the above schedulers is listed in appendix F. It should be
emphasized that the user can implement additional scheduler architectures
such as the ones explained below. Likewise, it would be possible to integrate
scheduler entities with modified interfaces, e.g. for supplying external priori-
ties, into the synthesis system.
• Equal_Priority: All requests have the same priority, regardless of the issu-

ing client or the service that is requested. If two or more requests are
present at the same time, one of them is chosen arbitrarily. This choice is
not to be understood as random in the sense that different services or dif-
ferent clients are preferred at different points in time during system opera-
tion. Instead, the synthesizer performs the arbitrary choice statically such

110 Specifying Object-Oriented Synthesis Models in Objective VHDL

that always the same client is preferred at run-time. Only the static choice
of this client is arbitrary. A user can implement a random, dynamic strat-
egy by including a pseudo-random number generator in the scheduler.

• First_Come_First_Serve: The oldest acceptable request is chosen for exe-
cution. This requires to queue requests in the order of their arrival.
Requests that arrive in the same clock cycle are queued in an arbitrary
order.

5.4.4 Example

To illustrate the specification of guard expressions and delegation of service
execution to a service implementation for variable objects, we now provide
the signal implementation of the methodsput andget of classLIFO:

for signal

procedure put(val : in Integer) is
variable object_copy : LIFO;

begin
guard(not is_full);
object_copy := this;
object_copy.put(val);
this <= object_copy;

end ;

procedure get(val : out Integer) is
variable object_copy : LIFO;

begin
guard(not is_empty)
object_copy := this;
object_copy.get(val);
this <= object_copy;

end ;

end for ;

An analogous implementation ofput andget can be provided for classFIFO.
Now a buffer object can be used from several, concurrent client objects (cf.
section 5.3.6) as shown in the following code excerpt. The buffer object is
instantiated as a signal and a user-defined scheduling policy is specified. Two
producers and one consumer are instantiated. The producers are connected to
their server object by port mapping. The consumer, on the other hand,
receives the server upon invocation of itsconsume method. Note that each of

Objective VHDL tool architecture 111

the three clients receives its individual thread of computation from one of the
three different processes that invoke the clients’ methods.

signal buffer_obj : Buffer_t’CLASS;
use SCHEDULERS.DECLARATIONS.SCHEDULING;
attribute SCHEDULING of buffer_obj : signal is “My_Own_Policy“;

signal producer_obj_1 : Producer port map (server => buffer_obj);
signal producer_obj_2 : Producer port map (server => buffer_obj);
signal consumer_obj : Consumer;
...
-- in some process:
consumer_obj.consume(server => buffer_obj);
-- in another process:
producer_obj_1.produce;
-- in yet another process:
producer_obj_2.produce;

5.5 Objective VHDL tool architecture

Synthesis of Objective VHDL models has to be integrated into the existing
Objective VHDL tool architecture [125]. An overview of a complete synthe-
sis flow is shown in figure 27:

Fig. 27: Objective VHDL tool architecture

Objective
VHDL
sources VHDL

sources

LEDA LVS
analyser

OO
VIF VIF

LEDA LVS
reverse analyser

Objective VHDL
Translator System

LPI
LPI

debugging

VHDL simulator
Synopsys
Behavioral
Compiler

Synopsys
Design
Compiler

Gate
netlist

+ Synthesis mode
Objective VHDL

libraries VHDL libraries

112 Specifying Object-Oriented Synthesis Models in Objective VHDL

The Objective VHDL tool architecture is based on the LEDA VHDL Sys-
tem (LVS) available from LEDA S.A. The LVS is a VHDL compilation and
library management system. It has been extended for Objective VHDL.

Objective VHDL source code is first analysed with the LVS analyser
[93]. This compiler front-end performs lexical, syntactic, and semantic anal-
ysis. If an Objective VHDL model is legal in the sense of the language defi-
nition, it is stored in a library according to VHDL’s library concept.

The library format, OO-VIF (Object-Oriented VHDL Intermediate For-
mat), is a data structure that represents the abstract syntax tree of the Objec-
tive VHDL source code [95]. This tree is annotated with information that has
been gained during semantic analysis. The data structure can be held in
memory as well as in a persistent file. Its data definition can be extended by
tool builders so as to enable the storage of additional, tool-specific informa-
tion.

Library contents can be accessed through the LPI (LEDA Procedural
Interface) [96]. The LPI allows not only to read, but also to augment and
modify model information. These capabilities are used in the Objective
VHDL Translator System to transform all object-oriented constructs of a
model into equivalent VHDL. The result is a pure VHDL library in the
VHDL Intermediate Format (VIF) [94].

The translator system consists of a translation engine and a partial Objec-
tive VHDL elaborator. In its regular mode of operation, it generates a VHDL
model that is as close as possible to the original Objective VHDL. This main-
tains the original model’s semantics and eases the user’s understanding of the
model’s simulation. The implementation of a synthesis mode allows to gen-
erate a VHDL model that is suitable for processing with synthesis tools. The
details of synthesis mode optimizations and translation are presented in the
following chapters.

It is important to note that translation is performed with an analysed, but
not yet elaborated Objective VHDL model. This necessitates performing
some elaboration tasks in the translation system. However, elaboration in
general is a difficult task as it requires the evaluation of functions which can,
e.g., be used for calculating generic values. This, in turn, necessitates the
interpretation of VHDL’s sequential statements and declarations as these can
occur in functions. To avoid the enormous complexity of these tasks, it is
important to delegate most elaboration to the elaboration engines of the
VHDL tools (simulators and synthesizers) which are used as back-ends after
translation.

Summary 113

The information stored in the VHDL library can be transformed back into
VHDL source code by using the reverse analyser which is a part of the LVS.
These sources can be imported into VHDL simulation environments. Simula-
tion allows to find logical errors that let a model’s behaviour deviate from the
desired functionality. If this is the case, the Objective VHDL code must be
corrected and the translation process has to be iterated, as indicated by the
debugging arc in figure 27.

VHDL code that has been generated after synthesis mode translation can
be processed with synthesis tools. In this work, the Behavioural Compiler
and Design Compiler from Synopsys are used. Synthesis translation takes
into account the specific coding styles and workarounds required. The choice
has been guided primarily by the availability of these synthesis tools to the
author and by preferences of project partners.

The tools involved in the translation process from Objective VHDL into
VHDL, i.e., analyser, translation system, and reverse analyser, are integrated
under a common shell. Thereby, the details of tool interaction via VIF and
LPI are hidden from the users.

5.6 Summary

The use of Objective VHDL facilitates the definition of a system of concur-
rent objects and their communications. We have shown how classes and
objects can be defined in Objective VHDL under utilisation of inheritance
and polymorphism. The combination of the object-oriented features with
VHDL’s qualities for static hardware description allows us to model objects
and their communication channels in the static way required by the meta-
model presented in chapter 4.

Moreover, we have devised an integration of the concept of guarded
methods into our approach. Since Objective VHDL does not currently pro-
vide guards, an integration via a package has been suggested that enables us
to specify guard expressions and extract them for the purpose of synthesis.
Thanks to the guarded methods, inter-object communication between con-
current objects is as simple as a subprogram call prefixed by the name of an
object, i.e., a signal or port declared with an object-oriented type.

The hardware implementation of all these concepts is to be addressed in
the following chapters. We first present the application of data flow analysis
techniques for determining optimization potential related to object-oriented
constructs and their use.

114 Specifying Object-Oriented Synthesis Models in Objective VHDL

Chapter 6

Analysis and Optimization of Object
Systems 6

The flexibility of object-oriented modelling, permitting the addition and
modification of functionality and the extension of existing systems, is traded
in for a certain overhead. Concepts such as polymorphism and dynamic bind-
ing require run-time mechanisms for their implementation. In software, these
are virtual table lookup operations, for instance. Similar overhead can be
observed in a hardware implementation as we will explain in the following
section.

To reduce the overhead, optimizations may be performed. This, however,
requires to collect information in a preceding analysis step. We will apply
data flow analysis techniques in order to narrow down the set of classes (or
tags) that can become relevant at certain places during system operation. To
this end, we present syntax-directed data flow analysis for extracting infor-
mation on how tags are propagated in a system. In a further step, we utilise
fixed-point iteration techniques in order to compute the worst case distribu-
tion of tags. Similar techniques are developed for determining tags which do
not need to be distinguished, leading to further optimization potential.

6.1 Optimization of polymorphic objects

In this section, we illustrate the need for optimizations with the example of
data types present in a microprocessor model. We outline approaches for
determining their propagation in the system and explain the optimizations
which are enabled thereby.

116 Analysis and Optimization of Object Systems

6.1.1 Motivation

As defined earlier, a polymorphic object must be able to take on the class
membership and state of its root class and any class derived from it which is
not abstract. The encoding of tags and states has been defined so that this is
possible, and dynamic binding takes into account all redefined versions of a
method. However, this is not always needed during system operation since
some polymorphic objects might not take on all possible class memberships.
For instance, consider a reuse library with a large tree of derived classes
which are used in different projects. It is likely that, even if some classes are
shared between projects, not all these classes are used in every single project.
If a polymorphic object of the base class of this inheritance hierarchy is syn-
thesized to be compatible with all these classes, a large hardware overhead
results.

Another example are the data types that may occur in a single microproc-
essor model (see figure 28): Basically, there are instructions and operands.
An Instruction object may have zero, one, or two operands as exclusively
owned sub-objects. AnOperand may be anAddress or aValue. An Address
may address a register (RegAddr) or a memory location (MemAddr). Like-
wise, there are different types of values, e.g.Byte andWord.

Polymorphism comes into play when related classes have to be handled
in a uniform way. For instance, an attribute,op[], that represents the operand
sub-objects of an instruction may either be an address or a direct value.
Hence, it must be able to take on the state not only of classOperand, but of
all classes derived fromOperand, too. Similarly, we want to store both,
instructions and operands, in a memory. To this end, we derive both from a
common parent class,Object, and declare the memory so as to store
instances of classObject and all derived classes (cf. figure 29). An instruc-

Fig. 28: Inheritance hierarchy of microprocessor data types

Object

Instruction

Operand
Value

Address

RegAddr

MemAddr

Byte

Word

1

0-2

. . .

Optimization of polymorphic objects 117

tion register is another example; it should be able to contain any concrete
instruction such asLOAD or ADD derived from classInstruction.

Conceptually, a memory declared polymorphic with root classObject
must be able to store also any class derived fromObject. However, some
classes might, according to the data flow, occur only in some part of the sys-
tem. For instance, in the memory, and in the register file as well, there never
is a register address if this class only occurs as part of an instruction. Or, in a
RISC processor [65], the operand within an instruction may only be of class
RegAddr, notMemAddr. The aim of the following considerations is to utilise
the resulting optimization potential.

6.1.2 Analysis approaches

The set of classes which actually have to be represented by a polymorphic
object can be narrowed by a couple of approaches discussed in this section.
The approaches are different in sophistication and represent a trade-off
between analysis complexity and effectiveness.

The simplest analysis method is to determine all classes that are instanti-
ated in a model. This can be done easily by inspecting the class types used in
the declaration of objects. Only these classes, of which objects actually
appear in a model, have to be considered when synthesizing a polymorphic
object. This is still overly pessimistic since individual polymorphic objects
may be limited to different, more narrow class memberships.

The global approach can be refined by considering the distribution
boundaries of objects. For instance, an Objective VHDL design entity encap-
sulates its interior by allowing data transfer only via its ports. Hence, a class
type used for declaring an object inside an entity can make an impact outside

Fig. 29: Data flow in a microprocessor model

Memory (MEM)

Register File (RF)

Address Register (AR)

Instruction Register (IR)
Instruction’CLASS Operand’CLASS

Address’CLASS

Object’CLASS
source sink

118 Analysis and Optimization of Object Systems

that entity only if an interface port is declared with the class type, a class-
wide type that includes the class, or a composite type that includes an ele-
ment of the class. An analysis method could differentiate the sets of class
types used in such encapsulated components of a model.

The most detailed approach considers each polymorphic object individu-
ally. The distribution of class memberships has to be determined by follow-
ing the assignments to polymorphic objects. This can be done in the form of
static analysis by applying data flow analysis techniques. While these still
incorporate worst-case considerations, results much more precise than from
the other approaches can be expected. Therefore, data flow analysis of poly-
morphic objects is pursued in the following sections.

It would be possible to gain class membership information by profiling
model execution (simulation), too. However, we can hardly ensure that simu-
lation is exhaustive, i.e., that all possible assignments to polymorphic objects
are executed. Hence, this method can be too optimistic and lead to failures
when the synthesized system runs into a situation that has not been simu-
lated. This is the reason for not implementing a profiling approach.

6.1.3 Optimization potential

Assume that the set of class memberships which a polymorphic object
with root classR can actually take on during system operation isTi. This
allows to implement the following optimizations, individual to an object, in
the synthesized model:
• Instead of all non-abstract classes derived fromR, including R (cf.

equation 23), the state space of the polymorphic object has to comprise
only the classes :

(56)

• State space encoding (cf. equation 38–41) needs to consider only the
classes in . This helps to save state bits, particularly if unused leaf
classes with many attributes are omitted from the encoding. Moreover,
less tag bits may be required:

(57)

• The latest redefinition of a method with respect to a classC may not have
to be implemented forobji if the object cannot actually become a member
of classC, i.e., . Note, however, that the same method version may
be the latest redefinition for another class. Hence, a method redefinition

ob ji

Ti

S ob ji() c{ } S× c() Types Values×⊆
c Ti∈

.∪=

Ti

b ob ji() bTag Ti() max b c() c Ti∈{ }+=

C Ti∉

Data type analysis 119

can be omitted from implementation only if it is not the latest redefinition
with respect to any class out of .

6.2 Data type analysis

We call the task of determiningTi, the set of classes whose membership an
objectobji may have to take on during system operation, data type analysis.
The first step towards data type analysis is to construct a graph that repre-
sents the propagation of class types via assignments. Classic data flow analy-
sis techniques are applied to reduce the pessimism in this process.

6.2.1 Data flow analysis techniques

Data flow analysis (DFA) has been developed for application in optimizing
compilers of programming languages [3]. One major task of data flow analy-
sis is to find the set ofdefinitions of a variable that reach a location where the
variable is used. A definition, in DFA terminology, is the potential execution
of an assignment to a variable. It is reaches (is effective at) a location in a
program (program point) if a program path from the definition to that loca-
tion exists on which no other assignment to the same variable invalidates
(kills) the previous definition. Note that multiple definitions can be effective
at a location to which multiple paths exist.

In structured programs, i.e., programs that are composed of elementary
statements, sequences of statements, conditional statements, and loops, the
propagation of definitions can be computed by induction over the program
structure. Formulations for more general programs with arbitrary jumps are
based on a control flow graph representation. Propagation of definitions is
performed while reducing the control flow graph by applying certain trans-
formations (interval analysis). Splitting of vertices or the application of
fixed-point iteration techniques allows to deal with otherwise irreducible
control flow graphs at the cost of increased analysis effort. An overview of
these techniques can be found in [81].

The knowledge of reaching definitions enables various optimizations,
including the extraction of invariants from loops, removal of redundant cop-
ies, and elimination of interdependent induction variables. DFA has been
applied in order to gain structural type information from programs in untyped
languages, too [3]. This problem has been identified as difficult as the set of
possible data structures is infinite. For instance, an untyped variable may be

Ti

120 Analysis and Optimization of Object Systems

assigned a scalar value, an array of scalars, an array of arrays of scalars, and
so on infinitely.

The problem covered in this work is simpler, but different: The declara-
tion of polymorphic variables with a class-wide type already narrows its pos-
sible types to the root class of polymorphism and the finite set of classes
derived from it. Furthermore, type identifiers, but not the type structure, need
to be considered. Still, our specific DFA application has not been addressed
before to the best of our knowledge. It is irrelevant for compilers of object-
oriented programming languages thanks to their reference semantics of
object polymorphism. Pointers are of the same size regardless of what they
reference. Only the hardware-specific value semantics makes our analyses
necessary to reduce the size of a polymorphic object’s state vector.

We apply standard DFA techniques to determine definitions of polymor-
phic objects that are used only in a single sequential model segment. In
Objective VHDL, these objects are declared as variables. Their treatment is
tailored to our need, which is to build up a definition-use graph that repre-
sents the propagation of class types which is caused by assignments. DFA
helps to differentiate between individual definitions and, hence, different
class membership sets of the same polymorphic object when this object is
used at different locations.

The analogue is not possible for concurrently used objects, which are
declared as signals in Objective VHDL. The interleaving of assignments
from several, concurrent processes cannot be predicted statically. Hence, it is
hardly possible to narrow down the set of definitions which reach a certain
location in a model’s source code. We must make the worst-case assumption
that all definitions of a concurrently used object are effective at any location.
Pessimism could be reduced by applying DFA to the definitions and uses of
concurrent objects in the same process. However, definitions from other
processes must still be considered as effective at any location of the process
under examination. Respective analysis methods have been developed in
[69][70] for signals which are assigned only from a single process. They take
into account the complication that signal assignments with delta delay do not
become effective immediately after the assignment, but after the next wait
statement in the control flow. However, assignments with larger-than-delta
delay are not covered.

6.2.2 Notations

Basic to the presentation in this work are the following terms:

Data type analysis 121

• The set of all polymorphic objects that are used sequentially only, e.g.,
Objective VHDL variables of a class-wide type:

(58) .

• The set of polymorphic objects that are potentially used from different
concurrent domains, e.g., Objective VHDL signals of a class-wide type:

(59) .

• The set of all definitions of polymorphic objects,Defs, that occur in the
model under analysis.

• The definition vector, , whosei-th elementDi is
the set of definitions or types of thei-th sequential polymorphic object,

, that reach the program point under examination. The
inclusion of types allows to propagate a type instead of a definition if the
type can already be determined during DFA.

• The empty definition vector, , whose elements are empty sets.
• Theconstraint vector, , whosei-th element is the maxi-

mal set of types to be contained by the sequential polymorphic object
, i.e. its root class of polymorphism and all non-abstract derived

classes.
• An analogous constraint vector, , defined for the concur-

rent polymorphic objects.
In the remainder of this chapter, only class types and derived class types need
to be considered so thatTypes can be narrowed accordingly.

During DFA, an edge- and vertex-valued directed graphG = (V, E, T, µ)
with the following properties is constructed:
• The vertices,V, are concurrent objects and definitions of sequential

objects, plus a dedicated entry vertexe: .
• The edges, , represent assignments by which types are propa-

gated.
• Edges are attributed with type constraints. These are defined by the map-

ping from the set of edges into the power set of
types. The constraint is the set of types that can be propagated
from vertexv1 to v2 via the edge .

Ωpoly
s

ob ji
s

i 1 … ns, ,=
 
 
 

Ω⊆=

Ωpoly
c

ob ji
c

i 1 … nc, ,=
 
 
 

Ω⊆=

D ℘ Defs Types∪()
ns∈

obji
s Ωpoly

s∈

D ∅=
C

s ℘ Types()
ns∈

ob ji
s

C
s ℘ Types()

nc∈

V Ωc
Def s e{ }∪∪⊆

E V V×∈

µ : E ℘ Types()→
µ v1 v2,()

v1 v2,()

122 Analysis and Optimization of Object Systems

• Vertices are attributed with type sets by a mapping .
The value is the set of possible class memberships ofv. Its computa-
tion is addressed in section 6.3.

For example, the following sets and vectors may correspond to figure 28 and
figure 29:
• = {AR}, = {IR, MEM, RF}.
• Types = {Object, Instruction, Operand, Address, RegAddr,

MemAddr, Value, Byte, Word }.
• CRF = {Operand, Address, RegAddr, MemAddr, Value, Byte,

Word} (CRF: element ofC corresponding to RF).
• T(RF) = { MemAddr, Byte, Word } as analysis result (see section 6.3.5).

6.2.3 Definitions

This section describes the construction of the graphG according to the defi-
nitions found in a model. A definitiond, in the sense of DFA, of a polymor-
phic object can be caused by the assignment of another object’s state, the
assignment of the evaluation result of a class-typed or class-wide expression,
and the association of the object as an actual parameter to a formal output
parameter of a subprogram or method. Respective definitions of a polymor-
phic object, , are depicted in figure 30. We first investigate the direct
assignment from object to object.

As mentioned previously, individual definitions are distinguished only for
sequential objects. Hence, sequential and concurrent target objects and
source objects are treated in different ways. We first consider a sequential tar-
get object, , and distinguish the following cases according to
the source of assignment:
1) The source is a non-polymorphic object of classt (see figure 31, case 1).

The assignment defines the target to be a member of classt. Any previous
definitions are killed. Hence, we update the corresponding element,Di, of
the definition vector with the class typet. A definition vertex for repre-

Fig. 30: Definition of an object

T : V ℘ Types()→
T v()

Ωpoly
s Ωpoly

c

ob ji

Direct assignmentS

Din

Dout

d : ob ji ob jj←

Procedure callS
Din

Dout

d : modify ob ji()

Expression assignmentS

Din

Dout

d : ob ji result←

ob ji Ωpoly
s∈

Data type analysis 123

senting the assignment of class types still to be determined does not have
to be created.

2) The source is a concurrent polymorphic object, (see
figure 31, case 2). Individual definitions of this object are not distin-
guished; there exists only a global vertex, , that comprises all its
definitions. An edge from this vertex to the current definition,d, is estab-
lished and attributed with the target object’s constraint:

(60) .

As the current definition,d, becomes effective for the target object, the
corresponding element of the definition vector is overwritten:Di := {d}.

3) The source is another sequential polymorphic object, (see
figure 31, case 3). Its definitions are stored in the elementDj of the defini-
tion vector. DFA actions depend on these definitions:

- If no definitions of the source object are known yet (), e.g. at the
start of analysis or during the analysis of loops, a vertex that represents
the definition,d, of the target object is created. The target object’s defini-
tion set,Di, is updated with this definition:Di := {d}.

- If Dj includes only class types, i.e., the class types of all definitions of the
source object are known, no definition vertex needs to be created. Only
the class types,Dj, with which the source may be defined are adopted as
the definitions,Di, of the target object to the extent its constraint, ,
allows an assignment of these types: .

- If Dj includes definitions, a new vertex that represents the definition under
analysis, , is created unless it already exists in the graph. Edges are
created from each source definition, , tod, and are attributed with
the target object’s constraint, :

(61) .

Note that the intersection withDefs leaves all types that might be inDj out
of consideration. Instead, these types are added to the set of known types
of definitiond. This requires to create an edge (e, d) from the entry vertex
e to vertexd, attributed with the initial value , unless the
edge already exists in the graph. The types, determined by intersectingDj
with , are added to this edge: .
Finally, the definitiond becomes the new effective definition of the target
object by overwriting the corresponding element of the definition vector:

.

ob jj Ωpoly
c∈

ob jj V∈

ob jj d,() E with µ ob jj d,()∈ Ci
s

=

ob jj Ωpoly
s∈

D j ∅=

Ci
s

Di := D j Ci
s∩

d V∈
s Dj∈

Ci
s

s Dj Defs : s d,() E andµ s d,()∈∩∈∀ Ci
s

=

µ e d,() := ∅

Ci
s µ e ob ji,() := µ e ob ji,() D j Ci

s∩()∪

Di := d{ }

124 Analysis and Optimization of Object Systems

The definition of a concurrent polymorphic object, , is han-
dled similarly with respect to the different possible sources. However, as no
individual definitions are considered, a global vertex representing all defini-
tions ofobji takes the place of an individual definition vertex. Moreover, the
updating of a definition vector is not applicable. The definition variants (see
figure 32) can be summarised as follows:
1) If the source is a non-polymorphic object of classt, this class type is

added to the target object’s known types: .
2) If the source is a concurrent polymorphic object, an edge from the source

to the target object is created, being attributed with the target’s constraint.
3) If the source is a sequential polymorphic object, all types with which it

may be defined and which comply with the target object’s constraint are
added to the target’s known types: .
All definitions of the source objects are linked to the target object via an
edge that is attributed with the target’s constraint.

We now take into account definitions that involve the assignment of an
expression or output parameter. An expression can be handled like a function
call, particularly in Objective VHDL, where all operators that occur in an
expression are defined as functions. If the function’s return type or output
parameter type is non-polymorphic, the definition of the target object is dealt
with as above. For a function or parameter that returns a class-wide type we
could assume the worst case, that is, the target may be defined with any class
that belongs to the class-wide type. A less pessimistic estimation requires the
examination of the expression or procedure to narrow down the set of possi-
ble return types.

Fig. 31: DFA actions for sequential polymorphic object as assignment target

d ..
.

d1

dn

Dj = { t1, ...,tm, d1, ...,dn}

Di := {d} or Di := { t1, ...,tm}

d : ob ji
s

ob jj
s←3)

µ e d,()
e

Ci
s∩

Ci
s∩

Ci
s

Ci
s

d objj

Di := { t}

d : ob ji
s

object of classt←

d : ob ji
s

ob jj
c←

1)

2)

Di := {d}

Ci
s

ob ji Ωpoly
c∈

µ e ob ji,() := µ e ob ji,() t{ }∪

µ e ob ji,() := µ e ob ji,() D j Ci∩()∪

Data type analysis 125

This leads to interprocedural data flow analysis, which means to observe
the subprogram call hierarchy, to provide inputs for the data flow analysis of
called subprograms, to analyse these called subprograms, and to transfer
DFA results back for further consideration at the location where the subpro-
gram has been invoked. Respective techniques are explained for Objective
VHDL’s hierarchy structures in section 6.2.6.

6.2.4 Consideration of control flow

In the previous section, only single definitions have been taken into account.
We now consider the control flow of the program for global data flow analy-
sis. To this end, we understand the effect of a statement as a transformation
of the definition vector. LetDin be the definition vector at the location before
a statement. The analysis of a statementS yields the definition vectorDout

which is valid immediately after the statement:Dout = S(Din).
The analysis of a definition of a sequential polymorphic object has been

examined in the previous section. The view is now extended to control struc-
tures of which structured sequential algorithms are composed: sequences of
statements, conditional statements (alternatives), and loops (see figure 33).
Recall that a similar analysis cannot be made for concurrent objects, which
are handled in a more pessimistic way by not distinguishing definitions.
• In a sequence,S, of a statementS1 followed byS2, the definition vector

created by the first statement,D = S1(Din), is the input to analysis of the
second statement. Hence, the result of the sequential analysis of both
statements is obtained asDout = S(Din) = S2(D) = S2(S1(Din)). An exten-
sion to sequences ofn statements, , is obvious:

Fig. 32: DFA actions for concurrent polymorphic object as assignment target

obji ..
.

d1

dn

Dj = { t1, ...,tm, d1, ...,dn}

d : ob ji
c

ob jj
s←3)

µ e ob ji,()
e

Ci
c∩

Ci
c

Ci
c

obji objj

d : ob ji
c

object of classt←

d : ob ji
c

ob jj
c←

1)

2)

obji
µ e ob ji,()

e

Ci
c

S1 … Sn, ,

126 Analysis and Optimization of Object Systems

(62) .
• The alternative of two statements,S1 andS2, is described by a control

flow that branches to either of the statements, and reconverges thereafter.
This corresponds to an if-then-else statement. While only one of the alter-
natives is taken each time the statement is executed, we cannot statically
determine which. Furthermore, both branches may be chosen when con-
sidering multiple executions of the alternative statement. Hence, a con-
servative analysis of the definitions that reach the location after the
statement must include the definitions fromS1 and from S2:

, where the union operator is ele-
ment-wise for the definition vector. DFA can be implemented by analys-
ing S1 andS2 independently and merging the results. An if statement
without else branch can be represented by definingS2 as an empty state-
ment withS2(Din) = Din. An extension to case statements withn alterna-
tives, , is possible:

(63) .

• Finally, a loop statementS shall be considered. The definition vector
 generated by the statements inside the loop may be propagated

back to its start when the loop is iterated. is therefore used in addi-
tion toDin as input to the analysis of the inner statementS1. The result is
the vector of all definitions which may be valid after one or more itera-
tions of the loop. An implementation first analyses the loop interior with
an empty input definition vector, merges the generated definitions with the
definition vector that is valid before the loop, and uses the result for ana-
lysing the iterated statement a second time. A while or for loop, which

Fig. 33: Control flow in structured programs

S1

S2
S1 S2 S1

Alternative SSequenceS Loop S

Din

DinDin

Dout DoutDout

D

D
out

S D
in() Sn …S2 S1 D

in()()…()= =

D
out

S D
in() S1 D

in() S2 D
in()∪= =

S1 … Sn, ,

D
out

S D
in() Si D

in()
i 1=

n

∪= =

S1 ∅()
S1 ∅()

Data type analysis 127

may not be entered at all, can be handled by adding an unmodifiedDin to
cover the case of bypassing the loop.Dout follows as:

(64)

We finally remark thatprocess statements, which are restarted after their last
statement, are handled like infinite loops by Objective VHDL DFA.

6.2.5 Unstructured control flow

VHDL and Objective VHDL provide a couple of statements that do not com-
ply with the notion of structured programs. Thereturn statement allows to
complete the execution of a subprogram, including a method, by leaving its
control flow at an arbitrary location rather than its end. Loops can be quit
from within their interior by theexit statement. Thenext statement jumps
back to the beginning of a loop. Things are further complicated by the possi-
bility to use these statements for jumping across loop boundaries of nested
loops as it is shown in the following listing. DFA techniques have to be
extended so as to cope with these features.

As opposed to arbitrary goto statements, which are not available in VHDL,
the loop and subprogram control statements allow to maintain a syntax-
directed approach to DFA by adapting a programming trick reported in [3].
Alternatives are to perform fixed point iteration of data flow equations during
analysis or to apply interval analysis on an explicitly generated control flow
graph. However, as the intermediate format used in this work is an abstract
syntax tree, the syntax-directed approach is the most convenient to follow.

Figure 34 shows the control flow caused by areturn , exit , or next state-
ment, respectively. All these control statements have in common that they
break the normal control flow by jumping to a defined location: the end of a
subprogram, end of a loop, or beginning of a loop, respectively. As indicated
by the no entry symbol, any following statements cannot be reached via a

D
out

S D
in() S1 D

in
S1 ∅()∪() D∪ in

, unentered loop= =

outer_loop: while loop_condition loop
inner_loop: for loop_range loop

:
next outer_loop when next_condition;
exit outer_loop when exit_condition;

:
end loop ;

end loop ;

128 Analysis and Optimization of Object Systems

path that includes such control statement. They can, however, be reached by
alternative control flows suggested by the dotted lines.

As program execution is not continued after a control statement, no defi-
nitions can be propagated to the following statements. Hence, we specify

 for return , exit , andnext statements.
However, the definitions that reach one of these statements are propa-

gated to a known target location. As the control flow to this location does not
correspond to the program structure, we cannot express propagation in the
framework of syntax-directed analysis. Instead, we store these definitions in
global variables for later consideration. This allows us to deal with multiple
control statements, too, e.g. multiple return statements of a subprogram:
• For each subprogramS, a vector of definitions propagated byreturn state-

ments, , is defined and initialised empty at the beginning of anal-
ysis. All definitions that reach areturn statement are added to this vector:

.
• In analogy, vectors of definitions propagated byexit andnext statements,

 and are defined and initialised empty for each loopL. Defi-
nitions that reach anexit statement are added to , and definitions
that reach anext statement are added to .

• A next statement in a loop with a condition that is evaluated at the begin-
ning of the loop (i.e., VHDLfor andwhile loops) may in addition have
the same effect as anexit statement. After the jump to the loop start, the
condition may be evaluated as false, and the loop be quit in consequence.
Hence, definitions that reach anext statement of such a loop must be
added to , too.

Fig. 34: Control flow ofreturn , exit , andnext statements

return exit L

...
......

...

next L

...
...

end L

L : loopL : loop

end L

subprg S

end S

Din Din Din

DS
return

DL
exit

DL
next

D
out ∅=

DS
return

DS
return

:= DS
return

D
in∪

DL
exit

DL
next

DL
exit

DL
next

DL
exit

Data type analysis 129

These special definition vectors have to be taken into account when comput-
ing the output definition vector of a subprogram or loop, respectively:
• The definitions are propagated to the end of a subprogramS in

addition to the definitions which reach the subprogram’s end via
the normal control flow. Hence,

(65) .

• Similarly, the definitions reach the end of the loopL in addition to
those of equation 64. Finally, the definitions are propagated to the
beginning of the loopL, where they add to the definitions that are input to
the loop. The DFA equation for loops (cf. equation 64) is therefore re-
written as:

(66)

Only unconditional control statements have been considered up to now.
VHDL’s next andexit statements, however, can include an optional condi-
tion under which they are executed. This can be analysed after a conceptual
transformation into an unconditionalexit or next that is nested into anif
statement:

exit L when condition; => if condition then exit L;
next L when condition; => if condition then next L;

6.2.6 Interprocedural and hierarchical analysis

VHDL offers two sorts of hierarchical modelling to the designer. First,
design hierarchy can be described through instantiation of design entities
(entity-architecture pairs). These instances are concurrent with respect to
another. Second, functional decomposition into subprograms that call other
subprograms is provided. We can understand the execution of an invoked
subprogram as an instance of that subprogram. As opposed to entity instanti-
ation, a subprogram instance is sequential with respect to the subprogram
from which it has been invoked.

With each call to a subprogram or instantiation of a design entity, differ-
ent actuals may be passed to the formal parameters or ports, respectively. We
take this fact into account through aninstance tree(see figure 35) that corre-
sponds to instantiation and call hierarchies. Each node (instance) has its own
data structures for DFA so that different instances can be analysed independ-
ently. Global signals declared in packages are taken into account through a
list of used packages at the root of the instance tree.

DS
return

S D
in()

D
out

S D
in() DS

return∪=

DL
exit

DL
next

D
out

S1 D
in

S1 ∅() DL
next∪ ∪() DL

exit
D

in∪[]∪=

130 Analysis and Optimization of Object Systems

The connection between an instanceI and the higher level in hierarchy,
H, is through interface objects (i.e., formal subprogram parameters and entity
ports). If such interface object is an input parameter or port, it is defined with
the assigned actual parameter. If it is an output, its association with an actual
parameter causes a definition of that actual. Bidirectional interface objects,
i.e., ports or parameters declared asinout in Objective VHDL, is dealt with
by two definitions, one in each direction. Thereby, connection between the
instances is established. The flow of data types through the interface objects
is computed by a fixed-point iteration algorithm (see section 6.3).

Recursive subprogram calls need special consideration. Recursion is syn-
thesizable if its depth can be determined during static elaboration. In this
case, the synthesis tool evaluates all recursive calls, allocates the required
resources, and synthesizes a circuit that works without actually implementing
a recursion mechanism. The application of such an elaboration strategy
would allow us to build up a call tree of the instances (invocations) of a syn-
thesizable recursive subprogram and to analyse them individually. However,
an elaborator is not available in the Objective VHDL tool environment.

An analysis of recursive subprograms is still possible by allowing cycles
in the instance graph. Thereby, all recursive invocations of a subprogram are
analysed together and the results effectively merged. A subprogram that calls
itself, directly or indirectly, would contribute to the definitions of its own
input parameters and would receive definitions via its output parameters.
While this simplifies analysis, results become more pessimistic as for each
individual instance the definitions of all other instances are considered, too.

Fig. 35: Handling of structure and call hierarchy through an instance tree

package(s)

top-level entity

top-level architecture

instantiated
entity #1

instantiated
entity #i...

... ...

subprogram

. . .

. . .
called subprograms

......
H

I

H
I

Data type analysis 131

6.2.7 Example

We now demonstrate sequential DFA with a simple example that emphasizes
the benefit of considering individual definitions of sequential objects. The
following pseudo code excerpt belongs to the simplified microprocessor
model presented in section 6.1.1. It implements register-indirect addressing:

d1: AR IR.getOp(1); – – DAR = { d1 }
d2: AR RF[AR]; – – DAR = { d2 }
d3: AddrBus AR;

In the first line, the first operand of the instruction register,IR, is loaded into
the address register,AR. We know that this operand is a register address as
register-indirect addressing is being implemented. The value stored in the
addressed register of the register file,RF, is loaded intoAR (second line). In
the register-indirect addressing scheme, we know that this value is a memory
address. Finally, in the third line, this value is assigned to the address bus of
the main memory. Note that the mentioned information about the values’
types is not explicitly defined in the model. It is known to the designer, and it
can be extracted by type propagation as we show in section 6.3.5.

We assume thatAR is a sequential object; the other objects be concurrent.
Sequential DFA determines thatAR is defined by definitiond1 after the first
line, and by definitiond2 after the second line. During this analysis, the data
type flow graph shown in figure 36 is generated. The first definition,d1, is
represented by a vertex that is reached by an edge from an interface object
that represents the return value of the function methodgetOp. Analysis of
this function is performed using our interprocedural DFA concepts. The sec-
ond definition,d2, results in a vertex with an ingoing edge from the source
object,RF. Both edges mentioned are attributed with the type constraint of
their target object,AR, which is declared as a polymorphic object with root
classAddress.

Fig. 36: Data type flow graph generated by DFA

←
←

←

d1

d2

AR

AddrBus

getOp

RF

Address’CLASS

Address’CLASS...

... ...

132 Analysis and Optimization of Object Systems

The third definition,d3, has a concurrent polymorphic target object.
Hence, no individual vertex is created for this definition. Instead, an edge
goes from the effective definition of the source object,d2, to a vertex that
represents the target object,AddrBus. Thanks to DFA, we know that only val-
ues from the register file are propagated to the address bus, but no instruction
operands. Without DFA,AR would be handled as a single vertex. Due to this
more pessimistic assumption, instruction operands would reach the address
bus when type propagation is computed, even if this does not happen during
system operation.

6.3 Determining type information

While syntax-directed DFA has enabled us to find the propagation paths (def-
inition-use chains) of class types without a fixed-point iteration, the problem
of determining the flow of type information over these paths requires fixed-
point techniques. We present the mathematical framework behind fixed-point
iteration and show that it is applicable to our problem. In consequence, a
standard algorithm can be utilised and has been implemented.

6.3.1 Propagation of types

The graph resulting from data flow analysis allows to follow the propagation
of types due to the use of definitions of polymorphic objects. To represent
this flow of type information in the graph, each vertexd is valued with the set
of types, , which an object may take on due to its definitiond.
This set is initially empty for any but the entry vertex. Its computation is the
matter of this section.

If a definitions of a source object may be used in the definitiont of a tar-
get object, types that can be taken on bys have to be taken on byt, too. In the
graph, this use ofs is represented by an edge (s, t). Hence, the type informa-
tion must be propagated over this edge. Type propagation is, however, con-
strained by the edge’s attribute , in which the maximum set of types
that can flow via the edge is specified. Only the types which are in and
allowed by , i.e. , reach the vertext.

Multiple edges may lead to a vertex, corresponding to several definitions
which are possibly used. This information must be combined by a so-called
confluence operator to determine the set . For the purpose of type propa-
gation, we choose the union of type sets so as to consider any type of any
possibly used definition. This results in equation 67 (see figure 37):

T d() Types⊆

µ s t,()
T s()

µ s t,() T s() µ s t,()∩

T t()

Determining type information 133

At this point it is important to study the role of entry vertex. This is the
only vertex whose type set is not subject of computation, but defined accord-
ing to the application. We choose the set of all types: . An
edge from the entry vertex to a definition vertex is attributed with the set of
known types of this definition, . By propagation ofTypes over this
edge, exactly the known types reach the target: .
Thereby, we introduce information on known types in a way compliant to a
mathematical structure that will be discussed in the next section.

As opposed to definitions, the propagation of types is transitive, i.e., a
type may reach a polymorphic object via intermediate stations. This is con-
sidered by propagating types that have reached a vertex via an ingoing edge
over the outgoing edges to further vertices. As the definition-use graph may
have cycles, this becomes non-trivial. We must carefully investigate whether
the vertex’s type sets can reach a stable state (fixed point) which is not
changed by further propagation, whether this fixed point is a meaningful
result (e.g., the best possible with respect to optimization), and how this fixed
point can be computed. All these questions can be answered with the help of
DFA theory.

6.3.2 Type propagation in a data flow analysis framework

DFA theory allows to make statements about a set of problems that can be
described as an instance of a so-called data flow analysis framework. This is
a mathematical structure originally developed by Kildall [82]. It has been
presented, e.g., in [3]. In this work, the more axiomatic presentation in [83] is
utilised. It can be summarised and adapted to our terminology as follows:

A monotone data flow analysis framework is a pair , where is a
semilattice with partial order , supremum operator and top element ,
and is a set of transfer functions with the following properties:
• Monotony: .

Fig. 37: Propagation of data types over flow graph edges

s1

t

T s1() µ s1 t,()

snT sn() µ s2 t,()

..
.

..
.

(67) T t() := T s() µ s t,()∩
s t,() E∈
∪

T e() := Types

µ e d,()
Types µ e d,()∩ µ e d,()=

L F,() L
≥ ∨ T

F f : L L→
f F x y L : x y f x() f y()≥⇒≥∈,∀∈∀

134 Analysis and Optimization of Object Systems

• Identity function: .
• Closedness under composition: .
• .
In a distributive framework,
must hold in addition. Distributivity implies monotony.

To be apartial order, the relation must be
• reflexive: ,
• antisymmetric: , and
• transitive: .
For thesupremum to exist, there must be
• an upper bound,u, for any two values: ,
• which is a least upper bound: , i.e.,

any other upper bound is greater than or the same asu.
If for any two values,x andy, a smallest upper boundu(x, y) exists, we can
define the supremum operator : . This makes the partially
ordered setL a semilattice [61]. If in addition the greatest lower bound (infi-
mum) exists,L becomes alattice. Any lattice is a semilattice, too.

A top element is an element with . Abottom ele-
ment is an element with . These elements need not
exist in a lattice. However, any lattice can be embedded in another lattice
with artificial top and bottom elements if required.

DFA theory requires a confluence operator, for which we use the supre-
mum. A dual presentation would be possible based on the infimum. A trans-
fer function describes the operation invoked when information is propagated
over an edge of the analysed graph. The setL includes the data values that
are propagated. The top element corresponds to a DFA result that makes opti-
mization impossible, while the bottom element represents the case with most
optimization potential. Hence, for the purpose of type propagation, we
define:
• , the power set ofTypes, as the values propagated are sub-

sets ofTypes.
•
• as set union is our confluence operator.
• where for each

transfer function holds for all . This
allows to represent the intersection with a constraint set (cf.
equation 67) as .

• because a polymorphic object that must be able to take on any
class membership is the worst case with respect to optimization.

f F x L : f x()∈∀∈∃ x=
f 1 f 2 F : f 1° f 2 F∈∈,∀

l L f F : f T()∈∃∈∀ l=
f F x y, L : f x y∨()∈∀∈∀ f x() f y()∨=

≥
x L : x x≥∈∀

x y L : x y y x x⇒≥∧≥∈,∀ y=
x y z L : x y y z x z≥⇒≥∧≥∈, ,∀

∨
x y L u L∈∃ : u x u y≥∧≥∈,∀

x y u' L : u' x u' y u' u≥⇒≥∧≥∈, ,∀
u'

∨ x y u x y,()≡∨

T L∈ x L : T x≥∈∀
⊥ L∈ x L : x ⊥≥∈∀

L ℘ Types()≡

≥ ⊇≡
∪≡∨

F f T : ℘ Types() ℘ Types() T ℘ Types()∈→{ }≡
f T X() := X T∩ X ℘ Types()∈

µ s t,()
f µ s t,()

T Types≡

Determining type information 135

• since a polymorphic object that takes on no class membership is
the best case with respect to optimization—it can be discarded.

It is well-established that any power set , ordered by set inclusion, is a
lattice (hence, a semilattice, too) with supremum defined by the union of sets,
top elementS, and bottom element [61]. Furthermore, we know that inter-
section, i.e. the transfer function, is distributive over union. The remaining
properties are easy to show: is an identity function as

. F is closed under composition as
. Finally, it

holds . Hence, our type propagation problem ful-
fils the axioms of a distributive data flow analysis framework. This allows to
apply the results of this theory.

6.3.3 Fixed-point iteration

Given that the information propagated through the flow graphG fits into the
model of a distributive data flow analysis framework, a unique least fixed
point exists as the solution of the data flow equations. This fixed point can be
computed by the following algorithm, which has been adapted from [83] to
our terminology. Its pseudo code notation is:

(1) procedure FPI(G = (V, E, T, µ)) is
(2) T := (entry => Top, others => Bottom);
(3) change := true;
(4) while change loop
(5) change := false;
(6) for each t in V – {entry} loop
(7) temp := Bottom;
(8) for each (s, t) in E loop
(9) temp := temp fµ(s,t)(T(s));
(10) end loop ;
(11) if not temp = T(t) then
(12) T(t) := temp;
(13) change := true;
(14) end if ;
(15) end loop ;
(16) end loop ;
(17) end ;

The algorithm initialises the type set of the entry vertex with the top element
(line 2) so as to allow the introduction of known types as explained in
section 6.3.1. The type sets of all other vertices are initialised with the bot-

⊥ ∅≡

℘ S()

∅

f Types
f Types X() X Types∩ X= =
f B f A X()() X A∩() B∩ X A B∩()∩ f A B∩ X()= = =

f A T() A Types∩ A= =

∨

136 Analysis and Optimization of Object Systems

tom element in order to approach the least fixed point from below. A termina-
tion flag,change, is initialised in line 3.

The body of procedureFPI is iterated as long as the type sets change
(line 4). For each vertext (line 6) which is not the entry vertex, the type set is
computed in lines 7–10 as the supremum over the values of the transfer func-
tions of all ingoing edges(s, t). The result is stored intemp. Only if it is dif-
ferent from the result of the previous iteration, the value oftemp is taken as
the new type setT(t) and thechange flag set totrue (lines 11–14).

There are several ways to speed up this algorithm [6]:
• Static single-assignment form helps to reduce the total number of edges

by collecting multiple definitions of an object that reach the end of a con-
ditional statement in a single definition of an artificial intermediate varia-
ble so that subsequent uses of the object cause only one ingoing edge.

• We can maintain a work list of vertices whose predecessor’s type set has
changed. Only these vertices have to be considered in each iteration of the
loop at line 7.

• Vertices can be visited according to the main flow of information. Then, if
the definition-use graph has no cycles, a single pass of the outermost loop,
visiting vertices in topologically sorted order, suffices. In the presence of
cycles, we can still attempt to visit as many vertices as possible before
their successors.

Independent of these improvements, the worst case complexity of the fixed-
point iteration problem is under the assumption that supremum and
transfer function can be computed in constant time. This is possible when the
problem can be mapped onto a bit vector representation and bit-wise
machine operations are exploited.

Yet, sources [83] report that in practice the run-time of fixed point itera-
tion implementations is approximately linear in program size. We have made
the same observation with an implementation for Objective VHDL.

6.3.4 A concrete implementation

Our implementation [128, 150] of syntax-directed computation of definition-
use chains and the following fixed-point iteration for type propagation imple-
ments the basic fixed-point iteration algorithm as presented in the previous
chapter. A bit-vector representation has not been pursued; instead, library
routines for a higher-level representation of sets are employed. Neither a
work list approach nor static single-assignment form have been implemented.
This is because, rather than focusing on an optimization of the analysis algo-

O n
3()

Determining type information 137

rithm, emphasis has been put on a wide support of the Objective VHDL lan-
guage features (cf. section 6.2.5).

To measure our implementation’s run-time performance development
with increasing model size, a scalable synthetic benchmark has been devel-
oped. It is based on a design entity with 10 internal polymorphic objects, 5 of
them sequential and 5 concurrent, and 2 bidirectional polymorphic port sig-
nals (interface objects). The entity contains 32 assignments between these
objects, organised in a way that cycles of maximal length, 6, occur among the
sequential as well as the concurrent objects separately. Furthermore, assign-
ments between the sequential, concurrent, and interface objects are included.
This entity has been repeatedly instantiated and interconnected as a tree
structure so that information is passed among the instances in both directions
via their interface objects.

Run-time results obtained from execution on a Sun Sparc 20 workstation
are presented in figure 38 for 10 instances of the problem,a1 toa10, with an
entity instantiation depth of 1 to 10. As we see, fixed point iteration (FPI)
takes significantly more time for large problems than syntax-directed DFA.
However, even for the largest problem, the total run-time of 12 minutes is
still in the range acceptable in hardware synthesis. This holds particularly if
we consider that 10,230 objects of, say, 16 bits each, would correspond to
over 160,000 flip-flops for state storage.

instances polym.
objects

assign-
ments

interface
objects

DFA
[s]

FPI
[s]

a1 1 10 32 0 0.05 0.02

a2 3 30 96 4 0.07 0.12

a3 7 70 224 12 0.12 0.57

a4 15 150 480 28 0.18 2.00

a5 31 310 992 60 0.35 6.02

a6 63 630 2,016 124 0.70 17.05

a7 127 1,270 4,064 252 1.37 45.48

a8 255 2,550 8,160 508 2.80 118.02

a9 511 5,110 16,352 1,020 6.10 299.55

a10 1,023 10,230 32,736 2,044 13.15 731.63

Fig. 38: Optimization run times

138 Analysis and Optimization of Object Systems

Approximately, the number of objects doubles and total run time triples
with every row of the table. Hence, run-time increase can be considered lin-
ear in the number of polymorphic objects at least for our experimental
setup.An investigation reveals that the following points support the reasona-
ble run time behaviour:
• The definition-use chains are pre-computed during the fast syntax-

directed analysis phase. All definitions, including those in program loops,
are thereby determined before fixed-point iteration. This reduces the
number of cycles in the type propagation graph.

• A cycle still occurs when a variable is used before its definition. The more
frequent case is that the definition is located before the use in the program
text. Syntax directed analysis creates vertices (corresponding to defini-
tions) in top-down program order. The FPI implementation processes ver-
tices in the order they are created, i.e., according to the primary direction
of information flow.

• The design hierarchy defined by the instantiation tree of an Objective
VHDL model limits the exchange of types in a system. Types can flow
into or out of an instance only via its interface objects. This limits the con-
nectivity of the type flow graph, i.e., the number of ingoing edges that
must be processed in the innermost loop of the FPI algorithm from
section 6.3.3, and possibly, thanks to faster convergence, the number of
iterations of the outermost loop, too.

Finally, if a model should turn out too large or involved for our analysis algo-
rithms, it can be split into smaller parts, e.g. the entities that represent its
major components. At their boundaries, worst case conditions may be
assumed. Alternatively, the user can constrain external type sets as described
in the following section. This, however, can lead to inconsistencies if the
user’s assumptions are too optimistic.

6.3.5 Example

The structure of a graph corresponding to an implementation of register-indi-
rect addressing has already been explained in section 6.2.7. We now demon-
strate type propagation in this graph. As a starting point, we assume that the
types returned by methodgetOp areRegAddr andByte, and the types of the
polymorphic register fileRF areMemAddr, Byte, andWord, as determined by
an analysis of other parts of the system description.

Figure 39 shows type propagation results in the microprocessor example,
obtained as follows: The propagation of{RegAddr, Byte} to AR is constrained

Determining type information 139

by Address’CLASS which includesRegAddr and MemAddr, but not Byte.
Hence, after intersection, onlyRegAddr reachesd1. Similarly, of the possible
types ofRF only MemAddr is propagated to vertexd2. This type is further
propagated (transitively) to theAddrBus vertex.

Distinguishing the two definitions ofAR, d1 andd2, has prevented the
type RegAddr from being propagated fromAR to AddrBus. However, an
implementation ofAR must of course be able to represent the state of any
class with whichAR may be defined. This can be computed after FPI for
every sequential object as the supremum over all its definitions. An analo-
gous step is not necessary for concurrent objects whose definitions are all
represented by a single vertex.

Results of an analysis of the complete microprocessor data flow are listed
in figure 40. Table rows correspond to polymorphic objects, and columns to
class types. An ’X’ means that a polymorphic object must be able to contain
a value of a class type. A ’—’ stands for a class type which can be excluded
from synthesis thanks to data type analysis results. The blank fields result
from types which are incompatible with the type constraint of the object and
would not have to be considered anyway. Finally, bit-size values shown in the
right-hand columns have been calculated from the analysis results according
to equation 57. These values correspond to automatic optimization using the
methods presented in this paper (auto), manual implementation of the 32-bit
processor with bit-vector data types (man), and synthesis without any optimi-
zation (noopt).

Note that it has been necessary to provide external information about the
memory contents to enable this analysis. This is because the memory con-
tains user-defined data whose properties cannot be extracted from the micro-
processor model. Assumptions about this data can be specified in a pseudo
memory entity that is connected to the microprocessor for analysis. The

Fig. 39: Type propagation results

d1

d2

AR

AddrBus

getOp

RF

{ RegAddr, Byte }

{ MemAddr, Byte, Word }

Address’CLASS

Address’CLASS

{ RegAddr }

{ MemAddr }
{ MemAddr }

...

... ...

140 Analysis and Optimization of Object Systems

memory entity contains some objects initialised so that their types and inter-
nal structure (e.g., polymorphic subobjects) reflect valid memory contents.
By assigning these objects to the data bus, the type information represented
is injected into the microprocessor model.

The main optimization potential in this case stems from the fact that
instructions have only short operands (IR.OP) of class typesByte and
RegAddr, but no full 32-bit words or memory addresses. This is recognised
by analysis, allowing the reduction ofIR andMEM width to 32 and 34 bits,
respectively, instead of an unoptimized 80 bits. However, each memory ele-
ment still has 2 bits more than a manually implemented 32 bit architecture.
The reason are the tags used to distinguish values of the four class types
present inMEM, requiring 2 bits when fully encoded (cf. section 4.4.2).
While these tags are useful to detect run-time errors during simulation, e.g.,
loading of an operand into the instruction register, a manually designed hard-
ware implementation of the microprocessor would in some cases make no
difference between the encoded types. For instance, an operand would be re-
interpreted as instruction when loaded intoIR. On the other hand, the differ-
ent instruction types definitely must be told apart by a tag (i.e., opcode).
Techniques for automatic determination of cases that allow to save tags are
the subject of the following section.

6.4 Determination of tag equivalence classes

The conditions under which tags can be encoded with the same value are
elaborated in this section. We show how this information can be expressed as
equivalent classes or partition of the tags, and how it is propagated though a
system. By proving that this problem fulfils the axioms of a data flow analy-

Byte Word Reg
Add.

Mem
Add.

Instr. auto
[bit]

man
[bit]

noopt
[bit]

MEM X X — X X 34 32 80

IR X 32 32 80

IR.OP X — X — 9 8 32

RF X X — X 34 32 34

AR X X 33 32 33

Fig. 40: Optimization results

Determination of tag equivalence classes 141

sis framework, we show that the techniques presented above are applicable to
the determination of tag equivalence classes, too.

6.4.1 Tags that make no difference

In order to determine tags that can possibly be saved, we first summarise
what tags are needed for at all. As opposed to previous considerations from a
language design point of view, the need for synthesis of tags may arise from:
1) The necessity for an aid in interpreting the structure of a polymorphic

object’s state. However, as we will see in the next chapter, this is unneces-
sary as particular data (i.e., an attribute) is always located at the same bit
position in the synthesized state memory of any two classes related by
inheritance.

2) Use of theTAG attribute in the source code. Without further investigation
of the context of use, this makes it necessary to distinguish tags for all
class memberships that a polymorphic object may have. The comparison
with a constant tag, however, allows a less pessimistic analysis. Let P be a
polymorphic object ofC’CLASS. We distinguish the following cases:

- P’TAG = Constant_Tag: The particular constant tag must be distinguisha-
ble from all other tags that correspond toC’CLASS.

- P’TAG >= Constant_Tag: The tags of the class denoted by the constant tag
and its derived classes must be distinguishable from the other tags of
C’CLASS. However, there is no need to distinguish between any of the
tags within one of these two groups.

- P’TAG > Constant_Tag: We must be able to tell tags of classes that are
derived from the class denoted byConstant_Tag apart from the set of
Constant_Tag and all other tags forC’CLASS.

- Similar considerations can be made for the/=, <=, and< operations.
3) Dynamic binding of a method invocationP.M(...) with a polymorphic

objectP declared with type C’CLASS. Then the tags for which different
redefined versions of the method are called must be distinguishable. Tags
for which the same implementation is invoked can be encoded with the
same value.

According to these considerations, equivalence classes of tags that do not
have to be distinguished can be defined for each use of a tag. We can repre-
sent these equivalence classes as a partition of the set of all tags or of their
denoted class types. This partition is a collection of non-empty, disjoint sets
whose union is the set of all class types. The types in one set can share the
same tag value. Tags of types in different sets have to be encoded with differ-

142 Analysis and Optimization of Object Systems

ent values. One special set exists to collect types for which no tag value is
needed at all. This set can be marked by including a special dummy element,
sayvoid, which we may add toTypes.

Consider, for example, a set of types,Types = {t1, t2, t3, t4, t5, t6, void},
with an inheritance relationship and redefined methods,M andN, as shown in
figure 41. For a polymorphic object declared witht3’CLASS, one and the
same implementation ofM is invoked when it is a member of classt3 or t4.
Another method implementation is invoked if the tag ist5 or t6. No encoding
is needed for t1 and t2. This is reflected in the partition

. A similar consideration of a dynamically
bound invocation of method N of leads to the partition

.

An encoding of P’s tags must respect both these partitions. We must find
a finer partition into equivalence classes so that the differentiation of class
membership required for both method calls is possible. To minimize pessi-
mism, this should be the coarsest possible partition. The order relationfiner
and a supremum operator are investigated in the subsequent sections. Intui-
tively, the pairwise intersection of both partitions’ sets of equivalent tags,
while filtering out empty sets, yields the desired result. In the above example:

.

6.4.2 Propagation of partitions

The existence of assignments makes it necessary to consider the propagation
of tag partitions between objects. See, for instance, the assignments shown in
figure 41. Any tags that are distinguished for the assignment target must be
distinguished for the source, too. Otherwise it would not be possible after an
execution of the assignment to make the distinction of tags that is necessary
for the target object.

Fig. 41: Example for computation of tag equivalence classes

t3 t4,{ } t5 t6,{ } t1 t2 void, ,{ }, ,{ }

t3 t5 t6, ,{ } t4{ } t1 t2 void, ,{ }, ,{ }

t1

M

t2

t3

N

t4

N

t6t5

M

P : t3’CLASS

P.M(...);
P.N(...);

A := P;
B := P;

t3{ } t4{ }, t5 t6,{ } t1 t2 void, ,{ }, ,{ }

Determination of tag equivalence classes 143

Note that in this case the flow of information is directed from the target of
an assignment towards the source. In other words, it goes from the use of the
source object (in the definition of the target) back to the source object’s
reaching definitions. Hence, the edges of a partition flow graph must be
directed in the opposite direction as compared to section 6.2 so that the graph
represents use-definition chains.

Over these chains, type partitions are propagated transitively. This, and
the possible presence of cycles, necessitates the application of fixed-point
iteration. While we have not implemented the determination of tag equiva-
lence classes, we formulate the problem’s solution as a data flow analysis
framework and prove its well-formedness. This makes the techniques imple-
mented for type analysis applicable to the type partitioning problem with a
few modifications to be addressed.

6.4.3 Solution framework

We represent a partition as a subset of the power set , i.e., as a set
of subsets ofTypes for which the partition property holds. The set of all parti-
tions,Part, is defined as follows:

(68)

A partition, , is finer than a second partition, , if each
element contained inX is a subset of some element inY:
(69) .
The confluence of two partitions,X andY, is defined by the pairwise intersec-
tion of the partition sets, without any empty sets. As we show in the follow-
ing section, this is the coarsest partition that is finer than bothA andB.
(70) .

From this follows the top element as the finest partition and the bottom ele-
ment as the coarsest one; the proof can be found in the next section.

Transfer functions are needed only to introduce knowledge by propaga-
tion via an edge from the entry vertex. For this purpose, we define a set of
simple transfer functions, , with:

(71)

℘ Types()

Part X{ ℘ Types() A
A X∈
∪ = Types⊆=

A B, X : A B A B ∅ A X : A ∅≠∈∀∧ }=∩⇒≠∈∀∧
X Part∈ Y Part∈

X Y A X B Y: A B⊆∈∃∈∀≡≥

X Y A B A X∈ B Y∈ A B ∅≠∩∧ ∧∩{ }≡∨

FPart f L : Part Part L Part∈→{ }=

f L X() :=
X if L T=

L if L T≠



144 Analysis and Optimization of Object Systems

The flow graph can be constructed similar to the description in section 6.2.
The fixed-point iteration algorithm of section 6.3 can be reused with few
changes, too. The following modifications are necessary:
• The direction of information propagation is reversed; information flows

from the use of an object to its definition. Hence, edges that correspond to
assignments are reversed, too. They are attributed with the identity trans-
fer function, .

• Edges from the entry vertex,e, are attributed with , where
 is tag partitioning information obtained from a dynamically

bound method call or the use of the VHDL attributeTAG. Should there be
several such uses of a single definition, results from the conflu-
ence of this information.

• Top and bottom, transfer functions, and confluence operators as defined
here are used in both, syntax-directed analysis and fixed point iteration.

• The order in which objects are processed during FPI is reversed. This
helps to speed up convergence as the main information flow is now in
inverse program order.

6.4.4 Proofs

To make sure that the fixed-point iteration algorithm presented in
section 6.3.3 is applicable, we prove that the solution framework presented is
a data flow analysis framework. We first show that the set of all partitions,
Part, is closed under application of the proposed supremum operation:

Let . To be shown is , i.e. the union of
the sets inZ is Typesand the subsets are pairwise disjoint and non-empty:

(72)

• Let and . Let . It fol-
lows , which equals . AsX
andY are partitions, this implies . Thus,

.
• for all follows directly from the definition of .
Next to be shown is that thefiner relation is a partial order:
• Reflexivity: Let and . It holds . Hence, according

to the definition of (equation 69): . It follows .

f T
f µ e d,()

µ e d,()

µ e d,()

X Y Part∈, Z X Y Part∈∨=

Z
C Z∈
∪ A B∩

B Y∈
∪

A X∈
∪ A B

B Y∈
∪∩

A X∈
∪= =

A Types∩
A X∈
∪= A

A X∈
∪ Types= =

C1 A1 B1 Z∈∩= C2 A2 B2 Z∈∩= C1 C2≠
A1 A2 B1∧ B2= =()¬ A1 A2 or B1 B2≠≠

A1 A2∩ ∅ or B1 B2∩ ∅= =
A1 A2∩() B1 B2∩()∩ A1 B1∩() A2 B2∩()∩ C1 C2∩ ∅= = =

C ∅≠ C Z∈ ∨

X Part∈ A X∈ A A⊆
≥ A A≥ X X≥

Determination of tag equivalence classes 145

• Antisymmetry: Let with and . Let .
Since , there exists such that . Since , there
exists so that . From transitivity of follows .
Hence,A andC are not disjoint. AsA andC belong to the same partition,
X, it must be . Hence, , i.e., . It followsX = Y.

• Transitivity: Let with and . Let .
Since , there exists such that . Since , there
exists so that . From transitivity of follows .
Hence, it holds , i.e., . It follows .

We now show thatPart is a semilattice ordered by thefiner relation. Every
two elements ofPart have to have a supremum. This is the previously intro-
duced pairwise intersection of equivalence classes:
• An upper bound exists: Let . Let

. Since and
, it follows and , i.e.,U is an upper bound ofA

andB.
• U is the smallest upper bound: Let with , be

another upper bound ofX andY. Assume . According to the
definition, this means , which is equivalent
to . Let such that for all

. Since and , there exist and so that
 and . Hence, . As , we have found

a with . This contradicts the assumption. Hence, any upper
bound ofX andY must be greater (a finer partition) than or equalU.

A top and a bottom element exist:
• The bottom element is a partition ofTypes into only one set,Types itself:

. Let and . The set fulfils
. Hence, .

• The top element is a partition ofTypes into sets each of which contains
only a single type: . Let . Let

. Let be the unique element of partitionX which
includest. As t is the only element inA, follows immediately.
Hence, .

Finally, properties of the transfer functions are proved:
• Monotony: Let , , and . If ,

 and . Hence, . If ,
 and . Again, .

• Identity function: for all .

X Y Part∈, X Y≥ Y X≥ A X∈
X Y≥ B Y∈ A B⊆ Y X≥
C X∈ B C⊆ ⊆ A C⊆

A C= A B A⊆ ⊆ A B=
X Y Z Part∈, , X Y≥ Y Z≥ A X∈

X Y≥ B Y∈ A B⊆ Y Z≥
C Z∈ B C⊆ ⊆ A C⊆

A X C Z : A C⊆∈∃∈∀ A C≥ X Z≥

X Y Part∈,
U A B A X B Y A B∩() ∅≠∧∈∧∈∩{ }= A B A⊆∩
A B B⊆∩ U X≥ U Y≥

U' Part∈ U' X≥ U' Y≥
U' U≥()¬

C' U' C U : C' C⊆∈∃∈∀¬
C'∃ U' C U : C' C⊆¬∈∀∈ C' U'∈ C' C⊆¬

C U∈ U' X≥ U' Y≥ A X∈ B Y∈
C' A⊆ C' B⊆ C' A B∩⊆ A B U∈∩

C U∈ C' C⊆
U'

⊥ Types{ }= X Part∈ A X∈ Types ⊥∈
A Types⊆ X ⊥≥

T t{ } t Types∈{ }= A t{ } T∈=
X Part∈ B X∈

A B⊆
T X≥

f L FPart∈ X Y Part∈, X Y≥ L T=
f L X() X= f L Y() Y= f L X() f L Y()≥ L T≠
f L X() L= f L X() L= f L X() f L Y()≥

f T X() X= X Part∈

146 Analysis and Optimization of Object Systems

• Closedness under composition: Let . If ,
. If , . Hence,

the composition of and is in .
• Let . For holds .
• Distributivity: Let and . If then

. If then
.

Given all these properties, we conclude that the solution framework proposed
for finding tags that do not need to be distinguished is a distributive data flow
analysis framework. Hence, our fixed-point iteration implementation devel-
oped for type propagation is as well applicable to the new problem with the
changes described in the previous section.

6.5 Summary

We have presented data type analysis techniques targeted at an optimized
synthesis of polymorphic objects and dynamic binding. Analysis is carried
out statically with a combination of data flow analysis techniques for con-
structing definition-use and use-definition graphs, respectively, and a fixed-
point iteration for propagating type information. Its results can be used to
implement objects with a minimized number of bits and to simplify the
dynamic binding of redefined methods.

We have partly implemented the analysis methods for Objective VHDL,
an object-oriented extension to VHDL, and reported experimental optimiza-
tion and run time results. Yet, concepts have been formulated general enough
to be helpful for synthesis from other object-oriented languages, too.

Experimental results show a significant benefit of our techniques as com-
pared to non-optimized synthesis of object-oriented data types. Currently, we
cannot fully achieve the results one would obtain from a manual design at bit
level, i.e., without data abstraction. However, as the treatment of the type par-
titioning problem shows, data flow analysis can be exploited to utilise further
optimization potential.

From a run time performance perspective, the available implementation
of data type analysis can be applied to considerably large hierarchical mod-
els. There are starting-points to further improve the software, and even if a
model would turn out too large for global analysis, one could still split it to
locally analyse the parts.

f L f M FPart∈, L T=
f L f M X()() f M X()= L T≠ f L f M X()() L f L X()= =

f L f M FPart
L Part∈ f L FPart∈ f L T() L=

f L FPart∈ X Y Part∈, L T=
f L X Y∨() X Y∨ f L X() f L Y()∨= = L T≠
f L X Y∨() L L L∨ f L X() f L Y()∨= = =

Chapter 7

VHDL Code Generation 7

After analysing and optimizing an object-oriented model, synthesis steps
must be performed in order to obtain a digital circuit implementation. This
includes the synthesis of the method algorithms, of storage for an object’s
state, and of inter-object communication. It is the aim of this work not to re-
implement synthesis algorithms. Instead, as much existing technology as
possible shall be used so as to be able to focus on the new, object-oriented
aspects. To this end, we target the generation of VHDL code for further
processing with third-party tools.

Alternatives for the translation of an object-oriented model into synthesi-
zable VHDL are discussed in the following section. After making a choice,
we present how a bit-level encoding of object data can be represented in
VHDL. Next, we address the transformation of methods into synthesizable
VHDL code. Another section describes VHDL templates for implementing
object behaviour, i.e., the server’s invocation of methods in response to
incoming messages and the actions taken by a client to send a message.
Finally, the instantiation and interconnection of objects is transformed into a
VHDL model.

7.1 Translation alternatives

In order to discuss alternatives for the translation of object-oriented models
into VHDL, we first point out the goals of code generation. Particularly, the
focus on synthesis results in requirements different from related, simulation-
oriented work [145]. We identify procedural (behavioural) and structural
translation as the main alternatives (cf. section 3.3.1), point out their differ-
ences, and discuss their pros and cons. The structural approach will be fol-
lowed in the remainder of this chapter.

148 VHDL Code Generation

7.1.1 Design goals

The primary goal of this chapter is to describe the generation of VHDL code
from which the circuit structures of section 4.4 can be synthesized. That is,
the VHDL code does not necessarily have to describe these structures
directly; they may be generated by a VHDL synthesis tool. This allows to
delegate to existing tools a significant portion of the overall task of generat-
ing hardware from an object-oriented model. Thereby, we can validate the
concepts of this work without implementing a complete synthesis tool.

When generating VHDL code, we must be aware of the different descrip-
tion styles which correspond to different levels of abstraction and for which
different tools exist. Register transfer level (RTL) synthesis tools accept
descriptions consisting of finite state machines and datapaths, where opera-
tions are bound to specific states or clock cycles. Hence, if we chose to gen-
erate RTL style VHDL, we would have to implement as part of the object
synthesizer the synthesis of a data path and controller that implement the
methods’ algorithms.

This complex task can be performed by a high-level synthesis (HLS) tool.
However, we must make sure that VHDL code generation complies with the
synthesis tools’ requirements and restrictions. Whereas a VHDL subset com-
patible with all major RTL synthesis tools is well-documented [75] and
understood, different HLS tools require rather different coding styles and
language subsets. This makes it necessary to tailor the generated code for a
specific HLS back-end. For this work, the Synopsys Behavioral Compiler
(BC) has been chosen for its availability in the Europractice programme and
due to project partners’ preferences. Academic tools have not been consid-
ered, although they may implement more advanced synthesis and optimiza-
tion concepts, because of concerns regarding their maturity and their degree
of VHDL support.

In addition to synthesizability of the generated VHDL code, we must
ensure a wide support for the object-oriented models that are fed into our
tool. Inheritance and polymorphism should be supported as well as generic
modelling, and must be transformed into synthesizable VHDL. Furthermore,
the generated code should be as concise and readable as possible, and enable
the user to correlate it with the original model for simulation and debugging
purposes. In the following, alternatives are discussed with these criteria in
mind.

Translation alternatives 149

7.1.2 Generation of procedural code

A translation of object-oriented VHDL, making extensive use of VHDL’s
packages, subprograms, and composite data types, has been proposed in
[145]. It can be summarised and adapted to our terminology as follows:
• From a class type, a record with elements corresponding to the class’s

attributes is created. A derived class type is translated into a record which
includes the inherited attributes, too. A class-wide type results in a record
which collects not only the attributes of its base type, but also any
attribute declared in a derived class. In addition, the record has an element
for storing a type tag.

• Methods are translated into subprograms with a formal parameter that
denotes the object with which the method is invoked. The access to
attributes is translated into an access of the corresponding record elements
of the object parameter.

• All declarations resulting from the translation of a class are collected in a
VHDL package.

• In the declaration of an object, a class type or class-wide type is replaced
by the corresponding record.

• The invocation of a method with an object is translated into a subprogram
call, and the object is passed as actual parameter to the method. Dynamic
binding, if necessary, is performed by a case statement that invokes the
redefined versions of a method depending on a polymorphic object’s tag
value.

• Type conversions are introduced in assignments between objects of com-
patible class types (cf. section 5.3.3). This is necessary as the different
record types resulting from translation are no longer compatible for
assignment.

Indeed, such a translation has been implemented for Objective VHDL in
order to enable a simulation on VHDL level. Its advantages are the readabil-
ity of the record representation of attributes and the similarity of the original
and generated code. Beyond syntactical similarity, it must be emphasized
that the translation does not affect the timing behaviour of the model. No
delays, not even delta delays, are introduced or removed.

However, there are several drawbacks to this approach:
• VHDL does not provide parameterization of packages nor records.

Hence, the translation of generic class types is difficult. Only if the value
of the generic is known, a record translation can be created. This is not
always the case as translation is performed before the elaboration (cf.

150 VHDL Code Generation

section 5.5) which may be required to compute generic values. Further-
more, a new record has to be created for each different generic value that
occurs in a model.

• A package can only have a single body. This makes it hard to provide
multiple versions of a class’s implementation. The need for such a diversi-
fied translation arises from the optimization of individual objects, e.g.
based on the analyses presented in the previous chapter. For instance, a
method that is never invoked with some object need not be implemented
for this object, but it has to be provided for the other objects of the class.

Further problems arise when we take synthesis aspects into consideration:
• The VHDL HLS tool may be unable to handle the description efficiently.

Particularly, it may have to synthesize every single object and every single
method invocation from the source code rather than by inferring a library
component. This disables the use of pre-synthesized classes or classes
whose source code is not supplied (e.g., IP). These considerations hold, in
particular, for the HLS tool used in this work. While BC provides so-
called preserved subprograms, scheduled subprograms, and the map-to-
operator pragma to avoid the inlining of subprograms [152], all these fea-
tures have restrictions which make it in general impossible to apply them
to the subprograms that are created from methods.

• The translation does not allow an easy integration of conditional request
acceptance and arbitration of concurrent clients. Particularly, as discussed
in section 3.1.5, the modelling style for guarded method invocation pre-
sented in [145] is not synthesizable.

• The translation of class data into records is problematic because of tool
limitations. While most synthesis tools support records, support for record
aggregates is not common [75]. Furthermore, nested composite types, e.g.
a record element which is again a record, may cause trouble. Such data
structures, however, are the result of translating class composition.

• Finally, translation of class-wide types into records would typically cause
significant hardware overhead. This is because the record resulting from
translation includes an individual element for each attribute of the base
class andall its derived classes whereas only the attributes ofone specific
class are needed at a time. A better implementation would share storage
among classes from different branches of the inheritance hierarchy. This,
however, requires to map attributes to a bit-level representation. For
instance, a translation ofBuffer’CLASS into a record would look as fol-
lows:

Translation alternatives 151

type Buffer_CLASS is record -- (size and bits are parameters)
item : Buffer_array; -- size * bits (from Buffer)
first : Integer range 0 to size – 1; -- log2(size) (from FIFO)
nxt : Integer range 0 to size – 1; -- log2(size) (from FIFO)
empty :Boolean; -- 1 (from FIFO)
index : Integer range 0 to size; -- log2(size+1) (from LIFO)

end record ; -- total #bits: sum of the above

The elementitem is needed for bothFIFO andLIFO. However, the other ele-
ments are needed only for eitherFIFO or LIFO. The storage offirst, nxt, and
empty on the one hand andindex on the other hand could be shared because a
polymorphic object is a member of only one class at a time. However,
VHDL’s type system does not provide the means, e.g. variant records or
unions, to do so. Details of a bit-level encoding that allows to share attribute
storage are presented in section 7.2.

7.1.3 Generation of structural code

Structural translation creates VHDL design entities (entity-architecture pairs)
as the implementation of classes. This has several advantages over proce-
dural translation:
• Physical connections and components required for the implementation of

message passing can be described directly instead of relying on BC’s
implementation of subprogram calls. This enables us to infer communica-
tion and arbitration implementations during object synthesis.

• The object synthesizer can make use of pre-synthesized components by
simply instantiating them.

• The generic parameters available with entities (as opposed to packages)
can be utilised in the translation of parameterized classes.

• Multiple architectures of an entity allow to describe different optimized
implementations of a class and to handle them using VHDL features.

Hence, many of the major problems of the procedural approach can be tack-
led by structural translation. However, there are some disadvantages:
• The deviation from the original code is larger, making comprehension of

simulation results harder.
• A translation of method invocation into signal communication necessarily

creates additional delta delay in the VHDL model compared to the poten-
tially immediate method execution of the object-oriented model. Thus,
structural translation does not preserve semantics with respect to detailed
timing.

152 VHDL Code Generation

These issues are acceptable when aiming at synthesis rather than simulation.
A synthesized design is at a lower level of abstraction than the specification
from which it has been created, and is therefore necessarily dissimilar in
terms of description style. Assuming a synchronous design style, values that
occur in the specification model are relevant only at special points in time,
e.g., at the rising edge of a clock signal. Synthesis tools typically ignore any-
thing that happens at a finer granularity of time, including delta delays.
Hence, we choose to follow a structural translation approach in this work.

7.2 Encoding of object data

The first step towards a VHDL representation of an object-oriented synthesis
model is to express the encoding of an object’s state space (cf. section 4.4.1
and 4.4.2) in VHDL. To this end, we present a bit-vector (std_logic_vector)
representation of VHDL’s scalar and composite types, which may be used as
the type of object-oriented attributes, while leaving non-synthesizable access
and file types out of consideration. With this basis, the encoding of Objective
VHDL’s object-oriented types, namely class types, derived class types, and
class-wide (polymorphic) types, is described.

For each bit-vector representation, we define a synthesizable conversion
from and into the original type. This will allow us to adapt methods to the
encoded data representation without having to synthesize their functionality
to the bit level.

7.2.1 Scalar types

Scalar types are enumeration, integer, real, and physical types (in VHDL).
Similar types may be pre-defined as part of an object-oriented language, or
user-defined using a language’s type definition mechanisms. We exclude
from our considerations the real and physical types because they are not sup-
ported by synthesis tools [75]. Synthesizable variants of these types can be
provided in a library or implemented by the user as class types; an example
of a fixed-point type will be presented later in section 8.4.1.

We first consider the encoding of enumeration types. This includes a defi-
nition of the their encoding lengthb and their encoding functionenc (cf.
section 4.4.1). Moreover, we show how conversions from the enumeration
type into the encoded representation and vice versa are provided. Respective
conversion functions are supplied in the packageSyn_Scalar_Types for all
pre-defined or standardised enumeration types (see appendix E).

Encoding of object data 153

• Std_(u)logic: The mapping of std_ulogic and std_logic (resolved subtype
of std_ulogic) values to a std_logic representation is trivially performed
by identity:

(73) , .

• Bit: The values of data type bit, ’0’ and ’1’, are encoded by their std_logic
counterparts. The functions Bit_to_Stdl(Bit) return Std_logic and
Stdl_to_Bit(Std_logic) return Bit are provided for conversion.

(74) , .

• Boolean: Deliberately choosing active-high logic, the boolean value true
is encoded as ’1’, and false as ’0’. Conversions are performed by the func-
tionsBool_to_Stdl(Boolean) return Std_logic andStdl_to_Bool(Std_logic
) return Boolean.

(75) , , .

• Other pre-defined enumeration types are character, severity_level,
file_open_kind, and file_open_status. Their encoding and synthesis is not
implemented. It might make sense only for characters. This could be dealt
with in a way similar to user-defined enumeration types.

User-defined enumeration types are specified by listing all their enumeration
literals. Their encoding could be performed by obtaining the positional
number of a literal with the VHDL attributePOS and encoding this value as
an integer. However,POS is not supported for VHDL synthesis [75]. This
makes it necessary to generate conversion functions for each user-defined
enumeration type <ud_enum>:<ud_enum>_to_Stdv(<ud_enum>) return
Std_logic_vector and Stdv_to_<ud_enum>(Std_logic_vector) return
<ud_enum>. These functions can be inserted immediately after the declara-
tion of the enumeration type. They are implemented with case statements
that return the encoded value for each enumeration literal and vice versa. In
this work, binary encoding is used, which leads to equation 76 for encoding
length. Other encodings, e.g. one-hot, could be added easily. A user-defined
choice could be specified like in RTL synthesis with the VHDL attribute
ENUM_ENCODING.
(76) ,

Integer types include the pre-defined type Integer and user-defined types
which specify a range of integer values. Furthermore, there are pre- and user-
defined subtypes with restricted range. All these can be characterised by the
lower boundlb and the upper boundub of legal values, and an encoding can
be defined as follows:

b Stdl() 1= encStdl v() v=

b Bit() 1= encBit v() v=

b Bool() 1= encBool true() ’1’= encBool false() ’0’=

b <ud_enum>() #literals()2log= enc<ud_enum>v() pos v() 2()=

154 VHDL Code Generation

• Non-negative integers: If the lower boundlb is non-negative, an unsigned
binary encoding of natural numbers is used. This encoding represents the
values from 0 up to the upper boundub with the number of bits defined in
equation 77. For conversion, the functionsNat_to_Stdv(Natural, Natural)
return Std_logic_vector andStdv_to_Nat(Std_logic_vector) return Natural
are supplied. Note that the second parameter ofNat_to_Stdv specifies the
number of bits used in the encoding. ForStdv_to_Nat, this can be derived
from the index range of the std_logic_vector that is passed as parameter.
The synthesizable implementation of these conversions is based on the
IEEE numeric synthesis package or, for older versions of Synopsys, the
STD_LOGIC_ARITH package.

(77) ,

• Integer (sub)types that include negative numbers: If the lower boundlb is
negative, a twos-complement encoding of integer numbers is used. The
respective conversion functions areInt_to_Stdv(Integer, Natural) return
Std_logic_vector and Stdv_to_Int(Std_logic_vector) return Integer. The
encoding bit-width (equation 78) can be derived from the value range of
b-bit twos-complement, which is .

(78) , .

• User-defined integer types, available in Objective VHDL, are closely
related to the pre-defined integer type. Their encoding is defined in anal-
ogy. By adding an explicit type conversion into (and from) the pre-defined
integer types, they can be converted to (and from) std_logic_vector using
the functions mentioned above. The explicit type conversion is available
in VHDL.

The bounds,ub andlb, may be parameterized with generic values that are not
yet known. In Objective VHDL, this holds for subtypes. See, for instance, the
attributesfirst, nxt, andindex in the buffer example (section 4.1.9). Parame-
terized bounds make it necessary to have encoding width computation done
by VHDL elaboration, during which the generics become known1. This is
achieved by inserting expressions corresponding to equation 76–78 into the
VHDL code instead of pre-computed values. For this purpose, the functions
max(Integer_list) return Integer and intlog2(Natural) return Natural are pro-
vided in theSyn_Scalar_Types package.Max returns the maximum of its

1. The deeper reason for this is that the available Objective VHDL tool world
provides no elaboration so that the object synthesizer must rely on an ana-
lysed, pre-elaboration model (cf. section 5.5).

b Natural() ub 1+()2log= encNat v() v 2()=

2
b 1–

– … 2
b 1–

1–, ,
b Integer() max lb ub 1+,()()2log 1+= encInt v() v 2()=

Encoding of object data 155

arguments andintlog2 computes the function . The implementa-
tions of these functions can be evaluated by the elaborator. They are not syn-
thesized into hardware.

7.2.2 Composite types

Composite types in (Objective) VHDL, as in most programming languages,
are records and arrays. Records are a heterogeneous collection of elements
whereas arrays are a homogeneous collection of elements. The encoding of
these composite types and their conversion from and into a bit level represen-
tation can be defined based on the elements’ encoding and conversion. In
addition, the access to individual elements must be enabled. Respective tech-
niques are addressed in the remainder of this section. Their implementation
is provided in the packageSyn_Composite_Types (see appendix E).

A record type is characterised by its elements and their types. Let there be
a recordR with n elements of types . Its encoding length is defined
by the sum of the element types’ encoding lengths. The encoding can be
defined as the concatenation of the encodings of the elements’ values

. This is similar to class types (cf. section 4.4.1).
(79)

(80)

Access to the individual elements must be expressed in the generated VHDL.
For this purpose, it is necessary to know the start position of thei-th
element in the encoded bit string. The first element’s encoded value may start
at (any index offset could be chosen) and requires bits.
Hence, the second element can start at . More
generally, or, without recursion:

(81) , .

VHDL code is generated so that these values are stored in a constant array
R_pos declared with typeParam_Vector which is pre-defined in package
Syn_Composite_Types. It is also possible to inline the position expressions
wherever they are needed; however, this makes the code less readable. This
holds particularly if depends on generic parameters so that it can-
not be computed by the object synthesizer.

.()2log

t1 … tn, ,

v1 … vn, ,
b R() b t1() … b tn()+ +=

encR v1 … vn, ,() enct1
v1() … enctn

vn(), ,()=

posR i()

posR 1() 0= b t1()
posR 2() posR 1() b t1()+=

posR i 1+() posR i() b ti 1+()+=

posR i() posR 1() b t j()
j 1=

i 1–

∑+= i 1 … n 1+, ,{ }∈

posR j()

156 VHDL Code Generation

Obviously, the end position of an element is one less than the start posi-
tion of the next element. Note that the case of in equation 81 is
needed to define the end position of the last element this way. Having the ele-
ment position values, an element of an encoded record instance can be acces-
sed by a VHDL slice:

record_instance(R_pos(i) to R_pos(i+1) – 1)

This slice can occur on the left hand of an assignment as well as on the right
hand (in an expression). Hence, it allows both to assign and to read an ele-
ment. In the first case, any required conversion into the encoded representa-
tion can be added to the assigned expression. In the second case, the slice
itself can be converted. Note that, as required by VHDL, in both cases a
right-hand value is converted.

Our considerations of array types are limited to one-dimensional arrays
for the time being. This restriction is lifted later. A one-dimensional arrayA
is characterised by the lower and upper bound,lb andub, of its index range,
and its element typet. Its number of elements is . The
number of bits required for its encoding isn times the size of a single ele-
ment. The encoding of an array value is defined as the concatenation of the
encodings of the element values:
(82) , .

Given the start position of the lowest-index element, , the start
position of element number is at:
(83)

Similar to records, the case of is required to obtain the end posi-
tion of elementi as . However, it must be emphasized thati,
the index with which an array element is addressed, can be a variable
whereas thei in equation 81 is a constant corresponding to a specific record
element. This difference is important as a slice with variable range is not syn-
thesizable [75]. Hence, a different, synthesizable solution for read and write
access to a particular element has to be found.

There are two known workarounds. These are the implementation of bit-
wise access controlled by a for loop that iterates over the range and, second,
the use of a case statement that selects different constant ranges depending
on i. The first solution works for RTL synthesis but not with BC since this
tool cannot unroll for loops during elaboration. The other solution cannot be
used if the number of elements is parametric. Hence, a novel approach had to
be developed.

i n 1+=

n ub lb 1+–=

b A() n b t()⋅= encA vlb … vub, ,() enct vlb() … enct vub(), ,()=

posA lb()
i lb … ub 1+, ,{ }∈

posA i() posA lb() i lb–() b t()⋅+=

i ub 1+=
posA i 1+() 1–

Encoding of object data 157

Our implementation of array element access is based on describing a
multiplexer hierarchy for element selection. This structure, shown in
figure 42, first selects the left or right half of the complete array according to
the value of the most significant bit (MSB) of the index. In further stages,
bisection is continued until finally a single element can be selected depend-
ing on the least significant index bit (LSB).

The description of this hierarchy must integrate with the algorithmic code
of the methods, in which attributes are accessed. Hence, it must be modelled
in a behavioural way, but not as a structure. To this end, we provide a func-
tion, Select_Element, that is synthesized into the desired structure. Its param-
eters are the following:
• A is an std_logic_vector that stores the encoded value of an array.
• INDEX is the indexi of the element to be selected.
• SIZE is the size (in bits) of a single element.
• BASE is the lower boundlb of the range of legal values ofINDEX.
The function implements the same principle as the multiplexer hierarchy: It
splits the complete array at its pivotal element, selects the half that contains
the indexed element, and performs the same operation with this half. Recur-
sion stops when exactly the slice holding the value of the indexed element is
selected and can be returned.

function Select_Element(
constant A : Std_logic_vector;
constant INDEX, SIZE, BASE : Natural)

Fig. 42: Multiplexer hierarchy for array element selection

ITEM(0) ITEM(1) ITEM(N–1)...

LSB

MSB

INDEXITEM(INDEX)

... ...
...

. . .

b t()

158 VHDL Code Generation

return Std_logic_vector is
constant PIVOT : Natural := ((A'RIGHT – A'LEFT + 1) / SIZE) / 2;

begin
if A'RIGHT – A'LEFT + 1 = SIZE then -- end of recursion

return A;
elsif INDEX < BASE + PIVOT then -- left half of array

return Select_Element(
A(A'LEFT to A'LEFT + PIVOT * SIZE – 1),
INDEX, SIZE, BASE);

else -- INDEX >= BASE + PIVOT -- right half of array
return Select_Element(

A(A'LEFT + PIVOT * SIZE to A'RIGHT),
INDEX, SIZE, BASE + PIVOT);

end if ;
end ;

A similar procedure,Assign_Element, implements the assignment of an array
element. The array is declared as a variable of modeinout and the value
passed as an additional parameter compared toSelect_Element.

procedure Assign_Element(
variable A : inout Std_logic_vector;
constant INDEX, SIZE, BASE : Natural;
constant VALUE : Std_logic_vector);

constant PIVOT : Natural := ((A'RIGHT – A'LEFT + 1) / SIZE) / 2;
begin

if A'RIGHT – A'LEFT + 1 = SIZE then -- end of recursion
A := VALUE;

elsif INDEX < BASE + PIVOT then -- left half of array
Assign_Element(

A(A'LEFT to A'LEFT + PIVOT * SIZE – 1),
INDEX, SIZE, BASE);

else -- INDEX >= BASE + PIVOT -- right half of array
Assign_Element(

A(A'LEFT + PIVOT * SIZE to A'RIGHT),
INDEX, SIZE, BASE + PIVOT);

end if ;
end ;

Both these subprograms work correctly even if the number of array elements
is not a power of two. It is important to note that they can be elaborated by a
synthesis tool. In particular, recursion can be resolved during this process

Encoding of object data 159

because the recursion depth depends only on parameters with statically
known values, but not the index. RTL synthesis of the subprograms creates
the same result as direct synthesis of access of an array not encoded to the bit
level. However, the HLS tool used (BC) attempts to schedule the comparison
operations. This not only takes a lot of time, but has also lead to incorrect
implementations in some experiments. Attempts to prevent the scheduling
using BC’s preserved subprograms, scheduled subprograms, mapping to a
pre-synthesized module, and RTL synthesis pragmas have all failed due to
tool limitations. Hence, alternative implementations based on bit compari-
sons, which are not subject of scheduling, have been developed and are pro-
vided in theSyn_Composite_Types package (see appendix E).

Considerations up to now only suffice for arrays of scalar elements. If the
elements are again of a composite type, further actions are necessary to
access the inner elements:
• An offset parameter is added to the access subprograms in order to sup-

port arrays of records. After selecting a record-typed element of an array,
the offset is used for selecting a particular element of this record.

• The modification of the index, size, base, and offset parameters to be
arrays of values rather than single values allows to deal with nested
arrays. After completing the selection of an element according to the first
index, Select_Element and Assign_Element are invoked recursively to
perform further element selection until all indexes have been processed.
The use of the offset parameter enables an arbitrary mix of array and
record element selection.

• Multidimensional arrays can be implemented like arrays of arrays. This
does not affect their language semantics, which differs from nested arrays
in some respect in VHDL.

Thereby, all VHDL composite types can be mapped to a bit level representa-
tion in a synthesizable manner, regardless of their complexity and depth of
nesting. The resulting interfaces are listed below. Their full implementation
can be found in appendix E.

type Param_vector is array (Positive range <>) of Natural;

function Select_Element(
constant A : Std_logic_vector;
constant INDEX, SIZE, BASE, OFFSET : Param_vector)
return Std_logic_vector;

procedure Assign_Element(
variable A : inout Std_logic_vector;

160 VHDL Code Generation

constant INDEX, SIZE, BASE, OFFSET : Param_vector;
constant VALUE : Std_logic_vector);

7.2.3 Object-oriented types

Object-oriented types include classes, derived classes, and class-wide types
(of the polymorphic objects). Their encoding aspects have already been
addressed in section 4.4.1 and section 4.4.2. We now focus on their imple-
mentation by VHDL code generation.

The encoding of a non-derived classC is very similar to a record’s encod-
ing if we relate class attributes to record elements. Hence, the principles
developed in section 7.2.2 are applied to the VHDL bit level representation
of class data and the access of individual attributes. Let be
the types ofC’s attributes as defined in section 4.1.2. The start position of the
i-th attribute’s value is

(84) , ,

where again can be chosen and allows to define
the end position of the last attribute as .

As we know from chapter 4, a derived classD extends its parent classP.
This is reflected in its encoding that has been defined in section 4.1.4. The
position of the inherited attributes in a bit-level representation ofD’s data is
chosen the same as forP. The additional attributes ofD, numbered

 and being of types , follow thereafter:
(85) and

(86) , .

In order to encode a polymorphic object of class-wide typeRpoly, we follow
equation 39 and equation 41 of section 4.4.2 and take the results of data flow
analysis (cf. section 6.4) into account. The task can be divided into the
encoding of tags and of attributes. The required number of different tag val-
ues equals the number of tag equivalence classes minus one (the equivalence
class of void tags). The number of tag bits depends on the encoding chosen,
too. While different binary encodings such as one-hot could be chosen, we
have implemented VHDL code generation for a binary encoding. Hence,

tC 1, … tC n C(),, ,

posC i() posC 1() b tC j,()
j 1=

i 1–

∑+= i 1 … n C() 1+, ,{ }∈

posC 1() posC n C() 1+()
posC n C() 1+() 1–

1 … n D(), , tD 1, … tD n D(),, ,
posD 1() posP n P() 1+()=

posD i() posD 1() b tD j,()
j 1=

i 1–

∑+= i 1 … n D() 1+, ,{ }∈

Encoding of object data 161

(87) , .

An std_logic_vector subtype,<R>_ALL_TAGS, with this number of bits is
created as well as tag constants that represent the tags’ encoded values. Note
that this is object-specific in that different objects of the same class-wide type
may have different tag equivalence classes and therefore different tag enco-
dings. These will be represented by different architectures of an object entity
(see section 7.4.2).

For the encoding of polymorphic object data, it is important to emphasize
that the same attribute can be found at the same start and end location in the
encoding of the class in which it is declared and all derived classes. This only
requires to choose the same (whereC is the root of an inheritance
tree) for all of them. As we place the tag at the beginning of the bit string, we
choose . The class data starts after the tag. Hence,

.
The position of an attribute can now be determined according to thepos

values that have been defined above for non-derived and derived classes. This
enables us to use a method defined for some classC also with an object of
any derived classD as well as a polymorphic object of any of these classes.
As opposed to a translation approach based on creating records for class data,
methods do not have to be re-translated for every single derived class and
class-wide type.

The total number of bits for encoding the polymorphic objects follows
according to equation 41 as the sum of the tag encoding size and the maxi-
mum of the sizes of derived classes. However, only those classes whose
membership is actually taken on by the object (cf. section 6.3) need to be
taken into account:
(88)

7.2.4 Example

The following code excerpts present the VHDL code generated for the bit
level representation of data of the buffer example (cf. section 4.1.9,
section 5.2.4).

No translation is generated for class typeBuffer_t as it is abstract. Only
the supplementary declarations (those declarations which are no attributes
and methods) are maintained because they might be used elsewhere in the
code. These are the subtypeItem_t and the typeBuffer_array. We have put the
width of their encoding as a comment:

bTag obj() Teq obj() 1–()
2

log= ob j Rpoly∈

posC 0()

posTag 0=
posC 0() bTag obj()=

b obj() bTag obj() max b C() obj takes onC membership{ }+=

162 VHDL Code Generation

subtype Item_t is Integer range 0 to 2**bits – 1; -- bits
type Buffer_array is array (0 to size – 1) of Item_t; -- size * bits

It should be mentioned thatbits andsize, the generics ofBuffer_t, are trans-
lated into entity generics as we will see in section 7.4.1.

The positions of the attributes of the derived class typeFIFO are defined
in a constant array,FIFO_POS, as listed below. For practical reasons, we also
collect the positions of inherited attributes in the position array of a derived
class. Furthermore, the position of the very first attribute is normalised to
zero. An adaptation to a possible tag offset will be done in the methods.
Finally, the FIFO’s total size is defined as a constant,FIFO_SIZE, and a cor-
respondingly sized std_logic_vector subtype,SYN_FIFO, is declared.

constant FIFO_POS : Param_vector :=
(0,

-- item : Buffer_array; -- size * bits
size * bits,

-- first : Natural range 0 to size – 1; -- intlog2(size)
size * bits + intlog2(size),

-- nxt : Natural range 0 to size – 1; -- intlog2(size)
size * bits + intlog2(size) + intlog2(size),

-- empty : Boolean; -- 1
size * bits + intlog2(size) + intlog2(size) + 1);

constant FIFO_SIZE : Natural := FIFO_POS(4);
subtype SYN_FIFO is Std_logic_vector(0 to FIFO_SIZE – 1);

An analogous translation is generated for classLIFO:

constant LIFO_POS : Param_vector :=
(0,

-- item : Buffer_array; -- size * bits
size * bits,

-- index : Natural range 0 to size -- intlog2(size + 1)
size * bits + intlog2(size + 1));

constant LIFO_SIZE : Natural := LIFO_POS(2);
subtype SYN_LIFO is Std_logic_vector(0 to LIFO_SIZE – 1);

To create the translation of an object of the class-wide typeBuffer_t’CLASS,
let us assume that this object can be a member of classFIFO andLIFO. For
the tag encoding of these two classes, bit is
needed. Hence, the tag subtype,SYN_BUFFER_ALL_TAGS, is generated as
an std_logic_vector with one element. Tag constants of this subtype,

bTag obj() 2()2log 1= =

Translation of methods 163

SYN_FIFO_TAG and SYN_LIFO_TAG, are defined with the tag values “0“
and “1“.

The object’s encoding size, stored in constantBUFFER_CLASS_SIZE, is
the sum of the tag length, i.e. 1, and the maximum of the FIFO’s and LIFO’s
sizes. This value cannot be computed by the object synthesizer asFIFO_SIZE
andLIFO_SIZE depend on the generic parameterssize andbits (see above)
whose values are unknown before VHDL elaboration. Hence, an expression
to be evaluated by the VHDL tool is inserted. Finally, an std_logic_vector
subtype of the required size is declared.

subtype SYN_BUFFER_ALL_TAGS is std_logic_vector(0 to 0);
constant SYN_FIFO_TAG : SYN_BUFFER_ALL_TAGS := “0“;
constant SYN_LIFO_TAG : SYN_BUFFER_ALL_TAGS := “1“;
constant BUFFER_CLASS_SIZE : Natural :=

1 + intmax((FIFO_SIZE, LIFO_SIZE));
subtype SYN_BUFFER_CLASS is Std_logic_vector(0 to

BUFFER_CLASS_SIZE – 1);

7.3 Translation of methods

In section 4.1.3, we have characterised a method’s interface by the method
name, its parameter names, the parameters’ (and eventually return value)
types and directions (input, output, or both). Declaration and implementation
of methods using Objective VHDL have been demonstrated in section 5.2.4.
Given this model information, we will now show the generation of equiva-
lent, synthesizable VHDL subprograms from which a subsequent HLS step
can create the implementation of the method blocks shown in figure 17
and 18 of section 4.4.

7.3.1 Method interface

From a method interface as characterised in section 4.1.3, a VHDL subpro-
gram declaration with the following properties is generated:
• The subprogram is a function if the method has a return value, all its

parameters are input parameters, and it does not modify any attribute.
Otherwise, it is a procedure. This is necessary because a VHDL function
must have input parameters only. While Objective VHDL is defined with
restrictions so that a method that returns a value can always be translated
into a VHDL function, this is not true for other languages, e.g., C++.

164 VHDL Code Generation

• The subprogram name is the same as the method’s name. Only if this
would be illegal in VHDL, renaming is performed. This may be necessary
if an OO language permits the use of names that are not allowed in
VHDL. If Objective VHDL is used as input language, the only reason for
renaming is a conflict with another declaration that uses the same name in
the generated VHDL code.

• The parameters of the method are translated into parameters of the VHDL
subprogram. This involves dealing with their types, storage classes, and
directions as follows:

- In general, the parameters must be encoded using the techniques
described in section 7.2. In this case, the parameter type becomes a con-
strained std_logic_vector subtype. However, if a method parameter has a
type to which a VHDL type corresponds, this VHDL type can be used.
This is trivially the case if an OO model is described in Objective VHDL.
Leaving the original types in place allows us to let the VHDL elaborator
narrow down the value range and number of bits of the parameter by
examining the actual parameters associated with it.

- The VHDL modein is used for input-only method parameters. Output-
only ones becomeout parameters of the VHDL subprogram. Bidirec-
tional method parameters (input and output) are translated asinout .

- The VHDL storage class isconstant for input-only parameters andvaria-
ble for all others.

• If the method returns a value, it is translated either into a return value of
the VHDL function or an additional output parameter of the VHDL pro-
cedure, depending on what kind of subprogram has been created. The
above considerations on types, VHDL storage classes, and modes apply.

• With the exception of methods which access no attribute at all, the
method’s translated subprogram has an additional parameter. This param-
eter is used for passing the state of an object with which a method has
been invoked to the method. Its properties are:

- The name isTHIS by default, but can be configured by the user in the
translation tool that has been developed.

- The type is an unconstrained std_logic_vector, making it possible to
invoke the method’s translated subprogram not only with an object of the
classC in which the method is declared, but also with any derived class
that has an extended state space, i.e., a state vector with a larger number
of bits. This would not be possible if the parameterTHIS were declared
with the constrained std_logic_vector subtype that represents the encoded
state ofC.

Translation of methods 165

- The mode isin if the method and all further methods invoked by it only
read the object’s attribute values. If the object’s state is modified, the
mode isinout . Note that the modeout is not used, even for methods that
are write-only with respect to attributes, since out-mode parameter pass-
ing in VHDL involves an initialisation that would invalidate the value of
unmodified attributes.

- The VHDL storage class isconstant if the method is read-only with
respect to the attributes, andvariable otherwise.

For example, the following VHDL subprograms result from the translation of
the methods that occur in the buffer example:

procedure put(
variable THIS : inout std_logic_vector;
constant val : in Integer);

procedure get(
variable THIS : inout std_logic_vector;
variable val : out Integer);

function is_full(
constant THIS : in std_logic_vector)
return Boolean;

function is_empty(
constant THIS : in std_logic_vector)
return Boolean;

7.3.2 Attribute access

The implementation of a method can read an attribute and assign it a value. A
read access occurs when the attribute is used in an expression or as an actual
input parameter in a method or subprogram call. The attribute’s use as an
assignment target or actual output parameter constitutes a write access.
While parameter associations are dealt with in the following section, we here
present the translation of attribute use in expressions and assignments.

VHDL code generation must consider that an attribute may be of a scalar
or composite type, and that elements of composite types may in turn be com-
posite. The translation of the respective access mechanisms is summarised in
the following steps:
1) If the attribute is referenced by a simple name, this reference is replaced

by a slice of the object’s state vector from the attribute’s start position
 to its end position . Otherwise, it is replaced by apos i() pos i 1+() 1–

166 VHDL Code Generation

subprogram call ofSelect_Element for read access orAssign_Element for
write access, the before-mentioned slice is passed as an actual of the for-
mal parameterA, and the following steps are executed:

2) If the attribute reference is an indexed name, i.e., a reference to an array
element, the vectors passed as actual parameters in the access subprogram
call are augmented as follows:

- SIZE: The size of the array element type is appended.
- BASE: The lower boundlb of the array index range is appended.
- INDEX: The index expression of the indexed name is appended.
- OFFSET: A zero is appended.

3) If the attribute reference is a selected element, i.e., a reference to a record
element, the argument vectors of the access subprogram call are updated
as follows:

- OFFSET: The element’s start position is appended.
- SIZE: The size of the element’s type is appended.
- BASE, INDEX: A zero is appended to each.

The last two steps are repeated until no more indexed or selected element is
found. Thereby, nested selection of record and array elements of complex
data structures is translated. Other element access mechanisms, particularly
in Objective VHDL, are pointer dereferentiation and slices that allow to
access multiple array elements at a time. Both are considered as not synthesi-
zable in VHDL [75] and therefore rejected by the object synthesizer.

As an example, we consider the first attribute of the class typeFIFO. This
attribute is an array with index range from 0 tosize–1. To demonstrate nest-
ing of composite types, we now assume that the array elements are records of
type REC which in turn has three elements. Let us assume that the second
element requires five bits. The write access to the second record element of
the i-th array element of objectobj is translated as follows:

Assign_Element(
A => obj(obj’LEFT+FIFO_POS(1) to obj’LEFT+FIFO_POS(2)–1),
INDEX => (i, 0),
SIZE => (REC_SIZE, 5),
BASE => (0, 0),
OFFSET => (0, REC_POS(2)),
VALUE => <assigned_expression>);

The addition ofobj’LEFT to the attribute position compensates the normalisa-
tion of the position values toFIFO_POS(1) = 0 (cf. section 7.2.3).

b t()

pos i()
b ti()

Translation of methods 167

7.3.3 Intra-object method invocation

The term intra-object method invocation as coined in section 4.2.3 means
that a method of an object invokes a method of the same object or of an
exclusively owned sub-object. This kind of object communication, as it
involves no parallelism and no need for request arbitration, can be translated
into a VHDL subprogram call as follows:
• The called VHDL subprogram is the one that corresponds to the invoked

method.
• The formal parameterTHIS of the called subprogram is associated with

the parameterTHIS of the calling subprogram if a method of the same
object is invoked. If a method is invoked with a sub-object, only that slice
of the calling subprogram’sTHIS that corresponds to the attribute that
holds the sub-object’s state is passed to the called subprogram.

• Any association of an actual parameter with the method’s formal parame-
ters is transformed into an association of the actual with the correspond-
ing formal of the translated VHDL subprogram.

• If a function method has been transformed into a VHDL procedure, we
have to take into account that a procedure call cannot occur as part of an
expression while the original function call can. This requires to invoke the
procedure before the expression is evaluated, to assign the return value
that is passed via an output parameter to a temporary variable, and to use
this variable in the expression instead of the original function call. Note
that in the presence of side effects in the function method, this code trans-
formation may affect the expression result. Relying on a particular order
of expression evaluation, however, is no good programming practice and
the user should be prevented from doing so. This is ensured in Objective
VHDL by not permitting side effects in function methods.

In all of the above-mentioned translated parameter associations, conversions
or selection of an element of a composite type may be required. This is the
case if, e.g., an indexed sub-object must be extracted from an array of sub-
objects or if an element of a record-typed attribute is passed as an actual
parameter to the invoked method. Two situations must be distinguished:
• If the formal parameter of the translated VHDL subprogram is an input

parameter of VHDL storage classconstant , an expression may be associ-
ated with it. This allows us to incorporate the required call of a conversion
function or of the functionSelect_Element as part of the parameter asso-
ciation. Similarly, a return value of a function can be converted as
required.

168 VHDL Code Generation

• If the formal parameter is an output or bidirectional parameter or of
VHDL storage classvariable (the latter condition coincides with the
former ones in the translation presented), VHDL does not permit a con-
version function call as part of the parameter association. A temporary
variable of the formal parameter’s type must be declared and associated
with the formal. The variable is initialised with the original actual param-
eter just before the subprogram call. After the call, the variable’s value is
assigned to the original actual. Any conversions or selections required can
be incorporated into these assignments.

For example, consider the following Objective VHDL method call, where
in_p be an input parameter andbidir_p a bidirectional one:

subobject.method(
in_p => some_array(i),
bidir_p => some_record.element);

We assume thatsome_array and some_record have been encoded during
translation, while the formal parametersin_p andbidir_p haven’t been. Fur-
thermore, besubobject the third attribute of the object. This leads to the gen-
eration of the following VHDL code:

variable temp : <type>; -- the type of bidir_p
...
temp := Stdv_to_<type>(Select_Element(some_record, ...));
method(

THIS => this(this’LEFT + <>_POS(3) to this’LEFT + <>_POS(4)–1),
in_p => Select_Element(some_array, i, ...),
bidir_p => temp);

Assign_Element(some_record, ..., <type>_to_Stdv(temp, <type>_size));

Analogous transformations, with the exception of not creating a parameter
THIS, are required for normal subprogram calls whenever one of the actual
parameters, after transformation into an encoded representation, must be
converted into the type of the formal parameter.

7.3.4 Dynamic binding

A hardware implementation of dynamic binding of redefined methods has
been devised in section 4.4.7. We now show how this structure (cf. figure 21)
can be described by a VHDL subprogram so that its synthesis can be dele-
gated to a behavioural synthesis tool:

Translation of methods 169

• The dynamic binding subprogram is the same kind of VHDL subprogram
(function or procedure) as the subprogram translation of the redefined
methods.

• Its name is created by appending the suffix_DYNAMIC_BIND to the origi-
nal method name. Further renaming is performed as required.

• The subprogram parameters of the dynamic binding subprogram, i.e. their
names, types, modes, and VHDL storage classes, are the same as those of
the translated method. Also the return type, if any, is the same.

• The subprogram body contains acase statement. The case expression
selects the tag bits from the polymorphic object’s state vector, which is
passed as the parameterTHIS. A slice is used to perform this selection,
and must be qualified with the tag type (cf. section 7.2.3) to make the
VHDL code legal.

• For each valid tag value, represented by a tag constant, awhen branch is
created. It invokes the subprogram translation of the redefined method
version that corresponds to the tag. The following parameters are passed:

- The formal parameterTHIS of the invoked subprogram is associated with
the object’s state vector. If the called subprogram uses the self reference
for dynamic binding, the complete state including the tag is passed to it.
Otherwise, the state without the tag is selected by a slice of the parameter
THIS of the dynamic binding subprogram.

- The other parameters are associated with the corresponding parameters of
the dynamic binding subprogram.

- A return value (in case of a function) is passed on to the caller of the
dynamic binding subprogram by areturn statement.

• An assertion statement in theothers branch reports any invalid tag values
during simulation. This statement is ignored by synthesis.

The synthesis tool implements the functionality of every single branch, i.e.
all the redefined versions of the method, in hardware. It creates as implemen-
tation of the case statement a multiplexer that selects the results of one of
these sub-circuits according to the tag value. The fact that the execution of
case branches is guaranteed to be mutually exclusive allows the synthesis
back-end to implement resource sharing among the method sub-circuits.

The following listing presents these concepts with the dynamic binding
subprogram that is generated for the methodput of the buffer example:

procedure put_DYNAMIC_BIND(
variable THIS : inout Std_logic_vector;
constant val : in Integer) is

begin

170 VHDL Code Generation

case SYN_BUFFER_ALL_TAGS’(THIS(0 to 0)) is
when SYN_FIFO_TAG =>

put_FIFO(
THIS => THIS(1 to BUFFER_CLASS_SIZE),
val => val);

when SYN_LIFO_TAG =>
put_LIFO(

THIS => THIS(1 to BUFFER_CLASS_SIZE),
val => val);

when others =>
assert false

report “OVHDL runtime error: illegal or uninitialized tag“
severity failure;

end case ;
end put_DYNAMIC_BIND;

-- procedure get_DYNAMIC_BIND : analogous

7.3.5 Example

As an example of the complete translation of a function and a procedure
method, the VHDL code generated from the methodsis_full andput of class
LIFO is listed below. Their original code can be found in section 5.2.4.

function is_full(constant THIS : in Std_logic_vector) return Boolean is
begin

return Stdv_to_Nat(THIS(THIS’LEFT + LIFO_POS(2) to
THIS’LEFT + LIFO_POS(3) – 1) = size;

end ;

procedure put(
variable THIS : inout Std_logic_vector;
constant val : in Integer) is

begin
assert not is_full(THIS) report “LIFO overflow“ severity failure;
Assign_Element(

THIS(THIS’LEFT + LIFO_POS(1) to
THIS’LEFT + LIFO_POS(2) – 1),

Stdv_to_Nat(THIS(THIS’LEFT + LIFO_POS(2) to
THIS’LEFT + LIFO_POS(3) – 1)),

bits,
0,
Int_to_Stdv(val, bits));

THIS(THIS’LEFT + LIFO_POS(2) to THIS’LEFT + LIFO_POS(3) – 1)

Translation of objects 171

:= Nat_to_Stdv(
Stdv_to_Nat(THIS(THIS’LEFT + LIFO_POS(2) to

 THIS’LEFT + LIFO_POS(3) – 1) + 1,
intlog2(size + 1);

end put;

7.4 Translation of objects

Given the bit-vector encoding of an object’s state space and the translation of
its methods into VHDL subprograms, we can now develop the generation of
a synthesizable design entity. This entity-architecture pair is the translation of
a class. Multiple architectures of the entity can be used to represent different
optimizations. The component instantiation of such an entity-architecture
pair corresponds to the (static) creation of an object in the OO model.

7.4.1 Interface of a synthesized object

The interface of a synthesized object is defined by a VHDL entity generated
by the object synthesizer. This entity describes the inputs, outputs, and
parameters of a circuit that implements an object of a non-derived or derived
class as defined in section 4.4 (see figure 17 and figure 18, respectively):
• The entity name is the name of the class it implements. If it implements a

class-wide type, the suffix_CLASS is appended. Further renaming is per-
formed as required.

• All parameters of a class, including inherited ones, are represented as
generics of the entity. This includes generic values of the OO model as
well as generic types. The translation of a generic type passes the number
of bits required to encode this type as an entity generic. A generic value
can be implemented directly if it is an integer. Values of other types must
be converted from their std_logic_vector representation into an integer
value since only integer VHDL generics are synthesizable [75].

• Two input ports for global synchronous control signals are created; a
clock signal,CLK, and a reset signal,RESET. Both are of type std_logic.

• The input portsSELECT_METHOD, IN_PARAMS, OUT_PARAMS, and
DONE are defined to be connected to one ingoing channel. TheDONE
signal is of type std_logic. The other three signals are constrained
std_logic_vectors whose width and encoding are as defined in
section 4.4.3.

172 VHDL Code Generation

• For each outgoing channel (see section 5.3.5 for the determination of
these channels from an Objective VHDL model), respective output sig-
nals (REQ, P_IN, P_OUT, DONE, cf. section 4.5.1) are defined.

• If all guard expressions are independent of the input parameters of a
requested service, anRDY output port of std_logic_vector type is defined.
The port has as many bits as there are valid service identifiers. Thei-th bit
is ’1’ if the guard expression of the service with identifieri is true, and ’0’
otherwise (cf. section 4.5.2).

• An auxiliary output port,STATE_OUT, may be defined to make the
object’s state observable outside of the object. This port is required if
guard expressions depend on the services’ input parameters and are there-
fore computed externally (cf. section 4.5.2).

• An auxiliary input port,STATE_IN, may be defined in order to improve
the controllability of the object’s state, e.g. for simulation purposes.

In the following, the interface of a polymorphic buffer object is listed. The
class generics,size andbits, are translated into entity generics. There is one
ingoing channel; arbitration of multiple clients is performed outside of the
object if required. Outgoing channels are not required in this case as the
object does not have external clients. The guard expressions are independent
of input parameters; hence, anRDY port is created. TheSTATE_IN signal has
been generated in this case in order to implement assignment (see
section 7.4.3). TheSTATE_OUT output is only used for simulation purposes
(observation of the state in a testbench).

entity BUFFER_CLASS is

generic (size : Positive;
bits : Positive);

port (-- global control signals
signal CLK : in Std_logic;
signal RESET : in Std_logic;
-- ingoing channel
signal SELECT_METHOD : in Std_logic_vector(0 to 1);
signal IN_PARAMS : in Std_logic_vector(0 to bits – 1);
signal OUT_PARAMS : out Std_logic_vector(0 to bits – 1);
signal DONE : out Std_logic;
-- guard expression values
signal RDY : out Std_logic_vector(0 to 3);
-- auxiliary signals
signal STATE_IN : in Std_logic_vector(

0 to BUFFER_CLASS_SIZE(size, bits)–1);

Translation of objects 173

signal STATE_OUT : out Std_logic_vector(
0 to BUFFER_CLASS_SIZE(size,bits)–1));

end BUFFER_CLASS;

7.4.2 Object architecture

An object entity may have several architectures corresponding to implemen-
tations of objects with different optimizations. An object architecture has a
single process with code suitable for behavioural synthesis. The process con-
tains declarations, initialisation code, and code that describes object func-
tionality so that the structures presented in section 4.4 are synthesized from
it. The process declarative part is logically split into the following parts:
• Declarations of constants that describe the encoding width and attribute

positions (cf. section 7.2).
• The declaration of a type that represents the object’s encoded state space.
• Declarations of VHDL subprograms that result from the translation of

methods, including dynamic binding subprograms (cf. section 7.3).
• The declaration of a variable, namedTHIS, that stores the object state. Its

type is the encoded class type. The variable is synthesized into the storage
element of the object circuit.

• Declarations of auxiliary variables required for parameter passing.
The initialisation or reset behaviour is described by an outer infinite loop,
labelled RESET_LOOP, as required by BC. For each attribute, the initial
value defined in the OO model is assigned to the respective portion of the
object’s state vector. The techniques described in section 7.3.2 are used for
implementing these assignments. Initialisation of array attributes may require
the generation of afor loop. Furthermore, the entity’s output ports are initial-
ised. TheDONE signal is set to ’1’, which means that the object is ready to
accept requests. The guard expression values of the initial state are assigned
to the RDY signal, if any, and the object’s initial state value to the
STATE_OUT signal, if any.

Regular object functionality is described by an inner infinite loop,
labelledMAIN_LOOP, that is nested into the reset loop after the initialisation
statements. Again, this matches the template required by BC. The object’s
operation includes waiting for a service request, executing the corresponding
method, and updating the output signals. The code generated for that is as
follows:
• A case statement queries theSELECT_METHOD input signal. It has a

when branch for each method that can actually be called in the model and

174 VHDL Code Generation

anothers branch. Methods that are never requested are not implemented.
The multiplexer structure of an object circuit is synthesized from this
statement.

• A when branch that corresponds to a method operates by setting the
DONE signal low, invoking the VHDL subprogram that implements the
requested service with the input parameter values (if any) received over
the IN_PARAMS signal, and finally assigning the output parameter values
(if any) to theOUT_PARAMS signal. Techniques for parameter associa-
tion and type conversions are applied as described in section 7.3.3. If a
method of a polymorphic object must be bound dynamically, its corre-
sponding dynamic binding subprogram is called. From each branch, one
method sub-circuit of an object circuit is synthesized.

• The others branch implements the object’s idle mode by performing no
operation. Since the process may run into this branch not only when no
service is requested (SELECT_METHOD = 0, cf. section 4.4.3) but also if
an invalid value is present on theSELECT_METHOD signal, we may add
an assertion for detecting the latter situation. This is only for simulation;
synthesis ignores the assertion statement.

• After the case statement, the object’s state value is assigned to the
STATE_OUT signal, if any, the guard expression values are converted
from boolean to std_logic and assigned to theRDY output, if any, and the
DONE signal is set high in order to indicate that the object is ready to
accept the next request. After these operations, the end of the main loop is
reached and its next iteration begins.

The resulting code structure is summarised in figure 43. A complete listing
can be found in the next section.

In addition, statements of the formwait until clk’event and clk = ’1’ have
to be generated. Each of them is followed by a statement that describes reset
behaviour,exit RESET_LOOP when reset = ’1’, in order to let BC infer a
global synchronous reset. These statements are required not only to satisfy
tool requirements [152], but also to obtain a reasonable behaviour. Without
any wait statement, VHDL simulation would execute the inner loop infi-
nitely, never suspending the process and letting the simulated time proceed.
In figure 43, these clock cycle boundaries are indicated by hatched bars.
• The first wait and exit statements must occur after initialisation and

immediately before entering the main loop to express the synchronous
start of normal operation.

• In a when branch that executes a method, thewait andexit statements
must be inserted after the assignment toDONE and before reading the

Translation of objects 175

IN_PARAMS signal. This satisfies the BC requirement that signal read
operations be separated from preceding signal assignments by a clock
cycle transition.

• BC demands that if at least one branch of an alternative (if , case) state-
ment includes a wait statement, all others include one as well. Hence, a
wait andexit must be generated in theothers branch, too.

• Finally, a wait statement is generated before the end of the inner loop.
This separates the assignments to output signals from read operations that
occur when the next loop iteration starts, in this case the access to the
SELECT_METHOD input in the case expression.

The final wait statement ensures that each loop iteration takes at least one
clock cycle. Furthermore, the wait statements of the second and last point let
consecutive assignments of ’0’ and ’1’ to theDONE signal take place in dif-

Fig. 43: Code structure of an object’s process

RESET_LOOP : loop -- forever

Initialisation statements

MAIN_LOOP : loop -- forever

SELECT_METHOD

othersTag1 TagN
...

...

DONE <= ’0’ DONE <= ’0’ assert NOP

Method1(THIS, ...) MethodN(THIS, ...)

OUT_P. <= ... OUT_P. <= ...

RDY <= (’0’, -- a non-request (idle) is never accepted

STATE_OUT <= THIS
DONE <= ’1’

next MAIN_LOOP

clock cycle boundary

Bool_to_Stdl(Guard1(THIS)),

Bool_to_Stdl(GuardN(THIS))
)

...,

176 VHDL Code Generation

ferent control steps, but not in the same clock cycle. This ensures proper
implementation of the handshake protocol defined in section 4.5.1.

However, the third kind of wait statement (wait inothers branch) does
not serve any purpose other than satisfying tool requirements on the VHDL
code. It can even delay request acceptance unnecessarily. This happens when
theothers branch is entered because there is no request (SELECT_METHOD
= “00“) in some cycle, and a request arrives in the next cycle. The object can-
not respond in the cycle thereafter as it has to wait for two clock transitions,
one in theothers branch and the second at the end of the main loop, before
the case statement is reached again.

This behaviour can be improved by adding anext MAIN_LOOP statement
after the wait and exit statements of theothers branch. Thereby, execution
continues at the loop start, skipping the final wait and the preceding output
assignments which are unnecessary as nothing has changed.

7.4.3 Example

The following listing shows the VHDL architecture generated as implemen-
tation of a polymorphic buffer object. The architecture contains a single
process. In the declarative part of the process, declarations of constants,
types, and subprograms are collected. These have already been presented as
examples in section 7.2.4, section 7.3.1, section 7.3.4, and section 7.3.5. In
addition, the object state variableTHIS and a variable namedOUTPUT_VAR
which is to be used in the association of a subprogram output parameter (cf.
section 7.3.3) are declared.

architecture BEHAVIOR of BUFFER_CLASS is
begin

P : process
-- declarations (constants, types, subprograms) mentioned before
...
-- object state
variable THIS : SYN_BUFFER_CLASS;
-- auxiliary variables for parameter association
variable OUTPUT_VAR : Integer;

The process’s statement part begins with the reset loop, where the object
state is initialised as an empty FIFO buffer according to its initial value
defined in the OO model. Likewise, all output signals are initialised. The ini-
tialisation part ends with a wait/exit statement combination.

Translation of objects 177

begin
RESET_LOOP : loop

-- initialisation
THIS(0 to 0) := FIFO_TAG;
for i in 0 to size–1 loop -- item := (others => 0)

Assign_Element(
THIS(1+FIFO_POS(1) to FIFO_POS(2)),
 (i, 0), (bits, bits), (0, 0), (0, 0),
Nat_to_Stdv(0, bits));

end loop ;
THIS(1+FIFO_POS(2) to FIFO_POS(3)) := -- first := 0

Nat_to_Stdv(0, intlog2(size));
THIS(1+FIFO_POS(3) to FIFO_POS(4)) := -- nxt := 0

Nat_to_Stdv(0, intlog2(size));
THIS(1+FIFO_POS(4)) := Bool_to_Stdl(true); -- empty := true
RDY <= ('0', '0', '0', '1');
DONE <= '1';
STATE_OUT <= THIS;
wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';

Next follows the main loop, whose first statement is a case statement that
checks theSELECT_METHOD input. The following cases are distinguished:
• The method ID is“01“, which stands forput. TheDONE signal is set low,

and after a clock cycle transition the dynamic binding subprogram created
for method put is invoked.

• The method ID is“10“, which stands forget. Operation is similar to the
previous case. The auxiliary variableOUTPUT_VAR is associated to the
subprogram’s output parameter. In an additional statement, its value is
converted and assigned to the object entity’s parameter output signal,
OUT_PARAMS.

• The method ID is“11“, which stands for assignment. After settingDONE
low and awaiting a clock cycle transition, the value present at the object
entity’s STATE_IN input is assigned to the object state variable,THIS.
Note that without a dedicatedSTATE_IN input, the state value to be
assigned would be transmitted over theIN_PARAMS input.

• The method ID has any other value. Error cases, e.g. the presence of a
metalogical value such as’X’ (undefined),’U’ (uninitialised), or’Z’ (high
impedance), are caught during simulation by an assertion statement. The
only legal value is“00“, i.e. no request. If this value is present, thenext

178 VHDL Code Generation

statement is reached after a clock wait, letting execution continue at the
beginning ofMAIN_LOOP.

Finally, theDONE signal is set to’1’, the state output is updated with the
object’s state value, and the guard expression values are assigned to theRDY
signal. After a clock wait, execution jumps back to the loop start.

MAIN_LOOP : loop
-- normal operation
case SELECT_METHOD is

when "01" => -- implements dynamically bound put
DONE <= '0';
wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';
put_Dynamic_Bind(THIS, Stdv_to_Int(IN_PARAMS));

when "10" => -- implements dynamically bound get
DONE <= '0';
wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';
get_Dynamic_Bind(THIS, OUTPUT_VAR);
OUT_PARAMS <= Stdv_to_Int(OUTPUT_VAR, bits);

when "11" => -- implements assignment
DONE <= '0';
wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';
THIS := STATE_IN;

when others => -- implements idle mode
assert SELECT_METHOD = “00“

report “O-VHDL run time error: invalid method ID“
severity failure;

wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';
next MAIN_LOOP;

end case ;
DONE <= '1';
STATE_OUT <= THIS;
RDY <= ('0', -- “guard“ for idle

Bool_to_Stdl(not is_full(THIS)), -- guard for put
Bool_to_Stdl(not is_empty(THIS)), -- guard for get

'1'); -- guard for :=
wait until CLK'event and CLK = '1';
exit RESET_LOOP when RESET = '1';

end loop MAIN_LOOP;

Inter-object communication 179

end loop RESET_LOOP;
end process ;

end BEHAVIOR ;

7.5 Inter-object communication

We have already explained in section 7.3.3 how method invocations within
an object are translated into VHDL subprogram calls so that their synthesis is
delegated to the VHDL synthesizer. Any inter-object communication
between concurrent objects, however, must be dealt with by the object syn-
thesizer since BC requires an explicit implementation of handshaking
between concurrent processes. The most natural way of modelling the proto-
col involved would be its description as a finite state machine. Since this
modelling style cannot be integrated with the sequential code that describes
an object’s behaviour, we must encode the FSM implicitly in the algorithm as
shown in the following.

7.5.1 Remote method invocation by the client

In order to request a service from a server object, a client must execute the
following steps (cf. section 4.5.1):
• Supply the encoded identifier of the service and the service’s input param-

eters via theREQ and P_IN signals of the channel that addresses the
server.

• Await the acceptance of its request, signalled by the channel’sDONE sig-
nal going low.

• Reset the request immediately (i.e., in the next cycle) to no-operation in
order to avoid it being accepted a second time.

• Await the completion of service execution, signalled by the channel’s
DONE signal going high.

• Read the output parameter values from the channel’sP_OUT signal for
later use. This must be done immediately as theP_OUT values are invali-
dated as soon as the server accepts the next request.

The second and fourth action, waiting for a specific value of theDONE sig-
nal, requires some further attention. We must take care for this action to be
insensitive to glitches on theDONE signal, and for the generated code to be
synthesizable. Following synchronous design principles, the first requirement
is satisfied by observing theDONE value at the leading clock edge only. The
second requirement forbids the use of a simple VHDL statement such aswait

180 VHDL Code Generation

on CLK until CLK = ’1’ and DONE = ... to express the desired functionality.
Instead, busy waiting must be implemented using a loop. This and the other
VHDL statements generated to implement the above steps are shown in
figure 44.

The position of clock waits is indicated by hatched bars. The wait state-
ments numbered 1 and 3 separate a write operation from a subsequent read
operation (of theDONE signal in the while condition) as required by BC.
Statements number 2a and 4a wait for one clock cycle inside their enclosing
while loop. Thereby, the value ofDONE is sampled after consecutive leading
clock edges. Moreover, these wait statements ensure that time proceeds when
simulating the busy waiting. Both while loops are immediately followed by
further wait statements (number 2b and 4b). These result from the fact that
BC schedules a loop exit as a control step of its own [152].

The code fragment depicted in figure 44 replaces a method call statement
that is enclosed by other code. We must ensure its synthesizability and func-
tional correctness in this context. To this end, the final wait statement
(number 5) separates the assignment of actual output parameters from any
possibly following read operation. The code start is not critical as the first
operation, an assignment, may be preceded by read or write operations. For
correct implementation of the handshake protocol, it is important that the
DONE signal is high when entering the code. Otherwise, theREQ signal
would be reset to the no-operation identifier too fast. The following proper-
ties ensure the desired functionality:

Fig. 44: Code inserted for requesting a service

REQ <= <encoded method ID>
P_IN <= <encoded input parameter values>

while DONE = ’1’

REQ <= <nop>

while DONE = ’0’

<actual output parameters> := <conversion_func_call>(P_OUT)

1

2a
2b

3

4a
4b

5

Inter-object communication 181

• The server object sets theDONE signal high during its initialisation.
• Any method invocation initiated by preceding code is finalised only after

theDONE signal has gone high.
• Any preceding method invocation by another client is hidden by the arbi-

ter, which keeps theDONE signal high on all channels to clients that are
not being served.

Finally, we must consider that BC does not permit the access of signals such
asDONE andREQ from a subprogram. Hence, if a remote method is invoked
from a subprogram, e.g. from a VHDL subprogram that implements a
method of the OO model, this subprogram must be inlined into the process
from which it has been called. This means to replace a subprogram call by
the sequential code of the subprogram body, to replace any access to a formal
subprogram parameter by the actual parameter or expression, to include the
subprogram’s declarative part in the process declarative part, and to resolve
any name conflicts by renaming. Furthermore, while allowing subprograms
to be free of any clock waits, BC requires wait statements at certain locations
in process code. Respective statements have to be added to the inlined code
by the VHDL code generator.

7.5.2 Optimized protocol code

To implement a while loop of figure 44, the succeeding clock wait, and the
following statements up to the next clock wait, VHDL code could be gener-
ated following the template listed below:

while DONE = <value> loop
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;
<subsequent statements>
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

This implies that any subsequent statements cannot be executed faster than
one cycle after detection of theDONE value being waited for. For instance,
REQ is reset to no-operation one cycle afterDONE goes low. Since BC regis-
ters all outputs of a synthesized circuit, this response arrives at the server two
cycles after service acceptance—too late according to our protocol definition

182 VHDL Code Generation

in section 4.5.1. To speed up timing, it would be desirable to execute subse-
quent statements in the same cycle loop termination is detected.

A straight-forward approach would be to move these statements between
theend loop and the following clock wait and to remove the final clock wait
of the code template. This is legal when using BC’s superstate-fixed and free-
floating scheduling modes, as opposed to cycle-fixed scheduling. However,
BC always schedules a one cycle delay between loop termination and follow-
ing actions.

The working solution is to move the subsequent statements so that they
are executed before loop termination. This requires to describe loop termina-
tion explicitly using anexit statement in an infinite loop. The exit statement
is preceded by the moved statements, and all these statements are conditional
on the negated condition of the former while loop:

loop
if DONE /= <value> then

<subsequent statements>
exit ;

end if ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

The above code template performs operations that logically follow the detec-
tion of aDONE value in the cycle the value is detected, which helps to speed
up message exchange protocol sequences significantly. Further improve-
ments are achieved in the case of successive remote method invocations by
including the initial assignment statements (toREQ andP_IN, see figure 44)
of the second protocol code template before the exit from the first one, which
allows to save the first clock wait of the second template. Respective experi-
ments will be made in section 8.4.3. Moreover, it may be possible to merge
user-defined code that precedes or succeeds a remote method invocation with
the generated VHDL code. This, however, depends on the surrounding state-
ments.

7.5.3 Example

Let buffer_1 and buffer_2 be polymorphic objects of typeBuffer_t’CLASS.
The following Objective VHDL code describes the invocation of methodget

Inter-object communication 183

with objectbuffer_1, where the actual output parameter ismy_var_1. This is
followed by the invocation of methodput with objectbuffer_2, where the
actual input parameter ismy_var_2:

buffer_1.get(my_var_1);
buffer_2.put(my_var_2);

The following VHDL code implements this sequence by executing the
remote method invocation protocol. The channel signals for addressing
buffer1 andbuffer2 are distinguished by appending respective suffixes, e.g.
resulting in the namesDONE_buffer_1 andDONE_buffer_2.

REQ_buffer_1 <= “10“ -- ID of method get
-- no input parameters
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;
loop

if DONE_buffer_1 /= ’1’ then
REQ_buffer_1 <= “00“;
exit ;

end if ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;
loop

if DONE_buffer1 /= ’0’ then
my_var_1 <= Stdv_to_Int(P_OUT_buffer_1);
REQ_buffer_2 <= “01“; -- ID of method put
P_IN_buffer_2 <= Int_to_Stdv(my_var_2, bits);
exit ;

end if ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;
loop

if DONE_buffer_2 /= ’1’ then
REQ_buffer_2 <= “00“;
exit ;

end if ;

184 VHDL Code Generation

wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;
loop

if DONE_buffer_2 /= ’0’ then
-- no output parameter values to retrieve
exit ;

end if ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

end loop ;
wait until CLK’event and CLK = ’1’;
exit RESET_LOOP when RESET = ’1’;

The loop exits allow to implement a fast protocol as described in the previous
section. Particularly, the finalisation of the first remote method invocation
and the initiation of the second one are combined in the second loop. As both
method invocations are perfectly independent of another, it is possible to
even think about parallelizing them. Respective experiments are performed
later in section 8.4.4.

7.5.4 Client-server interconnection

Having addressed VHDL code generation for a client’s interaction with a
server object, we shall now mention the interconnection of a client with its
server. This means to generate a netlist that describes the instantiation and
interconnection of object entities. VHDL netlists are dealt with in many text-
books, e.g. [9]. Hence, in this work, we only define the netlist’s structure
without going into the VHDL details:
• For each object , an instance of the entity-architecture pair that

describes its optimized implementation is created.
• If the object has more than one client, i.e. there is more than one channel

 in which obj is a server, an arbiter instance (cf.
section 4.5.2) is created. The arbiter’s generic number of client channels,
N, is associated with the actual number of clients. The arbiter’s server
channel is connected toobj. The arbiter’s scheduler component is confi-
gured according to a user-defined specification (e.g., using the VHDL
attributeSCHEDULING of Objective VHDL as shown in section 5.4.2) or,
in its absence, bound to a default scheduler circuit.

obj Ω∈

client obj,() ζ∈

Summary 185

• For each channel , the client object’s corresponding
output channel is connected either to an input channel of the server’s arbi-
ter or, in the absence of an arbiter, directly to the server’s input channel.

Connecting an input channel and an output channel means the following:
• To instantiateREQ, DONE, P_IN andP_OUT signals and apply renaming

as required.
• To connect these signals to the corresponding ports,REQ, DONE, P_IN,

andP_OUT, that implement the output channel.
• If the input channel belongs to an arbiter, to connect these signals to a cor-

responding slice of the arbiter’sC_REQ, C_DONE, C_P_IN, and
C_P_OUT signals.

• If the input channel belongs to a server object, to associateREQ with the
server’s SELECT_METHOD signal, DONE to DONE, P_IN to
IN_PARAMS, andP_OUT to OUT_PARAMS.

If the original OO model has a hierarchical structure beyond an object hierar-
chy, it is advisable to maintain this structure in the generated VHDL code. In
Objective VHDL, a design hierarchy may be described by hierarchical
instantiation of entities, where each entity may collect several objects that
belong together. In this case, references to these objects (i.e., channels) are
passed via entity ports. The generated VHDL code may maintain the original
entity hierarchy. Channels or object references are implemented by replacing
them by respectiveREQ, DONE, P_IN, andP_OUT port signals.

7.6 Summary

The generation of synthesizable, behavioural, algorithmic-level VHDL code
from an object-oriented model has been presented following the structure of
the meta-model of object-orientation presented in chapter 4. After develop-
ing a VHDL representation of the encoding of object data, the translation of
methods has been addressed. The resulting declarations are collected and
used in a VHDL design entity (entity-architecture pair) that represents a par-
ticular optimization of a class. Finally, we have described how the static
structure of an object system, i.e. its objects and channels, is implemented by
instantiating and interconnecting the generated design entities in VHDL.

Much effort has been devoted to the implementation of an optimized
encoding of object-oriented data. Dealing with the encoding itself has been
rather straight-forward, using induction over VHDL’s type system of primi-
tive and composite types plus Objective VHDL’s object-oriented types. How-

client server,() ζ∈

186 VHDL Code Generation

ever, the necessary conversions from and into the original data types,
particularly arrays, have required the application of sophisticated VHDL
techniques such as synthesizable recursive subprograms.

Another important technical contribution is the development of the
VHDL process that describes the object’s behaviour and the integration of
inter-object communication into this code. Finding code templates that
describe efficient communication while being synthesizable and not trigger-
ing synthesis tool bugs has required a lot of experimentation. The presenta-
tion in this chapter highlights the results of this work, which indeed allow us
to get from concurrent object-oriented models to a hardware implementation
via the VHDL path as we will see in the next chapter.

In addition to the description of functionality in the form of an HDL
model, constraints are an input to a synthesis tool. Currently, the designer
must specify constraints on the generated VHDL code, e.g., in order to spec-
ify a maximum latency of the execution of a method or to define the
resources available for object implementation. The automatic generation of
HLS constraints from constraints on the object-oriented model is beyond the
scope of this work, but may be a topic of future research.

Chapter 8

Experiments 8

While developing VHDL code generation, we have taken care of respecting
the coding styles and templates required by the HLS tool we use for further
synthesis. However, since these tool requirements are not formally defined
(cf. the discussion in section 7.1.1) and since our VHDL code may trigger
tool bugs, we have made some experiments to verify the practicability of our
approach.

We must emphasize that a quantitative comparison of the quality of
results or design time enabled by the object-oriented approach against a tra-
ditional design style is beyond the scope of our work. Rather, we have
worked on a tool that is a prerequisite for such methodological considera-
tions and perform these experiments to validate the techniques developed.

This chapter presents a selection of examples which systematically cover
the different aspects of object-oriented models and their VHDL translation
result. The experimental setup is explained in the first section. The remaining
sections are devoted to the different experiments, namely the buffer example
(continued), an extended buffer with sorting capabilities, and a class type that
implements a synthesizable, binary fixed-point representation of real num-
bers.

Beyond validation of concepts, it is hoped that the simulation results pre-
sented in this chapter can deepen the understanding of aspects related to
polymorphism, communication, arbitration and scheduling, and parallelism
in object-oriented descriptions.

8.1 Setup

In this section, we detail the experimental setup by naming the tools and
technologies used. Furthermore, we provide an overview of the experimental

188 Experiments

coverage of concepts by listing all different aspects of the synthesis of object
systems, respectively VHDL code generation, and correlating them with the
sections of this chapter.

8.1.1 Tools and technology

Synthesis of the generated VHDL code has been performed using the Synop-
sys tool set, release 1998.08. Tasks performed in this environment include:
• Analysis and elaboration of the VHDL sources using VHDL compiler.
• High level synthesis including the steps constraint specification, schedul-

ing, allocation, binding, and controller / datapath generation using Behav-
ioral Compiler.

• Logic synthesis, optimization, and technology mapping with Design
Compiler.

The design has been mapped to the technology library of the Altera
FLEK10k FPGA. The area of synthesized circuits will be mentioned in units
of the FPGA’s logic elements (LEs). Each LE consists of a flip-flop and an
SRAM based programmable four-input lookup table that can implement any
boolean function of up to four variables. Since the purpose of our experi-
ments is to validate the feasibility of synthesizing the generated VHDL code,
the targeted technology is of minor significance within this work. It shall pri-
marily enable a gate-level simulation of the synthesis results.

Pre- and post-synthesis simulations have been performed using the
VHDL system simulator (VSS) from Synopsys.

8.1.2 Experimental coverage of concepts

We have developed VHDL code generation concepts under consideration of
the VHDL RTL synthesis subset [75]. However, the VHDL subset accepted
by behavioural synthesis is, while not formally defined, known not to be
exactly the same as, nor a superset of, the RTL one. Furthermore, synthesis
tool bugs may cause problems when following the proposed path to imple-
ment an object-oriented model in hardware. With these potential problems in
mind, the experiments of this chapter are intended to validate the concepts
developed and their practical feasibility.

The categories and concepts listed in figure 45 have been extracted from
the sections of chapter 7; the exact place of their introduction is mentioned in
a dedicated column. Another column lists the experiment, respectively the

Setup 189

section of this chapter, that covers the validation of the corresponding VHDL
code generation concepts by synthesizing and simulating an example.

Category Concept Introduced Experiment

Data types scalar 7.2.1 8.2.1

user-def’d enum 7.2.1 8.3.1

composite 7.2.2 8.2.1

class/derived 7.2.3 all

polymorphic 7.2.3 8.2.2

Methods interface 7.3.1 all

attribute access 7.3.2 all

local invocation 7.3.3 8.4

remote invocation 7.5.1 all

dynamic binding 7.3.4 8.2.2

Object parameterization 7.4.1 8.2, 8.3

interface 7.4.1 all

body 7.4.2 all

method selection 7.4.2 all

inlining 7.5.1 8.4

Communication interconnect 7.5.4 8.2

protocol 7.5.1 all

fast handshaking 7.5.2 8.4.3

arbitration 4.5.2 8.2.4

scheduling aspects 4.5.3 8.2.4

Optimization relevant methods 7.4.2 8.4.2

resource sharing 4.4.6 8.2.1, 8.3.3

use of memories 4.4.4 8.2.3

parallel requests 7.5.3 8.4.4

setting constraints 7.6 all

Fig. 45: Concepts to be validated by synthesis experiments

190 Experiments

8.2 The buffer example, continued

We continue the buffer example by synthesizing its components into gate
netlists. A buffer object is simulated alone to demonstrate polymorphism and
in combination with multiple concurrent clients to cover arbitration and
scheduling. Moreover, we map the buffer’s array for storing items to a mem-
ory so as to show that this HLS feature can be exploited in the context of
object synthesis.

8.2.1 Synthesizing a polymorphic buffer object

Synthesis is performed in the following steps: It is assumed that the packages
of theOO_SYN library (cf. appendix E) are already analysed. First, the files
that contain the entityBuffer_Class and its architecture,BEHAVIOR, are ana-
lysed. Second, the design is elaborated for scheduling. This involves supply-
ing actual values for all generic parameters so that VHDL elaboration can
generate a non-parametric design instance. In the next step, design con-
straints are specified; in this example a clock period of 20 ns. After some
checks and creating timing information for the design’s operators, HLS is
performed by theschedule command of Synopsys, using the superstate-fixed
scheduling mode. The generated RTL implementation is finally compiled to
gates and the resulting netlist written to a VHDL file for post-synthesis simu-
lation. The synthesized design occupies 420 LEs. A dc_shell script that
allows its reproduction is listed below:

analyze -format vhdl source/Buffer_Class.vhd
analyze -format vhdl source/Buffer_Class_BEHAVIOR.vhd
elaborate -s Buffer_Class -param "size = 8, bits = 3"
create_clock CLK -period 20
bc_check_design -io super
bc_time_design
schedule -io super
compile
write -format vhdl syn/Buffer_Class_SYN_BEHAVIOR.vhd

BC performs timing-driven scheduling by default, trying to reduce latency at
the cost of more resources. In order to achieve resource sharing, we have to
specify resource constraints and permit longer latency. This can be done by
using Synopsys’set_common_resource command and theextend_latency
option of theschedule command. Thereby, BC is forced into its resource-
constrained mode. By allowing only a single resource for all addition and

The buffer example, continued 191

subtraction operations, area is reduced to 336 LEs. In the implementation,
the single resource is shared between the different methods (put and get) as
well as between different method versions (for FIFO and LIFO) of the poly-
morphic object.

Likewise, schedulers and the arbiter circuit have been synthesized from
RTL to gates for use in gate-level simulations. As an example of the synthe-
sis results, a static priority scheduler and an arbiter with a maximum of four
clients are displayed in figure 46. The scheduler requires 14 LEs and 12 LEs
are needed for the arbiter. A round-robin scheduler has been synthesized into
35 LEs, and a modified round-robin policy that will be discussed in
section 8.2.4 has been implemented in 52 LEs. These resource requirements
can be considered as appropriately small compared to the circuits that imple-
ment the primary functionality.

8.2.2 Polymorphism

In order to demonstrate the effects and synthesis result of polymorphism, a
polymorphic buffer with eight entries (parametersize = 8) is instantiated in a
testbench as a server object. As there is only a single client, no arbitration is
required. The testbench code executes the following scenario:

Fig. 46: Arbiter and scheduler circuit (4 clients)

static priority scheduler

4:1 arbiter

192 Experiments

• The state value of an empty FIFO buffer is assigned to the object.
• A total of eight put requests is issued to the object. The values stored

(parameter val of the method) are ascending from 0 to 7.
• A total of eight get requests is issued. The testbench verifies that the val-

ues are retrieved in first-in-first-out order, i.e. from 0 to 7.
• The object is assigned the state value of an empty LIFO buffer.
• Eight put requests with values ascending from 0 to 7 are issued.
• Finally, eight get requests are executed, asserting that values are returned

in last-in-first-out order, i.e., from 7 down to 0.
Figure 47 shows waveforms from the gate level simulation of FIFO behav-
iour. The time unit is 1 ps. After an initialisation phase during whichRESET
is ’1’, the assignment method is requested from the server by the method ID 3
on theREQ signal. The server accepts the request and responds by setting the
DONE signal low. The client, i.e. the testbench, acknowledges by resetting
REQ to 0 (the no-operation ID). After completing service execution, the
server setsDONE high.

This allows the client to issue its request of method put (ID 1 on theREQ
signal) with value 0 (on theP_IN signal). Again, the handshake protocol is
executed. When the service is finished at 250 ns, the new object state can be
observed on theS_OUT signal, which is converted from the bit representa-
tion back to the original attributes’ types in the testbench. Particularly, the
attributeEMPTY transitions from true to false. In consequence, theRDY out-
put, which represents the guard expression values, changes as well:RDY(2)
goes high, signalling that from this point in simulation the method get (ID 2)
can be invoked.

After seven more put requests, at 800 ns, the eight-item buffer is full.
This is determined, according to methodis_full, by the conditionFIRST =
NXT and not EMPTY, and signalled byRDY(1) going low. The testbench now
continues with get requests. After the first get, the FIFO is no longer full and
RDY(1) becomes high. After seven more get requests, at 1450 ns, the FIFO is
empty so that no more get requests can be accepted andRDY(2) goes low.
The values retrieved from the buffer are displayed on theP_OUT signal.
Obviously, they are in first-in-first-out order as desired.

Further simulation results are displayed in figure 48: After a short pause,
the testbench assigns a LIFO value to the polymorphic buffer object at
1550 ns; see theREQ andS_IN signals. After the completion of this service,
at 1600 ns, the buffer operates in its last-in-first-out mode. A vertical line
indicates the boundary between FIFO and LIFO behaviour.

The buffer example, continued 193

The remaining simulation is similar to what has been explained before:
eight put requests, letting the buffer run full, followed by eight get requests,
letting the buffer run empty. However, as expected, the stored values are now
being output in reverse, last-in-first-out order.

Fig. 47: Polymorphic buffer operating as FIFO

Fig. 48: Polymorphic buffer operating as LIFO

CLK

RESET

DONE

P_IN

P_OUT

REQ

S_IN.TAG

S_OUT.TAG

S_OUT.FIRST

S_OUT.NXT

S_OUT.EMPTY

S_OUT.INDEX

RDY

RDY(1)

RDY(2)

CLK

RESET

DONE

P_IN

P_OUT

REQ

S_IN.TAG

S_OUT.TAG

S_OUT.FIRST

S_OUT.NXT

S_OUT.EMPTY

S_OUT.INDEX

RDY

RDY(1)

RDY(2)

194 Experiments

8.2.3 Mapping attributes to memory

Instead of storing all object data in registers, it may be desirable to map one
or several of an object’s attributes to a memory component, which may be a
register file, SRAM, or DRAM. This approach has the following advantages:
• A dedicated memory block is typically more efficient in terms of area,

timing, and power than a synthesized set of registers.
• Inference of pre-defined memories helps avoid degradation of the synthe-

sis tool’s performance when large arrays must be implemented.
On the other hand, the use of memories reduces the potential for concurrency
compared to a set of individual registers. This must be considered by the user
when selecting a memory type, particularly to provide an appropriate number
of memory access ports. Furthermore, the concurrency aspect influences the
choice of attributes to be stored in memory.

In the buffer example, it is reasonable to map the attributeitem to mem-
ory for the following reasons:
• This choice avoids logic and synthesis performance degradation when the

parameterssize or bits are large.
• The homogeneous data type ofitem, an array of elements which are of the

same size, suits the memory structure well.
• The methods contain only sequential accesses ofitem; no potential for

concurrency is lost.
To use the memory inference feature of BC with an attribute, slightly modi-
fied VHDL code must be generated. We must exclude the attribute from the
variableTHIS and its std_logic_vector subtype (cf. section 7.2.3 and 7.4.2).
Instead, the attribute is to be implemented as an individual variable of an
array type. It is possible not to encode this type at the bit level, but to main-
tain its original, high-level data type. In addition, two attributes and a dedi-
cated memory resource must be declared in the specific way required by BC
to recognise memory variables. For the buffer’s attributeitem, the following
declarations must be added in the declarative part of the object’s process (cf.
section 7.4.2):

constant RAM : resource := 0;
attribute variables of RAM : constant is "item";
attribute map_to_module of RAM : constant is "DW_ram_r_w_s_dff";
variable item : Buffer_array;

The constantRAM tells BC to instantiate one resource; its value is irrelevant.
The VHDL attributevariables specifies the variables to be mapped to the
RAM resource. The VHDL attributemap_to_module specifies the component

The buffer example, continued 195

that implements the resource; in this case an SRAM with one read and one
write port from the Synopsys Designware library. Finally, the attributeitem is
translated into a variable of its original type (see section 7.2.4 for the declara-
tion of Buffer_array). In addition, library and use clauses must be included to
make Designware and Synopsys’ behavioural and attribute declarations visi-
ble:

library SYNOPSYS; use SYNOPSYS.ATTRIBUTES.all ;
use SYNOPSYS.BEHAVIORAL.all ;

library DWARE; use DWARE.DWPACKAGES.all;

library DW06; -- contains the particular memory used
use DW06.DW06_COMPONENTS.all ;

In the subprograms that implement the methods, all accesses to the memory-
mapped attributes are left in their original form instead of being translated
into accesses of a slice of the parameterTHIS. Instead of the attributeitem of
the object-oriented buffer model, the variableitem of the object process is
now accessed. Note that BC does not permit to pass a memory variable as a
parameter; it must be accessed directly by the method subprograms. In
VHDL, this is allowed only for procedures. Hence, any function method that
uses the variable would have to be translated into a procedure as described in
section 7.3.1.

From this modified VHDL code, the polymorphic buffer can be synthe-
sized using the map-to-memory feature of BC. The circuit requires 217 LEs,
including the memory, which is about half the size compared to direct syn-
thesis of the array. Simulation confirms the correct functionality of the result-
ing netlist. Even the timing at the object’s interface ports is, in this case, the
same. In general, however, a sequentialization of memory accesses could
cause methods to require more clock cycles for execution. Still, the inter-
object handshake protocol would ensure the correct communication of results
to the client.

8.2.4 Arbitration

We shall now demonstrate the arbitration of concurrent requests. To this end,
another testbench of the synthesized buffer has been designed. This testbench
instantiates an empty FIFO server object. There are three clients (concurrent
processes of the testbench) which, at the beginning, have either no request or
an unacceptable put request. Then, starting at 200 ns, the following happens:

196 Experiments

• The first client, C1, requests the assignment method (implicitly defined in
Objective VHDL). After completion of this service, C1 sends requests all
the time to put the value 1 into the buffer.

• The second client, C2, continuously issues put requests with value 2.
• The third client, C3, requests the get service all the time.
The behaviour of the arbitrated buffer is illustrated by tracing the following
signals:
• The request sent by each client to the arbiter (C1_REQ, C2_REQ,

C3_REQ) and the respective done signal returned by the arbiter
(C1_DONE, C2_DONE, C3_DONE).

• The RDY signal over which the arbiter receives guard expression values
from the server.

• The internalGRANT signal of the arbiter, carrying the number of the cli-
ent whose request is granted, or the value 0 if none.

• Finally, the request, data input, data output, and done signals by which the
arbiter communicates with the server:S_REQ, S_P_IN, S_P_OUT, and
S_DONE.

The first simulation has been configured to apply static priority scheduling
where priority increases with the client’s number (C3 has higher priority than
C2; C2 has higher priority than C1). This results in the waveform of
figure 49. As we would expect, no request is granted as long as there are only

Fig. 49: Static priority scheduling

CLK

RESET

C1_REQ

C1_DONE

C2_REQ

C2_DONE

C3_REQ

C3_DONE

RDY

RDY(1)

RDY(2)

GRANT

S_REQ

S_P_IN

S_P_OUT

S_DONE

The buffer example, continued 197

unacceptable or idle requests. At 200 ns, both C1 and C2 issue a request that
can be accepted while C3’s get request still cannot be serviced as the buffer is
empty. Among the clients with acceptable requests, C2 has the highest prior-
ity; hence, its request is granted (see the value 2 on theGRANT signal). The
handshake protocol is executed on the signalsC2_REQ and C2_DONE,
which are connected toS_REQ andS_DONE by the arbiter, and the value 2
(seeS_D_IN) is stored in the buffer.

This makes C3’s get request acceptable. As C3 has highest priority, its
request is indeed executed at 300 ns, and the value that has just been stored is
retrieved back from the buffer (see the value 2 onS_P_OUT). Afterwards,
the buffer is empty and C2 again becomes the highest-priority client that has
an acceptable request. Hence, C2 and C3 continue to be served alternately
forever. Obviously, this is not a fair schedule as C1 suffers starvation.

In an attempt to establish fair scheduling, we now try a scheduler that fol-
lows a round-robin policy, attempting to serve the clients’ requests in a circu-
lar order. If it is a particular client’s turn, but its request cannot be accepted at
that time, this client is skipped. The resulting system behaviour is displayed
in figure 50. As long as the buffer is not full, the new scheduling strategy
works well, serving one client after the other. Since only one get service but
two put services are executed each round, the buffer runs full at 1900 ns. This
time is indicated by the vertical line.

Fig. 50: Round robin scheduling

CLK

RESET

C1_REQ

C1_DONE

C2_REQ

C2_DONE

C3_REQ

C3_DONE

RDY

RDY(1)

RDY(2)

GRANT

S_REQ

S_P_IN

S_P_OUT

S_DONE

198 Experiments

Later, only a single put request can be accepted after each get. According
to the round robin scheme, this is always the request from C1 since C1 fol-
lows C3. When it is C2’s turn, the buffer is full and C2 must be skipped.
Hence, C2 suffers starvation from time 1900 ns on.

The problem in this case is that after accepting a request, the round robin
policy continues with the client that follows the one that has been serviced. A
modified scheduler could keep track of the first unsuccessful client, i.e. one
that had to be skipped for an unacceptable request, and resume from this one
in order to avoid its starvation. Such a scheduler has been implemented and
synthesized. The simulation result is displayed in figure 51. It equals
figure 50 until the buffer runs full at 1900 ns. Then, the following happens:
• C3’s get request is accepted.
• C1’s put request is accepted.
• C2’s put request cannot be accepted. The scheduler skips C2 but stores it

to be considered first the next time.
• C3’s put request is accepted.
• The next round starts from C2, whose request can be accepted now.
• This sequence starts again from the first point and repeats infinitely.

Since all clients are serviced in a finite, repeated sequence (C3-C1-C3-C2),
no client is blocked indefinitely. The scheduler avoids starvation in this case.
Still, a different sequence could be desirable depending on the application.

Fig. 51: Scheduling for fair arbitration

CLK

RESET

C1_REQ

C1_DONE

C2_REQ

C2_DONE

C3_REQ

C3_DONE

RDY

RDY(1)

RDY(2)

GRANT

S_REQ

S_P_IN

S_P_OUT

S_DONE

A sorted buffer 199

Hence, the choice of a scheduling policy, and possibly the implementation of
a scheduler circuit if not yet available, must be left to the user.

8.3 A sorted buffer

In this section, the put method of a buffer is implemented so that it sorts the
buffer entries. This allows us to present the synthesis and simulation of a
complex method with data-dependent latency.

8.3.1 Modelling in Objective VHDL

The sorted buffer is, like FIFO and LIFO, another class type derived from the
class Buffer_t. It inherits from its parent class the attributeitem and the
method declarationsis_full, is_empty, put, and get. The methods have no
implementation yet. Hence, they are implemented in the body of class
Sorted_Buffer. Put implements a sorting-by-insertion algorithm. It inserts its
argument,val, into the item array so that this array remains sorted, i.e., an
element at a lower index is smaller than or equal to an element at a higher
index. Get retrieves either the largest (top) element or the smallest (bottom)
element from the buffer.

The specific mode of operation ofget can be defined by invoking the
methodset_mode (see the listing below) with a parameter value of the user-
defined enumeration typeMode_t, eitherget_top or get_bottom. The corre-
sponding functionality is implemented by the new methodsget_bottom and
get_top. Note that these names are overloaded with the respective homo-
graphs defined by the enumeration literals.

The classSorted_Buffer has attributes namedbottom_index, top_index,
and empty, which are similar to the FIFO’sfirst, nxt, and empty. Another
attribute,mode, stores the mode of operation set byset_mode.

type Mode_t is (get_top, get_bottom);

type Sorted_Buffer is new class Buffer_t with

class attribute bottom_index : Integer range 0 to size – 1 := 0;
class attribute top_index : Integer range 0 to size – 1 := 0;
class attribute empty : Boolean := true;
class attribute mode : Mode_t := get_top;

function is_full return Boolean;
function is_empty return Boolean;

200 Experiments

for variable
procedure put(val : Integer range 0 to 2**bits – 1);
procedure get(val : out Integer range 0 to 2**bits – 1);
procedure get_bottom(val : out Integer range 0 to 2**bits – 1);
procedure get_top(val : out Integer range 0 to 2**bits – 1);
procedure set_mode(m : Mode_t);

end for ;

end class Sorted_Buffer;

For space constraints, we do not go into all implementation details of the
class body. Only some algorithmic aspects shall be touched on. The put
method contains the following while loop to find the position at which the
new value,val, is to be inserted:

index := bottom_index;
while index mod size /= top_index and item(index) < val loop

index := (index + 1) mod size;
end loop ;

Another while loop shifts all above items for one position in order to make
room for the value to be inserted:

index2 := top_index;
while index2 /= index loop

item((index2 + 1) mod size) := item(index2);
index2 := (index2 – 1) mod size;

end loop ;

Clearly, these loops are data-dependent. Their number of iterations varies
with the value to be inserted and depends on the object’s state, i.e. the
number and values of items already in the buffer. We consider some implica-
tions later.

8.3.2 VHDL code generation

VHDL code that describes a synthesizable implementation of the sorted
buffer can be generated according to chapter 7. However, we must pay atten-
tion to the subprogram that implements the put method. Since this subpro-
gram contains the above loops, it would be rejected by BC. A workaround is
to inline the subprogram into the object process code as described in
section 7.5.1.

Inlining can be avoided when the translated subprogram is marked as a
scheduled subprogram using a tool-specific pragma (meta-comment):

A sorted buffer 201

procedure put(variable THIS : inout SYN_Sorted_Buffer;
constant val : in Integer range 0 to 2**bits – 1) is

-- synopsys preserve_schedule_subprogram
...

This subprogram is scheduled independent of the process from which it is
called and is treated as a black box thereafter. While this limits the optimiza-
tion potential compared to a global schedule, the complexity of scheduling is
reduced.

However, the BC documentation is not clear about whether or not an
inout parameter such asTHIS is permitted with a scheduled subprogram. The
description mentions no such restriction, but lists an error message (number
HLS-2) for this case. In version 1998.08, BC accepts the above subprogram,
but cautious validation of the synthesis result seems advisable.

8.3.3 Synthesis

A sorted buffer with eight entries has been synthesized similar to the FIFO /
LIFO buffers. The implementation generated by timing-driven scheduling
takes 445 LEs. Resource-driven scheduling with constraints allowing only a
single adder/subtractor can be performed, but results in a larger design of
460 LEs due to multiplexer and control overhead.

However, we did not succeed in generating a correct implementation with
the item array mapped to memory. The cause appears to be a bug in the syn-
thesis tool; an examination of the simulation of the generated netlist reveals
that some array accesses are scheduled out-of-order when memory is used.
An error in the VHDL input description can be ruled out since it synthesizes
correctly when the array is not mapped to memory.

8.3.4 Simulation

The synthesized sorted buffer has been simulated in a testbench that executes
the following scenario:
• Put requests with numbers in the permitted range are sent to the object

until the buffer is full. In the case presented here, the values are 0, 3, 6, 2,
5, 1, 4, and 0 (in this order).

• The values are retrieved back by get requests. Since the default mode is
get_top, we expect to receive the values in highest-to-lowest order.

• The above values are put into the buffer again.
• The buffer’s mode is set toget_bottom by requestingset_mode.

202 Experiments

• Get requests are issued. The values should be received in lowest-to-high-
est order.

A waveform of the simulation of the first two points is displayed in figure 52.
A ’1’ on the REQ signal stands for a put request, and a ’2’ represents a get
request. The put requests take place from time 0 up to the vertical bar shortly
after 14,000 ns. Later, eight get requests are issued and indeed the values are
returned as expected. Note that at the right hand of the waveform, two suc-
cessive zeroes are returned. While there is no change on theP_OUT signal,
these values can be differentiated by observing theP_OUT values shortly
after each rising edge of theDONE signal.

The remaining simulation is shown in figure 53. We see the same put
requests again, followed by a set_mode request that is identified by the value
3 on theREQ signal. Finally, there are another eight get requests, and the val-
ues 0, 0, 1, 2, 3, 4, 5, 6 appear on theP_OUT signal as expected. Again, we
must look at theDONE signal to identify the point in time when a value is
valid. The first valid value is marked by the vertical line.

This simulation confirms that and shows how the handshake protocol on
the REQ andDONE signals synchronises the client with the execution of a
service (here: put) that has a data-dependent latency.

Fig. 52: Simulation of sorted buffer

Fig. 53: Simulation of sorted buffer (cont’d)

REQ

DONE

P_IN

P_OUT

RDY

RDY(1)

RDY(2)

REQ

DONE

P_IN

P_OUT

RDY

RDY(1)

RDY(2)

Fixed point arithmetics 203

8.4 Fixed point arithmetics

This section presents an excerpt of a data type for fixed point arithmetics and
an example of its use. The example allows us to give emphasis to the differ-
ence between exclusively owned subobjects and external server objects.
Moreover, we will address communication protocol and parallelism issues.

8.4.1 A fixed point class type and its use

The class typeFixed_Real listed below describes a binary fixed-point repre-
sentation of numbers. It allows to define by respective generics the number of
bits used to represent an integer and a fractional part. A methodset is pro-
vided to initialise aFixed_Real object. Further methods,add andmult, imple-
ment two basic arithmetic operations.

type Fixed_Real is class

generic (integer_bits, fraction_bits : Natural);
... (class attributes and functions omitted for brevity)
for variable

procedure set(neg : Boolean; int, frac : Natural);
procedure add(val : Fixed_Real);
procedure mult(val : Fixed_Real);

end for ;

end class ;

To demonstrate the use of such a type, a class that computes values of a geo-
metric series has been implemented. This application has been chosen
because it allows to emphasize with a brief piece of code all the aspects to be
addressed: subobjects vs. concurrent objects, faster inter-object communica-
tion, parallel service execution, and pipelining.

TheGeometric_Series class has a single method,compute, with parame-
tersstart andfactor of typeFixed_Real_4_4 which is defined asFixed_Real
with four integer bits and four fraction bits. This method computes the series
defined by

(89) .

This is done in an iterative way, keeping the value of in a
variable namedproduct, and the successive sum values in a variable named

sumn start factor
i⋅

i 0=

n

∑=

start factor
i⋅

204 Experiments

sum. Iteration is stopped whensum changes no longer, which happens due to
limited accuracy, or by an overflow exception in the case of divergence.Sum
andproduct may either be subobjects of classGeometric_Series or external
objects. In the first case, they are implemented as class attributes (cf.
section 4.1.7). In the latter case, they are made known toGeometric_Series
by passing them to its method as signal parameters (cf. section 5.3.5). Both
alternatives are mentioned by means of comments in the following listing:

type Fixed_Real_4_4 is Fixed_Real generic map (4, 4);

type Geometric_Series is class

class attribute sum_old : Fixed_Real_4_4;
-- the following attributes only when product and sum are sub-objects
-- class attribute product : Fixed_Real_4_4;
-- class attribute sum : Fixed_Real_4_4;

for variable
procedure compute(

constant start, factor : Fixed_Real_4_4;
-- the following parameters only when product and sum
-- are external objects
signal product, sum : inout Fixed_Real_4_4);

end for ;

end class ;

The code shown below implements the methodcompute. Two aspects will be
important in later considerations:
• The first two statements are independent of another and could be executed

in parallel.
• Inside the while loop, the add operation is data-dependent on the result of

the preceding mult operation. Hence, the addition must be executed after
the multiplication. It can, however, be executed in parallel with the multi-
plication of the next loop iteration. This is known as loop pipelining.

product.add(start);
sum.add(start);
WHILE_CHANGE : loop

 product.mult(factor);
 sum.add(product);
exit WHILE_CHANGE when sum_old = sum;

 sum_old := sum;
end loop ;

Fixed point arithmetics 205

8.4.2 Synthesis

Three different versions of VHDL code implementing theGeometric_Series
object have been generated and synthesized:
• A Geometric_Series architecture with non-optimized handshaking as in

section 7.5.2 (172 LEs), connected to externalsum andproduct objects
that implement all methods (508 LEs each). This results in a total of 1188
LEs.

• A Geometric_Series architecture with fast handshaking as in
section 7.5.1, (154 LEs) and externalsum andproduct objects that imple-
ment only the methods that are actually invoked (sum: add method, 160
LEs; product: add andmult methods, 432 LEs). The complete design has
746 LEs.

• A Geometric_Series architecture with exclusively owned subobjects, syn-
thesized into 753 LEs.

The second version has a clear area advantage over the first one, which
emphasizes the importance of implementing only the methods that are actu-
ally invoked with each individual object. In the third case, the purely sequen-
tial VHDL code has enabled BC to determine and leave out methods that are
never called, leading to a similar area result.

Obviously, the fast handshaking has a slight area advantage over non-
optimized message exchange. This has its roots in the smaller number of
control states required to implement the optimized protocol.

8.4.3 Simulation

The different versions of a synthesizedGeometric_Series object have been
simulated, invoking methodcompute with the parametersstart = 4.0 and
factor = 0.75. The development of thesum and product values can be
observed on theS_SUM andS_PRODUCT signals of figure 54. Note that the
fractional part is displayed in units of . Due to limited accuracy, itera-
tion stops atsum = 15.3125, whereas the infinite series’ value is 16.

Figure 54 shows the non-optimized handshaking between the
Geometric_Series object and its external servers,product andsum. We can
observe that services are requested from these servers alternately and in a
non-overlapping way although, as explained in section 8.4.1, they could
potentially be executed in parallel.

The simulation of fast handshaking is shown in figure 55. We see that the
optimized protocol implementation reduces latency significantly; thecom-
pute method is finished after 8,575 ns instead of 14,225 ns, although the

1 16⁄

206 Experiments

clock cycle time is the same (50 ns) in both cases. This has its roots in the
faster response of the communication partners. We can see this fact from the
servers’ idle time, the period during which theirDONE signal is high, which
is reduced from 850 ns (figure 54) to 450 ns (figure 55)1. Still, the potential
for concurrency is not exploited since only one server is busy at a time.

The simulation of theGeometric_Series object with exclusively owned
subobjects is not shown in a figure because there is no handshaking; all func-
tionality is implemented by BC in a single datapath and controller. The
results of computation are the same as before while latency is reduced to
2,675 ns for two reasons. First, there is no more handshaking overhead. Sec-
ondly, BC can analyse the purely sequential algorithm at the level of its
schedulable operations and at least partially parallelize the method invoca-
tions of the two subobjects.

1. Note that the time scales of these figures are different.

Fig. 54: Geometric series with slow handshaking

Fig. 55: Geometric series with fast handshaking

REQ_PRODUCT

DONE_PRODUCT

S_PRODUCT.INT

S_PRODUCT.FRAC

REQ_SUM

DONE_SUM

S_SUM.INT

S_SUM.FRAC

REQ_PRODUCT

DONE_PRODUCT

S_PRODUCT.INT

S_PRODUCT.FRAC

REQ_SUM

DONE_SUM

S_SUM.INT

S_SUM.FRAC

Fixed point arithmetics 207

8.4.4 Parallelization attempts

While we cannot avoid the handshaking overhead when requesting services
with unknown latency from external, concurrent servers, we can try to
achieve more parallelism of remote services. It is important to note that the
sending of these requests is defined by thesequential algorithm of the client
object. However, if the requests address different concurrent servers, they can
potentially be parallelized. A precondition for such parallelization is the
absence of data dependencies between the services. Furthermore, it should be
ensured that the introduction of concurrency does not introduce deadlocks
into the system. While respective analyses are beyond the scope of this work,
we have evaluated the possibility of using BC for synthesizing parallel inter-
object communication from the generated VHDL code.

The first experiment has been performed with the first two statements of
the method compute (see section 8.4.1). VHDL code generation (see
section 7.5.1) produces for each of these service requests two loops that
implement handshaking. These loops are symbolised asL1, ...,L4 in the fol-
lowing:

product.add(start); —translation—> L1; L2;
sum.add(start); —translation—> L3; L4;

Parallelizing the first and the second request means to executeL1 andL2 in
parallel toL3 and L4 while maintaining the sequencesL2 after L1 and L4
afterL3:

L1; L2; L3; L4; —parallelisation—> (L1; L2) || (L3; L4)

However, BC’s superstate-fixed scheduling mode, which has been used up to
now, maintains the sequence of all IO operations such as the handshaking
code found inside the loops. A reordering can only be performed in the free-
floating scheduling mode. Hence, this mode has been applied. Since it com-
pletely ignores any control dependencies, observing data-dependencies only,
additional precedence constraints had to be defined so as to maintain the
sequence of operations that must not be parallelized. In particular, such con-
straints have been set betweenL1 andL2 as well as betweenL3 andL4 by
means of BC’sset_min_cycles command. On the other hand, no such con-
straints have been set betweenL1 andL3, L1 andL4, L2 andL3, andL2 and
L4.

With these settings, BC did still schedule the four loops one after the
other. The same occurs even with an additional constraint using BC’s
set_cycles command to force the start of the loopsL1 andL3 into the same

208 Experiments

cycle. It appears that BC does not schedule loops to be executed in parallel,
but the tool documentation does neither confirm nor deny this.

The idea of pipelining the algorithm’sWHILE_CHANGE loop (cf.
section 8.4.1) had to be discarded because BC only pipelines loops that con-
tain no other loops. During translation, however, the above loopsL1, ..., L4
are inserted intoWHILE_CHANGE to implement communication.

8.5 Summary

Our experimental results confirm that the path from object-oriented models
to a hardware implementation suggested in this work is practicable. The
mechanisms suggested to implement objects, polymorphism, communica-
tion, and arbitration are all functional after synthesis to the gate level.

More evaluations of Objective VHDL and its translation into VHDL,
mostly with simulation emphasis, can be found in the following publications:
In [5], the modelling of ATM cell data is presented. A portal crane controller
has been designed as a contribution to [113]. The REQUEST project’s [111]
evaluation reports on a basic reuse library and its utilisation in the domain of
digital filters [136], pointing out the importance of generic modelling, which
is fully supported by this synthesis approach.

The importance of request scheduling has been highlighted with the
buffer example. When modelling concurrent objects, the user must be aware
of the need to provide guidance to enable an appropriate scheduling. The
integration with our synthesis approach is ensured by the specification of a
scheduling strategy in the object-oriented model and its mapping to an exter-
nally provided component (cf. section 5.4.2).

As we have seen, the synthesis of sequential algorithms can be delegated
to a HLS tool. This allows to employ features such as resource sharing and
the mapping of data to a memory instead of a register bank. However, it has
not been possible to utilise HLS for parallelizing or pipelining communica-
tions with concurrent server objects. At the moment, it is advisable to keep
the object-oriented synthesis model as sequential as possible, using subob-
jects wherever appropriate. Future research should advance the analysis and
code generation techniques of this work towards an optimized communica-
tion implementation. This could involve considering techniques such as rela-
tive scheduling [85] and multiple-process synthesis [47] for implementing
remote method invocation.

Chapter 9

Conclusions 9

This thesis describes the generation of optimized digital circuit structures
from object-oriented synthesis models.

Object-orientation can be utilised to design software and hardware at a
high level of abstraction and with support for reuse and extension of func-
tionality. The use of object-oriented programming languages for software
implementation and their automatic compilation into executable code are
state-of-the-art. Our work targets at developing respective techniques for
implementing the hardware part of a system.

While there exist a variety of research activities on object-oriented hard-
ware description and synthesis, using both object-oriented hardware descrip-
tion and programming languages, the following aspects are the
distinguishing features of this work:
• A language-independent formulation based on a meta-model of object-

orientation.
• Wide synthesis support for all major object-oriented features: objects,

classification, genericity, inheritance, polymorphism, communication by
message passing, and dynamic binding.

• Explicit description of the synthesized circuit structures.
• Optimization of value-based polymorphism.
• Synthesis of communication between concurrent objects, including arbi-

tration of concurrent requests and condition synchronisation, from a
description that avoids issues in the interplay of inheritance and concur-
rency with the help of the guarded method concept.

The meta-model of object-orientation has been designed to cover the static
modelling features of the Unified Modeling Language, a de facto standard
diagrammatic notation for object-oriented models. It allows to capture the
properties of a system as a set of objects connected by channels. An object,

210 Conclusions

in turn, is characterised by its state space and the services it provides to the
outside world. Hardware synthesis can be performed on a system partition all
objects and channels of which are static. Synthesis transforms objects into
hardware components with an internal data store, resources for the execution
of services, and ports for communication with the environment. Channels are
synthesized into a corresponding connection structure, instantiating arbitra-
tion components where necessary.

The functionality of services is not covered by the meta-model. For the
purpose of this work, it is sufficient to assume that dynamic aspects are spec-
ified as sequential algorithms in some programming or hardware description
language. These algorithms can be processed by subsequent high-level syn-
thesis. The use of Objective VHDL, an object-oriented VHDL dialect, for the
concrete specification of synthesis models—including dynamic aspects—has
been explained and demonstrated.

Polymorphism and dynamic binding trade in greater modelling flexibility
for an implementation overhead. In software, primarily the execution per-
formance is affected. The hardware implementation of respective mecha-
nisms is prone to a circuit size overhead for implementing unnecessary state
bits and services that are never invoked. To avoid this, we have developed
data flow analysis techniques for Objective VHDL models. Their implemen-
tation runs at an acceptable speed and helps reduce overhead significantly.

Generation of VHDL code allows to utilise high level synthesis tools for
further processing of the design. Particular attention has been given to the
VHDL implementation of an optimized bit level encoding and efficient com-
munication code under consideration of the synthesizable language subset
and tool capabilities.

The results of our design experiments, systematically covering the differ-
ent aspects of object-orientation, show that hardware synthesis of digital cir-
cuits from object-oriented specifications is feasible and can be achieved by
following the path described in this work. To make the approach practical for
larger designs, it will be necessary to automate the generation of communica-
tion signals and protocol code, which currently still requires manual interac-
tion. It will be desirable to specify constraints in the original, object-oriented
model, and to provide an automatic translation into constraints on the synthe-
sis of the VHDL model. Parallelizing techniques such as pipelining should
be implemented at the object-oriented level since they cannot be delegated to
high level synthesis effectively. Further research could address the analysis
and optimization of inter-object communication, which might allow resource
sharing between concurrent objects and eliminate the need for arbitration.

Appendix A: List of Acronyms

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

ASSP Application Specific Standard Product

BC (Synopsys) Behavioral Compiler

CASE Computer Aided Software Engineering

COOP Concurrent Object-Oriented Programming

DC (Synopsys) Design Compiler

DFA Data Flow Analysis

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FIFO First In First Out

FPGA Field Programmable Gate Array

FPI Fixed Point Iteration

FSM Finite State Machine

HDL Hardware Description Language

HLS High Level Synthesis

HRT-HOOD Hard Real-Time Hierarchical Object-Oriented Design

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

INSYDE INtegrated SYstem DEvelopment (EU funded project)

I/O Input / Output

IP Intellectual Property

LIFO Last In First Out

LRM Language Reference Manual (of VHDL)

212

MOOSE Model based Object-Oriented Systems Engineering

OMT Object Modeling Technique

OO Object-Oriented, Object-Orientation

OOA Object-Oriented Analysis

OOA/D Object-Oriented Analysis and Design

OOD Object-Oriented Design

OOP Object-Oriented Programming

OO-HDL Object-Oriented Hardware Description Language

OO-VHDL Object-Oriented VHDL

RAM Random Access Memory

RASSP Rapid prototyping of Application Specific Signal Processors
(US funded project)

REQUEST REuse and QUality ESTimation (EU funded project)

RMI Remote Method Invocation

ROOM Real-time Object-Oriented Modelling

RTL Register Transfer Level

SIA Semiconductors Industry Association

SQUASH Static QUality Assurance for Software and Hardware
(EU funded project)

SRAM Static Random Access Memory

SUAVE Savant and University of Adelaide VHDL Extensions

SW Software

UML Unified Modeling Language

VHDL Very High Speed Integrated Circuits Hardware Description
Language

VLIW Very Long Instruction Word

VSI Virtual Socket Interface

VSIA Virtual Socket Interface Alliance

XNF Xilinx Netlist Format

Appendix B: List of Symbols

b(c) number of bits for binary encoding of the state space of classc

c class (incl. derived class) type variable of the meta-model

C class (incl. derived class) type identifier

Cc constraint vector of concurrent polymorphic objects

Cs constraint vector of sequential polymorphic objects

d derived class type variable of the meta-model

D derived class type identifier

Din, Dout etc. definition vectors

Defs set of all definitions (in data flow analysis)

e entry vertex

E set of edges

encc encoding of the state space of classc

G graph in data flow analysis / fixed point iteration

initc initial state of an object of classc

Ic input parameter space defined by methods of classc

k(method) number of input parameters ofmethod

l(method) number of output parameters ofmethod

lb lower bound of the index range of an array

m(c) number of methods of classc

methodc,i i-th method of classc

Mc set of all methods of classc

next state transition function

the set of natural numbers, inclusive of 0

Oc output parameter space defined by methods of classc

IN

214

out output function

j-th input parameter of thei-th method of classc

post(i) start position of thei-th element in the state bit-vector of typet

P Parent class type identifier

qc state of an object of classc

qext state extension of an object of a derived class w.r.t. the state
inherited from its parent class

R root class of a polymorphic object

Rpoly root class and derived classes

St state space defined by typet

t type variable of the meta-model

type of thej-th input parameter of thei-th method of classc

Ti , T(v) set of types of object no. i, of definition represented by vertexv

Types set of all types (in chapter 6 restricted to class types)

ub upper bound of the index range of an array

v vertex

V set of vertices

Values set of all values

x(2) binary (unsigned or twos-complement) encoding of valuex

empty set, empty definition vector

bottom element of a lattice

T top element of a lattice

power set

edge value (constraint) function of graphG

object system

set of all channels

set of all objects

set of concurrently used polymorphic objects

set of sequentially used polymorphic objects

ε the empty word

pc i j, ,
in

tc i j, ,
in

∅
⊥

℘ .()
µ .()
Σ

ζ

Ω

Ωpoly
c

Ωpoly
s

Appendix C: Syntax Summary

This appendix lists in alphabetical order the new grammar productions of
Objective VHDL to the extent relevant to this work. The presentation takes
into account the suggested addition of ports to class declarations. The com-
plete language syntax is defined by the rules on type-based object-orientation
presented here, additional rules for entity-based inheritance which can be
found in [101], and the rules from the VHDL language reference manual
(LRM) [74]. If a rule found here defines the same non-terminal as a VHDL
rule, it replaces the VHDL rule in Objective VHDL. The new grammar pro-
ductions are described under application of the variant of the Backus-Naur
form used in the VHDL LRM.

class_attribute_declaration ::=
class attribute identifier : subtype_indication [:= expression] ;

class_body_common_declarative_item ::=
type_declaration

| subtype_declaration
| constant_declaration
| subprogram_declaration
| subprogram_body
| alias_declaration
| use_clause

class_body_declarative_item ::=
class_attribute_declaration

| class_body_common_declarative_item
| class_body_object_configuration

class_body_object_configuration ::=
for object_specification { , object_specification }

{ class_body_common_declarative_item }
end for ;

216

class_type_body ::=
class body

{ class_body_declarative_item }
end class body [class_type_simple_name]

class_type_common_declarative_item ::=
type_declaration

| subtype_declaration
| constant_declaration
| subprogram_declaration
| alias_declaration
| use_clause

class_type_declaration ::=
[abstract] class

[formal_generic_clause]
[formal_port_clause]
{ class_type_declarative_item }

end class [class_type_simple_name]

class_type_declarative_item ::=
class_attribute_declaration

| class_type_common_declarative_item
| class_type_object_configuration

class_type_definition ::=
class_type_declaration

| derived_class_type_declaration
| class_type_body

class_type_object_configuration ::=
for object_specification { , object_specification }

{ class_type_common_declarative_item }
end for ;

derived_class_type_declaration ::=
new [abstract] class class_type_name with

[formal_generic_clause]
[formal_port_clause]
{ class_type_declarative_item }

end class [class_type_simple_name]

217

function_call ::=
function_name [(actual_parameter_part)]

| prefix . class_function_name [(actual_parameter_part)]

object_specification ::=
signal | variable | constant

procedure_call ::=
procedure_name [(actual_parameter_part)]

| prefix . class_procedure_name [(actual_parameter_part)]

subtype_indication ::=
[resolution_function_name] type_mark [constraint]

| [resolution_function_name] class_type_mark
[generic_map_aspect]
[port_map_aspect]

type_definition ::=
scalar_type_definition
composite_type_definition
access_type_definition
file_type_definition
class_type_definition

218

Appendix D: Synthesis Subset

This appendix lists the synthesizable subset of Objective VHDL as far as rel-
evant to this work. Hence, the presentation is limited to the synthesizability
of class types and their use. A full definition, taking entity-based inheritance
into account, too, can be found in [132]. The rules presented here are to be
understood as an addition to those that describe the language subset accepted
by the VHDL synthesis tool used. The terminology and style of our subset
definition follows the approach of the RTL synthesis subset (IEEE approved
standard 1076.6) [75]. An underlined construct is ignored during synthesis.
A construct that is stuck through is rejected by the synthesizer (not sup-
ported). If this limitation may be lifted in the future, we speak of “currently
not supported“. The other constructs are supported.

1 Class types

type_definition ::=
 scalar_type_definition
| composite_type_definition
| access_type_definition
| file_type_definition
| class_type_definition -- new w.r.t. VHDL

class_type_definition ::=
 class_type_declaration
| derived_class_type_declaration
| class_type_body -- new w.r.t. VHDL

scalar, composite, access, and file type definition as in VHDL/1076.6

Supported:
• class type declaration (currently only in package declaration)
• derived class type declaration (currently only in package declaration)
• class type body (currently only in package body)

220

Currently not supported:
• class type declaration and derived class type declaration in an enclosing

scope that is not a package declaration
• class type body in an enclosing scope that is not a package body

1.2 Declaration of class types

class_type_declaration ::=
[abstract] class

[formal_generic_clause]
{ class_type_declarative_item }

end class [class_type_simple_name] ;

derived_class_type_declaration ::=
new [abstract] class class_type_name with

[formal_generic_clause]
{ class_type_declarative_item }

end class [class_type_simple_name] ;

Supported:
• class type declaration, including abstract class type
• derived class type declaration, including abstract derived class type
• generic clause (as in VHDL / 1076.6)
• class type declarative item

1.2.1 Class type declarative item

class_type_declarative_item ::=
 class_attribute_declaration
| class_type_common_declarative_item
| class_type_object_configuration

class_type_common_declarative_item ::=
 type_declaration
| subtype_declaration
| constant_declaration
| subprogram_declaration
| alias_declaration
| use_clause

type, subtype, constant, subprogram, alias declaration and use clause
as in 1076.6

221

Supported:
• class type declarative item
• class attribute declaration
• class type common declarative item
• class type object configuration
• type, subtype, constant (non-deferred), subprogram declaration
• use clause (of all items or a particular item of a package)

Ignored:
• alias declaration

A use clause must only reference the selected name of a package (which may
in turn reference all, or a particularitem_name within the package).

A constant declaration must include the initial value expression, that is,
deferred constants are not supported.

1.2.2 Class attribute declaration

class_attribute_declaration ::=
class attribute identifier : subtype_indication [:= expression] ;

Supported:
• class attribute declaration

Currently not supported:
• class attribute declaration without initial value expression

The subtype indication must not denote an access or file (sub)type, nor a
composite type which contains an element of an access or file (sub)type.

The initial value of a class attribute is assumed as undefined by synthesis.
The user must describe reset behaviour explicitly to obtain initialisation.

Note: this grammar production may in the future be extended to allow an
identifier list. The identifier list will be supported for synthesis.

222

Note: although it is ignored, there must currently be an initial value expres-
sion due to a compiler bug. We expect to remove this problem in the next tool
revision.

1.2.3 Class type object configuration

class_type_object_configuration ::=
for object_specification { , object_specification }

{ class_type_common_declarative_item }
end for ;

object_specification ::= signal | variable | constant

Supported:
• class type object configuration
• object specification

Currently not supported:
• multiple object specifications

A function declaration is currently not supported in a class type object con-
figuration whose object specification isvariable .

1.3 Declaration of class bodies

class_type_body ::=
class body

{ class_body_declarative_item }
end class body [class_type_simple_name]

Supported:
• class type body

1.3.1 Class body declarative item

class_body_declarative_item ::=
class_attribute_declaration

| class_body_common_declarative_item
| class_body_object_configuration
| class_body_entity_configuration

223

class_body_common_declarative_item ::=
 type_declaration
| subtype_declaration
| constant_declaration
| subprogram_declaration
| subprogram_body
| alias_declaration
| use_clause

Supported:
• class body declarative item
• class body common declarative item

Ignored:
• alias declaration

Not supported:
• class body entity configuration

Currently not supported:
• class attribute declaration

A use clause shall only reference the selected name of a package (which may
in turn reference all, or a particularitem_name within the package).

A constant declaration must include the initial value expression, that is,
deferred constants are not supported.

Note: the class body entity configuration may become obsolete in a future
revision of Objective VHDL.

1.3.2 Class body object configuration

class_body_object_configuration ::=
for object_specification { , object_specification }

{ class_body_common_declarative_item }
end for ;

object_specification ::= signal | variable | constant -- same as above

224

Supported:
• class body object configuration
• object specification

Currently not supported:
• multiple object specifications

A function or function body is currently not supported if declared in a class
body object configuration whose object specification isvariable .

1.3.3 Class body entity configuration

class_body_entity_configuration ::=
for entity entity_name

{ class_body_entity_configuration_declarative_item }
end for ;

Not supported:
• class body entity configuration

1.4 Use of class types

subtype_indication ::=
 [resolution_function_name] type_mark [constraint]-- VHDL
| [resolution_function_name] type_mark generic_map_aspect-- new

Supported:
• subtype indication (particularly also if the type mark denotes a class type

or derived class type or class-wide type)
• generic map aspect if the enclosing scope of the subtype indication is a

package declaration

Ignored:
• user-defined resolution functions

Currently not supported:
• generic map aspect in an enclosing scope that is not a package declaration

225

1.5 Use of class instances

procedure_call ::=
procedure_name [(actual_parameter_part)]-- VHDL

| prefix . class_procedure_name [(actual_parameter_part)]-- new

function_call ::=
function_name [(actual_parameter_part)]-- VHDL

| prefix . class_function_name [(actual_parameter_part)]-- new

Supported:
• procedure call (particularly also the prefixed version)
• function call (particularly also the prefixed version)
• prefix that is a simple name

Currently not supported:
• prefix that is an indexed name, a selected name, or a function call
• prefix THIS

2 Predefined language environment

2.1 Predefined type

Supported:
• universal_tag

2.2 Predefined attributes

Supported:
• the class-wide typeT’CLASS (whereT is a class type or derived class

type)
• T’TAG (whereT is a class type or derived class type)
• S’TAG (whereS is a signal of class type, derived class type, or class-wide

type)
• V’TAG (whereV is a variable of class type, derived class type, or class-

wide type)

226

• C’TAG (whereC is a constant of class type, derived class type, or class-
wide type)

• standard VHDL attributes that are supported according to 1076.6 and
applicable to Objective VHDL items

2.3 Predefined functions

Supported:
• the relational operators (=, /=, <, >, <=, >=) for the predefined type

universal_tag

The use of these operators with two variable tags is currently not supported.
A variable tag results from the use of the TAG attribute with a signal or varia-
ble of a class-wide type.

Appendix E: OOSYN library

This appendix describes the contents of the Objective VHDL library OOSYN
which contains packages with declarations relevant to synthesis and VHDL
code generation.

library IEEE;
use IEEE.std_logic_1164.all;

package SYN_SCALAR_TYPES is

-- auxiliary functions

function INTLOG2(ARG : Natural) return Natural;

type INTEGER_VECTOR is array(Natural range <>) of Integer;
function INTMAX(ARG : INTEGER_VECTOR) return Integer;

-- conversion of integer / natural types and subtypes

function INT_TO_STDV(ARG : Integer; SIZE : Natural)
return Std_logic_vector;

function NAT_TO_STDV(ARG : Natural; SIZE : Natural)
return Std_logic_vector;

function STDV_TO_INT(ARG : Std_logic_vector) return Integer;

function STDV_TO_NAT(ARG : Std_logic_vector) return Natural;

-- conversion of boolean and bit type

function BOOL_TO_STDL(ARG : Boolean) return Std_LOGIC;

function STDL_TO_BOOL(ARG : Std_logic) return Boolean;

end SYN_SCALAR_TYPES;

-- package implementation for Synopsys

use IEEE.std_logic_arith.all;

package body SYN_SCALAR_TYPES is

228

-- auxiliary functions

function RECURSE_INTLOG2(LOG, POWER, ARG : Natural)
return Natural;

function INTLOG2(ARG : Natural) return Natural is
begin

-- LOOPS NOT SUPPORTED FOR SYNOPSYS ELABORATE -S
-- HENCE RECURSIVE IMPLEMENTATION
return RECURSE_INTLOG2(0, 1, ARG);

end;

function RECURSE_INTLOG2(LOG, POWER, ARG : Natural)
return Natural is

begin
if POWER < ARG then

return RECURSE_INTLOG2(LOG+1, POWER*2, ARG);
else

return LOG;
end if;

end;

function INTMAX(ARG : INTEGER_VECTOR) return Integer is
variable MAX : INTEGER := INTEGER'LEFT;

begin
-- Assertion: ARG is not an empty vector (null range)
-- This is unchecked as the function is only for tool use.
for I in ARG'RANGE loop

if ARG(I) > MAX then
 MAX := ARG(I);
end if;

end loop;
return MAX;

end;

function INT_TO_STDV(ARG : Integer; SIZE : Natural)
return Std_logic_vector is

begin
return conv_std_logic_vector(conv_signed(ARG, SIZE), SIZE);

end;

function NAT_TO_STDV(ARG : Natural; SIZE : Natural)
return Std_logic_vector is

begin

229

return conv_std_logic_vector(conv_unsigned(ARG, SIZE),SIZE);
end;

function STDV_TO_INT(ARG : Std_logic_vector) return Integer is
begin

return IEEE.STD_LOGIC_SIGNED.CONV_INTEGER(ARG);
end;

function STDV_TO_NAT(ARG : Std_logic_vector) return Natural is
begin

return IEEE.STD_LOGIC_UNSIGNED.CONV_INTEGER(ARG);
end;

function BOOL_TO_STDL(ARG : Boolean) return Std_logic is
begin

if ARG then
return '1';

else
return '0';

end if;
end;

function STDL_TO_BOOL(ARG : Std_logic) return Boolean is
begin

return ARG = '1';
end;

end SYN_SCALAR_TYPES;

library IEEE;
use IEEE.std_logic_1164.all;

package SYN_COMPOSITE_TYPES is

type PARAM_VECTOR is array(Positive range <>) of Natural;

function EXTRACT_ELEMENT(
constant A : Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR)
return Std_logic_vector;

230

procedure ASSIGN_ELEMENT(
variable A : inout Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR;
constant V : STD_LOGIC_VECTOR);

end SYN_COMPOSITE_TYPES;

use WORK.SYN_SCALAR_TYPES.all;

package body SYN_COMPOSITE_TYPES is

function EXTRACT_RECURSE(
constant A : Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR;
constant STEPS : Natural)
return Std_logic_vector;

function EXTRACT_ELEMENT(
constant A : Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR)
return Std_logic_vector

is
constant STEPS : Natural

:= intlog2((A'RIGHT-A'LEFT+1) / SIZE(SIZE'LEFT));
begin

return EXTRACT_RECURSE(
A, INDEX, SIZE, BASE, OFFSET, STEPS);

end;

function EXTRACT_RECURSE(
constant A : Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR;
constant STEPS : Natural)

231

return STD_LOGIC_VECTOR
is

constant I : NATURAL := OFFSET'LEFT;
constant J : NATURAL := BASE'LEFT;
constant PIVOT : NATURAL

:= 2**(intlog2((A'RIGHT-A'LEFT+1) / SIZE(I))) / 2;
variable NEW_BASE : PARAM_VECTOR(BASE'RANGE);

begin
NEW_BASE := BASE;
if STEPS = 0 then

if I = OFFSET'RIGHT then
return A;

else
return EXTRACT_ELEMENT(

A(A'LEFT + OFFSET(I) to A'RIGHT),
INDEX(I+1 to INDEX'RIGHT),
SIZE(I+1 to SIZE'RIGHT),
BASE(J+1 to BASE'RIGHT),
OFFSET(I+1 to OFFSET'RIGHT));

end if;
elsif (INDEX(I) mod (2**STEPS)) / (2**(STEPS-1)) = 0 then

return EXTRACT_ELEMENT(
A(A'LEFT to A'LEFT + PIVOT * SIZE(I) - 1),
INDEX,
SIZE,
BASE,
OFFSET);

else
NEW_BASE(J) := BASE(J) + PIVOT;
return EXTRACT_ELEMENT(

A(A'LEFT + PIVOT * SIZE(I) to A'RIGHT),
INDEX,
SIZE,
NEW_BASE,
OFFSET);

end if;
end;

procedure ASSIGN_RECURSE(
variable A : inout Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;

232

constant OFFSET : PARAM_VECTOR;
constant STEPS : NATURAL;
constant V : Std_logic_vector);

procedure ASSIGN_ELEMENT(
variable A : inout Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR;
constant V : Std_logic_vector)

is
constant STEPS : Natural

:= intlog2((A'RIGHT-A'LEFT+1) / SIZE(SIZE'LEFT));
begin

ASSIGN_RECURSE(
A, INDEX, SIZE, BASE, OFFSET, STEPS, V);

end;

procedure ASSIGN_RECURSE(
variable A : inout Std_logic_vector;
constant INDEX : PARAM_VECTOR;
constant SIZE : PARAM_VECTOR;
constant BASE : PARAM_VECTOR;
constant OFFSET : PARAM_VECTOR;
constant STEPS : Natural;
constant V : Std_logic_vector)

is
constant I : NATURAL := OFFSET'LEFT;
constant J : NATURAL := BASE'LEFT;
constant PIVOT : Natural

:= 2**(intlog2((A'RIGHT-A'LEFT+1) / SIZE(I))) / 2;
variable NEW_BASE : PARAM_VECTOR(BASE'RANGE);

begin
NEW_BASE := BASE;
if STEPS = 0 then

if I = OFFSET'RIGHT then
A := V;

else
ASSIGN_ELEMENT(

A(A'LEFT + OFFSET(I) to A'RIGHT),
INDEX(I+1 to INDEX'RIGHT),
SIZE(I+1 to SIZE'RIGHT),

233

BASE(J+1 to BASE'RIGHT),
OFFSET(I+1 to OFFSET'RIGHT),
V);

end if;
elsif (INDEX(I) mod (2**STEPS)) / (2**(STEPS-1)) = 0 then

ASSIGN_ELEMENT(
A(A'LEFT to A'LEFT + PIVOT * SIZE(I) - 1),
INDEX,
SIZE,
BASE,
OFFSET,
V);

else
NEW_BASE(J) := BASE(J) + PIVOT;
ASSIGN_ELEMENT(

A(A'LEFT + PIVOT * SIZE(I) to A'RIGHT),
INDEX,
SIZE,
NEW_BASE,
OFFSET,
V);

end if;
end;

end SYN_COMPOSITE_TYPES;

234

Appendix F: Scheduler Implementation

This appendix lists the source code of the schedulers currently implemented.

library IEEE;
use IEEE.std_logic_1164.all;

use WORK.SYN_ARRAY.all;

entity SCHEDULER_STATE_ONLY is

generic(
NO_CLIENTS : Positive;
REQ_BITS : Positive);

port(
CLK : in Std_logic;
RESET : in Std_logic;
S_RDY : in Std_logic_vector(0 to 2**REQ_BITS-1);
C_REQ : in Std_logic_vector(0 to NO_CLIENTS*REQ_BITS-1);
S_DONE : in Std_logic;
GRANT : out Integer range 0 to NO_CLIENTS);

end;

architecture STATIC_PRIORITY of SCHEDULER_STATE_ONLY is

signal SEL : Integer range 0 to NO_CLIENTS;
signal PAST_SEL : Integer range 0 to NO_CLIENTS;

begin

REG : process(CLK)
begin

if CLK'EVENT and CLK = '1' then
if RESET = '1' then

PAST_SEL <= 0;
else

PAST_SEL <= SEL;
end if;

236

end if;
end process;

COMB : process(PAST_SEL, S_DONE, C_REQ, S_RDY)
variable NXT : INTEGER range 0 to NO_CLIENTS;

begin
if S_DONE = '1' then

for I in NO_CLIENTS downto 0 loop
NXT := I;
exit when I = 0;
exit when S_RDY(

IEEE.STD_LOGIC_UNSIGNED.CONV_INTEGER(
EXTRACT_ELEMENT(C_REQ, (NXT-1, 0),

(REQ_BITS, REQ_BITS), (0,0), (0,0))
)) = '1';

end loop;
GRANT <= NXT;
SEL <= NXT;

else
GRANT <= PAST_SEL;
SEL <= PAST_SEL;

end if;
end process;

end STATIC_PRIORITY;

architecture ROUND_ROBIN of SCHEDULER_STATE_ONLY is

signal SEL : Integer range 0 to NO_CLIENTS;
signal PAST_SEL : Integer range 0 to NO_CLIENTS;

begin

REG : process(CLK)
begin

if CLK'EVENT and CLK = '1' then
if RESET = '1' then

PAST_SEL <= 0;
else

PAST_SEL <= SEL;
end if;

end if;
end process;

COMB : process(PAST_SEL, S_DONE, C_REQ, S_RDY)
variable NXT : INTEGER range 0 to NO_CLIENTS;

237

begin
if S_DONE = '1' then

for I in 0 to NO_CLIENTS loop
if I = NO_CLIENTS then

NXT := 0;
exit;

end if;
if PAST_SEL+1+I < NO_CLIENTS+1 then

NXT := PAST_SEL+1+I;
else

NXT := PAST_SEL+1+I-NO_CLIENTS;
end if;
exit when

S_RDY(
IEEE.STD_LOGIC_UNSIGNED.CONV_INTEGER(

EXTRACT_ELEMENT(C_REQ, (NXT-1, 0),
(REQ_BITS, REQ_BITS), (0,0), (0,0))

)) = '1';
end loop;
GRANT <= NXT;
SEL <= NXT;

else
GRANT <= PAST_SEL;
SEL <= PAST_SEL;

end if;
end process;

end ROUND_ROBIN;

architecture MODIFIED_ROUND_ROBIN of
SCHEDULER_STATE_ONLY is

signal SEL : Integer range 0 to NO_CLIENTS;
signal PAST_SEL : Integer range 0 to NO_CLIENTS;
signal START : Integer range 0 to NO_CLIENTS;
signal PAST_START : Integer range 0 to NO_CLIENTS;

begin

REG : process(CLK)
begin

if CLK'EVENT and CLK = '1' then
if RESET = '1' then

PAST_SEL <= 0;
PAST_START <= 0;

238

else
PAST_SEL <= SEL;
PAST_START <= START;

end if;
end if;

end process;

COMB : process(PAST_SEL, PAST_START, S_DONE, C_REQ,
S_RDY)

variable NXT : Integer range 0 to NO_CLIENTS;
variable NXT_START : Integer range 0 to NO_CLIENTS;

begin
if S_DONE = '1' then

for I in 0 to NO_CLIENTS loop
if I = NO_CLIENTS then

NXT := 0;
exit;

end if;
if PAST_START+1+I < NO_CLIENTS+1 then

NXT := PAST_START+1+I;
else

NXT := PAST_START+1+I-NO_CLIENTS;
end if;
exit when

S_RDY(
IEEE.STD_LOGIC_UNSIGNED.CONV_INTEGER(

EXTRACT_ELEMENT(C_REQ, (NXT-1, 0),
(REQ_BITS, REQ_BITS), (0,0), (0,0))

)) = '1';
end loop;
for I in 0 to NO_CLIENTS-1 loop

if PAST_START+1+I < NO_CLIENTS+1 then
NXT_START := PAST_START+1+I;

else
NXT_START := PAST_START+1+I-NO_CLIENTS;

end if;
exit when

EXTRACT_ELEMENT(C_REQ, (NXT_START-1,0),
(REQ_BITS,REQ_BITS), (0,0), (0,0)) /= "00";

end loop;
GRANT <= NXT;
SEL <= NXT;
if NXT = NXT_START then

239

START <= NXT_START;
else

--START <= (NXT_START - 1) mod NO_CLIENTS;
assert NXT_START /= 0

report "NXT_START is 0" severity failure;
if NXT_START = 1 then

START <= NO_CLIENTS;
else

START <= NXT_START-1;
end if;

end if;
else

GRANT <= PAST_SEL;
SEL <= PAST_SEL;
START <= PAST_START;

end if;
end process;

end MODIFIED_ROUND_ROBIN;

240

References

[1] K. Agsteiner, D. Monjau, S. Schulze.Object-Oriented High-Level
Modeling of System Components for the Generation of VHDL Code.
Proc. EURO-DAC with EURO-VHDL, 1995.

[2] K. Agsteiner, D. Monjau, S. Schulze.Ein objektorientiertes Modell
als Basis für Spezifikation, Prototyping, Implementierung und Wieder-
verwendung(German). Proc. GI/ITG/GMM Workshop Hardwarebe-
schreibungssprachen und Modellierungsparadigmen, 1997.

[3] A. V. Aho, R. Sethi, J. D. Ullman.Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[4] A. Allara, A. Balboni, M. Bombana, M. Mastretti, J. R. Prieto,
P. Plaza, J. Schaaf.Productivity gains through re-use and quality
improvements of HW models. Proc. 2nd Workshop on Libraries, Com-
ponent Modeling and Quality Assurance, Toledo, 1997.

[5] A. Allara, M. Bombana, P. Cavalloro, W. Nebel, W. Putzke-Röming,
M. Radetzki.ATM cell modelling using Objective VHDL. Proc. Asia
South Pacific Design Automation Conference (ASP-DAC), 1998.

[6] A. W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, 1998.

[7] K. Arnold, J. Gosling.The Java programming language. Addison-
Wesley, 1996.

[8] G. Arnout.C for System Level Design. Proc. Design, Automation and
Test in Europe (DATE), 1999.

[9] P. J. Ashenden.The Designer’s Guide to VHDL. Morgan Kaufmann
Publishers, 1996.

[10] P. J. Ashenden, P. A. Wilsey, D. E. Martin.SUAVE: Painless Exten-
sion for an Object-Oriented VHDL. Proc. VHDL International Users’
Forum (VIUF, Fall Conference), 1997.

[11] P. J. Ashenden, P. A. Wilsey, D. E. Martin. Reuse Through Genericity
in SUAVE. Proc. VHDL International Users’ Forum (VIUF, Fall Con-
ference), 1997.

[12] P. J. Ashenden, P. A. Wilsey. A Comparison of Alternative Extensions
for Data Modeling in VHDL. Proc. Hawaii International Conference

242

on System Sciences (HICSS), 1998.
[13] P. J. Ashenden, P. A. Wilsey.Considerations on System-Level Behav-

ioural and Structural Modeling Extensions to VHDL. Proc. VHDL
International Users’ Forum (VIUF, Spring Conference), 1998.

[14] P. J. Ashenden, P. A. Wilsey, D. E. Martin.SUAVE: Extending VHDL
to Improve Modeling Support. IEEE Design & Test of Computers, vol.
15, no. 2, 1998.

[15] P. J. Ashenden, P. A. Wilsey.Extensions to VHDL for Abstraction of
Concurrency and Communication. Proc. 6th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 1998.

[16] P. J. Ashenden, P. A. Wilsey, D. E. Martin.SUAVE: Object-Oriented
and Genericity Extensions to VHDL for High-Level Modeling. Proc.
Forum on Design Languages (FDL), 1998.

[17] P. J. Ashenden, P. A. Wilsey, W. Nebel, M. Radetzki, W. Putzke-
Röming, G. D. Peterson.SUAVE and Objective VHDL: Object-Ori-
ented Extensions to VHDL. Proc. Forum on Design Languages (FDL),
1999.

[18] P. J. Ashenden.Overview of SUAVE Language Features.Proc. Forum
on Design Languages (FDL), 1999.

[19] P. J. Ashenden, M. Radetzki.Comparison of SUAVE and Objective
VHDL Language Features. Proc. Forum on Design Languages (FDL),
1999.

[20] C. Barna, W. Rosenstiel.Description and Classification of VHDL
Objects in the Reuse Management System. Proc. GI/ITG/GMM Work-
shop Methoden und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen, 1999.

[21] C. Barna, W. Rosenstiel.Object-Oriented Reuse Methodology for
VHDL. Proc. Design, Automation and Test in Europe (DATE), 1999.

[22] J. Barnes.Programming in Ada95. Addison-Wesley, 1995.
[23] K. Bartleson.A New Standard for System-Level Design. Synopsys

Inc., 1999.
[24] J. Benzakki, B. Djafri.Object Oriented Extensions to VHDL—The

LaMI proposal. Proc. Conf. on Computer Hardware Description Lan-
guages (CHDL), 1997.

[25] J. Böttger, W. Ecker, M. Mrva.Klassifikation von objektorientierten
VHDL-Erweiterungen (German). Proc. GI/ITG/GMM Workshop
Methoden und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen, 1998.

243

[26] M. Bombana. HDLs in Industry. Proc. Forum on Design Languages
(FDL), 1999.

[27] G. Booch.Object Oriented Design. Benjamin / Cummings Publish-
ing, 1991.

[28] G. Booch.The Best of Booch. SIGS Books and Multimedia, New
York, 1996.

[29] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language
User Guide. Addison Wesley, 1998.

[30] G. Bracha, W. Cook.Mixin-based Inheritance. Proc. ECOOP/
OOPSLA’90. Sigplan Notices, vol. 25, no. 10, 1990.

[31] P. Brinch Hansen.Structured Multiprogramming. Communications of
the ACM, vol. 15, no. 7, 1972, pp. 574-578.

[32] A. Burns, B. Dobbing, G. Romanski.The Ravenscar Tasking Profile
for High Integrity Real-Time Programs. In: Lars Asplund (Ed.), Proc.
Reliable Software Technologies—Ada-Europe ’98. Lecture Notes in
Computer Science 1411, Springer, 1998.

[33] D. Cabanis, S. Medhat, N. Weavers.Classification-Orientation for
VHDL: A Specification. Proc. VHDL International Users’ Forum
(VIUF, Spring Conference), 1996.

[34] D. Cabanis, S. Medhat.Object-Oriented Extensions to VHDL: The
Classification Orientation. Proc. VHDL User Forum in Europe
(VFE), 1996.

[35] R. H. Campbell, A. N. Habermann.The specification of process syn-
chronization by path expressions. In: Lecture Notes in Computer Sci-
ence, 16. Springer-Verlag, 1974, pp. 89-102.

[36] S.-T. Cheng, P. C. McGeer, M. Meyer, T. Truman, A. Sangiovanni-
Vincentelli, P. Scaglia.The V++ System Design Language. Proc.
Design Automation and Test in Europe (DATE, Designer Track),
1998.

[37] B. M. Covnot, D. W. Hurst, S. Swamy.OO-VHDL: An Object-Ori-
ented VHDL. Proc. VHDL International Users’ Forum (VIUF), 1994.

[38] CynApps, Inc.Cynlib, CynApps Class Library. Information sheet,
1999.

[39] J. L. da Silva, C. Ykman-Couvreur, G. de Jong.Matisse: a concurrent
and object-oriented system specification language. Proc. IFIP Interna-
tional Conference on VLSI, 1997.

[40] J. L. da Silva, C. Ykman-Couvreur, G. de Jong, B. Lin, H. De Man.
A System Design Methodology for Telecommunication Network Appli-
cations. Proc. Great Lakes Symposium on VLSI, 1997.

244

[41] J. L. da Silva et al.Efficient System Exploration and Synthesis of
Applications with Dynamic Data Storage and Intensive Data Transfer.
Proc. Design Automation Conference (DAC), 1998.

[42] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[43] E. W. Dijkstra.Hierarchical Ordering of Sequential Processes. Acta
Informatica1 (1971), pp. 115-138.

[44] B. P. Douglas.Real-Time UML. Addison-Wesley, 1997.
[45] W. Ecker.An Object-Oriented View of Structural VHDL Description.

Proc. VHDL International Users’ Forum (Spring Conference), 1996.
[46] W. Ecker.Neue Verfahren für den Entwurf digitaler Systeme mit Hard-

warebeschreibungssprachen(German). Dissertation, Shaker Verlag,
Aachen, 1996.

[47] P. Eles, K. Kuchcinski, Z. Peng, M. Minea.Synthesis of VHDL Con-
current Processes. Proc. EURO-DAC with EURO-VHDL, 1994.

[48] R. Ernst, J. Henkel, Th. Benner.Hardware-Software Cosynthesis for
Microcontrollers. IEEE Design & Test of Computers, vol 10, no 4,
1993.

[49] R. Ernst, Th. Benner.Communication, Constraints and User Direc-
tives in COSYMA. Technical report TM CY-94-2, Institute IDA, TU
Braunschweig, 1994.

[50] R. Ernst.Codesign of Embedded Systems: Status and Trends. IEEE
Design & Test of Computers, vol 15, no 2, 1998.

[51] T. Fandrey. Objektorientierte Modellierung von Kommunikations-
kanälen. Diploma thesis, Oldenburg University, 1997.

[52] M. E. Fayad, D. C. Schmidt.Object-Oriented Application Frame-
works. Communications of the ACM, vol. 40, no. 10, 1997.

[53] S. Ferenczi.Guarded Methods vs. Inheritance Anomaly—Inheritance
Anomaly Solved by Nested Guarded Method Calls. ACM SIGPLAN
Notices, vol. 30, no. 2, 1995.

[54] M. Fowler, K. Scott.UML distilled: applying the standard object
modeling language. Addison-Wesley, 1998.

[55] N. Francez.Fairness. Springer, 1986.
[56] D. D. Gajski, F. Vahid, S. Narayan, J. Gong.Specification and Design

of Embedded Systems. Prentice Hall, 1994.
[57] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides.Design Patterns—

Elements of Reusable Object-Oriented Software. Addison Wesley,
1995.

[58] W. Glunz.Extensions from VHDL to VHDL++. JESSI-AC8 report S2-

245

SP1-T2.4-Q3, 1991.
[59] W. Glunz, A. Pyttel, G. Venzl.System-Level Synthesis. In: P. Michel,

U. Lauther, P. Duzy (eds): The Synthesis Approach to Digital System
Design. Kluwer Academic Publishers, 1992.

[60] G. Goos, J. Hartmanis (Eds.).The Programming Language Ada Refer-
ence Manual. Lecture Notes in Computer Science 155, Springer-Ver-
lag, 1983.

[61] G. Grätzer.General Lattice Theory. Birkhäuser, 1978.
[62] F. El Guibaly.Design and Analysis of Arbitration Protocols. IEEE

Transactions on Computers, vol 38, no 2, 1989.
[63] R. K. Gupta.Co-Synthesis of Hardware and Software. Kluwer Aca-

demic Publishers, 1995.
[64] R. Helaihel, K. Olukotun.Java as a Specification Language for Hard-

ware-Software-Systems. Proc. International Conference on Computer
Aided Design (ICCAD), 1997.

[65] J. L. Hennessy, D. A. Patterson.Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers, 1990.

[66] C. A. R. Hoare.Monitors: An Operating System Structuring Concept.
Communications of the ACM, vol. 17, no. 10 (1974), pp. 549-557.

[67] E. Holz et al. INSYDE Integrated Methods for Evolving System
Design—Application Guidelines. ESPRIT Project 8641 Report, Hum-
boldt University Berlin, 1995.

[68] HOOD Technical Group.The HOOD Reference Manual, Release 4.
Reference HRM4-9/26/95, 1995. Available from http://www.hood.be

[69] Y.-W. Hsieh, S. P. Levitan.Control/Data-flow Analysis for VHDL
Semantic Extraction. Proc. 4th Asia-Pacific Conference on Hardware
Description Languages (APCHDL), 1997.

[70] Y.-W. Hsieh, S. P. Levitan.Control/Data-flow Analysis for VHDL
Semantic Extraction. Journal of Information Science and Engineering
14 (1998), pp. 547-565.

[71] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, S.-J. Chen.ICOS: An Intelligent
Concurrent Object-Oriented Synthesis Methodology for Multiproces-
sor Systems. ACM Transactions on Design Automation of Electronic
Systems, vol. 3, no. 2, 1998, pp. 109-135.

[72] B. Hunting.Polymorphism and Virtual Functions.Embedded Systems
Programming, July 1996.

[73] IEEE. Standard VHDL Language Reference Manual. IEEE Std 1076-
1987, 1988.

[74] IEEE. Standard VHDL Language Reference Manual. IEEE Std 1076-

246

1993, 1994.
[75] IEEE. Draft Standard For VHDL Register Transfer Level Synthesis.

P1076.6 / D1.12a, 1999.
[76] I. Jacobson.Object-oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley, 1994.
[77] I. Jacobson, G. Booch, J. Rumbaugh.The Unified Software Develop-

ment Process. Addison Wesley, 1999.
[78] A. A. Jerraya, K. O’Brien. SOLAR: An Intermediate Format for Sys-

tem-Level Modeling and Synthesis. In: Buchenrieder, K.; Rozenblit,
J. W.: Computer-Aided Software/Hardware Engineering. IEEE Press,
1994.

[79] A. A. Jerraya, H. Ding, P. Kission, M. Rahmouni.Behavioral Synthe-
sis and Component Reuse with VHDL. Kluwer Academic Publishers,
1997.

[80] A. A. Jerraya, J. Mermet (Eds).System-Level Synthesis. NATO Sci-
ence Series, Series E: Applied Sciences, vol. 357. Kluwer Academic
Publishers, 1999.

[81] K. Kennedy.A Survey of Data Flow Analysis Techniques. In: S. S.
Muchnick, N. D. Jones (Eds.): Program Flow Analysis—Theory and
Applications, Prentice-Hall, 1981.

[82] G. Kildall. A unified approach to global program optimization. ACM
Symposium on Principles of Programming Languages, 1973.

[83] W. Kirchgässner.Ein Modell zur Analyse programminhärenter
Zusicherungen. GMD-Bericht Nr. 173, R. Oldenbourg Verlag, 1988.

[84] D. W. Knapp.Behavioral Synthesis. Digital System Design Using the
Synopsys Behavioral Compiler. Prentice Hall, 1996.

[85] D. C. Ku, G. De Micheli.Relative Scheduling Under Timing Con-
straints: Algorighms for High-Level Synthesis of Digital Circuits.
IEEE Transactions on Computer-Aided Design, vol. 11, no. 6, 1992.

[86] K. Küçükçakar, C.-T. Chen, J. Gong, W. Philipsen, Th. E. Tkacik.
Matisse: An Architectural Design Tool for Commodity ICs. IEEE
Design & Test of Computers, vol. 15, no. 2, 1998.

[87] T. Kuhn, W. Rosenstiel. Java Based Modeling and Simulation of Dig-
ital Systems on Register Transfer Level. Proc. Workshop on System
Design Automation, 1998.

[88] T. Kuhn, U. Kebschull, W. Rosenstiel.Domänenübergreifende Hard-
warebeschreibung und Simulation mit Java (German). Proc. GI/ITG
Workshop Java und Eingebettete Systeme, 1998.

[89] T. Kuhn, W. Rosenstiel, U. Kebschull.Object Oriented Hardware

247

Modeling and Simulation Based on Java. Proc. International Work-
shop on IP Based Synthesis and System Design, 1998.

[90] T. Kuhn, W. Rosenstiel, U. Kebschull.Beschreibung und Simulation
von Hardware/Software-Systemen mit Java (German). Proc. GI/ITG/
GMM Workshop Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen, 1999.

[91] T. Kuhn, W. Rosenstiel, U. Kebschull.Description and Simulation of
Hardware/Software Systems with Java. Proc. Design Automation
Conference, 1999.

[92] S. Kumar, J. H. Aylor, B. W. Johnson, Wm. A. Wulf.The Codesign of
Embedded Systems: A Unified Hardware/Software Representation.
Kluwer Academic Publishers, 1996.

[93] LEDA S.A. VHDL*Verilog System—User’s Manual—VHDL Compi-
ler Version 4.1, 1997.

[94] LEDA S.A. VHDL*Verilog System—Implementor’s Guide—VHDL
Intermediate Format (VIF) Version 4.1, 1997.

[95] LEDA S.A. VHDL*Verilog System—Implementor’s Guide—OO-
VHDL Extension (OO-VIF) Version A.1, 1997.

[96] LEDA S.A. VHDL*Verilog System—Implementor’s Guide—LEDA
Procedural Interface (LPI) Version 4.1, 1997.

[97] O. Levia.Programming System Architectures with Java. IEEE Com-
puter, August 1999.

[98] S. Lewis.The art and science of Smalltalk. Prentice-Hall, London,
1995.

[99] S. Liao, S. Tjiang, R. Gupta.An Efficient Implementation of Reactivity
for Modeling Hardware in the Scenic Design Environment. Proc.
Design Automation Conference (DAC), 1997.

[100] B. Lin, S. Vercauteren, H. De Man. Embedded Architecture Co-Syn-
thesis and System Integration. Proc. International Workshop on Hard-
ware/Software Codesign (CODES), 1996.

[101] S. Maginot, W. Nebel, W. Putzke-Röming, M. Radetzki.Final Objec-
tive VHDL language definition. REQUEST Deliverable 2.1.A (pub-
lic), 1997. Available from http://eis.informatik.uni-oldenburg.de/
research/request.html

[102] S. März.High-Level Synthesis. In: P. Michel, U. Lauther, P. Duzy
(eds): The Synthesis Approach to Digital System Design. Kluwer
Academic Publishers, 1992.

[103] S. Matsuoka, A. Yonezawa.Analysis of Inheritance Anomaly in
Object-Oriented Concurrent Programming Languages. In: G. Agha,

248

P. Wegner, A. Yonezawa (eds), Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993.

[104] M. Meixner, J. Becker, Th. Hollstein, M. Glesner.Object-oriented
Specification Approach for Synthesis of Hardware-/Software Systems.
Proc. GI/ITG/GMM Workshop Methoden und Beschreibungs-
sprachen zur Modellierung und Verifikation von Schaltungen und Sys-
temen, 1999.

[105] O. Mencer, M. Morf, M. J. Flynn.PAM-Blox: High Performance
FPGA Design for Adaptive Computing. Proc. IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM), 1998.

[106] B. Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.
[107] L. H. Miller. Advanced programming: design and structure using

PASCAL. Addison-Wesley, Reading, Mass., 1986.
[108] M. T. Mills. Proposed Object Oriented Programming Enhancements

to the Very High Speed Integrated Circuits Hardware Description
Language (VHDL). Report 45433-7331, Wright Laboratory / Wright-
Patterson Air Force Base, Ohio, 1993.

[109] D. Morris, G. Evans, P. Green, C. Theaker.Object-oriented Computer
Systems Engineering. Springer, London, 1996.

[110] W. Nebel, G. Schumacher.Object-Oriented Hardware Modelling—
Where to apply and what are the objects? Proc. EURO-DAC with
EURO-VHDL, 1996.

[111] W. Nebel, W. Putzke-Röming, M. Radetzki.Das OMI-Projekt
REQUEST (German). Proc. 3. GI/ITG/GMM Workshop Hardwarebe-
schreibungssprachen und Modellierungsparadigmen, 1997.

[112] O. Nierstrasz.Composing Active Objects. In: G. Agha, P. Wegner, A.
Yonezawa (Eds.): Research Directions in Concurrent Object-Oriented
Programming, MIT Press, 1993.

[113] F. Oppenheimer, G. Schumacher, W. Nebel.Modellierung und Simu-
lation eines Portalkrans mit der OO-COSIM Methode (German). To
appear, Proc. AES 2000, Karlsruhe.

[114] I. Page.Constructing Hardware-Software Systems from a Single
Description. Journal of VLSI Signal Processing, 12(1), 1996, pp. 87-
107.

[115] C. Passerone et al.Modeling Reactive Systems in Java. ACM Transac-
tions on Design Automation of Electronic Systems, vol. 3, no. 4,
1998, pp. 515-523.

[116] A. Pawlak, W. Wrona.Modern Object-Oriented Programming Lan-
guage as a HDL. Proc. Conf. on Computer Hardware Description

249

Languages (CHDL), 1987.
[117] J. S. Poulin.Measuring Software Reuse: Principles, Practices, and

Economic Models. Addison-Wesley, 1997.
[118] W. Putzke-Röming, M. Radetzki, W. Nebel.Objective VHDL: Hard-

ware Reuse by Means of Object-Orientation. Proc. 1st Workshop on
Reuse Techniques in VLSI Design, 1997.

[119] W. Putzke-Röming, M. Radetzki, W. Nebel.A Flexible Message Pass-
ing Mechanism for Objective VHDL. Proc. Design, Automation and
Test in Europe (DATE), 1998.

[120] W. Putzke-Röming, M. Radetzki, W. Nebel.Modeling Communica-
tion with Objective VHDL. Proc. VHDL Int’l User Forum (VIUF,
Spring Conference), 1998.

[121] M. Radetzki, W. Putzke-Röming, W. Nebel, S. Maginot, J.-M. Bergé,
A.-M. Tagant.VHDL language extensions to support abstraction and
re-use. Proc. Workshop on Libraries, Component Modelling, and
Quality Assurance, 1997.

[122] M. Radetzki, W. Putzke-Röming, W. Nebel.OO-VHDL: What Is It,
and Why Do We Need It? Proc. Asia-Pacific Conference on Hardware
Description Languages (APCHDL), 1997.

[123] M. Radetzki, W. Putzke-Röming, W. Nebel. Objective VHDL: The
Object-Oriented Approach to Hardware Reuse. In: J.-Y. Roger,
B. Stanford-Smith, P. T. Kidd (eds.):Advances in Information Tech-
nologies: The Business Challenge. IOS Press, 1998.

[124] M. Radetzki, W. Putzke-Röming, W. Nebel.Übersetzung von Objek-
torientiertem VHDL nach Standard VHDL(German). Proc. GI/ITG/
GMM Workshop Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen, 1998.

[125] M. Radetzki, W. Putzke-Röming, W. Nebel.Objective VHDL: Tools
and Applications. Proc. Forum on Design Languages (FDL), 1998.

[126] M. Radetzki, W. Putzke-Röming, W. Nebel.A Unified Approach to
Object-Oriented VHDL. Journal of Information Science and Engineer-
ing 14 (1998), pp. 523-545.

[127] M. Radetzki, W. Putzke-Röming, W. Nebel.First Release Objective
VHDL. ESPRIT project 20616 (REQUEST) deliverable 2.1.E, 1998.

[128] M. Radetzki, A. Stammermann, W. Putzke-Röming, W. Nebel.Data
Type Analysis for Hardware Synthesis from Object-Oriented Models.
Proc. Design, Automation and Test in Europe (DATE), 1999.

[129] M. Radetzki, W. Nebel.Synthesis of Hardware Structures from
Object-Oriented Models. Proc. 8th Int’l Symposium on Integrated Cir-

250

cuits, Devices and Systems (ISIC), 1999.
[130] M. Radetzki.Overview of Objective VHDL Language Features. Proc.

Forum on Design Languages (FDL), 1999.
[131] M. Radetzki, W. Nebel.Synthesizing Hardware from Object-Oriented

Descriptions. Proc. 2nd Forum on Design Languages (FDL), 1999.
[132] M. Radetzki.Preliminary Specification of Objective VHDL Synthesi-

zability Rules. Esprit project 28889 (SQUASH) deliverable D2.5.A,
1999.

[133] C. R. Ramesh.Object Orienting VHDL for Component Modeling.
VHDL International User Forum (VIUF, fall conference), 1994.

[134] F. Rammig.Systematischer Entwurf digitaler Systeme (German).
Teubner, Stuttgart, 1989.

[135] RASSP Taxonomy Working Group.VHDL Modeling Terminology
and Taxonomy, Revision 2.4. RASSP document, http://rassp.scra.org,
1998.

[136] J. Riesco Prieto et al.Report on the final evaluation of the REQUEST
methodology and toolsets. Esprit Project 20616 (REQUEST) delivera-
ble D3.3.A, 1998.

[137] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, 1991.

[138] J. Rumbaugh, I. Jacobson, G. Booch.The Unified Modeling Language
Reference Manual. Addison Wesley, 1998.

[139] G. Salamuniccar.A Proposal for Data Modeling Extension to VHDL
Using an Object-Oriented Approach. Proc. WDTA, 1998.

[140] S. Sarkar.An Object Oriented Approach to Digital Circuit Synthesis.
Dissertation, Indian Institute of Technology, 1995.

[141] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, I. Bolsens.A Pro-
gramming Environment for the Design of Complex High Speed ASICs.
Proc. Design Automation Conference (DAC), 1998.

[142] G. Schumacher, W. Nebel.Inheritance Concept for Signals in Object-
Oriented Extensions to VHDL. Proc. EURO-DAC with EURO-VHDL,
1995.

[143] G. Schumacher, W. Nebel, W. Putzke, M. Wilmes.Applying Object-
Oriented Techniques to Hardware Modelling—A Case Study. Proc.
VHDL User Forum Europe (VUFE), 1996.

[144] G. Schumacher. W. Nebel.Object-Oriented Modelling of Parallel
Hardware Systems. Proc. Design, Automation and Test in Europe
(DATE), 1998.

[145] G. Schumacher.Object-Oriented Hardware Specification and Design

251

with a Language Extension to VHDL. Ph.D. dissertation, Oldenburg
University, 1999.

[146] B. Selic, G. Gullekson. P. T. Ward.Real-Time Object-Oriented Mode-
ling. Wiley, New York, 1994.

[147] L. Sèmèria, G. De Micheli. SpC: Synthesis of Pointers in C, Applica-
tion of Pointer Analysis to the Behavioral Synthesis from C. Proc.
International Conference on Computer Aided Design (ICCAD), 1998.

[148] Semiconductors Industry Association.The National Technology
Roadmap for Semiconductors. 1997.

[149] J. Siegel, H. Eichele.Hardwareentwicklung mit ASIC (German).
Hüthig Buch, Heidelberg, 1990.

[150] A. Stammermann. Datentypanalyse objektorientierter Hardwarebe-
schreibungen (German). Diploma thesis, Oldenburg University, 1998.

[151] B. Stroustrup.The C++ programming language. 3rd ed., 9th print.
Addison-Wesley, Reading, Mass., 1999.

[152] Synopsys, Inc.Behavioral Compiler User Guide, version 1998_08,
1998.

[153] Synopsys, Inc.DesignWare User Guide, version 1998_08, 1998.
[154] C. Szyperski.Component Software: Beyond Object-Oriented Pro-

gramming. ACM Press, New York, 1998.
[155] A. Takeuchi.Object Oriented Description Environment for Computer

Hardware. Proc. Computer Hardware Description Languages and
their Applications (CHDL), 1981.

[156] A. S. Tanenbaum.Modern Operating Systems. Prentice Hall, 1992.
[157] D. E. Thomas, P. Moorby.The Verilog Hardware Description Lan-

guage. Kluwer Academic Publishers, 1991.
[158] K. Van Rompaey, D. Verkest. I. Bolsens. H. De Man.CoWare—A

design environment for heterogeneous hardware/software systems.
Proc. EURO-DAC, 1996.

[159] S. Vercauteren, B. Lin, H. De Man.Constructing Application-Specific
Heterogeneous Embedded Architectures from Custom HW/SW Appli-
cations. Proc. Design Automation Conference (DAC), 1996.

[160] D. Verkest et al.Matisse: A system-on-chip design methodology
emphasizing dynamic memory management. Proc. IEEE CS Work-
shop on VLSI (IWV), 1998.

[161] P. Wegner.Dimensions of Object-Based Language Design. ACM SIG-
PLAN Notices, vol. 22, no. 12, Proc. OOPSLA’87, 1987.

[162] W. H. Wolf.How to Build a Hardware Description and Measurement
System on an Object-Oriented Programming Language. IEEE Trans-

252

actions on Computer-Aided Design, vol. 8, no. 3, 1989.
[163] VSI Alliance.VSI System Level Design Model Taxonomy, Version 1.0.

VSI Document, http://www.vsi.org, 1998.
[164] J. Willis. S. Bailey, R. Newshutz.A Proposal for Minimally Extending

VHDL to Achieve Data Encapsulation, Late Binding, and Multiple
Inheritance. Proc. VHDL International Users’ Forum (VIUF), 1994.

[165] J. Willis, S. Bailey, C. Swart.Shared Variable Language Change
Specification (PAR 1076A), Version 5.7, 1996.

[166] M. Wilmes.Hardware-Spezifikationn mit objektorientierten Spracher-
weiterungen zu VHDL (German). Diploma thesis, Oldenburg Univer-
sity, 1995.

[167] J. S. Young, A. R. Newton.Embedding programs in the Java language
in the synchronous model of computation through the process of suc-
cessive, formal refinement. Proc. International Conference on Compu-
ter-Aided Design (ICCAD), 1997.

[168] J. S. Young, J. MacDonald, M. Shilman, P. H. Tabbara, A. R. Newton.
Design and Specification of Embedded Systems in Java Using Succes-
sive, Formal Refinement. Proc. Design Automation Conference
(DAC), 1998.

[169] J. S. Young, J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger,
A. R. Newton.The JavaTime Approach to Mixed Hardware-Software
System Design. In: A. A. Jerraya, J. Mermet: System-Level Synthesis.
NATO Science Series E, vol. 357, Kluwer Academic Publishers, 1999.

[170] ZAM-Anwendungszentrum Nürnberg.Ordnung mit Objektklassen im
Design-Prozeß (German). Design, Fertigung & Test, Issue 9/96, 1996.

[171] R. Zippelius, K. D. Müller-Glaser.An Object-oriented Extension of
VHDL. Proc. VHDL Forum for CAD in Europe (VFE, Spring Confer-
ence), 1992.

Curriculum Vitae

04/00 to date Sican GmbH, Hannover, Design Engineer

08/96 – 03/00 OFFIS (Oldenburg Research and Development Institute for
Informatic Tools and Systems), Research Scientist

10/91 – 07/96 Oldenburg University, Diploma in Informatics

12. 11. 1971 Born in Hildesheim

