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Sound onsets are commonly considered to play a privileged role in the identification of1

musical instruments, but the underlying acoustic features remain unclear. By using2

sounds resynthesized with and without rapidly varying transients (not to be confused3

with the onset as a whole), this study set out to specify precisely the role of transients4

and quasi-stationary components in the perception of musical instrument sounds. In5

experiment 1, listeners were trained to identify ten instruments from 250 ms sounds.6

In a subsequent test phase, listeners identified instruments from 64 ms segments of7

sounds presented with or without transient components, either taken from the onset,8

or from the middle portion of the sounds. The omission of transient components at the9

onset impaired overall identification accuracy only by 6%, even though experiment 210

suggested that their omission was discriminable. Shifting the position of the gate from11

the onset to the middle portion of the tone impaired overall identification accuracy12

by 25%. Taken together, these findings confirm the prominent status of onsets in13

musical instrument identification, but suggest that rapidly varying transients are less14

indicative of instrument identity compared to the relatively slow build-up of sinusoidal15

components during onsets.16
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I. INTRODUCTION17

It is a common idea in music psychoacoustics that timbre cues at sound onsets are of18

central importance for the identification of musical instruments by human listeners. Acous-19

tical explorations of this idea may date back as far as the 1940s, when the advent of tape20

recording technology allowed sounds to be systematically manipulated by means of cutting21

and splicing. The radio engineer and musician Pierre Schaeffer pioneered in testing the per-22

ceptual implications of different temporal gatings of sounds (cf., Schaeffer, 2017) and made23

the observation that sounds such as piano tones lose aspects of their identity if presented24

bare of onsets. This has led to the idea that onset information is perceptually more valu-25

able compared to other sound components that are present in the so-called steady state, the26

portion of a tone where its waveform (or short-time spectrum) is relatively constant. As of27

today, however, surprisingly little is known about the specific acoustic ingredients that give28

rise to this effect.29

A component of specific importance to onsets is the so-called transient. Here, transients30

are defined as short-lived and chaotic bursts of acoustical energy, such as the sound of the31

hammer hitting the piano string (without the sound from the harmonically vibrating string).32

It is important to note that according to this definition, transients should not be confused33

with the full onset: all sounds have onsets but not necessarily pronounced transients—think34

of a clarinet tone with a smooth attack. Neither do transients exclusively occur at the35

onset—think of the return of the hopper of the harpsichord at the release of the key (usually36

accompanied by sustained harmonic resonance in the soundboard).37
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Regarding the perceptual identification of instruments, rapidly varying onset transients38

are often claimed to be of prime importance, particular in the audio processing literature39

(Daudet, 2005; Zaunschirm et al., 2012), although no definitive proof has been provided40

to date. There yet exist alternative acoustic properties of sound onsets that could bear41

diagnostic information about sound identity, such as the comparatively slow build-up of42

sinusoids which could be particularly informative at sound onsets (Grey, 1977). The primary43

goal of the present study was to better understand the relevance of transients and more slowly44

varying sinusoidal components for the identification of musical sounds.45

A. Previous research46

Rigorous empirical research on instrument identification has emerged in the 1960s. Early47

studies used tape recordings of musical instrument tones that were manipulated by means48

of cutting and splicing for experimental purposes. In a well-known study, Saldanha and49

Corso (1964) suggested that several factors contribute to the identification of orchestral50

instruments: pitch, the presence of vibrato, the experimental session (test/re-test), and51

the presented excerpt (onset, steady state, offset). Although identification accuracy was52

generally poor (around 40% correct identifications), offsets did not bear perceptually useful53

information and shortening the steady state from 9 to 3 seconds did not negatively affect54

the results. On the contrary, discarding onsets decreased identification accuracy by 1555

percentage points, although performance remained above chance. Unfortunately, no clear56

criterion was provided as to how the endings of onsets were determined and hence the57

durations of the segments that were used as onsets remained unclear.58
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Other research from around that time came to similar conclusions regarding the role of59

onsets. Clark Jr et al. (1963) presented excerpts from the onset or steady part of recorded60

instrument tones to listeners with durations varying from 60 to 600 ms. The authors observed61

that even short portions such as the first 60 ms of tones contained sufficient information for62

musicians to discriminate instruments. Using recorded tones of 6 s duration, Elliott (1975)63

observed that discarding the first and last half second from sustained instrument tones with64

an overall duration of 6 seconds significantly impaired identification performance of several65

orchestral instruments.66

Exploring timbre dissimilarity perception, Grey (1977) used musical instrument tones67

emulated by additive synthesis and observed that the ordering of sounds along one dimension68

of a timbre space obtained from dissimilarity ratings corresponded to the synchronicity of the69

onsets of sounds’ sinusoidal components. Also studying dissimilarity ratings, Iverson and70

Krumhansl (1993) tested the role of onsets by using three sets of tones: full tones (duration:71

2− 3.3 s), onsets (first 80 ms), and the remainder (first 80 ms removed). They found strong72

commonalities between the multidimensional scaling solutions of all three sets, which was73

interpreted as reflecting a form of acoustical invariance across segments. However, today it is74

known that an excerpt of 80 ms can be more than enough for instrument identification (Suied75

et al., 2014), making it likely that listeners also relied on instrument identity or sound source76

properties in their dissimilarity judgments (cf., Siedenburg et al., 2016). Unfortunately, it77

thus seems hard to differentiate whether the supposed invariance in Iverson and Krumhansl78

(1993) arose from invariance of aspects of the sensory representations or from invariance79
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in the inferred sound source mechanism (which in turn may have affected dissimilarity80

judgments) or a combination of both aspects.81

Subsequent research has shown that relatively short durations are necessary to discrim-82

inate instruments. Robinson and Patterson (1995) presented listeners with short sound83

excerpts, excised from synthetic emulations of brass, flute, harpsichord, and string sounds.84

For the identification of isolated sounds, it was observed that even for single cycles of peri-85

odic tones (corresponding to 2.9 − 30.5 s depending on pitch), musicians and nonmusicians86

achieved an impressive performance of around 75% and 50% of correct responses, respec-87

tively. Note that because cycles were presented repeatedly, no temporal cues (onset, offset)88

were present in the sounds, which highlights the importance of spectral cues for instrument89

identification. In a similar vein, Suied et al. (2014) tested the minimal duration required90

for the correct recognition of sound source categories. Listeners heard cosine-shaped gated91

segments of musical sounds and were required to respond to target categories (sung voices,92

percussion sounds, string instrument sounds). Categorization performance was above chance93

for surprisingly short gates, 4 ms for voices, and 8 ms for instruments, and scores were at94

ceiling at 64 ms gate duration. Mixed results were obtained for the effect of onset infor-95

mation: instrumental, but not vocal sounds benefited from gates being positioned at sound96

onsets.97

Most recently, Thoret et al. (2016, 2017) showed that instrument identification is deter-98

mined by specific instrument-specific spectrotemporal modulations, although their approach99

did not allow them to draw specific conclusions about the role of onsets. Ogg et al. (2017)100

studied the minimal duration required to discriminate between musical instrument sounds,101

6



human speech, and human environmental sounds. They found that listeners required 25 ms102

for robust discrimination and that the presence of onsets was beneficial, even for vocal103

sounds.104

Two conclusions may be drawn from this review regarding the role of onsets in instrument105

identification. First, the presence of the onset portion appears to improve sound identifi-106

cation but does not seem to be strictly necessary for correct identification. The relative107

importance of onsets appears to depend on the specific instrument at hand. Second, and108

more generally, whether implemented by digital gating or by excised tape, the experimental109

approach of presenting temporal segments has conceptually remained identical throughout110

the last 60 years (even though the analog scalpel may be less precise than today’s digital111

means). This approach assumes that sounds can be meaningfully separated into discrete112

temporal states. However, as it will be demonstrated in Sec. II, short-lived transients and113

quasi-stationary sinusoidal components cannot be strictly separated in time because both114

regimes overlap and one dynamically transforms into the other (Levine and Smith, 2007;115

Reuter, 1995). Therefore, the studies outlined above can only to a limited degree allow for116

conclusions about the importance of specific acoustical components such as transients—more117

flexible tools for separating signal components (sharpened acoustical scalpels) are needed.118

B. The present study119

The goal of this study was to use a novel transient/stationary separation algorithm to cir-120

cumvent some of the methodological limitations of the literature. This algorithm is described121

in the following section Sec. II. In the main experiment described in Sec. III, listeners iden-122
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FIG. 1. (Color online) Example of a piano sound A4 (440 Hz) of 250 ms separated into stationary

and transient components. A) Spectrogram of original sound (window length 25 ms). B) Zoom into

first 16 ms of the original sound’s spectrogram. C) Waveform of separated stationary components

(dark blue) and transients (light red). D) Zoom into first 16 ms of the separated components’

waveform. E) Estimated stationary coefficients. F) Estimated transient coefficients. G) Waveform

of residual. H) Spectrogram of residual.

tified short segments extracted from the sounds of ten musical instruments. These segments123

were processed by the separation algorithm and contained both stationary and transient in-124

formation, or only stationary information. Segments were extracted from the onset or from125

the middle portion of the sound. The goal of an additional control experiment described in126

Sec. IV was to assess whether the transient components were generally discriminable.127
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II. TRANSIENT SEPARATION128

A. Description of the algorithm129

Developments in audio signal processing have made it possible to separate overlapping130

stationary and transient components from mixtures (for a general review, see Müller, 2015,131

Chap. 8). A classical approach to this problem was provided by Serra and Smith (1990),132

approximating transients in a global manner by time-varying filtered noise. Recently, the133

present author presented a more fine-grained algorithm to estimate transients by using an134

iterative multi-resolution analysis (Siedenburg and Doclo, 2017). The algorithm exploits135

the orthogonal orientation of components in the time-frequency plane: Whereas the quasi-136

stationary (S) components are sparse in frequency and persistent over time, rapidly varying137

transient (T) are sparsely distributed in time and persistent across frequency. Both types138

of components are extracted iteratively from Short-Term Fourier Transform (STFT) repre-139

sentations, using long window lengths (46 ms) for stationary components, yielding spectral140

precision, and short window lengths (3 ms) for transient components, yielding temporal141

precision. In technical terms, the separation process is based on a shrinkage operation of142

STFT coefficients that specifically extracts coefficients which are part of groups of relatively143

strong coefficients that extend over time or frequency (so-called neighborhoods, see Sieden-144

burg and Doclo, 2017; Siedenburg and Dörfler, 2011). The result is an approximation of the145

original signal y in terms of three components, y = S + T + e, where e denotes the residual146

signal. The residual signal usually is of rather low energy and captures reverberation and147

microphone noise, but also faint phase-distorted versions of the stationary and transient148
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components. The algorithm accurately separates stationary and transient components in149

synthetic examples and provides plausible separation results for recorded audio signals from150

acoustic musical instruments (although by definition there is no ground truth in this case).151

In the following experiment, S and S+T were used to study instrument identification.152

Consequently, if there was unintended distortion from the signal processing, it would have153

appeared not only in S but also in S+T.154

B. Acoustic analyses155

Figure 1 depicts the example of an A4 (440 Hz) piano sound of 250 ms duration. Through-156

out this study, the same settings of the algorithm were used as described in the original157

publication (Siedenburg and Doclo, 2017). The algorithm separates the impulsive sound of158

the hammer from the vibrating string (sound examples are provided as part of the supple-159

mentary information1). Panel A depicts the spectrogram (using a window length of 25 ms)160

of the original sound and a zoom into the onset is shown in panel B. The figure illustrates161

that beyond harmonic components, there is transient energy present in the onset portion of162

the sound. Moreover, the more detailed visualization in panel B suggests that the partial163

tones do not all start at the same time, but that lower components precede higher ones.164

Panels C and D depict the waveform of the separated stationary and transient components.165

The extracted time-frequency coefficients are shown in Panels E and F. Stationary compo-166

nents are sparse in frequency (although some subharmonic energy seems to be captured by167

the stationary estimate, because of its relatively long extension in time). Transients have168

impulsive characteristics. Notably, the extracted transients are short-lived but overlap in169
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FIG. 2. (Color online) Temporal amplitude envelopes (rows 1–2) and spectral envelopes (rows

3–4). Level corresponds to signal intensity raised by 0.3 to approximate loudness according to

Steven’s law. Original sounds: gray, separated stationary components: blue, transient components:

red, dashed-dotted. Lines depict averages across all twelve pitch levels. For temporal amplitude

envelopes (rows 1–2), shaded areas correspond to the position of the gating used in experiment 1.
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time with the stationary components. This example hence demonstrates the limitations of170

considering musical sounds as a sequence of discrete states that can be neatly spliced apart171

in the time domain. To the contrary, components overlap and are continuously transformed172

over time, and thus transient components should not be confused with onsets as a whole.173

The residual signal is depicted in panels G and H. It is visible that the residual contains174

residual traces of both the harmonic stationary components and the impulsive transient of175

this piano tone.176

In the perceptual experiment reported below, ten instruments at twelve different pitch177

levels were used (see Sec. III B 2 for details). Analyses indicated that these sounds had tran-178

sients of much lower overall energy compared to the stationary components. Specifically, the179

stationary-to-transient energy level ratios averaged across pitch was highest for the vibra-180

phone (mean 18 dB), followed by the marimba (24 dB), trumpet (28 dB), guitar (30 dB),181

piano (31 dB), cello (36 dB), harp (40 dB), violin (42 dB), flute (44 dB), and finally the182

clarinet (52 dB) with the weakest transient. Somewhat surprisingly, these ratios indicate183

that it is not generally possible to infer the sound excitation mechanisms of instruments by184

virtue of the relative transient energies, because the harp (an impulsive instrument) had185

lower relative transient energy compared to the trumpet (a sustained instrument).186

The temporal evolution of transient and stationary energy is depicted in Fig. 2 (rows 1–2).187

The figure shows the average temporal and spectral envelopes of the stationary and tran-188

sient signal components (for temporal envelopes, gray background indicates the positioning189

of the gates in experiment 1). Here, temporal envelopes were extracted by computing the190

magnitude of the analytic signal, filtered with a third-order Butterworth lowpass-filter at a191
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cutoff frequency of 50 Hz. The levels plotted in Fig. 2 correspond to signal intensities taken192

to the power of 0.3 (following Steven’s law to approximate loudness). Figure 2 shows that193

the extracted transients do not extent much further than 64 ms into the tone and exhibit194

exponential decay characteristics for the impulsive instruments. This also holds, albeit to a195

much smaller degree, for the trumpet, violin, and cello. For the flute and clarinet, however,196

transients are of very low intensity, potentially more reflecting continuous blowing noise.197

Regarding the stationary component, the figure further indicates marked differences in en-198

velope slope of impulsively excited instruments (top row) compared to sustained instruments199

(bottom row), the latter only reaching their energy peak in the middle portion of the tone.200

The two bottom rows of Fig. 2 shows the average spectral power for the original signal,201

and the stationary and transient components (as for temporal envelopes raised to the power202

of 0.3 to reflect loudness). Spectral envelopes were obtained by smoothing the computed203

magnitude spectra by using a first-order Butterworth lowpass filter with a cutoff frequency204

of 1000 Hz. The figure illustrates that the extracted transients had energy at relatively high205

frequencies, with spectral peaks at frequencies around or higher than 1 kHz. The figure also206

highlights the distinct spectral shapes of the instruments’ stationary components compared207

to the relatively similar spectral shapes of transient components. Experiment 1 tested the208

perceptual relevance of these components.209
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III. EXPERIMENT 1: INSTRUMENT IDENTIFICATION210

A. Rationale211

The present experiment compared instrument identification for harmonic instrument212

sounds resynthesized with and without transient components. In order to avoid ceiling213

performance and to be able to account for the importance of the onset position, sounds were214

gated with short gates of 64 ms duration. The resulting segments were taken from the onset215

of the original sounds and presented with and without transient components. In order to216

obtain an estimate about the general relevance of the onset, a third signal condition was217

tested that presented segments obtained from the middle portion of sounds (128-196 ms)218

with stationary and transient components. Note, however, that in the present sound set,219

the energy of transients was very small for the middle portion (see Fig. 2). Therefore, ex-220

cerpts from the middle portion with only stationary components were not included in the221

experiment.222

B. Methods223

1. Participants224

Eighteen listeners (13 female, 4 male, 1 other) with self-reported normal hearing and a225

mean age of M = 26.1 years (SD = 6.7, range: 21–48) participated in this experiment.226

Participants had played their primary musical instrument for an average of M = 9.3 years227

(SD = 6.6, range: 1–22) and were dedicating M = 10.5h per week to musical activities228
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FIG. 3. (Color online) Illustration of the windows used to create the experimental signal conditions

for the example of a piano tone. The figure shows the amplitude envelopes of stationary components

(S), transient components (T), and the gating windows (W) with start positions at 0 ms or at

128 ms.

(SD = 11.0, range: 1-35). Participants were recruited via advertisements at the University229

of Oldenburg online job board and received a compensation with 10 EUR per hour.230

2. Stimuli and apparatus231

Stimuli were derived from orchestral instrument samples, obtained from the Vienna Sym-232

phonic Library (http://vsl.co.at, last accessed June 12, 2018). The following instruments233

were used in this study: piano, guitar, harp, vibraphone, marimba, trumpet, clarinet, flute,234

violin, and cello. Guitar samples were obtained from a Yamaha P155 synthesizer. Each235

instrument was played at twelve pitch levels: C4 (262 Hz) to B4 (494 Hz). From the stereo236

samples, only the left channels were used. Tones were played at forte dynamics and con-237

ceived as 8th-notes at a tempo of 120 quarter notes per minute, corresponding to a duration238
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of 250 ms. The actual recordings were longer than this and of varying duration, so a 25 ms239

raised cosine function was applied as fade out to obtain a consistent duration of 250 ms.240

In the experiments by Suied et al. (2014), instrument categorization performance levelled241

off at a duration of 64 ms. Hence, this gate duration was chosen for the current experiment242

in order to ensure that participants would be able to perform the task. Furthermore, this243

gate duration was short enough to meaningfully compare different placings of the gate within244

sounds. When the gate started at the beginning of the sound (0-64 ms: @0ms), the original245

onset was preserved and a raised-cosine fade-out was used (cf., Suied et al., 2014). When246

the gate was positioned in the middle of the sound (128-192 ms: @128ms), both a raised-247

cosine fade-in and fade-out was used. Gated sounds were normalized in root-mean-square248

energy. The decomposition algorithm described above was used to extract the stationary249

and transient signal components from the gated sounds. Overall, there were three signal250

conditions: 1) stationary (S) and transient (T) components gated at the onset (S+T@0ms),251

2) stationary components at the onset (S@0ms), and 3) stationary and transient components252

in the middle of the tone (S+T@128ms). Figure 3 shows the gating function and the253

temporal envelopes of the individual components for an exemplary piano tone.254

The experiment was run with Matlab and sounds were converted with an RME Fireface255

audio interface at an audio sampling frequency of 44.1 kHz and 24 bit resolution. Sounds256

were presented diotically over Sennheiser HDA 200 headphones at an average level of 65 dBA257

SPL, as calibrated by a Norsonic Nor140 sound-level meter with a G.R.A.S. IEC 60711258

artificial ear to which the headphones were coupled. Listeners were tested individually in a259

sound-proof lab and provided responses on a computer mouse.260
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3. Procedure261

The experiment comprised a training and test phase. The training phase was conducted262

to ensure that participants were familiar with the full range of perceptual features that263

characterized the test sounds. In the training phase, the original sounds were used. First,264

participants were exposed to all sounds at twelve pitch levels from each one of the ten instru-265

ments at an inter-onset interval (IOI) of 750 ms. The order of the presentation of individual266

sounds and instruments was randomized. In order to further provide visual anchors, pic-267

tures of the instruments were presented concurrently. Pictures had been obtained from a268

web search and depicted standard tokens of the instruments in front of a white background.269

In the second part of the training, participants were trained to identify sounds presented270

in isolation, as in the main experiment. The test contained each of the ten instruments at six271

randomly drawn pitch levels. In every trial, participants listened to a randomly drawn sound272

and were required to select the corresponding instrument label from a list of alternatives273

presented on a computer screen. Feedback about the correct response was provided with274

instrument labels and pictures. Overall, this amounted to 60 trials of training with response275

feedback and took around 12 minutes.276

All participants continued with the main experiment, where sounds from the same ten277

instruments were presented at twelve pitch levels for the three signal conditions, S+T@0ms,278

S@0ms, S+T@128ms, described above (Sec. III B 2). The signal conditions were blocked and279

blocks were presented in random order. There were 120 sounds per block; each block took280

around 25 minutes to complete and there were obligatory pauses of at least five minutes281
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FIG. 4. (Color online) Mean identification scores from experiment 1. Individual results are plotted

as gray lines and the dotted line indicates chance level. Error bars: 95% CI.

between blocks. Before the start of each experimental block, participants went through a282

passive exposure phase with the original sounds, as in the first part of the training. This283

exposure phase was implemented to ensure that potential differences across blocks were due284

to the signal conditions, and not due to memory loss of the reference that was established285

or consolidated during the initial training.286

To avoid response bias through a fixed order of the instrument labels on the screen, the list287

order was randomized for each experimental block. Otherwise, the procedure was identical288

to the second part of the training although no feedback was provided. The experiment was289

self-paced.290
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FIG. 5. (Color online) Average confusion matrices from experiment 1 including the training,

normalized by the number of presentations of every instrument.

C. Results291

Fig. 4 shows the average scores for the training and all experimental conditions, together292

with individual profiles from all participants. In the training, identification performance293

was high (proportion of correct identifications: M = .84). In the main experiment, average294

performance in the S+T@0ms signal condition was around seven percentage points below the295

19



training score (M = .77) and slightly higher compared to the S@0ms condition (M = .71).296

In the S+T@128ms signal condition, there was a strong inflation of confusions (M = .52).297

Figure 5 depicts average confusion matrices for the training phase and all experimen-298

tal conditions. In the training, it is visible that, surprisingly, the cello and the trumpet299

were frequently confused at this stage (although this only occurred in the training). In300

the main experiment, frequent within-family confusions occurred for the S+T@0ms signal301

condition, in particular for the violin and cello (strings), and the clarinet and flute (winds).302

The qualitative confusion patterns were very similar for the S@0ms signal condition. In303

the S+T@128ms condition, the three impulsive instruments piano, guitar, and harp were304

frequently confused and even attributed to wind instruments such as the clarinet. Among305

the sustained (i.e., continuously excited) instruments, the flute was particularly poorly iden-306

tified, and often confused with the trumpet. Four instruments were robustly identified for307

this condition and achieved accuracies above 0.75: the vibraphone, marimba, trumpet, and308

clarinet.309

A repeated-measures ANOVA was conducted with the factors signal condition (S+T@0ms,310

S@0ms, S+T@128ms) and pitch level (the statistical dependency of instrument-wise accura-311

cies does not allow for an ANOVA on an instrument-wise level). The analysis indicated that312

there were significant differences between signal conditions, F (2, 34) = 155.9, p < .001, η2p =313

.90, and of pitch, F (11, 187) = 4.52, p < .001, η2p = .21, but no significant interaction be-314

tween the two, F (22, 374) = 1.52, p = .064, η2p = .08. Post-hoc tests demonstrated that315

scores from the three signal conditions were significantly different from each other: paired316

t(17) = 4.3, p = .0013 for S+T@0ms vs. S@0ms, t(17) = 19.7, p < .001 for S+T@0ms317
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vs. S+T@128ms, and t(17) = 10.7, p < .001 for S@0ms vs. S+T@128ms (Bonferroni-318

corrected for multiple comparisons, n = 3). A comparison to the training indicated that319

training scores were significantly higher compared to all experimental signal conditions,320

paired t(17) > 5.4, p < .001. Visual inspection of the data did not reveal any systematic321

relation of identification accuracy and pitch, and scores in none of the three signal condi-322

tions significantly correlated with pitch height, p > .187 (Bonferroni-corrected, n = 3). This323

suggests that idiosyncratic stimulus features distributed across different pitch levels most324

likely caused the observed differences of identification scores across pitch levels.325

D. Discussion326

This experiment compared harmonic musical instrument identification for 64 ms-long327

sound segments with and without transient components taken from the onset or the middle328

portion of the original sound. The data indicated that removing the transient at the sound329

onset impaired identification scores by around 6 percentage points, whereas moving the gate330

from the onset to the middle portion of the sound impaired identification accuracy by 25331

percentage points. Surprisingly, this effect did not appear to strictly depend on whether332

impulsive or sustained instruments were considered. In the signal condition that presented333

64 ms segments from the middle portion of the tone (S+T@128ms), the vibraphone and334

marimba were accurately identified (both impulsive) with accuracy scores above 75%, and335

the same held for the trumpet and clarinet (both sustained).336

As it can be observed in Fig. 2, the energy levels of the transient components were almost337

negligible for the tested middle portions of sounds. Furthermore, there was a drastic drop338
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in performance from S@0ms to S+T@128ms (≈ S@128ms) paired with small differences339

from S+T@0ms to S@0ms. Therefore, this pattern of results likely reflects the greater340

diagnosticity of the cues present in quasi-stationary sinusoidal components at the sound341

onset, and the lack of the transient component appears to be of smaller importance. Notably,342

even for sustained sounds, the steady state portion probed by the S+T@128ms condition343

turned out to be less informative than the onset portion.344

A potential explanation of the small effect observed for the removal of transients could be345

that the combined stationary and transient components (S+T) were not clearly discriminable346

from the stationary parts (S) alone. This question was addressed in a second experiment,347

which would further help to more comprehensively characterize the perceptual status of348

transients in musical instrument sounds.349

IV. EXPERIMENT 2: TRANSIENT DISCRIMINATION350

A. Rationale351

The second experiment acted as a control experiment in order to test whether listeners352

would be sensitive to the presence of transients. Specifically, the aim was to test listeners’353

discrimination abilities of S from S+T, but also to measure discrimination of S+T from the354

original sound. This would assess the perceptual relevance of the separation algorithm’s355

residual component. To direct listeners attention to transient information, additional foil356

conditions were included in the experiment, presenting amplified transients together with357

the stationary part.358

22



B. Methods359

1. Participants360

Ten listeners (4 female, 5 male, 1 other) with self-reported normal hearing and a mean361

age of M = 27.8 years (SD = 4.2, range: 23–37) participated. Participants had played362

their primary musical instrument for an average of M = 14.8 years (SD = 6.8, range: 4–30)363

and were dedicating M = 13.8h per week to musical activities (SD = 12.5, range: 2-35).364

Participant recruiting and compensation was identical to experiment 1.365

2. Stimuli and apparatus366

To keep the overall duration of the experiment within limits, only four of the ten instru-367

ments from experiment 1 were tested, two of which were impulsive (vibraphone and guitar)368

and two sustained (cello and trumpet). The corresponding recordings were presented at the369

full duration of 250 ms. There were five signal conditions, each testing the discrimination of370

S+T against i) the original signal, ii) S, iii) 5T, iv) S+10T, v) S+15T, where S+xT indicates371

that the level of T was raised by x dB. The apparatus was identical to the main experiment.372

3. Procedure373

A 3-interval/2-alternative forced-choice task (“odd one out”) was used. On every trial,374

there were three intervals with inter-stimulus intervals of 250 ms and participants were375

required to detect the odd interval. It was randomly determined whether S+T or the376

comparison stimulus from signal condition i)-v) served as the odd stimulus. After providing377
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Triangles correspond to performance of individual participants, the dotted line indicates chance

performance. Error bars: 95% CI.

their response by selecting the interval on a computer screen, participants received feedback378

about the correct response.379

In order to maximize participant’s sensitivity to potentially idiosyncratic timbral features,380

the presentation of instruments was blocked with a random order of the presentation of the381

signal conditions. The order of blocks was randomized. Every block contained 180 trials382

(3 intervals x 12 pitch levels x 5 signal conditions). The completion of any one block took383

around 25 minutes and there were obligatory pauses of at least five minutes between blocks.384
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C. Results385

Performance was above chance level for all the five different signal conditions, as confirmed386

by tailed t-tests against 0.33, t(9) > 5.5, p < .001. Participants robustly discriminated S+T387

from S, as reflected by 69% of correct identifications in this condition. Participants had388

greater difficulties to discriminate S+T from the original signal, yielding an average of389

only 42% correct responses. This result indicates that the omission of the residual from the390

original signal, leaving S+T, is barely detectable, which validates the general approach to use391

S+T as a starting point for studying timbre perception. Participants were further sensitive392

to an amplification of transients, as indicated by the strong effect across foil conditions.393

Average percentage of correct responses was 54%, 86%, and 96% for discriminating S+T394

from S+5T, S+10T, and S+15T, respectively.395

A repeated-measures ANOVA was conducted to analyse differences for individual instru-396

ments. The analysis confirmed strong effects of signal condition, F (4, 36) = 171.8, p <397

.001, η2p = .95, instrument, F (3, 27) = 21.4, p < .001, η2p = .70, and an interaction of signal398

condition and instrument, F (12, 108) = 14.1, p < .001, η2p = .61.399

The mean scores of all five signal conditions were highly different from each other,400

t(9) > 4.3, p < .002, as visible in Fig. 6 (left panel). Performance for the two impul-401

sive instruments guitar (76%) and vibraphone (74%) was generally better compared to the402

sustained instruments trumpet (62%) and cello (65%). Pairwise t-tests confirmed no signifi-403

cant differences between instruments of the same excitation type, t(9) < 1.5, p > .16, but all404
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differences across excitation types were highly significant, t(9) > 5.0, p < .001. This means405

the task was generally easier for the two impulsive instruments, guitar and vibraphone.406

The signal conditions elicited differential effects on impulsive instruments compared to407

continuously excited instruments such that the interaction was due to the high scores for408

impulsive instruments in the S condition. Specifically, scores for S did not differ significantly409

from the original signal for the trumpet and the cello, t(9) < 3.0, p > .057 (Bonferroni-410

corrected for multiple comparisons, n = 4). But there were strong differences between the411

original signal and S signals for the guitar and the vibraphone, t(9) > 7.2, p < .001.412

D. Discussion413

This second experiment tested listeners’ sensitivity to discriminate signals with manipu-414

lated transient components. Independent of instrument, the original sounds were only poorly415

discriminated from the signals that were resynthesized without residual (S+T); discrimina-416

tion performance was barely above chance for this signal condition. This result implies that417

the residual does not appear to be very important in the current separation, which suggests418

that using the stationary and transients components, S+T, seems to be a good starting419

point for the current pursuits. More specifically, the above chance performance in both the420

S+T vs. S and the S+T vs. S+5T (and S+10T, S+15T) conditions indicates that listeners421

were sensitive to the amplification as well as to omission of transients. Note that this effect422

was pronounced for impulsive instruments, but, although not as strong (as indicated by the423

significant interaction of signal condition and instrument), it remained present for sustained424

instruments. In comparison to the higher performance for the signal condition that omitted425
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the transient (S+T vs. S), this indicates that listeners were much more sensitive to the426

presence of the transient than to the presence of the residual noise.427

Only four instruments could be tested in this experiment and hence the generality of428

the findings is limited. It is possible that instruments with low energy transients such as429

the clarinet and flute would have yielded lower scores, in particular for the S vs. S+T430

signal condition. Nonetheless, the obtained results show that it is generally not the lack431

of discriminability that is the underlying reason for the small effect between the S+T@0ms432

and S@0ms signal condition observed throughout instruments in experiment 1.433

V. CONCLUSION434

This study revisited the perceptual relevance of onsets in identification and discrimination435

tasks. Previous studies suggested that the onset plays a privileged role for identification,436

but the underlying acoustic factors had not been thoroughly tested. Here, a relatively small437

set of harmonic orchestral instrument sounds was used to test the importance of transient438

signal components. Using an algorithm to dissect transient from stationary components439

(Siedenburg and Doclo, 2017), acoustical analysis indicated that rapidly varying transients440

and quasi-stationary components are generally overlapping in time and that transient com-441

ponents are of relatively low energy. Importantly, these analyses indicate that the transient,442

defined via its short-livedness and stochastic nature, should not be confused with the onset443

portion of sounds as a whole—there is no point in time where transients could be neatly444

separated from sinusoidal components. Instead, the separation of acoustic components must445

take place in the time-frequency domain.446
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Two experiments tested the perceptual relevance of transients and quasi-stationary sinu-447

soidal components. In experiment 1, it was shown that the omission of transient components448

at the onset portion of tones had a relatively small detrimental effect on instrument iden-449

tification, even though experiment 2 suggested that a lack of discriminability of signals450

presented with and without transient components was not the underlying reason for this.451

Therefore, these results indicate that quasi-stationary components yield the most informa-452

tive cues for instrument identification. Furthermore, shifting the position of the gate from453

the onset to the middle portion of the tone had a large detrimental effect on identification454

performance. The latter result confirms that even without the presence of transient com-455

ponents, onsets seem to be much more informative compared to sounds’ middle portions,456

irrespective of the specific instrument or instrument class (impulsive vs. sustained). Taken457

together, these findings confirm the prominent status of onsets in musical instrument identi-458

fication suggested by the literature, but specify that rapidly varying transients (which often459

but not exclusively occur at sound onsets) have relatively limited diagnostic value for the460

identification of harmonic musical instruments. In conclusion, fairly slowly varying signal461

components during onsets, likely the characteristic build-up of sinusoidal components in462

particular, provide the most valuable bundle of acoustic features for perceptual instrument463

identification.464

A critical reader may object that the great care that musicians, sound designers, and465

music producers invest in the shaping of transient aspects of sound refutes this argument.466

This objection may be countered by noting that identification tasks require listeners to rely467

on informative acoustic cues for sound source identity, but not on every sound feature that468
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may be integrated into assessments of sound quality (e.g., Pressnitzer et al., 2013; Siedenburg469

and McAdams, 2017). Coherent with this notion, experiments 1 and 2 collectively suggested470

that not every class of discriminable sound feature is essential for sound source identification.471

In effect, sound production may deal in great length with the sculpting of timbral nuances472

such as high-frequency transients, even if these are only of minor importance for the inference473

of sound sources. Generally, this view acknowledges the multiplicity of cues available for474

sound source identification (Giordano et al., 2010; Handel, 1995), all of which may be used475

opportunistically depending on the perceptual task and context at hand. Furthermore, one476

should not forget that this study only considered harmonic musical instruments presented477

in isolation. The situation may be different for non-harmonic percussion instruments and478

other sound-producing objects, not to speak of sound source identification in polyphonic479

mixtures.480

A topic that should be addressed by future acoustical analyses concerns the question481

whether the utility of the onset (with or without transients) for instrument identification482

rests on perceptual or acoustical grounds. In other words, are listeners making use of483

informative features for identification that are only available in the onset, or do there exist484

equally informative features throughout the sound but listeners prefer to focus on the onset?485

From a more general perspective, the current approach is in line with an upsurge of486

interest in signal analysis/re-synthesis approaches to the study of auditory perception (Mc-487

Dermott and Simoncelli, 2011; Overath et al., 2015; Ponsot et al., 2018; Thoret et al., 2017).488

In order to unravel the intricate workings of auditory perception these types of studies de-489

velop specific signal processing tools, which allow to work with naturalistic but precisely490
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controlled stimuli. Although this approach is principally related to the early explorations491

of cutting and splicing tapes (Schaeffer, 2017), today’s digital tools offer an unprecedented492

degree of precision and versatility.493
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