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Stefan Oehmcke

Deep Learning of Virtual
Marine Sensors

Abstract Understanding our marine ecosystems is important to protect
the environment and promote the sustainable use of resources. Coastal
processes are of of particular interest as the coastal regions have the largest
maritime traffic and marine life. Observing these processes is a difficult
task due to the harsh environmental conditions and the size of the area to
be covered. To solve this task, arrays of robust sensors are required that
can handle storms, saltwater, and the daily wear caused by the tides. The
resulting amount of data is not manually processable and the chance that
a sensor fails increases with growing infrastructure.

This thesis proposes an approach to build virtual sensors based on ma-
chine learning to replace broken physical sensors. These virtual sensors are
trained with sensor data from the Time Series Station Spiekeroog (TSS)
and the Biodiversity-Ecosystem Functioning across marine and terrestrial
ecosystems (BEFmate) project in the Wadden Sea (German Bight). In the
first part of my work, I begin by explaining the data and its preprocess-
ing. Next, an unsupervised extreme event detection task on the TSS data
with a subsequent expert evaluation is presented. Then I propose an im-
putation method for longer consecutively missing values as they appear in
our datasets. The method utilizes linear interpolation as its first step, but
penalizes these interpolated values based on the length of the gaps with a
k-nearest neighbors approach (penalized DTWkNN ensemble). In the sec-
ond part, I design a neural network architecture to model broken sensors
from the BEFmate project. The foundation is a bidirectional recurrent
neural network with long short-term memory (bLSTM) that utilizes my
time dimensionality reduction method exponential piecewise approximate
aggregation (exPAA). Then, I introduce convolutional layers, uncertainty
predictions, and my input quality based dropout layer (qDrop) to the ar-
chitecture, which proves to outperform the architecture with only bLSTM
layers. The final architecture has no fully connected layer and allows to de-
termine the impact of individual time series steps on the prediction. This
last update also removes a hyper-parameter by learning the noise function
for the heteroscedastic uncertainy in separate learning run with a new loss
function.
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Marine Sensors
Zusammenfassung

Das Verständnis unserer Meeresökosysteme ist wichtig, um die Umwelt
zu schützen und die nachhaltige Nutzung von Ressourcen zu fördern. Insbe-
sondere sind Küstenprozesse interessant, da die Küstenregionen den größ-
ten Seeverkehr und das meiste Meeresleben aufweisen. Diese Prozesse zu
beobachten ist eine schwierige Aufgabe aufgrund der harten Unweltbedin-
gungen und der Größe des abzudeckenden Bereichs. Um diese Aufgabe zu
lösen, werden robuste Sensoren benötigt, welche Stürme, Salzwasser und
den täglichen Verschleiß der Gezeiten bewältigen können. Durch die wach-
sende Sensorinfrastruktur sind die anfallenden Datenmengen nicht mehr
manuell verarbeitbar und die Wahrscheinlichkeit, dass ein Sensor ausfällt,
steigt ebenfalls.

Diese Arbeit stellt einen Ansatz vor, wie virtuelle Sensoren basierend
auf maschinellem Lernen erstellt werden können, um nicht funktionieren-
de physikalische Sensoren zu ersetzen. Diese virtuellen Sensoren werden
mit Sensordaten von der Time Series Station Spiekeroog (TSS) und dem
Biodiversity-Ecosystem Functioning across marine and terrestrial ecosys-
tems (BEFmate)-Projekt im Wattenmeer (Deutsche Bucht) trainiert. Im
ersten Teil meiner Arbeit erkläre ich zunächst die Daten und deren Vor-
verarbeitung. Als nächstes wird eine unüberwachte Extremereigniserken-
nungsaufgabe auf den TSS-Daten mit einer nachfolgenden Expertenauswer-
tung präsentiert. Dann schlage ich eine Imputationsmethode für längere,
fortlaufend fehlende Werte vor, wie sie in unseren Datensätzen vorkommen.
Das Verfahren verwendet als ersten Schritt eine lineare Interpolation, aber
bestraft diese interpolierten Werte basierend auf der Länge der Lücken mit
einem k-nächste-Nachbarn-Verfahren (penalized DTWkNN ensemble). Im
zweiten Teil entwickle ich eine neuronale Netzwerkarchitektur, um ausge-
fallene Sensoren aus dem BEFmate-Projekt zu modellieren. Die Grundla-
ge ist ein bidirektionales rekurrentes neuronales Netzwerk mit Langzeit-
Kurzzeitgedächtnis (bLSTM), welches meine zeitliche Dimensionalitätsre-
duktionsmethode exponential piecewise approximate aggregation (exPAA)
verwendet. Dann führe ich Schichten mit Konvolutionen, Unsicherheits-
vorhersagen und meine auf Eingangsqualität basierende Dropout-Schicht
(qDrop) in die Architektur ein, welche bessere Ergebnisse erziehlt als die Ar-
chitektur nur mit bLSTM-Schichten. Die finale Architektur hat keine voll-
ständig verbundenen Netzwerkschichten und erlaubt es, die Auswirkung
einzelner Zeitreihenschritte auf die Vorhersage zu bestimmen. Außerdem
wird ein Hyperparameter entfernt, indem die Rauschfunktion für die hete-
roskedastische Unsicherheit in einem separaten Lernlauf mit einer neuen
Verlustfunktion gelernt wird.
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1
Introduction

1.1 Motivation and Problem Statement

The observation of coastal processes is important to understand marine
ecosystems [6, 33]. This in turn helps us to protect the environment and
make resource management sustainable [93]. For example, monitoring the
salinity of an area indicates what type of life can exist there, and a shift of
that property signalizes that the habitat is also changing. Another example
is the early detection of algae blooms in coastal areas, as they are dangerous
to humans and fish populations. To cover such areas, an array of sensors is
required. They must meet requirements, such as reliability, robustness, and
minimal need for maintenance to withstand the challenging environmental
influences. For instance, these influences can be storms, saltwater, and the
daily wear caused by the tides.

As the infrastructure of sensor arrays grows and the resolution of sensors
increases, more and more data are produced. It is not practical to process
these data manually. The properties of the data are also challenging, be-
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cause they usually contain a high degree of noise, outliers, and missing
values. Further, there are non-trivial inter-sensor relationships, since the
context of the seas always changes due to tidal or seasonal influences. Al-
though approaches are available to deal with some of these challenges,
they often do not work with large datasets in a feasible time frame or lack
stability in their output performance.

Here, I mainly work with two real-world marine datasets, which provide
sensor data for a part of the German Wadden Sea. The first dataset
originates from the Time Series Station Spiekeroog (TSS) [6, 120]. It
is a long term sensor platform that is exposed to strong tidal influences.
The second dataset consists of sensor measurements from the Biodiversity-
Ecosystem Functioning across marine and terrestrial ecosystems (BEF-
mate) project [8, 9]. The BEFmate sensors are located on and around
twelve artificial islands in front of Spiekeroog. Their close proximity to
each other allows for a combination of these datasets. Both datasets
present their own challenges, but are invaluable for the marine research
of the Wadden Sea.

In my data, a flow sensor of the BEFmate project failed and needs to
be replaced. When such a sensor fails completely, it may not be repairable
and thus diminishes the quality of the sensor array to which it belongs.
The replacement should be a model based on data of surrounding sensors.
Such a modeling approach is more flexible and transferable than a physical
or numerical modeling approach, which would require expert knowledge of
the domain and expensive laboratory experiments [36]. Numerical models
are also not feasible, because they are highly specialized to one physical
property and transferring to another property is impractical and costly. To
the best of my knowledge, there is no method capable of creating such a
model in this or any similar application, which includes preprocessing and
imputation of missing data, while remaining reliable and scalable on large
datasets.
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1.2 Approach - Machine Learning

I use machine learning, a sub-field of artificial intelligence, to approach
the challenges posed by the datasets. A machine learning algorithm builds
a hypothesis or model f that is able to make a decision about a previ-
ously unseen pattern with particular features based on information from
observed patterns and decisions [15, 34, 57, 100]. It learns to recognize
patterns and stores these information in the model. This model is part
of the hypothesis space or model set F with all possible models in an
application, so f ∈ F. A model is given a matrix X of n input vec-
tors or patterns X := (x1, . . . ,xn). One input vector consists of d fea-
tures x := (x1, . . . ,xd)T in feature space x ∈ Xd . In our case, the input
features are mostly sensor measurements that are continuous in nature.
This results in a real numbered feature space (Xd = Rd). All n input vec-
tors produce a decision f (X) := Ŷ , which is called target output and is a
matrix Ŷ := (ŷ1, . . . , ŷn) with d′ dimensional vectors ŷ := (ŷ1, . . . , ŷd′ )T in tar-
get space ŷ ∈ Y d′ . These outputs approximate the true targets f (X) ≈ Y .
For every input and output vector there also exists a true target output y,
which is not always known. Models are created using learning algorithms,
such as artificial neural networks, that are inspired by the neural networks
in the brain. They learn an inner representation of a training set of pat-
terns to produce output vectors for an unseen test set.

The nature of a decision depends on the existing learning problem.
There is a manifold of learning problems, such as classification, regression,
ranking, or dimensionality reduction. Classification is a long time topic
in machine learning. Here, the target outputs are k qualitative classes
y ∈ {c1, . . . , ck} and a model is called classifier. For example, the classifica-
tion of fish into classes of species y ∈ {pike,perch, goldfish, . . .} by examining
features such as weight, length, color, and number of fins. In regression,
the targets are numeric, i.e. y ∈ Rd′ and models are referred to as regres-
sors. Examples for regression applications are the forecast of power output
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for wind parks with a horizon of a few hours [145] or the prediction of
food consumption of fish populations [109]. Ranking problems suggest an
order for a set of patterns. This is useful for data mining tasks such as the
prioritization of search engine results. The feature space can be very large,
which complicates the exploration or visualization of information, but di-
mensionality reduction handles this problem. Here, the model output is
a transformation of the feature space with d input dimensions to a lower
representation with d′ target dimensions, whereby d′ < d.

Learning scenarios define what kind of input sets are available. Super-
vised learning assumes that there are patterns with their respective true
targets known to the model. These pairs of patterns and true target out-
puts are given to the learning algorithm during training to create the model.
Typical learning problems for supervised learning are classification, regres-
sion, or ranking. Unsupervised learning has no information about the true
target output and in effect only trains with the patterns. This scenario is
often used to find structures in data for clustering problems or to reduce
the dimensionality of the feature space. Semi-supervised learning combines
the two previous scenarios. There are a few pairs of patterns and true tar-
get outputs to train the model, but more unlabeled pattern are available
to understand the underlying structure. This scenario occurs when true
targets are hard to acquire, but patterns are easy to obtain.

Together, learning scenarios and problems define the learning task. The
results on that task are highly dependent on the quality and quantity
of data available as well as the employed algorithm for processing the
data. These are the basis for a model and guarantee a correct result to
a certain degree [16]. Concrete applications for machine learning always
arise, when the human being either does not want to or cannot process the
data. Hastie et al. [57] emphasize this by stating that today the amount of
data is enormous, but can no longer be analyzed or interpreted manually.

Performance metrics are indicators of a models prediction performance.
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The used metrics vary between the learning tasks. For example, a regres-
sion task could use the absolute error between the true and approximated
targets, which is then used to find the model that minimizes the average
error on a set with n test patterns:

argmin
f ∈F

1
n

n∑
i=1

|yi − ŷi | . (1.1)

Similarly, in a classification task, we seek a classifier that maximizes class
prediction accuracy. Unsupervised methods cannot rely on true targets
and thus measurements such as the preservation of neighborhoods for di-
mensionality reduction or other data characteristics, such as correlations
are required.

1.3 Contributions

In this work, I offer machine learning and data analysis solutions for a
coastal observation application to answer the question:

How can the broken flow sensor of the BEFmate project be
replaced by a machine learning model based on the surrounding
sensor data of BEFmate and TSS?

By answering this, I hope to allow a better observation of coastal pro-
cesses as well as giving a procedure to replicate such models for similar
applications. This includes the following intermediate steps:

1. General preprocessing
Creation of a coherent dataset and correcting drifts in data;

2. Filling missing values
Introducing and applying a novel time series imputation method;

3. Designing a deep learning architecture
Iterating and improving neural network architectures.
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My data-driven solutions are less computationally expensive and less ex-
pert knowledge is required than in classical physical or numerical modeling
approaches. I develop these solutions in a problem-oriented way, but also
ensure that they are generalizable to similar problems and applications.

1.4 Structure of This Thesis

In Part I, the focus lies on the dataset and several preprocessing steps.
First, I introduce the marine datasets and describe the general prepro-
cessing steps applied to it in Chapter 2. Then, I show in Chapter 3 that
automated extreme event detection is possible with an unsupervised ma-
chine learning approach, which is evaluated by experts. In Chapter 4, I
present a novel imputation algorithm that is able to replace multivariate
missing data.

Part II includes work on the virtual sensor with deep learning. Initially,
deep learning is explained in Chapter 5. I present the basic design of my
architecture in Chapter 6 based on bidirectional long short-term memory
network (bLSTM). Thereafter, I improve this architecture with the addi-
tion of convolutional layers, uncertainty predictions, and by regarding the
known input quality in Chapter 7. Finally, Part III gives a conclusion of
this work and ends with an outlook to possible future research questions
in Chapter 8.

6



Part I

Dataset and Preprocessing

After an introduction to the research problem and the approach to solving
it through data-driven machine learning, Part I focuses on the data of the
application. I provide general and detailed information about the datasets.
Further, I explain the employed preprocessing steps as well as an exemplar
task and propose an imputation method especially designed for the prop-
erties of these datasets. This is an important basis for creating a virtual
sensor in the next part.
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There is no such thing as clean or dirty data, just
data you don’t understand.

Claudia Perlich

2
Marine Datasets and Preprocessing

2.1 Introduction

Interesting problems arise from real data. Artificial datasets can help to
isolate certain aspects of a problem, but this requires detailed knowledge
about the domain of the real data. Customers want modeling solutions
based on real data. For example, an energy company rather wants pre-
dictions about the power output of their real offshore wind turbines than
on artificial test data; or marine researchers want sensor data predictions
based on their in-situ sensor rather than a physical miniature model.

This work focuses on two datasets from the marine domain which have
been measured for scientific purposes, such as the monitoring and under-
standing of natural dynamics in the Wadden Sea. The first dataset consists
of measurements of the TSS and is presented in Section 2.2. The second
dataset is described in Section 2.3, where the sensor measurements are
taken from a nearby biodiversity experiment by the BEFmate project. I
later combine both datasets to one coherent set, which is detailed in Sec-
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Figure 2.1: Position of TSS and artificial islands of BEFmate in the Wadden Sea.
Map data copyrighted OpenStreetMap contributors and available from https://www.
openstreetmap.org.

tion 2.4. Figure 2.1 shows the position of both data sources. The target
sensor for the final virtual sensor model is explained at the end of that sec-
tion. Thereafter, I describe the required preprocessing steps in Section 2.5
and conclude the chapter with Section 2.6.

This chapter is partly based on the following published papers:

Oehmcke, S., Zielinski, O., and Kramer, O. (2015). Event detection
in marine time series data. In Advances in Artificial Intelligence -
Annual German Conference on AI (KI), pages 279–286. Springer,

Oehmcke, S., Zielinski, O., and Kramer, O. (2017b). Recurrent neu-
ral networks and exponential PAA for virtual marine sensors. In
International Joint Conference on Neural Networks (IJCNN), pages
4459–4466. IEEE.
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2.2 Time Series Station Spiekeroog

The TSS is a stationary platform with a multitude of sensors installed [6,
105, 120]. The platform is positioned between the islands of Langeoog and
Spiekeroog (53°45′1.0′′ N, 7°40′16.3′′ E) in the North Sea (see Figure 2.1).
It has been in service since 2002 and is located in a tidal channel, resulting
in stronger tidal currents than average in this area. Because of this, the
TSS requires a robust structure and reliable hardware to measure contin-
uously throughout the year. Its structure is a 35.5m long pole that is set
10m into the ground. On top of the pole are two laboratory containers at
7m above mean sea level to conduct on-site experiments. Air temperature,
pressure, and humidity as well as wind speed and direction are measured
from the roof of these containers. The power supply is self-sustaining
with energy from solar and wind power as well as reserve batteries and
a gas powered generator. Figure 2.2 shows the pole, the container, the
wind turbine, and a subset of the above sea level sensors. Underwater,
there are measuring points at 4, 5.5, 7.5, 9.5, and 11.5m below mean sea
level. At these points, water temperature, conductivity, pressure, salin-
ity, and several other chemical compounds are monitored. The sampling
rate is standardized to one measurement per minute. A computer system
manages the TSS, which caches the sensor measurements and periodically
sends them to a server. More details about the sensors can be found in
Table A.1.

2.3 BEFmate Artificial Island Project

My second dataset is based on data from the BEFmate project that stud-
ies the biodiversity ecosystem functions in marine and terrestrial environ-
ments [8, 9]. In one experiment of the BEFmate project, they built twelve
artificial islands in the back-barrier tidal flat of the island Spiekeroog
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Figure 2.2: The TSS on the left side and the now malfunctioning flow sensor on the
right side.

(53°45′31′′ N, 7°43′30′′ E). These islands extend from northwest to south-
east for over 810m, whereby each 2m×6m island consists of twelve steel
cages in four different elevations. The construction was finished in 2014. In
contrast to the TSS, the mean high water level is only ∼ 0.8m. Each steel
cage contains a plot either filled with sediment, transplanted parts of salt
marshes, or left untouched. To protect the plots from the average waves,
an upward-widening conical steel plate is installed around the plots. One
of the main objectives of the BEFmate experiment is the observation of
vegetation growth in these islands. To support and explain these observa-
tions, the islands are equipped with an array of abiotic sensors to observe
environmental properties. I use temperature, wind speed and direction,
air pressure, moisture, energy, brightness, and rainfall measurements from
different positions around the islands. For example, six of the temperature
sensors are installed directly on the surface of the plots. The hardware
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Figure 2.3: Picture of the 12th BEFmate island at high tide (left) and the 11th island at
low tide (right).

includes: six HOBO® U20L water level loggers, six DEFI-T temperature
loggers, an RBRduo TD | wave sensor, and a meteorological sensor station.
The sampling rates for these sensors range from one per minute to one per
ten minutes.

2.3.1 Target Sensor: Faulty Flow Sensor

The sensor system of BEFmate also included a flow sensor (SEAGUARD®

RCM) as seen in Figure 2.2, which does not work anymore. Our objective
for Part II is to use this sensor as target for a virtual sensor model. It
observed the Speed, Temp (temperature), Conductivity, and flow Direction
of the water. In the following I will always refer to these sensors, if the
spelling is capitalized as in the previous sentence. This flow sensor was
positioned between the artificial islands at 53°45′29′′ N, 7°43′17′′ E. Mea-
surements were not performed at low tide as the sensor was dry at these
times. Ever since it failed at the end of 2015, it could not be replaced phys-
ically. A virtual sensor replacement would be able to approximate data
that would otherwise be lost to researchers. This virtual sensor would be
based on the neighboring sensors and help to keep an overview of coastal
processes in that area.

Figure 2.4 displays the five measured properties of the flow sensor. In ad-
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Figure 2.4: Overview of all five time series of the flow sensor.

dition to missing values at low tide, there are two bigger gaps in December
2014 and July 2015. These time steps are lost for building or evaluating a
model. Seasonal effects are visible for Temp and Conductivity. Otherwise,
there is no trend visible in the observed time frame. Most dynamics in the
time series result from the tides.

Count and density plots of the flow sensor are presented in Figure 2.5. I
made a distinction between data for training and testing to highlight differ-
ences. These are especially apparent for Temp and Conductivity, because
of their dependence on the seasons. The three other sensor properties have
relatively constant densities over the training and test set. At first, the
Pressure measurements appear to have five density centers, but this is due
to the low measuring resolution of the sensor. In reality, the density is
more similar to the Speed measurements, which have a single center and
a skew to the right. For the Direction measurements two density centers
exist since the water either originates from the North Sea or flows back
into it.
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Figure 2.5: Distribution plots of the faulty sensors. The upper plots compare the counts
in the different test parts to the training data, while the lower plots show the density of
training and test data.

2.4 Combined Dataset

The combined TSS and BEFmate dataset contains measurements from
2014-09-18 15:00 to 2015-08-30 22:00. This amounts to 49867 time steps
from 57 different time series. Whereby 18 sensors are provided by the
TSS and 38 by the BEFmate project. A combination is justified as there
are strong correlations due to their close proximity, as shown in Figure 2.6.
I also include an approximation for the height of the tide based on the
time and space model by Paul Schureman [128]. The first data points for
the flow sensor are at 2014-09-19 05:40. A total of 11633 time steps are
available for the flow sensor because it was usually not measured at low
tide.

2.5 Preprocessing

To create a coherent combined TSS and BEFmate dataset, several prepro-
cessing steps are necessary. These steps are not applied to the target flow
sensor, because they would change scale and behavior of values. Data from
the TSS and the BEFmate projects weather station have minute-wise mea-
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Figure 2.6: Correlation matrix of TSS and BEFmate dataset. More intense colors indi-
cate stronger correlations.

surements, while the rest samples every ten minutes. I unified the data by
down-sampling the minute-wise measurements. To that end, first the con-
cerned series are smoothed with a moving median of ten minutes. Then,
only every tenth value is kept, which results in a number of time steps
equal to the other series.

To stabilize the variance of measurements that seem to have a non-
Gaussian distribution, box-cox transformations [17] are applied [67]. Mea-
surements for light, energy, rain, and depth are transformed. These power
transformations output yboxcoxi for an input feature xi are defined with a
parameter λ:

yboxcoxi :=


xλi −1
λ for λ > 0

log(xi) for λ = 0
. (2.1)

To avoid division by zero errors, all affected series get their absolute mini-
mal value added as well as a small term of 1e−6. The parameter λ is chosen
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automatically by maximizing the adapted log-likelihood function [17]:

llf (λ) := (λ− 1)
n∑

t=1

log(Xt,i)−
n
2
log


∑n

t=1(Y
boxcox
t,i − yboxcox)2

n

 , (2.2)

with yboxcox being the average boxcox value for the given λ.

2.5.1 Removing Drifts and Shifts

Biofouling, the accumulation of such biomass, can be a problem, as the
marine environment is inhabited by microorganisms and algae [44, 139].
In fact, the eight raw conductivity and salinity time series from the TSS
are afflicted by this. Salinity is affected because it is calculated using the
conductivity. The result is a negative drift of these time series, which do
not reflect the actual physical properties. Moreover, shifts occur when a
cleaning of the affected sensors is conducted. Together, the drifts caused
by biofouling and the shifts caused by the necessary cleaning of the sensors
have a negative effect on the quality of the data. If the drifts would remain
in the time series, removing this feature would be the only valid option.

First, I remove the point outliers to create a more stable time series for
the drift correction. A point outlier is a single value of a time series that
differs significantly from previous and following time step. Only point out-
liers of the affected time series are removed because most machine learning
algorithms are robust against outliers. To that end, I calculate a moving
standard score for each time step with the distribution coming from a
centered time frame of size 60 and 30 minutes, respectively. Then, an iso-
lation forest [91] (see Section 3.3.2) is trained to acquire an outlier score.
If the deviation to the median of scores exceeds three times the standard
deviation of all outlier scores, the value is removed.

Now, the shifts are detected to gain reference points for the drift correc-
tion. There is no information about when the sensors are getting cleaned,
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Figure 2.7: Exemplary original and drift-corrected series for the conductivity sensor at
7.5m height. Also highlighted are detected outliers and shifts.

but I know when general maintenance has been performed, which may
include cleaning. This reduces the number of time steps that must be
checked for shifts. As a reference, I calculate the moving median and mov-
ing median absolute deviation of one tidal cycle to create a smoothed time
series. A shift is then detected if at any time during maintenance the dif-
ference to the previous time step is bigger than three times the moving
absolute deviation. To ensure that the detected shift is not a natural oc-
currence, it is compared to the more stable temperature time series at the
same measuring height. If I detect a shift simultaneously at the affected
and the reference time series, I ignore it as a false positive.

Lastly, the drifts are corrected by adding a decaying linear offset between
two shifts. This offset is the difference between the following shift and the
median of the last values that were not shifted. The last values before
a shift get the full offset added, while shortly after a shift, this added
offset is smallest. This follows the intuition that the most accurate values
are present after a cleaning and the sensor is then slowly overgrowing.
Figure 2.7 shows the original and the corrected signal.
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2.6 Conclusion

In this chapter, I first introduced the two datasets from the TSS and
the BEFmate project, which are later combined to one coherent dataset.
One of the sensors, a flow sensor of the BEFmate dataset, malfunctioned
permanently will later be modeled as virtual sensor. This broken sensor
shows interesting characteristics, for example, it only measured at high
tide. Overall, the data are challenging due to natural influences such as the
strong tidal currents or seasonal fluctuations. Preprocessing was necessary
to create the same time resolution as well as the correction of drifts caused
by bio-fouling. Finally, the resulting data are now usable for machine
learning algorithms.
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3
Extreme Event Detection

3.1 Introduction

I introduced the marine datasets in the last chapter. In general, the grow-
ing infrastructures of information and sensor systems create data that are
no longer manageable by humans. The diversity of the sensors from the
TSS as well as the redundancy over different heights is crucial for the
creation of valuable environmental data. Even a small subset of 16 sen-
sors is hard to comprehend entirely over a longer period. When time
series datasets are analyzed manually, short but interesting events might
be overlooked.

In this chapter, I present an automatic detection approach for extreme
events in the TSS data. These events could be storm surges or unusual
sensor value movements [158]. Extreme events are loosely defined as points
or periods in time that are vastly different from regular data. This infor-
mality in the definition often creates disagreements in experts, because
they value different properties in irregular data. By providing automatic
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detection, experts can focus on analyzing these events instead of searching
for them. I employ the local outlier factor (LOF) algorithm and extend
the top-k ranking with a time component as my data are time series. In
effect, my proposed approach finds events that show positive results in an
expert evaluation. The first results could be improved through dimension-
ality reduction with isometric mapping (ISOMAP) [138]. I also introduce
a new visualization based on the ISOMAP representation.

In the past, many event detection methods have been introduced, but
they are seldomly applied to the marine domain. An overview of temporal
outlier detection methods are the surveys by Gupta et al. [55] and Chan-
dola et al. [24]. A comparison of novelty detection methods on synthetic
time series data is given by Modenesi et al. [99]. Auslander et al. [5] em-
ploys outlier detection in the maritime domain for video analysis. They
highlight the different conditions under which local or global algorithms
perform better. Other work focuses on the anomalies in vessel movement,
where suspicious movements should be recognized as anomalies. A system
grounded on a rule- and motif-based framework that can learn at different
granularity levels is proposed by Li et al. [87]. A similar framework by
Riveiro et al. [121] employs a self-organizing map method for event detec-
tion together with an intuitive user interface. Nevertheless, sensing ex-
treme events for sensor platforms such as the TSS has not been researched
to the best of my knowledge.

I will begin by giving a general definition of time series events is given in
Section 3.2. In Section 3.3, I present specific methods for event detection.
The experiments with marine data from the Time Series Station will be
shown in Section 3.4. Finally, conclusions are presented in Section 3.5.

This chapter is based on the following published paper:
Oehmcke, S., Zielinski, O., and Kramer, O. (2015). Event detection
in marine time series data. In Advances in Artificial Intelligence -
Annual German Conference on AI (KI), pages 279–286. Springer.
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3.2 Extreme Event Definition for Time Series

There exists no universal definition for extreme events [24]. Depending
on the application other words are used. Terms such as outlier, anomaly,
or novelty are common. In this marine application, I use the term ex-
treme event or just event, because the other terms are closer associated
with errors in the measurement processes than an incident in the observed
process.

The binary classification problem statement is well suited for the event
detection task. The true target output yt is predicted with a model f (xt).
There is one class for normal and one class for event data represented in our
target yt ∈ Y = {normal,event}. The input to this model is a pattern xt :=
(x1, . . . ,xd)T ∈ X = Rd from some time step t ∈ (1, . . . ,n) of the series. An
event is then detected if the outlier function oscore is exceeding a certain
threshold γ at a time steps t′:

max
t′∈(1,...,n)

oscore(xt,xt′ ) > γ . (3.1)

Instead of a hard classification, there can be a soft classification with the
predicted target output y̌:

y̌ := max
t′∈(1,...,n)

oscore(xt,xt′ ) , (3.2)

with a higher value meaning a higher affiliation with the outlier class. What
kind of events are found is highly dependent on the algorithm behind the
outlier function, but also on the chosen frame of the dataset and the thresh-
old value. With domain knowledge, finding these parameters is easier.

Events can be found in a univariate or multivariate way. Univariate
events can be detected in only one of the d features. Since the other
features hold no information about the event, the effective dimensionality
is one. Moreover, multivariate events are harder to find, because not only
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one feature is anomalous, but multiple at once. For the TSS dataset, I
consider both variants.

By including δ observations into one pattern, I achieve time dependency.
To keep compatibility to most outlier score functions the resulting matrix
Xt−δ+1:t is flattened to a vector xδt :

xδt := flatten(Xt−δ+1:t) := (xTt−δ+1, . . . ,x
T
t )

T . (3.3)

The period length δ needs to be selected wisely, because if chosen too small,
an event might not be detected, if chosen to big, finding the exact point of
occurrence is problematic.

3.3 Event Detection Methods

In the following, I describe the employed event detection methods in this
work.

3.3.1 local outlier factor and k-top-time Method

As the extreme events are not labeled in my dataset, I apply an unsuper-
vised approach for the outlier score. Introduced by Breuning et al. [20]
in 2000, the LOF established itself as a standard event detection method.
The main idea is to compare an unseen pattern x to the training set and
calculate how densely populated the feature space around that pattern is
and compare it to its k neighbors density. If the k neighbors of x have a
higher density, the more likely the pattern is an event. With the k nearest
neighbors function NNk(·), the outlier score for LOF is:

LOF(x) := 1
|NNk(x)|

·
∑

x′∈NNk(x)

∑
x̂∈NNk(x)

rdk(x, x̂)∑
x̄∈NNk(x′)

rdk(x′, x̄)
. (3.4)
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The reachability-distance rdk(x,x′) is the greater value of either the dis-
tance between x and x′ or the k-distance dstk(x′):

rdk(x,x
′) := max(dstk(x′),∆(x,x′)) . (3.5)

In most cases, the Euclidean distance ∆eucl in Rd is used as distance mea-
sure ∆ for two patterns x and x′:

∆eucl :=

√√√
d∑
i=1

(xi − x′i)2 . (3.6)

The k-distance dstk(x′) is defined as distance of x′ to its k-th neighbor. This
way, the distance is more stable because, if x is part of the neighborhood
of x′, the distance is still the furthest neighbor of x′. Figure 3.1a shows
the reachability-distance by comparing an event x to its neighbors.

The resulting outlier score of LOF scales between zero and a positive
open end. If the score is lower or equal to one, it belongs to the inliners.
But if the score is greater than one, it is not clear when an extreme event
is happening. The appropriate threshold γ is hard to define. Another
option is to apply a top-k method that registers the k highest scores as
outliers [72]. The advantage of this method is that I only have the most
likely events and can then ask experts to check them. However, interesting
events often happen over multiple time steps, which can be a problem if
most of the k top events are actually the same event. I create an adapted
method to deal with this problem, called top-k-time. My adapted method
builds a temporal border around the highest score to block patterns within
from being chosen. In Figure 3.1b this border is visualized. I repeat this
with the next highest value until all k events are found.
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Figure 3.1: Reachability distance and k-top-time method explained.

3.3.2 Isolation Forest

Isolation forest by Liu et al. [91] is an ensemble method, which combines
several isolation trees for its outlier prediction. The main idea assumes that
outliers are few and different in regard to the rest of data and thus can be
isolated. To build a binary isolation tree, we create nodes by successively
drawing a random feature and split value, which divide the dataset into
two new nodes. A tree grows as long as there are more than one pattern in
a node and a prior set maximal depth is not reached. The outlier score for
isolation forest is derived by the amount of traversed edges h(x) from the
root, which are needed to isolate a pattern vector x. The intuition behind
this is that outliers require fewer edges than normal patterns, making them
easier to isolate. To normalize h(x), we relate it to the average traversed
edges for n patterns:

c(n) := 2H(n− 1)− 2(n− 1)
n

, (3.7)
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with harmonic number H(i). Accordingly, the outlier score is:

oscore(x,n) := 2−
E(h(x))
c(n) , (3.8)

where E(h(x)) the average traversed edges from all isolation trees.

3.4 Experimental Analysis

In this section, a machine learning event detection approach is applied to
a new marine application with part of the TSS dataset and evaluated by
experts.

3.4.1 The Dataset

For these experiments, I employ the TSS dataset in the time from 2014-10-
10 to 2015-04-13. There is a high probability for extreme events, because
it is recorded in the storm season. To reduce the number of patterns
from 267840 to 17856, I apply a centered rolling median of 15 min-
utes δroll = 15 and retain only every 15th pattern, which also reduces
noise in the data. This is inspired by Basu and Meckesheimer [10] and a
15 minute sampling rate is not a high loss in information and is still able
to capture events of interest. I use a set of features that domain experts
selected w.r.t. my event detection task. This set consists of 16 sensor val-
ues that observe water properties such as temperature, salinity, and pres-
sure, but also air properties such as temperature, wind direction, and wind
speed. Together with nine time features, I have 25 features. This dataset
is affected by missing data, with 29.6% (5285) of the data completely or
partially missing because of maintenance or connection failures. When
less or equal than ten values are missing in a row, these missing values are
interpolated with the piecewise cubic Hermite interpolation polynomial
method [41].

27



There are nine time features, because if time is mapped directly into
one linear feature, repeating structures such as the day-night-cycle can not
be represented. Therefore, I mapped minutes, hours, days, and months to
circles to portray the circulation of time (e.g. 23:00 and 01:00 have a differ-
ence of two hours instead of 22). Example for hour h: hsin := sin

(
h
24 · 360°

)
and hcos := cos

(
h
24 · 360°

)
. In the same way, the wind direction, which is

represented as degree is mapped to a circle to avoid problems when the
values switch between 360 and one degree.

3.4.2 Expert Survey for Label Acquisition

I need labeled data to evaluate event detection methods, otherwise my
algorithms only produce an arbitrary clustering of data with no verification.
As the complete dataset would be to big for a human to label, I show a
group of five marine researchers a small selection of 60 patterns. The
patterns with the individual sensors (unchanged features) are displayed
in a web-based survey that I programmed with accessibility in mind. An
expert can specify if a pattern is an event and also add a small text, if
necessary.

The 60 pattern consist of the top-20-time results of three LOF ap-
proaches, each with a different method to handle features: The first method
produces the LOF score with the untouched features (d = 25), which I re-
fer to as the raw value method. The second method highlights strong
differences, here referred to as rolling mean method. It alters the sensor
based features by individually taking the squared difference to the centered
rolling mean of a period δ. This increases the number of features to d = 41,
because the untouched are also part of the feature set. Finally, the third
method is called window method and builds feature windows around each
time step t with period δ as described in Equation 3.3. For example, with
a period of 14 hours I get a total amount of (60/15 ·14) ·25 = 1400 features.
The highest outlier scores are obtained by averaging the scores of 30 runs
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Figure 3.2: Reduced time series to four dimensions and marked top-k-outliers and the
experts’ evaluation. Every found event by an expert must also be marked by the method,
since only results detected by top-k-time are shown to the experts.

with a LOF neighborhood size of 75.
The period parameter δ is set to 14 hours. This corresponds to the

tidal cycle of 12 hours and 25 minutes plus a margin to take deviations
into account. I choose this period because many extreme events in this
time frame are expected by the experts.

3.4.3 Results And Further Improvement

The survey results are shown in Figure 3.2. As I could not show all fea-
tures at once in one plot, I applied a dimensionality reduction method
and reduced the data to four dimensions plus time dimension. The per-
forming method is ISOMAP with 156 neighbors. This nonlinear method
utilizes a neighborhood graph to find a low-dimensional embedding for
high-dimensional data. I drew inspiration from [80], where three dimen-
sions are mapped to the RGB-values. In addition, I represent the last
dimension as the height of the plot. The colored areas are the top-20-time
events detected by the three feature methods. If an event is confirmed by
at least one expert, it is highlighted with hatches.

The experts confirm 50 of 60 events (83.33%) to be special. They never
fully agree on a single event. In seven cases, half of the experts mark the
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same events. It was expected that the experts have different priorities in
marking events, because of different, but overlapping areas of expertise
they are interested in other events. The short text descriptions supports
this, for example one participant annotated storms while another focused
more on the influence of the tides. I also calculated the Fleiss’ kappa [39],
which is 0.126 and indicates a slight agreement between the experts [84].
This fits my design, because I want to help a wide range of experts.

Figure 3.3a shows the F1-score for the three methods. The F1-score is
an evenly weighted precision and recall score, which is defined as:

F1 := 2 · precision · recall
precision+ recall . (3.9)

I set the k of the top-k-time method to values in a range between 1 and
20. The score grows with increasing k. This is likely the case, because the
test set has a high positive rate and the k value represents the basis for the
recall value. First, when k is 20, the highest score is obtained with the raw
feature method. But at k = 15 this method is overtaken by the windowing
method, which stays true with decreasing k. The rolling mean method
performs either worse or equal compared to the windowing method. In
summary, the raw value method has more false positive for its events with
the highest outlier score and show a better recall for small k.

Next, I improve on my initial results with the now labeled data. A tuning
of parameters was previously not possible because without labels there was
no indication whether the results improve. I change two parameters of the
first experimental setup. The first difference is a greater smoothing of the
values. Instead of only applying a centered rolling median of 15 minutes
as before, now also 60 minutes are used (δroll ∈ {15,60}). The dataset
size remains the same, because I still take every 15th data point, but the
smoothing can be stronger. As second change I employ ISOMAP, the
same dimensionality method I used for the visualization in Figure 3.2, to
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reduce the features to 4 or 10 features (d ∈ {4,10}). This decreases the
total amount of features per pattern for the window method drastically
from 1400 to 224 (= 4 · 56) or 560 (= 10 · 56) for the period of 56 (14
hours with 15 minute sampling).

The results are presented in Table 3.1. I utilize the average precision
score, it approximatly represents the area under the precision-recall-curve
and takes the ranking of scores into account. To that end, the outlier
scores have been normalized with Gaussian normalization as in [81]. All
feature methods are able to improve on their previous results with the
reduced number of features through ISOMAP. The windowing method
initially has the lowest precision score, although it is the only method
that considers multiple time steps. This might be due to the curse-of-
dimensionality, where distances get practically meaningless in high dimen-
sional space. With fewer features and smoother values, the windowing
method performs best, because it avoids this curse and can make use of
the additional time steps. In Figure 3.3b, I display the precision-recall-
curve of the best methods w.r.t. the average precision score. It shows that
the precision never falls below 0.5 precision, which indicates that all meth-
ods are better than random predictions. Further, the average precision
score results are confirmed, because the windowing method curve is above
the other curves and thus better performing.

Table 3.1: Comparison of feature handling methods. The highest scores of each method
are highlighted with bold fonts and the ∗-symbol shows the highest overall score.

Average Precision Score
d = original 4 10

Methods δroll = 15 60 15 60 15 60
Raw Values 0.821 0.803 0.841 0.807 0.761 0.850
Roll. Mean 0.855 0.877 0.830 0.885 0.901 0.850
Window 0.800 0.801 0.846 0.938* 0.809 0.801

31



5 10 15 20
k of top-k-time method

0.0

0.2

0.4

0.6

0.8

1.0

F 1
-s

co
re

Raw
Rolling Mean
Windows

(a) Change of average F1-score with increas-
ing k for the feature handling methods.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Raw d = 10,δroll = 60
Rolling Mean d = 10,δroll = 15
Windows d = 4,δroll = 60

(b) The precision-recall-curve of the best
parameters for the feature methods.

Figure 3.3: Results of expert evaluation of the feature methods for LOF.

3.5 Conclusion

This chapter showed an extreme event detection task for time series data
on a part of the TSS dataset. I employed the unsupervised LOF algo-
rithm that produces an outlier score with three different methods to handle
features. To choose the extreme events, I extended the top-k-ranking ap-
proach to be applicable for time series data. Afterwards, a group of experts
examined 60 of the most likely events found by my approach. The results
reveal a precision rate of 83.33%. I increased the average precision score
by employing ISOMAP as dimensionality reduction method. A novel visu-
alization was introduced that can display four features from the reduced
high-dimensional feature space of the time series. This visualization po-
tentially can aid in detecting extreme events for long time segments.
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4
Imputation with Penalized DTWkNN

Ensembles

4.1 Introduction

In the last chapter, I searched a part of the TSS dataset for special events,
but 29.6% of the data were missing. I filled part of these missing data with
a standard imputation algorithm. Although the results were satisfactory,
I noticed that mismatched events had qualitative feedback suggesting that
the afflicted series are behaving unnaturally, but are not special events.
This unnatural behavior turned out to be poorly imputed data. The impu-
tation was necessary, because otherwise the algorithm would not be usable,
which is also true for many other methods. Reasons for missingness are
manifold, for example, a sensor could temporarily fail due to communica-
tions issues or irregular maintenance. Simply dropping the afflicted time
step from the data would result in information loss, since still available
values would be lost and introduce bias. With reasonable imputations, the
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bias is smaller and no data needs to be deleted.

Usually, time series data is imputed with classical algorithms, such
as linear or spline interpolation [29]. These algorithms work best with
smoothed time series, which can introduce more bias into the dataset if
this smoothing is too strong. Another disadvantage of these algorithms is
that they ignore the multivariability of the data and thereby miss infor-
mation about feature correlations. The autoregressive integrated moving
average (ARIMA) [96] is able to handle multivariability, but is too expen-
sive for many features. To my knowledge, none of these algorithms take
into account that values can be missing for multiple consecutive time steps
(gaps). The loss in information increases with the length of the gaps.

This chapter introduces a novel imputation algorithm for multivariate
time series based on machine learning, called penalized DTWkNN ensem-
bles [106]. I employ the weighted k-nearest neighbors algorithm (kNN)
with dynamic time warping (DTW) as distance measure to compare pat-
terns over multiple time steps. Through the DTW comparisons, the result-
ing model can utilize the auto- and cross-correlations of the time series data.
Moreover, correlations between available features and missing features are
used to weight the distances. Further, weighting is applied by penalizing
longer gaps of missing data with a novel penalty function. I increase the
performance by creating an ensemble of DTWkNN models with bagging
and other more specialized diversity methods. Empirical evaluation is con-
ducted on part of the TSS dataset, but also on 15 dataset from the UCR
time series data mining archive by Keogh and Folias [77]. This evaluation
examines several degrees of missing data as well as different minimal miss-
ing data intervals. Finally, I apply the method to the combined TSS and
BEFmate dataset.

This chapter is organized as follows. First, I discuss the related work
in Section 4.2. Next, I create a better formal understanding of missing
data and its underlying mechanism in Section 4.3. Section 4.4 presents
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existing imputation algorithms such as linear interpolation and kNN. How
to compare two time series with DTW is described in Section 4.5. In
Section 4.6, I present my DTWkNN ensemble algorithm, which I evaluate
experimentally in Section 4.7. The algorithm is then applied to the TSS
and BEFmate dataset in Section 4.8. I conclude this chapter in Section 4.9.

This chapter is partly based on the following published paper:
Oehmcke, S., Zielinski, O., and Kramer, O. (2016). kNN ensembles
with penalized DTW for multivariate time series imputation. In
International Joint Conference on Neural Networks (IJCNN), pages
2774–2781. IEEE.

4.2 Related Work

Most imputation methods based on machine learning are created for appli-
cations without time correlations [45, 71, 74]. In the following, I will give
examples for imputation with machine learning and evaluate their use of
multivariate imputation as well as their consideration of gaps.

The kNN algorithm established itself as a robust choice for imputation.
It has shown superior performance compared to algorithms such as CN2
and C4.5 [11]. Another example with kNN is provided by Troyanskaya et
al. [141] in biology, applied to incomplete DNA data. There, kNN delivered
the best results compared to single value decomposition and row average
imputation. Further, Hsu et al. [62] have also used DNA data and kNN,
but utilized DTW as distance metric instead of Euclidean distance. Their
model has been trained on a complete dataset. They have employed dif-
ferent variants of DTW and compared their predictive and computational
performance. Since DNA data is univariate, no multivariate testing has
occurred. Gaps in the data were also not taken into account.

Rahman et al. [118] have proposed a method to deal with lagged corre-
lations in multivariate time series data. To that end, they have extended
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kNN to weight features depending on their cross-correlation with missing
values. They have also applied a Fourier transformation as imputation
method and have combined the outputs. Although the author did not
design their experiments around consecutively missing values, they state
that the Fourier transformation imputation suffers more from longer gaps
than kNN.

EMDI, an ensemble approach by Pan et al. [110] has been applied to the
application of epistatic miniarray profiling. Here, multiple imputations are
combined to a single ensemble output with local and global algorithms, in-
cluding kNN, local least squares imputation, and matrix completion. The
ensemble takes into account the diversity of the ensemble members by
weighting the ensemble output accordingly. Their experiments have only
considered univariate data and ignored the effects of consecutively missing
values. As a side note, the idea of using multiple imputation to get an over-
all more accurate result has first been introduced to imputation by Donald
Rubin [124]. He has proposed it in the classical context of nonresponse in
surveys.

Another imputation application is the online reconstruction of missing
data, where Alippi et al. [2] have utilized multiple linear and non-linear
algorithms. When creating the algorithms, they have paid attention to
temporal and spatial redundancies of the features. Further, they have
simplified their models by employing dependency graphs to select only
relevant features. Only single missing values had been considered, since
their work focuses on online learning datasets.

In summary, the kNN algorithm proved to be a reliable choice in many
applications and is robust to higher rates of missingness. Although kNN is
capable to impute multiple values at once, the related work did not explore
this ability. Also, the effect of consecutively missing values has not been
explored either.
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4.3 Missing Data Theory

Although the imputation of multivariate missing data is related to the
general regression problem, there are specifics that need to be explained.

4.3.1 Multivariate Time Series Imputation Problem

There are survey imputation definitions by Schafer [127] that I adapted
to a multivariate time series imputation definition. The complete time
series dataset is an n × d matrix X := (x1, . . . ,xn). A single input is a
vector xt := (x1, . . . ,xd)T ∈Rd at some time t ∈ {1, . . . ,n}. In addition, there
is a missing indicator matrix M with the same shape as X and a single
missing vector mt := (m1, . . . ,md)T ∈ {0,1}d . The entries of this missing
indicator matrix are either 1 or 0 to signalize a missing or existing value.

To separate the missing data Xmiss and the existing data Xobs, the in-
dexing operator ⊖ is introduced:

xt ⊖mt :=

xj | ∀j ∈ {1, . . . ,d} :
xj if mj = 1

− else

 (4.1)

Every feature of an input vector xt that is marked with 1 in mt is extracted.
For matrices. this operator works element-wise. The observed and missing
matrices are then defined as:

Xobs := X ⊖ ¬M :=
(
x1⊖ ¬m1, . . . ,xn⊖ ¬mn

)
Xmis := X ⊖ M :=

(
x1⊖ m1, . . . ,xn⊖ mn

)
.

(4.2)

For example, let us assume we have four 2-dimensional patterns (d =
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2,n = 4) and a missing indicator matrix M:

X =

1 3 5 7
2 4 6 8

 , M =

1 0 0 0
0 1 1 0


Xobs =

1 − − −
− 4 6 −


Xmiss =

− 3 5 7
2 − − 8

 (4.3)

As in regression, we have a model f for the input xt that aims to ap-
proximate the target vector yt by minimizing a loss function L. But the
input vector xt is coming from the complete observations Xobs and the
target vector yt is part of the missing observations Xmiss. Each unique
combination of the missing indicator vector m theoretically creates a new
regression problem. This can reduce the available data for model training
significantly. In our example, four unique problems are possible, although
m = (1,1)T is not represented as learning with no information is unlikely.
Further, the first pattern can only employ the fourth as training set and
the second pattern is able to utilize the third and the fourth, because of
compatible missing masks. In practice, not every combination is present.
When testing an algorithm, the missing observations are available to cal-
culate the error measure. If this is not the case, one needs to look at other
quality measurements, such as the stability of variances and covariances.

4.3.2 Reasons for Missing Values

There are various causes why a value may be missing and often one cannot
know the exact reason [29, 45]. Nevertheless, those causes can be defined
as the probability that the missing indicator matrix M takes certain values
depending on the observed matrix Xobs and the missing matrix Xmis as well
as an independent set of parameters ξ. If the lack of values only depends
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on the dataset, they are Not Missing At Random:

NMAR := Pr(M |Xobs,Xmis,ξ) = Pr(M |Xobs,Xmis,ξ) . (4.4)

In this case, it is possible to account for the missing values by creating a
model for the assumed missingness process. For example, the TSS would
not measure water conductivity at 7.5m if the water depth measured only
to be 6m because the conductivity sensor is not in the water. When the
reasons only depend on the independent set of parameters, the values are
Missing Completely At Random:

MCAR := Pr(M |Xobs,Xmis,ξ) = Pr(M |ξ) . (4.5)

This would be the case with random network failures that are not part
of the dataset. Finally, if the missing indicator matrix depends on the
complete set, then values are Missing At Random:

MAR := Pr(M |Xobs,Xmis,ξ) = Pr(M |Xobs,ξ) . (4.6)

For instance, a water conductivity measurement is often missing after a
certain value threshold of the water temperature measurement has been
exceeded, but the reason for this is a hardware fault rather than the ob-
served environmental system. In practice, most imputation algorithms
assume MCAR or MAR because the causes for missingness are often un-
known.

Throughout this work, I assume the MCAR mechanism because the
marine application mostly suffers from random failures and network issues.
Of course other NMAR reasons for missing values exist, but are sparse and
not feasible to account for.

Usually, the parameter set ξ only contains the degree of missing data,
but for the time series task, it is also important to regard the minimal
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interval of missing data. The degree of missing data rd ∈ [0,1] gives a ratio
of missing values. With this, the number of missing values approximates to:
rd ·n ·d. To gain more control over the number and length of consecutively
missing values, short gaps, the minimal interval length of missing data
ri ∈ N is introduced. This is important because otherwise there will be
long gaps with a high degree of missing data rd . This would not be a
realistic scenario, as sensor applications are almost always missing for more
than one time step.

4.4 Imputation Algorithms

Imputations is not a new problem and there exist many standard algo-
rithms [29]. For instance, the average fill is often applied, it replaces miss-
ing values with their average values. Depending on how large the standard
deviation of the dataset is, this potentially introduces a bias. Linear in-
terpolation or quadratic interpolation are repairing the gaps at time t by
defining a function between two known points (xt′ ,xt′′) with t′ < t < t′′.
For linear interpolation it is:

xt :=
xt′ (t′′ − t) + xt′′ (t − t′)

t′′ − t′
. (4.7)

These interpolation algorithms are easy to apply and fast to compute. They
perform well for small gaps in the data, but are inaccurate for larger gaps.
Another downside to the before mentioned algorithms is that they only
work in a univariate way. This means, they are unable to account for
multiple features of the dataset at once.

A machine learning algorithm for regression problems can be adapted to
the value imputation problem. This is done by training a new model for
every unique combination of missing features [45]. To compare my novel
imputation method, I use Random Forest [19] as state-of-the-art ensemble
algorithm that shows good out-of-the-box performance.
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4.4.1 k-Nearest Neighbors

The kNN algorithm is a simple but effective method that is successful
in applications such as microarray gene expression analysis and outcome
prediction [111] or fault detection [59]. It relies on the principle that the
target output fkNN(xt,mt, j) := ŷt for an unseen input vector xt is the
average target of the k-closest input vectors from the training set [45, 57].
In the missing data task, the target y will be a missing feature value xj of
the input with j ∈ {1, . . . ,d}. The training set consists of complete inputs
that have the missing feature, so the missing indicator vector m must be
0 at the j-index and also at all feature positions were the input vector has
values. First, the k-nearest neighbors in regard to a distance measure ∆

are located with a neighbor function Nk(·):

Nk(xt,mt, j) := k-argmin
xt′∈L

∆(xt ⊖¬mt,xt′ ⊖¬mt)

with L := {xt∗ | ∀t∗ ∈ {1, . . . ,n} : (mt∗ →mt)∧
(
M(t∗,j) = 0

)
} .

(4.8)

Set L contains all compatible missing masks that can be utilized as train-
ing set. These compatible masks must have the same available features,
but can also have more, although these features cannot be used for neigh-
borhood comparisons. Then, the values of these k close-by targets are
aggregated:

fkNN(xt,mt, j) :=
1
k

∑
xt′∈Nk(xt ,mt ,j)

(xt′ ⊖¬mt)j . (4.9)

A special role takes the distance measure ∆, because it can change the
outcome of the prediction completely. Euclidean distance is employed as
distance measure ∆ most of the time (see Equation 3.6). For imputation,
this is disadvantageous as only patterns with the same missing vectors can
be utilized. Moreover, Euclidean distance ignores the sequential properties
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Figure 4.1: Difference in predictions with changing number of neighbors k. Time is on
the x-axis and serves as input values. The target output is on the y-axis.

as it only compares one pattern at a time.
The next important parameter of kNN is the number of neighbors k.

Figure 4.1 shows the influence of k in a simple regression example that
aims to approximate a cosine function with some noise in the training
data. On the one hand, if k is too small, it overfits to the closest pattern
and cannot account for noise in the data. On the other hand, when k is to
large, the prediction overgeneralizes and the average of the training set is
returned.

4.5 dynamic time warping

As mentioned in Section 4.4.1, standard distance measurements are usu-
ally not well suited for time series comparisons. The idea of the DTW
distance measure is to align two series and return the distance of these
series. A flexible alignment is found by creating a “warping” path between
sequences. Figure 4.2 shows an exemplary alignment. Introduced for a
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Figure 4.2: Exemplary DTW alignment of two temperature time series compared to
Euclidean distance.

speech recognition task [83], DTW was also applied in other data mining
tasks, such as gesture recognition [137] or time series databank tasks [32].

DTW aligns two sequence patterns:

Xt−δ+1:t := (xt−δ+1, . . . ,xt)

and
Xt′−δ′+1:t′ := (xt′−δ′+1, . . . ,xt′ )

at different times t, t′ and sequence lengths δ,δ′. The calculation for the
minimal path distance is depicted in Algorithm 1. At first, the entries
of the path matrix D are set to infinity in Line 1. The exception is the
very first entry that is set to zero as a starting point in Line 2. Iteration
after iteration, the matrix D is filled with the sums of the minimal path
distances. This is achieved by taking the sum of the previous minimal path
distance p as seen in Line 6 and add it to the current distance s. Finally,
the result of the DTW calculation is the minimal complete path distance
at Dδ,δ′ . The pointwise distance measurement ∆ usually is the Euclidean
distance. In contrast to using the Euclidean distance for the complete
comparison, the sequence widths δ and δ′ can have different sizes. While
the runtime is usually higher than the Euclidean distance, it is still feasible.
With lower bounding, the runtime is closer to O(δ) than to O(δ2) [119].
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Algorithm 1: DTW-algorithm [83]
input : input series X, time t, sequence widths δ, time t′, sequence

width δ′, distance metric ∆

1 D← create (δ+1)× (δ′ +1) matrix full of ∞
2 D(0,0)← 0

// Iterate through both series
3 for l← 0 to δ do
4 for j← 0 to δ′ do

// calculate distance and minimal path
5 s← ∆(x(t−δ+1)+l ,x(t′−δ′+1)+j)
6 p←min(Dl,j ,D(+1,j ,Dl,j+1)
7 D(l+1,j+1)← s+ p
8 return D(δ,δ′)

4.6 Penalized DTWkNN Ensemble

The method proposed here, called penalized DTWkNN, combines a simple
linear interpolation imputation with kNN that applies a normalized and
weighted DTW as its distance measure ∆. Moreover, ensemble techniques
are employed, such as bagging or varying the penalty strength. This in-
creases diversity and results in improved performance.

4.6.1 Preprocessing: Windowing and Linear Interpolation

Because I am dealing with time series, it is important to consider more
than one step for the input of my machine learning algorithm. One input
series Xt−δ+1:t := (xt−δ+1, . . . ,xt) is built for at time step t ∈ (1, . . . ,n) with
a certain sequence width δ. This is repeated for every time step to create
the dataset used by DTWkNN. For univariate data, meaningful DTW
comparisons are possible, even when there is missing data, as seen in [62].
This is partly possible because DTW is able to compare series with different
widths.
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In the case of multivariate time series, the missing values for DTW
are problematic, especially when different features have missing values at
different time steps. Let us assume some input Xt−δ+1:t and its missing
indicator matrix:

Mt−δ+1:t =


t − 3 t − 2 t − 1 t

x1 1 0 0 1
x2 0 0 1 0

 ,

with width δ = 4 and dimensionality d = 2 at time t. If I delete the data
column-wise, only one time step remains, because only at t−2 both features
are present. In the worst case scenario, when t−2 would contain a missing
value, the entire input would be unusable. If I apply individual DTW at
every dimension, the returned distance is biased, because x1 is missing two
values and x2 only one. Another solution would be to impute the missing
values with a computationally inexpensive method. This method is linear
interpolation, as it works well enough for small gaps and shows better
results than spline or Fourier interpolations [147]. The prior imputation
guarantees that the sequence width δ is always the same, which potentially
speeds up the DTW calculations [119].

The now complete dataset reduces the number of regression problems
from one problem for each possible combination (2d·δ) of the missing indi-
cator vector to the number of features d. As a note, the training vector
of should always have non-imputed values at time t for the sought after
feature. Without this restriction, the model would easily overfit to the
used prior imputation.

4.6.2 Multivariate DTWkNN-Distance

There are two basic ways to apply DTW to multivariate time series [131].
The first one finds a minimal path in multidimensional space and thus each
dimension depend on the other. The second way, calculates the individual
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DTW distance of each dimension and combines them as:√√√√ d∑
j=1

(
DTW

(
Xt−δ+1:t,j ,Xt′−δ+1:t′ ,j

))2
. (4.10)

In this application, I use this independent DTW calculation because it
enables the easy use of different weights for each dimension and not all fea-
tures are mutable depending on one another. Although some multivariate
information gets lost, it is later reintroduced with the correlation matrix
weighting and results from [131] suggest more constistent error rates with
indiependent DTWṪhis variant also requires less time to compute results,
because the cost to find paths for d sequences with width δ2 instead of
one sequence with width δ2·d is increasing slower. Assuming d = 14 and
δ = 10, the independent DTW needs 1400 pointwise comparisons instead
of 10e28 for the dependent DTW.

4.6.3 Normalized DTW-Distance

The scaling of features is often not uniform. If kNN is applied on data
that has a different scaling, a feature with greater values translates into a
greater importance of this feature although it might not be important at
all. This is comprehensible for an example from the TSS. Wind direction
measurements scale between 0 and 360 degree, while the values for water
temperature range from 0 to 15 degree Celsius. A change of wind direction
by 20 degree would have a larger impact on the distance measure than a
temperature change of 7 degrees.

Normalization solves this inequality by dividing the DTW-distance of a
feature by the standard deviation of this feature. The required standard
deviation vector σ = (σ1, . . . ,σd) is calculated beforehand from the training
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set. Equation 4.10 is redefined to:√√√√√ d∑
j=1

DTW
(
Xt−δ+1:t,j ,Xt′−δ+1:t′ ,j

)
σj


2

. (4.11)

If no deviation is calculable, the value for σ is set to 1. This prevents a di-
vision by zero error. The centering of values by subtracting the mean is not
necessary here, because the distance measure already does this implicitly.

4.6.4 Weighting of Multivariate Outputs with Correlation

Although the normalization of features helps to reduce unfair importance
of weights, putting more weight to relevant features is even more effective.
These relevant features w.r.t. the missing feature are determined with the
Pearson product-moment correlation coefficient [113] because a high corre-
lation indicates a strong relation between two features. A practical example
is the high correlation between water temperature and pressure. This can
be explained by the faster movement of molecules in hotter water, which
results in higher pressure. The use here is inspired by Rahman et al. [118],
who state that utilizing correlations is good practice if one assumes the
MAR or MCAR process.

The Pearson correlation coefficient matrix Cl,j describes the linear cor-
relation between feature l and j. It is symmetric and scales between zero
and one. The matrix can be applied to the normalized distance measure-
ment because of the independent DTW calculation per feature. A new
parameter j ′ needs to be added to represent the current target feature for
the weight matrix W . The final form of the redefined Equation 4.11 is:

ΣDTW (t, t′, j ′) :=

√√√√√ d∑
j=1

DTW
(
Xt−δ+1:t,j ,Xt′−δ+1:t′ ,j

)
σj

·Wt,j,j ′


2

. (4.12)
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Figure 4.3: The top plot shows performance of linear interpolation and DTWkNN with
small gaps (ri = 5), while the bottom plot show larger gaps (ri = 30). Note the perfor-
mance decrease for linear interpolation.

The t × d × d weighting matrix W is defined as:

Wt,j,j ′ := abs(Cj,j ′ )
α. (4.13)

As it is unimportant if the correlation is positive or negative and should
only scale the individual distances, I take the absolute values of the global
correlation coefficient matrix C. This global matrix C is calculated only
once from the entire training dataset. To gain more control over the cor-
relation weights, a variable α is introduced. It stretches the weights with
higher values. Optimal parameter settings for α are obtainable with hyper-
parameter search via cross-validation or gridsearch.

4.6.5 Penalizing Missing Interval Interpolation

The prior imputation by linear interpolation introduces a bias to the
dataset. This is mostly apparent when larger gaps are present. In Fig-
ure 4.3 different minimal gap sizes are used to show the effect of linear
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interpolation and the DTWkNN method. When the DTWkNN algorithm
would use these linear interpolations as-is, it could match to the wrong
neighbors, resulting in imputations with a high error rate.

Algorithm 2: Creating penalty weight matrix P
input :missing indicator matrix M, sequence width δ, number of

time steps n, number of features d
// invert M: missing= 0 and not-missing= 1

1 P ← ∼M
2 for j← 1 to d do
3 i← 0 // gap width i
4 for t← 0 to n do

// increasing i if value is missing
5 if Mt,j then
6 i← i +1

// apply penalty to gap
7 else if i > 0 then
8 Pt−i,j , . . . , Pt,j ← 1

i
9 i← 0

10 if c > 0 then // last gap could be open-ended
11 Pn−i,j , . . . , Pn,j ← 1

i
// adapt penalty for each sequence

12 for t← 1 to n do
13 pt←

∑t
t′=t−δ+1pt′

δ
14 return P

To weaken the negative effect of the prior imputation, DTWkNN pe-
nalizes the linear interpolation with increasing gap size. To that end, a
penalty weight matrix P for each input vector and each feature in the
test dataset is created. The columns contain the penalty vectors pt with
t ∈ {1, . . . ,n}. Algorithm 2 outlines the computation of matrix P . To realize
an increasing penalty with larger gaps, the algorithm computes the width
of the gap and saves it to variable i at Line 6. The penalty is then the
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reciprocal value of this gap width i as seen at Line 8. Finally, the penalty
weight vectors are scaled by the sequence width δ at Lines 12 and 13.

An update to Equation 4.13 introduces the penalty matrix P to the
complete weight matrix:

Wt,j,j ′ := |Cj,j ′ |α · P ε
t,j . (4.14)

I apply the penalty to each input vector xt individually, while the correla-
tion weight is introduced only feature-wise w.r.t. the current target feature.
To control the severity of this penalty, the variable ε is used. This can
be achieved globally with a single value or per feature with a vector of
length d.

4.6.6 Efficient Ensemble Building

Often, parameter settings are good for one part of the dataset, but less ideal
for another. Finding a global setting that fits all problems is impossible due
to the no-free-lunch-theorem. Ensembles avoid this problem by pooling the
results of l model outputs into one ensemble output F̄, e.g. by averaging
their outputs:

F̄(x) :=
1
l

l∑
i=1

fi(x) . (4.15)

with single model f from all possible models f ∈ F.
There is no need for one model that solves the learning problem perfectly,

but it is better to employ multiple models that are good at different parts
of the learning problem. In other words, the l individual models should
show a high diversity [31]. The diversity in a DTWkNN ensemble comes
from different parameters settings for each individual model. One of these
parameters is the adaption of the penalty weight by drawing the value
for exponent ε (see Equation 4.14) from a normal distribution for each
ensemble member. The other parameter is the neighborhood size k. This
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one is drawn from a uniform distribution at random between some start
and end value.

The DTWkNN ensemble also applies bootstrap aggregating (bagging).
This is a classic method for ensemble diversity by Breiman [18]. Bagging
takes a random subset of the training set for every individual model as new
training set. To give more weight to random input vector, this is done with
replacement. One training subset consists of nF input vectors: nF := sr ·n,
where sr is the sampling rate and n is the total number of input vectors.

Frequently, the number of calculations and thus the runtime for an en-
semble method increases by the number of employed individual models.
In contrast, the runtime for an DTWkNN ensemble is only slightly higher
than that of a single model. The reason for this is the normalized dis-
tance matrix, which is the most expensive part of kNN, is reusable for
each model. Its shape is the same for every model: m× n× d with m the
number of incomplete patterns, n the number of all patterns, and feature
number d. First, the matrix is computed, but the correlation and penalty
based weighting is not applied. Then, because of bagging, every model is
given a different part of this matrix and the models apply their own weights
and choose their neighbors accordingly. Although all models need to apply
their own weights, this approach is still fast, because matrix multiplication
is a highly optimized standard operation. This is another reason why the
independent DTW is best suited for DTWkNN because the separation of
the individual feature distances ensures a quick multiplication with the
weights of the ensemble members.

4.7 Experimental Analysis

In the following, I experimentally compare my penalized DTWkNN al-
gorithm with classical imputation and state-of-the-art machine learning
algorithms on 16 datasets.
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4.7.1 Data and Design of Experiment

The selected datasets all show different characteristics, but are all multi-
variate time series dataset. Their number of patterns n range from 867 up
to 2500. The dimensionality d per pattern is at least two or at most 14 fea-
tures. As I foremost want a method to fill the gaps in my marine datasets,
I utilize a part of the TSS dataset (see Section 2.2) from 2015-03-26 22:10
to 2015-04-13 23:50. This time frame is chosen because it shows less sensor
failures and thus is more complete than other time frames, which is impor-
tant for evaluation. The remaining dataset are: ballbeam, balloon, dryer2
sensor, foetal ECG, glassfurnace, greatlakes, pgt50 alpha, pgt50 cdc15, pH-
data, phone1, robot arm, shuttle, synthetic, water, and winding. They are
provided by Keogh and Folias [77] in their UCR time series data mining
archive. I apply no smoothing or resampling to the UCR datasets except
for the synthetic dataset where I only use every 50th pattern, because the
rate of change is so small that even huge gaps pose no challenge.

The datasets are artificially damaged with different settings for the miss-
ing rate rd and minimal missing interval ri . This allows me to employ the
damaged parts as test sets, because I still have the original values. The
tested missing rates rd are: rd ∈ {.1, .2, .3, .4}. Missing rates above that
are ignored because the information density for rd > .5 is so low that it
would be more appropriate to collect new data. I set the minimal missing
interval ri to: ri ∈ {1,5,15,30,45}. Depending on the data resolution of
a dataset, imputing these gaps can be of varying difficulty. In addition,
the smallest dataset loses 5.19% of its data from a gap with 45 time steps,
while the biggest dataset only misses 1.8%. For reproducibility reasons, I
run 30 repetitions for each combination of missing rate and minimal miss-
ing interval. Every repetition also yields another random missing mask
w.r.t. rd , ri .

My imputation algorithm is tested as single and ensemble predictor. As
classical algorithm, I choose linear interpolation because of its wide use.
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Table 4.2: Different ranges for the parameter settings of the used imputation models.

Model Parameter Value Ranges
Random Forest num. estimators 200

max. tree depth 1, 2, 5, 8, ∞
max. features sqrt, log2, all

DTWkNN sequence width δ 1, 5, 10, 15
penalty exp. ε .0, .0625, .125, .25, .5, 1
covar. exp. α .0, .0625, .125, .25, .5, 1, 2

DTWkNN ens. num. estimators 50
kNN’s k unif(1,15)
penalty std. ε̌ .0, .03125, .0625, .125, .25, .5
sample rate sr .125, .25, .5, .75, 1, 1.25, 1.5

Moreover, I want to show that my algorithm performs better than its pre-
processing step. The other machine learning algorithm is Random Forest.
This algorithm is also an ensemble algorithm and offers good performance
without much tuning of hyper-parameters. I also employ Random For-
est with linear interpolation as preprocessing step (lin-RF) to verify that
the simple combination of linear interpolation with any machine learning
algorithm is not sufficient to solve imputation problems. To keep the intro-
duced bias low, I interpolate all values except for the target I am currently
imputing. With preliminary studies, I tuned the parameter settings of the
tested algorithms. Note that I take the settings from the single DTWkNN
for the ensemble algorithm. Values for the parameters are shown in Ta-
ble 4.2.

The datasets are multivariate and I also consider that multiple values
can be missing at the same time. Because of that, I have many imputed
values of different scales that need to be evaluated together. Considering
every feature individually would be too time-consuming, highly complex,
and incomprehensible. That is why I use the R2 score averaged over all
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d features, which ranges from [−∞,1]:

R2(X,Ŷ , Ȳ ) :=
1
d

d∑
j=1

1−
∑n

i=1

(
Ŷi,j − f

(
Xi,j

))2
∑n

i=1

(
Ŷi,j − Ȳi,j

)2
 , (4.16)

with the true output Ŷ , the predicted output vector f (X), and the arith-
metic mean Ȳ of the test dataset. Higher values indicate better models,
although a value of 1 could imply the presence of overfitting problems. If
the R2 score is less than or equal to zero, the imputed value is equal or
worse than inserting the mean value of that dataset.

4.7.2 Results of Experiment

A comprehensive overview of the R2 score performance for each method
is given in Table 4.1. Each column represents another rd , ri combination
for every dataset. Whenever a method has the highest mean score mi-
nus the standard deviation, it receives a point. In total, there are 320
combinations that can give a point, resulting from four missing rates, five
missing intervals, and the 16 datasets. I also considered another standard
imputation method here, the fill with average values. Although its overall
performance is not very good, it beats the other methods for longer inter-
vals in 23 cases. Filling the missing values from linear interpolation yields
good results for short missing intervals, but as expected, this method does
not work for longer intervals. In contrast, Random Forest is able to deal
with long gaps, but the performance suffers with increasing missing rates.
With the linear preprocessing step for Random Forest, it is able to outper-
form linear interpolation, but the bias for longer periods is also present.
Eventually, my DTWkNN ensemble achieved the best results in around
51% of the cases. Four times the single DTWkNN model is best, but in
general the experiments confirm that the ensemble method works better
in most scenarios.
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Figure 4.4: Performance on TSS, ballbeam, winding, glassfurnace, and water dataset
with different interval settings ri and missing rates rd . To improve visibility, results from
different algorithms are slightly shifted on the x-axis.

In Figure 4.4, I display the concrete R2 scores on the TSS, ballbeam, wind-
ing, glassfurnace, and water datasets. An important finding is that all
imputation methods show similar results for small minimal intervals, but
differ from each other with longer intervals. The exception is Random
Forest without linear interpolation, although often good at small missing
rates, the performance always degenerates with greater missing rates. This
is a result of under-fitting as the training set of Random Forest is limited
by compatible missing masks. With linear interpolation as preprocessing
step, Random Forest proves to be superior to linear interpolation, but of-
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ten cannot surpass the other models. The imputations of single DTWkNN
are mostly stable over the missing rates. Although the increase in gap
length hurts the DTWkNN performance, the impact is less apparent than
in the other methods. In the water dataset, I observe that the highest
missing rate paired with the highest minimal interval length can diminish
the performance under zero for all methods.

Table 4.3 presents detailed scores on the datasets balloon, foetal ECG,
greatlakes, and TSS. On the balloon dataset, Random Forest outperforms
the other algorithms, probably due to the small number of features and
the low time resolution. This does not allow the other algorithms to ben-
efit from a multivariate data structure or the time context. For the foetal
ECG and greatlakes datasets, Random Forest again starts with good impu-
tations, but under-fits with higher missing rates. The DTWkNN ensemble
does not have this problem. An interval length of 15 and 45 corresponds to
2.5 and 7.5 hours on the TSS dataset, but my ensemble method provides
imputations of good quality.

4.8 Penalized DTWkNN Applied on the Combined
TSS and BEFmate Dataset

After I validated the potential of the penalized DTWkNN method, I ap-
plied it on the combined TSS and BEFmate dataset. This is necessary
because 13% of the datasets’ values are missing. Further, when combined
with the target flow sensor, this number would increase to ∼ 55% missing
data. Such a big loss in information would be fatal for any further analysis,
which would multiply, when we consider more than one time step at once.
If standard methods are employed, the introduced bias is too large and if
no imputation method is applied, under-fitting could occur. My penalized
DTWkNN method is better suited for this task.
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Figure 4.5: Probability based sampling for five example dates for the employed period.

I made practical changes to the algorithm. First, the computational time
is decreased by randomly drawing the training data for a single missing
value from a normal distribution with 1.5 months as standard deviation.
In Figure 4.5 the probabilities for choosing a training pattern are visual-
ized for five example dates. Then, I employ the outlier-robust Spearman
correlation instead of Pearson correlation for the global weighting of fea-
tures. Another advantage of the Spearman correlation is that it does not
necessarily assumes Gaussian data. Instead of a sampling rate sr I use a
particular amount of patterns s# for each ensemble member.

As there are no real values for the missing gaps, the search for good
parameters cannot rely on the R2 score as it has in the previous section.
Therefore, I have decided to compare the change in the Spearman correla-
tion values between the imputed set Ximp and the incomplete dataset Xobs:

corrscore :=

√√√
d∑

d′=1

d∑
d′′=1

(corr(X:,d′ ,X:,d′′ )− corr(Xobs
:,d′ ,X

obs
:,d′′ ))

2 . (4.17)

This follows a suggestion by Garcia et al. [45], although they did not go into
detail about the direct correlation comparison. Preliminary tests showed
that the correlation α from Equation 4.14 is best set to one. For each run,
the same 1000 random missing samples are imputed by each method. I
decided to test the following parameter settings with 25 runs:
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Table 4.4: Top and worst five parameter settings of penalized DTWkNN for the com-
bined dataset.

penalized DTWkNN ensembles
rank δ kNNs k ε̄ ε̌ s# corr score

1 7 (1, 5) .500 .050 5000 6.577
2 3 (1, 5) .500 .050 5000 6.580
3 7 (1, 10) .500 .050 5000 6.605
4 3 (1, 10) .500 .050 5000 6.608
5 7 (1, 5) .500 .100 5000 6.613
...

...
...

...
...

...
...

-5 7 (1, 10) .125 .050 2500 8.013
-4 9 (1, 10) .125 .025 2500 8.016
-3 7 (1, 10) .125 .025 2500 8.151
-2 5 (1, 10) .125 .050 2500 8.218
-1 5 (1, 10) .125 .025 2500 8.307

standard methods
Forward and Backward Filling 6.892
Linear Interpolation 6.921
Cubic Interpolation 8.785

• DTW sequence width: δ ∈ {3,5,7,9,13}
• range of neighbors: k ∈ {(1,10), (1,5)}
• number of bagging samples: s# ∈ {1000,2500,5000,7500}
• penalty mean: ε̄ ∈ {.125, .25, .5, .062}
• penalty standard deviation: ε̌ ∈ {.025, .05, .1, .012}

Table 4.4 shows the results. The top five results are better in maintaining
the correlations than the standard methods from the literature. I use the
best setting to impute the complete dataset, which is then employed in
Chapter 6 and 7.
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4.9 Conclusion

In this chapter, I described and evaluated the penalized DTWkNN ensem-
ble, which is a novel imputation algorithm that is able to reconstruct data
with large gaps. This algorithm is designed to work with multivariate time
series data, such as the TSS and BEFmate dataset. It utilizes standard
linear interpolation as its first step and then weighs the distance matrix
of kNN according to the correlation to the missing value and the length
of the gap. The DTW distance measure enables a reliable comparison of
time series and ensemble techniques further improve results while relying
less on exact parameter settings.

In an experiment on 16 different time series, my algorithm outperforms
standard as well as state-of-the-art methods in 51% of all cases. Inter-
estingly, other algorithms, such as Random Forest under-fitted at higher
missing rates, since the training set is getting too small. The bias from
linear interpolation preprocessing increased with wider minimal missing
intervals, but my penalty weighting counteracts this and offers reliable
results. One requirement for the algorithm is that it can be applied on
highly correlated time series data, so it can compensate missing features
with correlated ones. This is also a limitation, if the missing feature only
correlates with features that are also missing, then my weighted distance
matching cannot offer any insightful information for the imputation.

In a final experiment, I applied the new method on the combined TSS
and BEFmate dataset. To measure performance, I tested if correlations
are kept intact and thus found optimal parameters for the algorithm. Now,
a complete dataset is available for modeling a virtual broken sensor with
deep learning methods.
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Part II

Virtual Sensors with Deep Learning

In the previous part, I introduced the TSS and BEFmate dataset. I also
provided a novel imputation algorithm to fill the gaps in my data in the last
chapter. These are the necessary requirements to learn expressive machine
learning models on these data.

My goal in this part is to create a virtual sensor, which in my application
is a regression problem with time series aspects. This prediction task is
not a forecast into the future, since the input data is measured at the same
time as the target output. Another difference to forecast models is that
previous time steps of the target sensors are not part of the input vector,
only nearby sensors are employed as inputs.
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Just as electricity transformed almost everything
100 years ago, today I actually have a hard time
thinking of an industry that I don’t think AI will
transform in the next several years.

Andrew Ng

5
Deep Learning Foundations

5.1 Introduction

This chapter introduces the fundamentals of deep learning. Deep learn-
ing is the use of many hidden layers in a neural network, although there
is no clear definition when a network is deep. It showed recent success
in various application, such as image tasks [49, 58, 82, 102], audio pro-
cessing [56, 64, 149], wind power prediction [28, 30, 146], language process-
ing/modeling [27, 52, 135], and many more. This is due to extended or new
algorithms as well as more capable hardware, e.g. parallel computations
on the graphics processing unit (GPU). Moreover, other machine learning
approaches are either not feasible to train on big datasets, because they are
computationally too expensive (e.g. kNN ), or they rely on constraining
data distribution assumptions (e.g. Gaussian Mixture Models).

The reason why I create the virtual sensor model of my application with
deep learning is the possible amount of customization and its vast predic-
tive capabilities. Also, neural networks were used in the past to solve time
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series tasks [36, 94, 150, 153]. Various extensions to the classical neural
network have been made since its introduction. This chapter introduces
the most relevant basic and extensive algorithms for this part: the arti-
ficial neural network, gradient descent, the convolutional neural network
(CNN), the recurrent neural network (RNN), the long short-term memory
network (LSTM), batch normalization, dropout, and approximate model
uncertainty.

I partly base this chapter on following journal article:
Oehmcke, S., Zielinski, O., and Kramer, O. (2017a). Input quality
aware convolutional LSTM networks for virtual marine sensors. Neu-
rocomputing, 275:2603–2615.

5.2 Artificial Neural Networks

A basic artificial neural network consists of an input layer, various hidden
layers, and an output layer. The classical fully connected or dense layer is
described as:

ŷt := ϕ(b+W · xt) (5.1)

with a layer input vector xt := (x1, . . . ,xd)T ∈ Rd , output vector ŷt :=
(ŷ1, . . . , ŷd′ )T ∈Rd′ , weight matrix W , bias vector b, activation function ϕ,
and time t ∈ (1, . . . ,n). The number of patterns n depicts how large the
dataset is. The weight matrix has a shape equal to the number of inputs d
by the number of outputs/neurons d′: W ∈ Rd′×d . Further, the length of
the bias vector is equal to the number of neurons: b ∈Rd′ . Then, the next
layer uses the current output ŷt as its new input xt with new weights W

and bias b. The last layer in a network, the output layer, usually employs
a linear activation function ϕlin(q) := q for an input vector q in regres-
sion tasks. The number of neurons d′ in this linear layer amounts to the
number of regression targets the model is going to predict. A complete
model f consists of multiple simple layers that together can approximate
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difficult functions. The model predicts an unknown output vector yt′ for
a previously unseen input vector xt′ : f (xt′ ) := ŷt′ = yt′ +ϵ, with an error ϵ.
When the model is trained, this error ϵ is minimized by optimizing a loss
function, e.g. the mean squared error (MSE) (LMSE : 1/n

∑n
t=1(yt − ŷt)2),

to gain optimal weights [125]. Through changes of Equation 5.1, special
layers are possible, such as convolutional or recurrent layers.

5.3 Optimizing with Gradient Descent

To find the optimal values for the weights and the biases of a neural net-
work, gradient descent is most commonly applied. The approach calculates
the pull towards an optimum of a model function f for input x [12, 51].
The function could be the loss function and the input could be the network
inputs and their weights. This pull is called gradient, which is calculated
from the derivatives of the function f with respect to the input x:

∂f (x)
∂x

:= lim
h→0

f (x+ h)− f (x)
h

, (5.2)

with a theoretically infinitesimally step size h. The gradient shows the
direction and intensity of change if the input x is altered with the step size h.
If the input is a vector x, the derivatives are called partial derivatives.

There are two basic approaches to calculate the gradient: Firstly, the
numerical gradient that guarantees to create a better solution with an ap-
propriately small step size h. It is inefficient to compute as every dimension
of the current input vector x needs its own evaluation of function f (for-
ward pass) to measure the effect of the chosen step size h. This approach
can still be useful if the function f is a blackbox because no information
about its derivatives are required. The second approach, the analytical
gradient, is faster, because it calculates all gradients at once in one for-
ward pass through the network. Here, we require full knowledge of the
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function f and all operations must be differentiable. This is not a problem
for neural networks as they are designed only with known operations, such
as multiplications or summations.

Let us look at an example for analytical gradient descent: Assume we
have an input vector x = (2,4)T , a target output y = 0, a bias b = 2 and
an initial weight vector w = (5,−2). This is a simple network, similar to
the Rosenblatt perceptron [122], has no hidden layers and only linear acti-
vation, but the algorithm does not change with more layers and different
activation functions as long as the derivatives are known. We want to min-
imize function f (x, y,w,b) = |y − (b+wx)|. All derivatives for an input q of
the individual operations are known:

∂
∂x q+ z = 1 ∂

∂q x · z = z
∂
∂x |q| = q

|q|
∂
∂q − q = −1

,

with another value z. First, we perform a forward pass through this small
network and save all values for the individual operations: f (x, y,w,b) = 4.
Figure 5.1 shows the forward pass values in green. Then, the gradient at the
networks output is set to either 1 for maximization or −1 for minimization,
because we pull the weights into the direction of our optimization task.
In this case, we want to minimize. Now, the partial gradients for every
operation in function f are calculated from inner to outer operations and
connected via the chain rule. Every partial gradient depends only on the
previous gradient because of the chain rule and if the operation requires
it, also on its forward pass values. This mechanism explains why it is also
called backpropagation, since the error is propageted backwards through
the function (backward pass). The red values in Figure 5.1 depict those
gradients. The adjusted weights w′ and bias b′ are then:

w′ += ∂w · l
b′ += ∂b · l ,

(5.3)
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Figure 5.1: Example of a single gradient descent step. The forward pass is colored green
while the backward pass is red.

with the gradient weight vector ∂w = (−2,−4), gradient for the bias ∂b =
−1, and learning rate l = 0.1. After a new forward pass we are already
closer to the optimum: f (x, y,w′,b′) = 1.9. Note that only the weights get
adjusted and not the input vectors, because we try to model the target out-
puts with our chosen network layout. If these steps are repeated multiple
times, eventually the minimum is reached if the learning rate is appropri-
ate. When the learning rate is too small, learning can take many steps but
will reach some optimum, even though it could be a local optimum. If the
learning is too large, the steps towards the optimum can be too large and
results can even get worse.

Until now, I only considered a single pattern, but if a dataset has more
than one pattern, the question arises how to process the complete dataset
of n patterns to find the optimum fast while staying accurate. The stochas-
tic gradient descent (SGD) iterates pattern by pattern through the dataset
and applies the gradient update to the weights after each pattern [85]. In
contrast, the batch approach calculates the gradient for one iteration by
processing the complete dataset. SGD needs less memory and it is shown
that it reaches the same optimum as the true gradient after a sufficient
number of iterations. Moreover, the mini-batch learning approach is also
iterative, but the gradient in one iteration is calculated from m patterns,
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where 1 < m < n. Depending on the dataset, available memory, and imple-
mentation this can be faster because fast vectorization operations can be
used. Also, it potentially converges faster, because the noise of one pattern
does not influence the gradient as much. If the batch size is too large, the
model might not generalize as well as with smaller batch sizes because it
convergences to sharp minimizers of the training function [78].

An extension is the addition of a momentum term to retain some con-
sistency in the optimization [117]:

v = µ · v −∂w · l
w′ += v

(5.4)

The weights cannot be updated directly but are subject to a velocity vec-
tor v which is zero at the beginning. This is helping the learning process
to account for extreme gradients that might also be outliers. The new
hyper-parameter µ slows down the current velocity and can be understood
as friction parameter. Without friction the optimizer could not be able to
stop at the optimum and overshoot.

In this work, I use the Adam optimizer [79]. Adam is similar to another
optimizer, RMSprop [140], but with momentum:

m = β1 ·m+ (1− β1) ·∂w
v = β2 · v + (1− β2) ·∂w2

w′ += − l ·m
√
v + ϵ

(5.5)

As standard, the authors give following parameter values: ϵ = 1e−8,β1 =
0.9,β2 = 0.999 . The parameters β1,β2 balance the rate of decay and added
velocity of the vectors m,v. At the beginning of the learning process, the
weight updates are bigger and then get smaller over time while depending
on the gradient. Adam is at the time of writing one of the most used
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optimizers and shows competitive or superior results in many applications.
It is also per-parameter adaptive, which means that it holds an individual
learning rate for each weight.

5.4 Specialized Learning Layer

The dense network has been adapted for specific tasks. Here, I present the
ones used in my architectures.

5.4.1 convolutional neural network (CNN)

A downside of dense layers is that the known order of data cannot be
taken into account easily. Such an order can a the arrangement of pixels
in an image or the temporal order of a time series. Dense layers could
still learn to perform their task, but it will take some time as they do not
consider the underlying pixel or temporal order. One approach that takes
advantage of this order is filtering by convolution. Prior to the success of
CNNs in the computer vision domain [82, 132] and later in other domains,
filters were hand-crafted by application experts. For time series tasks, the
filter feature ŷconv

ť
is extracted by applying a filter/kernel matrix K at time

step ť to the input matrix x:

ŷconvť := conv(xť) = b+
|K |∑
i=1

xť− |K |2 +(i−1)ki . (5.6)

The kernel size |K | reflects how many other inputs around ť are needed
to compose the filtered output. If several conv operations follow after
another, they cover more time and extracted features get more abstract
and meaningful. A convolutional layer (conv layer) applies this operation
to the complete input series Xt−δ+1:t := (xt−δ+1, . . . ,xt) with time frame
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Figure 5.2: One dimensional convolutional example. Input series of length δ = 5 is fil-
tered by filters d′ = 2 with stride s = 2 and kernel size |K | = 3.

length δ at time t and d′ filters:

conv(Xt−δ+1:t) := ϕconv


conv1(xt−δ+1) conv1(xt−δ+s) . . .

...
. . .

convd′ (xt−δ+1) convd′ (xt)

 .

(5.7)
The stride s dictates in which frequency the operations are applied, e.g., if
s = 1 the filter feature is computed for every time step, but with s = 2 the
output is reduced to δ/2. Most networks use the rectified linear unit (ReLU)
function (ϕReLU (x) := max(x,0)) [103] as activation function ϕconv.

Figure 5.2 shows a short example calculation. Assume there is an input
tensor, with δ = 5 time steps and d = 2 channels. This input is processed
by d′ = 2 kernels with stride of s = 2 and kernel size of |K | = 3. Kernel
one and its flow of values is depicted in green and for the second filter
blue color is used. The green example focuses on the first time step for
the output, while the blue example illustrates this for the kernel outputs
second time step.
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In terms of computational efficiency, the conv layer needs less trainable
weights than a dense layer. Because the conv layer applies the same kernel
on the whole time series (|K |×d), while the dense layer requires a weight for
every input feature as well as every time step (δ×d). The number of filters
of the conv layer correspond to the number of output channels d′,. At the
beginning and end of a series, zero padding is used, which inserts zero
values at the series to create a valid convolutional operation. Problems
occur if the time steps are not equidistant, e.g. measured with varying
sampling rates, because the extracted features can only be detected within
a certain margin in a stretched or squeezed time series.

5.4.2 RNNs and LSTMs

Another way to incorporate temporal information is to process a series
sequentially with a recurrent neural network layer [53]. In contrast to conv
layers, this approach does not rely on data points with equidistant time
steps between them. The input series Xδ

t is sequentially processed vector
for vector in δ steps. At some time step ť ∈ (t − δ + 1, . . . , t) the output is
defined as:

ŷRNN
ť := ϕRNN

(
by +Whyhť

)
hť := ϕh (bh +Wxhxť +Whhhť−1) ,

(5.8)

whereas the hidden state hť acts as a memory that introduces previous
inputs back into the network with a hidden state weight Whh and bias bh.
The usual weight and bias from Equation 5.1 is her denoted as Why and
by . The hidden states activation ϕh is usually a logistic curve (sigmoid)
function and the outer activation often is the hyperbolic tangent (tanh)
function.

Although this works well for short time series, longer time series are
prone to create the vanishing gradient problem because the same weight
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matrix is multiplied at each time step. This is a problem for the training
process because when the gradient is smaller than it should be, adjusting
the weights towards the optima is as slow as choosing a too small learning
rate would be. Further, events that happened some time steps ago are only
weakly reflected in the hidden state. LSTM layer [60] were introduced to
counter these problems. First applied to language tasks [52, 54, 135], but
also more general time series tasks [37, 38, 46] fit naturally with the LSTM
layer. A gating mechanism helps to retain temporal distant information
while keeping the gradient at a steady size. The LSTM algorithm updates
the hidden state h at every time step with the element-wise-product (◦)
of an output gate o and the activation of a cell c. This output gate learns
how to write the input. Inside the cell is the forget gate f that dictates
how much information of the cell is kept from its previous iteration. The
second part of the cell is the product of the input gate i and the input
modulation j, which learns how to read the input. All gates consider the
hidden state from the preceding time step.

In full detail, the LSTM is defined as follows:

ŷLSTMť := ϕLSTM

(
by +Whyhť

)
hť := oť ◦ϕh(cť)

cť := fť ◦ cť−1 + iť ◦ jť
iť := ϕi (bi +Wxixť +Whihť−1)

fť := ϕf

(
bf +Wxf xť +Whf hť−1

)
oť := ϕo (bo +Wxoxť +Whohť−1)

jť := ϕj

(
bj +Wxjxť +Whjhť−1

)
.

(5.9)

With help of the subscripts, the affiliations of activations ϕ, biases b, and
weight matrices W can be traced. The activation function for the gates are
again usually the sigmoid function and the output activation is the tanh

function. I present a visual comparison of dense, RNN, and LSTM layers
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Figure 5.3: Graphical comparison of dense, recurrent neural network, and long short-
term memory network layers.

in Figure 5.3 that highlights the increased complexity of LSTM layer, but
also emphasizes on how the gates are interacting.

When two independent LSTM layers read the input sequence from two
different directions, we speak of a bidirectional long short-term memory
network (bLSTM) [52, 129]. This extension concatenates the output of
two LSTMs, where one LSTM reads the input from front to back (forward
LSTM) and one reverses the input sequence (backward LSTM). Often the
backwards LSTM is inferior performance-wise, but the combined output
of the forward and backward LSTM can outperform an ordinary LSTM.
A limitation of this approach is that is not applicable to online learning
since the complete sequence is not available.

5.4.3 Combining CNN and LSTM layer

The combination of conv and LSTM layers seem like a natural fit. First,
meaningful features get extracted from parts of time series or images by
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conv layer. Then, the recurrent or LSTM layer process these features to
infer the information of the entire pattern. This has already been used in
many applications. For example, Girshick et al. [48] for object detection
and segmentation; Sainath et al. [126] on various large vocabulary speed
recognition tasks; Tsioroni et al. [142] for gesture recognition in images;
Zhou et al. [157] in a community question answering task; and Morales et
al. [101] for recognition of activity with mobile wearable sensors. Other
recurrent layer methods, such as gated recurrent units [25], have also been
employed after conv layers, for instance in spatial audio tagging [149]. The
bLSTM layer also was used in such fashion in a tool wear and tear scenario
by Zhao et al. [155].

Another way to combine conv and recurrent layers is to mix the lay-
ers. Liang et al. [88, 89] realize this by including recurrent connections in
the conv layer. They employ this new layer in a static object recognition
task. Similar to this but with a gated RNN, Shi et al. [130] include the
convolutional operation directly into the LSTM layer. This allows a bet-
ter representation of spatio-temporal correlations in video datasets. They
achieved good results on a moving MNIST and Radar Echo dataset. Pin-
heiro and Collobert [115] introduce the recurrent connections between conv
layers in an image scene labeling task. This approach was also employed
on multivariate time series data with prior clustering of the inputs [150].

5.5 Mechanisms to Support Learning

Several mechanisms and heuristics have been proposed in the literature to
optimize the learning process. This section describes the most important
ones applied in this work.
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5.5.1 Modules

In practice, there are layer configurations that have proven to be effective
for specific tasks [3]. These configurations reduce the difficulty of finding
an optimal architecture for a network. They can be seen as tried and tested
building blocks. A well-known module is the inception module by Szegedy
et al. [136]. With these modules they build the GoogLeNet architecture
that won the ImageNet challenge 2014. One inception module consists of
four parallel lanes: the first lane is a single 1× 1 conv layer, the second is
a 1 × 1 followed by a 3 × 3 conv layer, the third is the same, but the last
conv layer has a kernel size of 5 × 5, the last lane is a 3 × 3 max pooling
followed by a 1×1 conv layer. All outputs of these lanes are concatenated.
In contrast to the relatively high number of weight parameters in an in-
ception module, the SqueezeNet architecture by Iandola et al. [68] utilizes
fire-modules. These aim to balance a low number of weight parameters
and good prediction performance. To that end, only conv layers with a
kernel length of 1×1 or 3×3 are utilized. First comes one 1×1 conv layer
to “squeeze” the input, which then gives its output to another 1 × 1 and
a parallel running 3 × 3 conv layer. Lastly, these two layers outputs are
concatenated. A schematic representation of a fire module for one dimen-
sional data is given in Figure 5.4. As a side note, a 1×1 conv layer is used
to reduce the input dimension and also adds more non-linearity, while a
bigger kernel length creates non-linear time dependent features.

5.5.2 Batch Normalization

Deep neural network architectures use many layers and the parameters
of these are trained with gradient descent [51, Chapter 8.7.1]. Although
these parameter updates should be independent for each layer, they are not,
because the gradient flows through the whole network. This dependency
introduces negative higher-order effects on early layers with a smaller order
near the output. In shallow networks, this is not a problem as the effects
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Figure 5.4: Schematic representation of an example fire-module. It contains a squeeze
layer with two filters. The expand layer has two filters with kernel size of one and another
two with kernel size three. The number of channels d is two.

are negligible, but the deeper the network the stronger the effects. For
instance, if a gradient is relatively small, the previous layer also gets a
smaller gradient and so it gradually vanishes. Moreover, an initially large
gradient can cause an explosion of the gradient values. This could result
in no learning or random learning and finding a single learning rate for
all layers would not be possible. To counteract these higher-order effects,
one can optimize the parameters while regarding the effects (e.g. calculate
the Hessian matrix [40, 47]), but this is computationally demanding for
second-order effects and infeasible for higher-order effects.

Batch normalization is another solution to this problem. It is proposed
by Ioffe and Szegedy [69]. Here, the outputs of layers ŷ get normalized
per mini-batch. Usually, the batch size is much smaller than the entire
number of training data n, because of restricted availability of memory
and better generalization (see Section 5.3). Batch normalization is either
applied before or after the outermost activation function. The gradient gets
scaled by the mean µŶ and variance σŶ of the current batch Ŷ := (ŷ1, . . . , ŷm)
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with batch size m:

µŶ :=
1
m

m∑
i=1

Ŷi,:

σ2
Ŷ
=

1
m

m∑
i=0

(Ŷi,: −µŶ )
2

Ŷ ′i,: :=
Ŷi,: −µŶ√
ϵ+ σ2

Ŷ

(5.10)

The ϵ is introduced to avoid the division by zero state and should be small
(e.g. 10e−8). This effectively approximates the Hessian matrix and thus
helps with the second-order-effects.

5.5.3 Dropout

Dropout is a mechanism that avoids overfitting and also acts as a regular-
izer [133]. Recent publications about state-of-the-art network architectures
most often use this mechanism in one or more layers [68]. The main idea
is to temporarily deactivate a part of the network for one iteration. We
interpret every weight matrix W as a random matrix containing the in-
ner weight matrix Ŵ and a dropout vector z := (z0, . . . , zd′ )T ∈ {0,1} that
depends on a probability value p:

W := zj ◦ Ŵ , (5.11)

with ◦ being element-wise multiplication. Every titeration initializes a new
dropout vector, otherwise the same weights would stay deactivated during
training. The dropout vector acts as a switch in the gradient descent
algorithm, when the value is zero the gradient is set to zero as well:

∂
∂W

(z ◦W ) · x ·∂U := z · x ·∂U . (5.12)
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with ∂U being the previous gradient link from the chain rule.
When dropout is used in LSTM layers, the standard definition only

allows to deactivate neurons along the input weights, but not in the re-
current units. This is problematic as it leads to overfitting of the weights
from the gates. Further, at every time step of an input series other neu-
rons get deactivated which potentially reduces the gradient towards zero.
This happens because the same weight matrix gets dropped at different
indices over time and eventually the weight matrix’s gradients are all zero.
Variational dropout [43] solves this by re-parameterizing Equation 5.9:

ϕLSTM


iť
fť
oť
jť

 := ϕLSTM



ϕi

ϕf

ϕo

ϕj


b+  xT

ť

hT
ť−1

 ·WLSTM


 . (5.13)

This representation ties the weights to a single weight matrix WLSTM with
dimensionality 2d by 4d with d being the dimensionality of xť. Now, the
recurrent unit weights can be dropped and the deactivated parts remain
the same during one iteration.

5.6 Predictive Uncertainty

Machine learning methods learn from the distribution they are given for
training, which is often unknown before training. If a trained model is
asked to predict an output with an input vector that lies outside the train-
ing distribution, the results may vary [42]. For example, let the target
output be the temperature in an office and the input vector consists of sur-
rounding sensors. When the model is trained only with data from during
the day, nighttime predictions will lie outside of the normal distribution
as the heater usually does not run and outside temperatures drop as well.
The output might still be usable, depending on the model extrapolation
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ability and the problem complexity. Nevertheless, the model could signal
that the input lies outside the training distribution and that the output
thus might be more unreliable. Moreover, if the training and test data is
afflicted by noise, the data uncertainty increases. In our office tempera-
ture example this would appear when the sensors have a low measuring
precision.

Another kind of uncertainty is model uncertainty and occurs in two situ-
ations. The first one appears, when there is uncertainty in the parameters
or the weights, biases, and hyper-parameters in a neural network. There
are many possible parameter settings that result in local optima, this raises
the question which parameter settings would most suited to find a good
local optima; e.g. if to rely more on one or the other sensor input for the
prediction. Second, the structure of the model might be uncertain as in
there might be multiple possible layer arrangements or activation function
choices that are viable.

In combination, data and model uncertainty give us a sense of how
confident our model is in its prediction, the predictive uncertainty. Un-
certainty intervals are used to visualize this uncertainty. A wider interval
corresponds to a higher uncertainty. These intervals can be produced by
Bayesian neural networks, which are highly specialized. Unfortunately,
they do not scale well and are difficult to train. The adaption to complex
architectures is difficult, because of the special operations they need. An al-
ternative is the approximation of uncertainty by using dropout and Monte
Carlo (MC) passes of the network at test time. This has its theoretical
bases in interpreting the dropping of values at random as an approximate
Bayesian inference in a deep Gaussian process. The final output ŷ of the
output layer corresponds to the predictive mean E[y] of nMC MC model
realizations fi ∈ F:

E[yt] ≈
1

nMC

nMC∑
i=1

fi(xt) . (5.14)

81



Additionally, we can give a predictive variance Ṽar[yt]:

Ṽar[yt] ≈
1

nMC

nMC∑
i=1

gi(xt) + fi(xt)
2 −E[yt]2 . (5.15)

These approximations get more accurate and stable with an increasing
number of MC models nMC . It is important that all MC models fi realize
a different dropout vector z per iteration, otherwise there would not be
any variance. Process or observation noise g is either a static value or a
dynamic function (heteroscedastic uncertainty). By taking the square of
the predictive variance we get the standard deviation of the predictions,
which equals a 68.27% uncertainty interval. A 95.45% uncertainty interval
would be: 2 ·

√
Ṽar[yt] .

5.7 Conclusion

Deep learning has become a wide field for research. In this chapter, I cov-
ered the most important algorithms and approaches for this work. These
include the basic dense layer, the specialized conv layer, and recurrent
layer. Further, I gave insight into the optimization with gradient descent
and its variations. I also described approaches to help the training of a
network with modules, batch normalization, and dropout. Finally, I intro-
duced the predictive uncertainty through dropout. With this toolset, I am
ready to build deep learning architectures for the given marine time series
application.
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6
Virtual Sensors with exPAA and

bLSTMs

6.1 Introduction

The foundations of deep learning from the previous chapter can now be
applied to build the virtual sensor for the flow sensor from the surround-
ing sensors. Virtual sensors consist of physical or data-driven models. I
employ the data-driven models because physical or physically-based nu-
merical models often take a long time to build or compute and require
extensive knowledge about underlying processes. The advantage of data-
driven models such as machine learning models is that they rely on ob-
jective information, i.e. the observed data. These models must be able to
handle the challenges of this data as well, such as noise and outliers.

In this chapter, I introduce a deep architecture based on bLSTM lay-
ers combined with a time dimensionality method to replace the defective
BEFmate flow sensor from Section 2.3.1 with a virtual one. Because LSTM
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layers are specifically designed for sequential data and inherit a high pre-
dictive power, I choose a network architecture with these layers. The time
dimensionality reduction is necessary since computations on longer time
series get increasingly expensive since more recursions are performed. I ex-
tend piecewise approximate aggregation (PAA) [76] by assuming that the
most recent time steps are more important for the model prediction and
should be less compressed. The extended method is named exponential
piecewise approximate aggregation (exPAA). In experimental analyses, I
compare PAA and exPAA representations on the combined BEFmate and
TSS dataset. Further, I test if the resulting models remain stable in their
prediction over time.

The structure of this chapter is as follows. Related work is discussed
in Section 6.2. The time dimensionality reduction PAA and exPAA are
presented in Section 6.3. Section 6.4 introduces the recurrent network
architecture for the virtual sensor. An experimental analysis is presented
in Section 6.5, while conclusions are drawn in Section 6.6.

This chapter is partly based on the following published paper:
Oehmcke, S., Zielinski, O., and Kramer, O. (2017b). Recurrent neu-
ral networks and exponential PAA for virtual marine sensors. In
International Joint Conference on Neural Networks (IJCNN), pages
4459–4466. IEEE.

6.2 Related Work

The usage of artificial neural networks and other machine learning algo-
rithms in the sensor and similar domains is no novelty [50, 75, 94, 101,
150, 152, 153]. For instance, a study on the performance of neural net-
works and nearest neighbor algorithm in an underwater application has
been conducted by Baladrón et al. [7]. They have been comparing both
machine learning methods in an imputation and prediction task regarding
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their mean errors. Different combinations of sensors have been removed for
the imputation task, while the prediction task entailed a 24-hour forecast.
They concluded that neural networks are a good choice for their marine
application, but the performance of the nearest neighbors method has been
equally good in some cases.
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The inference of gene regulatory networks with random forest has been
introduced by Maduranga et al. [92]. They compared it to Bayesian net-
works as well as ordinary differential equations and showed superior results.
By dividing the multi gene prediction problem into smaller problems, they
created easier learning problems that could be solved separately. Since the
application usually does not feature noise or bias in their data, which is a
crucial difference to my marine data.

A robust framework for general inference problems in sensor networks
has been proposed by Paskin et al. [112]. It is based on junction trees,
which is a data structure that supports the modeling of sensors as nodes.
To achieve global consistency, it inherits local consistency between adjacent
nodes. This approach proves to be robust against temporary failure of
nodes and is capable to mitigate effects of unreliable communication. The
downside is the requirement of extensive domain knowledge that is not
available for my application.

SMiLer is a framework to forecast multiple sensors by Zhou et al. [156].
Their forecast models are based on Gaussian processes. To select a train-
ing set, this framework employs nearest neighbor queries with DTW as
distance measure, which has been implemented to run on the GPU. I can-
not apply this approach as it is forecast task and not a virtual sensor task,
but it is an interesting example of multivariate prediction.

Moreover, virtual sensors based on machine learning have not been em-
ployed in the marine domain until now. Usually, these virtual sensor ap-
proaches are mainly applied in fault detection scenarios [4, 38, 123, 134]
and for emission predictions [70, 86, 104].

6.3 Time Dimensionality Reduction with exPAA

The LSTM layer is a powerful tool to predict time-dependent target out-
puts, since it utilizes a working memory. This memory comes at a cost.
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With each time step, the runtime of the LSTM layer increases linearly since
the gating and weighting operations are applied at each time step. This
becomes a problem with a larger number of observed time steps and di-
mensions. Moreover, the LSTM can get distracted if too much redundant
information are present, which can hinder the learning process.

A solution to the problem of long sequences is the reduction of time
steps while keeping the most important information. To achieve this, time
dimensionality reduction methods are applied. They reduce the number
of time steps, from δ steps to δ′ steps, with δ′ < δ. The underlying as-
sumption for these methods is that there are periods in a time series that
are more interesting for the target prediction than others. These methods
then focus on the important periods, while retaining less information about
other periods. Although an LSTM could learn through its forget gate when
the important parts are happening, the processing is much faster when it
needs to consider fewer steps.

Most of these time dimensionality reduction methods originate from time
series indexing tasks, such as PAA [76], adaptive piecewise constant ap-
proximation (APCA) [22], or discrete Haar wavelet transformation (DWT).
Time series indexing is in most cases applied to univariate series (d = 1).
If applied to multivariate series, the time reduction would not be the same
for all dimensions, e.g. one dimension is reduced at the beginning of the
series and another dimension is reduced at the end. For example, APCA
creates more parts at periods that have a lot of value changes. This creates
time series with shifts in between the features and is computationally in-
effective as all dimensions would need separate calculations. LSTM layers
can handle time series that have time steps which are not equidistant in
time, but these unrestricted inner shifts would make learning harder.

PAA does not depend on the time series itself, but only on δ and δ′. It
creates the same representation for all dimensions in a time series, disre-
garding the actual values. Although the computational costs are low, the
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results are still competitive to more complex methods such as DWT or
singular value decomposition. The input series Xt−δ+1:t := (xt−δ+1, . . . ,xt)
is reduced to X̄t−δ+1:t := (part1, . . . ,partδ′ ). This reduced series consists of
parts partj with j ∈ (1, . . . ,δ′):

partj := agg
(
[xt−k]

splitj+1
k=splitj

)
, (6.1)

with an aggregation function agg that often is the mean function. To
acquire the splits, PAA calculates:

spliti := δ · i
δ′

, (6.2)

with i ∈ {1, . . . ,δ′ +1}. Interestingly, the representation of PAA is identical
to that of a non-overlapping pooling layer. While the kernel size of pool-
ing [51, Chapter 9.3] is fixed to ensure that parts always contain the same
amount of values, PAA can have differently sized parts depending on the
splits.

The split calculation of PAA assumes that a reduction with equal sized
parts is best to retain information for the target output prediction. This is
not true for many prediction tasks as the most recent values usually have
the highest impact. To align with this new assumption, I introduce exPAA.
It changes the split calculation to:

spliti := round

(
δ · i

δ′

e)
, (6.3)

with an exponent e. This essentially creates parts with different amount of
values. The normal PAA representation can still be built by choosing the
exponent e as 1. When the exponent is greater than one, the more recent
values get represented with more parts. Consequently, if the exponent
is less than one, past values are finer approximated through more parts.
An edge case occurs if two following splits contain the same indices due
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Figure 6.1: Applied exPAA on temperature time series. There are finer approximations
at the end of the series when exPAA utilizes an exponent greater than one.

to rounding, which would result in an empty part. To avoid this, the
subsequent split is increased by one. In the worst case, this could create
multiple one-value parts, but this is preferable to empty or undefined parts
and is possible as long as δ > δ′ is true. The influence of the exponent can
also be seen in Figure 6.1.

The idea of finer approximating recent values also resonates with the
exponentially weighted rolling average method [66]. Here, the entire sig-
nal is smoothed with fading weights for past values. In contrast to this
method, I want to reduce the time steps to process less information and
not necessarily smooth the time series.

6.4 Network Architecture

I employed the following architecture: First, the preprocessed data is
passed to an exPAA layer that uses the average as aggregate function agg
for the individual parts. Then, these parts are given to three bLSTM lay-
ers that are connected after another, with 280 neurons in the first layer
and respectively 480 neurons for the following two. The inner activation
of these layers utilize the tanh function, while the recurrent connections
are activated through the sigmoid function. The first and second bLSTM
layer return their sequence, but the last layer only returns its last step.
This output is processed by a dense layer with 480 neurons with ReLU ac-
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tivation. Before each hidden layer, dropout is performed with 0.1 dropout
probability for inputs, 0.5 for bLSTM layer, and 0.1 for the dense layer.
The output layer employs L2 regularization of 0.0001. I employ Adam to
optimize the learning of weights. The batch size is 256.

The hyper-parameter search is done according to [14, 125]. First, I
optimize with only five epochs on the training set. Then, I repeat this
process with the five best models and 40 epochs. The validation error is
measured every second epoch on a previously unseen set of the training
data. Validation sets are sampled uniformly and additionally contain the
next 14 hours after a random point to guarantee a full tidal cycle per
validation pattern.

6.5 Experimental Analysis

In the following, I analyze the influence of exPAA on the combined dataset
of TSS and BEFmate (see Section 2.4).

6.5.1 Design

My two hypotheses for these experiments are: The bLSTM architecture
benefits from exPAA by decreasing runtime and testing error. My model
of the defective sensor delivers stable output approximations over time.

The training set consists of values from 2014-09-18 15:00 until 2015-03-
31 22:40:00. This corresponds to 60% of the data and includes 6979 steps
of the target sensors as well as 24922 steps of the surrounding sensors.
These numbers are so different because the target sensor measures only
at a high water level, but the surrounding sensors measure continuously.
I append up to 24 hour of data to each target input step. Optimization
of the bLSTM hyper-parameters is done by further dividing the training
set into 70% for training and 30% for validation. After optimal hyper-
parameters were found, I trained the network on the complete training set.
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The remaining 40% or 4654 target sensor steps of the dataset are the test
set. Because of the different scaling of the target sensors, I create a virtual
sensor for each of the five target sensors instead of a single one.

The free parameter values for this experiment are the original window
size δ ∈ {24, 42, 84, 144}, reduced window size δ′ ∈ {4, 10, 42}, and the ex-
ponent e ∈ {1, 1.5, 2}. I choose these original window size settings, because
they approximately correspond with the tidal and daily cycles: 4, 7, 14,
and 24 hours. The baseline is an architecture without exPAA or window-
ing. This changes the bLSTM layers to fully connected layers as only one
time step is considered. The scenario where δ = δ′ is not tested, except for
δ = δ′ = 42 because preliminary tests did show inferior performance and
the runtime is infeasible. I set the number of runs to 30 per condition.

To measure performance, I employ the root mean squared error (RMSE):

RMSE :=
√
mean(Y − f (X))2 (6.4)

and the root median squared error (RMedSE):

RMedSE :=
√
median(Y − f (X))2 . (6.5)

While the RMSE takes the performance peaks or lows into account, the
RMedSE is robust to these extreme values and favors generalizable models
that occasionally produce outliers.

6.5.2 Results

The results for the best free parameter settings (δ = {42,84}, δ′ = {4,10})
are presented in Table 6.1. This shows that the dimensionality reduction
of time steps is beneficial since the models always deliver sub-optimal per-
formance without temporal reduction (δ = δ′ = 42). For the three sensors
Direction, Pressure, and Speed the results with exPAA are always better
than the baseline. Moreover, only the RMSE for Speed is lowest with the
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exponent being 1. In the other cases higher exponents are better, which
supports the first hypothesis that exPAA helps to achieve lower error rates.
Interestingly, Temp and Conductivity sensor models were better without
any windowing or PAA method.

The feasible combinations of original and reduced window size are either
δ = 84 and δ′ = 4 or δ = 42 and δ′ = 10. This is a trade-off between more
past information in a more compact form or finer approximated steps that
reach less far into the past. In contrast to RMSE models, the models
chosen with RMedSE prefer the smaller window size, which could mean
that these smaller window sizes are good for generalization, but suffer from
occasional outlier predictions. This is supported by the observation that
the RMedSE is always lower than the RMSE. I expected this, since the
median is more robust against outliers.

In Figure 6.2, I compare the best settings for exPAA with the non PAA
approach. All measured differences can be significant, if the notches do not
overlap [23]. I confirmed this observation with a statistical test, the one-
sided Mann–Whitney U test [95, 98], since the p-value is below 0.05 and
the observed U value is lower or equal than the critical U value (U ≤ 450).
The Conductivity plot is especially interesting, because the whiskers of the
exPAA approach show a strikingly lower error. For the Temp target sensor
there exists at least one outlier with equivalent performance compared to
the non PAA approach. This means that my approach can be better,
but with the current setups the learning does not always converge to its
optimum.

Compared to the standard deviation of the target sensors on the test
set, the results are also good. For example, the standard deviation of the
Direction sensor is 100.743, while the RMSE is 69.007 and the RMedSE
is 22.104. As the water is flowing mainly from either 54 or 244 degree (see
Figure 2.5), there is a clear distinction between the two with the current er-
ror rates. The other target sensors are more difficult to interpret, but the er-
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Figure 6.2: Box plots of best exPAA settings performance for the bLSTM architecture in
comparison to their baseline prediction without exPAA windows (LSTM orig.).

ror is always lower than the standard deviation: Speed (std: 6.582, RMSE:
6.132, RMedSE: 3.896), Pressure (std: 2.698, RMSE: 2.365, RMedSE:
1.546), Temp (std: 4.266, RMSE: 2.422, RMedSE: 1.509), and Conduc-
tivity (std: 4.015, RMSE: 2.133, RMedSE: 1.544).

To analyze the stability over time of my predictions, I divide the test
set into five equal sized parts. Further, to be able to compare the parts, I
divide the RMSE and RMedSE by the corresponding standard deviation of
the parts. The performance per part is presented in Figure 6.3. Although
there are differences between the parts, only the error of the Temp model
seems to increase over time. The Conductivity prediction again shows a
huge variance in its performance, especially in the first three parts. In
general, most models stay stable over time in their prediction error.

6.6 Conclusion

Building a deep learning architecture for a new application is challenging.
The possible design space is large, ranging from number and type of layer
to employed activation function or number of neurons. In this chapter,
I presented the first iteration of a bidirectional LSTM architecture for
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tion performance of the bLSTM architecture in comparison to their baseline prediction
without PAA.

the virtual sensor modeling of the BEFmates defective flow sensor. The
model inputs are the surrounding sensor measurements of the combined
TSS and BEFmate dataset. I proposed exPAA, a novel time dimensionality
reduction method based on PAA, which represents more recent values in
greater detail, but past values are still available.

The results of my experiments demonstrate that exPAA reduces compu-
tation time and also increases the performance of my network in almost all
cases. These experiments compared the PAA and exPAA representations
to an architecture without time representation. Moreover, models with
exPAA are stable throughout the five-month period of the validation set.
These results show great potential for an initial architecture, but there is
room for improvement.
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7
Improved Architecture with CNNs,
Uncertainty Predictions, and Input

Quality

7.1 Introduction

The previous chapter presented a virtual sensor based on a stacked bLSTM
architecture to benefit from the time series structure of my marine appli-
cation. Together with the novel time dimensionality reduction method
exPAA, low error rates are achieved for this model, which will now be my
baseline model. Inspired by the recent success of CNN architectures, I
know that meaningful non-linear features can be extracted from patterns
with automatically learned filters. These filters can potentially assist the
LSTM to learn problem relevant information faster. Further, up to this
point, only point predictions were used, but uncertainty intervals could
indicate how reliable the model is at a given time step. Eventually, the
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baseline model uses the imputed dataset, but does not account for the
introduced bias by the imputed values even though this information is
available.

In this chapter, I present an improvement to the network architecture
of the baseline model with a focus on three main contributions: First, I
introduce the automated filtering of inputs with convolutional modules
(fire-modules [68]) before the bLSTM layer. The second contribution is
the predictive uncertainty as proposed by Gal et al. [42]. In the third
contribution, I employ the input quality information from the penalized
DTWkNN imputation in a novel input quality based dropout (qDrop) layer
. This qDrop layer improves the robustness of a model while decreasing the
mean prediction error. I verify the new architecture called MarineNet in
an experiment that encompasses a comparison to the baseline model and
an analysis of the qDrop layer w.r.t. the point and uncertainty interval
prediction errors.

The chapter is structured as follows. At first, I present the new dropout
layer considering the input quality in Section 7.2. Then, the complete ar-
chitecture of the machine learning-based marine sensor model is introduced
in Section 7.3. I present an experimental analysis in Section 7.4. Finally,
I address some of the shortcomings of my architecture through an revision
in Section 7.5 and conclude this chapter in Section 7.6.

This chapter is partly based on following journal article:
Oehmcke, S., Zielinski, O., and Kramer, O. (2017a). Input quality
aware convolutional LSTM networks for virtual marine sensors. Neu-
rocomputing, 275:2603–2615.

7.2 Accounting for Known Input Quality

Although I use the DTWkNN ensemble method to impute the missing
value as introduced in Chapter 4, a bias is introduced by every imputation
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Figure 7.1: Influence of poorly imputed values. On the x-axes are input sensor features,
while the target sensors are on the y-axes. Different marker symbols represent different
gap lengths.

method. The longer the gaps, the higher the bias introduced to the data.
I plot the target sensor values against the partly imputed sensor values in
Figure 7.1. There, the marker symbols represent the different gap lengths.
Longer imputed gaps in the data distort the original correlations. If a
learning algorithm uses these imputed time series, it also unknowingly
learns its bias. Classic algorithms such as kNN are able to apply weight
changes that incorporate information about the input quality because they
compare distances. For neural networks this is more complicated, even
though I hold the input quality information in form of the penalty matrix P

from the imputation method.
I propose a new dropout layer, called qDrop. It applies an individual

feature-wise dropout with dropout vector p
quality
t := 1 − P ε

t,: with dropout
probability values at each time step t instead of a global dropout probabil-
ity value p. The original penalty matrix P consists of very small feature
values for larger gaps, because it contains the inverse of the gap length.
This is unfavorable, because the input would get dropped very often. For
example, even a gap length of 2 would have a dropout probability of 0.5,

99



which corresponds to dropping the value half the time. To counter this ef-
fect, the exponent ε regulates the values of P , with 0 ≤ ε ≤ 1. The dropout
mechanism is well suited for this, because it can avoid an overfitting to
untrustworthy values and see changes in the predictive uncertainty.

When the network is in training phase, it will drop the imputed values
based on the probability vector p

quality
t , which in return reduces the in-

fluence of these biased values. Normally, dropout is not applied at test
time because the network would not be able to utilize all its neurons. This
creates results inferior to those of the complete network. In contrast, the
predictive uncertainty, as introduced in Section 5.6, employs MC predic-
tions with enabled dropout that are equal or better than the prediction
of the full network. With MC predictions, I can drop inputs without risk-
ing completely losing the feature information. Because the qDrop layer
drops the input features based on the input quality, those imputed values
are useful. But they also have a smaller impact on the prediction as they
get ignored depending on their dropout probability. As the dropout rate
increases with input of lower quality, the standard deviation of MC pre-
diction also increases if the feature is important for the prediction target.
This standard deviation ties directly to the predictive uncertainty.

Interestingly, it is often advised that after the input layer the probability
value for dropout should be zero or only small [42, 133]. This case is dif-
ferent because the dropped features are not selected completely at random
and instead of only one or three features, 56 are available. The qDrop
layer does not drop all essential features at once unless they are all part of
a long gap, because of the existing redundancies.

7.3 MarineNet: Architecture

An overview of the network architecture, which I call MarineNet, is given
in Figure 7.11. At first, the input layer receives the imputed time series.
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Table 7.1: On the left side is the MarineNet architecture with number of parame-
ters (Param.#) and depth (D.). On the right side is the baseline model from the previous
chapter. The variables δ and δ′ are the original and reduced time frame length. Non-
trainable parameters are from batch normalization, since the weights are not adjusted by
gradient descent.

MarineNet Baseline bLSTM
Layer Output D. Param# Layer Output D. Param.#
input δ × 57 0 0 input δ × 57 0 0
qDrop δ × 57 0 0
fire1 δ × 128 2 15904 exPAA δ′ × 57 0 0
fire2 δ × 128 2 19312
fire3 δ × 128 2 19312 bLSTM1 δ′ × 240 δ′ 69920
fire4 δ × 128 2 19312
conv1 δ × 128 1 17024 bLSTM2 δ′ × 480 δ′ 923520
exPAA δ′ × 128 0 0
bLSTM 512 δ′ 788480 bLSTM3 δ′ × 480 δ′ 1384320
dense 512 1 264704 dense 480 1 230880
out g 1 1 512
out f 1 1 512 out f 1 1 480

Total params 1145072 2709120
Trainable params 1142384 2709120
Non-trainable params 2688 0
Total depth 12+ δ′ 2+3 · δ′

Then follows the qDrop layer, which applies dropout to values biased by the
imputation method (see Section 7.2). Next, four fire-modules are sequen-
tially employed. Similar to the architecture in Chapter 6, an exPAA layer
processes these feature time series to have fewer time steps, but detailed in-
formation are still present for the most recent time steps. A bLSTM layer
handles the reduced series. Only the last recurrent output is forwarded to
a dense layer. Finally, there are two output layers. One represents the
target sensor regression. The other one is modeling the process noise. I
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present a detailed comparison of MarineNet to the architecture of Chap-
ter 6 in Table 7.1. It shows that MarineNet requires 1145072 parameters
instead of 2709120, which is a factor of 2.365 less. Also, as I use a single
bLSTM layer instead of three, the total depth of the network depends less
on the amount of reduced time steps δ′.

A new addition to this architecture is, besides my qDrop layer, the
usage of conv layers. They can be seen as preprocessing for the bLSTM,
because they obtain useful features from the time series by learning feasible
combination of sensors and value movements over time. To have good
predictive performance in an affordable time span, I decided to use fire-
modules (see Section 5.5.1). Other modules, such as the inception module
have a significantly higher number of parameters to train.

I designed the convolutional part of the network in such a way that the
created features can contain a time frame of up to 90 minutes (9 time steps).
One single fire-module summarizes a 30-minute time span into its features,
because of the kernel width of 3 in one of the conv layers and the datasets
10-minute resolution. Every following fire-module incorporates 20 minutes
(2 time steps) more into the last convolutional output, because the features
always overlap to 2/3 with another. Figure 7.3 visualizes this. Note that
the series length remains the same after each convolution, as zero padding
is applied and the input patterns include more than nine time steps. So
four fire-modules result in 30+3 ·20 = 90 minutes (3+3 ·2 = 9 time steps).

To help the network converge more quickly, the SqueezeNet authors [68]
were inspired by He et al. [58] to use shortcuts. A shortcut passes the
output of one fire-module not only to the next module, but also to the one
after that. They found an increase in performance without introducing
new trainable weights. I use shortcuts between fire-modules, which allows
a skipping of layers that are difficult to train until the previous layers are
trained.

The available data for training and testing is limited to one year. This
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Figure 7.3: Simplified example of the output of four conv layers with a kernel width of 3.
It shows that the last layers output for the fifth step contains information of nine time
steps.

poses a problem for the reliability of my model, because it can encounter
pattern configurations that are only sparsely represented in the training
data. By employing predictive uncertainty (see Section 5.6), I know when
a model is uncertain about its prediction. I assume heteroscedastic un-
certainty since the noise in this application is not static. For example,
changing tides and seasons create varying noise signals. The noise equals
the inversion of the model precision. This dynamic observation noise is de-
noted as function g(xt) and is included into the loss function of the training
phase:

L := α · (yt − f (xt))2 · (g(xt) + 1)− (1−α) · log(g(xt)) , (7.1)

with a trade-off variable α ∈ [0,1] for easier uncertainty calibration. This
is necessary, because the target output and noise can have different scales
and characteristics, which the original constant 0.5 can not account for.
The first part of the equation is the quadratic loss multiplied by the noise,
while the second part encourages the noise to grow. In contrast to the
original equation from Gal et al. [42], I made some practical adjustments.
Although important for theoretical implications, in practice the constant
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part (d/2 log2π) can be left out, since the dimensionality d is static. Since
rounding to zero errors appeared, I added a plus one to the noise at the
quadratic loss part to prevent a numerical overflow of the noise function.
Note that the noise function must always be greater than 0, because neg-
ative noise makes no sense, which is why I applied the sof tplus activa-
tion [35] to the noise output layer. More calibration is applied after the
training with linear calibration.

Finally, here is a brief overview of the smaller details of the architecture:
I apply ReLU activation for conv and dense layers. For the bLSTM layer,
I use tanh as output and sigmoid as inner activation functions. After an
activation, there is always a batch normalization layer. Also, the outputs
of the two separate LSTM layers are concatenated. Dropout is employed
before every layer with trainable weights and set to a dropout probability
of p = .25, except after the input layer. Also, all trainable layers use a L2
regularization of 9e−11. The exPAA layer uses max as agg function, which
returns the maximal value of every feature across one part. I replaced mean
aggregation with max, because the features from the prior conv layers
are most prominent with high values. For pooling other researcher also
found that max gives superior performance [49, 102]. Since exPAA breaks
the time series equidistant of time steps, I used a bLSTM layer instead
of more convolutions. Also, the bLSTM layer offered a good prediction
performance in the previous architecture. The network uses no pooling
layers before conv layers, because 1D convolutions are fast to compute and
I do not want to lose information early in the network. To adjust the
gradient, I choose Adam [79] as optimizing algorithm with a learning rate
of l = 0.01. The chosen batch size is 256. Every prediction is calculated
by nMC = 150 MC runs.
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7.4 Experimental Analysis

I analyze the performance of MarineNet on the same combined dataset
of TSS and BEFmate as in Section 6.5. In this section, I describe the
design of the experiment, how I optimized hyper-parameters, and compare
MarineNet to the baseline bLSTM model from the previous chapter. The
focus lies on the impact analysis of the qDrop layer.

7.4.1 Design

The data is divided into the same 60%/40% parts as described in Sec-
tion 6.5.1. This is important for a fair comparison between my new architec-
ture with the previous bLSTM architecture. My qDrop layer is tested with
different settings for the quality exponent: ε ∈ {.0, .03125, .0625, .125, .25,
.5,1, inf}. I mainly consider exponents smaller than one, since the values
of the quality input matrix P are small, and exponents higher than one
would increase the dropout chance even further. Moreover, the setting
ε = .0 performs no dropout at the qDrop layer and will be the standard
model to compare to. If ε = inf, the imputed values are dropped entirely.

Each model is trained for 200 epochs, whereby the final weights are
chosen w.r.t. the lowest error on the validation set. A model chooses its
validation set uniformly at random from the training set. In addition to the
random validation time steps, the next 144 steps (24h) are also selected.
This time frame represents two tidal cycles and helps to predict all phases
of the cycle, not only the most often. To be able to run statistical tests
with sufficient reliability, I repeated each run 40 times.

For the analyses, I apply two measurements. The point prediction per-
formance is measured with the RMSE (see Equation 6.4). I also take into
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account the standard uncertainty interval:

1
n

n∑
t=1

√
Ṽar[yt] , (7.2)

with number of patterns n and the predictive variance Ṽar[yt] from Equa-
tion 5.15. The performance of the uncertainty interval in combination with
the point prediction can be represented with the Brier score [21]:

Brier score = 1
|i|

∑
i∈i

(acc(i)− i)2 , (7.3)

with the mean accuracy acc(i), which defines the percentage of values that
should fall within the Gauß distribution of errors. I calculate the mean
accuracy at percentage i ∈ (0,1) over all n patterns:

acc(i) =
1
n

n∑
t=1

(
|yt −E[yt]| ≤

√
Ṽar[yt] ·

√
2 · erf−1(i) · s

)
, (7.4)

with erf−1 being the inverse Gauss error function and s being a scaling
factor that is set to one in the beginning. The examined percentages are:
i = (.55, .6, .65, .7, .75, .8, .85, .9, .95, .999). I am not interested in intervals
with less than 50% accuracy, since they are equal or worse than random.
Moreover, 100% accuracy is also uninteresting since a large interval will
always cover all targets. The Brier score is especially important to analyze
the uncertainty calibrations. A smaller Brier score, standard uncertainty
interval, or RMSE reflect a better performance for their respective prop-
erty.

In addition to finding a good loss/uncertainty trade-off, I calibrate the
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Figure 7.4: On the left side, different settings for the loss trade-off variable α for the
speed sensor in a calibration plot are shown. On the right side, the linearly scaled uncer-
tainty is presented. Note that # is short for “number of”.

model on the training data by setting the scale variable s to:

s =
1

ntrain

∑
i∈i

acc(i)
i

. (7.5)

Both, the Brier score and the uncertainty interval are tested with and
without scaling, which are referred to as scaled and unscaled.

Again, the one-sided Mann–Whitney U test is employed as statistical
test. When the results contain differences with a p-value below 0.05 and
a respected critical value, I call it significant. The critical U value with
40 runs for each condition, a standard score z of 1.64, and a significance
level of 0.05, is 629.07.

7.4.2 Hyper-parameter Optimization and Calibration

I adhere to the best practices for acquiring good hyper-parameter settings
from [14, 125]. To that end, I only optimize on the training data, whereby
the first 70% are used for training and the rest for validation. The models
for optimization are trained in only 40 epochs and with 30 repetitions.

The first step is the choosing of exPAA parameter settings. I analyze
each target sensor individually. Following parameter values are tested and
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Table 7.2: Choice of optimized parameter settings for MarineNet.

Sensor #Steps δ #Parts δ′ Exponent e Trade-Off α

Speed 144 18 2.0 .0025000
Temp 72 18 2.0 .8000000
Conductivity 72 8 1.5 .7500000
Pressure 144 18 2.0 .9999975
Direction 144 8 1.5 .0000050

then chosen w.r.t. the lowest RMSE: time frame width δ ∈ {18(3h), 42(7h),
72(12h), 82(13.6h), 144(24h)}, reduced steps δ′ ∈ {4, 8, 10, 18, 42}, and
exponent e ∈ {1, 1.5, 2}.

The second optimization calibrates the prediction uncertainty to cor-
respond to the expected uncertainty with the loss trade-off parameter α.
Here, I select the parameter that produces the model with the lowest Brier
score. Figure 7.4 presents the impact on the scaling for various values of
α. My optimized parameter choices are shown in Table 7.2.

7.4.3 Comparison to The Baseline Model

Figure 7.5 displays a comparative box plot of the RMSE from the MarineNet
and the bLSTM architecture. The increase in performance is 5.62% for
Speed, 52.16% for Temp, 10.39% for Conductivity, 23.24% for Pressure,
and −1.73% for Direction. These values are all significantly lower, except
for Direction, where no statistical difference can be observed. Neverthe-
less, the minimal RMSE for Direction is more than five degrees lower with
MarineNet. This indicates a higher potential for good performance, which
can not be achieved consistently with the current configuration.
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Figure 7.5: Comparing the RMSE of MarineNet and the baseline models. The median
error values are written in gray boxes.
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Figure 7.6: Visualized uncertainty for Conductivity measurements. The left side has high
and the right side lower confidence.

7.4.4 Analysis of Predictive Uncertainty

To highlight the predictive uncertainty, I show two different Conductiv-
ity predictions in Figure 7.6. These plots are comparable, although they
have different value ranges because both predictions are in a value range
of eleven. If compared to the training distribution of Conductivity (see
Figure 2.5), I realized that the first plot is closer to the training distribu-
tion than the second. This explains the larger distribution of individual
MC runs and the resulting greater uncertainty interval band. A further
observation on the predictive uncertainty is the small model noise at the
beginning and end of a measurement cycle. This is depicted in Figure 7.7.
I assume that this is correlated with the fact that most tidal cycles have
similar initial and final conditions. For example, the water level is rising
from zero to a maximum flood height and then falling back to zero.

In my analysis the performance of linear scaling is neither good nor
bad (see Figure 7.8). While the standard uncertainty interval is smaller,
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Figure 7.7: The top presents an uncertainty prediction example for the Speed measure-
ments. The bottom shows the corresponding noise function g.

the Brier score is larger for the Speed models. The results for Temp and
Conductivity are consistently negative. Again, this could be caused by the
different densities in training and test sets (see Figure 2.5), which then
lead to overfitting. Consistently positive, however, are the linear scaling
results for Pressure. For Direction, only the standard uncertainty interval
is larger.

7.4.5 qDrop Layer Analysis

In Figure 7.8 the different settings for the quality exponent ε are shown. In
general, the models perform worst that completely drop the imputed val-
ues (ε = inf ). These models perform equally to other models only in a few
cases. The comparison of the models with qDrop (ε ∈ {.03125, .0625, .125,
.25, .5,1}) with the standard models that drops no inputs is more interest-
ing (ε = .0). RMSE performance is significantly better for three sensors in
six cases: Speed ×1, Temp ×4, Pressure ×1. The RMSE for Conductivity
and Direction never shows significant differences. The scaled standard un-
certainty interval provides values that are significantly lower in nine cases
for three sensors: Speed ×5, Pressure ×1, Direction ×3. For the unscaled
width of the standard uncertainty interval, nine occurrences show signifi-
cantly lower values for three sensors: Speed ×6, Pressure ×1, Direction ×2.
In seven cases, the scaled Brier score is significantly lower for four sensors:
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Figure 7.8: Comparing performance of qDrop settings in a box plot. The columns show
the target sensors and the rows different quality measurements.

Speed ×1, Temp ×4, Pressure ×1, Direction ×1. Seven times the unscaled
Brier score is significantly better for three sensors: Speed ×2, Temp ×4,
Pressure ×1. It is important to note that the models without input quality
based dropout could in no case perform significantly better than the mod-
els with qDrop. Their results are either worse or equal to qDrop models.
Especially interesting is that the standard model is always beaten for the
unscaled Speed sensor model with ε = .25.
For the stability analysis, I divided the test set into five parts. The results
are presented in Figure 7.9. I compared the qDrop model with the lowest
RMSE to the model trained without qDrop. Only the unscaled standard
uncertainty interval and Brier score are utilized because the scaled results
in Figure 7.8 showed dissatisfying results. To have a more meaningful
RMSE for the parts, I normalized it by dividing with the standard de-
viation of the part values. For Speed and Pressure, the Brier score and
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Figure 7.9: Box plots about the five parts of the validation set. Depicted is the predic-
tion performance of the MarineNet architecture in comparison to the baseline architecture.
The columns show the target sensors and the rows different quality measurements.

standard uncertainty interval are decreasing, while the RMSE increases.
This is interesting because the accuracy increases, although I have a nar-
rower prediction band and a poorer point prediction. The Temp models are
relatively stable in Brier score and standard uncertainty interval, but the
normalized RMSE is fluctuating. Conductivity is similar, but the RMSE
fluctuations are so strong, the Brier score also becomes irregular. I theorize
that these irregularities are due to the sensor drifts that are more frequent
in these parts. The standard uncertainty interval for the Direction models
is stable and the RMSE only deviates in the fifth part. The Direction
measurements for the fifth part also shows a significantly higher standard
deviation σ : 95.74, 96.83, 98.45, 99.05, 109.88.

To gain deeper insights into the trained weights, the first conv layer is
well suited. This first ’’squeeze” layer reduces the dimensionality in fea-
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ture space and the learned filter weights offer some intuition about feature
importance. To that end, I show heat maps of the learned weights in Fig-
ure 7.10. The filter weight for each sensor come from models with activated
qDrop layer. I show the minimum and maximum weights over all filters as
an aggregation. Moreover, the Spearman correlation of the original feature
to the target sensor is displayed. Although the correlation information is
not given directly to the models, they often learned them. This can be seen
in the target Pressure sensor that has high weights and correlation with the
PRES_1 (11.5m) sensor from the TSS, which is only missing 4.5% of its
values for longer than one time step. But in another case, Temp does not
utilize the Temperatur sensor heavily and this input sensor needed 26.8%
of its values to be imputed. Further, there are indications for apparent
non-linear correlations, because some weights are high although there is
no linear correlation between them. For example the target Speed and the
input Tdslope or Height sensors show these non-linear correlations. Dead
neurons are weights that are close to zero, even after training. These dead
neurons do not seem to exist in my models. Only the Pressure model could
be afflicted, but the heat maps color scaling is dominated by the extreme
high weights for PRES_1 (11.5m), which complicates an analysis there.

7.4.6 Discussion

With the presented results, I can empirically support my claim that MarineNet
can handle this virtual sensor task better than the baseline bLSTM model.
My new architecture needs fewer trainable weights and has a lower recur-
sion depth, but still is able to achieve lower RMSE values. Except for
the Direction sensor, where the results are equal for the point predictions.
Although the baseline model and MarineNet both use exPAA, the results
suggest that my new architecture learns more effectively, with more past
steps δ, and with more reduced time steps δ′ than the old one. Through
the analysis of the first “squeeze” layers, I found that MarineNet learns
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linear as well as non-linear correlations. Another important result is the
access to predictive uncertainty in order to assess the reliability of the
models, but the search for the trade-off parameter α is computationally
expensive.

The advantages of employing the qDrop layer over ignoring the input
quality information are substantial. This reinforces my claim that qDrop
can increase the models performance, because the point predictions show
lower error as well as the predictive uncertainty predictions are narrower or
more accurate. I could also show that input sensors with high correlations
to the target sensor are less important when they are affected by a large
amount of missing value gaps. In general, MarineNet prefers complete and
highly correlated data. One drawback is the dependence on information
about the input quality. For other scenarios, information such as decay of
sensors or failure probabilities could be used.

I created models that remain stable over time, although the amount
of data is limited. Even when the RMSE got worse, the Brier score and
uncertainty interval are able to reflect these uncertainties. Nevertheless,
more data could lead to a better model and more insights. For example, the
generalization capabilities would improve with more seasonal data. These
seasonal data would be particularly beneficial for Temp and Conductivity
models, as they are highly dependent on the seasons.
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7.5 MarineNet Upgrade

While analyzing the performance of MarineNet, I discovered two shortcom-
ings. The first one is the lack of interpretability which part of the time
series contributes most to the final results. This is important information
as it could be the basis for the split calculations of exPAA. The second
shortcoming is the required optimization for the trade-of parameter α of
the loss function. To solve these, I slightly update the architecture and
training process of MarineNet. Below, I present these changes and show
the results in an experimental evaluation.

7.5.1 Architectural Changes

To achieve higher interpretability, I replace the dense layer by a conv layer
with a kernel of size one (conv1 layer) and an averaging of the outputs over
the steps. This is motivated by Iandola et al. [68] and Lin et al. [90]. A
consequential change is that instead of the last output of the bLSTM layer,
the complete series is propagated. Previously, this was not possible because
the number of weights would have been tied to the number of exPAA parts,
which I wanted to avoid. With the conv1 layer, such a restriction is not
present. Interesting are the activations of this conv1 layer, as they show
which part influences the prediction most. Since these activation steps
are averaged to one step and then only linearly combined, one can get
indications of the contributions of a step.

Since the bLSTM layer now outputs a series, I can add shortcuts after
this layer. To be compatible, exPAA is applied to the shortcut outputs
and then a conv1 layer balances the number of neurons. Also, additionally
to the shortcut route after the fire-modules, there is another route right
after the squeeze layer of each module. Further, instead of only adding
the last layers output, I add all the previous shortcuts of a route to the
next start of a shortcut. I drew inspiration for these dense shortcuts from
Zhang et al. [154] and DenseNet by Huang et al. [63].

The number of kernels inside a fire module is now 64 for each conv
layer, before the squeeze layer employed 48 neurons. I reduced the number
of neurons in the bLSTM from 512 to 392. The number of neurons of
the replaced dense, now conv layer remains 512. Overall, the amount of
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weights is reduced from 1145072 to 376188, which is factor of 3.04 less.
Compared to the bLSTM architecture, this upgraded architecture requires
a factor of 7.2 less weights. The general dropout probability is set to p = .5.
All architectural changes are shown on the right side of Figure 7.11.

7.5.2 Training of Accurate Uncertainty Predictions

The original training of the dynamic noise function happens simultaneously
with the point prediction. This has the downside that the actual scaling
of this function has to be determined by manually tuning the trade-off
parameter α.

To replace this hyper-parameter α and let the network optimizer deter-
mine the scaling of the noise function, I propose following changes: First,
the network is trained without the dynamic noise function g by minimizing
the MSE loss for the point prediction function f . Then, all weights are
frozen, which means they can no longer be changed by the optimizer. The
exception is the output layer for the noise function, which is now the only
trainable layer. Now, I only train the dynamic noise layer by minimizing
a new loss function:

Lunc := 2 ·max
(

Λ( 51
100 ) ·

(
51
100 − acc(

51
100 )

)2
, 0

)
+

∑97
i=53

∣∣∣∣∣ Λ( i
100 ) ·

(
i

100 − acc(
i

100 )
)2 ∣∣∣∣∣ ,

+ 2 ·max
(
− Λ( 99

100 ) ·
(
99
100 − acc(

99
100 )

)2
, 0

) (7.6)

Λ(i) defines the difference to the absolute prediction error and the uncer-
tainty interval at i percent accuracy:

Λ(i) :=
∣∣∣E[y]− y∣∣∣−√Ṽar[y] ·

√
2 · erf−1 (i) , (7.7)

with inverse Gauss error function erf−1, ensemble predictive mean E[y],
ensemble variance Ṽar[y], and accuracy acc(i) (Equation 7.4). Since the
network only trains the noise output layer, the acquisition of the ensemble
mean and variance by running the network multiple times without adjust-
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ing the weights is not computationally expensive.
Without acc(i), the optimization would favor a calibration to 75% ac-

curacy because the actual accuracies are not taken into account and the
network finds its optimum between 51% and 99%. In the here used accu-
racy function, the number of patterns n are the batch size m (n :=m). The
acc(i) function cannot be used alone, since it is not differentiable, because
of the logical operator (≤).

The first and third row of Equation 7.6 can be seen as bounds, since
they only increase in value when they fall below or exceed their respective
accuracy of 51% and 99%. This is the same accuracy range that I consider
for the Brier score (see Section 7.4.1). To increase the importance of these
bounds, I doubled their output. The middle row contains points to support
a good fit to individual accuracies between the bounds.

7.5.3 Experimental Evaluation

I conduct an experiment to compare the upgraded MarineNet to the origi-
nal one, analyze the impact of parts from the time series on the prediction,
and evaluate the automatically learned dynamic noise function. The same
splitting of training and test data as before is utilized. Optimization is also
the same with the removal of the trade-off parameter α and the addition
of the qDrop exponent ε to the set of hyper-parameters. See Table 7.3 for
exPAA and ε settings. I repeat the final model runs 30 times.

Again, if the one-sided Mann–Whitney U test results show a p-value
below 0.05 and the U value is below or equal the critical value, I call it
significant. The critical U value for 40 runs with MarineNet and 30 runs
with the upgraded MarineNet, a standard score z of 1.64, and a significance
level of 0.05, is 600.

In Figure 7.12 the best runs of MarineNet are compared to the upgraded
models in box plots. The first row of plots shows the RMSE, which is signif-
icantly lower for Temp, Conductivity, Pressure, and Direction. I also found
a significantly lower RMSE score for Direction compared to the bLSTM
architecture from the previous chapter, when the original MarineNet did
not improve. For the Brier score, the results of Temp, Conductivity, and
Pressure are better, while there is no distinctable difference for Direction.
A significantly lower standard uncertainty interval for Pressure and Speed
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Table 7.3: Choice of optimized parameter settings for the upgraded MarineNet.

Sensor #Steps δ #Parts δ′ Exponent e Quality exp.ε
Speed 72 4 2.0 .25
Temp 36 4 2.0 .0625
Conductivity 18 8 2.0 .03125
Pressure 36 8 1.5 .25
Direction 72 8 1.5 .25

is good for the former since the Brier Score is also lower, but the interval
for Speed is too small according to the worse Brier score. The Speed mod-
els do not show better Brier score or RMSE results and the statistics will
not allow further comparison (exceeded critical U value). The results for
the linear calibrations show similar results to previous experiments; linear
scaling is only significantly better for Pressure, the other results are equal
or worse than the unscaled interval. To summarize, all except the Speed
sensor model benefit from the changes made to the MarineNet architecture
and training process.

With Figure 7.13, I demonstrate the added interpretability coming from
the changed architecture in letter value plots [61]. It shows the activation
distribution across the parts for Speed, Conductivity, and Direction. One
entry to the distribution consists of the average output from the 512 filters
per part. I uniformly sampled patterns from the training and test set to
create the shown figure. The boxes define the observed quantile areas, the
widest box covers the quartiles between 25% and 75%. Note that these
parts do contain a different amount of real time steps, since the exPAA
layer is applied before. For the Speed activations, which cover three hours
in four parts, the importance increases with later parts. The Conductivity
activations behave differently in their three hour time frame with eight
parts, the first and the last four parts have relatively high impact. In
the twelve hour frame with eight parts of the Direction model, the most
important parts are the last three, although the last one has lower impact
than the two previous ones. In effect, this visualization helps to understand
the impact of individual parts. Often the last parts are most important,
but other parts hold valuable information as well.
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Figure 7.12: Comparing performance of MarineNet and upgraded MarineNet with box
plots. The columns show the target sensors and the rows different quality measurements.
MarineNet parameter settings with lowest RMSE are chosen for comparison.

7.6 Conclusion

With the MarineNet architecture, I improved and added to the previous
bLSTM architecture. First, I included convolutional modules that filter
the time series and showed that the used input sensors are often linearly,
but also non-linearly correlated. Second, the model certainty is now avail-
able as part of the network output with uncertainty predictions. These
innovations help to improve on the results from the previous chapter with
a RMSE up to 52.16% lower than before. The input quality based dropout
with qDrop offers more improvements to RMSE and reliable model uncer-
tainty predictions. Beside the lower error rate, my models require 2.365
times less trainable weights and 66.66% fewer recursions than the previ-
ous models. This allows for more training in less iterations and again
shows that the right network architecture can have a greater impact than
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Figure 7.13: Impact of different parts on prediction presented in letter value plots [61].
Mean activation output distributions of last conv1 layer (y-axis) for three of the sensors.
The x-axis shows the parts that each contain a different amount of time steps due to
different exPAA settings.

the amount of used weights. Nevertheless, the tuning of the trade-off pa-
rameter α for the uncertainty prediction is difficult and requires many
optimization runs.

By introducing a new loss function and a change to the training process,
I am able to eliminate the need to find the trade-off parameter α. Further,
through a small upgrade to the architecture by adding more shortcuts
as well as replacing the dense layer with another conv layer, I have cre-
ated better and smaller models for four of the five sensors. The highest
improvement in RMSE is achieved by Conductivity with a 16.61% lower
error compared to the first MarineNet. These changes provide insights into
which part of the time series contributes the most to the networks output.

Although the architecture is created to solve the virtual sensor task of
my marine dataset, it is flexible enough to be applied to other time series
tasks. For example, the input quality information does not have to be
imputation quality, other quality information can be used as well. The
number of fire-modules has to be adjusted for the time resolution and the
kind of features a practitioner wants to find.
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Part III

Conclusion and Outlook

In this last part, I summarize the contributions of this work and outline
limitations as well as possibilities for future research.
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8
Conclusion

8.1 Summary

The ever growing amount of data is a prevailing trend in all applications.
In the marine observation domain, a growing infrastructure of sensors mea-
sures data that is unprocessable manually. Moreover, although these sen-
sors are robust, they eventually break due to the challenging environment.
In this thesis, I focused on creating models to replace a broken flow sen-
sor based on its surrounding sensors. These models build upon machine
learning, the automatic learning of models from data without extensive
domain knowledge. A machine learning model can perform a variety of
tasks, making this field nearly universally applicable. In the following, I
summarize the contributions of my thesis.

8.1.1 Part I: Dataset and Preprocessing

Part I focuses on the description and preprocessing of the data. First,
I introduce the data from the TSS and BEFmate project in detail. This
marine domain is challenging due to the dynamics created by the tides and
seasonal influences. Ideally, neural networks need no preprocessing, but
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some adjustments and modifications are necessary. In particular, besides
general preprocessing, I correct drifts with statistical methods for sensors
afflicted by biofouling.

As next step, I detect extreme events in the TSS data, which are evalu-
ated by an expert round. To that end, I apply LOF with different feature
handling methods to acquire an outlier score for each time step. The ex-
treme events are then chosen with a top-k approach called top-k-time that
reduces the detection of the same events within certain periods. A high
true-positive rate underlines the usefulness of this extreme event detection.
Moreover, a new visualization based on four reduced features calculated
by ISOMAP is introduced.

The last contribution of this part is the penalized DTWkNN ensemble
with a linear interpolation step, a novel approach to fill longer gaps in
data. I evaluate this aproach in a comparison to state-of-the-art methods
on 16 different and unrelated datasets. The results show that other ma-
chine learning approaches suffer from under-fitting as the damaged train-
ing dataset misses more values. In addition, my ensemble aproach has
prevailed on most datasets when values for longer periods are missing.

8.1.2 Part II: Virtual Sensors with Deep Learning

In Part II, I create a virtual sensor of the dataset from the previous part
based on deep learning techniques. To understand these techniques, I first
introduce the basic as well as advanced concepts of deep learning used
throughout this work. In recent years, the computational power became
available to create deep neural networks, which led to a revival of machine
learning with neural networks. This also accelerates the research in this
area and new concepts emerged, such as dropout and batch normalization.

Thereafter, the first iteration of a deep learning architecture to model
the failed flow sensor is presented. It gives important insights about the
viability of the approach and how to further improve the architecture. The
architecture is based on powerful albeit computationally expensive bLSTM
layers. These layers learn from previous time steps, but in my marine
application, the most recent steps hold the most information. To amplify
the focus on this information, I introduce exPAA, a time dimensionality
reduction method that retains fine details of recent values and coarser
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details of more distant steps. This method yields good results as long as
the assumption of declining information gain for older values holds true.

Finally, I propose various extensions for the architecture, which lead
to the MarineNet architecture. These include the integration of convolu-
tional layers to automatically learn features of higher abstraction. Further,
predictive uncertainty through dropout MC predictions give insight about
the reliability of the model. These additions show significant improvements
over the first architecture. Then, the input quality is taken into account
with a newly introduced input quality based dropout layer. In my case
this quality is described by the number of consecutively imputed values.
This supports the training phase of the models as they rely less on sen-
sors that often fail and are able to compensate these failures with other
sensors. An interesting finding is that it is better to impute the missing
value and drop them in some MC runs than to ignore them completely.
Then, based on the experiments results, I slightly changed the architec-
ture and thus improved results while decreasing the number of weights for
four of five sensor models. These changes also include the removal of a
hyper-parameter by integrating it within the training process and observ-
able impact of parts from a time series on the prediction. In summary, the
created models based on the MarineNet architecture show good prediction
results and provide valuable information about the predictive uncertainty.

8.2 Limitations and Outlook

Next, I will describe some of the limitations of this work. When appropri-
ate, I will add ideas for future research.

A limitation that is always present in machine learning applications is
the amount of data or rather the lack thereof. The widespread stigma that
more available data corresponds to a better model, is true only to a certain
extent. If the new data does not provide new information, they add no
new value to the model. My virtual sensor model is trained on around 6.5
months of data. If the model were trained on the full dataset of about
a year, it may generalize better. Nonetheless, more data from different
seasonal events could create a better model. It would be interesting to
evaluate the model with new data. One could consider unsupervised pre-
training for the sensors that are available for longer periods, such as the
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TSS sensors.
The extreme event detection is limited to my general definition of ex-

treme events. Although each expert found one or more events that they
are interested in, a specialization to an expert could produce better results.
Further, the approach is unsupervised at the moment. The results on un-
explored periods could also be improved through semi-supervised learning
approaches, since a limited set of labeled events is now available.

The imputation quality of the DTWkNN ensemble depends on the win-
dow width with which the patterns are compared. This is a fixed setting
and can be a limitation, since each dataset, feature, and missing reason
requires a different value for the setting. Ideally, the window width setting
would be flexible during the imputation process. One could cluster missing
values beforehand and then optimize DTWkNN ensembles for each cluster,
but this approach is computationally expensive. Future work could also
explore other preprocessing steps, such as splines, since depending on the
properties of the data, linear interpolation can be a poor choice.

The assumption of exPAA that recent values contain more relevant in-
formation than earlier ones may also be a limitation. Although I was able
to improve my results with exPAA over normal PAA, dynamic parts could
be useful as different or more specific assumptions could apply depending
on the situation. But there is an open question regarding how to calcu-
late the splits and when the calculations should be performed. It might
be worth to study attention mechanisms [148] and apply them to exPAA
without or only a small increase in the computational costs. Another ap-
proach might be to analyze the activations from the last conv layer of my
updated architecture, because it contains information about the impact of
individual time steps for a prediction.

At the moment, the MarineNet architecture is robust to temporary fail-
ure of sensors, but it does not consider permanent failures of any of the
input sensors. One approach could be to always apply dropout to these
missing sensors, which should still provide a useful prediction depending
on the relation to the target sensor. Another approach could be to replace
this sensor with another virtual sensor, although this is only reasonable as
long as there are enough real sensors available. A more flexible approach,
which could also integrate new sensors, could be to reinitialize the network,
but also reuse the old weights via transfer-learning [151]. If a new sensor
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is added, the number of neurons could also be increased. Exploring these
approaches could benefit a system like this that will be modified due to
maintenance or installation of new equipment.
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B
Implementation

The main programming language used is Python 3. For my DTW im-
plementation Cython [13] is employed for a fast runtime. Otherwise, all
implementations are based on one or more of the following frameworks:

• SciPy [73]
– NumPy [143]
– IPython [116]
– Matplotlib [65]
– pandas [97]
– scikit-learn [114]

• TensorFlow [1]
• Keras [26]
• seaborn [144]
I thank all open source contributors for their work.
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p penalty vector

pquality quality vector
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Notation

In this work, I use the following notation.

• Scalar values are denote as lower case letters (e.g. x);

• Vectors as bold lower case letters (e.g. x);

• Matrices as upper case letters (e.g. X).

The subscript t of a vector xt references to its temporal position in the
training set (t ∈ (1, . . . ,n)). The subscript i of a vector xi references to a
scalar at that index. For a matrix Xi,j , the subscripts i and j refer to the
row and column elements, respectively. Further, a matrix Xi:i′ ,j returns a
vector from row i to i′ of column j. A matrix is returned, if both subscript
indices are ranges (e.g. Xi:i′ ,j:j ′). If a matrix Xi:,:j is given, a matrix from
row i to the last row and from the first column to column j is returned.
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