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Chapter 1

Introduction

Theoretical chemistry summarizes the field of developing and using software
to simulate chemical properties and reactions. These properties can for ex-
ample be reaction energies or barriers and all kinds of spectroscopic data.
Simulating these properties can save a lot of measurements and expensive
chemicals, when searching for new chemical compounds. Since large com-
pute servers are becoming cheaper and more powerful over the years, these
kind of simulations will become even more important in future research and
industrial applications.[1] The methods available for simulations can roughly
be divided into wave function and density based methods. Density based
methods try to predict the electronic density of a molecule by applying a
functional of the density. These functionals often contain empirical parame-
ters which are fitted to certain sets of molecules and properties. They work
very well for these molecules and properties but might get inaccurate for
extrapolations outside the set. Wave function based methods usually avoid
empirical parameters and are therefore generally applicable. However, they
often need much longer simulation times and demand significantly larger
computational resources.

Pair correlation approaches belong to the wave function based methods
and represent an efficient and accurate way to describe chemical properties
and predict chemical reactions by simulations.[2, 3, 4] However, their disad-
vantage is that a huge number of variables has to be optimized to achieve
this accuracy. The following manuscript introduces contracted pair correla-
tion methods. Contraction strongly reduces the number of variables which
have to be stored and manipulated, while maintaining a large fraction of the
accuracy of uncontracted pair correlation methods (see chapter 3). The pair
correlation wave functions under consideration can be reduced to configura-
tion interaction singles doubles.[2] We will leave out the single excitations at
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this point to reduce the complexity.

|Ψ(A)〉 = |Φ〉+
∑
ijab

Aabij |Φab
ij 〉 (1.1)

Here, |Φ〉 denotes the Hartree-Fock determinant and |Φab
ij 〉 are doubly excited

determinants. This ansatz introduces a huge number of variables, namely the
coefficients Aabij which need to be optimized and stored. In our new ansatz,
we introduce a contraction scheme which drastically reduces the number of
coefficients to be stored. The conventional coefficients Aabij are approximated
by a linear combination of integrals Aabij(B).

Aabij ≈ Aabij(B) =
∑
klg

Bklg
ij R

abg
kl (1.2)

The large number of Slater determinants Φab
ij are contracted by a weighted

sum over the virtual space a, b. The contraction coefficients are given by
the integral expressions Rabg

kl . Only the remaining coefficients Bklg
ij need to

be optimized to minimize the energy. They depend on the occupied space
i, j, k, l which is in general much smaller than the virtual space.

|Ψ(B)〉 = |Φ〉+
∑
ijklg

Bklg
ij |Ξ

klg
ij 〉

|Ξklg
ij 〉 =

∑
ab

Rabg
kl |Φ

ab
ij 〉 (1.3)

Here, Rabg
kl are defined as integrals over the operators f̂ g12, which are Gaussian

type two electron functions with different exponents and angular momenta.

Rabg
kl = 〈ab|f̂ g12|kl〉
f̂ g12 = x

ig
12 y

jg
12 z

kg
12 exp(−αg r2

12) (1.4)

The formal scaling of memory requirements can be drastically reduced using
this way of contracting the wave function. While uncontracted pair correla-
tion methods formally require 1

2
no(no + 1)n2

v variables to be stored, we only
need to store 1

2
no(no + 1)n2

ong variables (no number of occupied orbitals, nv
number of virtual orbitals, ng number of geminals). Note that the storage
requirement of the contracted approach is independent of the size of the vir-
tual space and thereby independent of the choice of the basis set (see figure
1.1). In combination with algorithms which use the short range behavior of
correlation effects (see chapter 2.3), this approach will lead to high accuracy
methods applicable to large molecular systems.

4



0 

10 

20 

30 

40 

50 

0 2 4 6 8 10 

N[million] 

n [CnH2n+2] 

contracted cc-pVDZ cc-pVTZ cc-pVQZ 

Figure 1.1: Formal number N of coefficients (Aabij or Bklg
ij ) which need to be

stored for the CnH2n+2 molecule using different basis sets [5] compared with
the contracted ansatz with two s- and p-type Gaussian geminals.[6]

To further improve on the accuracy of molecular properties one can extend
pair correlation methods by orbital optimization.[7, 8, 9, 10] This was e.g.
shown by Bozkaya et. al. for a test set of molecules and reactions using the
orbital optimized coupled electron pair approximation OCEPA(0).[7]. With
orbital optimized contracted pair correlation methods one can additionally
describe single bond breaking with high accuracy. This process is very im-
portant in many chemical reactions. Our novel contraction scheme can be
simply extended to this kind of wave functions.

|Ψ(B,κ)〉 = |Φ〉+
∑
ijklg

Bklg
ij |Ξ

klg
ij(κ)〉

|Ξklg
ij 〉 =

∑
ab

Rabg
kl(κ) |Φ

ab
ij(κ)〉 (1.5)

Here, we introduced the orbital rotation parameter matrix κ. The depen-
dency of the wave function on these parameters can be elegantly formulated
in second quantization, as shown in section 2.1.2. Details on the energy
optimization and the working equations can be found in chapter 4.

A very general problem of wave function based methods is the slow con-
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vergence of chemical properties (e.g. reaction energies) with respect to the
size of the one-particle basis set. To avoid usage of large and therefore compu-
tationally expensive basis sets, explicitly correlated methods were introduced
into electronic structure theory.[11, 12, 13, 14] We also extend our approach
to explicitly correlated orbital optimized contracted pair correlation methods
(see chapter 5). The contraction approach shown above is the basis for explic-
itly correlated wave functions. While in current explicitly correlated theory
the linear combination of Gaussian geminals is kept fixed[15, 16, 12, 13, 14],
we allow its optimization by the dependence of Bklg

ij on the geminal index
g and therefore increase the variational freedom of the wave function. The
ansatz for the wave function is modified in the following way:

|Ξklg
ij 〉 =

∑
ab

Rabg
kl |Φ

ab
ij 〉+

1

2
(
∑
PQ

RPQg
kl |Φ

PQ
ij 〉

−
∑
pq

Rpqg
kl |Φ

pq
ij 〉) (1.6)

The indices p, q correspond to the current basis set while the capital P,Q
introduce a complete one particle basis. This complete one particle basis
introduces new integrals over Gaussian geminals into the working equations.
The explicit calculation of these new integrals drastically improves on the
basis set convergence. Note that if the basis set becomes complete p → P ,
the last part of the wave function vanishes and we return to the conventional
ansatz of contracted pair correlation methods.

All these features of our new ansatz for the wave function will be discussed
in detail in the remainder of this manuscript. However, we would first like
to present a short introduction of the basic theory for non-expert readers in
the following chapter.
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Chapter 2

Theory

In the following chapters we would like to discuss the mathematical details
which are necessary to solve the equations given in the main part. For a more
detailed overview the reader is referred to the literature.[17] We present the
usefulness of second quantization to derive the working equations and how to
optimize the energy using Newton and quasi-Newton methods. The common
index conventions are adopted for this purpose. The indices ijkl label the
occupied space, while abcd labels the virtual space. The labels PQRS are
used for the complete one particle basis and pqrs label the basis used for
actual computations, consisting of the occupied and the virtual space.

2.1 Second Quantization

A necessary condition for a wave function of fermions is the Pauli-principle.
It states, in mathematical sense, that the wave function has to be anti-
symmetric with respect to the permutation of two electronic coordinates. A
simple ansatz for this condition is to describe the wave function as a determi-
nant or a linear combination of determinants constructed from the molecular
spin-orbitals φi(i). The number of orbitals and electrons is abbreviated by
n = nele.

|Φ〉 = || . . . φi . . . |〉 =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) . . . φ1(i) . . . φ1(n)
...

...
...

φi(1) . . . φi(i) . . . φi(n)
...

...
...

φn(1) . . . φn(i) . . . φn(n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.1)
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The permutation of two electrons then corresponds to the interchange of
two rows or columns in the matrix. A property of determinants is that this
results in a change of sign. Second quantization represents a very elegant way
to simplify the solution of equations containing integrals over determinants.
Since this is the main task when deriving new wave function based electronic
structure methods, it is broadly applied in this field of theoretical chemistry
and will be summarized here. In contrast to physics where the reference state
often is the vacuum state |〉, we normally use the Hartree-Fock determinant
|Φ〉 as a reference.

|Φ〉 →
nele∏
i=1

a†i |〉 (2.2)

The operator a†i is called creation operator. Its action upon the vacuum
state will create the state i in the vacuum state |〉 which belongs to the
orbital φi in first quantization. The product of all creation operators of the
occupied space will then create all occupied states from the vacuum state.
The resulting expression is the second quantization representation of the
Hartree-Fock determinant |Φ〉 and is called a state vector. The creation
operators have special properties to ensure the anti-symmetry relations to
be preserved. The permutation of two electrons can be translated to the
interchange of two creation operators.

|| . . . φj . . . φi . . . |〉 = − || . . . φi . . . φj . . . |〉
. . . a†j . . . a

†
i . . . |〉 = − . . . a†i . . . a

†
j . . . |〉 (2.3)

This holds due to the anti-commutator property:

a†Pa
†
Q = −a†Qa

†
P ; i.e. [a†P , a

†
Q]+ = 0 (2.4)

of the creation operators and ensures that the Pauli-principle will always
be fulfilled. For the definition and solution of integral expressions we will
need some additional operators and properties. The adjoint of the creation
operator a†P is called annihilation operator aP . If it acts upon a state vector
containing the one-particle state P , this state will be annihilated. In the first
quantization picture, the corresponding row and column would be removed
from the determinant. If aP acts upon a state vector which does not contain
the one-particle state P , the state can not be removed and the result will be
zero. Similarly, if a†P acts upon a state vector which already contains the one-
particle state P , the result will be zero. Translated to first quantization this
corresponds to a determinant where two rows or columns are equal violating
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the Pauli-principle.

aP |Φ〉 = 0 P /∈ {occupied}
a†P |Φ〉 = 0 P ∈ {occupied} (2.5)

The same holds for the adjoint of the expressions above, namely:

0 = 0† = (aP |Φ〉)† = 〈Φ| a†P P /∈ {occupied}
0 = 0† = (a†P |Φ〉)

† = 〈Φ| aP P ∈ {occupied} (2.6)

We will additionally need the rule resulting from creation and annihilation
operators acting upon each other, namely:

a†PaQ = δPQ − aQa†P ; i.e. [a†P , aQ]+ = δPQ (2.7)

Note that this rule only holds if the one-particle basis is orthonormal. With
these three simple operator properties (cf. equations 2.4, 2.5 and 2.7) we can
now derive all equations needed in wave function based electronic structure
theory. Before we start evaluating integrals over determinants, we have to
define the representation of an operator in second quantization.

ô1 →
∑
PQ

〈φP |ô1|φQ〉 a†PaQ

ô12 →
∑
PQRS

〈φPφQ|ô12|φRφS〉 a†Pa
†
QaSaR (2.8)

Note that the indices PQRS span the complete one-particle basis. A similar
expression in first quantization can be defined by using the projection opera-
tor of the complete one-particle basis. In any Hilbert space the sum over the
dyadic product of all orthonormal basis vectors reduces to a unity operator
defined within this Hilbert space. In Dirac notation with the orthonormal
one-particle basis this results in:

1̂1 =
∑
P

|φP 〉 〈φP |

ô1 =
∑
PQ

〈φP |ô1|φQ〉 |φP 〉 〈φQ|

ô12 =
∑
PQRS

〈φPφQ|ô12|φRφS〉 |φPφQ〉 〈φRφS| (2.9)
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Now, we need to integrate these expressions using a specific wave function
Ψ.

〈Ψ|ô1|Ψ〉 =
∑
PQ

〈φP |ô1|φQ〉 〈Ψ| |φP 〉 〈φQ| |Ψ〉

=
∑
PQ

〈φP |ô1|φQ〉 〈Ψ|a†PaQ|Ψ〉

=
∑
PQ

〈φP |ô1|φQ〉 γPQ

〈Ψ|ô12|Ψ〉 =
∑
PQRS

〈φPφQ|ô12|φRφS〉 〈Ψ| |φPφQ〉 〈φRφS| |Ψ〉

=
∑
PQRS

〈φPφQ|ô12|φRφS〉 〈Ψ|a†Pa
†
QaSaR|Ψ〉

=
∑
PQRS

〈φPφQ|ô12|φRφS〉ΓPQRS (2.10)

Here, an exact identity holds and |Ψ〉 represents a function in first quanti-
zation and a state vector in second quantization. The transition between
first and second quantization is therefore given by the first order (γPQ) and
second order (ΓPQRS) reduced density matrices. To illustrate how the simpli-
fication of those density matrices in second quantization works, we will use
the Hartree-Fock determinant as a wave function Ψ = Φ.

γHFPQ = 〈Φ|a†PaQ|Φ〉 (2.11)

We may first use equation 2.5 and see that only orbitals from the occupied
space can be annihilated to the right hand side, since only they are included
in the state vector |Φ〉. The same holds for the adjoint expression 〈Φ| a†P :

γHFPQ = δPiδQj 〈Φ|a†iaj|Φ〉 (2.12)

We may then apply equation 2.7 to move the creation operator to the right
hand side:

γHFPQ = δPiδQj 〈Φ|δij − aja†i |Φ〉
= δPiδQj(〈Φ|Φ〉 δij − 〈Φ|aja†i |Φ〉) (2.13)

Since the state i is already existent in the state vector |Φ〉 the last term is zero
(see eqn. 2.5). Using the fact that the state vector is normalized 〈Φ|Φ〉 = 1,
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we arrive at the final expression.

γHFPQ = δPiδQjδij

〈Φ|ô1|Φ〉 =
∑
PQ

〈φP |ô1|φQ〉 δPiδQjδij

=
∑
ij

〈φi|ô1|φj〉 δij

=
∑
i

〈φi|ô1|φi〉 (2.14)

This corresponds to the expectation value of a one-electron operator with
the Hartree-Fock wave function in first quantization. One can derive the
expectation value of the two electron operator applying the same simple
rules.

ΓHFPQRS = 〈Φ|a†Pa
†
QaSaR|Φ〉 (2.15)

Note that for the first step, equation 2.4 will additionally be used:

ΓHFPQRS = δPiδQjδRkδSl 〈Φ|a†ia
†
jalak|Φ〉

= δPiδQjδRkδSl(〈Φ|a†iak|Φ〉 δjl − 〈Φ|a
†
iala

†
jak|Φ〉)

= δPiδQjδRkδSl(〈Φ|Φ〉 δjlδik − 〈Φ|aka†i |Φ〉 δjl − 〈Φ|a
†
iala

†
jak|Φ〉)

= δPiδQjδRkδSl(δjlδik − 〈Φ|a†iala
†
jak|Φ〉)

= δPiδQjδRkδSl(δjlδik − 〈Φ|a†ial|Φ〉 δjk + 〈Φ|a†ialaka
†
j|Φ〉)

= δPiδQjδRkδSl(δjlδik − 〈Φ|Φ〉 δjkδil + 〈Φ|ala†i |Φ〉 δjk)
= δPiδQjδRkδSl(δjlδik − δjkδil) (2.16)

We may use this simplified expression for the density matrix to calculate
the expectation value of a two electron operator with the Hartree-Fock wave
function:

ΓHFPQRS = δPiδQjδRkδSl(δjlδik − δjkδil)

〈Φ|ô12|Φ〉 =
∑
PQRS

〈φPφQ|ô12|φRφS〉 δPiδQjδRkδSl(δjlδik − δjkδil)

=
∑
ijkl

〈φiφj|ô12|φkφl〉 (δjlδik − δjkδil)

=
∑
ij

〈φiφj|ô12|φiφj〉 − 〈φiφj|ô12|φjφi〉 (2.17)

This procedure also works for any linear combination of determinants in the
reduced densities. Even for this general ansatz, the order of simplifications
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can be used as defined above, and the aim is to get all creation operators
to the right hand side and all annihilation operators to the left hand side.
Eventually, only overlap elements and zero contributions remain, and the
integral expressions can be simplified.

2.1.1 Excited Determinants

This work extends the applicability of pair correlation methods. The most
primitive ansatz for a pair correlation wave function is named configuration
interaction singles doubles (CISD):

|ΨCISD〉 = |Φ〉+
∑
ia

Aai |Φa
i 〉+

∑
ijab

Aabij |Φab
ij 〉 (2.18)

The determinants Φa
i and Φab

ij are called singly and doubly excited deter-
minants. This name results from the idea that an occupied orbital φi with
low energy is replaced by a virtual orbital φa with higher energy in these
determinants. Note that this does not necessarily mean that these determi-
nants actually describe an excited state, since a faithful description of excited
states will again be a linear combination of determinants. In other words:
One should not over interpret the meaning of virtual orbitals. The second
quantization representation of excited determinants is given by:

|Φa
i 〉 = a†aai |Φ〉

|Φab
ij 〉 = a†baja

†
aai |Φ〉 = a†aa

†
bajai |Φ〉 (2.19)

The simple interpretation of the equations above is that one first annihilates
corresponding occupied orbitals in the Hartree-Fock determinant and after-
wards replaces them by virtual orbitals. As mentioned above, this does not
change the rules used for the derivation of equations in second quantization.
The expressions just become more lengthy. The reduced density matrices for
a configuration interaction doubles wave function are for example given by:

γPQ = 〈ΨCID|a†PaQ|Ψ
CID〉

= 〈Φ|a†PaQ|Φ〉+ 2
∑
ijab

Aabij 〈Φ|a
†
PaQa

†
aa
†
bajai|Φ〉

+
∑
ijab

∑
klcd

AabijA
cd
kl 〈Φ|a

†
ia
†
jabaaa

†
PaQa

†
ca
†
dalak|Φ〉

ΓPQRS = 〈Ψ|a†Pa
†
QaSaR|Ψ〉

= 〈Φ|a†Pa
†
QaSaR|Φ〉+ 2

∑
ijab

Aabij 〈Φ|a
†
Pa
†
QaSaRa

†
aa
†
bajai|Φ〉

+
∑
ijab

∑
klcd

AabijA
cd
kl 〈Φ|a

†
ia
†
jabaaa

†
Pa
†
QaSaRa

†
ca
†
dalak|Φ〉 (2.20)
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We left out the single excitations, since they are approximately described by
orbital optimization as shown below.

2.1.2 Orbital Transformations

To describe the dependency of the wave function on orbital transformations,
we may again start in first quantization. To maintain orthonormality between
the orbitals all transformations have to be unitary. This can be ensured by
describing the unitary matrix U with the matrix exponential exp(−κ) if
the matrix κ is anti-symmetric. The dependency of an orbital on κ can be
described as [18]:

|φi(κ)〉 =
∑
P

|φP 〉UPi(κ) =
∑
P

|φP 〉 [exp(−κ)]Pi (2.21)

We may describe a unitary transformed creation operator by:

|φi(κ)〉 =
∑
P

a†P |〉UPi(κ) → a†i(κ) =
∑
P

a†PUPi(κ) (2.22)

An orbital product or a Slater determinant can be rewritten as:

||φ1(κ) . . . φi(κ) . . . φn(κ)|〉 =

(∑
P

UP1(κ)

)
. . .

(∑
Q

UQi(κ)

)

. . .

(∑
R

URn(κ)

)
||φP . . . φQ . . . φR|〉(2.23)

Consequently, the corresponding state vector is defined as:

a†1(κ) . . . a
†
i(κ) . . . a

†
n(κ) |〉 =

(∑
P

UP1(κ)

)
. . .

(∑
Q

UQi(κ)

)

. . .

(∑
R

URn(κ)

)
a†P . . . a

†
Q . . . a

†
R |〉 (2.24)

This can also be generalized to a linear combination of determinants. In
second quantization, the expression above can be further simplified by a
redefinition of the creation operators.

a†P (κ) = exp(−κ̂)a†P exp(κ̂)

κ̂ =
∑
PQ

κPQa
†
PaQ (2.25)
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Here, κPQ are the matrix elements of the anti-symmetric matrix κ. The
derivation of the right hand side of equation 2.25 can be proven by expand-
ing the exponential functions using the Baker-Campbell-Hausdorff (BCH)
formula.[19]

a†P (κ) = a†P + [a†P , κ̂] +
1

2!
[[a†P , κ̂], κ̂] + . . . (2.26)

The commutators can be further simplified:

[a†P , κ̂] =
∑
QR

κQR[a†P , a
†
QaR]

=
∑
QR

κQR(a†Pa
†
QaR − a

†
QaRa

†
P )

=
∑
QR

κQR(−a†QδPR)

= −
∑
Q

a†Q[κ]QP (2.27)

Here, we reintroduced the anti-symmetric matrix κ. The nested commuta-
tors can be simplified using the equation above which can be applied from
the outside to the inside in a similar form. Note that care must be taken con-
cerning the labeling of summation indices when applying this rule multiple
times.

[[a†P , κ̂], κ̂], κ̂] = −
∑
Q

[a†Q, κ̂][κ]QP

=
∑
QR

a†R[κ]RQ[κ]QP

=
∑
Q

a†Q[κ2]QP (2.28)

The n-folded nested commutator is then given by:

[. . . [[a†P , κ̂], κ̂], κ̂], . . . ] = (−1)n
∑
Q

a†Q[κn]QP (2.29)

We may now use these definitions for the BCH expansion above:

a†P (κ) =
∑
Q

a†Q(δQP − [κ]QP + · · ·+ (−1)n

n!
[κn]QP + . . . )

=
∑
Q

a†Q

n∑
α

(−1)α

α!
[κα]QP

=
∑
Q

a†Q[exp(−κ)]QP (2.30)
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Which proves the substitution above to be valid, since:∑
Q

a†Q[exp(−κ)]QP =
∑
Q

a†QUQP (κ) = a†P (κ) (2.31)

The elegance of this redefinition becomes clear when applying the new cre-
ation operators on the vacuum state to create an orbital dependent expression
for the state vector representing a Slater determinant:

nele∏
i

a†i(κ) |〉 =

nele∏
i

exp(−κ̂)a†i exp(κ̂) |〉

= exp(−κ̂)

nele∏
i

a†i exp(κ̂) |〉

= exp(−κ̂)

nele∏
i

a†i |〉 (2.32)

The reordering of the product is possible since exp(−κ̂) exp(κ̂) = 1 and the
last line above holds because one cannot annihilate an orbital in the vacuum
state:

exp(−κ̂) |〉 = (1− κ̂+
1

2!
κ̂2 − . . . ) |〉 = |〉 (2.33)

The dependence of the wave function on orbital rotation parameters can
then be expressed by the following general expression which holds for any
determinant or linear combination of determinants |Ψ〉.

|Ψ(κ)〉 = exp(−κ̂) |Ψ〉 (2.34)

To explain the connection of expectation values depicted in first and second
quantization we may again use the density matrix. Let us note that the
operator expressions in first and second quantization depend on the whole
one particle basis and are unitary invariant. The dependency on the orbital
rotation parameters therefore only remains in the wave function or the state
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vector, respectively.

〈Ψ(κ)|ô1|Ψ(κ)〉 =
∑
PQ

〈φP |ô1|φQ〉 〈Ψ(κ)| |φP 〉 〈φQ| |Ψ(κ)〉

=
∑
PQ

〈φP |ô1|φQ〉 〈Ψ(κ)|a†PaQ|Ψ(κ)〉

=
∑
PQ

〈φP |ô1|φQ〉 〈Ψ| exp(κ̂)a†PaQ exp(−κ̂)|Ψ〉

〈Ψ(κ)|ô12|Ψ(κ)〉 =
∑
PQRS

〈φPφQ|ô12|φRφS〉 〈Ψ(κ)| |φPφQ〉 〈φRφS| |Ψ(κ)〉

=
∑
PQRS

〈φPφQ|ô12|φRφS〉 〈Ψ(κ)|a†Pa
†
QaSaR|Ψ(κ)〉

=
∑
PQRS

〈φPφQ|ô12|φRφS〉

〈Ψ| exp(κ̂)a†Pa
†
QaSaR exp(−κ̂)|Ψ〉 (2.35)

As mentioned above, this work will deal with configuration interaction wave
functions. For these wave functions the parameter space of (κ) can be further
restricted. Since all configuration interaction coefficients are optimized, the
energy does not change when applying unitary transformations within the
occupied or the virtual space only. Only those transformations which couple
these spaces increase the variational freedom of the wave function:

κ̂ =
∑
PQ

κPQa
†
PaQ

⇒
∑
ai

κaia
†
aai +

∑
ia

κiaa
†
iaa =

∑
ai

κai(a
†
aai − a

†
iaa) (2.36)

Here, the last line results from the anti-symmetry of the matrix elements
κia = −κai.

2.1.3 Spin Integration

In principle, the equations above are complete and the spin integration could
be carried out after deriving the working equations. However, it is also possi-
ble to directly include the dependency on the spin coordinates into the second
quantized equations. We may first explain the first quantizied derivation us-
ing the expectation value of a one electron operator and the Hartree-Fock
determinant. Let us define the spin orbitals φ as a product of a spatial orbital
ϕ and a spin function σ:

φ(x1) → ϕ(r1)σ(ω1) (2.37)
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The coordinates x1 are separated into spatial coordinates r1 and spin coor-
dinates ω1, too. The spin functions represent the two possible states of an
electron, namely α(ω1) (spin up) and β(ω1) (spin down) and are orthonormal
when integrated over ω1:

〈α|α〉 = 1 ; 〈β|β〉 = 1 ; 〈α|β〉 = 0 ; 〈β|α〉 = 0 (2.38)

For a closed shell determinant there is the same number of spin up and spin
down spin orbitals. We may therefore split a sum over all spin orbitals φi
into two sums over spatial orbitals ϕi. Each of these sums extend over half
the number of spin orbitals nocc = nele/2, and one half depends on α spin
functions, the other half on β spin functions, respectively.

〈Φ|ô1|Φ〉 =

nele∑
i

〈φi|ô1|φi〉

=
nocc∑
i

〈ϕi|ô1|ϕi〉 〈α|α〉+
nocc∑
i

〈ϕi|ô1|ϕi〉 〈β|β〉

= 2
nocc∑
i

〈ϕi|ô1|ϕi〉 (2.39)

The Dirac notation hides a lot of information of variable dependencies. We
may extend this notation here to explain this fact in more detail:

〈φi|ô1|φi〉 =

∫ ∞
−∞

φ∗i(x1)ô(x1)φi(x1)dx1

=

∫ ∞
−∞

ϕ∗i(r1)σ
∗
(ω1)ô(r1,ω1)ϕi(r1)σ(ω1)dr1dω1 (2.40)

We may assume that the operator ô(r1,ω1) only depends on the electronic
coordinate r1 and not on the spin coordinate ω1 which is the case for all
commonly considered operators in the electronic non-relativistic Hamiltonian
of a molecule:∫ ∞

−∞
ϕ∗i(r1)σ

∗
(ω1)ô(r1)ϕi(r1)σ(ω1)dr1dω1

=

∫ ∞
−∞

ϕ∗i(r1)ô(r1)ϕi(r1)dr1

∫ ∞
−∞

σ∗(ω1)σ(ω1)dω1

= 〈ϕi|ô1|ϕi〉 〈σ|σ〉 (2.41)

All these steps are commonly abbreviated by the short hand Dirac notation,
which will be used throughout the rest of this work.
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Spin free operators

To illustrate the connection between first and second quantization we may
again use the projection operator representation as defined in equation 2.9
and decompose the sums over orbitals into α and β contributions.

ô1 =
∑
PQ

〈φP |ô1|φQ〉 |φP 〉 〈φQ|

=
∑
PQ

〈ϕP |ô1|ϕQ〉 |ϕP 〉 〈ϕQ|
2∑
στ

〈σ|τ〉 |σ〉 〈τ |

=
∑
PQ

〈ϕP |ô1|ϕQ〉 |ϕP 〉 〈ϕQ|
2∑
σ

|σ〉 〈σ|

=
∑
PQ

〈ϕP |ô1|ϕQ〉 |ϕP 〉 〈ϕQ| (|α〉 〈α|+ |β〉 〈β|) (2.42)

Note that the sum over Greek letters extents over the two spin functions α
and β. To introduce the spin dependency at the level of second quantization,
we have to generalize the creation and annihilation operators.

a†Pσ |〉 = |ϕP 〉 |σ〉 (2.43)

Each creation operator now creates a product of a spatial orbital and a spin
function. The operator representation in second quantization can be defined
by the same decomposition of sums over spatial and spin functions as in
equation 2.42:

ô1 →
∑
PQ

〈ϕP |ô1|ϕQ〉
2∑
στ

〈σ|τ〉 a†PσaQτ

=
∑
PQ

〈ϕP |ô1|ϕQ〉 (a†PαaQα + a†PβaQβ)

=
∑
PQ

〈ϕP |ô1|ϕQ〉EPQ (2.44)

Here, we defined the singlet excitation operator EPQ as a†PαaQα+a†PβaQβ. In
the same way the two electron operator is given by:

ô12 →
∑
PQRS

〈ϕPϕQ|ô12|ϕRϕS〉 (a†Pαa
†
QαaSαaRα + a†Pαa

†
QβaSβaRα

+a†Pβa
†
QαaSαaRβ + a†Pβa

†
QβaSβaRβ)

=
∑
PQRS

〈ϕPϕQ|ô12|ϕRϕS〉 ePQRS (2.45)
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The singlet two electron excitation operator ePQRS may be rewritten by sin-
glet excitation operators EPQ:

ePQRS = EPSEQR − EPSδQR (2.46)

Note that this definition would change if the Mulliken notation is used for the
integral representation. To derive working equations with these new creation
operators we need to generalize the anti-commutator relations above (see
equation 2.7):

a†PσaQτ = δPQδστ − aQτa†Pσ (2.47)

This modification results from overlap integrals which will not be derived
here and can be obtained from literature [17].

Spin operators

To discuss the spin properties of a wave function we have to define the spin
operators Ŝz(1) and Ŝ2

(12). It is convenient to additionally define the Cartesian

components Ŝx(1) and Ŝy(1) by the shift operators Ŝ+(1) and Ŝ−(1).

Ŝx(1) = 1
2

(Ŝ+(1) + Ŝ−(1))

Ŝy(1) = 1
2i

(Ŝ+(1) − Ŝ−(1)) (2.48)

The action of these operators on a spin function is defined as:

Ŝ+(1)α(1) = 0 ; Ŝ+(1)β(1) = α(1)

Ŝ−(1)α(1) = β(1) ; Ŝ+(1)β(1) = 0

Ŝz(1) α(1) =
1

2
α(1) ; Ŝz(1) β(1) = −1

2
β(1) (2.49)

They allow us to represent the two-electron operator Ŝ2
(12) in a more compact

form.

Ŝ2
(12) = (Ŝx(1) − Ŝx(2))

2 + (Ŝy(1) − Ŝy(2))
2 + (Ŝz(1) − Ŝz(2))

2

= [(Ŝ+(1) − Ŝ+(2)), (Ŝ−(1) − Ŝ−(2))] + (Ŝz(1) − Ŝz(2))
2

= [Ŝ+(1), Ŝ−(1)] + [Ŝ+(2), Ŝ−(2)] + (Ŝz(1) − Ŝz(2))
2 (2.50)

In second quantization a one-electron operator ô1 depending only on a spin
coordinate can be represented as:

ô1 →
2∑
στ

〈σ|ô1|τ〉
∑
PQ

〈ϕP |ϕQ〉 a†PσaQτ

=
2∑
στ

〈σ|ô1|τ〉
∑
P

a†PσaPτ (2.51)
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For the two-electron operator ô12 depending only on spin coordinates holds:

ô12 →
2∑

στεω

〈σε|ô12|τω〉
∑
PQRS

〈ϕP |ϕR〉 〈ϕQ|ϕS〉 a†Pσa
†
QεaSωaRτ

=
2∑

στεω

〈σε|ô12|τω〉
∑
PQ

a†Pσa
†
QεaQωaPτ (2.52)

The second quantization one-electron operators Ŝ+(1), Ŝ−(1) and Ŝz(1) are
given by:

2∑
στ

〈σ|Ŝ+(1)|τ〉
∑
P

a†PσaPτ =
∑
P

a†PαaPβ = Ŝ+

2∑
στ

〈σ|Ŝ−(1)|τ〉
∑
P

a†PσaPτ =
∑
P

a†PβaPα = Ŝ−

2∑
στ

〈σ|Ŝz(1)|τ〉
∑
P

a†PσaPτ =
∑
P

a†PαaPα − a
†
PβaPβ = Ŝz (2.53)

The two-electron operator Ŝ2
(12) can be represented using products of one-

electron operators. Note that the right hand side of the expression below is
completely defined in second quantization indicated by the missing electronic
coordinates.

2∑
στεω

〈σε|Ŝ2
(12)|τω〉

∑
PQ

a†Pσa
†
QεaQωaPτ = Ŝ+Ŝ− + Ŝz(Ŝz − 1) = Ŝ2 (2.54)

There are many other representations of this operator. The one defined above
is however especially suitable for several derivations in the following section.

Spin dependency of the wave function

The spin dependency of the operator expressions in second quantization is
now defined and we may focus on the wave function. Since we consider con-
figuration interaction in our work, we may rewrite the singly and doubly
excited determinants. All higher excitations are accessible by the same rules
as defined below. Assuming we only want to describe singlet states, which
is the most common case, the whole wave function has to be a singlet state.
Determinants are not necessarily a singlet state, but one can form linear com-
binations of certain subsets of them to create a singlet. If the normal set of
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determinants is used, these linear combinations would be generated automat-
ically during the optimization by the configuration interaction coefficients to
ensure the correct spin properties of the wave function. An alternative way
is to predefine the correct linear combinations of determinants without losing
any variational freedom. These linear combinations of determinants with the
correct spin properties are called configuration state functions (CSF) and
represent the wave function in a more compact form since multiple deter-
minants are replaced by one linear combination of them. The correct linear
combinations of determinants have to fulfill the eigenvalue equations for a
singlet state (MS = 0 and S = 0). The value of 2|S| + 1 defines the spin
multiplicity of the molecule and MS ranges from −S, . . . , 0, . . . , S.

Ŝz |Ψ〉 = MS |Ψ〉 → 0 |Ψ〉
Ŝ2 |Ψ〉 = S(S + 1) |Ψ〉 → 0 |Ψ〉 (2.55)

Let us assume we use a closed shell Hartree-Fock wave function |Φ〉 as a
reference. For this determinant the following equations hold:

Ŝz |Φ〉 = 0 |Φ〉
Ŝ2 |Φ〉 = 0 |Φ〉 (2.56)

since all electrons are paired. Acting upon this reference state with the single
excitation operator T̂S and the double excitation operator T̂D generates a
linear combination of all respective excitations.

T̂S =
∑
ai

2∑
στ

Aaσiτ a
†
aσaiτ

T̂D =
∑
abij

2∑
στεω

Aaσbεiτjωa
†
aσa
†
bεajωaiτ (2.57)

Note that the sum over the Greek letters extents over the two spin functions
α and β. The action of the excitation operators upon the reference should
not change the value of the eigenvalue equations 2.55 to maintain the correct
spin state.

ŜzT̂S |Φ〉 = 0 T̂S |Φ〉
Ŝ2T̂S |Φ〉 = 0 T̂S |Φ〉
ŜzT̂D |Φ〉 = 0 T̂D |Φ〉
Ŝ2T̂D |Φ〉 = 0 T̂D |Φ〉 (2.58)
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We may first consider the action of Ŝz upon T̂S |Φ〉:

ŜzT̂S |Φ〉 =
1

2

∑
P

(a†PαaPα − a
†
PβaPβ)

∑
ai

2∑
στ

Aaσiτ a
†
aσaiτ |Φ〉

=
1

2

∑
ai

2∑
στ

Aaσiτ a
†
aσaiτ |Φ〉

∑
ε

(δσε − δτε) + T̂SŜz |Φ〉 (2.59)

To further simplify this equation we note that the last term vanishes.

Ŝz |Φ〉 =
1

2

∑
P

(a†PαaPα − a
†
PβaPβ) |Φ〉

=
1

2

∑
i

(a†iαaiα − a
†
iβaiβ) |Φ〉

=
1

2
(nocc − nocc) |Φ〉

= 0 (2.60)

Only occupied orbitals can be annihilated from the reference, and the re-
maining sums annihilate and create a specific orbital nocc = nele/2 times for
each spin function. To ensure that the eigenvalue equation 2.55 is fulfilled
for a singlet state, we have to modify our definition of the singlet excitation
operator T̂S → T̂

′
S.

T̂
′

S =
∑
ai

2∑
στ

Aaσiτ a
†
aσaiτδστ =

∑
ai

2∑
σ

Aaσiσ a
†
aσaiσ (2.61)

The eigenvalue equation is then given by:

ŜzT̂
′

S |Φ〉 =
1

2

∑
ai

2∑
στ

Aaσiτ a
†
aσaiτ |Φ〉

∑
ε

(δσε − δτε)δστ = 0 T̂
′

S |Φ〉 (2.62)

We may now consider the action of Ŝ2 upon T̂
′
S |Φ〉, which is the second

eigenvalue equation of 2.55 to be fulfilled. Note that the action of Ŝz upon
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T̂
′
S |Φ〉 results in a zero as shown above.

Ŝ2T̂
′

S |Φ〉 = (Ŝ+Ŝ− + Ŝz(Ŝz − 1))T̂
′

S |Φ〉 = Ŝ+Ŝ−T̂
′

S |Φ〉

=
∑
P

a†PαaPβ
∑
Q

a†QβaQα
∑
ai

2∑
σ

Aaσiσ a
†
aσaiσ |Φ〉

= (T̂
′

S −
∑
ai

(Aaβiβ a
†
aαaiα + Aaαiα a

†
aβaiβ)) |Φ〉

+
∑
ai

(Aaαiα − A
aβ
iβ )a†aβaiαŜ+ |Φ〉

−
∑
ai

(Aaαiα − A
aβ
iβ )a†aαaiβŜ− |Φ〉

+ T̂
′

SŜ+Ŝ− |Φ〉
(2.63)

Here, all terms containing expressions such as S− |Φ〉 and S+ |Φ〉 vanish.

Ŝ− |Φ〉 =
∑
Q

a†QβaQα |Φ〉

=
∑
i

a†iβaiα |Φ〉

= 0 (2.64)

Only occupied orbitals can be annihilated from the reference determinant,
and the remaining sum replaces a spin up electron by a spin down electron or
vice versa. As a result there are two electrons with the same set of quantum
numbers or in other words two identical rows or columns in the reference
determinant. The remaining terms of the eigenvalue equation are given by:

Ŝ2T̂
′

S |Φ〉 = (T̂
′

S −
∑
ai

(Aaβiβ a
†
aαaiα + Aaαiα a

†
aβaiβ)) |Φ〉 (2.65)

To ensure that the second eigenvalue equation is fulfilled for a singlet state
we have to modify our definition of the singlet excitation operator again
T̂

′
S → T̂

′′
S .

T̂
′′

S =
∑
ai

Aai

2∑
σ

a†aσaiσ =
∑
ai

AaiEai (2.66)

The eigenvalue equation is then given by:

Ŝ2T̂
′′

S |Φ〉 = (T̂
′′

S −
∑
ai

Aai (a
†
aαaiα + a†aβaiβ) |Φ〉

= (T̂
′′

S − T̂
′′

S ) |Φ〉 = 0 T̂
′′

S |Φ〉 (2.67)
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The excitation operator T̂
′′
S now fulfills both eigenvalue equations 2.55 and is

the appropriate ansatz to generate a wave function suited for singlet states
T̂ singletS = T̂

′′
S . The configuration state functions |Φ̃a

i 〉 are then given by:

|Φ̃a
i 〉 = (|Φaα

iα 〉+ |Φaβ
iβ 〉) (2.68)

Using the same procedure, similar equations can be derived for the double
excitation operator T̂ singletD resulting in:

T̂ singletD =
∑
abij

Aabij eabij (2.69)

The corresponding configuration state functions |Φ̃ab
ij 〉 are defined as:

|Φ̃ab
ij 〉 = (|Φaαbα

iαjα 〉+ |Φaαbβ
iαjβ 〉+ |Φaβbα

iβjα 〉+ |Φaβbβ
iβjβ 〉) (2.70)

All other possible combinations of spin functions are unnecessary for the
description of the singlet wave function and the configuration interaction co-
efficients are independent of the spin labels resulting in a reduced parameter
space while maintaining the full variational freedom. Since we also consider
orbital optimization, we will have to redefine the orbital rotation operator of
equation 2.36 as:

κ̂ =
∑
ai

κai(Eai − Eia) (2.71)

With these definitions, all possible simplifications for singlet wave functions
are defined and the working equations used below can be derived in a efficient
way only using the elegant rules of second quantization.

2.2 Quasi-Newton Minimization

The search for extrema of functions depending on a huge number of vari-
ables is a very large field of research and cannot be covered completely here.
However, since we have to minimize energy functionals with respect to co-
efficients of determinants or basis functions, we will shortly explain a very
prominent procedure to solve such problems which is extensively used in
electronic structure theory. The general procedure is based on expanding
the energy in a Tailor series up to second order for a fixed set of parameters
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Xn and a correction to these parameters ∆X.

E(Xn+∆X) ≈ E
(0)
(Xn) + (∆X)TE

(1)
(Xn) +

1

2
∆XTE

(2)
(Xn)∆X

E(1)
p =

∂

∂Xp

E(Xn)

E(2)
pq =

∂2

∂XpdXq

E(Xn) (2.72)

This ansatz already indicates an iterative procedure. The update ∆X for a
new coefficient matrix Xn+1 can be calculated by a conjugate gradient[20]
approach and additionally scaled by a step size:

E
(2)
(Xn)∆X = −E

(1)
(Xn)

Xn+1 = Xn + α∆X (2.73)

The correction ∆X vanishes as the gradient vector E(1) becomes zero and the
procedure converges to an extremum. E(2) is the Hessian matrix. The first
iteration needs a reasonable initial guess. For our problems X0 = 0 is a good
choice, since the final values of X are mostly sufficiently close to zero, too.
The step size α can be varied using various criteria. Here, we use the simplest
approach and roughly minimize the function value for the current correction
∆X. In more detail, we iteratively minimize the energy depending on the
step size until the change of the energy becomes approximately an order of
magnitude smaller than the change of the energy in the previous iteration.

So far, we only considered the conventional Newton method for minimiza-
tion. Quasi-Newton minimization seeks to find reasonable approximations
of the Hessian matrix E(2). The matrix vector operation E

(2)
(Xn)∆X scales

quadratically, and the computation of this matrix is often the most time-
consuming step of the optimization. For our minimization problems, the
storage of this matrix is not feasible. Therefore, the recalculation of this ma-
trix is mandatory for each matrix vector product formed. To reduce the time
consumption of these steps one may assume that the matrix E(2) is diagonal.
The matrix vector product becomes a linear operation and the computation
of the diagonal elements is obviously much faster than the whole matrix com-
putation. The elements of the correction vector ∆Xp can be expressed by
the analytical expression:

∆Xp = −E(1)
p(Xn)/E

(2)
pp(Xn) (2.74)

The diagonal approximation is broadly applied when minimizing the energy
of pair correlation methods and shows fast and stable convergence.[21]
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There are cases where an expansion of the function into a Maclaurin
series is simpler. In this case, the parameters Xn stay zero in each iteration
and the correction is directly included into the functions E

(0)
n(0). This way

of expressing the optimization problem is of advantage if the gradient and
Hessian equations are simpler in the limit X → 0. Note that X = 0 has to
be the correct solution for the system of equations when using this ansatz.

En(∆X) ≈ E
(0)
n(0) + (∆X)TE

(1)
n(0) +

1

2
∆XTE

(2)
n(0)∆X

E(1)
p = lim

X→0

∂

∂Xp

En(X)

E(2)
pq = lim

X→0

∂2

∂XpdXq

En(X) (2.75)

The update ∆X for a new coefficient matrix Xn+1 can then be calculated
by conjugate gradient [20] and additionally scaled by a step size:

E
(2)
n(0)∆X = −E

(1)
n(0)

Xn+1 = α∆X (2.76)

This way of representing the series expansion is especially suitable for orbital
optimization. As shown above, the energy depends on the orbital rotation
parameters in an exponential form. In the limit κ → 0, this exponential
reduces to the identity operator and the resulting equations are greatly sim-
plified:

lim
κ→0

exp(κ̂) = lim
κ→0

1̂ + κ̂+
1

2
κ̂2 + · · · = 1̂ (2.77)

To fulfill all conditions stated above, we need to update the energy expression
in each iteration. For the orbital rotation parameters of a given iteration n
the new orbitals are defined as:

|φi(κn)〉 =
∑
p

|φp〉 [exp(−κn)]pi (2.78)

As soon as the orbitals are updated, the new function value E
(0)
n(0), gradient

vector E
(1)
n(0) and hessian matrix E

(2)
n(0) can be computed. For the subsequent

iteration κ is set to zero to leave the updated orbitals as they are. Afterwards,
a new correction can be computed at κ = 0. In the final iteration the
correction and the resulting κ vanish.
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2.3 Local Correlation Methods

Exploiting the restricted range of electron correlation effects to avoid the
calculation of negligible energy contributions is a field of ongoing research,
especially for accurate wave function based methods.[22] To use the locality
of electron correlation, all modern local correlation methods use localized
occupied molecular orbitals. There are different criteria available to define
these, for example the Pipek-Mezey criterion.[23] Here, the number of basis
functions over which a molecular orbital extends is minimized. Since these
basis functions are atom centered, this also results in a minimal number
atoms which are described by this orbital. In large molecular systems most
atoms are distant to each other. Consequently, most of the localized orbitals
are also distant. To utilize the distance of localized orbitals we may use the
following definition of the correlation energy:

ECORR =
∑
ij

εij (2.79)

Namely, the correlation energy of any correlation method can be decom-
posed into energy contributions from each pair of occupied orbitals. Note
that any restrictions on the summation depend on the definition of the pair
energies εij. If the occupied orbitals φi and φj are distant, there will be no
correlation interaction and the corresponding pair energy will be approxi-
mately zero. There are quite efficient ways available to predict whether this
is the case.[22] As a result all corresponding elements in the gradient matrix
and the coefficient matrix will be approximately zero and do not have to be
computed or saved.

The construction of the gradient vector E(1) is needed multiple times to
minimize the energy (see section 2.2). This step is the computational most
crucial operation of any correlation method. For pair correlation methods,
the gradient vector is mapped on tensor elements, which will be called W ab

ij .[2]
As stated before, the construction of the matrix WMO

ij (with the dimensions
of the virtual space) is not necessary in case the corresponding occupied
orbital pair is distant. The tensor elements W ab

ij can alternatively be defined
in the atomic orbital basis W µν

ij . The transition between these two bases
for a given molecular orbital |a〉 is given by a linear combination of atomic
orbitals |µ〉:

|a〉 =
∑
µ

cµa |µ〉 (2.80)

Since the atomic orbital basis is much more local than the virtual space,
the matrix WAO

ij is very sparse, and only the non-zero elements have to be
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computed and stored. The transformation of the atomic orbital basis to the
molecular orbital basis is defined as:

WMO
ij = CtWAO

ij C (2.81)

Here, C is a rectangular matrix containing the virtual molecular orbital coef-
ficient vectors resulting from a Hartree-Fock calculation (cf. equation 2.80).
The whole construction of the tensor elements W µν

ij can be reduced to multi-
plications of matrices in the atomic orbital or molecular orbital basis. Details
are not important for an overview and can be found in reference [2].

To optimize the energy, a transformation of the atomic orbitals to molec-
ular orbitals is necessary to retain the orthogonality relations assumed during
the derivation (cf. section 2.1). However, there are compact working equa-
tions available where the orthogonality of the occupied space to the virtual
space is sufficient.[2] In this case, the virtual space can be spanned by a more
local basis than the virtual molecular orbitals resulting from a Hartree-Fock
calculation. There are two commonly used ways to expand the virtual space
in current local correlation methods.[22]

One possible way is to expand the virtual space into projected atomic
orbitals (PAO’s).[24] Here, we generate a new virtual space defined by C̃
which is orthonormal to the occupied space, but stays very local. The trans-
formation results from the projection:

|φPAOµ 〉 = (1̂−
∑
i

|φi〉 〈φi|) |φAOµ 〉 (2.82)

Here, φPAOµ are the projected atomic orbitals, φAOµ are the atomic orbitals and
φi are the localized occupied orbitals. As stated above local orbitals φi extend
only over a small subset of all atomic orbitals φAOµ(i). The same assignment

is now possible for the projected atomic orbitals φPAOµ(i) , which span our new

virtual space. Considering the construction of the gradient tensor WMO
ij →

WPAO
ij , the union of the atomic- or projected atomic orbitals corresponding

to the occupied orbitals i and j is sufficient. All other atomic- and projected
atomic orbitals would lead to contributions which are approximately zero
and do not have to be calculated or stored. This leads to a very compact
representation of the gradient tensor.

Another possible way is to expand the virtual space into pair natural
orbitals (PNO’s), which are again very local.[25] Every occupied pair has
a specific virtual space, defined by the orbital coefficient tensor C̃ij. These
new coefficient matrices contain many elements which are approximately zero
and can be neglected. This results in a very sparse and therefore compact
representation of the corresponding gradient matrix WMO

ij .

WMO
ij = C̃t

ijW
AO
ij C̃ij (2.83)
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There are multiple ways to define this virtual space, e.g. by diagonalizing
the corresponding pair density matrix. Both approaches can in principle be
combined leading to very efficient algorithms like DLPNO-CCSD.[22]

In our new contraction scheme all these transformations become unnec-
essary, since the conventional gradient tensor is contracted within the virtual
space (cf. chapter 3.4).
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Chapter 3

Contracted Pair Correlation
Methods

Pair correlation methods are able to achieve highly accurate solutions for
chemical problems. Unfortunately, their applicability is generally restricted
to medium sized molecules due to storage requirements and computational
costs. These restrictions can be partly overcome by local electron correlation
methods. These methods use physical and mathematical criteria to decide
which interactions are of such a long range that they do not have to be
computed and saved. In our new ansatz, we define an alternative way towards
local correlation. The range of interactions is strictly bound to the decay
of integrals over Gaussian type geminals in the atomic orbital basis. The
number of variables is reduced by orders of magnitude applying an efficient
contraction scheme, leading to a naturally local representation of correlation
effects.

3.1 Ansatz for the Wave Function

The basic ansatz for a pair correlation method can be reduced to configura-
tion interaction doubles:

|Ψ(A)〉 = |Φ〉+
∑
ijab

Aabij |Φab
ij 〉 = |Φ〉+ |ΨD(A)〉 (3.1)

Here, |Φ〉 is the Hartree Fock reference determinant and the sum contains
all double excitations from the occupied to the virtual space (ij → ab). The
part of the wave function containing all double exciations will be abbrevi-
ated by |ΨD(A)〉 and A denotes the dependence on all tensor elements Aabij .
With this wave function and a modified energy functional a whole class of
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pair correlation methods arises.[2, 4, 3]. This ansatz for the wave function
introduces a large set of parameters, namely the coefficients Aabij which need
to be stored. As a result, the application of this ansatz is limited to small
and medium sized molecules. There are local correlation methods available
which introduce a basis, where many of the coefficients are negligibly small,
leading to a significant reduction of computation time and storage require-
ments (cf. section 3.4). Unfortunately, the computational benefit of these
approaches is strongly dependent on the molecular structure. Namely, the
computational benefits in chain like molecules will be much higher than in
bulky molecules.[26, 27, 28, 29, 30] In our new ansatz, we introduce a contrac-
tion scheme which strongly reduces the number of coefficients to be stored
independent of the molecular structure. The conventional coefficients are
approximated by a linear combination of integrals which can be efficiently
calculated and kept in the atomic orbital basis. The non-diagonal ansatz is
given by:

Aabij(B) =
∑
klg

Bklg
ij R

abg
kl

Rabg
kl = 〈ab|f̂ g12|kl〉 (3.2)

Alternatively, the even more compact diagonal ansatz is defined as:

Aabij(B) =
∑
klg

Bklg
ij R

abg
kl δkiδlj =

∑
g

Bg
ijR

abg
ij (3.3)

Since the relation between these two ansatzes is evident, we will proceed with
the more general non-diagonal ansatz. In equation 3.2, f̂ g12 are Gaussian type
two-electron functions with different exponents and angular momenta. The
coefficients Bklg

ij are optimized to minimize the energy.

3.2 Integral Evaluation

As mentioned above, our ansatz uses different angular momenta for the Gaus-
sian geminals. Consequently, we have to elucidate the evaluation of the
necessary integrals over atomic orbitals. The calculation of the integrals
corresponding to s-type Gaussian geminals as an operator are given in the
literature.[31] Let us define the following expressions for the basis functions
leaving out all unnecessary parametric dependencies:

µiA(x1A) = xiA1Aexp(−ax
2
1A)

µiA,jA,kA(r1A) = µiA(x1A)µ
jA
(y1A)µ

kA
(z1A) (3.4)
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Since the Gaussian functions decompose into products, we may integrate
each Cartesian component separately.

I iAiBiC iDix
= 〈µiA(x1A)µ

iB
(x2B)|x

ix
12exp(−αx2

12)|µiC(x1C)µ
iD
(x2D)〉 (3.5)

The entire integral is then given by:

I iAiBiC iDjAjBjCjDkAkBkCkDixjykz
= I iAiBiC iDix

IjAjBjCjDjy
IkAkBkCkDkz

(3.6)

For the calculation of p-type geminals with xix12 = x12 = (x1 − x2), we can
now define:

(x1 − x2) = (x1 − xA + xA − x2 + xC − xC)

= (x1A − x2C + xAC)

I iAiBiC iD1 = I
(iA+1)iBiC iD
0 − I iAiB(iC+1)iD

0 + xACI
iAiBiC iD
0 (3.7)

The same equations also hold for the other Cartesian components and higher
angular momenta can be generated in a similar way. Furthermore, computa-
tion time can be saved by making use of the shell structure of the Gaussian
geminals. If ix is even, the operator of the Gaussian geminal is symmetric
with respect to the permutation of electrons, while for odd ix the operator
is anti-symmetric. This has to be considered when symmetry is applied for
the generation of integrals.

3.3 Energy Optimization

The energy functional for a whole class of pair correlation methods can be
written in the following form:[2, 4, 3]

E(A) = E0 + ECorr(A)

= E0 +
〈Ψ(A)|Ĥ − E0|Ψ(A)〉

〈Φ|Φ〉+ cD 〈ΨD(A)|ΨD(A)〉
= E0 +N−1

(A) 〈Ψ(A)|Ĥ − E0|Ψ(A)〉 (3.8)

Here, E0 denotes the energy of the reference determinant (Hartree Fock), and
ECorr(A) is the correlation energy of the corresponding energy functional. In
equation 3.8 the choice of cD = 1 corresponds to CI(D), cD = 0 results
in CEPA0(D) and cD = 1

Nel
results in ACPF(D). Note that in the original

definition of CEPA0 and ACPF the singles were also included.[4, 3] In our
approach, all single excitations are omitted since we extend our ansatz to
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orbital optimized pair correlation, where single excitations are included im-
plicitly (cf. chapter 4). In this work, we will furthermore restrict the ansatz
for the wave function to singlet states to simplify the working equations.[2]

To minimize the energy, it is convenient to expand the energy up to second
order in a Taylor series around the coefficients An of a given iteration n:

E(An+∆A) ≈ E
(0)
(An) + (∆A)TE

(1)
(An) +

1

2
∆ATE

(2)
(An)∆A

E
(1)
ijab =

∂

∂Aabij
E(An)

E
(2)
ijabklcd =

∂2

∂Aabij ∂A
cd
kl

E(An) (3.9)

The update ∆A of the coefficient matrix can be calculated by the conjugate
gradient method.[20] Subsequently, the update is scaled by a step size α:

E
(2)
(An)∆A = −E(1)

(An)

An+1 = An + α∆A (3.10)

Here, E(1) denotes the electronic gradient vector which should be zero at the
point of convergence. E(2) is the electronic Hessian matrix (or an approxi-
mation to it), and ijab is defined as a combined index. The variation of a
specific coefficient Aabij of the wave function is given by:

∂

∂Aabij
|Ψ(A)〉 =

∑
klcd

∂Acdkl
∂Aabij

|Φcd
kl〉 = |Φab

ij 〉 (3.11)

Analogously, for the transition to our contraction scheme the variation of a
specific coefficient Bklg

ij is given by:

∂

∂Bklg
ij

|Ψ(A)〉 =
∑
ab

Rabg
kl |Φ

ab
ij 〉 (3.12)

The elements W ab
ij(A) of the electronic gradient vector E(1) for conventional

pair correlation methods are defined as:

W ab
ij(A) = N−1

(A) 〈Φ
ab
ij |Ĥ − E0 − cDECorr|Ψ(A)〉 (3.13)

resulting in 1/2No(No + 1)N2
v equations to be solved, while No and Nv denote

the number of occupied and virtual orbitals, respectively. Using our new
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ansatz of the wave function, this number can be significantly reduced to
1/2No(No + 1)N2

oNg equations of the form:

Xklg
ij(A) = N−1

(A)

∑
ab

Rabg
kl 〈Φ

ab
ij |Ĥ − E0 − cDECorr|Ψ(A)〉

=
∑
ab

Rabg
kl W

ab
ij(A) (3.14)

Here, Ng denotes the number of geminals in the expansion. The storage
requirements of the wave function and the electronic gradient are therefore
drastically reduced. For the diagonal ansatz the storage requirements only
scale with 1/2No(No + 1)Ng.

For the calculation of the elements of the electronic gradient W ab
ij , various

efficient matrix oriented working equations exist[2], resulting in a straightfor-
ward transition to the contraction by the tensor elements of Rabg

kl (see section
3.4). The electronic Hessian E(2) is often approximated to be diagonal. Fur-
thermore, these diagonal elements can be approximated by using differences
of orbital energies:[21]

(E
(2)
(An)∆A)ijab = N−1

(An)(εa + εb − εi − εj + cshift)∆A
ab
ij (3.15)

In the framework of our contracted pair correlation approach, we also use
the approximated diagonal form of the conventional Hessian. In analogy to
the gradient equations, this Hessian has to be contracted by integrals over
Gaussian geminals. The following equations hold for the non-diagonal and
the diagonal ansatz, respectively.

(E
(2)
(Bn)∆B)ijklg = N−1

(An)

∑
ab

Rabg
kl (εa + εb − εi − εj)∆Aabij

+ cshiftB
klg
ij

(E
(2)
(Bn)∆B)ijg = N−1

(An)

∑
ab

Rabg
ij (εa + εb − εi − εj)∆Aabij

+ cshiftB
g
ij (3.16)

The parameter cshift is chosen to ensure that the Hessian is positive definite,
which is a necessary condition for a faithful convergence. The step size α
is chosen to approximately minimize the energy. Of course this strategy is
not unique, and there are other Quasi-Newton procedures such as the lim-
ited memory Broyden-Fletcher-Goldfarb-Shanno approach reported in the
literature[32] which could reveal even better convergence. Since the resulting
gradient and wave function dimensions are much smaller than in the conven-
tional approaches, additional computation time and storage is saved for the
linear algebra algorithms used to optimize the wave function.
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3.4 Improved Scaling

A common and efficient way to construct the electronic gradient in pair
correlation theory was defined by Meyer [33] and later refined by Pulay et.
al. for singlet states.[2] The important idea is to construct the electronic
gradient tensorW AO

ij(A) in the atomic orbital basis. The operator construction
and the tensor contractions in the atomic orbital basis can be accelerated
significantly by avoiding the calculation of negligibly small integrals using
the Schwarz inequality and more advanced techniques such as the resolution
of identity.[34] In order to optimize the energy the transformation from the
atomic orbital to the molecular orbital basis is necessary and defined as:

WMO
ij(A) = CtW AO

ij(A)C (3.17)

Here, the orbital coefficient matrix C is rectangular and contains the com-
plete virtual space. The computationally demanding problem in the treat-
ment of large molecules arises from the rapidly increasing size of the virtual
space. This space is not easy to localize in general. One way to circumvent
this problem is to define a pair specific virtual space spanned by the pair
natural orbitals (CPNO

ij ).[35] These orbitals are relatively local and strongly
reduce the number of non-zero elements of the electronic gradient. The trans-
formation to the pair specific virtual space is defined by:[25]

W PNO
ij(A) = (CPNO

ij )tW AO
ij(A)C

PNO
ij (3.18)

The rectangular coefficient matrix CPNO
ij defines the virtual pair natural

orbitals of the respective orbital pair. In our case, we sum over the complete
virtual space making this transformation obsolete:∑

ab

Rabg
kl W

ab
ij(A) = Tr[RMO

klg W
MO
ij(A)]

= Tr[CtRAO
klgCC

tW AO
ij(A)C]

= Tr[DAO
virtR

AO
klgD

AO
virtW

AO
ij(A)] (3.19)

Here, the coefficient matrix is again rectangular and contains the complete
virtual space. The virtual density matrix is defined in complete analogy to
the commonly used occupied density matrix:

DAO
virt = CCt (3.20)

This density matrix is invariant with respect to unitary transformations in
the virtual subspace making pair natural orbitals obsolete for our ansatz. All
tensor products can be evaluated in the local atomic orbital basis. The time
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determining step reduces to sparse matrix multiplications, for which efficient
algorithms are available. Note that the same reasoning as for PNO’s, also
holds for projected atomic orbitals (PAO’s).[24] However, the projection is
obsolete in our approach, since our working equations are defined in the
intrinsically local atomic orbital basis.

Since we currently rely on our own integral package and pilot program,
we are unfortunately unable to provide reasonable results with respect to
scaling of computational time and storage requirements. Therefore, the scal-
ing properties of our ansatz can only be demonstrated formally. Assuming
that all necessary operators in the atomic orbital basis are computed on-the-
fly, only the contracted gradient and the contraction coefficients need to be
stored. This leads to drastic savings in storage requirements, namely about
one or three orders of magnitude depending on the basis set size.[6] The com-
putational scaling is more difficult to predict. In general, the computation
of operators in the atomic orbital basis is not the time determining step in
a local correlation treatment.[26] Since we only need operators in the atomic
orbital basis, this might indicate a very good potential scaling behavior.

3.5 Results

To achieve reasonable accuracy with our contracted wave function we first
need to define a reasonable expansion of the Gaussian geminal basis. In figure
3.1 we varied the exponents of two s- and p-type Gaussian geminals. All
these calculations were performed using the averaged coupled pair functional
(ACPF) correlation energy [3] of the methane molecule in the cc-pVTZ basis
set [5]. The geometry was optimized with the MP2 method [36] and the 6-
31+G** basis set [37] using the Gaussian 09 program package.[38] Applying
the exponents 0.75 and 0.1 we recover 95.6% of the conventional correlation
energy of −0.219 Hartree (see figure 3.1). This percentage can of course
be increased by including more geminals in the expansion. Note that using
only s-type Gaussian geminals resulted in a maximum percentage of 94, 5%
recovered, even when applying 24 geminals in the expansion. This indicates
that higher angular momenta are necessary to recover a high percentage of
the correlation energy.

In the following section, we discuss the extend of the correlation energy
recovered by our new contraction scheme. All molecular geometries were
again optimized on MP2 level using a 6-31+G** basis. We use six s-type
and six p-type Gaussian geminals with exponents ranging from 2.0 to 0.001
in an even tempered way for the diagonal ansatz and again two s- and two p-
type geminals with the exponents 0.75 and 0.10 for the non-diagonal ansatz,
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Figure 3.1: Percentage of the correlation energy recovered using two s- and
p-type Gaussian geminals with respect to the variation of exponents a and
b. Both angular momenta share the same exponent in each calculation. The
correlation energy is computed with the ACPF[3] functional using methane
and the cc-pVTZ basis set [5].

respectively.[6] Note that only double excitations are included into the cor-
relation treatment due to the ansatz of the wave function. The occupied
orbitals are localized using the Pipek-Mezey criterion.[23] For the diagonal
ansatz, this influences the resulting energy while for the non-diagonal ansatz
only the convergence is accelerated. This behavior is expected and can be
explained by the unitary invariance of the respective ansatz with respect to
orbital rotations within the space of occupied orbitals.[15]

In general, we recover more than 85% of the correlation energy by the
diagonal ansatz (cf. Figure 3.2). However, significantly inferior results are
obtained for larger systems and basis sets. This may be attributed to in-
creasingly diffuse basis functions and longer ranges of interactions. In these
cases, it might be necessary to add more diffuse Gaussian geminals and higher
angular momenta, respectively.

The convergence of the diagonal ansatz to the limit of the full correlation
energy was not investigated further since the unitary invariant non-diagonal
ansatz already recovers more than 90% of the correlation energy in all cases
and is virtually independent of the basis set and system size (cf. Figure
3.3). Therefore, the non-diagonal ansatz should be regarded as the superior
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contraction scheme for the wave function.
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Figure 3.2: Percentage of the ACPF correlation energy recovered by the
diagonal ansatz using six s- and six p-type Gaussian geminals.
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Figure 3.3: Percentage of the ACPF correlation energy recovered by the
non-diagonal ansatz using two s- and two p-type Gaussian geminals.
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For most problems of chemical interest, energy differences, such as reac-
tion energies, are much more important than absolute energies. To describe
energy differences sufficiently well, the error introduced by the contraction
scheme has to be generally small or at least of a systematic nature. The
diagonal ansatz already exhibits a dependency of the error with system size.
As a consequence, the non-diagonal ansatz is far superior to the diagonal one
(cf. Table 3.1). It recovers a sufficiently high percentage of the interaction
energies with the given choice of Gaussian geminals. Actually, the energy
variation by changing the correlation functional is often higher.

Table 3.1: Differences of contracted and conventional ACPF energies for
some model reactions calculated in the 6-31+G** basis.

∆E[kJ/mol]

diagonal

(6s6p)

non-diag.

(2s2p)

conven-

tional

C2H2 +H2 → C2H4 -238 -224 -220

C2H4 +H2 → C2H6 -186 -179 -168

C2H6 +H2 → 2 CH4 -79 -73 -78

N2 + 3 H2 → 2 NH3 -179 -156 -153

RMS [conv.] 13 7

Another important test for any new local correlation method is a faithful
description of weak interactions. Along these lines, the dispersion interaction
of two Neon atoms is investigated (cf. Figure 3.4). For the diagonal ansatz,
we observe a repulsive potential energy curve leading to the conclusion that
this ansatz cannot describe weak interactions. However, the non-diagonal
ansatz recovers the energies of the conventional approach. In Table 3.2,
results for two different choices of the Gaussian geminal basis are presented,
revealing differences in the µHartree regime. Thus, rather compact geminal
expansions can be used in practice, provided that the exponents are carefully
chosen. The deviation to coupled cluster calculations predominantly results
from the choice of the pair correlation method as demonstrated in Figure 3.4.
Extending our ansatz to coupled cluster doubles would significantly improve
on these energies.[39]
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Figure 3.4: ACPF interaction energies of two neon atoms calculated with the
6-31+G** basis set using six s- and six p-type Gaussian geminals

Table 3.2: Contracted ACPF interaction energies of the neon dimer at a
distance of 3.11Å using the 6-31+G** basis. The conventional interaction
ACPF energy is −0.241 mH

∆E[mH]

non-diag.

6s6p -0.225

2s2p + diff.[6] -0.232

3.6 Summary and Outlook

We have presented a new way for approaching local correlation methods
introducing a novel contraction scheme which drastically reduces the storage
requirements and recovers a large percentage of the correlation energy of
a given pair correlation method. The error introduced is of a systematic
nature such that energy differences are also reproduced with high accuracy.
An important future development will be the extension of our ansatz to
coupled cluster methods and thereby increase the accuracy of the correlation
method itself. In principle, it is possible to extend the above ideas to lower
or higher excitation types. Single excitations can be included by one electron
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Gaussians or by summation over all occupied orbitals of one-electron in the
integral expression of two electron Gaussians, like in the Coulomb or exchange
operators. Triple excitations are available by forming products of the two
electron Gaussian functions to build three electron Gaussian functions. This
can of course also be extended up to the excitation level of full CI. Locality
of correlation effects can further be exploited by describing important pairs
with longer geminal expansions then the remainder. Further modifications
are possible by changing the functional form of r12. An inclusion of explicit
correlation represents a natural extension and will be presented in chapter
5. We will also describe the inclusion of orbital optimization to treat multi-
reference problems (cf. chapter 4).
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Chapter 4

Orbital Optimized Contracted
Pair Correlation Methods

The formation or breaking of chemical bonds represents a ubiquitous phe-
nomenon in chemistry and often requires a multi-reference formulation of the
wave function. We present the extension of our contraction scheme to orbital
optimized pair correlation methods. These methods are able to describe the
dissociation of an arbitrary number of single bonds within a molecule. A
big advantage of these methods is the direct inclusion of dynamic correlation
effects into a multi-reference calculation. Additionally, we can improve on
the accuracy of molecular properties in general as shown by Bozkaya et. al.
for OCEPA(0).[7] Using our contraction scheme, we included locality into
the working equations and reduced the storage requirements by up to three
orders of magnitude.[6] This may open a way to tackle large molecules with
this class of methods.

4.1 Ansatz for the Wave Function

The basic ansatz for an orbital optimized pair correlation method can be
written in the following form:

|Ψ(A,κ)〉 = |Φ(κ)〉+
∑
klcd

Acdkl |Φcd
kl(κ)〉 (4.1)

The coefficient tensor A contains the standard configuration interaction co-
efficients Acdkl and the matrix κ describes the orbital transformations. In the
contracted pair correlation methods the coefficients are expressed by a sum
over integrals and therefore also depend on the orbital rotation parameters
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(cf. equation 4.2).

Acdkl(κ,B) =
∑
mng

Bmng
kl Rcdg

mn(κ)

Rcdg
mn(κ) = 〈c(κ)d(κ)|f̂ g12|m(κ)n(κ)〉 (4.2)

4.2 Energy Optimization

Since the wave function now depends on the orbital rotation parameter κ,
the energy functional in equation 3.8 has to be generalized: [2]

E(A,κ) = E0(κ) + ECorr(A,κ)

= E0(κ) +
〈Ψ(A,κ)|Ĥ − E0(κ)|Ψ(A,κ)〉

〈Φ(κ)|Φ(κ)〉+ cD 〈ΨD(A,κ)|ΨD(A,κ)〉
= E0(κ) +N−1

(A) 〈Ψ(A,κ)|Ĥ − E0(κ)|Ψ(A,κ)〉 (4.3)

The dependency of the wave function on orbital rotation parameters can be
expressed by the following general expression which holds for any determinant
or linear combination of determinants |Ψ〉.[18, 40]

|Ψ(κ,A)〉 = exp(−κ̂) |Ψ(A)〉
κ̂ =

∑
ai

κai(Eai − Eia) (4.4)

Here, κai are the matrix elements of the anti-symmetric matrix κ, whose
matrix exponential defines the unitary transformation matrix U = exp(−κ).
The singlet excitation operator Epq is defined as a†pαaqα+a†pβaqβ. The symbols

a† and a are the creation and annihilation operators for electrons with α or β
spin in the spatial orbitals p and q, respectively. The dependency of integral
expressions on κ is then given by:

|p(κ)〉 =
∑
q

|q〉Uqp(κ) =
∑
q

|q〉 [exp(−κ)]qp

Rcd
kl(κ) = 〈c(κ)d(κ)|f̂ g12|k(κ)l(κ)〉

=
∑
pqrs

〈pq|f̂ g12|rs〉Upc(κ)Uqd(κ)Urk(κ)Usl(κ) (4.5)
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We may now define the reference and the correlation energy with respect to
orbital and coefficient dependencies as:

E0(κ) = 〈Φ(κ)|Ĥ|Φ(κ)〉
= 〈Φ| exp(κ̂)Ĥ exp(−κ̂)|Φ〉
= 〈Φ|Ĥ(κ)|Φ〉

ECorr(κ,A) =
〈Ψ(κ,A)|Ĥ − E0(κ)|Ψ(κ,A)〉

〈Φ(κ)|Φ(κ)〉+ cD 〈ΨD(κ,A)|ΨD(κ,A)〉

=
〈Ψ(A)|Ĥ(κ) − E0(κ)|Ψ(A)〉
〈Φ|Φ〉+ cD 〈ΨD(A)|ΨD(A)〉

= N−1
(A) 〈Ψ(A)|Ĥ(κ) − E0(κ)|Ψ(A)〉 (4.6)

We left out the dependency of A on orbital transformations in the above
expression for readability. The optimization of the coefficients was already
discussed in detail in chapter 3. An orbital optimization is slightly more
difficult than the optimization of the CI-coefficients due to the exponential
dependence of the wave function on the variational parameters. Along these
lines, derivatives of the exponential result in the following non-linear equa-
tions:

d

dκai
exp(−κ) = −(δai − δia) exp(−κ)

d

dκai
exp(−κ̂) = −(Eai − Eia) exp(−κ̂)

d

dκai
Ĥ(κ) = [(Eai − Eia), Ĥ(κ)] (4.7)

Here, δpq is a zero matrix with element pq set to one. To simplify the non-
linear equations, we expand the energy up to second order around κ = 0 in
a McLaurin series for an arbitrary iteration n:

En(∆κ) ≈ E
(0)
n(0) + (∆κ)TE

(1)
n(0) +

1

2
∆κTE

(2)
n(0)∆κ

E
(1)
ai = lim

κ→0

d

dκai
En(κ)

E
(2)
aibj = lim

κ→0

d2

dκaidκbj
En(κ) (4.8)

The update ∆κ of the transformation matrix can be calculated by the con-
jugate gradient method. [20] Subsequently, the update is scaled by a step
size parameter α:

E
(2)
n(0)∆κ = −E

(1)
n(0)

κn+1 = α∆κ (4.9)
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Here, E
(1)
n(0) denotes the electronic gradient vector constructed from the or-

bitals belonging to the iteration n and E
(2)
n(0) is the electronic Hessian matrix

(or an approximation to it), such that ai is defined as a combined index.

We now only need to define E
(1)
ai within the limit κ → 0. A very general

variation of the energy using the product rule is given by:

δE(κ,A) = δE0(κ) + δECorr(κ,A)

= δE0(κ) +N−1
(A)(δ 〈Ψ(A)|Ĥ(κ) − E0(κ)|Ψ(A)〉

− cDECorr(κ,A)δ 〈ΨD(A)|ΨD(A)〉) (4.10)

Accordingly, the intermediate quantities are defined as follows:

lim
κ→0

d

dκai
Ĥ(κ) = [(Eai − Eia), Ĥ]

= Ĥai

lim
κ→0

d

dκai
〈Φ|Ĥ(κ)|Φ〉 = 〈Φ|Ĥai|Φ〉

= FΦ
ai

lim
κ→0

d

dκai
〈Ψ(A)|Ĥ(κ)|Ψ(A)〉 = 〈Ψ(A)|Ĥai|Ψ(A)〉

= FΨ
ai(A)

lim
κ→0

d

dκai
Upq(κ) = [−(δai − δia)]pq

= −δpaδqi + δpiδqa

lim
κ→0

d

dκai
Rcdg
kl(κ) = −Rcdg

al δki −R
cdg
ka δli

+Ridg
kl δca +Rcig

kl δda (4.11)

Using these definitions and the general energy variation we get:

E
(1)
ai = FΦ

ai +N−1
(A)(F

Ψ
ai(A) − FΦ

ai(1 + 〈ΨD(A)|ΨD(A)〉)

+ 2 〈Ψ(δA)|Ĥ(κ) − E0(κ)|Ψ(A)〉) (4.12)
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For the last part of equation 4.12 we may additionally define the matrices:

Yai(A) = 2
∑
klc

(
∑
mng

Bmng
lk Ricg

mn +Bmng
kl Rcig

mn)W ac
kl(A)

= 4
∑
klc

AciklW
ca
kl(A)

Zai(A) = 2
∑
klcd

∑
mg

(Bimg
kl Rcdg

am +Bmig
kl Rcdg

ma)W
cd
kl(A)

= 4
∑
klmg

Bimg
kl Xamg

kl(A) (4.13)

Finally, the following working equations are obtained:

E
(1)
ai = FΦ

ai +N−1
(A)(F

Ψ
ai(A) − FΦ

ai(1 + 〈ΨD(A)|ΨD(A)〉))
+ Yai(A) − Zai(A) (4.14)

Note that the terms depending on the generalized and the normal Fock matrix
(FΨ

ai and FΦ
ai) belong to the conventional orbital optimized pair correlation

methods. There are efficient working equations available for this part of
equation 4.14.[7] The other terms can also be calculated efficiently by the
equations resulting from the coefficient optimization (cf. chapter 3).

To optimize the energy, the electronic Hessian has to be defined and is
currently approximated by the Hessian of the Hartree-Fock ansatz.[7]

(E
(2)
n(0)∆κ)ai = 2

∑
bj

(δijF
Φ
ab − δabFΦ

ij

+ (2Gab
ij −Gba

ij )− (2Gja
ib −G

aj
ib )

+ δijδabcshift)κbj

Grs
pq = 〈pq|ĝ12|rs〉 (4.15)

The parameter cshift and the step size α are chosen as explained in section
3.3.

To improve the storage requirements of the contracted orbital optimized
pair correlation methods as far as possible, we will have to calculate operators
in the atomic orbital basis on-the-fly. Any sum over virtual orbitals can again
be replaced by tensor products in the atomic orbital basis (cf. section 3.4 for
further details).

4.3 Results

In order to investigate the ability of orbital optimized pair correlation meth-
ods to describe static correlation, the homolytic bond breaking of small

46



molecules is studied.[10] This process needs two reference determinants for
single bond breaking, namely the optimized ground state determinant and
a doubly excited determinant, where the orbital describing the bond is re-
placed by the anti-bonding one. These determinants obviously occur in our
methods, since we include all doubly excited determinants in our expansion.
The remaining question is if the contraction scheme is also able to reproduce
the correct dissociation energies. In the following investigations, we use two
s- and p-type Gaussian geminals with the exponents 0.75 and 0.10, respec-
tively (cf. chapter 3).[6] All the following calculations were performed using
the 6-31+G** basis set[37] and the frozen core approximation was applied
by neglecting all electrons of the inner shells.
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Figure 4.1: Bond dissociation of the hydrogen molecule

The most simple example of a homolytic bond breaking occurs in the
hydrogen molecule (cf. Figure 4.1). It is demonstrated, that the orbital
optimized configuration interaction doubles (OCID) perfectly reproduces the
correct dissociation limit and also adds a small correlation contribution which
was not recovered by the minimal CAS(2,2) ansatz.[41] The small difference
between the contracted and the conventional ansatz for larger distances is
due to the rather steep geminal exponents and can be further reduced by
adding more diffuse Gaussian geminals.

Another prominent test example is the dissociation of lithium fluoride.
According to the results demonstrated in Figure 4.2, the contracted and
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Figure 4.2: Bond dissociation of the lithium fluoride molecule

the conventional orbital optimized methods perfectly reproduce the topology
of the CAS(2,2) calculation, while including correlation effects with similar
accuracy as CCSD(T).[42] Note that the CCSD(T) method tends to diverge
for large bond distances since a single determinant represents a poor reference
due to pronounced static correlation.

The dissociation of the nitrogen molecule is even more challenging (cf.
Figure 4.3), since additionally two quadruply excited determinants and one
hextuply excited determinant are necessary to describe this process correctly.
Consequently, the orbital optimized pair correlation method must converge
into a higher excited state as compared to the CAS(6,6) calculation. This
behavior is expected and should not be regarded as a general failure of our
approach. Extending the orbital optimized contraction scheme to higher
excitation levels will allow a correct contracted complete active space. A
conventional or contracted CASSCF[41] like wave function can therefore be
constructed and would lead to multi-reference approaches directly including
dynamic correlation. In the geometric minimum, we recover a large fraction
of the correlation energy given by the coupled cluster method which quickly
diverges for larger bond distances.

Note that so far the size-extensive orbital optimized pair correlation meth-
ods OCEPA0[7] and OACPF diverged when increasing the bond distance in
the test molecules above. Orbital optimized coupled cluster seems to per-
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Figure 4.3: Bond dissociation of the nitrogen molecule

form more stable in these cases and should be tested in future work.[10]
Future developments should also focus on including additional excitations
in form of a complete active space.[41] This will lead to methods which are
able to describe any multi-reference problem while directly including dy-
namic correlation in a locally contracted form. Note that the description of
static correlation is different from size-extensive multi-reference treatments
like multi-configurational CEPA.[43] In this method, the static correlation is
described by a CASSCF reference function, and only the dynamic correlation
is described by a CEPA energy functional.

We may now investigate if reaction energies can also be improved by
orbital optimization. For this purpose, we first compare the uncontracted
definition of orbital optimized CEPA0 to CCSD(T). As shown in table 4.1, all
reaction energies are closer to this reference energy indicating that including
orbital optimization is indeed a resonable approach. Note that Bozkaya et.
al. already found this behavior for a much larger test set of reactions.[7]
According to our previous findings, further investigations reveal to which
extend accuracy is affected by the contraction scheme (cf. table 4.2). Again,
orbital optimization improves on the accuracy. Further improvements are in
principle possible by including more Gaussian geminals into the expansion
of the wave function.

49



Table 4.1: Conventional CEPA0 and OCEPA0 electronic reaction energies
for some model reactions calculated in the 6-31+G** basis

∆E[kJ/mol]

CEPA0 OCEPA0 CCSD(T)

C2H2 +H2 → C2H4[6] -218 -217 -212

C2H4 +H2 → C2H6 -165 -161 -163

C2H6 +H2 → 2 CH4 -77 -76 -75

N2 + 3 H2 → 2 NH3 -146 -139 -136

RMS [CCSD(T) [38]] 6 3 —

Table 4.2: Contracted CEPA0 and OCEPA0 electronic reaction energies for
some model reactions calculated using the 6-31+G** basis

∆E[kJ/mol]

contr. CEPA0 contr. OCEPA0

C2H2 +H2 → C2H4[6] -222 -219

C2H4 +H2 → C2H6 -178 -175

C2H6 +H2 → 2 CH4 -72 -71

N2 + 3 H2 → 2 NH3 -150 -143

RMS [CCSD(T) [38]] 12 8

4.4 Summary and Outlook

Orbital optimized pair correlation methods lead to very accurate molecular
properties, such as energy differences and potential energy surfaces. We
presented a contraction scheme, which includes the use of locality into orbital
optimized pair correlation methods. This may pave the way towards the
application of these methods to rather large molecules. The effects of the
contraction on the accuracy are negligibly small, even when static correlation
plays a major role for the system under investigation.
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Chapter 5

Explicitly Correlated Orbital
Optimized Contracted Pair
Correlation Methods

Explicitly correlated wave functions are part of extensive research since they
offer a way to drastically improve the otherwise poor convergence of the
correlation energy with respect to the size of the one-particle basis. In chapter
3, we presented a way to efficiently contract pair correlation wave functions,
resulting in very compact working equations and thereby reducing the storage
requirements by up to three orders of magnitude.[6] The extension to orbital
optimization was also shown. The contraction coefficients in these ansatzes
are given by integrals over Gaussian type geminals. Since these integrals are
the basis for explicitly correlated wave functions, the resulting extension is
obvious and will presented here. Improved convergence towards the basis set
limit can be shown for the contracted pair correlation methods.

5.1 Ansatz for the Wave Function

In our previous ansatz [6] the configuration interaction coefficients were rep-
resented by a sum of integrals over Gaussian geminals. To introduce explicit
correlation, we will rewrite these equations implying a complete one-particle
basis. We will reintroduce the basis used for the actual computations, when-
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ever it is reasonable.

|Ψ(A)〉 = |Φ〉+
∑
ijab

Aabij |Φab
ij 〉 → |Φ〉+

∑
ijAB

AABij |ΦAB
ij 〉

AABij(B) =
∑
klg

Bklg
ij R

ABg
kl

RABg
kl = 〈AB|f̂ g12|kl〉 (5.1)

The indices a, b label the virtual space of the basis used for the calcula-
tion, while A,B label the virtual space of the complete one-particle basis.
Moreover, |Φ〉 is the reference determinant and the sum contains all double
excitations from the occupied to the complete virtual space (ij → AB). In
order to introduce the way of including explicit correlation, it is convenient
to reorder the summation of the wave function.

|Ψ(B)〉 = |Φ〉+
∑
ijklg

Bklg
ij |Ξ

klg
ij 〉

|Ξklg
ij 〉 =

∑
AB

RABg
kl |Φ

AB
ij 〉 (5.2)

Let us first introduce the projection operators:

1̂(1) =
∞∑
P

|P(1)〉 〈P(1)| ; P̂(1) =

nbas∑
p

|p(1)〉 〈p(1)|

Ô(1) =
nocc∑
i

|i(1)〉 〈i(1)| ; V̂(1) =

nvirt∑
a

|a(1)〉 〈a(1)| (5.3)

Note that the indices PQRS denote the complete one-particle basis, pqrs
denote the computational basis, ijkl denote the occupied space and abcd
label the virtual space. We can now combine these projection operators in
the following form.[44]

Q̂12 = (1̂(1) − Ô(1))(1̂(2) − Ô(2))(1̂(1)1̂(2) − V̂(1)V̂(2))

≈ (1̂(1)1̂(2) − P̂(1)P̂(2)) (5.4)

Note, that the last approximation only holds if we assume the one-particle
basis used for calculations to be complete for integrals including more than
two electrons (1̂(1)Ô(2) = P̂(1)Ô(2)). This approximation allows for a direct
replacement of summations over the complete virtual space A,B by sum-
mations over the complete one-particle basis P,Q and the computational
basis p, q. This last ansatz for the projection operator is not used and nor-
mally refined by introducing an auxiliary basis.[44, 12, 13, 14] Nevertheless,
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we will demonstrate in the results section that quite accurate results can
be obtained by introducing an additional approximation for the one-electron
integrals. Along these lines, we can use equation 5.4 to modify our present
ansatz in the following way:

|Ξklg
ij 〉 =

∑
AB

〈AB|(V̂(1)V̂(2) +
1

2
Q̂12)f̂ g12|kl〉 |ΦAB

ij 〉

=
∑
ab

Rabg
kl |Φ

ab
ij 〉

+
1

2
(
∑
AB

RABg
kl |Φ

AB
ij 〉 −

∑
ab

Rabg
kl |Φ

ab
ij 〉)

≈
∑
ab

Rabg
kl |Φ

ab
kl 〉

+
1

2
(
∑
PQ

RPQg
kl |Φ

PQ
ij 〉 −

∑
pq

Rpqg
kl |Φ

pq
ij 〉) (5.5)

The expressions in parenthesis can be interpreted as a correction to the wave
function. This correction is a manifestation of the incompleteness of the one-
particle basis. If the basis becomes complete, i.e. {p} → {P}, the correction
vanishes.

We have demonstrated in chapter 3 that it is necessary to include p-type
Gaussian geminals into the contracted wave function to achieve sufficient
accuracy.[6] These functions do not improve the description of the Coulomb
cusp due to their nodal structure, and the corresponding explicitly correlated
integrals would be expensive and complicated to calculate. The modification
of the ansatz for the wave function is therefore only applied for the subset
of s-type geminals denoted by (s) in the functions |Ξklg(s)

ij 〉. The p-type
geminals denoted by (p) will be augmented with the projection operator
V̂(1)V̂(2) resulting in the conventional contribution.

|Ξklg(s)
ij 〉 =

∑
ab

Rabg
kl |Φ

ab
kl 〉

+
1

2
(
∑
PQ

RPQg
kl |Φ

PQ
ij 〉 −

∑
pq

Rpqg
kl |Φ

pq
ij 〉)

|Ξklg(p)
ij 〉 =

∑
ab

Rabg
kl |Φ

ab
kl 〉 (5.6)

In principle, a more general ansatz for the wave function could be defined
as well.

|Ψ(B)〉 = |Φ〉+
∑
ijab

Aabij(B) |Φab
ij 〉+

∑
ijAB

AABij(B) |ΦAB
ij 〉 (5.7)
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Here, the coefficients Aabij(B) and AABij(B) are still defined by contraction. This
ansatz is more reminiscent to explicitly correlated wave functions from lit-
erature, except for the contracted representation of Aabij(B).[12, 13, 14] Since
in our approach both sets of coefficients are contracted by the same integral
types it seems reasonable to summarize them. Note that the difference be-
tween these two ansatzes is given by one set of contraction coefficients Bklg

ij

in equation 5.6 and two sets of contraction coefficients for equation equation
5.7, since the conventional and the explicitly correlated contraction are not
identical.

Our ansatz for the wave function can be understood as a combination
and extension of the studies reported previously by Höfener et. al. [45]
and Valeev[46]. Höfener et. al. [45] applied a similar ansatz to the coupled
cluster approximation CC2. In this study, the conventional amplitudes are
replaced by contraction, but the linear combination of the Gaussian geminals
was fixed and only s-type Gaussian geminals where used.

Aabij(B) =
∑
klg

Bkl
ijR

ab
kl

Rab
kl =

∑
g

Cg 〈ab|f̂ g12|kl〉 (5.8)

Valeev [46] did not contract the working equations, but chose a more flex-
ible ansatz for the geminal expansion which was still restricted to s-type
Gaussian geminals. The numerical observations of this study will in fact
be important for the justification of our approximation for the one-particle
integral contributions as will be demonstrated in the result section.

5.2 Modified Working Equations

In our previous approaches, the conventional electronic gradient elements
WAB
ij (A) were contracted:

Xklg
ij(A) =

∑
AB

RABg
kl WAB

ij (5.9)

This expression contains various sums over products of integrals which can
be reduced to two-, three- and four-electron integrals within a complete one-
particle basis. Integrals containing more than two electrons cannot be solved
analytically in an efficient way. To avoid these integrals, we assume that
the one-particle basis used for calculation is complete, i.e. {p} → {P}.
Therefore, the conventional expressions from the working equations apply for
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these contributions. We currently do not employ an auxiliary basis set[44]
for these integrals, since the virtual space is contracted anyway. In case the
used basis set is very small, the assumption that the computational basis is
complete may introduce large errors due to the approximation of integrals
explained above. It is recommended to use sufficiently large basis sets of at
least triple zeta quality or specialized double zeta basis sets.[47] As already
discussed above, we only want to modify the contributions corresponding
to two electron integrals with s-type Gaussian geminals. Therefore, we will
first isolate the corresponding summations in the working equations and then
explain the necessary modifications. The two electron operators containing
ĝ12 are given by the following contributions to the electronic gradient elements
Xklg
ij(A):

Xklg
ij(A) =

∑
AB

RABg
kl GAB

ij +
∑
ABCD

RABg
kl GCD

ABA
CD
ij + · · · (5.10)

The contributions above hold for the conventional contraction scheme. The
explicitly correlated wave function now introduces additional contributions,
as shown in the equations 5.5 and 5.6. Note that only s-type Gaussian
geminals denoted by (s) are considered in the correction of the wave function.
The contributions of p-type geminals will remain as defined in chapter 3.∑

AB

R
ABg(s)
kl GAB

ij →
∑
ab

R
abg(s)
kl Gab

ij

+
1

2
(
∑
PQ

R
PQg(s)
kl GPQ

ij −
∑
pq

R
pqg(s)
kl Gpq

ij ) (5.11)

∑
AB

R
ABg(p)
kl GAB

ij →
∑
ab

R
abg(p)
kl Gab

ij (5.12)

55



The quadratic contributions are given by:∑
ABCD

R
ABg(s)
kl GCD

ABA
CD(s)
ij →

∑
abcd

R
abg(s)
kl Gcd

abA
cd(s)
ij

+
1

2
(
∑
PQcd

R
PQg(s)
kl Gcd

PQA
cd(s)
ij −

∑
pqcd

R
pqg(s)
kl Gcd

pqA
cd(s)
ij )

+
1

2
(
∑
abRS

R
abg(s)
kl GRS

ab A
RS(s)
ij −

∑
abrs

R
abg(s)
kl Grs

abA
rs(s)
ij )

+
1

4
(
∑
PQRS

R
PQg(s)
kl GRS

PQA
RS(s)
ij

−
∑
pqRS

R
pqg(s)
kl GRS

pq A
RS(s)
ij −

∑
PQrs

R
PQg(s)
kl Grs

PQA
rs(s)
ij

+
∑
pqrs

R
pqg(s)
kl Grs

pqA
rs(s)
ij ) (5.13)

∑
ABCD

R
ABg(s)
kl GCD

ABA
CD(p)
ij →

∑
abcd

R
abg(s)
kl Gcd

abA
cd(p)
ij

+
1

2
(
∑
PQcd

R
PQg(s)
kl Gcd

PQA
cd(p)
ij −

∑
pqcd

R
pqg(s)
kl Gcd

pqA
cd(p)
ij ) (5.14)

∑
ABCD

R
ABg(p)
kl GCD

ABA
CD(s)
ij →

∑
abcd

R
abg(p)
kl Gcd

abA
cd(s)
ij

+
1

2
(
∑
abRS

R
abg(p)
kl GRS

ab A
RS(s)
ij −

∑
abrs

R
abg(p)
kl Grs

abA
rs(s)
ij ) (5.15)

∑
ABCD

R
ABg(p)
kl GCD

ABA
CD(p)
ij →

∑
abcd

R
abg(p)
kl Gcd

abA
cd(p)
ij (5.16)

The equations above are derived by including the projection operators into
the definition of the integral expression RABg

kl as defined in the ansatz for
the contraction functions (see equations 5.5 and 5.6). The coefficients are
decomposed according to:

A
ab(s)
ij =

∑
kl

s−type∑
g

Bklg
ij R

abg
kl

A
ab(p)
ij =

∑
kl

p−type∑
g

Bklg
ij R

abg
kl (5.17)
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Parts of the equations above contain a summation over the complete one-
particle basis. These parts of the equations can be modified further to intro-
duce explicitly correlated integrals (cf. section 5.3). All contributions to the
electronic gradient elements Xklg

ij(A) which must be decomposed as explained
above since they resolve in two-electron integrals are given by the following
expressions:∑

AB

RABg
kl AABij ;

∑
AB

RABg
kl GAB

ij ;
∑
ABCD

RABg
kl GCD

ABA
CD
ij∑

ABC

RABg
kl FC

AA
CB
ij +RABg

kl FC
BA

AC
ij (5.18)

For orbital optimization, additional sums in the orbital gradient equations
have to be replaced accordingly:∑

AB

AABkl A
AB
ij ;

∑
AB

GAB
pq A

AB
ij ;

∑
A

F p
AA

Aq
ij (5.19)

To derive the replacement for the expressions above, the projection operators
need to be applied to the integral expressions RABg

kl as already shown in the
beginning of this section (cf. equations 5.11 - 5.16). The explicit expressions
are derived in the appendix (cf. section 8.2). Due to integral symmetry
the expressions above might occur with slightly different ordered indices,
depending on the working equations in use.

5.3 Explicitly Correlated Two-Electron Inte-

grals

In order to introduce explicitly correlated integrals into our working equa-
tions, it is convenient to replace the projection operators over the complete
one-particle basis {P} by the identity operator.[12]∑

P

|P1〉 〈P1| = 1̂1 (5.20)

We may now proceed to replace all summations over the complete one particle
basis in the expressions of section 5.2 by the identity operator. The following
expression can then be reduced to the integral:∑

PQRS

RPQg
ij GRS

PQR
RSh
kl

=
∑
PQRS

〈ij|f̂ g12|PQ〉 〈PQ|ĝ12|RS〉 〈RS|f̂h12|kl〉

= 〈ij|f̂ g12ĝ12f̂
h
12|kl〉 (5.21)
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Similar equations can be derived for all other operators:∑
PQ

RPQg
ij APQkl =

∑
mnh

〈ij|f̂ g12f̂
h
12|mn〉Bmnh

kl

= RAklgij (5.22)

∑
PQ

RPQg
ij GPQ

pq = 〈ij|f̂ g12ĝ12|pq〉

= RGpqg
ij (5.23)

∑
PQ

GPQ
pq A

PQ
ij =

∑
klh

〈pq|ĝ12f̂
h
12|kl〉Bklh

ij

= GAijpq (5.24)

∑
PQRS

RPQg
ij GRS

PQA
RS
kl

=
∑
mnh

〈ij|f̂ g12ĝ12f̂
h
12|mn〉Bmnh

kl

= RGAklgij (5.25)

∑
PQR

RPQg
kl FR

P A
RQ
ij +RPQg

kl FR
QA

PR
ij

=
∑
mnh

〈ij|f̂ g12(f̂1 + f̂2)f̂h12|mn〉Bmnh
kl

= RFAklgij (5.26)

In case orbital optimization should be performed, we need to replace some
additional summations in the orbital gradient equations:∑

PQA
PQ
ij A

PQ
kl = AAklij∑

PQG
PQ
pq A

PQ
ij = GAijpq∑

P F
p
PA

Pq
ij = FAijpq (5.27)

Note that the actual dimensions of the tensors used will have to be modified
in case of orbital optimization (cf. chapter 4).

There are multiple ways to calculate the contribution of the explicitly
correlated integrals containing the Fock operator f̂1.[12, 13, 14] The defini-
tions above do not impose any restrictions on this choice. We currently use
a special kind of approximation explained and tested in the results section.
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5.4 Results

In the following section, we discuss the results obtained by applying the ex-
plicitly correlated ansatz of equation 5.6. All considered molecular geometries
were optimized on the MP2 level of theory using a 6-31+G** basis set.

To explain the transition from explicitly correlated theory in literature to
our ansatz we may first show a short comparison of different approximations
for the coefficients. The so called non-diagonal ansatz [15] is closely related
to our approach and will be labeled analogously. The only difference to our
ansatz consists in the application of a fixed linear combination of geminals
for each orbital pair, reducing the flexibility of the wave function:

AABij(B) =
∑
klg

Bklg
ij R

ABg
kl → AABij(B) =

∑
kl

Bkl
ij

∑
g

cgR
ABg
kl (5.28)

The diagonal ansatz further reduces the number of coefficients by the defi-
nition Bkl

ij = Bijδikδjl or in our case Bklg
ij = Bg

ijδikδjl. In modern explicitly
correlated ansatzes, the coefficients Bij are fixed to constant predefined val-
ues which fit the cusp conditions for S and P partial waves.[16] The most
commonly used ansatz for the description of the two-electron integral contri-
butions resulting from the Fock-operator is labeled as approximation C.[48]
Since we previously showed that for our contraction scheme a high variational
freedom is crucial to recover a high percentage of correlation energy by con-
traction, we would like to adopt this principle for the explicitly correlated
wave function as well. Our studies reveal numerical instabilities for the hydro-
gen fluoride molecule in a cc-pVTZ basis[5] when combining approximation
C with the non-diagonal ansatz using one or more s-type Gaussian geminals.
The same holds for the diagonal ansatz using two Gaussian geminals. Only
the diagonal approximation C using one geminal leads to faithful results (cf.
Table 5.1). Note that these numerical instabilities where also reported earlier
by Adler et al.[49] and Valeev [46]. One possible way to resolve this problem
would be the introduction of large auxiliary basis sets [44] or removing the
instabilities by a Singular Value Decomposition. Alternatively, we pursued
a different approach labeled approximation D. In this approximation, we de-
scribe all contributions from the Fock-operator completely by the resolution
of the identity in the basis set used for the calculation. Approximation D
leads to stable results for the non-diagonal ansatz with one or more geminals.
The fraction of correlation energy recovered compared to the (most possibly
close to perfect) f12-CCSD(T)[50] energy is already quite high for such a
small number of Gaussian geminals and can be further increased by a larger
geminal basis. This approximation may slightly impair the convergence to
the basis set limit, but the dominant contributions are still described.[11] We
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assume that the numerical instabilities can be removed this way, since the
contributions of the kinetic energy operator to matrix elements is by orders
of magnitude higher than for 1/r12. Small errors in the description of these
explicitly correlated integrals may therefore lead to unstable results when the
variational freedom is too large.

Table 5.1: Correlation energies of the hydrogen fluoride molecule using the
explicitly correlated diagonal and non-diagonal ansatz and different approx-
imations of the one-electron contributions in the cc-pVTZ basis set. The
f12-CCSD(T) correlation energy is given by -0.329 EH

ECORR [EH ]

Approx. C

diag.

1s1p

Approx. D

diag.

1s1p

Approx. D

non-diag.

1s1p

Approx. D

non-diag.

2s2p

ACPF -0.345 -0.225 -0.260 -0.275

CEPA0 -0.351 -0.233 -0.262 -0.278

CID -0.327 -0.225 -0.253 -0.267

In figure 5.1 and 5.2 we studied the basis set convergence for the helium
atom and the hydrogen molecule, respectively. In both cases we clearly see
an improvement with respect to the contracted approach without explicit
correlation and a smooth convergence towards the basis set limit. Note that
the limit of the contracted and the conventional approach are only equivalent
for a sufficiently large geminal basis set.

In figure 5.3 we depicted the percentage of the correlation energy re-
covered by different CEPA0 versions for a test set of molecules. The f12-
CCSD(T)[49] results, calculated with the ORCA program package[50] and
a cc-pVDZ-f12 basis[47], were taken as a reasonable reference energy. The
fraction of the correlation energy recovered by CCSD(T) and CEPA0 is sim-
ilar (86 and 84%), while we loose 8% when using our contraction scheme.
However, the contracted explicitly correlated ansatz increases the fraction
of the correlation energy drastically and recovers the f12-CCSD(T) correla-
tion energies quite well with about 92%. Similar results are obtained for
the orbital optimized version (cf. Figure 5.4). Here, the percentage of the
correlation energy recovered increases by about 2% for all ansatzes compared
to the non-orbital optimized version. Note, that further improvements are
again possible by including more geminals into the expansion.
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Figure 5.1: Total energy of the helium atom calculated by the CEPA0 vari-
ants using two s- and p- Gaussian geminals and the cc-pVζZ basis sets with
different cardinal numbers ζ.
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Figure 5.2: Total energy of the hydrogen molecule calculated by the CEPA0
variants using two s- and p- Gaussian geminals and the cc-pVζZ basis sets
with different cardinal numbers ζ.
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Figure 5.3: Percentage of the f12-CCSD(T) correlation energy recovered by
the CEPA0 variants using two s- and p- Gaussian geminals and the cc-pVDZ-
f12 basis set.

Additionally, we would like to present a comparison of reaction ener-
gies computed by our new ansatz to experimental data (cf. Table 5.2 and
5.3).[51] The RMS (root mean square) deviation, the MAPE (mean absolute
percentage error), and the number of reactions, whose reaction energies de-
viate by more than 10% from the experimental reference value, are used as
reasonable quantities for analysis. Note that f12-CCSD(T) leads to the val-
ues RMS = 5 kJ

mol
, MAPE = 2% and no reaction with larger deviations than

10%. Comparing the contracted and the conventional ansatz without explicit
correlation, we found that all of the above quantities are slightly improved
by contraction, even though the percentage of the correlation energy recov-
ered decreased. This holds with and without including orbital optimization,
and might be regarded as an error cancellation. A comparison between the
conventional wave function with and without orbital optimization reveals vir-
tually identical results regarding these quantities. The same arguments hold
when including contraction and explicit correlation. This is somewhat unex-
pected, since all variational parameters are optimized and the percentage of
the correlation energy recovered is improved. The explicitly correlated con-
tracted reaction energies improve the results compared to the conventional
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Figure 5.4: Percentage of the f12-CCSD(T) correlation energy recovered by
the OCEPA0 variants using two s- and p- Gaussian geminals and the cc-
pVDZ-f12 basis set.

ansatz with and without orbital optimization. In this case, the percentage
of the correlation energy recovered is also increased. Comparing the reaction
energies of the explicitly correlated contracted with the contracted ansatz,
no significant improvement can be seen, even though the percentage of the
correlation energy recovered is drastically improved by 14% with and without
orbital optimization.

The remaining deviations might be attributed to the small orbital and
geminal basis set and the pair correlation method itself. Further studies on
these possible sources of error and an extension to orbital optimized cou-
pled cluster doubles[10] are necessary to provide further information on the
potential accuracy for the explicitly correlated contraction approach.
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Table 5.2: CEPA0 electronic reaction energies using the cc-pVDZ-f12

basis[47].

∆E[ kJ
mol

]

exp.[51] CEPA0
contr.

CEPA0

contr.
f12-

CEPA0

CH2 +H2 → CH4 -544 -518 -548 -557

C2H2 +H2 → C2H4 -203 -207 -213 -215

C2H2 + 3H2 → 2CH4 -446 -448 -466 -463

N2 + 3H2 → 2NH3 -164 -144 -163 -180

F2 +H2 → 2HF -563 -546 -539 -534

H2CO + 2H2 → CH4 +H2O -251 -249 -254 -250

H2O2 +H2 → 2H2O -365 -364 -358 -340

CO + 3H2 → CH4 +H2O -272 -259 -274 -288

HCN + 3H2 → CH4 +NH3 -320 -312 -333 -339

HNO + 2H2 → H2O +NH3 -444 -429 -448 -444

H2O + F2 → HOF +HF -129 -108 -108 -117

CO2 + 4H2 → CH4 + 2H2O -244 -259 -237 -238

2CH2 → C2H4 -844 -795 -844 -867

RMS [REF] 20 12 17

MAPE [REF] 5 3 5

Number of Deviations > 10% 2 1 0
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Table 5.3: OCEPA0 electronic reaction energies using the cc-pVDZ-f12

basis[47].

∆E[ kJ
mol

]

exp.[51] OCEPA0
contr.

OCEPA0

contr.
f12-

OCEPA0

CH2 +H2 → CH4 -544 -517 -548 -558

C2H2 +H2 → C2H4 -203 -206 -212 -213

C2H2 + 3H2 → 2CH4 -446 -444 -462 -460

N2 + 3H2 → 2NH3 -164 -138 -157 -175

F2 +H2 → 2HF -563 -534 -527 -520

H2CO + 2H2 → CH4 +H2O -251 -242 -249 -245

H2O2 +H2 → 2H2O -365 -358 -351 -334

CO + 3H2 → CH4 +H2O -272 -252 -267 -282

HCN + 3H2 → CH4 +NH3 -320 -306 -328 -335

HNO + 2H2 → H2O +NH3 -444 -418 -439 -436

H2O + F2 → HOF +HF -129 -106 -106 -114

CO2 + 4H2 → CH4 + 2H2O -244 -248 -224

2CH2 → C2H4 -844 -795 -847 -869

RMS [REF] 23 15 20

MAPE [REF] 6 4 5

Number of Deviations > 10% 2 1 1
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5.5 Summary and Outlook

We presented an efficient scheme to include explicit correlation into con-
tracted orbital optimized pair correlation methods. The results reveal im-
proved convergence of the correlation energy with respect to the basis set
size. Reaction energies including the explicitly correlated contracted ansatz
improve the conventional ansatz with and without orbital optimization. The
orbital optimization itself does not lead to higher accuracy for the current
test set of reactions. Further studies with larger orbital and geminal ba-
sis sets and higher geminal angular momenta are necessary to confirm this
result.

As a perspective, the inclusion of auxiliary basis sets[44] and the extension
to orbital optimized coupled cluster doubles will be an important future de-
velopment to finally provide a method which can describe chemical reactions
including homolytic bond breakings with very high accuracy.[10]
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Chapter 6

Summary

The main purpose of theoretical chemistry is to predict chemical properties
and reactions by simulation. For this purpose a huge number of methods are
available, which mainly differ in accuracy and computational costs.

In this thesis a new scheme to make highly accurate pair correlation meth-
ods computationally more efficient was presented. This scheme introduces a
contraction of the wave function which strongly reduces the number of vari-
ables which have to be optimized and is applicable to any pair correlation
method[2, 3, 4] (cf. chapter 3). A large percentage of the correlation en-
ergy is recovered and the introduced error is of systematic nature, such that
reaction energies are reproduced with high accuracy. Even weak dispersion
interactions can be described accurately.

The extension to orbital optimization allows the description of single bond
breaking with high accuracy. Contraction recovers this property perfectly
(see chapter 4). An improvement on reaction energies by orbital optimization
as stated by other authors[7] has not been found so far (see chapter 5).
Further studies with different pair correlation methods have to be performed
for conclusive statements.[8, 9, 10] Nevertheless, the presented ansatz paves
the way towards multi-reference methods including dynamic correlation with
applicability to large molecules.

Explicitly correlated methods improve the convergence of chemical prop-
erties with respect to the basis set size. The usage of large and therefore
computationally expensive basis sets can be avoided.[12, 13, 14] An exten-
sion of our approach to explicitly correlated orbital optimized contracted
pair correlation methods is shown in chapter 5. The results show improved
convergence towards the basis set limit of the corresponding contracted wave
function. A comparison of reaction energies calculated by the explicitly cor-
related contracted ansatz to the energies of the conventional ansatz exhibits
improved accuracy with and without orbital optimization. In combination
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with full exploitation of locality one may thereby decrease simulation time
and increase the accuracy significantly.

An extension of our ansatz to coupled cluster methods will be an impor-
tant future development to increase the accuracy of the underlying correla-
tion method.[39, 52] Additionally, higher excitation levels are also accessible
by contraction. In combination with orbital optimization this will lead to
efficient and accurate methods, which are able to describe excited states and
the dissociation of multiple bonds. A parallel implementation using the short
range properties of the atomic orbital basis is still missing and would lead
to the ability of calculating huge systems (see chapter 2.3).[22, 24, 25] The
short range of correlation effects can be further exploited by describing close
pairs with longer geminal expansions than the remainder.

In conclusion, a new approach towards the simulation of large molecular
systems was presented, which is applicable to accurate pair-correlation meth-
ods, can be extended with orbital optimization to describe multi-reference
problems, and includes the effects of explicit correlation for improved basis
set convergence.
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Chapter 7

German Summary

Das Hauptaufgabengebiet der theoretischen Chemie beinhaltet die Vorher-
sage von chemischen Eigenschaften und Reaktionen durch Simulationen. Für
diese Simulationen stehen verschiedene Verfahren zur Verfügung, welche sich
hauptsächlich in ihrer Genauigkeit und dem Rechenaufwand unterscheiden.

In dieser Arbeit wurde ein neues Konzept vorgestellt, welches den rechner-
ischen Aufwand hochgenauer Paar-Korrelationsverfahren deutlich reduziert.
Hierbei wird die Wellenfunktion kontrahiert, wodurch sich die Anzahl der
Variablen, welche optimiert werden müssen, deutlich reduziert. Diese Kon-
traktion ist auf jedes Paar-Korrelationsverfahren anwendbar (siehe Kapi-
tel 3).[2, 3, 4] Dabei bleibt ein großer Prozentsatz der Korrelationsenergie
erhalten und der verbleibende Fehler ist von systematischer Natur. De-
mentsprechend werden Reaktionsenergien ebenfalls mit hoher Genauigkeit
reproduziert. Sogar kleine dispersive Wechselwirkungsenergien werden kor-
rekt wiedergegeben.

Die Erweiterung des Ansatzes auf eine zusätzliche Orbitaloptimierung
ermöglicht die Vorhersage von (Einfach-)Bindungsbrüchen mit hoher Genauig-
keit. Die Kontraktion reproduziert diese Eigenschaft perfekt. Eine verbes-
serte Vorhersage von Reaktionsenergien, wie sie von anderen Autoren[7] ge-
funden wurde, konnte bisher nicht bestätigt werden. Weitere Studien mit
verschiedenen orbitaloptimierten Paar-Korrelationsverfahren sind notwendig,
um dieses Ergebnis zu validieren. [8, 9, 10] Nichtsdestotrotz stellt der präsentierte
Ansatz für die Wellenfunktion einen guten Ausgangspunkt für Multi-Referenz
Verfahren dar, welche statische und dynamische Korrelation gleichzeitig mit
hoher Genauigkeit auch für große Moleküle berechnen können.

Explizit korrelierte Verfahren verbessern die Konvergenz chemischer Eigen-
schaften mit der Basissatzgröße. Dadurch kann die Verwendung großer und
damit rechnerisch aufwändiger Basissätze verhindert werden. Die Ergeb-
nisse dieser Erweiterung unseres Ansatzes zeigen eine beschleunigte Konver-
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genz auf das Basissatzlimit der jeweiligen kontrahierten Wellenfunktion (siehe
Kapitel 5). Ein Vergleich der mit und ohne Orbitaloptimierung berechneten
Reaktionsenergien mit experimentellen Werten zeigt eine erhöhte Vorhersage-
genauigkeit. Unter Ausnutzung der Lokalität des Ansatzes kann also poten-
tiell die Genauigkeit erhöht und gleichzeitig die Simulationszeit reduziert
werden.

Die Erweiterung unseres Ansatzes auf Coupled-Cluster Wellenfunktionen
wird eine wichtige zukünftige Entwicklung darstellen. [39, 52] Dadurch würde
die Genauigkeit des zugrundeliegenden Paar-Korrelationsverfahrens weiter
erhöht. Desweiteren könnten höhere Anregungen ebenfalls durch Kontrak-
tion dargestellt werden. In Verbindung mit der Orbitaloptimierung können
so auch angeregte Zustände und die Dissoziation von Mehrfachbindungen
genau und effizient beschrieben werden. Eine parallele Implementierung,
welche die kurze Reichweite der Atomorbitale ausnutzt, fehlt ebenfalls und
würde die Simulation großer Moleküle ermöglichen. [22, 24, 25]

Zusammengefasst wurde ein neuer Ansatz für die Simulation großer moleku-
larer Systeme vorgestellt, welcher auf alle Paar-Korrelationsverfahren angewen-
det werden kann. Dieser Ansatz wurde für Multi-Referenz Probleme erweit-
ert und beinhaltet die beschleunigte Basissatzkonvergenz explizit korrelierter
Verfahren.
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Chapter 8

Appendix

8.1 Generalised Transformation Rules

As demonstrated in chapter 3, the summations over virtual orbitals can be
replaced by matrix multiplications in the local atomic orbital basis. Ac-
cordingly, operator products arise in the working equations, which can be
reformulated as matrix products as follows. A sum over the virtual orbital
index a of two arbitrary matrices MMO

1 and MMO
2 in the molecular orbital

basis may be rewritten as a matrix product in the following way:

Mpq =
∑
a

Mpa
1 Maq

2 ⇒M = MMO
1 MMO

2 (8.1)

The transformation of an operator from the atomic- to the molecular orbital
basis is defined as:

MMO = CtMAOC (8.2)

Consequently, the whole expression in atomic orbital basis can be formulated
as:

MMO
1 MMO

2 = CtMAO
1 DAO

virtM
AO
2 C (8.3)

The same transformation applies for a sum over the computational basis
p, while the definition of the density has to be changed. The correspond-
ing modifications lead to working equations completely defined in the local
atomic orbital basis.
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8.2 Additional Contributions for Explicit Cor-

relation

In this part of the appendix we present explicit definitions of the remain-
ing contributions of section 5.2. For the coefficient gradient the following
contributions are necessary. To derive the replacement for:∑

AB

RABg
kl AABij (8.4)

a simple substitution of GAB
ij by AABij in the equations 5.11 and 5.12 is suffi-

cient. To derive the replacement for:∑
ABC

RABg
kl FC

AA
CB
ij +RABg

kl FC
BA

AC
ij (8.5)

we need to extend the sum by:∑
ABCD

RABg
kl (FC

A δBD + FD
B δAC)ACDij (8.6)

And can again substitute GCD
AB by (FC

A δBD + FD
B δAC) in the equations 5.13

to 5.16.
For the orbital gradient the following contributions are necessary. To

derive the replacement for:∑
AB

AABkl A
AB
ij (8.7)

a simple substitution of RABg
kl by AABkl and GAB

ij by AABij in the equations 5.11
and 5.12 is sufficient. To derive the replacement for:∑

AB

GAB
pq A

AB
ij (8.8)

a simple substitution of RABg
kl by GAB

pq and GAB
ij by AABij in the equations 5.11

and 5.12 is sufficient. To derive the replacement for:∑
A

F p
AA

Aq
ij (8.9)

we need to extend the sum by:∑
AB

F p
AδABA

Aq
ij (8.10)

And can again substitute RABg
kl by F p

AδAB and GAB
ij by AAqij in the equations

5.11 and 5.12.
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Chapter 9

List of Abbreviations

General:

PAO projected atomic orbital[24]

PNO pair natural orbital[25]

BCH Baker-Campel-Hausdorff expansion[19]

CSF configuration state function

BFGS Broyden-Fletcher-Goldfarb-Shanno[32]

RMS root mean square deviation

MAPE mean absolute percentage error

Methods:

CI Configuration Interaction[2]

CID CI including only double excitations[2]

CISD CI including only single and double excitations[2]

ACPF averaged coupled pair functional[3]

CEPA0 coupled electron pair approximation[4]

OCID orbital optimized CID

OACPF orbital optimized ACPF

OCEPA0 orbital optimized CEPA0[7]
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CCSD(T) Coupled Cluster singles doubles with approximate
triples[42]

CC2 second-order approximate Coupled Cluster singles
doubles[53]

MP2 second-order Møller-Plesset perturbation theory[36]

CASSCF complete active space self consistent field theory[41]

CAS(Nele, Norb) complete active space with Nele electrons and Norb

orbitals[41]

DLPNO-Method domain-based local pair natural orbital correlation
method[22]

f12-Method explicitly correlated version of the correlation
method[12, 13, 14]

Basissets:

cc-pVDZ correlation consistent polarized valence double zeta[5]

cc-pVTZ correlation consistent polarized valence triple zeta[5]

6-31G* pople type basis with polarization functions for atoms
beginning from the second period[54]

6-31+G** pople type basis with polarization functions for all atoms
and diffuse functions for atoms beginning from the sec-
ond period[37]

Basisset-f12 specialized variant of the basis set optimized for explicit
correlation[47]
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