
Efficient integration on Riemann surfaces
& applications

Von der Fakultät für Mathematik und Naturwissenschaften

der Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von

Christian Neurohr
geboren am 28.03.1989

in Bad Kreuznach

Gutachter
Dr. Steffen Müller

Weitere Gutachter
Prof. Dr. Nils Bruin

Prof. Dr. Florian Heß

Tag der Einreichung
09.03.2018

Tag der Disputation
04.05.2018

ii

Kurzfassung
Die vorliegende Dissertation beschäftigt sich mit effizienten Algorithmen zur numerischen
Integration von Differentialformen auf Riemannschen Flächen und deren Anwendung auf
Problemstellungen in der arithmetischen Geometrie.

Explizite Berechnungen auf der Jacobischen Varietät einer algebraischen Kurve sind in
der Zahlentheorie & algebraischen Geometrie von Interesse. In dieser Arbeit arbeiten wir
ausschließlich mit Jacobischen über den komplexen Zahlen. Die (analytische) Jacobische
einer algebraischen Kurve hat die Struktur eines komplexen Torus, welcher bis auf Isomor-
phie durch eine Periodenmatrix der zugehörigen Riemannschen Fläche gegeben ist. Die
Einträge von Periodenmatrizen sind Integrale von holomorphen Differentialformen, soge-
nannte Perioden, entlang einer Homologiebasis. Diese enthalten wichtige Informationen
über algebraische Kurven und ihre Jacobischen. Eine konkrete Verbindung zwischen dem
komplexen Torus und der Kurve wird durch die Abel-Jacobi Abbildung hergestellt; diese
bildet Punkte auf der Kurve auf Perioden entlang von Wegen, die diese Punkte verbinden,
ab. Im Allgemeinen sind die Werte dieser Integrale transzendente komplexe Zahlen welche
nicht symbolisch berechnet werden können.

Für Anwendungen in der arithmetischen Geometrie ist es oft notwendig Perioden zu
hoher numerischer Präzision zu berechnen und wünschenswert, dass die Berechnungun-
gen beweisbar korrekt sind. In dieser Arbeit approximieren wir Perioden von kompakten
Riemannschen Flächen mittels numerischer Integration unter Nutzung beweisbarer Fehler-
abschätzungen.

Für den Fall allgemeiner kompakter Riemannscher Flächen, die durch ebene (möglicher-
weise singuläre) affine Gleichungen, über Zahlkörpern definiert, gegeben sind, haben wir
Algorithmen im Computeralgebrasystem magma implementiert, die Periodenmatrizen
und die Abel-Jacobi Abbildung schnell und zuverlässig berechnen; hierbei können problem-
los mehrere hundert Dezimalstellen an Genauigkeit erreicht werden. Dafür benutzen und
kombinieren wir verschiedene Integrationsverfahren: Gauss-Legendre Quadratur, Clenshaw-
Curtis Quadratur sowie doppel-exponentielle Integration.

Für den Spezialfall der superelliptischen Kurven konnten wir sogar noch bessere Ergeb-
nisse erzielen. In Zusammenarbeit mit Pascal Molin haben wir einen komplett beweis-
baren Algorithmus entwickelt der unseren Anforderungen genügt und viel schneller ist
als der Algorithmus für den allgemeinen Fall. Wir nutzen die Vorteile der Geometrie
superelliptischer Kurven, um Perioden bis auf mehrere tausend Dezimalstellen genau zu
berechnen. Hierfür verwenden wir doppel-exponentielle Integration sowie Gauss-Jacobi
Integration. Die entsprechenden Algorithmen sind nicht nur in magma, sondern auch in
der C-Bibliothek arb implementiert, mit deren Ballarithmetik die Genauigkeit unserer
Ergebnisse zertifiziert werden kann.

In beiden Fällen, dem allgemeinen und dem superelliptischen, erweitern die Implemen-
tierungen unserer Algorithmen die Reichweite der Kurven und der Genauigkeit für welche
Perioden in angemessener Zeit und numerisch stabil berechnet werden können.

Zuletzt diskutieren wir Anwendungen unserer Algorithmen in der arithmetischen Ge-
ometrie. Unter anderem, den Bezug zur berühmten Vermutung von Birch und Swinnerton-
Dyer, das Problem Isogenien zwischen Jacobischen zu finden, die Berechnung der Rie-
mannschen Thetafunktion und die Berechnung kanonischer Höhen auf abelschen Vari-
etäten.

Unsere Implementierungen wurden bereits benutzt um hunderttausende Endomorphis-
menringe für die ’L-functions and modular forms database’ zu berechnen (dies geschah in
Zusammenarbeit mit Jeroen Sijsling) und um neue konkrete Daten als Nachweis für Beilin-
son’s Vermutung für K2 von Kurven zu berechnen.

iii

Abstract
In this thesis we are concerned with efficient algorithms for numerical integration of dif-
ferential forms on Riemann surfaces with applications motivated by arithmetic geometry.

Explicit computations on the Jacobian variety of an algebraic curve are of great impor-
tance in number theory & algebraic geometry. The present work is exclusively concerned
with computing on Jacobians over the complex numbers. In particular, the (analytic)
Jacobian has the structure of a complex torus which is, up to isomorphism, determined by
a period matrix of the compact Riemann surface associated to the algebraic curve. These
period matrices are defined in terms of integrals of holomorphic differentials, so-called
periods, along a homology basis, and they encode valuable information about algebraic
curves and their Jacobians. An explicit connection between the complex torus and the
curve is established via the Abel-Jacobi map, which maps points on the curve to peri-
ods along paths connecting them. However, the values of these integrals are, in general,
transcendental complex numbers which cannot be obtained symbolically.

For applications in arithmetic geometry it is often necessary to approximate periods
to high numerical precision and it is desirable to have provable results. In this work we
approach the problem of computing periods of compact Riemann surfaces using numerical
integration together with rigorous error bounds.

For the case of general compact Riemann surfaces given by plane (possibly singular)
affine equations defined over numbers fields, we implemented algorithms in the computer
algebra system magma that compute period matrices and the Abel-Jacobi map fast and
reliably, for hundreds of decimal digits of precision. For that purpose we employ vari-
ous numerical integration schemes, namely Gauss-Legendre quadrature, Clenshaw-Curtis
quadrature and double-exponential integration.

We obtained even better results in the special case of superelliptic curves. In joint
work with Pascal Molin we developed a completely rigorous algorithm that achieves this
goal and is even faster than the one for the general case. We take advantage of numerous
simplifications due to the geometry of superelliptic curves to obtain periods with thousands
of digits of precision, using double-exponential integration and Gauss-Jacobi quadrature
for numerical integration. The corresponding algorithms are not only implemented in
magma, but also in the C-library arb whose ball arithmetic enables us to certify the
accuracy of our results.

In both cases, the general and the superelliptic, the implementations of our algorithms
significantly extend the range of algebraic curves and precisions for which integration of
differential forms can be performed in reasonable time while being numerically stable.

Finally, we discuss some applications of the aforementioned algorithms in arithmetic
geometry. These include the famous Birch and Swinnerton-Dyer conjecture, the problem
of finding isogenies between Jacobians, computing the well-known Riemann Theta function
and also computing the canonical height on abelian varieties.

Our implementations have already been applied to compute hundreds of thousands of
endomorphism rings (in joint work with Jeroen Sijsling) for the ’L-functions and modular
forms database’ and to gather new numerical evidence for Beilinson’s conjecture on K2 of
curves.

iv

Acknowledgements
Foremost, I want to thank my advisor Steffen Müller for excellent supervision, guidance
and support throughout my doctoral studies. He did a great job guiding my research and
encouraging me to visit international workshops and conferences, which connected me with
mathematicians internationally. In many aspects I could profit from Steffen’s wisdom and
I was very fortunate to become his PhD student. I want to thank Florian Hess for all the
efforts that he put into supporting my research. His mathematical insights, algorithmic
ideas and programming support significantly influenced and motivated my mathematical
work. His door was always open and whenever I needed help he took the time to deal
with my problems.

I would like to thank my collaborator Pascal Molin with whom I wrote my first scientific
paper and who helped me carry out the generalization of his ideas. During my numerous
visits in Paris, I was able to greatly profit from Pascal’s experience in mathematics, in
particular from his programming skills and algorithmic expertise. I want to thank Jeroen
Sijsling for continuously using my algorithms, for pointing out interesting examples and
bugs in my code to me. He endorsed my work on several occasions and got me involved
with the LMFDB. Moreover, I want to thank Nils Bruin for several discussions about
period matrix computations and Alexey Chernov for his advice on numerical integration.

I am grateful for having had such nice colleagues, especially my office mates Matthias
Junge, Pinar Kilicer and Dietrich Kuhn, for mathematical and non-mathematical discus-
sions and for making my time in the institute for mathematics in Oldenburg so enjoyable.
For valuable proofreading, I would like to thank Nelly El Ashkar, Malte Behr, Yauheniya
Filipyeva, Matthias Junge, Dietrich Kuhn, Birte Kramer and Erik-Marc Schetzke.

I want to thank my family, especially my parents, for supporting my career and for
being there for me in difficult times. Without them I would not be the person I am today.
Finally, I’m deeply grateful for having Yauheniya as my partner, who has been sharing
her life with me for so many years. I’m sincerely thankful for her unconditional support
and for her being a steady source of motivation and inspiration.

I wish to thank the Carl von Ossietzky University Oldenburg for funding my position
as part of the PhD program olcrypt. Moreover, I acknowledge financial support from
the daad (Deutscher Akademischer Austauschdiesnt) under grant 57212102.

v

vi

Contents

1 Introduction 1
1.1 Outline of the thesis . 4
1.2 Existing work . 5
1.3 Complexity . 6
1.4 Main results & contributions . 9

1.4.1 Compact Riemann surfaces . 9
1.4.2 Superelliptic curves . 10
1.4.3 Applications . 11
1.4.4 Software packages . 11

2 Theoretical background 12
2.1 Algebraic function fields . 12
2.2 Algebraic curves . 13

2.2.1 Algebraic varieties . 14
2.2.2 Regular functions and morphisms . 15
2.2.3 Non-singular curves . 15
2.2.4 Maps between algebraic curves . 16

2.3 Divisors & Differentials . 17
2.3.1 Divisors . 17
2.3.2 Differentials . 18
2.3.3 Constant field extension . 19

2.4 Riemann surfaces . 20
2.4.1 Basic definitions . 20
2.4.2 Properties of holomorphic maps . 21
2.4.3 Monodromy & homotopy . 22
2.4.4 Two constructions of Riemann surfaces 24

2.5 Compact Riemann surfaces and algebraic curves 25
2.5.1 Coverings of the projective line . 26
2.5.2 Constructing the fundamental group 27
2.5.3 Algebraic curves and their normalizations 27

2.6 Integration on Riemann surfaces . 30
2.6.1 Differential forms . 30
2.6.2 Integration of 1-forms along paths 32

2.7 Intersection theory . 34
2.8 Divisors and meromorphic functions . 35
2.9 The Abel-Jacobi map . 35

2.9.1 Period matrices . 37

vii

3 Numerical integration methods 38
3.1 A versatile error bound . 39
3.2 Gaussian quadratures . 41

3.2.1 Gauss-Jacobi quadrature . 42
3.2.2 Gauss-Legendre quadrature . 44
3.2.3 Gauss-Chebyshev quadrature . 48

3.3 Clenshaw-Curtis quadrature . 49
3.4 Double-exponential integration . 53

3.4.1 Adaptive double-exponential integration 58
3.5 A priori comparison . 60
3.6 Outlook . 61

4 Computing period matrices & the Abel-Jacobi map: general case 62
4.1 The Riemann surface . 62

4.1.1 Holomorphic map to the projective line 63
4.1.2 Exceptional points . 63
4.1.3 Ordering of the sheets . 64

4.2 Holomorphic differentials . 65
4.3 Fundamental group . 67

4.3.1 Choices . 68
4.3.2 Alternatives . 69
4.3.3 Types of paths & parametrizations 70

4.4 Root approximation methods . 71
4.5 Analytic continuation & local monodromy 74

4.5.1 Monodromy representation . 77
4.6 Computing a homology basis . 82

4.6.1 The Tretkoff algorithm . 82
4.6.2 Symplectic reduction . 85

4.7 Numerical integration . 85
4.7.1 Concatenation . 86
4.7.2 Gauss-Legendre & Clenshaw-Curtis quadrature 87
4.7.3 Double-exponential integration . 88
4.7.4 Integration algorithm . 89
4.7.5 Improving integration paths . 90
4.7.6 Comparison of integration methods (I) 93

4.8 Strategy for the period matrix . 97
4.8.1 Big and small period matrices . 99
4.8.2 Classifying integration paths . 100
4.8.3 Comparison of integration methods (II) 101
4.8.4 Comparison with other implementations 103

4.9 Computing the Abel-Jacobi map . 105
4.9.1 Moving between sheets . 106
4.9.2 Reaching non-critical points . 106
4.9.3 Integration into non-singular, critical points 109
4.9.4 Moving points by strong approximation 109
4.9.5 Adaptive double-exponential integration 112
4.9.6 Reduction modulo the period lattice 114
4.9.7 Strategy for the Abel-Jacobi map . 115
4.9.8 Alternatives . 115

4.10 Precision issues . 116
4.10.1 Bounding sizes of numbers . 116
4.10.2 Bounding differentials . 117

viii

4.11 Symbolic integration . 118
4.11.1 Integration of differentials . 119
4.11.2 Practical issues and experiments . 119
4.11.3 Existing work . 120

4.12 Outlook . 120

5 Computing period matrices & the Abel-Jacobi map: superelliptic case 122
5.1 Superelliptic curves . 123

5.1.1 Definition & properties . 123
5.1.2 Complex roots and branches of the curve 124
5.1.3 Cycles and homology . 127
5.1.4 Differential forms . 128

5.2 Strategy for the period matrix . 130
5.2.1 Periods of elementary cycles . 131
5.2.2 Numerical integration . 132
5.2.3 Minimal spanning tree . 132
5.2.4 Symplectic reduction . 132

5.3 Intersections . 133
5.4 Computing the Abel-Jacobi map . 138

5.4.1 Between ramification points . 139
5.4.2 Reaching non-ramification points . 140
5.4.3 Points at infinity . 141

5.5 Numerical integration . 146
5.5.1 Gauss-Chebyshev quadrature . 146
5.5.2 Gauss-Jacobi quadrature . 148
5.5.3 Double-exponential integration . 150

5.6 Computational aspects . 152
5.6.1 Complexity analysis . 152
5.6.2 Precision issues . 155
5.6.3 Implementation tricks . 155
5.6.4 Further ideas . 156

5.7 Examples, timings and comparison . 158
5.7.1 Big period matrix . 158
5.7.2 Abel-Jacobi map . 164

5.8 Outlook . 165

6 Applications 167
6.1 The Birch and Swinnerton-Dyer conjecture 167
6.2 Endomorphism rings . 168

6.2.1 Interface with the LMFDB . 169
6.2.2 Isogenies between Jacobians . 169

6.3 Riemann Theta functions . 170
6.3.1 Reduced small period matrix . 171
6.3.2 Computing canonical heights . 172

6.4 Numerical verification of Beilinson’s conjecture 172
6.4.1 L-functions of algebraic curves . 172
6.4.2 K-theory and Beilinson’s conjecture 173
6.4.3 Strategy for checking Belinson’s conjecture 175
6.4.4 Numerical integration . 175
6.4.5 Examples of de Jeu, Dokchitser & Zagier 176
6.4.6 Example of Busch . 179
6.4.7 Examples of Liu & de Jeu . 181

ix

Appendices 190

A Miscellaneous 191
A.1 Closest point on an ellipse . 191
A.2 Source code for the Tretkoff algorithm . 192

B Declaration 199

x

xi

xii

Chapter 1

Introduction

Riemann surfaces are objects of great interest and occur in various branches of number
theory and mathematical physics; they are named after the famous mathematician Bern-
hard Riemann. 1 Historically, in the 19th century, the theory of Riemann surfaces arose
from the study of algebraic functions and of their integrals, the so-called abelian integrals.
The simplest examples are elliptic integrals of the form∫ dx√

p(x)

where p is a polynomial of degree 3 or 4 with no multiple roots. These elliptic integrals
occur, for example, as the circumference of an ellipse. The integral can be written as the
integral of the differential form dx/y on the elliptic curve C : y2 = p(x), i.e.∫

dx/y where y2 = p(x) .

In fact, for a fixed value t0, the multi-valued function defined by

t 7→
∫ t

t0

dx√
p(x)

and their inverses have been of great interest to mathematicians. In the case of elliptic
integrals an explicit inverse could be constructed, namely the well known double periodic
Weierstrass ℘-function. Its double periodicity reflects the double-valued character of the
square root and the non-vanishing of the periods of the differential form dx/y, i.e. of the
integrals ∫

γ

dx√
p(x)

,

where γ is a closed path in C (or rather on C). Later on, Abel and Jacobi started to
consider more general hyperelliptic integrals of the form∫

a(x)√
p(x)

dx

where a(x) is a rational function and p a polynomial of degree d ≥ 3 with no multiple
roots. The expression

ω = a(x)√
p(x)

dx

1The first part of this introduction was inspired by [10, II.1]

1

Chapter 1

defines a meromorphic differential (i.e. it might have poles) on the Riemann surface Cf
defined by the affine equation

f = 0 with f = y2 − p(x) ∈ C[x, y] .

This differential extends to a meromorphic differential on the associated compact Riemann
surface Ĉf (see §2.5.3), whose genus is g = bd+1

2 c− 1. The differential is holomorphic (i.e.
it has no pole) on Ĉf if and only if a(x) is a polynomial of degree at most g − 1. Hence,
the differential forms

wi = xi−1

y
dx , i = 1, . . . , g

and their integrals
∫
ω are the natural generalizations of the elliptic case. Again, one

would attempt to invert the multi-valued functions

t 7→
∫ t

t0

a(x)√
p(x)

dx

where a(x) is a polynomial of degree ≤ g−1. However, as soon as g ≥ 2, the set of periods{∫
γ

a(x)√
p(x)

dx | γ closed path on Cf

}

is a dense subset of C (at least for a generic polynomial a(x)). Therefore, elementary
functions cannot occur as an inverse of hyperelliptic integrals. It was Jacobi who discovered
this and he formulated the inversion problem as follows: For g given points t1, . . . , tg find
an inverse to the function

(t1, . . . , tg) 7→ (I1, . . . , Ig)

with values in Cg given by

Ii =
∫ t1

t0

ωi + · · ·+
∫ tg

t0

ωi , i = 1, . . . , g .

However, there are ambiguities in the definition of these integrals, namely

• the square root
√
p(x) is a multi-valued function; this problem is solved by looking

at the tj as points Pj = (tj ,
√
p(tj)) on the Riemann surface Cf ;

• the integrals Ii are only well-defined when considered modulo the periods
∫
γ ωi,

where γ is a closed path on Cf .

Denoting the vector of holomorphic differentials by ω̄ = (ω1, . . . , wg) leads to the definition
of the period lattice

Λ =
{∫

γ
ω̄ | γ closed path on Cf

}
⊂ Cg ,

which is a lattice in Cg. Now, we have an analytic map

Cf × · · · × Cf → Cg/Λ, (P1, . . . , Pg) 7→ (I1, . . . , Ig) mod Λ .

Jacobi proved that this map is surjective (Theorem 2.9.3), while Abel determined its kernel
(Theorem 2.9.2). The complex torus Cg/Λ is called the Jacobian of the compact Riemann
surface Ĉf .

In this thesis we are interested in numerically computing superelliptic integrals (which
generalize hyperelliptic integrals by allowing m-th roots instead of only square roots). For

2

Chapter 1

such integrals we developed a very fast and reliable algorithm that is explained in Chapter
5. We also present algorithms for the integration of differential forms in the case of general
compact Riemann surfaces, which is described in Chapter 4.

A Riemann surface X is a topological space of dimension one that is locally homeo-
morphic to the complex plane. If X is compact, it is diffeomorphic to a g-holed torus (see
Figure 1.1), where g is a non-negative integer called the genus of X.

α1 α2 α3

β1 β2 β3

Figure 1.1: Canonical homology basis of a compact Riemann surface of genus 3.

Exploiting the local structure of X it is possible to generalize the concept of integra-
tion from contour integration of usual complex valued functions in the complex plane to
integration of differential forms along smooth paths on Riemann surfaces. Generally, we
will consider a basis ω̄ = (ω1, . . . , ωg) for the space of holomorphic differentials Ω1(X)
with corresponding period lattice

Λ =
{∫

γ
ω̄ | γ ∈ H1(X,Z)

}
⊂ Cg .

The first homology group H1(X,Z) is an abelian group of rank 2g, consisting of certain
equivalence classes of closed paths on X, called cycles. Now, for a fixed base point P0 ∈ X,
integration on X is a well-defined map modulo the period lattice

X → Cg/Λ, P 7→
∫ P

P0

ω mod Λ ,

referred to as Abel-Jacobi map. It links a Riemann surface to the complex torus Cg/Λ,
which is called the Jacobian of X and denoted Jac(X).

Integrating differential forms along cycles makes it possible to define period matrices.
In particular, integrating a basis of holomorphic differentials ω̄ along a canonical homology
basis (αi, βi) of H1(X,Z) defines a big period matrix, while taking a basis of differentials
that is dual to the α-cycles results in a small period matrix τ ∈ Hg in the Siegel upper-
half space of complex symmetric matrices with positive imaginary part. One of the most
important functions in the theory of Riemann surfaces, the Riemann Theta function, is
defined in terms of a small period matrix

Θ : Cg ×Hg, (z, τ) 7→
∑
v∈Zg

exp(πivT τv) exp(2πivT z) .

Theta functions are objects of central interest in many areas of mathematics and
physics. In the context of number theory and cryptography, period matrices appear in

3

1.1. Outline of the thesis Chapter 1

the Birch and Swinnerton-Dyer conjecture [34], as a tool to identify isogenies between
Jacobians [93], in particular endomorphisms [21], or to find equations for algebraic curves
having prescribed complex multiplication [91], [51]. The Abel-Jacobi map may be used
to identify divisors of meromorphic functions, or in conjunction with Theta functions
to compute archimedean canonical local heights on abelian varieties [67]. Integration of
differential forms on Riemann surfaces is also required to compute the regular pairing for
the second K-group of algebraic curves [29]. For such applications one often needs to
identify exact relations between periods, e.g. using the LLL-algorithm, for which it might
be necessary to compute these integrals to large precision (hundreds, or even thousands of
decimal digits). Moreover, it is desirable to have provable algorithms that yield rigorous
results.

Riemann surfaces also appear in the theory of partial differential equations. In par-
ticular, the authors of [24] and [36] consider the Korteweg-de Vries (KdV) equation, the
non-linear Schrödinger (NLS) equation, the Kadomtsev-Petviashvili (KP) equation and
the Sine-Gordon (SG) equation. Solutions of such differential equations can often be de-
scribed in terms of period matrices, the Abel-Jacobi map and the Riemann Theta function.

This work deals with efficient integration of differential forms on Riemann surfaces and
it is motivated by its applications in number theory. In particular, we focus on computing
a basis for the period lattice, big and small period matrices and the Abel-Jacobi map.
Although much work has already been done on computations with Riemann surfaces,
most of the existing algorithms lack the ability of achieving high numerical precision in
reasonable time, do not provide rigorous error bounds or are simply prone to errors and
numerical instabilities. Our goal was to have an implementation that significantly improves
this situation.

1.1 Outline of the thesis
In order to provide a general map for the reader, we outline the structure of this thesis
here. An overview over already existing work related to the topic is given in Section 1.2.
In Section 1.3 we lay the foundation for analyzing complexity, which makes up a significant
part of our work, while our main results and contributions are presented in Section 1.4.

A brief review of the necessary theoretical background is the topic of Chapter 2. We
introduce algebraic function fields in Section 2.1 and algebraic curves in Section 2.2 quite
generally, but only as far we need them. The rest of the chapter is devoted to Riemann
surfaces and their relation to algebraic curves. Naturally, we focus on the aspects that
will be algorithmically relevant for us.

In Chapter 3 we revisit methods for numerical integration, namely Gauss quadra-
tures in Section 3.2, Clenshaw-Curtis quadrature in Section 3.3 and double-exponential
integration in Section 3.4, in several variations. We are particularly interested in their ap-
plicability in a multi-precision setting, rigorous error bounds, efficient ways of computing
the integration schemes and the corresponding complexities.

We explain in detail our work on computing period matrices and the Abel-Jacobi map
for compact Riemann surfaces in Chapter 4. The focus lies primarily on arbitrary pre-
cision, efficiency and rigor. The corresponding algorithms are presented quite explicitly,
accompanied by complexity analyses and timings. We compare the performance of differ-
ent integration methods applied to the problem of integrating differential forms and test
our period matrix algorithm in magma [9] against other existing multi-precision imple-
mentations.

Chapter 5 is based on a paper [65] that is joint work with Pascal Molin. We consider
the same problem as before, but in the special case of superelliptic Riemann surfaces.

4

Chapter 1 1.2. Existing work

We take advantage of numerous simplifications that arise from the special form of the
input to obtain an extremely fast, rigorous algorithm that computes period matrices and
the Abel-Jacobi map for such Riemann surfaces. We give a detailed complexity analysis,
compare the performance of different integration methods in magma and arb [47] and
the performance of other implementations.

The final part, Chapter 6, explains how our algorithms can be applied to problems
occurring in active areas of mathematical research, in particular number theory. We point
out the relation of period matrices to the Birch and Swinnerton-Dyer conjecture in Section
6.1 and explain how they can be used to compute isogenies between Jacobians, in particular
endomorphisms, in Section 6.2. One of the most important and direct applications of
period matrices is the Riemann Theta function, discussed in Section 6.3, which is actually
defined with respect to a period matrix. Lastly, in Section 6.4, we apply our algorithms to
integrate meromorphic differentials which play a role in the K-theory of algebraic curves.
We numerically verify the Beilinson conjecture for many new hyperelliptic examples and
compute regulators of higher genus non-hyperelliptic curves.

1.2 Existing work

Computing with Riemann surfaces is not a new topic and much work has been done in
the recent years. Here, we want to give an overview of existing methods and algorithms
and their capabilities.

For small genera, in particular 1 and 2, methods based on isogenies (AGM [22], Richelot
[11], Borchardt mean [55]) make it possible to compute small period matrices and the Abel-
Jacobi map to arbitrary precision in quasi-linear time. However, these techniques rely on
relations between small period matrices and the Theta function, and are thus inherently
exponential in the genus.

For modular curves, the modular symbols machinery and term-wise integration of
expansions of modular forms give excellent algorithms for integration of differential forms
[61, §3.2].

For hyperelliptic curves of arbitrary genus, there is a magma package due to van
Wamelen [93] that computes period matrices and the Abel-Jacobi map. It also provides
functionality for analytic Jacobians in general, e.g. Theta functions, isogenies between
Jacobians and endomorphism rings of Jacobians) and can be used in conjunction with our
methods. However, it is limited in terms of precision (less than 2000 digits) and some
bugs are experienced on certain configurations of branch points.

For compact Riemann surfaces given by irreducible affine equations, there is the maple
package algcurves, that was developed by Deconinck and van Hoeij [27], whose approach
we are going to pick up and refine in Chapter 4. It seems that their package is no
longer maintained properly and the code produces errors quite frequently. There is also a
re-implementation of their methods in sage due to Swierczewski [82], the package abel-
functions. These packages compute period matrices, the Abel-Jacobi map [24], Theta
functions [25] and the Riemann constant vector [26]. However, we found that these pack-
ages are not suitable for high precision purposes.

We also mention the matlab packages owed to Frauendiener and Klein for hyperelliptic
curves [36] and for compact Riemann surfaces [37]. Their work is motivated by applications
in physics, in particular solutions of partial differential equations. They approach Riemann
surfaces entirely numerical and they are neither interested in having rigorous algorithms
nor high precision.

There is another more recent implementation that computes period matrices starting
from an affine equation in sage , but not the Abel-Jacobi map. It is due to Nils Bruin

5

1.3. Complexity Chapter 1

and Alexandre Zotine and generalizes van Wamelen’s approach for hyperelliptic curves
to general compact Riemann surfaces. Their algorithm works quite well for moderate
precisions and well-behaved examples.

1.3 Complexity
Throughout this thesis we will analyze the complexity of the algorithms that we imple-
mented in terms of binary operations. Since our approach is largely based on multi-
precision arithmetic of real (or complex) numbers, most of the run time is spent on mul-
tiplication and division of such numbers, while additions and subtractions only play a
minor role. In the following, we denote by D ∈ Z≥0 the precision (a number of digits) to
base e = exp(1), while D10 ∈ Z≥0 denotes a number of decimal digits. The complexity
of an algorithm, given in Big-O notation (see (1.1)), is independent of the base, as the
number of digits with respect to different bases only differ by a constant. Whenever we
give absolute run times of algorithms depending on the precision, it will be a number of
decimal digits.

By computing or approximating a real (or complex) number x to precision D we mean
computing a number x̃ ∈ R such that x̃ ∈]x − e−D, x + e−D[(or x̃ ∈ C that lies inside a
disc with radius e−D around x) , i.e.

|x− x̃| < e−D .

We call x̃ an approximation to x and |x− x̃| the approximation error. This notion of
approximation readily generalizes to real (complex) vectors and matrices by requesting
that the worst approximation among the entries is still to precision D or, in other words,
that the maximal approximation error is smaller than e−D. Analogous terminology is used
for D10 and 10−D10 .

For the sake of completeness, we define the Big-O notation for functions of several
variables. Let f, g be real-valued functions on a subset U ⊂ Rn; we write

g(x) = O(f(x)) ⇔ ∃ c, d > 0 : ∀ x̃ ∈ U with ‖x̃‖∞ ≥ d : |f(x̃)| ≤ c |g(x̃)| . (1.1)

We consider the following complexities for multi-precision numbers of size D digits, as
given in [12]. Operations can always be thought of as binary operations (although any
other base is fine).

• Addition and checking equality are linear in the precision and take O(D) operations.

• Multiplication, denoted by M(D), depends on the algorithm that is used; for our
complexity analyses we assume thatM(D) := O(D log1+εD) = O(D logD log logD)
using the Schönhage-Strassen algorithm for a suitable ε > 0.

• The cost of divisions isM(D) using Newton-Raphson division, but they are strictly
(in magma between 2 to 3 times) more expensive than multiplications.

• Evaluating elementary functions costs T (D) := O(logDM(D)) = O(D log2+εD)
using the arithmetic-geometric mean (AGM); this includes exp, log, sin, cos and their
inverses as well as the hyperbolic functions sinh, cosh and their inverses.

• We assume the cost of computing m-th roots to be T (D) using exp(1
m log(·)); but

they could also be computed in O(logmM(D)) using Newton’s method.

• Computing complex roots of a univariate polynomial of degree m takes R(m,D) :=
O(m log2m(log2m+ logD)M(D)) operations using an algorithm of Pan (see §1.3);

6

Chapter 1 1.3. Complexity

• while evaluation of univariate polynomials of degree m costs O(mM(D)).

Since the big O-notation ignores constants, we keep in mind that complex multiplications
are considered about 2 times more expensive than real ones.

Moreover, we assume that m×m-Matrix multiplication and inversion have complexity
O(mω) where ω < 2.373 is the matrix multiplication constant.

Newton’s method Newton’s method is a very important tool in real and complex
arbitrary-precision arithmetic (for more details see [12, §4.2]) and will be used throughout
this thesis. Thus, it is crucial for our analysis to shed some light on the complexity of this
method.

Let f be a (real or complex-valued) function and η a simple zero of f , i.e. such that
f(η) = 0, f ′(η) 6= 0 and f is differentiable in a neighborhood of η. For an initial ap-
proximation z(0) to η, Newton’s method is defined by iteratively applying the well-known
formula

z(k+1) = z(k) − f(z(k))/f ′(z(k)) (k ≥ 0). (1.2)

If |z(0)−η| is sufficiently small, z(k) is expected to converge to η with order of convergence
at least two, which means

|z(k+1) − η| = O(|z(k) − η|2).

If this is the case we need at most O(logD) iterations to approximate η to precision D. In
the case where f is a complex polynomial the notion of ’good initial approximation’ can
be made explicit, see for example [72, Chapter 2].

If every iterative step is performed in precision D, Newton’s method has complexity
O(logDF(D)) where F(D) is the cost of calculating f(z(k))/f ′(z(k)) in precision D. How-
ever, if we are able to evaluate f and f ′ at z at variable precision, we can start the iterative
process at a suitable low precision and double it in each step such that only the last step
is performed with precision D numbers. Since F(D) has to grow at least linearly with D,
using a geometric series, the computational cost is reduced to

F(D) + F(D/2) + F(D/4) + . . .

≤ F(D)(1 + 1/2 + 1/4 + . . .)
≤ 2F(D) = O(F(D)).

(1.3)

The complexity O(F(D)) for Newton’s method is assumed for the complexities of divisons
and m-th roots, as given above, and for any other applications of Newton’s method in this
thesis.

Finding complex roots In several places we need to determine the complex roots of
a univariate polynomial of degree m up to some desired precision D. Much work has
been done on this topic and we will not go into much depth here but give some relevant
references; for this we follow [55, §9.2.1]. A nice overview over existing root-finding meth-
ods can be found in [62]. In magma we use the command ’Roots’ to compute polynomial
roots numerically. Here one can choose between the algorithms ’Schönhage’,’Laguerre’ and
’NewtonRaphson’. In practice, we will always use the Schönhage algorithm [78] (which is
also the default option) which has complexity O(m3 logm + m2D). The implementation
of this algorithm in magma is due to Gourdon and is discussed in detail in his thesis [41].
An even better complexity is claimed by Pan in [71], namely

R(m,D) = O(m log2m(log2m+ logD)M(D)),

7

1.3. Complexity Chapter 1

but since it is not clear whether this algorithm is actually implemented anywhere, this
result seems to be rather theoretical. Nonetheless, we are going to use the complexity
R(m,D) for our complexity analysis. It is not our goal to improve the computation of
complex roots in this work, but since we cannot really avoid it is good to be aware of its
impact on the complexity.

Precision loss For our complexity analyses, we will not take into account precision loss
due to rounding errors produced by the floating-point arithmetic in magma. This is not
an issue in practice and can be prevented by throwing in a small number of guard dig-
its. Nonetheless, we do care about predictable precision loss that is caused by overflow
occurring during the computations. The goal is to compute, a priori, a (minimal) working
precision (or internal precision) D̃ > D such that the end result is correct to precision
D. However, the ways in which the coefficients of the affine equations f(x, y) = 0 induce
precision loss are heavily interwoven with several other choices and cannot be easily iden-
tified explicitly. In the general case, we analyze precision loss in terms of the input (and
our choices) as far as possible in Section 4.10. In the case of superelliptic curves, where
the situation is clearer, we give a short exposition on precision loss in §5.6.2. We will also
comment on this issue in Section 1.4 below.

Heuristic assumptions Here we want to clarify the quality of the complexity state-
ments made in this thesis that involve multi-precision arithmetic. In order to make useful
statements we had to compromise by making some heuristic assumptions which are listed
below. In particular, the complexity statements of Chapter 4 and Section 5.6, as well
as Theorem 1.4.1, Corollary 1.4.2, Theorem 1.4.3, Theorem 1.4.4 and Theorem 1.4.5 are
understood to be heuristic in the following sense:
• the expression ’to precision D’ means that the algorithm achieves a mathematical

error smaller than e−D;

• we do not take into account numerical errors due to rounding or cancellation;

• we do not differentiate between working precision D̃ and output precision D, but
assume that for a fixed polynomial f ∈ C[x, y] as input, we have that

D̃ −D = O(1) in D .

These heuristic assumptions reflect what is happening in practice and enable us to formu-
late comprehensible complexity statements that remain mathematically meaningful. We
provide evidence that D̃ −D is independent of D in Section 4.10 and §5.6.2.

Note that we usually have as input an exact polynomial f ∈ K[x, y] over a number
field K and a desired output precision D. Before the numerical part of the computation
starts, we estimate the working precision D̃ that is actually required to achieve precision
D. For all further considerations we assume that the input, be it f ∈ C[x, y] or some
P ∈ C2, is always given to sufficiently large precision D̃.

Computational setup The algorithms described in this thesis are part of software pack-
ages for the computer algebra system magma [9]. More precisely, we used magma versions
2.22-4 and 2.23-5. In fact the reader may assume that, unless mentioned otherwise, we
did not rely on already existing magma functionality, but used our own implementations.
The period matrix algorithm described in Chapter 5 has also been implemented in the
C-library arb [47], in version 2.12.0. For the timings in §4.8.4 we used maple 17 [60] and
sage 8.0 [84]. Furthermore, all computations, for which timings are given in this work,
were carried out on an Intel Xeon(R) CPU E3-1275 V2 3.50GHz processor using a single
core.

8

Chapter 1 1.4. Main results & contributions

1.4 Main results & contributions
In this section we want to present the main results of this thesis and the impact it already
had or will have on mathematical research. Informally speaking, our algorithms vastly
increase the range of algebraic curves for which period matrices can be computed in rea-
sonable time. Compared to other existing multi-precision implementations that rely on
numerical integration, we gain a huge speed-up on period matrix computations and the
Abel-Jacobi map in every genus and for every precision. This is mostly due to efficient
numerical integration of differential forms, using different integration methods and apply-
ing them according to their strengths and weaknesses. A lesser role, which is still worth
mentioning, is very careful coding and lots of algorithmic optimization that went into our
implementations. Moreover, our algorithms are numerically stable and robust (they do
not rely on the niceness of the input). In the case of superelliptic curves we obtain a com-
pletely rigorous algorithms that enables us to compute periods with thousands of correct
digits, even for very high genus.

Several of the methods that we apply have already been used by other authors. How-
ever, we give detailed complexity analyses for all significant algorithms presented in this
thesis. In the following, we present the most important of these complexity results. Recall
from Section 1.3 that we assume ε > 0 to be chosen such that multiplication of precision
D numbers has computational complexityM(D) = O(D log1+εD) .

1.4.1 Compact Riemann surfaces

Our work on compact Riemann surfaces is described in Chapter 4. Most importantly,
we implemented a fast and reliable algorithm (see Algorithm 4.8.1) for computing period
matrices of compact Riemann surfaces, given by an irreducible affine equation f(x, y) = 0
defined over a number field, to arbitrary precision. Assuming a basis of holomorphic
differentials as given, we obtain the following result (see Corollary 4.8.3 for the proof).

Theorem 1.4.1. Let X be a compact Riemann surface of genus g > 0 defined by an affine
equation f(x, y) = 0, f ∈ C[x, y] irreducible of total degree d, and (ω1, . . . , ωg) a standard
basis (4.8) of the space of holomorphic differentials Ω1(X). There is an algorithm that
(heuristically) computes a basis of the period lattice Λ to precision D > 0 using

O(c(f)d2D2(logD + d4) log1+εD + d7D) operations,

where c(f) = 1/r, for some r > 0 (see §4.7.2), depends on the configuration of exceptional
values (4.2). In particular, r depends on their absolute values and absolute and relative
distances between them, see Section 4.7.

Corollary 1.4.2. Fixing one affine equation f(x, y) = 0 and all related parameters, we
(heuristically) compute a basis of the period lattice Λ to precision D > 0 using

O(D2 log2+εD) operations.

This is precisely the cost of performing one numerical integration using Clenshaw-
Curtis quadrature (Section 3.3). Note that, while Clenshaw-Curtis is rarely a good option
in practice, it yields the best complexity results.

The predictable precision loss is discussed in Section 4.10. It depends on the excep-
tional values, the basis of differentials and several other choices made during the algo-
rithm. We can prevent precision loss due to overflow by setting the internal precision to
D̃ = D + max{D̃1, D̃2} where D̃1 and D̃2 are given by equations (4.40) and (4.42). The
precision loss for the Abel-Jacobi map can be handled analogously.

9

1.4. Main results & contributions Chapter 1

The second important result is our arbitrary-precision implementation of the Abel-
Jacobi map of compact Riemann surfaces. With X and ω̄ as in Theorem 1.4.1, we obtain
the following complexity result (see Corollary 4.9.3 for the proof).

Theorem 1.4.3. For all but finitely many points P = (xP , yP) ∈ X, we (heuristically)
compute

∫ P
P0
ω̄ to precision D > 0 using

O(c(f, xP)D2(logD + d3) log1+εD + d4D) operations,

where c(f, xP) = 1/r, for some r > 0 (see §4.7.2), depends on the distances between xP
and the exceptional values (4.2).

We also compute the Abel-Jacobi map for all the points not included in this complexity
statement. This is discussed extensively in Section 4.9.

1.4.2 Superelliptic curves

Chapter 5 is largely based on the paper ’Computing period matrices and the Abel-Jacobi
map of superelliptic curves’ [65] which is joint work with Pascal Molin. The paper is
accepted by the journal Mathematics of Computation. There, we specifically compute
period matrices and the Abel-Jacobi map of compact Riemann surfaces associated to
affine equations of the form

ym = p(x), m > 1, p ∈ C[x] separable of degree deg(p) = n ≥ 3. (1.4)

They can be viewed as a generalization of hyperelliptic curves and we refer to them as
superelliptic curves. Using the advantages that are offered by the specific geometry of su-
perelliptic curves, we obtain the following complexity result, which is a direct consequence
of Theorem 5.6.1.

Theorem 1.4.4. Let C be a superelliptic curve of genus g defined by an equation (1.4).
There is an algorithm that (heuristically) computes a basis of the period lattice Λ to pre-
cision D > 0 using

O(c(p)nD2 logk+εD(g + logD)) operations, with
{
k = 1, if m = 2,
k = 2, if m > 2,

where c(p) = 1/r, for some r > 0 (see §5.5.1 and §5.5.3), depends on the roots of p. In
particular, r depends on their absolute values and absolute and relative distances between
them, see Section 5.5.

The precision loss due to overflow is discussed in §5.6.2. Up to a constant factor that
depends on the (absolute distances between the) roots of p, we lose O(g) digits of precision.
Similarly, we can estimate the precision loss occurring for the Abel-Jacobi map.

Finally, we give a partial result for the Abel-Jacobi map of superelliptic curves here.
The complexity statement for the complete Abel-Jacobi map is given in Theorem 5.6.3.

Theorem 1.4.5. For all but finitely many points P = (xP , yP) ∈ C, we (heuristically)
compute

∫ P
P0
ω̄ to precision D > 0 using

O(c(p, xP)D2 log2+εD(g + logD) + ngD) operations,

where c(p, xP) = 1/r, for some r > 0 (see §5.5.3), depends on the distances between xP
and the roots of p.

10

Chapter 1 1.4. Main results & contributions

1.4.3 Applications

Here we only indicate the applications of our algorithms have already been carried out dur-
ing this work. Further possible applications and how they might be realized are described
in Chapter 6.

Endomorphism rings As described in Section 6.2, our period matrix algorithms were
used to compute the endomorphism rings of Jacobians for many genus 3 curves (hyperel-
liptic & non-hyperelliptic) that are going to appear in the lmfdb [58]. This was done in
collaboration with Jeroen Sijsling, using the methods of Costa et al. [21].

Numerical verification of Beilinson’s conjecture In Section 6.4 we present our work
related to Beilinson’s conjecture. In order to compute the regulator pairing for the second
K-group of algebraic curves, one has to integrate a certain meromorphic differential which
can be done with a minor tweak to our integration methods for holomorphic differentials.
Based on the works of [29], [14] and [23], we numerically verify Beilinson’s conjecture for
many new hyperelliptic examples and also provide numerical data for regulators of higher
genus non-hyperelliptic curves.

1.4.4 Software packages

All algorithms presented in this work are implemented and tested extensively. The author
has written two software packages for the computer algebra system magma [9]. More
precisely,

• one for the case of general compact Riemann surfaces, which contains all the algo-
rithms that are described in the Chapters 3 and 4; it will be available as part of the
magma distribution in the near future;

• one for the case of superelliptic curves that realizes the ideas of Chapter 5; there is
second implementation in arb [47] due to Pascal Molin with only minor contributions
from the author’s side; both are publicly available on github at [66].

11

Chapter 2

Theoretical background

In this chapter we introduce the basic theory for the mathematical structures that will
occur throughout this work, namely Riemann surfaces, algebraic curves and algebraic
function fields. Although we start this chapter by introducing algebraic function fields and
algebraic curves, the structures that are most central to this work are Riemann surfaces
and will be introduced last. As it turns out, the isomorphism classes of these objects are
closely related through category equivalences.

For the theory of Riemann surfaces presented in Section 2, we rely on the books of
Miranda [63], Farkas & Kra [33], Bost [10] and the lecture notes of Bobenko [7]; a great
source to read up about plane algebraic curves and their relation to Riemann surfaces is
the book [13] by Brieskorn and Knörrer.

We are in the situation where we could formulate the theoretical part entirely in the
language of Riemann surfaces, i.e. over the (algebraically closed) field of complex numbers,
but in our applications we deal with algebraic curves defined over number fields, which
are not algebraically closed. Since we want to properly introduce algebraic curves over
non-algebraically closed fields of characteristic zero, we decided to follow the book of
Niederreiter and Xing [70], which provides this kind of introduction whilst avoiding the
scheme-theoretic language used by other standard sources for algebraic geometry, such
as [57] or [43]. Additionally, in Chapter 4, we rely on magma’s function fields functionality
on several occasions, which requires defining polynomials to be defined over exact fields.
Therefore, it is compelling to introduce algebraic function fields over non-algebraically
closed fields as well. In addition to [70], we recommend the book ’Algebraic function fields
and codes’ of Stichtenoth [80] for further details.

In the following we will assume that K is a field of characteristic zero (everything could
be done in more generality, e.g. for perfect fields, but we do not need that in this thesis).
Moreover, we denote by K a fixed algebraic closure of K.

2.1 Algebraic function fields
We briefly introduce the theory of algebraic function fields as far as it is useful to us. Later
on, we will solely consider function fields defined by affine equations f(x, y) = 0 where
f ∈ K[x, y] is geometrically irreducible and K is either a number field or C.

An algebraic function field F/K of one variable overK is an extension field F ⊇ K such
that F is a finite algebraic extension of the rational function field K(x) = Quot(K[x]).
Function fields are often represented as a simple algebraic field extension F = K(x, y)
where f(y) = 0 for an irreducible polynomial f ∈ K(x)[y]. The field K̃ := {x ∈ F |
z algebraic over K } is called the constant field of F/K; we say that K is the full constant
field of F if K̃ = K.

12

Chapter 2 2.2. Algebraic curves

A place P of the function field F/K is the maximal ideal of some valuation ring O
of F/K. Every element t ∈ P such that P = tO is called local parameter for P . The
valuation ring

O = { z ∈ F | z−1 6∈ P }

is uniquely determined by the place P and we call OP := O the valuation ring of P .
Moreover, we denote by MF the set of places of F/K.

Let P ∈MF and t be a local parameter for P . We associate to P a discrete valuation
vP : F → Z ∪ {∞} via

vP (z) =
{
n, if z = tnu for some u ∈ O∗P ,
∞, if z = 0.

Note that, among other properties, the discrete valuation vP satisfies the triangle inequality

vP (y + z) ≥ min{vP (y), vP (z)} .

In case of equality (i.e. whenever vP (y) 6= vP (z)) it is called strict triangle inequality.
Let P be a place of F . We call FP := OP /P the residue class field of P . The map from

F to FP ∪{∞}, x 7→ x(P) is called residue class map with respect to P . By [70, Theorem
1.5.13.] the residue class field of every place of F/K is a finite field extension of K. So we
define the degree of P by

deg(P) := [FP : K] .

A place of degree one is called rational place of F/K.
The following result [70, Theorem 1.5.18.] will be a useful tool for the computation of

the Abel-Jacobi map, see §4.9.4. and §5.4.3.

Theorem 2.1.1 (Approximation theorem). Let P1, . . . , Pn be distinct places of F/K.
Then, for any elements x1, . . . , xn ∈ F and integers m1, . . . ,mn ∈ Z there exists an
element z ∈ F such that

vPi(z − xi) = mi for i = 1, . . . , n.

Definition 2.1.2. An algebraic function field F ′/K ′ is called an algebraic extension of
F/K if F ′ ⊃ F is an algebraic extension of F/K and K ′ ⊃ K. The algebraic extension
F ′/K ′ of F/K is called constant field extension if F ′ = FK ′, where FK ′ is the composite
field of F and K ′.

Consider an algebraic extension F ′/K ′ of F/K. A place P ′ ∈ PF ′ is said to lie over
P ∈ MF if P ⊂ P ′. We also say that P lies under P ′ and write P ′|P . A place P of F
splits completely in the extensions F ′/F if there are exactly [F ′ : F] places of F ′ lying over
P .

2.2 Algebraic curves

We are now going to introduce algebraic curves over fields of characteristic zero, in quite
some generality, as irreducible algebraic varieties of dimension one. As we already men-
tioned earlier, our goal here is to emphasize the connection between algebraic curves and
algebraic function fields. We continue to denote by K a field of characteristic zero and by
K a fixed algebraic closure of K.

13

2.2. Algebraic curves Chapter 2

2.2.1 Algebraic varieties

For this brief introduction to algebraic varieties we follow [70, Chapter 2]. Roughly speak-
ing, in this thesis an algebraic variety is the zero locus of a finite number of polynomials
in a finite number of variables. The variety is defined over K if the coefficients of the
polynomials are in K.

More precisely, we define affine (resp. projective) n-space over K to be

An(K) = { (a1, . . . , an) | ai ∈ K } ,
Pn(K) = { [a0 : a1 : . . . : an] | ai ∈ K,not all ai = 0 }

where
[a0 : a1 : . . . : an] = { (λa0, λa1, . . . , λan) | λ ∈ K∗ } .

Likewise, we define the set of K-rational points of An(K) (resp. Pn(K)) as

An(K) = { (a1, . . . , an) ∈ An(K) | ai ∈ K } ,
Pn(K) = { [a0 : a1 : . . . : an] ∈ Pn(K) | ai ∈ K } .

The absolute Galois group of K, denoted by

GK := Gal(K/K),

acts on a K-rational point P = (a1, . . . , an) ∈ An(K) via

σ(P) = (σ(a1), . . . , σ(an)) ,

and analogously one can check that this action is well-defined for P ∈ Pn(K). The orbit
of a K-rational point P under this action

{σ(P) | σ ∈ Gal(K/K) }

is called K-closed point. Two points in a K-closed point are said to be K-conjugate. An
affine (resp. projective) algebraic set is the locus of common zeros Z(S) ⊂ An(K) (resp.
Pn(K)) of a finite set of polynomials S ⊂ K[x1, . . . , xn] (resp. homogeneous polynomials
in K[x0, x1, . . . , xn]). The algebraic set Z(S) is defined over K ⊂ K if the polynomials in
S are defined over K. The n-spaces An(K) and Pn(K) become topological spaces when
equipped with the Zariski topology, that is, the closed subsets are taken to be the algebraic
sets.

A non-empty affine (resp. projective) irreducible algebraic subset V = Z(S) (defined
over K) is then called an affine (resp. projective) algebraic variety (defined over K) and
denoted V/K. The condition that V is irreducible is equivalent to the ideal 〈S〉 being
a prime ideal. For any algebraic variety V/K and field L ⊂ K we define the L-rational
points of V as

V (L) := {P ∈ V | P is an L-rational point } .
An affine (resp. projective) algebraic variety (defined over K) of dimension 1 (as a

topological space) is called an affine (respectively projective) algebraic curve (defined over
K), and will be denoted C/K. For an affine variety V/K we define the coordinate ring of
V as the ring

K[V] = K[x1, . . . , xn]/〈S〉 ,
which is an integral domain, and the K-rational function field of V as the quotient field

K(V) = Quot(K[V]) .

For a projective variety V defined over K there always exists an affine variety U ⊂ An(K)
(obtained by setting ai = 1 for some i) such that V ∩ An(K) = V ∩ U 6= ∅ is an affine
variety defined over K. Thus, we can define the K-rational function field to be

K(V) = K(V ∩ An(K)) .

14

Chapter 2 2.2. Algebraic curves

2.2.2 Regular functions and morphisms

A function f : V → K on an affine algebraic variety V ⊂ An(K) is called regular at P ,
if there exists a neighborhood W of P in the Zariski topology such that f = g/h on W
for polynomial g, h ∈ K[x1, . . . , xn] with h(Q) 6= 0 for all Q ∈ W . If V ⊂ Pn(K) is a
projective variety, a point P ∈ V belongs to V ∩ U for an affine variety U ⊂ An(K) and
f : V → K is called regular at P ∈ V , if the restriction of f to V ∩U is regular at P . The
ring of regular functions at P is defined as

OP = OP (V) := { f : V → K | f regular at P }/ ∼

where f ∼ g if and only if they coincide on some non-empty open subset of V .
Let V,W be two algebraic varieties over K. A morphism ϕ : V → W is a continuous

map such that for every open subset U ⊂W with ϕ−1(U) 6= ∅ and every regular function
f on U , the composite function f ◦ ϕ is regular on ϕ−1(U).

Example 2.2.1. Let V ⊂ Pn(K), W ⊂ Pm(K) be projective varieties and f0, . . . , fm ∈
K[x0, . . . , xn] homogeneous polynomials of equal degree such that

[f0(P) : . . . : fm(P)] ∈W for every P ∈ V .

Then the map defined by

ϕ : V →W, P 7→ [f0(P) : . . . : fm(P)]

is a morphism.

2.2.3 Non-singular curves

In the following a curve C/K denotes an affine (or projective) algebraic curve defined over
K. We say that C is non-singular (or smooth) at a point P ∈ C(K) if and only if the local
ring OP at P is a discrete valuation ring. Otherwise, we say that P is a singular point of
C. If C is non-singular at every point, we say that C is non-singular (or smooth). Note
that, by [70, Theorem 3.1.7.], the set of singular points of a curve C is finite.

Combining several statements from [70, Chapter 2], we obtain that the K-rational
function field K(C) of a curve C/K is an algebraic function field in one variable over K
and the full constant field of K(C) is indeed K.

For a non-singular point P of a curve C, a local parameter of the discrete valuation
ring OP is called local parameter at P . Furthermore, the valuation of the ring OP is
denoted by vP .

Let now C/K be a non-singular projective curve. Then, by [70, Theorem 3.1.12], the
map

P 7→ OP = OP (C)

yields a one-to-one correspondence between the K-rational points of C and the discrete
valuation rings with quotient field K(C).

Moreover, for each two points P and Q on a projective curve C/K that belong to the
same K-closed point of C and satisfy Q = σ(P) for some σ ∈ Gal(K/K), by [70, Lemma
3.1.13], we have that

OQ(C) = σ(OP (C)) .

15

2.2. Algebraic curves Chapter 2

2.2.4 Maps between algebraic curves

A rational map ϕ : C1/K → C2/K between projective curves is defined over K if

ϕ ◦σ = σ ◦ ϕ for all σ ∈ GK ,

that is, if ϕ(σ(P)) = σ(ϕ(P)) for all P ∈ dom(ϕ) and all σ ∈ GK . By [70, Theorem 3.2.3]
every non-constant rational defined over K induces a homomorphism between K-rational
function fields

ϕ∗ : K(C2)→ K(C1), f 7→ f ◦ ϕ

that fixes K.
Two non-singular projective curves defined over K are K-isomorphic if and only if

their function fields are K-isomorphic (see [70, Theorem 3.2.7]). In that case the curves
are called birationally equivalent.

Definition 2.2.2. An algebraic curve C/K that is an algebraic subset of A2(K) (resp.
P2(K)) is called affine (resp. projective) plane algebraic curve.

For curves defined over K we have that, up to birational equivalence, every algebraic
curve can be realized as an affine plane algebraic curve (see [70, Corollary 2.5.26]).

As shown by [70, Theorem 3.2.8], for every projective curve C/K there is a non-singular
projective curve C ′/K such that the following properties hold:

• there exists a birational map ϕ′ : C ′ → C;

• if ϕ′′ is a another birational map from a non-singular projective curve C ′′/K to C,
then there exists a unique isomorphism ψ : C ′ → C ′′ (defined over K) such that
ϕ′′ ◦ψ = ϕ′.

Definition 2.2.3. [Non-singular projective model] The pair (C ′, ϕ′) is unique up to K-
isomorphisms and thus called the non-singular projective model of C.

We can now conclude by stating the equivalence of the categories of algebraic function
fields in one variable and non-singular projective curves, as given by [70, Theorem 3.2.9].

Theorem 2.2.4. There is a one-to-one correspondence between K-isomorphism classes
of non-singular projective curves over K and K-isomorphism classes of algebraic function
fields of one variable with full constant field K, induced by the map

C/K 7→ K(C) .

Category equivalence We want to emphasize that in this section (see Theorem 2.2.4)
we established that, for a field of characteristic zero, there is a category equivalence between
the categories

• of smooth projective curves C/K with non-constant regular maps and

• algebraic function fields in one variable over K with homomorphisms of K-algebras.

In fact, this is true over any field, see for example [57, Proposition 3.13].

16

Chapter 2 2.3. Divisors & Differentials

2.3 Divisors & Differentials
Recall from Section §2.2.3, that for a given non-singular projective curve C/K, its K-
rational function field K(C) is an algebraic function field of one variable with full constant
field K. Conversely, Theorem 2.2.4 shows that, given an algebraic function field F/K of
one variable with full constant field K, there exists a non-singular projective curve CF /K
such that F ∼= K(CF). This makes it possible to use statements on curves for function
fields with a proper interpretation.

In the following we start from an algebraic function field F/K of one variable with
full constant field K. The theory of divisors of F that we are going to introduce now can
be developed in an equivalent fashion in the language of non-singular projective curves.
In particular, there is a one-to-one correspondence between the places of F/K and the
K-closed points of the curve CF /K. We denote by MF the set of places of F .

2.3.1 Divisors

The divisor group of F/K, denoted by Div(F/K) or Div(F), is the free abelian group
generated by the places of F , that is, a divisor in Div(F), also called a divisor of F , is a
formal sum

D =
∑
P∈MF

vPP

with coefficients vP = vP (D) ∈ Z and vP 6= 0 for only finitely many P ∈MF . Two divisors
are added by adding the corresponding coefficients. A divisor D is called effective, written
as D ≥ 0, if vP (D) ≥ 0 for all P ∈ MF . For two divisors D1, D2 we write D1 ≥ D2 if
D1 −D2 ≥ 0. The support supp(D) of D is the finite set given by

supp(D) := {P ∈MF | vP (D) 6= 0 } .

The degree deg(D) of the divisor is defined by

deg(D) :=
∑
P∈MF

vP deg(P) .

The degree deg defines a group homomorphism from Div(F) to Z. The kernel of this
homeomorphism is a subgroup of Div(F), the group of divisors of degree zero, denoted by
Div0(F), that is,

Div0(F) := {D ∈ Div(F) | deg(D) = 0 } .

By [70, Corollary 3.3.2], every element x ∈ F ∗ has only finitely many zeros and finitely
many poles, so we may associate to it the so-called principal divisor

div(x) =
∑
P∈MF

vP (x)P ∈ Div0(F)

which is a divisor of degree zero by [70, Corollary 3.4.3]. The group of principal divisors
of F , defined as

Prin(F) = { div(x) | x ∈ F ∗ } ,

forms a subgroup of Div0(F).
Let D,D′ ∈ Div(F) be divisors of F . Then, the relation

D ∼ D′ ⇔ D = D′ + div(x) for some x ∈ F ∗.

defines an equivalence relation on Div(F), called linear equivalence.

17

2.3. Divisors & Differentials Chapter 2

Definition 2.3.1. For a divisor D ∈ Div(F) we define the Riemann-Roch space associated
to D by

L(D) = {x ∈ F ∗ | div(x) +D ≥ 0 } ∪ {0} .

In particular, for a divisor D =
∑
miPi −

∑
njQj with mi, nj > 0, the space L(D)

contains all the elements x ∈ F such that

• x has a zero of order at least nj at each Qj , i.e. vQj (x) ≥ nj and

• x has poles only at the places Pi and of order at most mi, i.e. vPi(x) +mi ≥ 0 .

It is easy to prove that L(D) is a finite dimensional K-vector space and that for equivalent
divisors D ∼ D′ we have L(D) ∼= L(D′); we denote by `(D) = dimK L(D) its dimension.

Definition 2.3.2. A divisor D ∈ Div(F) is called non-special if and only if

`(D) = deg(D) + 1− g .

Otherwise, D is called special.

Note that, by [80, Remark 1.6.11.], any divisor D of degree deg(D) > 2g − 2 is non-
special and, if D is non-special and D′ ≥ D then D′ is non-special as well.

2.3.2 Differentials

For an introduction to differentials of algebraic function fields we follow the lecture notes
of Stoll [81, Chapter 6].

Definition 2.3.3. Let A be a K-algebra and M an A-module. A K-derivation from A
to M is a K-linear map δ : A→M such that

δ(xy) = xδ(y) + yδ(x) .

Moreover, a pair (Ω, d) consisting of an A-module Ω and a K-derivation d : A → Ω is
called universal K-derivation of A, if for every K-derivation δ : A → M there exists an
A-linear map Φ : Ω→M , such that δ = Φ ◦ d. In this case Ω is called differential module
of A; its elements being called K-differentials of A.

A differential module Ω of A can be constructed as the kernel of the map

µ : A⊗K A→ A, µ(a⊗ b) = a · b ,

i.e. we obtain Ω = ker(µ) as a submodule of A⊗K A and the universal derivation is given
by da = (1⊗ a)− (a⊗ 1). It follows directly from the definition that (Ω, d) is unique up
to isomorphisms of A-modules. Thus, we may also write ΩA/K for such Ω.

For an algebraic function field F/K in one variable, ΩF/K is a one dimensional F -
vector space. Let x ∈ F such that F/K(x) is a finite algebraic extension. Then ΩF/K is
generated by dx, which can easily be seen from

ΩF/K = F ⊗K(x) (K(x)⊗K[x] K[x]dx) = Fdx ,

see also [81, Theorem 6.5].
Let P ∈ MF be a place and tP a local parameter at P . Then, by [81, Corollary 6.8],

for every differential ω ∈ ΩF/K there exists a unique f ∈ F such that ω = fdtP . In this
situation we define

vP (ω) := vP (f) .

18

Chapter 2 2.3. Divisors & Differentials

Now by [81, Proposition 6.14], we have that for any ω ∈ ΩF/K \ {0}

div(w) :=
∑
P∈MF

vP (ω)P

is a well-defined divisor of F . So, for a divisor D ∈ Div(F), we can define

Ω(D) = {ω ∈ ΩF/K | div(ω) ≥ D } .

Note that, for any differential ω there is an isomorphism

L(div(ω)−D)→ Ω(D), x 7→ x · ω .

In particular, Ω(D) is a finite-dimensional K-vector space. A differential ω ∈ ΩF/K is
called regular or holomorphic, if div(ω) ≥ 0 and we call

Ω(0) = {ω ∈ ΩF/K | div(ω) ≥ 0 } .

the space of holomorphic differentials.
Definition 2.3.4. (Genus) We define the genus g of the algebraic function field F/K as
the dimension

g = dimK Ω(0) .
The genus of an algebraic curve C/K can now be defined as the genus of the associated
algebraic function field K(C).

Note that for any divisor coming from a differential 0 6= ω ∈ ΩF/K we have that
deg(div(ω)) = 2g − 2. Such divisors are called canonical divisors and they are all linearly
equivalent. The famous Riemann-Roch theorem can now be stated as
Theorem 2.3.5 (Riemann-Roch). Let D ∈ Div(F). Then,

dimK L(D) = deg(D)− g + 1 + dimK Ω(D) .

We want to stress that the space of holomorphic differentials can be computed as the
Riemann-Roch space of the canonical divisor div(dx), because

Ω(0) ∼= L(div(dx)) .

2.3.3 Constant field extension

Later on, in Chapter 4 and for several applications in Chapter 6, it happens that we are
given an algebraic curve C/K where K is a number field (mostly K = Q). In practice,
we want take advantage of this exactness by first executing certain computations over K
and then transporting the data into C using a complex embedding ι : K → C.

Note that the embedding ι induces a constant field extension

C(C)
ι∼= K(C)⊗K C .

Every place P of K(C) of degree d = deg(P) splits completely in the function field
extension C(C), i.e. there are exactly places P1, . . . , Pd lying over P . For every divisor D =∑
vP (D)P ∈ Div(K(C)) there exists a corresponding divisor D′ =

∑
vP (D)

∑
Pi|P Pi ∈

Div(C(C)) such that deg(D) = deg(D′). Moreover, for every canonical divisor D = div(ω)
of K(C), D′ is a canonical divisor of C(C). Every basis of L(D) as a K-vector space is also
a basis of L(D′) as a C-vector space. In particular, this is true for the space of holomorphic
differentials

ΩC(C)(0) ∼= ΩK(C)(0)⊗K C .

These statements can be proved by first moving fromK to an algebraic closureK. This
is an algebraic constant field extension for which all the above statements are true by [80,
Theorem 3.6.3]. The complex embedding ι extends to a complex embedding ι : K → C
which can then be used to move from K to C, obviously preserving all data as claimed.

19

2.4. Riemann surfaces Chapter 2

2.4 Riemann surfaces

From here on we assume that the reader is familiar with the basics of topology, complex
analysis and global analysis. As already mentioned in the beginning of this chapter, for
this introduction to Riemann surfaces, our main sources are [10] and [63]; other sources
are [33], [7] and [13].

2.4.1 Basic definitions

We follow [10, I.1] and [63, I] for the basic definitions.

Definition 2.4.1. A Riemann surface is defined as a complex manifold of complex di-
mension 1, which means that it is a topological space in which a neighborhood of any
point looks like the complex plane. More precisely, a Riemann surface X is a (connected)
Hausdorff space X such that for any point P ∈ X, we are given an open neighborhood U
of P and a homeomorphism

Φ : U → Φ(U) ⊂ C

from U to an open domain in C. We call the pair (U,Φ) holomorphic chart on X and the
map Φ is called local coordinate at P ; we say Φ is centered at P ∈ U if Φ(P) = 0. These
homeomorphisms are required to be compatible in the following way: if the neighborhoods
U1 and U2 of two charts (Φ1, U1) and (Φ2, U2) overlap, then

Φ2 ◦ Φ−1
1 : Φ1(U1 ∩ U2)→ Φ2(U1 ∩ U2)

is holomorphic. The function Φ2 ◦ Φ−1
1 is called transition function. More generally, if

Ψ is any holomorphic function defined in a neighborhood of z = Φ(P) and Ψ′(z) 6= 0,
then Ψ ◦ Φ defines the same complex structure on a neighborhood of P , as Φ is also a
local coordinate at P . We say that X is a compact Riemann surface if it is compact as a
topological space.

All Riemann surfaces in this thesis will be connected (except for those appearing in
§2.4.4, but they are of minor importance).

As one can easily derive from their definition, Riemann surfaces may also be viewed as
differentiable real manifolds. For compact orientable 2-manifolds there exists the following
classification

Proposition 2.4.2. [63, Proposition I.1.23] Every Riemann surface is an orientable
path-connected 2-dimensional C∞ real manifold. Every compact Riemann surface is dif-
feomorphic to the g-holed torus, for some unique integer g ≥ 0.

The non-negative integer g is a fundamental invariant of X and is called the (topolog-
ical) genus of the compact Riemann surface g.

Obviously, any open domain in C is a Riemann surface. The most basic compact
Riemann surface is the projective line or Riemann sphere

P1 := P1(C) = C ∪ {∞}.

The genus of P1 is 0 and, as a topological space, it is the one point compactification of C.
A complex structure on P1 is easily found: consider the open subsets U1 = P1 \ {∞} and
U2 = P1 \ {0} with corresponding local coordinates

Φ1 : U1 → C, z 7→ z and Φ2 : U2 → C, z 7→

{
1/z, if z 6=∞,
0, if z =∞.

20

Chapter 2 2.4. Riemann surfaces

Functions and maps

The complex structure on a Riemann surface makes it possible to transfer the standard
notions from the theory of functions in one complex variable from the complex plane to
the Riemann surface:

• a complex valued function f : U → C defined on an open subset U ⊂ X is holo-
morphic if and only if for any P ∈ U and any local coordinate Φ at P the function
f ◦Φ−1 is holomorphic near z = Φ(P). Moreover, we say that f has a zero of order
n at P if and only if f ◦ Φ−1 has a zero of order n at z; we write vP (f) = n.

• analogously one defines meromorphic functions on Riemann surfaces and the order
of a pole of a meromorphic function; we write vP (f) = −n, if f has a pole of order
n at z;

• a continuous map ϕ : X → Y between two Riemann surfaces is holomorphic if and
only if for any holomorphic chart Φ : U → C in Y , the map Φ ◦ ϕ : ϕ−1(U) → C is
holomorphic. We call a holomorphic map between Riemann surfaces an isomorphism
or biholomorphic, when it is a homeomorphism and its inverse is holomorphic.

Holomorphic maps to the projective line

Note that any meromorphic function f : X → C on X defines a holomorphic map to the
projective line P1 via

ϕf : X → P1, P 7→

{
f(P), if P is not a pole of f ,
∞, if P is a pole of f .

(2.1)

Such maps play an important role in the classification of compact Riemann surfaces, as
we will see later on.

2.4.2 Properties of holomorphic maps

In the following let X and Y be Riemann surfaces. The morphisms between these ob-
jects, the holomorphic maps, were already defined in §2.4.1 above. Following [63, II.4] we
establish some global properties of holomorphic maps between Riemann surfaces.

First, we state that locally every holomorphic map is simply the power map (see [63,
Lemma II.4.1]).

Proposition 2.4.3 (Local normal form). Let ϕ : X → Y be a non-constant holomorphic
map that is defined at P ∈ X. Then there is a unique integer m > 0 with the following
property: for every chart (Φ2, U2) on Y centered at ϕ(P), there exists a chart (Φ1, U1) on
X centered at P such that

(Φ2 ◦ ϕ ◦ Φ−1
1)(z) = zm .

Definition 2.4.4. Let ϕ : X → Y be a non-constant holomorphic map. The ramification
index of ϕ at P , denoted eP (ϕ), is the unique integer m > 0 such that there are local
coordinates near P and ϕ(P) with ϕ having the local normal form z 7→ zm.

A point P ∈ X is a ramification point for ϕ if eP (ϕ) > 1. A point Q ∈ Y is a branch
point for ϕ if it is the image of a ramification point for ϕ. We denote the set of branch
points by B ⊂ Y and the set of ramification points by R ⊂ X. Moreover, we say that
the holomorphic map ϕ is ramified if there exists a ramification point, and unramified
otherwise.

21

2.4. Riemann surfaces Chapter 2

Let ϕ : X → Y be a non-constant holomorphic map between compact Riemann sur-
faces. By [63, Proposition II.4.8] we have that the sum of ramification indices of ϕ at the
fiber above Q ∈ Y

dQ(ϕ) =
∑

P∈ϕ−1(Q)

eP (ϕ)

is independent of Q and thus constant. So, we may define the degree of ϕ as the integer

deg(ϕ) := dQ(ϕ) .

Using this one can prove (see [63, Proposition II.4.12]) that the sum of the orders of a
non-constant meromorphic function f on a compact Riemann surface X is zero, i.e.∑

P∈X
vP (f) = 0 .

Now we are in the position to state an important formula that relates the degree and
the ramification indices associated to a holomorphic map with the genera of the compact
Riemann surfaces, namely the

Theorem 2.4.5. (Riemann-Hurwitz formula) [63, Theorem II.4.16]
Let ϕ : X → Y be a non-constant holomorphic map of degree deg(ϕ) = m between
compact Riemann surfaces of respective genera gX and gY . Then

2gX − 2 = m(2gY − 2) +
∑
P∈X

(eP (ϕ)− 1) . (2.2)

In particular, in the case Y = P1 we have gY = 0 and the formula becomes

gX = 1
2
∑
P∈X

(eP (ϕ)− 1)−m+ 1 . (2.3)

2.4.3 Monodromy & homotopy

For an introduction to the concepts of covering maps and their monodromy representations
we follow [63, Section III.4].

Covering spaces & homotopy group

Let V be a connected real manifold. A covering space (or simply covering) of V is a
continuous surjective map ϕ : U → V of connected real manifolds such that for each point
x ∈ V there is a neighborhood W ⊂ V of x such that ϕ−1(W) consists of a disjoint union
of open sets Uα ⊂ U , each mapping homeomorphically onto W via ϕ.

The open sets Uα, which can be thought of as homeomorphic ’copies’ of W in U , are
called the sheets over W .

A path on V is a continuous map γ : [−1, 1] → V . If V is a Riemann surface, we
additionally require a path on V to be a piecewise C∞ function. The points γ(−1) and
γ(1) are called the endpoints of the path; we refer to γ(−1) also as the starting point. The
path γ is called closed whenever γ(−1) = γ(1). Moreover, we denote by −γ the reverse
path defined by −γ : [−1, 1]→ X, t 7→ γ(−t).

Let γ1 and γ2 be two paths on X such that γ1(1) = γ2(−1), then we call γ1 and γ2
compatible and define their concatenation as the path

γ2 · γ1 : [−1, 1]→ X, t 7→

{
γ1(2t+ 1), t ∈ [−1, 0],
γ2(2t− 1), t ∈ [0, 1].

22

Chapter 2 2.4. Riemann surfaces

Further, two paths γ0 and γ1 on V are called homotopic if there exists a continuous function
H : [−1, 1] × [0, 1] → X (a homotopy) such that for each s ∈ [0, 1], γs(t) = H(t, s) is a
path on V , and such that γs(±1) = γ0(±1) = γ1(±1). In fact, this defines an equivalence
relation and we write γ0 ∼ γ1 for homotopic paths.

For a base point x0 ∈ V , we define the fundamental group of V as

π1(V, x0) := { closed paths on V based at x0 }/ ∼ .

Path-lifting property A covering space ϕ : U → V enjoys the so-called path-lifting
property: for any path γ : [−1, 1]→ V and any preimage P ∈ ϕ−1(γ(−1)) there is a path
γ̃ on U such that γ̃(−1) = P and ϕ ◦ γ̃ = γ. This property is crucial to our approach of
computing period matrices.

Monodromy of a finite covering

Let ϕ : U → V be a connected covering space of finite degree m, also called m-sheeted
covering (i.e. all points of V have exactly m preimages under ϕ), and let x0 ∈ V be a base
point. The fiber above x0 is the set of preimages

ϕ−1(x0) = {P1, . . . , Pm } .

By the path-lifting property, every closed path based at x0 can be lifted to exactly m
different paths γ̃1, . . . , γ̃m, where γ̃i is the unique lift starting at Pi, i.e. γ̃i(−1) = Pi for
i = 1, . . . ,m. The endpoints γ̃i(1) also lie above x0 and form the entire preimage, i.e.

ϕ−1(x0) = { γ̃i(−1) | i = 1, . . . ,m } = { γ̃i(1) | i = 1, . . . ,m } .

Consequently, there exists a permutation σγ ∈ Sym(m) such that σ(i) = j precisely when
γ̃i(−1) = γ̃j(1) and σγ solely depends on the homotopy class of γ. This induces a group
homomorphism

Mon(ϕ) : π1(V, x0)→ Sym(m), [γ] 7→ σγ (2.4)

We call Mon(ϕ) the monodromy representation of the covering map ϕ : U → V . The
monodromy representation depends on the choice of the base point x0 ∈ V and the
ordering of the sheets above x0, but only up to simultaneous conjugation. Therefore,
the conjugacy class of its image in Sym(m) is uniquely determined.

Monodromy of a holomorphic map

Let now ϕ : X → Y be a holomorphic map between compact Riemann surfaces as intro-
duced in Section 2.4.1. Generally we can expect ϕ to be ramified, so it will not be a ’true’
(unramified) covering map. In this case we call the holomorphic map ϕ a ramified cover-
ing. However, we can define open sets V = Y \ B and U = X \ ϕ−1(B) by removing the
branch points of ϕ from Y and the preimages of the branch points from X (this includes
the ramification points R). Then, V and U will still be Riemann surfaces, which we will
call Riemann surface with punctures, see Definition 2.5.1.

Now, for any v ∈ V the preimage ϕ−1(v) consists of m distinct points. Therefore, the
restriction ϕ|U : U → V is a covering map of degree m. This covering map now has a
monodromy representation Mon(ϕ) : π1(V, x0)→ Sym(m) which is called the monodromy
representation of the holomorphic map ϕ. Since X is connected, so is the open subset U
and, by [63, Lemma III.4.4], this implies that the image of π1(V, x0) under Mon(ϕ) must
be a transitive subgroup of Sym(m).

Suppose that above the branch point x ∈ B ⊂ Y there are k preimages P1, . . . , Pk
with ePj (ϕ) = ej . Let γ ∈ π1(V, x0) be a path encircling x, i.e. γ = (−α)βα where α is a

23

2.4. Riemann surfaces Chapter 2

path joining x0 and x̃ ∈ W \ {x} where W is a small neighborhood of x, β a small circle
around x that is based at x̃ and contained in W , and −α the reverse path of α. Then, the
permutation σγ has cycle structure (e1, . . . , ek) (see [63, Lemma III.4.6]); we call σx := σγ
the local monodromy at x ∈ B.

2.4.4 Two constructions of Riemann surfaces

Here, we consider two ways of constructing Riemann surfaces that are important in this
work. For this we closely follow [10, Section I.2].

Algebraic curves The Riemann surfaces occurring in this thesis are precisely the Rie-
mann surfaces associated to algebraic curves defined over the complex numbers, as already
introduced in Section 2.2. The easiest examples of an complex algebraic curves are given
by irreducible non-constant polynomials f ∈ C[x, y].

Denote by Cf : f = 0 the affine plane curve

Cf := Cf (C) = { (x, y) ∈ C2 | f(x, y) = 0 } (2.5)

and by Sf its singular locus, defined by

Sf := {P ∈ Cf (C) : ∂xf(P) = ∂yf(P) = 0 } .

Then, the non-singular part of the affine curve

C̃f := Cf \ Sf (2.6)

is easily checked to have the structure of a one dimensional complex submanifold of C2,
i.e. a Riemann surface. The connectedness of C̃f is a consequence of f being irreducible.

Holomorphic charts on Cf are obtained from the implicit function theorem [63, II,Theorem
2.1]. Let P ∈ Cf be a point such that ∂yf(P) 6= 0. Then there is an open neighborhood
U of P such that the projection ϕx : U → C, (x, y) 7→ x is a homeomorphism from U to
its image, giving us a local coordinate at P . Analogously, if ∂xf(P) 6= 0 then we can take
the projection ϕy : U → C, (x, y) 7→ y as local coordinate.

Example 2.4.6. Consider a polynomial f := ym − p(x) where m > 1 and p ∈ C[x] has
no multiple roots. Then, f is irreducible, Sf = ∅ and Cf is a Riemann surface. We call
algebraic curves defined by such polynomials superelliptic curves; they will be the topic of
Chapter 5.

Analytic continuation The second construction of Riemann surfaces uses the well-
known concept of analytic continuation. Let x0 ∈ C be a point and y0 be a germ of
holomorphic functions at x0, i.e. a series

y0(z) =
∞∑
i=0

ai(z − x0)i, ai ∈ C,

with a positive radius of convergence. The Riemann surface of y0 is the largest con-
nected Riemann surface, unramified over C, to which the germ y0 may be extended as a
holomorphic function.

We now describe a formal construction of this Riemann surface: consider the set O
consisting of pairs (x, y) where x ∈ C and y is a germ of holomorphic functions at x, and
consider the projection onto the x-coordinate

ϕx : O → C, (x, y) 7→ x .

24

Chapter 2 2.5. Compact Riemann surfaces and algebraic curves

There exists a unique structure of a (highly non-connected) Riemann surface on O which
satisfies the following conditions: for any (x, y) ∈ O, if the radius of convergence of y is
r > 0 and if, for any x̃ ∈ D(x; r) := { z ∈ C | |x− z| < r } (the open disc of radius r
around x), we denote by yx̃ the Taylor series of y at x̃, the map

D(x; r)→ O, x̃ 7→ (x̃, yx̃)

is a biholomorphic map from D(x; r) onto its image. The Riemann surface structure on
O makes the map ϕx a holomorphic map, that is locally biholomorphic (i.e. unramified).
Moreover, the map

ϕy : O → C, (x, y) 7→ y(x)

is easily seen to be holomorphic.
The Riemann surface X ⊂ O of y0 is now defined as the connected component of

(x0, y0) in O. By construction, X is a covering space of the complex plane via the restric-
tion

ϕx : X → C

and therefore, a Riemann surface. Moreover, the holomorphic function ϕy extends the
germ y, which can be seen as a germ of holomorphic functions on a neighborhood of (x, y)
in X (identified with a neighborhood of x in C by ϕx).

The link between this construction of the analytic continuation and its more classical
description is made by the following observation: a germ (x̃, ỹ) belongs to X if and only
if there exists a finite sequence (xi, yi), 0 ≤ i ≤ N , of germs such that (x0, y0) = (x, y),
(xN , yN) = (x̃, ỹ) and such that the open discs of convergence of yi−1 and yi intersect and
yi and yi−1 coincide on this intersection.

The most important example of analytic continuation for us is provided by algebraic
functions. Assume y is a germ of an algebraic function, i.e. that there exists a non-zero
polynomial f ∈ C[x, y] such that

f(x̃, y(x̃)) = 0

for any x̃ in a neighborhood of x. The polynomial f may taken to be irreducible and then
the map

X → C2, P = (x, y) 7→ (ϕx(P), ϕy(P)) = (x, y(x))

establishes an isomorphism between X and the open subset

{P ∈ Cf | ∂yf(P) 6= 0 } ⊂ Cf

of the affine plane curve Cf : f = 0. In fact, we rely on this construction in Section 4.5,
in order to lift smooth paths from the complex plane to Riemann surfaces given by affine
plane curves.

2.5 Compact Riemann surfaces and algebraic curves
In this section we construct compact Riemann surfaces from algebraic curves. For this we
are first going to introduce the notion of a Riemann surface with punctures.

Definition 2.5.1. Let X be a Riemann surface. We say that X is a Riemann surface
with punctures if there exists an open subset U ⊂ X such that

(C1) there exists a biholomorphic map from U onto a disjoint finite union of punctured
discs { 0 < |z| < 1 };

(C2) X \ U is compact.

25

2.5. Compact Riemann surfaces and algebraic curves Chapter 2

For such X one easily obtains a new Riemann surface X̂ by gluing X and a disjoint
finite union of unpunctured discs { |z| < 1 }. The resulting X̂ is compact, contains X
as a subset, and the complement X̂ \ X is finite. Moreover, X̂ is well-defined as it is
characterized by these properties.

2.5.1 Coverings of the projective line

Let L be a finite subset of P1 and ϕ : X → P1 \ L be a covering map of finite degree.
Then X is a compact Riemann surface with punctures. If we choose for every x ∈ L a
neighborhood Ux ⊂ P1 that is disjoint from L \ {x} and such that the Ux’s are pairwise
disjoint and biholomorphic to open discs, then the open subset

U =
⋃
x∈L

ϕ−1(Ux \ {x}) ⊂ X

clearly satisfies the condition (C2).
Since any covering of finite degree of a punctured disc is biholomorphic to a disjoint

union of punctured discs, the set U satisfies (C1) as well. As a consequence, one obtains
a compact Riemann surface X̂ and the covering ϕ : X → P1 \ L extends to a holomorphic
map between compact Riemann surfaces

ϕ̂ : X̂ → P1

whose ramification points are a subset of ϕ−1(L), i.e. ϕ̂ is a ramified covering.
Remark 2.5.2. Let S ⊂ X be a finite subset. Note that

X is compact R.S. with punctures ⇔ X \ S is a R.S. with punctures.

In that case, X̂ may be identified with Ŷ where Y = X \S. More generally, let ϕ : X → Y
be a non-constant holomorphic map between Riemann surfaces. If Y is a compact Riemann
surface with punctures, then so is X.

Monodromy representation The fundamental group of V = P1 \ L with base point
x0 is a free group π1(V, x0) on n generators [γ1], . . . , [γn] subject to the single relation

[γ1] · . . . · [γn] = 1 .

Each [γi] is the homotopy class of a closed path based at x0 encircling xi exactly once.
Therefore, we obtain a monodromy representation

Mon(ϕ) : π1(V, x0)→ Sym(m)

by choosing the n permutations σi := σγi such that

σ1 · . . . · σn = id .

By [63, Corollary III.4.10] we have a one-to-one correspondence between
• isomorphism classes of holomorphic maps ϕ̂ : X̂ → P1 of degree m whose branch

points lie in L (as constructed above);

• conjugacy classes of n-tuples (σ1, . . . , σn) of permutations in Sym(m) such that

σ1 · . . . · σn = id ,

and the subgroup generated by the σi’s is transitive.
In the following, if generators γ1, . . . , γn are explicitly given, we define the monodromy
representation of a holomorphic map ϕ : X → P1 simply as the set of images of these
generators, i.e.

Mon(ϕ) := {σi 6= id | i = 1, . . . , n } .

26

Chapter 2 2.5. Compact Riemann surfaces and algebraic curves

2.5.2 Constructing the fundamental group

Let X be a compact Riemann surface, ϕ : X → P1 be an m-sheeted ramified covering and
L be a finite set containing the branch points of ϕ, i.e. B ⊂ L ⊂ P1. Suppose we computed
the monodromy representation Mon(ϕ) = {σi 6= id | i = 1, . . . , n } with respect to a base
point x0 6∈ L. Denote by S the free group generated by Mon(ϕ). We can then obtain a
generating set for the fundamental group π1(X \ ϕ−1(L), P0) of the punctured Riemann
surface, where P0 lies over x0 (corresponding to the index 1), as the stabilizer subgroup
Stab(S, 1).

In order to obtain the fundamental group π1(X,P0) we have to factor out the holes, i.e.
closed paths on X \ϕ−1(L) based at P0 that become trivial on the unpunctured Riemann
surfaceX. The cycle structure (e1, . . . , ek) of σi = τ1·. . .·τk corresponds to the ramification
indices of ϕ above xi. Since S is transitive as subgroup of Sym(m), for every cycle τj of
order ej we can find α ∈ Sym(m) such that ατ ejj (−α) ∈ Stab(S, 1).

Factoring out the subgroup generated by such elements will yield the fundamental
group π1(X,P0), as they correspond to cycles that will become trivial. This process is
summarized in the diagram below.

π1(P1 \ L, x0) π1(X \ ϕx
−1(L), P0) π1(X,P0)

S = 〈σ1, . . . , σn〉 Stab(S, 1) Stab(S, 1)/〈holes〉subgroup factor group

This construction is extremely useful: once we know a generating set for π1(X,P0),
the homology group is easily obtained as the abelianization. In particular, everything can
be computed using permutations, i.e. in terms of a monodromy representation.

It is used in the Tretkoff algorithm which computes a homology basis of X from a
monodromy representation Mon(ϕ) (see §4.6.1 or Section A.2). Moreover, in the case of
superelliptic curves this construction yields the proof of Theorem 5.1.6, which provides an
explicit generating set for π1(X,P0).

2.5.3 Algebraic curves and their normalizations

Let f ∈ C[x, y] be an irreducible polynomial with m = degy(f) > 0 and let C̃f be the
non-singular part of the affine curve Cf : f = 0. Define the finite subset

L = { z ∈ C | f(z, y) has degree < m or has a multiple root } ⊂ C .

The set L, which we will later (see §4.1.2) call exceptional values, may be obtained as the
set of roots of the discriminant (and the leading coefficients) of f as a polynomial in y,
denoted discy(f) ∈ C[x]. Note that our assumptions on f guarantee that the discriminant
discy(f) does not vanish identically. Moreover, we define

X := { (x, y) ∈ C̃f | x 6∈ L } ,

L̂ := L ∪ {∞}, and consider the projection onto the x-coordinate

ϕx : X → C \ L = P1 \ L̂, (x, y) 7→ x .

Then ϕx is an unramified covering of degreem, and we are in the situation of §2.5.1. There-
fore, X is a compact Riemann surface with punctures and we obtain a compact Riemann
surface X̂ and a holomorphic map ϕ̂x which extends ϕx by the following argumentation:

27

2.5. Compact Riemann surfaces and algebraic curves Chapter 2

As X ⊂ C̃f and X \ C̃f is finite (it is included in (L × C) ∩ Cf which is finite since
f is irreducible and belongs to C[x, y] \ C[x]) we see that C̃f itself is a compact Riemann
surface with punctures, and that the map

ϕx : C̃f → C, (x, y) 7→ x

extends to a holomorphic map

ϕ̂x : Ĉf = X̂ → P1 .

We say that the compact Riemann surface Ĉf is associated to the plane affine curve
Cf : f = 0. Connectedness of Ĉf results from f being irreducible. In fact, all compact
Riemann surfaces can be constructed this way.

Theorem 2.5.3. [10, Theorem I.4.2.] Let X be a compact Riemann surface.

(1) There exists a non-constant holomorphic map

ϕ : X → P1 .

(i.e. a non-constant meromorphic function on X).

(2) For any map ϕ from (1), there exists an irreducible polynomial f ∈ C[x, y] and an
isomorphism ψ : X

∼=→ Ĉf such that

ϕ = ϕ̂x ◦ ψ .

The important part of Theorem 2.5.3 is really the existence of a non-constant mero-
morphic function on X. This fact is highly non-trivial and it is a property that is special
to one dimensional compact complex manifolds.

Let us now consider general algebraic curves defined over the complex numbers, as we
introduced them in Section 2.2, namely as algebraic varieties of dimension one. For the
sake of simplicity, we denote

An := An(C) and Pn := Pn(C) .

for the rest of this thesis. Let C/C be an affine (resp. projective) algebraic curve, viewed
as an irreducible algebraic subset of An (resp. Pn). Recall that a point P ∈ C is called
non-singular or smooth if the local ring OP of regular functions at P is a discrete valuation
ring; we denote the set of non-singular points by Creg ⊂ C.

For complex algebraic curves smooth points can be characterized in the following way:
P ∈ C is smooth, i.e. P ∈ Creg, if there exists an open neighborhood U ⊂ An (resp. Pn)
such that U ∩ C is a complex submanifold of C. In particular, Creg is a connected set of
complex dimension 1 and the set of singular points C \ Creg is finite.

Proposition 2.5.4. Let C be any affine (or projective) algebraic curve. Then Creg is a
compact Riemann surfaces with punctures.

The proof is a generalization of the proof for C̃f . One shows that the linear projection
from Creg to a ’generic’ line, restricted to the complement of a finite set of ramification
points, is a proper finite unramified covering.

Therefore, we may consider the compact Riemann surface Ĉreg. In the projective case,
the identity map from Creg to itself extends to a holomorphic map

Φ : Ĉreg → C ⊂ Pn .

28

Chapter 2 2.5. Compact Riemann surfaces and algebraic curves

The non-singular projective curve Ĉreg is called the normalization of C and can be obtained
from C by resolving its singularities. The process of resolving singularities is described in
detail in [13, Chapter III]. Several methods for desingularizing are known, a prominent
one uses Puiseux series expansions, this approach is discussed in Section 4.11, see also [13,
Section 8.3].

The pair (Ĉreg,Φ) is exactly the non-singular model of the projective curve V that
already occurred in Definition 2.2.3. In the affine case, say C ⊂ An, the projective closure
C of C in Pn is a projective algebraic curve and Ĉreg is the normalization of C.

Hence, any complex algebraic curve C is uniquely associated (up to isomorphism) to
a compact Riemann surface Ĉreg.

Plane algebraic curves Let f ∈ C[x, y] an irreducible polynomial of degree d > 0.
Then the affine plane curve Cf : f = 0 is an affine algebraic curve in C2. We can obtain
a plane projective curve CF : F = 0 as the zero locus of the homogenization of f

F (x, y, z) = zdf(x/z, y/z) ∈ C[x, y, z] .

The plane projective algebraic curve

Cf = { [x : y : z] ∈ P2 | F (x, y, z) = 0 } ⊂ P2

is called the projective closure of Cf . Its normalization coincides with Ĉf .

Theorem 2.5.5 (Genus formula). Let C be a plane projective algebraic curve of degree d
with singular points P1, . . . , Pk ∈ C. Then the genus of the associated Riemann surface X
is given by

g = (d− 1)(d− 2)
2 − 1

2

k∑
i=1

vi(vi − 1)

where vi is the multiplicity [13, p.598] corresponding to Pi.

Proof. See [13, Theorem 9.2.5]

We already established that every algebraic curve is associated to a compact Riemann
surface. As we shall see now, every compact Riemann surface is also a smooth projective
curve.

The preceding theorem shows that, generally, compact Riemann surfaces of genus g ≥ 2
cannot be realized as smooth projective curves in P2. It is easy to see that for any integer
g ≥ 0 there is a Riemann surface with genus g. For example any separable polynomial
p(x) ∈ C[x] of degree d ≥ 3 defines a Riemann surface (a hyperelliptic curve) of genus
g = bd+1

2 c − 1 via the affine equation y2 = p(x). However, the genus of a smooth plane
projective curve of degree d is g = (d− 1)(d− 2)/2 and clearly not all integers are of this
form. Therefore, in order to realize all compact Riemann surfaces as smooth projective
curves, one has to look at curves in higher dimensional projective spaces.

Theorem 2.5.6. [10, Theorem I.4.3] For any compact Riemann surface X, there exists
a holomorphic embedding

ϕ : X → P3 .

In particular, the image ϕ(X) ⊂ P3 is a smooth algebraic curve.

For more details on how Riemann surfaces can be embedded into a projective space
we refer to [63, Section V.4]. In fact, this theorem is simply a special case of the following
result by Chow (see [10, Theorem I.4.4]).

29

2.6. Integration on Riemann surfaces Chapter 2

Theorem 2.5.7. Any compact connected complex submanifold of Pn is an algebraic sub-
variety of Pn of equal dimension.

From this theorem it follows that the meromorphic functions on algebraic curves are
precisely the rational functions.

Theorem 2.5.8. [10, Theorem I.4.5]

(1) Let f ∈ C[x, y] be irreducible. For any meromorphic function G on Ĉf there exists
a rational function H ∈ C(x, y) and a finite subset L ⊂ C̃f such that H is defined
and coincides with G on C̃f \ L.

(2) Let X be a compact Riemann surface embedded in Pn. For any meromorphic function
F on X, there exist homogeneous polynomials G,H ∈ C[x0, . . . , xn] of equal degree
and a finite subset L ⊂ X such that for any x = [x0 : · · · : xn] ∈ X \ L,

H(x) 6= 0 and F (x) = G(x)
H(x) .

Category equivalence From the statements presented in Section 2.5 we can now con-
clude that there is in fact a one-to-one correspondence between compact Riemann surfaces
and complex smooth projective curves:

As shown by Theorem 2.5.6, every compact Riemann surface can be holomorphically
embedded into projective space such that its image is a smooth projective curve that is, of
course, unique up to isomorphism. Conversely, in §2.5.3 we have seen that the non-singular
projective model of a complex algebraic curve, which is unique up to isomorphism, does
indeed define a compact Riemann surface.

In particular, in the case K = C, the equivalence of §2.2.4 extends to a triple category
equivalence between

• compact Riemann surface with non-constant holomorphic maps,

• smooth projective curves C/C with non-constant regular maps,

• algebraic function fields in one variable over C with homomorphisms of C-algebras.

Studying and computing with Riemann surfaces, these equivalences allow us to combine
and apply methods of algebraic geometry, complex analysis and field theory interactively.
A more general notion of the connections between algebraic geometry and analytic geom-
etry is developed in Serre’s GAGA paper [79].

2.6 Integration on Riemann surfaces
Finally, we look at integration on Riemann surfaces which is an important part of this
thesis. The objects that we integrate are called differential forms (in particular, 1-forms)
and will be introduced in §2.6.1 below. Differential 1-forms are integrated along paths on
Riemann surfaces, as introduced in §2.4.3. In this section we follow Chapter IV of [63].

2.6.1 Differential forms

Definition 2.6.1 (1-forms). A holomorphic (meromorphic) 1-form on an open set V ⊂ C
is an expression of the form

ω = f(z)dz

where f is a holomorphic (meromorphic) function on V . We say that ω is a holomorphic
(meromorphic) 1-form in the coordinate z. A holomorphic (meromorphic) 1-form on a

30

Chapter 2 2.6. Integration on Riemann surfaces

Riemann surface X is a collection of holomorphic (meromorphic) 1-forms {ωΦ}, one for
each holomorphic chart (Φ, U), such that for overlapping neighborhoods U1 and U2 of
two charts (Φ1, U1) and (Φ2, U2) the associated 1-form ωΦ1 transforms to ωΦ2 under the
transition function T = Φ2 ◦ Φ−1

1 , i.e. if ω1 = f(z)dz on U1 and ω2 = g(u)du on U2 we
have

g(u) = f(T (u))T ′(u) .
Let ω be a meromorphic 1-form defined in a neighborhood of a point P . Choosing a local
coordinate centered at P , we can write ω = f(z)dz where f is meromorphic at z = 0. The
order of ω at P , denoted by vP (ω), is defined as the order of f at 0.

It is easy to see that vP (ω) is independent of the choice of the local coordinate and
thus well-defined. A meromorphic 1-form ω is holomorphic at P if and only if vP (ω) ≥ 0.
We say that P is a zero of ω of order n, if vP (ω) = n > 0. Conversely, P is a pole of ω
of order n, if vP (ω) = −n < 0. The set of zeros and poles of a meromorphic 1-form is a
discrete set.

Defining meromorphic functions and 1-forms The definition of a meromorphic or
holomorphic 1-form ω suggests that in order to define ω on a Riemann surface X, one
must give local expressions for ω of the form f(z)dz in each holomorphic chart of X. In
fact, one can define ω by a single formula on a single chart. This is sufficient to determine
ω by the Identity Theorem for meromorphic functions and forms: if two meromorphic
1-forms agree on an open set, they must be identical.

Let U ⊂ X be an open subset. We define the following complex vector spaces.

O(U) = { holomorphic functions defined on U },
Ω1(U) = { holomorphic 1-forms defined on U },
M(U) = { meromorphic functions defined on U },
M1(U) = { meromorphic 1-forms defined on U }.

If the subset U is connected then O(U) is an integral domain and M(U) is a field. The
spaces Ω1(U) and M1(U) are modules over O(U) an if U is connected then M1(U) is a
vector space overM(U). In particular,M(X) is called the field of meromorphic functions
on X. Note that we can now describe the space of holomorphic 1-forms on X via

Ω1(X) = {ω ∈M1(X) | vP (ω) ≥ 0 for all P ∈ X } .

Plane algebraic curves Let F be an irreducible homogeneous polynomial of degree
d ≥ 3 in C[x0, x1, x2] such that the algebraic curve in CF : F = 0 in P2 is smooth and let
X = CF (C) be the associated compact Riemann surface. The coordinates x0, x1, x2 define
meromorphic functions on X

x = x0
x2

and y = x1
x2
.

Then for any polynomial b ∈ C[x, y] of degree ≤ d− 3, the meromorphic 1-form

α(b) = b(x, y)
∂yF (x, y, 1)dx = − b(x, y)

∂xF (x, y, 1)dy

is holomorphic. Moreover, the map b 7→ α(b) is an isomorphism between the space of
polynomials of degree ≤ d− 3 in C[x, y] and Ω1(X).

If X is obtained as the normalization of an algebraic curve, it is always possible to
describe Ω1(X) in terms of the algebraic data defining this curve, as is shown by the
following theorem. We refer to [13, p. 598] for the definition of an adjoint curve and its
order.

31

2.6. Integration on Riemann surfaces Chapter 2

Theorem 2.6.2. Let Cf : f = 0 be the affine plane curve defined by an irreducible
polynomial f ∈ C[x, y] with m = degy f > 0. Let X be the compact Riemann surface
associated to Cf as explained in §2.5.3. Then the holomorphic differentials on X are the
differential forms

b(x, y)
∂yf(x, y)dx ,

where b(x, y) = 0 is the equation of a curve of order d − 3 adjoint to Cf . Moreover, the
vector space of holomorphic differentials Ω1(X) has dimension g where g is the (topological)
genus of X.

Proof. See [13, Theorem 9.3.1].

Remark 2.6.3. Note that Serre’s famous GAGA paper [79] shows, that over the complex
numbers (i.e. K = C), the (algebraic) differentials of algebraic function fields (or, equiv-
alently, of non-singular projective algebraic curves) as defined in §2.3.2 coincide with the
(analytic) differential forms on Riemann surfaces as defined in this section, i.e.

Ω1(X) ∼= ΩC(Cf)(0) .

Corollary 2.6.4 (Equality of topological and algebraic genus). The (algebraic) genus of a
smooth projective curve defined over C, see Definition 2.3.4, equals the (topological) genus
of the associated compact Riemann surface.

2.6.2 Integration of 1-forms along paths

First note that by [63, Lemma IV.3.7] every path γ : [−1, 1]→ X may be partitioned into
a finite number of paths {γi}, such that each γi is C∞, with image contained in a single
chart domain of X, i.e. γi([−1, 1]) ⊂ Ui for some holomorphic chart (Φi, Ui).

Let ω be a meromorphic 1-form on a Riemann surface X and let γ be a path on X
with a partition {γi} with holomorphic charts (Φi, Ui) as above. With respect to each
chart Φi, write the 1-form as ω = fi(zi)dzi and consider the path Φi ◦ γi : [−1, 1]→ C to
be the defining function for zi = zi(t) for t ∈ [−1, 1].

Definition 2.6.5 (Integration of 1-forms). With the above notation, we define the integral
of ω along γ to be the complex number∫

γ
ω =

∑
i

∫ 1

−1
fi(zi(t))z′i(t)dt . (2.7)

In particular, if the image γ is contained in the domain of a single chart Φ : U → V
and if ω = fdz in this chart, then ∫

γ
ω =

∫
Φ◦γ

fdz .

where the integral on the right is the usual contour integral of the path Φ ◦ γ in V ⊂ C.
By [63, Lemma IV.3.9] the integral (2.7) has all the properties of the usual integral: it is
C-linear; independent of the choice of parametrization of γ; it is linear under partition;
the fundamental theorem of calculus holds and integrating along the reverse path changes
the sign of the integral.

The following example depicts the situation which we do encounter in the Chapters 4
and 5.

32

Chapter 2 2.6. Integration on Riemann surfaces

Example 2.6.6. Let X be the compact Riemann surface associated to a plane algebraic
curve Cf : f = 0, where f ∈ C[x, y] is irreducible, and a(x, y) ∈ C(Cf) be a rational
function. Moreover, let γ : [−1, 1]→ C be a smooth path and

γ̃ : [−1, 1]→ X, t 7→ (γ(t), y(γ(t)))

where y(γ(t)) is obtained via analytic continuation of the algebraic function f(x, y(x)) = 0
along γ. If a(x, y) is defined in γ̃([−1, 1]), then with x = γ(t) we have∫

γ̃
a(x, y(x))dx =

∫ 1

−1
a(γ(t), y(γ(t))γ′(t)dt .

Recall from §2.4.3 that we have already defined paths, the concept of homotopy and
the fundamental group for connected real manifolds. The same definitions can also be
used for Riemann surfaces (except that we additionally require paths to be piecewise C∞
functions).

Let us briefly mention that a 1-form ω is closed if its total derivative d (see [63, p. 114]
for a Definition) is zero, i.e. dω = 0, and that every holomorphic 1-form is closed. The
following basic results from complex analysis concerning homotopy and contour integration
carries over to Riemann surfaces (see [63, Proposition IV.3.20]):

Proposition 2.6.7. Let γ0 and γ1 be homotopic paths on a Riemann surface X. Then
for any closed 1-form ω on X (in particular, for holomorphic 1-forms), we have∫

γ0

ω =
∫
γ1

ω

This means that the integral of a closed 1-form along a path only depends on the
homotopy class of that path, and not on the path itself. Let now π1(X,P0) denote the
homotopy group consisting of homotopy classes of closed paths on X that are based at
P0, which we will also refer to as cycles. By Proposition 2.6.7, for any closed 1-form ω,
the integral induces a well-defined map∫

: π1(X,P0)→ C, γ 7→
∫
γ
ω .

For a fixed 1-form this map is a group homomorphism and since C is abelian it must factor
through the abelianization π1(X,P0)/[π1, π1] where

[π1, π1] = { aba−1b−1 | a, b ∈ π1(X,P0) } .

is the commutator subgroup. In particular, [π1, π1] is the kernel of the map (2.6.2) and
integration of ω induces a well-defined group homomorphism from the quotient group
π1(X,P0)/[π1, π1] to C.

Definition 2.6.8 (Homology group). We define the first (integral) homology group of X
as the quotient group π1(X,P0)/[π1, π1] and denote it by H1(X,Z). If X is a compact
Riemann surface, thenH1(X,Z) is a free abelian group of rank 2g and therefore isomorphic
to Z2g. Moreover, the homology group H1(X,Z) is independent of the base point P0. In
the following, we identify the cycles in π1(X,P0) with their classes in H1(X,Z) (also called
1-cycles).

Therefore, integration of closed 1-forms along 1-cycles on X gives us a well-defined map∫
: H1(X,Z)→ C, γ 7→

∫
γ
ω (2.8)

33

2.7. Intersection theory Chapter 2

which only depends on the homology class of γ ∈ H1(X,Z). Conversely, for every cycle
γ ∈ H1(X,Z), we obtain a well-defined functional on the space Ω1(X) of holomorphic
1-forms, given by integration ∫

γ
: Ω1(X)→ C . (2.9)

Definition 2.6.9. A linear functional (2.9) that is induced by γ ∈ H1(X,Z) is called
period. The set Λ of periods, called the period lattice, forms a subgroup of the dual space
Ω1(X)∗. For a compact Riemann surface X we define the Jacobian Jac(X) of X as the
quotient

Jac(X) = Ω1(X)∗

Λ . (2.10)

Later on, in Section 2.9, we give descriptions of the period lattice and the Jacobian with
respect to bases of Ω1(X) and H1(X,Z) that is much more useful (for practical purposes)
than this construction.

2.7 Intersection theory

Let X be a compact Riemann surface of genus g > 0. In the following we briefly introduce
intersections between cycles on X. More details can be found in [33, III.1], [10, p.105 ff.]
or [7, 1.3].

For any two classes H1(X,Z) one can find representatives γ1, γ2 ∈ π1(X) which are
C∞ cycles without self-intersections on X and satisfy the following conditions:

• γ1([−1, 1]) ∩ γ2([−1, 1]) is finite;

• for any P ∈ γ1([−1, 1]) ∩ γ2([−1, 1]) there exist unique t1, t2 ∈ [−1, 1] such that
γ1(t1) = γ2(t2) = P , and that (γ′1(t1), γ′(t2)) is a basis of the tangent space of X at
P as shown in Figure 2.1, i.e. they intersect transversally.

We define the intersection number at P as

(γ1 ◦ γ2)P = ±1 ,

depending on the orientation of the basis (γ′1(t1), γ′2(t2)) of the tangent space at P as
shown in Figure 2.1.

P

γ2

γ1

(γ1 ◦ γ2)P = +1

P

γ1

γ2

(γ1 ◦ γ2)P = −1

Figure 2.1: Intersection number of cycles at point P .

Definition 2.7.1. Let γ1, γ2 be two smooth cycles intersecting transversally in finitely
many points. We define the intersection number of γ1 and γ2 to be

(γ1 ◦ γ2) =
∑

P∈γ1∩γ2

(γ1 ◦ γ2)P .

34

Chapter 2 2.8. Divisors and meromorphic functions

Theorem 2.7.2. [7, Theorem 10] The intersection pairing is a bilinear skew-symmetric
map

◦ : H1(X,Z)×H1(X,Z)→ Z (γ1, γ2) 7→ (γ1 ◦ γ2)

For a basis Γ = (γ1, . . . , γ2g) of H1(X,Z) is called homology basis. The intersection
numbers of the cycles in Γ is non-degenerate and can be represented by a matrix

KΓ = (γi ◦ γj)1≤i,j≤g ∈ Z2g ,

called intersection matrix. The following kind of homology basis will be of great impor-
tance throughout this thesis.

Definition 2.7.3. A basis (αi, βj) (1 ≤ i, j ≤ g) of H1(X,Z) is called canonical basis if
the intersection numbers satisfy

αi ◦ βj = δij and αi ◦ αj = βi ◦ βj = 0 .

The intersection numbers of a canonical basis are represented by the intersection matrix

J =
(

0 Ig
−Ig 0

)
.

Figure 1.1 shows a canonical basis for a 3-holed torus (which is diffeomorphic to a
compact Riemann surface of genus g = 3).

2.8 Divisors and meromorphic functions

As we have already established , the theory of Riemann surfaces can be formulated equiv-
alently in the language of smooth algebraic curves C defined over C or algebraic function
fields in one variable over C. Since we already introduced divisors and Riemann-Roch
spaces for algebraic function fields in §2.3, we simply mention the important correspon-
dences. For more details see [63, Chapter V].

• points on the compact Riemann surface X correspond one-to-one to places of the
function field C(C);

• the divisors on X correspond one-to-one to divisors on C(C).

• the field of meromorphic functions on X is isomorphic to the function field of C, i.e.
M(X) ∼= C(C);

• differential forms onX and the differentials of C(C), in particular Ω1(X) ∼= ΩC(C)(0);

• the order vP of a meromorphic function (or a differential form) at a point P ∈ X
and the valuation vP ′ of a function field element (or a differential) at the place P ′
that corresponds to P .

2.9 The Abel-Jacobi map

In this section we follow the exposition of [90, Section 2] as well as [63, Chapter VIII].
Let X be a compact Riemann surface of genus g > 0. Recall from §2.6.2 that for any

meromorphic 1-form ω on X the integral (2.8) along γ ∈ H1(X,Z) is well-defined. In
particular, this is true for holomorphic 1-forms.

35

2.9. The Abel-Jacobi map Chapter 2

Definition 2.9.1. Let ω̄ = (ω1, . . . , ωg) be a basis of the space Ω1(X) of holomorphic
1-forms. With respect to that basis we define the period lattice Λ of X

Λ =
{∫

γ
ω̄ | γ ∈ H1(X,Z)

}
⊂ Cg,

where
∫
γ ω̄ =

(∫
γ ω1, . . . ,

∫
γ ωg

)T
. Then the Jacobian (2.10) of X is isomorphic to the

complex torus
Jac(X) ∼= Cg/Λ .

In fact, Jac(X) is a abelian variety of dimension g (see [10, p.189]), i.e. as a complex
manifold it can be embedded in a projective space.

Let P0 ∈ X be a base point on X. With respect to P0 we define the Abel-Jacobi map
as the map

A(·, P0) : X → Jac(X), P 7→
∫ P

P0

ω mod Λ . (2.11)

Note that A is independent of the path taken from P0 to P . By linearity of the integral we
can extend this map from X to the group Div(X) of divisors on X. For D =

∑
P∈X vPP ∈

Div(X) we define

A(·, P0) : Div(X)→ Jac(X), D 7→
∑
P∈X

vPA(P, P0) . (2.12)

Restricting the Abel-Jacobi map to subgroup of degree zero divisors Div0(X) removes the
dependence of the base point.

We are ready to state the famous theorem by Abel that gives a characterization of
divisors of meromorphic functions on X in terms of the Abel-Jacobi map.

Theorem 2.9.2 (Abel’s theorem). Let X be a compact Riemann surface of genus g and
D ∈ Div0(X) a degree zero divisor on X. Then, D is the divisor of a meromorphic
function (a principal divisor) if and only if its image under the Abel-Jacobi map is in the
period lattice, i.e.

D ∈ Prin(X) ⇔ A(D) ≡ 0 mod Λ .

The surjectivity of the Abel-Jacobi map is due to Jacobi [33, p.92]:

Theorem 2.9.3 (Jacobi inversion). Every element v ∈ Jac(X) = Cg/Λ is the image of
an divisor D ∈ Div(X) of degree g under A. In particular, the Abel-Jacobi map (2.12) is
surjecive.

Combining Abel’s and Jacobi’s theorems provides an explicit isomorphism of abelian
groups

A : Div0(X)/Prin(X)→ Jac(X) .

In particular, for a complex smooth algebraic curve C/C such that X = C(C), via this
isomorphism we can identify the algebraic Jacobian with the analytic Jacobian

Div0(C/C)/Prin(C/C) ∼= Jac(X) .

Remark 2.9.4. The group of divisors modulo principal divisors is called Picard group and
denoted by Pic(X) = Div(X)/Prin(X). Likewise, if we denote by Pic0(X) the subgroup of
Pic(X) formed by the classes of degree zero divisors, then we can state the aforementioned
isomorphism as

Pic0(X) ∼= Jac(X) .

36

Chapter 2 2.9. The Abel-Jacobi map

2.9.1 Period matrices

Let (αi, βj) for 1 ≤ i, j ≤ g be a canonical basis for the homology group H1(X,Z), see
Definition 2.7.3 and, as before, ω̄ = (w1, . . . , wg) a basis for Ω1(X). With respect to these
bases we define period matrices

ΩA =
(∫

αj

ωi

)
1≤i,j≤g

and ΩB =
(∫

βj

ωi

)
1≤i,j≤g

.

We call the concatenated matrix

Ω = (ΩA,ΩB) ∈ Cg×2g

such that Λ = ΩZ2g a big period matrix. If one takes as basis of differentials the dual basis
of the cycles αi, the matrix becomes

Ω−1
A Ω = (Ig, τ),

where τ = Ω−1
A ΩB ∈ Cg×g is called a small period matrix.

Riemann’s bilinear relations The following two statements about period matrices are
known as Riemann’s bilinear relations.

(1) The period matrices ΩA and ΩB satisfy ΩT
AΩB = ΩT

BΩA.

(2) The small period matrix τ lies in the Siegel upper half-space Hg of symmetric com-
plex matrices with positive definite imaginary part.

For proofs we refer to Lemmas 4.5 and 4.7 of [63].
In particular, the 2g columns of Ω are linearly independent over R which implies that,

as an abelian group, the Jacobian is isomorphic to 2g copies of R/Z, i.e.

Jac(X) ∼= (R/Z)2g .

We are going to use this identification for representing the image of the Abel-Jacobi map
in Sections 4.9 and 5.4.

37

Chapter 3

Numerical integration methods

In this chapter we discuss several numerical integration methods that we are going to
apply to our problem of integrating differential forms on Riemann surfaces. The focus lies
on achieving high numerical precision (hundreds or thousands of digits) and using error
bounds that depend mainly on the holomorphicity of the integrand.

While we did not invent any new integration method, we analyzed their complexity,
applicability and performance in a particular multiprecision setting. All of the following
methods were implemented in magma which had none of this functionality:

• Gauss-Jacobi quadrature §3.2.1

• Gauss-Legendre quadrature §3.2.2

• Gauss-Chebyshev quadrature §3.2.3

• Clenshaw-Curtis quadrature §3.3

• Double-exponential integration (or tanh-sinh-quadrature) §3.4

For each integration method we will give a brief introduction, present error bounds and
analyze algorithms that we implemented to compute the corresponding integration scheme
(i.e. abscissas and weights). Although there have been comparisons of these integration
methods for arbitrary precision, we will give a summary of them and add our experiences.
The performance of these methods applied to the integration of differential forms will be
compared in §4.7.6 for general algebraic curves and §5.7 for superelliptic curves.

Numerical integration in our context means approximating contour integrals of the
form ∫

γ̃
ω =

∫ 1

−1
a(γ̃(u))γ′(u)du =:

∫ 1

−1
w(u)g(u)du. (3.1)

Here, a(x, y) is a rational function with a finite set of poles on a Riemann surface, γ :
[−1, 1] → C is an oriented smooth path in the complex plane avoiding the x-coordinates
of these poles (except possibly at the end points), γ̃ is a lift of γ to the Riemann surface
and w(u) is a positive, integrable weight function. These objects will be explained later
in more detail, but for now its important that we (mostly) deal with complex-valued
functions g that are holomorphic and bounded in a neighborhood of]−1, 1[.

We seek to numerically approximate the integral (3.1) by a finite sum

I(g) :=
∫ 1

−1
w(u)g(u)du ≈

N∑
`=1

w`g(u`) =: IN (g) (3.2)

with abscissas {u`}1≤l≤N and weights {w`}1≤`≤N for some number N > 0; denoting by
E(N) the absolute error

E(N) = |I(g)− IN (g)| . (3.3)

38

Chapter 3 3.1. A versatile error bound

We will analyze the complexity of the initialization of each integration scheme Init(N,D)
depending on the number of abscissas N and some prescribed precision D > 0. Using
suitable error bounds, we are able to introduce the minimal number of abscissas Nmin(D)
that is required to achieve some desired accuracy D > 0, i.e.

Nmin(D) = min{N > 0 | E(N) ≤ e−D },

making it possible to express the initialization cost depending solely on D via

Init(D) = Init(D,Nmin(D)) .

Although the integration methods are (theoretically) unlimited in terms of precision,
practically we are interested in

• up to ∼ 2000 decimal digits of precision, i.e. D10 = D/ log10(D) ≤ 2000,

• which may require up to N ≈ 50000 abscissas.

Remark 3.0.5. Note that the integral of a complex-valued function g is defined by the sum
of the integrals of its real and imaginary part∫

g(u)du =
∫

Re(g(u))du+ i

∫
Im(g(u))du .

If g is holomorphic on a set U ⊂ C then its real and imaginary part are harmonic functions
on U and therefore analytic as functions on R2. Moreover, if g is bounded by M > 0 on U
then so are Re(g) and Im(g). So, if we want the error E(N) to be smaller than some ε > 0,
we need to have errors of ε1, ε2 > 0 for the real and imaginary part such that ε1 + ε2 ≤ ε,
because

E(N) = |I(g)− IN (g)|
= |I(Re(g)) + I(Im(g))− IN (Re(g)) + IN (Im(g))|
≤ |I(Re(g))− IN (Re(g))|+ |I(Im(g))− IN (Im(g))|
≤ ε1 + ε2 ≤ ε.

We will not mention this issue any further, but keep it in mind.

3.1 A versatile error bound
Integration formulas on N > 0 points that exactly integrate all polynomials of degree
smaller than N will be called interpolatory. For interpolatory integration formulas with
abscissas u` the quadrature weights w` are uniquely determined by integrating the poly-
nomial of degree N − 1 that interpolates the N data points (u`, g(u`)), l = 1, . . . , N .
Moreover, we will call an integration formula symmetric if the abscissas on [−1, 1] are
reflected around 0 and the weights are symmetric.

Similar to [87] we will derive a bound on the eror E(N) for such integration schemes,
except that our weight function w(u) does not need to be constant. We will denote the
value of the integral of the weight function by

I(1) :=
∫ 1

−1
w(u)du > 0 .

Suppose we want to integrate a continuous function g on [1, 1] using an interpolatory
integration formula IN . The Chebyshev series for g is defined as

g(u) = −1
2a0T0(u) +

∞∑
j=0

ajTj(u), aj = 2
π

∫ 1

−1

f(u)Tj(u)√
1− u2

du, (3.4)

39

3.1. A versatile error bound Chapter 3

where Tj(u) is the Chebyshev polynomial (of the first kind) of degree j (see (3.34)) and the
aj are called Chebyshev coefficients. On [−1, 1], Tj(u) can also be defined trigonometrically
as

Tj(u) = cos(j arccos(u)).

In the following we derive bounds on the error E(N) for integrands that are holomorphic
inside an ellipse with foci ±1, parametrized by r > 0 via

εr = { z ∈ C | |z − 1|+ |z + 1| = 2 cosh(r) }, (3.5)

the sum of the lengths of major and minor semiaxis being

sinh(r) + cosh(r) = er.

−1 1

z

sinh(r)

cosh(r)

εr

Figure 3.1: Parametrized ellipse.

Combining and generalizing several statements from [87] yields

Theorem 3.1.1. Let g : [−1, 1] → C be a function that is holomorphic inside an ellipse
εr (3.1) with foci ±1 and r > 0. Then, for any interpolatory quadrature formula IN on
N > 0 points the error (3.3) satisfies

E(N) ≤ 4MI(1)
(1− e−r)erN (3.6)

where M = max { |g(z)| | z ∈ εr}.

Proof. We write the integration error using the Chebyshev series for g and use that IN is
interpolatory, i.e.

I(g)− IN (g) =
∞∑
j=0

aj(I(Tj)− IN (Tj)) =
∞∑
j=N

aj(I(Tj)− IN (Tj)). (3.7)

Then we can estimate

E(N) ≤
∞∑
j=N
|aj | |I(Tj)− IN (Tj)|

≤
∞∑
j=N
|aj | (|I(Tj)|+ |IN (Tj)|)

≤
∞∑
j=N
|aj | (I(1) + I(1))

(3.8)

since |Tj | ≤ 1 on [−1, 1]. By [77, p.175] the Chebyshev coefficients decay exponentially on
the ellipse εr; we have

|aj | ≤
2M
erj

for j ≥ 0. (3.9)

40

Chapter 3 3.2. Gaussian quadratures

Plugging this into (3.8) and using the geometric series yields the claim

E(N) ≤ 2I(1)
∞∑
j=N

2M
erj

= 4MI(1)
(1− e−r)erN

In his paper [87] Trefethen shows that the estimates in (3.19) can be sharpened for
Gauss-Legendre and Clenshaw-Curtis quadrature. Therefore, he improves the bound (3.6)
in these cases by considering individual Chebyshev coefficients [87, p.77,78]. We will use
the same techniques to achieve similar results for Gauss-Jacobi and Gauss-Chebyshev
quadrature.

3.2 Gaussian quadratures
A numerical integration scheme is referred to as Gaussian quadrature on N points, if for
some positive, integrable weight function w(u), the approximation

I(g) =
∫ 1

−1
w(u)g(u)du ≈

N∑
l=1

w`g(u`) = IN (g) (3.10)

is exact for all polynomials of degree smaller than 2N . For every weight function w(u)
there is a class of orthogonal polynomials such that the abscissas u` occur as the simple
roots of a polynomial of degree N of this class.

Hence Gaussian quadratures are by construction interpolatory and we obtain an even
better bound on E(N) than (3.6) by replacing N by 2N in the proof of Theorem 3.1.1.

Theorem 3.2.1. Let Gaussian quadrature on N > 0 points be applied to a function
g : [−1, 1] → C that is holomorphic inside an ellipse εr (3.5) with foci ±1 and r > 0.
Then, the error (3.3) satisfies

E(N) ≤ 4MI(1)
(1− e−r)er2N (3.11)

where M = max { |g(z)| | z ∈ εr}.

In order to make the statement of Theorem 3.2.1 comparable to Theorem 3.4.1, our
error bound for double-exponential integration, we formulate the following corollary:

Corollary 3.2.2. For all D > 0, with constant r andM as in Theorem 3.2.1, if we choose
N such that

N ≥ log (4MI(1)) +D − log(1− e−r)
2r we have |E(N)| ≤ e−D ,

which implies that asymptotically

Nmin(D) ∼ D

2r = O(D) . (3.12)

As the asymptotic formula (3.12) for Nmin(D) already indicates and as the comparison
to other type of integration methods will confirm, Gaussian quadratures are very efficient
in the sense that the error E(N) converges quickly: only few integration points are required
to achieve high accuracy.

As we will see later, the major drawback to (most) Gaussian quadratures is the immense
initialization cost of the schemes. Another is the dependence on the parameter r > 0 which

41

3.2. Gaussian quadratures Chapter 3

can be close to zero when g has poles near [−1, 1]. In that case Nmin(D) will become large
very quickly and Gaussian quadratures become impractical. In some cases the latter can
be avoided by splitting up the integral, as explained in §4.7.5.

Integrable singularities at ±1 can be handled by special weight functions, as we will
now discuss.

3.2.1 Gauss-Jacobi quadrature

The Gaussian quadrature called Gauss-Jacobi quadrature on the interval [−1, 1] has weight
function

w(u) = (1 + u)α(1− u)β with α, β > −1,

the abscissas {u`}1≤l≤N are the roots of the Jacobi polynomial p(α,β)
N and the weights are

given in terms of the derivative p′(α,β)
N

w` = Γ(N + α+ 1)Γ(N + β + 1)
Γ(N + α+ β + 1)N !

2α+β+1

(1− u2
`)p
′(α,β)
N (u`)2

, l = 1, . . . , N. (3.13)

Note that the Jacobi polynomials satisfy the symmetry relation

p
(α,β)
N (−u) = (−1)Np(β,α)

N (u). (3.14)

In particular, Gauss-Jacobi integration with weight α = β is symmetric, i.e. the weights
are symmetric by (3.13) and the roots of the Jacobi polynomial are reflected around 0, so
we only need to compute bN/2c of them.

We applied Gauss-Jacobi quadrature in four different situations, namely with weight

• α = β = 0 (Gauss-Legendre) for periods of general algebraic curves in Section 4.7;

• α = β = −1
2 (Gauss-Chebyshev) for periods of hyperelliptic curves in §5.5.1;

• α = β ∈]−1, 0[for periods of superelliptic curves in §5.5.2;

• α ∈]−1, 0[, β = 0 for the superelliptic Abel-Jacobi map §5.5.2.

The most important special cases for our applications, which we will analyze closely,
are the Gauss-Legendre quadrature in §3.2.2 (α = β = 0) and the Gauss-Chebyshev
quadrature in §3.2.3 (α = β = −1/2).

Error bound As Gaussian quadrature, the bound of Theorem 3.2.1 is valid for Gauss-
Jacobi and can readily be used with (see Proof of [16, Theorem 5.1.])

I(1) = 2α+β+1 Γ(α+ 1)Γ(β + 1)
Γ(α+ β + 2) <∞, (3.15)

where
Γ(z) =

∫ ∞
0

xz−1e−xdx (3.16)

is the Gamma function. However, an improvement to the constant in (3.11) can be made
in the case of α = β by taking a detailed look at the differences I(Tj)− IN (Tj) in equation
(3.19). Through numerical experiments we found an interesting closed formula for I(Tj):

42

Chapter 3 3.2. Gaussian quadratures

Conjecture 3.2.3. For α > −1 and even j > 1 we have∫ 1

−1
(1− u2)αTj(u)du = (−1)j/22jI(1)

j∏
k=1

(2α+ 2k + 1− j)
(2α+ k + 1)2

j/2∏
k=1

(α+ k)2 . (3.17)

We remark that Conjecture 3.2.3 turned out to be correct, as it was proved by Alexey
Chernov after he read this thesis.

Moreover, we know that I(Tj) > I(Tj+2).

For odd j we have that the Chebyshev polynomials are of odd degree and satisfy
Tj(−x) = −Tj(x). Since for α = β the Gauss-Jacobi integration is symmetric this implies

I(Tj) = 0 = IN (Tj) for all odd j.

Using this in the proof of Theorem 3.1.1 we obtain

Theorem 3.2.4. Let Gauss-Jacobi quadrature with weight (α, α) on N > 0 points be
applied to a function g : [−1, 1] → C that is holomorphic inside an ellipse εr (3.5) with
foci ±1 and r > 0. Assuming 3.2.3 is true, the error (3.3) satisfies

E(N) ≤ 2M(|I(T2N |) + I(1))
(1− e−2r)er2N (3.18)

where M = max { |g(z)| | z ∈ εr}, I(1) is given by (3.15) and I(T2N) by (3.17). Replacing
I(T2N) by I(1) yields an unconditional bound.

Proof. Starting in equation (3.19) of the proof of Theorem 3.1.1 we now have that

E(N) ≤
∞∑

j=2N
|aj | |I(Tj)− IN (Tj)|

=
∞∑
j=N
|a2j | (|I(T2j)|+ |IN (Tj)|)

≤ (|I(T2N)|+ I(1))
∞∑
j=N
|a2j | .

(3.19)

Using (3.9) and a geometric series proves the claim. If we don’t want to assume Conjecture
3.2.3, we can just use |I(T2j)| ≤ I(1) instead.

Computing the scheme We implemented an algorithm that computes the Gauss-
Jacobi abscissas and weights to arbitrary precision which is an adaptation of the C-routine
’gaujac’ as described in [75, Chapter 4, p.155].

In the special case of Gauss-Legendre quadrature, which has more significance for our
applications, this algorithm is called REC (Algorithm 3.2.5) and will be closely analyzed
in §3.2.5. Nothing fundamental about the algorithm changes, except that the formulas for
the recurrence relation and initial guesses become less involved (in the special case). In
particular, both algorithms have the same complexities, namely

Init(N,D) = O(N2M(D)) and Init(D) = O(D3 log1+εD), (3.20)

see equations (3.26) and (3.27).
Let us mention that in fixed precision the authors of [42] give an O(N) algorithm

for computing the Gauss-Jacobi scheme, but, for the same reasons given in §3.2.2, their
approach is useless in our multiprecision setting.

43

3.2. Gaussian quadratures Chapter 3

3.2.2 Gauss-Legendre quadrature

The important special case of Gauss-Jacobi quadrature with weight (α, β) = (0, 0) is called
Gauss-Legendre quadrature, i.e. we have constant weight function

w(u) = 1.

For an N -point Gauss-Legendre integration on the interval [−1, 1] the abscissas {u`}1≤l≤N
are the roots of the N -th Legendre polynomial pN = p

(0,0)
N , which can be defined via the

three-term recurrence relation

pN (u) = 1
N

((2N − 1)pN−1(u)u− (N − 1)pN−2(u)), N > 1,

p1(u) = u,

p0(u) = 1.

(3.21)

The corresponding quadrature weights {w`}1≤l≤N (3.13) simplify to

w` = 2
(1− u2

k)p′N (u`)2 (3.22)

where the derivative of pN at u` can be evaluated via the relation

p′N (u`) = N (pN (u)u− pN−1(u))
u2 − 1 . (3.23)

Error bound We are in the special case of Gauss-Jacobi quadrature with weight (α, β) =
(0, 0), so we can use the error bound given by Theorem 3.2.4. In this case Conjecture 3.2.3
is not necessary, because we have the standard formula [87, p.78]

I(Tj) =
∫ 1

−1
Tj(u)du = 2

1− j2 for all even j.

Moreover, we have that I(1) =
∫ 1
−1 1 du = 2 and |I(T2N)| + I(1) = 2(2N)2

(2N)2−1 for j > 0.
Resulting in the bound

E(N) ≤ (4N)2

((2N)2 − 1)(1− e−2r)er2N . (3.24)

For N > 1 we can now use |I(T2N)| ≤ |I(T4)| = 2/15 to get exactly the bound (4.14)
of [87, Theorem 4.5]

E(N) ≤ 64M
15(1− e−2r)er2N , (3.25)

which is used in practice.

Computing the scheme

There’s a vast amount of literature on the computation of abscissas and weights of the
Gauss-Legendre quadrature rule.

A nice overview of existing methods can be found in [42, Section 2]. Most of these
methods are designed to compute the quadrature rule to machine precision 10−15; some
mention double precision 10−30. Since we are interested in arbitrary precision, all methods
that rely on precomputing certain values or polynomials are impractical for our purposes.
The most basic method that yields an arbitrary precision scheme and is suitable for imple-
mentation in magma is called REC algorithm (REC for recurrence). It is described and

44

Chapter 3 3.2. Gaussian quadratures

analyzed in §3.2.2 and uses the three-term recurrence relation (3.21) to obtain the abscis-
sas via Newton-iteration. For fixed precision the REC algorithm has complexity O(N2),
although the authors of [42] find it to be O(N1.7) in practice. Due to its (sub)quadratic be-
haviour, which is verified by our timings in Table 3.1, this algorithm becomes impractical
for large values of N .

In recent developments several algorithms (e.g. [42], [39], [8]) that achieve an O(N)
complexity (for fixed precision) were published. We find that the so-called Glaser-Liu-
Rohkling (GLR) algorithm [39] is best suited for generalization to arbitrary precison and
hence for our purposes. A description and analysis of the (generalized) algorithm, in the
case of Legendre polynomials, is given below.

Just recently, the paper [49] by Johansson and Mezzarobba appeared on arχiv. They
present their arbitrary precision implementation for computing the Gauss-Legendre scheme
in the C-library [47], which sets new standards in terms of speed. Moreover, they prove
that if the precision is approximately the number of integration of point, i.e. D ∼ N , we
have that the complexity becomes Õ(D2), i.e. O(D2 logkD) for some k ∈ Z≥0. Due to the
bad timing, we were not able to incorporate these new results into this thesis.

REC algorithm Our implementation of the REC algorithm is an adaptation of the
C-routine ’gauleg’ as described in [75, Chapter 4, p.152], which we will briefly summarize
here.

Algorithm 3.2.5 (REC). Computes the Gauss-Legendre abscissas and weights for N > 0
up to an error ε > 0.

(1) For l = 1, . . . , bN/2c

(1.1) Set ũl ← cos
(
π(l−1/4)
N+1/2

)
.

(1.2) Repeat
(1.2.1) Evaluate pN and p′N at ũl using (3.21) and (3.23).
(1.2.2) Newton-step: Set u` ← ũl and ũl ← ũl − pN (ũl)/p′N (ũl).

(1.2) until |u` − ũl| < ε.
(1.3) Compute w` with (3.22).

(2) Return {u`, w`}.

Remark 3.2.6. Instead of starting with the very simple approximation cos
(
π(l−1/4)
N+1/2

)
, which

yields about 7 correct decimal digits of u`, one could use more sophisticated asymptotic
formulas that give better approximations for u` such that Newton’s method converges
faster. We tried the combination of the asymptotic formulas (3.4) and (3.7) of [42, §3.1],
which give up to 15 correct digits, but this did not offer any advantage in our multiprecision
implementation since for each l the first Newton-step is cheaper (performed with 8 digits
of precision) than evaluating (3.4) and (3.7) of loc. cit. in double-precision (16 digits).

Choosing ε < e−D we can easily analyze the complexity in terms of real multiplications
of precision D numbers. Recall from §1.3 that, for every l, only the last Newton-step needs
to be performed in full precision, so that

Init(N,D) = bN/2c(O(1) +NM(D) +M(D) +M(D)) = O(N2M(D)). (3.26)

If we asymptotically relate the minimal number of abscissas required for precision D, using
Nmin(D) = O(D) as suggested by (3.12), the complexity of the algorithm becomes

Init(D) = O(Nmin(D)2M(D)) = O(D2M(D)) = O(D3 log1+εD). (3.27)

45

3.2. Gaussian quadratures Chapter 3

GLR algorithm Since we were not satisfied with the performance of the REC algorithm
for large N , we implemented the Glaser-Liu-Rohkling (GLR) algorithm for Legendre poly-
nomials as described in [39, §4.1] and extended it to arbitrary precision. For fixed precision,
this algorithm computes the abscissas {u`}l=1,...,N and weights {u`}l=1,...,N in O(N) time.

The approach of Glaser-Liu-Rohkling is based on the fact that the Legendre polyno-
mials satisfy the ordinary differential equation

(1− u)2p′′N (u)− 2up′N (u) +N(N + 1)pN (u) = 0. (3.28)

Suppose that N is odd so that the first abscissa u1 = 0 is known a priori and we only
need to compute the N−1

2 positive roots of pN . Starting from a root u` ≥ 0 of pN , the
algorithm finds the next bigger root ul+1 in two steps:

First, we apply a Runge-Kutta method [39, §2.3.1] on the interval θ ∈ [π/2,−π/2] with
the initial condition u(π/2) = u` to the differential equation

∂u

∂θ
= −

(√
1− u2

N(N + 1) −
u

1− u2
sin(2θ)

2

)−1

, (3.29)

as defined in [39, § 2.1]. The resulting value u(−π/2) is an approximation ũl+1 to the root
ul+1. Crucially, this can be done in some fixed low precision, say 10 decimal digits. In the
second step, we use Newton’s method to refine this root up to the desired precision. In
contrast to Algorithm 3.2.5 (REC), the evaluation of pN and p′N at ũl+1 is not done via
the three-term recurrence relation, but by evaluating the Taylor expansions around u`

pN (u` + h) =
m∑
k=0

p
(k)
N (u`)
k! hk + ε0 with |ε0| ≤ sup

|u−u`|≤h

{
p

(m+1)
N (u)
(m+ 1)! h

m+1

}
(3.30)

and

p′N (u` + h) =
m∑
k=1

p
(k)
N (u`)

(k − 1)!h
k−1 + ε1 with |ε1| ≤ sup

|u−u`|≤h

{
p

(m+1)
N (u)
m! hm

}
(3.31)

at h = ũl+1 − uk. Evaluation of the derivatives at u` is done via the recursion

p
(k)
N (u`) =

2(k − 1)u`p
(k−1)
N (u`) + (k2 − 3k + 2−N(N + 1))p(k−2)

N (u`)
1− u2

`

(3.32)

for k ≥ 2 while p(1)
N (u`) is known from the previous step and p

(0)
N (u`) = 0. If we want

|ε0| and |ε1| to be small enough to approximate ul+1 up to an error of 10−D10 , i.e. D10
decimal digits of precision, we need to evaluate the Taylor series (3.30) and (3.31) up to
order m = 2D10.
In the case where N is even the strategy is a little different because 0 is not a root, but
an extremum of pN . We can then find the first abscissa u1 > 0 by using Runge-Kutta [39,
§ 2.3.1] on the interval [0,−π/2] with initial condition u(0) = 0. The resulting value
u(−π/2) is an approximation to u1. Afterwards, we use Newton’s method as described
above for refinement. For evaluating the derivatives with (3.32) we start with p(1)

N (u`) = 0
and compute p(0)

N (0) using (3.21).

Algorithm 3.2.7 (GLR). Computes the Gauss-Legendre abscissas and weights up to an
error ε > 0.

(1) Let D10 ∈ Z such that 10−D10 < ε.

46

Chapter 3 3.2. Gaussian quadratures

(2) If N is odd start with initial root u1 = 0, otherwise find u1 by the procedure above.

(3) For l = 2, . . . , dN/2e

(3.1) Evaluate the derivatives p(k)
N at ul−1 for k = 0, . . . , 2D10 using (3.32).

(3.2) Find ũl by solving equation (3.29) using Runge-Kutta.
(3.3) Repeat

(3.3.1) Evaluate pN and p′N at ũl using (3.30) and (3.31) with m = 2D10.
(3.3.2) Newton-step: Set u` ← ũl and ũl ← ũl − pN (ũl)/p′N (ũl).

(3.3) until |u` − ũl| < ε.
(3.4) Compute w` with (3.22).

(4) Return {u`, w`}.

Inductively this algorithm happily jumps from one root to the next bigger one until
all roots are found. Analyzing the complexity of the GLR algorithm we notice that it
achieves linear complexity in N at the cost of an extra factor D:

Init(N,D) = dN/2e(DM(D) +O(1) +DM(D) +M(D)) = O(NDM(D)).

Comparing this to the complexity (3.26) we notice that, if we take precision into account,
the GLR algorithm is not strictly better than the REC algorithm: (GLR) scales better
with N , but worse than (REC) with D.

If we go one step further and express the complexity solely inD (again usingNmin(D) =
O(D) as suggested by (3.12))) we obtain

Init(D) = O(Nmin(D)DM(D)) = O(D2M(D)) = O(D3 log1+εD) (3.33)

which is then equal to the complexity (3.27) of Algorithm 3.2.5. Surprisingly, (GLR) has
no clear advantage over (REC) when put into a multiprecision setting. Hence, conducting
an empirical comparison between the two algorithms seems appropriate.
Moreover, we conjecture that the algorithms given in [42] and [8], that run in O(N) time
for fixed precision, admit the same behaviour when being generalized to multiprecision.

Comparison between GLR and REC

As we have seen in §3.2.2 there is no clear best algorithm for the computation of the mul-
tiprecision Gauss-Legendre quadrature. Here, we want to compare our implementations
of both algorithms in magma for different values of D and N . The following tables show
the absolute run time (in seconds); recall that D10 is a number of decimal digits.

D10 100 500 1000 2000

N GLR REC GLR REC GLR REC GLR REC

100 0.12 0.04 0.92 0.08 3.66 0.16 17.7 0.35
200 0.21 0.14 1.79 0.31 7.13 0.60 33.6 1.37
500 0.52 0.78 4.21 1.88 16.9 3.64 80.2 8.23
1000 1.02 3.00 8.31 7.33 33.1 14.2 157 32.1
2000 2.04 11.7 16.4 28.4 65.6 54.8 310 124
5000 5.19 74.9 41.2 175 163 321 772 712
10000 10.2 289 81.2 681 324 1297 1555 2829

Table 3.1: Timings(s) for GLR and REC.

47

3.2. Gaussian quadratures Chapter 3

Table 3.1 supports our complexity analysis. We conclude that depending on the ratio
of N and D10 there is a preferable choice of one algorithm over the other. Running a few
numerical tests, we approximated the values of N where both algorithms break even for
several 50 ≤ D10 ≤ 1000. In practice we can use Table 3.2 to decide which algorithm
to use. For more than 1000 decimal digits we omit this comparison since neither of the
algorithms remains useful.

D10 50 100 200 300 500 750 1000 2000

N 250 300 500 700 1100 1900 2400 5400

N/D10 5 3 2.5 2.3 2.2 2.5 2.4 2.7

GLR & REC 0.15 0.32 1.12 ≈ 2.8 ≈ 9.2 ≈ 36.5 ≈ 79 ≈ 836

Table 3.2: Break even points with timings(s) of GLR and REC.

3.2.3 Gauss-Chebyshev quadrature

Gauss-Jacobi quadrature with weight (α, β) = (−1
2 ,−

1
2) is usually called Gauss-Chebyshev

quadrature. In this case the weight function (3.10) is

w(u) = 1√
1− u2

and therefore I(1) = π. The corresponding orthogonal polynomials are the Chebyshev
polynomials of the first kind TN (u) = p

(− 1
2 ,−

1
2)

N which are defined by the recurrence relation

TN (u) = 2uTN−1(u)− TN−2(u), N > 1,
T0(u) = 1,
T1(u) = u .

(3.34)

Since the roots of the Chebyshev polynomials are explicitly given as cosine functions
(see [1, 25.4.38]) the integration formula is particularly simple: with abscissas and weights{

u` = cos
(2l−1

2N π
)

w` = π
N

for l = 1, . . . , N,

the error E(N) in (3.3) satisfies the estimate given by Theorem 3.2.1.

Error bound Using the same techniques as in §3.2.1 we can improve the bound (3.11)
in this case as well. First note that for α = −1/2, by orthogonality of the Chebyshev
polynomials, we have

I(Tj) =
∫ 1

−1

Tj(u)√
1− u2

du =
{
π, j = 0
0, j > 0.

Moreover, if u` are the abscissas of an N -point Gauss-Chebyshev integration, then it holds
that for integer multiples j of 2N∣∣∣∣∣

N∑
l=1

Tj(u`)

∣∣∣∣∣ = N for j = 2kN, k ≥ 0, (3.35)

48

Chapter 3 3.3. Clenshaw-Curtis quadrature

which leads to an error in integrating Chebyshev polynomials of

|I(Tj)− IN (Tj)| =
{
π, if j = 2kN, k > 0,
0, otherwise.

(3.36)

Using this error in the proof of Theorem 3.1.1 results in

Theorem 3.2.8. Let Gaussian-Chebyshev quadrature on N > 0 points be applied to a
function g : [−1, 1] → C that is holomorphic inside an ellipse εr (3.5) with foci ±1 and
r > 0. Then, the error (3.3) satisfies

E(N) ≤ 2Mπ

er2N − 1 (3.37)

where M = max { |g(z)| | z ∈ εr}.

We remark that the bound (3.37) is exactly the bound of [15, Theorem 5], which they
obtained by applying the residue theorem on the ellipse εr.

Computing the scheme Computing this integration scheme means evaluating bN/2c
cosine functions to precision D and thus has complexity

Init(N,D) = O(NT (D)) . (3.38)

Using Nmin(D) = O(D) the complexity becomes

Init(D) = O(D logDM(D)) = O(D2 log2+εD) . (3.39)

In contrast to Gauss-Legendre (or Gauss-Jacobi) the computational cost of this scheme is
extremely cheap, even negligible in practice, while having the same order of convergence.
Due to the specific weight function w(u) we will only apply this method in the special case
of integrals coming from hyperelliptic curves as explained in §5.5.1.

3.3 Clenshaw-Curtis quadrature

Here we consider another promising integration scheme, which is usually called Clenshaw-
Curtis quadrature. For a quick introduction we follow the exposition of [95].

The Clenshaw-Curtis quadrature on N + 1 (N ≥ 2) points is an interpolatory integra-
tion scheme that is exact for polynomials of degree at most N . As for Gauss-Legendre, we
consider integration with constant weight functions w(u) = 1, so we want to approximate
the definite integral of a continous function by a finite sum

I(g) =
∫ 1

−1
g(u)du ≈

N∑
l=0

w`g(u`) = IN+1(g) (3.40)

and denote the error by
E(N) = |I(g)− IN (g)| . (3.41)

Here, the abscissas are defined as the extrema of the N -th Chebyshev polynomial TN (u)
on the interval]−1, 1[including the boundary points ±1, i.e.

u` = cos(vl) where vl = l
π

N
, l = 0, . . . , N. (3.42)

49

3.3. Clenshaw-Curtis quadrature Chapter 3

As for any interpolatory formula, the quadrature weights w` are uniquely defined by
interpolation which results in

w` = cl
N

[N/2]∑
j=1

bj
4j2 − 1 cos(2jvl)

 , l = 0, . . . , N, (3.43)

where the coefficients bj , cl are defined as

bj =
{

1, j = N/2,
2, j < N/2,

cl =
{

1, l = 0 mod N,
2, otherwise.

(3.44)

Note that the Clenshaw-Curtis quadrature is a symmetric scheme, i.e. the abscissas are
reflected around 0 and the weights are symmetric. In particular, combining equations
(3.43) and (3.44) implies

w0 = wN = 1
N2 − 1 + (N mod 2) .

Error bound Since the N -point Clenshaw-Curtis quadrature is interpolatory and in-
tegrates exactly all polynomials of degree smaller than N , applying Theorem 3.1.1 with
I(1) = 2 yields the error

E(N) ≤ 8M
(1− e−r)erN . (3.45)

Again we can improve this result using the same methods that we applied in §3.2.1. As
for Gauss-Legendre quadrature,

I(Tj) =
∫ 1

−1
Tj(u)du =

{
2/(1− j2) if j is even,
0, if j is odd.

(3.46)

The Clenshaw-Curtis formula is interpolatory and symmetric, so we have that

|I(Tj)− IN (Tj)|
{
≤ I(1) + |IN (Tj)| ≤ 2 + |IN (TN)| if j is even and ≥ N ,
= 0, otherwise.

(3.47)

Assuming N > 2 we get that |IN (Tj)| ≤ |IN (T4)| = 2/15 and obtain
Theorem 3.3.1. Let Clenshaw-Curtis quadrature on N > 2 points be applied to a function
g : [−1, 1]→ C that is holomorphic inside an ellipse εr (3.5) with foci ±1 and r > 0. Then,
the error (3.41) satisfies

E(N) ≤ 64M
15(1− e−2r)erN , (3.48)

where M = max { |g(z)| | z ∈ εr}.
Trefethen mentions this bound for Clenshaw-Curtis quadrature (cf. [87, p.77]), but

does not even state it as a separate result, because he thinks it is highly pessimistic.
However, in our setting the bound is very accurate and the result useful.
Corollary 3.3.2. For all D > 0, with r and M as in Theorem 3.3.1, if we choose N such
that

N ≥
log
(64

15M
)

+D − log(1− e−2r)
r

we have E(N) ≤ e−D ,

which implies that asymptotically

Nmin(D) ∼ D

r
= O(D) . (3.49)

Hence we need about twice as many points for Clenshaw-Curtis quadrature as for
Gaussian quadratures in order to achieve the same accuracy. However, compared to its
Gaussian counterpart (Gauss-Legendre), the Clenshaw-Curtis quadrature scheme can be
computed much more efficiently.

50

Chapter 3 3.3. Clenshaw-Curtis quadrature

Computing the scheme

Here we want to discuss and analyze how to compute the Clenshaw-Curtis abscissas and
weights to arbitrary precision. The abscissas u` = cos(l πN) are easily obtained using the
cosine identity

cos((l + 2)x) = 2 cos(x) cos((l + 1)x)− cos(lx). (3.50)

Hence we can compute {u`}0≤l≤N using O(NM(D)) operations. This cost is negligible
compared to the computation of the quadrature weights {w`}0≤l≤N for which we are going
to consider two different methods.

Classical algorithm By repeatedly applying (3.50) we can compute the weights w`
essentially from the definition (3.43) using O(N2) real multiplications so that this classical
algorithm (CL) has complexity in Init(N,D) = O(N2M(D)). Using Nmin(D) = O(D) we
obtain

Init(D) = O(Nmin(D)2M(D)) = O(D3 log1+εD).

Fortunately, there is an more elegant way to obtain the Clenshaw-Curtis weights due
to their connection to the

Discrete Fourier transform The Discrete Fourier Transform (DFT) V of a vector
v = (v0, . . . , vN) of N + 1 complex numbers is given by the formula

Vl =
N∑
j=0

vle
2πilj/N , l = 0, . . . , N (3.51)

and, conversely, the Inverse Discrete Fourier Transform (IDFT) v of V is given by

vl = 1
N

N∑
j=0

Vle
−2πilj/N , l = 0, . . . , N. (3.52)

Any IDFT of a vector v can be written as combination of a DFT and complex conjugation

IDFT(v) = 1
N

DFT(v). (3.53)

According to [95, Section 4], the Clenshaw-Curtis weights can be obtained as the IDFT of
the real vector v = v(1) + v(2) ∈ RN defined as

v
(1)
l = 2

1− 4l2 , l = 0, . . . , n− 1 ,

v
(1)
N−l = v

(1)
l+1 , l = 0, . . . , n− 2 ,

v
(1)
l = −1

2n− 1 , l ∈ {n+ 1, b(N + 1)/2c+ 1},

(3.54)

where n = bN2 c and, with c = 1/(N2 − 1 + (N mod 2)) ,

v
(2)
l =

{
c(N − 1), if l ∈ {1 + n, 1 +N − n}.
−c, otherwise.

(3.55)

51

3.3. Clenshaw-Curtis quadrature Chapter 3

Fast Fourier transform Computing the IDFT of v from the definition takes N2 mul-
tiplications of complex numbers, which is worse than the classical algorithm. Fortunately,
there is a famous algorithm (or rather a family of algorithms) called Fast Fourier trans-
form (FFT) that computes a DFT of length N in O(N logN) time.
There exists a huge amount of literature and many different FFT algorithms and imple-
mentations that are suited for different situations. Their applicability depends mainly on
the prime factor factorization of N . A nice overview of existing FFT algorithms is given
in [30]. We will not go into detail about all these algorithms, but explain our multiprecision
implementation of the FFT in magma .

Algorithm 3.3.3 (FFT). Computes the Discrete Fourier transform (3.51) of a complex
vector of length N > 1.

(1) Factorize N =
∏k
i=1 p

si
i into prime powers.

(2) Use the so-called prime-factor algorithm (PFA) or Good–Thomas algorithm [40]: The
PFA expresses an FFT of size N1 · N2 with N1 FFTs of size N2 and N2 FFTs of
size N1 for coprime N1, N2. Naturally, we recursively apply it to N1 = psii and
N2 = N/(

∏k
i=1 p

si
i), i = 1, . . . , k − 1 until only FFTs of prime power length are left.

(3) For each FFT of prime power length we use the classical Cooley-Tukey algorithm [20]
with radix p, that recursively divides a FFT of length ps into s FFT’s of length ps−1,
until s = 1.

(4) The last step in each recursion is a FFT of prime length p (i.e. s = 1), for which we use
Bluestein’s algorithm (see [6]) which achieves O(p log p) complexity even for prime
numbers if p is large enough, or we compute the FFT from the definition (3.51) if p
is small.

In this way we can compute a DFT of length N in O(N logN) time, independently of
the factorization of N . Therefore, applying (3.53) to the vector v = v(1) + v(2) defined by
(3.54) and (3.55), we can compute the Clenshaw-Curtis weights (and therefore the whole
scheme) to precision D using

Init(N,D) = O(logN(NM(D) + T (D)) = O(logN(N + logD)M(D)) (3.56)

operations such that with Nmin(D) = O(D) the complexity becomes

Init(D) = O(logD(D + logD)M(D)) = O(D2 log2+εD). (3.57)

Remark 3.3.4. While (FFT) works over the complex numbers, the classical algorithm (CL)
only requires real multiplications. Thus, for very high precisionD and smallN the classical
algorithm may actually be faster than (FFT) due to better constants. This justifies the
comparison between the two approaches described in §3.3.

Comparison between FFT and CL

As indicated by Remark 3.3.4 there should be combinations of D and N where the classical
algorithm computes the Clenshaw-Curtis quadrature scheme faster than the approach
utilizing the Fast Fourier transform. We compare the run time of our implementations
of both algorithms in magma for different values of D10 and N where D10 = D

log(10) be
a number of decimal digits. Since in our setting N is rather large, ceiling the number of
abscissas to a multiple of 4 gives a huge-speed up in practice. Assuming 4|N , we can use
s = 2 as hard-coded base of the recursion for p = 2.

52

Chapter 3 3.4. Double-exponential integration

D10 100 500 1000 2000

N FFT CL FFT CL FFT CL FFT CL

28 0.02 0.05 0.08 0.06 0.22 0.10 0.76 0.19
210 0.09 0.73 0.30 0.99 0.90 1.51 3.11 2.90
212 0.34 11.8 1.30 15.8 3.76 24.8 12.9 47.0
214 1.58 188 5.77 254 15.8 388 53.1 757

22 · (26 + 3) 0.04 0.06 0.13 0.07 0.26 0.11 0.61 0.20
22 · (28 + 1) 0.55 0.74 1.75 1.03 3.73 1.52 9.01 2.96
22 · (210 + 7) 3.87 12.2 15.9 16.5 45.3 24.7 155 47.7
22 · (212 + 3) 17.6 192 68.1 257 189 392 631 760

22 · 3 · 5 · 7 0.03 0.12 0.08 0.17 0.16 0.25 0.46 0.48
22 · 52 · 72 0.36 16.6 1.03 22.4 2.30 34 6.11 67.3

22 · 11 · 13 · 17 1.00 65.5 3.44 91.2 7.03 144 16.5 269
22 · 41 · 103 4.94 198 16.9 269 36.7 408 93.0 807

Table 3.3: Timings(s) for FFT and CL.

Clearly, Table 3.3 confirms our complexity analysis and our expectations: the Fast
Fourier transform outperforms the classical algorithm in almost every situation, especially
if N is highly composite, i.e. more than two prime factors or higher prime powers.
On the one hand our (FFT) implementation scales almost linearly with N , while (CL)
suffers from quadratic behaviour. On the other hand (CL) scales better with the precision
D, which is due to better constants (real versus complex multiplications).

However, in some cases (CL) is the preferable algorithm: either when the run time is
negligible, or when N = 4p where p is a small prime (not in range of the O(p log p) of
Bluestein’s algorithm). For the sake of completeness we experimentally determined the
prime p for these cases where FFT and CL break even for 200 ≤ D10 ≤ 2000.

D10 200 300 500 1000 1500 2000

p = N/4 61 373 709 983 1667 2663

FFT & CL 0.05 ∼1.84 ∼7.6 ∼22.3 ∼97 ∼318

Table 3.4: Break even points with timing(s) of FFT and CL.

3.4 Double-exponential integration

The double-exponential integration (DE) or tanh-sinh-quadrature was first introduced by
Mori and Takashi in 1974 [83] and has turned out to be a useful and versatile tool in
numerical integration. The scheme is based on the optimality of the trapezoidal rule when
integrating along]−∞,∞[with constant step length.

A comparison between integration schemes in a multiprecision setting, including Gauss-
Legendre and double-exponential integration, has been carried out by Bailey in 2005 [3].
He pointed out that the advantages of the double-exponential integration scheme are its
robustness and fast initialization. It does particularly well, compared to other schemes, for
badly behaved integrands, e.g. unbounded derivatives or singularities at the end points.

53

3.4. Double-exponential integration Chapter 3

For his comparison Bailey used the double-exponential integration as an adaptive scheme,
without using any a priori knowledge of the integrand.

In 2010, Pascal Molin [64] gave rigorous error bounds for double-exponential integration
for integrands that are holomorphic and bounded on certain domains (see 3.64). Our main
goal in this section is to prove Theorem 3.4.1, which combines, improves and corrects
Theorems 2.10 and 2.11 of [64]. A special case of Theorem 3.4.1 was proved in a joint
paper with Molin. Here we give a slightly more detailed proof of a more general statement.

In the following we will introduce a versatile version of the double-exponential inte-
gration comparable to Gauss-Jacobi quadrature; it can be applied to the integration of
differentials in the case of superelliptic curves (see §5.5.3) as well as in the case of general
algebraic curves (see Section 4.7). As before, our goal is to approximate an integral (3.2),
while having rigorous bounds for E(N). Throughout this section, λ ∈ [1, π2] is a fixed
parameter.

Let g̃ : [−1, 1] −→ C be a complex-valued function that is holomorphic in a neighbor-
hood of]−1, 1[. Assume that there exists a constant M̃1 > 0 with

|g̃(u)| ≤ M̃1 for u ∈ [−1, 1]

and that we want to numerically approximate the integral∫ 1

−1
(1 + u)α̃(1− u)β g̃(u)du for α̃, β ∈]−1, 0]. (3.58)

Without loss of generality we may assume α̃ = β : If α̃ < β we can write the integral as

I(g) =
∫ 1

−1
(1 + u)α̃(1− u)α̃g(u)du (3.59)

with
g(u) := (1− u)β−α̃g̃(u) and |g(u)| ≤M1 := 2M̃1 on [−1, 1], (3.60)

or vice versa if α̃ > β. Applying the double-exponential change of variable

u(t) = tanh(λ sinh(t)), (3.61)

which introduces the derivative

u′(t) = λ cosh(t)
cosh(λ sinh(t))2 ,

pushes the singularities at ±1 to ±∞. Thus, using the relation

(1− u(t))(1 + u(t)) = 1
cosh(λ sinh(t))2

the integral (3.59) becomes∫
R
g(u(t)) λ cosh(t)

cosh(λ sinh(t))2αdt =:
∫
R
g(t)dt, (3.62)

where we write α = α̃+ 1 > 0 for convenience.
For r ∈]0, π2 [and λ sin(r) < π

2 the zeros of cosh lie outside the strip of length 2r,
denoted

∆r = {z ∈ C | −r < Im(z) < r}, (3.63)

54

Chapter 3 3.4. Double-exponential integration

so the functions u and u′ are holomorphic on ∆r. We want to choose r ∈]0, π2 [as large as
possible such that g(u) has an analytic continuation to the domain

Zr = u(∆r) = {tanh(λ sinh(z)) | z ∈ ∆r}, (3.64)

which has the shape of a burger wrapped around]−1, 1[(see Figure 3.2) and there exists
a constant M2 > 0 with

|g(u)| ≤M2 for u ∈ Zr. (3.65)

-1 1

-i

i

Figure 3.2: ∂Zr for r =π
4 ,
π
5 ,
π
8 ,

π
16 .

Moreover, we introduce the following quantitiesXr = cos(r)
√

π
2λ sin r − 1,

B(r, α) = 2
cos r

(
Xr
2

(
1

cos(λ sin r)2α + 1
X2α
r

)
+ 1

2α sinh(Xr)2α

)
.

(3.66)

Once we have computed the two bounds M1, M2 and the constant B(r, α), we obtain a
rigorous integration scheme as follows.

Theorem 3.4.1 (Double-exponential integration). For all D > 0, if we choose h and N
such that

h ≤ 2πr
D + log(2M2B(r, α) + e−D) and Nh ≥ asinh

(
D + log(22α+1M1

α)
2αλ

)
, (3.67)

then ∣∣∣∣∣
∫
R
g(t)dt− h

N∑
l=−N

w`g(u`)

∣∣∣∣∣ ≤ e−D,
55

3.4. Double-exponential integration Chapter 3

where
u` = tanh(λ sinh(lh)) and w` = λ cosh(lh)

cosh(λ sinh(lh))2α .

Asymptotically we have

Nmin(D) ∼ D asinh(D)
2πr = O(D logD) . (3.68)

The proof follows the same lines as the one in [64, Thm. 2.10]: we write the Poisson
formula on hZ for the function g(t)

h
∑
|l|>N

g(lh)

︸ ︷︷ ︸
Et

+h
N∑

l=−N
g(lh) =

∫
R
g(t)dt+

∑
l∈Z∗

ĝ

(
l

h

)
︸ ︷︷ ︸

Ed

and control both error terms, the truncation error Et by Lemma 3.4.2 and discretization
error Ed by Lemma 3.4.3 below.

The actual parameters h and N in Theorem 3.4.1 follow by bounding each error by
e−D/2 (the condition of Lemma 6.4 being automatically satisfied).

Lemma 3.4.2 (Truncation error). For all N,h such that 2α cosh(Nh) > 1, we have

|Et| ≤
22αM1
αλ

exp(−2αλ sinh(Nh)).

Proof. We bound the truncation error Et using the integral of a (by assumption) decreasing
function

|Et| ≤
∑
|l|>N

|hg(lh)|

≤2M1

∫ ∞
Nh

λ cosh(t)
cosh(λ sinh(t))2αdt

=2M1

∫ ∞
λ sinh(Nh)

1
cosh(t)2αdt

≤22α+1M1

∫ ∞
λ sinh(Nh)

e−2αtdt

=22αM1
α

e−2αλ sinh(Nh).

Lemma 3.4.3 (Discretization error).

|Ed| ≤
2M2B(r, α)
e2πr/h − 1

.

Proof. We start by bounding the Fourier transform by a shift of contour. For all C > 0
we have

ĝ(±C) = e−2πCr
∫
R
g(t∓ ir)e−2πitCdt

⇒ |ĝ(±C)| ≤ M2
e−2πCr

∫
R

∣∣u′(t∓ ir)∣∣dt .
56

Chapter 3 3.4. Double-exponential integration

Using |u′(t+ ir)| = |u′(t− ir)| and a geometric series we get that

|Ed| ≤
∑
l∈Z∗

∣∣∣∣ĝ(lh
)∣∣∣∣ ≤ 2M2

∑
l>1

e−2πrl/h
∫
R

∣∣u′(t+ ir)
∣∣dt

= 2M2
e2πr/h − 1

∫
R

∣∣∣∣ λ cosh(t+ ir)
cosh(λ sinh(t+ ir))2α

∣∣∣∣ dt.
Now the point λ sinh(t+ ir) = X(t) + iY (t) lies on the hyperbola

Y 2 = λ2(sin(r)2 + tan(rX2)2)

and {
|λ cosh(t+ ir)| ≤ λ cosh(t) = X′(t)

cos(r)
|cosh(X + iY)|2 = sinh(X)2 + cos(Y)2

so that ∫
R

∣∣∣∣ λ cosh(t+ ir)
cosh(λ sinh(t+ ir))2α

∣∣∣∣ dt ≤ 2
cos r

∫ ∞
0

dX
(sinh(X)2 + cos(Y)2)α .

For X0 = 0, we get Y0 = λ sin r < π
2 , and Yr = π

2 for Xr = cos(r)
√

π
2Y0
− 1.

We split up the integral at X = Xr and write∫ Xr

0

dX
(sinh(X)2 + cos(Y)2)α ≤

∫ Xr

0

dX
(X2 + cos2 Y)α (3.69)∫ ∞

Xr

dX
(sinh(X)2 + cos(Y)2)α ≤

∫ ∞
Xr

dX
(sinhX)2α . (3.70)

We bound the integral (3.69) by convexity: since Y (X) is convex and cos is concavely
decreasing for Y ≤ Yr we obtain by concavity of the composition that for all X ≤ Xr

cos(Y) ≥ cos(Y0)
(

1− X

Xr

)
.

Now, X2 + cos2 Y ≥ P2(X) where

P2(X) =
(

1 + cos2(Y0)
X2
r

)
X2 − 2cos2(Y0)

Xr
X + cos2(Y0)

is a convex quadratic function, so X 7→ P2(X)−α is still convex and the integral (3.69) is
bounded by a trapezoid:∫ Xr

0

dX
P2(X)α ≤

Xr

2 (P2(0)−α + P2(Xr)−α) = Xr

2

(
1

cos2α(Y0) + 1
X2α
r

)
. (3.71)

For the integral (3.70) we use sinh(X) ≥ sinh(Xr)eX−Xr to obtain∫ ∞
Xr

dX
sinh(X)2α ≤

1
2α sinh(Xr)2α . (3.72)

Combining (3.71) and (3.72) yields∫
R

∣∣∣∣ λ cosh(t+ ir)
cosh(λ sinh(t+ ir))2α

∣∣∣∣dt ≤ B(r, α).

57

3.4. Double-exponential integration Chapter 3

Remark 3.4.4 (Applications of (DE) integration).

• For our applications the value λ = π
2 is always a good choice, so we did not investigate

this issue any further.

• In the case of general algebraic curves we will apply Theorem 3.4.1 with α = 1.

• In the case of superelliptic curves we will apply Theorem 3.4.1 with α = 1 − j/m,
1 ≤ j < m.

3.4.1 Adaptive double-exponential integration

As already mentioned in the beginning of this section, due to double-exponential decay of
the integration weights, (DE) integration performs extraordinarily well for quite unruly
integrands. In [3], Bailey et al. used (DE) integration, among other schemes, for high
precision integration of several integrands with infinite derivative or blow-up singularities
at one or both end points. The results were heavily in favor of (DE) integration. Fol-
lowing this, Bailey presents [2] his version of the double-exponential integration (he refers
to it as tanh-sinh-quadrature) as an adaptive, non-rigorous scheme, that requires no a
priori knowledge of the integrand (except that the definite integral is finite and infinitely
differentiable). We will briefly summarize his tactic here and put in our context. Let
g :]− 1, 1[−→ C be a complex-valued function such that the definite integral on [−1, 1] is
well-defined and λ = π

2 .
For given step length h > 0 and precision D, we approximate∫ 1

−1
g(u)du =

∫
R
g(u(t))u′(t)dt ≈ h

N∑
l=−N

wjg(u`) (3.73)

where
u` = tanh(λ sinh(lh)) and w` = λ cosh(lh)

cosh(λ sinh(lh))2 .

and N is chosen such that

|w`g(u`)| < e−D for all l > N. (3.74)

In practice, we can start with a step length of h = 2−k for some k ≥ 1. We then compute
pairs of abscissas and weights (u`, w`) until (3.74) is true and evaluate the sum (3.73).
On the next level, say h = 2−m for m ≥ k, we repeat this step. On level k + 1, we only
need to evaluate the integrand at half the abscissas, since the abscissas at level k occur
as subset of the abscissas of each higher level. Integration schemes with this property are
called nested, they are particularly applicable for adaptive integration methods. A simple
heuristic error estimation scheme can be found in [2, §4].

Later on (for the Abel-Jacobi map 4.9 associated to compact Riemann surfaces), we
will deal with integrals ∫ 1

−1
a(γ(u), γ̃(u))γ′(u)du

that are, by theory, well defined, but the integrand a(γ(u), γ̃(u)) can not be evaluated at
u = 1 since

|a(γ(u), γ̃(u))| → ∞ as u→ 1 .
These singularities are not integrable, but polynomial in the sense that the denominator
of a(x, y) is a polynomial, a(u) is an algebraic function. The weights w` decay double-
exponentially as lh→∞, i.e. much faster than |a(u)| approaches infinity for u→ 1, such
that the values |w`g(u`)| are well-defined as long as u` < 1. We have to be careful though
to avoid cancellation errors by working with sufficiently high precision D̃ > D.

58

Chapter 3 3.4. Double-exponential integration

Computing the scheme Once we know N and h from Theorem 3.4.1 we can easily
compute the double-exponential integration scheme. The hyperbolic functions sinh, cosh
and tanh are closely related (they’re all defined in terms of the exponential function), so we
only need to evaluate one exponential and a few real multiplications for each l = 1, . . . , N .

More precisely, we require a total of N + 1 exponentials, 2N + 2 divisions, 8N + 1
multiplications to compute the scheme, which means it has complexity

Init(D,N) = O(NT (D)) . (3.75)

Thus, withNmin(D) = O(D logD) as suggested by Theorem 3.4.1, computing the abscissas
u` and weights w` has complexity

Init(D) = O(D2 log3+εD) . (3.76)

Due to the small number of arithmetic operations, computing the scheme is exception-
ally fast in practice, even for thousands of digits. Table 3.5 confirms our analysis: the
run time is linear in N (the actual number of abscissas is 2N + 1) and quasi-linear in the
precision D.

N
D10 200 500 1000 2000

2000 0.03 0.06 0.17 0.53

5000 0.07 0.15 0.40 1.30

10000 0.13 0.29 0.79 2.59

20000 0.25 0.56 1.57 5.18

Table 3.5: Running times for DE scheme.

59

3.5. A priori comparison Chapter 3

3.5 A priori comparison
We give a brief informal overview of the integration methods in form of Table 3.6. Note
that the content of the Table only reflects the properties of our implementations of these
methods as presented in this chapter.

Type Interpolatory Transformatory

Method Gaussian Clenshaw-Curtis Double-exponential

Nmin(D) O(D) O(D) O(D logD)

Init(D) O(D2M(D)) O(D logDM(D)) O(D log2DM(D))

Robustness? weak weak strong

Efficient splitting? iff. (α, β) = (0, 0) yes rarely

Adaptive integration? no yes yes

Integrable singularities? yes (Gauss-Jacobi) no yes

(α, β) Initialization costs (absolute)

> −1 very high - low

α = β high - low

(0, 0) high medium low

(−1/2,−1/2) very low - low

Table 3.6: Properties of integration methods.

60

Chapter 3 3.6. Outlook

3.6 Outlook
In this section we summarize the most impactful possible future improvements (speeding
up the computation of the integration schemes).

Optimization Although we put quite some effort in implementing and optimizing the
methods presented in this chapter, the timings are still far from optimal. Since none
of these methods requires more functionality than basic multi-precision arithmetic of re-
al/complex numbers, we could gain tremendous speed-ups by implementing everything
in magma’s core which is written in C-language. Another option would be to compute
outsource this task using another librarby and then import the integration schemes.

Discrete cosine transform We are aware that the Clenshaw-Curtis weights can also
be computed using a discrete cosine transform (DCT) (see, for example, [86]). Similar
to the (FFT) there are fast cosine transform algorithms that run in O(N logN) time and
work over the real numbers. Having such an an algorithm at our disposal would further
decrease the total run time that is needed to compute the integration scheme. However,
we did not implement such an algorithm. Therefore, Clenshaw-Curtis integration has a
slight disadvantage in our comparison of integration methods, see §4.7.6 and §4.8.3, due
to sub-optimal initialization.

Computing the Gauss-Legendre scheme As already mentioned in the beginning
of this chapter, Johansson and Mezzarobba in their paper [49] manage to compute the
Gauss-Legendre scheme rigorously and incredibly fast in the C-library arb [47], combining
several formulas and using advances techniques for their evaluation. Having this algorithm
at our disposal would certainly be optimal and give a big advantage to (GL) integration
over the two other schemes in our comparisons §4.7.6 and §4.8.3, but this is definitely
beyond the scope of this thesis.

61

Chapter 4

Computing period matrices & the
Abel-Jacobi map: general case

The primary concerns of this chapter are the computation of period matrices and the
Abel-Jacobi map of compact Riemann surfaces as defined in Chapter 2. In particular,
we consider Riemann surfaces associated to irreducible affine plane curves, as defined in
§2.5.3, that are defined over number fields. The ingredients that are required for this and
how we compute them will be explained along the way.

This chapter explains in detail the algorithms that we implemented in the computer
algebra system magma for these purposes. Throughout, we point out the strengths and
weaknesses of all the different approaches that we experimented with. We analyze the
complexity of each algorithm that deals with inexact computations in terms of precision,
while actual timings are given in several tables. Combining this information we conduct
comparisons between different integration methods and approaches to period matrix com-
putations. Whenever we rely on the heuristic assumptions made in §1.3, this will be
indicated by the label ’heuristic’.

Structure of this chapter We start by explaining our setup and notation in Section
4.1, followed by the holomorphic differentials in Section 4.2. Our construction of the
fundamental group of the punctured projective line is covered in Section 4.3. We talk
about different root approximation methods in Section 4.4 that are used for analytic
continuation along paths in the plane. In Section 4.5 we present an algorithm for analytic
continuation and explain how to obtain a monodromy representation. Having these tools
available, we are able to compute a canonical homology basis in Section 4.6. We explain in
detail how to apply numerical integration methods, as introduced in the previous chapter,
to efficiently integrate differentials forms in Section 4.7. Afterwards, it is straightforward
to compute period matrices in Section 4.8. In Section 4.9 we present several ways of
computing the Abel-Jacobi map. The issue of precision loss is touched in Section 4.10.
Finally, in Section 4.11 we discuss the potential of symbolic integration and sum up our
experiments.

4.1 The Riemann surface

Let K be a number field and ι : K ↪→ C be an embedding. Throughout this chapter
C/K will be a smooth projective curve of genus g > 0. Moreover, Cf will be a (possibly
singular) affine model for C

Cf : f = 0

62

Chapter 4 4.1. The Riemann surface

where f ∈ K[x, y] is geometrically irreducible. We denote by d = deg(f) the total degree
of f and the degrees in one variable by dx = degx(f) and dy = degy(f). In practice,
we require such an affine model as input and the smooth projective curve C/K is the
non-singular projective model of the affine curve Cf (see Definition 2.2.3). If we rely on
exact computations, we work with the K-rational function field of the curve

K(C) = K(Cf) = Quot(K[x, y]/(f)) ,

rather than with the curve itself. In fact, we will be working almost exclusively with the
associated compact Riemann surface (see §2.4.1)

X = C(C) ,

also denoted by X : f = 0, if it is defined by f ∈ K[x, y] (embedded into C[x, y] via ι).

Remark 4.1.1. (Affine plane models) Although an algebraic curve may also be given by
more than one affine (or projective) equation, we restrict our algorithms to that case.
By [70, Corollary 2.5.26] there always exists an affine plane model and it can be computed,
for example, by computing a primitive element of the corresponding function field or by
using a suitable projection to a plane (e.g. using the sage function ’plane_projection’).

4.1.1 Holomorphic map to the projective line

Closely connected to compact Riemann surfaces (see §2.5) are holomorphic ramified cov-
ering maps to the projective line (see §2.5.1). For our approach to compact Riemann
surfaces, choosing such a map is a necessity in order to do explicit computations.

As before, let C/K be a smooth projective curve defined over a number field K and
let K(C) the corresponding K-rational function field. Then for any rational function
s ∈ K(C) we can define a finite morphism to P1 via

ϕs : C(K)→ P1(K), P 7→
{

[s(P) : 1], if P is not a pole of s,
[1 : 0], otherwise.

(4.1)

Of course, such a morphism becomes a holomorphic ramified covering map

ϕι(s) : X → P1(C)

by extending the embedding ι : K ↪→ C to an embedding K(C) ↪→ C(C) = C(X). For
simplicity, we will write P1 := P1(C) as in §2.4.1.

For example, s could be the rational function x ∈ K(C). Although there are many
valid choices here, we will use the projection onto either the x or the y-coordinate, i.e. s = x
or s = y. Unless stated otherwise, for the rest of this chapter we assume that we project
onto the x-coordinate, i.e. we choose the morphism ϕx of degree m := deg(ϕx) = dy. More
details on that choice are given in §4.2.

4.1.2 Exceptional points

There are several points on X : f = 0 that have to be treated in a special way. Choosing
the morphism ϕx : X → P1 we consider f as a univariate polynomial in (K[x])[y] of degree
m = dy and may write it as

f =
m∑
k=0

ak(x)ym−k.

63

4.1. The Riemann surface Chapter 4

Let discy(f) ∈ K[x] be the discriminant of f with respect to y and a0(x) ∈ K[x] be the
leading coefficient. We define the exceptional values of ϕx (or, equivalently, of f with
respect to y) as the set

L := L(f, y) = L(ϕx) = { z ∈ C | discy(f)(z) = 0 or a0(z) = 0 } ⊂ C (4.2)

and the extended exceptional values as

L̂ = L ∪ {∞} ⊂ P1 ,

Note that the set of extended exceptional values contains the branch points of ϕx, i.e.
B ⊂ L̂, and therefore R ⊂ ϕx

−1(L̂).
If a0(xP) 6= 0, then any ramification point P = (xP , yP) ∈ Cf (C) is a critical point

of Cf , i.e. it satisfies ∂yf(xP , yP) = 0. In that case, xP is called a critical value. If both
partial derivatives vanish at P , i.e. ∂yf(xP , yP) = ∂xf(xP , yP) = 0, we call P a singular
point of Cf . If xP ∈ C is a root of the leading coefficient a0(x) ∈ K[x], then there is at
least one infinite point in the fiber #ϕ−1

x ([xP : 1]) ⊂ X. We will call such points y-infinite
points. All y-infinite points correspond to the point [0 : 1 : 0] ∈ P2 in the projective closure
Cf .

Points at infinity With our morphism to the projective line ϕx chosen as explained
above, we will call the poles of the meromorphic function x points at infinity, i.e. the
points in the fiber ϕx

−1(∞) above ∞ := [1 : 0] ∈ P1. Although, ∞ may also be a
branch point of ϕx, it is not needed for the period matrix computation. In magma we
can obtain the corresponding function field places by calling ’Poles(x)’. The places in the
function field that correspond to y-infinite points can be either found via ’Zeros(a0(x))’ or
’Poles(y)’. Points at infinity and y-infinite points become important for the computation
of the Abel-Jacobi map in Section 4.9.

Singular points One could also further analyze the (finite and infinite) singularities of
the projective closure Cf by computing their multiplicities and delta invariants, as is done
for example by [27] or [35]. This is necessary if one wants to obtain a desingularization
of Cf over the complex numbers; in our approach this is done by magma’s function field
functionality. Similar to the points at infinity, singular points can be ignored for the period
matrix computation, but we have to deal with them if we want compute the Abel-Jacobi
map for points lying over such singularities in Section 4.9.

Upper bound for the number of exceptional values For the complexity analysis
of our period matrix algorithm it is crucial to have an upper bound for the number of
exceptional values L ⊂ C. By [94, Theorem 6.2.2.], the degree of the discriminant is
bounded by

degx(discy(f)) ≤ (dx + dy)d

and since degx(a0(x)) ≤ dx we have that

#L ≤ (dx + dy)d+ dx ≤ 2d2 + d = O(d2) .

4.1.3 Ordering of the sheets

After choosing a base point x0 ∈ C \ L (see §4.3.1) we can locally number the sheets of X
(from 1 to m) by ordering the fiber above x0

ϕx
−1(x0) = {P1, . . . , Pm} ⊂ C .

64

Chapter 4 4.2. Holomorphic differentials

In this chapter and in practice, we choose to sort by increasing real part first and by
increasing imaginary part second:

z1 >X z2 :⇔ Re(z1) < Re(z2) or Re(z1) = Re(z2) and Im(z1) < Im(z2) . (4.3)

For every fiber above a regular value z ∈ C \ L (i.e. non-exceptional value) the notion of
sheet (see §2.4.3) is then well-defined with respect to the base point.

4.2 Holomorphic differentials
For an irreducible polynomial f ∈ K[x, y], where K is a number field, we can compute a
basis ω1, . . . , wg of holomorphic differentials of the function field

K(C) = Quot(K[x, y]/(f))

using the function field functionality of magma which is due to Florian Hess [45]. The
function ’BasisOfDifferentialsFirstKind’ returns a basis of the form

ωi = ai(x, y)du where ai ∈ K(C) (4.4)

and

u =
{
x, if dx < dy,

y, if dx ≥ dy.
(4.5)

The algorithm’s complexity is polynomial in dx and dy and it is incredibly fast in
practice. It can become slow when the number field K is of large degree or the coefficients
of f have huge height.

However, this is an exact calculation and therefore independent of precision. As such,
we will not include this computation in our period matrix Algorithm 4.8.1, but assume
such a basis of differentials to be given.

Embedding the coefficients of ω̄K = (ω1, . . . , ωg) into C using the complex embedding
ι : K ↪→ C, we obtain a basis ι(ω1), . . . , ι(ωg) of holomorphic differentials of

K(C)⊗K C ∼= C(C) = C(X)

which is, due to category equivalence, a basis of Ω1(X) (see §2.3.3). In the following we
will assume that

ω̄ = (ω1, . . . , ωg) (4.6)

is a vector of basis differentials for Ω1(X) obtained in this way.
The choice of the local parameter (4.5) strongly suggests choosing our morphism §4.1.1

to the projective line accordingly. While choosing the morphism of smaller degree is a
reasonable choice, it is not always the best choice for our purposes, see Remark 4.2.1
below. If we are not satisfied by the choice of ’BasisOfDifferentialsFirstKind’, we can
simply multiply all differentials ωi by dy/dx or dx/dy respectively.

One could also try and compute the gonality of X (especially for low genus curves) in
order to find a morphism ϕ : X → P1 of minimal degree, but this could potentially result
in a complicated defining equation which may ruin that advantage again.

As already indicated in §4.1.1 we will from now on assume that we project onto the
x-coordinate, i.e. use the morphism ϕx (4.1) defined by x ∈ K(C). In practice, we might
just as well decide to use ϕy, but in this case we simply swap the variables and use the
affine equation

f(y, x) = 0 ,

bringing us back to the former case and thus, justifying our assumption.

65

4.2. Holomorphic differentials Chapter 4

Remark 4.2.1. The number of exceptional values n = #L is a huge factor in the total
running time of the period matrix computation (see §4.8). By our analysis in §4.1.2, this
number depends heavily on the choice of ϕ. A good example to illustrate this is given by
the affine equation

y6 = x5 − 7x4 − 3x3 + 3x2 + 13x+ 20 ∈ Q[x, y] .

We have 5 = #L(ϕx) < #L(ϕy) = 24, while the degrees only differ by dy − dx = 1, so we
would gain a big disadvantage if we chose ϕy here (as suggested by (4.5)). In this case it is
clear that we really want to project onto the x-coordinate. Generally, finding the optimal
choice here is not an easy task.

During actual computations we will not evaluate the differentials (4.4) directly, but
use the magma function ’ProductRepresentation’ which decomposes the ai(x, y) ∈ K(C)
into products of irreducible factors that are bivariate polynomials, i.e.

ai(x, y) =
∏

bi,j(x, y)pj,i with bi,j ∈ K[x, y], pj,i ∈ Z .

As can be seen in Example 4.2.2 below, the ai usually share many common irreducible
factors, so we save a lot of polynomial evaluations by evaluating these factors instead.
Note that going against the choice of (4.5) also introduces two extra factors that have to
be evaluated, namely the numerator and denominator of the rational function dy/dx (or
dx/dy respectively).

Example 4.2.2. A running example for this chapter will be the curve defined by the
affine equation f1 = 0 where

f1 = x9 + 2x6y2 + x2 + y6 + 2y4 ∈ Q[x, y] .

The corresponding compact Riemann surface X (or, equivalently, the function field C(X))
has genus g = 17. Employing our strategy we can compute a basis ω1, . . . , ω17 of Ω1(X)
using magma and represent these differentials as products of only 4 irreducible factors in
Q[x, y], namely

b1(x, y) = x,

b2(x, y) = y2 + 2,
b3(x, y) = y,

b4(x, y) = 2/3x6 + y4 + 4/3y2

together with the 4× 17 matrix of exponents

(pj,i)j,i =

 0 1 0 3 2 1 0 4 3 2 1 6 5 4 3 2 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 1 1 1 1 0 0 0 0 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1


such that the basis differentials are given by the products

ωi =
4∏
j=1

bj(x, y)pj,idx, i = 1, . . . , 17. (4.7)

66

Chapter 4 4.3. Fundamental group

Standard basis For compact Riemann surfaces there is also a standard basis of Ω1(X)
(see Theorem 2.6.2) of the form

ωi = bi(x, y)
∂yf(x, y)dx , (4.8)

where the bivariate polynomials bi(x, y) ∈ C[x, y] are of degree at most d − 3. The bi
are called adjoint polynomials of degree d − 3. There are several methods to compute
these polynomials and they require a desingularization of the projective closure Cf , see
for example [27, Section 5] or [35, Section 4], but we did not implement any of these.
Our focus on applications within number theory justifies limiting our algorithm to exact
defining polynomials, i.e. polynomials which are defined over number fields, so that we can
use magma’s function fields for the differentials. Note that the function field algorithm
also computes a normalization.

Implementing an algorithm for computing this standard basis of differentials would
be a big step towards a removal of the assumption on the coefficients of f being exact.
The important part of our period matrix algorithm does not rely on exactness of the
input, so having these differentials at our disposal would extend our algorithm to complex
polynomials f ∈ C[x, y]. However, allowing inexact polynomials would automatically
restrict the attainable accuracy and introduce new challenges in identifying exceptional
values. The authors of [35] naturally face these problems in their matlab implementation,
as their approach is limited to double-precision floating point numbers.

Complexity Let us now consider the complexity of evaluating a vector of differentials
ω̄ = (ω1, . . . , ωg), that is a standard basis (4.8) for Ω1(X), at z ∈ C \ L and y(z) =
(y1(z), . . . , ym(z)). If we evaluate the numerators bi and the denominator ∂yf(x, y) we see
that

• evaluation of ω̄ at z costs up to (g(d− 3) + dx)M(D),

• evaluation of ω̄ at y(z) costs up to m(g(d− 3) +m− 1)M(D)

• and divisions cost mgM(D),

which results in the complexity

O(g(dM(D) +mdM(D) +mM(D))) = O(gmdM(D)) = O(d4M(D)) . (4.9)

Evaluating the differentials using the product representation, as explained above, gives a
nice speed-up in practice (we need to evaluate less polynomials of lower degrees), but for
the complexity we have to be a bit careful. The number of irreducible factors is still in
O(g) and since deg(ai) =

∑
j pj,i deg(bj) we can evaluate the values bj(x, y)pj,i at (z, y(z))

using 2gmdM(D) operations, if we assume that the degrees in x and y of the numerators
and denominators of the ai(x, y) are bounded by d andm respectively. Afterwards we need
O(g2M(D)) operations to compute the ωi as in (4.7) and obtain a total of O(d4M(D))
operations, exactly as for the naive approach.

4.3 Fundamental group
Later we will describe a homology basis for X in terms of lifts of closed paths that, starting
from a base point x0, encircle exactly one exceptional value once in counterclockwise
direction. These paths form a generating set of π1(P1 \ L̂, x0), where L̂ = L ∪ {∞} and
L = L(ϕx) ⊂ C is the locus of exceptional values that we want to avoid; we denote by n the

67

4.3. Fundamental group Chapter 4

cardinality of L. Here, we want to give an algorithm that computes such a generating set
based on the approach of [74]. The ground work for our implementation of this algorithm
was laid by Stefan Hellbusch.

Algorithm 4.3.1 (Generating set). Computes a set of closed paths { γi | i = 1, . . . , n }
starting at a base point x0 ∈ C \ L such that γi encircles the exceptional value xi ∈ L
exactly once and no other exceptional values. The homotopy classes of the γi then generate
π1(P1 \ L̂, x0) as a free group.

(1) Compute a minimal (or maximal) spanning tree consisting of line segments between
the points in L with respect to a weight function (§4.3.1).

(2) Choose a suitable base point x0 ∈ C \ L and connect it to the spanning tree via a
line segment (§4.3.1).

(3) For each point xi ∈ L choose a radius ri > 0 and construct li arcs of radius ri around
xi such that their concatenation is a full circle. Here, li is the number of edges in
the spanning tree that are incident to xi. The start- and endpoints of the arcs are
determined by the angles of the corresponding line segments.

(4) For each i = 1, . . . , n use a depth-first search with root x0 to find the paths γi and
express them as sequences of line segments and arcs.

(5) Order the exceptional values xi in a way such that the closed path around infinity
is given by the relation γ1 . . . γnγ∞ = 1.

One advantage of this approach is that many of the line segments and arcs can be reused
for several γi. Constructing the paths γ1, . . . , γn that generate π1(C\L, x0) = π1(P1\L̂, x0)
requires

• n− 1 line segments for the spanning tree.

• 2(n− 1) arcs around the exceptional values by the degree-sum-formula,

• 1 line segment to connect the base point x0,

which results in a total of 3n− 2 = O(n) paths.

Complexity We analyze the complexity of Algorithm 4.3.1 in terms of the number of
exceptional values n and the precision D. Note that the spanning tree computation can
be done in fixed low precision, so that depending on the weight function (see §4.3.1) it has
complexity O(n2) or O(n3). Except for when n is very large (comparable to the precision
D), this cost is negligible. This issue is also discussed in §5.6.4. However, the starting
points of the individual paths have to be computed in full precision since these values
define the parametrizations (§4.3.3) which we need to evaluate for numerical integration.
For the radii (see §4.3.1) we need to know all the n(n − 1)/2 distances between the
exceptional values. Once the radii are known, each of the connection points requires just
one evaluation of a line segment. The rest of the algorithm is just sorting exceptional
values and ordering the paths correctly. Hence, if the weight of an edge can be computed
in O(1), then Algorithm 4.3.1 has complexity

O(n2M(D)) = O(n2D log1+εD) . (4.10)

4.3.1 Choices

There are several choices to be made in Algorithmn 4.3.1 that we are going to discuss now.

68

Chapter 4 4.3. Fundamental group

Weight function Reasonable choices for the weight function in the construction of the
spanning tree include minimizing euclidean distances between exceptional values (i.e. the
length of line segments) and maximizing the integration parameter r for line segments as
explained in §4.7. As discussed §5.6.4, the euclidean distance is much easier to compute
and gives satisfying results.

Base point There are many reasonable choices for the base point. If one wants to
compute the Abel-Jacobi map of points at infinity (§4.9) using numerical integration (see
§4.9.5) it can be useful to choose a real base point that lies ’left’ of all exceptional values
as suggested by [27, p.9], i.e. taking x0 ∈ R such that x0 < Re(xi) for all xi ∈ L. This
has the advantage that there is an obvious choice for a path to infinity (4.12) avoiding
exceptional values, namely γinf : [−1, 1] → P1, t 7→ −2 sgn(x0)x0

(1−t) . If one uses Puiseux-series
for that purpose one might want to choose x0 such that |x0| > |xi| for all xi ∈ L. For the
approach to the Abel-Jacobi map that we present in §4.9.4 it is even necessary to choose
x0 ∈ K (without restriction we may simply choose x0 ∈ Z).

If one is only interested in period matrices, the above choices offer no advantage at all.
Instead, one can just take the worst edge (think of the line segment of maximal euclidean
length) in step (1) of Algorithm 4.3.1, say e = (a, b), and split it in half by setting x0 = a+b

2 .
If no Abel-Jacobi map is required, this is our preferred choice.

Another option would be to choose the base point after constructing arcs and circles
and taking it as the start point of a full circle that corresponds to a leaf of the spanning
tree. This was suggested by [37] and has the advantage of reducing the total number of
paths by one. However, in some examples splitting up a line segment (§4.7.5) can be more
useful than saving one integration if we measure by the total number of integration points.

Radii In step 3 of Algorithm 4.3.1 one has to choose a radius ri > 0 for the arcs around
xi. In accordance with [27, p.9], we found that

ri = min
{
c · dist(xi,L \ {xi}) with c = 2/5,
1/4

(4.11)

is generally a good choice. Any value c ∈]0, 1/2[is valid in theory, but this choice has a lot
of influence on the integration process (as we will see in Section 4.7). For c close to zero,
arcs will require very few integration points, but analytic continuation along them will
cause numerical instability and the line segments will require more points. Conversely,
arcs will be harder to integrate for c close to 1/2, while line segments become easier.
Therefore, choosing a balanced value, say c ∈ [1/5, 2/5], is recommended. Moreover,
limiting the radius to 1/4 prevents arcs and circles from having very large radius. In the
case where there is an exceptional value far away from the others we rather integrate a
long line segment than a circle with huge radius.

4.3.2 Alternatives

Voronoi cells One alternative, that was first used by Paul van Wamelen in his magma
implementation for hyperelliptic curves [93], is to integrate along line segments that are
given by the edges of a Voronoi cell decomposition of the set L plus 6 auxiliary points,
so that all exceptional values are enclosed by finite edges. This approach has also been
used by Nils Bruin and Alexandre Zotine for compact Riemann surfaces given by an affine
equation. One advantage here is that one only needs line segments, which are easier to
evaluate than arcs. From graph theory we know that the graph corresponding to the
Voronoi cells (without the infinite edges) has at least 3

2n edges. Moreover, the average

69

4.3. Fundamental group Chapter 4

number of edges per cell in a Voronoi diagram is 6 which means that, asymptotically we
have ≈ 3n integrals. We did not implement this approach, but we expect that there are
no big differences in terms of efficiency between our method and this one.

Spanning tree Arguably the most efficient and elegant way is to directly integrate
between exceptional values: it only requires n− 1 line segments and numerical stability is
greatly improved. This approach requires desingularization of the holomorphic differentials
above the exceptional values. For general algebraic curves this can, to our knowledge, only
be done using Puiseux series expansions above exceptional values which is something we
want to avoid in this chapter, see Section 4.11. In the case of superelliptic curves (see
Chapter 5), due to the special form of the differentials presented in Proposition 5.1.8, the
corresponding integrands can be desingularized symbolically, making this approach the
indispensable choice.

4.3.3 Types of paths & parametrizations

Numerical integration is naturally performed on the interval [−1, 1], so we use the following
parametrizations γ : [−1, 1] → C for our paths. For complex line segments [a, b] we use
the parametrization

γls : u 7→ b− a
2

(
u+ b+ a

b− a

)
with derivative γ′ls : u 7→ b− a

2 .

For a circle of radius c > 0 around x with orientation o ∈ {±1} whose starting point is
determined by ϕ0 ∈ (−π, π], we use the parametrization

γfc : u 7→ c exp(i(πo(u+ 1) + ϕ0)) + x

with derivative
γ′fc : u 7→ ciπo exp(i(πo(u+ 1) + ϕ0)).

For arcs of radius c > 0 around x whose start and end point are determined by arguments
ϕ2, ϕ1 ∈ (−π, π], respectively, we use the parametrization

γarc : u 7→ c exp
(
i

(
ϕ2 − ϕ1

2

(
u+ ϕ2 + ϕ1

ϕ2 − ϕ1

)))
+ x

with derivative

γ′arc : u 7→ ci

(
ϕ2 − ϕ1

2

)
exp

(
i

(
ϕ2 − ϕ1

2

(
u+ ϕ2 + ϕ1

ϕ2 − ϕ1

)))
Finally, we also introduce infinite lines that start at x ∈ C \ {0} and end at ∞ ∈ P1 in the
direction of x via

γinf : u 7→ 2x
(1− u) with derivative γ′inf : u 7→ 2x

(1− u)2 . (4.12)

Evaluation We always evaluate paths and their derivative simultaneously (both val-
ues are needed for integration) in order to save arithmetic operations. It is easy to see
that evaluating line segments costs M(D), while circles and arcs require evaluating an
exponential and thus cost T (D).

Example 4.3.2. Figure 4.1 shows the paths produced by Algorithm 4.3.1 applied to the
n = 31 exceptional values L = L(f2, y) of the genus 14 Riemann surface defined by

f2 = 15x5y5 + 44x4y + 24x3y3 + 15xy4 − 49 ∈ Q[x, y].

We highlighted in blue the closed path γ26 encircling the exceptional value x26.

70

Chapter 4 4.4. Root approximation methods

x0
x1

x2

x3
x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15
x16

x17x18x19

x20

x21

x22
x23

x24
x25

x26

x27

x28

x29
x30

x31

26

Figure 4.1: Paths for the fundamental group π1(C \ L(f2, y), x0).

4.4 Root approximation methods

In order to perform analytic continuation of algebraic functions (see §4.5) we implemented
several methods that are used for simultaneous approximation of all zeros of a separable
complex polynomial (given by precision D coefficients). Here, we want to briefly present
and analyze three of them: Durand-Kerner’s method, Börsch-Supan’s method and Börsch-
Supan’s method with Weierstrass corrections. While these methods are similar to and
essentially based on Newton’s method, as described in §1.3, they are much more efficient if
one is interested in determining all polynomial zeros. Their best properties are guaranteed
conditions for convergence, rigorous error bounds and derivative-free iterative formulas.
A detailed description and proofs can be found in [72, Chapter 3].

Let us start by introducing some notation. In the following p ∈ C[z] will be a monic

71

4.4. Root approximation methods Chapter 4

polynomial of degree m ≥ 3 with simple roots η1, . . . , ηm and respective approximations
z1, . . . , zm. Denote the index set Im = {1, . . . ,m} and

d = min
i,j∈Im, i 6=j

|zi − zj |

the minimal distance between all approximations. For each i ∈ Im we define a term Wi,
called Weierstrass correction, by

Wi = Wi(zi) = p(zi)/
∏
j 6=i

(zi − zj) (i ∈ Im)

and the corresponding maximal absolute value of all Weierstrass corrections

w = max
i∈Im
|Wi| .

Note that the methods described below solely rely on these quantities (and therefore
the data p, z1, . . . , zm) as input to approximate η1, . . . , ηm to arbitrary precision. We start
by formulating a result (see [72, Corollary 3.1]) that is central to our applications.

Theorem 4.4.1 (Corollary 3.1 in [72]). Let p ∈ C[z] be a separable polynomial of degree
m ≥ 3. Under the condition

w < cmd, (4.13)

where cm ≤ 1/(2m) is a constant that depends only on m, each of the disks Di defined by

Di = {zi; ρi} := { z ∈ C | |z − zi| < ρi } with ρi = |Wi(zi)|
1−mcm

(i ∈ Im)

contains exactly one zero of p.

Iteratively calculating the centers of these disks z(k)
i by using a suitable iterative for-

mula produces a sequence of disks

D
(k)
i = {z(k)

i ; ρ(k)
i } (k ≥ 0)

whose radii ρ(k)
i =

∣∣∣Wi(z(k)
i)
∣∣∣ /(1−mcm) converge to 0 under some convergence conditions,

thus approximating the zeros of p.

A posteriori error bound methods Assume that condition (4.13) holds for w(0) and
d(0), which have been calculated from initial approximations z(0)

i (i ∈ Im). Then, an A
posteriori error bound methods (PEB method) is defined by the sequences of disks {D(k)

i }
given by

D
(k)
i = {z(k)

i ; ρ(k)
i }, ρi = |Wi(z(k)

i)|
1−mcm

, z
(k+1)
i = Φ(z(k)

i), (i ∈ Im, k ≥ 0)

where Φ(z(k)
i) is an iterative formula given by either (4.14), (4.15) or (4.16). We found

that these iterative formulas possess the highest computational efficiency in the context
of our applications.

The Durand-Kerner method (DK)

Φ(z(k)
i) = z

(k)
i −W

(k)
i (i ∈ Im, k ≥ 0) (4.14)

72

Chapter 4 4.4. Root approximation methods

The Börsch-Supan method (BS)

Φ(z(k)
i) = z

(k)
i −

W
(k)
i

1 +
∑

j 6=i
W

(k)
j

z
(k)
i −z

(k)
j

(i ∈ Im, k ≥ 0) (4.15)

The Börsch-Supan method with Weierstrass’ corrections (BSW)

Φ(z(k)
i) = z

(k)
i −

W
(k)
i

1 +
∑

j 6=i
W

(k)
j

z
(k)
i −W

(k)
i −z

(k)
j

(i ∈ Im, k ≥ 0) (4.16)

Theorem 4.4.2 (Convergence of PEB methods, Theorems 3.13, 3.14, 3.15 in [72]).

(a) The PEB method based on the Durand-Kerner method (DK) converges quadratically
if the initial condition (4.13) holds, where cm = 1/(2m).

(b) The PEB method based on the Börsch-Supan method (BS) converges cubically if the
initial condition (4.13) holds, where cm = 1/(2m).

(c) The PEB method based on the Börsch-Supan method with Weierstrass’ corrections
(BSW) converges with order 4 if the initial condition (4.13) holds,
where cm = 1/(2m+ 1).

Remark 4.4.3.

• The Durand-Kerner method also works for m = 2 and converges globally in that
case.

• In practice, we can choose the factor cm much larger (cm = 1/2 is a good choice) if
we want to allow worse initial approximations at the cost of worse convergence.

Hence, we obtain the following algorithm:

Algorithm 4.4.4 (PEB method). Given a polynomial p ∈ C[z] with m simple roots
and approximations z(0)

1 , . . . , z
(0)
m that satisfy the initial convergence condition (4.13), this

algorithm (heuristically) approximates the roots of p to precision D.

(1) Set k ← 0.

(2) Repeat

(2.1) Compute Weierstrass’ corrections W (k)
i at z(k)

i (i ∈ Im).

(2.2) Compute the radii ρ(k)
i =

∣∣∣Wi(z(k)
i)
∣∣∣ /(1−mcm) (i ∈ Im).

(2.3) Compute Φ(z(k)
i) using (4.14),(4.15) or (4.16) (i ∈ Im).

(2.4) Set k ← k + 1.

(2) until maxi∈Im ρ
(k)
i < e−D.

(3) Return z(k)
1 , . . . , z

(k)
m .

73

4.5. Analytic continuation & local monodromy Chapter 4

Complexity In order to analyze the complexity of Algorithm 4.4.4, suppose we want
to approximate the simple zeros of a degree m polynomial up to precision D and that
the convergence condition from Theorem 4.4.2 is satisfied for either of the presented PEB
methods.

Similar to Newton’s method, as described in 1.3, Algorithm 4.4.4 needs O(logD) iter-
ations, but again we can successively increase the precision in each step according to the
order of convergence of our chosen method (doubling for (DK), tripling for (BS), quadru-
pling for (BSW)). Therefore, we only need to analyze the last iterative step that has to
be performed at precision D.

In [72, Table 3.5] the author states the exact numbers of operations that are required
in each iterative step (as real arithmetic operations): additions & subtractions (A+S),
multiplications (M) and divisions (DIV). We exhibit the data that is interesting to us:

(A+S) (M) (DIV)
(DK) 8m2 +m 8m2 + 2m 2m

(BS) 15m2 − 6m 14m2 + 2m 2m2 + 2m

(BSW) 15m2 − 4m 14m2 + 2m 2m2 + 2m

Table 4.1: Number of arithmetic operations for PEB methods.

We really want to minimize (DIV) first, (M) second and ignore (A+S) here. Going
more into the details of Table 4.1 we find that, due to an equal number of divisions and
multiplications while having a lower order of convergence, (BS) is inferior to (BSW) in
all cases. So we are left with a comparison between (DK) and (BSW). We use the same
estimates as in (1.3), but take into account the different orders of convergence and therefore
the number of required iterations. The cost F(D) of one iteration is now given by Table
4.1. Assuming (DIV)∼ 2(M) we estimate the costs of Algorithm 4.4.4 using each method
as

(DK) ≤ 2F(D) = 2((8m2 + 2m)(M) + 2m(DIV)) ∼ (16m2 + 12m)(M)

(BSW) ≤ 4
3F(D) = 4

3((14m2 + 2m)(M) + (2m2 + 2m)(DIV)) ∼ (24m2 + 6m)(M)

We conclude: Durand-Kerner (DK) is the superior root approximation method for our
applications. Independently of the chosen method, Algorithm 4.4.4 has complexity in

O(m2M(D)) = O(m2D log1+εD) .

4.5 Analytic continuation & local monodromy
In this section we denote by y(x) = (y1(x), . . . , ym(x)) the vector of algebraic functions
given by

f(x, yj(x)) = 0 for j = 1, . . . ,m = degy(f) .
We already explained the connection between analytic continuation of algebraic functions
and affine plane curves in §2.4.4. In order to obtain a monodromy representation of the
holomorphic map ϕx : X → P1 and for the numerical integration of differential forms it
is crucial to compute y(x) = (y1(x), . . . , ym(x)) as a vector of m analytic functions, while
following a path γ : [−1, 1] → C \ L in the x-plane. By the path-lifting property, we can
lift the path γ from C to m different paths γ̃ = (γ̃1, . . . , γ̃m) on the Riemann surface X

γ̃j : [−1, 1]→ X, t 7→ (γ(t), yj(γ(t))) j = 1, . . . ,m . (4.17)

74

Chapter 4 4.5. Analytic continuation & local monodromy

Generally, this can not be done symbolically (it can be done symbolically for superelliptic
curves, see §5.1.2). We represent the functions in y(x) by approximation on a finite set of
points lying on the path γ instead. In practice, this set will be the abscissas

{u`}`=1,...,N ⊂ [−1, 1]

that are required for numerical integration along γ as explained in Section 4.7. Thus, we
define the discrete lifts of γ as the finite set

γ̃j(N) := { γ̃j(u`) | ` = 1, . . . , N } ⊂ γ̃j . (4.18)

Suppose we are given two points x1, x2 ∈ γ([−1, 1]) and the correct fiber y(x1) =
(y1(x1), . . . , ym(x1)) ∈ Cm. Correct here means that the values correspond to analytic
continuations of y(x) along γ. We move from y(x1) to the correct y(x2) using the root
approximation methods presented in Section 4.4. The key here is to use the correct fiber
y(x1) as approximation to the m simple roots of the univariate polynomial f(x2, y). By
Theorem 4.4.1 we can successively define analytic functions yj(x) this way: we apply it to
the polynomial f(x2, y) with approximations zj = yj(x1) for j ∈ Im. Suppose condition
(4.13) is satisfied, then we have that each value yj(x1) (j ∈ Im) converges to a unique root
of f(x2, y). For each j ∈ Im, defining yj(x2) as that unqiue root, we obtain

|yj(x1)− yj(x2)|
4.4.1
<
|Wi(zi)|
1−mcm

≤ w

1−mcm
<

cmd

1−mcm
≤ d

m
≤ d

2 (4.19)

which, by [53, Remark 2.2], is a sufficient criterion for analytic continuation. Therefore,
as long as the condition (4.13) is satisfied, we can uniquely continue our functions yj(x)
from x1 to x2 for all j ∈ Im simultaneously.

Algorithm 4.5.1 (Analytic continuation). Given an affine plane curve Cf : f = 0 to
precision D̃ > D (see §4.10.1), a path γ : [−1, 1]→ C\L in the x-plane avoiding exceptional
values and a set of abscissas {ul}1≤l≤N ⊂ [−1, 1] whereN > 2, this algorithm (heuristcally)
computes the discrete lifts γ̃j(N) (j ∈ Im) of γ, as defined in (4.18), to precision D > 0.

(1) Set u0 ← −1, uN+1 ← 1.

(2) Set x0 ← γ(u0). Compute the ordered fiber y(x0)>X = (y1(x0), . . . , ym(x0)) by solving
f(x0, y) = 0 in fixed low precision and order the roots with respect to>X (see §4.1.3).

(3) For l = 1, . . . , N + 1 do

(3.1) Set xl ← γ(ul).

(3.2) If (4.13) is satisfied for p(y) = f(xl, y) and zj = yj(xl−1) (j ∈ Im), then
use Algorithm 4.4.4 to compute approximations yj(xl) (j ∈ Im) of the roots of
f(xl, y) with ε < e−D.

(3.3) Otherwise, introduce an intermediate step by setting u′l = ul+ul−1
2 and go to

step (3.1) with l = l′.

(4) Return γ̃(N) = { (xl, y(xl)) | l = 1, . . . , N }.

75

4.5. Analytic continuation & local monodromy Chapter 4

Complexity For the complexity analysis of Algorithm 4.5.1 we assume that D̃ −D =
O(1). The cost R(m,D′) for finding the roots of f(x0, y) can be neglected as it can be
done in fixed low precision D′ < D. We count the following significant operations, each
of which has to be executed N +Nr times where Nr is the, a priori unknown, number of
necessary refinements, see step (3.3). Note that the refinement steps are also independent
of D since they can be performed in fixed low precision D′. We have that

• evalutation of γ at ul has complexityM(D) for line segments and T (D) for arcs and
circles,

• evaluation of f(xl, y) at xl = γ(ul) takes O(mM(D)) operations,

• while approximating the roots of f(xl, y) to precision D, using Algorithm 4.4.4, has
complexity O(m2M(D)).

Hence, we obtain the following

Theorem 4.5.2. Computing the discrete lifts (4.18) of γ to the Riemann surface X to
precision D using Algorithm 4.5.1, has complexity

O(N(logD +m2)M(D)) . (4.20)

Proof. The number of operations that cannot be performed in fixed precision is given by
N(logDM(D) +mM(D) +m2M(D)).

The complexity (4.20) is reduced to O(Nm2M(D)) when γ is a line segment. Explicit
timings for Algorithm 4.5.1 can be found in the Tables 4.4 & 4.5.

Remark 4.5.3. We clearly see from the above analysis that the cost of evaluating arcs
and circles increases the computational cost of Algorithm 4.5.1. In practice, this is barely
noticeable and the running time is strictly dominated by Algorithm 4.4.4. Note that while
evaluating γ(ul), we also obtain γ′(ul) at almost no additional cost (see §4.3.3) and these
values are required for numerical integration (4.24).

Remark 4.5.4. Usually, the number of connection points N is governed by the integration
scheme that we want to apply and it is much bigger than the minimal number of connection
points that are required for sucessful analytic continuation. In [53], Stefan Kranich gives
an algorithm that performs analytic continuation while choosing steps of maximal size,
thus using the minimal number of connection points. Adrien Poteaux gives two asymptotic
statements about the number of connection points in [73].

Example 4.5.5 (Limitations). Algorithm 4.5.1 works well for a wide range of examples.
Yet, it is not that hard to find (admittedly extreme) examples where the algorithm gets
lost in recursions, i.e. Nr becomes extremely large. This is due to our condition (4.13)
for certified analytic continuation being satisfied only for tiny step lengths. Even if we
weaken (4.13) by using cm = 1/2, the algorithm does not terminate within reasnoable time
and if the condition is taken away entirely, the algorithm outputs false data and analytic
continuation failed. Take for example the genus 54 Riemann surface X : f3 = 0 with

f3 = x9y2 + 7x9y + 6x8y6 − 6x8y4 − 7x7y − x6y5 − 9x6y4

− 7x6y3 − 4x6y2 + 6x5y6 + x5y4 + 3x5 + 5x4y8 − 5x4y6

+ x4y5 + 8x4y4 + 5x4y3 + 5x4y2 − 6x3y6 + 3x3y4 − 4x3y3

+ 7x3 + x2y9 + 3x2y6 − 6x2y4 + 7x2y − 7xy9 − 7xy7

+ 8xy2 − 2xy + 3y5 − 9y3 .

76

Chapter 4 4.5. Analytic continuation & local monodromy

There is an exceptional value at −173554.58, the next closest one being at −1.61. Our
fundamental group algorithm places the base point in the middle and constructs a line
segment [−173554.33,−86778.09] which Algorithm 4.5.1 cannot handle. In such cases one
could try to find a different equation for X, one that admits a simpler configuration of
exceptional values.

In contrast to Example 4.5.5 above, the convergence condition (4.13) can in fact be
left out for more moderate examples (e.g. all other examples considered in this work) if
one is not interested in obtaining a certified analytic continuation. In particular, in §4.9.5
we will make use of this to obtain the Abel-Jacobi map above exceptional values using
adaptive double-exponential integration.

4.5.1 Monodromy representation

As before, let γ : [−1, 1] → C \ L be a path that avoids exceptional values. After ap-
plying Algorithm 4.5.1 we may assign a permutation σγ ∈ Sym(m) to γ by identifying
the continued fiber above the endpoint y(γ(1)) with the ordered fiber y(γ(1))>X . For the
identification we compare the numerical values up to precision D. These permutations
behave multiplicatively for concatenation of compatible paths, i.e.

γ = γ1 · · · · · γs ⇒ σγ =
∏

i=1,...,s
σγi .

Definition 4.5.6 (Local monodromy). If γ is a closed path based at x0 ∈ C, encircling
one and only one exceptional value x (see Section 4.3), then σx := σγ is the called local
monodromy at x. The local monodromy σx depends on the the ordering >X and the base
point x0.

After ordering the branch points correctly, the local monodromy at infinity is given by

σ∞ =
(∏
x∈L

σx

)−1

.

Now the branch points B of ϕx can be characterized as the points x ∈ P1 with non-trivial
local monodromy, i.e.

B = {x ∈ L̂ | σx 6= id } .

The ramification index eP (ϕx) of a point P lying over x can be read off the local mon-
odromy: it is the length of the corresponding cycle in the cycle decomposition of σx. Once
we have computed a generating set {γ1, . . . , γn} for π1(P1 \ L̂, x0) = π1(C \ L, x0) using
Algorithm 4.3.1, we can analytically continue every closed path in γi (by applying Algo-
rithm 4.5.1) to obtain a monodromy representation of the covering map ϕx : X → P1,
namely

Mon(ϕx) = {σx | x ∈ B } .

This representation depends on the choice of ordering >X and on the base point x0, but it
is unique up to simultaneous conjugation. The permutation group generated by Mon(ϕx)
is called the monodromy group.

Testing Suppose we already know the genus of the Riemann surface. After computing
a monodromy representation Mon(ϕx) we also know the ramification indices eP (ϕx) for
all P ∈ X such that ϕx(P) ∈ B. A strong test for the correctness of our computation,
which is done in practice, is checking the Riemann-Hurwitz formula (2.3).

77

4.5. Analytic continuation & local monodromy Chapter 4

Example 4.5.7. We consider an example that admits an interesting monodromy repre-
sentation of ϕx, namely the Riemann surface X : f4 = 0 defined by the polynomial

f4 = x6y6 + x3 + y2 + 1 ∈ Q[x, y]. (4.21)

The genus of X is 11, there are n = 16 exceptional values and m = 6 sheets. We
compute the corresponding fundamental group, as shown by Figure 4.2 Afterwards, we
apply Algorithm 4.5.1 for analytic continuation to obtain a monodromy representation for
ϕx (as described in §4.5.1), which is displayed in Table 4.2.

x0

x1

x2

x3

x4

x5

x6

x7

x8
x9 x10

x11

x12

x13

x14 x15

x16

12

Figure 4.2: Paths for the fundamental group π1(P1 \ B, x0) (see Table 4.2).

78

Chapter 4 4.5. Analytic continuation & local monodromy

Example 4.5.8. (cont.) When it comes to analytic continuation and monodromies, it
can be quite enlightening to work with pictures. In Figure 4.3 we visualize the m = 6 lifts
of γ12 to the Riemann surface where different colors indicate the sheets of X, namely

Im = { 1, 2, 3, 4, 5, 6 }

and γ12 itself is displayed in grey. The local monodromy σx12 = (1, 4)(3, 6) at x12 =
−0.06646105747 − 0.6927249016 · I is perfectly illustrated by our picture: while the lifts
on the 2nd and the 5th sheet are closed paths on X that are homotopic to zero in π1(X),
the lifts running on the sheets 1,4 (and 3,6 respectively) overlap because these sheets are
glued together around x12.

Figure 4.4 shows the lifts of the closed path γ7. Since this path consists of many
different pieces, the situation is more involved (compared to γ12) and overlapping colours
keep us from seeing things as clearly as in the previous picture. Nonetheless, we can get
a better idea of how the vector of analytic continuations y(x) behaves in this example.

x0 −0.2833434170− 0.2019597075 · I

B σ

x1 = 0.0000000000 (1, 6)(2, 5)
x2 = −0.5666868339− 0.4039194149 · I (2, 3)(4, 5)
x3 = −1.040501261− 0.09982723868 · I (1, 2)(5, 6)

x4 = −1.000000000 (1, 6)
x5 = −1.040501261 + 0.09982723868 · I (1, 4)(3, 6)
x6 = −0.5666868339 + 0.4039194149 · I (2, 3)(4, 5)
x7 = −0.06646105747 + 0.6927249016 · I (1, 2)(5, 6)
x8 = 0.4337977057 + 0.9510141438 · I (1, 4)(3, 6)
x9 = 0.5000000000 + 0.8660254038 · I (3, 4)
x10 = 0.6067035550 + 0.8511869051 · I (2, 3)(4, 5)
x11 = 0.6331478914 + 0.2888054867 · I (1, 2)(5, 6)
x12 = −0.06646105747− 0.6927249016 · I (1, 4)(3, 6)
x13 = 0.4337977057− 0.9510141438 · I (2, 4)(3, 5)
x14 = 0.5000000000− 0.8660254038 · I (3, 4)
x15 = 0.6067035550− 0.8511869051 · I (1, 4)(3, 6)
x16 = 0.6331478914− 0.2888054867 · I (2, 4)(3, 5)

∞ (1, 6)(2, 5)(3, 4)

Table 4.2: Monodromy representation of ϕx induced by f4 = 0 (4.21).

79

4.5. Analytic continuation & local monodromy Chapter 4

Figure 4.3: Visualization of the lifts of γ12 (the closed path around x12) via analytic
continuation.

80

Chapter 4 4.5. Analytic continuation & local monodromy

Figure 4.4: Visualization of the lifts of γ7 (the closed path around x7) via analytic contin-
uation.

81

4.6. Computing a homology basis Chapter 4

4.6 Computing a homology basis

By its definition, a big period matrix requires integration along a canonical basis of the
homology group. From Definition 2.7.3 we recall that such a basis consists of two families
of independent cycles

{αi, βi}1≤i≤g

that generate H1(X,Z) and such that their intersection numbers satisfy

αi ◦ αj = βi ◦ βj = 0, αi ◦ βj = δij .

A canonical homology basis for a genus 3 Riemann surface was already shown in Figure
1.1. The task of computing such a basis is split up into two parts. First we use our
implementation of the Tretkoff algorithm to compute generators of the homology group
and the corresponding intersection matrix, then we compute a symplectic base change
matrix.

4.6.1 The Tretkoff algorithm

In [88] Tretkoff & Tretkoff give an ingenious algorithm that computes a set of generators
Γ for the first integral homology group H1(X,Z) of a compact Riemann surface X, as well
as the corresponding intersection matrix KΓ.

The input of this algorithm is a monodromy representation

Mon(ϕx) = {σx | x ∈ B }

of the holomorphic ramified covering ϕx : X 7→ P1, see §4.5.1. After specifying a base
point P0 ∈ X lying on sheet s ∈ {1, . . . ,m} (naturally we choose the first sheet s = 1 with
respect the ordering >X) it computes the stabilizer of s as a subgroup of the free group
generated by Mon(ϕx) (see §2.5.2).

The algorithm iteratively creates a planar graph G, a tree in fact, level by level, starting
with the vertex labeled s = 1 on level 1. The vertices on the even levels correspond to
sheets s ∈ {1, . . . ,m} and the odd levels correspond to ramification points, say P lying
over x ∈ B. They are represented by the corresponding element, say τP ∈ Sym(m), in the
cycle decomposition of the local monodromy σx.

On the odd levels the algorithm creates an edge connecting sheet s to a ramification
point P precisely when s ∈ τP and P did not occur in this branch of the graph before.
On the even levels an edge connecting P to a sheet s is created if s ∈ τP and s did not
already occur in this branch of the graph. By branch of the graph we mean a sequence of
edges that traces a sheet s or a ramification point P back to the root of the graph (which
is s = 1).

After each level, the branches whose current end sheet (resp. ramification point) occurs
more than once in the tree are labeled terminated and will not be considered for the next
level. This process is repeated until all branches are terminated. After each level and after
all branches are terminated the edges have to be sorted in a particular manner.

The graph constructed in this way has exactly 4g+2m−2 branches. Every branch can
be identified with exactly one other branch, creating r := 2g+m−1 cycles on X that start
on sheet 1 and return to sheet 1 while encircling at least two different ramification points.
The intersection pairing between these cycles can be read off the constructed graph by
transversing through the final edge of each branch in clockwise direction.

The author finds that the details of the algorithm, especially the sorting, cannot be
explained very well in text. Consequently, we included the code of our magma implemen-
tation of the Tretkoff algorithm in the appendix, see Section A.2.

82

Chapter 4 4.6. Computing a homology basis

Our implementation of the Tretkoff algorithm follows the outline of Frauendiener and
Klein [35, Section 7] who give a very hands-on explanation of the algorithm. Another
helpful description of the algorithm can be found in [27, Section 4].

The first output is a set of cycles Γ = {Γ1, . . . ,Γr }. These cycles are encoded as
sequences of integers sik ∈ {1, . . . ,m} and branch points xik ∈ B

Γi = [s = si1 , xi1 , si2 , xi2 , si3 , . . . , sik−1 , xik , sik = s] .

If we interpret Γi as the path on X that is obtained by moving from sheet sij to sheet
sij+1 by encircling the ramification point lying over xik the correct number of times for
each j = 1, . . . , k, then Γi defines a non-trivial cycle in H1(X,Z).

In particular, the algorithm produces exactly r = 2g+m−1 of these cycles and Tretkoff
& Tretkoff [88] show that they generate the fundamental group π1(X,P0) and therefore
their classes generate the homology group H1(X,Z). Since the homology group has rank
2g, there must be exactly m − 1 dependent cycles in Γ. While these dependent cycles
do not contribute to the period matrix computation, they we can be used to verify the
quality of our numerical computations (see §4.8.1).

The second output of the algorithm is an intersection matrix

KΓ = (Γi ◦ Γj) ∈ Zr×r

with entries in {−1, 0, 1} that is skew-symmetric, i.e. satisfies KΓ +KT
Γ = 0, and has rank

2g.

Complexity The Tretkoff algorithm is purely combinatorial and extremely fast in prac-
tice. Its complexity does not depend on the precision D and the only numbers appearing
are very small integers of size at most r+m = O(g+m). The algorithm mainly consists of
checking for equality of such integers, which can be done using O(log(g+m)) operations.
Consequently, we will analyze the complexity of the algorithm in terms of m and g, which
are themselves related to the total degree d.

Let us now analyze the complexity of our implementation in terms of equality checks.
For this we assume that searching a list of length r can be done using O(r) equality checks
using linear search, while we can sort a list of length r using O(r2) equality checks with
quick sort.

• The number of branches of the tree, which is also the maximal number of edges per
level, is exactly 2r = 4g + 2m− 2 = O(g +m).

• The number of levels is bounded by 2m = O(m).

• On even levels: for each edge (≤ 2r) and each length of a cycle (≤ m) we have to
search a list of length at most 2m, resulting in a total of O(rm2) = O((g +m)m2).

• On odd levels: for each edge (≤ 2r) and each ramification point (≤ r) we have to
search two lists of size at most 2m, resulting in a total of O(r2m) = O((g +m)2m).

• After each level (≤ 2m) we sort the list of terminated edges of length at most 2r,
resulting in a total of O(mr2) = O((g +m)2m).

• For the intersection matrix KΓ we first have to order the terminated edges by search-
ing r lists of length r and then compute the correct coefficients which requires check-
ing equality at most r2 times, resulting in a total of O(r2) = O((g +m)2).

83

4.6. Computing a homology basis Chapter 4

Theorem 4.6.1. Given a monodromy representation Mon(ϕx), our implementation of the
Tretkoff algorithm (given in Section A.2), computes a homology basis Γ with corresponding
intersection matrix KΓ using

O((g +m)2m log(g +m))

operations. If Mon(ϕx) is induced (as described in §4.5.1) by an irreducible polynomial
f(x, y) ∈ C[x, y] of total degree d with m = degy(f), then the complexity in d is

O(d5 log d) .

Proof. The first complexity is obtained from adding together all the aforementioned com-
plexities. We require a total of O((g +m)2m) equality checks that require O(log(g +m))
operations each. For the second complexity we use m = O(d) and g = O(d2).

Example 4.6.2. We consider the simple example of a genus 3 superelliptic Riemann
surface X : f5 = 0 given by the affine equation

f5 = y3 − (x− 2)(x− 1)(x− (1 + I))(x− (1− I)) . (4.22)

Applying the algorithms of the previous sections we obtain the monodromy representation:

x0 −I/2

B σ

x1 = −1 (1, 3, 2)
x2 = −2I (1, 3, 2)
x3 = −1− I (1, 3, 2)
x4 = 1 + I (1, 3, 2)
∞ (1, 2, 3)

Table 4.3: Monodromy representation of ϕx induced by f5 = 0.

Feeding the monodromy representation {σ1, . . . , σ5} to our implementation of the
Tretkoff algorithm results in an output of r = 8 cycles

Γ1 = [1, 2, 3, 1, 1], Γ2 = [1, 2, 2, 1, 1],
Γ3 = [1, 3, 3, 1, 1], Γ4 = [1, 3, 2, 1, 1],
Γ5 = [1, 4, 3, 1, 1], Γ6 = [1, 4, 2, 1, 1],
Γ7 = [1, 5, 2, 1, 1], Γ8 = [1, 5, 3, 1, 1],

such that H1(X,Z) = 〈Γ1, . . .Γ8 〉, as well as the intersection matrix

KΓ =



0 1 1 1 1 1 1 1
−1 0 0 1 0 1 1 0
−1 0 0 1 1 1 1 1
−1 −1 −1 0 0 1 1 0
−1 0 −1 0 0 1 1 1
−1 −1 −1 −1 −1 0 1 0
−1 −1 −1 −1 −1 −1 0 0
−1 0 −1 0 −1 0 0 0


.

In Chapter 5 we will approach the homology of superelliptic curves more explicitly. In
particular, a generating set is given by Theorem 5.1.6 and the corresponding intersection
matrix by Theorem 5.3.1. The approach presented here is completely general and will
work for any monodromy representation of a holomorphic ramified covering ϕ : X → P1

where X is a compact Riemann surfaces.

84

Chapter 4 4.7. Numerical integration

4.6.2 Symplectic reduction

The Tretkoff algorithm provides us with a generating set Γ for the homology and the
corresponding intersection matrix KΓ, but there is no reason why it should be a canonical
basis in the sense of Definition 2.7.3. Since the intersection pairing on Γ is a non-degenerate
skew-symmetric bilinear form, we can apply our implementation of an algorithm, due to
Frobenius [38, Section 7], that computes a symplectic basis for KΓ over Z, i.e. it returns
a unimodular base change matrix S ∈ Zr×r such that

STKΓS = J, where J =

 0 Ig 0
−Ig 0 0

0 0 0m−1

 .

The linear combinations given by the first 2g columns of ΩΓ · S then correspond to a
canonical homology basis. On the side of period matrices this translates to

(ΩA,ΩB, 0m−1) = ΩΓ · S

where (ΩA,ΩB) ∈ Cg×2g is a big period matrix and the m− 1 zero columns correspond to
the dependent cycles in Γ and contribute nothing. In practice however, we can verify the
quality of the results from numerical integration by asserting that the absolute values of
these entries differ from zero at most by e−D.

Example 4.6.3. (cont.) Applying the algorithm for symplectic reduction to the homology
basis of Example 4.6.2 yields the following base change matrix

S =



1 0 1 1 0 0 1 1
0 −1 0 −1 −1 1 0 −1
−1 1 0 0 0 0 −1 0
1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 −1
0 0 0 1 0 0 −1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

The approach of obtaining a canonical basis from symplectic reduction of the inter-
section matrix is fairly standard and has already been used by [27] and [35]. Except for
the case of hyperelliptic curves where one can always use the Mumford basis, we are not
aware of other possibilities to solve this problem.

Complexity The algorithm for symplectic reduction is a classical matrix algorithm and
runs in O(g3) time. Knowing that our input, the intersection matrix KΓ, has entries in
{0,±1}, we obtain a nice speed-up by restricting our implementation to such matrices
(instead of allowing general skew-symmetric matrices with integer coefficients). Moreover,
due to the special form of KΓ, all the coefficients appearing in the reduction algorithm
are tiny integers in practice. Unfortunately, we have no proof of this fact. In theory the
reduction algorithm could produce a dense base change matrix S with entries of size O(g)
which may cause precision issues. This is also discussed in §4.8.1.

4.7 Numerical integration
The integrals we are interested in are of the form∫

γ̃
ω =

∫
γ̃
a(x, y)dx =

∫ 1

−1
a(γ̃j(u))γ′(u)du (4.23)

85

4.7. Numerical integration Chapter 4

where ω ∈ Ω1(X), a(x, y) ∈ C(X), γ : [−1, 1] → C \ L is a parametrizable path in the
x-plane (avoiding exceptional values) and

γ̃j(u) = (γ(u), yj(γ(u))) with j ∈ {1, . . . ,m}

is a lift of γ to the Riemann surface X.
Since ω is a holomorphic differential, the poles of the meromorphic function a(x, y)

are exactly the critical points of ϕx (see §4.1.2) whose x-coordinates, the critical values,
occur as a subset of the exceptional values L. This can be used to determine the area of
holomorphicity εr (resp. Zr) such that we can apply the theorems from Chapter 3 here.

Note that the value of r, as computed in §4.7.2 and §4.7.3, depends on the path γ
and the configuration of exceptional values L. As the statements in Chapter 3 show, r
scales the number of required abscissas linearly and has a huge influence on the integration
process. The value of M from §4.7.2 (resp. M1,M2 from §4.7.3) does not only depend on
r, but on the basis of differentials ω̄ = (ω1, . . . , ωg).

For the complexity analysis in terms of the required precision D in §4.7.4, we will
ignore these dependencies and treat r and M (resp M1,M2) as constants.

When we talk about integration of differential forms in this section, we mean: given a
path γ and a basis of holomorphic differentials ω̄ we seek to simultaneously approximate
a (g ×m)-matrix of integrals by a matrix consisting of finite sums∫

γ
ω̄ :=

(∫ 1

−1
ai(γ̃j(u))γ′(u)du

)
1≤i≤g
1≤j≤m

≈

(
N∑
l=1

w`ai(γ̃j(u`))γ′(u`)
)

1≤i≤g
1≤j≤m

(4.24)

where the weights w` and abscissas u` are given by a suitable integration scheme as pre-
sented in Chapter 3. Suitable here means either Gauss-Legendre (GL), Clenshaw-Curtis
(CC) or double-exponential (DE) (with α = 1) integration.

We define the approximation error E(γ, ω̄,N) as the maximum of all approximation
errors that occur for the individual integrals, i.e. for the entries of

∫
γ ω̄.

4.7.1 Concatenation

It is absolutely crucial that once we have computed the integral matrix (4.24) for several
individual paths, we also know the integrals for every path that is obtained through
concatenation. Assume that γ1, . . . , γk are compatible paths in the plane and that we have
computed the integral matrix (4.24) for each of them. Since this computation requires
analytic continuation (§4.5), we also know the corresponding permutations σγ1 , . . . , σγk
(§4.5.1). Moreover, contour integration on Riemann surfaces respects concatenation, so
we have ∫

γ1·····γk
ω̄ =

∫
γ1

ω̄ +
k∑
j=2

(
j∏
i=2

σγi−1

)∫
γj

ω̄ (4.25)

where σ ∈ Sym(m) acts on the matrix
∫
γ ω̄ by permuting its columns. Similarly, if we

denote by −γ the path obtained from reversing orientation, letting the inverse permutation
act on the columns yields the corresponding integral matrix∫

−γ
ω̄ = −σ−1

γ

∫
γ
ω̄ . (4.26)

86

Chapter 4 4.7. Numerical integration

4.7.2 Gauss-Legendre & Clenshaw-Curtis quadrature

We want to compute all integrals in the matrix (4.24) in a unified setting such that, once
initialized, we can reuse our integration scheme as often as possible. By the Theorem’s
3.2.4 and 3.3.1 we achieve an error of

|E(γ, ω̄,N)| ≤ e−D

for
N ≥ log (64/15M) +D − log(1− e−2r)

c r
, (4.27)

where c = 2 for Gauss-Legendre quadrature and c = 1 for Clenshaw-Curtis quadrature,
the value

r = r(γ,L) > 0

parametrizes the boundary εr of a region of holomorphicity and

M = M(γ, ω, r) := max
z∈εr
{ai(γ̃j(z))γ′(z) | i = 1, . . . , g, j = 1, . . . ,m} > 0

bounds the absolute value of the integrands along the boundary of that region. From
(4.27) we can see that the value of r has strong influence on the size of N while the
contribution of M is merely logarithmic. So, in order to minimize N the priority is to
maximize r such that M is still decent. The parameters r and M for (GL) and (CC) are
identical, so we can treat both methods simultaneously.

Computation of r Recall that the value of r = rε > 0 parametrizes the ellipse

εr = { z ∈ C | |z − 1|+ |z + 1| = 2 cosh(r) }

−1 1

z

sinh(r)

cosh(r)

εr

with foci ±1 and sum of lengths of the semi-axes

exp(r) = cosh(r) + sinh(r) .

We want to choose r = r(γ,L) as large as possible such that a(γ̃(u))γ′(u) is still holomor-
phic inside εr. Since γ′ is entire and a(x, y(x)) is holomorphic for all x ∈ C \ L, a(γ̃(u)) is
holomorphic for all u ∈ γ−1(L). Hence, we have to choose

r < r0 := min{ ru | u ∈ γ−1(L) } (4.28)

where
cosh(ru) = (|u− 1|+ |u+ 1|)/2 .

In practice we will choose r heuristically slightly smaller than r0. In particular, taking

cosh(r) =
{

(cosh(r0) + 1)/2, if r0 ≤ 1/50,
cosh(r0)− 1/100, otherwise.

has been working out fine.

87

4.7. Numerical integration Chapter 4

Computation of M For general affine algebraic curves computing this value is really
problematic. For the integrals appearing in (4.24) it is possible to compute upper bounds
for the numerator of a(γ̃(u))γ′(u): we find bounds for the values |γ(z)| and |γ′(z)| for
z ∈ εr from the parametrization of γ, see §4.3.3. This can be used to find an upper bound
on the |yj(x)|, as described in §4.10.1, from the defining equation f(x, y) = 0. Using the
triangle inequality then yields a bound on the numerator.
The hard part is to bound the denominator of a(x, y) ∈ C(X) from below. Generally,
the denominator is a bivariate polynomial (mostly ∂yf(x, y)) and there is no hope of
computing a lower bound analytically. In the superelliptic case (see Section 5.5) this is
possible and M can be computed quite easily.

A pragmatic workaround is to obtain an approximation of M by sampling the inte-
grands on points of εr that are close to singularities. Since

|a(γ̃(z))| → ∞ as z → u ∈ γ−1(L)

it is very likely that this approximation is sufficiently close to the true value of M . Since
the size of M contributes logarithmically to N , this does not lead to precision issues in
practice. An algorithm that computes the distance to an ellipse can be found in the
appendix (§A.1).

Rigor The downside of this workaround is that our numerical integration scheme is no
longer rigorous. This can be avoided if one uses ball arithmetic (for example the C-library
arb [47]). One simply evaluates the integrand at finitely many arithmetic balls whose
centers lie on the ellipse where the the radii are chosen such that the union of these balls
contains the boundary εr as a subset. Naturally, in ball arithmetic, one can always obtain
an upper bound for the value of a function evaluated at an arithmetic ball. Until these
upper bounds are finite for all balls in the covering, we recursively introduce more points
by subdividing the radii of the balls that yield infinite values. By our choice of r < r0 this
process is finite and leads to rigorous error bounds.

4.7.3 Double-exponential integration

Now we want to employ the double-exponential integration scheme, using the estimates
presented in Section 3.4, to approximate the matrix of integrals (4.24). More precisely, we
apply Theorem 3.4.1 with α = 1 and λ = π

2 to the functions

ai(γ̃j(u))γ′(u) . (4.29)

Recall from Section 3.4 that in the case of (DE) integration the area of holomorphicity is
the burger-shaped area (see also Figure 3.2)

Zr = { tanh(λ sinh(z)) | |Im(z)| < r }

which is parametrized by a value

r = r(γ,L) ∈]0, π/2[.

chosen such that the integrands (4.29) are holomorphic inside Zr. In particular, this means
that we achieve an error of

|E(γ, ω̄,N)| ≤ e−D

if we choose

h ≤ 2πr
D + log(2M2B(r, 1) + e−D) and Nh ≥ asinh

(
D + log(8M1)

2λ

)
,

88

Chapter 4 4.7. Numerical integration

where the constants M1 and M2 are given by

M1 := M1(γ, ω̄) := max
z∈[−1,1]

{ ai(γ̃j(z))γ′(z) | i = 1, . . . , g, j = 1, . . . ,m },

M2 := M2(γ, ω̄, r) := max
z∈Zr

{ ai(γ̃j(z))γ′(z) | i = 1, . . . , g, j = 1, . . . ,m }
(4.30)

and the quantiy B(r, 1) is given by (3.66).

Computation of r Similar to (GL)/(CC) integration, we choose the parameter r =
r(γ,L) as large as possible such that

r < r0 := ru0 = min{ ru | u ∈ γ−1(L) }

where ru is given by
u = tanh(λ sinh(tu + iru)) .

Hence we ensured that a(γ̃j(u)) is holomorphic on the set Zr and that the constants M1
and M2 are finite. For actual numerical integration we obtain r from scaling down r0
heuristically; the value

r = (19/20)r0

has been producing satisfying results in practice.

Computation of M1 and M2 Here, we run exactly in the same problems as for the
computation of M in §4.7.2: while the numerator can be bound from above in exactly
the same way than for M , we are unable to find lower bounds for the denominator. As
before, we have to sacrifice rigor of our numerical integration here and instead sporadi-
cally evaluate the integrands ai(γ̃j(u))γ′(u) on the boundary of Zr. In particular, in the
neighborhood of close-by singularities as well as on the end points ±1. Finally, choosing
M2 as the maximum of these sampled values and M1 := M2 is working out in practice.
The distance to the boundary ∂Zr can be computed using Newton’s method, see §5.5.3.
As for the computation of M , rigor (§4.7.2) can be retrieved by using ball arithmetic to
compute the bounds M1 and M2.

4.7.4 Integration algorithm

Finally, we formulate our algorithm for numerical integration of differential forms. Let
X be a compact Riemann surface given by an affine equation f(x, y) = 0 as discussed in
Section 4.1 and let ω̄ a basis of Ω1(X). Moreover, let L = L(ϕx) denote the exceptional
values of the corresponding holomorphic ramified covering ϕx : X → P1 (see §4.1.1).

Algorithm 4.7.1 (Integration). For a path γ : [−1, 1]→ C\L and a basis of differentials
ω̄, this algorithm (heuristically) computes the matrix of integrals (4.24) to precision D,
i.e. such that E(γ, ω̄,N) ≤ e−D, using a suitable integration scheme.

(1) Compute the number of abscissas N for a given integration method (GL), (CC), (DE)
with respect to r(γ,L), M(γ, ω̄, r) (resp. M1, M2) and D.

(2) Compute the integration scheme, i.e. abscissas and weights {u`, w`}, l = 1, . . . , N .

(3) Compute the discrete lifts γ̃(N) (4.18) of γ using Algorithm 4.5.1 (including the values
of γ′).

(4) For each abscissa u`, evaluate the vector of differentials ω̄ on all sheets and multiply
the resulting matrix with w` and γ′(u`).

(5) Summing up these matrices results in the approximation (4.24).

89

4.7. Numerical integration Chapter 4

Correctness From the results of this chapter it is clear that Algorithm 4.7.1 is correct
up to computational issues. Firstly, the computation of the bound M (resp. the bounds
M1,M2) is quite problematic, as explained previously in this Section (see §4.7.2 resp.
§4.7.3). Once we computed suitable integration parameters, the Theorems of Chapter 3
provide rigorous error bounds. Secondly, one has to prevent precision loss; this is discussed
in §4.10.

Complexity Incorporating our prior complexity analyses we are set to analyze Algo-
rithm 4.7.1, which is central to this thesis.

Recall that D is the desired precision (a number of digits), m = deg(f, y) is the degree
of the covering and d = deg(f) is the total degree.

Step (1) does not contribute, as the parameters can be computed in fixed low precision
(say ≈ 20 digits). The cost of initializing an integration scheme for precision D, denoted
Init(N,D) with N = Nmin(D), has been analyzed in Chapter 3 and depends on the
chosen integration method. Computing the discrete lifts costs O(N(logD+m2)M(D)) via
analytic continuation, see (4.20). Evaluating the differentials at u` takes O(gmdM(D)) =
O(d4M(D)) operations, as discussed in §4.2, while multiplication with w` and γ′(u`) costs
gmM(D). Hence, step (4) requires a total of O(N(d4 + gm)M(D)) = O(Nd4M(D))
operations. Finally, step (5) requires O(NgmD) = O(Nd3M(D)) operations. Thus, we
obtain the following

Theorem 4.7.2. Algorithm 4.7.1 has computational complexity in
O(D(D + d4)M(D)), using Gauss-Legendre integration,
O(D(logD + d4)M(D)), using Clenshaw-Curtis integration,
O(D logD(logD + d4)M(D)), using double-exponential integration.

Proof. The complexities of our prior discussion add up to

O(Nmin(D)(logD + d4)M(D) + Init(D)) .

Combining this with the results from Chapter 3, in particular with the following complex-
ities from Table 3.6

• Init(D) = O(D2M(D)) and Nmin(D) = O(D) for Gauss-Legendre,

• Init(D) = O(D logDM(D)) and Nmin(D) = O(D) for Clenshaw-Curtis and

• Init(D) = O(D log2DM(D)) and Nmin(D) = O(D logD) for double-exponential

yields the claim.

4.7.5 Improving integration paths

As already mentioned, it might happen that numerical integration along some path γ
becomes costly, due to nearby singularities causing a small value of r = r(γ,L). In such
situations splitting up the integral matrix∫

γ
ω̄ =

∫
γ1

ω̄ +
∫
γ2

ω̄

where γ = γ1 ◦ γ2, can lead to massive improvements as shown in Example 4.7.4 below.

90

Chapter 4 4.7. Numerical integration

Splitting line segments Splitting up the integration path is particularly efficient in the
case of line segments when using an ellipse as boundary for the area of holomorphicity, like
we do for (GL) or (CC) integration. For the burger-shaped area (see Figure 3.2), which is
used for (DE) integration, splitting line segments rarely improves things. An example for
this is discussed in §5.6.4.

We lay down our strategy for splitting line segments in the case of (GL) and (CC)
integration using (4.27) to compute the number of integration points.

Algorithm 4.7.3 (Splitting line segments). Let γ : [−1, 1] → [a, b] be a line segment.
Splitting(γ) recursively subdivides into sub-paths as long as the splitting reduces the total
number of integration points.

(1) Let u0 ∈ γ−1(L) correspond to r0 (4.28).

(2) Set t← sgn(Re(u0)) ·min(|Re(u0)| , 3/4).

(3) Set x0 ← γ(t).

(4) Split γ into γ1 ← [a, x0] and γ2 ← [x0, b].

(5) Compute N,N1, N2 using (4.27).

(6) If N1 +N2 < N , then Paths ← Splitting(γ1) ∪ Splitting(γ2), otherwise Paths ← [γ].

(7) Return Paths.

Example 4.7.4. In order to see how the splitting works in practice, we continue with the
genus 17 Riemann surface X : f1 = 0 from Example 4.2.2 where

f1 = x9 + 2x6y2 + x2 + y6 + 2y4 = 0 .

Figure 4.5 shows the fundamental group obtained from applying Algorithm 4.3.1. High-
lighted in (a) is the image of εr under the line segment

γ = [−0.71247 + 0.72197 · I,−0.93815 + 0.00039 · I].

There are two discriminant points very close to γ with respective distances of 0.033 to
the start point and 0.00017 to the end point that are responsible for the small value of
r = 0.03. For D10 = 100 digits of precision, we would need N = 3942 abscissas using (GL)
integration.

Algorithm 4.7.3 applied to γ yields 5 paths with respective values 1.81, 1.32, 1.29,
1.32, 1.24 of rε resulting in a total of 100 + 152 + 161 + 154 + 176 = 743 integration points
instead of 3942. Figure 4.5 (b) shows the corresponding images of the new ellipses. For
the same integral we achieve a value of rZ = 0.34 using (DE) integration and we would
need N = 1125 integration points to achieve precision D10 = 100. Immediately it becomes
clear that without splitting (DE) would be the better choice here while with splitting it
is not.

91

4.7. Numerical integration Chapter 4

x0

(a) Ellipse γ(εr) before splitting.

x0

(b) Multiple ellipses after splitting γ.

Figure 4.5: Paths for the fundamental group π1(C \ L(f1, y), x0).

Improving circles and arcs We could also apply Algorithm 4.7.3 to circles and arcs
in order to try to improve the value of r(ε). Unfortunately, in almost all cases this
improvement is not significant enough to justify splitting the path. More influential on
their values of r, as already mentioned in §4.3.1, is their radius c > 0. Let

γfc : u 7→ c exp(i(πo(u+ 1) + ϕ0)) + x

be the parametrization of a full circle (§4.3.3) where x ∈ L is an exceptional value. Then,
in the cases of (GL) and (CC) integration, for all ũ ∈ L we have

γ−1
fc (ũ) = −oi

π
log
(

ũ− x
c exp(iϕ0)

)
,

and from (4.28) we see that

rũ →∞ and M(r)→∞ as c→ 0 .

Letting the radius tend towards zero gives us larger values for rε, but the boundM = M(r)
also tends to infinity (analogously for arcs). In theory, choosing the radii quite small should
make integration along such paths easier. The same is true for (DE) integration, but there
we have that

rũ → π/2 and M2(r)→∞ as c→ 0 .

Keep in mind that one has to be careful to choose the correct branch of the complex
logarithm when computing γ−1

fc (ũ) and γ−1
arc(ũ).

In practice, however, choosing small radii has several drawbacks: performing (certified)
analytic continuation very close to a exceptional value leads to a much bigger number of
refinement steps (see Section 4.5) and may also cause numerical instability. Moreover,
having circles and arcs with smaller radii also decreases the respective values of r of the
line segments connecting them, due to their end points being closer to exceptional values.
Intensive testing has shown that (even with splitting bad line segments) keeping a certain
distance (see §4.3.1) from exceptional values is the preferable choice.

92

Chapter 4 4.7. Numerical integration

4.7.6 Comparison of integration methods (I)

Conducting comparisons between the integration methods presented in Chapter 3 applied
to the integration of differential forms on Riemann surfaces is one of the main topics
of this thesis. Here, we begin by comparing the performance of Gauss-Legendre (GL),
Clenshaw-Curtis (CC) and double-exponential (DE) integration along individual paths
γ : [−1, 1]→ C \L, i.e. application of Algorithm 4.7.1. Here we are particularly interested
in how the computational cost is actually distributed.

x0

(a) Zone γ(Zr) for paths γfc, γls, γarc.

x0

(b) Ellipse γ(εr) for paths γfc, γls, γarc.

Figure 4.6: Paths for the fundamental group π1(C \ L(f1, y), x0).

Example 4.7.5 (cont.). We continue with Example 4.7.4 by considering three paths that
were constructed for the fundamental group: the full circle γfc, the line segment γls and the
arc γarc, as can be seen in Figure 4.6 (from left to right). These paths are chosen in a way
such that they represent the ’average’ integral from a numerical integration perspective.
Figure 4.6 (a) shows (in red) the boundaries of the zones γ(Zr) that are used for (DE)
integration, while (b) highlights the boundaries of the ellipses γ(εr), used for (GL)/(CC)
integration, in blue.

Timings for Algorithm 4.7.1 applied to these paths are given in Table 4.4. Analytic
continuation is done via Algorithm 4.5.1 using Durand-Kerner’s method. A description for
a basis of differentials ω̄ as products of irreducible factors was already given in Example
4.2.2. This product representation is used for evaluation of the differentials. Although
we only analyze three different integrals here, they give us a pretty good idea of the
performance of our integration methods. Table 4.4 indicates many interesting facts that
can be readily generalized. Keep in mind that we consider the initialization cost for
integration along a single path here.

93

4.7. Numerical integration Chapter 4

Path γfc γls γarc

Integration method GL CC DE GL CC DE GL CC DE

Parameter rε/rZ 0.55 0.46 0.97 0.89 0.86 0.59

D10 = Digits 100

N = #Abscissas 229 461 889 127 253 467 144 289 705

Initialization 0.19 0.04 0.01 0.06 0.02 0.00 0.08 0.02 0.01

Eval. of γ, γ′ 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.01

Anal. cont. of γ 0.20 0.40 0.64 0.12 0.25 0.35 0.13 0.25 0.51

Eval. of ω̄ 0.23 0.45 0.89 0.12 0.47 0.46 0.15 0.29 0.70

Total time 0.62 0.90 1.56 0.30 0.49 0.81 0.36 0.57 1.22

D10 = Digits 500

N = #Abscissas 1094 2188 5557 604 1209 2897 685 1373 4399

Initialization 8.82 4.73 0.16 2.71 1.28 0.08 3.56 0.24 0.12

Eval. of γ, γ′ 0.09 0.18 0.94 0.00 0.01 0.02 0.05 0.11 0.35

Anal. cont. of γ 2.39 4.71 9.45 1.30 2.57 4.95 1.49 2.94 7.50

Eval. of ω̄ 2.48 4.98 12.3 1.35 2.72 6.46 1.56 3.11 9.66

Total time 13.8 14.6 22.8 5.36 6.58 11.51 6.66 6.40 17.6

Table 4.4: Timings for numerical integration (in seconds).

x0

(a) Zone γ(Zr) for different γ.

x0

(b) Ellipse γ(εr) for different γ.

Figure 4.7: Paths for the fundamental group π1(C \ L(f6, y), x0).

Example 4.7.6. We consider yet another example, namely, the genus 14 Riemann surface
defined by

f6 = 23x6y + xy5 − 100y2 − 10000y + 1 .

There are n = 32 exceptional values and some of them are as close together as 1.0546 ·10−5

which leads to 5 line segments being so close to exceptional values that even splitting them

94

Chapter 4 4.7. Numerical integration

does not improve the situation for (GL)/(CC) integration. As you can see in Figure 4.7,
the burger-shaped zones (a) γ(Zr) are quite spacious while the ellipses (b) γ(εr) really
suffer from nearby singularities. We compare the timings for Algorithm 4.7.1 applied to
the line segments

γ1 :[−1.367− 2.379 · I, 1.3669− 2.3861 · I]
γ2 :[2.7475 + 0.008 · I, 1.3788 + 2.3742 · I]

Considerings the timings given by Table 4.5, This example highlights perfectly that (DE)
integration can be extremely useful.

Path γ1 γ2

Integration method GL CC DE GL CC DE

Parameter rε/rZ 0.0606 0.28 0.0613 0.38

D10 = Digits 100

N = #Abscissas 2867 5733 1445 2832 5665 467

Initialization 3.05 4.24 0.01 3.00 1.05 0.00

Eval. of γ, γ′ 0.01 0.02 0.01 0.02 0.02 0.00

Anal. cont. of γ 2.11 4.24 0.93 2.06 3.94 0.35

Eval. of ω̄ 1.69 3.49 0.86 1.68 3.47 0.46

Total time 6.86 11.8 1.81 6.75 8.48 0.81

D10 = Digits 500

N = #Abscissas 13610 27221 9045 13445 26893 6737

Initialization 119 82.6 2.71 118 18.8 0.19

Eval. of γ, γ′ 0.06 0.12 0.04 0.06 0.12 0.03

Anal. cont. of γ 24.2 46.9 13.6 24.0 46.3 10.2

Eval. of ω̄ 19.0 39.2 12.2 18.7 38.9 9.20

Total time 162 169 26.2 161 104 19.6

Table 4.5: Timings for numerical integration (in seconds).

95

4.7. Numerical integration Chapter 4

Conclusions

Initialization Computing the integration scheme is a huge factor for the numerical in-
tegration of our differentials and depends on the prescribed precision D and the parameter
r = r(γ,L) (we ignore the constants M,M1,M2 here). For this we applied the algorithms
described in Chapter 3. The obvious big winner here is (DE) as its initialization cost
is really negligible in practice (see also §3.4.1). Definitely slower than (DE), but still
reasonable fast we compute the (CC) scheme using the (FFT), as described in §3.3, in
most instances while the classical algorithm (CL) was used for γfc and D10 = 500. As
we have already seen in §3.2.2, computing the (GL) scheme is simply slow (although our
implementation of of (GLR) provides a nice speed-up for γ1 and γ2).

Number of abscissas The number of integration points N scales the amount of opera-
tions that are required (beyond initialization) linearly and the initialization itself at least
linearly (depending on the algorithm that is being used). Since our cost per abscissa is
quite high, we really want to this quantity to be minimal. This is where (GL) integration
shines: for the ’average’ integrals it outclasses the other methods due to the minimal value
of N , making (GL) the big winner in this category (and therefore overall).

Unsurprisingly, and independently of our examples, (CC) requires about twice as many
integration points as (GL), which is a major drawback of (CC) in our examples.

Another important lesson here is that there exist integrals (e.g. along γ1, γ2 from Ex-
ample 4.7.6) where (DE) outclasses (GL) and (CC) not only in initialization, but also
requires much less integration points. For compact Riemann surfaces such integrals might
occur during period matrix computations (or for the Abel-Jacobi map) when the excep-
tional values cluster. The timings for γ1 and γ2 strongly suggest to use (DE) whenever we
encounter such integrals. In Example 4.7.6 this means using (DE) integration for 5 inte-
grals and (GL)/(CC) for the other 94 integrals occurring in the period matrix computation
(see Table 4.5).

Most integrals are much easier to integrate though, comparable to γfc, γls, γarc or even
easier. So generically, (GL) and (CC) will require much fewer integration points than
(DE) and will thus be preferred over (DE) in almost all cases.

Evaluating the parametrization The costs for evaluating γ and γ′ are independent of
m and g and only depend on the precision D. It is negligible compared to the other steps,
even for circles and arcs (whose evaluation involves computing an exponential). This is,
of course, partly due to our examples having high genera (17 and 14) and degrees (6 and
5), but even when g and m are small and D is large, we can ignore this cost.

Analytic continuation For any path γ that we integrate along, analytic continuation is
one of the most time-consuming tasks (due to the large number of abscissas) and depends
heavily on m and D. Again, this is completely independent of the examples considered
above. We put quite some effort and time into optimization here (using different root
approximation methods, see §4.4, and an efficient implementation of Algorithm 4.5.1),
but in the end this remains costly. Note that analytic continuation was not the dominant
factor in the complexity analysis of Algorithm 4.7.1.

Evaluation of differentials Evaluating the vector of differentials requires roughly as
much time as analytic continuation in our examples. This cost depends heavily on the
genus g, the total degree d of the affine equation, how many irreducible factors we need
to evaluate and on the required precision D. In our example the genera are quite high,
so the cost here really explodes and evaluation of differentials takes half of the time after

96

Chapter 4 4.8. Strategy for the period matrix

initialization of the integration scheme. For Riemann surfaces of lower genus we can
(generally) expect this step to cost less time than analytic continuation.

Recycling integration schemes So far we ignored the issue of reusing integration
schemes in our comparison, because we only considered integration along single paths.
During period matrix computations we usually integrate a large number of paths, (3n−2)
with n = #L(ϕx) to be exact. Hence it is advantageous to classify paths according to the
value of r (see §4.8.2), compute an integration scheme for the ’worst’ integral within the
class and then use it to evaluate all integrals belonging to the class.

Since we can easily decide whether to use (DE) or not, this mainly influences our choice
between (GL) and (CC). The trade-off is between fewer integration points (GL) and faster
initialization (CC). The more integrals can be computed with the same scheme, the more
efficient (GL) becomes and the less impact does its costly initialization have. Conversely,
we should prefer (CC) if we only need to evaluate a few integrals. There are many other
factors that either favor one or the other method, which makes it hard to find an optimal
answer to that question. For more details, see part (II) of our comparison in §4.8.3.

Which method is best in practice? We briefly sum up the main points of our com-
parison so far.

Features of Gauss-Legendre (GL) integration:

• minimal number of abscissas N for well-behaved integrands, i.e. for average to high
values of r (++)

• lengthy initialization, as abscissas and weights have to be iterated which becomes
slow for high precision D (−)

• large value of N for integrands with nearby singularities, i.e. r close to 0 (−)

Features of Clenshaw-Curtis (CC) integration:

• N twice as big as for (GL), but still reasonable (+)

• fast initialization using the fast Fourier transform (+)

• similar problems as (GL) for very small r (−)

Features of Double-exponential (DE) integration:

• extremely fast initialization for any precision D (+)

• robustness: (DE) shines for badly-behaved integrands with nearby singularities (++)

• significantly higher number of abscissas (−−)

Conclusion: Use Gauss-Legendre as standard integration method and double-exponential
sporadically (for dreadful integrals).

4.8 Strategy for the period matrix

Finally, we lay out our period matrix algorithm. Structurally, it does not differ too much
from the algorithms employed by [27] and [35]. Nonetheless, it is worth writing down the
steps in order to give an analysis of its complexity.

97

4.8. Strategy for the period matrix Chapter 4

Algorithm 4.8.1 (Period matrix). Given a standard basis (4.8) of holomorphic differ-
entials ω̄ of Ω1(X) and a holomorphic ramified covering ϕx : X → P1, this algorithm
(heuristically) computes a basis of the period lattice Λ for the compact Riemann surface
X to precision D > 0.

(1) Compute the locus L(ϕx) (§4.1.2) of exceptional values; with n← #L.

(2) Compute generators {γ1, . . . , γn} of π1(C \ L, x0) using Algorithm 4.3.1.

(3) Apply Algorithm 4.7.1 to compute the matrix of integrals (4.24) to precision D for
each of the 3n− 2 paths that make up the fundamental group.

(4) Obtain a monodromy representation Mon(ϕx) (as described in §4.5.1) and the integral
matrices along the γi by concatenations (using the 3n− 2 path pieces).

(5) Apply the Tretkoff algorithm §4.6.1 to Mon(ϕx) and obtain a generating set Γ of
H1(X,Z) with intersection matrix KΓ.

(6) Piece together a period matrix ΩΓ = (cj)j=1,...,2g+m−1 with

cj =
∑
γ̃∈Γj

∫
γ̃
ω̄ ∈ Cg×1

using the rules for concatenation §4.7.1.

Correctness By the theory of compact Riemann surfaces, that has been established
in Section 2.4, the above algorithm is correct and does compute a period matrix. The
problematic part is to guarantee that the result is indeed correct to precision D. This is
precisely the same issue that has been described in §4.7.4.

Complexity We are mainly interested in how Algorithm 4.8.1 behaves in terms of the
precision D. Therefore, the steps (3), (4) and (6) are the most important ones, but we
analyze the other steps as well.

(1) Computing the exceptional values was covered in §4.1.2. On the exact side we have
to calculate and factorize the discriminant and the leading coefficient over K, but
this is independent of the precision. The numerical part here consists of computing
the roots of the resulting factors over C, which takes R(k,D) operations (see §1.3)
for each irreducible factor of degree k ∈ Z>0. However, this has to be done only
once, independently of the core of the algorithm.

(2) We compute generators for the fundamental group using O(n2M(D)) = O(d4M(D))
operations (4.10).

(3) Algorithm 4.7.1 whose complexity, depending on the integration method, is given by
Theorem 4.7.2, is applied 3n− 2 = O(n) = O(d2) times.

(4) The local monodromies are obtained through analytic continuation, which is part of
step (3). For each closed path γi (i = 1, . . . , n) we add together O(n) integral matri-
ces of dimension g ×m, which takes O(n2mgD) = O(n2d3D) = O(d7D) operations.

(5) As stated by Theorem 4.6.1, the Tretkoff algorithm is independent of D and has
complexity O(d5 log d).

98

Chapter 4 4.8. Strategy for the period matrix

(6) There are 2g +m− 1 cycles of length O(m). For each change of sheet we require up
to m values for each differential, so obtaining the integrals cj along the cycles Γj
(adding together the correct values of the integral matrices from step (4)), takes up
to O(2g +m− 1)m2gD) = O(d6D) operations.

Adding up all the costs of the individual steps we see that the complexity in terms
of D is heavily dominated by Algorithm 4.7.1, which includes computing the integration
schemes, analytic continuation and numerical integration. The costs of steps (1) and (2)
are absorbed by step (3) in the big-O notation. The costs of steps (5) and (6) are swallowed
by the O(d7D) of step (4). All in all, we obtain the following result:

Theorem 4.8.2. Algorithm 4.8.1 has computational complexity in
O(d2D2(D + d4) log1+εD + d7D), using Gauss-Legendre integration,
O(d2D2(logD + d4) log1+εD + d7D), using Clenshaw-Curtis integration,
O(d2D2 logD(logD + d4) log1+εD + d7D), using double-exponential integration.

Proof. Combine the complexities of our analysis with the complexities of Theorem 4.7.2
and plug inM(D) = O(D log1+εD).

Corollary 4.8.3. Let X be a compact Riemann surface of genus g > 0 defined by an affine
equation f(x, y) = 0, f ∈ C[x, y] irreducible of total degree d, and (ω1, . . . , ωg) a standard
basis (4.8) (ω1, . . . , ωg) a basis of the space of holomorphic differentials Ω1(X). There is
an algorithm that (heuristically) computes a basis of the period lattice Λ to precision D > 0
using

O(c(f)d2D2(logD + d4) log1+εD + d7D) operations,

where c(f) = 1/r, for some r > 0 (see §4.7.2), depends on the configuration of the
exceptional values (4.2). In particular, r depends on their absolute values and absolute
and relation distances between them.

Proof. We obtain the claimed complexity (except for the factor c(f)) as an consequence of
Theorem 4.8.2 using Clenshaw-Curtis integration, where the holomorphic ramified covering
ϕx : X → P1 is defined by f(x, y) = 0. The linear factor c(f) comes from the minimal
value of r = r(γ,L) (see §4.7.2) appearing in the 3n − 2 numerical integrations along a
path γ that are performed in step (3) of Algorithm 4.8.1. Once we stop viewing r as a
constant, the claimed dependence on the configuration of exceptional values becomes clear
from its definition.

4.8.1 Big and small period matrices

We can easily extend Algorithm 4.8.1 from computing ΩΓ (a basis for the period lattice
Λ) to computing big and small period matrices by adding a few steps.

Algorithm 4.8.4 (Big/small period matrix). Given a period matrix ΩΓ to precision D
with intersection matrix KΓ, this algorithm (heuristically) computes a big period matrix
(ΩA,ΩB) and a small period matrix τ to precision D.

(1) Compute a symplectic base change matrix S ∈ GL(Z, 2g +m− 1) for KΓ .

(2) The first 2g columns of Ω · S form a big period matrix (ΩA,ΩB) ∈ Cg×2g.

(3) A small period matrix is then obtained by solving ΩA · τ = ΩB.

99

4.8. Strategy for the period matrix Chapter 4

Complexity The complexity of Algorithm 4.8.4 is dominated by matrix algorithms and
thus not very exciting. Computing the matrix S is an exact computation and takes
negligible time since the entries of KΓ only consist of 0 and ±1. Moreover, as you can
see in Example 4.6.3, the base change S is usually a sparse matrix with tiny integer
coefficients (less thanm), so that the change of basis is a matrix multiplication of size O(g)
with precision D coefficient and is performed performed using O(gωM(D)) operations.
However, we have no proof of this fact and in general the symplectic reduction could
produce a dense base change matrix with coefficients of size O(g), so that we state the
following far from optimal result:

Theorem 4.8.5. Algorithm 4.8.4 (heuristically) computes a big/small period matrix to
precision D > 0 using O(gηM(D + g)) operations.

Proof. The complexity for the big period matrix follows from the discussion above. Step
(3) requires one matrix inversion and one matrix multiplication of g×g matrices of precision
D +O(g) numbers, which can be done using O(gηM(D + g)) operations.

Numerical verification There are several tests that can (and should) be executed
during the period matrix algorithm to confirm the numerical quality of our computations.
Suppose we want our results to be correct up to precision D, then

(i) the columns 2g+1, . . . , 2g+m−1 of Ω·S in step (2) correspond to linearly dependent
cycles in Γ and have to be zero up to an error of e−D;

(ii) for each of the 3n − 2 individual integrations along a path γ, the absolute value of
the sum over a column of the approximated integral matrix (4.24) has to be zero
(because on the Riemann surface the concatenation of all lifts of γ is homotopic to
zero), i.e. we can check whether∣∣∣∣∣∣

m∑
j=1

ci,j

∣∣∣∣∣∣ < e−D for every i = 1, . . . , g, where
∫
γ
ω̄ = (ci,j) .

(iii) Riemann’s bilinear relations (§2.9.1) show that τ ∈ Hg is symmetric, so we can check
whether

max
∣∣τ − τT ∣∣ < e−D .

Moreover, τ has to have positive definite imaginary part, which can also be checked
using the magma function ’IsPositiveDefinite’.

4.8.2 Classifying integration paths

In Algorithm 4.8.1 and for its complexity analysis the assumption was that we compute an
integration scheme for each of the 3n−2 paths that we integrate along. In practice, this is
completely inefficient. Instead, we group paths with similar values of r together and then
compute the ’worst case’ integration parameters r andM for this class. Depending on the
initialization cost of the integration method that is being used and the number of total
paths, we adjust the number of different classes, as can be seen in the Tables of §4.8.3.
Although this approach leads to a huge gain in absolute run time, it is not a justification
to view the number of integration scheme as constant in the complexity analysis §4.8.

100

Chapter 4 4.8. Strategy for the period matrix

4.8.3 Comparison of integration methods (II)

We expand our comparison of integration methods, that we started in §4.7.6, from con-
sidering individual paths to computing big period matrices.

Our favorite example f1, see Table 4.6 below, plays out as already indicated by the
timings given previously in Table 4.4: Gauss-Legendre integration (with splitting line
segments) requires by far the minimal number of integration points, which is the deciding
factors here. The initialization cost of the integration schemes has almost no influence
here (the genus of this example is 17).

Integration method GL CC DE

#Integration schemes 5 8 19

D10 = Digits 50

Total #Abscissas 7384 13423 22512

Total Time 13.3 22.7 35.5

D10 = Digits 100

Total #Abscissas 13905 24812 47772

Total Time 28.0 47.6 84.0

D10 = Digits 200

Total #Abscissas 26917 47361 103828

Total Time 67.7 113 227

Table 4.6: Timings for the big period matrix of X : f1 = 0 (in seconds).

In Table 4.5 we showed that there are integrals that can be handled easily by (DE)
integration, while (GL) and (CC) struggle. As we already predicted in §4.7.6, it is optimal
to handle very difficult integrals by double-exponential integration. It can be seen from
Table 4.7 that this approach can drastically reduce the total number of integration points,
as well as the total run time. Let us mention that efficiently combining these integration
methods is not hard to implement.

101

4.8. Strategy for the period matrix Chapter 4

Integration method GL CC DE GL/DE CC/DE

#Integration schemes 5 8 20 5+2 8+2

D10 = Digits 50

Total #Abscissas 16813 31921 31066 11482 19144

Total Time 21.1 37.2 33.8 14.5 22.5

D10 = Digits 100

Total #Abscissas 31928 59135 65628 22756 36503

Total Time 45.9 76.7 80.4 31.4 47.8

D10 = Digits 200

Total #Abscissas 62145 113587 142482 46043 71889

Total Time 123 192 224 81.4 123

Table 4.7: Timings for the big period matrix of X : f6 = 0 (in seconds).

Finally, we consider the Riemann surface from Example 4.6.2 that is defined by the
superelliptic equation

f5 : y3 = (x− 2)(x− 1)(x− (1 + I))(x− (1− I)) .

We only have n = 4 critical values and only 10 (easy) integrations are required to obtain
a period matrix. As we can see in Table 4.8 and as we should expect from the complexity
analysis, for high precision and a small number of integrals Clenshaw-Curtis beats Gauss-
Legendre integration even though we need to evaluate the differentials at roughly twice
the number of integration points. As already mentioned in Remark 3.6, Clenshaw-Curtis
integration would do probably be even better here if we implemented a fast algorithm for
the discrete cosine transform (DCT).

Integration method GL CC DE

#Integration schemes 2 3 6

D10 = Digits 500

Total #Abscissas 7074 13538 37562

Total Time 16.1 14.0 33.0

D10 = Digits 1000

Total #Abscissas 14059 26842 82516

Total Time 87.4 79 130

D10 = Digits 2000

Total #Abscissas 28009 53434 180202

Total Time 643 420 660

Table 4.8: Timings for the big period matrix of X : f5 = 0 (in seconds).

102

Chapter 4 4.8. Strategy for the period matrix

Conclusion We finish our comparison of the integration methods (GL), (CC) and
(DE) applied to the problem of computing big period matrices by concluding: with the
magma implementations of all previous described algorithms, using a combination of
Gauss-Legendre integration as standard integration (with recursive splitting) and optional
double-exponential integral (for very hard integrals) is the best choice for all precisions up
to ≈ 500 decimal digits, (almost) independently of the Riemann surface. For even higher
precisions or simple defining equations Gauss-Legendre may be replaced by Clenshaw-
Curtis integration. In all following applications of our algorithm it is implied that we use
the aforementioned (GL/DE) combination.

4.8.4 Comparison with other implementations

We test our implementation of Algorithm 4.8.1 in magma, denoted (M), for the compu-
tation of big period matrices against the multi-precision implementations in maple 17,
due to Deconinck and van Hoeij [27], and in sage 8.0 due to Nils Bruin. We work with
moderate precisions D10 ∈ {50, 100, 200} (decimal digits) for our comparison. Both im-
plementations cannot handle such extreme cases as posed by the polynomials f1 or f6
above, so we are going to look (Table 4.9) at the rather well-behaved (but still sufficiently
random) Riemann surfaces defined by the family of polynomials

xky2 + (x+ y)k−1 + 1 ∈ Q[x, y] for k = 2, . . . , 10 . (4.31)

Although there are no really challenging polynomials (from a numerical integration per-
spective) among these, the genus becomes large rather quickly for this family. In contem-
porary applications one often encounters Riemann surfaces of smaller genus.

Consequently, for the second part of our comparison (see Table 4.10), we consider
several smooth plane quartics (of small discriminant) that are going to appear in the
genus 3 section of the [58, lmfdb]. For the computation of the endomorphism rings of the
corresponding Jacobians (see Section 6.2, in particular §6.2.1) big period matrices were
computed to 100 decimal digits of precision.

We will briefly summarize the characteristics of these implementations:

• The (optimal) version of our period matrix algorithm in magma uses a spanning
tree method to construct integration paths (line segments, arcs and circles) (see
Algorithm 4.3.1), a combination of Gauss-Legendre integration (with splitting) and
double-exponential integration, using the error bounds of Chapter 3 as explained in
Section 4.7, while analytic continuation is done using Algorithm 4.5.1 with Durand-
Kerner’s method for simultaneous root approximation.

• From personal communication with Nils Bruin we know that sage integrates along
line segments obtained from a Voronoi cell decomposition (as already mentioned
in §4.3.2); it uses adaptive Gauss-Legendre integration and Newton’s method for
analytic continuation.

• The maple implementation is explained in detail in [27]: for the fundamental group
they use a combination of line segments and semi-circles; they compute the roots
above every integration point and use some minimal distance criterion for analytic
continuation; numerical integration is done with the internal maple routines.

103

4.8. Strategy for the period matrix Chapter 4

k 2 3 4 5 6 7 8 9 10

Genus 1 2 6 10 14 21 28 35 45

D10 50

maple 5.72 14.7 123 481 1532 3054 - - -

sage 0.95 2.70 30.7 24.3 289 110 582 1153 1818

(M) 0.34 0.64 1.97 5.37 11.6 24.2 53.5 102 211

D10 100

maple 28.7 40.5 425 1545 err 4856 - - -

sage 1.65 8.78 17.5 78.7 83.2 187 742 1577 2450

(M) 0.89 1.49 4.07 11.0 24.1 48.7 98.1 188 308

D10 200

maple 123 313 1315 5773 - - - - -

sage 6.71 49.3 411 108 661 416 1146 2867 5544

(M) 3.38 4.40 10.5 27.3 56.0 114 221 393 809

Table 4.9: Timings(s) for big period matrices associated to (4.31).

As announced in the beginning of this subsection, we extend our comparison by looking
at the 9 smooth plane quartics of smallest given discriminant with respect to the ordering
that is going to be used by the lmfdb . All three period matrix algorithms require as
input an affine model for the Riemann surface, so we use the following equations, which
were obtained by setting z = 1 in the respective projective equations.

q1 = x3y + x3 + x2y2 + 3x2y + x2 − 4xy3 − 3xy2 − 3xy − 4x+ 2y4 + 3y2 + 2,
q2 = x3 + x2 + xy3 − xy2 + y2 − y,
q3 = x4 + 2x3y + 2x3 − 4x2y2 + 2x2y − 4x2 − xy3 − x+ 2y4 − 3y3 + 5y2 − 3y + 2,
q4 = x3 + x2y2 + x2y + xy3 + xy2 + xy + x+ y3 + y2,

q5 = x3 + x2y2 + xy3 − xy2 − 2x− y2 − 1,
q6 = x3 + x2y + x2 − xy3 + xy2 + x− y2 + y,

q7 = x3 + x2y + x2 + xy3 − 3xy2 − 4x− y4 + 2y3 + 2,
q8 = x3 + x2y2 + x2 + xy3 + xy + y3 + y,

q9 = x3 + x2y + x2 + xy3 + xy + y3 + y2 + y .

Of course, homogenizing the qi and setting x = 1 or y = 1 would be fine too, as the
algorithms would yield isomorphic period matrices. Again, we compare the timings for
big period matrices for precisions D10 ∈ {50, 100, 200} (decimal digits).

104

Chapter 4 4.9. Computing the Abel-Jacobi map

q1 q2 q3 q4 q5 q6 q7 q8 q9

D10 50

maple 137 58.7 177 80.6 80.9 69 401 52.3 50.3

sage 27.6 13.2 11.8 4.00 2.89 9.80 41.7 3.40 3.47

(M) 1.56 0.98 2.28 0.94 1.00 0.96 1.56 0.87 0.96

D10 100

maple 338 212 6513 184 200 178 - 145 165

sage 5663 19.8 30.0 8.45 6.04 6.24 5578 7.27 8.40

(M) 3.55 2.27 4.86 2.13 2.27 2.15 3.66 2.05 2.20

D10 200

maple 2132 946 - 855 1014 875 - 578 612

sage - 39.0 92.7 23.2 15.8 15.2 - 91.3 29.5

(M) 9.67 6.30 12.9 5.82 6.15 5.63 10.2 5.77 6.08

Table 4.10: Timings(s) for big period matrices associated to q1, . . . , q9.

Conclusion

• We see that in every example shown in the Tables 4.9 & 4.10 our algorithm (M) is
several times faster than the other options and finishes the computation within
reasonable time, the timings scale consistently with the genus and the required
accuracy.

• The sage implementation does reasonably well for most examples and precisions
considered here. From the tables we can exhibit quite a few inconsistencies of the
timings with respect to the precision. Furthermore, this implementation does not
seem to be sophisticated enough to handle inputs where integration becomes ’tough’
(see q1 or q7).

• The maple implementation is just outdated: it scales badly with the genus and the
accuracy, fails in particular examples, and is generally not suitable for high precision
computations.

4.9 Computing the Abel-Jacobi map
Here we are concerned with explicitly computing the Abel-Jacobi map of divisors on X.
For this section we assume that we have already computed a big period matrix and all
related data as explained in the preceding sections of this chapter.

Let D =
∑

P∈X vPP ∈ Div(X) be a divisor on X and let P0 ∈ X be a base point. By
linearity the computation of the Abel-Jacobi map reduces to

A(D,P0) ≡
∑
P∈X

vP

∫ P

P0

ω̄ mod Λ.

It is very convenient to choose as base point the point P0 = (x0, y1(x0)>X) ∈ X where
x0 may chosen as the ’left’ base point (§4.3.1) for the fundamental group. This choice is

105

4.9. Computing the Abel-Jacobi map Chapter 4

advantageous when we use adaptive (DE) integration for points at infinity (§4.9.5). Recall
that y1(x0) denotes the first value of the fiber over x0 with respect to the ordering >X .
The choice of the sheet should be made in accordance with the Tretkoff algorithm (in
§4.6.1 we chose s = 1).

We now split up the computation of A into different cases. Namely, computing to
precision D the integral vector ∫ P

P0

ω̄ mod Λ where (4.32)

• P = (x0, yj(x0)) for some j ∈ Im (see §4.9.1);

• P = (xP , yP) is a non-critical point (see §4.9.2);

• P = (xk, yj(xk)) is a non-singular, critical point (see §4.9.3);

• P ∈ X is a singular point, point at infinity or y-infinite point (see §4.9.4);

• Alternatively, we heuristically compute A(P, P0) for any P ∈ X that is non-regular
(with respect to the affine model) in §4.9.5.

After computing all the different individual vector integrals, the linear combination
that corresponds to the divisor D is reduced modulo the period lattice Λ as explained in
§4.9.6. We choose to represent the image of A as elements in the canonical torus (R/Z)2g.

Finally, in §4.9.7, we summarize our practical strategy for the computation of A.

4.9.1 Moving between sheets

For the period matrix computation we needed a homology basis; its computation was
discussed in 4.6. The Tretkoff algorithm uses the local monodromies to ’draw’ a map of
the Riemann surface in form of a graph. The cycles that are output by this algorithm tell
us exactly how to navigate from sheet 1 to any other sheet j ∈ Im and they are expressed
as concatenations of lifts of our paths for the fundamental group {γ1, . . . , γn}, see Section
4.3. So, during step (6) of Algorithm 4.8.1 we can easily (in fact, at no additional cost)
obtain a matrix

T = (ti,j) ∈ Cg×m such that ti,j =
∫ P

(j)
0

P0

ωi , (4.33)

where P0 = (x0, y1(x0)) is the base point and P (j)
0 = (x0, yj(x0)), j ∈ Im, is another point

lying above x0. Now, the values in the j-th column of T correspond to changing from the
1st sheet to the j-th.

4.9.2 Reaching non-critical points

Assume now that P = (xP , yP) ∈ X is a regular (i.e. finite and non-critical) point. The
first step is to find a path in the complex plane that connects x0 to xP .

For that we search for the starting point (of all 3n − 2 path pieces that make up our
fundamental group) that is closest to xP , say x̃ ∈ C \ L. Afterwards, we construct a path
from x̃ to xP as a combination of an arc and a line segment. An arc is only necessary to
avoid a potential exceptional value in the neighborhood of x̃ and can be constructed with
radius ri around the exceptional value xi, as discussed in §4.3.1. In the case |xP − xi| = ri
we only need an arc connecting x̃ to xP around xi and no line segment.

If xP 6∈ L is in the neighborhood of an exceptional point (see Figure 4.8 (b)), i.e.
0 < |xP − xi| < ri for some i = 1, . . . , n, then we search the point on the circle of radius
ri around xi that minimizes the distance to xP , say ˜̃x. The final pieces of our path

106

Chapter 4 4.9. Computing the Abel-Jacobi map

are the corresponding arc joining x̃ to ˜̃x followed by the line segment γ = [˜̃x, xP]. This
construction is pictured in blue in Figure 4.8 (a) and (b). If xP ∈ L is an exceptional
value, but P is not a critical point, we can just integrate along the lift of γ = [x̃, xP] to
the sheet on which yP lies in a straightforward way.

Since the integrals for all path pieces except the last one (or two) are already known
from the period matrix computation, we are left with at most two integrations. In contrast
to the integrations for the period matrix, where integration is done on all sheets simul-
taneously, we only integrate on one sheet here. For this we can use a slight modification
of Algorithm 4.7.1 that uses Newton-iteration (§1.3) for analytic continuation instead of
simultaneous root approximation methods.

For the sake of simplicity, we briefly assume that no arc is needed here. The idea for
integrating the line segment γ = [x̃, xP] is that we actually integrate along the lift −γ̃ of
the reverse path −γ that is defined by the starting value yP , i.e. −γ̃(−1) = (xP , yP). So
we start the Newton-iteration with yP and it ends at some value −γ̃(1) ∈ ϕ−1

x (x̃). We
then connect −γ to the path from x0 to x̃ using the rules for concatenation §4.7.1. Since
we only integrated on one sheet we cannot assign a permutation to γ. Instead, we find
the correct sheet by identifying −γ̃(1) with the corresponding value in the ordered fiber
ϕ−1
x (x̃)>X and apply the formulas (4.25), (4.26) for concatenation to the resulting vector

of integrals.
Remark 4.9.1. Note that integrating backwards here is important. If we start the analytic
continuation at any y ∈ ϕ−1

x (x̃) we can not assure that we end up on the correct sheet (i.e.
at yP). For points P = (xP , yP) such that xP 6∈ L is not an exceptional value, we could, of
course, integrate on all sheets simultaneously using Algorithm 4.7.1 and then choose the
correct integral, but this would result in g(m− 1) unnecessary integrations. Moreover, if
xP ∈ L, but P is a regular point it is mandatory to restrict the integration to the correct
sheet.

It is advantageous to use the same integration method that has been used for the
preceding period matrix computation (either (GL),(CC) or (DE)), so we can reuse the
integration schemes (except when the number of required abscissas N is higher than for all
previously computed schemes, then a new scheme has to be computed). If P = (xP , yP)
is very close to a critical point (see Example 4.7.6) it is useful to stick to the double-
exponential method for integration along the line segment [˜̃x, xP].

107

4.9. Computing the Abel-Jacobi map Chapter 4

x0
xP

(a) Regular point close to an exceptional value.

x0

xP

(b) Regular point away from exceptional values.

Figure 4.8: Paths for the Abel-Jacobi map of X : f1 = 0.

Complexity By the construction explained above, we need to integrate at most two
paths, each on one sheet, for the Abel-Jacobi map of regular points. Our modification
of Algorithm 4.7.2 (using Newton’s method instead of simultaneous root approximation)
results in following changes to the complexity:

• the cost for analytic continuation drops to O(N(logD +m)M(D)) operations,

• evaluating the differentials at the abscissas takes O(NgdM(D)) = O(Nd3M(D))
operations,

• while addition of the individual values costs O(NgD) = O(Nd2M(D)) operations.

Adding together the correct values from the integrals corresponding to the path from x0
to x̃ takes O(ngD) = O(d4D) operations. Therefore, we obtain

Theorem 4.9.2. For each regular (i.e. finite, non-critical) point P = (xP , yP) ∈ X we
(heuristically) compute

∫ P
P0
ω̄ to precision D > 0 using

O(Nmin(D)(logD + d3)M(D) + d4D + Init(D)) operations,

where Nmin(D) and Init(D) are given by Table 3.6 and depend on the integration method.

Corollary 4.9.3. For all but finitely many points P = (xP , yP) ∈ X, we (heuristically)
compute

∫ P
P0
ω̄ to precision D > 0 using

O(c(f, xP)D2(logD + d3) log1+εD + d4D) operations,

where c(f, xP) = 1/r, for some r > 0 (see §4.7.2), depends on the distances between xP
and the exceptional values (4.2).

Proof. Except for the factor c(f, xP), the claim follows from Theorem 4.9.2 using Clenshaw-
Curtis quadrature, which implies that Init(D) = O(D2 log2+εD) and Nmin(D) = O(D).

108

Chapter 4 4.9. Computing the Abel-Jacobi map

The points that are exempt from the claim are the points at infinity, y-infinite points and
critical points, of which there are fininitely many. The factor c(f, xP) comes from the
minimum of the values r = r(γ,L) (see §4.7.2) for the (at most) two paths that have to
be integrated.

4.9.3 Integration into non-singular, critical points

Let now P = (xP , yP) be a non-singular, critical point as defined in §4.1.2. There are
several ways to compute the Abel-Jacobi map, i.e. to compute∫ P

P0

ω̄ mod Λ

for critical points and here we want to present an elegant way to solve this problem. Recall
that we have made the choice to compute with the morphism ϕx and that non-singular,
critical points for ϕx are regular points for ϕy. Therefore, we can simply integrate the
differentials with respect to the y-coordinate, i.e.∫ P

P0

a(x, y)dx =
∫ P

P0

(
a(x, y)dx

dy

)
dy

=
∫ P

P0

ã(x, y)dy =
∫ 1

−1
ã(γ̃(u))γ′(t)dt

where γ is a path in the y-plane connecting yP0 and yP , avoiding the exceptional values
L(ϕy) and

γ̃(u) = (xj(γ(u)), γ(u))

where j ∈ {1, . . . , dx} and γ̃(−1) = P0, γ̃(1) = P . If a non-singular point P is critical for
f(x, y) with respect to y, then it cannot be critical for f(x, y) with respect to x. Hence,
it will be a regular point and we can compute the Abel-Jacobi map of a regular point as
described in §4.9.2 above.

In practice, we switch variables and compute with the affine model f(y, x) = 0 instead.
Generally, xP0 and xP will not lie on the same sheet (over the y-plane), so we need the
matrix T (4.33) (corresponding to ϕy : X → P1) to move between the sheets.

If one wants to compute the Abel-Jacobi map for all non-singular, critical points of ϕx,
then the easiest solution is to execute the whole period matrix computation for ϕy, apply-
ing the algorithms described previously in this chapter. Once this is done we comfortably
obtain the corresponding values using just a few extra integrations. As demonstrated in
Section 4.8, our algorithms are quite fast, so this is a competitive approach for computing
the Abel-Jacobi map of critical points to high precision.

4.9.4 Moving points by strong approximation

Here we describe a method that reduces the computation of the Abel-Jacobi map of non-
regular points (with respect to the affine model) back to regular points, similar to §4.9.3.
In fact, this is an application of Theorem 2.1 (the approximation theorem) or, alternatively,
of Chow’s moving lemma.

Although we can, in theory, avoid any finite set of points on X, this approach is
particularly interesting for points at infinity, y-infinite points and finite singular points of
the affine curve (see §4.1.2).

For this computation we rely heavily on our defining polynomial f ∈ K[x, y] being
defined over a number field. As for the holomorphic differentials in Section 4.2, we utilize
the function field functionality of magma here. Recall that the kernel of the Abel-Jacobi
map consists of the principal divisors on the Riemann surface and therefore, for any

109

4.9. Computing the Abel-Jacobi map Chapter 4

meromorphic function b ∈ C(X) in the function field and any divisor D ∈ Div(X), we
have that

A(D,P0) ≡ A(D + div(b), P0) mod Λ .
We can utilize this to move unwanted points out of the divisor D by adding a suitable
principal divisor D0 and then compute A(D +D0, P0) instead.

For this we switch to the K-rational function field K(C) of the smooth projective curve
C/K to which X = C(C) is associated. Let Q0 ∈ K(C) denote the place, usually of degree
m, in the function field corresponding to the base point P0 = (x0, y1(x0))>X . Here we
have to choose x0 ∈ K (we may even choose x0 ∈ Z without loss of generality). Further,
let Q ∈ K(C) be a place of degree deg(Q) = 1 that corresponds to a point P ∈ X for
which we want compute the Abel-Jacobi map indirectly (a point at infinity Q ∈ ϕ−1

x (∞),
a y-infinite points or a finite singular point of Cf ; essentially the cases that we have not
already covered in this section). Moreover, denote by S the set of all of places in K(C)
that correspond to points (on the Riemann surface) which we want to avoid, including Q.

Note that we can only avoid points P ∈ X for which ϕx(P) ∈ P1(K), i.e. there exists
a place Q ∈ K(C) lying over the corresponding place P ′ ∈ C(C). In practice, this does
not pose a problem since our defining polynomial f is defined over K, so all exceptional
values are defined over K.

The following algorithm was suggested by Florian Hess and computes a suitable ratio-
nal function b ∈ K(C) such that div(b) = D0. The algorithm that magma uses for the
computation of Riemann-Roch spaces is also due to Florian Hess [45].

Algorithm 4.9.4. [Strong approximation] For a finite set of places S and a place Q ∈ S,
this algorithm computes a rational function b ∈ K(C) such that supp(div(b)) ∩ S = {Q}
and vQ(div(b)) = −1.

(1) Define the divisor D ← −
∑

S∈S\{Q} S.

(2) While D is special, add Q0 to it, i.e. D ← D + k ·Q0 for some k ≥ 0.

(3) Compute the Riemann-Roch space L(D).

(4) For S ∈ S do

(4.1) Compute the Riemann-Roch space L(D + S).
(4.2) Compute a generator bS ∈ K(C) of the quotient space L(D + S)/L(D).

(5) Return b =
∑
bS .

Correctness

Proof. Recall from Definition 2.3.2 that for a non-special divisor we have that l(D) =
dim(L(D)) = deg(D) + 1 − g. Repeatedly adding Q0 to D will make D non-special, at
latest when deg(D) > 2g−2. If D is non-special, then so is D+S and since deg(D+S) =
deg(D) + 1 we know that L(D + S)/L(D) is a 1-dimensional K-vector space that is
generated by the class of any element bS ∈ L(D + S) \ L(D). In particular, we have that

div(bS) +D 6≥ 0 and div(bS) +D + S ≥ 0 ,

which implies that for every S ∈ S we have

vT (bS) =


= 0, if T = S 6= Q,
≥ 1, if T 6= S 6= Q,
= −1, if T = S = Q,
≥ 0, if T 6= S = Q.

110

Chapter 4 4.9. Computing the Abel-Jacobi map

Using the strict triangle inequality for valuations yields that for b =
∑
bS and T ∈ S

vT (b) = min
S∈S
{vT (bS)} =

{
0, if T 6= Q,
−1, if T = Q,

as claimed.

Suppose we want to calculate the Abel-Jacobi map of a point P ∈ X that corresponds
uniquely to a place Q ∈ K(C), i.e. deg(Q) = 1. Then, we can now use Algorithm 4.9.4 to
obtain a rational function b ∈ K(C) such that

supp(Q+ div(b)) ∩ S = ∅ ,

for a finite set S of places of K(C) that we want to avoid.
Now, we can translate the function field places appearing in the divisor D = Q+div(b)

to regular points on X using the magma function ’Conjugates’. Thus, we reduced the
problem of computing Abel-Jacobi map A(P, P0) to the cases described previously in this
section. One major advantage of this approach is that the representation of points at
infinity and singular finite points is taken care of by the function field and that we can
easily access them, for example by applying the function ’Poles’ to x or y for infinite points
or applying ’Zeros’ to the minimal polynomial of the x-coordinate of finite singular points.

Example 4.9.5. We consider the example of the Riemann surface X of genus g = 2
defined by the affine equation f7 = 0 where

f7 = −x7 + 2x3y + y3 ∈ Q[x, y] .

This example has already been considered by Frauendiener and Klein in [35]. It is particu-
larly interesting, because the affine curve Cf7 is singular at (0, 0) and its projective closure
is singular at the point at infinity [0 : 1 : 0]. If we choose the base point P0 = [−2,−6.0855]
and apply the algorithms of this chapter with respect to the ordering >X , we see that
xP = 0 is a branch point with local monodromy (1, 3) and ∞ is a branch point with local
monodromy (1, 3, 2). In the function field, as computed by magma, the point (0, 0) splits
up into 2 points, represented over Q by the places

P1 = (x, (x4 − 1/2y2)/x3), P2 = (x, (x3 + x2y + 1/2y2)/x3),

while the point at infinity is represented by the place

P∞ = (1/x, y2/x5),

and they all have degree one. We can hence use Algorithm 4.9.4 to find suitable princi-
pal divisors that help us compute the Abel-Jacobi map. In the first step, we apply the
algorithm with S = {P1, P2, P∞} and Q = P∞ and obtain the function

b∞ = x3y + 2x3 + 2y2

x5 + 4x4 + 4x3 with divisor div(b∞) = −P∞ − 2Q0 + P3

and P3 = (x7 +8x5−4x4 +4x3 +8, 1
33 (−4x6−2x5−33x4 +16x3−8x2−4x+33y−2)) corresponds

to 7 regular points on X. Knowing the Abel-Jacobi map for P∞ already, we can apply Algorithm
4.9.4 with S = {P1, P2} and Q = P2 and obtain the function

b2 = (x2 + y)/(x3 + 2x2)

with divisor
div(b2) = −P2 + 2P∞ −Q0 + (x2 + x+ 2,−x+ y − 2)

111

4.9. Computing the Abel-Jacobi map Chapter 4

which allows us to obtain A(P2, P0) by computing A for the 2 regular points. In the last step we
take as input S = {P1} and Q = P1, resulting in

b1 = (2x3 + y2)/(x5 + 2x4)

with divisor
div(b1) = −P1 + P∞ −Q0 + 3P2 .

Thus, recursively applying Algorithm 4.9.4 shifts the problem of computing A for P∞, P1, P2 to
computing it for 9 regular points on X, which is a great trade-off.

For the sake of comparing this method with adaptive double-exponential integration in §4.9.5,
we give the corresponding values as elements of (R/Z)4:

A(P∞, P0) ≡
(
0.2857577928 0.09753205101 0.2857577928 −0.1950641020

)T
,

A(P1, P0) ≡
(
0.4857577928 0.4975320510 0.4857577928 0.004935897980

)T
,

A(P2, P0) ≡
(
−0.3142422072 −0.1024679490 −0.3142422072 0.2049358980

)T
.

Constant field extension We can easily find cases where unwanted points do not
correspond to places of degree 1 in the function field K(C). Suppose P ∈ X is a point
that corresponds to a place Q of degree k > 1 in K(C). In order to successfully apply
Algorithm 4.9.4, we have to compute the residue class field K̃ at Q and extend the constant
field of K(C) accordingly. In the field K̃(C) there will be at least two places, say Q1 and
Q2, corresponding to the point P , one of them having degree one, say Q1. If Q1 does not
correspond to P , we repeat this process with the residue class field of K̃(C) at Q2, until
we found the correct place (at most k − 1 times). The set S has then to be chosen as
subset of places of the final field extension and will become larger than before.

Example 4.9.6. Take for example any hyperelliptic curve C : y2 = p(x) of even degree
such that the leading coefficient cp of p(x) ∈ Q[x] is not a square in Q. The projective
closure C has two points at infinity that are singular and both correspond to one place at
infinity P∞ of degree 2 in the function field Q(C). Extending the constant field from Q
to the number field K = Q[t]/(t2 − cp) solves the problem here, as each of the points at
infinity will correspond to a unique place of degree 1 in the function field K(C) and we
can apply our algorithm for strong approximation.

Complexity We will not try and analyze the complexity of Algorithm 4.9.4 as it is an
exact calculation and does not depend on the precision. Nonetheless, we remark that the
algorithm becomes quickly impractical whenever the set S becomes too large. In theory,
we could also use this algorithm for the Abel-Jacobi map of critical points, but in practice
there are way too many of them. The set of finite singularities and points at infinity is
usually small and thus well-suited for Algorithm 4.9.4. Another problem arises when the
number fields involved are too complicated and arithmetic operations in the number field
becomes costly. However, the version of the algorithm presented here is just a first sketch
and could be heavily optimized.

4.9.5 Adaptive double-exponential integration

An alternative way of computing the integrals (4.32) for all P = (xP , yP) lying over an
exceptional value xP = xi ∈ L simultaneously is (brute force) numerical integration using
the double-exponential method as a non-rigorous, adaptive scheme as explained in §3.4.1.

As for regular points (§4.9.2) we easily find a path from x0 to xP by following the
closed path γi that encircles xi (and has been constructed for the fundamental group)

112

Chapter 4 4.9. Computing the Abel-Jacobi map

starting from x0 up to the starting point x̃ of the full circle and append a line segment
γ = [x̃, xi] of length ri. Therefore, the only integral matrix left to compute is∫

γ
ω̄ where γ(1) = xi ∈ L is an exceptional value.

If ω = a(x, y)dx ∈ Ω1(X) is a holomorphic differential, then the definite integral∫ 1

−1
a(γ̃(u))γ′(u)du (4.34)

is well-defined (its value is a complex number), but the integrand a(γ̃(u)) cannot be
evaluated at the end point u = 1 since |a(γ̃(u))| → ∞ for u → 1. These end point
’singularities’ are not integrable, but ’polynomial’ in the sense that a(x, y) is a rational
function and its denominator approaches infinity polynomially as u tends to 1.

Nonetheless, we can integrate (4.34) with the double-exponential integration scheme,
as presented in §3.4.1, if

• for every step length h > 0 we compute N such that |w`a(γ̃(u`))γ′(u`)| � e−D for
` > N ,

• we start with sufficiently high precision D̃ � D such that tanh(λ sinh(Nh)) < 1,

• and a(γ̃(uN))γ′(u) < eD̃ .

In this way we can still evaluate a(γ̃(uN))γ′(uN) in magma to precisionD. If xi is a branch
point the distance between at least two of them values in the discrete lifts γ̃(u) approaches
zero as u → 1. Similarly, if xi is a root of the leading coefficient a0(x), at least one of
these values tends to infinity as we approach the end point of γ. Consequently, analytic
continuation using Algorithm 4.5.1 becomes problematic as the condition for guaranteed
convergence (4.13) is no longer satisfied in a neighborhood of xi. Although performing
analytic continuation using Algorithm 4.5.1 to precision D̃ without checking condition
(4.13) still works sufficiently well for most examples, it is no longer certified. Moreover,
we will identify the continued fiber at the last abscissa γ̃(uN) (where all values of y(x) are
still different) with the ordering >X , so that we can assign a permutation σγ ∈ Sym(m)
to that path.

Points at infinity Similarly to finite points, we compute the Abel-Jacobi map for all
points lying over x = ∞ ∈ P1. Without loss of generality we can assume that we have
chosen the ’left’ base point (§4.3.1) such that Re(x0) < 0. Then a path from x0 to ∞,
which avoids exceptional values, is simply given by (4.12)

γinf : u 7→ 2x0
(1− u) and γ′inf : u 7→ 2x0

(1− u)2 (4.35)

and we can compute ∫ 1

−1
a(˜γinf(u))γ′inf(u)du (4.36)

by adaptive double-exponential integration (§3.4.1), using Algorithm 4.5.1 (without con-
vergence condition) for heuristic analytic continuation. We run into similar problems as
for finite exceptional values, because the values of |γinf(u)| and |γ′inf(u)| at the last ab-
scissa u = uN are quite big and we have to counteract this by choosing D̃ � D to prevent
precision loss. Again, we assign a permutation σγinf by identifying ˜γinf(uN) with >X .

113

4.9. Computing the Abel-Jacobi map Chapter 4

Extending the ordering Using adaptive double-exponential integration, we are able to
compute an integral matrix

∫ xP
x0

ω̄ ∈ Cg×m for every xP ∈ P1. The method is completely
heuristic and relies on the double-exponential decay of the weights {wl} to control the
polynomial growth of the integrand towards the end point. It works perfectly well in
practice, even for difficult examples, but it is hard to determine what integrals we have
actually computed. Recall that we introduced the ordering >X on X that numbers the
sheets uniquely from 1 tom above the base point x0 and thus for all regular points. For the
Abel-Jacobi map we need to artificially extend that ordering to other points as well. Points
on X that are in one-to-one correspondence with a pair (x, y) ∈ C2 do not pose a problem
here. Even if the fiber above x has less thanm values, we can extend it to a list ofm values
(some of which occur repeatedly) and then order it with respect to the ordering >X . This
ordering is not unique, but we still get the correct value of the integral (4.9.3) modulo the
period lattice (the Abel-Jacobi map is computed up to homology). Real problems arise
when one wants to compute the Abel-Jacobi map of points that cannot be represented
using an (x, y) pair, namely infinite points or singularities (finite or infinite). Instead, we
can take as input a pair (x, s) where x ∈ C ∪ {∞} and s ∈ {1, . . . ,m} and identify with
this pair the s-th column of the integral matrix

∫ x
x0
ω̄ + T mod Λ ∈ (R/Z)2g×m which

defines a unique element in Jac(X).

Example 4.9.7 (cont.). In Example 4.9.5 we computed the Abel-Jacobi map for the two
points P1 and P2, that lie on X : f7 = 0 above the finite singular point (0, 0), and the
point at infinity P∞, by moving these points out of the support, using suitable principal
divisors. We want to compare this with the results we get from applying adaptive double-
exponential integration, as described above, to a path from x0 to 0 and an infinite line γinf
with x0 = −2. Performing the integration, we obtain

∫ 0

x0

ω̄ + T ≡


−0.3142422072 0.4857577928 −0.3142422072
−0.1024679490 0.4975320510 −0.1024679490
−0.3142422072 0.4857577928 −0.3142422072
0.2049358980 0.004935897980 0.2049358980

 ∈ (R/Z)4×3 ,

∫ ∞
x0

ω̄ + T ≡


0.2857577928 0.2857577928 0.2857577928
0.09753205101 0.09753205101 0.09753205101
0.2857577928 0.2857577928 0.2857577928
−0.1950641020 −0.1950641020 −0.1950641020

 ∈ (R/Z)4×3 .

The double-exponential integration neither knows a representation of the points lying
above 0 (or ∞), nor their properties. After adding the change of sheet matrix T (4.33)
and reducing modulo the period lattice, we see that the results of the integration reflect the
actual situation. There are two different points P1 and P2 that lie over 0 (corresponding to
two different values ofA), while the sheets 1 and 3 are glued together (the local monodromy
at 0 is (1, 3)). Similarly, integrating γinf on allm = 3 sheets leads to equal values modulo Λ
indicating that there is only one point at infinity (in fact, the local monodromy at infinity
is (1, 3, 2)). Furthermore, all the values agree with the values from Example 4.9.5 which
were obtained by a completely different technique.

4.9.6 Reduction modulo the period lattice

For the Abel-Jacobi map to be well-defined, we have to reduce the vector integrals in
Cg modulo the period lattice Λ = ΩZ2g, where Ω = (ΩA,ΩB) is a big period matrix,
computed as explained in Section 4.8.

Let v =
∫ Q
P ω̄ ∈ Cg be a vector obtained by integrating a basis of Ω1(X). We identify

Cg and R2g via the bijection

ι : v = (v1, . . . , vg)T 7→ (Re(v1), . . . ,Re(vg), Im(v1), . . . , Im(vg))T .

114

Chapter 4 4.9. Computing the Abel-Jacobi map

Applying ι to the columns of Ω yields the invertible real matrix

ΩR =
(

Re(ΩA) Re(ΩB)
Im(ΩA) Im(ΩB)

)
∈ R2g×2g.

Now, reduction of v modulo Λ corresponds bijectively to taking the fractional part of
Ω−1
R ι(v)

v mod Λ↔ bΩ−1
R ι(v)e.

Complexity Reduction modulo the period lattice requires one initial 2g × 2g matrix
inversion to obtain Ω−1

R and afterwards one matrix multiplication for each vector that we
need to reduce. Both can be done using O(gη) multiplications of precision D numbers.

4.9.7 Strategy for the Abel-Jacobi map

Let us briefly summarize our strategy for the Abel-Jacobi map here; suppose we want to
compute the integral vector

∫ P
P0
ω̄ for P ∈ X.

• If P is a finite, regular point we simply integrate as explained in §4.9.2.

• For all non-singular, critical points we may use the approach of §4.9.3. This is a
good idea whenever computing with the morphism ϕy : X → P1 is not much harder
than computing with ϕx.

• For all other points (this includes points at infinity, y-infinite points and singular
points) that correspond to a place of small degree in the function field, we may
apply our algorithm for strong approximation (see §4.9.4). This is particularly useful
whenever P corresponds to a place of degree one and the set containing all ’bad’
places is rather small.

• In the case where none of the aforementioned methods work, we can still apply
adaptive (DE) integration (see §4.9.5) to obtain the integrals by means of numerical
integration. This method works surprisingly well in practice, even for high genus, and
is more or less independent of the geometry of the Riemann surface. The downside
here is that this approach is, by its nature, completely heuristic.

4.9.8 Alternatives

Symbolic integration A promising way of computing the Abel-Jacobi map, in partic-
ular of critical points and points at infinity, are Puiseux series expansions. We discuss this
possibility in more detail in Section 4.11.

Cauchy formula In their latest work [37] on compact Riemann surfaces, Frauendiener
and Klein present a very nice approach for computing the Abel-Jacobi map that uses the
Cauchy-formula for evaluation at critical and infinite points. They use Clenshaw-Curtis
integration for the period matrix computation and compute the spectral coefficients for
each differential and for each lift of each circle corresponding to a exceptional value. In
this way, they can expand the integrands in terms of Chebyshev polynomials and obtain
integrals along segments of these circles or in the interior by term-wise integration. This
approach is very elegant and it avoids many of the problems that come with computing
the Abel-Jacobi map above exceptional values and points at infinity. However, the authors
rely heavily on the fact that they compute within a fixed precision environment on several
occasions: they choose the same radius for all circles and take the same (fixed) number
of abscissas N for all integrals. Thus, it is highly questionable whether generalizing their

115

4.10. Precision issues Chapter 4

approach to an arbitrary precision setting would be very efficient, especially because com-
puting the spectral coefficients would involve multiplication of matrices of precision D and
dimension N×N . Moreover, choosing the same number of nodes for every integration (i.e.
letting N be governed by the worst integral) seems like a horrible idea for a multi-precision
implementation, while choosing different values of N would necessitate computing even
more spectral coefficients.

4.10 Precision issues

In a multi-precision setting, knowledge about the size of the numbers appearing during
the period matrix algorithm is indispensable to guarantee that the output is correct up to
the requested precision D > 0. As already stated in §1.3, we will not take into account
precision loss due to rounding errors or cancellation. Therefore, we cannot certify that the
output is correct to the required precision, but this could be done using ball arithmetic.
Heuristic estimates for the quality of the output were described in §4.8.1 and work perfectly
well in practice.

Taking into account all predictable precision loss, we require D̃1(ϕx) (4.40) extra digits
for analytic continuation and D̃2(ϕx, ω̄) (4.42) extra digits for evaluating the differentials.
Consequently, if we increase the internal precision from D to D̃ = D + max(D̃1, D̃2)
we can avoid precision loss caused by overflow occurring in the period matrix algorithm
(Algorithm 4.8.1). In particular, we show that D̃1 and D̃2 are independent of the precision
D, i.e. D̃ −D = O(1), as we heuristically assumed in §1.3.

These estimates can easily be modified for the computation of the Abel-Jacobi map
as described in Section 4.9 (in the case of adaptive double-exponential integration §4.9.5
this cannot be done rigorously).

4.10.1 Bounding sizes of numbers

We want to find an upper bound for the absolute values of the complex numbers x, y ∈ C
that will occur during our computations. This part is particularly important for the
analytic continuation (see Section 4.5) of the paths making up the fundamental group (see
Section 4.3). After embedding the coefficients of our defining polynomial f(x, y) into the
complex numbers, we are interested in bounding the values |yj(x)| for j ∈ {1, . . . ,m} in
terms of |x|, see also [53, §2]. For this we view f as a univariate polynomial in yj(x), i.e.
the affine equation for X as

f(x, yj(x)) =
m∑
k=0

ak(x)yj(x)m−k = 0.

Denote by L0 := { z ∈ C | a0(z) = 0 } ⊂ L the set of zeros of the leading term a0(x) with
respective multiplicities νz. For all x ∈ C such that dist(x,L0) > 0, we can bound |yj(x)|
by [53, Lemma 2.5] in terms of the coefficients

|yj(x)| ≤ 2 max
{∣∣∣∣ak(x)
a0(x)

∣∣∣∣ 1
k

| k = 1, . . . ,m
}
.

Moreover, we bound the values of the polynomials ak(x) =
∑nk

i=0 akix
i ∈ C[x] from above

by the triangle inequality

|ak(x)| ≤
∑
i

|aki| |x|i ≤
nk∑
i=0
|aki| |Bx|i =: Ak for all |x| ≤ Bx

116

Chapter 4 4.10. Precision issues

where Bx > 0 is some constant, and a0(x) from below by

|a0(x)| = |a0n0 |
∏
z∈L0

|x− z|νz ≥ |a0n0 | ρn0 for all dist(x,L0) ≥ ρ > 0

such that we obtain

max
j=1,...,m

|yj(x)| ≤ 2 max
{(

Ak
|amnm | ρnm

) 1
k

| k = 0, . . . ,m− 1
}

=: By (4.37)

for all |x| ≤ Bx and dist(x,L0) ≥ ρ. Practical values for Bx and ρ emerge from the choices
we made for the paths making up the fundamental group which are given in §4.3, namely

Bx := max
x∈L
|x|+ 1/4 (4.38)

and
ρ := min{ ri | xi ∈ L0 }

where the ri are the radii chosen for the arcs and circles, see §4.3.1. Now, we can take into
account the size of the numbers x, y ∈ C that satisfy our affine equation and will appear
in Algorithm 4.5.1 by increasing the internal precision from D to D + D̃1 where

D̃1 := dlog(max{By, A0, . . . , Am})e . (4.39)

Besides the choices we get to make, Bx and By depend mainly on the quantities

max{ |x| | x ∈ L} and min{ dist(x,L \ {x}) | x ∈ L}

which are completely determined by the choice of the morphism ϕx : X → P1 (this includes
the coefficients of the defining polynomial f(x, y)). Henceforth, we denote

D̃1(ϕx) := D̃1 (4.40)

4.10.2 Bounding differentials

The second source of predictable precision loss that cannot be neglected may appear during
numerical integration of the differentials∫

γ̃
ω =

∫
γ̃
a(x, y)dx =

∫ 1

−1
a(γ̃j(u))γ′(u)du

which was the topic of Section 4.7. This is closely connected to the bound M (§4.7.2)
or the bounds M1 and M2 (§4.7.2) respectively. In the case of double-exponential (DE)
integration, the bound M1 = M1(γ, ω̄) (4.30) is exactly the value we seek as it bounds the
integrand on the interval [−1, 1]. We can thus take into account the predictable precision
loss by defining

D̃2 := dlog(max{M1(γ1, ω̄), . . . ,M1(γ3n−2, ω̄)}e (4.41)

where the γi are the 3n − 2 path pieces that make up the fundamental group computed
by Algorithm 4.3.1.

In the case of Gauss-Legendre (and Clenshaw-Curtis) quadrature, the value of M =
M(γ, ω̄, r) bounds the differentials on the ellipse εr. Then, by the maximum modulus
principle for holomorphic functions, M bounds the differentials on the interval [−1, 1] as
well, since it is contained in the ellipse εr. So we simply adapt the definition of D̃2 with
M1 = M in that case. Usually, the bound M on the ellipse will be much worse than on

117

4.11. Symbolic integration Chapter 4

the interval [−1, 1], so if we want to choose D̃2 optimally, we would have to compute M1
separately as required for (DE) integration.

The value of D̃2 depends on the morphism ϕx : X → P1 and the basis of differentials.
Therefore, we write

D̃2(ϕx, ω̄) := D̃2 . (4.42)
We already mentioned in Section 4.7 that we cannot rigorously compute such bounds in

the current state of the magma implementation, but they can be computed, for example,
by using ball arithmetic as explained in §4.7.2. Note that the heuristics that we discussed
in Section 4.7 reliably prevent precision loss in practice.

4.11 Symbolic integration
In this section we want to give a quick survey on an alternative way of integrating dif-
ferential forms that is fundamentally different from numerical integration, as presented
in Section 4.7. This approach is particularly useful when we want to integrate in the
neighborhood of exceptional values.

Suppose, as before, that our Riemann surfaceX is given by an affine equation f(x, y) =
0 and that we project onto the x-coordinate using the morphism ϕx : X → P1. The fiber
ϕx
−1(x̃) has less than m = deg(ϕx) elements for critical values x̃ (see §4.1.2). Above

branch points the sheets of the Riemann surface are glued together and we cannot separate
them easily. For singular points of the affine curve Cf : f = 0 it is even worse, as their
coordinates may not even correspond to points on the Riemann surface. However, we can
desingularize Cf locally by the transformation

x(t) = te + x̃ with derivative dx = ete−1dt (4.43)

where e is the least common multiple of the ramification indices of the points lying over
x̃. Afterwards, we can expand y(x) = (y1(x), . . . , ym(x)) in terms of the local parameter
t as Laurent series

yj(t) =
∞∑
i=i0

ai,jt
i ∈ C((t)) for some i0 ∈ Z and j = 1, . . . ,m. (4.44)

For the point at infinity ∞ ∈ P1
C we can use the transformation

x(t) = t−e with derivative dx = −et−(e+1)dt

and then expand y(t) as Laurent series (4.44). If we transform back via

t(x) = (x− x̃)
1
e or t(x) = x−

1
e respectively,

then yj(t(x)), j = 1, . . . ,m are exactly the Puiseux series expansions of y(x) around x̃ (we
refer the reader to [96] for a general introduction). The most common algorithm that is
used to compute these expansion is called the Newton-Puiseux algorithm. The radius of
convergence of these series is ρ = dist(x̃,L\{x̃}), the distance to the nearest critical value
(see [73, Lemma 1]). Consequently, in a disc D(x̃; ρ) of radius ρ around x̃, the functions
yj(t(x)) are analytic. Thus, for any path γ : [−1, 1]→ D(x̃; ρ) the lifts of γ to the Riemann
surface are given by

γ̃j = {(x, yj(t(x))) | x ∈ γ([−1, 1])} ⊂ X.

Similar to Algorithm 4.5.1 these Puiseux series expansions can be used to determine
the discrete lifts to precision D, as described in Section 4.5. Assume that for the series
yj(t) we have i0 ≥ 0 (this is true whenever x̃ 6= ∞ or x̃ 6∈ L0) and denote by yNj (t)
the series truncated at i = N . The following Proposition provides an error term for the
evaluation of this truncated series:

118

Chapter 4 4.11. Symbolic integration

Proposition 4.11.1. Let β =
(
|x−x̃|
ρ

) 1
e
< 1 and maxx∈D(x̃,ρ) |yj(t(x))| ≤M . Then, for

N + 1 ≥ D + log(M)− log(1− β)
− log(β) we have

∣∣yj(t(x))− yNj (t(x))
∣∣ ≤ e−D . (4.45)

Proof. See [74, Proposition 34].

It follows that, asymptotically, we need to compute N = O(D) terms of the series
expansions yj(t) if we want obtain the fiber y(x) to precision D in a neighborhood of x̃.
From equation (4.45) we can exhibit that the distance |x− x̃| and the radius of convergence
ρ strongly influence the value of N .

4.11.1 Integration of differentials

Suppose now that we want to integrate a holomorphic differentials ωi = ai(x, y)dx ∈ Ω1(X)
along the line segment γ : [x̃, z] with z ∈ D(x̃, ρ) ⊂ C on all sheets j ∈ {1, . . . ,m}
simultaneously, i.e. we compute the integral matrix (4.24). Using the parametrizations
(4.43) for x(t) and (4.44) for y(t), we get

∫
γ
ωi =

∫ z

x̃
ai(x, y)dx = e

∫ (z−x̃)
1
e

0
ai(x(t), yj(t))te−1dt = e

∫ (z−x̃)
1
e

0
ãi,j(t) dt (4.46)

where ãi,j ∈ C[[t]] is now a power series and can be integrated term-wise. For evaluation at
t(z) we can simply choose the principal branch of the e-th root. Once we have computed
the power series ãi,j for every i = 1, . . . , g and j = 1, . . . ,m we obtain the matrix (4.24) by
symbolic integration for every z ∈ D(x̃, ρ). Thus, we can use Puiseux expansions above a
exceptional value x̃ ∈ L for symbolic integration of holomorphic differentials. This could,
for example, replace numerical integration along arcs and circles around exceptional values
that were used for the period matrix algorithm and the Abel-Jacobi map.

The big advantage here is that every power series ãi,j ∈ C[[t]] (for each sheet and each
differential) needs to be computed only once for the period matrix; we can then obtain
the Abel-Jacobi map in the neighborhood of exceptional values at almost no additional
cost by simply evaluating the corresponding series.

4.11.2 Practical issues and experiments

The approach that we indicated in the previous paragraph sounds very nice in theory, but
there are some serious practical issues that would have to be overcome.

We experimented in magma with a Puiseux series algorithm, due to Florian Hess,
that computes the Laurent series (4.44) exactly as introduced in this section reliably for
any x̃ ∈ P1, in the function field setting where f ∈ K[x, y] is defined over a number
field K. The drawback is that arithmetic in the number fields that occur during this
computation becomes very costly and it is not suited to compute O(D) terms of such
series. It would be interesting to optimize this by splitting up this algorithm into two
parts: the exact part (computing the singular part of the Puiseux series) could be done
over number fields, while expanding the series could be done over the complex numbers
using Newton-iteration (in this way any algebraic function f(x, y(x)) can be computed
in O(mN logN) if we use the FFT for polynomial multiplication [54]). Sadly, further
investigation of this interesting approach was beyond the scope of this thesis. However,
we implemented symbolic integration of differentials, as described in §4.11.1, and numerical
experiments have shown that this approach does work, at least for simple examples and
small precisions (we tested up to genus 4 and precision 50).

119

4.12. Outlook Chapter 4

As suggested by Proposition 4.11.1, we want a small value β and large value of ρ,
so it is important to expand above exceptional values and evaluate the series quite close
to them such that N stays reasonably small. Naturally, this limits the method to small
neighborhoods of exceptional values. Moreover, as experiments have indicated, once the
rational functions ai(x, y) become more involved, computing the series approximations
ãNi,j (4.46) is a numerical nightmare due to severe cancellation errors caused by evaluating
polynomials at truncated Laurent series with O(D) terms. It is questionable whether this
problem can be solved, for example by careful and thorough implementation.

4.11.3 Existing work

In the context of compact Riemann surfaces, Puiseux series expansions possess a wide
range of applications and have been utilized by many authors before.

• In their paper [24], Deconinck and Patterson actually compute the Abel-Jacobi map
above exceptional values in maple ’by computing series approximations of the holo-
morphic differentials’ [24, Section 3.3], but they say nothing about precision issues
or truncation orders of these series approximations or how they are computed.

• Frauendiener and Klein [35] use Puiseux series in their matlab implementation for
the computation of holomorphic differentials. Due to the finite precision arithmetic
in matlab, they quickly run into the expected precision issues, so they do not even
attempt to actually perform symbolic integration, but switch to another method
in [37] for the Abel-Jacobi map, see §4.9.8.

• In his thesis [74] Poteaux gave a symbolic-numeric algorithm for Puiseux expansions
above critical values for plane algebraic curves defined by f ∈ Z[x, y]; the algorithm
is implemented in maple and seems to work quite well in practice. Poteaux was
not really interested in high precision evaluation of Puiseux expansions (see [73]),
simply because he aimed at computing monodromy representations. He uses Puiseux
expansions for analytic continuation which can be done at low precision. Nonetheless,
it would be interesting to see whether his algorithm could be used for symbolic
integration.

• An entirely different approach is given by Chudnovsky & Chudnovsky in their papers
[17] and [18]. They describe an algorithm that computes Puiseux series expansions
using differential equations. They focus on high precision evaluation and claim a
complexity of O(mN) for computing the first N terms. Having such an algorithm
at our disposal would certainly be advantageous.

• Duval [31] gave an algorithm for rational Puiseux expansions, that is implemented
in magma. Since the exceptional values in our situation are generally not rational
numbers, this is not really helpful.

4.12 Outlook

Throughout this chapter we mentioned possible extensions to our algorithms and methods
and discussed different approaches. In this final section, we briefly summarize the most
important improvements that could be realized in the future.

Extension to inexact defining polynomials It would certainly be nice to extend
our algorithms to Riemann surfaces defined by irreducible polynomials f ∈ C[x, y] over
the complex numbers. In particular, this requires computing the holomorphic differentials

120

Chapter 4 4.12. Outlook

without using magma’s function fields, as discussed in Section 4.2. Besides that only minor
adjustments would have to be made for our period matrix algorithm to work. Another
downside is that we could no longer use Algorithm 4.9.4 to avoid unwanted points for
the Abel-Jacobi map, but there are several other options available that were discussed in
detail in Section 4.9.

Rigorous implementation We already mentioned (§4.7.2, §4.7.4) that numerical in-
tegration of differential forms can be made rigorous, once ball arithmetic is available.
As a consequence of this, our period matrix algorithm and the Abel-Jacobi map would
become rigorous as well. This has been realized in the arb [47] implementation of our
algorithm for the superelliptic case, which is the topic of the next chapter. There is also
a recent paper [48] by Johansson where he present his arb implementation for rigorous
arbitrary-precision numerical integration.

Symbolic integration As explained in Section 4.11, an efficient algorithm for high pre-
cision Puiseux series expansions would open up new possibilites, e.g. for analytic continu-
ation, integration of differentials, the Abel-Jacobi map as well as local desingularization.
However, serious issues would have to be overcome (see §4.11.2) and it is unclear whether
this approach could offer any advantage in the range of hundred to a few thousand decimal
digits.

Integration of meromorphic differentials So far, we restricted ourselves to integra-
tion of holomorphic differentials on compact Riemann surfaces. Using our strategy for
numerical integration, described in Section 4.7, we could just as well integrate a mero-
morphic 1-form ω along paths on X that avoid the poles of ω. For example, abelian
differentials of the second kind (see [7, §1.4.2] for a definition) are of interest in math-
ematics and physics [32]. In particular, this means that we have to extend the set of
exceptional values L by the x-coordinates of the poles ω in order to compute the inte-
gration parameter r (see §4.7.2 and §4.7.3). In fact, we apply this strategy in §6.4.4 to
compute a certain meromorphic differential, that is used to define the regulator pairing
for the second K-group of algebraic curves.

121

Chapter 5

Computing period matrices & the
Abel-Jacobi map: superelliptic
case

This chapter is based on the paper ’Computing period matrices and the Abel-Jacobi map
of superelliptic curves’, that is joint work with Pascal Molin. It has been accepted by the
journal Mathematics of Computation and is available on arχiv [65]. In many instances
this chapter exceeds and refines the content of the original paper: we extended numerical
integration by Gauss-Jacobi integration (§5.5.2) and compared its performance to double-
exponential integration. Moreover, we added examples and timings for the Abel-Jacobi
map (§5.7.2). Although the author carefully integrated the content of the paper into this
thesis, it might still be noticeable that it was originally written in a very self-contained
fashion. In contrast to the Chapters 3 and 4, we will analyze the complexity of our
algorithms and methods not immediately following their appearance, but altogether in a
unified setting in Section 5.6.1.

We still address the problem of computing period matrices and the Abel-Jacobi map,
but in this chapter we restrict to the special case of algebraic curves given by an affine
equation of the form (see Definition 5.1.1)

ym = p(x), m > 1, p ∈ C[x] separable of degree deg(p) = n ≥ 3. (5.1)

They generalize hyperelliptic curves and we refer to them as superelliptic curves. Our
main results for superelliptic curves have already been summarized in §1.4.2.

We remark that there is no clear definition of superelliptic curves in the literature
and some authors will allow p to be non-separable in their definition. In this chapter, we
rely on the fact that p has no multiple roots in several places. This restriction could be
removed though, this is discussed in Section 5.8.
Remark 5.0.1 (Cyclic coverings of the projective line). Note that by [69, Theorem IV.3.2],
over a number field that contains an m-th root of unity, all cyclic coverings of P1 have a
model of the form ym = p(x) where m > 1 and each root of p has order < m. However,
requiring that p is separable imposes the restriction that the cyclic covering has to be
totally ramified at all but one branch point (which can be moved to infinity).

Rigorous implementation The algorithm (only period matrices) has been imple-
mented in C using the arb library [47]. This implementation is almost entirely due
to Pascal Molin, with minor contributions from the author’s side. This system represents
complex numbers as floating point approximations plus an error bound, and automatically
takes into account all precision loss occurring through the execution of the program. With

122

Chapter 5 5.1. Superelliptic curves

this model we can certify the accuracy of the numerical results of our algorithm, up to
human or even compiler errors.

Another implementation, that includes a fully functioning Abel-Jacobi map, has been
done in magma. Both are publicly available on github at [66].

Structure of this chapter In Section 5.1 we give a very brief introduction to superel-
liptic curves and make explicit the ingredients to obtain a period matrix, namely a basis
of holomorphic differentials and a homology basis. We give formulas for the computa-
tion of periods in Section 5.2 and explain how to obtain from them the standard period
matrices using symplectic reduction. In Section 5.3 we give explicit formulas for the inter-
section numbers of our homology basis. The actual computation of the Abel-Jacobi map
is explained in detail in Section 5.4. For numerical integration we employ two different
integration schemes that are explained in Section 5.5: the double-exponential integration
and Gauss-Jacobi quadrature, which is called Gauss-Chebychev quadrature in the special
case of in the case of hyperelliptic curves. In Section 5.6 we analyze the complexity of
our algorithm and share some insights on the implementation. Section 5.7 contains some
tables with running times to demonstrate the performance of the code. Finally, in Section
5.8 we conclude with an outlook on what could be done in the future.

5.1 Superelliptic curves

5.1.1 Definition & properties

Definition 5.1.1. A complex superelliptic curve C/C is a smooth projective curve that
has an affine model given by an equation of the form

C : ym = p(x) = cp ·
n∏
k=1

(x− xk), (5.2)

where m > 1 and p ∈ C[x] is separable of degree n ≥ 3. Note that we do not assume that
gcd(m,n) = 1.

There are δ = gcd(m,n) points P (1)
∞ , . . . , P

(δ)
∞ ∈ C at infinity, that behave differently

depending on m and n (see [85, §1] for details). In particular, ∞ ∈ P1 := P1
C is a branch

point for δ 6= m. Thus, we introduce the set of finite branch points

B = {x1, . . . , xn }

as well as the set of all branch points

B̂ =
{
B ∪ {∞}, if m - d,
B, otherwise.

(5.3)

The ramification indices at the branch points are given by ex = m for all x ∈ B and
e∞ = m

δ . Using the Riemann-Hurwitz formula (2.3), we obtain the genus of C as

g = 1
2((m− 1)(n− 1)− δ + 1). (5.4)

We denote the corresponding finite ramification points Pk = (xk, 0) ∈ C for k = 1, . . . , n.

Remark 5.1.2. Without loss of generality we may assume cp = 1 (if not, apply the trans-
formation (x, y) 7→ (x, m√cpy)).

123

5.1. Superelliptic curves Chapter 5

Remark 5.1.3. For any
(
a b
c d

)
∈ PSL(2,C), the Moebius transform ψ : u 7→ au+b

cu+d is an

automorphism of P1. By a change of coordinate x = ψ(u) we obtain a different affine
model of C given by the equation

ṽm = p̃(u)

where p̃(u) = p(ψ(u))(cu + d)`m and v = y(cu + d)` for the smallest value ` such that
`m ≥ n. If the curve was singular at infinity, the singularity is moved to u = −d/c in the
new model. This happens when δ < m (so that `m > n). When δ = m we may apply
such a transformation to improve the configuration of affine branch points.

5.1.2 Complex roots and branches of the curve

The complex m-th root

Working over the complex numbers we encounter several multi-valued functions which
we will briefly discuss here. Closely related to superelliptic curves over C is the complex
m-th root. Before specifying a branch it is a multi-valued function ym = x that defines
an m-sheeted Riemann surface, whose only branch points are at x = 0,∞, and these are
totally ramified.

For x ∈ C, it is natural and computationally convenient to use the principal branch of
the m-th root m

√
x defined by

− π
m
< arg(m

√
x) ≤ π

m

which has a branch cut along the negative real axis]−∞, 0]. Crossing it in positive
orientation corresponds to multiplication by the primitive m-th root of unity

ζ := ζm := e
2πi
m .

on the surface. In particular, the monodromy at x = 0 is cyclic of order m.

The Riemann surface

In Chapter 2 we explained the connections between the theories of Riemann surfaces,
algebraic curves and holomorphic covering maps. Here, we briefly summarize the situation
in the case of complex superelliptic curves. Over C we can identify the curve C with the
compact Riemann surface

X = C(C) .

Since our defining equation has the nice form C : ym =
∏n
k=1(x − xk) it is compelling

to do all computations in the x-plane. We denote by ϕx : X → P1 the corresponding
holomorphic cyclic ramified covering of degree m of the projective line that is defined by
the x-coordinate.

Exactly as in the general case, there are m possibilities to lift a path in x-plane to
the Riemann surface X = C(C) using analytic continuation, which is crucial for the
integration of differentials on X. Due to the cyclic structure of superelliptic curves, these
lifts are now related in a convenient way. We call a branch of C a function y(x) such that
y(x)m = p(x) for all x ∈ C. At every x, the branches of C only differ by a factor ζ l for
some l ∈ {0, . . . ,m− 1}. Thus, following a path, it is sufficient to know one branch that
is analytic in a suitable neighborhood. In the next paragraph, we will introduce locally
analytic branches very explicitly.

We obtain an ordering of the sheets relative to the analytic branches of C by imposing
that multiplication by ζ, i.e. applying the map (x, y(x)) 7→ (x, ζy(x)), corresponds to

124

Chapter 5 5.1. Superelliptic curves

moving one sheet up on the Riemann surface. The local monodromy of the covering ϕx is
cyclic of order m and equal for all xk ∈ B and the monodromy group is, up to conjugation,
the cyclic group Cm. This makes it possible to find explicit generators for the homology
group H1(X,Z) without specifying a base point, as shown in §5.1.3.

Locally analytic branches

In order to integrate differential forms on X it is sufficient to be able to follow one explicit
analytic continuation of y along a path joining two branch points a, b ∈ B.

One could of course consider the principal branch of the curve

y(x) = m
√
p(x), (5.5)

but this is not a good model to compute with: it has discontinuities along the curves
p−1(]−∞, 0]), all wandering around the x-plane in an unpredictable way (see Figure 5.1a).
These are the branch cuts of y(x), crossing them in positive direction requires multiplying
by ζ in order to follow an analytic continuation.

A better option is to split the product as follows: assume that (a, b) = (−1, 1). Then
the function

y(x) =
∏
xk∈B

m
√
x− xk (5.6)

has n branch cuts parallel to the real line (see Figure 5.1b). However, one of them lies
exactly on the interval [−1, 1] we are interested in. We work around this by taking the
branch cut towards +∞ for each branch point xk with positive real part, writing

y(x) = e
iπr+
m

∏
Re(xk)≤0

m
√
x− xk

∏
Re(xk)>0

m
√
xk − x,

where r+ is the number of points with positive real part.

(a) principal branch (5.5)

-1 1

(b) product (5.6)

a

b

(c) ya,b (5.9)

Figure 5.1: Branch cuts of different m-th roots.

In general we proceed in the same way: For branch points a, b ∈ B we consider the
affine linear transformation

xa,b : u 7→ b− a
2

(
u+ b+ a

b− a

)
,

which maps [−1, 1] to the complex line segment [a, b], and denote the inverse map by

ua,b : x 7→ 2x− a− b
b− a

.

We split the image of the branch points under ua,b into the following subsets

{ua,b(x) | x ∈ B } = {−1, 1 } ∪ U+ ∪ U−, (5.7)

125

5.1. Superelliptic curves Chapter 5

where points in U+ (resp. U−) have strictly positive (resp. non-positive) real part.
Then the product

ỹa,b(u) =
∏

uk∈U−

m
√
u− uk

∏
uk∈U+

m
√
uk − u (5.8)

is holomorphic on a neighborhood εa,b of [−1, 1] which we can take as an ellipse (such a
neighborhood has been exhibited in 3.1) containing no point uk ∈ U− ∪ U+, while the
term corresponding to a, b

m
√

1− u2

has two branch cuts]−∞,−1] and [1,∞[, and is holomorphic on the complement U of
these cuts.

We can now define a branch of the curve

ya,b(x) = Ca,b ỹa,b(ua,b(x)) m

√
1− ua,b(x)2 (5.9)

by setting r = 1 + #U+ mod 2 and choosing the constant

Ca,b =
(
b− a

2

) n
m

e
πi
m
r (5.10)

such that ya,b(x)m = p(x) (any choice of the m-th root is valid here).
The function ya,b(x) has n branch cuts all parallel to [a, b] in outward direction and is

holomorphic inside]a, b[(see Figure 5.1c). More precisely,

Va,b = xa,b(εa,b ∩ U)

is an ellipse-shaped neighborhood of]a, b[with two segments removed (see Figure 5.2) on
which the local branch ya,b is well defined and holomorphic.

a bVa,b

Figure 5.2: Holomorphic neighborhood of ya,b.

We sum up the properties of these local branches:

Proposition 5.1.4. Let a, b ∈ B be branch points such that B∩]a, b[= ∅. Then, with the
notation as above, the functions ỹa,b (5.8) and ya,b (5.9) satisfy

• ỹa,b is holomorphic and does not vanish on εa,b,

• ya,b(x) = Ca,b ỹa,b(ua,b(x)) m
√

1− ua,b(x)2 is holomorphic on Va,b,

• ya,b(x)m = p(x) for all x ∈ C,

• ya,b(x), ζya,b(x), . . . , ζm−1ya,b(x) are the m different analytic continuations of y on
Va,b.

Moreover, we can assume that for x ∈ Va,b, applying the map (x, ya,b(x)) 7→ (x, ζ lya,b(x))
corresponds to moving up l ∈ Z/mZ sheets on the Riemann surface.

126

Chapter 5 5.1. Superelliptic curves

5.1.3 Cycles and homology

Recall that a cycle on X is a representative of a (homology) cycle class in H1(X,Z) =
π1(X)/[π1(X), π1(X)], i.e. the homotopy class of a smooth oriented closed path on X. For
simplicity we identify all cycles with their homology classes.

In the following we present an explicit generating set of H1(X,Z) that relies on the
locally analytic branches ya,b as defined in (5.9) and the superelliptic structure of X.

Let a, b ∈ B be branch points such that B∩]a, b[= ∅, where [a, b] is the oriented line
segment connecting a and b.

By Proposition 5.1.4 the lifts of [a, b] to X are given by

γ
(l)
[a,b] = { (x, ζ lya,b(x)) | x ∈ [a, b] }, l ∈ Z/mZ.

Similarly, we obtain lifts of [b, a] by reversing the orientation of γ(l)
[a,b]. We denote

−γ(l)
[a,b] = { (x, ζ lya,b(x)) | x ∈ [b, a] }, l ∈ Z/mZ.

These are smooth oriented paths that connect Pa = (a, 0) and Pb = (b, 0) on X. We obtain
cycles by concatenating these lifts in the following way:

γ
(l)
a,b = γ

(l)
[a,b] ∪ −γ

(l+1)
[a,b] ∈ π1(X). (5.11)

Definition 5.1.5 (Elementary cycles). We say γa,b = γ
(0)
a,b is an elementary cycle and call

γ
(l)
a,b its shifts for l ∈ Z/mZ.

In π1(X) shifts of elementary cycles are homotopic to cycles that encircle a in negative
and b in positive orientation, once each and do not encircle any other branch point. This
is possible because we can always find an open neighborhood V of [a, b] such that V ∩B =
{a, b} and thus the homotopy class of a cycle is not changed by deformations within V .
By definition of ya,b the branch cuts at the end points are outward and parallel to [a, b].
Thus, we have the following useful visualizations of γ(l)

a,b on X:

a b ∼ a b

Figure 5.3: Homotopic representations of a cycle γ(l)
a,b.

As it turns out, we do not need all elementary cycles and their shifts to generate
H1(X,Z), but only those that correspond to edges in a spanning tree, that is a subset
E ∈ B × B of directed edges (a, b) such that all branch points are connected without
producing any cycle. It must contain exactly n− 1 edges. The actual tree will be chosen
in §5.2.3 in order to minimize the complexity of numerical integration.

For an edge e = (a, b) ∈ E, we denote by γ(l)
e the shifts of the corresponding elementary

cycle γa,b.

127

5.1. Superelliptic curves Chapter 5

Theorem 5.1.6. Let E be a spanning tree for the branch points B. The set of cycles
Γ =

{
γ

(l)
e | 0 ≤ l < m− 1, e ∈ E

}
generates H1(X,Z).

Proof. Denote by αa ∈ π1(P1 \ B̂) a closed path that encircles the branch point a ∈ B̂
exactly once. Then, due to the relation 1 =

∏
a∈B̂ αa, π1(P1 \ B̂) is freely generated by

{αa}a∈B, i.e. in the case δ 6= m we can omit α∞. Since our covering is cyclic, we have
that

π1(X \ ϕx
−1(B̂)) ∼= ker(π1(P1 \ B̂) Φ→ Aut(X \ ϕx

−1(B̂)))

where Aut(X \ϕx
−1(B̂)) ∼= Cm ⊂ Sm and Φ(αa) is cyclic of order m for all a ∈ B. Hence,

for every word α = αs1
1 . . . αsnn ∈ π1(P1\B̂) we have that α ∈ ker(Φ)⇔

∑n
i=1 si ≡ 0 mod m.

We now claim that π1(X \ ϕx
−1(B̂)) = 〈 (−αa)sαsb, αma | s ∈ Z, a, b ∈ B 〉 and prove this

by induction on n: for α = αs1
1 , m divides s1 and therefore α is generated by αm1 . For

n > 1 we write α = αs1
1 . . . αsnn = (αs1

1 . . . α
sn−1+sn
n−1)((−αn−1)snαsnn).

We obtain the fundamental group of X as π1(X) ∼= π1(X \ ϕx
−1(B̂))/〈αeaa | a ∈ B̂ 〉,

which is generated by { (−αa)sαsb | s ∈ Z/mZ, a, b ∈ B }.
All branch points a, b ∈ B are connected by a path (a, v1, . . . , vt, b) in the spanning tree,

so we can write (−αa)sαsb = ((−αa)sαsv1)((−αv1)sαsv2) . . . ((−αvt−1)sαsvt)((−αvt)
sαsb) and

hence we have that { (−αa)sαsb | s ∈ Z/mZ, (a, b) ∈ E } generates π1(X) and therefore
H1(X,Z).

If we choose basepoints p0 ∈ P1\B̂ for π1(P1\B̂) and P0 ∈ ϕx
−1(p0) for π1(X\ϕx

−1(B̂))
and π1(X) respectively, then, depending on the choice of P0, for all e = (a, b) ∈ E there
exists l0 ∈ Z/mZ such that γ(l0)

e is homotopic to (−αa)αb in π1(X,P0). In H1(X,Z) we
have that (−αa)sαsb = ((−αa)αb)s, so we obtain the other powers by concatenating the
shifts

∏s−1
l=0 γ

(l0+l)
e = ((−αa)αb)s. This implies 1 =

∏m−1
l=0 γ

(l0+l)
e =

∏m−1
l=0 γ

(l)
e and

{ (−αa)sαsb | s ∈ Z/mZ } ⊂ 〈 γ(l)
e | 0 ≤ l < m− 1 〉,

and therefore H1(X,Z) = 〈Γ 〉.

Remark 5.1.7.

• For δ = 1, we have that #Γ = (m − 1)(n − 1) = 2g. Therefore, Γ is a basis for
H1(X,Z) in that case.

• In the case δ = m, the point at infinity is not a branch point. Leaving out one finite
branch point in the spanning tree results in only n− 2 edges. Hence, we easily find
a subset Γ′ ⊂ Γ such that #Γ′ = (m− 1)(n− 2) = 2g and Γ′ is a basis for H1(X,Z).

5.1.4 Differential forms

The computation of the period matrix and the Abel-Jacobi map requires a basis of Ω1(X)
as a C-vector space. In this section we provide a basis that only depends on m and n and
is suitable for numerical integration.
Among the meromorphic differentials

Wmer = {ωi,j }1≤i≤n−1, 1≤j≤m−1 with ωi,j = xi−1

yj
dx,

there are exactly g that are holomorphic and they can be found by imposing a simple
combinatorial condition on i and j. The following proposition is basically a more general
version of [85, Proposition 2].

128

Chapter 5 5.1. Superelliptic curves

Proposition 5.1.8. A C-basis of the space of holomorphic differentials Ω1(X) is given by

W = {ωi,j ∈ Wmer | −mi+ jn− δ ≥ 0 } where δ = gcd(m,n).

Proof. First we show that the differentials in W are indeed holomorphic. For that let
ωi,j = xi−1y−jdx ∈ Wmer. We write down the relevant divisors

div(x) =
m∑
k=1

(
0, ζk m

√
f(0)

)
− m

δ
·

δ∑
l=1

P (l)
∞ ,

div(y) =
n∑
k=1

Pk −
n

δ
·

δ∑
l=1

P (l)
∞ ,

div(dx) = (m− 1)
n∑
k=1

Pk −
(m
δ

+ 1
)
·

δ∑
l=1

P (l)
∞ .

Putting together the information, for P ∈ X lying over x0 ∈ P1, we obtain

vP (ωi,j) = (i− 1)vP (x) + vP (dx)− jvP (y) =


≥ 0, if x0 6= xk,∞,
m− 1− j ≥ 0, if x0 = xk,
(−mi−δ+jn)

δ , if x0 =∞.
(5.12)

We conclude: ωi,j ∈ Wmer is holomorphic if and only if ωi,j ∈ W.
Since the differentials in W are clearly C-linearly independent, it remains to show that
there are enough of them, i.e. #W = g.

Counting the elements in W corresponds to counting lattice points (i, j) ∈ Z2 in the
trapezoid given by the faces

1 ≤ i ≤ n− 1,
1 ≤ j ≤ m− 1,

i ≤ n

m
j − δ

m
.

j

i

1 2 3 4 5 6 7

1

2

3

Figure 5.4: The points on and below the line correspond to holomorphic differentials.
Illustrated is the case n = 4,m = 8, and thus g = 9.

Summing over the vertical lines of the trapezoid, we find the following formula that
counts the points.

#W =
m−1∑
j=1

⌊
n

m
j − δ

m

⌋
=

m−1∑
j=1

nj − δ − rj
m

= n

m

m−1∑
j=1

j − m− 1
m

δ − 1
m

m−1∑
j=1

rj , (5.13)

129

5.2. Strategy for the period matrix Chapter 5

where rj = nj − δ mod m.
The desired equality #W = 1

2((n− 1)(m− 1)− δ + 1) = g immediately follows from

Lemma 5.1.9.
m−1∑
j=1

rj = 1
2(m2 − (δ + 2)m+ 2δ).

Proof. Let l := m
δ . First we note that rj = rj+l:

rj+l = n(j + l)− δ mod m = nj + n

δ
m− δ mod m = nj − δ mod m = rj ,

and hence
m−1∑
j=1

rj = δ ·
l∑

j=1
rj − rm = δ ·

l∑
j=1

rj − (−δ +m). (5.14)

Furthermore, rj can be written as a multiple of δ:

rj = δ
(n
δ
j − 1

)
mod m.

From gcd(nδ , l) = 1 we conclude
{

(nδ j − 1) mod l | 1 ≤ j ≤ l
}

= {0, . . . , l−1}. Therefore,
we have

l∑
j=1

rj =
l−1∑
j=0

δj = δ · l(l − 1)
2 . (5.15)

Finally, equations (5.14) and (5.15) imply

m−1∑
j=1

rj = δ ·
l∑

j=1
rj + δ −m = δ2 · l(l − 1)

2 + δ −m = 1
2(m2 − (δ + 2)m+ 2δ).

Remark 5.1.10.

• Note that from equation (5.12) it follows that the meromorphic differentials inWmer

are homolorphic at all finite points.

• In practice we order the differentials in W lexicographically by j, i:

ωi,j < ωĩ,j̃ iff. j < j̃ or (j = j̃ and i < ĩ).

5.2 Strategy for the period matrix
In this section we present our strategy to obtain period matrices ΩΓ,ΩA,ΩB and τ
as defined in §2.9.1. Although our superelliptic curves are not restricted to the case
gcd(m,n) = 1, we will briefly assume it in this paragraph to simplify notation.

The main ingredients were already described in Section 5.1: we integrate the holomor-
phic differentials in W (§5.1.4) over the cycles in Γ (§5.1.3) using numerical integration
(§5.5), which results in a period matrix (§5.2.1)

ΩΓ =
(∫

γ
ω

)
ω∈W,
γ∈Γ

∈ Cg×2g.

130

Chapter 5 5.2. Strategy for the period matrix

The matrices ΩA and ΩB require a canonical basis of H1(X,Z). So, we compute the
intersection pairing on Γ, as explained in Section 5.3, which results in a intersection matrix
KΓ ∈ Z2g×2g. After computing a symplectic base change S ∈ GL(Z, 2g) for KΓ (§5.2.4),
we obtain a big period matrix

(ΩA,ΩB) = ΩΓS, (5.16)

and finally a small period matrix in the Siegel upper half-space

τ = Ω−1
A ΩB ∈ Hg. (5.17)

5.2.1 Periods of elementary cycles

The following theorem provides a formula for computing the periods of the curve. It
relates integration of differential forms on the Riemann surface to numerical integration
in C.

Note that the statement is true for all differentials in Wmer, not just the holomorphic
ones. We continue to use the notation from Section 5.1.

Theorem 5.2.1. Let γ(l)
e ∈ Γ be a shift of an elementary cycle corresponding to an edge

e = (a, b) ∈ E. Then, for all differentials ωi,j ∈ Wmer, we have∫
γ

(l)
e

ωi,j = ζ−lj(1− ζ−j)C−ja,b

(
b− a

2

)i ∫ 1

−1

ϕi,j(u)
(1− u2)

j
m

du, (5.18)

where

ϕi,j =
(
u+ b+ a

b− a

)i−1
ỹa,b(u)−j

is holomorphic in a neighbourhood εa,b of [−1, 1].

Proof. By the definition in (5.11) we can write γ(l)
e = γ

(l)
[a,b] ∪ γ

(l+1)
[b,a] . Hence we split up the

integral and compute∫
γ

(l)
[a,b]

ωi,j =
∫
γ

(l)
[a,b]

xi−1

yj
dx = ζ−lj

∫ b

a

xi−1

ya,b(x)j dx

= ζ−ljC−ja,b

∫ b

a

xi−1

ỹa,b(ua,b(x))j(1− ua,b(x)2)
j
m

dx.

Applying the transformation x 7→ xa,b(u) introduces the derivative dx =
(
b−a

2
)

du yields∫
γ

(l)
[a,b]

ωi,j = ζ−ljC−ja,b

(
b− a

2

)∫ 1

−1

xa,b(u)i−1

ỹa,b(u)j(1− u2)
j
m

du

= ζ−ljC−ja,b

(
b− a

2

)i ∫ 1

−1

(
u+ b+a

b−a

)i−1

ỹa,b(u)j(1− u2)
j
m

du

Similarly, we obtain ∫
γ

(l+1)
[b,a]

wi,j = −ζ−j
∫
γ

(l)
[a,b]

wi,j .

By Proposition 5.1.4 , ỹa,b is holomorphic and has no zero on εa,b, therefore

ϕi,j =
(
u+ b+a

b−a

)i−1
ỹa,b(u)−j is holomorphic on εa,b.

131

5.2. Strategy for the period matrix Chapter 5

5.2.2 Numerical integration

In order to compute a period matrix ΩΓ the only integrals that have to be numerically
evaluated are the elementary integrals∫ 1

−1

ϕi,j(u)
(1− u2)

j
m

du (5.19)

for all ωi,j ∈ W and e ∈ E. By Theorem 5.2.1, all the periods in ΩΓ are then obtained by
multiplication of elementary integrals with constants.

As explained in §5.6.3, the actual computations will be done on integrals of the form

Ia,b(i, j) =
∫ 1

−1

ui−1du
(1− u2)

j
m ỹa,b(u)j

(5.20)

(that is, replacing (u+ b+a
b−a)i−1 by ui−1 in the numerator of φi,j), the value of elementary

integrals being recovered by the polynomial shift∫ 1

−1

ϕi,j(u)
(1− u2)

j
m

du =
i−1∑
l=0

(
i− 1
l

)(
b+ a

b− a

)i−1−l
Ia,b(l, j). (5.21)

The rigorous numerical evaluation of (5.20) is addressed in Section 5.5: for any edge
(a, b), Theorems 5.5.10 and 5.5.5 (or 5.5.1 if m = 2) provide explicit schemes allowing to
attain any prescribed precision.

5.2.3 Minimal spanning tree

From the a priori analysis of all numerical integrals Ia,b along the interval [a, b], we choose
an optimal set of edges forming a spanning tree as follows:

• Consider the complete graph on the set of finite branch points G′ = (B, E′) where
E′ = { (a, b) | a, b ∈ B }.

• Each edge e = (a, b) ∈ E′ gets assigned a capacity re that indicates the cost of
numerical integration along the interval [a, b].

• Apply a standard ‘maximal-flow’ algorithm from graph theory, based on a greedy
approach. This results in a spanning tree G = (B, E), where E ⊂ E′ contains the
n− 1 best edges for integration that connect all vertices without producing cycles.

Note that the integration process is most favorable between branch points that are far
away from the others (this notion is made explicit in Section 5.5).

5.2.4 Symplectic reduction

A big period matrix (ΩA,ΩB) requires integration along a canonical basis of H1(X,Z). In
§5.1.3 we gave a generating set Γ for H1(X,Z), namely

Γ =
{
γ(l)
e | 0 ≤ l < m− 1, e ∈ E

}
,

where E is the spanning tree chosen above. This generating set is in general not a (canon-
ical) basis.

We resolve this by computing the intersection pairing on Γ, that is all intersections(
γ

(k)
e ◦ γ(l)

e′

)
∈ {0,±1} for e, e′ ∈ E and k, l ∈ {0, . . .m− 1}, as explained in Section 5.3.

The resulting intersection matrix KΓ is a skew-symmetric matrix of dimension
(n − 1)(m − 1) and has rank 2g. We then compute a symplectic base change matrix S,
exactly as we did in §4.6.2 for the general case.

132

Chapter 5 5.3. Intersections

5.3 Intersections
Let (a, b) and (c, d) be two edges of the spanning tree E. The formulas in Theorem 5.3.1
allow to compute the intersection between shifts of elementary cycles

(
γ

(k)
a,b ◦ γ

(l)
c,d

)
.

Note that by construction of the spanning tree, we can restrict the analysis to in-
tersections

(
γ

(k)
a,b ◦ γ

(l)
c,d

)
such that c is either a or b. Moreover, we may discard the case

(a, b) = (c, d).

Theorem 5.3.1 (Intersection numbers). Let (a, b), (c, d) ∈ E. The intersections of the
corresponding cycles γ(k)

a,b , γ
(l)
c,d ∈ Γ are given by

(
γ

(k)
a,b ◦ γ

(l)
c,d

)
=


1 if l − k ≡ s+ mod m,
−1 if l − k ≡ s− mod m,
0 otherwise,

where s+, s− are given by the following table, which covers all cases occurring in the
algorithm

case s+ s−

(i) a = c and b = d 1 −1
(ii) b = c −sb 1− sb
(iii) a = c and ϕ > 0 1− sa −sa
(iv) a = c and ϕ < 0 −sa −1− sa
(v) {a, b} ∩ {c, d} = ∅ no intersection

and where sx ∈ Z for x ∈ {a, b} is given by

sx := 1
2π

(
ϕ+m · arg

(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))
and

ϕ = arg
(
b− a
d− c

)
+ δb=cπ.

Remark 5.3.2. Note that the intersection matrix KΓ is composed of (n − 1)2 blocks of
dimension m− 1, each block corresponding to the intersection of shifts of two elementary
cycles in the spanning tree. It is very sparse.

The proof of Theorem 5.3.1 is contained in the following exposition.

Consider two cycles γ(k)
a,b , γ

(l)
c,d ∈ Γ and recall from Definition 5.1.5 that

γ
(k)
a,b = { (x, ζkya,b(x)) | x ∈ [a, b] } ∪ { (x, ζk+1ya,b(x)) | x ∈ [b, a] },

γ
(l)
c,d = { (x, ζ lyc,d(x)) | x ∈ [c, d] } ∪ { (x, ζ l+1yc,d(x)) | x ∈ [c, d] },

where ζkya,b(x), ζ lyc,d(x) are branches of C that are analytic on open sets Va,b and Vc,d
(see Figure 5.2) respectively.

From the definition we see that γ(k)
a,b ∩ γ

(l)
c,d = ∅, whenever [a, b] ∩ [c, d] = ∅. For edges

in a spanning tree this is equivalent to {a, b} ∩ {c, d} = ∅, thus proving (v).
Henceforth, we can assume {a, b} ∩ {c, d} 6= ∅. In order to prove (i)-(iv) we have to

introduce some machinery. Since the ya,b(x), yc,d(x) are branches of C, on the set C \B we
can define the shifting function s(x), that takes values in Z/mZ, implicitly via

ζs(x) =
yc,d(x)
ya,b(x) . (5.22)

133

5.3. Intersections Chapter 5

Naturally, (5.22) extends to the other analytic branches via

ζs(x)+l−k =
ζ lyc,d(x)
ζkya,b(x) .

We can now define the non-empty, open set

V := Va,b ∩ Vc,d ⊂ C \ B.

The shifting function s(x) is well-defined on V and, since ya,b(x) and yc,d(x) are both
analytic on V , s(x) is constant on its connected components.

In §5.1.2 we established that multiplication of a branch by ζ corresponds to moving
one sheet up on the Riemann surface. We can interpret the value of the shifting function
geometrically as γ(l)

c,d running s(x̃) + l − k sheets above γ(k)
a,b at a point x̃ ∈ V .

This can be used to determine the intersection number in the following way. The
homotopy class of a cycle on X is not changed by deformations that avoid encircling
additional branch points. Since V ∩ B = ∅ we can deform the cycles homotopically (as
shown in Figure 5.3) such that

ϕx

(
γ

(k)
a,b

)
∩ ϕx

(
γ

(l)
c,d

)
= {x̃} for some x̃ ∈ V .

Consequently, the cycles can at most intersect at the points in the fiber above x̃, i.e.

γ
(k)
a,b ∩ γ

(l)
c,d ⊂ ϕx

−1(x̃).

Note that, by definition, any cycle in Γ only runs on two neighbouring sheets, which
already implies (

γ
(k)
a,b ◦ γ

(l)
c,d

)
= 0, if s(x̃) + l − k 6∈ {−1, 0, 1}.

In the other cases we can determine the sign of possible intersections by taking into account
the orientation of the cycles.

We continue the proof with case (i): Here we have [a, b] = [c, d]. Trivially,
(
γ

(k)
a,b ◦ γ

(k)
a,b

)
=

0 holds. For k 6= l we deform the cycles such that they only intersect above x̃ = b+a
2 ∈

Va,b = V . We easily see that s(x̃) = 0 and therefore s(x̃) + l − k = l − k. The remaining
non-trivial cases (l = k ± 1), are shown in Figure 5.5 below where the cycles γ(k)

a,b (black),
γ

(k+1)
a,b (red) and γ(k−1)

a,b (green) are illustrated.

+1

a ϕx
−1(x̃) b

−1

Figure 5.5: Intersections of self-shifts.

134

Chapter 5 5.3. Intersections

We see that, independently of s(x̃), s+ = (k + 1)− k = 1 and s− = (k − 1)− k = −1
are as claimed.

For (ii)-(iv) we have that [a, b] ∩ [c, d] = {c}, where c is either a or b. Unfortunately,
in these cases s(c) is not well-defined.

Instead, we choose a point x̃ ∈ C \ B on the bisectrix of [a, b] and [c, d] that is close
enough to c such that [x̃, c[⊂ V = Va,b ∩ Vc,d (see Figure 5.6 below), and where

s(x̃) = m

2π arg
(
yc,d(x̃)
ya,b(x̃)

)
. (5.23)

a bVa,b

d

Vb,d

x̃
a

b

d

Va,b

Va,d

x̃

Figure 5.6: The set V = Va,b ∩ Vc,d for b = c (left) and a = c (right).

Case (ii):
In this case we have b = c. Choosing x̃ on the upper bisectrix (as shown in Figure 5.6)
and computing s(x̃) with (5.23) makes it possible to determine the intersection numbers
geometrically.

135

5.3. Intersections Chapter 5

Figure 5.7 shows the non-trivial cases s(x̃) + l − k ∈ {−1, 0, 1}. There the cycles γ(k)
a,b

(black), γ(k−s(x̃))
b,d (gray), γ(k−s(x̃)+1)

b,d (green) and γ(k−s(x̃)−1)
b,d (red) are illustrated.

a b

d−1

+1

Figure 5.7: Intersections for b = c.

By Lemma 5.3.3 (1) we have s(x̃) ≡ sb, which implies (as claimed)

s+ ≡ k − s(x̃)− k ≡ −sb mod m,

s− ≡ k − s(x̃) + 1− k ≡ 1− sb mod m.

Case (iii):
In this case we have a = c. We choose x̃ on the inner bisectrix (as shown in Figure 5.6)
and compute s(x̃) with (5.23).

For ϕ = arg
(
b−a
d−a

)
> 0, the non trivial cases, i.e. s(x̃) + l − k ∈ {−1, 0, 1}, are shown

in Figure 5.8 We illustrate the cycles γ(k)
a,b (black), γ(k−s(x̃))

a,d (gray), γ(k−s(x̃)+1)
a,d (green) and

γ
(k−s(x̃)−1)
a,d (red).

136

Chapter 5 5.3. Intersections

−1
+1 a

b

d

Figure 5.8: Intersections for a = c and ϕ > 0.

Lemma 5.3.3 (2) gives us s(x̃) ≡ sa, which implies (as claimed for ϕ > 0)

s+ = k − s(x̃) + 1− k ≡ 1− sa mod m,

s− = k − s(x̃)− k ≡ −sa mod m.

Case (iv):
When ϕ < 0 we can use the antisymmetry of the intersection pairing to fall back to case
(iii) by looking the intersection of the swapped cycles(

γ
(k)
a,b ◦ γ

(l)
a,d

)
= −

(
γ

(l)
a,d ◦ γ

(k)
a,b

)
.

The intersection on the right is then determined by case (iii) with the quantities ϕ′ =
−ϕ > 0, s′a = −sa and s′± = s∓.

Alternatively, we can see this directly from the picture: if we mirror Figure 5.8 at the
horizontal line through a we are in case (iv). There, the intersection is positive if γ(k)

a,b and
γ

(l)
a,d start on the same sheet and negative if γ(l)

a,d starts one sheet below γ
(k)
a,b .

Lemma 5.3.3. With the choices made in the proof of Theorem 5.3.1 the following state-
ments hold

(1) s(x̃) ≡ sb mod m in case (ii),

(2) s(x̃) ≡ sa mod m in the case (iii).

Proof. Starting from equation (5.23), for all x ∈ C \ B we have

s(x) = m

2π arg
(
yc,d(x)
ya,b(x)

)
≡ m

2π

(
arg
(

(1− uc,d(x)2)
1
m

(1− ua,b(x)2)
1
m

)
+ arg

(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))
≡ 1

2π (arg(1 + uc,d(x)) + arg(1− uc,d(x))− arg(1 + ua,b(x))− arg(1− ua,b(x)))

+ m

2π

(
arg
(
Cc,dỹc,d(x)
Ca,bỹa,b(x)

))
mod m.

In case (ii) we have b = c and denote ϕ0 = arg
(
b−a
d−b

)
. Then, we can parametrize all points

x̃ 6= b on the upper bisectrix of [a, b] and [a, d] (see Figure 5.6) via

x̃ = xb,d(−1 + t exp(i(π + ϕ0)/2)) as well as
x̃ = xa,b(1− t exp(−i(π + ϕ0)/2))

137

5.4. Computing the Abel-Jacobi map Chapter 5

for some t > 0, where xb,d and xa,b are defined as in (5.1.2). Therefore,

arg(1 + ub,d(x̃)) = π + ϕ0
2 and

arg(1− ua,b(x̃)) = −π + ϕ0
2 .

For x̃ chosen close enough to b we have that [x̃, b[⊂ V and the shifting function s(x̃) is
constant as x̃ tends towards b. Hence, we can compute its value at x̃ as

s(x̃) ≡ 1
2π

(
π + ϕ0 + arg(1− ub,d(x̃))− arg(1 + ua,b(x̃)) +m arg

(
Cb,dỹb,d(x̃)
Ca,bỹa,b(x̃)

))
≡ 1

2π

(
ϕ+ arg(1− ub,d(b))− arg(1 + ua,b(b)) +m arg

(
Cb,dỹb,d(b)
Ca,bỹa,b(b)

))
≡ 1

2π

(
ϕ+ arg(2)− arg(2) +m arg

(
Cb,dỹb,d(b)
Ca,bỹa,b(b)

))
≡ sb mod m,

thus proving (1).
In the cases (iii) and (iv) we have a = c and denote ϕ = arg

(
b−a
d−a

)
. For ϕ > 0 we can

parametrize all points x̃ 6= a on the inner bisectrix of [a, b] and [a, d] (see Figure 5.6) via

x̃ = xa,d(−1 + t exp(iϕ/2)) as well as
x̃ = xa,b(−1 + t exp(−iϕ/2))

for some t > 0, where xa,d and xa,b are defined as in (5.1.2). Therefore,

arg(1 + ua,d(x̃)) = ϕ

2 and

arg(1 + ua,b(x̃)) = −ϕ2 .

As before, we let x̃ tend towards a and compute the shifting function at x̃ as

s(x̃) ≡ 1
2π

(
ϕ+ arg(1− ua,d(x̃))− arg(1 + ua,b(x̃)) +m arg

(
Ca,dỹa,d(x̃)
Ca,bỹa,b(x̃)

))
≡ 1

2π

(
ϕ+ arg(1− ua,d(a))− arg(1− ua,b(a)) +m arg

(
Ca,dỹa,d(a)
Ca,bỹa,b(a)

))
≡ 1

2π

(
ϕ+ arg(2)− arg(2) +m arg

(
Ca,dỹa,d(a)
Ca,bỹa,b(a)

))
≡ sa mod m.

Remark 5.3.4. The intersection numbers given by Theorem 5.3.1 are independent of the
choices of x̃ that were made in the proof. This approach works for any x̃ ∈ V .

Even though the value of s(x̃) changes, if we choose x̃ in a different connected compo-
nent of V , e.g. on the lower bisectrix in case (ii), the parametrization of the bisectrix and
the corresponding arguments will change accordingly.

5.4 Computing the Abel-Jacobi map
Here we are concerned with explicitly computing the Abel-Jacobi map of degree zero
divisors; for a general introduction see Section 2.9.

Assume for this section that we have already computed a big period period matrix
(and all related data) following the Strategy from Section 5.2.

138

Chapter 5 5.4. Computing the Abel-Jacobi map

Let D =
∑

P∈X vPP ∈ Div0(X). After choosing a basepoint P0 ∈ X, the computation
of A reduces (using linearity) to

A(D) ≡
∑
P∈X

vP

∫ P

P0

ω̄ mod Λ.

For every P ∈ X,
∫ P
P0
ω̄ is a linear combination of vector integrals of the form∫ Pk

P0

ω̄ (see §5.4.1),
∫ P

Pk

ω̄ (see §5.4.2) and
∫ P∞

P0

ω̄ (see §5.4.3), where

• ω̄ is the vector of differentials in W,

• P = (xP , yP) ∈ X is a finite point,

• Pk = (xk, 0) ∈ X is a finite ramification point, i.e. xk ∈ B, and

• P∞ ∈ X is a point at infinity.

Typically, we choose as basepoint the ramification point P0 = (x0, 0), where x0 ∈ B is
the root of the spanning tree G = (B, E).

Finally, the resulting vector integral has to be reduced modulo the period lattice Λ,
which is done exactly as in the general case, and has already been covered in §4.9.6.
Remark 5.4.1 (Image of Abel-Jacobi map). For practical reasons, we will compute the
image of the Abel-Jacobi map in the canonical torus (R/Z)2g. This representation has the
following advantages:

• Operations on the Jacobian Jac(X) correspond to operations in (R/Z)2g.

• m-torsion divisors under A are mapped to vectors of rational numbers with denom-
inator dividing m.

5.4.1 Between ramification points

Suppose we want to integrate ω̄ from P0 = (x0, 0) to Pk = (xk, 0). By construction there
exists a path (x0 = xk0 , xk1 , . . . , xkn−1 , xkt = xk) in the spanning tree which connects x0
and xk. Thus, the integral splits into∫ Pk

P0

ω̄ =
t−1∑
j=0

∫ Pkj+1

Pkj

ω̄.

Denote a = xkj , b = xkj+1 ∈ B. From §5.1.3 we know that for (a, b) ∈ E a smooth path
between Pa = (a, 0) and Pb = (b, 0) is given by

γ
(0)
[a,b] = { (x, ya,b(x)) | x ∈ [a, b] }.

Let ωi,j ∈ W be a differential. According to the proof of Theorem 5.2.1 the corresponding
integral is given by ∫

γ
(0)
[a,b]

ωi,j = C−ja,b

(
b− a

2

)i ∫ 1

−1

ϕi,j(u)
(1− u2)

j
m

du,

which is (up to the constants) an elementary integral (5.19) and has already been evaluated
during the period matrix computation.

139

5.4. Computing the Abel-Jacobi map Chapter 5

Remark 5.4.2. Moreover, the image of the Abel-Jacobi map between ramification points
is m-torsion, i.e. for any two k, j ∈ {1, . . . , n} we have

m

∫ Pk

Pj

ω̄ ≡ A(mPk −mPj) ≡ 0 mod Λ, (5.24)

since div
(
x−xk
x−xj

)
= mPk −mPj ∈ Prin(X) is a principal divisor. In practice, this gives us

a strong test for the correctness of the superelliptic Abel-Jacobi map.

5.4.2 Reaching non-ramification points

Let P = (xP , yP) ∈ X be a finite point and Pa = (a, 0) a ramification point such that
B∩]a, xP] = ∅. In order to define a smooth path between P and Pa we need to find a
suitable analytic branch of C.

This can be done following the approach in §5.1.2, the only difference being that xP
is not a branch point. Therefore, we are going to adjust the definitions and highlight the
differences.

Let ua,xP be the affine linear transformation that maps [a, xP] to [−1, 1]. Similar to
(5.7) we split up the image of B under ua,xP into subsets, but this time

ua,xP (B) = {−1} ∪ U+ ∪ U−.

Then, ỹa,xP (u) can be defined exactly as in (5.8) and is holomorphic in a neighbourhood
εa,xP of [−1, 1]. The term corresponding to a, that is

m
√

1 + u,

has a branch cut]−∞,−1] and is holomorphic on the complement of this cut.
Now we can define a branch of the curve, that is analytic in a neighbourhood Va,xP of

]a, xP], by
ya,xP (x) = Ca,xP ỹa,xP (ua,xP (x)) m

√
1 + ua,xP (x),

where

Ca,xP =
(
xP − a

2

) n
m

e
πi
m

(#U+ mod 2),

so that the statements of Proposition 5.1.4 continue to hold for ỹa,xP and ya,xP , if we
choose the sets εa,xP and Va,xP as if xP was a branch point.

Therefore, the lifts of [a, xP] to X are given by

γ
(l)
[a,xP] = { (x, ζ lya,xP (x)) | x ∈ [a, xP] }, l ∈ Z/mZ.

In order to reach P = (xP , yP) we have to pick the correct lift. This is done by computing
a shifting number s ∈ Z/mZ at the endpoint xP :

ζs = yP
ya,xP (xP) = yP

Ca,xP ỹa,xP (ua,xP (xP)) m
√

2

Consequently, γ(s)
[a,xP] is a smooth path between Pa and P on X. We can now state the

main theorem of this section.

Theorem 5.4.3. Let ωi,j ∈ Wmer be a differential. With the choices and notation as
above we have ∫ P

Pa

ωi,j = ζ−sjC−ja,xP

(
xP − a

2

)i ∫ 1

−1

ϕi,j(u)
(1 + u)

j
m

du,

140

Chapter 5 5.4. Computing the Abel-Jacobi map

where

ϕi,j =
(
u+ xP + a

xP − a

)i−1
ỹa,xP (u)−j

is holomorphic in a neighbourhood εa,xP of [−1, 1] and

s = m

2π arg
(

yP
Ca,xP ỹa,xP (ua,xP (xP))

)
.

Proof. We have∫ P

Pa

ωi,j =
∫
γ

(s)
[a,xP]

xi−1

yj
dx = ζ−sj

∫ xP

a

xi−1

ya,xP (x)j dx

= ζ−sjC−ja,xP

∫ xP

a

xi−1

(1 + ua,xP (x))
j
m ỹa,xP (ua,xP (x))j

dx

Applying the transformation u = ua,xP (x) introduces the derivative dx =
(
xP−a

2
)

du.
Hence ∫ P

Pa

ωi,j = ζ−sjC−ja,xP

(
xP − a

2

)∫ xP

a

xa,xP (u)i−1

(1 + u)
j
m ỹa,xP (u)j

du

= ζ−sjC−ja,xP

(
xP − a

2

)i ∫ xP

a

(
u+ xP+a

xP−a

)i−1

(1 + u)
j
m ỹa,xP (u)j

du.

The statement about holomorphicity of ϕi,j is implied, since Proposition 5.1.4 holds for
ỹa,xP and ya,xP as discussed above.

Remark 5.4.4. By Theorem 5.4.3, the problem of integrating ω̄ from P0 to P reduces to
numerical integration of ∫ 1

−1

ϕi,j(u)
(1 + u)

j
m

du. (5.25)

Although these integrals are singular at only one end-point, they can still be computed
using the double-exponential estimates presented in Section 3.4. This is explained in more
detail in §5.5.3. Another option is to use non-symmetric Gauss-Jacobi integration with
the estimates of §3.2.1, see also §5.5.2 for an explicit explanation.

5.4.3 Points at infinity

Recall from §5.1.1 that there are δ = gcd(m,n) points at infinity P (s)
∞ on the projective

curve C and therefore on the Riemann surface X = C(C), so we introduce the set

P = {P (1)
∞ , . . . , P (δ)

∞ } ⊂ X .

Suppose we want to integrate from P0 to P∞ ∈ P, which is equivalent to computing the
Abel-Jacobi map of the divisor D∞ = P∞ − P0.

For the Abel-Jacobi map of points at infinity we employ the same strategy as in the
general case (see §4.9.4), namely applying the moving lemma to the divisor D∞.

In contrast to the general case this can be done much more explicitly for superelliptic
curves, which is due to the special form of our affine model C. We construct a principal
divisor D ∈ Prin(X) such that supp(D) ∩ P = {P∞} and vP∞(D) = ±1. Then, by
definition of the Abel-Jacobi map,

A(D∞ ∓D) ≡ A(D∞) ≡
∫ P∞

P0

ω̄ mod Λ

141

5.4. Computing the Abel-Jacobi map Chapter 5

and supp(D∞ ∓D) ∩ P = ∅.
The exposition in this paragraph will explain the construction of D, while distinguish-

ing three different cases.
In the following we denote by µ, ν > 0 the coefficients of the Bézout identity

−µm+ νn = δ.

Remark 5.4.5. Note that there are other ways of computing A(D∞). For instance, using
transformations or direct numerical integration. Especially in the case δ = m a transfor-
mation (see Remark 5.1.3) is a good option and may be used in practice. The advantage
of the approach that is presented here is that we can stay within our setup, i.e. we can
compute solely on C and keep the integration scheme.

Coprime degrees

For δ = 1 there is only one point at infinity P = {P∞} and we can easily compute A(D∞)
by adding a suitable principal divisor D

div(yν) = ν
n∑
k=1

Pk − νnP∞,

div((x− x0)−µ) = µmP∞ − µmP0,

D := div(yν(x− x0)−µ) = ν
n∑
k=1

Pk − µmP0 − P∞.

We immediately obtain

A(D∞) ≡ A(D∞ +D) = A(ν
n∑
k=1

Pk − (µm+ 1)P0)

≡ ν
n∑
k=1

∫ Pk

P0

ω̄ mod Λ

and conclude that A(D∞) can be expressed in terms of integrals between ramification
points (see §5.4.1).
Remark 5.4.6. In general, the principal divisor

D = div(yν(x− x0)−µ) = ν
n∑
k=1

Pk − µmP0 −
δ∑
l=1

P (l)
∞

yields the useful relation

ν
n∑
k=1

∫ Pk

P0

ω̄ ≡
δ∑
l=1

∫ P
(l)
∞

P0

ω̄ mod Λ . (5.26)

Once we have computed A(D∞) for all but one point at infinity, we may obtain the
Abel-Jacobi map of the last one via equation (5.26).

Non-coprime degrees

For δ > 1 the problem becomes a lot harder. First we need a way to distinguish the points
in P = {P (1)

∞ , . . . , P
(δ)
∞ } and second they are singular points on the projective closure of

our affine model C whenever m 6= {n, n± 1}.

142

Chapter 5 5.4. Computing the Abel-Jacobi map

As shown in [85, §1] we obtain a second affine patch of C that is non-singular along P
in the following way:

Denoting M = m
δ and N = n

δ , we consider the birational transformation

(x, y) = Φ(r, t) =
(

1
rνtM

,
1

rµtN

)
which results in an affine model

C̃ : rδ =
n∏
k=1

(1− xkrνtM).

The inverse transformation is given by

(r, t) = Φ−1(x, y) =
(
yM

xN
,
xµ

yν

)
.

Under this transformation the points at infinity on C are mapped to points on C̃ with
either r = 0 or t = 0. Since there are no points with r = 0 on C̃, all points in P are
mapped to points with t = 0, namely the finite non-singular points

(r, t) = (ζsδ , 0), s = 1, . . . , δ,

where ζδ = e
2πi
δ . Hence, we can describe the points in P ⊂ X via

P (s)
∞ = Φ(ζsδ , 0).

Note that the infinite points with r =∞ on C̃ are exactly the images of points with x = 0
on C (i.e. the fiber ϕx

−1(0)) under Φ−1, while the infinite points with t = ∞ correspond
to points with y = 0 (i.e. the ramification points Pk).

Suppose we want to compute the Abel-Jacobi map ofD(s)
∞ = P

(s)
∞ −P0 for s ∈ {1, . . . , δ}.

Again following our strategy, this time working on C̃, we look at the intersection of the
vertical line through (ζsδ , 0) with C̃. We write down the corresponding principal divisor

E1 = div(r − ζsδ) =
d∑
i=1

(
ζsδ , t

(s)
i

)
−NE′1

where the t(s)i are the zeros (up to multiplicity) of h(t) =
∏n
k=1(1 − xkζsνδ tM) − 1 ∈ C[t],

d = deg(h) and

E′1 =
{

(m−M)Φ−1(0, 0), if 0 ∈ B,∑
Q∈pr−1

x (0) Φ−1(Q) otherwise.
(5.27)

Note that E1 satisfies supp(E1)∩Φ−1(P) = {(ζsδ , 0)}. Now, we can define the correspond-
ing principal divisor on C by

D1 := div
(
yM

xN
− ζsδ

)
;

then v
P

(s)
∞

(D1) ≥ 1 by construction.

Theorem 5.4.7. Assume v
P

(s)
∞

(D1) = 1 and 0 6∈ B. Then, for s = 1, . . . , δ, there exist

points Q(s)
1 , . . . , Q

(s)
n−1 ∈ X \ P such that

A(D(s)
∞) ≡ −

n−1∑
i=1

∫ Q
(s)
i

P0

ω̄ mod Λ. (5.28)

143

5.4. Computing the Abel-Jacobi map Chapter 5

Proof. First note that v
P

(s)
∞

(D1) = 1 implies M = 1, i.e. m = δ. Together with the

assumption 0 6∈ B, this gives us deg(h) = n. Moreover, we can assume that t(s)n = 0 and
t
(s)
i 6= 0 for i = 1, . . . , n− 1. Therefore,

A(D(s)
∞) ≡ A(D(s)

∞ −D1) ≡ −A
(n−1∑
i=1

Φ(ζsδ , t
(s)
i)−N

∑
Q∈ϕ−1(0)

Q
)

mod Λ.

Since 0 6∈ B the sum over the integrals from P0 to all Q ∈ ϕ−1(0) vanishes modulo the
period lattice Λ (in fact this is true for any non-branch point). Let xk be the branch point
that is closest to 0, then for every ωĩ,j ∈ W we have

∑
Q∈ϕ−1(0)

∫ Q

P0

ωĩ,j =
m−1∑
l=0

∫ (0,ζl m
√
f(0))

P0

ωĩ,j

≡ m
∫ Pk

P0

ωĩ,j +
(

1 + ζ−j + · · ·+ ζ−j(m−1)
)∫ (0, m

√
f(0))

Pk

ωĩ,j

≡ 0 mod Λ

by equation (5.24) and Theorem 5.4.3. If we takeQ(s)
i = Φ(ζsδ , t

(s)
i) ∈ X\P, i = 1, . . . , n−1,

we are done:

−A
(n−1∑
i=1

Φ(ζsδ , t
(s)
i)−N

∑
Q∈ϕ−1(0)

Q
)
≡ −

n−1∑
i=1

∫ Q
(s)
i

P0

ω̄ mod Λ.

In the case of Theorem 5.4.7 there exist additional relations between the vector integrals
in (5.28) which we are going to establish now. Given i ∈ {1, . . . , n − 1} and denoting
t(s) = t

(s)
i we have that on C̃

(ζsδ , t(s)) = (ζsδ , ζ−νsδ t(δ)) for all s = 1, . . . , δ.

Therefore, if we write (x(s), y(s)) := Φ(ζsδ , t(s)) and denote Q(s) = Q
(s)
i , then

Q(s) = (x(s), y(s)) = (x(δ), ζ
(µ+νN)s
δ y(δ))).

The Q(s) having identical x-coordinates implies that there exists a k ∈ {1, . . . , n} such
that ∫ Q(s)

P0

ω̄ ≡
∫ Pk

P0

ω̄ +
∫ Q(s)

Pk

ω̄ mod Λ,

while the relation between their y-coordinates yields∫ Q(s)

Pk

ωĩ,j = ζ
−(µ+νN)sj
δ

∫ Q(δ)

Pk

ωĩ,j

for all ωĩ,j ∈ W and s = 1, . . . , δ. This proves the following corollary:

Corollary 5.4.8. Under the assumptions of Theorem 5.4.7 and with the above notation
we can obtain the image of D(s)

∞ under the Abel-Jacobi map for all s = 1, . . . , δ from the
n− 1 vector integrals ∫ Q

(δ)
i

Pk

ω̄, i = 1, . . . , n− 1.

144

Chapter 5 5.4. Computing the Abel-Jacobi map

Unfortunately, this is just a special case. If v
P

(s)
∞

(D1) is greater than 1 (for instance, if
δ 6= m), the vertical line defined by r − ζsδ is tangent to the curve C̃ at (ζsδ , 0) and cannot
be used for our purpose.

Consequently, we must find another function. One possible choice here is the line
defined by r − t − ζsδ , which is now guaranteed to have a simple intersection with C̃ at
(ζsδ , 0) and does not intersect C̃ in (ζs′δ , 0), s 6= s′.

The corresponding principal divisor is given by

E2 = div(r − t− ζsδ) =
d∑
i=1

(t(s)i + ζsδ , t
(s)
i)− ν

n∑
k=1

Φ−1(xk, 0)−NE′2,

where the t(s)i are the zeros (up to multiplicity) of h(t) =
∏n
k=1(1− xk(t+ ζ

(s)
δ)νtM)− 1 ∈

C[t], d = deg(h) and

E′2 =
{

(m− M+ν
N)Φ−1(0, 0), if 0 ∈ B,∑

Q∈pr−1
x (0) Φ−1(Q), otherwise.

(5.29)

Now,

D2 := div
(
yM

xN
− xµ

yν
− ζsδ

)
is a principal divisor on C such that v

P
(s)
∞

(D2) = 1.

Theorem 5.4.9. Assume v
P

(s)
∞

(D1) > 1 and 0 6∈ B. Then, for s = 1, . . . , δ, there exist

points Q(s)
1 , . . . , Q

(s)
d−1 ∈ X \ P such that

A(D(s)
∞) ≡ −

d−1∑
i=1

∫ Q
(s)
i

P0

ω̄ + ν
n∑
k=1

∫ Pk

P0

ω̄ mod Λ,

where d = n(ν +M).

Proof. First note that 0 6∈ B implies d = deg(h) = n(ν + M). Moreover, our assumption
implies v

P
(s)
∞

(D2) = 1 so that we may assume t(s)d = 0 and t
(s)
i 6= 0 for i = 1, . . . , d − 1.

Then,

A(D(s)
∞) ≡ A(D(s)

∞ −D2)

≡ −A
(d−1∑
i=1

Φ(t(s)i + ζsδ , t
(s)
i)− ν

n∑
k=1

(xk, 0)−N
∑

Q∈ϕ−1(0)

Q
)

mod Λ.

Choosing the points Q(s)
i = Φ(t(s)i + ζsδ , t

(s)
i) ∈ X \ P and using the same reasoning as in

the proof of Theorem 5.4.7 proves the statement.

Remark 5.4.10. We can easily modify the statements of the Theorems 5.4.7 and 5.4.9 to
hold for 0 ∈ B, i.e. when 0 is a branch point. Using equation (5.27), the statement of
Theorem 5.4.7 becomes

A(D(s)
∞) ≡ −

n−2∑
i=1

∫ Q
(s)
i

P0

ω̄ +N(m−M)
∫ (0,0)

P0

ω̄ mod Λ,

whereas, using equation (5.29), the statement of Theorem 5.4.9 becomes

A(D(s)
∞) ≡ −

d−1∑
i=1

∫ Q
(s)
i

P0

ω̄ + ν
n∑
k=1

∫ Pk

P0

ω̄ + (Nm−M − ν)
∫ (0,0)

P0

ω̄ mod Λ,

with d = (n− 1)(ν +M).

145

5.5. Numerical integration Chapter 5

5.5 Numerical integration

As explained in Section 5.2.2, the periods of the generating cycles γ ∈ Γ are expressed in
terms of elementary integrals (5.20)

Ia,b(i, j) =
∫ 1

−1

ui−1du
(1− u2)

j
m ỹa,b(u)j

, (5.30)

where (a, b) ∈ E and ωi,j ∈ W. We restrict the numerical analysis to this case.
In this section, we denote by α the value 1 − j

m , which is the crucial parameter for
numerical integration. Note that α = 1/2 for hyperelliptic curves, while for general superel-
liptic curves α ranges from 1

m to m−1
m depending on the differential form ωi,j considered.

We study here three numerical integration schemes which are suitable for arbitrary
precision computations:

• The double-exponential change of variable as introduced in Section 3.4 (see also
[64] for more details) is completely general and its robustness allows to rigorously
compute all the integrals (5.30) in a unified setting, even with different values of α
(see Corollary 5.5.10).

• In the special case of hyperelliptic curves (m = 2), however, the Gauss-Chebyshev
method (introduced in §3.2.3, see also [1, 25.4.38]) applies and provides a better
scheme (fewer and simpler integration points).

• For m > 2, the integrals (5.30) can also be computed using Gauss-Jacobi integration
with weight (1 − α, 1 − α) (see §3.2.1 or [42]). However, a different scheme has
to be computed for each α and it now involves computing roots of general Jacobi
polynomials to large accuracy, which makes it hard to compete with the double-
exponential scheme.

5.5.1 Gauss-Chebyshev quadrature

In the case of hyperelliptic curves (m = 2), we have α = 1
2 (and j = 1) and the integrals∫ 1

−1

ϕi,1(u)√
1− u2

du,

can be efficiently handled by Gaussian quadrature with weight function w(u) = 1/
√

1− u2,
called Gauss-Chebyshev quadrature, as presented in §3.2.3. We recall the corresponding
error bound on the ellipse

−1 1

z

sinh(r)

cosh(r)

εr

Figure 5.9: Parametrized ellipse.

Theorem 5.5.1. Let Gaussian-Chebyshev quadrature on N > 0 points be applied to a
function g : [−1, 1] → C that is holomorphic inside an ellipse εr (5.9) with foci ±1 and

146

Chapter 5 5.5. Numerical integration

r > 0. Then, the error (3.3) satisfies

E(N) ≤ 2Mπ

er2N − 1 (5.31)

where M = max { |g(z)| | z ∈ εr}.

Now we can apply this theorem to the function

gi(u) = ui−1

ỹa,b(u) , (5.32)

where the roots of the polynomial ỹa,b(u) are exactly the uk and the error can be controlled
a priori.

Lemma 5.5.2. Let r > 0 be such that 2 cosh(r) < |uk − 1| + |uk + 1| for all roots uk of
ỹa,b(u), then there exists an explicitly computable constant M(r) such that

|gi(u)| ≤M(r) for all u ∈ εr .

Proof. We simply compute the distance dr(uk) = infz∈εr |z − uk| from a root uk to the
ellipse εr, and let M(r) = cosh(r)i−1√∏

dr(uk)
. For simplicity, we can use the triangle inequality

dr(uk) ≥ cosh(rk)− cosh(r), where 2 cosh(rk) = |uk − 1|+ |uk + 1|.

More details on the choice of r and the computation ofM(r) are given in the paragraph
below.

Corollary 5.5.3. With r and M(r) satisfying Lemma 5.5.2, for all N such that

N ≥ D + log(2πM(r)) + 1
2r , (5.33)

we have

E(N) =

∣∣∣∣∣Ia,b(i, 1)− π

N

N∑
l=1

ui−1
`

ỹa,b(u`)

∣∣∣∣∣ ≤ e−D,
where

u` = cos
(

2l − 1
2N π

)
.

Remark 5.5.4. Generally we can expect Gauss-Chebyshev quadrature to be much better
than (DE) integration for the evaluation of these hyperelliptic integrals. Nonetheless, it
can happen that the double exponential scheme outperforms Gauss-Chebychev on certain
integrals, in particular when r is close to zero and the domain εr becomes very small. This
is easy to detect in practice and we can always switch to the better method.

Gauss-Chebyshev parameters

Here we show how to compute r > 0 such that the number of abscissas required for
precision D (according to Corollary 5.5.3) is minimized. Yet another way to parametrize
the ellipse εr is given by

εr = { cosh(r + it) = cos(t− ir) | t ∈]− π, π] }.

The distance dk = dist(uk, εr) from a branch point uk ∈ U+ ∪ U− to the ellipse εr can be
computed applying Newton’s method to the scalar product function

s(t) = Re(z′(t)(uk − z(t))) where z(t) = cos(t− ir)

and we take t = Re(arccos(uk)) as a starting point. By convexity of the ellipse, the
solution is unique on the quadrant containing uk. This has already been covered in the
general case (see §4.7.2) with corresponding Algorithm A.1.1.

147

5.5. Numerical integration Chapter 5

Optimal choice of r Let |uk − 1|+|uk + 1| = 2 cosh(rk). As already explained in §4.7.2,
we want to choose r < r0 = mink rk such that uk 6∈ εr and the number of integration points
N from (5.33) is minimized. Without restriction assume here that the integrand is the
function g1(u) = 1

ỹa,b(u) (5.32). We first estimate how the bound M = M(r) varies for
r < r0.

• For all k such that rk > r0, we compute explicitly the distance dk = dist(uk, εr0) <
dist(uk, εr).

• For all k such that rk = r0, we use first order approximation dist(uk, Zr−η) =
ηDk +O(η2), where Dk =

∣∣∣∂uk∂rk

∣∣∣ = |sin(tk − irk)|.

Let K be the number of branch points uk ∈ U+ ∪ U− such that rk = r0 and

M0 =
√ ∏
rk=r0

Dk

∏
rk>r0

dk

−1
,

then the integrand is bounded on εr0−η by

M(r0 − η) = M0
√
η−K(1 +O(η)).

Plugging this into (5.33), the number of integration points satisfies

2N = D + log(2πM0)−K/2 log(η)
r0 − η

(1 +O(η)).

The main term is minimized for η satisfying η
(

2D+log(2πM0)
K + 1− log(η)

)
= r0. The

solution can be written as a Lambert function or we use the approximation

r = r0 − η = r0

(
1− 1

A+ log A
r0

)
,

where A = 1 + 2
K (D + log(2πM0)).

5.5.2 Gauss-Jacobi quadrature

For generalm > 2 we can also compute the integrals (5.30) by Gaussian-Jacobi quadrature
with weight function

w(u) = (1− u2)−
j
m

as introduced in §3.2.1. We can now use the following error bound given by Theorem
3.2.4:

Theorem 5.5.5. Let Gaussian-Jacobi quadrature with weight (α − 1, α − 1) on N > 0
points be applied to a function g : [−1, 1] → C that is holomorphic inside an ellipse εr
(5.9) with foci ±1 and r > 0. Then, the error (3.3) satisfies

E(N) ≤ 4MC

(1− e−2r)er2N

where M = max { |g(z)| | z ∈ εr} and C = 22α−1Γ(α)2/Γ(2α).

Similar to the previous section, we apply this theorem α− 1 = −j/m to the function

gi,j(u) = ui−1

ỹa,b(u)j . (5.34)

We adjust Lemma 5.5.2 to the more general situation:

148

Chapter 5 5.5. Numerical integration

Lemma 5.5.6. Let r > 0 be such that 2 cosh(r) < |uk − 1| + |uk + 1| for all roots uk of
ỹa,b(u), then there exists an explicitly computable constant M(r) such that for all u ∈ εr∣∣∣∣ ui−1

ỹa,b(u)j

∣∣∣∣ ≤M(r).

Proof. Analogous to the proof of Lemma 5.5.2, but with

M(r) = cosh(r)i−1

(
∏
dr(uk))

j
m

.

Corollary 5.5.7. With r and M(r) satisfying Lemma 5.5.6 and C = 22α−1Γ(α)2/Γ(2α),
for all N such that

N ≥ D + log(4M(r)C)− log(1− e−2r)
2r ,

we have

E(N) =

∣∣∣∣∣Ia,b(i, j)−
N∑
l=1

wl
ui−1
`

ỹa,b(u`)j

∣∣∣∣∣ ≤ e−D,
where the u` and wl are the abscissas and weights of the Gauss-Jacobi quadrature (see
§3.2.1) on N points with weight

(
− j
m ,−

j
m

)
.

More details on the choice of r and the computation of M(r) are given in §5.5.2

Abel-Jacobi map

We can also use Gauss-Jacobi integration with weight function

w(u) = (1 + u)−
j
m

to compute the integrals appearing in the computation of the Abel-Jacobi map §5.4.2.
After the polynomial shift (5.21) the integrals (5.25) are of the form

Ia,xP (i, j) =
∫ 1

−1

ui−1du
(1 + u)

j
m ỹa,xP (u)j

.

Note that in this case the integration scheme is not symmetric and we have to use the
error bound from Theorem 3.2.1:

Theorem 5.5.8. Let Gauss-Jacobi quadrature with weight (α− 1, 0) on N > 0 points be
applied to a function g : [−1, 1] → C that is holomorphic inside an ellipse εr (5.9) with
foci ±1 and r > 0. Then, the error (3.3) satisfies

E(N) ≤ 4MC

(1− e−r)er2N

where M = max { |g(z)| | z ∈ εr} and C = 2αΓ(α)/Γ(α+ 1).

We apply this theorem to the function

gi,j(u) = ui−1

ỹa,xP (u)j , (5.35)

where the values of r and M = M(r) can be taken exactly as above.

149

5.5. Numerical integration Chapter 5

Gauss-Jacobi parameters We adapt our method of choosing an optimal 0 < r < r0
from the Gauss-Chebyshev case for the superelliptc integrals in §5.5.2. Assume we want
to bound the integrand g1,j(u) (5.34). Then with dk, Dk and K as in §5.5.1 we take

M0 =
(∏
rk=r0

Dk

∏
rk>r0

dk

)− j
m

such that the integrand is bounded on εr0−η by

M(r0 − η) = M0η
−K j

m (1 +O(η)).

If we use that − log(1− e−2r) < 1 and plug this in (5.5.7), then

2N = D + log(4CM0)−Kj/m log(η) + 1
r0 − η

(1 +O(η)).

Again, we approximate µ such that the main term is minimized. This strategy applies to
the Abel-Jacobi map as well.

5.5.3 Double-exponential integration

We can apply the double-exponential integration scheme, as presented in Section 3.4, to
the integrals (5.30). In particular, we want to apply Theorem 3.4.1 with α = 1 − j

m and
λ = π

2 to the function

gi,j(u) = ui−1

ỹa,b(u)j . (5.36)

If we choose the parameter r ∈]0, π2 [such that

r < r0 := min
k
{rk} where uk = tanh(λ sinh(tk + irk)) (5.37)

we ensure that uk 6∈ Zr for all roots uk of ỹa,b(u). Then gi,j(u) is holomorphic on Zr and
we can calculate the quantities Xr and B(r, α) from (3.66). Since we can compute the
distance of each branch point uk to both [−1, 1] and its neighborhood Zr (see §5.5.3), we
obtain

Lemma 5.5.9. There exist explicitly computable constants M i,j
1 , M i,j

2 such that

• |gi,j(u)| ≤M i,j
1 for all u ∈ [−1, 1],

• |gi,j(u)| ≤M i,j
2 for all u ∈ Zr.

and we obtain a rigorous integration scheme by Theorem 3.4.1.

What makes the double-exponential integration even more valuable in this setting is
that we can compute the integrals Ia,b(i, j) for all ωi,j ∈ W using only one set of abscissas
and weights. By Lemma 5.5.9 we can compute the constants M1,M2 for all wi,j ∈ W and
define constants M1(W),M2(W) as the maxima

M1(W) = max{M i,j
1 | ωi,j ∈ W} ,

M2(W) = max{M i,j
2 | ωi,j ∈ W}

such that we obtain

150

Chapter 5 5.5. Numerical integration

Corollary 5.5.10 (Double-exponential integration). For all D > 0, if we choose α = 1/m,

h = 2πr
D + log(2M2(W)B(r, α) + e−D) and N =

⌈
1
h

asinh
(
D + log(22α+1M1(W)

α)
2αλ

)⌉
,

then we have that, for all ωi,j ∈ W,∣∣∣∣∣Ia,b(i, j)− h
N∑

l=−N
wlgi,j(u`)

∣∣∣∣∣ ≤ e−D,
where

u` = tanh(λ sinh(lh)) and wl = λ cosh(lh)
cosh(λ sinh(lh))2α .

Proof. With fixed D, r,M1 = M1(W),M2 = M2(W) we can consider the parameters from
(3.67) as functions of α ∈

[1
m ,

m−1
m

]
, say h(α) and N(α). Then, for all j = 1, . . . ,m − 1,

we have

h = h

(
1
m

)
≤ h

(
1− j

m

)
and N ≥ N

(
1
m

)
≥ N

(
1− j

m

)
.

The claim follows from Theorem 3.4.1.

Abel-Jacobi map

We can also use Theorem 5.5.10 to compute the integrals appearing in §5.4.2. Via the
polynomial shift (5.21) the integrals (5.25) become

Ia,xP (i, j) =
∫ 1

−1

ui−1du
(1 + u)

j
m ỹa,xP (u)j

.

Choosing α = 1− j
m and λ = π

2 , we now integrate the function

gi,j(u) = (1− u)
j
mui−1

ỹa,xP (u)j . (5.38)

This is not a problem for the double-exponential integration as presented in §3.4 and we
can continue to use the estimates of Theorem 5.5.10. Although our integrand gi,j(u) is
not holomorphic at the end point −1, we can take exactly the same r as before since the
domain Zr is not affected by this. The constants M1, M2 can be chosen analogous to the
previous case, see also §5.5.3.

Double-exponential parameters

We can easily bound the function gi,j(u) on the interval [−1, 1] by computing the distance
to a branch point uk ∈ U+ ∪ U−. We have that

dist(uk, [−1, 1]) =
{
|Im(uk)| , if |Re(uk)| ≤ 1,
||Re(uk)|+ i · Im(uk)− 1| , otherwise.

Therefore, for all u ∈ [−1, 1] we have that

|gi,j(u)| =
(∏

|u− uk|
)−j/m

≤
(∏

dist(uk, [−1, 1])
)−j/m

=: M i,j
1 .

151

5.6. Computational aspects Chapter 5

The boundM2 depends on the the parameter r < r0. Once r > 0 is chosen (see paragraph
below). we need to compute the distance of a branch point uk to the zone Zr. Note that
the boundary of Zr is parametrized by

∂Zr = { z = tanh(λ sinh(t+ ir)) | t ∈ R },

so that we can find the distance dist(uk, Zr) by numerically solving the equation

arg(pk − tanh(λ sinh(t+ ir))) = π

2 ,

where pk = |Re(uk)|+ i |Im(uk)| for t ∈ [0, cosh−1(π2λ sin(r))].
This can be done using Newton’s method, but unfortunately the solution may not be

unique. Instead, we can use ball arithmetic to compute a rigorous bound of the integrand
on the boundary of Zr. The process consists in recursively subdividing the interval until
the images of the subintervals by the integrand form an ε-covering.

Optimal choice of r We adapt the method used for Gauss-Chebychev in §5.5.1. This
time the number of integration points N is obtained from equation (3.67).

Writing uk = tanh(λ sinh(tk + irk)), we must choose r < r0 = mink{rk} to ensure
uk 6∈ Zr. Let

M0 = (
∏
rk=r0

Dk

∏
rk>r0

dk)−j/m,

where dk = dist(uk, Zr0) < dist(uk, Zr) and

Dk =
∣∣∣∣∂uk∂rk

∣∣∣∣ =
∣∣∣∣ λ cosh(tk + irk)
cosh(λ sinh(tk + irk))2

∣∣∣∣
is such that dist(uk, Zr−η) = ηDk +O(η2), then the integrand g1,j(u) is bounded on Zr0−η
by

M2 = M0η
− jK
m (1 +O(η)).

This yields
h = 2π(r0 − η)

D + log(2B(r0, α)M0)− jK/m log(η) +O(η)

and the maximum is obtained for the solution η of η(A − log η) = r0 where A = 1 +
m
jK (D + log(2B(r0, α)M0)).

5.6 Computational aspects
The main point of this section is the complexity analysis of our algorithms for superelliptic
curves. We continue to use the label ’heuristic’ to remind us of the heuristic assumptions
made in §1.3. Besides that, we discuss precision issues and share some insights on how we
actually implemented parts of the algorithm. Finally, we give some ideas on what could
be done in the future.

5.6.1 Complexity analysis

We recall the parameters of the problem: we consider a superelliptic curve C/C given by
an affine model C : ym = p(x) where m > 1 and p ∈ C[x] is separable of degree n ≥ 3, with
associated compact Riemann surface X = C(C) . The genus g of C (resp. of X) satisfies

g ≤ (m− 1)(n− 1)
2 = O(mn).

For our analysis we continue to use the complexities given in Section 1.3. The compu-
tation of the Abel-Jacobi map of X has been decomposed into the tasks of computing

152

Chapter 5 5.6. Computational aspects

• the (n− 1) vectors of elementary integrals,

• the big period matrix Ω = (ΩA,ΩB) (5.16),

• (optional) the small period matrix τ = Ω−1
A ΩB (5.17),

• the Abel-Jacobi map at a point P ∈ X,

all of these to precision D > 0 digits.

Computation of elementary integrals

For each elementary cycle γe ∈ Γ, we numerically evaluate the vector of g elementary
integrals from (5.20) as sums of the form

Ia,b ≈
N∑
`=1

w`
ui−1
`

yj`
,

where N = Nmin(D) is the number of integration points required for precision D, {u`, w`}
are integration points and weights, and y` = ỹa,b(u`). Our algorithm proceeds as follows:

• First we compute an integration scheme, as discussed in Chapter 3. With N(D) =
Nmin(D), the computational cost is given by

• O(N(D)T (D)) with N(D) = O(D logD) in the case of double-exponential in-
tegration (§3.4.1) and N(D) = O(D) for Gauss-Chebyshev integration (§3.2.3).

• O(N(D)2M(D)) with N(D) = O(D) in the case of Gauss-Jacobi integration
with m > 2 (§3.2.1).

• For every ` = 1, . . . , N(D) we compute y` = ỹa,b(u`) using n− 2 multiplications and
one m-th root, as shown in §5.6.3 below.

• Starting from w`
y`
, we evaluate all g terms w`

ui−1
`

yj`
simultaneously, by either multiply-

ing with u` or with 1
y`
, and then adding the value to the corresponding entry of the

vector integral.

Altogether, the computation of one vector of elementary integrals takes

E(D) =N(D)(n− 2 + logD)M(D) +N(D)gM(D)

+
{
N(D)T (D) operations, using (DE) or (GC),
N(D)2M(D) operations, using (GJ),

(5.39)

so that depending on the integration scheme we obtain:

Theorem 5.6.1. Each of the (n − 1) elementary vector integrals can be (heuristically)
computed to precision D > 0 using

O(N(D)M(D)(g + logD)) =
{
O(D2 log1+εD(g + logD)) operations, if m = 2,
O(D2 log2+εD(g + logD)) operations, if m > 2.

Proof. Plugging in N(D), T (D),M(D) in equation (5.39) and using that n = O(g) we
obtain the first complexity using (GC) and the second complexity using (DE).

Remark 5.6.2. In the case of Gauss-Jacobi integration we have

E(D) = O(D2 log1+εD(g +D)) ,

which is worse than the complexity coming from the double-exponential integration. This
is due to the slow initialization of the Gauss-Jacobi scheme, see §3.2.1.

153

5.6. Computational aspects Chapter 5

Big and small period matrices

One of the nice aspects of the superelliptic case is that we do not need to compute the
dense matrix ΩΓ ∈ Cg×2g from Section 5.2, but keep the decomposition of periods in terms
of the elementary integrals ∫

γe

ωi,j ∈ Cg×(n−1) .

Using the symplectic base change matrix S introduced in §5.2.4, the canonical homology
basis is given by cycles of the form

αi =
∑

e∈E, l∈Z/mZ

se,lγ
(l)
e , (5.40)

where γ(l)
e ∈ Γ is a generating cycle and se,l ∈ Z is the corresponding entry of S. We use

(5.18) to compute the coefficients of the big period matrix (ΩA,ΩB), so that each term of
(5.40) involves only a fixed number of multiplications: each of the O(g2) periods is a linear
combination of O(g) elementary integrals, the coefficients involving precision D roots of
unity.

For the complexity we run into the same problems that were already discussed in the
general case in §4.8.1. Hence we can fall back to the statement of Theorem 4.8.5.

Abel-Jacobi map

This part of the complexity analysis is based on the results of Section 5.4 and assumes
that we have already computed a big period matrix and all related data. We obtain the
following complexity for computing the Abel-Jacobi map of superelliptic curves:

Theorem 5.6.3.

(i) For each finite point P ∈ X we can (heuristically) compute
∫ P
P0
ω̄ to precision D > 0

using
E(D) = O(D2 log2+εD(g + logD) + ngD) operations.

(ii) For each infinite point P∞ ∈ X we can (heuristically) compute a representative of∫ P∞
P0

ω̄ mod Λ to precision D > 0 using

• O(ngD) operations, if δ = gcd(m,n) = 1,
• nE(D) operations in the case of Theorem 5.4.7,
• n(n+ m

δ)E(D) operations in the case of Theorem 5.4.9.

(iii) Reducing a vector v ∈ Cg modulo Λ can be done using O(gω) multiplications.

Proof.

(i) Follows from combining the results from §5.4.1 and Remark 5.4.4.

(ii) The statements follow immediately from §5.4.3, Theorem 5.4.7 and Theorem 5.4.9.

(iii) By §4.9.6, the reduction modulo the period lattice requires one 2g × 2g matrix
inversion and one multiplication.

154

Chapter 5 5.6. Computational aspects

5.6.2 Precision issues

As explained in §5, the ball arithmetic model allows to certify that the results returned by
the arb program [47] are correct. It does not guarantee that the result actually achieves
the desired precision.

As a matter of fact, we cannot prove a priori that bad accuracy loss will not occur
while summing numerical integration terms or during matrix inversion.

However, we take into account all predictable loss of precision:

• While computing the periods using equations (5.18) and (5.21), we compute a sum
with coefficients

C−ja,b

(
b− a

2

)i(i− 1
l

)(
b+ a

b− a

)i−1−l
(5.41)

whose magnitude can be controlled a priori. It has size O(g).

• The size of the coefficients of the symplectic reduction matrix are tiny (less than m
in practice), but we can take their size into account before entering the numerical
steps. Notice that generic HNF estimates lead to a very pessimistic estimate of size
O(g) coefficients.

• Matrix inversion of size g needs O(g) extra bits.

This means we need to increase the internal precision from D to D̃ = D+O(c(p)g), where
the constant c(p) depends on the branch points as can be seen from equation (5.41). In
particular, we see that D̃ −D is independent of D, as we heuristically assumed in §1.3.

Remark 5.6.4. In case the end result is imprecise by d bits, the user simply needs to run
another instance to precision D + d to reach the desired accuracy.

In fact, the mathematical quantities and the sequence of arithmetic operations per-
formed in the algorithm remain the same. Now if the absolute error is reduced by d bits
on input of an elementary operation this remains true on output; by induction this is true
for the final result.

5.6.3 Implementation tricks

Here we simply give some ideas that we used in our implementation(s) to improve constant
factors hidden in the big-O notation, i.e. the absolute run time.

In practice, 80 to 90% of the run time is spent on numerical integration of integrals
(5.18) (see Table 5.3). According to §5.6.1, for each integration point u` ∈]− 1, 1[one first
evaluates the y-value y` = ỹa,b(u`), then adds the contributions w`ui`/y

j
` to the integral of

each of the g differential forms.
We shall improve on these two aspects, the former being prominent for hyperelliptic

curves, and the latter when the g � n.

Computing products of complex roots

Following our definition (5.9), computing ỹa,b(u`) involves (n − 2) m-th roots for each
integration point.

Instead, we fall back to one single (usual) m-th root by computing q(u) ∈ 1
2Z such

that

ỹa,b(u) = ζq(u)
(∏
uk∈U−

(u− uk)
∏

uk∈U+

(uk − u)
) 1
m
. (5.42)

155

5.6. Computational aspects Chapter 5

This can be done by tracking the winding number of the product while staying away from
the branch cut of the m-th root. For complex numbers z1, z2 ∈ C we can make a diagram
of the quotient

m
√
z1 m
√
z2

m
√
z1z2

∈ {1, ζ, ζ−1}

depending on the position of z1, z2 and their product z1z2 in the complex plane, resulting
in the following lemma:

Lemma 5.6.5. Let z1, z2 ∈ C\]∞, 0]. Then,

m
√
z1 m
√
z2

m
√
z1z2

=


ζ, if Im(z1), Im(z2) > 0 and Im(z1z2) < 0,
ζ−1, if Im(z1), Im(z2) < 0 and Im(z1z2) > 0,
1, otherwise.

For z ∈]∞, 0] we use m
√
z = ζ

1
2 · m
√
−z.

Proof. Follows from the choices for m
√
· and ζ that were made in §5.1.2.

Lemma 5.6.5 can easily be turned into an algorithm that computes q(u).

Doing real multiplications

Another possible bottleneck comes from the multiplication by the numerator u`, which is
usually done g −m− 1 times for each of the N integration points. More precisely, as we
saw in the proof of Proposition 5.1.8, for each exponent j we use the exponents

0 ≤ i ≤ ni =
⌊
nj − δ
m

⌋
with

∑
ni = g.

Without polynomial shift (5.21), this numerator would be x` = u` + b+a
b−a . While x` is a

complex number, u` is real, so computing with u` saves a factor almost 2 on this aspect.

5.6.4 Further ideas

Improving branch points

As we saw in Section 5.5, the number of integration points closely depends on the con-
figuration of branch points. In practice, when using double-exponential integration, the
constant r is usually bigger than 0.5 for random points, but we can exhibit bad config-
urations with r ≈ 0.1. In this case however, we can perform a change of coordinate by
a Moebius transform x 7→ ax+b

cx+d , as explained in Remark 5.1.3, to redistribute the points
more evenly. Improving r from 0.1 to say 0.6 immediately saves a factor 6 on the run
time.

Near-optimal tree

As explained in §5.1.3, we integrate along the edges of a maximal-flow spanning tree
G = (B, E), where the capacity re of an edge e = (a, b) ∈ E is computed as

re = min
c∈B\{a,b}

{∣∣∣Im(sinh−1(tanh−1(2c−b−a
b−a)/λ)

∣∣∣ , if m > 2.

Although this can be done in low precision, computing re for all (n−1)(n−2)/2 edges of the
complete graph requires O(n3) evaluations of elementary costs (involving transcendental
functions if m > 2).

156

Chapter 5 5.6. Computational aspects

For large values of n (comparable to the precision), the computation of these capacities
has a noticable impact on the run time. This can be avoided by computing aminimal span-
ning tree that uses the euclidean distance between the end points of an edge as capacity,
i.e. re = |b− a|, which reduces the complexity to O(n2) multiplications.

Given sufficiently many branch points that are randomly distributed in the complex
plane, the shortest edges of the complete graph tend to agree with the edges that are
well suited for integration. This approach has already been used in the general case, see
Section 4.3.

Taking advantage of rational equation

In case the equation (5.2) is given by a polynomial p(x) with small rational coefficients,
one can still improve the computation of ỹa,b(u) in (5.42) by going back to the computation
of y(xa,b(u)) = p(x)

1
m . The advantage is that baby-step giant-step splitting can be used

for the evaluation of p(x), reducing the number of multiplications to O(
√
n). In order to

recover ỹa,b(u), one needs to divide by m
√

1− u2 and adjust a multiplicative constant in-
cluding the winding number q(u), which can be evaluated at low precision. This technique
must not be used when u gets close to ±1.

Splitting integrals

Similar to the situation explained in §4.7.5, numerical integration becomes quite inefficient
when there are other branch points relatively close to an edge. Even the spanning tree
optimization does not help if some branch points tend to cluster while others are far away.
A simple example is given by the elliptic curve

y2 = x(x− I)(x− 1000) .

The branch point i is very close to the integration path [0, 1000] and imposes a value of
r(ε) = 0.045 for Gauss-Chebyshev integration and a better but still small r(Z) = 0.20 for
double-exponential integration.

In a case like this, one can always split the bad integrals to improve the relative
distances to the singularities: in the case of double-exponential integration, writing∫ 1000

0
=
∫ 6

0
+
∫ 1000

6

gives two integrals with r(Z) ≥ 0.47 > 2 · 0.20 each and therefore reduces the total
number of integration point. Alternatively, splitting in 2 and 33 results in three integrals
each with r(Z) ≥ 0.63 > 3 ·0.20. In practice, splitting integrals almost never improves the
situation for the double-exponential integration since the spanning tree avoids such edges
by construction, when possible.

Gauss-Chebychev integration would greatly profit from splitting integrals. Adapting
our splitting strategy used for Gauss-Legendre in 4.7.5, would result in four integrals,
with splitting occuring at 3.8, 24.4 and 156.3, and respective values 0.75, 0.84, 0.83, 0.83
of r(ε) (compared to the 0.045 before). Sadly, splitting is not a good possibility here:
the end points of the new integrals are not (both) singularities so that we would have
to compute three different Gauss-Jacobi schemes in order to deal with the new integrals.
The same is true when m > 2 for general Gauss-Jacobi integration. Since this would
completely throw us out of our integration setting, it is much more convenient to switch
to double-exponential integration for such integrals.

Shifting the integration path Another option with double exponential integration,
as explained in [64, II.3.5], is to shift the integration path that is used for the change of
variable.

157

5.7. Examples, timings and comparison Chapter 5

5.7 Examples, timings and comparison
In this final section we want to compare all the different algorithms, implementatios and
integration methods to find out which combination is optimal for period matrix compu-
tations of superelliptic curves. For these testing purposes we consider a family of curves
given by Bernoulli polynomials

Bm,n : ym = Bn(x) =
n∑
k=0

(
n

k

)
bn−kx

k (5.43)

as well as their reciprocals

B̃m,n : ym = xnBn

(
1
x

)
. (5.44)

The branch points of these curves present interesting patterns which can be respectively
considered as good and bad cases from a numerical integration perspective (see Figure
5.10).

5.7.1 Big period matrix

Here we give timings for the computation of the big period matrix for hyper- superelliptic
curves defined by the family of curves (5.43) and (5.44). In contrast to the comparison for
general affine algebraic curves in Section 4.8, not only will we consider higher precisions
here, namely D10 ∈ {50, 200, 500, 1000, 2000}, but also curves of higher genera, ranging
from g = 3 up to g = 805.

Hyperelliptic examples In Table 5.1 we compare the following implementations and
integration schemes for hyperelliptic curves:

• in arb (A) using Gauss-Chebyshev integration (GC),

• in arb (A) using double-exponential integration (DE),

• in magma (M) using Gauss-Chebyshev integration (GC),

• in magma (M) using using double-exponential integration (DE),

• the (old) existing magma (M) implementation [93].

We will omit a comparison between these specialized algorithms and the implementations
in maple & sage for general affine algebraic curves, because they do not play in the same
league. Having a quick look at the Tables in §4.8.4 and comparing the timings to Table
5.1 supports that decision.

158

Chapter 5 5.7. Examples, timings and comparison

(a) Bm,8 (b) B̃m,8

(c) Bm,24 (d) B̃m,24

(e) Bm,48 (f) B̃m,48

(g) Bm,96 (h) B̃m,96

Figure 5.10: Configurations of branch points of Bernoulli polynomials.

159

5.7. Examples, timings and comparison Chapter 5

Genus Curve Algo.
D10 50 200 500 1000 2000

3

B2,8

(A)+(GC) .005 .015 .067 0.30 1.47
(A)+(DE) 0.06 0.39 0.69 3.76 22.3

(M)+(GC) 0.02 0.08 0.23 0.82 3.86
(M)+(DE) 0.11 0.55 2.50 11.0 61.2

(M)+(old) 0.18 0.34 2.83 107 -

B̃2,8

(A)+(GC) .005 .016 .075 0.33 1.75
(A)+(DE) 0.05 0.43 0.69 5.11 41.0

(M)+(GC) 0.02 0.11 0.41 1.56 7.73
(M)+(DE) 0.14 0.75 3.91 17.8 102

(M)+(old) 0.21 0.37 2.87 102 -

11

B2,24

(A)+(GC) .037 0.14 0.72 3.67 18.6
(A)+(DE) 0.85 5.17 6.50 35.7 205

(M)+(GC) 0.16 0.52 2.02 7.12 31.7
(M)+(DE) 0.78 3.69 16.8 66.4 320

(M)+(old) 2.31 4.01 32.4 1233 -

B̃2,24

(A)+(GC) .035 0.14 0.82 3.89 19.7
(A)+(DE) 0.81 5.21 6.55 36.8 207

(M)+(GC) 0.18 0.62 2.54 8.73 38.3
(M)+(DE) 0.83 3.92 17.9 70.9 341

(M)+(old) 2.86 4.64 35.7 1311 -

23

B2,48

(A)+(GC) 0.23 0.70 3.71 17.4 88.1
(A)+(DE) 4.92 27.5 28.5 147 835

(M)+(GC) 0.60 2.07 8.40 29.8 130
(M)+(DE) 2.80 13.3 64.2 253 1213

B̃2,48

(A)+(GC) 0.24 0.79 3.84 17.6 90.2
(A)+(DE) 5.40 31.4 29.5 150 835

(M)+(GC) 0.73 2.54 10.2 35.3 161
(M)+(DE) 2.90 13.8 67.8 268 1250

47

B2,96

(A)+(GC) 1.78 4.67 20.1 74.5 325
(A)+(DE) 24.6 146 122 602 3077

(M)+(GC) 2.61 9.21 36.4 125 504
(M)+(DE) 11.4 55.4 269 1022 4458

B̃2,96

(A)+(GC) 1.67 4.54 19.7 72.5 347
(A)+(DE) 45.0 35.0 161 646 3258

(M)+(GC) 3.25 10.0 38.0 131 535
(M)+(DE) 13.8 58.6 273 1019 4540

Table 5.1: Timings for hyperelliptic curves (in seconds).

160

Chapter 5 5.7. Examples, timings and comparison

Conclusions Our algorithm sets a new standard for big period matrices of hyperelliptic
curves. Compared to the old magma implementation, we obtain a huge speed-up which
is due to integration along a spanning tree (smaller number of integrals) and using better
integration schemes: in all displayed hyperelliptic examples of Table 5.1 Gauss-Chebyshev
integration is by far the best option. As one would expect from the asymptotic behavior,
the gap between (GC) and (DE) is growing with increasing precision. But even with
double-exponential integration our algorithm still beats the old implementation in most
instances. Moreover, the old implementation scales horribly with the precision and barely
works for one thousand or more decimal digits, while our new algorithm shows consistent
quadratic behavior as we would expect from our complexity analysis (except for very
few instances using (A)+(DE)). Furthermore, we mention that our algorithm is basically
unlimited in terms of the genus, while magma cannot handle examples such as B2,48 or
B2,96.

In defense of the magma implementation we remark that it automatically computes the
Abel-Jacobi map to the point at infinity (heuristically, using a fixed number of integration
points and recursive subdivision of intervals) and that this is included in our timings. We
cannot say how much of the time exactly is spent on that step, but it definitely skews the
comparison.

Magma vs. Arb Comparing arb to magma we see that (A)+(GC) is consistently
faster than (M)+(GC), although both implementations are very similar and closely follow
the strategy that we developed in this chapter. On the one hand, this is due to Molin’s
programming skills, who did a great job implementing our algorithm. On the other hand,
we believe that arb is just faster than magma in many aspects such as basic real and
complex multi-precision arithmetic or finding polynomial roots. The same is true for the
comparison of (A)+(DE) against (M)+(DE), although (A)+(DE) shows weird behavior
in some instances which could be fixed easily.

Superelliptic examples In Table 5.2 we compare runnings times for superelliptic curves
defined by polynomials (5.43) and (5.44). In particular, we compare our implementations

• in arb (A) using double-exponential integration (DE),

• in magma (M) using using double-exponential integration (DE),

• in magma (M) using Gauss-Jacobi integration (GJ),

• and our magma implementation (M) for general algebraic curves using (GL) inte-
gration with splitting (see Section 4.8).

For the same reason given in §5.7.1, we will not include the maple & sage implementa-
tions in this comparison.

161

5.7. Examples, timings and comparison Chapter 5

Genus Curve Algo.
D10 50 200 500 1000 2000

3 B3,4

(A)+(DE) 0.02 0.05 0.45 3.58 31.7

(M)+(DE) 0.04 0.25 1.42 7.37 48.0
(M)+(GJ) 0.03 0.63 5.30 37.1 291
(M)+(GL) 0.35 2.85 19.3 117 943

7 B̃4,6

(A)+(DE) 0.03 0.24 2.58 20.5 198

(M)+(DE) 0.20 1.47 9.64 52.4 340
(M)+(GJ) 0.93 17.6 174 1336 10956
(M)+(GL) 1.03 6.25 34.3 167 1385

15 B7,7

(A)+(DE) 0.05 0.37 4.00 31.0 361

(M)+(DE) 0.23 1.80 15.3 81.5 485
(M)+(GJ) 0.20 3.00 30.2 196 1468
(M)+(GL) 4.15 23.3 122 525 2648

31 B̃10,8

(A)+(DE) 0.07 0.54 5.94 44.4 442

(M)+(DE) 0.43 2.67 15.4 76.8 467
(M)+(GJ) 0.97 15.0 138 969 8231
(M)+(GL) 11.0 55.9 287 1152 5219

37 B8,12

(A)+(DE) 0.28 1.60 6.05 39.5 305

(M)+(DE) 0.64 3.75 21.1 102 608
(M)+(GJ) 0.55 5.49 44.8 287 2135
(M)+(GL) 6.64 33.2 164 663 3608

77 B24,8

(A)+(DE) 0.29 1.01 5.65 33.4 225

(M)+(DE) 0.77 3.50 16.9 75.7 423
(M)+(GJ) 0.86 7.03 52.7 334 2417
(M)+(GL) 54.5 262 1337 5093 -

91 B̃18,12

(A)+(DE) 0.52 2.41 10.4 61.7 435

(M)+(DE) 1.61 7.32 36.5 164 926
(M)+(GJ) 2.29 24.9 215 1415 10920
(M)+(GL) 80.6 367 1805 6734 -

184 B17,24

(A)+(DE) 4.40 13.4 46.3 218 1238

(M)+(DE) 6.47 22.1 92.8 381 1966
(M)+(GJ) 5.28 22.2 134 710 4710
(M)+(GL) 139 515 2366 8703 -

529 B̃24,48

(A)+(DE) 85.5 196 468 1564 7590

(M)+(DE) 79.8 169 531 1827 8208
(M)+(GJ) 79.6 222 1057 5278 34233
(M)+(GL) 2104 5674 19967 - -

805 B18,96

(A)+(DE) 475 892 2280 6052 23234

(M)+(DE) 300 620 1779 5562 22282
(M)+(GJ) 250 462 1263 4155 18790

Table 5.2: Timings for superelliptic curves (in seconds).

162

Chapter 5 5.7. Examples, timings and comparison

Conclusions From Table 5.2 we see that for precision D10 = 50, Gauss-Jacobi integra-
tion is a competitive alternative to double-exponential integration. Already for precision
D10 = 200 though, (DE) wins over (GJ) due to faster initialization, as already discussed
in §3.4.1 and §3.2.1. There might still be some optimization potential left for computing
the Gauss-Jacobi scheme, but it will hardly become faster than (DE) for higher precisions.
An exception here being the genus 805 curve defined by B18,96. Due to the huge degree
n = 96, the cost of evaluating the integrals for each abscissa increase drastically. Hence,
having less abscissas overall becomes more valuable than fast initialization. From Chapter
3, we know that Gaussian quadratures require much less integration points than double-
exponential integration. The same argument explains why (GL) integration is so good for
general curves: because the cost per abscissa is tremendous. However, in the superelliptic
case (i.e. m > 2) (DE) is the superior integration method (at least for all examples that
are not completely ridiculous).

Our implementation for general curves (M)+(GL) faces its obvious limitations here. In
particular, it is unfit to handle large genus examples such as B̃24,48 and B18,96 or precisions
like D10 = 1000, 2000. Including these timings in our comparison here highlights just how
fast and efficient our new algorithm for superelliptic curves really is.

Magma vs. Arb We recognize the same differences as in §5.7.1: arb is generally faster
than magma (except for the high genus examples B̃24,48 and B̃18,96), although we can
observe that the gap is more narrow than for hyperelliptic curves.

Distribution of computational cost Finally, we have a look at the relative compu-
tational costs in our magma implementation, see Table 5.3 below for some examples. As
already mentioned in §5.6.3, we see that by far the most time is spent on evaluating the
integrals (usually >80%), which includes computing the m-th root as an analytic func-
tion. These steps consist entirely of basic arithmetic operations and simple transcendental
functions. Initialization takes almost no time (using (GC) for m = 2 and (DE) for m > 2)
and computing the roots of f(x) is also pretty cheap (5% or less). Surprisingly, computing
the big period matrix (§5.6.1) can take a significant portion of the time, once the genus
becomes quite large. Other than that, Table 5.3 confirms that our period matrix algorithm
is fairly optimized.

Genus Curve D10 Init Integration Anal. cont. Roots Matrix mult.

11 B2,24
100 < 1 80 62 5 < 2

1000 3 93 79 2 < 1

184 B17,24
100 <1 85 25 <1 11

1000 < 2 97 43 <1 1

47 B2,48
100 <1 84 74 5 <1

1000 <1 96 83 2 < 1

529 B24,48
100 <1 63 13 <1 33

1000 <1 94 27 <1 5

Table 5.3: Contributions of individual tasks to running time (in percent).

163

5.7. Examples, timings and comparison Chapter 5

5.7.2 Abel-Jacobi map

Computing the Abel-Jacobi map via numerical integration can be a useful tool for the
identification of principal divisors on curves, which the following example will show. This
example is due to Jeroen Sijsling.

Example 5.7.1. We consider a projection ϕ between hyperelliptic curves X (genus 3)
and Y (genus 2). In particular, the curves are given by affine equations

X : y2 = x8 + 2x6 − 3x4 + 7x2 − 1,
Y : y2 = x(x4 + 2x3 − 3x2 + 7x− 1) .

and the projection is given as

ϕ : X → Y, (x, y) 7→ (x2, xy) .

Under the pullback ϕ∗, the zero divisor D = (0, 0) − P∞ on Y becomes principal on X.
In fact, D generates the kernel of the corresponding map on the Jacobians. This can be
verified by appliying our algorithms. We compute the image of D in R4/Z4 under the
Abel-Jacobi map on Y

A(D) ≡
(
1/2 0 −1/2 −1/2

)
=: v .

Using algorithms of Costa et al. [21] we can use period matrices of X and Y to compute
a homology representation of the corresponding map between the Jacobians

R =


0 0 1 2 −1 0
0 0 −1 0 0 0
−1 0 0 0 0 0
−1 0 −1 0 1 −2


and get that

v ·R =
(
1 0 1 1 −1 1

)
∈ Z6 ,

which confirms that the pullback of D is a principal divisor on X. For this computation
we used 200 decimal digits precision.

Comparison of integration methods Finally, we want to give timings for the com-
putation of the Abel-Jacobi map. As explained in §5.4.3 we can compute the Abel-Jacobi
map of D∞ = P∞−P0 elegantly by moving the divisor such that its support contains only
finite points. This is an excellent opportunity to test the correctness and the performance
of our code.

For each curve in 5.1 we compute the Abel-Jacobi map of D(s)
∞ for all points at infinity

s = 1, . . . , δ = gcd(m,n). In the nice case of Theorem 5.4.7, we have to compute at most
n−1 integrals. Otherwise, we are stuck in the case of Theorem 5.4.9 and have to compute
up to n(m+ δν) integrals.

After having computed A(D(s)
∞) for s = 1, . . . , δ we can check our results by numerically

verifying the relation
m

δ

δ∑
s=1
A(D(s)

∞) ≡ 0 mod Z2g .

We executed all computations twice, once using double-exponential (DE) integration
and once using Gauss-Jacobi (GJ) integration, as explained in the previous sections, in
order to compare the two integration schemes in this situation. In Table 5.4 you can see
examples of different genera chosen such that δ 6= 1 (otherwise the computation would be

164

Chapter 5 5.8. Outlook

trivial, see §5.4.3). The 3rd column states the number of actual integrations that were
performed and therefore indicates whether we are in the case of either Theorem 5.4.7 or
5.4.9.

Genus Curve #Integrals Algo.
D10 50 200 500 1000 2000

3 B2,8 7 (M)+(DE) 0.10 0.57 3.11 15.2 91.5
(M)+(GC) 0.05 0.55 5.26 36.0 283

6 B5,5 3 (M)+(DE) 0.07 0.50 3.30 18.3 118
(M)+(GC) 0.04 0.57 4.86 34.3 275

7 B4,6 2 · 17 (M)+(DE) 0.90 6.89 44.6 245 1594
(M)+(GC) 1.87 29.6 308 2215 17362

15 B7,7 5 (M)+(DE) 0.15 1.06 6.43 33.8 213
(M)+(GC) 0.20 2.77 26.4 177 1381

17 B6,8 2 · 31 (M)+(DE) 2.05 13.7 83.9 436 2702
(M)+(GC) 2.30 22.5 194 1178 9295

37 B8,12 4 · 35 (M)+(DE) 7.04 41.9 238 1164 6862
(M)+(GC) 6.74 55.2 424 2544 18137

Table 5.4: Timings for the Abel-Jacobi map (in seconds).

Conclusion The situation is fairly similar to our comparison (§5.7.1) for period matrices
of superelliptic curves. For precision D10 = 50, Gauss-Jacobi integration can be seen as
solid alternative, while for higher precisions (DE) is the preferable choice. Note that the
more often we can reuse each integration scheme (i.e. more integrals), the more it becomes
profitable to use (GJ) integration.

5.8 Outlook
In this chapter we presented an approach based on numerical integration for arbitrary
precision computation of period matrices and the Abel-Jacobi map of superelliptic curves
given by m > 1 and squarefree p ∈ C[x].

Integration along a spanning tree and the special geometry of such curves make it
possible to compute these objects to high precision performing only a few numerical inte-
grations. The resulting algorithm scales execellently with the genus and works for several
thousand digits of precision.

We briefly comment on possible generalizations and improvements here.

Multiple roots In a first step the algorithm could be extended to all complex superel-
liptic curves given by m > 1 and p ∈ C[x], where f can have multiple roots of order at
most m− 1, say p(x) =

∏n
k=1(x− xk)nk . We want to highlight the following issues:

• The differentials are of the form ∏n
k=1(x− xk)ik

yj
dx

where the exact condition on the holomorphicity is given in [52, Theorem 3]. How-
ever, these holomorphic differentials can still be integrated using double-exponential
integration as presented in §3.4.

165

5.8. Outlook Chapter 5

• The local monodromies may no longer be equal or even cyclic, but they are com-
pletely (up to conjugacy) determined by the multiplicites nk. We believe that ap-
plying the Tretkoff algorithm [88], that was already used for the homology in the
general case (see Section 4.6), could be a better approach than generalizing the
methods used in Section 5.3 (although this seems possible).

Although several adjustments would have to be made in the analysis and in the code,
staying within the superelliptic setting promises a fast and rigorous extension of our al-
gorithm. Moreover, this generalization would allow to perform any Moebius transform on
the model of the curve and to efficiently implement the idea of §5.6.4.

Compact Riemann surfaces We also believe that the strategy employed here (numeri-
cal integration between branch points combined with information about local intersections)
could be adapted for compact Riemann surfaces given by an affine equation f(x, y) = 0
with irreducible f ∈ C[x, y] (which was the topic of Chapter 4).

The obvious interpolation between our approach for compact Riemann surfaces and the
one for superelliptic curves, would be to use numerical integration between branch points
and symbolic integration (for example using Puiseux series expansions) in the neighbor-
hood of exceptional values. This possibility has already been discussed in Section 4.11 and
completely hinges on whether we have at our disposal an efficient algorithm for Puiseux se-
ries expansions with arbitrarily many terms. After discussing this possibility with Poteaux
and Johansson, we highly doubt that this approach will be more efficient than numerical
integration along arcs and circles.

Recognizing superelliptic curves Suppose we want to determine period matrices or
the Abel-Jacobi map associated to an irreducible polynomial f ∈ C[x, y]. Since our al-
gorithms for superelliptic curves (in the sense of Definition 5.1.1) are rigorous and much
faster than our algorithms for general compact Riemann surfaces, we would like to have
an algorithm that checks whether there exists an affine model of the form ym = p(x) and
if so, determines one. For hyperelliptic curves (i.e. m = 2) this is already implemented
in magma and we obtain a model by calling the function ’IsHyperelliptic’ followed by
’SimplifiedModel’. In order to recognize superelliptic curves, one could compute the auto-
morphism group and then check whether taking the quotient by it gives a projective line.
In order to obtain a superelliptic affine model one still needs to find a suitable projective
transformation; this could be done using algorithmic Kummer theory (see [19, §5.2.3] for
the number field case). The existence of such a model is guaranteed by [69, Theorem
IV.3.2].

166

Chapter 6

Applications

In the final chapter of this thesis we explore several applications of period matrices and
the Abel-Jacobi map (or, more generally, integration of differential forms on Riemann
surfaces) to interesting problems in number theory. We show how our work is related to
or might be connected with results and algorithms of other authors in many instances.
While we carried out some applications by ourselves, we simply indicate out how the others
might be realized.

Structure of this chapter More precisely, we briefly introduce the Birch and Swinnerton-
Dyer conjecture for algebraic curves defined over the rational numbers in Section 6.1 and
explain how big period matrices of the associated Riemann surface are related to the real
period of the Jacobian. In the following Section 6.2 we show how big period matrices can
be used as numerical approximation to compute endomorphism rings of Jacobians and
give an example how one can use magma to verify that a Jacobian has complex mul-
tiplication by a certain CM field. As already mentioned several times, one of the most
important applications is the Riemann Theta functions, which is actually defined in terms
of an element of the Siegel upper half-space, e.g. by a small period matrix. Its definition
and possible applications are discussed in Section 6.3. The final application deals with
computing certain regulators that are related to the second K-group of algebraic curves
and can be found in Section 6.4. We describe how the algorithms presented in Chapter 4
can be modified to numerically integrate a certain meromorphic differential. Picking up
the strategy of de Jeu, Dokchitser & Zagier [29] we compute numerical approximations
to such regulators (up to rational multiples) for many hyperelliptic and non-hyperelliptic
curves, confirming old and providing new evidence for the Beilinson conjecture.

6.1 The Birch and Swinnerton-Dyer conjecture
Let J = Jac(C/Q) be the Jacobian of a smooth, projective, geometrically irreducible
curve C defined over Q. For such abelian varieties the Birch & Swinnerton-Dyer (BSD)
conjecture can be stated as

Conjecture 6.1.1 (Birch and Swinnerton-Dyer). Denote the analytic rank of J by r =
ords=1 L(J, s). Then, the following equalities are true:

(1) r = rk(J/Q) ,

(2) lim
s→1

L(J, s)
(s− 1)r =

ΩJ ·RJ ·
∏
p cp ·#X(J)

(#J(Q)tors)2 .
(6.1)

The BSD conjecture for abelian varieties is open in general. It is proven only for few
examples and certain modular abelian varieties. Thus, it is of great interest to provide

167

6.2. Endomorphism rings Chapter 6

numerical evidence for the conjecture. For a precise definition of all the six quantities
appearing in the second statements we refer to [34] or [46, p. 462]. A definition of the
L-function of algebraic curves can be found in §6.4.1.

In this section we want to explain how the computation of period matrices of Riemann
surfaces, which is the main topic of this thesis (see Chapters 4 and 5) is related to the
BSD conjecture. Of interest to us is the quantity ΩJ , which appears in the numerator of
the right hand side of the second equation (6.1), and is called the real period of J .

Let Ω ∈ Cg×2g be a big period matrix obtained by integrating a Q-basis of holomorphic
differentials ω̄ = (ω1, . . . , wg) of C along a basis (γ1, . . . , γ2g) of the integral homology
group H1(C,Z). Now, the columns of the matrix TrC/R(Ω) = Ω + Ω̄ ∈ Rg×2g generate a
lattice Λ in Rg. The value of the integral

∫
J(R) |w1 ∧ · · · ∧ wg| can then be computed as

the volume of a fundamental domain for Λ.
In the case where ω̄ is also a basis for the integral 1-forms on the Jacobian J we already

found the real period of J , i.e.
∫
J(R) |w1 ∧ . . . ∧ wg| = ΩJ . Otherwise, the real period can

be obtained via a change of basis, i.e. by expressing the integral 1-forms on J in terms of
the basis ω̄.

This procedure is described explicitly in [34, Section 3.5] in the case of genus 2 curves
and has been proved rigorously and generalized by Raymond van Bommel [89] to arbitrary
hyperelliptic curves of higher genus. Of course, our period matrix algorithms are not
limited to curves of such small genera and could be used to provide high precision big
period matrices for the computation of the real period in the future.

6.2 Endomorphism rings

Let C be a smooth, projective, geometrically irreducible curve of genus g defined over a
number field K with Jacobian J and let Ω ∈ Cg×2g be a big period matrix such that
J(C) ∼= Cg/Λ where Λ = ΩZ2g. Using methods of van Wamelen which are described
in [93] and implemented in magma we can compute a (putative) basis for the endo-
morphism ring End(J(C)), that is, matrices R1, . . . , Rd ∈ Z2g×2g that form a Z-basis of
End(J(K)). Given a big period matrix Ω (with sufficiently high precision) as input, the
function EndmorphismRing(Ω) uses lattice methods to compute such a basis, as well as
matrices Mi ∈ Cg×g such that we have the equality MiΩ = ΩRi, i = 1, . . . , d.

Originally, van Wamelen implemented these algorithms for Jacobians of hyperelliptic
curves, but many of them solely rely on period matrices as input and can thus be used for
period matrices associated to general nice algebraic curves.

Example 6.2.1. For example, we can use the magma functionality to confirm that the
Jacobian of a curve has complex multiplication. Consider an affine model for the smooth
plane quartic X19 of [51, Case 19], e.g. setting z = 1 we can write X19 : f = 0 with

f =− 7x4 − 2x3y + 16x3 + 7x2y2 − 6x2y − 8x2 + 10xy3 + 14xy2 (6.2)
+ 2xy − 15x+ y4 + 10y3 + 13y2 + 17y + 14 ∈ Q[x, y] . (6.3)

The authors of [51] constructed this curve such that the endomorphism ring End(J(Q))
is the maximal order of the number field

K = Q[t]/(t6 − 2t5 + 102t4 − 160t3 + 5845t2 − 206t+ 140932) .

Indeed, we can verify this by computing a small period matrix τ for X19 to reasonable
precision, say 300 decimal digits. The magma command EndomorphismRing(τ) then

168

Chapter 6 6.2. Endomorphism rings

returns a matrix algebra of degree 6 over Z with 3 generators

R1 =



1 −2 1 1 3 0
1 0 5 5 8 4
2 0 −1 2 2 0
4 −1 2 4 1 2
−1 −3 1 0 1 0
−2 0 −2 −3 −4 −3

 , R2 =



4 −2 −2 0 −2 −2
2 0 1 2 0 2
4 0 −5 2 −2 0
0 0 4 4 2 4
0 0 1 −2 0 0
−4 −1 0 −2 1 −5

 ,

R3 =



3 −2 0 2 0 0
−1 1 3 2 3 3
2 3 3 2 1 9
−4 2 3 1 3 2
2 −3 −1 0 −1 −3
−1 −2 −5 −2 −2 −8

 .

Afterwards, we use the function MinimalPolynomial(Ri) to compute the minimal polyno-
mials of the matrices R1, R2, R3, which we find to generate the number field

L = Q[t]/(t6 − 2t5 + 16t4 + 12t3 − 46t2 + 224t+ 451) .

As expected, calling IsIsomorphic(L,K) returns ’true’, thus verifying that the Jacobian
corresponding to τ does have K as CM field.

6.2.1 Interface with the LMFDB

Having a fast and reliable algorithm to compute period matrices to high precision is a
valuable input for the methods developed by Costa et al. [21] to compute endormorphism
rings of Jacobians rigorously. In their work they revisit the strategy of van Wamelen
[92] and enhance its practical performance. Moreover, their methods apply to curves of
arbitrary genus.

During a meeting aimed at expanding the ‘L-functions and modular forms database’
[58] to include genus 3 curves, we synced our period matrix algorithms with their routines.
The magma implementation for period matrices of superelliptic curves, as described in
Section 5.2, was incorporated in their framework to successfully compute the endomor-
phism rings of Jacobians of 67.879 hyperelliptic curves of genus 3, and confirm those of
the 66.158 genus 2 curves that are currently in the database. For these applications big
period matrices were computed to 300 decimal digits precision.

Moreover, we tailored an extra version of our period matrix algorithm for general
algebraic curves, as described in Section 4.8, for the special case of plane smooth quartics
(non-hyperelliptic genus 3 curves) simply to gain some further speed-up. This version was
used to compute endormorphism rings of Jacobians of 82.244 plane smooth quartics that
are going to appear in the LMFDB. The working precision here was 100 decimal digits
and at the time when the computation was carried out our algorithm took on average
≈ 10 seconds for each period matrix.

Let us mention here that among these 216.281 curves there was not a single ’bad
example’ which our algorithms could not handle and that other period matrix algorithms
would have been too slow or unstable to carry out this huge computation.

6.2.2 Isogenies between Jacobians

In fact, the case of endomorphism rings is just a special case of more general maps between
Jacobians. Let C1 and C2 be smooth, projective, geometrically irreducible curves of genus
g defined over a number field K with Jacobians J1 = Jac(C1/K) and J2 = Jac(C2/K).
An isogeny between J1 and J2 is a surjective morphism J1 → J2 with finite kernel.

169

6.3. Riemann Theta functions Chapter 6

In particular, over the complex numbers, the Jacobians can be represented by period
matrices Ω1,Ω2 such that

Ji(C) ∼= Cg/Λi where Λi = ΩiZ2g, for i = 1, 2.

In this case, isogenies between the (analytic) Jacobians (analytic homomorphisms) can
be approximated with magma , using our period matrices as numerical approximations.
As an example, we consider the non-split Cartan modular curve Xns(13) which is defined
by an affine equation

(−y − z)x3 + (2y2 + yz)x2 + (−y3 + zy2 − 2z2y + z3)x+ (2z2y2 − 3z3y) = 0

and which is isomorphic to the split Cartan modular curve Xs(13) (those are two of the
main results of Baran’s paper [5]). In a different paper [4], Banwait and Cremona show
that the modular curve XS4(13) is a genus 3 curve, whose canonical embedding in P2(Q)
has the following model:

4x3y−3x2y2+3xy3−x3z+16x2yz−11xy2z+5y3z+3x2z2+9xyz2+y2z2+xz3+2yz3 = 0 .

Further, by [4, Proposition 9.1], the Jacobians Js(13) and JS4(13) of the modular curves
Xs(13) and XS4(13) are Q-isogenous. This implies, of course, that the corresponding
analytic Jacobians are isogenous as well.

We can check this now: computing respective small period matrices τs(13) and τS4(13)
to high precision (here we used 500 decimal digits) and then applying the magma function
’AnalyticHomomorphisms(τs(13),τS4(13))’ yields 3 matrices in Z6×6

M1 =



1 0 −3 1 −2 0
−2 −2 2 1 −1 0
0 −1 −1 2 −1 −1
−1 −2 0 0 −1 −2
0 2 −1 0 −1 2
−2 1 1 3 −1 2

 , M2 =



1 0 0 −2 1 −1
−2 2 3 4 1 3
0 −3 −1 −1 −1 −3
−1 1 2 3 1 2
0 1 1 −2 1 1
−1 −3 0 −2 −2 −2

 ,

M3 =



0 1 3 −2 4 0
−1 −3 −2 −1 −3 −3
0 1 2 1 2 1
0 −2 −1 0 −2 −1
0 2 3 −1 3 2
−1 3 5 2 4 4

 .

such that, for every Mi there exists a matrix Ni ∈ Cg×g with

Ni(τs(13), id) = (τS4(13), id)Mi for i = 1, 2, 3.

By [4, Remark 9.2] the Jacobians J1 and J2 are non-isomorphic. Applying the magma
function ’IsIsomorphicSmallPeriodMatrices’ to the small period matrices τs(13) and τS4(13)
returns false, which confirms this result.

6.3 Riemann Theta functions
One of the most important applications of period matrices of Riemann surfaces is the
computation of the so-called Riemann Theta function. It is a complex-valued function,
dependent on two variables z and τ , that is of central interest in mathematics and physics.
It has numerous applications in the areas of number theory, the theory of abelian func-
tions and integrable partial differential equations. The following definitions and more
background on Theta functions can be found in [68, Chapter 2].

170

Chapter 6 6.3. Riemann Theta functions

Definition 6.3.1. Let τ be an element of the Siegel upper half-space Hg and z ∈ Cg.
Then the Riemann Theta function is defined as

Θ(z, τ) =
∑
v∈Zg

exp(πivT τv) exp(2πivT z) .

The Theta function with characteristic [a; b] for a, b ∈ 1
2Z

g/Zg is defined as

Θ[a;b](z, τ) =
∑
v∈Zg

exp(πi(v + a)T τ(v + a)) exp(2πi(v + a)T (z + b)) .

The values of Θ[a;b](z, τ) at z = 0 ∈ Cg are called Theta-constants.

Theta functions are implemented in magma and only need a small period matrix as
input.

Example 6.3.2. We compute a small period matrix τ for the smooth plane quartic X19
from Example 6.2.1

τ =

 0.33087 + 0.42366 · I −0.24629 + 0.23665 · I 0.21438− 0.29331 · I
−0.24629 + 0.23665 · I 0.81041 + 0.60848 · I 0.12651− 0.31965 · I
0.21438− 0.29331 · I 0.12651− 0.31965 · I 0.69733 + 0.59126 · I

 ∈ H3 .

Using the magma function ’Theta(char,z,τ)’ we can compute the fundamental Theta con-
stants, which are the 2g Theta-constants with characteristic [0, i] where i = 2(b0 + 2b1 +
· · ·+ 2g−1bg−1), to arbitrary precision. We list these values with 10 digits of precision here

Θ[0,0](0, τ) = 1.251511913− 0.0316079011 · I,
Θ[0,1](0, τ) = 0.253213390 + 0.4663903113 · I,
Θ[0,2](0, τ) = 0.676272699 + 0.478508172 · I,
Θ[0,3](0, τ) = 0.869771995 + 0.180164185 · I,
Θ[0,4](0, τ) = 1.015740610 + 0.675681015 · I,
Θ[0,5](0, τ) = 0.440680993− 0.514531310 · I,
Θ[0,6](0, τ) = 2.168688576 + 0.668208329 · I,
Θ[0,7](0, τ) = 1.317923705− 2.014015850 · I .

These values could, for example, be used to determine the Dixmier-Ohno invariants [51,
Section 2.2] of smooth plane quartics.

In his PhD-thesis [55] Hugo Labrande presents an algorithm that computes the Rie-
mann Theta function and the small period matrix by inverting a certain function using
Newton-iteration. It is quasi-linear in the precision and makes it possible to determine
these objects with hundreds of thousands digits of precision. Labrande focuses on genus 1
and 2 in his thesis and generalizes his algorithm to genus 3 in [51, Section 2.1]. However,
his algorithm is inherently exponential in the genus and thus not well-suited for curves of
higher genus. It would be interesting to investigate whether this can be combined with
our implementation.

6.3.1 Reduced small period matrix

For a given curve our algorithms compute small period matrices τ in the Siegel upper half-
space Hg which are arbitrary in the sense that they depend on the choice of a symplectic
basis made during the algorithm.

171

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

For applications like the computation of Theta functions it is useful to have a small pe-
riod matrix τ in the Siegel fundamental domain Fg ⊂ Hg (see [51, §1.3]). The convergence
of the Theta function in greatly improved when τ ∈ Fg.

We did not implement any such reduction. The authors of [51] give a theoretical sketch
of an algorithm (Algorithm 1.9) that achieves this reduction step, as well as two practical
versions (Algorithms 1.12 and 1.14) which work in any genus and have been implemented
for g ≤ 3. Combining this reduction algorithm with our period matrix implementation
would certainly be reasonable.

6.3.2 Computing canonical heights

Another interesting application of Theta functions in number theory is the computation
of the canonical height of abelian varieties. This can be used to compute the regulator RJ
(6.1) appearing in the Birch and Swinnerton-Dyer conjecture. In the end of Section 4 of
his paper [67], Steffen Müller explains how one can compute the intersection multiplicities
at archimedean places using the Theta function with characteristic a = (1/2, . . . , 1/2), b =
(g/2, (g − 1)/2, . . . , 1, 1/2). Another option is to compute these directly using integration
on C(C), see [56, Section 13.7].

6.4 Numerical verification of Beilinson’s conjecture

In this section we will apply our methods of integrating differential forms on Riemann
surfaces to numerically verify Beilinson’s conjecture for the second K-group of curves. In
order to formulate the conjecture we will briefly introduce L-functions and the necessary
objects from K-theory, closely following Sections 2 and 3 of [29]. We slightly modify their
strategy and use our algorithm to compute regulators. Then, we compare our results with
the numerical data given in [29, Section 10].

Moreover, we will pick up a superelliptic example that originates from the PhD-thesis
of Vinzenz Busch [14], who generalized the construction of [29] to superelliptic curves.
Applying our strategy there gives us insight into why these curves are not suitable for
checking Beilinson’s conjecture.

Lastly, we consider the work of H. Liu and R. de Jeu [23] who construct integral
elements for a very general family of curves that includes hyperelliptic as well as non-
hyperelliptic examples. Using our algorithms, we provide new numerical evidence for
Beilinson’s conjecture for several examples of both categories. In particular, we are the
first to compute such regulators (up to rational multiples) numerically for non-hyperelliptic
examples.

6.4.1 L-functions of algebraic curves

Let C be a non-singular, projective, geometrically irreducible curve of genus g defined over
Q. The Dirichlet series which is defined for Re(s) > 3

2 by the Euler product

L(C, s) =
∏

p prime
Lp(C, s)

is called L-function of C. The Euler factors Lp(C, s) carry and encode arithmetic infom-
ration about the curve C. For the primes of good reduction the Euler factor Lp(C, s) is
defined by

Lp(C, s) = exp
(∞∑
n=1

(pn + 1−#C(Fpn))p
−ns

n

)
,

172

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

for other primes the definition is more involved and we refer the reader to [46, p.461].
Moreover, we can associate to a curve C/Q an integer N that is called the conductor,
see [59] for its definition, which is an important arithmetic invariant of the curve.

What is really important for us here, is the functional equation appearing in the Hasse-
Weil conjecture.

Conjecture 6.4.1 (Hasse-Weil). The function

L∗(C, s) = N s/2

(2π)gsΓ(s)gL(C, s) (6.4)

extends to an entire function of s and satisfies the functional equation

L∗(C, s) = wL∗(C, 2− s) with w ∈ {±1}. (6.5)

If the conjecture holds, then we have L(0)(C, 0) = · · · = L(g−1)(C, 0) = 0 and

L(g)(C, 0)
g! = lim

s→0

L(C, s)
sg

= L∗(C, 0) = wL∗(C, 2) = wN

(2π)2gL(C, 2) 6= 0, (6.6)

since the Gamma-function has a pole of order one with residue 1 at s = 0.

In order to check the Beilinson Conjecture 6.4.2 one needs to know the special value
L∗(C, 0) up to a rational multiple. If we assume (6.5) then, by (6.6), for this it suffices to
know the value L(C, 2) and the genus g. For certain hyperelliptic curves this value can be
computed numerically in magma just from an affine equation for the curve. magma uses
the algorithms presented in [28], which also compute the quantities N ,w and the ’bad’
Euler factors Lp(C, s) under the assumption that the functional equation (6.5) holds.

For general nice algebraic curves this is a very hard computational problem, especially
if the conductorN and the bad Euler factors are unknown. However, a lot of work has been
done for hyperelliptic curves, see for example [44] and [50], and there is active research
going on to improve the computation of L-series for smooth plane quartics by Andrew V.
Sutherland and David Harvey.

6.4.2 K-theory and Beilinson’s conjecture

We want to mention that the description of several K-groups we are going to use are the
very explicit definitions of [29, Section 3] that are in our situation equivalent to the much
more complicated, general definitions that can be found in [76]. For a field F one can
define the second K-group of F as

K2(F) = (F ∗ ⊗ F ∗)/〈a⊗ (1− a) | a ∈ F \ {0, 1, }〉,

a free abelian group where the class of an element a ⊗ b ∈ (F ∗ ⊗ F ∗) in K2(F) will be
denoted {a, b}.

Let C be a non-singular, projective, geometrically irreducible curve of genus g defined
over Q and denote by F = Q(C) its function field. We can then describe a certain ’tame’
quotient group KT

2 (C) of K2(C) as

KT
2 (C) = ker

K2(L) T→
⊕

x∈C(Q)

Q∗
 ,

where the x-component of the map T is the tame symbol at x which is defined by

Tx : {a, b} 7→ (−1)ordx(a) ordx(b)a
ordx(b)

bordx(a) (x).

173

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

We obtain a map from F ∗ ⊗Z F
∗ to the group of almost everywhere defined 1-forms on

the Riemann surface X = C(C) by assigning to an element a⊗ b the differential form

η(a, b) = log |a| d(arg b)− log |b|d(arg a). (6.7)

It can be shown [14, Lemma 4.3.2] that this is a well defined, closed, smooth (real-analytic)
1-form outside the finite set of zeros and poles of a and b, denoted by S ⊂ X. Moreover,
integrating these differentials along cycles on X \ S gives us a pairing

〈·, ·〉 : H1(X,Z)×KT
2 (C)→ R, 〈γ, {a, b}〉 := 1

2π

∫
γ
η(a, b) . (6.8)

The homology group can be split up into two subgroups, each of rank g, namely

H1(X,Z) ∼= H1(X,Z)+ +H1(X,Z)−

where H1(X,Z)+ contains the cycles that are invariant under complex conjugation on X
and H1(X,Z)− the anti-invariant ones respectively. For γ ∈ H1(X,Z)+, 〈γ, ·〉 vanishes
identically on KT

2 (C), so we restrict the pairing (6.8) to

〈·, ·〉 : H1(X,Z)− ×KT
2 (C)/torsion→ R , (6.9)

which is then called the regulator pairing. In order to formulate Beilinson’s conjecture we
have to restrict this pairing even further by imposing some integrality condition on the
elements of KT

2 (C).
Let C be a regular proper model of C over Z. For such a model we define

KT
2 (C) = ker

KT
2 (C) T→

⊕
p,D⊂Cp

Fp(D)∗
 ,

where Cp denotes the fiber of C over the prime p andD runs over the irreducible components
of the curve Cp with Fp(D) denoting the function field of D. The corresponding tame
symbol T is given by the discrete valuation that D induces on F . Finally, we define

K2(C,Z) = KT
2 (C)/torsion

which is a subgroup of KT
2 (C)/torsion and is, by [23, Proposition 4.1], independent of the

choice of the regular, proper model C. Restricting the pairing (6.9) to

< ·, · > : H1(X,Z)− ×K2(C,Z)→ R , (6.10)

we can formulate Beilinson’s conjecture as in [29, Conjecture 3.11].

Conjecture 6.4.2 (Beilinson’s conjecture). Let C be a non-singular, projective, geomet-
rically irreducible curve of genus g defined over Q and X = C(C) the associated Riemann
surface. Then,

(i) the group K2(C,Z) is a free abelian group of rank g and the pairing (6.10) is non-
degenerate;

(ii) let R denote the absolute value of the determinant of this pairing with respect to
Z-bases of H1(X,Z)− and K2(C,Z) and let L∗(C, 0) be defined as in (6.4), then
L∗(C, 0)/R ∈ Q∗.

174

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

6.4.3 Strategy for checking Belinson’s conjecture

In order to check Conjecture 6.4.2, the authors of [29] used the following strategy:
(1) Try to construct a set of g integral elements M = {Mk | k = 1, . . . , g} ⊂ K2(C,Z).

(2) Compute the absolute value of the determinant of the pairing (6.10) with respect to
a basis of H1(X,Z)− and M ; we call this RM .

(3) If RM is non-zero, then rk(K2(C,Z)) ≥ g and we can try to recognize L∗(C, 0)/RM
as a rational number.

(4) If we have more than g integral elements, we can also check that the resulting maps
〈 ·,Mk〉 → R are linearly dependent over Z, thus providing numerical evidence for
rk(K2(C,Z)) ≤ g.

In order to find non-trivial relations with integer coefficients between the elements in
step (4), we use the magma function ’LinearRelation’.

Since we want to use as much of our period matrix algorithm as possible, we modify
step (2) of this strategy as follows:

Instead of computing the pairing for a basis of H1(X,Z)−, we integrate the differentials
defined by the elements inM along a full homology basis γ1, . . . , γ2g of H1(X,Z), resulting
in a matrix

PM =
(
〈γl,Mk〉

)
1≤k≤g,
1≤l≤2g

∈ Rg×2g . (6.11)

In fact, we will be integrating along a canonical homology basis as in Definition 2.7.3. If
rk(PM) = g we denote by RM the minimal absolute value of all non-zero minors of maximal
rank of PM and, provided we know the value L∗(C, 0), continue with step (3). Otherwise,
we have rk(PM) < g which indicates that the elements in M are linearly dependent or
(unlikely) that the Conjecture is wrong.

The reason why this works is that the anti-invariant part H1(X,Z)− is isomorphic to
the quotient H1(X,Z)/H1(X,Z)+ via the map

H1(X,Z)→ H1(X,Z)−, γ 7→ γ − c∗(γ) ,

where c∗ denotes complex conjugation on X. As Busch shows in [14, Lemma 5.10.1] the
images of γ1, . . . , γ2g under this map generate a finite index subgroup H of H1(X,Z)−.
For any γ ∈ H1(X,Z) and {a, b} ∈ KT

2 (C)/torsion we have that

2〈γ, {a, b}〉 = 〈γ, {a, b}〉 − 〈c∗(γ), {a, b}〉 = 〈γ − c∗(γ), {a, b}〉 .

Therefore, a rational non-zero multiple of RM corresponds to integration along a basis
of H1(X,Z)− and our modification of step 2 does not conflict with our goal of checking
Beilinson’s conjecture. Another strong numerical check on the correctness of our compu-
tations is that all non-zero minors of maximal rank ought to be rational multiples of each
other.

6.4.4 Numerical integration

Here we want to explain how to actually compute the pairing (6.8). Assume that our
curve is given by an affine model f(x, y) = 0 with f ∈ Q[x, y] and we are given an element
{a, b} ∈ K2(F). The task is to integrate η(a, b) along the vector of lifts γ̃ = {(x, y(x)) |
x ∈ γ([−1, 1])} obtained from analytic continuation (see Section 4.5) of a smooth path
γ : [−1, 1]→ C in the x-plane that avoids the set S (zeros and poles of a and b) as well as
the exceptional values L(ϕx). Analogously to the integration of holomorphic differentials
(see Section 4.7) we choose a suitable integration scheme and compute the corresponding
parameters. The only actual difference is the evaluation of the differential η(a, b), which
we will now describe.

175

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

Parametrization of η(a, b) Recall, that we want to evaluate the vector of integrals∫
γ
η(a, b) =

∫
γ

log |a| d(arg b)− log |b|d(arg a) .

First we want to write the differential d arg in a more tractable way. For a complex number
z = reiϕ ∈ C \ {0} we have that

dz
z

= d(log z) = d(log r) + diϕ ⇒ d(arg z) = Im
(

dz
z

)
.

Since we want to parametrize dx, we can write dy = −∂xf
∂yf

dx. Moreover, we have that
a(x, y) ∈ F ∗ and therefore

da(x, y) = ∂xa(x, y)dx+ ∂ya(x, y)dy

=
(
∂xa−

∂xf

∂yf
∂ya

)
(x, y)dx,

and analogously for b(x, y). Finally, parametrizing (x, y) = (γ(t), y(γ(t))), the pairing can
be computed as

〈γ̃, {a, b}〉 = 1
2π

∫ 1

−1
log |a(t)| Im

(
db(t))
b(t)

)
− log |b(t)| Im

(
da(t))
a(t)

)
,

where
a(t) = a(γ(t), y(γ(t)),

da(t) =
(
∂xa−

∂xf

∂yf
∂ya

)
(γ(t), y(γ(t))) γ′(t) dt,

and b(t), db(t) are defined analogously. This formula has already been used by [29] and [14]
without justification in slightly different variations.

Computing a homology basis As already indicated above, to obtain a homology basis
we use the algorithms from Sections 4.3 and 4.6 that were already applied for computing
period matrices. The only modification: we need to add the x-coordinates of all (finite)
zeros and poles of the differential η(a, b) to the set L of exceptional values, which are the
points that have to be avoided for numerical integration. Note that adding extra points
will not affect the monodromy representation (and therefore the homology basis).

6.4.5 Examples of de Jeu, Dokchitser & Zagier

In [29] the authors construct enough (≥ g) elements for several families of hyperelliptic
curves. In particular, their Construction 6.11 yields hyperelliptic curves of genus g of the
form

y2 + h(x)y + xd = 0 (6.12)
with either

h(x) = cgx
g + . . . , c1x+ c0 ∈ Z[x] and d = 2g + 1 or

h(x) = 2xg+1 + cgx
g + · · ·+ c1x+ c0 ∈ Z[x], c0 6= 0 and d = 2g + 2,

(6.13)

such that t(x) = −xd + h(x)2/4 is separable. Note that any curve defined this way is
isomorphic to the curve defined by

y2 = t(x) .
The polynomial t(x) is called the 2-torsion polynomial because its roots give rise to the
2-torsion points on the Jacobian of the curve.

176

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

Theorem 6.4.3. [29, Theorem 8.1.]
Let C/Q be defined by (6.12) and (6.13). Let m(x) ∈ Z[x] be a non-constant factor,
irreducible over Z, of the 2-torsion polynomial t(x) = −xd + h(x)2/4. Then{

y2

x3 ,
m(x)
m(0)

}
∈ KT

2 (C)

and, denoting by M̃ its class modulo torsion, we have

(1) if m(0) = ±1 then M̃ ∈ K2(C,Z),

(2) if there is a prime dividing m(0) but not every ci then nM̃ 6∈ K2(C,Z) for any n 6= 0.

Moreover, if c0 = ±1 then {−g(0)y,−x} ∈ KT
2 (C). Let M denote its class modulo torsion,

then {
M ∈ K2(C,Z), if d = 2g + 1,

2M ∈ K2(C,Z), if d = 2g + 2.

We tested our algorithm against the results of [29] in many of their examples, following
our modified strategy as explained in §6.4.3. For all examples the integral elements in M
where chosen exactly as in [29], in particular #M ≥ g. For every example the matrix PM ∈
R#M×2g that we computed had rank g; for some examples the corresponding regulator
RM is given in the tables below. Moreover, all g-minors of PM (including RM) could
be recognized as rational multiples of L∗(C, 0) (values taken from the tables of loc. cit.).
These observations confirm the correctness of our integration routines and, of course, the
results of [29].

Example 6.4.4. [29, Example 10.1] The first family that the authors of [29] consider is
a one-parameter family of curves of genus 2

Cb : y2 + ((4b− 3)x2 + (5b− 1)x+ b)y + x5 = 0 , b ∈ Z \ {0}.

The 2-torsion polynomial t(x) factors over Z (up to a constant) as

m1(x)m2(x)m3(x) = (x− 1)(4x− 1)(x3 − (4b2 − 6b+ 1)x2 + (5b2 − 2b)x− b2).

In particular, there is a typo in [29] in the linear term of m3(x): they write (5b2−b). From
Theorem 6.4.3 we obtain the following integral elements

M =
{
{M1,M2}, if b ∈ Z \ {−1, 0, 1},
{M1,M2,M3,M}, if b = ±1.

Table 6.1 shows the values for RM (18 digits precision) that have been computed as
explained in 6.4.3 for different values of b. We found that rk(PM) = 2 and the ratio
L∗(C, 0)/RM could be recognized as a rational number for all values of b; the values for
L∗(C, 0) have been taken from [29, Table 3]. It is worth mentioning that in every case,
except b = ±1, we computed exactly the same regulator as [29], which they denote by
R(Λ), i.e. RM = R(Λ). Moreover, we were able to numerically confirm the relations

41M1 + 56M2 − 44M3 = 0 for b = −1,
4M1 − 26M2 + 29M3 = 0 for b = 1.

177

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

b Conductor RM L∗(C, 0)/RM
-10 22 · 3 · 52 · 7 · 112 · 1031 77.130 134 889 287 138 999 22 · 3 · 52 · 7
-9 33 · 23 · 8461 73.537 647 438 966 012 020 22 · 33

-8 22 · 3 · 61 · 6113 69.634 990 149 626 965 070 3 · 23/2
-7 3 · 72 · 53 · 4243 65.355 609 002 659 819 789 13 · 19
-6 22 · 33 · 5 · 2797 60.607 437 952 449 742 454 2 · 32

-5 3 · 52 · 37 · 1721 55.257 255 220 919 193 247 29
-4 22 · 3 · 29 · 312 49.100 257 337 811 396 017 22

-3 33 · 7 · 463 41.793 138 137 745 545 385 1
-2 22 · 3 · 13 · 172 32.676 060 511 451 741 457 1/2
-1 3 · 5 · 37 0.684 936 949 938 389 325 1/3
1 3 · 112 0.649 248 173 594 350 399 1/5
2 22 · 3 · 13 · 19 19.031 931 751 296 953 262 1/(22 · 5)
3 33 · 47 33.576 646 858 439 342 020 1/(2 · 33)
4 22 · 3 · 5 · 7 · 223 42.908 137 312 458 286 852 1
5 3 · 52 · 43 · 569 50.179 539 249 499 433 184 24

6 22 · 33 · 172 · 67 56.265 553 014 245 968 261 22 · 7
7 3 · 72 · 59 · 1987 61.544 348 463 785 563 610 22 · 52

8 22 · 3 · 67 · 3167 66.227 862 684 148 830 809 33

9 33 · 5 · 4733 70.450 208 338 642 626 931 22

10 22 · 3 · 52 · 23 · 83 · 293 74.302 797 336 615 458 561 27 · 32

Table 6.1: RM for the curves Cb with 18 digits precision.

Remark 6.4.5. It was straightforward to check many more of the examples of [29]. We
briefly summarize the results here.

1. Example 10.5 (loc. cit.): For the genus 2 curves given by

Cb : y2 + (2x3 − 4bx2 − x+ b)y + x6 = 0 , b ∈ Z>0,

we obtained exactly the same regulators for all examples in Table 4 (b = 1, . . . , 14),
i.e. RM = R(Λ) and confirmed the relation for b = 1.

2. Example 10.6 (loc. cit.): For the genus 3 curves given by

Ca,b : y2 + ((4b− 3)x3 − (4a+ 5b− 1)x2 + (5a+ b)x− a)y + x7 = 0 , b ∈ Z>0

our regulators were different for all examples in Table 5 (mostly by a factor 1/3 or
1/6), we confirmed the relation for a, b = 1, 3.

3. Example 10.7 (loc. cit.): For the sporadic examples of type

y2 + h(x)y + xd = 0

we obtain the same regulators for all examples in Table 6 (d = 10, g = 4), except a
factor 2 for the last curve; for all examples in Table 7 (d = 12, g = 5) we computed
RM = 2R(Λ).

4. Example 10.8 (loc. cit.): we checked quite a few examples of the Tables 8,9,10,11
which contain curves of genera 2,3 and 4, given by equations of the form

y2 +
(

2xg+1 ±
g∏
j=1

(αjx+ 1)
)
y + x2g+2 = 0, with vj ∈ Z, distinct.

As for previous examples, it regularly happens that our regulator is either the same
or differs by a factor 2±1.

178

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

6.4.6 Example of Busch

In his PhD-thesis [14] Vincenz Busch generalizes the construction of [29] to obtain elements
of K2(C,Z) from hyperelliptic to superelliptic curves. Busch shows that for almost all
superelliptic curves his construction will not yield enough elements to check Beilinson’s
conjecture. Yet he manages to find a family of superelliptic genus 3 curves for which there
is hope that the conjecture can be checked. We state a corrected and modified version of
his Theorem 5.5.1. as

Lemma 6.4.6. For a, b ∈ Z \ {0} such that a 6= ±b and

c0 = ab(a2 + ab+ b2),
c1 = −(a+ b)(a2 + b2)/c0

the superelliptic curve of genus 3 defined by the affine equation

Ca,b : y3 = c3
0x

4 + (c0c1x+ 1)3 (6.14)

has 3 elements in KT
2 (C) for which a priori no relations are known.

Proof. Under the transformation y 7→ y/c0 equation (6.14) becomes

y3 = x4 + (c1x+ c−1
0)3 . (6.15)

Denoting z = −1
2(a+ b) + i

√
1
2(a2 + b2 + 1

2(a+ b)2) we have that ‖z‖2 = a2 + ab+ b2 and
therefore

c0 = ab‖z‖2 = abzz̄,

c1 = −(a+ b)(‖z‖2 − ab)
ab‖z‖2

= −(a−1 + b−1 + z−1 + z̄−1)

and equation (6.15) becomes

y3 = x4 + (−(a−1 + b−1 + z−1 + z̄−1)x+ (abzz̄)−1)3

which is exactly the form of [14, Proposition 5.3.2] and [14, Construction 5.2.3] yields 6
elements of KT

2 (C), of which at most 3 are linearly independent by [14, Remark 5.3.3].
The 3-torsion polynomial then factors over C as

t(x) = c3
0(x− a−3)(x− b−3)(x− z−3))(x− z̄−3)

which gives us, by assumption, 3 irreducible factors over Z

t(x) = m1(x)m2(x)m3(x) = (−a3x+ 1)(−b3x+ 1)((zz̄)3x2 − 2 Re(z3)x+ 1).

The corresponding elements in KT
2 (C) are given by

Mk =
{

(y − (c0c1x+ 1))3

c3
0x

4 ,mk(x)
}
, k = 1, 2, 3.

In the original version, Busch’s Theorem 5.5.1 also includes the integrality of the
elementsMk, but we leave this issue aside for now. Busch’s main result is that he computes
the value L∗(C, 0) and the regulator for the curve C1,3. Due to problems with numerical
integration he obtains the corresponding quotient with only one decimal digit of precision

179

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

which does not suffice to recognize it as a rational number. According to Busch, for the
curves Ca,b numerical integration is hard because the branch points are located very close
to each other. We suspected that this did indeed cause his attempt of checking Beilinson’s
conjecture to fail.

So we computed our regulator RM for the elements M = {M1,M2,M3} from Lemma
6.4.6 for several of the curves Ca,b, using the strategy from §6.4.3. The resulting values
are shown in Table 6.2. In fact, Busch was right in the regard that computing the period
matrix PM for the curves Ca,b is hard, though far from impossible, because the branch
points tend to cluster around zero. Our period matrix algorithm automatically switched
to a combination of double-exponential integration and Gauss-Legendre quadrature to
compute these integrals in reasonable time, even for hundreds of digits.

a, b RM a, b RM

1,2 31.044 543 474 288 968 388 -1,2 25.348 438 072 231 322 538
1,3 40.665 955 143 700 335 257 -1,3 36.363 774 364 414 504 998
1,4 47.169 072 205 286 050 227 -1,4 43.700 392 657 710 022 477
1,5 52.188 949 156 473 532 024 -1,5 49.301 309 655 260 796 512
2,3 23.001 343 705 040 798 238 -2,3 16.104 204 858 224 340 977
2,5 36.455 988 164 949 251 694 -2,5 31.572 969 951 204 028 232
3,4 18.940 928 025 238 370 226 -3,4 11.756 398 702 903 917 549
3,5 26.168 494 808 977 806 759 -3,5 19.701 329 232 920 098 621
4,5 16.355 307 853 195 068 869 -4,5 9.234 466 974 524 185 496

Table 6.2: RM for the curves Ca,b with 18 digits precision.

The values of Table 6.2 strongly indicate that the elements M1,M2 and M3 from
Lemma 6.4.6 are indeed linearly independent. The next step would be to check the ratio
of RM by L∗(Ca,b, 0). Unfortunately, computing special values of the L-function of genus
3 curves without knowledge of the conductor, the root number and the bad Euler factors
is currently not possible. In his thesis, Busch put a lot of effort into calculating L∗(C, 0)
for his main example, namely the curve

C1,3 : y3 = 393x4 + (−40x+ 1)3.

In his Chapter 3 he manages to compute the value L(C1,3, 2) with 20 digits of precision

L(C1,3, 2) = 1.0432103453059890940 .

Experimentally he also computes the conductor N = 26 ·35 ·132 ·172 and the root number
w = 1. Thus, using (6.6) he obtains

L∗(C1,3, 0) = N

(2π)6L(C1,3, 2) ≈ 12878.446259004075748 .

We computed the ratio of this value by the corresponding regulator RM from Table 6.2

L∗(C1,3, 0)/RM ≈
12878.446259004075748
40.665955143700335257 ≈ 316.68864566185181670 ,

which magma could not recognize as a rational number (with denominator smaller than
10100000). Having another look at the proof of his Theorem 5.5.1 we discovered that there
is a mistake in the application of his Theorem 5.4.1 which is used to show the integrality
of the elements in M . The numerical results strongly suggest that the elements are not all
integral. Moreover, we found it impossible to construct a different example with at least
g integral elements. Hence we conclude that there seem to be no interesting examples
of superelliptic curves (that are not hyperelliptic) for which Beilinson’s conjecture can be
checked numerically using the construction of [29].

180

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

6.4.7 Examples of Liu & de Jeu

The authors of [23] construct families of algebraic curves defined over number fields of
arbitrary genus with g elements in K2(C,OK) (same definition as for K = Q). They show
that, for a subclass of their curves, these elements are independent by a limit calculation of
the regulator. Moreover, they determine which of these curves are hyperelliptic and which
are not. In particular, they obtain two families of hyperelliptic curves. One contains the
family of [29, Example 10.8.] as a special case, the other gives entirely different curves.
First we will briefly present their construction, including affine models for the curves
and formulas for elements of KT

2 (C). Afterwards, we will check Beilinson’s conjecture
numerically using our strategy for several curves defined over Q. In §6.4.7 we cover
hyperelliptic curves of genus 2, 3 and 4 and in §6.4.7, we calculate our regulator RM
for some non-hyperelliptic curves of higher genera, including 4, 5, 6, 8, 9, 10 and 12.

Construction

The authors of [23] start by considering affine curves of the form f(x, y) = 0, defined over
a number field K, where

f(x, y) = λ

N∏
i=1

Ni∏
j=1

Li,j − 1 ∈ K[x, y], λ 6= 0 (6.16)

with N ≥ 2, Ni ≥ 1 for i = 1, . . . , N and Li,j = aix+biy+ci,j is a non-constant polynomial
such that the lines defined by Li,j = 0 are distinct and non-parallel for i 6= j.

In the following C will always denote the normalization of the projective closure in
P2 of the affine curve defined by f(x, y) = 0. In [23, Lemma 2.2] the authors define two
families of elements of KT

2 (C), namely

Ri,j,k,l,m,n =
{
Li,j
Li, k

,
Ll,m
Ll,n

}
, i 6= l,

Ti,j,k,l,m,n =
{

[i,m]
[k,m]

Lk,l
Li, j

,
[i, k]
[m, k]

Lm,n
Li,j

}
, i, k, l distinct

(6.17)

where [i, k] = aibk − akbi. In the next step they show that these elements satisfy several
relations and obtain a generating set:

Proposition 6.4.7. [23, Proposition 2.2] Let V be the subgroup of KT
2 (C) generated by

all the elements Ri,j,k,l,m,n and Ti,j,k,l,m,n. Then V is already generated by the following
elements:

R1,1,j,2,1,m, 1 < j ≤ N1, 1 < m ≤ N2;
T1,1,k,l,m,n, 2 ≤ k < m ≤ N, 1 ≤ l ≤ Nk, 1 ≤ n ≤ Nm;
T1,j,2,1,m,n, 2 ≤ j ≤ N1, 3 ≤ m ≤ N, 1 ≤ n ≤ Nm .

In the following, denote by M the set consisting of these elements.

By their Remark 3.3, the set M contains exactly

(N1 − 1)(N2 − 1) +
∑

2≤k<m≤N
NkNm + (N1 − 1)

N∑
m=3

Nm (6.18)

elements, which is exactly the genus of C if the affine curve Cf : f = 0 given by (6.16) is
non-singular.

181

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

For the integrality of the elements (6.17) they restrict to the cases where N = 2 or 3.
Hence, from here on we only consider curves defined by polynomials of the form

f(x, y) = λ

N1∏
i=1

(x+ αi)
N2∏
j=1

(y + βj)
N3∏
k=1

(y − x+ γk)− 1 ∈ K[x, y], λ 6= 0 (6.19)

where N1 ≥ N2 ≥ N3 and αi 6= αj , βi 6= βj , γi 6= γj for i 6= j. Moreover, we will assume
f(x, y) to be defined over the rationals, i.e. K = Q. Thus, we get

Theorem 6.4.8. [23, Theorem 4.2.] With the notation above, assume that αi, βj , γk and
λ 6= 0 are integers. Then the elements given by (6.17) are integral, i.e. in KT

2 (C,Z).

They also provide a simple criterion to check whether C is hyperelliptic or not.

Proposition 6.4.9. [23, Proposition 5.1] Suppose the affine curve defined by f(x, y) =
0 with f(x, y) as in (6.19) is non-singular and that C has positive genus. Then C is
hyperelliptic if and only if either N2 = N3 = 1, or N2 = 2 and N3 = 0.

Hyperelliptic examples

In this section we want to numerically verify Beilinson’s conjecture for some hyperelliptic
examples. Since we want to use magma for the computation of the L-series, we limit
ourselves to examples where this is possible up to a reasonable precision. Note that the
numerical integration is far from being the bottleneck here, neither for precision nor for the
complexity of the curves (genus, size of coefficients, configuration of exceptional values).

By Proposition 6.4.9 it makes sense to distinguish two cases here. Firstly, if N2 = 2
and N3 = 0, then by a transformation we can find an equation for the curve

y

(
y + 2xg+1 + λ

g∏
i=1

(αix+ 1)
)

+ x2g+2 = 0 (6.20)

such that the corresponding elements from (6.17) become

Mi =
{
−x

g+1

y
, αix+ 1

}
i = 1, . . . , g.

For λ = ±1, these curves and elements correspond to those considered in [29] such that
2Mi is the element for the factor αi from Example 10.8. of loc. cit. As explained in Remark
6.4.5 we checked many of the examples listed in Table 8 of [29] and were able to confirm
their results. In Table 6.3 we give new numerical evidence for Beilinson’s conjecture for
genus 2 curves that are not isomorphic to the ones appearing in [29, Table 8].

Secondly, if N2 = N3 = 1, we have an affine model

y

(
y + 2xg+2 + λ

g∏
i=1

(αix+ 1)
)

+ x2g+4 = 0 (6.21)

with corresponding elements

Mi =
{
−x

g+2

y
, αix+ 1

}
i = 1, . . . , g.

For curves given by (6.21) we can easily verify that an example is ’new’ (i.e. different from
the curves of Example 10.8. of [29]) by checking that they do have exactly g rational branch

182

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

points (as opposed to ≥ g + 1 branch points) which is the case for all curves listed in the
tables below. Thus, we give new numerical evidence for Conjecture 6.4.2 for hyperelliptic
curves with genus 2 in Table 6.4, with genus 3 in Table 6.5 and with genus 4 in Table 6.6.

183

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

α1,α2 λ Conductor RM L∗(C, 0)/RM

-9,3 -2 28 · 34 · 17 · 53 40.157 243 446 266 171 897 25 · 32

2 28 · 36 · 347 40.445 929 991 236 018 821 25 · 3 · 11

-8,2 -2 26 · 6 · 5077 30.586 152 267 121 164 246 25

2 25 · 5 · 7669 31.347 959 201 373 203 205 22 · 5

-4,5 2 28 · 3 · 5 · 13 · 607 34.076 500 221 997 100 065 24 · 3 · 13
3 24 · 35 · 52 · 239 39.027 663 260 076 810 053 25 · 32

-3,-7 -3 24 · 35 · 7 · 1259 29.940 531 111 407 665 940 26 · 32

3 23 · 35 · 7 · 372 30.081 874 629 038 140 150 24 · 3 · 7

-2,2 10 27 · 54 · 11 · 13 25.263 978 498 214 499 023 23 · 3 · 11
12 28 · 36 · 11 · 23 27.151 528 096 204 943 380 27 · 32

-1,-5 -6 28 · 36 · 5 · 43 19.541 844 289 094 918 749 24 · 3 · 29
6 28 · 36 · 5 · 151 21.392 136 921 430 867 515 26 · 32 · 7

-1,1 11 23 · 114 · 13 8.431 383 875 986 209 411 22 · 3 · 7
13 23 · 134 · 61 9.723 109 461 555 451 065 24 · 3 · 13

2,1 -10 29 · 54 7.550 149 267 298 211 191 23 · 3
-5 23 · 54 · 83 4.100 100 061 421 810 874 24 · 3

2,7 -4 27 · 5 · 7 · 5521 30.711 357 501 792 163 869 24 · 31
4 27 · 52 · 7 · 132 30.241 242 163 364 995 702 23 · 32

2,18 -2 25 · 3 · 23 · 4019 45.366 598 887 078 149 119 27

2 26 · 3 · 19 · 3863 44.833 727 768 331 836 379 26 · 3

3,4 -7 24 · 3 · 74 · 132 16.942 378 596 607 902 527 26 · 32

7 23 · 3 · 74 · 659 18.720 829 954 345 696 641 28 · 3

5,6 3 23 · 35 · 52 · 251 18.491 491 884 374 525 635 25 · 32

9 23 · 35 · 5 · 11 · 239 28.945 455 299 754 826 992 27 · 3

1,8

-32 27 · 7 · 213637 52.204 279 460 991 961 715 26 · 76
-16 26 · 7 · 56629 42.425 014 230 077 161 533 26 · 5
-8 26 · 72 · 2251 33.698 572 880 074 345 953 24 · 7
-4 26 · 7 · 4729 26.073 066 596 592 118 065 22 · 11
-2 28 · 7 · 1567 19.593 835 688 524 596 875 24 · 5
2 28 · 7 · 53 14.813 899 994 225 298 034 22

4 25 · 7 · 1489 24.048 110 493 694 347 697 23

8 26 · 7 · 9277 32.627 369 278 809 858 915 26

16 25 · 7 · 43669 41.848 416 409 554 195 162 27

32 28 · 7 · 29 · 6473 51.894 099 795 786 275 799 2 · 31 · 59

2,5

-5 23 · 3 · 54 · 59 · 103 24.612 611 743 927 750 340 23 · 3 · 73
-4 27 · 3 · 52 · 197 22.449 805 715 259 941 143 24 · 3
-3 23 · 35 · 5 · 751 19.811 784 000 363 512 956 26 · 3
-2 29 · 3 · 5 · 127 16.378 118 628 517 015 462 25

2 29 · 3 · 5 · 71 15.673 548 258 496 979 659 23 · 3
3 23 · 35 · 5 · 17 · 31 19.321 762 494 007 430 165 23 · 3 · 5
4 27 · 3 · 5 · 761 22.067 850 806 501 735 971 23 · 5
5 23 · 3 · 54 · 4957 24.297 248 716 017 873 448 25 · 32 · 5

Table 6.3: Genus 2 curves defined by (6.20)

184

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

α1, α2 λ Conductor RM L∗(C, 0)/RM
−1, 2 1 3 · 269 2.778 805 941 907 237 297 1/(23)
−2, 3 1 52 · 37 16.262 221 873 282 600 595 1/(23 · 5)
−3, 4 1 7 · 109 · 601 31.203 152 023 145 321 601 (2 · 3)
−4, 5 1 3 · 594917 44.050 864 811 285 204 483 2 · 33

−5, 6 1 11 · 3148477 55.630 934 775 860 378 384 22 · 3 · 23
-6,7 1 13 · 17 · 173099 66.206 752 514 913 897 792 24 · 32 · 7
−7, 8 1 3 · 52 · 312841 75.954 497 726 215 376 272 24 · 32

−9, 10 1 19 · 11887 · 22051 93.463 460 330 404 716 393 24 · 32 · 157

1,2

-5 32 · 54 · 151 5.424 369 542 333 873 857 24 · 5
-4 25 · 331 4.707 981 109 579 949 333 1
-3 34 · 19 · 67 3.920 459 199 544 282 782 22 · 3
-2 25 · 32 · 67 3.024 883 445 410 549 335 22

-1 1123 1.933 194 467 367 533 231 1/(2 · 2)
1 32 · 101 0.830 472 324 499 748 701 1/2
2 25 · 389 1.405 589 369 283 136 033 22

3 34 · 631 1.924 265 642 550 111 809 23 · 3
4 25 · 32 · 13 2.420 474 088 986 136 627 1
5 54 · 172 2.915 450 534 350 779 409 23 · 3

1,4

-10 25 · 32 · 54 · 31 · 61 24.197 918 196 346 743 127 27 · 3 · 23
-9 33 · 52 · 197 22.724 984 300 107 038 678 (23)/3
-8 27 · 3 · 43 20.777 308 313 347 182 417 1/2
-7 32 · 74 · 1487 18.840 899 436 962 049 611 25 · 33

-6 25 · 34 · 47 · 79 17.074 796 494 018 855 926 25 · 32

-5 3 · 54 · 9239 15.299 879 777 289 147 441 25 · 13
-4 25 · 32 · 52 · 11 13.441 694 552 825 870 861 22

-3 34 · 972 11.421 169 469 803 934 212 22 · 32

-2 25 · 3 · 11 · 353 9.108 602 249 868 633 012 23 · 3
-1 32 · 1657 6.190 412 208 778 898 565 1
1 3 · 52 · 163 9.821 378 711 800 766 370 1/2
2 25 · 32 · 1721 13.796 856 334 623 253 452 23 · 3
3 34 · 17729 16.584 411 580 419 584 465 2 · 3 · 7
4 25 · 3 · 6571 18.786 984 856 046 478 365 24

5 32 · 54 · 31 · 43 20.628 726 874 616 307 953 26 · 3
6 25 · 34 · 52 · 937 22.221 606 845 384 142 055 28 · 7
7 3 · 74 · 11 · 5351 23.630 749 093 514 787 832 23 · 3 · 349
8 27 · 32 · 3001 24.897 812 118 312 038 230 23 · 11
9 33 · 11 · 47 · 167 26.051 253 302 992 279 159 3 · 13
10 25 · 3 · 54 · 109 · 467 27.111 474 274 050 589 443 25 · 2029

2,3

1 52 · 37 2.439 333 280 992 390 089 1/(2 · 3)
3 34 · 569 12.320 990 222 323 949 951 2
5 54 · 17 · 223 16.916 677 554 622 824 304 26

7 74 · 8741 20.061 504 085 183 831 489 25 · 3 · 5
9 33 · 17 · 907 22.522 079 759 749 421 493 32

11 52 · 114 · 953 24.563 568 310 486 920 703 29 · 3 · 5
13 134 · 29 · 1171 26.317 643 154 739 125 665 25 · 3 · 5 · 31
15 34 · 54 · 45821 27.860 721 411 144 107 821 28 · 157

Table 6.4: Genus 2 curves defined by (6.21).

185

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

α1, α2,α3 λ Conductor RM L∗(C, 0)/RM
-2,-1,4 1 28 · 32 · 18371 59.046 005 050 527 712 972 25/5

-1,1,2 1 23 · 3 · 13441 4.284 779 466 389 835 916 22/5

-1,1,5 -1 27 · 3 · 79397 27.669 699 094 992 761 987 (23 · 32)/5

-1,1,6 1 23 · 5 · 7 · 744353 31.090 391 952 751 320 926 26

-1,1,7 -1 27 · 3 · 1072219 40.602 032 884 481 091 737 23 · 13
1 27 · 3 · 20509 38.572 616 158 231 928 566 (22 · 3)/5

-1,2,5 1 23 · 32 · 348031 71.582 436 419 327 843 261 (23 · 3)/5

-1,3,4 1 23 · 5 · 26053 59.850 802 326 344 913 245 1/5

1,2,3 1 23 · 18233 4.228 635 246 968 233 915 2/5

1,3,4 -1 23 · 3 · 27919 29.479 450 738 393 877 437 22/(3 · 5)
1 23 · 3 · 53407 44.395 593 452 934 245 913 2/5

2,3,4
-2 210 · 20549 68.321 025 364 121 294 593 22

1 27 · 1823 14.864 122 760 206 815 555 2/(3 · 5)
2 210 · 7603 63.163 189 588 039 386 444 2

3,4,5 1 23 · 3 · 47431 69.422 587 877 081 519 967 1/(3 · 5)
2 211 119.496 359 208 818 343 264 22 · 32

4,5,6 -1 27 · 105503 116.337 042 385 238 654 068 (2 · 3)/5

Table 6.5: Genus 3 curves defined by (6.21).

α1,α2,α3,α4 λ Conductor RM L∗(C, 0)/RM

-3,-2,-1,1 -1 26 · 3 · 548489 36.695 124 546 980 647 767 2/3
1 26 · 3 · 31 · 3911 49.552 479 563 630 303 195 1/32

-1,1,2,4 1 28 · 32 · 5 · 100297 90.187 009 232 834 664 343 22

1,2,3,4 1 28 · 3 · 137849 94.258 408 935 953 995 643 1/3

Table 6.6: Genus 4 curves defined by (6.21).

Non-hyperelliptic examples

Finally, we want to calculate our regulator RM for some non-hyperelliptic curves defined
over the rationals. Assume that the affine curve f(x, y) = 0 given by a polynomial of the
form (6.19) is non-singular. Then, by [23, Proposition 5.1.], C is non-hyperelliptic unless
N2 = N3 = 1 or N2 = 2, N3 = 0. Even if the affine model is singular, we can check for
this property with the magma function IsGeometricallyHyperelliptic.

In the following we considered non-hyperelliptic examples with N3 = 0, i.e. curves
defined via equation (6.19) by integers α1, . . . , αN1 , β1, . . . , βN2 such that N1 ≥ N2 ≥ 3
and 0 6= λ ∈ Z. By Proposition 6.4.7 their construction yields exactly (N1−1)(N2−1) ≥ g
elements of R-type (and none of T-type) in this case. All the lines Li,j are of the form
x+αi or y+βj . It is easy to see that three of such lines will never meet in an affine point.
Therefore, [23, Assumption 6.1.] will always hold true for such curves.

We computed the regulatorRM for many non-hyperelliptic examples of genus 4, 6, 8, 9, 10
and 12. We also found a genus 5 curve whose affine model has singularities over an ex-

186

Chapter 6 6.4. Numerical verification of Beilinson’s conjecture

tension field, presented in Example 6.4.10. We are not aware that anyone has computed
regulators for finite index subgroups of K2(C,Z) for non-hyperelliptic curves before, so
we presume it is worth listing some of these values. We computed the regulator RM for
many more curves than listed in the tables below. For all examples that we considered
the matrix PM had rank g, thus providing numerical evidence for rk(KT

2 (C,Z)) ≥ g.

Note that with our algorithm it is possible to compute these regulators to hundreds of
digits of precision for curves defined by polynomials (6.19), even for high genus. If anyone
managed to calculate the L-series for these curves, then the second part of Beilinson’s
conjecture could be checked using the values for RM that are listed in the tables below.

Example 6.4.10. We look at the curve defined by [αi] = [βj] = [−1, 0, 1, 2] (i.e. N = 2,
N1 = N2 = 4) and λ = 1 with equation

x4y4 + 2x4y3 − x4y2 − 2x4y + 2x3y4 + 4x3y3 − 2x3y2

−4x3y − x2y4 − 2x2y3 + x2y2 + 2x2y − 2xy4 − 4xy3+
2xy2 + 4xy − 1 = 0 .

The affine curve has 4 singularities over the splitting field, causing the genus of C to
be only 5 (instead of 9). Nonetheless, by (6.18) and Theorem 6.4.8, we have 9 integral
elements M = {M1, . . . ,M9} that have no a priori reason to be linearly dependent. Our
strategy yields a real (9× 10)-matrix PM that has rank 5 with regulator

RM = 0.615 705 316 185 336 649 171 137 603 021.

Moreover, for some 6-subsets of M we could find non-trivial integer relations between
these elements, e.g.

4M1 + 4M2 − 4M3 −M4 −M5 +M6 = 0,
−5M4 − 5M5 + 5M6 + 4M7 + 4M8 − 4M9 = 0 .

We can interpret this as quite strong numerical evidence for rk(KT
2 (C,Z)) = g. We found

this relations by applying the magma function LinearRelation to the entries of the columns
of PM . This function uses the LLL-algorithm to find small integer relations among complex
numbers. Presumably there exist non-trivial integer relations for each 6-subset of M , but
the coefficients are simply too large to be found by LinearRelation.

187

6.4. Numerical verification of Beilinson’s conjecture Chapter 6

[αi], [βj] λ RM

[-4,-2,0],[-4,0,2] 1 456.043 453 241 054 052 627 045 933 832 051
2 686.614 524 761 928 801 940 835 676 020 924

[-3,-2,0],[-3,0,2] 1 162.166 019 922 041 952 049 801 549 762 265
2 274.232 839 790 298 730 680 423 444 638 905

[-2,-1,3],[-3,0,1]

1 177.385 266 412 147 500 204 260 528 294 340
2 297.006 844 888 622 010 599 783 751 382 951
4 469.882 837 274 022 892 240 597 753 938 858
8 709.411 676 766 294 538 656 490 193 638 722
16 1030.070 664 892 505 319 732 787 353 063 345

[-1,0,1],[-4,-1,0]

1 14.105 020 302 991 836 538 780 051 244 741
2 34.239 334 425 022 841 309 967 231 686 303
3 59.363 162 473 450 196 675 182 887 969 578
4 84.281 001 244 876 601 137 489 759 265 808
5 105.829 488 765 660 987 721 148 627 610 684

[-1,0,1],[-3,0,3]

1 109.145 596 573 853 184 332 035 572 949 048
2 194.654 149 851 681 309 337 281 397 066 682
3 263.022 945 589 933 684 258 257 573 404 295
4 321.279 593 575 536 520 747 136 708 550 448
5 372.657 827 585 399 389 368 061 099 542 381

[-1,0,1],[-2,0,2]

1 27.568 933 663 287 109 898 947 413 928 443
2 65.510 174 737 954 604 127 379 595 103 916
3 97.943 840 814 314 839 597 101 327 618 481
4 126.878 531 440 319 005 109 856 423 267 449
5 153.216 783 264 459 658 208 641 451 871 831

[-1,1,2],[-1,1,2]

1 22.967 554 622 887 647 714 671 626 562 318
2 53.796 479 624 141 630 928 818 555 990 170
3 92.091 559 754 146 752 632 772 632 732 685
4 123.990 119 702 584 843 261 070 766 578 114
5 152.197 660 265 409 904 192 521 423 760 204

[1,2,3],[4,5,6]

1 1.803 127 938 237 073 335 476 302 671 407
2 2.634 355 647 799 092 544 726 667 458 482
3 4.967 144 449 687 612 637 211 190 308 940
4 7.865 090 162 994 230 867 483 085 059 968
5 11.378 328 271 642 185 488 723 527 021 752

[2,3,4],[-5,-6,7]

1 159.868 104 615 551 235 777 722 637 422 493
3 394.750 000 897 801 638 146 120 227 034 355
9 785.982 345 617 705 281 073 198 940 706 635
27 1 397.164 947 531 995 768 140 847 597 188 591
81 2 296.488 344 976 166 236 258 434 729 029 851

Table 6.7: Non-hyperelliptic genus 4 curves defined by (6.19) .

188

Chapter 0 6.4. Numerical verification of Beilinson’s conjecture

[αi], [βi] λ RM

[-1,0,1,2],[-1,0,1]

1 13.494 821 399 236 645 020 489 062 860 619
2 68.723 773 726 907 208 463 526 327 207 324
3 203.392 887 640 995 088 513 731 611 976 856
6 885.329 912 371 348 213 445 938 011 240 912
12 2 544.140 948 799 804 312 508 214 947 394 976
24 6 038.220 951 448 499 268 873 866 088 509 977

[-2,-1,0,2],[-1,1,2]
1 858.678 576 717 381 620 780 180 541 806 104
2 2 769.376 586 171 122 869 829 573 857 541 085
3 4 828.364 321 545 602 727 415 702 870 369 030

[-1,0,1,2],[-1,0,2]
1 152.534 884 806 105 013 742 133 860 910 004
2 771.706 642 266 164 757 306 003 664 647 763
3 1 544.643 314 765 958 640 512 577 158 422 883

[1,2,3,-4],[-8,5,6]
1 96 340.683 768 001 185 229 006 616 338 045 410
2 159 956.021 088 862 400 873 220 851 361 999 658
3 210 532.800 621 481 026 081 485 806 475 436 788

[-4,-2,0,2],[-2,0,3]
1 52 742.285 990 980 794 564 518 687 461 651 358
2 88 978.921 771 010 165 226 366 765 673 628 608
3 118 386.410 453 223 882 490 044 668 886 436 354

Table 6.8: Non-hyperelliptic genus 6 curves defined by (6.19) .

Genus [αi], [βj] λ RM

8 [-2,-1,0,1,2],[-1,0,1] 1 420.552 706 742 028 906 935 252 086 427 897

8 [-2,-1,0,1,2],[-1,1,2] 1 124 62.203 079 931 265 848 605 791 030 383 288

8 [-1,0,1,2,3],[-1,0,2] 1 6 231.101 539 965 632 924 302 895 515 191 644

9 [-3,-1,0,1],[-3,-1,0,1] -1 293 779.893 543 194 598 332 827 005 807 430 454

9 [-1,1,2,3],[-1,0,1,2] 1 36 576.138 789 587 471 029 181 088 460 501 378

9 [-2,-1,0,1],[-2,-1,1,2] 1 103 649.865 291 009 800 031 652 721 292 896 122

10 [-2,-1,0,1,2,3],[1,2,3] 1 213 154.270 820 449 438 832 553 362 048 251 339

10 [-2,-1,0,1,2,3],[-2,-1,1] -1 2 043 703.158 618 027 854 414 594 268 129 904 226

10 [-2,-1,0,1,2,4],[-3,-1,0] 1 6 205 197.565 327 708 112 933 975 003 989 959 505

12 [-1,0,1,2,3],[-1,0,1,2] 1 1 203 434.305 816 573 775 831 991 074 232 924 397

12 [-2,-1,0,1,2],[-2,-1,1,2] 1 37 363 335.725 710 046 191 310 784 290 901 896 391

Table 6.9: Non-hyperelliptic curves defined by (6.19) with genus > 6 .

189

Appendices

190

Appendix A

Miscellaneous

A.1 Closest point on an ellipse
For an ellipse εr parametrized by r > 0 we use

εr = { r cos(t) + i
√
r2 − 1 sin(t) | 0 ≤ t < π }

to compute a point on the ellipse that realizes the distance to a point x 6∈ εr see Algorithm
A.1.1 below. In particular, we apply Newton’s method (§1.3) to the function

s(t) = cos(t) sin(t)− rRe(x) sin(t) +
√
r2 − 1 Im(x) cos(t) .

Since the ellipse is convex, the solution is unique on the quadrant containing x and New-
ton’s method converges quadratically.

Algorithm A.1.1 (Closest point on ellipse). For x ∈ C outside of εr, approximate z ∈ εr
up to an error δ > 0 such that |x− z| = dist(x, εr).

(1) Set sr ← sgn(Re(x)), si ← sgn(Im(x)), r′ ←
√
r2 − 1.

(2) If si = 0, then return sr · r.

(3) If sr = 0, then return si · ir′.

(4) Set x̃← |Re(x)|+ i |Im(x)|.

(5) Set t̃← cos−1(x̃).

(6) Repeat

(6.1) Newton-step: Set t← t̃ and t̃← s(t)/s′(t).

(6) until
∣∣t− t̃∣∣ < δ.

(7) x̃← r cos(t̃) + ir′ sin(t̃).

(8) Return sr · Re(x̃) + si · i Im(x̃).

191

A.2. Source code for the Tretkoff algorithm Chapter 1

A.2 Source code for the Tretkoff algorithm

//
/// ***** Magma implementation of the Tretkoff algorithm ***** ///
/// ************ Code written by Christian Neurohr *********** ///
//

// Define suitable edge class for edges: RSEdge
declare type RSEdge;
declare attributes RSEdge: StPt, EndPt, Branch, Level, Terminated, Position, PQ;

// Constructor
function RS_Edge(Edge : Branch := [Edge[1],Edge[2]], Level := 0, Terminated :=

false)
// Creates Edge

e := New(RSEdge);
e‘StPt := Edge[1];
e‘EndPt := Edge[2];
e‘Branch := Branch;
e‘Level := Level;
e‘Terminated := Terminated;
if e‘StPt lt e‘EndPt then

e‘PQ := true;
else

e‘PQ := false;
end if;
return e;

end function;

// Printing
intrinsic Print(e::RSEdge)
{ Print Edge }

if e‘Terminated then
print "Edge from",e‘StPt,"to",e‘EndPt,"on Level",e‘Level,"and Terminated

Branch",e‘Branch;
else

print "Edge from",e‘StPt,"to",e‘EndPt,"on Level",e‘Level,"and
Branch",e‘Branch;

end if;
end intrinsic;

// Define "=" on RSEdges
intrinsic ’eq’(Edge1::RSEdge, Edge2::RSEdge) -> BoolElt
{ Returns true if Edge1 = Edge2, false otherwise }

if (Edge1‘StPt ne Edge2‘StPt) or (Edge1‘EndPt ne Edge2‘EndPt) then
return false;

else
return true;

end if;
end intrinsic;

function RS_ReverseEdge(Edge)
// Returns the edge with swapped start- and end point

return RS_Edge(<Edge‘EndPt,Edge‘StPt>);
end function;
// End RSEdge

192

Chapter 1 A.2. Source code for the Tretkoff algorithm

function RS_CycleToPerm(Tau,m)
// Creates a permutation element from the indexed set Tau

Perm := [1..m];
t := #Tau;
for j in [1..t] do

Perm[Tau[j]] := Tau[j mod t + 1];
end for;
return Sym(m)!Perm;

end function;

// Functions for sorting

function RS_SortTermEdges(EdgesOnPartLevel, StOrEnd)
// Sorts the terminated edges in step 3 and 5
// If StOrEnd = -1 sort by increasing start point; If StOrEnd = 1 sort by

increasing end point
assert StOrEnd in [-1,1];
function RS_CompareEdges(Edge1, Edge2)

if StOrEnd eq -1 then
e1 := Edge1‘StPt; e2 := Edge2‘StPt;

else
e1 := Edge1‘EndPt; e2 := Edge2‘EndPt;

end if;
if e1 lt e2 then

return -1;
elif e1 eq e2 then

if Edge1‘Position lt Edge2‘Position then
return -1;

elif Edge1‘Position eq Edge2‘Position then
return 0;

else
return 1;

end if;
else

return 1;
end if;

end function;
return Sort(EdgesOnPartLevel,RS_CompareEdges);

end function;

function RS_SortByBranch(EdgesOnLevel, TerminatedEdges)
// Returs the list of terminated edges sorted with RS_CompareBranches

function RS_CompareBranches(Edge1,Edge2)
// Edge1 < Edge2 iff Edge1 appears earlier while going counter-clockwise

through the Tretkoff tree
// Edge2 > Edge2 iff Edge2 ---- "" ----
if Edge1‘Level eq Edge2‘Level then

if Edge1‘Position lt Edge2‘Position then
return -1;

elif Edge1‘Position eq Edge2‘Position then
return 0;

else
return 1;

end if;
elif Edge1‘Level lt Edge2‘Level then

PredEdge2 :=
RS_Edge(<Edge2‘Branch[Edge1‘Level],Edge2‘Branch[Edge1‘Level+1]>);

193

A.2. Source code for the Tretkoff algorithm Chapter 1

Ind := Position(EdgesOnLevel[Edge1‘Level],PredEdge2);
return RS_CompareBranches(Edge1,EdgesOnLevel[Edge1‘Level][Ind]);

else
return (-1)*RS_CompareBranches(Edge2,Edge1);

end if;
end function;
return Sort(TerminatedEdges,RS_CompareBranches);

end function;

// Start Tretkoff algorithm

declare verbose Tretkoff,2; // Printing

intrinsic RS_Tretkoff(LocalMonodromy::SeqEnum[GrpPermElt] : Genus := -1) ->
SeqEnum[SeqEnum[RngIntElt]], Mtrx

{ Compute a basis of the first homology group of a connected compact Riemann
surface from a monodromy representation }

d := #LocalMonodromy;
if d eq 0 then

error Error("Input cannot be an empty list.");
else

Sym := Universe(LocalMonodromy);
m := Degree(Sym);

end if;

// Checking connectivity of the Riemann surface
S := PermutationGroup< m | [s : s in LocalMonodromy] >;
assert IsTransitive(S);

// Decompose the local monodromies into disjoint cycles
RamificationPoints := []; RamificationIndices := [];
for j in [1..d] do

CycleDecomp := CycleDecomposition(LocalMonodromy[j]);
for Tau in CycleDecomp do

if #Tau gt 1 then
Append(~RamificationPoints,<j,Tau,RS_CycleToPerm(Tau,m)>);
Append(~RamificationIndices,#Tau-1);

end if;
end for;

end for;

vprint Tretkoff,1 : "Ramification points:",RamificationPoints;
vprint Tretkoff,1 : "Ramification indices:",RamificationIndices;

// Checking Riemann-Hurwitz formula
GenusViaMonodromy := 1/2 * &+RamificationIndices + 1 - m;
if Genus ne -1 then

g := Genus;
assert g eq GenusViaMonodromy;

else
Ok, g := IsCoercible(Integers(),GenusViaMonodromy);
if not Ok or g lt 0 then

error Error("Riemann-Hurwitz formula violated.");
end if;

end if;

// Dealing with genus 0 curves

194

Chapter 1 A.2. Source code for the Tretkoff algorithm

if g eq 0 then
error Error("Genus of the Riemann surface is zero; homology group is

trivial.");
else

vprint Tretkoff,1 : "Genus of the Riemann surface: ",g;
end if;

// Initializing Tretkoff tree
// Vertices 1,...,t correspond to ramification points
// Vertices t+1,...,t+m correspond to sheets
t := #RamificationPoints;
Vertices := {t+1};
EdgesOnLevel := [[]];
TerminatedEdges := [];

// Condition to terminate the algorithm
AllBranchesTerminated := false;

// Step 1:
// Initializing graph on level 1
Level := 1;
vprint Tretkoff, 1: "Initializing graph-level",Level;
for j in [1..t] do

if 1 in RamificationPoints[j][2] then
e := RS_Edge(<t+1,j>: Level := Level, Branch := [t+1,j]);
Include(~Vertices,j);
Append(~EdgesOnLevel[Level],e);

end if;
end for;

repeat
// Step 2: Continuing open branches to sheets
Level +:= 1;
vprint Tretkoff, 1: "Constructing graph-level",Level;
s := 0;
EdgesOnLevel[Level] := [];
for Edge in EdgesOnLevel[Level-1] do

if not Edge‘Terminated then
Perm := RamificationPoints[Edge‘EndPt][3];
l := Edge‘StPt - t;
while Perm ne Id(Sym) do

k := t + l^Perm;
if not k in Edge‘Branch then

NewEdge := RS_Edge(<Edge‘EndPt,k> : Level := Level, Branch :=
Append(Edge‘Branch,k), Terminated := false);

s +:= 1;
NewEdge‘Position := s;
Append(~EdgesOnLevel[Level],NewEdge);

end if;
Perm *:= RamificationPoints[Edge‘EndPt][3];

end while;
end if;

end for;

// Step 3: Terminate branches at sheets
vprint Tretkoff, 1: "Terminate branches at graph-level",Level;
SortedEdgesOnLevel := RS_SortTermEdges(EdgesOnLevel[Level],-1);
for j in [1..#SortedEdgesOnLevel] do

195

A.2. Source code for the Tretkoff algorithm Chapter 1

Edge := SortedEdgesOnLevel[j];
if Edge‘EndPt in Vertices then

Edge‘Terminated := true;
Append(~TerminatedEdges,Edge);

else
Include(~Vertices,Edge‘EndPt);

end if;
end for;

// Step 4:
// Continuing open branches to ramification points
Level +:= 1;
vprint Tretkoff, 1: "Constructing graph-level",Level;
s := 0;
EdgesOnLevel[Level] := [];
for Edge in EdgesOnLevel[Level-1] do

if not Edge‘Terminated then
l := Edge‘EndPt - t;
k := Edge‘StPt mod t + 1;
for j in [1..t] do

if l in RamificationPoints[k][2] and not k in Edge‘Branch then
NewEdge := RS_Edge(<Edge‘EndPt,k> : Level := Level, Branch :=

Append(Edge‘Branch,k), Terminated := false);
s +:= 1;
NewEdge‘Position := s;
Append(~EdgesOnLevel[Level],NewEdge);

end if;
k := k mod t + 1;

end for;
end if;

end for;

// Step 5:
// Terminate branches at ramification points
vprint Tretkoff, 1: "Terminate branches at graph-level",Level;
SortedEdgesOnLevel := RS_SortTermEdges(EdgesOnLevel[Level],1);
for j in [1..#SortedEdgesOnLevel] do

Edge := SortedEdgesOnLevel[j];
if Edge‘EndPt in Vertices then

Edge‘Terminated := true;
Append(~TerminatedEdges,Edge);

else
Include(~Vertices,Edge‘EndPt);

end if;
end for;

// Step 6:
// Check whether all branches are terminated
AllBranchesTerminated := true;
for Edge in EdgesOnLevel[Level] do

if not Edge‘Terminated then
AllBranchesTerminated := false;
break;

end if;
end for;
vprint Tretkoff, 1: "All branches terminated?",AllBranchesTerminated;

until AllBranchesTerminated;

196

Chapter 1 A.2. Source code for the Tretkoff algorithm

// Cut off empty entries in list
if #EdgesOnLevel[Level] eq 0 then

Prune(~EdgesOnLevel);
end if;

// Checking correct number of terminated edges
CTE := 4*g + 2*m - 2;
CTE2 := Round(CTE/2);
assert CTE eq #TerminatedEdges;

vprint Tretkoff,2 : "EdgesOnLevel:",EdgesOnLevel;
vprint Tretkoff,2 : "#TerminatedEdges:",#TerminatedEdges;
vprint Tretkoff,2 : "4*Genus + 2*N - 2: ",CTE;

// Order terminated edges according to RS_SortByBranch
OrdTermEdges := RS_SortByBranch(EdgesOnLevel,TerminatedEdges);

// Need to go through ordered terminated edges clockwise (instead of
counter-clockwise)

Reverse(~OrdTermEdges);
vprint Tretkoff,2 : "Ordered terminated edges:",OrdTermEdges;

// Divide terminated edges into lists P (even level) and Q (odd level)
depending on their level

vprint Tretkoff,1 : "Labeling terminated edges ... ";
P := []; QQ := []; Q := []; l := 1;
for k in [1..CTE] do

Edge := OrdTermEdges[k];
Edge‘Position := [k];
if Edge‘PQ then

Append(~P,Edge);
Append(~Edge‘Position,l);
l +:= 1;

else
Append(~QQ,Edge);

end if;
end for;
vprint Tretkoff,2 : "P:", P;
for k in [1..CTE2] do

Edge := QQ[k];
l := Position(P,RS_ReverseEdge(Edge));
Append(~Edge‘Position,l);
Q[l] := Edge;

end for;
vprint Tretkoff,2 : "Q:", Q;

// Piece together the 2g+m-1 cycles
vprint Tretkoff,1 : "Constructing cycles ... ";
Cycles := [];
for j in [1..CTE2] do

Cycle := P[j]‘Branch cat Reverse(Prune(Prune(Q[j]‘Branch)));
k := 1;
while k le #Cycle-1 do

Cycle[k] -:= t;
Cycle[k+1] := RamificationPoints[Cycle[k+1]][1];
k +:= 2;

end while;
Cycle[k] -:= t;

197

A.2. Source code for the Tretkoff algorithm Chapter 1

Append(~Cycles,Cycle);
end for;
vprint Tretkoff,2 : "Cycles: ", Cycles;

// Compute the intersection pairing of the cycles and store them in a matrix K
vprint Tretkoff,1 : "Computing intersection matrix ... ";
K := ZeroMatrix(Integers(),CTE2,CTE2);
for j in [1..CTE2] do

k := P[j]‘Position[1] mod CTE + 1;
while true do

NextEdge := OrdTermEdges[k];
if NextEdge‘PQ then

K[NextEdge‘Position[2]][j] +:= 1;
else

if NextEdge‘Position[2] eq j then
break;

else
K[NextEdge‘Position[2]][j] -:= 1;

end if;
end if;
k := k mod CTE + 1;

end while;
end for;

// Checking rank of intersection matrix
rk := Rank(K); assert rk eq 2*g;
vprint Tretkoff,2 : "Intersection matrix:",K;
vprint Tretkoff,2 : "Rank of intersection matrix: ",rk;

// Return cycles and intersection matrix
return Cycles, K;

end intrinsic;

198

Appendix B

Declaration

Hereby, I declare, that the presented dissertation with the title

Efficient integration on Riemann surfaces & applications

is my own work and, that I have not used other sources than the sources stated in the
text or in the bibliography. The dissertation has, neither as a whole, nor in part, been
submitted for assessment in a doctoral procedure at another university.

I confirm that I am aware of the guidelines of good scientific practice of the Carl von
Ossietzky University Oldenburg and that I observed them. Furthermore, I declare that I
have not availed myself of any commercial placement or consulting services in connection
with my doctoral procedure.

Oldenburg, 22.05.2018

Christian Neurohr

199

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with
formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards
Applied Mathematics Series. For sale by the Superintendent of Documents, U.S.
Government Printing Office, Washington, D.C., 1964.

[2] David H Bailey. Tanh-sinh high-precision quadrature. Online paper http: // www.
davidhbailey. com/ dhbpapers/ dhb-tanh-sinh. pdf , 2006.

[3] David H Bailey, Karthik Jeyabalan, and Xiaoye S Li. A comparison of three high-
precision quadrature schemes. Experimental Mathematics, 14(3):317–329, 2005.

[4] Barinder Singh Banwait, John Cremona, et al. Tetrahedral elliptic curves and the
local-to-global principle for isogenies. Algebra and Number Theory, 8(5):1201–29,
2014.

[5] Burcu Baran. An exceptional isomorphism between modular curves of level 13. Jour-
nal of Number Theory, 145:273–300, 2014.

[6] Leo Bluestein. A linear filtering approach to the computation of discrete Fourier
transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.

[7] Alexander I Bobenko. Introduction to compact Riemann surfaces. In Computational
Approach to Riemann Surfaces, pages 3–64. Springer, 2011.

[8] Ignace Bogaert. Iteration-free computation of Gauss-Legendre quadrature nodes and
weights. SIAM Journal on Scientific Computing, 36(3):A1008–A1026, 2014.

[9] Wieb Bosma, John Cannon, and Catherine Playoust. The magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

[10] Jean-Benoît Bost. Introduction to compact Riemann surfaces, Jacobians, and abelian
varieties. In From number theory to physics (Les Houches, 1989), pages 64–211.
Springer, Berlin, 1992.

[11] Jean-Benoît Bost and Jean-François Mestre. Moyenne arithmético-géométrique et
périodes des courbes de genre 1 et 2. Gaz. Math., (38):36–64, 1988.

[12] Richard P. Brent and Paul Zimmermann. Modern computer arithmetic, volume 18
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, 2011.

[13] Egbert Brieskorn and Horst Knörrer. Plane algebraic curves. Modern Birkhäuser
Classics. Birkhäuser/Springer Basel AG, Basel, 1986. Translated from the German
original by John Stillwell, [2012] reprint of the 1986 edition.

200

http://www.davidhbailey.com/dhbpapers/dhb-tanh-sinh.pdf
http://www.davidhbailey.com/dhbpapers/dhb-tanh-sinh.pdf

Chapter 6 Bibliography

[14] Vincenz Busch. Beilinson’s Conjectures for Superelliptic Curves. PhD thesis, Univer-
sität Hamburg, 2015.

[15] M. M. Chawla and M. K. Jain. Error estimates for Gauss quadrature formulas for
analytic functions. Math. Comp., 22:82–90, 1968.

[16] Alexey Chernov and Christoph Schwab. Exponential convergence of Gauss-Jacobi
quadratures for singular integrals over simplices in arbitrary dimension. SIAM Journal
on Numerical Analysis, 50(3):1433–1455, 2012.

[17] David V Chudnovsky and Gregory V Chudnovsky. On expansion of algebraic func-
tions in power and Puiseux series, I. Journal of Complexity, 2(4):271–294, 1986.

[18] David V Chudnovsky and Gregory V Chudnovsky. On expansion of algebraic func-
tions in power and Puiseux series, II. Journal of Complexity, 3(1):1–25, 1987.

[19] Henri Cohen. Advanced topics in computational number theory, volume 193 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 2000.

[20] James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[21] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight. Rigorous computation
of the endomorphism ring of a Jacobian. Preprint arXiv:1705.09248, 2017.

[22] John E. Cremona and Thotsaphon Thongjunthug. The complex AGM, periods of el-
liptic curves over C and complex elliptic logarithms. J. Number Theory, 133(8):2813–
2841, 2013.

[23] Rob de Jeu and Hang Liu. On K2 of certain families of curves. Preprint
arXiv:1402.4822, 2014.

[24] B. Deconinck and M. Patterson. Computing the Abel map. Physica D, 237:3214–3232,
2008.

[25] Bernard Deconinck, Matthias Heil, Alexander Bobenko, Mark Van Hoeij, and Mar-
cus Schmies. Computing Riemann Theta functions. Mathematics of Computation,
73(247):1417–1442, 2004.

[26] Bernard Deconinck, Matthew S Patterson, and Christopber Swierczewski. Computing
the Riemann constant vector. Preprint https: // depts. washington. edu/ bdecon/
papers/ pdfs/ rcv. pdf , 2015.

[27] Bernard Deconinck and Mark van Hoeij. Computing Riemann matrices of algebraic
curves. Phys. D, 152/153:28–46, 2001. Advances in nonlinear mathematics and sci-
ence.

[28] Tim Dokchitser. Computing special values of motivic L-functions. Experimental
Mathematics, 13(2):137–149, 2004.

[29] Tim Dokchitser, Rob De Jeu, and Don Zagier. Numerical verification of Beilinson’s
conjecture for K2 of hyperelliptic curves. Compositio Mathematica, 142(2):339–373,
2006.

[30] Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: a tutorial review and
a state of the art. Signal processing, 19(4):259–299, 1990.

201

https://depts.washington.edu/bdecon/papers/pdfs/rcv.pdf
https://depts.washington.edu/bdecon/papers/pdfs/rcv.pdf

Bibliography Chapter 6

[31] Dominique Duval. Rational Puiseux expansions. Compositio mathematica, 70(2):119–
154, 1989.

[32] J Eilbeck, Keno Eilers, and V Enolski. Periods of second kind differentials of (n,s)-
curves. Transactions of the Moscow Mathematical Society, 74:245–260, 2013.

[33] Hershel M Farkas and Irwin Kra. Riemann surfaces. In Riemann surfaces, pages
9–31. Springer, 1992.

[34] E Flynn, Franck Leprévost, Edward Schaefer, William Stein, Michael Stoll, and
Joseph Wetherell. Empirical evidence for the Birch and Swinnerton-Dyer conjectures
for modular Jacobians of genus 2 curves. Mathematics of Computation, 70(236):1675–
1697, 2001.

[35] Jörg Frauendiener and Christian Klein. Algebraic curves and Riemann surfaces in
matlab . In Computational approach to Riemann surfaces, pages 125–162. Springer,
2011.

[36] Jörg Frauendiener and Christian Klein. Computational approach to hyperelliptic
Riemann surfaces. Letters in Mathematical Physics, 105(3):379–400, 2015.

[37] Jörg Frauendiener and Christian Klein. Computational approach to compact Riemann
surfaces. Nonlinearity, 30(1):138–172, 2017.

[38] Georg Frobenius. Theorie der linearen formen mit ganzen coefficienten. Journal für
die reine und angewandte Mathematik, 86:146–208, 1879.

[39] Andreas Glaser, Xiangtao Liu, and Vladimir Rokhlin. A fast algorithm for the cal-
culation of the roots of special functions. SIAM Journal on Scientific Computing,
29(4):1420–1438, 2007.

[40] Irving John Good. The interaction algorithm and practical Fourier analysis. Journal
of the Royal Statistical Society. Series B (Methodological), pages 361–372, 1958.

[41] Xavier Gourdon. Combinatoire, algorithmique et géométrie des polynômes. PhD
thesis, 1997.

[42] Nicholas Hale and Alex Townsend. Fast and accurate computation of Gauss-Legendre
and Gauss-Jacobi quadrature nodes and weights. SIAM Journal on Scientific Com-
puting, 35(2):A652–A674, 2013.

[43] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.
Graduate Texts in Mathematics, No. 52.

[44] David Harvey, Maike Massierer, and Andrew V Sutherland. Computing L-series of
geometrically hyperelliptic curves of genus three. LMS Journal of Computation and
Mathematics, 19(A):220–234, 2016.

[45] Florian Hess. Computing Riemann-Roch spaces in algebraic function fields and re-
lated topics. Journal of Symbolic Computation, 33(4):425–445, 2002.

[46] Marc Hindry and Joseph H. Silverman. Diophantine geometry, volume 201 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction.

[47] F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in Com-
puter Algebra, 47(4):166–169, 2013.

202

Chapter 6 Bibliography

[48] F. Johansson. Numerical integration in arbitrary-precision ball arithmetic. Preprint
arXiv:1802.07942, February 2018.

[49] F. Johansson and M. Mezzarobba. Fast and rigorous arbitrary-precision computa-
tion of Gauss-Legendre quadrature nodes and weights. Preprint arXiv:1802.03948,
February 2018.

[50] Kiran S Kedlaya and Andrew V Sutherland. Computing L-series of hyperelliptic
curves. In International Algorithmic Number Theory Symposium, pages 312–326.
Springer, 2008.

[51] Pinar Kilicer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijs-
ling, and Marco Streng. Plane quartics over Q with complex multiplication. Preprint
arXiv:1701.06489, 2017.

[52] Ja Kyung Koo. On holomorphic differentials of some algebraic function field of one
variable over C. Bulletin of the Australian Mathematical Society, 43(3):399–405, 1991.

[53] Stefan Kranich. An epsilon-delta bound for plane algebraic curves and its use
for certified homotopy continuation of systems of plane algebraic curves. Preprint
arXiv:1505.03432, 2015.

[54] HT Kung and Joseph Frederick Traub. All algebraic functions can be computed fast.
Journal of the ACM (JACM), 25(2):245–260, 1978.

[55] Hugo Labrande. Explicit computation of the Abel-Jacobi map and its inverse. Theses,
Université de Lorraine ; University of Calgary, November 2016.

[56] Serge Lang. Fundamentals of Diophantine geometry. Springer Science & Business
Media, 2013.

[57] Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate
Texts in Mathematics. Oxford University Press, Oxford, 2002. Translated from the
French by Reinie Erné, Oxford Science Publications.

[58] The LMFDB Collaboration. The L-functions and modular forms database. http:
//www.lmfdb.org, 2013. [Online; accessed 16 September 2013].

[59] Paul Lockhart, Michael Rosen, and Joseph H Silverman. An upper bound for the
conductor of an abelian variety. J. Algebraic Geom, 2(4):569–601, 1993.

[60] Maplesoft. Maplesoft, a division of Waterloo Maple inc., Waterloo, Ontario. http:
//www.maplesoft.com, 2017.

[61] Nicolas Mascot. Computing modular Galois representations. Rend. Circ. Mat.
Palermo (2), 62(3):451–476, 2013.

[62] John M McNamee and Victor Pan. Numerical methods for roots of polynomials,
volume 16. Newnes, 2013.

[63] Rick Miranda. Algebraic Curves and Riemann Surfaces (Graduate Studies in Math-
ematics, Vol 5). American Mathematical Society, 4 1995.

[64] Pascal Molin. Intégration numérique et calculs de fonctions L. PhD thesis, Université
de Bordeaux I, 2010.

[65] Pascal Molin and Christian Neurohr. Computing period matrices and the abel-jacobi
map of superelliptic curves. Mathematics of Computation, Dec 2017.

203

http://www.lmfdb.org
http://www.lmfdb.org
http://www.maplesoft.com
http://www.maplesoft.com

Bibliography Chapter 6

[66] Pascal Molin and Christian Neurohr. hcperiods: Arb and Magma packages for periods
of superelliptic curves. http://doi.org/10.5281/zenodo.1098275, July 2017.

[67] Steffen Müller. Computing canonical heights using arithmetic intersection theory.
Mathematics of Computation, 83(285):311–336, 2014.

[68] David Mumford. Tata lectures on Theta. I, volume 28 of progress in mathematics,
1983.

[69] Jürgen Neukirch. Algebraische Zahlentheorie. Springer-Verlag, Berlin, 1992.

[70] Harald Niederreiter and Chaoping Xing. Algebraic geometry in coding theory and
cryptography. Princeton University Press, 2009.

[71] Victor Y Pan. Univariate polynomials: nearly optimal algorithms for factorization
and rootfinding. In Proceedings of the 2001 international symposium on Symbolic and
algebraic computation, pages 253–267. ACM, 2001.

[72] Miodrag Petkovic. Point estimation of root finding methods. Springer, 2008.

[73] Adrien Poteaux. Computing monodromy groups defined by plane algebraic curves.
In Proceedings of the 2007 international workshop on Symbolic-numeric computation,
pages 36–45. ACM, 2007.

[74] Adrien Poteaux. Calcul de développements de Puiseux et application au calcul du
groupe de monodromie d’une courbe algébrique plane. PhD thesis, Université de Limo-
ges, 2008.

[75] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
Numerical recipes in C, volume 2. Cambridge university press Cambridge, 1996.

[76] Daniel Quillen. Finite generation of the groups Ki of rings of algebraic integers.
Higher K-Theories, pages 179–198, 1973.

[77] Th Rivlin. Chebyshev polynomials. from approximation theory to algebra and number
theory. 1990. Pure Appl. Math.(NY), 1990.

[78] Arnold Schönhage. The fundamental theorem of algebra in terms of computational
complexity. Manuscript. Univ. of Tübingen, Germany, 1982.

[79] Jean-Pierre Serre. Géométrie algébrique et géométrie analytique. In Annales de
l’institut Fourier, volume 6, pages 1–42. Association des Annales de l’Institut Fourier,
1956.

[80] Henning Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, second edition, 2009.

[81] Michael Stoll. Lecture notes: Algebraische Kurven. Mathematisches Institut der
Universität Düsseldorf, 2001/2002.

[82] C. Swierczewski et al. abelfunctions: A library for computing with abelian func-
tions, Riemann surfaces, and algebraic curves. http://github.com/abelfunctions/
abelfunctions, 2017.

[83] Hidetosi Takahasi and Masatake Mori. Double exponential formulas for numeri-
cal integration. Publications of the Research Institute for Mathematical Sciences,
9(3):721–741, 1974.

204

http://doi.org/10.5281/zenodo.1098275
http://github.com/abelfunctions/abelfunctions
http://github.com/abelfunctions/abelfunctions

Chapter 6 Bibliography

[84] The sage Developers. Sagemath, the Sage Mathematics Software System (Version
8.0). http://www.sagemath.org, 2018.

[85] Christopher Towse. Weierstrass points on cyclic covers of the projective line. Trans-
actions of the American Mathematical Society, 348(8):3355–3378, 1996.

[86] Lloyd N Trefethen. Spectral methods in matlab . SIAM, 2000.

[87] Lloyd N Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM review,
50(1):67–87, 2008.

[88] C.L. Tretkoff and M.D. Tretkoff. Combinatorial group theory, Riemann surfaces and
differential equations. Contemporary Mathematics, 33:467–517, 1984.

[89] Raymond van Bommel. Numerical verification of the Birch and Swinnerton-Dyer
conjecture for hyperelliptic curves of higher genus over Q up to squares. Preprint
arXiv:1711.10409, 2017.

[90] Paul Van Wamelen. Equations for the Jacobian of a hyperelliptic curve. Transactions
of the American Mathematical Society, 350(8):3083–3106, 1998.

[91] Paul Van Wamelen. Examples of genus two CM curves defined over the rationals.
Mathematics of Computation of the American Mathematical Society, 68(225):307–320,
1999.

[92] Paul Van Wamelen. Proving that a genus 2 curve has complex multiplication. Math-
ematics of Computation of the American Mathematical Society, 68(228):1663–1677,
1999.

[93] Paul van Wamelen. Computing with the analytic Jacobian of a genus 2 curve. In
Discovering mathematics with Magma, volume 19 of Algorithms Comput. Math., pages
117–135. Springer, Berlin, 2006.

[94] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013.

[95] Jörg Waldvogel. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules.
BIT Numerical Mathematics, 46(1):195–202, 2006.

[96] Robert JohnWalker. Algebraic curves, volume 642. Princeton University Press Prince-
ton, 1950.

205

http://www.sagemath.org

	Title: Efficient integration on Riemann surfaces& applications
	Kurzfassung
	Abstract
	Acknowledgements
	Contents
	Introduction
	Outline of the thesis
	Existing work
	Complexity
	Main results & contributions
	Compact Riemann surfaces
	Superelliptic curves
	Applications
	Software packages

	Theoretical background
	Algebraic function fields
	Algebraic curves
	Algebraic varieties
	Regular functions and morphisms
	Non-singular curves
	Maps between algebraic curves

	Divisors & Differentials
	Divisors
	Differentials
	Constant field extension

	Riemann surfaces
	Basic definitions
	Properties of holomorphic maps
	Monodromy & homotopy
	Two constructions of Riemann surfaces

	Compact Riemann surfaces and algebraic curves
	Coverings of the projective line
	Constructing the fundamental group
	Algebraic curves and their normalizations

	Integration on Riemann surfaces
	Differential forms
	Integration of 1-forms along paths

	Intersection theory
	Divisors and meromorphic functions
	The Abel-Jacobi map
	Period matrices

	Numerical integration methods
	A versatile error bound
	Gaussian quadratures
	Gauss-Jacobi quadrature
	Gauss-Legendre quadrature
	Gauss-Chebyshev quadrature

	Clenshaw-Curtis quadrature
	Double-exponential integration
	Adaptive double-exponential integration

	A priori comparison
	Outlook

	Computing period matrices & the Abel-Jacobi map: general case
	The Riemann surface
	Holomorphic map to the projective line
	Exceptional points
	Ordering of the sheets

	Holomorphic differentials
	Fundamental group
	Choices
	Alternatives
	Types of paths & parametrizations

	Root approximation methods
	Analytic continuation & local monodromy
	Monodromy representation

	Computing a homology basis
	The Tretkoff algorithm
	Symplectic reduction

	Numerical integration
	Concatenation
	Gauss-Legendre & Clenshaw-Curtis quadrature
	Double-exponential integration
	Integration algorithm
	Improving integration paths
	Comparison of integration methods (I)

	Strategy for the period matrix
	Big and small period matrices
	Classifying integration paths
	Comparison of integration methods (II)
	Comparison with other implementations

	Computing the Abel-Jacobi map
	Moving between sheets
	Reaching non-critical points
	Integration into non-singular, critical points
	Moving points by strong approximation
	Adaptive double-exponential integration
	Reduction modulo the period lattice
	Strategy for the Abel-Jacobi map
	Alternatives

	Precision issues
	Bounding sizes of numbers
	Bounding differentials

	Symbolic integration
	Integration of differentials
	Practical issues and experiments
	Existing work

	Outlook

	Computing period matrices & the Abel-Jacobi map: superelliptic case
	Superelliptic curves
	Definition & properties
	Complex roots and branches of the curve
	Cycles and homology
	Differential forms

	Strategy for the period matrix
	Periods of elementary cycles
	Numerical integration
	Minimal spanning tree
	Symplectic reduction

	Intersections
	Computing the Abel-Jacobi map
	Between ramification points
	Reaching non-ramification points
	Points at infinity

	Numerical integration
	Gauss-Chebyshev quadrature
	Gauss-Jacobi quadrature
	Double-exponential integration

	Computational aspects
	Complexity analysis
	Precision issues
	Implementation tricks
	Further ideas

	Examples, timings and comparison
	Big period matrix
	Abel-Jacobi map

	Outlook

	Applications
	The Birch and Swinnerton-Dyer conjecture
	Endomorphism rings
	Interface with the LMFDB
	Isogenies between Jacobians

	Riemann Theta functions
	Reduced small period matrix
	Computing canonical heights

	Numerical verification of Beilinson's conjecture
	L-functions of algebraic curves
	K-theory and Beilinson's conjecture
	Strategy for checking Belinson's conjecture
	Numerical integration
	Examples of de Jeu, Dokchitser & Zagier
	Example of Busch
	Examples of Liu & de Jeu

	Appendices
	Miscellaneous
	Closest point on an ellipse
	Source code for the Tretkoff algorithm

	Declaration
	Bibliography

