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Preface

In 1994, during a year at the University of Exeter (UK), I was given the
chance to work with MRI images, and it was then that I became interested
in image processing, understanding that this field contains a multitude of
exciting applications both from the practical and theoretical point of view.
Luckily, a group involved with the SFB 517 Neurocognition in Oldenburg
was investigating models of the visual system with a special interest in the
retina. Looking at it from yet another aspect, this time motivated by bi-
ology and statistical physics, I started the work which is presented in the
following chapters.

At this point, I would like to thank my mentor Prof. Dr. Pál Ruján,
as well as the other (former) members of the (former) AG spÎn at the Carl
von Ossietzky Universität Oldenburg, Dr. Harry Urbschat and Johannes
Hausmann. A special thank goes to Prof. Dr. Ulrich Ramacher at Infineon
Technologies AG who organized the financial support for this thesis in a
very unbureaucratic way.

Finally, to motivate and convince a potential reader of this work with
the striking blow of reality, the next page illustrates the need for image
processing. In this case however, we might be too late ?

This work was supported by Infineon Technologies AG.
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Abstract

This thesis introduces a solution to the problem of image restoration and
feature extraction by incorporating new image models derived from statisti-
cal physics. A special lattice spin Hamiltonian is used which is well suited for
both source coding and for modeling information loss within the Bayesian
framework. The parameter estimation problem is solved analytically using
transfer-matrix methods.

Beyond its inherent practical usefulness the image restoration problem
illustrates directly basic concepts related to information theory, statistical
inference, and perception.

The work is split in two parts: Chapters 1 to 4 contain a summary of
the problem and existing models, Chapters 5 to 7 introduce the new models
and illustrate their capabilities in a variety of experiments. The conclusion
can be found in Chapter 8.



Chapter 1

Introduction

With the advent of modern information processing systems (such as com-
puters) which are capable of handling a vast amount of data, one special
interest – combined with a certain sense of fascination – emerged: the pro-
cessing of images. Although this might first look like a rather technical
problem it is in fact an area which occupies a large number of disciplines.
One major aspect is that our own cognitive system and also higher cognitive
functions of our brain are based on visual information in the form of images.
When we recall memories of events in the past, we usually ‘see’ these events
as images. Fifteen percent of the cortical region in our brain is devoted to
visual processing [Hub89]. To fully understand the way in which visual data
is handled, one has to understand the stages along the visual path. This is
one goal of the projects in the SFB ‘Neurocognition’ at the CvO University
of Oldenburg which mainly concentrates on the retina. Since the visual in-
put to the retina is sampled from an array of photoreceptor cells the analogy
to digitally stored images can readily be seen [Fie87, Ati92, Fie94, PB94].

From a more technical point of view, image processing plays a major role
in modern telecommunication, research and entertainment. Many devel-
opments in todays medical science would be impossible without sufficient
image acquisition techniques. The Hubble space telescope delivers fascinat-
ing pictures of distance stars and galaxies and makes them accessible for
millions of people via the Internet. Satellite images enable us to predict the
weather for the next few days, at least. Today it is almost taken for granted
to import a photo into one of the common image processing programs, en-
hance or manipulate it in various ways and finally send a digital copy of it
to a relative or friend at the other side of the world. A part of all of these
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applications is hardware and the associated algorithms which process image
data for further usage.

Physical models of images have gained more and more importance in the
last few years. Although it might not look like dealing with digital images
– apart from the optics – is a very physical task, the knowledge of lattice
systems and the ability to handle statistical models has enabled physicists
to contribute greatly to the field of image processing. One analogy between
images and classical physical models is the study of lattice systems, which
is the main topic of this thesis [Bes74, GG84, PB95, Li95a].

The majority of applications can be divided into three main areas: image
compression, image restoration and feature extraction. All of these
can further be subdivided according to the methods used in the respective
problem. Due to the boom in the telecommunication market, combined
with the explosive growth of the Internet and the future perspectives for
mobile communications and digital photography, the efficient transmission
and storage of data, and in particular image data, has become one of the ma-
jor challenges for scientists. To send still images and/or video uncompressed
over the available channels or store them without any post-processing would
be an enormous waste of capacities. For example a typical colour image with
image dimensions of 1024x768 points would require more than 2 megabytes;
however after compression with one of the standard methods this can be
reduced to approximately 160 kilobytes of data. Hence a large commu-
nity has devoted its research to the compression of images, which has
resulted in several standard compression techniques, for example the well-
known JPEG (Joined Photographic Experts Group [Pen90]), the proposed
JPEG2000 [Say00] for still images, or the MPEG (Moving Picture Experts
Group [MPG]) dealing with video data.

The existing compression methods can be divided into two groups. The first
one is termed lossy compression and is used in most of the daily-life ap-
plications. It utilizes the fact that the human eye is insensitive to spatially
higher frequencies in the image, which means that we simply don’t see any
rapid changes in the region of interest in the image [SJ72, RJ88]. A similar
behavior can be found in our auditory system, where higher frequencies are
‘masked’ by lower frequencies [MN79]. Note that the decompressed image is
in this case not the exact reproduction of the original data, but the difference
is small enough to remain unnoticed to a human observer. A good overview
of the techniques which achieve this kind of compression and encoding of
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the image can be found in [Say00].

The second group – lossless compression – is mainly used in scientific or
medical applications where it is important to recover the exact information
from the compressed data or for the compression of very simple images with
large contiguous areas of single colours. This is especially important for
medical imaging like MRI (magnetic resonance imaging) or CT (computer
tomography). In fact one has to be very careful when using image compres-
sion without the proper knowledge, since recent studies have shown that
lossy techniques may introduce image artefacts which can be interpreted as
carcinogenic tissue [Ruj00]. Lossless compression usually achieves rates of
50 percent data reduction.

Both compression methods, lossy as well as lossless, exploit a statistical
property of natural images which is called ‘smoothness’. This means that
the difference in intensity between adjacent pixels is not large and the neigh-
bourhood of a point in the image can be considered a smooth surface. The
basic idea of source-coding is to find a model for the data which describes
the statistically important properties of the image, in this case the smooth-
ness. The image can then be transformed into a representation where the
differences from the model are small and the data which has to be stored
is only the difference between the model image and the original image. For
example, let the model be: ‘All adjacent pixel have the same intensity’, then
we only need to store the difference from the model – which is the differ-
ence in pixel intensity. Now, since this range of actually occurring values
is smaller then the intensity range itself, we need less than the number of
bits per pixels. Other source coding methods are based on the property
that different regions in the image are similar to other regions and can be
mapped onto them via an affine transformation. This is known as fractal
compression [Jac89, BH92, Fis95].

Moving away from compression we know that all transmission channels are
subject to noise, which requires robust methods to remove this noise or to
encode the data in a way which makes it insensitive to distortions. The
source-coding idea can be used for this purpose as well. Image restora-
tion aims at reducing the amount of noise in an image introduced by the
transmitting channel. Again the assumption is that the image can be de-
scribed by a certain model. The source image should – in the ideal case –
be exactly predictable by the model. During the noisy transmission the re-
ceived image is moved away from the original and hence the prediction. The
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restoration process will then move the image back ‘closer’ to the model and
in this way reconstruct the original data. Note that in order to evaluate the
restoration quality an objective error measure has to be defined. Consider
again the preceeding example: if we find that a pixel after the transmission
is very different from its neighbouring pixels then it is very likely that it was
transmitted incorrectly. To counteract this, one could set the new (restored)
value to the mean value of the surrounding values.

The art here is to find a good model which describes one given image, but is
also general enough to encompass a large number of different images. This is
where statistical physics comes into play, since the ‘classical’ physical model
which is found in image processing techniques is derived from statistical
models of particle systems. All these models belong to the class of Markov
Random Fields (MRFs), which describe the interaction of neighbouring par-
ticles on a lattice by modeling the coupling between adjacent partners. One
especially interesting point is that Markov Random Fields and the well-
known Gibbs Random Fields are equivalent [HC71] which enables physicists
to put the image processing problem into a stochastical framework which
provides an in-depth knowledge of the important system properties. The
pixel intensity, or any other feature of the image, can then be interpreted
as the state of a particle at this point which interacts with its surrounding
neighbours.

The third application is the extraction of features from an image. These
features label certain objects of interest in a given image that need to be iso-
lated from the remaining points. The nature of the feature that can be used
depends on the available data and on the objects to be extracted. A simple
example is the search for lines and edges in an image which separate differ-
ent regions of intensity, which again might separate objects in the original
scene. The simplest way to find those differences in intensity is by applying
a gradient filter. In this way extraction and segmentation is widely used as
a preprocessing step in object-recognition or movement tracking systems. It
is also interesting from a biological point of view, since our own visual sys-
tems performs a similar task to distinguish objects/subjects moving around
in our environment.

Despite all the advances in the modern image processing research, it is fas-
cinating to see that the best image processing systems remains still un-
matched: our own visual system.
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Chapter 2

Information Theory and
Learning

This chapter contains a brief introduction to information theory in general,
including the definition of important quantities like entropy, information and
code length and shows how model-building can be used for data compression
or error correction. It is shown that learning is a consequence of providing
the receiver or observer with the required statistics and the model of the
data source. The introduction is completed with the motivation of how
statistical physical models can contribute to this field.

2.1 Shannon Model

Although the idea of a quantitative measure of information has been around
for a while, the mathematical principles which are now called information
theory were established by Claude E. Shannon in 1948 [Sha48]. It is based
on the simple model which is depicted in Figure 2.1 (upper part).

Before sending the data which originates from the source S it has to be
encoded for the transmitting channel C. How this channel coding is per-
formed depends on the data and on the properties of the channel, since the
encoding has to be suitable for the particular transmission. The receiver R
has to ensure that the channel encoded data is decoded correctly in order
to rebuild the original data. The channel properties can be characterized
by its capacity, which is the maximum amount of information that can be
transmitted at a given time, and the channel error, which is the stochastic
model of the qualitative and quantitative noise. With the help of this model
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it is possible to mathematically define the important measures information,
entropy, capacity and noise within the framework of probability theory.

statistical
properties

(decoding)

 memorylearning

Source   S

(encoding)
Channel  C

Receiver  R

Figure 2.1: Shannon’s model of an information transmitting system (upper
part). The lower path is an extention to the basic model and outlines the way
in which learning can provide additional information to the receiver.

2.1.1 Self-information

This measure relates the probability of an event to how much information
the occurrence of this event contains. For example if the probability of an
event is low, the amount of self-information associated with it is high and
vice versa.

Let x be an event, from a set S of outcomes of some random experiment. If
P (x) is the probability that the event x will occur, then the self-information
associated with x is given by

Ib(x) = − logb P (x), (2.1)

where b is the base of the log function. If the size of the set (number of
possible events) is M and the probability of an outcome is the same for all
elements, then Ib = logbM (Hartley equation). Note that the base depends
on the unit of information and is not specified here. However, the unit that
is used in information theory is bits which corresponds to the base b = 2.
Unless otherwise noted we use this base.
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2.1.2 Entropy

Entropy is the average information for a given set of events and depends on
the probability distribution of these events.

Let S be a set of M elements and P (x) the probability that the event x will
occur, then the entropy or average information is:

Hinf (S) =
M∑
x=1

P (x)I(x) = −
M∑
x=1

P (x) log2 P (x). (2.2)

The entropy has its maximum at Hinf = log2M for P (x) = 1/M which
means that all events have the same probability of occurrence. It is mini-
mal if one of the events has P (x) = 1 and all others do not occur. Then
Hinf = 0, since P (y) log2 P (y) = 0 for P (y) = 0.

2.1.3 Coding and source coding

As stated above, the data has to be encoded in order to be sent over the
channel. By coding we mean the assignment of (binary) sequences to el-
ements of an alphabet. The set of binary sequences is called a code, and
the individual members of the set are called codewords. An alphabet is the
collection of symbols called letters.

Let n(x) be the number of bits in the codeword assigned to the event x, the
average code length l for each code is then

l =
M∑
x=1

P (x)n(x). (2.3)

Note that in the ideal case the code length is equal to the entropy. However,
the code has to be uniquely decodable which means that the original event
has to determined from a codeword. An example for a unique coding is the
Huffman code [Huf52].

The source coding theorem relates the entropy to the average code length:
Let the source contain a set of M elements x with a distribution P (x), then
it is possible to find a coding with an average code length l for this source
with

Hinf ≤ l ≤ Hinf + 1. (2.4)
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This means that it is possible to find an encoding that can achieve a com-
pression of the data which requires not more than one bit more than the
entropy.

2.1.4 Channel coding and capacity

The capacity C is the amount of data which can be sent over the transmitting
channel. It is the theoretical limit depending on the channel noise and the
model for this noise. The channel coding theorem states that all transmission
rates below the channel capacity are possible. This means in particular that
for large blocks of data the probability of an error (in the decoded data)
tends towards zero. Note that the theorem does not provide the procedure
of how to encode the source symbols. Finding the best encoding therefore
remains the challenging task.

2.2 Models provide information

In most cases it is not possible to calculate the entropy of the source exactly,
since the underlying exact probability distribution is not known1. For this
reason having a good mathematical model for the data can be useful for
estimating the entropy of the source, which also results in a higher possi-
ble rate for compression purposes. The closer this estimation matches the
true data the better it can predict the underlying process. In the ideal case
where the process that creates the source data is known exactly and can
be described by a model, the average information is also known exactly.
In the mathematical framework of complexity theory this is known as the
Kolmogorov complexity, which is the minimal algorithm (procedure) that is
necessary to create the data. If this algorithm can be found or is known for
the source data it is sufficient to send the algorithm itself and re-create the
data at the receiver site.2 If for example the source creates data according
to a simple function f(t), t = 1 . . . N the worst case (for large N) would be
to send the function value for each single t. However, if the function itself
only depends on a few parameters and the class of the function is known
(e.g. polynomial or trigonometric functions) the entropy of the function’s
code and parameters will be much smaller than the data samples.

1Estimating probabilities from high dimensional data is the topic of Chapter 7.
2In the light of this, the term ‘source code’ used in computer science can be understood

as the (hopefully) minimal code which describes the final program. Unfortunately the
complexity of the original code can sometimes exceed the capabilities of the application.
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Where the complexity of the underlying process is too complicated for an
exact model, we can obtain a model based on empirical observation of the
statistics of the data.

2.2.1 Independent data

The simplest statistical model for the source is to assume that each data
sample is independent of every other sample, and each one occurs with the
same probability. This means that nothing about the generating source is
known. However, as Equation (2.3) for the code length shows, keeping the
independency assumption, but assigning the corresponding probability to
each sample, results in a reduction of the transmitted data. In this case
we would assign a longer code to less frequently occurring samples and the
shortest code to the one with the highest probability.

2.2.2 Markov chains

The next step is to drop the independency condition and put the depen-
dency of succeeding samples into a suitable model. A common way to do
this, is by using Markov models, which describe the relation of two or more
observations with conditional probabilities.

Let x1, x2, . . . xN be a sequence of data samples then this sequence follows
a kth-order Markov model if

P (xn|xn−1, xn−2, . . . , x1) = P (xn|xn−1, xn−2, . . . , xn−k). (2.5)

This means that knowledge of the past k samples (or states) is equivalent to
knowing the entire past history of the process. The very simplest model is
the first order Markov chain, where k = 1 and the current state only depends
on the previous one. Using Markov models in this simple way however, would
require the sampling or storage of all possible conditional probabilities. For
images that have an intensity resolution of x = 0 . . . 255 levels (grey levels
or states per pixel) the simplest model with k = 1 already needs a table
of 65536 entries for each pair P (xn|xn−1). Hence, it is necessary to find a
model which describes these probabilities with a function that depends on
only a few parameters. There are known models from statistical physics
that exactly meet this requirement.
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2.2.3 Statistical physics

The interesting point for physicists is that the Markov models which are
used in image processing are related to some statistical, physical systems
in a special way. Namely, if the neighbouring points on a lattice are con-
nected by conditional probabilities of a Markov field then these probabilities
can be described by a Gibbs distribution. This means that the conditional
probabilities of two (or more) related samples can be written down by using
a local energy and potential function which couples these two samples. A
Gibbs distribution takes the following form

P (s) =
1
Z
e−E(s)/T , (2.6)

where
Z =

∑
s

e−E(s)/T (2.7)

is the partition function, T is the temperature and E(s) is the energy func-
tion

E(s) =
∑
i

Vi(s) (2.8)

with the sum over all local potentials. The form of the energy and the
related properties will be explained in more detail in Chapter 4. These energy
functions usually contain only a few parameters, yet provide a powerful
method for modeling the complexity of natural images.

2.3 Learning and memory

The knowledge of the underlying model which generates the data at the
source can be used to either reduce the amount of transmitted data or
to correct erroneous transmissions. In a biological system, learning can
take place during the evolution of the whole species, in which case the (vi-
sual) system develops the necessary ‘hardware’ to process the data. It can
also take place in the earlier stages of life with the growth of neural tissue
[Hub89]. Since the learning is inherently unsupervised, except for the fact
that the individual has to detect a potential predator or find some food in
order to survive, the model has to be learned from the statistics of the data
alone. This process is displayed in Figure 2.1 (lower path) as an extension
to the simple information transmition system. The statistical properties of
the source data are learned, stored in memory and can be recalled at the
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receiver site. In the case of the visual system, the source is the visual in-
put, learning is the process of evolution (or adaptation in childhood) and
memory is the knowledge of the statistics of the model (the prior) [Bar89].
If this assumption is correct then the visual path up to the visual cortex
should have an architecture that provides exactly this kind of processing.
It is known that at least in the retina the layers of neurons work as spatial
filters to the visual input, which are sensitive to local contrast and can adapt
to the overall intensity. One of the experiments in Chapter 6 uses a simple
model to demonstrate the importance of local correlations between points
in the image by breaking up these correlations. This results in a perceivable
degradation of the image.

2.4 Bayesian methods

These methods are part of the field known as Bayesian probability theory,
which is named after T. Bayes, an 18th century mathematician. Its main
result is the Bayes theorem which will we used in all the following chapters.
The main concept in Bayesian theory is that all the probabilities involved
are conditional. This means that the probability depends on the evidence
of the event or in a more formal definition: given an event A with nonzero
probability P (A), the conditional probability of B given A is

P (B|A) =
P (B ∩A)
P (A)

, (2.9)

where P (B ∩ A) denotes the event where both A and B occur. If they are
both mutually exclusive, then P (B|A) = 0. The interesting question is now,
how to invert this conditional probability, to find P (A|B). This is stated in
the Bayes theorem (also known as Bayes inversion)

P (A|B) =
P (B|A)P (A)

P (B)
. (2.10)

The probability P (A|B) is called a posteriori probability and P (A) is the a
priori probability of A (prior). The denominator is the sum over all events
P (B) =

∑
Ai
P (B|Ai)P (Ai). In the physical formalism used in this work,

the a priori probability is the Gibbs distribution, which describes the prop-
erties of the source image and the conditional probability P (B|A) contains
the stochastic model of the noise. The Bayes formalism hence requires a
statistical model for source and the transmitting channel.
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A common way to find the best restoration for the data is to demand that
the a posteriori probability is maximized (maximum a posteriori, MAP es-
timate), which gives the most probable event A (image) given the data B
(received data). In a more general approach the optimal estimate for a
restoration can be found by minimizing the Bayes risk which is defined as

R(ŝ) =
∫
s
C(ŝ, s)P (s|r)ds, (2.11)

where r is the (received) data, C(ŝ, s) is a cost function and P (s|r) the
posterior distribution. The cost function determines the cost of the estimate
ŝ when the truth is s and can be chosen according to the problem and/or
requirements for the error. Since this is the restoration error of the image
it should take into account a model of the subjective error of an observer.
Minimizing the risk will then lead to the optimal image. Note that finding
a suitable optimization procedure is in itself a difficult task.
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Chapter 3

Image and error statistics

Before starting to think about a model it is necessary to understand the
properties of the data to be modeled, especially the statistics. In the case of
image processing this means finding a way to describe the class of ‘natural’
images, but also the statistics of the noisy transmission channel. This chap-
ter presents an analysis of a set of natural images, extracts the important
statistical attributes and describes the types of noise which can be found in
common problems.

3.1 Natural images

Images originating from a natural source have characteristic properties which
distinguishes them from ‘random’ images. The grey level images that are
used in the following models are digitized and stored in a computer as two-
dimensional arrays where each field of this array has an integer value in
the range of 0 to 255. This value is proportional to the brightness of the
small area in the original image at this point. Note that brightness is not
the same as intensity. Intensity is proportional to the area and the inci-
dent power within the range of the electromagnetic spectrum. There are
two reasons why brightness is stored instead of intensity: first, the intensity
Iscreen displayed by the cathode-ray tube of the computer screen relates to
the computer’s voltage-signal U as

Iscreen = const.× Uγ , (3.1)

where a typical value for γ is around 2.2. Second, brightness is a subjective
measure and has experimentally been found to relate to intensity as :

brightness = const.× intensity0.3. (3.2)
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Since the eye perceives a logarithmic scale, it is not efficient to sample the
intensity linearly down to 256 values. For this reason a so-called gamma cor-
rection is used, which means that the intensity is transformed by the inverse
function of the computer screen and this value is stored. The eye’s bright-
ness law Equation (3.2) is approximately the inverse of the screen Equation
(3.1) and the result is an optimal sampling of the original brightness.

A colour image often consists of three colour planes for the red, green and
blue component respectively and each of these planes can be treated as a
monochromatic image with 256 levels of brightness for each pixel, adding up
to 24 bit per pixel for the full colour version. This representation is similar
to that found in the human retina which consists of four different types of
receptor cells, for different ranges of wavelengths, placed on a non-regular
grid. The rods are responsible for non-colour vision, whereas the three types
of cones are sensitive to the colours red, green and blue.

The difference between a random image in which each pixel is assigned a ran-
dom value drawn from a uniform distribution and a ‘natural’ image sampled
from a real scene is the strong correlation between neighbouring points. The
brightness difference between two adjacent pixels in a natural image is on
average one order of magnitude lower than the maximum brightness. This
restricts the number of accessible points in the state space of all possible
configurations to a small region.

3.2 Image statistics

As stated above, natural images are scenes from the ‘real world’ captured
by an image acquisition system like a camera and a scanner or a digital
camera or other more specialized devices. The test set of the three images
displayed in Figure 3.1 is used to investigate the properties of natural scenes
and compare them to the random image given as the fourth candidate. The
sources of the images are displayed in Table 3.1.

3.2.1 Zero-order statistics

As stated in Section 2.2.1, the first and simplest model for a data source
which has a non-uniform distribution of sample values is to estimate the
probability for each sample and assign a longer code to less probable values.
The histograms in Figure 3.2 contain the frequency as an approximation
to the probability that a given point takes this brightness, or in short:the
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Figure 3.1: The four images used for illustrating some of the statistical prop-
erties of image data. Upper left: computer graphic created with ray-tracing and
rendering. Upper right: portrait. Lower left: landscape (both scanned from
photograph) Lower right: random image with each pixel set to a random value.
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Figure 3.2: Distribution of brightness levels in the images (from Figure 3.1).
Due to the varying number of pixels between the images, the frequency is
normalized.

16



image dimensions number of bright-
ness levels

1 (ul) 600× 480 151 rendered computer graphic
2 (ur) 512× 512 236 scanned photo (portrait)
3 (ll) 768× 512 254 scanned photo (landscape)
4 (lr) 512× 512 256 random image (uniform distribution)

Table 3.1: Characteristics of the set of test images in Figure 3.1

brightness distribution of the image. The computer-generated image has an
irregular distribution, since it contains only 151 of the 256 possible states.
Both the portrait and the landscape show one or several distinct peaks in the
histogram in contrast to the random image, which is uniformly distributed.

3.2.2 First order statistics – Markov model

The next step towards a more complex model is the use of conditional prob-
abilities in a first order Markov model. Here the value of the next sample is
predicted by the current sample. In this case the model is simply: the next
value is equal to the current one and only the difference from the prediction
has to be encoded. The interesting quantity to look at is the distribution of
differences in brightness of two neighbouring pixels. For each point in the
image the brightness of this pixel is subtracted from the horizontal neigh-
bour (in the x-direction) and put into the histograms displayed in Figure
3.3. In these histograms the main property of natural images can already
be seen: all distributions have a sharp peak around zero (no difference) and
large difference have a very low probability – the images are smooth. The
shape of the distribution can be approximated by a function with only a
few free parameters which already captures the whole complexity. These
functions usually have a Gaussian shape [Li95a, Say00], but it was found
that a lorentz function gives a better fit to the data:

f(x) =
a

b2 + (x− c)2
, (3.3)

where c ≈ 0. Again the artificial image has a slightly different behavior
in that a fraction of 0.3 of all neighbouring pixels are identical (constant
surface) and some of the larger differences occur due to the irregularity in
the brightness distribution. It should be noted here that the retina works
only on differences in brightness and adapts to the global brightness level.
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Figure 3.3: Distribution of brightness level difference between two neigh-
bouring horizontal points in the images (from Figure 3.1). The frequency is
normalized.
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3.2.3 A quick glance at the Zq-model

The model that will be examined later in Chapter 5 is based on the absolute
difference of two neighbouring pixels and can be termed a contrast model.
It captures the full range of correlations between these two points. This
approach is illustrated in Figure 3.4, where the correlation strength (ampli-
tude) is plotted depending on the difference between pixels (wavenumber).
Mathematically, the plots are the discrete cosine transformations of the dis-
tributions in Figure 3.3. The curves belonging to the portrait and landscape
image show a similar behavior, however the later has a local peak around
the wavenumber 140 which is a result of the local fluctuations in brightness
in the scene (the small stones on the shore, waves on the water and leaves).
Again the rendered image reveals its artificial origin in the strong oscillations
in the spectrum.

3.2.4 Entropy

In order to give an estimation of how much information is contained in the
model compared to the original non-encoded source data, the entropy for
the different models is calculated using Equation (2.2). The results are listed
in Table 3.2.

image zero-order 1-order in Zq-model in CALIC model
in bit/pixel bit/pixel bit/pixel in bit/pixel

rendered (ul) 6.124 4.767 4.133 4.264
portrait (ur) 7.594 5.328 4.401 4.552
landscape (ll) 7.431 6.339 5.834 5.920
random (lr) 8.000 8.720 8.277 10.022

Table 3.2: Entropies of the set of test images in Figure 3.1 for different models.

The uncompressed code length for one pixel in the images requires 8 bit/pixel.
Compared to this the zero-order model does not contain much information.
The 1-order and the Zq-model perform significantly better, which shows
that much of the image statistics is already contained in the short range
correlation between two points. This does not work for the random image,
since in this case the dynamic range per pixel requires the values from -255
to 255 (difference between the pixels). As an estimate for the entropy of the
image – although this might be far away from the true value – the results
from the currently best lossless compression method CALIC (context-based,
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Figure 3.4: Correlations obtained from the Zq-model, again measured in
the set of test images (Figure 3.1). The correlations are taken between two
horizontally neighbouring points.
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adaptive, lossless image coder) [WM96] are listed for comparison. This is
based on a larger neighbourhood of pixels and adapts the parameters of the
model to the current image region. However, the performance is very poor
with the random image, because it violates the model incorporated in the
context-encoder.

3.3 Common image models

To conclude this section about image statistics, a short overview of common
image compression algorithms is presented. This is to illustrate what prop-
erties of natural images can be used for creating a model.

Predictive coding has been used in the previous sections; it is based on the
idea of estimating a pixel value from the previous or surrounding samples.
This works well for many images since neighbouring pixels often have strong
correlations [WM96, Rus99, Say00]. Other compression schemes do not aim
at reconstructing the original image exactly, but the decoded image should
be as close as possible (given an error measure) to the original. One of these
methods is transform coding, which decomposes the image (or blocks of
the image) into components which can be further encoded according to their
characteristics. Several methods use a transformation that de-correlates the
components and then encodes the components of the new representation
separately. Members of this class are discrete sine- and cosine-transforms
(JPEG) and principal component analysis [Jai81, CMZ89, Say00]. An ap-
plication for feature extraction using this methods is presented in Chapter 7.
Another method is based on wavelet transformations which decompose
the data on multiple spatial scales. Here a single function forms the base
for the other components which are scaled and translated versions of the
‘mother(wavelet) function’. Although related to sine and cosine transform
this has the advantage of representing the image on different scales [Say00].
Vector quantization encodes several samples (in an image block) at the
same time by assigning a code-vector as a representative to the block which
has the smallest (euclidian) distance. The code-vector is kept in a code-book
and addressed by an integer index. Instead of sending the whole vector, only
the index of a block and the code book has to be sent once for a whole image
[Jai81, NK88, KK96, Abu90]. The novel approach of fractal compression
can be seen as the search for a fixed-point transformation that has the final
image as the fixed-point [BH92]. Instead of encoding and sending the image,
the function generating the data is sent. A solution to this inverse problem
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was suggested in [Jac89] where the image is partitioned into smaller blocks
and a geometric transformation maps these blocks to another smaller image
region.

3.4 Noise

So far the investigated properties were that of the prior source data. How-
ever, for the transmission model it is also necessary to understand the nature
of the channel noise. This requires suitable models for the noisy channel.
This noise can originate from several sources: electronic noise during a trans-
mission, atmospheric disturbance in long range transmissions, interference
between different parts in circuits or biological noise due to fluctuations in
action potentials and thermal movements, but also optical blurring or out-
of-focus imaging. All of these can be subdivided in two classes: stochastic
uncorrelated noise, and deterministic filters. Although one might expect
that a deterministic mapping (like a linear filter) is mathematically exactly
invertible and hence does not contribute to information loss, this is in fact
not the case. Additionally, all source models rely on an accurate estimation
of the underlying probabilities. However the number of data samples is lim-
ited to the size of the image and the sampled frequencies only approximate
the exact probabilities. This results in finite-size effects, which can in prin-
ciple be estimated from the data [Gra88].

The general model for a noisy transmission is expressed in the equation

ri = D(~s) + ηi, (3.4)

where ~s is the whole set of samples, D(~s) is an arbitrary function of this
set and ηi an additive, stochastical noise. If we restrict this model to linear,
finite filters this simplifies to

ri =
n∑

j=−n
djsi+j + ηi, (3.5)

with dj as the linear filter coefficients and n the size of the filter window.
The following sections provide a description of the types of error examined
in the experiments.

3.4.1 Stochastic noise

Stochastic noise is uncorrelated and independent of the data and sample
(image) position. Usually it adds a random value drawn from a distribution
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to the sample value or it changes the value into a new value with a certain
probability. This last type is called random noise, it can introduce pixels
of high brightness in darker regions and dark pixels in bright areas.

r =
{
s with probability (1− p)
z (where z 6= s) with p/(q − 1)

, (3.6)

where p is the probability of changing the original pixel s during transmission
into any other possible value z not equal to s. Here q is the number of all
possible values (in an image this would typically be 256). The conditional
probability of receiving r given the original s is

P (r|s) = (1− p)δr,s +
p

q − 1

∑
z 6=s

δr,z, (3.7)

where δr,z is the Kronecker delta. This can be written as an exponential
function

P (r|s) = ea+bδr,s , (3.8)

with

a = ln
(

p

q − 1

)
(3.9)

and

b = ln(1− p)− ln
(

p

q − 1

)
, (3.10)

which can be interpreted as an external field of strength b that couples the
original and received image. The stronger the coupling, the smaller the
noise. The information loss for this type of noise can be calculated using
the entropy

Hrandom(p) = −(1− p) log2(1− p)−
∑ p

q − 1
log2

(
p

q − 1

)
(3.11)

= −(1− p) log2(1− p)− p log2

(
p

q − 1

)
, (3.12)

where the sum runs over q − 1 states. In the case of p = 1 and q = 256 the
information loss is Hrandom(1) = log2(255), which is not exactly 8 bit, since
the receiver at least knows that the received value is not the source value.
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A related type of noise is salt-and-pepper or impulse noise which adds
or subtracts a fixed value z to or from the original sample.

r =


s with probability (1− p)

s+ z with probability p/2
s− z with probability p/2

. (3.13)

The conditional probability is

P (r|s) = (1− p)δr,s +
p

2
δ|r−s|,z (3.14)

and in exponential form

P (r|s) = eaδr,s+bδ|r−s|,z , (3.15)

with

a = ln(1− p) (3.16)

and

b = ln
(p

2

)
. (3.17)

The information loss gives

Himp(p) = −(1− p) log2(1− p)− p log2

(p
2

)
. (3.18)

Another type of noise is the additive Gaussian or white noise. In this
case a random value drawn from a normal distribution N(µ, σ), where µ
is the mean value of the distribution (which is almost always taken to be
zero) and σ the variance, is added to each sample value. The conditional
probability for µ = 0 is

P (r|s) =
1√

2πσ2
exp

(
−(r − s)2

2σ2

)
, (3.19)

and the information loss (from [CT91]) is

Hwhite(σ) = log2 q −
1
2

log2

(
1 +

q2

σ2

)
. (3.20)
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3.4.2 Correlated noise – filters and blurring

Correlated noise described by the linear filter Equation (3.5) does not intro-
duce any stochastical distortions (as long as ηi = 0). However it correlates
neighbouring pixels by assigning each one a linear combination consisting of
the adjacent values multiplied by the filter coefficient. This can be written
down in a vectorized form for the whole image as

~r = D~s. (3.21)

This simple model is sufficient for most problems encountered in image pro-
cessing. In most cases this type of degradation results from imperfect optics,
a non-focused system or motion blur. The filter coefficients and the shape
of the filter have to be determined for these cases. Note that another way
of representing a linear filter is by a convolution of the original data with
a corresponding convolution function. Deconvolution is typically achieved
by using the Fourier transform of these two and dividing this transform of
the data by the the transform of the filter kernel, which is equivalent to
determining the inverse of the filter matrix D. Now if the transformation
D is invertible, then it is possible to recover the original s exactly. But
this is true only in mathematical terms! Namely, the received values must
have an arbitrary precission or at least a sufficiently high precession for the
transformation. However, since the original image has values in the integer
range of 0 to 255 the received image will have the same range and this can
only be achieved by quantization. This quantization process constitutes the
true information loss. This is illustrated in the following example.

Assume the linear filter of size 2n + 1 has the normalized filter coefficients
di ∈ Q (rational numbers), where

di =
Di

C
(3.22)

C =
2n+1∑
j=1

Dj , (3.23)

with Di ∈ N and C ∈ N. Given the data si ∈ {0, 1, . . . , 255} the received
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values are

ri =
n∑

j=−n
djsi+j (3.24)

=
n∑

j=−n

Djsi+j
C

(3.25)

=
1
C

n∑
j=−n

Djsi+j (3.26)

=
Ri
C
. (3.27)

Now in order to keep the range of ri in the domain of the 8 bit image values,
each ri has to be an integer and remain within the set of allowed values
{0, 1, . . . , 255}. Since the configuration of the si is completely arbitrary, this
is not possible in general. In this case it is necessary to quantize the data
back to the original range. This means the value Ri ∈ N is divided by C in
an integer division where the remainder is simply discarded. Now if Ri is a
multiple of C no information is lost. But in the worst case the remainder
is C − 1. To ensure that no information is lost one would have to send this
remainder with log2(Ri mod C) bits in addition to the value of ri. This can
be interpreted as sending an additional ‘modulo image’ which encodes the
remainders. The entropy of this image represents the loss of information,
or more precisely the information which has to be sent in addition to the
data in order to reconstruct the true unfiltered value. Note that the two
entropies are not strictly additive, for large C the modulo image can require
more bits per pixel than the data image.

A second problem can be seen from the deconvolution. In the mathematical
(simplified) notation the filtering can be written as

R(x) =
∫
S(y)D(y − x)dy, (3.28)

which in the Fourier space is simply the product

R(k) = S(k)D(k). (3.29)

Now deconvolution is achieved by dividing with the filter

S(k) = R(k)/D(k). (3.30)
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Obviously, the Fourier transformation of the filter may not be zero in the
frequency domain, otherwise the ratio is undefined. This problem can be
circumvented by setting these points to small values [PTVF92].

For the Bayesian restoration the remaining problem is to put the linear filter
into a statistical model. Now since the filter is deterministic the conditional
probability is

P (ri|si) =

{
1 if

(
Cri =

∑n
j=−nDjsi+j

)
= 0

0 else
. (3.31)

In order to use this in the restoration model the conditional probability has
to be inverted according to the Bayes Equation (2.10) to obtain the depen-
dence of P (si|ri). Since there are several configurations of neighbouring
values which can result in the same ri when summed, the probability is not
only simply equal to 1 if ri is the filtered sum of the si+j , but in general

P (si|ri) =
1√

2πσ2
mc

exp

− 1
2σ2

mc

 n∑
j=−n

[
ri+j −

n∑
k=−n

Dksi+j+k

]2 .

(3.32)
Note that si is actually the current value during restoration. The exponential
Gaussian is used here in the restoration procedure for technical reasons. In
this form it is easier for the Monte Carlo algorithm (see Section 4.4.4) to
converge to the best value slowly. σmc is adapted accordingly.

3.4.3 Estimating noise from the data

An interesting point for a real-life transmission is the estimation of the noise
if this is not known or cannot be measured. If there exists a model for the
source data and it is possible to estimate all parameters entering this model,
then by sending these parameters (however undistorted) the noise can be
measured. To do this, the received data is checked against the source model
and the difference can be used to find a model for the noise and in the best
case to get an approximation for the noise strength. In the simplest case
one compares the difference between the data sample and the prediction by
the model. Any noise which violates this model can then be found from the
measured distribution. This procedure is demonstrated in the experiments
in Section 5.7.
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3.5 Image quality

When talking about the quality of an image or about the performance of a
model then it is necessary to have a quantitative and objective measure of
the error between the true image and the restored or compressed one.
The problem is that image quality is a subjective measure and not easy to
describe with a simple function. Although there exists some approaches to
describe the human visual system in this respect, a good function remains
to be found. Some of the suggestions have found a way into the specification
for video processing [ANS96]. Still, since it is inherently dependent on the
person performing the comparison, it is not clear if a general form exists.
Experiments have shown that the simple measures given below correlate well
with subjective perception [BP98].
The two currently accepted measures are based on the difference distortion.
These are the mean squared error per pixel

d(~s, ~r) =
1
N

N∑
i=1

(si − ri)2 (3.33)

and the average absolute error per pixel

d(~s, ~r) =
1
N

N∑
i=1

|si − ri|, (3.34)

where the former is used in the experiments.
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Chapter 4

Markov Random Fields

This chapters contains the fundamental definitions and properties of Markov
Random Fields and links them to the formalism of Gibbs Random Fields.
This is then extended to image processing and restoration methods.

4.1 Introduction

The theory of Markov Random Fields (MRFs) is part of the larger field of
probability theory and describes the statistical properties of (physical) sys-
tems by modeling the local interactions of system variables [GG84, Li95a,
PB94, PB95]. Local in this case means that the observables are connected to
each other in a neighbourhood system defined for the topology of the whole
system. The aim is to simplify the system’s form and complex behavior by
using strictly local, simple models which require fewer parameters to deal
with. From the point of probability theory, the ‘only’ requirement is to find
the a priori probabilities, plus parameters which assign higher probabilities
to the more probable states. Unfortunately, finding these probabilities is
not an easy task. However, due to an equivalence between Markov Random
Fields and the Gibbs Random Fields (GRFs) it is possible to define these
probabilities through clique-potentials (local couplings) containing physical
quantities like energy, coupling constants and temperature. This allows us
to exploit the well studied systems found in statistical physics for image
processing purposes [Bes74, Sav80].

Markov Random Fields have found a wide range of applications from image
restoration [GG84] to motion estimation [KD92]. The following overview
introduces the definitions and formalism used in the context of MRFs.
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4.2 Markov Random Fields and Gibbs Random
Fields

Digital images are in most cases stored as two-dimensional arrays, with each
field representing a pixel which is the brightness at the spatial position.
Hence, the system is described as a regular, discrete lattice, where each
lattice point can take on one of several states. The number of states is
typically finite, but in other applications a continuous state variable might
be allowed. This leads to the definition of the topology of the lattice. The
lattice (or grid) G is used to index a finite set of N elements (the pixels). It
has a two-dimensional topology, which means the set is ‘ordered’ and follows
the condition:

G = {(x, y)|1 ≤ x ≤ nx, 1 ≤ y ≤ ny}, (4.1)

where nx, ny ∈ N are the dimensions in x and y direction respectively and
N = nx × ny is the image size. The state of a lattice point is described by
a label which in general is a member of the set of all possible labels L (for
example R or Rm). For the purpose of image processing

L = {l1, l2, ...lq}, (4.2)

where li is the brightness level and q the number of levels (in the case of
8-bit images, q = 256). An important property of L is that the states are
ordered and a relation like l1 < l2 < ... < lq exists.
To combine the lattice definition and the labeling, each point on the lattice
G is assigned one state in L to give the system state which finally represents
the image s. In the following we use

S = {S1, ..SN} (4.3)

to denote all possible states of the image and

s = {s1, ..sN} (4.4)

to define one state (realization) of the image, that is one point in the space
state of all lattice labelings. S can also be seen as a mapping from G to L.
As has been noted above, Markov Fields are described by a system of neigh-
bourhoods, namely

N = {Ni|∀i ∈ G}, (4.5)

where Ni is the set of all neighbouring points of i and the neighbourhood
relation is
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1. i /∈ Ni that is, a point is not a neighbour of itself and

2. i ∈ N ′i ⇔ i′ ∈ Ni, i.e. if a point i is neighbour of i′, then the point i′

is a neighbour of i.

For a two-dimensional grid the neighbourhood is defined by the environment
of the point

N 2D
i = {i′ ∈ G| ‖(x, y)i − (x, y)i′‖2 < r, i 6= i′}, (4.6)

which is called an n-order neighbourhood in the case of a rectangular grid.
Some of the often used neighbourhood systems are displayed in Figure 4.1.
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Figure 4.1: Neighbours on a rectangular grid. (a) first order neighbourhood,
(b) second and (c) fifth order, X is the center point, the numbers are the
neighbours.

4.2.1 Definition of a Markov Random Field

Let S = {S1, ..., SN} be a set of random variables, defined on the lattice G,
with each variable Si taking a value si out of the set L; S is then called a
random field. For the discrete set L, the quantity P (Si = si) (in short P (si))
denotes the probability that Si takes the value of si. The total probability
of the whole system is P (S = s) = P (S1 = s1, ...SN = sN ). S is called a
Markov Random Field on G with a neighbourhood system N if

P (s) > 0, ∀ s ∈ S (positivity) (4.7)
P (si|sG\{i}) = P (si|sNi) (Markov condition), (4.8)

where G\{i} is the set of all points without i, sG\{i} are the values or labels of
the points and sNi are the values of the neighbours. P (a|b) is the conditional
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probability of a given b. The reason that P is greater than 0 can be seen
in the definition of the GRFs. The Markov condition means that the global
system state P (S) is described by local, conditional probabilities of the
points. The state of a single lattice point depends on its neighbouring points
only.

4.2.2 Definition of the Gibbs Random Field

A random field S is called a Gibbs Random Field (GRF) on the lattice G,
with the neighbourhood system N if the system configuration of this lattice
follows a Gibbs distribution, of the form

P (s) = Z−1 × exp
(
− 1
T
Eglobal(s)

)
, (4.9)

where

Z =
∑
s∈S

exp
(
− 1
T
Eglobal(s)

)
(4.10)

is the partition function and T the temperature. The energy

Eglobal(s) =
∑
i

E(si, sNi) (4.11)

is the sum of the local energies E (or potentials) over all points and neigh-
bourhoods. The value of E depends on the local configuration of the point
and its neighbouring points. T is a control parameter influencing the ‘sharp-
ness’ of the distribution. For high T all configurations have equal probabil-
ities. Note that in the model introduced in the next chapter, T is not given
explicitly, but is contained in the coupling constants. To calculated the par-
tition function Z exactly, it is in general necessary to sum over all possible
realizations of the system. Since this is computationally intractable, various
methods can be used to approximate this quantity (see for example [Li95a]).
As can be seen from Equation (4.9) the probability of a configuration which
is denoted by P (s) depends on the energy E. The lower the energy for a
state the higher the probability of finding the system in this state. Hence,
the model and its parameters have to be chosen to yield low energy values
for more probable configurations.

4.2.3 Equivalence of Markov and Gibbs Random Fields

From a mathematical point of view MRFs are characterized by the local
Markov condition Equation (4.8) and GRFs by the global property of the
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Gibbs distribution Equation (4.9). However, the equivalence of these two
properties is established in the famous Hammersley-Clifford theorem: S is
an MRF on G with a neighbourhood system N if and only if S is a GRF on
G with a nearest neighbourhood Gibbs potential [HC71, Bes74, Li95a].

The main benefit of this equivalence is that it provides a simple way to
specify MRFs by specifying potentials instead of local characteristics, which
is usually very difficult. These potentials contain the interactions or coupling
of neighbouring points. However, nothing is said about the shape of these
potentials, let alone the selection of the parameters involved.

4.3 Markov Random Fields and image models

MRF models in computer vision have become popular since the famous pa-
per of S.Geman and D.Geman on image restoration [GG84]. Based on the
properties described in the last sections, this makes it possible to use MRFs
and GRFs in a comparatively simple way, yet providing the mathematical
and physical foundation. The field has grown rapidly in recent years and
has addressed a variety of image processing tasks. As well as object recog-
nition, applications include restoration, reconstruction, segmentation, edge
and line detection or measurement of optical flow. These applications can
be subdivided into ‘low level processing’ and ‘high level processing’ based
on more abstract labels (like objects in the image). The following discussion
mainly concentrates on image restoration.

4.3.1 Modeling an image

As a result of the properties found in Chapter 3, which showed that two ad-
jacent pixels are strongly correlated, we expect that a Markov Field model
based on small neighbourhoods for an image can already be very effective.
Due to the Hammersley-Clifford theorem, this can be done by defining po-
tentials of a Gibbs distribution, where the interactions between adjacent
pixels contribute to the energy function. The resulting probability distribu-
tion P (s) is called the prior model or the a priori information of the source
image. From a qualitative point of view, the energy in the Gibbs distribution
should favour configurations where neighbouring pixels have similar or iden-
tical states, that is, the energy E should contain terms like const.× |si− s′i|
where s′i is the value of a neighbouring pixel of si. This will describe the
‘smoothness’ of the image, which can also be seen as a ferromagnetic term
favouring adjacent particles in the same state. The constant is a parameter
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depending on the image, and has to be chosen so that the prior Gibbs dis-
tribution resembles the underlying image statistics as closely as possible.

The simplest model for the prior energy is a function that simulates a con-
stant surface

Eglobal,cs(s) =
∑
i

Kδ(si − sNi), (4.12)

where δ(·) is the Kronecker delta. Another form, providing a continuous
function and no constant surface is the squared coupling

Eglobal,sq(s) =
∑
i

K(si − sNi)2. (4.13)

However, there is a problem in that discontinuities like lines or edges in
the image are not allowed, since the energy would be very high and these
features would vanish in the restoration process that minimizes the energy.
A way out of this is to cut the function when it exceeds a given threshold
and leave the energy constant for higher values. This can be achieved by
the ‘line process’ introduced in [GG84].

Another formalism used for image restoration, and indeed similar to Markov
Fields, which interprets the energy as a smoothness term and the noise as
a closeness term, is adaptive regularization [Li95a, Li95b, RM90, PTK85].
The image in this case need not necessarily be defined on a discrete grid
with a predefined set of states, but can be a two-dimensional function in
R. Let us assume s and r are functions of x ∈ R (in the range of xmin and
xmax. Then

Eglobal(s|r) = V (s|r) + V (s), (4.14)

where
V (s|r) =

∫ xmax

xmin

χ(x) [s(x)− r(x)]2 (4.15)

is the distance between restored and received data and χ(x) is a weighting
function (corresponding to the error model). The term

V (s) =
k∑
j=1

λj

∫ xmax

xmin

f
(
s(x)(j)

)
(4.16)

is the smoothness of the solution, with s(x)(j) being the j-th derivative of
s(x) and f(·) the cost function, which penalizes the discontinuities of the
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function s(x) using the constant λj .

In general it is paramount to find a suitable form of the prior, since the
qualitity of the restoration depends strongly on the correct parameters. If
the prior is well-matched this will secure an optimal decoding process (see
[PB95]). The power of the models introduced in this thesis lies in the fact,
that their prior-energy have a free form which can adapt itself to the source
via the paramters.

4.4 Restoring images

The ultimate goal of restoration and reconstruction is to recover the original
image from a noisy candidate or from data which is only partially available.
In other words:given the data (and some knowledge about the original) we
want a restored image which is as close as possible to the original one. Close-
ness requires a measure of the error between two images. The knowledge
about the original image is incorporated in a model, which is in our case
an MRF, described by the corresponding neighbourhood system. During
a noisy transmission the values of the pixels are changed randomly, which
breaks up the neighbourhood relation. This leads to a change in the local
potentials, and the received image r no longer conforms to the prior model.
The transmission process also requires a model and is commonly described
by the conditional probability P (r|s), which is the probability of receiving
r if the original data was s. In the restoration procedure this process is
inverted by maximizing the a posterior probability P (̂s|r) or minimizing
a predefined cost function. ŝ in this notation is the restored image and
P (̂s|r) the conditional probability for ŝ given r. Now since the noise is also
described by a probability, the Bayes Equation (2.10) can be used

P (̂s|r) =
P (r|̂s)P (̂s)

P (r)
. (4.17)

All the probabilities involved in the process can be written down as a Gibbs
distribution of an exponential form, combining the prior and the noise in an
energy function. The received image can then be interpreted as an external
field coupled to the original. The strength of the coupling corresponds to
the amount of noise; the lower the noise the stronger the coupling. This
results in the total energy

Etotal(s|r) = Eprior(s) + Enoise(s|r), (4.18)
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which will be minimized during restoration. The last step is to find a suitable
noise measure, which helps us to find the optimal ŝ. From a Bayesian point
of view, we want to find the estimator which minimizes the Bayes risk R
(see Equation (2.11)).

4.4.1 Maximum a posterior (MAP)

The cost function of the MAP estimator is defined by

C(s, ŝ) = 1− δ(s, ŝ), (4.19)

where δ(s, ŝ) = 1 if and only if s is equal to ŝ, which has the same cost for
all configurations different from the original. The MAP estimator is then
given by

ŝMAP = arg maxs∈SP (s|r). (4.20)

4.4.2 Marginal a posteriori mode (MPM)

The cost function of the MPM is defined as

C(s, ŝ) =
∑
i∈G

(1− δ(si, ŝi)), (4.21)

where the sum runs over all sites of the grid. The solution for the best
estimator is

ŝMPM
i = arg maxsi∈SiP (si|r) ∀i ∈ G. (4.22)

This corresponds to finding the exact value for each site separately.

4.4.3 Thresholded posterior mean (TPM)

Here, the cost function is:

C(s, ŝ) =
∑
i∈G

(si − ŝi)2, (4.23)

which gives the estimator

ŝTPMi =
∑
s∈S

siP (si|r) ∀i ∈ G. (4.24)
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This estimator is used for image processing purposes, since it resembles the
subjective error better than the other two. The eye is not sensitive to small
differences in pixel values and does not require an exact match of the re-
stored and original [MMP87, Li95a].

The decoding process, which is in this case the restoration of the image, is
nothing else but the minimization of the Bayes risk and hence the finding of
the estimators. Since the prior as well as the resulting a posteriori probabili-
ties are fully described by a Gibbs distribution, and by the energy term, this
amounts to finding the minimum energy of the whole system a common task
in the simulation of physical systems. An additional advantage is that this
representation makes it possible to investigate the model and its behavior
from a physical viewpoint [PB95].

4.4.4 Coming to Monte Carlo

The minimization of the energy is a combinatorial optimization problem and
special algorithms are required for this purpose. The most widely used al-
gorithms are based on Monte Carlo methods which means stochastical opti-
mization, for example the Metropolis algorithm [MRR+53, PTVF92] (which
should actually be the Metropolis-Rosenbluth-Rosenbluth-Teller-Teller algo-
rithm to appreciate all authors properly) or simulated annealing [KGV83].
Other methods like genetic algorithms [Gol89, Col99] have also found large
fields of applications [WCVG99].

The following concentrates on the standard Metropolis algorithm, which
gives good results for the image restoration problem. However, the draw-
back is that for high levels of noise, many iterations are necessary, which
leads to execessive computational time.

In the general case, the Metropolis algorithm minimizes a function E(s) with
respect to s by an iterative procedure. During each step of the iteration the
next configuration s′ is tested against the function value of the current state
s and is chosen if ∆E = E(s′) − E(s) ≤ 0, that is the energy is lower.
However, if ∆E > 0, then there is a small probability P = exp (−∆E/T )
that the the new state will be s′ despite the fact that this gives a rise in
energy. This can be achieved by comparing a random number – drawn
from a uniform distribution in the interval [0, 1) – with P . After a number
of iterations the system will reach a local equilibrium which has minimum
energy. The temperature T in our case is fixed and is implicitly contained
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in the parameters for the pixel couplings. Note that an extended version of
the Metropolis algorithm is used in this thesis. This extension is described
in Section 5.5.
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Chapter 5

New physical models for
images

The main requirement for the description of complex data like images is
to find a simple form of the neighbourhood relation between the variables
involved, which is locally defined, yet models the statistical properties of the
whole system as closely as possible. This simple model should be physically
tractable and contain only a few parameters, and thereby be easy to estimate
from the data. The general framework of the Gibbs Random Fields meets
both of these requirements and the formalism based on energy terms and
canonical distributions provides a good analogy to the physical world.

5.1 Physical background

Starting from the physical side of the image processing problem, we write
the canonical partitition function for a statistical system as

Z =
∑
{s}

e−βH(s), (5.1)

where {s} is the set off all possible configurations. Consider the set of labels
si defined on the N points (vertices) of a lattice, such that the Hamiltonian
is a function of the form

H(s) =
∑
〈ij〉

E(si, sj) (pairwise) (5.2)

=
∑
i

∑
j∈Ni

VN (si, sj) (nearest-neighbours), (5.3)
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where 〈ij〉 denotes the sum over all possible neighbours, and after defin-
ing a neighbourhood system Ni (for the vertex i) j is one of the nearest-
neighbours. The local potential VN is often called the clique-potential as it
is defined for the corresponding neighbourhood. This follows the notation
introduced in Section 4.2.2. The corresponding Boltzmann-distribution is
then

P (s) =
1
Z

e−βH(s). (5.4)

However, the difference between the physical world and image processing
is that in the first case the potentials, the parameters and the energy are
known and possible states as well as thermodynamical quantities can be cal-
culated, whereas in the second case a single configuration (the whole image)
is known, but not the parameters. However, thermodynamical quantities
can be measured in the image and after a model has been found, the param-
eters can be estimated from the data by requesting that calculated quantities
approximate the measured quantities. Examples are the mean energy

〈E〉 =
1
Z

∑
{s}

H(s)e−βH(s) = − 1
Z

∂Z

∂β
, (5.5)

the entropy
Hphy = k(lnZ + β〈E〉) (5.6)

as a measure of information for the system, and especially correlations

〈sisj〉 =
1
Z

∑
{s}

∑
i,j

sisje−βH(s) = − 1
Z

1
β

∂Z

∂J
, (5.7)

where J is the parameter corresponding to the correlation (coupling constant
including β).

5.1.1 Ising Model – a one-dimensional information system

To illustrate the model building approach the simplest case of the one-
dimensional Ising model without an external field is shown here. Consider
a chain with N positions. At each point there is a spin which is either up or
down. Two neighbouring spins are coupled by a coupling constant J . The
Hamiltonian of the Ising model is

H = J
N∑
i=1

sisi+1 where si ∈ {−1,+1}. (5.8)
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The partition function (with K = −βJ) is

Z =
∑
{s}

N∏
i=1

eKsisi+1 (5.9)

and was solved first by Ising using the transfer-matrix method (see also
[Dom74, Kog79]). This matrix is defined by the four possible states of the
two spins in Equation (5.9)

T̄(si, si+1) =
(

eK e−K

e−K eK

)
. (5.10)

Now Z can be rewritten as

Z =
∑
{s}

N∏
i=1

T̄(si, si+1) (5.11)

= trace T̄(si, si+1)N

=
∑
i

λNi ,

where we assume a chain which has closed boundaries. The eigenvalues of
the transfer matrix are

λ± = eK ± e−K (5.12)

and the partition function

Z = 2N
(
coshN K + sinhN K

)
. (5.13)

For a large system in the thermodynamical limit where N →∞ this simpli-
fies to

Z = λN0

(
1 +

(
λ1

λ0

)N)
N→∞−→ λN0 . (5.14)

This makes it easy to calculate the thermodynamical quantities of the sys-
tem, for example the entropy (per particle)

Hphy = k (ln (2 coshK)−K tanhK) (5.15)
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or nearest-neighbour correlations (from Equation (5.7))

〈sisi+1〉 =
1
N

∂

∂K
lnZ (5.16)

=
1
N

∂

∂K
ln (2N coshN K)

=
sinhK
coshK

= tanhK.

This can be solved for K as

K = tanh−1(〈sisi+1〉). (5.17)

Now starting from the image processing side we can represent a black and
white image row by an Ising model, where (-1) stands for black and (+1)
for white pixels. The correlations between two neighbouring pixels can be
measured from an image by running along the row and calculating

〈sisi+1〉data =
1
N

N∑
i=1

sisi+1 (5.18)

=
+1∑

∆si=−1

p(∆si)∆si,

where ∆si is +1 for si = si+1 or −1 else. p(∆si) is the probability for the
joined state ∆si of the two pixels.

If the image data is a valid member of the model that was assumed, then the
value of the measured correlation has to be identical to the one predicted
by the model. This means we demand the equality

〈sisi+1〉
!= 〈sisi+1〉data (5.19)

and we can simply calculate K by inserting this result in Equation (5.17).
K contains the coupling constant J and the temperature T . Note also that
this holds for systems where the neighbourhood is much smaller than the
size of the whole system. With the entropy of the system readily given by
Equation (5.15) it is also possible to find the entropy as defined in information
theory. However the parameter k has to be changed, since the definitions
of the two entropies are different. In the physical case k is simply the
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Boltzmann constant. For Hinf we can derive the constant by looking at the
simple system where all spins are uncorrelated and the temperature goes to
infinity. In this case 〈sisi+1〉 = 0 and hence K = 0. The partition function
then simply sums all identical configurations and Z = 2N . The information
carried by one spin in the system is then Hinf = 1 bit (per particle). On
the other hand Hphy = k ln 2 and this gives kinf = 1/ln2. This answers the
question: ‘How many floppy discs do I need to store my Ising system ?’

5.2 Finding the coupling constants of an image

As has been shown, finding the GRF for any given image is an inverse
problem from the physical point of view. While the coupling constants are
known in the later case, for an image they need to be found. After having
found a suitable model, the correlations 〈image〉 can be measured in the
image. Now if this is indeed a physical system, the correlations have to be
identical to the ones predicted by the theory, 〈theory〉. In the simple case
of the one-dimensional Ising model this is easy, since the only constant K
can be derived analytically from the correlations 〈sisi+1〉. However, for the
two-dimensional system the equality 〈image〉 = 〈theory〉 has to be reached
by numerical methods. The general requirement is that the equality

〈m〉theory = 〈m〉image (5.20)

holds for all possible correlations m. For the two-dimensional case this
can be done using a variational approach. Alternatively one can try to
approximate the two-dimensional model itself by simpler models. As will
be shown this is actually a very efficient technique for image processing
purposes.

5.3 Two-dimensional models

The transfer-matrix method introduced in the last section can be used to
solve the two-dimensional Ising model. In this case T̄ in Equation (5.11) no
longer connects two nearest-neighbour lattice points, but two one-dimensional
chains (rows) of the grid. This leads to the general expression (H will now
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contain the constant β)

Z =
∑
{s}

∏
〈ij〉

eH(si,sj)

=
∑
{ ~s1}

∑
{ ~s2}

...
∑
{~sNy}

Ny∏
i=1

eH(~si,~si+1), (5.21)

where this reflects a model with nearest neighbours. Note that the Hamilto-
nian depends on the two rows ~si, ~si+1 and the sum is over all configurations
of these two. Now from equation (5.11) we know that the eigenvalues of the
transfer matrix have to be found and this gives the generalized eigenvalue
problem ∫

d~sψα(~s) exp (H(~s,~s ′)) = λαψα(~s ′), (5.22)

with a summation (integration) over all states ~s, where the transfer matrix
can be written as

T̄(·) =
∫

d~s · exp (H(~s,~s ′)) (5.23)

to give a more compact form

T̄|α〉 = λα|α〉. (5.24)

In this case |α〉 is an eigenvector of T̄ representing one row and λα the cor-
responding eigenvalue. The following assumes that T̄ is symmetric. Written
in the base of the normalized eigenvectors the matrix elements can be de-
termined by

T̄α,β = 〈α|T̄|β〉 =
∫

d~s
∫

d~s ′〈α(~s)| exp (H(~s,~s ′))|β(~s ′)〉. (5.25)

For large systems – in analogy to the one-dimensional example – the parti-
tion function simplifies to

Z2D = Tr T̄Ny

=
∑
i

λ
Ny
i

= λ
Ny
0

(
1 +

(
λ0

λ1

)Ny
+ ...

)
Ny→∞−→ λ

Ny
0 , (5.26)
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where the eigenvalues λi can be ordered as λ0 > λ1 > λ2... . This thermody-
namical limit allows one to write the nearest-neighbour correlations of the
system as

〈〈Ā(~si, ~si+1)〉〉 =
∂

∂α
lnZ

=
1

Tr(T̄)
Tr(ĀT̄)

=
1
λ0
〈0|ĀT̄|0〉 (5.27)

where the brackets denote the correlation and the average over the ensem-
ble. α is the parameter corresponding to the correlation Ā. Since the MRFs
require local properties only, it suffices to determine the largest eigenvalue
and eigenvector of T̄ to find these correlation functions.

To summarize this: after defining the model and the Hamiltonian the largest
eigenvalue and eigenvector of the transfer matrix have to be found.

5.3.1 Solution to the transfer operator eigenvalue problem

A well known approximation to the solution of the eigenvalue problem

T̄|α〉 = λ|α〉 (5.28)

is the Rayleigh-Ritz variational approach. It is used in quantum mechanics
to determine the ground state of a given Hamiltonian and approximate the
largest eigenvalue λ0 of T̄, where the approximation λ̃0 ≤ λ0.

If the eigenvector of the ground state is already known, the true eigenvalue
λ0 can be found using the expectation value

λ0 =
〈0|T̄|0〉
〈0|0〉

(5.29)

Generally we can choose a model in which the transfer operator can be repre-
sent in a base where all matrix elements are non-negative and the eigenvector
corresponding to the largest eigenvalue can be written in exponential form
(see [Ruj79])

|0〉 = exp (|φ0〉). (5.30)
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Inserting this into Equation (5.29) gives

λ0 =
〈0|T̄|0〉
〈0|0〉

=
∫

d~s
∫

d~s ′ exp
(
φ0(~s) +H(~s,~s ′) + φ0(~s ′)

)
/

∫
d~s exp (2φ0~s)

= Z(n)/Z(d). (5.31)

This is the ratio of two partition functions. The numerator (denoted by
index n) has the Hamiltonian

H(n) = φ0(~s) +H(~s,~s ′) + φ0(~s ′), (5.32)

which is a system consisting of two rows, and the denominator (denoted by
index d)

H(d) = 2φ0(~s), (5.33)

which is the partition function of a one-dimensional chain.

The correlations for the GRF models can then be derived using Equation
(5.27)

〈〈Ā(~si, ~si+1)〉〉 =
1

λ
(n)
0

〈φ(n)
0 |ĀT̄(n)|φ(n)

0 〉
〈φ(n)

0 |φ
(n)
0 〉

, (5.34)

where λ(n)
0 , |φ(n)

0 〉 and T̄(n) are the eigenvalue, eigenvector and transfer ma-
trix of the numerator, respectively.

The next step is to find an appropriate trial function |{a}tf 〉, which can
be used to maximize the Rayleigh ratio via a set of parameters. This then
results in

λtf{a} =
〈{a}tf |T̄|{a}tf 〉
〈{a}tf |{a}tf 〉

≤ λ0 (5.35)

as an approximation to the largest eigenvalue.

The remaining problem is now the selection of the trial function, which
should be guided by the properties of the operator. For the Ising model a
promising approach is the sum of products of spin variables

φ0 = a0

∑
i

si+a01

∑
i

sisi+1+a02

∑
i

sisi+2+a012

∑
i

sisi+1si+2+... (5.36)
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Since the ratio Equation (5.35) is a lower approximation to the eigenvalue of
the ground state, λ{a} has to be maximized with respect to the parameters
{a}. The necessary condition for this is

∂

∂ai
λ{ai} = 0 (5.37)

for all ai. After applying this to Equation (5.35), we get

〈〈
∏

i∈{aj}

si〉〉(n) = 〈〈
∏

i∈{aj}

si〉〉(d) (5.38)

for all j, where the notation i ∈ {aj} indicates, that the product of the spins
corresponding to the parameter aj are to be used. The brackets stand for
the expectation values of the observable numerator (n) and denominator (d)
and can be interpreted as the correlations associated with the parameter.

5.3.2 Two-dimensional Ising model for black and white im-
ages

The Ising model provides a good start for images having only two possible
pixel values:black and white. These can be represented by the states sblack =
−1 and swhite = +1. The GRF has the Hamiltonian

H =
Nx∑
i=1

Ny∑
j=1

(
Kxs

j
is
j
i+1 +Kys

j
is
j+1
i

)
, (5.39)

where Kx and Ky are the coupling constants in x- and y-direction.
The correlations corresponding to Kx and Ky can be measured in the image

〈ss〉x =
1

NxNy

Nx∑
i=1

Ny∑
j=1

sjis
j
i+1 (5.40)

〈ss〉y =
1

NxNy

Nx∑
i=1

Ny∑
j=1

sjis
j+1
i , (5.41)

where sji is the value of the pixel state at the lattice vertex (i, j).
The Hamiltonian of two rows ~s,~s ′ is

H(~s,~s ′) =
Ky

2

(∑
i

sis
′
i +
∑
i

si+1s
′
i+1

)
+
Kx

2

(∑
i

sisi+1 +
∑
i

s′is
′
i+1

)
.

(5.42)
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As mentioned above, the trial function for the variational approach can
be selected on the base of spin products Equation (5.36). However, the
approximation will only contain the first two terms of the sum

ψtf = ea0
∑
i si+a01

∑
i sisi+1 , (5.43)

which results in the ratio (from Equation (5.31))

λ̃0 = λ̃
(n)
0 /λ̃

(d)
0 , (5.44)

where

λ̃
(n)
0 =

∑
{~s}

∑
{~s ′}

ea0(
∑
i si+

∑
i s
′
i)+(Kx2 +a01)(

∑
i sisi+1+

∑
i s
′
is
′
i+1)+

Ky
2 (
∑
i sis

′
i+
∑
i si+1s

′
i+1)

(5.45)
for the numerator and

λ̃
(d)
0 =

∑
{~s}

e2a0
∑
i si+2a01

∑
i sisi+1 (5.46)

for the denominator.The transfer matrix of the numerator consists in this
case of 4x4 elements. The denominator is simply the one-dimensional case,
albeit with an external field 2a0. To illustrate this, the numerator operator
T̄(n) may be represented by

si+1s′i+1

sis
′
i −− −+ +− ++

−−
−+
+−
++


ω(0) ω(1) ω(1) ω(2)
ω(1) ω(3) ω(5) ω(4)
ω(1) ω(5) ω(3) ω(4)
ω(2) ω(4) ω(4) ω(6)

 ,
(5.47)

with the elements

ω(0) = e−2a0+2a01+Kx+Ky

ω(1) = e−a0

ω(2) = e−2a01−Kx+Ky

ω(3) = e+2a01+Kx−Ky

ω(4) = ea0

ω(5) = e−2a01−Kx−Ky

ω(6) = e2a0+2a01+Kx+Ky .
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The denominator T̄(d) reads

si+1
si − + (5.48)

−
+

(
ω(7) ω(8)
ω(8) ω(9)

)
, (5.49)

with elements

ω(7) = e−2a0+2a01

ω(8) = e−2a01

ω(9) = e2a0+2a01 .

The numerical procedure consists of first measuring the correlations in the
image, 〈image〉 (Equation (5.40)). Then, after initializing Kx,Ky, a0 and a01

the Rayleigh ratio is determined from λ̃
(n)
0 and λ̃

(d)
0 and the corresponding

correlations 〈(n)〉,〈(d)〉 are used to find the gradient for the maximization.
When the maximum has been found the correlations are compared to the
measured ones and Kx and Ky are altered until these correlations are equal.

5.3.3 Two-dimensional Zq model for grey level images

The next step towards a more general description of natural images is to
extend the range of allowed states to the range of possible brightness levels
of a pixel (rather than just black and white). The number of grey levels
denoted is usually 256, corresponding to 8 bit per pixel.

There exist several models of physical systems which describe the interac-
tion between points on the lattice, each one having more than two pos-
sible states. These are the Potts, Vector-Potts, XY and the Zq model
[Dom74, RWFF81, DPR81].

From these models the Zq model is chosen for the image processing task,
since the parameters required in the Hamiltonian can be calculated from the
data and the energy has a form which allows an easy interpretation of the
correlations involved. One disadvantage compared to other models is that
the number of coupling constants is equal to the number of brightness levels.
Usually the number of parameters should be as small as possible, but this
number is still very small compared to the storage requirements of an image.
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The Zq model is a cyclic model containing terms that require the angle
between two states – ‘pointing’ in a certain direction. Mapping the bright-
ness levels directly to the states would mean that on one hand the black
and white states are direct neighbours when calculating the angle counter-
clockwise, but on the other hand separated by all remaining states when
going clockwise. To circumvent this, the g levels of brightness are extended
to q = 2g − 2 states of the Zq model, covering the whole angle of 2π. The
mapping is displayed in Figure 5.1. Note that this is more a theoretical
problem, the actual calculations do not contain any of the extended states
directly.

q-1

0

1

2

4

G3

B W

G
1

G
2

Figure 5.1: Mapping the grey levels (g) of an image onto q states of the Zq
model. B is the black pixel and W the white pixel value. Gn are intermediate
levels of brightness.

In order to simplify the notation, we assume that the coupling constants in
the x and y directions are equal. Furthermore, we use the variable lyx to
denote a state at (x, y) in the Zq model in order to distinguish it from the
two states si of the Ising model. The Hamiltonian of the Zq model is:

H(Z(q)) =
Nx∑
x=1

Ny∑
y=1

q/2∑
m=1

Km

[
cos
(

2π
q
m(lyx − l

y
x+1)

)
+ cos

(
2π
q
m(lyx − ly+1

x )
)]

.

(5.50)
This notation illustrates the adaptive property of the Zq model: the cou-
plings corresponding to the energy are written in the base of cosine terms
and can be seen as a kind of discrete cosine transformation. Hence, it is
not necessary to search for the coupling function which fits the data, the
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only task is to determine the parameters Km. The model itself is invari-
ant under exchange of the two neighbouring points, which is a result of the
symmetry of the cosine function. This means that we do not assume any
global spatial gradients of the brightness levels in the image.

To simplify the notation we define

c(m, l̃) := cos(
2π
q
ml̃) (5.51)

for the model with q levels.

In analogy to the Ising model, the nearest-neighbour correlations can be
calculated from the image and since there are q/2 coupling constants, we
also have q/2 correlations

〈m〉 =
1
Nx

1
Ny

Nx∑
x=1

Ny∑
y=1

(
c(m, lyx − l

y
x+1) + c(m, lyx − ly+1

x )
)
, (5.52)

where m runs from 1 to q/2 and lyx is the brightness value of the pixel at
coordinates (x, y). The Hamiltonian between two rows is

H(~l,~l ′) =
∑

i

∑q/2
m=1

Km
2

(
c(m, li − li+1) + c(m, l′i − l′i+1)

)
+ Km

2

(
c(m, li − l′i) + c(m, li+1 − l′i+1)

)
.

(5.53)

As stated in the model with two states, the trial function in the variational
ansatz can be written in the base of the states, but this time the term sis

′
i

corresponds to the cosine function cos(2π
q m(li − l′i)). The trial function is

ψtf = exp
q/2∑
m=1

(
a

(m)
0

∑
i

cos
(

2π
q
mli

)
+ a

(m)
01

∑
i

cos
(

2π
q
m(li − ll+1)

))
.

(5.54)
The numerator and denominator Hamiltonians in the Rayleigh ratio are

h(n) =
∑q/2

m=1

(
a

(m)
0 /2

) (
c(m, li) + c(m, l′i) + c(m, li+1) + c(m, l′i+1)

)
+

(
a

(m)
01 +Km/2

) (
c(m, li − li+1 + c(m, l′i − l′i+1)

)
+ (Km/2)

(
c(m, li − l′i) + c(m, li+1 − l′i+1)

)
(5.55)
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and

h(d) =
q/2∑
m=1

[
a

(m)
0 (c(m, li) + c(m, li+1)) + 2a(m)

01 c(m, li − li+1)
]
, (5.56)

respectively.

The transfer matrix for the numerator and denominator now have the di-
mensions of (q/2)2 × (q/2)2 and (q/2) × (q/2) respectively. To determine
the constants Km the same method as in the two state case is used (the
Zq model with two states it identical to the Ising model), however the com-
putational effort is much higher, which is due to the fact that the transfer
matrix now has many more elements.

5.4 One-dimensional models

One of the disadvantages of the two-dimensional solution via the variational
approach is that the solution to the transfer matrix eigenvalue problem
becomes numerically intractable for large q. The maximum value for the
number of grey levels which gives a solution in a satisfactory (less than
a few seconds) time is g = 6, corresponding to q = 10 spin states. The
transfer matrix in Equation (5.31) contains 100× 100 elements and one has
to ensure the equality between measured and calculated correlations which
requires the calculation of the eigenvectors and eigenvalues in the optimiza-
tion procedure for the Rayleigh ratio, which is again part of the numerical
minimization for Equation (5.20).

A solution to this problem is to approximate the two-dimensional system
with a one-dimensional approach. This is known as high or low temperature
expansion, where the two-dimensional partition function is expanded in a
series which is then truncated after a few terms [Dom74, Kog79, Sav80]. As
the results of the experiments with natural images suggest, it might already
be sufficient to use the first term of the series only. After the expansion
and using the first term, the resulting one-dimensional system can be solved
analytically, hence avoiding the need for a numerical optimization procedure.

5.4.1 One-dimensional Ising model for black and white im-
ages

Although it is possible to find a solution to the two-dimensional Ising model
using the variational approach due to the small number of states and small
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matrices, the one-dimensional approximation is given here as a motivation
and to illustrate its properties.

The general Ising model (interaction between nearest neighbours) has the
Hamiltonian (see Equation (5.8))

H = −J
∑
〈ij〉

sisj (5.57)

and the partition function

Z =
∑
{s}

e−βJ
∑
〈ij〉 sisj . (5.58)

The first step in the duality transformation is to rewrite the sum

Z =
∑
{s}

∏
〈ij〉

eKsisj , (5.59)

where K = −βJ . Using the fact that s = ±1 one gets

eKs = coshK + s sinhK. (5.60)

This results in the partition function

Z =
∑
{s}

∏
〈ij〉

(coshK + sisj sinhK)

= (coshK)NxNy
∑
{s}

∏
〈ij〉

(1 + sisj tanhK), (5.61)

where the sum of spin pairs in the exponent are now written as a product of
pairs in the exponential/tanh function. Factorizing this product yields the
following terms:

Z = (coshK)NxNy
∑
{s}

(1 +
∑
〈ij〉

vsisj +
∑
〈ijkl〉

v2sisjsksl

+
∑

〈ijklmnop〉

v4sisjskslsmsnsosp + ...),(5.62)

where v = tanhK. However, since all the spin products which do not have
an even exponent of the product sisi drop out after the summation over all
states, this expansion simplifies to

Z = (coshK)NxNy(2NxNy + v4NxNy + ...), (5.63)

53



where the second term (v4) corresponds to a closed loop of four points
sisjsjskskslslsi.

For small K, the approximation v = tanhK ≈ K holds and we drop
the terms containing v4. This is known as ‘high-temperature expansion’,
since for high temperature K → 0. Note that the same applies to low-
temperatures, which is a duality transformation of the high T regime. The
result

Z = (2 cosh(K))NxNy (5.64)

is identical to the partition function of the one-dimensional Ising chain.
By now using different coupling constants for the horizontal and vertical di-
rections (rows and columns) it can readily be shown that the approximation
gives a product of two independent partition functions,

Z(xy) = (2 coshKx)Nx(2 coshKy)Ny . (5.65)

The correlations can be calculated separately as

〈sxsx+1〉 = tanhKx (5.66)
〈sysy+1〉 = tanhKy. (5.67)

This enables us to treat the image as a system of independent rows and
columns. An extension to higher orders results in a stronger interaction
between the two. The error introduced by the truncated expansion can be
described in a qualitative manner. At high temperatures the correlations in
the model would be comparatively small. If the measurement in the image
(which is independent of the expansion) yields large values this would cor-
respond to a lower temperature than expected for the true two-dimensional
system. This means the values of the couplings K are large and the inter-
action between two pixels stronger. The result is an ‘over-smoothing’ of the
restored image.

5.4.2 One-dimensional Zq model for grey level images

In analogy to the approximation of the Ising model using two one-dimensional
systems, the same procedure can be applied to the Zq model with q states.
The partition function is (from Equation (5.50) and 5.51)

ZZq =
∑
{l}

exp

∑
〈ij〉

q/2∑
m=1

Km (c(m, li − lj))

 . (5.68)
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To simplify the notation we again assume the same couplings for x and y
directions. Additionally, the definitions

ω(n) := e
∑q/2
m=1 Km cos

(
2π
q
mn
)

(5.69)

and
α :=

2π
q

(5.70)

are used.

After rewriting the exponential function as a product, the sum of the spin
pairs in the exponents are now products of the Boltzmann functions

ZZq =
∑
{l}

∏
〈ij〉

ω(li − lj)

=
∑
{l}

∏
〈ij〉

q−1∑
k=0

δk,|li−lj |ω(k), (5.71)

where δ is the Kronecker delta.

Moving the factor ω(0) out of the sum gives

ZZq = ω(0)NxNy
∑
{l}

∏
〈ij〉

(
1 +

q−1∑
k=1

δk,|li−lj |
ω(k)
ω(0)

)
, (5.72)

then multiplying the terms of the product (up to first order), rewriting the
sum using the δ function and summing over all states we obtain

ZZq = ω(0)NxNy
∑
{l}

1 +
∑
〈ij〉

q−1∑
k=1

δk,|li−lj |
ω(k)
ω(0)

+ ...


≈ ω(0)NxNy

qNxNy +

(
q

q−1∑
k=1

ω(k)
ω(0)

)NxNy , (5.73)

which is the largest eigenvalue of the transfer matrix of the one-dimensional
Zq model and hence the first order approximation.

The remaining problem is now the calculation of the q × q matrix of the
transfer operator, the determination of the (largest) eigenvalue, its corre-
sponding eigenvector and finally the analytical solution to the problem of
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finding the coupling constants Km from the correlations.

From the previous results the partition function of the one-dimensional Zq
model is

Z =
∑
{l}

N∏
i=1

exp

 q/2∑
m=1

Km cos
(

2π
q
m(li − li+1)

) , (5.74)

where l is one chain of points (with periodic boundaries). The elements of
the transfer matrix are

T (l, l′) = ω(|l − l′|) = exp

 q/2∑
m=1

Km cos(αm(l − l′))

 (5.75)

and T̄ is cyclic due to the cosine terms

T̄ =


ω(0) ω(1) ω(2) . . . ω(2) ω(1)
ω(1) ω(0) ω(1) . . . ω(3) ω(2)

...
...

...
...

...
...

ω(1) ω(2) ω(3) . . . ω(1) ω(0)

 . (5.76)

Now T̄ can be written using the so called ‘elementary cyclic’ matrix

T̄ = ω(0)Ē +
q/2−1∑
m=1

ω(m)
(
Ω̄m + (Ω̄m)−1

)
+ ω(q/2)Ω̄q/2, (5.77)

where the last term in the sum appears only if q is even. Ē is the unit
matrix. The matrix elements of the quadratic q× q matrix Ω are defined as

Ω(i, j) = δi+1,j + δi,q−1δj,1 (5.78)

and have the characteristic that all elements of the upper sub-diagonal and
the element in the lower left corner are 1. Multiplying this matrix with
itself moves all the columns to the right by one column and the last column
(which would ‘drop out’) enters the first column. Two other properties are

Ω̄T = Ω̄−1 (5.79)
Ω̄q = Ē. (5.80)

The eigenvalues of this matrix are

λΩ(m) = e
i 2π
q
m (5.81)
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where m = 0 . . . q − 1 and the first eigenvector |φ0〉 is the q dimensional,
normalized vector with the elements 1/

√
q. Since this eigenvector is also the

eigenvector of (5.77) the eigenvalues of T̄ are simply

tm = ω(0) +
q/2−1∑
l=1

ω(l)
(
eiαlm + e−iαlm

)
+

1
2

(eiα
q
2
m + e−iα

q
2
m)ω(q/2)

= ω(0) + 2
q/2−1∑
l=1

ω(l) cos(αlm) + cos(πm)ω(q/2).

The correlations (see Equation (5.34)) for the nearest neighbours l − l′ can
then be found using the operator Ām corresponding to the correlation m

〈m〉 =
1
t0
〈φ0|ĀmT̄|φ0〉 (5.82)

=
1
t0
〈φ0|

∂

∂Km
T̄|φ0〉

=
ω(0) + 2

∑q/2−1
l=1 ω(l) cos(αlm) + cos(πm)ω(q/2)

ω(0) + 2
∑q/2−1

l=1 ω(l) + ω(q/2)

=
tm
t0

Starting from this equation it is possible to analytically find the coupling
constants Km with m = 1 . . . q/2, after having measured the correlations
〈m〉 in the image by multiplying by a sum of cosine terms. In addition it is
necessary to fix the value t0 or ω(0) since there is one more eigenvalue than
there are correlations. This corresponds to fixing the energy of the ground
state, and gives

ω(m) =
1 + 2

∑q/2−1
j=1 〈j〉 cos(αmj) + 〈 q2〉 cos(πm)

1 + 2
∑q/2−1

j=1 〈j〉+ 〈 q2〉
(5.83)

for the Boltzmann factors and

Km = c

2
q/2−1∑
j=1

cos(αmj) ln(ω(j)) + cos(πm) ln(ω(
q

2
))

 (5.84)

for the couplings (where c = 2/q if m < q/2 and c = 1/q if m = q/2).
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The energy between two pixels having a brightness (state) difference of ∆l
is then

E(∆l) = E(l − l′) =
q/2∑
j=1

Kj cos(αj(l − l′)) (5.85)

All of this requires measuring the correlations in the image by running over
all the points for the horizontal

〈m〉xdata =
1

NxNy

N∑
x=1

N∑
y=1

cos (αm(lyx − l
y
x+1)) (5.86)

and vertical bonds

〈m〉ydata =
1

NxNy

N∑
x=1

N∑
y=1

cos (αm(lyx − ly+1
x )). (5.87)

Finally, we obtain the equations for the partition function (which is the
largest eigenvalue of T̄)

Z = ω0 + 2
q/2−1∑
m=1

ωm + ωq/2, (5.88)

the mean energy

〈E〉 = − 1
β

q/2∑
m=1

Jm〈m〉, (5.89)

where Km = βJm = 1
kT Jm and the entropy of the Zq model

Hphy = k(ln(Z) + β〈E〉). (5.90)

We can set k = 1/ln2 for the base-2 logarithm. Note that the β cancels out
and we do not require the temperature.

5.4.3 Ashkin-Teller model for grey level images

A common method in predictive image coding is to represent the lattice of 8
bit pixel values as a stack of 8 independent bitplanes, containing only black
and white points. The encoding (compression via prediction) step then op-
erates only on separate planes. Translated to the physicists language this
means the image can be seen as layers of two-dimensional Ising models as
presented in Figure 5.2 (left two columns). The interesting point both from
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Figure 5.2: Bitplanes of an example image. The two left columns are normal
bitplanes, the two right columns are the planes after conversion to Gray coding.
Planes 7 correspond to highest bit and planes 0 to the lowest bit.
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a physical viewpoint and in terms of predictive coding is that neighbouring
spins/pixels in the planes have different innerplane couplings depending on
the plane’s position. The temperature of a plane increases with decreasing
bit position making the spins less and less correlated when one moves to the
lower planes. Since the entropy of the four lower order bitplanes is close to
1, these planes cannot be encoded efficiently by compression algorithms and
have to be sent almost unchanged. This is why lossless compression typi-
cally achieves a maximal rate of around 4 (or 5) bit per pixel (depending
on the data). In order to get a better compression rate the image is usually
mapped from binary code to Gray code before working with the bitplanes.
In the Gray code representation adjacent pixel values only differ by one bit.
If – for example – a region in the image fluctuates between values 127 and
128 the binary planes change from 01111111 to 10000000, although the dif-
ference in pixel value is small. In contrast, the Gray encoded planes only
differ in one bit (from 01000000 to 11000000) As can be seen in Figure 5.2
(right column) the Gray code representation exhibits more ‘structure’ in the
lower planes than the binary coding. The entropy of the planes is lower and
the data can be predicted easier resulting in smaller code.

Ashkin and Teller [AT43] introduced a model of a physical system which is
actually a Zq model with q = 4 states, with the difference that the whole
system is described by two coupled Ising lattices. Couplings exist within each
plane (intraplane couplings) and between the planes (interplane couplings).
If we do not restrict the number of states, we can encode an image using
the AT model. This requires more than 2 bitplanes, typically we will use
all 8 planes of the image. The total number of coupling constants is the
same as in the Zq model. An example of the way the planes are coupled is
illustrated in Figure 5.3. The index for the couplings K follows the notation
in which a set bit in the binary representation of the index value means
that this plane takes part in the coupling (K2 = K(00000010) → plane 2,
K13 = K(00001101) → planes 1,3 and 4). In general we use the notation
for an index value α :

~α = (b7 b6 b5 b4 b3 b2 b1 b0) b ∈ {0, 1} (5.91)

α =
7∑

k=0

bk2k (5.92)

~αk = bk. (5.93)
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Figure 5.3: Couplings between the different image planes of the AT-model.
The example is a model of q = 16 states. Some of the couplings and the corre-
sponding planes are shown. The index is calculated from the planes participating
in the coupling.

The Hamiltonian for the AT model with p planes (p = log2(q)) is

H =
2p−1∑
α=1

Kα

∑
〈ij〉

p∏
k=1

(
s

(k)
i s

(k)
j

)~αk
(5.94)

s
(k)
i is the spin state in the plane k at position i. Following the notation of

the previous sections, the correlations can be derived by

〈α〉 =
1
λ0

∂

∂Kα

2p−1∑
k=0

ωk

= λα/λ0, (5.95)

where {λj} are the eigenvalues of the transfer-matrix. The couplings can be
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calculated using

ω(rec.)
α =

1
2p

2p−1∑
γ=0

λγ

p∏
k=1

(1− 2~αk)
~γk (5.96)

=
1
2p
λ0

1 +
2p−1∑
γ=1

〈γ〉
p∏

k=1

(1− 2~αk)
~γk

 , (5.97)

which results in (choosing λ0 = 1)

K(rec.)
α =

1
2p

2p−1∑
γ=0

ln
(
ω(rec.)
γ

) p∏
k=1

(1− 2~αk)
~γk . (5.98)

This model is more of theoretical interest, since it gives the same results as
the Zq-model for image processing purposes. For this reason no experimental
results will be presented for the AT-model in the experiments chapter.

5.4.4 One-dimensional Zq model for colour images

The ultimate goal in the restoration of still images is the application to full
colour images. As explained in the introduction to the data, a colour image
consists of three colour planes, each one corresponding to the red, green and
blue component of a pixel. The simplest approach would be to treat these
three planes independently and apply the Zq model for grey level images
to each one separately. However, this neglects any potential inter-colour
interaction between two points. One solution is to use a kind of AT model
this time applied not to bitplanes but to colourplanes or to use the AT model
with 24 bitplanes. The problem is that the number of coupling constants
then would be 224 = 16777216 which is far more than the image data itself
requires for storage. A simpler approach – introduced here – which includes
the inter-colour correlations is formulated using the difference between two
transformed colour pixels ~̃c and ~̃c′

∆colour(~c,~c′) =

√√√√ 3∑
i=1

wi(c̃i − c̃i′)2, (5.99)

where wi are positive weights for the corresponding components. The trans-
formation itself is usually a linear one, which maps a colour point from the
RGB space into another space. One widely used representation is the HSI
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space where the components are hue, saturation and intensity which sep-
arates the colour information from the brightness of the pixel. However,
as can be seen in the experiments (Chapter 6), the simplest model in RGB
space with all wi = 1/3 already gives excellent results. The remaining prob-
lem is to put the difference ∆colour(~c,~c′) in a form that can be used in the
Zq model. The main aspect is that the variables in the model belong to
the spin-group with finite integer values in the range of [0, . . . 255], but the
colour difference is a real number. The simplest approach is to map this
number to the closest integer value which then is a variable of the spin-
group. Although this seems a rather crude approximation it is in fact very
fast and efficient as can be seen in the results. Hence, the simplest model
for two colour pixels that can be used is

∆Zq
colour(~c,~c

′) = int

(√
1
3

((cr − c′r)2 + (cg − c′g)2 + (cb − c′b)2)

)
, (5.100)

where

int(x) =
{
bx if x− bx ≤ 0.5
dx else

. (5.101)

This replaces the terms l − l′ in the Hamiltonian (Equation (5.50)).

5.5 Restoration of Images

5.5.1 Bayes restoration

After the selection of a model and learning the parameters from the data,
the last step that remains is the restoration of the transmitted and distorted
image. This procedure, which is based on Bayesian methods coupled with a
Markov model, aims at recovering the original data from the received data
using the knowledge about the prior model (for example the Zq model from
Section 5.4.2) and the model for the channel noise (from Section 3.4). In
order to find an estimate of the best restoration, these models are combined
into an energy function which is then optimized in the restoration process.
Unfortunately, this is a computationally intensive combinatorial optimiza-
tion problem. However, some methods from statistical physics have proven
to be very efficient for this kind of problem.

Metropolis et al. [MRR+53] proposed a Monte Carlo simulation to find equi-
librium states of a thermodynamical system. It was realized later that there
is an analogy between minimizing the energy function of a combinatorial
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optimization problem and finding the energy minima of thermodynamical
systems by cooling the system down until equilibrium is reached [KGV83].
This algorithm was named Simulated Annealing and consists mainly of sub-
stituting the energy of a solid by the cost/energy function of the computa-
tional problem and then slowly decreasing the temperature. However, one
drawback is that SA needs a careful selection of the cooling scheme or oth-
erwise the global optimum will not be found. Several related algorithms
were proposed for image processing tasks, the most important one which is
known as the Gibbs Sampler was used in the famous paper by Geman and
Geman [GG84]. Another solution is to use deterministic algorithms which
are not optimal but converge after a few iterations [Li95a, BZYJ96].

The method introduced in this work is based on the simple Metropolis al-
gorithm. The convergence of the restored image is improved in two ways:
first by storing at each Monte Carlo step the whole probability of flipping
(or not flipping) the spin variable and second by visiting the pixels which
have a high local energy with a higher preference. Both will be discussed
shortly. This algorithm has the advantage of not being dependend on ad-
ditional parameters (like temperature), and yet having all the properties of
stochasitical optimization methods.

5.5.2 Metropolis-Rosenbluth-Rosenbluth-Teller-Teller algorithm

The method of choice here – the Metropolis algorithm – was already ex-
plained in Section 4.4.4 and will be described as a short algorithm again.
Let ~r be the received (noisy) image, ~sτ be the current image undergoing
optimization and ~̂s the restored image after convergence. Furthermore, let
E(sτi |ri) be the local energy for the pixel i then the algorithm is :

1. select a pixel i at random

2. calculate E(sτi |ri)

3. choose s′τi ∈ [0, . . . 255] at random

4. calculate E(s′τi |ri)

5. let p = min(1,eE(sτi |ri)−E(s′τi |ri))

6. replace sτi by s′τi with probability p

7. repeat until convergence
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Here the probability comes from a Gibbs distribution having the energy as
the exponent. These steps are repeated until either a fixed number of iter-
ation steps have been reached or the energy in the image fluctuates around
a constant value.

As mentioned, the simple Metropolis algorithm was extended in two ways
which are described in the next sections.

5.5.3 Optimal decoding

In the general context of error-correcting codes, it was shown [MMP87,
Ruj93] that the average error per pixel is minimized by assigning each de-
coded pixel the most probable state given by the exact conditional a pos-
teriori probability. This decoding scheme is known in image restoration as
‘thresholded posterior mean’ [MMP87, PB95] and in the Bayesian literature
as ‘marginalization’. In the statistical physics setting it corresponds to a
finite temperature decoding on the Nishimori line [Ruj93, Sou94]. The error
per pixel for the whole image is in this case defined by the mean squared
error (Equation (3.33)). In order to minimize the error for the given cost
function the optimum ~̂s is found if

ŝi = l ∈ L : (〈si〉 − l)2 ≤ (〈si〉 − l′)2 ∀l′ 6= l, (5.102)

where 〈si〉 is the average of si over all states of the system (ensemble aver-
age). In an ergodic system the value of 〈si〉 can be calculated as the average
over time (iterations)

〈si〉 ≈
1

nt − neq

nt∑
τ=neq

sτi , (5.103)

where nt is the maximum number of iterations, neq the number of iterations
for reaching the equilibrium and sτi is the state for iteration step τ . Then the
state 〈si〉 is the value that will minimize the error per pixel. The new idea
used in the experiments is to store the full transition probabilities (of flipping
or not flipping the spin variable) at each Monte Carlo step. However, since
this requires a large amount of memory this is approximated by calculating
the expectation value for each pixel. That is,

〈si〉 ≈
1

nt − neq

nt∑
τ=neq

sτi p(s
τ
i )/

nt∑
τ=neq

p(sτi ), (5.104)

where p is the probability from the Metropolis scheme and τ the counter for
the Monte Carlo steps.
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5.5.4 Rank-Order Monte Carlo

The second extension is a ‘visiting’ scheme for the points in the image which
ranks each pixel according to its local energy. Related procedures have been
applied to Monte Carlo simulations of the Ising-Model [Wil84]. The pixels
with high local energy being potential candidates for flipping are visited
with a higher probability. The simplest implementation is to first calculate
all local energies (as defined in Equation (5.50)) for the pixels, insert each
one into a list of candidates and sort this list. Then the pixels with the
highest energy values are selected for the Monte Carlo step. This has the
advantage of avoiding those pixels which are unlikely to be flipped and
would reject a new state. Especially in the initial phase of the restoration
process this speeds up the processing dramatically (see results from Section
6.2.1). However, from a theoretical point of view it is not clear if the system
with this scheme is still ergodic. On the other hand, regarding restoration
purposes it fulfills two important requirements: during the first iteration
phase it is very likely that only those pixels are visited which have a strong
distortion (i.e. violate the prior model) and in the phase where the system
starts to fluctuates around the equilibrium state the pixels which make up
the edges and corners in the image are tested more often. Since these are
the regions of interest it is well justified to incorporate the rank order scheme
here.

5.6 Classification – Texture Segmentation with the
Zq model: a new approach

Texture Segmentation is used to segment an image into different regions ac-
cording to the textures (intensity structures) of these regions. This is often
a necessary preprocessing step to object recognition and detection, where it
is assumed that objects in the scene can be distinguished by difference in
texture. In supervised texture segmentation the model and parameters are
assumed to be known for the textures as well as the parameters for noise. In
this case the image can be partitioned according to the textures whose model
and distribution functions are completely specified [Li95a, Rus99, BZYJ96].
However, in most cases the parameters of the textures are not known and
have to be learned from the data. The problem is that the image has to
be partitioned first so that the parameters for the regions can be learned.
This can be solved by using an iterative scheme which alternates between
estimation and segmentation [Bes86, Li95a].
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A new approach introduced here and based on the Zq model is to calculate
for a block of pixels the approximated joint probability of this block and
assign this probability to a label image which has at each point a value
equal to this probability (for illustration purposes this is multiplied by 255
and quantized). The resulting label image then exhibits regions of different
intensities which can be separated by simple histogram thresholding. The
model introduced here is based on an independent bonds approximation:

Pblock(x, y) ≈
∏

k,j∈Nx,y

eHZq(k,j), (5.105)

where Pblock(x, y) is the probability for the block with (x, y) in the center,
and the product of the marginal probabilities includes all nearest neighbour
pairs. Typical blocksizes are 3 × 3 or 5 × 5. Note that the parameters for
the Zq model are estimated in a first step for the whole image, which results
in an overall probability sampling. In the second step, the probabilities are
assigned to the new labels by setting

lnew(x, y) = Pblock(x, y), (5.106)

where Pblock(x, y) from Equation (5.105) contains all possible two-pixel bonds
in the block. The Hamiltonian is

HZq(k, j) = exp
q/2∑
m=1

Km

(
cos

2π
q
m(lyx − l

j
k)
)
. (5.107)

The histogram of this new label image represents the distribution of these
probabilities and any peak corresponds to a feature (class) in the data. In
natural images a high label value means that a pixel block belongs to the
bulk sample and a low value that it does not. The latter blocks belong
mostly to lines and edges. After separating these two (or more classes) the
procedure can be iterated, this time learning different sets of parameters for
the different regions. Even though the approximation in Equation (5.105)
is rather simple it gives similar results to methods like Sobel or variance
filtering [Rus99]. A more advanced procedure which aims at capturing the
true underlying probability density is introduced in Chapter 7.

5.7 Noise estimation and model verification

An open challenge for the Bayesian approach to image restoration is to
find the full a posteriori probability (Equation (4.17)) which also includes a
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model of and parameters for, the noise. As long as the noise process and
the strength of the noise is known, the statistical model of the channel can
be found in most cases. In some cases it is possible to find the model from
the known underlying physics of the transmission, but the estimation of the
parameters may still not be easy. The usual method for determining the
characteristics of a system is to send a set of exactly known phantom (test)
images through the channel and study the statistics of the received set. For
example, if after a transmission a plain white image shows a Gaussian in-
tensity distribution then the channel noise is very likely to be additive white
noise.

Another idea is to use the known prior of the data to estimate the noise.
Assume that the prior model and the parameters are known (measured
before transmission or measured in a set of undistorted images), then for
each point the true pixel value li should be exactly the same as a value ŝi
predicted by the model. For the Bayesian approach this means that

li
!= l̂i = arg maxli∈LiP (li|l1, . . . , li−1, li+1, . . . , lN ), (5.108)

where P (li|~l, li /∈ ~l) is the prior of the image leaving out the pixel li. In prac-
tice this prior is restricted to the points in the (Markov-) neighbourhood of
li and this becomes P (li|lj , j ∈ Ni)

To investigate the properties of this estimate it is instructive to use a three
dimensional histogram where each bin is addressed by the true value and the
estimated value. If there is no noise the histogram has entries only on the
diagonal (both values are equal) and the shape of the histogram along this
diagonal is the unaltered brightness histogram of the image. This is shown
in Figure 5.4, which contains the histogram of the portrait (from the data
section, Figure 3.1). Any noise will now enter as off-diagonal elements in
this plot. If the shape of the projection perpendicular to the diagonal is not
constant along the diagonal then the noise will additionally be brightness
dependent (which is, for example, the case in X-ray film). For the case of
additive white noise the parameter σ can be determined by measuring the
standard deviation of the projection.

We can also apply this procedure to the original image itself and therefore
verify the model and its parameters. If model and original image fit perfectly
then the estimation should be exactly the same as the true pixel value. Any
deviation is either a sign of an imperfect model (the pessimistic view) or
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shows that the original itself was already subject to noise (the optimistic
view). It is interesting to see that the standard test images used in the
experiments appear to belong to the latter view, since an attempt to restore
the original one – assuming it is noisy – actually increases the (subjective)
quality of the image. Note that we can’t measure this, since again we don’t
have the true original for comparison.

Figure 5.4: Three dimensional histogram from image in Figure 3.1 (portrait).
Each bin is addressed by the true pixel value and the predicted pixel value from
the neighbourhood.
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Chapter 6

Experiments and
Applications

This section presents a variety of experiments on a set of test images to illus-
trate the properties and characteristics of the model. The noisy transmission
is simulated with the noise models described in Section 3.4.

6.1 Two dimensional Ising model

We first consider the simple example of a 2D-Ising model in which the pa-
rameters for the black and white image displayed in Figure 6.1a are learned
using the 2D variational Ansatz. Since the entropy of the scene yields a
value of 0.064 bit per pixel, a corrupted image with a channel noise level of
p = 0.35 (probability of spin flip) can still be restored. The distorted and
the restored (Bayes) image are shown in Figure 6.1b and Figure 6.1d. After
180 Monte Carlo steps the error per pixel has decreased from 0.35 to 0.03
(Figure 6.2).

However, the curved object in the lower right corner vanishes, indicating
that the assumption of a global prior does not hold here. To test this and
to see whether the Monte Carlo dynamics move the image away from the
original, we ran the simulation without the coupling to the data using only
the prior. As can be seen in the graph in Figure 6.3, the error increases
with the number of steps. The resulting Bayes image and a Monte Carlo
snapshot after 1000 Monte Carlo steps are shown in Figure 6.4.
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Figure 6.1: Black and white image described by a two-dimensional Ising model.
The original (a) is distorted by random noise (single-spin-flip) with a probability
of p = 0.35 (error). Image (c) is a snapshot of the Monte Carlo image (error
0.04) after 180 steps and (d) the resulting Bayes image (error 0.03).
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Figure 6.2: Error vs. Monte Carlo steps of the Monte Carlo (+) and Bayes
(×) image for the restoration in Figure 6.1. (The error is defined as the fraction
of pixels differing from the original.)
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Figure 6.3: Monte Carlo dynamics of the original Ising image (Figure 6.1a)
without any coupling to the data (prior only). Displayed is the error vs. Monte
Carlo steps of the Monte Carlo (+) and Bayes (×) image.

Figure 6.4: Monte Carlo snapshot (error 0.12) and Bayes image (error 0.08)
of the prior-only dynamics (no coupling to the data) after 1000 Monte Carlo
steps.
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6.2 One dimensional Zq model

The following sections provide an overview of the experiments based on the
Zq model.

6.2.1 Correlations and random noise

Next we consider natural grey-level images with 256 states per pixel (8 bit
image). As an example the famous Lena image in Figure 6.5a is sent through
a channel which turns each pixel value independently into any of the other
255 states with a probability of p = 0.3 (see Figure 6.5b). The values of the
observables derived in the Zq model are displayed in Figure 6.6 – showing the
values for correlations, Boltzmann factors, coupling constants and energy
respectively. Using the knowledge about the noise process we obtain the
Bayes estimate of the optimal reconstruction in Figure 6.5d. Figure 6.5c
contains a Monte Carlo snapshot after 750 steps. The rms error per pixel is
reduced from its initial value of 48.51 to 9.01. However the minimal error of
8.36 is reached after 180 steps and then goes up again (see Figure 6.7).

6.2.2 Rank-Order scheme

As a measure of convergence, we count the number of actual pixel ‘flips’ per
pixel during one Monte Carlo step. The graph in Figure 6.8 indicates that
the main part of the restoration process takes place in the first 100 steps.
After the 150th step the fraction of changed pixels fluctuates constantly
around a value of 0.014, but does not contribute much to the restoration.
In fact, the error in the Bayes estimate increases after 180 Monte Carlo
steps, whereas the error in the Monte Carlo image estimation already goes
up again around Monte Carlo step 70.

To explicitly select the pixels which have a high probability of being flipped
the rank-order scheme from Section 5.5.4 is used in the same experiment.
Figure 6.9 compares the simple Monte Carlo procedure which visits each
pixel to the same probability with the rank-order method which prefers
pixels that have a higher energy. The fraction of pixels used here was 0.2 of
the whole population. This means the algorithm only visits the 20 percent
of sites which have high energy. It can be seen that the minimum error is
reached after 30 iterations where the simple method takes more than 120
steps. However, in the rank-order scheme the error starts to increase after
40 steps. The reason is that after the noise has been removed, the pixels
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Figure 6.5: Grey-level image (256 states, 8 bit) distorted by random noise with
a probability of p = 0.3. The displayed images are: (a) original, (b) distorted
(rms=48.51), (c) Monte Carlo snapshot (rms=11.83) and (d) Bayes estimate
(rms=9.01) after 750 steps.
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Figure 6.6: Observables – based on the Zq model – measured in the grey-
level image in Figure 6.5a. Displayed are: nn-correlations (defined in Equation
(5.82), upper left), Boltzmann factors (Equation (5.83), upper right), coupling
constants (Equation (5.84), lower left) and coupling energy (Equation (5.85),
lower right). Note that the energy enters the exponent of the Boltzmann dis-
tribution with a negative sign.
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Figure 6.7: Error vs. Monte Carlo steps of the Monte Carlo (+) and Bayes
(×) image for the restoration of the grey-level picture in Figure 6.5. Initial rms
error is 48.51 (p = 0.3). (The error is defined as the root mean square (rms)
pixel difference error from the original.)
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Figure 6.8: Fraction of turned pixels (accepted in Metropolis decision) during
a Monte Carlo step over number of steps. Restoration was run for the grey-level
image Figure 6.5.
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selected to be flipped are those belonging to the lines and edges which have
higher energies. These are not noisy pixels, but when changed they start to
distort those regions.

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100 110

rm
s 

er
ro

r (
B

ay
es

 im
ag

e)

number of Monte Carlo steps

using rank order
no rank order

minimum value

Figure 6.9: Comparison between restoration with the rank-order scheme and
simple Monte Carlo. The dashed line is the minimum error reached after 30
Monte Carlo steps.

6.2.3 Close to the prior information

To see how the system performs for an information loss close to the prior
information of H = 4.4, the image is sent through a channel with a noise
probability of p = 0.45 (Figure 6.10a). Figure 6.10b shows the restored
image after 750 Monte Carlo steps. Again, the rms error fails to decrease
after 180 steps (Figure 6.11). Yet, the visual quality still increases which
is mainly caused by the breaking of small ‘ferromagnetic’ islands – clusters
of connected pixels which were not turned during the first steps. These
clusters disturb the visual quality more than the increasing overall error can
take into account (see Figure 6.11). The rms error goes down from 59.27 to
10.6.
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Figure 6.10: Image distorted by random noise with p = 0.45 (rms=59.27)
(a). The Bayes restoration (rms=10.6) (b) is obtained after 750 steps. The
information loss due to noise is close to the information contained in the prior.
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Figure 6.11: Error vs. Monte Carlo steps of the Monte Carlo (+) and Bayes
(×) image for the restoration of the grey-level picture in Figure 6.10. Initial rms
error is 59.27 (p = 0.45).
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6.2.4 Prior-only Monte Carlo

Again we are interested in the no-noise dynamics of the system, that is
without coupling to any data. The simulation results over 100000 Monte
Carlo steps are displayed in Figure 6.12. It becomes clear from the two
snapshots of the Monte Carlo and Bayes image after 25000 and 100000 steps
(Figure 6.13) that the image moves away from the original and ‘condenses’
into the state of lower energy (or higher probability), where long range
correlations persist; thus we expect that the system is in a temperature
regime below its critical temperature.
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Figure 6.12: Error vs. Monte Carlo steps of the Monte Carlo (+) and Bayes
(×) image for the Monte Carlo dynamics of the grey-level picture from Figure
6.5a without coupling to the data (prior only).
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Figure 6.13: Snapshots of the Monte Carlo and Bayes image after 25000 (a
and c) and 100000 (b and d) Monte Carlo steps for the simulation without
coupling to the data (prior only).
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6.2.5 Random noise – high noise regime

The performance of the restoration for the high noise regime is examined
in the example shown in Figure 6.14. The displayed image is distorted by
random noise of p = 0.8 and restored in 1500 iterations. Even though the
contents of the image are hardly recognisable in the noise image, the main
features are recovered in the Bayes restoration.

Figure 6.14: Image corrupted by random noise p = 0.8. The restoration was
obtained after 1500 Monte Carlo steps (without rank-order scheme).

6.2.6 Learning from the noisy observation

In real life image restoration the original image is usually not available and
the parameters have to be determined from the noisy observation (data).
Although optimization techniques exist which combine restoration and es-
timation of parameters [Li95a], we try the very simple way of learning the
parameters directly from the noisy image. This shows how sensitive the
procedure is to changes of the coupling constants. The bridge image in Fig-
ure 6.16a was distorted by random noise with a probability ranging from
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Figure 6.15: Dependence of restoration rms error (in Bayes image) on the
initial rms error. The parameters for the prior are learned from the noisy data
(+) and – for comparison – from the original (×).

p = 0.05 to p = 0.95. The couplings were learned from the data and – for
comparison – from the undisturbed source. The rms error of the restoration
is plotted in Figure 6.15. As can be expected the error first increases lin-
early with increasing initial error and goes up around the value of p = 0.625
which corresponds to the entropy of the original image H(prior) = 5.951
(calculated from the prior using Equation (5.90)).
The difference in the restoration between the two sets of couplings is not
very large and we are led to ask the question whether the exact values of
the couplings are crucial, or if the model we have chosen is already general
enough to capture the important statistics of natural images as long as the
couplings are kept within a certain range. To test this, we learn the param-
eters from the Lena (Figure 6.5a) image and use them for the restoration
of the bridge image in Figure 6.16, this time distorted by an impulse noise
which adds or subtracts a value of 100 to/from each pixel with a probability
of p = 0.3. The result of the restoration with parameters from the original
and Lena are displayed in Figure 6.17. The rms error of the distorted image
is 66.47 and goes down to 14.10 for the original parameters and 17.81 for the
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Figure 6.16: Image of a bridge distorted by impulse noise (b) with probability
of p = 0.3 (rms=66.47). The height of the impulse is ±100.

Figure 6.17: Reconstructed image from Figure 6.16b. The prior parameters
for the restoration in (a) are learned from the original (rms=14.10) and for (b)
from the lena image (Figure 6.5a) (rms=17.81).
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set from Lena. Although there is in both cases a significant improvement,
the restoration with the ‘Lena’-set of parameters is smoother than with the
original set. The reason is that the couplings in the Lena image are more
‘ferromagnetic’ – they belong to a lower temperature.

6.2.7 White noise

A type of noise which can be found very often in natural or electronic systems
is Gaussian white noise. In the next experiment the parrot image (Figure
6.18a) is degraded by white noise which adds a value with zero mean and
σ = 20 to each pixel resulting in a total rms error of 19.837. After restora-
tion this error decreases to 8.716 and the white noise is removed (Figure
6.18d). However, the restoration is much smoother than the original and in
comparison to the noisy image the optical ‘impression’ is not significantly
enhanced. The reason for this is that white noise does not ‘break’ the next-
neighbour correlations like random noise and it is this kind of correlation
which is important to the human visual system. For comparison, another
‘state-of-the-art’ restoration method was applied, which is based on a diffu-
sion model (see [EFF93] for details). This algorithm achieves an rms error
of 9.126.
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Figure 6.18: Restoration of data distorted by additive white noise with σ =
20. Images are: original (upper left), noise image (upper right, rms=19.837),
Monte Carlo snapshot (lower left, rms=8.776) and Bayes image (lower right,
rms=8.716).
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6.2.8 Masking and the human visual system (HVS)

This leads to the interesting question whether the human visual system
(HVS) has implemented the knowledge about the correlations which are
present in all natural images. If this is the case, then it is possible to de-
grade an image in a very simple way by inverting the next neighbourhood
correlation resulting in a perceptually very ‘bad’ image. Figure 6.19 (top row)
shows an example of an artificially constructed image with 256 grey-levels.
The coupling between two points were chosen from a natural image and then
simply inverted by setting the new K ′n = K255−n. The image is a result of
a Monte Carlo simulation after 500 steps, where the starting point was a
random image. From a physical point of view the image 6.19 (top right) is
not random, since it has clearly defined correlations, however no structures
can be seen. In order to break up the “bad“ correlations we reduce the size
of the image and assign to each point of the new image the mean value of a
block of four pixels – this is similar to a renormalization process. Now the
structures become visible, since the strong anti-correlations are smoothed
out.

The same effect can be achieved with a true image by simply replacing every
second pixel with its value subtracted from the maximum value (Figure 6.19,
lower left). Since every pixel value can be recovered exactly, no information
is lost in the masking procedure. Note that the printed version is not optimal
to illustrate this effect. The printer can only use black and white pixels and
has to combine several of these for a grey-level value. This is in most cases
achieved by a process called ‘dithering’ which distributes the pixels in a very
small area randomly, hence the anti-correlations are broken up again.1

1 We can see that our vision is tuned to work with these correlations and breaking
them might result in a much slower perception. Talking about getting funny ideas when
writing down a thesis. The following example shows how we are also tuned to extract
patterns from written text (here the neighbour word/character correlations are altered):
Thiss entencei sa lmosti denticalt ot heo riginalb uti tt akesm uchm oret imet
or eadi ta ndi ti sq uiteh ardt od o af asts cant og raspt hem eaning.
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Figure 6.19: Set of images demonstrating that next neighbour correlations are
important to the HVS. Top row : artificially created image (Zq model from a
Monte Carlo simulation) (left), the image reduced by a factor of four (right).
Lower row : natural image ‘masked’ by replacing each second pixel with its
inverse (left) and the reduced image (right).
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6.2.9 Deblurring

So far all experiments had to deal with pixelwise and hence spatially uncor-
related noise. However, the model can also restore data which was subject
to correlated noise. The left image in Figure 6.20 was blurred by applying
a 7x7 pill-box blur (with all components set to 1/49). As was explained in
Section 3.4.2 this filter is not exactly invertible by a simple deconvolution
due to the quantization. The quantization error measured in bits per pixel
for this image is 5.614 bpp. The initial error for the blurred image is 12.295
and goes down to 9.195. From a subjective point of view the image also
looks ‘sharper’ than the distorted image, although the restoration process
is unable to restore fine details present in the original image. These details
have completely vanished in the distorted data and cannot be recovered.

Figure 6.20: Example of debluring. The left image shows the effect of applying
a pill-box blur filter of size 7x7 pixels. The right image shows the restoration.

6.2.10 Colour images

Finally, we use the model for colour images in which a pixel is stored as a
red, green and blue triplet, each component having 256 states. In this case
we use the model introduced in Section 5.4.4 and define the energy as

E(~c,~c′) =
255∑
m=1

Km cos
(

2π
510

m|~c− ~c′|2
)
, (6.1)
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where | ~c(i)− ~c(i′)| is the normalized and rescaled euclidian distance of two
neighbouring pixels in RGB space. Note that this value is quantized back
to 256 discrete levels. The result of random noise with a probability of
p = 0.6 per pixel and channel (with a total number of wrong colour pixels
of p = 0.92) is displayed in Figure 6.21. The initial rms error of 129.1 (mea-
sured in RGB space) drops down to 19.2 for the Bayes estimation.

Figure 6.21: Colour image (256 states, 8 bit per colour component) distorted
by random noise with a probability of p = 0.6. The displayed images are:
original (upper left), distorted (rms=129.1, upper right), Monte Carlo snapshot
(rms=23.3, lower left), Bayes estimate after 900 steps (rms=19.2, lower right).

6.3 Noise estimation

The information about the correct noise model and strength is not always
available. In some applications it has to be estimated from the data. The
procedure explained in Section 5.7 is applied to the Lena image in order
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to verify the model itself. The first plot in Figure 6.22 (+) shows the dis-
tribution of differences between the predicted value (from the model) and
the true pixel value. The four surrounding neighbour pixels are used to
predict the middle point. This model verification has an error (assum-
ing a Gaussian distribution) of σmodel = 4.648. Hence, the model can be
used as a predictor for compression, but does not capture all the informa-
tion. This would require a model with a larger neighbourhood. To see how
the model performs for noise estimation, the same procedure is applied to
the image distorted by additive white noise with σnoise = 12.0. The ex-
pected value for the noise image should then be the sum of the two sigmas
σexpected =

√
σ2
model + σ2

noise = 12.869 (shown in the third plot with dashed
line). However, the deviation of the measured noise distribution (shown in
the Figure with (×) is σmeasured = 14.498, which is higher than the expected
value.
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Figure 6.22: Using the model for self-verification and to estimate the strength
of unknown noise. The plot shows the distribution of differences between the
predicted value and the true pixel in the original image (+) and a noise image
(×). The dashed line shows the expected true noise distribution.
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6.4 Texture segmentation

In a way that is similar to the procedure to be introduced in Chapter 7, the
Zq model can be used to extract features from images. We apply the ap-
proach described in Section 5.6 to the image shown in Figure 6.23 (top left).
This requires learning the bond probabilities for the whole image and then
filtering with the resulting probabilistic filter. This means, the resulting
image has a value of l̃yx = 256× P (lyx|lji , i, j ∈ Nx,y) for each pixel, where P
is the local probability for the central point lx,y of a 3× 3 block. As can be
seen, the black pixels in the filtered image (top right) belong to the lines and
edges in the image (low probability) and the white pixels to the smoother re-
gions (bulk sample and high probability). This image can now be processed
further to separate the objects by using simple histogram thresholding. For
comparison the lower left image shows the result of applying a Sobel filter
followed by a histogram equalization, and the lower right image is obtained
by using the method introduced in Chapter 7.

The histogram of image 6.23 (top right) shown in Figure 6.24 has a local min-
imum which is used to distinguish between two classes. The corresponding
pixels are displayed in the feature image 6.25, where the black pixels belong
to the first class (lines, edges) and the white pixels to the bulk sample.

Apart from being useful, the resulting images also have a certain aesthetic
value 2, which can be enjoyed in Figure 6.26. The image was first decomposed
into its three channels (red, green, blue), the filter was applied to each one
and the resulting images recombined to give the final image. Note that
the small blocks which appear in the upper part are not introduced by
the filter, but are artifacts of the lossy compression scheme (JPEG) the
original was subject to. Hence, the procedure can also be used for detecting
manipulations in images.

2As in most cases this is a matter of taste.
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Figure 6.23: The Zq model used for feature extraction. The top left image
was filtered with a probability filter consisting of a product of bond probabilities.
The top right image is the result of assigning this joint probability to the center
pixel (multiplied by 256). The lower two are obtained by conventional methods.
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Figure 6.24: Histogram of probability labels from image 6.23 (top right). Two
classes can be found from the distribution.

Figure 6.25: Feature image obtained from image 6.23 (top right). The black
points correspond to class 1. The white points to class 2. (From Figure 6.24.)
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Figure 6.26: The art of feature extraction.

95



Chapter 7

Feature extraction using
Transformed Probabilities

This chapter describes a new technique in which the image or any arbitrary
data is transformed into components according to their individual character-
istics. In the transformed space the joint probability of a sample (window)
can easily be estimated by the product of the marginal probabilities. The
resulting probability density can then be used to identify individual clusters
corresponding to features in the image.

This chapter does not strictly fit into the context of Markov Random Fields
and is for this reason treated separately, including the experimental results.

7.1 Introduction and Motivation

A major step towards a more abstract level of visual processing is the sep-
aration and identification of different regions and objects in an image. Our
own visual system performs complex tasks to distinguish objects in a scene
in order to understand the relation between these objects (or subjects). The
main features for isolating objects are: intensity, boundary lines, colour and
texture. The low-level processing stages responsible for extracting these fea-
tures take place very early – in our retina [Hub89]. The abstraction from
these features however, happens in the higher paths of our visual system.
In order to understand this system a profound analysis of the first stages is
necessary.
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Apart from these theoretical interests there are also numerous technical
applications in which feature extraction is used. To illustrate this, two ex-
amples are given here:

Example 1: A bank has to deal with hundreds or thousands of credit transfer
forms from their customers per day. Even though online banking is gain-
ing more and more fans, the majority of forms is still filled out by hand.
The task is now to automatically separate the hand-written entries from
the preprinted form. This can readily be done by a separation in colour
space, since transfer forms (at least in Germany) only contain the colours
red, yellow and green and the customer’s writing is blue or black.1 The
isolated characters and numbers are then further processed by optical char-
acter recognition systems (OCRs).

Example 2: In satellite imaging it is often necessary to identify and measure
the areas of different terrains. For example the size of a natural forest com-
pared to the progressing clearcut. Usually several different images of the
same scene are available, since a satellite contains several imaging systems
for different ranges of wave length (multi-band images). Additional informa-
tion can be drawn from the difference in texture of the terrain. Combining
this information enables the analyzing system to automatically measure the
regions of interest [Rus99].

The method used here is a member of the class known as ‘transformation
coding’. Similar methods are incorporated in all state-of-the-art image com-
pression standards like JPEG, JPEG-2000 or MPEG. Note that well known
methods like the Fourier-Transformation also belong to this class.

In the following approach the coefficients of the linear transformation are
determined by requiring that certain statistical properties of the resulting
image hold. These requirements result in a transformation in which the
pixels in the image are (blockwise) statistically independent and the joint
probability is simply the product of the single pixel probabilities. The re-
sult is that every image block can be labeled with its probability meaning
high probabilities for the more common blocks (mostly homogeneous re-
gions) and lower probabilities for the less common ones (textural regions
and boundaries).

1If you want to irritate your bank you can fill out your transfer forms with red ink.
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7.2 The problem stated

Given a finite set of zero mean random vectors ~sk ∈ RN , where k = 1, . . . ,M ,
with the unknown exact probability density p(~s) we aim at approximating
this density by a product of marginal probabilities of the transformed vector
components ~̂s. The reason why we usually can not sample p(~s) itself is that
the number of possible points in the sample space is simply too large to give
any reasonable statistical estimate. The sample window size in image pro-
cessing is usually 9 or 25 points, which results in up to 25625 configurations.
However M is in most applications of the order of 2562 only.

The central statement is

p(~s) ≈ p(~̂s) =
N∏
i=1

pi(ŝi), (7.1)

where the transformation is linear

~̂sk = A~sk (7.2)

ŝi
k =

N∑
j=1

aijs
k
j . (7.3)

A is a fixed N × N ‘mixing matrix’ whose rows ~aj are the base vectors of
the transformation.

A widely used method for calculating this matrix is known as Indepen-
dent Component Analysis (ICA) [NP94, BS95, Com94, KOW+95, Hyv98].
ICA is a recently developed extension of the standard Principal Component
Analysis (PCA). Applications range from image to audio processing, neural
networks and unsupervised learning, utilizing mainly the fact that the ICA
can be used for blind source separation and feature extraction [HO99].

7.3 Independent Component Analysis

Starting from Equation (7.1) we need to define a measure for independency,
since the statement itself is not suitable for finding the matrix A. One
general approach [Com94] is based on the concept of mutual information.
We define the differential entropy H of the random vectors ~̂s with density
p(~̂s) as

H(~̂s) = −
∫
p(~̂s) log(p(~̂s))d~̂s. (7.4)

98



The differential entropy can be normalized to provide the definition of ne-
gentropy J(~̂s), which has the additional property of being invariant under
linear transformations

J(~̂s) = H(~̂sgauss)−H(~̂s), (7.5)

where ~̂sgauss is a Gaussian random variable of the same covariance matrix
as ~̂s. In this sense negentropy can be interpreted as a measure of nongaus-
sianity.

With the concept of differential entropy, we can define the mutual infor-
mation I as a measure of dependence between the random variables ŝi, i =
1 . . . N . Constraining the variables to be uncorrelated we have

I(ŝ1, ŝ2, . . . , ŝN ) = J(~̂s)−
∑
i

J(ŝi). (7.6)

Since mutual information is the information-theoretic measure of the inde-
pendence of random variables, we define the ICA of a random vector ~s as
the linear transformation A which minimizes the mutual information of the
transformed components ŝi or – recalling that the negentropy is invariant
for linear transformations – this is equivalent to finding directions in which
the negentropy is maximized.

The tasks is now to approximate the negentropy by a suitable function,
since the estimation using the definition would require an estimate of the
(unknown) probability density function. The classical method of approxi-
mating the negentropy is using higher order moments, but it was shown in
[Hyv98] that a general form is more suitable

J(ŝi) ≈ c (〈G(ŝi)〉 − 〈G(ν)〉)2 , (7.7)

where G is any non-quadratic function, c is an irrelevant constant, and ν is
a Gaussian variable of zero mean and unit variance.

Combining these results we end up with the following optimization problem:

maximize
N∑
i=1

JG(~ai) for all ~ai, i = 1, . . . , N (7.8)

under constraint 〈(~aTj ~s)(~aTk ~s)〉 = δjk, (7.9)
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where
JG(~ai) =

(
〈G(~aiT~s)〉 − 〈G(ν)〉

)2
. (7.10)

The constraint (7.9) means that the projections of the random vectors onto
the different ICA components are uncorrelated.

Prior to solving the optimization problem it is useful to preprocess the data.
Since the random vectors are usually not centered the mean vector ~m is
subtracted from all members. The second useful preprocessing step is to
whiten the data. This means, the observed vector ~s is transformed linearly
so that the new vector ~̃s is white, i.e. its components are uncorrelated and
their variances equal unity. The most common method for whitening is to
use the eigenvalue decomposition of the covariance matrix 〈~s~sT 〉 by singular
value decomposition (SVD) [PTVF92].

The method used here for determining the independent components and the
matrix A is based on a fixed-point iteration scheme (FastICA) introduced in
[Hyv98]. To find the maxima of Equation (7.9) it starts from the Lagrange-
Function (for one component)

L(~ai) = 〈JG(~ai)〉 − λ〈~aiT ~ai〉 (7.11)

and according to the Kuhn-Tucker conditions the optima of 〈JG(~ai)〉 are
obtained at points where

〈~s g(~aiT~s)〉 − λ~aiT = 0, (7.12)

where g(x) = G′(x). The FastICA scheme solves the optimization problem
by a simple iterative procedure, based on Newton’s method.

7.4 Estimation of the probability density function

The above procedure returns the components of the matrix A. All common
applications use only the vectors as a base for the data samples. The new
idea is to calculate the marginal probability density function p(ŝi) for each
transformed component ŝi = ~ai

T~s by sampling the projected values in a
histogram and estimating the one-dimensional probabilities from these fre-
quencies. Note that this requires a quantization of the values, since ŝi ∈ R.
Multiplcation finally gives the estimated joint probability for the random
vectors as stated in Equation (7.1). The advantage of this method is that we
obtain an approximation to the true probability which can not be sampled,
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since the dimension of the samples is simply too large. The resulting prob-
ability can then be calculated for each sample again to tell us with what
probability the sample belongs to the bulk sample. The interesting mem-
bers will deviate from this and occur with a lower probability. This can be
utilized to isolate these features.

7.5 Labeling the data

We can now assign a probability value to each single input/source vector ~s
which is in this case a sample window taken from an image. Each compo-
nent si is the pixel value corresponding to the intensity of the image inside
a specified sample window. A simple procedure visits each pixel sx,y in the
image, calculates the probability of the surrounding window (taking this
pixel as the center point) and then setting the pixel value in the ‘new’ image
to the value of p(sx,y). In order to gain a better visual impression the new
value can be scaled linearly or non-linearly by any positive function. From
this new image we can calculate the histogram of image intensities (equal
to the histogram of probabilities). If there are in fact regions containing
differing textures in the original image, these will show up in the histogram
as different peaks, which are then easy to separate. This can be done au-
tomatically or by hand. One disadvantage in the preceding scheme is the
fact that the mean vector is subtracted from the data and the total (offset)
intensity is removed from the data. A simple solution to this is to create
a two-dimensional histogram with the local mean (or single pixel) intensity
plotted vs. the intensity in the image p(sx,y). This can, in principal, be
expanded for every new feature extracted from the image.

There are other methods known to the image processing community. Most
of them use the fact that textures have different local correlations between
pixel values. The neighbourhood of a pixel is combined to a single value
which serves as a new label for this point. Several methods simply use
the local standard deviation or apply one of various filters summing up the
surrounding pixels multiplied by the corresponding filter coefficient. The
combined histogram is then used to isolate different clusters belonging to
different textures (for a complete overview see [Rus99]).
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7.6 The whole program

In order to make it easier to follow the steps, a complete list is given here
again:

1. Subtract mean value 〈~s〉 from data ~sk, k = 1, . . . M

2. Calculate covariance matrix Cov(~s)

3. Determine (normalized) eigenvectors and eigenvalues λi of Cov(~s) (PCA)

4. Project data onto eigenvectors and normalize with
√
λi (whitening),

project back

5. Do ICA to find mixing matrix A, using g(x) = G′(x) = tanh(bx), b ∈
[0, 1]

6. Transform data using ~̂s = A~s

7. Calculate probability density p(~si) for each component ŝi (needs quan-
tization)

8. Calculate joint probability p for each ~̂si and assign this p to this data
sample

Further processing:

9. Label each data sample with an integral number ξ (0 to 255), where
ξ = ξ(p) (for example d255× pe)

10. Calculate combined 2-dimensional histogram of si and ξi

11. Identify different features by separating single clusters in the histogram

7.7 Applications

The following sections contain two example applications for the feature ex-
traction. The first is a simple phantom test image to illustrate and evaluate
the procedure, the second is a ‘real-life’ application.
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Figure 7.1: Set of phantom test images. The upper image contains 6 regions
of different textures: A) Gaussian σ = 20, B) Gaussian σ = 30, C) Gaussian
σ = 40 and blurred by a diagonal 5x1 filter, D) Gaussian σ = 50, E) Gaussian
σ = 50 and blurred by a Gaussian filter with r = 7, F) uniform in the range 0
to 255. All images have a mean intensity of 127. The lower image displays the
pixels labeled with the corresponding joint probability (from ICA).
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7.7.1 Phantom test image

A test set of 6 different textures is used to verify the feature extraction.
The image in Figure 7.1 is constructed artificially by assigning each pixel an
intensity drawn from different random distributions. These are

A Gaussian distribution with σ = 20, µ = 127

B Gaussian distribution with σ = 30, µ = 127

C Gaussian distribution with σ = 40, µ = 127, blurred afterwards with
a 5x1 diagonal filter

D Gaussian distribution with σ = 50, µ = 127

E Gaussian distribution with σ = 50, µ = 127, blurred afterwards with
a Gaussian filter r = 7

F uniform distribution, values in the range [0..255]

All textures have the same mean intensity value. This means that the tex-
tures can not be separated using the pixel intensity histogram, since all of
the single histograms overlap.

After applying the feature extraction method – which results in the lower im-
age – all regions have different and non-overlapping intensity distributions.
Combining the original pixel intensity information with the pixel labels re-
sults in the two-dimensional histogram in Figure 7.2. The plot exhibits 5
distinct peaks which correspond to the different regions. However, the re-
gions A and C merge together in one cluster and are not easily separated.
A possible way to subdivide this peak is to run the feature extraction again,
this time only for the two regions. This can in principle be done as a kind
of iterative method to find smaller and smaller clusters.

7.7.2 Isolating the torn edge of a paper

An application that recently has gained interest in the public is the recon-
struction of damaged documents. In this case – although maybe not a very
common one – the paper sheets containing important information were torn
into small pieces. However, the size of the single pieces are still large enough
to put them together again in order to recover the original paper [Blu00].
The problem that arises is to find the corresponding ‘partner’ piece from a
larger amount of candidates. One step towards the solution is to use the fact,
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Figure 7.2: Two dimensional histogram combining the images features in
Figure 7.1. The projections on the x-y plane contain the points belonging to
the different texture regions.

105



that two piece show a similar edge area where they were torn in two. This
can be done automatically by first scanning the paper, isolating the region
of interest and then searching for matching partners. Feature extraction
becomes necessary for identifying the edge area.
Figure 7.3 shows an example of a piece of paper that was scanned with
256 grey-levels. The area where the paper was torn is visible to a human
observer, but the intensity is not homogeneous in this region and hence, no
histogram threshold is possible. A texture recognition is necessary.
The first step is to remove any writing, since this will interfere with the
detection of textures. A simple way to do this is to scan the object first on
a black and then on a white background. The white version is then inverted
(the new pixel value is the current intensity subtracted from the maximum
intensity) and then added (pixel-wise) to the black background image.
This results in an image with the writing removed from the paper. After
applying the labeling procedure with ICA, the black edges are clearly visible
(Figure 7.4 – upper image) and are isolated by simple thresholding of the
intensity histogram. The extracted regions are shown in Figure 7.4 – lower
image.
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Figure 7.3: Top: scanned original image of a piece of paper on a black
background. Bottom: on white background.
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Figure 7.4: Top: ICA processed image. Bottom: final image containing
the extracted edge areas (after histogram thresholding and single pixel noise
removal).
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Chapter 8

Conclusion

This thesis introduced new statistical models for image processing based
on the formalism of Gibbs Random Fields. The probabilistic approach de-
scribes the interaction of neighbouring pixels by local potentials resulting in
a global energy function of the Gibbs distribution. The energy depends on
a set of free parameters – the coupling constants – which have to be learned
from the data. The learning problem is solved analytically by approximating
the true two-dimensional structure of the image by an independent row (or
column) approach which decouples into two systems. The image restoration
process uses a Bayesian approach based on an extended Monte Carlo pro-
cedure. As can be seen from the results even this very simple model, which
only includes the interaction between two neighbouring points, is able to
capture most of the information contained in the images. This is due to
the fact that the main property of natural images – the smoothness – is a
very strong constraint for local models. A special property of the Zq-model
is that the energy function is fully parameterized by its ‘spectral’ compo-
nents, which means it does not assume any special underlying function of
the couplings and hence, can adapt perfectly to the measured correlations.
It also means that lines and edges do not have to be treated separately as in
the case of most other models. Additionally, the model appears to be very
robust under distortion of the coupling constants and learned parameters
can even be taken from a noisy image or from another image.

Compared to conventional filters – for example a simple median filter – the
restoration performance is very good especially in the very high noise do-
main, where even our eye is unable to determine the original scene. The
model can easily be extended to colour images, by using a metric in the

109



colour space and simply mapping the distance between two colour values to
the Zq states.

Although the approach is based on statistical properties of both the image
data and the noisy channel, it can handle deterministic convolutional filters
like blur – which are not probabilistic – and still achieve good restoration
results. It is shown that even these filters introduce an information loss,
which is mainly due to quantization error.

For images where the noise model and especially the parameters are un-
known, a predictive procedure can be used to find this model and to es-
timate the corresponding parameters, by comparing the predicted value of
the prior model with the received pixel value.

With these properties the model can in principal be used for lossless compres-
sion, since it achieves entropy rates by prediction close to the ones obtained
by other state-of-the-art algorithms. However, the model is based on four
surrounding neighbours, whereas other models are based on prediction by
using other points, mostly from the preceeding point and row.

Another application is image segmentation or classification, where a region
of the image is labeled according to its local texture. An approach based on
a product of independent bonds utilizing the Zq model is applied to extract
features from an image, segmenting it according to different textures. An-
other model that aims at capturing the true underlying joint probability of
image blocks is applied to a special region in an image in order to separate
it from the unimportant data.

From a physical point of view the application of statistical mechanical
models to image processing enables one to utilize all the known properties of
these systems and derive interesting methods which prove to be very power-
ful and robust. Additionally, the combination of rather theoretical models
and real-life data makes this combination an extremely challenging yet sat-
isfying task.

Apart from being interesting, the application in image processing (restora-
tion and compression) is a fundamental problem for data acquisition, trans-
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mission, and investigationin today’s world.

Finally, as was shown in a few experiments, the model has some interesting
connections to biology. It appears that low level vision has properties which
might have similar processing steps incorporated in the first stages of our
visual path. The statistics of natural images – being the input to our brain –
play an important role in compression and transmission of visual data from
the retina to the visual cortex. Having a simple model of the first stages
might help us to understand what’s happening in the more complex regions
of our brain.
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