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Abstract
We study the connection between the exponent of the order parameter of theMott insulator-to-
superfluid transition occurring in the two-dimensional Bose–Hubbardmodel, and the divergence
exponents of its one- and two-particle correlation functions.We find that at themulticritical points all
divergence exponents are related to each other, allowing us to express the critical exponent in terms of
one single divergence exponent. This approach correctly reproduces the critical exponent of the three-
dimensionalXY universality class. Because divergence exponents can be computed in an efficient
manner by hypergeometric analytic continuation, our strategy is applicable to awide class of systems.

1. Introduction

Continuous phase transitions are often described by Landau’s approach [1–5]: assume that the
thermodynamical potentialΓ of a given systempossesses the form

y yG = + + ( )a a a , 10 2
2

4
4

where the coefficients a0, a2, a4 depend on a control parameterj, and the system adopts, for eachfixed value of j,
that value ymin ofψ for which the potential(1) takes on itsminimum. If then a4 is positive and thus guarantees
stability, and if onemay further neglect the dependence of a4 onj, while a2 crosses zero at some value jc, being
positive for <j jc and negative for >j jc, onefinds

y = < ( )j j0 for , 2min c

whereas
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In particular, if a2 varies linearly withj according to

a= - -( ) ( ) ( )a j j j 42 c

with a > 0, one obtains

y
a

= - >( ) ( )
a

j j j j
2

for . 5min
4

c
1 2

c

Thus, ymin serves as an order parameter of the transition, emergingwith themean-field exponent b = 1 2 at
the transition point jc.

In the present workwe extend this basic scenario such that it captures the quantumphase transition froma
Mott insulator to a superfluid in the pure two-dimensional Bose–Hubbardmodel at zero temperature. The
Bose–Hubbardmodel is a paradigmatically simple latticemodel ofmany-particle physics, involving spinless
nonrelativistic Bose particles whichmove on a d-dimensional lattice of arbitrary geometry [6–8]. Neighboring
lattice sites are connected by a tunneling link of strengthJ, and two particles occupying the same site repel each
otherwith energyU; the dimensionless ratio J U then plays the role of the control parameterj. The system is
supposed to be open; its particle content being regulated by a chemical potentialμ. The phase diagram resulting
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for a two-dimensional square lattice in the J U–m U -plane is shown infigure 1; the corresponding diagrams
for triangular or hexagonal lattices are available in the literature [8].Within the so-calledMott lobes confined at
low J U between successive integer values -g 1and g of the scaled chemical potential m U the system is in an
incompressibleMott state with gparticles per site; when increasing J U atfixed m U it enters the superfluid
phase at the phase boundary ( )J U c. This quantumphase transition has been studied in quantitative detail by
quite a number of authors with variousmethods [9–15]; it reflects the competition between the lowering of the
kinetic energy with increasing delocalization, and the lowering of the repulsion energy with increasing
localization of the particles.

It is known from the scaling theory of Fisher et al [7] that generally thisMott insulator-to-superfluid
transition ismeanfield-like in character, butwith the exception of themulticritical points with particle-hole
symmetry at the tips of theMott lobes, where the transition takes place at fixed density corresponding to an
integerfilling factorg. At these special points the transition shown by the d-dimensional Bose–Hubbardmodel
falls into the universality class of the +( )d 1 -dimensionalXYmodel. Thus, the case d=2 is of particular
interest, since it leads to the three-dimensionalXYuniversality class, which also covers the intensely studied
lambda-transition undergone by liquid helium [16].

When trying to reconcile this existing knowledgewith an approach based on an effective potential(1), one
faces several questions: howdo the Landau coefficients a2k, which now also depend, besides the control
parameter J U , on the scaled chemical potential m U , manage to switch from ‘meanfield-like’ to ‘multicritical’
upon variation of m U ?Howdoes one obtain nontrivial critical exponents from this approach, as opposed to
the trivial exponent b = 1 2 showing up in equation (5)?What effort would be required to compute these
critical exponents along this linewith sizeable accuracy? These are the questionswe address in the present work,
which constitutes a clarification and significant extension of our previous brief communication [17].

Traditionally, the calculation of critical exponents is performedwithin the framework of the
renormalization group (RG) theory [4, 5, 18, 19], having produced fairly precise data. Thus, we do not primarily
aim at improving the numerical accuracy of known critical exponents. Instead, we intend to establish a novel
bootstrap procedure for computing critical exponents which does notmake use of RG theory, and therefore
might lead to additional insight. The key input into our analysis are the correlation functionswhich have been
obtained in the accompanyingwork [20], referred to as paperII in the following. In thatmore technical paperII
we have investigated the analytic continuation of divergent strong-coupling perturbation series for the Bose–
Hubbardmodel bymeans of generalized hypergeometric functions + Fq q1 , in comparisonwith themore familiar
Shanks transformation and Padé approximationmethods, and have found hypergeometric analytic
continuation to be particularly well-suited for characterizing the divergence of the correlation functions at the
transition points. Nonetheless, the present paper can be read independently frompaperII, since herewe require
only certain results obtained therein, while detailedworking knowledge of the hypergeometric continuation
technique as such is not necessary.

Figure 1.Phase diagram for the Bose–Hubbardmodel on a two-dimensional square lattice at zero temperature.Within the lobes
located at low J U the system is in an incompressibleMott state with gparticles per site, outside these lobes in a superfluid state. The
tips of the lobes representmulticritical points; here the system falls into the universality class of the three-dimensionalXYmodel. This
diagramhas been computed according to the hypergeometric scheme developed in [20].
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Weproceed as follows: in section 2we briefly recapitulate the formal derivation of the appropriate effective
potential for the Bose–Hubbardmodel [12, 13], and state the required relations between the Landau coefficients
and the correlation functions. In the central section 3we then showhow to evaluate the critical exponent of the
order parameter. In view of the existing accurate reference data, this puts hypergeometric continuation to a truly
hard,meaningful test. In section 4we discuss a property that characterizes the Landau coefficients at the
multicritical points. Finally, the discussion led in section 5 concludes our investigation. As an interesting
conceptual insight gained fromour analysis, wefind that itmay not always suffice to terminate the effective
potential after the fourth-order term, as done in the time-honored paradigm(1); rather, for extracting the
order-parameter exponent describing theMott insulator-to-superfluid transition one also has to resort to the
Landau coefficienta6.While we do deliberately restrict ourselves to the two-dimensional Bose–Hubbardmodel
for the sake of definiteness, it stands to reason that ourmethods are also applicable to further systems.

2. The effective potential for the Bose–Hubbardmodel

The Bose–Hubbardmodel is formulated in terms of operators
†

bi andbi which create and annihilate,
respectively, a Bose particle at the ith lattice site [6, 7]. Thus, they obey the usual commutation relations

d= [ ] ( )
†

b b, , 6i j ij

and the local number operators

=   ( )
†

n b b 7i i i

yield the number of particles occupying the ith site. Employing the pair repulsion energyU as the energy scale of
reference, themodelHamiltonian is written in dimensionless form as

å å åm= - - -
á ñ

     ( ) ( )
†

H n n U n J U b b
1

2
1 , 8

i
i i

i
i

i j
i jBH

,

where thefirst two sums extend over the entire lattice, and the symbol á ñi j, ismeant to indicate that the third
sum ranges over all pairs of neighboring sites i and j. Hence, thefirst termon the right-hand side gives the total
repulsion energy, the second specifies the interactionwith the given chemical potential, and the third
corresponds to the kinetic energy of the particles. As usual infield theory, we couple this system(8) to external
sources and drains whichwe choose to be spatially uniformwith strength η, giving the extended system

å h= + +   ( ) ( )
†

H H b b . 9
i

i iBH

Without loss of generality we have taken η to be real, since any phase could be removed by an appropriate

redefinition of
†

bi andbi. The key quantity of interest for the theoretical description of thismodel at zero
temperature now is the intensive energy landscape  m h = á ñ( )U J U H M, , , whereM denotes the total
number of lattice sites, which is assumed to be so large thatfinite-size effects do notmatter, and the expectation
value is takenwith respect to the ground state of the extended system(9)which, in contrast to the basic
system(8), does not conserve the number of particles. Since this ground state energy is an even function of the
source strengthη, we expand it in the form

 åm h m m h= +
=

¥

( ) ( ) ( ) ( )U J U e U J U c U J U, , , , , 10
k

k
k

0
1

2
2

where the coefficients m( )c U J U,k2 represent k-particle correlation functions. In the accompanying paperII
we have shownhow to evaluate these correlation functions bymeans of a combination of high-order
perturbation theory and hypergeometric analytic continuation. In particular, we have studied the one-particle
correlation function c2 and the two-particle correlation function c4: when approaching the phase boundary from
within aMott lobe by varying the control parameter J U at fixed chemical potential m U , these functions
diverge as

m ~ - m-( ) (( ) ) ( )( )c U J U J U J U, 11k
U

2 c
k2

with certain positive characteristic exponents  m( )U ;k2 wehave estimated the exponents  m( )U2 and
 m( )U4 numerically for chemical potentials pertaining to the lowest lobes [20].

Following standard procedures offield theory, the connection between these correlation functions and
Landau’s description of phase transitions ismade bymeans of a Legendre transformation [4, 5, 21]: an effective
potentialΓ is obtained as the Legendre transformof  m h( )U J U, , with respect to the source strengthη [12].
Thus, we introduce a variableψ according to

3
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

h
y h

¶
¶

≕ ( ) ( )2 ; 12

theHellmann–Feynman theorem, applied to the extended, particle number non-conservingHamiltonian(9)
then immediately gives the relation

y h = á ñ( ) ( )b . 13i

The series(10)now yields the representation

åy h h=
=

¥
-( ) ( )k c , 14

k
k

k

1
2

2 1

which, upon inversion, allows one to express the source strengthη in terms of its conjugate variableψ:

h y y y y y= - + - +
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ) ( ) ( )

c

c

c

c

c

c

c

1 2 12 3
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2 4
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2
7

6

2
6

4 6

Performing the Legendre transformation according to the prescription

m y m h y y h yG = -( ) ( ( )) ( ) ( )U J U U J U, , , , 2 , 16

we then obtain the desired effective potential





y y y y

y y y y

G = - + + - +

+ + + +

⎛
⎝⎜

⎞
⎠⎟ ( )

≕ ( ) ( )

e
c

c

c

c

c

c

c

e a a a

1 4

, 17

0
2

2 4

2
4

4 6

2
6

4
2

2
7

6 8

0 2
2

4
4

6
6 8

where m= ( )e e U J U,0 0 is the intensive ground-state energy of the basic system(8), and the Landau
coefficients m= ( )a a U J U,k k2 2 ( = ¼k 1, 2, 3, ) emerge as certain combinations of the correlation
functions. Infield-theoretic jargon, these Landau coefficients represent one-particle irreducible (1PI) vertex
functions [4, 5].

Nowwe are in a situation analogous to the one considered in the introduction: since η andψ are Legendre-
conjugated variables, we have the identity [21]

y
h

¶G
¶

= - ( )2 ; 18

since the actual systemof interest(8) is recovered by setting h = 0, it corresponds to the stable stationary points
ymin ofΓ. In accordancewith equation (13) theMott insulating phase is characterized by y = 0min , whereas a
nonvanishing value y ¹ 0min indicates the presence of a superfluid phase, so that ymin constitutes a bona fide
order parameter of theMott insulator-to-superfluid transition.However, we are not free tomake convenient
assumptions concerning the dependence of the Landau coefficients on the control parameter J U and the
scaled chemical potential m U , but rather have to respect the above connections between the Landau
coefficients and the correlation functions determined in paperII.

3. Evaluation of the critical exponent

The purpose of this section is to investigate the exponentsb b m= ( )U which govern the emergence of the
order parameter according to

y ~ - b m( ( ) ) ( )( )J U J U 19U
min c

when J U is increased at fixed m U beyond the respective transition point ( )J U c. In particular, wewill
evaluate the exponent bcrit which belongs to themulticritical points at the tips of theMott lobes shown in
figure 1, wherewe do expect numerical agreementwith the critical exponent b = ( )0.3485 2crit characterizing
the three-dimensionalXY universality class [22].

In paperII the correlation functions m( )c U J U,2 and m( )c U J U,4 have been obtained by fitting their
strong-coupling perturbation series in theMott-insulator regime, that is, for < ( )J U J U c to hypergeometric
functions + Fq q1 , thereby determining their divergence exponents [20]. Herewe do not utilize the analytically
continued hypergeometric functions for > ( )J U J U c. Instead, the following analysis relies on the
proposition that the asymptotic relations(11), namely

m ~ - m-( ) ( ( ) ) ( )( )c U J U J U J U, 20k
U

2 c
k2

possess the same divergence exponent  m( )Uk2 on both sides of the pole, thus allowing us tomake the decisive
step into the superfluid regime.

4

New J. Phys. 19 (2017) 103036 S Sanders andMHolthaus



For the sake of the argument, let us for themoment assume that for certain m U wemay neglect terms of
order y( )6 in the full effective potential(17). This assumption reduces the effective potential to the archetypal
form(1) reviewed in the introduction. Itsminimum ymin then is given by

y =
-

> ( ) ( )a

a
J U J U

2
for , 21min

2 2

4
c

in complete analogy to equation (3). In order to evaluate the exponentβ, we combine the relations(17) between
the Landau coefficients a2k and the k-particle correlation functions c2kwith their power-law behavior(20) close
to the transition point ( )J U c, obtaining

- = ~ - m( ( ) ) ( )( )a
c

J U J U
1

22U
2

2
c

2

and

 = ~ - m m-( ( ) ) ( )( ) ( )a
c

c
J U J U . 23U U

4
4

2
4 c

4 2 4

According to equation (21) the exponentβwould then be given by

 
b =

- ( )3

2
. 244 2

Weobserve that, in contrast to the example reviewed in the introduction, the relation(23) allows a4 to vanish at
the phase boundary. This is indeedwhat happens: figure 2, which displays the Landau coefficients a2 and a4 for
the arbitrary value m =U 0.2652 of the scaled chemical potential, shows that both a2 and a4, when considered
as a function of J U , become zero at ( )J U ;c the same behavior is found for all chemical potentials.

Therefore, at the phase boundary we are not entitled to neglect terms of order y( )6 , and have at least to
consider the effective potential in the form

y y yG = + + + ( )e a a a ; 250 2
2

4
4

6
6

the guiding hypothesis nowbeing that a6 adopts positive values in the superfluid regime. Solving the equation
yG¢ =( ) 0min for ymin then gives

y =
-

 -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )a

a

a a

a3
1 1

3
26min

2 4

6

2 6

4
2

=
-

 -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

c c c c c

c c

c

1

12 3
1

3
11 . 27

4 2
3

6 2
2

4

2 6

4
2

The underlying assumption

< = - ( )a
c

c

c

c
0

4
286

6

2
6

4
2

2
7

Figure 2.Behavior of the Landau coefficients ( )a J U2 and ( )a J U4 for m =U 0.2652, as computed from the correlation functions
c2 and c4 obtained by hypergeometric analytic continuation based on F2 1 in [20].
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directly entails

- > ( )c c

c

3
11 1. 292 6

4
2

Thismeans that c c c2 6 4
2 does not converge to zero for  ( )J U J U c, which in terms of the divergence

exponents  k2 implies that

   - ( )2 . 306 4 2

In order to deduce the exponentβ from equation (27), we distinguish two cases:
(i) In casewe have a strict inequality   > -26 4 2, the combination c c c2 6 4

2 diverges for  ( )J U J U c,
so that

 - ~ ( )c c

c

c c

c
1

3
11

3
. 312 6

4
2

2 6

4
2

With this, equation (27) asymptotically reduces to

y ~
-

~
-

( )

c c c c c

c c

c

c c c c c

1

12 3

3

1

3

1

16
. 32

min
2

4 2
3
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2

4
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4
2
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4
4
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6

The proposition   > -26 4 2 implies     - < + -5 7 42 6 2 6 4, and consequently

 ( ) ( )c

c

c

c c
J U J Ufor . 336

2
5

4
4

2
7

6
c

Hence, the exponentβ is then given by

   
b =

-
>

- ( )5

4

3

2
. 346 2 4 2

(ii)On the other hand, if we have the equality   = -26 4 2, the square root in equation (27) is asymptotically
constant and the asymptotics of ymin

2 are given by

y ~
-

( )
c c c c c

1

12 3
. 35min

2

4 2
3

6 2
2

4

Herewe have     - = + -3 22 4 2 4 6, so that both terms in the denominator exhibit the same asymptotic
behavior.While it seemsmathematically feasible that the leading terms in the difference in the denominator
cancel each other, we disregard this unlikely possibility. Therefore, the relation(35) yields the exponent

    
b =

- -
=

- ( )2

2

3

2
. 366 2 4 4 2

In summary, if terms of order y( )8 can be neglected in the effective potential(17), the exponentβ is bounded
by

 b
- ( )3

2
; 374 2

this bound becomes sharp if the relation(30) is an equality. Remarkably, the bound equals the previous
expression(24), which had been deduced from the incorrect proposition that >a 04 at the phase transition.

We still have to check the current proposition >a 06 , which is the basis of the result(37). To do so in full
mathematical detail, we have to evaluate the expression

= - ( )a
c

c

c

c

4
, 386

6

2
6

4
2

2
7

butwe lack reliable data1 for the three-particle correlation function c6, so that we are restricted to the
investigation of the term c c4

2
2
7. Exemplarily, we again inspect the hypergeometric fits to c2 and c4 at

m =U 0.2652, the value already considered in figure 2, and state their divergence exponents  = 1.2812 and
 = 4.6214 , respectively.We note that  = > =· ·2 9.241 8.967 74 2, signaling that

 ~ - -( ( ) )c c J U J U4
2

2
7

c
7 22 4 diverges at the phase boundary, strongly suggesting that a6 shares the same

behavior.
Inspecting the divergence exponents 2 and 4 obtainedwith hypergeometric analytic continuation for

 m U0 4, as displayed infigure 3, we observe that, towithin numerical accuracy,   ·7 24 2 in this

1
The perturbative evaluation of c6 requires three creation and three annihilation processes, effectively reducing the number of tunneling

events that can still be handled numerically [20].
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entire interval. Based on the particular shape of the curves drawn infigure 3, we surmise that this actually is a
strict inequality aside from the tips, whereas

 = ( )7

2
at the tips of the lobes. 394 2

Under the assumption of the validity of this equation, the divergence of c4
2 and that of c2

7 cancel each other at the
tips, and c c4

2
2
7 has a finite, non-zero limit at the phase boundary. If we further assume that the ratio c c6 2

6, and
hence a6, shares the same behavior, we deduce    = = -6 76 2 2 2, which, in view of the equality(39), gives
  = -26 4 2. This is precisely the second case(ii) in the above distinction, for whichwe have derived the
equality(36). This leads to a decisive conclusion: inserting the relation(39) between the divergence exponents
into this formula(36) for the exponentβ of the order parameter, we obtain the identity


b = ( )

4
40crit

2

for the critical exponent bcrit at the tips of the lobes.While the inequality(37) is a general result, this equality(40)
hinges on the observationsmade infigure 3, and applies to themulticritical points only.We thus arrive at an
interesting characterization of themulticritical points: the Landau coefficient a6 diverges for all chemical
potentials when  ( )J U J U c, with the exception of these points.

The key result(40), stating that the critical exponent bcrit at the tips of theMott lobes is given by one fourth
of the divergence exponent2 of the two-particle correlation functionc2, is amenable to quantitative
verification: in table 1we list the values of bcrit as obtained from equation (40) at the tip of the lowestMott lobe
g=1 by hypergeometric continuation based on + Fq q1 withq ranging from0 to 4; the third column states the
relative deviation of the respective result from the reference valueb = ( )0.3485 2crit which has been derived
from the f4 latticemodel and the dynamically dilutedXY-model by combiningMonte Carlo simulations based
onfinite-size scalingmethods, and high-temperature expansions [22]. Evidently, the agreement is quite good.

Figure 3.Divergence exponent  m( )U2 of the one-particle correlation function c2 (full line), compared to 2/7 times the divergence
exponent  m( )U4 of the two-particle correlation function c4 (dotted line), as computed by hypergeometric analytic continuation
based on F2 1. Observe that within the numerical accuracy achieved here one has   ·7 24 2, with equality conjectured at the tips of
the lobes.

Table 1.Comparison of the critical exponent as
obtained at the tip of the firstMott lobe g=1 by
hypergeometric analytic continuation based on

+ Fq q1 with the value b = ( )0.3485 2crit expected for
the three-dimensionalXY universality class.

Fit function bcrit Relative deviation

F1 0 0.3511 0.76%

F2 1 0.3475 −0.30%

F3 2 0.3441 −1.27%

F4 3 0.3459 −0.76%

F5 4 0.3478 −0.18%
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Speculating further that F2 1might yield themost accurate numerical estimates, representing a good
compromise between flexibility, as provided by the number offitting parameters, and the number of available
input data still accessible to high-order perturbation theory, we also present estimates for bcrit computedwith
F2 1 for the lowest fourMott lobes in table 2. Based on these data, we cautiously state ourfinal
result b = ( )0.348 1crit .

4. Characterization of the critical effective potential

The previous observation that the Landau coefficient a6 diverges for all chemical potentials at the phase
boundary, except at themulticritical points, necessitates further investigations. Formotivation, let us once again
consider the truncated potential(1), which yields the necessary condition

y
y y=

¶G
¶

= + ( )!
a a0 2 4 412 4

3

for itsminimum ymin. This immediately implies that

y
y

= - ( )a

a

1

2
, 424 min

4

2 min
2

independent of J U . Consequently, the quadratic and the quartic term, that is, ya2 min
2 and ya4 min

4 , have the
same asymptotic behavior for  ( )J U J U c.

We now return to the full potential(17). Investing only the relations = -a c12 2 and =a c c4 4 2
4, we

deduce

 y
y

y= - ~ - b- -( ( ) ) ( )( )a

a

c

c
J U J U . 434 min

4

2 min
2

4

2
3 min

2
c

2 34 2

Therefore, both terms ya2 min
2 and ya4 min

4 have the same asymptotic behavior for  ( )J U J U c if and only if

 
b =

- ( )3

2
, 444 2

which is our previous equality(36), valid at the lobe tips. Thus, our formula for the critical exponent at the tips of
theMott lobes implies that the quadratic and the quartic termdisplay the same asymptotic behavior, and
vice versa.

Going one step further, we observe that

y
y

y y=
-

= -
⎛
⎝⎜

⎞
⎠⎟ ( )a

a

c c c c

c c

c

c c

c

c

4 4
. 456 min

6

4 min
4

6 2
6

4
2

2
7

4 2
4 min

2 6

2
2

4

4

2
3 min

2

If we nowutilize the relation   = -26 4 2, as strongly supported by our numerical findings at the tips of the
lobes, both addends share the same asymptotic behavior for  ( )J U J U c. Therefore, wemeet the same
pattern: equation (44) is equivalent to ya4 min

4 and ya6 min
6 showing the same behavior.

This finding appears to hold in all orders. In general, as a consequence of the Legendre transformation(16)
the Landau coefficient a2k contains an addendwhich depends on c2 and c4 only, so that

= - - +-
-

-
( ) · ! · ( )a k

c

c
2 . 46k

k
k

k2
1 4

1

2
3 2

Generalizing our previous arguments, we conjecture that any two terms ya k
k

2 min
2 and ya l

l
2 min

2 of the effective
potential(17) exhibit the same asymptotics for  ( )J U J U c if and only if equation (44) holds. This
observation also resolves an apparent contradiction: equation (44) has been obtained from the truncated
potential(25), although such a truncation is not validwhen all terms of the full potential are of the same

Table 2.Comparison of the critical exponent as
obtained by hypergeometric analytic continuation
with F2 1 at the tip at the lowest fourMott lobes, with
the value b = ( )0.3485 2crit expected for the three-
dimensionalXY universality class.

Lobe indexg bcrit Relative deviation

1 0.3475 −0.30%

2 0.3483 −0.06%

3 0.3485 0.00%

4 0.3489 0.12%
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magnitude.However, equation (44) reflects a systemproperty at themulticritical points which is not affected by
the truncation, which is why it even has emerged, albeit as the result of an oversimplified reasoning, in
equation (24).

To conclude, there is strong evidence that at themulticritical points corresponding to the tips of theMott
lobes the divergence exponents  k2 are not independent of each other, but can all be related to 2, as exemplified
by our relations  = ·7 24 2 and    = - =2 66 4 2 2. This is tantamount to the observation that all terms in
the effective potential(17) display the same asymptotic behavior, and allows us to express the critical exponent
bcrit in terms of 2 alone, see equation (39).

5.Discussion

In this paper we have established a connection between the divergence exponents  k2 of the k-particle correlation
functions c2k pertaining to the two-dimensional Bose–Hubbardmodel, as defined by equations (10) and (11),
and the critical exponent of the order parameter of theMott insulator-to-superfluid transition. This allows us to
take advantage of the fact that the divergence exponents 2 and 4 can be computed numerically with tolerable
effort for any value of the scaled chemical potential m U . This is achieved bymeans of hypergeometric analytic
continuation of the strong-coupling perturbation series of c2 and c4, respectively, as demonstrated in detail in
paperII [20].

Under the assumption that the effective potential(17) can be truncated after the sixth order term, requiring
the Landau coefficient a6 to be positive, we have derived the lower bound

 b m
m m-( ) ( ) ( )

U
U U3

4
4 2

for the exponent b m( )U withwhich the order parameter emerges at theMott insulator-to-superfluid
transition.

For all chemical potentials except thosemarking themulticritical points the transition is expected to be
meanfield-like [7]; the bound then is well compatible with themean-field exponent b = 1 2mf . At
multicriticality, that is, at the lobe tips the bound becomes sharp, and actually yields, towithin the numerical
accuracy achieved here, the critical exponent bcrit of the three-dimensionalXY class.Moreover, at
multicriticality the divergence exponents are no longer independent of each other, but can all be expressed in
terms of 2. Utilizing the ‘multicritical’ equality  = ·7 24 2, deduced numerically from figure 3, we arrive at
the identity b = 4crit 2 , checked to sub-percent accuracy in tables 1 and 2.

The numerical accuracy of our present estimate b = ( )0.348 1crit does not yetmatch that of the elaborate
Monte Carlo value reported in [22] for theXYmodel, i.e., b = ( )0.3485 2crit . However, both results arewell
compatible with each other, providing an impressive example of universality in phase transitions.

Our approach to critical exponents is essentially self-contained, and comparatively straightforward. Along
the lines pioneered in this paper, hypergeometric continuation for evaluating divergence exponentsmay provide
critical exponents for wide classes ofmodels, thus shedding further light on the universality hypothesis of
statistical physics.
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