
CA RL
VON

OSS I ET Z KY

Fakultät II- Informatik, Wirtschafts- und Rechswissenschaften
Department für Informatik

Advancing Software Model-Checking by
SMT Interpolation Beyond

Decidable Arithmetic Theories
An approach to verify safety properties in embedded and hybrid system models

Dissertation zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften

vorgelegt von

M.Sc. Ahmed Mahdi

Gutachter:

Prof. Dr. Martin Fränzle
Prof. Dr. Bernd Becker (Albert-Ludwigs Universität Freiburg)

weitere Mitglieder der Prüfungskommission:

Prof. Dr. Oliver Theel (Vorsitz)
Dr. Ingo Stierand

Tag der Einreichung: 06.02.2017
Tag der Disputation: 09.08.2017

Õ�æ
k� ��QË @ 	á�
�Ô �g��QË @ é�

��<Ë @ Õ�æ
���.�

" A �ÒJ
 	¢�
�«

�
½�J

�
Ê �« é�

�<Ë @
�

É �	��	̄ �	àA
�
¿�ð �Õ

�
Î �ª��K �	á

�
º��K �Õ

�
Ë A �Ó

�
½ �Ò

��
Ê �« �ð\

113 Õ�̄P �éK

�
@ - ZA� 	�Ë @ �èPñ�

In the Name of Allah, the Most Beneficent, the Most Merciful
“Allah (The God) has taught you what you did not know before,

and great is Allah’s grace upon you.”
The Holy Quran, Chapter 4, Verse 113.

Dedication

Dedicated to Yousra,
...

Abdul Raouf,
...
Ayah,
...
Selma and Osama

v

Abstract

Envisage a world where embedded and hybrid system models are analysed with scrutiny by
algorithms that automatically, efficiently, and unhesitatingly can answer questions about
reachability and stability analyses as well as asserting safety of these models. In such a
world, embedded and hybrid systems are significantly more reliable than what we currently
see in our life; software has fewer bugs and is easily certifiable like other engineering
artifacts; software-induced disasters are effortlessly absent; and the billions of euros that
are normally spent – over previous decades – on testing and maintenance activities, are
instead rushed into more productive enterprises. Alas, such a world is a fictitious utopia,
since the verification questions mostly translate into undecidable problems. Nevertheless,
one can still invent algorithms and build tools that can answer some questions about safety
most of the time, and this is exactly what is introduced in this dissertation. We advance
safety property verification in several directions.

First, a particular variant of safety question asks for methods to accurately and safely
detect unreachable code fragments, a.k.a. dead code, in arithmetic programs. The reason
for doing so is that detecting dead code permits a more rigorous interpretation of coverage
based-criteria in testing-based code validation and certification, as recommended in various
standards for embedded system development, as well as meeting the demand for absence
of dead code imposed by pertinent standards, like DO-178C. To do so, we integrate several
techniques; namely Craig interpolation (CI), counterexample guided abstraction refinement
(CEGAR), interval constraint propagation (ICP), and conflict-driven clause learning over
theories (CDCL(T)) in one framework. In this framework, CI is the workhorse for ab-
straction refinement by using stepwise interpolants in lazy abstraction technique as well
as for dis-/proving the reachabiity of bad states representing the violation of the safety
property. CEGAR is used to ward off the state space explosion problem while handling
large models. ICP and CDCL(T) are employed to reduce the generally non-linear problem
to a satisfiability modulo theory (SMT) problem in the order theory of the reals and to
solve extremely large Boolean and arithmetic constraint systems respectively. In order
to implement this framework in the iSAT3 model checker, we extend the latter in a way
such that it encodes an embedded arithmetic program, inducing a transition system, in its
iSAT3 corresponding control flow automaton (CFA) such that the CFA nodes represent
the program control points and the CFA edges represent the conditions and changes be-
tween the program control points. Then, iSAT3 will generate an adequate abstraction of
this CFA model and verify the unreachability of unsafe property representing the unsafe
states by finding a safe invariant that overapproximates the reachable states of the veri-
fied model and on the same time does not intersect with unsafe states. We verify several
benchmarks by using our new implementation, where benchmarks indicate superior per-
formance of the new CEGAR approach on non-linear benchmarks, even in floating points
dominated C-programs where IEEE 754 standard is supported in the proposed framework.

Second, motivated by the practical need for verifying probabilistic hybrid systems involving

vii

linear, polynomial, and transcendental arithmetic, we go beyond stochastic boolean satis-
fiability problems (SSAT) by defining a notion of Generalized Craig Interpolant (GCI) for
the stochastic satisfiability modulo theories (SSMT), and introduce a mechanism to com-
pute such stochastic interpolants for non-polynomial SSMT problems based on a sound
and relatively complete resolution calculus. The new notion of Craig interpolation can han-
dle unbounded probabilistic reachability and stability problems in a probabilistic hybrid
automaton.

Finally, optimising the verification process in terms of improving the time consumption
and memory usage while verifying assumption-commitment specifications, is an industrial
quest. An assumption-commitment specification is a contract where the commitment is
required to hold if the assumption holds as well. Our approach improves the verification
process by pruning the state space of the model where the assumption is violated. This
exclusion is performed by admissible transformation functions which are defined based
on a new notion of edges supporting a property. Our approach applies to computational
models which range from finite automata to hybrid ones. This technique was evaluated
by verifying several case studies in Uppaal.

viii

Zusammenfassung1

Man stelle sich eineWelt vor, in der Modelle eingebetteter und hybrider Systeme genauestens
durch Algorithmen untersucht werden, welche automatisch und effizient Fragen bezüglich
ihrer Erreichbarkeit, Stabilität und Sicherheit beantworten können. In solch einer Welt
wären eingebettete und hybride Systeme signifikant zuverlässiger als in unserer gegenwärti-
gen Situation; Software würde weniger Programmierfehler aufweisen und wäre - wie andere
technische Artefakte - leichter zu zertifizieren; softwarebedingte Unfälle ließen sich müh-
elos vermeiden; und die bisher hohen Ausgaben für Tests und Wartung könnten gespart
und für produktivere Aktivitäten verwendet werden. Leider ist solch eine Welt eine utopis-
che Vorstellung, denn die meisten Verifikationsaufgaben stellen unentscheidbare Probleme
dar. Dennoch kann man Algorithmen und Werkzeuge einführen, welche bestimmte Sicher-
heitsfragen in den meisten Fällen beantworten, und genau das ist Gegenstand dieser Dis-
sertation.

Als erstes erfordert eine bestimmte Variante von Sicherheitsfragen Methoden zur Ent-
deckung sogenannten toten Codes (engl. dead code) in arithmetischen Programmen. Die
Entdeckung toten Codes ermöglicht die präzisere Interpretation von Codeabdeckungskri-
terien in der testbasierten Softwarevalidierung und -zertifizierung, wie sie in verschiedenen
Standards für die Entwicklung eingebetteter Systeme gefordert wird. Zudem erfült dies die
Anforderung für Abwesenheit von totem Code in einschlägigen Standards wie DO-178C.
Dazu werden verschiedene Techniken in einem Framework kombiniert, und zwar: (Craig
Interpolation) CI, (counterexample guided abstraction refinement) CEGAR, (interval con-
straint propagation) ICP und (conflict-driven clause learning over theories) CDCL(T). In
dem Framework fungiert CI als das Zugpferd der Abstraktionsverfeinerung und setzt dazu
schrittweise Interpolanten zur verzögerten Abstraktion und zum Auffinden sog. bad states,
welche eine Verletzung der Sicherheitseigenschaft darstellen, ein. CEGAR dient der Ver-
meidung der Explosion des Zustandsraumes im Umgang mit großen Modellen. ICP und
CDCL(T) werden zur Reduzierung des nicht-linearen Problems zu einem Erfüllbarkeits-
modulo-Theorie-Problem in der order theory of the reals und zur Lösung extrem großer
boolescher bzw. arithmetischer Constraint Systeme benutzt. Zur Umsetzung des Frame-
works wird der model checker iSAT3 erweitert, sodass er ein eingebettetes arithmetis-
ches Program, welches ein Transitionssystem induziert, als (control flow automaton) CFA
kodiert, in dem die Knoten die Kontrollpunkte des Programms und die Kanten die Be-
dingungen und Änderungen zwischen den Kontrollpunkten repräsentieren. So generiert
iSAT3 eine adäquate Abstraktion des CFA Modells und verifiziert die Unerreichbarkeit
der Unsicherheitseigenschaft, indem unsichere Zustände mittels einer sicheren Invariante
repräsentiert werden, welche die erreichbaren Zustände des zu verifizierenden Modelles
ohne Überschneidung mit unsicheren Zuständen überapproximiert. Mithilfe der neuen
Implementierung werden verschiedene Benchmarks verifiziert, in denen eine Performance-
verbesserung der neuen CEGAR Heuristik in nichtlinearen Benchmarks – auch in dem von

1“Abstract” in German

x

Gleitkomma dominierten C-Programen entsprechend dem Standard IEEE 754 unterstützt
wird – verzeichnet wird.

Zweitens, motiviert durch die praktische Notwendigkeit der Verifikation von probabilis-
tischen hybriden Systemen welche lineare, polynomielle und transzendentale Arithmetik
enthalten, gehen wir über (stochastic boolean satisfiability problems) SSAT hinaus, indem
wir einen Begriff von (Generalized Craig Interpolant) GCI für den (stochastic satisfia-
bility modulo theories) SSMT definieren und führen einen Mechanismus ein, um solche
stochastischen Interpolanten für nicht-polynomische SSMT-Probleme auf der Grundlage
von einem korrekt und relativ zu der darunterliegenden Theorie vollsändigen resolution
calculus zu berechnen. Der neue Begriff der Craigschen Interpolation kann unbeschränkte
probabilistische Erreichbarkeits- und Stabilitätsprobleme in einem probabilistischen hybri-
den Automaten behandeln.

Schließlich hat die Optimierung des Verifikationsprozesses hinsichtlich Performanz und
Speicherplatzbedarf bei der Verifikation von Assumption-Commitment Spezifikationen
eine hohe industrielle Relevanz. Eine Assumption-Commitment Spezifikation ist ein Ver-
trag, bei dem eine Verpflichtung (commitment) erfüllt sein muss, sofern die Annahme (as-
sumption) gegeben ist. Unser Ansatz verbessert den Verifikationsprozess durch Beschnei-
dung des Zustandsraumes an der Stelle, wo eine Annahme verletzt wird. Der Ausschluss
erfolgt mittels zulässiger Transformationsfunktionen, welche auf einem neuen Begriff von
eigenschafstunterstützenden Kanten basieren. Der vorgestellte Ansatz ist anwendbar bei
verschiedenen Rechenmodellen, von endlichen Automaten bis hin zu hybriden Modellen.
Die Technik wurde durch Verifikation mehrerer Fallstudien in Uppaal evaluiert.

xi

Acknowledgements

All Praise and thanks be to Allah for the strengths and His blessing in completing this
thesis after all the challenges and difficulties. I praise and thank Him, ask Him for His help
and forgiveness, and we seek refuge in Allah from the evils of our souls and the mischiefs
of our deeds. He whom Allah guides will not be misled, and he whom Allah misleads will
never have a guide.

This thesis has been kept on track and been seen through to completion with the support
and encouragement of numerous people including my well wishers, my friends, colleagues
and various institutions. At this point, I would like to thank all those people who made
this thesis possible and an unforgettable experience for me.

I’d like to express my sincere appreciation to my PhD-thesis main supervisor, Martin
Fränzle, for his valuable assistance, inspiration, and guidance he has dedicated to me all
through this thesis especially in recognition of his patience for answering all questions and
engaging into long discussions.

I am furthermore very grateful to Bernd Becker for the valuable collaboration during
AVACS project as well as for his willingness of being my co-examiner and for the friendly
atmosphere he brought to my thesis defence.

I would like to thank Oliver Theel and Ingo Stierand for serving on my thesis committee
and for taking the time to get involved with the ideas presented in this thesis.

I’m also grateful to Karsten Scheibler for too long discussions, and the numerous instances
of assistance given to me especially in dealing with the iSAT3 tool. Also, I’d like to thank
Felix Neubauer for assistance given to me especially in dealing with the SMI2ISAT tool.

Nearly last, but by no means least, I’d like to thank my master-study supervisor Bernd
Westphal who was one of the main reasons for me to put me on the road to study formal
methods and verification techniques. He supported, encouraged and led me from 2009 till
2012. Additionally, he recommended me to do my PhD under Martin’s supervision.

Most of all, there are five persons to whom my gratefulness is never-ending: my parents,
Yousra and Abdul Raouf, for taking care of me in so many different aspects of life and
for their limitless encouragement and patience. They have been there for me with all
they have got in every moment of the past thirty-two years. This humble dissertation is
dedicated to you. Finally, my heartfelt gratitude to my beloved wife Ayah and my children
Selma and Osama. No words can describe the love and emotions I have for you. Your
support and love mean the world to me.

xiii

Contents

Dedication v

Abstract vii

Zusammenfassung x

Acknowledgements xiii

Contents xiv

List of Figures xvii

List of Tables xx

List of Abbreviations xxii

List of Symbols xxiv

1 Introduction 1
1.1 Motivation . 1
1.2 (Partial) History of embedded and (probabilistic) hybrid systems verification 3

1.2.1 Verification of embedded systems . 4
1.2.2 Verification of (probabilistic) hybrid systems 5

1.3 Challenges and contributions . 5
1.4 Organization of this dissertation . 9

2 Reachability Analysis 11
2.1 Preface . 11
2.2 Different terminologies for reachability analysis 13
2.3 Classical vs. probabilistic reachability . 14

3 Model Slicing 16
3.1 Problem statement . 17

3.1.1 Motivation . 17
3.1.2 Related work: . 18

3.2 Preliminaries . 20
3.3 Assumption-commitment specifications . 23
3.4 Model element-based slicing technique . 24
3.5 Transformation functions . 28

3.5.1 Admissible transformations . 28
3.5.2 Semi-admissible transformations . 31

xiv

Contents

3.6 New reachability concept: supporting edges 34
3.6.1 Supporting edges . 34
3.6.2 Supporting edges and transformation functions 36
3.6.3 Verification based on support-notion 37

3.7 Compositional verification . 40
3.8 Case studies . 42

3.8.1 Wireless sensor network: Alarm system 42
3.8.2 Fischer’s mutual exclusion protocol 49

4 Dead Code Detection 58
4.1 Problem statement . 59

4.1.1 Motivation . 59
4.1.2 Related work . 61
4.1.3 Example . 67

4.2 Preliminaries . 69
4.2.1 Control flow automaton . 69
4.2.2 Craig interpolation: theory and application 72
4.2.3 Interpolation-based model checking (ITP) 73
4.2.4 Counterexample guided abstraction refinement: theory and applica-

tion . 76
4.3 The iSAT3 model checker . 77

4.3.1 Syntax and semantics . 77
4.3.2 iSAT3 architecture and engines . 78
4.3.3 iSAT3 interpolants . 80
4.3.4 BMC problems in iSAT3 . 94
4.3.5 CFA problems in iSAT3 . 96

4.4 Interpolation-based CEGAR technique . 97
4.4.1 Interpolation-based refinement procedure in iSAT3: algorithm 97
4.4.2 Example . 106
4.4.3 Case studies . 107

4.5 Handling floating points dominated C-programs – experiments in industrial-
scale . 111
4.5.1 Floating point arithmetic due to IEEE 754 111
4.5.2 Floating points in iSAT3 . 112
4.5.3 Floating point arithmetic in iSAT3 with CEGAR 112
4.5.4 Industrial case studies . 114
4.5.5 Converting SMI code to iSAT3-CFG input language 115
4.5.6 BTC-ES benchmarks . 117

5 Generalized Craig Interpolation for
SSMT 122
5.1 Introduction . 123

5.1.1 Motivation . 123
5.1.2 Related work . 124

5.2 Stochastic Satisfiability Modulo theories (SSMT) 124
5.2.1 SSMT: syntax . 125
5.2.2 SSMT: semantics . 125
5.2.3 SSMT: illustrative example . 126

xv

5.2.4 Complexity of SSMT . 127
5.2.5 Structure of SSMT formula . 127

5.3 Resolution Calculus for SSMT . 129
5.3.1 Resolution rules for SSMT . 129
5.3.2 Soundness and completeness of SSMT-resolution 131
5.3.3 Example of applying SSMT-resolution 133

5.4 Generalized Craig interpolation for SSMT 134
5.4.1 Generalized Craig Interpolants . 135
5.4.2 Computation of Generalized Craig Interpolants – Púdlak’s rules ex-

tension . 136
5.5 Interpolation-based probabilistic bounded model checking 142

5.5.1 Probabilistic bounded reachability – probabilistic safety analysis . . 143
5.5.2 SSMT encoding scheme for PHAs 144
5.5.3 PBMC solving by means of generalized Craig interpolation 144
5.5.4 Interpolation-based approach for reachability 146
5.5.5 Generalized Craig interpolation for Stability analysis 151

6 Conclusion 155
6.1 Achievements of this dissertation . 155
6.2 Outlook . 158

6.2.1 Applying transformation for models admitting system modes 158
6.2.2 Extending iSAT3-CFG with interprocedural calls 158
6.2.3 Computing loop summaries – maximum number of while-loop un-

windings . 159
6.2.4 Integrating generalized Craig interpolation with DPLL-based SSMT

solving . 159

Appendix A 162

Bibliography 171

Index 197

xvi

List of Figures

1.1 The major contributions of this dissertation and the dependencies between
them. The cut in the right upper corner separates stochastic reachability
from classical one. 6

2.1 Forward and backwards reachability analyses. 12

3.1 A satisfaction relation between an automaton and specification 2x = 0. . . 24
3.2 List of interesting cases for Theorem 3.1. 27
3.3 Support notions in timed automaton. 34
3.4 Transformed timed automata models after considering different notions of

supporting. 38
3.5 Example of wireless fire alarm system topology. 43
3.5 Uppaal model of WFAS as in [AWD+14], however sensor model in Figure

3.5g extended by Call-messages behaviour. The thick edges represent Call-
message scenarios. 46

3.6 Sensor automaton after applying transformation function. The other au-
tomata remain the same. 47

3.7 Results of verifying well-functioning property in WFAS model. 49
3.8 Uppaal model of the Fischer’s protocol with direct-fault detection. 50
3.9 Uppaal model of the Fischer’s protocol with delayed-fault detection. . . . 51
3.10 Uppaal model of Fischer’s protocol after applying redirecting transfor-

mation function for the model with direct fault detection in Figure 3.8. . . 52
3.11 Uppaal model of Fischer’s protocol after applying removing transforma-

tion function for the model with direct fault detection in Figure 3.8. 52
3.12 Uppaal model of Fischer’s protocol after applying redirecting transfor-

mation function for the model with delayed fault detection in Figure 3.9. . . 53
3.13 Uppaal model of Fischer’s protocol after applying removing transforma-

tion function for the model with delayed fault detection in Figure 3.9. . . . 53
3.14 Results of verifying mutual exclusion in Fisher’s protocol with direct detection. 54
3.15 Results of verifying mutual exclusion in Fisher’s protocol with delayed de-

tection. 55

4.1 Left: An arithmetic program, middle: corresponding control flow graph,
right: encoding in iSAT3-CFG format. 68

4.2 Bounded model checking and computing post-image by interpolation. . . . 73
4.3 Different interpolant computing approaches. 75
4.4 Guiding decide step in iSAT3 affects the resolution tree. 82
4.5 Guiding deduce step in iSAT3 affects the resolution tree. 83
4.6 Possible influences between deduce and decide steps in iSAT3. 84
4.7 Two disjoint circles and two different interpolants with sufficient slackness. . 87

xvii

List of Figures

4.8 Two disjoint spheres and two different interpolants with sufficient slackness. 88
4.9 Two disjoint connected-circles and two different interpolants with sufficient

slackness. 89
4.10 Two disjoint tori and two different interpolants with sufficient slackness. . . 90
4.11 Two disjoint tori and two different interpolants with semi slackness. 91
4.12 Example of integrating iSAT3 with downsizing interpolants method where

blue area represents A formula and green area represents B formula. 93
4.13 iSAT3 bounded model checking problem format. Left: a transition system

representing logistic map problem [KB11], right: the corresponding encod-
ing in iSAT3 format. 95

4.13 CEGAR procedure to solve Example 4.1, where bold paths and cyan pred-
icates represent the current counterexample and added constraints in each
iteration after refinement respectively. 102

4.14 An example of useless refinement since none of four checks holds. Image
2 represents the abstract model with the marked spurious counterexample
and computed interpolants. Image 3 represents the abstraction after first
refinement, where none of checks holds between I0 and I1. 105

4.15 Accumulated verification times for the first n benchmarks. 109
4.16 Memory usage (#benchmarks processed within given memory limit). 109
4.17 Accumulated verification times for the first n benchmarks. 110
4.18 Memory usage (#benchmarks processed within given memory limit). 110
4.19 Accumulated verification times for the first n benchmarks. 113
4.20 Memory usage (#benchmarks processed within given memory limit). 114
4.21 State-Chart of resulting analysis by using CI-based CEAGR (adjusted from

[FB13]). 115
4.22 Left: An smi-program with symtab-table, middle: corresponding control

flow graph, right: encoding in iSAT3-CFG format with FP new syntax
according to [SNM+16a]. 116

4.23 Accumulated verification times for the first n benchmarks. 119
4.24 Memory usage (#benchmarks processed within given memory limit). 119

5.1 11
2 player game semantics of an SSMT formula. In recursive solvers, traver-

sal of the dashed part of the quantifier tree will be skipped due to prun-
ing [Tei12]. 126

5.2 On the right side, an architecture of SSMT solver, e.g. SiSAT. On the left
side, an example of solving SSMT formula and how this will be mapped to
the architecture of an SSMT solver. 128

5.3 Example of SSMT-resolution and computing the satisfaction probability
0.12. Red lines identify the pivots. 134

5.4 Generalized Craig interpolant for Example 5.1. The green part is A and the
blue one is B. The red part represents ¬SA,B with a don’t-care interpolant. 141

5.5 Thermostat case-study discussed in [ZSR+10, FHH+11]. Blue expressions
represent the assignments, green ones represent the guards and the magenta
ones represent the invariants at each location. 147

5.6 Illustration of computed backward reachable sets together with generalized
Craig interpolants to compute the maximum probability of reaching Error
state over number k of transition steps. 148

xviii

5.7 Probability of reaching Error within 5 time units once by using PBMC and
once by using GCI. 149

5.8 PHA model represents action planning of a robot, where fail state represents
unwanted behaviour. 150

5.9 Probability of reaching fail once by using PBMC and once by using GCI. . 151
5.10 Probability of avoiding fail ∧ x ≤ 7 by using GCI. 153

xix

List of Tables

3.1 Summary of supporting edges results in Example 3.2. 34
3.2 Non-supporting edges in WFAS model. 48
3.3 Figures for verifying well functioning property in WFAS model2. Detecting

potentially non-supporting edges needs about 0.58 s and 6632 KB. 48
3.4 Non-supporting edges in Fischer’s protocol with direct fault detection. . . . 51
3.5 Non-supporting edges in Fischer’s protocol for the model with delayed fault

detection in Figure 3.9. 51
3.6 Figures for verifying mutual exclusion. The latter property was satisfied in

all verified models. Detecting potentially non-supporting edges needs about
0.17 s and 5856 KB. 55

3.7 Fischer’s protocol with delayed fault detection. Redirecting edges technique
is applied here only, as removing edges cannot be applied since the premise
of over-approximating-P -rule of Theorem 3.1.2 is broken. Detecting poten-
tially non-supporting edges needs about 0.17 s and 5916 KB. 56

4.1 Verification results of linear/non-linear hybrid models. Bold lines refer to
best results w.r.t. best verification time. Red lines refer to false alarms
reported by the solver and blue lines refer to inability to solve the problem
due to unsupported functions. 108

4.2 Verification results of (non)-linear hybrid models while comparing abstrac-
tion techniques. Bold lines refer to best results w.r.t. best verification time. 110

4.3 Verification results of (non)-linear hybrid models while supporting IEEE
754 standard. Bold lines refer to best results w.r.t. best verification time. . 113

4.4 Verification results of linear/non-linear BTC models while supporting IEEE
754 standard for floating points. These models are converted to iSAT-CFG
syntax then verified. All benchmarks contain loops and polynomials, but
no transcendental functions. In case of bounded model checking techniques
as in BMC or preprocessing, if the result is SAFE, it means till depth 250.
Generally, if the result is MODEL ERROR, it means the model is SAFE
independent of problem-depth. These results were obtained while running
tests on AMD Opteron(tm) Processor 6328@2.0 GHZ with 505GB RAM. . 118

5.1 Results of interpolation-based approach of Example 5.3, where j represents
the number of the transitions considered by the interpolation, I represents
the interpolant computed at j-th step, and B represents the backward reach-
able states. 147

5.2 Results of interpolation-based approach of Example 5.4, where j represents
the number of the transitions considered by the interpolation to increase
the preciseness, I represents the interpolant computed at j-th step, and B
represents the backward reachable states. 150

xx

List of Tables

5.3 Results of interpolation-based approach of Example 5.5, where j represents
the number of the transitions considered by the interpolation to increase
the preciseness, I represents the interpolant computed at j-th step, and R
represents an overapproximation of possible reachable set of states inM. . 152

xxi

List of Abbreviations
1UIP First Unique Implication Point

A400M Airbus 400 Military Transport

ACDCL(T) Abstract Conflict Driven Clause Learning

ACTL CTL with only universal path quantifiers

AI Abstract Interpretation

AVACS Automatic Verification and Analysis of Complex System

BCP Boolean Constraint Propagation

BDD Binary Decision Diagram

BMC Bounded Model Checking

BNF Backus Normal Form

CBMC C Bounded Model Checking

CDCL(T) Conflict Driven Clause Learning

CEGAR Counter-Example Guided Abstraction Refinement

CEX Counter-Example

CFA Control Flow Automaton

CFG Control Flow Graph

CI Craig Interpolation

CNF Conjunctive Normal Form

CPU Control Process Unit

DNF Disjunctive Normal Form

DO-178C Software Considerations in Airborne Systems and Equipment Certification

DPLL Davis Putnam Logemann Loveland Algorithm

DUV Design Under Verification

ECA Event Condition Action

FMEA Failure Mode and Effects Analysis

FP Floating Point

GCI Generalized Craig Interpolation

GR Generalized interpolation Rule

HA Hybrid Automaton

ICP Interval Constraint Propagation

xxii

LIST OF ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers

ILP Integer Linear Programming

ISO/IEC PDTR 24772 standard that specifies software programming language vulnera-
bilities to be avoided in the development of systems

ITP Interpolation based Model Checking

LTL Linear Temporal Logic

LZ Lebens-Zeichen

MDP Markov Decision Process

NaN Not a Number

OD Overapproxmation Driven

ODE Ordinary Differential Equation

PBMC Probabilistic Bounded Model Checking

PHA Probabilistic Hybrid Automaton

PSPACE set of all decision problems that can be solved by a Turing machine using a
polynomial amount of space

QBF Quantified Boolean Formula

QSAT Quantified Satisfiability Problems

RR Resolution Rule

SAT Satisfiability Boolean

SB Simple Bounds

SMC Symbolic Model Checking

SMT Satisfiability Modulo Theories

SSAT Stochastic Boolean Satisfiability

SSMT Stochastic Satisfiability Modulo Theories

TA Timed Automaton

TCTL Timed Computation Tree Logic

TDMA Time Division Multiple Access

UD Underapproxmation Driven

WFAS Wireless Fire Alarm System

xxiii

List of Symbols
α abstraction function in CFA

Act a set of interpreted actions of automaton where η ∈ Act

Ψ(V,B) set of assignments over (non-) boolean variables where ψ ∈ Ψ(V,B)

τ function assigns to a variable a value from its domain

Aut a set of automata where A ∈ Aut

B set of boolean variables where b ∈ B

C set of constants over rationals where c ∈ C

Σ set of control flow automaton paths where σ ∈ Σ

Γ set of control flow automata where γ ∈ Γ

cl a clause in a formula

Ξ a set of computation paths of automaton where ξ ∈ Ξ

κ concretize function in CFA

Conf a set of configurations of automaton where c ∈ Conf

DC do not care area/situation

EDGES edges part in iSAT3-CFG file

∃ existential quantifier

ffsp function falsifies a simple bound

falsifycl function falsifies a clause

ϕ SMT formula

Φ(V,B) set of guards over (non-) boolean variables where φ ∈ Φ(V,B)

INIT initial configuration in iSAT3-BMC file

Z a set of integer numbers

I interpolant

µ function which maps variables to intervals

Λ a set of labels of transitions where λ ∈ Λ

Loc or L a set of finite locations of automaton where ` ∈ Loc

M a probabilistic hybrid automaton model

N set of finite nodes where n ∈ N

OT an observable behaviour of automaton

T operational semantics of automata

xxiv

LIST OF SYMBOLS

P specification in LTL (often assumption)

p probability of holding

Pr probability of satisfiability of a formula

Q specification in LTL (often commitment)

Q prefix of randomized and existential quantifiers where Q ∈ Q

R

randomized quantifier

Θ(N ,Φ(V,B)) set of reachability properties where θ ∈ Θ(N ,Φ(V,B))

R a set of real numbers

S specification in LTL

SA,B set of satisfiable assignments between A and B formulae

F some edges of automaton (F ⊆ E) which are redirected or removed

SPECIFICATION specification part in iSAT3-CFG file

σsp spurious cfa path during using CEGAR technique

δ stochastic satisfiability modulo theories formula

S a set of states of automaton where s ∈ S

TARGET target part in iSAT3-BMC file

F a transformation function of automaton

FFrd a transformation function of automaton by redirecting

FFrm a transformation function of automaton by removing

TRANS transitions part in iSAT3-BMC file

V set of integer and real variables where v ∈ V

val a value in a discrete domain assigned to variables in randomized quantifiers

Iweak weak interpolant

xxv

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?

YES

NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

1Introduction

For, usually and fitly, the presence
of an introduction is held to imply
that there is something of
consequence and importance to
be introduced.

(Arthur Machen)

Contents
1.1 Motivation . 1
1.2 (Partial) History of embedded and (probabilistic) hybrid sys-

tems verification . 3
1.2.1 Verification of embedded systems 4
1.2.2 Verification of (probabilistic) hybrid systems 5

1.3 Challenges and contributions . 5
1.4 Organization of this dissertation 9

1.1 Motivation

Software engineering is a discipline that provides methods and techniques to support the
software development process and ensure its quality. It is composed of several phases: re-
quirement analysis, specification, design, implementation, testing and maintenance. How-
ever, testing of reactive and control-oriented programs to assure quality or to assess safety
are becoming more and more complex and highly needed nowadays. For example, we
get annoyed when the smart phones or laptops react unexpectedly and wrongly to the
issued commands although these software and hardware errors do not threaten our lives.
With our increased reliance on software, both at the personal and organizational level,
the consequences of software failure can transcend mere annoyance and have profound
negative effects on our lives. Think about airbags, braking, cruise control, fuel injection
and communication systems where a failure costs not only money, but also people life.
Therefore, over the past few decades a very attractive approach toward the correctness of
computer-based control systems strongly imposed itself, which is a model checking. Model
checking requires (1) a model of the system under consideration and (2) a desired property
and systematically checks whether or not the given model satisfies this property [BK08].
Verification by model checking was defined in the late 1970’s [Pnu77, CE81], where the

1

1.1. MOTIVATION

fathers of it have won two Turing awards (Pnueli in 1996 for “introducing temporal logics
in computing science”, especially in model checking; Clarke, Emerson and Sifakis in 2007
for making model checking “a highly effective verification technology”).

Model checking has been used successfully in verifying hardware problems by using binary
decision diagrams (BDDs) [Ake78] to mitigate the notorious state explosion problem. How-
ever, software verification is more complicated and thus is a research track which received
a lot of attention in the last decades. In software, we would face arithmetic operations
including polynomials and transcendental functions over reals, floating points and inte-
gers where its rich theories is beyond what is concisely representable by finite automata.
Moreover, software contains complex control structures of programs. To appeal to Eds-
ger Dijkstra’s famous quote [Dij72], “Program testing can be used to show the presence
of bugs, but never to show their absence!” This means that testing is not sufficient to
guarantee the reliability of software if the criterion of quality is zero fault. Also, it is
clear that the explicit exploration of all program valuations by computing the possible
reachable states of the arithmetic program is mostly impossible. At this point, abstrac-
tion techniques enter the scene. An abstraction tends to overapproxiamte a model with
an abstract system model with finite-state that has all behaviours of the program (and
generally more). Hence, if the model checker proves that the abstract system is safe, then
so is the original program. The opposite is not true, if the abstract system is not safe, it
does not necessarily mean that the original system is not safe too. Building automatically
such an abstraction is not a trivial task and will affect the verification process obviously.
Predicate abstraction[GS97] was introduced in the middle 1990’s by Graf et al.; it uses
predicates to encode program states. Given a finite set of predicates, one is able to build
a finite system that abstracts the original (infinite) model. Another question arises here is
how one would find adequate predicates; interpolants can achieve that feasibly as they are
sufficient assertions generated by the infeasibility proof for the error-traces that belong to
the abstraction rather than the original model [HHP09]. Several model checkers use inter-
polants as necessary predicates to eliminate the discovered spurious counterexamples; e.g.,
IMPACT [McM06], WHALE [AGC12], FunFrog [SFS12], Ultimate Automizer [HCD+13],
CPAchecker [BK09] and iSAT3-CFG [SKB13, MSN+16]1.

In this dissertation, the safety aspect is discussed while verifying a wide spectrum of
models. In other words, the objects under investigation range from programs to (abstract)
models of embedded or hybrid control systems without, however, necessarily attacking the
latter at the level of implementable program code. Moreover, these verified models do not
only involve linear, polynomial and transcendental arithmetics, but also they may admit
probabilistic behaviour, which turn our verification task to be a sophisticated one. We
would like to draw the attention of the reader that a safety case in probabilistic safety-
critical systems which is under investigation relates to situation where the health of people
might be jeopardized in the aviation, automotive, and railroad industry. Additionally, it
belongs to the medical engineering instead of applications that contribute to the quality
of life such as the use of smart phones, washing machines and fridges.

The typical properties that can be verified in our situation, are (probabilistic) safety prop-
erties. An example of a safety property is to avoid train collision (accident) under any

1iSAT3 is the third stable version of Hysat [FH07] which is developed between Carl von Ossietzky
Universität Oldenburg and Albert-Ludwigs Universität Freiburg.

2

1.2. (PARTIAL) HISTORY OF EMBEDDED AND (PROBABILISTIC) HYBRID SYSTEMS
VERIFICATION

scenario of arriving and departing. An example of a probabilistic safety property is to
assure that a probability of airplane crash is less than or equal 10−9 per year [Int96].
Verifying safety properties is very important since it is claimed that hundreds of aircraft
crashes in the last decades occurred due to software and hardware failures more than hu-
man errors [GF15]. Additionally, it is suitable at this point to highlight on an interesting
class of safety properties that has a special form called assumption-commitment [Bro98]
statement a.k.a. contract [Mey92]. This kind of properties is widely used in component-
based design, where under a certain assumption on the environment, we guarantee a
particular behaviour of a component. Although a contract-based component scheme is
successful in specifying functional, safety, and real-time requirements of components, it
does not succeed always in verification. For example, while preforming virtual integration
testing [DHJ+11] to get a safety case in contract-based component design, the verifiers
often suffer from scalability problem since we speak here about very large models. A
key step in achieving scalability in the verification of large software systems while ver-
ifying safety contracts is to “divide and conquer”; that is, to break up the verification
of a system into smaller tasks that involve the verification of its components [CGP03].
Decomposing the verification task can be achieved by many approaches and on different
levels. A promising approach is preforming what is so-called models slicing, which tends
to highlight the relevant parts of the verified model that affect the safety property. Thus,
the verification will consider only these highlighted parts while checking the validity of the
verified property. Also, slicing technique can be applied at the component-level or at the
parallel compositions of components level.

This chapter draws a wide (but incomplete) picture of embedded and hybrid system ver-
ification research over the past few decades beside a detailed view of modern automated
safety verification tools. We then state the main challenges and contributions of this
dissertation.

1.2 (Partial) History of embedded and (probabilistic) hybrid
systems verification

An embedded system is a microprocessor-based system that is built to control a function
or range of functions and is not designed to be programmed by the end user in the same
way that a PC is [Hea02]. Sometimes, it is defined as a computer system with a dedicated
function within a larger mechanical or electrical system, often with real-time computing
constraints [Hea02]. The word “embedded” comes from the fact that this kind of sys-
tems is planted as a part of a complete device often including hardware and mechanical
parts [GB03]. One can consider that embedded systems concept imposed itself – rather
than appeared – when the microprocessors were born as a replacement for discrete logic-
based circuits in the 1970’s since embedded systems concept provides functional upgrades
and easy maintenance upgrades as well as improving mechanical performance. Inside such
an embedded system, there are usually a processor, memory, peripherals and software.
(Expanded) Microcontrollers are proper examples of embedded systems.

The appropriate mathematical model for design of embedded control systems is hybrid
systems models that can capture both the controller – the system under design and the
plant – the environment with continuously evolving physical activities in which the system

3

1.2. (PARTIAL) HISTORY OF EMBEDDED AND (PROBABILISTIC) HYBRID SYSTEMS
VERIFICATION

operates [Alu11]. A hybrid system is a dynamic system with combined discrete (with a
countable number of states) and continuous (a continuous behaviour and a real-valued
state space) behaviour [Hen96]. Typical examples are physical systems controlled by a
discrete controller. Think about continuous motion that may be interrupted by collisions
(mechanical engineering), continuous charging of capacitors being interrupted by switches
opening and closing (electrical engineering), the continuous evolution of chemical reac-
tions controlled by valves and pumps (chemical process control), a program behind the
autopilot of an aeroplane, which is running on a computer and acting with the physical
environment (avionics engineering) [ACH+95]. Sometimes the hybrid systems admit prob-
abilistic behaviour, therefore they need suitable computational models as an extension of
classical hybrid systems. For example, probabilistic hybrid automata [Spr01, Spr00] where
they only admit discrete probabilistic choices within state transitions, piecewise determin-
istic Markov processes [Dav84] whose behaviour is governed by random jumps at points in
time, but whose evolution is deterministically governed by an ordinary differential equation
between those times.

1.2.1 Verification of embedded systems

Verification of embedded systems is correlated with early hardware verification experi-
ments in the middle of eighties of the last century. However, the oldest verification was
much more likely testing than a formal verification; build the system, run the software and
hope for the best. If by chance it does not work, try to do what you can to modify the
software and hardware to get the system to work at the end. This practice is called testing
which is not as comprehensive as formal verification. Several verification techniques have
been introduced in the last decades which are mainly as follows:

• Simulation-based verification: It has been, and continues to be, the primary method
for functional verification of hardware and system-level designs. It consists of provid-
ing input stimuli to the design under verification (DUV), and checking the correctness
of the output response [Ber00].

• Formal verification: In contrast to simulation approach, formal verification methods
do not rely upon the dynamic response of a DUV to certain testcases [CW96]. We
have two main techniques in formal verification; namely model checking and theo-
rem proving, where model checking techniques have found better acceptance in the
industry so far [McM92] due to the easiness of automating the verification and pro-
viding counterexamples which are useful for debugging. In model checking [CGP01],
the DUV is typically modelled as a finite-state transition system, the property is
specified as a temporal logic formula, and verification consists of checking whether
the formula is true in that model. In theorem proving [BS92], both the DUV and the
specification are modelled as logic formulas, and the satisfaction relation between
them is proved as a theorem, using the deductive proof calculus [Hun73] of a theorem
prover.

• Assertion-based verification: E.g., SystemVerilog assertions [Spe10]; e.g., are con-
sidered as a systematic means of enhancing the benefits of simulation and formal
verification, and for combining them effectively. Mainly, it is used to capture the
designer intent at all steps of the design. Desired properties are used as assertions,

4

1.3. CHALLENGES AND CONTRIBUTIONS

to check for violations of correct behaviour or functionality. The checking can be
done dynamically during simulation, statically using formal verification techniques,
or by a combination of the two.

1.2.2 Verification of (probabilistic) hybrid systems

The verification of hybrid systems as a standalone concept appears at the beginnings of
1990’s where the hybrid automaton was proposed as a characteristic model for embedded
control systems [ACHH92]. The idea of verifying hybrid system models depends on the
possibility of computing an over- or under-approximation of reachable states2 of the hy-
brid automaton model and then verifying the desired property within the approximated
model. Proving that such a hybrid model is unsafe, requires us to prove that the unde-
sired behaviour is feasible in the underapproximated model or to be able to validate the
counterexample if the latter is found in the overapproximated model [CGJ+00]. However,
proving such a hybrid model is safe, requires us to prove that the undesired behaviour is
infeasible in the overapproximated model [CGJ+00].

Several tools and model checkers support hybrid system verification; e.g, (sorted in order
of their appearances) HyTech [AHH96], its follower: HyperTech [HHMW00], HSolver
[RS07], PHAver [Fre08], Hysat [FH07] with its ODE-extension; i.e. iSAT2-ODE [ERNF11],
KeYmaera [PQ08], SpaceEx [FGD+11], PowerDEVS [BK11], HyEQ [SCN13], and dREAL
[GKC13].

Model checking of probabilistic finite-state models is also a very active research topic and
has sparked efficient probabilistic model checking tools. For example, PRISM [KNP02] ver-
ifies Markov decision processes models, MRMC [KKZ05] verifies continuous-time Markov
chains models, SiSAT [FTE10] and ProHVer [ZSR+10] verify probabilistic hybrid au-
tomata with discrete time steps and ProbReach [SZ14] verifies probabilistic hybrid au-
tomata with continuous random parameters.

1.3 Challenges and contributions

In the previous section, a concise overview of embedded and (probabilistic) hybrid sys-
tems and their verification tools and techniques was introduced. In this thesis, we make
three contributions to automatic verification of embedded and (probabilistic) hybrid sys-
tems beside several novel implementations of solving techniques. The high level con-
tribution of this dissertation is new verification algorithms that push the frontiers of
interpolation-based verification in stochastic direction and while incorporating ideas from
abstraction-based techniques. This allows us to perform unbounded model checking tech-
nique while verifying (probabilistic) safety properties in (probabilistic) hybrid and em-
bedded models, such that we can assess the safety in the verified models at any point
of time. Furthermore, applying compositional verification while verifying rely-guarantee
properties in real time and hybrid system models. These contributions are elaborated
on in Chapters 3 to 5 which are published by the author of this thesis together with his

2These terms will be explained in Chapter 2.

5

1.3. CHALLENGES AND CONTRIBUTIONS

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?

YES

NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

Figure 1.1: The major contributions of this dissertation and the dependencies between
them. The cut in the right upper corner separates stochastic reachability from
classical one.

6

1.3. CHALLENGES AND CONTRIBUTIONS

co-authors [MF14, MWF14, MSN+16, SNM+16b, SNM+16a]. An overview about reach-
ability analysis within its deterministic and stochastic settings is shown in Chapter 2.
Finally, Chapter 6, finalizes this thesis with a summary of the achievements and sheds
some light on promising directions for future research.

In the remainder of this section, we outline the three major contributions which are de-
picted in Figure 1.1.

1: Verification of assumption-commitment specifications in timed and hybrid models
(Chapter 3) Assumption-commitment forms or contracts fulfil the industrial needs in
component-based specification schemes and help in verification as well. However, the
scalability of testing and model checking of the industrial models becomes critical due to
the size of verified models. Thus, compositional verification is proposed to attack the state
space explosion problem which appears often in our situation. Chapter 3 defines the set of
models that can be compositionally verified by our approach; namely any computational
model where its operational semantics induces a transition system semantics. That is,
timed, hybrid, finite automata and programs are under investigation in our approach.
Additionally, in Chapter 3 we introduce a general concept of assumption-based (semi-)
admissible transformation functions which allows us to eliminate irrelevant traces from the
state space of the verified model in a way such that the resultant model is conservative with
respect to those traces that violate the commitment only. Moreover, our transformation
is an edge-based procedure; it syntactically removes the transitions that always lead to
the violation of the assumption. This removal depends on a new concept called an edge
supports a specification. In addition to that, our proposed technique can be forthrightly
integrated with other slicing or abstraction techniques and model checkers since it acts
as a sound preprocessing approach. Although sometimes just a low number of edges
is removed, we observe a speedup of up to ten orders of magnitude relative to direct
verification without our compositional procedure.

2: Verification of reachability in embedded systems involving non-linear arithmetics
(Chapter 4) Detecting dead code (unreachable code fragments) in embedded system C-
programs is a challenging task of practical relevance. It is required by several embedded
software standards; e.g., DO-178C to avoid critical problems due to possible hidden bugs.
In Chapter 4 we will relate the dead code detection problem to the classical reachability
analysis in finding a safe invariant of a model. Finding a safe inductive invariant of a model
requires a formal verification procedure; e.g., interpolation-based model checking through
McMillan’s seminal work on hardware model checking [McM03]. McMillan demonstrated
how to exploit the resolution proof produced by a SAT solver for a BMC problem [BCCZ99]
to over-approximate the reachable states of a finite unrolling of a transition relation. The
final interpolant that acts as a guess of a safe inductive invariant is extracted from the
resolution proof by rules defined by Púdlak [Pud97] and McMillan [McM03]. Kupfershmid
et al. [KB11] succeeded to extend the previous work in the iSAT2 model checker by solving
non-linear problems involving transcendental functions. But this extended work did not
address a solution for complex generated interpolants.

In this chapter, an incomplete but promising approach is introduced to control the strength
and the size of interpolants a.k.a. the slackness of interpolants. While Kupferschmid’s ap-

7

1.3. CHALLENGES AND CONTRIBUTIONS

proach addressed a feasible solution for non-linear problems, it fails to provide summaries
for loops in the control flow and does not scale enough to cover the full branching structure
of a complex program in just few sweeps. Therefore, we introduce an extension of iSAT3
– the latest implementatiom of iSAT – in two directions. The first direction introduces
a well defined syntax and semantics of a control flow automaton to encode the semantics
of programs in iSAT3. The second direction presents a tightly integrated framework that
combines iSAT3 as a backend, conflict driven clause learning (CDCL(T)) [ZM02] with
interval constraint propagation (ICP) [Ben96] and Craig interpolation (CI) [Cra57], with
counterexample guided abstraction refinement [CGJ+00] as a frontend. This allows us to
verify reachability in embedded software program without, however, regularly attacking
the latter at the level of implementable program code even if these programs are floating
points dominated C-programs which may admit non-linear behaviours. The latter problem
was spotted by supporting the IEEE 754 standard for floating points.

Finally, Chapter 4 shows a toolchain integration which deals with real case studies from
BTC-ES AG, where simulink models are translated into their proprietary intermediate
language; i.e. SMI [WBBL02] and consequently these SMI programs are encoded into the
new iSAT3 control flow automaton-based language to be verified by using our framework.

3: Verification of reachability in probabilistic hybrid automata (Chapter 5) Most of
the aforementioned tools [KNP02, KKZ05, ZSR+10, SZ14] and techniques introduced in
the last Subsection 1.2.2 are only able to cope with asserting safety in probabilistic models
by considering only a fixed number of model unrollings a.k.a. probabilistic bounded system
behaviour. However, Teige et al. in [TF12a, FTE10] proposed an approach which verifies
probabilistic unbounded reachability and stability based on a stochastic satisfiability prob-
lem. They built a resolution calculus for SSAT problems by extending the classical SAT-
resolution rule in order to derive resolvent clauses annotating with probabilities. After
that, they extend the classical symmetric rules for systematically computing interpolants.
This enables them to encode probabilistic finite-state models; e.g., MDPs as SSAT formu-
lae, whose quantitative interpretations yield upper bounds on the worst-case probability
of reaching the unsafe states. However, in Chapter 5, we advance a symbolic approach
that goes beyond probabilistic unbounded reachability in the stochastic satisfiability prob-
lem by introducing a generalized Craig interpolation for stochastic satisfiability modulo
theories (SSMT) [FHT08], where richer fragments of theories are supported. This gener-
alized interpolation is computed over a sound and relatively complete resolution calculus
for SSMT, where it provides an opportunity to compute a symbolic overapproximation
of the (backward) reachable state set of probabilistic (in)finite-state systems. At this
point, whenever the interpolant that overapproximates the (backward) reachable state set
reaches a fixed point, we construct an SSMT formula whose quantitative interpretations
yield upper bounds on the worst-case probability of reaching the unsafe states.

As an example, the safety property with the following shape: “the probability that the
temperature of the thermostat of the oven exceeds 220◦ Celsius is at most 1%” will be
verified by using the latter approach to compute the upper bound of reaching the unsafe
states. Whenever an upper bound of at most 1% is computed then above probabilistic
safety property is verified.

8

1.4. ORGANIZATION OF THIS DISSERTATION

1.4 Organization of this dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we illustrate the reachability problem with its common terminologies;
in particular qualitative and quantitative settings of reachability are introduced.

• In Chapter 3, we introduce a compositional verification technique while verifying
assumption-commitments properties in computational models inducing a consistent
operational semantics.

• In Chapter 4, we present a novel integration of conflict driven clause learning, interval
constraint propagation, Craig interpolation, and counterexample guided abstraction
refinement to detect dead codes in mostly non-linear hybrid models where basic
floating point arithmetic operations are supported as in IEEE 754. Also, a tool-
chain representing our framework with other preprocessing steps are provided to
real case studies given by BTC-ES AG.

• In Chapter 5, we develop a resolution calculus for SSMT problems together with gen-
eralized Craig interpolation to verify unbounded probabilistic reachability in models
admitting stochastic behaviour.

• Chapter 6 summarizes the contributions and discusses open problems and future
research directions.

• Appendix A states explicitly all the steps to compute GCI for Thermostat case study
in Chapter 5.

9

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?

YES

NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

2Reachability Analysis

When you reach for the stars, you
are reaching for the farthest thing
out there. When you reach deep
into yourself, it is the same thing,
but in the opposite direction. If
you reach in both directions, you
will have spanned the universe.

(Vera Nazarian)

Contents
2.1 Preface . 11
2.2 Different terminologies for reachability analysis 13
2.3 Classical vs. probabilistic reachability 14

2.1 Preface

The reachability problem has received a lot of attention over the past years; precisely
since the seventies of last century [Hac74]. The reachability problem was first defined and
used in graph theory [BLW86]; e.g., the ability to get from one vertex to another within
a graph1.

Since several problems are presented in graph notion, reachability analysis is deemed as a
feasible approach to address solution for wide class of problems in (in)finite-state systems,
rewriting systems [SFG14], dynamical and hybrid systems [GNRR93].

In general terms, a reachability problem consists of deciding whether a given system
configuration a.k.a. target can ever be reached from a given initial configuration [Hac74]
We begin from the initial configuration of the system and find the possible reachable states
of the model by exploring the post image of the current reachable states via following the
trajectories forwards. The analysis which applies the previous procedure is known as a
forward reachability analysis (cf. Figure 2.1a). If the target is found to be reachable
within our exploration, then it is reachable; otherwise we need to explore more, unless
we reach the fixed point where no more states would be inserted in the current image of

1A very early allusion for graph notion was indirectly mentioned in a letter written by W. Leibniz in
1679 to C. Huygens [BLW86]. However, the paper written by Leonhard Euler on the Seven Bridges of
Königsberg and published in 1736 is considered the first paper in the history of graph theory.

11

2.1. PREFACE

the reachable states. In the latter case, we can surely say that the target is unreachable.
On the other hand, deciding whether we are able to reach the initial configuration if
we begin from the target and follow the trajectories backwards, is called a backwards
reachability analysis [GD98] (cf. Figure 2.1b). Several recent work combine both forward
and backward analyses in one paradigm [Mas01, SS04] which shows impressive results (in
terms of time) in proving or disproving reachability, however by paying the cost of extra
needed memory.

Moreover, reachability analysis can be seen in several computational models such as timed
and hybrid automata, Petri nets and programs as well as predictability in iterative maps.
Looking at reachability from another perspective, we will observe that several specification

in
it

Ta
rg
et

R 1
=
Im
ag
e(
in
it,
T)

R 2
=
Im
ag
e(
R 1
,T
)

...
R n

=
Im
ag
e(
R n−

1
,T
)

ex
pl
or
e
in
th
at
di
re
ct
io
n

st
at
e
sp
ac
e
of

th
e
pr
ob

le
m

....

(a) The idea of forward reachability analysis.

in
it

Ta
rg
et

B 1
=
Pr
eI
m
ag
e(
Ta
rg
et
, T
)

B 2
=
Pr
eI
m
ag
e(
B 1
,T
)

...
B n

=
Pr
eI
m
ag
e(
B n−

1
,T
)

ex
pl
or
e
in
th
at
di
re
ct
io
n

st
at
e
sp
ac
e
of

th
e
pr
ob

le
m

....

(b) The idea of backward reachability analysis.

Figure 2.1: Forward and backwards reachability analyses.

problems were defined in terms of reachability. For example:

• A part of Functional correctness of a system, is to assure that a given system does
what it is supposed to do without necessary leading to unsafe behaviour. In terms
of reachability problem, it is defined as whether a given system globally remains in
a region (e.g. a set of states) representing the desired functional behaviour of the
system.

• Safety, which means something bad (Hazard) never happens, is defined as reaching
bad states of the desired system never happens.

The most crucial reachability property is the one which necessitates that the system must
be kept outside of the bad region of the state space; the prototypic safety property. Several
aircraft in last decades has been plagued by technical faults and software failures which
miserably led to crashes. For example, in 2015 Airbus has issued software bug alert after
fatal crash of the A400M military transport plane in Spain [GF15]. In the summary of
the annual report [Air16] published by Boeing in 2015, 19 from 28 – ranging from minor
to fatal – problems occurred due to mechanical or software failures. This may justify the
claim that major plane crashes are often technology failures, rather than human errors.

12

2.2. DIFFERENT TERMINOLOGIES FOR REACHABILITY ANALYSIS

Normally, system failures refer to bad/unexpected behaviours. In other words, the system
reaches a bad state that violates the safety properties. Thereby, in this dissertation, we
will draw a special attention to reachability problem relating to safety aspect in hybrid and
embedded systems. Specifically, we address the problem of automatically verifying safety
invariance properties of computational models that induce a transition system semantics;
e.g., timed and hybrid automata and programs. Safety properties encompass a wide
spectrum of desirable correctness property (e.g., no assertions are violated, memory safety,
secure information flow, etc.). To prove that a model satisfies such a safety property,
we need to find a safe inductive invariant2. A safe inductive invariant portrays an over-
approximation of reachable model states that does not intersect with unsafe states specified
by the property. We advance safety property verification in classical and probabilistic fields
as shown in Chapter 4 and Chapter 5.

2.2 Different terminologies for reachability analysis

Many research works discuss reachability problems in different fields3, however with di-
vergent terminologies in some cases. The most common terminology or keyword is reach-
ability problem or reachability analysis, while other keywords are used in certain com-
munities. For example dead code detection [CGK98, CGK97], dead code elimination/re-
moving [Kno96, DP96], unreachble code detection [PT15, CCK11], infeasible code detec-
tion [CHS12, AS12, DZT14], finding safe invariants [Alb15], region stability [PW07] which
involves a combination of liveness and invariance properties. All previous terminologies
are correlated and some of them can be mostly mapped together.

In the following we will add some highlights on dead code detection/elimination which will
be discussed in detail in Chapter 4. First of all, (partial) dead code elimination or removal
is a subsequent step beyond detecting it. In the literature, there are two inconsistent
definitions of dead code:

• Dead code is a section in the source code of a program which is executed but whose
result is never used in any other computation [DEMS00].

• Dead code is a section in the source code of a program which as a result of a
design error is neither reached by the logics of the program flows nor executed a.k.a.
unreachable code [EH10]. This definition conforms with standards definition like
DO178C, therefore it will be used in the sequel of this thesis.

Given that safety-critical control functions, like in automated driving, would ultimately
have to be certified at the code level, there obviously is a pronounced industrial quest for
verification methods directly addressing the level of program code, and to do so even if
the program is a controller implementation heavily depending on (potentially non-linear)
arithmetic. In addition to that, DO-178B/ED-12B essentially requires that any dead code
has to be removed in particularly for embedded systems in avionic domain. Identifying

2This is needed in unbounded model checking settings. In bounded model checking, one ought to prove
the system does not reach bad states till certain depth while iteratively exploring the state space of the
problem.

3For example, searching for published works in http://dblp.org/ with title including “reachability”
returns with more than 1800 hits.

13

http://dblp.org/

2.3. CLASSICAL VS. PROBABILISTIC REACHABILITY

dead code is also a good development practice irrespective of certification requirements
because studies have shown that dead code is a source of hidden defects and run-time
errors. In this thesis, we use dead code and unreachable codes interchangeably as proposed
in the latter standard which conforms with [EH10]. Furthermore as shown in Chapter 4,
if we identify such a code-segment as a dead one or a state representing a bad (unwanted)
behaviour as an unreachable state in a program or a model respectively, this means that
the invariant that overapproximates the reachable states of the program or the model is
safe.

2.3 Classical vs. probabilistic reachability

In a qualitative setting, reachability is a yes/no problem, where one evaluates whether
starting from a given set of initial states the system will reach a certain set or not; this
kind of analysis refers to classical reachability where a verification task aims at obtaining
a definite verdict; e.g., that the code-segment is reachable.

However engineering systems like communication networks [HA07] or automotive [Kru07]
and air traffic control systems [LH10], financial and industrial processes like manufactur-
ing [BP01] and market models [vdBKvdB04] , and natural systems like biological [Alt95]
and ecological environments [SHBV03] exhibit probabilistic behaviour arising from the
compositions and interactions between their (heterogeneous) components. Thus probabil-
ity is necessary in order to:

• quantify arrival and waiting times as well as time between failures while analysing
system performance and dependability.

• quantify environmental factors in decision support, unpredictable delays and express
soft deadlines while modelling uncertainty in the environment.

• implement randomized algorithms while building protocols for networked embedded
systems.

Since we refer to a stochastic setting, one has to refer to a well-known mathematical
framework for modelling decision making in situations where outcomes are partly random
and partly under the control of a decision maker, Markov decision process (MDP) [Bel57].
Informally, MDP is a finite-state stochastic process in which state changes are subject
to non-deterministic selection among available actions followed by a probabilistic choice
among potential successor states, where the probability distribution of the latter choice
depends on the selected action. The main problem of MDPs is how one would find an
adequate policy for the decision maker: a function that determines the action which
will be chosen by the decision maker in the current state. In a stochastic setting, the
different trajectories originating from each initial state have a different likelihood and we
are interested in the maximum probability of reaching a given set of target states under an
arbitrary policy (adversary) (within a given number of transition steps in case of bounded
model checking problems). The latter analysis is supposed to handle probabilistic safety
properties of the shape “the worst-case probability of reaching the unsafe states is at most
2%”.

14

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?
NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

3Model Slicing

No matter how tough the meat
may be, it’s going to be tender if
you slice it thin enough.

(Guy Fieri)

Contents
3.1 Problem statement . 17

3.1.1 Motivation . 17
3.1.2 Related work: . 18

3.2 Preliminaries . 20
3.3 Assumption-commitment specifications 23
3.4 Model element-based slicing technique 24
3.5 Transformation functions . 28

3.5.1 Admissible transformations . 28
3.5.2 Semi-admissible transformations 31

3.6 New reachability concept: supporting edges 34
3.6.1 Supporting edges . 34
3.6.2 Supporting edges and transformation functions 36
3.6.3 Verification based on support-notion 37

3.7 Compositional verification . 40
3.8 Case studies . 42

3.8.1 Wireless sensor network: Alarm system 42
3.8.2 Fischer’s mutual exclusion protocol 49

16

3.1. PROBLEM STATEMENT

3.1 Problem statement

3.1.1 Motivation

Embedded systems are nowadays expected to provide increasingly many functions and
different modes as mentioned in Chapter 1. Some of these modes are operational ones, and
others are related to possible failures. However, in order to determine correct failure modes,
at all system levels, failure mode and effects analysis (FMEA) [CCC+93] was developed by
reliability engineers in the late 1950’s to study problems that might arise from malfunctions
of military systems [MIL]. In the real-world, faults1 cannot be avoided in general: wires
may break, radio frequencies may continuously be blocked, a random hardware bug, a
memory bit stuck, and physical sensors and actors may fail. One way to deal with these
situations is to analyse the system during development process, identify their effects on
the operation of the product, define a mechanism to detect and display faults in order
to, e.g., inform users to take countermeasures against the fault. At this point, one can
assert the correctness of the system under design if it delivers regular functionality unless
a fault is detected/displayed or unexpected behaviour outside the frame of functions under
consideration occurs. As in this thesis, we deal with formal verification methods rather
than simulation-based techniques, our main safety requirement – to assure correctness of
the design – is to verify that under the assumption of the absence of faults, the system
functions properly. For example, given the brake systems of an aeroplane as in [SAE96],
if the command units have no failures, then our model has to guarantee that the brakes
work properly. This kind of requirements is widely used in industrial fields under the name
contract or assumption-commitment specification [MC81, Dam08, DHJ+11, SVD+12]. An
assumption-commitment specification consists of an assumption and a commitment, where
a commitment is required to hold (by a component) if the assumption holds as well (by
an environment). Now, we can generalize our safety verification task to assure that under
the given assumption; e.g., fault absence, the commitment has to hold in our model. In
this thesis, assumption and rely are used interchangeably and so are commitment, promise
and guarantee used reciprocally.

Since we spoke about contract-based component specification, one has to imagine the
complexity and the difficulty of verifying properties in the models with industrial scale:
there are several layers of abstractions and thousands of components and subcomponents
from heterogeneous environments. Therefore, the verification process is really challenging
due to several reasons. Among others, system models are increasingly complex and hardly
traceable, and verifier tools face a combinatorial blow up of the state-space, commonly
known as the state explosion problem.

In order to overcome the latter problem, we introduce a new compositional verification
technique that on one hand optimises the verification time and memory by a fair margin
in comparison to other techniques. On the other hand, it conforms with other slicing
and abstraction techniques, as it applies sound and conservative model transformations

1A system failure is an event that occurs when the delivered service deviates from correct service. A
system may fail either because it does not comply with the specification, or because the specification did
not adequately describe its function. An error is that part of the system state that may cause a subsequent
failure: a failure occurs when an error reaches the service interface and alters the service. A fault is the
adjudged or hypothesized cause of an error [UAcLR01].

17

3.1. PROBLEM STATEMENT

without affecting the validity of the verified property.

Our approach is based on the new notion of model elements supporting a specification. In-
tuitively, a specification is supported by a model element if there is a computation path in
the model’s semantics which satisfies the specification and uses that model element. That
is, a specification is supported by a model element if the model element is reachable by
a computation path which satisfies the specification. Instead of verifying an assumption-
commitment property on the model, we apply a source-to-source transformation to the
desired model, where those model elements which do not support the assumption are ef-
fectively disabled. This transformation excludes computation paths from the verification
process which are irrelevant for the overall property because they violate the assump-
tion. Thereby, our approach decreases the complexity of the desired model already before
running a model checking tool on the transformed model. Furthermore, our approach is
independent from particular model checking tools as we transform the model and leave the
model checking procedure unscathed. We develop our approach for a generalized notion
of automata consisting of directed, interpreted action-labelled edges between locations in
order to uniformly treat computational models such as finite and Büchi automata, timed
and hybrid automata, and even programs. A necessary assumption of our approach
is that the operational semantics by which an automaton induces a transition system is
consistent for the syntactical transformations. This consistency assumption is typically
satisfied by the standard semantics. Our approach is particularly well-suited for systems
which provide many functions and operation modes, e.g. a plane’s brake system may offer
landing and taxiing modes. For validation purposes, it is useful to have only a single sys-
tem model including all features but verification may practically be infeasible on such a
model. Given an assumption-commitment specification, where the assumption limits the
focus to only some features, our approach allows to mechanically create a smaller verifi-
cation model by excluding irrelevant transitions but still guarantee to reflect the relevant
behaviour of the original model. Thereby, there is no more need to create specially tailored
verification models manually.

3.1.2 Related work:

Clever verification and testing engineers often apply several preprocessing steps in order
to optimise the verification and testing tasks, where our approach would be seen as one
of these feasible preprocessings.

In this subsection, we mention the major related works to our theory, however without
neglecting the fundamental differences in comparison to our approach.

Abstractions. There is substantial previous work [BGD11, H+13] on excluding irrelevant
computation paths from the verification process by abstracting the original model. These
works mainly apply more or less counterexample-guided abstraction refinement [CGJ+00],
where the abstract model is refined upon request: an erroneous counterexample is discov-
ered and necessary predicates enrich the abstract model to exclude the discovered spurious
counterexample2. In contrast, our work is a source-to-source transformation, hence ab-
stractions can still be applied after our approach.

2More details can be found in Chapter 4.

18

3.1. PROBLEM STATEMENT

Model reduction vs. model slicing. Our approach shares the same idea with model
slicing or reduction techniques. However the main difference is that slicing models is
focusing on the main parts of the model that affect the verified property, where our
approach applies targeted slicing rules; it excludes traces of the model that are irrelevant
to the verification process even if they are considered to be under investigation while slicing
the models.

For example, the exclusion of model behaviour by a source-to-source transformation pro-
posed in [MW+12] only considers networks of timed automata with disjoint activities.
Thus, instead of taking the parallel compositions of automata, a concatenation of automata
is sufficient. They showed that the complexity of verification in Uppaal-like [BLL+95] tools
reduces from quadratic to linear time. Slicing of timed automata [JJ04] removes locations
and clock and data variables on which a given property does not depend, thus it also
keeps variables on which an assumption depends while our approach may remove the cor-
responding behaviour. Also, the path slicing [JM05] technique determines which subset
of the edges along a given control flow path to a particular target location are relevant
towards demonstrating the (un)reachability of the target location along the given path,
however slicing is done on-fly and locally for each infeasible path to a target location. In
contrast, our approach applies a source-to-source transformation to reduce the entire size
of the model, but both approaches can be forthrightly integrated.

Reduction of concurrent models via classical slicing in object-oriented programs [DHH+06]
shows good results, where static slicer tools are used such as Bandrea [CDH+00] and In-
dus [JRH05]. Moreover, (safety) slicing of Petri nets [Rak11, Rak12] applies slicing tech-
nique but on Petri nets models where the resultant models may still contain computation
paths where the assumption is violated. This is not the case in our approach where these
paths will be removed or disabled in our technique.

Partial model checking. With partial model checking [And95], verification problems
are modularized by computing weakest context specifications through quotienting, which
allows to successively remove components completely from the verification problem. We
are instead trying to pragmatically reduce the size of components before composition by
exploiting the specification. Both approaches could go well together.

Static contract checking. Static contract checking for functional programs [XJC09] is
dealing with a very different class of computational objects and relies heavily on assump-
tions local to the individual functions, while our approach is meant to also “massage” the
global specification into the components.

Structural transformations. This work is close to our work in applying a source-to-source
transformations in networks of timed automata. They remove some transitions by what
is so-called flattening [OS15]. In addition to that, all transformations have an algebraic
flavour, obtained by rewriting the system’s composition using a library of composition
operators. Each of the proposed transformations, despite being local – which is desirable in
the context of a network of parallel components, as the costly computation of the parallel
product can then be avoided – preserves certain properties in parallel contexts [OS13].

19

3.2. PRELIMINARIES

Also, the verified property must be affected/changed only by memoryless assignments.
However, our work deals with general models without necessarily being timed automata
models on one hand. On the other hand, our approach is performed in an assumption-
commitment setting, where our transformation or slicing approach is an assumption-based
one and no model restriction applies for the operations that affect the assumption part.

3.2 Preliminaries

In this section, we introduce the main definitions and concepts that will be used in this
chapter and in the later chapters, where a generalized notion of automata is considered
which allows us to treat, among others, timed and hybrid automata uniformly as well as
arithmetic programs.

Definition 3.1: Automaton

An automaton A is a structure

(Loc ,Act , E, Lini)

where:
• Loc is a finite set of locations with typical element `.
• Act is a set of interpreted actions with typical element η.
• E ⊆ Loc ×Act × Loc is a finite set of directed edges.

An element (`, η, `′) ∈ E describes an edge from location ` to `′ with action
η.
• Lini ∈ Loc is the initial location.

We use Aut to denote the set of automata.

Finite, Büchi [Bue62], timed [AD94], and hybrid automata [Hen96] can be represented as
automata in the sense of Definition 3.1. For example, for timed automata, we can consider
pairs of locations and invariants as locations, and triples consisting of synchronization,
guard, and update vector as action. Thereby, the alphabet of a timed automaton is
represented in the set of interpreted actions. Formally, it is mapped as following:

Definition 3.2: Timed automaton

A timed automaton

TA = (LTA, BTA, XTA, V TA, ITA, ETA, `TA
ini)

where
• LTA is a finite set of locations,
• BTA is an alphabet,
• XTA is a set of clocks,
• V TA is a set of variables,
• ITA : LTA → Φ(XTA) is a function mapping locations to constraints, where

Φ(XTA) is a set of clock constraints,

20

3.2. PRELIMINARIES

• ETA ⊆ LTA × BTA
!? × Φ(XTA, V TA) × R(XTA, V TA)∗ × LTA is a finite set of

edges, where BTA
!? is a set of channels Φ(XTA, V TA) is a set of constraints and

R(XTA, V TA) is a set of reset operations. An element (`TA, b!?, ϕ
TA, ~r, `TA′) ∈

ETA describes an edge from location `TA to `TA′ with channel b!?, guard ϕTA

and assignments ~r, and
• `TA

ini ∈ LTA is the initial location.
is an automaton ATA as in Definition 3.1 where:
• Loc := {(`TA, ITA(`TA)) | `TA ∈ LTA}, for ` = (`TA, ITA(`TA)) ∈ Loc, we use
`I to denote the unique (!) ITA(`TA),

• Act := BTA
!? × Φ(XTA)×R(XTA, V TA),

• E := {(`, (b, ϕ, ~r), `′) | (`, ,ϕ,~r, `′) ∈ ETA},
• Lini := (`TA

ini , I
TA(`TA

ini)).

The hybrid automaton definition holds analogously. Moreover, programs are automata as
follows: the nodes in the control flow graph (CFG) become automaton locations and the
edges in the CFG become automaton edges labelled with statements.

In the following definition, we introduce an edge-centric notion of operational semantics
for generalized automata; i.e. there is one transition relation per edge and one dedicated
additional transition relation. This allows for a simple definition of support in Section 3.6.
Later we will characterise those operational semantics for which our approach applies as
consistent operational semantics.

Definition 3.3: Operational semantics of automaton

Let S a set of states. An operational semantics of Aut (over S) is a function T
which assigns to each automaton A = (Loc ,Act , E, Lini) ∈ Aut a labelled transition
system T (A) = (Conf ,Λ, { λ−→ | λ ∈ Λ}, Cini) where:
• Conf (A) ⊆ Loc × S is the set of configurations, and
• Λ = E ∪ {⊥}, where ⊥ /∈ E,
• λ−→ ⊆ Conf (A)× Conf (A),
• Cini ⊆ ({Lini} × S) ∩ Conf (A) is the set of initial configurations.

The previous definition states the framework for operational semantics of automata since
Conf (A) and λ−→ have to be specified according to each kind of automata. Thus, it can be
applied to finite and Büchi, timed and hybrid automata as long as the configurations and
transition relation are defined appropriately. For example, in finite and Büchi automata,
the label transitions with edges are mapped to symbols and no need to define states and
⊥-transitions. The formal mapping of operational semantics of timed automata to the
generalized automata is defined as following:

Definition 3.4: The operational semantics of timed automata induces
an automata semantics

Let TA be a timed automaton. Its operational semantics

T (TA) = (Conf (TA), B!? ∪R+
0 , {

λ−→| λ ∈ B!? ∪R+
0 }, Cini)

21

3.2. PRELIMINARIES

with
• Conf (TA) := {〈`TA, ν〉 | `TA ∈ LTA, ν ∈ V, ν |= ITA(`TA)},
• V is the set of valuations of clocks and variables, i.e. V := ((XTA ∪ V TA) →

Time∪D(V TA)) where Time := R+
0 and D(V TA) is the domain of the variables,

• there is a satisfaction relation |= defined on V × Φ(XTA, V TA),
• there is an update function · [·] : V ×R(XTA, V TA)∗ → V, and a elapse-time

function · + · : V ×R+
0 → V,

• there is an action transition 〈`TA, ν〉 α−→ 〈`TA′, ν ′〉 if there is an edge e =
(`TA, α, ϕ, r, `TA′) ∈ ETA such that
– ν |= ϕ,
– ν ′ = ν[r],
– ν ′ |= ITA(`TA′).

We then say that e justifies this action transition.
• there is a delay transition 〈`TA, ν〉 d−→ 〈`TA, ν ′〉 if

– d ∈ R+
0 ,

– ν ′ = ν + d,
– ∀0 ≤ t ≤ d • ν + t |= ITA(`TA),

• Cini = {〈`TA
ini , νini〉} ∩ Conf (TA) where νini(v) = 0 for all x ∈ XTA ∪ V TA,

induces an operational semantics of ATA as in Definition 3.3 where:
• S := V,
• there is an (edge-justified) transition 〈`, s〉 e−→ 〈`′, s′〉 if and only if

– e = ((`TA, ITA(`TA)), (α,ψ, r), (`TA′, ITA(`TA′))) ∈ E,
– and (`TA, α, ψ, r, `TA′) justifies 〈`TA, ν〉 α−→ 〈`TA′, ν ′〉.

• there is an (other) transition 〈`, s〉 ⊥−→ 〈`, s′〉 if and only if
– ` = (`TA, ITA(`TA)),
– 〈`TA, ν〉 d−→ 〈`TA, ν ′〉 for some d ∈ R+

0 .

The situation for hybrid automata is similar to timed automata except that during delay
transitions, variables are updated according to the flows. Finally, the semantics of pro-
grams are mapped as follows: program states are variable valuations, labelled-transitions
with edges are statements, no ⊥-transitions, initial states are given by programming lan-
guage semantics.

An operational semantics induces computation paths as usual. In addition, we distinguish
computation paths based on the occurring labels. Depending on computation path se-
mantics, we introduce the definition of the observable behaviour of the automaton, i.e.,
the sequence of configurations obtained by disregarding the labelled transitions.

Definition 3.5: Computation Path

A computation path of automaton A ∈ Aut under operational semantics T (A) =
(Conf ,Λ, { λ−→ | λ ∈ Λ}, Cini) is an initial and consecutive, infinite or maximally
finite sequence c0

λ1−→c1
λ2−→· · · where c0 ∈ Cini (initiation) and for each i ∈ N0,

(ci, ci+1) ∈ λi+1−−−→ (consecution).
Let E be the set of edges of A. We use ΞT (A, F) to denote the set of computation
paths of A where only label ⊥ and labels from F ⊆ E occur. ΞT (A) := ΞT (A, E)

22

3.3. ASSUMPTION-COMMITMENT SPECIFICATIONS

denotes the set of all computation paths of A (under T).

Definition 3.6: Observable Behaviour

Let ξ = c0
λ1−→c1

λ2−→· · · ∈ ΞT (A) be a computation path of automaton A under oper-
ational semantics T . The observable behaviour of ξ is the sequence ↓ξ = c0, c1, . . .
We use OT (A) to denote the set of observable behaviours of the computation paths
of A under T , i.e. OT (A) = {↓ξ | ξ ∈ ΞT (A)}.

3.3 Assumption-commitment specifications

As introduced in the beginning of this chapter we are interested in verifying what are
so-called assumption-commitment properties or contract-based specifications. Note that a
semantical characterisation of specifications is used for sake of simplicity. A specification
is a set of sequences, i.e. we consider path specifications. Specifications can syntactically
be described by, e.g., LTL [Pnu77].

Definition 3.7: Assumption-Commitment Specification

A specification over alphabet Σ is a set S ⊆ Σ∗ ∪ Σω of finite or infinite sequences
over Σ.
A specification is called assumption-commitment specification, a.k.a. contract, if
there are two prefix closed specifications P and Q such that S = P ∪ Q, where P
denotes the complement of P in Σ∗∪Σω, i.e. the set (Σ∗∪Σω)\P . We write P → Q
to denote the assumption-commitment specification P ∪ Q. A set p ⊆ Σ is called
atomic proposition, and the specification 2p := p∗ ∪ pω is called an invariant.

Now, we establish the satisfaction relation between automata and specifications based
on the observable behaviour obtained from computation paths of the automata. One re-
marks that we use the notions an automaton implements a specification and an automaton
satisfies a specification interchangeably.

Definition 3.8: Satisfying a Specification

Automaton A is said to satisfy or implement the specification S (under T), denoted
by A |=T S, if and only if the set of observable behaviours of A (under T) is a subset
of S, i.e. if OT (A) ⊆ S.

Example 3.1: Satisfaction example

Consider the finite automata depicted in Figure 3.1. It has four locations; namely
q0, q1, q2 and q3, where q0 is the initial location. Also, each edge is labelled with a
guard and an assignment. Now, we have a specification 2x = 0 which informally
means that always x equals 0. Firstly a computation path ξ1 : 〈q0, x = 0〉 → 〈q1, x =
0〉 → 〈q2, x = 0〉 → 〈q3, x = 0〉 → 〈q3, x = 0〉... obviously satisfies the specification.

23

3.4. MODEL ELEMENT-BASED SLICING TECHNIQUE

q0

q1

q2

q3

[x < 1], x := 0

x := 1

[x < 3], x := x+ 1

[x = 2], x := 0

[x ≤ 2], x := 0[x ≤ 2], x := x− 1

[x < 1]

Figure 3.1: A satisfaction relation between an automaton and specification 2x = 0.

However, all other computation paths don’t satisfy this specification. Thus, the
automaton does not implement 2x = 0.

3.4 Model element-based slicing technique

In this section, the idea of model slicing will be presented in a general fashion, where
in the next section a valid instance of that procedure is introduced. Our slicing model
technique is applying a sound compositional verification on the desired model checking
task as shown in the following theorem.

Theorem 3.1: Compositional Verification

Let A1 ∈ Aut1 and A2 ∈ Aut2 be automata and T1 and T2 operational seman-
tics for Aut1 and Aut2, respectively. Let P → Q be an assumption-commitment
specification.

1. The common-P -hypothesis: whenever the set of observable behaviours of A1
that satisfy P is equal to the set of observable behaviours of A2 that satisfy
P , then A1 satisfies P → Q if and only if A2 satisfies P → Q, i.e.,
OT1(A1) ∩ P = OT2(A2) ∩ P =⇒ (A1 |=T1 P → Q ⇐⇒ A2 |=T2 P → Q).

2. The over-approximating-P -hypothesis: whenever the set of observable be-
haviours of A1 that satisfy P is a subset of the set of observable behaviours
of A2, then A1 satisfies P → Q if A2 satisfies Q, i.e.,

OT1(A1) ∩ P ⊆ OT2(A2) =⇒ (A2 |=T2 Q =⇒ A1 |=T1 P → Q).
In general, the second implication does not hold in the other direction.

24

3.4. MODEL ELEMENT-BASED SLICING TECHNIQUE

Proof of Compositional Verification

We will begin with the first part of the theorem:
1. Let OT1(A1) ∩ P = OT2(A2) ∩ P as given in the premise of common-P -rule.

By using Definition 3.3, we know that: the automaton A1 under T1
satisfies the specification P → Q if and only if the set of observable
behaviour of A1 under T1 is a subset of the P → Q.
That is,

A1 |=T1 P → Q ⇐⇒ OT1(A1) ⊆ P → Q

Consequently be using Definition 3.7 we get:

A1 |=T1 P → Q ⇐⇒ OT1(A1) ⊆ P ∪Q(∗)

Now, if we consider the whole set of observable behaviour i.e. P ∪ P
together with the result obtained in (∗); i.e. OT1(A1) ⊆ P ∪Q we get:

OT1(A1) ∩ (P ∪ P) ⊆ (P ∪Q) ∩ (P ∪ P)

OT1(A1) ∩ (P ∪ P) ⊆ (P ∪Q)(∗∗)

Now we split (∗∗) into two expressions; namely:

OT1(A1) ∩ P ⊆ (P ∪Q) and OT1(A1) ∩ P ⊆ (P ∪Q)

We know that OT1(A1) ∩ P 6⊆ P , thus:

OT1(A1) ∩ P ⊆ (P ∪Q) ≡ OT1(A1) ∩ P ⊆ Q

We know also that OT1(A1) ∩ P ⊆ (P ∪Q) is a tautology. Additionally,
OT1(A1) ∩ P ⊆ Q holds if and only if the premise of the rule holds i.e.
OT2(A2) ∩ P ⊆ Q (as given in the rule).
With the same procedure of previous analysis, we can say:

OT2(A2) ∩ P ⊆ P

By combining OT2(A2) ∩ P ⊆ Q with OT2(A2) ∩ P ⊆ P , we get:

(OT2(A2) ∩ P) ∪ (OT2(A2) ∩ P) ⊆ P ∪Q

So
OT2(A2) ⊆ P ∪Q

By using Definition 3.7, we get

A2 |=T2 P → Q

2. For the second part of the theorem, let OT1(A1) ∩ P ⊆ OT2(A2) as given in
the premise of the rule.

We are given that the second automaton A2 satisfies the specification Q

25

3.4. MODEL ELEMENT-BASED SLICING TECHNIQUE

i.e. A2 |=T2 Q. By using Definition 3.3 we get:

OT2(A2) ⊆ Q

By using the premise of over-approximating-P -rule we get:

OT1(A1) ∩ P ⊆ OT2(A2) ⊆ Q

We know that any operation over observable behaviour follows set-
semantics. Thus

OT1(A1) ∩ P ⊆ P .

By combining OT1(A1) ∩ P ⊆ Q with OT1(A1) ∩ P ⊆ P , we get:

(OT1(A1) ∩ P) ∪ (OT1(A1) ∩ P) ⊆ (P ∪Q) ∪ P)

So
OT1(A1) ⊆ P ∪Q

By using Definitions 3.7, we get:

A1 |=T1 P → Q

The previous theorem states two observations for assumption-commitment specifications
S of the form P → Q. Firstly, whether an automaton satisfies S depends exactly on the
observable behaviours satisfying P . That is, in order to check an automaton A1 against
S, we may as well check A2 (even under a different operational semantics) as long as A1
and A2 (under the considered semantics) agree on the observable behaviours satisfying P .
Secondly, it is possible to verify satisfaction of S by an automaton through checking only
Q in an overapproximation of the automaton’s observable behaviour.

Moreover, in order to understand the idea behind Theorem 3.1, let us consider the cases
depicted in Figure 3.2. We have five cases, where each case represents either a holding
situation of the specification or a violation situation. For each figure, the green area
represents the area where the specification P holds and the specification Q doesn’t hold.
The red area represents the situation where the specification Q holds only. The last area
represents the situation where neither P nor Q holds. The mixed area (green and read)
represents the situation where the both specifications P and Q hold. The cyan polygon
area and blue polygon area represent the observable behaviours of automaton A1 and
A2 respectively.

Figure 3.2a represents the situation where the set of observable behaviours of A1 that
satisfy P is equivalent to the set of observable behaviours of A2 that satisfy P . On the
same time the set of observable behaviours of A1 satisfy the specification P → Q since
the green area is not touched at all. At this point, we conclude that the set of observable
behaviours of A2 satisfy also P → Q by using Theorem 1.

Figure 3.2b represents the situation where the set of observable behaviours of A1 that
satisfy P is equivalent to the set of observable behaviours of A2 that satisfy P . On the
same time the set of observable behaviours of A1 do not satisfy the specification P → Q

26

3.4. MODEL ELEMENT-BASED SLICING TECHNIQUE

P,¬Q

P,Q ¬P,Q

¬P,¬Q

OT1
(A1)

OT2(A2)

(a) Theorem 3.1.1 – positive case.

P,¬Q

P,Q ¬P,Q

¬P,¬Q

OT1
(A1)

OT2
(A2)

(b) Theorem 3.1.1 – negative case.

P,¬Q

P,Q ¬P,Q

¬P,¬Q

OT1
(A1)

OT2(A2)

(c) Theorem 3.1.2 – positive case.

P,¬Q

P,Q ¬P,Q

¬P,¬Q

OT1
(A1)

OT2(A2)

(d) Theorem 3.1.2 – negative case.

P,¬Q

P,Q ¬P,Q

¬P,¬Q

OT1
(A1)

OT2(A2)

(e) Theorem 3.1.2 – negative case.

Figure 3.2: List of interesting cases for Theorem 3.1.

since the green area is intersected with OT1(A1). At this point, we conclude that the set
of observable behaviours of A2 do not satisfy also P → Q by using Theorem 1.

Figure 3.2c represents the situation where the set of observable behaviours of A1 that
satisfy P is a subset of the set of observable behaviours of A2 and on the same time
the set of observable behaviours of A2 satisfy the specification Q, since neither the green
area nor the white one is touched. At this point, we conclude that the set of observable
behaviours of A1 satisfy also P → Q by using Theorem 2.

Figure 3.2d represents the situation where the set of observable behaviours of A1 that
satisfy P is a subset of the set of observable behaviours of A2 and on the same time the
set of observable behaviours of A2 do not satisfy the specification Q since the white area
is touched. At this point, we cannot conclude any result for A1, despite the fact that the
automata A1 and A2 satisfy the specification P → Q.

Figure 3.2e represents the situation where the set of observable behaviours of A1 that
satisfy P is a subset of the set of observable behaviours of A2. On the same time the set
of observable behaviours of A2 do not satisfy the specification Q, since parts of white and
the green areas are included. At this point, we cannot conclude any result for A1, despite
the fact that A1 does not satisfy the specification P → Q. The latter two cases address
the limitation of over-approximating P -rule usage.

The next section introduces two kinds of source-to-source transformation functions that
entail the premises of the over-approximating-P - and the common-P -rules.

27

3.5. TRANSFORMATION FUNCTIONS

3.5 Transformation functions

In this section, a general concept of transformations for automata is defined where this
transformation is based on a certain specification. Whenever we perform a transformation
based on a desired specification, we call this transformation admissible if satisfaction of
the desired specification is preserved after transformation.

However if the observable behaviour of the resultant automaton after applying the trans-
formation function admits an overapproximation of the desired specification, this trans-
formation is called semi-admissible. After that, the two transformations redirecting edges
and removing edges are presented in details.

Definition 3.9: Transformation

Let Aut be a set of automata. A transformation is a function F : Aut → Aut which
assigns to each original automaton A ∈ Aut a transformed automaton F(A) ∈ Aut.

3.5.1 Admissible transformations

Definition 3.10: Admissible Transformation

Let T be an operational semantics of Aut and S a specification. Transformation
F on Aut is called admissible for S (under T) if and only if for each automaton
A ∈ Aut, the observable behaviours of A and F(A) under T coincide on S, i.e. if

∀A ∈ Aut • OT (F(A)) ∩ S = OT (A) ∩ S.

The following lemma states the benefit of transformations which are admissible for the
assumption of assumption-commitment specifications: the original and the transformed
automaton obtained by an admissible transformation satisfy the premise of the common-
P -rule. Thus, if one can prove such a transformation is admissible, one gains the benefits
of Theorem 3.1.1.

Lemma 3.1: Admissible Transformation in verification

Let T be an operational semantics of Aut, S = P → Q an assumption-commitment
specification, and F a transformation on Aut. If F is admissible for P , then for
A ∈ Aut,

F(A) |= S if and only if A |= S.

Proof of Admissible Transformation in verification

In order to prove this lemma, we will consider the both directions of the bi-
implication; namely:
• The first direction, A ∈ Aut,F(A) |= S if A |= S

Since F(A) |= S and by using Definition 3.3, we get:

28

3.5. TRANSFORMATION FUNCTIONS

OT (F(A)) ⊆ S, i.e. OT (F(A)) ⊆ P ∪Q

If we take the intersection of both sides with P , we get:

OT (F(A)) ∩ P ⊆ (P ∪Q) ∩ P (∗)

Also, we know that OT (F(A)) ∩ P ⊆ P (∗∗).
By combining the the latter two facts in (∗), (∗∗), we get:

OT (F(A)) ⊆ P ∪Q

Now by considering the previous chain of relations, we get:

OT (F(A)) ∩ P ⊆ OT (F(A)) ⊆ P ∪Q

Since F is admissible transformation function with respect to S and by
using Definition 3.10, we get:

OT (F(A)) ∩ P = OT (A) ∩ P

Finally, from previous two facts, we get:

OT (A) ∩ P ⊆ P ∪Q

Thus by using Definition 3.3 and Theorem 3.1,

A |= S

• The second direction, A ∈ Aut,A |= S if F(A) |= S holds analogously.

Redirecting edges

The first proposed admissible transformation function redirects a set of edges in a given
automaton to a new location. It is defined as follows.

Definition 3.11: Redirecting Edges

Let A = (Loc ,Act , E, Lini) be an automaton, F ⊆ E a set of edges, and a /∈ Loc a
fresh location. We use A[F y a] to denote the automaton (Loc∪{a},Act, E′, Lini)
where

E′ = (E \ F) ∪ {(`, η,a) | (`, η, `′) ∈ F}.

We say A[F y a] is obtained from A by redirecting the edges in F (to a).

A transformation is a syntactic operation, thus the observable behaviour of a transformed
automaton may in general, given a sufficiently pathological operational semantics, not
resemble the behaviour of the original automaton at all. The following definition of con-
sistency states minimal sanity requirements on operational semantics which we need in
order to effectively use the redirection transformation. These requirements are directly

29

3.5. TRANSFORMATION FUNCTIONS

satisfied by the standard semantics of, e.g., timed and hybrid automata

Definition 3.12: Consistent for Redirection

An operational semantics T for Aut over states S is called consistent (for redirec-
tion) if and only if for each automaton A = (Loc ,Act , E, Lini) ∈ Aut, there is a
location a such that A[F y a] ∈ Aut and T (A[F y a]) = (Conf ′,Λ′, { λ−→′ | λ ∈
Λ′}, C ′ini) where

1. the set of configurations over the old locations and the transition relations for
⊥ and the unchanged edges do not change, i.e.

Conf ′ ∩ (Loc × S) = Conf , ∀e ∈ E \ F • e−→ = e−→′,
and ⊥−→′ ∩ (Conf × Conf) = ⊥−→,

2. T (A[F y a]) simulates transitions induced by edges from F and vice versa,
and the ⊥-transition relation does not leave a, i.e.

(`,η,a)−−−−→′ = {(c, 〈a, s′〉) | ∃e = (`, η, `′) ∈ F • (c, 〈`′, s′〉) ∈ e−→},
and ∀s, s′ ∈ S, `′ ∈ Loc′ • ((a, s), (`′, s′)) ∈ ⊥−→′ =⇒ `′ = a

3. the fresh location a is not initial, i.e. C ′ini = Cini .

The following lemma states that for consistent semantics, the redirection transformation
affects only behaviours where redirected edges are used.

Lemma 3.2: Consistent for Redirection

Let T be an operational semantics of Aut which is consistent for redirection. Let
A ∈ Aut be an automaton with edges E and F ⊆ E. Then there is a location a
such that ΞT (A[F y a], E \ F) = ΞT (A, E \ F).

Proof of Consistent for Redirection

In order to prove this lemma, we will consider both directions of the bi-implication;
namely:
• The first direction, ∀ξ ∈ ΞT (A[F y a], E \ F) implies ξ ∈ ΞT (A, E \ F).

Let T be an operational semantics of Aut which is consistent for redirec-
tion, A = (Loc,Act , E, Lini) ∈ Aut an automaton, and F ⊆ E a set of
edges of A.
As T is consistent for redirection, there is, by Definition 3.12, a location
a such that A[F y a] ∈ Aut and conditions 1 to 3 hold.
Let ξ = c0

λ1−→c1
λ2−→· · · ∈ ΞT (A, E \ F) be a computation path.

Then c0 ∈ Cini and ci
λi−→ci+1 by Definition 3.5, and λi ∈ (E \ F) ∪ {⊥}

also by Definition 3.5.
As a is a fresh location and only the edges in F are modified, none of
the edges occurring in ξ has destination a, thus all configurations ci in ξ
are for locations from Loc. (∗)
By Definition 3.12.3, c0 ∈ C ′ini , by (∗) and 3.12.1, ci ∈ Conf ′, and by

30

3.5. TRANSFORMATION FUNCTIONS

Definition 3.12.1 and 3.12.1, for all labels λ occurring in ξ, i.e. ⊥ and
edges from E, λ−→ = λ−→′, thus ci

λi−→′ci+1.
Hence, by Definition 3.5, ξ is a computation path of A[F y a], which
uses only labels from (E \ F) ∪ {⊥}, thus ξ ∈ ΞT (A[F y a], E \ F).

• The second direction, ∀ξ ∈ ΞT (A, E \ F) implies ξ ∈ ΞT (A[F y a], E \ F) is
shown analogously.

Redirecting edges in computational models

Applying redirecting edges can be preformed in all following computational models, since
their operational semantics is consistent after redirecting as in the aforenamed lemma:

Finite and Büchi automata: the standard semantics is consistent for redirection, thus
we need to define/choose a fresh location and redirect desired edges to this new
location. The fresh location must not be accepting one, as we are normally want
to exclude/restrict some behaviours of the model by redirecting edges to a new sink
location.

Timed automata: the standard semantics is consistent for redirection, thus we just choose
a fresh location with invariant true – to accept all incoming edges – and redirect edges
to this new location.

Hybrid automata: it is similar to timed automata, the flows in the fresh location can be
chosen freely.

Programs: e.g., the Boogie semantics [BCD+05] is consistent for redirection; we just ap-
pend a goto statement with a fresh label after the statements which should be
redirected in order to allow jumps to a unique fresh label a.

More details about applying redirecting edges on automata will be spelled out in the next
two sections.

3.5.2 Semi-admissible transformations

Definition 3.13: Semi-admissible Transformation

Let T be an operational semantics of Aut and S a specification. Transformation
F on Aut is called semi-admissible for S (under T) if and only if for each automa-
ton A ∈ Aut, the observable behaviour of F(A) under T over-approximates the
observable behaviour of A in S, i.e. if

∀A ∈ Aut • OT (A) ∩ S ⊆ OT (F(A)).

The following lemma states the benefit of transformations which are semi-admissible for the
assumption of assumption-commitment specifications: the original and the transformed
automaton obtained by a semi admissible transformation satisfy the premise of the over-

31

3.5. TRANSFORMATION FUNCTIONS

approximating-P -rule. Thus, if we can prove such a transformation is semi-admissible, we
gain the benefits of Theorem 3.1.2.

Lemma 3.3: Admissible Transformation

Let T be an operational semantics of Aut, S = P → Q an assumption-commitment
specification, and F a transformation on Aut. If F is semi-admissible for P , then
for A ∈ Aut, F(A) |= Q implies A |= S.

Proof of Semi-admissible Transformation

By using Definition 3.13 and as F is semi-admissible for P , we get:

OT (A) ∩ P ⊆ OT (F(A))

Since F(A) |= Q, by using Definition 3.3, we get:

OT (F(A)) ⊆ Q

Thus, from previous facts; namely OT (A) ∩ P ⊆ OT (F(A)) ⊆ Q, we get:

OT (A) ∩ P ⊆ Q

We know by the definition of specification and the operations over sets that
OT (A) ∩ P ⊆ P .
By combining the previous two facts we get:

(OT (A) ∩ P) ∪ (OT (A) ∩ P) ⊆ P ∪Q

Finally,
OT (A) ⊆ P ∪Q

By using Definition 3.3, we get:

A |= S

Removing edges

The first proposed semi-admissible transformation function removes a set of edges in a
given automaton. It is formally defined as follows.

Definition 3.14: Removing edges

Let A = (Loc ,Act , E, Lini) be an automaton and F ⊆ E a set of edges. We use
A \ F to denote the automaton (Loc,Act, E \ F,Lini). We say A \ F is obtained
from A by removing F .

As for redirection, we want that all computation paths of the original automaton that take
only non-removed edges are preserved in the new automaton. A sufficient criterion is the

32

3.5. TRANSFORMATION FUNCTIONS

following notion of consistency for removal.

Definition 3.15: Consistent Operational Semantics for Removal

An operational semantics T for Aut is called consistent (for removal) if and only if
for each automaton A ∈ Aut, A \ F ∈ Aut and

T (A \ F) = (Conf ,Λ \ F, { λ−→ | λ ∈ Λ \ F}, Cini),

given T (A) = (Conf ,Λ, { λ−→ | λ ∈ Λ}, Cini). That is, if the operational semantics of
A\F is obtained from the operational semantics of A by removing some transition
relations and leaving everything else unchanged.

Lemma 3.4: Consistent Operational Semantics for Removal

Let T be an operational semantics of Aut which is consistent for removal. Let
A = (Loc ,Act , E, Lini) ∈ Aut be an automaton and F ⊆ E a set of edges. Then
ΞT (A \ F,E \ F) = ΞT (A, E \ F).

Proof of Consistent Operational Semantics for Removal

We will prove this lemma by considering the both directions:
• First direction: ∀ξ ∈ ΞT (A \ F,E \ F) implies ξ ∈ ΞT (A, E \ F)

Let ξ ∈ ΞT (A \ F,E \ F).
Then only labels e ∈ E \ F and ⊥ occur in ξ as in Definition 3.14.
By using Definition 3.15, the occurring configurations are also configu-
rations of T (A) and the transition relations for these labels are equal in
T (A) and T (A \ F).
Thus ξ ∈ ΞT (A).

• Second direction: ∀ξ ∈ ΞT (A, E \ F) implies ξ ∈ ΞT (A \ F,E \ F) is shown
analogously.

Removing edges in computational models

Applying transformation by removing edges can be preformed in all following computa-
tional models, since their operational semantics is consistent after removing:

Finite, Büchi, timed and hybrid automata: the standard semantics of previous models
is consistent for removing, thus it is needed to identify the desired edges to that has
to be removed.

Programs: e.g., the Boogie semantics is consistent for removing; we only append a goto
statement with a fresh label before the statements which should be removed in
order to preform jumps over this removed block. An alternative solution is to use
assume(false) before the statements that should be removed in order to make all
computation paths through this block infeasible.

More details about applying removing edges on automata will be spelled out in the next
two sections.

33

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

3.6 New reachability concept: supporting edges

3.6.1 Supporting edges

In this section, we introduce the novel concept of supporting edges, based on edge reacha-
bility. This concept identifies a relation between a specification and edges. Informally, an
edge supports a specification if and only if there is a computation path which satisfies the
specification and where that edge is taken.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

e1
x ≥ 1

x := 0

e2
x ≥ 1

x := 0, A := A+ 1

e3
x ≥ 1

x := 0, A := 1

e4A := 0

Figure 3.3: Support notions in timed au-
tomaton.

Support notions
edges

e1 e2 e3 e4

edge supports specifi-
cation 2A = 0

7 7 7 7

edge supports proposi-
tion A = 0

3 7 7 7

edge potentially sup-
ports proposition A =
0

3 3 7 3

Table 3.1: Summary of supporting edges results
in Example 3.2.

Definition 3.16: Supporting Edges

Let T be an operational semantics of Aut and A ∈ Aut an automaton with edges
E. An edge e ∈ E

1. supports specification S (under T) if and only if there is a computation path
where label e occurs and whose observable behaviour is in S, i.e. if

∃ξ = c0
λ1−→c1

λ2−→· · · ∈ ΞT (A) ∃i ∈ N • λi = e ∧ ↓ξ ∈ S.
2. supports atomic proposition p (under T) if and only if there is a computation

path where label e occurs between two configurations that are in p, i.e. if
∃ξ = c0

λ1−→c1
λ2−→· · · ∈ ΞT (A) ∃i ∈ N • λi = e ∧ {ci−1, ci} ⊆ p.

3. potentially supports atomic proposition p (under T) if and only if there are
two configurations of T (A) = (Conf ,Λ, { λ−→ | λ ∈ Λ}, Cini) which are in p and
in e−→-relation, i.e. if ∃c, c′ ∈ Conf ∩ p • (c, c′) ∈ e−→.

Example 3.2: Supporting Edges example

In order to shed some light on supporting definition with its three variants, let
us consider the timed automata depicted in Figure 3.3 and the supporting results
shown in Table 3.1. This automata consists of four locations where each location
except q3 has an invariant x ≤ 1. Also, each edge has a guard x ≥ 1 which means
that any feasible transition in the operational semantics of the automata will be
executed exactly at the point of time when x = 1. For simplicity issue, we label the
edges from q0 to q1, q1 to q2, q2 to q3 and q3 to q3 with e1, e2, e3 and e4 respectively.
We want to consider the specification 2A = 0 (which mean always A equals 0) and

34

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

the atomic proposition A = 0 (cf. Definition 3.7). By considering the strongest
definition of support; i.e., support 2A = 0 (cf. Definition 3.16.1), it is observed
that none of the previous edges support this specification, since there exists no
computation path such that the edge is traversed and the specification is satisfied.
By considering the second definition of support (cf. Definition 3.16.2), it is observed
that only edge e1 supports the atomic proposition A = 0 since we have the following
feasible computation path:

〈q0, {x = 0, A = 0}〉 τ−→ 〈q0, {x = 1, A = 0}〉︸ ︷︷ ︸
c1

e1−→ 〈q1, {x = 0, A = 0}〉︸ ︷︷ ︸
c2

...

where {c1, c2} ⊆ {A = 0}. The other edges do not support the atomic proposition
A = 0.
By considering the third definition of support (cf. Definition 3.16.3), the weakest
definition of support, it is observed that all edges except e3 potentially support the
proposition A = 0 as follows:
• an evidence that e1 potentially supports A = 0 is

〈q0, {x = 1, A = 0}〉 e1−→ 〈q1, {x = 0, A = 0}〉

• an evidence that e2 potentially supports A = 0 is

〈q1, {x = 1, A = −1}〉 e2−→ 〈q2, {x = 0, A = 0}〉

• an evidence that e4 potentially supports A = 0 is

〈q3, {x = 1, A = 0}〉 e4−→ 〈q3, {x = 0, A = 0}〉

Table 3.1 summaries the results of supporting edges for the automaton depicted in Fig-
ure 3.3. Table 3.1 consists of five columns where the first one defines the type of support
notion according to Definition 3.16, the other columns characterize the edges of the au-
tomaton in Figure 3.3. From this table, it is observed that e3 was detected as non-support
edge for all support notions, since it has a restricted assignment that violates the atomic
proposition A := 0.

Corollary 3.1: Supporting Edges relations

Let A ∈ Aut be an automaton and p an atomic proposition.
1. If an edge e of A supports the invariant 2p (under T), then e supports the

proposition p (under T), but in general not vice versa.
2. If e supports p, then e potentially supports p, but in general not vice versa.

Proof of Supporting Edges relations

The proof of this corollary is straightforward, namely:
• If an edge e of A supports the invariant 2p, then there exists at least one

computation path where its configurations sequence is an element of the in-
variant. Thus, the direct predecessor and direct successor configurations while

35

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

traversing e are in p.
• If e supports p, it means that we can find a feasible and direct predecessor and
successor configurations while traversing e. Thus these feasible configurations
are in Conf .

3.6.2 Supporting edges and transformation functions

In order to combine previous ideas and concepts together to portrait a complete picture,
we will show that transformation functions by using redirecting and removing edges which
do not support a specification S are admissible and semi-admissible for S, respectively.

Theorem 3.2: Admissibility and redirection

Let T be an operational semantics of Aut with states S and let S be a specification
over Σ. Let F be a set of edges of automaton A ∈ Aut which do not support S
under T .

1. FFrd : A 7→ A[F y a] is admissible for S if T is consistent for redirection and
if S does not refer to the fresh location a, i.e. if ({a} × S) ∩ Σ = ∅.

2. FFrm : A 7→ A \ F is semi-admissible for S if T is consistent for removal.

Proof of Admissibility and redirection

Let T be an operational semantics with states S for Aut which is consistent for
redirection, let S be a specification over Σ, and F a set of edges of automaton
A = (Loc,Act , E, Lini) ∈ Aut which do not support S.

1. In order to prove the first item of the theorem, assume that S does not refer
to the fresh location a.
We have to showOT (A[F y a])∩S = OT (A)∩S. As the observable behaviour
is defined point-wise by Definition 3.6, we can consider computation paths.
“⊆”: Let ξ be a computation path of A[F y a] under T whose observable

behaviour is in S.
As S does not refer to a and as by Definition 3.12.2, only edges obtained
by redirecting the edges in F lead to a, none of these edges occurs in ξ.
Furthermore, none of the edges in F occurs in ξ because they have been
redirected, i.e. they are not edges of A[F y a], thus ξ ∈ ΞT (A[F y
a], E \ F).
As T is consistent for redirection, we have ξ ∈ ΞT (A, E \ F) by
Lemma 3.2.
Thus ξ is also a computation path of A under T , its observable behaviour
is still in S.

“⊇”: Let ξ be a computation path of A under T whose observable behaviour
is in S.
As the edges in F do not support specification S, we have, by using
Definition 3.16.1, ξ ∈ ΞT (A, E \ F).
As T is consistent for redirection, we have ξ ∈ ΞT (A[F y a], E \ F) by
Lemma 3.5.1.

36

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

Thus ξ is also a computation path of A[F y a] under T , its observable
behaviour is still in S.

2. In order to prove the second item of the theorem, we have to show OT (A) ∩
S ⊇ OT (A \ F) ∩ S. As the observable behaviour is defined point-wise by
Definition 3.6, we can consider computation paths.
“⊇”: Let ξ be a computation path of A under T whose observable behaviour

is in S.
As the edges in F do not support specification S, we have, by Defini-
tion 3.16.1, ξ ∈ ΞT (A, E \ F).
As T is consistent for redirection, we have ξ ∈ ΞT (A\F,E \F) by using
Lemma 3.4.
Thus ξ is also a computation path of A[F y a] under T , its observable
behaviour is still in S.

To apply Theorem 3.7, a set of edges which do not support the given specification has to be
identified. In the following example, we will apply transformation functions by redirecting
and removing on the timed automaton model depicted in Figure 3.3 through considering
the supporting edges results depicted in Table 3.1.

Continuing with Example 3.2: Supporting dependent transformation

Consider the timed automaton in Example 3.2, Figure 3.3 and Table 3.1. We will
apply transformations however depending on the edges that do not support a spec-
ification or an atomic proposition. Unexpectedly, we begin to speak about the
non-supporting edges instead of supporting ones since in this example, the trans-
formation will exclude/deactivate the paths where the specification or the atomic
proposition will be violated. Case 1: transformations based on edges do not
support the specification 2A = 0. If we transform the timed automaton model
by redirecting or removing the set of edges that don’t support the specification
2A = 0, we will get the timed automaton models in Figure 3.4a and Figure 3.4b
respectively.
Case 2: transformations based on edges do not support the proposition
A = 0. If we transform the timed automaton model by redirecting or removing
the set of edges that don’t support the proposition A = 0, we will get the timed
automaton models in Figure 3.4c and Figure 3.4d respectively.
Case 3: transformations based on edges do not potentially support the
proposition A = 0. If we transform the timed automaton model by redirecting or
removing the set of edges that don’t support the proposition A = 0, we will get the
timed automaton models in Figure 3.4e and Figure 3.4f respectively.

3.6.3 Verification based on support-notion

In general, detecting edges which do not support a specification (cf. Definition 3.16.1
is as expensive as reachability checking. Though if the specification is an invariant, the
contrapositions of the implications in Corollary 3.1 are particularly useful: if an edge does
not potentially support a proposition, then it does not support the proposition, and if an

37

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

a
fresh

e1
x ≥ 1

x := 0

e2
x ≥ 1

x := 0, A := A+ 1

e3
x ≥ 1

x := 0, A := 1

e4

A := 0

(a) Model after redirecting edges by considering Defini-
tion 3.16.1.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

A := 0

(b) Model after removing edges by consider-
ing Definition 3.16.1.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

a
fresh

e1
x ≥ 1

x := 0
e2

x ≥ 1

x := 0, A := A+ 1

e3
x ≥ 1

x := 0, A := 1

e4

A := 0

(c) Model after redirecting edges by considering Defini-
tion 3.16.2.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

e1
x ≥ 1

x := 0

A := 0

(d) Model after removing edges by consider-
ing Definition 3.16.2.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

a
fresh

e1
x ≥ 1

x := 0

e2
x ≥ 1

x := 0, A := A+ 1

e3
x ≥ 1

x := 0, A := 1

e4A := 0

(e) Model after redirecting edges by considering Defini-
tion 3.16.3.

q0
x ≤ 1

q1
x ≤ 1

q2
x ≤ 1

q3
x ≤ 0

e1
x ≥ 1

x := 0

e2
x ≥ 1

x := 0, A := A+ 1

e4A := 0

(f) Model after removing edges by considering
Definition 3.16.3.

Figure 3.4: Transformed timed automata models after considering different notions of sup-
porting.

38

3.6. NEW REACHABILITY CONCEPT: SUPPORTING EDGES

edge does not support a proposition p, then it does not support the invariant 2p. A
sufficient criterion for an edge not (potentially) supporting a proposition p is to be a cause
or a witness. An edge e is a cause of a violation of p if the p is always violated after
taking this edge, i.e., if the interpreted action of e causes p not to hold. Similarly, an
edge is a witness of a violation of p if p is necessarily violated when e is taken, i.e., if the
guard of e may imply ¬p. Removal of witnesses is even admissible. There are sufficient
syntactical criteria to detect causes and witnesses. Furthermore, detection of potential
support can be reduced to an SMT problem for the formula given by Definition 3.16.3 and
attacked by SMT solvers like iSAT3 [SKB13] or SMTInterpol [CHN12] or Z3 [dMB08].
For the special case of timed automata and bounded-integer propositions, a procedure

based on the well-known reaching definitions analysis detects all edges which support
an atomic proposition [Mah12]. Considering all edges which do not support a given
specification is optimal in the sense that removing or redirecting any more edges breaks
(semi-)admissibility. But it is not necessary to determine all non-supporting edges in order
to obtain an optimal reduction of behaviour. It is sufficient to determine all points of no
return (PNR) for a given specification, i.e., edges which are the first on a computation
path which do not support the specification. Causes and witnesses are often PNRs.

Remark 3.1: Networks of automata

All previous discussions consider a single automaton in the syntax and semantics.
However, most practical models are networks of automata. In the following, we
discuss briefly how our approach is applied to networks of automata.
For timed automata, each network has an equivalent timed automaton, the parallel
composition. Edges in the parallel composition are constructed from internal tran-
sitions of automata in the network, or (with broadcast) from synchronisation edges
of one or more automata in the network over a channel. An edge e in the network
supports a specification if and only if there is an edge in the parallel composition
which supports the specification and which is constructed from e. Edges not sup-
porting a specification in this sense can safely be disabled by applying redirection
or removal to the automata in the network.
The same approach applies to hybrid automata and as neither redirection nor re-
moval changes the set of interpreted actions, the sets of labels are preserved and
thus no new computation paths emerge.

Remark 3.2: Automaton Templates

In several tools; e.g., Uppaal, networks of automata are composed of automaton
template instances. An edge in a template supports a specification if and only
if there is an edge instance which supports the specification. That is, an edge can
only be safely redirected or removed in the template, if all instances of this edge
in the network do not support the specification. That means we can apply our
transformation on template (component) level .

2In [FW16] a feasible implementation for detecting non-supporting edges was integrated with Z3 solver
and used in this thesis.

39

3.7. COMPOSITIONAL VERIFICATION

Remark 3.3: Computation Paths vs. Runs

The standard semantics of timed and hybrid automata distinguish between com-
putation paths and runs, where the latter are computation paths with the progress
property [OD08]. Interestingly, for timed automata, removing and redirecting edges
have the same semantical effect if only runs are considered. However, in practice
that will not give an obvious benefit, because verification tools – for sake of verifying
invariants – typically check computation paths, not only runs.

3.7 Compositional verification

Algorithm 1 Verification procedure of S : P → Q in automata models.
Input: automaton model A with edges E and specification S : P → Q.
Output: either valid or invalid.
1: procedure Verify(S, A)
2: Detect edges F ⊆ E not supporting P
3: if A \ F |= Q then
4: return valid
5: else
6: if A[F y a] |= S then
7: return valid
8: else
9: return invalid

10: end if
11: end if
12: end procedure

In previous sections, we introduced the concept of transformation by either redirecting
or removing edges and different notions of edges supporting a specification or an atomic
proposition are explained as well. Firstly, removal and redirection of all edges which do not
support a given specification is optimal in the following sense: they yield always smaller
models with comparison to the original one. Smaller means; e.g., in removal case that we
obviously decrease the syntactical size of a given automaton model. Consequently, we deal
with smaller state space of the problem. Additionally, although redirection adds a fresh
location, it also decreases the size of a given automaton in many practical examples if
we also remove all locations and edges which are, after redirecting non-supporting edges,
are no longer graph-reachable in the automaton. This section proposes an approach to
use the previous theory in practice with any model checker. Later, our procedure will be
integrated with the Uppaal tool.

To use redirection and removal, we propose to apply the procedure shown in Algorithm 1
to all assumption-commitment properties P → Q.

Algorithm 1 depends generally on two steps; (1) the technique to detect the non-supporting
edges and (2) the chosen transformation function. Firstly, we need to detect the set of
edges that do not support the assumption P as in Line 2 in Algorithm 1. At this point, we

40

3.7. COMPOSITIONAL VERIFICATION

can control the cost of this step by several options. For example, if we tend to detect all
edges that do not support the invariant P as described in Definition 3.16.1, one has to take
into account, as we have pointed out before, that this detection is at least as complex
as solving the location-reachability problem, the following theorem emphasizes this
observation.

Theorem 3.3: Complexity of the non-support problem

Solving the non-support problem for all edges in a given automaton A is at least as
hard as solving the location-reachability problem.

Proof of Complexity of the non-support problem

In order to prove this theorem, we need to reduce the location-reachability prob-
lem onto the problem of solving the non-support problem for all edges in a given
automaton.
We are given an automaton A = (Loc,Act , E, Lini) with its operational semantics
T (A) and one of its locations ` ∈ Loc. The location-reachability problem asks
whether ` is reachable in A under T (A) i.e. whether there exists a computation
path such that it starts from the initial configurations and location ` is reached by
this computation path configuration as stated in Definition 3.5.
Let us consider the automaton A and the invariant (specification) 2true. We solve
the non-support problem for all edges in A and maintain/update a set Esupp which
contains all edges that support the invariant 2true i.e. all non-reachable edges will
be excluded. Thereby, the set Esupp contains exactly all edges which can occur as
labels on any computation path of A.
Now, in order to determine whether location ` is reachable or not, we have to check
whether there exists an edge which its source or destination locations is ` and on
the same time this edge is reachable on any computation path of A.
This is equivalent to checking whether there exists any edge e in the set of supporting
edges Esupp. If such an edge exists, then location ` is reachable, otherwise location
` is not reachable.

This means that the exact detection of non-supporting edges is quite expensive and pro-
vides no efficiency benefits if it is used as preprocessing step for verification of P → Q.
However, knowing the exact number of non-supporting edges in a given automaton for a
given invariant P enables us to assess the precision of the approximative detection pro-
cedures that depends on Definitions 3.16.2 and 3.16.3. Thus the approximative detection
procedures are reasonable and low-priced detection, in particular for automata models
where the variables occurring in P are appearing always in memoryless operations; e.g.,
v := z where z ∈ Z. In these cases, one can identify almost the same edges that are
detected with the exact procedure as in Definition 3.16.1 and they can be safely removed
or redirected. The second reasonable option to consider supporting a proposition which
is still less expensive than supporting a specification.

After detecting the non-supporting edges of P , we apply a suitable transformation as in
Line 3. The first transformation is to remove edges which do not support the assumption
and check whether the resulting model satisfies the commitment Q. If Q is satisfied, we
deduce that the original model satisfies the property by the over-approximating-P -rule

41

3.8. CASE STUDIES

from Theorem 3.1 as in Line 4. Otherwise, we need to redirect the edges that do not
support P as in Line 6. Then checking whether the resulting model satisfies P → Q yields
the final verification result by the common-P -rule from Theorem 3.1 as in Lines 7 and 9.
The reason for using removal before redirection is that removing edges leads to a smaller
state space than redirecting, and consequently less time and memory consumption.

3.8 Case studies

As mentioned in Section 3.2, our approach can be applied to automata models inducing
consistent operational semantics. One valid instance of these models are timed automaton
models. We explain in this section in more detail how the verification process would be
optimised in terms of time consumption and memory usage while applying our proposed
compositional verification procedure in timed automata models. In each case, we will
explain the use-case and describe its network of timed automata model. After that,
depending on the the assumption of the verified desired property, we will detect the edges
which do not support the assumption (under the means of potentially supporting), and
then apply the transformation function by redirecting or removing edges. It is obvious
that the latter procedure follows Algorithm 1. Finally, we will compare the results of
verifying the contract property in the original timed automata model by Uppaal [LSW95]
with the results while verifying the same contract in the resultant timed automata model
after transforming.

3.8.1 Wireless sensor network: Alarm system

We consider a wireless fire alarm system modelled, improved and verified in [AWD+14].
The wireless fire alarm system (WFAS) model in [AWD+14] follows the European standard
EN-54, part 25 [DIN97], which regulates the main obligations for commercially available
WFAS. Wireless fire alarm systems are increasingly preferred over wired ones due to
advantages such as spatial flexibility. The main purpose of a fire alarm system is to
reliably and timely notify occupants about the presence of indications for fire, such as
smoke or high temperature. Because of possible failure in system components like physical
damages or disconnection, we cannot guarantee that the fire alarm system fulfils this
requirement. Hence, the modelled fire alarm system does not only need to employ self-
monitoring mechanisms, but also notify maintainers if it is not able to fulfil its main
purpose. Moreover, false alarms and maintainer notifications should be avoided as they
induce unnecessary costs, in particular when we speak about large scalable WFAS models.

Most aspects of the WFAS protocol are modelled using timed automata [AD94], which
were subsequently verified by using Uppaal. However, many difficulties and challenges
appear even by using state-of-the-art verification technique for many reasons: First, the
number of components is very large, e.g., 120 sensors and 30 repeaters. Second, the
standard explicitly specifies complex environment assumptions which need to be taken
into consideration while modelling the system. Third, the relevant properties are real-
time safety properties.

42

3.8. CASE STUDIES

Description of the system model

The WFAS can be briefly described as follows. It consists of one central unit, repeaters
and sensors, where a word component and node are used interchangeably, and they refer
to either the central unit, a repeater or a sensor. In the WFAS topology, each component
is assigned a unique master. The master-slave relation forms a tree with the central unit
as root. Only the central unit or a repeater can act as a master in this topology, and a
sensor or a repeater can act as a slave in this relation.

Central Unit

R1 R2 R3

R4

S1 S5 S3 S7 S2

S8

S4

Call-msg

S4:Stop!

I’m alive

Alarm

Tr11

Tr21

Tr12

Tr22

Tr13

Tr23

Tr14

Tr24

Tr20 Tr10

Figure 3.5: Example of wireless fire alarm system topology.

Figure 3.5 shows a valid instance of WFAS topology, where C refers to the central
unit, R1, ..., R4 are repeaters and S1, ..., S8 are sensors. Each master component has two
transceivers as shown in Figure 3.5. A Transceiver realizes three functions: the slave-role
towards another repeater or the central unit, the master-role towards other repeaters, and
the forwarding of events.

If we want to classify the exchange of messages in WFAS, they will be as follows:

• “create and send message” would be carried out in the following situations:

– Any slave component must periodically send an LZ-message which denotes that
this component still works properly.

– Any sensor must send Alarm-message when it detects fire or smoke.

– The central unit can send a Call-message to any sensor in order to give it one
command to be executed; namely stop sending LZ-messages.

• “forward incoming message” would be carried out in the following situations:

– Any repeater must forward the incoming messages, e.g., Alarm, Call and LZ-
messages.

• “replying to incoming messages” would be carried out in the following situations:

– Any master component must send acknowledgement-message for LZ-messages
where the former contains a time stamp which allows the slave to synchronize

43

3.8. CASE STUDIES

its clock with the master’s clock.

– Any sensor must acknowledge the received Call-message.

Looking at the timing schedule of WFAS, the Time Division Multiple Access (TDMA)
Protocol [Stu96] is used. TDMA protocol is used in networks where several nodes share
the same frequency channel, by dividing the time into time intervals, such that in each
interval, one node at most is allowed to use the frequency channel. In WFAS, the time is
considered to start from a fixed point in time, at which the system starts to evolve. Starting
from this point, the time is divided into an infinite sequence of equal time cycles (which are
called time-frames in some literature). Within the time cycles, messages between central
unit and sensors take place frequently. If we look deeper into the time cycle, each time
cycle is divided into equal intervals, called time windows. Moreover, each time window is
subdivided into intervals called timeslots which are assigned to different protocol functions.
Each node measures the time using its clock, and the clock presents a count of tics starting
from a fixed point in time. In this sense, one can represent the length of each time interval
by a fixed number of tics [MJ11]. Finally, every sensor and repeater is assigned a unique
window.

As aforementioned, this case study follows the European standard EN-54 which requires
the following:

R-1 The loss of the ability to transmit a signal from a component to the central unit
is detected in less than 300 seconds and displayed at the central unit within 100
seconds thereafter.

R-2 A single alarm event is displayed at the central unit within 10 seconds.

R-3 Two alarm events occurring within 2 seconds of each other are each displayed at the
central unit within 10 seconds after their occurrences.

R-4 Out of exactly ten alarms occurring simultaneously, the first should be displayed at
the central unit within 10 seconds and all others within 100 seconds.

R-5 There must be no erroneous displays of events at the central unit.

Requirements 1 to 5 must hold in all situations; e.g. including the case where we have
radio interference by other users of the frequency band. Radio interference by other users
of the frequency band is simulated by a jamming device specified in the standard.

Problem statement

In order to perform failure detection, repeaters in the slave-role and sensors use the same
functionality. Slaves periodically send LZ-message to their master in the corresponding
slot of their assigned window. If no acknowledgement message is received from the master,
a second and third LZ message are transmitted in the subsequent slots using a different
channel. Masters listen (this follows listen before talk (LBT) procedure [LMM06]) on the
corresponding channel during the slots of their assigned slaves. A master enters its error
detection status when a specified number of LZ-messages from one slave have consecutively
been lost. The master then initiates the forwarding of the failure detection event. Event
forwarding takes place without regarding slot assignments, using the transceivers.

44

3.8. CASE STUDIES

(a) MasterClock.

(b) SlotClock.

(c) WindowClock.

(d) ChannelBlocker.

45

3.8. CASE STUDIES

(e) Medium.

(f) Transceiver.

(g) Sensor.

(h) Fault. (i) Controller.

Figure 3.5: Uppaal model of WFAS as in [AWD+14], however sensor model in Figure 3.5g
extended by Call-messages behaviour. The thick edges represent Call-message
scenarios.

46

3.8. CASE STUDIES

(a) Sensor after redirecting non-supporting edges.

absTime >= Slot2End

absTime >= LZ3Start

absTime >= LZStart

absTime >= LZ2Start

absTime>=Slot1End

absTime >= WindowEnd

TX[LZ][channelCALL]!

RX[ACK][channelCALL]?

cycleReset?

RX[ACK][channelLZ]?

RX[ACK][channelALARM]?

TX[LZ][channelALARM]!

gSensorID := id

cycleReset?

cycleReset?

gSensorID := id

gSensorID := id

TX[LZ][channelLZ]!

absTime <= Slot2EndabsTime <= LZ2Start + LZdelay

absTime <= LZ3Start + LZdelay

absTime <= WindowEnd

absTime <= LZStart + LZdelay

absTime <= CycleLength
absTime <= LZStart

absTime<=Slot1End

slot_endthird_try

Call

idle first_try

second_try

window_end

(b) Sensor after removing non-supporting edges.

Figure 3.6: Sensor automaton after applying transformation function. The other automata
remain the same.

Uppaal model

Figure 3.5 represents the wireless fire alarm system model as in [AWD+14], however it
is extended by adding call messages mechanism, where a call message prevents a specific
sensor from sending LZ messages as aforesaid.

In this model, we have a MasterClock as in Figure 3.6a, SlotClock as in Figure 3.6b and
WindowClock as in Figure 3.6c timed automata to organise the time-based scheduling in
the TDMA protocol. In addition to that, Channelblocker as in Figure 3.5i and Medium as
in Figure 3.5e timed automata represents the channel and the medium behaviour respec-
tively. Figure 3.5g represents Sensor timed automaton model and Figure 3.5f represents
transceiver timed automaton that organises sending and receiving LZ messages. Finally,
Figure 3.5i and 3.5h represents the Controller and the Fault timed automata, whereas the
error is detected whenever the number of missed LZ exceeds 2.

In the previous model, we are interested to verify the following well-functioning property:
in case that the central unit has never sent any Call message and the sensor has a failure,
then the central unit has to detect this failure in at most 300 s.

It is formally formalized as (2p)→ (2q) with p = (∀i : Sensor • ¬i.Call) which represents
no call messages, and q = (Switcher .DETECTION→ Switcher .timer ≤ 300∗Second) which

47

3.8. CASE STUDIES

represents that the detection is achieved in at most 300 seconds.

Transformation process

edges
Support notions does not potentially does not support does not support

support ¬Call ¬Call specification 2(¬Call)
e1 := 〈first_try,RX[CALL][channelLZ]?, true, locker:=true, gSensorID:=id,Call〉 3 3 3

e2 := 〈second_try,RX[CALL][channelALARM]?, true, locker:=true, gSensorID:=id,Call〉 3 3 3

e3 := 〈third_try,RX[CALL][channelCALL]?, true, locker:=true, gSensorID:=id,Call〉 3 3 3

e4 := 〈Call, cycleReset?, true,−−,Call〉 7 3 3

Table 3.2: Non-supporting edges in WFAS model.

In order to verify the well-functioning property that has the assumption-commitment form
in the WFAS model depicted in Figures 3.5, the edges that do not support the absence
of the call messages will be identified. This identification will be achieved by detecting
the edges that do not potentially support the assumption (which is a low-priced task).
Only for comparing the effectiveness and the full coverage of the latter detection, we will
also detect the edges that do not support the assumption specification (which is the most
expensive support detection). The results are presented in Table 3.2 where potentially-
support technique behaves almost the same as specification-support except in one edge.

Verification results

original model, non-supporting removed, non-supporting redirected,
query: A2(p→ q) query: A2q query: A2(p→ q)

seconds MB kStates seconds MB kStates seconds MB kStates
2 87.38 344.2 4573.06 11.47 47.1 601.87 88.17 344.2 4573.06
3 453.67 1671.0 21597.64 17.81 66.1 891.14 446.79 1653.0 21582.34
4 >2,000.00 − − 26.10 83.8 1218.34 1984.8 6859.9 89493.30
5 >2,000.00 − − 35.98 101.3 1583.60 >2,000.00 − −
6 >2,000.00 − − 46.37 124.7 1986.99 >2,000.00 − −
7 >2,000.00 − − 60.13 144.1 2428.59 >2,000.00 − −
8 >2,000.00 − − 74.07 163.0 2908.50 >2,000.00 − −
9 >2,000.00 − − 90.02 182.4 3426.79 >2,000.00 − −
10 >2,000.00 − − 109.18 203.2 3983.55 >2,000.00 − −

Table 3.3: Figures for verifying well functioning property in WFAS model3. Detecting
potentially non-supporting edges needs about 0.58 s and 6632 KB.

Table 3.3 summarize the verification results (time and memory) while verifying the WFAS
model in Uppaal. It comprises four groups of columns. The first one represents the number
of sensors which ranges4 from two to ten. The second group shows the result of verifying
the benchmarks when using Uppaal in the original model, thereby stating the verification
time in seconds, memory usage in megabytes, and the number of explored states. The

3All results: Linux x64, 16 Quad-Core Opteron 8378, 132 GB, Uppaal 4.1.13. All recent Uppaal
versions after 4.1.13 have an index bug while instantiating the sensor model. This bug was reported to
the Uppaal developers.

4In the original model specification as in [AWD+14], it is allowed to have maximally 126 sensors in the
wireless alarm model.

48

3.8. CASE STUDIES

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12

Ti
m

e
 in

 S
e

co
n

d
s

Number of Sensors

Original_Model

Transformation by removing

Transformation by redirecting

(a) Verification times for n sensors.

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12

M
e

m
o

ry
 in

 M
B

Number of Sensors

Original_Model

Transformation by removing

Transformation by redirecting

(b) Memory usage for n sensors.

Figure 3.7: Results of verifying well-functioning property in WFAS model.

third group has the same structure, yet reports results for using Uppaal after removing
the edges that do not support the assumption. Finally, the fourth group has the same
structure, yet reports results for using Uppaal after redirecting the edges that do not
support the assumption.

All results are summarized in Figures 3.7a and 3.7b. The first observation is that verifying
the model after removing non-supporting edges scores the best results in terms of time
and memory usage with a big difference with other verification techniques. In the original
model as shown in Table 3.3, Uppaal does not succeed to verify a system with 4 sensors
in 2,000 seconds, a system with 3 sensors takes about 8 min. to be successfully verified.
However, while redirecting edges that do not support the absence of call messages, Uppaal
succeeds to verify the WFAS model with 5 sensors in 1984 seconds. Finally, while removing
edges that do not support the absence of call messages, we can verify all listed benchmarks
in a record time as well as verify the same model while the number of sensors is 39
in 2000 seconds. In addition to that, both transformation functions (redirecting and
removing) achieve better result than the classical verification of original model without
any preprocessing.

3.8.2 Fischer’s mutual exclusion protocol

In this section, we explain another case study, which is the Fischer’s protocol, a time-
controlled mutual exclusion protocol. It is discussed by many others in the literature
[Lam87, BDL04, LSW95]. Briefly, Fischer’s protocol is a timed protocol where the con-
current processes check for both a delay and their turn to enter the critical section using a
shared variable [BDL04]. We take this example from the Uppaal repository of case studies,
and extend it by allowing the possibility of failure occurrence which violates the mutual
exclusion condition.

49

3.8. CASE STUDIES

Problem statement

Consider that we have n ∈ N+ processes, the main property of this protocol is to assure
that any time at most one process can access the critical section. The desired property
which is under investigation is that whenever there is not any error in the model, any
time at most one process can access the critical section. This property is called a mutual
exclusion property. We formalise this property as a contract with the form P → Q.

Description of the model

Wait
x<=k

R eques t
x<=k

Initial
x<=1

C ritic al_S ec tion

C S _broadcast? access_cs :=true

x>=1 x = 0

x>=k

x = 0,
lis t[pid]
 =true

x>=k
&&
Lock

x = 0,
lis t[pid]
 =false

x>=kC S [pid]?

access_cs :=true

release?
x=0

(a) Process.

F ault_B ehav

E nter_C SInitial

C S _broadcast!

F ault? Lock=false

release! Lock=false

i : id_t lis t[i]==true C S [i]!

lis t[i]=false, Lock=true

(b) Critical section management.

F ault_E xis tenc eNo_F ault
F ault! flag=true

(c) Direct fault detection.

Figure 3.8: Uppaal model of the Fischer’s protocol with direct-fault detection.

Figure 3.8 presents the Uppaal model of extended Fischer’s protocol where a fault may
occur in the critical section management as in Figure 3.8b where the latter is expected to
monitor the accessibility of the critical section.

If no fault occurs, processes (cf. Figure 3.8a) pose a request to enter their critical section
by the shared variable list. The critical section manager (cf. Figure 3.8b) grants access
to the critical section by a synchronisation on CS and expects notification of leaving the
critical section on channel release. Our extensions are indicated by thick edges: if a fault
occurs, processes may enter the critical section bypassing the manager and thereby violate
the mutual exclusion property. For simplicity, we merged the environment model which
triggers faults and fault detection in Figure 3.8c. Location Fault_Existence models the
display of a fault occurrence.

Note that Figure 3.8 is a special case, because fault detection is immediate (no delay be-
tween occurrence and detection) and persistent. For real-world systems, fault detection
often needs time so there may be small durations of time where the system cannot guar-
antee proper operation, but where the fault is not yet displayed. An Uppaal model of
delayed fault detection for Fischer’s protocol is shown in Figure 3.9. This case – under
certain sense – simulates the real life situation where such a delay is expected between
fault detection and its display due to the nature of hardware communication. Of course,
the Uppaal model which is depicted in Figure 3.9 has more transitions and larger state
space compared with Figure 3.8.

50

3.8. CASE STUDIES

Wait
x<=k

R eques t
x<=k

Initial
x<=1

C ritic al_S ec tion

C S _broadcast? access_cs :=true

x>=1 x = 0

x>=k

x = 0,
lis t[pid]
 =true

x>=k
&&
Lock

x = 0,
lis t[pid]
 =false

x>=kC S [pid]?

access_cs :=true

release?
x=0

(a) Process.

F ault_B ehav

E nter_C SInitial

C S _broadcast!

F ault? Lock=false

release! Lock=false

i : id_t lis t[i]==true C S [i]!

lis t[i]=false, Lock=true

(b) Critical section management.

Fault!

lock==false

flag:=true,
x:=0

x:=0
x>=1

Wait Fault_Existence

x<=1

No_Fault

x<=1

(c) Delayed fault detection.

Figure 3.9: Uppaal model of the Fischer’s protocol with delayed-fault detection.

Transformation process

In order to verify the mutual exclusion property that has the assumption-commitment form
in the Fischer’s protocol depicted in Figures 3.8 and 3.9, the same procedure described in
the previous case study is applied. Namely, we will identify the edges that do not support
the absence of the faults. This identification will be achieved by detecting the edges that do
not potentially support the assumption (which is a low-priced task). Only for comparing
the effectiveness and the full coverage of the latter detection, we will also detect the edges
that do not support the assumption specification (which is the most expensive support
detection).

edges
Support notions does not potentially does not support does not support

support ¬Fault_Existence ¬Fault_Existence specification 2(¬Fault_Existence)
e1 := 〈Enter_CS,Fault?, true, lock:=false,Fault_Behav〉 7 3 3

e2 := 〈No_Fault,Fault!, true,flag:=true,Fault_Existence〉 3 3 3

Table 3.4: Non-supporting edges in Fischer’s protocol with direct fault detection.

Table 3.4 shows the edges that do not support the assumption i.e., ¬Fault_Existence in
the Fischer’s protocol with direct fault detection depicted in Figure 3.8. It is observed
that detecting edges that do not support the proposition ¬Fault_Existence will give us the
real exact number of non-supporting edges in this model. Moreover, using the weakest
definition of support; i.e, potentially support lacks the precise in detecting edge e1 as
non-supporting one, but still feasible as seen in the verification results.

edges
Support notions does not potentially does not support does not support

support ¬Fault_Existence ¬Fault_Existence specification 2(¬Fault_Existence)
e1 := 〈Enter_CS,Fault?, true, lock:=false,Fault_Behav〉 7 3 3

e2 := 〈No_Fault,Fault!, true, x:=0,Wait〉 3 3 3

e3 := 〈Wait,−, true,flag:=true, x:=0,Fault_Existence〉 7 3 3

e4 := 〈Fault_Existence,−, lock == false,−,No_Fault〉 7 3 3

Table 3.5: Non-supporting edges in Fischer’s protocol for the model with delayed fault
detection in Figure 3.9.

Now, in order to apply transformations either by removing or redirecting together with

51

3.8. CASE STUDIES

(a) Critical section management remains the
same in case of using potentially support
since e1 in Table 3.4 potenially supports the
proposition ¬Fault_Existence.

(b) Direct fault detection automaton
is changed since e2 in Table 3.4
doesn’t potentially support the por-
position ¬Fault_Existence.

(c) Critical section management is
changed since e1 in Table 3.4
doesn’t support the proposition
¬Fault_Existence according to
Definitions 3.16.1 and 3.16.2.

(d) Direct fault detection automaton
is changed since e2 in Table 3.4
doesn’t support the proposition
¬Fault_Existence according to Def-
initions 3.16.1 and 3.16.2.

Figure 3.10: Uppaal model of Fischer’s protocol after applying redirecting transforma-
tion function for the model with direct fault detection in Figure 3.8.

(a) Critical section management remains the
same in case of using potentially support
since e1 in Table 3.4 potenially supports the
proposition ¬Fault_Existence.

(b) Direct fault detection automaton
is changed since e2 in Table 3.4
doesn’t potentially support the
proposition ¬Fault_Existence.

(c) Critical section management is changed
since e1 in Table 3.4 doesn’t support
the proposition ¬Fault_Existence accord-
ing to Definitions 3.16.1 and 3.16.2.

(d) Direct fault detection automaton
is changed since e2 in Table 3.4
doesn’t support the proposition
¬Fault_Existence according to Def-
initions 3.16.1 and 3.16.2.

Figure 3.11: Uppaal model of Fischer’s protocol after applying removing transforma-
tion function for the model with direct fault detection in Figure 3.8.

52

3.8. CASE STUDIES

(a) Critical section management remains the
same in case of using potentially support
since e1 in Table 3.5 potenially supports the
proposition ¬Fault_Existence.

(b) Direct fault detection automaton is changed
since e2 in Table 3.5 doesn’t potentially sup-
port the proposition ¬Fault_Existence.

(c) Critical section management is
changed since e1 in Table 3.5
doesn’t support the proposition
¬Fault_Existence according to
Definitions 3.16.1 and 3.16.2.

(d) Direct fault detection automaton is changed
since e2 in Table 3.5 doesn’t support the
proposition ¬Fault_Existence according to
Definitions 3.16.1 and 3.16.2.

Figure 3.12: Uppaal model of Fischer’s protocol after applying redirecting transforma-
tion function for the model with delayed fault detection in Figure 3.9.

(a) Critical section management remains the
same in case of using potentially support
since e1 in Table 3.5 potenially supports the
proposition ¬Fault_Existence.

(b) Direct fault detection automaton is changed
since e2 in Table 3.5 doesn’t potentially sup-
port the proposition ¬Fault_Existence.

(c) Critical section management is changed
since e1 in Table 3.5 doesn’t support
the proposition ¬Fault_Existence accord-
ing to Definitions 3.16.1 and 3.16.2.

(d) Direct fault detection automaton is changed
since e2 in Table 3.5 doesn’t support the
proposition ¬Fault_Existence according to
Definitions 3.16.1 and 3.16.2.

Figure 3.13: Uppaal model of Fischer’s protocol after applying removing transforma-
tion function for the model with delayed fault detection in Figure 3.9.

53

3.8. CASE STUDIES

considering all definitions of supporting, we will get the following results depicted in Fig-
ure 3.10 and Figure 3.11 respectively. Figure 3.10 represents the transformation results
after redirecting the edges that do not potentially support the proposition ¬Fault_Existence
as in Figures 3.10a and 3.10b. On the other hand, as in Table 3.4, supporting the proposi-
tion and the specification have the same behaviour, we combine its resultant transformed
automata after redirecting in Figures 3.10c and 3.10d. We draw the attention of the reader
that for simplicity issue, Figure 3.10 does not consider the process automaton, since it is
not affected in any transformation functions. Figure 3.11 has the same description of
Figure 3.10, however after applying removing transformation.

Table 3.5 shows the edges that do not support the proposition ¬Fault_Existence in the
Fischer’s protocol with delayed fault detection, depicted in Figure 3.9. It is observed
that detecting edges that do not support the proposition ¬Fault_Existence will give us the
real exact number of non-supporting edges in this model. Moreover, using the weakest
definition of support; i.e, potentially support lacks the precise in detecting edges e2, e3 and
e4 as non-supporting ones5, but still feasible as seen in the verification results.

Figure 3.12 has the same description as Figure 3.10, however while using delayed fault
detection. Also, Figure 3.13 has the same description as Figure 3.11, however while using
delayed fault detection.

Verification results

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

Ti
m

e
 in

 S
e

co
n

d
s

Number of Fishers/Processes

Original_Model

Transformation by removing

Transformation by redirecting

(a) Verification times for n processes.

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10

M
e

m
o

ry
 in

 M
B

Number of Fishers/Processes

Original_Model

Transformation by removing

Transformation by redirecting

(b) Memory usage for n processes.

Figure 3.14: Results of verifying mutual exclusion in Fisher’s protocol with direct detec-
tion.

Table 3.66 shows results from attempts to verify mutual exclusion given no faults occur,
formally, (2p)→ (2q) with p = ¬Fault_Existence and q = (∀i 6= j : Process•¬(i.Crit_Sec∧
j.Crit_Sec)). Note that it is sufficient to check the Uppaal query A2(p → q) for the
considered model due to the immediate detection. Table 3.6 comprises four groups of
columns. The first one represents the number of concurrent processes which ranges from

5Although edges e4 is not detected, but it is disconnected after transformation thus unreachable.
6All results: Linux x64, 16 Quad-Core Opteron 8378, 132 GB, Uppaal 4.1.18

54

3.8. CASE STUDIES

original model non-supporting removed non-supporting redirected
query: A2(p→ q) query: A2q query: A2(p→ q)

seconds MB kStates seconds MB kStates seconds MB kStates
2 0.02 4.7 0.14 0.01 4.6 0.06 0.02 4.7 0.07
3 0.04 4.9 4.06 0.02 4.8 1.57 0.02 4.8 1.95
4 0.14 5.1 9.90 0.08 4.9 3.40 0.10 5.0 3.80
5 1.02 12.2 82.90 0.22 6.3 20.70 0.23 9.3 25.70
6 11.46 67.9 683.90 1.65 13.7 120.00 2.18 17.7 140.00
7 127.33 516.0 5,610.70 13.18 62.8 735.80 19.40 88.2 933.10
8 1,274.64 4,193.8 47,630.30 107.18 365.3 5,142.10 168.37 562.7 6,158.60
9 >2,000.00 − − 894.83 2,297.0 35,614.60 1359.34 3,659.0 40,310.80

Table 3.6: Figures for verifying mutual exclusion. The latter property was satisfied in all
verified models. Detecting potentially non-supporting edges needs about 0.17 s
and 5856 KB.

two to nine. The second group shows the result of verifying the benchmarks when using
Uppaal in the original model, thereby stating the verification time in seconds, memory
usage in megabytes, and the number of explored states. The third group has the same
structure, yet reports results for using Uppaal after removing the edges that do not support
the assumption. The fourth group has the same structure, yet reports results for using
Uppaal after redirecting the edges that do not support the assumption. All results are
summarized in Figures 3.14a and 3.14b. The first observation is that verifying the model
after removing non-supporting edges scores the best results in terms of time and memory
usage. In the original model as shown in Table 3.6, Uppaal does not succeed to verify a
system with 9 processes in 2,000 seconds, a system with 8 processes takes about 20 min.
to be successfully verified. In addition to that, both transformation functions (redirecting
and removing) achieve better result than the classical verification of original model without
any preprocessing.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8

Ti
m

e
 in

 S
e

co
n

d
s

Number of Fishers/Processes

Original_Model

Transformation by redirecting

(a) Verification times for n processes.

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8

M
e

m
o

ry
 in

 M
B

Number of Fishers/Processes

Original_Model

Transformation by redirecting

(b) Memory usage for n processes.

Figure 3.15: Results of verifying mutual exclusion in Fisher’s protocol with delayed detec-
tion.

An Uppaal model of delayed fault detection for Fischer’s protocol is shown in Figure 3.9.

55

3.8. CASE STUDIES

original model non-supporting redirected
query: ¬q ¬p query: ¬q ¬p

seconds MB kStates seconds MB kStates
2 0.10 5.2 0.4 0.04 5.2 0.2
3 0.140 5.3 12.8 0.070 5.3 7.1
4 5.90 29.7 109.6 0.87 5.5 37.0
5 788.20 130.1 2216.9 92.25 104.1 1250.0
6 >2,000.00 − − 1037.24 228.7 3853.4
7 >2,000.00 − − >2,000.00 − −

Table 3.7: Fischer’s protocol with delayed fault detection. Redirecting edges technique is
applied here only, as removing edges cannot be applied since the premise of
over-approximating-P -rule of Theorem 3.1.2 is broken. Detecting potentially
non-supporting edges needs about 0.17 s and 5916 KB.

Here, applying removing edges transformation function as in Figure 3.13 and then verify
the commitment in the resultant model does not work, since the premise of Theorem 3.1.2
does not hold after transformation. Instead, one needs to check the commitment “glob-
ally mutual exclusion” under the assumption “globally no fault”. Still, one can effectively
exclude fault scenarios from the verification procedure by redirecting the right edge to
a fresh sink location Fresh_Loc (cf. Figure 3.12). According to our approach proposed
above, we proceed as follows: the edges synchronizing on channel Fault in Figures 3.8c
and 3.8b do not support the atomic proposition ¬Fault_Existence. As the automaton re-
sulting from removing these edges satisfies the mutual exclusion property, As a conclusion,
the original model satisfies the assumption-commitment property by using Theorem 3.1.2.
The verification results are stated in Table 3.6. Figures 3.15a and 3.15b summarize these
results. For example, in case of having 7 processes, Uppaal exceeds the limit of 2000s
min without giving final verdict. However, after using redirecting edges transformation
function, the same problem can be verified in less than 12 min. If the fault detection
is delayed as described in Subsubsection 3.8.2 in Figure 3.9, then the automata model
obtained from edge removal does not satisfy the mutual exclusion property (the commit-
ment). So no beneficial results would be concluded. Therefore, the check whether the
resulting automata model after redirecting satisfies the assumption-commitment property
(as in Line 4 in Algorithm 1) comes on scene.

Note that Tables 3.6 and 3.7 only report verification time. For the case study, identifying
potentially non-supporting edges [FW16] by using an SMT-solver; i.e. Z3 [dMB08] takes
less than one second and the time needed for the subsequent simple source-to-source
transformation is negligible.

Remark 3.4: LTL vs. TCTL

Interestingly, using non-supporting edges enables us to reduce the linear temporal
logic (LTL) property (2p) → (2q), which is not directly supported by the timed
computation tree logic (TCTL) fragment of Uppaal, to the leads-to query ¬q f
where f is a fresh observer for non-supporting edges.

56

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?
NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

4Dead Code Detection

Failure should be our teacher, not
our undertaker. Failure is delay,
not defeat. It is a temporary
detour, not a dead end. Failure is
something we can avoid only by
saying nothing, doing nothing,
and being nothing.

(Denis Waitley)

Contents
4.1 Problem statement . 59

4.1.1 Motivation . 59
4.1.2 Related work . 61
4.1.3 Example . 67

4.2 Preliminaries . 69
4.2.1 Control flow automaton . 69
4.2.2 Craig interpolation: theory and application 72
4.2.3 Interpolation-based model checking (ITP) 73
4.2.4 Counterexample guided abstraction refinement: theory and ap-

plication . 76
4.3 The iSAT3 model checker . 77

4.3.1 Syntax and semantics . 77
4.3.2 iSAT3 architecture and engines 78
4.3.3 iSAT3 interpolants . 80
4.3.4 BMC problems in iSAT3 . 94
4.3.5 CFA problems in iSAT3 . 96

4.4 Interpolation-based CEGAR technique 97
4.4.1 Interpolation-based refinement procedure in iSAT3: algorithm . . 97
4.4.2 Example . 106
4.4.3 Case studies . 107

4.5 Handling floating points dominated C-programs – experiments
in industrial-scale . 111

4.5.1 Floating point arithmetic due to IEEE 754 111
4.5.2 Floating points in iSAT3 . 112
4.5.3 Floating point arithmetic in iSAT3 with CEGAR 112
4.5.4 Industrial case studies . 114

58

4.1. PROBLEM STATEMENT

4.5.5 Converting SMI code to iSAT3-CFG input language 115
4.5.6 BTC-ES benchmarks . 117

4.1 Problem statement

4.1.1 Motivation

The wide-spread use of embedded control programs involving linear, polynomial, and tran-
scendental arithmetic provokes a quest for corresponding verification methods. A crucial
technique here is the automatic verification of reachability properties in such programs,
as many problems can be reduced to it and as it in particular provides a method for de-
tecting unreachable code fragments, a.k.a. dead code, in such programs. The latter is an
industrial requirement, as various pertinent standards for embedded system development
either demand adequate handling of dead code during testing or even bar it altogether,
like DO-178C [EH10], DO-278A [Che09], or ISO/IEC PDTR 24772 [TRn09]. Most exist-
ing program verification techniques are either confined to verify reachability in programs
featuring just linear arithmetic or they address non-linear hybrid systems if they feature
just a small control skeleton. They are thus inapt of verifying industrial-scale arithmetic
programs with their non-trivial control flow and non-linear arithmetic. Such programs,
on the one hand may admit non-linear arithmetic involving transcendental functions, like
sin and exp, and on the other hand they exhibit high impact of data on control flow. The
latter is particularly true for well-known schemes like Simulink-Stateflow auto-generated
programs [KEB+14], where control flow is – to quite some extent – coded by manipulating
data items.

One has to undoubtedly observe that traditional satisfiability-modulo-theory (SMT) solv-
ing as one of the workhorses of automatic program analysis, would not help in the latter
situation, since it mostly addresses decidable fragments of arithmetic only, like linear or
polynomial1; e.g., C Bounded Model Checking (CBMC) which is one of the leading ap-
proaches to automatic software analysis [KT14], can handle C programs admitting only
linear and polynomial constraints, but not transcendental functions, while richer fragments
are covered by only few tools [GKC13, SKB13].

Similar problems apply to the predominant program analysis techniques, like abstract
interpretation [CC77, CC92, BCC+11, Cou12, CC14], which lack exactness when going
beyond linear arithmetic, since the geometry of sets of numbers representable by its usual
lattices and the graphs of the monotonic functions over these can only provide coarse
overapproximations.

To overcome the aforementioned problems, this chapter aims at combining several tech-
niques to verify code reachability in floating-point dominated programs admitting non-
linear constraints. Namely, we integrate counterexample guided abstraction refinement
(CEGAR) [CGJ+00], Craig interpolation (CI) [Cra57], conflict-driven clause learning

1We avoid the ambiguous and thus misleading term “non-linear” here, whose use for denoting polyno-
mial arithmetic unfortunately has become popular.

59

4.1. PROBLEM STATEMENT

CDCL(T) [ZM02] in its lattice-based variant [DHK13], and interval constraint propagation
(ICP) [Ben96] in one framework.

First, CEGAR is used as a frontend of our framework due to its use of abstractions to
efficiently handle large programs and circumvent the state-space explosion problem. In
our approach, it starts form a conservative initial abstract model which simulates only the
control flow of the original program. This abstract model is progressively refined based
on model checking the abstraction and analysing the counterexamples generated by the
model checker. In each refinement step, either a spurious counterexample will be excluded
by enriching the abstract model with sufficient predicates obtained from the stepwise
interpolants as proposed in lazy abstraction technique [HJMS02], or a real counterexample
is found. This refinement procedure is feasible despite non-polynomial arithmetic as the
floating points numbers are from a (large but) finite domain. CEGAR has been applied
successfully in the context of programs [BHJM07], real time systems [NOK10] and hybrid
systems [DT13]. What sets our method apart is that it applies CI to learn concise reasons
for a counterexample being spurious despite its rich, non-polynomial arithmetic domain.
While CI-based CEGAR is standard in the domain of software model-checking, current
approaches tend to address linear arithmetic only.

Craig interpolation thus is our workaholic for abstraction refinement in the CEGAR loop.
CI is a technique from logics that for two contradicting formulas yields an interpolant
formula only containing shared variables, being implied by the first formula, and still
contradicting the second formula. By using the concept of CI with SAT-based as well as
SMT-based bounded model checking [McM03], we are able to prove that certain target
states or rather code fragments are unreachable as CI permits the computation of in-
variants in arithmetic programs, even for non-polynomial constraints systems as Kupfer-
schmidt et al. demonstrated in the iSAT tool [KB11], which we build upon. In conjunction
with CEGAR, in software verification with lazy abstraction technique [HJMS02], stepwise
interpolants are used to extract meaningful predicates from infeasible error paths, where
the resulting interpolants are used to refine the abstract model. This is needed in order
to ensure that the interpolants at the different locations achieve the goal of providing a
precision that eliminates the infeasible error path from further explorations.

In order to tackle the problem of non-polynomiality in our programs, interval analysis
for floating-point computations is augmented with constraint narrowing for floating-point
intervals (including NaNs), yielding interval constraint propagation (ICP) as a sound de-
duction approach. The interval consistency notions of a set of non-linear arithmetic con-
straints are used to relax the general non-polynomial problem to an SMT problem over
the linear order of the reals. As a result of using ICP as an arithmetic reasoner in the core
of our framework, each computed interpolant obtained from unsatisfiability is a formula
involving Boolean and simple arithmetic bounds only, i.e., just order-theoretic statements.2

The same applies for conflict clauses thus constructed in the conflict-driven clause learn-
ing (CDCL) procedures or our iSAT-based solver, as in iSAT’s [FH07, SKB13] historic
implementation of abstract CDCL [DHK13].

Together, this provides an unprecedented integration of technologies. All previous ap-

2iSAT3 rarely returns a non-linear constraint as a subexpression of an interpolant, in case this non-
linear constraint occurs as a shared expression having two contradicting bounds.

60

4.1. PROBLEM STATEMENT

proaches individually cannot provide a feasible solution to our problem due to either
scalability issues or too confined fragments of arithmetic addressed. To the authors’ best
of knowledge, this is the first attempt to combine CEGAR, CI, ACDCL, and ICP in
one platform in order to attack the state space explosion problem in the model check-
ing of arithmetic software, find invariants of the verified non-polynomial program, solve
very large complex Boolean formulae, and capture the arithmetic reasoning over non-
polynomial constraints respectively. This combination facilitates precisely checking reach-
ability in arithmetic programs which may involve transcendental functions, like sin, cos
and exp.

The closest work to ours is [KB11] that verifies reachability in the presence of non-linear
constraints by using CDCL(T), ICP and CI, yet it fails to provide summaries for loops.
Moreover, it does not scale enough to cover the full branching structure of complex pro-
grams in just few sweeps, in particular if the verified programs contain nested loops.
Many previous works employed CEGAR with Craig interpolation, however confined to
linear programs. Our approach is implemented within the iSAT3 solver [SKB13], where
this new combination gives impressive results while verifying (as of yet moderately small)
non-linear programs. Concisely reflecting IEEE 754 [IEE85] floating-point arithmetics
will be discussed in the last section of this chapter, where our approach is integrated
with [SNM+16b] to preform tests on BTC-ES AG benchmarks.

4.1.2 Related work

Looking up the literature covering related work, one can find a large number of previous
works discussing the same problem from different perspectives, addressing slightly differ-
ent fragments. For example, our work can be compared with other approaches that are
exhaustively used in static program analysis to detect and eliminate dead code. Moreover,
it can be equiponderated with verification techniques that address the same problem, but
are confined to other arithmetics theories. Furthermore, our work draws an analogy to
some previous works using mostly the same technologies, however outperforms them as
shown in this chapter.

Abstract interpretation (static code analyses). Many static program analyses were in-
troduced to help compilers and programmers to optimize code, by analysing and verifying
its properties. For example, reaching definitions is a data-flow analysis which statically
determines which definitions may reach a given control point in the code. Because of its
simplicity, it is known as the canonical example of a data-flow analysis in textbooks. Very
busy expressions analysis is a variant of available expression analysis. An expression is
very busy at a point if it is guaranteed that the expression will be computed at some
time in the future. Thus starting at the point in question, the expression must be reached
before its value changes. Available expression analysis is a backward flow analysis, since
it propagates information about future evaluations backward to “earlier” points in the
computation. Live variable analysis is a classic data-flow analysis performed by compilers
to calculate for each program point the variables that may be potentially read before their
next write, that is, the variables that are live at the exit from each program point [NNH05].

Normally, compilers detect dead code in a program in a sense that they find only the

61

4.1. PROBLEM STATEMENT

segment of codes that have no effect in the program. E.g., dead variables or the code that
can never be executed. The aforementioned mechanism in compilers tries to detect as
much as possible of dead code, but at the same time without exhausting the resources and
without much time consumption. Therefore they are roughly incomplete in that sense and
fail to flag substantial amounts of dead code in programs. Consequently, it means that
compilers lack the full coverage and the precision of detecting dead code in programs which
some standards for embedded system development demand as aforestated. Moreover,
detecting dead code by using compilers techniques can not be properly achieved if we
speak about complex programs that combine data and control flows in one code without a
clear distinction (even if they are distinguished, we need to adapt two different algorithms
to analyse the code [THR82, CF87, ZTM11, SGL+11]). In addition to that, detecting dead
code becomes more difficult if we have non-linear system constraints or some code blocks
that depend on complex computations involving numerous floating-point and discrete data
entities.

Abstract interpretation (AI) is a theory of semantics approximation which is used for
the construction of semantics-based program analysis algorithms (sometimes called “data-
flow analysis”), the comparison of formal semantics (e.g., construction of a denotational
semantics from an operational one), the design of proof methods, etc [CC77]. The origin
of AI is in static program analysis [CC76].

In [BCC+11], Bertrane et al. showed how sound semantic static analyses based on abstract
interpretation would be used to check properties at various levels of a software design: from
high level models to low level binary code. In [Cou12], Cousot addressed how AI provides
scaling solutions to achieving assurance in safety critical systems through verification by
fully automatic, semantically sound and precise static program analysis.

Counterexample guided abstraction refinement (CEGAR). In [CGJ+00], Clarke et al.
presented an automatic iterative abstraction-refinement methodology in which the initial
abstract model is generated by an automatic analysis of the control structures in the
program to be verified. Abstract models may admit erroneous counterexamples. They
devised symbolic techniques which analyse such counterexamples and refine the abstract
model correspondingly. The refinement algorithm keeps the size of the abstract state space
small due to the use of abstraction functions which distinguish many degrees of abstrac-
tion for each program variable. In [CFH+03], Clarke et al. presented a procedure to
perform refinement operation for abstractions of hybrid systems. Following the previous
approach [CFH+03], the refinement procedure constructs a new abstraction that elimi-
nates a counterexample generated by the model checker. For hybrid systems, analysis of
the counterexample requires the computation of sets of reachable states in the continuous
state space. They showed how such reachability computations with varying degrees of com-
plexity can be used to refine hybrid system abstractions efficiently. In [BK04], Bjesse et
al. presented a method for finding failure traces for safety properties that are out of reach
for traditional approaches to counterexample generation. They achieved this by guiding
bounded model checking (BMC) with information gathered from counterexample guided
abstraction refinement. Unlike approaches based on reconstructing abstract counterexam-
ples on the concrete machines, they did not search only for failures of the same length as
the current abstract counterexample. But they also described a combination of several
methods for choosing registers to include in the abstraction. In [MFH+06], Manevich et al.

62

4.1. PROBLEM STATEMENT

formalized CEGAR for general powerset domains. If a spurious abstract counterexample
needs to be removed through abstraction refinement, there are often several choices, such
as which program location(s) to refine, which abstract domain(s) to use at different loca-
tions, and which abstract value to compute. They introduced several plausible preference
orderings on abstraction refinements, such as refining as “late” as possible and as “coarse”
as possible. Finally, they presented generic algorithms for finding refinements that are
optimal w.r.t. different preference orderings. In [SH13], Seipp et al. showed how coun-
terexample guided abstraction refinement can be used to derive informative heuristics for
optimal classical planning. Additionally, they introduced an algorithm for building addi-
tive abstractions. In [TD13], Tian et al. developed a new approach to refine the spurious
counterexamples in CEGAR with the first failure set they found. That procedure was
feasible as it eliminates many late bad states that can appear in other counterexamples.
Thus they can handle large industrial case studies with impressive time. However, this
approach is restricted to linear arithmetic programs.

Using Binary decision diagrams (BDD). BDD is a well-defined data structure which is
used to represent a Boolean function. It was firstly introduced by Bryant et al. [Bry86]
as a compressed representation of sets or relations. Then it was developed further by
McMillan. There is an enormous number of previous works that use BDD in analysing,
optimizing and verifying tasks.

In [CNQ03] Cabodi et al. combined BDD and SAT-based methods to increase the ef-
ficiency of BMC by exploiting affordable BDD-based symbolic approximate reachability
analysis to gather information on the state space. Then, they used the collected reach-
able state sets to guide the search space of a SAT-based BMC. This is doable by feeding
the SAT solver with a description that is the combination of the original BMC problem
with the extra information obtained from BDD-based symbolic analysis. In [GGW+03]
Gupta et al. explored the use of learning from BDDs, where learned clauses generated by
BDD-based analysis are added to the SAT solver, to supplement its other learning mech-
anisms. In addition to that, they introduced several heuristics for guiding this process,
aimed at increasing the usefulness of the learned clauses, while reducing the overheads.
This approach was effectively scaled to several industrial designs, where BMC performance
is improved and the design can be searched up to a greater depth by use of BDD-based
learning. In [SB06] Sinz et al. presented a method to convert the construction of binary
decision diagrams (BDDs) into extended resolution proofs by conjoining BDDs in SAT
solving. This approach enables the usage of BDDs for this purpose instead – or in combi-
nation with – other verification and proving methods based on DPLL with clause learning.
In [BB06] Bartzis et al. showed how to construct linear-sized BDDs for linear integer arith-
metic constraints. They presented basic constructions for atomic equality and inequality
constraints and extend them to handle arbitrary linear arithmetic formulas. Also, they
presented three alternative ways of handling out-of-bounds transitions, and discuss mul-
tiple bounds on integer variables. This approach can be used to improve the behaviour of
other BDD-based symbolic model checkers. In [RIS13] Ribeiro et al. proposed a new algo-
rithm that learns a logic program from interpretation transitions. However, the run time
of this algorithm is exponential where a memory space is optimized by using an efficient
data structure based on zero-suppressed binary decision diagrams. In [BS12, BS14] Beyer
et al. evaluated the use of a pure BDD representation of integer values in a particular

63

4.1. PROBLEM STATEMENT

class of programs: event-condition-action (ECA) programs with limited operations. They
configured a program analysis based on BDDs and experimentally compare it to four ap-
proaches to verify reachability properties of ECA programs: an explicit-value analysis, a
symbolic bounded-loops analysis, a predicate abstraction analysis, and a predicate impact
analysis. The results showed clearly that BDDs are efficient for a restricted class of pro-
grams, which yields the insight that BDDs could be used selectively for variables that are
restricted to certain program operations (according to the variable’s domain type), even
in general software model checking.

Using Conflict-driven clause learning (CDCL). CDCL is an algorithm for solving the
Boolean satisfiability problem (SAT). The internal workings of CDCL-SAT solvers were
inspired by DPLL solvers. The main differences between CDCL and DPLL are that
CDCL’s back jumping is non-chronological and a conflict-clause learning mechanism. The
first proposal of CDCL was by Bayardo and Schrag [JS97]. Then it was completely pre-
sented by Marques-Silva and Sakallah [SS99]. Since 2001, many solvers and researches
turn to use/improve CDCL in industrial designs [BCKS08], quantified Boolean Satisfiabil-
ity solvers [ZM02], test pattern generation [WRP+02], numeric bounds analysis [DHKT12]
and in first version of iSAT; i.e. HySAT II [FH07].

One of closest approaches to my work is [BDG+13], introduced by Brain et al. In this
work, a proof generation and interpolation techniques for the family of abstract CDCL
solvers are presented, in which all reasoning is performed within an abstract domain. They
build upon these techniques to implement the interpolation-based verifiers for programs
with floating-point variables. However, the latter work is confined to linear and polynomial
arithmetic theories.

Using Craig interpolation (CI). CI is a mathematical concept that enables us to gen-
eralize a reason of unsatisfiability between two conflicting formula. It was proposed by
William Craig in 1957 [Cra57]. Then, it was systematically computed by Huang [Hua95]
and Púdlak [Pud97].

In [McM03], another way of computing Craig interpolation was introduced by McMillan.
Moreover, in [McM05], McMillan succeeded to extend bounded model checking problems
to unbounded ones by using Craig interpolation. He presented an interpolating prover for
a quantifier-free theory that includes linear inequalities and equality with uninterpreted
function symbols. In [BKRW10], Brillout et al. presented an interpolating sequent cal-
culus that can compute interpolants for the combination of uninterpreted functions and
linear integer arithmetic. The interpolants computed using their method might contain
quantifier since they do not use divisibility predicates. Furthermore their method limits
the generation of Gomory cuts [Gom58, Gom10] (find integer solutions to mixed integer
linear programming problems) in the integer solver to prevent some mixed cuts. In [YM05],
Yorsh et al. showed how to combine interpolants generated by an SMT solver based on
Nelson-Open combination [NO79]. They defined the concept of equality-interpolating the-
ories. These are theories that can provide a shared term t for a mixed literal a = b that
is derivable from an interpolation problem. The annoying mixed interface equality a = b
is rewritten into the conjunction a = t ∧ t = b. They show that both, the theory of unin-
terpreted functions and the theory of linear rational arithmetic are equality-interpolating.

64

4.1. PROBLEM STATEMENT

In [CGS08], Cimatti et al. presented a method to compute interpolants for linear rational
arithmetic and difference logic. In [GKT09], a way to compute interpolants for a gen-
eralization of equality-interpolating theories is introduced by Goel et al. where a class
of almost-colorable proofs and an algorithm to generate interpolants from such proofs
are presented. Furthermore they describe a restricted DPLL system to generate almost-
colorable proofs. This system does not restrict the search if convex theories are used.
Their procedure is incomplete for non-convex theories like linear arithmetic over integers,
since it prohibits the generation of mixed branches and cuts. In [KB11], Kupferschmid et
al. succeeded to compute the interpolants for integer, rational and real theories even for
non-linear complex constraints by using interval constraint propagation, however the ap-
proach itself is incomplete as non-linear problems (including sine, cosine, and exponential
functions) are undecidable. In [CHN13], Christ et al. computed Craig interpolants in the
presence of mixed literals. Contrary to most existing approaches, this scheme neither limits
the inferences done by the SMT solver, nor does it transform the proof tree before extract-
ing interpolants. This approach works for the combination of uninterpreted functions and
linear arithmetic, but is extendible to other theories. In [AM13b], Albarghouthi et al. de-
scribed a compositional approach to Craig interpolation based on the heuristic that simpler
proofs of special cases are more likely to generalize. They presented a method for finding
such simple facts in the theory of linear rational arithmetic. This makes it possible to use
interpolation to discover inductive invariants for numerical programs that are challenging
for existing techniques. However this approach deals only with linear arithmetic formulae
with DNF structure. In [GZ16], Gao et al. implemented the equivalent techniques for
computing interpolants for non-linear constraint as Kupferschmid [KB11]. It was shown
that this approach implements the framework of δ-complete decision procedures in dreal.3

Combining Craig interpolation with abstract interpretation. In [HJMM04], Henzinger
et al. succeeded to use Craig interpolants as summaries of reasons why a path found on
an abstract model has no concrete counterpart and exploit these summaries for refining
the abstract state-space in a CEGAR loop as well. In [BL12], Beyer et al. integrated
abstraction and interpolation-based refinement into an explicit-value analysis, i.e., a pro-
gram analysis that tracks explicit values for a specified set of variables (the precision).
The algorithm uses an abstract reachability graph as central data structure and a path
sensitive dynamic approach for precision adjustment.

Combining BDD and CI with abstraction. In [EKS08], Esparza et al. investigated
CEGAR in the context of sequential (possibly recursive) programs whose statements are
given as binary decision diagrams (BDDs). Additionally, they succeeded to treat mul-
tiple counterexamples in one refinement cycle by using Craig interpolation, where the
latter is computed efficiently. In [VG09], Vizel at al. presented a new SAT-based ap-
proach such that it can perform full verification. The approach combined BMC with
interpolation sequence in order to imitate BDD-based symbolic model checking (SMC).
In [AGC12, ALGC12], Albarghouthi et al. presented what is so-called “Ufo”, an algorithm
that unifies OD (overapproximation) and UD (underapproximation) driven approaches in
order to leverage both of their advantages. Ufo is parametrized by the degree to which
over- and under-approximations drive the analysis. This framework is used for verifying

3You can access this tool under the following link: http://dreal.github.io/

65

http://dreal.github.io/

4.1. PROBLEM STATEMENT

(and finding bugs in) C-programs. It allows definition of different abstract post operators,
refinement strategies and exploration strategies. They have built three instantiations of
the framework: a predicate-abstraction based version, an interpolation based version, and a
combined version which uses a novel and powerful combination of interpolation based and
predicate-abstraction based algorithms. In [McM10], McMillan presented an application
of the IMPACT principle to testing and similarly proposed computing predicate abstrac-
tions in order to speed up the convergence of the algorithm. In [HHP10], Heizmann et
al. succeeded to extend the IMPACT approach by supporting recursive programs. This
method averts the costly construction of the abstract transformer by constructing a nested
word automaton from an inductive sequence of “nested interpolants” (i.e., interpolants for
a nested word which represents an infeasible error trace). In [EHP12], Ermis et al. in-
troduced a software model checking approach that uses the concept of path insensitive
interpolation to compute loop invariants. In contrast to other approaches, path insensi-
tive interpolation summarizes several paths through a program location instead of one. As
a consequence, it takes the abstraction refinement considerably less effort to obtain an
adequate interpolant. In [AGC12], Albarghouthi et al. proposed an interpolation-based
software verification algorithm for checking safety properties of (possibly recursive) se-
quential programs. The latter algorithm, called Whale, produces interprocedural proofs of
safety by exploiting interpolation for guessing function summaries by generalizing underap-
proximations (i.e., finite traces) of functions. In [BW12], Beyer et al. compared two of the
most important algorithms that are based on CEGAR and Craig interpolation techniques:
lazy predicate abstraction (as in BLAST [BHJM07]) and lazy abstraction with interpolants
(as in IMPACT or Wolverine [WKM12]). But they unified the algorithms formally (by
expressing both in the CPA framework [BK09]) as well as in practice (by implementing
them in the same tool). This allows to flexibly experiment with new configurations and
gain new insights about their performance characteristics. They showed that the essen-
tial contribution of the IMPACT algorithm is the reduction of the number of refinements,
and compare this to another approach for reducing refinement effort: adjustable block
encoding (ABE).

Combining trace abstraction with Craig interpolation. In [Seg07], Segelken introduced
unprecedented idea of applying CEGAR loop based on learning reasons of spurious coun-
terexamples in an ω-automaton, where this technique exhibits relatively few refinement
iterations to prove or disprove safety properties in quite large models. In [HHP09], Heiz-
mann et al., inspired by [Seg07], presented a new counterexample guided abstraction
refinement scheme. The scheme refines an overapproximation of the set of possible traces.
Each refinement step introduces a finite automaton that recognizes a set of infeasible
traces. A central idea is to use interpolants in order to automatically construct such an
automaton. A database of interpolant automata has an interesting potential for reuse of
theorem proving work.

Combining CEGAR with SAT-based techniques. In [CGS04], Clarke et al. described a
technique for model checking in the counterexample guided abstraction refinement frame-
work. The abstraction phase “hides” the logic of various variables, hence considering them
as inputs. This type of abstraction may lead to spurious counterexamples, i.e. traces that
cannot be simulated on the original (concrete) machine. They checked whether a coun-

66

4.1. PROBLEM STATEMENT

terexample is real or spurious with a SAT checker. Then, they used a combination of
0-1 Integer Linear Programming (ILP) and machine learning techniques for refining the
abstraction based on the counterexample. The process is repeated until either a real
counterexample is found or the property is verified.

Combining abstraction with CEGAR in concurrent programs. In [DKK+12], Donald-
son et al. tried to fill the gap of using the combination of predicate abstraction and coun-
terexample guided abstraction refinement in shared-variable concurrent software. They
attributed this gap to the lack of abstraction strategies that permit a scalable analysis
of the resulting multi-threaded Boolean programs and have developed a symmetry-aware
CEGAR technique.

Combining abstraction, BDD, SMT-based solvers. In [CFG+10], Cimatti et al. ad-
dressed the problem of computing the exact abstraction of a program with respect to a
given set of predicates, a key computation step in counterexample guided abstraction re-
finement. To do so a recently proposed approach that integrates BDD-based quantification
techniques with SMT-based constraint solving is employed to compute the abstraction.

Combining abstraction with static analysis. In [WKG07], Wang et al. proposed a hybrid
abstraction method that allows both visible variables and predicates to take advantages
of their relative strengths. They used refinement based on weakest preconditions to add
new predicates, and under certain conditions trade in the predicates for visible variables
in the abstract model. They presented heuristics for improving the overall performance,
based on static analysis to identify useful candidates for visible variables, and use of lazy
constraints to find more meaningful/effective unsatisfiable cores for refinement.

Using Craig interpolation or counterexample-guided abstraction refinement or conflict
driven clause learning or interval constraint propagation alone cannot address a feasi-
ble solution to our problem as will be shown in Subsections 4.4.3 and 4.5.6. Moreover,
most previous related works combined several techniques together, but they are inapt
to highlight substantial parts of dead code in programs admitting non-linear constraints.
Since they are either confined to linear arithmetic theories or handling non-linear ones,
however with a small control skeleton.

Abstract interpretation and static code analysers lack the exactness, thus a sufficient
coverage of detecting dead code is not guaranteed.

4.1.3 Example

We will begin this chapter with a simple motivational example, which is a small one
but still interesting, since according to author’s best knowledge, all existing approaches
cannot handle it directly without preprocessing by linearisation, or without simplifying
the problem by just asserting bounded safety using BMC.

67

4.1. PROBLEM STATEMENT

main()
{
float x, float y;
if (y == 0)
{x = cos(y);}

else
{x = sin(y) + 1.002;}

while(true)
{
x = x+ x;
if (x == 0)
{goto error ;}

}

error:
printf(”Program is not safe”);

}

1 while-Program

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

n1

n2 n3

n4

n5 error

[y 6= 0][y = 0]

x := sin(y) + 1.002x := cos(y)

x := x+ x

[x = 0]

[x 6= 0]

Build control flow graph2

- -declaration of variables

DECL
float [-1000,1000] x, y;

- - defining nodes of cfg

NODES
n1, n2, n3, n4, n5, error;

- -initilization of variables

INIT
edge(true, {true},{}〈true〉, n1) ;

EDGES
- -defining the flows of the graph

edge(n1, {y = 0},{}〈true〉, n2′) ;

edge(n1, {y! = 0},{}〈true〉, n3′) ;

edge(n2, {true},{x}〈x′ = cos(y)〉, n4′) ;

edge(n3, {true},{x}〈x′ = sin(y) + 1.002〉, n4′);

edge(n4, {true},{x}〈x′ = x + x〉, n5′) ;

edge(n5, {x = 0},{}〈true〉, error′) ;

edge(n5, {x! = 0},{}〈true〉, n4′) ;

- - is specification reachable?

SPECIFICATION
error;

Write iSAT3-CFG format3

Figure 4.1: Left: An arithmetic program, middle: corresponding control flow graph, right:
encoding in iSAT3-CFG format.

Example 4.1: Example of a non-polynomial program

This example admits a small control flow automaton (CFA) of an arithmetic pro-
gram, however involving a rich fragment of arithmetic; namely transcendental func-
tions. The formal semantics of the control flow automaton will be introduced in the
next section where the operation semantics of CFA induces a formal operational
semantics of general automata (cf. Section 3.2 and Definition 3.3). Consider the
arithmetic C-program depicted in Figure 4.1. Its corresponding CFA has six nodes
and seven transitions where node error represents the bad state that must be as-
cribed to the unreachable set of states in order warrant safety. If one checks all
possible evolutions of the program model, one can (spontaneously) say that error is
unreachable since:
• the first kind of CFA paths has a prefix condition which restricts y not to be

zero and on the same time restricts x to be sin(y) + 1.002. At the end, x
in any case will be larger than or equal 0.002. Considering the x-valuations
at n4, one can informally represent the reachable set as r1 := {(x = i) | i ∈
[0.002, 2.002]} = {(x = 0.002), ..., (x = 2.002)}
• the second kind of paths has a prefix condition which restricts y to be zero

and on the same time restricts x to be cos(y). At the end, x in any case will
equal 1. Considering the reachable set of x-valuations at n4, it represents the
following set r2 := {(x = 1)}.

Thus, one can say that the reachable set of x-valuations at n4 is the join between r1

68

4.2. PRELIMINARIES

and r2 which is equal to r1. Consequently, the infinite loop from node n4 to n5 will
be executed forever, and node error will not be reachable. Although it seems as a
straightforward explanation, many techniques like ICP, CDCL(T) with CI or with
k-induction are inapt to prove safety of this example. That is, the solver continues
splitting the intervals of x and y and cannot find a suitable safe inductive invariant.
However, by using CEGAR, we address a feasible safety proof of that example as
will be discussed in more details in Subsection 4.4.2.

4.2 Preliminaries

We use and suitably adapt several existing concepts to fit our purpose. A control flow
automaton (CFA) is a cyclic graph representation of all paths that might be traversed
during program execution.

4.2.1 Control flow automaton

In our context, we attach code effect to edges rather than nodes of the CFA. i.e., each
edge comes with a set of constraints and assignments pertaining to execution of the edge.
Formally, constraints and assignments are defined as follows:

Definition 4.1: Assignments and constraints

Let V be a set of integer and real variables, with typical element v, B be a set of
Boolean variables, with typical element b, and C be a set of constants over rationals,
with typical element c.
• The set Ψ(V,B) of assignments over integer, real, and Boolean variables with

typical element ψ is defined by the following syntax:

ψ ::= v := aterm | b := bterm

aterm ::= uaop v | v baop v | v baop c | c | v
comp ::= aterm lop c | aterm lop v

bterm ::= ubop b | b bbop b | b | comp
uaop ::= − | sin | cos | exp | abs | ...
baop ::= + | − | · | ...
ubop ::= ¬
bbop ::= ∧ | ∨ | ⊕ | ...
lop ::=< | ≤ | = | > | ≥

By ~ψ we denote a finite list of assignments on integer, real, and Boolean
variables, ~ψ = 〈ψ1, ..., ψn〉 where n ∈ N≥0. We use Ψ(V,B)∗ to denote the set
of lists of assignments and 〈 〉 to denote the empty list of assignments.
• The set Φ(V,B) of constraints over integer, real, and Boolean variables with

69

4.2. PRELIMINARIES

typical element φ is defined by the following syntax:

φ ::= atom | ubop atom | atom bbop atom

atom ::= theory_atom| bool
theory_atom ::= comp | simple_bound
simple_bound ::= v lop c

bool ::= b | ubop b | b bbop b

where uaop, baop, ubop, bbop, lop and comp are defined above.

We assume that there is a well-defined valuation that assigns to each assigned variable
a value from its associated domain. Also, we assume that there is a satisfaction relation
between the valuations of variables and guards. In addition to that, the modification of
a valuation after executing a finite list of assignment will consider the new reset-value, or
propagate a previous value of the variable. It is formally introduced as follows:

Definition 4.2: Valuation

A valuation ν of integer and real variables V and Boolean variables B is a mapping

ν : V ∪B → DV ∪ DB

assigning to each variable v ∈ V a value in D(v) and assigning to each variable
b ∈ B a value in D(b). We assume that there is a satisfaction relation |=⊆ (V →
D(V))× Φ(V) and in case of non-Boolean constraints we write

ν |= φ iff ν|V |= φ

Analogously, we assume that there is a satisfaction relation |=⊆ (B → D(B))×Φ(B)
and in case of Boolean constraints we write

ν |= φ iff ν|B |= φ

The modification of a valuation ν under a finite list of assignment ~ψ = 〈ψ1, ..., ψn〉
denoted by ν[~ψ] = ν[ψ1]...ν[ψn] and defined as follows:

ν[v := aterm](v′) =
{
ν[aterm] if v′ := v
ν(v′) otherwise,

ν[b := bterm](b′) =
{
ν[bterm] if b′ := b
ν(b′) otherwise,

Definition 4.3: Control Flow Automaton (CFA): syntax

A control flow automaton
γ = (N , ECFA, i)

70

4.2. PRELIMINARIES

where
• N is a finite set of nodes,
• ECFA ⊆ N × Φ(V,B) × Ψ(V,B) × N is a finite set of directed edges, where

Φ(V,B) is a set of constraints and Ψ(V,B) is a set of assignments. Each edge
(n, φ, ~ψ, n′) ∈ ECFA has a source node n, a constraint φ, a list ~ψ of assignments
and a destination node n′,
• i ∈ N is an initial node which has no incoming edges.

is an automaton ACFA as in Definition 3.1 where:
• Loc := N ,
• Act := Φ(V,B)×Ψ(V,B),
• E := {(`, (φ, ~ψ), `′) | (n, φ, ~ψ, n′) ∈ ECFA}
• Lini := i.

For simplicity reason, we will omit the “CFA” superscript from the edges of the control
flow automaton. Additionally, we use “control flow automaton” and “control flow graph”
interchangeably.

CFA’s operational semantics interprets the edge constraints and assignments and induces
the operational semantics of automaton introduced in Definition 3.3:

Definition 4.4: Operational semantics of control flow automaton in-
duces an automaton semantics

The operational semantics T assigns to each control flow automaton γ = (N , E, i)
a labelled transition system

T (γ) = (Conf (γ), { e−→ | e ∈ E}, Cini)

where:
• Conf (γ) = {〈n, ν〉 | n ∈ N ∧ν : V ∪B → DV ∪DB} is the set of configurations

of γ,
• e−→⊆ Conf (γ) ×Conf (γ) are transition relations where 〈n, ν〉 e−→ 〈n′, ν ′〉 occurs

iff there is an edge e = (n, φ, ~ψ, n′), ν |= φ and ν ′ = ν[~ψ],
• and Cini = {〈i, νinit〉} ∩ Conf (γ) is the set of initial configurations of γ.

In contrast to common usage of CFA, we do not define an exit node of CFA as we allow
infinite paths. We assume that a control flow automaton represents possibly finite or
infinite paths (traces) of a program. Formally, it is introduced as follows:

Definition 4.5: Path

A path σ of control flow automaton γ = (N , E, i) under operational semantics T (γ)
is an infinite or finite sequence 〈n0, ν0〉

e1−→ 〈node1, ν1〉
e2−→ 〈n2, ν2〉 . . . of consecutive

transitions in the transition system T (γ), which furthermore has to be anchored in
the sense of starting in an initial state 〈i, ν0〉 ∈ Cini . We denote by Σ(γ) the set of
paths of γ and by ↓ σ the set {〈i, ν0〉, 〈n1, ν1〉, ...} of configurations visited along a
path σ.

71

4.2. PRELIMINARIES

We often convert programs to CFAs and then we verify some properties in CFAs. One
of the well-known and important properties to be verified is reachability. Reachability is
a graph property useful in verification (cf. Chapter 2). In verification task, given certain
nodes (even one node) of a control flow automaton are representing bad states/behaviours
of a program, if we verify that these parts are disconnected from the other parts w.r.t.
program semantics; i.e. unreachable, then we prove the safety of the model. That is,
verification of safety property is carried out in terms of verifying the reachability of nodes
in a control flow automaton.

Also, if we consider that a CFA models a program behaviour, then proving or disprov-
ing reachability can be seen as detecting dead code of a program. Whenever some code
segments are not reachable in the program, they are called dead codes. Detecting/elimi-
nating [Kno96, DP96, CGK98, CGK97] dead code (or unreachable states/parts of a model)
is considered to be very important and challenging nowadays. The reachability property
is formally defined as follows.

Definition 4.6: Reachability Property:syntax

The set Θ(N ,Φ(V,B)) of reachability properties (RPs) over nodes and constraints
in a control flow graph γ = (N , E, i), is given by the following syntax:

θ ::= n | φ

where n ∈ N and φ ∈ Φ(V,B).

Any reachability property of “θ = φ” form can be represented by the other form namely,
θ = n via introducing a new node nnew where each node in N \ nnew has an outgoing
edge with the guard φ to nnew . However, we aimed at making Definition 4.6 complete and
self-contained by introducing both forms.

Definition 4.7: Satisfaction relation for reachability property

Given a control flow graph γ = (N , E, i) and an RP property θ, we say that σ ∈
Σ(γ, θ) satisfies θ and write σ |= θ iff
• σ traverses a configuration 〈n, ν〉 that satisfies θ, i.e., σ |= θ iff ∃ν : 〈n, ν〉 ∈↓ σ

and 〈n, ν〉 |= θ.
We say that γ satisfies a reachability property θ iff
• some path σ ∈ Σ(γ) satisfies θ.

By Σ(γ, θ), we denote the set of all paths of γ that satisfy θ.

4.2.2 Craig interpolation: theory and application

Craig’s interpolation [Cra57] establishes a relationship between different logical formulae
in the same theory. Roughly stated: if a formula A implies a formula ¬B then one can
find a third formula I, called an interpolant, such that every symbol in I occurs both in
A and B, A implies I, and I implies ¬B. That is, an interpolant I is a generalization of
unsatisfiability in case A∧B |= false. The theorem was first proved for first-order logic by
William Craig in 1957. Variants of the theorem hold for other logics, such as propositional

72

4.2. PRELIMINARIES

logic. A stronger form of Craig’s theorem for first-order logic was proved by Roger Lyndon
in 1959; the overall result is sometimes called the Craig-Lyndon theorem [Obe68]. Formally
Craig interpolation is defined as follows.

Definition 4.8: Craig Interpolation

Given two propositional logic formulae A and B in a logics L such that |=L A→ ¬B,
a Craig interpolant for (A,B) is a quantifier-free L-formula I such that |=L A→ I,
|=L I → ¬B, and the set of the variables of I are subset of set of the shared (and
thus free) variables between A and B, i.e., Var(I) ⊆ V ar(A) ∩ V ar(B).

Example 4.2: Example of Craig interpolation

Assume that we have propositional formulae A = (p∧r)∨(p∧¬q) and B = (¬p∧z).
3 A→ p, i.e. (p ∧ r) ∨ (p ∧ ¬q)→ p
3 p→ ¬B, i.e. p→ ¬(¬p ∧ z)
3 p ∈ VA,B.

Thus p is a valid interpolant that justifies the unsatisfaiblity of A ∧ B. Later, we
will show different mechanisms to compute the interpolants systematically.

4.2.3 Interpolation-based model checking (ITP)

In 2003 and subsequently, Craig interpolation was used as a novel technique to verify
reachability in unbounded model checking problems [McM03, EKS08, BL12]. The idea of
using interpolants in unbounded model checking is as follows:

• bounded model checking and interpolation can be combined to produce an overap-
proximate image operator that can be used in symbolic model checking.

• a bounded model checking problem consists of the conjunction of initial constraints;
i.e., INIT , transition assignments and constraints; i.e., TRANS and final constraints
(target); i.e. TARGET where the BMC is as follows:

INIT ∧
n∧
i=0

TRANS [i] ∧
n∨
i=0

TARGET [i]

These constraints are instantiated for each depth from 0 to k, where k ∈ N>0 as in
Figure 4.2.

x0 xk

INIT
TRANS TRANS TRANS TRANS TRANS TRANS TRANS

TARGET

A B

⇒ I

Figure 4.2: Bounded model checking and computing post-image by interpolation.

73

4.2. PRELIMINARIES

• if we partition the CNF of the problem such that the initial constraint together with
the first instance of the transition are considered to be A formula and the rest of the
CNF is considered to be B formula, then the shared variables between A and B will
be the instantiated variables at depth 1 in x1.

• by using a SAT solver, if we get that A ∧ B is unsatisfiable, then we can generate
an interpolant I that overapproximates the forward image of initial constraints.

• this procedure can be iterated to compute an overapproximation of the reachable
states by splitting the CNF formula to prefix and suffix subformulae as follows:

PREFIX l = INIT (x0) ∧
l−1∧
i=0

TRANS(xi, xi+1)

SUFFIXk
l =

k−1∧
i=l

TRANS(xi, xi+1) ∧
k∨

i=k−l
TARGET (ik)

where l is a parameter which controls the number of overapproximated steps. We
continue as before until we end with one of the following situations:

– the interpolant stabilizes, the computed interpolant implies the initial state,
thus, a safe inductive invariant is found. This implication can be achieved
after stripping the variable names in the computed interpolants of their step-
dependent renaming. In this case we prove that the target is not reachable,
because the overapproximation of reachable states did not intersect with the
target.

– if the initial state is not implied by the interpolant, we need to increase the
depth of the formula, however by considering the current interpolant as the
initial state of the BMC problem. By setting the current interpolant as initial
state, the number of added unwindings has been increased by l. That means, we
may get a counterexample that the target is reachable which is not necessary
to be true, since our initial state is an overapproximation. To validate the
discovered counterexample we need to unfold the problem till depth k and
solve the normal BMC problem as a CNF formula. If the counterexample is
a real one, then we know that the target is reachable. Otherwise, we need to
discard the previously calculated interpolants, and start a new ITP run at the
current unroll (For more details, cf. [McM03, KB11]).

Additionally, Craig interpolation is used also in counterexample-guided abstraction refine-
ments loops, in particular, for adequate predicate extraction in refinement step [HJMM04],
which will be generally discussed in that chapter and particularized in Section 4.4.

Systematic computing approaches

Depending on the logics L as in Definition 4.8, such a Craig interpolant which provides a
reason why A is not satisfiable together with B, can be computed by various mechanisms.
If L admits quantifier elimination, then this can in principle be used; various more efficient

74

4.2. PRELIMINARIES

For any initial clause:

A-clause C
C [False] if C ∈ A B-clause C

C [True] if C ∈ B

For any clause during resolution application:

C1∨x [I1] C2∨x [I2]
C1∨C2 [I3]

A-res if x /∈ var(B), I3 := I1 ∨ I2
B-res if x /∈ var(A), I3 := I1 ∧ I2

AB-res if x ∈ var(A) ∩ var(B), I3 := (I1 ∨ x) ∧ (I2 ∨ x)

(a) Púdlak’s rules: symmetirc rules.

For any initial clause:

A-clause C
C [C|B] if C ∈ A B-clause C

C [True] if C ∈ B

For any clause during resolution application:

C1∨x [I1] C2∨x [I2]
C1∨C2 [I3]

A-res if x /∈ var(B), I3 := I1 ∨ I2

B-res if x ∈ var(B), I3 := I1 ∧ I2

(b) McMillan’s rules: asymmetirc rules.

For any initial clause:

A-clause C
C [False] if C ∈ A B-clause C

C ¬[C|A] if C ∈ B

For any clause during resolution application:

C1∨x [I1] C2∨x [I2]
C1∨C2 [I3]

A-res if x ∈ var(A), I3 := I1 ∨ I2

B-res if x /∈ var(A), I3 := I1 ∧ I2

(c) Duality of McMillan’s rules: asymmetirc rules.

Figure 4.3: Different interpolant computing approaches.

schemes have been devised for propositional logic and SAT-modulo theory by exploiting
the connection between resolution and variable elimination [Pud97, EKS08].

The first trial to construct the Craig interpolation from proof refutation for propositional
logic was by Huang [Hua95]. Then, he was followed by Pudlak [Pud97], where both
of them compute the interpolants in terms of restricted quantifier elimination, however
Huang method was introduced for a general calculus. Then in 2003, McMillan [McM03]
proposed another way of computing Craig interpolation which in a certain sense computes
stronger interpolants in comparison to Púdlak’s ones. After that, many works appeared
to compute the interpolants for SMT problems e.g., integer, rational, linear real and non-
linear arithmetic. Most of these approaches [McM03, CHN13, BKW08, GLS11, GKT09,
CGS10, LT08] depend on reducing SMT constraints to Boolean literals in SAT problem and
then using extended version of Gaussian elimination for linear inequations; i.e., Fourier-
Motzkin elimination [DE73, Kha09]).

Figure 4.3 shows the well-known systematic mechanisms of computing Craig interpolants,
however with different strengths. The first one is called a symmetric method or Púdlak’s
approach as in Figure 4.3a. The other mechanisms are both asymmetric rules methods,
however in duality position, McMillan’s approach computes stronger interpolants (more
closely to A-formula) as in Figure 4.3b and its duality computes weaker interpolants (more
closely to B-formula) as in Figure 4.3c.

One should observe that the resultant interpolants by using any of the previous approaches
depends on the resolution tree extracted from the unsatisfiability proof. Thus, one cannot
generally guarantee the interpolant structures and strengths. This point will be investi-

75

4.2. PRELIMINARIES

gated more in Subsubsection 4.3.3, where slackness of interpolants will be under scrutiny.

4.2.4 Counterexample guided abstraction refinement: theory and application

The CEGAR technique was proposed to attack the state space explosion problem; partic-
ularly in large models. It was briefly introduced in [Kur94]. However it was completely
defined in [CGJ+00, Cla03] by Clarke et al.

The idea of CEGAR depends on abstracting the original control flow automaton model
γ to an abstract one; i.e., obtaining α(γ) by a well-defined abstraction function α, such
that concrete behaviour model is contained by the abstract one. After abstracting a

Algorithm 2 Counterexample guided abstraction refinement
Input: A concrete model γ and a bad state θ
output: A Boolean variable result denotes that reachability of bad states
1: procedure CEGAR(γ, θ)
2: do
3: abstract the concrete model by α i.e. α(γ).
4: if α(γ) |= θ. then
5: extract a counterexample (CEX); i.e. σ from the abstract model α(γ).
6: concretize σ in the original model γ.
7: if σ is a real CEX then
8: result := unsafe.
9: break;

10: else
11: extract sufficient predicates to exclude σ from α(γ).
12: α(γ) := refine(α(γ)).
13: end if
14: else
15: result := safe.
16: end if
17: while true
18: return result;
19: end procedure

model, one can verify a safety property θ (it is almost unanimously that θ ∈ ACTL∗)
in the abstract one. That is, we want to verify whether the bad states that violate the
safety property, are reachable or not. The description of how CEGAR is applied is shown
in Algorithm 2, where abstracting, extracting a counterexample and concretizing it are
stated from Line 3 to Line 6.

Refinement is depicted in this algorithm from Line 7 to Line 15, where we have two cases.
The first case happens if the bad states are not reachable in the abstract model, then we
guarantee that the original model is safe (Line 15), since the abstract model behaviour
is an overapproximation of the concrete model behaviour. The second case, if we found
a counterexample in the abstract model such that the bad states are reachable, then we
need to validate (concretize) this counterexample in the original model by a well-defined

76

4.3. THE ISAT3 MODEL CHECKER

concretizing function; i.e., κ where the latter collects the path conditions and assignments
of the abstract path. If we have found that the current counterexample is a real one (e.g.,
has a corresponding concrete trace in the original model), we know the safety property is
violated (broken) in the original model (Line 8). However, if we have found that the latter
counterexample is not a real counterexample (e.g., spurious, erroneous, bogus), we need
to refine this counterexample in the abstract model. Refining is achieved by removing the
causes of this spurious counterexample in the abstract model such that it will be excluded
from further exploration. In general, termination of this procedure is not guaranteed
always, since we cannot expect to obtain a sound and complete verification algorithm, as
the reachability problem is undecidable in general even if programs are confined to only
linear arithmetics [KSU11]. However CEGAR is found to be feasible in practice. For
more details about the recent developments of CEGAR confer Section 4.1.2. Later in
Section 4.4, we will show in details how CEGAR loop is applied in programs that may
admit non-linear constraints where a novel refinement approach is preformed in the iSAT3
model checker.

4.3 The iSAT3 model checker

4.3.1 Syntax and semantics

We build our CEGAR loop on the iSAT3 solver, which is an SMT solver accepting formulas
containing arbitrary Boolean combinations of theory atoms involving linear, polynomial
and transcendental functions as follows:

Definition 4.9: Syntax of iSAT3 SMT-formulae in CNF

Given b ∈ B, v ∈ V and c ∈ C, an SMT constraint formula in iSAT3 ϕ (in CNF
form) is defined inductively as follows:

ϕ ::= {clause∧}∗clause
clause ::= ({atom∨}∗atom)
atom ::= comp | bound | bool
comp ::= v lop c | v lop v
bound ::= v lop term

bool ::= b | ubop b | b bbop b
term ::= uaop v | v baop v | v baop c
lop ::=< | ≤ | = | > | ≥

uaop ::= − | sin | cos | exp | abs | ...
baop ::= + | − | · | ...
ubop ::= ¬
bbop ::= ∧ | ∨ | ⊕ | ...

We informally define the underlying semantics of iSAT3. A constraint formula ϕ is sat-
isfied by a valuation of its variables if and only if all its clauses are satisfied, that is, if

77

4.3. THE ISAT3 MODEL CHECKER

and only if at least one atom is satisfied in any clause. An atom is satisfied according
to the standard valuation of the Boolean and arithmetic constraints such that the un-
derlying theory semantics are respected. A formula ϕ is satisfiable if and only if there
exists a satisfying valuation of each variable occurring in the formula such that at least
one atom in each clause of the formula is evaluated to true. Otherwise, ϕ is unsatisfiable.
We remark that by definition of satisfiability a formula ϕ including or implying the empty
clause, denoted by ⊥ or ∅, cannot be satisfied at all; i.e., if ⊥ ∈ ϕ or ϕ → ⊥ then ϕ is
unsatisfiable.

In addition to that, iSAT3 assigns to each non-Boolean variable4 an interval in contrast
to classical CDCL(T) or DPLL(T); i.e. µ : V → I where V represents the set of all integer
and real variables and I represents the set of all valid intervals defined over (a finite set
of) reals. This kind of assigning agrees with the aforementioned semantics of control flow
graph variables valuations, since one can map that valuation of variables introduced in
Definition 4.2 to iSAT3 semantics. iSAT3 uses the hull-consistency concept (cf. [BMH94,
BG06]) in order to safely contract the initial interval of the variables according to the
new deduced bounds [Her11]. During solving a problem, iSAT3 tries to detect safe and
more precise bounds of the variables until we end with two cases. First case, iSAT stops
making decisions when every problem variable has reached a current interval width that
is less or equal to a given splitting minimal width. In this case, if there exists a satisfiable
interpretation that respects the variable assigned intervals and the structure of the formula,
then the formula is satisfiable. Otherwise, the result will be referred to as a candidate
solution, since the current µ may contain a solution. Second case the solver finds a conflict
that cannot be resolved; e.g., an assigned interval of a variable collapses to empty. In this
case, the formula is unsatisfiable.

4.3.2 iSAT3 architecture and engines

In classical SMT solving a given SMT formula is split into a Boolean skeleton and a set
of theory atoms. The Boolean skeleton (which represents the truth values of the theory
atoms) is processed by a SAT solver in order to search for a satisfying assignment. If
such an assignment is found, a separate theory solver is used to check the consistency of
the theory atoms under the truth values determined by the SAT solver. In case of an
inconsistency the theory solver determines an infeasible sub-set of the theory-atoms which
is then encoded into a clause and added to the Boolean skeleton. This scheme is called
CDCL(T).

In contrast to CDCL(T), there is no such separation between the SAT and the theory part
in the family of iSAT solvers [FHT+07]; instead interval constraint propagation (ICP)
[BG96] is tightly integrated into the CDCL framework in order to dynamically build the
Boolean abstraction by deriving new facts from theory atoms. Similarly to SAT solvers,
which usually operate on a conjunctive normal form (CNF), iSAT3 operates on a CNF as
well, but a CNF additionally containing the decomposed theory atoms (so-called primitive
constraints). We apply a definitional translation akin to the Tseitin-transformation [Tse68]
in order to rewrite a given formula into a CNF with primitive constraints. The basic idea

4Boolean variables are assigned to point intervals either [0, 0] or [1, 1] representing false and true
respectively.

78

4.3. THE ISAT3 MODEL CHECKER

of this transformation is to introduce new auxiliary variables for sub-expressions. This
technique is well-known for Boolean formulas – we use it also to decompose theory atoms.
The formula

(b1 ∧ b2)⊕ ((v1 + sin(v2)) · v3 < 7)

would thus be rewritten to the following equisatisfiable CNF by introducing fresh auxiliary
variables b3, v4, v5, v6 and b4:

(b1 ∨ ¬b3) ∧ (b2 ∨ ¬b3) ∧ (¬b1 ∨ ¬b2 ∨ b3)∧
(v4 = sin(v2)) ∧ (v5 = v1 + v4) ∧ (v6 = v5 · v3)∧
(b3 ∨ (v6 < 7) ∨ ¬b4) ∧ (b3 ∨ ¬(v6 < 7) ∨ b4)∧

(¬b3 ∨ (v6 < 7) ∨ b4) ∧ (¬b3 ∨ ¬(v6 < 7) ∨ ¬b4) ∧ (b4)

Besides plain Boolean variables b1, b2, b3 and b4, the simple bound (v6 < 7) is also handled
as a Boolean literal. The theory atom ((v1 + sin(v2)) · v3 < 7) is decomposed into three
primitive constraints, each containing two or three variables and one arithmetic operation
in order to facilitate simple ICP contractors for each operation.

iSAT3 solves the resulting CNF through a tight integration of the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [DLL62] in its conflict-driven clause learning (CDCL) variant
and interval constraint propagation [BG96]. Details of the algorithm, which operates on
interval valuations for both the Boolean and the numeric variables and alternates between
choice steps splitting such intervals and deduction steps narrowing them based on logi-
cal deductions computed through ICP or Boolean constraint propagation (BCP), can be
found in [FHT+07]. Implementing branch-and-prune search in interval lattices and conflict
driven clause learning of clauses comprising irreducible atoms in those lattices, it can be
classified as an early implementation of abstract conflict driven clause learning (ACDCL)
[BDG+13].

Additionally, for every integer- or real-valued variable v an initial interval has to be pro-
vided. During the search process these intervals will be shrunk in order to find a solution –
the two parameters minimal splitting width and minimal progress control when to stop the
interval narrowing. We extend the three basic building blocks of CDCL in the following
manner:

Decisions: besides deciding Boolean literals (and simple bounds) an integer or real-valued
variable v could be subject to a decision as well. This is done by splitting its interval and
introducing a new simple bound which is then decided.

Propagation: Boolean Constraint Propagation (BCP) is applied to clauses containing
Boolean literals and simple bounds. Additionally, ICP is applied to the primitive con-
straints. Each deduction performed by ICP which leads to a stronger lower or upper
bound for a variable, generates a new clause consisting of simple bounds. E.g. for the
primitive constraint (v5 = v1 + v4) and the interval valuations v1 ∈ [0, 10], v4 ∈ [0, 10] and
v5 ∈ [1, 100], ICP would deduce ((v1 ≤ 10) ∧ (v4 ≤ 10)) → (v5 ≤ 20) This deduction is
encoded in the clause ¬(v1 ≤ 10)∨¬(v4 ≤ 10)∨(v5 ≤ 20) which is then attached to the im-
plication graph. Additionally, the implication graph also contains clauses which encode the
linear ordering between existing simple bounds of a variable v (e.g. (v1 < 5)→ (v1 ≤ 10)).
These clauses are generated lazily.

Conflict resolution: is similar to what a SAT-solver is doing, except that the implication

79

4.3. THE ISAT3 MODEL CHECKER

graph might contain clauses with simple bounds. The conflict clause is created according
to the first unique implication point (1UIP) scheme.

Besides the results satisfiable and unsatisfiable the solver might also terminate with a
candidate solution, because ICP cannot guarantee to reach point intervals for real-valued
variables. Nonetheless, a candidate solution provides useful information, because the
solver has proven that all primitive constraints contain non-conflicting interval valuations.
If small perturbations of variables and constants are allowed, this is an indication for a
possible solution under these perturbations. When verifying hybrid systems, one usually
assumes some kind of robustness of the hybrid system against such small perturbations.
If this is not the case, the system might show unwanted behaviour by being very fragile
and sensitive to small changes in its environment.

4.3.3 iSAT3 interpolants

iSAT3 is also able to generate Craig interpolants. Here we exploit the similarities between
iSAT3 and a CDCL SAT solver with respect to the conflict resolution. As atoms occurring
as pivot variables in resolution steps are always simple bounds mentioning a single variable
only, we are able to straightforwardly generalize the technique employed in propositional
SAT solvers to generate partial interpolants [KB11]. depending on two rules; namely
deduction and resolution rules.

Deduction rule: In order to apply deduction rule, there must be a clause such that
this clause contains at most one unassigned literal that is not evaluated to false under
the current status of the variable assignments of the solver. Then iSAT3 will deduce a
new interval of the remaining literal with the help of the current interval assignments of
dependent variables; e.g.; if we are given the following clause (x < 0∨ (x+1)2 = y), where
the current valid intervals of x and y are µ(x) = [2, 3] and µ(y) = [0, 10] respectively, then
we deduce a new bounds of y by ICP to be µ(y) = [9, 10].

Resolution rule: It is applied implicitly or explicitly in SAT solvers, however in iSAT3, it
is only allowed to apply a resolution between clauses that contain only simple bounds; i.e.
a variable, a logical operator and a well-defined value; e.g. integer or real. If two simple
bounds together are found to be unsatisfiable, then iSAT3 will consider this situation
exactly as a Boolean literal and its negation. Thus, one can apply the resolution step
safely between the clauses that contain these simple bounds. However it is required that
the resolvent will not be a tautology, e.g., if we are given the following clauses (x < 3∨y ≥
12), (x ≥ 5 ∨ z ≤ 2), then by resolving over x variable since x < 3 ∧ x ≥ 5 → ⊥, we get
(y ≥ 12∨ z ≤ 2) as a resolvent clause. Both of deduction and resolution rules are formally
presented in [KB11, KBTF11].

Slackness in iSAT3 interpolants

slack.ness noun /"slæk-n@s/
slack: a depression between hills, in a hillside, or in the land surface [Sla16].

80

4.3. THE ISAT3 MODEL CHECKER

As a valid interpolant for the pair (A,B) is obtained since A ∧ B is unsatisfiable, we
know that such a valid interpolant must overapproximate A formula and on the same
time does not intersect with B. That is, a valid interpolant I would be computed in the
area between A and B and extracted from so-called local proof [KV09]. Roughly, in local
proofs some symbols are coloured in the red or blue colors and others are uncoloured.
Uncoloured symbols are said to be grey. A local proof cannot contain an inference that
uses both red and blue symbols. In other words, colors cannot be mixed within the same
inference. In [HKV12], they control the size and the structure of the interpolants based
on transformations of “grey area” of local proofs. The main metrics to judge the quality
of resultant interpolants are:

• the size of the interpolants. As long as we get small interpolants, we mostly reduce
the burden of solving complex formulae.

• the structure of the interpolants. It is found that CNF interpolants are more useful
and practical in verifying unbounded model checking problems [VRN13].

The strength of the interpolants would be measured w.r.t. how close the interpolant is to
A or B, we say that interpolant I1 is stronger than interpolant I2 for the pair (A,B), if
and only if I1 and I2 are valid interpolants for (A,B) and I1 → I2. However, one cannot
identify in advance whether the strong interpolants prove the safety in unbounded model
checking problems faster than weaker ones or vice verse. Thus, we cannot attribute the
quality of interpolants depending on their strengths.

In iSAT3, we can control the slackness of the interpolants on two levels. First, control the
local proof by guiding the decide and deduce steps in a way such that we give the solver
some preferences before any decide and deduce steps. Second, we choose appropriate
interpolants computing rules e.g. Púdlak, McMillan and dual of McMillan upon request.

Biasing the heuristics in iSAT3

Guiding or controlling the heuristic of iSAT3 solver during decide or deduce steps means
to guide the heuristic of iSAT3 where the proof tree would be changed according to this
guidance. Additionally, this mechanism should be applied or considered in decide or deduce
steps only as long as no other higher preferences have to be taken in our consideration.
That is, if the solver finds a unit clause, then regardless of any heuristic, iSAT3 has
to decide the remaining literal/atom to be true; otherwise the clause will be false, and
consequently the formula is unsatisfiable.

Decide step: Prioritizing the decide queue which contains bunch of literals without prior
preferences, can help us to decide on A-literals (related to A-clauses) or B-literals (related
to B-clauses). This prioritizing would occur in following situations:

1. at the beginning of solving the problem in case of non-persistent unit-clauses,

2. after k-decisions where k > 0, we still do not get a conflict, and we can still decide
on some literals,

3. and after non-chronological backtracking in CDCL(T), where iSAT3 may get on a
situation where it has to decide as well.

81

4.3. THE ISAT3 MODEL CHECKER

ϕ : (x ≤ 3 ∨ y ≥ 3) ∧ (x > 12.5 ∨ y < 0)︸ ︷︷ ︸
A

(x > 5.7 ∨ y ≥ 3) ∧ (x ≤ 4 ∨ y < 0)︸ ︷︷ ︸
B

C
as
e
1:

d
ec
id
e
st
ep

o
n
A
-l
ie
tr
al

x ≤ 3

y < 0y ≥ 3

⊥

decide

deduce

resolve

decide

x > 3

backtack
x > 12.5 x ≤ 4

⊥

deduce

resolve

no backtack

⇒
(x ≤ 3 ∨ y ≥ 3) (x ≤ 3 ∨ y ≥ 3)(x > 12.5 ∨ y ≥ 3) (x ≤ 4 ∨ y ≥ 3)

(y ≥ 3) (y ≥ 3)

⊥

extract

a resolution tree

Implication graph

C
as
e
2:

d
ec
id
e
st
ep

on
B
-l
ie
tr
al

x ≤ 4

y ≥ 3y < 0

⊥

decide

deduce

resolve

decide

x > 4

backtack
x > 5.7 x ≤ 3

⊥

deduce

resolve

no backtack

⇒
extract

a resolution tree

Implication graph

⇒

(x ≤ 3 ∨ y < 0) (x > 5.7 ∨ y < 0)(x ≤ 4 ∨ y < 0) (x ≤ 4 ∨ y < 0)

(y < 0) (y < 0)

⊥

Figure 4.4: Guiding decide step in iSAT3 affects the resolution tree.

Example 4.3: Example of decide step effect on proof

Consider the following formula as in Figure 4.4:

ϕ : A ∧B

where A : (x ≤ 3 ∨ y ≥ 3) ∧ (x > 12.5 ∨ y < 0) and B : (x > 5.7 ∨ y ≥ 3) ∧ (y ≤
4 ∨ y < 0).
Firstly, we do not have unit clauses to be considered. Thus, we have the liberty to
decide on any literal at decide-level 0. In Case 1, we decide on a literal l0 : x ≤ 3
which belongs to A-formula. Thus, by the implication graph, we know that l1 : y ≥ 3
and l2 : y < 0 have to be true, however l1 ∧ l2 |= false, we get a conflict. Therefore,
we backtrack and decide that l0 has to be false. Consequently, by the implication
graph, l1 : y ≥ 3 has to be true. As a result of last deduction, l3 : x > 12.5
and l4 : x ≤ 4 have to be true, however l3 ∧ l4 |= false. At this point, we get a
non-resolvable conflict. On the right side of Figure 4.4, we have a corresponding
extracted resolution tree.
In Case 2, we do the same procedure as before, but we decide on a literal which
belongs to B formula. At the end, we get another resolution tree as in the right
bottom of Figure 4.4.

82

4.3. THE ISAT3 MODEL CHECKER

Deduce on A-literals

(x+ 1)2+

(y + 1)2 ≤ 4︸ ︷︷ ︸
A

(x− 7)2+
(y + 1)2 ≤ 4︸ ︷︷ ︸

B

deduce UB of x

(x+ 1)2 ≤ 4 x ≤ 1

propagate to B

(x− 7)2 ≤ 4

substitute by x ≤ 1

(1− 7)2 6≤ 4 ⊥
conflict found and can’t be resolved

reason: x ≤ 1

(x+ 1)2+

(y + 1)2 ≤ 4︸ ︷︷ ︸
A

(x− 7)2+
(y + 1)2 ≤ 4︸ ︷︷ ︸

B

Extracted resolution tree

(x ≤ 1) (x > 1)

∅

Deduce on B-literals

(x+ 1)2+

(y + 1)2 ≤ 4︸ ︷︷ ︸
A

(x− 7)2+
(y + 1)2 ≤ 4︸ ︷︷ ︸

B

deduce LB of x

(x+ 1)2 ≤ 4

propagate to A

(x− 7)2 ≤ 4 x ≥ 5

substitute by x ≥ 5

(1 + 5)2 6≤ 4 ⊥
conflict found and can’t be resolved

reason: x ≥ 5

(x+ 1)2+

(y + 1)2 ≤ 4︸ ︷︷ ︸
A

(x− 7)2+
(y + 1)2 ≤ 4︸ ︷︷ ︸

B

Extracted resolution tree

(x < 5) (x ≥ 5)

∅

Figure 4.5: Guiding deduce step in iSAT3 affects the resolution tree.

Deduce step: In non-linear cases or complex constraints, iSAT3 will deduce upper and
lower bounds of variables by using interval constraint propagation (ICP) as aforemen-
tioned. This early deduction application may trigger other literals on the formula and
lead to a conflict clause. Thus, one needs to prioritize the deduction queue of the formula
A ∧ B such that one can choose which constraints yielding upper or lower bounds must
be deduced earlier.

Example 4.4: Example of deduce step effect on proof

Consider the following formula as in Figure 4.5:

ϕ : A ∧B

where A : (x2+y2 ≤ 4) and B : (x−7)2+(y+1)2 ≤ 4. We are in the situation where
we have only two atomic conjunctions (A ∧ B), where both have to be satisfiable;
otherwise the formula is unstisfaible. Thus, iSAT3 has to deduce safe bounds of
each formula in order either to finds a common solution, or ends with a conflict.
In Case 1, iSAT3 deduces bounds on A first, only then one gets an upper bound
of x which in our case is 1. We propagate this fact to B part as in the left side of
Figure 4.5, where we get a non-resolvable conflict.

83

4.3. THE ISAT3 MODEL CHECKER

In Case 2, iSAT3 deduces bounds on B first, then one gets a lower bound of x which
in our case is 5. We propagate this fact to A part as in the right side of Figure 4.5,
where we get a non-resolvable conflict.
One can observe the differences in the extracted resolution trees from Case 1 and
Case 2 depending on the deduce step.

(x2 + y2 ≤ 4)︸ ︷︷ ︸
A

(x ≥ 5 ∨ y > 4.5) ∧ (x < 2.5 ∨ y ≤ 3)︸ ︷︷ ︸
B

deduce UB of x

x2 ≤ 4 x ≤ 2

Unit clause

(y > 4.5)

conflict found and can’t be resolved

reason: x ≤ 2 and y > 4.5

(x2 + y2 ≤ 4)︸ ︷︷ ︸
A

(x ≥ 5 ∨ y > 4.5) ∧ (x < 2.5 ∨ y ≤ 3)︸ ︷︷ ︸
B

(y > 4.5) ∧ (x ≤ 2) (x ≥ 5 ∨ y > 4.5)substitute in A

(x2 + 4.52 6≤ 4)
(y > 4.5)

∅

⇒
extract

a resolution tree

Figure 4.6: Possible influences between deduce and decide steps in iSAT3.

Deduce step sometimes affects the decide step; e.g., deducing an upper bound or a lower
bound of a variable in one clause, triggers another literal(s)/atom(s) in binary clauses.
Then we get a situation that we have a unit clause; i.e. we are forced to choose the
remaining literal to be true as in Figure 4.6 where (x2 + y2 ≤ 4) has to be true.

Then we deduce a safe upper bound of x; namely 2. After that we get a unit clause
y > 4.5. So deducing that x2 ≤ 4 forces us to decide that y > 4.5 is true. Sometimes,
this situation is considered to be an effect of arithmetic deduction on Boolean deduction.
Also, if iSAT3 decides a literal to be true, this may lead to deduce an upper or a lower
bound of a variable in that literal. The latter situation happens probably in non-trivial
constraints; e.g. (x2 + y2 ≤ 4) as in Figure 4.6.

We propose to extend the preferences of iSAT3 solver by two parameters either a-biasing
or b-biasing. In case of a-biasing, iSAT3 is forced to deduce on A-literals first, then on
B-literals. This behaviour holds at any point of time during solving as long as we do
not have other preferences that have higher priority; e.g. unit clause. Also, in a-biasing,
iSAT3 is forced to decide on any literal on A-formula part as long as we do not have unit
clause on B part and vice versa in case of b-biasing.

By this procedure, we guide the decide and deduce operations in implication graph either
to use A literals (in case of a-biasing) or B-literals (in case of b-biasing).

Remark 4.1: Relation between biasing in iSAT3 and abduction rule
in [BDG+14]

In [BDG+14], the authors defined a so-called abduction rule in abstract conflict
driven clause learning (ACDCL). This rule aims at finding a general reason by

84

4.3. THE ISAT3 MODEL CHECKER

relaxing bounds iteratively. It is found in practice to be very efficient and important.
Whenever they get a reason; e.g. x < 4.1 of unsatisfiability, they step backwards
through the deduction queue and attempt to weaken the current element by using
most recent deduced bounds say x < 7.3 (more relaxed and more general). This
abduction rule is more relevant to backwards propagation in ICP. It has some affinity
with our biasing technique in a way that biasing technique in some cases relaxes
the bounds to obtain at the end a general reason which is still sufficient to deduce
the same fact or to lead to the conflict. However, our biasing technique is A or B
driven one which does not intend to weaken or strengthen bounds.

Lemma 4.1: Strong and weak interpolants

Let A and B be SMT formulae such that A ∧ B is unsatisfiable. The interpolant
I1 obtained by using McMillan rules with a-biasing scheme is stronger than the
interpolant I2 obtained by using duality of McMillan rules with b-biasing scheme.

Proof of Strong and weak interpolants

We prove this lemma considering two situations:
1. applying McMillan’s rules and its duality to the same resolution proof tree.

It is proven in [DKPW10] (Page 11, Lemma 2, Theorem 3, and Corollary
1) that the interpolant obtained by McMillan’s rules is stronger than the
one obtained by Púdlak’s rules for the same resolution tree. Addition-
ally, both are stronger than the interpolant obtained by the duality of
McMillan’s rules.
The idea of the proof follows the fact that at any vertex v in the resolution
tree:

Imcmillan → Idu_mcmillan ∨ (C ↓A ∩ C ↓B)

where Imcmillan is the McMillan’s interpolant, Idu_mcmillan is the duality
of McMillan’s interpolant, and C is the clause obtained at v (resolvent).

2. applying the same computation rules to the resolution proof trees obtained
after using biasing (say for example using McMillan’s rules).

The idea of the proof also follows the fact that at any vertex v in the
resolution tree:

Ia−biased → Ib−biased ∨ (C ↓A ∩ C ↓B)

where Ia−biased is the interpolant obtained by a-biasing, Ib−biased is the
interpolant obtained by b-biasing, and C is the clause obtained at v
(resolvent). For more information, see [DKPW10].

By following 1 and 2, the lemma holds.

Definition 4.10: Slackness of interpolants

Given unsatisfiable formula ϕ : A∧B, we say that the resultant interpolants Istrong
and Iweak have slackness if and only if:

85

4.3. THE ISAT3 MODEL CHECKER

• Istrong does not equal Iweak ; i.e., Istrong 6↔ Iweak and
• Istrong is stronger than Iweak ; i.e., Istrong → Iweak .

Examples

In order to show the effectiveness of using biasing together with (duality of) McMillan’s
rules, we will show some small but interesting cases, where our technique is obviously
affecting the computed interpolants. Later, we will show how one can use this interesting
results in order to obtain simple interpolant at the end for non-linear problems where
the latter is still challenging in most non-linear unbounded model checking problems. In
all following examples, A-formula is represented in blue color, B-formula is represented
in green color, Istrong-interpolant is represented in orange color and Iweak-interpolant is
represented in red color.

Example 4.5: Two disjoint circles

Consider the following two disjoint circles depicted in Figure 4.7a:

A : (x+ 1)2 + (y + 1)2 ≤ 4

B : (x− 7)2 + (y − 7)2 ≤ 4

In Figure 4.7b we get the first interpolant Istrong : x ≤ 1, computed by McMillan’s
rules with a-biasing. In addition to that, in Figure 4.7c we get the second interpolant
Iweak : x < 5, computed by duality of McMillan’s rules with b-biasing. In this
example, we get a sufficient slackness between Istrong and Iweak such that Istrong →
Iweak as shown in Figure 4.7d.

Example 4.6: Two disjoint spheres

Consider the following two disjoint spheres depicted in Figure 4.8a:

A : (x+ 1)2 + (y + 1)2 + (z + 1)2 ≤ 4

B : (x− 7)2 + (y − 7)2 + (z + 7)2 ≤ 4

In Figure 4.8b we get the first interpolant Istrong : x ≤ 1 ∧ z ≤ 1, computed by
McMillan’s rules with a-biasing. In addition to that, in Figure 4.8c we get the
second interpolant Iweak : x < 5 ∨ z < 5, computed by duality of McMillan’s rules
with b-biasing. In this example, we get a sufficient slackness between Istrong and
Iweak such that Istrong → Iweak as shown in Figure 4.8d.

Example 4.7: Two disjoint connected circles

Consider the following two disjoint connected circles depicted in Figure 4.9a:

A : (x+ 1)2 + (y + 1)2 ≤ 1 ∨ (x+ 2.5)2 + (y + 2)2 ≤ 1

86

4.3. THE ISAT3 MODEL CHECKER

-10 -5 0 5 10

-10

-5

0

5

10

B

A

(a) A ∧ B-formula

-10 -5 0 5 10

-10

-5

0

5

10

B

A

Istrong

(b) A ∧ B-formula with strong interpolant

-10 -5 0 5 10

-10

-5

0

5

10

B

A

Iweak

(c) A ∧ B-formula with weak interpolant

-10 -5 0 5 10

-10

-5

0

5

10

B

A

Istrong

Iweak

(d) A ∧ B-formula with Iweak and Istrong

Figure 4.7: Two disjoint circles and two different interpolants with sufficient slackness.

B : (x+ 4.5)2 + (y − 0.5)2 ≤ 1 ∨ (x+ 3)2 + (y − 1.5)2 ≤ 1

In Figure 4.9b we get the first interpolant Istrong : ((y ≤ −1 ∧ x ≥ −3.5) ∨ (y ≤
0∧ x ≥ −2)), computed by McMillan’s rules with a-biasing. In addition to that, in
Figure 4.9c we get the second interpolant Iweak : ((y < −0.5∨x > −3.5)∧(y < 0.5∨
x > −2)), computed by duality of McMillan’s rules with b-biasing. In this example,
we get a sufficient slackness between Istrong and Iweak such that Istrong → Iweak as
shown in Figure 4.9d.

87

4.3. THE ISAT3 MODEL CHECKER

B

A

x

y
z

(a) A ∧ B-formula

A

B

Istrong

(b) A ∧ B-formula with strong interpolant

A

B

Iweak

(c) A ∧ B-formula with weak interpolant

A

B

Istrong

Iweak

(d) A ∧ B-formula with Iweak and Istrong

Figure 4.8: Two disjoint spheres and two different interpolants with sufficient slackness.

Example 4.8: Two tori

Consider the following two disjoint tori depicted in Figure 4.10a:

A : (
√
x2 + y2 − 4)2 + z2 = 0.4

B : (
√
x2 + y2 − 2)2 + z2 = 0.4

In Figure 4.10b we get the first interpolant Istrong :
√

(x2 + y2) ≥ 3.368, computed
by McMillan’s rules with a-biasing. In addition to that, in Figure 4.10c we get the
second interpolant Iweak :

√
(x2 + y2) ≥ 2.632, computed by duality of McMillan’s

88

4.3. THE ISAT3 MODEL CHECKER

-10 -5 0 5 10

-10

-5

0

5

10

B

A

(a) A ∧ B-formula

-10 -5 0 5 10

-10

-5

0

5

10

B

A
Istrong

(b) A ∧ B-formula with strong interpolant

-10 -5 0 5 10

-10

-5

0

5

10

B

A

Iweak

(c) A ∧ B-formula with weak interpolant

-10 -5 0 5 10

-10

-5

0

5

10

B

A
Istrong

Iweak

(d) A ∧ B-formula with Iweak and Istrong

Figure 4.9: Two disjoint connected-circles and two different interpolants with sufficient
slackness.

rules with b-biasing. In this example, we get a sufficient slackness between Istrong
and Iweak such that Istrong → Iweak as shown in Figure 4.10d.
Although we get here a sufficient slackness, one should remark that the resultants
interpolants in this example are non-linear formulae. The reason behind this verdict
comes from the fact that iSAT3 finds a non-linear constraint during interval splitting
that is sufficient to capture the reasoning of unsatisfiability. One can see it as an
advantage since we get an interpolant earlier without deducing more the intervals.

89

4.3. THE ISAT3 MODEL CHECKER

B

A

(a) A ∧ B-formula

B

A

Istrong

(b) A ∧ B-formula with strong interpolant

B

A

Iweak

(c) A ∧ B-formula with weak interpolant

B

A

Istrong

Iweak

(d) A ∧ B-formula with Iweak and Istrong

Figure 4.10: Two disjoint tori and two different interpolants with sufficient slackness.

On the other hand, it can be seen as a limitation of our approach, we cannot always
get an interpolant with simple bounds.

90

4.3. THE ISAT3 MODEL CHECKER

B

A

(a) A ∧ B-formula

B

A

Istrong

(b) A ∧ B-formula with strong interpolant

B

A

Iweak

(c) A ∧ B-formula with weak interpolant

B

A

Istrong Iweak

(d) A ∧ B-formula with Iweak and Istrong

Figure 4.11: Two disjoint tori and two different interpolants with semi slackness.

Limitations

Example 4.9: Two tori with semi-slackness

Consider the following two disjoint tori depicted in Figure 4.11:

A : (
√

(x− 0.5)2 + (y + 2)2 − 3)2 + (z + 0.1)2 = 0.04

91

4.3. THE ISAT3 MODEL CHECKER

B : (
√
y2 + z2 − 3)2 + x2 = 0.04

Also, in Figure 4.11 we get two different interpolants i.e. Istrong : (y ≤ 1.2 ∧ z ≤
0.1 ∧ (x < −0.2 ∨ y < −3.2 ∨ y > −2.784 ∨ x > 0.2) ∧ z > −0.3) and Iweak : (x <
−0.2 ∨ y < −3.2 ∨ (y ≤ 1.186 ∧ z ≤ 0.1 ∧ y ≥ 0.711 ∧ z ≥ −0.3) ∨ x > 0.2)) where
they are computed according to McMillan’s rules with a-biasing and duality of
McMillan’s rules with b-biasing respectively. However, according to Definition 4.10,
we did not get slackness, since Istrong is not stronger than Iweak . This result does
not conflict with Lemma 4.1, since the limitation comes from iSAT3 implementation
(technical issue) as the latter cannot always guarantee a-biasing or b-biasing due
to early deduction steps performed by the solver while encoding the problem.
Adjusting this soft spot of the solver requires us to change the core of the solver,
thus we report this as a limitation of our implementation rather a tedious change
of the solver core-engine.

Integrating slackness with downsizing interpolants [PS13a]

The slackness of interpolants aims at finding simple inteprolants as follows. First, by us-
ing biasing options to guide heuristics together with (duality of) McMillan’s rules, we can
obtain two different, linear and partially-ordered interpolants for the pair (A,B), namely
Istrong by using a-biasing with McMillan’s rules and Iweak by using b-biasing with dual-
ity of McMillan’s rules. Second, we integrate our approach with SMT downsizing inter-
polants [PS13a, SPDA14] in order to find a simple interpolant for the pair (Istrong,¬Iweak).
By simple interpolants, we mean interpolants with simple structure and less constraints
with comparison to Istrong and Iweak .

Lemma 4.2: Simple interpolant

An interpolant obtained from the pair (Istrong,¬Iweak) is a valid interpolant for the
pair (A,B).

Proof of Strong and weak interpolants

In order to prove that the simple interplant Isimple is a valid interpolant for (A,B),
we have to prove the following:
• A→ Isimple,

Since Istrong is a valid interpolant for (A,B), we know that: A→ Istrong.
Also, as Isimple is a valid interpolant for (Istrong,¬Iweak), we know that:
Istrong → Isimple.
Thus, from previous results, the first condition of valid interpolant holds.

• Isimple → ¬B,
Since Iweak is a valid interpolant for (A,B), we know that: Iweak → ¬B.
Also, as Isimple is a valid interpolant for (Istrong,¬Iweak), we know that:
Isimple → Iweak .
Thus, from previous results, the second condition of valid inteprolant

92

4.3. THE ISAT3 MODEL CHECKER

holds.
• Var(Isimple) ⊆ Var(A) ∩Var(B).

Since Istrong and Iweak are valid interpolants for (A,B), we know that:
Var(Istrong) ⊆ Var(A)∩Var(B) and Var(Iweak) ⊆ Var(A)∩Var(B) and
Also, as Isimple is a valid interpolant for (Istrong,¬Iweak), we know that:
Var(Isimple) ⊆ Var(Iweak) ∩Var(Istrong).
Thus, from previous results, the third condition of valid inteprolant holds.

At the end, the three conditions of valid interpolants apply to Isimple.

(a) A ∧ B-formula (b) A ∧ B-formula with strong interpolant

(c) A ∧ B-formula with weak interpolant (d) A ∧ B-formula with simple interpolant

Figure 4.12: Example of integrating iSAT3 with downsizing interpolants method where
blue area represents A formula and green area represents B formula.

Example 4.10: Simple interpolant

Let us consider the following formula: ϕ = A ∧ B, where A = ((x < 2.5) → (y >
2∗sin(x)))∧ ((x ≥ 2.5∧x < 5)→ (y ≥ 0.125∗x2 +0.41))∧ ((x ≥ 5∧x ≤ 6)→ (y ≥
−0.5 ∗x+ 6.04)), and B = ((x− 1.5)2 + (y+ 2.5)2 ≤ 3)∨ ((x− 3)2 + (y+ 4)2 ≤ 2.5)

93

4.3. THE ISAT3 MODEL CHECKER

as in Figure 4.12a. By using McMillan’s rules together with a-biasing technique,
we get the following interpolant as in Figure 4.12b:

Istrong : ((x ≥ 2.5) ∨ (x ≤ −0.16) ∨ (x ≥ 2.5) ∨ (y > −0.32))∧
(y > −2)∧

((x < 2.5) ∨ (x ≥ 5) ∨ (y ≥ 1.19))∧
((x < 2.5) ∨ (x ≥ 5) ∨ (y > −2))

where it has four clauses with clause average size three. By using duality of McMil-
lan’s rules together with b-biasing technique, we get the following interpolant as in
Figure 4.12c:

Iweak : (x < 2.5)∧
((x ≤ −0.16) ∨ (y > −0.77))∧

((y > −2) ∨ (x ≥ 2.5))∧
((y > −1.09) ∨ (x > 3.23))∧
((y > −2.42) ∨ (x > 4.58))

where it has five clauses with clause average size (w.r.t. number of literals in each
clause) two. Now, we pass the pair (Istrong,¬Iweak) to SMT downsizing interpolants
technique, which gives us the following simple interpolant as in Figure 4.12d

Isimple : ((y ≥ 0.32) ∨ (x ≥ 5) ∨ (x < −2.5)) ∧ (y > −2) ∧ (x ≤ −0.16)

where it has three clauses with average size two. Thus, baring slackness technique
with downsizing interpolants technique en masse allows us to get simpler inter-
polants for non-linear problems, despite its incompleteness.

One observes the benefits of integrating these approaches together in this small non-linear
example.

4.3.4 BMC problems in iSAT3

iSAT3 can solve a single quantifier-free formula as a constraint expression. Also, it can ver-
ify bounded and unbounded model checking reachability problems in symbolic transition-
system based models. These transition systems may contain complex non-linear con-
straints which cannot be handled directly by other solvers without aggressive approxi-
mation or normalization due to non-linearity. In 2003, McMillan succeeded to use Craig
interpolation [Cra57] to (dis)prove reachability of a specification in transition systems
and programs over propositional and linear theories [McM03]. In 2011, Kupferschmid
et al. [KB11] succeeded to extend the latter approach and solve unbounded reachability
problems in the presence of non-linear constraints in the transition-system based models.
The current status of iSAT3 can solve bounded and unbounded model checking problems
by using Craig interpolation [Cra57] or k-induction [SSS00].

The general iSAT3 BMC-format [SKB13] is shown in Figure 4.13. It consists of declara-
tion, initialization, transition, and target sections, which are all started by the respective
keywords. The declaration part (DECL) defines all used variables and constants in all other
parts. Non-Boolean variables must have an assigned initial range over which a solution is
sought. Each defined constant has an assigned real-value. It is possible to define static
variables that are assigned at most once in all transition system unrolling steps.

94

4.3. THE ISAT3 MODEL CHECKER

main()
{
float x;
const float r = 3.2;
boolean flag = 0;

if (x == 0.5 || x == 0.8)
{
while(true)

{
x = r ∗ x ∗ (1− x);
if(!(((x ≥ 0.78) && (x ≤ 0.82)) ||

((x ≥ 0.48) && (x ≤ 5.20))))
{
flag = 1;

}
}

}
assert(!flag);

}

1 Program representing logistic-map

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

- -declaration of variables

DECL
float [-1000,1000] x;

- -initilization of variables

INIT
(x = 0.8 || x = 0.5);)

TRANS
- -defining the transition system

x′ = r ∗ x ∗ (1− x);

- - is specification reachable?

TARGET
!(
((x ≥ 0.78) and (x ≤ 0.82))or - - ca. 0.8

((x ≥ 0.48) and (x ≤ 5.20)) - - ca. 0.5

);

Write iSAT3-BMC format2

Figure 4.13: iSAT3 bounded model checking problem format. Left: a transition system
representing logistic map problem [KB11], right: the corresponding encoding
in iSAT3 format.

The initial part (INIT) defines the initial configuration of the transition system. Identifiers
have not to be primed, because they represent the current status of the model (no next
states).

The transitions part (TRANS) represents transition steps from current states to next states
that are denoted by prime i.e. “′”. One has to take in the consideration that iSAT3 treats
all unspecified assignments and behaviours during unrolling as open or free assignments.
That is, no implicit assignments or values propagation will be performed during unrolling.
Thus, modeller must encode all necessary information; otherwise incorrect answers may
appear at the end. The intuition behind this semantics is to consider that transitions part
restricts all possible behaviours of the environment and unspecified constraints or assign-
ments are left to hold any value from the environment. This semantics is a general one
that can handle also programs where expected propagated assignments must be explicitly
stated.

The final part is a target part (TARGET) which represents the set of targets or specifica-
tions to be reached.

95

4.3. THE ISAT3 MODEL CHECKER

iSAT3 considers a BMC problem to be mathematically encoded as follows:

INIT ∧
n∧
i=0

TRANS(xi, xi+1) ∧
n∨
i=0

TARGET (xi)

4.3.5 CFA problems in iSAT3

In order to encode control flow graphs in the iSAT3 input language, we extend the previous
syntax of iSAT3 as shown in Figure 4.1 in order to encode control flow automaton problems
directly in iSAT3. A control flow graph file in iSAT3 (iSAT3-CFG) contains five parts,
namely the declaration, nodes, initialization, edges, and specification sections, which are
all started by the respective keywords.

As in iSAT3, the declaration part (DECL) has the same description as before. The second
part is the newly introduced nodes part (NODES), which defines the set of control flow
graph nodes to be used as source or destination locations of transitions. The initialization
part (INIT) then defines both the initial edge of the CFA and the permissible initial values
of all program variables. The latter is achieved by stating a predicate confining the possible
values. Its counterpart is the reachability specification, which may name the destination
node or define a set of variable valuations to be reached.

The edges part, introduced by the keyword EDGES, represents the control flows in the
graph. This part contains a list of edges as defined in Definition 4.3, each defined by
a source node, a list of guards, a list of assigned variables that are changed, a list of
assignments where the assigned variable has to be primed, and a destination node which
has to be primed as well. In case that the list of assigned variables is empty, it means
all previous values of variables are propagated. In contrast to the iSAT3 tradition (as
in BMC format), a framing rule is applied such that all unspecified assignments and
behaviours during unrolling are not considered to be non-deterministic choices, but values
are maintained by implicit equations x′ = x for all unassigned variables.

The final part is a specification part; i.e., SPECIFICATION, represents a single node. The
solver will investigate whether this node is reachable or not. The specification part here
admits the syntax and semantics of the reachability property as in Definition 4.6 and
Definition 4.7 respectively. iSAT3 considers a CFG as BMC problem to be mathematically
encoded as follows:

INIT ∧
n∧
i=0

EDGES(xi, xi+1) ∧
n∨
i=0

SPECIFICATION (xi)

where INIT and SPECIFICATION are encoded as boolean predicates. EDGES part is
encoded as a disjunction of edges formulas, i.e., EDGES :=

∨m
i=0 ni ∧ φi ∧ ~ψi ∧ ni+1 where

m represents the number of edges in CFG.

96

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

4.4 Interpolation-based CEGAR technique

The basic steps in counterexample guided abstraction refinement (CEGAR) are to, first,
compute an initial abstraction, then model-check it, thereafter terminate if no counterex-
ample is found or trying to concretize the counterexample otherwise. If concretization
succeeds then the counterexample is real, else spurious. In the latter case, a reason for the
occurrence of the spurious counterexample is extracted and subsequently used for refining
the abstraction, after which model checking is repeated.

As concretization of the abstract counterexample involves solving its concrete path condi-
tion, which is a conjunctive constraint system in the logical theory corresponding to the
data domain of the program analyzed, SAT-modulo-theory solving often is the method
of choice for concretization and Craig interpolation consequently a natural candidate for
the extraction of reasons. It has been suggested by Henzinger et al. [HJMM04]. Of these
classical approaches, we do in particular adopt lazy abstraction [HJMS02, McM06] and
inductive interpolants in [BL12], yet lift them to the analysis of programs featuring arith-
metic beyond decidable fragments. While CEGAR on such rich fragments of arithmetic
has been pursued within the field of hybrid-system verification, in particular by Ratschan
et al. [RS07], refinement there has not been directed by Craig interpolation and, using
explicit-state techniques, the targets where relatively small control skeletons rather possi-
bly unwieldy CFGs. By a tight integration of checking the abstraction and SMT including
CI, we are trying to overcome such limitations.

4.4.1 Interpolation-based refinement procedure in iSAT3: algorithm

This subsection presents the four main steps of CEGAR in iSAT3; namely abstraction,
abstract model verification, predicate extraction during counterexample validation, and
the refinement step.

Initial abstraction. The first step of applying CEGAR is to extract an initial abstraction
from the concrete model by a well-defined abstraction function. The first abstraction
represents just the graph structure of the CFG without considering edge interpretations
by assignments and guards. It is formally introduced as follows:

Definition 4.11: Initial abstraction function

Given a control flow automaton γ = (N , E, i) ∈ Γ, its initial abstraction mediated
by the abstraction function α : Γ → Γ is the CFA α(γ) = (N , E′, i), where E′ =
{(n, true, 〈〉, n′) | (n, φ, ~ψ, n′) ∈ E}.

The abstraction function α allows any evolution w.r.t. reachability properties of the system
that respects the flows between the nodes. For technical reasons, we assume that each
edge in γ is labelled by a unique variable. Thereby, for each edge in the concrete model,
there is a corresponding edge in the abstract one, even if two edges have the same source
and destination nodes, they will not be merged as one edge in the abstract model.

97

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

Verifying the abstraction. In the model checking community it is habitual to verify
reachability problems in the abstract model by using finite-state model checkers, like BDD-
based approaches [BR00]. In this work, we verify reachability properties in the abstract
models by SMT solving together with interpolation [McM03] in order to verify reachability
for unbounded depths. The individual runs of thus unbounded SMT-based model-checking
are bound to terminate, as the initial abstraction is equivalent to a finite-state problem
and as the predicates that are added to enrich the abstraction during refinement are just
logical formula over simple bounds x ∼ c which are bounds on Boolean propositions; i.e.,
literals, thus keeping the model finite-state. By this idea, we can pursue model checking
of the abstraction and the concretizability test of abstract counterexamples within the
same tool, thus avoiding back-and-forth translation between different tools and checking
technologies.

Path-condition generation and extraction of reasons. Given that the abstract model
α(γ) is a CFA, it induces a set of paths. We call any path σsp ∈ Σ(α(γ)) an abstract path.
As the abstraction function just relaxes edge conditions, we can build a corresponding
concrete path – if existent – by just reintroducing the missing constraints and assignments
such that the variable instances are adequately renamed respecting the step-dependent
depth as in BMC. It is formally defined as follows.

Definition 4.12: Path-conditions generation function

Given a control flow graph γ = (N , E, i) and its abstraction α(γ) = (n,E′, i) ∈ Γ
and a finite abstract path σsp : 〈i, ν ′init〉

e′
1−→ 〈n1, ν

′
1〉

e′
2−→ ...

e′
m−−→ 〈nm, ν ′m〉 ∈ Σ(α(γ)),

the path-conditions generation function κ : Γ× Σ→ Σ that builds a concrete path
semantically by collecting its conditions, is defined as follows:

κ(γ, σsp) = σ where, σ : 〈i, νinit〉
e1−→ 〈n1, ν1〉

e2−→ ...
em−−→ 〈nm, νm〉,

{e1, ..., em} ⊆ E and {n1, ..., nm} ⊆ N

We say that σ is a real path if and only if its generated path condition, i.e.,
νini ∧

∧m
i=1 φi ∧ ~ψi is satisfiable, else it is spurious. In νini ∧

∧m
i=1 φi ∧ ~ψi formula,

each variable has to renamed in order to respect its depth akin to BMC renaming
mechanism.

The crucial step in the CEGAR loop is to extract a reason for counterexamples being
spurious such that case splitting on that reason would exclude the particular (and similar)
counterexamples. Several previous works used different approaches and schemes to capture
such reasons, like state splitting [RS07], word matching by using ω-automata [Seg07], or
interpolants [McM06, HJMS02, HJMM04, EKS08, BL12]. In our work, we exploit stepwise
interpolants as in [EKS08, BL12] in order to obtain predicates capturing the reasons, where
the first and last interpolants during refining any spurious counterexample are always true
and false respectively [EKS08]. This can be carried out as follows: When encountering
a spurious counterexample σsp = 〈i, ν ′init〉

e′
1−→ ...

e′
m−−→ 〈nm, ν ′m〉 ∈ Σ(γ′), where γ′ is an

abstraction, {e′1, .., e′m} ⊆ E′ – primed edges denote abstract ones –, m > 0 and θ = nm is
the goal to be reached,

98

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

• we complete the abstract path σsp in the original model γ semantically by using the
path-conditions generation function κ as in Definition 4.12.

• as σsp is spurious, we obtain an unsatisfiable path formula κ(γ, σsp) /∈ Σ(γ), i.e.,
νinit ∧

∧m
i=1 φi ∧ ~ψi |= false.

• by using CI in order to extract reasonable predicates as in lazy abstraction [HJMM04],
one computes a reason of unsatisfiability at each control point (node) of γ. For
example, consider that κ(γ, σsp) equals A ∧ B, where A = νinit ∧

∧k
j=1 φj ∧ ~ψj ,

B =
∧m
j=k+1 φj ∧ ~ψj and 0 ≤ k ≤ m. If we run the iSAT3 solver iteratively for

all possible values of k, we obtain m + 1 interpolants, where interpolant Ik is an
adequate reason at edge ek justifying the spuriousness of σsp.

• in case of using inductive interpolants, one uses the interpolant of iteration k, i.e.,
Ik as A-formula while interpolating against the above formula B in order to obtain
interpolant Ik+1. As Ik overapproximates the prefix path formula till k, we compute
the next interpolant Ik+1 that overapproximates Ik∧φk+1∧ ~ψk+1. This step assures
that the interpolant at step k implies the interpolant at step k + 1.

This guarantees that the interpolants at the different locations achieve the goal of providing
a reason eliminating the infeasible error path from further exploration.

Abstraction refinement. After finding a spurious counterexample and extracting ade-
quate predicates from the path, we need to refine the abstract model in a way such that
at least this counterexample is excluded from the abstract model behaviour. This refine-
ment step can be performed in different ways. The first way is a global refinement a.k.a.
entire refinement procedure which is the earliest traditional approach, where the whole
abstract model is refined after adding a new predicate [Cla03]. It is considered to be quite
expensive and unwieldy approach unless the discovered predicates are useful for other un-
explored paths. The second way is a lazy abstraction [HJMS02, McM06, Jha06] where
instead of iteratively refining an abstraction, it refines the abstract model on demand, as
it is constructed. This refinement has been based on predicate abstraction [HJMS02] or on
interpolants derived from refuting program paths [McM06]. The common theme, however,
has been to refine and thus generally enlarge the discrete state-space of the abstraction on
demand such that the abstract transition relation could locally disambiguate post-states
(or pre-states) in a way eliminating the spurious counterexample. The third way is an
eager abstraction [SS14], where in each call two traces are explored; i.e., an error path
if it exists and a safe path. Then a maximum common prefix is determined, and state
sets which separate between safe and unsafe states are constructed without requiring any
refinement.

Our approach of checking the abstraction within an SMT solver (by using interpolation-
based model checking) rather than a separate finite-state model checker facilitates a subtly
different solution.

At this point we would like to draw a special attention to our contribution in CEGAR
refinement. Instead of explicitly splitting states in the abstraction, i.e., refining
the nodes of the initial abstraction, we stay with the initial abstraction and just add
adequate pre-post-relations to its edges that imitate the same role of splitting cases,

99

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

without, however increasing the number of neither states nor the transitions. These pre-
post-relations are akin to the ones analysed when locally determining the transitions in a
classical abstraction refinement, yet play a different role here in that they are not mapped
to transition arcs in a state-enriched finite-state model, but rather added merely syntacti-
cally to the existing edges, whereby they only refine the transition effect on an unaltered
state space. It is only during path search on the (refined) abstraction that the SMT solver
may actually pursue an implicit state refinement by means of case splitting; being a tool
for proof search, it would, however, only do so on demand, i.e., only when the particu-
lar case distinction happens to be instrumental to reasoning. We support this implicit
refinement technique for both lazy abstraction (with inductive interpolants as optional
configuration) and global refinement.

In the following we concisely state how the implicit refinement is performed by attaching
pre-post-conditions to edges. Given a spurious counterexample σsp = 〈i, νinit〉

e′
1−→ ...

e′
m−−→

〈nm, νm〉 ∈ Σ(γ′) with θ = nm as shown in the previous subsection, we obtain m + 1
(optionally inductive) interpolants, where Ik and Ik+1 are consecutive interpolants at
edges ek and ek+1, respectively, and 0 < k < m. We continue as follows:

1. if Ik ∧ φk+1 ∧ ~ψk+1 → Ik+1 holds, then we add I → I ′ to e′k+1,

2. if Ik ∧ φk+1 ∧ ~ψk+1 → ¬Ik+1 holds, then we add I → ¬I ′ to e′k+1,

3. if ¬Ik ∧ φk+1 ∧ ~ψk+1 → ¬Ik+1 holds, then we add ¬I → ¬I ′ to e′k+1,

4. if ¬Ik ∧ φk+1 ∧ ~ψk+1 → Ik+1 holds, then we add ¬I → I ′ to e′k+1,

where I is Ik with all its indexed variable instances xk replaced by undecorated base names
x and I ′ is Ik+1 with all its indexed variable instances xk+1 replaced by primed base names
x′. These four checks capture all possible sound relations between the predecessor and
successor interpolants.

For example, consider for the moment the abstract model in the first iteration as in
Figure 4.14b, Image 2 and Image 3, where counterexample is found at depth 4. Inter-
polation on the path condition of the spurious counterexample yields I1 := true and
I2 := x ≥ 0.0002 at nodes n3 and n4 respectively. By performing the previous four checks,
we obtain three valid checks, namely

true︸︷︷︸
I1

∧ true︸︷︷︸
φ1

∧x2 = sin(y1) + 1.0002 ∧ y2 = y1︸ ︷︷ ︸
~ψ1

→ x2 ≥ 0.0002︸ ︷︷ ︸
I2

false︸ ︷︷ ︸
¬I1

∧ true︸︷︷︸
φ1

∧x2 = sin(y1) + 1.0002 ∧ y2 = y1︸ ︷︷ ︸
~ψ1

→ x2 ≥ 0.0002︸ ︷︷ ︸
I2

false︸ ︷︷ ︸
¬I1

∧ true︸︷︷︸
φ1

∧x2 = sin(y1) + 1.0002 ∧ y2 = y1︸ ︷︷ ︸
~ψ1

→ x2 < 0.0002︸ ︷︷ ︸
¬I2

As a result of these valid checks, we get the following conjunction:

(true→ x′ ≥ 0.0002) ∧ (false→ x′ ≥ 0.0002) ∧ (false→ x′ < 0.0002)

100

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

n1

n2 n3

n4

n5 error

[y 6= 0]

x := sin(y) + 1.0002

[y = 0]

x := x+ x

x := cos(y)

[x 6= 0]

[x = 0]

Original model0

n1

n2 n3

n4

n5 error

Initial abstract model after applying α1

(a) First step in CEGAR procedure.

n1

n2 n3

n4

n5 error

Counterexample in 1st iteration2

n1

n2 n3

n4

n5 error

true

x′ ≥ 0.0002

x ≥ 0.0002→ x′ > 0

x ≤ 0

Abstract model after 1st iteration3

(b) Second step in CEGAR procedure.

n1

n2 n3

n4

n5 error

true

x′ ≥ 0.0002

x ≥ 0.0002→ x′ > 0

Counterexample in 2nd iteration4

n1

n2 n3

n4

n5 error

truey′ = 0

x′ ≥ 0.0002y = 0→ x′ ≥ 1

x ≥ 0.0002→ x′ > 0
∧x ≥ 1→ x′ > 0

x ≤ 0

Abstract model after 2nd iteration5

(c) Third step in CEGAR procedure.

101

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

n1

n2 n3

n4

n5 error

true

x′ ≥ 0.0002

x ≥ 0.0002→ x′ > 0
∧x ≥ 1→ x′ > 0

Counterexample in 3rd iteration6

n1

n2 n3

n4

n5 error

truey′ = 0

x′ ≥ 0.0002y = 0→ x′ ≥ 1

x ≥ 0.0002→ x′ > 0
∧x ≥ 1→ x′ > 0
∧x ≥ 1↔ x′ ≥ 2
∧x ≥ 1↔ x′ ≥ 2

x ≥ 2↔ x′ > 0

x ≤ 0

Abstract model after 3rd iteration7

(d) Fourth step in CEGAR procedure.

n1

n2 n3

n4

n5 error

y′ = 0

y = 0→ x′ ≥ 1

∧x ≥ 1→ x′ > 0
∧x ≥ 1↔ x′ ≥ 2
∧x ≥ 1↔ x′ ≥ 2

x ≥ 2↔ x′ > 0

Counterexample in 4th iteration8

n1

n2 n3

n4

n5 error

truey′ = 0

x′ ≥ 0.0002y = 0→ x′ ≥ 1

x ≥ 0.0002→ x′ > 0
∧x ≥ 1→ x′ > 0
∧x ≥ 1↔ x′ ≥ 2
∧x ≥ 1↔ x′ ≥ 2
∧x ≥ 0.0002↔ x′ ≥ 0.0002

x ≥ 2↔ x′ > 0
∧x ≥ 0.0002↔
x′ ≥ 0.0002

x ≤ 0

Abstract model after 4th iteration9

(e) Fifth step in CEGAR procedure.

Figure 4.13: CEGAR procedure to solve Example 4.1, where bold paths and cyan pred-
icates represent the current counterexample and added constraints in each
iteration after refinement respectively.

Now, from previous conjunction and after simplification, we construct the pre-post-predicate
true ∧ x′ ≥ 0.0002 as shown on the arc from n3 to n4 of Figure 4.14a. We can derive that
the pre-post-predicate thus obtained is a sufficient predicate to refine not only the abstract
model at edge e′k+1 for eliminating the current spurious counterexample, but also for any
other spurious counterexample that (1) has a stronger or the same precondition before
traversing edge e′k+1 and (2) has a stronger or the same postcondition after traversing
edge e′k+1. This result is formally introduced as follows:

102

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

Lemma 4.3: Eliminating several CEXs in one refinement

Given an unsatisfiable path formula νinit ∧
∧m
i=1 φi ∧ ~ψi, where Ik and Ik+1 are the

interpolants extracted at ek and ek+1 respectively, then Ik and Ik+1 are sufficient
reasons to eliminate any counterexample that
• has a stronger or the same precondition before traversing edge e′k+1 and
• has a stronger or the same postcondition after traversing edge e′k+1

Proof of Eliminating several CEXs in one refinement

The proof of this lemma is straightforward. Firstly, for the current counterexample
assume that the prefix path formula νinit∧

∧k
i=1 φi∧ ~ψi is pre, the conditions φk∧ ~ψk+1

are cond, and the suffix of path formula
∧k+2
i=1 φi ∧ ~ψi is suff .

Consider that we have another spurious counterexample say σsp which only shares
with the current one the edge ek+1 and fulfils the condition of this lemma; namely
its prefix formula pres is stronger than pre i.e. pres → pre and its suffix formula
suff s is stronger than suff i.e. suff s → suff .
We know that pres → pre and pre → Ik. Thus pres → Ik (by transitivity). Also,
suff s → suff and suff → ¬Ik. Thus suff s → ¬Ik (by transitivity). So Ik is a valid
interpolant for the pair (pres, cond ∧ suff s)(*).
By the same way, we can prove that Ik+1 is a valid interpolant for the pair (pres ∧
cond, suff s)(**).
From (*) and (**), the lemma holds.

One has to observe that although the previous four checks seem to be checked individually,
there are certain dependencies between them. In other words, under certain conditions;
namely if the prefix formula that is interpolated by Ik, is valid (a tautology), then many
relations can be deduced during solving the problem. These relation are stated formally
in the following corollary:

Corollary 4.1: Dependencies between the four interpolants checks

Given an unsatisfiable path formula νinit ∧
∧m
i=1 φi ∧ ~ψi, where Ik and Ik+1 are the

interpolants extracted at the edges ek and ek+1 respectively. If we assume that
νinit ∧

∧k
i=1 φi ∧ ~ψi is valid where k < m and the following relation checks hold:

1. Ik ∧ φk+1 ∧ ~ψk+1 → Ik+1 (check1)
2. Ik ∧ φk+1 ∧ ~ψk+1 → ¬Ik+1 (check2)
3. ¬Ik ∧ φk+1 ∧ ~ψk+1 → ¬Ik+1 (check3)
4. ¬Ik ∧ φk+1 ∧ ~ψk+1 → Ik+1 (check4)

Then the following dependencies/consequences hold:
1. if check1 holds, then check3 and check4 hold.
2. if check2 holds, then check1, check3 and check4 hold.
3. if check3 holds, then check1 and check4 hold.
4. if check4 holds, then check1 and check3 hold.

103

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

Proof of Dependencies between the four interpolants checks

We will prove the first two dependencies and the others hold analogously. Assume
that νinit∧

∧k
i=1 φi∧ ~ψi is p, νinit∧

∧k+2
i=1 φi∧ ~ψi is s, and φk+1∧ ~ψk+1 is c. According to

computed interpolants that follows lazy abstraction technique, we have the following
valid relations
• p→ Ik and Ik → ¬(c ∧ s).
• p ∧ c→ Ik+1 and Ik+1 → ¬s.
• (¬p ∨ ¬c ∨ ¬s) and p.

if check1 holds, then check3 and check4 hold. if check1 holds, then we get Ik∧c→
Ik+1. We know that as p is a tautology and p→ Ik, then Ik is valid. Thus
• (Ik ∨ ¬c ∨ ¬Ik+1) is a tautology. Thus, check3 holds.
• (Ik ∨ ¬c ∨ Ik+1) is a tautology. Thus, check4 holds.

if check2 holds, then check1, check3 and check4 hold. if check2 holds, then we get
Ik ∧ c → ¬Ik+1. We know that as p is a tautology and p → Ik, then Ik is valid.
Thus
• (Ik ∨ ¬c ∨ ¬Ik+1) is a tautology. Thus, check3 holds.
• (Ik ∨ ¬c ∨ Ik+1) is a tautology. Thus, check4 holds.

Additionally, as Ik is valid and Ik → ¬Ik+1 ∨¬c hold, then we get that ¬Ik+1 ∨¬c
is a tautology. Thus (¬Ik∨¬Ik+1∨¬c) is valid as well. It follows that check1 holds.
The other proofs hold analogously.

As aforementioned, Ik and Ik+1 are interpolants generated from the whole unsatisfiable
path formula, before and after traversing ek. In order to refine the abstraction, we intro-
duced four checks to find out which relation holds so that we can eliminate the spuriousness
of current erroneous counterexample. But it is necessary at this point to validate the claim
whether these checks are sufficient to eliminate the spurious counterexample. Should this
not be the case, we explain when these checks fail and succeed.

Strictly speaking, in general, there are uncommon situations, where none of these checks
hold, which means that no side-conditions will be attached to some edges. Consequently,
no progress is guaranteed and our approach will fail. The following example elaborates
this case.5

Example 4.11: Weakness of four checks

Consider that we have a control flow automaton as in Figure 4.14, where a first
spurious counterexample is marked in Image 2. The following formula:

x0 = 0 ∧ y0 = 1︸ ︷︷ ︸
init

∧x1 = x0 + 2 ∧ y1 = y0 + x0 − 1︸ ︷︷ ︸
tr

∧ y2 = y1 ∧ x2 = x1 ∧ y2 = 4 ∧ x2 = 3︸ ︷︷ ︸
result

represents the unsatisfiable path formula of the marked spurious counterexample.
At the first step, we compute I0 for the pair (init, tr ∧ result) which is nothing but

5This artifical example is created for a purpose of addressing the problem of independent interpolants,
although it did not appear in any benchmark seen by the author of this thesis.

104

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

n1

n4 error

x := 0 ∧ y := 1

x := x+ 2
y := y + x− 1

[y = 4 ∧ x = 3]

[y
6=

4
∨
x
6=

3]

Original model1

n1

n4 error

Abstract model2

n1

n4 error

I0 : x ≤ 2

I1 : y ≤ 1

Abstract model3

x ≤ 2

in 1st refinement

I2 : false y > 1

Figure 4.14: An example of useless refinement since none of four checks holds. Image
2 represents the abstract model with the marked spurious counterexample
and computed interpolants. Image 3 represents the abstraction after first
refinement, where none of checks holds between I0 and I1.

x ≤ 2. Then, when we compute I1 for the pair (init∧ tr, result), we get y ≤ 1. Now
if we try to find which one(s) of the four checks do hold, unfortunately none of them
would hold, since we obtained two valid independent interpolants. At this point,
no refinement is applied for this edge as in Figure 4.14 – Image 3 – and the current
counterexample is still present forever. This may happen due to several reasons:
• different reasons of unsatisfiability could be extracted from a spurious coun-
terexample which may lead to compute uncorrelated consecutive interpolants.
• using different (deduce and decide) heuristics at each step of computing in-
terpolants which may affect the shape of interpolants (slackness).

To address a solution (theoretically and practically) for the previous problem, we propose
the following steps. First, using inductive interpolants will avert this problem completely,
since using inductive interpolants guarantees the correlation between consecutive inter-
polants such that the predecessor interpolant of an edge implies the successor interpolant
(first check always holds). The following lemma proves that.

Lemma 4.4: Inductive interpolants eliminate spurious CEXS

Given a control flow graph γ ∈ Γ, its abstraction α(γ) and a spurious counterex-
ample σsp ∈ Σ(α(γ) over the sequence of edges e1, ...em, adding side-conditions is
sufficient to eliminate the spurious counterexample.

105

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

Proof of Inductive interpolants eliminate spurious CEXS

By using stepwise inductive interpolants, we get a sequence of interpolants I0, ..., Im
attributing the previous (spurious) abstract counterexample with the path condition∧m−1
i=0 (Ii → Ii+1), where “Ii → Ii+1” is obtained from Check 1, since Ii ∧ φi+1 ∧
~ψi+1 → Ii+1 is a tautology. As the first and – at least – the last interpolants are true
and false respectively, the path formula (

∧m−1
i=0 Ii → Ii+1) becomes contradictory.

Thus the added side-conditions eliminate the current spurious counterexample.

Second, we can mostly guarantee that one of four checks hold by forcing the solver to
deduce and decide on literals from the A part (see Subsection 4.3.3). This often enables
us to generate dependent consecutive interpolants. Third, one can also generate consecu-
tive interpolants by solving the unsatisfiable path formula incrementally such that if the
unsatisfiability of a formula would be justified by several reasons, the latter incremental
approach assures that we justify the unsatisfiability of the formula by only one reason,
namely the first discovered one. Thereby, the interpolants are not independent.

Due to the predicates’ implicational pre-post-style, we can simply conjoin all discovered
predicates at an edge, regardless on which path and after how many refinement steps they
are discovered. Such incremental refinement of the symbolically represented pre-post-
relation attached to edges by means of successively conjoining new cases proceeds until
finally we can prove the safety of the model by proving that the bad state is disconnected
from all reachable states of the abstract model, or until an eventual counterexample gets
real in the sense of its concretization succeeding. To prove unreachability of a node in
the new abstraction, we use Craig interpolation for computing a safe overapproximation
of the reachable state space as proposed by McMillan [McM03]. The computation of the
overapproximating CI exploits the pre-post conditions added.

4.4.2 Example

Continue with Example 4.1

In the following, we illustrate how the program in Figure 4.1 is proven to be safe;
i.e., that location error is unreachable. The arithmetic program, the correspond-
ing control flow graph, and the encoding of the control flow graph in iSAT3 are
aforestated in the Figure 4.1.

First iteration. we get the initial coarse abstraction according to Definition 4.11.
The first spurious counterexample as in Figure 4.14b has the following syntax:

σsp : 〈n1, ν1〉 → 〈n3, ν3〉 → 〈n4, ν4〉 → 〈n5, ν5〉 → 〈error , νe〉
While concretizing the first counterexample, we found it spurious, thus we need to
refine the abstraction model as follows:
• the path formula is: y0 = 0 ∧ x1 = sin(y0) + 1.0002 ∧ y1 = y0 ∧ x2 =
x1 + x1 ∧ y2 = y1 ∧ x3 = 0 ∧ x3 = x2 ∧ y3 = y2 |= ⊥.
• for the first edge from n1 to n3, we consider that y = 0 is the A-formula and
the rest is the B-formula. In this case, we get true as valid interpolant added

106

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

to this edge (first, third and fourth check hold, cf. Corollary 4.1).
• for the second edge from n3 to n4, we consider that true ∧ x1 = sin(y0) +

1.0002 ∧ y1 = y0 is the A-formula and the rest is the B-formula. In this case,
we get x′ ≥ 0.0002 as valid interpolant added to this edge (first, third and
fourth check hold, cf. Corollary 4.1).
• for the third edge from n4 to n5, we consider that x2 ≥ 0.0002 ∧ x2 = x1 +
x1 ∧ y2 = y1 is the A-formula and the rest is the B-formula. In this case, we
get x′ ≥ 0.0002 → x′ > 0 as valid interpolant added to this edge (first check
holds).
• for the last edge from n5 to error , we consider that x3 ≥ 0.0002 → x3 > 0 is
the A-formula and x3 = 0 ∧ x3 = x2 ∧ y3 = y2 is the B-formula. In this case,
we get x < 0 as a valid interpolant added to this edge (first and second checks
hold).

From second till fourth iterations. we continue as before, where we get another
three spurious counterexamples depicted in Figures 4.14c, 4.13d and 4.13e respec-
tively. After that, the solver proves that the error is not reachable in the abstract
model.

Necessity of third and fourth counterexamples. additionally, the third and fourth
counterexamples have a common suffix, but differ in the prefix formula, therefore
both are needed for refining the abstraction in the third and fourth iterations.
However, as all following paths from loop unwindings share the prefix formula with
the latter two counterexamples, yet have stronger suffix formulas, the already added
pre-post predicates are sufficient to eliminate them. Consequently, there is no need
for more refinements.

4.4.3 Case studies

We have implemented our approach, in particular the control flow graph encoding and the
interpolation-based CEGAR verification, within the iSAT3 solver. We verified reachability
in several linear and non-linear arithmetic programs and CFG encodings of hybrid systems.
In all of these benchmarks, the encoding in iSAT3 format as shown in Section 4.3.5 is done
manually. The following tests are mostly C-programs modified from [Din13] or hybrid
models discussed in [KB11] and [ACH+95]. As automatic translation into CFG format is
not yet implemented, the C benchmarks are currently mostly of moderate size (as encoding
of problems is done manually, but later large test cases will be under investigation), but
challenging; e.g., Hénon map and logistic map [KB11].

We compared our approach with interpolation-based model checking implemented in both
CPAchecker [BHT07] (IMPACT configuration [McM06]), version 1.6.1, and iSAT3,6 where
the interpolants are used as overapproximations of reachable state sets [KB11]. Also, we

6Although we contacted the authors of dReal [GKC13] which supports unbounded model checking for
non-linear constraints [GZ16], they referred us to the latest version which does not support unbounded
model checking, thus it is excluded from this comparison.

107

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

compared with CBMC [CKL04] as it can verify linear and polynomial arithmetic floating-
point dominated C-programs. Comparison on programs involving transcendental functions
could, however, only be performed with interpolant-based model checking in iSAT3 as
CBMC does not support these functions and CPAchecker treats them as uninterpreted
functions.

Program features
Approach iSAT3 iSAT3 CBMC CPAchecker

CEGAR, lazy abstraction Interpolation-based MC maximum depth 250 ITP + lazy abstraction

No Name N
on

-l
in
ea
r

Lo
op

s

#
N
od

es

#
E
dg

es

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

D
ep

th

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

un
w
in
di
ng

lo
op

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

#
R
efi

ne
m
en
ts

R
es
ul
t

1 cfa_test0001 [Din13] 7 3 11 13 1.962 17256 14 SAFE TO 6038428 20 UNKNOWN 98.396 151028 56 SAFE 2.782 150984 2 SAFE
2 cfa_test0002 [Din13] 7 3 11 13 0.173 6352 5 SAFE TO 168240 801 UNKNOWN 9.406 141152 56 SAFE 2.242 143948 1 SAFE
3 cfa_test0003 [Din13] 7 3 11 13 0.127 5716 5 SAFE TO 169072 800 UNKNOWN 8.160 140996 56 SAFE 2.202 128216 1 SAFE
4 cfa_test0004 [Din13] 7 3 11 13 0.174 6568 8 UNSAFE 55.653 5883156 15 UNSAFE 3.801 140936 56 UNSAFE 2.818 149652 2 UNSAFE
5 cfa_test0005 [Din13] 3 3 15 18 0.455 8812 9 CAND. 1.657 30840 16 CAND. 0.150 22972 6 UNSAFE 3.690 158588 3 UNSAFE
6 cfa_test0006 [Din13] 3 7 13 17 0.043 5196 2 SAFE 0.070 6500 7 SAFE 0.137 22320 0 SAFE 2.561 141876 2 SAFE
7 cfa_test0007 [Din13] 3 7 7 8 0.047 4856 2 SAFE TO 4541444 3 UNKNOWN unsupported functions 2.424 127384 1 UNSAFE
8 cfa_test0008 [Din13] 7 7 3 3 0.017 4180 1 UNSAFE 0.023 4112 1 UNSAFE 0.140 22600 0 UNSAFE 2.456 145936 2 UNSAFE
9 cfa_test0009 [DHKT12] 7 3 6 8 0.054 5048 3 SAFE TO 157748 864 UNKNOWN 7.702 50248 56 SAFE 2.510 145684 1 SAFE
10 cfa_test0010 3 3 6 8 0.075 5268 3 SAFE TO 775032 2 UNKNOWN unsupported functions 2.229 128328 1 UNSAFE
11 control flow [KB11] 7 7 7 8 0.035 4904 1 SAFE 0.039 4716 5 SAFE 0.303 26820 116 SAFE 2.330 127968 1 SAFE
12 cruise control [KB11] 3 3 8 15 0.103 5724 8 SAFE TO 3196492 130 UNKNOWN 0.147 22528 18 SAFE 2.819 146284 3 UNSAFE
13 frontier_01 [Kup13] 3 3 3 4 0.050 4744 1 CAND. 0.056 4824 2 CAND. 3.367 101844 32 UNSAFE 2.650 145524 2 UNSAFE
14 frontier_02 [Kup13] 3 3 3 4 0.173 6148 3 SAFE TO 94200 721 UNKNOWN 1.276 102124 32 SAFE 3.046 149128 2 UNSAFE
15 frontier_03 [Kup13] 3 3 3 4 0.141 5332 3 SAFE TO 97580 796 UNKNOWN 1.284 102056 32 SAFE 2.868 148964 2 UNSAFE
16 hénon map [KB11] 3 3 3 4 0.033 4628 3 CAND. 0.041 4628 3 CAND. 0.694 24496 25 SAFE 2.216 129908 1 UNSAFE
17 logistic map [KB11] 3 3 3 4 0.149 7380 3 SAFE 0.205 5932 12 CAND 4.759 188928 38 SAFE 2.142 124620 1 UNSAFE
18 two circles_01 3 3 6 7 0.067 4608 1 SAFE 48.938 13848 8 SAFE 0.163 22452 54 SAFE 2.359 145832 1 UNSAFE
19 two circles_02 3 3 6 7 0.033 4584 1 SAFE 0.144 5260 8 SAFE 0.155 22204 55 SAFE 2.383 145204 1 UNSAFE
20 tank_controller [ACH+95] 7 3 5 13 7.822 159708 24 SAFE 0.107 6784 20 SAFE 0.149 22344 69 SAFE 2.446 143688 1 UNSAFE
21 gas_burner [ACH+95] 7 3 4 8 3.776 12720 42 SAFE 0.361 7260 33 SAFE 27.843 43580 1282 SAFE 4.511 151460 3 UNSAFE
22 cfa_test0022 [Seg10] 7 3 8 19 2.264 18468 23 SAFE 0.845 126680 6 SAFE 0.151 22312 25 SAFE 5.358 202840 2 SAFE
23 cfa_test0023 [Seg10] 7 3 3 4 8.189 42620 21 SAFE 0.143 6716 22 SAFE 0.264 26880 56 SAFE 3.025 145360 2 UNSAFE

Table 4.1: Verification results of linear/non-linear hybrid models. Bold lines refer to best
results w.r.t. best verification time. Red lines refer to false alarms reported by
the solver and blue lines refer to inability to solve the problem due to unsup-
ported functions.

CBMC, version 4.9, was used in its native bounded model-checking mode with an adequate
unwinding depth, which represents a logically simpler problem, as the k-inductor [DHKR11]
built on top of CBMC requires different parameters to be given in advance for each bench-
mark, in particular for loops, such that it offers a different level of automation. We limited
solving time for each problem to five minutes and memory to 4GB. The benchmarks were
run on an Intel(R) Core(TM) i7 M620@2.67GHz with 8GB RAM.

Comparison between different tools. Table 4.1 summaries the results of our experimen-
tal evaluation. It comprises five groups of columns. The first includes the name of the
benchmark, type of the problem (whether it includes non-linear constraints or loops), num-
ber of control points, and number of edges. The second group shows the result of verifying
the benchmarks when using iSAT3 CEGAR (lazy abstraction), thereby stating the veri-
fication time in seconds, memory usage in kilobytes, number of abstraction refinements,
and the final verdict. The third group has the same structure, yet reports results for using
iSAT3 with interpolation-based reach-set overapproximation used for model checking. The
fourth part provides figures for CBMC with a maximum unwinding depth of 250. CBMC
could not address the benchmarks 7 and 10 as they contain unsupported transcendental
functions. The fifth part provides the figures for CPAchecker while using the default IM-
PACT configuration where the red lines refer to false alarms (for comparison, CPAchecker
was run with different configurations, yet this didn’t affect the presence of false alarms.)
reported by IMPACT due to non-linearity or non-deterministic behaviour of the program.

108

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

1

10

100

1.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ti
m

e
 in

 s
e

co
n

d
s

(l
o

ga
ri

th
m

ic
 s

ca
le

)

Benchmarks

CEGAR_iSAT3

iSAT3_MC

CBMC

IMPACT

10s-limit

Figure 4.15: Accumulated verification times for
the first n benchmarks.

For each benchmark, we mark in bold-
face the best results in terms of time.
iSAT3-based CEGAR outperforms the
others in 18 cases, interpolation-based
MC in iSAT3 outperforms the others in
2 cases, and CBMC outperforms the oth-
ers in 3 cases. Figures 4.15 and 4.16
summarize the main findings. The tests
demonstrate the efficacy of the new CE-
GAR approach in comparison to other
competitor tools. Concerning verifica-
tion time, we observe that iSAT3 with
CEGAR scores the best results. Namely,
iSAT3-based CEGAR needs about 27 s
for processing the full set of benchmarks,
equivalent to an average verification time
of 1.2 s, iSAT3 with the interpolation-based approach needs 2809 s total and 122 s on av-
erage, CBMC needs 168 s total and 8 s on average, and IMPACT needs 64 s total and 2.7 s
on average.

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
e

m
o

ry
 in

 K
B

(l

o
ga

ri
th

m
ic

 s
ca

le
)

Benchmarks

CEGAR_iSAT3

iSAT3_MC

CBMC

IMPACT

Figure 4.16: Memory usage (#benchmarks pro-
cessed within given memory limit).

Figure 4.15 shows the results in loga-
rithmic scale where the plot refers to
the accumulated verification times for 23
benchmarks. Concerning memory, we
observe that iSAT3 with CEGAR needs
about 15MB on average, iSAT3 with in-
terpolation 906MB on average, CBMC
needs 66MB on average, and IMPACT
needs 141MB on average. The findings
confirm that at least on the current set
of benchmarks, the CEGAR approach is
by a fair margin the most efficient one.
Also, Figure 4.16 shows the results in log-
arithmic scale where the plot refers to
the accumulated memory usages for 23
benchmarks.

Comparison between different abstraction technique within iSAT3. In addition to
previous interesting results, we would like to shed some lights on the effect of different
abstraction techniques while using iSAT3 together with CEGAR technique. Namely, we
have lazy abstraction while using inductive interpolants which is used in the latter table.
Additionally, we have the pure lazy abstraction that performs the four relations checks
individually7. The last refinement technique is the entire or complete one, which refines
the whole model after extracting each predicate. For each benchmark, we mark in boldface
the best results in terms of time.

7In case of using inductive interpolants only three checks are needed; namely the second, third and
fourth ones. Since the inductive relation guarantees the validity of the first check.

109

4.4. INTERPOLATION-BASED CEGAR TECHNIQUE

Program features
Approach iSAT3 iSAT3 iSAT3

CEGAR, inductive interpolants CEGAR, pure lazy abstraction CEGAR, entire refinement

No Name N
on

-l
in
ea
r

Lo
op

s

#
N
od

es

#
E
dg

es

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

1 cfa_test0001 [Din13] 7 3 11 13 1.962 17256 14 SAFE 2.356 17764 14 SAFE 2.917 30768 8 SAFE
2 cfa_test0002 [Din13] 7 3 11 13 0.173 6352 5 SAFE 0.200 6500 5 SAFE 0.074 5520 1 SAFE
3 cfa_test0003 [Din13] 7 3 11 13 0.127 5716 5 SAFE 0.162 5588 5 SAFE 0.075 5292 1 SAFE
4 cfa_test0004 [Din13] 7 3 11 13 0.174 6568 8 UNSAFE 0.243 6620 8 UNSAFE 0.383 6868 6 UNSAFE
5 cfa_test0005 [Din13] 3 3 15 18 0.455 8812 9 CAND. 0.643 8408 9 CAND. 1.787 9144 8 CAND.
6 cfa_test0006 [Din13] 3 7 13 17 0.043 5196 2 SAFE 0.051 5212 2 SAFE 0.118 5068 1 SAFE
7 cfa_test0007 [Din13] 3 7 7 8 0.047 4856 2 SAFE 0.048 4744 2 SAFE 0.096 4816 2 SAFE
8 cfa_test0008 [Din13] 7 7 3 3 0.017 4180 1 UNSAFE 0.015 4172 1 UNSAFE 0.017 4252 1 UNSAFE
9 cfa_test0009 [DHKT12] 7 3 6 8 0.054 5048 3 SAFE 0.063 5224 3 SAFE 0.068 4932 2 SAFE
10 cfa_test0010 3 3 6 8 0.075 5268 3 SAFE 0.152 5500 5 SAFE 0.296 5300 3 SAFE
11 control flow [KB11] 7 7 7 8 0.035 4904 1 SAFE 0.038 4756 1 SAFE 0.039 4480 1 SAFE
12 cruise control [KB11] 3 3 8 15 0.103 5724 8 SAFE 0.115 5584 8 SAFE 0.126 5072 2 SAFE
13 frontier_01 [Kup13] 3 3 3 4 0.050 4744 1 CAND. 0.051 4468 1 CAND. 0.054 4376 1 CAND.
14 frontier_02 [Kup13] 3 3 3 4 0.173 6148 3 SAFE 0.262 7116 3 SAFE 0.301 7064 3 SAFE
15 frontier_03 [Kup13] 3 3 3 4 0.141 5332 3 SAFE 0.168 5352 3 SAFE 0.185 5288 3 SAFE
16 hénon map [KB11] 3 3 3 4 0.033 4628 3 CAND. 0.036 4372 3 CAND. 0.048 4652 3 CAND.
17 logistic map [KB11] 3 3 3 4 0.149 7380 3 SAFE 0.055 4360 2 SAFE 0.063 4704 2 SAFE
18 two circles_01 3 3 6 7 0.067 4608 1 SAFE 0.089 4640 1 SAFE 0.150 4632 1 SAFE
19 two circles_02 3 3 6 7 0.033 4584 1 SAFE 0.038 4520 1 SAFE 0.633 7768 1 SAFE
20 tank_controller [ACH+95] 7 3 5 13 7.822 159708 24 SAFE 8.468 160048 24 SAFE 5.662 85592 18 SAFE
21 gas_burner [ACH+95] 7 3 4 8 3.776 12720 42 SAFE 5.786 12552 42 SAFE 7.314 17728 35 SAFE
22 cfa_test0022 [Seg10] 7 3 8 19 2.264 18468 23 SAFE 2.626 17988 23 SAFE 0.169 5384 2 SAFE
23 cfa_test0023 [Seg10] 7 3 3 4 8.189 42620 21 SAFE 11.813 43132 21 SAFE 17.304 75544 21 SAFE

Table 4.2: Verification results of (non)-linear hybrid models while comparing abstraction
techniques. Bold lines refer to best results w.r.t. best verification time.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ti
m

e
 in

 s
e

co
n

d
s

Benchmarks

CEGAR_inductive

CEGAR_lazy

CEGAR_entire

Figure 4.17: Accumulated verification times for
the first n benchmarks.

Table 4.2 summaries the results of our
experimental evaluation. It comprises
four groups of columns. The first two
groups have exactly the same description
and information of Table 4.1. The third
group has the same structure, yet reports
results for using iSAT3 with CEGAR
however by using pure lazy abstraction
technique [HJMS02]. Also, the fourth
group has the same structure, yet reports
results for using iSAT3 with CEGAR
however by using entire refinement. Fig-
ures 4.17 and 4.18 summarize the main
findings.

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
e

m
o

ry
 in

 K
B

Benchmarks

CEGAR_inductive

CEGAR_lazy

CEGAR_entire

Figure 4.18: Memory usage (#benchmarks pro-
cessed within given memory limit).

Concerning verification time, we observe
that CEGAR with inductive interpolants
scores the best results. Namely, it needs
about 27 s for processing the full set of
benchmarks, equivalent to an average
verification time of 1.2 s, pure lazy ab-
straction needs 34 s total and 1.4 s on av-
erage, and entire refinement needs 39 s
total and 1.69 s on average.

Figure 4.17 shows the results in loga-
rithmic scale where the plot refers to
the accumulated verification times for 23

110

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

benchmarks. Concerning memory, we observe that CEGAR with inductive interpolants
needs about 15MB on average, pure lazy abstraction needs 14.8MB on average, and entire
refinement needs 13.3MB on average. The findings confirm that at least on the current
set of benchmarks, the CEGAR approach with inductive interpolants is the most efficient
one. Also, Figure 4.18 shows the results in logarithmic scale where the plot refers to the
accumulated memory usages for 23 benchmarks.

Discussion. The only weakness of both iSAT3-based approaches is reporting sometimes
a candidate solution, i.e., a very narrow interval box that is hull consistent, rather than a
firm satisfiability verdict. This effect is due to the incompleteness of interval reasoning,
which here is employed in its outward rounding variant providing safe overapproximation of
real arithmetic rather than floating-point arithmetic. It is expected that these deficiencies
vanish once floating-point support (following IEEE 754) in iSAT3 is fully implemented,
which will be discussed in the next section as an alternative theory to real arithmetic. It
should, however, be noted that CEGAR with its preoccupation to generating conjunctive
constraint systems (the path conditions) already alleviates most of the incompleteness,
which arises particularly upon disjunctive reasoning.

Also, we observe that CEGAR with inductive interpolants achieves the best results with
comparison to other techniques due to less checks needed by this approach on one hand. On
the other hand, no guarantees can be given always about the best abstraction technique,
since some times the entire-refinement reports best results as in Benchmarks 2, 3 and 22
as shown in Table 4.2.

4.5 Handling floating points dominated C-programs –
experiments in industrial-scale

4.5.1 Floating point arithmetic due to IEEE 754

In order to represent real-valued quantities in scientific and technical computing, including
hardware, a trade-off between range and precision must be accepted; at this moment
floating-point numbers enter the scene. They are still – since 1940’s – the method of choice
for representing real-valued quantities in scientific and technical computing. By floating
point numbers; i.e, significand × baseexponent a real number is, in general, represented
approximately through a fixed number of significant digits and scaled using an exponent
in some fixed base; the base for the scaling is normally two, eight, ten, or sixteen. Over the
years, a variety of floating-point representations have been used in computers. However,
since the 1990’s, the most commonly encountered representation is the one defined by the
IEEE 754 Standard [IEE85] where the latter is followed by almost all modern machines.
First remarkable feature of IEEE 754 is that it provides for many closely related formats,
differing in only in precisions details; e.g. single, double, double extended and quadratic
precisions. Second feature specifies some special values, and their representations; e.g.,

• signed zeros: a negative zero −0 distinct from ordinary (positive) zero +0. The
two values behave as equal in numerical comparisons, but some operations return
different results for +0 and −0.

111

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

• subnormals: it fills the underflow gap around zero in floating-point arithmetic, oth-
erwise one cannot represent zero. Any non-zero number with magnitude smaller
than the smallest normal number is considered as “subnormal”.

• infinities: positive infinity +∞ and negative infinity −∞, they are often used as
replacement values when there is an overflow. One can see them as an exact result
upon dividing-by-zero exception.

• not a number i.e. (NaNs): it will be returned as the result of certain invalid opera-
tions, such as 0/0, ∞× 0, or

√
(−1).

These special representation affects the comparison of floating-point numbers in IEEE 754.
For example, negative and positive zero compare equal, and every NaN compares unequal
to any value, including itself. All values except NaN are strictly smaller than +∞ and
strictly greater than −∞. Finite floating-point numbers are ordered in the same way akin
to their values.

4.5.2 Floating points in iSAT3

Scheibler et al. [SNM+16b, SNM+16a] succeeds to define an accurate arithmetic reasoning
procedure in iSAT3 by extending the ICP arithmetic reasoner with IEEE 754 standard,
including signed zeros, normals, subnormals, infinities and NaNs with radix 2 as in [IEE85].
This extension supports all kinds of type casts and bitwise operations usually encountered
in imperative programs. In addition to that, it permits to reason about machine data
types as well as real numbers, as necessary for the analysis of actual embedded control.
Already having intervals whose endpoints are represented with floating point numbers as
in iSAT3, makes it look forthright to extend iSAT3 in order to allow accurate reasoning
over floating point arithmetic.

However, for NaNs, a separate encoding is used where a special NaN-literal for every
floating point variable is introduced. This makes handling the NaN-related propagations
completely with BCP outside of the ICP-contractors.

4.5.3 Floating point arithmetic in iSAT3 with CEGAR

As aforementioned in Subsection 4.3.5, our CEGAR technique is built on top of iSAT3,
however in a separate layer. Thus, integrating iSAT3 with its extended ICP that handles
floating points according to IEEE 754, requires us to adjust the CEGAR layer in two
directions, namely: one has to adjust the abstract syntax graph of control flow graphs
(parsing issue), and one has to adjust the CEGAR core accordingly to support all special
operations on floating point numbers.

Remark 4.2: Floating points in iSAT3 and transcendental functions

At the moment only the four basic operations, namely addition “+”, subtraction
“−”, multiplication “∗” and division “/” have been supported in the iSAT3 imple-
mentation of IEEE 754.

112

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

Program features
Approach iSAT3 iSAT3 iSAT3

CEGAR, inductive interpolants, FP CEGAR, pure lazy abstraction, FP CEGAR, entire refinement, FP

No Name N
on

-l
in
ea
r

Lo
op

s

#
N
od

es

#
E
dg

es

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

T
im

e(
s)

M
em

or
y(
K
B
)

It
er
at
io
n

R
es
ul
t

1 cfa_test0001 [Din13] 7 3 11 13 8.570 29812 13 SAFE 8.395 35968 13 SAFE 5.230 27788 9 SAFE
2 cfa_test0002 [Din13] 7 3 11 13 0.847 12500 7 SAFE 1.327 13904 8 SAFE 0.088 5940 1 SAFE
3 cfa_test0003 [Din13] 7 3 11 13 0.089 6020 3 SAFE 0.112 6464 3 SAFE 0.083 6144 1 SAFE
4 cfa_test0004 [Din13] 7 3 11 13 0.324 10732 8 UNSAFE 0.589 10768 10 UNSAFE 0.625 9492 6 UNSAFE
5 cfa_test0005 [Din13] 3 3 15 18 0.953 11992 9 UNSAFE 1.363 12660 9 UNSAFE 4.362 17988 10 UNSAFE
6 cfa_test0006 [Din13] 3 7 13 17 0.099 7416 3 SAFE 0.123 6608 4 SAFE 0.178 7284 1 SAFE
7 cfa_test0007 [Din13] 3 7 7 8 unsupported functions in IEEE 754 due to use of sin and cos
8 cfa_test0008 [Din13] 7 7 3 3 0.016 4556 1 UNSAFE 0.018 4664 1 UNSAFE 0.018 4564 1 UNSAFE
9 cfa_test0009 [DHKT12] 7 3 6 8 0.099 6280 4 SAFE 0.184 6676 4 SAFE 0.092 6072 2 SAFE
10 cfa_test0010 3 3 6 8 unsupported functions in IEEE 754 due to use of sin and cos
11 control flow [KB11] 7 7 7 8 0.039 5148 1 SAFE 0.046 5364 1 SAFE 0.048 5100 1 SAFE
12 cruise control [KB11] 3 3 8 15 0.168 7436 7 SAFE 0.168 7740 7 SAFE 0.162 6120 2 SAFE
13 frontier_01 [Kup13] 3 3 3 4 0.022 5172 1 UNSAFE 0.025 5196 1 UNSAFE 0.029 5212 1 UNSAFE
14 frontier_02 [Kup13] 3 3 3 4 0.233 9364 3 SAFE 0.267 9328 3 SAFE 80.527 30524 3 SAFE
15 frontier_03 [Kup13] 3 3 3 4 0.195 8948 3 SAFE 0.233 8996 3 SAFE 9.103 27840 3 SAFE
16 hénon map [KB11] 3 3 3 4 0.066 6536 3 UNSAFE 0.083 6560 3 UNSAFE 0.090 6536 3 UNSAFE
17 logistic map [KB11] 3 3 3 4 0.095 6840 3 SAFE 0.144 7456 3 SAFE 0.154 8272 3 SAFE
18 two circles_01 3 3 6 7 0.049 6000 1 SAFE 0.064 5932 1 SAFE 0.086 6036 1 SAFE
19 two circles_02 3 3 6 7 0.046 5668 1 SAFE 0.051 5924 1 SAFE 0.092 5824 1 SAFE
20 tank_controller [ACH+95] 7 3 5 13 3.331 22928 24 SAFE 4.845 23020 24 SAFE 7.311 29480 18 SAFE
21 gas_burner [ACH+95] 7 3 4 8 24.304 25692 42 SAFE 43.022 25548 42 SAFE 41.501 30540 35 SAFE
22 cfa_test0022 [Seg10] 7 3 8 19 24.746 26784 42 SAFE 42.324 27656 42 SAFE 0.097 5576 2 SAFE
23 cfa_test0023 [Seg10] 7 3 3 4 0.618 13768 11 SAFE 1.274 18964 11 SAFE 1.641 20836 11 SAFE

Table 4.3: Verification results of (non)-linear hybrid models while supporting IEEE 754
standard. Bold lines refer to best results w.r.t. best verification time.

While these basic operations are part of the IEEE 754 standard, there is only a
recommendation for sine and cosine. This means x86 control process units (CPUs)
will return results for sine and cosine which do not comply with our implemen-
tation of the IEEE standard, since they implement a specific interpretation of the
underspecified sine and cosine.
Other CPUs will probably have the same problem and return other non-conforming
values. Therefore, regarding floating point reasoning, one always has to know in
advance the concrete target CPU architecture in order to provide the correct de-
duction routines for the transcendental functions.
Thus, the aforementioned example in Figure 4.1 in spite of its simplicity, cannot be
handled here, since this program contains transcendental functions.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ti
m

e
 in

 s
e

co
n

d
s

Benchmarks

CEGAR_inductive_FP

CEGAR_lazy_FP

CEGAR_entire_FP

Figure 4.19: Accumulated verification times for
the first n benchmarks.

Table 4.3 shows the same list of bench-
marks which have been verified in Table
4.1, however this time after using iSAT3
with IEEE 754 together with CEGAR
procedure. Table 4.3 has the same de-
scription as Table 4.2, however shows re-
sults obtained using iSAT3 with CEGAR
admitting IEEE 754 standard. Fig-
ures 4.19 and 4.20 summarize the main
findings. Concerning verification time,
we observe that CEGAR with induc-
tive interpolants scores the best results.
Namely, it needs about 65 s for process-

113

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

ing the full set of benchmarks, equivalent to an average verification time of 3.1 s, pure lazy
abstraction needs 105 s total and 5 s on average, and entire refinement needs 194 s total
and 9.2 s on average.

Concerning memory, we observe that CEGAR with inductive interpolants needs about
11.6MB on average, pure lazy abstraction needs 12.3MB on average, and entire refinement
needs 14.3MB on average.

Now, if one compares the results obtained in Table 4.2 with the verification results in
Table 4.3, one can say:

•

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
e

m
o

ry
 in

 K
B

Benchmarks

CEGAR_inductive_FP

CEGAR_lazy_FP

CEGAR_entire_FP

Figure 4.20: Memory usage (#benchmarks pro-
cessed within given memory limit).

iSAT3 with CEGAR – in general
– needs less verification time with
comparison to the same tool when
supporting IEEE 754. It might be
the case since for each arithmetic
variable, iSAT3 introduces five new
literals representing the special val-
ues; e.g., NaNs.
• iSAT3 with CEGAR – in general –
needs more memory with compar-
ison to the same tool when sup-
porting IEEE 754. It might be
the case since the former approach
may need more iterations to prove
safety due to existence of candidate
solutions while verifying abstractions which is not the case when the arithmetic rea-
soner supports IEEE 754.
• although iSAT3 with CEGAR returns weak answers as in Benchmarks 5, 13 and
15, it returns strong answers in Benchmarks 7 and 10 which admit transcendental
functions. In contrast to that, iSAT3 with CEGAR which supports IEEE 754,
returns always strong answers e.g. SAFE or UNSAFE even in Benchmarks 5, 13 and
15, yet it fails to address a solution for Benchmarks 7 and 10, since implementation
of IEEE 754 does not support transcendental functions (cf. Remark 4.2).

4.5.4 Industrial case studies

In this section, we will show how iSAT3 with CEGAR technique is used in industrial scope
where large models are expected with non-linear behaviour and bitwise operations as well.
Figure 4.21 is the flowchart of the transfer project of AVACS project where two indus-
trial partners, namely SICK AG and BTC-ES AG work with academic partners, namely
Carl von Ossietzky Universtät Oldenburg and Albert-Ludwigs Universität Freiburg. Fig-
ure 4.21 addresses the main steps and challenging problems. We assume that a Simulink
model or a C code are given by an industrial partner representing an embedded software
system. Moreover, the latter C code will be converted (simplified) to a simpler internal
representation language called SMI [WBBL02] which has a well-defined syntax and se-
mantics. The first (practical) task as shown in Figure 4.21 is to convert SMI code which
may include loops, switch cases and if-conditions to the iSAT3-CFG language explained

114

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

Simulink/Statefow C-Code

au
to

-
g

en
er

at
ed

internal representation
(SMI)

test-case-generation
Annotated C-Code

Analysis result:

symbolic abstraction:

finite-state model

abstraction refinement
abstract path to

concrete path condition

explanation by
Craig Interpolation

ITP:
fragment reachable in

abstraction?

SMT:
abstract path
concretizable?

dead-code

fragment

reachable

No

Yes

YesNo

Craig Interpolation-based CEGAR loop refinement
represents inputs

represents outputs

dead code: unreachable

non-spurious CEX: reachable

Figure 4.21: State-Chart of resulting analysis by using CI-based CEAGR (adjusted from
[FB13]).

in Subsection 4.3.5. In other words, abstract syntax tree (AST) of SMI will be encoded in
another scheme, namely control flow automaton, however with the same semantics trans-
lation (neither overapproximation nor underapproximation is applied). Thus, CFG will
encode all possible paths of the program, even the non-explicit ones. That is, if a switch-
case over an arithmetic variable has few conditional states, our CFG has to consider a new
program path when none of these variable states are satisfied. The second task is to ex-
tend the previous iSAT-CFG approach to handle floating point arithmetic as real numbers
where IEEE 754 [IEE85] will be supported as aforenamed in the previous subsection. The
third task is to preform CEGAR steps, including initial abstraction as in Definition 4.11,
verifying the abstraction, concretizing the discovered counterexamples – if existent – and
finally refining the abstraction. CEGAR loop is represented by the large-dashed box in
Figure 4.21.

4.5.5 Converting SMI code to iSAT3-CFG input language

SMI code consists of two files: the first one is a symtab-file which contains all identifiers
(variables and constants) declarations with their well-defined domains. These defined
domains contain the types, lower and upper bounds, whether the variable is auxiliary one
or not, the initial assignments, the assigned domain ... etc. The second one is a smi-file
which contains the program block.

According to SMI [WBBL02] syntax and semantics which conforms to our work, the SMI
program consists of one unconstrained While-block (runs forever). Inside this global While-

115

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

block we may have three kinds of expressions:

• normal expressions that assign to the left operand the value of right operand. Right
operand can be expression, if-conditional statement, or casting operation, or another
variable or a well-defined value.

• case-guard block which has the abbreviation dcase that stands for deterministic case
distinguishing over a Boolean expression, whereas the cases cannot be intersected.
Each case in case-guard block consists of one condition and a sequence of expressions
(to be executed) in case the guard block is satisfied.

• while block, where the while-loop has a condition that must be fulfilled in order to
execute the expressions inside this block.

Informally, the semantics of an SMI program is a transition system in which a transition
between two configurations of the program corresponds to a single complete execution of
the code part of the SMI program with the values from the source configuration. A set of
configurations refers to the Cartesian product between control points of the program and
the complete state space of the program comprising all values of all types (cf. [WBBL02]).

Our first task is to convert the following abstract syntax tree to the corresponding control
flow graph. Then, we build the corresponding iSAT3-CFG file from the control flow graph.

MODULE example
CODE
WHILE (true) DO
@[x$$, x+ 1]
@[invariance observer$$, x$$ < 10.5 ∨ x$$ > 10.5]
@[invariance property$$, invariance observer$$]
OD

END

sy
m

ta
b

fi
le

symtab table
(’boolean’,’boolean’,condition),
(’x type’,’x type’ ,real(”,”)),
(’x’,’x’,data item(instant local, ’x type’, ’0.0000000000000000e+000’, fast)),
(’invariance observer’, ,condition(local, ’boolean’, , fast)),
(’invariance property’,’invariance property’,condition(observer,’boolean’,’-’,fast))
end

sm
i

fi
le

n1

n2

n3

n4 error

x := 0

x := x+ 1

invarinace observer :=
x < 10.5 ∨ x > 10.5

invarinace property :=
invarinace observer

[!invarinace property]

[i
n

va
ri

n
ac

e
pr

op
er

ty
]

Build control flow graph21 SMI-program with symtab table

DECL
cl double [cl double neginf, cl double posinf] x;
boole invarinace observer ;
boole invarinace property ;

NODES
n1, n2, n3, n4, error;

INIT
edge(true, {cl double equal(x,

cl double constant(0x0p+0))},{}〈true〉, n1);

EDGES
edge(n1, {true},{x},〈cl double assign(x′,

cl double add(x, cl double constant(0x1p+0)))〉, n2′)
edge(n2, {true},{invarinace observer},

〈cl double assign(invarinace observer’, cl double less
(x, cl double constant(0xA.8p+0)) or cl double greater
(x, cl double constant(0xA.8p+0))〉, n3′)

edge(n3, {true},{x}〈cl double assign(invarinace property’,

invarinace observer)〉, n4′);

edge(n4, {invarinace property},{}〈true〉, n1′) ;
edge(n4, {!invarinace property},{}〈true〉, error′) ;

SPECIFICATION
error;

Write iSAT3-CFG format with FP3

Figure 4.22: Left: An smi-program with symtab-table, middle: corresponding control flow
graph, right: encoding in iSAT3-CFG format with FP new syntax according
to [SNM+16a].

Example 4.12: From SMI to iSAT3-CFG

Figure 4.22 shows a simple SMI-program with its identifiers table, its encoding in
control flow graph and the iSAT3-CFG encoding. This program contains one (in-
finite) while loop where x is incremented by 1 in each iteration. Variables with
$$ sign can be considered as primed variables according to iSAT3 semantics, rep-
resent the next valuations of the variables after new assigning. Variables without
$$ sign refer to the previous valuation of the variable. invariance_observer is a
Boolean variable that is always true as long as x does not equal 10.5. Addition-
ally, the invariance_property takes the value of invariance_observer. Whenever

116

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

invariance_property is assigned to false, the error location will be reachable. That
is, reachability of error location violates the safe invariant. One can encode the
same problem with a different way, e.g., all assignments will be encoded in one
transition, but all are primed variables. However, it is found that the encoding in
Figure 4.22 is more readable and common. iSAT3-CFG file has the same afore-
mentioned description as in Subsection 4.3.5, where all arithmetic operations are
conformed with a new syntax of iSAT3 that supports IEEE 754. cl_double_assign
and cl_double_equal represent equal operation, cl_double_add represents arith-
metic addition, cl_double_constant defines constants, and cl_double_less repre-
sents comparison operators. While verifying this simple SMI-program in iSAT3
with interpolation-based model checking, the solver does not terminate in 300 sec-
onds. However, when we verify the same problem in iSAT3 with CEGAR technique,
it takes 4 seconds to prove the safety of this simple example.

4.5.6 BTC-ES benchmarks

We interface our tool with BTC-ES AG tools interfaces in order to verify large-scale
problems that come from real life applications with CFG-based representation. From
BTC-ES AG, the C-code embedded program is auto-generated from Simulink model. After
that, the auto-generated code will be simplified/elaborated to SMI code. At this point, our
interface comes to the scene by converting the latter SMI code to corresponding iSAT3-
CFG syntax such that the whole while-loop in SMI code will be considered as a complete
CFG program in iSAT3.8

In this subsection, we concisely show a result of verifying 18 benchmarks given by BTC-
ES AG. These benchmarks represent several test-cases generated from SMI code. In each
benchmark, the model checker is asked whether the negation of invariant is reachable or
not. Four test cases are safe, because there exists no counterexample such that it violates
the invariant of the model.

The others have been reported with unsafe verdicts, since they contain counterexamples
at different depths as shown in Table 4.4. We verify the list of converted BTC benchmarks
by using several options:

• CEGAR with ITP, where refinement is performed by using inductive interpolants,
however the abstraction is progressively verified by using interpolation-based model
checking approach.

• CEGAR with BMC , where refinement is performed by using inductive interpolants
too, however the abstraction is verified by using bounded model checking till depth
250. This combination takes the advantage of using CEGAR to avoid the state space
explosion, and the advantage of using BMC to dis/prove bounded safety.

• (ITP) interpolation-based model checking approach is used, where McMillan’s rules
are employed (cf. Subsection 4.2.3).

8We refer to the fact that BTC-ES tools treat each execution of the whole while-loop as one step in
contrast to our approach. Thus, our step is a micro-step in comparison to BTC-ES terminology.

117

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

Pr
og
ra
m

fe
at
ur
es

A
pp

ro
ac
h

iS
AT

3
iS
AT

3
iS
AT

3
iS
AT

3
iS
AT

3
C
EG

A
R
,B

M
C

til
l2

50
,F

P
C
EG

A
R
,I
T
P,

FP
IT

P,
FP

B
M
C
,m

ax
-d
ep
th

25
0,

FP
B
M
C
,m

ax
-p
re
pr
oc
es
s
25
0,

FP

N
o

N
am

e

Non-linear

Loops

#Nodes

#Edges

Time(s)

Memory(KB)

Iteration

Result

Time(s)

Memory(KB)

Iteration

Result

Time(s)

Memory(KB)

Depth

Result

Time(s)

Memory(KB)

Depth

Result

Time(s)

Memory(KB)

Depth

Result

1
bt
c_

te
st
00
01

3
3

30
6

52
7

T
O

46
14
00

12
6

U
N
K
N
O
W

N
T
O

47
23
92

11
4

U
N
K
N
O
W

N
T
O

17
57
03
2

46
U
N
K
N
O
W

N
35
87
.5
43

83
28
04
8

12
1

U
N
SA

FE
22

08
.3
44

95
02

35
6

12
1

U
N
SA

F
E

2
bt
c_

te
st
00
02

3
3

30
4

52
2

T
O

67
98
60

10
8

U
N
K
N
O
W

N
T
O

68
17
72

97
U
N
K
N
O
W

N
T
O

19
29
67
6

72
U
N
K
N
O
W

N
11
01
.5
58

83
01
28
4

12
5

U
N
SA

FE
10

06
.0
23

96
05

64
0

12
5

U
N
SA

F
E

3
bt
c_

te
st
00
03

3
3

32
6

55
7

T
O

66
03
52

11
7

U
N
K
N
O
W

N
T
O

18
91
52
8

10
7

U
N
K
N
O
W

N
T
O

18
79
93
2

50
U
N
K
N
O
W

N
37
23
.3
47

11
24
98
48

14
3

U
N
SA

FE
30

98
.8
96

11
58

77
28

14
3

U
N
SA

F
E

4
bt
c_

te
st
00
04

3
3

33
0

57
0

T
O

46
74
76

82
U
N
K
N
O
W

N
T
O

54
61
40

67
U
N
K
N
O
W

N
T
O

19
02
69
2

24
U
N
K
N
O
W

N
T
O

10
54
01
36

12
2

U
N
K
N
O
W

N
a

T
O

11
57
21
52

13
0

U
N
K
N
O
W

N
b

5
bt
c_

te
st
00
05

3
3

32
6

55
7

T
O

66
47
40

11
8

U
N
K
N
O
W

N
T
O

15
13
14
0

10
8

U
N
K
N
O
W

N
T
O

18
43
11
6

36
U
N
K
N
O
W

N
42

85
.1
08

11
39

56
76

14
3

U
N
SA

F
E

43
65
.1
99

11
86
81
20

14
3

U
N
SA

FE
6

bt
c_

te
st
00
06

3
3

31
4

53
8

T
O

47
55
68

11
8

U
N
K
N
O
W

N
T
O

51
09
64

10
9

U
N
K
N
O
W

N
T
O

16
81
27
6

36
U
N
K
N
O
W

N
39
25
.0
22

87
69
80
4

12
9

U
N
SA

FE
30

55
.0
89

96
99

02
0

12
9

U
N
SA

F
E

7
bt
c_

te
st
00
07

3
3

30
0

51
5

T
O

65
51
08

12
0

U
N
K
N
O
W

N
T
O

10
85
27
6

11
2

U
N
K
N
O
W

N
T
O

17
36
66
8

48
U
N
K
N
O
W

N
24
51
.9
13

72
06
16
8

12
1

U
N
SA

FE
14

08
.4
40

85
25

27
6

12
1

U
N
SA

F
E

8
bt
c_

te
st
00
08

3
3

30
6

44
5

80
4.
17
9

36
03
12

28
M
O
D
EL

ER
R
O
R

11
73
.9
04

41
05
84

28
M
O
D
EL

ER
R
O
R

73
9.
86
6

14
42
90
0

20
SA

FE
21

.3
36

19
75

25
2

36
M
O
D
E
L
E
R
R
O
R

41
.0
15

31
38
00
4

36
M
O
D
EL

ER
R
O
R

9
bt
c_

te
st
00
09

3
3

31
4

53
8

T
O

48
12
00

11
4

U
N
K
N
O
W

N
T
O

51
19
00

10
7

U
N
K
N
O
W

N
T
O

16
00
75
6

46
U
N
K
N
O
W

N
41
86
.5
39

86
44
14
8

12
9

U
N
SA

FE
28

89
.2
00

96
05

47
2

12
9

U
N
SA

F
E

10
bt
c_

te
st
00
10

3
3

30
0

43
6

40
7.
35
5

35
30
56

23
M
O
D
EL

ER
R
O
R

82
1.
63
2

37
10
36

23
M
O
D
EL

ER
R
O
R

43
1.
56
7

17
03
68
8

28
SA

FE
13

.1
68

15
46

12
8

32
M
O
D
E
L
E
R
R
O
R

35
.8
52

28
26
30
4

32
M
O
D
EL

ER
R
O
R

11
bt
c_

te
st
00
11

3
3

31
2

53
5

T
O

68
55
56

10
3

U
N
K
N
O
W

N
T
O

68
73
92

88
U
N
K
N
O
W

N
T
O

20
57
67
2

62
U
N
K
N
O
W

N
19
77
.3
82

87
15
14
8

12
9

U
N
SA

FE
14

84
.2
34

10
07

41
84

12
9

U
N
SA

F
E

12
bt
c_

te
st
00
12

3
3

32
6

47
7

28
4.
87
9

36
57
80

14
M
O
D
EL

ER
R
O
R

70
7.
92
5

38
13
20

14
M
O
D
EL

ER
R
O
R

27
0.
01
0

20
72
26
8

28
SA

FE
7.
89

1
93

45
76

16
M
O
D
E
L
E
R
R
O
R

40
.7
55

32
83
97
6

16
M
O
D
EL

ER
R
O
R

13
bt
c_

te
st
00
13

3
3

34
0

49
6

12
75
.8
01

39
88
92

26
M
O
D
EL

ER
R
O
R

18
55
.9
49

47
96
56

26
M
O
D
EL

ER
R
O
R

16
00
.4
42

17
25
70
4

20
SA

FE
19

.4
35

22
43

63
2

32
M
O
D
E
L
E
R
R
O
R

46
.2
00

37
60
41
2

32
M
O
D
EL

ER
R
O
R

14
bt
c_

te
st
00
14

3
3

30
6

52
6

T
O

68
72
48

10
5

U
N
K
N
O
W

N
T
O

68
04
48

91
U
N
K
N
O
W

N
T
O

20
38
64
0

70
U
N
K
N
O
W

N
19
84
.3
02

86
03
45
6

12
7

U
N
SA

FE
92

5.
99

0
99

52
38

4
12

7
U
N
SA

F
E

15
bt
c_

te
st
00
15

3
3

30
0

51
5

T
O

65
54
76

12
4

U
N
K
N
O
W

N
T
O

10
86
60
8

11
2

U
N
K
N
O
W

N
T
O

16
51
21
2

52
U
N
K
N
O
W

N
22
71
.0
46

73
41
84
4

12
1

U
N
SA

FE
11

62
.6
19

85
29

51
2

12
1

U
N
SA

F
E

16
bt
c_

te
st
00
16

3
3

33
2

56
8

T
O

68
83
48

10
2

U
N
K
N
O
W

N
T
O

63
62
72

93
U
N
K
N
O
W

N
T
O

22
51
54
8

56
U
N
K
N
O
W

N
T
O

12
47
77
84

14
6

U
N
K
N
O
W

N
44

88
.2
57

13
02

47
12

14
7

U
N
SA

F
E

17
bt
c_

te
st
00
17

3
3

30
0

51
5

T
O

66
59
56

12
5

U
N
K
N
O
W

N
T
O

10
19
30
4

11
4

U
N
K
N
O
W

N
T
O

16
72
76
8

42
U
N
K
N
O
W

N
20
61
.1
61

73
07
57
6

12
1

U
N
SA

FE
13

26
.0
44

84
53

15
2

12
1

U
N
SA

F
E

18
bt
c_

te
st
00
18

3
3

31
4

53
8

T
O

48
10
56

11
4

U
N
K
N
O
W

N
T
O

50
73
20

10
6

U
N
K
N
O
W

N
T
O

17
30
64
4

34
U
N
K
N
O
W

N
50
33
.5
78

86
48
46
0

12
9

U
N
SA

FE
30

45
.8
12

95
17

03
6

12
9

U
N
SA

F
E

Ta
bl
e
4.
4:

Ve
rifi

ca
tio

n
re
su
lts

of
lin

ea
r/
no

n-
lin

ea
r
B
T
C

m
od

el
s
w
hi
le

su
pp

or
tin

g
IE

EE
75

4
st
an

da
rd

fo
r
flo

at
in
g
po

in
ts
.
T
he

se
m
od

el
s

ar
e
co
nv

er
te
d
to

iS
AT

-C
FG

sy
nt
ax

th
en

ve
rifi

ed
.

A
ll
be

nc
hm

ar
ks

co
nt
ai
n
lo
op

s
an

d
po

ly
no

m
ia
ls,

bu
t
no

tr
an

sc
en

de
nt
al

fu
nc

tio
ns
.
In

ca
se

of
bo

un
de

d
m
od

el
ch
ec
ki
ng

te
ch
ni
qu

es
as

in
B
M
C

or
pr
ep

ro
ce
ss
in
g,

if
th
e
re
su
lt

is
SA

FE
,i
t
m
ea
ns

til
l

de
pt
h
25

0.
G
en

er
al
ly
,i
ft

he
re
su
lt

is
M
O
D
EL

ER
R
O
R
,i
t
m
ea
ns

th
e
m
od

el
is

SA
FE

in
de

pe
nd

en
t
of

pr
ob

le
m
-d
ep

th
.
T
he

se
re
su
lts

w
er
e
ob

ta
in
ed

w
hi
le

ru
nn

in
g
te
st
s
on

A
M
D

O
pt
er
on

(t
m
)
Pr

oc
es
so
r
63

28
@
2.
0
G
H
Z
w
ith

50
5G

B
R
A
M
.

a W
he

n
th
e
ve
rifi

ca
tio

n
tim

e
is

lim
ite

d
to

18
0
m
in
ut
es
,t

hi
s
ca
se

is
re
po

rt
ed

as
U
N
SA

FE
at

de
pt
h
13
1
w
ith

84
57

s
an

d
10
.5
G
B
.

b W
he

n
th
e
ve
rifi

ca
tio

n
tim

e
is

lim
ite

d
to

18
0
m
in
ut
es
,t

hi
s
ca
se

is
re
po

rt
ed

as
U
N
SA

FE
at

de
pt
h
13
1
w
ith

55
08

s
an

d
12

G
B
.

118

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

• (BMC) bounded model checking with maximum depth 250.

• control flow automaton preprocessing which is nothing but BMC with preprocessing
applied in advance in order to minimize the computations of instantiating the whole
transitions at each depth. That is, the post image of current reachable set of edges
which respects the flow of the graph is provided to the model checker. The maximum
number of preprocessing steps is 250.

Table 4.4 summarises the results of our experimental evaluation. It comprises six groups
of columns. The first groups has the same description as Table 4.1. The second group has
the same structure, yet reports results for using iSAT3 with CEGAR however by using
inductive interpolant technique where abstraction is verified by using BMC till depth
250. The third group has the same structure, yet reports results for using iSAT3 with
CEGAR however by using inductive interpolants technique where abstraction is verified
by using ITP. The fourth group has the same structure, yet reports results for using ITP
technique. The fifth group has the same structure, yet reports results for using BMC till
depth 250. Finally, the sixth group reports the results for using preprocessing approach,
where BMC technique is applied after computing the post-image of current reachable set
of transitions. The latter technique optimises the deduce and deicide steps, but requires
more preprocessing steps.

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ti
m

e
 in

 s
e

co
n

d
s

Benchmarks

CEGAR_BMC_250

CEGAR_ITP

ITP

BMC_250

Preprocessing_250

Figure 4.23: Accumulated verification times for
the first n benchmarks.

Figures 4.23 and 4.24 summarize the
main findings. Concerning verifica-
tion time, we observe that preprocess-
ing with BMC till 250 scores the best
results. Namely, it needs about 36035 s
for processing the full set of bench-
marks, equivalent to an average verifica-
tion time of 2002 s, BMC till depth 250
needs 47452 s total and 2636 s on aver-
age, CEGAR with BMC till depth 250
needs 78374 s total and 4354 s on aver-
age, interpolation-based model checking
needs 78653 s total and 4370 s on aver-
age, and CEGAR with ITP needs 80161 s
total and 4453 s on average.

0

20.000.000

40.000.000

60.000.000

80.000.000

100.000.000

120.000.000

140.000.000

160.000.000

180.000.000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
e

m
o

ry
 in

 K
B

Benchmarks

CEGAR_BMC_250

CEGAR_ITP

ITP

BMC_250

Preprocessing

Figure 4.24: Memory usage (#benchmarks pro-
cessed within given memory limit).

Figure 4.23 shows the verification time
results where the plot refers to the accu-
mulated verification times for 18 bench-
marks. Concerning memory, we observe
that CEGAR with BMC till depth 250
needs about 536MB on average, CE-
GAR with ITP needs 731MB on av-
erage, interpolation-based model check-
ing needs 1772MB on average, BMC till
depth 250 needs 7282MB on average,
and preprocessing with BMC till depth
250 needs 8384MB on average.

119

4.5. HANDLING FLOATING POINTS DOMINATED C-PROGRAMS – EXPERIMENTS IN
INDUSTRIAL-SCALE

From Table 4.4 and Figures 4.23 and 4.24, we observe:

• proving that such a model is safe can be achieved by any of the aforementioned
approaches. Of course, they differ in the verification time and memory, however all
can achieve this task partially or totally.

• proving such a model unsafe cannot be achieved by CEGAR or ITP methods within
90 minutes. Both went adrift while computing invariants at each depth, since these
test cases are unsafe, thus no safe invariants would be obtained.

• BMC with(out) preprocessing achieves best results with respect to the verification
time, however they laboriously overload the memory as shown in Figure 4.24.

• in general, encoding SMI programs in iSAT3-CFG has a good potential to verify
the problems with several techniques, in particular preprocessing the problem before
applying BMC, where the latter scored the best results.

• the BTC ES AG benchmarks are originally prepared for some in-house tools which
can encode the whole while-block as one formula. In contrast to that, we tried
to show the feasibility of our iSAT3-CEGAR with its encodings and techniques in
solving the same problems without necessarily encoding the whole while-block as
one formula. Thus, our tool obviously needs more time and memory due to explicit
assignments propagations and due to step-bounded solving of while-blocks.

120

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

5Generalized Craig Interpolation for
SSMT

An idea is always a
generalization, and generalization
is a property of thinking. To
generalize means to think.

(Georg Wilhelm Friedrich Hegel)

Contents
5.1 Introduction . 123

5.1.1 Motivation . 123
5.1.2 Related work . 124

5.2 Stochastic Satisfiability Modulo theories (SSMT) 124
5.2.1 SSMT: syntax . 125
5.2.2 SSMT: semantics . 125
5.2.3 SSMT: illustrative example . 126
5.2.4 Complexity of SSMT . 127
5.2.5 Structure of SSMT formula . 127

5.3 Resolution Calculus for SSMT 129
5.3.1 Resolution rules for SSMT . 129
5.3.2 Soundness and completeness of SSMT-resolution 131
5.3.3 Example of applying SSMT-resolution 133

5.4 Generalized Craig interpolation for SSMT 134
5.4.1 Generalized Craig Interpolants 135
5.4.2 Computation of Generalized Craig Interpolants – Púdlak’s rules

extension . 136
5.5 Interpolation-based probabilistic bounded model checking . . . 142

5.5.1 Probabilistic bounded reachability – probabilistic safety analysis 143
5.5.2 SSMT encoding scheme for PHAs 144
5.5.3 PBMC solving by means of generalized Craig interpolation . . . 144
5.5.4 Interpolation-based approach for reachability 146
5.5.5 Generalized Craig interpolation for Stability analysis 151

122

5.1. INTRODUCTION

5.1 Introduction

5.1.1 Motivation

Papadimitriou [Pap85] proposed the idea of modelling uncertainty within propositional
satisfiability (SAT) by adding randomized quantification to the problem description. The
resultant stochastic Boolean satisfiability (SSAT) problems consist of a quantifier prefix
followed by a propositional formula.

SSAT has many applications such as bounded model checking (BMC) of symbolically
represented Markov decision processes. Stochastic satisfiability modulo theories (SSMT)
was proposed in 2008 [FHT08] in order to extend SMT-based bounded model-checking
to probabilistic hybrid systems. SSMT extends the satisfiability modulo theories (SMT)
problem by randomized quantification or, equivalently, generalizes the stochastic Boolean
satisfiability problem (SSAT) [Pap85] to background theories. An SSMT formula consists
of a quantifier prefix and an SMT formula. The quantifier prefix is an alternating sequence
of existentially quantified variables and variables bound by randomized quantifiers. All
the quantified variables have discrete (finite) domains. The meaning of a randomized
variable x ∈ Dx = {val1 7→ p1, ..., valn 7→ pn} is that x takes value val1 with probability
p1, value val2 with probability p2, and so on. The summation of all probabilities for the
same variable has to be one.

Due to the presence of probabilistic assignments and randomized quantification, the se-
mantics of an SSMT formula δ is no longer qualitative in the sense that δ is satisfiable or un-
satisfiable, as for propositional or predicate logic, but rather quantitative [FHT08, Tei12].
For an SSMT formula δ, we ask for the maximum probability of satisfaction or, if formu-
lated as a decision problem, whether this probability of satisfaction exceeds a threshold.
Intuitively, a solution of δ is a strategy in form of a tree suggesting optimal assignments
to the existential variables depending on the probabilistically determined values of pre-
ceding randomized variables, in order to maximize the probability of satisfying the SMT
formula. SSMT as proposed by Fränzle et al. [FHT08] can encode bounded probabilistic
reachability problems of probabilistic hybrid automaton (PHA) over discrete time. That
means many practical problems exhibiting uncertainty can be described as SSMT prob-
lems or sometimes even its propositional subset SSAT, in particular probabilistic planning
problems [ML98, ML03], belief networks [BDP03], trust management [FK03], or depth-
bounded PHA reachability [FHT08, TEF11] and stability problems [Tei12]. Probabilistic
bounded model-checking (PBMC) problems, for example, ask whether the probability of
reaching bad states from the PHA’s initial states stays below a given threshold, irrespective
of how non-determinism in the PHA is resolved.

Solving a PBMC problem can be achieved by taking its equivalent SSMT encoding and
solving it with an SSMT solver, such as Teige’s SiSAT tool [Tei12].

Non-polynomial SSMT problems, i.e., SSMT formulae involving transcendental arithmetic,
are generally undecidable due to the undecidable underlying arithmetic theory as intro-
duced in Chapter 4. There are some decidable classes of SSMT however; e.g., SSMT
formulae without free variables due to the finite domains of bound variables, or SSMT for-
mulae over decidable background theories, like linear order. Undecidability implies that
the Craig interpolation problem also cannot be solved exactly in general. In this chapter,

123

5.2. STOCHASTIC SATISFIABILITY MODULO THEORIES (SSMT)

we propose a Craig interpolation procedure for SSMT that is sound and complete when
the theory is order theory of the reals, and we extend it to non-polynomial SSMT by using
interval constraint propagation (ICP) [Ben96], then obviously sacrificing completeness, yet
maintaining soundness.

Essentially, we first use ICP for reducing the general, non-polynomial SSMT problem to
an SSMT problem over the linear order over the reals. As an unsatisfied SSMT problem
may have satisfying assignments —just not sufficiently many to exceed the target prob-
ability threshold—, we then have to compute a generalized interpolant, which is a Craig
interpolant for (A,B ∧ ¬SA,B), where SA,B represents an overapproximation of the satis-
fying assignments of the formula A∧B. We do so by extending Púdlak’s rules [Pud97] to
compute that generalized Craig interpolant. Instrumental to that adaptation of Púdlak’s
rules is the observation that the theory of linear order, with simple bounds as its atoms,
admits a resolution rule akin to the propositional counterpart.

5.1.2 Related work

As in Chapter 4, we referred to previous works that use Craig interpolation with(out)
other techniques in verifying safety. However, what sets this chapter aside, is that it deals
with the same bounded model checking problems admitting stochastic behaviour.

Generalized interpolation for SSAT. Teige in [TF12b] proposed generalized Craig in-
terpolation for stochastic Boolean satisfiability (SSAT) problems. Our work extends this
to SSMT involving non-polynomial arithmetic constraints. Furthermore, Teige’s approach
did not address a solution of stochastic models having continuous dynamics, which will be
shown in our work.

Interpolants in presence of non-linear constraints. Kupferschmid et al. [KB11] was
the first to suggest Craig interpolation for non-polynomial and thus undecidable SMT
problems by means of ICP and resolution in SMT of linear order. Our approach employs
the same mechanism for dealing with arithmetic constraints, but extends the approach
to SSMT problems, thus necessitating computation of generalized rather than traditional
interpolant.

5.2 Stochastic Satisfiability Modulo theories (SSMT)

In this section, we introduce the syntax and semantics of stochastic satisfiability modulo
theories (SSMT) formulae, as originally proposed in [FHT08].

124

5.2. STOCHASTIC SATISFIABILITY MODULO THEORIES (SSMT)

5.2.1 SSMT: syntax

Definition 5.1: Syntax of SSMT

A stochastic satisfiability modulo theories (SSMT) formula δ is of the form Q : ϕ
where

1. ϕ is an arbitrary SMT formula with respect to the theory of non-polynomial
arithmetic over the reals and integers, called the matrix of the formula, and

2. Q = Q1x1 ∈ Dx1 � � Qnxn ∈ Dxn is a quantifier prefix binding some
variables xi ∈ V (ϕ) over finite domains Dxi := {val1, ..., valm} by a sequence
of existential and randomized quantifiers Qi; i.e., ∃ and

R

[val1 7→p1,...,valm 7→pm]
respectively, where

∑m
i=1 pi := 1.

Free, i.e., unbound by quantifiers, variables are permitted in SSMT formulae. For simplic-
ity, we assume that the matrix ϕ of an SSMT formula Q : ϕ is in CNF form, as one can
convert any formula to a CNF of linear size by introducing auxiliary variables [Tse83] as
aforementioned in Section 4.3.

5.2.2 SSMT: semantics

Definition 5.2: Semantics of SSMT

The semantics of an SSMT formula δ is given by its maximum probability of satis-
faction Pr(δ) defined as follows:

Pr(ε : ϕ) =
{

0 if ϕ is unsatisfiable,
1 if ϕ is satisfiable,

Pr(∃x ∈ Dx �Q : ϕ) = maxval∈DxPr(Q : ϕ[val/x]),
Pr(

R

x ∈ Dx �Q : ϕ) =
∑

val∈Dx

dx(val) · Pr(Q : ϕ[val/x]).

where dx is a discrete probability distribution over Dx, ε is an empty prefix quan-
tifier, ϕ is the matrix of δ and Q is an arbitrary quantifier prefix.

Definition 5.2 is an extension of the semantics of SSAT, cf. [Pap85, TF12b]. While the
interpretation of quantifiers remains the same as for SSAT, their treatment is adapted to
handle discrete domains with more than two values.

That is, the maximum probability of satisfaction Pr(δ) of an SSMT formula δ with a
leftmost existential quantifier in the prefix, i.e., δ = ∃x ∈ Dx � Q : ϕ, is defined as
the maximum of the satisfaction probabilities of all subformulae Q : ϕ[val/x] that is
obtained after removing the leftmost quantified variable from the prefix and substituting
values val ∈ Dx for variable x in the matrix ϕ. If the leftmost variable is randomized,
i.e. δ =

R

dxx ∈ Qx � Q : ϕ, then Pr(δ) demands to compute the weighted sum of the
satisfaction probabilities of all subformulae Q : ϕ[val/x].

The base cases of this definition, that are reached whenever the quantifier prefix becomes
empty i.e. ε, yield SMT formulae over the non-quantified (free) variables.

125

5.2. STOCHASTIC SATISFIABILITY MODULO THEORIES (SSMT)

δ = ∃x ∈ {2, 3, 4}, R

[17→ 0.2,27→ 0.4,3 7→ 0.4]y ∈ {1, 2, 3} :
(x+ y > 3 ∨ 2 · y − x > 3) ∧ (x < 4)

x

y y y

x = 2 x = 3 x = 4

unsat sat sat sat sat sat unsat unsat unsat

y = 1 y = 2 y = 3 y = 1 y = 2 y = 3 y = 1 y = 2 y = 3

Pr = 0 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 0 Pr = 0 Pr = 0

Pr = 0.8 Pr = 1.0 Pr = 0.0

Pr(δ) = max(0.8, 1.0) = 1.0

q

Figure 5.1: 11
2 player game semantics of an SSMT formula. In recursive solvers, traversal

of the dashed part of the quantifier tree will be skipped due to pruning [Tei12].

This is one of the main differences between SSMT and SSAT, where all variables of the later
formula are quantified and each base case thus gives a formula equivalent to either true or
false. Being conformed with the intuition of the maximum probability of satisfaction,
we assign satisfaction probability 1 to the remaining quantifier-free SMT formula Q in
case ϕ is satisfiable, and probability 0 otherwise, i.e. if ϕ is unsatisfiable. Thereby, the
non-quantified, free, variables of an SSMT formula can be seen as innermost existentially
quantified over possibly (finite) continuous domains.

5.2.3 SSMT: illustrative example

Example 5.1: SSMT semantics: 11
2 player game

Let us consider the following formula which is depicted in Figure 5.1:

∃x ∈ {1, 2, 3},

R

[17→0.2,27→0.4,37→0.4]y ∈ {1, 2, 3} : (x+ y > 3 ∨ 2 · y − x > 3) ∧ (x < 4)

The semantics of the previous SSMT formula is a 11
2 player game. In naïve SSMT

solving, the quantifier tree would be fully unravelled and all resulting instances of
the matrix (leaves of the tree) passed to an SMT solver which returns in the most
times satisfiable a.k.a. sat or unsatisfible a.k.a. unsat answers. After that, we
compute back the satisfiability probability of parent nodes. For example for the
node where the evalation of x is 2, the probability equals the weight of all branches,
namely (0 · 0.02) + (1 · 0.4) + (1 · 0.4) = 0.8. By the same way we compute the
probability of all nodes at the same level (depth). Now, since x is existentially
quantified, we need to compute the maximum probability of all branches, i.e., find

126

5.2. STOCHASTIC SATISFIABILITY MODULO THEORIES (SSMT)

the maximum of 0.8, 1.0 and 0.0, which is nothing but 1.0. At this point, we reach
the root of the tree and compute the maximum probability of satisfying the given
formula.
Pruning rules also shown in Figure 5.1, yet permit to skip investigating a major
portion of the instances in general. For more information about these pruning
techniques, one may consider the SiSAT model checker and Teige’s thesis [Tei12].

5.2.4 Complexity of SSMT

Quantified Boolean formulae (QBF) or QSAT are decidable problems; namely PSPACE-
complete [Pap94]. QBF is a special case of SSAT [TF10] and the latter problem is also
PSPACE-complete [TF10, Pap94] even for S2SAT problems [TF10].

Furthermore, SSAT problems are special cases of SSMT [FHT08], where the latter prob-
lems with contrast to SSAT [Pap85], are either fully quantified or containing free variables,
i.e. general SSMT formulae. On one hand SSMT and S2SMT problems with linear order
(total order) are decidable and PSPACE-complete as one can polynomially reduce [Pap94]
SSAT problems to SSMT problems. On the other hand SSMT problems with non-linear
constraints, e.g., exponential, sin functions are undecidable.

5.2.5 Structure of SSMT formula

An SSMT formula is consisting of two layers; namely an SSMT layer and an SMT layer.
However in this section we show explicitly how these layers are built and communicated.
Our proposed structure in Figure 5.2 follows yet adjusts the structure of SiSAT tool [Tei12].

Topmost layer: SSMT layer. In this layer we have the SMT formula ϕ with the quantifier
prefix Q. The quantifier prefix of this formula is built as shown before in Section 5.2. and
the non-quantified SMT (matrix) will be passed to the middle layer (SMT layer) as shown
in Figure 5.2.

Middle layer: SMT layer. In this layer, one can have conjunctive of linear constraints
or non-linear constraints or both of them. This layer employs the lowermost layer by
passing the conjunctive model of the system, where each variable in this layer is assigned
to an interval instead of a single assignment. Consequently all DPLL techniques, such as
deduction, unit propagation are performed in the term of intervals; namely decide means
case split of variable interval as shown in the example in Figure 5.2 for the variables n
and m.

Normally if the formula contains only linear constraints, then it can be solved by using
Fourier-Motzkin elimination [DE73] or simplex algorithm [Dan63] in this layer. However,
we introduced a general architecture to deal with general cases, e.g. linear and non-linear
constraints where the latter case needs a special treatment as will be illustrated in the
next layer.

127

5.2. STOCHASTIC SATISFIABILITY MODULO THEORIES (SSMT)

SSMT layer; Quantifiers and SMT formula

SMT formula

linear constriants non-linear

T -Solver for conjunctive non-linear constraint

reports inconsistency
or satisfiability of model

reports deduced facts
by ICP

conjunctive system

model

SMT(CNF)

reports unsatisfiability
or satisfiability of the

formula

reports deduced facts
by ICP

δ = ∃x ∈ {0.3, 0.7}, R

[3.57→ 0.2,57→ 0.8]y ∈ {3.5, 5} :

(sin(m) < x ∨ n < 4 + y) ∧ (n−m ≤ 4.5 + y ∨ b)

x

y y

x = 0.3 x = 0.7

y = 3.5 y = 5 y = 3.5 y = 5

(sin(m) < 0.3 ∨ n < 7.5) ∧ (n−m ≤ 8 ∨ b)
m ∈ [0, 1], n ∈ [7, 10], b ∈ [T, F]

pass an SMT formula

(m ≤ 0.31 ∨ n < 8.5) ∧ (n−m ≤ 8 ∨ b)

n ∈ [7, 8.5) n ∈ [8.5, 10]

(m ≤ 0.31 ∨ n < 8.5) ∧ (n ≤ 8.31︸ ︷︷ ︸∨m > 0.31 ∨ b)

m ∈ [0, 0.31] m ∈ (0.31, 1]

by ICP, new UB of n Learned Clause

(n < 8.5 ∨ b)
split

: free variables are assigned to intervals
constriants

Figure 5.2: On the right side, an architecture of SSMT solver, e.g. SiSAT. On the left
side, an example of solving SSMT formula and how this will be mapped to the
architecture of an SSMT solver.

Lowermost layer: T -layer. This layer is responsible for reasoning about conjunctive sys-
tems of non-linear arithmetic constraints over bounded reals and integers [Tei12]. One of
efficient mechanisms to handle the latter problems is to use a safe interval analysis [Moo95]
and an interval constraint propagation (ICP) as proposed in SiSAT.

• Interval analysis: It is used to evaluate the interval consistency of a conjunctive
of non-linear arithmetic constraints involving functions like sin and exp. Interval
consistency is a necessary but not sufficient condition for real-valued satisfiability
of the model of constraints. Thus, sometimes iSAT can return weak answers as
“candidate solution” (cf. Section 4.3).

There are several definitions of interval consistency [BG06]. They differ only in the
strength of their consistency notions and in the computational effort to decide consis-
tency. Our consistency concept (as aforementioned in Section 4.3) is hull-consistency.
Hull-consistency concept is applied to unary, binary arithmetic operations and sim-
ple bounds. When we say hull(A) for some set A ⊆ R or (A ⊆ Z), called the interval
hull of A, is the smallest interval containing the set A.

• Interval constraint propagation (ICP) [BMH94]: It is integrated with interval
consistency as a deduction mechanism to cut-off irrelevant parts from the variable
assignments by narrowing the intervals (contractors) [Ben96, BMH94] while trying
to achieve hull consistency. Intuitively if we are given a constraint1and a certain area
B where the solution is expected, then ICP technique finds another area B′ such

1In SiSAT, only primitive constraints are considered, i.e. constraints containing one relation and at
most one arithmetic operator, and at most three variables [KBTF11]

128

5.3. RESOLUTION CALCULUS FOR SSMT

that the new area B′ is a subset of the original area B and it contains all solutions
of the constraint in B. For example in Figure 5.2 variable n was assigned to the
interval [8.5, 10]. After that by assigningm to [0, 0.31], b to false and by using ICP, n
was assigned to (−∞, 8.31] (new upper bound of n was deduced). The new interval
of n conflicts (is inconsistent) with the first interval assigned to n i.e., [8.5, 10].

5.3 Resolution Calculus for SSMT

The existing SSMT solving algorithms of Teige [Tei12] are tightly integrated with the
CDCL(ICP) proof search of the iSAT tool [FHR+07] and do, in principle, traverse the
quantifier tree of the formula as in Figure 5.1 to recursively compute the maximum sat-
isfaction probability bottom-up. Note that this does by no means imply that they are
bound to traverse the whole, exponentially sized quantifier tree, as Teige proposed various
mechanisms to drastically prune that tree and thus accelerate the actual computation.

5.3.1 Resolution rules for SSMT

In contrast to the CDCL(ICP) approach, the SSMT resolution calculus, as proposed by
the author based on Teige’s SSAT resolution [TF10], solves SSMT problems by a reso-
lution mechanism. SSMT-resolution works by deriving attributed clauses clp, where cl
is a clause and p is a probability. When such a clause clp is derived during resolution,
it expresses that the maximum probability of violation of cl is p. If the probabilistic
variant ∅p of a conflict clause happens to be derived at the end of resolution, then the
maximum probability that the formula holds is p. The related SSAT-resolution calculus
proposed by Teige [TF10, TF12b] is sound and complete. The same applies for SSMT res-
olution if the theory is confined to linear order over the reals, yet if (e.g., non-polynomial)
arithmetic is involved, the resolution calculus of SSMT is sound but only relatively com-
plete with interval constraint propagation (ICP) [BMH94] being its “oracle” for resolving
arithmetic [AM13a].

All derived clauses clp are forced to have a tight bound p in the sense that under each
assignment which falsifies cl, the satisfaction probability of the remaining subproblem
is exactly p.2 Before illustrating the resolution rules, we define the symbolic falsifying
assignment ffsp that captures variable assignments falsifying a clause cl. A simple bound
x ∼ c ∈ SB is introduced in Definition 4.1, means that a variable x is restricted by
comparison operator, i.e., ∼∈ {>,≥, <,≤}, relative to value c, where the latter value is a
real number. Also, we assign to each variable a domain which is a bounded interval. Let
cl be a non-tautological disjunction of simple bounds. We define the falsification function
falsifyc that falsifies cl as follows:

2If we relax the condition to a probability of less than or equal to p, it works also. The stronger form
used here makes interpolation simpler, however with both forms the resolution and interpolation can be
applied forthrightly.

129

5.3. RESOLUTION CALCULUS FOR SSMT

Definition 5.3: Falsification function

Let CL be a set of all non-tautological clauses with disjunction of simple bounds.
If cl ∈ CL is a typical element; i.e., cl : sb1 ∨ ... ∨ sbn. The falsification function
falsifycl : CL→ CL is defined as follows:
• falsifycl(cl) :=

∨n
i=1 ffsp(sbi),

• ffsp : SB → SB s.t. ffsp(x ∼ c) := x ∼′ c where ∼′ is the converse relation to
∼, e.g., ≤′ is >.

where x ∈ X, c ∈ R, ∼,∼′∈ {≤, <,≥, >} and x has a well-defined domain.

In the following proposition which will be used latter, we show an important property
of SSMT formulae; namely under an assignment τ that falsifies a clause cl in a SSMT
formula ϕ in CNF, the satisfaction probability of the SSMT formula Q : ϕ under τ is 0.

Proposition 5.1: Falsification property

Let ϕ be some SMT formula with V (ϕ) = {x1, ..., xn}, Q = Qi+1xi+1...Qnxn be
a quantifier prefix, and V (ϕ) ↓j := {x1, ..., xj} for j ≤ n. Then if ϕ is in CNF
and there is a non-tautological clause cl ∈ ϕ s.t. V (cl) ⊆ V (ϕ) ↓i then for each
τ : V (ϕ) ↓i→ SB with ∀x ∈ V (cl) : τ(x) = ffsp(x ∼ c), where x ∼ c ∈ cl then:

Pr(Q : ϕ[τ(x1)/x1]...[τ(xi)/xi]) = 0.

Proof of falsification property

The idea of the proof: we can construct τ and since clause cl is non-tautological, it
holds that cl[τ(x1)/x1]...[τ(xi)/xi] ≡ false. Since ϕ is in CNF and cl ∈ ϕ, it fol-
lows that formula ϕ[τ(x1)/x1]...[τ(xi)/xi] with variables xi+1, ..., xn is unsatisfiable.
Immediately, Pr(Q : ϕ[τ(x1)/x1]...[τ(xi)/xi]) = 0

In order to extend the SSAT resolution rules to SSMT formulae, we assume w.l.o.g. that
any clause cl where resolution is applied consists of disjunctions of simple bounds only,
as ICP yields a reduction to simple bounds by propagating arithmetic constraints into
simple bounds [Tei12, AM13a]. We will introduce four resolution rules that define the
resolution calculus for SSMT problems. Rule RR.1 derives a clause cl0.0 from an original
clause cl ∈ ϕ such that cl is not a tautological clause. One can consider RR.1 corresponds
to the quantifier-free base case where ϕ is false under any assignment that falsifies cl.(

cl ∈ ϕ
)

cl0.0 (RR.1)

Rule RR.2 reflects the quantifier-free base case in which ϕ is true under any assignment
that conforms to the partial assignment τ , since |= ϕ[τ(x1)/x1]...[τ (xi) /xi]. The con-
structed cl1.0 represents the negation of the satisfiable partial assignment τ of ϕ.

130

5.3. RESOLUTION CALCULUS FOR SSMT

 cl ⊆ {x ∼ c | x ∈ V (cl)}, 6|= cl,Q(cl) = Q1x1...Qixi,
for each τ : V (ϕ) ↓i→ SB with ∀x ∈ V (ϕ) : τ(x) in ffsp(x ∼ a) :

|= ϕ[τ(x1)/x1]...[τ(xi)/xi]

cl1.0 (RR.2)

Rule RR.3 computes the actual probability of a resolvent depending on the type of the
quantifier governing the pivot variable, where a bound on the pivot variable is used as
the resolution literal. Definition 5.2 enforces that the domain of any quantified variable
is discrete, which implies that we can evaluate the probability by simply summing up or
selecting the maximum of the probabilities of satisfying assignments for

R

- or ∃-quantified
variable x, respectively

(x ∼ c1 ∨ cl1)p1 , (x ∼′ c2 ∨ cl2)p2 , (x ∈ D(x) ∧ x ∼ c1 ∧ x ∼′ c2 ` false)
Qx ∈ Q, 6|= (cl1 ∨ cl2)

p =
{

max(p1, p2) if Qx = ∃x ∈ Dx
p1 · Pr(x ∼′ c1) + p2 · Pr(x ∼ c2) if Qx =

RPrx ∈ Dx

(cl1 ∨ cl2)p (RR.3)

Rule RR.3e is a counterpart of RR.3 for free variables in SSMT formulae. All free vari-
ables are implicitly existentially quantified at innermost level, yet —in contrast to explicit
quantification— to continuous domains in general.(x ∼ c1 ∨ cl1)p1 , (x ∼′ c2 ∨ cl2)p2 , Qx /∈ Q, x has domain Dx

(x ∈ Dx ∧ x ∼ c1 ∧ x ∼′ c2) ` false, 6|= (cl1 ∨ cl2)
p = max(p1, p2)

(cl1 ∨ cl2)p (RR.3e)

Note that the SSMT-resolution calculus is sound and relatively complete w.r.t. to its
underlying arithmetic reasoner ICP. On SSMT problems over the theory of linear order,
SSMT resolution is complete.

5.3.2 Soundness and completeness of SSMT-resolution

In the following, we prove the soundness and relatively completeness of the SSMT-resolution
calculus.

It is important to notice that applying SSMT resolution rules has to respect the SSMT
quantifier prefix orders (from innermost to outermost). If the latter condition is not taken
into our consideration, then the completeness of this calculus may not hold.

Lemma 5.1: clp-resolution

Let clause clp be derivable by SSMT-resolution. Further, let be Q(cl) =
Q1x1...Qixi. Then for each τ : V (δ) ↓i→ SB with ∀x ∈ V (cl) : τ(x) = ffsp(x ∼ a),
where x ∼ c ∈ cl it holds that

Pr(Qi+1xi+1...Qnxn : ϕ[τ(x1)/x1]...[τ(xi)/xi]) ≤ p

131

5.3. RESOLUTION CALCULUS FOR SSMT

Proof of clp-resolution

We will prove the lemma by induction over application of rules as follows:

Base case: In the base case, we can only use RR.1 or RR.2. If τ is con-
structed correctly, we get that ϕ[τ(x1)/x1]...[τ(xi)/xi] is unsatisfiable in case of
RR.1 (see Proposition 5.1) and tautological in case of using RR.2 which immediately
establishes the result for the base case.

Hypothesis: Assume that the premises of rule RR.3 and RR.3e hold; namely

Pr(Qj+1xj+1...qnxn : ϕ[τ(x1)/x1]...[τ(xj−1)/xj−1][x ∼ c1/xj]) ≤ p1

Pr(Qj+1xj+1...Qnxn : ϕ[τ(x1)/x1]...[τ(xj−1)/xj−1][x ∼′ c2/xj]) ≤ p2

where xj = x with j ≥ i + 1. By definition of SSMT semantics, for each τ with
τ(x) = τ1(x) if x ∈ V (cl1) and τ(x) = τ2(x) if x ∈ V (cl2), then we have

Pr(Qjxj ...Qnxn : ϕ[τ(x1)/x1]...[τ(xj−1)/xj−1]) ≤ p (∗)

The result for j = i+ 1 holds as all variables from x1, ..., xj−1 are not quantified in
(∗). For case that j > i+ 1, all variables xi+1, ..., xj−1 do not occur in the derived
clause (cl1 ∨ cl2). Thus, for k = j− 1 to i+ 1 (we have only two elements), thereby
we successively conclude that

Pr(Qk+1xk+1...Qnxn : ϕ[τ(x1)/x1]...[τ(xk−1)/xk−1][x ∼ c1/xk]) ≤ p

Pr(Qk+1xk+1...Qnxn : ϕ[τ(x1)/x1]...[τ(xk−1)/xk−1][x ∼′ c2/xk]) ≤ p

Induction step: For case k = i+ 1, the lemma follows.

Corollary 5.1: Soundness of SSMT-resolution

If the empty clause, i.e., ∅p is derivable by SSMT-resolution from a given SSMT
formula Q : ϕ, then Pr(Q : ϕ) ≤ p.

Proof of Soundness of SSMT-resolution

This proof follows Lemma 5.1 and its proof, since the conflict clause ∅p is a special
case of clp.

Theorem 5.1: Relatively Completeness of SSMT-resolution

If Pr(Q : ϕ) ≤ p < 1 for some SSMT formula δ := Q : ϕ, then the empty clause, i.e.,
∅p is derivable by SSMT-resolution; i.e., SSMT-resolution is relatively complete.

132

5.3. RESOLUTION CALCULUS FOR SSMT

Proof of Relatively Completeness of SSMT-resolution

In order to prove this theorem, we split the proof into two parts:
• if ∅ ∈ ϕ, then the formula is unsatisfiable. Consequently ∅0 is derived by Rule
RR.1.
• if ∅ /∈ ϕ, then we prove this case by induction over the number of quantifiers

as follows:
Base Case: Q = Qx:
– ϕ = (x ∼ c1) ∧ (x ∼′ c2), where the latter clauses are disjoint. So by

RR.1 we derive (x ∼ c1)0.0 and (x ∼′ c2)0.0. By RR.3 or RR.3e, we derive
∅0.0.

– ϕ = (x ∼ c1). By RR.1 we derive (x ∼ c1)0.0. By RR.2 we derive
(x ∼ c1)1.0. Then if Q = ∃, by RR.3 or RR.3e we get the empty set with
the maximum probability, i.e. 1.0. In case that Q =

R

, then by RR.3 we
get the empty set with probability (Pr(x ∼ c1) · 1.0 + Pr(x ∼ c1) · 0.0),
which is nothing but Pr(x ∼ c1) i.e.

∑
val∈Dx

Pr(val ∼ c1).
Hypothesis: We assume that p1 ≥ Pr(Q : ϕ[val1/x]) , ..., pn ≥
Pr(Q : ϕ[valn/x]) where p1, ..., pn < 1. Then ∅p1 ,...,∅pn are derived by
Q : ϕ[val1/x],...,Q : ϕ[valn/x] respectively.
Induction step:
– consider that the domain of x, i.e., Dx = {val1, val2}. If we apply the

resolution sequence to derive ∅p1 from Q : ϕ[val1/x] on QxQ : ϕ, then
we get either ∅p1 or (x = val1)p1 . With the same procedure, we get ∅p2

or (x = val2)p2 . If ∅p1 or ∅p2 is derived, then it means that p = p1
or p = p2 respectively. Otherwise, we apply the resolution rule RR.3
between (x = val1) and (x = val2) to derive the empty clause; i.e., ∅p.

– now if |Dx| = n and n > 2. Then applying resolution sequence yields
∅p1 or (x = val1)p1 ,..., ∅pn or (x = valn)pn . If ∅p1 ... ∅pn are derived, then
it means that p = p1 or...or p = pn. Otherwise, we apply RR.3 between
(x = val1)p1 ,..., (x = valn)pn to get the conflict clause with probability
p where p is computed according to RR.3 or RR.3e; namely if x is ex-
istentially quantified, then p = max(p1, max(p2, max(...max(pn−1, pn)))) =
max(p1, ..., pn). If x is quantified by

R

, then p will be computed according
to the weight function in RR.3.

5.3.3 Example of applying SSMT-resolution

Example 5.2: Example of applying SSMT-resolution

Consider the following SSMT formula:R

[17→0.2,37→0.35,57→0.45]x ∃y ∈ {2, 4}

R

[−17→0.5,07→0.5]z

R

[07→0.15,17→0.15,27→0.7]w : (z <
−0.5) ∧ (x > 2.5 ∨ y > 2.8) ∧ (y < 3) ∧ (z ≥ 0 ∨ w ≤ 1.7).

This formula is satisfiable with the probability 0.12 by solving it with SiSAT. How-
ever, we will show how to get the same result while solving it with SSMT-resolution.
Figure 5.3 represents SSMT-resolution of the formula. Here at the end of the SSMT-
resolution tree, the conflict clause with the least upper bound probability, i.e., the

133

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

R

[1 7→0.2,37→0.35,57→0.45]x,∃y ∈ {2, 4}

R

[−17→0.5,07→0.5]z,

R

[0 7→0.15,17→0.15,27→0.7]w :

(x > 2.5 ∨ y > 2.8) ∧ (z < −0.5) ∧ (y < 3) ∧ (z ≥ 0 ∨ w ≤ 1.7)

(z < −0.5)0(x > 2.5 ∨ y > 2.8)0 (y < 3)0 (z ≥ 0 ∨ w ≤ 1.7)0
RR.1RR.1 RR.1 RR.1

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0 ∨ w ≥ 2)1.0
RR.2

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0)0.3

(x ≤ 1 ∨ y > 2)0.15

(x ≤ 1)0.15

(x > 2.5)0

∅0.12

RR.3

RR.3

RR.3

RR.3

RR.3

Figure 5.3: Example of SSMT-resolution and computing the satisfaction probability 0.12.
Red lines identify the pivots.

exact satisfiable probability is obtained. One can derive the conflict clause with
different upper bounds probabilities in case that Rule RR.2 condition is relaxed. In
other words, if we compute the negation of overapproximation of satisfying assign-
ments rather the the negation of the satisfying assignments.

5.4 Generalized Craig interpolation for SSMT

Craig interpolation is a logical concept suggested by Craig in 1957 [Cra57] that has been
widely used in model theory and automatic verification (cf. Section 4.3), since its classical,
non-probabilistic form, provides a reason for mutual inconsistency between two formulae
as introduced in Definition 4.8 and discussed in details in Chapter 4.

Following efficient schemes that have been devised for propositional logic and for SAT-
modulo-theory by exploiting the connection between resolution and variable elimina-
tion [Pud97, EKS06], Teige et al. [TF12b] succeeded to generalize the Púdlak rules for
interpolant synthesis [Pud97] from the propositional SAT case to stochastic SAT, where
a more general definition of interpolant is needed, based on S-resolution [TF10] for SSAT.
In the sequel of this chapter, we will do the same, yet for SSMT.

134

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

5.4.1 Generalized Craig Interpolants

Traditional interpolation requires that A∧B is unsatisfiable for the formulae A and B to
interpolate. The precondition A∧B |= false, which would be translated to Pr(A∧B) = 0
in a stochastic setting, however is too restrictive for use in probabilistic model-checking,
as a residual chance of failure — which amounts to satisfying a path condition A ∧ B in
that context — is well acceptable in many engineering problems [Tei12, TF12b]. As an
example consider the quantitative safety target “The probability that a plane will crash is
at most 10−9 per year”.

For a violation of this quantitative safety goal, we cannot find a classical interpolant in
general. Teige et al. proposed a general concept which can be used to form an adequate
lattice of interpolants for stochastic problems.

In order to build interpolant lattice for SMT formulae (A,B) which may collapse to the
empty one, we need to redefine the bottom and top elements of the interpolant lattice.
Namely, instead of using A∃ as a top element of the lattice and using B∀ as bottom element
of the lattice, we use A∃ ∨B∀ and A∃ ∧B∀ respectively.

Definition 5.4: Generalized Craig Interpolant [TF12b]

Let A and B be some SMT formulae where VA := V (A) \ V (B) = {a1, ..., aα},
VB := V (B) \ V (A) = {b1, ..., bβ}, VA,B := V (A) ∩ V (B), A∃ = ∃a1, ..., aα : A, and
B
∀ = ¬∃b1, ..., bβ : B. An SMT formula I is called a generalized Craig interpolant

for (A,B) if and only if the following properties are satisfied:
1. |=L (A∃ ∧B∀)→ I,
2. |=L I → (A∃ ∨B∀), and
3. V (I) ⊆ VA,B.

For SMT calculi admitting quantifier elimination, like the linear fragments of integer [Coo72]
and rational [FR75] as well as the polynomial fragment of real arithmetic [Tar48, DH88],
the four quantifier-free SMT formulae equivalent to A∃∧B∀, to A∃, to B∀, and to A∃∨B∀

can serve as generalized Craig interpolants for (A,B). These fragments of arithmetic are,
however, very confined. A – necessarily incomplete – interpolation procedure can, how-
ever, be obtained for the non-polynomial case based on ICP, which reduces arithmetic
reasoning to bound reasoning, i.e., to the decidable case of the theory of linear order over
the reals and integers.

An interpolation procedure for SMT involving transcendental functions based on the latter
principle has been pioneered by Kupferschmid et al. [KB11] without, however, addressing
the stochastic case of generalized Craig interpolants (GCI). GCI for the propositional case
of SSAT, on the other hand, have been explored by Teige et al. [TF12b]. We will here
reconcile these lines in order to compute GCI for SSMT.

135

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

5.4.2 Computation of Generalized Craig Interpolants – Púdlak’s rules
extension

In this subsection, we present a formal way of computing the Craig interpolants for SSMT
formulae by defining certain rules based on the SSMT resolution calculus.

In order to compute systemically the Craig interpolants, one can use Púdlak’s tech-
nique [Pud97] (symmetric) or McMillan’s technique [McM03] (asymmetric) or the duality
of McMillan’s technique, which are built on top of the resolution calculus for propositional
logic. For SSAT problems, Teige [TF12b] extended the SAT resolution [TF10] and Púdlak
rules and succeeded to compute the interpolants for SSAT.

We use SSMT resolution for computing generalized Craig interpolants. For this purpose,
the rules of SSMT resolution are extended to deal with pairs (clp, I) of annotated clauses
clp and an SMT formulae I, where I represents a partial generalized interpolant [TF12b,
KB11].Whenever a pair (∅p, I) denoting the empty clause is derived, a generalized Craig
interpolant for the given SSMT formula has been computed. We compute the interpolant
according to the following three rules GR.1, GR.2 and GR.3 given below. The first Rule
GR.1 represents a base case assigning initial interpolants to each clause of A and B.

cl `RR.1 cl0.0,

I =
{

false, cl ∈ A
true, cl ∈ B .

(cl0.0, I)

(GR.1)

Rule GR.2 does not exist in non-stochastic interpolation, as it refers to rule RR.2 of SSMT
resolution, where the partial assignment satisfies A ∧B, which is impossible in the tradi-
tional setting. If we take the negation of the satisfying assignments of A ∧B; i.e., ¬SA,B,
then A∧¬SA,B, and ¬SA,B∧B are unsatisfiable. Therefore, we can choose the interpolant
freely over the shared variable between A and B, i.e., VA,B. This freedom enables us to
control the geometric extent of generalized Craig interpolants within “don’t care”-region
provided by the models of SA,B [TF12b].

`RR.2 cl1.0

I is any formula over VA,B
(cl1.0, I)

(GR.2)

The third rule extends Púdlak’s rule for resolution in the direction of SMT simple bounds.
Whenever we have two conflicting simple bounds in different clauses, we can apply SSMT
resolution provided that the resolvent is not a tautology. If x is a quantified variable, we
apply RR.3, otherwise we use RR.3e in case that x is a free variable.

136

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

((x ∼ c1 ∨ cl1)p1 , I1), ((x ∼′ c2 ∨ cl2)p2 , I2),
(x ∼ c1 ∨ cl1)p1 , (x ∼′ c2 ∨ cl2)p2 `RR.3,RR.3e (cl1 ∨ cl2)p,

I =

I1 ∨ I2 if x ∈ VA
I1 ∧ I2 if x ∈ VB
(x ∼ c1 ∨ I1) ∧ (x ∼′ c2 ∨ I2) if x ∈ VA,B

((cl1 ∨ cl2)p, I)

(GR.3)

Lemma 5.2: Generating generalized SSMT interpolants

Let δ = Q : (A ∧ B) with Q = Q1x1...Qnxn be some SSMT formula, and the
pair (clp, I) be derivable from δ by interpolating SSMT-resolution, where Q(cl) =
Q1x1...Qixi. Then, for each τ : V (ϕ) ↓i:= {x1, ..., xi} for i ≤ n with ∀x ∈ V (cl) :
τ(x) = ffsp(x ∼ c), where x ∼ c ∈ cl, it holds that:

1. V (I) ⊆ VA,B,
2. Pr(Qi+1xi+1...Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xi)/xi]) = 0, and
3. Pr(Qi+1xi+1...Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1]...[τ(xi)/xi]) = 0.

Proof of Generating generalized SSMT interpolants

We will prove this lemma by induction over the application of SSMT-resolution
rules.
Base case: We know that in the base case, either GR.1 or GR.2 will be applied.
• For Rule GR.1 and cl ∈ A:

– The first item holds, as V (I) is empty which is subset of any set.
– By construction τ such that cl evaluates to false, then
A[τ(x1)/x1]...[τ(xi)/xi] is unsatisfiable. Thus the second item holds.

– As the clause cl ∈ A, then I = false. Consequently the third item
holds.

• For Rule GR.1 and cl ∈ B:
– The first item holds, as V (I) is empty which is subset of any set.
– As the clause cl ∈ B, then I = true. Consequently the second item

holds.
– By construction τ such that cl evaluates to false, then
B[τ(x1)/x1]...[τ(xi)/xi] is unsatisfiable. Thus the third item holds.

• For Rule GR.2:
– The first item holds, as the condition of GR.2 is to build the interpolants

over the shard variable; i.e., VA,B
– The second item holds directly as ¬SA,B |= false, so Pr(A ∧ ¬SA,B ∧
¬I) = 0.

– The third item holds directly as ¬SA,B |= false, so Pr(B∧¬SA,B∧I) =
0.

Induction hypothesis: We assume that the lemma holds for all clauses in the

137

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

premises of Rule GR.3. Then by construction of I, the first item of the lemma
holds, i.e., V (I) ⊆ VA,B. We assume that

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1)[τ1(x1)/x1]...[τ1(xj−1)/xj−1][vala/xj]) = 0

Pr(Q′ : (I1 ∧ ¬SA,B ∧B)[τ1(x1)/x1]...[τ1(xj−1)/xj−1][vala/xj]) = 0

holds for ((cl1 ∨ x 6= vala)p1 , I1), and

Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I2)[τ2(x1)/x1]...[τ2(xj−1)/xj−1][(Dx \ {vala})/xj]) = 0

Pr(Q′ : (I2 ∧ ¬SA,B ∧B)[τ2(x1)/x1]...[τ2(xj−1)/xj−1][(Dx \ {vala})/xj]) = 0

holds for ((cl2 ∨ x = vala)p2 , I2), where xj = x, j ≥ i + 1, Q′ = Qj+1xj+1...Qnxn,
and vala ∈ Dx.
Let τ be any assignment that maps the shared variable to intervals (or simple
bounds) and τ(x) = τ1(x) if x ∈ V (cl1). Likewise, τ = τ2(x) if x ∈ V (cl2).
Additionally, if x is a shared variable, then τ1 = τ2 = τ , because (cl1 ∨ cl2) will
appear in the resolution tree that leads to ∅ if and only if 6|= (cl1 ∨ cl2).

Induction step: We want to prove that

PrA = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1]) = 0 (A)

PrB = Pr(Q′ : (I ∧ ¬SA,B ∧B)[τ(x1)/x1]...[τ(xj−1)/xj−1]) = 0 (B)

by showing four cases:

PrA,vala = Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
= 0,

PrA,vala
= Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj])
= 0,

PrB,vala = Pr(Q′ : (I¬SA,B ∧B)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
= 0,

PrB,vala
= Pr(Q′ : (I ∧ ¬SA,B ∧B)[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj])
= 0.

In Rule GR.3, we have three different cases:
• Case 1: If x ∈ VA, then I = I1 ∨ I2. By construction τ , I, and the induction

hypothesis,

1. PrA,vala ≤ Pr(Q′ : (A∧¬SA,B∧¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj]).
PrA,vala ≤ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ ¬I2)[τ(x1)/x1]...[τ(xj−1)/xj−1]
[vala/xj]).
PrA,vala ≤ Pr(Q′ : (A∧¬SA,B∧¬I1)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
= 0.

138

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

2. PrA,vala
≤ Pr(Q′ : (A∧¬SA,B∧¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj]).

PrA,vala
≤ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I1 ∧ I2)[τ(x1)/x1]...[τ(xj−1)/xj−1]

[vala/xj]).
PrA,vala

≤ Pr(Q′ : (A∧¬SA,B∧¬I2)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
= 0.

3. Since xj ∈ A, then PrB,vala
= PrB,vala and

Pr(Q′ : (I ∧ B ∧ ¬SA,B)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj]) = Pr(Q′ :
(I∧B∧¬SA,B)[τ(x1)/x1]...[τ(xj−1)/xj−1]) PrB,vala = Pr(Q′ : (I¬SA,B∧
B)[τ(x1)/x1]...[τ(xj−1)/xj−1])
PrB,vala = Pr(Q′ : (I1 ∨ I2¬SA,B ∧B)[τ(x1)/x1]...[τ(xj−1)/xj−1])
PrB,vala = Pr(Q′ : (I1¬SA,B ∧ B) ∨ (I2 ∨ ¬SA,B ∧ B)[τ(x1)/x1]...
[τ(xj−1)/xj−1]) = 0, since Q is either ∃ or

R

.
• Case 2: If x ∈ VB, it follows the same reasoning as the previous case except

that this case is for B.

• Case 3: If x ∈ VA,B, then the Interpolant I = (I1∨x 6= vala)∧(I2∨x = vala).

1. PrA,vala ≤ Pr(Q′ : (A∧¬SA,B∧¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
PrA,vala ≤ Pr(Q′ : (A ∧ ¬SA,B ∧ ((¬I1 ∧ x = vala) ∨(I2 ∧ x 6= vala)))
[τ(x1)/x1] [τ(xj−1)/xj−1][vala/xj])
PrA,vala ≤ Pr(Q′ : (A∧¬SA,B∧((¬I1∧x = vala)∨(A∧¬SA,B∧I2∧x 6=
vala)))[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj]) = 0

2. PrA,vala
≤ Pr(Q′ : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \

{vala})/xj])
PrA,vala ≤ Pr(Q′ : (A ∧ ¬SA,B ∧ ((¬I1 ∧ x = vala) ∨ (I2 ∧ x 6= vala)))
[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj])
PrA,vala

≤ Pr(Q′ : (A∧¬SA,B∧((¬I1∧x = vala)∨(A∧¬SA,B∧I2∧x 6=
vala)))[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj]) = 0

3. PrB,vala ≤ Pr(Q′ : (I ∧ ¬SA,B ∧B)[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj])
PrB,vala

≤ Pr(Q′ : (B ∧ ¬SA,B ∧ ((I1 ∨ x 6= vala) ∧ (I2 ∨ x =
vala)))[τ(x1)/x1]... [τ(xj−1)/xj−1][vala/xj])
PrB,vala

≤ Pr(Q′ : (B∧¬SA,B∧((I1∨x 6= vala))∧(B∧¬SA,B∧(I2∨x =
vala)))[τ(x1)/x1]...[τ(xj−1)/xj−1][vala/xj]) = 0

4. PrB,vala
≤ Pr(Q′ : (I ∧ ¬SA,B ∧ B)[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \

{vala})/xj])
PrB,vala

≤ Pr(Q′ : (B ∧ ¬SA,B ∧ ((I1 ∨ x 6= vala) ∧ (I2 ∨ x = vala)))
[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj])
PrB,vala

≤ Pr(Q′ : (B∧¬SA,B∧((I1∨x 6= vala))∧(B∧¬SA,B∧(I2∨x =
vala)))[τ(x1)/x1]...[τ(xj−1)/xj−1][(Dx \ {vala})/xj]) = 0

• j−th step: From all previous cases, PrA,vala ,PrA,vala
,PrB,vala and PrB,vala

=
0 are proven. Now we want to prove that for jth quantifier as follows:

139

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

– Q = ∃, then PrA = max(PrA,vala ,PrA,vala
) = 0. Likewise PrB = 0.

– Q =

R

, then PrA = PrA,vala · pvala + PrA,vala
· pvala

= 0. Likewise
PrB = 0.

• j + 1-th-step: We need to prove that

PrA = Pr(Qi+1xi+1...Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xi)/xi]) = 0,

PrB = Pr(Qi+1xi+1...Qnxn : (I ∧ ¬SA,B ∧B)[τ(x1)/x1]...[τ(xi)/xi]) = 0

From the previous proof, if j = i + 1, then the previous equations directly
hold. But if j > i + 1, then the variables xi+1...xj−1 do not occur in the
resulting clause (cl1 ∨ cl2), since the latter clause is quantified till i. By the
definition of τ which is restricted to j − 1, the probabilities of Equation A,
and Equation B are zero.
• for case i+ 1, the lemma directly follows.

By using the previous lemma with the relatively complete SSMT resolution calculus, we
get the following corollary:

Corollary 5.2: Generating generalized SSMT interpolants

If interpolating SSMT resolution derives (∅p, I) from an SSMT formula δ = Q :
(A ∧B), then I is a generalized Craig interpolant for (A,B) witnessing Pr(δ) = p.

Proof of Generating generalized SSMT interpolants

(sketch): The proof of that corollary follows these facts:
• If Pr(Q : ϕ) ≤ p < 1 for some SSMT formula δ := Q : ϕ, then the empty
clause, i.e., ∅p is derivable by SSMT-resolution (Theorem 5.1).
• If (∅p, I) is derived by SSMT interpolating, then:

– V (I) ⊆ VA,B,
– Pr(A ∧ ¬SA,B ∧ ¬I) = 0, and
– Pr(I ∧B ∧ ¬SA,B) = 0.

by using Lemma 5.2.
Thus, I is a generalized Craig interpolant for (A,B) witnessing Pr(δ) = p.

Corollary 5.3: Controlling strength of SSMT interplants

If I = true is used within each application of Rule GR.2, then Pr(Q : (A∧¬I)) = 0.
Likewise, if I = false is used within each application of Rule GR.2, then Pr(Q :
(I ∧B)) = 0.

Proof of Controlling strength of SSMT interpolants

In order to prove this corollary, let us consider the induction proof.
Base case: For RR.1, it is totally independent from affecting SA,B. For RR.2, if I

140

5.4. GENERALIZED CRAIG INTERPOLATION FOR SSMT

R

[1 7→0.2,37→0.35,57→0.45]x,∃y ∈ {2, 4}

R

[−17→0.5,07→0.5]z,

R

[0 7→0.15,17→0.15,27→0.7]w :

(x > 2.5 ∨ y > 2.8) ∧ (z < −0.5)︸ ︷︷ ︸
A

∧ (y < 3) ∧ (z ≥ 0 ∨ w ≤ 1.7)︸ ︷︷ ︸
B

(z < −0.5)0, F(x > 2.5 ∨ y > 2.8)0, F (y < 3)0, T (z ≥ 0 ∨ w ≤ 1.7)0, T

GR.1GR.1 GR.1 GR.1

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0 ∨ w ≥ 2)1.0, DC

GR.2

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0)0.3, DC

(x ≤ 1 ∨ y > 2)0.15, DC ∧ z < −0.5

(x ≤ 1)0.15, (DC ∧ z < −0.5) ∨ y > 2

(x > 2.5)0, y > 2.8

∅0.12, (DC ∧ z < −0.5) ∨ y > 2

GR.3

GR.3

GR.3

GR.3

GR.3

Figure 5.4: Generalized Craig interpolant for Example 5.1. The green part is A and the
blue one is B. The red part represents ¬SA,B with a don’t-care interpolant.

is true, then Pr(A ∧ ¬I) = 0. Likewise, if I is false, then Pr(I ∧B) = 0.
Induction hypothesis: We assume for I = true that

Pr(Q′ : (A ∧ ¬I1)[τ(x1)/x1]...[vala/xj]) = 0 and

Pr(Q′ : (A ∧ ¬I2)[τ(x1)/x1]...[(Dx \ {vala}/xj]) = 0.

Additionally, we assume for I = false that

Pr(Q′ : (I1 ∧B)[τ(x1)/x1]...[vala/xj]) = 0 and

Pr(Q′ : (I2 ∧B)[τ(x1)/x1]...[(Dx \ {vala}/xj]) = 0.

Induction step: It follows the previous proof of Lemma 5.2.

Continue with Example 5.2 to compute Generalized Craig Interpolant

In order to get the idea of computing the Craig interpolants for SSMT problems,
let us consider the following formula in Example 5.2:R

[17→0.2,37→0.35,57→0.45]x, ∃y ∈ {2, 4}

R

[−1 7→0.5,07→0.5], z

R

[07→0.15,17→0.15,27→0.7]w : A ∧B
where A = (z < −0.5) ∧ (x > 2.5 ∨ y > 2.8) and B = (y < 3) ∧ (z ≥ 0 ∨ w ≤ 1.7)
Figure 5.4 shows formally how the generalized Craig interpolant is computed.
DC stands for a don’t care-formula which can replaced by true or false, a.o. If
we replace DC with true, then the interpolant becomes z < −0.5 ∨ y > 2 which is
implied by A. Likewise, if it is replaced by false, then the resulting interpolant

141

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

y > 2 implies the negation of B as in Corollary 5.3.

In the previous example in Figure 5.4, one may compute more interpolants with different
strength in case that one relaxes the simple bounds in any direction, but without changing
their interpretations in the original formula. For example a weaker interpolant that can
generated by the resolution tree in Figure 5.4 is I1 = (DC ∧ z < 0) ∨ y > 2. On the other
hand, a stronger interpolant can be computed by the same resolution tree, is I2 = (DC∧z ≤
−0.5) ∨ y ≥ 4, where I2 → I1 and both I1 and I2 are generalized Craig interpolants.

5.5 Interpolation-based probabilistic bounded model checking

In this section, we demonstrate an application of generalized Craig interpolation to quan-
titative model-checking of probabilistic hybrid automata, namely probabilistic bounded
model checking (PBMC). Probabilistic hybrid automata (PHA) are Markov decision pro-
cesses (MDPs) over infinite state space, with arithmetic-logical transition guards and
actions. It is defined formally as follows:

Definition 5.5: Probabilistic hybrid automaton [FHT08]

A discrete-time probabilistic hybrid automaton

PHA = (LPHA, XPHA, EPHA, `PHA
ini)

where
• LPHA is a finite set of discrete locations,
• XPHA is a space of continuous states components,
• EPHA ⊆ LPHA × Φ(V PHA) × PPHA × R(XPHA)∗ × LPHA is a finite set of

directed transitions, where
– Φ(XPHA) is a set of arithmetic constraints in our arithmetic theory T

with free variables in XPHA,
– PPHA assigning to each transition a positive probability distribution over

the target locations, and
– R(XPHA)∗ is a set of assignments defined by means of a T -predicate

over variables in XPHA and XPHA′ denotes primed variants of the state
components in XPHA (a.k.a. set of reset operations).

An element (`PHA, ϕPHA, p, ~r, `PHA′) ∈ EPHA describes a transition with prob-
ability p from location `PHA to `PHA′ with guard ϕPHA and assignments ~r,
and
• `PHA

ini ⊆ LPHA ×XPHA is a set initial state predicates, For technical reasons,
we demand that for each ` ∈ LPHA, there is at most one x ∈ XPHA → R
which satisfies the predicate `PHA

Init .
is an automaton APHA as in Definition 3.1 where
• Loc := LPHA,
• Act := Φ(XPHA)× PPHA ×R(XPHA)∗,
• E := {(`, (ϕPHA, p, ~r), `′) | (`PHA, ϕPHA, p, ~r, `PHA′) ∈ EPHA}, and

142

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

• Lini := `PHA
ini .

Since we are interested in the probability of reaching a given set of undesirable locations
within a given number of steps (say k). In the first step, we need to consider a particular
policy (scheduler, adversary) that resolves the non-determinism introduced by PHA. As
this problem is undecidable due to employed T -arithmetic theory (cf. Section 4.3), the
worst-case has to be considered, i.e., maximum probability of reaching the unsafe states
achieved under any arbitrary policy that may resolve non-determinism using randomiza-
tion, the history, etc. As introduced in [FHT08], we define the probability of reaching
some target states within k steps directly.

5.5.1 Probabilistic bounded reachability – probabilistic safety analysis

In order to solve the decision problem, the probability that a probabilistic hybrid system
modelM reaches bad states target is less than or equal a certain threshold ϑ, i.e.

MaxReach(M, target) ≤ ϑ (5.1)

one has to consider one of the following two approaches:

• The first approach is to maximize (overapproximate) the probability of reaching bad
states (which often is defined as target) under each possible scheduler (beginning
from the initial states init) and assuring that the latter probability is under the
threshold point (cf. [FHT08]):

MaxReach(M, target) := lim
k→∞

MaxReachkM,target(init) (5.2)

and

MaxReachkM,target(`) =

1 if ` ∈ target
0 if ` /∈ target and k = 0
maxt∈Enabled

∑
`′∈Loc p(t) ·MaxReachk−1

M,target(`′)
if ` /∈ target and k > 0

(5.3)

where Enabled refers to transitions that have a source `, a destination `′, and their
guards are satisfied.

• The second approach is to minimize the probability p′ of staying in safe states (all
system states without target) and assure that the complement of the latter proba-
bility 1− p′ will not exceed ϑ; i.e., 1− p′ ≤ ϑ.

In the sequel of this chapter, the first approach, namely the maximum probability of
reaching bad states as introduced in Scheme 5.1 will be taken in our consideration.

143

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

5.5.2 SSMT encoding scheme for PHAs

Consider that there are some given set of target states in the PHA model, and we try
to maximize the probability of reaching these states over all policies resolving the non-
determinism in the PHA model. The first step is to encode the PHA into SSMT formulae.
The encoding pioneered in [FHT08] directly applies to PHA as in Definition 5.5 capturing
continuous dynamics by pre-post relations. Fränzle et al. proposed a straightforward
reducing of PBMC to SSMT formulae, where this reduction is proven to be correct (for
more details, see [FHT08], Proposition 1). Concisely, it works as follows.

• we generate the matrix of the SSMT formula δ. This matrix is an SMT formula ϕ
encoding all runs of PHA of the given length k ∈ N0 (cf. Section 4.3 where iSAT3
encodes hybrid systems problems).

• we add the quantifier prefix encoding the probabilistic and the non-deterministic
choices, whereby a probabilistic choice reduces to a randomized quantifier (

R

) while
a non-deterministic choice yields an existential quantifier (∃).

• the initial states and target states are encoded by predicates.

5.5.3 PBMC solving by means of generalized Craig interpolation

In this subsection, we propose a symbolic verification procedure for above Scheme 5.1 by
means of generalized Craig interpolation for SSMT.

Our proposed technique integrates SSMT encoding of PHA as proposed in [FHT08] with
interpolation-based probabilistic bounded model checking problem for SSAT problem, in-
troduced by Teige et al. [TF12b, Tei12].

PHA normalizing or abstracting. According to the definition of PHA, it may contain
ordinary differential equations (ODEs) attributing the dynamics of the model, thus one
has to deal with this problem before computing PBMC by GCI.

One feasible solution is to add ICP for ODE, as suggested in [EFH08], where interval-based
safe numeric approximation of ODE is used as an interval contractor being able to narrow
candidate sets in phase space of reachable sets. From a technical viewpoint, it permits the
embedding of interval-based safe numeric approximation of ODE images and ODE pre-
images as a further rule for theory propagation during SMT solving. This approach was
integrated into SSMT solving in [TEF11] while solving a network of automation systems.

Another idea is to resort to abstraction of ODE into pre-post relations by tools like PHAVer
[Fre08], as pursued in ProHVer [ZSR+10, FHH+11]. However, this approach relaxes the
problem and obtains a coarse finite-state abstraction which may not fulfil the stochastic
requirements without several refinements.

In both cases, as we deal with safe overapproximation either in ICP with ODE or after
finite-state abstraction, one has to assure that we can use both preprocessing approaches
to prove safety only. That is, if we get a counterexample or find that the maximum

144

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

probability lies above the threshold, it is essential to refine the abstract model, in order
to imitate the CEGAR procedure in excluding bogus counterexamples.

Problem encoding. We compute a symbolic representation of an overapproximation of
the backward reachable state set, where a state is backward reachable if it is the origin
of a transition sequence leading into target. This can be integrated into PBMC, as used
to falsify the probabilistic safety property. Whenever such falsification fails for a given
step depth k, we apply generalized Craig interpolation to the PBMC proof to compute
a symbolic overapproximation of the backward reachable state set at depth k and then
proceed to PBMC at some higher depth k′ > k.

As an alternative to the integration into PBMC, interpolants describing the backward
reachable state sets can be extended by “stepping” them by concatenating another tran-
sition, as explained below. In either case, we continue until the backward reachable state
set becomes stable, in which case we have computed a symbolic overapproximation of the
whole backward reachable state set3.

Assume that we are given PHA model M, a predicate target in CNF that encodes the
target states. Then, the state-set predicate Bk(x) for k ∈ N0 over state variables x is
inductively defined as:

• B0(x) = target(x),

• Bk+1(x) = Bk(x) ∨ Ik+1(x), and

•

Ik+1(xj−1) =

TRANS(xj−1, xj) ∧ Bk(xj)︸ ︷︷ ︸
=A

, INIT (x0) ∧
j−1∧
i=1

TRANS(xi, xi+1)︸ ︷︷ ︸
=B

(5.4)

where Q : A∧B is an SSMT formula encodes the problem till depth k. The quantifier
prefix of SSMT formula has the following form:

Q : Q0...Qk∃x0...∃xk

whereQ0...Qk are either existential or randomized quantifiers encoding the branching
choices in PHA. However ∃x0 to ∃xk are innermost existential quantifiers encoding

3As introduced in Chapter 2, safety analysis of a given system seeks to discover whether the mathe-
matical model representing the system can enter a specified set of unsafe states [Mit07]. For solving such
probabilistic safety problems, one can apply either backward or forward analysis approaches. In backward
reachability analysis, we begin from the target state in order to overapproximate backward reachable state
sets. We continue until the set of reachable states stabilizes (no more states added). Then we verify, if the
probability of reaching bad states is less than or equal a certain probability. On the other hand, in forward
reachability analysis, we begin from the initial set of states and discover one step further in order to make
overapproximation of reachable states from the initial states. We continue with this overapproximation,
until we reach the stabilization situation, then we verify if the bad states are reached with less probability
than the certain given probability. The choice to use backward or forward analysis depends on the problem
itself; in some problems using backward analysis is more efficient than forward analysis and vice verse in
other situations.

145

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

the continuous-domain state variables in SSMT.

Ik+1(xj−1) can be computed by interpolating SSMT-resolution rules in case that the
backward reachable-set Bk(xj) is rewritten into CNF as introduced in Section 4.3 by
using the Tseitin transformation. Since GR.2 depends mainly on a don’t care-interpolant,
we will substitute I with true in in every application of rule RR.2 such that Bk(x) is
guaranteed to overapproximate all system states which are backward reachable from the
target states within k steps (cf. Corollary 5.3). Whenever Bk(x) has reached a fixed point,
i.e. if

Bk+1(x)→ Bk(x)

holds for some k, then B(x) := Bk(x) and it overapproximates all backward reachable
states. The parameter j ≥ 1 in Scheme 5.4 can be chosen freely, i.e., the system may
execute any number of transitions until state xj−1 is reached, since this does not destroy
the “backward-overapproximating” property of Bk+1(x). Hence, j influences the shape of
Ik+1(x) during computation. As long as we increase j, we obtain more precise results but
more complex models as well (cf. Appendix A).

SSMT formula building. We construct an SSMT formula with parameter k that repre-
sents the behaviour of the system such that the latter stays within the backward reachable
state set for k steps. The maximum satisfaction probability of that SSMT formula gives
an upper bound on the maximum probability of reaching the target states (representing
bad states). This can be computed by the following equation:

ubk = Pr

Qk :

INIT (x0) ∧
k∧
i=1

TRANS(xi−1, xi)︸ ︷︷ ︸
reachble states within k

∧

backwards reachble-set of states︷ ︸︸ ︷
k∧
i=0
Bk(xi)

 (5.5)

In Scheme 5.5, the upper bound probability is computed for k steps, without however
considering all system runs that leave the set of backward reachable states, since the
latter runs do not reach the target states.

5.5.4 Interpolation-based approach for reachability

In order to use generalized interpolation in unbounded probabilistic model checking, one
needs to encode the model’s transition relations by an SMT representation. Then one has
to generate a probabilistic bounded model checking problem (PBMC) in SSMT [FHT08]
and determine whether the targets are reachable with probability exceeding the safety
target within some step bound k. Should this not be the case, one can use generalized
Craig interpolation to compute an overapproximation of the states backward reachable4

from the targets within that step bound. Technically, we interpolate between the initial
state predicate and the k-fold iteration of the transition relation plus the target predicate,
albeit under quantification as explained in the previous subsection. PBMC is iterated for

4One can use overapproximation of the states forward reachable as well, however by exchanging the
formulae A and B accordingly.

146

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

increasingly larger k until either the safety property is falsified or the generalized Craig
interpolant stabilizes, i.e., a superset of all states backward reachable from the target has
been computed.

Heat
Ṫ = 2
t ≤ 3

T ≤ 10

Cool
Ṫ = −T
T ≥ 5

Error
Ṫ = 0

Check
Ṫ = −T/2

t ≤ 1

T
≥
9

T
≤
6
→
t
′ :=

0

t ≥
2→

t ′=
0

t ≥ 0.5→

0.95 : t′ = 0

0.05

t = 0 ∧ x = 0
9 ≤ T ≤ 10

Initial config

Pr(Error and x ≤ 5) ≤? 0.2

Safety requirement

Figure 5.5: Thermostat case-study discussed in [ZSR+10, FHH+11]. Blue expressions rep-
resent the assignments, green ones represent the guards and the magenta ones
represent the invariants at each location.

j I1 B1 I2 B2 I3 B3 B
1 ¬A ¬A ∨ (C ∧ x ≤ 5) true true true true true
2 ¬F ¬F ∨ (C ∧ x ≤ 5) ¬F ∨ (C ∧ x ≤ 5) ¬F ∨ (C ∧ x ≤ 5) – – ¬F ∨ (C ∧ x ≤ 5)
3 ¬A ∧ ¬D ∧ ¬F (¬A ∧ ¬D ∧ ¬F) ∨ (C ∧ x ≤ 5) ¬F ¬F ¬F ¬F ¬F

Table 5.1: Results of interpolation-based approach of Example 5.3, where j represents
the number of the transitions considered by the interpolation, I represents the
interpolant computed at j-th step, and B represents the backward reachable
states.

Example 5.3: Thermostat case study [ZSR+10]

Let us consider the PHA of Figure 5.5 modelling a thermostat system. Having
continuous-dynamics in this model drives us to use ProHVer to obtain a safe ab-
straction which is depicted in Figure 5.6a (cf. Subsection 6.2.4).
Now, we would like to verify whether the maximum probability to reach the location
Error within 5 time units is at most 1

5 or not.
Note that the property is expressed in terms of time units rather than computation
steps. As there is no immediate correspondence between time units and computation

147

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

C
x ≤ 5

F
t ≥ 0, x ≥ 0
t = x − 5
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5
T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5
T ≤ 10

0.05

0.95 0.05

0.95

Heat

Heat

Check

Check Heat

Error

(a) Finite-state Abstraction of Thermostat model in
Figure 5.5

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

C
x ≤ 5

F
t ≥ 0, x ≥ 0
t = x − 5
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5
T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5
T ≤ 10

0.05

0.95 0.05

0.95

Heat

Heat

Check

Check Heat

Error

B0

(b) Abstraction model after computing backward
reachable set B0.

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

C
x ≤ 5

F
t ≥ 0, x ≥ 0
t = x − 5
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5
T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5
T ≤ 10

0.05

0.95 0.05

0.95

Heat

Heat

Check

Check Heat

Error

B0

I1 B1

(c) Abstraction model after computing backward
reachable set B1 and interpolant I1.

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

C
x ≤ 5

F
t ≥ 0, x ≥ 0
t = x − 5
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5
T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5
T ≤ 10

0.05

0.95 0.05

0.95

Heat

Heat

Check

Check Heat

Error

B0

I1I2 B1B2

I3 B3

(d) Abstraction model after computing backward
reachable sets B2 and B3 and interpolant I2 and
I3.

Figure 5.6: Illustration of computed backward reachable sets together with generalized
Craig interpolants to compute the maximum probability of reaching Error state
over number k of transition steps.

steps, this verification problem cannot be solved by PBMC, since PBMC computes
the lower bound of reaching Error state. Thus, it requires unbounded reachability
computation by GCI.
In the abstract model, the probability to reach the error states within 5 time units
is 0.0975, which is less than 1

5 and thus acceptable. To determine this probability,
we encode the abstraction of the thermostat as an SSMT formula and then compute
overapproximations of the backward reachable states incrementally by GCI until it
stabilizes. The target is C-Error which cannot be reached from the initial A-Heat
via a single transition. In the first interpolation, the target C-Error together with
a single transition relation represents the A part, while the initial state predicate
A-Heat constitutes B. The first computed interpolant (while j = 1 in Scheme 5.4)
will thus equal all states except the initial one, providing a useless upper bound of 1
on the probability of eventually hitting the target. Successive interpolations (with j
larger than 1 as in Table 5.1) for larger step numbers yield tighter approximations.

148

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

For example, when j = 2, we get the first overapproximated backward reachable-set
equals to ¬F (means A∨B ∨C ∨D∨E), which is not so precise since A and D are
reachable after two steps. However, if we increase j to be 3, then we get in the first
overapproximation a more precise backward reachable-set, namely ¬A ∧ ¬D ∧ ¬F
(means B∨C∨E) which emphasises our aforementioned observation that whenever
j increases, one get more realistic overapproximation. In the latter case, it is noticed
that the interpolant stabilizes after 2 steps. This result was used while computing
the upper bound probability of reaching Error state in SiSAT.
In this model, the interpolant stabilizes after three iterations and yields a tight
enough overapproximation of the backward reachable state set (cf. Appendix A
for more details). As aforementioned, one can in each step use interpolants for
computing an upper approximation of the (unbounded) reachability probability,
while PBMC yields a valid lower approximation. Figure 5.9 represents three results:
the upper (red) curve represents the upper bound on the step-unbounded probability
to reach location Error within 5 time units, as computed by GCI.

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12

LB

UB

Exact

Computed by
Interpolnat

computed
by PBMC

Figure 5.7: Probability of reaching Error
within 5 time units once by us-
ing PBMC and once by using
GCI.

The numbers on the horizontal axis
here refer to the iteration (the num-
ber of steps), while the vertical axis
refers to the computed probabilities.
The middle (green) line represents
the exact probability to reach lo-
cation Error within 5 time units.
The lower (blue) curve represents the
lower bound on the probability to
reach an Error state within 5 time
units, as computed by PBMC. One
may observe that upper and lower
bounds almost coincide after step k =
4. In fact, interpolation then tells us
that the reachability probability is be-
low 0.1, i.e., well below the safety target. All details of computing interpolants for
j = 1 and j = 2 are depicted in Appendix A.

Remark 5.1: Using ProHVer

The main reason to use ProHVer comes from the limitation to integrate our stochas-
tic resolution tool with SiSAT tool. Thus, we encode the problem back and forth
between SiSAT and the resolver manually. Finally, if one can integrate the resolver
in SiSAT, then it is much better not to use any abstraction, but direct encoding in
SiSAT will solve these problems in non-linear PHA efficiently (cf. Subsection 6.2.4).

Example 5.4: Action planning

In Figure 5.8a, we have another example of probabilistic hybrid automaton where
continuous dynamics at each state is represented by linear ordinary differential
equation i.e. ṙ := 1. It represents a behaviour of a robot (e.g., rescue robot) such

149

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

E

A

C

B

D

r ≥ 15
→

r ≤ 15

x
′ :=

x+ r

r ≥ 5→x ′
:= x+ r

r
′ :=

0
r ′

:= 0

r ≥ 6→
r ≥ 11→

r ≤ 11

x
′ :=

x+ r

r
′ :=

0

x′ := x + r
r′ := 0

r ≤ 11

r > 11→
x′ := x + r
r′ := 0

r > 8→
x′ := x + r
r := 0 r

>
7
→

x
′ :=

x
+
r

r
:=

0

x := 0, r := 0

init

deviate
success

think

fail

0.91
0.9

0.045

0.85 0.105

Pr(C) ≤? 0.15

initial config

Safety req.

(a) PHA model of a robot route

E

A

C

B

D

r ≥ 15
→

r ≤ 15

x
′ :=

x+ r

r ≥ 5→x ′
:= x+ r

r
′ :=

0
r ′

:= 0

r ≥ 6→
r ≥ 11→

r ≤ 11

x
′ :=

x+ r

r
′ :=

0

x′ := x + r
r′ := 0

r ≤ 11

r > 11→
x′ := x + r
r′ := 0

r > 8→
x′ := x + r
r := 0 r

>
7
→

x
′ :=

x
+
r

r
:=

0

x := 0, r := 0

init

deviate
success

think

fail

0.91
0.9

0.045

0.85 0.105

Pr(C) ≤? 0.15

initial config

Safety req.

B0B1I1

B2I2

(b) PHA model with reachable set of states and in-
terpolants

Figure 5.8: PHA model represents action planning of a robot, where fail state represents
unwanted behaviour.

j I1 B1 I2 B2 I3 B3 B
1 ¬A ¬A ∨ C true true true true true
2 ¬E ¬E ∨ C ¬E ∨ C ¬E ∨ C – – ¬E ∨ C
3 ¬E ∧ ¬A (¬E ∧ ¬A) ∨ C ¬E ¬E ∨ C ¬E ¬E ∨ C ¬E ∨ C

Table 5.2: Results of interpolation-based approach of Example 5.4, where j represents the
number of the transitions considered by the interpolation to increase the pre-
ciseness, I represents the interpolant computed at j-th step, and B represents
the backward reachable states.

that it begins from init location. After certain steps (transitions) it can either
eventually end with success state (right route) or with fail state (bad route).
From initial state it can non-deterministically either directly go to success (the
right direction) or go to deviate state. If the latter choice was the case, then the
robot can either with a probability 0.09 go to fail state or with a probability 0.91
go to a situation to decide (think state). After that, from think state it can go
probabilistically either to success or to the initial situation or to fail state. Now,
we want to verify that over all policies the property that the robot will reach fail
is less than or equal 0.15. This property is unbounded property, where GCI can
compute it efficiently.
We will apply the same procedure as done before. Namely, we encode the model
as an SSMT formula. We compute the interpolant for the transition system while
j = 1, 2, ... as performed in thermostat case study, until either the interpolant
stabilizes or the safety property is violated.

150

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

0,11183904

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

LB

UB

Computed by
Interpolnat

computed
by PBMC

Figure 5.9: Probability of reaching fail once
by using PBMC and once by us-
ing GCI.

We summarize the results obtained
by our prototypical tool in Table 5.2,
where different sizes of transition sys-
tem were used during interpolating,
namely j = 1, 2 and 3. We observe
that the interpolant stabilizes in case
of j ≥ 2, where it overapproximates
the reachable states; i.e, C∨¬E. Fig-
ure 5.9 represents two results: the up-
per (red) curve represents the upper
bound on the step-unbounded proba-
bility to reach location fail, as com-
puted by GCI. The numbers on the
horizontal axis here refer to the itera-
tion (the number of steps), while the
vertical axis refers to the computed probabilities. The lower (blue) curve represents
the lower bound on the probability to reach an fail state, as computed by PBMC.
One may observe that upper and lower bounds almost coincide after step k = 11.

5.5.5 Generalized Craig interpolation for Stability analysis

With the same idea of what Teige et al. [Tei12] presented of using interpolation in proba-
bilistic finite-state models and akin to what is stated in probabilistic reachability analysis,
one can apply generalized Craig interpolation for interpolation-based probabilistic region
stability in probabilistic hybrid automata models. Region stability in deterministic settings
for non-probabilistic models refers to the possibility of proving that the system is stable
with respect to a set of states a.k.a. region R, if and only if for every valid infinite run of
the system, the system eventually globally stays in R.

In order to verify region stability in stochastic settings, it is necessary to adjust the previous
concept to our context. Let us consider that we are given a probabilistic hybrid automaton
model M with discrete time steps and a region R defined over the set of states of M.
Probabilistic region stability means that under any possible behaviour, i.e. independent of
the non-deterministic and probabilistic choices the system will execute, the probabilistic
hybrid automaton modelM eventually globally remains in region. That is, R is a proper
overapproximation of possible reachable set of states in M. Thus, we can not speak
now about the maximum probability of reaching this region – since it does not represent
unwanted behaviour –, but the minimum probability under any scheduler such that the
model reaches R. The probability measure is then defined by the minimum probability of
reaching the maximal invariance kernel which is a proper subset of R.

MinStable(M,R) ≥ ϑ (5.6)

In order to compute Scheme 5.6 properly:

• we need to minimize the probability of reaching R under each possible scheduler
(beginning from the initial states init) and assuring that the latter probability is at

151

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

least as the threshold point:

MinStable(M,R) := lim
k→∞

MinReachkM,R(init) (5.7)

and

MinReachkM,R(`) =

1 if ` ∈ R
0 if ` /∈ R and k = 0
mint∈Enabled

∑
`′∈Loc p(t) ·MinReachk−1

M,R(`′)
if ` /∈ R and k > 0

(5.8)

where Enabled refers to transitions that have a source `, a destination `′, and their
guards are satisfied.

• considering stabilization within R as a desired-property allows us to establish the
probability of stabilizing in the worst scenario, i.e. under an optimal opposing sched-
uler, namely whether MinReach(M,R) ≥ ϑ holds or not.

MinReach(M,R) ≥ ϑ can be addressed in terms of the complement of the maximum
probability of avoiding the region too, i.e.

MinStable(M,R) = 1−MaxAvoid(M,R) = 1− lim
k→∞

MaxAvoidkM,R(init) (5.9)

where

MaxAvoidkM,R(`) =

1 if ` ∈ R
0 if ` /∈ R and k = 0
maxt∈Enabled

∑
`′∈Loc p(t) ·MaxAvoidk−1

M,R(`′)
if ` /∈ R and k > 0

(5.10)

Teige et al. [Tei12] used the last scheme, Scheme 5.9, to compute the minimum probability
of staying in R in MDPs, where the encoding is done in terms of SSAT formulae.

Now, using generalized Craig interpolation together with Scheme 5.9 or Scheme 5.6 is
straightforward, where the same procedure is applied, with typical steps used in reacha-
bility in Subsection 5.6.

j I1 R1 I2 R2 R
1 true false true false false
2 B ∨D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D B ∨D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D
3 B ∨D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D B ∨D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D ¬C ∧ x ≤ 7 ∧ ¬B ∧ ¬D

Table 5.3: Results of interpolation-based approach of Example 5.5, where j represents the
number of the transitions considered by the interpolation to increase the pre-
ciseness, I represents the interpolant computed at j-th step, and R represents
an overapproximation of possible reachable set of states inM.

152

5.5. INTERPOLATION-BASED PROBABILISTIC BOUNDED MODEL CHECKING

Example 5.5: Action planning: stability problem

In this example, we consider the stability problem for the action planning example
depicted in Figure 5.8. We want to verify by using GCI the maximum probability
of avoiding the region representing “fail state and x is less than or equal 7” is 0.8.
However, we use the Scheme 5.6 to prove that the minimum probability of staying
outside the region representing “fail state and x is less than or equal 7” is 0.8. This
can be achieved by using GCI as follows:
• We have R0 := ¬C ∧ x ≤ 7. After that we compute I1 := B ∨D as shown in
interpolation based reachability procedure.
• Now, we compute R1 by considering R0 ∧ ¬I1.
• We continue as before until R reaches a fixed point i.e. once it is entered, the
system cannot leave it. Formally, it means that Rk+1 → Rk.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10 12

LB

Exact
Computed by
Interpolnat

Figure 5.10: Probability of avoiding fail ∧
x ≤ 7 by using GCI.

We summarize the results obtained
by our prototypical tool in Table 5.3,
where different sizes of transition sys-
tem were used during interpolating,
namely j = 1, 2 and 3. We ob-
serve that the interpolant stabilizes in
case of j ≥ 2, where it overapprox-
imates the reachable states. Figure
5.10 represents two results: the up-
per (green) line represents the upper
bound on the step-unbounded proba-
bility to avoid unwanted region. The
numbers on the horizontal axis here
refer to the iteration (the number of
steps), while the vertical axis refers to
the computed probabilities. The lower (blue) curve represents the lower bound on
the probability to stay outside “fail state and x is less than or equal 7”, as computed
by Scheme 5.6. One may observe that the lower bound and the exact value almost
coincide after step k = 3.

To this end, one can encode region stability problems in SSMT formulae and probabilistic
reachability problems as well, which reflects the main contributions of our approach to
probabilistic unbounded model checking problems.

153

timed and (probabilisitc) hybird models

+ arithmetic programs

sa
fe
ty

pr
op

er
ty
:

in
va
ri
an
ts

or
co
n
tr
ac
ts

safe(95%)
unsafe(7%)

safe
unsafe

Is probabilistic?

YES

NO

Abstract the mode +

eliminate the continous behaviour

Apply resolution calculus for SSMT

Use Generalized Craig interpolation

for SSMT

H
as

th
e
pr
op

er
ty

a
“P

→
Q
”
fo
rm

?

S
lic
e
th
e
m
o
d
el

by
ap
p
ly
in
g

tr
an
sf
or
m
at
io
n
fu
n
ct
io
n
s

U
se

ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
d
ir
ct
in
g
ed
ge
s

U
se

se
m
i-
ad
m
is
sb
le

tr
an
sf
or
m
at
io
n
e.
g.

re
m
ov
in
g
ed
ge
s

Y
E
S

N
O

convert model to CFG

encode the problem in iSAT3

U
se

C
E
G
A
R
+

C
ra
ig

in
te
rp
ol
at
io
n

U
se

C
D
C
L
(T

)
+

IC
P

U
se

C
ra
ig

in
te
rp
ol
at
io
n

St
oc
ha
sti
c
re
ac
ha
bil
ity

Cl
as
sic
al
re
ac
ha
bil
ity

Ch
ap
te
r 3

Ch
ap
te
r 4

Ch
ap
te
r 5

6Conclusion

But then of course you reach a
point where you have to say, I’ve
got to figure out how this book’s
going to end. Otherwise, you’re
going to write yourself into so
many dead-ends.

(Anthony Doerr)

Contents
6.1 Achievements of this dissertation 155
6.2 Outlook . 158

6.2.1 Applying transformation for models admitting system modes . . 158
6.2.2 Extending iSAT3-CFG with interprocedural calls 158
6.2.3 Computing loop summaries – maximum number of while-loop un-

windings . 159
6.2.4 Integrating generalized Craig interpolation with DPLL-based SSMT

solving . 159

In this chapter, we recap the main achievements and findings of this dissertation and
sketch possible future tracks to take from here.

6.1 Achievements of this dissertation

In this thesis, we made three contributions to software model checking. Aside from pre-
senting a consistent view of various related formal models that cover real, embedded and
hybrid systems, the core achievements presented in this thesis lie in advancing model check-
ing by using interpolation beyond decidable theories; covering stochastic and deterministic
reachability analyses.

At first, we introduced a novel preprocessing and verification approach that deals with
a wide scope of models ranging from programs, finite, timed and hybrid automata and
even more system models as long as they induce computational transition systems. Given
consistent transition systems and specifications with assumption-commitment form, one
can apply the suggested transformations to eliminate some computational paths of these
models – as required for reducing verification complexity – without changing the verifica-
tion verdict. The idea is that all non-persistent traces trivially satisfy the specification,
since the assumption is broken in the latter traces. Although its principle seems to be

155

6.1. ACHIEVEMENTS OF THIS DISSERTATION

simple, it significantly optimises the verification time by up to a factor of ten as shown
on Fischer’s protocol and WFAS’s models in Chapter 3. The first main contribution in
that direction was introducing the concept of “an edge supporting a specification”, which
generalizes the linear-time, trace-based satisfaction relation with respect to a single edge
as a model element. Informally, an edge supports a specification, if there exists a valid
computation path of the model such that the edge is used and the specification is sat-
isfied. Based on this, two transformation functions are proposed as valid instances and
exploited within source-to-source transformations, which will mark edges that do not sup-
port a specification as to be removed or redirected. Both transformation functions lead
to simpler and often considerably smaller models in comparison to the original one. It is
found that proving the original model satisfies the assumption-commitment property can
be assured by proving that the commitment only is satisfied in the resultant model in case
of removing non-support edges. Likewise, verifying the assumption-commitment property
in the original model can be performed by verifying the whole property in the resultant
model after redirecting non-support edges.

Second, we built an unprecedented framework to handle subtle reachability problems in
non-trivial embedded software, namely the rigorous detection of dead code. It is found
that dead code has a bad impact in automotive and avionics domains since it affects the
testability of embedded programs. Therefore several pertinent standards for embedded
system development demand adequate handling of dead code during testing or even bar it
altogether, like DO-178C [EH10], DO-278A [Che09], or ISO/IEC PDTR 24772 [TRn09].
In non-trivial embedded software like Simulink-Stateflow auto-generated programs, we
expect industrial-scale programs with richer arithmetic operations including polynomials
and transcendental functions combined with long chains of conditional and loop state-
ments that affect the control flow of these programs. In such a situation, all verification
approaches; e.g., SMT model checkers, abstract interpretation, static analysers and CE-
GAR are inapt to address a solution for this problem individually since they lack the
exactness or they are currently confined to linear and polynomial arithmetics only. How-
ever, the combination is beneficial if all are tightly integrated in a way such that each
approach is used in its proper field.

For that purpose, CEGAR is employed in order to handle large arithmetic programs and
avert the state space explosion problem due its well defined abstraction. In each iteration,
either a refinement step is performed by adding necessary side-conditions to the desired
model edges in case of a spurious counterexample, or a real counterexample violating
the safety property is obtained at the level of program code. In order to economize
the time consumption needed for back-and-forth translation between different tools, all
steps are done within iSAT3. So the iSAT3 input language is extended to read control-
flow graphs based on programs in order to use CEGAR as a frontend of our toolchain.
Moreover, verifying the abstraction is done by using interpolation-based model checking
techniques. Furthermore, in this approach conflict-driven clause learning and interval
constraint propagation are used to solve very large complex Boolean formulae, and capture
the arithmetic reasoning over non-polynomial constraints respectively.

Craig interpolation with SAT-based as well as SMT-based bounded model checking is able
to verify non-probabilistic safety properties by proving that certain target states or rather
code fragments are unreachable, namely if the overapproximated set of all reachable states
has an empty intersection with the set of unsafe states. Refinement in CEGAR is done

156

6.1. ACHIEVEMENTS OF THIS DISSERTATION

by using (inductive) interpolants as in lazy abstraction where refinement is accomplished
by adding necessary predicates to edges as side-conditions with assumption-commitment
form. The latter form can restrict the current and the next valuations of variables as
iSAT3 input language supports that option. That is, we conjunct these side conditions
and eke out the size of the abstraction model during verification.

In order to use our approach on real industrial problems, we built a special parser that
converts SMI code provided by BTC-ES AG to iSAT3-CFG input language. SMI code is an
intermediate language representation of the C language that consists of one unconstrained
while-loop block with a list of assignments.

These SMI programs admit linear and non-linear assignments and conditions besides bit-
wise operations, loops, and distinguishing cases as well. Also, for the purpose of real
certification, IEEE 754 for floating point arithmetic is extended from iSAT3 to iSAT3-
CFG where special values such as NaNs, +∞ −∞, −0, +0 and subnormal numbers are
handled. This support enables us to precisely solve the cases where a weak satisfiability
(candidate solution) often appears. After that, these programs are verified by using our
approach with several options where the verification results shows the effectiveness of our
approach.

The last but the not least contribution is a generalization of Craig interpolation such
that it deals with all SAT, SMT, SSAT and SSMT problems. It does not only go be-
yond probabilistic bounded state reachability problems, but also covers richer fragment
of arithmetic theories beyond Teige’s approach for probabilistic finite-state models like
Markov decision processes. Namely, this approach addresses a solution for both reach-
ability unbounded model checking and stability problems in probabilistic hybrid system
models with discrete time steps. For this purpose, the generalized Craig interpolation for
SSMT formulae was introduced. At the first point, a sound and relatively-complete reso-
lution calculus for SSMT formulae called SSMT resolution was introduced. We augmented
it – non-exclusively – with an extension of Pudlák-style symmetric rules for interpolant
generation. This resolution misses the completeness due to interval constraint propagation
used as arithmetic reasoner for non-linear constraints, where the latter are i.g. undecidable
problems when non-linear constraints contain transcendental functions.

In order to utilize the generalized Craig interpolation in model checking, a probabilis-
tic state reachability is introduced for probabilistic hybrid automata such that we get
a probabilistic (in)finite-state systems at the end, akin to SSAT’s approach, however in
our case, either finite-state abstraction or safe approximation must be used. We devel-
oped a symbolic verification procedure for probabilistic safety properties of probabilistic
(in)finite-state systems obtained after abstraction or approximation.

Akin to symbolic methods for non-probabilistic systems, generalized Craig interpolation
provides a technique for computing a symbolic overapproximation of the (backward) reach-
able state set of probabilistic systems. While Craig interpolation-based model checking
for stochastic propositional satisfiability problems was able to verify safety properties of
the shape “the probability of reaching the unsafe states is at most 1% in worst case”, many
safety properties representing richer fragment of arithmetic constraints are frequently un-
avoidable in probabilistic scenarios. Thereby, in this thesis, verifying safety properties of
the shape “the probability that x is larger than or equal 3 is at most 1% in worst case”,
where x is a real number representing continuous behaviour in hybrid models and appears

157

6.2. OUTLOOK

in polynomials and transcendental functions, is solved by using a Craig interpolation for
SSMT. The verification procedure devised in this thesis abstracts the probabilistic hybrid
automata with discrete time step in order to get a finite-state probabilistic model due to
the use of ProHVer and the limitation of integrating the SSMT-resolution with SiSAT (cf.
Remark 5.1). Then our procedure exploits the symbolic overapproximation of the back-
ward reachable state set, being the fixed point of an iterative computation of generalized
Craig interpolants, as well as a predicative description of the system in order to construct
SSMT formulae whose quantitative interpretations yield upper bounds on the worst-case
probability of reaching the unsafe states. Whenever an upper bound of at most 1% is
computed using an SSMT solver; e.g., SiSAT, then above probabilistic safety property is
verified and satisfied in the probabilistic hybrid automaton. On the other hand, if the up-
per bound exceeds 1%, then we need to find a finer finite-state abstraction or/and increase
the size of transition systems in order to get more precise symbolic overapproximation of
the backward reachable state set.

6.2 Outlook

6.2.1 Applying transformation for models admitting system modes

Some real time systems admit several mode-switching; e.g., initial, run, success and fail,
where there is a possibility to leave any of the defined modes. For example, fail state is not
a deadend but it can be left to init state. Such a real-time system model cannot be han-
dled by our transformational approach that detects non-supporting edges of assumption
and either removes or redirects them, since several edges which lead to a violation of the
assumption of contract (reach fail state), may not be targeted by redirecting or removing
operations due to mode-switching mechanism. One solution is to define Boolean observers
to capture only the violation of the contract assumption independent from mode-switching
mechanism. One may consequently think about defining special model patterns that cap-
ture the necessary features/conditions of applying transformation functions on automata
models which admit mode-switching. Whenever a model meets these preconditions, one
can apply our proposed compositional verification as introduced in Chapter 3, even though
these models have mode-switching feature.

6.2.2 Extending iSAT3-CFG with interprocedural calls

The current procedure of iSAT3-CFG enables us to encode imperative arithmetic while-
programs as control flow automata, where each segment of program code can be presented
by either a guard or an assignment attached to the edges of a control flow automaton.
However, dealing with programs that have procedures or pointers was not discussed in
this thesis. Henzinger et al. [HJMM04] proposed a sound procedure to handle programs
with function calls and pointers by summarizing all effects that the callee may have had
on the caller’s store at the point of return. One possibility to achieve this is to assume
the callee starting with a copy of the caller’s store and, upon return, the caller refreshing
his store appropriately using the callee’s store.

158

6.2. OUTLOOK

Another idea is to use abstract interpretation AI [CC77] as a necessary, yet not a sufficient
scheme to annotate the source code of C programs at each entry and end points of functions
by a safe overapproximation of reachable set of variables valuations before and after the
function invokes. Using AI as demonstrated in the Astreé [SD07] static analyser would
permit a computing of interprocedural calls summary in embedded system programs.
Thereby, using AI would be a good preprocessing step before using iSAT3-CFG to solve
programs containing non-linear constraints and interprocedural calls. This enables us to
handle programs containing interrupts routines as well, which are widely used in industrial
community.

6.2.3 Computing loop summaries – maximum number of while-loop
unwindings

Proving a termination of a loop – in general1 – is an undecidable problem even in case
of loops having only linear constraints. However, this problem throws a shadow on non-
termination problem of unbounded model checking technique while solving hybrid models
admitting non-linear constraints. For programs that contain internal/nested loops such as
for-loops or while-loops, one can syntactically tackle them by considering all iterations of
these loops provided that the loop bounds are given by constants. However, for conditional
for-loops or while-loops which their bounds not being constants, this is not the case. The
most appropriate approach for these corner cases is to compute a proper summary for each
loop in a program. In the following, I consider while-loop since BTC-ES AG benchmarks
that are discussed in Subsection 4.5.4 contain this kind of loops.

This summary is not required to compute the exact behaviour of the loop, however a
safe but precise overapproximation will often suffice for the model checker’s needs. To
do so, one can use abstract interpretation to find summaries of loops as aforestated. An
alternative solution would consider each loop as a standalone problem. That is, one can
use the solver to explore/unwind the while-loops till certain depth to build a tight but
precise approximation of that problem or to annotate the loops with proper pre-and post-
conditions that guarantee a proof of safety of the higher model, then pass the subproblem
as a complete task to the solver. If a maximum number of a while-loop iterations is
computed, one would elaborate the while-loops and flatten the C-programs. Flattening a
program leads to convert a complete program to one large formula in a non-conditional
while-loop. Thus, instead of solving a program iteratively by using BMC and considering
each conditional branching in a nested while-block as a step, one can flatten the while-
block and encode it as one SMT formula which can be solved in one step. This will
optimise the verification process by a fair margin and fulfil the industrial needs.

6.2.4 Integrating generalized Craig interpolation with DPLL-based SSMT
solving

SiSAT [Tei12] is a DPLL-based SSMT model checker that can solve probabilistic bounded
reachability problems besides solving SSAT and SSMT problems as well. Generalized

1There are some classes proven to be decidable. e.g. [Tiw04, Bra06], where other classes are undecid-
able [XZ10]

159

6.2. OUTLOOK

Craig inteprolation has three rules, namely GR.1, GR.2 and GR.3 (cf. Section 5.4), which
are built on top of the SSMT resolution rules, namely RR.1, RR.2, RR.3 and RR.3e, where
all rules can be forthrightly integrated with DPLL-based SSMT solvers except for GR.2 and
RR.2, which need special handling. In RR.2 and GR.2, we aim at finding a clause cl – which
in general is undecidable, since it is equivalent to finding a satisfying (partial) assignment
of an SMT formula (with possible non-linear constraints) in CNF form – that falsifies the
formula. This strong application condition of RR.2 can however be justified with regard to
a potential integration of SSMT resolution into DPLL-based SSMT solvers, since DPLL-
SSMT strongly relies on finding satisfying assignments (or an overapproximation thereof),
confer the base case of DPLL-based SSMT where all clauses in ϕ are equivalent to true.
Observe that whenever a satisfying (partial) assignment τ ′ of ϕ is found by a DPLL-based
SSMT solver then |= ϕ[τ ′(y1)/y1]...[τ ′(yk)/yk] with y1, ..., yk ∈ V ar(ϕ) being all variables
for which τ ′(y1), ..., τ ′(yk) are defined.

It is then straightforward to construct from τ ′ a clause cl which meets the requirements of
RR.2, namely for each x ∈ V (cl): (x ∼ a) ∈ cl if and only if τ ′(x) = b where (x = b)∧ (x ∼
a) |= false. This allows us to compute the GCI in DPLL-based SSMT solvers, and
consequently handle probabilistic unbounded reachability problems within SiSAT instead
of using ProHVer for abstracting probabilistic hybrid automata.

160

Heat
Ṫ = 2
t ≤ 3

T ≤ 10

Cool
Ṫ = −T
T ≥ 5

Error
Ṫ = 0

Check
Ṫ = −T/2

t ≤ 1

T
≥
9

T
≤
6
→
t
′ :=

0

t ≥
2→

t ′=
0

t ≥ 0.5→

0.95 : t′ = 0

0.05

t = 0 ∧ x = 0
9 ≤ T ≤ 10

Initial config

Pr(Error and x ≤ 5) ≤? 0.2

Safety requirement

6.2. OUTLOOK

Appendix A

Appendix usually means "small
outgrowth from large intestine,"
but in this case it means
"additional information
accompanying main text." Or are
those really the same things?
Think carefully before you insult
this book.

(Pseudonymous Bosch)

Computation of interpolants in Thermostat example

In this subsection, we will show how the results of Table 5.1 are obtained2

1. we abstract the PHA model Figure 5.5 by using ProHVer tool [ZSR+10, Fre08] and
the result is shown in Figure 5.8a.

2. we encode the abstract finite-state model into an SSMT formula as proposed in [Tei12,
FHT08]:

• for the first call, we encode the target states in TARGET (x). So the state-set
predicate B0(x) equals TARGET (x).

• for the second call or step, B1(x) equals B1(x) ∨ I1(x).

• for k-th step, Bk+1(x) equals Bk(x) ∨ Ik+1(x), where

Ik+1 = (TRANSM(xj−1, xj) ∧ Bk(xj)
∧
i=1︸ ︷︷ ︸

A

, INITM(x0) ∧
j−1∧
i=1

TRANSM(xi−1, xi)︸ ︷︷ ︸
B

)

• we continue with this step until Bk reaches the least fixed point; i.e., Bk+1(x)→
Bk(x).

• using j does not destroy the “backward-overapproximating” property of Bk+1(x).
Variable j gives us an additional freedom in constructing generalized inter-
polants since j may influence the shape of Ik+1(x) [Tei12].

2By using a prototypical tool (developed under Java 1.7) that performs direct SSMT resolution, re-
specting the quantifiers order as in OBF problems, we compute a general conflict clause and consequently
the generalized Craig interpolation.

162

6.2. OUTLOOK

• the probability (lowest upper bound) of reaching the target states from the
initial states is computed according to the following scheme:

ubk = Pr

Q(k) :

reachable with k steps︷ ︸︸ ︷
(INIT (x0) ∧

k∧
i=1

TRANS(xi−1, xi)∧

stay in B︷ ︸︸ ︷
k∧
i=0

Bk(xi))

 (0.1)

• the probability of reaching the target states from the initial states is computed
according to the following scheme:

lbk = Pr

Q(k) :

reachable with k steps︷ ︸︸ ︷
(INIT (x0) ∧

k∧
i=1

TRANS(xi−1, xi)∧

hit one target︷ ︸︸ ︷
k∨
i=0

TARGETk(xi)

(0.2)

Now the initial encoding variables are:

• INIT =A ∧ ¬B ∧ ¬C ∧ ¬E ∧ ¬F ∧ t = 0 ∧ x = 0 ∧ 9 ≤ T ∧ T ≤ 10.

• Trans-set ={(A, {t ≥ 0, x ≥ 0, T ≤ 10, t = x}, A), (A, true,B), (B, {t ≥ 2, x ≥
0, t = x − 2, T ≤ 10}, B), (B, true, C), (B, true,D), (C, x ≤ 5, C), (D, {t ≥ 0, x ≥
0, t = x − 2.5, T ≤ 10}, D), (D, true,E), (E, {t ≥ 2, x ≥ 0, t = x − 4.5, T ≤
10}, E), (E, true, C), (E, true, F), (F, {t ≥ 0, x ≥ 0, t = x− 5, T ≤ 10})}.

• BDC = (B,D),¬BDC = (B,C), EFC = (E,F),¬EFC = (E,C)

• TRANS = (A → t ≥ 0 ∧ x ≥ 0 ∧ t = x ∧ T ≤ 10 ∧ A), (A → t′ ≥ 2 ∧ x′ ≥ 0 ∧ t′ =
x′ − 2 ∧ T ′ ≤ 10 ∧ B′), (B ∧ BDC → D′ ∧ t′ ≥ 0 ∧ x′ ≥ 0 ∧ t′ = x′ − 2.5 ∧ T ′ ≤
10), (B ∧ ¬BDC → C ′ ∧ x′ ≤ 5), (D → t′ ≥ 2 ∧ x′ ≥ 0 ∧ t′ = x′ − 4.5 ∧ T ′ ≤
10 ∧ E′), (E ∧ EFC → F ∧ x′ ≥ 0 ∧ t′ ≥ 0 ∧ t′ = x′ − 5), (E ∧ ¬EFC → C ′ ∧ x′ ≤
5), (F → t′ ≥ 0 ∧ x′ ≥ 0 ∧ t′ = x′ − 5 ∧ T ′ ≤ 10 ∧ F ′), (C → x′ ≤ 5 ∧ C ′).

• TARGET = C ∧ x ≤ 5

• Quantifiers are Qs = ∃A,B,C,D,E, F representing the current state,
Qs′ = ∃A′, B′, C ′, D′, E′, F ′ representing the next state, Qpc =

R0.95BDC

R0.95EFC
representing the probabilistic choices in the finite-state abstraction, Qv = ∃T, x, t
and Qv′ = ∃T ′, x′, t′ representing the innermost implicit existential quantifiers for
continuous state variables in the current and next transitions respectively.

First Step: Choosing j = 1,

Qx0Qv0Qpc1Qx1Qv1 : (INIT (x0)︸ ︷︷ ︸
B

∧TRANS(x0, x1) ∧ B0(x1)︸ ︷︷ ︸
A

)

where B0(x1) = TARGET (s1) = C1∧x1 ≤ 5. VA = {A1, B1, C1, D1, E1, F1, BDC 1,EFC 1, t1, x1, T1},
VB = {}, and VA,B = {A0, B0, C0, D0, E0, F0, T0, t0, x0}. Resolution with Interpolation is
preformed as follows:

163

6.2. OUTLOOK

c1 = (A0)0.0 I1 = true (GR.1)
c2 = (¬B0)0.0 I2 = true (GR.1)
c3 = (¬C0)0.0 I3 = true (GR.1)
c4 = (¬D0)0.0 I4 = true (GR.1)
c5 = (¬E0)0.0 I5 = true (GR.1)
c6 = (¬F0)0.0 I6 = true (GR.1)
c7 = (t0 = 0)0.0 I7 = true (GR.1)
c8 = (x0 = 0)0.0 I8 = true (GR.1)
c9 = (T0 ≥ 9)0.0 I9 = true (GR.1)
c10 = (T0 ≤ 10)0.0 I10 = true (GR.1)
c11 = (A1∨B1∨C1∨D1∨E1∨F1)0.0 I11 = false (GR.1)
c12 = (¬A1 ∨ ¬B1)0.0 I12 = false (GR.1)
c13 = (¬A1 ∨ ¬C1)0.0 I13 = false (GR.1)
c14 = (¬A1 ∨ ¬D1)0.0 I14 = false (GR.1)
c15 = (¬A1 ∨ ¬E1)0.0 I15 = false (GR.1)
c16 = (¬A1 ∨ ¬F1)0.0 I16 = false (GR.1)
c17 = (¬B1 ∨ ¬C1)0.0 I17 = false (GR.1)
c18 = (¬B1 ∨ ¬D1)0.0 I18 = false (GR.1)
c19 = (¬B1 ∨ ¬E1)0.0 I19 = false (GR.1)
c20 = (¬B1 ∨ ¬F1)0.0 I20 = false (GR.1)
c21 = (¬C1 ∨ ¬D1)0.0 I21 = false (GR.1)
c22 = (¬C1 ∨ ¬E1)0.0 I22 = false (GR.1)
c23 = (¬C1 ∨ ¬F1)0.0 I23 = false (GR.1)
c24 = (¬D1 ∨ ¬E1)0.0 I24 = false (GR.1)
c25 = (¬D1 ∨ ¬F1)0.0 I25 = false (GR.1)
c26 = (¬E1 ∨ ¬F1)0.0 I26 = false (GR.1)
c27 = (¬A0 ∨ t0 ≥ 0)0.0 I27 = false (GR.1)
c28 = (¬A0 ∨ ∨x0 ≥ 0)0.0 I28 = false (GR.1)
c29 = (¬A0 ∨ t0 = x0)0.0 I29 = false (GR.1)
c30 = (¬A0 ∨ T0 ≤ 10)0.0 I30 = false (GR.1)
c31 = (¬A0 ∨B1)0.0 I31 = false (GR.1)
c32 = (¬A0 ∨ t1 ≥ 2)0.0 I32 = false (GR.1)
c33 = (¬A0 ∨ x1 ≥ 0)0.0 I33 = false (GR.1)
c34 = (¬A0 ∨ t1 = x1 − 2)0.0 I34 = false (GR.1)
c35 = (¬A0 ∨ T1 ≤ 10)0.0 I35 = false (GR.1)
c36 = (¬B0 ∨ ¬BDC 1 ∨D1)0.0 I36 = false (GR.1)
c37 = (¬B0 ∨ ¬BDC 1 ∨ T1 ≤ 10)0.0 I37 = false (GR.1)
c38 = (¬B0 ∨ ¬BDC 1 ∨ t1 ≥ 0)0.0 I38 = false (GR.1)
c39 = (¬B0 ∨ ¬BDC 1 ∨ x1 ≥ 0)0.0 I39 = false (GR.1)
c40 = (¬B0 ∨ ¬BDC 1 ∨ t1 = x1 −
2.5)0.0

I40 = false (GR.1)

c41 = (¬B0 ∨ BDC 1 ∨ C1)0.0 I41 = false (GR.1)
c42 = (¬B0 ∨ BDC 1 ∨ x1 ≤ 5)0.0 I42 = false (GR.1)
c43 = (¬D0 ∨ E1)0.0 I43 = false (GR.1)
c44 = (¬D0 ∨ t1 ≥ 2)0.0 I44 = false (GR.1)
c45 = (¬D0 ∨ x1 ≥ 0)0.0 I45 = false (GR.1)
c46 = (¬D0 ∨ t1 = x1 − 4.5)0.0 I46 = false (GR.1)

164

6.2. OUTLOOK

c47 = (¬D0 ∨ T1 ≤ 10)0.0 I47 = false (GR.1)
c48 = (¬E0 ∨ EFC 1 ∨ C1)0.0 I48 = false (GR.1)
c49 = (¬E0 ∨ EFC 1 ∨ x1 ≤ 5)0.0 I49 = false (GR.1)
c50 = (¬E0 ∨ ¬EFC 1 ∨ F1)0.0 I50 = false (GR.1)
c51 = (¬E0 ∨ ¬EFC 1 ∨ x1 ≥ 0)0.0 I51 = false (GR.1)
c52 = (¬E0∨¬EFC 1∨t1 = x1−5)0.0 I52 = false (GR.1)
c53 = (¬E0 ∨ ¬EFC 1 ∨ T1 ≤ 10)0.0 I53 = false (GR.1)
c54 = (¬C0 ∨ C1)0.0 I54 = false (GR.1)
c55 = (¬C0 ∨ x≤5)0.0 I55 = false (GR.1)
c56 = (¬F0 ∨ F1)0.0 I56 = false (GR.1)
c57 = (¬F0 ∨ x1 ≥ 0)0.0 I57 = false (GR.1)
c58 = (¬F0 ∨ t1 ≥ 0)0.0 I58 = false (GR.1)
c59 = (¬F0 ∨ t1 = x1 − 5)0.0 I59 = false (GR.1)
c60 = (C1)0.0 I60 = false (GR.1)
c61 = (x1 ≤ 5)0.0 I61 = false (GR.1)
c62 = (¬B1)0.0 I62 = false (GR.3), c17, c60
c63 = (¬A0)0.0 I63 = false (GR.3), c31, c62
c64 = ∅0.0 I64 = ¬A0 (GR.3), c1, c63

The interpolant i.e I is ¬A.3 Then the maximum upper bound probability is 1 /. We
can not gain any information. So we need to change the shape of the transition system by
increasing j.

Second Step: Choosing j = 2, and we overapproximate the reachable states from the
target states; i.e.,

Qx0Qv0Qpc1Qx1Qv1Qpc2Qx2Qv2 :

(INIT (x0) ∧ TRANS(x0, x1)︸ ︷︷ ︸
B

∧TRANS(x1, x2) ∧ B0(x2)︸ ︷︷ ︸
A

)

where B0(x2) = TARGET (x2) = C2∧x2 ≤ 5, VA = {A2, B2, C2, D2, E2, F2, BDC 2,EFC 2, t2, x2, T2},
VB = {A0, B0, C0, D0, E0, F0, T0, t0, x0, BDC 1, EFC 1 }, VA,B = {A1, B1, C1, D1, E1, F1, T1, t1, x1}.
Resolution with Interpolation is preformed as follows:

c1 = (A0)0.0 I1 = true (GR.1)
c2 = (¬B0)0.0 I2 = true (GR.1)
c3 = (¬C0)0.0 I3 = true (GR.1)
c4 = (¬D0)0.0 I4 = true (GR.1)
c5 = (¬E0)0.0 I5 = true (GR.1)
c6 = (¬F0)0.0 I6 = true (GR.1)
c7 = (t0 = 0)0.0 I7 = true (GR.1)
c8 = (x0 = 0)0.0 I8 = true (GR.1)
c9 = (T0 ≥ 9)0.0 I9 = true (GR.1)
c10 = (T0 ≤ 10)0.0 I10 = true (GR.1)
c11 = (A1∨B1∨C1∨D1∨E1∨F1)0.0 I11 = true (GR.1)
c12 = (¬A1 ∨ ¬B1)0.0 I12 = true (GR.1)

3The original interpolant is decorated with 0, however, we eliminate this subscript index by considering
the original predicate (for more details, see [McM03, McM05]).

165

6.2. OUTLOOK

c13 = (¬A1 ∨ ¬C1)0.0 I13 = true (GR.1)
c14 = (¬A1 ∨ ¬D1)0.0 I14 = true (GR.1)
c15 = (¬A1 ∨ ¬E1)0.0 I15 = true (GR.1)
c16 = (¬A1 ∨ ¬F1)0.0 I16 = true (GR.1)
c17 = (¬B1 ∨ ¬C1)0.0 I17 = true (GR.1)
c18 = (¬B1 ∨ ¬D1)0 I18 = true (GR.1)
c19 = (¬B1 ∨ ¬E1)0 I19 = true (GR.1)
c20 = (¬B1 ∨ ¬F1)0.0 I20 = true (GR.1)
c21 = (¬C1 ∨ ¬D1)0.0 I21 = true (GR.1)
c22 = (¬C1 ∨ ¬E1)0.0 I22 = true (GR.1)
c23 = (¬C1 ∨ ¬F1)0.0 I23 = true (GR.1)
c24 = (¬D1 ∨ ¬E1)0.0 I24 = true (GR.1)
c25 = (¬D1 ∨ ¬F1)0.0 I25 = true (GR.1)
c26 = (¬E1 ∨ ¬F1)0.0 I26 = true (GR.1)
c27 = (¬A0 ∨ t0 ≥ 0)0.0 I27 = true (GR.1)
c28 = (¬A0 ∨ ∨x0 ≥ 0)0.0 I28 = true (GR.1)
c29 = (¬A0 ∨ t0 = x0)0.0 I29 = true (GR.1)
c30 = (¬A0 ∨ T0 ≤ 10)0.0 I30 = true (GR.1)
c31 = (¬A0 ∨B1)0.0 I31 = true (GR.1)
c32 = (¬A0 ∨ t1 ≥ 2)0.0 I32 = true (GR.1)
c33 = (¬A0 ∨ x1 ≥ 0)0.0 I33 = true (GR.1)
c34 = (¬A0 ∨ t1 = x1 − 2)0.0 I34 = true (GR.1)
c35 = (¬A0 ∨ T1 ≤ 10)0.0 I35 = true (GR.1)
c36 = (¬B0 ∨ ¬BDC 1 ∨D1)0.0 I36 = true (GR.1)
c37 = (¬B0 ∨ ¬BDC 1 ∨ T1 ≤ 10)0.0 I37 = true (GR.1)
c38 = (¬B0 ∨ ¬BDC 1 ∨ t1 ≥ 0)0.0 I38 = true (GR.1)
c39 = (¬B0 ∨ ¬BDC 1 ∨ x1 ≥ 0)0.0 I39 = true (GR.1)
c40 = (¬B0 ∨ ¬BDC 1 ∨ t1 = x1 −
2.5)0.0

I40 = true (GR.1)

c41 = (¬B0 ∨ BDC 1 ∨ C1)0.0 I41 = true (GR.1)
c42 = (¬B0 ∨ BDC 1 ∨ x1 ≤ 5)0.0 I42 = true (GR.1)
c43 = (¬D0 ∨ E1)0.0 I43 = true (GR.1)
c44 = (¬D0 ∨ t1 ≥ 2)0.0 I44 = true (GR.1)
c45 = (¬D0 ∨ x1 ≥ 0)0.0 I45 = true (GR.1)
c46 = (¬D0 ∨ t1 = x1 − 4.5)0.0 I46 = true (GR.1)
c47 = (¬D0 ∨ T1 ≤ 10)0.0 I47 = true (GR.1)
c48 = (¬E0 ∨ EFC 1 ∨ C1)0.0 I48 = true (GR.1)
c49 = (¬E0 ∨ EFC 1 ∨ x1 ≤ 5)0.0 I49 = true (GR.1)
c50 = (¬E0 ∨ ¬EFC 1 ∨ F1)0.0 I50 = true (GR.1)
c51 = (¬E0 ∨ ¬EFC 1 ∨ x1 ≥ 0)0.0 I51 = true (GR.1)
c52 = (¬E0∨¬EFC 1∨t1 = x1−5)0.0 I52 = true (GR.1)
c53 = (¬E0 ∨ ¬EFC 1 ∨ T1 ≤ 10)0.0 I53 = true (GR.1)
c54 = (¬C0 ∨ C1)0.0 I54 = true (GR.1)
c55 = (¬C0 ∨ x≤5)0.0 I55 = true (GR.1)
c56 = (¬F0 ∨ F1)0.0 I56 = true (GR.1)
c57 = (¬F0 ∨ x1 ≥ 0)0.0 I57 = true (GR.1)
c58 = (¬F0 ∨ t1 ≥ 0)0.0 I58 = true (GR.1)

166

6.2. OUTLOOK

c59 = (¬F0 ∨ t1 = x1 − 5)0.0 I59 = true (GR.1)
c60 = (A2∨B2∨C2∨D2∨E2∨F2)0.0 I60 = false (GR.1)
c61 = (¬A2 ∨ ¬B2)0.0 I61 = false (GR.1)
c62 = (¬A2 ∨ ¬C2)0.0 I62 = false (GR.1)
c63 = (¬A2 ∨ ¬D2)0.0 I63 = false (GR.1)
c64 = (¬A2 ∨ ¬E2)0.0 I64 = false (GR.1)
c65 = (¬A2 ∨ ¬F2)0.0 I65 = false (GR.1)
c66 = (¬B2 ∨ ¬C2)0.0 I66 = false (GR.1)
c67 = (¬B2 ∨ ¬D2)0.0 I67 = false (GR.1)
c68 = (¬B2 ∨ ¬E2)0.0 I68 = false (GR.1)
c69 = (¬B2 ∨ ¬F2)0.0 I69 = false (GR.1)
c70 = (¬C2 ∨ ¬D2)0.0 I70 = false (GR.1)
c71 = (¬C2 ∨ ¬E2)0.0 I71 = false (GR.1)
c72 = (¬C2 ∨ ¬F2)0.0 I72 = false (GR.1)
c73 = (¬D2 ∨ ¬E2)0.0 I73 = false (GR.1)
c74 = (¬D2 ∨ ¬F2)0.0 I74 = false (GR.1)
c75 = (¬E2 ∨ ¬F2)0.0 I75 = false (GR.1)
c76 = (¬A1 ∨ t1 ≥ 0)0.0 I76 = false (GR.1)
c77 = (¬A1 ∨ ∨x1 ≥ 0)0.0 I77 = false (GR.1)
c78 = (¬A1 ∨ t1 = x1)0.0 I78 = false (GR.1)
c79 = (¬A1 ∨ T1 ≤ 10)0.0 I79 = false (GR.1)
c80 = (¬A1 ∨B2)0.0 I80 = false (GR.1)
c81 = (¬A1 ∨ t2 ≥ 2)0.0 I81 = false (GR.1)
c82 = (¬A1 ∨ x2 ≥ 0)0.0 I82 = false (GR.1)
c83 = (¬A1 ∨ t2 = x2 − 2)0.0 I83 = false (GR.1)
c84 = (¬A1 ∨ T2 ≤ 10)0.0 I84 = false (GR.1)
c85 = (¬B1 ∨ ¬BDC 2 ∨D2)0.0 I85 = false (GR.1)
c86 = (¬B1 ∨ ¬BDC 2 ∨ T2 ≤ 10)0.0 I86 = false (GR.1)
c87 = (¬B1 ∨ ¬BDC 2 ∨ t2 ≥ 0)0.0 I87 = false (GR.1)
c88 = (¬B1 ∨ ¬BDC 2 ∨ x2 ≥ 0)0.0 I88 = false (GR.1)
c89 = (¬B1 ∨ ¬BDC 2 ∨ t2 = x2 −
2.5)0.0

I89 = false (GR.1)

c92 = (¬D1 ∨ E2)0.0 I92 = false (GR.1)
c93 = (¬D1 ∨ t2 ≥ 2)0.0 I93 = false (GR.1)
c94 = (¬D1 ∨ x2 ≥ 0)0.0 I94 = false (GR.1)
c95 = (¬D1 ∨ t2 = x2 − 4.5)0.0 I95 = false (GR.1)
c96 = (¬D1 ∨ T2 ≤ 10)0.0 I96 = false (GR.1)
c97 = (¬E1 ∨ EFC 2 ∨ C2)0.0 I97 = false (GR.1)
c98 = (¬E1 ∨ EFC 2 ∨ x2 ≤ 5)0.0 I98 = false (GR.1)
c99 = (¬E1 ∨ ¬EFC 2 ∨ F2)0.0 I99 = false (GR.1)
c100 = (¬E1 ∨ ¬EFC 2 ∨ x2 ≥ 0)0.0 I100 = false (GR.1)
c101 = (¬E1 ∨ ¬EFC 2 ∨ t2 = x2 −
5)0.0

I101 = false (GR.1)

c102 = (¬E1 ∨ ¬EFC 2 ∨ T2 ≤ 10)0.0 I102 = false (GR.1)
c103 = (¬C1 ∨ C2)0.0 I103 = false (GR.1)
c104 = (¬C1 ∨ x2 ≤ 5)0.0 I104 = false (GR.1)
c105 = (¬F1 ∨ F2)0.0 I105 = false (GR.1)

167

6.2. OUTLOOK

c106 = (¬F1 ∨ x2 ≥ 0)0.0 I106 = false (GR.1)
c107 = (¬F1 ∨ t2 ≥ 0)0.0 I107 = false (GR.1)
c108 = (¬F1 ∨ t2 = x2 − 5)0.0 I108 = false (GR.1)
c109 = (C2)0.0 I109 = false (GR.1)
c110 = (x2 ≤ 5)0.0 I110 = false (GR.1)
c111 = (¬A0 ∨ B0 ∨ C0 ∨D0 ∨ E0 ∨
F0 ∨ x0 < 0 ∨ x0 > 0 ∨ t0 < 0 ∨ t0 >
0 ∨ T0 > 10 ∨ T0 < 9 ∨ A1 ∨ ¬B1 ∨
C1 ∨ D1 ∨ E1 ∨ F1 ∨ t1 > 2 ∨ x1 >
2 ∨ T1 > 10 ∨A2 ∨B2 ∨ ¬C2 ∨D2 ∨
E2 ∨ F2 ∨ BDC 2 ∨ x2 > 5)1.0

I111 = DC (GR.2)

. . .

. . .

. . .
c112 = ∅1.0 I112 = (((((((¬D1 ∧

(((DC∨t1 < 2.0)∨x1 <
2.0)∨D1))∨A1)∨C1)∨
E1)∨F1)∨¬B1)∧¬F1)

(GR.3)

So I112 = (((((((¬D1∧(((DC∨t1 < 2.0)∨x1 < 2.0)∨D1))∨A1)∨C1)∨E1)∨F1)∨¬B1)∧¬F1).
In order to maximize the interpolant, we choose the value of DC, to be true. Therefore,
I112 = ¬F1. Consequently,

• I1(x) = (¬F).

• B1(x) = B0(s) ∨ I1(x).

• B1(x) 6→ B0(x) i.e. (¬F) ∨ (C ∧ x ≤ 5) 6→ (C ∧ x ≤ 5).

Third Step: We over-approximate the reachable states from the target states by replacing
B0(x) by B1(x). Then we apply the exact scheme as before. Also, the clauses from c1 to
c108 remain the same. We will replace only the target and apply the same procedure as
above.

c109 = (C2 ∨ ¬F2)0.0 I109 = false (GR.1)
c110 = (x2 ≤ 5 ∨ ¬F2)0.0 I110 = false (GR.1)
c111 = (¬A0 ∨ B0 ∨ C0 ∨D0 ∨ E0 ∨
F0 ∨ x0 < 0 ∨ x0 > 0 ∨ t0 < 0 ∨ t0 >
0 ∨ T0 > 10 ∨ T0 < 9 ∨ A1 ∨ ¬B1 ∨
C1 ∨ D1 ∨ E1 ∨ F1 ∨ t1 > 2 ∨ x1 >
2 ∨ T1 > 10 ∨D2 ∨ F2 ∨ BDC 2)1.0

I111 = DC (GR.2)

. . .

. . .

. . .
c112 = ∅0.05 I112 = ((((((¬F1 ∧

(((DC∨t1 < 2.0)∨x1 <
2.0)∨F1))∨A1)∨C1)∨
D1) ∨ E1) ∨ ¬B1)

(GR.3)

168

6.2. OUTLOOK

I112 = ((((((¬F1 ∧ (((DC ∨ t1 < 2.0) ∨ x1 < 2.0) ∨ F1)) ∨ A1) ∨ C1) ∨ D1) ∨ E1) ∨ ¬B1)
In order to maximize the interpolant, we choose the value of DC, to be true. Therefore,
I112 = ¬F1. Consequently,

• I2(x) = ¬F .

• B2(x) = B1(x) ∨ I2(x).

• B2(x)→ B1(x) i.e. ¬F ∨ (C ∧ x ≤ 5)→ ¬F ∨ (C ∧ x ≤ 5).

So the interpolant stabilizes and that means we have overapproximated the reachable
states of the system. Generally, as long as j increases, one gets more precise result in each
iteration, however the complexity of the model increases rapidly.

169

Bibliography

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.
Sci., 138(1):3–34, 1995.

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Grossman et al. [GNRR93], pages 209–
229.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. TCS,
126(2):183–235, 1994.

[AGC12] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An
interpolation-based algorithm for inter-procedural verification. In Kuncak
and Rybalchenko [KR12], pages 39–55.

[AHH96] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic
verification of embedded systems. IEEE Trans. Software Eng., 22(3):181–
201, 1996.

[AHS96] Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors. Hybrid
Systems III: Verification and Control, Proceedings of the DIMACS/SYCON
Workshop, October 22-25, 1995, Ruttgers University, New Brunswick, NJ,
USA, volume 1066 of Lecture Notes in Computer Science. Springer, 1996.

[Air16] Aviation Safety Boeing Commercial Airplanes. Statistical summary of com-
mercial jet airplane accidents. Aviation Safety – Boeing Commercial Air-
planes, July 2016.

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–
516, 1978.

[Alb15] Aws Albargouthi. Software Verification with Program-Graph Interpolation
and Abstraction. PhD thesis, University of Toronto, 2015.

[ALGC12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A
framework for abstraction- and interpolation-based software verification.
In Madhusudan and Seshia [MS12], pages 672–678.

[Alt95] Russ B. Altman. A probabilistic approach to determining biological struc-
ture: integrating uncertain data sources. Int. J. Hum.-Comput. Stud.,
42(6):593–616, 1995.

171

Bibliography

[Alu11] Rajeev Alur. Formal verification of hybrid systems. In Samarjit
Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah, and Sebastian Fischmeis-
ter, editors, Proceedings of the 11th International Conference on Embedded
Software, EMSOFT 2011, part of the Seventh Embedded Systems Week,
ESWeek 2011, Taipei, Taiwan, October 9-14, 2011, pages 273–278. ACM,
2011.

[AM13a] Martin Fränzle Ahmed Mahdi. Resolution for stochastic modulo theories.
Technical report, Carl von Ossietzky University, Escherweg .2 26122, De-
cember 2013.

[AM13b] Aws Albarghouthi and Kenneth L. McMillan. Beautiful interpolants. In
Sharygina et al. [S+13], pages 313–329.

[And95] Henrik Reif Andersen. Partial model checking (extended abstract). In LICS,
pages 398–407. IEEE Computer Society, 1995.

[AS12] Stephan Arlt and Martin Schäf. Joogie: Infeasible code detection for java.
In Madhusudan and Seshia [MS12], pages 767–773.

[AWD+14] Sergio Feo Arenis, Bernd Westphal, Daniel Dietsch, Marco Muñiz, and Ah-
mad Siyar Andisha. The wireless fire alarm system: Ensuring conformance
to industrial standards through formal verification. In Cliff B. Jones, Pekka
Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th In-
ternational Symposium, Singapore, May 12-16, 2014. Proceedings, volume
8442 of Lecture Notes in Computer Science, pages 658–672. Springer, 2014.

[BB06] Constantinos Bartzis and Tevfik Bultan. Efficient bdds for bounded arith-
metic constraints. STTT, 8(1):26–36, 2006.

[BCC+11] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, and Xavier Rival. Static analysis by abstract
interpretation of embedded critical software. ACM SIGSOFT Software En-
gineering Notes, 36(1):1–8, 2011.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, Amsterdam, The Nether-
lands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science, pages 193–207. Springer, 1999.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, Formal Methods for Components and Objects,
4th International Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1-4, 2005, Revised Lectures, volume 4111 of Lecture Notes in
Computer Science, pages 364–387. Springer, 2005.

[BCKS08] Surendra Bommu, Kameshwar Chandrasekar, Rahul Kundu, and Sanjay

172

Bibliography

Sengupta. CONCAT: conflict driven learning in ATPG for industrial de-
signs. In Douglas Young and Nur A. Touba, editors, 2008 IEEE Interna-
tional Test Conference, ITC 2008, Santa Clara, California, USA, October
26-31, 2008, pages 1–10. IEEE, 2008.

[BDG+13] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel
Kroening. Interpolation-based verification of floating-point programs with
abstract CDCL. In Francesco Logozzo and Manuel Fähndrich, editors,
Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA,
USA, June 20-22, 2013. Proceedings, volume 7935 of Lecture Notes in Com-
puter Science, pages 412–432. Springer, 2013.

[BDG+14] Martin Brain, Vijay D’Silva, Alberto Griggio, Leopold Haller, and Daniel
Kroening. Deciding floating-point logic with abstract conflict driven clause
learning. Formal Methods in System Design, 45(2):213–245, 2014.

[BDL04] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Meth-
ods for the Design of Real-Time Systems, International School on Formal
Methods for the Design of Computer, Communication and Software Sys-
tems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lec-
tures, volume 3185 of Lecture Notes in Computer Science, pages 200–236.
Springer, 2004.

[BDP03] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. DPLL with
caching: A new algorithm for #sat and bayesian inference. Electronic Col-
loquium on Computational Complexity ECCC, 10(003), 2003.

[Bel57] Richard Bellman. A Markovian Decision Process. Indiana Univ. Math. J.,
6:679–684, 1957.

[Ben96] Frédéric Benhamou. Heterogeneous constraint solving. In Michael Hanus
and Mario Rodríguez-Artalejo, editors, ALP, volume 1139 of Lecture Notes
in Computer Science, pages 62–76. Springer, 1996.

[Ber00] Janick Bergeron. Writing testbenches : functional verification of HDL mod-
els. Kluwer Academic, Boston, 2000. Index.

[BG96] Frédéric Benhamou and Laurent Granvilliers. Combining local consistency,
symbolic rewriting and interval methods. In Artificial Intelligence and
Symbolic Mathematical Computation, International Conference AISMC-3,
Steyr, Austria, September 23-25, 1996, Proceedings, pages 144–159, 1996.

[BG06] Frédéric Benhamou and Laurent Granvilliers. Continuous and interval con-
straints. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of
Constraint Programming, chapter 16. Elsevier, 2006.

[BGD11] Maria Domenica Di Benedetto, Stefano Di Gennaro, and Alessandro
D’Innocenzo. Verification of hybrid automata diagnosability by abstrac-
tion. IEEE TAC, 56(9):2050–2061, 2011.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker blast. STTT, 9(5-6):505–525, 2007.

173

Bibliography

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
software verification: Concretizing the convergence of model checking and
program analysis. In CAV, pages 504–518, 2007.

[BJ06] Thomas Ball and Robert B. Jones, editors. Computer Aided Verification,
18th International Conference, CAV 2006, Seattle, WA, USA, August 17-
20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer Science.
Springer, 2006.

[BK04] Per Bjesse and James H. Kukula. Using counter example guided abstraction
refinement to find complex bugs. In DATE, pages 156–161. IEEE Computer
Society, 2004.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BK09] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable
software verification. CoRR, abs/0902.0019, 2009.

[BK11] Federico Bergero and Ernesto Kofman. Powerdevs: a tool for hybrid system
modeling and real-time simulation. Simulation, 87(1-2):113–132, 2011.

[BKRW10] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl.
Beyond quantifier-free interpolation in extensions of presburger arithmetic
(extended technical report). CoRR, abs/1011.1036, 2010.

[BKW08] Angelo Brillout, Daniel Kroening, and Thomas Wahl. Craig interpolation
for quantifier-free presburger arithmetic. CoRR, abs/0811.3521, 2008.

[BL12] Dirk Beyer and Stefan Löwe. Explicit-value analysis based on cegar and
interpolation. CoRR, abs/1212.6542, 2012.

[BLL+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. UPPAAL - a tool suite for automatic verification of
real-time systems. In Alur et al. [AHS96], pages 232–243.

[BLW86] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936. Claren-
don Press, New York, NY, USA, 1986.

[BMH94] Frédéric Benhamou, David A. McAllester, and Pascal Van Hentenryck.
Clp(intervals) revisited. In Maurice Bruynooghe, editor, ILPS, pages 124–
138. MIT Press, 1994.

[BP01] Dimitris Bertsimas and Ioannis Ch. Paschalidis. Probabilistic service level
guarantees in make-to-stock manufacturing systems. Operations Research,
49(1):119–133, 2001.

[BR00] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In Klaus Havelund, John Penix, and Willem Visser,
editors, SPIN Model Checking and Software Verification, 7th International
SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000, Pro-
ceedings, volume 1885 of Lecture Notes in Computer Science, pages 113–130.
Springer, 2000.

174

Bibliography

[Bra06] Mark Braverman. Termination of integer linear programs. In Ball and Jones
[BJ06], pages 372–385.

[Bro98] Manfred Broy. A functional rephrasing of the assumption/commitment
specification style. Formal Methods in System Design, 13(1):87–119, 1998.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[BS92] Mark Bickford and Mandayam K. Srivas. Verification of a fault-tolerant
property of a multiprocessor system: A case study in theorem prover-based
verification. In Victoria Stavridou, Thomas F. Melham, and Raymond T.
Boute, editors, Theorem Provers in Circuit Design, Proceedings of the IFIP
TC10/WG 10.2 International Conference on Theorem Provers in Circuit
Design: Theory, Practice and Experience, Nijmegen, The Netherlands, 22-
24 June 1992, Proceedings, volume A-10 of IFIP Transactions, pages 225–
251. North-Holland, 1992.

[BS12] Dirk Beyer and Andreas Stahlbauer. BDD-based software model checking
with CPAchecker. In Antonín Kucera, Thomas A. Henzinger, Jaroslav Ne-
setril, Tomás Vojnar, and David Antos, editors, MEMICS, volume 7721 of
Lecture Notes in Computer Science, pages 1–11. Springer, 2012.

[BS14] Dirk Beyer and Andreas Stahlbauer. Bdd-based software verification - ap-
plications to event-condition-action systems. STTT, 16(5):507–518, 2014.

[Bue62] Julius R. Buechi. On a Decision Method in Restricted Second-Order Arith-
metic. In International Congress on Logic, Methodology, and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

[BW12] Dirk Beyer and Philipp Wendler. Algorithms for software model checking:
Predicate abstraction vs. impact. In Gianpiero Cabodi and Satnam Singh,
editors, FMCAD, pages 106–113. IEEE, 2012.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. ISOP’76, pages 106–130. Dunod, Paris, France, 1976.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi,
editors, Conference Record of the Fourth ACM Symposium on Principles
of Programming Languages, Los Angeles, California, USA, January 1977,
pages 238–252. ACM, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application
to logic programs. J. Log. Program., 13(2&3):103–179, 1992.

[CC14] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present
and future. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, page 2. ACM, 2014.

175

Bibliography

[CCC+93] Chrysler Corporation, Ford Motor Company, General Motors Corporation,
American Society for Quality Control, and Automotive Industry Action
Group. Potential Failure Mode and Effects Analysis (FMEA): Reference
Manual. Chrysler Corporation, 1993.

[CCK11] Hong-Zu Chou, Kai-Hui Chang, and Sy-Yen Kuo. Facilitating unreachable
code diagnosis and debugging. In Proceedings of the 16th Asia South Pa-
cific Design Automation Conference, ASP-DAC 2011, Yokohama, Japan,
January 25-27, 2011, pages 485–490. IEEE, 2011.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Co-
rina S. Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-
state models from java source code. In Carlo Ghezzi, Mehdi Jazayeri, and
Alexander L. Wolf, editors, Proceedings of the 22nd International Confer-
ence on on Software Engineering, ICSE 2000, Limerick Ireland, June 4-11,
2000., pages 439–448. ACM, 2000.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Dexter Kozen,
editor, Logics of Programs, Workshop, Yorktown Heights, New York, May
1981, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer, 1981.

[CF87] William W. Carlson and José A. B. Fortes. On the performance of combined
data flow and control flow systems: Experiments using two iterative algo-
rithms. In International Conference on Parallel Processing, ICPP’87, Uni-
versity Park, PA, USA, August 1987., pages 671–679. Pennsylvania State
University Press, 1987.

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Krishnamani
Kalyanasundaram, and Marco Roveri. Tighter integration of bdds and smt
for predicate abstraction. In DATE, pages 1707–1712. IEEE, 2010.

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël
Ouaknine, Olaf Stursberg, and Michael Theobald. Abstraction and
counterexample-guided refinement in model checking of hybrid systems. Int.
J. Found. Comput. Sci., 14(4):583–604, 2003.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson
and A. Prasad Sistla, editors, Computer Aided Verification, 12th Interna-
tional Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Pro-
ceedings, volume 1855 of Lecture Notes in Computer Science, pages 154–169.
Springer, 2000.

[CGK97] Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. A C++
data model supporting reachability analysis and dead code detection. In
Mehdi Jazayeri and Helmut Schauer, editors, Software Engineering - ES-
EC/FSE ’97, 6th European Software Engineering Conference Held Jointly
with the 5th ACM SIGSOFT Symposium on Foundations of Software Engi-

176

Bibliography

neering, Zurich, Switzerland, September 22-25, 1997, Proceedings, volume
1301 of Lecture Notes in Computer Science, pages 414–431. Springer, 1997.

[CGK98] Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. AC++
data model supporting reachability analysis and dead code detection. IEEE
Trans. Software Eng., 24(9):682–694, 1998.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu.
Learning assumptions for compositional verification. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2619
of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

[CGS04] Edmund M. Clarke, Anubhav Gupta, and Ofer Strichman. Sat-based
counterexample-guided abstraction refinement. IEEE Trans. on CAD of
Integrated Circuits and Systems, 23(7):1113–1123, 2004.

[CGS08] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
interpolant generation in satisfiability modulo theories. In Ramakrishnan
and Rehof [RR08], pages 397–412.

[CGS10] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient gen-
eration of craig interpolants in satisfiability modulo theories. ACM Trans.
Comput. Log., 12(1):7, 2010.

[Che09] James Chelini. Working towards do-178c/ed-12c, do-248c/ed-94c, and DO-
278A/ED109A. In Greg Gicca and Jeff Boleng, editors, Proceedings of
the 2009 Annual ACM SIGAda International Conference on Ada, Saint
Petersburg, Florida, USA, November 1-5, 2009, pages 103–104. ACM, 2009.

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
interpolating SMT solver. In Alastair F. Donaldson and David Parker,
editors, SPIN, volume 7385 of Lecture Notes in Computer Science, pages
248–254. Springer, 2012.

[CHN13] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. Proof tree preserving
interpolation. In Piterman and Smolka [PS13b], pages 124–138.

[CHS12] Jürgen Christ, Jochen Hoenicke, and Martin Schäf. Towards bounded in-
feasible code detection. CoRR, abs/1205.6527, 2012.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, 10th International Conference, TACAS 2004, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings,
pages 168–176, 2004.

177

Bibliography

[Cla03] Edmund M. Clarke. Sat-based counterexample guided abstraction refine-
ment in model checking. In Franz Baader, editor, CADE, volume 2741 of
Lecture Notes in Computer Science, page 1. Springer, 2003.

[CNQ03] Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Improving sat-based
bounded model checking by means of BDD-based approximate traversals.
In 2003 Design, Automation and Test in Europe Conference and Exposition
(DATE 2003), 3-7 March 2003, Munich, Germany, pages 10898–10905.
IEEE Computer Society, 2003.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. Ma-
chine Intelligence, 7:91–99, 1972.

[Cou12] Patrick Cousot. Formal verification by abstract interpretation. In Alwyn
Goodloe and Suzette Person, editors, NASA Formal Methods - 4th Inter-
national Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Pro-
ceedings, volume 7226 of Lecture Notes in Computer Science, pages 3–7.
Springer, 2012.

[Cra57] William Craig. Three uses of the herbrand-gentzen theorem in relating
model theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the
art and future directions. ACM Comput. Surv., 28(4):626–643, 1996.

[Dam08] Werner Damm. Contract-based analysis of automotive and avionics appli-
cations: The SPEEDS approach. In Darren D. Cofer et al., editors, FMICS,
volume 5596 of LNCS, page 3. Springer, 2008.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University
Press, Princeton, NJ, 1963.

[Dav84] M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of
nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B, 46(3):353–388,
1984. With discussion.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elimination and
its dual. J. Comb. Theory, Ser. A, 14(3):288–297, 1973.

[DEMS00] Saumya K. Debray, William S. Evans, Robert Muth, and Bjorn De Sutter.
Compiler techniques for code compaction. ACM Trans. Program. Lang.
Syst., 22(2):378–415, 2000.

[DH88] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly
exponential. J. Symb. Comput., 5(1/2):29–35, 1988.

[DHH+06] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, Venkatesh Prasad
Ranganath, Robby, and Todd Wallentine. Evaluating the effectiveness of
slicing for model reduction of concurrent object-oriented programs. In Her-
manns and Palsberg [HP06], pages 73–89.

[DHJ+11] Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and
Ingo Stierand. Using contract-based component specifications for virtual
integration testing and architecture design. In Design, Automation and

178

Bibliography

Test in Europe, DATE 2011, Grenoble, France, March 14-18, 2011, pages
1023–1028. IEEE, 2011.

[DHK13] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract conflict
driven learning. In Roberto Giacobazzi and Radhia Cousot, editors, The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013,
pages 143–154. ACM, 2013.

[DHKR11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rüm-
mer. Software verification using k-induction. In Eran Yahav, editor, Static
Analysis - 18th International Symposium, SAS 2011, Venice, Italy, Septem-
ber 14-16, 2011. Proceedings, volume 6887 of Lecture Notes in Computer
Science, pages 351–368. Springer, 2011.

[DHKT12] Vijay D’Silva, Leopold Haller, Daniel Kroening, and Michael Tautschnig.
Numeric bounds analysis with conflict-driven learning. In Flanagan and
König [FK12], pages 48–63.

[Dij72] Edsger W. Dijkstra. Notes on structured programming. In O. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, editors, Structured Programming, pages 1–82.
Academic Press Ltd., London, UK, 1972.

[DIN97] DIN. Fire detection and fire alarm systems. Technical report, German
version En54, 1997.

[Din13] Nam Thang Dinh. Dead code analysis using satisfiability checking. Master’s
thesis, Carl von Ossietzky Universität Oldenburg, 2013.

[DKK+12] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael
Tautschnig, and Thomas Wahl. Counterexample-guided abstraction re-
finement for symmetric concurrent programs. Formal Methods in System
Design, 41(1):25–44, 2012.

[DKPW10] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weis-
senbacher. Interpolant strength. In Gilles Barthe and Manuel V.
Hermenegildo, editors, Verification, Model Checking, and Abstract Inter-
pretation, 11th International Conference, VMCAI 2010, Madrid, Spain,
January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Com-
puter Science, pages 129–145. Springer, 2010.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[dMB08] Leonardo Mendonca de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Ramakrishnan and Rehof [RR08], pages 337–340.

[DP96] Ferruccio Damiani and Frédéric Prost. Detecting and removing dead-code
using rank 2 intersection. In Eduardo Giménez and Christine Paulin-
Mohring, editors, Types for Proofs and Programs, International Workshop
TYPES’96, Aussois, France, December 15-19, 1996, Selected Papers, vol-
ume 1512 of Lecture Notes in Computer Science, pages 66–87. Springer,
1996.

179

Bibliography

[DT13] Parasara Sridhar Duggirala and Ashish Tiwari. Safety verification for lin-
ear systems. In Proceedings of the International Conference on Embedded
Software, EMSOFT 2013, Montreal, QC, Canada, September 29 - Oct. 4,
2013, pages 7:1–7:10. IEEE, 2013.

[DZT14] Sun Ding, Hongyu Zhang, and Hee Beng Kuan Tan. Detecting infeasible
branches based on code patterns. In Serge Demeyer, Dave Binkley, and
Filippo Ricca, editors, 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-
WCRE 2014, Antwerp, Belgium, February 3-6, 2014, pages 74–83. IEEE
Computer Society, 2014.

[EFH08] Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo ODE:
A direct SAT approach to hybrid systems. In Sungdeok (Steve) Cha, Jin-
Young Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan, editors,
Proceedings of the 6th International Symposium on Automated Technology
for Verification and Analysis (ATVA’08), volume 5311 of Lecture Notes in
Computer Science (LNCS), pages 171–185. Springer-Verlag, 2008.

[EH10] Michael R. Elliott and Peter Heller. Object-oriented software considera-
tions in airborne systems and equipment certification. In William R. Cook,
Siobhán Clarke, and Martin C. Rinard, editors, Companion to the 25th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SPLASH/OOPSLA, 2010, October 17-
21, 2010, Reno/Tahoe, Nevada, USA, pages 85–96. ACM, 2010.

[EHP12] Evren Ermis, Jochen Hoenicke, and Andreas Podelski. Splitting via inter-
polants. In Kuncak and Rybalchenko [KR12], pages 186–201.

[EKS06] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction refinement
with Craig interpolation and symbolic pushdown systems. In Hermanns
and Palsberg [HP06], pages 489–503.

[EKS08] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction refinement
with craig interpolation and symbolic pushdown systems. JSAT, 5(1-4):27–
56, 2008.

[ERNF11] Andreas Eggers, Nacim Ramdani, Nedialko S. Nedialkov, and Martin Frän-
zle. Improving SAT modulo ODE for hybrid systems analysis by combining
different enclosure methods. In Gilles Barthe, Alberto Pardo, and Gerardo
Schneider, editors, Software Engineering and Formal Methods - 9th Inter-
national Conference, SEFM 2011, Montevideo, Uruguay, November 14-18,
2011. Proceedings, volume 7041 of Lecture Notes in Computer Science, pages
172–187. Springer, 2011.

[FB13] Martin Fränzle and Bernd Becker. Accurate dead code detection in embed-
ded c code by arithmetic constraint solving, 2013. Project proposal.

[FGD+11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. SpaceEx: Scalable verification of hybrid systems. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification -

180

Bibliography

23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science,
pages 379–395. Springer, 2011.

[FH07] Martin Fränzle and Christian Herde. Hysat: An efficient proof engine for
bounded model checking of hybrid systems. Formal Methods in System
Design, 30(3):179–198, 2007.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick,
and Lijun Zhang. Measurability and safety verification for stochastic hybrid
systems. In Marco Caccamo, Emilio Frazzoli, and Radu Grosu, editors,
HSCC, pages 43–52. ACM, 2011.

[FHR+07] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert, and
Tino Teige. Efficient solving of large non-linear arithmetic constraint sys-
tems with complex Boolean structure. Journal on Satisfiability, Boolean
Modeling and Computation – Special Issue on SAT/CP Integration, 1:209–
236, 2007.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias
Schubert. Efficient solving of large non-linear arithmetic constraint systems
with complex boolean structure. JSAT, 1(3-4):209–236, 2007.

[FHT08] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability
modulo theory: A novel technique for the analysis of probabilistic hybrid
systems. In Magnus Egerstedt and Bud Mishra, editors, Hybrid Systems:
Computation and Control, 11th International Workshop, HSCC 2008, St.
Louis, MO, USA, April 22-24, 2008. Proceedings, volume 4981 of Lecture
Notes in Computer Science, pages 172–186. Springer, 2008.

[FK03] Eric Freudenthal and Vijay Karamcheti. Qtm: Trust management with
quantified stochastic attributes. Technical Report NYU Computer Science
Technical Report TR2003-848, Courant Institute of Mathematical Sciences
, New York University, 2003.

[FK12] Cormac Flanagan and Barbara König, editors. Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Conference,
TACAS 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April
1, 2012. Proceedings, volume 7214 of Lecture Notes in Computer Science.
Springer, 2012.

[FR75] Jeanne Ferrante and Charles Rackoff. A decision procedure for the first
order theory of real addition with order. SIAM J. Comput., 4(1):69–76,
1975.

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid systems past
hytech. STTT, 10(3):263–279, 2008.

[FTE10] Martin Fränzle, Tino Teige, and Andreas Eggers. Engineering constraint
solvers for automatic analysis of probabilistic hybrid automata. J. Log.
Algebr. Program., 79(7):436–466, 2010.

181

Bibliography

[FW16] Moritz Freidank and Bernd Westphal. Detection of non-supporting edges in
networks of timed automata. Technical report, Albert Ludwigs-Universität
Freiburg, 2016.

[GB03] Jack Ganssle and Michael Barr. Embedded Systems Dictionary. CMP Books,
2003.

[GD98] Shankar G. Govindaraju and David L. Dill. Verification by approximate for-
ward and backward reachability. In Hiroto Yasuura, editor, Proceedings of
the 1998 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 1998, San Jose, CA, USA, November 8-12, 1998, pages 366–370.
ACM / IEEE Computer Society, 1998.

[GF15] Damien Gayle and David Feeney. Spanish air force cargo plane on test flight
crashes near seville airport. The Guardian, 2015.

[GGW+03] Aarti Gupta, Malay K. Ganai, Chao Wang, Zijiang Yang, and Pranav
Ashar. Learning from bdds in sat-based bounded model checking. In Pro-
ceedings of the 40th Design Automation Conference, DAC 2003, Anaheim,
CA, USA, June 2-6, 2003, pages 824–829. ACM, 2003.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dreal: An SMT solver
for nonlinear theories over the reals. In Maria Paola Bonacina, editor, Auto-
mated Deduction - CADE-24 - 24th International Conference on Automated
Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume
7898 of Lecture Notes in Computer Science, pages 208–214. Springer, 2013.

[GKT09] Amit Goel, Sava Krstic, and Cesare Tinelli. Ground interpolation for com-
bined theories. In Schmidt [Sch09], pages 183–198.

[GLS11] Alberto Griggio, Thi Thieu Hoa Le, and Roberto Sebastiani. Efficient in-
terpolant generation in satisfiability modulo linear integer arithmetic. In
Parosh Aziz Abdulla and K. Rustan M. Leino, editors, TACAS, volume
6605 of Lecture Notes in Computer Science, pages 143–157. Springer, 2011.

[GNRR93] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel,
editors. Hybrid Systems, volume 736 of Lecture Notes in Computer Science.
Springer, 1993.

[Gom58] R. E. Gomory. Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Society, 64:275–278, 1958.

[Gom10] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear pro-
grams and an algorithm for the mixed integer problem. In Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R. Pul-
leyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, ed-
itors, 50 Years of Integer Programming 1958-2008 - From the Early Years
to the State-of-the-Art, pages 77–103. Springer, 2010.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
PVS. In Orna Grumberg, editor, Computer Aided Verification, 9th Interna-
tional Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings,

182

Bibliography

volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer,
1997.

[GZ16] Sicun Gao and Damien Zufferey. Interpolants in nonlinear theories over
the reals. In Marsha Chechik and Jean-Francois Raskin, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 22nd Interna-
tional Conference, TACAS 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings, volume 9636 of Lecture Notes in
Computer Science, pages 625–641. Springer, 2016.

[H+13] Frédéric Herbreteau et al. Lazy abstractions for timed automata. In Shary-
gina et al. [S+13], pages 990–1005.

[HA07] Mohamed Hefeeda and Hossein Ahmadi. Network connectivity under prob-
abilistic communication models in wireless sensor networks. In IEEE 4th In-
ternational Conference on Mobile Adhoc and Sensor Systems, MASS 2007,
8-11 October 2007, Pisa, Italy, pages 1–9. IEEE Computer Society, 2007.

[Hac74] Michel Hack. The recursive equivalence of the reachability problem and the
liveness problem for petri nets and vector addition systems. In 15th Annual
Symposium on Switching and Automata Theory, New Orleans, Louisiana,
USA, October 14-16, 1974, pages 156–164. IEEE Computer Society, 1974.

[HCD+13] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen
Hoenicke, Markus Lindenmann, Alexander Nutz, Christian Schilling, and
Andreas Podelski. Ultimate automizer with SMTInterpol - (competition
contribution). In Piterman and Smolka [PS13b], pages 641–643.

[Hea02] Steve Heath. 1 - what is an embedded system? In Steve Heath, editor,
Embedded Systems Design (Second Edition), pages 1 – 14. Newnes, Oxford,
second edition edition, 2002.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE Computer Soci-
ety, 1996.

[Her11] Christian Herde. Efficient solving of large arithmetic constraint systems
with complex Boolean structure: proof engines for the analysis of hybrid
discrete-continuous systems. PhD thesis, Carl von Ossietzky University of
Oldenburg, 2011.

[HHMW00] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard
Wong-Toi. Beyond HYTECH: hybrid systems analysis using interval nu-
merical methods. In Nancy A. Lynch and Bruce H. Krogh, editors, Hybrid
Systems: Computation and Control, Third International Workshop, HSCC
2000, Pittsburgh, PA, USA, March 23-25, 2000, Proceedings, volume 1790
of Lecture Notes in Computer Science, pages 130–144. Springer, 2000.

[HHP09] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement
of trace abstraction. In Jens Palsberg and Zhendong Su, editors, Static

183

Bibliography

Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA,
August 9-11, 2009. Proceedings, volume 5673 of Lecture Notes in Computer
Science, pages 69–85. Springer, 2009.

[HHP10] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested in-
terpolants. In Manuel V. Hermenegildo and Jens Palsberg, editors, POPL,
pages 471–482. ACM, 2010.

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. In Neil D. Jones and Xavier Leroy,
editors, POPL, pages 232–244. ACM, 2004.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In John Launchbury and John C. Mitchell, editors, Con-
ference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, OR, USA, January
16-18, 2002, pages 58–70. ACM, 2002.

[HKV12] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Playing in the grey
area of proofs. In John Field and Michael Hicks, editors, Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28,
2012, pages 259–272. ACM, 2012.

[HP06] Holger Hermanns and Jens Palsberg, editors. Tools and Algorithms for
the Construction and Analysis of Systems, 12th International Conference,
TACAS 2006 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April
2, 2006, Proceedings, volume 3920 of Lecture Notes in Computer Science.
Springer, 2006.

[Hua95] Guoxiang Huang. Constructing craig interpolation formulas. In Ding-Zhu
Du and Ming Li, editors, COCOON, volume 959 of Lecture Notes in Com-
puter Science, pages 181–190. Springer, 1995.

[Hun73] G. Hunter. Metalogic: An Introduction to the Metatheory of Standard First
Order Logic. Macmillan Student Editions. University of California Press,
1973.

[HWZ08] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR.
In Aarti Gupta and Sharad Malik, editors, Computer Aided Verification,
20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-
14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer Science,
pages 162–175. Springer, 2008.

[IEE85] IEEE. IEEE standard for binary floating-point arithmetic. Institute of
Electrical and Electronics Engineers, New York, 1985. Note: Standard
754–1985.

[Int96] SAE International. SAE ARP4761 Guidelines and Methods for Conducting
the Safety Assessment Process on Civil Airborne Systems and Equipment,
Dec 1996.

184

Bibliography

[Jha06] Sumit Kumar Jha. Numerical simulation guided lazy abstraction refinement
for nonlinear hybrid automata. CoRR, abs/cs/0611051, 2006.

[JJ04] Agata Janowska and Pawel Janowski. Slicing timed systems. FI, 60(1-
4):187–210, 2004.

[JM05] Ranjit Jhala and Rupak Majumdar. Path slicing. In Vivek Sarkar and
Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL, USA,
June 12-15, 2005, pages 38–47. ACM, 2005.

[JRH05] Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff.
Kaveri: Delivering the indus java program slicer to eclipse. In Maura Cerioli,
editor, Fundamental Approaches to Software Engineering, 8th International
Conference, FASE 2005, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005, Proceedings, volume 3442 of Lecture Notes in Computer Science,
pages 269–272. Springer, 2005.

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back tech-
niques to solve real-world SAT instances. In Benjamin Kuipers and Bon-
nie L. Webber, editors, Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Innovative Applications of Artificial In-
telligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence,
Rhode Island., pages 203–208. AAAI Press / The MIT Press, 1997.

[KB11] Stefan Kupferschmid and Bernd Becker. Craig interpolation in the presence
of non-linear constraints. In Uli Fahrenberg and Stavros Tripakis, editors,
Formal Modeling and Analysis of Timed Systems - 9th International Con-
ference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011. Pro-
ceedings, volume 6919 of Lecture Notes in Computer Science, pages 240–255.
Springer, 2011.

[KBTF11] Stefan Kupferschmid, Bernd Becker, Tino Teige, and Martin Fränzle.
Proof certificates and non-linear arithmetic constraints. In Rolf Kraemer,
Adam Pawlak, Andreas Steininger, Mario Schölzel, Jaan Raik, and Hein-
rich Theodor Vierhaus, editors, 14th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits & Systems, DDECS 2011,
Cottbus, Germany, April 13-15, 2011, pages 429–434. IEEE, 2011.

[KEB+14] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A. Andreev. Auto-
matic code generation from matlab/simulink for critical applications. In
IEEE 27th Canadian Conference on Electrical and Computer Engineering,
CCECE 2014, Toronto, ON, Canada, May 4-7, 2014, pages 1–6. IEEE,
2014.

[Kha09] Leonid Khachiyan. Fourier-motzkin elimination method. In Christodou-
los A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimiza-
tion, pages 1074–1077. Springer, 2009.

[KKZ05] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. A markov
reward model checker. In Second International Conference on the Quanti-

185

Bibliography

tative Evaluaiton of Systems (QEST 2005), 19-22 September 2005, Torino,
Italy, pages 243–244. IEEE Computer Society, 2005.

[Kno96] Jens Knoop. Partial dead code elimination for parallel programs. In Luc
Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert, editors, Euro-
Par ’96 Parallel Processing, Second International Euro-Par Conference,
Lyon, France, August 26-29, 1996, Proceedings, Volume I, volume 1123
of Lecture Notes in Computer Science, pages 441–450. Springer, 1996.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: proba-
bilistic symbolic model checker. In Tony Field, Peter G. Harrison, Jeremy T.
Bradley, and Uli Harder, editors, Computer Performance Evaluation, Mod-
elling Techniques and Tools 12th International Conference, TOOLS 2002,
London, UK, April 14-17, 2002, Proceedings, volume 2324 of Lecture Notes
in Computer Science, pages 200–204. Springer, 2002.

[KR12] Viktor Kuncak and Andrey Rybalchenko, editors. Verification, Model
Checking, and Abstract Interpretation - 13th International Conference, VM-
CAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings, vol-
ume 7148 of Lecture Notes in Computer Science. Springer, 2012.

[Kru07] Rudolf Kruse. Probabilistic graphical models for data mining and plan-
ning in automotive industry. In 19th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2007), October 29-31, 2007, Pa-
tras, Greece, Volume 1. IEEE Computer Society, 2007.

[KSU11] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predicate abstrac-
tion and CEGAR for higher-order model checking. In Mary W. Hall and
David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, pages 222–233. ACM, 2011.

[KT14] Daniel Kroening and Michael Tautschnig. CBMC - C bounded model
checker - (competition contribution). In Erika Ábrahám and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems - 20th International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, vol-
ume 8413 of Lecture Notes in Computer Science, pages 389–391. Springer,
2014.

[Kup13] Stefan Kupferschmid. Über Craigsche Interpolation und deren Anwendung
in der formalen Modellprüfung. PhD thesis, Albert-Ludwigs-Universität
Freiburg im Breisgau, 2013.

[Kur94] Robert P. Kurshan. Computer-aided Verification of Coordinating Processes:
The Automata-theoretic Approach. Princeton University Press, Princeton,
NJ, USA, 1994.

[KV09] Laura Kovács and Andrei Voronkov. Interpolation and symbol elimination.
In Schmidt [Sch09], pages 199–213.

186

Bibliography

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput.
Syst., 5(1):1–11, 1987.

[LH10] Weiyi Liu and Inseok Hwang. Probabilistic 4d trajectory prediction and
conflict detection for air traffic control. In Proceedings of the 49th IEEE
Conference on Decision and Control, CDC 2010, December 15-17, 2010,
Atlanta, Georgia, USA, pages 1183–1188. IEEE, 2010.

[LMM06] Alexe E. Leu, Mark McHenry, and Brian L. Mark. Modeling and analysis
of interference in listen-before-talk spectrum access schemes. Int. Journal
of Network Management, 16(2):131–147, 2006.

[LSW95] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. Fischer’s
protocol revisited: A simple proof using modal constraints. In Alur et al.
[AHS96], pages 604–615.

[LT08] Christopher Lynch and Yuefeng Tang. Interpolants for linear arithmetic in
SMT. In Sung Deok Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and
Mahesh Viswanathan, editors, Automated Technology for Verification and
Analysis, 6th International Symposium, ATVA 2008, Seoul, Korea, Octo-
ber 20-23, 2008. Proceedings, volume 5311 of Lecture Notes in Computer
Science, pages 156–170. Springer, 2008.

[Mah12] Ahmed Mahdi. Compositional verification of computation path dependent
real-time systems properties. Master’s thesis, University of Freiburg, April
2012.

[Mas01] Damien Massé. Combining forward and backward analyses of temporal
properties. In Olivier Danvy and Andrzej Filinski, editors, Programs as
Data Objects, Second Symposium, PADO 2001, Aarhus, Denmark, May 21-
23, 2001, Proceedings, volume 2053 of Lecture Notes in Computer Science,
pages 103–116. Springer, 2001.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Trans. Software Eng., 7(4):417–426, 1981.

[McM92] Kenneth Lauchlin McMillan. Symbolic Model Checking: An Approach to the
State Explosion Problem. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, USA, 1992. UMI Order No. GAX92-24209.

[McM03] Kenneth L. McMillan. Interpolation and sat-based model checking. In
Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verifica-
tion, 15th International Conference, CAV 2003, Boulder, CO, USA, July
8-12, 2003, Proceedings, volume 2725 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2003.

[McM05] Kenneth L. McMillan. Applications of craig interpolants in model checking.
In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume 3440
of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In Ball and
Jones [BJ06], pages 123–136.

187

Bibliography

[McM10] Kenneth L. McMillan. Lazy annotation for program testing and verification.
In Touili et al. [TCJ10], pages 104–118.

[Mey92] Bertrand Meyer. Applying "design by contract". IEEE Computer,
25(10):40–51, 1992.

[MF14] Ahmed Mahdi and Martin Fränzle. Generalized craig interpolation for
stochastic satisfiability modulo theory problems. In Ouaknine et al.
[OPW14], pages 203–215.

[MFH+06] Roman Manevich, John Field, Thomas A. Henzinger, G. Ramalingam, and
Mooly Sagiv. Abstract counterexample-based refinement for powerset do-
mains. In Thomas W. Reps, Mooly Sagiv, and Jörg Bauer, editors, Program
Analysis and Compilation, volume 4444 of Lecture Notes in Computer Sci-
ence, pages 273–292. Springer, 2006.

[MIL] MIL-STD-1629 - Procedures for performing a failure mode effect and criti-
cality analysis.

[Mit07] Ian M. Mitchell. Comparing forward and backward reachability as tools for
safety analysis. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. But-
tazzo, editors, HSCC, volume 4416 of Lecture Notes in Computer Science,
pages 428–443. Springer, 2007.

[MJ11] Ahmed Mahdi and Oday Jubran. Formal analysis of message collision due
to clock drift and dynamic message scheduling in a wireless sensor network.
Technical report, Albert Ludwigs-Universität Freiburg, 2011.

[ML98] Stephen M. Majercik and Michael L. Littman. Maxplan: A new approach
to probabilistic planning. In Reid G. Simmons, Manuela M. Veloso, and
Stephen F. Smith, editors, AIPS, pages 86–93. AAAI, 1998.

[ML03] Stephen M. Majercik and Michael L. Littman. Contingent planning un-
der uncertainty via stochastic satisfiability. Artif. Intell., 147(1-2):119–162,
2003.

[Moo95] Ramon E. Moore. Methods and applications of interval analysis. SIAM
studies in applied mathematics. SIAM, 1995.

[MS12] P. Madhusudan and Sanjit A. Seshia, editors. Computer Aided Verification
- 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-
13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer Science.
Springer, 2012.

[MSN+16] Ahmed Mahdi, Karsten Scheibler, Felix Neubauer, Martin Fränzle, and
Bernd Becker. Advancing software model checking beyond linear arithmetic
theories. In Roderick Bloem and Eli Arbel, editors, Hardware and Software:
Verification and Testing - 12th International Haifa Verification Conference,
HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings, volume 10028
of Lecture Notes in Computer Science, pages 186–201, 2016.

[MW+12] Marco Muñiz, Bernd Westphal, et al.

188

Bibliography

Timed automata with disjoint activity. In Marcin Jurdzinski et al.,
editors, FORMATS, volume 7595 of LNCS, pages 188–203. Springer, 2012.

[MWF14] Ahmed Mahdi, Bernd Westphal, and Martin Fränzle. Transformations for
compositional verification of assumption-commitment properties. In Ouak-
nine et al. [OPW14], pages 216–229.

[NNH05] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
program analysis (2. corr. print). Springer, 2005.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NOK10] Takeshi Nagaoka, Kozo Okano, and Shinji Kusumoto. An abstraction re-
finement technique for timed automata based on counterexample-guided
abstraction refinement loop. IEICE Transactions, 93-D(5):994–1005, 2010.

[Obe68] Arnold Oberschelp. On the craig-lyndon interpolation theorem. J. Symb.
Log., 33(2):271–274, 1968.

[OD08] Ernst-Rüdiger Olderog and Henning Dierks. Real-time systems. Cambridge
University Press, 2008.

[OPW14] Joël Ouaknine, Igor Potapov, and James Worrell, editors. Reachability
Problems - 8th International Workshop, RP 2014, Oxford, UK, Septem-
ber 22-24, 2014. Proceedings, volume 8762 of Lecture Notes in Computer
Science. Springer, 2014.

[OS13] Ernst-Rüdiger Olderog and Mani Swaminathan. Structural transformations
for data-enriched real-time systems. In Einar Broch Johnsen and Luigia
Petre, editors, Integrated Formal Methods, 10th International Conference,
IFM 2013, Turku, Finland, June 10-14, 2013. Proceedings, volume 7940 of
Lecture Notes in Computer Science, pages 378–393. Springer, 2013.

[OS15] Ernst-Rüdiger Olderog and Mani Swaminathan. Structural transformations
for data-enriched real-time systems. Formal Asp. Comput., 27(4):727–750,
2015.

[Pap85] Christos H. Papadimitriou. Games against nature. J. Comput. Syst. Sci.,
31(2):288–301, 1985.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[PK02] Lawrence T. Pileggi and Andreas Kuehlmann, editors. Proceedings of
the 2002 IEEE/ACM International Conference on Computer-aided Design,
2002, San Jose, California, USA, November 10-14, 2002. ACM, 2002.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[PQ08] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover
for hybrid systems (system description). In Alessandro Armando, Peter

189

Bibliography

Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th In-
ternational Joint Conference, IJCAR 2008, Sydney, Australia, August 12-
15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer Science,
pages 171–178. Springer, 2008.

[PS13a] Florian Pigorsch and Christoph Scholl. Lemma localization: a practical
method for downsizing smt-interpolants. In Enrico Macii, editor, Design,
Automation and Test in Europe, DATE 13, Grenoble, France, March 18-22,
2013, pages 1405–1410. EDA Consortium San Jose, CA, USA / ACM DL,
2013.

[PS13b] Nir Piterman and Scott A. Smolka, editors. Tools and Algorithms for
the Construction and Analysis of Systems - 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7795 of Lecture Notes in Computer Science. Springer,
2013.

[PT15] Luke Pierce and Spyros Tragoudas. Unreachable code identification for
improved line coverage. In Sixteenth International Symposium on Quality
Electronic Design, ISQED 2015, Santa Clara, CA, USA, March 2-4, 2015,
pages 345–351. IEEE, 2015.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symb. Log., 62(3):981–998, 1997.

[PW07] Andreas Podelski and Silke Wagner. Region stability proofs for hybrid
systems. In Jean-Francois Raskin and P. S. Thiagarajan, editors, Formal
Modeling and Analysis of Timed Systems, 5th International Conference,
FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings, volume
4763 of Lecture Notes in Computer Science, pages 320–335. Springer, 2007.

[Rak11] Astrid Rakow. Slicing and reduction techniques for model checking Petri
nets. PhD thesis, Carl von Ossietzky University of Oldenburg, 2011.

[Rak12] Astrid Rakow. Safety slicing petri nets. In Serge Haddad and Lucia Pomello,
editors, Application and Theory of Petri Nets - 33rd International Confer-
ence, PETRI NETS 2012, Hamburg, Germany, June 25-29, 2012. Proceed-
ings, volume 7347 of Lecture Notes in Computer Science, pages 268–287.
Springer, 2012.

[RIS13] Tony Ribeiro, Katsumi Inoue, and Chiaki Sakama. A BDD-based algo-
rithm for learning from interpretation transition. In Gerson Zaverucha,
Vítor Santos Costa, and Aline Paes, editors, Inductive Logic Programming
- 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil, Au-
gust 28-30, 2013, Revised Selected Papers, volume 8812 of Lecture Notes in
Computer Science, pages 47–63. Springer, 2013.

[RR08] C. R. Ramakrishnan and Jakob Rehof, editors. Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April

190

Bibliography

6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science.
Springer, 2008.

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by
constraint propagation-based abstraction refinement. ACM Trans. Embed-
ded Comput. Syst., 6(1), 2007.

[S+13] Natasha Sharygina et al., editors. CAV 2013, volume 8044 of LNCS.
Springer, 2013.

[SAE96] SAE Int. ARP-4761. Technical report, Aerospace Recommended Practice,
1996.

[SB06] Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining
bdds. In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors,
Computer Science - Theory and Applications, First International Computer
Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-
12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer Science,
pages 600–611. Springer, 2006.

[Sch09] Renate A. Schmidt, editor. Automated Deduction - CADE-22, 22nd Inter-
national Conference on Automated Deduction, Montreal, Canada, August
2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science.
Springer, 2009.

[SCN13] Ricardo G. Sanfelice, David A. Copp, and Pablo Nanez. A toolbox for
simulation of hybrid systems in matlab/simulink: hybrid equations (hyeq)
toolbox. In Calin Belta and Franjo Ivancic, editors, Proceedings of the
16th international conference on Hybrid systems: computation and con-
trol, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA, pages 101–106.
ACM, 2013.

[SD07] Jean Souyris and David Delmas. Experimental assessment of astrée on
safety-critical avionics software. In Francesca Saglietti and Norbert Os-
ter, editors, Computer Safety, Reliability, and Security, 26th International
Conference, SAFECOMP 2007, Nuremberg, Germany, September 18-21,
2007., volume 4680 of Lecture Notes in Computer Science, pages 479–490.
Springer, 2007.

[Seg07] Marc Segelken. Abstraction and counterexample-guided construction of
omega -automata for model checking of step-discrete linear hybrid models.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verifi-
cation, 19th International Conference, CAV 2007, Berlin, Germany, July
3-7, 2007, Proceedings, volume 4590 of Lecture Notes in Computer Science,
pages 433–448. Springer, 2007.

[Seg10] Mohamed Nassim Seghir. Abstraction refinement techniques for software
model checking. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breis-
gau, 2010.

[SFG14] Neil Sculthorpe, Nicolas Frisby, and Andy Gill. The kansas university

191

Bibliography

rewrite engine - A haskell-embedded strategic programming language with
custom closed universes. J. Funct. Program., 24(4):434–473, 2014.

[SFS12] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Funfrog:
Bounded model checking with interpolation-based function summarization.
In Supratik Chakraborty and Madhavan Mukund, editors, Automated Tech-
nology for Verification and Analysis - 10th International Symposium, ATVA
2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings, volume
7561 of Lecture Notes in Computer Science, pages 203–207. Springer, 2012.

[SGL+11] Daniel Schleicher, Stefan Grohe, Frank Leymann, Patrick Schneider, David
Schumm, and Tamara Wolf. An approach to combine data-related and
control-flow-related compliance rules. In Kwei-Jay Lin, Christian Huemer,
M. Brian Blake, and Boualem Benatallah, editors, 2011 IEEE International
Conference on Service-Oriented Computing and Applications, SOCA 2011,
Irvine, CA, USA, December 12-14, 2011, pages 1–8. IEEE, 2011.

[SH13] Jendrik Seipp and Malte Helmert. Additive counterexample-guided carte-
sian abstraction refinement. In AAAI (Late-Breaking Developments), vol-
ume WS-13-17 of AAAI Workshops. AAAI, 2013.

[SHBV03] Rehan Sadiq, Tahir Husain, Neil Bose, and Brian Veitch. Toxaphene distri-
bution in the lake superior trout and associated sublethal ecological risk: a
probabilistic approach. Environmental Modelling and Software, 18(5):439–
449, 2003.

[SKB13] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. Recent im-
provements in the SMT solver isat. In Christian Haubelt and Dirk Tim-
mermann, editors, Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV), Warnemünde,
Germany, March 12-14, 2013., pages 231–241. Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und Elek-
trotechnik, Universität Rostock, 2013.

[Sla16] Looking up “slackness” in dictionary. http://http://www.dictionary.
com/browse/slack, 2016. Accessed: 2016-09-26.

[SNM+16a] Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino
Teige, Tom Bienmüller, Detlef Fehrer, and Bernd Becker. Accurate icp-
based floating-point reasoning. In Ruzica Piskac and Muralidhar Talupur,
editors, 2016 Formal Methods in Computer-Aided Design, FMCAD 2016,
Mountain View, CA, USA, October 3-6, 2016, pages 177–184. IEEE, 2016.

[SNM+16b] Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino
Teige, Tom Bienmüller, Detlef Fehrer, and Bernd Becker. Extending
iSAT3 with ICP-contractors for bitwise integer operations. Reports of
SFB/TR 14 AVACS 116, SFB/TR 14 AVACS, 2016. ISSN: 1860-9821,
http://www.avacs.org.

[SPDA14] Christoph Scholl, Florian Pigorsch, Stefan Disch, and Ernst Althaus. Simple
interpolants for linear arithmetic. In Design, Automation & Test in Europe

192

http://http://www.dictionary.com/browse/slack
http://http://www.dictionary.com/browse/slack

Bibliography

Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28,
2014, pages 1–6. IEEE, 2014.

[Spe10] Christian B. Spear. SystemVerilog for Verification: A Guide to Learning the
Testbench Language Features. Springer Publishing Company, Incorporated,
2nd edition, 2010.

[Spr00] Jeremy Sproston. Decidable model checking of probabilistic hybrid au-
tomata. In Mathai Joseph, editor, Formal Techniques in Real-Time and
Fault-Tolerant Systems, 6th International Symposium, FTRTFT 2000,
Pune, India, September 20-22, 2000, Proceedings, volume 1926 of Lecture
Notes in Computer Science, pages 31–45. Springer, 2000.

[Spr01] J. Sproston. Model Checking for Probabilistic Timed and Hybrid Systems.
PhD thesis, School of Computer Science, The University of Birmingham,
2001.

[SS99] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algo-
rithm for propositional satisfiability. IEEE Trans. Computers, 48(5):506–
521, 1999.

[SS04] Christian Stangier and Thomas Sidle. Invariant checking combining forward
and backward traversal. In Alan J. Hu and Andrew K. Martin, editors, For-
mal Methods in Computer-Aided Design, 5th International Conference, FM-
CAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings, vol-
ume 3312 of Lecture Notes in Computer Science, pages 414–429. Springer,
2004.

[SS14] Mohamed Nassim Seghir and Peter Schrammel. Necessary and sufficient
preconditions via eager abstraction. In Jacques Garrigue, editor, Program-
ming Languages and Systems - 12th Asian Symposium, APLAS 2014, Sin-
gapore, November 17-19, 2014, Proceedings, volume 8858 of Lecture Notes
in Computer Science, pages 236–254. Springer, 2014.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Formal Methods in
Computer-Aided Design, Third International Conference, FMCAD 2000,
Austin, Texas, USA, November 1-3, 2000, Proceedings, pages 108–125,
2000.

[Stu96] Gordon L. Stuber. Principles of Mobile Communication. Kluwer Academic
Publishers, Norwell, MA, USA, 1st edition, 1996.

[SVD+12] Alberto L. Sangiovanni-Vincentelli, Werner Damm, et al. Taming Dr.
Frankenstein: Contract-based design for cyber-physical systems. EJC,
18(3):217–238, 2012.

[SZ14] Fedor Shmarov and Paolo Zuliani. Probreach: Verified probabilistic delta-
reachability for stochastic hybrid systems. CoRR, abs/1410.8060, 2014.

[Tar48] Alfred Tarski. A decision method for elementary algebra and geometry.
RAND Corporation, Santa Monica, Calif., 1948.

193

Bibliography

[TCJ10] Tayssir Touili, Byron Cook, and Paul Jackson, editors. Computer Aided
Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer
Science. Springer, 2010.

[TD13] Cong Tian and Zhenhua Duan. Detecting spurious counterexamples effi-
ciently in abstract model checking. In David Notkin, Betty H. C. Cheng,
and Klaus Pohl, editors, ICSE, pages 202–211. IEEE / ACM, 2013.

[TEF11] Tino Teige, Andreas Eggers, and Martin Fränzle. Constraint-based analysis
of concurrent probabilistic hybrid systems: An application to networked
automation systems. Nonlinear Analysis: Hybrid Systems, 5(2):343–366,
2011.

[Tei12] Tino Teige. Stochastic Satisfiability Modulo Theories: A Symbolic Technique
for the Analysis of Probabilistic Hybrid Systems. PhD thesis, FakultÂĺat II
âĂŞ Informatik, Wirtschafts- und Rechtswissenschaften , Department fÂĺur
Informatik, Germany, Oldenburg, Escherweg.2 26122, Augest 2012.

[TF10] Tino Teige and Martin Fränzle. Resolution for stochastic boolean satis-
fiability. In Christian G. Fermüller and Andrei Voronkov, editors, LPAR
(Yogyakarta), volume 6397 of Lecture Notes in Computer Science, pages
625–639. Springer, 2010.

[TF12a] Tino Teige and Martin Fränzle. Generalized craig interpolation. Logical
Methods in Computer Science, 8(2), 2012.

[TF12b] Tino Teige and Martin Fränzle. Generalized craig interpolation. Logical
Methods in Computer Science, 8(2), 2012.

[THR82] Philip C. Treleaven, Richard P. Hopkins, and Paul W. Rautenbach. Com-
bining data flow and control flow computing. Comput. J., 25(2):207–217,
1982.

[Tiw04] Ashish Tiwari. Termination of linear programs. In Rajeev Alur and
Doron A. Peled, editors, Computer Aided Verification, 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
volume 3114 of Lecture Notes in Computer Science, pages 70–82. Springer,
2004.

[TRn09] Information Technology âĂŤ Programming Languages âĂŤ Guidance to
Avoiding Vulnerabilities in Programming Languages through Language Se-
lection and Use. Technical Report ISO/IEC PDTR 24772, May 2009.

[Tse68] Grigori S. Tseitin. On the complexity of derivations in the propositional
calculus. Studies in Mathematics and Mathematical Logic, Part II:115–125,
1968.

[Tse83] G. S. Tseitin. On the complexity of derivation in propositional calculus. In
J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Clas-
sical Papers on Computational Logic 1967-1970, pages 466–483. Springer,
Berlin, Heidelberg, 1983.

194

Bibliography

[UAcLR01] Algirdas Avizienis Ucla, Algirdas Avizienis, Jean claude Laprie, and Brian
Randell. Fundamental concepts of dependability, 2001.

[vdBKvdB04] Jan van den Berg, Uzay Kaymak, and Willem-Max van den Bergh. Finan-
cial markets analysis by using a probabilistic fuzzy modelling approach. Int.
J. Approx. Reasoning, 35(3):291–305, 2004.

[VG09] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model check-
ing. In FMCAD, pages 1–8. IEEE, 2009.

[VRN13] Yakir Vizel, Vadim Ryvchin, and Alexander Nadel. Efficient generation of
small interpolants in CNF. In Sharygina et al. [S+13], pages 330–346.

[WBBL02] Bernd Westphal, Tom Bienmüller, Jürgen Bohn, and Rainer Lochmann.
SMI: syntax and semantics. OFFIS e. V., Escherweg 2, D-26121, Oldenburg,
1 edition, May 2002.

[WKG07] Chao Wang, Hyondeuk Kim, and Aarti Gupta. Hybrid CEGAR: combining
variable hiding and predicate abstraction. In Georges G. E. Gielen, editor,
2007 International Conference on Computer-Aided Design, ICCAD 2007,
San Jose, CA, USA, November 5-8, 2007, pages 310–317. IEEE Computer
Society, 2007.

[WKM12] Georg Weissenbacher, Daniel Kroening, and Sharad Malik. Wolverine: Bat-
tling bugs with interpolants - (competition contribution). In Flanagan and
König [FK12], pages 556–558.

[WRP+02] Chen Wang, Sudhakar M. Reddy, Irith Pomeranz, Xijiang Lin, and Janusz
Rajski. Conflict driven techniques for improving deterministic test pattern
generation. In Pileggi and Kuehlmann [PK02], pages 87–93.

[XJC09] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. Static contract
checking for haskell. In Zhong Shao and Benjamin C. Pierce, editors, POPL,
pages 41–52. ACM, 2009.

[XZ10] Bican Xia and Zhihai Zhang. Termination of linear programs with nonlinear
constraints. J. Symb. Comput., 45(11):1234–1249, 2010.

[YM05] Greta Yorsh and Madanlal Musuvathi. A combination method for gener-
ating interpolants. In Robert Nieuwenhuis, editor, CADE, volume 3632 of
Lecture Notes in Computer Science, pages 353–368. Springer, 2005.

[ZM02] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified
boolean satisfiability solver. In Pileggi and Kuehlmann [PK02], pages 442–
449.

[ZSR+10] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and
Ernst Moritz Hahn. Safety verification for probabilistic hybrid systems.
In Touili et al. [TCJ10], pages 196–211.

[ZTM11] Bin Zeng, Gang Tan, and Greg Morrisett. Combining control-flow integrity
and static analysis for efficient and validated data sandboxing. In Yan
Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS

195

Bibliography

2011, Chicago, Illinois, USA, October 17-21, 2011, pages 29–40. ACM,
2011.

196

Index

abstract interpretation, 59, 62
abstraction, 2, 18, 97
ACDCL, 61, 85
ACTL, 76
admissible, 28
assignments, 69
assumption, 17
assumption-commitment, 3, 23
automata, 18, 20
AVACS, 114
available expression analysis, 61
avionics engineering, 4

Büchi, 20
backwards reachability, 12
BDD, 2
Boolean skeleton, 78
branch-and-prune, 79

CBMC, 59
CDCL, 8, 60, 79
CEGAR, 8, 18, 59, 76, 97, 113
CFA, 69
chemical process control, 4
CI, 8, 59
circle, 86, 88
commitment, 17
components, 42
compositional verification, 17, 24, 40
computation path, 18, 22
computation paths, 40
concretizing, 77, 106, 115
configuration, 11
constraints, 69
contract, 3
control flow automaton, 71
control flow graph, 21, 71, 96, 107
counterexample, 77, 144
Craig interpolation, 60

data-flow analysis, 61

dead code, 7, 13, 59, 72
design, 1, 3, 4
design under verification, 4
discrete logic-based circuits, 3

edge supports a specification, 7
electrical engineering, 4
embedded system, 3
equisatisfiable, 79
error, 17
explicit-value analysis, 65

failure, 17
fault, 17, 50
Fischer’s protocol, 49
flattening, 19
floating point, 107
floating-point, 60, 62, 111
floating-point arithmetics, 61
FMEA, 17
formal verification, 4
forward reachability, 11
Fourier-Motzkin elimination, 75

Gaussian elimination, 75
generalized Craig interpolation, 150
Gomory cuts, 64

hull-consistency, 78
hybrid automata, 20, 39
hybrid system, 4
hybrid systems, 62

ICP, 8, 60
implementation, 1
implication graph, 80
inductive interpolants, 99
infinities, 111
interpolant, 73
interpolants, 2, 60, 66
interprocedural, 66

197

Index

invariant, 23

lazy abstraction, 99
live variable analysis:, 61
liveness, 12
local proof, 81
loop invariants, 66
LTL, 23, 56

Markov process, 4
matrix, 126
maximum probability of avoiding region,

150
mechanical engineering, 4
memory, 109, 110, 113, 119
Microcontrollers, 3
microprocessor, 3
model checking, 1, 4, 5, 61, 98, 146

NaN, 112
Nelson-Open, 64
networks of automata, 39
node, 43
non-chronological, 64, 82

observable behaviour, 23
operational semantics, 21, 71

partial model checking, 19
path, 71
PBMC, 123
Petri nets, 12, 19
predicate abstraction, 2
prefix condition, 68
preprocessing, 117, 119, 120
probabilistic hybrid automaton, 123
probabilistic region stability, 149
probabilistic safety property, 3
process, 50
program, 114
programs, 21, 59
PSPACE, 127

quantification, 123, 146

reachability, 5, 11, 59, 72
reachability property, 72
reaching definitions, 61
redirecting edges, 29

region stability, 149
removing edges, 32
repeaters, 43
run, 98
runs, 40

safe, 77
safe inductive invariant, 13, 69
safety, 1–3, 12, 68
safety case, 2, 3
safety property, 76
SAT, 75
semi-admissible, 28
sensor, 43
signed zeros, 111
simulation-based verification, 4
slackness, 81, 91
slackness of interpolants, 7
slicing, 19, 24
slicing models, 3
SMI, 8, 115
SMT, 59, 60, 75, 100
software model checking, 66
soundness, 131
specification, 1, 4, 7, 23
sphere, 86
state explosion problem, 2
state space explosion, 61, 76
subnormals, 111
support, 18, 21
supporting dependent transformation, 37
supporting edges, 34
symbolic model checking, 65, 73
system under design, 3

TCTL, 56
TDMA, 44
testing, 1
theorem proving, 4
timed automata, 19, 20, 39
trace, 71
transcendental functions, 59, 77, 107
transformation, 18
transformation functions, 28
troi, 90, 91

unreachable code, 13
uppaal, 42

198

Index

valuation, 70
verification time, 109, 110, 113, 119
very busy expressions analysis, 61
virtual integration testing, 3

WFAS, 42
word automaton, 66

199

Index

200

	Title: Advancing Software Model-Checking by SMT Interpolation Beyond Decidable Arithmetic Theories
	Dedication
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	(Partial) History of embedded and (probabilistic) hybrid systems verification
	Verification of embedded systems
	Verification of (probabilistic) hybrid systems

	Challenges and contributions
	Organization of this dissertation

	Reachability Analysis
	Preface
	Different terminologies for reachability analysis
	Classical vs. probabilistic reachability

	Model Slicing
	Problem statement
	Motivation
	Related work:

	Preliminaries
	Assumption-commitment specifications
	Model element-based slicing technique
	Transformation functions
	Admissible transformations
	Semi-admissible transformations

	New reachability concept: supporting edges
	Supporting edges
	Supporting edges and transformation functions
	Verification based on support-notion

	Compositional verification
	Case studies
	Wireless sensor network: Alarm system
	Fischer's mutual exclusion protocol

	Dead Code Detection
	Problem statement
	Motivation
	Related work
	Example

	Preliminaries
	Control flow automaton
	Craig interpolation: theory and application
	Interpolation-based model checking (ITP)
	Counterexample guided abstraction refinement: theory and application

	The iSAT3 model checker
	Syntax and semantics
	iSAT3 architecture and engines
	iSAT3 interpolants
	BMC problems in iSAT3
	CFA problems in iSAT3

	Interpolation-based CEGAR technique
	Interpolation-based refinement procedure in iSAT3: algorithm
	Example
	Case studies

	Handling floating points dominated C-programs – experiments in industrial-scale
	Floating point arithmetic due to IEEE 754
	Floating points in iSAT3
	Floating point arithmetic in iSAT3 with CEGAR
	Industrial case studies
	Converting SMI code to iSAT3-CFG input language
	BTC-ES benchmarks

	Generalized Craig Interpolation forSSMT
	Introduction
	Motivation
	Related work

	Stochastic Satisfiability Modulo theories (SSMT)
	SSMT: syntax
	SSMT: semantics
	SSMT: illustrative example
	Complexity of SSMT
	Structure of SSMT formula

	Resolution Calculus for SSMT
	Resolution rules for SSMT
	Soundness and completeness of SSMT-resolution
	Example of applying SSMT-resolution

	Generalized Craig interpolation for SSMT
	Generalized Craig Interpolants
	Computation of Generalized Craig Interpolants – Púdlak's rules extension

	Interpolation-based probabilistic bounded model checking
	Probabilistic bounded reachability – probabilistic safety analysis
	SSMT encoding scheme for PHAs
	PBMC solving by means of generalized Craig interpolation
	Interpolation-based approach for reachability
	Generalized Craig interpolation for Stability analysis

	Conclusion
	Achievements of this dissertation
	Outlook
	Applying transformation for models admitting system modes
	Extending iSAT3-CFG with interprocedural calls
	Computing loop summaries – maximum number of while-loop unwindings
	Integrating generalized Craig interpolation with DPLL-based SSMT solving

	Appendix A
	Bibliography
	Index

