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Abstract
The structure of the liberalized electricity industry can be distinguished into two com-
plementary levels. On an economic level, different players trade power products at elec-
tricity markets in order to match their individual supply and demand. On a physical
level, the stipulated electricity amounts are then produced by generation units and deliv-
ered to the consumers through a dedicated supply network. In this regard, throughout
the last years several driving forces induced a restructuring of the formerly centralized
supply system towards a decentralized provision. While on generation side conventional
large-scale power stations are successively replaced by distributed energy resources like
solar power or wind energy plants, on consumption side small-sized loads are integrated
as active parts into the supply process based on innovative demand side management
techniques.
However, the ongoing change led to a disintegration of the economic and physical level.
Minimum volume thresholds of today’s wholesale markets hinder small-scale energy
units from a direct participation. Moreover, during operation many of the newly in-
stalled units are exposed to stochastic effects which cause deviations from contractually
specified electricity amounts. Finally, the integration of distributed energy resources is
subsidized in many countries. If these guaranteed payments run out in the future, the
plants have to compete with large-scale units in the market and thus face an increased
pressure to cover their generation costs.
Against this background, the thesis at hand proposes DYCE, a new agent-based approach
for dynamic coalition formation in electricity markets. Coalitions allow small-scale pro-
duction or consumption units to cumulate their potentials and fulfill power products
which exceed their individual capabilities. In contrast to existing aggregation concepts
like Virtual Power Plants, the proposed approach is fully distributed and takes both the
preferences of the individual units and those of the global supply system into account.
Moreover, by integrating topological information of the grid, it allows for the trade of
localized power products which can be utilized by system operators for network man-
agement. Because the coalitions form for the fulfillment of a single product only, they
are able to respond to changing conditions in a temporally flexible fashion. If a product
was successfully traded, the gained surplus is divided among the coalition members in a
fair way based on a game-theoretical distribution model.
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Zusammenfassung
Die Struktur der liberalisierten Elektrizitätswirtschaft lässt sich grundsätzlich in zwei
komplementäre Ebenen unterscheiden. So handeln auf einer ökonomischen Ebene un-
terschiedliche Teilnehmer elektrische Energie auf dedizierten Märkten, um Angebot und
Nachfrage in Einklang zu bringen. Auf einer physikalischen Ebene werden die ver-
traglich vereinbarten Mengen dann von Generatoren erzeugt und über ein ausreichend
dimensioniertes Übertragungs- und Verteilnetz an die Verbraucher geliefert. In diesem
Zusammenhang haben in den letzten Jahren verschiedene Antriebsfaktoren zu einer
anhaltenden Dezentralisierung des ursprünglich zentral strukturierten Versorgungssys-
tems geführt. Diese äußert sich zum einen darin, dass auf Erzeugerseite konventionelle
Großkraftwerke sukzessive durch Einheiten geringerer Leistung wie Solar- oder Wind-
kraftanlagen ersetzt werden, die primär in das Nieder- und Mittelspannungsnetz ein-
speisen. Zum anderen erfolgt auf Verbraucherseite eine vermehrte Integration von Las-
ten mittels Techniken des Demand Side Managements, welche eine aktive Teilnahme
am Versorgungsprozess ermöglichen.
Vor dem Hintergrund dieses Wandels werden die beschriebenen Strukturebenen allerd-
ings nicht mehr den sich neu ergebenen Anforderungen gerecht. Einerseits stellen die an
heutigen Elektrizitätsmärkten handelbaren Mindestmengen Eintrittsbarrieren für viele
der neu integrierten Einheiten dar, welche eine direkte Teilnahme am Marktgeschehen
verhindern. Weiterhin sind insbesondere nicht-steuerbare Erzeuger und Verbraucher wie
Windkraftanlagen oder Waschmaschinen stochastischen Einflüssen ausgesetzt, die bei
einer Produkterfüllung zu Abweichungen von vertraglich festgesetzten Energiemengen
führen können. Schließlich wird in vielen Ländern die Integration von auf regener-
ativen Energiequellen beruhenden Anlagen staatlich subventioniert, so dass diese bei
Auslaufen der Förderungen einem erhöhten Wettbewerbsdruck ausgesetzt sind.
Als Beitrag zur Lösung dieser Problemstellung wird in der vorliegenden Arbeit die agen-
tenbasierte Methode DYCE vorgestellt, die es computergesteuerten Energieeinheiten
ermöglicht, ihre technischen Potenziale zu aggregieren und Koalitionen für den Han-
del von Elektrizitätsprodukten zu bilden. Im Gegensatz zu bestehenden Ansätzen wie
virtuellen Kraftwerken erfolgt der Formationsprozess dabei vollständig dezentral und in
selbstorganisierter Art und Weise, wobei durch einen kombinierten Optimierungsansatz
sowohl die Präferenzen der individuellen Einheiten als auch diejenigen des globalen
Versorgungssystems berücksichtigt werden. Die Integration netztopologischer Informa-
tionen erlaubt darüber hinaus eine Erfüllung von lokalen Produkten, welche sich auf
definierte Abschnitte im Netz beziehen und von Netzbetreibern zur Systemoptimierung
eingesetzt werden können. Da die Formation einer Koalition grundsätzlich produktbezo-
gen erfolgt, kann von den Einheiten zeitlich flexibel auf kurzfristige Ereignisse reagiert
werden. Wurde der Handel eines Produkts erfolgreich abgeschlossen, wird abschließend
der erwirtschaftete Mehrwert auf Basis eines spieltheoretischen Modells in fairer Art und
Weise unter den Koalitionsmitgliedern verteilt.
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1 Introduction
With regard to its function to cover the electrical demand of customers, the structure
of the liberalized electricity industry can be distinguished into two complementary lev-
els. On an economic level, different players trade electrical energy at dedicated markets
according to their individual needs. On a physical level, the traded amounts are then
produced by generators and delivered to the consumers via a sufficiently dimensioned
supply network. Because to date electricity is still not storable in considerable amounts,
in the course of provision supply and demand have to be matched in each point in time.
This fact puts specific organizational and technical requirements on both the economic
and physical level which have to be fulfilled in order to guarantee a stable supply.
Until the 1990s, the electricity industry was characterized by a centralized supply para-
digm where a few vertically integrated utilities governed all steps of the supply chain –
from generation to transmission and distribution through to retail – and thus both of the
described structural levels. As a result, electricity demand was mainly covered by large-
scale power plants such as nuclear or coal-fired plants and delivered to consumers via a
hierarchically organized supply network. Because these oligopolistic market structures
were lacking competition and thus incentives for cost reductions, supply companies were
typically strictly regulated by federal institutions in order to prevent the execution of
market power.
However, in recent years several driving forces gave impetus to a restructuring of the
conventional supply infrastructure. First, on the economic level, energy regulations were
enacted in many countries in order to induce a liberalization of the electricity markets
and introduce competition among the market players. These measures gave rise to the
creation of bilateral and multilateral markets for the trade of electricity-related products
according to defined market rules. In particular, derivatives and spot markets were estab-
lished in order to provide participants an appropriate instrument to conclude long- and
short-term contracts for the supply of electrical energy. Moreover, on the physical level,
depleting fossil sources and a growing environmental awareness induced an increased in-
tegration of small-scale units into the power grid. Distributed energy resources (DERs)
like solar power, combined heat and power (CHP) or wind energy plants (WEPs) were
more and more incorporated into the supply infrastructure successively supplementing
and substituting conventional fossil-fueled plants. In many countries, this trend is sup-
ported by political measures in order to meet long-term goals with respect to greenhouse
gas reductions and pave the way towards a sustainable electricity provision. In particu-
lar, in 2009 the European Union (EU) enacted Directive 2009/28/EC [Dir09] prescribing
binding target values for the member states with regard to shares of energy which have
to be extracted from renewable sources, with an EU-wide overall goal of a 20 % share by
2020. In order to achieve this goal, in 2011 the German government adopted a national
renewable energy action plan [NRE10] outlining measures and instruments to promote
the use of renewable sources. These include the Renewable Energy Sources Act [Act00]
which was already passed in 2000 and later adopted by many countries worldwide. In
addition to the integration of DERs, in recent years a wide range of demand side man-
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agement (DSM) techniques were conceived in order to utilize temporal flexibilities of
consumption units and shift load into economically advantageous time intervals for a
more efficient power provision (see e.g. [SLBT15]).
However, as both restructuring processes were originally induced by different motiva-
tions, the economic and physical level are not perfectly integrated any more which avoids
a full exploitation of economic and ecological potentials.

1.1 Motivation and Requirements

Substantially shaping the electricity industry in the course of the last years, the restruc-
turing processes outlined in the previous section generally allow for a decentralized elec-
tricity supply under competitive market conditions. However, in order to completely
exploit associated potentials, the economic and physical level have still to be integrated
with regard to the following aspects:

Barriers to entry Being designed with the conventional supply paradigm in mind, to-
day’s electricity markets are primarily aligned to large-scale power plants. I.e., the
trading rules typically prescribe minimum volume thresholds which have to be met
by actors in order to be allowed to participate in the market. Small-scale generation
and consumption units are thus excluded from a direct participation because of their
insufficient capabilities. Particularly for DERs which are typically characterized by
small generation capacities, these thresholds constitute economic barriers to entry.
Even in bilateral markets in which actors trade products individually according to
their specific needs, similar problems arise when participants face offers exceeding
their individual generation or consumption potentials.

Stochastic effects In contrast to the conventional, flexibly controllable power plants,
many of the newly integrated production and consumption units (like wind energy
plants or dishwashers) are exposed to stochastic effects which cause deviations from
their forecasted operation schedules. In order to conform to the specified amounts of
concluded contracts, these errors have to be compensated either by the unit owners
before physical fulfillment through appropriate trades at the spot market or – in the
worst case – by the transmission system operators during physical fulfillment through
retrieval of expensive control reserve.

Topology-aware fulfillment The integration of distributed energy units into the power
grid holds new potentials with regard to grid-related system services which allow to
avoid the need for expensive grid expansions. For instance, localized power products
can be used in order to prevent network congestions if appropriate economic incen-
tives are provided to the market participants located in the corresponding grid section.
Moreover, a decentralized electricity supply allows for a more efficient provision
through a feed-in close to demand which reduces losses resulting from transmission
or transformation. However, in order to exploit these kinds of potentials, grid-related
information has to be incorporated into the design of an electricity market. In this
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regard, current research investigates new types of markets which take related aspects
into account [Wis16, BBRA10]. In contrast to conventional wholesale markets, these
allow for a trade of topology-aware system services and drive the trend towards a
more efficient provision.

Subsidized feed-in As already mentioned at the beginning of this chapter, in many
countries the integration of DERs is subsidized through regulations. However, the
guaranteed payments often run out at some point in the future (see for instance
[Act00]). Then, today’s subsidized plants will face an increased pressure to cover
their generation costs as they have to compete with large-scale units in the market.

With regard to these issues, various concepts have been conceived and practically ex-
amined in the course of the last years. Common idea is the aggregation of small-scale
energy units into a single pool, where a specific control mechanism is used in order to
organize and coordinate the members according to a joint goal. In order to allow for an
automated operation, the units are connected by means of information and communica-
tion technology (ICT). Such pools are for instance referred to as Virtual Power Plants
(VPPs) [PRS07], cooperatives [CRK+11], or virtual devices [SLBT15].
With regard to electricity markets in general and the above mentioned problems in par-
ticular, an aggregation of energy units provides several advantages. First, by cumulating
their generation or consumption potentials, it enables small-scale actors to meet mini-
mum volume thresholds of wholesale markets and thus to trade products which exceed
their individual capabilities. Second, by aggregating units with a different reliability
or complementing capabilities (like producers and storage), it allows for a reduction or
compensation of stochastic effects and thus for a more reliable product fulfillment saving
members from high extra costs. Finally, through an aggregation and goal-directed coor-
dination of its members, a pool allows for a more flexible response to changing market
conditions as well as an increased market power enabling members to compete more
successfully in the market.
Although basically having the same goals, current aggregation concepts often vary with
regard to the internal organization and coordination of the integrated units. However,
as common characteristics, most approaches published to date organize the members
in a hierarchical relationship and coordinate them by means of a central control logic
according to economic aspects, where the pool is typically assumed to be a fixed set
which does not significantly change over time. However, when it comes to electricity
trading in general and short-term-oriented spot markets in particular, these concepts have
a range of drawbacks with regard to the following aspects:

Robustness The application of a central control logic for coordinating the units of a
pool constitutes a single point of failure which may result in a malfunction or – in
the worst case – a total breakdown of the system in case of errors. Even if robustness
is introduced through redundancy, the cost for keeping mirrored systems in sync is
typically very high.
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Scalability If a set of units is to be divided into different pools according to a given
optimization goal, centralized approaches typically fall short of scaling well with an
increasing number of actors in terms of performance and efficiency. Consequently,
the maximum manageable number of units is restricted by the technical capabilities
of the central computing system.

Individual preferences In a competitive market, a central control of units which are
contractually bound to a pool operator contradicts the intention of each market player
to maximize its individual profit. I.e., the units are not able to flexibly apply their own
trading strategies based on local optimization goals.

Temporal flexibility A temporally fixed composition of a pool impedes a flexible re-
sponse to changing market conditions like price fluctuations. As a consequence,
economic profits are lost which otherwise could be gained through the aggregation
of a more beneficial set of units.

Trusted Cooperations If energy units belong to different owners, an aggregation re-
quires some degree of trust among the members of a pool. Integrating related criteria
into the formation process promotes the truthful behavior of the participants because
harmful activities have negative consequences on the willingness of the others to co-
operate in the future. However, to date most pooling concepts lack in concepts which
permit trusted cooperations between different actors.

Payoff Distribution Because of the economic advantages described above, an aggrega-
tion of energy units allows for monetary benefits which can be distributed among the
members of a pool. However, current concepts mainly consider the organization and
operation of a pool but do not address the problem of dividing a resulting surplus
according to specific criteria.

Topology awareness Finally, most pooling concepts proposed to date do not take topo-
logical aspects of the grid into account. In recent times, first approaches have been
published which take spatial data of the units into account in order to allow for a pro-
vision of system services depending on this kind of information [PRS07, BSD+09].
However, there is yet no approach integrating topological information of all produc-
ers and consumers in the grid in order to enable a trade of localized power products
and exploit the efficiency potentials as described above.

The above shortcomings motivate the development of a new aggregation method which
is aligned to the current trends in the energy domain. In order to solve the discussed
problems, we expect the approach to fulfill the following requirements:
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• RDC (distributed control), i.e. to form pools in a completely decentralized fashion,

• RS (scalability), i.e. to scale well with an increasing number of units,

• RCO (combined optimization), i.e. to consider both local and global preferences,

• RT F (temporal flexibility), i.e. to allow for a dynamic reorganization over time,

• RTC (trusted cooperations), i.e. to take the trustworthiness of actors into account,

• RPD (payoff distribution), i.e. to allow for a fair division of a gained surplus, and

• RT A (topology awareness), i.e. to integrate grid-related information of the units.

The above requirements are based on the fundamental assumption that through a dis-
tributed design we obtain a robust and scalable aggregation method which enables par-
ticipants to optimize their local profits while still preserving the possibility to form pools
according to a global optimization goal. This assumption is supported by the success-
ful application of decentralized systems in other domains which are characterized by
inherent distributed processes or infrastructures, like manufacturing, transportation, or
electronic commerce [JSW98]. By means of a combined optimization approach, we in-
tend to take both the preferences of the individual participants and those of the global
supply system into account.
In order to further emphasize the need for a new aggregation method, we next provide
a more thorough overview of the state of the art before specifying the objectives of this
thesis in detail.

1.2 Related Work

In what follows, we discuss research which is related to the context of this thesis.
Throughout the descriptions, we refer to the previously stated requirements in order to
point out the advantages and drawbacks of the considered approaches with regard to our
addressed problem of forming pools of energy units in the context of electricity markets.
As methods for the aggregation of different actors are also examined in the fields of e-
commerce and distributed artificial intelligence (DAI), we do not restrict our discussion
to the domain of electric power provision but include concepts from these areas as well.
More precisely, research in the field of e-commerce and electronic markets considers the
problem of how to form coalitions of customers in order to increase the profits of buyers
and sellers through the trade of wholesale lots. Contrary, in the domain of distributed
artificial intelligence related questions are typically considered as the problem of coali-
tion structure generation (CSG) [RMWJ15] where a set of agents A = {a1, . . . , an} is to
be partitioned into a coalition structure CS = {C1, . . . ,Cm} – i.e. a set of exhaustive and
disjunct coalitions Ci ⊆ A – such that global value is maximized. More precisely, given
two functions v(C) ∈ R and V(CS ) ∈ R measuring the value of a coalition and a coali-
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tion structure, respectively, goal of the optimization problem is to identify an optimal
coalition structure

CS ∗ = arg max
CS∈C̃S

V(CS ), V(CS ) =
∑

C∈CS

v(C), (1.1)

where C̃S denotes the set of all coalition structures,
⋃

C∈CS C = A, and ∀C,C′ ∈ CS
with C , C′ : C ∩ C′ = ∅. As the CSG problem is NP-complete [SLA+99], related
research particularly examines concepts which allow for an efficient approximation of
an optimal solution.

1.2.1 Electric Power Provision

In [PRS07], Pudjianto, Ramsay, and Strbac discuss two related approaches for the aggre-
gation of distributed energy resources and controllable loads referred to as commercial
virtual power plant (CVPP) and technical virtual power plant (TVPP). In conjunction,
both concepts are intended to provide a functionality similar to that of a conventional
large-scale power plant connected to the transmission grid. A virtual power plant is
here generally understood as a pool of units which is characterized by a single operating
profile, where the latter is obtained through an aggregation of all unit-related parame-
ter values which determine the final overall behavior (like outputs, generation limits, or
ramp rates). As the participating units are potentially distributed over the whole grid,
the capabilities of a VPP are furthermore affected by network-related properties such
as impedances or losses. Based on this general notion, the authors propose the above
mentioned specialized types CVPP and TVPP which serve the purposes of market par-
ticipation and system management, respectively. More precisely, a commercial virtual
power plant provides its members the advantage of a direct access to wholesale markets
as well as the possibility to optimize their trading behavior. Moreover, it allows for a
subgrouping of the participants by region if the market imposes specific constraints with
regard to the units’ locations. In contrast, a technical virtual power plant provides ser-
vices for the management of the distribution and transmission grid. As these might be
restricted to specific regions, a TVPP always aggregates units from the same local net-
work. Because on level of the distribution grid a provision of system services requires
individual information about the units (like the set operation schedules), these data are
transferred by the CVPPs which include the concerned units as members. Contrary, for
services on level of the transmission grid, all necessary information is aggregated into a
single profile in order to describe the overall behavior of the pool and make it comparable
to that of other large-scale power plants.
Although extending the typical functionality of a virtual power plant, CVPPs and TVPPs
still do not fulfill most of our previously specified requirements. As both types are in-
tended to be operated by single actors, they can be interpreted as centralized aggregation
concepts which optimize the pool according to a single objective function and provide
only a limited degree of scalability and organizational flexibility. Moreover, they do nei-
ther allow for trusted cooperations among participants nor for a distribution of a gained
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surplus. However, as first approaches in the context of VPPs, both types integrate grid-
related information which enables a spatial aggregation of units.
As another approach, in [KSK10] Kok, Scheepers, and Kamphuis describe PowerMatcher,
an agent-based control concept for distributed energy units. Although originally devel-
oped for the purpose of supply and demand matching in electricity networks [KWK+05],
the approach is also suitable for operating a cluster of units as a virtual power plant with
respect to a desired goal. Its control functionality is realized through a multiagent sys-
tem (MAS) in which software agents take on different roles according to their intended
purpose. The organizational structure of the system is given by a tree which root rep-
resents a unique auctioneer agent being responsible for the price formation within a
cluster. The auctioneer collects bids from local device agents which are either directly
or indirectly connected to the root. As representative of an energy unit, each device
agent strives for an economically optimal control of the very same taking into account
all given constraints. The operational flexibilities which are exploitable for this task are
generally determined by the type of the unit which can be one of a set of predefined
categories (like stochastic operation devices, shiftable operation devices, or electricity
storage devices). According to their control strategy, the device agents create bids in
the form of demand functions which specify the power amounts they are willing to buy
or sell at specific prices in a future time interval. These are submitted to the auctioneer
agent which iteratively determines an equilibrium price based on the received informa-
tion. After its assessment, the price is communicated back to the device agents which
enables them to infer the amounts of power being allocated to their units. In order to
achieve scalability, the approach allows to aggregate subsets of device agents by means
of concentrator agents which form interfaces between the auctioneer and the subgroups.
From the viewpoint of an auctioneer, a concentrator agent behaves like a single device
agent by aggregating the submitted demand functions of the clustered agents into a sin-
gle bid, while from the viewpoint of a subgroup it acts like an auctioneer by forwarding
the assessed equilibrium prices. If a cluster is not intended to balance itself, an objective
agent can be attached to the auctioneer which implements an alternative functionality.
This way, the included units can for instance be operated as a virtual power plant which
strives for the provision of a predefined operation schedule.
With regard to our requirements, PowerMatcher is designed as a distributed system,
where scalability is achieved through an internal subgrouping of energy units. However,
the hierarchical organization of a cluster is still prone to a malfunction or breakdown of
single agents and does not dynamically change over time. Moreover, while trust-related
issues are briefly discussed in [KWK+05], specific concepts are not explicitly integrated
into the control process. Similarly, the provision of system services for network man-
agement is described as a potential functionality of a cluster in [KSK10], but no detailed
information is given about a corresponding implementation of the objective agent or the
grid-related requirements which have to be fulfilled by the cluster. Finally, while the
approach is suitable for the operation of a VPP, the publications do not detail related
aspects like specific objective functions or the distribution of a gained payoff.
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As another agent-based approach, in [Lün12] Lünsdorf describes a self-organization1

method for demand side management in mid and low voltage grids (a summary of the
approach can also be found in [SLBT15]). Basically, the distributed heuristic aggregates
controllable small-scale units like dishwashers or washing machines into virtual devices
in order to alter the global load of a grid in a favourable way (for instance by reducing
economically expensive load peaks). To this end, each substation is equipped with a soft-
ware agent which controls the consumption units of the subordinate low voltage grid and
coordinates its actions with other agents within a defined neighborhood. By including
only those substations within a maximum range, the latter allows to restrict the activities
of an agent to a limited section of the grid. In the course of an iterative optimization
process, the agents then cluster their units into virtual devices with the goal to maximize
global value. In each optimization cycle, an agent checks for each of its local units if
it can be successfully allocated to a virtual device within a defined search space. The
latter includes a subset of its own and neighboring virtual devices and is dynamically
expanded in the course of the optimization process according to the expected probability
to successfully assign a unit to an included device. This probability is generally assumed
to be the higher, the higher the centrality of an agent controlling a device, i.e. the higher
the total sum of units being controlled by the agent and its neighbors. With a rising
number of iterations, the search space thus includes more and more devices of agents
with a lower centrality. If in the course of an optimization cycle a unit can be success-
fully allocated to a new virtual device, the controlling agent updates its own data model
and sends a notification to all affected neighbors in order to ensure a persistent system
state. Contrary, if no allocation is possible, a new virtual device is created for the unit
and assigned to the neighbor with the highest centrality in order to raise the probability
that it soon becomes part of a bigger device. The optimization process finally ends when
all participants have explored their whole neighborhood. However, if the load progno-
sis of a unit changes, the controlling agent reacts to the new situation and resumes its
optimization activities.
With regard to our considered requirements, Lünsdorf’s self-organization method allows
for a distributed and temporally flexible creation of virtual devices for the purpose of a
DSM measure which may be restricted to a specific region in the grid. As the heuristic is
based on local knowledge and agents only consider an allocation of their own units in the
course of the optimization process, it can also be expected to scale well with the overall
number of units in the grid. However, as newly created devices are always assigned to
agents with a high centrality, there is generally a bias with regard to the importance of
different actors which decreases the robustness of the system. Moreover, the approach
only considers a maximization of global value and does not address any aspects related
to trustworthy cooperations or the distribution of a gained surplus.

1 Self-organization refers to the capability of a system to change its organization without external control
[DGK05].
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1.2.2 Electronic Commerce

In [TSCY01], Tsvetovat et al. consider the problem of forming customer coalitions in
the context of electronic markets in order to allow for volume discount prices resulting
from a cumulated demand. After discussing the related economic incentives for both
buyers and sellers, the authors present two protocols for coalition formation (referred
to as post-negotiation and pre-negotiation protocol) which specify the basic interactions
between all involved actors, i.e. a coalition leader, a number of potential coalition mem-
bers, a set of suppliers, and a central coalition server. The proposed protocols generally
differ in the order in which the actual formation process and the negotiations with the
suppliers are conducted. In the context of the post-negotiation protocol, the coalition
leader first initiates the formation of a coalition for the purchase of a specific item by
using the coalition server which transfers a corresponding notification to the potential
members. If these decide to join, they reply by sending a message to the initiator which
starts a negotiation with the suppliers if either a maximum coalition size or a specified
deadline has been met. After a deal has been made, the coalition leader finally collects
the payments from the members and distributes the purchased items. Contrary, in the
context of the pre-negotiation protocol, the contractual conditions are first negotiated
with the suppliers which are then used as basis for the formation of a coalition.
With regard to our considered requirements, the presented protocols only allow for a
centralized formation of coalitions by means of a mediating server, where these are
built dynamically for the purchase of a single product only. Despite their centralized
design, both approaches can be expected to scale well with the number of customers as
no complex optimization problem has to be solved and the formation processes terminate
if a specific coalition size or a deadline has been met. However, for the same reason the
protocols can not be applied to more complex scenarios. Moreover, they integrate neither
trust-related aspects nor a method for the distribution of a gained surplus.
A more sophisticated formation scheme termed GroupBuyAuction is presented by Ya-
mamoto and Sycara in [YS01]. In contrast to the previously discussed protocols, the
proposed approach allows customers to express their preferences more flexibly and dis-
tribute the final profit of a coalition in a stable way. I.e., before a formation process
starts, buyers are initially able to specify their interest in multiple items of a consid-
ered product category (like cameras or notebooks) along with corresponding reservation
prices. In the course of an auction, sellers then provide bids for the different products in
the form of price schedules which reflect their volume discounts for different amounts
of sold items. Based on the made bids, a group leader then partitions the buyers into
subgroups by first identifying the most valuable coalition for any of the products and
then proceeding recursively for the remaining buyers and items. The value of a coali-
tion is generally defined by the gained profit, i.e. the difference between the summed
reservation prices specified by its members and the total cost of the purchased products.
Thus, the applied algorithm does not optimize the value of the whole buyer group but
the one of the iteratively determined coalitions. After the formation process has ended,
the group leader is also responsible for distributing the surplus of each coalition among
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the members, where the resulting divisions are stable in terms of the game-theoretical
concept of the core [SLB09]. The latter guarantees that no subset of members has an
incentive to leave a coalition because of a higher profit gained when working on its own.
With regard to our specified requirements, the proposed formation scheme represents a
centralized but dynamic approach which restricts the organizational binding of coalition
members to the trade of a single product only. As the running time of the included
algorithm is O(n · log n), with n being the number of buyers, the approach is applicable
to high quantities of customers and further allows for a division of the resulting surplus.
However, no trust-related aspects are integrated into the formation process. Moreover,
the presented algorithm only improves the value of the coalitions and not that of the
whole buyer group.

1.2.3 Distributed Artificial Intelligence

One of the first application-independent algorithms for agent-based coalition formation
was proposed by Ketchpel in [Ket95]. The approach represents an iterative optimization
process in which agents form coalitions through bilateral negotiations with the goal to
maximize their individual payoff. Each negotiation round consists of four different steps
referred to as Communication Phase, Calculation Phase, Offers Phase, and Unification
Phase. As first step, an agent initially exchanges information with all other agents in
the system which is required for assessing the benefit of a potential cooperation. The
data are used in the Calculation Phase in order to determine the individual payoff which
is associated with each bilateral collaboration, where the calculations are based on the
game-theoretical concept of the Shapley value [SLB09]. The latter allows for a fair divi-
sion of a jointly achieved benefit according to the contributions of the involved actors2.
Based on the results, an agent next creates a preference list comprising its favoured co-
operation partners in descending order. In the course of the third phase, it then negotiates
with other agents by running through the list and making proposals for a collaboration
while accepting or declining those received from others, where each agent is generally
constrained to maintain a single pending offer at a time. If the interactions lead to an
agreement, the involved agents finally form a coalition with a designated representative
and act in the next round as a single entity. This way, coalitions iteratively grow until no
more cooperation is possible and the algorithm eventually terminates.
With regard to our requirements, Ketchpel’s heuristic allows for a decentralized and
temporally flexible formation of coalitions according to a given goal. However, despite
its distributed nature, it can only be expected to provide restricted scalability as in each
negotiation round information is exchanged between all agents in the system. Moreover,
because the latter are only allowed to maintain a single pending offer at a time and
messages do not expire, the algorithm’s running time may become unacceptably high
if proposals accumulate over time. With regard the distribution of a coalition’s value,
the author notes that a division is implicity calculated in the course of the negotiations.

2 If only two actors are involved, the individual shares are also referred to as bilateral Shapley values
[CKY98].
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However, from the descriptions it is not clear how a share should be further distributed if
the negotiating party constitutes a coalition and not a single agent. Finally, the approach
only considers a maximization of individual value and does not integrate aspects of trust.
Alternatively, in [SK98] Shehory and Kraus address the problem of task allocation
through decentralized coalition formation. More precisely, the authors consider mul-
tiagent systems in which each agent has a number of specific capabilities and a set of
tasks has to be fulfilled. In order to solve a task cooperatively, agents are able to join
forces and form coalitions. The related optimization problem is then analogous to that
of coalition structure generation in the sense that the given tasks are to be allocated to
coalitions in such a way that their summed value (resulting from task execution) is max-
imized (cf. Equation 1.1). Furthermore, the authors consider two special cases in which
coalitions are allowed to overlap with regard to their members and the given tasks are
associated with a defined precedence order. However, as these are not relevant for the
context of this thesis, in the following we only discuss the algorithm proposed for solv-
ing the first problem. Basically, the presented heuristic consists of two iterative steps
in which the agents first distributively calculate the values of all possible coalitions and
then form the most beneficial one based on the generated knowledge. More precisely,
each agent starts the optimization process by first determining all those coalitions in-
cluding itself as a member. Afterwards, it calculates the corresponding coalition values
in coordination with other included members, where the worth of a coalition is gener-
ally determined by the task which execution yields the highest possible benefit. As the
number of coalition values is exponential in the number of agents, the algorithm restricts
the size of a coalition through a parameter in order to reduce computational complexity.
In the second stage, each agent then identifies the most beneficial of its calculated coali-
tions and shares the information with other agents. The exchanged data finally allow to
form that coalition providing the maximum global benefit which is assigned to the task
on which its coalition value is based. As this task may also have determined the values
of other coalitions, these are finally recalculated if necessary before the next iteration is
started.
With regard to our considered requirements, the proposed algorithm allows for a dis-
tributed and temporally flexible task-oriented formation of coalitions. However, because
the heuristic optimizes global value and calculates all possible coalition values in the
course of execution, it is associated with a high computational complexity of order
O(nk · |T |), with n being the number of agents, k being the maximum coalition size,
and |T | being the number of tasks. Moreover, it addresses no aspects related to the topics
trust and value distribution.
Two further approaches for a decentralized formation of coalitions are presented by
Sims, Goldman, and Lesser in [SGL03]. Although they consider the specific domain
of distributed sensor networks, the authors specify their addressed question in terms of
the CSG problem making their approaches applicable to other use cases as well. Ba-
sically, the proposed protocol classes are modified versions of the contract net protocol
[Smi80, SD81], an approach for cooperative problem solving in distributed systems. The
contract net protocol specifies a negotiation process in which a task manager broadcasts
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the description of an open task to potential contractors which then provide bids for its
fulfillment according to their given capabilities. After a specified deadline has passed,
the manager awards a contract to the bidder with the most beneficial offer which is then
obliged to fulfill the task. While this approach is also suitable for coalition formation
in order to identify like-minded cooperation partners, it does not allow for an optimiza-
tion of social welfare as specified by the CSG problem. Hence, the authors propose two
similar protocols which are based on the concepts of local marginal utility and social
marginal utility. In both cases, the negotiations take place between sector managers, i.e.
coalition leaders which transfer members between their coalitions according to the given
optimization goal. In the context of the local marginal utility based protocol, a manager
broadcasts a request for cooperation to other agents which then provide an answer if a
member transfer yields a positive local marginal utility, i.e. an increase in the value of
their coalition. In contrast to the contract net protocol, a replying coalition leader is here
not bound to its offer and thus able to answer an arbitrary number of requests in par-
allel. The initiating manager then selects the bid maximizing its local utility and sends
a notification to the corresponding agent. The latter finally concludes the negotiations
by confirming that cooperation which maximizes its own local utility as well. Contrary,
in the context of the second protocol, agents make their choices based on the resulting
social marginal utility, i.e. the sum of the local marginal utilities of both negotiation
partners. As in case of a successful negotiation this value is always positive, it is guar-
anteed that the formation process results in an improved global utility even if the local
utility of one cooperation partner is negative.
With regard to our specified requirements, the proposed protocols allow for a decentral-
ized and temporally flexible formation of coalitions with the goal to maximize global
value. As both approaches are based on local knowledge and communication takes
place between managers only, they can also be expected to scale well with the num-
ber of agents. However, aspects related to trusted cooperations or the distribution of a
gained surplus are not considered.
In [ASSR12], Anders et al. finally describe a set partitioning algorithm for distributed
agents (SPADA) which can also be applied to the problem of coalition structure gener-
ation. The decentralized heuristic is based on a specific graph representation in which
a coalition3 of agents is modeled as a directed tree, where the root of the latter repre-
sents a coalition leader to which all other members are connected by means of labeled
edges. The labels differentiate the members from acquainted agents which are also part
of the tree but connected through unmarked edges. Given an arbitrary coalition struc-
ture as starting point (e.g. one in which all agents form a coalition on their own), in the
course of execution each coalition leader then strives for an optimization of its coalition
by iteratively assessing the reward of adding new acquaintances to and excluding cur-
rent members from the tree. The calculation of the reward is based on a fitness function

3 In fact, the authors use the word partition for a coalition and partitioning for the set of partitions resulting
from the optimization process. As this terminology is inconsistent with the one typically used in the
context of the CSG problem, we use the analogous terms coalition and coalition structure in order to avoid
confusion.
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which quantifies the value of a coalition based on local knowledge and has to be speci-
fied by the system designer according to the requirements of the given application. If the
addition of an acquaintance is considered beneficial, the coalition leader sends an invita-
tion to the agent which is free to accept it according to its own evaluation. If the invitee
decides to join, it is transferred to the new coalition along with its acquaintances which
thus become available as new potential members. Contrary, if the exclusion of a mem-
ber is considered beneficial, the participant is informed about its removal after which it
forms a new coalition on its own. Having examined a limited set of agents in a given
optimization cycle, a coalition leader finally mixes the acquaintances of its members in
order to promote the exchange of different agents between coalitions. If the specified
optimization goal is then reached, it stops the process but becomes active again if one of
its members receives a new invitation. Thus, the algorithm is generally not guaranteed
to terminate.
With regard to our considered requirements, SPADA is an application-independent ap-
proach which allows for a decentralized formation of coalitions based on local knowl-
edge. It can be expected to scale well with the number of agents as coalition leaders
only consider a restricted number of them when optimizing their coalitions. Through
an appropriate specification of the fitness function, the algorithm is also applicable to
scenarios in which coalitions dynamically reorganize over time. However, although the
heuristic is application-independent, it can not be applied to all optimization problems as
the calculation rules for the rewards inherently prescribe the objective function. More-
over, the approach does not integrate aspects related to trusted cooperations or the dis-
tribution of a gained surplus.

1.2.4 Summary and Discussion

Table 1.1 gives an overview of the previously discussed approaches and provides an
evaluation with regard to their suitability to fulfill the initially stated requirements. As
depicted, most deficits exist with respect to a combined consideration of potentially con-
flicting optimization goals, an integration of trust-related aspects into the aggregation
process, as well as a fair distribution of a resulting payoff.
The described concepts from the field of electric power provision generally reflect the
trend towards more distributed and flexible aggregation methods which account for the
current restructuring processes in the domain as discussed at the beginning of this chap-
ter. While CVPPs and TVPPs are still based on the conventional paradigm of a cen-
tralized control, PowerMatcher and Lünsdorf’s self-organization approach represent de-
centralized approaches providing an increased degree of scalability. However, despite
their distributed nature, the latter still possess properties decreasing the system’s robust-
ness against failures: While PowerMatcher applies an internal hierarchical organization
within a cluster, Lünsdorf’s heuristic assigns an increased responsibility to agents with
a high degree of centrality.
According to their intended purpose, the concepts from the domain of e-commerce en-
able a temporally flexible pooling of high numbers of customers for the joint purchase
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approach RDC RS RCO RT F RTC RPD RT A

CVPP/TVPP •
PowerMatcher • •
virtual devices • • • •

post-/pre-negotiation protocol • •
GroupBuyAuction • • ◦

coalition formation via bilateral Shapley value • ◦ • ◦

task allocation via coalition formation • •
local/social marginal utility based protocol • • •
SPADA • • •

• requirement fully addressed
◦ requirement partly addressed

Table 1.1: Related work from the domains of electric power provision, e-commerce, and
DAI.

of selected products. Yet, both discussed approaches only allow for a centralized ag-
gregation, where scalability is either achieved by applying an efficient heuristic (Group-
BuyAuction) or performing no optimization at all (post-/pre-negotiation protocol). With
regard to a division of the resulting profit, GroupBuyAuction integrates a stable but not
fair distribution scheme.
Finally, the agent-based concepts from the domain of DAI allow for both a goal-oriented
and completely distributed formation of coalitions. However, the discussed approaches
demonstrate that a decentralized control does not automatically result in a high degree
of scalability. If the decision-making process of the agents is based on a global infor-
mation model (as it holds for the first two of the described concepts), the computational
and communication cost become unmanageable in case of large numbers of actors, thus
outweighing the advantages introduced by a distributed design.
From the previous descriptions we can finally conclude that there is yet no approach
meeting all of our specified requirements. However, the discussed solutions still provide
several valuable features and insights for the development of a new aggregation method:

1. Decentralized interaction protocols as implemented by the utility based protocols
and SPADA are suitable for building coalitions with flat organizational structures.
Moreover, if the decision-making process of the agents is based on local information
only, they can also be efficiently applied to large-scale scenarios comprising high
numbers of actors.

2. Topology-based neighborhoods as used in Lünsdorf’s self-organization approach pro-
vide a reasonable means in order to integrate grid-related aspects into the formation
process and restrict a pool to a specific grid section if required by the pursued goal.
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3. A payoff distribution can be decoupled from the actual aggregation process if the
individual share of an agent is no decision criteria for its participation in a coalition.
As can be seen from the example of GroupBuyAuction, the division can then be
performed after coalition formation has finished.

1.3 Objectives

Having motivated the need for a new aggregation method and outlined the advantages
and drawbacks of present approaches with regard to the corresponding requirements, we
are finally ready to detail the objectives of this thesis. These are as follows:

Main Goal

Goal of this thesis is the design of an aggregation method which allows computerized,
interconnected energy units of type producer, consumer, and storage to form pools in a
self-organized and fully decentralized fashion. As general setting, we consider electric-
ity markets in which participants trade power products either bilaterally or via a mediat-
ing actor like an exchange. If the properties of a product exceed the operational capabil-
ities of a unit, it strives for a cooperation with other trustworthy participants in order to
achieve a joint fulfillment. The trade of a fulfilled product finally yields a profit which
is to be divided among the cooperation partners in a way which is fair and generally
incentivizes participants to declare their contributions to a pool correctly and truthfully
in order to promote contract compliance. With regard to its optimization goals, the new
method is expected to take both the preferences of the individual actors and those of the
global supply system into account. On the one hand, it shall allow for an optimization of
local profits through the identification of a beneficial combination of products exploiting
the operational capabilities of a unit. On the other hand, it shall also enable an opti-
mization of social welfare by promoting the formation of pools improving the utility of
the system as a whole. Moreover, the approach is intended to be temporally flexible in
the sense that the organizational binding of a participant to a pool is restricted to the
fulfillment of a single product only. Finally, it shall be applicable to any market type,
scale well with the number of units, and allow for the trade of localized power products
through the integration of appropriate topological information.

Although a product-oriented formation of pools might seem quite restrictive at first sight
because actors are in this case only able to cooperate if they strive for the same con-
tractual conditions, we expect our new approach to allow participants to flexibly adopt
the conditions of potential cooperation partners in the course of a formation process.
Moreover, actors shall be able to identify an alternative combination of products if the
formation process for a given product was unsuccessful.
By developing an aggregation method providing the above features, we strive for an
approach which fulfills the previously defined requirements and thus solves the identified
problems of present concepts. Because of its desirable properties, we expect the method
to yield high quality solutions for the given optimization problems even for large-scale
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scenarios comprising high numbers of actors. We capture these expectations in the form
of the following hypotheses which we finally use as basis for evaluating the approach in
Chapter 5.

Hypothesis 1.1: Local Performance

Through integration of an appropriate optimization algorithm, a distributed aggregation
method allows actors to successfully optimize their expected utility and approximate the
optimal solution of the corresponding local optimization problem to a high degree.

The first hypothesis captures our assumption that through decentralization actors are able
to optimize their expected individual profits resulting from the trade of jointly fulfilled
products. As described later in Section 4.1.2, these benefits generally depend on the
attributes of the products as well as the operational potentials of the energy units. Besides
the above property, we also assume that our new approach performs well on global
system level.

Hypothesis 1.2: Global Performance

A distributed and temporally flexible aggregation method enables a high rate of actors
to fulfill their power products and allows to approximate the optimal solution of the
corresponding global optimization problem to a high degree.

I.e., as each actor strives for the fulfillment of its desired products, we expect the method
to enable a high percentage of participants to achieve this objective and thus to optimize
social welfare. Finally, we assume that the approach can be efficiently applied according
to its intended purpose, where a scenario may potentially comprise a large number of
actors.

Hypothesis 1.3: Efficiency

A distributed aggregation method is efficiently applicable in terms of the computational
cost, communication cost, and runtime which it requires to provide a solution.

I.e., in order to assess the efficiency of our new approach, we consider the computa-
tional cost caused by the global optimization process, the communication cost caused
by the actors through the coordination of their actions, as well as the method’s total
runtime until termination. Specific measures for quantifying these and the above stated
performance-related criteria are defined in the context of evaluation in Chapter 5.

1.4 Research Methodology

According to our objectives as stated in the previous section, in the following chapters
we design and evaluate a new aggregation method for the decentralized pooling of en-
ergy units. In order to structure the related activities, we apply a research methodology
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which is basically an integrated approach combining two existing paradigms. As de-
picted in more detail in Figure 1.1, the latter are one the one hand given by the design
science research guidelines (DSRGs) [HMPR04] which we use as general requirements
for our research and on the other hand by the Smart Grid Algorithm Engineering (SGAE)
process model [NTS14] which we apply for the organization of the performed activities.
Both paradigms complement each other in the sense that, if extended by a single step,
the process phases defined by the SGAE approach allow for a research being in line with
the guidelines. In the following, we detail the applied methodology and then outline our
conducted research activities.
The design science research guidelines were originally proposed by Hevner et al. in
order to promote the quality of research in the context of information systems. In contrast
to natural science, which purpose is the development and justification of scientific claims
like theories or laws, design science strives for the creation and evaluation of artifacts
which can either be constructs (vocabulary), models, methods, or instantiations [MS95].
In this sense, we can view our work as design science research as we seek to create and
finally evaluate a new aggregation method for the pooling of energy units. Although in
their publication Henver et al. refer to the discipline of information systems, their view
on design science is generally in line with the afore mentioned understanding making
the proposed guidelines transferable to other areas as well. The different principles can
thus be summarized as follows [HMPR04]:

• Guideline 1 (Design as an Artifact) requires that design science research has to create
an artifact, i.e. a construct, a model, a method, or an instantiation. This artifact has to
be appropriately described in order to allow for a later implementation or application.

• Guideline 2 (Problem Relevance) requires that the built artifact must be valuable in
the sense that it provides a solution to a relevant problem.

• Guideline 3 (Design Evaluation) requires that the utility, quality, and efficiency of the
artifact must be validated through adequate evaluation methods like experimental, an-
alytical, or descriptive approaches. These are typically retrieved from a knowledge
base, i.e. a central repository being composed of existing foundations and method-
ologies. The choice of appropriate methods generally depends on the artifact as well
as the metrics used for evaluation.

• Guideline 4 (Research Contributions) requires that design science research has to
provide one or more verifiable contributions which add to the existing contents of the
knowledge base. Besides the artifact itself, these can also comprise other foundations
or methodologies which result as additional products from the work process.

• Guideline 5 (Research Rigor) requires that design science research has to create and
evaluate the artifact by means of rigorous methods. This is achieved through the
application of appropriate techniques and an effective utilization of the knowledge
base.
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• Guideline 6 (Design as a Search Process) requires that the artifact has to be designed
by means of a search process which uses available means to achieve the desired ends
while satisfying the laws existing in the problem environment. If it is impossible to
find the optimal design for an artifact, a heuristic search strategy has to be applied
which allows to achieve a satisfying solution.

• Guideline 7 (Communication of Research) finally requires that design science re-
search has to be presented to both technology-oriented and management-oriented
audiences. In either case, it must be communicated in a way satisfying the needs of
the addressed group.

As can be seen from the above descriptions, the proposed guidelines specify require-
ments for the performance and presentation of design science research. However, they
do not define a specific workflow, i.e. a sequence in which the related activities have
to be conducted. As second paradigm, we thus apply the Smart Grid Algorithm En-
gineering approach which specifies an iterative process model for the development of
algorithms in the context of power systems. As throughout this thesis we only conduct
a single iteration of the defined development cycle, we run through a sequence of work
steps as depicted in Figure 1.1. As already mentioned above, in order to address all
of the seven research guidelines, it was required to add an additional step at the end of
the sequence (Communicate) which is not part of the original model. Besides the dif-
ferent work steps, Figure 1.1 also shows the associated inputs and outputs in terms of
the existing knowledge which we apply in the context our research as well as the new
knowledge which we finally provide in the form of the resulting contributions. Referring
to the depicted methodology, the different research activities performed throughout this
thesis can be summarized as follows (for a general description of the SGAE phases see
[NTS14]):

Conceptualize As first work step, we analyze and specify the addressed problem in-
depth. Throughout the previous sections, we already began with this task by motivat-
ing the need for a new aggregation method and identifying related requirements based
on shortcomings of present pooling concepts. Moreover, we detailed our goal to pro-
vide a new solution and formulated hypotheses in order to capture our expectations
with regard its performance and efficiency. In the following chapters, we complete
the work step by first discussing the fundamental topics which are relevant for the
design and experimental evaluation of the intended approach. Moreover, we spec-
ify DYCE-FM, a formal model comprising concise definitions of all concepts being
crucial for the development process. As we expect our new aggregation method to
be universally applicable to a wide range of use cases, the definitions abstract from
specific details like the type of a market or the technology of an energy unit. Accord-
ing to our goal to design a decentralized system, the specifications partly draw on
formalisms from the domains of distributed artificial intelligence and game theory.
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Design Based on the formal model created in the previous step, we next develop a new
method for the decentralized aggregation of energy units referred to as DYCE4 –
DYnamic Coalition formation in Electricity markets. To this end, we first partition
the considered problem into four subproblems and analyze the related computational
complexities partly drawing on existing proofs where available. Based on the results,
we then develop an appropriate solution concept for each subproblem which forms an
integrated part of the sought overall solution. Drawing on concepts from the domains
of DAI and game theory, the new aggregation method is generally designed as a
distributed approach in which each energy unit is controlled by an autonomous intel-
ligent agent acting as its representative in the market. Based on individually specified
product portfolios exploiting the operational capabilities of their units, in the course
of execution the agents then coordinate their actions in order to form coalitions and
corporately fulfill their pursued products. If a formation effort was successful, a coali-
tion strives for a trade of its fulfilled product providing a profit which is distributed
among the members in a fair way. Throughout the whole process, the agents main-
tain an abstract model of the power grid which allows them to assess the physical
distance to other units in the grid. This way, they are able to dynamically form neigh-
borhoods of nearest neighbors within which the actual formation of coalitions takes
place. Neighborhoods thus allow to restrict the distribution of coalition members over
the grid and to handle the computational and communication cost associated with the
formation process.

Analyze In order to assess the computational complexity which is associated with the
previously developed design, as third step we examine the running times of the inte-
grated optimization algorithms in terms of the O-notation. With regard to a practical
application, these analyses allow for an estimation of the requirements which have to
be fulfilled by the hardware components running the agents.

Implement As prerequisite for an experimental evaluation, we next implement the de-
veloped agent-based design and tie it to a simulation system. The latter enables
an investigation of different scenarios and parameterizations based on discrete-event
simulations.

Experiment In order to examine the initially stated hypotheses, as fifth step we specify
a set of research questions with regard to the performance and efficiency of the devel-
oped approach. For each question, we then conduct an experiment which comprises a
set of simulations being executed on the basis of an appropriately designed scenario.
The results are used in the next work step in order to provide answers to the specified
questions. The investigations are primarily based on techniques from the domain of
Design of Experiments (DOE) which allow to maximize the gained information and
minimize the experimental efforts.

4 pronounced as [daIs]
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Evaluate Given the output data obtained from the conducted experiments, we are next
able to evaluate the developed aggregation method. To this end, we answer the pre-
viously specified research questions based on defined quality measures and draw
conclusions with regard to the performance and efficiency of the approach which
eventually allows us to support or reject the initially stated hypotheses.

Communicate As last step, we finally publish the results of the conducted research
through publication of this thesis.

As shown in Figure 1.1, the above work process is generally in line with the previously
discussed design science research guidelines. I.e., we address guideline 1 (Design as
an Artifact) by developing a new aggregation method in step 2; guideline 2 (Problem
Relevance) by motivating the need for the method in step 1; guideline 3 (Design Evalu-
ation) by analyzing its computational complexity in step 3 and further characteristics in
step 4-6; guideline 4 (Research Contributions) by providing new knowledge in the form
of several results; guideline 5 (Research Rigor) by drawing on existing foundations and
methodologies where appropriate; guideline 6 (Design as a Search Process) by applying
the SGAE model for the organization of our research process; and guideline 7 (Commu-
nication of Research) by finally publishing the results in step 7. This way, we apply a
research methodology which provides a well-founded basis for the achievement of our
goals.

1.5 Thesis Structure

The structure of this thesis basically follows the previously outlined research process,
where descriptions may span different steps if it improves readability. For instance, we
discuss the running time of the proposed optimization algorithms directly after their
specification rather than in a dedicated chapter.
Next, Chapter 2 covers the topics which make up the background of this thesis by giving
an overview of the deregulated electricity industry and providing an introduction to the
fields of distributed artificial intelligence and Design of Experiments. Afterwards, Chap-
ter 3 discusses the problem of coalition formation in electricity markets in-depth and
specifies the above mentioned formal model which forms the basis for the following de-
sign and evaluation of our intended aggregation method. The latter is then developed in
Chapter 4 which also comprises the complexity analyses of the considered subproblems
as well as the runtime analyses of the included optimization algorithms. Afterwards,
Chapter 5 describes the experimental evaluation of the approach and discusses the re-
sults in view of the initially stated hypotheses. Chapter 6 finally concludes the thesis by
reviewing the results and proposing topics for future research.
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2 Background
Having motivated the need for a new aggregation method, in the following sections we
provide an introduction to the fundamental topics which underlie the contents of this
thesis. In Section 2.1 we start by describing the basic structure of the liberalized elec-
tricity industry and discussing the different market types which can be used for the trade
of electrical energy. In Section 2.2 we then cover the IT-related background by detailing
the concept of an intelligent agent and the inner workings of multiagent systems. As
last topic, in Section 2.3 we provide an introduction to Design of Experiments, a com-
prehensive and efficient approach for experimentation which we extensively apply in the
context of evaluation in Chapter 5. Section 2.4 finally summarizes the most important
aspects and discusses them in view of our objectives.

2.1 Electricity Industry

In the following sections, we provide a brief overview of the deregulated electricity
industry and the German electricity market. First, Section 2.1.1 describes the indus-
try’s basic structure along with the physical and economic processes which connect the
associated actors. Afterwards, Section 2.1.2 provides a closer look at electricity mar-
kets and the different market types which can be applied in order to achieve an eco-
nomic equilibrium between supply and demand. The descriptions are mainly based on
[SPH12, vWS05, Sto02].

2.1.1 Structure and Processes

In contrast to other economic sectors, the liberalized electricity industry is particularly
characterized by the properties of its underlying commodity. As to date electrical energy
is still not storable in significant amounts and there is thus no possibility to compensate
an underproduction by means of a prior overproduction, supply and demand have to be
matched at each point in time. Moreover, in contrast to other commodities, electricity
can only be exchanged between producers and consumers which are connected to the
same supply network. As a consequence, if two electricity markets relate to distinct,
unconnected networks, price differences do not induce a higher production in the higher
priced market. Finally, because of its physical characteristics, electricity can hardly be
substituted by other energy sources which results in a strong dependency on the com-
modity and a low price elasticity of demand [SPH12].
The specific properties of electrical energy have considerable consequences on the way
how it is traded and physically supplied. As already pointed out in Chapter 1, the or-
ganizational structure of the electricity industry can generally be distinguished into an
economic and a physical level. Both are interrelated in the sense that electrical energy
is traded on the economic level via markets and then delivered on the physical level
through a technical supply network. Figure 2.1 shows this basic organization along with
the different roles and processes which exist within the electricity industry. Generally,
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Figure 2.1: Roles and processes within the electricity industry (adapted from [vWS05]).

a single actor can take on more than one of the depicted roles, like a household which
consumes electricity but also operates a local CHP plant for production. As shown on
the left hand side of the figure, in the course of the physical delivery process producers
convert primary energy into electrical energy which is then fed into the transmission
and distribution grid being managed by transmission system operators (TSOs) and dis-
tribution system operators (DSOs), respectively. More precisely, in case of large-scale
generators like nuclear or coal-fired plants, the electricity is fed into the transmission
network and transported to the distribution network which finally supplies it to the con-
sumers which are connected to the medium and low voltage grid. Contrary, if produced
by small- and medium-sized units like solar power or wind energy plants, the electricity
is directly fed into the distribution grid, where situations can arise in which the supply
exceeds the demand and the energy has to be fed back into the transmission network.
Finally, the electricity can also be produced directly by units on-site (like in case of do-
mestic solar power plants) and consumed locally without the use of the public supply
network.
The physical delivery of electricity is generally based on contracts which are concluded
on the economic level of the system. As shown on the right hand side of Figure 2.1,
supply and demand are matched via dedicated markets which allow participants to trade
power products according to their individual interests. A product specifies the amount
of electricity which is offered or requested at a certain price with regard to a future time
interval. As described in more detail in the next section, today’s electricity markets
typically comprise different submarkets (like a day-ahead or an intraday market) which
allow actors to trade products with regard to different time scales. As small-scale con-
sumers like households do not directly participate in trades at wholesale markets, they
are typically supplied by energy providers which cover their demand either through own
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power plants or by means of appropriate purchases. As a result, providers can also resell
excess amounts of electricity which they bought in order to ensure a secure supply. As
further market participants, traders also buy and sell electrical energy but, in contrast to
providers, do not supply any customers.
Generally, the above trading processes require producers, consumers, and energy pro-
viders to make predictions with regard to their expected production and demand which
form the basis for their sales and purchases. Until a specific deadline before physical
fulfillment, deviations from these predictions can compensated through trades, while in
the course of provision DSOs and TSOs are responsible for keeping the balance between
supply and demand. To this end, they use balancing power which is typically traded at
dedicated markets (not shown in Figure 2.1) [SPH12, Sto02].

2.1.2 Electricity Markets

As already outlined in the previous section, a deregulated electricity market typically
consists of different submarkets which allow participants to trade electricity and related
commodities with regard to different time scales. These can include long-term oriented
forward and derivatives markets, short-term oriented day-ahead and intraday markets,
as well as markets for the trade of associated commodities like control reserve or trans-
mission rights. The submarkets of an entire market can be connected through implicit
or explicit linkages, where the former result from unenforced market mechanisms like
arbitrage, while the latter are deliberately created through market rules which may for
instance require a purchase of transmission rights before a trade at the forward market.
Moreover, the submarkets may be of a different type which determines how the trades
between participants are organized. As shown in Figure 2.2, these can generally be ar-
ranged in a bilateral or a mediated fashion. While in bilateral markets buyers and sellers
trade commodities directly (which are thus also referred to as over-the-counter markets),
in mediated markets contracts are made with a mediating third party which acts as di-
rect trading partner for both sides. Bilateral markets can be further distinguished into
direct search markets in which participants have to find each other on their own, bul-
letin board markets in which the search is facilitated through a central medium like a
web page, and brokered markets in which the search is performed by specialized agents
which arrange the trades between buyers and sellers. Contrary, mediated markets can be
further distinguished into dealer markets in which participants conclude contracts with
dealers buying and selling traded commodities on their own accounts, exchanges which
match supply and demand by means of a central auction, and pools which also use a cen-
tral auction for the matching but further integrate additional information like the startup
costs of generators or the costs of potential congestions in the network. While bilateral
markets generally offer greater flexibilities as contract conditions can be specified indi-
vidually, they are also associated with higher costs as the specification process requires
higher efforts and the trading partners have to assess the creditworthiness of the coun-
terparty on their own. Contrary, mediated markets provide less flexibility with regard
to contract design but a higher degree of organization and centralization. For instance,
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Figure 2.2: Types of electricity markets (adapted from [Sto02]).

exchanges allow for a trade of standardized products and the assessment of a unique
market clearing price which is typically used as reference price for trades in bilateral
markets [Sto02, BKM14, OGZ08].
To give an example, Figure 2.3 depicts the structure of the German electricity market.
As shown, the included submarkets comprise a bilateral forward market and a mediated
derivatives market for the trade of long-term contracts and options. The spot markets
are given by a day-ahead and an intraday market which are both integrated into the
European power exchange EPEX SPOT which also operates the spot markets of France,
Austria, and Switzerland. Finally, there is a dedicated market for control reserve which
is operated by the TSOs for the procurement of primary, secondary, and tertiary control
reserve in order to meet their responsibility to ensure a safe operation of the power grid
[SPH12].

2.2 Distributed Artificial Intelligence

As described in Section 1.3, goal of this thesis is the development of a new aggrega-
tion method which partly draws on concepts from the domain of distributed artificial
intelligence. In the following, we make this objective clearer by providing an intro-
duction to the field. In Section 2.2.1, we start by discussing the properties of an in-
telligent agent and characterizing the environments in which it can potentially act. In
Section 2.2.2, we then provide an overview of multiagent systems and consider aspects
of communication, coordination, and organization. The descriptions mainly draw on
[RN10, WJ95, HS01, Syc98, HL04].
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Figure 2.3: Structure of the German electricity market (adapted from [SPH12]).

2.2.1 Intelligent Agents

As can be seen from the discussion in [FG97], today there is still no consensus with
regard to a commonly accepted definition of the term agent. The varying views partic-
ularly result from the requirements which are associated with the different application
domains. One of the most general definitions is given by Russell and Norvig in [RN10]:

“An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators.”

This understanding is visualized in more detail in Figure 2.4. As shown, the sensed per-
cepts are mapped by an agent program to actions which determine the agent’s behavior.
This way, it is able to respond to changes in the environment in an appropriate fashion.
Generally, the agent program can be of different complexity according to the agent’s pur-
pose. For instance, it can be based on simple hard-coded condition-action rules which
directly map percepts to actions or rely on more sophisticated search and planning meth-
ods enabling the agent to reason about its past and future behavior. The implemented
decision making process generally takes a single percept or a longer percept sequence
(i.e. a history of environmental states) into account. The resulting behavior can be rated
by means of a performance measure which quantifies the agent’s success in fulfilling its
executed task.
Clearly, the above definition captures a very broad understanding of agency. For in-
stance, it allows to view industrial robots or just simple Java methods as agents. How-
ever, there are obviously differences in the capabilities of these two agents with respect to
the autonomy and flexibility to execute actions. In other words, they can be expected to
exhibit a different degree of intelligent behavior. This aspect is reflected in the following
more specific definition of a rational agent [RN10]:

“For each possible percept sequence, a rational agent should select an action that
is expected to maximize its performance measure, given the evidence provided by
the percept sequence and whatever built-in knowledge the agent has.”
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A rational agent thus acts intelligently by always choosing an action which maximizes
its success based on all available information. The extent to which this choice is based
on its own experiences (and not on its hard-coded built-in knowledge) determines its
degree of autonomy.
While this second definition integrates a reasonable notion of intelligent behavior, it
only implicitly addresses situations in which multiple agents interact in order to fulfill
their goals. In such cases, the rational choice of an action is particularly determined by
the ability to appropriately respond to messages received from other actors. In [WJ95],
Wooldridge and Jennings emphasize this aspect by defining an agent as a computer sys-
tem possessing the following properties:

• autonomy, i.e. the capability to operate without external intervention and to control
the own behavior and internal state,

• social ability, i.e. the capability to interact with other actors based on an agent com-
munication language (ACL),

• reactivity, i.e. the ability to perceive the environment and respond to occurring
changes in a timely fashion, and

• pro-activeness, i.e. the capability to act goal-directed and take the initiative in order
to fulfill the pursued goal.

This understanding is generally in line with the definition of a rational agent but un-
derlines its possible application in distributed systems in which multiple actors interact.
As described in more detail below, social behavior is then a pivotal property in order to
achieve global coherence through coordination.
Depending on its intended purpose, an agent can be situated in a broad range of different
environments. The characteristics of a given setting have a decisive impact on the com-
plexity of its design as they require different capabilities with respect to the perception
and prediction of the world’s state. In this regard, an environment can generally be
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• fully observable or partially observable, where it is fully observable if it is completely
perceivable by an agent,

• deterministic or stochastic, where it is deterministic if its next state solely depends
on the current state and an agent’s chosen action,

• episodic or sequential, where it is episodic if in a sequence of disjunct episodes in
which an agent perceives and acts merely once the agent’s success always depends
on the current episode only,

• static or dynamic, where it is static if no changes occur while an agent is reasoning,

• discrete or continuous, where it is discrete if states, percepts, actions, and time can
be handled in a discrete fashion,

• known or unknown, where it is known if an agent possesses complete knowledge
about the consequences of its actions, and

• a single agent or multiagent environment, where it is a single agent environment if it
comprises one agent only [RN10].

If an environment is only partially observable, an agent has to maintain an internal model
in order to keep track of the elements which are out of its range of perception but rele-
vant for decision making. From its own viewpoint, a complex deterministic environment
may thus also appear to be stochastic even if the opposite is the case. Deterministic en-
vironments are generally easier to handle because there is no uncertainty about the result
of a chosen action. Sophisticated capabilities are required in sequential and dynamic
environments in which actions have an impact on the future performance of an agent
and it has to be steadily aware of potential changes. The same holds for continuous and
unknown environments in which an agent is confronted with continuous properties and
has to learn which consequences result from its actions. Finally, if an agent is situated
in a multiagent environment, its performance is also influenced by other agents which
requires communication and coordination among the actors as described in more detail
next.

2.2.2 Multiagent Systems

In recent years, multiagent systems have gained a lot of attention as paradigm for build-
ing large-scale distributed systems being composed of potentially heterogeneous compo-
nents which can enter or leave the system over time. The basic structure of a multiagent
system is depicted in Figure 2.5. As shown, the involved agents are able to coordinate
their behavior through structured interactions in order to fulfill their pursued goals in a
coherent fashion. To this end, they may also form organizational structures which po-
tentially evolve over time according to their intended purpose. The key properties of a
multiagent system are that
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Figure 2.5: Basic structure of a multiagent system (adapted from [Jen01]).

• each agent has only incomplete information or capabilities in order to fulfill its goal,

• system control and data are decentralized, and

• computations are performed in an asynchronous fashion [Syc98].

Although agents are often simply not able to execute a specific task on their own, they
can also coordinate their actions in order to achieve efficiency gains. For instance, in an
electronic market, a buyer agent may indeed be able to purchase single products on its
own but strive for a cooperation in order to obtain volume discounts through the trade of
wholesale lots (cf. Section 1.2.2).
Because of their distributed nature, multiagent systems provide several advantages over
centralized architectures. First, they allow for an increased efficiency and flexibility as
calculations are performed in a parallel fashion and capabilities of different agents can
be dynamically combined according to a given task. Moreover, failures of single agents
can be compensated by other agents with similar capabilities resulting in an increased
reliability at runtime. Finally, multiagent systems can be developed, maintained, and
extended more efficiently and flexibly through a cost-effective component-based design
[Wei01, Syc98].
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2.2.2.1 Communication
In order to coordinate their actions, the agents of a multiagent system communicate
based on a dedicated agent communication language. As a specific form of communi-
cation protocol, an ACL allows for a standardized specification and transfer of single
messages and thus for an information exchange between two communication partners.
Today, the most established languages are given by the Knowledge Query and Manipu-
lation Language (KQML) and the more recent FIPA ACL which was developed by the
Foundation for Intelligent Physical Agents (FIPA) as part of their standardization efforts
in the context of agent-based systems [LFP99]. Both represent high-level languages in
the sense that they specify the properties of a message independent from its content and
the protocol applied for its transfer. Moreover, both define the type of a message in
terms of speech act theory which considers utterances in natural language as actions by
which a speaker influences its environment. A speech act generally consists of its phys-
ical utterance (referred to as locution), its intended meaning (illocution), and possibly
the resulting action (perlocution) [HS01]. For instance, according to speech act theory,
the utterance “Please switch off the light.” is further characterized by its meaning as a
request and – if the request is met – the effect that the light is turned off. Both KQML
and FIPA ACL make use of this notion by defining the type of a message in terms of
its illocutionary force. In case of FIPA ACL, the corresponding message parameter is
referred to as Communicative Act which can take on values like inform, request, agree,
or cancel. Besides an informal description of all possible alternatives which can be spec-
ified by a sender, the FIPA communicative act library also provides formal definitions of
their underling semantics including the feasibility preconditions which must hold before
a performance and the rational effect which is expected by a sender as a result [Fou02b].
This way, the meaning of a message can be unambiguously defined so that communi-
cating agents have a common understanding of the transmitted content. To illustrate,
Figure 2.6 gives an example of a FIPA ACL message which might be sent by an electric-
ity consumer to a producer as a proposal for a trade. As shown, besides the identifiers
of both communication partners, the message parameters also specify the actual con-
tent as well as the language in which it is expressed. A complete listing of all possible
parameters can be found in [Fou02a].

2.2.2.2 Coordination and Organization
The ability to communicate enables agents to interact and coordinate their behavior. Co-
ordination is generally defined as a process in which a set of agents acts in a coherent
fashion, thus avoiding undesirable situations like livelocks, deadlocks, or resource con-
tentions. As the agents of a multiagent system have joint or interdependent goals and
only possess limited capabilities or information in order to fulfill the very same, the
application of an appropriate coordination technique is a pivotal requirement for their
success. Moreover, there may be global constraints like deadlines for common tasks
which require interactions [NLJ96].
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(propose
 :sender  consumer_ID
 :receiver  producer_ID
 :language  XML
 :content  (<product>
     <amount>
      <value> 100 </value>
      <unit> kWh </unit>
     </amount>
     <price>
      <value> 0.1 </value>
      <unit> EUR/kWh </unit>
     </price>
    </product>)
)

Figure 2.6: Exemplary FIPA ACL message.

Generally, coordination techniques can be distinguished into cooperative and competi-
tive approaches which are applicable in systems of non-antagonistic and self-interested
agents, respectively. As shown in Figure 2.7, these can be further classified into the
following subcategories [NLJ96, HS01]:

Organizational structuring An organizational structure defines the roles, authorities,
and relationships of the agents in a multiagent system (cf. Figure 2.5). This way,
it constrains their actions to predefined rules and allows for a coordinated behavior.
Generally, an organizational structure can be temporally fixed or evolve over time
according to the course of the interactions. For instance, the agents of a MAS could be
arranged into a fixed hierarchy which is predefined at design time. Alternatively, they
could also organize themselves into dynamic coalitions which adapt to environmental
changes at runtime. The specific characteristics of different organizational structures
are discussed in more detail below.

Contracting Another cooperative coordination technique is given by the contract net
protocol, a well-established approach for distributed problem solving which was first
proposed by Smith and Davis [Smi80, SD81] and later standardized by the Founda-
tion for Intelligent Physical Agents with minor modifications [Fou02c]. The basic
idea of distributed problem solving is to decompose and solve a given problem in
a decentralized fashion and finally integrate the generated partial solutions into the
sought overall solution. According to this approach, the contract net protocol spec-
ifies a distributed bidding process in which a manager announces an open task (i.e.
a subproblem) to contractors which then submit bids for its execution based on their
capabilities. Given the offers received as a reply, the manager finally awards a con-
tract to the most appropriate bidder. By taking on the role of a manager, a contractor
is generally able to further decompose an awarded task and initiate the same bidding
process which consequently results in a hierarchical decomposition structure.
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Figure 2.7: Classification of coordination techniques (adapted from [HS01]).

Multiagent planning In the context of multiagent planning, agents coordinate their be-
havior cooperatively through plans which specify their intended future actions. This
way, they are able to identify potential conflicts and resolve them through appropriate
modifications. Generally, the coordination can be realized in a centralized or a dis-
tributed fashion, where in the former case a single agent is responsible for analyzing
the individual plans of the whole community and integrating them into a consis-
tent overall plan. Contrary, in the context of distributed multiagent planning, agents
steadily exchange their individual plans in a decentralized fashion which allows them
to resolve potential conflicts without a central coordinator. Although this technique is
associated with a higher complexity, it preserves the benefits of a distributed system.

Negotiation In the course of a negotiation, two or more self-interested agents strive for
a joint agreement. Because their goals are potentially contradicting, they exchange
their individual positions and make proposals for a solution based on their applied
strategies. By making concessions, they try to solve conflicts and reach an agreement
which is acceptable for all involved negotiation partners.

Generally, the above categories are not strictly separable in the sense that many coordi-
nation techniques are based on several of the described classes. For instance, the contract
net protocol can be applied in order to identify appropriate cooperation partners for ben-
eficial organizational structures (cf. Section 1.2.3). Moreover, the term negotiation is
frequently used in the context of cooperative methods in order to describe an interaction
process among agents.
Besides enabling coordinated behavior, an organizational structure can further allow
agents to increase their individual power, achieve more challenging goals, or handle
potential uncertainties. To date, various approaches have been proposed which prop-
erties make them applicable to different use cases. While the following list provides a
description of typical organizational structures, a more comprehensive overview can be
found in [HL04].

Hierarchies In a hierarchy, agents are arranged into a tree with two or more levels which
branches define their communication links. Typically, the levels reflect the authority
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structure of the organization in the sense that higher located members control the
ones below them. However, in order to improve efficiency and prevent an overload
of the root agent, increased responsibilities can also be allocated to other nodes of
the tree. Hierarchies allow to control the data flow between agents and manage com-
munication cost. However, as main drawback they generally lack in robustness as a
failure of single agents can have severe consequences on the functionality of other
members.

Holarchies A holarchy can be considered as a special form of hierarchy in which all
tree nodes represent partially-autonomous entities termed holons. As a functionally
integrated unit, a holon consists of all subordinate holons and is in turn part of all
superordinate holons in the hierarchical tree. A holarchy thus represents a nested
organizational structure, where the partial autonomy of the members typically allows
them to handle transferred tasks in a flexible way and react to changing conditions
without further coordination. This fact makes it distinguishable from a hierarchy in
which agents are typically completely dependant on their predecessors. As further
difference, a holarchy can also specify cross connections between members, thus
dissolving the strict hierarchical structure.

Coalitions A coalition-based organization arranges the agents of a multiagent system
into one or more coalitions which results in a global coalition structure (cf. Sec-
tion 1.2). Coalitions are generally goal-directed in the sense that they serve the ful-
fillment of a specific objective and dissolve after this objective has either been met
or lost its relevance. While internally the members of a coalition coordinate their ac-
tions in order to achieve the pursued goal, from an external point of view they appear
as a single, integrated entity which is represented by a designated agent. However,
as the representative has no authority with regard to the control of other members, a
coalition’s structure is generally flat. With respect to their membership, agents can
either be part of one or multiple coalitions at a time. In the latter case, the coalitions
of a coalition structure thus potentially overlap.

Societies A society represents an open, long-lived organizational structure which pro-
vides its members a framework for interaction. To this end, it prescribes global rules
like binding communication protocols, ontologies, or social conventions which fa-
cilitate the reasoning of the participants by restricting their scope of action. Thus,
a society defines a regulated environment in which heterogenous agents can pur-
sue their individual goals and arrange themselves into further suborganizations if
required. A compliance with the global rules can be encouraged by means of ap-
propriate mechanisms like reputation systems which penalize a deviating behavior or
enforced through third-party institutions which validate the members’ activities.

Federations Similar to a coalition-based organization, a federation consists of differ-
ent agent groups which interact via designated representatives. However, in contrast
to coalition members, group members do not interact with each other but only with
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their representative which acts as intermediary coordinating local and global activi-
ties. More precisely, a representative is able to receive task requests from other inter-
mediaries and allocate them to members of its group based on descriptions of their
capabilities. Vice versa, internal task requirements are matched with the competen-
cies of other groups and sent to their corresponding intermediaries. Furthermore,
a representative can also keep track of local activities and block undesired external
communication. As the agents of different groups do not interact directly, federations
are particularly suitable for the integration of proprietary systems which functionality
can then be wrapped through appropriate intermediaries.

As can be seen from the diversity of the above examples, the organizational structure of
a multiagent system has to be chosen according to the requirements of the given appli-
cation. For instance, hierarchies and holarchies are particularly suitable for use cases in
which problems are decomposable into smaller subproblems and the resulting decom-
position structure can be mapped to a tree. As justified in more detail in Section 2.4, for
the multiagent system of this thesis we choose a coalition-based organization because it
allows for a flexible, product-based pooling of energy units and thus for the achievement
of our goals as defined in Section 1.3.

2.3 Design of Experiments

The following sections provide an introduction to Design of Experiments. As a com-
prehensive approach for experimentation, it comprises a broad range of different tech-
niques which can be applied according to the given requirements1. While Section 2.3.1
provides an overview of the basic concepts, Section 2.3.2 describes the experimental
designs which we apply for the evaluation of our new aggregation method in Chapter 5.
Afterwards, Section 2.3.3 and 2.3.4 detail aspects of effect calculation and response sur-
face modeling, respectively. The descriptions mainly draw on [NIS13, Kle13, AW07,
MMAC09, Kle08].

2.3.1 Basic Concepts

Design of Experiments is an approach for conducting experiments in an efficient way.
This is achieved through the application of techniques which maximize the gained in-
formation while minimizing the experimental efforts. Originating in the domain of agri-
culture in the 1920s, DOE was first mainly applied in process industries but also at-
tracted more and more attention from other disciplines like engineering or psychology.
Although originally developed for real (i.e. non-simulated) experiments, the concepts
from DOE can generally be applied to any system with measurable inputs and outputs
in order to examine cause and effect relationships. Still, special attention has to be paid
when dealing with deterministic processes like computer simulations. As these are not
exposed to stochastic influences and thus yield the same output if reexecuted under the

1 Alternatively, DOE can be viewed as a domain providing concepts for efficient experimentation.
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Figure 2.8: DOE black box model (adopted from [NIS13]).

same conditions, not all of the original DOE concepts are reasonably applicable. Be-
cause we apply the approach for the analysis of deterministic simulations, we discuss
related issues where required.
Figure 2.8 shows the experimental model which is applied in the context of DOE. As
shown, the system under investigation is considered as a black box which can be de-
liberately influenced by means of a number of controllable factors X (also referred to
as input parameters). Moreover, it can be implicitly affected by a set of uncontrollable
factors Z, like ambient temperature or humidity. However, note that in computer simu-
lations uncontrollable factors do not exist unless they are explicitly modeled. The inves-
tigated characteristics of the system are finally given by a set of measurable responses Y
[AW07, NIS13]. Given this model, the purpose of DOE is to asses causal relationships
between a set of considered factors X and responses Y through systematic experimen-
tation. The gained information is used in order to optimize the system with regard to a
pursued goal, like the maximization of a specific response or the improvement of the sys-
tem’s robustness. Generally, the approach can be applied to a broad range of problems
which can be classified into the following categories [NIS13]:

Comparative choice The first class covers problems in which a choice has to be made
between two or more different alternatives (e.g. between two different parts in a pro-
duction process). Thus, there is only one factor which is investigated with regard to
its alternative effects on a considered response. The experiments can either be con-
ducted under equal conditions for an initial comparison or under varying conditions
in order to achieve more reliable results.
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Factor Screening Typically not all of a set of controllable factors are of equal impor-
tance with regard to their effect on an examined response, in particular if a high
number of parameters is considered. Thus, goal of experiments related to this class
is to assess the impact of all parameters and screen out the most influential ones in
order to focus on these in the course of the further optimization process.

Response surface modeling (RSM) A response surface reflects the output behavior of
a system with regard to an examined characteristic given a set of controllable factors
X. Accordingly, experiments related to this category allow to fit polynomial models
which describe the local surface of a response and can thus be used for the achieve-
ment of a pursued optimization goal. As the complexity of these models increases
with the number of involved factors, a screening is typically conducted beforehand if
their number exceeds a manageable quantity. Response surface models for instance
allow to hit a specific target value, maximize output, make a process more consistent
by reducing variation, or make a system more robust against external influences.

Mixtures In mixture problems, the controllable factors are proportions of a blend which
sum up to a specific value. General goal of respective experiments is to find a setting
which is optimal with regard to a considered response.

Regression modeling In some cases response surface modeling is not sufficient as poly-
nomial functions approximate a response surface only over a restricted region. If a
more detailed description is required for a given response, other experimental tech-
niques have to be applied in order to create a more sophisticated mathematical model.

As the above descriptions show, DOE is a versatile approach for experimentation. Be-
sides its broad applicability, its success also stems from the advantages it provides over
other experimental methods. Particularly compared to the widely used one-factor-at-a-
time (OFAT) approach which only varies one parameter while keeping all others fixed
when examining a response, DOE provides some key benefits with regard to experimen-
tal reliability and efficiency. A pivotal DOE concept which allows for these advantages is
that of a factorial design. To illustrate, Figure 2.9 shows for both approaches the design
space of an experiment in which two factors are varied between a low (−) and a high
level (+). As described in more detail below, in the context of DOE the effect of a fac-
tor on a response is generally determined by contrasting level-related response averages,
i.e. by calculating the difference between the response average of the low levels and the
response average of the high levels. Given this technique, DOE provides the following
advantages over the OFAT approach [AW07, Kle13]:

Efficiency Through the use of factorial designs, DOE requires less simulation runs than
OFAT. For instance, in the example in Figure 2.9, DOE requires four runs in order to
asses the effect of factor A and B. In contrast, OFAT requires six runs in order to de-
termine effects of similar expressiveness. Generally, the efficiency of DOE increases
the more, the more factors are involved. For example, in case of three parameters
DOE requires eight runs, whereas OFAT requires sixteen runs in order to generate
similar results.
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Figure 2.9: Design space of a DOE and OFAT experiment (adapted from [Kle13]).

Inductive Basis The design space of a factorial design allows to infer results from a
wider inductive basis. For instance, when conducting an OFAT experiment as re-
flected by the design space on the right hand side of Figure 2.9, no information can
be gained about the output when both factors are set to the high level. Moreover, the
runs in which both factors are set to the low level is given to much weight as they are
used twice for the calculation of the response averages.

Interactions As factor level combinations are integral part of a factorial design, DOE
allows to identify interactions between parameters and thus to reveal new and often
crucial information about a considered system. This kind of information can not be
retrieved via OFAT as the approach completely omits combinations of factor levels.

Besides factorial designs, there are also other types of experimental designs which are
applied in the context of DOE. An overview is given in Section 2.3.2.
DOE is typically applied using a structured process which comprises the following steps
(adapted from [Kle13, NIS13]):

Step 1 – Definition of Objectives As first activity, the goal of the conducted experi-
ment is specified which can typically be assigned to one of the above discussed cate-
gories. If several objectives are pursued, these have to be prioritized as the choice of
the examined factors and the experimental design depends on the goal.

Step 2 – Parameters Selection The second step comprises the selection of all factors
and responses which are considered relevant for the achievement of the previously
specified goal. Moreover, the levels of each factor are determined which represent
the settings to which the parameter is set in the course of experimentation. The actual
number of levels which has to be defined depends on the pursued experimental goal.
Generally, it is important to include all factors and responses which are relevant for
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the considered context and choose factor settings which cover a wide operational
range but do not lead to invalid configurations.

Step 3 – Design Specification Having identified the factors and responses which are to
be examined, the third step consists of the specification of the actual experimental
design. As discussed later in Section 2.3.2, the selection of the design type depends
on the experimental goal, the number of examined factors, as well as the desired
precision of the results. Moreover, if the system under investigation is exposed to
stochastic effects, the design has to be accordingly specified in order to reduce ran-
dom influences.

Step 4 – Design Execution In the fourth step, the experimental design is executed by
conducting the specified runs and capturing the output. As the latter forms the basis
for all conclusions drawn from the experiment, it is important to keep track of all
unforeseen events and known but uncontrollable influences which have impacts on
the results. If documented, these can be potentially identified in the course of the
analysis of the outcomes.

Step 5 – Results Analysis The results gained from the execution of an experimental
design can be analyzed by means of a broad range of graphical and numerical tech-
niques depending on the pursued goal which was specified at the beginning of the
process. While some objectives only require the construction of data plots, other
aims involve the creation of empirical models which describe the behavior of the sys-
tem under investigation. However, in order to prevent misleading conclusions, these
models have to be validated with regard to their capability to describe the observed
data correctly.

Step 6 – Documentation and Application of Results In the last step of the process,
the results from the previous steps are documented and used in order to achieve the
pursued goal. If an optimal setting was identified and the examined system is exposed
to stochastic effects, the result is typically confirmed by executing the process several
times based on the configuration.

Having introduced the basic ideas of DOE, in the following we provide a more detailed
description of those concepts which are applied in the context of evaluation in Section 5.

2.3.2 Experimental Designs

A key activity in the context of Design of Experiments is the selection of the actual ex-
perimental design. The choice particularly depends on the type of the given problem, the
number of factors, as well as the considered system itself because it determines the com-
plexity of an experimental run. Table 2.1 gives an overview of common experimental
designs classified by the above discussed categories (for mixture problems and regres-
sion modeling mixture and regression designs are required, respectively). Generally, the
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comparative choice factor screening RSM

completely randomized full factorial central composite
randomized block fractional factorial Box-Behnken

Plackett-Burman

Table 2.1: Overview of experimental designs (adapted from [NIS13]).

listed types allow to examine different numbers of factors for a given number of experi-
mental runs. For instance, fractional factorial designs permit to handle a higher number
of factors than full factorial designs2. As shown, for comparative choice problems either
completely randomized or randomized block designs are used in order to investigate the
effect of an examined factor. While the former are applied when there exist no nuisance
factors – i.e. parameters which influence the output besides the examined factor –, the
latter try to eliminate this kind of impacts by varying the considered factor within blocks
in which all controllable nuisance factors are constant. The listed designs for factor
screenings mainly differ in the number of experimental runs which have to be conducted
for a given number of factors. In this regard, full factorial designs require on the one hand
the highest number of runs, but provide on the other hand the most precise results by tak-
ing all possible factor level combinations into account. Thus, these are typically applied
when a low number of factors is given. In contrast, fractional factorial designs allow to
reduce the number of experimental runs by executing only parts of the corresponding
full factorial designs according to the intended goal. Plackett-Burman designs are even
more economical with regard to the required runs but are restricted to the assessment of
main effects (i.e. effects which are caused by single factors) where it is assumed that
all interaction effects are negligible. The final category in Table 2.1 comprises designs
which are suitable for the purpose of response surface modeling. If a linear model is
sufficient for the achievement of the experimental goal, also full factorial and fractional
factorial designs can be applied in this context. However, often a non-linear function is
required in order to approximate the surface of a response appropriately. In this case,
designs have to define more than two levels for each factor in order to allow for a fitting
of higher-order polynomials. Both central composite designs (CCDs) and Box-Behnken
designs account for this requirement. The two types mainly differ in the way in which
they define the different factor level combinations which thus results in different design
spaces [NIS13, Kle13].
In the context of evaluation in Chapter 5, we investigate the algorithmic characteristics
of our proposed aggregation method by conducting a factor screening and using the

2 Because it generally holds that a higher number of input parameters requires a higher number of experi-
mental runs, the actual number of factors which can be examined by means of a specific design strongly
depends on the system under investigation. For instance, in the context of an industrial process five factors
may be considered as a high number of input parameters, whereas in the context of a computer simulation
the same number may be handled with ease as more experimental runs can be executed by the system with
less effort.
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Figure 2.10: Design space and matrix of a full factorial design (adapted from [Kle13]).

most important parameters in order to model the response surface of different evaluation
criteria (i.e. responses), like the global performance or the runtime. To this end, we use
full factorial and central composite designs which are described in more detail in the
following sections.

2.3.2.1 Full Factorial Designs
As already mentioned above, full factorial designs allow to screen a system’s input pa-
rameters based on their effects and to fit first-order models which approximate the sur-
face of a considered response. In the following, we provide an overview of the main
characteristics of this design type and describe the calculation of effects and the model-
ing of response surfaces in Section 2.3.3 and 2.3.4, respectively [AW07, NIS13].
In general, full factorial designs are complete in the sense that they specify all possible
factor level combinations. A design which includes k factors being set to n levels thus
comprises nk factor level combinations which results in a high experimental effort in
terms of the required number of experimental runs. Hence, in order to reduce complexity,
typically two factors levels are defined, i.e. a low level (also denoted as −1 or −) and a
high level (+1 or +). The selection of the levels is generally a crucial task as an effect
of a factor on a response may only be significant if these are reasonably set. As general
rule, in two-level designs the low and the high level should thus be set to extreme values
in order to induce an effect as high as possible.
To illustrate, Figure 2.10 shows the design space and design matrix of a two-level full
factorial design with three factors. As depicted, the former is given by a cube, where
the arrows indicate the direction in which each parameter is increased from the low to
the high level. Each corner of the cube defines a factor level combination which can
also be found in the corresponding row of the design matrix. The latter lists all possible
combinations in standard order, i.e. a systematic sequence which has to be randomized
in an experiment if the system under investigation is exposed to non-controllable, time-
related effects in order to avoid misleading results. For instance, if the depicted design
is executed in the specified order, in the first runs X3 is solely set to the low level and
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then solely set to the high level. If one of the levels has an uncontrollable impact on the
process, the experimental results are consequently biased by this influence. However, if
a process is completely deterministic (like a computer simulation), experiments can be
run in standard order or in fact any other sequence without risking negative side effects.

2.3.2.2 Central Composite Designs
As described in the previous section, in full factorial designs factors are typically set
to two levels only in order to reduce complexity. However, if the experimental goal is
to approximate the surface of a response, this approach solely allows for the fitting of
linear, first-order polynomial functions (for a more detailed description of RSM see Sec-
tion 2.3.4). If the actual surface of the response has a strong curvature, though, these
are inappropriate and higher-order functions are required in order achieve a sufficient
goodness of fit. In this case, at least three levels have to be defined for each considered
factor. While three-level full factorial designs generally satisfy this requirement, these
are typically not efficiently applicable as the number of experimental runs increases ex-
ponentially in the number of factors (i.e. k factors entail 3k runs). In contrast, three-level
fractional factorial designs allow to reduce the number of runs, but have in this case
several drawbacks which result from the increased number of factor levels (for a more
detailed description see [NIS13]).
An appropriate design type for response surface modeling is given by a central composite
design which allows to determine a higher number of levels while keeping the number
of experimental runs in manageable orders. This is achieved by systematically adding
additional points to the design space of a full factorial or fractional factorial design.
To illustrate, Figure 2.11 shows the design space and matrix of a central composite
design which extends the full factorial design of Figure 2.10. As depicted, the latter
is augmented by center points (white) and star points (gray) which corresponds to the
definition of five levels for each of the three included factors. The design matrix of
the central composite design is made up of three parts which specify the previously
discussed full factorial design (line 1-8), the star points (line 9-14), and the center points
(line 15-18). The values (i.e. locations) of the star points and the number of center points
are generally determined according to the experimental goals and the specific properties
which the design is intended to possess (a description for the calculation of α can be
found in [NIS13]). Moreover, if the examined factors can only be set to levels which are
incompatible with the standard levels, the design can be adjusted accordingly [Kle13].
The above described type of central composite design is referred to as ‘circumscribed’ as
the star points define new extreme values for the factors. However, if the low and the high
levels which are defined in the full factorial design are true limits of the system which
can not be exceeded, a central composite design can also be scaled down by setting
the star points to the limits and adapting the levels of the factorial design accordingly
(type ‘inscribed’). As final variant, the star points can also be located in the middle of
the faces of the full factorial design space in which case α = ±1 (type ‘face centered’)
[NIS13, Kle13, AW07].
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Figure 2.11: Design space and matrix of a central composite design (cf. [Kle13]).

2.3.3 Effect Calculation

Executing one of the screening designs in Table 2.1 yields response-related results for
each factor level combination specified in the design matrix. These can be used in order
to asses the effects of the considered factors and their interactions on the responses. A
factor interaction exists if a factor’s effect depends on the level of one or more other
factors, and vice versa. I.e., interactions can occur between arbitrary combinations of
factors, where for each response of a two-level design with k factors there are generally
2k − 1 assessable main and interaction effects.
With regard our exemplary full factorial design shown in Figure 2.10, this means that
we can determine the main effects of the factors X1, X2, and X3 as well as the interaction
effects of the interactions X1X2, X1X3, X2X3, and X1X2X3. As already outlined at the
beginning of this introduction, in case of two-level designs the effects of single factors
can be calculated by contrasting the response averages which relate to the low and the
high levels. More precisely, the effect of a factor X is calculated as

e f fX =

∑
Y+

n+

−

∑
Y−

n−
, (2.1)
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factor interaction

std X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3

1 − − − + + + −

2 + − − − − + +

3 − + − − + − +

4 + + − + − − −

5 − − + + − − +

6 + − + − + − −

7 − + + − − + −

8 + + + + + + +

Table 2.2: Analysis matrix of a 23 two-level full factorial design (adapted from [AW07]).

where Y+ and Y− are the individual response values and n+ and n− are the level-related
numbers of runs. With regard to our example, the effect of factor X1 can for instance be
calculated as

e f fX1 =
Y2 + Y4 + Y6 + Y8

4
−

Y1 + Y3 + Y5 + Y7

4
. (2.2)

Interaction effects are calculated in the same fashion, where the level of an interaction is
determined by calculating the product of the levels of the involved factors. With regard
to our exemplary design, Table 2.2 gives an overview of all factor and interaction levels.
For instance, the levels of interaction X1X2 are calculated by multiplying the column of
factor X1 and X2 [AW07, NIS13, Kle13].
If the system under investigation is exposed to stochastic influences, from a statistical
point of view the response values which are used for the calculation of an effect can be
considered as a random sample which is drawn from an infinite population (the infinite
set of all possible, randomly influenced outputs). In this case, it is necessary to assess
the significance of an effect in order to exclude the possibility that it was caused by
mere coincidence. This can be achieved through confidence intervals which provide an
interval estimation of an unknown parameter with regard to a specific confidence level
(e.g. 95 % or 99 %). More precisely, a confidence interval allows the conclusion that
if an experiment is conducted repeatedly and an interval is constructed for each run,
the percentage of the intervals that includes the true value of the unknown parameter is
equal to the defined confidence level. For instance, suppose we examine the mean of a
population’s parameter and calculate confidence intervals for different random samples
(in which case we can obtain different intervals for different samples as these are chosen
on a random basis). Then a confidence level of 95 % allows us to conclude that 95 % of
the constructed intervals include the real value of the mean.
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With regard to a considered effect e f f , a confidence interval CI is generally calculated
as

CI = e f f ± t · S E, (2.3)

where t is a t-value and S E is the standard error of the effect. While a more detailed
description of t and S E can for instance be found in [AW07], for our discussion it is
sufficient to note that a t-value depends on the desired confidence level as well as the
degrees of freedom available for the estimation of S E which in turn are determined
by the number of conducted experimental runs. It generally holds that the higher the
confidence level and the lower the number of runs, the higher the t-value. In contrast,
the standard error of the effect depends on the estimated variance of the results as well as
the number of experimental runs, where the value becomes smaller if either the variance
becomes smaller or the number of runs becomes higher. It follows that the width of
a confidence interval can be influenced by the chosen confidence level as well as the
number of experimental runs. More precisely, a smaller interval can be obtained by
decreasing the confidence level or increasing the number of runs, and vice versa.
If a confidence interval is now constructed for a calculated (i.e. observed) effect, the
basic idea is that if the interval includes the value 0, the effect can not be considered
significant because the real effect might be 0 and the calculated effect may just has been
caused by mere coincidence. However, if the interval does not include 0, we can be
confident that the effect was in fact caused by the related factor or interaction. In practice,
95 %, 99 %, and 99.9 % confidence intervals are used in order to identify indifferent,
significant, and highly significant effects, respectively [AW07, Kle13].
However, in this context attention has to be paid if a full factorial design is applied
and the examined system is deterministic. As described in Section 2.3.2.1, the former
comprises all possible factor level combinations, while a deterministic system always
yields the same output for a given design if it is repeatedly executed. From a statistical
point of view, this means on the one hand that the samples are drawn from a finite
population (as the process is deterministic) and on the other hand that these cover the
whole population (as all possible factor level combinations are taken into account). It
follows that in this case the construction of confidence intervals is not reasonable as
in fact there is no randomness, neither with regard to the considered system nor with
regard to the drawing of the samples. Thus, if a calculated effect is unequal 0, it can
be concluded that there is indeed an effect induced by the related factor or interaction.
Consequently, in order to identify which effects are important, in this case an alternative
decision rule has to be defined.
The effects which result from the execution of an experimental design can be visualized
by means of a Pareto chart in which these are depicted as a (typically ordered) series
of bars and possible confidence intervals are shown as horizontal, symmetric lines. As
an example, the chart in Figure 2.12 shows the effects of four factors and their two-way
interactions. An effect is significant with regard to a specific confidence level if its bar
reaches the corresponding line.
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Figure 2.12: Pareto chart plotting effects and confidence intervals.

2.3.4 Response Surface Modeling

As already mentioned above, the results obtained from the execution of an experimental
design can also be used in order to create a model which approximates the surface of
a considered response Y . Generally, the model’s degree of approximation to the true
surface depends on several factors, like the amount of collected data or the number of
levels defined for each factor. In this regard, it generally holds that the more information
is obtained through experimentation (i.e. the more experimental runs are conducted and
the more factor levels are specified), the better the approximation.
A common way to model the surface of a response is through the fitting of a polynomial
function which describes the surface over a restricted region [MMAC09, NIS13, Kle08].
The simplest form of this kind of function is given by a first-order polynomial which
specifies a linear relationship between a response Y and k factors X j, i.e.

Y = β0 +

k∑
j=1

β jX j + ε

= β0 + β1X1 + β2X2 + · · · + βkXk + ε,

(2.4)

where β0 is the intercept, β j is the coefficient of variable X j, 1 ≤ j ≤ k, and ε is an error
term which represents sources of variability not described by the prior linear term. It is
typically assumed that ε is normally distributed with mean 0 and variance σ2. If all other
variables are kept fixed, each coefficient β j measures the change in Y per unit change in
X j.



2.3 Design of Experiments 47

1 2 3 4

X

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Y

X2

-1

1 X 1-1

1

Y
4

6

8

Figure 2.13: First-order model with one factor (left) and two factors (right).

Models of the above form are generally referred to as linear regression models with
regression coefficients β j and regressor variables X j. If these are chosen in order to
approximate the surface of a response (meaning that the output behavior of the system
is assumed to be accordingly describable), regression analysis can be applied in order
to estimate the unknown coefficients β based on the data obtained from the execution
of an experimental design. For instance, assume that we investigate the response of
a stochastic system with a single input parameter which can be set to four different
levels. Further suppose that we execute an experimental design (in this case a completely
randomized design) which specifies two runs for each factor level (i.e. eight runs in
total) and yields the results shown on the left hand side of Figure 2.13. I.e., in terms of
Equation 2.4 we obtain a result Yi for each experimental run i = 1, . . . , 8 which enables
us to define a corresponding number of polynomial functions. In general, for a design
with n runs we can specify a system of equations as follows:

Yi = β0 +

k∑
j=1

β jXi j + εi

= β0 + β1Xi1 + β2Xi2 + · · · + βkXik + εi, i = 1, . . . , n.

(2.5)

Given the above system, the method of least squares can be applied in order to estimate
the coefficients of the final regression model [Sta13, Kle13, MMAC09]. This is achieved
by determining the β’s in a way which minimizes the sum of the squared errors ε2

i . With
regard to our example shown on the left of Figure 2.13, this approach fits a straight line
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to the observed data points such that the squared deviations of the points from the line
are minimized. Formally, the minimized least squares function is defined as

L =

n∑
i=1

ε2
i

=

n∑
i=1

Yi − β0 −

k∑
j=1

β jXi j


2

.

(2.6)

I.e., the method of least squares minimizes L with respect to the coefficients βi. The
fitted model resulting from this process is defined as

Ŷ = b0 +

k∑
j=1

b jX j, (2.7)

where b0, . . . , bk are referred to as least squares estimators. The differences between the
observed response values Yi and the predicted values of the fitted model Ŷi are termed
residuals ei. I.e., for an experimental design with n runs, these are simply calculated as

ei = Yi − Ŷi, i = 1, . . . , n. (2.8)

With regard to the line plot in Figure 2.13, the residuals are thus the distances between
the observed points and the regression line. As estimates of the experimental error ε, they
are also assumed to be randomly distributed with mean 0 and variance σ2. Residuals are
typically used in order to evaluate a model’s goodness of fit as described in more detail
at the end of this section.
Generally, linear regression models of the above form describe a hyperplane in a k-
dimensional space which is defined by the variables X j. As shown in Figure 2.10, in
case of k = 1 and k = 2 factors the described response surface can be visualized as a
line and plane, respectively. In the latter case, the plane is fit to the observed data points
which lie in the three-dimensional space. Note, however, that functions as described
by Equation 2.4 do not allow to model any curvature as they do not take any factor
interactions into account. The latter can be considered by adding respective terms to the
equation. For instance, a first-order polynomial with two-way interactions is defined as
follows:

Y = β0 +

k∑
j=1

β jX j +

k−1∑
j=1

k∑
j′= j+1

β j j′X jX j′ + ε. (2.9)

I.e., for any two factors X j, X j′ , the function includes a term X jX j′ describing their
interaction. The coefficients can again be estimated using the method of least squares.
However, although factor interactions introduce curvature into the model, the shape of
the true response surface is often too rough and can not be appropriately approximated
by first-order polynomials. For instance, a two-way interaction may bend the shape of a
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Figure 2.14: Line plot and contour plot describing non-linear relationships.

plane, but does not allow to account for stronger curvatures like a peak in the middle of
the surface. This requires the fitting of higher-order models which can be created based
on dedicated experimental designs as discussed in Section 2.3.2. For instance, second-
order polynomial functions add purely quadratic terms to Equation 2.4 which allows for
a better approximation. Formally, they are defined as:

Y = β0 +

k∑
j=1

β jX j +

k∑
j=1

k∑
j′≥ j

β j j′X jX j′ + ε. (2.10)

Although the above equation includes a quadratic term X2
j for each factor X j, linear

regression can be applied in order to identify the least squares estimators b1, . . . , bk as
the function is linear in its coefficients β. Figure 2.14 shows two exemplary second-order
models including one and two factors. While the line plot on the left describes a non-
linear relationship between a factor X and a predicted response Ŷ , the contour plot on
the right depicts the impact of two parameters X1 and X2 on another response Ŷ , where
the non-linearity can be seen from the color gradient and the contour lines.
In contrast to the approach described in Section 2.3.3, the effect of a factor or an inter-
action can also be determined using the related least squares estimator b provided that
specific requirements are fulfilled [Kle13]. In this case, it simply holds that

b =
e f f

2
. (2.11)

For instance, the effect of a factor X j with coefficient b j = 5 can then be calculated as
e f f = 2 · 5 = 10.
After identification of the least squares estimators, it is necessary to validate a model in
order to evaluate how well it fits the observed data (and thus how properly it approxi-
mates the true response surface). In this context, typically both numerical and graphical



50 Background

techniques are applied which use the residuals of a model in order to verify its goodness
of fit. A common numerical method is the coefficient of determination R2 (also referred
to as R-Squared) which quantifies the fraction of the variability in the response being
explained by the model [Sta13]. More precisely, a high R-Squared indicates that the
residual variability relative to the variability in the response is small and thus that the
model fits the data well because it provides predictions not causing extra variability in
the residuals. It generally holds that 0 ≤ R2 ≤ 1, where an R-Squared of 0.8 means for
instance that 80 % of the variability in the response are explained by the model and 20 %
relate to the variability in the residuals.
However, a high R-Squared is no guarantee for a good fit as it does not account for all
relevant aspects. Thus, a model is typically further validated by means of a graphical
residual analysis as exemplary shown in Figure 2.15. The different data plots allow to
examine the following aspects:

Normal distribution As mentioned above, the residuals are typically assumed to be
normally distributed. In order to validate this property, they are visualized in the form
of a probability plot which compares two probability distributions by plotting the
quantiles of the residuals against the theoretical quantiles of the normal distribution.
The x-axis of the plot is adjusted in such a way that the residuals lie on a straight line
if following a normal distribution. Deviations from the line thus indicate deviations
from a normal distribution. An exemplary probability plot is depicted in the upper
left corner of Figure 2.15 which shows that the residuals are approximately normally
distributed.

Independence from factor levels If the fitted model describes the observed data appro-
priately, the residuals do not depend on specific parameter settings. This is verified
by plotting them against the factor levels as shown in the upper right corner of Fig-
ure 2.15. The residuals are independent from the levels if the points form a horizontal
band.

Constant variance In order to verify the assumption that the residuals have constant
variance and are independent from the predicted values of the fitted model, they are
plotted against the latter. If the assumption holds, the points are randomly distributed
about 0 as shown in the middle plot of Figure 2.15. However, often the residuals
increase with the size of the predicted values in which case the original data can
be transformed (for instance through a logarithm or a square root transformation) in
order to achieve a better result [AW07].

Independence from time Temporal trends in the experimental results can be revealed
by plotting the residuals against the runs of the executed design. If no trend exists,
the points are randomly distributed about 0 as shown in the lower plot of Figure 2.15.
Generally, a temporal trend can only be assessed via a residual analysis if the experi-
mental run order was randomized (i.e. the design was not executed in standard order)
as otherwise the results are biased by the very same. However, since deterministic
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systems always yield the same results independent from the order of the runs, an
identification is only reasonable in case of stochastic systems.

Any irregularity identified via the above graphical analyses indicates that the residuals
contain structure which the fitted model does not account for. Adding appropriate terms
to the model improves the fit and thus the approximation to the response surface [Kle13,
NIS13].

2.4 Summary and Discussion

In the following we summarize the descriptions of the previous sections and discuss
them in view of our objectives as defined in Section 1.3.
Section 2.1 first provided an overview of the deregulated electricity industry and outlined
the processes which connect the different actors on the economic and physical level of
the system. Afterwards, we discussed the structure of electricity markets as well as the
different market types which can be applied in order to arrange trades between buyers
and sellers. In this regard, we expect our new aggregation method to be universally
applicable in the sense that it is independent from a specific market type and allows par-
ticipants to consider products of different submarkets when optimizing their individual
profit.
Section 2.2 then provided an introduction to the domain of distributed artificial intelli-
gence and first discussed the concept of an intelligent agent along with potential charac-
teristics of its environment. With regard to our goal to provide an agent-based approach
for the distributed pooling of energy units in the context of electricity markets, from the
viewpoint of a single agent the considered setting represents the most complex type of
environment because it is

• partially observable as the agent has no complete information about the state of the
other agents or their units,

• stochastic as the next state of the environment is also determined by the other partic-
ipants in the market,

• sequential because the agent’s behavior in the course of a pooling process has an
impact on its trustworthiness and thus its success in future pooling processes,

• dynamic because pools are formed in a parallel fashion and changes occur while the
agent is reasoning,

• continuous because characteristics of its controlled unit are associated with continu-
ous scales,

• unknown because the agent has no complete knowledge about the outcomes of its
formation activities, and

• a multiagent environment because the agent interacts with with other participants in
order to form pools.
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Having discussed the concept of an intelligent agent, we covered multiagent systems and
detailed how agents communicate and coordinate in order to achieve a coherent overall
behavior. Besides pointing out the different classes of cooperative and competitive co-
ordination techniques, we also provided an overview of organizational structures which
define the roles, authorities, and relationships in a MAS. In this context, we mentioned
that we choose a coalition-based organization for our agent-based aggregation method as
it allows for the fulfillment of the requirements and objectives as defined in Section 1.1
and 1.3, respectively. More precisely, as this organizational structure is characterized by
a goal-directed formation of the coalitions, it enables a temporally flexible pooling of
energy units for the joint fulfillment of single power products. Moreover, the coalitions’
encapsulated nature and flat organizational structure allow for the design of a distributed
interaction protocol in which the representatives act on behalf of their group.
Finally, Section 2.3 provided an introduction to Design of Experiments and its underly-
ing concepts. With regard to the evaluation of our proposed approach in Chapter 5, we
detailed full factorial and central composite designs which are used in order to identify
the most important input parameters and model the surfaces of the considered evalua-
tion criteria. In this regard, the chapter also covered the basics of effect assessment and
discussed polynomial functions as common means for RSM.
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3 Problem Formalization
Having covered the fundamentals which underly this thesis, in the following we continue
our examinations by analyzing the considered problem in detail and creating a model
referred to as DYCE-FM (DYCE Formal Model). By providing precise definitions of
all relevant concepts and setting these into relation, the latter provides a sound basis for
the upcoming design and evaluation of our new aggregation method. As we intend the
method to be independent from both the type of a market and the type of an energy unit,
all concepts are specified in such a way that they are applicable to the general use case
of coalition formation in electricity markets. Moreover, the given definitions are abstract
in the sense that they allow for different designs. For instance, we define an error with
which a coalition produces or consumes electrical energy but do not specify how this
error is actually modeled. Specifications which concern the design of our approach are
given in the following chapter.
Figure 3.1 gives an overview of the general structure of DYCE-FM and its covered do-
mains. The included definitions finally end in the specification of an electricity market,
where the place of delivery is given by a power grid which connects a set of energy
units being controlled by autonomous intelligent agents. The latter are able to cooperate
and form coalitions for value maximization. General goal of a coalition is the trade of
a power product which is physically fulfilled in a temporal product horizon. Through
its joining, an agent makes a contribution to a coalition’s cumulative contribution which
fulfills a pursued target product if the specified conditions are met. Each contribution is
determined by the operation schedule of an agent’s unit, where the general time frame
for scheduling is given by a temporal planning horizon.
Having outlined its general structure, in the following we specify DYCE-FM in detail by
covering its four different domains in Section 3.1-3.4. In order to provide an orientation,
Figure 3.2 gives an overview of the forty defined concepts and their basic relationships.
Moreover, Table 3.3 lists all specified symbols with references to the respective defini-
tions. Because coalition formation is also a well known problem in the fields of dis-
tributed artificial intelligence and game theory, we adopt definitions from these domains
where appropriate.

3.1 Domain 1 – Power Grid, Coalition, Value Maximization

The first domain of DYCE-FM covers concepts which are related to the agents as well
as their goal to cumulate the potentials of their controlled units and maximize value
through coalition formation. Thus, the definitions also address aspects related to their
reasoning and social behavior. As starting point, we begin with the specification of the
electrotechnical infrastructure to which the units are connected.
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Figure 3.1: Structure and covered domains of DYCE-FM.

Definition 3.1: Power Grid

Let G = (VG, EG) be a power grid which is represented as a weighted graph, where
VG = {vG,1, . . . , vG,n}

1 is a set of vertices representing the grid nodes and EG is a set of
edges {vG,i, vG, j}, with vG,i, vG, j ∈ VG ∧ i , j, representing the power lines. Each edge
{vG,i, vG, j} is assigned a distance weight dw(vG,i, vG, j), where a higher value reflects a
greater distance.

A grid node vG,k represents electrotechnical equipment of a power grid (e.g. a house
connection box), where all nodes of a grid are connected through power lines {vG,i, vG, j}.
As described in more detail in the context of Definition 3.9, a line’s distance weight
dw(vG,i, vG, j) quantifies the distance between its endpoints and is derived from a set of
dedicated criteria. According to its network topology, a power grid can be assigned to a
specific class, like a radial or a meshed network.
In order to allow for the automation of a power grid, it has to be equipped with an
appropriate ICT infrastructure which enables a physical exchange of information.

Definition 3.2: ICT Network

Let ICT = (VICT , EICT ) be an ICT network which is represented as a weighted graph,
where VICT = {vICT ,1, . . . , vICT ,m} is a set of vertices representing the communication
nodes and EICT is a set of edges {vICT,i, vICT, j}, with vICT,i, vICT, j ∈ VICT ∧ i , j, repre-
senting the communication lines. Each edge {vICT,i, vICT, j} is assigned a quality weight
qw(vICT,i, vICT, j), where a higher value reflects a better transmission quality.

1 In the following it generally holds that N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}, and, if not stated otherwise, all
indices i ∈ N.
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A communication node of an ICT network is a device which is able to receive and
send data and process it according to a given algorithm. The data are transferred based
on a defined protocol, where the transmission quality can be compromised by different
factors. Thus, the latter is reflected by quality weights which are attached to the com-
munication lines, where a minimum weight reflects a total loss of data and a maximum
weight indicates a perfect transfer.
The communication nodes of an ICT network can either be given by separate computer
systems or embedded systems which are installed on energy units being connected to a
power grid.

Definition 3.3: Unit

Given an ICT network ICT with VICT = {vICT ,1, . . . , vICT ,m}, let Ua = {u1, . . . , un} be a
finite and nonempty set of atomic units ui which are able to produce or consume electri-
cal energy. Each atomic unit ui is equipped with an embedded system, thus representing
a node of ICT as determined by a communication node assignment cnU : Ua → VICT ,
with cnU(ui) = vICT , j, 1 ≤ i ≤ n, 1 ≤ j ≤ m. A unit U ⊆ Ua is then defined as a
finite and nonempty set of one or more atomic units, where the set of all units is given
by Ũ. Each unit Uk (and thus each atomic unit ui ∈ Uk) is physically connected to a grid
node of a power grid G as determined by a grid node assignment gn : Ũ → VG, with
gn(Uk) = vG,l. If it holds that |U | = 1, U is also referred to as singleton unit.

An atomic unit is able to produce or consume electrical energy which is fed into or taken
from a power grid. Examples for atomic units are wind energy plants, refrigerators, or
pumped storage plants. A unit, in turn, is an aggregation of one or more atomic units
which can be of the same or a different type. While this aggregation represents a mere
technical pooling of atomic units, an operational aggregation is realized by agents which
act as representatives for units in the market.

Definition 3.4: Agent

Let A = {a1, . . . , an} be a finite and nonempty set of rational2 agents ai exhibiting intel-
ligent behavior. Each agent ai has a unique identifier IDai and is assigned to a unit as
defined by a bijective unit assignment u : A → Ũ, with u(ai) = U j. As software com-
ponents, agents may either be installed on an embedded system of a singleton unit or on
an external hardware, thus representing a node of an ICT network ICT as determined
by a communication node assignment cna : A → VICT , with cna(ai) = vICT ,k. Accord-
ing to their intended purpose, agents are also referred to as participants of an electricity
market3.

As discussed in Section 2.2, an intelligent agent represents an autonomous computer
system which is able to act in a reactive and proactive fashion and possesses the capa-

2 For a detailed definition of rationality, see Definition 3.6.
3 For a detailed definition of an electricity market, see Definition 3.42.
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bility to coordinate its actions with other agents in order to achieve its goal. As in the
context of this thesis an agent ai controls a unit Uk, it can generally be installed on

1. an embedded system of an atomic unit, in which case cna(ai) = cnU(u j) and u(ai) =

{u j} = Uk, or

2. a separate computer system which is connected to one or more atomic units, in which
case cna(ai) , cnU(u j) ∀u j ∈ Uk and u(ai) = Uk with |Uk| ≥ 1.

In order to schedule and operate its unit, an agent reads and writes control data from and
to it according to the pursued goal. Because units may comprise more than one atomic
unit, it generally possesses the ability to operate multiple atomic units as a single entity
by aggregating their technical capabilities. Thus, from an external point of view non-
singleton units appear just like any other atomic unit. This approach allows agents to
control both single units like solar power or CHP plants and aggregations of single units
like households or wind farms. However, as specified in Definition 3.3, a unit is always
connected to a single node of a power grid. A distribution of included atomic units over
the grid would contradict the concept of a neighborhood and a coalition as defined later
in this section.
Figure 3.3 shows how the previously discussed concepts relate to each other. In particu-
lar, it depicts the above described possibilities where an agent can be installed meaning
that an ICT node can either be given by an agent and an atomic unit (case 1) or an
agent or an atomic unit (case 2). As a consequence, the topology of the ICT network is
typically not equal to the one of the underlying power grid.
With regard to its behavior, an agent acts according to a strategy which determines the
choice of its actions in order to solve a given task.

Definition 3.5: Strategy

Let an agent a be located in an environment Env being defined as a set of states Env =

{s, s′, . . .} which can be entered over time. Moreover, let Act = {α, α′, . . .} be a set of
actions α which can be executed by a. A run r of agent a is then defined as a sequence
of alternating states and actions (si, αi, . . .) which starts with a state s and ends either
with a state s or an action α.
Let ϑ be a task to be solved by a representing the state sϑ = ϑ which occurrence impli-
cates its fulfillment. A strategy strϑ ∈ Act j4 for the solution of ϑ is then defined as a
sequence of actions strϑ = (α1, . . . , α j) which is the response to a sequence of environ-
mental states (s1, . . . , s j+1) ∈ Env j+1, with s j+1 = sϑ. The run rϑ = (α1, s1, . . . , α j, sϑ) is
termed the solution of ϑ.

The above definition of a strategy is based on the concept of a run as described in
[Woo09]. In the context of this formalism, the environment of an agent a is modeled
as a set of states {s, s′, . . .} which can be entered over time. The agent responds to a
state s by executing an appropriate action α which results in a sequence of alternating
4If S is a set, S j is the j-ary Cartesian product of S .
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Figure 3.3: Relationships between a power grid, ICT network, units, and agents.

states and actions (si, αi, . . .). Note that a can generally respond differently to the same
environmental state depending on its internal state. The accomplishment of a task ϑ re-
quires the agent to apply an appropriate strategy resulting in a run rϑ which final state sϑ
implicates its fulfillment. As an agent acts as representative for a unit in the market, its
strategy determines both its scheduling and trading behavior. It is typically implemented
by the designer of the agent (e.g. a plant manufacturer) and configurable by the user
with regard to individual preferences.
Which action α is indeed an appropriate response to a given environmental state s is
determined by a utility function allowing agents to behave rationally [RN10].
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Definition 3.6: Rationality

Given an agent a, let utility be defined as a function util : Env → R determining a’s
benefit if state s is entered. Moreover, let S α be a random variable which domain is
the set of successor states {sm, . . . , sn}, with n ≥ m, which potentially result from the
execution of action α. Finally, let Pr(S α = si | α, e) be the probability of occurrence
of successor state si resulting from the execution of α given evidence e, i.e. given the
information already revealed to agent a. The expected utility EU(α | e) of an action α
given evidence e is then defined as the average utility of all successor states weighted by
their probability of occurrence, i.e.

EU(α | e) =

n∑
i=m

Pr(S α = si | α, e) · util(si).

Given this, rationality is defined as the choice of action α∗ maximizing expected utility,
i.e.

α∗ = arg max
α

EU(α | e).

The above definition of rationality is adopted from decision theory which combines
probability theory and utility theory in order to examine rational decision making. Utility
function util allows an agent to determine which state provides most benefit in general.
However, as in stochastic environments actions are not deterministic and potentially lead
to different successor states, probabilities of occurrence have to be considered in order
to identify the action yielding maximum expected utility. When calculating the expected
utility of an action, an agent can take its past experiences into account (we specify this
idea in more detail when defining a reasoning scope below). In this context it should be
noted that if an agent possesses learning capabilities, its opinion with regard to the bene-
fit of specific states may change over time which in turn has an impact on the calculated
utilities and thus its strategy for the accomplishment of its given tasks ϑ.
The approach of always choosing the action which maximizes expected utility is also
known as the maximum expected utility (MEU) principle. However, while the latter
provides a reasonable and rather appealing way to define rational behavior5, it is totally
silent about how to implement it. Generally, the calculation of utility EU is restricted
by the technical capabilities of the system on which the agent is installed, where the
complexity of determining probability of occurrence Pr and utility util depends on sev-
eral factors. As already discussed in Section 2.2.1, the environment of an agent can be
differently challenging, where particularly in stochastic settings the assessment of the
probabilities may require calculation-intensive inference mechanisms. Moreover, in or-
der to calculate the utility of the potential successor states, techniques like searching or
planning algorithms have to be applied which computational requirements typically in-

5 Russel and Norvig even state that the MEU principle can be interpreted as defining all of AI: Creating
agents doing the right thing [RN10].
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crease with the complexity of the problem. Finally, the difficulty to determine Pr and
util also depends on the extent to which an agent takes past experiences into account as
well as the fact how far it looks ahead.

Definition 3.7: Reasoning Scope

The reasoning scope rrs of an agent a with regard to a considered state si is defined as a
run rrs = (si−sp , αi−sp , . . . , si, . . . , αi+s f−1, si+s f ), where rprs = (si−sp , αi−sp , . . . , si−1, αi−1)
is the past-related reasoning scope and r f rs = (αi, si+1, . . . , αi+s f−1, si+s f ) is the future-
related reasoning scope which are taken into account by a when calculating probability
of occurrence Pr(S α = s j | α, e) and utility util(s j). While sp ∈ {0, . . . , i − 1} is termed
the past-related extent, s f ∈ N0 is called the future-related extent.

A reasoning scope rrs specifies the information about the past and the future which
an agent takes into account when making decisions, where the respective extents are
reflected by the values sp and s f . More precisely, the past-related reasoning scope rprs

represents the past experiences of the agent, i.e. the sequence of environmental states and
actions it has gone through. As information which is already revealed to the agent, rprs

corresponds to evidence e which it uses when assessing the probability Pr of a potential
successor state s. Contrary, the future-related reasoning scope r f rs specifies its favoured
future course of the world. As this also includes the favoured environmental states, it is
taken into account by the agent when determining the utility util of a state s. Generally,
the utility of a given state s is higher if favoured states s′ can be reached from s in the
course of ongoing action. When an agent reasons about a task ϑ, the pursued state sϑ is
part of r f rs which also holds for its strategy strϑ = (αi, . . . , α j), where j ≤ (i + s f − 1).
When evaluating the expected utility of a cooperation, agents take trust values of their
interaction partners into account.

Definition 3.8: Trust

Let T be the set of all time values6. Given two agents ai, a j, trust is then defined as a
function trust : T × A × A→ [0, 1], where the value trust((t, ai, a j)) reflects ai’s view of
a j’s trustworthiness at time t. The calculation of a trust value is based on trust criteria
ctrust which are considered relevant for its determination. The higher trust((t, ai, a j)), the
higher ai’s trust in a j.

In the course of a pooling process, the above definition allows an agent ai to consider
the trustworthiness of other participants and decide whether to cooperate with them or
not. In this regard, a trust value trust((t, ai, a j)) reflects its degree of trust in a j at a spe-
cific point in time t. Thus, it allows ai to reduce its risks by choosing those cooperation
partners which meet a minimum level of trustworthiness. The way how trust values are
actually calculated depends on the applied trust model, where their assessment is gener-
ally based on different criteria ctrust which represent trust-related aspects like an agent’s

6 For a detailed definition of the set of all time values, see Definition 3.22.
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security measures or its past reliability in the course of product fulfillment. Because trust
values lie within the interval [0, 1], they can be compared and exchanged between agents
in the course of their interactions, e.g. when negotiating about a cooperation. However,
in order to allow for an exchangeability of the values, agents have to use the same trust
model and particularly the same trust criteria for their assessment. Otherwise, they make
decisions based on different notions.
Before starting a pooling process, it is reasonable for agents to restrict the number of
interaction partners. This ability requires an appropriate measure in order to quantify the
distance between agents and units.

Definition 3.9: Distance

Given a power grid G = (VG, EG), let the distance between two grid nodes vG,i, vG, j be
defined by a function dis : VG × VG → R≥0, where dis((vG,i, vG, j)) is calculated based
on a set of distance weights dw(vG,m, vG,n) which relate to power lines {vG,m, vG,n} being
part of a path between vG,i and vG, j. Each distance weight is calculated on the basis of a
set of distance criteria cdis.
Let the distance between two units Ui,U j, with gn(Ui) = vG,i and gn(U j) = vG, j, and
two agents ai, a j, with u(ai) = Ui and u(a j) = U j, be defined as the distance between
vG,i and vG, j.

A distance weight dw(vG,m, vG,n) quantifies the physical distance between two adjacent
grid nodes vG,m and vG,n, where its calculation is based on different distance criteria cdis

which are considered relevant for its assessment. Drawing on the definition of a power
grid as a weighted graph (see Definition 3.1), the distance between two grid nodes is
then determined based on distance weights which are assigned to power lines being part
of a path between them. Which weights are actually included in the calculation depends
on the applied distance model.
The concept of distance allows agents to form neighborhoods of nearest neighbors.

Definition 3.10: Neighborhood

Given a power grid G and a distance function dis, let the neighborhood of a unit Ui be
defined as a set of units N = {U1, . . . ,UsN } ⊆ Ũ such that

dis((gn(Ui), gn(U1))) ≤ . . . ≤ dis((gn(Ui), gn(UsN )))

and

∀Ut ∈ Ũ \ N : dis((gn(Ui), gn(Ut))) ≥ dis((gn(Ui), gn(UsN ))).

The number of units sN ∈ N defines the size of a neighborhood. A neighborhood can be
extended by an extension count extN ∈ N specifying the number of units to be added. A
neighborhood is termed extendable if |N | < |Ũ |.
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Correspondingly, let the neighborhood of an agent be defined as the set of agents N =

{a1, . . . , asN } ⊆ A which assigned units u(a j) = U j comply with the above definition.

While the neighborhood of a unit is given by a set of sN units constituting its nearest
neighbors, the neighborhood of the controlling agent consists of the agents which are
assigned to the very same. The concept of a neighborhood allow an agent to restrict
the number of interaction partners and thus to reduce communication and computational
cost while taking grid-related aspects into account. However, this set is not fixed and
can be extended in the course of a pooling process by a defined extension count extN

in order to increase the probability of a successful cooperation. Note that both size sN

and extension count extN are defined in terms of a specific number of neighbors and
not a maximum distance threshold. This approach makes a neighborhood independent
from the specific characteristics of a power grid in the sense that it can be iteratively
extended by a constant number of agents which does not depend on topological aspects,
for example.
Within neighborhoods, agents interact in order to cumulate the technical potentials of
their units and form coalitions.

Definition 3.11: Coalition

Given a set of agents A, a coalition is defined as a finite, nonempty set C ⊆ A, where
C̃ = P(A) \ ∅ is the set of all coalitions. The agents a ∈ C are also referred to as
members of C. The size of a coalition is defined as the number of its members |C|,
where in case of |C| = 1 it is also referred to as singleton coalition. Let UC be the set
of all assigned units, i.e. UC = {U | u−1(U) = a ∧ a ∈ C}. The scope of a coalition
sC ∈ R≥0 is defined as the maximum distance between any two units Ui,U j ∈ UC ,
i.e. sC = max

Ui,U j∈UC
dis((gn(Ui), gn(U j)). Each coalition has a designated representative

arep ∈ C acting on its behalf in the course of interactions with other actors. In this regard,
all members C \ {arep} are also referred to as non-representatives.

A coalition is an organizational aggregation of one or more agents for the trade of a
power product. The organizational binding of each member is temporally restricted in
the sense that a coalition dissolves after a product has been physically fulfilled. However,
this fact does not hinder agents to form a successful coalition again. As discussed in the
context of Definition 3.7, agents are generally able to integrate past experiences into
their decision making process which allows for this kind of behavior.
The scope of a coalition C represents the maximum distance which exists between any
two units Ui and U j being assigned to members of C. It thus measures the extent of
a coalition in terms of the applied distance function dis. In the course of interactions
with other agents, each coalition is represented by a designated member which acts on
behalf of the group. Representatives thus constitute organizational interfaces similar to
agents which aggregate sets of atomic units and make them appear as singleton units.
Besides interacting with other participants, they may also take over further tasks like
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the distribution of a final payoff which was gained from a trade. Because the role of a
representative can be assumed by any member of a coalition, the designated agent is not
critical for its existence.
In the course of a formation process, agents regroup in order to form more valuable
coalitions.

Definition 3.12: Regrouping

Let Ĉ ⊂ C̃. A regrouping of two coalitions C1 and C2 is defined as a tuple (Ĉold, Ĉnew),
where Ĉold = {C1,old,C2,old} is the set of the original coalitions C1 = C1,old, C2 = C2,old,
and Ĉnew = {Cnew,1, . . . ,Cnew,n} is the set of the resulting coalitions.

A regrouping (Ĉold, Ĉnew) describes a repartitioning of two coalitions C1 and C2, where
Ĉold represents their original and Ĉnew their resulting state. Note that the number of
the resulting coalitions may differ from the number of the original ones if the original
coalitions either merge or split into more than two new coalitions.
Coalition formation finally results in a partition dividing the set of all agents into disjunct
subsets.

Definition 3.13: Coalition Structure

A coalition structure CS partitions the set of all agents A into disjunct coalitions, i.e.
∀C,C′ ∈ CS with C , C′ : C ∩C′ = ∅ ∧

⋃
C∈CS C = A. The size of CS is defined as the

number of comprised coalitions |CS |. The set of all coalition structures is given by C̃S .

The requirement that all coalitions of a coalition structure have to be disjunct guaran-
tees that these are independent from each other with regard to their products. Allowing
agents to be part of two or more coalitions at a specific point in time would result in com-
plex dependencies which are hard to handle. For instance, suppose that in the course of
coalition formation agent a1 joins non-singleton coalition C1 and C2 and agent a2 joins
non-singleton coalition C2 and C3. Further suppose that in the course of the formation
process a1 is asked to increase its amount of electricity contributed to C1 because of an
unforseen event which at the same time requires it to lower its contribution to C2. If a1
then reschedules its unit, the members of C2 are required to react to the new situation
which, assuming that a2 is the only member who has an incentive to adapt its amount,
finally requires the members of C3 to react. As this simple example shows, overlapping
coalitions typically result in a high number of interrelated dependencies outweighing po-
tential benefits. Moreover, from a technological point of view, coalitions are particularly
formed in order to aggregate the potentials of small-scale units which further splitting is
not reasonable.
The ability of a coalition to fulfill its pursued goal is quantified through a dedicated
value.
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Definition 3.14: Coalition Value

The coalition value of a coalition C is defined by a function v : C̃ → [0, 1], where v(C)
is also referred as the worth of C.

Basically, a coalition value reflects the degree to which its members are able to fulfill
the commonly pursued goal. Restricting the codomain of function v to the interval [0, 1]
allows for a comparison of different values in the course of a formation process.
Although a higher coalition value typically leads to higher revenues or lower expenses
of a coalition, it does not directly correspond to the monetary amount which it finally
receives or pays when trading a product.

Definition 3.15: Payoff

Let C be a coalition fulfilling a product p7. The payoff ρ̌ resulting from a trade of p is
defined as the final total cost which C receives from or pays to its trading partner.

Depending on whether a coalition produces or consumes electrical energy, the payoff

can thus be a positive or negative value8. After a trade has been successfully completed,
it is finally distributed by the coalition members among each other.

Definition 3.16: Payoff Distribution

Given a payoff ρ̌ of a coalition C, the payoff distribution of ρ̌ is defined by a function
ψ : C̃ × R → R

|C|, where distribution vector ψ((C, ρ̌)) = xC specifies the individual
shares (x1, . . . , xn) of the coalition members {a1, . . . , an}. The calculation of xC is based
on a set of payoff distribution criteria cψ.

Distribution function ψ distributes a coalition’s payoff ρ̌ among its members, where the
shares xi represent the individual revenues or expenses. The distribution is based on a set
of dedicated criteria cψ which are considered relevant for its calculation, like a member’s
contributed amount of electrical energy or its reliability in the course of physical product
fulfillment.
As a measure of a coalition’s worth, the coalition value forms the basis for the assessment
of the value of a coalition structure.

Definition 3.17: Mean Coalition Value

Given a coalition structure CS with |CS | = n, the mean coalition value is defined as

v(C) =

∑
C∈CS v(C)

n
.

7 For a detailed definition of a product, see Definition 3.33.
8 Note that in game theory the term payoff is often used as synonym for coalition value v(C). However,
because of the considered problem, in this thesis we differentiate between both terms as specified above.
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As average of all coalition values, the mean coalition value allows agents to optimize the
value of the coalition structure. As already described in Section 1.2, in related literature
the latter is often evaluated by means of coalition structure value V(CS ) which is defined
as the sum of all coalition values, i.e. V(CS ) =

∑
C∈CS v(C). However, in this case the

requirement of superadditivity has to be fulfilled, i.e. for all coalitions C1,C2 ∈ CS it
must hold that v(C1) + v(C2) ≥ v(C1

⋃
C2). As this requirement restricts the design of

a method for coalition formation, we choose the mean coalition value as global quality
measure.
When forming coalitions, agents are able to maximize value with regard to different
levels.

Definition 3.18: Value Maximization

According to the applied objective function of the agents, value maximization in the
context of coalition formation can take place on
• agent level (a-level), in which case each agent ai maximizes its individual share xi

which it gains as a member of a coalition C ∈ CS as reflected by objective function

max
C∈CS

xi,C ,

• coalition level (C-level), in which case the agents maximize the value of single coali-
tions C ∈ CS as reflected by objective function

max
C∈CS

v(C),

• coalition structure level (CS -level), in which case the agents maximize the value of
coalition structure CS as reflected by objective function

max
C∈CS

v(C).

In terms of Definition 3.5 (strategy) and 3.6 (rationality), an agent’s main task ϑ in the
course of coalition formation is given by the formation of a coalition which it accom-
plishes by choosing actions α (and thus a strategy strϑ) maximizing expected utility.
Which objective function it applies for this task depends on its optimization goal, where
it can generally optimize its own payoff, the value of single coalitions, or the value of
the whole coalition structure. From a practical point of view, these options correspond to
optimizing the value of the unit owner, the value of unit pools, or the value of the whole
supply system.
More precisely, on a-level agents strive for an optimization of their individual shares
which they gain as a member of a coalition. Consequently, in this case an agent ai only
joins a coalition C with distribution vector xC if this action increases its individual payoff

xi. Contrary, on C-level agents optimize the worth of single coalitions C which they join
if it raises the coalitions’ value v(C). Finally, on CS -level agents maximize the value
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of the coalition structure CS in which case they join a coalition C if it improves mean
coalition value v(C).
Clearly, the goals pursued on the different levels may contradict each other. For instance,
if value is maximized on C-level an agent may join a coalition even if it lowers its
individual share or the value of the global coalition structure. Which objective function
it finally applies depends on the use case as well as the regulations set by the control
authorities of the environment. However, assuming that no prescriptions exist, agents
are expected to maximize their own payoff as the other two options potentially lead to
a lower individual benefit. Thus, if the value of single coalitions or the whole coalition
structure is to be optimized, responsible institutions (like federal authorities) have to
prescribe appropriate rules which we refer to as regulatory hard constraints (HCs).

Definition 3.19: Regulatory Hard Constraint

A regulatory hard constraint hca defines a mandatory condition which has to be satisfied
by an agent a when it forms coalitions, where the set of all regulatory hard constraints
is given by HCa.

Besides prescribing an objective function, regulatory hard constraints may for instance
also restrict the maximum size of a coalition in order to prevent market power or require
coalitions to include a minimum share of a specific technology (like fuel cells) in order
to promote its pervasion.
The fulfillment of a regulatory hard constraint is indicated by a dedicated satisfaction
function.

Definition 3.20: Regulatory Hard Constraint Satisfaction

Given an agent a, regulatory hard constraint satisfaction with regard to a regulatory hard
constraint hca is indicated by a function sathca : A→ {0, 1}, where

sathca(a) =

1 if a satisfies hca,

0 else.

While forming coalitions, satisfaction functions sathca allow an agent to validate if it
meets all regulatory hard constraints prescribed by its environment.
With regard to its social behavior, an agent may either act egoistic or altruistic.

Definition 3.21: Egoism and Altruism

Let ak be an agent and ϑ be a task to be fulfilled by ak given state si. Moreover, let
rrs = (si−sp , αi−sp , . . . , si, αi, . . . , αi+s f−1, si+s f ), with 0 ≤ sp ≤ i − 1 and 0 ≤ s f , be the
reasoning scope of ak and xk,C1 be the individual share which it gains as a member of
coalition C1. Depending on its social attitude, ak can then exhibit egoistic or altruistic
behavior when choosing action αi as next step to fulfill ϑ.
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Egoism is given if ak chooses an action such that its individual share xk,C1 is maximal
regardless of the impacts on the other agents’ shares, the value of any coalition, or the
value of the coalition structure, i.e. it holds that

@ C2 ∈ CS \ C1 : xk,C2 > xk,C1 .

Altruism is given if ak chooses an action such that its individual share xk,C1 is not maxi-
mal provided that it increases the individual share of one or more other agents, the value
of a coalition, or the value of the coalition structure, i.e. it holds that

∃ C2 ∈ CS : xk,C2 > xk,C1 .

Egoism is termed conditional if ak acts egoistic with regard to a restricted reasoning
scope r′rs = (si−sp , αi−sp , . . . , si, . . . , α j−1, s j), with i < j < (i + s f ), but altruistic with
regard to rrs. Correspondingly, altruism is termed conditional if ak acts altruistic with
regard to r′rs, but egoistic with regard to rrs.

The above definition of egoism and altruism is based on an agent’s individual payoff

which it gains as a member of a coalition. Depending on how payoff is distributed in the
course of the overall process, this amount may thus be a definite or an expected value.
Figure 3.4 shows how egoism and altruism relate to the concepts of rationality and value
maximization as specified in Definition 3.6 and 3.18, respectively. Generally, egoistic
or altruistic behavior refers to an action αi which an agent chooses as a response to a
state si given its reasoning scope rrs reflecting the past and future information which
it takes into account for the decision. If the agent is egoistic, the chosen action always
maximizes its individual share xi regardless of the consequences on the other agents, any
coalition, or the coalition structure. It follows that the agent then acts rational (i.e. αi =

α∗ = arg maxα EU(α | e)) if its objective function prescribes an optimization on a-level
but irrational in the other two cases. This is reasonable as the optimization of a coalition
C or the coalition structure CS may result in a lower individual payoff. Contrary, if the
agent is altruistic, the chosen action yields a suboptimal share xi but increases the value
of one or more other agents, a coalition, or the coalition structure. While this behavior
is rational if the objective function prescribes an optimization on C-level or CS -level, it
is obviously irrational if the agent is expected to maximize its own benefits.
However, the above definition does not prevent an egoistic agent from making interme-
diate altruistic decisions if these are assumed to finally yield a higher individual payoff.
This behavior is referred to as conditional egoism as the altruistic decision is based to an
expectation about the future course of the world as reflected by future-related reasoning
scope r f rs. In other words, in case of conditional altruism an agent acts altruistic with
regard to a temporarily restricted reasoning scope r′rs, but egoistic in general. Analo-
gously, in case of conditional egoism an agent acts egoistic with regard to a temporarily
restricted reasoning scope r′rs, but altruistic in general.
Having covered the first domain of DYCE-FM, we continue with domain 2 which ad-
dresses aspects related to the scheduling and operation of a unit.
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Figure 3.4: Rational egoistic and altruistic behavior in the context of value maximization.

3.2 Domain 2 – Planning Horizon, Operation Schedule

General purpose of a coalition is the fulfillment of a power product through the aggre-
gation of the technical potentials of its members’ units. From an agent’s point of view,
the task of coalition formation is thus directly associated with the scheduling of its units’
operation. Generally, all planning activities are done with regard to a planning horizon
which constitutes a discretized time frame for which agents plan in advance.

Definition 3.22: Planning Horizon

Let tbu be a time base unit and T ⊆ N0 be the set of all time values measured in tbu. A
planning horizon is then defined as a set Tpl = {t(i)

pl | 0 ≤ i ≤ imax} with t(i)
pl = [ti· j, t(i+1)· j)

being a planning interval. Let tmax ∈ N be the planning horizon length and ∆t ∈ N be
the planning interval length both measured in tbu. Then it holds that
• ti· j ∈ T is a time which is mapped to a point in real time trt by a time mapping
τ : T → R, t 7→ trt,

• i is an interval index and imax is the maximum interval index in a planning horizon,

imax =
tmax

j · tu
− 1,
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where tu ∈ N is a constant, measured in tbu, determining the time unit of a planning
interval, ∆t being a multiple of tu, and

• j is the interval length measured in the time unit as defined by tu,

j =
∆t
tu
.

A planning horizon is preceded by a coalition formation period tCF = [tk, tl] consisting
of one or more formation intervals t f ,ptmp = [tm, tn], with tm ≥ tk and tn ≤ tl, in which
coalitions with regard to a specific product template9 ptmp are formed.

Figure 3.5 visualizes the concept of a planning horizon and a product horizon, where the
latter is defined later in Definition 3.22. Basically, a planning horizon defines the time
interval for which an agent schedules the operation of its unit in advance. As described
in more detail below, an operation schedule forms the basis for the contribution of an
agent to the product of a coalition. Thus, the temporal resolution of the applied planning
horizon has to comply with both the technical characteristics of the controlled unit and
the temporal constraints prescribed by the market for the specification of a product. For
instance, at the German intraday market the minimum definable time interval is given by
a 15-minute period, while at the day-ahead market hour products can be traded as short-
est period. Against this background, Definition 3.22 allows for a flexible specification
of a planning horizon according to the given requirements. As depicted in Figure 3.5, a
horizon Tpl is generally made up of a set of successive, equally distant planning inter-
vals. The interval length ∆t can be specified to meet the given temporal requirements,
where time base unit tbu and time unit tu allow to determine a reasonable resolution (e.g.
minutes or hours). Each planning interval is unambiguously defined through its mapping
to a unique time interval in real time. The following examples illustrate how a planning
horizon is reasonably specified in practice.

Example 3.1: Planning Horizon

Assume an agent which is participant of an intraday market and schedules the operation
of its unit in 15-minute periods on a daily basis. With regard to the applied planning
horizon Tpl, this corresponds to a time base unit tbu of 1 minute, a time unit tu of 1
minute, a planning interval length ∆t of 15 minutes, and a planning horizon length tmax

of 1440 minutes (i.e. 1 day) which is divided into 96 planing intervals. Thus, Tpl is
defined by the settings ∆t = 15, tu = 1, and tmax = 1440, implicating that j = 15 and
Tpl = {t(i)

pl | 0 ≤ i ≤ 95}.

As depicted in Figure 3.5, a planning horizon is preceded by a coalition formation period
tCF specifying the time frame in which coalitions are formed for products which are to
be physically fulfilled within Tpl. Generally, the formation processes are scheduled with

9 For a detailed definition of a product template, see Definition 3.38.
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Figure 3.5: Planning horizon and product horizon.

regard to product templates ptmp which formed the basis for the specification of the
products. The formation processes for different templates can be arranged in a parallel
or a sequential fashion, where tCF may comprise one or more formation intervals t f ,ptmp .
As already mentioned above, planning horizons are used by agents in order to schedule
the operation of their units.

Definition 3.23: Operation Schedule

Given a planning horizon Tpl = {t(i)
pl | 0 ≤ i ≤ imax}, the operation schedule of a unit U

is defined as a function osU : Tpl → R3, where osU(t(i)
pl ) = (e(i)

U , err(i)
U , c

(i)
U ) specifies the

amount of electrical energy e(i)
U which is produced or consumed by U with error err(i)

U at
cost c(i)

U in planning interval t(i)
pl . Electricity amount e(i)

U can be equivalently expressed as
amount of electric power

pow(i)
U =

e(i)
U

∆t

which is provided or demanded by U over t(i)
pl , with ∆t being the planning interval length.

Let eosU be the amount of electrical energy produced or consumed by U with error errosU

at cost cosU in Tpl. The set of all operation schedules is given by OS U .
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An operation schedule specifies the amount of electrical energy e(i)
U which is produced

or consumed by a unit U with a specific error err(i)
U at a specific cost c(i)

U in each planning
interval t(i)

pl of a planning horizon Tpl. Depending on the unit type, the electricity amount
can either be a positive or a negative value. Moreover, as the operational behavior of
non-controllable units like solar power or wind energy plants may vary within t(i)

pl , it
represents the average amount produced or consumed over the interval. It is typically
measured in kWh or MWh and can be equivalently expressed as the power which is pro-
vided or demanded by the unit over the planning interval. For instance, an amount of
e(i)

U = 25 kWh which is produced over an interval of ∆t = 15 min can also be specified
as a power volume of pow(i)

U = 100 kW = 25 kWh
0.25 h . The error err(i)

U and cost c(i)
U are de-

termined based on a dedicated error and cost model, respectively. Throughout coalition
formation, an agent is able to make changes to an operation schedule according to its
planning activities.
Specific unit types offer flexibilities with regard to their scheduled amounts of electrical
energy.

Definition 3.24: Operational Flexibility

Given a planning horizon Tpl and an operation schedule osU , the operational flexibility
of a unit U in a planning interval t(i)

pl is defined as a pair o f (i)
U = (e(i)

U,−, e
(i)
U,+) ∈ R2 indicat-

ing the bounds within which the amount of produced or consumed electrical energy is
adjustable, where negative bound e(i)

U,− and positive bound e(i)
U,+ are specified relative to

e(i)
U . Operational flexibility o f (i)

U is termed constrained if an adjustment of e(i)
U in planning

interval t(i)
pl has consequences on the amount e(i− j)

U or e(i+ j)
U in a preceding interval t(i− j)

pl

or succeeding interval t(i+ j)
pl .

The operational flexibility of a coalition C in a planning interval t(i)
pl is defined as the sum

of the flexibilities of the members’ units, i.e.

o f (i)
C = (e(i)

C,−, e
(i)
C,+),where e(i)

C,− =
∑

U∈UC

e(i)
U,− ∧ e(i)

C,+ =
∑

U∈UC

e(i)
U,+.

The operational flexibilities of a unit provide some key advantages to the controlling
agent when it forms coalitions. First, they allow the agent to choose from a wider range
of possibilities when deciding which products to trade or which contributions to make
to a coalition. Furthermore, they typically lead to a more reliable product fulfillment as
unexpected deviations from scheduled electricity amounts can be flexibly compensated.
In the context of coalition formation, operational flexibilities are even more valuable as
coalition members can also compensate errors of others which finally prevents a retrieval
of expensive control reserve. Formally, an operational flexibility o f (i)

U reflects the poten-
tial of a unit U to adapt its scheduled amount e(i)

U in planning interval t(i)
pl . More precisely,

it specifies the positive and negative amount of electrical energy which can be added to
or subtracted from e(i)

U as defined by the corresponding bounds e(i)
U,+ and e(i)

U,−.
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However, with regard to operation scheduling in general and coalition formation in par-
ticular it is important to differentiate between constrained and unconstrained flexibilities.
Making use of constrained flexibilities has an impact on the electricity amount of one
or more preceding or succeeding planning intervals and is thus equivalent to a shift of
production or consumption. Contrary, exploiting unconstrained flexibilities corresponds
to an increment or decrement of production or consumption which concerns a single
planning interval only and has no impact on the amounts of other intervals. Similar to
overlapping coalitions, in the context of coalition formation constrained flexibilities may
lead to an operational rescheduling of other units as exemplified in the following.

Example 3.2: Constrained Operational Flexibility

Assume an agent a which controls a cold store U with a demand of 100 kW and a cooling
period of k · ∆t. Because the unit does not cool constantly, it is able to delay its demand
within specific temporal bounds as long as the given temperature-related constraints are
met. I.e., in a cooling period it potentially provides an operational flexibility of o f (i)

U =

(0 kWh, 25 kWh), and a flexibility of o f (i)
U = (−25 kWh, 0 kWh) otherwise. Now suppose

that a is member of a coalition C1 to which it contributes an amount of −25 kWh in
planning interval t( j)

pl . If a then shifts its demand from t( j)
pl to t( j+1)

pl , in t( j+1+k)
pl its unit

consumes an amount of −25 kWh instead of 0 kWh. Given that in this planning interval
a is member of another coalition C2, the new deficit of −25 kWh has to be compensated
by other participants of C2.

As the above example shows, constrained flexibilities can lead to an ongoing operational
rescheduling of units requiring high coordination efforts between agents. They have thus
to be appropriately taken into account by a method for coalition formation in order to
prevent that the resulting complexity outweighs the benefits.
The varying operational characteristics of units, as reflected by their operation schedules
and operational flexibilities, can be used in order to define classes of unit types.

Definition 3.25: Unit Type

The unit type ut of a unit U is defined by its capability to produce or consume amounts
of electrical energy e(i)

U as well as its operational flexibility o f (i)
U = (e(i)

U,−, e
(i)
U,+). It can be

one of the following categories:
• inflexible producer utip, for which generally holds that

e(i)
U ∈ R≥0 ∧ e(i)

U,− = 0, e(i)
U,+ = 0,

• flexible producer ut f p, for which generally holds that

e(i)
U ∈ R≥0 ∧ e(i)

U,− ≤ 0, e(i)
U,+ ≥ 0,
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• inflexible consumer utic, for which generally holds that

e(i)
U ∈ R≤0 ∧ e(i)

U,− = 0, e(i)
U,+ = 0,

• flexible consumer ut f c, for which generally holds that

e(i)
U ∈ R≤0 ∧ e(i)

U,− ≤ 0, e(i)
U,+ ≥ 0,

• storage, uts, for which generally holds that

e(i)
U ∈ R ∧ e(i)

U,− ≤ 0, e(i)
U,+ ≥ 0.

Inflexible and flexible producers are also referred to as producers utp, while inflexible
and flexible consumers are also referred to as consumers utc. Moreover, flexible pro-
ducers, flexible consumers and storage are also termed flexible units, while inflexible
producers and inflexible consumers are also termed inflexible units.

The above categorization of unit types is based on those operational characteristics which
are important for the formation of coalitions and the fulfillment of power products. With
regard to exemplary technologies, the different types can be described as follows:

• Inflexible producers are units like solar power or wind energy plants which feed elec-
trical energy into the power grid according to the availability of the energy source.
Because of their lack of operational flexibility, controlling agents can not dynami-
cally respond to changing conditions and are only able to contribute fixed electricity
amounts to a coalition.

• Flexible producers are units like CHP plants which feed electricity into the grid and
are flexible with regard to their generation. Controlling agents are thus able to dy-
namically respond to occurring changes and contribute electricity amounts in a more
reliable fashion.

• Inflexible consumers are units like industrial production machines or dishwashers
which take electricity from the grid according to their inflexible demand. As in case
of inflexible producers, controlling agents are thus only able to contribute fixed elec-
tricity amounts to a coalition.

• Flexible consumers are units like refrigerators or electric heating systems which take
electricity from the grid but are flexible with regard to their demand. Thus, control-
ling agents are able to adapt to changing conditions and contribute electricity amounts
in a more reliable way.

• Storage refers to units like batteries or pumped storage plants which are able to pro-
duce and consume electrical energy in a flexible fashion. Thus, controlling agents
are able to respond to new conditions and reliably contribute positive and negative
electricity amounts to coalitions.
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Note that the defined unit types are not restricted to singleton units, i.e. in each planning
interval t(i)

pl non-singleton units can be assigned to one of the above categories as well
according to the operational characteristics of their comprised atomic units (cf. Defini-
tion 3.3).
As agents act as representatives for their unit in the market, their market role can be
derived from the operational behavior of their unit.

Definition 3.26: Market Role

An agent a takes on the market role of a producer or a consumer according to the given
operation schedule osU of its assigned unit u(a) = U.

Since the market role of an agent is determined by the operation schedule of its controlled
unit, it may change over time. More precisely, if an agent is assigned to a storage, it is
able to act as a producer or a consumer depending on whether the unit is charging or
discharging. The same holds if it controls a non-singleton unit U because the cumulated
operational behavior of the comprised atomic units u ∈ U may vary over time. However,
as in case of the unit type, the market role of an agent is unambiguously defined in each
planning interval t(i)

pl .
In the course of operation scheduling, an agent is bound to the operational restrictions
of its unit.

Definition 3.27: Operation Hard Constraint

An operation hard constraint hcU is a technical restriction of a unit U with regard to its
operation. The set of all operation hard constraints is given by HCU .

Operation hard constraints are requirements which have to be mandatorily met by an
agent when creating or updating an operation schedule of its controlled unit. An overview
of basic operation constraints is given in Table 3.1, where operation soft constraints
are defined in Definition 3.29 below. As indicated, the hard constraints can be further
distinguished into unconditional (hcU,1-hcU,6) and conditional constraints (hcU,7-hcU,10).
While the former are fixed restrictions resulting from the technical characteristics of a
unit, the latter may change over time according to a unit’s state. For instance, while the
maximum power level of a solar power plant never changes, its electricity production
varies according to the given weather conditions.
The fulfillment of a operation hard constraint can be verified through a corresponding
satisfaction function.



3.2 Domain 2 – Planning Horizon, Operation Schedule 77

id operation constraint utip ut f p utic ut f c uts

hcU,1 do not fall below minimum power • • • • •
hcU,2 do not exceed maximum power • • • • •
hcU,3 do not fall below minimum operation time • • • • •
hcU,4 do not exceed maximum operation time • • • • •
hcU,5 do not fall below minimum capacity •
hcU,6 do not exceed maximum capacity •

hcU,7 do not exceed feasible maximum power • • • • •
hcU,8 comply with charging level •
hcU,9 do not fall below negative flexibility bound • • •
hcU,10 do not exceed positive flexibility bound • • •

scU,1 maximize operation time • • •
scU,2 minimize changes in power level • • •
scU,3 minimize number of shutdowns • • • • •

Table 3.1: Basic operation hard and soft constraints (adapted from [Trö10]).

Definition 3.28: Operation Hard Constraint Satisfaction

Given an operation schedule osU , operation hard constraint satisfaction with regard to
an operation hard constraint hcU is indicated by a function sathcU : OS U → {0, 1}, where

sathcU (osU) =

1 if osU satisfies hcU ,

0 else.

Satisfaction function sathcU allows an agent to verify if an operation schedule osU is
compliant with a specific hard constraint hcu. In order to be feasible, a schedule has to
meet all given operation hard constraints HCU .
In contrast to operation hard constraints, operation soft constraints (SCs) are targets
which agents pursue to attain but which are not mandatory.

Definition 3.29: Operation Soft Constraint

An operation soft constraint scU is an objective with regard to the operation of a unit U
which an agent tries to achieve in order to maximize value. The set of all operation soft
constraints is given by S CU .

As can be seen from the examples in Table 3.1, operation soft constraints are operational
optimization goals which achievement is desirable but not mandatory. For instance, a
continuous operation of a CHP plant is economically beneficial but may be neglected
if no better schedule can be found. As in case of operation hard constraints, the fulfill-
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ment of operation soft constraints can be verified through a corresponding satisfaction
function.

Definition 3.30: Operation Soft Constraint Satisfaction

Given an operation schedule osU , operation soft constraint satisfaction with regard to
an operation soft constraint scU is indicated by a function satscU : OS U → [0, 1], where
• satscU (osU) = 0 if osU does not satisfy scU ,

• satscU (osU) ∈ (0, 1) if osU partially satisfies scU ,

• satscU (osU) = 1 else.

As operation soft constraints do not have to be mandatorily achieved, satisfaction func-
tion satscU also indicates a partial fulfillment. In the course of planning, an agent can
thus verify to which degree a given operation schedule attains a specific target.
The set of all operation hard constraints defines the set of operation schedules which are
generally feasible.

Definition 3.31: Operation Schedule Space

Given the set of all operation schedules OS U of a unit U, the operation schedule space
OS S U of U is defined as the set of operation schedules which satisfy the set of all
operation hard constraints HCU , i.e. OS S U = {osU | sathcU (osU) = 1 ∀hcU ∈ HCU}.

In order to identify the most beneficial operation schedule which it uses as basis for its
contributions to the products of coalitions, an agent has to generate the operation sched-
ule space of its controlled unit comprising all feasible schedules. Because inflexible
units are not able to vary their production or consumption, their schedule space always
consists of one schedule only. Contrary, the schedule space of flexible units typically
comprises large amounts of feasible schedules because of their operational degrees of
freedom. In this case, agents have to apply appropriate techniques in order to handle the
high demand for resources associated with their generation and maintenance [BS14].
Based on the operation schedule space of its unit, an agent identifies its favoured prod-
ucts for which coalitions to form. Related aspects are covered by the third domain of
DYCE-FM as described next.

3.3 Domain 3 – Product Horizon, Product

As specified in Definition 3.22, a planning horizon represents the future time frame for
which an agent schedules the operation of its unit in advance. As an operation sched-
ule forms the basis for an agent’s contribution to the product of a coalition, a planning
horizon also defines the time interval in which products can be physically fulfilled.
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Definition 3.32: Product Horizon

Given a planning horizon Tpl = {t(i)
pl | 0 ≤ i ≤ imax}, a product horizon T (p)

pr ⊆ Tpl of

a product p is defined as a set T (p)
pr = {t(0)

pr , . . . , t
( jmax)
pr } with 0 ≤ jmax ≤ imax, where

t( j)
pr ∈ T (p)

pr is termed a product interval.

As shown in Figure 3.5, a product horizon T (p)
pr is a set of product intervals which cor-

respond to the planning intervals of a given planning horizon Tpl in which a product
p is to be physically fulfilled. In case T (p)

pr does not totally cover Tpl, it can comprise
both adjacent and non-adjacent product intervals. Thus, within a planning horizon one
or more products can be fulfilled, where the contributions of an agent are based on the
corresponding operation schedule.
In order to further clarify how product horizons relate to planning horizons, the following
example describes two use cases in which agents plan short-term and long-term.

Example 3.3: Product Horizon

Assume two agents a1 and a2 which are participants of a day-ahead spot market and a
futures market, respectively. Let time base unit tbu be 1 minute.
• In the context of the spot market, a1 schedules the operation of its unit in 1-hour

periods on a daily basis. The corresponding planning horizon Tpl is specified by the
settings tu = 60, ∆t = 60, tmax = 1440, implicating that j = 1 and Tpl = {t(i)

pl | 0 ≤ i ≤
23}.

Let τ(t0) = 12:00 am, τ(t1) = 01:00 am, . . . on a considered date. Exemplary product
horizons are given by T (pm)

pr = {t(i)
pr | 11 ≤ i ≤ 12} for an hour product lasting from

12:00 to 13:00 pm and T (pn)
pr = {t(i)

pr | 0 ≤ i ≤ 7 ∧ 20 ≤ i ≤ 23} for an off-peak block
product lasting from 12:00 to 08:00 am and from 08:00 to 12:00 pm.

• In the context of the futures market, a2 schedules the operation of its unit in 1-hour
periods on a weekly basis. The corresponding planning horizon Tpl is specified by
the settings tu = 60, ∆t = 60, tmax = 10080, implicating that j = 1 and Tpl = {t(i)

pl | 0 ≤
i ≤ 167}.

Let τ(t0) = 12:00 am, τ(t1) = 01:00 am, . . . on a considered date. An exemplary
product horizon is given by T (p)

pr = {t(i)
pr | 24 ≤ i ≤ 47} for a baseload block product

lasting 24 hours from 12:00 am on the second day of the considered week.

A product horizon forms the basis for the definition of a product which is fulfilled by a
coalition.
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Definition 3.33: Product

Given a product horizon T (p)
pr = {t(0)

pr , . . . , t
( jmax)
pr }, a product fulfilled by a coalition C is

defined as a function p : T (p)
pr → R3, where p(t(i)

pr) = (e(i)
p , err(i)

p , c
(i)
p ) indicates the amount

of electrical energy e(i)
p which is produced or consumed by C with error err(i)

p at cost c(i)
p

in product interval t(i)
pr. Electricity amount e(i)

p can be equivalently expressed as amount
of electric power

pow(i)
p =

e(i)
p

∆t

which is supplied or demanded by C over t(i)
pr, with ∆t being the planning interval length.

Let ep be the amount of electrical energy which is produced or consumed by C with error
errp at cost cp in T (p)

pr . A product p is termed a localized product if it refers to a restricted
region of a power grid G = (VG, EG) as defined by a set of grid nodes VG,p ⊂ VG.
Each product is associated with a time of product submission tsub ∈ T by which its
specification has to be transmitted to the trading partner at the latest. The set of all
products is given by P.

A product p determines the amount of electrical energy e(i)
p which is produced or con-

sumed by a coalition with a specific error err(i)
p at a specific cost c(i)

p in each product
interval t(i)

pr of the corresponding product horizon T (p)
pr . Generally, the values are defined

in terms of the aggregated values of all coalition members. The specification of a product
has to be transferred to the trading partner until a specific submission deadline tsub. Note
that while a product determines the contractual conditions of a trade (like a bid which is
placed at an exchange), in the course of physical fulfillment coalitions may deviate from
the specified values because of forecast errors or unforseen events.
The products which are generally tradable in the context of a market are defined by a set
of dedicated constraints.

Definition 3.34: Product Hard Constraint

A product hard constraint hcp is a formal restriction with regard to the specification of
a product p. The set of all product hard constraints is given by HCp.

Table 3.2 gives an overview of basic product constraints, where product soft constraints
are defined in Definition 3.36. As shown, these specify restrictions with regard to the
attributes of a product as well as the time intervals in which it can be physically fulfilled.
Typically, in mediated markets (like a power exchange) product hard constraints are
defined by the mediating party, while in bilateral markets participants are not bound to
predefined restrictions and can thus specify contract conditions freely according to their
individual needs.
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id product constraint

hcp,1 do not fall below minimum volume
hcp,2 do not exceed maximum volume
hcp,3 do not fall below minimum price
hcp,4 do not exceed maximum price
hcp,5 comply with product intervals

scp,1 maximize payoff

scp,2 minimize risk

Table 3.2: Basic product hard and soft constraints.

Similar to regulatory and operation hard constraints, product hard constraints can be
verified with regard to fulfillment.

Definition 3.35: Product Hard Constraint Satisfaction

Given a product p, product hard constraint satisfaction with regard to a product hard
constraint hcp is indicated by a function sathcp : P→ {0, 1}, where

sathcp(p) =

1 if p satisfies hcp,

0 else.

Satisfaction function sathcp allows an agent to validate if a given product p is compliant
with a specific hard constraint hcp which is mandatory for p to be tradable.
Contrary, product soft constraints specify goals which agents pursue but are not obliged
to achieve.

Definition 3.36: Product Soft Constraint

A product soft constraint scp is an objective with regard to the specification of a product
p which an agent tries to achieve in order to maximize value. The set of all product soft
constraints is given by S Cp.

As can be seen from the examples in Table 3.2, product soft constraints define objectives
which achievement optimizes the utility gained from a trade. The degree of achievement
is indicated by a corresponding satisfaction function.

Definition 3.37: Product Soft Constraint Satisfaction

Given a product p, product soft constraint satisfaction with regard to a product soft
constraint scp is indicated by a function satscp : P→ [0, 1], where
• satscp(p) = 0 if p does not satisfy scp,
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• satscp(p) ∈ (0, 1) if p partially satisfies scp,

• satscp(p) = 1 else.

By means of satisfaction function satscp agents are able to verify how well a product p
meets the objective defined by a given soft constraint scp.
While the set of product hard constraints HCp refers to all tradable products in a market,
product templates are subsets of constraints which are used by agents for the specifica-
tion of products.

Definition 3.38: Product Template

Given a planning horizon Tpl and the set of all product hard constraints HCp, a product
template ptmp ⊆ HCp is defined as a set of product hard constraints hcp which are
relevant for the specification of a corresponding product p. A product p is compliant
with a product template ptmp if ∀hcp ∈ ptmp : sathcp(p) = 1.
A template catalog Ptmp = {ptmp,1, . . . , ptmp,n} is a set of product templates which are
taken into account by an agent when optimizing its economic utility. A template port-
folio T P = {ptmp,1, . . . , ptmp,m} ⊆ Ptmp is a selection of product templates which are
considered as most beneficial and thus used as basis for the specification of a product
portfolio10. T P is termed complete if

⋃
T (ptmp,i)

pr \ Tpl = ∅ and consistent if it is complete
and it holds that

⋂
T (ptmp,i)

pr = ∅, 1 ≤ i ≤ m.

The specification of a product is generally based on a product template ptmp which de-
fines all relevant constraints like the product horizon or the maximum definable amount
of electrical energy. For example, a template for a peak load product might be specified
as ptmp = {hcp,1, hcp,2, hcp,3, hcp,4}, where

hcp,1 : Tpl = {t(i)
pl | 0 ≤ i ≤ 95},

hcp,2 : T (p)
pr = {t(36)

pr , . . . , t(79)
pr },

hcp,3 : ∀t(i)
pr ∈ T (p)

pr : 0.25 MWh ≤ e(i)
p ≤ 100 MWh,

hcp,4 : ∀t(i)
pr ∈ T (p)

pr : −500e/MWh ≤ c(i)
p ≤ 3000e/MWh.

I.e., constraint hcp,1 defines the planning horizon which is used in the context of con-
straint hcp,2 in order to specify the product horizon which prescribes a physical fulfill-
ment from 09:00 am to 08:00 pm on the considered day. Furthermore, constraint hcp,3
and hcp,4 define the bounds for the electricity amount and cost, respectively.
While in markets with standardized products (like exchanges) product templates are typ-
ically specified by the respective institutions, in other markets these have to be defined
by the agents themselves. A template catalog Ptmp comprises all templates which an
agent takes into account when optimizing utility, where each template is associated with

10 For a detailed definition of a product portfolio, see Definition 3.39.
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a price prediction which allows to estimate the benefit resulting from a trade of a cor-
responding product. The most beneficial templates are gathered in a template portfolio
T P which satisfies the property of completeness if the product horizons prescribed by
the templates completely cover the given planning horizon Tpl. While in this case the
product horizons are still allowed to overlap, the property of consistency ensures that a
template portfolio is complete and all prescribed product horizons are disjunct. Thus, a
consistent portfolio is always complete, but not vice versa.
A template portfolio is used as basis for the specification of a product portfolio compris-
ing all products for which an agent intends to form coalitions.

Definition 3.39: Product Portfolio

Given a planning horizon Tpl and a template portfolio T P = {ptmp,1, . . . , ptmp,n}, a prod-
uct portfolio PP = {ptar,1, . . . , ptar,n} is defined as a set of n template-compliant target
products ptar which an agent intends to trade in Tpl by forming coalitions. A target
product is defined as a function ptar : T (ptar)

pr → R3, where ptar(t
(i)
pr) = (e(i)

ptar , err(i)
ptar , c

(i)
ptar )

specifies the target amount of electrical energy e(i)
ptar which is to be produced or con-

sumed with target error err(i)
ptar at target cost c(i)

ptar in t(i)
pr. Target electricity amount e(i)

ptar

can be equivalently expressed as target amount of electric power

pow(i)
ptar =

e(i)
ptar

∆t

which is to be provided or demanded over t(i)
pr, with ∆t being the planning interval length.

All target values of a target product are associated with corresponding tolerance bands
as defined by a function ptar,tol : T (ptar)

pr → R2 ×R2 ×R2, where

ptar,tol(t
(i)
pr) = ((e(i)

ptar ,−, e
(i)
ptar ,+), (err(i)

ptar ,−, err(i)
ptar ,+), (c(i)

ptar ,−, c
(i)
ptar ,+))

specifies the respective negative tolerance values and positive tolerance values. Toler-
ance band (e(i)

ptar ,−, e
(i)
ptar ,+) can be equivalently expressed as (pow(i)

ptar ,−, pow(i)
ptar ,+).

A product portfolio PP is termed complete if
⋃

T (ptar,i)
pr \ Tpl = ∅ and consistent if it is

complete and it holds that
⋂

T (ptar,i)
pr = ∅, 1 ≤ i ≤ n.

The product portfolio of an agent comprises all target products which it finally intends
to trade by forming coalitions with like-minded cooperation partners. It is created on
the basis of a template catalogue T P which guarantees a market-compliant specification.
All target values of a target product are associated with corresponding tolerance bands
within which the values are considered to be matched. This allows coalitions to stop a
formation process if they only slightly deviate from the target values as defined by the
bands.
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Having covered all product-related concepts, in the last domain of DYCE-FM we finally
consider how agents specify their contributions and these are aggregated by coalitions in
order to fulfill their pursued target products.

3.4 Domain 4 – Contribution, Cumulative Contribution

In order to fulfill their favoured target products, agents form coalitions to which they
contribute according to the technical capabilities of their units.

Definition 3.40: Contribution

Given an agent a controlling a unit u(a) = U, a contribution of a to a product p is
defined as a function cona,p : T (p)

pr → R3, where cona,p(t(i)
pr) = (e(i)

U , err(i)
U , c

(i)
U ) specifies

the amount of electrical energy e(i)
U which is produced or consumed by U with error

err(i)
U at cost c(i)

U in product interval t(i)
pr as determined by its operation schedule osU(t(i)

pl ) =

(e(i)
U , err(i)

U , c
(i)
U ). Let CONC,p be the set of all contributions of the members of a coalition

C.

A contribution cona,p specifies the amount of electrical energy e(i)
U which an agent con-

tributes to the product of a coalition with a specific error err(i)
U at a specific cost c(i)

U in
each product interval t(i)

pr ∈ T (p)
pr . Its specification is based on the operation schedule of

the controlled unit. In the course of coalition formation, agents aggregate their contribu-
tions in order to fulfill the pursued target products.

Definition 3.41: Cumulative Contribution

Given the contributions CONC,p of the members of a coalition C pursuing a target prod-
uct ptar, the cumulative contribution of C with regard to ptar is defined as a function
conC,ptar : T (ptar)

pr → R3, where conC,ptar (t
(i)
pr) = (e(i)

C , err(i)
C , c

(i)
C ) specifies the cumulative

amount of electrical energy e(i)
C which is produced or consumed by C with cumulative

error err(i)
C at cumulative cost c(i)

C in product interval t(i)
pr based on CONC,p. Cumulative

electricity amount e(i)
C can be equivalently expressed as cumulative amount of electric

power

pow(i)
C =

e(i)
C

∆t

which is provided or demanded by C over t(i)
pr, with ∆t being the planning interval length.

Let eC be the cumulative amount of electrical energy which is produced or consumed by
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C with cumulative error errC at cumulative cost cC in T (ptar)
pr . C is successful and fulfills

target product ptar if in each product interval t(i)
pr ∈ T (ptar)

pr it holds that

e(i)
C ∈ [e(i)

ptar − e(i)
ptar ,−, e

(i)
ptar + e(i)

ptar ,+],

err(i)
C ∈ [err(i)

ptar − err(i)
ptar ,−, err(i)

ptar + err(i)
ptar ,+],

c(i)
C ∈ [c(i)

ptar − c(i)
ptar ,−, c

(i)
ptar + c(i)

ptar ,+].

In case of a successful fulfillment, the product p which can finally be traded by C is
defined by its final cumulative contribution, i.e.

∀t(i)
pr ∈ T (p)

pr : (e(i)
p , err(i)

p , c
(i)
p ) = (e(i)

C , err(i)
C , c

(i)
C ).

The cumulative contribution of a coalition is an aggregation of the individual contribu-
tions of its members. In the course of coalition formation, a coalition continues with
the formation process until its cumulative values lie within the corresponding tolerance
bands of the pursued target product or other termination conditions are met. As there
may thus be deviations from the target values even if it is successful, the tradable prod-
uct is finally given by its cumulative contribution and not the target product itself.
Having specified the four domains of DYCE-FM, we are finally ready to define the
context in which coalition formation takes place.

Definition 3.42: Electricity Market

An electricity market is defined as a tuple M = ({Ms,1, . . . ,Ms,n},G), where Ms,i =

(mt,HCp) is a submarket of market type

mt ∈ {search, board, brokered, dealer, exchange, pool}

prescribing a set of product hard constraints HCp for product specification. The place of
delivery is given by a power grid G.

An electricity market consists of one or more submarkets and defines a place of delivery
which is given by a power grid G connecting all producers and consumers. Each submar-
ket is of one of the types discussed in Section 2.1.2 and prescribes a set of product hard
constraints HCp which has to be taken into account by agents when specifying target
products for which coalitions to form.
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symbol description def.

{vG,i, vG, j} power line of a power grid G 3.1
{vICT ,i, vICT , j} communication line of an ICT network ICT 3.2
α action of an agent 3.5
α∗ action of an agent maximizing expected utility 3.6
∆t planning interval length 3.22
ϑ task of an agent 3.5
ρ̌ payoff of a coalition C 3.15
τ(t) time mapping of a time t 3.22
ψ((C, ρ̌)) distribution of a payoff ρ̌ of a coalition C 3.16
a agent 3.4
A set of agents 3.4
arep representative of a coalition 3.11
Act set of actions an agent can execute 3.5
C coalition of agents 3.11
C̃ set of all coalitions 3.11
cC cost of a cumulative contribution in T (p)

pr 3.41
c(i)

C cost of a cumulative contribution in t(i)
pr 3.41

cdis distance criterion 3.9
cosU cost of an operation schedule osU in Tpl 3.23
Ĉnew set of coalitions resulting from a regrouping 3.12
Ĉold set of coalitions before a regrouping 3.12
cp cost of a product p in T (p)

pr 3.33
c(i)

p cost of a product p in t(i)
pr 3.33

c(i)
ptar target cost of a target product ptar in t(i)

pr 3.39
c(i)

ptar ,− negative tolerance value for a target cost c(i)
ptar 3.39

c(i)
ptar ,+ positive tolerance value for a target cost c(i)

ptar 3.39
cψ payoff distribution criterion 3.16
ctrust trust criterion 3.8
c(i)

U cost of an operation schedule in t(i)
pl 3.23

cna(a) communication node assignment of an agent a 3.4
cnU(U) communication node assignment of a unit U 3.3
cona,p(t(i)

pr) contribution of an agent a in t(i)
pr 3.40

CONC,p set of all contributions of the members of a coalition C 3.40
conC,p(t(i)

pr) cumulative contribution of a coalition C in t(i)
pr 3.41

CS coalition structure 3.13
C̃S set of all coalition structures 3.13
dis((vG,i, vG, j)) distance between two grid nodes vG,i, vG, j 3.9
dw(vG,i, vG, j) distance weight relating to a power line {vG,i, vG, j} 3.9
e evidence 3.6
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eC electricity amount of a cumulative contribution in T (p)
pr 3.41

e(i)
C electricity amount of a cumulative contribution in t(i)

pr 3.41
EG power lines of a power grid G 3.1
EICT communication lines of an ICT network ICT 3.2
eosU electricity amount of an operation schedule osU in Tpl 3.23
ep electricity amount of a product p in T (p)

pr 3.33
e(i)

p electricity amount of a product p in t(i)
pr 3.33

e(i)
ptar target electricity amount of a target product ptar in t(i)

pr 3.39
e(i)

ptar ,− negative tolerance value for target electricity amount e(i)
ptar 3.41

e(i)
ptar ,+ positive tolerance value for target electricity amount e(i)

ptar 3.41
e(i)

U electricity amount of an operation schedule in t(i)
pl 3.23

e(i)
U,− negative operational flexibility bound of a unit U in t(i)

pl 3.24
e(i)

U,+ positive operational flexibility bound of a unit U in t(i)
pl 3.24

Env environment of an agent 3.5
errC error of a cumulative contribution in T (p)

pr 3.41
err(i)

C error of a cumulative contribution in t(i)
pr 3.41

errosU error of an operation schedule osU in Tpl 3.23
errp error of a product p in T (p)

pr 3.33
err(i)

p error of a product p in t(i)
pr 3.33

err(i)
ptar target error of a target product ptar in t(i)

pr 3.39
err(i)

ptar ,− negative tolerance value for target error err(i)
ptar 3.41

err(i)
ptar ,+ positive tolerance value for target error err(i)

ptar 3.41
err(i)

U error of an operation schedule in t(i)
pl 3.23

EU(α | e) expected utility of an action α given evidence e 3.6
extN extension count relating to a neighborhood N 3.10
G power grid 3.1
gn(U) grid node assignment of a unit U 3.3
hca regulatory hard constraint relevant for an agent a 3.19
HCa set of all regulatory hard constraints relevant for an agent

a
3.19

hcp product hard constraint relating to a product p 3.34
HCp set of all product hard constraints relating to a product p 3.34
hcU operation hard constraint of a unit U 3.27
HCU set of all operation hard constraints of a unit U 3.27
IDa unique identifier of an agent a 3.4
ICT ICT network 3.2
M electricity market 3.42
Ms submarket 3.42
mt market type 3.42
N neighborhood of a unit 3.10
o f (i)

C operational flexibility of a coalition C in t(i)
pl 3.24
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o f (i)
U operational flexibility of a unit U in t(i)

pl 3.24
OS U set of all operation schedules of a unit U 3.23
osU(t(i)

pl ) value of an operation schedule osU of a unit U in t(i)
pl 3.23

OS S U operation schedule space of a unit U 3.31
P set of all products 3.33
p(t(i)

pr) value of a product p in t(i)
pr 3.33

ptar(t
(i)
pr) value of a target product ptar in t(i)

pr 3.39
ptar,tol(t

(i)
pr) tolerance bands of a target product in t(i)

pr 3.39
ptmp product template 3.38
Ptmp template catalog 3.38
pow(i)

C power amount of a cumulative contribution in t(i)
pr 3.41

pow(i)
p power amount of a product p in t(i)

pr 3.33
pow(i)

ptar target power amount of a target product ptar in t(i)
pr 3.39

pow(i)
ptar ,− negative tolerance value for target power pow(i)

ptar 3.39
pow(i)

ptar ,+ positive tolerance value for target power pow(i)
ptar 3.39

pow(i)
U power amount of an operation schedule in t(i)

pl 3.23
PP product portfolio 3.39
Pr(S α = si | α, e) probability of occurrence of a state si resulting from ap-

plying an action α given evidence e
3.6

qw(vICT,i, vICT, j) quality-weight of a communication line {vICT ,i, vICT , j} 3.2
r run of an agent 3.5
rϑ solution of a task ϑ 3.5
r f rs future-related reasoning scope of an agent 3.7
rprs past-related reasoning scope of an agent 3.7
rrs reasoning scope of an agent 3.7
s state of an environment 3.5
S α random variable determining the states potentially result-

ing from an action α
3.6

sϑ state implicating the fulfillment of a task ϑ 3.5
s f future-related extent of a reasoning scope 3.7
sC scope of a coalition C 3.11
sN size of a neighborhood N 3.10
sp past-related extent of a reasoning scope 3.7
sathca(a) regulatory hard constraint satisfaction w.r.t. a 3.20
sathcp(p) product hard constraint satisfaction w.r.t. p 3.35
sathcU (osU) operation hard constraint satisfaction w.r.t. osU 3.28
satscp(p) product soft constraint satisfaction w.r.t. p 3.37
satscU (osU) operation soft constraint satisfaction w.r.t. osU 3.30
scp product soft constraint relevant for a product p 3.36
S Cp set of all product soft constraints relevant for a product p 3.36
scU operation soft constraint relevant for a unit U 3.29
S CU set of all operation soft constraints relevant for a unit U 3.29
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strϑ strategy of an agent for solving a task ϑ 3.5
t time value 3.22
T set of all time values 3.22
tbu time base unit 3.22
tCF coalition formation period 3.22
t f ,ptmp formation interval 3.22
tmax planning horizon length 3.22
Tpl planning horizon 3.22
t(i)
pl planning interval 3.22

t( j)
pr product interval 3.32

T (p)
pr product horizon of a product p 3.32

trt point in real time 3.22
tsub time of product submission 3.33
tu time unit of a planning interval 3.22
T P template portfolio 3.38
trust((ai, a j)) trust of an agent ai in an agent a j 3.8
u atomic unit 3.3
U unit 3.3
Ũ set of all units 3.3
Ua set of atomic units 3.3
UC set of all units assigned to the members of a coalition C 3.11
u(a) unit assignment of an agent a 3.4
ut unit type 3.25
utc unit type consumer 3.25
ut f c unit type flexible consumer 3.25
ut f p unit type flexible producer 3.25
utic unit type inflexible consumer 3.25
utip unit type inflexible producer 3.25
utp unit type producer 3.25
uts unit type storage 3.25
util(s) utility of a state s 3.6
v(C) coalition value of a coalition C 3.14
v(C) mean coalition value of a coalition structure CS 3.17
vG grid node of a power grid G 3.1
VG grid nodes of a power grid G 3.1
vICT communication node of an ICT network ICT 3.2
VICT communication nodes of an ICT network ICT 3.2
xC payoff distribution vector of a coalition C 3.16
xi individual share of an agent ai 3.16

Table 3.3: Symbols specified in Definition 3.1-3.42.
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4 A Method for Dynamic Coalition Formation in
Electricity Markets

Having precisely specified the considered problem, in the following we provide a solu-
tion to the very same by describing an agent-based self-organization approach for the
formation of product-related coalitions termed DYCE – DYnamic Coalition formation
in Electricity markets. The proposed method comprises four main activities which are
carried out by an agent in an iterative and partially parallel fashion as depicted by the
UML diagram in Figure 4.11. Each activity addresses a self-contained subproblem of
the overall problem which is associated with a corresponding optimization problem and
thus a dedicated computational complexity. The four main activities can be summarized
as follows:

Product portfolio management In the course of the first DYCE activity an agent main-
ly performs three tasks. First, it builds a product portfolio comprising all target prod-
ucts which it intends to trade within its considered planning horizon. The portfolio
is created on the basis of a set of product templates for which the agent assumes
corresponding price predictions. Second, it chooses an operation schedule from the
operation schedule space of its controlled unit which forms the basis for its contribu-
tions to coalitions in the course of the following formation processes. Both actions
are interrelated in the sense that in conjunction the identified portfolio and schedule
are intended to optimize local utility. Finally, the agent plans the coalition forma-
tion processes related to its identified target products and then conducts the following
three activities according to the created formation schedule.

Neighborhood formation If throughout the upcoming coalition formation an agent ini-
tiates negotiations, it first builds a neighborhood of nearest neighbors based on a
distance function quantifying the physical distance between the units in the grid.
By limiting the set of all agents to a manageable size, neighborhoods allow to re-
duce communication and computational cost while taking grid-related aspects into
account. If a formation attempt with current neighbors was unsuccessful, agents are
able to extent their neighborhoods in order to include a wider range of potential co-
operation partners.

Coalition formation In the course of the third DYCE activity agents form coalitions
within the previously built neighborhoods in order to cooperatively fulfill their ini-
tially specified target products. Generally, the formation processes optimize the
global value of the whole coalition structure (cf. Definition 3.18). If the forma-
tion of a coalition with current neighbors can not be achieved, an agent has generally
two options to proceed. First, if its neighborhood is still extendable, it can expand
the very same in order to increase the number of potential cooperation partners and
thus the probability to form a successful coalition (1). Second, if the neighborhood

1 The guard conditions of the control flows are specified in detail in the following sections.
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Product Portfolio Management

Neighborhood Formation

Coalition Formation

Payoff Distribution
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Figure 4.1: DYCE activity diagram.

already covers the whole grid, it can try to specify a new product portfolio compris-
ing a different set of target products (2). However, if both of these options are not
feasible, an agent stops the formation process as member of an unsuccessful coalition
and schedules the next target product for which a coalition to form (3). The latter also
holds if it stops the process as member of a successful coalition, where in this case it
also conducts the last activity of the overall process (4).

Payoff distribution If a coalition successfully formed, it finally strives for a trade of
its fulfilled target product and a distribution of the resulting payoff. Generally, the
applied distribution model is based on a game-theoretical model which enables a
fair2 division of the coalition’s utility in terms of the Shapley value. The resulting
distribution vector finally specifies the individual shares which the members gain
from cooperation.

2 Because of the computational complexity of the related problem, the model allows for the application of
a heuristic in order to efficiently approximate a fair distribution if the size of a coalition gets too large.
However, in the following we simply speak of a fair distribution including the case of an approximated
solution.
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As can be seen from the above summary, DYCE optimizes both local and global utility
by taking account of the agents’ individual benefits in the course of product portfolio
management and optimizing the value of the coalition structure in the context of coalition
formation. This combined approach makes the method applicable to a wide range of use
cases falling into either of the following two categories:

Application on local system level If applied on local level of the power supply system,
DYCE can be used for the control of a restricted set of units which are typically
owned by a single party and distributed over a limited region of the grid. For instance,
the approach might be applied by an operator of several generators connected to the
distribution grid in order to control the units in the sense of a dynamic virtual power
plant. In this regard, DYCE can also be used in order to exchange currently applied
centralized management systems by a decentralized control.

Application on global system level Alternatively, DYCE can be applied for a decen-
tralized power supply on global system level in order to replace the current approach
of a hierarchically organized provision. In this scenario, all planning activities are
conducted by the market participants themselves without depending on other service
providers, where centralized markets may or may not be part of the system.

Clearly, an application of DYCE on global level is not implementable from scratch and
requires an appropriate migration path towards a fully decentralized supply. This can be
achieved through a successive deployment in the sense of the first use case which allows
to handle integration efforts and reduce the risks associated with the introduction of new
technologies.
In what follows, we provide a detailed description of DYCE by covering the above out-
lined activities in Section 4.1-4.4. In each section, we first discuss the considered prob-
lem along with its computational complexity and then detail the developed concepts for
its solution. Throughout the descriptions, we make assumptions with regard to different
design-related aspects which are as follows:

• A1: With respect to the communication between agents, we suppose that the underly-
ing ICT network ICT provides perfect transmission quality, i.e. ∀vICT,i, vICT, j ∈ VICT

with i , j : qw(vICT,i, vICT, j) = 1. This particularly includes the assumption that sent
messages are transmitted without error and arrive in the specified order. Concepts for
the handling of unreliable communication are left to future work (see Section 6.2).

• A2: We account for the aspect of trust by applying the abstract notion specified in
Definition 3.8 while assuming the underlying trust model as given. In the context
of evaluation in Chapter 5, we thus further suppose that all participating agents are
trustworthy and do not misbehave in the course of the interactions. The design of
a comprehensive trust model and the investigation of corresponding threat scenarios
are left to future work (see Section 6.2).

• A3: With regard to a product p, we assume that the amounts of electrical energy
e(i)

U which are specified within the corresponding product horizon T (p)
pr are either all
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positive or all negative, i.e. ∀t(i)
pr ∈ T (p)

pr : e(i)
U > 0 or ∀t(i)

pr ∈ T (p)
pr : e(i)

U < 0. With regard
to coalition formation, this particularly means that a storage acts either as producer
or consumer as a charge and discharge is always realized by means of two different
products. Moreover, supply and demand is never matched within coalitions but only
through the market.

In order to facilitate discussion in the course of the following descriptions, we sometimes
refer to an exemplary use case in which a flexible producer participates in the spot market
of the European Energy Exchange and strives for the formation of coalitions a day before
order book closure. With regard to the applied planning horizon Tpl, we thus assume
that tbu = 1, tu = 1, ∆t = 15, and tmax = 1440 (one day), implicating that j = 15 and
Tpl = {t(i)

pl | 0 ≤ i ≤ 95} (cf. Definition 3.22).

4.1 Product Portfolio Management

In the course of the first DYCE activity, an agent initially specifies the different prod-
ucts which it intends to trade within its considered planning horizon and schedules the
processes for the formation of corresponding coalitions in order to cooperatively ful-
fill the very same. Moreover, it identifies an operation schedule which it uses as basis
for its contributions throughout the formation processes. In the following sections, we
first analyze the optimization problem related to these tasks and then provide appropriate
concepts for its solution. In particular, we describe a heuristic which allows to efficiently
approximate a theoretical optimum and integrate multiple markets of the same or a dif-
ferent type into the decision making process. The proposed algorithm is independent
from the unit type and can thus be applied by arbitrary agents.

4.1.1 Problem Specification and Computational Complexity

The first activity which an agent carries out in the course of the overall process comprises
three main tasks two of which are highly interrelated with regard to their goal. First, the
agent has to create a product portfolio PP including all target products ptar which it in-
tends to trade within its considered planning horizon Tpl in one or more submarkets Ms.
The specification of the product portfolio is based on a template portfolio T P which is a
selection of product templates ptmp from a template catalog Ptmp maximizing the agent’s
expected utility (for an example of a product template see Section 3.3). As a result, PP
finally maximizes the agent’s expected utility as well. The choice of which product tem-
plates to include in T P is based on the one hand on corresponding interval-related price
predictions c(i)

ptmp which are the cost which an agent expects with regard to a trade of an
accordingly specified target product ptar, with CPtmp being the set of predictions for all
templates ptmp ∈ Ptmp. On the other hand, it depends on the operation schedule osU

which the agent uses as basis for its contributions to coalitions in the course of forma-
tion processes. For instance, for a producer the specification of a target product on the
basis of a product template with a high price prediction would be economically unprof-
itable if its unit can not provide electrical energy in the product horizon prescribed by



4.1 Product Portfolio Management 95
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Figure 4.2: Template catalog of the EPEX SPOT day-ahead auction (hour 1-24).

the template. Hence, as second task of the activity, an agent has to identify an operation
schedule osU from the operation schedule space OS S U of its unit U which is compliant
with the product portfolio in the sense that in conjunction both maximize its expected
utility. The identified product portfolio and operation schedule are then used as basis for
the following coalition formation processes, where the latter have to be finally scheduled
by an agent in coordination with other participants.
In order to illustrate the problem of product portfolio management, we refer to our pre-
viously described use case in which a flexible producer participates in the EPEX SPOT
market. Figure 4.2 gives an overview of the corresponding template catalog Ptmp com-
prising the forty-one product templates ptmp which can generally be used by participants
in order to specify their target products. Supposing that the producer assumes differ-
ent price predictions for the templates (which is typically the case) and the operation
schedule space of its controlled unit comprises a large set of feasible schedules, the
task of the agent is then to identify a consistent template portfolio T P and schedule
osU which in conjunction maximize its expected utility. Say such a portfolio is given
by T P = {ptmp,Night, ptmp,Morning, ptmp,High Noon, ptmp,A f ternoon, ptmp,Evening} covering the
whole 24 hours of the considered planning horizon. The agent then uses this set of prod-
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uct templates in order to define its final product portfolio PP which might for instance
comprise a target product ptar,A f ternoon specifying a target electricity amount of 100 kWh
being provided with an estimated error of 2 kWh at cost 0.1e/kWh from 03:00 pm to
06:00 pm on the considered day. Finally, the agent schedules the formation processes re-
lated to the five target products within coalition formation period tCF which temporally
precedes planning horizon Tpl (cf. Definition 3.22).
According to the above problem specification, the activity of product portfolio manage-
ment is closely related to the task of utility assessment for a considered pair of template
portfolio and operation schedule. However, at this stage of the process an agent is yet
not able to calculate its final share of the payoff resulting from the trade of a product as
determined by the approach applied in the course of the last DYCE activity (see Sec-
tion 4.4.2). More precisely, it has yet no information about the final coalitions and the
members’ contributions to their cumulative contributions which means that it can not
calculate the corresponding divisions. Hence, at this stage of the process, an agent ap-
plies an alternative approach for estimating the benefit resulting from a potential trade:
In order to asses the utility which is associated with a pair of a template portfolio T P
and operation schedule osU , it considers the expected surplus which results from the
set of template-compliant target products ptar being specified on the basis of osU . The
applied notion of utility thus differs according to the unit type ut of the controlled unit
U. More precisely, for a single product template ptmp prescribing a product horizon
T (p)

pr = {t(0)
pr , . . . , t

( jmax)
pr } and an operation schedule osU , with osU(t(i)

pl ) = (e(i)
U , err(i)

U , c
(i)
U ),

the expected utility of a producer utp and consumer utc is defined as

utility(ptmp, osU) =



jmax∑
i=0

e(i)
U · c

(i)
ptmp − e(i)

U · c
(i)
U if U is of type utp,

jmax∑
i=0

e(i)
U · c

(i)
U − e(i)

U · c
(i)
ptmp if U is of type utc.

(4.1)

While for a producer utility is the profit which it obtains from the sale of a target product
being specified on the basis of the given product template ptmp and schedule osU , for a
consumer it is the surplus which it gains from a purchase. More precisely, a producer
calculates the expected utility of ptmp and osU by multiplying for each product interval
t(i)
pr the provided amount of electrical energy e(i)

U by the predicted price c(i)
ptmp , subtracting

the production cost e(i)
U · c

(i)
U , and summing up the results over all product intervals t(i)

pr ∈

T (ptmp)
pr . Contrary, a consumer determines the expected utility by multiplying for each

product interval t(i)
pr the amount of demanded electrical energy e(i)

U by the cost c(i)
U which

it is willing to pay, subtracting the predicted energy price e(i)
U · c

(i)
ptmp , and summing up

the results over all intervals t(i)
pr ∈ T (ptmp)

pr . Because of assumption A3 specified at the
beginning of Chapter 4 stating that all electricity amounts of a product are either positive
or negative, the utility of a storage can simply be calculated by means of one of the
above formulas according to the unit’s behavior in the prescribed product horizon (i.e.
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depending on the fact if it is discharging or charging and thus acting as producer or
consumer).
Equation 4.1 is consistent with the distribution model applied in the last activity of
DYCE in the sense that the latter guarantees producers to receive at least their declared
cost c(i)

U and consumers to pay at most c(i)
U . This in turn means that the specification of

the schedule cost generally depends on the individual preferences of an agent as well as
its trading strategy. For instance, in the context of an exchange producers are typically
assumed to declare the marginal cost of their units as price of a product. However, the
design of an optimal trading strategy is generally highly complex and requires concepts
from domains like microeconomics, game theory, or artificial intelligence (for work in
this field see for instance [Pow] and related publications). Thus, we leave this topic to
future work as discussed in Section 6.2.
Given Equation 4.1, the utility of a template portfolio T P and an operation schedule osU

is defined as

utility(T P, osU) =
∑

ptmp∈T P

utility(ptmp, osU), (4.2)

where U can be of type producer, consumer, or storage. The above formula enables an
agent to identify an optimal pair of template portfolio and operation schedule. Assuming
that template portfolio T P comprises n product templates, the corresponding optimiza-
tion problem is given by

maximize utility(T P, osU) (4.3)

subject to T P ∈ P(Ptmp), (4.4)

osU ∈ OS S U , (4.5)⋃
T (ptmp,i)

pr \ Tpl = ∅ ∧
⋂

T (ptmp,i)
pr = ∅, 1 ≤ i ≤ n, (4.6)

sathcU (osU) = 1 ∀ hcU ∈ HCU . (4.7)

By solving the above problem, inflexible agents are able to identify a utility maximizing
template portfolio T P for the given fixed operation schedule osU (as in this case it always
holds that |OS S U | = 1), while flexible agents are able to determine a utility maximizing
pair of template portfolio T P and operation schedule osU . Constraints 4.6 and 4.7 ensure
that T P satisfies the property of consistency and that osU is a feasible schedule. Based
on the resulting template portfolio, agents are finally able to create an optimal product
portfolio PP including the target products ptar for which coalitions to form.
With regard to Equation 4.1, the benefit which a consumer associates with the operation
of its unit U, as reflected by schedule cost c(i)

U , might be difficult to determine because
it depends on the individual preferences of the user. If these are too costly to asses or
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simply irrelevant for the given use case, Equation 4.1 and 4.2 can also be transferred into
cost functions by setting c(i)

U to 0, i.e.

cost(ptmp, osU) =

jmax∑
i=0

e(i)
U · c

(i)
ptmp , (4.8)

cost(T P, osU) =
∑

ptmp∈T P

cost(ptmp, osU). (4.9)

I.e., for a product interval t(i)
pr, the cost resulting from the purchase of a target product

being specified on the basis of a given product template ptmp and operation schedule osU

is simply calculated by multiplying the demanded electricity amount e(i)
U by the predicted

price c(i)
ptmp . Again assuming that template portfolio T P comprises n product templates,

the corresponding optimization problem allowing consumers to minimize their cost is
given by

minimize cost(T P, osU) (4.10)

subject to T P ∈ P(Ptmp), (4.11)

osU ∈ OS S U , (4.12)⋃
T (ptmp,i)

pr \ Tpl = ∅ ∧
⋂

T (ptmp,i)
pr = ∅, 1 ≤ i ≤ n, (4.13)

sathcU (osU) = 1 ∀ hcU ∈ HCU . (4.14)

Having specified the optimization problem which is related to the activity of product
portfolio management, we now consider the associated computational complexity in or-
der to be able to develop an appropriate technique for its solution in the following sec-
tion. In order to facilitate discussion, we first analyze the task of generating a product
portfolio PP for a single operation schedule osU . The identification of a utility maxi-
mizing template portfolio T P which can be used as basis for the specification of PP is a
combinatorial problem in which the product templates ptmp of a given template catalog
Ptmp have to be combined into a valid solution (i.e. a consistent template portfolio T P).
Without the consideration of any constraints, a catalog of n templates generally results
in a search space of 2n valid and invalid template combinations. Because of the expo-
nential growth, for bigger catalog sizes the problem is thus impossible to solve through
an exhaustive search for the optimal solution. For instance, with regard to the exemplary
catalog of the EPEX SPOT as shown in Figure 4.2, the number of 41 product templates
results in a search space of 241 = 2 199 023 255 552 template combinations. As this
complexity only refers to a single operation schedule osU , it even rises for flexible units
which operation schedule spaces OS S U comprise large numbers of feasible schedules.
In such cases, the identification of an optimal solution through exhaustive search involves
the determination of a template portfolio T P for each schedule osU ∈ OS S U . It follows
that a solution of the above optimization problem requires an appropriate heuristic which
allows to efficiently approximate a theoretical optimum.
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4.1.2 Activity Description

Figure 4.3 shows the activity of product portfolio management and its relation to the
other three DYCE activities3 including a specification of the corresponding guard con-
ditions4. Because for typical sizes of template catalogs it is computationally impossible
to generate a utility maximizing product portfolio, the process integrates an algorithm
which efficiently approximates an optimal solution. In the following, we refer to this
heuristic as COPE5 – Combinatorial Optimization for Portfolio Enhancement. Its input
is generated by an agent in the course of the first three actions of the activity, where in the
first step a template catalog Ptmp is created which is used as basis for the identification
of a utility optimizing template portfolio T P. This task is particularly influenced by the
type of market the agent participates in and the related rules for product specification.
If the latter prescribe a trade of standardized products (like in case of an exchange), a
template catalog is typically defined by the market institution itself and may simply be
queried from a market agent providing corresponding functionality. However, if the rules
allow for a trade of non-standardized products, product templates have to be created by
an agent itself which can be derived from the given contract conditions. Assume for in-
stance a bilateral market in which a consumer offers to buy 100 kWh at cost 0.1e/kWh
from 03:00 pm to 04:00 pm on a considered day. A producer can then add a correspond-
ing product template ptmp = {hcp,1, hcp,2, hcp,3, hcp,4} to its template catalog, where

hcp,1 :Tpl = {t(i)
pl | 0 ≤ i ≤ 95},

hcp,2 :T (p)
pr = {t(60)

pr , . . . , t(63)
pr },

hcp,3 :∀t(i)
pr ∈ T (p)

pr : e(i)
p = 100 kWh,

hcp,4 :∀t(i)
pr ∈ T (p)

pr : c(i)
p = 0.1e/kWh.

In comparison to the example of a peak load template given in Section 3.3, the above
template restricts the electricity amount and cost to the predefined values. Using this ap-
proach, agents can flexibly integrate various markets of different type into their decision
making process by adding appropriately specified templates to catalog Ptmp. The only
requirements which have to be fulfilled with regard to the COPE algorithm are first that
all added templates have to comprise a product constraint prescribing a specific product
horizon (which obviously has to hold for any template) and second that all templates
have to possess a unique descriptor making them identifiable throughout the optimiza-
tion process even if their product horizons are equal.

3 For the sake of comprehensibility, the following activity diagrams specify the currently considered DYCE
activity in full detail while restricting the description of the other ones to those actions which are related
to the considered activity. Moreover, guard conditions are only defined for all inner and outgoing control
flows of the considered activity.

4 In the following, most guard conditions are specified by means of boolean methods reflecting conditions
which are described in more detail in the text. If newly introduced, these are defined at the end of the tables
listing the guard conditions.

5 pronounced as [koUp]
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create template portfolio
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create global formation schedule

schedule next target product

Product Portfolio Management
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Coalition Formation
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Figure 4.3: Activity of product portfolio management including guard conditions.
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As second action of the activity, an agent creates price predictions c(i)
ptmp for all prod-

uct templates ptmp of the previously specified catalog. As described in the previous
section, the forecasts are used in the course of the optimization process in order to de-
termine the utility of a given pair of template portfolio T P and operation schedule osU

(cf. Equation 4.2). While in case of offers with defined prices these can be directly de-
rived from the template constraints (such as in the example above), predictions for yet
undefined prices require appropriate forecasting techniques like statistical or simulation-
based approaches. For instance, with regard to the exemplary peak load template given
in Section 3.3 which generally allows market participants to specify prices in the range
from -500e/MWh to 3000e/MWh, an agent would be required to make a prediction
of the final clearing price. As forecasting techniques are an own topic of research and
thus exceed the scope of this thesis, we refer to related literature for a comprehensive
coverage [Wer14, Nii06, HTWI09].
In the course of the third action of product portfolio management, an agent creates the
last input of the COPE algorithm in the form of the operation schedule space OS S U of
its controlled unit U. To this end, it predicts the operational behavior of the unit by de-
termining all schedules which are feasible within the considered planning horizon. De-
pending on the type of unit, these forecasts have to account for controllable factors like
scheduled events in a production process or uncontrollable factors like future weather
conditions. As agents may deviate from the predictions after coalitions have formed and
contracts were concluded, appropriate techniques have to be applied in order to ensure a
physical fulfillment according to the stipulated conditions. Specific models for predict-
ing the operational behavior of different unit types can be found in related literature (see
for instance [CCN+08, LSH+11]).
Before executing the COPE algorithm, an agent first performs the fourth action of prod-
uct portfolio management and creates a formation schedule in order to organize the for-
mation processes which are associated with the product templates of its created template
portfolio. As described in Section 3.3, all formation activities are generally conducted
within formation period tCF which precedes the currently considered planning horizon
Tpl. Because different agents potentially specify different target products for a given
product template, formation processes are generally scheduled with regard to the tem-
plates, i.e. for each product template ptmp the formation schedule finally specifies a
formation interval t f ,ptmp in which coalition formation for corresponding products takes
place. In this context, Figure 4.4 depicts two general approaches for the temporal orga-
nization of the formation intervals using the catalog of the EPEX SPOT as an example.
As shown, these can either be arranged in sequential or parallel order meaning that the
corresponding formation activities are either conducted one after the other or simultane-
ously throughout formation period tCF . With regard to DYCE, we generally choose the
former approach as a sequential scheduling provides the advantage that the coordination
and communication efforts are distributed across the whole formation period. As agents
potentially specify a high number of different target products, a parallel execution of all
formation processes could soon become inefficient. As further advantage, a sequential
scheduling allows agents to redefine their product portfolio if the formation of a coalition
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Figure 4.4: Sequential vs. parallel template scheduling.

for a specific target product was unsuccessful. To illustrate, assume for instance that the
product templates of the EPEX SPOT are arranged as depicted on the left hand side of
Figure 4.4 and an agent was unable to form a coalition for its target product ptar,O f f−Peak

in the corresponding formation interval t f ,pO f f−Peak . As in this case formation period tCF

has not ended yet, the agent is able to generate a new product portfolio by removing
product template ptmp,O f f−Peak from its template catalog Ptmp and executing the COPE
algorithm again (a detailed description of this approach is given in Section 4.3.2.4). This
kind of redefinition is not possible if the templates are scheduled in parallel as in this
case all formation intervals end at the same time.
With regard to the actual creation of the formation schedule, in the context of DYCE we
assume that the formation intervals for product templates of mediated markets are pre-
scribed by the institutions themselves just like other trading-relevant dates such as the
order book closure of a specific auction. For instance, the EPEX SPOT could arrange the
templates of its template catalog as indicated on the left hand side of Figure 4.4. In this
case, the formation intervals should not occupy the whole formation period tCF in order
to allow agents to schedule further formation processes for bilateral target products. The
corresponding intervals can either be negotiated by the agents in a distributed fashion or
scheduled by an authorized institution allowing participants to register individual prod-
uct templates. These approaches finally enable an agent to specify a formation schedule
including intervals for all templates of its previously specified template portfolio.
As next action of product portfolio management, an agent then executes the COPE algo-
rithm in order to solve optimization problem 4.3 and identify a product portfolio PP and
operation schedule osU which maximize its expected utility. Generally, the heuristic is
independent from the type of a unit and can thus be executed by producers, consumers,
and storage likewise. In the following, we provide a detailed description of the algo-
rithm’s functionality and illustrate its application by again using our exemplary use case
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assuming that the producer intends to create a product portfolio based on the template
catalog of the EPEX SPOT.
Algorithm 4.1 shows the pseudocode of the heuristic along with the required input and
generated output. In addition to the data created in the course of the first three ac-
tions (i.e. template catalog Ptmp, price predictions CPtmp , and operation schedule space
OS S U), input parameter drawnOS specifies the number of operation schedules which
are drawn from OS S U in the course of the optimization process for evaluation. Thus, it
generally holds that drawnOS ≤ |OS S U |. Furthermore, parameter Ptmp,base specifies a
consistent base catalog comprising those templates of Ptmp which product horizons are
as long as the smallest tradable interval. With regard to the template catalog of the EPEX
SPOT, the base catalog is for instance given by the twenty-four single hour templates as
depicted at the top of Figure 4.2. Note that the templates form a consistent template
catalog as the prescribed product horizons cover the whole planning horizon (i.e. all 24
hours) and are temporally disjunct. A base catalog is a general prerequisite for the appli-
cation of the COPE algorithm but typically exists in every competitive market in which
agents have access to an exchange. As described in more detail in Section 4.3.2.4, in the
course of the overall process agents replace parts of the base catalog by templates for
which target products successful coalitions could be formed. This measure guarantees
that the agents are finally committed to the fulfillment of their initial target products only
and that these are not replaced by other target products in the course of a redefinition of
their product portfolio. The returned output of COPE is given by a product portfolio PP
and operation schedule osU which in conjunction optimize the agent’s utility.
The functionality of the heuristic, as implemented by the listed code, can generally be
divided into three different parts. While the first part initializes all relevant variables
with appropriate values (line 1-4), the second one identifies a utility optimizing template
portfolio T P and operation schedule osU (line 5-26). Based on the template portfolio,
the last part then creates a product portfolio PP and returns it along with osU as output
(line 27-33).
More precisely, the heuristic starts by initializing variable Ptmp\base with a reduced ver-
sion of the template catalog which is created by removing all templates of base catalog
Ptmp,base from template catalog Ptmp. Moreover, variable T P and osU store the utility
optimizing template portfolio and operation schedule and are initialized with the base
catalog and the value null, respectively. The utility which is associated with both is
finally stored by variable utilosu which is initially set to 0 (line 1-4). As the following
optimization process iteratively searches for better solutions, T P, osU , and utilosu always
store the currently best result at each point in time.
Having finished the initialization of the global variables, the algorithm starts the identifi-
cation of a utility optimizing pair of template catalog and operation schedule by sorting
the product templates of the reduced template catalog according to the following rule:
For any two templates ptmp,A and ptmp,B with identifiers idA and idB and product horizons
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Algorithm 4.1: Combinatorial Optimization for Portfolio Enhancement
input : Ptmp, CPtmp , OS S U , drawnOS , Ptmp,base

output: PP, osU

1 Ptmp\base ← Ptmp \ Ptmp,base

2 T P← Ptmp,base

3 osU ← null
4 utilosU ← 0
5 sort(Ptmp\base)
6 for i← 1 to drawnOS do
7 T Pos′U ← Ptmp,base

8 os′U ← drawRandomOS (OS S U)
9 utilos′U ← utility (T Pos′U , os′U)

10 for j← 1 to |Ptmp\base| do
11 ptmp ← Ptmp\base [j]
12 if areCompatible(ptmp, os′U) then
13 T P′os′U

← replace(T Pos′U , ptmp)

14 util′os′U
← utility (T P′os′U

, os′U)

15 if util′os′U
≥ utilos′U then

16 T Pos′U ← T P′os′U
17 utilos′U ← util′os′U
18 end
19 end
20 end
21 if utilos′U ≥ utilosU then
22 T P← T Pos′U
23 osU ← os′U
24 utilosU ← utilos′U
25 end
26 end
27 foreach ptmp ∈ T P do
28 if areCompatible(ptmp, osU) then
29 ptar ← tarProduct(ptmp)
30 add (PP, ptar)
31 end
32 end
33 return PP, osU
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T (p)
pr,A = {t(0)

pr,A, . . . , t
( jmax)
pr,A } and T (p)

pr,B = {t(0)
pr,B, . . . , t

(kmax)
pr,B }, ptmp,B is put after ptmp,A if one of

the following conditions hold:

|T (p)
pr,A| < |T

(p)
pr,B|, (4.15)

|T (p)
pr,A| = |T

(p)
pr,B| ∧ t(0)

pr,A < t(0)
pr,B, (4.16)

|T (p)
pr,A| = |T

(p)
pr,B| ∧ t(0)

pr,A = t(0)
pr,B ∧ idA < idB. (4.17)

I.e., in line 5 function sort(Ptmp\base) arranges the templates according to the lengths of
the prescribed product horizons (4.15) and, if two lengths are equal, according to the
start times of the latter (4.16). In case even these are identical, the templates are sorted
according to their unique identifier (4.17). Figure 4.2 already shows the catalog of the
EPEX SPOT in sorted order in which the single hour templates are followed by the
block templates of longer length. Based on the sorted catalog, the algorithm then starts
an iterative optimization process by entering a for loop in which it identifies a utility
optimizing pair of template portfolio and operation schedule. I.e., in each of drawnOS
iterations, it draws a random schedule from the operation schedule space of the given unit
and then generates a corresponding optimized template portfolio. If the identified pair
yields a utility greater than or equal to the currently best solution, the values are stored
as new best result. More precisely, line 7-9 initialize the required variables by setting
the newly to be generated template portfolio T Pos′U to the base catalog, drawing a ran-
dom schedule os′U from schedule space OS S U via function drawRandomOS (OS S U),
and calculating the associated utility utilos′U via function utility(T Pos′U , os′U) (cf. Equa-
tion 4.2). Within the following for loop, the algorithm then identifies an optimized tem-
plate portfolio T Pos′U for schedule os′U . To this end, it iterates over the elements of the
sorted reduced template catalog and replaces temporally overlapping elements in T Pos′U
if the former provide a utility greater than or equal to the latter. I.e., the for loop starts
at the first position of Ptmp\base and sets the corresponding element as currently con-
sidered template ptmp (line 11). Next, function areCompatible(ptmp, os′U) evaluates if
the template is compatible with schedule os′U in terms of assumption A3. I.e., it veri-
fies if within the product horizon which is prescribed by the template all of the sched-
ule’s electricity amounts e(i)

U are either strict positive or strict negative. If true, function
replace(T Pos′U , ptmp) creates a new portfolio T P′os′U

by first replacing those templates
of T Pos′U with ptmp which are temporally covered by the very same and then filling up
resulting gaps with templates from the base catalog. To illustrate, Figure 4.5 shows the
initial and final state of an exemplary replacement. The upper part of the figure depicts
those templates of portfolio T Pos′U which are to be exchanged by the currently consid-
ered template ptmp,Morning. Because the product horizon of ptmp,EarlyMorning also covers
hour 5 and 6, the resulting gaps are filled up with the corresponding templates from the
base catalog (i.e. ptmp,H5 and ptmp,H6) as shown in lower part of the figure.
After replacement, line 14 determines the utility util′os′U

of portfolio T P′os′U
and schedule

os′U . If this is greater than or equal to utility utilos′U which is associated with the former
portfolio T Pos′U , the corresponding variables are updated to the new values (line 15-
18). An update in case of equality means that longer product horizons are generally
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Figure 4.5: Creating portfolio T P′os′U
from T Pos′U by template replacement.

preferred over shorter ones if the related utilities are the same. The reason for this design
decision is due to fact that a constant operation of a unit is typically more economical.
The algorithm continues by iterating over the reduced template catalog until the last
element has been evaluated in which case the best possible template portfolio T Pos′U for
schedule os′U has been identified. Afterwards, it checks if the associated utility utilos′U is
greater than or equal to the utility of the currently best solution and, if true, updates all
variables by setting them to the new results (line 21-25). An update in case of equality
ensures that in the first iteration the global variables are set to a valid solution. The
algorithm proceeds with the optimization process until drawnOS schedules have been
evaluated and a utility optimizing pair of template portfolio and operation schedule has
been identified.
The resulting template portfolio is finally used for the specification of a product portfolio
PP (line 27-32). To this end, the algorithm evaluates for each template ptmp ∈ Ptmp if it is
compatible with the identified schedule osU . This test is again required as the final port-
folio may include templates from the base catalog which were not considered by the if
statement in line 12. If a template ptmp is compatible, function tarProduct(ptmp) creates
a target product ptar which satisfies all hard constraints of ptmp (line 29). To this end, it
determines the target values of the product (i.e. electricity amount e(i)

ptar , error err(i)
ptar , and

cost c(i)
ptar ) based on the trading strategy of the agent. Generally, the specified values have

an impact on both the search for like-minded cooperation partners in the course of the
following formation process and the success of a trade. For instance, specifying a high
target cost increases the chance of a producer to obtain a higher revenue, but decreases
the probability to find other participants striving for the same target value and a trading
partner willing to pay the price. However, as already mentioned, the design of a trading
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strategy extends the scope of this thesis why we leave the assessment of optimal target
values to future work. After its specification, ptar is added to the product portfolio using
function add(PP, ptar). Having processed all templates of the template portfolio, the al-
gorithm finally terminates by returning product portfolio PP and operation schedule osU

as output.
In order to analyze its performance, we next determine the time complexity of COPE in
terms of the O-notation. The input data which are relevant for the discussion are given
by those parameters which variability has an impact on the algorithm’s running time.
These are given by template catalog Ptmp and the number of drawn schedules drawnOS ,
whereas the price predictions CPtmp and the operation schedule space OS S U can be con-
sidered constant as their variability is practically restricted by Ptmp and drawnOS , re-
spectively. In this regard, two special cases arise if either the trading activities of an agent
are limited to a fixed set of markets with predefined template catalogs or the schedule
space of its controlled unit is fixed. In these situations, the corresponding parameters
are constant as in the former case the template catalog never changes and in the latter
case the number of drawn schedules is restricted because of the inflexibility of the unit.
Thus, the most complex case is given if COPE is applied by an agent which constantly
specifies varying catalogs (e.g. when participating in a bilateral market) and controls
a flexible unit which schedule space comprises varying numbers of feasible schedules
over time.
In order to determine the time complexity of COPE for this case, it is required to iden-
tify those segments of the algorithm’s code which depend on the variable parameters.
With regard to the following discussion, let m = |Ptmp| and n = drawnOS . While all
statements in line 1-4 take constant time, the sorting of the reduced template catalog
in line 5 can be accomplished by means of a merge sort requiring O(m · log m) time.
Line 6-26 then execute two nested for loops, the outer one iterating over the number
of drawn schedules and the inner one over the templates of the reduced template cat-
alog. As all other statements take constant time, the running time of this segment is
O(n · m). All remaining code from line 27-33 is again independent from the variable
parameters and thus irrelevant for the discussion. All in all, the general worst case time
complexity of COPE is thus O(m + m · log m + n · m) = O(m · log m + n · m). In this
regard, it is worth noting that the size of the template catalog is typically very small
compared to the number of drawn schedules, meaning that the running time is particu-
larly determined by parameter n. Moreover, with regard to the above discussed special
cases, the time complexity reduces to O(n) if template catalog Ptmp is constant and to
O(m + m · log m) = O(m · log m) if the controlled unit is inflexible. The heuristic thus
provides an efficient means for identifying a utility optimizing pair of product portfolio
and operation schedule. Further qualitative aspects of the algorithm are examined in the
context of evaluation in Section 5.2.
As last action of product portfolio management, an agent finally schedules the next of
its target products according to the previously created formation schedule and starts the
activity of neighborhood formation when the corresponding formation period begins
(guard condition gc1). However, if there is no more target product left to schedule (for
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instance because all formation processes have been successfully finished), the agent up-
dates its planning horizon to the following period (e.g. the next day) and starts a new
iteration of the overall process (gc2).

4.2 Neighborhood Formation

Having scheduled a target product as last action of product portfolio management, an
agent starts the activity of neighborhood formation in order to restrict the number of po-
tential cooperation partners to an efficiently manageable size if it initiates negotiations
in the following coalition formation. To this end, it applies a distance measure which al-
lows it to identify its nearest neighbors based on characteristics of the underlying power
grid. In the following, we cover all aspects related to the activity by first providing a
more detailed description of the considered problem along with an analysis of its asso-
ciated computational complexity. Afterwards, we describe the corresponding solution
concepts which allow for an assessment of grid-related distances and the formation of
neighborhoods of nearest neighbors.

4.2.1 Problem Specification and Computational Complexity

As second activity of the overall process, an agent ai performs the task of neighborhood
formation in order to limit the set of interaction partners if it initiates negotiations in
the following coalition formation. It starts the process for a scheduled target product
ptar by creating an internal model of the given power grid G including all connected
units U j and assigned agents a j. As the resulting data structure also comprises the dis-
tance weights dw(vG,k, vG,l) which are related to the power lines {vG,k, vG,l} of the grid
(cf. Definition 3.1), it is used by the agent in order to calculate the physical distances
dis((vG,i, vG, j)) to all other agents a j. In the context of DYCE, the distance between two
grid nodes vG,i and vG, j is generally defined in terms of the impedances of the connecting
power lines. As measure of the opposition which is faced by an electric current flowing
through the lines, these provide a reasonable distance criterion cdis for determining the
corresponding weights dw(vG,k, vG,l)6. As the created grid model also provides informa-
tion about all other participants a j in the market, the agent uses the knowledge in order
to assess the corresponding trust values trust((t, ai, a j)) in a distributed fashion allow-
ing it to evaluate the trustworthiness of potential cooperation partners in the course of
coalition formation. Furthermore, the agent chooses its initial role which it assumes in
the upcoming negotiations by determining if it either proactively initiates and responds
to formation requests or responds only. In the former case, it builds a neighborhood N
by identifying the sN nearest neighbors according to the previously calculated distances
and adding them as potential cooperation partners to N.

6 Note that according to Definition 3.9, distance weights can generally be calculated based on multiple
distance criteria. I.e., while in this thesis we only consider the impedances of the lines, further aspects can
be taken into account if required by the given use case.
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Figure 4.6: Graphs representing a radial, ring, and meshed network.

With regard to the activity’s computational complexity, the most challenging task of
neighborhood formation is given by the assessment of the distances to the other agents
in the market. As already indicated above, an agent ai determines the distance to another
agent an based on the complex impedances of the power lines that link the grid nodes to
which their units are connected. I.e., given that gn(u(ai)) = vG,i and gn(u(an)) = vG,n, for
distance assessment it has to consider the topology of the grid and in particular the power
lines {vG,i, vG, j}, . . . , {vG,m, vG,n} making up the paths between vG,i and vG,n. To illustrate,
Figure 4.6 shows minimal graphs of the three grid topologies which are applied in the
context of power provision, i.e. a radial network, a ring network, and a meshed network.
As depicted, in case of a radial network there is only a single path between any two grid
nodes vG,s and vG,t, whereas in case of a ring network there are always two parallel paths.
In a meshed network, the number depends on the considered start and end node which
might be connected by one or more paths. Now suppose we want to assess the distance
between node vG,1 and vG,4 for each of the given examples. The complexity which is
associated with this task then differs according to the given topology. More precisely, as
in case of the radial network all power lines are connected in series, we can simply add
their complex impedances Zi which sum up to the total impedance Zser. I.e., for a path
with n power lines {vG,k, vG,l}, . . . , {vG,o, vG,p}, the latter is calculated as [KSW13]

Zser =

n∑
i=1

Zi. (4.18)

However, for the ring network the above formula does not hold because vG,4 can be
reached from vG,1 by more than one path and the lines are connected in parallel. In this
case, the total impedance Zpar can be calculated by determining the impedances of all
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paths and adding their reciprocals which sum up to the reciprocal of Zpar. I.e., for m > 2
parallel paths, the total impedance is calculated as [KSW13]:

Zpar =

 m∑
i=1

1
Zser,i

−1

=

 m∑
i=1

1∑n
j=1 Z j

−1

. (4.19)

As in radial and ring networks the number of paths between two grid nodes is inher-
ently restricted because of the corresponding topological structures, distances can be
calculated with a low computational effort even in case of large power grids. However,
because in meshed networks power lines are typically not solely connected in series or
in parallel, the above formulas generally do not hold and an alternative method for the
calculation of impedances has to be used. Such an approach requires to make assump-
tions with regard to the applied voltage as well as the produced and consumed electrical
energy wich is fed into and taken from the grid. However, as DYCE is designed as a dis-
tributed method, this kind of global information is not available to the agents. Moreover,
in meshed networks the number of paths between two distant grid nodes is typically very
high which makes the calculation of impedances a highly complex task. These reasons
motivate the development of an alternative technique which allows agents to determine
the distances to other participants in an efficient way as described in more detail next.

4.2.2 Activity Description

The activity of neighborhood formation and its relation to the other DYCE activities is
depicted by the UML diagram in Figure 4.7. As first action of the process, an agent
initially creates a model of the power grid G which represents the place of delivery of
the market M in which it intends to trade its pursued target product ptar. The information
which is required for this task can either be retrieved from grid agents which are operated
by the responsible system operators or transferred offline by legitimate service providers.
The data have to comprise on the one hand information about the grid topology including
the complex impedances Z ∈ C of the power lines and on the other hand information
about the connected units U and their assigned agents a. After retrieval, the agent creates
the grid model by mapping the data to a weighted graph in the sense of Definition 3.1,
where the units and agents are linked to the grid nodes through a grid node assignment
gn and unit assignment u, respectively. The weights of the graph are determined by
assessing the power lines’ apparent impedances Z ∈ R which can be derived from the
complex impedances Z = R + jX through calculation of their absolute values [KSW13]:

Z = |Z| =
√

R2 + X2. (4.20)

The reason for using the apparent instead of the complex impedances is due the approach
which is used for distance assessment later in the process requiring the weights to be
comparable. After creation, the model is finally stored in local memory and updated
before each new formation process.
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Neighborhood Formation

Product Portfolio Management

create grid model

determine distances

determine trust values

select role

schedule next target product

Payoff Distribution

[ gc3 ] [ gc4 ]

Coalition Formation

reply

switch roles

initiate stand by

determine neighborhood

ID conditiona

gc3 initiator()
gc4 ¬initiator()
a initiator() returns true if the agent is

initiator, false otherwise.

Figure 4.7: Activity of neighborhood formation including guard conditions.
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Figure 4.8: Shortest path between two grid nodes.

A special situation arises if the target product is to be provided in a specific grid section
which might be for instance the case if the agent participates in a market being designed
for the trade of localized products that are used by system operators for congestion man-
agement. Then, the grid model (and thus the set of potential cooperation partners) is
restricted to the corresponding region. Similarly, if the power grid covers an unreason-
ably large area, the data structure can be limited to a selected area including the units
which are considered relevant for the following formation process.
As second action of neighborhood formation, an agent determines the distances to all
other participants in the market based on the generated grid model. As motivated in the
previous section, this task requires an appropriate assessment technique allowing agents
to perform the calculations efficiently and independent from the given grid topology.
Thus, we apply concepts from graph theory in order to approximate the impedances
between grid nodes based on the previously created grid model. To illustrate, Figure 4.8
shows a weighted graph reflecting the topology of an exemplary meshed network. Based
on this kind of data structure, an agent determines the distances to other participants by
identifying the shortest paths to the corresponding grid nodes, i.e. it identifies those
connections which weights yield the lowest sum of their lines’ apparent impedances as
indicated by the bold line. Given a graph (VG, EG), the distance between two grid nodes
vG,i and vG, j is thus defined as function dis : VG × VG → R≥0, where

dis((vG,i, vG, j)) =


∑
{vG,m,vG,n}∈spi j dw(vG,m, vG,n) if i , j,

0 else,
(4.21)

and spi j is the shortest path between vG,i and vG, j. Identifying the distances to all other
participants can be accomplished by applying Dijkstra’s shortest path algorithm running
in O(|E| + |V | · log |V |)) time [CLRS09]. The resulting values are used by an agent in
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order to create a sorted list of the participants which allows it to assess and extend its
neighborhood later in the process.
As an alternative approach, the previous two actions could also be performed by a cen-
tral yellow pages agent providing the information to all market participants upon request.
However, although such a service would reduce the computational cost in favor of the
agents and supersede the need to transmit potentially confidential grid data, it introduces
a single point of failure which avoidance is a main reason for applying distributed sys-
tems in the first place. Therefore, DYCE assigns the tasks to the agents, particularly
against the background that changes in a grid typically occur very seldom and the grid
model has thus to be updated rarely. Nevertheless, if regulations prohibit a transfer of
grid-related information, a yellow pages service would be a reasonable solution to the
problem.
In the course of the third action of neighborhood formation, an agent determines the
trust values of all other participants allowing it to assess the trustworthiness of potential
cooperation partners in the course of coalition formation. Generally, trust constitutes
a research topic on its own which has been widely investigated in different scientific
fields throughout the last decades [RSBC98]. In related work, it is often understood as a
multi-dimensional concept comprising different facets like reliability or honesty which
contribute to the trustworthiness of an entity. However, which criteria are actually con-
sidered relevant often varies according to the context in which the topic is discussed.
For instance, in [SKL+10], Steghöfer et al. identify the six facets functional correct-
ness, safety, security, reliability, credibility, and usability as relevant aspects for organic
computing systems. In contrast to reputation, which represents a group’s collective view
of another party’s trustworthiness [JIB07], trust can be considered as a subjective belief
of a single entity. This belief evolves over time according to the experiences which the
entity gains in the course of cooperations with the trusted party. As trust is a general
precondition for any interaction between two cooperation parters, it is a crucial topic in
the context of multiagent systems as well [RHJ04].
With regard to the problem of coalition formation in electricity markets, criteria which
contribute to the trustworthiness of an agent are for instance given by the security mea-
sures which it applies for the protection of its underlying ICT infrastructure or the degree
of reliability which its unit provides in the course of product fulfillment. However, as the
design of a comprehensive trust model extends the scope of this thesis and is currently
topic of other research [RUS14], in the following we use the abstract model specified
in Definition 3.8. In order to determine its trust in another agent a j at a specific point
in time t in the form of a trust value trust((t, ai, a j)), an agent ai can generally take two
different approaches according to its prior experiences with a j. First, if both agents have
already cooperated in the course of previous formation activities, ai can use the informa-
tion and determine the value based on the outcomes. In contrast, if no interactions have
taken place yet and related knowledge is not available to the agent, it can acquire new
information for the assessment by querying other participants with regard to their trust
in a j. This approach is based on the transitive trust principle [JP05] which is depicted
in more detail in Figure 4.9. In the example, there is first only a direct trust relationship
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a1 a2 a3

transitive trust

referral

trust trust

Figure 4.9: Transitive trust principle (adopted from [JP05]).

between agent a1 and a2 as well as agent a2 and a3. The basic idea of the transitive trust
principle is now that agent a1 can establish an indirect trust relationship to a3 by asking
a2 about his trust in a3 and combining the answer with its own trust in a2. Through
the exchange of related information, participants are thus able to assess trust values for
(in this sense) unknown agents in a distributed fashion. However, in order to gener-
ate semantically consistent results, all participants have to apply the same trust model
which uses an identical set of trust criteria ctrust and the same formula for calculating the
trust values trust((t, ai, a j)). This requirement can be enforced on global system level by
defining an appropriate regulatory hard constraint hca.
Having determined the trust values of all other participants, an agent executes the next
action of neighborhood formation and chooses its initial role which it assumes in the
course of the upcoming interactions for coalition formation. More precisely, it decides if
it starts the activity as an initiator which sends and replies to formation requests or takes
on the role of a responder which responds to requests only (a more detailed description
of both roles is given in Section 4.3.2.3). Generally, the ratio of initiators to the whole
number of agents is an important system parameter which is formally defined as

rinit =
|Ainit|

|A|
, (4.22)

with Ainit ⊆ A being the set of initiating agents. As this ratio has an impact on criteria like
the global communication cost or runtime7, it has to be chosen with care and specified
globally by means of a regulatory hard constraint hca. Given a specific ratio, an agent can
determine its initial role by assuming the role of an initiator with a probability of P(A) =

rinit (or, analogously, taking on the role of a responder with a probability of P(Ā) =

1 − rinit). For instance, given a prescribed global ratio of rinit = 0.2, an agent assumes
the role of an initiator with a probability of 20 %. This way, in different formation
processes the task of initiating is not steadily assigned to the same agents which allows
on the one hand to distribute associated overhead costs (like increased computations) to
all participants and on the other hand to reduce the risk that untrustworthy agents exploit
associated responsibilities (like payoff distribution) for their own good.
7 The effects of parameter rinit are investigated in more detail in the context of evaluation in Section 5.3.
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If an agent takes on the role of an initiator, it finishes the second DYCE activity by deter-
mining its neighborhood N which restricts the set of potential communication partners
in the course of the following formation process and thus reduces communication and
computational cost (guard condition gc1). However, if formation attempts with current
neighbors fail, a neighborhood can still be expanded by a specified extension count extN .
Initially, its size sN is thus set to extN , where an agent identifies the corresponding set of
nearest neighbors using its previously created list of market participants. As this stores
the participants in sorted order, it generally allows for an efficient creation and extension
of a neighborhood. In contrast, if an agent assumes the role of a responder, it directly
starts the next activity (gc2) and determines its neighborhood later in the process if it
changes roles and becomes an initiator.

4.3 Coalition Formation

Based on its initial interaction role selected in the course of neighborhood formation,
an agent starts the third DYCE activity throughout which it forms coalitions with other
participants in order to fulfill its scheduled target product. In what follows, we provide
a detailed description of the process by first specifying the considered problem along
with the associated computational complexity. Afterwards, we present solution concepts
which allow for a dynamic evaluation and formation of product-related coalitions. In
particular, we describe an interaction protocol which is defined on the basis of well-
established standards and specify a process flow enabling agents to form coalitions in a
self-organized and fully distributed fashion.

4.3.1 Problem Specification and Computational Complexity

In the course of the third DYCE activity, an agent strives for the formation of a coalition
C in order to eventually fulfill its currently scheduled target product ptar. Because this
is the goal of all participants in the market, the related interactions result in successively
evolving coalitions which are evaluated according to their ability to fulfill the target
products pursued by their members. As general optimization goal, the agents strive for a
maximization of mean coalition value v(C) and hence the global value of coalition struc-
ture CS . I.e., the optimization problem which they deal with throughout the formation
process is given by

maximize v(C) (4.23)

subject to C ∈ C̃S , (4.24)

∀C,C′ ∈ CS with C , C′ : C ∩C′ = ∅ ∧
⋃

C∈CS

C = A. (4.25)

Thus, an optimal solution of the problem is given by a coalition structure CS which
coalitions fulfill their target product perfectly. Because of the reasons discussed in Sec-
tion 3.1, constraint 4.25 ensures that agents only form coalitions which are disjunct with
regard to their members.
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We discuss the computational complexity of the above optimization problem and show
that it is NP-hard by drawing on results from Sandholm et al. who proved in [SLA+99]
that finding the optimal coalition structure is NP-complete if the input is given by non-
negative coalition values v(C). As the considerations were made in the context of the
CSG problem as defined in Equation 1.1, the value of the coalition structure V(CS )
was here not defined as the mean but the sum of the coalition values, i.e. V(CS ) =∑

C∈CS v(C). The decision problem used for the prove of NP-completeness was given by
the question if there is a coalition structure CS which value is equal to or greater than a
predefined real number k. This problem is in class NP because a given solution can be
verified by calculating V(CS ) (as sum of the single coalition values) in polynomial time.
The authors proved that under the made assumptions the identification of an optimal
coalition structure is NP-complete by reducing the set packing problem to the considered
one.
In order to assess the computational complexity of optimization problem 4.23, we can
now build upon this proof by showing that first the coalition values in DYCE are always
non-negative and second that the verification of a solution to the above decision problem
can still be done in polynomial time given our alternative approach for evaluating the
coalition structure. Regarding the first aspect, we will see in Section 4.3.2.2 that in the
context of our approach the value of a coalition is generally determined by the cumulated
contributions of its participating members. Taking into account that agents only start
the activity of coalition formation if they are able to contribute to their pursued target
products (cf. Section 4.1.2), it follows that they only have a positive impact on coalitions
resulting in strict positive values. With regard to the second aspect, it can be easily
seen from the equation in Definition 3.17 that the mean coalition value v(C) is indeed
determinable in polynomial time meaning that the above discussed decision problem
still belongs to NP. Given this, it follows that optimization problem 4.23 is NP-complete
as well. Thus, because DYCE is intended to be applicable to a large number of agents
being in the order of hundreds to thousands, the following section provides an approach
for approximating an optimal solution in an efficient and fully distributed way.

4.3.2 Activity Description

The activity of coalition formation is designed as a decentralized process in which agents
start as singleton coalitions and successively regroup into optimized coalitions in order to
finally fulfill their pursued target products. Before we provide a comprehensive descrip-
tion of the related actions and interactions, we first detail the concept of a contribution in
Section 4.3.2.1 and show how multiple contributions are aggregated into the cumulative
contribution of a coalition. Afterwards, we present the approach for assessing the coali-
tion value in Section 4.3.2.2 and describe how it promotes the formation of optimized
coalitions. Based on the given concepts, we then detail the decentralized formation pro-
cess by specifying the applied interaction protocol, optimization algorithm and methods
for deadlock/livelock prevention in Section 4.3.2.3 and describing the process flow of
the activity in Section 4.3.2.4.
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4.3.2.1 Contribution and Cumulative Contribution
When forming coalitions, agents aggregate the technical capabilities of their controlled
units in order to cooperatively fulfill their target products. According to Definition 3.40,
a contribution of an agent a to a product p, with product horizon T (p)

pr = {t(0)
pr , . . . , t

( jmax)
pr },

is defined as a function cona,p : T (p)
pr → R3 which values cona,p(t(i)

pr) = (e(i)
U , err(i)

U , c
(i)
U )

specify the electricity amount e(i)
U that is generated or consumed by the controlled unit

U with error err(i)
U at cost c(i)

U in each product interval t(i)
pr ∈ T (p)

pr . As the operation
of a unit is optimized in the course of product portfolio management, the values of
the three attributes generally depend on the operation schedule osU which results as
output from the execution of the COPE algorithm. Taking into account the constraint
that in each planning interval an agent can only be member of one coalition at a time (cf.
Definition 3.11), it follows that ∀t(i)

pr ∈ T (p)
pr with t(i)

pr = t(i)
pl : cona,p(t(i)

pr) = osU(t(i)
pl ), i.e. the

entries of a contribution are determined by the corresponding entries of the previously
identified schedule.
With regard to the individual attributes, electricity amount e(i)

U specifies the quantity
which is generated or consumed by the controlled unit in the corresponding product
interval. As this value is only a forecast, error err(i)

U additionally specifies a possible rel-
ative deviation from the amount which may occur in the course physical fulfillment due
to unforseen events. More precisely, in DYCE we define the error in terms of the root
mean square error RMS E8 which is calculated based on the former operational behavior
of the unit and put into relation with the provided or consumed electricity amount. I.e.,

given a data set of n past predictions e(i)
U, j and n past measurements ẽ(i)

U, j, the error of a

contribution in a planning interval t(i)
pl is formally defined as

err(i)
U =

√
MS E(i)

U

|e(i)
U |

=

√
1
n
∑n

j=1

(
e(i)

U, j − ẽ(i)
U, j

)2

|e(i)
U |

. (4.26)

As the above formula squares former deviations and divides the root of their sum by
the absolute value of the provided or consumed electricity amount, it generally yields a
positive error independent from the given unit type.
As last attribute, cost c(i)

U finally specifies the price which a producer demands or a con-
sumer is willing to pay for a unit of electrical energy. As already discussed in Sec-
tion 4.1.2, the assessment of an optimal cost value depends on the trading strategy of an
agent because it has an impact on the individual share which the agent receives in the
course of payoff distribution.
In order to give a concluding example using the initially specified use case, in the course
of a formation process the considered producer might join a coalition and contribute
an electricity amount of 4 kWh which is delivered by its controlled CHP plant with a

8 The root mean square error is generally defined as RMS E =

√
1
n

∑n
i=1

(
ŷi − yi

)2, with ŷi being a predicted
and yi being an observed value.
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potential relative deviation of 0.05 (i.e. 0.2 kWh) at cost 0.1e/kWh in a specific product
interval t(i)

pr, i.e. cona,p(t(i)
pr) = (4 kWh, 0.05, 0.1e/kWh).

Aggregating the contributions of participating agents results in the cumulative contribu-
tion conC,p(t(i)

pr) = (e(i)
C , err(i)

C , c
(i)
C ) of a coalition C. However, in order to obtain reason-

able results, the different attributes have to be aggregated in an appropriate way. With
regard to the electricity amount, the quantities of the individual contributions can sim-
ply be added up to the total amount of the coalition. I.e., given that C = {a1, . . . , an}

with UC = {U1, . . . ,Un}, the cumulative electricity amount in a product interval t(i)
pr is

calculated as

e(i)
C =

∑
U∈UC

e(i)
U . (4.27)

Depending on the type of the participating units, the cumulative amount is thus either a
positive or a negative value.
Considering the second attribute, the error of a cumulative contribution is defined similar
to the unit-related error, i.e. it is specified as the total relative deviation from the aggre-
gated electricity amount which is provided or consumed by a coalition. More precisely,
in a product interval t(i)

pr, the cumulative error is calculated as

err(i)
C =

√∑
U∈UC MS E(i)

U

|e(i)
C |

=

√∑
U∈UC (err(i)

U · |e
(i)
U |)

2

|e(i)
C |

. (4.28)

The above formula extracts the root from the summed mean squared errors of the units
and puts it into relation with the provided or consumed electricity amount of the coali-
tion. In contrast to Equation 4.26, the numerator of the fraction does not calculate the
absolute deviation in terms of the RMS E but the root of the sum of the individual MS Es.
As the square root function f (x) =

√
x does not grow linearly with the argument x, this

approach models the effect that, within a coalition, deviations from prognosticated elec-
tricity amounts partially compensate each other. To illustrate, the line plot in Figure 4.10
shows the absolute error

√∑
U∈UC MS EU as function of the coalition size under the as-

sumption that the contribution of each member specifies an error of 0.1 kWh. As can
be seen from the curve, the slope decreases with a growing coalition size as the degree
of compensation increases the more members participate. Note that this model assumes
that the errors of the different units are uncorrelated. While this might not be the case
if some units are based on the same technology or located in the same geographical re-
gion, we assume that in the context of our considered problem such correlations are not
significant as coalitions are typically large enough in order to entail a sufficient tech-
nological diversification and spatial distribution. However, the development of a more
sophisticated error model may be addressed by future work (see Section 6.2).
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Figure 4.10: Absolute deviation from the cumulative electricity amount.

Finally, the cost of a cumulative contribution is defined in terms of the price which is
demanded or paid by a coalition per unit electrical energy. The corresponding formula
is given by

c(i)
C =

∑
U∈UC c(i)

U · e
(i)
U

|e(i)
C |

. (4.29)

I.e., the cumulative cost is determined by calculating the total energy cost of the indi-
vidual contributions and then dividing the result by the absolute value of the provided or
consumed cumulative electricity amount. Along with the previously specified attributes,
this definition finally allows to asses the actual value of a coalition.

4.3.2.2 Coalition Value
In the course of coalition formation, agents have to assess the value of a coalition in order
to decide if a potential regrouping increases the value of the global coalition structure
in the sense of optimization problem 4.23. In accordance with the latter, a regrouping
(Ĉold, Ĉnew) is generally considered beneficial if

v(Cnew) > v(Cold), (4.30)

i.e. if the mean coalition value of the resulting coalitions exceeds the one of the original
coalitions. As described in the following section, this condition allows agents to optimize
global value in the course of the decentralized interactions without having to maintain
a complete model of their environment. Moreover, it ensures that a regrouping always
leads to an improvement of global value.
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As the goal of a coalition C is given by the trade of its target product ptar, the most rea-
sonable way to specify its worth is to evaluate its ability to fulfill the very same. Taking
into account the definitions of the previous section, this can be achieved by identifying
how well the values of its cumulative contribution conC,ptar approximate the correspond-
ing target values of ptar. Accordingly, the attributes of a target product are generally
defined in terms of the cumulative values which are to be met by a final coalition. It is
then optimally fulfilled if

∀t(i)
pr ∈ T (ptar)

pr : conC,ptar (t
(i)
pr) = (e(i)

C , err(i)
C , c

(i)
C ) = (e(i)

ptar , err(i)
ptar , c

(i)
ptar ) = ptar(t

(i)
pr). (4.31)

According to this idea, the approximation of a summed contribution to a target product
is defined in the sense of the following attribute-related formulas:

e(i)
C, f = %(1 −

e(i)
C

e(i)
tar

), (4.32)

err(i)
C, f = %(err(i)

tar − err(i)
C ), (4.33)

c(i)
C, f = %(c(i)

tar − c(i)
C ), (4.34)

with

% : R→]0, 1], %(x) =
1

1 + |3 · x|
. (4.35)

The approximation values e(i)
C, f , err(i)

C, f , and c(i)
C, f indicate the degree of fulfillment of tar-

get electricity amount e(i)
tar, target error err(i)

tar, and target cost c(i)
tar, respectively. They are

assessed by first calculating the actual approximations to the target values and then stan-
dardizing the outcomes by mapping them to the interval ]0, 1] using function %. More
precisely, approximation value e(i)

C, f is determined by subtracting the achieved percent-

age of the pursued target electricity amount from 1 and then applying %, whereas err(i)
C, f

and c(i)
C, f are assessed by subtracting the cumulative values from the corresponding target

values before standardization. As can be seen from the line plot in Figure 4.11, standard-
ization function % attains its maximum at x = 0 in which case the pursued target value
is exactly met. As the graph is symmetric about the x-axis, positive and negative devia-
tions from the latter are rated equally. Assuming for instance a target electricity amount
of 100 kWh, a cumulative value of 98 kWh is considered as disadvantageous as a value
of 102 kWh. Moreover, the non-linear curve promotes the formation of value maximiz-
ing coalitions (and thus the fulfillment of their target products) as impacts of changes
in x on function value %(x) are the higher, the better the approximation to the target
value. For example, assuming again a target electricity amount of 100 kWh, adding a
quantity of 10 kWh to a cumulative amount of 80 kWh would lead to a bigger increase
in %(x) than adding the same quantity to a cumulative amount of 20 kWh. In this sense,
Equation 4.32-4.34 define appropriate arguments being values of similar order of mag-
nitude which do not significantly underrate a specific attribute meaning that changes in
the arguments lead to similar changes in the function values.
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Figure 4.11: Standardization function %.

Based on the above definitions, we are now able to reasonably assess the worth of a coali-
tion. To this end, let attr = {e, err, c} be the set of the considered attributes electricity
amount, error, and cost. The coalition value of a coalition C striving for the fulfillment
of a target product ptar is then defined as a function v : C̃ → [0, 1], with

v(C) =

we · eC, f + werr · errC, f + wc · cC, f if eC, f , 0,
0 else,

∑
i∈attr

wi = 1, (4.36)

where the variables wi represent weights used to prioritize the different attributes and
eC, f , errC, f , and cC, f are the mean degrees of fulfillment calculated over all product
intervals t(i)

pr ∈ T (ptar)
pr . Thus, a coalition is rated according to its ability to fulfill the

interval-related target values of the pursued product on average, where its value is set
to 0 if no electricity can be provided or consumed within the product horizon at all. As
the weights of the attributes are required to sum up to 1 and each approximation value
is restricted to the interval ]0, 1], v(C) is a standardized value as well allowing agents to
reasonably compare the worth of different regroupings.
While Equation 4.36 determines the general value of a coalition, in the course of the
formation process agents additionally apply an ad hoc approach for the assessment of a
dynamic coalition value ṽ(C) which further supports the formation of value maximizing
coalitions. The underlying idea is to adjust the weights according to the current degrees
of fulfillment and put emphasis on the attribute with the lowest mean approximation
value while attaching less importance to those showing better results. This way, the
optimization of the worst attribute is promoted as a change in the corresponding cumu-
lative value has an increased impact on the coalition value. In order to calculate dynamic
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coalition value ṽ(C), we define an interval [w̃i,min, w̃i,max] for each attribute i ∈ attr which
specifies the range for a corresponding dynamic weight w̃i replacing its static counter-
part wi in Equation 4.36. Assuming that xC, f < yC, f < zC, f , the dynamic weights for the
different attributes are then calculated according to the following equations:

w̃x = w̃x,max, (4.37)

w̃z = w̃z,min, (4.38)

w̃y = 1 − w̃x − w̃z. (4.39)

I.e., the dynamic weights of the attributes with the lowest and highest mean degree of
fulfillment are set to the defined maximum and minimum, respectively, while the third
weight is calculated by subtracting the former two from the required final sum of one. In
order to ensure that the weights in fact add up to one, the defined intervals have to meet
the constraint that

∀x, y, z ∈ attr with x , y , z : w̃x,max + w̃y,min + w̃z,min ≤ 1 ≤ w̃x,max + w̃y,max + w̃z,min.

(4.40)

As the approach generally assumes the existence of a unique maximum and minimum
approximation value, it is required to define a strict preference relation � on the set of
attributes attr enabling agents to determine dynamic weights even in case values are
equal. Because the most pivotal attribute of a product is given by the amount of elec-
tricity, we specify that e � err � c which makes the electricity amount being handled as
most important and the error as second most important attribute. In case of total equality
(i.e. eC, f = errC, f = cC, f ), an agent then sets w̃e to its maximum, w̃c to its minimum, and
determines w̃err according to Equation 4.39. As the goal of coalition formation is given
by the maximization of global value, it is reasonable to prescribe the same weights wi

and intervals [w̃i,min, w̃i,max] for all participating agents. This can be achieved through
the definition of a regulatory hard constraint hca.

4.3.2.3 Interaction, Optimization, and Deadlock/Livelock Prevention
Based on the approach to assess the value of a coalition as described in the previous
section, agents conduct the activity of coalition formation in order to cooperate with each
other and finally fulfill their pursued target products. Generally, they start as singleton
coalitions and iteratively apply an interaction protocol which allows them to heuristically
evaluate potential regroupings and reorganize themselves into optimized coalitions in a
fully decentralized and self-organized fashion. As the protocol forms the basis for the
process flow of the activity, in the following we first provide its detailed specification
along with the algorithms applied for the identification of value optimizing regroupings.
Afterwards, we discuss situations which cause deadlocks and livelocks in the course of
the negotiations and describe mechanisms for their prevention.
The interaction protocol which is used by agents for the decentralized formation process
is depicted by the sequence diagrams in Figure 4.12 and 4.13. Its specification is based
on the contract net protocol, a well-established approach for cooperative problem solving
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initiating agent replying agent
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{neighborhood not empty}
checkPreconditions()cfp(CI, CONC, p, ptar, ptar, tol, VG, p)
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CCOR(CI, CR, 1)

updateUCPs()
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propose(CR, oc)

checkTrustValues()
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CCOR(CI, {CR, 1, ..., CR, n}, rCom)

reject-proposal
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{td, CFP}
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[else]

[else]

alt

[failed]

[else]

Figure 4.12: Interaction protocol for coalition formation.
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which was standardized by the Foundation for Intelligent Physical Agents as described in
Section 2.2.2.2. For the context of this thesis, we adapt the FIPA standard to our needs
and extend it by additional interactions which allow participants to regroup coalitions
and maintain a consistent data model.
In the course of coalition formation, an agent can generally take on one of two different
roles which determines its behavior throughout the negotiations. First, it can act as
an initiator which sends formation requests to other participants and replies to requests
received from other agents. Alternatively, it can assume the role of a responder which
replies to received requests only. Equipping initiators with both capabilities provides the
advantage to achieve optimized solutions more quickly as agents join faster into bigger
coalitions and to investigate larger parts of the search space as more regroupings are
examined. In the course of a formation process, agents are generally able to switch roles
if specific conditions are met. These are described in more detail in the context of the
process flow discussed in the following section.
As indicated by the lifelines in Figure 4.12, a regrouping of coalitions is generally nego-
tiated between an initiating agent aI and a replying agent aR, where the former always
represents an initiator and the latter is either given by an initiator or a responder. In the
following, we refer to the corresponding coalitions as initiating coalition CI and reply-
ing coalition CR and further distinguish between a replying initiator coalition CRI and a
replying responder coalition CRR where necessary.
As first action of the protocol, an initiating agent aI determines the receivers of its in-
tended formation request by temporarily removing those agents from its neighborhood
which are either

• members of its own coalition,

• participants not satisfying a specified minimum trust threshold trustmin,aI , or

• participants being considered as unlikely cooperation partners ucp.

Excluding all agents a j which trust values trust((t, aI , a j)) do not meet its defined stan-
dard allows aI to prevent unfavourable cooperations in advance. Further removing all
participants which are assumed to offer no prospect of a promising negotiation addition-
ally enables a reduction of communication cost through a minimization of unnecessary
requests. As described in more detail below, unlikely cooperation partners are identified
by means of standardized replies which are sent by agents if specific conditions are met.
In case the resulting neighborhood is not empty, agent aI sends a call for proposal (CFP)
to the comprised neighbors, where the payload of the message is given by its coalition
CI and the individual contributions of the members CONCI ,ptar as well as the pursued
target product ptar and the corresponding tolerance bands ptar,tol. If ptar is a localized
product, aI also adds the required regional information in the form of the grid nodes
VG,ptar which define the grid section in which the product is to be physically fulfilled.
As further message parameter, it finally attaches a deadline td,CFP specifying the time by
which it handles replies to the call at the latest. As described at the end of this section,
this measure allows to prevent deadlocks throughout the negotiations.
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Having received a CFP, a replying agent aR first evaluates the preconditions which have
to be fulfilled for a reasonable evaluation of a member transfer between the transmitted
coalition and its own. More precisely, if aR is an initiator, it first ensures mutual exclusion
by checking if a reply is in line with the mechanism for livelock prevention described in
more detail below. Second, it verifies if the target products are compliant which is given
if both negotiation partners either strive for the same target values and tolerance bands or
the values of the initiating agent are adoptable by the replying agent. In case aI pursues a
localized product, it is additionally checked if all members of coalition CR are connected
to a grid node of the specified region VG,ptar , i.e. if ∀ai ∈ CR : gn(u(ai)) ∈ VG,ptar . As
last precondition, aR verifies if all members of coalition CI fulfill its own minimum trust
threshold trustmin,aR .
In case both preconditions are fulfilled, agent aR tries to identify a potential regrouping
(Ĉold, Ĉnew) which optimizes global value in terms of regrouping rule 4.30. To this end, it
applies a heuristic termed CCOR9 – Combined COalition Regrouping – which allows for
a member transfer between an initiating coalition CI,old and a set of replying coalitions
C̃R,old (see Algorithm 4.3). This is generally achieved by iterating over the latter and
executing in each cycle a regrouping method which implements a systematic member
transfer between the current instance of the initiating coalition C′I,old and the currently
considered replying coalition C′R,old ∈ C̃R,old (see Algorithm 4.2). The method basically
consists of two complementary steps in which members are first transferred one-way
from the replying to the initiating coalition in order to cumulate potentials and then
exchanged between both coalitions in order to improve the approximation to the values
of the pursued target product. By iterating over C̃R,old, CCOR thus successively improves
global value until a specified number of replying coalitions has been processed. This also
means that when applied for the regrouping of a single initiating and replying coalition
as at this point of the negotiation process, the output of CCOR equals the one of the
integrated regrouping method. In order to facilitate discussion, we thus first discuss the
functionality of the latter and defer the description of Algorithm 4.3 to the point when it
is again used by the initiating agent later in the process.
The input parameters of regrouping method 4.2 are given by the original coalitions CI,old

and CR,old as well as a further set of agents CI,valid which comprises those members of
CI,old being generally transferable to CR,old. CI,valid only differs from CI,old if CCOR
is applied for a regrouping involving more than one replying coalition as described
in more detail below. When the algorithm is executed by the replying agent at this
point of the negotiations, it thus always holds that CI,valid = CI,old, meaning that all
members of CI,old are transferable to CR,old. After termination, the output of the re-
grouping method is given by the result sets ĈI,new and ĈR,new comprising the optimized
initiator and responder coalition, respectively10. In this regard, it generally holds that
0 ≤ |ĈR,new| ≤ |ĈI,new| ≤ 1, i.e. the regrouped coalitions result from the original ones
either through partial reorganization (in which case |ĈR,new| = |ĈI,new| = 1) or a total

9 pronounced as [si:kO:r]
10 With respect to Definition 3.12 (regrouping), the input and output parameters refer to the specified notion

(Ĉold, Ĉnew) in the sense that Ĉold = {CI,old,CR,old} and Ĉnew = ĈI,new ∪ ĈR,new.
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Algorithm 4.2: regroupCoalitions(CI,old,CR,old,CI,valid)
input : CI,old, CR,old, CI,valid

output: ĈI,new, ĈR,new

1 ĈI,new, ĈR,new ← ∅, ∅ //⇔ ĈI,new ← ∅; ĈR,new ← ∅

2 CI,new, CR,new ← CI,old, CR,old

3 C′I,new, C′R,new ← CI,old, CR,old

4 foreach ar ∈ CR,old do
5 C′R,new ← C′R,new\{ar}

6 C′I,new ← C′I,new ∪ {ar}

7 if (v(C′new) > v(Cnew)) ∧ (stillSuc(CI,old, C′I,new, CR,old, C′R,new)) then
8 CI,new, CR,new ← C′I,new, C′R,new
9 end

10 end
11 if (¬succ(CI,new)) ∧ (CR,new , ∅) ∧ (|CI,new| , 1 ∧ |CR,new| , 1) then
12 C′I,new, C′R,new ← CI,new, CR,new

13 C′′R,new ← CR,new

14 foreach ai ∈ CI,valid do
15 C′I,new ← C′I,new\ {ai}

16 C′R,new ← C′R,new ∪ {ai}

17 if (v(C′new) > v(Cnew)) ∧ (stillSuc(CI,old, C′I,new, CR,old, C′R,new)) then
18 CI,new, CR,new ← C′I,new, C′R,new
19 end
20 foreach ar ∈ C′′R,new do
21 C′I,new ← C′I,new ∪ {ar}

22 C′R,new ← C′R,new\ {ar}

23 if (v(C′new) > v(Cnew)) ∧ (stillSuc(CI,old, C′I,new, CR,old, C′R,new))
then

24 CI,new, CR,new ← C′I,new, C′R,new
25 end
26 C′I,new ← C′I,new\ {ar}

27 C′R,new ← C′R,new ∪ {ar}

28 end
29 C′I,new ← C′I,new ∪ {ai}

30 C′R,new ← C′R,new\ {ai}

31 end
32 end
33 checkAndUpdateRepresentatives(CI,old, CI,new, CR,old, CR,new)
34 addRegroupedCoalitions(CI,new, ĈI,new, CR,new, ĈR,new)
35 return ĈI,new, ĈR,new
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merge (in which case |ĈR,new| = 0 and |ĈI,new| = 1). If both sets are empty, no value
optimizing regrouping could be achieved throughout execution.
Considering its implemented functionality, the method starts by initializing the output
variables ĈI,new and ĈR,new with the empty set and the finally regrouped coalitions CI,new

and CR,new as well as the temporary variables C′I,new and C′R,new with the correspond-
ing input coalitions (line 1-3). Throughout execution, CI,new and CR,new always store
the best solution which has been identified so far. Next, the above outlined optimiza-
tion process begins in which agents are first transferred one-way from the replying to
the initiating coalition in order to aggregate technical potentials (line 4-10) and then ex-
changed between both coalitions in order to approximate the given target values more
accurately (line 11-32). In the course of execution, a fulfillment of target products is
generally preserved in the sense that only those regroupings are considered valid which
do not compromise a prior success of the original coalitions11. The first part of the op-
timization process is implemented by the foreach loop in line 4-10 which iterates over
the original members of the replying coalition and passes them one by one to the initiat-
ing coalition while examining the benefit of the regroupings. When the improvement of
the mean coalition value is evaluated in line 7, function stillS uc additionally checks if
product fulfillment is preserved, i.e. if C′I,new and C′R,new still fulfill their target products
if CI,old and CR,old already did. In case both conditions evaluate to true, the temporary
coalitions are saved as currently best solution.
Having transferred all members to the initiating coalition, the method executes the sec-
ond part of the optimization process and first checks the general preconditions for a
member exchange by evaluating if the currently best initiator coalition CI,new is still un-
successful, the currently best replying coalition CR,new is not empty, and both coalitions
are not singletons (line 11). If all conditions are fulfilled, it sets the temporary variables
C′I,new and C′R,new to the best coalitions found so far and additionally stores the state of
CR,new in another temporary variable C′′R,old. The following nested foreach loops then
exchange each transferable member of the initiating coalition by each member of the re-
plying coalition. More precisely, the first loop starts by iterating over the valid initiator
members CI,valid and transferring the currently considered agent ai from coalition C′I,new
to C′R,new (line 15-16). If this regrouping already improves global value and preserves
all prior product fulfillments, it is stored as currently best solution. This first check is
particularly conducted in order to allow initiating coalitions to approximate their target
electricity amounts to a higher degree if they currently exceed their pursued values. The
second foreach loop then iterates over the members of temporary coalition C′′R,old (i.e.
of the best replying coalition as identified after the first optimization part) and trans-
fers them back and forth between the initiating and the replying coalition, in between
evaluating if an exchange improves global value under the given constraints (line 20-
28). Afterwards, the outer loop passes agent ai back to C′I,new and starts the iteration
for the next member until all agents were exchanged against each other. In line 33,

11 Note that in spite of product fulfillment, a successful coalition might still provide optimization potential
because of the flexibility provided by the tolerance bands ptar,tol associated with the different attributes of
the target product.
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method checkAndU pdateRepresentatives then checks if the representatives of the orig-
inal coalitions were transferred in the course of the optimization process. If this is true
in one of the cases, a new one is determined by randomly assigning the task to an alter-
native member of the new coalition. Method addRegroupedCoalitions finally adds the
coalitions CI,new and CR,new to their corresponding result set given that they are not equal
to the original coalitions CI,old and CR,old and that they comprise at least one agent. The
regrouping method then terminates by returning ĈI,new and ĈR,new as output, where both
sets are empty if no optimization could be achieved. Because the replying agent only
examined a single regrouping of the initiating coalition and its own, these are generally
equal to the result sets which are finally returned by the calling CCOR algorithm (i.e.
ĈI,com and ĈR,com) as described above.
Depending on the outcome of the evaluation process, the replying agent proceeds with
the negotiations by sending either a refusal or a proposal as answer to the received CFP
(see Figure 4.12). A refusal is sent if one of the initial preconditions was not fulfilled
or CCOR did not identify a regrouping yielding an increased global value. In order
to inform the initiating agent about the specific reason, the agent includes one of the
predefined tokens

<reason> ::= “mutex” | “product” | “trust” | “optimization”

as payload of the message, where the first three keywords indicate a non-fulfillment of
the corresponding preconditions while the last one signals a current lack of optimization
potential. Contrary, if all preconditions were met and an optimizing regrouping was
identified, aR sends a proposal to aI including its own coalition CR as payload. Moreover,
it adds another parameter oc indicating the number of additional optimization cycles
which it has conducted given that the coalition is already successful. As described in
the next section, this mechanism is applied by all representatives in order to further
improve global value and approximate the values of the pursued target products to a
higher degree. Because in the course of a regrouping representatives may change, aR

adds the number as further contents which is then taken over by a successor.
Agent aI starts with the processing of all replies if it has either obtained a response
from all recipients of its call or the specified deadline has expired12. When evaluat-
ing the received messages, it first examines each refusal with regard to its specified
reason. If the latter indicates a non-compliance of the target products or a lack of trust-
worthiness, the sender is categorized as unlikely cooperation partner ucp and added to
a corresponding list which is then used in the course of further formation attempts in
order to exclude the comprised agents from the neighborhood as described above. Hav-
ing handled all refusals, aI next processes the received proposals and first checks if the
members of the transmitted coalitions CR meet its minimum trust threshold trustmin,aI .
Afterwards, it applies the CCOR algorithm for a combined regrouping involving all re-
plying coalitions which passed the test. As specified by Algorithm 4.3, the input of the
heuristic is given by the original initiating coalition CI,old, the set of replying coalitions
12 Under specific circumstances, initiators deviate from this behavior in order to prevent livelocks as de-

scribed later in this section.
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Algorithm 4.3: Combined Coalition Regrouping

input : CI,old, C̃R,old, rCom
output: ĈI,com, ĈR,com

1 ĈI,com, ĈR,com ← ∅, ∅

2 C′I,old ← CI,old

3 foreach C′R,old ∈ C̃R,old do
4 CI,valid ← C′I,old ∩ CI,old

5 ĈI,new, ĈR,new ← regroupCoalitions(C′I,old, C′R,old, CI,valid)

6 if ĈI,new , ∅ then
7 C′I,old ← CI,new

8 ĈI,com ← ĈI,new

9 ĈR,com ← ĈR,com ∪ ĈR,new

10 if |ĈR,com| = rCom then
11 break
12 end
13 end
14 end
15 return ĈI,com, ĈR,com

C̃R,old = {CR,old,1, . . . ,CR,old,n}, as well as a further parameter rCom which allows initiat-
ing agents to vary the maximum number of accepted proposals by restricting the amount
of replying coalitions being part of the final regrouping. As output, the algorithm finally
returns the result sets ĈI,com and ĈR,com which comprise the regrouped initiating and
replying coalitions, where it generally holds that |ĈI,com| = 1 and 0 ≤ |ĈR,com| ≤ rCom.
With regard to the implemented functionality, the code starts by initializing the output
variables with the empty set and setting temporary variable C′I,old to input coalition CI,old

(line 1-2). In the course of the optimization process, C′I,old always stores the best solution
found so far. The following foreach loop then conducts the combined regrouping by it-
erating over the set of replying coalitions and repeatedly calling regrouping method 4.2,
where C′I,old, the currently considered replying coalition C′R,old, and the previously de-
termined set of generally transferable initiator members CI,valid are passed as arguments.
In each iteration, the latter is calculated as intersection of optimized coalition C′I,old (po-
tentially comprising replying members which were already transferred to C′I,old in prior
iterations) and original coalition CI,old (line 4). Hence, CI,valid only includes the remain-
ing initiator members which prevents a further transfer of transferred replying members
to other coalitions. In line 6, the algorithm then evaluates if the application of the re-
grouping method led to an improvement of global value by checking if result set ĈI,new

includes an optimized initiating coalition. If this is true, it first stores the latter as in-
put for the next iteration in temporary variable C′I,old and then updates the result sets by
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setting ĈI,com to ĈI,new and adding the potential replying coalition of ĈR,new to ĈR,com.
Finally, it checks the size of ĈR,com and exits the loop if the maximum number of ac-
cepted replying coalitions has been reached (line 10-12). Having finished the combined
regrouping, CCOR terminates by returning the result sets ĈI,com and ĈR,com as output.
Depending on the optimization potential of the input coalitions, these either contain the
regrouped initiating and replying coalitions or are empty if no improvement in global
value could be achieved.
Having described its implemented functionality, we next determine the performance of
CCOR in terms of the O-notation. To this end, we first assess the running time of re-
grouping method 4.2 which is iteratively called throughout execution. The variable input
parameters which are relevant for the analysis are given by replying coalition CR,old as
well as the set of transferable initiator members CI,valid, whereas initiating coalition CI,old

can be omitted as the method only considers those initiator members for a transfer which
are part of the latter. Thus, for the following discussion let m = |CI,valid | and n = |CR,old |.
The first code segment which has a relevant impact on the performance is given by the
foreach loop in line 4-10 iterating over the members of the original replying coalition
CR,old. As all comprised statements run in constant time, the running time of the loop
is O(m). Afterwards, the nested foreach loops in line 14-31 and 20-28 iterate over the
set of transferable initiator members CI,valid and temporary replying coalition C′′R,new,
respectively. Because all included statements again run in constant time and in worst
case it holds that |C′′R,new| = |CR,old |, the running time of the segment is O(m · n). As the
remaining code in line 33-35 also runs in constant time, it follows that the total running
time of the regrouping method is O(m + m · n) = O(m · n). Given this, it can be seen from
Algorithm 4.3 that CCOR calls the method l = max(|C̃R,old |, rCom) times without the
execution of any further relevant statements. Hence, the running time of the heuristic is
O(l ·m · n). Even for large coalition sizes in the order of thousands, CCOR thus provides
an efficient approach for the identification of value optimizing regroupings.
Based on the output of CCOR, initiating agent aI proceeds with the negotiations by re-
jecting the proposals from all agents which are not part of one of the returned coalitions.
Contrary, it sends acceptances to all other representatives for which coalitions a value
improving regrouping could be found, where the payload of a corresponding message is
given by optimized initiating coalition CI,new and, given that the coalitions do not merge,
replying coalition CR,new.
When the replying agent receives a positive answer to its proposal, it performs the first
part of the actual regrouping which affects all transferred members of its own coalition.
Afterwards, it sends a notification to the initiating agent informing it about the failure or
success of the action. In the latter case, the initiating agent completes the regrouping by
performing all complementing transfer activities. The interactions which are conducted
by both agents in the course of the regrouping process are shown by the sequence dia-
gram in Figure 4.13. Generally, the specified actions guarantee a consistent system state
by ensuring that after their execution
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initiating/replying agent new representative non-representative
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suc(Cnew)

set(Cnew)

set(Cnew)inform(”membership”, Cnew)
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adoptInteractionRole(role)
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set(Cnew)inform(”success”, Cnew)

failure

inform
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[a is not aRI]

{Cnew successful}

opt

[a is aI]

alt

[failed]

[else]

Figure 4.13: Interaction occurrence regroup of sequence diagram 4.12.
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• all transferred agents have updated their internal data model with regard to their new
membership,

• all new representatives have taken over their assigned task and adopted the interaction
role of their predecessor, and

• all representatives have evaluated the fulfillment of their pursued target product and
informed all members in case the regrouping led to a success of their coalition.

More precisely, the replying agent starts the regrouping by first identifying those mem-
bers of its original coalition CR,old which have to be transferred to the new initiating
coalition CI,new, where the corresponding set is defined as Ctran = (CR,old \ {aR})∩CI,new.
Next, it updates its internal data model with regard to its new coalition Cnew which ei-
ther equals CI,new in case the agent switches coalitions as well or CR,new otherwise. The
transfer of the identified members is then conducted by sending a message to all agents
a ∈ Ctran informing them about their new membership in initiating coalition CI,new,
where the addressees update their data model accordingly upon receival. If the agent
stays representative of its coalition and is not a replying initiator aRI (because in this
case it has first to complete its current optimization cycle in the form of another initia-
tion as described in more detail in the next section), it finally evaluates if the regrouping
led to a success and the new cumulative contribution meets the values of the pursued
target product ptar given the tolerance bands ptar,tol (cf. Definition 3.41). If this is the
case, it informs all members about the final coalition which then update their data model
accordingly.
The regrouping actions conducted by the initiating agent are generally analogous to those
of the replying agent, with the difference that they also comprise a final notification sent
to the new representatives if the original ones were transferred in the course of the opti-
mization process. Generally, this task can not be performed by aR as new initiators would
be able to start new negotiations before the current regrouping has been completely fin-
ished. The initiating agent starts the process by determining the set of members to be
transferred which is defined as Ctran = ((CI,old \ {aI}) ∩ CR,new) \ Arep, with Arep being
the set of new representatives which were determined by CCOR throughout execution.
Next, it sets its new coalition and notifies all identified agents with regard to the transfer
to replying coalition CR,new. Given that it does not switch coalitions itself, the agent then
informs all members in case of a success and finally concludes the regrouping process
by sending requests for a representative change to all participants which were newly as-
signed to the task. The payload of the corresponding message comprises the coalition to
represent (i.e. CI,new or CR,new) as well as one of the predefined tokens

<role> ::= “initiator” | “responder”

indicating the interaction role of the old representative. Moreover, the message includes
the number of additional optimization cycles oc which have already been conducted
for the transmitted coalition. A recipient responds to the request by taking over the
assigned task and adopting the specified role. Afterwards, it evaluates the success of



4.3 Coalition Formation 133

initiator aI, 1 responder aR initiator aI, 2

cfp

cfp

refuse

cfp

par

{tnow}

{tnow}

par

{td, CFP, 1}

{td, CFP, 2}

reply()

reply()

loop

Figure 4.14: Negotiation without livelock prevention.

its new coalition and informs the members according to the outcome. This behavior is
consistent with the actions of the initiating and replying agent which only performed the
check if they stayed representative of their coalition.
After all required regrouping activities have been finished, interaction protocol 4.12 is
finally completed leaving the system in a consistent state. However, as negotiations are
carried out in a parallel fashion, there is still the risk that agents run into deadlocks
or livelocks throughout the formation process, i.e. situations in which they are either
unable to proceed with any further interaction or interact constantly but without any
effect. To illustrate, the sequence diagram in Figure 4.14 shows a negotiation involving
two initiators aI,1 and aI,2 as well as a responder aR. As depicted, at time tnow agent
aI,1 sends a CFP to aI,2 and aR and agent aI,2 simultaneously sends a CFP to aI,1. If in
such situations initiators do not specify a time by which they automatically proceed with
the process although not all replies have been received yet, they are stuck in a deadlock
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endlessly waiting for remaining answers. Thus, initiating agents attach a deadline td,CFP

to their calls as described in the context of the protocol specification above.
Besides deadlocks, initiators may also end up in livelocks in which case they constantly
start new negotiations but their requests have no effect. Suppose for instance that in the
considered example agent aI,1 and aI,2 specify the same deadline td,CFP,1 = td,CFP,2 for
deadlock prevention and that responder aR refuses the call from aI,1 as shown in the
diagram. Because after expiration of the deadlines both initiators have not obtained a
proposal, they proceed by checking for a received CFP with the intention to reply13.
However, because both deadlines were equal and the mutually sent calls are thus not
valid any more, the agents discard the latter and start the next regrouping attempt result-
ing in the same interaction sequence which hence continues endlessly without effect.
In order to prevent this kind of situations, initiators apply a mechanism which allows
them to detect livelocks and synchronize their interactions through tracking of their
communication. More specifically, each initiating agent maintains two dedicated lists
CFPout and CFPin comprising the addressees of a CFP sent at the beginning of inter-
action protocol 4.12 and the senders of CFPs which are received during the regrouping
attempt. While waiting for replies to a call, an initiator then constantly listens for in-
coming messages and removes senders of refusals from the first list while adding those
of CFPs to the second one. Moreover, after each update it checks CFPout and CFPin

for equality in order to determine if it has received a call from all those recipients which
have not answered its CFP yet. Because in this case a receival of valid replies is either
highly unlikely or – if initiators apply the same deadlines td,CFP – even impossible, it
proceeds by examining the received calls with regard to a globally applied hard con-
straint guaranteeing mutual exclusion and answers the first message which is consistent
with the rule. More specifically, the constraint ensures that two initiators (in our example
aI,1 and aI,2) do not simultaneously reply to mutually sent CFPs and cause an inconsis-
tent system state because of concurrently conducted regroupings. This is achieved by
allowing only that agent to reply which identifier lexicographically precedes the one of
its negotiation partner. As the identifier is a globally unique constant, the rule guarantees
a consistent behavior of all participants14.
Assuming that this mechanism is applied by the agents in the above example, initiator
aI,1 then starts the negotiations by sending a CFP to aI,2 and aR and adding both recipi-
ents to list CFPout. When receiving the call from aI,2, it next updates CFPin and remains
waiting for further messages as the list is not equal to CFPout. However, upon receival
of the refusal from aR, it removes the latter from CFPout and replies to the obtained
CFP because first the requirement of equality is fulfilled and second its identifier lexico-
graphically precedes the one of agent aI,2 (supposing that the variable names represent
the IDs). Correspondingly, aI,2 remains waiting when receiving the call from aI,1 as the

13 A detailed description of an initiator’s behavior after the completion of interaction protocol 4.12 is given
in the following section.

14 If DYCE is applied to a scenario in which total equality of all agents is an issue, the regulatory hard
constraint can be altered by simply reversing the condition for different formation intervals t f ,ptmp .
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check for mutual exclusion prevents it to answer. As a result, both agents are finally
synchronized again and able to successfully proceed with the negotiations.

4.3.2.4 Process Flow
Having specified the interaction protocol which is used by agents in order to coordinate
their actions, we are finally ready to describe the process flow which they run through
in the course of coalition formation as well as additional mechanisms which they apply
to further improve global value. The corresponding activity diagram and its related
guard conditions are given in Figure 4.15 and Table 4.1, respectively. The depicted
process comprises all actions which an agent is generally able to carry out in the course
of the decentralized interactions, i.e. it can initiate a regrouping, reply to regrouping
requests, stand by if it is not available for any negotiations, switch its interaction role,
and terminate the activity. As the actual behavior of an agent particularly depends on
the interaction role which it selected in the course of neighborhood formation, in the
following we first discuss coalition formation from the viewpoint of an initiator and then
from that of a responder.
Having determined its neighborhood N, an initiator begins the formation process by
starting a new regrouping attempt through application of interaction protocol 4.12. Given
that the current formation interval t f ,ptmp has not yet expired, its following action then de-
pends on the result of the negotiations from which it can either emerge as representative
of its own coalition CI or as new member (i.e. representative or non-representative) of
the replying coalition CR. If it stays representative of its own coalition and the latter is
still not successful, it continues the formation process by checking for a received CFP
with the intention to reply (guard condition gc7,1). Even in case of a success in which
all values of the cumulative contribution lie within the defined tolerance bands, it strives
for a further improvement by conducting a maximum of ocmax optimization cycles in
the form of a corresponding number of additional initiations in order to approximate the
pursued target values to a higher degree (gc7,2). Correspondingly, after the maximum
number of cycles has been completed, the agent finally considers its target product as
fulfilled and switches into a standby mode in which it rejects all further regrouping re-
quests (gc6,1). The same holds if it became a non-representative member of the new
replying coalition CR (gc6,3). However, in this case it can again participate actively in
future negotiations as an initiator (gc13) or a responder (gc14) if it was selected as a cor-
responding representative in the context of a further regrouping. Moreover, the agent
can be transferred as new non-representative member to another coalition in which case
it updates its data model as described above but remains standing by.
Contrary, if the agent leaves the negotiations as new representative of the replying coali-
tion, its next action depends on the interaction role of its predecessor. If it adopted the
role of an initiator, it restarts the process by determining a neighborhood and starting a
negotiation given its new coalition CRI (gc5). In this case, its behavior is generally inde-
pendent from the success of the latter because even in case the target product is already
fulfilled it always holds that oc < ocmax, i.e. the current optimization cycle which was
started by the predecessor has still to be completed in the form of an additional initiation.
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Figure 4.15: Activity of coalition formation.
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ID conditiona

gc5 (¬exp(t f ,ptmp) ∧ newRep(CRI))
gc6,1 (¬exp(t f ,ptmp) ∧ stillRep(CI) ∧ suc(CI) ∧ oc = ocmax)
gc6,2 ∨(¬exp(t f ,ptmp) ∧ newRep(CRR) ∧ suc(CRR) ∧ oc = ocmax)
gc6,3 ∨(¬exp(t f ,ptmp) ∧ newNonRep(CR))
gc7,1 (¬exp(t f ,ptmp) ∧ stillRep(CI) ∧ ¬suc(CI))
gc7,2 ∨(¬exp(t f ,ptmp) ∧ stillRep(CI) ∧ suc(CI) ∧ oc < ocmax)
gc7,3 ∨(¬exp(t f ,ptmp) ∧ newRep(CRR) ∧ ¬suc(CRR))
gc7,4 ∨(¬exp(t f ,ptmp) ∧ newRep(CRR) ∧ suc(CRR) ∧ oc < ocmax)
gc8,1 (¬exp(t f ,ptmp) ∧ stillRep(CRI) ∧ ¬suc(CRI) ∧ iu = iu,max ∧ ext(N))
gc8,2 ∨(¬exp(t f ,ptmp) ∧ stillRep(CRI) ∧ suc(CRI) ∧ iu = iu,max)
gc8,3 ∨(¬exp(t f ,ptmp) ∧ newRep(CI) ∧ ¬suc(CI))
gc8,4 ∨(¬exp(t f ,ptmp) ∧ newRep(CI) ∧ suc(CI) ∧ oc < ocmax)
gc9 ¬exp(t f ,ptmp) ∧ stillRep(CRI) ∧ iu < iu,max

gc10,1 (¬exp(t f ,ptmp) ∧ newRep(CI) ∧ suc(CI) ∧ oc = ocmax)
gc10,2 ∨(¬exp(t f ,ptmp) ∧ newNonRep(CI))
gc10,3 ∨(¬exp(t f ,ptmp) ∧ stillRep(CRR) ∧ suc(CRR) ∧ oc = ocmax)
gc11,1 (¬exp(t f ,ptmp) ∧ stillRep(CRI) ∧ ¬suc(CRI) ∧ iu = iu,max ∧ ¬ext(N))
gc11,2 ∨(¬exp(t f ,ptmp) ∧ rep(CRR) ∧ exp(tbi) ∧ bi < bimax ∧ rand(0, 1) < P(bi))
gc12,1 ¬exp(t f ,ptmp) ∧ stillRep(CRR) ∧ ¬suc(CRR)
gc12,2 ¬exp(t f ,ptmp) ∧ stillRep(CRR) ∧ suc(CRR ∧ oc < ocmax)
gc13 ¬exp(t f ,ptmp) ∧ initiator()
gc14 ¬exp(t f ,ptmp) ∧ ¬initiator()
gc15 ¬exp(t f ,ptmp) ∧ initiator()
gc16 ¬exp(t f ,ptmp) ∧ ¬initiator()
gc17 exp(t f ,ptmp)
gc18 exp(t f ,ptmp)
gc19 exp(t f ,ptmp)
gc20 ¬suc(C) ∧ ptmp < Ptmp,base

gc21,1 (¬suc(C) ∧ ptmp ∈ Ptmp,base)
gc21,2 ∨suc(C)
gc22 suc(C)
a exp(t) returns true if time interval t has expired, false otherwise.

ext(N) returns true if neighborhood N is extendable, false otherwise.
newNonRep(C) returns true if after a regrouping a is new non-representative of C, false otherwise.
newRep(C) returns true if after a regrouping a is new representative of C, false otherwise.
rand(0, 1) returns a uniformly distributed random number between 0 and 1.
rep(C) returns true if a is representative of C, false otherwise.
stillRep(C) returns true if after a regrouping a is still representative of C, false otherwise.
suc(C) returns true if coalition C is successful, false otherwise.

Table 4.1: Guard conditions for activity coalition formation.
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Contrary, if the agent took on the role of a responder and its new coalition CRR is not
successful yet, it proceeds by replying to a call for proposal (gc7,3). The same holds if the
target product is already fulfilled but the maximum number of optimization cycles has
not been reached through a corresponding number of additional replies (gc7,4). However,
if the adopted coalition is successful and all optimization efforts have been completed,
the agent switches into standby mode rejecting all further regrouping requests (gc6,2).
When the initiator continues the process as representative of its own coalition and replies
to a call for proposal (gc7,1 or gc7,2), it first validates the deadlines of the received mes-
sages and verifies that the members of the transmitted coalitions have not already joined
the own one in the course of previous regrouping activities. This situation may arise
because initiators only respond to a single call before proceeding with the next action
which might result in a temporal gap between the receival and the evaluation of a mes-
sage throughout which the sender can join another coalition which then transfers the
agent to the initiator in the course of a further regrouping. However, such situations are
typically very rare as these activities have to be completed before the deadline of a sent
CFP has expired. When evaluating the received messages, the initiator replies to the first
valid call through application of interaction protocol 4.12.
Given that the current formation interval has still not expired, the following action then
again depends on the outcome of the negotiations. If the initiator stays representative of
its own coalition CRI and the number of consecutive unsuccessful initiations iu within
its current neighborhood N has not reached a specified maximum iu,max, it proceeds by
starting another negotiation (gc9). The start of the new negotiation is independent from
the success of CRI because even in case of a successful product fulfillment the current
optimization cycle has still to be completed. An initiation is generally considered un-
successful if it does not result in a value optimizing regrouping. This is either the case
if no neighbors are left after updating the neighborhood at the beginning of interaction
protocol 4.12 or no proposal is received as reply to the following call. Setting parameter
iu,max to a high value generally provides the potential to limit the final scope of a coali-
tion by preventing a premature neighborhood extension and increasing the chance of a
cooperation between nearer neighbors.
In contrast, if the maximum number of unsuccessful initiations has been reached, the
success of the coalition is again relevant for the choice of the initiator’s next action.
More precisely, if the maximum number has been reached and coalition CRI is still un-
successful but the current neighborhood N is still extendable, the initiator expands the
latter by a specified extension count extN and starts another negotiation given the new
size (gc8,1). However, if N already covers the whole grid (gc11,1), the agent finally
changes its strategy by switching its interaction role and waiting for appropriate calls as
a responder (gc16). In contrast, if the maximum number of unsuccessful initiations has
been reached and coalition CRI is already successful, the extendability of the neighbor-
hood is considered irrelevant and the agent completes the current optimization cycle by
simply starting another negotiation (gc8,2).
If after the reply the initiator does not stay representative of its own coalition, it either
becomes representative or non-representative of the initiating coalition CI . In the former
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case, it restarts the activity if CI is unsuccessful or if it is successful but has not conducted
the maximum number of optimization cycles yet (gc8,3 and gc8,4). However, if the target
product is already fulfilled and all optimization efforts have been completed, the agent
considers the formation process as finished and switches into standby mode (gc10,1). The
same holds if it leaves the negotiations as non-representative member of CI , in which
case it is still subject to further regroupings, however (gc10,2).
In contrast to an initiator, a responder starts the activity of coalition formation with a
reply to a call for proposal through application of interaction protocol 4.12. If formation
interval t f ,ptmp has not yet expired and the agent leaves the negotiations as new represen-
tative or non-representative of the initiating coalition CI , its further behavior is equal to
that of a switching replying initiator as described above (gc8,3, gc8,4, gc10,1, and gc10,2).
Contrary, if it stays representative of its own coalition CRR and the latter is either un-
successful or successful but not all additional optimization efforts have been completed
yet, it proceeds by replying to the next CFP which deadline has not yet expired (gc12,1
and gc12,2). Correspondingly, if the coalition fulfills its target product and the additional
optimization efforts have been completed, the agent considers its goal as achieved and
switches into standby mode (gc10,3). However, if the target product is not fulfilled and
the agent has not received a call for a specified amount of time tbi, it finally switches its
interaction role with a defined probability P(bi) for a maximum number of bimax times
(gc11,2) in order to proactively participate in the negotiations and prevent an unsuccess-
ful outcome caused by sole passivity (gc15). Associating the role change with a specific
probability allows to control the global rate of initiators rinit throughout the whole for-
mation interval tCF by means of a regulatory hard constraint hca.
When the formation interval for the considered product template ptmp has expired and the
agents have finished the current negotiations (gc17, gc18) or are standing by (gc19), they
finally terminate the activity of coalition formation. Depending on the success of their
coalition, they then reenter the activity of product portfolio management with or without
the goal to redefine their product portfolio PP through a rerun of the COPE algorithm. In
this context, recall from Section 4.1.2 that the input parameters of the latter include tem-
plate catalog Ptmp comprising all product templates which an agent generally considers
for product specification as well as base catalog Ptmp,base including those templates of
Ptmp which product horizons cover the smallest tradable interval and thus guarantee the
creation of a consistent template portfolio. Throughout execution, both sets are used by
the algorithm in order to create a reduced template catalog Ptmp\base = Ptmp\ Ptmp,base

comprising all templates which it considers for optimizing the current template portfolio
through template replacement. As already illustrated by means of the initially specified
use case, the base catalog of the EPEX SPOT template catalog as shown in Figure 4.2 is
for instance given by the 24 single hour products, whereas the reduced template catalog
is given by the remaining block products.
With regard to these parameters, a redefinition of a product portfolio is generally only
possible if the currently considered product template ptmp is not part of base catalog
Ptmp,base as in this case it is not essential for the specification of a consistent template
portfolio and can be safely removed from template catalog Ptmp. Thus, if a formation
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process did not lead to a successful fulfillment of its target product and it holds that
ptmp < Ptmp,base, an agent updates its template catalog accordingly and conducts the
activity of product portfolio management again by rerunning the COPE algorithm and
scheduling the next target product (gc20). To illustrate, assume for instance that the pro-
ducer from our exemplary use case strived for the provision of a peakload product but
finally failed in the attempt to form a successful coalition. However, as the related tem-
plate is not part of the base catalog, the agent is able to remove it from the template
catalog and run the COPE algorithm again in order to generate a new product portfo-
lio without the peakload product. As this approach is not applicable if the considered
template is part of the base catalog, in this case an agent accepts the result and proceeds
with the overall process by scheduling its next target product immediately (gc21,1). The
same holds if it finishes the process as a member of a successful coalition. However, as
in this case the agent is committed to the trade of the fulfilled product p, it first removes
all operation schedules osU from its schedule space OS S U which do not match the val-
ues of its contribution cona,p and replaces those templates of its base catalog with the
considered template ptmp which are temporally covered by the latter. Moreover, it up-
dates Ptmp\base by removing both ptmp and all temporally overlapping templates. These
measures guarantee on the one hand that the agent is finally able to contribute to the
product as promised and on the other hand that the latter is actually part of its product
portfolio and not replaced by COPE in the course of further redefinitions within the cur-
rent formation period tCF . To illustrate, assume for instance that our producer formed a
successful coalition for a product pMiddle−Night (cf. Figure 4.2). When terminating the
formation process, it thus updates its operation schedule space by removing all sched-
ules which are not in line with its contribution cona,pMiddle−Night . Moreover, it updates its
base catalog by replacing the first three single hour templates by ptmp,Middle−Night and
then removes the latter from Ptmp\base along with the temporally overlapping templates
ptmp,Night, ptmp,O f f−Peak1, ptmp,O f f−Peak, and ptmp,Baseload. As ptmp,Middle−Night is now
part of the base catalog and can not be replaced by any other template, it is guaranteed
that the fulfilled target product is part of the product portfolio even in case of a further
redefinition.
The product p which can be traded by a coalition if a formation process was successful is
generally defined by its cumulative contribution conC , i.e. ∀t(i)

pr ∈ T (p)
pr : (e(i)

p , err(i)
p , c

(i)
p ) =

(e(i)
C , err(i)

C , c
(i)
C ). In the worst case, the values of p can thus deviate from the ones of the

originally pursued target product ptar to the extent as defined by the tolerance bands
partar,tol. In order to perform all actions associated with the cooperative trade of the
product, an agent finally performs the last activity of DYCE which is conducted in par-
allel to product portfolio management (gc22).

4.4 Payoff Distribution

Having successfully formed a coalition, an agent finally conducts the last activity of
the overall process in order to perform all actions which are associated with the trade
of the fulfilled product as well as the division of the resulting payoff. In the following
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sections, we first specify the considered problem and discuss the related computational
complexity in view of the game-theoretical concepts applied for its solution. Afterwards,
we describe the activity of payoff distribution in detail and provide a distribution model
which is based on concepts from the domain of cooperative game theory and allows
for a fair division of a coalition’s utility according to the individual contributions of its
members.

4.4.1 Problem Specification and Computational Complexity

If the interactions of the previous activity led to the formation of a successful coalition
C, the members finally strive for a trade of the fulfilled product p. In case the trade was
successful, the coalition then receives or pays a total cost constituting its final payoff ρ̌.
Assuming that the product horizon of p is given by T (p)

pr = {t(0)
pr , . . . , t

( jmax)
pr }, the latter is

generally defined as

ρ̌ =

jmax∑
i=0

e(i)
p · č

(i), (4.41)

where č(i) is the final contractually specified cost per unit electrical energy in product
interval t(i)

pr. For instance, if a coalition sells the quantity of e(i)
p = 1000 kWh at a price

of c(i) = 0.1e/kWh, its final payoff amounts to ρ̌ = 100e. Generally, ρ̌ does not
necessarily equal the original payoff which was initially specified by the coalition for
the product which is given by

ρ =

jmax∑
i=0

e(i)
p · c

(i)
p . (4.42)

For instance, if p is placed as a bid at an exchange, the market clearing price č(i) typically
deviates from the original cost c(i)

p .
The payoff finally determines the utility which a coalition gains from a trade. For a
coalition of producers Cp and a coalition of consumers Cc this is defined as

utilityC(p) =

jmax∑
i=0

utility(i)
C (p) =



jmax∑
i=0

e(i)
p · č

(i) − e(i)
p · c

(i)
p = ρ̌ − ρ if C is Cp,

jmax∑
i=0

e(i)
p · c

(i)
p − e(i)

p · č
(i) = ρ − ρ̌ if C is Cc.

(4.43)

I.e., the utility of a coalition is defined as sum of interval-related utilities utility(i)
C (p),

where for a producer coalition the latter are calculated by subtracting the original from
the final payoffs and for a consumer coalition by subtracting the final from the original
payoffs. These definitions are consistent with Equation 4.1 which was used by an agent
prior to the formation process in order to estimate the expected utility of a given prod-
uct template ptmp and operation schedule osU based on a price prediction c(i)

ptmp . In the
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following, we generally assume that utility(i)
C (p) ≥ 0, i.e. we suppose that a producer

coalition only sells at a price which equals or exceeds the originally specified cost c(i)
p

and a consumer coalition only buys at a price which is less than or equal to the originally
specified cost. If the product is traded at an exchange which matches block products on
an all or none basis (like the EPEX SPOT), this assumption is inherently fulfilled by the
clearing mechanism itself.
As main action of payoff distribution, a successful coalition C = {a1, . . . , an} finally
divides the payoff ρ̌ into individual shares (x1, . . . , xn) relating to its members (cf. Def-
inition 3.16). The complexity of the action is generally determined by the requirements
put on the resulting division. In this regard, we generally demand that the utility of a
coalition is distributed in a fair way (cf. Chapter 1.3). In the following section, we thus
propose an approach which allows to realize this goal based on concepts from cooper-
ative game theory. More precisely, we define a conjunction of weighted voting games
reflecting the members’ contributions to their coalition and then apply the Shapley value
in order to provide a fair division of the gained utility. However, calculating the Shapley
value for a single weighted voting game is generally #P-hard [DP94]. Thus, the de-
scribed model allows the application of an approximation method [FWJ08] in order to
enable an efficient assessment of distributions even in case of large coalition sizes.

4.4.2 Activity Description

The activity of payoff distribution and its relation to the other DYCE activities is depicted
by the UML diagram in Figure 4.16. As shown, an agent starts the process by perform-
ing all tasks which are associated with the trade of the product for which a successful
coalition was formed. In this context, all contractual issues are coordinated by the rep-
resentative of the coalition which first requests binding commitments from all members
with regard to their individual contributions as specified in the course of coalition forma-
tion. Having received the commitments, it then conducts the actual trade by transmitting
a corresponding bid to a bilateral trading partner or a central trading platform like a pool
or an exchange. The transfer has to be finished until a specified time of submission tsub

(e.g. the time of order book closure of an exchange) after which the recipient either ac-
cepts or declines the made offer. In the former case, both trading partners complete the
trade by conducting all required business processes including the related transactions.
Afterwards, the representative sends a success message to all members of the coalition
which then schedule their units according to the committed contributions.
If a trade was successful, a coalition physically fulfills its product in the specified product
horizon T (p)

pr as second action of the activity. I.e., a producer coalition jointly feeds in the
specified amount of electrical energy, while a consumer coalition takes it from the grid.
After physical fulfillment, the representative requests the related measurements from
the responsible measurement service provider in order to determine the final electricity
amounts ě(i)

U which were generated or consumed by each member in the product intervals
t(i)
pr ∈ T (p)

pr . These potentially deviate from the scheduled values e(i)
U because of unforseen
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Figure 4.16: Activity of payoff distribution.

events which occurred in the course of fulfillment. The resulting final errors are defined
as

ˇerr(i)
U = |e(i)

U − ě(i)
U |. (4.44)

These may differ from the originally specified values err(i)
U and thus represent a mea-

sure of the actual reliability which was provided by an agent in the course of physical
fulfillment. As this criterion influences an agent’s trustworthiness (cf. Section 4.2.2),
the representative calculates the errors of the whole coalition based on the queried mea-
surements and informs the other members about the results. As next step of the activity,
the agents then update their maintained trust values taking into account the received in-
formation. Note that this approach incentivizes participants to declare their electricity
amounts e(i)

U both correctly (in terms of an accurate forecast) and truthfully because it
increases their chance to find cooperation partners in the course of future formation pro-
cesses. This, in turn, promotes the reliability of coalitions as it minimizes deviations
from contractually specified quantities throughout physical fulfillment.
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As final action of the activity, the payoff ρ̌ which resulted from the previous trade is
distributed among the members. As the representative is in charge of all contractual is-
sues, it is also responsible for calculating the division and initiating the required business
processes. To this end, it applies a dedicated distribution model in order to determine
the distribution vector xC = (x1, . . . , xn) specifying the individual shares of all members.
As specified in Section 1.3, we generally expect that this division is fair and provides
an incentive for agents to declare their contributions correctly and truthfully in the first
place. In this regard, Chalkiadakis et al. [CRK+11] propose a payment mechanism
for Virtual Power Plants which divides a received financial amount among participating
DERs. While the approach indeed incentivizes members to provide accurate predictions
of their expected production, it does not allow for a fair division in terms of a mathe-
matically justified notion. Moreover, in order to promote economic efficiency, it would
be desirable to award units based their generation and consumption cost as well. In the
following, we thus provide a distribution model which satisfies all of our specified re-
quirements. As general approach, we determine distribution vector xC by assigning to
each agent its total schedule cost plus a fair percentage of the coalition’s utility according
to the benefit of the agent’s final contribution ˇcona,p = (ě(i)

U , ˇerr(i)
U , c

(i)
U ). I.e., producers

receive their specified cost plus a fair fraction of the gained surplus, while consumers
pay their specified price minus a fair fraction. Because the fair fractions are determined
based on the final electricity amounts ě(i)

U and errors ˇerr(i)
U , agents are incentivized to de-

clare their produced or consumed amounts correctly and truthfully which again results in
more reliable coalitions. More precisely, assuming that the product horizon of the traded
product p is given by T (p)

pr = {t(0)
pr , . . . , t

( jmax)
pr }, the individual share of a coalition member

ak is calculated as

xk =

jmax∑
i=0

x(i)
k =

jmax∑
i=0

c(i)
U · e

(i)
U + φ(i)

k (C, vg) · utility(i)
C (p), (4.45)

with φ(i)
k (C, vg) being a fair percentage in terms of the Shapley value as described in more

detail below. The overall share of an agent is thus defined as sum of interval-related
shares x(i)

k , where an interval-related share is the sum of the corresponding schedule cost
c(i)

U · e
(i)
U (as specified by contribution cona,p(t(i)

pr)) and a fair fraction of the coalition’s
utility φ(i)

k (C, vg) · utility(i)
C (p).

In order to determine the fair percentage φ(i)
k (C, vg), the model integrates concepts from

the domain of cooperative game theory. As a branch of game theory, the field stud-
ies settings in which self-interested players are able to make binding agreements (like
legally valid contracts) which allow them to rationally cooperate and act as a group
[SLB09, OR94, Woo09]. With regard to DYCE, the requirement of binding agreements
is generally fulfilled because members make final commitments to a coalition as de-
scribed above. A main question which is addressed by cooperative game theory is how
to distribute the utility resulting from a cooperative action among the players. A model
which allows for this kind of analysis is given by a coalitional game with transferable
utility (I, vg), where
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• I = {a1, . . . , an} is a set of players (or agents), and

• vg : 2I → R is a function (also referred to as characteristic function) assigning a
freely dividable utility vg(S ) to each nonempty coalition S ⊆ I15.

A well-known and widely studied solution concept applicable to this type of game is
the Shapley value which was proposed by Lloyd S. Shapley in 1953 [Sha88]. Being
devised as a function, it assigns a fair distribution vector to a given coalitional game
(I, vg), where fairness is defined in terms of specific axioms representing properties of the
resulting division. Before we discuss the axiomatic characterization of the Shapley value
in detail, we first provide its formal definition. To this end, let the marginal contribution
of an agent ak to a coalition S ⊂ I, with ak < S , be defined as

∆k(S ) = v(S ∪ {ak}) − v(S ). (4.46)

I.e., ∆k(S ) captures the utility which an agent adds to a coalition through its participation.
Given this, the Shapley value of an agent ak is defined as

φk(I, vg) =
1
|I|!

∑
S⊆I\ak

|S |! · (|I| − |S | − 1)! · ∆k(S ). (4.47)

Generally, the above formula determines the average marginal contribution of an agent
to a coalition I calculated over all possible sequences in which the members can join,
where all sequences are equally likely. This is achieved by calculating for each possible
subset S ⊆ I \ ak the agent’s marginal contribution when it joins as member number
|S | + 1 multiplied by the |S |! possibilities its predecessors could have joined and the
(|I| − |S | − 1)! possibilities its successors can join afterwards. Adding up the results
and dividing the sum by the total number of all sequences |I|! finally yields the average
marginal contribution of the agent.
I.e., the distribution of a coalitional game (I, vg) is calculated according to the utility
which each agent contributes to I on average. The underlying notion of fairness which
specifies related properties of the division is now defined as follows. First, let an agent
ak be termed a null player if it does not contribute a utility to any coalition, i.e. if
vg({S ∪ ak}) = vg(S ) for all coalitions S ⊂ I with ak < S . Moreover, let two agents ak

and al be termed interchangeable if they contribute the same utility to any coalition, i.e.
if vg(S ∪ {ak}) = vg(S ∪ {al}) for all coalitions S ⊂ I with ak < S ∧ al < S . The Shapley
value is then considered fair as it satisfies the following axioms:

Efficiency The utility of a coalition is completely distributed among the players, i.e.∑|I|
k=1 φk(I, vg) = vg(I).

Null player If a player ak is a null player, then its share is zero, i.e. φk(I, vg) = 0.

15 In order to avoid confusion, we adapt some common symbols to the notation defined in Chapter 3. For
instance, while the characteristic function is typically denoted by v, we use the subscripted symbol vg in
order to distinguish it from function v introduced in Definition 3.14.
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Symmetry If two players ak and al are interchangeable, then their shares are equal, i.e.
φk(I, vg) = φl(I, vg).

Additivity The shares of any player ak ∈ I in two separate games (I, vg,1) and (I, vg,2)
relate to each other such that φk(I, vg,1 +vg,2) = φk(I, vg,1)+φk(I, vg,2), where (I, vg,1 +

vg,2) is a combined game which characteristic function is given by (vg,1 + vg,2)(S ) =

vg,1(S ) + vg,2(S ) for every coalition S ⊆ I.

Besides satisfying the above axioms, the Shapley value is also the only distribution
scheme possessing these properties. Thus, it allows to determine both a fair and unique
division of a coalition’s utility.
Given this solution concept fulfilling our initially specified requirement of fairness, the
remaining question to answer is how to model the underlying coalitional game (I, vg) so
that it fits our considered context. As our intention is to distribute the utility of a coalition
C according to the members’ individual contributions to a given product p, a first idea
could be to define a coalitional game (C, v) for each product interval t(i)

pr ∈ T (p)
pr , where v

represents the initially defined evaluation function as specified in Equation 4.36. As the
latter measures the degree of product fulfillment and a coalition might not have matched
its pursued target values e(i)

ptar , err(i)
ptar , and c(i)

ptar exactly, this approach would require to
set these to the cumulative values e(i)

C , err(i)
C , and c(i)

C before calculating the distribution
in order to ensure that the value of C becomes maximal (i.e. v(C) = 1). Because of
the efficiency axiom, an application of the Shapley value to the resulting games would
then yield interval-related distribution vectors which shares φ(i)

k (C, vg) would sum up to
one (as v(C) = 1) and thus represent fair percentages as required by Equation 4.45.
However, as the calculation of Equation 4.47 is highly complex, this model would only
be applicable if the size of a coalition is very small. Moreover, it would not be flexibly
extendable by other criteria which are to be taken into account for value distribution as
well.
In order to tackle these problems, we thus take an alternative approach and define a cer-
tain type of coalitional game for which the Shapley value can be efficiently approximated
using the algorithm described in [FWJ08] and that is flexibly extendable by further cri-
teria if desired. Before we describe the specific model in detail, we start by introducing
the required game-theoretical concepts [EGGW09]. First, let (I; w; q) denote a weighted
voting game, where I = {a1, . . . , an} is a set of players, w = (w1, . . . ,wn) ∈ Rn

≥0 is a vec-
tor of weights assigned to the players, and q ∈ R≥0 is a quota. The game’s characteristic
function is defined as vg : 2I → {0, 1}, with

vg(S ) =

1 if
∑|S |

i=1 wi ≥ q,
0 otherwise.

(4.48)

A coalition S is said to be winning if the summed weights are equal to or greater than
q (i.e., if vg(S ) = 1), and said to be losing otherwise. Moreover, we term a player ai

a swing player for a coalition S if S is losing but S ∪ ai is winning. Weighted voting
games are typically used to analyze political decision processes in which a group of
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decision makers needs a minimum number of votes in order to take a certain action like
passing a law. However, as a weight can represent an arbitrary resource, they also allow
to study alternative settings in which a coalition is able to achieve a specific goal if its
joint quantity of that resource meets a given threshold.
An extended form of a weighted voting game is given by a k-vector weighted voting
game (I,w1, . . . ,wk,q) (also referred to as weighted k-majority game) which is defined
by a set of players I = {a1, . . . , an}, a vector of vectors (w1, . . . ,wk) specifying lists of
weights w j = (w j

1, . . . ,w
j
n), and a vector of quotas q = (q1, . . . , qk). Thus, a k-vector

weighted voting game implicitly defines a set of weighted voting games (I; w j; q j), 1 ≤
j ≤ k. The game’s characteristic function is defined as vg : 2I → {0, 1}, where

vg(S ) =

1 if
∑|S |

i=1 w j
i ≥ q j, 1 ≤ j ≤ k,

0 otherwise.
(4.49)

I.e., in a k-vector weighted voting game a coalition S is winning if it wins in all com-
prised weighted voting games. This type of coalitional game thus allows to analyze
situations in which a set of players is able to achieve a specific goal if it fulfills all of a
set of required conditions.
Given these definitions, the basic idea with regard to our considered problem is now to
create a k-vector weighted voting game for each product interval t(i)

pr ∈ T (p)
pr and define

the weights in such a way that they represent the contributions of the members to the
physically fulfilled product p. Calculating the Shapley values of the games then yields
the desired fair percentages φ(i)

k (C, vg) which reflect the relevance of the contributions.
More precisely, for a given product interval t(i)

pr, we specify a 3-vector weighted voting
game (C,w1,w2,w3,q) which implicitly defined games (C; w j; q j) address the product
attributes electricity amount, error, and cost. As already mentioned above, we generally
use the final electricity amounts ě(i)

U and errors ˇerr(i)
U for the model in order to award the

agents according to their actual behavior. The first weighted voting game (C; w1; q1) thus
refers to the electricity amounts ě(i)

U which were produced or consumed by the members
of the coalition. The individual weights w1

i are determined by standardizing the absolute
values |ě(i)

U | using the linear function shown on the left hand side of Figure 4.17 which is
formally defined as λ+ : R≥ → {0, 1}, with

λ+(x) =

 1
|xmax |

· |x| if 0 ≤ x ≤ xmax,

0 otherwise,
(4.50)

where for the first game it holds that xmax =
∑

U∈UC |ě
(i)
U |. Thus, λ+ assigns higher weights

to those agents which made more valuable contributions to the coalition in order to
allow for higher final shares as described in more detail below. Generally, the quota
of the game can be chosen from the interval ]0, xmax] which endpoints guarantee that
the Shapely value can be reasonably applied. In particular, setting the upper bound to
xmax ensures that the whole coalition wins (i.e. vg(C) = 1). As the quota influences the
final distribution, it has to be agreed upon by all coalition members using an appropriate
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Figure 4.17: Standardization functions λ+ (left) and λ− (right).

mechanism (like negotiation or voting) or prescribed on global system level by means of
a regulatory hard constraint hca. To illustrate its impact, suppose for instance a coalition
C = {a1, a2, a3, a4}which members fed-in the amounts of ě(i)

U1
= 10 kWh, ě(i)

U2
= 20 kWh,

ě(i)
U3

= 30 kWh, and ě(i)
U4

= 40 kWh. As in this case xmax = 100 kWh, these are mapped
by function λ+ to the weights w1 = 0.1, w2 = 0.2, w3 = 0.3, and w4 = 0.4, respectively.
The Shapley values for this setting and different quotas q are listed besides two other
examples in Table 4.2. As shown, the quota influences the final shares φk(N, vg), where
there is no clear pattern associated with its increase (like a more balanced distribution).
Moreover, it can be seen that a higher weight wi does not necessarily lead to a higher
share. I.e., the latter generally depends on both the variance of the weights and the
quota which thus has to be chosen with care taking into account the given economic
and technological conditions like the design of the market or the specific types of the
members’ units.
The second weighted voting game (C; w2; q2) addresses the errors which occurred in the
course of physical fulfillment. As we generally strive for a minimization of deviations
and want to award the agents accordingly, the weights w2

i are determined by transforming
the final errors ˇerr(i)

U into standardized values using an alternative linear function which
reverses its input as shown on the right hand side of Figure 4.17. Formally, it is defined
as λ− : R→ {0, 1}, with

λ−(x) =

− 1
xmax
· x − 1

xmax
· xmax if 0 ≤ x ≤ xmax,

0 otherwise,
(4.51)

where for the second game it holds that xmax =
∑

U∈UC ˇerr(i)
U . As λ− maps smaller errors

to higher weights and vice versa, it allows to assign higher rewards to those agents which
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w1 w2 w3 w4 q φ1(N, vg) φ2(N, vg) φ3(N, vg) φ4(N, vg)

0.1 0.2 0.3 0.4 0.2 0 0.333 0.333 0.333
0.4 0.083 0.083 0.25 0.583
0.6 0.083 0.25 0.25 0.417
0.8 0.083 0.083 0.417 0.417
1.0 0.25 0.25 0.25 0.25

0.1 0.1 0.4 0.4 0.2 0.83 0.83 0.417 0.417
0.4 0 0 0.5 0.5
0.6 0.167 0.167 0.333 0.333
0.8 0 0 0.5 0.5
1.0 0.25 0.25 0.25 0.25

0.1 0.1 0.1 0.4 0.2 0.167 0.167 0.167 0.5
0.4 0 0 0 1
0.6 0 0 0 1
0.8 0.083 0.083 0.83 0.75
1.0 0.25 0.25 0.25 0.25

Table 4.2: Exemplary Shapley values for different games.

provided a higher reliability in the course of physical fulfillment in the sense of a lower
deviation from the initially specified electricity amount. Again, the quota of the game
can be chosen from the interval ]0, xmax].
Finally, the last weighted voting game (C; w3; q3) addresses the cost values which were
specified by the members for their provided or consumed electricity amounts. As in
this regard producers and consumers have contrary goals, the weights w3

i are determined
by using different standardization functions. More precisely, if the given coalition is a
producer coalition Cp and thus strives for a minimization of its cost, we apply function
λ− in order to allow for higher rewards for those agents with lower generation cost c(i)

U .
Contrary, if the coalition is a consumer coalition Cc and takes advantage of agents which
are willing to pay higher prices, we determine the weights by using function λ+. For
both types of coalitions it holds that xmax =

∑
U∈UC č(i)

U , while the quota q3 can be chosen
from the interval ]0, xmax]. The settings of all three games are summed up in Table 4.3.
Given the resulting 3-vector weighted voting game (C,w1,w2,w3,q)16 for product inter-
val t(i)

pr, we are finally able to determine the related Shapley values φ(i)
k (C, vg), where each

single share reflects the importance of the corresponding agent in terms of its potential
to enable the coalition to meet the defined quotas. More precisely, recall from Equa-
tion 4.47 that the calculation of the Shapley value of an agent ak involves the assessment
of its marginal contribution ∆k(S ) to each subset S ⊆ C \ ak. Given our specified game,

16 Note that this model is flexibly extendable. For instance, if the time of an agent’s joining is to be taken
into account as distribution criteria, it can be modeled as own weighted voting game and integrated into
the combined game.
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wi

game Cp Cc xmax q

(C; w1; q1) λ+(x) λ+(x)
∑

U∈UC ě(i)
U ]0, xmax]

(C; w2; q2) λ−(x) λ−(x)
∑

U∈UC ˇerr(i)
U ]0, xmax]

(C; w3; q3) λ−(x) λ+(x)
∑

U∈UC c(i)
U ]0, xmax]

Table 4.3: Settings of the weighted voting games (C; w j; q j).

it then holds that ∆k(S ) = 1 if ak is a swing player for S , and ∆k(S ) = 0 otherwise. Thus,
the Shapley value of an agent is the higher, the more often it is pivotal for a subset S to
meet the defined quotas. As we guaranteed for each weighted voting game (C; w j; q j)
that the whole coalition wins, it also holds for the 3-vector weighted voting game that
vg(C) = 1. Because of the efficiency axiom, the resulting Shapley values φ(i)

k (C, vg) thus
add up to one and can be interpreted as fair percentages in terms of Equation 4.45. Solv-
ing the latter finally yields the share xk of each agent ak and thus the desired distribution
vector xC specifying the payoff distribution of coalition C.
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5 Evaluation
Having described DYCE in the previous chapter, in the following we provide a compre-
hensive evaluation of the proposed approach based on deterministic computer simula-
tions. To this end, we define research questions RQ and conduct corresponding exper-
iments E-RQ which allow us to analyze its specific characteristics and thus to support
or reject the hypotheses defined at the beginning of this thesis in Section 1.3. Table 5.1
gives an overview of the whole evaluation including the approaches applied for exper-
imentation. While selected research questions are examined using the OFAT approach
because of a restricted number of relevant input parameters, the main part of the evalua-
tion is based on DOE exploiting its powerful techniques as discussed in Section 2.3.
We start our investigations in Section 5.2 by analyzing the local performance of DYCE in
terms of its ability to maximize the expected utility of an agent. To this end, we examine
at which optimum rate orOS S U a maximal utility can be identified by the COPE algorithm
described in Section 4.1.2 (E-RQ1). Moreover, we investigate how the utility depends on
the number of operation schedules which are drawn from the operation schedule space
of a unit as reflected by mean utility rate ur (E-RQ2). In Section 5.3, we then study
the global performance and efficiency of DYCE using techniques from DOE. More pre-
cisely, we first use a full factorial design in order to determine the mean coalition values
v(C) which are achieved in the course of coalition formation (E-RQ3) and examine the
percentages of coalitions which are able to successfully fulfill their target product as
quantified by fulfillment rate f r (E-RQ4). Afterwards, we use the same design in order
to conduct a screening of the considered input parameters and investigate their effects on
the global performance, computational cost, communication cost, and runtime (E-RQ5).
These evaluation criteria are measured by means of the mean coalition value (v(C)), the
number of function calls of the CCOR algorithm ( f c), the number of messages sent be-
tween the agents (msg), and the simulated realtime (sr). The determined effects allow us

section experiment approach addressed hypothesis measure

5.2 E-RQ1 OFAT 1.1 (local performance) orOS S U

5.2 E-RQ2 OFAT 1.1 (local performance) ur
5.3 E-RQ3 DOE 1.2 (global performance) v(C), f r
5.3 E-RQ4 DOE 1.2 (global performance) sC,n

5.3 E-RQ5 DOE 1.2 (global performance) v(C)
1.3 (efficiency) f c, msg, sr

5.3 E-RQ6 DOE 1.2 (global performance) v̂(C)
1.3 (efficiency) f̂ c, m̂sg, ŝr

5.3 E-RQ7 OFAT 1.2 (global performance) v(C)
1.3 (efficiency) f c, msg, sr

Table 5.1: Overview of the evaluation.
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to identify the most important factors and model the response surface of the considered

criteria based on polynomial functions which provide corresponding predictions v̂(C),
f̂ c, m̂sg, and ŝr (E-RQ6). We conclude the evaluation in Section 5.3.4 by investigating
the applicability of DYCE to scenarios comprising large numbers of agents. We exam-
ine this aspect by again considering the four criteria global performance, computational
cost, communication cost, and runtime. In order to draw conclusions from the investiga-
tions, Section 5.2.4 and 5.3.5 sum up experiments E-RQ1-E-RQ2 and E-RQ3-E-RQ7,
respectively, and discuss the gained results in view of the initially stated hypotheses.
As can be seen from the above descriptions, we do not analyze economic aspects in
terms of the final payoffs or long-run profits which agents gain from coalition formation.
In order to draw reliable conclusions, this would require to model their trading strategies
as well as the assumed market which is out of scope of this thesis.

5.1 Simulation System

In the following, we briefly describe the simulation system which is used for the upcom-
ing investigations.
Generally, all conducted experiments are based on computer simulations. A single sim-
ulation, also referred to as simulation run, is given by an algorithm which is executed
by the simulation system. The algorithm is configurable through a parameterization set-
ting its input parameters (or factors) to specific values. The results of a simulation are
measurable through defined responses which allow to quantify specific characteristics of
interest. A simulation is executed on the basis of a simulation scenario which represents
an examined real world setting being specified by means of concepts of DYCE-FM. An
experiment consists of one or more simulations which are performed in order to answer
an initially defined research question. The experimental results are evaluated through
defined measures quantifying the quality of the outcomes based on the response values
of the executed runs.
As general approach, we use discrete-event simulations for experimentation. I.e., a sin-
gle simulation consists of a number of successive simulation steps each representing a
simulated realtime interval of 100 ms. Within this time frame, all agents are able to
perform their actions and send messages to their communication partners. A simula-
tion ends if there are no more messages left to be transferred by the simulation system.
Throughout the experiments, we generally use defined seeds for random number gener-
ation in order to guarantee a deterministic runtime behavior.

5.2 Local Performance

In the first part of the evaluation we examine the local performance of DYCE in terms of
its ability to maximize the expected utility of an agent. As described in Section 4.1.2, the
optimization problem is solved in the course of product portfolio management through
application of the COPE algorithm which identifies a utility optimizing pair of opera-
tion schedule osu and template portfolio T P forming the basis for the specification of a
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product portfolio PP. In the upcoming sections, we thus conduct two experiments which
allow us to answer the following research questions:

RQ1 Given an operation schedule osU of a unit U and a template catalogue Ptmp with
price predictions CPtmp , at which rate can an optimal utility utility(T P, osU)∗ be iden-
tified by COPE?

RQ2 Given an operation schedule space OS S U of a flexible unit U and a template cat-
alogue Ptmp with price predictions CPtmp , how well can a maximum achievable util-
ity utility(T P, osU)+ be approximated by COPE subject to the number of operation
schedules osU drawn from OS S U?

The above research questions address two different properties of the COPE algorithm.
Assuming a template catalogue Ptmp with price predictions CPtmp for the comprised prod-
uct templates ptmp as well as an operation schedule osU drawn from the schedule space
OS S U of a unit U, the first question asks for the rate at which COPE is able to identify an
optimal utility utility(T P, osU)∗. I.e., we are interested in the rate at which the algorithm
is able to identify an optimal consistent template portfolio T P∗1 given a single operation
schedule osU . We examine aspects of optimality using a single schedule because the
schedule space of a flexible unit may be infinitely large in which case an optimal solu-
tion is not assessable. Contrary, in the context of research question RQ2 we explore how
well a maximum achievable utility utility(T P, osU)+ can be approximated by COPE sub-
ject to the number of operation schedules osU drawn from the schedule space OS S U of
a flexible unit U. Note that in this case the maximum achievable utility is not necessarily
the optimal one but the best possible which can be obtained by applying COPE. I.e., we
are here not interested in aspects of optimality (which are addressed by RQ1) but in the
question of how the performance of COPE depends on the number of drawn schedules.
Before we describe experiment E-RQ1 and E-RQ2 which give answers to the above
questions, we first specify the scenario which is used as basis for the executed simula-
tions and detail the process which is applied in the context of E-RQ1 in order to generate
optimal reference solutions.

5.2.1 Simulation Scenarios and Generation of Reference Solutions

In the following we describe the assumptions which are made with regard to the sim-
ulation scenarios being applied throughout the upcoming investigations. Moreover, we
detail the approach which is used in order to generate optimal reference solutions in the
context of experiment E-RQ1.
As general setting we suppose an agent which participates in the EPEX SPOT day-ahead
auction and uses the COPE algorithm in order to identify a pair of template portfolio and
operation schedule which maximizes its utility. Table 5.2 gives an overview of the ap-
plied simulation scenario by listing the relevant concepts of DYCE-FM along with the

1 Recall from Definition 3.39 that a consistent template portfolio comprises product templates which prod-
uct horizons are disjunct and cover the whole planning horizon.
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concept setting

Tpl tbu = 1 min, tu = 1, ∆t = 15, tmax = 1440, i.e. Tpl = {t(i)
pl | 0 ≤ i ≤ 95}

U WEP (RQ1); CHP plant, lithium-ion battery (RQ2)
Ptmp 2013 catalogue of the EPEX SPOT day-ahead auction

Table 5.2: Scenario settings for research questions RQ1 and RQ2.

corresponding settings. The planning horizon Tpl covers the period of one day which is
divided into 96 planning intervals of 15 minutes length. The unit U which is controlled
by the agent differs according to the investigated problem. As in the context of experi-
ment E-RQ1 we examine the algorithm’s performance with regard to a single operation
schedule only, U is given by an inflexible wind energy plant with a power of 2 MW
which operation schedule space is thus inherently restricted. Contrary, the simulations
of experiment E-RQ2 are based on two different units, i.e. a 4.7 kW CHP plant and
a lithium-ion battery with a power of 5 kW for charging/discharging and a capacity of
10 kWh. Generally, the operation schedule spaces OS S U of all units are independent
and created on the basis of simulation models which implement their operational char-
acteristics in a realistic way. More precisely, the schedule space of the WEP is created
by running the simulation model for the considered time period of one day and including
the output schedule osU . Contrary, the schedule spaces of the flexible units are created
by running the models n times using a random schedule as input and including those
schedules which represent their actual operational behavior (as the units may deviate
from the random schedules due to their operational constraints). As schedule costs we
generally use the marginal costs of the units. More precisely, as the wind energy plant
relies on renewable energy, we assume schedule cost of 0e/kWh, i.e. ∀t(i)

pl ∈ Tpl : c(i)
U =

0e/kWh. With regard to the CHP plant, we generally face the problem that in the ex-
periment we use historic wholesale prices of the EPEX SPOT in order to determine the
price predictions of the product templates ptmp ∈ Ptmp which are used by the COPE
algorithm as basis for building a template catalog T P. These prices are typically lower
than the current marginal cost of a CHP plant which is not yet competitive with the cost
of a large-scale power plant. Using the incompatible values in the simulations would
thus lead to biased results as they are used by COPE in order to assess the utility of a
template portfolio T P (cf. Equation 4.2). In the context of experiment E-RQ2, we there-
fore assume that the CHP plant is part of a coalition which is able to purchase fuel at
wholesale prices and allows for a competitive marginal cost of 0.06e/kWh. Contrary,
for the battery we determine the cost based on the prices which are paid for the elec-
tricity required to charge the unit. Thus, we assume for each operation schedule that
the unit’s initial charging level is 0 kWh and it first consumes electrical energy. This
way, the marginal cost can be calculated dynamically in the course of a simulation when
determining the utility of a template portfolio according to Equation 4.2.
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Figure 5.1: Price distribution of the ‘Peakload’ product.

Finally, with regard to the template catalogue Ptmp which is used as basis for building
the template portfolio, we use the catalogue of the EPEX SPOT day-ahead auction of the
year 2013. As already discussed in Section 4.1.1, this comprises 41 product templates
which results in a search space of 241 = 2 199 023 255 552 template combinations. Be-
cause in this case it is impossible to find an optimal combination through exhaustive
search, the catalogue provides an appropriate basis for our investigations. The base cat-
alog Ptmp,base which is required as further input by the COPE algorithm is thus given by
the 24 single hour templates shown in the upper part of Figure 4.2. With regard to the
price predictions CPtmp for the product templates ptmp ∈ Ptmp, it is generally necessary
to use realistic values as these have consequences on the quality of the results. Thus,
in the course of the following investigations, we determine all predictions c(i)

ptmp ∈ CPtmp

randomly according to product-related frequency distributions extracted from the EPEX
SPOT day-ahead auction prices of the year 2013. As an example, Figure 5.1 depicts the
frequency distribution of the block product ‘Peakload’, i.e. the relative frequency of the
market prices at which the product was traded throughout the year. As shown, the most
frequent prices lay between 30,76e and 40,70e, whereas the least frequent ones lay
between −18.99e and −9, 04e.
In order to examine aspects of optimality in experiment E-RQ1, it is necessary to gener-
ate optimal solutions which can be used as references for the actual experimental results.
As described above, in the context of research question RQ1 we generally consider a sin-
gle operation schedule osU and search for a consistent template portfolio T P such that
utility(T P, osU) is maximal. In order to create an optimal portfolio T P∗ as reference
solution, we first require that all electricity amounts of schedule osU are positive, i.e.
∀t(i)

pl ∈ Tpl : e(i)
U > 0. An example for a valid schedule is shown in Figure 5.2. As
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Figure 5.2: Exemplary operation schedule of a wind energy plant.

COPE optimizes utility, this requirement guarantees that the algorithm prefers product
templates with higher price predictions to those with lower ones. We are then able to
generate an optimal solution by creating a consistent template portfolio T P∗ based on
template catalog Ptmp which provides a unique maximal utility utility(T P, osU)∗. In other
words, we are able to create the one of the 241 portfolios for which we know that it pro-
vides maximum utility with regard to a given operation schedule osU . This is achieved
by first assigning a random price prediction c(i)

ptmp to each product template ptmp ∈ Ptmp

according to the above described frequency distributions. Assuming that c(i)
ptmp,max is the

maximum of all distributed values, we then create T P∗ by randomly determining a con-
sistent template portfolio and assigning the value of c(i)

ptmp,max + ε as price prediction to
all comprised templates. Because all electricity values e(i)

U of osU are positive, adding ε
to c(i)

ptmp,max guarantees that the templates are the most beneficial to choose and thus form
an optimal portfolio. To give a simple example, suppose we distribute random price pre-
dictions to all templates ptmp ∈ Ptmp, determine the ‘Baseload’ template as consistent
portfolio T P (as it covers all planning intervals t(i)

pl ∈ Tpl), and finally assign maximum

price prediction c(i)
ptmp,max + ε to it. If COPE identifies this unique portfolio in the course

of a simulation, it has found the optimal solution from the search space of all possible
solutions.

5.2.2 E-RQ1: Optimum Rate

In order to examine the first of the initially defined research questions, in the follow-
ing we conduct an experiment which allows us to assess the rate at which an agent is
able to maximize its expected utility based on the COPE algorithm. A single simula-
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ID factor description min max

X1 OS S U operation schedule space - -
X2 CPtmp price predictions −18.99 80.5
X3 drawnOS number of drawn operation schedules 1 1

Table 5.3: Parameterization of simulations of experiment E-RQ1.

tion run in the experiment is thus given by a single execution of COPE. In addition to
the scenario settings specified in Table 5.2, Table 5.3 lists the input parameters which
are varied throughout the experiment within the shown ranges. The operation schedule
space OS S U and price predictions c(i)

ptmp for the product templates ptmp ∈ Ptmp are gen-
erated as described in the previous section. In accordance with our experimental goal,
the operation schedule space of the assumed wind energy plant inherently restricts the
number of drawn schedules drawnOS to a single schedule in each simulation run. Based
on the shown parameterization, the experiment is executed as follows:

E-RQ1 For each of 60 different operation schedule spaces OS S U of an inflexible pro-
ducer, a series of 1000 simulations is executed, where in each run the price predictions
c(i)

ptmp for the product templates ptmp ∈ Ptmp are randomly determined according to
specific distributions and the resulting template portfolio T P is captured as response.

I.e., for a single operation schedule space (and thus operation schedule), we execute the
COPE algorithm 1000 times with varying price predictions as input and capture the iden-
tified template portfolios T P as output which we then compare to the optimal reference
solutions T P∗. In order to increase the reliability of the results, we conduct this series
for 60 different schedule spaces which we obtain by simulating the operational behav-
ior of the WEP over a year and extracting those schedules which fulfill the previously
discussed requirement of strict positivity.
Given this experimental setup, we are finally able to assess the performance of COPE
by defining a schedule space-related optimum rate orOS S U which is the quotient of the
number of optimal template portfolios count(T P∗) and the number of simulation runs
count(r) which were executed with schedule space OS S U as input, i.e.

orOS S U =
count(T P∗)

count(r)
. (5.1)

From the above equation it follows that or ∈ [0, 1], where a rate of 0 means that COPE
identified none optimal portfolio at all and a rate of 1 means that it found all optimal
portfolios possible. As specified above, the number of simulations count(r) performed
for each schedule space OS S U is set to 1000 runs.
The results of experiment E-RQ1 are shown in Figure 5.3 in the form of two boxplots
depicting the 60 obtained optimum rates on two different scales. Covering the whole
interval [0, 1], the plot on the left reveals that we generally obtain very good results,
with a minimum optimum rate of 0.981 and a maximum rate of 0.996. The plot on
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Figure 5.3: Optimum rates orOS S U for 60 operation schedule spaces.

the right provides a more detailed view of the outcomes by depicting the quartiles of
the 60 rates via the box and the range of the data through the upper and lower whisker,
where an outlier is given by the point which extends the latter. From a lower quartile of
0.99 it follows that three-quarter of the results show an optimum rate of 0.99 or higher,
i.e. for each operation schedule of the corresponding schedule spaces COPE identified
an optimal template portfolio in at least 99 % of the 1000 executed runs. Moreover,
the narrow range of the data suggests a high reliability of the results even when taking
outliers into account.

5.2.3 E-RQ2: Mean Utility Rate

In order to answer research question RQ2, in the following experiment we examine how
well a maximum achievable utility utility(T P, osU)+ can be approximated by the COPE
algorithm subject to the number of operation schedules drawn from the schedule space
of a flexible unit. Thus, a single simulation in the experiment is again given by a single
execution of COPE. However, in contrast to our previous investigations, we are now
not interested in aspects of optimality but in the algorithmic performance with regard
to a best achievable solution which can be obtained through the application of COPE.
More specifically, we want to analyze how the quality of the results depends on the
number of operation schedules drawn from the schedule space of a unit. As the assumed
CHP plant and lithium-ion battery differ in their operational capabilities and thus in
their degree of flexibility, they allow for a sound analysis of the considered problem.
In this regard, Figure 5.4 shows a comparison of the units’ operation schedule spaces
OS S U which are used in the following simulations, where |OS S U | = 100 000 and each
included operation schedule osU covers 96 planning intervals as determined by planning



5.2 Local Performance 159

0 20 40 60 80

interval

0

20000

40000

60000

80000

100000

sc
he

du
le

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

power (kW)

0 20 40 60 80

interval

0

20000

40000

60000

80000

100000

-4 -3 -2 -1 0 1 2 3 4

power (kW)

Figure 5.4: Schedule space of the applied CHP plant (left) and battery (right).

horizon Tpl. As can be seen from the different depths of the colors, the schedules of the
battery provide a higher degree of operational flexibility by covering a wider scope of
power values. With regard to our considered problem, we are particularly interested in
the question if this fact has an impact on the number of schedules which has to be drawn
from the schedule space because a more flexible schedule space generally contains more
schedules associated with a lower utility.
The parameterization of the executed simulations is shown in Table 5.4. Besides the
operation schedule space OS S U and the price predictions c(i)

ptmp for the product templates
ptmp ∈ Ptmp, we now also vary the number of operation schedules which are randomly
drawn from OS S U within the specified ranges. The schedule space and the price predic-
tions are again generated according to the approaches described in Section 5.2.1. Based
on the shown parameterization, the experiment is conducted as follows:

E-RQ2 For the operation schedule space OS S U of a flexible producer and a storage,
with |OS S U | = 100 000, ten simulations are executed throughout which the num-
ber of drawn operation schedules drawnOS is successively increased in steps of
10 000 and the final utilities utility(T P, osU) are captured as responses. This series
is repeated 1000 times with varying price predictions c(i)

ptmp for the product templates
ptmp ∈ Ptmp which are randomly determined according to specific distributions.

More specifically, for a given operation schedule space we execute a series of ten simu-
lations in which we increase the number of drawn schedules in steps of 10 000, starting
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ID factor description min max

X1 OS S U operation schedule space - -
X2 CPtmp price predictions −18.99 80.5
X3 drawnOS number of drawn operation schedules 10 000 100 000

Table 5.4: Parameterization of simulations of experiment E-RQ2.

from 10 000 up to the limit of 100 000 schedules. As response of each run, we capture
the utility of the identified template portfolio and operation schedule which was achieved
drawing drawnOS schedules. In order to increase the reliability of the results, we repeat
this series 1000 times with varying price predictions.
Based on this experimental setup, the quality of a single simulation is assessed by means
of a utility rate ur which is defined as the quotient of the achieved utility utility(T P, osU)
and the maximum achievable utility utility(T P, osU)+, i.e.

ur =
utility(T P, osU)

utility(T P, osU)+
. (5.2)

The maximum achievable utility utility(PP, osU)+ which is obtainable through appli-
cation of the COPE algorithm can be assessed by exploring the whole schedule space
OS S U (i.e. by setting drawnOS to 100 000). Given ur, we are finally able to assesses
the quality of a series of n simulations by calculating the mean of the corresponding
utility rates, i.e.

ur =

∑n
i=1 uri

n
. (5.3)

In the following, we use the above measure in order to determine the average rate of the
n = 1000 simulations which are executed with the number of drawn schedules being
equal. Generally, it holds that both ur ∈ [0, 1] and ur ∈ [0, 1].
The results of experiment E-RQ2 are shown in Figure 5.5, where the upper plots per-
tain to the CHP plant and the lower ones to the battery. Each plot describes the mean
utility rates ur for the different numbers of drawn operation schedules drawnOS which
were calculated over the 1000 repetitions, where the bar charts cover the whole interval
[0, 1] and the line charts provide a more detailed view of the outcomes by restricting the
scale to interval [0.9, 1]. As shown, we obtain very good results for both the CHP plant
and the battery, with minimum mean utility rates of 0.99628 and 0.95072 and maximum
rates of 0.99994 and 0.99774, respectively2. Generally, ur increases with an increasing
number of drawn schedules which is reasonable as we successively explore higher frac-
tions of the search space and thus raise the probability to find more beneficial schedules.
Moreover, the results show that even for the small numbers of drawn schedules COPE
yields high utility rates for both units, where the values of the CHP plant are close to

2 Because the rates for 100 000 drawn schedules are necessarily 1, we leave them out of discussion.
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Figure 5.5: Mean utility rates ur for a CHP plant (top) and a battery (bottom).

the maximum achievable solution. With regard to the different operational capabilities
of the units, the results finally indicate that for a more flexible unit a higher number of
schedules has to be drawn from the schedule space in order to obtain results comparable
to that of a less flexible unit. The battery yields lower rates for all numbers of drawn
schedules, where the difference is the greater, the less schedules are drawn. However,
taking into account the great differences in the operational flexibilities, the differences
in the utility rates can still be considered very small. Finally, it should be noted that the
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algorithm’s worst case complexity of O(m · log m + n · m) allows to evaluate very large
numbers of drawn schedules which may easily exceed the amounts investigated in the
experiment.

5.2.4 Summary and Discussion

Before evaluating the global performance and efficiency of DYCE, in the following we
first summarize the previous experiments and draw conclusions with regard to the local
performance of the approach based on the obtained results. To this end, we reconsider
Hypotheses 1.1 which we specified at the beginning of the thesis in Section 1.3 in order
to capture our related expectations. This was formulated as follows:

Through integration of an appropriate optimization algorithm, a distributed aggregation
method allows actors to successfully optimize their expected utility and approximate the
optimal solution of the corresponding local optimization problem to a high degree.

In order to examine the hypothesis, we conducted experiment E-RQ1 and E-RQ2 which
evaluated the performance of the COPE algorithm being applied by agents in the course
of product portfolio management in order to optimize their local utility. As there was
only a small number of factors to be handled, we chose the OFAT approach for exper-
imentation. Goal of experiment E-RQ1 was the assessment of optimum rate orOS S U

reflecting the frequency at which COPE is able to identify an optimal template portfolio
T P∗ providing an optimal utility utility(T P, osU)∗ given a considered operation schedule
osU . The simulations revealed very good results showing that in case of three quarter of
the 60 examined schedules an optimal portfolio could be identified in at least 99 % of the
1000 runs which were executed for each schedule. Experiment E-RQ2 then examined
the extent to which the algorithm’s performance depends on the number of operation
schedules drawn from the operation schedule space of a unit. As in practice the degree
of flexibility typically varies among units of different type, we compared the schedule
space of a CHP plant and a lithium-ion battery in the course of the investigations. As
quality measure, we this time considered the mean utility rate ur which is defined as
the average ratio between the achieved and the maximum achievable utility calculated
over a specific number of simulation runs, with 1 being the maximum achievable rate.
Generally, the obtained results revealed a very good performance with regard to both the
CHP plant and the battery, with lowest mean utility rates of 0.99628 and 0.95072 in case
of 10 000 and highest rates of 0.99994 and 0.99774 in case of 90 000 drawn schedules.
The outcomes also showed that a higher degree of flexibility requires a higher number
of schedules to be drawn from the schedule space of a unit in order to achieve results
comparable to those of a less flexible unit. However, the differences in the obtained
rates were still surprisingly small compared to the relatively high difference in the units’
degree of flexibility.
All in all, we can conclude that the outcomes of experiment E-RQ1 and E-RQ2 sup-
port our initially stated hypothesis by showing that the COPE algorithm is suitable for
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optimizing the expected utility of an agent and approximating the maximum of the cor-
responding optimization problem to a high degree. While the received results indicated
that high utilities can already be achieved with small numbers of drawn operation sched-
ules, the algorithm’s worst case complexity of O(m · log m + n · m) generally allows to
process large amounts of samples making the heuristic both an effective and efficient
approach for local optimization.

5.3 Global Performance and Efficiency

Having analyzed the local performance of DYCE, in the following we investigate its
global performance and efficiency by means of a comprehensive study based on tech-
niques from the domain of Design of Experiments. Moreover, we examine its appli-
cability to scenarios comprising large numbers of agents. The corresponding research
questions are defined as follows:

RQ3 Given a power grid G with units Ũ and a target product ptar for which coalitions
to form, how well can an optimal mean coalition value v(C) = 1 be approximated by
DYCE and at which rate are coalitions able to fulfill ptar?

RQ4 Given a power grid G with units Ũ and a target product ptar for which coalitions
to form, which distances cover the scopes sC of the resulting coalitions C?

RQ5 With regard to the criteria global performance, computational cost, communication
cost, and runtime, what is the impact of the different factors and factor interactions
on the respective responses of DYCE?

RQ6 With regard to the criteria global performance, computational cost, communication
cost, and runtime, what is the algorithmic behavior of DYCE subject to the most
influential factors, i.e. what do the respective response surfaces look like?

RQ7 Given a power grid G with units Ũ and a target product ptar for which coalitions
to form, how does DYCE scale with an increasing number of agents A?

While we examine research questions RQ3-RQ6 based on DOE, RQ7 is answered using
the OFAT approach because of a limited number of relevant factors. In the context of
RQ3, we first investigate one of the most crucial characteristics of DYCE by analyzing
its ability to approximate an optimal global solution. The latter is given by a coalition
structure CS ∗ for which the mean coalition value is maximal. We thus examine how
well the formed coalitions are able to approximate the values of their pursued target
product on average. As further indicator for the global performance, we determine the
percentage of coalitions which is finally able to fulfill the target product. In the context of
research question RQ4, we then examine the effectiveness of neighborhood formation by
assessing the scopes of the coalitions C ∈ CS in terms of the maximum distances which
exist between their units. As in the simulations we generally allow coalitions to span the
whole grid, we are interested in the question of how the distance-based neighborhood
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formation influences the scope if no upper limit is provided. In the context of RQ5
and RQ6, we then take a closer look at the algorithmic behavior of DYCE with regard to
the evaluation criteria global performance, computational cost, communication cost, and
runtime. In terms of DOE, these can be considered as responses of the algorithm and thus
examined by means of experimental designs. In the context of RQ5, we first conduct a
factor screening by initially assessing the effects of the relevant factors and their two-way
interactions on the four criteria. We restrict the discussion to main effects and two-way
interactions as there are 214 − 1 = 16 383 effects assessable for each criterion given
the 14 considered factors of DYCE which are analyzed on the basis of a full factorial
design. Thus, we refer to the sparsity of effects principle which states that in most
systems only 20 % of the main and two-way interaction effects are of significance while
the other two-way and higher-order interaction effects vary to the extent of the normal
error [AW07]. Assessing the effects allows us to screen out the most important factors
and investigate their influence on the considered responses in more detail. In RQ6, we
thus examine the dependency between the most pivotal factors and the four evaluation
criteria via response surface modeling. This allows us to provide a detailed description
of the algorithmic characteristics of DYCE in the form of polynomial models which are
created for all four responses. In the context of RQ7, we finally examine the scalability of
the approach with regard to scenarios comprising large numbers of participating agents.
To this end, we again use the above criteria for evaluation and investigate how these
behave if neighborhoods can be extended either to the whole or only a limited part of the
grid.
As in case of research question RQ1, studying aspects of optimality requires the gen-
eration of reference solutions which can be used in order to assess the output of the
simulations. Before detailing the experiments and their results in Section 5.3.2-5.3.4,
we thus start again by describing the used simulation scenarios as well as the approach
applied for creating optimal coalition structures.

5.3.1 Simulation Scenarios and Generation of Reference Solutions

In the following we describe the simulation scenarios which are used as basis for the
performed simulations as well as the procedure which is applied for the creation of
optimal coalition structures CS ∗. Because we intend to study scenarios with the number
of agents being in the order of thousands, it is generally impossible to determine the latter
through calculation of all possible solutions. Thus, we synthetically create the operation
schedules of the units in the considered power grids in such a way that they allow for the
formation of an optimal coalition structure which comprised coalitions C∗ fulfill their
targets product exactly, i.e. ∀C∗ ∈ CS ∗ : v(C∗) = 1. As described in more detail below,
this is achieved by assigning random numbers to the different schedule-related attributes
in a systematic fashion.
The scenario settings which are used throughout the upcoming examinations are shown
in Table 5.5. We generally assume that agents form coalitions day-ahead and apply
a minute-based planning horizon Tpl with a planning interval length of 60 min and a
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concept setting

Tpl tbu = 1 min, tu = 1, ∆t = 60, tmax = 1440, i.e. Tpl = {t(i)
pl | 0 ≤ i ≤ 23}

G power grid with synthetic topology and line impedances
Ũ producers (utp) with synthetic operation schedule spaces
Ptmp singleton template catalogue {pH12}

Table 5.5: Scenario settings for research questions RQ3 to RQ7.

horizon length of 1 day (i.e. tmax = 1440). The power grid G is generated synthet-
ically according to the parameterization of the given simulation as described in more
detail below. The same holds for the set of connected units Ũ which are assumed to
be of type producer. As we already examined the local performance of DYCE in Sec-
tion 5.2, the applied template catalogue Ptmp is restricted to a single product template
pH12 which specifies the constraints for the definition of a single hour product to be ful-
filled at 12:00 pm on the considered day. Before we describe the method for the creation
of G and Ũ in more detail, we first justify our assumptions and intention to configure
the operation schedules of the units through random numbers by arguing that the made
choices are reasonable and have no impact on the quality of the experimental results.
With regard to the restricted template catalogue Ptmp, first recall from Section 4.1.2
that coalition formation for different products is conducted sequentially in disjunct time
intervals. Thus, the size of the catalogue has no impact on the quality of the results.
This also holds for the time of fulfillment which is prescribed by the included prod-
uct template pH12 because we create the operation schedules of the units synthetically
and independent from any temporal aspects which makes the results independent from
temporal aspects as well. With regard to power grid G, recall from Definition 3.10 that
agents form neighborhoods based on grid-related data but the formation process is still
independent from technical aspects as neighborhoods are expanded by a specific number
of agents and not a specific distance. I.e., after having converted the grid data into an or-
dered list of neighbors which is sorted by their distance, an agent conducts the activity of
neighborhood formation and coalition formation without using the information about the
grid again. Thus, assuming that all agents have access to the same data, the power grid G
can not be expected to have an impact on the quality of the results. Finally, with regard
to the connected units Ũ and the chosen unit type utp, recall from Definition 3.25 that in
the context of DYCE units are considered as abstract types, i.e. flexible/inflexible pro-
ducers, flexible/inflexible consumers, and storage. These are independent from specific
technological aspects and only differ with regard to their production and consumption
behavior as well as their operational flexibility. As the operational flexibility is only
exploited in the course of product portfolio management for local utility optimization
and the production/consumption behavior only has an impact on the sign of the cumula-
tive electricity amounts of the formed coalitions, the unit type also has no impact on the
quality of the final results.
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With regard to our intention to configure the operation schedules of the units through
random numbers, we argue that this is a reasonable approach because in real settings
the electricity amount e(i)

U , error err(i)
U , and cost c(i)

U of a unit in a planning interval t(i)
pl

are determined by the unit’s technology and possibly by further external conditions like
varying weather forecasts or the local preferences of an agent. I.e., across the whole
power grid these values typically vary between units because of different factors which
we model by assigning random numbers to the different attributes of the schedules ac-
cording to the approach described below.
Although the above arguments justify a synthetic generation of power grid G, we still
take account of technical characteristics of real networks when creating the scenarios for
the upcoming simulations. More precisely, for a single run we generate G = (VG, EG) by
creating a random radial network with a maximum branching factor of 3 and assigning
random complex numbers as apparent impedances to the lines {vG,k, vG,l} ∈ EG. The size
of the grid is determined by the given number of units which in turn is determined by the
number agents as specified by the parameterization of the simulation, where all units are
assigned to the grid nodes vG,i ∈ VG in a one-to-one relationship. The operation sched-
ules osU of all units U are then configured in such a way that they allow for an optimal
solution, i.e. an optimal coalition structure CS ∗ with mean coalition value v(C) = 1.
To this end, we first define a target product ptar based on product template pH12 ∈ Ptmp

which has to be eventually fulfilled by each coalition C∗ ∈ CS ∗ and which product hori-
zon T (ptar)

pr = {t(12)
pr } complies with pH12 and planning horizon Tpl. The target electricity

amount e(i)
ptar , target error err(i)

ptar , and target cost c(i)
ptar are generally determined by the

parameterization of the given simulation. The target electricity amount e(i)
ptar is used in

order to assess the number of agents being included in an optimal coalition C∗ ∈ CS ∗

which is calculated as

|C∗| =
⌊
0.1 · e(i)

ptar

⌋
. (5.4)

For example, a target electricity amount of 100 kWh results in a coalition size of 10
members. This approach ensures that agents always contribute similar quantities to a
coalition as the target amount is distributed to a member count which is determined by
the amount itself. If the total number of agents |A| in a simulation is no multiple of
the optimal coalition size |C∗|, we create n coalitions C∗ and one coalition C∗r such that
|A| = n · |C∗| + |C∗r |. As the electricity amount determines the optimal coalition size, it
also has an impact on the number of optimal coalitions being part of an optimal coalition
structure CS ∗ which is calculated as

|CS ∗| =
⌊
|A|
|C∗|

⌋
. (5.5)

In order to achieve that all optimal coalitions exactly fulfill ptar, we next create a cumu-
lative contribution conC∗,ptar for each C∗ ∈ CS ∗ which cumulative values exactly match
the specified target values. Thus, for the given product interval t(i)

pr ∈ T (ptar)
pr , with i = 12,

it holds that

conC∗,ptar (t
(i)
pr) = (e(i)

C∗ , err(i)
C∗ , c

(i)
C∗) = (e(i)

ptar , err(i)
ptar , c

(i)
ptar ). (5.6)



5.3 Global Performance and Efficiency 167

In order to make the aggregation of the agents’ individual contributions conptar (t
(i)
pr) equal

cumulative contribution conC∗,ptar (t
(i)
pr), we assign appropriately calculated random num-

bers to the operation schedules osU of the controlled units U in order to specify the
electricity amounts e(i)

U , errors err(i)
U , and costs c(i)

U , taking into account Equation 4.27-
4.29 for the calculation of the cumulative values e(i)

C , err(i)
C , and c(i)

C . To recapitulate, for
a product interval t(i)

pr, the latter are calculated as

e(i)
C =

∑
U∈UC

e(i)
U , (5.7)

err(i)
C =

√∑
U∈UC MS E(i)

U

|e(i)
C |

, (5.8)

c(i)
C =

∑
U∈UC c(i)

U · e
(i)
U

|e(i)
C |

. (5.9)

Taking into account Equation 5.6, it follows from Equation 5.7 that we can distribute the
target electricity amount e(i)

ptar to all units U ∈ UC∗ of an optimal coalition C∗ provided
that

∑
U∈UC∗

e(i)
U = e(i)

ptar . To this end, we assign random numbers e(i)
U to the corresponding

schedules osU such that the equation is met.
With regard to the error, we can rewrite Equation 5.8 given Equation 5.6 as

err(i)
C =

√∑
U∈UC MS E(i)

U

|e(i)
C |

⇔ err(i)
ptar =

√∑
U∈UC MS E(i)

U

|e(i)
ptar |

⇔ (err(i)
ptar ∗ |e

(i)
ptar |)

2 =
∑

U∈UC

MS E(i)
U

(5.10)

According to the above equation, the individual errors of the units can be determined by
first dividing the term (err(i)

ptar ∗ |e
(i)
ptar |)

2 randomly into |C∗| shares in order to retrieve the
mean squared errors MS E(i)

U , where we require that these do not exceed the previously
determined electricity amounts, i.e. MS E(i)

U < e(i)
U for all U ∈ UC∗ . Dividing the roots

of the mean squared errors by the amounts finally yields the desired errors err(i)
U (cf.

Equation 4.26).



168 Evaluation

Finally, with regard to the cost, we can rewrite Equation 5.9 based on Equation 5.6 as
follows:

c(i)
C =

∑
U∈UC c(i)

U · e
(i)
U

e(i)
C

⇔ c(i)
ptar =

∑
U∈UC c(i)

U · e
(i)
U

e(i)
ptar

⇔ c(i)
ptar · e

(i)
ptar =

∑
U∈UC

c(i)
U · e

(i)
U

(5.11)

This equation shows that the individual cost values c(i)
U cannot be determined without

taking the electricity amounts e(i)
U into account. Assuming that UC∗ = {U1, . . . ,Un} and

all e(i)
U ≥ 0, c(i)

U ≥ 0 (because we consider units of type producer), we can first calculate
the cost value of the nth unit Un as follows:

c(i)
ptar · e

(i)
ptar =

n∑
m=1

c(i)
Um
· e(i)

Um

⇔ c(i)
ptar · e

(i)
ptar =

n−1∑
m=1

c(i)
Um
· e(i)

Um
+ c(i)

Un
· e(i)

Un

⇔
1

e(i)
Un

((c(i)
ptar · e

(i)
ptar ) −

n−1∑
m=1

c(i)
Um
· e(i)

Um
) = c(i)

Un
.

(5.12)

Given this cost value along with the above stated assumptions, we can finally choose the
values c(i)

U1
to c(i)

Un−1
of the units U1 to Un−1 randomly from the following intervals:

0 ≤ c(i)
Uk
≤

1

e(i)
Un

(c(i)
ptar ∗ e(i)

ptar ) for k = 1, (5.13)

0 ≤ c(i)
Uk
≤

1

e(i)
Un

((c(i)
ptar ∗ e(i)

ptar ) −
k−1∑
m=1

c(i)
Um
∗ e(i)

Um
) for 1 < k ≤ n − 1. (5.14)

Having determined the electricity amounts e(i)
U , errors err(i)

U , and costs c(i)
U for all units U,

we are finally able to specify their operation schedules osU by setting the entries osU(t(i)
pl )

to the generated values which thus finally allow for the formation of an optimal coalition
structure CS ∗.

5.3.2 E-RQ3, E-RQ4: Global Optimum Approximation and Coalition Scopes

We next provide answers to research question RQ3 and RQ4 by examining the ability
of DYCE to approximate an optimal mean coalition value v(C) = 1 and determining
the rate at which formed coalitions are able to fulfill their target products. Moreover, we
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ID factor description −1 1

X1 e(i)
ptar target electricity amount in kWh 100 200

X2 err(i)
ptar target error 0.01 0.03

X3 c(i)
ptar target cost in e/kWh 0.1 0.2

X4 e(i)
ptar ,−/+

tolerance band for target electricity amount in kWh 0.8 8
X5 err(i)

ptar ,−/+
tolerance band for target error 0.005 0.01

X6 c(i)
ptar ,−/+

tolerance band for target cost in e/kWh 0.05 0.1
X7 |A| number of participating agents 1000 2000
X8 rinit rate of initiators 0.1 0.4
X9 extN extension count 10 40
X10 iu,max number of consecutive unsuccessful initiations 2 8
X11 rCom max. number of proposals accepted at once 1 10
X12 tbi time until responders try to become initiators in min 2 8
X13 bimax max. number of role changes to become an initiator 2 8
X14 ocmax max. number of optimization cycles 1 40

Table 5.6: Parameterization of simulations of experiment E-RQ3, E-RQ4, and E-RQ5.

investigate the scopes of the coalitions in order to analyze the impacts of a distance-based
formation of neighborhoods. For each research question, we conduct an experiment
using a two-level full factorial design which we also apply for a factor screening in the
context of RQ5 in Section 5.3.3. We choose this design type for the considered problems
because it allows for a detailed and complete analysis by covering all possible factor level
combinations (cf. Section 2.3.2.1). A single simulation in each experiment is given by a
single execution of DYCE.
Table 5.6 gives an overview of the input parameters which are used in a simulation in or-
der to configure different aspects of the activities neighborhood formation and coalition
formation. The total number of 14 parameters results in a full factorial design comprising
214 = 16 384 simulation runs in which each parameter is systematically varied between
the listed low level (−1) and high level (1). Before describing the actual experiments
and their results, we start by discussing the values which were chosen for the different
levels. These were on the one hand determined by analyzing the considered problem of
coalition formation in electricity markets and on the other hand by evaluating the results
of test runs which were performed for the assessment of reasonable settings.
The first three factors of Table 5.6 represent the attributes of the target product ptar

which the agents are intended to fulfill in the course of coalition formation as described
in the previous section. The tolerance bands of the attributes within which the target
product is considered to be fulfilled are defined by the corresponding factors X4-X6.
In order to limit the total number of parameters, all bands are specified symmetrically,
i.e. the negative and positive tolerance values are equal and handled as a single factor.
With regard to the first parameter, target electricity amount e(i)

ptar , the low level is set to
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100 kWh which is the minimum volume currently tradable at the EPEX SPOT. Contrary,
the high level is set to the double amount of 200 kWh. As the amount is used in order to
determine the size of the optimal coalitions in a generated scenario (cf. Equation 5.4),
the chosen values result in reasonable member counts of 10 and 20 agents as well as
sensible numbers of coalitions in the optimal coalition structures as discussed in more
detail below. Specifying considerably higher levels would yield numbers of coalitions
being too low for a meaningful analysis. As defined by factor X4, the tolerance band
for the target electricity amount allows coalitions to deviate from the chosen values by
±0.8 kWh in case of the low and ±8 kWh in case of the high level.
As second attribute of target product ptar, the target error err(i)

ptar is varied between a
restrictive low level of 0.01 and a more tolerant high level of 0.03. According to Equa-
tion 4.26, these settings correspond to a RMS E of 1/3 kWh (low/high) for the target
amount of 100 kWh and 2/6 kWh for the amount of 200 kWh. The related tolerance
bands (0.005, 0.005) and (0.01, 0.01) allow for an absolute deviation of ± 0.5/1 kWh and
± 1/2 kWh.
As last attribute of the target product, target cost c(i)

ptar is finally set to a low level of
0.1e/kWh and a high level of 0.2e/kWh. These values roughly reflect the marginal
costs of small-scale units like CHP plants or batteries which are particularly expected
to form coalitions. Note that some types of distributed generators like solar power or
wind energy plants have marginal costs of 0e/kWh. However, because we randomly
distribute the target cost to the members of an optimal coalition when generating a sce-
nario, using this value as low level would result in schedule cost of 0e/kWh in which
case agents would meet the target value even before coalition formation has actually
started (cf. Equation 4.29). As specified by factor X6, the tolerance band for the cost
allows coalitions to deviate from the specified settings by ± 0.05e/kWh in case of the
low and ± 0.1e/kWh in case of the high level.
Besides the parameters related to target product ptar, factor X7 defines the number of
agents which participates in the market and thus the number of units which is connected
to the grid. The chosen levels of 1000 and 2000 producers reflect typical quantities which
occur in today’s mid voltage grids including the connected low voltage grids. Moreover,
taking into account the above discussed optimal coalition sizes of 10 and 20 members,
these settings result in a sufficient number of coalitions in a generated optimal coalition
structure CS ∗. As shown in Table 5.7, for a given simulation the latter can consist of
50, 100, or 200 coalitions depending on the total number of agents |A| and the target
electricity amount e(i)

ptar (cf. Equation 5.5). I.e., both levels result in quantities which
are high enough for the specification of reliable quality measures for evaluation, like
averages of criteria defined over all coalitions which are formed in a single run.
Next, factor X8 determines the percentage of agents which starts the process of coalition
formation as an initiator. Taking into account the possible total numbers of agents as
defined by factor X7, a low level of 0.1 % and a high level of 0.4 % are equivalent to the
absolute amounts of 100 and 400 initiators if |A| = 1000, and 200 and 800 initiators if
|A| = 2000 (cf. Equation 4.22). In this regard, recall from Section 4.3.2.4 that in the
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|A| e(i)
ptar |C∗| |CS ∗|

1000 100 10 100
1000 200 20 50
2000 100 10 200
2000 200 20 100

Table 5.7: Sizes of optimal coalition structures.

course of coalition formation responders switch roles if specific conditions are met, so
these values only refer to the initial state of the process.
With regard to the activity of neighborhood formation, factor X9 defines the extension
count extN by which initiators expand their neighborhood if coalition formation with
current neighbors failed. Considering the optimal coalition sizes of 10 and 20 members,
a low level of 10 agents equals the full and the half size of an optimal coalition, respec-
tively. In contrast, a high level of 40 agents considerably exceeds the optimal sizes but
takes account of the fact that initiators potentially scan large parts of the grid in their
search for new cooperation partners. The number of consecutive unsuccessful initiations
before an agent extends its neighborhood is defined by factor X10. While a low level of 2
initiation attempts is intended to restrict the communication cost of the formation process
by avoiding unnecessary retries, a high level of 8 attempts aims at minimizing the scope
of the resulting coalitions by raising the chance to cooperate with nearer neighbors.
With respect to the interaction protocol which is used by agents for the formation of
coalitions, factor X11 determines the maximum number of proposals which an initiator
accepts at once (cf. Algorithm 4.3). While in case of the low level only the most benefi-
cial reply is agreed to, in case of the high level an agent accepts 10 proposals at the same
time.
Next, factor X12 specifies the time tbi after which a responder a switches its interaction
role with a defined probability P(bi) because of a lack of received calls for proposals.
Assuming that a ∈ C, we generally determine for all simulations that P(bi) = 1 if |C| > 1,
and P(bi) = rinit otherwise. I.e., a responder switches roles with a probability of 100 % if
it is representative of a non-singleton coalition and with a probability equal to the initial
percentage of initiators if it still forms a coalition on its own. With regard to the chosen
levels of tbi, recall from Section 5.1 that in a simulation a single simulation step covers
the period of 100 ms. Thus, the defined levels of 2 min and 8 min correspond to the num-
ber of 1200 and 4800 simulation steps in which calls can be received, respectively. The
maximum number of times which a responder tries to become an initiator is specified by
parameter X13 which is varied between 2 and 8 attempts.
Finally, factor X14 defines the maximum number of optimization cycles ocmax which
are conducted by agents in the course of coalition formation in order to approximate
the values of an already fulfilled target product to a higher degree. While the low level
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restricts the activities to a single optimization attempt, the high level allows for a total of
40 optimization cycles.
Having discussed the settings of the different parameters, we are ready to specify the two
experiments which are performed in order to answer research questions RQ3 and RQ4:

E-RQ3 Given the parameterization shown in Table 5.6, a series of simulations is con-
ducted based on a two-level full factorial design while the resulting cumulative con-
tributions conC are captured as responses.

E-RQ4 Given the parameterization shown in Table 5.6, a series of simulations is con-
ducted based on a two-level full factorial design while the resulting coalition scopes
sC are captured as responses.

I.e., we examine both research questions by executing a full factorial design and cap-
turing those responses which are relevant for the considered problem. In experiment
E-RQ3, we first analyze the resulting cumulative contributions in order to investigate the
capability of DYCE to approximate a global optimum. More precisely, for a single sim-
ulation run we determine the degree of approximation by calculating the corresponding
mean coalition value v(C) reflecting how well the pursued target products are fulfilled by
the coalitions C ∈ CS on average. Furthermore, we examine the rate at which the target
products are successfully fulfilled. I.e., for a given coalition structure CS we assess the
share of coalitions which cumulative values e(i)

C , err(i)
C , and c(i)

C lie within the specified
tolerance bands. Assuming that |CS | = n, the fulfillment rate f r is accordingly defined
as the quotient of the number of successful coalitions count(Cs) and the number of all
coalitions in CS , i.e.

f r =
count(Cs)

n
. (5.15)

As the mean coalition value does not allow to draw conclusions about the individual at-
tributes of the resulting cumulative contributions, in the course of the following discus-
sion we also provide an overview of the cumulative values of the successful coalitions.
With regard to experiment E-RQ4, we then investigate the impacts of neighborhood
formation by considering the mean scope of all coalitions formed in a single simulation
run. As the coalition scope sC depends on technical characteristics of the power grid
which are varied throughout the simulations, we standardize the value in each run by
dividing it by the maximum distance occurring between two units in the given grid.
Thus, it holds for all runs that the normalized coalition scope sn

C ∈ [0, 1]. For a coalition
structure CS , with |CS | = m, the mean normalized coalition scope is then defined as

sn
C =

∑m
i=1 sn

C,i

m
. (5.16)

Generally, all of the measures being applied in the context of E-RQ3 and E-RQ4 (i.e.
v(C), f r, and sn

C) are defined on the interval [0, 1], where a higher value reflects a better
quality of the results.



5.3 Global Performance and Efficiency 173

coalition structures
0.90

0.92

0.94

0.96

0.98

1.00

v(
C

)

low level tolerance bands

coalition structures
0.90

0.92

0.94

0.96

0.98

1.00
high level tolerance bands

coalition structures
0.90

0.92

0.94

0.96

0.98

1.00

v(
C

)

Figure 5.6: Mean coalition values v(C).

We start the discussion of the results by considering the mean coalition values v(C) which
were obtained throughout the simulations of experiment E-RQ3 as shown in Figure 5.6.
Since a coalition value reflects the degree of approximation to the values of a target
product and coalitions continue the formation process until the values of their cumulative
contributions lie within the corresponding tolerance bands, the upper left and the upper
right plot describe those runs in which all bands were set to the low and the high level,
respectively. In both cases, this was true for the number of 2048 simulations. Contrary,
the lower boxplot describes the results of all 16 384 simulations. As shown, we generally
obtain very good results approximating the global optimum of 1 to a high degree, with a
maximum mean coalition value of 0.995. More precisely, for all simulations we retrieve
a lower quartile of 0.964, a median of 0.979, and an upper quartile of 0.985. Considering
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that these results reflect the outcomes of all possible factor level combinations (including
those being disadvantageous with regard to v(C)), we can conclude that under the made
assumptions DYCE allows for a very good approximation to the global optimum and
thus to the values of the pursued target products. As shown by the upper plots, the degree
of approximation expectedly improves if the allowed tolerance bands are specified more
restrictively. The effects of the different input parameters on the mean coalition value
are discussed in more detail in Section 5.3.3.1.
The above results are also reflected by the fulfillment rates f r which were obtained
throughout the experiment as depicted by the boxplots in Figure 5.7. Again, the upper
plots show the outcomes pertaining to the low level and high level tolerance bands while
the lower plot captures the results of all simulation runs. In accordance with the obtained
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coalition values, we generally retrieve very high fulfillment rates, with a lower quartile
of 0.98, a median of 0.99, an upper quartile of 0.99, and a maximum rate of 1. I.e.,
in three-quarter of the runs 98 % of the coalitions were able to successfully fulfill their
target product. Even in case of the low level bands, which were quite restrictive with
regard to the allowed deviations (cf. Table 5.6), we still obtain a median of 0.98, in
contrast to a corresponding value of 0.99 in case of the more tolerant high level bands.
With regard to the coalitions which were able to successfully fulfill their target product
throughout the experiment, the boxplots in Figure 5.8 show statistics concerning their cu-
mulative contributions. More precisely, the plots on the left capture the mean cumulative

electricity amounts e(i)
Cs , mean cumulative errors err(i)

Cs , and mean cumulative costs c(i)
Cs of

the successful coalitions’ cumulative contributions conCs,ptar which were calculated for
all simulation runs, i.e. a single mean value pertains to a single run. The plots on the
right depict the corresponding standard deviations meaning that a single value refers to
the related cumulative values of the successful coalitions’ cumulative contributions of a
single run. As the target values of the different attributes were varied throughout the ex-
periment, the shown statistics refer to those runs in which the parameters were set to the
low level which was true for half of the total number of simulations3. As shown by the
left plots, the mean cumulative values approximate the pursued target values very well.
Moreover, the standard deviations indicate a very low variation among the cumulative

values of a single run. For instance, for the mean cumulative electricity amounts e(i)
Cs we

obtain a lower quartile of 99.997 kWh, a median of 100.068 kWh, and an upper quartile
of 100.679 kWh, where in three-quarter of the runs the corresponding standard deviation
is 3.168 kWh or less. Considering that in half of the cases the corresponding tolerance
band was set to the high level of ±8 kWh, these values indicate that the actual devia-
tions from the specified target amount are significantly lower than the allowed tolerance
values.
With regard to experiment E-RQ4, the boxplots in Figure 5.9 depict the mean normalized
coalition scopes sn

C which were obtained throughout the simulations. Since the target
electricity amount e(i)

ptar of target product ptar determines the number of members of an
optimal coalition and thus influences the maximum distance between the included units
(cf. Equation 5.4), the left and the right plot show the outcomes pertaining to the low
and the high level of the factor, respectively. For the interpretation of the results, recall
that in the experiment we did not restrict the coalition scope by an upper threshold,
i.e. coalitions were allowed to include units lying arbitrarily far apart. However, the
plots in Figure 5.9 show that the final scopes are in fact limited. More precisely, for
the target value of 100 kWh and 200 kWh we obtain an upper quartile of 0.44 and 0.51
indicating that in three-quarter of the runs sn

C covers not more than 44 % and 51 % of
the grid, respectively. Expectedly, for the high level we get wider scopes because of
bigger coalition sizes (on average, the resulting coalitions comprised 10.062 and 20.116
members in case of the low and the high level, respectively). Interestingly, although the

3 The results for the high levels can be found in Appendix A, Figure A.1. Moreover, Figure A.2 gives an
example for the cumulative values of a single simulation run.
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mean size approximately doubles, the mean normalized scope only increases slightly
which suggests a non-linear relationship. All in all, we can conclude that distance-based
neighborhoods are an appropriate means to limit the distribution of units of a coalition
and exploit the associated potentials as discussed in Section 1.1. If the coalition scope is
to be restricted to a defined section in the grid, localized products have to be used which
are appropriately accounted for by interaction protocol 4.12 (see also Definition 3.33).

5.3.3 E-RQ5, E-RQ6: Factor Screening and Response Surface Modeling

In the following sections we provide answers to research questions RQ5 and RQ6 by
first performing a screening of the factors in Table 5.6 for each of the considered evalua-
tion criteria global performance, computational cost, communication cost, and runtime.
Based on the results, we then identify the most influential parameters and model the cor-
responding response surfaces in the form of polynomial functions. This way, we provide
a detailed view of the global performance and efficiency of DYCE and reveal the impacts
of the relevant input parameters on the considered criteria. The conducted experiments
are based on two different types of experimental designs, where a single simulation run
is again given by a single execution of DYCE. With regard to the measures which are
applied in order to quantify the considered criteria, we assess the global performance by
using mean coalition value v(C). Contrary, the computational cost is measured through
the number of times which the CCOR algorithm is called in the course of coalition for-
mation. As the heuristic performs the calculations for the optimization of the global
coalition structure, the corresponding number of function calls f c can be used as reason-
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able means to reflect the computational efforts of the agents. The communication cost
and runtime are finally measured through the number of messages msg which are sent
between agents in the course of coalition formation and the total simulated realtime sr
which elapses until termination.
Given these measures, the experiments for answering the two research questions are
conducted as follows:

E-RQ5 For the criteria global performance, computational cost, communication cost,
and runtime, a two-level full factorial design is executed based on the parameteriza-
tion given in Table 5.6, where for each simulation the resulting cumulative contribu-
tions conC , the number of function calls f c, the number of messages msg, and the
simulated realtime sr are captured as responses.

E-RQ6 For the criteria global performance, computational cost, communication cost,
and runtime, a central composite design is executed based on the parameterizations
given in Table 5.8-5.10, where for each simulation the resulting cumulative contri-
butions conC , the number of function calls f c, the number of messages msg, and the
simulated realtime sr are captured as responses.

I.e., in experiment E-RQ5 we apply a full factorial design as already used in the previ-
ous section in order to assess the effects of the different factors and their interactions on
the considered evaluation criteria. In this regard, we restrict our investigations to main
effects and two-way interactions as discussed above. The results allow us to identify
the most influential factors for each criterion which we then use in experiment E-RQ6
as input parameters for creating the corresponding response surface models based on
appropriate central composite designs. As we intend to examine possible factor interac-
tions, the models are provided in the form of second-order polynomial functions which
goodness of fit is assessed through the coefficient of determination and a comprehensive
residual analysis as discussed in Section 2.3.4. In case an improvement of the fit seems
worthwhile, we also discuss the results which can be achieved by means of higher-order
polynomials4. Because in experiment E-RQ5 we apply a full factorial design in the con-
text of a deterministic system and thus do not face any randomness in the investigations,
the significance of a factor or a factor interaction can not be determined by means of
confidence intervals (cf. Section 2.3.3). As general rule, we thus consider those factors
and interactions as significant which absolute effect |e f f | is at least a third as high as
the maximal absolute effect |e f fmax| on a given response. For response surface model-
ing, we then use the three most significant factors in order to focus on the most pivotal
parameters.
With regard to the central composite designs applied in experiment E-RQ6, we generally
use an inscribed type in order to preserve the bounds of the original parameterization in
Table 5.6. I.e., the α levels of the identified factors are always set to the low and the
high level of the original parameterization while the remaining levels (−1, 0, and 1) are

4 Higher-order polynomial functions allow to increase the degree of approximation to the data. However,
this benefit comes at the cost of a higher complexity and the risk to overfit the data.
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adjusted accordingly (cf. Section 2.3.2.2). The settings of all other factors which are
not included in the model are chosen according to the given optimization goal based on
the results obtained in experiment E-RQ5. More precisely, for each considered criterion
we identify that simulation run of E-RQ5 which yields the best result in terms of the
applied quality measure and parameterize the remaining factors accordingly. If there
are several runs yielding the best result, from these we choose one being optimal with
regard to the other three criteria. For instance, if there are several runs yielding the
maximum achievable global performance, we choose one (or the one) minimizing the
computational cost, communication cost, and runtime.
In the following sections, we discuss the results of experiment E-RQ5 and E-RQ6 struc-
tured by the different evaluation criteria. We always start by describing the outcomes of
the factor screening and then provide the model of the response surface. As there are
105 main and two-way interaction effects assessable for a criterion, we focus on the 40
highest effects in each case. With regard to the response surface models, we provide
line and contour plots for all included parameters and visualize the results of the residual
analyses according the descriptions in Section 2.3.4.

5.3.3.1 Global Performance
Factor Screening
The Pareto chart in Figure 5.10 shows the outcomes of experiment E-RQ5 for the cri-
terion global performance by depicting the 40 most influential parameters and two-way
interactions ordered by their impact on mean coalition value v(C). The dashed lines
indicate the significance levels being determined by the maximum absolute effect as dis-
cussed above. In accordance with the results of experiment E-RQ3 which showed a very
good approximation to the global optimum, the impacts on mean coalition value v(C)
are generally low. The highest effect is induced by the tolerance band for the target elec-
tricity amount (X4) which reduces the mean coalition value by −0.023 when increased
from the low to the high level. This is reasonable as a wider band allows a higher de-
viation from the target volume which in turn yields a lower coalition value5. The same
holds for the cost band (X6) which has the third highest impact on the response. Still,
with a value of −0.01 the effect is not even half as high as in case of the electricity band.
This difference can be attributed to the fact that the values of the electricity amount and
the error are of different orders of magnitude which has the consequence that changes
in the corresponding tolerance bands have different impacts on the coalition value. This
interpretation is further supported by the error band which only induces a minor reduc-
tion of −0.0002 and is thus not shown in Figure 5.10. At first sight, these results might
suggest that the different attributes of a coalition’s cumulative contribution also have an
unbalanced impact on the coalition value and thus the optimization process in general.
However, recall from Section 4.3.2.2 that the coalition value is not calculated on the basis
of the cumulative values but the corresponding approximation values which definitions

5 With regard to the following discussion, recall from Section 2.3.3 that an effect describes the mean impact
of a factor averaged over all performed simulations meaning that it has to be interpreted in this sense.
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Figure 5.10: Main and interaction effects on the mean coalition value v(C).

take account of this problem. As in the course of coalition formation these are further
weighed dynamically according the given mean degrees of fulfillment, it is guaranteed
that the different attributes are appropriately taken into account.
In contrast to the bands, the target electricity amount (X1) has a positive effect on the
mean coalition value if increased from the low to the high level. This result can be at-
tributed to the fact that in case of a higher target value the size of the optimal coalitions
C∗ increases while their number in the optimal coalition structure CS ∗ decreases (cf. Ta-
ble 5.7). As agents strive for this optimal outcome, eventually less but bigger coalitions
form which are able to approximate the values of the pursued target product to a higher
degree because of a reduced combinatorial complexity.
Besides the above main effects, Figure 5.10 also shows significant two-way interactions
which indicate that the involved factors have to be considered in conjunction. More
precisely, the two interactions X1X4 and X3X6 show that the effect of the target electricity
amount (X1) and target cost (X3) depend on the level of the respective bands (X4 and
X6), and vice versa. This is reasonable because a tolerance band specifies an absolute
permitted deviation meaning that the relative deviation is bigger if the target value is set
to the low level. The fact that the target error does not significantly interact with its band
can be attributed to the same reason as discussed above.
All further factors and interactions show only minor effects below the defined signifi-
cance level. In particular, the maximum number of optimization cycles which are con-
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ID factor −1 −α 0 α 1

X1 e(i)
ptar 100 123.274 150 176.726 200

X4 e(i)
ptar ,−/+

0.8 2.476 4.4 6.324 8
X6 c(i)

ptar ,−/+
0.05 0.06 0.08 0.09 0.1

Table 5.8: Parameterization of simulations of experiment E-RQ6 (global performance).

ducted by agents in order to further approximate a fulfilled target product (X14) has a
positive but rather small effect on the mean coalition value.

Response Surface Modeling
In order to model the response surface of mean coalition value v(C), in experiment
E-RQ6 a central composite design was executed based on the three most significant
factors as identified in the context of the previous screening. As shown in Figure 5.10,
these are given by the target electricity amount (X1), the corresponding tolerance band
(X4), as well as the tolerance band for the cost (X6). The values of the respective factor
levels are summarized in Table 5.8, whereas the settings of the remaining eleven param-
eters are listed in Appendix B, Table B.1. Based on the obtained simulation results, a
second-order polynomial model was created which describes the relationship between
the response and the included factors. This is given by

v̂(C) = 0.0016X2
1 − 0.0029X2

4 + 0.0019X2
6

+ 0.0111X1X4 + 0.0043X1X6 − 0.0055X4X6

+ 0.0109X1 − 0.0193X4 − 0.009X6

+ 0.9664.

(5.17)

The corresponding coefficient of determination R2 = 0.97 indicates a high goodness
of fit. The residual analysis of the model is given in Appendix B, Figure B.16. As
depicted, the plots show no extreme patterns. More precisely, the probability plot in the
upper left corner indicates that the residuals approximately follow a normal distribution.
Furthermore, the following three scatter plots show that the values do not depend on
specific levels of the considered factors. Finally, the last plot indicates that the residuals
have constant variance as these are randomly distributed about 0.
The above model allows to visualize the response surface of the mean coalition value by
means of line and contour plots as shown in Figure 5.11. Each line plot describes the

predicted value v̂(C) as a function of one of the considered factors under the assumption
that the other two parameters are set to level 0. Correspondingly, each contour plot

visualizes the relationship between v̂(C) and a specific two-way interaction.
6 As discussed in Section 2.3.4, examining the independence of residuals from time makes sense in the
context of nondeterministic systems only. Thus, we do not consider this aspect in the following residual
analyses.
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Figure 5.11: Response surface of the mean coalition value.
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Taking into account the results of the previous sections, the line plots are generally in line
with the mean coalition values and effects obtained in experiment E-RQ3 and E-RQ5,
respectively. More precisely, the first plot shows that the predicted mean coalition value
steadily increases with an increasing target electricity amount until reaching a maximum
of 0.979. Contrary, the value decreases with a widening electricity and cost band as
depicted by the second and third plot. Note that the effects which were obtained in the
context of the previous screening are still reflected by the coefficients of the model7

and the depicted curves. For instance, the second curve shows that the electricity band
induces the highest effect among all three criteria. However, we now gain a detailed
picture of the factors’ impacts between the low and the high level which was previously
unobservable. More precisely, the curves show that the mean coalition value increases
or decreases almost linearly with an increasing factor level which is a valuable new
information with regard to the global performance and appropriate parameterization of
DYCE.
The interactions between the three factors are described by the contour plots on the right
hand side of Figure 5.11. Besides illustrating the dependency between the involved pa-
rameters in detail, each contour plot allows to identify the factor levels at which the
response takes on its minimum and maximum with regard to the considered interaction
and to assess the relevance of the latter in terms of its impact. In this regard, it gener-
ally holds that a strong curvature of the contour lines indicates a high significance. This
can for instance be seen when analyzing the plots in Figure 5.11 in view of the results
obtained in the context of the previous screening. Here, the most influential interac-
tion effect was induced by the target electricity amount and its tolerance band (X1X4).
Correspondingly, the first contour plot in Figure 5.11 shows the lines with the strongest
curvature. These now also illustrate the previously discussed reason for the interaction:
As indicated by the horizontal orientation of the lines near the y-axis, the level of the
electricity band is more relevant for the mean coalition value if the target amount is set
to −1 (meaning that in this case a small change in the level leads to a relatively big
change in the response). If the amount increases, the level of X4 becomes less important
because the relation between the tolerance values and the target amount changes, i.e.,
the relative tolerated deviation becomes smaller. This can be seen from the more vertical
orientation of the lines on the right hand side of the plot. Likewise, the level of the target
electricity amount is of greater importance if the electricity band is set to the high level.
This is reasonable as in this case the tolerated deviation is generally larger. Expectedly,
the maximum mean coalition value is achieved if both factors are set to −1, whereas the
minimum occurs if the target amount and the band are set to the low and the high level,
respectively.
As indicated by the weaker curvature of the contour lines, the other two interactions
are of less importance which could already be observed in the context of the screening.
In case of the interaction between the target electricity amount and the cost band, the
maximum mean coalition value is obtained if the factors are set to the high and the low

7 Recall from Equation 2.11 that the effect of a factor or an interaction is twice the value of its coefficient.
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Figure 5.12: Main and interaction effects on the number of function calls f c.

level, respectively. Vice versa, the minimum occurs in just the opposite case. Although
the interaction is of less relevance, these results are still reasonable as they reflect the
combined effect of the individual factors. Correspondingly, in case of the interaction
between both tolerance bands the maximum and minimum occur if both factors are set
to the low and the high level, respectively.

5.3.3.2 Computational Cost
Factor Screening
The results of the factor screening for the criterion computational cost are depicted in
Figure 5.12. As shown, there are generally more factors and interactions with a sig-
nificant impact than in case of the global performance. As most influential factor, the
target electricity amount (X1) causes a considerable decrease in the number of function
calls when set from the low to the high level. As in this case the size of the optimal
coalitions |C∗| and the cardinality of the optimal coalition structure |CS ∗| change, the ef-
fect reveals that the formation of less but bigger coalitions requires less calculations. A
further decrease in the computational cost is induced by an increase of the initiator rate
(X8) which is an interesting insight because a first guess might be that a higher rate leads
to an increased number of regrouping attempts and thus to a higher number of function
calls. However, a higher rate also accelerates the formation processes which thus require
less calculations. Likewise, setting the maximum number of simultaneously accepted
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proposals (X11) from the low to the high level also leads to a reduction in the computa-
tional cost. This effect can be attributed to the fact that in case of an increase the number
of initiations which – from the perspective of the replying agents – finally do not lead
to a regrouping is reduced. Assume for instance an initiator which sends a CFP to 40
neighbors from which 20 reply with a proposal. Accepting 10 of these answers and not
only the most beneficial one then reduces the number of function calls which were exe-
cuted by agents which are not part of the final regrouping. In contrast, an increase in the
computational cost is induced by a higher maximum number of additional optimization
cycles which are conducted by agents when their target product is already fulfilled (X14).
While this result can be easily explained by the additional regrouping attempts which are
caused by an increase of the parameter, it also shows that the size of the effect has to be
taken into account when parameterizing DYCE (see also Chapter 5.3.5). Finally, the last
significant factor is given by the number of participating agents (X7) which increases the
computational cost to a similar extent if set from the low to the high level. This effect can
simply be attributed to the parameter’s impact on the cardinality of the optimal coalition
structure and thus the number of coalitions which eventually form.
Besides these main effects, there are also a number of two-way interactions which in-
dicate that the involved factors have a mutual impact on each other and thus have to be
considered in conjunction. More precisely, the effect of the target electricity amount (X1)
depends on the maximum number of optimization cycles (X14), the number of agents
(X7), as well as the rate of initiators (X8), and vice versa. These interactions can be ex-
plained by X1’s impact on the cardinality of the optimal coalition structure. As the latter
is also influenced by the number of agents, both parameters have a mutually dependent
influence on the computational cost as revealed by interaction X1X7. Moreover, if the
target amount is set to the high level and thus less coalitions form, less optimization
cycles are performed as well (X1X14). In this case, an increased rate of initiators also
has a lower reducing impact on the computational cost because less formation processes
are carried out in total, whereas the reducing effect of the target amount is lower if the
initiator rate is high (X1X8).
As further interactions, the effect of the maximum number of optimization cycles also
depends on the rate of initiators as well as the number of participating agents, and vice
versa. The first interaction (X8X14) might not seem obvious at first sight because the
optimization cycles are executed at the end of a formation process and the initiator rate
does not influence the cardinality of the optimal coalition structure meaning that it has
no decisive impact on the number of coalitions which eventually forms. However, a
higher initiator rate also results in an increased parallelism, i.e. in the most extreme case
coalitions form and finally fulfill their target products simultaneously. From an initiator’s
point of view, the set of potential cooperation partners for the additional optimization
activities is then quite limited which results in a decreased number of function calls.
Correspondingly, a lower initiator rate causes coalitions to form in a more sequential
fashion in which case optimization-related regrouping requests can be sent to a higher
number of addressees. More obviously, the interaction with the number of participating
agents (X7X14) can be explained by the latter’s influence on the cardinality of the optimal
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ID factor −1 −α 0 α 1

X1 e(i)
ptar 100 123.274 150 176.726 200

X7 |A| 1000 1233 1500 1767 2000
X14 ocmax 1 10 21 31 40

Table 5.9: Parameterization of simulations of experiment E-RQ6 (computational cost &
communication cost).

coalition structure which in turn has an impact on the number of executed optimization
cycles and thus the computational cost.
Finally, the last significant dependency exists between the extension count by which
agents expand their neighborhood and the maximum number of simultaneously accepted
proposals (X9X11). As already discussed above, increasing the latter leads to a reduction
in the computational cost because the number of initiations which finally do not lead to
a regrouping is decreased. This effect is intensified if the extension count is set to the
high level as in bigger neighborhoods calls for proposals are sent to a higher number of
neighbors.

Response Surface Modeling
With regard to the computational cost as reflected by the number of function calls f c,
the three relevant factors for response surface modeling are given by the target electricity
amount (X1), the number of agents (X7), as well as the maximum number of optimization
cycles (X14). The parameterization which was used for the specification of the executed
central composite design is shown in Table 5.9, while the settings of the remaining fac-
tors can be found in Appendix B, Table B.2. The model which was created on the basis
of the obtained simulation results is given by

f̂ c = −289X2
1 + 693X2

7 + 3164X2
14

− 6052X1X7 − 10781X1X14 + 8349X7X14

− 9765X1 + 8422X7 + 14894X14

+ 17806.

(5.18)

With a value of R2 = 0.94, the corresponding coefficient of determination reveals a high
goodness of fit. Furthermore, the plots in Appendix B, Figure B.2, indicate that the resid-
uals of the model follow a normal distribution and have constant variance. Moreover,
there are no extreme dependencies on the levels of the included factors.
The line and contour plots which visualize the response surface of the computational cost
are shown in Figure 5.13. From the first line plot we can see that the predicted number of
function calls decreases almost linearly with an increasing target electricity amount. As
the latter has an impact on the number of coalitions which eventually forms, this means
that if we steadily increase the coalition size and thereby reduce the cardinality of the
final coalition structure, the computational cost is reduced as well. The opposite holds in
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Figure 5.13: Response surface of the number of function calls.
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case of the number of participating agents as shown by the curve of the second line plot.
Here, a steady increase of the factor causes a nearly linear increase in the computational
cost. For a distributed method like DYCE, this is a highly desirable result as it indicates
that the approach can be applied to scenarios comprising large numbers of actors. With
regard to the maximum number of optimization cycles, we finally obtain a similar curve
which is characterized by a steeper slope, however. I.e., in contrast to the results from
the screening, the factor now even induces the highest absolute effect among the three
parameters. We will discuss this outcome in view of the other evaluation criteria when
drawing conclusions from experiment E-RQ3-E-RQ7 in Section 5.3.5.
The interactions between the three factors are described by the contour plots on the right
hand side of Figure 5.13. The most significant one involves the target electricity amount
(X1) and the maximum number of optimization cycles (X14) as indicated by the curva-
ture of the corresponding contour lines. The horizontal orientation of the lines near the
y-axis shows that the level of X14 is more relevant for the computational cost if the target
amount is set to −1. If the amount increases, the setting of X14 becomes less important
because a lower number of coalitions is formed and thus less optimization activities are
conducted in general. Contrary, the level of the target amount has a more decisive influ-
ence on the response if the number of optimization cycles is set to 1. This is reasonable
as well because the number of formed coalitions is of higher relevance for the compu-
tational cost if more optimization activities are performed in general. Consequently, the
variance of the response values is low if the number of optimization cycles is set to −1.
This is also the reason why the minimum computational cost occurs if the target amount
is set to the low instead of the high level as suggested by the descriptions above. Con-
trary, the maximum cost is expectedly induced if the amount and the optimization cycles
are set to −1 and 1, respectively.
As depicted by the first contour plot, the interaction between the target electricity amount
and the number of agents has similar characteristics, where the curvature of the contour
lines indicates a lower significance. Here, both factors have a more decisive influence
on the computational cost if the other parameter is set to a level which leads to a higher
number of formed coalitions. For the target amount and the number of agents this holds
when the factors are set to the low and the high level, respectively. These are also the
settings which cause the highest coalition count in conjunction and thus the maximum
computational cost. Contrary, the minimum cost occurs in just the opposite case. Finally,
the last contour plot shows the interaction between the number of agents and the maxi-
mum number of optimization cycles. Again, each factor has the most decisive influence
on the response if the other one is set to a level which induces the highest computational
cost. As for both parameters this is the high level, the maximum and minimum cost
occur if these are set to 1 and −1, respectively.

5.3.3.3 Communication Cost
Factor Screening
Figure 5.14 shows the results of the factor screening for the criterion communication
cost. Generally, the three most relevant factors are the same as in case of the compu-
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Figure 5.14: Main and interaction effects on the number of messages msg.

tational cost, where their relative importance differs as reflected by the order of their
effects. The parameter with the biggest impact is given by the number of agents (X7)
which considerably increases the amount of transferred messages if set from the low to
the high level. As in case of the computational cost, this effect can be simply explained
by the factor’s impact on the cardinality of the optimal coalition structure and thus the
number of coalitions which eventually forms. Furthermore, increasing the maximum
number of optimization cycles (X14) also raises the message count because of the addi-
tionally induced regrouping activities. Both effects are of similar size showing that the
higher optimization efforts almost cause the same communication load as the doubling
of the number of agents. A further significant but smaller increase in the communication
cost is induced by a change of the extension count (X9) which simply results from the
fact that in bigger neighborhoods messages are exchanged between a higher number of
agents. Interestingly, in the context of the computational cost the factor was only in-
volved in a significant interaction and did not play a relevant role on its own. This fact
reveals that the extension count considerably influences the message count but not the
number of function calls. Contrary, the only significant reduction in the communication
cost is induced by an increase of the target electricity amount (X1) which can again be
attributed to the parameter’s impact on the cardinality of the optimal coalition structure.
Analogous to the case of the computational cost, the effect shows that the formation of
less but bigger coalitions requires less communication.
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All further significant effects relate to interactions which mainly involve the above dis-
cussed factors. The highest dependency exists between the number of unsuccessful ini-
tiations before a neighborhood is extended and the maximum number of optimization
cycles (X10X14). As described in Section 4.3.2.4, setting the first parameter to a high
value is generally intended to prevent a premature neighborhood extension by raising
the chance that initiators cooperate with nearer neighbors. In the context of experiment
E-RQ5, we can see this effect from the factor’s diminishing impact on the mean normal-
ized coalition scope (cf. Equation 5.16) as depicted by the Pareto chart in Appendix A,
Figure A.3. More precisely, an increase of X10 results in a decreased coalition scope
which indicates a reduced size of the final neighborhoods. The latter explains the fac-
tor’s interaction with X14 as in case of a smaller neighborhood size the impact of the
optimization cycles on the communication cost is limited as well. Because of its influ-
ence on the chance of a neighborhood extension, X10 also interacts with the extension
count which effect on the number of messages is obviously more restricted if neighbor-
hoods are expanded less often (X9X10). In turn, the extension count further interacts
with the maximum number of optimization cycles which can be attributed to the fact
that the additional optimization efforts cause a higher communication load if involving
more neighbors (X9X14). The last significant interaction finally indicates a dependency
between the target electricity amount and the maximum number of optimization cycles
(X1X14) which can be again explained by the former’s impact on the cardinality of the
optimal coalition structure. I.e., a higher number of coalitions results in increased opti-
mization efforts which in turn cause a higher amount of transferred messages.

Response Surface Modeling
The previous assessment of the effects on the number of sent messages msg showed that
the relevant factors for response surface modeling are given by the same parameters as
in case of the computational cost, i.e. the target electricity amount (X1), the number
of agents (X7), and the maximum number of optimization cycles (X14). Thus, the exe-
cuted central composite design was specified on the basis of the parameterization already
shown in Table 5.9, whereas the remaining factors were set as listed in Appendix B, Ta-
ble B.3. The second-order polynomial which was derived from the simulation output is
defined as

m̂sg = −5287X2
1 + 24695X2

7 + 6448X2
14

− 6103X1X7 − 13522X1X14 + 33962X7X14

− 30636X1 + 54837X7 + 53536X14

+ 99994.

(5.19)

The corresponding coefficient of determination R2 = 0.92 and the residual analysis in
Appendix B, Figure B.3, indicate that the model fits the data well. In particular, the
given plots show that the residuals approximately follow a normal distribution and have
constant variance, while there are no extreme dependencies on specific factor levels.
The response surface which is described by the above model is visualized in Figure 5.15.
With regard to the individual factors, the depicted curves are generally similar to those
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Figure 5.15: Response surface of the number of messages.
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obtained in the context of the computational cost, where the most significant difference is
given by the effect which is induced by the number of agents in relation to the other two
parameters. As shown by the corresponding line plot, in case of this factor the predicted
number of messages increases slightly faster than linearly with an increasing factor level.
While the induced (absolute) effect is also the highest among all three parameters, it is
not significantly bigger than the one caused by the number optimization cycles. Thus,
it can be followed that with regard to the communication cost DYCE still scales well
with the number of agents. We will further examine this aspect in the context of the last
experiment in Section 5.3.4. In contrast, the curves of the other two factors show an
almost linear relationship, where an increased number of optimization cycles leads to a
higher and an increased target electricity amount leads to a lower communication cost.
Considering the interactions between the three factors on the right hand side of Fig-
ure 5.15, we can also observe similarities to the results obtained in the context of the
computational cost. In particular, by taking a closer look we can see that the different
dependencies can be explained by the same reasons. In the context of the first interac-
tion, a change of the target electricity amount or the number of agents accordingly has
a bigger impact on the response if the other factor is set to a level which results in a
higher number of formed coalitions. This is reasonable because a change then affects
a higher communication cost resulting from the increased formation efforts. As in case
of the individual factors, the highest number of coalitions is formed if the target amount
and the number of agents are set to −1 and 1, where the relevance of a parameter de-
creases if the other one deviates from the respective level. As can be seen from the
contour plot, these are also the settings at which the maximum communication cost is
induced in conjunction, whereas the minimum cost is obtained if the factors are set to 1
and −0.98. The second interaction shows a similar characteristic meaning that a change
of the target amount has a bigger impact on the communication cost if a higher number
of optimization cycles is performed in general. Contrary, the latter factor is of greater
importance if the target amount is set to the low level and more coalitions are formed
in total. In conjunction, the maximum communication cost is induced if the parameters
are set to −1 and 1, whereas the minimum cost occurs in just the opposite case. The
last interaction can finally be interpreted analogously because an increased number of
agents also leads to a higher number of formed coalitions and thus has a similar effect
on the communication cost as a decreased target amount. Correspondingly, each factor
is of bigger importance for the response if the other one is set to a level which causes a
higher number of messages in general, where the maximum and minimum load occurs
if both parameters are set to 1 and −1, respectively.

5.3.3.4 Runtime
Factor Screening
As can be seen from the Pareto Chart in Figure 5.16, among all evaluation criteria the
runtime is exposed to the highest number of significant effects. The biggest impact is
induced by the extension count (X9) which considerably reduces the runtime when set
from the low to the high level. This effect can be attributed to the fact that the high level
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Figure 5.16: Main and interaction effects on the simulated realtime sr.

allows initiators to take an increased number of neighbors for their regrouping activities
into account and thus to find appropriate cooperation partners faster. However, as shown
by the results of the previous section, this benefit generally comes at the cost of a higher
communication load.
Further significant reductions in the runtime are caused by the target electricity amount
(X1) and the rate of initiators (X8). These results are in line with the factors’ diminishing
effects observed in the context of the computational and communication cost and can
be analogously explained by the induced decrease in the number of formed coalitions
and the higher degree of parallelism with regard to the conducted formation activities.
In contrast, the runtime is increased through a higher number of unsuccessful initiations
before a neighborhood is extended (X10). While in this case the high factor level pro-
longs the formation process if a neighborhood does not comprise a sufficient amount of
appropriate cooperation partners in general, it also provides the advantage to raise the
chance of a collaboration with nearer neighbors as discussed in the previous section. A
longer runtime is further induced by the maximum number of times which an unsuc-
cessful responder switches roles and become an initiator in order to proactively form a
coalition (X13). This result is not surprising as a higher number of role changes prolongs
the formation process. Likewise, increasing the number of agents (X7) also results in
a longer runtime which can be on the one hand explained by the associated increase
in the grid size and on the other hand by the higher number coalitions which is finally
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formed. A larger grid has a delaying impact because the extension count is a constant
factor and neighborhoods can be expanded up to the whole network. The last significant
effect is finally induced by the time which a responder waits for appropriate regrouping
requests until switching roles and becoming an initiator (X12). Clearly, increasing the
period prolongs the formation process if the agent is not addressed by other participants.
Besides the above main effects, there also exist significant two-way interactions between
some of the discussed factors. The first one involves the extension count and the number
of unsuccessful initiations before a neighborhood is expanded (X9X10). This dependency
can be explained by the fact that a low extension count requires initiators to expand a
neighborhood more often in order to include the same amount of agents as in case of
a high factor level. Consequently, the delaying effect of X10 is intensified because the
number of unsuccessful initiations refers to a specific neighborhood size. Furthermore,
the extension count interacts with the number of agents (X7X9) which can be attributed
to the fact that neighborhoods are generally extendible to the whole grid. I.e., the time-
saving effect caused by an increase of X9 is higher if more agents participate and the
grid is of bigger size. Finally, the extension count also interacts with the maximum
number of times which a responder becomes an initiator (X9X13). To clarify, assume
that X13 is set to the high level and a responder repeatedly changes roles but remains
unsuccessful in its attempts to proactively form a coalition. Each time the agent takes on
the role of an initiator, it accordingly scans the whole grid in search for new cooperation
partners. Consequently, the process proceeds faster if the extension count is set to the
high level. Furthermore, the example clarifies why X13 also interacts with the number
of unsuccessful initiations before a neighborhood is expanded (X10X13). If an agent
becomes an initiator more often and thus scans the whole grid for a higher number of
times, the delaying effect of X10 is increased. Similarly, this effect is also increased if
the grid is of bigger size because in this case neighborhoods are extended more often as
indicated by the interaction between the number of participating agents and the number
of unsuccessful initiations (X7X10). Finally, the effect of X10 also depends on the level
of the target electricity amount (X1X10) which can be attributed to the latter’s impact on
the cardinality of the optimal coalition structure. I.e., if the formation process proceeds
faster because a lower number of coalitions is formed, neighborhoods are extended less
often which reduces the delaying impact of the number of unsuccessful initiations on the
runtime.

Response Surface Modeling
According to the results of the previous screening, the relevant factors for modeling the
response surface of the simulated realtime sr are given by the extension count (X9), the
number of unsuccessful initiations before a neighborhood is extended (X10), as well as
the maximum number of times which a responder changes roles in order to become an
initiator (X13). The factor levels which were used for the specification of the executed
central composite design are summarized in Table 5.10, whereas the settings of the re-
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ID factor −1 −α 0 α 1

X9 extN 10 17 25 33 40
X10 iu,max 2 3 5 7 8
X13 bimax 2 3 5 7 8

Table 5.10: Parameterization of simulations of experiment E-RQ6 (runtime).

maining factors are given in Appendix B, Table B.4. The created model which describes
the relationship between the response and the above parameters is given by

ŝr = 42271X2
9 − 14071X2

10 − 13707X2
13

+ 3989X9X10 + 1305X9X13 + 1170X10X13

− 15271X9 + 2190X10 + 15158X13

+ 32790.

(5.20)

The corresponding coefficient of determination R2 = 0.78 indicates a slightly increased
residual variability. Moreover, the upper plots in Appendix B, Figure B.4, reveal small
deviations from the normal distribution and a noticeable dependency on the levels of the
extension count, whereas the remaining plots show no further remarkable patterns.
The response surface of the runtime is visualized in Figure 5.17. Because of the reduced
goodness of fit, a third-order polynomial model was created for comparison which de-
scribes a surface as depicted in Appendix B, Figure B.5. While the corresponding coeffi-
cient of determination R2 = 0.94 is higher, the shapes of the curves are not considerably
different from those of the second-order model. Moreover, the residual analysis in Fig-
ure B.6 shows strong deviations from the normal distribution and dependencies on the
factor levels. Thus, we use the second-order model for the following examinations.
Generally, the line plots in Figure 5.17 reveal non-linear relationships between the con-
sidered factors and the response. With regard to the extension count, the related runtime
behavior is described by a parabola which opens upward and attains its minimum at a
level of 0.17. I.e., after an initial decrease, at higher levels the runtime starts to increase
again, where the factor induces the highest effect among all three parameters. Contrary,
with regard to the other two factors we obtain opposite runtime behaviors which show
their smaller impact as can be seen from the covered ranges of y values. As the third
parabola attains its maximum at a relatively high level of 0.56, the runtime primarily
increases with an increasing number of role changes. Contrary, in case of the number of
unsuccessful initiations the curve already decreases from a level of 0.07 onwards.
These relationships are also reflected by the contour plots on the right hand side of
Figure 5.17. As can be seen from the contour lines, the first two interactions generally
show a similar characteristic, where in both cases the extension count has a decisive
influence on the runtime if varied within the lower and upper range. In-between, the
factor plays a less important role, whereas the relevance of the other two parameters
increases. The first interaction induces the maximum runtime if the extension count and
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Figure 5.17: Response surface of the simulated realtime.
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the number of unsuccessful initiations are set to −1 and −0.07, respectively, whereas the
minimum occurs at the levels 0.23 and −1. Note that these results are in line with the
curves depicted by the corresponding line plots. Similarly, the second interaction causes
the maximum runtime if the extension count and the number of role changes are set to −1
and 0.52, whereas the minimum is obtained at the levels 0.19 and −1. The last contour
plot finally visualizes the interaction between the number of unsuccessful initiations and
the number of role changes, where the described surface takes on the form of a peak.
Correspondingly, the contour lines are arranged concentrically around the maximum
which is induced at the levels 0.09 and 0.56. Considering the respective line plots, the
latter correspond almost exactly to those levels at which the individual parabolas attain
their maximum. Because the surface is formed like a peak, these are also the settings at
which a change of one factor causes the biggest change in the runtime if the other one
is kept at its level. For the same reason, the relevance of one factor decreases the more,
the more the other one deviates from its setting. As a result, the minimum runtime is
induced if both parameters are set to −1.

5.3.4 E-RQ7: Scalability for Large Numbers of Agents

In what follows, we finally conduct the last step of our evaluation process and provide
an answer to research question RQ7 by examining the scalability of DYCE with regard
to scenarios comprising large numbers of actors. While experiment E-RQ5 and E-RQ6
already considered this aspect within the bounds of 1000 and 2000 agents, we now com-
plement the results by investigating numbers corresponding to an application on global
system level (cf. the use cases discussed at the beginning of Chapter 4). Thus, we assess
the scalability of the approach by again using the previously applied evaluation criteria
global performance, computational cost, communication cost, and runtime.
The parameterization which is used in the following experiment is summarized in Ta-
ble 5.11, where a single simulation run is again given by a single execution of DYCE.
As shown, the set of factors comprises those already considered in the previous ex-
periments plus an additional parameter sN,max specifying the maximum size to which a
neighborhood can be extended. The latter is introduced because larger scenarios put in-
creased requirements on the demanded resources (like computational power or network
bandwidth) and a restriction of the neighborhood size provides the potential to handle
the very same. However, because a restricted neighborhood size also limits the search
space of possible coalition structures in the sense that agents only take a restricted set
of participants for coalition formation into account, it may also compromise the global
performance of DYCE. In the following experiment, we thus conduct two series of sim-
ulations in which we compare the impacts of a limited neighborhood size to those of an
unlimited one. Because the considered numbers of agents become very large and neigh-
borhoods may consequently comprise much bigger amounts of participants than in the
previous experiments, the levels which were formerly used for the extension count extN



198 Evaluation

variable

ID factor min max fixed

X7 |A| 1000 16 000 -
X9 extN 100 1600 -
X15 sN,max 1000 ∞ -

X1 e(i)
ptar - - 200

X2 err(i)
ptar - - 0.01

X3 c(i)
ptar - - 0.1

X4 e(i)
ptar ,−/+

- - 0.8
X5 err(i)

ptar ,−/+
- - 0.01

X6 c(i)
ptar ,−/+

- - 0.05
X8 rinit - - 0.4
X10 iu,max - - 2
X11 rCom - - 10
X12 tbi - - 2
X13 bimax - - 2
X14 ocmax - - 1

Table 5.11: Parameterization of simulations of experiment E-RQ7.

are not reasonable any more. In the conducted simulations, we thus take a new approach
and calculate the value dynamically as

extN = 0.1 · |A|. (5.21)

I.e., in each run the extension count is equal to one-tenth of the number of participating
agents. With regard to the remaining factors, the levels are generally kept fixed, where
the settings in Table 5.11 were determined based on the results of experiment E-RQ5.
More precisely, as the factors partially had conflicting effects on the evaluation criteria
in terms of the goal to increase both the global performance and the efficiency, we gave
priority to the global performance by setting all factors which had a significant impact on
the mean coalition value to those levels which finally resulted in a higher response value.
For instance, because a widening of the electricity and cost band had a negative effect on
v(C), we chose the low levels for the parameterization. Contrary, the remaining factors
were set in favor of the efficiency-related criteria, where the only conflict arose in case
of the number of unsuccessful initiations (X10) which previously induced an increase in
the computational cost and runtime but a decrease in the communication cost. However,
as the effect on the runtime was the only significant one, we chose the low level for the
parameterization. Given the latter, the final experiment of our evaluation is carried out
as follows:
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E-RQ7 For each of the maximum neighborhood sizes sN,max = ∞ and sN,max = 1000, a
series of simulations is conducted in which the number of agents |A| is increased in
steps of 1000 and the resulting cumulative contributions conC , the number of function
calls f c, the number of messages msg, and the simulated realtime sr are captured as
responses.

In each of the two series, we thus consider a specific maximum neighborhood size and
steadily increase the number of participants throughout the simulations, where the ex-
tension count is determined dynamically according to the above formula. In order to
quantify the considered evaluation criteria, we use the measures already applied in the
previous experiments, i.e. mean coalition value v(C), the number of function calls f c,
the number of messages msg, and the simulated realtime sr. The maximum number of
agents which is considered in each series is generally bounded by the resources provided
by the simulation system. I.e., as in case of an unrestricted neighborhood size each agent
has to keep a model of the whole power grid in memory, in the first series the number is
limited to 8000 actors, whereas in the second series the double amount can be examined.
The results of experiment E-RQ7 are shown in Figure 5.18. As can be seen from the
maximum neighborhood sizes specified in the legends, the three plots depict the data of
both conducted series, where the left axes refer to the efficiency-related outcomes, while
the right axis of the upper and middle plot describe the mean coalition values obtained
in the first and second series, respectively. In order to facilitate the analysis, we fit linear
polynomial functions to the efficiency-related data of the second series (i.e. the black
dots) as visualized by the gray regression lines. Before we start the discussion, note,
however, that the slopes of the lines are not comparable as the scale of the second left
axis (msg) is determined by the maximum value of the first series. Vice versa, the scales
of the first and third axis ( f c and sr) are determined by the data of the second series
which has to be taken into account accordingly.
As depicted by the upper plot, in case of the first series in which the maximum neighbor-
hood size was unrestricted, we obtain an excellent global performance for all executed
simulations. For instance, for the largest number of 8000 agents the mean coalition
value still equals 0.99. With regard to the efficiency-related criteria, the simulated real-
time increases approximately linearly with an increasing number of agents, whereas the
number of function calls and the number of messages grow faster. While the examined
parameterization thus leads to an efficient runtime behavior, the results also suggest that
an unrestricted neighborhood size causes unmanageable computational and communica-
tion cost in scenarios comprising ten thousands of agents. This can simply be attributed
to the fact that a formation activity can potentially involve all agents in the grid.
However, taking a look at the results of the second series, we can observe that the growth
of the computational and communication cost can be successfully restricted by limiting
the maximum neighborhood size to an upper threshold. As shown by the second plot,
in this case we still obtain a global performance similar to that of the first series, with
a mean coalition value of 0.983 for the largest number of 16 000 agents. However,
the efficiency-related criteria now only grow approximately linearly with an increasing
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number of agents as emphasized by the regression lines. This is a highly desirable result
as it shows that DYCE can be effectively and efficiently applied on global system level
as well. Still, a restriction of the neighborhood size is only required if the number of
agents is very large, whereas in case of amounts up 5000 participants an unrestricted
size is totally acceptable.

5.3.5 Summary and Discussion

In the following, we sum up experiment E-RQ3-E-RQ7 in which we investigated the
global performance and efficiency of DYCE making use of concepts from the domain
of Design of Experiments. The latter allowed us to handle the high number of input
parameters and analyze their impacts on the considered criteria in detail. We initially
specified our expectations with regard to the global performance of our approach by
defining Hypothesis 1.2 which was formulated as follows:

A distributed and temporally flexible aggregation method enables a high rate of actors
to fulfill their power products and allows to approximate the optimal solution of the
corresponding global optimization problem to a high degree.

Furthermore, we expressed our assumptions with regard to the efficiency of the method
in the form of Hypothesis 1.3 as follows:

A distributed aggregation method is efficiently applicable in terms of the computational
cost, communication cost, and runtime which it requires to provide a solution.

We validated the above hypotheses by conducting experiment E-RQ3 in which we ex-
amined the capability of DYCE to approximate a global optimum and additionally de-
termined the rate at which agents are able to successfully fulfill their pursued target
products. In order to allow for a detailed analysis, we chose a two-level full factorial
design for experimentation which specified simulations for all 16 384 combinations of
the 14 considered input parameters. The degree of approximation and the rate of ful-
filled products were measured through mean coalition value v(C) and fulfillment rate
f r, both being defined on the interval [0, 1]. As outcome, we finally retrieved a maxi-
mum mean coalition value of 0.996, where the lower and upper quartile of all runs was
given by a value of 0.975 and 0.99, respectively. These high values were also reflected
by the fulfillment rates for which we obtained a lower and upper quartile of 0.98 and
0.99, respectively, the maximum rate being 1. By taking a closer look at the cumulative
contributions of the resulting coalitions, we could finally see that the cumulative values
were consistent with the retrieved figures as they showed a high approximation to the
values of the pursued target products.
In experiment E-RQ4, we then evaluated the effectiveness of the distance-based forma-
tion of neighborhoods using again a two-level full factorial design. For these inves-
tigations, we applied the mean normalized coalition scope sn

C in order to quantify the
average maximum distance which occurs between the units of the coalitions of a final
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coalition structure. Although we did not limit the coalition scope in the simulations, the
obtained results showed that the final scopes are indeed restricted. More precisely, in
the simulations in which the optimal coalition size was given by 10 and 20 members, in
three-quarter of the runs the mean coalition scope did not cover more than 44 % and 51 %
of the grid, respectively. The results thus showed that the proposed approach for neigh-
borhood formation is suitable for effectively limiting the maximum distance between
the units of a coalition which allows to exploit related potentials as initially discussed in
Section 1.1.
In experiment E-RQ5-E-RQ7, we continued to analyze the global performance of DYCE
and additionally examined the efficiency-related criteria computational cost, communi-
cation cost, and runtime. While the global performance was again measured using mean
coalition value v(C), the efficiency-related criteria were quantified through the number
of executed function calls of the CCOR algorithm f c, the number of sent messages msg,
and the simulated realtime sr. In experiment E-RQ5, we first determined the effects
of the 14 examined input parameters and their two-way interactions on the four criteria
based on a full-factorial design as already applied in the previous two experiments. Be-
cause the significance of an effect could not be assessed through statistical means due to
the reasons discussed in Section 2.3.3, we considered all those factors and interactions as
important which absolute effect |e f f | was a third as high as the maximal absolute effect
|e f fmax| induced on a given response. Figure 5.19 gives an overview of the experimental
outcome by showing the summed effects of all parameters and significant interactions
which were determined by first standardizing the absolute effects with regard to the in-
dividual responses and then adding up the results over all four of them. A standardized
absolute effect thus takes on a value between 0 and 1, whereas a summed effect takes on
a value between 0 and 4. Furthermore, Table 5.12 summarizes the signs of all main ef-
fects and lists the parameters with wich each factor significantly interacts ordered by the
size of the respective interaction effects. The significance of a main effect is indicated
by a circle around the corresponding sign. Taking into account both overviews, we can
finally draw the following conclusions with respect to the examined factors:

X1, X2, X3 Regarding the attributes of the target product, the target electricity amount
(X1) can be considered as one of the most pivotal factors among the 14 parameters.
It not only induces the highest summed effect in total, but also has a significant im-
pact on all four criteria. This relevance can be attributed to the factor’s impact on the
coalition size and the cardinality of the coalition structure. I.e., if the target amount
is increased and consequently less but bigger coalitions form, both the global perfor-
mance and the efficiency-related criteria are improved. The experimental results also
revealed that the factor significantly interacts with a range of other parameters, where
all of the considered criteria are concerned. As can be seen from its summed effect,
the interaction with the number of optimization cycles (X14) is of particular relevance
as it affects both the computational and the communication cost. Taking into account
all possible side effects, we can finally conclude that it is generally preferable to set
the target electricity amount to the high level.
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Figure 5.19: Summed effects of all factors and significant interactions.

effect sign interacting factors

ID factor v(C) f c msg sr v(C) f c msg sr

X1 e(i)
ptar ⊕ 	 	 	 X4 X14, X7, X8 X14 X10

X2 err(i)
ptar − + + + - - - -

X3 c(i)
ptar + + + + X6 - - -

X4 e(i)
ptar ,−/+

	 − − − X1 - - -
X5 err(i)

ptar ,−/+
− − − − - - - -

X6 c(i)
ptar ,−/+

	 − − − X3 - - -
X7 |A| + ⊕ ⊕ ⊕ - X1, X14 X14 X9, X10
X8 rinit + 	 − 	 - X14, X1 - -
X9 extN − − ⊕ 	 - X11 X14, X10 X10, X7, X13
X10 iu,max + + − ⊕ - - X14, X9 X9, X7, X13, X1
X11 rCom + 	 − − - X9 - -
X12 tbi − + + ⊕ - - - -
X13 bimax + + + ⊕ - - - X10, X9
X14 ocmax + ⊕ ⊕ + - X1, X8, X7 X10, X9, X1, X7 -

Table 5.12: Factor-related effect signs and interacting parameters.
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In contrast, the target error (X2) and target cost (X3) only have a negligible influence
on the different criteria which can be attributed to the fact that they do not directly
influence the size and number of the formed coalitions. However, like the target
amount, the cost also significantly interacts with its tolerance band regarding the
global performance, a dependency which does not exist in case of the error due to the
reasons discussed in Section 5.3.3.1.

X4, X5, X6 The tolerance bands for the target values are generally of different importance
which primarily results from their different impact on the mean coalition value. In
this regard, the electricity band (X4) induces the highest summed effect followed by
the cost and the error band (X6, X5). However, as can be seen from the identical
signs, the factors still have a similar impact on the different criteria. I.e., in all cases
the widening of the band reduces the global performance but optimizes all efficiency-
related criteria. The crucial point to note here is that the significant effects merely
affect the mean coalition value and the only relevant interactions are given by the two
cases already described in the previous paragraph. Thus, we can follow that all bands
can safely be set to the low level without risking negative side effects which allows
to constantly improve global performance.

X7 Expectedly, the number of agents is one of the most important factors among all
parameters. It has a significant impact on all efficiency-related criteria and induces the
second highest summed effect in total, where a higher agent count causes an increase
in the computational and communication cost as well as the runtime. Moreover, the
experimental results revealed several significant interactions with other parameters
which also affect all efficiency-related criteria. As in case of the target electricity
amount, the most important one involves the number of optimization cycles which is
again relevant for both the computational and the communication cost.

X8 Choosing a higher rate of initiators allows to significantly reduce the computational
cost and the runtime. While the first result was quite surprising at first sight, it is
reasonably explainable in light of the second one as a higher rate results in an accel-
erated formation process requiring a lower number of function calls. Interestingly,
the communication cost is only slightly (but still beneficially) affected by an increase
which also holds for the global performance. With regard to the computational cost,
the factor further interacts with the number of optimization cycles and the target elec-
tricity amount. As in both cases the high factor level is preferable, all in all we can
conclude that this setting can be used as default in order to constantly improve the
computational cost and the runtime.

X9, X10 With regard to the neighborhood-related factors, a higher extension count (X9)
significantly reduces the runtime but also increases in the communication cost. How-
ever, a comparison of the standardized effects suggests that the advantage of the
runtime reduction outweighs the disadvantage of the increased message load. With
regard to the efficiency-related criteria, the factor interacts with a range of other pa-
rameters, where in all cases the high factor level leads to a more beneficial result as
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well. We can thus conclude that it is generally advantageous to choose this setting as
long as communication-related resources are not scarce. With respect to the number
of unsuccessful initiations which are accepted by agents before a neighborhood is
extended (X10), the experimental results showed that an increase of the factor level
significantly increases the runtime but only has a minor impact on the other criteria.
However, because at the high level the factor allows to prevent a premature neigh-
borhood extension (see Section 5.3.3.3), it diminishes the negative effect of X14 and
X9 on the communication cost as can be seen from the corresponding interactions.
Moreover, recall from the Pareto chart in Figure A.3 that, according to the factor’s
intended purpose, in this case also the mean coalition scope is reduced. Taking into
account the further interactions which occur with regard to the runtime, we can thus
conclude that for specific goals it is beneficial to set the factor to the high level, while
in all other cases the low level is preferable.

X11 Considering the number of proposals which an initiator accepts at once, increasing
the factor level results in a significant reduction in the computational cost, whereas
the effects on the other criteria lie below the defined significance levels but are still
advantageous in terms of their signs. As in the context of the only interaction the
high factor level is preferable as well, we can follow that this setting solely provides
advantages and can thus be used as default.

X12, X13 With regard to the factors relating to the role changes which are performed
by unsuccessful responders in order to proactively form a coalition, extending the
time until an agent becomes an initiator (X12) induces a significant increase in the
runtime but no other important main or interaction effects. We can thus follow that
the factor has no relevance for the formation process and can safely be set to the
low level. Similarly, increasing the number of times which a responder becomes an
initiator (X13) causes a longer runtime but no other significant main effect, where the
factor interacts with the two neighborhood-related parameters with regard to the same
criterion. As in both cases the low factor level yields a more advantageous result, we
can conclude that this setting can again be used as default.

X14 Considering the number of optimization cycles which are performed by initiators
after a target product has already been fulfilled, a higher factor level results in a con-
siderable increase in the computational and communication cost while the effect on
the mean coalition value is measurable but not meaningful in terms of the defined sig-
nificance levels. Moreover, the factor is involved in the highest number of interactions
which also affect the computational and communication cost through corresponding
side effects. Taking into account that in all these cases the low factor level is more
beneficial, we can follow that this setting can be used as default unless the benefit of
an ultimate global optimization outweighs the resulting cost.

The above conclusions show that the optimal setting of a factor does not solely depend
on its induced main effects but also on the side effects caused by its interactions with
other parameters.
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Based on the determined impacts, we were next able to identify the three most pivotal
factors for each criterion which we used in experiment E-RQ6 in order to model the
surface of the corresponding responses. More precisely, based on the identified param-
eters we first executed a central composite design for each criterion and then used the
simulation results in order to create a polynomial model with an appropriate goodness of
fit. The latter allowed us to study the relationships between the included parameters and
the predicted response in detail. In particular, as the models of the computational and
communication cost included the number of agents as relevant factor, it could be shown
that in both cases DYCE scales well with an increasing factor level.
In experiment E-RQ7, we finally analyzed further scalability-related aspects by apply-
ing our approach to scenarios comprising large numbers of actors. To this end, we
introduced a new factor which allowed us to limit the maximum size of a neighborhood
and thus to handle the higher demand for resources. Through two series of simulations,
we then compared the effects of an unrestricted neighborhood size to those of a restricted
one while successively increasing the number of agents, where we considered both the
global performance and the efficiency of our approach. The experimental outcomes
showed that in the unrestricted case particularly the communication cost grows faster
than linearly with an increasing agent count while the global performance remains at a
constantly high level. As a formation process could here potentially comprise all agents
in the grid, this outcome was not surprising, though. More importantly, we also observed
that a similar global performance can be achieved if the maximum neighborhood size is
restricted to 1000 agents in which case the efficiency-related criteria grow approximately
linearly with an increasing number of agents. The experiment thus showed that DYCE
can be applied on global system level as well.
With regard to our approach to evaluate the method using concepts from the domain
of DOE, we can finally conclude that experiment E-RQ3-E-RQ7 provided a strong ar-
gument for their application in the context of deterministic systems. Besides offering
the general advantages of an increased efficiency and a wider inductive basis (cf. Sec-
tion 2.3), the applied experimental designs allowed us to gain detailed insights into the
inner workings of DYCE which could not have been obtained via the OFAT approach.
More precisely, in experiment E-RQ5 the applied full factorial design enabled us to re-
veal a range of factor interactions many of which were not obvious. As can be seen from
the above discussion, these dependencies are generally crucial to consider in order to
draw reliable conclusions with regard to an optimal parameterization. Furthermore, in
experiment E-RQ6 the applied central composite designs allowed us to create detailed
models of the response surfaces and thus to analyze how the considered evaluation crite-
ria depend on the included factors. It can thus be followed that, if adapted to the specifics
of deterministic systems, DOE is highly suitable for the examination and assessment of
algorithms in general and optimization algorithms in particular.
All in all, we can finally conclude that the comprehensive results of experiments E-RQ3-
E-RQ7 support both Hypothesis 1.2 and Hypothesis 1.3. The outcomes showed that
DYCE enables a very high percentage of agents to fulfill their target products and allows
to approximate the maximum mean coalition to a very high degree. Furthermore, the
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experiments revealed that the approach is efficiently applicable in terms of the computa-
tional and communication cost as well as the runtime. With regard to the computational
cost, this also holds for the CCOR algorithm itself for which we previously determined
a worst case complexity of O(l · m · n). Thus, we can follow that DYCE provides an
effective and efficient approach for coalition formation being applicable on both local
and global system level.
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6 Conclusions
Having provided a comprehensive evaluation of DYCE in the previous chapter, in the
following we finally conclude this thesis. In Section 6.1, we first sum up the conducted
research as well as the contributions made to the state of the art. Moreover, we reconsider
our initially specified requirements in order to discuss the achieved goals. In Section 6.2,
we then propose topics for future research which may be addressed in order to detail or
extend specific aspects of our developed approach.

6.1 Summary and Discussion

Throughout the previous chapters we proposed DYCE, a decentralized self-organization
method for dynamic coalition formation in electricity markets. We motivated, designed,
and evaluated the approach in a well-structured research process yielding the contribu-
tions of this thesis. These are summarized in Table 6.1 (see also Figure 1.1).
In Chapter 1, we started our work by highlighting the need for a new aggregation method
motivated by the shortcomings of present pooling concepts. From the identified deficits,
we derived requirements for a new solution which we also used in order to discuss re-
lated work from the domains of electric power provision, electronic commerce, and
distributed artificial intelligence in detail. Afterwards, we specified our goal to address
the prevailing shortcomings by providing an aggregation method which fulfills the as-
sessed requirements. We formulated hypotheses in order to express our expectations
with regard to the performance and efficiency of the intended approach and finally con-
cluded the chapter by detailing our applied research methodology and the structure of
the following investigations.
In Chapter 2, we next provided an introduction to the fundamental topics making up the
background of this thesis. We started by giving an overview of the deregulated electric-
ity industry including the possible market types which can be used in order to achieve an
equilibrium between supply and demand. Furthermore, we discussed agents and mul-
tiagent systems as fundamental concepts of distributed artificial intelligence and partic-
ularly addressed the topics of communication, coordination, and organization. Finally,
we gave an introduction to Design of Experiments and pointed out specifics which have
to be taken into account in the context of deterministic systems. From the descriptions
we concluded that with regard to our intended aggregation method coalitions provide an
appropriate organizational structure for the fulfillment of our initially defined objectives.
In Chapter 3, we then laid the basis for the design and evaluation of our new approach
by specifying DYCE-FM, a formal model capturing the problem of dynamic coalition
formation in electricity markets in detail. Drawing on existing formalisms from the do-
mains of DAI and game theory where appropriate, we defined a total of forty-two inter-
related concepts which were organized into four different domains. The given definitions
covered all aspects of the considered problem, from the power grid and the connected
units, to the assigned agents and their contributions to the formed coalitions, through to
the electricity market which allows for the trade of the finally fulfilled target products.
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contribution description

requirements analysis analysis of the requirements for a new aggregation method
based on a discussion of related work

DYCE-FM formal model being composed of forty two interrelated con-
cepts capturing the problem of dynamic coalition formation
in electricity markets in detail

complexity analyses analyses of the computational complexities associated with
the problems of product portfolio management, neighbor-
hood formation, coalition formation, and payoff distribution

DYCE distributed aggregation method providing solutions to the
problems of product portfolio management, neighborhood
formation, coalition formation, and payoff distribution in-
cluding two algorithms for the optimization of local and
global value (COPE and CCOR)

runtime analyses runtime analyses of the COPE and CCOR algorithm based
on the O-notation

evaluation study simulation-based evaluation study which provides detailed
insights into the inner workings of DYCE using concepts
from the domain of DOE

Table 6.1: Research contributions.

As we intended our approach to be universally applicable, the concepts abstracted from
economic and technological specifics while still providing enough detail to fulfill the
initially stated objectives.
In Chapter 4, we next provided the main contribution of this thesis by presenting DYCE,
a new aggregation method for dynamic coalition formation in electricity markets. The
approach was generally conceived to be applicable to energy units of arbitrary type, i.e.
producers, consumers, and storage. As design we specified an iterative process which
was composed of four main activities being carried out by the controlling agents. Each
activity addressed a self-contained subproblem for which we first analyzed the associated
computational complexity in order to provide an appropriate solution. Afterwards, we
detailed the developed process flow along with the related concepts. The final design of
the overall process comprised the activity of

• product portfolio management, including an optimization algorithm (COPE) enabling
agents to identify a product portfolio and operation schedule optimizing their local
utility;

• neighborhood formation, including an approach allowing agents to assess the physi-
cal distance to other participants based on shortest paths;
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• coalition formation, including an interaction protocol and optimization algorithm
(CCOR) enabling agents to coordinate their actions and form coalitions optimizing
global value; and

• payoff distribution, including a game-theoretical model allowing agents to distribute
a gained payoff in a fair way.

For the COPE and the CCOR algorithm, we further provided an analysis of the run-
time which showed that both are efficiently applicable even to large schedule spaces and
coalitions, respectively.
In Chapter 5, we finally assessed the performance and efficiency of DYCE through
a comprehensive evaluation study. To this end, we formulated appropriate research
questions and conducted corresponding simulation experiments based on thoroughly de-
signed scenarios. In this context, we made extensive use of concepts from the domain
of DOE which particularly allowed us to study the effects of the considered parameters
and their interactions in detail. The experimental outcomes showed that DYCE provides
an excellent local and global performance and is efficiently applicable in terms of the
associated computational cost, communication cost, and runtime. These results could
even be confirmed for large numbers of participating agents.
Having summed up our conducted research, we are finally able to consider the fulfillment
of our objectives as specified at the beginning of this thesis in Section 1.3. To this end,
we discuss to which extend our proposed aggregation method meets the requirements
initially identified in Section 1.1:

RDC (distributed control) DYCE fulfills the requirement of a distributed control as all
specified activities are executable in a fully decentralized fashion. In particular, the
developed interaction protocol allows agents to form coalitions without superordinate
control, where deadlocks or livelocks are prevented through effective mechanisms.

RS (scalability) The evaluation study showed that DYCE scales well with the number
of agents in terms of the associated computational cost, communication cost, and
runtime. This property can be particularly attributed to the integration of the flexibly
extendible neighborhoods which allow participants to limit the number of interaction
partners to reasonable sizes. As initiators are additionally able to identify unlikely
cooperation partners which are removed from a neighborhood before a new CFP is
sent, overhead resulting from unsuccessful negotiations is further reduced.

RCO (combined optimization) DYCE meets the requirement of a combined optimization
as it optimizes the individual utility of the agents in the course of product portfolio
management and the value of the global coalition structure throughout coalition for-
mation. The local optimization process is performed on the basis of the COPE algo-
rithm, where the concept of a product template allows to integrate multiple markets
of arbitrary type into the decision making process. Contrary, global value is opti-
mized through the CCOR algorithm as well as the additional concepts which were
developed in order to promote the formation of successful coalitions. These include
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the actual process flow which agents run through in the course of coalition formation
as well as the approach which they apply for the assessment of dynamic coalition val-
ues. The evaluation study showed that both optimization processes yield high quality
results.

RT F (temporal flexibility) DYCE fulfills the requirement of a temporally flexible aggre-
gation as it specifies an iterative process allowing agents to form coalitions for the
fulfillment of a single product only. In this regard, the activities of product portfo-
lio management and coalition formation are properly integrated in the sense that the
local optimization process is rerun if a target product could not be fulfilled.

RTC (trusted cooperations) DYCE addresses the requirement of trusted cooperations
through the integration of an abstract value which quantifies the trust of an agent
in another agent at a specific time. The developed overall process specifies the points
at which such values are determined, applied, and updated, where we also outlined
an approach for their decentralized assessment based on the transitive trust principle.
However, the design of a specific trust model and the examination of possible threat
scenarios were left to future work.

RPD (payoff distribution) DYCE meets the requirement of a final payoff distribution as
it integrates a game-theoretical model which allows for a fair division of a coalition’s
surplus based on the Shapley value. Although the latter is associated with a high
computational complexity, the model’s design permits the application of an available
heuristic which enables an efficient calculation even for large coalition sizes. More-
over, it can be flexibly extended by further distribution criteria if additional aspects
are to be taken into account. While we discussed exemplary Shapley values of a coali-
tion in Section 4.4, a detailed evaluation of the model based on a properly designed
market was left to future work.

RT A (topology awareness) DYCE meets the requirement of a topology-aware aggrega-
tion as the specified interaction protocol allows for the fulfillment of localized target
products which refer to precisely defined subsections in the grid. Furthermore, the
grid-based distance measure is used by agents in order to form neighborhoods of
nearest neighbors in terms of the impedance of the connecting power lines.

The above considerations show that we have fulfilled the initially specified requirements
to a high degree. Moreover, as discussed in Section 5.2.4 and 5.3.5, the developed ap-
proach meets our expectations with regard to the associated benefits as the results of the
conducted experiments support our initially formulated hypotheses. However, through-
out our investigations we also encountered some aspects which detailed consideration
extended the scope of this thesis and which were thus left as open research topics to
future work. Along with further possible extensions to our approach, these are finally
discussed next.



6.2 Prospects for Future Work 213

6.2 Prospects for Future Work

Our conducted research led to a range of new topics which may be addressed in the
context of future investigations. These are as follows:

Concepts for failures in communication As specified by assumption A1 at the begin-
ning of Chapter 4, in the context of this thesis we supposed that the ICT network
which is used by the agents for communication provides perfect transmission quality.
However, in practice there may be situations in which messages are transferred with
errors or arrive in an undefined order. Thus, appropriate concepts are needed for han-
dling such failures in communication. While this issue generally affects all DYCE
activities in the context of which agents interact, particularly the interaction protocol
for coalition formation is prone to this kind of errors and thus requires an integration
of corresponding mechanisms.

Trust model As specified by assumption A2 at the beginning of Chapter 4, in the context
of this thesis we accounted for the aspect of trust through the use of an abstract value
while assuming the specific trust model for its calculation to be given. The design of
such a model is thus an open topic which should be addressed by future research. This
includes the identification of the trust criteria which are relevant for the problem of
coalition formation in electricity markets, like an agent’s applied security standards
or its behavior in the context of former cooperations. Moreover, a concept has to be
conceived which derives a single trust value from these criteria. Finally, although
we already outlined how such values can be determined by agents in a decentralized
fashion, specific interaction protocols are needed which precisely define the sequence
as well as the types of the exchanged messages.

Extensions to product portfolio management As described in Section 4.1.2, in the
course of product portfolio management an agent optimizes its expected utility by
identifying an appropriate product portfolio and operation schedule based on the
COPE algorithm. Throughout the optimization process, it takes the price predictions
and costs of the product templates and schedules into account, but does not consider
the risks which are associated with the trade of the products. For instance, in bilateral
markets there is the chance that counterparties do not meet their obligations, whereas
in mediated markets this risk is often assumed by a clearing house which guarantees
the final settlement. Future work can address this aspect by integrating concepts for
the assessment and handling of trading-related risks. This may also require to ex-
tend the COPE algorithm by a corresponding functionality or to develop an approach
which takes account for this aspect by adjusting the price predictions of the product
templates accordingly.

Trading strategies As described in Section 4.1, an agent determines the cost of a contri-
bution and a target product based on its trading strategy because both values have an
impact on its individual payoff. Choosing too high values reduces the chance to suc-
cessfully form a coalition and find an appropriate trading partner, whereas too low
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values decrease the final benefit. Moreover, the trading strategy determines which
markets and product templates an agent takes into account when creating a template
catalogue in the course of product portfolio management because the different possi-
bilities are typically associated with different payoffs and risks. Given that all these
decisions also depend on its past experiences as well as the strategic behavior of the
other participants, the development of an optimal trading strategy is a highly complex
task. This problem can be addressed by future research based on concepts from do-
mains like microeconomics, game theory, and artificial intelligence as well as work
already published in this field.

Alternative notions of distance In Section 4.2.2, we proposed an approach for neigh-
borhood formation based on the distance between agents, where the latter was defined
in terms of the impedances of the connecting power lines. Future work may examine
alternative notions which either extend the proposed one through the integration of
further distance criteria or define completely new meanings. For instance, distance
could also be specified in terms of organizational structures in order to allow busi-
nesses to restrict the formation of coalitions to units which are operated by themselves
or possible subcontractors. An alternative notion could also reflect the preferences of
an agent with regard to a cooperation, where more favored participants would be in
closer proximity than unfavored ones. Finally, integrating multiple aspects into the
distance measure would also be an interesting topic to examine.

Error model In Section 4.3.2.1, we modeled the error with which a unit produces or
consumes electrical energy and described how the errors of multiple units are aggre-
gated in the context of a cumulative contribution. In this regard, we assumed that in
the context of the considered problem possible correlations between the operational
behavior of different units are negligible as coalitions are typically large enough to
entail a sufficient technological diversification and geographical distribution. How-
ever, future work may study this aspect in more detail by analyzing the composition
of coalitions in different scenarios and developing a more sophisticated error model
based on the gained insights.

Extensions to the distribution model In Section 4.4.2, we proposed a game-theoretical
model which allows for a fair division of a coalition’s payoff, where further distribu-
tion criteria can be flexibly added in the form of appropriately designed weighted
voting games. While in this thesis we considered the electricity amount, error, and
cost of a members’s final contribution as relevant criteria, future work may examine
the integration of further aspects like the trustworthiness of an agent or the time at
which it joined a coalition. Furthermore, a more detailed experimental evaluation
of the proposed model would be desirable which also allows to identify reasonable
quotas for the integrated games. As already mentioned at the beginning of Chapter 5,
economic investigations with regard to achievable long-run profits are generally com-
plex because they require to model the trading strategies of the agents as well as the
market itself. As final aspect, future work may also examine the applicability of alter-
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native distribution schemes, like the game-theoretical concept of the nucleolus which
provides for a stable division.

Integration of business processes As described in Section 4.4.2, in the context of the
last DYCE activity the members of a successful coalition strive for a trade of their
fulfilled product after which they finally distribute the associated payoff among each
other. In this regard, we outlined the interactions which take place between the coali-
tion and its trading partner as well as the members themselves. Future work may de-
tail this aspect by providing a specification of the related business processes based on
standards like UML or BPMN (Business Process Model and Notation). This would
facilitate an automation of the settlement and the transactions which are associated
with the distribution process.
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A Supplements to Experiment E-RQ3
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B Supplements to Experiment E-RQ6
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Figure B.1: Residual analysis of surface model v̂(C).
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Figure B.2: Residual analysis of surface model f̂ c.



223

1.
0

2.
0

5.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

95
.0

98
.0

99
.0

non-exceedance probability

-30000

-20000

-10000

0

10000

20000

30000

re
si

du
al

s
qu

an
til

e

-1.0 -0.5 0.0 0.5 1.0

level X1

-30000

-20000

-10000

0

10000

20000

30000

re
si

du
al

-1.0 -0.5 0.0 0.5 1.0

level X7

-30000

-20000

-10000

0

10000

20000

30000

re
si

du
al

-1.0 -0.5 0.0 0.5 1.0

level X14

-30000

-20000

-10000

0

10000

20000

30000

re
si

du
al

40000 60000 80000 100000 120000 140000 160000 180000 200000

m̂sg

-30000

-20000

-10000

0

10000

20000

30000

re
si

du
al

Figure B.3: Residual analysis of surface model m̂sg.



224 Supplements to Experiment E-RQ6

1.
0

2.
0

5.
0

10
.0

20
.0

30
.0

40
.0

50
.0

60
.0

70
.0

80
.0

90
.0

95
.0

98
.0

99
.0

non-exceedance probability

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

re
si

du
al

s
qu

an
til

e

-1.0 -0.5 0.0 0.5 1.0

level X9

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

re
si

du
al

-1.0 -0.5 0.0 0.5 1.0

level X10

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

re
si

du
al

-1.0 -0.5 0.0 0.5 1.0

level X13

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

re
si

du
al

0 20000 40000 60000 80000 100000

ŝr
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Figure B.4: Residual analysis of surface model ŝr.
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ID factor level

X2 err(i)
ptar 0.01

X3 c(i)
ptar 0.1

X5 err(i)
ptar ,−/+

0.005
X7 |A| 1000
X8 rinit 0.1
X9 extN 10
X10 iu,max 2
X11 rCom 10
X12 tbi 2
X13 bimax 8
X14 ocmax 40

Table B.1: Settings of the fixed factors in experiment E-RQ6 (global performance).

ID factor level

X2 err(i)
ptar 0.03

X3 c(i)
ptar 0.1

X4 e(i)
ptar ,−/+

8
X5 err(i)

ptar ,−/+
0.01

X6 c(i)
ptar ,−/+

0.1
X8 rinit 0.1
X9 extN 10
X10 iu,max 2
X11 rCom 10
X12 tbi 8
X13 bimax 2

Table B.2: Settings of the fixed factors in experiment E-RQ6 (computational cost).
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ID factor level

X2 err(i)
ptar 0.01

X3 c(i)
ptar 0.1

X4 e(i)
ptar ,−/+

8
X5 err(i)

ptar ,−/+
0.01

X6 c(i)
ptar ,−/+

0.1
X8 rinit 0.1
X9 extN 10
X10 iu,max 2
X11 rCom 10
X12 tbi 2
X13 bimax 2

Table B.3: Settings of the fixed factors in experiment E-RQ6 (communication cost).

ID factor level

X1 e(i)
ptar 200

X2 err(i)
ptar 0.01

X3 c(i)
ptar 0.1

X4 e(i)
ptar ,−/+

8
X5 err(i)

ptar ,−/+
0.01

X6 c(i)
ptar ,−/+

0.05
X7 |A| 1000
X8 rinit 0.4
X11 rCom 10
X12 tbi 8
X14 ocmax 1

Table B.4: Settings of the fixed factors in experiment E-RQ6 (runtime).
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ŝr

-1.0 -0.5 0.0 0.5 1.0
X9 (extension count)

-1.0

-0.5

0.0

0.5

1.0

X
10

(u
ns

uc
ce

ss
fu

li
ni

tia
tio

ns
)

30
00

0.
00

0

30
00

0.
00

045000.000

60
00

0.
00

0

75
00

0.
00

0
90

00
0.

00
0

-1.0 -0.5 0.0 0.5 1.0

X10 (unsuccessful initiations)

0

20000

40000

60000

80000

100000

ŝr
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Figure B.5: Response surface of the simulated realtime (third-order polynomial).
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Figure B.6: Residual analysis of model ŝr (third-order polynomial).
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Glossary
In the following, the most important terms of this thesis are briefly explained, where a
more detailed description is often given in the introducing sections. The explanations
are generally based on own definitions as well as literature referenced in the text. With
regard to the used symbols, ∼ refers to the currently specified term, whereas ↑ references
another term in the glossary.

Agent An ∼ is an autonomous computer system which perceives its environment via
sensors and acts upon it through effectors. It is considered intelligent if it is able
to exhibit pro- and reactive behavior and interact with other entities. In the context
of this thesis, an ∼ controls a ↑unit and acts as its representative in an ↑electricity
market.

Altruism ∼ is a social attitude of an ↑agent. It is given if the agent chooses an action
which does not maximize its individual benefit provided that it raises the benefit of
another agent, the value of a ↑coalition, or the value of the global ↑coalition structure.

Central composite design A ∼ is an ↑experimental design which is composed of a
factorial design as well as star and center points. It is applied for the purpose of
↑response surface modeling.

Coalition A ∼ is a set of ↑agents which cooperates in order to achieve a joint goal. In
the context of this thesis, the latter is given by the fulfillment of a ↑product. A ∼
is assessed by means of a ↑coalition value quantifying its worth. In the context of
interactions with other parties, it is represented by a designated member which acts
on behalf of the group.

Coalition structure A ∼ is a set of ↑coalitions which partitions a set of ↑agents into
disjunct subsets. The worth of a ∼ is quantified through a ↑mean coalition value.

Coalition value A ∼ is a measure for the worth of a ↑coalition. In the context of this
thesis, it reflects the ability of a coalition to fulfill a ↑product.

Combined heat and power plant A ∼ is a ↑power plant which converts a primary en-
ergy source like natural gas into ↑electrical energy based on a combustion engine,
a fuel cell, or a gas turbine. The resulting heat is used for local supply in order to
increase the energy conversion efficiency.

Contribution A ∼ of an ↑agent to the ↑product of a ↑coalition is the amount of ↑elec-
trical energy which is produced or consumed by its controlled ↑unit with a defined
error at a defined cost within the ↑product horizon. Aggregating the contributions of
all members of a coalition yields its ↑cumulative contribution.

Cumulative contribution The ∼ of a ↑coalition is an aggregation of the ↑contributions
of its members. Thus, it represents the cumulative amount of ↑electrical energy which
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is produced or consumed by the members’ ↑units with a defined cumulative error at
a defined cumulative cost within the ↑product horizon of the coalition’s ↑product.

Design of Experiments ∼ is an approach for the performance of experiments based on
↑experimental designs which maximizes the gained information while minimizing
the experimental efforts. Alternatively, ∼ can be viewed as a domain providing con-
cepts for efficient experimentation.

Distance ∼ is a quantity which is used by an ↑agent in order to form ↑neighborhoods of
nearest neighbors, where its calculation is based on a set of dedicated criteria.

Effect An ∼ is the average change in a ↑response caused by the change of a single
↑factor or the combined change of multiple factors.

Egoism ∼ is a social attitude of an ↑agent. It is given if the agent chooses an action
which maximizes its individual benefit regardless of the resulting impacts on the
other agents’ benefits, the values of the given ↑coalitions, or the value of the global
↑coalition structure.

Electrical energy ∼ is the flow of power over time and transmitted from a producer to
a consumer by means of a dedicated ↑power grid. It is typically measured in kWh,
MWh, or GWh.

Electricity market An ∼ is a medium which allows actors to match supply and demand
of ↑electrical energy through a bilateral or mediated trade of ↑products, where the
place of delivery is given by a ↑power grid. With regard to their design, electricity
markets differ in their degree of organization and centralization.

Energy ∼ is the capacity to do work. It exists in different forms like ↑electrical ∼ ,
thermal ∼ , or kinetic ∼ which are convertible into each other.

Experimental design An ∼ is a list which lines specify different runs in a conducted
experiment by determining the levels of the varied ↑factors.

Factor A ∼ is a controllable or uncontrollable variable which influences a system. In
the context of an experiment, controllable factors are systematically varied according
to a given ↑experimental design in order to examine their ↑effects on a considered
↑response.

Factor screening A ∼ is the identification of the most important ↑factors of a set of
considered factors based on their ↑effects on a specific ↑response.

Full factorial design A ∼ is an ↑experimental design which comprises all possible fac-
tor level combinations. It is applied for the purpose of a ↑factor screening.



Glossary 231

ICT network An ∼ consists of a set of communication nodes which are connected by
means of communication lines. Each node is able to receive, process, and send data
and can either be given by a separate computer system or an embedded system which
is installed on a ↑unit.

Interaction An ∼ is the mutual influence of multiple ↑factors on their ↑effects. The
effect of an involved factor thus depends on the levels of the other factors, and vice
versa.

Interaction effect An ∼ is an ↑effect which is caused by an ↑interaction between mul-
tiple factors.

Main effect A ∼ is an ↑effect which is caused by the change of a single factor.

Market role A ∼ is a role which an ↑agent takes on in the context of a trade. It is deter-
mined by the ↑operation schedule of its ↑unit meaning that the agent either assumes
the ∼ of a producer or a consumer.

Mean coalition value A ∼ is a measure for the worth of a ↑coalition structure which
quantifies the average value of the comprised ↑coalitions.

Multiagent system A ∼ is a system comprising multiple ↑agents. In order to achieve
their goals, the latter communicate and coordinate their actions in a coherent fashion.

Neighborhood The ∼ of an ↑agent is a set of agents lying within a maximum ↑distance
from itself as quantified by a dedicated measure.

Operation hard constraint An ∼ is a technical restriction of a ↑unit which has to be
appropriately taken into account by an ↑operation schedule in order to be valid.
↑Operation hard constraint satisfaction can be verified through a corresponding sat-
isfaction function.

Operation hard constraint satisfaction ∼ is the fulfillment of an ↑operation hard con-
straint by an ↑operation schedule as indicated by a corresponding satisfaction func-
tion.

Operation schedule An ∼ is a schedule which determines for each planning interval
of a ↑planning horizon the amount of ↑electrical energy which is produced or con-
sumed by a ↑unit with a defined error at a defined cost. It forms the basis for the
↑contribution of an ↑agent to a ↑product.

Operation schedule space An ∼ of a ↑unit is the set of all ↑operation schedules satis-
fying its ↑operation hard constraints.
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Operation soft constraint An ∼ is a target associated with the operation of a ↑unit
which an ↑agent pursues to achieve through the selection of an appropriate ↑operation
schedule in order to optimize utility. ↑Operation soft constraint satisfaction can be
verified through a corresponding satisfaction function.

Operation soft constraint satisfaction ∼ is the fulfillment of an ↑operation soft con-
straint by an ↑operation schedule as indicated by a corresponding satisfaction func-
tion.

Operational flexibility ∼ is the property of a ↑unit to allow for a variable production or
consumption within specific bounds. In general, the ↑operation schedule space of a
flexible unit thus contains more than one feasible ↑operation schedule.

Payoff A ∼ is a monetary amount which a ↑coalition receives from or pays to another
party for a traded ↑product. Its division among the members is determined by a
↑payoff distribution.

Payoff distribution A ∼ is a division of a ↑payoff which accounts for a set of distri-
bution criteria. The individual shares represent the revenues or expenses which the
members of a ↑coalition receive or pay after a successful trade of a ↑product.

Planning horizon A ∼ is a discretized time frame of consecutive planning intervals
for which an ↑agent schedules the operation of its ↑unit in advance. Its length and
temporal resolution may differ according to the given use case.

Power grid A ∼ is a network which consists of grid nodes being connected through
power lines. Its purpose is the transmission and distribution of ↑electrical energy
from producers to consumers.

Power plant A ∼ is a ↑unit which produces ↑electrical energy.

Product A ∼ is a specification which determines the amount of ↑electrical energy which
is produced or consumed by a ↑coalition with a defined error at a defined cost in each
product interval of the related ↑product horizon. It is termed a localized ∼ if its
physical fulfillment refers to a specific section of a ↑power grid. A ∼ complies with
a corresponding ↑product template.

Product hard constraint A ∼ is a restriction with regard to an attribute of a ↑product
which has to be taken into account in the context of its specification. ↑Product hard
constraint satisfaction can be verified through a corresponding satisfaction function.

Product hard constraint satisfaction ∼ is the fulfillment of a ↑product hard constraint
by a ↑product as indicated by a corresponding satisfaction function.

Product horizon A ∼ is a set of possibly non-consecutive time intervals in which a
↑product is physically fulfilled.
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Product portfolio A ∼ is a set of target products which an ↑agent intends to fulfill
within a considered ↑planning horizon through the formation of ↑coalitions. A target
product is fulfilled if the values of a coalition’s ↑cumulative contribution lie within
the tolerance bands associated with its attributes.

Product soft constraint A ∼ is a target associated with the specification of a ↑product
which an ↑agent pursues to achieve in order to optimize utility. ↑Product soft con-
straint satisfaction can be verified through a corresponding satisfaction function.

Product soft constraint satisfaction ∼ is the fulfillment of a ↑product soft constraint
by a ↑product as indicated by a corresponding satisfaction function.

Product template A ∼ is a set of ↑product hard constraints which a specification of a
corresponding ↑product has to fulfill.

Rationality ∼ is a property of an ↑agent. It is given if the agent always chooses an action
which maximizes its expected utility taking into account all information available for
decision making.

Reasoning scope A∼ is defined by the past experiences and future considerations which
an ↑agent takes into account for decision making.

Regrouping A ∼ is a repartitioning of two ↑coalitions in the course of coalition forma-
tion.

Regulatory hard constraint A ∼ is a condition which has to be satisfied by an ↑agent
when making decisions. ↑Regulatory hard constraint satisfaction can be verified
through a corresponding satisfaction function.

Regulatory hard constraint satisfaction ∼ is the fulfillment of a ↑regulatory hard con-
straint by an ↑agent as indicated by a corresponding satisfaction function.

Renewable energy ∼ is an ↑energy which is extracted from a source being steadily
replenished, like solar energy or wind energy.

Residual A ∼ is the difference between an observed value and a value predicted by a
model. Residuals thus allow to analyze the fit of a model.

Response A ∼ is a measurable characteristic of a system which is possibly influenced
by one or more ↑factors.

Response surface modeling ∼ is the fitting of a polynomial function to experimental
data, where the latter are typically obtained through the execution of a ↑central com-
posite design or a Box-Behnken design. The resulting model describes a considered
↑response as a function of a set of ↑factors being represented by its variables. An
analysis of the response surface thus allows for an identification of the optimal factor
levels.
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Solar power plant A ∼ is a ↑power plant which converts solar energy into ↑electrical
energy.

Strategy A ∼ is a sequence of actions which is deliberately executed by an ↑agent in
order to solve a task.

Trust The ∼ of an ↑agent in another agent is a measure for the trustworthiness of the
latter which has an impact on the willingness of the former to cooperate in the course
of coalition formation.

Unit A ∼ consists of one or more electrotechnical components which are connected
to a node of a ↑power grid and able to produce or consume ↑electrical energy. It is
connected to an ↑ICT network and controlled by an ↑agent which allows its potentials
to be aggregated with those of other units through the formation of ↑coalitions.

Unit type A ∼ is a category which reflects if a ↑unit is a producer or a consumer and
provides ↑operational flexibility.

Value maximization ∼ is the goal which ↑agents pursue when forming ↑coalitions. It
can either concern the individual benefit of an agent, the value of a ↑coalition, or the
value of the global ↑coalition structure.

Wind energy plant A ∼ is a ↑power plant which converts kinetic energy into ↑electrical
energy.
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