
Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Verification of Stochastic Systems by
Stochastic Satisfiability Modulo Theories

with Continuous Domain
(CSSMT)

Dissertation zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

von Yang Gao, M.Sc.
geboren am 23.03.1987 in Shannxi, China

Gutachter:
Prof. Dr. Martin Fränzle
Prof. Dr. Paolo Zuliani

Tag der Disputation: 26.04.2017

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements.

Yang Gao
November 2016

Acknowledgements

I would like to express my gratitude to all those who helped me during the writing of this thesis.
My most profound gratitude goes first and foremost to Prof. Dr. Martin Fränzle, my

supervisor, for his constant encouragement and guidance. He has walked me through all the
stages of the writing of this thesis. Without his consistent and illuminating instruction, this
thesis could not have reached its present form. Martin is always kind, patient and helpful, his
scientific insight and strong knowledge have brought me deeper into this field. I enjoy these
years supervised by Martin.

Second, I would like to express my heartfelt gratitude to Prof. Dr. Ernst-Rüdiger Olderog,
my second supervisor, who led me into the SCARE research training group and helped me
from all kinds of work no matter how significant or trivial. I am also greatly indebted to the
professors in the SCARE training group: Prof. Dr. Eike Best, Prof. Dr. Annegret Habel and
Prof. Dr. Oliver Theel, who have instructed and helped me a lot in the past few years.

I would also like to extend my sincere gratitude to Dr. Paolo Zuliani and Dr.-Ing. Willem
Hagemann, who have spent considerable efforts to review my thesis and provided me a lot of
valuable advice during my Ph.D. defense.

Last my thanks would go to my beloved family for their thoughtful considerations, support
from my home country and high confidence in me all through these years. I also owe my
sincere gratitude to my friends and SCARE colleagues who gave me their help and time in
listening to me and helping me work out my problems during the difficult course of the thesis.

Besides, this thesis is supported by the German Research Foundation through the Research
Training Group DFG-GRK 1765: “System Correctness under Adverse Conditions” (SCARE,
https://www.scare.uni-oldenburg.de).

https://www.scare.uni-oldenburg.de

Abstract

Stochastic Satisfiability Modulo Theories (SSMT) is a quantitative extension of Satisfiability
Modulo Theories (SMT) inspired by stochastic logics. It extends SMT by randomized quanti-
fiers, facilitating capture of stochastic game properties in the logic, like reachability analysis
of hybrid-state Markov decision processes. Solving SSMT formulae with quantification over
finite and thus discrete domain has been addressed by Tino Teige et al. A major limitation of
the SSMT solving approach is that all quantifiers (except for implicit innermost existential
quantification of all otherwise unbound variables) are confined to range over finite domains.
As this implies that the support of probability distributions have to be finite, a large number of
phenomena cannot be expressed within the SSMT framework, such as measurement error in
hybrid systems. To overcome this limitation, this thesis relaxes the constraints on the domains
of randomized variables, now also admitting dense probability distributions in SSMT solving,
which yields SSMT over continuous quantifier domains (CSSMT).

In this thesis, we firstly extend the semantics of SSMT and introduce a rule-based solving
procedure, which is an integration of SMT reasoning, constraint solving and probability
analysis. The possibilities of algorithmic enhancements are then developed to improve the basic
solving procedure for CSSMT. As applications, the corresponding prototype solver CSiSAT is
introduced and case studies from different fields are performed to demonstrate the feasibility of
the approach.

Zusammenfassung

Inspiriert durch stochastische Logiken wurde kürzlich eine quantitative Erweiterung der ex-
istierenden Satisfiability Modulo Theory (SMT) entwickelt. Diese, sogenannte Stochastic
Satisfiability Modulo Theory, erweitert die SMT, indem neben den All- und Existenz-Quantoren
weitere, randomisierte Quantoren eingeführt wurden. Hierdurch wird insbesondere das Er-
fassen von Eigenschaften von stochastischen Spielen, wie beispielsweise die probabilistische
Erreichbarkeit in Markov Entscheidungsprozessen mit hybriden, diskret-kontinuiertlichen
Zustandsräumen, erleichtert. Das Lösen der entsprechenden SSMT Formeln unter der Ein-
schränkung von diskreten Quantoren wurde bereits durch Tino Teige et al. adressiert. Einer der
größten limitierenden Faktoren solcher Ansätze ist, dass die Quantoren (bis auf einen impliziten
Existenzquantor über alle freien Variablen der Formel) auf beschränkte Bereiche über endlichen
Grundmengen limitiert sind. Somit können insbesondere nur Wahrscheinlichkeitsverteilungen
über endlichen Träger betrachtet werden. Eine Vielzahl von anwendungsrelevanten Phenome-
nen wie Messfehler sind jedoch besser durch kontinuierliche Verteilungen beschrieben. Um
solche Verteilungen in existierende SSMT Methoden zu integrieren, soll in dieser Arbeit die
Erweiterung SSMT over continuous quantifier domains (CSSMT) entwickelt werden, welche
die erwähnten Einschränkungen relaxiert, sodass nun auch SSMT Ausdrücke behandelt werden
können welche Verteilungen mit kontinuierlichem Träger beinhalten.

In der vorliegenden Arbeit wird zunächst die unterliegende Semantik der SSMT Formeln
erweitert sowie eine regel-basierte Vorgehen zum Lösen entwickelt, welches SMT Schlussfol-
gern, constraint sovling und Methoden der stochastischen Analysis kombiniert. Des Weiteren
werden algorithmische Erweiterungen zur Steigerung der Effizienz der Basislösungsmethode.
Die praktische Anwendbarkeit von CSSMT zur Verifikation von Systemen mit stochastischen
Verhalten wird auf mehreren Fallstudien unterschiedlicher Bereiche mittels einer prototypischen
Implementierung CSiSAT gezeigt.

Table of contents

Abstract vii

Zusammenfassung ix

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Related Work . 3

1.1.1 Probabilistic Model Checking . 3
1.1.2 Stochastic Hybrid Automata . 4
1.1.3 Satisfiability Modulo Theories . 6

1.2 Contributions . 7
1.3 Structure of the thesis . 8

2 Foundations and Notations 9
2.1 Probability Basis . 9
2.2 Interval Arithmetic and Constraint Solving 10

2.2.1 Interval Arithmetic . 10
2.2.2 Constraint Solving . 11

2.3 Satisfiability Modulo Theories (SMT) . 13
2.3.1 Satisfiability of Propositional Formulas (SAT) 13
2.3.2 DPLL Procedure . 13
2.3.3 Satisfiability Modulo Theory (SMT) 15

xii Table of contents

3 Stochastic Satisfiability Modulo Theories 17
3.1 Motivation: From SMT to Stochastic SMT (SSMT) 17
3.2 Decision Procedure for SMT . 19
3.3 Algorithms for SSMT . 21
3.4 The Limitation of SSMT . 25
3.5 Related Work . 26
3.6 Conclusion . 27

4 Stochastic Satisfiability Modulo Theories with Continuous Domain 29
4.1 Motivation: Stochastic Hybrid Systems with Continuous Distribution 29
4.2 Definitions and Semantics for CSSMT . 31

5 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis 35
5.1 Introduction to Stochastic Hybrid Automaton 36

5.1.1 Definition of Stochastic Hybrid Automaton 36
5.1.2 Execution of Stochastic Hybrid Automaton 39

5.2 Translation from Stochastic Hybrid Automaton to CSSMT 40
5.3 Bounded Reachability Problems represented by CSSMT 42
5.4 Conclusion . 44

6 Solving Procedure for CSSMT formula 45
6.1 Problem formalization . 46
6.2 Algorithm overview . 47
6.3 Rule-based Solving Procedure for CSSMT 48

6.3.1 Basic Definitions . 49
6.3.2 The Solving Procedure for CSSMT 51

6.4 Soundness of the Solving Procedure . 62
6.5 Summary . 65

7 Algorithmic Enhancements 67
7.1 Lazy Clause Evaluation . 69
7.2 Conflict Driven Clause Learning . 71
7.3 Early Termination by Required (Threshold) Probability Analysis 76
7.4 Summary . 81

8 CSiSAT: A Satisfiability Solver for CSSMT 83
8.1 Introduction to the Family of iSAT-based Tools 83
8.2 The Structure of CSiSAT . 84

Table of contents xiii

8.3 Functions of CSiSAT . 87
8.4 Compared with related tools . 87

9 Applications of CSiSAT 89
9.1 Demonstration Example . 90
9.2 Path Planning . 91

9.2.1 Formalization of The Problem . 92
9.2.2 Experimental Results . 93

9.3 Temperature Regulation Problem . 93
9.3.1 SSMT Formalization . 95
9.3.2 Experimental Results . 96

9.4 Task Deployment and Scheduling . 97
9.5 Conclusion . 100

10 Summary and Future Work 101
10.1 Discussion . 101
10.2 Future Directions . 102

References 105

List of figures

3.1 Decision procedure for SMT integrated with interval constraint propagation . 20
3.2 Semantics of a SSMT formula depicted as a tree [TF08]. 23

4.1 Regulating the temperature of a room by a thermostat 29
4.2 Semantics of a CSSMT formula depicted as a tree. 33

5.1 Regulating the temperature of a room by a thermostat 37

6.1 Semantics of a CSSMT formula depicted as a tree. 50
6.2 Inner (blue) and outer (red) approximations for constraint solving problem:

{x > 3,y≤ 20,x2 > 49,y≥ z} where x ∈ [7,10], y ∈ [5,20] and z ∈ [−10,10]. 58
6.3 Propagate probability by using combination rules. 59
6.4 Inner and outer approximations for constraint solving problem: {x > 3,y ≤

20,x2 > 49,y≥ z} where x ∈ [7,10], y ∈ [5,20] and z ∈ [−10,10] by RealPaver. 61
6.5 Solving procedure for Example 6.3.2 . 62

7.1 Conflict analysis can help narrow the searching space. 72
7.2 Implication Graph. 75
7.3 Propagate probability by using combination rules. 77
7.4 The computation of required probability. 79

8.1 HySAT/iSAT family. 85
8.2 Overview of CSiSAT . 86

9.1 Example input . 90
9.2 Execution results . 91
9.3 A segment of highway with three cars. 91
9.4 The probability of no collision.(“red curve" for changing lane, “blue curve" for

keeping in lane) . 93
9.5 Regulating the temperature of a room by a thermostat 94

xvi List of figures

9.6 Experiment results. 97
9.7 Task scheduling. 98

List of tables

3.1 Thesis Structure . 27

8.1 Comparing with other tools (×: unsupported;X: supported.) 88

9.1 Results for temperature regulation problem. (500 time steps, for each step 2
states variables, 2 control variables and 1 variable representing the temperature.) 97

9.2 System parameters . 99

Nomenclature

Roman Symbols

FX distribution function of X

IR set of intervals

R Reals

Z Integers

Greek Symbols

(Ω,F ,µ) a sample space Ω with a σ -field F and measure µ

πX density function for X

Other Symbols

E(λ) exponential distribution with rate parameter λ

⊎ operator to compute interval hull

N (µ,σ2) normal distribution with mean µ and standard variance σ

U(a,b) uniform distribution with minimum and maximum bounds a and b

Acronyms / Abbreviations

CDCL Conflict Driven Clause Learning

CNF Conjunction Normal Form

CSL Continuous Stochastic Logic

CSSMT Stochastic Satisfiability Modulo Theory with Continuous Domain

xx Nomenclature

CT MC Continuous Time Markov Chain

DPLL Davis-Putnam-Logemann-Loveland procedure

DT MC Discrete Time Markov Chain

HA Hybrid Automata

ICP Interval Constraint Propagation

IG Implication Graph

MDP Markov Decision Process

ODE Ordinary Differential Equation

PCT L Probabilistic Computation Tree Logic

PDF Probability Density Function

PDMP Piecewise Deterministic Markov Process

PHA Probabilistic Hybrid Automata

QoS Quantity of Service

SAT Boolean Satisfiability Problem

SDE Stochastic Differential Equation

SDP Switched Diffusion Process

SHA Stochastic Hybrid Automata

SHA Stochastic Hybrid Automaton

SMC Statistical Model Checking

SMT Satisfiability Modulo Theory

SSMT Stochastic Satisfiability Modulo Theory

Chapter 1

Introduction

The rapid development of information technology, software and hardware engineering makes
it possible to implement physical processes and design controllers with embedded computer
systems, which are shown to be the most common form of computing devices today. The
interactions of the virtual with the physical world range from traditional control applications,
like controlling an automotive powertrain, over computer-controlled active safety systems, like
the anti-locking brake, the electronic stability program, or recently pedestrian detection inte-
grated with emergency braking capabilities, to the vision of cyber-physical networks bringing
even remote physical processes into our sphere of control. Such widespread applications of
embedded computer systems result in functionality critical in many aspects which are required
in both design phase and implement phase: 1) critical to function – systems should behave
correctly in most adverse conditions such as disturbance and uncertainty introduced by the
environment they are interacting with or even by themselves; 2) critical to safety – correction
capabilities should be considered when systems reveal failure or crash; 3) critical to perfor-
mance – systems may be influenced by power consumption and quantity of service QoS; etc.
Such critical requirements have attracted a large number of researchers and engineers who
devote themselves to different aspects: from system behavior formalization, over modeling and
simulation, to correctness and safety verification.

The complication of modern controllers makes verification and analysis very challenging
tasks, which is mainly shown in the following aspects: 1) hybrid – the modern controller is a
compound system with continuous controller and discrete supervisor which interacts with the
physical plant by actuator and A/D (D/A) converter. The mixture of continuity and discreteness
makes it impossible to use a simple mathematical model to analyse the whole behavior of a
system, more precise models which consider the interaction of continuous parts and discrete
parts should be emphasized; 2) nondeterminism – the system has chance to choose its next-step
behavior from feasible actions, which are called nondeterministic choices. Nondeterminism

2 Introduction

is not captured by most of the classical mathematical models. However, nondeterminism is
one of the critical aspects which influence system correctness, such as a car, which is an open
system as we don’t know what the driver will eventually command from it. In this sense
nondeterminism should be employed to assure well-behavior of the system despite lacking
knowledge of actual user interaction; 3) randomness – modern controllers are not isolated
systems and are generally influenced by the environment, these interactions introduce noise and
disturbance to systems, which cannot be ignored especially when systems are safety critical.
So mathematical models which can capture such characteristic should seriously be considered.

Regarding to such complicated systems, one critical question arises, i.e., how correctly the
system can behave. Due to the interaction of continuous and discrete behavior, the influence
of deterministic and random behavior, the correctness of such systems should be carefully
analyzed. Consider an open system which contains all the aspects we mentioned above, it
is required to behave correctly under both open decision and random disturbance, however,
the system is still suffering from some malfunctions, i.e., traps into bad status or even worse –
crashes. The malfunctions are inevitable for a real system. However, we can require that the
probability of malfunctions is low enough, under a given tolerance. That is exactly what we are
going to deal with, i.e., we want to verify the correctness of a system, i.e., the probability that
the system goes to bad states under any adverse conditions is under an acceptable quantity. To
achieve this goal, a lot of formal models are investigated, so that the analysis can be performed
on mathematical models, which are abstractions of real-world systems concentrating on the
parts of interest.

Hybrid Automata (HA, [ACHH93]) is one of the well-known facilities which aims at
modeling and analyzing systems with discrete and continuous behavior. Such models support
qualitative behavioral verification in the sense of showing that a system behaving according
to its dynamics would never be able to engage in an undesired behavior. Hybrid automata
simulate the behavior of a system, the dynamics of the system is generally represented by
ordinary differential equation (ODE) and the renewal of continuous variables, meanwhile, the
discrete control actions are modeled by jumps between modes. Hybrid automata mainly focus
on the systems without disturbance and noise, although such uncertainties can be encoded by
intervals, in many applications such as wireless sensing, more concise quantitative information
about the involved uncertainties is available in terms of probabilities. To incorporate this kind
of information, both the underlying models and the corresponding analysis techniques have
to be adapted. Verifying reachability and safety properties within this extended setting then
corresponds to obtaining statements about the probability of these properties to be satisfied. For
these purposes some variants of hybrid-system models have been suggested, like Probabilistic
Hybrid Automata (PHA, [Spr00]) or Stochastic Hybrid Automata (SHA, [Jul06]). In such

1.1 Related Work 3

extensions, either discrete action can feature probabilistic branching or continuous evolution
can evolve stochastically along, e.g., stochastic differential equations, or both.

The resulting models are very complicated to analyze due to the introduction of different
undecidable sources, and the stochastic setting makes it even more complicated to handle. The
exact probability of reaching the desired targets cannot be attained in this sense. However,
approximation techniques can work on it efficiently. Instead of obtaining the exact probability,
an admissible bound is given by such techniques to approximate the real solution, which is able
to fit the bill in a lot of practical scenarios.

In the remainder of this thesis, we will introduce a constraint-based technique to handle the
verification problems with regard to the hybrid systems with stochastic behavior.

1.1 Related Work

In this section, we will recap some state-of-art techniques related to stochastic system analysis,
where the main ideas and corresponding tools are introduced, as well the relations with our
work.

1.1.1 Probabilistic Model Checking

Probabilistic Model Checking is a formal verification technique for modeling and analyzing
systems that exhibit probabilistic behavior [HKNP06], which is based on some probabilistic
models, i.e., Discrete Time Markov Chain (DTMC), Continuous Time Markov Chains (CTMS)
etc. Probabilistic model checking refers to a range of techniques for calculating the probability
of occurrence of certain events during the execution of the system, and can be useful to establish
properties such as “shutdown occurs with probability at most 0.01” and “the video frame will
be delivered within 5 ms with probability at least 0.97” [KNP02]. Applications range from
areas such as randomized distributed algorithms to planning and AI, security [NS03], and
even biological process modelling [LP07], wireless sensor network [AGFT14] or quantum
computing [FYY13]. The properties are formulated by some specific logic, like Probabilistic
Computation Tree Logic (PCTL, [HJ94]), Continuous Stochastic Logic (CSL, [ASSB00]) and
so on, which are probabilistic extensions of the classical temporal logics with considering the
distributions, time, rewards and some other probability-related quantities.

PRISM [KNP11] is a well-known probabilistic model checker for formal modeling and
analysis of systems that exhibit random or probabilistic behavior. It has been used to analyze
systems in many different application domains, including communication and multimedia
protocols, randomised distributed algorithms, security protocols, biological systems and many

4 Introduction

others. PRISM can build and analyze several types of probabilistic models such as CTMC,
DTMC, Markov Decision Process (MDP) and so on. The property specification language
incorporates the temporal logics PCTL, CSL, etc., as well as extensions for quantitative
specifications and costs/rewards.

PRISM has been successfully applied in many applications due to its capability to integrate
different probabilistic models, user-friendly modeling language and interactive graphical
interface. However, PRISM does not support continuous variables and distributions in the
following sense.

• PRISM is confined to finite-state systems, which makes continuous variables difficult to
tackle. In PRISM, continuous states are not supported, so modeling continuous quantities
should be done by using some other tricks, i.e., model the continuous variables as rewards
or abstract the domain of continuous variables and discretize them, but these methods are
not easy to be generalized.

• The definitions of DTMC/CTMC provide that the discrete transitions are issued with
discrete distributions, which makes continuous uncertainties unable to be captured.
PRISM supports different types of probabilistic models. However, all of them have the
mentioned characteristics.

1.1.2 Stochastic Hybrid Automata

Stochastic hybrid automata are proposed to integrate probabilities into hybrid system, which
lead to a number of different notions, each from a distinct perspective [AG97, Spr00, Buj04,
BLB05, APLS08]. An important problem in hybrid systems is reachability analysis, which is to
verify that whether a given system can reach a given target. Here the target can be either desired
states or bad states we want to avoid. With introducing the probability, the previous problem
should be slightly modified, like certifying that the probability of reaching some specified states
remains above (or below) a given quantitative safety target.

Stochastic hybrid systems have found various applications in diverse areas and tool support
for several subclasses, a framework featuring both probabilistic behavior and continuous-time
dynamics as well as nondeterminism is developed by Hahn et al. [ZSR+10], which relies on
state-space discretization by safe abstraction. The idea is first to consider the non-probabilistic
hybrid automaton obtained by replacing probabilistic branching with nondeterministic choices.
Provided that there is a finite abstraction for this classical hybrid automaton, the method then
decorates this abstraction with probabilities to obtain a probabilistic abstraction, namely a
finite probabilistic automaton, which allows to verify probabilistic safety properties on the
abstraction: if such a property holds in the abstraction, it also holds in the concrete system.

1.1 Related Work 5

Otherwise, refinement of the abstraction is required to obtain a more precise result. Based on
this framework, a prototype verifier ProHVer [HHHK13] is implemented, which is capable of
computing the unbounded reachability probability for probabilistic hybrid automata. ProHVer
maintains an over-approximation of the original probabilistic hybrid automata, which can then
compute a probability that is an upper bound for the maximal reachability probability for
the property given in the probabilistic hybrid automaton. However, exploiting ProHVer for
computing the abstractions is limited to linear dynamics and can handle even that only via
an over-approximation by piecewise constant differential inclusions. Moreover, due to the
manual selection of abstraction, the user must possess in-depth knowledge on such topics, for
some problems, numbers of iterations should be performed to get acceptable results, which
makes the tool not very easy to use. Our method to verify probabilistic systems is based on
constraints solving. The behavior of interest can be encoded to constraints, which can be even
nonlinear constraints with random variables. Then the verification procedure is performed on
the constraints. Such framework is relatively intuitive and can be easily generalized, moreover,
it doesn’t require deep knowledge of users.

Another variant of stochastic hybrid system is discussed by Fedor Shmarov, Paolo Zuliani
et al. [SZ15] where the hybrid systems equipped with random initial parameters are considered.
The framework is mainly based on safe gridding and δ -complete decision procedure: firstly,
the random initial parameters are split according to a given numerical error bound δ , i.e., the
partition can be guaranteed that the resulted probability estimation is acceptable regarding the
given precision. Then the bounded reachability in hybrid systems is encoded as a first-order
logic formula φ , the satisfiability of the resulted formula should be decided, if φ(x) is true,
the given initial value x will lead to the set B we are interested, yet f alse means x will lead to
the region out of B. Instead of determining the original formula φ(x), in their work, a relaxed
formula φ([x]) is verified by using the notion of δ -complete decision procedure [GKC13],
which evaluates a weaker formula, i.e., on the safe partition. For an interval [x] obtained by
the partition, the δ -complete decision procedure concludes: if φ([x]) is unsat, all points of
[x] will not lead to B for sure, such intervals [x] can be used for calculating the probability
over-approximation, if its complement complementary formula φC([x]) is unsat, the entire [x]
lies in set B for sure, which can be used to calculating the probability under-approximation,
for the other two cases – φ([x]) or φC([x]) is sat, [x] should be partitioned and verified again.
Finally, the lower and upper approximation for the reachability probability can be obtained. All
the ideas have been implemented in ProbReach [SZ15]. The drawbacks of this framework are
obvious: the δ -complete decision procedure should be applied on each partitioned interval, it is
quite a number of computation. For high dimension problems, even an exponential explosion
is suffered; another issue is that such method only deals with the hybrid systems with random

6 Introduction

initial parameters, however, the stochastic dynamics is not discussed. Thus we introduce
another mechanism for checking satisfiability of formulas with random variables, which is
based on branching and heuristic pruning technique so that we don’t need to traverse all the
domain. Moreover, the stochastic dynamics can also be encoded and solved by our method.

1.1.3 Satisfiability Modulo Theories

Another pertinent technique to analyze stochastic hybrid system is based on constraint solv-
ing for stochastic logic involving arithmetic, which encodes the behavior and properties to
some constraints and solves the resulted combination of constraints by corresponding decision
procedure. Such framework works on the extension of classical logics like Boolean Satisfi-
ability Problem (SAT) and Satisfiability Modulo Theory (SMT) [BHvM09] with stochastic
consideration. Our work resides in this branch.

The first idea of modeling uncertainty using randomized quantification was proposed within
the framework of SAT by Papadimitriou, yielding Stochastic SAT (SSAT) featuring both
classical quantifiers and randomized quantifiers [Pap85]. This work has been lifted to SMT by
Fränzle, Teige et al. [FHT08, TF08] in order to symbolically reason about reachability problems
of probabilistic hybrid automata (PHA). Instead of reporting true or false, an SSAT/SSMT
formula Φ has a probability as semantics, which denotes the probability of satisfaction of Φ

under an optimal resolution of the non-random quantifiers. SSAT and SSMT permit concise
description of diverse problems combining reasoning under uncertainty with data dependencies.
Applications range from AI planning [ML98, LMP01, ML99] to analysis of PHA [FHT08].

A serious limitation of the SSMT-solving approach pioneered by Teige [Tei12] is that all
quantifiers (except for implicit innermost existential quantification of all otherwise unbound
variables) are confined to range over finite domains. As this implies that the carriers of
probability distributions have to be finite, a large number of phenomena cannot be expressed
within the current SSMT framework, such as continuous noise or measurement error in hybrid
systems. To overcome this limitation, we relax the constraints on the domains of randomized
variables, now also admitting continuous probability distributions in SSMT solving [GF15].

Another work extending SSMT to continuous domains is by Ellen et al. [EGF14], proposing
a statistical solving technique adopted from statistical AI planning algorithms and thus only
being able to offer stochastic guarantees.

1.2 Contributions 7

1.2 Contributions

SSMT and its original solving procedure were proposed by Fränzle, Hermanns, and Teige
[FHT08] based on SSAT [Pap85], SMT solving by DPLL(T) [NOT06], and the iSAT algorithm
[FHT+07] for solving non-linear arithmetic constraint systems by using interval constraint
propagation. The original formulation of SSMT is confined to finite quantifier domains. This
Ph.D. work extends the semantics of SSMT so that continuous probability distributions are
supported. Due to the undecidability of satisfiability with real arithmetics, we are focusing on
the solving procedure with safe bounds. The contributions contain:

• We extend the semantics of SSMT with supporting continuous distributions (Continuous
SSMT, CSSMT) and propose corresponding solving procedure, which is based on a
combination of the CDCL(T) (Constraint Driven Clause Learning, [NOT06]) and ICP (In-
terval Constraint Propagation, [RVBW06, VHMK97]) algorithms, as first implemented
in the iSAT solver for rich arithmetic SMT problems over Rn [FHT+07], and on branch-
and-prune rules for the quantifiers generalizing those suggested in [FHT+07, Tei12]. We
extend these methods so that they can deal with the SSMT formula with continuous
quantifier domains. Our solving procedure therefore is divided into three layers: an SMT
layer manipulating the Boolean structure of the “matrix”1 of the formula, an interval con-
straint solving layer reasoning over the conjunctive constraint systems in the theory part
of the formula, and a stochastic SMT layer reasoning about the quantifier prefix. Each
layer is defined by a set of rules to generate, split, and combine so-called computation
cells, where a computation cell is a box-shaped part of the Rn, i.e., the problem domain
of the constraints. The solver thereby approximates the exact satisfaction probability
of the formula under investigation and terminates with a conclusive result whenever
the approximation gets tight enough to conclusively answer the question whether the
satisfaction probability is above or below a certain specified target.

• We implement a prototype solver CSiSAT in C++, which is a satisfiability solver for
non-linear constraints with random variables, i.e., CSSMT formulae. CSiSAT takes
CSSMT formulae as input and returns safe bounds to estimate probability of satisfaction,
which can be applied to verify reachability properties in stochastic hybrid systems.

• We apply the theory of CSSMT and the solver CSiSAT to some application scenarios in
different aspects, i.e., controller design, tasks scheduling, path planning and so on. All

1In SSAT parlance, this is the body of the formula after rewriting it to prenex form and stripping all the
quantifiers.

8 Introduction

the applications consider the uncertainties in the systems and analyze the properties of
interest benefit from stochastic constraints solving.

1.3 Structure of the thesis

This thesis is logically divided into three parts:

• Chapter 3-5 introduce the semantics of continuous SSMT, we start with an introduction
for classical satisfiability theory (SMT) and its stochastic extension – stochastic SMT,
which are recapped in Chapter 3. Due to the limitation that stochastic SMT only supports
discrete distributions we further extend its semantics to continuous domain (CSSMT),
which is formalized in Chapter 4. The potential application of CSSMT is stressed in
Chapter 5 by introducing bounded reachability problem and its relation to CSSMT.

• Chapter 6 and Chapter 7 focus on the solving procedure for CSSMT, where the rule-
based solving procedure is discussed in Chapter 6, and the possibilities of algorithmic
enhancements are further developed in Chapter 7.

• Chapter 8 and Chapter 9 can be categorized into the application domain. The prototype
tool CSiSAT is introduced in Chapter 8 and how to use CSiSAT to solve practical problems
are discussed in Chapter 9.

Apart from this, foundations and notations are briefly reviewed in Chapter 2 and finally in
Chapter 10 we summarize the thesis and discuss promising points for future work.

Chapter 2

Foundations and Notations

In this chapter, we will briefly recap foundations and notations used in the following parts.
Probability theory is our main basis and interval arithmetic contributes to the solving procedure;
we will also review some basic conceptions of satisfiability modulo theory (SMT), which is
regarded as our start point.

2.1 Probability Basis

Let Ω be a sample set, the set of all possible outcomes of an experiment. A pair (Ω,F) is
said to be a sample space if F is a σ -field of subsets of Ω. A triple (Ω,F ,µ) is a probability
space if µ is a probability measure over F : 1) 0≤ µ(A)≤ 1 for all A ∈ F ; 2) µ(/0) = 0 and
µ(Ω) = 1; 3) µ(

⋃
∞
k=1 Ak) = Σ∞

k=1µ(Ak) for disjoint Ak ∈ F .
Let (Ω,F ,µ) be a probability space. A function X : Ω → R is said to be a random

variable iff X−1(B) ∈ F for all B ∈ B, where B is the Borel σ -algebra generated by all the
open sets in R. The distribution function of X is the function FX : R→ [0,1] defined by
FX(x) := µ(X ≤ x) for all x ∈ R. If there exists a nonnegative, integrable function π : R→ R
such that FX(x) :=

∫ x
−∞

π(y)dy, then π is called the density function for X . It follows then that
µ(X ∈ A) =

∫
A π(x)dx for all A ∈ F .

In order to achieve a uniform treatment of discrete and continuous random variables,
we equip R with the Lebesgue measure and Z with cardinality of its subsets as a measure.
Given this convention, we can uniformly write

∫
A π(x)dx for determining the probability mass

assigned by density (or, in the discrete case, distribution) π to the set A, as the measure is
understood. Note that in the discrete case,

∫
A π(x)dx = ∑x∈A π(x) due to the particular choice

of the measure for Z. This permits us to uniformly treat densities over the continuum and
distributions over discrete carriers as densities.

10 Foundations and Notations

Some frequently used densities are given below, such notations will also be used in the rest
parts:

• N (µ,σ2), normal distribution with mean µ and standard variance σ , the probability
density function (PDF) is:

π(x; µ,σ2) =
1

σ
√

2π
e−

1
2 (

x−µ

σ
)2

• U(a,b), uniform distribution with minimum and maximum bounds a and b, the corre-
sponding PDF is:

π(x;a,b) =

 1
b−a for a≤ x≤ b

0 otherwise

• E(λ), exponential distribution with rate parameter λ , where the CDF is:

π(x;λ) =

1− e−λx x≥ 0

0 x < 0

Above we list some continuous distributions, other distributions and discrete distributions will
be mentioned when they are used in the rest of thesis.

2.2 Interval Arithmetic and Constraint Solving

Interval arithmetic is a mathematical technique systematized by Rosalind Cecily Young in
the 1930s [You31] and developed by mathematicians since the 1950s [S+09, MM79, AH84]
as an approach to putting safe bounds on errors in numerical computation. It has later been
extended to handle arithmetic constraints over continuous domains [BG06], where it enables
efficient search for approximate solutions to large-scale non-linear constraint systems. Our
main framework is essentially based on interval arithmetic and interval constraint propagation,
so we will recap the main concepts in this section.

2.2.1 Interval Arithmetic

Let R denote the reals. A real interval X is defined as the set of real numbers between (or
including) a given upper and lower bound, i.e. X = [X ,X] = {x ∈ R | X ≤ x ≤ X} (open
intervals can be defined similarly by using strict less equal operator), and the set of intervals is

2.2 Interval Arithmetic and Constraint Solving 11

denoted by IR. Interval arithmetic is a lifting of real arithmetic. For an arithmetic operation
◦ like +, − or ×, the corresponding interval operation on intervals X and Y is defined by
X ◦Y = hull({x◦y | x ∈ X ,y ∈Y}), where hull(X) denotes the smallest computer-representable
interval covering X . Pay attention to the case that X is divided by Y containing zero, models
should be modified by extending reals R∞ = R∪{−∞,+∞}, in this case, divided by Y yields
two intervals both containing infinity. Elementary functions are defined in the same way.

Sometimes it is useful to represent the variables in a vector manner, i.e., the variables
x1, . . . ,xn are denoted by the vector x = (x1, . . . ,xn). The domain of the variables are then
denoted by the n-dimension box X = (X1, . . . ,Xn), which is to say that the domain of xi is Xi.

Interval arithmetic is often used to compute the range of a real function over a domain, a
real function f : Rn→ R can be lifted to an interval function F : IRn→ IR if for every I ∈ Xn

the inclusion { f (x) : x ∈ I} ⊆ F(X) holds.

2.2.2 Constraint Solving

Interval arithmetic has been developed into interval constraint propagation (ICP, [RVBW06,
VHMK97, GB06]) as a means of solving systems of real equalities and inequalities. Given
a set of real constraints C and initial interval bounds ρ : Vars→ IR on their variables, ICP
successively narrows the initial intervals to small intervals still covering all real solutions to the
constraint system.

Example 2.2.1. Consider the constraint c: x1+x2 = x3 with initially ρ(x1) = (−∞,5], ρ(x2) =

(−∞,4] and ρ(x3) = [6,∞). ICP modifies the domain of variable by representing it with other
variables and then performing the interval computation, i.e., x3 = x1+x2 yields ρ(x3)= [6,∞)∩
((−∞,5]+(−∞,4]) = [6,∞)∩ (−∞,9] = [6,9]. Similarly, we can obtain smaller intervals for
both x1 and x2, which yields ρ(x1) = [2,5] and ρ(x2) = [1,4] respectively.

During the narrowing process, ICP will frequently reach a fix-point given by some con-
sistency conditions, e.g., hull consistency (see Def. 2.2.1), which is a state where ICP cannot
narrow any domain of variables or make negligible progress. In such a case, interval splitting
will be performed to pursue further narrowing and recursively contract the sub-intervals. This
framework is called branch-and-prune [VHMK97] and forms a core mechanism for ICP based
constraint solving. A toy example is given below.

Definition 2.2.1. A simple constraint c≡ (p = q◦ r) is hull consistent w.r.t. ρ : Vars→ IR iff
ρ(p) = ρ(q) ◦ρ(r). Likewise, a simple bound c ≡ (p ≤ c), where c is a constant, is said to
be hull consistent w.r.t. ρ : Vars→ IR iff ρ(p) ⊆ (−∞, c̃], where c̃ is the smallest computer-
representable number ≥ c.

12 Foundations and Notations

A set C of constraints is hull consistent w.r.t. ρ iff all its constraints are. The notation
ρ |=hc C is used.

Example 2.2.2. Consider the constraints c1 : p = q2 and c2 : p− q = 0, and let the initial
configuration be ρ(q) = [−2,2] and ρ(p) = [−2,2]. We know that this problem has two isolated
solutions (q = 0, p = 0) and (q = 1, p = 1). Starting by considering constraint c1, the ICP
process will give the following sequence:

(c1,ρ(p) = [0,2]) , (c1,ρ(q) = [0,1.414 . . .]),

(c2,ρ(p) = [0,1.414 . . .]) , (c1,ρ(q) = [0,1.189 . . .]),

· · ·

Iterative narrowing by ICP stops with a hull consistency set ρ(q) = [0,1.00 . . .] and ρ(p) =
[0,1.00 . . .] (Converge to 1 but will not reach 1). In order to get close to the true results, we
then choose a variable and split its domain into two parts, e.g., we could choose q and split
into ρ(q1) = [0,0.5] and ρ(q2) = (0.5,1.00 . . .]. Then ICP will be used on each sub-interval,
rapidly narrowing them to small boxes enclosing the actual solutions.

The procure mentioned above forms the basic framework of constraints solving by using
interval constraint propagation, which is shown in Algorithm 1.

Algorithm 1 Branch and Prune
Input: C: constraints model, ρ: interval box.
Output: L: a set of boxes which approximate the solutions of C regarding to ρ .

1: L := {ρ} ◃ set of interval boxes
2: while True do
3: I :=Choose(L); ◃ choice of a current box
4: I′ := Prune(C, I); ◃ pruning by ICP
5: if I′ |=hc C then
6: L := Branch(L, I′); ◃ branching if hull consistent
7: if L is terminal then return L; ◃ covering of the solutions of C
8: end while

In the above algorithm, the branching is applied when hull consistency is obtained, this is
theoretically correct. However, in practice, the branching can be also pursued upon negligible
progress for efficiency, i.e., the narrowing of intervals between two steps is small enough.

2.3 Satisfiability Modulo Theories (SMT) 13

2.3 Satisfiability Modulo Theories (SMT)

Our main contribution is the extension of standard SMT, thus in this section, we will recap
some basic concepts in this field. We start from the satisfiability problem of propositional
formulas (SAT) to its underlying solving procedure, i.e., Davis-Putnam-Logemann-Loveland
(DPLL) procedure, and then more expressive logics are discussed, i.e., Satisfiability Modulo
Theories (SMT).

2.3.1 Satisfiability of Propositional Formulas (SAT)

Deciding the satisfiability of propositional formulas (SAT) is known as a NP-complete problem
in complexity theory [Coo71], it is also the basis of many practical applications such as Elec-
tronic Design Automation, Verification, Artificial Intelligence and so on. The modern solving
techniques make it possible to solve large-scale formulae with thousands of variables very
efficiently. SAT is nowadays still a very hot topic in computer science, computer engineering
and active in many aspects.

In satisfiability theory, a SAT formula is generally expressed by a standard form like
C1∧·· ·∧Cn, which is called Conjunction Normal Form (CNF), as the name indicates, it is a
conjunction of clauses. A clause Ci is a disjunction of literals with the form l1∨·· ·∨ ln, where
a literal li is either an atom p or its negation ¬p. A unit clause only contains a single literal.
We define M as an assignment of a CNF formula F , which assigns each literal a truth value,
M |= F if all its clauses are true with regard to M, in this case, M is a model of F . If there is no
models for F , F is unsatisfiable.

Example 2.3.1. Consider a four variables CNF formula:

(¬x1∨¬x2)∧ (x2∨ x3)∧ (¬x1∨¬x3∨ x4)∧ (x2∨¬x3∨¬x4)∧ (x1∨ x4)

This CNF formula contains 5 clauses. M(x1) = False, M(x2) = True, M(x3) = False and
M(x4) = True is an assignment for the formula, and which makes all the clauses satisfied, so
M is model the formula.

For simplicity, a CNF formula can be represented by dropping of the ∧ connectives, i.e.,

¬x1∨¬x2, x2∨ x3, ¬x1∨¬x3∨ x4, x2∨¬x3∨¬x4, x1∨ x4

2.3.2 DPLL Procedure

The algorithm for deciding the satisfiability of propositional formula was firstly proposed by
Davis et al [DLL62], which is named as Davis-Putnam-Logemann-Loveland (DPLL) procedure.

14 Foundations and Notations

The DPLL algorithm is the basis for a lot of modern SAT solving techniques, the basic DPLL
procedure is a backtracking based technique which recursively chooses a literal and assigns a
truth value to it, if the assigned literals makes the whole formula satisfied, the procedure returns
the assignments as a model; otherwise if conflicts are obtained, DPLL procedure backtracks
to the previous decision and redoes with the opposite assignment. If the procedure fails the
backtracking, it claims that the CNF formula is unsatisfiable. The basic DPLL algorithm thus
contains the following procedures:

• Decide, choose a literal and assign it to True or False. The way of choosing literal can be
heuristically adopted according to the actual situations;

• Unit propagate, go through the whole formula and find unit clauses resulted by the
current assignment;

• Backtrack, withdraw the current decision step if conflicts are met, redo the previous
decision with the opposite assignments, for efficiency, this step can be improved with
a smart way, i.e., Conflict-Driven-Clause-Learning (CDCL, [SS97, BJS97]). Instead of
backtracking to the previous decision step, CDCL analyses the conflicts and jumps back
to the decision step which leads to the conflicts;

• Fail, terminate the procedure if backtracking step cannot find a previous decision point
to jump, which means the formula is unsatisfiable.

Example 2.3.2. Reconsider the previous example, the following steps show how DPLL algo-
rithm works:

/0|| ¬x1∨¬x2, x2∨ x3, ¬x1∨¬x3∨ x4, x2∨¬x3∨¬x4, x1∨ x4 ⇒ (Decide)

xd
1 || False∨¬x2, x2∨ x3, False∨¬x3∨ x4, x2∨¬x3∨¬x4, True ⇒ (UnitPropagate)

xd
1x2|| True, False∨ x3, False∨¬x3∨ x4, False∨¬x3∨¬x4, True ⇒ (UnitPropagate)

xd
1x2x3|| True, False∨False∨ x4, False∨False∨¬x4, True ⇒ (UnitPropagate)

xd
1x2x3x4|| True, True, False, True ⇒ (BackTrack)

x1|| True, x2∨ x3, True, x2∨¬x3∨¬x4, False∨ x4 ⇒ (UnitPropagate)

x1x4|| True, x2∨ x3, True, x2∨¬x3∨False ⇒ (Decide)

x1x4xd
3 || True, x2∨False, True, True ⇒ (UnitPropagate)

x1x4xd
3x2|| True, True, True, True

We find an assignment which makes all the clauses True, i.e., x1 is assigned to False, x2 is
assigned to True, x3 is assigned to False and x4 is assigned to True, which is also the model of
the given formula.

2.3 Satisfiability Modulo Theories (SMT) 15

The modern DPLL procedure doesn’t implement the classical DPLL framework, a lot of
sophisticated techniques are proposed for efficiency.

2.3.3 Satisfiability Modulo Theory (SMT)

SAT formula contains only Boolean variables, which is limited in many applications. In order
to support more expressive logics, some other background theories are integrated to SAT, which
is known as Satisfiability Modulo Theories (SMT). SMT is a more powerful tool to formulate
the constraints concerning different domains, thus arises in many industrial applications.

SMT arises to be a very interesting and challenging topic in modern constraints solving
area, which combines different theories like equality [Ack54, DST80, NO80], linear arithmetic
[Dan98, Pug91], bit vectors [BD02, FOR+01], arrays [MP67, Rey79], pointer logic [Bur72,
Lei95, Rey02] etc, the quantified logics have also been considered [Sto76, BKF95, DSW99].

Because of the success of SAT/SMT theories, a large number of tools have been implement-
ed and widely applied to industrial applications. Successful tools varies from specific built-in
theory solvers, like Boolector for arrays and bit vectors, iSAT and MiniSmt for non-linear
arithmetic; over combined theory solvers, like CVC3 and Yices; to large-scale industrial strength
solver, like Z3 from Microsoft Research.

The modern SMT solvers involve different kinds of sophisticated theories and mechanisms
for both generality and efficiency. One of the significant frameworks is interval based solv-
ing procedure, which was first proposed by Martin Fränzle et al. [FHT+07], where a tight
integration of SAT solving techniques with interval based arithmetic constraint solving was
investigated. Their approach is able to handle large constraint systems with complex Boolean
structure involving nonlinear arithmetic. Due to the undecidability of nonlinear arithmetic
[Rat06], the proposed solving procedure is not complete with sometimes unknown answer.
However, with the help of other heuristics like restarts it can achieve an almost complete
procedure. HySAT/iSAT [HEFT08] are interval based SMT solver which implemented the
mentioned solving procedure and can be applied to either nonlinear constraints solving or
bounded model checking.

Interval-based technique is also the basis of this Ph.D. thesis, our solving procedure for
stochastic SMT is a combination of interval constraint propagation, classical CDCL framework
and probability analysis. The rest of the thesis will focus on these aspects.

Chapter 3

Stochastic Satisfiability Modulo Theories

3.1 Motivation: From SMT to Stochastic SMT (SSMT)

As has been stated in the previous sections, SAT/SMT solvers make rapid advances and find
novel uses in a wide variety of applications both in computer science and beyond, i.e., they are
used for verification, proving the correctness of programs, software testing based on symbolic
execution, syntheses, hardware design, etc. However, SAT/SMT solvers cannot deal with
systems with uncertainties. Although such uncertainties about variables can be encoded by
intervals, in many applications such as wireless sensing, more concise quantitative information
about the uncertainties involved is available in terms of probabilities. To incorporate this kind
of information, both the underlying models and the corresponding analysis techniques have
to be adapted, i.e., extending classical SAT/SMT so that uncertainties can be captured, which
yields stochastic SAT/SMT (SSAT/SSMT).

According to different focuses, the development of SSAT/SSMT can be summarized in the
following:

• Stochastic Propositional Satisfiability (SSAT). This is the first stochastic extension
for propositional satisfiability by Papadimitriou [Pap85], which features both classical
quantifiers and randomized quantifiers. Randomized quantifiers indicate that the variables
bound by them are random variables.

• Stochastic Satisfiability Modulo Theory (SSMT). SSAT has been lifted to support nonlin-
ear arithmetic by Fränzle, Teige et al. [FHT08, TF08] in order to symbolically reason
about reachability problems of probabilistic hybrid automata (PHA).

• Stochastic Satisfiability Modulo Theory with Continuous Domain (CSSMT). A major
limitation of the SSMT solving approach is that all quantifiers (except for implicit

18 Stochastic Satisfiability Modulo Theories

innermost existential quantification of all otherwise unbound variables) are confined to
range over finite domains. As this implies that the carriers of probability distributions
have to be finite, a large number of phenomena cannot be expressed within the SSMT
framework, such as continuous noise or measurement error in hybrid systems. To
overcome this limitation, we relax the constraints on the domains of randomized variables,
now also admitting continuous probability distributions in SSMT solving [GF15]. This
is the main concern of this Ph.D. thesis.

All the theories mentioned above have one thing in common, i.e., instead of reporting True or
False, the formula has a probability as semantics, which denotes the probability of satisfaction
under optimal resolution of the non-random quantifiers. SSAT and SSMT permit concise
description of diverse problems combining reasoning under uncertainty with data dependencies.
Applications range from AI planning [ML98, LMP01, ML99] to analysis of probabilistic
hybrid automata [FHT08].

Example 3.1.1. Consider the following formulas:

Φ1 := ∃x R0.3y : (x∨¬y)∧ (¬x∨ y)

Φ2 := ∃x ∈ {0,1} R

⟨(0.5,0.6),(1,0.4)⟩y ∈ {0.5,1} : (x≥ 0∨ y < 0)∧ (x < 0.7∨ y≥ 0)

Φ3 := ∃x ∈ [0,1]

R

y ∈N (0,1) : (x≥ 0∨ y < 0)∧ (x < 0.7∨ y≥ 0)

Φ1, Φ2 and Φ3 are SSAT, SSAMT and CSSMT respectively, all the formulas have the form
Φ :=Q : ϕ , whereQ is a sequence of quantifiers, different with classical satisfiability formulas,
a new quantifier

R

is introduced, which is named as randomized quantifier and indicates that
the bound variables are probabilistic distributed.

Compared the three formulas, SSMT formulas assign each variable with only True or
False, i.e.,

R0.3y means y is True with probability 0.3. SSAT is lifted to SSMT by introducing
arithmetics into ϕ , the random variables are bound with

R

with discrete probability distribution,
i.e., in Φ2,

R

⟨(0.5,0.6),(1,0.4)⟩y means y has two discrete value 0.5 and 1 and their probability
are 0.6 and 0.4 respectively. More general formulas can be represented by CSSMT, where
continuous distributions can be bound to variables, as seen in formula Φ3, y is normally
distributed with standard Gauss distribution.

Compared to the classical SAT/SMT, SSAT/SSMT/CSSMT provide more information for
the formula:

• all of them introduce the randomized quantifier

R

, that is a new symbol in satisfiability
modulo theory.

R

indicates that the variable associated is not a typical variable, and it’s

3.2 Decision Procedure for SMT 19

distribution density and domain are also specified by the randomized quantifier, which
allows the modeling of random variables in an SAT/SMT formula;

• the semantics of SSAT/SSMT/CSSMT are changed, which is not True or False anymore,
instead, it is a real number between 0 and 1 which shows how probable the formula can
be satisfied, i.e., the maximum probability of satisfaction.

Example 3.1.2. Now let us check the following formula Φ1 := ∃x R0.3y : (x∨¬y)∧ (¬x∨ y) to
understand the meaning of introducing randomize quantifier

R

. We start by taking x with True,
in order to make the second clause ¬x∨ y, y has to be True,

R0.3y indicates that y takes True
with probability 0.3, which yields the probability 0.3 of this branch; similarly, if x is False, the
probability of satisfaction is 0.7. In all, the maximum probability of satisfaction is 0.7. Φ2 and
Φ3 can be understood in the same way; the formal semantics will be introduced later.

3.2 Decision Procedure for SMT

The solving procedures for SSMT/CSSMT formulas are mainly based on the SMT solving
procedure proposed by Martin Fränzle et al. [FHT+07, FHT08], which integrates interval
arithmetic with DPLL framework. The DPLL framework has been explained in the previous
chapter and here we will briefly recap the basic ideas for SMT solving with interval arithmetic,
which forms the basis of our work, as in Fig. 3.1.

The solving procedure takes an SMT formula Φ and its initial assignment ρ as input, it
starts with establishing a list structure M to denote the list of asserted atoms. The procedure
continues with searching for unit clauses in Φ, adds to M and repeats until all unit clauses have
been processed. Interval constraint propagation is then performed to narrow the current interval
valuation ρ , which yields the contractions. Contractions may generate new unit clauses; the
procedure goes back the unit propagation and ICP steps, which are repeated until contraction
detects some conflicts. Otherwise, if no conflicts are identified or no new clauses are generated,
it applies a splitting step.

When conflicts are detected, some previous decisions have to be reverted, which is achieved
by backtracking, if no previous backtracking steps are applicable, the procedure stops with
unsat.

The solving procedure will try to find satisfying valuations if hull consistency is obtained
by ICP step; if such valuations exist, it stops with sat.

Remark 3.2.1. The procedure could be extremely improved by analyzing the conflicts, i.e., in
case of the conflicts encountered during the search, the reason can be recorded to prevent the

20 Stochastic Satisfiability Modulo Theories

InitializationInput: Φ and ρ

Unit Propagation

Interval Constraint
Propagation

Conflicts are
detected?

Procedure
revertible?

New clauses
generated?

Solution
found?

unsat

Splitting

sat

yes no

no

yes

no

yes

no

yes

Fig. 3.1 Decision procedure for SMT integrated with interval constraint propagation

procedure from constructing other interval valuations provoking a similar conflict, which yields
conflict driven learning mechanism (CDCL) and non-chronological backtracking.

Remark 3.2.2. The base algorithm described above is not complete, due to the risk of unbound-
ed splitting, which yields non-termination due to the density of the order on R. In such case,
the procedure fails to find a solution thus splits endlessly, thus heuristics should be selected to
force the termination, i.e., set up a progress bound (precision bound), fix the splitting depth, i.e.,

3.3 Algorithms for SSMT 21

the procedure will then either lead to an ‘unknown’ answer equipped with candidate intervals
where solutions may exist (no guarantee), or restart to do other trials.

3.3 Algorithms for SSMT

The stochastic satisfiability modulo theories (SSMT) problem is a generalization of the SMT
problem on existential and randomized quantification over discrete variables of an SMT formula,
which is proposed and formolized by Tino Teige et al. [TF08, Tei12]. The formal definition of
SSMT can be found as follow:

Definition 3.3.1. An SSMT problem

Φ = Q1x1 ∈ dom(x1) · · ·Qnxn ∈ dom(xn) : ϕ

is specified by:

• a prefix Q1x1 ∈ dom(x1) · · ·Qnxn ∈ dom(xn) binding the variables xi to the quantifiers
Qi. Qi is either existential, denoted as ∃, or randomized, denoted as

R

di , where di is
probability distribution often denoted by a list ⟨(v1, p1), . . . ,(vm, pm)⟩ of value pairs and
pi is understood as the probability of setting variable xi to vi, where ∑

m
j=1 p j = 1 holds;

• and an SMT formula ϕ (also called the matrix) over quantifier-free non-linear arithmetic
theory over the reals, integers and Booleans. It is always represented by conjunctive
normal form (CNF).

Example 3.3.1. According to Definition 3.3.1,

Φ = ∃x∈ {0,1} R

⟨(0,0.6),(1,0.4)⟩y∈ {0,1} : (x > 0∨2a ·sin(4b)≥ 3)∧(y > 0∨2a ·sin(4b)< 1)

is an SSMT formula, where x is bound by existential quantifier ∃, its domain is discrete with two
values. y is bound by randomized quantifier

R

and its discrete distribution is represented by the
subscript ⟨(0,0.6),(1,0.4)⟩, which means y can take two values 0 and 1, each has probability
0.6 and 0.4 respectively.

The classical SMT says that a formula Φ is satisfiable if there exists a model (assignment)
which makes Φ satisfied, Φ is unsatisfiable if such model cannot be found. Due to the
introduction of randomized quantifier, it makes no sense to just decide the satisfiability of
such formulas, instead, a quantitative semantic should be given to SSMT, that is, the maximum
probability of satisfaction. Intuitively, for an SSMT formula Φ = ∃x1 ∈ dom(x1)

R

d2x2 ∈

22 Stochastic Satisfiability Modulo Theories

dom(x2)∃x3 ∈ dom(x3)

R

d4x2 ∈ dom(x2) : ϕ : Φ determines the maximum probability s.t. there
is a value for x1 s.t. for random variable x2 there is value for x3 s.t. for random values of x4 the
SMT formula φ is satisfiable. The formal semantics is defined as follow:

Definition 3.3.2. The semantics [TF08] of a SSMT formula Φ = Q : ϕ is defined by the
maximum probability of satisfaction Pr(Φ) as follows, where ε denotes the empty quantifier
prefix:

• Pr(ε : ϕ) = 0 if ϕ is unsatisfiable.

• Pr(ε : ϕ) = 1 if ϕ is satisfiable.

• Pr(∃xi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)

=maxv∈dom(xi)Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi]).

• Pr(

R

πixi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)

=∑(v,p)∈di p ·Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi]).

Example 3.3.2. Back to the Example 3.3.1, the semantics can be depicted as a tree, see Figure
3.2. According to the Definition 3.3.2, the semantics of SSMT formula is interpreted by resolving
the quantifiers from outermost to innermost, i.e., from top to bottom in the tree structure. x is
firstly split into two branches, and for each branch, y is then split. When all the quantifiers have
resolved, we obtain some SMT formulas; the satisfiability could be checked. For unsat case, we
assign the probability 0, and 1 otherwise. The probabilities are then computed from bottom to
top according to the types of quantifiers: 1) if the variable is bound by

R

, the weighted sum is
computed regarding the discrete distribution, which yields the expectation; 2) if the variable
is bound by ∃, the maximum probability is chosen. For this example, we get that x = 0 leads
to the probability of satisfaction 0.4, meanwhile x = 1 leads to the probability 1. We finally
conclude that the maximum probability of satisfaction is 1.

A straightforward way to solve SSMT formula can be explained as follows: since SSMT
only supports discrete distributions, the domain of the corresponding random variable is discrete,
i.e., finite countable. The simplest way is to substitute the matrix with discrete values, which
yields SMT formulas. The satisfaction of SMT formulas can be judged by using SAT/SMT
solvers, like HySAT/iSAT. Then the obtained results can be computed from bottom to top
according to the type of quantifiers as described in the previous example.

The proposed solving procedure can be easily built on existing SAT/SMT solver. However,
it suffers from the exponential explosion. For example, if there are k variables which are bound
by

R

, each variable contains nk possible discrete values, then the number of resulted SMT

3.3 Algorithms for SSMT 23

Φ = ∃x ∈ {0,1} R

⟨(0,0.6),(1,0.4)⟩y ∈ {0,1} : (x > 0∨2a · sin(4b)≥ 3)∧ (y > 0∨2a · sin(4b)< 1)

x

Pr(Φ) = max(0.4,1) = 1

y y

x = 0 x = 1

(0,0.6) (1,0.4) (0,0.6) (1,0.4)

Pr = 0 Pr = 1 Pr = 1 Pr = 1

Pr = 0.6 ·0+0.4 ·1 = 0.4 Pr = 0.6 ·1+0.4 ·1 = 1

2a · sin(4b)≥ 3
2a · sin(4b)< 1

unsat

2a · sin(4b)≥ 3
sat

2a · sin(4b)< 1
sat

sat

Fig. 3.2 Semantics of a SSMT formula depicted as a tree [TF08].

formulas is ∏
k
i=1 ni. Each should be solved at least once (sometimes the solving procedure

should be restarted) by SAT/SMT solver; this is very inefficient.
A better way to handle SSMT formula is to integrate pruning mechanics to the solving

procedure, where parts of the searching space can be pruned through probability analysis.
The semantics of SSMT formula is denoted as the probability of satisfaction, in practice,
if the probability bounds of interest are given, in such cases, the solving procedure can be
terminated once we get evidence that the given bounds are reached or can never be achieved.
This framework has been formalized by Tino Teige [TF08], a slightly simplified version is
given in Algorithm 2.

The algorithm SSMT (Q, tl, tu) takes SSMT formula Φ =Q : ϕ as input, as well as the target
thresholds tl and tu. The solving procedure will return a witness probability if the probability of
satisfaction is not in this range, i.e., it exceeds the upper threshold tu or cannot reach the lower
threshold tl , otherwise the probability of satisfaction. In this setting, if one want to compute the
real probability, the target thresholds tl = 0 and tu = 1 can be set.

The algorithm works recursively; the base cases are treated when all the quantifiers have
been resolved, the problem is reduced to quantifier-free SMT with non-linear arithmetic, this
can be solved by any SMT solver which supports nonlinear arithmetic, i.e., HySAT/iSAT. This
step can also be improved by tightly integrating the conflict clause learning techniques so
that the reasons for conflicts can be generated and then added to the original formula. If the
quantifiers are not fully resolved, the algorithm performs its recursive branch according to the
type of quantifiers outermost of Q:

24 Stochastic Satisfiability Modulo Theories

Algorithm 2 SSMT (Q, tl, tu)
Input: SSMT formula Φ =Q : ϕ , lower and upper thresholds tl , tu.
Output: The satisfaction probability of Φ w.r.t. the thresholds.

1: while True do
✄ base cases

2: if ε : ϕ is unsatisfiable then return 0;
3: if ε : ϕ is satisfiable then return 1;

✄ handling ∃ quantifier
4: if head(Q) = ∃x ∈ dom(x) then
5: v ∈ dom(x), x := v, dom(x) = dom(x)\{v};
6: p0 = SSMT (tail(Q), tl, tu);
7: if p0 > tu or p0 = 1 or dom(x) = /0 then return p0;
8: p1 = SSMT (Q,max(p0, tl), tu);

return max(p0, p1);
✄ handling

R

quantifier
9: if head(Q) = R

dx ∈ dom(x) then
10: v ∈ dom(x), (v, pv) ∈ d, x := v, dom(x) = dom(x)\{v};
11: premain = ∑v′∈dom(x),(v′,p′)∈d p′;
12: p0 = SSMT (tail(Q),(tl− premain)/pv, tu/pv);
13: if pv · p0 > tu or pv · p0 = 1 or dom(x) = /0 then return pv · p0;
14: if premain < tl− pv · p0 then return pv · p0;
15: p1 = SSMT (Q, tl− pv · p0, tu− pv · p0);

return p1 + pv · p0;
16: end while

3.4 The Limitation of SSMT 25

• the outermost variable x is bound by existential quantifier ∃, the algorithm chooses a
discrete value from its domain and substitutes the matrix with this selected value, then
the probability for this branch is computed. The resulted probability (p0) is compared
to the given bound if it exceeds the upper one (tu) or it is the last branch, i.e., no further
candidates in x’s domain to be chosen, p0 is returned as witness probability, no additional
computation needs to be performed; otherwise, the algorithm updates the lower bound
(max(p0, tl)) and explores other branches, which is done recursively and combined by
choosing the maximum probability.

• the outermost variable x is bound by randomized quantifier

R

, a value-probability pair
((v, pv)) is chosen from the domain of x. The remaining probability indicates that
how much probability we can still obtain from the rest of x’s domain. The algorithm
then computes the probability regarding to the current branch, the resulted probability
(pv · · · p0) is compared with upper threshold (tu), if it exceeds, the solving procedure
terminates without further computing; another termination case is that the remaining
probability cannot satisfy the requirement of the lower threshold, otherwise, the algorithm
updates lower and upper thresholds and recursively explores other branches, which is
combined by computing the weighted sum.

The trick played here is to introduce the upper and lower thresholds, which pursues fast
termination since the algorithm doesn’t need to explore all the discrete value. The remaining
probability and achieved maximum probability can be evaluated during the run, according to
probability analysis, once the upper threshold is exceeded, or the lower threshold cannot be
reached by the remaining probability, the algorithm terminates without further explorations.
This framework can speed up the solving procedure, however, in the worst case, it needs to
handle all the branches. More heuristic techniques can be applied to prune the searching space,
conflicts analysis and Craig Interpolation are also good candidates for algorithmic enhancement,
the details can be found in Tino Teige’s Ph.D. thesis [Tei12].

3.4 The Limitation of SSMT

In the previous sections, we recap the basic setting and solving procedure for SSMT, which is a
significant extension w.r.t. the capability to model uncertainties. Different from the standard
SAT/SMT, SSMT has the probability as semantic, which makes it possible to encode random
variables in SSMT formulas and compute the maximum probability of satisfaction. However,
there are some limitations which are concluded in the following:

26 Stochastic Satisfiability Modulo Theories

• A serious limitation of the SSMT-solving approach is that all quantifiers are confined to
range over finite domains, except for implicit innermost existential quantification of all
otherwise unbound variables. From the Algorithm 2, we can see that the values in the
discrete domain of variables are recursively chosen and different branch strategies are
applied according to the type of quantifiers. If the domains of variables are continuous,
the proposed algorithm fails due to infinite branching;

• If only the variables bound by existential quantifier are continuous, the algorithm can still
work by some modifications, i.e., resolve the random variables by substituting the formula
with their discrete values, which yields some substituted SMT formulas, these formulas
could be handled by SAT/SMT solver. Thus the corresponding tree-like structure can be
constructed to fulfill the solving procedure;

• The discreteness of random variables in SSMT implies that the carriers of probability
distributions have to be finite, a large number of phenomena cannot be expressed within
such frameworks, such as continuous noise or measurement error in hybrid systems.

To overcome this limitation, we relax the constraints on the domains of randomized variables,
now also admitting continuous probability distributions in SSMT solving. One may think
that the proposed solving procedure can be directly borrowed for the continuous case since
the similar semantic and structure. However, the facts violate such intuition, which yields
non-straightforward extension for SSMT and will be analyzed in the later chapters.

3.5 Related Work

Another similar work has to be stressed here, which is done by Christian Ellen, Sebastian
Gerwinn and Martin Fränzle [EGF14]. They extend SSMT within their paper to also support
hybrid systems with continuously-valued probabilistic and non-deterministic influences, en-
abling SSMT to address problems from the domain of Stochastic Hybrid Systems and stochastic
optimal control. For scalability, they extend the solving procedure based on statistical model
checking (SMC), which generates results which can be guaranteed with a certain level of
confidence. Compared to this work, our work deals with the same problem in an alternative
way, we prefer to maintain lower and upper bounds for the probability of satisfaction, although
it may sacrifice the efficiency, one can see, lots of heuristic techniques can be used to make the
trade-off.

3.6 Conclusion 27

3.6 Conclusion

After reviewing the related work and foundation knowledge, we will step into our main concerns
on continuous SSMT (CSSMT) from next chapter. The following chapters are structured as
following:

Chapter Theme

4 Introduction to continuous SSMT and its formal semantics, the comparison with
other satisfiability modulo theories.

5 Explanation of the relation between Decision Processes and formalization of
reachability problem with CSSMT formulation.

6 Proposal of rule-based solving procedure for CSSMT.

7 Algorithmic enhancement for CSSMT solving, techniques to improve the effi-
ciency.

8 Introduction to CSSMT solver, i.e., CSiSAT and its basic functions and structure.

9 Demonstration of case studies which shows the ability of CSSMT to model and
analyse the systems with stochastic behavior.

Table 3.1 Thesis Structure

Chapter 4

Stochastic Satisfiability Modulo Theories
with Continuous Domain

In the previous chapters, we mentioned the limitation of SSMT – a stochastic extension of
SAT/SMT – is that the continuous distributions cannot be captured. In this chapter, we will
relax such constraints on the domains of randomized variables, now also admitting continuous
probability distributions in SSMT solving, which thus is named as continuous SSMT (CSSMT).

4.1 Motivation: Stochastic Hybrid Systems with Continu-
ous Distribution

OFF
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t+N (m,σ2)

start

ON
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t + r

C ∆t +

+N (m,σ2)

cmd == 1

cmd == 1

cmd == 0

cmd == 0

Fig. 4.1 Regulating the temperature of a room by a thermostat

30 Stochastic Satisfiability Modulo Theories with Continuous Domain

Hybrid Automaton (HA) is often used to model the systems with both continuous and
discrete behavior, i.e., in Figure 4.1 a simple temperature regulating system is modeled by a
two-mode hybrid automaton. This model equips a thermostat with two modesQ= {ON,OFF},
and the thermostat issues switching commands cmd = {0,1} to the heater: cmd == 0 means
no switching command is issued and 1 oppositely, the commands can be issued at each
step which decides whether to stay in the current mode or switch to the other mode, the
sequence of different commands corresponds to different control strategies which yield different
temperature change. Later we will see that in order to achieve the control target, i.e., to
guarantee that the temperature is always in a range, the corresponding control sequence
should be synthesized. The average room temperature in OFF mode changes according
to the laws x(t) = x(t−∆t)− a

C(x(t−∆t)− xa)∆t +N (m,σ2) and in OFF mode it follows
x(t) = x(t−∆t)− a

C(x(t−∆t)−xa)∆t + r
C ∆t +N (m,σ2), where a is the average heat loss rate,

C is the average thermal capacity, xa is the ambient temperature, r is the rate of heat gain, and ∆t
is the discretization time interval. In order to capture the disturbance, we add a noise N (m,σ2)

term, which denote the probability measure over (R,B(R)) associated with a Gaussian density
function with mean m and variance σ2.

The consideration of measurement error makes the model different from the classical
hybrid model since uncertainty is introduced. For hybrid systems, we care much about the
properties which specify a region and verify whether it can be reached from initial points, i.e.,
reachability analysis. In our framework, this setting fails due to the uncertainties of the systems,
which makes the given region potentially reachable from any initial points – some with high
probability but some are low. Our concerns can thus be modified as:

Given a system S and a region C, probabilistic reachability analyzes how likely C
can be reached by S under given initial conditions I.

To handle probabilistic reachability problem, we should clarify three aspects for a system:

• I , which specifies the initial conditions which should be satisfied by the system before it
starts to run;

• T , which gives the transition relation between modes and models the system behaviors;

• C, which clarifies the region of interest that the system is expected to reach.

When all the aspects are clear, we can verify the formula Φ = I ∧
∧

k T ∧C, which unwinds
the transition relation by k steps, then yields a bounded model checking problem (BMC). If all
of them are formulated by first-order logic with non-linear arithmetic, it produces a stochastic
SMT formula with the continuous domain (due to the continuous random variables), i.e., a

4.2 Definitions and Semantics for CSSMT 31

CSSMT formula. As a conclusion, we know that CSSMT formulas can be used to model
the stochastic hybrid systems and analyze their corresponding reachability properties. In the
following, we will introduce the definition and semantics of CSSMT.

4.2 Definitions and Semantics for CSSMT

The syntax of stochastic SMT formulas over continuous quantifier domains agrees with the
discrete version from [FHT08], except that continuous quantifier ranges are permitted.

Definition 4.2.1. An SSMT formula with continuous domain (CSSMT) is of the form: Φ=Q : ϕ ,
where:

• Q= Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) is a sequence of quantified variables, dom(xi)

denotes the domain of variable xi, which are bounded intervals over the reals, Qi is either
an existential quantifier ∃ or a randomized quantifier

R

πi with integrable probability
density function over the reals πi satisfying

∫
dom(xi)

πi(xi)dxi = 1.

• ϕ is an SMT formula over quantifier-free non-linear arithmetic theory T . Without loss of
generality, we assume that ϕ is in conjunctive normal form (CNF), i.e., ϕ is a conjunction
of clauses, and a clause is a disjuction of (atomic) arithmetic predicates. ϕ is also called
the matrix of the formula.

The definition is similar to its discrete version. However, the following points should be
noticed:

• as in the definition of SSMT, we only allow two types quantifiers, i.e., existential
quantifier ∃ and randomized quantifier

R

;

• all the variables can be equipped with continuous domains;

• in principle the matrix ϕ can be of any form, here it is limited to be CNF due to the
equivalence and convenience;

• the density function π should be integrable over reals, which can be easily satisfied in
most of the practical cases, i.e., uniform distribution, exponential distribution, normal
distribution, etc.

Example 4.2.1. Consider the following SSMT formula:
Φ = ∃x ∈ [−1,1]

R

N (0,1)y ∈ (−∞,+∞) : (x2 ≤ 1
9 ∨a3 +2b≥ 0)∧ (y > 0∨a3 +2b <−1)

there are two variables x and y, x is a normal variable bound by ∃ with continuous domain
[−1,1], and y is a random variable with normal distribution, i.e., mean value 0 and variance 1.

32 Stochastic Satisfiability Modulo Theories with Continuous Domain

The semantics of CSSMT is similar to SSMT, which denotes a real number to indicate the
maximum probability of satisfaction.

Definition 4.2.2. The semantics of a CSSMT formula Φ =Q : ϕ is defined by the maximum
probability of satisfaction Pr(Φ) as follows, where ε denotes the empty quantifier prefix:

• Pr(ε : ϕ) = 0 if ϕ is unsatisfiable.

• Pr(ε : ϕ) = 1 if ϕ is satisfiable.

• Pr(∃xi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)

=supv∈dom(xi)Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi]).

• Pr(

R

πixi ∈ dom(xi) . . .Qnxn ∈ dom(xn) : ϕ)

=
∫

v∈dom(xi)
Pr(Qi+1xi+1 ∈ dom(xi+1) . . .Qnxn ∈ dom(xn) : ϕ[v/xi])πi(v)dv.

According to Def. 4.2.2, the maximum probability of satisfaction Pr(Φ) is recursively
computed by resolving the quantifiers from left to right, whereby existential quantifiers are
resolved to yield highest (or actually approach the supremum) probability and randomized
quantifiers yield the expectation of the remaining formulas. When all quantifiers are resolved,
the satisfaction probability of the matrix ϕ is associated with its satisfiability, i.e., base cases
for ϕ being either satisfiable or unsatisfiable.

Remark 4.2.1. The semantics of CSSMT can be regarded as a direct extension of SSMT, where
the summation for resolving randomized quantifiers is replaced by integration over distribution
functions. Semantically, it yields a straightforward extension. However, it leads to a non-trivial
extension for the solving procedure, which will be mentioned later.

Example 4.2.2. Fig. 4.2 constructs a tree-like structure according to the semantics of CSSMT
formula which was introduced in Example 4.2.1. Semantically, Φ determines the maximum
probability s.t. there are values for x which are between [−1,1] s.t. for normally distributed
values of y the matrix is satisfiable. As a start, we branch the domain of x into three parts, i.e.,
x ∈ [−1,−1

3), x ∈ [−1
3 ,

1
3] and x ∈ (1

3 ,1], again for each part, we branch the domain of y into
two parts. Until now, all the quantified variables are resolved and we check satisfiability. Take
the leftmost branch as an example, when x is in [−1,−1

3] and y is in (−∞,0], the matrix cannot
be satisfied and we mark the probability of satisfaction as 0. When all the branches have been
fully checked, we propagate the probability according to the corresponding quantifiers, for
example, y is normally distributed, so the probability that y takes value from (−∞,0] is 0.5. If
we combine the probability from bottom to top and choose maximum value among the three
branches for x (since x is bound by existential quantifier), then we get that the probability of

4.2 Definitions and Semantics for CSSMT 33

satisfaction of Φ is 1. Notice that if we start from a finer interval partition, i.e., split x or y into
more branches, we will get a different structure, but the maximum probability keeps unchanged.

Φ = ∃x ∈ [−1,1]

R

N (0,1)y ∈ (−∞,+∞) : (x2 ≤ 1
9 ∨a3 +2b≥ 0)∧ (y > 0∨a3 +2b <−1)

x

Pr(Φ) = max(0.5,1,0.5) = 1

y y y

x ∈ [−1,−1
3) x ∈ (1

3 ,1]x ∈ [−1
3 ,

1
3]

y ∈ (−∞,0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

y ∈ (−∞,0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

y ∈ (−∞,0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

Pr = 0 Pr = 1 Pr = 1 Pr = 1 Pr = 0 Pr = 1

Pr = 0.5 ·0+0.5 ·1 = 0.5 Pr = 0.5 ·0+0.5 ·1 = 0.5
Pr = 0.5 ·1+0.5 ·1 = 1

a3 +2b≥ 0
a3 +2b <−1

unsat

a3 +2b≥ 0
sat

a3 +2b <−1
sat

sat
a3 +2b≥ 0

a3 +2b <−1
unsat

a3 +2b≥ 0
sat

Fig. 4.2 Semantics of a CSSMT formula depicted as a tree.

Remark 4.2.2. Notice that for SSMT, we can construct a unique semantic tree since the
domains w.r.t. both existential bound variables and randomized bound variables are discrete.
For CSSMT, the case is more complicated due to the continuity of variables, the domain can be
arbitrarily split, so different from the genuine semantic tree (which is an uncountably infinite
branching tree directly arising from the quantifiers) the structure we used for CSSMT are based
on coalescing equivalent branches in that tree into a finite number of equivalence classes, which
not only facilitates graphical presentation but also forms the idea underlying the actual solving
algorithm. From this point of view, the resulted tree-like structure is not unique. However, the
maximum probability is always same.

As mentioned before, the algorithm for solving CSSMT cannot be directly borrowed from
SSMT solving, after introducing the semantics for CSSMT, we will explain the reasons:

• SSMT solving can collapse to SMT solving plus probability analysis, where the matrix
can be substituted by discrete values and SMT solving can be performed, then the
probabilities are combined reversely, i.e., from innermost quantified variable to the
outermost. However, due to the dense domain for CSSMT formula, the substitution
approach fails;

• The probability can be precisely computed for SSMT since for both types of quantifiers,
the probabilities involved are precisely known, and the operations on them will not lose

34 Stochastic Satisfiability Modulo Theories with Continuous Domain

precision, i.e., for existential quantifier, the max operator is used, and for randomized
quantifier, the summation and multiplication operators are used. These cases don’t work
for the continuous extension;

• The SMT core can be separated from the solving procedure for SSMT, e.g., over which
the probability analysis can be built, SMT core is invoked only at the bottom, i.e., when
all the quantifiers have been resolved. The advantage of such separation is that one
can use lots of state-of-the-art SAT/SMT solvers (certainly it should support non-linear
arithmetic), since, in the end, only the satisfiability of the matrix should be given; however,
for continuous case, the existing SMT solvers are not easy to be integrated into the whole
framework, since for the worst case, CSSMT solving tends to find all the solutions, but
most of the solvers only return a candidate model.

In the following chapters, we would like to introduce a rule-based solving procedure for
CSSMT. Our approach is based on a combination of the DPLL(T) [NOT06] and ICP (Interval
Constraint Propagation, [RVBW06, VHMK97]) algorithms, as first implemented in the iSAT
solver for rich arithmetic SMT problems over the Rn [FHT+07], and on branch-and-prune
rules for the quantifiers generalizing those suggested in [FHT+07, Tei12]. We extend these
methods so that they can deal with SSMT formulas with continuous domains. Our solving
procedure therefore is divided into three layers: an SMT layer manipulating the Boolean
structure of the matrix of the formula, an interval constraint solving layer reasoning over the
conjunctive constraint systems in the theory part of the formula, and a stochastic SMT layer
reasoning about the quantifier prefix. Each layer is defined by a set of rules to generate, split,
and combine so-called computation cells, where a computation cell is a box-shaped part of
the Rn, i.e., the problem domain of the constraints. The solver thereby approximates the exact
satisfaction probability of the formula under investigation and terminates with a conclusive
result whenever the approximation gets tight enough to conclusively answer the question
whether the satisfaction probability is above or below a certain specified target.

Chapter 5

Stochastic Hybrid Automata and
CSSMT-Based Bounded Reachability
Analysis

An alternative way to deal with the interplay of randomness and continuous time is featured by
Stochastic Hybrid Automata (SHA) [AKLP10, FHH+11, HLS00], which is a powerful model
capturing both nondeterminism and randomness, mixing both discrete jumps and continuous
evolution.

SSMT – proposed by Tino Teige – has a strong connection with discrete time Markov
decision process (DTMDP). Bounded reachability analysis on DTMDP can be encoded to
SSMT [TF08]. The reachability problem considers a system starting from given initial states,
through the behaviors modeled by DTMDP and then check whether the targets can be reached,
where the initial conditions, transition relations of DTMDP and targets can be described by
logical formulas, the nondeterminism of choices are linked to existential quantifiers, meanwhile
the randomness of jumps is captured by randomized quantifiers, which yields an SSMT formula.
The bounded reachability analysis can thus be reduced to computing the maximum probability
of satisfaction of such SSMT formula.

Similarly, a CSSMT formula is able to mimic the behavior of stochastic hybrid automaton
(a limited version), i.e., we can encode an SHA to a CSSMT formula and perform reachability
analysis on it.

In this chapter, we will briefly introduce the definition of stochastic hybrid automaton and
clarify a simplified version which can be encoded by CSSMT; then we will formalize the
bounded reachability problems and show the potential applications of CSSMT. The related
work is concluded at the end of this chapter.

36 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis

5.1 Introduction to Stochastic Hybrid Automaton

Deterministic and non-deterministic hybrid systems have been the topic of interest in recent
years, by contrast, relatively few classes of stochastic hybrid systems have been studied in detail.
Even though deterministic hybrid systems can capture a wide range of behavior encountered
in practice, stochastic hybrid systems play an import role in modeling. In the real world,
uncertainties can appear in most of the applications.

There are lots of stochastic models proposed by researchers, i.e., from Piecewise Deter-
ministic Markov Processes [Dav93], Switched Diffusion Processes [GAM97], over Stochastic
extensions of timed automata [KNSS99], to Stochastic Hybrid Automata [HLS00]. The differ-
ence of such models is where to introduce the randomness: some models allow the randomness
introduced into continuous evolution, some don’t allow. In this section, we will introduce the
concept of Stochastic Hybrid Automaton (SHA) where the randomness can be modeled in both
continuous evolution and discrete jumps.

The stochastic hybrid automata we are going to consider consist of states and transitions,
the continuous evolution is featured by relations formulated in states, and the discrete jump is
named with the term “transition”.

A possible execution of a stochastic hybrid automaton starts from an initial state (or
specified by an initial probability measure), the variables are then updated according to the
relation formulated by vector fields in given state, when some conditions are satisfied or some
requirements are fulfilled, the discrete jump is triggered, the target state is specified by the
transition relation or transition measure.

In the following, we will introduce the definition of stochastic hybrid automaton. In this
work, we are not concentrating on the technical issues regarding the semantics stochastic
hybrid automata. However, we are aiming to show that a class of stochastic hybrid automaton
can be encoded to CSSMT and further handled by CSSMT solving procedure. To encode
a general form of stochastic hybrid automaton is impossible since SHA can be formalized
in a very general way where stochastic differential equations (SDE) are introduced to model
the randomness in continuous evolution. CSSMT cannot model SDE precisely except when
approximation techniques are used.

5.1.1 Definition of Stochastic Hybrid Automaton

One definition of stochastic hybrid automaton (a modified version of [HLS00]) can be found in
the following:

Definition 5.1.1. A stochastic hybrid automaton is a collection H =(Q,X ,Dom, f , init,G,step,R)
where:

5.1 Introduction to Stochastic Hybrid Automaton 37

• Q is a countable set of discrete state;

• X = (Xd,Xr), Xd is a set of deterministic variables and Xr is a set of random variables,
all variables have real domain R;

• Dom : Q→ 2X assigns to each state a subset of X;

• f : X×T → 2X ′ is a function mapping the current variables X to the updated variables
X ′, which is time-dependent;

• init : B(Q×X)→ [0,1] is an initial probability measure on (Q×X ,B(Q×X)) concen-
trated on

⋃
i∈Q{i}×Dom(i);

• G : Q→ 22X
assigns to each state i ∈Q the potential guards G(i)⊂ 2X which can trigger

the transitions;

• step : Q×G→ 2∆ f (Q), is a measurable transition function, where ∆ f (Q) denotes the set
of finite measures, we require that step(q,g) ̸= /0 for all q ∈ Q.

OFF
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t+N (m,σ2)

start

ON
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t + r

C ∆t +

+N (m,σ2)

cmd == 1

cmd == 1

cmd == 0

cmd == 0

Fig. 5.1 Regulating the temperature of a room by a thermostat

Example 5.1.1. Let’s reconsider the temperature regulating problem which we introduced in
Chapter 4, the stochastic hybrid automaton has been depicted in Figure 5.1. The Definition
5.1.1 can be used to interpret the model in the following way:

• Q = {OFF,ON}, the thermostat contains two discrete states: ON indicates that the room
temperature is increasing and OFF indicates that the room temperature is decreasing;

38 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis

• X = (x,ω,cmd), x is a continuous variable which represents the room temperature, ω is
a random variable which shows the uncertainty introduced by measurement, cmd is a
discrete variable which stands for the switching commands which can be issued to the
thermostat;

• Regarding to the domain of each variable, the physical quantity x should lie in a reason-
able range, i.e., an interval [lb,ub] with lower and upper bounds; the random variable ω

used to model the measurement error can be any distributions depending on the problem,
noticing that some continuous distribution like normal distribution have infinite domain,
it may yield a negative quantity which will never happen in practice, for this we can
confine such distributions in a range of interest, in most cases it is enough to consider a
tailed distribution since the probability lying in such range is high enough, i.e., the range
[µ−3σ ,µ +3σ] for a normal distribution N (µ,σ2) has the chance of 99.7% lying in
it; at last, the discrete command cmd can be either 0 – staying in the current state, or 1 –
switching to the opposite state;

• In the ON mode, the temperature updates according to the following formula: x′ = x(t) =
x(t−∆t)− a

C(x(t−∆t)− xa)∆t +N (m,σ2), and in the OFF mode, the corresponding
formula is: x′ = x(t) = x(t−∆t)− a

C(x(t−∆t)− xa)∆t + r
C ∆t +N (m,σ2), where ω is

random variables, a, C, r and xa are some physical quantities;

• The initial probability density of the system can be described by a Dirac pulse if the
initial temperature is given, which is:

init(q,X) = δ(OFF,(x0,0,0))(q,X)

which means that initially, the thermostat is OFF and the temperature is x0, the measure-
ment error and switching command are both set to 0; If the initial temperature is given by
a range, we can reformulate the initial distribution by the following uniform distribution:

init(q,X) =

U(lb,ub) for q = OFF, and X = (lb≤ x≤ ub,0,0)

0 otherwise

which means that the initial temperature could take arbitrary value from the range bound
by lb and ub in a uniform manner;

• G(OFF) = {g1,g2}= {{X = (x,ω,cmd) | cmd == 0},{X = (x,ω,cmd) | cmd == 1}}
contains two guards which indicate the commands can be issued for state OFF; the

5.1 Introduction to Stochastic Hybrid Automaton 39

same definition can be applied for the ON state also with two guards, naming by g3 and
g4 for cmd == 0 and cmd == 1 command respectively;

• At last, the transition functions for each mode and guard can be defined: step(OFF,g1)=

δ(OFF,(x,0,0))(q,X), step(OFF,g2)= δ(ON,(x,0,))(q,X), step(ON,g3)= δ(ON,(x,0,0))(q,X),
and step(ON,g4) = δ(OFF,(x,0,0))(q,X), all of the transition functions are Delta pulses
since they are all deterministic transitions, the x variable is unchanged after each
transition, however, ω and cmd are set to default values.

5.1.2 Execution of Stochastic Hybrid Automaton

According to Definition 5.1.1, the execution of SHA can be easily identified, which is a run
αt = (Q(t),X(t)).

• α0 = (Q(0),X(0)) is a Q×X-valued random variable extracted according to the proba-
bility measure init;

• For t ∈ [Ti,Tj), Q(t) = Q(Ti) is a constant and X is updated according to the function f ;

• Tj is the time when transition from Q(Ti) is triggered given that G(Q(Ti)) ̸= /0;

• Assuming the g ∈ G(Q(Ti)) is selected, X(T−j) ∈ g, where X(T−j) denotes limt↑Tj X(t);

• The probability distribution of (Q(Tj),X(Tj)) is governed by transition measure function
step(Q(Ti),g);

• The process repeats the above procedure.

The semantics of the execution can be interpreted recursively on the set of runs, i.e., δt =

(Q(t),X(t)), we will clarify the probability measure on δt as following:

• Pr(δ0) =
∫
(q,x)∈(Q(0),X(0)) init(q,x)d(q,x), which specifies the probability that initial state

is chosen in the subset (Q(0),X(0));

• Pr(δt+∆t) = Pr(δt) ·
∫

xr∈Xr(t+∆t)πXr(xr)dxr, if the convolution occurs in the state;

• Pr(δt) = Pr(δt−) ·∑q∈Q(t),q−∈Q(t−),g∈G(q−) step(q−,g)(q), if the discrete jump happens.

40 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis

5.2 Translation from Stochastic Hybrid Automaton to CSSMT

In this section, we will employ a reduction procedure which reduces stochastic hybrid automata
to continuous stochastic SMT, so that we can perform probabilistic bounded model check-
ing (PBMC). Since the general SHA could have more complicated structure for continuous
evolution, i.e., a function, an ordinary differential equation (ODE), a vector field, or even
a stochastic differential equation (SDE), our current treatment of CSSMT doesn’t contain
ODE/SDE, therefore the general SHA cannot be handled by CSSMT. We would like to employ
a simplified version which is still popular in system design and verification.

We consider an SHA H = (Q,X ,Dom, f , init,G,step,R) and simplify the function f :
X ×T → 2X ′ with discretized time steps. In reality, especially in embedded systems, time
discretization is very common, since the digital components perform the computation on a
discrete sequence. This can be mimicked by difference equations, discretized ODE/SDE and
so on.

With this modification, we will now explain how to encode a simplified SHA H =

(Q,X ,Dom, f , init,G,step,R) to CSSMT:

1. Encoding the initial conditions: if the initial conditions are deterministic, one can directly
write q0 == qinit ∧X0 == Xinit , where Q and X are the domains of variables, q0 and X0 are
the variables representing the initial values and should be bound by existential quantifiers, i.e.,
∃q0 ∈ Q∃X0 ∈ X ; however, if the initial conditions are determined by probabilistic density,
the randomized quantifier is used, i.e.,

R

π0(q0,X0) ∈ (Q,X), where π0 is initial probability
distribution, here we assign to q0 and X0 initial values, the semantics of this formula, according
to Chapter 4, is the probability that q0 and X0 are given to the specified values;

Example 5.2.1. In this running example, we will show how to translate the temperature
regulating problem – which is modeled by SHS as shown in Figure 5.1 – to a CSSMT formula.
We will follow the procedure step by step. We firstly encode the initial conditions. Assume that
the initial room temperature is uniformly distributed in a range, i.e., [T 0

l ,T
0

u] and the thermostat
is initially switched to OFF. The condition can be formulated as follow:

(T 0
l ≤ x0 ≤ T 0

u)∧ (q0 == OFF)︸ ︷︷ ︸
I

(5.1)

and the quantifiers are ∃q0 ∈ {OFF,ON} R

x0 ∈ U(T 0
l ,T

0
u), where U(T 0

l ,T
0

u) is a uniform
distribution ranging over the temperature bounds.

5.2 Translation from Stochastic Hybrid Automaton to CSSMT 41

2. Encoding the evolution in one state: if the system is in state q which contains variables
x= (xd,xr), the update from step i−1 to step i can be formulated as following: qi == q∧xi ==

f (xi−1,∆t), which is based on the mapping function f in state q. Notice that the variable x
contains both deterministic parts and random parts, so different quantifiers are required. The
existential quantifiers should be added for the state variable qi and deterministic variable xdi,
while xri is bound by randomized quantifier, i.e., ∃qi ∈ Q∃xdi ∈ dom(xr)

R

πxrxri ∈ dom(xr).
This formula formulates one-step update, given that the mapping function we consider is
discrete;

Example 5.2.2. In each state (ON or OFF), the room temperature is changed according to
the formulas, here we use xi−1 and xi to represent the previous and updated room temperature,
they take value from suitable temperature range: ∃xi−1 ∈ [T i−1

l ,T i−1
u] and ∃xi ∈ [T i

l ,T
i

u]. Note
that the measurement error is modeled by a normal distributed random variable, i.e.,

R

ωi ∈
N (m,σ2). Then the corresponding behaviour can be formulated as a disjunction of two single
state evolution:

(qi == OFF ∧ xi == xi−1− a
c (xi−1− xa)∆t +ωi−1)∨

((qi == ON∧ xi == xi−1−
a
c
(xi−1− xa)∆t +ωi−1 +

r
c

∆t)︸ ︷︷ ︸
Ci

(5.2)

and the quantifiers are ∃xi−1 ∈ [T i−1
l ,T i−1

u]∃xi ∈ [T i
l ,T

i
u]

R

ωi ∈N (m,σ2);

3. Encoding the transition: the transition triggered by the guards g for ith step can be
formulated as following:

∨
k(qi−1 == q∧ g∧ t == tk ⇒ qi = q′k). When guard g triggers a

transition from state q, we know that the following behaviour is dominated by the step function
which contains different probability measure, we use tk to represent all the possible measures
so that it can be chosen nondeterministically, once tk is chosen, the following jump, i.e., the
target state can be decided by corresponding probability measure, we use q′k to represent the
target state, which is a random variable and its distribution function depends on which tk is
chosen. Here we only mentioned the transition triggered by g; the full representation should
consider all the guard and connect them by ∨. From the above description, we can clarify the
quantifiers for each variables involved, i.e., ∃g ∈G∃tk ∈ Trans

R

π1q′1 ∈Q · · · R

πnq′n ∈Q∃qi ∈Q.
Noticing that |Trans|= n = |step(q,g)|, which is the number of possible measures;

Example 5.2.3. The discrete transitions are guarded by a switching command, i.e., ui = or
ui = 1, we use qi−1 and qi to represent the previous state and target state respectively, both

42 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis

with domain {OFF,ON}. The transitions can be formulated as following:

(ui == 0⇒ qi == qi−1)∨ (ui == 1⇒ qi == ¬qi−1)︸ ︷︷ ︸
Ti

(5.3)

and the quantifiers are ∃qi−1 ∈ {OFF,ON}∃qi ∈ {OFF,ON}∃ui ∈ {0,1};

4. Obtaining the CSSMT formula: the corresponding CSSMT formula with k steps can be
obtained by connecting the initial conditions, one state evolution, transition relations together
with the targets of the problem by ∧, the quantifiers identified from the previous steps are then
added in front of the formula .

Example 5.2.4. As the target, we want to regulate the room temperature so that it is neither
too warm nor too cold, i.e., control the temperature in a range. For this purpose, we add a
constraint for each step, i.e.,

Ci
l ≤ xi ≤Ci

u︸ ︷︷ ︸
Si

(5.4)

which indicates that the room temperature xi is expected to be in the set [Ci
l ,C

i
u].

Altogether the dynamic of the system can be formalized as an CSSMT formula
R

x0 ∈ U(T 0
l ,T

0
u)∃q0 ∈ {OFF,ON}∃ui ∈ {“0”,“1”}

...

∃xi−1 ∈ [T i−1
l ,T i−1

u]∃xi ∈ [T i
l ,T

i
u]

R

ωi ∈N (m,σ2) · · · : I ∧
k∧

i=1

(Ci∧Ti∧Si) (5.5)

where k is the number of computation steps analyzed.

5.3 Bounded Reachability Problems represented by CSSMT

In the previous section, we introduced how to translate the behavior of a stochastic hybrid
automaton to a continuous stochastic SMT formula, which mimics the initial conditions and
transition rules for each step. In computer science, an essential problem in hybrid systems
theory is reachability analysis, which aims to evaluate whether a given system will reach certain
unsafe states, starting from certain initial states. This problem is associated with the safety
verification problem: if the system cannot reach any unsafe state, then the system is declared to
be safe. In the probabilistic setting, the safety verification problem can be formulated as that
of checking whether the probability that the system trajectories reach an unsafe state from its
initial states can be bounded by some given probability threshold.

5.3 Bounded Reachability Problems represented by CSSMT 43

As we said before, the semantic of CSSMT is the maximum probability of satisfaction,
i.e., how likely the formula can be satisfied, and this can be directly connected to reachability
problem. For example, we have shown how to encode an SHA to CSSMT. If we formulate the
target conditions as well, we take the conjunction of the encoded behavior and the target, we
can get a CSSMT formula, and the probability of the CSSMT formula is exactly what we need,
i.e., the maximum probability of reaching the target.

Now we can conclude the bounded reachability problem as following:

Given a simplified stochastic hybrid system H = (Q,X ,Dom, f , init,G,step,R), a
CSSMT formula can be obtained according to the translation procedure in the
previous section. Without loss of generality, we refer the CSSMT formula as
Q : I ∧

∧
k ϕk, where Q is the sequence of quantifiers, I formulates the initial

conditions and ϕk represents the one-step transition. If we are going to name the
target formula by S, then the resulting CSSMT formula Φ = Q : I ∧

∧
k ϕk ∧S

stands for the corresponding reachability problem, and Prob(Φ) is the maximum
probability of reaching the target S in k steps starting from initial condition I , with
respect to the system H.

In the previous part, we have shown an example that shows how to encode the stochastic
hybrid automata to CSSMT formulas and this problem will be solved after we introduce the
detailed solving procedure for CSSMT. In the running example, since the targets are given, the
semantic of the formula is the maximum probability that the temperature is controlled into the
desired range with upper and lower bounds, which can be summarized in the following sense:

Proposition 5.3.1. Let H a simplified Stochastic Hybrid Automaton and Φ its k-depth encoding
under initial conditions I with target S, then Prob(Φ) ∈ [lb,ub] iff H satisfies the k-step
bounded model checking (BMC) problem w.r.t. the upper and lower probability bounds lb and
ub, initial condition I and targets S.

Proof. The correctness of reduction from H to Φ has been detailed in [Tei12], the only
difference is that to encode the random variables, we use continuous distributions instead. Let
I0, I1, · · · , Ik be intervals in Rd+r, the cylinder set Cyl(Q0, I0,Q1, I1, · · · ,Qk, Ik) is defined by
{(Q(t),X(t)) ∈ Path | ∀0 ≤ i ≤ k.Q(i) = Qi∧∀0 ≤ i ≤ k.X(i) ⊆ Ii}, where Path contains all
the possible executions. Given the correctness of reduction, we can conclude:

44 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis

Prob(H satisfies k-step BMC)

⇔ Prob(all the paths starting from I and entering S within k steps)

⇔ Prob({(Q(t),X(t)) ∈ Path | (Q(0),X(0))⊆ I ∧∃i≤ k.((Q(i),X(i)))⊆ S})

⇔
k

∑
i=1

Prob(Cyl(I = (Q0, I0),Q1, I1, · · · ,S = (Qi, Ii)))

⇔ Prob(Q : I ∧
∧
k

ϕk∧S)

⇔ Prob(Φ)

5.4 Conclusion

In this chapter, we have connected the stochastic hybrid automaton and continuous stochastic
SMT. We found that an SHA (with some limitations) can be encoded to a CSSMT formula.
One may doubt that why we need such kind of translation, we can directly perform reachability
analysis on SHS, this is true and has already attracted a lot of attention. However, CSSMT has
strong advantages compared with other techniques in the following sense:

• Different researchers concentrate on different aspects of stochastic hybrid systems, which
yields different kinds of models thus various kinds of solving techniques. To design
a unique tool which covers most of such models is impossible, if we can translate the
behaviour of SHS – even a simplified version – to a couple of constraints, i.e., CSSMT
formulas, we can handle such models in a uniform way;

• To handle the SHS directly is a little bit tedious due to the complexity of interaction
between continuous and discrete behavior, between deterministic and stochastic behavior.
Thus a lot of mathematic computations need to be performed. Most of the methods for
SHA verification either employ rather coarse finite-state approximations or are based on
inherently approximative statistical techniques, while the CSSMT encoding is correct
w.r.t. bounded properties.

Essentially, CSSMT is a satisfiability theory with the consideration of uncertainties, which
is not designed only for solving reachability problems on SHS, even though it can handle a
subset of those problems. In fact, CSSMT can do more than that, which is able to abstract the
constraints from real applications with considering errors, uncertainties, random phenomena
etc., which can be seen in the later chapters.

Chapter 6

Solving Procedure for CSSMT formula

In the previous chapters, we proposed the framework of Continuous Stochastic SMT, which is
a satisfiability modulo theory with considering the uncertainties of variables. We formalized
the semantics of CSSMT, which is denoted to be the maximum probability of satisfaction
regarding a given CSSMT formula, which allows us to check how likely the formula can be
satisfied given some of its variables are random. Additionally, CSSMT is able to be used for
probabilistic model checking problem on stochastic hybrid systems, we thus provided a way to
encode the behaviour of an SHA to its semantically equivalent CSSMT and clarified that the
probability bounds of resulted CSSMT formula are exactly the probability bounds for bounded
checking model problem on the SHA we are considering. From this chapter, we will step deep
into the solving procedure and algorithmic consideration for CSSMT.

Due to the existence of non-linear arithmetic in CSSMT formula, the theory is undecidable.
Generally, it is impossible to get the precise probability of CSSMT except for some extreme
cases. Instead of considering the decision problem, we are trying to find proper bounds to
approximate the accurate probability, i.e., the solving problem. In the first part of this chapter,
we will formalize the problem we are going to consider, i.e., we want to find an upper bound
and a lower bound for the probability of satisfaction under an acceptable precision.

As the solving procedure, our approach is based on a combination of the DPLL(T) [NOT06]
and ICP (Interval Constraint Propagation, [RVBW06, VHMK97]) algorithms, as first imple-
mented in the iSAT solver for rich arithmetic SMT problems over the Rn [FHT+07], and on
branch-and-prune rules for the quantifiers generalizing those suggested in [FHT+07, Tei12].
We extend these methods so that they can deal with SSMT formula with continuous quantifier
domains. The detailed algorithm will be explained in this chapter by a couple of rules, which
define a transition system of structural operational semantics.

At the end of this chapter, we will stress the termination and soundness of the proposed
solving procedure.

46 Solving Procedure for CSSMT formula

6.1 Problem formalization

Continuous SSMT is an extended satisfiability theory over the undecidable arithmetic domain
of Boolean combinations of non-linear constraints involving transcendental functions with
consideration of uncertainties. In the previous chapter, we mentioned that the semantics of
CSSMT formula is the maximum probability of satisfaction, however, due to the undecidability,
to precisely compute the probability is very hard to be achieved. In practice, such precise
computation is not needed regarding the following perspectives:

• the numbers are representable with limited precision in computers and embedded systems,
so precisely deciding the probability is unrealizable in physical world;

• in most verification problems, one is interested to know whether the probability of
a given property is under a specific threshold, i.e., the probability of system error is
extremely low; or the target probability can be reached, i.e., the probability that the room
temperature staying in the given range should be large enough, etc;

• if the precise computation is not required, the solving procedure doesn’t need to explore
all the search space, instead, some heuristic pruning methods could be applied and an
approximation could be given according to the problem and precision.

Undecidability. The satisfiability problem for SMT formulas with respect to the theory of
non-linear arithmetic, i.e., the problem of deciding whether a given non-linear arithmetic
SMT formula is satisfiable or not, is undecidable in general [AP10, AF06]. In this sense, the
exact probability Pr(Q : φ) is not computable in case the matrix φ stems from an undecidable
fragment of arithmetic, we thus formulate the goal of solving as an approximate decision
problem. The problem we want our solving engine to resolve therefore is formalized as follows:

Given a CSSMT formula Φ =Q : φ , a reference probability δ , and an accuracy ε ,
a solving procedure which upon termination returns:

• “GE”, if Pr(Φ) is greater than or equal to δ + ε;

• “LE”, if Pr(Φ) is less than or equal to δ − ε;

• “GE” or “Inconclusive”, if Pr(Φ) ∈ [δ ,δ + ε];

• “LE” or “Inconclusive”, if Pr(Φ) ∈ [δ − ε,δ].

is called sound. It is called quasi-complete if it terminates whenever ε > 0 (the
proof will be found later in this chapter).

6.2 Algorithm overview 47

According to this formalization, our goal is to decide how the probability of a CSSMT
formula Φ =Q : φ can be compared with a reference probability δ under a given accuracy ε .
The actual probability is comparable with the resolution [δ − ε,δ + ε], that is to say:

• if “GE” is reported by the solving procedure, we can guarantee that the actual probability
is greater equal than the reference probability, i.e., Pr(Φ)≥ δ ;

• if “LE” is reported, we can guarantee that Pr(Φ)≤ δ ;

• if the actual probability Pr(Φ) is in the range [δ − ε,δ + ε], due to the resolution
(precision) of the computation, Pr(Φ) is incomparable with the reference probability δ ,
so any answers can be reported, i.e., “GE”, “LE” or “Inconclusive”. However, for “GE”
we know at least the Pr(Φ) is in the right half [δ ,δ + ε], for “LE” the Pr(Φ) lies in the
left half [δ − ε,δ].

In order to achieve the mentioned target, we will try to develop a solving procedure in the
following sections.

6.2 Algorithm overview

In Chapter 3, we have briefly reviewed the basic algorithm for SMT and stochastic SMT, we
will shortly summarize here:

• The solving procedure for SMT is based on DPLL framework and interval constraint
propagation (ICP), where the boolean structure is handled by classical decision procedure
for SAT, meanwhile the domains of the variables are narrowed by propagating the
constraints with interval analysis;

• The solving procedure for SSMT is basically built on the procedure for SMT, the upper
level is responsible for resolving the quantifiers and performing the probability analysis,
and the lower level deals with the pure SMT formula and checks its satisfiability.

CSSMT relaxes the limitation of SSMT so that the random variables with continuous
distributions can be formulated. Intuitively, the solving procedure for CSSMT could be similar
to that for SSMT or at least slightly modify that, however, it requires major modifications. As
we mentioned before, the reasons can be concluded as follows:

• Due to the discreteness of probability distributions in SSMT, the probability can be
precisely manipulated. The quantifiers of SSMT are resolved by branching the discrete
domain of variables, each time when the branching is performed, the probability for

48 Solving Procedure for CSSMT formula

this branch is precisely known, the satisfiability for this branch is either “True” or
“False” 1, correspondingly, the probability for this branch is either counted or ignored;
However, for CSSMT it will be much more complicated due to the continuity of the
variables, branching cannot be directly achieved. Instead, the interval splitting should be
applied. Different with the discrete case, the probability of satisfaction for the branch is
unknown, potentially it contains both solutions (which contribute to the final result) and
non-solutions (which can be ignored), so more work have to be done for CSSMT;

• The SSMT solving can be reduced to SMT problem when all the quantifiers are resolved,
so SSMT solver (i.e., SiSAT) can be easily built on SMT solver (i.e., iSAT/HySAT)
since only satisfiability should be checked for the resulting SMT formula. Although
SMT formula can also be obtained when all the quantifiers are resolved for CSSMT,
checking satisfiability is not enough to compute the probability of satisfaction. Due to the
continuity of the variables, we need to map all the solutions and compute the probability
measure for them;

• The SSMT solving procedure can be divided into two layers, i.e., probability analysis and
SMT layer, probability analysis is responsible for the branching, the decision to prune
the non-related branches and synthesis the final result, meanwhile SMT layer is to check
the satisfiability of pure SMT formula; CSSMT solving can be roughly divided into
three layers: 1) an SMT layer manipulating the Boolean structure of the quantifier-free
body of the formula, often called the “matrix”, 2) an interval constraint solving layer
reasoning over the conjunctive constraint systems in the theory part of the formula, and 3)
a probability analysis layer reasoning about the quantifier prefix. However, all the layers
are not separated, i.e., ICP layer aims at analyzing the constraints and narrowing the
domains of variables, it may also influence the probability measure for some variables if
their domains are changed. Algorithm 3 shows the framework of the solving procedure
and the details will be discussed later.

6.3 Rule-based Solving Procedure for CSSMT

In this section, we will present the detailed solving procedure for CSSMT which is based on a
series of inference rules. Before getting into those rules, we will start with some definitions.

1Here we didn’t mention the “Unknown” case, which is also easy to handle when “Unknown” is obtained, the
probability for the unknown branch can be considered as a range which will yield an upper and a lower bound for
the final result.

6.3 Rule-based Solving Procedure for CSSMT 49

Algorithm 3 Framework for CSSMT Solving

Input: A CSSMT formula Φ =Q : ϕ , a reference probability δ and precision ε .
Output: “GE”, “LE” or “Inconclusive” as defined before.

1: Initialization;
2: while True do
3: SMT layer: reasoning about the Boolean structure of the matrix;
4: CSP layer: reasoning over the constraints systems based on interval analysis;
5: Stochastic layer: handling the quantifiers and propagating the probability;
6: if the estimation is comparable with δ or the precision limit is reached; then
7: Termination;
8: end while

6.3.1 Basic Definitions

Definition 6.3.1. Given an CSSMT formula Φ = Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) : φ , we
define x1 ≺ ·· · ≺ xn as the order of variables in the prefix, with x1 being minimal.

Definition 6.3.1 defines the order of variables, which is consistent with the order of their
appearance in the quantifier prefix. The order of the prefix is necessary for computing the
probability of a formula which is shown in the solving rules.

Another important concept which will frequently be mentioned later is the computation cell,
which is a structure indicating a subset of the whole search space together with a probability
estimation. All the manipulations in our algorithm are based on computation cells.

Definition 6.3.2. A computation cell is a data structure of the form (Φ,ρ,C)(p,q)i , where,

• Φ is the CSSMT formula we are considering;

• ρ: an ordered list (corresponding to the order of variables in Q) which records the
interval valuation for each variable;

• C is a set of constraints, which is used to record the constraints which are required to be
satisfied for this cell;

• (p,q)i is a probability estimation for this cell, where p and q are lower and upper bounds
correspondingly, and the subscript (·)i means that the probability is estimated for the
formula by chopping off the quantifier prefix before variable xi.

Essentially, the solving procedure for CSSMT splits the whole search space into subparts
and works on them, and the final result is obtained by merging the boxes, as mentioned before.
The solving procedure performs the reasoning on the Boolean structure of the formula, at

50 Solving Procedure for CSSMT formula

the same time interval analysis is applied to narrow the search space, the search space is
then split into subparts if no further actions can be used for the current one. Sub boxes are
then merged to estimate the probability and the solving procedure terminates if the reference
probability is comparable to the obtained probability. From this point of view, the computation
cell is a data structure which helps to memorize some necessary information for each box, i.e.,
the probability bound and its searching space. Moreover, the use of computation cell makes
the solving procedure more comfortable to be manipulated, which can be seen clearly in the
following parts.

Φ =

R

U(−1,3)x ∈ [−1,3]

R

N (0,1)y ∈ (−∞,+∞) : (x≤ 0∨a3 +2b≥ 0)∧ (y > 0∨a3 +2b <−1)

x

Pr(Φ) = 0.25 ·1+0.75 ·0.5 = 0.625

y y

x ∈ [−1,0]
Pr = 0.25

x ∈ (0,3]
Pr = 0.75

y ∈ (−∞,0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

y ∈ (−∞,0]
Pr = 0.5

y ∈ (0,∞)
Pr = 0.5

Pr = 1 Pr = 1 Pr = 0 Pr = 1

Pr = 0.5 ·1+0.5 ·1 = 1 Pr = 0.5 ·0+0.5 ·1 = 0.5

a3 +2b <−1
sat

sat
a3 +2b≥ 0

a3 +2b <−1
unsat

a3 +2b≥ 0
sat

Fig. 6.1 Semantics of a CSSMT formula depicted as a tree.

Example 6.3.1. Consider a CSSMT formula Φ =

R

U(−1,3)x ∈ [−1,3]

R

N (0,1)y ∈ (−∞,+∞) :
(x ≤ 0∨a3 +2b≥ 0)∧ (y > 0∨a3 +2b <−1) shown in Figure 6.1, where x and y are both
random variables and bound with uniform distribution and normal distribution correspondingly.
The tree like structure provides a way to solve this formula. The solving procedure has shown
how the domains of variables are split and how the probability is analysed. The solving
procedure will be introduced later, and in this example, we will explain how to understand the
computation cell.

Consider the first time when we split x. Two branches will be obtained, if we use
the notion of computation cell, we have C1 = (Φ,([−1,0],(−∞,∞)),C)(0,0.25)1 and C2 =

(Φ,((0,3],(−∞,∞)),C)(0,0.75)1 (we temporarily ignore the component C). Each cell is a part of
the search space and contains the probability information, take C1 ad an example, which shows
that the domain of x for this cell is [−1,0], the probability estimation is given with lower bound
0 and upper bound 0.25, this is because x is uniformly distributed within [−1,3] and it can

6.3 Rule-based Solving Procedure for CSSMT 51

be guaranteed that the maximum probability of the branch C1 will not exceed 0.25, however,
under the current evaluation, the formula Φ is inconclusive, i.e., it contains both solution and
non-solution, so we know nothing about the lower bound and 0 is given. The subscript 1 means
that we are trying to resolve the quantifier for the first variable x. If we further split the variable
y, we will get C3 = (Φ,([−1,0],(−∞,0])),C)(0.5,0.5)2 and C4 = (Φ,([−1,0],(0,∞)),C)(0.5,0.5)2 .
Noticing that Φ is satisfiable in both cells, the probability estimation is known according to the
probability distribution of y.

The computation cells can be merged when the satisfiability for each cell is known, i.e., in
our example, C3 and C4 can be merged, which yields C5 = (Φ,([−1,0],(−∞,∞)),C)(0.25,0.25)1 ,
this cell has the same domain but tighter probability estimation compared with C1, so we can
take C5 as the final computation cell for the left branch.

The same can be applied to the right branch which yields another computation cell C6 =

(Φ,((0,3],(−∞,∞)),C)(0.375,0.375)1 , C5 and C6 together result in the final computation cell
(Φ, [−1,3],(−∞,∞)),C)(0.625,0.625)1 , which tells us the maximum probability of satisfaction of
Φ is 0.625.

Remark 6.3.1. From the example, we have seen that the computation cell is a data structure
which plays an important role in recording the information of a subspace regarding the formula.
The solving procedure works on the computation cells which together constitute the whole
problem we are considering. Each cell is equipped with the boundaries of the domain, the
probability estimation and the constraints requirement. The cells split itself when tighter
probability estimation is required; it can also be merged in order to be compared with the
reference probability. The role of constraints set C is not shown in above example, which is
used when reasoning over the Boolean structure of the formula, which will be shown in the
following.

6.3.2 The Solving Procedure for CSSMT

In this part, we will introduce the solving procedure for a CSSMT formula. The algorithm we
will present is equipped with the following notations:

• Φ: the CSSMT formula of interest with the form Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) : φ ;

• C: a set collecting the constraints which must be satisfied in the current phase;

• ρ : an ordered list (corresponding to the order of variables inQ) which records the interval
valuation for each variable;

• H: a set of computation cells.

52 Solving Procedure for CSSMT formula

The solving procedure is organized by a couple of rules, which are divided into four groups:

• SMT level: contains four rules, i.e., Initialization (INI), Unit Propagation (UP), Interval
Constraint Propagation (ICP) and Splitting (SPL);

• Constraint solving level: contains two rules to handle the conflict (CFL) and hull-
consistency (CNSIS) of constraints;

• Stochastic SMT level: contains three rules to merge the computation cells, i.e., for
existential quantifier (∃-COM), for randomized quantifier (

R

-COM) and a rule for lifting
the quantifiers (LFT);

• Termination: contains three rules to give the criteria of termination and three possible
results can be given, i.e., less equal (LE), greater equal (GE) or inconclusive (INCON).

All the rules share the same structure:

Premises
L→ R

(Rule Name)

which transform the proof state from the left of the conclusion (L) into the proof state to the
right (R), while the premises (Premises) denote the side conditions enabling that transition.

SMT Level.

The SMT level is responsible for reasoning over the Boolean structure of the matrix φ . As we
have shown in Chapter 2 and Chapter 3, the Boolean structure of an SMT formula is analyzed
by unit propagation and interval constraint propagation, i.e., it recursively searches for unit
clauses and narrows the search space. CSSMT solving shares the same idea and propagates the
unit clauses as well as interval constraints in this level.

The initial configurations for the SMT level are given in the following:

Consider the CSSMT formula Φ = Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) : φ , we
let:

C : = /0
H : = /0
ρ : = (ρ1, ...,ρn) = (dom(x1), . . . ,dom(xn))

i.e., there are no computation cells in the beginning, the constraints set is also
empty. The evaluation is assigned with the initial domains of the variables.

From this configuration, the algorithm will start its deduction sequence, which is given by the
DPLL rules at the outermost level, which in turn builds on the rules at the constraint solving

6.3 Rule-based Solving Procedure for CSSMT 53

and the SSMT layer. All the rules share a common structure: they manipulate a set H which
contains the relevant box-shaped computation cells within the search space, which itself is a
subset of the Rn. The rules select appropriate cells by means of their premises, and they update,
split, or combine them according to their conclusions.

Remark 6.3.2. The rules presented in the following define a transition system in the tradition
of structural operational semantics rather than a tree of inferences. The transitions transform
the proof state from the left of the conclusion into the proof state to the right, while the
premises denote the side conditions enabling that transition. A procedure thus consists of a
finite sequence of state manipulating transitions, with each individual transition matching the
conclusion of some rule, under the side condition that its source (and maybe some elements of
the target) satisfies the premise of the transition rule.

The first rule (INI) initializes the whole solving procedure without premises, it automatically
executes when the solving procedure starts. Rule (INI) adds the first computation cell to H,
which contains: 1) the formula Q : φ to be decided; 2) ρ is an initial evaluation for each
variable; 3) the constraints C which must be satisfied, initially an empty set; 4) a superscript
(p,q)i = (0,1)1 over-approximating the satisfaction probability of the formula when chopping
off the quantifier prefix before the variable xi. Here it means that we estimate the probability
for the whole formula from x1 without chopping off any quantifiers and the lower and upper
estimates are 0 and 1 respectively.

H→ H ∪{(Q : φ ,ρ, /0)(0,1)1}
(INI)

Example 6.3.2. We take advantage of a running example to demonstrate our algorithm. We
therefore consider the CSSMT formula (as the matrix is a CNF formula, we can regard it as a
set of clauses):

Φ = ∃x ∈ [−10,10]

R

y ∈ U [5,25]

R

z ∈ U [−10,10] :
x > 3∨ y < 1,z > x2 +2∨ y≤ 20,x2 > 49∨ y > 7x,x < 6∨ y≥ z

where U [a,b] refers to uniform distribution with range [a,b]. The initial configurations are
C = /0, H = /0 and ρ = ([−10,10], [5,25], [−10,10]). Furthermore, we set δ = 0.45 to be the
reference probability.

The second rule (UP) formalizes the unit propagation mechanism in standard DPLL frame-
work, which aims at searching the unit clauses and adds them to the constraints set. The rule
reads: if all the disjuncts except one (l′) in some clause cannot be satisfied w.r.t. the current

54 Solving Procedure for CSSMT formula

evaluation ρ , then this remaining “unit” (l′) must hold and is thus added to the set C. Rule (UP)
traverses the whole matrix φ so that no unit clauses are ignored.

(L∨ l′) ∈ φ ,ρ 2 L
H ′∪{(Q : φ ,ρ,C)(p,q)i}→ H ′∪{(Q : φ ,ρ,C · ⟨l′⟩)(p,q)i}

(UP)

Interval constraint propagation (ICP) is applied if the domain of some variables can be
narrowed w.r.t. the constraints set C, where the set C records the constraints which must be
satisfied in the current phase. If we perform interval analysis on such constraints, the ranges of
variables may be narrowed, which yields a smaller search area. The corresponding rule reads as
follows: if the range of a variable x j can be narrowed with bound b according to the constraints
C and the current evaluation ρ by means of ICP, and if ρ is not yet hull consistent w.r.t. to the
new bound (represented by 2hc, in this case, interval narrowing can be performed by using
interval constraint propagation), we update the evaluation set and the probability estimation
according to the narrowing ρ

C
 (x j ∼ b) of x j computed by ICP:

ρ
C
 (x j ∼ b),ρ 2hc (x j ∼ b)

H ′∪{(Q : Φ,ρ,C)(p,q)i}→ H ′∪{(Q : Φ,updateρ(x j ∼ b),C)
renewalρ j (p,q)i}

(ICP)

where

updateρ(x j ∼ b)(xi) =

{
ρ(x j)∩{z|z∼ b}, i f xi = x j

ρ(x j), otherwise

Intuitively, the update operator narrows the bound of variable x j and leaves other variables
unchanged. The corresponding change in the probability estimate induced by narrowing a
—potentially randomized— variable x j is reflected by

renewalρ j(p,q)i =

{
(p,q)i, i f x j ≺ xi

P(ρ(xi)×·· ·×updateρ(x j ∼ b)(xi)×·· ·ρ(xn))i, otherwise

where P(Ii×·· ·× In) is a safe, interval-arithmetic based probability estimation which returns
an interval over-approximating the measure of Ii×·· ·× In under the distributions attached to
the quantifiers. This is generally achieved by integration over interval functions [CMR81].

Remark 6.3.3. For the rule (ICP), the following points should be noticed:

• ρ 2hc (x j ∼ b) is required to trigger the rule, which says that the current evaluation ρ is
not hull consistent regarding the new bound x j ∼ b, that is to say, ρ is reducible under
the new bound;

6.3 Rule-based Solving Procedure for CSSMT 55

• the domain of related variable is updated by simply using the new bound, which yields a
smaller range since procedure of ICP will never lead to larger intervals;

• if the related variable is connected with a probability distribution, the changing of the
domain will also lead to the changing of probability measure, which yields the renewal
of probability estimation. Noticing that the subscript i also plays a role here, if the
related variable is in front of i-th variable, the probability estimation doesn’t change.
The subscript i indicates that the probability is estimated for the variables after xi.

The rules (UP) and (ICP) are applied recursively, i.e., unit propagation tries to collect the
unit clauses and adds them as constraints, interval constraint propagation narrows the domains
of variables according to these constraints, which may again lead to new unit clauses.

The next rule presents the splitting of a computation cell, which happens when both
rule (ICP) and rule (UP) do not yield further deductions. We say in this situation that φ is
inconclusive on ρ . We may then perform the splitting rule (SPL) to split the current computation
cell into two cells (Any splitting strategies can be applied as long as the size of some interval is
reduced, in practice, bisection is applied) and update ρ as well as the probability estimation
accordingly.

ρ j ̸= /0, ρ1
j ∪ρ2

j = ρ j

H ′∪{(Q:φ ,ρ,C)(p,q)i}→

H ′∪{(Q:φ ,ρ ′·⟨ρ1
j ⟩·ρ ′′,C)

renewal
ρ1

j
(p,q) j

,(Q:φ ,ρ ′·⟨ρ2
j ⟩·ρ ′′,C)

renewal
ρ2

j
(p,q) j

}

(SPL)

The resulting cells are added to the set H for the further use. At the same time, the
probability estimation for each cell should be re-evaluated since the probability measure may
be changed if the split variable is bound by a randomized quantifier.

Example 6.3.3. Let us reconsider Φ = ∃x∈ [−10,10]

R

y∈ U [5,25]

R

z∈ U [−10,10] : (x > 3∨
y< 1)∧(z> x2+2∨y≤ 20)∧(x2 > 49∨y> 7x)∧(x< 6∨y≥ z) in Example 6.3.2. According
to Rule (INI), we add the first computation cell (Φ,([−10,10], [5,25], [−10,10]), /0)(0,1)1 to the
set H. Considering the clause x > 3∨ y < 1, we observe that y < 1 violates the current evalua-
tion, so x> 3 must be satisfied, which we add to the set C as a unit clause (UP). This yields proof
state (Φ,([−10,10], [5,25], [−10,10]),{x > 3})(0,1)1 . Since x > 3 must be satisfied, by interval
constraint propagation we can conclude that ρ(x) = [−10,10] C = {x > 3}

ρ ′(x) = (3,10]. Accord-
ing to the Rule (ICP), we update ρ and recalculate the probability interval accordingly. Since x
is bound by ∃, the probability stays unchanged, yielding (Φ,((3,10], [5,25], [−10,10]),{x >
3})(0,1)1 . The current evaluation makes z > x2 +1 unsatisfiable, so y≤ 20 will be added to C
(UP). The domain of y is then narrowed to [5,20] (ICP). Since y is bound by

R

, we need update
the probability estimation. This yields (Φ,((3,10], [5,20], [−10,10]),{x > 3,y≤ 20})(0,0.75)1 .

56 Solving Procedure for CSSMT formula

We cannot guarantee that there are solutions in [5,20], so the lower bound is 0, for the up-
per bound we can conclude that it will not exceed 0.75 since y is uniformly distributed and
only the values in [5,20] will be considered. We recursively apply the rule (UP) and (ICP),
however, no further unit clauses can be found and no intervals can be modified. The next
step is thus to apply the rule (SPL), we choose x and split its interval into two parts, then
take each part and update the corresponding evaluation and upgrade the probability estima-
tion. As x is bound by ∃, the probability interval thereby remains unchanged, giving H =

{(Φ,((3,7), [5,20], [−10,10]),{x> 3,y≤ 20})(0,0.75)1,(Φ,([7,10], [5,20], [−10,10]),{x> 3,y≤
20})(0,0.75)1}.

Constraint Solving Level.

Rules (UP), (ICP) and (SPL) can be recursively applied until two situations are met:

• the first situation is that we find the current evaluation will violate some parts of the
formula, or the interval constraint propagation leads to an interval of a variable to be
empty, which means that the current evaluation contains no solutions so that it can be
ignored;

• the second situation leads to the opposite case, i.e., the current evaluation is hull consistent
concerning the constraints set, in which the constraints are unit clauses from each clause.
This means that the current cell contains solutions. In such situation, the approximation
can be computed according to the requirements and precision. We can benefit from the
constraint solving tools or even solve by ourselves, i.e., by a paving procedure which can
generate inner approximation and outer approximation for the real solution.

The rule to handle the case of conflicts reads as following: when a conflict is obtained, i.e.,
if ICP under the current evaluation ρ and constraints C narrows some variables to empty sets,
or if ρ violates every part in one clause, the current computation cell can be safely marked with
probability 0. This is reflected by rule (CFL):

ρ
C
 (xi = /0) or L ∈ φ ∧ρ 2 L

H ′∪{(Q : φ ,ρ,C)(p,q)i}→ H ′∪{(Q : φ ,ρ,C)(0,0)1}
(CFL)

If the current evaluation ρ is hull consistent w.r.t. the actual constraint set C, a paving
procedure [GB06] can be invoked to generate an inner approximation and an outer approx-
imation of the actual solution by sets of boxes (i.e., {(·)}∗ means a number of cells). By
computing safe upper (resp., lower) approximations on the probability measures of the outer
(resp., inner) approximations of the solution sets, we obtain a safe interval estimate on the

6.3 Rule-based Solving Procedure for CSSMT 57

satisfaction probability. Rule (CNSIS) assigns these.

ρ �hc C
H ′∪{(Q : φ ,ρ,C)(p,q)i}→ H ′∪{(Q : φ ,ρ ′,C)(p′,q′)k}∗

(CNSIS)

Remark 6.3.4. For the constraints solving layer, the following points should be noticed:

• The rule (CFL) marks the probability of the corresponding cell to 0, which means that
no solution can be found in this cell, at the same time, the subscript is set to 1, which
indicates that branch has been thoroughly explored and 0 is the probability estimation
for the whole cell;

• The Rule (CNSIS) tells us that when the current evaluation ρ is hull consistent w.r.t. the
constraints C, the boxes will be generated to approximate the real solution. In most of
the cases, the real solution is impossible to find and the approximation is enough for
most of the applications, especially we are interested in the probability of satisfaction
here. To find the boxes, we can benefit from a lot of state-of-art constraints solving
techniques which can obtain both inner and outer approximation, i.e., interval arithmetic
based techniques [BGLC00, VSHS02], affine arithmetic based techniques [GMPK14]
etc. Our work for implementation will be partially based on RealPaver [GB06], which is
an interval solver using constraint satisfaction techniques. Notice that the subscript k
indicates the splitting variable from which the probability is estimated. The evaluation for
each subcell is correspondingly narrowed according to the constraint solving procedure,
i.e., ρ ′ is a subset of ρ which yields approximations p′ and q′.

Example 6.3.4. The computation cells in H are (Φ,((3,7), [5,20], [−10,10]),{x > 3,y ≤
20})(0,0.75)1 and (Φ,([7,10], [5,20], [−10,10]),{x > 3,y≤ 20})(0,0.75)1 . We take the first com-
putation cell into consideration and conclude that the evaluation violate the clause x2 >

49∨ y > 7x. According to rule (CFL) we mark this computation cell with probability 0. This
gives (Φ,((3,7), [5,20], [−10,10]),{x > 3,y ≤ 20})(0,0)1 . Now we turn to consider the sec-
ond computation cell. By performing rule (UP) we get (Φ,([7,10], [5,20], [−10,10]),{x >

3,y ≤ 20,x2 > 49,y ≥ z})(0,0.75)1 . We observe that the constraints in C are hull consis-
tent w.r.t. the current evaluation ρ . In order to explain the decision procedure, here we
generate one inner box and one outer box, according to Rule (CNSIS), we get two com-
putation cells, (Φ,([7,10], [5,10], [−10,10]),{x > 3,y ≤ 20,x2 > 49,y ≥ z})(0,0.33∗0.75)2 and
(Φ,([7,10],(10,20], [−10,10]),{x > 3,y≤ 20,x2 > 49,y≥ z})(0.66∗0.75,0.67∗0.75)2 , which over-
and under-approximates the solutions for C w.r.t. ρ respectively. The subscript 2 shows the
probability stems from the second variable y. As has been depicted in Fig. 6.2, a light gray
area is shown, where the formula Φ is satisfiable. The red box is the corresponding outer box

58 Solving Procedure for CSSMT formula

and blue is an inner. Since the variable y is bound by randomized quantifier with uniform
distribution, the probability estimation should be recomputed.

1 inner box and 1 outer box.

Fig. 6.2 Inner (blue) and outer (red) approximations for constraint solving problem: {x > 3,y≤
20,x2 > 49,y≥ z} where x ∈ [7,10], y ∈ [5,20] and z ∈ [−10,10].

Notice that we separate the boxes into inner boxes and outer boxes, inner box is the
searching space where all the points in it are solutions, whereas an outer box contains both
solutions and non-solution. For outer boxes, the lower probability is not clear since we have
no idea about the solutions in them, so the lower probability is set to 0, however, for inner
boxes, both the lower probability and upper probability can be given according to the type of
distributions and the precision required.

Stochastic SMT Level.

Stochastic SMT level manipulates the computation cells and computes the probability of
combined cells. It tries to find the cells being able to be merged and calculate the probability
according to the quantifiers. Two computation cells are able to be merged if they have adjacent
intervals for the same variable xi. In case that xi is bound by ∃, combining the two cells yields
the maximum probability (Rule (∃-COM)); otherwise if bound by

R

, the two cells can be
combined by adding their probabilities (Rule

R

-COM).

ρ1
i ⊎ρ2

i is the interval hull of ρ1
i and ρ2

i
H ′∪{(Q′∃xiQ′′:φ ,ρ ′·⟨ρ1

i ⟩·ρ ′′,C)(p1,q1)i ,(Q′∃xiQ′′:φ ,ρ ′·⟨ρ2
i ⟩·ρ ′′,C)(p2,q2)i}→

H ′∪{(Q:φ ,ρ ′·⟨ρ1
i ⊎ρ2

i ⟩·ρ ′′,C)max((p1,q1)i,(p2,q2)i)}

(∃-COM)

ρ1
i ⊎ρ2

i is the interval hull of ρ1
i and ρ2

i
H ′∪{(Q′

R

xiQ′′:φ ,ρ ′·⟨ρ1
i ⟩·ρ ′′,C)(p1,q1)i ,(Q′

R

xiQ′′:φ ,ρ ′·⟨ρ2
i ⟩·ρ ′′,C)(p2,q2)i}→

H ′∪{(Q:φ ,ρ ′·⟨ρ1
i ⊎ρ2

i ⟩·ρ ′′,C)(p1,q1)i+(p2,q2)i}

(

R

-COM)

6.3 Rule-based Solving Procedure for CSSMT 59

where the interval hull of two sets I1 and I2 here is the smallest interval box which contains I1

and I2. 2 ρ1
i and ρ2

i are the intervals to be combined which are related to the i-th variable.
For the rules (∃-COM) and (

R

-COM), the order of combination is irrelevant, since the cells
are parts of an overall search space and probability for each cell is safely bounded. So parallel
computation is possible from this point of view.

If all the computation cells w.r.t. the same variable have been tackled; the probability should
be propagated to the preceding variable in the variable order. The lifting rule (LFT) checks all
the computation cells in H and will propagate if all its siblings have been combined.

∀(Q : φ ,ρ ′,C′)(·,·) j ∈ H ′ : j < i

H ′∪{(Q : φ ,ρ,C)(p,q)i}→ H ′∪{(Q : φ ,ρ,C)renewalρi−1(p,q)i−1}
(LFT)

The premise means that except the cell (Q : φ ,ρ,C)(p,q)i there is no cell which has subscript
greater than i, this means that all the cells with subscript i as well as the cells greater than i have
been tackled except this one. At this moment the lifting happens. Notice that the probability
estimation should also be recomputed since the estimation now is from the (i−1)-th variable.

Example 6.3.5. In the running example, we have previously reached a state where there are
three computation cells in H. By successively applying rules (

R

-COM), (∃-COM), and (LFT),
we propagate the probability, as depicted in Fig. 6.5.

(Φ,((3,7), [5,20], [−10,10]),
{x > 3,y≤ 20})(0,0)1

(Φ,([7,10], [5,10], [−10,10]),
{x > 3,y≤ 20,x2 > 49,y≥ z})(0,0.2475)2

(Φ,([7,10],(10,20], [−10,10]),
{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.5025)2

(

R

-COM)
(Φ,([7,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)2

(LFT)
(Φ,([7,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)1

(∃-COM)
(Φ,([(3,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)1

Fig. 6.3 Propagate probability by using combination rules.

2Here we use interval hull instead of union, since we also take the rounding effect into consideration. Not
every interval bound is representable in computer, thus a safe rounding is needed when we perform the union. In
most of the cases, the interval hull coincides with the union.

60 Solving Procedure for CSSMT formula

Termination.

The combined computation cell is finally compared with the reference probability δ . Once
the estimated probability for the single computation cell with subscript 1 becomes less than
or equal to the reference probability δ , the original formula is concluded to satisfy P(Φ)≤ δ .
Rule (LE) then reports “LE”; rule (GE) does the equivalent for the converse case.

q≤ δ

H ′∪{(Q : φ ,ρ,C)(p,q)1}→ LE
(LE)

p≥ δ

H ′∪{(Q : φ ,ρ,C)(p,q)1}→ GE
(GE)

If the above two cases cannot be judged under the accuracy ε , i.e., the given precision ε is
reached however the probability estimation is not enough to conclude the result, the evaluation
of the formula remains inconclusive w.r.t. δ :

q > δ ∧ p < δ ∧|p−q|< ε

H ′∪{(Q : φ ,ρ,C)(p,q)1}→ INCON
(INCON)

The rule (INCON) terminates the solving procedure in the sense that no explicit result can be
concluded, however, at least we know that the both the reference probability and the actual
probability lie in the interval [p,q] with the length no more than ε , so the error between the
reference probability and the actual probability is less than ε .

Whenever none of the above three termination rules applies, we have to restart from SMT
level and generate more cells, i.e., by applying the rule (SPL) or the rule (INI) with smaller ε

(the termination will be discussed later in this chapter).

Remark 6.3.5. The whole procedure is performed on a number of computation cells maintained
in a set H, which changes according to the rules. We name the configuration of set H at each
decision step a snapshot. We can cache the snapshots in main decision points: such as when the
cells are split, or when boxes are generated by other inference mechanisms. If the termination
test fails, instead of restarting the whole solving procedure, the procedure can back jump
to some snapshot. Backjumping to some restart points is heuristic. A straightforward, yet
inefficient way is to simply backtrack to the latest snapshot. However, a more ingenious way
can be performed by using Conflict Driven Clause Learning (CDCL) mechanism, allowing to
backjump to the snapshot which leads to the conflict.

Example 6.3.6. From the previous solving steps, we got the computation cell by the rules
of combining, i.e., (Φ,([(3,10], [5,20], [−10,10]),{x > 3,y ≤ 20,x2 > 49,y ≥ z})(0.495,0.75)1 .
The given δ for this running example is 0.45, according to the Rule (GE), we know that

6.3 Rule-based Solving Procedure for CSSMT 61

Pr(Φ) > 0.45 since the lower bound of the estimation is 0.495. The decision procedure
terminates here.

Remark 6.3.6. In our running example, generating two boxes can reach δ . Now let us try
with the new reference probability δ = 0.70, a tighter approximation can be achieved by
generating more boxes. As shown in Fig. 6.4, we use RealPaver [GB06], which is a modeling
language implementing interval-based algorithms to process systems of nonlinear constraints
over the real numbers, to generate the inner boxes and outer boxes so that a better result can
be obtained. By doing so, we get a tighter approximation, which is [0.7181,0.7191] 3. For
this running example, the real probability can be computed easily, that is 23/32≈ 0.71875 · · · ,
which has been well approximated by the interval we have obtained.

347 inner boxes and 135 outer boxes.

Fig. 6.4 Inner and outer approximations for constraint solving problem: {x > 3,y≤ 20,x2 >
49,y≥ z} where x ∈ [7,10], y ∈ [5,20] and z ∈ [−10,10] by RealPaver.

Remark 6.3.7. The overall solving procedure starts from rule (INI), and then performs (UP),
(ICP), (SPL) recurrently, thereby modifying the proof state. When a conflict is obtained or
the evaluation is hull consistent regarding the constraints, (CFL) and (CNSIS) are applied
to refine the probability estimation. Combining rules are then applied to build the tree-like
structure. If the under-approximation is smaller than the given reference number δ or the
over-approximation is greater than δ , corresponding results will be returned according to (LE)
or (GE), otherwise, we should backtrack to the previous snapshot and perform this procedure
again.

3We define the inner box a part of search space and every point inside is a solution, while an outer box contains
both solution and non-solution. In this example, 347 inner boxes give the lower probability bound, together with
the 135 outer boxes they form the upper bound.

62 Solving Procedure for CSSMT formula

Example 6.3.7. In Figure 6.5, we summarize the whole solving procedure for the simple
CSSMT formula:

Φ = ∃x ∈ [−10,10]

R

y ∈ U [5,25]

R

z ∈ U [−10,10] :
x > 3∨ y < 1,z > x2 +2∨ y≤ 20,x2 > 49∨ y > 7x,x < 6∨ y≥ z

with reference probability δ = 0.45. The rules used are also labelled along the arrowed lines.

(Φ,([−10,10], [5,25], [−10,10]), /0)(0,1)1

(UP)

(Φ,([−10,10], [5,25], [−10,10]),{x > 3})(0,1)1

(ICP)

(Φ,((3,10], [5,25], [−10,10]),{x > 3})(0,1)1

(UP) (ICP)

(Φ,((3,10], [5,20], [−10,10]),{x > 3,y≤ 20})(0,0.75)1

(SPL)

(Φ,((3,7), [5,20], [−10,10]),
{x > 3,y≤ 20})(0,0.75)1

(Φ,([7,10], [5,20], [−10,10]),
{x > 3,y≤ 20})(0,0.75)1

(Φ,([7,10], [5,20], [−10,10])
{x > 3,y≤ 20,x2 > 49,y≥ z})(0,0.75)1

(CFL)

(UP)

(CNSIS)

(Φ,((3,7), [5,20], [−10,10]),
{x > 3,y≤ 20})(0,0)1

(Φ,([7,10], [5,10], [−10,10]),
{x > 3,y≤ 20,x2 > 49,y≥ z})(0,0.2475)2

(Φ,([7,10],(10,20], [−10,10]),
{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.5025)2

(

R

-COM)
(Φ,([7,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)2

(LFT)
(Φ,([7,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)1

(∃-COM)
(Φ,([(3,10], [5,20], [−10,10]),

{x > 3,y≤ 20,x2 > 49,y≥ z})(0.495,0.75)1

Fig. 6.5 Solving procedure for Example 6.3.2

6.4 Soundness of the Solving Procedure

In this section, we would like to discuss soundness of the proposed solving procedure, i.e., we
would like to show that the algorithm works correctly and terminates with the right answer.

The following lemma will lead to our conclusion:

6.4 Soundness of the Solving Procedure 63

Lemma 6.4.1. H is a set of computation cells and {(Q : φ ,ρ,C)(p,q)i} ∈ H is anyone of them,
along the solving procedure the following propositions hold:

1. the lower estimation bound p is non-decreasing and the upper estimation bound q is
non-increasing;

2. for all the quantified variables xi, the domain of variables ρ(xi) is non-increasing;

Proof. We prove Lemma 6.4.1 by checking the rules one by one, where we will explain the
propositions hold after applying each rule.

The SMT layer contains four rules, i.e., (INT), (UP), (ICP), (SPL). Rule (INI) initializes the
solving procedure with initial configuration, it constructs a computation cell and put it into the
H, the propositions hold directly since it only generates a cell without doing anything else. The
lower and upper probability are 0 and 1 respectively and ρ corresponds the the initial domain
of each variables, i.e., (Q : φ ,ρ, /0)(0,1)1 .

Now let us consider a computation cell (Q : φ ,ρ,C)(p,q)i ∈ H.
Rule (UP) searches the unit clauses according to the current ρ , the unit clauses which

should be satisfied are added to the constraints set C, it only changes C. However, p, q and ρ

are not changed in this rule, i.e., (Q : φ ,ρ,C′)(p,q)i , the propositions hold.
Rule (ICP) performs the interval constraint propagation according to the constraints C,

which yields (Q : φ ,ρ ′,C)(p′,q′)i . ICP will never increase the domain of variables as it only
prunes the non-solutions through the process, thus ρ ′(xi)⊆ ρ(xi). In this sense, only the upper
probability estimate q may be decreased, i.e., q′ ≤ q and p′ = p, which makes the propositions
hold.

Rule (SPL) splits the domain of a chosen variable and generates two subcells, i.e., it changes
the current configuration H ′ ∪ {h = (Q : Φ,ρ,C)(p,q)i} to H ′ ∪ {h1 = (Q : Φ,ρ ′,C)(p′,q′) j ,

h2 = (Q : Φ,ρ ′′,C)(p′′,q′′) j}, where h is removed and h1, h2 are generated. The domain of
split variable is narrowed and and the probability estimates are renewed accordingly, i.e.,
ρ ′(x j) ⊆ ρ(x j), ρ ′′(x j) ⊆ ρ(x j), q′ ≤ q, q′′ ≤ q and p′ = p, p′′ = p. If Rule (UP) and (SPL)
are recursively applied to h1 and h2, the propositions hold.

Constraints solving level consists of two rules (CFL) and (CNSIS). Consider the configura-
tion H ′∪{h = (Q : Φ,ρ,C)(p,q)i}.

Rule (CFL) says that the computation cell h contains non-solution, i.e., the conflicts are
found by SMT layer which means under the current evaluation ρ , Φ is unsatisfiable, the upper
bound q and lower bound p are both set to 0, yielding H ′ ∪{h = (Q : Φ,ρ,C)(0,0)i}. The
propositions hold.

Rule (CNSIS) handles the constraint solving problem for the cell h, it generates subcells
which yields H ′∪

⋃k
i=1{hi = (Q : Φ,ρi,C)(pi,qi)i}, h disappears and will then be reconstructed

64 Solving Procedure for CSSMT formula

by combination rules. Notice here, for each subcell hi, if it is an inner cell, i.e., all the points in
the space specified by ρ i are solutions, the lower bound will be increased and upper bound may
be decreased; if it is an outer cell which contains non-solution and solution, the upper bound
may be decreased. That is to say, for each subcell hi, ρi(x j)⊆ ρ(x j), qi ≤ q and pi ≥ p.

Stochastic SMT level contains three rules (∃-COM), (

R

-COM) and (LFT). Consider the
configuration H ′∪{h = (Q : Φ,ρ,C)(p,q)i}, according to the SMT level and constraint solving
level, h will be split or replaced by subcells in certain steps. There are three cases which could
reconstruct h:

• h is reconstructed by (∃-COM) and (

R

-COM) for the subcells hi which are generated
by (CNSIS), i.e., H ′ ∪

⋃k
i=1{hi = (Q : Φ,ρi,C)(pi,qi)i}. As we have explained, hi is

either an inner cell which increases the lower probability pi and may decrease the upper
probability qi, or it’s an outer cell which may decrease the upper probability qi. In this
sense, the accumulated lower bound can be guaranteed not less than p and the upper
one is not greater than q, i.e., ∑

k
i=1 pi ≥ p and ∑

k
i=1 qi ≤ q . Rule (CNSIS) filters out

the cells containing non-solution, thus the accumulation of ρi is smaller than ρ , i.e.,⋃k
i=1 ρi(x j)⊆ ρ(x j), the propositions hold;

• h is reconstructed by (∃-COM) and (
R

-COM) for the split cells h1 and h2, i.e., H ′∪{h1 =

(Q : Φ,ρ ′,C)(p′,q′) j ,h2 = (Q : Φ,ρ ′′,C)(p′′,q′′) j}, h1 and h2 will be modified by the solving
rules, i.e., they are split, checked by (CFL) and (CNSIS), generate subcells and are finally
reconstruct by them, which is in the end reduced to the first case, so the propositions
hold for h1 and h2 respectively, i.e., the evaluation are smaller than before, and the
lower bound is non-decreasing and the upper bound is non-increasing. If h1 and h2 are
combined to h, p′+ p′′ ≥ p, q′+q′′ ≤ q and (ρ ′∪ρ ′′)⊆ ρ , the propositions hold;

• h is obtained by (LFT) from cell h′, i.e., H ′∪{h′ = (Q : Φ,ρ ′,C)(p′,q′)i} , where h′ can
be finally reduced to the first case, we conclude that the propositions hold for h′, when it
is lifted by (LFT), the propositions hold for h.

The rules for termination checking, i.e., (GE), (LE) and (INCON), only do the comparison
work and will not influence the structure of computation cells. Thus the propositions hold
directly.

From the proof of Lemma 6.4.1, we know that the satisfaction of a given computation cell
h is always bounded by the probability estimation [p,q]. Initially, Pr(Φ) is bounded by [0,1]
(Rule (INI)), the upper bound is decreased if the non-solution parts can be excluded (Rule
(CFL) and Rule (CNSIS)), and the lower bound is increased if the solution can be guaranteed
in the considered cells, i.e., when inner cells are found (Rule (CNSIS)). The probability bound

6.5 Summary 65

is estimated when rules (SPL) and (ICP) are applied. All the observations lead to the following
lemma.

Lemma 6.4.2. H is a set of computation cells and {(Q : φ ,ρ,C)(p,q)i} ∈ H is anyone of them,
along the solving procedure the probability of Q : φ under the evaluation ρ is guaranteed to be
in the range [p,q].

Theorem 6.4.1. Given a CSSMT formula Φ=Q : φ , a reference probability δ , and an accuracy
ε , the solving procedure guarantees that the real probability Pr(Φ) is in a probability range
[p,q], where p and q are lower and upper estimates provided by the solving procedure.

Proof. Initially H = {(Q : φ ,ρ, /0)(0,1)1}, the solving procedure will yield H ′= {(Q : φ ,ρ,C)(p,q)i},
according to Lemma 6.4.1, p≥ 0 and q≤ 1, and according to Lemma 6.4.2, Pr(Φ) is guaran-
teed in the range [p,q].

Remark 6.4.1. In this part, we didn’t talk about the termination of the solving procedure. Our
algorithm is mainly based on interval analysis, so safe rounding has to be used for approx-
imating the probability bounds, the termination property can’t be ensured due to rounding
eventually destroying progress. However, the algorithm will in general actually make progress
until rounding hits in and will thus always terminate if the accuracy ε is set to reasonable
values.

Remark 6.4.2. Lemma 6.4.1 and 6.4.2 hold for every cell in H, thus it also works for the initial
cell which is generated by Rule (INI). The lemma guarantee that the lower probability p is
non-decreasing and upper probability q is non-increasing, thus the interval [p,q] gets smaller
and smaller, the probability of satisfaction lies in the range [p,q]. The solving procedure
terminates with p ≥ δ or q ≤ δ , or the length of [p,q] is smaller than ε . The results can be
guaranteed with these three cases when terminates.

6.5 Summary

In this section, we have introduced the solving procedure for CSSMT formulas, which has
been divided into four groups and handled as an integration of DPLL framework, Interval
constraint propagation and probability analysis. Computation cells are introduced as the main
data structure to perform the solving, which are attached with probability estimations. Instead
of computing the probability of satisfaction of Φ directly, we formulate the problem as a
decision problem, i.e., a target is set and the solving procedure terminates once the target is
reached or can never be reached. This makes it possible to benefit from heuristic pruning of the
search space. Due to the undecidability, to get the precise probability is costly or even makes

66 Solving Procedure for CSSMT formula

no sense in most of the application scenarios. To set up the target of interest is enough for most
of the real applications.

A related work which has to be mentioned is done by Ellen et al. [EGF14], where a
similar extension of SSMT is considered. They extended the semantics of SSMT to continuous
domains in a similar manner and proposed a solving procedure based on statistical techniques
adopted from statistical AI planning algorithms and thus only being able to offer stochastic
guarantees. Such algorithm is faster; however, only a result with confidence interval will be
provided, for the safety critical systems, it cannot one hundred percent guarantee the results.
Our solving procedure, though in most cases slower than the statistical version, can provide
sound results which guarantee that the real probability of satisfaction is indeed in the interval
specified by the probability bounds.

The proposed solving procedure extends the standard DPLL procedure and interval analysis,
however, the solving procedure is relatively straightforward and lowly efficient. In fact,
by its similarity to DPLL algorithms, the base algorithm lends itself to lots of algorithmic
enhancements and data structures that were introduced in SAT/SMT solver. Besides, the
property of probability distribution may lead to an early termination, which saves a lot of
computation cost. From this point of view, the base solving procedure can be improved in a lot
of aspects, which are the topics of the next chapter.

Chapter 7

Algorithmic Enhancements

The solving procedure for CSSMT formula integrates the classical DPLL framework for SMT
solving, interval constraint propagation for safe bounding and probability analysis, thus yields
four groups, i.e., SMT layer, constraint solving layer, stochastic layer and a group of criteria for
termination. In the previous chapter, we have formalized the solving procedure by a number
of rules, which directly reflect the four groups. One should notice that all the rules are not
individual and applied one by one. Instead, they cooperate with each other to find the safe
bounds for the probability of satisfaction. The solving procedure works on a set of computation
cells, the cells are manipulated, split or combined according to specific rules, i.e., when they
satisfy the premises given by the rules.

The given solving procedure can be regarded as a basic algorithm without any optimizations.
However, due to the similarity to SMT solving, a lot of algorithmic enhancements can be
borrowed and customized for an efficient CSSMT solving. Moreover, some heuristic ideas
to prune the search space can be explored by finding the relationship among the probability
measures for computation cells, reference probability and the probability required. Thus
in this chapter, we are focusing on algorithm improvement with a couple of examples for
illustration. Such enhancements cannot reduce the complexity of the solving procedure due to
the undecidability of CSSMT, however, for most cases, it can get the solution much faster.

In this chapter, we mainly talk about the enhancement from three aspects:

• For SMT layer, we try to improve the search algorithm for finding unit clauses, which is
generally costly if we traverse every atomic formula in clauses;

• For constraint solving layer, we will try to analyze the reasons of conflicts instead of
ignoring them. We will see later that this idea can help narrow the search space;

• For stochastic layer, we propose some heuristic ideas to prune the search space by
analyzing the required probability.

68 Algorithmic Enhancements

For the further explanation, we rewrite the solving procedure in an algorithmic manner,
as shown in Algorithm 4. The pseudo code gives us an intuitive understanding of how the
individual rules have been organized for the whole solving procedure. We will modify the basic
algorithm later after we introduce all the heuristic ideas.

Algorithm 4 Basic CSSMT Solving Procedure

Input: A CSSMT formula Φ =Q : ϕ , a reference probability δ and precision ε .
Output: GE: if the probability estimation can be guaranteed to be greater equal than δ ;

LE: if the probability estimation can be guaranteed to be less equal than δ ;
INCON: the result can not be guaranteed w.r.t. ε .

1: C0← (Q : φ ,ρ,C)(0,1)1; H←{C0}; ◃ (INI)
2: while True do
3: Take Ci from H;
4: unit_propagation(Φ,Ci); ◃ (UP)
5: interval_constraint_propagation(Φ,Ci); ◃ (ICP)
6: if Conflict then
7: (Q : φ ,ρi,C)(pi,qi)k ← (Q : φ ,ρi,C)(0,0)1; ◃ (CFL)
8: else if Hull_Consistent then
9: H← H ∪{constraints_solving(Φ,Ci,ε)}; ◃ (CNSIS)

10: else if Inconclusive then
11: (Ci1,Ci2)← split(Φ,Ci,ε); ◃ (SPL)
12: H← H ∪{Ci1,Ci2};
13: while |H|> 1 do
14: if There exist C1 and C2 from H which can be combined regarding to xi then
15: if xi is bound by ∃ then
16: C12← maximum_combine(C1,C2); ◃ (∃-COM)
17: if xi is bound by

R

then
18: C12← probabilistic_combine(C1,C2); ◃ (

R

-COM)
19: H← H ∪{C12};
20: else if C from H without combinable cells then
21: H← H ∪{li f t(C)}; ◃ (LFT)
22: end while
23: H = {(Q : φ ,ρ,C)(pl,pu)1};
24: if pu≤ δ then return LE; ◃ (LE)
25: else if pl ≥ δ then return GE; ◃ (GE)
26: else if |pu− pl|< ε then return INCON; ◃ (INCON)
27: end while

7.1 Lazy Clause Evaluation 69

7.1 Lazy Clause Evaluation

Recall that in the SMT layer of the solving procedure, unit propagation (UP) plays an important
role to reason over the Boolean structure of the matrix of Φ. Unit propagation is a mechanism
widely used in SAT/SMT decision procedures. It tries to check all the atomic formulas in a
clause. If all the atoms except one are violated under the current evaluation ρ , this atom will be
treated as a formula which must be satisfied; otherwise, the whole clause will be violated and
no solution will be found. In the solving procedure for CSSMT, the rule (UP) is used to find
the unit clauses, which will be propagated and added to the constraints set, all the constraints in
this set have to be satisfied in the current phase. However, this step can be very inefficient and
costly.

Example 7.1.1. Let us consider the following CSSMT formula:

Φ = ∃x ∈ [0,5]

R

y ∈ U [8,10]∃z ∈ [−10,10] :

(x≥ 3∨ y < 9∨ z2 > 15y∨ x > 2y+ z)∧ (y≥ sin(z)+10∨ x > z2 + y)

There are two clauses in the CSSMT formula, the first clause consists of 4 atomic formulas and
the second with 2 atomic formulas. The solving procedure firstly performs the unit propagation
and tries to find if there are unit clauses. The basic algorithm traverses each atomic formula,
we get the following result after the first round of unit propagation:

Φ = ∃x ∈ [0,5]

R

y ∈ U [8,10]∃z ∈ [−10,10] :

(x≥ 3︸ ︷︷ ︸
INCON

∨ y < 9︸ ︷︷ ︸
INCON

∨z2 > 15y︸ ︷︷ ︸
UNSAT

∨x > 2y+ z︸ ︷︷ ︸
UNSAT

)∧ (y≥ sin(z)+10︸ ︷︷ ︸
INCON

∨x > z2 + y︸ ︷︷ ︸
UNSAT

)

We find a unit clause in the second clause, which is y ≥ sin(z)+ 10 and should be added to
the constraints set showing it must be satisfied under the current searching space. Interval
constraint propagation is then applied w.r.t. the constraint, which says that y≥ sin(z)+10 =

[−1,1]+10 = [9,11], so the domain of y can be modified, i.e., [8,10]∩ [9,11] = [9,10]. Since
the domain of y has been changed, we should reapply unit propagation to find further unit
clauses, the second round of unit propagation thus yields:

(x≥ 3︸ ︷︷ ︸
INCON

∨ y < 9︸ ︷︷ ︸
UNSAT

∨z2 > 15y︸ ︷︷ ︸
UNSAT

∨x > 2y+ z︸ ︷︷ ︸
UNSAT

)∧ (y≥ sin(z)+10︸ ︷︷ ︸
INCON

∨x > z2 + y︸ ︷︷ ︸
UNSAT

)

Another unit clause x≥ 3 is then found by the procedure.

Remark 7.1.1. We may notice that the unit propagation mechanism is very costly due to the
traversing of the atomic formulas in clauses, whenever the domain of variables is changed we

70 Algorithmic Enhancements

need to perform the unit propagation to find potential unit clauses. In the running example, UP
visited 12 atomic formulas in total, each round with 6 visits.

Some heuristic ideas may be used to avoid such high cost, here we list some:

• UP only visits the atom formulas in which the variable modification is involved, in our
running example, only the domain of y is changed. Thus we can just visit the atomic
formulas involved. By applying this, we can reduce the number of visits to 11;

• Another idea is to skip the atomic formulas which are already violated, since the ICP
will only narrow the domain of variables, if there is no solution in a certain area, the
narrowed area also contains no solution. By applying this strategy, the number of the
visits can be further reduced to 8.

However, a more intelligent way can be achieved if we understand the target of unit
propagation better. Unit clause is a clause in which all the atom formulas are violated regarding
the current evaluation except one, if we take any two atom formulas (if there are) from a unit
clause, we will find the following facts hold for these two atomic formulas:

• either both of them are violated by the current evaluation;

• or only one of them is violated by the current evaluation.

We can choose two inconclusive atomic formulas as “watched atoms”, this is so-called lazy
clause evaluation schema of zChaff [MMZ+01]. In order to fulfill our requirement for CSSMT
solving, we slightly modify the schema in the following way:

Two atomic formulas in one clause -which are inconclusive under the current
evaluation ρ- are chosen as “watched atoms”, without loss of generality, we name
the two formulas l1 and l2. In the following procedure, we do not need to check
every atom formula in the clause every time, instead, we only need to perform
the checking step for these two formulas when the variables in either l1 or l2 are
modified by interval constraint propagation, i.e., tighter bounds are obtained for
some variables involved. Here we take l1 as an example, if we get a tighter bound
for some variables in li, which means the solving procedure narrows the search
space, i.e., yields a new ρ ′, we then check the truth value of l1. If l1 gets unsatisfied
under ρ ′, we need to choose another atom in this clause which is inconclusive w.r.t.
ρ ′ as a watched atom. If the procedure fails to find such atom, l2 is concluded to
be a unit clause.

This schema saves a lot of work since most of the time we only need to visit at most two
atomic formulas in each clause except that one of the watched atoms is violated, in average, the
visiting time is quite low compared with other ideas.

7.2 Conflict Driven Clause Learning 71

Example 7.1.2. Back to the running example, take the first clause as an example, which
contains four atom formulas. We choose x≥ 3 and y < 9 as watched atoms and then start the
solving procedure by UP. For the first round, UP only checks the two watched atoms and finds
both of them are inconclusive; it doesn’t need to check the rest formulas in this clause since for
any cases this clause cannot be a unit clause. After ICP, we notice that the domain of y gets
tighter and the watched atom y < 9 is involved. UP then checks this formula and finds it is
unsatisfiable under the new evaluation, according to the lazy clause evaluation schema, we
need to find another atom formula which is inconclusive; however, this cannot be achieved. We
thus conclude that the other watched clause x≥ 3 is a unit clause.

7.2 Conflict Driven Clause Learning

The basic algorithm doesn’t handle the constraints in a special way. When conflicts are obtained,
the corresponding computation cells are marked with probability zero. This works correctly
but is not efficient. In fact, constraints contain a lot of information which may indicate the
relationship among variables and constraints. If they can be well analyzed and used, the solving
procedure can be extremely improved, which yields an extension framework for SAT/SMT
solving, i.e., Conflict Driven Clause Learning (CDCL).

Example 7.2.1. Consider the following CSSMT formula:

Φ =

R

x ∈ U [0,10]

R

y ∈ U [−1,1]∃z ∈ [−3,1] :

(x≥ 7∨ y > 0.3∨ z > x+ y)∧ (z > 0.1∨ z≥ y2 +1)∧ (z≤ 3y)

Initially, all the atom formulas are inconclusive under the initial configuration, thus we split
the domain of x into two parts from the middle point, which yields two computation cells, i.e.,
H1 = (Φ,([0,5], [−1,1], [−3,1],C1)

(p1,q1)k1 and H2 = (Φ,((5,10], [−1,1], [−3,1],C2)
(p2,q2)k2 .

We first take H1 into consideration. x ≥ 7 is violated under current evaluation, however, no
further conclusion can be made in the moment. We further split the domain of y, which
yields another two cells, which are H11 = (Φ,([0,5], [−1,0], [−3,1],C11)

(p11,q11)k11 and H12 =

(Φ,([0,5],(0,1], [−3,1],C12)
(p12,q12)k12 . For H11, we find y≥ 0.3 is violated which makes the

first clause unit clause, the third clause z ≤ 3y leads to the case that z ≤ 3y = 3 ∗ [−1,0] =
[−3,0], thus z must be less or equal than 0. According to the interval constraint propagation,
the domain of z can be narrowed to [−3,0], which makes the formula z > 0.1 in second clause
unsatisfiable. We find another unit clause z≥ y2 +1, however, this requires that z is at least
greater equal than 1. This is impossible under current evaluation, thus a conflict is obtained.

72 Algorithmic Enhancements

According to the rule to handle the conflict, we can conclude the cell H11 as a cell con-
taining no solution, which yields H11 = (Φ,([0,5], [−1,0], [−3,1],C11)

(0,0)1 . Then two cells
are left, i.e., H12 and H2, and they will be explored by the solving procedure. However, if we
step a little bit deeper into the reason for the conflict, we could easily find that y ∈ [−1,0]
is the reason which makes the atomic formulas z ≤ 3y and z ≥ y2 + 1 unsatisfiable at the
same time. The search space where y ∈ [−1,0] could thus be ignored without further ex-
ploration, i.e., for the cell H2, the domain of y can be immediately reduced, which yields
H ′2 = (Φ,((5,10],(0,1], [−3,1],C2)

(p2,q2)k2 , as shown in Picture 7.1.

x

y y

z z z

x ∈ [0,5] x ∈ (5,10]

y ∈ [−1,0] y ∈ (0,1] y ∈ [−1,1]

x

y y

z z

x ∈ [0,5] x ∈ (5,10]

y ∈ (0,1] y ∈ (0,1]

Fig. 7.1 Conflict analysis can help narrow the searching space.

From the example, we can see that the conflict analysis plays an important role in time-
saving. In fact, Conflict Driven Clause Learning (CDCL) is not a new concept but is an essential
mechanism in classical SAT/SMT solvers which leads to non-chronological backjumping and
speeds up the decision procedure to find the solution as soon as possible ([SS97, MSS99,
BJS97]).

In order to integrate the CDCL framework to our solving procedure, we will slightly modify
the case when conflicts are obtained. In the basic algorithm, the probability bounds are set to
0 for cells with conflicts, which could reduce the upper bound of the probability estimation
for the original formula Φ. Besides, the reasons for conflicts could be analyzed by means of
an implication graph IG known from propositional SAT solving [ZMMM01], so that we can
prune the search space accordingly. In the following, we will set up the procedure to build the
implication graph, which is customized for CSSMT solving.

Formally, the implication graph is a directed acyclic graph IG⊂ A×A, where A contains
atomic formulas and IG collects all relations from atomic formulas to atomic formula, i.e.,
from reasons to result. Recall the Chapter 2, where we mentioned the basic DPLL algorithm
with four steps: deciding, unit propagation, backtracking and failing, which are extended by
CDCL framework in the following manner:

7.2 Conflict Driven Clause Learning 73

1. Deciding selects a variable and assigns a truth value to it; this is same with basic DPLL
framework;

2. Unit Propagation applies Boolean constraint propagation to find unit clauses; this is also
same with DPLL;

3. Implication Graph builds the implication graph, which makes it different from DPLL;

4. Backjumping: if there is any conflict then analyze the conflict and non-chronologically
backjump to the appropriate decision level. Different from backtracking in DPLL,
non-chronologically back jumping doesn’t require to only go back to the last decision
level;

5. SAT or UNSAT: continue the steps until all variable values are assigned, which shows the
satisfiability of the formula, or until no previous decision level can be backjumped to,
which shows the unsatisfiability of the formula.

According to the mentioned procedure, the implication graph is established when:

• deciding step is applied, a new node is made which indicates that a variable is chosen
and assigned with a truth value, at this moment, a new decision level is established;

• unit propagation is applied, transitions are made by the propagation, which means the
new decision level may also influence the truth values of other variables.

CSSMT is different from classical SAT solving due to the continuity of the searching
space. Thus the solving procedure doesn’t decide truth values for variables; instead, it tries to
manipulate the interval domains of variables and check the satisfiability of atomic formulas.
Moreover, since CSSMT is built on non-linear arithmetic which is handled by interval constraint
propagation, the Boolean structure of CSSMT formulas is not only affected by unit propagation
but also by interval constraint propagation. The standard CDCL framework should then be
modified:

• the decision step splits the domain of a chosen variable and explores one of its branches;

• the unit propagation applies the current evaluation to all the atom formulas to find unit
clauses;

• the interval domain of variables can be also influenced by interval constraint propagation
which may also be a reason of conflict.

74 Algorithmic Enhancements

According to all the considerations, we can now formalize the ideas to construct an implica-
tion graph during CSSMT solving. We should notice here that the construction of IG is not an
individual procedure, but along the basic CSSMT algorithm.

• According to the Rule SPL (Splitting), the domain of a specific variable xi will be split
into two parts, i.e., xi1 and xi2, one is stored to the set H, and the rest is to be explored.
This is a decision step for CSSMT solving. Thus a node can be created for this IG;

• According to the Rule UP (Unit Propagation), the unit clause is chosen when all other
atoms are violated under ρ , so the bounds for the variables involved in such atoms are
the reasons for the unit clause. Consider a clause l1∧ l2∧·· · ln: if all the li are violated
except lk, the bounds xi ∼ bi which makes li violated are the reasons for lk, implication
arcs can be established in this moment;

• According to the Rule ICP (Interval Constraint Propagation), the evaluation for some
variables are narrowed by manipulating the interval analysis. The involved bounds are the
reasons for the narrowing, i.e., if (xi∼ bi, · · · ,x j ∼ b j)

C
 (xk ∼ bk), (xi∼ bi, · · · ,x j ∼ b j)

is the reason for (xk ∼ bk), implication arcs can thus be established.

After constructing the implication graph IG, the reasons which lead to conflicts can be derived
by traversing the IG, where the parent nodes which result in the conflicts can be regarded as
the reasons. In modern SAT/SMT solver, the negated form of the reasons can be added to the
original formula so that the same conflicts can be avoided by the further procedure, which
can also help us prune “bad” search space regions which contain no solution, as shown in the
previous example.

Example 7.2.2. Reconsider the Example 7.2.1 we have considered:

Φ =

R

x ∈ U [0,10]

R

y ∈ U [−1,1]∃z ∈ [−3,1] :

(x≥ 7∨ y > 0.3∨ z > x+ y)∧ (z > 0.1∨ z≥ y2 +1)∧ (z≤ 3y)

We would like to show how to construct the implication graph. The solving procedure starts
by splitting x into two parts. This is a decision step. Thus a node with the new domain of
x can be made. By doing so, we can not find unit clauses (except z ≤ 3y, which is naturally
a unit clause since the clause contains only one atomic formula) or perform the interval
constraint propagation. The further procedure chooses another variable - for example y - to
split which yields another decision step. Thus a new node should be added. By performing unit
propagation, z > x+ y is a unit clause and the implication arc can be constructed.

7.2 Conflict Driven Clause Learning 75

As next step, the interval constraint propagation is applied, and z≤ 3y requires that z≤ 0,
which makes z > 0.1 unsatisfied and thus unit propagation tells that z ≥ y2 + 1 has to be
satisfied. Interval constraint propagation then concludes that z is at least 1, which results in a
conflict.

The process of how the IG is constructed is depicted in the Figure 7.2, from which we can
identify that decision y ∈ [−1,0] is the reason for conflicts.

Initial Range

x ∈ [0,10] y ∈ [−1,1] z ∈ [−3,1]

Decision Level

x ∈ [0,5]

Decision Level

y ∈ [−1,0] z > x+ y

z≤ 3y z ∈ [−3,0] z≥ y2 +1

z = 1

Fig. 7.2 Implication Graph.

Until now we have explored some framework from classical SAT/SMT solving which can
be integrated into our basic algorithm for CSSMT solving. Lazy clause evaluation is applied in
the SMT layer when we perform the unit propagation to reason about the Boolean structure
of the matrix, it can extremely reduce the number of visits of the atom formulas and the unit
clauses can be found faster. Lazy clause evaluation doesn’t essentially improve the ideas for
CSSMT solving; it is just a smart idea from which we can benefit. However, conflict clause
driven learning is an inspiring mechanism which provides a methodology for SAT/SMT or
even CSSMT solving. It tries to find the reasons if the conflicts are obtained during processing,
the reasons will be reused in the solving procedure so that the same conflicts can be avoided
and the search space can be reduced, which provides more chance to rapidly find the solution
or the area which contains the solution.

Our focus is on the problem with continuously distributed variables; however, we did not
look deeply into how the solving procedure can be influenced by the probability measure so far.

76 Algorithmic Enhancements

In fact, as handling probability is the main job of CSSMT solving, some heuristic ideas can be
used to pursue early termination, which we will discuss in the next section.

7.3 Early Termination by Required (Threshold) Probability
Analysis

Take a look at the basic algorithm for CSSMT solving. It is based on the structure of so-called
computation cells, which is stored in a set H. If we focus on one computation cell, we will see
that it can experience actions like:

• its variable domains can be modified, i.e., by performing the interval constraint propaga-
tion, the domain of variables could be narrowed, and if the variables involved are bound
by the randomized quantifier, the probability estimation may be modified with a tighter
version;

• the domain of a variable is split, i.e., by the splitting rule, the probability could also be
recalculated depending on the type of quantifiers for the variable;

• the computation cell can be judged as “a bad cell” containing no solution, or “an
inconclusive cell” where constraint solving will be applied to find solutions, in such
situations, the probability estimation will be done for the subcells generated by constraint
solving;

• the computation cell can be merged with another cell, in which the probability estimation
is also correspondingly treated according to the type of quantifiers;

• the probability of a computation cell can be compared with a reference probability δ so
that the result will be concluded.

From the above description, it is seen that the probability evaluation happens very late, i.e.,
after all computation cells are handled by splitting, merging, constraint solving, etc., which is
not very efficient since a lot of work will be done during the solving procedure without handling
the probability. In such way, the reference probability δ only plays a role at a very late stage. In
fact, the probability analysis can be handled much earlier, if we have some information about
the current stage, i.e., we roughly know the range of required (or threshold) probability and is
clear whether it can be reached or not. This can help us judge if we need further computation
for other cells.

7.3 Early Termination by Required (Threshold) Probability Analysis 77

Example 7.3.1. Consider an intermediate step for the CSSMT solving procedure for a for-
mula with three variables x, y and z, where x and y are uniformly distributed with range
[−1,1] and [0,10] correspondingly, while z is a random variable with standard normal distri-
bution. At a certain moment there are three computation cells generated, which are: H1 =

(Φ, [[−1,0], [0,10], [0,0.5]],{x ≤ −0.5})(0,0.1)1 , H2 = (Φ, [(0,1], [0,3], [0,0.5]],C)(0,0.06)2 and
H3 = (Φ, [(0,1],(3,10], [0,0.5]],C′)(0,0.14)2 . For each cell, a probability estimation is given,
and the reference probability for this problem is δ = 0.16. Let us start with the cell H1. We
notice that the constraint set contains one constraint x≤−0.5, for CSSMT solving, Rule (ICP)
should be applied, which yields H ′1 = (Φ, [[−1,−0.5], [0,10], [0,0.5]],{x≤−0.5})(0,0.05)1 . No-
tice here the probability estimation is also changed since the modified variable x is bound by
the randomized quantifier. Without performing the next solving steps, let us first check what will
happen if we merge the three computation cells, as depicted in the Figure 7.3. The result yields
a maximum probability estimate 0.15, which can not reach the reference probability δ which is
0.16, so the solving procedure can be safely stopped at this moment with answering LE.

(Φ, [[−1,−0.5], [0,10], [0,0.5]],{x≤−0.5})(0,0.05)1 (Φ, [(0,1], [0,3], [0,0.5]],C)(0,0.06)2 (Φ, [(0,1],(3,10], [0,0.5]],C′)(0,0.14)2

(

R

-COM)

(Φ, [(0,1], [0,10], [0,0.5]],C)(0,0.2)2

(LFT)

(Φ, [(0,1], [0,10], [0,0.5]],C)(0,0.1)1

(

R

-COM)

(Φ, [[−1,1], [0,10], [0,0.5]],{x≤−0.5})(0,0.15)1

Fig. 7.3 Propagate probability by using combination rules.

From the example, we see that the solving procedure can be terminated when we have the
confidence to conclude the results without performing the further rules. This example also
shows that when we handle the variables bound by randomized quantifiers, if the probability
of one branch is reduced due to some reasons like ICP and so on, we can stop and check
whether the accumulated probability for the rest branches is enough to still reach the reference
probability. E.g., in our running example, the residual probability is maximum 0.1, together
with the maximum probability 0.05 for H ′1, it is not enough to reach the reference probability
0.16. The similar ideas can be used for handling the existential quantifier, or even the conflicts,
which will be discussed later.

Now a question should be asked, is it necessary to apply the combination rules immediately
once the probability estimation of a computation cell is changed? Since it is very costly to

78 Algorithmic Enhancements

perform the combination rules, it is not efficient to perform probability check as what we did
for Example 7.3.1. In order to avoid applying combination rules, we will introduce another
concept of required probability. Required probability is the minimum probability needed in
order to reach the reference probability, and it can be understood as an extra information for
computation cells. Required probability can easily be computed and dynamically maintained;
moreover, it is enough to perform the checking by finding the relationship between probability
estimation and required probability, thus the tedious utilization of combination rules can be
avoided.

Definition 7.3.1. Given a CSSMT formula Φ, and reference probability δ , the required prob-
ability preq for a computation cell is the minimum probability needed for reaching δ which
satisfies:

• if the computation cell is with the initial configuration of the given CSSMT formula, i.e.,
generated by Rule (INI), preq = δ ;

• if preq is the required probability regarding a variable xi which is bound by

R

, the
required probability regarding to variable xi+1 is preq′ = preq/max(Pr(ρ(xi)));

• if preq is the required probability regarding to a variable xi which is bound by
R

, when xi

is split and thus two cells are obtained, one of the cells as probability estimation (p,q)i,
the required probability for the other is preq2 = preq−q. This can be extended to multiple
branching, i.e., preq′ = preq−∑k qk;

The definition also provides us with the way to compute the required probability. It can
simply traverse the tree-like structure induced by the solving procedure and the required
probability for each node can be computed. There are no corresponding rules for computing
required probability for the variables bound by existential quantifier; it instead is a trivial work
by inheritance since ∃ requires the maximum probability.

Example 7.3.2. Back to the Example 7.3.1, Figure 7.4 shows how required probability is
changed after applying ICP rule. In the figure, the probability estimation is shown in red color,
and the required probability for each branch and node is marked by a number with blue color.

Before applying interval constraint propagation, the branch H1 has a probability estimation
[0,0.1]. Assume the reference probability is 0.16, according to the definition of required
probability, we can thus compute the probability for the other branch which is 0.06. Then we
propagate the required probability to the sub-nodes, which is shown in the left figure.

When ICP has been performed, the probability estimation for the first branch is changed to
[0,0.05], and we modify the required probability correspondingly. We find that the required

7.3 Early Termination by Required (Threshold) Probability Analysis 79

probability for H3 regarding z becomes 0.22, which is the minimum probability which has to be
reached. However, the probability estimation is [0,0.2], and even if the maximum probability is
taken, the required probability cannot be reached. Therefore, we conclude that the probability
of the CSSMT formula cannot reach 0.16, and a LE answer can be safely reported.

x

y y

z z z

x ∈ [−1,0]
[0,0.5]

x ∈ (0,1]
[0,0.5]

y ∈ [0,10]
[0,1]

y ∈ [0,3]
[0,0.3]

y ∈ (3,10]
[0,0.7]

z ∈ [0,0.5]
[0,0.2]

z ∈ [0,0.5]
[0,0.2]

z ∈ [0,0.5]
[0,0.2]

[0,0.1]

0.16

0.06

0.12[0,0.06]
0.06

0.085

x

y y

z z z

x ∈ [−1,−0.5]
[0,0.25]

x ∈ (0,1]
[0,0.5]

y ∈ [0,10]
[0,1]

y ∈ [0,3]
[0,0.3]

y ∈ (3,10]
[0,0.7]

z ∈ [0,0.5]
[0,0.2]

z ∈ [0,0.5]
[0,0.2]

z ∈ [0,0.5]
[0,0.2]

[0,0.05]

0.16

0.11

0.22[0,0.06]
0.16

0.22

Fig. 7.4 The computation of required probability.

For the running example, we show that the analysis of required probability can yield an
earlier termination of CSSMT solving procedure. A similar idea can be applied not only for the
cells regarding the variables with randomized quantifiers but can also be used for the cells w.r.t.
the variables with existential quantifiers, or even can work when conflicts are obtained. The
intuition is as follows:

• Considering the cells which are related to the variable bound by ∃, when we merge the
cells according to the combination rule (∃-COM), it chooses the maximum probability
estimation. If the probability estimation for one cell is large enough, we can ignore the
rest;

• If the solving procedure tries to accumulate the probability estimation for cells regarding
a random variable, the combination rule (

R

-COM) performs the addition operating. When
the probability of one cell is large enough, others can be ignored.

• If conflicts are obtained, the probability estimation for the conflict cell is 0, to check
the required probability for other cells may help to decide if it can still finally reach the
reference probability.

Now let’s formalize all the ideas. Before going to the next step, we would like to introduce
another concept threshold probability Pthd , which is dual concept regarding the required

80 Algorithmic Enhancements

probability, which defines the probability threshold for computation cells that once it is reached
guarantees that the reference probability is guaranteed to be exceeded. The definition is quite
similar to the one for required probability.

Definition 7.3.2. Given a CSSMT formula Φ, and reference probability δ , the threshold
probability pthd for a computation cell is the probability once it is reached δ will be exceeded,
which satisfies:

• if the computation cell is with the initial configuration of the given CSSMT formula, i.e.,
generated by Rule (INI), pthd = δ ;

• if pthd is the threshold probability regarding to a variable xi which is bound by

R

, the
threshold probability regarding to variable xi+1 is pthd′ = preq/min(Pr(ρ(xi)));

• if pthd is the threshold probability regarding to a variable xi which is bound by

R

, when
xi is split and thus two cells are obtained, one of the cells with probability estimation
(p,q)i, the threshold probability for another is pthd2 = pthd− p. This can be extended to
multiple branching, i.e., pthd′ = pthd−∑k pk;

Notice that the definition is almost the same as the one for required probability, except that
we always compute the threshold probability from the lower side of the probability estimate.
Now let us move to the ideas for early termination analysis.

Randomized Quantifier

Consider a computation cell related to variable xi which is bound by

R

, the probability esti-
mation can be refined by Rule (ICP), (CONSIS) or (CONFL), the solving procedure proceeds
required (threshold) probability analysis at this moment:

• if Preq for a cell related to xi is greater than its upper probability bound, the procedure
can report LE without checking the rest of cells;

• if Pthd for a cell related to xi is less than its lower probability bound, the procedure can
report GE without checking the rest of cells.

Existential Quantifier

Consider a computation cell related to variable xi which is bound by ∃. The probability
estimation can be refined by Rule (ICP), (CONSIS) or (CONFL), and the solving procedure
proceeds exploiting required (threshold) probability analysis at this moment: if Pthd for a cell
related to xi is less than its lower probability bound, the procedure can report GE without
checking the residual cells.

7.4 Summary 81

Conflict

Consider a computation cell related to variable xi which is bound by

R

. Where a conflict is
found, the solving procedure proceeds exploiting required (threshold) probability analysis at
this moment. If Preq for a cell related to xi is greater than its upper probability bound, the
procedure can report LE without checking the residual cell.

7.4 Summary

In this chapter, we focused on the algorithmic enhancement for the CSSMT solving procedure,
which is achieved by modifying the three solving layers:

• For SMT layer, the unit propagation is optimized with watched atoms so that the number
of atomic formulas traversed can be reduced;

• For the constraint solving layer, the mechanism of conflict-driven clause learning is
modified to fit our requirement for CSSMT solving. CDCL maintains an implication
graph and try to analyze the reasons for conflicts which may reduce the search space for
the original problem and thus make the algorithm more efficient;

• For the stochastic layer, we introduced the ideas of required probability and threshold
probability, which indicate that in a particular moment, we can compute a threshold to
decide whether the reference probability can still be reached or exceeded, which yields
early termination without checking other cells and performing further rules.

The algorithm 5 is an improved version compared to the basic solving procedure proposed in
the beginning of this chapter, which: 1) adds watched atoms for unit propagation; 2) establishes
the implication graph during unit propagation and interval constraint propagation; 3) analyzes
the reasons for conflicts when conflicts are found; 4) performs the termination analysis by
computing required probability or threshold probability during the rules (ICP), (CFL) and
(CNSIS).

82 Algorithmic Enhancements

Algorithm 5 Improved CSSMT Solving Procedure

Input: A CSSMT formula Φ =Q : ϕ , a reference probability δ and precision ε .
Output: GE: if the probability estimation can be guaranteed to be greater equal than δ ;

LE: if the probability estimation can be guaranteed to be less equal than δ ;
INCON: the result can not be guaranteed w.r.t. ε .

1: C0← (Q : φ ,ρ,C)(0,1)1; H←{C0}; ◃ (INI)
2: while True do
3: Take Ci from H;
4: unit_propagation_with_watched_atoms(Φ,Ci, IG); ◃ (UP)
5: interval_constraint_propagation_with_termination_anlyzer(Φ,Ci, IG); ◃ (ICP)
6: if Conflict then
7: (Q : φ ,ρi,C)(pi,qi)k ← (Q : φ ,ρi,C)(0,0)1; ◃ (CFL)
8: H←CDCL_with_termination_anlyzer(H, IG);
9: else if Hull_Consistent then

10: H← H ∪{constriants_solving_with_termination_anlyzer(Φ,Ci,ε)};
11: ◃ (CNSIS)
12: else if Inconclusive then
13: (Ci1,Ci2)← split(Φ,Ci,ε); ◃ (SPL)
14: H← H ∪{Ci1,Ci2};
15: while |H|> 1 do
16: if There exist C1 and C2 from H which can be combined regarding to xi then
17: if xi is bound by ∃ then
18: C12← maximum_combine(C1,C2); ◃ (∃-COM)
19: if xi is bound by

R

then
20: C12← probabilistic_combine(C1,C2); ◃ (

R

-COM)
21: H← H ∪{C12};
22: else if C from H without combinable cells then
23: H← H ∪{li f t(C)}; ◃ (LFT)
24: end while
25: H = {(Q : φ ,ρ,C)(pl,pu)1};
26: if pu≤ δ then return LE; ◃ (LE)
27: else if pl ≥ δ then return GE; ◃ (GE)
28: else if |pu− pl|< ε then return INCON; ◃ (INCON)
29: end while

Chapter 8

CSiSAT: A Satisfiability Solver for
CSSMT

In the previous chapters, we introduced the idea to model systems with stochastic behavior
by continuous stochastic satisfiability modulo theories (CSSMT), which is an extension of
standard SMT by introducing randomized quantifiers and has the probability as semantics.
We further introduced a sound solving procedure to decide whether the maximum probability
of satisfaction regarding a CSSMT formula Φ = Q : ϕ exceeds a reference probability δ

and algorithmic enhancements for the solving procedure are developed to pursue an efficient
algorithm.

Based on the proposed solving procedure, we implemented a prototype solver CSiSAT,
which is an SMT solver, especially for CSSMT solving. In this chapter, we will focus on the
introduction of the solver. We will start by introducing the family of iSAT-based tools which are
supported by the AVACS project [AVACS]. In the following, the structure of our tool CSiSAT
is presented as well as the functions of CSiSAT. As a summary, we compare our solver with
other similar tools which are able to handle stochastic systems. This chapter is thus regarded as
an introductory material, and the demonstration examples and case studies will be supplied in
the next chapter, which show the ability of CSSMT to deal with real applications.

8.1 Introduction to the Family of iSAT-based Tools

The HySAT/iSAT tool family is motivated and maintained by the AVACS project, which
provided a series of constraint solvers and bounded model checkers from different aspects, as
shown in Figure 8.1:

84 CSiSAT: A Satisfiability Solver for CSSMT

• HySAT is not only an SMT solver but also a bounded model checker [HySAT] which
integrates interval constraint propagation (ICP) into conflict-driven clause learning frame-
work (CDCL) [FHT+07] so that large Boolean structure with non-linear arithmetic can
be solved efficiently. HySAT can be regarded as the origin for all other related SMT
solvers in this family;

• iSAT/iSAT3 are successors to HySAT [iSAT] which optimize the main core of ICP
and CDCL based SMT solving and provide a more efficient solving. Compared with
HySAT, it also supports SMT solving and bounded model checking, the results are more
stable and can be found faster. However, it doesn’t support constraint solving with
optimization, which is covered by HySAT. Based on iSAT/iSAT3, some extended tools
are implemented for different targets, like iSAT-Craig which applies Craig interpolation
to SMT and can prove or disprove invariant properties of transition systems, iSAT-LP
which is implemented to handle the SMT especially with linear constraints, iSAT-ODE
focuses on the SMT formula with ordinary differential equation (ODE) so that a larger
number of dynamic systems can be captured;

• SiSAT is a stochastic SMT solver, which introduces the discrete randomized quantifiers so
that it models the variables with discrete distributions [SiSAT]. However, only variables
with discrete domain (except for the implicit innermost existential quantified variables)
are supported by this solver. Therefore it is restricted in its ability to model the systems
with continuous behavior;

• CSiSAT is a stochastic SMT solver who also supports continuously distributed variables,
and it is implemented based on the algorithm mentioned in the previous chapters. The
core of constraint solving for CSiSAT is partially based on the tool Realpaver [GB06],
which is based on interval analysis thus safe bounds can be obtained for the results.

8.2 The Structure of CSiSAT

The prototype implementation of CSiSAT is implemented by using C++ programming language
with approximately 8000 lines of source code1. The source code is implemented and tested on
Ubuntu 15.10 with a 64-bit PC and is available at https://vhome.offis.de/~ygao/.

The overview of CSiSAT is depicted in Figure 8.2. The core algorithm is based on the
previous chapter. It currently accepts a plain-text file as input which defines the CSSMT

1 CSiSAT is still a prototype implementation, so more functions and heuristic methods are still under testing
and implementation. Since it is still an ongoing project, the source code and the tool are not fully documented. If
you have any problems regarding the usage, bug report and so on, drop me an email. Any comments are welcome.

https://vhome.offis.de/~ygao/

8.2 The Structure of CSiSAT 85

Tool Family HySAT

iSAT

iSAT3

iSAT-
Craig

iSAT-LP

iSAT-
ODE

SiSAT

CSiSAT

Fig. 8.1 HySAT/iSAT family.

86 CSiSAT: A Satisfiability Solver for CSSMT

formula by using a straightforward syntax. The input file is parsed by a parser which is done
by Flex/Bison and the formula is stored by using an Abstract Syntax Graph (ASG), then the
tool follows the way which we presented before: SMT layer does the reasoning on the Boolean
structure, i.e., Rules (UP), (ICP) and (SPL). The constraint solving is performed in two ways,
either by RealPaver [GB06] or CSiSAT itself. The output is the probability estimation for the
input CSSMT formula. The current version will return the maximum and minimum probability
which safely bound the probability of satisfaction regarding the input CSSMT formula.

Notice that we have two boxes in the overview structure which are drawn with the dashed
line, which means these two parts are not stable for the prototype implementation. Restart
procedure will try to restart the solving procedure with smaller precision if the output bounds
are rough. Currently, you need reset the precision in the input file and rerun CSiSAT again.
Conflict Analyzer is inspired by CDCL framework from the standard SMT community, which
helps us to find the reason for the conflicts and speed up the solving procedure. In our current
implementation, the cells with conflicts are marked with probability 0 and removed from the
following computation, but in fact, the reasons can be analyzed and the search space can be
narrowed in this sense. More details regarding optimization have been discussed in the previous
chapter.

Fig. 8.2 Overview of CSiSAT

8.3 Functions of CSiSAT 87

8.3 Functions of CSiSAT

CSiSAT is a pure CSSMT solver which can:

• model random variables in constraints and the distributions can be specified in the input
file;

• solve the constraints in a certain way specified by users, i.e., it supports either the
invoking of RealPaver or the constraint solving techniques implemented in the solver
itself;

• provide the safe probability bounds of CSSMT formula under given precision, which
helps decide if the target reference probability can be reached.

CSiSAT can be used to model the probabilistic constraints, analyze the bounded model checking
problem, compute the reachability probability, etc, which will be seen in the next chapter.

8.4 Compared with related tools

There are a lot of tools and solvers which aim at handling systems with stochastic behaviour.
In this section, we choose some similar tools which can model and analyze stochastic hybrid
systems and we would like to compare our tool with them. These include SiSAT [TF08],
ProHVer [HHHK13], ProbReach [SZ15] and PRISM [KNP11].

• SiSAT is a satisfiability solver which can symbolically reason about reachability problems
of probabilistic hybrid automata (PHA). SiSAT denotes the probability of satisfaction
of Φ under the optimal resolution of the non-random quantifiers. In this solver, all
quantifiers (except for implicit innermost existential quantification of all otherwise
unbound variables) are confined to range over finite domains. As this implies that the
carriers of probability distributions have to be finite, a large number of phenomena
cannot be expressed within the current SSMT framework, such as continuous noise or
measurement error in hybrid systems;

• ProHVer is a prototype verifier for stochastic hybrid systems, which is capable of
computing the unbounded reachability probability for probabilistic hybrid automata.
ProHVer maintains a finite-state over-approximation of the original probabilistic hybrid
automata, which can then be used to compute a probability that is an upper bound for
the maximal reachability probability for the property given in the probabilistic hybrid
automaton. However, exploiting ProHVer for computing the abstractions, it is limited to

88 CSiSAT: A Satisfiability Solver for CSSMT

linear dynamics and can handle even that only via an over-approximation by piecewise
constant differential inclusions. Moreover, due to the manual selection of the abstraction,
the user should at least know the related dynamics. For some problems, a number of
iterations should be performed to get acceptable results, which makes the tool not very
easy to use;

• ProbReach is a software for calculating bounded probabilistic reachability in hybrid
systems with uncertainty in initial parameters, which is based on safe gridding and an
approximation to a δ -complete decision procedure. ProbReach only deals with the hybrid
systems with random initial parameters, however, stochastic dynamics is not covered.

• PRISM is a probabilistic model checker for formal modeling and analysis of systems
that exhibit random or probabilistic behavior. PRISM is confined to finite-state systems
like DTMC and CTMC, which makes continuous variables difficult to be tackled. In
PRISM, continuous states are not supported, modeling continuous quantities should be
done by using some other tricks, i.e., model the continuous variables as rewards. The
definitions of DTMC/CTMC provide that the discrete transitions are issued with discrete
distributions, which makes continuous uncertainties impossible to be captured unless by
abstraction.

The comparison is concluded in the following table:

Name Continuous Variables Continuous Distributions Probabilistic Transitions ODE
SiSAT ∃ bound variable can be continuous × X ×

ProHVer X X X linear dynamics
ProbReach X X × X

PRISM continuous rewards × X ×
CSiSAT X X X ×

Table 8.1 Comparing with other tools (×: unsupported;X: supported.)

Chapter 9

Applications of CSiSAT

The last chapter introduced the infrastructure of the CSiSAT solver, which is a satisfiability
solver for CSSMT formulae. CSiSAT takes CSSMT encodings as input and returns safe bounds
for the maximum probability of satisfaction regarding the given formula, which makes it
possible to model uncertainty in hybrid systems. Compared with other solvers or verifier for
hybrid systems, a weakness of CSiSAT is that ordinary differential equations cannot directly
be captured by CSSMT formula. But despite the lack of support for ODE, CSSMT can
nevertheless be applied in many fields and real applications.

In this chapter, we are going to apply CSiSAT to model some scenarios from real appli-
cations. The case studies come from different fields and show the capabilities of CSiSAT in
handling the stochastic reachability problem, stochastic constraint solving and so on. If a
problem can be encoded with arithmetic constraints containing random variables, CSiSAT now
is a choice.

We firstly provide an overview to get readers familiar with the input and output style of
CSiSAT; a demonstration example will be given for this purpose. A couple of examples are
given in the sequel, and we will provide the background of each scenario and explain how this
problem can be encoded into CSSMT formulas and solved by CSiSAT.

All the experiments reported in this chapter were conducted on a 64bit-Linux (Ubuntu
16.04.1 LTS) machine with an Intel(R) Core(TM) i5-3230 processor at 2.40GHz×4 equipped
with 4 GB of RAM. The scripts of the models as well as the source code of CSiSAT are available
at https://vhome.offis.de/~ygao/. The source code was developed under GNU GPL license and
thus can be downloaded and distributed.

https://vhome.offis.de/~ygao/

90 Applications of CSiSAT

9.1 Demonstration Example

As the first case study, we will show a demonstration example explaining the usage of CSiSAT.
As we mentioned in the previous chapter, the solver takes a CSSMT formula as input. The
grammar of encoding a CSSMT formula in the input file is simple and straightforward.

Example 9.1.1. Consider a CSSMT formula

Φ = ∃x ∈ [−10,10]

R

y ∈ U [5,20]

R

z ∈ U [−10,10] :

(x > 3∨ y < 1)∧ (z > x2 +2∧ y≤ 20)∧ (x2 > 49∨ y < 0.7∗ x)∧ (x < 6∨ y≥ z)

where both y and z are uniformly distributed in their ranges. As input file, we can rewrite
the formula as shown in Figure 9.1. The parameter precision defines the minimum length
for splitting which can be modified to achieve more accurate probability estimation. Each
existential quantifier is represented by “E” and a randomized quantifier is represented by “R”.

“U” stands for uniform distribution, other distributions can be also referred to by specific letters.

Branch{
precision = 0.1;
}
E x in [-10,10] R y in U[5 ,25] R z in U[-10 ,10]:
x>3 || y<1 && z>x^2+2 || y<=20 && x^2>49 || y<0.7*x && x<6 || y>=z

Fig. 9.1 Example input

The input file can be directly parsed into the solver and handled by the solving procedure.
It will report the safe bounds which constitute lower and upper estimates of the probability of
satisfaction regarding Φ under the given precision. If the results are not acceptable due to the
precision, i.e., too rough to estimate the real probability, one can adjust the precision and rerun
the solving procedure.

Example 9.1.2. By running CSiSAT, we can get the lower and upper bound of the probability
of satisfaction w.r.t. the formula Φ, as shown in Figure 9.2. The results say that the lower
approximation is 0.718014 and the upper one is 0.719719, which means that the real probability
is guaranteed to be in this range. In fact, it can easily be computed as with 23/32≈ 0.71875 · · · .
The time consumed is reported as 0.1132915s in this case. Apart from this, some debug
information will also be given.

If we increase the precision to 0.01, we will get a tighter estimated ranging from 0.718658
to 0.718872. However, this comes at the price of generating more boxes, the number of which
increases from 835 boxes to 8704, and correspondingly consumes more time.

9.2 Path Planning 91

$./ CSiSAT test1.txt
...
........... Debug Information
...
0.718014 , 0.719719
0.1132915 s

Fig. 9.2 Execution results

CSiSAT also supports another mode which uses RealPaver as the underlying constraint
solver. This mode is activated by adding “-rp RealPaver_Path” as command parameters.

9.2 Path Planning

Like the first scenario, we would like to consider a stochastic verification task for path planning
on a segment of a highway with three cars. The layout is depicted in Figure 9.3. On the
highway, there is a low-speed car (blue car) and a high-speed car (red car). The ego car is now
forced to make a choice between:

1. keeping in the lane, and

2. changing to the other lane.

Both options have an associated risk of collision. We want to use the framework of CSSMT to
help decide which choice the car should take.

egocar
d f

db

Fig. 9.3 A segment of highway with three cars.

In order to make this case study more practical, instead of fixing a specific speed for the
cars, we assume that the speed of each car is influenced by the operation of the driver and
the situation of the road, thus uniformly distributed in a range [v− δ ,v+ δ]. Similarly, the
acceleration of cars is not fixed, but also obeys a uniform distribution over range [a− ε,a+ ε].

92 Applications of CSiSAT

9.2.1 Formalization of The Problem

Determine the variables and quantifiers. According to the previous description, we will
model the problem with the following variables:

• the speed of each car, i.e., vr for the red car, vb for the blue car and vg for the ego car, all
the variables will be bound by randomized quantifiers with uniform distribution;

• the distance between cars, i.e., d f the distance between ego car and the car in front, db

the distance between ego car and the car in the back. Both variables are deterministic
which are given in advance, so we model the variables as single point interval;

• the acceleration, i.e., ar for the red car, vg for the ego car, which are both bound by
randomized quantifiers with uniform distribution; we assume the car in front maintains
its speed, so the acceleration for it is 0;

• the choice of maneuver, i.e., d ∈ 0,1 which is a discrete variable with two possible values,
0 means no lane change is issued, whereas 1 means the ego car will change to another
road.

Determine the criteria for lane change. We will investigate the probability of collision for
the actions of the ego car. The car either keeps the lane or changes to the other lane, where
both actions have an associated risk of collision. Since the speed and acceleration for cars are
randomly distributed, we compute the probability that no collision will occur for each case and
always take action with maximum probability of avoiding a collision. The criteria for observing
a collision can be formulated by a relation which involves speed, acceleration and distance,
i.e., p1(vb,vg,ag,d f) for the choice of keeping the lane, and p2(vr,vg,ab,db) for the choice of
changing the lane. A straightforward criterion can be obtained by the following no-collision
relation:

p1 :
v2

g− v2
b

2ag
≤ d f + vb ·

vg− vb

ag
(9.1)

p2 is formulated by using the parameters regarding the following car and ego car. Here we can
add more criteria so that the decision can be precisely made, i.e., in the paper [EGF14] they
also consider the relative velocity when collision occurs.

9.3 Temperature Regulation Problem 93

Determine the CSSMT formula. As has been stated above, the corresponding CSSMT
formula can be written as follows:

Φ = ∃d ∈ {0,1} R

vr ∈ U [vr−δr,vr+δr]

R

vg ∈ U [vg−δg,vg+δg]

R

ar ∈ U [ar− εr,ar+ εr]

R

ag ∈ U [ag− εg,ag+ εg]∃d f ∈ [d f ,d f]∃db ∈ [db,db] :

(d∧ p1(vb,vg,ag,d f))∨ (¬d∧ p2(vr,vg,ab,db)) (9.2)

9.2.2 Experimental Results

The semantic of the Formula 9.2 gives the maximum possible probability of avoiding collision
and the assignment for the variable d gives the decision which leads to this safe strategy. Figure
9.4 shows the probability of no collision regarding the speed of ego car. The error bars are
obtained by solving the CSSMT formula through CSiSAT and provide safe bounds for the real
probability. The results tell us that the preferred choice depends on the current speed of the ego
car. If it runs relatively fast, it is better to change the lane, otherwise keeping in the current
lane is safer. The crossing point of the curves gives us the speed where we should change the
decision.

Fig. 9.4 The probability of no collision.(“red curve" for changing lane, “blue curve" for keeping
in lane)

9.3 Temperature Regulation Problem

In this section, we consider the problem of regulating the temperature of a room during
some time horizon [0,N] by a thermostat that can switch a heater on or off. This example

94 Applications of CSiSAT

is a variant version taken from [APLS08], where the probabilistic reachability problem for
controlled discrete time stochastic hybrid systems (DTSHS) was investigated by using dynamic
programming (DP). In this work, it will be investigated by using CSSMT. This example has
also been mentioned in Chapter 5, where we introduced the procedure to encode the behavior of
a stochastic hybrid system into a CSSMT formula. Here we would like to review this example
again and have a look at how CSSMT can help to perform the reachability analysis.

As before, we consider a room in which there is a thermostat with two modes Q =

{ON,OFF}, and the thermostat issues switching commands U = {0,1} to the heater: “0"
means no switching command is issued and “1” effects a change of heater state. The average
room temperature changes according to the laws mOFF(x) = x− a

C(x− xa)∆t +N (m,σ2) and
mON(x) = mOFF(x)+ r

C ∆t, where a is the average heat loss rate, C is the average thermal
capacity, xa is the ambient temperature, r is the rate of heat gain, and ∆t is the discretization
time interval. In order to capture the disturbance, we add a noise termN (m,σ2), which denotes
the probability measure over (R,B(R)) associated with a Gaussian density function with mean
m and variance σ2. The formal model is depicted in Figure 9.5.

OFF
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t+N (m,σ2)

start

ON
x(t) = x(t−∆t)−
a
C(x(t − ∆t) −
xa)∆t + r

C ∆t +

+N (m,σ2)

cmd == 1

cmd == 1

cmd == 0

cmd == 0

Fig. 9.5 Regulating the temperature of a room by a thermostat

The regulation problem we consider here is the same with [APLS08]: determine a control
strategy that maximizes the probability that the average room temperature x is driven close to a
given temperature with an admissible tolerance.

9.3 Temperature Regulation Problem 95

9.3.1 SSMT Formalization

To formalize the problem, we translate the initial condition, the transition relation, and the
desired sets into a CSSMT formulaQ : Φ. The encoding follows the rules introduced in Chapter
5.

Initial condition.

The initial room temperature starts from any value in the set [T 0
l ,T

0
u] and the heater is initially

switched to OFF. This condition can be formulated as follow:

I : (T 0
l ≤ x0 ≤ T 0

u)∧ (q0 = OFF) (9.3)

Since the system is considered to be well behaved for any suitable initial value, we assume that
the latter is uniformly distributed in the range [T 0

l ,T
0

u], i.e., x0 is bound by

R

x0 ∈ U(T 0
l ,T

0
u)

and q0 is a discrete variable bound by quantifier ∃q0 ∈ {OFF,ON}.

Transition relation.

During each transition step the system will do two operations: 1) Choose a control action ui by
performing switching command ui = 0 or ui = 1. 2) Update the temperature xi according to the
thermostat state.

Ti : ((ui = 0∧qi = qi−1)∨ (ui = 1∧∧qi = ¬qi−1))

∧ ((qi = ON∧ xi = xi−1− a
c (xi−1− xa)∆t +ωi−1 +

r
c∆t)∨

(qi = OFF ∧ xi = xi−1− a
c (xi−1− xa)∆t +ωi−1) (9.4)

ui here is a control action which can be either 1 (switching to opposite heater state) or 0 (no
switching), i.e., ∃ui ∈ {0,1}. xi−1 and xi are the previous and the updated room temperature.
These take values from a suitable temperature range: ∃xi−1 ∈ [T i−1

l ,T i−1
u] and ∃xi ∈ [T i

l ,T
i

u].
ωi is a continuous random variable with Gaussian distribution:

R

ωi ∈N (m,σ2).

Target sets.

Target sets can be understood as the sets which we want to keep the room temperature inside.
For each transition step, we attach a constraint to the SMT formula:

Si : Ci
l ≤ xi ≤Ci

u (9.5)

96 Applications of CSiSAT

which indicates that the room temperature xi is expected to be in the set [Ci
l ,C

i
u].

Altogether the dynamics of the system can be formalized as an SSMT formula

R

x0 ∈ U(T 0
l ,T

0
u)∃q0 ∈ {OFF,ON}∃ui ∈ {0,1}

...

R

ωi ∈N (m,σ2)∃xi−1 ∈ [T i−1
l ,T i−1

u]∃xi ∈ [T i
l ,T

i
u] · · · : I ∧

N∧
i=1

(Ti∧Si), (9.6)

where N is the number of computation steps analyzed.

9.3.2 Experimental Results

The parameters we used are the same as in [APLS08]: xa = 10.5◦F, a/C = 0.1 min−1, r/C =

10◦/min. All the Ni are independent and identically distributed with mean m = 0 and variance
σ = 0.33◦F. Initially, the room temperature is in [70,80]◦F. In the following we consider the
system dynamics during the time interval [0,500], and we specify that the room temperature
should be kept within [70,80]◦F when time t ≤ 250min and after that it is driven close to 75◦F,
i.e., into the range [74,76]◦F.

The results are depicted in Fig. 9.6, which can be understood as follows:

• The sub-figure (a) shows the behavior with classical threshold-driven bang-bang control,
i.e., the control keeps current state unchanged until the threshold has been reached. If
the measured temperature exceeds the upper bound, the controller switches to the OFF
mode and vice versa. The initial temperature is uniformly chosen from the range [70,80];

• The sub-figure (b) is obtained by solving the corresponding CSSMT formula, i.e., formula
9.6. As the semantics of CSSMT formula is the maximum satisfaction of the formula,
in this problem, each transition step involves optimally choosing between two possible
actions, namely to stay in current mode (command “0”) or to switch to the opposite mode
(command “1”). By solving the CSSMT formula for each transition step, we not only
obtain the maximum probability to stay in the required temperature range but can also
take the action which leads to such probability as our optimal control strategy.

By inspection of the diagrams, it becomes obvious that we achieved a significantly better
behavior by extracting control actions through CSSMT solving. The temperatures stay much
closer to what we specified as targets, i.e., the temperature tends to stay with high probability
within the given range [70,80]◦F and [74,76]◦F, respectively.

9.4 Task Deployment and Scheduling 97

(a) bang-bang control (b) induced by solving CSSMT

Fig. 9.6 Experiment results.

Table 9.1 reports the results returned by CSiSAT. It shows the solving precision, time
consumption, the number of boxes generated and probability approximations. Higher precision
of the results is naturally achieved by investing additional solving time.

From this study, we learn that CSiSAT can be used to solve probabilistic reachability
problems by encoding the behavior of a stochastic hybrid model into a CSSMT formula and
then solving that by the prototype implementation. The solver provides us with both the
maximum probability of reachability and the variable assignments in each step which lead to
maximum probability. The latter provide controller synthesis.

Precision Number of boxes Time(s) Probability bounds
100 182 0.01359 [0.937054,1]

10−1 2288 0.0165795 [0.96041,0.975993]
10−2 24564 1.42093 [0.9681,0.970115]
10−3 524422 34.7482 [0.969122,0.969245]
10−4 4982016 332.765 [0.969176,0.969191]

Table 9.1 Results for temperature regulation problem. (500 time steps, for each step 2 states
variables, 2 control variables and 1 variable representing the temperature.)

9.4 Task Deployment and Scheduling

As a third case study, we will investigate a probabilistic scheduling problem derived from hard
real-time systems. Hard real-time systems have been defined as those containing tasks that
have deadlines that cannot be missed, which is guaranteed by different scheduling methods.
One of them is deadline-monotonic scheduling [ABRW90], which is a static priority based
algorithm for periodic processes in which the priority of each process is related to its period.

98 Applications of CSiSAT

Fig. 9.7 Task scheduling.

In our scenario, we consider a system on which tasks are intended to run with two types of
memory:

1. normal memory (MEM) of sufficiently large size,

2. a very small amount of scratch-pad memory (SPMEM), which has the advantage that
access to it is very quick.

Tasks are called periodically (with period Pi) and do not depend on the results of each
other. They have deadlines (Di) which may not exceed their periods (Di ≤ Pi). The worst case
execution time (Ci) of a task consists of some base time (BCi) and the time that it needs to
access its variables. These variables can be assigned to either MEM or SPMEM. Since the
worst-case execution time also depends on the variable access time, it varies with the different
deployment, i.e., how to distribute the variables over memory. The system is equipped with a
fixed priority scheduler with preemption. In deadline-monotonic scheduling, tasks are assigned
priorities according to their deadlines, the task with the shortest deadline being assigned the
highest priority. Whenever a task with higher priority than the task that is just running becomes
activated, this task preempts the running task, which is suspended until the processor is free
again.

Let us consider a system with two tasks and 4 cells of SPMEM. The parameters are shown
in Table 9.2.

We want to check whether we can find a task deployment so that no deadline is violated
regarding a schedule. In standard setting, the worst-case execution time (WCET) is given as a
fixed number. The schedulability test is fulfilled by examining the response time for each task,
where the response time is computed by the following formula:

Ri =Ci + ∑
k∈hpi

⌈Ri

Pk
⌉ ·Ck (9.7)

Here Pi denotes the period of task i, Ci the execution time of task i, hpi the set of tasks with
higher priority than task i; then the smallest Ri satisfying above fixed-point equation yields the

9.4 Task Deployment and Scheduling 99

Table 9.2 System parameters

Hardware
MEM size 4 cells
MEM access time 4 cycles
SPMEM access time 1 cycle
Task 1
number of accesses to T1 variable 1 10
number of accesses to T1 variable 2 3
number of accesses to T1 variable 3 2
number of accesses to T1 variable 4 6
period P1 1200
basic execution time BC1 N (140,100)
deadline D1 1000
Task 2
number of accesses to T2 variable 1 5
number of accesses to T2 variable 2 40
number of accesses to T2 variable 3 1
period P2 200
basic execution time BC2 N (10,10)
deadline D2 100

response time of task i. This recursive formula is normally solved by searching a fixed point
beginning with Ri,0 = Ci as initial candidate for Ri and then inserting Ri,0 into the recursive
formula as Ri. If the resulting Ri,1 equals Ri,0 the fixed point is already reached, otherwise the
calculation is continued with Ri,1 as a candidate. The search can be stopped when either a
fixed point is reached or the deadline exceeded. If the response time for each task is below its
deadline Di, the tasks can be scheduled without deadline violation.

However, in practice, the WCET is generally obtained by analysis and approximation, and
a reliable fixed number is hard to obtain. We thus would like to consider the execution time as
a random variable with a certain distribution, e.g., a clipped normal distribution, which yields
the problem we want to handle:

Given tasks with randomized basic execution time, we want to find a task de-
ployment which can guarantee that with sufficiently high probability no deadline
becomes violated.

We try to use CSiSAT to find the corresponding task deployment. Since there are only four
SPMEM cells, only four of the seven tasks can be assigned to them. We can take seven variables
each of them with two integers as its domain, as the first iteration step, we can start from the

100 Applications of CSiSAT

formula:

∃x1...4,y1...3 ∈ {0,1}

R

BC1 ∈ N[140,100]

R

BC2 ∈ N[10,10] :

T1 + ⌈
T1

P2
⌉ ·T2 ≤ D1∧0≤ T1 ≤ P1∧0≤ T2 ≤ D2∧

4

∑
i=1

xi +
3

∑
j=1

y j = 3 (9.8)

where

T1 = BC1 +(3∗ x1 +1)∗10+(3∗ x2 +1)∗3+(3∗ x3 +1)∗2+(3∗ x4 +1)∗6

T2 = BC2 +(3∗ y1 +1)∗5+(3∗ y2 +1)∗40+(3∗ y3 +1)∗3 (9.9)

which are basic execution time plus the access time for the variables. This formula can be easily
encoded to CSiSAT input, and the constraint-solving mechanisms of CSiSAT will automatically
find a fixed-point whenever the constraint system expresses a fixed-point equation system. In
case multiple fixed-points exist, an appropriate one satisfying the remaining constraints (e.g.,
deadlines) will be chosen whenever such exists.

CSiSAT will give the probability regarding each possible deployment and returns the
maximum one. From its results, we can learn that for some deployments, the probability is
extremely low, which indicates that under such deployments the probability with deadline
conflicts are very high. Such a deployment should not be used to distribute the tasks. The
highest probability is found with range [0.984357,0.985358], which is achieved by assigning
the variable 3 of Task 1 and all variables of Task 2 to SPMEM.

9.5 Conclusion

In this chapter, we provided the readers with an intuition for the capabilities of CSiSAT by
means of a couple of case studies, which vary from a path planning scenario over a temperature
regulation problem to task scheduling. The idea underlying the solution of such problems is
to encode the requirements of the problem or the behavior of systems into a corresponding
CSSMT formula. That CSSMT formula is then fed to the CSiSAT solver for automatic
discharge. The stochastic phenomena, measurement errors and disturbances can be modeled by
random variables which are bound by randomized quantifiers, and CSiSAT will then optimally
resolve existential quantifiers and return the maximum probability of satisfaction regarding to
the formula of interest. It thus decides the maximum probability of satisfaction corresponding
to reachability in Markov decision processes, to the optimal decision between different choices
and so on.

Chapter 10

Summary and Future Work

10.1 Discussion

The verification for stochastic systems is a very tough task because of the complexity of system
structure and behavior. Many modern systems integrate continuous physical components and
embedded controllers, which forces us to consider both continuous and discrete behavior at the
same time; nondeterminism requires a system to act correctly no matter what choices are taken
for next steps; moreover, the systems are always influenced by noise in the environment and
even themselves, such that uncertainties should not be ignored.

In this thesis, we proposed a framework to handle such systems with the resulting blend of
nondeterministic and stochastic behavior. A new logic has been proposed in order to handle
such stochastic hybrid systems in a uniform way. The individual contributions of this thesis are
as follows:

• we proposed a logic named continuous stochastic satisfiability modulo theory (CSSMT),
which introduces continuous randomized quantifiers so that continuous random variables
can be encoded in SMT formulas directly;

• we formalized the syntax and semantics of CSSMT formulae, where the semantic of a
CSSMT formula is quantitative and represents the maximum probability of satisfaction
achievable under an optimal strategy for resolving existential quantifiers;

• we provided a solving procedure for CSSMT formula. In our setting, a reference
probability and precision are given, and the solving procedure will try to decide the
relationship between the actual satisfaction probability and the reference probability, as
well as return a safe bound for the actual probability. The soundness and termination of
the algorithm are also proven;

102 Summary and Future Work

• we put forward different ideas for the algorithmic enhancements, which work in different
solving layer and will lead to a practically efficient solving procedure;

• we implemented a prototype CSSMT solver, named CSiSAT, which can help solve
problems from different fields.

10.2 Future Directions

The work presented in this thesis leads to some further research topics which deserve to be
explored in the next research period:

Conditional CSSMT. Currently, the variables bound by randomized quantifiers are stochas-
tically independent of each other. A possible extension adding to expressiveness thus is to
introduce dependent variables, where the distribution of a random variable depends on the
variables before it. It is very common that the systems contain such dependent variables, for
example, the measurement error of a sensor is based on the value which has been measured.
Such dependency can be formalized by joint probability distribution or conditional probability
distributions.

CSSMT with ODE or SDE. As we have mentioned in previous chapters, ordinary differen-
tial equation (ODE) and stochastic differential equation (SDE) are not supported currently by
CSSMT. This limits the applications of CSSMT as a modeling language since some dynamics of
systems cannot be directly encoded by it. However, the extension of CSSMT to its ODE version
is possible, i.e., we can compute the probability bounds by over- and under-approximating the
reachable sets of ODE or SDE. A plethora of methods can be investigated here, like polytopic
under-approximations [XSE16] for ODE, abstraction- or simulation-based over-approximation
[ADI03, HM14] for ODE, etc. However, directly handling stochastic differential equation is a
tough task, and gridding methods can be used to approximate the solution of SDE [SA11].

CSiSAT improvement. While the prototype implementation of CSiSAT can successfully
discharge some non-trivial verification tasks, it can be improved in a lot of aspects: firstly,
CSiSAT only supports pure CSSMT constraint formulae as input. In the HySAT/iSAT family of
solvers, most of the solvers support both constraint-solving mode and bounded model checking
mode (BMC). Likewise, CSiSAT could also be improved by supporting BMC mode. Secondly,
CSiSAT can be made more efficient by integrating the conflict-driven clause learning (CDCL,
[SS97, MSS99, BJS97]) framework and restart mechanisms, plus the heuristic enhancements

10.2 Future Directions 103

[GF16] discussed in this thesis could be fully transferred to the current solver implementation.
Finally, another enhancement which makes sense is to support user-defined distributions, since
CSiSAT currently only supports some widely used distributions such as the normal distribution,
the uniform distribution and so on. A more flexible user interface should be provided that offers
a language for defining relative distributions.

References

[ABRW90] Neil C Audsley, Alan Burns, MF Richardson, and AJ Wellings. Deadline mono-
tonic scheduling. Citeseer, 1990.

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hy-
brid automata: An algorithmic approach to the specification and verification of
hybrid systems. In Hybrid systems, pages 209–229. Springer, 1993.

[Ack54] Wilhelm Ackermann. Solvable cases of the decision problem. 1954.

[ADI03] Rajeev Alur, Thao Dang, and Franjo Ivančić. Progress on reachability analysis of
hybrid systems using predicate abstraction. In International Workshop on Hybrid
Systems: Computation and Control, pages 4–19. Springer, 2003.

[AF06] Jeremy Avigad and Harvey Friedman. Combining decision procedures for the
reals. arXiv preprint cs/0601134, 2006.

[AG97] Eitan Altman and Vladimir Gaitsgory. Asymptotic optimization of a nonlinear
hybrid system governed by a markov decision process. SIAM Journal on Control
and Optimization, 35(6):2070–2085, 1997.

[AGFT14] Mohamed Abdelaal, Yang Gao, Martin Fränzle, and Oliver Theel. Eavs: Energy
aware virtual sensing for wireless sensor networks. In Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Ninth International Conference,
pages 1–6. IEEE, 2014.

[AH84] Gotz Alefeld and Jurgen Herzberger. Introduction to interval computation. Aca-
demic press, 1984.

[AKLP10] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. Ap-
proximate model checking of stochastic hybrid systems. European Journal of
Control, 16(6):624–641, 2010.

[AP10] Behzad Akbarpour and Lawrence Charles Paulson. Metitarski: An automatic
theorem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175–205, 2010.

[APLS08] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilis-
tic reachability and safety for controlled discrete time stochastic hybrid systems.
Automatica, 44(11):2724–2734, 2008.

106 References

[ASSB00] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Model-
checking continuous-time markov chains. ACM Transactions on Computational
Logic (TOCL), 1(1):162–170, 2000.

[AVACS] AVACS. https://http://www.avacs.org/. [Online; accessed October 2016].

[BD02] Raik Brinkmann and Rolf Drechsler. RTL-datapath verification using integer
linear programming. In Proceedings of the 2002 Asia and South Pacific Design
Automation Conference, page 741. IEEE Computer Society, 2002.

[BG06] Frédéric Benhamou and Laurent Granvilliers. Continuous and interval constraints.
Handbook of constraint programming, 2:571–603, 2006.

[BGLC00] Frédéric Benhamou, Frédéric Goualard, Éric Languénou, and Marc Christie. An
algorithm to compute inner approximations of relations for interval constraints.
In Perspectives of System Informatics, pages 416–423. Springer, 2000.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. ios press, 2009.

[BJS97] Roberto J Bayardo Jr and Robert Schrag. Using CSP look-back techniques to
solve real-world sat instances. In AAAI/IAAI, pages 203–208, 1997.

[BKF95] Hans Kleine Buning, Marek Karpinski, and Andreas Flogel. Resolution for
quantified boolean formulas. Information and computation, 117(1):12–18, 1995.

[BLB05] Manuela L Bujorianu, John Lygeros, and Marius C Bujorianu. Bisimulation for
general stochastic hybrid systems. In International Workshop on Hybrid Systems:
Computation and Control, pages 198–214. Springer, 2005.

[Buj04] Manuela L Bujorianu. Extended stochastic hybrid systems and their reachability
problem. In International Workshop on Hybrid Systems: Computation and
Control, pages 234–249. Springer, 2004.

[Bur72] Rodney M Burstall. Some techniques for proving correctness of programs which
alter data structures. Machine intelligence, 7(23-50):3, 1972.

[CMR81] Ole Caprani, Kaj Madsen, and Louis B Rall. Integration of interval functions.
SIAM Journal on Mathematical Analysis, 12(3):321–341, 1981.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158.
ACM, 1971.

[Dan98] George Bernard Dantzig. Linear programming and extensions. Princeton univer-
sity press, 1998.

[Dav93] Mark HA Davis. Markov Models & Optimization, volume 49. CRC Press, 1993.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

https://http://www.avacs.org/

References 107

[DST80] Peter J Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common
subexpression problem. Journal of the ACM (JACM), 27(4):758–771, 1980.

[DSW99] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier
elimination in practice. In Algorithmic algebra and number theory, pages 221–
247. Springer, 1999.

[EGF14] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Statistical model check-
ing for stochastic hybrid systems involving nondeterminism over continuous
domains. International Journal on Software Tools for Technology Transfer, pages
1–20, 2014.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás Wolovick, and
Lijun Zhang. Measurability and safety verification for stochastic hybrid sys-
tems. In Proceedings of the 14th international conference on Hybrid systems:
computation and control, pages 43–52. ACM, 2011.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. Efficient solving of large non-linear arithmetic constraint systems with
complex boolean structure. JSAT, 1(3-4):209–236, 2007.

[FHT08] Martin Fränzle, Holger Hermanns, and Tino Teige. Stochastic satisfiability
modulo theory: A novel technique for the analysis of probabilistic hybrid systems.
In Hybrid Systems: Computation and Control, pages 172–186. Springer, 2008.

[FOR+01] Jean-Christophe Filliâtre, Sam Owre, Harald Rue, Natarajan Shankar, et al. Ics:
Integrated canonizer and solver? In International Conference on Computer Aided
Verification, pages 246–249. Springer, 2001.

[FYY13] Yuan Feng, Nengkun Yu, and Mingsheng Ying. Model checking quantum markov
chains. Journal of Computer and System Sciences, 79(7):1181–1198, 2013.

[GAM97] Mrinal K Ghosh, Aristotle Arapostathis, and Steven I Marcus. Ergodic control of
switching diffusions. SIAM Journal on Control and Optimization, 35(6):1952–
1988, 1997.

[GB06] Laurent Granvilliers and Frédéric Benhamou. RealPaver: an interval solver using
constraint satisfaction techniques. ACM Transactions on Mathematical Software
(TOMS), 32(1):138–156, 2006.

[GF15] Yang Gao and Martin Fränzle. A solving procedure for stochastic satisfiability
modulo theories with continuous domain. In Quantitative Evaluation of Systems,
volume LNCS 9259, pages 295–311. Springer, 2015.

[GF16] Y. Gao and M. Fränzle. CSiSAT: A satisfiability solver for SMT formulas with
continuous probability distributions. In Erika Ábrahám and Sergiy Bogomolov,
editors, 2016 International Workshop on Symbolic and Numerical Methods for
Reachability Analysis (SNR), pages 1–6. IEEE, April 2016.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: An SMT solver for
nonlinear theories over the reals. In International Conference on Automated
Deduction, pages 208–214. Springer, 2013.

108 References

[GMPK14] Eric Goubault, Olivier Mullier, Sylvie Putot, and Michel Kieffer. Inner approxi-
mated reachability analysis. In Proceedings of the 17th international conference
on Hybrid systems: computation and control, pages 163–172. ACM, 2014.

[HEFT08] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige. Analysis of
hybrid systems using hysat. In Systems, 2008. ICONS 08. Third International
Conference on, pages 196–201. IEEE, 2008.

[HHHK13] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen.
A compositional modelling and analysis framework for stochastic hybrid systems.
Formal Methods in System Design, 43(2):191–232, 2013.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal aspects of computing, 6(5):512–535, 1994.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM:
A tool for automatic verification of probabilistic systems. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 441–444. Springer, 2006.

[HLS00] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic
hybrid systems. In International Workshop on Hybrid Systems: Computation and
Control, pages 160–173. Springer, 2000.

[HM14] Zhenqi Huang and Sayan Mitra. Proofs from simulations and modular annota-
tions. In Proceedings of the 17th international conference on Hybrid systems:
computation and control, pages 183–192. ACM, 2014.

[HySAT] HySAT. https://http://www.uni-oldenburg.de/en/hysat/. [Online; accessed Octo-
ber 2016].

[iSAT] iSAT. https://projects.avacs.org/projects/isat/. [Online; accessed October 2016].

[Jul06] A Agung Julius. Approximate abstraction of stochastic hybrid automata. In
International Workshop on Hybrid Systems: Computation and Control, pages
318–332. Springer, 2006.

[KNP02] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic
symbolic model checker. In International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, pages 200–204. Springer, 2002.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), volume
6806 of LNCS, pages 585–591. Springer, 2011.

[KNSS99] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Au-
tomatic verification of real-time systems with discrete probability distributions. In
International AMAST Workshop on Aspects of Real-Time Systems and Concurrent
and Distributed Software, pages 75–95. Springer, 1999.

[Lei95] K Rustan M Leino. Towards reliable modular programs. 1995.

https://http://www.uni-oldenburg.de/en/hysat/
https://projects.avacs.org/projects/isat/

References 109

[LMP01] Michael L Littman, Stephen M Majercik, and Toniann Pitassi. Stochastic boolean
satisfiability. Journal of Automated Reasoning, 27(3):251–296, 2001.

[LP07] Paola Lecca and Corrado Priami. Cell cycle control in eukaryotes: A BioSpi
model. Electronic Notes in Theoretical Computer Science, 180(3):51–63, 2007.

[ML98] Stephen M Majercik and Michael L Littman. MAXPLAN: A new approach to
probabilistic planning. In AIPS, volume 98, pages 86–93, 1998.

[ML99] Stephen M Majercik and Michael L Littman. Contingent planning under uncer-
tainty via stochastic satisfiability. In AAAI/IAAI, pages 549–556, 1999.

[MM79] Ramon E Moore and RE Moore. Methods and applications of interval analysis,
volume 2. SIAM, 1979.

[MMZ+01] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
annual Design Automation Conference, pages 530–535. ACM, 2001.

[MP67] John McCarthy and James Painter. Correctness of a compiler for arithmetic
expressions. Mathematical aspects of computer science, 1, 1967.

[MSS99] João P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
1999.

[NO80] Greg Nelson and Derek C Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM (JACM), 27(2):356–364, 1980.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). Journal of the ACM (JACM), 53(6):937–977, 2006.

[NS03] Gethin Norman and Vitaly Shmatikov. Analysis of probabilistic contract signing.
In Formal Aspects of Security, pages 81–96. Springer, 2003.

[Pap85] Christos H Papadimitriou. Games against nature. Journal of Computer and
System Sciences, 31(2):288–301, 1985.

[Pug91] William Pugh. The omega test: a fast and practical integer programming algorithm
for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 4–13. ACM, 1991.

[Rat06] Stefan Ratschan. Efficient solving of quantified inequality constraints over the
real numbers. ACM Transactions on Computational Logic (TOCL), 7(4):723–748,
2006.

[Rey79] John C Reynolds. Reasoning about arrays. Communications of the ACM,
22(5):290–299, 1979.

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data structures.
In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium
on, pages 55–74. IEEE, 2002.

110 References

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

[S+09] Teruo Sunaga et al. Theory of an interval algebra and its application to numerical
analysis [reprint of res. assoc. appl. geom. mem. 2 (1958), 29–46]. Japan Journal
of Industrial and Applied Mathematics, 26(2-3):125–143, 2009.

[SA11] Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive gridding
for abstraction and verification of stochastic hybrid systems. In Quantitative
Evaluation of Systems (QEST), 2011 Eighth International Conference on, pages
59–68. IEEE, 2011.

[SiSAT] SiSAT. https://projects.avacs.org/projects/sisat/. [Online; accessed March 2015].

[Spr00] Jeremy Sproston. Decidable model checking of probabilistic hybrid automata. In
International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 31–45. Springer, 2000.

[SS97] João P Marques Silva and Karem A Sakallah. GRASP - a new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM international conference
on Computer-aided design, pages 220–227. IEEE Computer Society, 1997.

[Sto76] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1–22, 1976.

[SZ15] Fedor Shmarov and Paolo Zuliani. ProbReach: verified probabilistic delta-
reachability for stochastic hybrid systems. In Proceedings of the 18th Interna-
tional Conference on Hybrid Systems: Computation and Control, pages 134–139.
ACM, 2015.

[Tei12] Tino Teige. Stochastic satisfiability modulo theories: a symbolic technique for
the analysis of probabilistic hybrid systems. PhD thesis, Universität Oldenburg,
2012.

[TF08] Tino Teige and Martin Fränzle. Stochastic satisfiability modulo theories for
non-linear arithmetic. In Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, pages 248–262. Springer,
2008.

[VHMK97] Pascal Van Hentenryck, David McAllester, and Deepak Kapur. Solving polyno-
mial systems using a branch and prune approach. SIAM Journal on Numerical
Analysis, 34(2):797–827, 1997.

[VSHS02] Xuan-Ha Vu, Djamila Sam-Haroud, and Marius-Calin Silaghi. Approximation
techniques for non-linear problems with continuum of solutions. In Abstraction,
Reformulation, and Approximation, pages 224–241. Springer, 2002.

[XSE16] Bai Xue, Zhikun She, and Arvind Easwaran. Under-approximating backward
reachable sets by polytopes. Computer Aided Verification, 9779:457–476, 2016.

[You31] Rosalind Cecily Young. The algebra of many-valued quantities. Mathematische
Annalen, 104(1):260–290, 1931.

https://projects.avacs.org/projects/sisat/

References 111

[ZMMM01] Lintao Zhang, Conor F Madigan, Matthew H Moskewicz, and Sharad Malik.
Efficient conflict driven learning in a boolean satisfiability solver. In Proceedings
of the 2001 IEEE/ACM international conference on Computer-aided design,
pages 279–285. IEEE Press, 2001.

[ZSR+10] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz
Hahn. Safety verification for probabilistic hybrid systems. In International
Conference on Computer Aided Verification, pages 196–211. Springer, 2010.

	Title: Verification of Stochastic Systems by Stochastic Satisfiability Modulo Theorieswith Continuous Domain(CSSMT)
	Declaration
	Acknowledgements
	Abstract
	Zusammenfassung
	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Related Work
	1.1.1 Probabilistic Model Checking
	1.1.2 Stochastic Hybrid Automata
	1.1.3 Satisfiability Modulo Theories

	1.2 Contributions
	1.3 Structure of the thesis

	2 Foundations and Notations
	2.1 Probability Basis
	2.2 Interval Arithmetic and Constraint Solving
	2.2.1 Interval Arithmetic
	2.2.2 Constraint Solving

	2.3 Satisfiability Modulo Theories (SMT)
	2.3.1 Satisfiability of Propositional Formulas (SAT)
	2.3.2 DPLL Procedure
	2.3.3 Satisfiability Modulo Theory (SMT)

	3 Stochastic Satisfiability Modulo Theories
	3.1 Motivation: From SMT to Stochastic SMT (SSMT)
	3.2 Decision Procedure for SMT
	3.3 Algorithms for SSMT
	3.4 The Limitation of SSMT
	3.5 Related Work
	3.6 Conclusion

	4 Stochastic Satisfiability Modulo Theories with Continuous Domain
	4.1 Motivation: Stochastic Hybrid Systems with Continuous Distribution
	4.2 Definitions and Semantics for CSSMT

	5 Stochastic Hybrid Automata and CSSMT-Based Bounded Reachability Analysis
	5.1 Introduction to Stochastic Hybrid Automaton
	5.1.1 Definition of Stochastic Hybrid Automaton
	5.1.2 Execution of Stochastic Hybrid Automaton

	5.2 Translation from Stochastic Hybrid Automaton to CSSMT
	5.3 Bounded Reachability Problems represented by CSSMT
	5.4 Conclusion

	6 Solving Procedure for CSSMT formula
	6.1 Problem formalization
	6.2 Algorithm overview
	6.3 Rule-based Solving Procedure for CSSMT
	6.3.1 Basic Definitions
	6.3.2 The Solving Procedure for CSSMT

	6.4 Soundness of the Solving Procedure
	6.5 Summary

	7 Algorithmic Enhancements
	7.1 Lazy Clause Evaluation
	7.2 Conflict Driven Clause Learning
	7.3 Early Termination by Required (Threshold) Probability Analysis
	7.4 Summary

	8 CSiSAT: A Satisfiability Solver for CSSMT
	8.1 Introduction to the Family of iSAT-based Tools
	8.2 The Structure of CSiSAT
	8.3 Functions of CSiSAT
	8.4 Compared with related tools

	9 Applications of CSiSAT
	9.1 Demonstration Example
	9.2 Path Planning
	9.2.1 Formalization of The Problem
	9.2.2 Experimental Results

	9.3 Temperature Regulation Problem
	9.3.1 SSMT Formalization
	9.3.2 Experimental Results

	9.4 Task Deployment and Scheduling
	9.5 Conclusion

	10 Summary and Future Work
	10.1 Discussion
	10.2 Future Directions

	References

