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Abstract

Acoustic echo cancellation (AEC) is a key speech enhancement technology in speech communication and
voice-enabled devices. AEC systems employ adaptive filters to estimate the acoustic echo paths between the
loudspeakers and the microphone(s). In applications involving surround sound, the computational complexity of an
AEC system may become demanding due to the multiple loudspeaker channels and the necessity of using long filters
in reverberant environments. In order to reduce the computational complexity, the approach of partially updating the
AEC filters is considered in this paper. In particular, we investigate tap selection schemes which exploit the sparsity
present in the loudspeaker channels for partially updating subband AEC filters. The potential for exploiting signal
sparsity across three dimensions, namely time, frequency, and channels, is analyzed. A thorough analysis of different
state-of-the-art tap selection schemes is performed and insights about their limitations are gained. A novel tap
selection scheme is proposed which overcomes these limitations by exploiting signal sparsity while not ignoring any
filters for update in the different subbands and channels. Extensive simulation results using both artificial as well as
real-world multichannel signals show that the proposed tap selection scheme outperforms state-of-the-art tap
selection schemes in terms of echo cancellation performance. In addition, it yields almost identical echo cancellation
performance as compared to updating all filter taps at a significantly reduced computational cost.

Keywords: Acoustic echo cancellation, Multichannel, Subband domain, Adaptive filters, Partial filter updates,
Tap selection, Signal sparsity, Computational complexity

1 Introduction
Acoustic echo cancellation (AEC) [1, 2] is a key technol-
ogy used in hands-free telephony and voice-enabled sys-
tems. An AEC system consists of an adaptive filter which
estimates the acoustic echo path between the loudspeaker
and the microphone. Using this estimated echo path, an
estimate of the acoustic echo signal is generated which is
then subtracted from the microphone signal. When mul-
tiple loudspeakers are present, as is the case for surround-
sound systems, Multichannel Acoustic Echo Cancellation
(MAEC) systems are required [3–6]. These systems con-
sist of multiple adaptive filters dedicated to estimate the
acoustic echo paths between each loudspeaker and each
microphone, i.e., one filter per channel. When employing
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time-domain MAEC systems in large and/or reverberant
rooms, very long filters with several thousand taps may be
required in order to achieve effective echo cancellation.
Using such long filters requires large computational effort,
both for updating the filters as well as for generating the
acoustic echo signal estimates.
In order to reduce computational complexity of time-

domain adaptive filters, a number of tap selection schemes
[7–14] have been proposed for implementing partial
updates of the adaptive filters. These schemes reduce
complexity by updating only a subset M of all N fil-
ter taps in each iteration, where the subset is chosen
based on a tap selection criterion. Since speech and/or
surround-sound entertainment signals usually exhibit sig-
nificant sparsity across frequency (due to spectrally col-
ored content), channels (due to different content in the
different loudspeakers) and time (due to non-stationary
content), a number of tap selection schemes have been
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proposed which exploit the sparsity present in the loud-
speaker signals for partially updating the filters [8–12].
The M-Max [9, 10] is a well-known tap selection scheme
which exploits signal sparsity by selecting the filter taps
corresponding to the M largest magnitude tap-inputs
in each iteration. For a given M, this scheme maxi-
mizes the energy of the update in each iteration and
thereby gives the closest possible performance to full fil-
ter update in terms of minimizing the mean squared
error. Another tap selection scheme which exploits sig-
nal sparsity is the selective-partial-update (SPU) [11] tap
selection scheme, where the N-tap adaptive filter is first
divided into B blocks, which are then ranked according
to the squared Euclidean norm of their respective tap-
inputs. Based on this ranking, in each iteration the top
�B · M

N � blocks, where �·� denotes the flooring opera-
tion, are selected to be updated. Many other schemes
have been proposed which further improve performance
by exploiting the sparseness of the echo path [13, 14].
Since sparseness of the echo path is more relevant for
applications such as network echo cancellation [1], and
not particularly relevant for the considered AEC appli-
cation (as acoustic impulse responses are not particu-
larly sparse), we will not consider such approaches in
this paper.
Apart from large computational complexity, MAEC sys-

tems also suffer from other notable problems such as
the misalignment problem [3, 15, 16]. Since in MAEC
systems the different loudspeaker input signals are typ-
ically correlated with each other, the input covariance
matrix may be ill-conditioned, possibly resulting in a
large filter misalignment and a slow convergence speed.
It should be realized that the misalignment problem is
typically more severe in the context of speech com-
munication systems, since the loudspeaker signals are
obtained by filtering the same source (far-end speaker),
as compared to surround-sound systems, where the loud-
speaker signals may be independent of each other. The
most common approach to tackle the misalignment prob-
lem is to decorrelate the tap-inputs, for which several
techniques have been proposed in literature [3, 15, 17].
Tap selection schemes such as the exclusive-maximum
(XM) [18–20] have also been proposed to specifically
tackle the misalignment problem for stereo AEC applica-
tions. The XM scheme improves the conditioning of the
tap-input covariance matrix via exclusive updates of the
two adaptive filters, i.e., in each iteration the same fil-
ter tap index is never selected in both channels. In this
paper, however, we do not aim to solve the misalignment
problem using tap selection schemes and do not claim
to improve the misalignment performance for highly
coherent loudspeaker signals, i.e., our main motivation
is solely computational complexity reduction of MAEC
systems.

As an alternative to time-domain adaptive filters,
frequency-domain and subband adaptive filters are fre-
quently used as they enable more efficient and frequency-
dependent filter updates [2, 21–25]. Frequency-domain
adaptive filtering algorithms, such as the frequency-
domain least mean square (FLMS) [21], the partitioned
block frequency-domain adaptive filtering (PB-FDAF)
[22] and the multidelay block frequency-domain adap-
tive filtering (MDF) algorithm [23], are typically based on
the overlap-save method [24, 25] and use the fast Fourier
transform (FFT) to efficiently compute the required
time-domain convolution and correlation operations. In
[26], the M-Max tap selection scheme has been pro-
posed for the frequency-domainMDF algorithm. Alterna-
tively, adaptive filtering can be performed using subband
processing, where an analysis filterbank transforms the
time-domain signals into the subband domain, the fil-
ter adaptation and processing is performed independently
in each subband, and a synthesis filterbank is used to
reconstruct the time-domain signals. In this paper, we
will only consider subband adaptive filters. More specif-
ically, we will use the well-known weighted overlap-add
(WOLA) method [2, 27], i.e., using an FFT analysis filter-
bank to transform the (windowed) time-domain signals
to the short-time Fourier transform (STFT) domain and
an inverse FFT synthesis filterbank. Such a processing
scheme provides a suitable compromise between compu-
tational complexity and latency, and enables to achieve a
suitable time and frequency resolution.
In general, using a tap selection scheme may lead to a

significant amount of processing overhead, primarily due
to the required sorting effort. The computational savings
obtained due to partial filter update are offset (and may
even be exceeded in some cases) by the additional effort
required for sorting. Compared to popular sorting algo-
rithms such as the QUICKSORT routine [28], a more
efficient fast running algorithm known as the SORTLINE
routine [29] has been proposed for sorting vectors which
contain many elements in common with a pre-sorted vec-
tor from a previous iteration, which is often the case with
tap-input vectors from one iteration to the next.
In this paper, we propose and investigate different tap

selection schemes in the subband domain for constrained
partial updates of subband MAEC filters. Please note that
in such a framework, the tap selection schemes operate
on the magnitudes of the complex-valued STFT coef-
ficients. Also, we consider the subband AEC filter in
each channel to be composed of a number of sub-filters,
i.e., one sub-filter per subband. First, we extend the M-
Max tap selection scheme proposed for complex-valued
loudspeaker signals in [26] to the multichannel scenario,
thereby applying theM-Max criterion across three dimen-
sions, i.e., subbands, channels and filter length. Then, we
present two new tap selection schemes which apply the
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M-Max criterion independently in each sub-filter across
filter length only. The first scheme selects the same num-
ber of taps in each sub-filter, while the second scheme
exploits the sparsity present in the loudspeaker signals
across frequency and channels to select taps dynami-
cally in the different sub-filters. Some preliminary results
were obtained in [30] which indicated that signal sparsity
present in real-world multichannel entertainment signals
can be exploited to efficiently update the MAEC filters.
The proposed tap selection schemes are then compared
to the SPU tap selection scheme [11] in the subband
domain1.
The remainder of the paper is organized as follows. The

signal model is presented in Section 2 and the different tap
selection schemes considered are presented in Section 3.
Section 4 presents a sparsity analysis for several synthetic
and real-world multichannel signals, and the echo can-
cellation performance obtained when the different tap
selection schemes are used. Section 5 discusses the com-
putational effort required for the different tap selection
schemes and the computational savings obtained when
performing partial filter updates.

2 Signal model
We consider a loudspeaker–enclosure–microphone
(LEM) system with R loudspeakers and a single micro-
phone. The acoustic echo paths between the loudspeakers
and the microphone are assumed to be time-invariant,
such that the echo contribution from the rth loudspeaker
at discrete time index n is given by

dr(n) =
Vr−1∑

v=0
hr(v) · xr(n − v), (1)

where xr denotes the rth input signal and hr denotes the
impulse response corresponding to the rth acoustic echo
path, with Vr denoting its length. Considering near-end
speech signal s and near-end noise signal b, the micro-
phone signal y is given as

y(n) = s(n) + d(n) + b(n), (2)

where d(n) = ∑R
r=1 dr(n) denotes the total acoustic echo

component.
For the subband-domain processing, an FFT analysis

filterbank of order NFFT is used to transform the (win-
dowed) time-domain signals into the STFT domain, with
the total number of subbands given by K = NFFT

2 + 1. The
STFT coefficient of the rth input signal in the kth subband
and �th frame is computed as

Xr(k, �) =
NFFT−1∑

m=0
xr(�·F+m)·Wana(m)·e−j 2π

NFFT
km, (3)

where j = √−1, F denotes the frameshift and Wana
denotes the analysis window. In the remainder of the

paper, the terms reference channels and reference spectra
will be used to refer to the loudspeaker signals and their
corresponding STFT coefficients, respectively.
The subband MAEC system is depicted in Fig. 1 and

consists of R adaptive filters, i.e., one corresponding to
each reference channel, where each filter is composed of
K sub-filters with L taps each. Thus, the total number of
filter taps is given as

N = L · K · R, (4)

i.e., L taps × K subbands × R channels.
The sub-filter for the kth subband in the rth channel

is denoted as Ĥr(k, �) and consists of L complex-valued
coefficients

Ĥr(k, �) =[
Ĥ1
r (k, �) . . . Ĥi

r(k, �) . . . ĤL
r (k, �)

]T, (5)

where Ĥi
r(k, �) denotes the ith filter tap and ·T denotes

the transpose operator. The tap-input vector to the sub-
filter Ĥr(k, �) also consists of L complex-valued spectral
coefficients and is given as

Xr(k, �)=
[
Xr(k, �) . . . Xr(k, �−i+1) . . . Xr(k, �−L+1)

]T.
(6)

The acoustic echo estimate for the rth channel is gener-
ated by filtering the reference spectrum Xr(k, �) with the
sub-filter Ĥr(k, �)

D̂r(k, �) = XH
r (k, �) Ĥr(k, �), (7)

where ·H denotes the Hermitian operator. The total
MAEC filter output is given as

D̂(k, �) =
R∑

r=1
D̂r(k, �), (8)

with the residual echo equal to

E(k, �) = Y (k, �) − D̂(k, �), (9)

where Y denotes the complex-valued spectrum of the
microphone signal y, computed similarly to (3).
In order to reduce the computational complexity of the

MAEC filter update in every frame, we will consider a par-
tial update of Ĥr(k, �) by updating only a subset Lr(k, �)
of all L filter taps, where Lr(k, �) is an integer and is deter-
mined using a tap selection scheme (see Section 3). These
tap selection schemes compute a vector

Tr(k, �) = [
T1
r (k, �) . . . Ti

r(k, �) . . . TL
r (k, �)

]T , (10)

consisting of L binary-valued elements. If the element
Ti
r(k, �) = 1, then the corresponding filter tap Ĥi

r(k, �) is
selected to be updated, otherwise it is not. Thus, the sum
of the elements of Tr(k, �) always satisfies

0 ≤
L∑

i=1
Ti
r(k, �) = Lr(k, �) ≤ L. (11)
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Fig. 1 Block diagram of the considered subband MAEC setup. Thin black arrows are used for signals processed in the time-domain, while solid white
arrows are used for signals processed in the subband domain

For updating Ĥr(k, �), we use a variant of the normalized
least mean squares (NLMS) algorithm [25], incorporating
a partial filter update as shown below

Ĥr(k, � + 1) = Ĥr(k, �) +
(

μ · E∗(k, �)
N (k, �) + ε

)
· {
Tr(k, �) � Xr(k, �)

}
,

(12)

where μ denotes the (fixed) step-size, ∗ denotes the
complex-conjugate operator and � denotes the element-
wise multiplication operator. The step-size is normalized
by the sum of the regularization parameter ε and the
multichannel tap-input power

N (k, �) =
R∑

r=1

L−1∑

i=0
|Xr(k, � − i)|2. (13)

From hereon, we will refer to (12) as the partial update
NLMS (PUNLMS) algorithm.
All tap selection schemes considered in this paper

are based on the magnitudes of the tap-input vector
Xr(k, �), i.e.,

X r(k, �) = [|Xr(k, �)| . . . |Xr(k, � − i + 1)| . . .
|Xr(k, � − L + 1)|]T . (14)

By stacking the vector X r(k, �) over all K subbands and
R channels, we define the N-element vector

X(�) =

[
XT

1 (1, �) . . . XT
1 (K , �) . . .

XT
r (1, �) . . . XT

r (K , �) . . .

XT
R (1, �) . . . XT

R (K , �)
]T ,

(15)

containing the magnitudes of all MAEC filter tap-inputs.
Similarly to (15), we define the N-element tap selection
vector α(�) by stacking the vector Tr(k, �) over all K
subbands and R channels.

3 Tap selection schemes
In this section, we investigate and propose different tap
selection schemes for designing the tap selection vector
α(�). All tap selection schemes exploit sparsity in X(�)

across one or more dimensions, i.e., frames, subbands and
channels. A vector is considered sparse if a small number
of its elements contain a large proportion of its energy.
The terms temporal, spectral, and spatial sparsity will be
used to refer to sparsity present across frames, subbands,
and channels, respectively. For all considered schemes, we
impose the constraint that in every frame exactly M taps
across all K · R sub-filters are selected to be updated, with

M = �Q · N�, (16)
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where Q∈R is a design parameter, with 0 ≤ Q ≤ 1. Note
that Q = 0 implies no filter update and Q = 1 implies full
filter update. This also means that exactly M elements in
the tap selection vector α(�) are equal to 1, i.e.,

K∑

k=1

R∑

r=1
Lr(k, �) = M. (17)

The first tap selection scheme we investigate is the
3D M-Max scheme, which applies the M-Max criterion
across the three dimensions of subbands, channels, and
filter length for selecting taps. Then, we investigate the
SPU scheme, which sorts the K · R sub-filters in each
frame according to the squared Euclidean norm of their
respective tap-inputs and then selects all L taps in the
top

⌊M
L

⌋
sub-filters. Finally, we present two 1D M-Max

schemes which apply the M-Max criterion only across the
dimension of filter length, with the first scheme selecting
the same number of taps in all sub-filters and the second
scheme dynamically selecting taps in each sub-filter.

3.1 3DM-Max (3DM) scheme
The 3D M-Max tap selection scheme is an extension of
the M-Max scheme proposed for the single-channel sce-
nario in [26] to the multichannel scenario. Using this
scheme, the filter taps corresponding to the M largest
magnitude tap-inputs in every frame are selected to be
updated by applying the M-Max criterion on the vector
X(�). The resulting tap selection vector α(�) can then be
unstacked to obtain the vectors Tr(k, �) corresponding to
the K · R sub-filters. Implementing this scheme requires
sorting theN-element vectorX(�) in every frame which is
done efficiently using the QUICKSORT routine, requiring
comparisons in the order ofO

(
N · log2N

)
per frame.

As this scheme applies theM-Max criterion on the com-
plete vector X(�), it is able to exploit the spectro-spatio-
temporal sparsity that may be present in the multichannel
reference spectra, with the M selected taps distributed
amongst the different sub-filters in every frame. For ref-
erence spectra with significant temporal, spatial and spec-
tral diversity/non-stationarity, it is highly likely that each
of the N filter taps are eventually updated at some stage.
However, if the reference spectra exhibit stationarity and
large spectral coloration and/or large inter-channel power
difference, allM taps may be selected in only a small sub-
set of theK ·R sub-filters in every frame. This may result in
the sub-filters in certain subbands and/or channels being
completely ignored for a long time period, which may
severely affect filter convergence. This disadvantage of the
3DM scheme motivates us to look for schemes which do
not completely ignore these sub-filters when allocating
taps to be updated.

3.2 SPU scheme
In the SPU scheme [11], in each frame the K ·R sub-filters
are sorted according to the squared Euclidean norm of
their respective tap-inputs

ηr(k, �) =‖ X r(k, �) ‖22=
L−1∑

i=0
|Xr(k, � − i)|2. (18)

All L taps in the top
⌊M

L
⌋
sub-filters are then selected

to be updated, while no taps are selected in the remain-
ing sub-filters. Hence, this scheme exploits the sparsity
present in the multichannel reference spectra but suf-
fers from the same problem as the 3DM scheme, i.e.,
it may completely ignore sub-filters in certain subbands
and/or channels when the reference signals are spectrally
coloured and stationary and/or exhibit large inter-channel
power difference.

3.3 1DM-Max schemes
In this section, we present two tap selection schemes
which apply the M-Max criterion only across the single
dimension of filter length, thereby exploiting the tempo-
ral sparsity present in the multichannel reference spectra.
Unlike the 3DM and SPU schemes, these two schemes
are designed to not completely ignore the sub-filters with
small magnitude tap-inputs when allocating taps to be
updated. In both schemes, the M-Max criterion is applied
on the L-element vector X r(k, �) for selecting taps in the
sub-filter Ĥr(k, �), with the number of taps selected given as

Lr(k, �) = �ψr(k, �) · L�, (19)

where ψr(k, �) is computed using two different criteria for
the two schemes.
The fixed effort allocation (FEA) scheme selects the

same number of filter taps in each sub-filter, thereby not
exploiting spectral and spatial sparsity. On the other hand,
the dynamic effort allocation (DEA) scheme selects fil-
ter taps in each sub-filter dynamically, aiming to exploit
spectro-spatial sparsity while not ignoring sub-filters with
small magnitude tap-inputs. It should be noted that
ψr(k, �) needs to satisfy the condition

0 ≤ ψr(k, �) ≤ 1, (20)

as Lr(k, �) obviously cannot be larger than L. The vec-
tor X r(k, �) is sorted very efficiently using the SORTLINE
routine, with the number of comparisons in the order of
O(log2 L) per frame.
Substituting (16) and (19) into (17) gives

K∑

k=1

R∑

r=1
�ψr(k, �) · L� = �Q · N�. (21)

Assuming no rounding errors when computing the
flooring operation in (21), the constraint in (16) can be
reformulated as
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K∑

k=1

R∑

r=1
ψr(k, �) = Q · K · R. (22)

3.3.1 Fixed effort allocation (FEA)
In the FEA scheme, the same number of filter taps are
allocated to all K · R sub-filters in every frame, i.e.,

ψF
r (k, �) = c, (23)

where the superscript F denotes the FEA scheme. Substi-
tuting (23) in (22) yields

c = Q. (24)

Thus, in each sub-filter the filter coefficients correspond-
ing to the �Q ·L� largest magnitude tap-inputs are selected
to be updated in every frame. Due to the same num-
ber of taps selected in all sub-filters, this scheme does
not exploit the spectral and spatial sparsity present in the
multichannel reference spectra.

3.3.2 Dynamic effort allocation (DEA)
In the DEA scheme, filter taps are dynamically allocated
to the different sub-filters based on their respective tap-
input content. We propose to allocate a larger number
of taps in every frame to sub-filters with relatively larger
magnitude tap-inputs, while not completely ignoring the
sub-filters with smaller magnitude tap-inputs. Thus, the
DEA scheme aims to combine the advantages of the 3DM
and the FEA schemes while avoiding their disadvantages,
i.e. exploiting the spectro-spatial sparsity present in the
multichannel reference spectra, while not ignoring the
sub-filters with small magnitude tap-inputs.
In general, in the DEA scheme the number of filter taps

allocated to the sub-filter for the kth subband in the rth
channel is based on the corresponding tap-input content,
which can be quantified by

φr(k, �) = ||X r(k, �)||pp =
L−1∑

i=0
|Xr(k, � − i)|p, (25)

where || · ||p denotes the lp-norm for p > 0. Hence, sub-
filters with larger magnitude tap-inputs will have larger
values of φr(k, �) as compared to sub-filters with smaller
magnitude tap-inputs. Note that for simplicity, we have
used p = 1. The factorψr(k, �) in (19) is then computed as

ψG
r (k, �) = min

{
f
(
φr(k, �)

)
, 1

}
, (26)

where the superscript G denotes the generic form of the
DEA scheme, the function f (·) depends on the used tap
allocation criterion and theminimum operator is required
to satisfy the condition in (20). The number of taps
selected in the sub-filter Ĥr(k, �) is finally determined by
substituting (26) in (19).

We propose to design the function f (·) based on the
simple criterion that sub-filters with φr(k, �) above a cer-
tain threshold φth(k, �) get L filter taps selected, while all
other sub-filters get a number proportional to φr(k, �), i.e.,

f
(
φr(k, �)

)
= φr(k, �)

φth(�)
. (27)

Choosing an appropriate value for the threshold φth(�) is
quite important. On the one hand, choosing a low value
could result in a large number of sub-filters having L taps
updated, which potentially dilutes the extent to which
spectro-spatial sparsity is exploited for tap allocation. On
the other hand, choosing a large value could result in
a large number of sub-filters being completely ignored.
Hence, we propose to use the average value of φr(k, �)
across all subbands and channels, i.e.,

φth(�) = φavg(�) = 1
K · R

K∑

k=1

R∑

r=1
φr(k, �). (28)

However, when using the function in (27) with the
threshold in (28), it cannot be guaranteed that the con-
straint in (22) is satisfied in every frame. Sincemin(a, 1) ≤ a
for any real number a ∈ R, it can be easily shown that

K∑

k=1

R∑

r=1
ψG
r (k, �) ≤

K∑

k=1

R∑

r=1
f
(
φr(k, �)

)

≤ 1
φavg(�)

·
K∑

k=1

R∑

r=1
φr(k, �),

(29)

such that

MG(�) =
K∑

k=1

R∑

r=1
ψG
r (k, �) ≤ K · R. (30)

Thus, it is not guaranteed that MG(�) is equal to Q · K ·
R, and hence the constraint in (22) may not always be
satisfied.
We will now distinguish 2 cases, i.e., MG(�) < Q · K · R

andMG(�) > Q ·K ·R, and discuss how to adjust the filter
tap allocation in order to satisfy the constraint.

• Case 1:MG(�) < Q · K · R
Figure 2 shows an exemplary function f

(
φr(k, �)

)

(black curve) and corresponding ψG
r (k, �) (blue

curve) plotted for all K · R sub-filters for the case
MG(�) < Q · K · R, sorted from largest to smallest
value in terms of φr(k, �). Please note that the area
under the black curve is equal to K · R, while the area
under the blue curve is equal toMG(�). In order to
satisfy the constraint in (22), the surplus effort
Q · K · R − MG(�) needs to be redistributed amongst
the sub-filters for which ψG

r (k, �) < 1. In order to do
so, different criteria can be used for modifying
ψG
r (k, �):
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Fig. 2 Exemplary function f
(
φr(k, �)

)
and corresponding ψG

r (k, �),

plotted in sorted order of highest to lowest values, along with
different criteria for modifying ψG

r (k, �) in caseMG(�) < Q · K · R

– Trickle Down (TD): When using this criterion
(red), the surplus effort is redistributed via the
trickle-down procedure, i.e., the sub-filters are
filled up in sorted order of ψG

r (k, �). Allocating
taps in this way respects the spectro-spatial
sparsity present in the tap-inputs, but would
most likely completely ignore sub-filters with
the smallest magnitude tap-inputs.

– Equal Income (EI): When using this criterion
(orange), the same number of taps are
allocated in all sub-filters for which
ψG
r (k, �) < 1. This has the beneficial effect

that no sub-filters are ignored, but has the
detrimental effect that the spectro-spatial
sparsity present in the tap-inputs would most
likely not be exploited for tap allocation.

– Equal Bonus (EB): When using this criterion
(green), the surplus effort is redistributed
equally amongst all sub-filters for which
ψG
r (k, �) < 1. Allocating taps in this way

respects the spectro-spatial sparsity present in
the tap-inputs while making sure that all
sub-filters get a few taps updated.

Since the EB criterion attains a balance between
exploiting spectro-spatial sparsity and not completely
ignoring sub-filters, we decide to use this criteria in
our proposedDEA scheme whenMG(�) < Q·K ·R, i.e.,

ψD
r (k, �) = {1 − γ (�)} + γ (�) · ψG

r (k, �), (31)

where the superscript D denotes the proposed DEA
scheme. The constant γ (�) can be computed by
substituting (31) into (22), yielding

γ (�) = K · R − Q · K · R
K · R − MG(�)

. (32)

Thus, each sub-filter has a minimum of
�{1 − γ (�)} · L� taps selected in the �th frame.

• Case 2:MG(�) > Q · K · R
Similarly to Fig. 2, Fig. 3 shows an exemplary function
f
(
φr(k, �)

)
(black curve) and corresponding ψG

r (k, �)
(blue curve) for the caseMG(�) > Q · K · R. In order
to satisfy the constraint, different criteria can be used
for modifying ψG

r (k, �):

– Tax the Poor (TP): When using this criterion
(red), the constraint is satisfied by decreasing
the number of taps allocated to sub-filters with
the lowest ψG

r (k, �). Such a scheme typically
results in highly unequal tap allocation, with all
taps reserved for a small number of sub-filters
with the largest magnitude tap-inputs.

– Tax the Rich (TR): When using this criterion
(orange), the constraint is satisfied by
decreasing the number of taps allocated to
sub-filters with the highest ψG

r (k, �). This
scheme has the beneficial effect that the
majority of sub-filters are not ignored when
allocating taps but has the detrimental effect
that the spectro-spatial sparsity present in the
tap-inputs is most likely not exploited for tap
allocation.

– Equal Tax (ET): When using this criterion
(violet), the constraint is satisfied by
decreasing the same number of taps from all

Fig. 3 Exemplary function f
(
φr(k, �)

)
and corresponding ψG

r (k, �),

plotted in sorted order of highest to lowest values, along with
different criteria for modifying ψG

r (k, �) in caseMG(�) > Q · K · R
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K · R sub-filters. At first, this looks like a fair
way of subtracting taps as it respects the
spectro-spatial sparsity in the tap-inputs.
However, it can be observed that this criterion
ignores sub-filters with the smallest
magnitude tap-inputs, as it takes away any
small number of taps that may have been
previously allocated to them.

– Proportionate Tax (PT): When using this
criterion (green curve), the constraint is
satisfied by uniformly scaling down the
number of allocated taps in the different
sub-filters. Allocating taps in this way respects
the spectro-spatial sparsity present in the
tap-inputs, while ensuring that lesser number
of taps are reduced from sub-filters with
smaller ψG

r (k, �).

Since the PT criterion attains a good balance between
exploiting spectro-spatial sparsity and not completely
ignoring sub-filters, we decide to use this criterion in
our proposed DEA schemewhenMG(�) > Q·K ·R, i.e.,

ψD
r (k, �) = δ(�) · ψG

r (k, �), (33)

where the constant δ(�) can be computed by
substituting (33) into (22), yielding

δ(�) = Q · K · R
MG(�)

. (34)

The proposed DEA scheme can thus be summarized as

ψD
r (k, �) =

{
{1 − γ (�)} + γ (�) · ψG

r (k, �), if MG(�) < Q · K · R
δ(�) · ψG

r (k, �), if MG(�) ≥ Q · K · R.
(35)

The number of taps selected to be updated in the sub-filter
Ĥr(k, �) using the DEA scheme is finally determined by
substituting (35) into (19).

4 Simulations, results and discussion
In this section, we present the reference signals and algo-
rithmic parameters used, as well as the different metrics
used to analyze signal sparsity, tap selection, and echo
cancellation performance. We perform a sparsity analysis
of the multichannel reference signals, individually across
the three dimensions of subbands, channels, and filter
length, as well as jointly across multiple dimensions. We
then analyze the effect of using the different tap selection
schemes on the echo cancellation performance obtained
for the different types of reference signals used.

4.1 Signals and algorithmic parameters
In our simulations, we use time-domain reference signals
at a sampling frequency of fs = 16 kHz. The different
reference signals used can be divided into two categories:

• Synthetic signals
– Mono brown and white noise signals, i.e.,

signals whose power densities change at the
rate of -6 and 0 dB/octave, respectively.

– Stereo white noise signal.
• Real-world signals

– Mono speech signals (TIMIT database)
– Surround-sound movie signals (Dolby Digital

5.0 format)
– Surround-sound concert signals (Dolby Digital

5.0 format)

The acoustic impulse responses have been measured in
a room with T60 ≈ 550 ms, with the microphone and
the five loudspeakers placed on a circle of 3 m radius.
The microphone was placed at a height of 1.2 m, the cen-
tre (C) loudspeaker was placed directly 0.85 m below the
microphone, the front left (FL) and right (FR) loudspeak-
ers were placed at the same height and 30o either side of
the microphone, and the side left (SL) and right (SR) loud-
speakers were placed 0.4 m above and 110o either side
of the microphone, respectively. The acoustic echo signal
dr is obtained by convolving the reference signal xr with
the corresponding impulse response hr for Vr = 200 ms.
We assume no near-end speech signal (s(n) = 0) and no
additive near-end noise signal (b(n) = 0) for our simula-
tions. For the mono reference signals, we use the impulse
response corresponding to the C loudspeaker only, while
for the stereo white noise signal, we use the impulse
responses corresponding to the FL and FR channels. The
time-domain signals have been transformed into the sub-
band domain using STFT processing with NFFT = 512
(i.e., K = 257) using a Hanning window and an overlap of
75%. We use a filter length L = 20 for the MAEC filters,
which corresponds toNFFT · {1+0.25 · (L−1)} samples or
184ms. For updating theMAEC filters, a fixed step-size of
μ = 0.1 and regularization parameter of ε = 10−60 have
been used.

4.2 Performance measures
Here, we present the different metrics used to analyze
the sparsity present in the reference spectra, to analyze
the performance of the different tap selection schemes
in exploiting signal sparsity and to measure the echo
cancellation performance.

4.2.1 Sparsitymetric
To analyze the sparsity in the multichannel reference
spectra across subbands, channels and frames, different
metrics exist, such as the l0-norm, the l1 norm, the Gini
index [31] and the Hoyer metric [32]. For an N-element
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(non-zero) vector u =[u0 . . .uN−1], where the elements
are sorted in order of magnitude |u0| ≤ . . . ≤ |uN−1|, the
Gini index is defined as

g(u) = 1 − 2 ·
N−1∑

j=0

(
N − j − 0.5

N

)
· |uj|
∑N−1

i=0 |ui|
. (36)

On the one hand, for the extreme case where |u0| = . . . =
|uN−1|, i.e., no sparsity in u, g(u) = 0. On the other hand,
for the extreme case where |u0| = . . . = |uN−2| = 0 and
|uN−1| �= 0, i.e., very high sparsity in u, g(u) = 1 − 1

N ,
which for a large value of N is approximately equal to 1.
Thus, the sparser the vector, the higher the Gini index.
Furthermore, the Gini index exhibits the following

properties:

• Limited range: 0 ≤ g(u) ≤ 1.
• Scaling invariance: g(a · u) = g(u), ∀ a ∈ R.
• Sensitivity to addition: g(a + u) < g(u), ∀

a ∈ R, a > 0.
• Cloning invariance: g(u) = g([u u] ) = g([u u u] )
• Sensitivity to zero-padding: g([u 0] ) > g(u)

The cloning invariance property allows a fair compar-
ison of the sparsity of vectors with different number of
elements. This is an important consideration, as we want
to compare the sparsity of the reference spectra across the
different dimensions of subbands, channels and frames.
Note that the oft-used Hoyer metric does not exhibit this
invariance and is hence not suited for comparing vectors
with different number of elements.

4.2.2 Tap selection performance
In order to quantify the closeness of a tap selection scheme
to full tap selection, we use the so-called Closeness Mea-
sure [19, 20] which is defined as the ratio of the energy of
theM selected tap-inputs to the energy of all tap-inputs, i.e.,

ξ

(
α(�),X(�)

)
= ||α(�) � X(�)||22

||X(�)||22
. (37)

For full filter update, i.e., α(�) = 1, we obviously
obtain ξ = 1. For a given Q, the 3DM scheme maxi-
mizes the Closeness Measure in every frame, as it selects
the M largest magnitude tap-inputs. The expectation and
assumption is that the tap selection scheme yielding the
largest Closeness Measure also results in the smallest dif-
ference in AEC performance compared to updating the
filters using full tap selection.

4.2.3 Echo cancellation performance
The echo cancellation performance is evaluated using
the echo return loss enhancement (ERLE) [2], which is
defined as

ERLE(n) = 10 · log10
E

[
d2(n)

]

E
[(

d(n) − d̂(n)
)2] , (38)

where d̂(n) is the time-domain signal corresponding to
the total MAEC filter output D̂(k, �) and E [·] denotes
the statistical expectation operator. In practice, the ERLE
is computed by approximating the expectation operator
with the current sample value. The speed of convergence
of the MAEC filters is assessed using the t20 metric, which
is the time required for the ERLE to reach 20 dB.

4.3 Sparsity analysis
In this section, we present an example to illustrate the
amount of sparsity typically present in real-world mul-
tichannel spectra across subbands, channels and frames,
and also jointly across multiple dimensions. Figure 4
depicts the waveform of a 10 s segment from the sound-
track of a 5-channel movie signal, with the spectrograms
of the C, FL, FR, SL and SR channels shown in the subplots
below. Each magnitude spectrogram is composed of K =
257 subbands and T = 1247 frames. In this movie signal,
the centre channel contains the speech content, while the
surround-sound channels contain the background score.
From these spectrograms, we first analyze the sparsity

across subbands (spectral sparsity), across frames (tem-
poral sparsity) and across channels (spatial sparsity). The
Gini index for spectral sparsity in each channel is com-
puted in every frame on a vector ofK spectral coefficients,
as exemplarily shown in Fig. 4b for the centre channel
using the magenta box in frame 200. Similarly, the Gini
index for temporal sparsity in each channel is computed
on a vector of T spectral coefficients in every subband,
as shown using the blue box for subband 150. The Gini
index for spatial sparsity in each subband and frame is
computed on a vector of R spectral coefficients, as exem-
plarily shown using the black boxes for the first subband
in frame 400. The Gini indices so obtained for spec-
tral, temporal and spatial sparsity are shown in Fig. 5a,
b, and c, respectively. It can be observed that the mul-
tichannel reference spectra displays a fairly high amount
of sparsity across all the three dimensions individually,
with Gini indices on average above 0.5 (except for tempo-
ral sparsity in the surround-sound channels). The centre
channel displays higher temporal sparsity as compared to
the surround-sound channels as it contains time-varying
speech content, while the surround-sound channels con-
tain the background score, which varies slowly with time.
Additionally, we analyze the sparsity present in the spec-

tra jointly across multiple dimensions. In Fig. 5a, the
black curve displays the Gini index for the joint spectro-
spatial sparsity, computed in every frame on a vector
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e

f

Fig. 4 aWaveform of a 10-s segment from the soundtrack of a five-channel movie signal, with different channels distinguished by color; magnitude
spectrogram of (b) centre (C), (c) front left (FL), (d) front right (FR), (e) side left (SL), and (f) side right (SR) channels, respectively

with K · R spectral coefficients. Similarly, in Fig. 5b, the
black curve displays the Gini index for the joint spatio-
temporal sparsity, computed in every subband on a vector
with R · T spectral coefficients. The Gini index for the
joint spectro-temporal sparsity in each channel is com-
puted by processing the magnitude spectrogram of that
channel and is plotted in Fig. 5d, along with the joint

spectro-spatio-temporal sparsity for all K · R · T coeffi-
cients. From this figure, it can be clearly observed that the
multichannel reference spectra exhibit even higher lev-
els of sparsity when analyzed across multiple dimensions,
with Gini indices on average above 0.85. This provides
the motivation to exploit sparsity jointly across subbands,
channels and frames for the purpose of tap selection.

a

b

c

d

Fig. 5 Gini indices for a 10-s segment from the soundtrack of a five-channel movie signal; (a) spectral sparsity in each channel and joint
spectro-spatial sparsity, (b) temporal sparsity in each channel and joint spatio-temporal sparsity, (c) spatial sparsity in each subband and frame,
(d) joint spectro-temporal sparsity in each channel and joint spectro-spatio-temporal sparsity
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Figure 6 shows the Gini indices for the joint spectro-
spatio-temporal sparsity for the different considered ref-
erence signals. The stereo white noise signal is chosen
to be spatially sparse, with an inter-channel broadband
power ratio of 20 dB. Firstly, it can be observed for the
synthetic signals that the spectrally colored brown noise
signal and the stereo white noise signal are obviously more
sparse than the mono white noise signal. Secondly, it can
be observed that typical real-world signals such as mono
speech and five-channel movie and concert signals also
display high amounts of sparsity.

4.4 Analysis of tap selection schemes for synthetic signals
In this section, we analyze the effect of using the con-
strained tap selection schemes from Section 3 (3DM, SPU,
FEA and DEA) for synthetic signals.

4.4.1 Effect of Spectral Coloration
For the different tap selection schemes, Fig. 7 shows the
number of taps selected in each subband when using
a mono brown signal with Q = 0.2. For the 3DM and
SPU schemes, a larger number of taps are selected in the
low-frequency subbands which contain the larger magni-
tude tap-inputs, while the high-frequency subbands with
the smallest magnitude tap-inputs get no taps selected.
Since the FEA scheme does not exploit spectral sparsity,
it allocates an equal number of taps in all sub-filters
irrespective of the signal content. The proposed DEA
scheme achieves a balance by allocating more taps to
sub-filters with larger magnitude tap-inputs (thereby
exploiting spectral sparsity), while not completely
ignoring the sub-filters with the smallest magnitude
tap-inputs.

4.4.2 Effect of Inter-Channel Power Ratio
We now consider a stereo white noise signal, where the
broadband power of the first and the second channel is

Fig. 7 Number of taps selected in each subband when using the
3DM, SPU, FEA and DEA tap selection schemes for a mono brown
noise signal (Q = 0.2)

denoted as λ1 and λ2, respectively. Figure 8 shows the
effect of the inter-channel power ratio λ2

λ1
on the number

of taps selected in the sub-filters of the first channel (as a
fraction of the M taps selected in both channels) for the
different tap selection schemes with Q = 0.2. When using
the 3DM and SPU schemes, for λ1 > λ2, the sub-filters in
the first channel get the majority of the M taps selected.
Thus, both schemes are highly spatially selective, as hardly
any taps of the sub-filters in the less dominant reference
channel are updated (e.g., for the SPU scheme when the
inter-channel power ratio is larger than 5 dB and for the
3DM scheme when the inter-channel power difference
ratio is larger than 10 dB). Since the FEA scheme does
not exploit spatial sparsity, it allocates an equal number of
taps to the sub-filters in the first and the second channel
(i.e., M2 taps each), irrespective of the inter-channel power
ratio. The proposed DEA scheme achieves a balance by
allocating more taps to the sub-filters in the dominant ref-
erence channel (thereby exploiting spatial sparsity), while
not completely ignoring the channel with the smaller
magnitude tap-inputs.

Fig. 6 Gini indices for joint spectro-spatio-temporal sparsity for different reference signals
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Fig. 8 Effect of the inter-channel power ratio of a stereo white noise
signal on the number of taps allocated to the sub-filters in the first
channel (as a fraction ofM taps allocated to both channels) when
using the 3DM, SPU, FEA, and DEA tap selection schemes (Q = 0.2)

4.4.3 ClosenessMeasure
For different values of Q, Fig. 9 depicts the Closeness
Measure ξ obtained when using the different tap selection
schemes for mono brown, mono white and stereo white
noise signals. For the stereo white noise signal, an inter-
channel power ratio of 20 dB has been chosen. This figure
shows how close the different tap selection schemes are
to full tap selection in terms of the energy of the selected
tap-inputs. By design, the 3DM scheme maximizes the
Closeness Measure for a given Q, and hence yields the
highest values for each signal. For a highly sparse sig-
nal such as the mono brown signal, a very high value for
the Closeness Measure (≈ 1) is obtained for the 3DM
scheme even when only 10% of the total filter taps are
selected (i.e., Q = 0.1). This means that just 10% of the
tap-inputs contain almost the entire energy. For the least
sparse mono white noise signal, low values of the Close-
ness Measure are obtained for all schemes, especially for
the SPU scheme. For example, for Q = 0.5, a Close-
ness Measure of about 0.85 is obtained for the 3DM, FEA
and DEA schemes, whereas a Closeness Measure of about

Fig. 9 Closeness Measure as a function of Q for mono brown, mono
white, and stereo white noise signals for different tap selection
schemes

0.6 is obtained for the SPU scheme. The Closeness Mea-
sure values obtained for the stereo white signal for all
schemes lie in between those obtained for the more sparse
mono brown noise signal and the less sparse mono white
noise signal, except for the FEA scheme, which yields the
same values as for the mono white noise signal. The SPU
scheme gives high values for highly sparse signals and very
low values for signals with low amounts of sparsity, while
the proposed DEA scheme performs similarly to the 3DM
scheme for highly sparse signals and similarly to the FEA
scheme for signals with low amounts of sparsity.

4.4.4 ERLE and t20
As shown by the previous experiments, depending on
the spectral coloration and the inter-channel power ratio
of the reference signals, each considered tap selection
scheme results in a different distribution of the selected
taps across subbands and channels, and a different Close-
ness Measure. Hence, it is to be expected that the tap
selection schemes have an influence on the overall acous-
tic echo cancellation performance, i.e. ERLE and speed of
filter convergence.
For mono brown, mono white and stereo white noise

(inter-channel power ratio of 20 dB) signals, Fig. 10a
shows the ERLE convergence curves for the 3DM, SPU,
FEA, and DEA tap selection schemes (Q = 0.2), compared
to full filter update (Q = 1). Figure 10b shows the corre-
sponding t20 values for different values of the parameter
Q. It can be observed that for signals with a high amount
of spectral sparsity, such as the mono brown noise signal,
the DEA scheme yields the best echo cancellation perfor-
mance, while the 3DM and SPU schemes yield the poorest
performance despite obtaining the highest values for the
Closeness Measure. This is due to the highly spectrally
selective nature of the 3DM and SPU schemes (discussed
in Section 4.4.1), i.e., the sub-filters with the smallest mag-
nitude tap-inputs do not have taps updated in every frame,
resulting in very slow convergence of these sub-filters and
thus negatively affecting the overall echo cancellation per-
formance. For the least sparse mono white noise signal, it
can be observed that the 3DM, FEA, and DEA schemes
yield similar echo cancellation performance, while the
SPU again yields the poorest performance. This may be
due to the fact that the SPU scheme is the only one
which completely ignores entire subbands when updat-
ing the filters, while the other schemes may allocate a
few taps to each subband when the reference signal has
a low amount of sparsity. For the spatially sparse stereo
white noise signal, the DEA scheme performs better than
the FEA scheme, both in terms of the converged ERLE
value as well as the t20 values. For all considered signals,
the ERLE and t20 values obtained by the proposed DEA
scheme for Q = 0.2 are very similar to those obtained for
full filter update. Thus, the DEA scheme gives very similar
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a b

Fig. 10 (a) ERLE convergence curves for full filter update (Q = 1) and for different tap selection schemes (Q = 0.2), and (b) t20 values for different
values of Q (for mono brown, mono white, and stereo white noise signals)

echo cancellation performance to full filter update even
when only 20% of the total MAEC filter taps are updated
in every frame.

4.5 Analysis of tap selection schemes for real-world
signals

Contrary to the synthetic (stationary) signals in the pre-
vious section, in this section we investigate the effect
of using constrained tap selection schemes on the echo
cancellation performance for (non-stationary) real-world
signals.
For a mono speech signal, Fig. 11 shows the ERLE

curves obtained when theMAEC filters are updated using
the different tap selection schemes for Q = 0.2 and
for full filter update (Q = 1) for a period of 10 s.
For this signal, we find that even when only 20% of all
filter taps are updated in every frame, both the 3DM
scheme and the proposed DEA scheme typically perform
as well as full filter update in terms of ERLE, with the
FEA scheme performing slightly worse (about 1–2 dB).
On the other hand, the SPU scheme performs signifi-
cantly worse, yielding about 7–8 dB deterioration in terms
of ERLE.
For a 5-channel concert signal, Fig. 12 shows the ERLE

curves obtained when theMAEC filters are updated using
the different tap selection schemes for Q = 0.2 and
for full filter update (Q = 1) for a period of 30 s. For
this signal, we find that even when only 20% of all filter
taps are updated in every frame, both the 3DM scheme
and the proposed DEA scheme perform almost identi-
cally to full filter update in terms of ERLE, with less than
1 dB deterioration, while the FEA scheme leads to about
2–4 dB deterioration in terms of ERLE. The SPU scheme
again performs significantly worse, yielding about 10–12
dB deterioration in ERLE. It can be seen that around the

12-s mark, all schemes witness a sudden drop in ERLE.
This is because the tap-input covariance matrix becomes
ill-conditioned, leading to an increase in misalignment.
However, it can also be observed that even though the
FEA and DEA schemes have not been designed to tackle
the misalignment problem, they do not deteriorate the
problem further.
Additionally, Fig. 13 shows the number of taps Lr(k, �)

updated in the different sub-filters in every frame using
the DEA scheme for Q = 0.2. It can be observed that
the sub-filters in each channel get a small number of
taps selected in every frame, where the number of taps
updated across subbands depends on the spectral content
present in each channel. As the centre channel for this
signal consists of only speech, the tap allocation for the
centre channel strongly resembles the spectrogram of a
speech signal. As the surround-sound channels are mainly
dominated by background score and low-frequency crowd
noise but also contain some speech, this is reflected in
how taps are allocated in the surround-sound channels.

a

b

Fig. 11 (a) ERLE curves obtained for full update (Q = 1) and for
different tap selection schemes (Q = 0.2) for a 10-s segment of a
mono speech signal; (b) waveform of the 10-s segment of a mono
speech signal
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Fig. 12 (a) ERLE curves obtained for full update (Q = 1) and for
different tap selection schemes (Q = 0.2) for a 30 -s segment of a
5-channel concert signal; (b) waveform of the 30 -s segment of a
5-channel concert signal

5 Computational effort
When compared to full filter update, implementing a tap
selection scheme requires some computational overhead,
but still may result in significant savings when updating
the MAEC filters, as only a fraction Q of the total N fil-
ter taps are updated in every frame. The computational
effort per frame for implementing the different tap selec-
tion schemes and for updating the MAEC filters using the
PUNLMS algorithm is given in Table 1. The computa-
tions have been divided into four categories, namely the
number of additions (# Adds), multiplications (# Mults),
divisions (# Divs) and comparisons (# Comps). Please note
that all complex operations have been converted into an
equivalent number of real operations, e.g. 1 complex mul-
tiplication has been counted as 4 real multiplications and
2 real additions.
Figure 14 is an exemplary figure depicting the total

computational effort required per frame for implementing
tap selection and partial filter update for different values
of Q. The numbers have been computed for K = 257,

R = 5, and L = 20 and by assuming that the com-
parison, multiplication and division operations are 1, 4
and 15 times as computationally expensive as an addition
operation, respectively. The numbers have been plotted
as a percentage of the computational effort required for
full filter update, i.e., the effort required for updating the
MAEC filters using the PUNLMS algorithm with Q =
1. For these assumed settings, it can be observed that
the total computational effort for the 3DM, SPU, FEA
and DEA schemes is smaller than full filter update for
Q < 0.27, Q < 0.95, Q < 0.96 and Q < 0.93, respectively.
Hence, the SPU, FEA, andDEA schemes are almost always
cheaper than full filter update. When only 20% of the
MAEC filter taps are updated in every frame (Q = 0.2),
the 3DM scheme requires 94%, while the SPU, FEA, and
DEA schemes require about 28% of the total computa-
tional effort required for full filter update. Using the SPU
and DEA schemes results in slightly larger computational
effort as compared to the FEA scheme due to the addi-
tional overhead required for computing ηr(k, �) in (18)
and ψD

r (k, �) in (35), respectively.

6 Conclusions
In this paper, different tap selection schemes for con-
strained partial updates of subband MAEC filters have
been compared. Real-world multichannel signals have
been analyzed and shown to be sparse across subbands
(spectrally), channels (spatially), and frames (temporally).
This sparsity is then exploited by different tap selection
schemes for updating the MAEC filters. The MAEC sys-
tem consists of a dedicated subband AEC filter for each
loudspeaker channel, with each filter composed of multi-
ple sub-filters, i.e., one sub-filter per subband per channel.
The first tap selection scheme considered applied the
well-known M-Max criterion on the multichannel input
spectra across all three dimensions, and is hence called the

a

b
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Fig. 13 Number of tapsLr(k, �) updated in the different sub-filters in every frame for the (a) centre, (b) front left, (c) front right, (d) side left and
(e) side right channels when using the DEA tap selection scheme for Q = 0.2 for a 30-s segment of a 5-channel concert signal
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Table 1 Computational effort

Operation 3DM SPU FEA DEA PUNLMS

# Adds KR 3KR 0 6KR + 1 4QN + 3KR − K

# Mults 0 2KR KR 3KR + 2 4QN + 2KR + 3K

# Divs 0 0 0 2 K

# Comps N log2 N KR log2(KR) KR(2 log2 L+2) KR(2 log2 L+3)+1 0

Number of operations per frame for implementing the different tap selection schemes and for updating the MAEC filters using the PUNLMS algorithm

3DM scheme. This scheme jointly exploits the spectral,
spatial and temporal sparsity in the input signals but typ-
ically results in some sub-filters having no taps updated.
In order to avoid this problem, two new schemes have
been presented which perform tap selection by applying
the M-Max criterion only across filter length (and thereby
exploit temporal sparsity for updating each sub-filter) and
do not completely ignore the sub-filters with the small-
est magnitude tap-inputs. The FEA scheme allocates a
fixed number of taps to be updated in each sub-filter
per frame, while the proposed DEA scheme exploits the
joint spectro-spatial sparsity present in the input sig-
nals for dynamically allocating the number of taps to be
updated in the different sub-filters. The new tap selec-
tion schemes have been compared to the state-of-the-art
SPU tap selection scheme in the subband domain, which
displays similar properties to the 3DM scheme. The pro-
posed DEA scheme is designed such that it selects more
taps in the sub-filters with larger magnitude tap-inputs
(like the 3DM and SPU schemes) while not completely
ignoring the sub-filters with smaller magnitude tap-inputs
(like the FEA scheme). Simulation results for speech and
music signals showed that in terms of ERLE and conver-
gence speed, the 3DM and DEA schemes achieved almost
identical echo cancellation performance compared to full
filter update even when only 20% of the MAEC filter taps

Fig. 14 Total computational effort required per frame for
implementing the different tap selection schemes and for updating
the MAEC filters using the PUNLMS algorithm as a function of Q. The
numbers have been computed for K = 257, R = 5 and L = 20 and
have been plotted as a percentage of the effort required for full filter
update

were updated in every frame, while the FEA and SPU
schemes performed worse (about 2–4 dB and 10–12 dB
deterioration in ERLE, respectively). The SPU, FEA and
DEA tap selection schemes have a reduced computational
cost compared to full filter update, while the 3DM scheme
does not necessarily lead to reduction in computational
complexity. Hence, in conclusion, the proposed DEA tap
selection scheme yields almost identical echo cancella-
tion performance compared to updating all filter taps at a
significantly reduced computational cost.

Endnote
1 It should be noted that the XM tap selection scheme

[18–20] cannot be straightforwardly implemented in
the subband domain and extended to more than two
channels.
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