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A benchmark study on the efficiency of 
unconstrained optimization algorithms in 
2D-aerodynamic shape design
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Abstract: Optimization algorithms are used in various engineering applications to 
identify optimal shapes. In this work, we benchmark several unconstrained optimi-
zation algorithms (Nelder–Mead, Quasi-Newton, steepest descent) under variation 
of gradient estimation schemes (adjoint equations, finite differences). Flow fields 
are computed by solving the Reynolds-Averaged Navier–Stokes equations using 
the open source computational fluid dynamics code OpenFOAM. Design variables 
vary from N = 2 to N = 364. The efficiency of the optimization algorithms are bench-
marked in terms of: (a) computation time, and (b) applicability and ease of use. 
Results for lift optimizations are presented for airfoils at a Reynolds number of  
Re = 50,000. As a result, we find for a small number of design variables N ≈ 5 or 
less, the computational efficiency of all optimization algorithms to be similar, while 
the ease of use of the Nelder–Mead algorithm makes it a perfect choice for a low 
number of design variables. For intermediate and large number of design variables, 
gradient-based algorithms with gradient estimation through the solution of adjoint 
equations are unbeaten.
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1. Introduction
Optimization of 3D aerodynamic shapes in fully-turbulent, instationary flow fields is still an open 
question due to: (a) the high number of design variables, (b) the high number of design goals, (c) the 
lack of efficient and proven optimization algorithms for this type of applications, which safely and 
robustly deliver optimal shapes and (d) the extensive computational costs for high-order methods. 
As such, a large amount of work has been done on simplified problems with significantly reduced 
complexity. Specifically, the optimization of 2D airfoils with stationary flow fields has attracted some 
attention (Mohammadi & Pironneau, 2001), since it is in the reach of today’s computational technol-
ogy. Results from such optimizations can be used as a base for many engineering applications, e.g. 
in the design of wind turbine blades using standard methods based on the blade element momen-
tum theory (BEM) (Schepers, 2012). Besides, stationary analysis is often used, since the designer is 
interested in an averaged and not time-dependent airfoil shape. Therefore, we strongly believe that 
the sound understanding of the 2D aerodynamic shape optimization problem with stationary flow 
fields is of fundamental importance for the optimization of 3D aerodynamic shapes for fully-turbu-
lent flow fields, with a large number of design goals, to be achieved in the future.

Practical design problems in product development are highly complex, since huge amounts of 
design goals have to be treated on the same time (Bünner, 2014). The same is true for aerodynamic 
shape optimization, since in practice the design goals or technical specifications are not restricted to 
a single operating point, but are to be fulfilled on several operating points or even along a character-
istic curve (variation of wind velocity, variation of angle of attack and others). Besides, for the opti-
mal design, not only aerodynamic properties have to be considered. Additionally, mechanical 
properties including mechanical load, fatigue, manufacturability and material and manufacturing 
costs are to be taken into account. As a consequence, there is a strong need for optimization tech-
niques, which are able to handle thousands to hundred-thousands of design goals on the basis of a 
sound mathematical framework.

It turns out that unconstrained optimization is not the appropriate mathematical container to 
handle a large number of design goals as required by optimization problems in product develop-
ment. Even if used in many cases, the method of weighted sums can only be a proper method to 
condense a low number of design goals, not more than 2 or 3, into a single goal function. The meth-
od of weighted sums is not the proper tool to treat many (e.g. more than 5) design goals, since it 
introduces a large number of undefined parameters (the weighting parameters) into the optimiza-
tion problem (Bünner, 2014). Nevertheless when using computational fluid dynamics (CFD), the ma-
jority of work in 2D aerodynamic shape optimization has been in the realm of unconstrained 
optimization. The reason behind is its simplicity and robustness. The severe drawback of using un-
constrained optimization is that in many cases the optimization results are unrealistic or impractical 
and require major after-optimization adaption work, since important design goals and operating 
points have been simply omitted in the optimization problem.

On the other side, constrained optimization delivers a powerful mathematical framework to mod-
el a large number of design goals. Here, the design goals are modelled as non-linear inequality 
constraints, and the optimization problem turns, in fact, into a feasibility problem. Along these de-
velopment lines, modern algorithms, which are capable to safely and robustly solve large con-
strained non-linear optimization problems (NLP), have demonstrated the ability to solve practical 
product development optimization problems. For instance algorithms from the SQP family (Nocedal, 
2006; Schittkowski, 1986) have identified optimal designs for product development problems with 
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many, up to hundred-thousands, of design goals in the field of optimal high fidelity design (van de 
Braak, Bünner, & Schittkowski, 2004), optimal wind turbine airfoil design (Grasso, 2011), optimal 
turbine design (Nagel, 2004) and optimal 2D airfoil design (Bünner, 2014). On this basis, it is possible 
to create a robust workflow, which is able to deliver safely and numerically highly efficient optimal 
designs. In some applications, gradients, as requested by modern optimization routines, can be 
computed safely, with low numerical costs. In other applications, the computation of gradients re-
mains a challenge. In many applications, e.g. wind turbines or aeroplanes, aerodynamic shapes 
have been improved in several design phases during many years of research and development. It is 
expected that in further optimization only small improvements are possible. Thus a computational 
method with high fidelity, such as CFD, is necessary, since other low fidelity methods based on mod-
els and approximations do not offer the necessary level of detail. This leads to high requirements 
regarding the searching efficiency of the optimization algorithm, as the computational cost of the 
flow solver is already comparably large.

During the optimization, the aerodynamic characteristics of the airfoils have to be evaluated sev-
eral times. Many authors use fast but low order methods based on potential flow theory coupled 
with boundary layer corrections in their optimizations (Bak, Gaudern, Zahle, & Vronsky, 2014; Dahl & 
Fuglsang, 1998; Grasso, 2010; Méndez, Munduate,& San Miguel, 2014). There, the Navier–Stokes 
equations are simplified, e.g. vorticity is zero, and in principle, these methods also could be used in 
the following benchmark study due to the simple optimization problems, but future applications of 
the optimization shall deal with 3D shapes, which create vortices, and turbulent flow fields at high 
Reynolds numbers. Since the computation of 3D flows need a numerical tool with high fidelity, CFD 
based on the Reynolds-Averaged Navier–Stokes equations (RANS), will be used in this benchmark 
study. CFD is able to predict the aerodynamic forces with a higher accuracy and can be used in more 
general applications. For the computation of the flow field, the open-source library OpenFOAM-2.3.0 
(OpenCFD, n.d.) is used.

For the optimization of 2D airfoils, a fundamental step is the choice of shape parametrization. 
Parametrizations with a low number of parameters are available, such as the well-known NACA 
parametrizations (Abbott & von Doenhoff, 1949). A medium number of parameters is provided by 
Bézier or spline parametrizations (Salomon, 2006; Shahrokhi & Jahangirian, 2008). A high number of 
design parameters is used, when the points of the numerical grid on the surface of the geometry are 
used for pointwise discretization of the shape itself. In this work, the grid nodes on the surface of the 
airfoil geometry are referred to as surface points.

On the basis of CFD simulations, several optimization strategies have been applied for 2D shape 
optimization. Several parametrizations have been used and consequently, the number of design 
variables varies tremendously from case to case. By far the most work has been done in the frame-
work of unconstrained optimization, where the Nelder–Mead algorithm (Nelder & Mead, 1965), algo-
rithms from the widespread family of Newton or Quasi-Newton type with gradient information 
provided by finite differences (Broyden, 1970; Fletcher, 1970; Gill, Murray, & Wright, 1974; Shanno, 
1970), steepest descent with gradient estimation on the basis of the solution of adjoint equations 
(Soto, Löhner, & Yang, 2002) and finally genetic or so-called evolutionary algorithms (Mehnel, 2007; 
Schramm, Stoevesandt, & Peinke, 2015) are used. Also some work has been done in the framework 
of constrained optimization, where algorithms from the SQP-family (Bünner, 2014; Grasso, 2012) or, 
respectively, genetic or evolutionary algorithms (Asouti, Kyriacou, & Giannakoglou, 2014; Roy, 2016; 
Vasant, 2013) were used. In principle, algorithms can be combined in various ways, e.g. a combina-
tion of heuristic or stochastic algorithms with gradient-based algorithms is possible (Garg, 2015; 
Montillet, Yu, Bonenberg, & Roberts, 2016; Senvar, Turanoglu, & Kahraman, 2013; Vasant, 2012, 
2014). Since this work is supposed to be a base for optimizations of aerodynamic shapes, which are 
close to an optimum, only algorithms are considered, which can find local optima. Thus a combina-
tion of algorithms is not in the aim of this work.
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Still, it remains a challenge to compare the quality of optimization approaches for optimal 2D 
aerodynamic shape design, and to identify the most promising approaches, since design spaces are 
not identical, termination conditions for different optimization algorithms are different and it is not 
obvious how to quantify computational efficiency in a universal way. As a consequence, even if every 
single optimization strategy is successful in its own, several open questions remain in the light of 
these different optimization strategies:

(1)  Which optimization algorithms are most efficient in terms of numerical costs?

(2)  Which optimization algorithms are robust and comparably easy to use?

(3)  Which algorithms require a high level of knowledge and maintenance to be used successfully 
in engineering practice?

The aim of this benchmark study is to address the fundamental questions of numerical efficiency, 
robustness, stability and ease of use for four different unconstrained optimization techniques as 
they are applied on the identical 2D aerodynamic shape optimization problem: (1) Nelder–Mead al-
gorithm (Nelder & Mead, 1965; Press, Teukolsky, & Vetterling, 1986), (2) Method of steepest descent 
with step size control (Nocedal, 2006; Press et al., 1986) with gradient estimation on the basis of the 
solution of adjoint equations, (3) Quasi-Newton algorithm with Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) Hessian reconstruction (Broyden, 1970; Fletcher, 1970; Nocedal, 2006; Press et al., 1986; 
Shanno, 1970) with (3a) finite differences gradient calculation or with (3b) gradient calculations on 
the basis of the solutions of adjoint equations. The number of design variables is varied form N = 2 
up to N = 346 and therefore offers a wide range of design spaces.

The paper is organized as follows: firstly, the definition of the benchmark problem is described in 
Section 2. In Section 3, the shape parametrizations, as used in this benchmark study, are introduced. 
In Section 4, the optimization algorithms under investigation are explained. In Section 5, the simula-
tion and optimization cases are presented up to the necessary depth. The results of the benchmark 
study are presented in Section 6. Finally, conclusions are drawn and research lines are identified for 
future research on 3D aerodynamic constrained shape optimization for fully turbulent flow fields, on 
the basis of this benchmark study.

2. Benchmark problem for 2D-aerodynamic unconstrained shape optimization with 
variable number of design variables
In order to benchmark airfoil optimization for optimization algorithms with a varying numbers of 
design variables from N = 2 to N = 346, it is of crucial importance to define a proper benchmark 
optimization problem. The optimization problem needs to allow:

•  a unique definition of the termination condition for different optimization, algorithms

•  a unique definition of the design goal for a varying number of design, variables N

•  a unique definition of the computational efficiency. 

On the basis of an N-dimensional shape parametrization, s ∈ RN, the benchmark optimization prob-
lem is stated as follows:

(1)  What are the numerical costs for a chosen optimization algorithm to identify a shape with lift 
coefficient c∗l  starting from any initial shape s

0
 with vanishing lift coefficient cl(s0) = 0?

(2)  How easy is it for a user to fulfil this task for a chosen optimization algorithm, and how much 
inside knowledge and maintenance work is required?  

Formally, the benchmark problems writes as: start with a set of I initial shapes s
0, i , i = 1, … , I in 

the N-dimensional design space with zero lift cl(s0, i) = 0, i = 1, … , I. For each initial shape, the 
unconstrained optimization problem
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is solved. The goal function f(s) depends on the selected parametrization s, which determines the 
coordinates of the two-dimensional shape. Quadratic penalty functions p̃ are used to realise box 
constraints for the design parameters. These box constraints define minimal and maximal values for 
the design parameters, such that all feasible values can be imagined within a box spanned within 
the defined range.

The optimization algorithms are iterative and perform several optimization iterations j, 
s
0, i → s

1, i → ⋯ → sJ, i until the optimization algorithm terminates for j = J. Here, an universal ter-
mination condition has to be chosen, which applies equally well for all tested optimization algo-
rithms. Since a first-order convergence information is not available for all optimization algorithms, a 
simple termination condition is needed. Consequently, as termination condition a simple condition 

on the goal function f is applied: 1
2

(

cl

(

sj

)

− c∗l

)2

≤ 10−6 for all j ≥ J.

For each initial state s
0, i, the total sum of the CFD iterations needed to identify the optimal shape 

sJ, i is recorded as a measure for the computational efficiency. Note, the number of optimization 
steps is not a proper measure for computational efficiency, since the computational costs for opti-
mization steps differ widely for different optimization algorithms, but the total number of CFD itera-
tions includes CFD iterations needed for gradient calculations. Finally, as a measure for the efficiency 
of the different optimization algorithms, the total number of CFD iterations averaged over all initial 
airfoil geometries and overall I optimization runs is used. If the solution of adjoint equations is need-
ed, the CFD iterations for solving these equations are summed up as well as the CFD iterations for 
finite-differencing. The optimization problem shown in Equation (1) is an unconstrained non-linear 
optimization problem with N design variables. Loosely speaking, the benchmark problem is posed in 
such a way that the optimization algorithm performs I optimizations with I different initial shapes 
{si

0
∈ H

0
, i = 1, … , I}. The optimization algorithm starts to change the shape until the cost func-

tion drops below 10−6, which refers to a difference below 0141% between the current and goal lift 
coefficients. This is referred to as the final state close to H∗.

3. Parametrization of the shapes
In this section, the parametrizations of the airfoil shape, as applied in this paper, are presented. First, 
the parametrization based on the 4-digit NACA equation with two design parameters is shown. 
Then, a parametrization based on Bézier curves with 14 design variables is used. Finally, a free shape 
parametrization based on the surface points, which are the grid nodes on the surface of the airfoil 
geometry, is described. In the following, mesh movement describes the update of the numerical grid 
according to the update of the airfoil geometry within each optimization step.

3.1. NACA equation with 4-digits
The 4-digit NACA airfoils parametrization (Abbott & von Doenhoff, 1949; Jacobs, Ward, & Pinkerton, 
1935) is highly useful to describe simple airfoils, as it allows to describe an airfoil shape based on the 
few variables c, t, m, p which are chord, maximum thickness, camber and location of maximal 
camber, respectively.

In order to assure high numerical grid quality during the optimization, the chord is kept constant 
at c = 1 as well as the location of maximal camber at p = 0.4. This leads to s = (t,m) as design 
parameters, i. e. a two-dimensional design space. Thickness and camber are updated according to 
the optimization step and the new airfoil geometry is solved by additional equations for cambered 
4-digit NACA airfoils (Jacobs et al., 1935) based on the updated design parameters. The new position 
of the surface points is then directly calculated based on the updated NACA parameters. The 

(1)min f (s) s ∈ RN

(2)f (s) =
1

2

(

cl(s) − c
∗

l

)2
+ p̃

0.141
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movement of the surface points is damped down in the computational grid by a Laplace equation 
using an inverse distance method, which is available in OpenFOAM by default.

3.2. Bézier Curves
Bézier curves are often used to generate smooth shapes and thus are suitable for parametrizing 
airfoils. As in the work from Grasso (2010), four Bézier curves are used to represent the airfoil shape, 
two on the suction and pressure side each. The connections of the single curves are at leading and 
trailing edge as well as the two points at maximum thickness. The cubic Bézier curves B consist of 
four points P

0...3
 and the curve parameter t. The design parameters s are then the control points of 

the used Bézier curves:

Allowing deformation in x- and y-direction, this would result into 32 design parameters, but due to 
the 4 connecting points this number is reduced to 24. Using the same limitations as Grasso (2010), 
i.e. removing design variables in x- or y-direction for smooth transitions between the connected 
curves, the total number of design parameters reduces further to a design space N = 14, which still 
offers a high flexibility in the design of airfoil shapes. For the update of the numerical grid using a 
geometry defined by Bézier curves, two different approaches are used. Using the adjoint approach 
to compute gradients leads to high quality requirements regarding the numerical grid. Therefore, a 
mesh movement was implemented based on the mesh motion approach by Jameson and Reuther 
(1994). The applicability of this mesh movement in combination with adjoint gradient estimation is 
described by the authors in Schramm, Stoevesandt, and Peinke (2016). For the other application of 
Bèzier curve defined geometries, namely finite differences, an automatized remeshing for 2D pro-
files was implemented in Matlab, such that there is no mesh movement needed for this set-up.

3.3. Free shape deformation
The adjoint approach, which is further explained in Section 4.5, leads to gradient information at 
every surface point of the numerical grid. In general, this allows to use every surface point as an in-
dependent design parameter. In this study, the points are moved along the surface normals, leading 
to N = 364 design parameters. The numerical grid showing all possible design parameters, e.g. the 
surface points, is shown in Figure 1. The high degree of freedom for such a large amount of design 
parameters can lead to problems regarding the mesh motion, e.g. counter-oriented motion of two 
neighbouring points close to the leading edge could lead to negative cell volumes within the numeri-
cal grid. Therefore a movement of the points is only allowed in the direction normal to airfoil surface, 
as it was shown that sufficiently small movements can be reduced to a motion in normal direction 
(Castro, Lorenzo, Palacios, & Zuazua, 2007). Thus the surface points moving in normal direction are 
the design parameters s for this parametrization. The adjoint approach, as it is implemented here, 
cannot handle discontinuities, which occur at the trailing edge (Anderson & Venkatakrishnan, 1997). 
To avoid this problem, the trailing edge and a few adjacent faces are fixed, here the last 4% of the 
chord, are fixed.

(3)B = (1 − t)3P
0
+ 3(1 − t)2tP

1
+ 3(1 − t)t2P

2
+ t3P

3
, 0 ≤ t ≤ 1.

4%

Figure 1. Numerical grid used 
for the evaluation of the goal 
function. (a) C-grid of the full 
domain and (b) Close-up view 
of the airfoil (here NACA 0020).
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The cells in the boundary layer usually have a high aspect ratio in order to have a low amount of 
total cells, but still a good resolution of the boundary layer. In some cases, the general mesh move-
ment in OpenFOAM can lead to errors in the numerical grid, as the used step sizes could be larger 
than the size of the boundary layer cells. A movement of the numerical grid with such a condition 
must be handled carefully to assure a high cell quality after the mesh update. Therefore, the previ-
ously described mesh motion implemented by the authors Schramm et al. (2016) is used for free 
shape deformation with N = 364 design parameters.

4. Optimization methods
An overview of the unconstrained optimization methods and algorithms, which are benchmarked in 
this paper, is given in this section. At first, the Nelder–Mead algorithm, which does not require any 
gradients, is described. Then, the method of steepest descent and the Quasi-Newton algorithm are 
presented. These require gradients, which are computed by finite differences or the adjoint approach.

4.1. Nelder–Mead (Downhill Simplex) algorithm
The Nelder–Mead (NM) method, which is also known as downhill simplex, is a simple, robust, easy-
to-use, heuristic unconstrained optimization algorithm, which requires a continuous goal function - 
indeed, non-differentiable goal functions are okay (Nocedal, 2006). The Nelder–Mead algorithm 
relies on the “movement” of an N + 1-dimensional simplex in N-dimensional design space, accord-
ing to simple, heuristic rules. Its robustness and simplicity, especially since gradient information is 
not required, makes the Nelder–Mead algorithm to the work horse in engineering. Typical termina-
tion conditions for a Nelder–Mead search are step sizes in the design space, or in the goal function.

Special care has to be taken to the choice of the initial simplex, since this strongly determines the 
efficiency of the algorithm. As the Nelder–Mead proceeds from iteration to iteration the improve-
ment in goal function has to be monitored until a properly set termination condition is reached. All 
in all, the Nelder–Mead algorithm is easy to use and requires little insight into the intricacies of opti-
mization theory.

4.2. Method of steepest descent
The method of steepest descent (SD) is a first-order method, which requires a continuous and dif-
ferentiable goal function (Nocedal, 2006). The iterative algorithm applies at each iteration a search 
directed to the steepest descent. For this, obviously, gradient information is needed. Due to the lack 
of a step size, a line search is applied at each iteration step. Often the norm of the gradient is used a 
first-order termination condition for a steepest descent search.

As in most cases, the optimal search direction (pointing to the minimum) differs largely from the 
gradient direction, the steepest descent search results in a highly inefficient, but typical zigzag pat-
tern. Consequently, the method of steepest descent has found little applicability in practice, since its 
performance is in most cases largely inferior to second-order methods, like the Quasi-Newton meth-
od. For high-dimensional design spaces, though, the method of steepest descent can be advanta-
geous, since it does not require the estimation of the inverse Hessian, which scales with the number 
of design variables.

The set-up and maintenance of a steepest descent method is not simple, but also not too difficult. 
Special care has to be taken for the accuracy of the gradient estimation. Besides, parameters of the 
line search and termination condition have to be set properly, and have to be monitored as the op-
timization proceeds.

Using the method of steepest descent based on gradients calculated using the adjoint approach 
in combination with the free shape parametrization has shown to be impractical, as can be seen in 
Section 4.5.1. Thus, a smoothing is applied to the gradients, where the gradient of each design pa-
rameter is smoothed using weighted gradients of the neighbouring design parameters. Especially in 
areas of large flow parameter gradients, e.g. close to the stagnation point or the suction peak, this 
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increases the quality of the optimization result. Still, a weighted smoothing influences the gradient 
direction and therefore is not a pure steepest descent method any more.

4.3. The family of Quasi-Newton methods
All members of the family of Quasi-Newton methods are second-order methods, which require a 
continuous and two-times differentiable goal function. In Quasi-Newton methods, the second-order 
information (Hessian) is not computed directly. Instead, the Hessian is estimated with the help of an 
iterative procedure, where the BFGS and Davidon–Fletcher–Powell(DFP) schemes are most success-
ful, on the basis of gradient information only (Nocedal, 2006). To build up proper information inside 
the approximated Hessian, typically N iterations are needed in an N-dimensional design space. This 
is one of the weaknesses of Quasi-Newton methods, which makes it unstable and inefficient for a 
large number of design variables. The typical termination conditions for Quasi-Newton algorithms is 
the norm of the gradient. On the basis of the Hessian, Quasi-Newton methods can derive proper 
search directions pointing to the minimum (and to the steepest descent), with a proper step length. 
As such, the methods are highly efficient and inefficient zigzag search paths are avoided.

4.4. Gradient estimation by finite differences
A common approach to approximate gradients is the use of finite differences (FD), which are based on 
Taylor’s theorem (Nocedal, 2006). Some codes use first-order forward differences, but here second-order 
central differences are used. Beside the approximation and neglect of higher order terms, a principal 
problem of finite differences is the evaluation of the step size h, which determines the magnitude of the 
change of the design parameters. A too small step size can lead to round-off errors whereas a too big step 
size can result in truncation errors. An improper choice of the step size can thus lead to erroneous gradi-
ents and poor optimization results. In practice, before using finite differences, a sound gradient and noise 
study is required to identify proper step sizes for each design variable. If step sizes are chosen properly 
and noise in the goal function is not too large, FD is a reliable and stable gradient estimator. The compu-
tational cost for FD is comparably high, since the number of goal function evaluations scales linearly with 
the number of design variables. With this, in the realm of shape optimization in fluid dynamics, FD re-
quires tremendous computational resources, since (a) the number of design variables is high, and (b) the 
computational cost for a single evaluation of the goal function is high. In this paper, the symmetrical FD 
scheme is used, where proper step sizes had been chosen in each case, with the help of a gradient study.

4.5. Gradient estimation by the adjoint approach
Various authors propose the adjoint method for the computation of the gradients (Papadimitriou & 
Giannakoglou, 2006; Othmer, 2008; Soto & Löhner, 2004). By this the high computational cost of FD 
for a large number of design variables can be avoided, since the computational effort is independent 
of the number of design variables. But another set of partial differential equations—the adjoint 
equations—have to implemented and solved numerically. In practice, the adjoint approach for gra-
dient estimation imposes several additional tasks on the CFD practitioner, such as implementation 
of the adjoint equations and maintenance of the convergence behaviour of a second set of field 
equations. Besides, the continuous adjoint equations often impose simplifications, i.e. the adjoint 
turbulent viscosity is often assumed to be identical as the one from the primal flow field.

As such, both is benchmarked here, gradient estimation via FD and via the solution of adjoint 
equations. In this paper, the continuous adjoint approach is used, since OpenFOAM is highly suitable 
for the implementation of continuous equations. The implementation of the adjoint field follows the 
available adjoint solver for ducted flows by Othmer, de Villier and Weller (2007). Therein the adjoint 
turbulent viscosity is supposed to be equal to the turbulent viscosity of the flow field. This approxi-
mation is widely used in the literature and referred to as “frozen turbulence”. As the adjoint field is 
“driven” by the flow parameters, a high convergence of the flow field is required for correct adjoints 
to the flow field. This leads to high quality requirements regarding the numerical grid and a careful 
case set-up. In this work, the flow field is pre-converged, before the adjoint field is solved, which 
leads to a stable and converging adjoint field. The iterations needed for pre-convergence are added 
to the total amount of iterations needed for the optimization case.
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The gradient information can be used directly for pure free shape parametrization, or treated fur-
ther, e.g. by smoothing the gradient field or by projecting the gradients to design parameter of a 
lower design space. The adjoint method computes gradients on the whole geometry surface, which 
can also be interpreted as production sensitivities. The designer can use the size of the sensitivities 
to define the importance and range of production tolerances. In the process, large sensitivities indi-
cate where tolerances should be fulfilled and low tolerances where can be higher. By this, the pro-
duction costs can be controlled precisely.

4.5.1. Preliminary study on free shape optimization using the adjoint approach and 
steepest descent for 364 design variables
In order to show the potential and drawback of free shape deformation, a preliminary study on op-
timizing an airfoil using the adjoint approach and steepest descent for all surface points as design 
parameters is conducted. Figure 2 shows the development of the lift coefficient during this optimiza-
tion. The initial lift is cl = 0.0496 and the goal is to increase the lift to c∗l = 0.0530, which corre-
sponds to an increase of nearly 7%. The goal function is a quadratic least square function as shown 
in Equation (1), without any penalty functions. In this example, all surface points are free to move 
and the gradients are neither smoothed nor transformed in any way. Only the last 4% of the chord 
are fixed in position. As mentioned before, this is necessary, since the adjoint approach as it is imple-
mented here does not support discontinuities.

The resulting shapes of this optimization are shown in Figure 3, where a close-up view of leading 
and trailing edge are shown. Since the adjoint field and therefore also the gradients are driven by the 
flow field, relatively large geometry changes are expected at areas with large changes in the flow 
field. The overall changes in the geometry are small and thus only close-up views of the leading and 
trailing edge are presented. It can be seen that the trailing edge geometry (last 4% of the chord) is 
not changed due to the fixed surface points and that a bump occurs at the leading edge. This bump 
may not be useful for a practical application of this airfoil, but it is mathematically correct, since the 
goal lift coefficient is reached.

The tendency of developing bumps can lead to issues with convergence of the primal and adjoint 
field. Hence, a free shape parametrization can only be used, if changes in the goal function and thus 
the shape deformations are small. This was the case for the presented example, but will not hold for 
the following optimizations. In order to overcome such a problem additional smoothing approaches 
can be used, e.g. use of regularization methods (Hojjat, 2015; Jameson & Vassber, 2000; Soto et al., 
2002). Also a projection of gradients to a lower design space can be applied to overcome infeasible 
geometries, which is presented in the following Section 4.6.

7%

4%

4%

Figure 2. Evolution of lift 
coefficient c

l
 against CFD 

iterations with N = 364 design 
variables using method of 
steepest descent (goal lift 
coefficient c∗

l
= 0.0530).
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For free shape deformation in this work, a simple smoothing of the gradients is applied by weight-
ed averaging over neighbouring surface points. This results in a reduction of the effective design 
variables, but still each airfoil point is moved individually. For convenience, the number of N = 364∗ 
parameters is used in the following sections, but is marked with a star as the reader should remem-
ber that the number of parameters is affected by the applied smoothing.

Beside the use of the adjoint approach for optimization, a practical application is the use of the 
gradient information for sensitivity maps. The designer can manually include the sensitivities of a 
given objective function in the design process of a geometry. This is rather a cumbersome improve-
ment process instead of an optimization, but can be done in cases, when too many constraints have 
to be considered, e.g. aerodynamic optimizations of car outlines (Othmer, 2014).

4.6. Projection of gradients
The strength of the adjoint approach is that the gradient computation does not scale with the number of 
design parameters and thus each airfoil point can be used as an individual design variable. In practice 
this is rarely done, since high gradients in the primal flow lead to strong adjoint gradients in the affected 
regions, resulting in uneven deformations such as bumps. These can be mathematically correct results of 
an optimization, but they are seldom suitable for standard engineering applications, which can be seen 
in Figure 3, where the large flow acceleration along the leading edge leads to large gradients in some 
regions and therefore to large deformations. At the same time, the flow is rather steady between 20–90% 
of the chord, such that the gradients are not pronounced in this area and the movements are small.

The grid on the surface of the airfoil contains 364 surface points and the adjoint method leads to 
gradient information on each of these points. Thus a projection from these 364 gradients on less 
design parameters N is implemented, which is necessary when using a parametrization with less 
design variables, such as the NACA equation or Bézier curves in combination with the adjoint meth-
od. A projection allows an exact transfer of the information gained by the gradient of the goal func-
tion f (s(x, y)) defined within the numerical grid coordinate system based on (x, y) to the chosen 
design parameter defined in the parametrization equation, e.g. Bèzier control points.

A reduction to very few design variables might not be useful in combination with the adjoint ap-
proach, as the solution of the adjoint equations needs some additional computational effort, which may 
not pay off, e.g. when only two parameters are used. However, it is done in this work in order to compare 
the different optimization algorithms and to evaluate when the adjoint approach increases the speed 
of the optimization and when standard finite-differencing is sufficient for the gradient computation. 
Besides, a projection of the gradients to lower dimensions also applies an indirect smoothing.

The chain rule is used for the gradients of the goal function f (x(s), y(s)) within the two-dimen-
sional coordinate system where the surface points are defined in. The x- and y-coordinates depend 
on the selected parametrization parameter sm of the chosen parametrization, e.g. the NACA param-
eters or the control points of the Bézier curves. The gradient of the cost function with respect to the 
design parameters then is:

Figure 3. Close-up views of 
leading (left) and trailing 
(right) edge of the initial airfoil 
and optimized shape, where the 
optimization uses method of 
steepest descent with N = 364 
design variables (goal lift 
coefficient c∗

l
= 0.0530).
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where K are the airfoil points in total. The gradients �f
�xk

, �f
�yk

 are calculated by the adjoint method on 
each surface point k with its different x- and y-components, respectively. This projection of gradients 
is exact, since for each design parameter the gradients along the whole surface are taken into ac-
count. It can easily be extended for 3D applications by adding the z-direction.

5. Simulation and optimization set-ups
The following benchmark is done for five initially symmetric airfoils at a Reynolds number of Re = 50, 000 
and an angle of attack of AoA = 0◦, with zero lift coefficient cl(s0) = 0. In order to ensure a good compa-
rability, five initially symmetric airfoils with different initial thickness’ of 8, 10, 12, 16 and 20% are optimized. 
Different parametrizations are used within different optimization methods, but the general CFD set-up of 
the simulations is the same in order to ensure a valuable comparison. The numerical grid as it is used here 
is a compromise between the different optimization methods in this work. The Nelder–Mead algorithm is 
generally able to handle a higher amount of noise in the objective function than a Quasi-Newton method. 
The adjoints are driven by the primal flow field and any numerical error is directly transferred to the adjoint 
field, leading to noise in the gradient evaluation. Thus a fine grid is needed in the adjoint approach, but a 
coarse grid could be used with the Nelder–Mead algorithm and a standard RANS simulation of an airfoil 
could probably also deliver adequate results with a coarse grid. For practical applications, the computa-
tional accuracy has to be high in order to find improvements over airfoils, which are commonly in use. In 
principle, the simple airfoils in this work could also be optimized with a smaller accuracy, when using 
Nelder–Mead algorithm. But for the gradient computation (via adjoints or finite differences), a reasonably 
high accuracy is necessary. This necessity is the minimum limitation for the computational costs and any 
higher accuracy is not computed in order to limit the costs. After some preliminary testing, the grids are 
created as described in the following. They allow a comparability of the different optimization methods 
without leading to a predominance of a single method due to its own strengths in the mesh requirements. 
The numerical grids are block-structured, hexahedral C-grids with a domain size of approx. Fifteen chord 
lengths and nearly 50,000 cells, where the airfoil surface consists of 364 faces. The RANS equations are 
closed by the Spalart–Allmaras turbulence model without transition (Spalart & Allmaras, 1992) and in or-
der to fully resolve the flow in the boundary layer the dimensionless wall distance is at y+ ≈ 0.7. The grid 
of the symmetric NACA airfoil with 20% relative thickness is shown in Figure 1. Standard boundary condi-
tions, such as Dirichlet and zero Neumann, are used for the flow simulations.

Table 1 summarizes all nine different optimization cases, which are benchmarked in this paper: 
two cases Nelder–Mead, four cases Quasi-Newton and three cases steepest descent. The first two 
cases do not require gradient estimation. In two cases, gradient estimation via finite differences is 
used. In five cases, gradient estimation via the solution of the adjoint equations is used, including 
gradient projection, if needed. There is no Quasi-Newton used with N = 364 design parameters, 
since the approximation of the Hessian is computationally too expensive and with these design pa-
rameters the algorithm may easily lead to grid errors as discussed in Section 4.5.

(4)�f

�sm
=

K
∑

k=1

(

�f

�xk

�xk
�sm

+
�f

�yk

�yk
�sm

)

,

20%

Table 1. Optimization set-ups with different optimization methods and number of design 
parameters (“FD” refers to gradients by finite differences)

∗1Smoothing with neighbouring values is applied on the gradients, such that the effective amount of design parameters 
is reduced. Still, each grid point is moved individually. 

Nelder–Mead Quasi-Newton Steepest descent
Design 
parameters

Gradient 
estimation

Design 
parameters

Gradient 
estimation

Design 
parameters

Gradient 
estimation

2 – 2 FD/Adjoints 2 Adjoints
14 – 14 FD/Adjoints 14 Adjoints
– – – – 364

∗1 Adjoints
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The needed CFD iterations for five airfoil optimizations are averaged, in which the optimizations aim 
at lift coefficients of c∗l = 0.1 and c∗l = 0.2. Thus a total of 9·5·2 = 90 optimizations are conducted.

By tuning the initial configuration, e.g. step sizes, Hessians or initial simplex, the user could im-
prove each optimization process individually. This influences the stability and convergence behav-
iour of the optimization and would bias the comparison. Thus the first step of the optimization 
should lead to a lift coefficient within the range of 40–60% of the goal lift coefficient. In order to 
reach convergence, the goal function f(s) has to drop below 10−6 for all following optimization steps. 
Thus 1

2

(

cl(x) − c
∗

l

)2
≤ 10−6 is applied.

6. Results
In the following, the convergence behaviour of the different optimization set-ups is compared and 
the needed amount of total CFD iterations is evaluated. This also includes the necessary iterations 
for computing the gradients via the adjoint approach or via finite-differencing. Finally, the ease of 
use is compared as well, summing up the experiences of the authors within this work.

6.1. Evolution of the lift coefficient
In order to check the convergence behaviour of the various optimization set-ups, the evolution of the 
lift coefficient over the total CFD iterations is analyzed. The results of two cases using the NACA para-
metrization with N = 2 is shown in Figure 4, where the upper graph shows the optimization of an 
airfoil with the initial thickness of 8% and the lower one for the initial thickness of 20%.

9 ⋅ 5 ⋅ 2 = 90

8%

Figure 4. Evolution of lift 
coefficient c

l
 over CFD iterations 

using N = 2 design variables 
(NACA parametrization) and 
different optimization methods 
for a goal lift coefficient 
of c∗l =0.1. (a) Initial airfoil 
thickness of 8% and (b) Initial 
airfoil thickness of 20%.
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approach; “SD adj” refers 
to steepest descent and 
gradients by the adjoint 
approach.
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In both cases, an obvious difference between the gradient-free and the gradient-based optimiza-
tion can be seen. The Nelder–Mead algorithm uses big steps in the beginning, which leads to high 
changes of the lift coefficient and produces a zigzag pattern. This algorithm needs less CFD iterations 
between two optimization steps than the gradient-based methods, which use smaller optimization 
steps, and the Nelder–Mead converges only a little slower than the other methods. The method of 
steepest descent uses more optimization steps to reach the goal lift coefficient, where an automatic 
reduction of the step size is used every time the cost function becomes bigger than in the previous 
step. The Quasi-Newton algorithm (QN) needs a similar amount of CFD iterations as the steepest 
descent, but less optimization steps due to the additional information provided by the approximated 
Hessian. Here, providing the Hessian for the QN consumes more CFD iterations, which depletes the 
advantage of less needed optimization steps.

The course of the adjoint Quasi-Newton in Figure 4(a) is similar to the Quasi-Newton using finite 
differences, where as in Figure 4(b) for an airfoil with an initial thickness of 8% the courses are very 
different. The amount of total CFD iterations are of similar size, but the lift coefficient overshoots the 
goal lift coefficient significantly when using the adjoint approach.

This could result from a noisy gradient computation and thus a bad approximation of the Hessian. 
Another possible influence on the convergence could be the airfoil thickness itself, since a thicker 
airfoil is less sensitive to geometry changes than the thin airfoil. Thus, similar initial step sizes for 
airfoils of different thickness’ may have different influence on the lift coefficient.

A further tuning of the initial Hessian could be a possible solution, but is not done here in order to 
ensure a fair comparison of the different methods. Also it is a known effect of the QN algorithm that 
the first optimization steps are prone to errors, as the approximation of the Hessian using the BFGS 
method needs up to 2 ⋅ N iterations until it reaches a reliable state (Nocedal, 2006).

The behaviour when using the Bézier parametrization with N = 14 design variables is different 
than in the previous cases. The results of the evolution for two initial airfoils are shown in Figure 5, 
where the upper graph shows the optimization of an airfoil with an initial thickness of 8% and the 
lower one shows the results of an initial thickness of 20%.

For both cases, the Nelder–Mead algorithm (NM) shows a zigzag pattern as before and needs more 
than 150,000 CFD iterations in total. The use of finite differences with the Quasi-Newton method 
(QN) also needs more than 150,000 CFD iterations to reach the given convergence criteria of 
1

2

(

cl(x) − c
∗

l

)2
≤ 10−6. In contrast, using the adjoint approach leads to a much faster convergence 

and the amount of total CFD iterations is in the order of the previous cases when N = 2 design vari-
ables were used, underlining the independence of the adjoint approach regarding the amount of 
design variables. The method of steepest descent needs a little more CFD iterations than Quasi-
Newton, where the information of an approximated Hessian is used. Figure 6 shows the results of 
steepest descent with N = 364∗ design variables, where the initial airfoils have a different thickness. 
The optimization starting with an initial airfoil thickness of 16% converges faster than starting with 
other airfoils, which need approx. the same amount of CFD iterations. This difference could result 
from a smoother flow behaviour around this airfoil in combination with a good response to design 
parameter changes at this airfoil thickness and was also noticed at other parametrizations.

6.2. Comparison of total CFD iterations needed
Table 2 shows the CFD iterations for the different optimization set-ups averaged over all five airfoils 
and sorted by the two goal lift coefficients c∗l = 0.1 and c∗l = 0.2, respectively. In all cases with fully 
converged optimizations, the higher goal lift coefficient leads to an increase in needed CFD itera-
tions. This can be expected since the higher goal is further away from the initial shape with zero lift. 
As mentioned in Section 5, no Quasi-Newton with N = 364 design parameters is used due to the 
high computational costs for the Hessian approximation and expectable errors in the numerical grid.

8%

20%
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Using the adjoint approach with N = 2 design variables, the method of steepest descent needs a 
similar amount of CFD iterations as the Quasi-Newton method. Using N = 14 design variables in-
stead, the use of the Hessian leads to a faster convergence than a simple steepest descent, because 
of the advantageous information from the Hessian. Additional CFD iterations are needed for an ac-
curate approximation of the Hessian and for the adjoint approach with N = 14 design variables the 
beneficial use of the Hessian outbalances this extra computational effort.

Figure 5. Evolution of lift 
coefficient c

l
 over CFD iterations 

using N = 4 design variables 
(Bézier parametrization) and 
different optimization methods 
for a goal lift coefficient 
of c∗l =0.1. (a) Initial airfoil 
thickness of 8% and (b)Initial 
airfoil thickness of 20%.
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Figure 6. Evolution of lift 
coefficient c

l
 over CFD 

iterations using N = 364* 
design variables and steepest 
descent using gradients by the 
adjoint approach for a goal lift 
coefficient c∗l =0.1.  
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The adjoint approach scales with a factor close to 1, in case of Quasi-Newton even below 1, which 
results from the overshoot due to possibly noisy gradients as it was shown in Figure 4(a) for N = 2. 
The Nelder–Mead algorithm (NM) scales superlinearly and needs approximately nine times more it-
erations for N = 14 than for N = 2 design parameters. The optimization using finite differences 
scales superlinearly with a factor of approximately 14, since the gradients have to be computed for 
each design variable separately.

Comparing the optimizations using different amounts of design parameters, the advantage of the 
adjoint method becomes clear. While the effort for Nelder-Mead or finite differences increases with 
the number of design parameters—sometimes even dramatically, the adjoint approach barely 
scales with the amount of design variables. Using gradients via the adjoint approach shows that the 
number of CFD iterations is nearly independent from the number of design parameters, which proofs 
the theoretical idea of this method (at least for the simple cases presented here).

Table 2 also shows the ease of use of the different methods, which is evaluated by the authors 
experience of robustness, stability and user knowledge needed for each method. For the presented 
cases, the Nelder–Mead algorithm is the easiest and most robust method. Also the dependence on 
the quality of the CFD computations is not as high as for other methods. Quasi-Newton using finite 
differences needs more user knowledge, but is more robust than the continuous adjoint approach, 
which requires more experience of the user.

In summary, Nelder–Mead or gradient-based methods using finite difference might be more sta-
ble and less sensitive to the initial optimization set-up, but they scale with the number of design 
parameters. The adjoint approach is more sensitive to the initial set-up, i.e. mesh quality and user 
experience, but barely depends on the number of design variables. Both, the optimization using fi-
nite differences and the adjoint method, require a certain level of quality for the CFD computation 
and lead to requirements in the pre-processing, e.g. the preparation of the numerical grid and the 
numerical schemes.

6.3. Comparison of final airfoil shapes
Beside the convergence of each method, the final airfoil shape is of importance and Figure 7 shows 
the shapes resulting from the different optimization strategies for a goal lift coefficient of c∗l = 0.2 
with N = 2 design variables (NACA parametrization) with an initial thickness of 20%. During the op-
timization, the camber increases from the initially symmetric airfoil in order to generate lift. Beside 
the result from the steepest descent, the optimized shapes are similar to each other. This is also an 
effect of the chosen parametrization due to few design variables. Here, the geometries have to 

Table2. Comparison of the needed CFD iterations for the different optimization set-ups 
averaged over all five airfoils (more + means higher ease of use)
Optimization 
method

Design 
variables

Gradient 
calculation 
method

Averaged number of CFD 
iterations (×103)

Ease of use

c
∗

l
= 0.1 c

∗

l
= 0.2

Nelder–Mead 2 – 21.5 24.2 +++

14 – 191.8 217.6 +++

Steepest descent 2 Adjoints 14.9 16.0 +

14 Adjoints 18.3 23.2 +

364∗ Adjoints 42.2 74.9 +

Quasi-Newton 2 Adjoints 15.3 19.7 +

2 Finite differences 18.6 23.1 ++

14 Adjoints 14.9 16.1 +

14 Finite differences 261.0 297.0 ++
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follow the NACA equation and therefore always stay within the range of this airfoil type. Note that 
the optimization is unconstrained and thus the thickness may vary.

Figure 8 shows the shapes resulting from the different optimizations for a goal lift coefficient of 
c∗l = 0.2 with N = 14 design variables (Bézier parametrization) with an initial thickness of 20%. The 
shapes resulting from Nelder–Mead and Quasi-Newton using finite differences are similar. In con-
trast, the results from the same optimizer, i.e. Quasi-Newton, depend on the gradient estimation 
and differ from each other. This can be explained by a different computation of the gradients, where 
each method includes a varying noise leading to unequal gradients and Hessians. The resulting 
shape using steepest descent is completely different than the others. It seems to be similar to the 
case when using N = 2 design variables, but is also different to that one. Note, the optimization 
problem is posed in a way that the solution space is large and many solutions are possible, which 
means that identical shapes would only result due to coincidence. Similarities, as they appear here, 
are not a sign for a better solution or a higher level of convergence.

Figure 9 shows the shape resulting from the use of steepest descent with N = 364∗ design varia-
bles for a goal lift coefficient of c∗l = 0.2 with an initial thickness of 20%. The shape is different from 
the previous shapes, since it has more degrees of freedom, although it should be noted that such a 
shape is only possible when the gradients are smoothed as discussed in Section 4.5.1. Note the 
shape close to the trailing edge, where the optimization produces a bump resulting from fixed points 

Figure 8. Initial airfoil (20% 
thickness) and optimized 
shapes resulting from different 
optimization strategies for a 
goal lift coefficient of c∗

l
= 0.2 

and N = 14 design variables 
(Bézier parametrization). 
(a) Initial airfoil, (b) Nelder-
Mead, (c) Steepest Descent 
with gradients via the adjoint 
approach, (d) Quasi-Newton 
with gradients by finite 
differences and (e) Quasi-
Newton with gradients via the 
adjoint approach.
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Figure 7. Initial airfoil (20% 
thickness) and optimized 
shapes resulting from different 
optimization strategies for a 
goal lift coefficient of c∗

l
= 0.2 

and N = 2 design variables 
(NACA parametrization). (a) 
Initial airfoil, (b) Nelder-
Mead, (c) Steepest Descent 
with gradients via the adjoint 
approach, (d) Quasi-Newton 
with gradients by finite 
differences and (e) Quasi-
Newton with gradients via the 
adjoint approach.
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at the trailing edge. As mentioned, this fixing is necessary in order to use the adjoint approach with 
surface points as design parameters, since the high quality of the numerical grid has to be main-
tained. Still, the gradients are computed correctly (aside from noise terms), which can be concluded 
from the resulting cambered airfoil, where the shape near the trailing edge bends downwards in 
order to generate lift. Further work would be needed in order to formulate a different smoothing or 
more stable mesh movement for avoiding inflection points even in this region.

Summed up, the final shapes show that constraints are necessary for meaningful optimization, as 
the airfoils may not be suitable for some engineering applications.

7. Conclusions
The presented work deals with the unconstrained shape optimization of 2D airfoils using different 
optimization configurations. The gradient-free Nelder–Mead algorithm is compared with two gradi-
ent-based methods, the method of steepest descent and Quasi-Newton. In both methods, the gra-
dients are computed by the adjoint approach, but also finite differences are used within the 
Quasi-Newton method. The airfoil shape is parametrized by the 4-digit NACA equation (N = 2 design 
parameters), a set of Bézier curves (N = 14 design parameters) and by a free shape parametriza-
tion (N = 364 design parameters), where each airfoil surface point is an individual design 
parameter.

The results show that the Nelder–Mead algorithm works well with a small number of design param-
eters and is then comparably fast as the gradient-based methods. Using more design variables, the 
computational effort for Nelder–Mead as well as finite differences increases superlinearly. Only the 
adjoint approach is able to converge within a similar amount of total CFD iterations, nearly independ-
ent from the number of design parameters, which is in accordance with the theory of the approach.

However, the requirements of user knowledge and experience needed for a successful optimiza-
tion with Nelder–Mead are the lowest, since this algorithm does not need any gradient information 
and hence is more robust than the gradient-based methods. The use of finite differences need a 
careful set-up of the step sizes and eventually a tuning of the initial Hessian, whereas the adjoint 
approach is less stable and requires the most user knowledge of these presented methods.

The questions raised in the introduction addressed the efficiency regarding computational costs, 
the robustness of the algorithms as well as the ease of use and the needed user knowledge before-
hand. To recommend an optimization method best suitable to the readers problem and to answer 
those questions, the following can be concluded:

(1)  The Quasi-Newton method using the adjoint approach is most efficient when using N = 14 or 
more design variables.

(2)  The Nelder–Mead method is most robust and comparably easy to use.

(3)  The adjoint approach clearly requires the highest level of knowledge and maintenance. 

Figure 9. Initial airfoil (20% 
thickness) and optimized 
shape resulting from steepest 
descent with gradients via the 
adjoint approach for a goal 
lift coefficient of c∗

l
= 0.2 and 

364 design variables. (a) Initial 
airfoil and (b) Steepest Descent 
with gradients via the adjoint 
approach.
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Future analysis should be done in the course of constrained optimizations. Also more complex cases 
at higher angles of attack or multi-point optimizations should be investigated. Large-scale problems 
can be optimized with all presented methods, but the computational effort will increase dramati-
cally, if not the gradient computation via the adjoint approach is used. For the shown optimization 
algorithms, a suitable parametrization for large scales has to be defined. In case of the adjoint ap-
proach with many design variables, improvements in gradient smoothing should be developed. 
Another possible development step would be the inclusion of structural constraints, leading to mul-
ti-disciplinary optimization. This adds extra design restrictions, but may lead to more practical de-
signs in future.
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