Winter, Alexander and Kneib, Thomas and Wasylow, Clara and Reinhardt, Lena and Henke, Rolf-Peter and Engels, Svenja and Gerullis, Holger and Wawroschek, Friedhelm
(2017)
Updated nomogram incorporating percentage of positive cores to predict probability of lymph node invasion in prostate cancer patients undergoing sentinel lymph node dissection.
Journal of cancer, 8 (14).
pp. 2692-2698.
ISSN 1837-9664
Abstract
Objectives: To update the first sentinel nomogram predicting the presence of lymph node invasion (LNI) in prostate cancer patients undergoing sentinel lymph node dissection (sPLND), taking into account the percentage of positive cores.
Patients and Methods: Analysis included 1,870 prostate cancer patients who underwent radioisotope-guided sPLND and retropubic radical prostatectomy. Prostate-specific antigen (PSA), clinical T category, primary and secondary biopsy Gleason grade, and percentage of positive cores were included in univariate and multivariate logistic regression models predicting LNI, and constituted the basis for the regression coefficient-based nomogram. Bootstrapping was applied to generate 95% confidence intervals for predicted probabilities. The area under the receiver operator characteristic curve (AUC) was obtained to quantify accuracy.
Results: Median PSA was 7.68 ng/ml (interquartile range (IQR) 5.5-12.3). The number of lymph nodes removed was 10 (IQR 7-13). Overall, 352 patients (18.8%) had LNI. All preoperative prostate cancer characteristics differed significantly between LNI-positive and LNI-negative patients (P<0.001). In univariate accuracy analyses, the proportion of positive cores was the foremost predictor of LNI (AUC, 77%) followed by PSA (71.1%), clinical T category (69.9%), and primary and secondary Gleason grade (66.6% and 61.3%, respectively). For multivariate logistic regression models, all parameters were independent predictors of LNI (P<0.001). The nomogram exhibited a high predictive accuracy (AUC, 83.5%).
Conclusion: The first update of the only available sentinel nomogram predicting LNI in prostate cancer patients demonstrates even better predictive accuracy and improved calibration. As an additional factor, the percentage of positive cores represents the leading predictor of LNI. This updated sentinel model should be externally validated and compared with results of extended PLND-based nomograms.
Actions (login required)
|
View Item |