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Abstract: We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase
(CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser
fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating
circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the
Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization
profiles are characterized experimentally by cross-correlation trajectories. The scheme provides
full control over all bichromatic parameters and allows for individual spectral phase modulation
of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is
demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide
a versatile class of waveforms for coherent control experiments.
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1. Introduction

Ultrashort bichromatic laser fields have emerged as a new twist to coherently control ultrafast
electron dynamics in atoms [1–6], molecules [7–9] and solids [10–12]. In recent years, (ω : 2ω)-
fields have been employed in numerous applications to observe and manipulate the motion of
electron wave packets on their intrinsic timescales. The physical mechanism behind bichromatic
control is based on the interference between M-photon and N-photon excitation pathways, where
M and N are (small) integer numbers [13]. In order to exploit the full potential of bichromatic
control, the availability of bichromatic fields with low-order commensurable frequencies of
adjustable ratio is therefore highly desirable. Typically, (ω : 2ω)-fields are generated by super-
imposing a fundamental laser beam with its second harmonic. Recently, we demonstrated an
alternative route to the generation of polarization-tailored bichromatic fields based on ultrafast
polarization pulse shaping techniques [14]. The scheme allows to tune all bichromatic parameters,
such as the frequency ratio, amplitude ratio, bandwidth and helicity of the two colors. In addition,
the phase of both spectral bands can independently be modulated which allows to adjust the
relative phase and time delay of the two colors with zeptosecond precision [15] or, in general, to
generate tailor-made bichromatic fields. Due to the limited bandwidth of the pulses used in [14],
however, the generation of low-order commensurable bichromatic fields has not been shown so
far. In this contribution, we apply the scheme to an octave-spanning white light supercontinuum
(WLS) from a carrier envelope phase (CEP) stabilized WL source and demonstrate the generation
of ultrashort polarization-tailored bichromatic fields with variable frequency ratios (Mω : Nω),
for small integer numbers M and N . Demonstrations of WL pulse shaping have been reported
in [16–18], including the synthesis of few-cycle waveforms from discrete optical harmonics [19].
The latter has recently been reviewed in [20]. Shaper-based control of the CEP was demonstrated
in [17]. So far, however, the CEP stability of the shaped output pulses was not investigated. Here
we show, that our setup maintains the CEP stability making the approach especially attractive for
few-cycle coherent control applications.

Our approach utilizes a 4 f polarization pulse shaper [21] based on the classic design by
A. Weiner [22] equipped with a dual-layer liquid crystal spatial light modulator (LC-SLM).
In amplitude and phase modulation mode, the shaper allows us to sculpture the bichromatic
amplitude profile directly from the given input spectrum. Employing a linear polarizer in the
Fourier plane of the 4 f setup, the scheme yields parallel linearly polarized (P-LP) bichromatic
output fields which, by additional insertion of a λ/4 wave plate (QWP), are converted into
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co-rotating circularly polarized (COR-CP) bichromatic fields. For the generation of orthogonal
linearly polarized (O-LP) and counter-rotating circularly polarized (CNR-CP) bichromatic fields,
we modified the shaper layout by introducing a composite polarizer in the Fourier plane. The
composite polarizer consists of two adjacent areas with orthogonal transmission directions,
horizontally aligned such that the low frequency part of the spectrum is s-polarized while the
high frequency part is p-polarized. By this means, two orthogonally polarized spectral bands
are independently phase- and amplitude-modulated yields polarization-shaped O-LP fields at
the shaper output. The O-LP output fields can be converted to CNR-CP fields using a QWP, as
illustrated in Fig. 1. So far, single-color CNR-CP pulses have been employed to demonstrate free
electron vortices in the multi-photon ionization of potassium atoms [23].

Being based on a common-path setup [24–28], our scheme provides inherent phase stability
of the two colors. In addition, the scheme features built-in dispersion management and allows
for shaper-based pulse characterization by spectral phase and amplitude modulation [14, 25, 27].
Recently, various common-path setups have been proposed for full vector control over the electric
field of ultrashort laser pulses [29–34]. The approach presented here is specifically tailored to the
generation of polarization-shaped bichromatic fields. It is comparably cost-efficient as it relies
on only two LC-layers. Furthermore, the scheme makes use of the full spatial range of the SLM
(640 pixels) to cover the laser spectrum, providing maximum spectral resolution particularly
important for ultrabroadband applications.

The paper is organized as follows. We start by describing the experimental scheme for shaper-
based generation and characterization of polarization-tailored bichromatic fields sculptured from
an octave-spanning input WLS. In the experiments, we focus on O-LP and CNR-CP fields to
highlight the new concept based on a composite polarizer. First, we demonstrate the generation of
bandwidth-limited CNR-CP fields with low-order commensurable frequencies supported by the
bandwidth of the WLS. Next, individual spectral phase modulation is applied to both colors and
the generation of high-fidelity bichromatic fields with tailored amplitude, phase and polarization
profiles is demonstrated. Finally, the CEP stability of the generated fields is investigated and
shaper-based control of the CEP is demonstrated.

2. Experimental

2.1. Setup

The experimental setup is sketched in Fig. 1. We use a home-built grating-based polarization
pulse shaper in 4 f geometry with dual-layer LC-SLM (Jenoptik, SLM-S640d), consisting of two
LC displays referred to as LCD A and LCD B, for independent spectral amplitude and phase
modulation of an octave-spanning WLS generated in an Argon-filled hollow-core fiber (HF)
(Femtolasers Kaleidoscope). In order to adapt the shaper setup to the ultrabroadband WLS, we
first performed a phase calibration of the LC-SLM [22] using a narrowband laser diode at a
wavelength of about 800 nm. The calibration is converted to the full spectral range (430-1100 nm)
using the wavelength-dependent optical anisotropy of the LCs, as provided by the manufacturer
and described in [35]. With the phase calibration available, the non-linear wavelength-to-pixel
relation is determined in situ by amplitude modulation of the WLS. To this end, we initially
use the analytic expression for the spatial dispersion of the gratings to set all but one pixel dark.
By scanning the bright pixel across the LC-SLM and measuring the output with a spectrometer
(Avantes AVASPEC-ULS3648-RS-USB2), a refined relation is obtained which is finally used
in the experiments. To eliminate higher diffraction orders in the Fourier plane, an order sorting
filter is mounted in front of the LC-SLM. The HF is seeded by 790 nm, 20-fs pulses from an
actively CEP-stabilized laser system (Femtolasers Femtopower HR 3 kHz CEP with Rainbow
500 oscillator and CEP4 module). The seed pulse energy was set to 500 µJ and the Ar gas
pressure was adjusted to 0.5 bar. No additional chirped mirrors are used to compress the output
of the HF. Pulse compression is performed by employing the shaper to adaptively optimize the
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second harmonic generation (SHG) in a β-barium borate (BBO) crystal (EKSMA, θ = 29.2◦,
5 µm thickness) behind the setup [see Fig. 1] using an evolutionary algorithm [14,36,37]. By this
means, the entire dispersion introduced in the beamline between laser system and experiment
is compensated. The long-term CEP stability of the WLS was measured using a home-built
f -2 f -interferometer yielding CEP fluctuations of about 270 mrad root mean square (RMS) over
a period of 1 h. At the shaper output, we obtain CEP-stable few-cycle pulses with a duration of
about ∆t = 5.3 fs.

For the generation of polarization-shaped bichromatic fields, a composite polarizer (Codixx,
ColorPol R©) is mounted behind the LC-SLM close to the Fourier plane [see Fig. 1]. By this means,
the spectrum is split into two orthogonally polarized bands at a splitting frequency denoted by
ω0. Then combined amplitude and phase modulation of the two bands is implemented by the
phase modulation functions

ϕA (ω) =

ϕ1(ω) − acos
(

A1 (ω)
Ẽin (ω)

)
, ω < ω0

ϕ2(ω) + acos
(

A2 (ω)
Ẽin (ω)

)
, ω ≥ ω0

(1)

and

ϕB (ω) =

ϕ1(ω) − acos
(
−

A1 (ω)
Ẽin (ω)

)
, ω < ω0

ϕ2(ω) − acos
(

A2 (ω)
Ẽin (ω)

)
, ω ≥ ω0

(2)

applied to LCDs A and B, respectively [14]. Here, Ẽin (ω) is the spectral amplitude of the WL
input pulse, assumed to be real-valued, A1/2(ω) are the amplitude modulation profiles of the
bichromatic target spectrum centered at ω1 < ω0 and ω2 > ω0, respectively, and ϕ1/2(ω) are the
phase modulation functions for each spectral band. In this configuration, the setup delivers O-LP
bichromatic fields at the shaper output. If required, the O-LP fields are converted into CNR-CP
bichromatic fields by additional use of a super-achromatic QWP (B. Halle Nachfl., 300-1100 nm)
behind the setup.

2.2. Characterization

For the temporal characterization of the generated bichromatic fields, we employ a shaper-based
cross-correlation (CC) technique [14, 15, 27, 38]. A bandwidth-limited reference pulse is split off

the input pulse by additional spectral phase and amplitude modulation using the phase modulation
functions

ϕA (ω) =

ϕ′1(ω) − acos
[

A1 (ω)
Ẽin (ω) cos

(
ϕ′′1 (ω)

)]
, ω < ω0

ϕ′2(ω) + acos
[

A2 (ω)
Ẽin (ω) cos

(
ϕ′′2 (ω)

)]
, ω ≥ ω0

(3)

and

ϕB (ω) =

ϕ′1(ω) − acos
[
−

A1 (ω)
Ẽin (ω) cos

(
ϕ′′1 (ω)

)]
, ω < ω0

ϕ′2(ω) − acos
[

A2 (ω)
Ẽin (ω) cos

(
ϕ′′2 (ω)

)]
, ω ≥ ω0

, (4)

with

ϕ′n (ω) =
ϕn (ω) + ϕre f ,n (ω)

2
and ϕ′′n (ω) =

ϕn (ω) − ϕre f ,n (ω)
2

, n = 1, 2. (5)

Application of the phase functions in Eqs. (3) and (4) yields the modulated output field

Ẽ+

mod (ω) =
1
2

A1(ω)
[
e−iϕ1 (ω) + e−iϕre f ,1 (ω)

]
A2(ω)

[
e−iϕ2 (ω) + e−iϕre f ,2 (ω)

] , (6)

consisting of the phase-modulated O-LP sample pulse and an O-LP reference pulse modulated
by the linear phase

ϕre f ,n (ω) = ϕ0,n + τ · (ω − ωre f ,n ). (7)
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Fig. 1. Optical scheme for the generation of polarization-tailored bichromatic fields. The
setup is based on a 4 f polarization pulse shaper equipped with dual-layer LC-SLM (LCDs A
and B). An order sorting filter (OSF) is mounted in front of LCD A to avoid interference with
higher diffraction orders from grating G1. The composite polarizer (CP) mounted behind
LCD B enables independent amplitude and phase modulation of two orthogonally polarized
bands from the octave-spanning input WLS. The superachromatic QWP at the shaper output
(optionally) converts the O-LP output field into a CNR-CP bichromatic field. As exemplified
on a (2ω : 3ω)-field, commensurable center frequencies result in propeller-type pulses. The
SHG signal of the output pulses from a BBO crystal is detected both for adaptive pulse
compression and pulse characterization. For simplicity, an already compressed WL pulse is
depicted at the shaper input. Optical components: G: Grating, CM: Cylindrical mirror, FM:
Folding mirror.

The linear term shifts the reference pulse in time by a variable time delay τ. By choice of the
reference frequencies ωre f ,n different CC modes are addressed [14, 27]. In the bichromatic case,
three distinct modes are (i) ωre f ,n = 0, which yields the interferometric CC, (ii) ωre f ,n = ωn ,
resulting in the total envelope of the interferometric CC, and (iii) ωre f ,n = (ω2 +ω1)/2, in which
case the CC trace follows the beating of the two colors [see e.g. Fig. 2(e)]. The offset phases
ϕ0,n in Eq. (7) determine whether the field’s in-phase (ϕ0,n = 0, π) or quadrature components
(ϕ0,n = π/2, 3π/2) are measured.

In order to characterize the polarization-shaped output fields temporally, we measure second
order CCs of two orthogonal field components (s and p). To this end, we send the pulses into
the BBO crystal, aligned either for efficient s- or p-conversion, and detect the SHG signal as
a function of τ using the spectrometer, as depicted in Fig. 1. For the characterization of the
instantaneous polarization state, we introduce the concept of parametric first order CC trajectories
(CCTs). The CCTs reflect the forward projection of the pulse [see e.g. Fig. 2]. The concept is
especially useful in the case of commensurable bichromatic fields, where the forward projection
reveals the symmetry of the field. To see this, we consider a bandwidth-limited CNR-CP field.
For simplicity the two colors are assumed to have the same spectral amplitude profile described
by a shape function Ẽ (ω) centered around ω = 0 and shifted to the respective center frequencies,
i.e. An (ω) = Ẽ (ω − ωn ). Furthermore, we assume spectral separation of the two colors, i.e.
that the center frequency difference ω2 − ω1 is larger than the spectral width ∆ω of Ẽ (ω). The
CNR-CP field in frequency domain then reads

Ẽ+
(ω) =

(
Ẽ+
x (ω)

Ẽ+
y (ω)

)
=

1
√

2

(
1 i
i 1

) (
Ẽ (ω − ω1)
Ẽ (ω − ω2)

)
=

1
√

2

(
Ẽ (ω − ω1) + iẼ (ω − ω2)
iẼ (ω − ω1) + Ẽ (ω − ω2)

)
. (8)
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Here the matrix describes the QWP with optical axis aligned at 45◦ relative to both O-LP
components. The corresponding (real-valued) field in time domain is obtained by application of
the Fourier shift theorem as

E(t) =

(
Ex (t)
Ey (t)

)
= E (t)

(
cos(ω1t) − sin(ω2t)
− sin(ω1t) + cos(ω2t)

)
, (9)

with the temporal envelope E (t) = F −1[Ẽ (ω)](t). For commensurable frequencies ω1 = M δω
and ω2 = N δω, where δω is some real-valued frequency unit and M < N , the field vector
describes propeller-type trajectories in the plane. The propeller exhibits cs symmetry, with
s = (M + N )/ gcd(M, N ) and gcd(M, N ) being the greatest common divisor of M and N [see
Fig. 2].

Next, we show that first order CCs based on Eqs. (3) and (4) reveal the temporal polarization
profile. In our experiments, first order CCs are recorded by measuring the power spectral density
(PSD) of the bichromatic output field as a function of τ using a polarizer and the spectrometer.
In case of an unmodulated CNR-CP sample pulse, obtained by setting ϕn (ω) ≡ 0 in Eq. (6), the
output field behind the QWP is given by [14]

Ẽ+

mod (ω; τ) =
1
√

2

(
1 i
i 1

) (
Ẽ (ω − ω1)[1 + e−i (ϕ0,1+ωτ)]
Ẽ (ω − ω2)[1 + e−i (ϕ0,2+ωτ)]

)
. (10)

Integrating the τ-dependent spectrometer signal measured in x-direction |Ẽ+
mod ,x

(ω, τ) |2 over
all ω, we obtain the CC trace

Cx (τ; ϕ0,1 , ϕ0,2) =

∞∫
−∞

∣∣∣Ẽ+
mod ,x (ω, τ)

∣∣∣2 dω

= A0 +A(τ)
[
cos(ϕ0,1 + ω1τ) + cos(ϕ0,2 + ω2τ)

]
, (11)

with A(τ) = F −1
[
Ẽ2(ω)

]
(τ) being the autocorrelation function of the envelope E (t) and

A0 = A(0). Comparing Eqs. (11) and (9), we see that by appropriate choice of the offset phases
ϕ0,n , Cx (τ; ϕ0,1 , ϕ0,2) reveals both components of the field E(t). Field and CC differ only in
their envelopes E (t) and A(τ). The former, being related to the spectrum Ẽ (ω), is shorter
than the latter associated with the squared spectrum Ẽ2(ω). However, there is no significant
difference when plotting the CCTs for one beating period. For example, the CC trace obtained by
aligning the polarizer in s-direction and measuring Cx (τ; ϕ0,1 , ϕ0,2) for ϕ0,1 = 0 and ϕ0,2 = π/2
essentially yields the s-component Ex (t) of the field. Repeating the measurement for ϕ0,1 = π/2
and ϕ0,2 = 0 yields the p-component Ey (t) of the field. We note that the procedure discussed
here for an unmodulated CNR-CP field is applicable to phase-modulated CNR-CP fields as well.
For O-LP fields [cf. Fig. 3] the offset phases are ϕ0,1 = ϕ0,2 = 0 and measurements of both
Cx (τ; 0, 0) and Cy (τ; 0, 0) are necessary.

2.3. Results

We focus on the generation of O-LP and CNR-CP bichromatic fields with low-order commen-
surable center frequencies, extracted from an ultrabroadband WLS by phase and amplitude
modulation. We start in Sec. 2.3.1 with the generation of bandwidth-limited CNR-CP fields.
In Sec. 2.3.2, we present shaped bichromatic fields from individual phase modulation of both
spectral bands and demonstrate the fidelity of the setup in generating tailored bichromatic fields.
Finally, in Sec. 2.3.3, the CEP stability of the generated fields is investigated and the capability
for accurate shaper-based CEP control is demonstrated.
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Fig. 2. Gaussian-shaped CNR-CP bichromatic fields with commensurable center frequencies
generated by amplitude modulation of the ultrabroadband WLS depicted in (a). Different
amplitude profiles with frequency ratios of (b) (4ω : 5ω), (c) (3ω : 4ω) and (d) (2ω : 3ω)
are shown. Frames (i)-(iii) display the corresponding temporal polarization profiles in terms
of measured CCTs. The CCTs describe propeller-type trajectories with characteristic c9, c7
and c5 symmetry, respectively. (e) Temporal characterization of the (3ω : 4ω) field from (c)
via shaper-based second order CCs measured in different modes.

2.3.1. Bandwidth-limited CNR-CP bichromatic fields

For the generation of bandwidth-limited bichromatic fields, we set ϕn (ω) ≡ 0 in Eqs. (1) and
(2). The shaper is used for amplitude modulation and residual phase compensation. Figure 2(a)
shows the input WLS. Different Gaussian-shaped bichromatic fields extracted from the WLS
with spectral bandwidths of ∆ω1 = ∆ω2 = ∆ω = 0.11 rad/fs, unity amplitude ratio A1/A2 = 1
and various combinations of commensurable center frequencies ω1/ω2 = M/N are depicted
in Figs. 2(b)-(d). The center frequency of the low frequency Gaussian was kept fixed at ω1 =

2.10 rad/fs. The predefined target spectra A2
1/2(ω) are plotted as black dashed lines to verify the

fidelity of the generated amplitude profiles. Using the QWP behind the shaper setup, the O-LP
output fields were converted into CNR-CP fields. On the right-hand side of Fig. 2, the temporal
polarization profile of the generated fields is illustrated by means of measured CCTs, as shown

                                                                             Vol. 25, No. 11 | 29 May 2017 | OPTICS EXPRESS 12525 



in frames (i)-(iii). For clarity, only one beating period of the measured CC traces

C(τ) =

(
Cx (τ)
Cy (τ)

)
=

(
Cx (τ; 0, π2 )
Cx (τ; π2 , 0)

)
(12)

is plotted. The measured CCTs reveal propeller-type polarization profiles characteristic for
commensurable center frequencies [cf. Eq. (9)]. The frequency ratios of (4ω : 5ω), (3ω : 4ω)
and (2ω : 3ω) result in propellers with c9 [frame (i)], c7 [frame (ii)] and c5 symmetry [frame
(iii)], respectively.

Figure 2(e) shows the temporal characterization of the (3ω : 4ω)-field from Fig. 2(c) by
second order CC. The interferometric CC (gray line), measured by setting ωre f ,n = 0 and
ϕ0,n = 0 (for n = 1, 2) in Eq. (7), displays the beating of the two colors. The trace oscillates
rapidly at the mean frequency ωmean = (ω1 + ω2)/2 = 2.45 rad/fs, corresponding to a time
constant of τmean = 2π/ωmean = 2.6 fs. The upper and lower envelopes of the beating (green
and darkgreen line) were obtained by setting ωre f ,n = ωmean and ϕ0,n = 0 for the upper
and ϕ0,n = π for the lower envelope. Both traces oscillate slowly at the frequency 0.34 rad/fs
corresponding to a period of 18.5 fs. This is in accordance with the expected beating frequency
ωbeat = (ω2 − ω1)/2 = 0.35 rad/fs and period τbeat = 2π/ωbeat = 18.0 fs. The total envelopes
of the pulse (black lines) were measured by setting ωre f ,n = ωn and ϕ0,n = 0 for the upper and
ϕ0,n = π for the lower envelope. The full width at half maximum (FWHM) is ∆τ = 35.8 fs, from
which we infer a pulse duration of ∆t = ∆τ/

√
2 = 25.3 fs. This value is in excellent agreement

with the bandwidth-limit 4 ln(2)/∆ω = 25.2 fs of Gaussian-shaped pulses, indicating effective
shaper-based pulse compression. For comparison, the inset to Fig. 2(e) shows simulated CC
traces calculated on the basis of the experimental pulse parameters.

2.3.2. Tailored O-LP and CNR-CP bichromatic fields

Next we investigate the generation of shaped bichromatic fields. For this purpose, we make
use of the phase functions ϕn (ω) (with n = 1, 2) in Eqs. (1) and (2) to implement individual
spectral phase modulation of both colors. The spectral phase modulation is demonstrated again
on the example of a (3ω : 4ω)-field as depicted in Fig. 2(c). Figure 3(a) shows the phase-
modulated (3ω : 4ω)-field in frequency domain. Both colors are modulated by periodic spectral
phase functions of the form ϕn (ω) = a sin[Tn (ω − ωn )]. In general, sinusoidal spectral phase
modulation results in a temporal sequence of scaled input pulse replica [39–43], with the
amplitude of the ν-th sub-pulse determined by the Bessel function Jν (a) and the sub-pulse
separation given by the sine frequency Tn . For the amplitude of both sine functions, we chose a
value of a = 1.43 rad for which J0(a) = J1(a). Therefore, and taking into account the symmetry
relation J−ν (a) = (−1)ν Jν (a) of the Bessel function, the resulting pulse sequence in time
domain exhibits three central sub-pulses (ν = −1, 0, 1) of equal amplitude, the first pre-pulse
(ν = −1) being phase-shifted by π. The time constants of the two sine functions were set to
T1 = 90 fs, to ensure non-overlapping sub-pulses, and T2 = 2T1 = 180 fs.

We start by discussing the modulated O-LP field at the shaper output. In the O-LP case,
both colors are disentangled by their polarization directions. Hence, results of a temporal
characterization of the s- and p-component via second order CC, shown in Figs. 3(b) and (c),
directly reflect the temporal structure of each color. Both measurements display multi-pulse
sequences with three central sub-pulses of equal amplitude. The π-phase shift of the respective
first pre-pulse is indicated by the upper and lower CC envelopes exchanging their roles. Due
to the choice of T1 and T2, the sub-pulse separation of the p-polarized pulse sequence (blue
component, ω2) is twice the separation of the s-polarized sequence (red component, ω1). This
leads to an alternating series of O-LP bichromatic and s-polarized single-color pulses.

The polarization profiles of the individual sub-pulses are illustrated in frames (i)-(v) of Fig. 3
by measured CCTs. For the central main pulse [frame (iii)], where both colors contribute with
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Fig. 3. Bichromatic fields from individual phase modulation of the two orthogonally po-
larized spectral bands. (a) Bichromatic amplitude profile of a (3ω : 4ω) O-LP field (gray
background) with sinusoidal phase modulation functions ϕ1(ω) (red line) and ϕ2(ω) (blue
lines). (b) and (c) Temporal characterization of the s- and p-component of the modulated
field by second order CC. Measured CCTs of the individual sub-pulses reveal Lissajous-type
polarization profiles for the bichromatic sub-pulses shown in frames (i)-(v). (d) In the
CNR-CP case, the bichromatic sub-pulses exhibit a beating pattern. The beating is fully
modulated in the central sub-pulse shown in (e), resulting in a propeller-type polarization
profile [frame (viii)]. Rosette-shaped CCTs as shown in frames (vi) and (x) arise due to
unequal amplitudes of the two colors in the corresponding sub-pulses.

equal amplitude, the CCT describes a Lissajous-curve with characteristic (3ω : 4ω) symmetry.
For the first pre- and post-pulse [of the overall pulse sequence; frames (ii) and (iv)] the CCTs
capture only the s-polarized red component (ω1). The second pre- and post-pulse again describe
(3ω : 4ω) Lissajous-curves [frames (i) and (v)], now compressed in x-direction by a factor of
J2(1.43)/J1(1.43) ≈ 0.4 corresponding to the amplitude ratio of the contributing sub-pulses.
While the second post-pulse oscillates in-phase with the main pulse, the second pre-pulse is
mirrored in y-direction due to the above mentioned π phase shift in the p-component resulting
from the symmetry relation of the Bessel functions.
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By use of a QWP behind the shaper setup, the O-LP field is converted into a phase-modulated
CNR-CP bichromatic field. Since the QWP mixes both colors, their contributions to the temporal
field are no longer disentangled. Figure 3(d) shows the measured second order CC for the p-
component of the modulated CNR-CP field. The CC trace displays a multi-pulse sequence with a
sub-pulse separation of 90 fs. The interferometric CC of the main pulse exhibits a beating pattern
best seen in the enhancement in Fig. 3(e) where the measured beating envelopes are shown in
addition. The corresponding CCT in frame (viii) describes a propeller with c7 symmetry similar
to the one in Fig. 2(c). For the first pre- and post-pulse, the interferometric CC oscillates with
the carrier frequency ω1 since there is no interference with the blue component. In accordance
with the circular polarization of the red component, the CCTs in frames (vii) and (ix) describe
circles. For the second pre- and post-pulse the interferometric CC also exhibits a beating. In this
case, however, the beating contrast is reduced due to the unequal amplitudes of red and blue
component. This leads to the rosette-shaped CCTs shown in frames (vi) and (x). Generally, the
propeller shapes in frames (vi)-(x) derive from the corresponding Lissajous-curves in frames
(i)-(v) by application of the QWP, mathematically described by the matrix in Eq. (10).

2.3.3. CEP stability and control

The CEP of few-cycle laser pulses is a central control parameter in attosecond (as) science
[44–47]. It is used e.g. to steer the motion of free electrons in as-pulse generation via high
harmonic generation (HHG) [48–51] or to manipulate the dynamics of bound electrons in atoms
and molecules [52–54]. The physical mechanism behind these processes often relies on a Brumer-
Shapiro-type control scheme based on the interference of M- vs. N-photon excitations [13].
When frequency-multiplied light from the same fundamental pulse is used, the CEP dependence
of the excitation cancels [47], leaving the relative phase between the two driving fields as the
basic control parameter. This is the case in many (ω : 2ω) applications where the fundamental
and second harmonic of a CEP-unstable laser is used. In shaper-generated bichromatic fields,
both the M- and the N-photon transition are driven by the same fundamental pulse. As discussed
below [cf. Eq. (13)], this intra-pulse quantum interference is sensitive not only to the relative
phase between the two colors but also to the CEP of the driving pulse. Thus, stabilization of the
CEP is crucial in order to establish efficient bichromatic control schemes. In our experiments,
the input WLS is actively CEP stabilized with short-term RMS fluctuations of about 260 mrad
over 1 s and only marginally larger long-term fluctuations of about 270 mrad measured over 1 h
[see Sec. 2.1]. To preserve the CEP stability, our shaper setup is built in a robust and compact
design [15, 28] minimizing optomechanical vibrations and reducing the optical path length.
The CEP stability of the bichromatic output fields is investigated using a home-built f -2 f -
interferometer capable of single-shot measurements. By feeding the active stabilization loop of
the laser system with data from the interferometer, we obtained short-term CEP fluctuations of
about 270 mrad RMS over a period of 1 s, which converge to long-term fluctuations in the order
of 280 mrad RMS, measured over a period of 1 h, behind the shaper. Thus, the setup increases the
short-term fluctuations marginally and leaves the long-term CEP stability unaltered. Figure 4(a)
displays the results of a measurement performed over 30 s. The discrete steps were introduced by
the pulse shaper to demonstrate shaper-based CEP control. For this purpose, we applied constant
phase functions of the form ϕn (ω) ≡ φCE (for n = 1, 2) to the LC-SLM. Switching the CEP
between φCE = 0 and π during the first 20 s, or φCE = 0 and π/2 in the last 10 s, is clearly
visible in the data. CEP-overshoots following every switching event are due to the re-alignment
of the liquid crystals.

In addition, the shaper-based CEP control was verified by temporal characterization of the
output fields via second order CC including the measurement of carrier and envelope. The results
are shown in Figs. 4(b)-(d). The left column displays CC traces of the linearly (p) polarized
compressed few-cycle pulse, obtained when no amplitude modulation is applied to the WLS.
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Fig. 4. Pulse shaper control of the CEP. (a) CEP fluctuations measured behind the shaper
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LC-SLM. (b)-(d) Temporal characterization of the output fields for different values of the
CEP φCE . Left: Few-cycle pulses obtained from the compressed WLS with no amplitude
modulation applied. Right: Results for a bandwidth-limited (3ω : 4ω) CNR-CP bichromatic
pulse.

For φCE = 0 the interferometric CC (darkgreen line) in Fig. 4(b) displays a ∆t = 5.3 fs pulse
with a cosine carrier oscillation. Varying the CEP to φCE = π/2 and π results in sine and
negative cosine carrier oscillations as shown in Figs. 4(c) and (d), respectively. The right column
shows the results obtained for the bandwidth-limited (3ω : 4ω) CNR-CP bichromatic field
already discussed in Sec. 2.3.1 [cf. Figs. 2(c) and (e)]. Also, in this case, the carrier oscillation
is accurately controlled by choice of φCE . For (Mω : Nω) CNR-CP fields, shifting the CEP
corresponds to a rotation of the resulting propeller pulse about the propagation axis by the angle

αM,N (φCE , φ1 , φ2) =
N · (φCE + φ1) − M · (φCE + φ2)

M + N
. (13)

The rotation direction, i.e. the sign of αM,N , depends on the helicity of the two colors. According
to Eq. (13), the relative phases of red (ω1 = Mδω) and blue (ω2 = Nδω) spectral bands, φ1
and φ2, respectively, rotate the propeller in opposite directions. For N > M, rotation by the
phase φ1 is more effective compared to φ2. In addition, Eq. (13) reveals that the CEP rotates
the propeller in the φ1-direction, however at a lower rate of (N − M)/(M + N ) · φCE . Since the
angle is affected by CEP fluctuations, coherent control experiments based on the interference of
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N vs. M-photon excitation using shaper-generated bichromatic fields require a stable CEP.
Overall, the results presented in Secs. 2.3.1-2.3.3 highlight the capability of the shaper-based

approach to generate high-fidelity polarization-shaped bichromatic fields with low-order (com-
mensurable) frequency ratio from a CEP-stable WLS. The CEP is maintained and accurately
controlled by the setup. Combined spectral phase and amplitude modulation of the WLS en-
ables both the generation of waveform-controlled few-cycle pulses and the design of tailored
bichromatic fields.

3. Summary and conclusion

In this paper, we demonstrated an optical scheme for amplitude and phase modulation of octave-
spanning CEP-stable WL supercontinua to generate ultrashort polarization-tailored bichromatic
fields. By adapting a 4 f polarization pulse shaper to the ultrabroadband WLS, and making use
of a composite polarizer in the Fourier plane for independent modulation of two orthogonally
polarized spectral bands, we were able to generate bichromatic fields with low-order commensu-
rable center frequencies. Shaper-based CC measurements revealed the temporal structure and the
Lissajous-/propeller-type polarization profiles of the generated O-LP and CNR-CP bichromatic
fields. Unlike interferometric setups, the shaper-based scheme provides inherent phase stability
of the two colors due to the common-path geometry. The CEP stability behind the shaper is
preserved owing to the robust and compact design of the setup. The presented scheme offers
full control over all bichromatic parameters such as the frequency ratio, the amplitude ratio, the
bandwidth and the polarization state of both colors. Moreover, the additional phase modulation
modality provides us with the complete toolbox of femtosecond pulse shaping [35, 55, 56]
individually applicable to each color. The output waveform can be controlled by tuning the CEP
or by adjusting the relative phase and time delay between the two colors with zeptosecond preci-
sion [15]. More generally, the freedom to shape the spectral phase and amplitude of both bands
individually allows to design tailor-made bichromatic fields of unprecedented versatility, making
our approach especially attractive for observation and coherent control of ultrafast dynamics.
Generally, high-fidelity spectral amplitude and phase-modulation of CEP-stable ultrabroadband
WL supercontinua opens up a new class of polarization-tailored ultrashort laser pulses and
provides new perspectives for the generation of accurately controlled few-cycle waveforms.
Due to the enormous bandwidth of the WL of about 1.6 eV at the central photon energy of
2 eV, bichromatic polarization shaping enables high precision polarization-sensitive two-color
pump-probe experiments with phase-locked CEP-stable laser pulses at a broad range of exci-
tation wavelengths. Currently, we employ polarization-shaped bichromatic fields in studies on
bichromatic control of ultrafast electron dynamics via M- vs. N-photon interference of states
with different parity. Further applications of polarization-shaped bichromatic laser fields include
coherent control of HHG as theoretically suggested by [1] along with refined studies of the
multiphoton photoelectron circular dichroism of chiral molecules [57] in order to clarify the
underlying physical mechanism.
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