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Abstract: Indoor positioning has grasped great attention in recent years. A number of efforts have
been exerted to achieve high positioning accuracy. However, there exists no technology that proves
its efficacy in various situations. In this paper, we propose a novel positioning method based on
fusing trilateration and dead reckoning. We employ Kalman filtering as a position fusion algorithm.
Moreover, we adopt an Android device with Bluetooth Low Energy modules as the communication
platform to avoid excessive energy consumption and to improve the stability of the received signal
strength. To further improve the positioning accuracy, we take the environmental context information
into account while generating the position fixes. Extensive experiments in a testbed are conducted
to examine the performance of three approaches: trilateration, dead reckoning and the fusion
method. Additionally, the influence of the knowledge of the environmental context is also examined.
Finally, our proposed fusion method outperforms both trilateration and dead reckoning in terms
of accuracy: experimental results show that the Kalman-based fusion, for our settings, achieves
a positioning accuracy of less than one meter.

Keywords: indoor localization; Bluetooth Low Energy; Kalman filter; dead reckoning; trilateration;
data fusion

1. Introduction

The primary goal of indoor positioning systems (IPS) for some users, notably hospitals and
malls, is to provide navigation services and tracking solutions. However, others utilize IPS to better
market to customers, provide timely information via audio for tours, offer video or augmented reality
experiences or connect people of interest in proximity to one another. Similarly, airports can monitor
the mobile traffic for crowd control, staff management and alerts, and the airlines can locate passengers,
giving them a push notification to start walking towards the gate.

Recently, Microsoft has released a white paper about their indoor localization competition [1].
After analyzing the results of numerous indoor localization solutions, the paper concludes that the
indoor localization problem is not solved. There does not exist a technology or a combination of
technologies that can recreate the experience that the global positioning system (GPS) offers outdoors
in the indoor environment. Furthermore, they confirm that no single solution works perfectly in all
environments. Hence, the best solution for indoor positioning might be a hybrid one. These conclusions
motivate us to further investigate novel ideas for designing a robust indoor localization method.

Generally, GPS-based localization systems are best suited for outdoor localization. The lack of
signal coverage in indoor environments renders GPS not a suitable solution for indoor localization.
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Hence, several alternative methods were discovered. These methods are based on different information
sources like wireless communication technologies or sensor measurements. However, each of them
has disadvantages, such as low precision, unreliability, high complexity or high hardware cost.
The accuracy problem becomes severe in the case of small-scale indoor buildings. Moreover, buildings
and their interiors often have different structures, for example executives’ offices typically have
different geometric characteristics than secretaries’ offices. Consequently, the dilemma of designing
a suitable indoor localization method is relatively troublesome.

As an emerging technology, mobiles devices, such as smartphones and tablets, have been exploited
in the contest of indoor localization. This trend is motivated by the statistics, which estimate the
contemporary number of smartphone users as approximately 2.08 billion. This number is expected to
approach 2.66 billion user in 2019 [2]. A number of communication facilities have been used in indoor
localization, such as WiFi and Bluetooth.

WiFi is a wireless local area network technology based on the IEEE 802.11 standard. Through its
increasing availability, more and more devices such as personal computers, smartphones, tablets and video
games are equipped with WiFi modules. Bluetooth is a wireless communication technology standard
based on the IEEE 802.15.1 and operates in the 2.4-GHz frequency ISM band [3]. Recently, a novel
communication facility, referred to as BLE, has been released. The main benefit of such Bluetooth Low
Energy (BLE) beacons, compared to the classic Bluetooth, is their low energy consumption, low hardware
cost and small size [4]. Therefore, it is rapidly exploited in various new devices and applications such as
smartphones or tablets. Table 1 summarizes the advantage and disadvantages of the previously-presented
communication technologies.

As can be deduced from Table 1, BLE is well suitable for indoor localization relative to WiFi and the
classic Bluetooth. Specifically, BLE signals are not influenced that strongly by the environment because
of their lower transmission power [5]. Furthermore, BLE adopts a channel hopping mechanism, leading
to fewer package collisions. Finally, BLE has a much higher sampling rate, which makes it easier to filter
out outliers. These advantages motivate us to exploit BLE beacons for a precise indoor localization.

Table 1. Comparison of different wireless communication technologies

Characteristic WiFi Classic Bluetooth BLE

Signal Rate 54 Mbps 1 Mbps 720 Kbps
Normal Range 100 m 10 m 10 m

Transmission Power 20 dBm 10 dBm 1 dBm
Energy Consumption 100–50 mA 57 mA 15 mA

Hardware Cost high medium low

The main aim of this paper is to design a precise IPS using a set of pre-deployed BLE beacons
and smart mobile devices (e.g., smartphones, tablets and smart watches). In this work, numerous
experimental studies of the currently-available indoor localization technologies, including trilateration
and dead reckoning, are performed. The primary objective is to examine the level of accuracy and the
impact of obstacles and the direction of the mobile device antenna. To get an even higher accuracy,
a novel hybrid method, which integrates existing indoor localization methods, namely dead reckoning
and trilateration, is investigated. Such an integration aims at emphasizing the advantages of individual
methods and relieving their weaknesses. To summarize, the paper has three contributions as follows.

• We perform an extensive experimental study to investigate a BLE-based trilateration method for
indoor localization. The study comprises analyzing the BLE received signal strength indication
(RSSI) measurements, adopting Kalman filtering to purify the RSSI measurements and eventually
estimating the influences of obstacles and antenna’s direction on the collected RSSI measurements.

• Extensive experiments are carried out to study a dead reckoning method for indoor localization.
Since dead reckoning relies on sensors readings, we started by analyzing the noise associated
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with the sensors readings. Additionally, we study several relevant factors such as step length,
step counting, heading direction and the characteristics of a human gait.

• A hybrid indoor localization method is proposed using BLE-integrated smartphones to overcome
the limitations of both trilateration and dead reckoning. Moreover, a Kalman filter is exploited
for the fusion of both methods. We further improve the positioning accuracy via considering
the environmental context information such as the building exterior’s width and length.
After experimentally examining the proposed fusion method, the obtained results show high
accuracy of less than one meter (m). Furthermore, the proposed method is found more robust and
reliable relative to the trilateration and the dead reckoning methods. This fact emerges because
even if one part of the position estimation mechanism (i.e., trilateration or dead reckoning) fails,
the position fortunately can be estimated by the other part.

The remainder of this paper is organized as follows. Section 2 discusses the related work, with
a focus on wireless sensor network (WSN)-based and smartphone-based localization approaches.
Section 3 defines the research problem and explains the overview of our system model. Section 4 details
the trilateration method and examines the RSSI-based localization technique. Section 5 investigates
the dead reckoning method, followed by the details of the proposed hybrid localization scheme with
Kalman-based fusion in Section 6. Section 7 elaborates the performance evaluation of the various
approaches. Finally, Section 8 provides the concluding remarks.

2. Related Work

2.1. WSN-Based Localization Approaches

During the last decade, a number of efforts has been exerted in developing reliable indoor
localization systems. One of these early efforts is the active badge localization system developed by
Roy Want et al. in 2001 [6]. In this system, several sensor nodes are deployed at fixed spots inside
a building. Users wear an active badge, which transmits a unique code via an infrared sensor every
15 s. The sensor nodes are polled by a location manager software for sightings. This centralized location
manager calculates the position of the active badge and then provides location information to the
users. Another indoor localization system is the cricket indoor localization system [7]. Cricket uses
anchors that transmit ultrasound pulse and radio messages. A mobile node receives these messages
and calculates its own position. The results show that positions can be determined with an accuracy of
10 cm. However, these crickets are not practical due to the high hardware cost of the mobile nodes.
RADAR [8] is the one of the first indoor localization systems using the WiFi signal. It is based on the
fingerprint method, where the reference values are collected during an offline phase and compared
with actual measurements during the online phase. The result of the work shows that RADAR localizes
user’s laptops with an accuracy of 2 m to 3 m.

2.2. Smartphone-Based Localization Approaches

The technical literature comprises many indoor localization systems where users have to wear
an additional mobile node. However, these solutions are neither comfortable nor user-friendly since
people, in most cases, tend to not wear additional devices. To address this problem, investigations
of indoor localization systems with smartphones have had much effort put into them. One of these
systems uses several sensors of the smartphone to perform localization in [9]. At the outset, an initial
location should be preset before starting the localization algorithm. Then, the smartphone sensors are
used to detect steps and the length of a step, as well as the heading direction. The position is then
estimated based on the sensor measurements. However, some of the sensors, such as the magnetic
sensor for the heading direction, cause interference. Furthermore, the emerging error grows greatly
over time, which makes the system unreliable. Another approach is described in [10]. In this approach,
the position is calculated according to the RSSI of a WiFi network and the fingerprint method. A major
challenge of the fingerprint approach is the large variance of RSSI signals, resulting in low accuracy
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and low reliability. Besides, another disadvantage of this method is the overhead of utilizing databases,
which consumes much time to set up the database, especially for large buildings. Because of the
disadvantages of the internal sensor and the fingerprint solutions, [11] presents a hybrid solution that
fuses smartphone sensor measurements with WiFi RSSI measurements. In this approach, a filter based
on the Markov model is used for the fusion. The results show that the system is able to obtain an
accuracy of about 1.5 m.

2.3. Discussion

To sum up, the mentioned indoor location systems suffer from several drawbacks. The WSN-based
methods have the disadvantage that people have to wear additional hardware, making the solution
not user-friendly. On the other hand, the smartphone-based methods are more user-friendly, but using
the sensors in smartphones is not reliable because of interference and the growing error. Combining
the smartphone and the fingerprint method to determine the location is more precise and reliable, but
the effort to set up the required database, especially for large buildings, is huge. Furthermore, the
hybrid solution shows an acceptable accuracy, but WiFi might not be as accurate as BLE for RSSI-based
measurements. In summary, Table 2 lists the different approaches in terms of the accuracy, advantages
and disadvantages.

Table 2. Accuracy of different approaches [12].

Solution Accuracy Advantages/Disadvantages

Active Badge room size − low accuracy
− additional hardware

Cricket 10 cm
+ good accuracy
− high hardware cost
− additional hardware

RADAR 2–3 m
+ low hardware cost
− varying RSSI
− database creation

Smartphone + Internal Sensors 2–3 m
+ low hardware cost
− emerging error
− sensor interference

Smartphone + WiFi RSSI-Fingerprint 1–2 m

+ good accuracy
+ low hardware cost
− varying RSSI
− database creation

Smartphone + Internal Sensors +
WiFi RSSI-Trilateration 1.5 m

+ good accuracy
+ low hardware cost
+ constant error
− varying RSSI
− sensor interference

3. Overview

In this section, we define the research problem, and subsequently, we explain the system model.

3.1. Problem Formulation

Consider a device user in a building who wishes to navigate through the building interiors.
The building is equipped with m BLE modules, each of which can be identified by a unique
identification (ID) number. Such BLE modules are typically deployed in predefined anchor points.
Equation (1) shows the error eml as the Euclidean distance between the obtained position pml and the
actual position p̂o, where i denotes the exploited position fix. The position pml refers to the position
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of a mobile device obtained via adopting the multilateration method. This deviation emerges due to
several factors such as RSSI instability, obstacles distraction and multipath fading.

eml =

√
m

∑
i=1

(
pml(i)− p̂o

)2
(i = 1, 2, · · · , m) (1)

Alternatively, the position fix is feasible without the help of the BLE modules. Dead reckoning
typically utilizes a set of embedded sensors at each mobile device to determine the position pdr.
Specifically, the accelerometer, magnetometer and orientation sensor are involved in the localization
process provided that the initial position pinit is already known. Equation (2) defines the position
estimation using dead reckoning in terms of the initial position pinit and the step length ls, where w is
the total number of steps. Since dead reckoning relies on estimating the step length, the Euclidean error
edr continuously grows as given in Equation (3). The dead reckoning position Pdr(ls, t) is expressed in
terms of the step length and the total number of steps.

pdr = pinit + ls · w (2)

edr =

√(
pdr(ls, w)− p̂o

)2
(3)

In this work, we target improving the accuracy of indoor position fixes. In this case, our objective
function is to minimize the positioning error, which can be obtained in both cases of multilateration
and dead reckoning. For multilateration, a minimum number of BLE modules needs to be engaged
in the localization procedure. Additionally, the growing error in dead reckoning has to be avoided.
To achieve the above objectives, we propose a Kalman-based position fusion method, which overcomes
the aforementioned limitations.

3.2. System Model

As explained above, several challenges stand against obtaining highly accurate indoor position
fixes. This motivates us to examine a hybrid method through which the limitations of each individual
method are mitigated. Figure 1 depicts the components of our proposed method. A set of BLE modules
has to be fixed at specific prior-known locations. During run-time, a mobile device performs dual
operations, including multilateration and dead reckoning. In the former method, the mobile device
scans the wireless channel of the scattered BLE modules. If at least three BLE modules are detected,
the RSSI readings are exploited to determine a coarse position fix.
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Figure 1. System architecture.

Similarly, the mobile device has to activate its embedded sensors to compute the step length,
heading direction and number of steps. A Kalman filter is used in this work as a fusion center to
compute a fine position fix based on merging the two obtained positions. To this end, we shall first
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study both methods in terms of the error sources. Therefore, we investigate below several factors that
negatively affect both methods, i.e., trilateration and dead reckoning.

4. RSSI Localization

In this section, the trilateration method in combination with RSSI measurements of BLE modules
is examined. The issues of multipath and fading are described firstly. RSSI measurements are analyzed,
and then, a propagation model to get the distance from the RSSI is presented. To achieve a better
accuracy, different RSSI filters are applied and compared. Furthermore, the trilateration method is
explained in detail, and the proposed algorithm is shown. At the end, the impact of the antenna
direction and the position of the human body are respectively examined.

4.1. RSSI Problems

To achieve a high accuracy for localization, reliable approaches to measure RSSI are required.
Therefore, it is fundamental to understand the behaviors of the measured RSSI values. Radio signal
waves such as Bluetooth are analyzed in [13]. The results of this work show that the RSSI is influenced
by interference from the environment, which is mainly caused by reflections, i.e., when the signal
wave hits an object. These reflections can lead to multiple paths or fading signals that cause incorrect
RSSI measurements.

4.2. RSSI Analysis

To analyze RSSI variations, 50 RSSI values are measured with a constant distance of one meter
away from the BLE module. Figure 2a shows the expected RSSI variance within an interval of 7 dB
and a standard deviation of 1.25 dB.

This experiment is repeated with seven BLE modules. The histogram in Figure 2b displays the
RSSI values of all measurements. It shows that the distribution of the RSSI values spreads around
−75 dB. Table 3 lists the results. The average value of all measurements is −76.72 dB, and the average
standard deviation is 3.91 dB. These results show that the raw RSSI values are not reliable enough for
the localization, and some filters are required to improve the stability of the RSSI values.
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Figure 2. RSSI analysis for a BLE-based communication.
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Table 3. Average RSSI values.

BLE Module No. 1 2 3 4 5 6 7 8 Average

Average (in dB) −74.08 −75.36 −71.00 −80.73 −77.65 −81.25 −79.63 −74.06 −76.72
Standard Deviation 2.78 2.23 5.84 5.71 2.97 5.71 3.43 2.57 3.91

4.3. Signal Propagation Model

Before applying trilateration to calculate the position, it is necessary to estimate the distances
between the mobile node and, at least, three reference nodes. The calculation is based on the relation of
the distance to the RSSI. The RSSI decreases with the distance of nodes, namely the longer the distance
is, the lower the RSSI becomes. Since RSSI is highly affected by multipath and fading phenomena,
a model considering the environment is required. A well-known model to convert an RSSI value into
distance is the log-distance path loss model [14]. This path loss model defines the path loss as the
difference between the transmission power (PTX) and the received power (PRX).

PL = PTX − PRX (4)

The path loss model can also be expressed as:

PL = PLd0 + 10n × log10

( d
d0

)
+ Xσ (5)

where PLd0 is the RSSI reference value measured at the distance d0. The parameter n is the path loss
exponent, which indicates the rate of increasing path loss related to the distance. It also represents
the multipath effect. Further, d is the actual distance to the transmitter, and Xσ is a zero-mean normal
random variable with standard deviation. Without fading, this variable is set to zero. The path loss
model can also be expressed as [15]:

RSSI = RSSd0 − 10n × log10

( d
d0

)
+ Xσ (6)

where RSSd0 is the measured reference value at the distance of d0. For further experiments in this
work, d0 is set to 1 m, so that RSSd0 represents the measured RSSI at a distance of 1 m to the transmitter.
Since there is no large obstacle in the environment to be tested, shadowing is not expected, and Xσ

is set to zero. The path loss exponent n depends on the environmental conditions. Table 4 lists some
typical values for n regarding the environment.

Table 4. Path loss exponents for different environments.

Environment Path Loss Exponent n

Free Space 2
Urban Area Cellular Radio 2.7–3.5

Shadowed Urban Cellular Radio 3–5
Line-of-Sight in Building 1.6–1.8
Obstruction in Building 4–6
Obstruction in Factories 2–3

In Section 4.2, the reference value measured with the distance of 1 m to the transmitter is
already determined as −76.72 dB. When the distance d is known, then n can be calculated by the
following equation:

n =
RSSd0 − RSS
10 × log10(d)

(7)
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To get n from each BLE module, RSSI values are measured at different distances, i.e., 0.5 m, 1.5 m,
2 m, 2.5 m, 3 m, 3.5 m and 4 m, respectively, under the same condition. At each distance, 30 values
with each BLE module are measured and averaged. Table 5 shows the average results of n for each
BLE module.

Table 5. Calculations of the loss path exponent n.

BLE Module 1 2 3 4 5 6 7 8 Average

n 2.72 1.60 2.42 0.75 1.49 0.77 1.61 1.71 1.63

The average value of n = 1.63 is used for the further measurements. Figure 3 shows that the RSSI
value decreases with the increasing distance. The red curve represents the theoretical curve form of
the path loss model with the calculated parameters, while the blue curve shows the measured RSSI
values regarding the reference distance. It is clear that the difference between both curves increases
with increasing distance. Therefore, it is showed that applying the distances of less than 4 m in the
RSSI-based model is more accurate.
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Figure 3. Impact of the path loss model.

4.4. RSSI Filtering

The significant variance in the RSSI measurements leads to unreliable distance calculation.
To avoid this, it is necessary to filter the RSSI values. In this section, the average, the median and the
Kalman filter are compared to find the best fitting filter for the RSSI measurements.

4.4.1. Average and Median Filter

The only adjusting parameter for the average and the median filter is the frame size. A larger
frame size might lead to a higher accuracy. However, if the frame size is too large, the measurements
inside the frame becomes rapidly out-of-date. We set the frame size to 20 in this work.

4.4.2. Kalman Filter

For the RSSI filtering, a one-dimensional Kalman filter is used. As previously mentioned, the
Kalman filter has some parameters that have to be determined first. Looking at the RSSI values, their
change is random. Therefore, the transition matrix F and the measurement matrix H are set to one.
Furthermore, there is no external control input. Therefore, B × ut−1 is also set to zero. With these
assumptions, the prediction and update phase can be shown as:

• Prediction Phase:
x̂−t = x̂t−1 (8)

P−
t = Pt−1 + Q (9)
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• Update Phase:

Kt =
P−

t
(P−

t + R)
(10)

x̂t = x̂−t + Kt(zt − x̂−t ) (11)

Pt = (1 − Kt)P−
t (12)

The initial values are set to x̂−t = 0 and P−
t = 0. The values for Q = 0.065 and R = 1.4 are

determined experimentally. After the filters are applied, the curve form of the RSSI values is smoother
than before as shown in Figure 4a. The black line shows the original RSSI measurements without any
filtering. There are many jumps and variations. The average filter (green line) and the median filter
(blue line) do not have such huge jumps, and their variations are not as large as the raw measurements.
The Kalman filter (red line) achieves the fewest jumps and variations. The next step is to compare
the three filters. RSSI values are measured at distances of every 0.5 m up to 10 m. Then, each filter is
consecutively applied to the raw values. Thereafter, the distance is calculated and compared with the
desired value. Correspondingly, Figure 4b shows the distance error, which was measured at different
distances, of each filter.
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Figure 4. Comparative analysis of the adopted filters.

It is shown that the distance error is increasing with an increasing measurement distance. The filtered
distance error by Kalman is the lowest. As a result, the Kalman filter is applied for all following RSSI
filtering in this work.

4.5. Trilateration Method

Trilateration is a traditional method to compute the unknown position of a node. At least three
reference nodes with known positions are required in this method. Besides, the distances between
these nodes and the mobile node are required to be known, as well. Theoretically, each reference node
forms a circle around itself with the radius of the distance to the mobile node. The position of the
unknown node corresponds with the intersection of these three circles. The distances in a plain to the
mobile node can be expressed by the following formulas:

d2
i = (x − xi)

2 + (y − yi)
2 (13)
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whereas (x,y) are the coordinates of the mobile node, which have to be computed. Further, (xi,yi) is
the position and di is the distance to the mobile node of the ith reference node. The equation can be
solved by assuming that the three distances and position of the reference nodes are known and correct.
However, the accurate distances cannot be identified due to the RSSI variations. In reality, the three
circles do not intersect in one point, and there are some residuals ri as shown in Figure 5. The residuals
are the differences between the computed di and the estimated ei distances [16].

ri = di − ei (14)

r1

r3

r2

(x1, y1)

(x2, y2)

(x3, y3)

M

Residuals

Figure 5. Residual values in trilateration model.

Because there are three equations, but only two unknown variables, this system is over-determined
and does not have one unique solution. A method to solve the problem of over-determinacy is the
least square (LSQ) method. The principle of this method is to minimize the sum of the squared
residuals [16]:

(x, y) = min
(
∑N

i=1(ri)
2
)

(15)

Furthermore, in most cases, there are more than three reference nodes available so that
multilateration can be applied. Using more reference nodes could increase the accuracy, since the
weightiness of a measurement error produced by a single node will be reduced. Considering there are
n reference nodes, the equation system becomes as follows:

d2
1 = (x − x1)

2 + (y − y1)
2

...

d2
n = (x − xn)

2 + (y − yn)
2

(16)

By subtracting the last equation from the others one by one, the system can be linearized into:

Ax = b (17)
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with:

A =

 2(x1 − xn) 2(y1 − yn)
...

...
2(xn−1 − xn) 2(yn−1 − yn)

 (18)

x =

[
x̂
ŷ

]
(19)

b =

 x2
1 − x2

n + y2
1 − y2

n + d2
n − d2

1
...

x2
n−1 − x2

n + y2
n−1 − y2

n + d2
n−1 − d2

1

 (20)

This constraint system can be solved by the mentioned LSQ method:

x = (AT A)−1(ATb) (21)

4.6. Proposed Algorithm

In this section, we develop a smartphone-based application for indoor localization. To improve
the accuracy of the position, we implement a hybrid localization scheme with Kalman-based fusion,
despite the aforementioned methods. Algorithm 1 describes the general procedure of the developed
application using the trilateration method. As soon as a new RSSI is measured, a new thread starts.
The measured RSSI is required to be checked if it belongs to one of the eight registered BLE modules.
If the RSSI is accepted, the Kalman filter is applied. Then, the distance is calculated and saved. Since the
position shall only be calculated with actual distances, the algorithm searches for saved distances
older than one second and deletes them. At least three distances are required to apply the trilateration
method. Therefore, the algorithm loops in the procedure of reading RSSI until the threshold τ1 = 3
is reached.

Algorithm 1 BLE-driven trilateration method.

1: while accepted distances i ≥ Threshold τ1 do
2: collect the RSSI readings from n BLE modules
3: if the RSSI is registered then
4: apply the Kalman filter
5: compute the distance di
6: end if
7: if di > Threshold τ2 then ignore di
8: go to Step 2
9: end if

10: end while
11: apply the multilateration for i distances
12: apply the average filter and update the position

As explained in Section 4.3, considering the impact of the path loss model, applying distances
less than 4 m in the RSSI-based model is more accurate. Therefore, the algorithm searches for all saved
distances less than or equal to 4 m and applies the trilateration or multilateration methods if three or
more distances are found. Distances, longer than thresholds (τ2 = 4 m), are ignored. If not at least
three distances are found, then the range of accepted distances (τ2) is increased by one meter, and
the search for three accepted distances is repeated. If the range of accepted distances is larger than
10 m and not enough distances are available, then the thread stops, and no new position is provided.
If the trilateration method is applied successfully, then the average filter is applied, and a new position
is provided.
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4.7. RSSI Impacting Factors

There are different reasons for RSSI variation. In this section, the impacts of the antenna direction of
mobile devices and the human body on the RSSI variation are analyzed. For the antenna direction, RSSI
is measured twice from three different positions. During the first experiment, the antenna of the mobile
device is oriented towards the BLE module. During the second experiment, the antenna is oriented
away from the BLE module. Table 6 shows the results of the measurements. These measurements are
repeated with two further BLE modules.

Table 6. RSSI measurements depending on the antenna direction.

Distance 1 m 2.5 m 4 m

Oriented towards Receiver −80.54 dB −79.74 dB −86.86 dB
Not Oriented towards Receiver −82.16 dB −82.95 dB −88.59 dB

Difference 1.62 dB 2.41 dB 1.73 dB

The results clearly show that there is a difference of 1.5 dB–2.5 dB if the antenna of the mobile
node is not oriented directly toward the transmitter. This phenomenon is one problem that reduces the
accuracy and has to be considered in the future.

Another phenomenon influencing the RSSI values is the blocking of obstacles. Depending on
the material of the obstacle, the extent of influence varies. One non-negligible material absorbing the
signal strength is water [17]. Since the human body contains about 50%–60% water [18], it can also
be seen as an obstacle preventing the line-of-sight (LoS). The RSSI values are measured twice from
different distances. The antenna of the receiver is always oriented towards the BLE module so that the
antenna direction does not influence the measurements. At the first run, the user is standing behind
the mobile device, so that there is an LoS between transmitter and receiver. At the second run, the user
is standing between the mobile device and the BLE module, so that there is no-line-of-sight (NLoS).
Table 7 shows the results of these measurements.

Table 7. RSSI values with LoS and no-line-of-sight (NLoS) scenarios.

Distance 1 m 2.5 m 4 m

LoS −79.96 dB −76.46 dB −81.40 dB
NLoS −81.65 dB −79.59 dB −87.32 dB

Difference 1.69 dB 3.13 dB 5.92 dB

At small distances, e.g., one meter, the difference between the RSSI measurement is very small.
However, with growing distance, the difference between the measurements with LoS and NLoS is
increasing. In general, the calculated RSSI with LoS is smaller than with NLoS. This experiment shows
that the human body blocks the LoS especially with larger distances between transmitter and receiver.

5. Dead Reckoning

In this section, we investigate the dead reckoning method together with the internal sensors of
a mobile device. First, we perform a noise analysis and explain the possibility of detecting steps in
detail. Then, we present different methods to determine the step length. In the end, the impact of the
heading direction is also analyzed. For the following experiments, a tablet, i.e., Samsung Galaxy TAB 3
10.1 P5210, is utilized.

5.1. Sensors Noise Analysis

Since all of the following estimations are based on sensor measurements, it is highly required
that the sensors work precisely. Therefore, a noise analysis for each sensor is carried out. During the
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tests, the tablet is attached stationary on a table. From each sensor, 500 measurements are used for
the analysis.

5.1.1. Accelerometer Sensor

Most smartphones are equipped with an internal three-axis accelerometer, which can measure
the acceleration force along the x-, y- and z-axis. If the device is placed stationary on a table, then the
expected measurements for the x- and y-axis are 0 m/s2, since no acceleration is applied along these
axes. On the z-axis, Earth gravity applies, so that a value of 9.81 m/s2 is expected. Figure 6a shows the
results of the three axes.

As expected, the average values of the x- and y-axis are nearly 0 m/s2 and of the z-axis are about
9.8 m/s2. The average values of the measurements and the standard deviations are displayed in
Table 8. Since the standard deviation of each axis is very low, we believe that the measurements are
very precise.

Table 8. Acceleration measurements.

x-Axis y-Axis z-Axis

Average in m/s2 −0.1293 −0.1895 9.8397
Standard Deviation in m/s2 0.0202 0.0156 0.03244

The linear acceleration is a measured acceleration with removed gravity acceleration. The gravity
acceleration of 9.8 m/s2 can be isolated by applying a low-pass filter. By applying an additional high-pass
filter, the gravity acceleration can then be subtracted from the measured acceleration. The following
equations for the low-pass and high-pass filters are provided by Android [19] to convert the acceleration
into linear accelerations.

gravity = α × gravity + (1 − α)× acc; (22)

accLin = acc − gravity; (23)

where α is a smoothing constant, which is advised to be 0.8 by Android. First of all, the gravity
accelerations to each axis are calculated, and then, they are subtracted from the measured acceleration.
Figure 6b shows the time curve of the linear accelerations. Compared to the measured acceleration,
the values of the z-axis is now around 0 m/s2 (Table 9).
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Table 9. Linear accelerometer measurements.

x-Axis y-Axis z-Axis

Average in m/s2 −0.0003 0.0003 0.0001
Standard Deviation in m/s2 0.0171 0.0131 0.0264

5.1.2. Magnetometer Measurements

The three-axis magnetometer is used to measure the magnetic field of the Earth. The expected
magnitude of the Earth’s magnetic field in Europe is about 48 µT [20]. Figure 7a shows the measurements
of the three axes. The results including the magnitude are presented in Table 10. The magnitude M is
calculated as the absolute value of each axis:

M =
√

x2 + y2 + z2 = 44.9 µT

Table 10. Magnetometer measurements.

x-Axis y-Axis z-Axis Magnitude

Average in µT 0.3864 12.6172 −43.1112 44.9213
Standard Deviation in µT 0.0254 0.0314 0.0987 0.0966

The results show a magnitude of the Earth’s magnetic field of about 45 µT and a standard
deviation of about 0.1 µT. The results are reasonable considering the natural fluctuation in the magnetic
field and the influence of the environment.

5.1.3. Orientation

The orientation sensor is a virtual sensor provided by Android to output the smartphone’s heading
direction. The direction is computed by the fusion values of the accelerometer and the magnetometer.
The outputs are the rotation around the x- (pitch), y- (roll) and z- (azimuth) axis. For the dead reckoning
method, only the azimuth is required [21]. The measurement of the azimuth is depicted in Figure 7b.
The standard deviation in Table 11 of these measurements is higher compared with the accelerometer
measurements. However, even an orientation error of 6° could lead to acceptable position estimations
(see Section 5.5).
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Table 11. Azimuth measurements.

Azimuth

Average in ◦ 0.8936
Standard Deviation in ◦ 0.4581

5.2. Gait Characteristics

For the step detection, it is necessary to explore the characteristics of a gait. Gait analysis in [22]
shows that the basic human walk is periodical and noticeable. During normal walking speed, the center
of gravity of the body changes smoothly in the horizontal, as well as in vertical direction. Each step
can be divided into a stance phase and a swing phase. During the stance phase that constitutes about
62% of the entire gait, the feet are in contact with the ground. The swing phase starts with the foot
leaving the ground and ends when the foot touches the ground again. During each gait cycle, the
center of gravity performs two oscillations, which creates two high and two low peaks. The high peak
occurs at the mid-stance and the mid-swing [23].

5.3. Step Counter

On the basis of the gait characteristics awareness, it is possible to detect steps by observing the
vertical acceleration. A step is defined as a movement made by lifting one foot and putting it down
a step length away. First, measurements of the vertical acceleration are performed. Figure 8 shows the
wave form of the vertical acceleration recorded during 20 steps.
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Figure 8. Vertical acceleration record of 20 steps.

There are different methods to identify a step. One of the simplest ways is to identify a step through
a high peak. However, because the measurements result in multiple peaks and the amplitude varies,
this method is not reliable enough. An advanced method [24] uses the fact that a high peak is always
followed by a low peak. A high and low threshold are set to recognize the peaks, and a step is counted
when a high peak is followed by a low peak. However, unintended movements of the smartphone
can lead to incorrect step detection. Further observations [25] show that a step is also characterized
by its duration time. The typical time between the high and low peak takes about 150 ms–400 ms.
This assumption is based on the fact that a human normally takes two steps per second in normal
walking speed.

Similar to [25], a step is detected when three conditions are all met. Firstly, the accelerometer
measurements have to exceed the upper threshold. Secondly, the accelerometer measurements have to
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fall below the lower threshold. Thirdly, the time between the exceedance of the upper threshold and
the fall below the lower threshold must be between 150 ms and 400 ms.

In Figure 8, it can be observed that the threshold of the high peak must be at least 1 m/s2 or
smaller, and the low threshold must be −1 m/s2 or higher. To find the best thresholds, some step
measurements are carried out. In each test, the user walks 50 steps. The results in Table 12 show that
a threshold of 0.7 obtains the lowest error rate.

Table 12. Threshold examination.

Threshold Run 1 Run 2 Run 3 Run 4 Average Step Error

±0.65 52 52 49 51 1.5
±0.7 48 49 50 51 1
±0.75 53 49 47 48 2.2
±0.8 47 51 35 47 5.5

As previously mentioned, the Android OS provides a step detector. Although the step detector
works with Android 4.4, it also needs special motion-tracking hardware. However, only a handful of
devices such as Nexus 5 or Moto X have such hardware. Therefore, the Android step detector is not
examined any further.

5.4. Step Length Estimation

For predicting the next position, it is necessary to know the step length. The step length depends
on many factors like walking speed, walking style and personal height. Therefore, there are some
different solutions for adjusting the step length. One solution is to set the step length to the average
value of the human step length. The average value of step length of men is 0.78 m, and that of women
is 0.70 m. The average value of both values is 0.74 m [26].

Another way of step length estimation is that it could be individually calculated by the height
of a human being. Therefore, at the first use of the indoor localization system, the height must be
given. According to [26], the step length is calculated by multiplying the height by a factor resulting in
a man’s step length.

Nevertheless, the step length is not constant and depends, for example, on the walking speed
and the individual walking style. Typically, the step length increases with increasing walking speed.
Another solution [27] updates the steps length during the walk. The step length is calculated by using
walking speed, walking frequency and acceleration. The speed is calculated by the integral of the
acceleration. However, calculating the speed from the accelerometer measurements is very error-prone.
Comparing the presented solutions, the online estimation seems to be not very reliable. Furthermore, the
approach of entering the height is not very user-friendly since it requires explicit action from the user.
The first solution, setting the step length to the average value of 0.74 m, is the most practical solution
from this perspective. In the following, it is assumed that the user walks slowly with an average speed
of about 1 m/s so that the step length is quite constant. For these reasons, the approach of setting the
step length to the fixed value of 0.74 m is used.

5.5. Heading Estimation

Since users are not always walking strictly straightforward, the heading of the smartphone must
also be known. To get the heading direction, the Android orientation sensor is applied. An offset is
added to the value so that the heading along the positive x-axis of the testbed coordinate system is
0◦/360◦. To determine the accuracy of the heading, eight different tests are carried out. Each test
comprises 1000 single measurements. The results of these tests are shown in Table 13.
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Table 13. Heading measurement values.

Desired Heading 0◦/360◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

Average 359.56◦ 47.84◦ 93.31◦ 134.02◦ 185.36◦ 225.01◦ 271.81◦ 313.84◦

Standard Deviation 0.81◦ 2.85◦ 3.11◦ 1.56◦ 5.36◦ 0.77◦ 1.83◦ 1.28◦

The results show that the average error is no larger than 6◦. To see the effect of this error,
the following exposition is done: When the user takes a step along the x-axis, it is expected that
the x-value is increased by 0.74 m, and the y-value does not change. If the heading measurement is
measured incorrectly by 6◦, the following equation shows the distance error ε.

xt = xt−1 + 0.74 m × cos(6◦) = 0.736 m (24)

yt = yt−1 + 0.74 m × sin(6◦) = 0.077 m (25)

ε =
√
(0.74 m − 0.736 m)2 + (0 − 0.077 m)2 = 0.08 m (26)

The calculation shows that even a deviation of 6◦ leads to only a distance error of 8 cm, which
is acceptable for the further calculations. Nevertheless, a disadvantage is the vulnerability of the
magnetometer to environment influence over time. One solution to this problem could be calibrating
the magnetometer regularly.

6. Hybrid Indoor Localization

In this section, we elaborate on the position fusion mechanism using the Kalman filter. The positions
of mobile devices are deduced from a combination of the trilateration and the dead reckoning methods.
The motivation behind our proposed hybrid positioning method centers on exploiting the advantages of
each method and simultaneously dodging possible disadvantages. For instance, the position estimation
using the trilateration method seems to be not as accurate as dead reckoning. However, the average
error due to trilateration remains constant. On the other hand, dead reckoning produces highly accurate
position fixes at the beginning of the measurements. Nevertheless, the dead reckoning performance
continuously drops due to accumulative sensing errors.

Figure 9 depicts the processing pipeline of our proposed method. As previously mentioned, dead
reckoning generates a position fix provided that the number of steps and the user orientation are
know. Similarly, trilateration requires several distance measures between the mobile device and the
surrounding BLE modules. Both dead reckoning and trilateration have to be rectified from deviations
due to environmental issues such as multipath fading. Below, we discuss the integration of heading
with the trilateration method before we describe the fusion method in more detail.
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Figure 9. Architecture of the proposed Kalman-based fusion method.
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6.1. Heading-Enhanced Trilateration

The LoS is a crucial condition for accurate localization. With only the BLE modules, it is not
trivial to detect the heading of the mobile device. When integrating the trilateration method with
internal sensors of the mobile device, the heading direction can be determined and taken into account
while estimating the position fix. Two different methods are examined to find the best solution for this
scenario, including (1) adding offsets and (2) adapting the propagation model. The former solution
considers adding or subtracting an offset to the position depending on the heading direction. The first
experiments showed that the measured RSSI values with the NLoS setting are lower than the typical
case. Consequently, the calculated distance becomes larger than the real distance. In other words, the
estimated distances from devices “behind the user” are larger than the distances in reality. Thus, the
estimated position is moved some centimeters before the user. Through extensive experiments, we
found a position shift along the y-axis by approximately 30 cm. Therefore, the offset is set to ±30 cm
depending on the heading direction. Since the corridor, in our scenario, is not wide relative to its
length, the offset is solely added to the y-axis.

The core idea behind the second method is to adapt the propagation model according the user
orientation. As a matter of fact, distance measures typically depend on both the actual position and
the heading direction. At the outset, we individually determine the model parameters RSSd0 and
n for each static BLE module. This calculations should be performed twice in the case of LoS and
NLoS conditions. Subsequently, all distances to BLE modules behind the user are calculated with the
NLoS-parameters; whereas, the distances to BLE modules, which are in front of the user, are calculated
with the LoS parameters. Tables 14 and 15 summarize the calculated model parameters RSSd0 and n
values for both cases. The differences between the calculated parameters RSSd0 and n mainly vary
with the environment characteristics.

Table 14. The propagation model parameters in the case of the LoS condition.

BLE Module No. 1 2 3 4 5 6 7 8

RSSd0 −74.62 −65.16 −71.3 −78.6 −78 −80.46 −76.74 −72.25
n 2.57 1.42 2.47 1.07 1.04 0.05 1.94 1.68

Table 15. The propagation model parameters in the case of the NLoS condition.

BLE Module No. 1 2 3 4 5 6 7 8

RSSd0 −76.86 −76.1 −76.84 −82.86 −77.3 −82.04 −82.52 −75.67
n 2.85 1.78 2.36 0.42 1.93 1.48 1.26 1.74

6.2. Kalman-Based Fusion

A Kalman filter is chosen to integrate trilateration and dead reckoning, thanks to the efficiency and
simplicity of the algorithm. Since the position normally consists of two variables, a two-dimensional
Kalman filter is applied. It is assumed that the state vector x̂t = [ x

y ] represents the 2D coordinates of
the user, i.e., his/her position. The state equation can then be expressed as:

x̂t = (F × x̂t−1) + (B × ut) (27)

where F and B are identity matrices and ut = L ×
[

sin(θ)
cos(θ)

]
is the input vector derived from the

dead reckoning method. In this case, the term L is the step length, and θ is the heading direction.
The measurement model is obtained from the trilateration-based position. The trilateration-based
position [ xT

yT ] is more often estimated than the dead reckoning-based position. Therefore, we determine
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an average value of N trilateration-based positions since the last Kalman update. The measurement
model can be expressed as,

ẑt =
1
N

N

∑
i=1

[
xT(i)
yT(i)

]
(28)

Since the position have to be regularly updated, the Kalman filter updates the position whenever
a new step is detected or periodically with a period length of one second. The Kalman filter has
a prediction and an update phase. For the prediction of the new position, the dead reckoning method is
used. During the update phase, the Kalman filter merges the predicted position with the average value
of the trilateration-based positions. In the prediction phase, a position can be predicted as expressed
by Equations (29) and (30).

x̂t = x̂t−1 + ut (29)

P−
t = Pt−1 + Q (30)

where Q is the covariance of the noise from the dead reckoning method. In the update phase, both
positions are merged. Accordingly, the fused position Pt is expressed in terms of the Kalman gain K, the
identity matrices H and I and the covariance of the noise from the trilateration method R, as denoted
in Equations (31) and (33).

Kt = P−
t × HT(HP−

t HT + R)−
1

(31)

x̂t = x̂−t + Kt(zt − Hx̂−t ) (32)

Pt = (I − KtH)P−
t (33)

The Kalman gain K determines the contribution of each method to the fused position. The main
parameter that highly affects the Kalman gain K is the covariance of the noise from the trilateration
method. Different values for R and Q are experimentally tested. According to our experiments, the
highest positioning accuracy is obtained by using R = 1.25 and Q = 0.005. Below, we elaborate on
the designed testbed before we describe the results of our experiments to evaluate the fusion method.
Moreover, we provide a comparative study between the proposed fusion method and the two baseline
methods including trilateration and dead reckoning.

7. Performance Evaluation

In this section, the performance of the proposed Kalman-based fusion system is evaluated.
First, we describe a testbed composed of a set of BLE modules and a mobile device. Afterwards, the
performance of both the trilateration and the dead reckoning is evaluated at static and dynamic positions.
Additionally, the influence of the knowledge of the environmental context is examined. Finally, the
accuracy of the fusion method is compared to the trilateration and the dead reckoning methods.

7.1. Experiment Setup

Figure 10 depicts the testbed engineered for the positioning performance. The brown points
represent eight BLE modules, which are placed in the corridor. The decision of these BLE modules
placement is made such that the corridor is entirely covered by BLE signals. The test area of the corridor
has a length of 15 m. The first 6 m (from the right) of the corridor has a width of 3.6 m. After 6 m, the
hallway narrows to 2.3 m. The point in the lower right corner in the figure is chosen as the coordinate
system origin.

The BLE modules are placed at a height of 2.65 m. The main reason for the high position is the
reduced disturbance through people walking by. Since a 2D trilateration method is applied, the 3D
model of the room has to be broken down to a 2D-model. Hence, the distance dr from the mobile
device to the position at the wall below the BLE module is required. The distance dr is determined in
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terms of the measured distance dm and the difference h∆ between the BLE module’s and the mobile
device’s height, as given by:

dr =
√

d2
m − h2

∆. (34)
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y Origin

Figure 10. Layout of the implemented testbed.

Since the testbed is fixed, the position value is also limited through the environment context.
It is assumed that users are not walking closer than 0.5 m to the wall. Therefore, it is not possible
that people can walk through walls or outside the testbed. In our experiments, the BLE modules
Bluefruit LE Friend (BLE 4.0) are adopted. These BLE modules use the Nordic nRF51822 chipset.
Further, the developed application for all position estimations is running on a Samsung Galaxy TAB
10.1. This application measures the RSSI and saves the values for the evaluation in text files.

7.2. Step Detection

The performance of dead reckoning mainly relies on the step detection. Hence, the step detector
application is foremost evaluated. To test the accuracy of the step detection, four volunteers have walked
50 steps along a straight path while counting the steps. After the walk, the detected steps are compared
with the expected 50 steps. To have more reliable measurements, each volunteer has performed this test
twice using two mobile devices, including the Motorola Moto G and the tablet Samsung Galaxy TAB
10.1. The results of the step detection test are listed in Tables 16 and 17.

Table 16. Step detection using a Motorola smartphone.

Volunteer No. Walk 1 Walk 2 Walk 3 Average Error in Steps Accuracy

1 55 59 61 8.3 83.3%
2 52 61 58 3.7 92.7%
3 50 51 52 1.0 98.0%
4 51 51 51 1.0 98.0%

Average 4.3 91.4%

Table 17. Step detection using a Samsung tablet.

Volunteer No. Walk 1 Walk 2 Walk 3 Average Error in Steps Accuracy

1 51 52 53 2.0 96.0%
2 49 51 50 0.7 98.7%
3 50 56 53 3.0 94.0%
4 50 50 53 1.0 98.0%

Average 1.7 96.7%

As can be seen in the tables, the step detector using the Samsung tablet is more accurate relative
to the smartphone. Furthermore, the smartphone tends to count easily false steps when the user moves
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or turns the smartphone. One reason why this happens may depend on the bearing of the mobile
device. Generally, users carry their smartphone in one hand, while the tablet is carried in both hands.
Hence, the tablet is relatively more stable and is not accelerated that much in the vertical direction.
As a result, we need to set a larger threshold to avoid false step detection when using a smartphone.
Accordingly, we repeat the smartphone-based experiment after increasing the threshold from 0.75 to
0.9, as depicted in Table 18.

Table 18. Step detection using a Motorola smartphone with higher threshold.

Volunteer No. Walk 1 Walk 2 Walk 3 Average Error in Steps Accuracy

1 55 46 46 4.3 91.3%
2 50 49 50 0.3 99.3%
3 50 51 51 0.7 98.7%
4 49 53 50 1.3 97.3%

Average 1.7 96.7%

As shown in Table 18, the step detection is improved when increasing the threshold. To sum up,
both step counter tests achieve an average accuracy of 96.68%. Nevertheless, both devices have false
positives when a user is swiftly changing the heading direction. Additionally, false positives occur
when mobile users walks too fast, while false negatives occur when users walks too slow.

7.3. Position Fusion

In this section, we evaluate the fusion method compared to the baseline methods, including
trilateration and dead reckoning. Specifically, dead reckoning requires an initial value of the start
position. In each test, a volunteer walks along a determined path with a length of about 30 m,
as shown in Figure 11. During the experiment, the position is estimated using three different methods.
The experiments are conducted twice using two settings, with and without considering the context
information. Below, we discuss these two sets of experiments.

1 2
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Figure 11. Walking path during the experiments.

7.3.1. Performance without Context Information

In this set of experiments, the position estimation does not consider the environment context.
Hence, it might be possible that the position of a user is displayed outside of the corridor. Figure 12
shows the measurements exemplary of one walked path for each method. It is obvious that the
estimated path of the trilateration method differs from the actual walked path. The estimated path
with the dead reckoning method conforms rather to the walked path, but it is shifted outside of the
corridor. The estimated path using the proposed fusion method mostly matches with the walked
path. These measurements are repeated three times to increase our confidence in the obtained results.
Besides, we are also interested in the position accuracy of the final stop position after each single
walk. Table 19 demonstrates the accuracies of the estimated final position after each trial using three
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different methods, respectively. The average accuracy addresses that the trilateration method is the
best one out of three in terms of estimating the final position, with only an average difference of 0.73 m,
even though the estimated path of the trilateration method differs the most from the real walked path,
as shown in Figure 12.
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Figure 12. The detected walking paths without context information.

Table 19. Positioning accuracy of final position after each trial without considering the context information.

Method Walk 1 Walk 2 Walk 3 Average Accuracy

Trilateration 0.52 m 0.95 m 0.71 m 0.73 m
Dead Reckoning 5.61 m 2.79 m 3.96 m 4.1 m

Fusion 1.02 m 0.57 m 0.63 m 0.74 m

7.3.2. Context Information-Enhanced Positioning

The resultant low accuracy of the dead reckoning method emerges since the positioning error
is growing over time. To limit this error, the estimated positions are rectified using a number of
constraints extracted from the environment context information. At the outset, the path is walked
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once. The pathways of the estimated paths, exemplary for one walk for each method, are displayed
in Figure 13. Through limiting the position in a bounding box representing the corridor layout, all
three estimated paths precisely match the real walked path. Specifically, the path of dead reckoning
gains an improved trajectory when adopting the constraints. Similarly, as depicted in Table 20, the
accuracy of estimating the final position is highly improved by using the dead reckoning with the
environmental context; whereas, the accuracy of the trilateration method and the fusion method does
not vary much.
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Figure 13. The detected walking paths with context information.

Table 20. Positioning accuracy of final position after each trial with the context information.

Method Walk 1 Walk 2 Walk 3 Average Accuracy

Trilateration 0.37 m 0.78 m 1.00 m 0.71 m
Dead Reckoning 0.20 m 1.60 m 1.32 m 0.98 m

Fusion 0.88 m 0.50 m 1.07 m 0.82 m

7.4. Results

The evaluations show that the three methods investigated in this article have their advantages and
disadvantages. Dead reckoning has a positioning accuracy of about 1 m when considering the context
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information. Additionally, the trajectory estimated by dead reckoning is very close to the real trajectory.
Another advantage of dead reckoning lies in its ability to produce position fixes without additional
hardware. However, an initial start position has to be determined at the beginning, which is not
trivial to be supported in many cases. Furthermore, the error due to dead reckoning grows over time
especially in large spaces. Furthermore, the slightly occurring false positives or false negatives during
step detection affect the obtained positioning accuracy. Another severe problem is the interference of
the magnetometer. During our evaluations, we calibrate the magnetometer before each use to mitigate
this interference.

The trilateration method, on the other hand, overcomes the problem of the growing error and the
requirement of a start position. Trilateration shows an almost low error below 1 m. Nevertheless, the
trilateration method suffers from other problems. Although, the error is mainly constant, the position
estimation is relatively jumpy. For the RSSI measurements, additional BLE modules are required. Further,
the Android APP consumes much energy for scanning the BLE modules. Because users’ orientation has to
be performed in each position fix, the trilateration method also suffers from the magnetometer interference.

The Kalman-based fusion method overcomes some of the aforementioned problems. The average
accuracy of 1 m stays almost constant. Additionally, no start position is required, and the position
estimation is not as jumpy as by using the trilateration method. However, the fusion method also
suffers from interference of the magnetometer, and it requires additional BLE modules. Furthermore,
the energy required to generate a position fix is higher than the baseline methods due to combining
two position fixes. Table 21 summarizes the advantages and disadvantages of each method.

Table 21. Summary of the obtained results.

Approach Advantages Disadvantages

Trilateration
moderate accuracy additional hardware required
constant error jumpy position estimation
no start position required sensor interference

Dead Reckoning moderate accuracy growing error

no additional hardware required sensor interference
start position required

Fusion
high accuracy additional hardware requiredconstant error sensor interferenceno start position required

8. Conclusions

In this paper, we proposed a novel positioning method based on the concept of data fusion. Kalman
filtering is used to determine position fixes emerging from combining trilateration-based fixes and dead
reckoning-based fixes. A number of experiments is performed to examine the positioning accuracy
and the limitations of each method. The results concluded that position fusion generates highly stable
position fixes with an accuracy of less than one meter. Considering the context information, such as
the corridor width and length, significantly improves the obtained results. As an outlook, we plan to
extend the experiments via evaluating other properties such as energy consumption and the scalability.
Additionally, we plan to provide a comparative study of the impacts of the Kalman-based fusion
method with other methods, such as Bayesian inference [28].
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