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Abstract
Mesoscale wind speed fluctuations influence the characteristics of offshore wind energy. These recurring wind
speed changes on time scales between tens of minutes and six hours lead to power output fluctuations. In order
to investigate the meteorological conditions associated with mesoscale wind speed fluctuations, a measure is
needed to detect these situations in wind speed time series. Previous studies used the empirical Hilbert-Huang
Transform to determine the energy in the mesoscale frequency range or calculated the standard deviation of
a band-pass filtered wind speed time series. The aim of this paper is to introduce newly developed empirical
mesoscale fluctuation measures and to compare them with existing measures in regard to their sensitivity
to recurring wind speed changes. One of the methods is based on the Hilbert-Huang Transform, two on the
Fast Fourier Transform and one on wind speed increments. It is found that despite various complexity of the
methods, all methods can identify days with highly variable mesoscale wind speeds equally well.

Keywords: Energy Meteorology, mesoscale wind speed, Fourier filter, variability, Hilbert Huang Transform,
North Sea, FINO 1

1 Introduction

Offshore wind speeds, and hence the power produced by
wind turbines, fluctuate on different time scales. These
fluctuations can be challenging for the grid integration of
wind energy and electricity markets (e.g. Tande, 2003
or Georgilakis, 2008). Therefore, accurate short-term
variability forecast would be beneficial (Foley et al.,
2012). In order to achieve the goal of a day-ahead meso-
scale variability forecast, automated fluctuation mea-
sures for specific time scales are needed to perform sys-
tematic studies on fluctuations in wind speed measure-
ments. These wind fluctuation measures can be used to
investigate seasonal patterns and physical interactions.
Based on the results, a statistical forecast using numeri-
cal weather predictions can be developed.

Due to the characteristics of the wind turbine power
curve, wind speed fluctuations are not directly trans-
formed to power fluctuations. For fluctuative wind
speeds higher than the cut-in and lower than the rated
power, high power fluctuations are produced. For all
wind speeds higher than the rated power, the power out-
put should be more stable, despite wind fluctuations.

Meteorological phenomena can be classified in dif-
ferent temporal and spatial scales (Orlanski, 1975).
The mesoscale is the scale where phenomena are
smaller and faster than the synoptical scale 3 days and
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1000 km), but also greater and longer than the micro-
scale (1 h and 10 km). This paper will focus on meso-
scale fluctuations with time periods between tens of
minutes and several hours. Thus, 10 min wind speed
measurements are used. The lower limit of frequencies,
which are resolved, is given by the Nyquist frequency
with a cycle duration of 20 min. The maximum meso-
scale cycle duration is defined to be 6 h to exclude diur-
nal cycles.

Time scales on which wind speed is fluctuating can
be visualized by a spectral power plot. Larsén et al.
(2013) showed that a mesoscale phenomena like cellular
convection at the offshore measurement site Horns Rev
can clearly increase the spectral power in the mesoscale
frequency range and thus lead to enhanced mesoscale
variability.

A measure for mesoscale wind fluctuations should
be sensitive to recurring wind speed changes on the cho-
sen time scale. Ramp effects, which may lead to high
one-time wind speed changes, should not be regarded.
Furthermore, the computation time should be short to
systematically analyze long term wind speed measure-
ments.

Analyzing a specific time scale in a time series di-
rectly leads to spectral methods. Vincent et al. (2010)
presented a wind fluctuation measure based on a statis-
tical method called Hilbert-Huang Transform. Beside of
the theoretical description of the method, they applied
the method on measurements at the offshore measure-
ment site Horns Rev and studied seasonal and diurnal
patterns.
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Figure 1: Location of the FINO 1 offshore met mast in the North
Sea.

In comparison, Davy et al. (2010) and Ellis et al.
(2015) used the standard deviation of a running window
applied to a band pass filtered wind speed or power
time series to investigate the wind variability in south-
eastern Australia. However, this method and the method
of Vincent et al. (2010) have not been compared so far.

For the statistical characterization of wind turbu-
lence, often wind speed increments are used (e.g.
Morales et al., 2012 or Anvari et al., 2016). Neverthe-
less, increments have not been used for a time evolving
mesoscale fluctuation measure before.

The aim of this work is to present newly developed
empirical mesoscale fluctuation measures, which de-
scribe time dependent mesoscale wind variability, and
to test and compare these with already existing ones.
The preferable method should identify all situations with
mesoscale wind fluctuations while using little compu-
tation time. To test the sensitivity of the measure to
wind fluctuations we use the FINO 1 wind speed mea-
surements presented in Section 2. All methods and the
methodology for the comparison are introduced in Sec-
tion 3. This section also includes first results for the in-
dividual measures and challenges of the application of
the methods. For the comparison of the mesoscale wind
speed measures in Section 4, the sensitivity to recurring
wind speed changes is tested, the wind direction depen-
dency is compared to the results of earlier studies and the
computation time is calculated. The main conclusions
are summarized in Section 5.

2 Observations

In order to test the mesoscale wind fluctuation mea-
sures, we use FINO 1 wind speed (100 m height, top
anemometer) and direction measurements (90 m height)
from 2004 to 2016. The wind speed time series includes
5.0 % missing values and the wind direction measure-
ment 5.8 %. The location of the met mast in the North
Sea is marked in Figure 1.

The top anemometer is surrounded by a lightning
cage which influences the wind speed measurements.
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Figure 2: Spectral power of the FINO 1 wind speed measure-
ment (black) and filtered measurements (red) from 2004–2016 in
100 m height.

A comparison of the wind speed measurements in 100 m
height with measurements in 90 m height shows that the
lightning cage is decreasing the wind speed at the wind
direction around 0°, 81°, 167° and 260°. Due to the fo-
cus on the fluctuations measures methods, these wind
directions are not removed as this would result in a high
amount of missing values. Nevertheless, the lightning
cage seems to increase the mesoscale fluctuation mea-
sures for these wind directions (Section 4.2).

Methods which base on the Fast Fourier Transform
(FFT) or Hilbert-Huang Transform (HHT) need a con-
tinuous time series, thus missing values are filled by lin-
ear interpolation using the last value before and the first
value after the data gap. However, the respective fluctua-
tion measure values of interpolated time series steps are
not analyzed.

Figure 2 shows the spectral power of the wind speed
measurements at FINO 1 in 100 m height, using the FFT.
At the offshore met mast, most spectral energy is present
in the yearly cycle and on the synoptical scale (3 days).
The red line marks the time scale on which the spectral
energy would be increased during mesoscale wind speed
fluctuations. The mesoscale time scale was separated
from the lower frequencies parts using a FFT filter.

3 Fluctuation measures

Figure 3 shows a wind speed measurement for February
2009. During this period of time, the wind speed fluc-
tuates on different time scales. Because of our interest
in mesoscale fluctuations only, the measure should not
be sensitive to time scales greater than 6 h cycle dura-
tion. A 6 h maximum cycle duration is chosen to exclude
daily cycles, which may be present in coastal wind speed
measurements in lower heights than used here.

The fluctuation measure should be sensitive to recur-
ring mesoscale wind speed changes. These are for exam-
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Figure 3: Wind speed measurement at FINO 1 in February 2009 in
100 m height. Time periods with mesoscale wind speed fluctuations
are colored in gray.

ple present on the 8th, 10th and around the 12th of Febru-
ary at FINO 1. These days are highlighted in grey in Fig-
ure 3. It can be seen that during fluctuation periods the
10 min mean wind speed changes several times by more
than 2 ms−1. At the 10th and 11th, the wind speed shows
increasing or decreasing trends, which are longer than
the maximum cycle duration of 6 h. Consequently, the
mesoscale fluctuations measure should not be sensitive
to these. We will use this week of wind speed measure-
ments to introduce the fluctuation measures.

When looking at a specific frequency range only,
spectral methods are typically used. The kind of spec-
tral method which is applicable depends on the time
series characteristics. Vincent et al. (2010) discuss the
non-stationarity of wind speed data and how to test it.
They conclude that there are enough statistical and phys-
ical arguments for 10 min wind speed data to be non-
stationary. Due to the non-stationarity of a wind speed
time series, the use of a global spectral analyzes such as
Fourier is questionable. In contrast, the empirical HHT
can be applied to non-linear and non-stationary time se-
ries and is used by Vincent et al. (2010) as a mesoscale
fluctuation measure.

Vincent et al. (2010) and Duffy (2004) discuss
which other methods are available for analyzing non-
stationary atmospheric time series. Vincent et al. (2010)
decide not to use singular spectrum analyzes (e.g. Ghil
et al., 2002) for analyzing the wind speed time series,
as it is assuming an underlying periodicity. Addition-
ally, Vincent et al. (2010) decided not to use Wavelet
analyzes (e.g. Strang, 1989 or Barthlott et al., 2007)
because of its dependency on the shape of the chosen
wavelet function.

Despite the non-stationarity of a wind speed time se-
ries, we will use the FFT to develop two new empiri-
cal fluctuation measures and compare them with the re-
sults of the HHT and one new fluctuation measure based
on increments. These fluctuation measures will be pre-
sented in the following subsections. The last subsection
describes the applied standardization of the wind fluc-
tuation measures, which is used for the comparison. All
fluctuation measure values shown in the next chapters
are standardized (Section 3.5).

3.1 Hilbert-Huang spectrum

Vincent et al. (2010) presented a wind fluctuation mea-
sure based on the HHT. The advantage of the empirical
HHT is, that it is an adaptive spectral analyzes. It is a
local method based on a non-parametric and empirical
decomposition of the data and can be applied to non-
linear and non-stationary data. Like the FFT, the HHT
can be used for the investigation of either spatial or tem-
poral frequencies. Also spectral analyzes like the spec-
tral power plot in Figure 2 can be conducted based on
the HHT.

The calculation of this fluctuation measure is based
on Vincent et al. (2010) and the Matlab packages of
RCADA (2015). We use the eemd-function, signifi-
cance and nnspe-function of the RCADA (2015) tool-
box. Detailed descriptions of the method are published
in Huang and Wu (2008).

The eemd function (Ensemble Empirical Mode De-
composition, based on Wu and Huang (2009) is de-
composing the time series into a set of intrinsic mode
functions (IMF). The significance function (based on
Wu and Huang, 2004) is testing the significance of
each IMF against white noise. Finally, the nnspe func-
tion (based on Huang et al., 1998) calculates the Hilbert
Transform of each IMF and the instantaneous ampli-
tude and frequency. The resulting quantity is the Hilbert-
Huang spectrum of energy. This spectrum is then mul-
tiplied by its frequency to emphasize high frequen-
cies. For the comparison with other scalar measures,
the energy of the desired mesoscale frequency range is
summed up. This leads to a time series of the integrated
mesoscale energy in the wind speed time series.

According to Huang and Wu (2008), the main lim-
itations of the HHT are that it is an empirical method
which has no mathematical justification other than
the FFT. However, it has already been tested for a lot
of applications. Huang and Wu (2008) state that further
research on the HHT should focus on the optimization of
the selection of the spline, the selection of the IMF and
on the end effects. Another disadvantage of the method
is the complexity which results in the longest computa-
tion time of all presented mesoscale wind speed fluctua-
tion measures.

The end effect results in significantly high energy
values for start and end of the time series, due to the
envelope divergence at these points. The end effect is
likely to cause problems for a real-time calculation of
the fluctuation measure.

In this study, some high energy values occur, most
of them with wind flow directions influenced by the
lightning cage. Considering the relative frequency of
the HHT values (Figure 8), all amplitudes higher than
60 ms−1 before the standardization are regarded as out-
liers.

3.2 Variance

The variance is a well known measure to describe how
large the spread of a time series is around its mean value.



4 A.R. Mehrens & L. von Bremen: Identification of mesoscale wind speed fluctuations Meteorol. Z., PrePub Article, 2017

0
5

10
15
20

wind speed in ms− 1

(a )

0

2

4

normalised varianc e

(b)

6 h

2 h

-4
-2
0
2
4

filtered wind speed in ms− 1

(c )

06.02 08.02 10.02 12.02 14.02

0

2

4

normalised filtered variance

(d)

6 h

2 h

Figure 4: Running window variance of the wind speed for different
time period (2 h and 6 h in February 2009), using filtered and unfil-
tered wind speed time series.

Because of our interest in the actual variance of several
time steps, we calculate a running window variance.
Therefore, we use the wind speed measurements of a
specific time period before and after the actual time step
and calculate the variance (var, Equation 3.1).

var =
1

n − 1

n∑

i=1

|xi − x|2 (3.1)

With index i for each time step in the chosen time period
with length n. The variance is calculated for a running
window and we thus have a fluctuation measure value
for each time step.

Figure 4(b) shows the running window variance for
two time period lengths (n) of the wind speed time series
shown in Figure 4(a). As expected, the variance gets
smoothed with an increasing time period. Because the
variance is calculated based on the wind speed time
series, the fluctuation measure still includes all kind of
fluctuations on all scales, which are included in the time
series. Thus, variance can not yet be applied to measure
mesoscale wind speed fluctuations.

As the focus of this paper is on mesoscale wind speed
fluctuations, the time series has to be filtered before cal-
culating the variance. This is done by a FFT filter. The
filter uses the FFT to calculate the amplitudes. As the
FFT is designed for periodic time series we mirror the
wind speed data. Afterwards, based on the calculated
frequency, all amplitudes with a cycle duration longer
than 6 h are removed and the time series is reconstructed
with an inverse FFT. The result of filtering the wind
speed time series is a fluctuation time series, as illus-
trated in Figure 4(c). The power spectral density of a fil-
tered wind speed time series is shown in Figure 2 in red.
It can be seen that the energy of the mesoscale frequen-
cies stays unchanged. This mesoscale fluctuation time
series clearly shows the fluctuations of interest at the 8th,
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Figure 5: Example for the calculation of the filtered wind speed
spline in February 2009.

10th and around the 12th of February (Figure 4(c)). At
these days, the variance shows the highest values (Fig-
ure 4(d)). However, the time series still includes single
wind speed ramps with a cycle duration smaller than 6 h.
These small wind speed ramps like on the 7th of Febru-
ary results in a smaller variance than recurring wind
speed changes due to the used running window calcu-
lation (Figure 4(d)).

A related measure for the wind variability in south-
eastern Australia is developed by Davy et al. (2010) and
for wind power by Ellis et al. (2015) using the standard
deviation of a running window applied to a band pass
filtered wind speed.

For further comparison, we decide to use the mea-
sure based on the 6 h period, because all the periods
with mesoscale wind speed fluctuations in the test time
series are recognized. And the measure calculated over
a 6 h period has high values for recurring wind speed
changes only. For each 6 h running window variance pe-
riod (36 values), the time stamp is set to the 18th value.

For a real-time calculation, the wind speed measure-
ments of the last recent time steps could be used, con-
sidering the sensitivity of the FFT to the used data set
length.

The developed fluctuation measure based on FFT and
variance can also be applied to spatial fields.

3.3 Filtered wind speed spline

The presented FFT filtered wind speed time series in
Figure 4(c) clearly shows higher peaks for the time pe-
riods with mesoscale fluctuations. For the development
of a fluctuation measure, which remains constantly high
for recurring peaks in the filtered wind speed time series,
we use a spline through the local maxima.

The procedure is illustrated in Figure 5. The local
maxima of the absolute of the filtered wind speed time
series are calculated and afterwards connected through a
linear interpolation. Therefore, we get a fluctuation mea-
sure value for each 10 min time step. The resulting fluc-
tuation measure envelopes the absolute of the fluctuation
time series. Figure 6 shows the resulting spline of the fil-
tered wind speed time series.

Like the variance, this fluctuation measure can also
be applied to spatial fields or used for the real-time
calculation of the fluctuation measure.
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3.4 Increment sum

Wind speed increments are often used for the statistical
characterization of short term wind speed fluctuations
(e.g. Morales et al., 2012 or Anvari et al., 2016) or for
mesoscale wind speeds (Mehrens et al., 2016). We will
use a running window increment sum as a mesoscale
fluctuation measure.

For the calculation of the increment sum (inc), the
difference between two consecutive time steps in the
wind speed time series is calculated. Because of the
focus on recurring wind speed changes, the running
window sum of the increments is calculated equiva-
lent to the variance. As for the variance, we use the
squared value to get an increased sensitivity of the fluc-
tuation measure at the beginning of recurring wind speed
changes. The increment sum (inc) for one time period
with the length n is calculated as:

inc =

n−1∑

i=1

|xi+1 − xi|2 (3.2)

The main difference to the calculation of the variance
is that we consider the deviation from the last time step
and not from the mean of the time period.

Figure 7 compares the results for the increment sum
of three time period lengths (n) for the FFT filtered
and unfiltered time series. Like for the variance in Sec-
tion 3.2, the longer the time period, the smoother the
fluctuation measure time series. However, contrary to
the variance, calculating the increment sum based on ei-
ther the wind speed or filtered wind speed time series
result in similar values. Thus, no filtering of the wind
speed is needed.

Another advantage is that the increment sum can be
easily calculated for spatial grids and thus for spatial
mesoscale fluctuations (Mehrens and von Bremen,
2016).

For further comparison, we use the measure based
on the 6 h time period to calculate the running window
increment sums of the wind speed time series. The time
stamp for the increment sum (36 increments), is set
to the 19th value. For real-time calculations, the last
36 values can be used.

3.5 Standardization

For a better comparison of the results, all wind fluctua-
tion measure values are standardized.

0

2

4

normalised 6 h increment sum

(a )

unfiltered

filtered

0

2

4

normalised 4h increment sum

(b)

unfiltered

filtered

06.02 08.02 10.02 12.02 14.02

0

2

4

normalised 2h increment sum

(c)

unfiltered

filtered

Figure 7: Running window increment sum of the wind speed for
different time periods (2 h, 4 h and 6 h in February 2009), using
filtered and unfiltered wind speed time series.
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Figure 8: Relative frequency of the individual fluctuation measure
values and the wind speed.

Figure 8 shows the relative frequency of the individ-
ual fluctuation measure values (yi). It can be seen that the
distribution shapes of the different measures are strongly
varying. The individual distribution shapes result from
the different methodologies the fluctuation measures are
based on. In order to ensure that a comparison of the
fluctuation measures only evaluates their sensitivity to
mesoscale fluctuations, the slope of the distributions, the
most frequent values, and the maximum values should
be similar. Different slopes of the distributions, as shown
in Figure 8, make the evaluation of the fluctuation mea-
sures more complicated, because the measures show
different high values during time periods of mesoscale
wind speed fluctuations. Thus we standardize the fluctu-
ation measure values by subtracting the mean value (y)
from each fluctuation measure value (yi) and dividing it
by the standard deviation (σy) (equation 3.3).

zi =
yi − y
σy

(3.3)
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Figure 9: Relative frequency of the individual fluctuation mea-
sure values and the wind speed after the standardization (see equa-
tion 3.3).

The resulting distributions of the standardized fluc-
tuation measure values (zi) are shown in Figure 9.
The standardization leads to more similar distribution
shapes. The maximum values and distribution slopes for
the higher fluctuation measure values are still not simi-
lar for all measures, but the following sections show that
this standardization is sufficient for a comparison. For
the following results, all shown fluctuation measure val-
ues are standardized.

4 Results

In the following sections, the four presented fluctuation
measures will be compared and their sensitivity to meso-
scale wind speed fluctuations is tested.

4.1 Intercomparison of the fluctuation
measures

Figure 10(b–e) shows all four standardized fluctua-
tion measures for the example period wind speed (Fig-
ure 10(a)) in February 2009. It can be seen that all mea-
sures identify several time periods with mesoscale fluc-
tuations very similarly. For the 8th, 10th and 12th of
February we see recurring wind speed changes in Fig-
ure 10(a). These time periods are recognized by all mea-
sures and have the highest fluctuation measure values.
However, due to the very different methodologies, the
individual measures react slightly different to the fluctu-
ations in wind speed. The HHT (Figure 10(b)) and the
filtered wind speed spline (Figure 10(d)) show a lot of
individual peaks. The variance and the increment sum,
which are calculated based on a running time period,
have more constant high values. Due to the running win-
dow calculation, the fluctuation measure reacts already
before the fluctuation start.

The example time period includes several wind speed
trends with durations longer and shorter than the defined
maximum cycle duration of 6 h. The decreasing wind
speed trend at the 11th of February is longer than the
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Figure 10: Comparison of all presented mesoscale fluctuation mea-
sures in February 2009.

time scale we are interested in. Thus, it should not
result in a high mesoscale fluctuation measure. This is
apparent in all measures. In addition, trends with a time
scale shorter than 6 h, like the increasing and decreasing
wind speed trends on the 6th of February result in a
moderate fluctuation measure. The measure values are
higher for recurring wind speed changes than for ramps.

The comparison of the example data show that in the
considered week all fluctuation measures are capable
of identifying the wind speed characteristics we are
interested in. In the following tests, the measures are
tested for the whole FINO 1 wind speed time series
(2004–2016).

For a deeper understanding, which fluctuation mea-
sures are sensitive to the same phenomena in the wind
speed time series and to help to identify if the chosen
fluctuation measures are interrelated, Figure 11 shows
the bivariate histograms (50 × 50 bins) of all possi-
ble fluctuation measure combinations. The relative fre-
quency is calculated for all bins. The bin size is depen-
dent on the minimum and maximum value of the fluctua-
tion measure. Figure 11 demonstrates that all fluctuation
measures are related to each other. However, a certain
spread is observed. The reason for that are most likely
the differing methodologies of the measures which re-
sult in a smoothed measure time series due to averaging
or a time series with a lot of individual peaks.

More important than the direct comparison of the
measures is to test the sensitivity of the fluctuation mea-
sures to the wind speed fluctuations we are interested in.
In order to decide which measure is most sensitive to
situations with mesoscale wind speed fluctuations, the
entire wind speed time series is checked visually twice
for days with mesoscale wind speed fluctuations. For
this purpose the wind speed time series and the filtered
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Figure 11: Comparison of all presented mesoscale fluctuation mea-
sures in bivariate histograms.

Table 1: Percentile of the mesoscale fluctuation measures to include
all manually detected mesoscale fluctuation days.

theoretical HHT spline inc var

97.97 85.00 86.00 89.00 85.00

wind speed time series are simultaneously checked for
time periods of recurring wind speed changes. Only days
with obvious mesoscale wind speed fluctuations for the
whole day are marked. This procedure is repeated and
only days are marked as high fluctuative, which are se-
lected in both selection rounds. These days should also
be detected by the fluctuation measure. Not all meso-
scale fluctuation phenomena last for a whole day, but be-
cause of the length of the time series, daily mean values
of the fluctuation measures are used for this comparison.
We found 89 highly variable days in the 4384 days long
time series. Thus, the highest 2 % percent of the daily
fluctuation measure data or days with values above the
98th percentile should include these manually selected
days (theoretical value in Table 1). To test this, we calcu-
late stepwise the percentile of the daily mean time series
of the fluctuation measures (1.0 steps of the percentile)
and check if all manually selected high variable days
have higher values than the percentile. Table 1 shows the
resulting highest percentiles of the data, when all manu-
ally marked days have higher fluctuation measure values
than the percentile of the measure and are thus detected
by the measure to be fluctuative.

For the increment sum, the percentile closest to
the theoretical value is obtained. Nevertheless, the per-
centiles of the other mesoscale fluctuation measures are
very similar. By taking into account that the daily mean
of the fluctuation measures is compared with manual de-
cisions, which days are highly variable, all percentiles
show good results. Furthermore, most of the mesoscale
fluctuation phenomena last less than a day. That makes
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Figure 12: Illustration of the sensitivity test. The black line shows
the 10 min wind speed time series and the black crosses mark the
days which are manually detected to be highly variable. The colored
crosses mark the days which the mesoscale fluctuation measures
detect as highly variable based on the percentiles in Table 1.

.

number of measures
1 2 3 4re

la
ti

ve
fr

eq
ue

nc
y

in
%

0

10

20

30

40

50

Figure 13: Histogram of how many of the mesoscale wind speed
fluctuation measures have at the same days values which are higher
than the calculated percentiles.

it difficult to decide manually, if a day is highly variable
compared to other days. Figure 12 shows the results for
the example week. The colored crosses mark the days
which have higher measure values than the percentiles
and are thus highly variable. The black crosses show the
manually marked day. Figure 13 shows that most often
all four fluctuation measures determine the same days as
high fluctuative. This leads to the very similar percentile
values in Table 1.

Consequently, all measures are capable of identifying
days with mesoscale wind speed fluctuations.

4.2 Wind direction dependency

Vincent et al. (2010); Vincent et al. (2011) used con-
ditional Hilbert spectra to show that the most intense
mesoscale wind speed fluctuations for the offshore site
Horns Rev occur in autumn and winter. The wind vari-
ability is increased during situations with precipitation,
wind directions from the North Sea, unstable thermal
conditions and strong air pressure changes. The strong
seasonal cycle of the variability is related to the seasonal
cycle in precipitation and surface layer thermal stability.
For the calculation of the conditional Hilbert spectrum,
the examined variable is binned and an average spectrum
is calculated.
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Figure 14: Mean standardized fluctuation measures in dependency on the wind direction (3°bin) for the different seasons spring (a),
summer (b), autumn (c) and winter (d) at FINO 1 for the years 2004–2016 in 100 m height.

For the comparison of the four fluctuation measures,
we repeat this procedure for the seasonal wind direc-
tion dependency of the FINO 1 wind speed measure-
ments. For the comparison of the different mean fluc-
tuation measures we use a wind direction bin of 3°. The
influence of the lightning cage on the wind speed mea-
surements and the mast shadow on the wind direction
measurement is not corrected and thus visible in the re-
sulting conditional fluctuation measure mean values.

Figure 14 shows the impact of the wind direction
on the wind speed variability for all meteorological sea-
sons. The standard error of the fluctuation measure mean
value is very small due to the sample size and thus not
shown here.

Even though the standardization of the fluctuation
measures did not result in equally shaped distributions
(Figure 9) and in regard to the very small wind direction
bin size, the mean fluctuation measures are quite simi-
lar. The same standardization is used for the wind speed.
In accordance with Vincent et al. (2011), the variability
measures are higher in autumn and winter for flow from
the open North Sea (∼ 240° − 30°). Vincent (2010) ex-
plains this higher wind variability with mesoscale con-
vection which evolves during cold air outbreaks.

The comparison with the mean wind speed shows
that the wind direction with the highest variability in
autumn and winter (∼ 270° − 20°) is not corresponding
to the wind direction with the highest wind speeds (∼
180° − 300°).

These results show that all variability measures yield
to the same results although being quite different with
regard to their calculation method and complexity.
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Figure 15: Comparison of the computation time of all presented
mesoscale fluctuation measures in dependency on the length of the
time series. For the calculations a desktop computer (Core i3 CPU at
3.40 GHz × 2) and Matlab is used.

4.3 Computation time

The different complexity of the calculation of the fluc-
tuation measures can be illustrated by the computation
time. Figure 15 shows the computation time as a func-
tion of the data set length. For the calculation a desktop
computer and the same example data sets are used. The
resulting computation times vary strongly. The shortest
computation time is achieved for the filtered wind speed
spline. The longest computation time is needed for the
HHT fluctuation measure. The long computation time of
this fluctuation measure is a disadvantage for analyzing
long time series. Particularly, if several time series of
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different sites are compared. The mesoscale fluctuation
measures can also be used to calculate spatial variations
on a grid. The short computation time is an advantage
when a high number of grid points is investigated or for
the real-time calculation of the measures.

5 Conclusions

We compared four different empirical methods to mea-
sure mesoscale wind speed fluctuations: the first is a
measure based on the Hilbert-Huang Transform, the sec-
ond a running variance of a Fast-Fourier Transform fil-
tered wind speed time series, the third calculates a spline
around the Fast-Fourier filtered wind speed time series
and the fourth uses the running increment sum of the
wind speed time series.

The method complexity and thus computation times
are very unequal. Nevertheless, all fluctuation measures
are capable of identifying days with high mesoscale
wind speed fluctuations. Also, the wind direction depen-
dency shows comparable characteristics for all four sea-
sons. All methods, except the HHT due to the end effect,
could also be used to calculate the real-time mesoscale
wind speed fluctuations based on past measurements.

From our perspective, the most favorable measure is
the increment sum, because no transformation is neces-
sary and the implementation is thus very easy and the
computation time very short. Furthermore, it can easily
be used for spatial grids.

The presented methods for measuring mesoscale
wind speed fluctuations could be used in the future to de-
termine the driving force behind mesoscale wind speed
fluctuations. Some highly variable situations only last
for hours and some for several days, which indicates dif-
ferent phenomena causing the fluctuations. The manual
examination of the long wind speed and fluctuation mea-
sure time series showed that some years have more days
with mesoscale wind speed fluctuations than others and
thus a one year time series seems not enough to cap-
ture all phenomena which cause fluctuations. A detailed
study of the phenomena and their driving forces would
enable the development of a statistical day-ahead fore-
cast, which could be based on numerical weather pre-
dictions.

Future work could also focus on patterns of wind
speed changes which indicate a periodic triggering of
the phenomena and can be used to identify fluctuations
with pattern recognition.
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