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The race model inequality has become an important testing tool for the analysis of

redundant signals tasks. In crossmodal reaction time experiments, the strength of

violation of the inequality is taken as measure of multisensory integration occurring

beyond probability summation. Here we extend previous results on trimodal race model

inequalities and specify the underlying context invariance assumptions required for their

validity. Some simulation results comparing the race model and the superposition model

for Erlang distributed random variables illustrate the trimodal inequalities.

Keywords: multisensory integration, race model inequality, context invariance, trimodal case, redundant signals
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1. INTRODUCTION

When stimulus information, perceived via several sensory modalities, indicates the occurrence
of some event, an observer is faster detecting and responding to the stimulus compared to
receiving only unimodal information, given a background of noisy signals. As a daily-life example
consider the warning lights and siren of an ambulance in a traffic environment, a common audio-
visual signal that allows, e.g., a driver to initiate an adequate reaction like giving way faster
than if only acoustic or only visual information was available. Since the pioneering study by
Todd (1912), this redundant signals effect (RSE) has frequently been replicated under laboratory
conditions for crossmodal redundant signals combining different modalities, for both manual and
saccadic reaction times (RT), and under different experimental conditions (e.g., divided vs. focused
attention) (e.g., Miller, 1982; Gielen et al., 1983; Diederich and Colonius, 1987; Corneil et al., 2002).

A number of differentmodels for themechanisms underlying the RSE have been suggested. Raab
(1962) proposed that race models could explain the speedup of responses. Race models assume that
(a) each individual stimulus elicits a modality-specific process performed in parallel with the others,
and (b) the winners time determines the observable RT, which will also consist of other components
like motor execution time. This model implies that the RSE is generated by statistical facilitation,
or probability summation: If latencies are interpreted as (non-negative) random variables, the time
to respond to the first of several redundant signals is faster, on average, than the response time to a
single signal. More generally, Miller (1982) observed that for the race model with stimuli x and y,
the following inequality should hold:

Fxy(t) ≤ Fx(t)+ Fy(t), (1)

for all non-negative time points t, with Fxy, Fx, and Fy denoting the distribution function for
the redundant-signals condition and the single-stimulus conditions, respectively. Literature on
this race model inequality (RMI) test involving different sensory modalities is huge (for a recent
review, see Gondan andMinakata, 2016), likely due to the following reason: a statistically significant
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violation of the inequality for some value of t suggests that
the observed speedup of the response cannot be accounted
for entirely by probability summation and some, additional or
alternative, coactivationmechanism has to be postulated.

Numerous modeling approaches for a coactivation
mechanism have been proposed (Diederich, 1995) (see also
Diederich and Colonius, 2012, for an overview). In contrast to
the race model, to our knowledge they all are based on assuming
some specific probability distribution or stochastic process. The
one adopted for the simulations described below is introduced in
Section 3.

Sometimes, instead of inequality (1), the race model is tested
using inequality

Fxy(t) ≤ Fx(t)+ Fy(t)− Fx(t)Fy(t). (2)

However, this is not generally recommended since it is more
restrictive than (1) by assuming stochastic independence between
the random latencies. While this assumption is not required by
the general race model, there is another, essential assumption
hidden in any version of the model, known as “context
independence” or “context invariance”: the processing of a
stimulus of a given modality does not depend on which
and how many stimuli from other modalities are presented
concurrently (e.g., Luce, 1986, pp. 128–129; Colonius, 1990;
Colonius and Vorberg, 1994; Townsend and Wenger, 2004;
Gondan and Minakata, 2016). For a more general discussion
using coupling theory, see Colonius (2016). A formal definition
of this assumption is presented in the next section.

In themajority of RT studies on the RSE, only the bimodal case
has been tested. Exceptions are, without claiming exhaustiveness,
(Diederich, 1992a, 1995; Diederich and Colonius, 2004; Hecht
et al., 2008; Oskarsson et al., 2012; Wang et al., 2012, 2013;
Pomper et al., 2014; Hagmann and Russo, 2016), but it seems
that no systematic investigation of all possible bimodal and
trimodal RMIs and their interdependencies has been performed
so far. Here we first specify the context invariance assumptions
underlying the inequalities and then discuss various types of
trimodal RMIs that can be tested assuming different patterns of
(non-) violation of the inequalities. This is illustrated with a first
set of simulations comparing the race model with a coactivation
model.

2. GENERALIZED RACE MODEL
INEQUALITIES

In most cases, the stimuli being tested for multisensory
integration are from the visual, auditory, or somatosensory
modality. Many notable studies also involve other modalities
(e.g., Gu et al., 2008; Hoechenberger et al., 2015; Kaliuzhna
et al., 2016), like vestibular and olfactory stimuli but, for
simplicity, we refer to the first three here only. We write V for
the unimodal visual, AV for the bimodal visual-auditory, and
AVS for the trimodal visual-auditory-somatosensory condition,
with the remaining obvious uni- and bimodal cases denoted
accordingly.

2.1. The “Context Invariance” Assumption
of the Race Model
Let A,V , S be random latencies corresponding to stimulus
modalities A,V , and S , respectively. FA, FV , and FS, denote the
distribution function for the unimodal conditions A,V , and S

respectively. For bimodal condition AV , HAV is the bivariate
distribution function of random vector (A,V), and for trimodal
condition AVS , HAVS stands for the trivariate distribution
function of (A,V , S). Thus, for example,

HAVS(s, t, u) = P(A ≤ s,V ≤ t, S ≤ u),

for all s, t, u ≥ 0. Moreover, for marginal distributions we write,
e.g.,

HAV (s,∞) for P(A ≤ s,V < ∞), etc.

The formal definition of “context invariance” is as follows:

DEFINITION 1. For all s, t, u ≥ 0, necessary and sufficient
conditions for (trimodal) complete context invariance are

HA(s) =HAV (s,∞) = HAS(s,∞) = HAVS(s,∞,∞)

HV (t) =HAV (∞, t) = HVS(t,∞) = HAVS(∞, t,∞)

HS(u) =HVS(∞, u) = HAS(∞, u) = HAVS(∞,∞, u)

and

HAV (s, t) =HAVS(s, t,∞)

HVS(t, u) =HAVS(∞, t, u)

HAS(s, u) =HAVS(s,∞, u).

In other words, complete context invariance holds in the trimodal
case if the distributions in the unimodal and bimodal conditions
are identical to the corresponding univariate and bivariate
marginal distributions of the trivariate distribution. As recently
argued in Miller (2016), context invariance is an essential part of
the race model concept.

2.2. Proving Race Model Inequalities
The proof of Inequality 1 relies on a simple probability inequality.
Rewrite (1) for theAV condition as

FAV (t) ≤ FA(t)+ FV (t).

For any t ≥ 0, we define events

Bt = {A ≤ t} and Ct = {V ≤ t}.

Because of context invariance, FAV (t) = P(Bt ∪ Ct), and the
inequality follows from

P(Bt ∪ Ct) = P(Bt)+ P(Ct)− P(Bt ∩ Ct)

≤ P(Bt)+ P(Ct),

where the last probability inequality is known as a special case
of “Boole’s inequality” (e.g., Diederich, 1992b). It is important
to recognize the role of the context invariance assumption here:
it guarantees that events Bt and Ct are defined on the same
probability space for all t or, more generally, that there exists a
bivariate distributionHAV (s, t) with marginals equal to FA(s) and
FV (t), respectively: HAV (s,∞) = FA(s) and HAV (∞, t) = FV (t).
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2.3. Generalized Race Model Inequalities:
Complete Context Invariance
In the following, we assume that trimodal context invariance
holds unless indicated otherwise. In order to avoid trivial upper
bounds larger than 1, the right-hand side of all inequalities
presented may be replaced by, e.g., min{FA(t)+FV (t), 1}, etc. For
simplicity, we do not state this explicitly.

For further reference, let us start with a listing of all possible
bimodal RMIs:

FAV (t) ≤ FA(t)+ FV (t), (3)

FVS(t) ≤ FV (t)+ FS(t), (4)

FAS(t) ≤ FA(t)+ FS(t). (5)

A straightforward generalization to the trimodal case is

FAVS(t) ≤ FA(t)+ FV (t)+ FS(t), (6)

which follows again as special case of Boole’s inequality.
As shown in Diederich (1992b), Bonferroni-type probability

inequalities (Worsley, 1982) can be used to derive further
trimodal RMIs:

FAVS(t) ≤ FAV (t)+ FAS(t)− FA(t), (7)

FAVS(t) ≤ FVS(t)+ FAS(t)− FS(t), (8)

FAVS(t) ≤ FAV (t)+ FVS(t)− FV (t). (9)

A sharper1 bound for FAVS(t) results by taking the minimum (at
each value of t) across all three bounds in 7–9:

FAVS(t) ≤ min{FAV (t)+ FAS(t)− FA(t), FVS(t)+ FAS(t)

− FS(t), FAV (t)+ FVS(t)− FV (t)}. (10)

Given the bimodal inequalities 3–5 hold, the trimodal inequalities
7–9 are sharper than Inequality 6. For example, if Inequalities 3
and 4 are satisfied, Inequality 9 implies Inequality 6:

FAVS(t) ≤ FAV (t)+ FVS(t)− FV (t)

≤ FA(t)+ FV (t)+ FV (t)+ FS(t)− FV (t)

= FA(t)+ FV (t)+ FS(t).

2.4. Generalized Race Model Inequalities
with Restricted Context Invariance
Next we consider a situation where, for example, data from
conditions AVS , AV , and S are available but none from V

or A. Responses under the bimodal condition AV can then be
conceived as representing reaction times to a “combined” visual-
auditory modality formally equivalent to a unimodal condition.
The underlying distribution function is bivariate,

H(AV)S(w, z) = P(AV ≤ w, S ≤ z),

1By “sharper” we mean “strictly smaller or equal.”

for all w, z ≥ 0, with AV denoting the RT in condition AV .
Context invariance is restricted to the bivariate case, that is:

H(AV)S(w,∞) = HAV (w), (11)

H(AV)S(∞, z) = HS(z) (12)

The race model then implies

FAVS(t) ≤ FAV (t)+ FS(t). (13)

Obviously, with adding the following two, there are three
inequalities in total:

FAVS(t) ≤ FVS(t)+ FA(t), (14)

FAVS(t) ≤ FAS(t)+ FV (t), (15)

with the corresponding, mutually incompatible, restricted
context invariance assumptions.

An alternative situation for considering Inequalities 13–15 is
when all three univariate distributions are available but violations
occur for some of the univariate pairs. For example, there may be
one or more values t ′ such that

FAV (t
′) > FA(t

′)+ FV (t
′).

While the race model for conditionAV would be ruled out in this
case, the joint processing of AV and Smay still be consistent with
a race.

3. AN ILLUSTRATION WITH SIMULATED
DATA SETS

In this section, we (i) illustrate a possible simulation approach
and (ii) point to a specific aspect of dependency occurring for
trimodal race models.

3.1. Erlang Distribution Simulation
Simulating the race model and comparing it with a coactivation
model requires specifying some RT distributions. Here we select
distribution functions derived from the most basic stochastic
counting process, i.e., the Poisson process. The time between two
randomly occurring events follows an exponential distribution
with intensity rate λ. Stimulus processing time is defined as the
waiting time of the Poisson process for c-th event. Empirically,
criterion cmay be influenced by the experimental condition. For
example, rewarding high detection accuracy would increase the
threshold (Luce, 1986) and higher values of c will result in longer
detection time, denoted D. The distribution of D is known as
Erlang distribution, a special case of the gamma distribution with
an integer-valued shape parameter c and rate λ:

D ∼ Gamma(c, λ).

A rate parameter λ
x, x ∈ {A,V , S}, has to be specified for each

single stimulus condition, auditory (A), visual (V), and somato-
sensory (S), respectively, while threshold parameter c is assumed
to be constant across the modalities. For simplicity, we neglect
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residual processes, like motor time, and assume that D equals the
observed reaction time.

For x, y, z pairwise different modalities chosen from {A,V , S},
detection time in the race model for trimodal redundant
stimulation, Dxyz , or Dxy for bimodal stimulation, is defined as
the minimum of the corresponding single stimulus detection
times Dx, Dy, Dz :

Dxyz = min(Dx,Dy,Dz) or Dxy = min(Dx,Dy)

For a coactivation model, we choose the superposition model
proposed in Schwarz (1989) (see also Diederich and Colonius,
1991). While a number of alternative coactivation models are
available, choosing one based on the Poisson process has the
advantage that, with one and the same set of values for the
parameters, detection time D can be simulated either for the race
model or for the superposition model. For the latter, detection
time for redundant stimuli follows again an Erlang/Gamma
distribution with the intensity rate given by the sum of the single
stimulus intensity rates λx, λy, λz :

Dxyz ∼ Gamma(c, λx + λy + λz) or Dxy ∼ Gamma(c, λx + λy).

The prediction of the race model, an exponential distribution
of RTs, is of course not consistent with typical data. It is taken
here just for illustration; for fitting empirical data, it would
be easy to add a Gaussian component, resulting in an ex-
Gaussian distribution. For an empirical evaluation of race and
superposition models we refer to Diederich (1992a).

Figures 1, 2 depict empirical distribution functions obtained
from simulations of race and superposition models with

FIGURE 1 | It shows the empirical distribution function of the simulated data

for condition AVS and the bounds described by Inequality 6 and 10 (denoted

as “sharp RMI”). RTs for condition AVS were simulated according to the

superposition model, whereas RTs for all other conditions were generated

according to the race model (n = 2,000, c = 2, λA = λV = λS = 0.01).

parameter values c = 2, λA = λV = λS = 0.01 with sample
size n = 2,000. In both figures the trimodal distribution was
obtained from the superposition model, i.e., a Gamma (2, 0.03)
distribution. Figure 1 compares it to the bounds described by
Inequality 6 and 10 (denoted as “sharp RMI”). Both bounds
are violated for a large range of percentiles, with the latter
bound being violated even for percentiles beyond 80%. Figure 2
compares the trimodal distribution of the superposition model
with data from simulating the bounds described by Inequalities 6
and 13 for the race model. Again, there are large-range violations
of the bounds. FAV in bound 13 was obtained from the race
model but, in principle, it could be made arbitrarily close to 1
by choosing some coactivation model for conditionAV .

3.2. Trimodal Dependency: Adjusting
Correlations
One characteristic of the race model is the possibility to
increase the size of the redundant signals effect by tweaking the
correlations between the involved detection processes. Given a
race between two detection processes, consider their random
processing times, X and Y , varying from trial to trial. By
definition, the shortest processing time min(X,Y) determines the
detection time for a trial. Negative correlation means that, when
one process is fast, the other tends to be slow in a given trial.
Thus, there would only be few trials where both processes are
rather slow. This results in decreased average detection times,
since long times for one process are replaced by shorter times
of the other process. One can show that a race model with two
processes and maximal negative correlation yields the maximum
redundant signals effect (Miller, 1982; Colonius, 1990, 2016).

FIGURE 2 | It shows the empirical distribution function of the simulated data

for condition AVS and the bounds described by Inequalities 6 and 13 . RTs

for condition AVS were simulated according to a superposition model,

whereas RTs for condition AV were generated according to the race model

(n = 2,000, c = 2, λA = λV = λS = 0.01).
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However, a situationwith three “competing” processesX,Y ,Z,
e.g., audio, visual, and somato-sensory, is more complicated.
First, instead of one there are three correlation coefficients
rxy, rxz , ryz . For a fixed set of two-sample Neyman–Pearson
correlation coefficients rxy and rxz , the third coefficient ryz can
not vary freely between−1 and+1 but is restricted to a narrower
range (Stanley and Wang, 1969):

rxyrxz −

√

(r2xy − 1)(r2xz − 1) ≤ ryz ≤
√

(r2xy − 1)(r2xz − 1)

+ rxyrxz .

Second, values for the correlations generating maximal
facilitation are not as trivial to find as in a two-process
situation. Limited by the above mentioned constraints, it is
not possible to construct a correlation matrix with coefficients
rxy = rxz = ryz = −1. Our simulations with a multivariate
gamma distribution (not presented here) suggest, for example,
that setting rxy = rxz = ryz = −0.5 yields a relatively large
redundant signals effect when processing times X, Y , Z have an
identical underlying distribution.

CONCLUSION AND OUTLOOK

We have shown that the race model inequality extends naturally
from the bimodal to the trimodal case, as long as essential
assumptions about context invariance are specified. Moreover,

the trimodal case permits “mixed models,” that is, models
(i) where the race assumption is only valid for certain modality
combinations but not for others, and (ii) where not all unimodal
distributions may be available.

For an application of the generalized race model inequalities
presented here, the next step is to extend the current statistical
tests developed for the bimodal case to the different trimodal
cases (for a recent overview, see Gondan and Minakata, 2016).
This will also require extensive simulation work as in Kiesel
et al. (2007) including an extension to introduce intersubject
variability. Finally, it is well-known that the upper bound of the
bimodal race model inequality corresponds to maximal negative
dependency between the two processes (Miller, 1982; Colonius,
1990, 2016); a particularly challenging task for future study is to
characterize the new race model inequalities with respect to the
trivariate statistical dependencies underlying their bounds.
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