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Abstract

Triplet ordering preferences are used to perform Monte Carlo sampling of the posterior

causal orderings originating from the analysis of gene-expression experiments involving

observation as well as, usually few, interventions, like knock-outs. The performance of this

sampling approach is compared to a previously used sampling via pairwise ordering prefer-

ence as well as to the sampling of the full posterior distribution. For a fair comparison, the lat-

ter approach is restricted to twice the numerical effort of the triplet-based approach. This is

done for artificially generated causal, i.e., directed acyclic graphs (DAGs) and for actual

experimental data taken from the ROSETTA challenge. The sampling using the triplets

ordering turns out to be superior to both other approaches.

Introduction

For the last 10 years, high-throughput omics data have raised many methodological challenges

in system biology. Among these challenges, gene-regulation networks have received a great

deal of attention. In this context, Gaussian models like the Graphical lasso [1] or approaches

based on mutual information [2] are very popular for inferring gene regulation networks. In

case time-resolved data is available, e.g., dynamic Bayesian networks [3] or ordinary differen-

tial equations [4] can be applied. Another popular approach, following the work of Pearl [5],

focuses on causal Gaussian Bayesian networks and performs intervention calculus [6] proving

itself to be able to retrieve bounds on causal effects and thus to partially determine causal rela-

tionships using only observational data [7]. In this paper we focus on estimating causal Bayes-

ian networks in the presence of arbitrary mixtures of (non-time resolved) observational and

interventional data [8, 9], i.e., wild-types and knock-out/down experiments with possibly mul-

tiple interventions within each experiment.

As explained in [8] estimating the underlying DAG (Directed Acyclic Graph) structure of a

causal Bayesian network is equivalent to finding of the so-called causal ordering between the

genes of interest. In general, this causal ordering is unknown and belongs to a very large order-

ing space (p! possible orderings for p genes) which cannot be explored exhaustively. The
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solution suggested by [8] consists in sampling causal orderings in the posterior distribution

using Markov chain Monte-Carlo (MCMC) simulations.

At each MCMC step, a new causal ordering is sampled according to a proposal distribution

(ex: Mallows distribution) and the maximum likelihood of the model must be computed given

the new ordering before to accept/reject the sampled ordering. Thanks to the closed formulas

developed in [8], this likelihood maximization can be done exactly and efficiently but requires

a computational effort which still grows with the sixth power of the number p of interacting

objects (ex: genes). Thus, each single Monte Carlo step is computationally rather expensive.

Mathematically a proper MCMC is guaranteed to converge to the correct sampling, but

only on diverging time scales. Given that for practical applications one only has a finite

amount of computational resources available, only small networks can be treated in this way.

For this reason, an approximation based solely on pairwise probabilities of ordering preference

has recently been introduced [10]. This resulted in a considerable increase of efficiency, but

led in many cases to less reliable parameter estimates.

In this work, we extend this approximation to triplet-wise probabilities. We show that this

results in a strongly increased accuracy with respect to the pairwise approach. Also we show

that, when allocating a comparable amount of the numerical resources for the two algorithms,

the triplet approach outperforms the sampling based on the full maximum likelihoods. Thus,

the triplet algorithm is well balanced: it is sophisticated enough to allow for a rather accurate

sampling, while it is computationally cheap enough to be applicable in practice.

The reminder of this work is organized as follows: In Section “Model” we introduce the

model we use to analyze causal relationships and state all algorithms we have applied. In Sec-

tion “Results” we introduce the quantities we have measured to compare the different

approaches, and we present the corresponding results. We conclude in Section “Summary and

Discussion” with a summary and discussion.

Model and Algorithms

Model

We consider directed graphs G = (V, E) with p nodes i 2 V. Pairs of nodes i, j are connected by

directed edges (i, j) 2 E and carry a weight wi,j. The matrix W = (wi, j) contains all weights. A

nonzero weight indicates a causal relationship. We assume that the graph is acyclic, i.e., a

directed acyclic graph (DAG). Without loss of generality, we can assume that the nodes are

ordered according the causal relationships, i.e., wi,j> 0) i< j. This means within the follow-

ing random process only nodes i can have causal effects on nodes j if i< j:
On each node j = 1, . . ., p a Gaussian random variable Xj is placed given by

Xj ¼ mj þ
X

i<j

wi;jXi þ �j with �j � Nð0; s
2

j Þ : ð1Þ

Thus, the term �j is responsible for the fluctuations of the variables, e.g., for fluctuations of

gene expression and s2
j describes the level of fluctuations. In particular, the parameters m =

(m1, . . .,mp) and σ = (σ1, . . ., σp) represent the mean values and the standard deviations if all

interactions were absent. In the following an experiment corresponds to one realization of the

random process Eq (1).

Within the model it is, furthermore, possible to perform interventions on the nodes, i.e.,

within selected but arbitrary realizations of the process they are fixed to given values instead of

generated according to Eq (1). In the DAG these values are used as inputs to the descendants

when generating a realization of the process, i.e., performing an experiment numerically [11].
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Estimating Model Parameters

Given are N experimental data points xk ¼ ðxk
1
; . . . ; xkpÞ (1� k� N) assumed to be generated

according to Eq (1). The set of nodes subject to interventions on experiment k is denoted by Jk,
respectively (Jk = ;means no intervention for the k’th experiment). We denote by Kj = {k|j =2 Jk}
the experiments where there was no intervention on node j and by Nj = |Kj| the number of

times nodes jwere not target of an intervention. The log-likelihood of the joint experimental

outcome given the parameters has been derived in detail in Ref. [8]. Here we only state the final

result for brevity:

‘ðm;s;WÞ ¼ �
log ð2pÞ

2

X

j

Nj �
X

j

Nj log ðsiÞ �
1

2

X

j

1

s2
j

X

k2Kj

ðxkj � xkWeTj � mjÞ
2
; ð2Þ

where eTj denotes the transpose of the unit vector which has a value 1 in position j and zero

entries everywhere else. Note in order to write this equation in the standard form of the multi-

nomial distribution, one uses the covariance matrix S = LT diag(σ2)L, where L = (I − W)−1 and

I = diag(1) [8]. The above stated form is more convenient, because it is already diagonal. We

omit the dependence of ℓ on the data here for brevity of notation. For the given Nmeasure-

ments, the parameters m̂; ŝ; Ŵ leading to the maximum likelihood estimator (MLE)

‘max ¼ ‘ðm̂; ŝ; ŴÞ ¼ max
m;s;W

‘ðm;s;WÞ ð3Þ

can be obtained [8] in a straightforward way by the following procedure: First one obtains for

each experiment k = 1, . . ., N the measurements normalized with respect to the experiments

where there was no intervention on nodes j, for each node j:

yk;j ¼ xk �
1

Nj

X

k02Kj

xk0 : ð4Þ

Next one solves the linear system of size p(p − 1)/2
X

i0 ji0<j

ŵi0;j

X

k2Kj

yk;ji y
k;j
i0 ¼

X

k2Kj

yk;ji y
k;j
j for i < j; 1 � i; j;� N ð5Þ

to obtain estimates ŵi;j of the weights for the MLE. Solving a linear system with O(p2) variables

takes O(p6) steps. From this solution one obtains, still just following [8], estimates of the mean

values

m̂j ¼
1

Nj

X

k2Kj

ðxkj � xkŴeTj Þ ð6Þ

and of the variances

ŝ j ¼
1

Nj

X

k2Kj

ðyk;jj � yk;jŴeTj Þ
2
: ð7Þ

Estimating the Posterior Distribution

So far, we have assumed that the causal ordering of the model is given by o0 = (1, 2, . . ., p). In

experimental situations, if the data was actually generated according the DAG model, the

ordering is most of the time unknown, i.e., all estimates will depend on the ordering: ℓmax =

ℓmax(o). for the general case, if the data was not generated according to a DAG model, the
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modeling must involve many orderings. Thus, in experiments and subsequent model estima-

tion, one is actually interested in either the ordering which maximizes the MLE, or, alterna-

tively, in obtaining the posterior distribution involving all (or the dominant) orderings

weighted by the corresponding ordering-dependent MLEs.

Both can be obtained in principle by iterating over all p! possible causal orderings o, i.e.,

permutations of the natural numbers 1, . . ., p. Each time one has to reorder the measurement

data according this ordering, and obtaining the MLE Eq (3) via solving Eqs (4), (5), (6) and

(7). Clearly, if p is too large, this enumeration is not possible any more.

One alternative approach is to use aMarkov-chain Monte Carlo (MCMC) simulation,

where orderings o(t) according the likelihood exp(ℓmax(o)) are sampled, t denotes the number

of steps. A convenient approach to achieve this is theMetropolis algorithm. Here, within each

step, a trial order o0 is generated. For the present study, we use local changes, i.e., an exchange

of the order of two nodes with respect to the current ordering o(t). The trial ordering is

accepted, i.e., o(t + 1) = o0 with the probability

pacc ¼ minf1; exp ½‘maxðo
0Þ � ‘maxðoðtÞÞ�g : ð8Þ

Otherwise, the trial ordering is not accepted and the current ordering kept for the next time

step, i.e., o(t + 1) = o(t). Note that for all simulations we performed (see below for details), the

empirical acceptance rate of these locally generated trial orderings was below 0.5. The value of

0.5 is considered by rule of thumb as a good choice, balancing a desired high rate of changing

with a desired high acceptance rate. Therefore it would not make sense to consider trial order-

ings which differ from the current ordering by more than two exchanged positions, since this

would increase the fluctuations and therefore decrease the acceptance rate even more.

This type of sampling guarantees, in principle, if the Markov chain is long enough, that the

orderings are sampled according the desired posterior distribution. Note that for the computa-

tion of the change ℓmax(o0) − ℓmax(o(t)) of the log-likelihood one has to recalculate the log-like-

lihood for the trial ordering o0 from scratch. Thus, each MCMC Metropolis step takes O(p6)

running time.

By starting with a random ordering o(0), performing a “long enough” MCMC sampling

and by discarding the “initial” part (allowing for equilibration), a sample set S of orderings is

obtained, which can be used to calculate averaged estimated parameters, see Section “Calcula-

tion of Averaged Estimates”.

Calculation of Averaged Estimates

The aim is to study expectation values in ensembles defined by probabilities or likelihoods

P(o). Here we are interested in the true likelihoods PðoÞ � e‘maxðoÞ. Thus, for any measured

quantity A(o), where the estimate depends on the assumed ordering o, the expectation value is

given by

hAi �
X

o

AðoÞPðoÞ: ð9Þ

Note that the measured quantities of interest are usually estimates which are obtained from the

maximum-likelihood calculation, e.g., the estimates of the weights obtained from Eq (5) or

estimates of the variances Eq (7), or any other derived values.

If only a finite set S of samples is given, averages can be obtained, approximating the expec-

tation values:

Â �
P

o2SAðoÞPðoÞP
o2SPðoÞ

ð10Þ
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These estimates are most accurate if the process use to generate the sample set follows the

desired sampling PðoÞ � e‘maxðoÞ as close as possible. Thus, the sample set S could be generated

by a MCMC sampling according to the true probabilities e‘max , as outlined in the previous sec-

tion. In this way automatically orderings with high contributions to Eq (10) are preferentially

generated. Note that since S is actually a mathematical set, there will be no multiple occur-

rences of orderings in S. If one allowed for multiple occurrence, then one would have to take

simple arithmetic averages instead of weighted ones as in Eq (10).

Anyway, here we work with sampling sets. The reason is that, alternatively, these sets can be

obtained by sampling according to different probabilities, which only aim at approximating

the true probabilities but which are computationally much cheaper to calculate. If the size of

the set is suitably restricted, we used always |S| = 100, the computationally expensive O(p6) full

likelihood calculations have to be performed only for a small number of (here) 100 samples.

The approximate probabilities we have used are introduced in the following section.

Pair and Triplet Probabilities

Instead of sampling the full posterior distribution, in [10] it was proposed to perform an

MCMC sampling from a different distribution, the Babington-Smith (BS) ordering distribu-

tion [12, 13]. It is based on pair preferences πi,j (1� i 6¼ j� p) with πi,j 2 [0, 1] and πi,j +
πj,i = 1. The meaning is that within the desired ordering distribution in any random ordering

element i appears before j with this probability πi,j. The pair preferences can be estimated

from the experimental data with interventions by considering all possible two-node graphs

Gi,j� ({i, j}, {(i, j)}) with the nodes i and j and with exactly one directed edge (i, j). As above,

for brevity of notation, we omit the dependence of the pair preferences and any derived quan-

tities on the data here. Only the data values for the two nodes are considered. Note that in case

of multiple interventions, we observed in tests, which are not contributing to the results shown

here, that the overall performance of the sampling according pair preferences is somehow bet-

ter if data points with interventions on other nodes than i, j are not included in the dataset for

the pair i, j, respectively. For each of the p(p − 1) directed two-node graphs the log-likelihood

‘
ð2Þ

maxði; jÞ is obtained. The pair preferences are then given by

pi;j ¼
exp ð‘ð2Þmaxði; jÞÞ

ð exp ð‘ð2Þmaxði; jÞ þ exp ð‘ð2Þmaxðj; iÞÞ
: ð11Þ

From the pair preferences, the BS probability of a full ordering o is obtained by

PðojpÞ �
Y

i<j

poi ;oj ð12Þ

with a suitable normalization. The normalization is not needed here, since, first, we only com-

pare the (relative) values of Eq (12) for different orderings. The corresponding log-likelihoods

are denoted as

‘
pair
� ‘

pair
ðoÞ ¼ log

Y

i<j

poi ;oj : ð13Þ

Second, we performed MCMC sampling of orderings using the Metropolis algorithm accord-

ing Eq (12) where also only relative likelihoods are needed. This was done in an equivalent

way as above, only the true MLE is replaced by Eq (13). Thus, starting again from a random

ordering o(0), we generated trial orderings o0 by exchanging the i’th and the j’the entry in the

current ordering. The new orderings are accepted with the corresponding Metropolis
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probability. Note that one does not have to recalculate the BS probability from scratch, since

the change in probability is easier to obtain. The Metropolis acceptance probability is given by

ppair
acc ¼ min 1;

poj;oi

poi ;oj

Y

kji<k<j

poj;okpok;oi

poi ;okpok;oj

( )

: ð14Þ

This takes only O(p) steps compared to the O(p2) steps which are needed for the calculation of

the full probability. In particular it is much faster than computing the full likelihood which

takes O(p6) steps.

Naturally, when sampling according to Eq (12) the observed set of orderings will be differ-

ent but somehow similar to when sampling according the true likelihood. The reason is that

orderings with a high full likelihood induce in principle large pairwise probabilities for those

pairs which are compatible with such an order. Nevertheless, the pairwise approximation can-

not completely cover collective effects which involve the ordering of more than two nodes.

Thus, the final estimates, like the weights, for the posterior distribution are obtained by keep-

ing the nincl samples with the highest Babington-Smith probabilities Eq (12) in the sample set

S. For these orderings now the true MLE Eq (3) is evaluated and used. This means, Eq (10) is

applied for any kind of estimation or averaging, i.e. the Babington-Smith weights are now used

in this final averaging step.

In [10] it was found that this sampling approach is in some case similar accurate as a full

MCMC sampling as described in Sec. Estimating the Posterior Distribution, but there were

notable differences. In particular when the number p of nodes is growing, the orderings exhib-

iting the largest pair-based probabilities turned out to be more and more different from the

orderings exhibiting large full likelihoods. This showed up in particular when calculating esti-

mates of network parameters. Therefore it was proposed to maybe consider triplets instead of

pairs.

Thus, it is the purpose of the present work, to study this higher level approximation of the

true posterior distribution. Similar to the above defined pair probabilities, we introduce triplet

probabilities ρi,j,k 2 [0, 1] such that ρi,j,k + ρi,k,j + ρj,i,k + ρj,k,i + ρk,i,j + ρk,j,i = 1. These probabilities

can be estimated from the experimental data in a similar way as above, by considering all pos-

sible sub graphs ({i, j, k}, {(i, j), (i, k), (j, k)}) with three nodes and corresponding edges. For

these sub graphs the corresponding MLE are obtained and suitably normalized, equivalent to

Eq (11) to yield the triplet probabilities ρi,j,k. They can be used to generalize the Babington-

Smith probabilities of orderings to

PðojrÞ �
Y

i<j<k

roi;oj;ok : ð15Þ

Again, the normalization is not needed here. The corresponding log-likelihood is denoted as

‘
tripl
¼ log

Y

i<j<k

roi;oj;ok : ð16Þ

We perform an MCMC sampling of orderings according these probabilities using the Metrop-

olis algorithm and trial ordering generated via swapping of pairs of elements. Like for the case

of sampling according the pair-based probabilities, these swapping pairs are chosen unbiased,

i.e., each pair is chosen with the same probability. Therefore, to guarantee a sampling accord-

ing to Eq (15), for the calculation of the acceptance probabilities only the change in probability

of Eq (15) has to be considered, which now takes O(p2) steps for such a swap.

Triplet Ordering Preferences for Estimating Causal Effects
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Again, for all evaluation and estimations, the nincl = 100 highest-probability samples with

respect to the triplet probability are kept. For these samples the true likelihood is obtained and

used for all averaging processes according to Eq (10).

Data Sources

The new approach will be tested and compared to previous approaches using data from biolog-

ical applications as well for data generated my numerical simulations for DAGs of different

sizes.

For the latter one, we consider random DAGs with p nodes. For the edge weights, each

edge (i, j) with i< j receives independently a zero weight with probability 1 − q, i.e., these

edges are absent. With probability q each edge gets assigned an edge weight which is drawn

uniformly from the range [−1, −0.4] [ [0.4, 1]. Thus, these edge can be distinguished very well

from the absent edges with weight 0. Below, we use q = 1, i.e. complete graphs, as well as

diluted graphs with q = c/(p − 1), i.e., these graphs have on average c neighbors. We used c = 6.

Finally, for each DAG instance, for each node jmean valuesmj = 1/2 are used and the variance

values σj are drawn randomly uniformly in the interval [0.01, 0.1]. We also performed some

tests with other values and verified that our general conclusions do not all depend on how the

means and the standard deviations are chosen. Below we will also show one set of results for

very strong randomness σj 2 [0.1, 1]. Thus, for the majority of the nodes the fluctuations are

stronger than the mean for this case. All simulations are performed for 1000 DAG instances

generated independently in this way.

Next, for each DAG instance, a certain number of Nmeasurements is performed, where the

measurement vectors xk (k = 1, . . ., N) are generated according to Eq (1). Typically, for a DAG

of p nodes, we generated N = 10pmeasurement vectors, other cases are stated when it applies.

We used a variable number of interventions to investigate how the different sampling

approaches respond to that variation. Note that the scheme exhibited in Section “Estimating

Model Parameters” allows for multiple intervention. Nevertheless, since we are interested in

comparing different sampling approaches here, we present for simplicity just single interven-

tions which are systematically done the first r (r� N) experiments of each set of experiments.

We applied a systematic manner, such that for all nodes at least br/pc interventions are per-

formed while for r − br/pc nodes one intervention more, i.e., dr/pe interventions are per-

formed. This sums up to r interventions. For each intervention on node j, we set Xi = 0,

respectively, corresponding to a knock-out.

The advantage of using artificially generated data is that the actual model used to generate

the data is available. Therefore all estimated and averaged values, obtained using a sampling

via the true likelihoods as well as using a sampling based on pair and triplet probabilities, can

be compared to the actual model parameters. This allows for a good comparison of the differ-

ent sampling approaches. In particular for a varying number of network sizes, even large ones,

and for varying number of interventions.

On the other hand, the DAG models might not represent all subtleties of biological applica-

tions. Thus, to allow for a different viewing angle on the different approaches, we also applied

data obtained from biological measurements. Here, we used the Rosetta Compendium data set

[14] which contains gene expression data on yeast. It contains data from experiments on

mutants with interventions (knock-out or know-down) for single as well as multiple interven-

tions. Also a large amount of data from wild-type experiments (no interventions) is contained.

The database can be accessed freely at the location: http://arep.med.harvard.edu/ExpressDB.

We used in particular a sub network taken from [15] consisting of p = 17 genes (STT2, TEC1,

NDJ1, KSS1, YLR343W, YLR334C, MFA1, STE6, KAR4, FUS1, PRM1, AGA1, AGA2, TOM6,
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FIG1, FUS3, YEL059W) and data for N = 300 experiments. For this set of genes, no knowledge

about any possibly underlying network structure or network parameters is assumed while per-

forming the numerical tests here. Only the actual experimental outcomes taken from the data-

base are used. Thus, the estimated parameters generated using the true likelihood from the set

of reference values here to perform a comparison of the different approaches. For this purpose,

to allow for an exact enumeration, avoiding sampling errors for the reference values, we

selected [10] a sub network consisting of p = 8 genes, namely STT2, TEC1, NDJ1, KSS1,

YLR343W, YLR334C, MFA1, STE6. Note that these genes form a coherent sub network in the

network estimated in [15]: with respect to the full 17 nodes network, only one single interac-

tion involving a node of the sub network STE6 (to FUS1) is missing for this selected subset.

For these 8 genes, four of the experiments contained single node interventions, namely knock-

downs on nodes KSS1, SST2, and twice on TEC1.

Results

To evaluate and compare the power of the Babington-Smith pair and triple approaches, we

applied them to various data obtained from DAG ensembles of different graph sizes as well as

to data obtained from biological applications.

First, as shown in Section “Direct Comparison”, we applied the calculation of the Babing-

ton-Smith pair and triple likelihoods to a single graph, where we enumerated all orderings and

compared the result to the full likelihoods. In Section “Application to Rosetta Compendium”,

the results of the application of the MCMC sampling to the Rosetta data set are shown. Next,

in Section “Evaluation for Random DAGs”, MCMC sampling for all three types of likelihoods,

respectively, were applied to data obtained for different random DAGs of size p = 20 and

p = 50 nodes. Finally, in Section “Greedy Approach”, the results of estimating the most likely

orderings via greedy algorithms based on pair and triplet probabilities for random DAGs are

shown.

Direct Comparison

First, we evaluated the likelihood computation for a single randomly picked realization of a

complete (q = 1) DAG with p = 8 nodes. We performed N = 100 experiments, among those

r = 4 with single-node interventions. For this sample, we enumerated all p! = 40,320 orderings,

and for each ordering we evaluated the true likelihood Eq (2) together with the pairwise Bab-

ington-Smith log-likelihood Eq (13) and the triplet-wise BS log-likelihood Eq (16).

In the left part of Fig 1, for each ordering the pairwise Babington-Smith likelihood is

shown as a function of the full likelihood. This means a scatter plot of p! orderings of points

(ℓmax(o), ℓpair(o)) is shown. The ordering omax leading to the maximum full likelihood

appears to the right of the scatter plot, with ℓmax(omax)� 1053. This ordering will dominate

any average according to Eq (10). Obviously, this ordering does not exhibit the maximum

pairwise BS likelihood, which is ℓpair� −7, obtained by an ordering which true log-likelihood

is about ℓmax � 1016. The horizontal line in the plot indicates the pairwise BS log-likelihood

ℓpair of the ordering omax. A considerable number of all orderings, actually more than 2700,

are located above this line. Thus, they exhibit a value of ℓpair which is higher than for the

ordering omax. Therefore, when performing an MC sampling according the pairwise likeli-

hoods Eq (13) plus evaluating the true likelihoods for averaging, one must generate a very

large sample if the true maximum-likelihood ordering is to be included.

The corresponding result considering triple-wise BS likelihoods ℓtripl is shown in the right

part of Fig 1 in the same way. Here, the sequence exhibiting the maximum value of ℓtripl� −62

has a true log-likelihood of ℓmax� 1040, which is much closer to the sequence omax which has
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(still) ℓmax(omax)� 1053. Only about 100 sequences exhibit a triple-wise BS likelihood larger

than for omax (indicated again by the horizontal line). This means an MC sampling using the

triplet-wise BS likelihoods allows for much more accurate estimation of model parameters

with respect to the true likelihoods. This can be seen also in the next section, where an actual

biological application is considered.

Application to Rosetta Compendium

For the experimental data points of the Rosetta Compendium for p = 8 nodes and N = 300

experiments with four interventions (see Section “Data Sources” for details), we obtained the

averages of the estimated interaction parameters according to Eq (10). One can either estimate

the direct causal effects, i.e., the entries wij of the weight matrices W. Here, we concentrated on

the matrix

L ¼ 1þWþW2 þ . . .þWp� 1 ¼ ðI � WÞ� 1
; ð17Þ

which carries the total (direct and indirect) causal effects [10] mediated through chains of

causal effects (note that Wp = 0 because of the DAG structure). Thus, for all cases, we estimated

the 8 × 8 = 64 entries of the matrix L.

The sampling was performed in four different ways:

1. All p! = 40320 orderings were enumerated and the true expectation value for all 64 matrix

entries was obtained via Eq (9).

2. To estimate the influence of a finite sample size, a subset S of 1000 orderings with the high-

est true likelihoods e‘maxðsÞ was taken. For this subset the averages of estimates of the 64

matrix entries were obtained via Eq (10).

3. An MCMC sampling according the pair BS probabilities Eq (12) was performed.1000 inde-

pendent MCMC chains were performed, each starting with an independently chosen ran-

dom ordering. The length of each MCMC chain consisted of 100 pair-exchange trial steps

according to Eq (14). From these orderings, the set S of the 1000 orderings exhibiting the

Fig 1. Log-likelihood comparisons. Left: Scatter plot of the true log-likelihood Eq (2) versus the pairwise log

likelihood Eq (13) for data generated for a DAG of size p = 8. All 8! orderings were enumerated and the pairs

of true likelihood and pair probability plotted. The horizontal line indicates the pairwise BS log-likelihood for

that ordering which exhibits the maximum true likelihood. Right: The same but for true log-likelihood (x-axis)

versus triplet log-likelihood Eq (16). Note the different scales of the pairwise and triple-wise log-likelihoods are

only due to the missing normalization of likelihoods.

doi:10.1371/journal.pone.0170514.g001
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highest pair BS probabilities was taken and the average estimates of the matrix entries were

obtained via Eq (10).

4. An MCMC sampling according the triplet BS probabilities Eq (12) is performed, in an

equivalent way as for the pair BS probabilities. All parameters were the same and the analy-

sis was performed in the same way. Thus, everything was the same, except that the pair BS

probabilities were replaced by the more demanding triplet BS probabilities.

In Fig 2 the averages obtained from the approaches 2–4 are compared to the exact expecta-

tion values obtained from the first approach. For a perfect estimation of the averages, all data

points would lie on the diagonal. Clearly deviations are visible, which is to be expected since

the averages are only approximations of the expectation values. The main result is that the

deviations are much stronger for the sampling using the pair probabilities. On the other hand,

for the triplet probabilities, the scatter of the data points is comparable to the scatter of the

exact sampling of restricted size. This shows that the sampling of a finite size set of ordering

samples is already close to perfect when using the triplet probabilities.

In the inset of Fig 2 we also show the mean-squared errors e2 ¼ ðÂa � hAiÞ2, where A are

the different matrix entries Lij and ‘a’ denotes the algorithm (a = pairs, triplets, subset). The

above findings are supported by MSE values, which are comparable for triplets probability and

subset (exact probability) sampling, but much larger for the pair probability sampling.

Evaluation for Random DAGs

Next, we show results for numerically generated data for an ensemble of DAGs. This has the

advantage that due to the average the influence of fluctuations is negligible when comparing

the efficiencies of the different sampling approaches. Furthermore, we were able to perform

the simulations for different DAG sizes, here we studied DAGs with p = 20 and with p = 50

nodes. Also, we could vary the number r of interventions over a wide range to get a grip on

how these influences the performance of the different algorithms. Finally, we could compare

the estimated parameters with the original values used to generate the data. Thus, to measure

the efficiency, we consider all edge weights wi,j, where wi,j might be zero because it does not

match the causal ordering, or because the causal interaction is just absent (in the case of edge

probability q< 1). This is done in the following way: From each sampling, we obtain averaged

estimated edge weights ŵi;j (i, j = 1, . . ., p) according to Eq (10). Now, we count the “bad” esti-

mates of the edge weights as follows:

dbadði; jÞ ¼

Yðjŵi;jj � w0Þ if wi;j ¼ 0

Y
wi;j � ŵi;j

ŵi;j

�
�
�
�
�

�
�
�
�
�
� w1

 !

if wi;j 6¼ 0

8
>><

>>:

: ð18Þ

Θ(x) denotes the threshold function which is Θ(x) = 0 for x� 0 and Θ(x) = 1 for x> 0. Thus,

for a weight which is zero in the original DAG used to generate the data, the averaged estimate

is counted as bad if its absolute value exceeds a threshold value w0. For an edge with nonzero

weight of the original DAG the average estimate is counted as bad, if the relative deviation of

the average estimated weight and the original weight exceeds threshold value w1. We used

w0 = 0.1 and w1 = 0.5. In general, details of the results might depend on the actual values of w0

and w1, but we verified that the principal trends, with respect to which sampling approach per-

forms better, remain the same. To exclude the influence of the actual threshold values, we also

performed a Receiver Operator Characteristics (ROC) analysis, see below. We iterated over all
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edges, i.e. measured

nbad ¼
1

pðp � 1Þ

X

i6¼j

dbadði; jÞ : ð19Þ

The results we show are an average over all 1000 random DAGs.

The measurement data was obtained for N = 10p experiments, i.e., N = 200 experiments for

p = 20 nodes and N = 500 experiments for p = 50. We performed interventions for a varying

number 0� r� N of experiments as explained in Section “Data Sources”. The different sets S

Fig 2. Comparison on the Rosetta Dataset. Comparison of the estimations of the 64 entries of the total causal effects matrix L using

the exact expectation values hLiji (from a complete enumeration) and estimates L̂ij obtained from the three approaches: pairwise

sampling, triplet-wise sampling, and a subset of the exact sample. For each matrix entry, the average value obtained via one of the three

approaches is shown, respectively, as a function of the exact expectation value. The data is taken from the module Rosetta data set (8

genes). The inset shows the mean-squared error e2 between averaged entry and exact expectation value, as a function again of the

exact expectation values.

doi:10.1371/journal.pone.0170514.g002
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of sampled orderings, for which the averages ŵi;j were calculated using Eq (10), were obtained

via four different sampling approaches, respectively:

pairs. An MCMC sampling according the pair BS probabilities Eq (12) is performed. 100

independent MCMC chains were performed, each starting with an independently

chosen random ordering. The length of each MCMC chain consisted of 10100 pair-

exchange trial steps according to Eq (14). During the last 100 steps of each MCMC

chain, configurations were stored, i.e., the initial 10000 steps are for equilibration.

From these 10000 stored orderings, the set S of the 100 orderings exhibiting the high-

est pair BS probabilities was taken and the average entries, now using the true maxi-

mum likelihoods of these configurations, were obtained via Eq (10).

triplets. An MCMC sampling according the triplet BS probabilities Eq (12) is performed, in an

equivalent way as for the pair BS probabilities. All parameters were the same and the

analysis was performed in the same way. Thus, everything was the same, except that

the pair BS probabilities were replaced by the more demanding triplet BS probabilities.

full. In a similar way a MCMC sampling with the full maximum likelihoods was per-

formed. Here only 10 independent runs starting with random orderings were done.

Note hat in the limit of infinite long simulation time, each of such an MCMC chain

should yield the true expectation values Eq (9). Nevertheless, for a fair comparison, the

length of the MCMC chains was chosen such that the full simulation CPU time was

slightly above two times the running time of the MCMC simulation using the triplet

BS probabilities. Since each MCMC step involves a fullO(p6) calculation of the maxi-

mum likelihoods, this means per MCMC chains only 50 steps could be performed.

exact. The set S consisted only of the original ordering of nodes which was used generate

the data. Thus, only one single O(p6) maximum likelihood computation has to be

performed. This usually yielded the best estimates of the parameters. Clearly, in true

experiments, this ordering is not available.

In Fig 3 (left) the resulting average values for the fraction nbad of incorrectly estimated edge

weights is shown as a function of the relative number r/p of single-node interventions. One

can observe that with increasing number of interventions, the quality of the averaged weight

estimate increases. This is especially true for the range r< pwhere the number of interventions

is smaller than the number of nodes in the DAG. For r> p the quality of the averaged esti-

mates increases only slightly.

Also one can observe that the full sampling, due to the limited number of MCMC steps per-

formed, is the worst approach, except for a very small number of interventions, where the esti-

mates are bad anyway. Furthermore, the quality of the estimates is much better when using the

triplet probabilities as compared to the pair probabilities. Still, one cannot reach the quality of

the estimate which we obtained when using the single true ordering. Thus, the result from the

true ordering constitutes a lower limit for what is possible using sampling.

To give an impression of the influence of the fluctuations, we also show in Fig 3 (right) the

corresponding results for the case of large fluctuations, with standard deviations σj drawn in

the interval [0.1, 1]. This is very strong compared to the mean valuesmj = 1/2. The overall pic-

ture remains the same, only that the pair approximation becomes very bad now and that it is

beneficial to use more interventions. In terms of efficiency versus effort, the triplet approach

comes out best.

As mentioned already, the details of the results for nbad depend on the choice of the thresh-

old values w0 and w1. For this reason we also show how here the results change when varying
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w0 or w1 for a fixed value r/p = 5, see Table 1. The relative order of the approaches is the same

for all combinations of the threshold parameters: Using the exact ordering (which is usually

not available) is the best. The triplet-based approach is better than the pair-based. Using the

full likelihood with the same numerical effort is worst. Note that, naturally, the fraction nbad

decreases when increasing the thresholds, because the criterion is easier to fullfill. Only for the

case of changing w0 the result for the “exact” approach does not change, because the true

ordering is used which means that all zero edges are correct by default, for any threshold w0.

To obtain results which are independent of the actual choice of the thresholds, we further-

more determined the ROC for whether a weight is considered non-zero or not. For this pur-

pose we used a simple thresholding, i.e., a weight for edge i, j is considered non-zero if its

estimate exceeds a threshold ŵi;j � w2. Thus, for a large threshold value, only few weights will

be considered as nonzero, while for a small value of w2 many weights will be considered as

non-zero. Since we know the weights used to generate the data, we know those edges which

are correctly identified as being non-zero, i.e., the number of true positives Npos, as well as the

Fig 3. Topological errors. Average fraction nbad of incorrectly estimated edge weights as a function of the

number of interventions r per node. The data was generated for 1000 randomly generated DAGs of size

p = 20 nodes. The results are obtained using four different sampling approaches using the true maximum

likelihoods (full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using just the exact

ordering of nodes of the DAGs. The running time for the sampling using the true maximum likelihoods was

restricted to two times the CPU time of the triplet sampling. The left plot shows the result for standard

deviation σj drawn from the interval [0.01, 0.1] (as for almost all results presented here) while the right plot is

for strong fluctuations with σj 2 [0.1, 1].

doi:10.1371/journal.pone.0170514.g003

Table 1. Values for the fraction nbad of incorrectly estimated edge weights for p = 20, N = 200, r/p = 5

for various values of the threshold w0 and w1. The results for the standard threshold value w0 = 0.1 and w1

= 0.5 are included in the third row.

threshold nbad

w0 w1 full pairs triplets exact

0.02 0.5 0.221 0.073 0.041 0.009

0.05 0.5 0.208 0.070 0.039 0.009

0.1 0.5 0.199 0.067 0.038 0.009

0.2 0.5 0.192 0.066 0.037 0.009

0.1 0.1 0.310 0.187 0.156 0.122

0.1 0.2 0.265 0.124 0.090 0.053

0.1 0.8 0.164 0.048 0.024 0.002

doi:10.1371/journal.pone.0170514.t001
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number of incorrectly as being non-zero identified edges, the false positives Nfalse. For the cor-

responding normalized rates npos = Npos/p2 and nfalse = Nfalse/p2, the function npos(nfalse) can be

obtained by varying w2. This is the actual ROC curve. The steeper it grows for small values of

nfalse, i.e., the more true positives are found at the cost of accepting false negative estimates, the

better is the determination of the non-zero edge weights. Thus, the area AROC under the ROC

(AUROC) is a measure for the quality of the estimate. Since the AUROC is a number obtained

via the variation of the threshold w2 it has the advantage of being parameter-free. Due to the

normalization, the AUROC is bounded by one, which is the optimum case of finding all true

positive non-zero weights without false-positive ones.

In Fig 4 the AUROC is shown for the same data of the p = 20 complete DAGs. Clearly, with

increasing numbers r of interventions, the AUROC grows. The increase is strongest for values

Fig 4. AUROC. Area AROC under ROC curve (AUROC) for estimating non-zero edge weights as a function of the number of

interventions r per node. The results are obtained using three different sampling approaches using the true maximum likelihoods (full),

the pair BS probabilities (pair), and the triplet BS probabilities (triplet). The running time for the sampling using the true maximum

likelihoods was restricted to two times the CPU time of the triplet sampling.

doi:10.1371/journal.pone.0170514.g004
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r< p, beyond this point the increase in the quality of the estimates is much smaller. One can

also observe that again the triplet-based sampling outperforms the pair-based sampling. Also,

the sampling using the true maximum likelihoods, restricted to about two times the numerical

effort of the triplet-based approach, is better for about r< 0.8p but worse for r> 0.8p, confirm-

ing the previous results.

We also considered diluted DAGs. In Fig 5, the number nbad of strongly incorrectly esti-

mated edge weights is shown as a function of relative number r/p of interventions for the case

of diluted DAGs which exhibit one average c = 6 neighbor, which is less than one third com-

pared to the case of the complete graphs. Here, the results of the pair and triplet-based

Fig 5. Topological errors for diluted DAGs. For a diluted graph with p = 20 nodes: Average fraction nbad of incorrectly estimated

edge weights as a function of the number of interventions r per node. The results are obtained using four different sampling

approaches using the true maximum likelihoods (full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using

just the exact ordering of nodes of the DAGs. The running time for the sampling using the true maximum likelihoods was restricted to

two times the CPU time of the triplet sampling.

doi:10.1371/journal.pone.0170514.g005
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sampling approaches are much closer to each other, but the general trend remains, showing

that the triplet-based sampling outperforms the pair-based sampling, and the full likelihood-

based sampling for a comparable numerical effort.

The facts that the results of the pair and triplet-based approaches are closer to each other

can be some expected, because the effective number of parameters to be estimated is smaller,

thus the corresponding likelihoods or probabilities will be closer to each other. Thus, we also

studied larger DAGs with p = 50 nodes. Here we generated N = 500 experimental outcomes

per node for each DAG. For the MCMC sampling we used again 100 independent runs for the

pair-based and the triplet-based sampling, 10 independent runs for the sampling based on the

true maximum likelihoods ℓmax. For the former two, we used 15100 MC steps for equilibration

and 100 steps for measurement, for each of the independent runs. For the sampling based on

ℓmax, due to its expensive O(p6) computation, we could perform only 25 MCMC steps in order

to consume about two times the CPU time needed for the triplet-based sampling.

The corresponding results of nbad(r/p) for complete graphs are shown in Fig 6. Here the dif-

ferences between the approaches are indeed larger compared to the p = 20 case, but the general

trend is confirmed that the triplet-based approach outperforms the pair-based approach,

which in turn outperforms the exact sampling. The results when just using the original causal

ordering form again a lower bound on what can be achieved for nbad.

Greedy Approach

Finally, to allow for a comparison of the approaches from a different perspective, we consider

the case where we do not aim at estimating parameters of the model, e.g., the weights of the

causal interactions. Instead we focus on the estimation of the causal ordering itself which was

used to numerically generate the data. This is a much harder task. One approach could be to

enumerate all orderings and take that one exhibiting the largest maximum likelihood ℓmax as

an estimate of the correct ordering. This represents a double-nested optimization: For each

given ordering, the exact maximum likelihood is obtained in a straightforward way as

explained in Section “Estimating Model Parameters”. This has to be repeated for all possible

orderings. Thus it would require an numerical effort O(p!) for system consisting of p nodes,

i.e. more than exponentially.

This is not feasible for systems beyond exhibiting few nodes. Therefore, we follow a differ-

ent approach here. We apply a greedy construction of an estimate for the true ordering.

For this purpose, we again use the pairwise and the triplet-wise probabilities, respectively.

This works as follows: We initialize the ordering with a single pair (i, j) of nodes, for the pair-

based approach, or the triplet (i, j, k) of nodes, for the triplet-based approach, which exhibits

the largest value of pair preference πi,j or the largest triplet preference ρi,j,k, respectively. Next,

iteratively nodes are included in the ordering, one-by-one, such that the resulting combined

BS probability, evaluated according to Eqs (12) or (15), respectively, is largest. The construc-

tion is finished when a full ordering of length p is obtained. This means in each step, one

chooses among O(p) nodes and O(p) insertion positions, i.e., one considers O(p2) choices.

Also, like in the MCMC steps, one has to consider O(p) terms when evaluation the influence of

on the pairwise likelihood for each extension of the ordering. Similarly, for the triplet-based

greed approach, each insertion choice requires the calculation of O(p2) factors. This leads to

an overall running time of O(p3) for the pair-based and O(p4) for the triplet-based greedy

approaches.

To evaluate the resulting ordering, we compared it to the original ordering which was used

to generate the data, while again varying the number of interventions in the same way as

before. For the comparison, we used Kendal’s tau-distance K, which is defined for two
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orderings o, o0 as the number of pairs of nodes which appear in different relative orders in the

two orderings.

Kðo; o0Þ ¼ j fi; jgjoi < oj ^ o
0

i > o0j
n o

j ð20Þ

Note that Kendal’s tau distance is also called bubble-sort distance because it states the number

of elementary sorting swaps to arrange one ordering in the order of the other given ordering.

The maximum possible value is p(p − 1)/2 for p elements.

In Fig 7 the average of K is shown for complete DAGs with p = 20 nodes as a function of the

number r of interventions. Here a larger (quite unrealistic) number of N = 1000 experiments is

Fig 6. Topological errors for larger complete DAGs. Average fraction nbad of incorrectly estimated edge weights as a function of

the number of interventions r per node for complete graph of p = 50 nodes. The results are obtained using four different sampling

approaches using the true maximum likelihoods (full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using

just the exact ordering of nodes of the DAGs. The running time for the sampling using the true maximum likelihoods was restricted to

two times the CPU time of the triplet sampling.

doi:10.1371/journal.pone.0170514.g006
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numerically performed. This allowed us to change the number r of interventions in a very

large range such that we could also access the region where the greedy approach actually deter-

mines the true ordering with high probability. One observes that indeed when increasing the

number of interventions, the greedy orderings resemble the original DAG ordering more and

more. Compared to the maximum value p(p − 1)/2 = 190, the orderings found by the greed

approaches are quite similar to the true ordering. Interestingly, as seen in the inset of Fig 7, for

about O(50) interventions, the greedy approaches find the true ordering, among 20!� 2 × 1018

ones, in more than half of all cases! This is in particular striking, because apparently the

Fig 7. Kendall’s tau. Average Kendall’s τ distance K to the original ordering for ordering obtained via applying the greedy approach for

pairs and triplet Babington-Smith probabilities. The average is obtained over 1000 DAGs of size p = 20, while varying the number r of

interventions performed within the numerically generated measurement data. The inset shows the frequency Ptrue that the original DAG

ordering is found, i.e., the frequency that K = 0.

doi:10.1371/journal.pone.0170514.g007
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numerical effort (O(p3) or O(p4)) as well as the number of interventions (linear) appears to

grow only polynomially with the number of nodes. Nevertheless, for any value of r, the triplet-

based greedy approach clearly outperforms the pair-based approach significantly. This con-

firms the result found above using the MCMC sampling.

Summary and Discussion

To summarize, we studied the estimation of causal orderings and corresponding parameters

in sampled data using interventions. In particular we compared pairwise Babington-Smith

sampling, which was discussed before [10] with triplet-wise sampling which we introduced in

this work. All results show a much better performance for the triplet sampling approach.

When limiting the numerical effort to about two times the running time of the triplet sam-

pling, a sampling using the full maximum likelihood turned out to be much worse than both

pair- and triplet-wise sampling.

These results were confirmed for various cases: for data from actual biological measure-

ments as well as for artificial data generated in a controlled way for a DAG-based Gaussian

causal model. We studied small and larger DAGs, as well as completely connected and diluted

ones. The general result also stays the same independently of whether one compares the esti-

mated weight parameters directly, uses thresholding to find correct estimates, or performs an

ROC analysis of the estimated nonzero weights. Also when restricting the analysis to just the

prediction of the orderings, the triplet approach turns out to be much more efficient than the

pair approach.

Therefore, the triplet-based approach appears to be well-balanced: It is computationally

efficient enough such that long MCMC chains can be easily generated, for systems large

enough for practical applications. This would be impossible when using a sampling based on

the full likelihood, except for small systems. On the other hand, in combination with the final

computation of the true maximum-likelihood estimators for a comparable small subset of

“best” configurations, the triplet approach allows for accurate results, much better than the

pair-based approach.

In principle, one could also try a similar approach based on quadruplets of nodes. Neverthe-

less, in contrast to when moving from pairs to triplets, we believe that this will not result in a

considerable increase of accuracy. One reason, e.g., is that for the study of the Rosetta data set,

the accuracy using the triplet sampling was comparable to the exact evaluation for a finite sub-

set of orderings with the highest exact likelihoods (see Fig 2). One the other hand, the numeri-

cal effort for evaluating the Metropolis criterion in each MCMC step would increase to O(p3)

for a quadruplet-based algorithm. Thus, the triplet approach seems to be multi-criterion (accu-

racy, numerical demand) efficient within the hierarchy of approaches based on n-nodes sub

graphs.

Note that the sampling approaches presented here, due to the intrinsic O(p6) time complex-

ity of at least the final calculations of the best-scoring orderings, are limited if applied plainly

to networks of medium size. Nevertheless, it should be stressed that for any given system of p
nodes, a complete joint maximum likelihood is calculated. There exist other approaches for

the estimation of the causal structure of actually very large networks of thousands of nodes

using ad hoc heuristic algorithms [16, 17] which are based, among others, on clustering

approaches and work often on a coarse-grained level. Although the approaches presented here

are based on generative models, allowing for probabilistic interpretations, and allowing for

detailed reconstruction of the underlying networks, they can be extended to much larger sys-

tems as well. This can be achieved for a given large set of nodes by considering many different

subsystems (subgraphs) of medium size, i.e., treating them with the correct joint likelihoods.
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The resulting sub networks can be assembled to one large consensus network. Here, e.g., the

“Iterative Sub-Network Component Analysis” approach [18] or similar approaches can be

applied.

Furthermore, to identify the causal structure with large certainty, as the present results

show, a considerable number of interventions of the order of the number of nodes, is needed.

Nevertheless, the approaches presented here work with any number of interventions. If only

few interventions are available, the data can be modeled easily by a larger set of high-likelihood

orderings. Even better, since the approaches are based on generative models with a clear prob-

abilistic foundation, they obtained likelihoods allow to estimate how many orderings are

needed to describe the data with sufficient accuracy.

On the other hand, concerning the greedy approach, much larger systems than being con-

sidered here can be easily treated using the pair- or triplets-based approximations, due to the

slowly growing O(p2) or O(p3) time complexities, respectively. Nevertheless, here a large num-

ber of interventions is necessary to obtain reliable results, since one aims only at single order-

ings with high likelihoods, not at sample of orderings.

On the other hand, for further applications, it might be fruitful to perform a MCMC chains

which consist of mixture of triplet-wise (first part of chain) and full maximum-likelihood sam-

pling (last part). But this is beyond of the scope of the current study.

Furthermore, it could be interesting to study more thoroughly the point r = p where most

results exhibit a notable change of characteristics. It could be interesting whether this change

corresponds to a kind of information-driven phase transition, similar to neural networks

where the memory of a network changes if the amount of data to be learned is increased

beyond a threshold. We have already started research in this direction.

Finally, it should be noted that even with a powerful algorithm for causality detection, for

practical applications the task it not at all straight forward. For example, when measuring gene

expression data, it will depend on the method what type of data is available. When using

micro-array data, one will obtain mRNA levels of (many) predefined targets, thus some inter-

esting data may not be measured. On the other hand, when using a method like RNA-seq one

will get a complete picture of the transcriptome, but one still has to preprocess the data to

remove non-relevant data or add up the results for allels, if necessary. Therefore, in general,

the identification of the nodes actually to be included in the DAG is always a major task, which

is relevant for the actual estimation of the causal structure.

Supporting Information

S1 Data. Data Source files. This file is a tar file zipped with gzip and contains all raw data files

used to generate the figures shown in this work (and a README_DATA file) which lists and

explains all data files.

(TAR.GZ)

S1 Sources. Program Source files. This file is a tar file zipped with gzip and contains all C pro-

gramming source files to perform the simulations. Also a standard Makefile is included. Only

the GNU scientific library is needed to compile. In the Makefile it is assumed that it is installed

in /opt/local/lib and /opt/local/include, please change accordingly.

(TAR.GZ)
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