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Disentangling the stochastic 
behavior of complex time series
Mehrnaz Anvari1, M. Reza Rahimi Tabar1,2, Joachim Peinke1 & Klaus Lehnertz3,4,5

Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary 
dynamics, which can result in either continuous or discontinuous sample paths of the corresponding 
time series. The latter sample paths may be caused by discontinuous events – or jumps – with some 
distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal 
diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex 
systems. Here we introduce a non-parametric method to address this general problem. By means of a 
stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different 
stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and 
coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- 
cability of our method to empirical observations by a data-driven inference of the deterministic drift 
term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly 
these different stochastic behaviors provide extra information that can be regarded valuable for 
diagnostic purposes.

Systems under the influence of random forcing or in the presence of non-linear interactions with other systems 
can behave in a very complex stochastic manner1–4. The analysis of such systems must be based on determining 
characteristics and strength of fluctuating forces as well as on assessing properties of non-linear interactions. This 
leads to the problem of retrieving a stochastic dynamical system from measured time series. Addressing the ques-
tion of how to extract a dynamical system from experimental data with a suitable analysis will provide important 
information on the properties of the system under consideration3.

A widely used non-parametric approach for the modelling of complex dynamical systems employs the con-
ventional Langevin equation that is based on the first- and second-order Kramers-Moyal (KM) coefficients – 
known as drift and diffusion terms –, and all functions and parameters of this modelling can be found directly 
from the measured time series1,2. The Langevin equation generates a continuous sample path. However, complex 
systems generally exhibit non-stationary dynamics that can also result in discontinuous sample paths of the cor-
responding time series, which might challenge the use of the Langevin equation.

There is now growing evidence5–9 that a continuous-time modelling of time series of complex systems, which 
exhibit distinct characteristics such as heavy tails and occasionally sudden large jumps, should account for the 
presence of discontinuous jump components. Indeed, a non-parametric modelling of time series with jumps pro-
vides an attractive means of conducting research to gain intuition of such processes. Processes with jumps have 
been widely used to describe the random evolution of, e.g., neuron dynamics10,11, of soil moisture dynamics12, or 
of financial figures such as stock prices, market indices, and interest rates13. Nevertheless, one of the main prob-
lems in the study of discontinuous stochastic processes is estimating parameters that represent a jump and the 
distribution of its size. Another problem is to discriminate between variations caused by a continuous stochastic 
process and genuine discontinuities in the path of the process when using data sampled at discrete time intervals.

Among the many theoretical models14 that have been developed to describe discontinuous components, 
jump-diffusion modelling has received great attention in the literature, since the non-parametric estimation pro-
cedure allows to study potential nonlinearities in the drift, in the diffusion, and in the intensity of the discontinu-
ous jump component5. Here we show that a stochastic dynamical jump-diffusion modelling enables us to separate 
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the deterministic drift term as well as different stochastic behaviors, namely diffusive and jumpy behavior. We will 
demonstrate that all of the unknown functions and coefficients of a dynamical stochastic equation that describe a 
jump-diffusion process can be derived directly from measured time series.

To illustrate the applicability of our approach, we investigate the stochastic behavior of epileptic brain dynam-
ics by analysing long-lasting multi-channel electroencephalographic recordings from ten epilepsy patients. 
As was shown previously15,16, the dynamics of the seizure-generating brain area (epileptic focus)—but not of 
non-affected brain regions—is characterised by a non-vanishing fourth-order KM coefficient and would thus 
be assigned to the class of discontinuous processes. Here we relate the higher-order (≥ 4) KM coefficients to 
the contribution of an underlying jump process and show that during the seizure-free interval, the dynamics of 
the epileptic focus can be characterised as a stochastic process with small mean diffusion and small mean jump 
amplitudes compared to the dynamics of non-affected brain regions.

Results
From Langevin to jump-diffusion modelling. By definition, a process x(t) has continuous sample paths 
if the following relations for the conditional moments hold for small time increments dt1:
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with s >  0. Here o(dt) denotes terms of order higher than linear, which implies that o(dt)/dt vanishes in the limit 
dt →  0. The Langevin-modelling-based KM coefficients are defined as
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and can be determined directly from measured time series3 (we use the subscript L here to distinguish these KM 
coefficients from the ones that we derive in the jump-diffusion modelling). Note that these KM coefficients17 
differ by a factor of 1/j! from the commonly defined1 ones. M(1)(x, t) and M(2)(x, t) are conditional infinitesimal 
mean and variance parameters, which are known as the deterministic drift and the diffusion coefficients. In sec-
tion Methods, we show that processes with non-vanishing and smooth M(1)(x, t) and M(2)(x, t) but with vanishing 
higher-order (j ≥  3) KM coefficients generate continuous sample paths.

The probability distribution function p(x, t) for processes with continuous sample paths satisfies a partial 
differential Fokker-Planck equation, which is of second order in the state variable x and of first order in time t. 
There is an equivalence between the Fokker-Planck equation and Langevin dynamics, which means that for a 
continuous diffusion process the dynamics of x(t) will be given by a white-noise-driven stochastic equation and 
has the following expression (using Itô’s interpretation of stochastic integrals1,2):

= + .x t D x t t D x t w td ( ) ( , )d ( , ) d ( ) (3)L L
(1) (2)

{w(t), t ≥  0} is a scalar Wiener process and D x t( , )L
(1)  and D x t( , )L

(2)  are the drift and diffusion coefficients, respec-
tively. A process x(t) generated with Eq. (3) is a continuous diffusion process for D x t( , )L

(1)  and D x t( , )L
(2)  that sat-

isfies the Lipschitz condition. We define the function f(x) to satisfy a Lipschitz condition on the interval [a, b] if 
there exists a constant  (dependent on both f and the interval) such that |f(x1) −  f(x2)| ≤  |x1 −  x2|. Any vanishing 
KM coefficients of order higher than two, particularly the fourth-order coefficient M(4)(x, t), will guarantee that 
x(t) is statistically continuous (according to the Pawula theorem a vanishing M(4)(x, t) means that all KM coeffi-
cients M(j)(x, t) for j ≥  3 will also vanish)1,18.

Non-vanishing higher-order (> 2) KM coefficients, however, have been observed in various systems3,15,19–22, 
which indicates that the corresponding measured time series do not belong to the class of continuous diffusion 
processes1,2. In order to improve modelling of such processes, we argue that if all the conditional moments of KM 
coefficients of order larger than two are non-vanishing, jump events should play a significant role in the underly-
ing stochastic process. We now build a dynamical equation—a jump-diffusion equation—that is able to produce 
discontinuous sample paths.

A typical jump-diffusion process is given by a dynamical stochastic equation:

ξ= + +x t D x t t D x t w t J td ( ) ( , )d ( , ) d ( ) d ( ), (4)(1) (2)

where {w(t), t ≥  0} is a scalar Wiener process and J(t) is a time-homogeneous Poisson jump process23. This process 
is characterised by the rate λ(x, t) and the size ξ, which we assume to be normally distributed (ξ σ∼ ξ(0, )2 ). We 
call σξ

2 the jump amplitude that may depend on the state variable x. Building upon previous works5,17,23, we show 
below that the drift and diffusion coefficients (D(1)(x, t) and D(2)(x, t)) of a jump-diffusion process can be related to 
the conditional moments M(1)(x, t) and M(2)(x, t). Before doing so, we illustrate the influence of jump events on 
higher-order conditional moments by calculating the third- and fourth-order conditional moments for the simplest 
case of a Poisson jump process with a constant jump rate λ (see section Methods). We find M(3)(x, t) =  M(4)(x, t) =  λ.  
This is the simplest example that provides already an intuitive meaning of higher-order KM coefficients.

Generally, the non-vanishing of the fourth-order KM coefficient could indicate that a jump-diffusion model-
ling is more appropriate than a Langevin-type modelling, particularly in cases where the corresponding measured 
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time series do not belong to the class of continuous diffusion processes (see section Methods). We now discuss 
a non-parametric approach to estimate drift, diffusion, and jump characteristics which can be applied to both 
stationary and non-stationary time series in the presence of discontinuous jump components.

Non-parametric estimation of jump-diffusion processes. 
Theorem. A general jump-diffusion process is given by the dynamical stochastic equation Eq. (4), and all of the func-
tions and parameters in this modelling can be found non-parametrically from measured time series by estimating 
the KM coefficients as: 
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In section Methods, we provide a proof for this theorem. In addition, we derive the conditional moments for 
bivariate jump-diffusion processes, and its generalisation to higher dimensions is straightforward.

From this theorem, we can derive an equation for the characteristics of the jump process as follows: Using the 
relation ξ ξ= n n(2 )!/2 !n n n2 2  for the Gaussian random variable ξ and the last relation in Eq. (5), with j =  4 and 
j =  6, we first estimate the jump amplitude σξ x t( , )2  and then the jump rate λ(x, t) as:

σ λ
σ

= = .ξ
ξ

x t M x t
M x t

x t M x t
x t

( , ) ( , )
5 ( , )

, ( , ) ( , )
3 ( , ) (6)

2
(6)

(4)

(4)

4

Once the jump characteristics are identified, the second moment M(2)(x, t) identifies the diffusion coefficient 
D(2)(x, t) and the first moment gives us the estimate for the drift coefficient D(1)(x, t). To estimate the conditional 
moments M(j), we can use the Nadaraya-Watson estimator24–26, which is a kernel estimator as:
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where the kernel k(u) has the property ∫ < ∞u k u u( )d2 .

Reconstruction of stochastic processes with jumps. To demonstrate the validity of our approach, we 
estimate drift, diffusion, and jump characteristics from time series of well-known jump-diffusion processes with 
preset coefficients. First, we investigate a Black-Scholes process27 in the presence of jumps28 (jBSP). In jBSP, we 
consider a linear drift (D(1)(x) =  − 10x), a quadratic diffusion (D(2)(x) =  x2), a unit jump amplitude (σ =ξ x( ) 12 ), 

Figure 1. Reconstruction of a Black-Scholes process with jumps. Estimated drift term (a), diffusion 
coefficients (b), jump rate (c), and fourth-order conditional moment (d) for different jump rates using the 
Nadaraya-Watson estimator with a Gaussian kernel. The time series consisted of 3 · 106 data points, and we here 
find σ .ξ x( ) 1 012 . The diffusion coefficient and jump amplitude estimated from normalised time series (with 
original standard deviation S) should multiply to S2 to get the original diffusion coefficient and jump amplitude. 
For shorter time series (1 · 106 data points), σξ x( )2  deviates from the expected value by a few percent (not shown).
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and two constant jump rates (λ =  0.1 and λ =  0.4). Finite-N synthetic data from Eq. (4) may not have jump num-
ber nj ≃ λN. Counting the jumps in each run gives the corresponding correct jump rate for each simulation. We 
generate synthetic time series by a numerical simulation of the corresponding dynamical equation29 using a sam-
pling interval Δ t =  0.001. For all estimated functions and coefficients, we obtain a very good agreement with 
theory (see Fig. 1). The fourth-order moment does not vanish (confirming our approach), and increases with an 
increasing jump rate λ. In addition, we verified that it approaches zero for λ →  0. We note that the diffusion coef-
ficient D(2)(x) and the jump characteristics λ(x) and σ ξ=ξ x( )2 2  contribute to the second-order KM coefficient 
(see Eq. (5)). Thus, with a Langevin-type modelling, it is not possible to separate these diffusive from jump con-
tributions. This nonlinear example indicates the importance and physical meanings of higher-order KM 
coefficients.

As a second example, we investigate an Ornstein-Uhlenbeck process with jumps (jOUP). For D(1)(x) =  − x, 
D(2)(x) =  1, unit jump amplitude σ =ξ x( ) 12 , and constant jump rate λ =  0.6 we proceed as before, and for all esti-
mated functions and coefficients, we obtain a very good agreement with theory (data not shown).

Given that data sampled at discrete times will always appear as a succession of jumps, even if the underlying 
path is continuous, we check the robustness of the jump-diffusion reconstruction using different sampling inter-
vals30–33. For both, jBSP and jOUP, all estimated functions and coefficients remain almost unchanged when 
increasing or decreasing Δ t by a factor of 10. Eventually, we turn off the jump process and reconstruct the dynam-
ics in terms of a jump-diffusion process. For all considered sampling intervals, we observe σξ x( )2  to attain values 
close to + −x t t x t( ( d ) ( ))2  of the generated time series, which can thus be regarded the resolution limit for the 
jump amplitude.

Detailing the stochastic behavior of epileptic brain dynamics. Stochastic qualifiers of epileptic brain 
dynamics that are based on specific characteristics of the first- and second-order KM coefficients estimated using the 
Langevin-type modelling of electroencephalographic time series can yield valuable information for diagnostic pur-
poses. Previous studies15,16 have shown that particularly diffusion-coefficient-based qualifiers allow a more detailed 
characterisation of spatial and temporal aspects of the epileptic process in the affected and the non-affected brain hem-
isphere. The dynamics of the brain region that is responsible for the generation of focal epileptic seizures (epileptic 
focus), however, is characterised by a non-vanishing fourth-order KM coefficient, in contrast to the dynamics of other, 
non-affected brain regions15. Thus, pathological brain dynamics appear to not belong to the class of continuous diffu-
sion processes and consequently, the Langevin-type modelling may not capture all aspects of this dynamics15. Due to 
the highly non-linear properties of pathological electroencephalographic time series34,35, we aim at disentangling the 
stochastic part of epileptic brain dynamics by explicitly estimating diffusion and jump characteristics.

Figure 2. Exemplary recording scheme and intracranial electroencephalographic (iEEG) time series. 
(a) Implantation scheme of intracranial electrodes from a patient with seizures originating in the left mesial 
temporal lobe: temporal-lateral grid electrode (8 ×  4 contacts, GL), two temporal-basal strip electrodes  
(4 contacts each, TB), and a hippocampal depth electrode (10 contacts, TL; the most anterior contact (TL1) 
is located ventral to the amygdala and the most posterior contact (TL10) is located within the hippocampus). 
The latter electrode samples the epileptic focus. (b) Segments of iEEG time series recorded during the seizure-
free interval from within the epileptic focus (contact TL4, red) and from a distant brain region (contact GLC6, 
black).
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We begin by investigating exemplary brain dynamics from the seizure-free interval of an epilepsy patient. We 
consider intracranial electroencephalographic (iEEG) time series of 2000 s duration (corresponding to 4 · 105 data 
points) from within the epileptic focus and from a distant brain region (see Fig. 2). For both time series, we found 
evidence that our data are Markovian down to the sampling interval employing a least-squares method3. Next, we 
calculate the respective conditional moments of orders 1, 2, 4, and 6, using the Nadaraya-Watson estimator with 
a Gaussian kernel. For these moments, we obtain finite values in the limit of vanishing time increments, which 
allows us to conclude that the influence of the measurement noise can be neglected (see section Methods). In the 
following, we consider the interval x ∈  (− 200 mV, 200 mV) and report on averaged amplitudes of drift, diffusion, 
and jump characteristics (thereby we have assumed that the state space of the process is discretized and the 
conditional average has to be calculated separately for every xi, with binning the state variable into nb intervals).

The drift coefficients (data not shown) indicate an overall linear damping behavior, however, with small non-
linearities toward larger values of x for the dynamics within the epileptic focus15. The slopes of drift coefficients 
differ by about an order of magnitude (within epileptic focus: ≃ − 0.51 ±  0.05; distant brain region: ≃ − 3.60 ±  0.12, 
and from the inverse of the slope of the linear part of the drift coefficients we observe correlation time scales in 
the order of 1.96 ±  0.20 s for the dynamics within the epileptic focus and of 0.28 ±  0.01 s for the dynamics of the 
distant brain region. A comparable ratio holds for the averaged amplitudes of the diffusion coefficients, with the 
one for the former dynamics amounting to about a third of the one seen for the latter dynamics. The diffusion 
coefficient for the dynamics within the epileptic focus is largely independent of the state variable x and for the 
dynamics of the distant brain region, it depends parabolically on x (see Fig. 3a). Overall, these dependences on x 
indicate a multiplicative influence of the noise (cf. Eq. (4)).

From Eq. (5), it is known that the second conditional moment contains contributions from the jumpy dynam-
ics, thus we further disentangle the stochastic part of epileptic brain dynamics and explicitly estimate jump char-
acteristics. We find that the dynamics within the epileptic focus is characterised by a smaller averaged jump 
amplitude (within epileptic focus: 3400 ±  270 (mV)2, distant brain region: 4400 ±  350 (mV)2; see Fig. 3b) and by 
a higher averaged jump rate (within epileptic focus: 18 ±  3 Hz, distant brain region: 8 ±  1 Hz; see Fig. 3c).

Next we demonstrate how the aforementioned findings translate to the long-term brain dynamics from all 
sampled brain regions. To this end, we perform a time-resolved analysis36 of the patient’s iEEG time series that 
were recorded over a period of more than eight days. We subdivide the time series into nw non-overlapping win-
dows of size 105 data points, calculate estimators σ λ∈ ξe D{ , , }(2) 2  for each window as outlined above, and by 
averaging over all windows we obtain their means (denoted as e) and standard deviations for each recording site 
(see parts a–c of Fig. 4). Eventually, we derive – separately for the sites from within the epileptic focus and for the 
distant sites – spatial means and standard deviations of the temporally averaged estimators (see parts d–f of 
Fig. 4). In general, the dynamics of the epileptic focus in this patient can be characterised by a mean diffusion 
coefficient ∼D(2) whose amplitude is about half the one seen for the dynamics of the other brain areas. The same 
holds for the mean jump amplitude σξ

2, however, the differences between affected and non-affected brain regions 
are more pronounced, with a mean jump amplitude in the epileptic focus amounting to about a sixth of the one 
of the other brain areas. The mean jump rate λ attains high values at some—though not all—recording sites cap-
turing the dynamics of the epileptic focus, and comparably high mean jump rates can also be observed at distant 
sites. Consequently, differentiability between affected and non-affected brain regions with the mean jump rate λ 
is insignificant. To demonstrate extendability of our observations beyond exemplary data, we now apply the afore-
mentioned steps of a time-resolved analysis for the long-term dynamics of all sampled brain regions from all 
patients (see section Methods). Figure 5 summarizes our main findings (since differentiability between affected 
and non-affected brain regions with the mean jump rate λ is again insignificant, we omit the display of averaged 
jump rates). In general, both the mean diffusion coefficient ∼D(2) and the mean jump amplitude σξ

2 demonstrate a 
high interindividual variability, both in terms of their sizes and with respect to differentiability between affected 
and non-affected brain regions. In 5 (out of 10) patients (see Fig. 5c), differentiability with the mean jump ampli-
tude clearly exceeds the one obtained with the mean diffusion coefficient (≈ 28%), and in 4 patients the opposite 
holds true (≈ 21%). In only one case (patient B), both estimators allow for a comparable differentiability (≈ 22%).

Figure 3. Disentangling stochastic characteristics of epileptic brain dynamics I. Exemplary findings from an 
epilepsy patient with an epileptic focus in the left mesial temporal lobe. (a–c) Diffusion coefficients D(2)(x), 
jump amplitudes σξ x( )2 , and jump rates λ(x) together with the respective probability distribution functions P(x) 
estimated from normalised iEEG time series (4 · 105 data points) recorded during the seizure-free interval from 
within the epileptic focus (red, contact TL4) and from a distant brain region (black, contact GLC6; cf. Fig. 2).
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Conclusion
We presented a method—based on a stochastic dynamical jump-diffusion modelling—that allows one to sepa-
rate the deterministic drift term as well as different stochastic behaviors, namely diffusive and jumpy behavior. 
We have argued that when the infinitesimal moments of Kramers-Moyal (KM) coefficients of order larger 
than two are non-vanishing, jump events should play a significant role in a stochastic process. Indeed, these 
higher-order KM coefficients carry information about the probability of arrival and about the features of the 
distribution of the jump size. Our method thus allows one to assign a physical meaning to higher-order KM 
coefficients in terms of jump rate and jump amplitude. We demonstrated that all of the unknown functions 
and coefficients of a dynamical stochastic equation that describe a jump-diffusion process can be derived 
non-parametrically from measured time series, both stationary and non-stationary in the presence of discon-
tinuous jump components.

Through extensive analyses of multi-day, multi-channel electroencephalographic recordings from ten epi-
lepsy patients we demonstrated that the dynamics of the epileptic focus can be characterised as a stochas-
tic process with a smaller mean diffusion coefficient and a smaller mean jump amplitude as compared to 
the dynamics of distant brain regions. Higher-order KM coefficients thus provide extra information that can 
be regarded valuable for diagnostic purposes, their relationship to actual physiological/pathophysiologi-
cal activities, however, would need to be investigated in future studies. Taken together, the findings of our 
proof-of-concept study underline the high suitability of our generalisation of the Langevin-type modelling to a 

Figure 4. Disentangling stochastic characteristics of epileptic brain dynamics II. Exemplary findings from 
an epilepsy patient with an epileptic focus in the left mesial temporal lobe. (a–c) Means and standard deviations 
of diffusion coefficients (D(2)), jump amplitudes σξ( )2 , and jump rates (λ) for iEEG time series from all recording 
sites (cf. Fig. 2). Data from sites within the epileptic focus are colored red. (d–f) Spatial means and standard 
deviations of temporally averaged diffusion coefficients ∼D(2). jump amplitudes σξ

2, and jump rates λ (epileptic 
focus: red; distant sites: gray).
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jump-diffusion modelling to improve the characterisation of pathological brain dynamics beyond a continuous 
process. We expect that our approach also contributes to a detailed understanding of stochastic dynamics of 
other complex systems.

Methods
Continuity of processes generated by the Langevin equation. In terms of the conditional probabil-
ity distribution, a continuous process x(t) satisfies the following continuity condition, given some δ >  01
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where ∆ = + −x t x t t x t( ) ( d ) ( ). Eq. (8) is sometimes called Lindeberg’s condition1. A violation of this continu-
ity condition indicates that the smoothness of the process is not given any more and that discontinuous events like 
jumps are present in the process.
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Figure 5. Stochastic qualifiers of brain dynamics for each epilepsy patient. Spatial means and standard 
deviations of temporally averaged diffusion coefficients ∼D(2) (top) and jump amplitudes σξ

2 (middle), calculated 
separately for recordings from within the epileptic focus (black bars) and from distant sites (gray bars). Relative 
differentiability Δ  (bottom) between non-affected (suffix d) and affected (suffix f) brain dynamics using 
diffusion coefficients (∆ = −
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Now we show that the conditional probability distribution function p(x, t +  dt|x′ , t) satisfies the continuity condi-
tion Eq. (8), which means that it describes a continuous stochastic process. Assume that KM coefficients D x t( , )L

(1)  
and D x t( , )L

(2)  are smooth and not changing dramatically over a short time interval and by substituting  
p(x, t +  dt|x′ , t) from Eq. (9) we have,
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The first term (A) in Eq. (10) can be written as:
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where = − ′ − ′ ′u x x D x t t D x t t( ( , )d ) / 4 ( , )dL L
(1) 2 (2) . erfc(x) can be written in terms of the error function as 

erfc(x) =  1 −  erf(x), where ∫π= −x u uerf( ) 2/ exp( )dx

0
2 . Expanding the expression for A in terms of t gives,
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In the limit dt →  0+ we find that 
π

→
′
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D x t t

d 0
1

4 ( , )dL
(2)
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δ− ′ → .→ + t D x t tlim (1/d ) exp( /4 ( , )d ) 0t Ld 0
1/2 2 (2)

A similar analysis shows that the second term (B) in Eq. (10) approaches zero in the limit dt →  0+. We therefore 
conclude that the short-time propagator of the Fokker-Planck equation satisfies the continuity condition Eq. (8).

Non-vanishing higher-order Kramers-Moyal coefficients and the continuity condition. For 
general processes, the continuity condition (Eq. (8)) can be written in terms of conditional moments M(j)(x, t) 
with j ≥  1 and some δ >  0 as37: ≤

δ
C M x t( , )j

j

( )
. Here we prove the following relation for the continuity condition in 

terms of Kramers-Moyal coefficients,
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. To do so, let us consider the order-j conditional 
moment as,
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where x(t +  dt) =  u. We can write the conditional moments in terms of a short-time propagator as:
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Taking into account the positivity of p(u, t +  dt|x, t), one can write the following inequality,
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∫− | ≥ − + |
δ= − >
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j

x t x u x
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where we have ignored the second term of the r.h.s of Eq. (15). Also using δ− >u x j j one has:
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and finally, dividing Eq. (17) by dt and in the limit dt →  0 we find,
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which means that
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We note that in the moment condition (19) with non-vanishing drift and diffusion coefficients, ( =j 1 and j =  2, 
respectively) one should consider the case j ≥  3. Therefore any vanishing higher order KM coefficients, particu-
larly the fourth-order coefficient M(4)(x, t), guarantee that the process is statistically continuous. Otherwise, the 
non-vanishing KM coefficients provide an upper limit for the continuity condition. To check the continuity con-
dition for given time series, depending on the problem formulation, the higher-order moment condition may be 
easier to demonstrate than estimating the tail of the probability distribution.

Poisson jump process with a constant jump rate. One can imagine that adding jump processes to a 
diffusion process invalidates the continuity condition Eq. (8). Indeed for such jump-diffusion processes the ine-
quality in Eq. (19) changes to an equality. To illustrate this, we consider—as a simple example—a homogeneous 
Poisson process, which counts events that occur at a constant jump rate λ >  0. This jump rate is the expected 
number of “events” or “arrivals” that occur per unit time. The number of events in the time interval (t, t +  dt] fol-
lows a Poisson distribution with associated parameter λ dt. The jumps have amplitudes 1 and 0 with probabilities 
λ dt and 1 −  λ dt, respectively. The probability to observe k jumps in the time interval dt is given by,

λ λ
∆ = = = = ….
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For this process the continuity condition reads,

∑ ∑

δ

λ

λ

=
|∆ | > |

= ∆ = =

=
−

= .

λ

λ

→

=

→ =

∞

→ =

∞

→

−

C t
x t

t

t
x t k

t
e t

k

e
t

( ) lim
Prob[ ( ) ]

d

lim 1
d

Prob[ ( ) ] lim 1
d

( d )
!

lim 1
d (21)

t

x t x

t k t k

t
k

t

t

d 0

( )

d 0 1 d 0 1

d

d 0

d

We can also show that all of the conditional moments are equal to jump rate λ. For instance, consider the third- 
and fourth-order KM coefficients as,
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and similarly,
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A non-vanishing fourth-order KM coefficient M(4)(x) indicates that (according to the Pawula theorem) for a 
process with jump events all of the KM coefficients are needed to describe the dynamics of the probability distri-
bution function.
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Proof of relations (5). To prove the relations in Eq. (5), we can use the different moments of the Wiener 
process {w(t), t ≥  0} and the jump process J. Using the definition of a Wiener process as the integration of a 
white-noise  s ignal ,  we have:  =w td ( ) 0,  =w t td ( ) d2  and == Γ +

Γ
w t(d ( ))m k t k2 (2d ) ( 1/2)

(1/2)

k
.  For 

Poisson-distributed jumps with rate λ, the moments of dJ can be found from its generating function as:
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etc. In the limit dt →  0 all of the moments are proportional to λ dt. Therefore we can use the following relations 
“in-law” and in the limit of vanishing dt, dw2 ≡  dt (with 〈 dw〉  =  0) and dwm ≡  0 for m ≥  3. In a similar way, in this 
limit we have λ≡ ≡J J x t t(d ) d ( , )dm  for m ≥  1.

Conditional averaging of Eq. (4) over the Wiener and jump processes gives:
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noting to the fact that 〈 ξ〉  =  0, this proves the first relation in Eq. (5). We also have used the independence of the 
amplitude of the jumps and of the Poisson process dJ. Similarly, the second conditioned moment of dx leads to:
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and the terms of order of (dt) will be:
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where we used the independence of the Wiener, Poisson and ξ processes, i.e., ξ ξ= =w J w Jd d d d 0. This 
proves the second relation in Eq. (5). Finally for k ≥  3, we find:
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where =A k l m n!/ ! ! !l m n, , , so that l +  m +  n =  k. Up to order of dt we find:
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which proves the third relation in Eq. (5).

Conditional moments of bivariate jump-diffusion processes. Consider bivariate jump-diffusion 
processes which are given by the following dynamical stochastic equations:
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with the normal processes ξ σ∼α β α β(0, ), ,
2 . The Wiener processes {w1,2(t), t ≥  0} are assumed to be independ-

ent, and the Poisson-distributed jumps J1,2 with rates λ1,2 are uncorrelated. The coefficients gij are the diffusion 
coefficients, and the zero mean amplitudes are assumed to have the correlation ξ ξ δ δ σ〈 〉 =α η β δ α β η δ α β, , , , ,

2 .
In this modelling, the two unknown drift coefficients N1(x1, x2) and N2(x1, x2) can be found non-parametrically 

from measured time series by estimating the first Kramers-Moyal (KM) coefficients as:
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equations for σα,β, gi,j, and λ1,2. For instance, we find:
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Using the KM-coefficients up to M1,2
(6,6), we can find all of the unknown coefficients with a suitable polynomial 

ansatz for them.

Influence of measurement noise on Kramers-Moyal coefficients. A measured time series may also 
contain some other noise, which is not assimilated by the stochastic process. In this case, the time series to be 
analysed can be written as κε= +y t x t t( ) ( ) ( ), where x(t) denotes the pure stochastic variable and ε(t) is an 
additional noise (with ε ε δ′ = − ′t t t t( ) ( ) ( )D  and ε =t( ) 0; δD denotes the Dirac delta function). In general, 
this type of noise can have its origin in intrinsic components of the complex dynamics or can be caused by an 
external disturbance, e.g., added to the time series by the measurement process. In the literature, such spoiling 
noise is called differently, either as observational or measurement noise or as microstructure noise (e.g., in the 
financial sciences). The conditional moments of the process y(t) then read38:

= 〈 + − | 〉

〈 + − | 〉 +

=
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K y y t t y t

x t t x t L
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j j
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j
x t x

j

( )
( )

( )
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where L(1) =  0 and L(2) =  2κ2 and κ2 is the variance of ε(t). Note that κ2 does not depend on dt. A finite L(j) thus 
causes a strong overestimation of the KM coefficients = →M x K y( ) lim ( )j

t t
j( )

d 0
1
d

( )  and thus of the jump-diffusion 
functions (Eq. (6)). It might be worth noting that even in the case of non-negligible measurement noise KM coef-
ficients can be reliably estimated38.

For the data shown in Fig. 3, we observed a non-diverging behavior of, for instance ∆ ∆K y t t( , )/i( )  (i =  1, 2), 
which allows us to conclude that the influence of measurement noise can be neglected here.

Patient characteristics. The ten patients (4 women, 6 men; mean age at onset of epilepsy 14.2 yrs, range 
1–33 yrs; mean duration of epilepsy 23.4 yrs, range 1–56 yrs) included in this study suffered from pharmacore-
sistant focal seizures with different anatomical onset locations, which required prolonged invasive monitoring 
with intrahippocampal depth electrodes and subdural grid- and strip-electrodes. Decisions regarding electrode 
placement were purely clinically driven and were made independently of this study. Patients received different 
antiepileptic drugs (AEDs) with different mechanisms of action, and the majority of patients were under combi-
nation therapy with two or more AEDs. During presurgical evaluation AEDs were reduced in a patient-specific 
manner, and many patients did not have discontinuation of all AEDs. All patients signed informed consent that 
their clinical data might be used and published for research purposes and are seizure free post-operatively. The 
study protocol had previously been approved by the ethics committee of the University of Bonn, and methods 
were carried out in accordance with the approved guidelines.

Intracranial EEG Recordings. Multi-channel, multi-day intracranial electroencephalographic (iEEG) 
data were recorded with, on average, 54 electrode contacts (range: 16–88). iEEG signals were band-pass-filtered 
between 0.1–70 Hz, sampled at 200 Hz (sampling interval Δ t =  5 ms) using a 16 bit analog-to-digital converter 
and referenced against the average signals of two electrode contacts outside the focal region. Reference contacts 
were chosen individually for each patient. We here consider iEEG recordings from the seizure-free interval with 
a mean recording duration of 140 h (range: 25–331 h). For our analyses, we divided iEEG data into two groups:
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•	 epileptic focus: comprises iEEG data from electrode contacts within the clinically defined epileptic focus;
•	 distant: comprises iEEG data from all other electrode contacts.
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