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Neurofeedback is attracting renewed interest as a method to self-regulate one’s own
brain activity to directly alter the underlying neural mechanisms of cognition and
behavior. It not only promises new avenues as a method for cognitive enhancement in
healthy subjects, but also as a therapeutic tool. In the current article, we present a review
tutorial discussing key aspects relevant to the development of electroencephalography
(EEG) neurofeedback studies. In addition, the putative mechanisms underlying
neurofeedback learning are considered. We highlight both aspects relevant for the
practical application of neurofeedback as well as rather theoretical considerations
related to the development of new generation protocols. Important characteristics
regarding the set-up of a neurofeedback protocol are outlined in a step-by-step way.
All these practical and theoretical considerations are illustrated based on a protocol and
results of a frontal-midline theta up-regulation training for the improvement of executive
functions. Not least, assessment criteria for the validation of neurofeedback studies as
well as general guidelines for the evaluation of training efficacy are discussed.
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INTRODUCTION

Based on recent methodological and technical progress, as well as on an increasing knowledge
about the neural correlates of behavior and cognition, brain-computer interfaces (BCIs) for
neurofeedback are attracting growing interest in both the scientific and medical communities as a
method to self-regulate one’s own brain activity. Currently, neurofeedback can be used in at least
three main ways: (i) as a therapeutic tool to normalize patients’ deviating brain activity in order to
influence symptoms (e.g., motor learning in post-stroke recovery (Pfurtscheller and Neuper, 2006)
or in attention deficit hyperactivity disorder (ADHD) or epilepsy (Monastra et al., 2002; Egner and
Sterman, 2006; Birbaumer et al., 2009; Arns et al., 2013); (ii) as so-called peak-performance training
to enhance cognitive performance in healthy participants (see review of Gruzelier, 2014a); and
(iii) as an experimental method to investigate the causal role of specific neural events (such as brain
oscillations) for cognition and behavior (see Figure 1) which is known as brain-state dependent
stimulation (BSDS; e.g., Jensen et al., 2011; van Schie et al., 2014; Guhathakurta and Dutta, 2016;
Royter and Gharabaghi, 2016).

BCIs rest on the measurement of brain activity and produce signals that are often directed
at assisting, enhancing or repairing cognitive or sensory-motor functions. Here, open-loop
applications can be dissociated from closed-loop designs. In the former, brain activity is
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recognized by the computer and used as a command, for
instance to assist the participant to interact with the environment
(Birbaumer et al., 2009; Millán et al., 2010), or it is used as a
trigger for stimulus presentation in BSDS (e.g., Jensen et al.,
2011). In closed-loop applications, a sensory representation of
brain activity is fed back to the user in real-time with the goal
of assisting self-regulation of brain activity; this form is known
as neurofeedback. In case of closed-loop BSDS, the monitoring
of brain activity can be used to guide the application of brain
stimulation. Hereby the actual stimulation depends on specific
brain states (Hartmann et al., 2011; Schestatsky et al., 2013).
Closed-loop neurofeedback applications are implemented by a
software system and a processing pipeline, altogether consisting
of five elements (see Figure 2).

The Five Elements of a Neurofeedback
Processing Pipeline
In short, the data acquisition of brain signals (1) can
be performed using different methods, such as high
temporal resolution electroencephalography (EEG) and
magnetoencephalography (MEG), which are optimal for
real-time feedback of brain processes. Besides those, high
spatial-resolution functional magnetic resonance imaging
(fMRI) and near-infrared spectroscopy (NIRS) are also
increasingly used (Please note that EEG neurofeedback for

brain oscillations represents the topic of the current report).
The next element of a neurofeedback system is the online
data-preprocessing (2) and the major task at this step is
the detection and rejection or correction of artifacts, of
which eye and muscle artifacts are most common. Various
artifacts generate activity that affects the whole EEG frequency
spectrum, including those frequencies that are usually the
focus of neurofeedback training. In the worst case, for example
when ignoring eye artifacts, the participants may falsely learn
to modulate their eye movements rather than their brain
activity. The so-called feature-extraction (3) stage concerns
the selection and extraction of features computed from brain
activity that are used during neurofeedback; usually, these
features represent that pattern of brain activity that one wants
to modulate. This may simply translate to the selection of a
specific frequency band of the EEG, which corresponds to the
‘‘working language’’ of a brain network associated with a specific
cognitive function. However, more sophisticated procedures
relying on machine learning algorithms or advanced techniques
for data decomposition are suitable as well, although these
are currently not commonly used. Quite obviously and as
stated by Zich et al. (2015), suboptimal feature extraction will
cause reduced neurofeedback success, because a sub-optimally
designed feature extraction will not capture the brain activity
of interest. The generation of a feedback signal (4) converts
the characteristics of the extracted feature into a sensory

FIGURE 1 | Areas of neurofeedback application. An overview of three main areas is given for neurofeedback applications, namely neurofeedback as therapeutic
tool, peak-performance training and experimental method. For each area, the rationale behind is given and protocols are listed as examples (Abbreviations:
NF = neurofeedback; Arns et al., 2009; Ros et al., 2009).
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FIGURE 2 | Neurofeedback system. This graphic outlines a summary over the five most important processing steps and parts that altogether constitute a
neurofeedback system (Abbreviations: NF = neurofeedback).

stimulus that can be presented to and be processed by the
learner. The feedback signal thus indicates the activity state of
the targeted brain system or process in relation to a criterion,
and signals when the targeted characteristic or feature of
brain activity meets a specific threshold or state. In contrast
to other methods for neuromodulation, such as electrical
simulation, with neurofeedback the learner (5) is actively
engaged, constantly applying and adapting strategies to alter
his/her brain activity in the intended direction. Learner
characteristics that determine the success of neurofeedback
training have become the focus of attention recently. In a special
issue by Friedrich et al. (2014), learner specific aspects such as
positive mood states (Subramaniam and Vinogradov, 2013),
motivation (Kleih and Kübler, 2013), locus of control (Witte
et al., 2013), all turned out as being relevant for the prediction
of individual learning success in specific neurofeedback
protocols. However, evidence also suggests that the gross-
morphology of brain areas generating EEG features used for
neurofeedback training may be associated with training success
(Enriquez-Geppert et al., 2013; Halder et al., 2013; Ninaus et al.,
2015). This topic is of direct consequence for personalized
interventions, where learner characteristics may be used to
assign participants to interventions to which they are most
likely to respond. Weber et al. (2011), for example, developed
a classification scheme to determine neurofeedback responders
and non-responders at an early stage of training. In case of

BSDS, the participant is not regarded as a learner, instead a
stimulator device (5) is adapted online to either present an
experimental stimulus (e.g., Kruglikov and Schiff, 2003) or apply
external stimulation (e.g., electrical or magnetic see Otal et al.,
2016).

In the following, we will discuss three aspects concerning
the conceptualization of neurofeedback learning: operant
conditioning in the context of neurofeedback, neurofeedback
learning in the context of control-theoretical models, and
neurofeedback in the context of the dual-process theory.

Neurofeedback Learning
Operant (or instrumental) conditioning is considered as the
principle learning mechanism underlying the self-regulation
of brain activity via neurofeedback. Generally, operant
conditioning states that the probability of a future response
is dependent on its association with an immediately following
consequence; positive consequences increase the likelihood
of given behavior, whereas negative consequences decrease
it. Changing the brain’s activity through such conditioning
is not genuinely new. As early as Fetz (1969) made use
of operant/instrumental conditioning to enhance cortical
single cell activity of the pre-central motor cortex, showing
that macaca mulatta monkeys could learn to self-regulate
their neural activity. Similarly, instrumental conditioning of
intracranial EEG over the sensorimotor cortex, measuring
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synchronized local field potentials (LFP), led to self-regulation
of different EEG patterns in the cat (Sterman and Wyrwicka,
1967). On a macroscopic scale and based on scalp EEG,
Kamiya was one of the first to show that humans were able
to self-regulate their activity in the alpha frequency band
(8–12 Hz) by instrumental/operant conditioning (Kamiya,
1968), and Sterman et al. (1974) were among the first to apply
neurofeedback as a therapeutic tool in epilepsy (Sterman and
Friar, 1972).

Neurofeedback learning has recently also been outlined based
on a control-theoretical framework. This framework considers
the above mentioned closed-loop pipeline and details a sequence
of learning events form a neural perspective. Ros et al. (2014)
describe the initial neurofeedback stage as mainly characterized
by fluctuating feedback signals that reflect stochastic and
unconditioned neural variability. On following fortuitous events,
it is supposed that neural variability will then infrequently
generate activity that meets the threshold for reward. As
soon as the sensory representation of this above-threshold
brain-activity is followed by a rewarding feedback signal,
the brain is able to memorize this distinct neural/behavioral
state as a so-called internal set-point. This elicits a reward-
modulated signal (such as dopamine) that supports synaptic
plasticity. Subsequent feedback-loops aim at the reproduction
of this set-point by using strategies in a feedforward way,
thus comparing the actual state with the target state. Multiple
loop-iterations (conditioning trials) will then lead to further
refinement of the set-point, and to a more efficient strategy for
its reproduction.

In addition, cognitive factors have also been shown to
influence neurofeedback learning. Wood et al. (2014) provided
a framework based on the dual/two-process theory, which
initially was introduced in the more general context of
biofeedback (see also, LaCroix, 1986). This theory dissociates
automatic from controlled processes, which have different
characteristics. Whereas automated processes are regarded
capacity-free, unconscious and difficult to control by self-
instruction, controlled processes reflect capacity-limited activity
of the supervisory attention system (Shallice and Cooper, 2011)
and are mainly regulated by self-instruction. Furthermore,
while automated processes are acquired based on reward-
learning, controlled processes are mainly driven by direct
self-instruction. On the basis of this theory, Wood et al.
(2014) suggest the existence of three networks that rely on
either a single or a mixture of both types of mental activity.
Central for neurofeedback learning, propose the so-called
‘‘local control network’’ that encompasses specific automatic
processes (which are influenced by the feedback signal) and
controlled processes (e.g., verbalizations and self-instructions),
which are both necessary for the specific neurofeedback
context. Automatic processes irrelevant or hindering in context
of neurofeedback (such as rumination) are subsumed under
the ‘‘organismic control network’’. Controlled processes not
aiding neurofeedback learning (such as improper strategies)
are ascribed to the ‘‘central control network’’. An optimal
state for neurofeedback learning is reached when irrelevant
associations between internal states and external reward

are avoided, and when the learner stays engaged, focused
and undistracted. Wood et al. (2014) therefore suggest the
monitoring of inner speech via associated brain activity
during neurofeedback to provide additional feedback signals
when the learner should reduce excessive attention towards
himself.

Neural Communication Mechanism as the
Target of Neurofeedback
To infer a robust and reliable control signal, neurofeedback
should be approached as a hypothesis-driven application
based on interdisciplinary knowledge from neuroscience,
psychology and neuropsychiatry (Jensen et al., 2011; Horschig
et al., 2014). The understanding of the physiological basis
of neural oscillations led to recognizable advancements in
recent years (Wang, 2010). Neural oscillations have been
observed throughout different levels of neural organization,
ranging from single-neuron activity as subthreshold membrane
potential oscillations and action potentials, to local activity
of assemblies of neurons, and even to activity patterns of
whole cortical networks in context of different brain areas (e.g.,
Akam and Kullmann, 2012; Buzsáki et al., 2013). Oscillatory
activity of neural populations has been suggested to represent
a major communication mechanism of the brain (Buzsáki
et al., 2013) and has furthermore been related to cognitive
functions (Basar et al., 1999; Herrmann and Knight, 2001).
Consequently, abnormal oscillatory activity has been associated
with psychiatric and psychological disorders such as ADHD,
Alzheimer’s disease, schizophrenia, bipolar disorder, or mild
cognitive impairment (e.g., Başar, 2013; Başar and Güntekin,
2008; Başar et al., 2016). Electrophysiological studies of the
normal functioning of basal ganglia-thalamocortical circuits and
the pathophysiology of Parkinson’s disease provided insights
into the functional role of neural oscillations (Schnitzler
and Gross, 2005). In the following, the associations between
oscillations and cognition will be elucidated using the example
of theta oscillations and executive functions. We introduce this
association in more detail here, since theta oscillations will
later be used as reference for the discussion of the various
choices and options available for the design of a neurofeedback
protocol.

Theta oscillations have been shown to emerge as predominant
activity from different brain areas including the hippocampus
and the midcingulate cingulate cortex (MCC; e.g., Womelsdorf
et al., 2010a). Theta oscillations have furthermore been suggested
to reflect a common mode for communication of local
computations within larger networks (Buzsáki, 2006; Wang,
2010). Their physiological characteristics may indeed enable
the grouping and segregation of neural assemblies and the
assignment of various computational tasks to them (Buzsáki,
2002). For instance, extracellular measures in animal models
demonstrated that neural representations of relevant stimulus-
response mappings are organized in time by theta activity of
single neurons by the interplay of the MCC and the prefrontal
cortex (PFC; e.g., Johnston et al., 2007; Womelsdorf et al.,
2010b). Here, a pro-/antisaccade task switching either required
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a switch between two task rules, or implied the continuation
of the previous stimulus-response assignment. LFP oscillations
in the MCC only translated to selective firing rates of neuronal
groups that represented one or the other task rule when there
was actually an immediate switch. In contrast, selective PFC
neurons signaled the task rule only after some trials once there
was a switch, and thus when the new task rule had been
established (Johnston et al., 2007). In a similar experiment,
Womelsdorf et al. (2010b) demonstrated that theta activity
in the MCC could in fact predict the specific response the
monkey was about to produce. Task rules were selectively
coded in theta activity of spatially separate neuronal groups
and task-selective theta activity emerged early in trials requiring
adjustments of task rules. Womelsdorf et al. (2010b) thus
suggested that the degree with which individual nodes, e.g., the
MCC, functionally contribute to the theta network depends on
given task demands. Their contribution is high, for instance,
when executive control is needed for the re-establishment
of a task rule. Without further task demands, rules may be
kept up by theta-based somato-dendritic activation, but this
local excitation would not be sufficient to spike output to
the externally generated rhythmic modulations of excitability.
Recently, Colier et al. (2016) reported an up-regulation theta
neurofeedback study based on intracranial recordings in
humans.

Frontal-midline theta (fm-theta) does not reflect band-pass
filtered event-related potentials (ERPs) or other non-oscillatory
transients (Cohen and Donner, 2013) and is constituent of
phasic responses to events that require attention and cognitive
processing. In contrast to tonic oscillations, which show a
diffuse topography, such phasic oscillations reflect changes
in oscillatory activity in response to an event and exhibit a
specific topography (Klimesch, 1999; see Figure 3), in this case
a maximum amplitude at frontal and central scalp electrodes
(Ishihara et al., 1981). The MCC seems to be a dominant
source of this EEG phenomenon (Gevins et al., 1997; Asada
et al., 1999; Sauseng et al., 2007). Fm-theta power is increased
when cognitive processing is enhanced (Mitchell et al., 2008),
and the absence of fm-theta up-regulation in response to
demanding tasks seems to be associated with reduced task

FIGURE 3 | Categorization of oscillations. This figure illustrates the
categories of oscillations according to Klimesch (1999). Oscillations are
differentiated according to whether they are measured during rest, in which
case they are labeled tonic oscillations, or whether they are related to specific
task-conditions or stimuli, under which condition they are referred to as phasic
oscillations.

performance in healthy (Donkers et al., 2011) as well as patient
groups (Schmiedt et al., 2005). In a study applying exogenous
theta oscillations in form of transcranial alternating current
stimulation (tACS) to a mid-frontal scalp region during the
performance of an executive functioning task, tACS led to
improved behavioral performance when compared to alpha
band tACS. This result thus supports the idea of fm-theta as
causally contributing to executive functioning (van Driel et al.,
2015).

However, neurofeedback can also be used to gain further
knowledge about basic neurocognitive functioning, for instance
by investigating the relevance of oscillatory features, such as the
amplitude or phase, for cognition and behavior. For instance, van
Schie et al. (2014) investigated the effects of controlled fm-theta
down- and up regulation on working memory performance, and
Gho and Varela (1988) assessed the relevance of the phase of
alpha oscillations for the perception of visual stimuli.

Many neurofeedback protocols exist that target different
neuronal phenomena observed in EEG measurement. Such
protocols differ regarding the frequency band addressed (e.g.,
alpha-, beta, theta-, gamma-training), the utilization of different
electrode locations (Fz, Cz, Fz1, etc.), and the recording of
the EEG under different activity states of the subjects, e.g.,
eyes-open or eyes closed (Gruzelier, 2014a). Based on findings
about hippocampal theta and its relation to memory, for
example, a theta-upregulation neurofeedback at electrode Pz was
performed which indeed led to improved memory consolidation
(Reiner et al., 2014). Notably, different protocols can influence
varying brain networks as long as they rely on biologically
relevant frequencies (Hutcheon and Yarom, 2000). A protocol
can be considered operational, if the EEG is modulated in
accordance with instructions, even though such changes might
not always be accompanied by cognitive or behavioral changes;
the latter, however, usually is the aim of most neurofeedback
studies.

A NEUROFEEDBACK-PROTOCOL:
STEP-BY-STEP GUIDELINES

Training Design
The foundation of each neurofeedback study is its design (e.g., a
pre-post measurement design), which usually should include an
experimental and an active control group (for more information
see Grimshaw et al., 2000). The implementation of an active
control group enables not only the control of repetition-related
effects (here a passive control group would be sufficient), but
also for non-specific effects that may be caused by the overall
setting (e.g., Campbell and Stanley, 1963). The demonstration
of outcomes in accordance with known associations of a specific
oscillation (with e.g., a specific cognitive process or a symptom)
is a convincing demonstration of the specificity of the training,
especially when using neurofeedback as an experimental method
to investigate the causal role of oscillations.

Regarding the realization of feasible active control groups,
different possibilities exist. One of those is the instantiation of a
pseudo-neurofeedback condition, in which a given participant of
the control group receives a replay of the feedback signal derived
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from a matched participant of the actual experimental group
(e.g., as used in Enriquez-Geppert et al., 2013). Importantly, such
a feedback-replay can be combined with the online monitoring of
artifacts from the control subjects, such that blinks may disrupt
the feedback replay, thereby indicating to the control subject
that indeed activity is recorded (although it may not be used
for the actual training). The reactivity of the feedback-system
to the participant’s behavior (here in terms of observable or
physiological artifacts) strongly enhances the credibility of the
control condition. Such a control condition will be most efficient
with short-latency feedback, i.e., the feedback signal is quickly
following the recording and extraction of the neural feature
(e.g., in the order of few 100 ms). However, if the feedback
signal is being computed on the aggregate performance over
larger time spans (e.g., a block of 30 consecutive seconds for
example), replaying the feedback signal of a matched subject of
the experimental group to a control subject may not completely
dissociate feedback from brain activity; at least initially control
subjects will follow instructions and may achieve the requested
modulations of brain activity over certain time periods. Thus,
theoretically there may still be some contingency between brain
activity and feedback signal. However, aggregating over longer
time periods also increases the delay between brain state and
feedback signal, which in itself should decrease the efficacy of a
learning process.

Another feasible option for the realization of an active control
group might be to train another frequency band than the actual
feature of interest (e.g., Reiner et al., 2014). For instance, while the
experimental group is intended to enhance their theta activity in
order to improve executive functioning, the active control group
might learn to enhance their beta activity for which there is little
evidence that it relates to executive functions. A variation may
be to base feedback on a different frequency band for every new
training session (e.g., session 1: feedback based alpha; session 2:
feedback based on gamma-; Session 3: feedback based on delta-
activity, etc.), which should effectively prevent strong frequency
specific learning.

A further possibility for the implementation of an active
control group is inverse feedback. Here, different feedback blocks
or groups may use different instructions with respect to the
modulation of the very same feature; this was, for example,
implemented by van Schie et al. (2014), who trained both theta up
and down regulation, thereby observing also opposite behavioral
changes.

Whatever the exact implementation of the control condition
is, its credibility is an important issue in context of factors such as
learned helplessness (Seligman, 1975; Abramson et al., 1978) and
resentful demoralization (Onghena, 2005). Learned helplessness
describes passive behavior as a consequence of the learners’
realization that nothing they do has any effect on the training
outcome. Resentful demoralization describes negative behavioral
effects (non-compliant or uncooperative behavior etc.) that may
occur when learners perceive their intervention as inferior or
realize they are not part of the experimental condition.

In certain clinical setting, for instance with psychiatric groups,
a within-subject ABA design incorporating a control condition
rather than a second group is inevitable. In ABA designs,

feedback is first given on the desired brain state during the ‘‘A’’
phase, and then for the reversed condition during phase ‘‘B’’,
before again feedback is given in the intended direction in the
last ‘‘A’’ phase (e.g., a sequence of up-, down-, and up-regulation
of an EEG feature such as fm-theta).

For BSDS as an experimental tool to investigate the functional
role of oscillations, active control groups play a rather minor
role. Here, a one session within-group design is sufficient to
investigate specific features of oscillations and their association
with behavioral performance (e.g., comparison of behavioral
effects when a stimulus is presented at high amplitudes vs. low
amplitude or within phase vs. out-of-phase).

The decision diagram in Figure 4 should serve as a starting
point to sketch a neurofeedback study. In the following, the
paragraphs serve to go through all the important steps in detail.

Training Characteristics
Number of Training Sessions
As the first step, the number of training sessions should be
defined. It is most common to implement a fixed number of
sessions based on effect sizes of similar protocols. However,
a training goal could also be defined in terms of a specific
performance pattern, for instance the reduction of a specific
symptom as operationalized by values of a clinical questionnaire.
In such cases, usually the number of sessions cannot be
determined before the intervention. However, Strehl (2014) also
discusses the possibility of overtraining, referring to the notion
that a surplus of practice may actually decrease training efficacy.
As a consequence, it might be necessary to monitor the learning
curve of a given subject to individually adapt the number of
training sessions.

Distribution of Neurofeedback Sessions Over the
Whole Training
Another decision regards the distribution of single training
sessions over the course of the whole training period; sessions
have been conducted as often as twice a day, or only once a
week. Research comparing massed and distributed learning has
strongly focused in an educational school context (Carpenter
et al., 2012). Here, one of the most reliable findings is
an advantage for distributed learning in contrast to massed
learning (Ebbinghaus, 1885/1913). In context of coordinated
reset stimulation, which is a type of deep brain stimulation used
in neurological and psychiatric disorders to unlearn abnormal
neuronal synchrony, the spacing principle has been tested in a
computational study again exhibiting an advantage of a spaced
as compared to a massed intervention (Popovych et al., 2015).
However, up to now there is little known about whether few or
many neurofeedback sessions within a certain time interval are
more helpful for learning to self-regulate brain activity, and less
is known even regarding the length of an effective gap between
training sessions.

Single Session Considerations
Further specifications concern the duration of a single session.
Common durations for a single session are about 20–40 min, but
this strongly depends on the participants’ ability to focus on the
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FIGURE 4 | Decision diagram: before neurofeedback implementation. This diagram lists three areas (A–D), which refer to the preparation of a neurofeedback
intervention. Each of these areas contains aspects that should be considered in order to set-up an effective neurofeedback training design.

training, which differs across age groups and further varies with
the participants’ health status. Not least, it should be decided
whether neurofeedback should be performed continuously
within a session or interrupted breaks. The duration and number
of breaks can either be defined by the experimenter before study
onset or by the participant during training.

Provision of Strategies
Regarding the relevance of strategies and instructions for
neurofeedback outcome, little systematic research has been
conducted thus far. It may be helpful to provide exemplary

strategies for the participants on how to alter the brain activity
of interest. A special case is neurofeedback for motor recovery
in stroke patients. Overt and covert movements both elicit
event-related desynchronization in mu (8–13 Hz) and beta
frequency ranges over the scalp in sensorimotor cortical regions
contralateral to the imagined part of the body (Pfurtscheller and
Lopes da Silva, 1999; Cheyne, 2013). Thus, learning to regulate
such desynchronization is thought to potentially translate into
motor function recovery and participants are instructed to
imagine specific motor movements. However, motor imagery
has also been used in a new neurofeedback approach for the
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self-regulation of increased alpha band connectivity between
the motor cortex and the rest of the brain (Mottaz et al.,
2015). Regarding strategies in other domains of neurofeedback
research, some researchers provide mental strategies for the
subjects to start with (for instance participants in a theta-
beta-feedback training are often instructed to relax and to be
attentive), whereas others only roughly instruct participants
to try whatever they find useful to self-regulate their brain
activity. For a slow cortical potential study, Roberts et al. (1989)
reported nothing such as a single valid strategy; instead they
found high inter-individual differences in successful strategies.
In a SMR study, participants could not even indicate a specific
strategy.

However, regarding the provision of exemplary strategies, the
phrasing of sufficiently detailed instructions at the beginning of
a training session is a topic of current investigations also with
respect to the learning outcome (Lotte et al., 2013). Davelaar
et al. (2016), for instance, conducted a thematic analysis of verbal
protocols to investigate differences between responders and
non-responders in a single session of alpha upregulation training.
The authors raised the question whether the relatively large
proportion of non-responders may be caused by incongruently
formulated instructions (regarding the desired outcomes), and
stress the importance of well-articulated instructions.

Study Blinding
Thereafter, it should be specified, if the neurofeedback study
should adopt a single- (the learner does not know if he
belongs to the experimental or the control group), double-
(both learner and researcher do not know about the exact
group assignment) or even triple- (a third party assessing
effects) blind study design. Specifically, neurofeedback studies
have been criticized for not being adequately blinded (e.g.,
Micoulaud-Franchi et al., 2014), thereby neglecting non-specific
factors, such as expectancy effects, and thus hindering the
evaluation of the treatment effectiveness. The reasons for the
lack of such blinded studies, however, should also be borne
in mind. As Lansbergen et al. (2011) summarized specifically
concerning neurofeedback as clinical intervention for children
with ADHD, blinded studies are confronted with ethical issues
of withholding treatment and are under pressure to develop
highly feasible active control interventions. Issues regarding
treatment efficacy and optimal set up of control condition
are still not solved in context of ADHD as demonstrated by
a recent meta-analysis (Cortese et al., 2016). Thibault and
Raz (2016) argue that even most of clinical studies tend
to be poorly designed and implemented. Based on these
considerations, the importance of a reasonable control condition
as discussed in the Section ‘‘Training Design’’ becomes even
more evident.

Online Feature-Extraction
Feature-Extraction
Next, the features of brain activity to be extracted in order to
best test the research hypothesis need to be defined. In general,
feature extraction can be performed in a data-driven manner,
for instance with BCI aiming at the control of specific devices,

such as a letter-spelling BCI (De Vos et al., 2014). However, with
neurofeedback as a method to alleviate symptoms or enhance
cognitive and behavioral performance, feature selection is usually
based on evidence for an association between oscillations and
cognition or symptoms. For instance, a feature could be specified
by the identification of brain activity that differs between
patients and healthy controls, aiming at an EEG profile that
becomes more similar to healthy subjects. In addition, selected
features can be measured at rest or during task processing.
In the easiest, and most common case, EEG amplitudes of
a given frequency band are extracted and averaged across
one or several electrodes. Usually, these values are calculated
relative to a baseline measurement. Similar to the design of a
feedback signal, the underlying feature can also either directly
reflect the activity of a single brain system or process, or be
computed by putting the system of interest into context with
another system. For example, activity from a single frequency
band is often considered as a feature; however, the activity
in a given frequency band can also be determined relative
to changes within another frequency band (e.g., theta/beta
ratio training). It also needs to be specified whether changes
are calculated relative to a baseline measurement before
the beginning of each single training session or whether a
common baseline is used that is constant across all training
sessions.

Individualization of Feature Extraction
Furthermore, the degree of individualization for feature
extraction has to be determined. This, for example, refers
to whether a fixed-frequency or an individualized-frequency
interval should be used. An individually determined frequency-
interval can, for example, be chosen by having subjects
process experimental cognitive tasks and calculate the
subject-specific dominant frequency peak by means of a
frequency or time-frequency transform. With reference to
the determination of the degree of individualization, it is
assumed that neurofeedback will be more effective when
relying on individualized features, since exact characteristics
may vary across subjects as a function of age, disease states,
task performance capabilities, or brain volume (Klimesch,
1999; Moretti et al., 2004). It should be noted that it is also
possible to generate individual features in a more data-driven
manner, e.g., through the application of machine learning
algorithms. A spatial filter for fm-theta activity, for example,
could also be generated through the application of independent
component analysis or related procedures that provide means to
decompose the recorded EEG into its generating latent sources.
The training of a classifier and the application of its learned
model for neurofeedback training should be applicable too,
but would necessitate the identification of target states from
a previous recording. Not least, features can also be adapted
during training, e.g., through re-training of classifiers over the
course of several neurofeedback sessions (e.g., Vidaurre et al.,
2011; Bryan et al., 2013), or the adaptation of the threshold for
positive feedback based on perceived task difficulty (Bauer et al.,
2016). Thus, in principle many more sophisticated procedures
for feature generation and extraction do exist, but few of them
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have actually been applied and systematically compared in the
neurofeedback-based literature.

Number and the Location of Electrodes
Rogala et al. (2016) show that neurofeedback studies differ greatly
regarding electrode positioning and the number of electrodes
used for quantification of putatively the same brain feature.
However, the feature extraction stage needs to be adapted to
reflect interindividual differences in brain anatomy and function.
It is known, for instance, that fm-theta may shift up to three
centimetres around electrode Fz (Ishihara et al., 1981). Thus,
the inclusion of several electrodes for the calculation of fm-theta
is necessary to compensate for these shifts. Another reason to
choose several adjacent electrodes would be to average across
these in order to enhance the signal-to-noise-ratio. The selection
of the number of electrodes depends certainly also on the type
of neurofeedback application. Neurofeedback at the source level,
for example, necessarily relies on a high number of electrodes to
enable good localization estimates (see Song et al., 2015). With
regard to a multi-session neurofeedback training as a therapeutic
tool, for instance, a rather limited number of electrodes may be
adequate for pragmatic reasons.

Feedback-Related Specifications
Defining a Threshold
The feedback signal indicates the targeted brain activity process
in relation to a criterion. Here, a variety of theoretically
calculations are plausible for the definition of a specific threshold
or state that can be based on changes relative to a resting
condition, or relative to the mean or the median of a previous
training session. These thresholds usually are calculated for single
subjects. However, especially for clinical applications a different
approach for the calculation of a threshold has been suggested.
Here, thresholds for a given subject are not exclusively based
on the subject’s own brain activity, but rather on the subject’s
z-score relative to a normative sample. This reflects the idea to
‘‘normalize’’ the deviating EEG signature (Thatcher and Lubar,
2009). This procedure is known as z-score training and is related
to a research line initiated since 1969 by Thalia Harmony and
Roy John. This neurometrical approach provides an estimate
of deviation by comparing single subjects to a large normative
database of healthy subjects (Harmony, 1975, 1984; John et al.,
1977, 1987; Hernandez-Gonzales et al., 2011).

In addition, feedback signals can be given in only or two
directions, e.g., providing a reward signal when the brain activity
exceeds the intended threshold, or by providing additional
negative feedback when brain activity changes in the direction
opposite to the intended one (e.g., Zoefel et al., 2011).

Feedback Modality
At this stage, a decision on the modality of the feedback signal has
to be made (auditory, tactile, visual, combined modalities, etc.).
Regarding motor imagery training, effects of different feedback
modalities have been assessed. Ono et al. (2013) compared three
types of visual feedback: (i) a simple bar changing its length;
(ii) an animated hand changing its posture from open to a
grasp (displayed at the subjects eye-level); and (iii) the same

animated hand, but displayed at the subjects own hand position.
All conditions led to enhanced event-related desynchronization
over the contralateral sensorimotor cortex, but a stronger gain
was observed with the third feedback type, where motor imagery
and the feedback corresponded best. Moreover, Vukelic and
Gharabaghi (2015) compared a visual feedback (movement of
a cursor ball towards a target) with proprioceptive feedback
using a brain-robot interface and investigated the effects
on connectivity networks of coherent oscillations. They also
observed an advantage for the proprioceptive condition, which
led to increased volition control of brain activity compared to the
visual condition. Regarding the self-regulation of slow cortical
potentials as communication tool with completely paralyzed
participants, superior effects were shown with visual feedback
compared to auditory feedback (Hinterberger et al., 2004).

However, there are still too few systematic studies comparing
the effects of different feedback modalities for specific protocols
and specific populations. Decisions regarding the selection
of the feedback modality are thus often based on practical
considerations and learner specific characteristics. Basta et al.
(2011), for instance, developed a vibro-tactile feedback as a
vestibular rehabilitation program in daily life situations for
elderly with the goal to reduce body sway in balance disorders,
and reasoned that a tactile neurofeedback protocol could
have higher efficacy than an auditory feedback, as potential
sensory conflicts that feedback signals may be induced. More
precisely, their protocol was designed to avoid the crossover of
sensory input; tactile feedback, for example, avoids simultaneous
vestibular stimulation effects as it would have resulted from
auditory feedback (see Probst and Wist, 1990). The prevention
of possible feedback-related effects on the vestibular system is of
course of special important in the case of vestibular rehabilitation
in balance deficits.

Fernández et al. (2016) had to take similar considerations
into account when working with disabled children. This subject
group is known to have a lower processing speed and shows
difficulties in semantic processing in the visual but not in the
auditory modality.

Some studies further utilized multimodal feedback signals.
Kober et al. (2015), for example, evaluated the benefit of two
neurofeedback protocols (SMR and upper alpha) as cognitive
rehabilitation tools after stroke. They utilized a combined audio-
visual feedback, in which a bar changed color from red to green in
real-time when brain activity changed in the intended direction.
In addition, they created a distinctive reward: participants
received points as reward (a reward counter kept track and
was continuously displayed), and an additional midi tone was
provided as a further reward signal.

Further Feedback Considerations
Another important question is how fine-grained the feedback
signal should represent changes in brain activity. This, for
example, regards the resolution of the color saturation or tone
frequency when computing the transfer from the EEG feature
to feedback signal values. Should a feedback signal represent
the neural feature proportional, or rather binary? Colgan
(1977) investigated the effects proportional and binary feedback
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within three conditions of heart-rate-based biofeedback: only
proportional feedback, only binary feedback, and a combination
of the two. The authors found that proportional feedback was
clearly most effective, and that the addition of a binary signal
did not lead to a further increase in self-regulation. Strehl (2014)
came to similar conclusions based on the neurofeedback study
reported by Travis et al. (1974).

In terms of operant conditioning, an periodic reinforcement
schedule would mean that the feedback signal is not continuously
presented, but that a feedback on the performance is only given
either after a certain number of times the targeted brain state
has been reached, or in a temporally scheduled way, e.g., with
a feedback signal being presented every 10 s based on the average
performance within the preceding time interval. Basic science
suggests that a switch from continuous to periodic reinforcement
may foster training outcome (Spada et al., 2004; Thompson
and Iwata, 2005), but this notion has not yet been stringently
tested in context of neurofeedback learning. Related to this
discussion are general delays between the recording of brain
activity and the presentation of a feedback signal, which may be
due to large temporal windows used for feature extraction, or
time-consuming calculations during real-time processing of the
EEG. The width of temporal windows should be adapted relative
to the temporal characteristics of the feature of interest; low
frequency as opposed to higher frequency features necessitate
the extraction of larger windows, such that a given neural
feature is differentially well captured with windows of different
widths (e.g., Darvishi et al., 2013). Regarding the timing of
feedback presentation, it has been shown temporally intermitted
scheduling can be beneficiary, but also that generally delayed
reinforcer may reduce the learning outcome (e.g., Skinner,
1958). When reviewing reinforcement plans, Sherlin et al.
(2011) recommended the latency between neural target state and
reinforcing feedback not to exceed 250–350 ms.

Related to continuous vs. discrete feedback is the post
reinforcement synchronization (PRS), initially observed in an
animal study by Clemente et al. (1964), and refers to alpha-like
EEG synchronization in the parieto-occipital cortex after
reinforcement. PRS seems to depend on the operant response
(Poschel and Ho, 1972). However the PRS is also observed
in humans (Hallschmid et al., 2002). Because the PRS seems
positively related to learning outcome as shown in an animal
study (Marczynski et al., 1981), a discontinuous or discrete
feedback signal may be recommended to allow the PRS to
emerge when the criteria for reinforcement are met (Sherlin
et al., 2011; Strehl, 2014). An upper-alpha upregulation protocol,
for example, may rely on the update of the feedback signal
each time the learners’ alpha exceeds a specific threshold in
the intended direction. These occasions may then be followed
by a short break. In fact, Sherlin et al. (2011) suggested that
discrete feedback signals as implemented by Sterman et al.
(1974) may be more appropriate than the continuous forms
that are used in the modern literature. Sterman et al. (1974)
combined a visual (green color) and an auditory signal when the
brain activity met the target state for a certain time of amount.
In the case of closed-loop BCI neurofeedback paradigms,
such discrete feedbacks are also regularly implemented

(e.g., Ramos-Murguialday et al., 2013; Pichiorri et al., 2015). In a
study of Pichiorri et al. (2015), patients with motor deficits
underwent SMR training and were instructed to perform
motor imagery, either imagining a grasping hand movement
or a finger extension to move a virtual hand. When the
brain activity met the specific criterion, Pichiorri et al. (2015)
provided discrete reward in form of visually enriched feedback
consistent with the imagery content: the virtual hand moved
accordingly. Their results furthermore showed that functional
and neurophysiological improvements correlated with the
connectivity changes of oscillatory patterns.

Complexity of the Feedback Signal
Another issue related to the design of the feedback signal
relates to the complexity of the presented stimuli. On the one
hand, rather simple signals such as tones or colored geometrical
shapes have been used and seem to be preferred in research
settings, whereas more complex stimulus configurations such
as thermometer readouts, flying rockets or videos can often
be found in commercial software packages targeting clinical
applications.

It is worth considering that complex stimulus configurations
might induce effects on the learner that are hard to predict.
For instance, using the replay of videos when brain activity
is modulated according to instructions and stopping them
otherwise may well have additional effects on brain processing.
In fact, the putative benefit of complex or ‘‘real-world’’ feedback
signals has not yet been studied. The amount of additional
processing effects on the brain and its dissociation from
neurofeedback effects, the amount of helpful reward processes
for the learner, as well as the clearness and ease to understand
its usage are largely unknown factors. With respect to external
devices, Collura (2013) discusses possible disadvantages such as
the difficulty to configure and operate such devices at a suitable
timing necessary for the learning process.

Nonetheless, at least multi-stimulus feedback procedures
might be well suitable when several concurrently relevant
sub-goals are utilized. For example, the radius of a sphere could
be used to represent the modulation towards increased activity in
one, and the color of a square the decrease of activity in another
frequency band.

Neurofeedback Software
Altogether, the previous choices determine which neurofeedback
software is suited best. When a standard neurofeedback
protocol is chosen to implement a therapeutic intervention in a
patient population, commercial products can be a good choice.
However, a disadvantage of such commercial products might
be a limited flexibility with respect to the implementation of
parameters such as those discussed earlier. Huster et al. (2014)
provide an overview of open-source software packages based
on programming features and their general purpose. Notable
packages are BCI20001, Open ViBE2, and BCILAB3. A software
package specifically developed for BSDS, is the Constance System

1http://www.bci2000.org
2http://openvibe.inria.fr
3http://sccn.ucsd.edu/wiki/BCILAB
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for Online EEG (ConSole)4 (Hartmann et al., 2011). Marzbani
et al. (2016) introduce a neurofeedback software based on virtual
reality named GRAZ-BC. A rough overview of commercial and
open-source neurofeedback software packages can be found on
Wikipedia5.

It might also be worth hinting at recent hardware
developments, such as that of small, portable, and wireless
products that may be of special interest for daily-life applications
(De Vos et al., 2014). Furthermore, such mobile training
procedures may positively impact training generalizability:
if control over brain activity is learned only in a specific
learning location, this ability is probably associated with the
specific training environment, and is not easily retrieved or

4http://console-kn.sf.net
5https://en.wikipedia.org/wiki/Comparison_of_neurofeedback_software

replicated in other locations (e.g., Smith et al., 1978; Smith and
Rothkopf, 1984). Wireless EEG systems may be well suited
for neurofeedback trainings administered outside of laboratory
settings. Particularly from the view of application, small, portable
and wireless products additionally increase the clinical relevance.

ASSESSING THE LEARNING OUTCOME
AND TRANSFER EFFECTS

Calculation of Learning Indices
Measures Assessing Changes of Brain Activity
during Neurofeedback
Dempster and Vernon (2009) suggested three major measures
that can be used to detect three types of brain activity changes
due to neurofeedback. The first measure simply specifies absolute

FIGURE 5 | Features of the individualized and adaptive fm-theta neurofeedback training I. (A) Eight session training design. Each session consisted of six
5 min training blocks, which were preceded and completed by each a 5 min resting state electroencephalography (EEG) measurement. (B) Individualized frequency
procedure. The estimation of the dominant fm-theta frequency is based on the extraction of the dominant peaks of four executive tasks. (C) Electrode positions.
Electrode positions in light blue represent the electrodes used for neurofeedback. Dark blue represents the ground and reference electrode as well as the electrodes
for EOG. (D) Implementation of the active control group. Each participant of the pseudo-neurofeedback group was matched to one participant of the experimental
group and received his/her feedback as playback. Thereby participants of the active control group received the same visual stimulation as participants of the
experimental group. To increase high credibility, participants of the active control group additionally received real eyeblink feedback.
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values of amplitude/power. The second measure specifies the
percent of time spent with positive feedback, which equals the
time spent in the intended brain state. Thus, this is the time
spent above or beneath a specific threshold when self-regulating
one’s brain activity. The third measure combines the previous
two indices by calculating:

the percent time spent in the desired brain state ∗ mean level
of the amplitude during neurofeedback

Each of these measures seem to reflect different aspects of
brain activity, and it might be worthy reporting all measures. To
start with, over the course of training it is possible to observe
changes in both amplitude and percent in time, or in one of
these measures only (Dempster and Vernon, 2009). To illustrate
this, the learner could exhibit only brief and temporally unstable
increases over time, which nonetheless could be reflected in
average amplitude changes (Hardt and Kamiya, 1976). However,
the opposite could also be the case; the learner could show
slight differences within training that are temporally stable. With
respect to the comparison of different frequencies, it might be
worth calculating these measures in both the absolute amplitude
values as well as changes in percent, since amplitude scales with
frequency. These measures can be used to compute individual as
well as group-based learning profiles.

Choosing a Reference for Changes Brain Activity
Based on these measures, one can assess feature changes in four
different ways: (i) within sessions, for instance by comparing
the beginning of each session with the end of a training session
(sessions can be arbitrarily divided into blocks or segments
for statistical analyses); (ii) possible changes in these measures
within a session observed as a difference relative to a baseline
measurement, where participants neither try to control their
brain activity nor receive any feedback; as (iii) changes observed
from session-to-session; and accordingly also; as (iv) changes
across sessions relative to a baseline measure.

Training Specificity: Calculation of the
Whole Frequency Spectrum
Finally, training specificity can be determined by repeating steps
in Section ‘‘Measures Assessing Changes of Brain Activity during
Neurofeedback’’ for different frequencies, assessing whether the
target feature or frequency of interest has been predominantly
modulated; the calculation of the whole frequency spectrum
often is very informative step.

Transfer of Training
Last but not least, the transfer of neurofeedback training assessed
within pre-post measurement designs is of crucial importance
(Frison and Pocock, 1992; Senn, 2007; Knapp and Schafer, 2009).
Possible variables concern behavioral changes in cognitive tasks,
or symptom severity in patients. However, neuroplastic changes
can be induced by training, practice and learning (Kolb and
Whishaw, 1998) and the contribution of Hebbian as well as
homeostatic plasticity has been discussed for neurofeedback too
(see Legenstein et al., 2008, 2010; Ros et al., 2014). Ghaziri

et al. (2013) investigated microstructural changes in white and
gray matter after 40 sessions of neurofeedback over the course
of 13.5 weeks. By taking a dynamical system approach it has
been suggested that the brain is operating in so called critical
points, reflecting a homeostatic state enabling maximal flexibility
and ability to adjust responses to various demands (Linkenkaer-
Hansen et al., 2001; Chialvo, 2010). Neurofeedback could trigger
the tuning of the brain’s intrinsic mechanisms of homeostasis to
self-organize towards an optimal state. In a pre-post resting state
design in patients with post-traumatic stress disorder, Ros et al.
(2016) analyzed long-range temporal correlations of oscillations
and demonstrated the reversal of abnormally random dynamics
after an alpha neurofeedback training. Interestingly, this measure
was correlated with improvements in symptom severity. Apart
from the investigation of neuroplastic effects, the long-term
stability of training-induced effects can also been investigated.
Gani et al. (2008) reported reduced behavioral symptoms,
improvements in cognition, and preserved EEG-regulation skills
in children no longer meeting ADHD criteria.

ILLUSTRATION OF A PROTOCOL-SET UP

As an example for the implementation of the steps of the
decision diagram, the fm-theta neurofeedback protocol based
on Enriquez-Geppert et al. (2014a,b) will serve as an example.
Regarding the fm-theta protocol, ethical approval was obtained
from the ethics committee of the University of Oldenburg,
Germany. The aim of the fm-theta protocol was to investigate
the trainability of fm-theta, and to assess the training’s effects on
executive functions. Therefore, a protocol was set up including
an active control group, the so-called pseudo neurofeedback
group. Participants of the pseudo neurofeedback group were
pseudo-randomly matched to the experimental group and
received a playback of a matched participant’s feedback in
the equivalent training block and training session to obtain
similar sensory stimulation. Additionally, they received their
own eye-blink feedback in order to increase the credibility of
the pseudo-feedback manipulation (Section ‘‘Training Design’’;
see Figure 5D). The protocol consisted of an eight session
training, with each session having a duration of 30 min
(plus two resting state measures of 5 min each before and
after the training; Section ‘‘Number of Training Sessions’’).
Each session was split up into six 5-min training blocks
with self-paced breaks in between (Section ‘‘Single Session
Considerations’’). The training as a whole was performed over
the course of 2 weeks (Section ‘‘Distribution of Neurofeedback
Sessions Over the Whole Training’’), whereby training sessions
were completed on consecutive working days (see Figure 5A).
Participants received a collection of possible strategies on
how to enhance one’s own fm-theta. They were instructed
to test these as well as strategies by themselves in order to
select the best working mental operation to enhance their
brain activity (Section ‘‘Provision of Strategies’’). As the event-
related fm-theta at fronto-medial electrode sites was suggested
as ‘‘working language’’ of executive functions (Cavanagh
and Frank, 2014), and was shown to be enhanced during
successful processing of demanding cognitive tasks (Sederberg
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et al., 2003), theta frequencies at five fronto-medial electrode
positions was selected for neurofeedback (Section ‘‘Feature-
Extraction’’; see Figure 5C). The individual dominant fm-theta
peak was estimated before neurofeedback based on four tasks
probing executive functions (see Figure 5B). The individual
peak frequency was then used during training sessions for
personalized feedback (Section ‘‘Individualization of Feature
Extraction’’).

Amplitude changes of theta activity during training were
compared to the start-baseline measure as calculated by a
Fast Fourier Transform. During training, a sliding analysis
window of 2 s (Section ‘‘Defining a Threshold’’) was updated
every 200 ms. A simple stimulus constellation (Section
‘‘Complexity of the Feedback Signal’’) was utilized for visual
feedback signals (Section ‘‘Feedback Modality’’). Specifically,
the color saturation of a square was adapted in accordance
with the ongoing theta activity (Section ‘‘Further Feedback
Considerations’’). Red corresponded to theta activity that was
enhanced relative to the start-baseline, and blue to reduced
activity. NeuroFeedback Suite 1.0 (Huster et al., 2014) was
selected as software. It has the advantage of representing a

ready-to-use neurofeedback software with the unique feature
of multiple-subject data management (Section ‘‘Neurofeedback
Software’’). Thereby, single or double-blinded studies can
easily be performed. It furthermore includes a template for
individualized eye-artifact removal. Both absolute and relative
amplitude changes of theta over the course of the training
were computed (Section ‘‘Measures Assessing Changes of
Brain Activity during Neurofeedback’’). In addition, to further
evaluate the training specificity of fm-theta neurofeedback,
the neighboring frequencies, alpha and beta bands, were also
assessed statistically (Section ‘‘Transfer of Training’’). The whole
frequency spectrum was inspected and compared before and
after neurofeedback.

As can be seen in Figure 6A, the session-to-session changes
of theta activity were analyzed (one of three possible learning
indices; Section ‘‘Choosing a Reference for Changes Brain
Activity’’). This graphic visualizes that proper neurofeedback
training led to increased fm-theta activity when compared to
pseudo neurofeedback training. The dynamical changes of theta
within sessions (Figure 6C; Section ‘‘Choosing a Reference
for Changes Brain Activity’’) were computed as the average

FIGURE 6 | Learning indices. (A) Here, session-to-session changes during neurofeedback are illustrated as calculated for theta frequencies. Stronger increases in
the actual neurofeedback intervention are visible compared to the pseudo neurofeedback intervention. (B) The frequency spectra depict the amplitude changes of
theta, alpha and beta from the first to the last training session for both, the neurofeedback- and the pseudo neurofeedback training group. (C) The dynamical
changes within sessions and across all training days are illustrated for theta, alpha and beta recorded in each training block for both the neurofeedback- and the
pseudo neurofeedback training group. Based on real feedback, only the neurofeedback training group shows enhanced theta that is not visible in the active control
group (adapted from Enriquez-Geppert et al., 2014b).
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of each training block across the eight training sessions. This
graphic demonstrates that proper neurofeedback training (left
side), as compared to the pseudo neurofeedback (right side),
led to an enhancement of fm-theta during training blocks.
This shows that a real-time feedback serves as learning signal
that can be used to self-regulate one’s own theta activity.
Finally, full frequency spectra display the amplitude changes
of theta, alpha, and beta frequencies from the first training
session to the last, which is important regarding the evaluation
of the specificity of a training (Section ‘‘Training Specificity:
Calculation of The Whole Frequency Spectrum’’; see Figure 6B).
It can be seen that theta enhancement represents a frequency-
specific training effect. Furthermore, transfer of the training to
tasks assessing four executive functions (conflict monitoring and
motor inhibition, memory updating and mental flexibility were
found (Cavanagh and Frank, 2014). Fm-theta neurofeedback
did not affect reactive control mechanisms (Stroop and Stop
Signal tasks), but facilitated proactive control (as indexed by the
three-back task and the task-switching task (Section ‘‘Training
Specificity: Calculation of the Whole Frequency Spectrum’’; see
original report in Enriquez-Geppert et al., 2014a).

In the following paragraphs, the prerequisites for the
interpretation and assessment of neurofeedback, and training
criteria as well as potential guidelines for the evaluation of
training efficacy in the clinical domain are assessed. Last but
not least, a framework for further development of neurofeedback
protocols is discussed.

DISCUSSION

Regarding the assessment of the outcome of neurofeedback
training protocols, a debate trying to define best-practice
guidelines has just started (Gruzelier, 2014b; Strehl, 2014). Of
crucial importance for the interpretation and assessment of
neurofeedback results are prerequisites concerning the design.
This includes the usage of an active control group implemented
by a credible sham-/pseudo neurofeedback group, in order
to dissociate between true as compared to repetition-related
or non-specific effects. Of similar importance is the random
assignment of participants to experimental and control groups to
prevent effects not related to the specific neurofeedback protocol
such as selection or expectancy effects (see Figure 7 for an
overview). Meeting these criteria will provide a good basis for a
well-designed neurofeedback study.

Prerequisites of a Good Neurofeedback
Study
Neurofeedback-specific principles are presented in the following
text that should be considered prerequisites to allow conclusions
regarding the training efficacy. These principles refer to the
construct validity of the feature selection, the trainability of the
feature itself, as well as behavioral and neurocognitive transfer
effects (see Figure 7). Construct validity (1) of the feature refers
to the empirically confirmed relation between the feature and
a specific cognitive function or symptom that is intended to

FIGURE 7 | Prerequisites of the neurofeedback design. This figure lists four criteria for the validation of neurofeedback studies and refers to the interpretability of
trained features, the trainability of the feature, the usage of an active control group and the random assignment of participants.
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be changed by neurofeedback. The feature thus represents a
crucial underlying neural mechanism of a cognitive process of
interest. The second aspect that is specific to the evaluation
of neurofeedback refers to the trainability (2) of the feature
as reflected in appropriate learning indices. The assessment of
the trainability of a feature should further be accompanied by
the calculation of effect sizes to make more precise quantitative
statements. The specificity of the training outcome is highest with
modulations seen predominantly (or even exclusively) with the
trained feature, without affecting untrained brain processes. This
aspect can also be regarded as part of construct validity. Transfer
effects according to the construct validity (3) refer to effects on
behavior as expected based on the relation between the feature
and cognitive functions.

Assessment Criteria for the Evaluation of
Clinical Interventions
The evaluation of neurofeedback protocols is particularly
decisive with respect to their clinical efficacy. Based on
an existing categorization of the American Psychological
Association (APA), guidelines (LaVaque et al., 2002) have been
developed by collaborative work of two neurofeedback societies
(the Association for Applied Psychophysiology and Biofeedback
(AAPB) and the Society for Neuronal Regulation (SNR)). These

guidelines specify rules for the assessment of treatment evidence
as summarized in Figure 8. Five different levels are differentiated
that classify the efficacy of an intervention. The lowest level
(Level 1) refers to rather anecdotal or narrative reports about a
seemingly effective treatment. Studies that are published without
peer-review and thereby miss the opportunity to subject the
work to other experts for maintaining quality standards are
also regarded as Level 1 studies. Altogether, these studies are
categorized as ‘‘not empirically supported’’. In contrast, an
intervention can be classified as ‘‘efficacious and specific’’ (Level
5) whenever a treatment utilizes a credible sham therapy, pill,
or alternative bona fide treatment in at least two independent
research settings, and furthermore meets the demands of the
lower levels (e.g., sufficient statistical power, a well-defined
outcome measure, an appropriate control group, replicability; see
Figure 8).

Outlook
EEG-based neurofeedback represents a non-invasive,
economical, and potentially mobile technique for the
modulation of brain activity. The previously discussed
elements that constitute a feedback system also provide a
framework for the discussion of further development. For
instance, during online data-preprocessing, most studies deal

FIGURE 8 | Assessment criteria. Based on general guidelines, five levels and their criteria are listed for the evaluation of the efficacy of (clinical) interventions.
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with eye artifacts by online rejection, thereby disrupting the
quasi-continuous stream of the learning signal that otherwise
might easily be contaminated with artifacts. Through the
rejection of these time frames the available learning time
is also reduced during neurofeedback sessions. This might
be additionally challenging with clinical populations such
as patients with increased motor agitation, or whenever
medication produces side effects leading to increased and
uncontrolled movements. Thus, an adaptation of correction
procedures for real-time application during neurofeedback
would be advantageous (for instance by means of independent
component analysis). Similarly, online feature-extraction
could significantly be improved by using advanced signal
processing routines. Scalp EEG recordings necessarily reflect
a mixture of activities from multiple brain sources. Thus, the
application of source-based signal processing for neurofeedback
may significantly increase the specificity and efficacy of a
neurofeedback training protocol. Correspondingly, White et al.
(2014) recently presented a study that used such advanced
methods for EEG neurofeedback in order to self-regulate theta
oscillations originating from medial-temporal and parietal
regions.

In summary, a well-designed neurofeedback system relies
on the characteristics of five processing elements in order
to optimize the self-regulation of brain activity and enable
transfer to cognition and behavior. Based on the neurofeedback
design and criteria concerning the evaluation of clinical efficacy,
concrete conclusions regarding training results are facilitated.
Despite a number of improvements that still need to be
applied more widely to common protocols, EEG neurofeedback
represents a feasible and promising tool for therapeutic
interventions, cognitive enhancement, as well as a method for
basic research.
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