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Summary

This paper shows the use of a specific type of time series analyses, the so named recurrence plot (RP), for investigations
of the outer hull of an imaged and pre-segmented object to derive image features suitable for usage in classificators.
Additionally to the features derived by the well documented recurrence quantification analysis (RQA) a new set of
features was developed based on closed structures (“eyes”) in a RP. The new features were named eye structure
quantification (ESQ). Two sets of images are analysed: a) 1023 in-situ plankton images comprising nine different
organism classes, and b) each 50 algorithmically created geometric shapes of five different classes. These images were
characterised by standard image features, RQA quantification and the newly proposed features. A Linear Discriminant
Analysis (LDA) was used to determine discriminative success between the classes of plankton organisms or geometric
shapes respectively. The discriminative success was compared between a model using standard features and additional
RQA and ESQ. For the high intra- and low interclass variance of the plankton contour line data set the included
features enhanced discriminative success by 3 % to a maximum of 65.8 %. For the data set of geometric shapes an
increase of 6.8 % to 95.2 % was observed. Although the overall increase of discriminative success was not extraordinary
high by using a linear model, it can be seen that both RQA and ESQ are valuable auxiliary features to split specific
classes from the entire population. Thus, they may also be valuable for methods mapping the finite dimensional
feature space into higher dimensional spaces (e.g. Kernel trick, Support Vector Machines).
Background
Time series are sequences of metered values. Such readings
generally have a natural chronology, are non-circular and
exhibit a defined start and end for the recorded time inter-
val. Typical examples of time series are e.g. tidal signals,
meteorological observations, stock exchange quotations or
cardiograms. Tools for the investigation of time series in-
clude a large portfolio of forecasting, estimating or classify-
ing methods and the identification of dependencies,
harmonic anomalies or recurrences.
Especially the identification of recurrences allows

identifying whether the current state of a dynamic system
retraces prior observed states. Eckmann et al. [1] intro-
duced a visual method to investigate such recurrences. The
respective tool is the recurrence plot (RP). It uses the time
delay embedding theorem (DET, [2]) to display previously
encountered states in a phase space. Advantageously RPs
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using DET not only identify parity situations but also ap-
proximations to the compared template structure with
given precision. Thus, a RP identifies sections of phase
space trajectories that converge. The recurrence quantifica-
tion analysis (RQA) comprises a set of heuristically devel-
oped methods to derive numerical characterisations of the
complexity of a RP and its small-scale features (e.g. [3–5]).
Here we first investigate the use of RP and RQA for
automated image discrimination and apply it to the very
different field of marine plankton data.
For a wide range of marine investigations it is important

to chart distribution, abundance and diversity of major
plankton groups and suspended material. Traditional
methods include sampling the water column by nets of fine
gauze and defined mouth opening. Skilled taxonomists
determine and enumerate biota from aliquots under stereo-
microscopes. The human eye easily gives a first taxonomic
impression based on shape and habitus of an organism.
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characteristics (e.g. bristles, setae or body appendages) fur-
ther allows a more precise taxonomic identification. Even if
an object cannot be determined to species level a super-
ordinate taxonomic group membership can be assigned;
often sufficient for the scientific question at hand.
During the last decades various in-situ plankton imaging

systems were developed. Today most of these devices are
capable to sufficiently image tiny organisms or particles
for detailed analyses (e.g. [6]). Although accurate species
identification often fails, the major taxonomic group
membership can generally be determined. Thus, these ap-
proaches add new opportunities to net samplings and
have proven to be valuable tools (e.g. [7]). By this, they
can partially substitute labour and cost-intensive net ana-
lyses and continuously map fine-scale distributions of dis-
persed objects in the water column.
However, the sheer amount of images and data face re-

searchers with new challenges. In contrast to net samplings
in situ systems deliver two dimensional still images which
represent information of incident light scattered from im-
aged objects at arbitrary angles and spatial alignment. Al-
though alignment can be partially controlled by fluidic
design of the sampling chambers object appearances are
still highly variable (e.g. clinging or abducted antenna and
body appendages). To fully utilise the advantages of in-situ
plankton imaging systems requires sophisticated machine
vision approaches aiding researchers to handle the flood of
information. For this, automatic image feature extraction
and classification are required that are capable to assign
major group memberships in a comparable way as a human
taxonomist would.
A variety of algorithms are available to extract numerical

features from 2D images and their silhouettes. Standard
methods are moments derived from pattern intensity varia-
tions, colour information and geometric parameters, like
roundness, compactness or elliptical shape equivalents. More
sophisticated methods investigate contour lines by Fourier
descriptors (e.g. [8]), characteristic inflexions (e.g. [9]) or iden-
tification of points of interest in scale space (e.g. [10, 11]).
Although, such features are generally invariant to scale,

rotation and translation downstream classification systems
often lack high discriminatory power for plankton speci-
mens (e.g. [12]). An important factor is the multivariate high
intra-class heteroscedasticity. This high variability is a gen-
eral challenge when compiling feature sets considering con-
tour lines of plankton species. Depending on illumination,
resolution, contrast and orientation the outer contour and
tissues appear highly variable. This arises from on-site illu-
mination variations and flexibility and agility of body parts
and appendages. Thus, predictability of the contour line’s
curve progression is comparable with dynamic systems.
Here we present an approach to apply the recurrence plot

method on circular contour line data by using a modified
embedding, where the contour line data are augmented by
recycled elements. The resulting RP is the basis to get a first
glimpse about usefulness of RQA scalars as features for au-
tomated classification systems. For comparison we used
two different image sets. The first set is composed of geo-
metric forms, while the second is compiled from images of
plankton specimens and marine snow taken under arbitrary
angles and showing high morphological variability.

Methods
Images
Geometric shapes
Two sets of images were used. The first is a generic set
of algorithmically created geometric shapes. This data
set includes 50 shapes each out of five classes: circles,
ellipses, squares, rectangles and triangles (Appendix A:
Fig. 4). To minimise the impact of the contour line
length the shapes where chosen to have a comparable
intra-group perimeter (mean 140.57, SD 1.13).

Plankton images
The second image set contains 1023 images out of 21
groups (Table 1). These 21 groups can finally be super-
ordinated into 9 higher classes. They present mainly
taxonomic or morphological plankton groups and mar-
ine snow. This data set is published and freely accessible
via the Pangaea data publisher system [13].
Images were sampled with the Lightframe On-sight Key-

species Investigation (LOKI) system [6]. The advantage of
the LOKI sampling design is the high contrast imaging of
minute objects at high magnifications (here ~15 μm per
pixel) at very short shutter times (<30 μs) in a physically
constrained volume, being transparent before and behind
the depth of field. Thus, the system delivers bright and de-
tailed images of taxons that are often destroyed during
traditional net samplings. Images were manually classified
by declared experts of the respective plankton taxon. The
images were taken from a larger subset sampled during an
earlier expedition off the coast of Peru (rf. [14]) and repre-
sent major plankton classes of the on-site community.

Standard image features
The 8 image features, hereafter referred to as STANDARD
(Table 2), were extracted by using the MATLAB function
‘regionprops’ and ‘graycoprops’. For more detailed informa-
tion see MATLAB documentation. Area: Number of pixels
within the object’s contour line. Compactness: Quantified
by the inverse Patton Shape Index [15], which compares
the perimeter of the shape to the perimeter of a standard
shape. An index of 1 equals a perfect circle. Contrast:
Intensity contrast between neighbouring pixels (zero for
constant images). Eccentricity: Eccentricity of an ellipse
corresponding best to the object shape. Hu Moments: The
seven moment invariants of the object [16], calculated
using a script by Gonzalez et al. [17]. In the following the



Table 1 Taxonomic class sizes used in the analyses

Taxon/Class # Total #

Annelida 50

- Polychaeta 50

Appendicularia 50

- Oikopleura 50

Bacillariophyceae 100

- Coscinodiscales 50

- Rhizosoleniales 50

Cnidaria 60

- Medusae 30

- Siphonophora 30

Crustacea 515

- Amphipoda 50 50

- Copepoda

○ Calanidae 125

▪ Acartia 50

▪ Calanus 50

▪ Calocalanus 25

○ Cyclopoidae 50

▪ Oithona 50

○ Poecilostomatoida 140

▪ Corycaeus 50

▪ Oncaea 50

▪ Sapphyrina 40

- Euphausiacea 50

○ Genera not further separated 50

- Ostracoda 50

○ Genera not further separated 50

- Nauplii 50

○ Various genera and species 50

Dinoflagellata 45

- Noctiluca 45

Marine snow 150

- Heterogeneous marine snow particles 150

Mollusca 28

- Gastropoda 28

Vertebrata 25

- Fish larvae 25

Total 1023

Table 2 Categories of numerical features extracted for each
image

STANDARD RECURRENCE QUANTIFICATION
ANALYSIS (RQA)

EYE STRUCTURE
QUANTIFICATION (ESQ)

Area Clustering coefficient Mean eye size

Compactness Determinism Median pixels of eye

Contrast Entropy diagonal length Number of eyes

Eccentricity Laminarity Summed pixel in eyes

Hu1-Moment Longest diagonal length

Homogeneity Longest vertical length

LengthBoundary Mean diagonal length

Solidity Recurrence period density

Recurrence rate

Recurrence time1

Recurrence time 2

Transitvity

Trapping time

All features of a category have been either used in the analyses or excluded
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first Hu-moment was used only, as higher moments some-
times caused collinearities in the following analyses. Homo-
geneity: Closeness of the distribution of elements in the
normalised grey-level co-occurrence matrix to its diagonal
(one for diagonal matrix). Perimeter: The perimeter of the
organism’s shape in pixels. Solidity: Quotient of the
number of pixels within the object contour line and the
number of pixels in the respective convex hull.

Contour line extraction and measurement
For each imaged object the coordinates of the mass cen-
troid is calculated. Additionally, the finite contour outline
of the organism is determined. The contour line is a list of
length l giving the coordinates of the points at the organ-
ism’s outer boundary (Fig. 1a). From the centroid the dis-
tance to each point with index i of the contour line is
calculated clockwise according to a pre-defined norm. In
the following the Euclidean norm was used. Values are
tabulated in a list u (Eq. 1) and normalised to 1:

u ið Þ; 0 < i ≤ l ð1Þ

The basis for the recurrence quantification analyses thus
is a list of distances u, from each contour line point to the
centroid. The list is shifted in a way that the first index u (1)
represents the maximum distance found; increasing indices
clockwise enumerate the subsequent distances (Fig. 1b).

Embedding
Using the embedding theorem [2] a phase space trajectory
in dimension m with m> 1 is created from u. Therefore m
values from u are used to create a new vector v of dimen-
sionm representing the points of the phase space trajectory.
Values used from u are chosen to have equidistant spacing
t. As mentioned before the contour line data, in contrast to
a time series, represents a circular structure. Therefore the
first (m-1)*t elements of u need to be recycled and added to
the end of the list u. The length of u becomes l + (m-1)*t.
In case of (m-1)*t > l the elements of u need to be re-



Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Schematic workflow. a) Extraction of the outer contour line of the object (red line). The cyan dot indicates the mass centroid. b) For each point of
the red contour line the distance to the centroid is measured according to a predefined norm and normalised. The greatest distance is stored as first
element in a list u (1). All other distances u (i) are enumerated clockwise from this starting point (blue line). The red line is the distance list augmented by
(m-1)*t elements, recycling the beginning of u. Parameters m and t are given by the subsequent embedding. c) From list u (i) a set of m dimensional
vectors is derived, each having m elements of u with an equidistant spacing of t. The chronology of u (i) is embedded in v (i). d). A phase space trajectory
in m dimensional space can be constructed from v (here shown for an example with m= 3). Numbers attached to some points of the phase space
trajectory refer to index i of the original contour line. e) For each point i of the phase space trajectory the distance to any other point j is measured and
tabulated. This can be plotted as a colour heat map. f) In a later step it is checked, whether the respective distance is greater than a given threshold ε
(Heaviside operator). The result is tabulated as a square, symmetric and binary matrix, the recurrence plot (RP). White dots indicate that the distance
between v (i) and v (j) is greater than ε. On the main diagonal points are compared against themselves. Thus, the distance is always zero. From the RP a
number of numerical features are derived in the subsequent recurrence quantification analysis (RQA, refer to the text). g) The enclosed white coherent
areas within a RP have been termed “eyes”. Due to the circular data structure and above mentioned augmentation the truncated eyes along the borders
need to be interpreted as connected structures on the opposite sides of the plot. This is displayed by matching colours of associated eyes. This plot serves
as a basis for the eye structure quantification (ESQ, see text)
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recycled. This results in a set of vectors v defining the
points of the phase space trajectory (Equation 2):

v ið Þ ¼
u ið Þ
u iþ tð Þ
u iþ m−1ð Þ � tð Þ

0
@

1
A; 0 < i ≤ l ð2Þ

Dimensionm and time delay t have to be chosen properly
prior to analysis. To investigate their impact several tests
were performed beforehand for 1 <m ≤ 10 and 1 ≤ t ≤ 10.
For the examples given in this paper m = 6; t = 6; ε = 3.0
was used. Sample plots for various parameter combinations
are given in Appendix B: Figs. 5, 6 and 7.

RP - Recurrence plot
For each investigated object a matrix R is calculated from
the phase space trajectory (Fig. 1d). For each element R (i,j)
the norm ǁ · ǁ between the vectors v (i) and v (j) is calculated
(Eq. 3). For the results presented in this paper the Euclidean
norm was chosen. Finally, R is a l × l square and symmetric
matrix that can be displayed as a false colour heat map
representing the distances between all points of the phase
space trajectory according to the used norm (Fig. 1). For
downstream processing the Heaviside step functionΘ (·) is
applied to identify those distances of phase space trajectory
points that fall below a predefined minimum value ε. Thus,
the definition of the recurrence plot becomes a matrix of
binary values given by:

R i; jð Þ ¼ Θ ε−∥v ið Þ−v jð Þ∥ð Þ; 1≤i≤l and 1≤j≤l ð3Þ
Consequently, the main diagonal of such a recurrence

plot represents the distance of a point to itself and is
therefore 0. Once the Heaviside step function was ap-
plied all off-diagonal non-zero entries of R indicate
phase space approximations smaller than ε having a dis-
tance on the contour line of ǁi-jǁ.
Side diagonals parallel to the main diagonal indicate that

structures of the contour line are similar in phase space.
The length of the similarity structure is equivalent to the
length along the axis, with the latter given distance on the
contour line. Among diagonal structures coherent areas ex-
ceeding ε (name “eyes”) can be found (Fig. 1e-f). These pat-
terns within a RP represent major characteristics and are
investigated in detail numerically.

RQA - Recurrence quantification analysis
Parameters of the Recurrence Quantification Analysis
(RQA, Table 2) were obtained using the Cross Recurrence
Plot Toolbox [5, 18]. Values transferred in the function call
are the embedding vectors v (i), dimension m, time delay t,
size of neighbourhood ε and norm to be used (Euclidean). A
total of 13 features were extracted from each RP (Table 2).
Details are given in [3–5, 19] or [20]: Clustering coefficient
gives the degree to which points of the phase space trajec-
tory tend to cluster. Determinism gives the proportion of
recurrent points forming diagonals. Entropy diagonal
length gives the Shannon entropy of the probability distribu-
tion of the lengths of the diagonals. Laminarity gives the
amount of recurrence points forming vertical structures.
Longest diagonal length gives the counted length of the
longest diagonal. Longest vertical length gives the counted
length of the longest vertical. Mean diagonal length gives
the average length of the diagonal structures. Recurrence
period density gives the periodicity of the signal in the RP.
Recurrence rate gives the density of observed recurrence
points in the RP. Recurrence times give an estimation of
the periodicity in the RP signal. Transitivity gives the prob-
ability that two points of the phase space trajectory neigh-
bouring a third are also directly connected. Trapping time
gives the average length of the vertical structures.

ESQ - Eye structure quantification
From the recurrence plot matrix R additional features were
derived. In the Eye Structure Quantification (ESQ) distribu-
tion and size of enclosed structures, the so-called ‘eyes’, were
measured. Due to the circular structure of an organism’s
contour line opposite sides of the RP need to be interpreted
as connected structures. Thus, eyes truncated at the bor-
ders of R have to be associated with their counterpart on
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the opposite side prior to evaluation (Fig. 1g). After identifi-
cation of associated eyes, the total number of eyes, mean
number of pixels per eye (e.g. mean eye size), the median of
the numbers of pixels per eye, and total number of pixels in
all eyes were determined. Increasing eye numbers generally
indicate, that a high number of independent features recur-
rences in phase space are found. These are often associated
with repetitive morphological structures of the object, like
polychaete parapodia, silica spicules or regular diatom
frustule indentations.

LDA - Linear discriminant analysis
A Linear Discriminant Analysis (LDA, [21–23]) was used
as classificator. The LDA model was built with the training
data set (geometric shapes or plankton images) and tested
against itself to investigate the role of the included features.
An individual LDA was run for each of the 4 feature com-
binations (Table 3) and both image sets. LDA results evalu-
ated in this paper are:

– Coefficients of linear discriminant roots. These
values represent the loadings and thus, importance
of the individual features during discrimination.

– Proportions of trace. These values give the variance
explained by the respective root. As explained
variance decreases with each successive root we give
just the first roots in this paper; although for some
LDA’s more roots could be given (number of roots
equals number of objects or number of included
features minus one; whatever is lower).

– Confusion matrices. They show the rate of true
positive and false positive classifications.

– From the coefficients of linear discriminants, the most
important features were identified that best separate
objects by the respective root. A feature was
considered to be important when it’s loading reached
at least 10 % of the maximum feature loading on
either side of a root’s spanned hyperplane.

– Canonical scores. The scores of the individual objects
were plotted to visualise the discriminative success
among object classes for the respective roots.

Computational work
Image processing and feature extraction (RQA, ESQ) were
performed in Matlab (MathWorks, 2013, v8.1.0.604). The
Table 3 Feature combinations used for the different LDA models

LDA setup Included features

1 STANDARD

2 RQA

3 STANDARD & RQA

4 STANDARD & RQA & ESQ

Each of the four models was run individually for the shapes and the plankton
image data set
LDA models were implemented in R (www.r-project.org),
using the additional package MASS.

Results
LDA - Linear Discriminant Analysis
Geometric shapes
Standard First LDA included the STANDARD parame-
ters. The first discriminant root (LD1) explained 72.58 %
of the observed variance, while the second (LD2) ex-
plained additional 26.02 % (Table 4). LD3 and LD4 are
of less importance, as their cumulative impact is less
than 1.5 %. It is obvious, that parameters like Area and
Contrast have least impact for discriminating geometric
structures. The confusion matrix shows that 88.4 % of
the geometric shapes were classified correctly (Table 5).
In the canonical plot (Fig. 2a) rectangles and circles
show a clear clustering tendency, while other geometric
shape categories show much higher dispersal.

RQA The second LDA included the RQA toolbox parame-
ters, where LD1 explains 73.42 % of the observed variance
and LD2 explains 14.13 % (Table 6). The cumulative ex-
planatory power of LD3 and LD4 still comprises approxi-
mately 12.5 %. The confusion matrix shows a total
discrimination success of 83.6 % (Table 5). It can be seen in
the canonical plot, that rectangles and circles separate from
other categories (Fig. 2b) but inter-class discrimination is
lower compared to STANDARD. The three other classes
separate well, but show a higher dispersal on both roots.

Standard & RQA The third LDA included both the
STANDARD and RQA parameters. LD1 explains 59.82 %
of the observed variance, while LD2 contributes with a
value as high as 31.63 % (Table 7). Again LD3 and LD4
have neglectable explanatory power. The confusion
matrix of the model shows a discrimination success of
95.6 % (Table 5). In the canonical plot the classes show a
well discriminable clustering (Fig. 2c).

Standard, RQA & ESQ The fourth LDA included the
STANDARD, the RQA and the newly developed parameters
ESQ. Again the first two roots show highest proportions of
trace (Table 8), with LD1 explaining 62.32 % of the observed
variance and LD2 explaining 29.84 %. The confusion matrix
shows a discrimination success of 95.2 %. In the canonical
plot the classes again show a well discriminable clustering
(Fig. 2d). Although some minor differences are observable, the
result is comparable to the latter STANDARD & RQA setup.

Plankton images
Standard
The first discriminant root (LD1) explained 51.93 % of the
observed variance, while the second (LD2) contributed

http://www.r-project.org


Table 4 LDA Geometric shapes

STANDARD LD1 LD2 LD3 LD4

Area −6.9626 e-05 2.3917 e-05 1.9991e-04 3.4263e-04

Compact −1.1407 e + 01 2.8052 e + 01 −1.0988 e + 01 −1.2826 e + 01

Contrast −1.4711 e-06 −4.2640 e-07 8.6186 e-06 −3.2337 e-05

Eccentricity −9.6114 e + 00 2.4681 e + 00 5.3053 e-01 −1.1433 e + 00

HU1 6.7315 e + 00 −1.1663 e + 01 −6.4077 e + 01 1.4417 e + 01

Homogeneity 3.4927 e + 00 2.7952 e + 01 −7.0628 e + 01 1.7027 e + 00

LengthBoundary 4.2602 e-03 2.8937 e-04 −2.5557 e-02 −1.6500 e-02

Solidity 9.4545 e + 00 −3.9641 e + 01 1.4252 e + 01 3.5592 e + 01

Proportion of Trace 0.7258 0.2602 0.0105 0.0035

Loading coefficients of the linear discriminants using the geometric image set and the STANDARD parameters

Table 5 LDA Geometric shapes

STANDARD Circle Ellipse Rectangle Square Triangle Prediction success

Circle 50 0 0 0 0 1.00

Ellipse 0 45 0 5 0 0.90

Rectangle 0 0 50 0 0 1.00

Square 1 6 1 37 5 0.74

Triangle 0 0 7 4 39 0.78

Model 0.884

RQA

Circle 47 0 3 0 0 0.94

Ellipse 0 41 0 6 3 0.82

Rectangle 1 0 48 1 0 0.96

Square 1 10 6 31 2 0.62

Triangle 1 5 0 2 42 0.84

Model 0.836

STANDARD & RQA

Circle 50 0 0 0 0 1.00

Ellipse 0 46 0 4 0 0.94

Rectangle 0 0 50 0 0 1.00

Square 1 1 2 43 3 0.88

Triangle 0 0 0 0 50 1.00

Model 0.956

STANDARD & RQA & ESQ

Circle 50 0 0 0 0 1.00

Ellipse 0 46 0 4 0 0.92

Rectangle 0 4 49 1 0 0.90

Square 1 3 1 43 2 0.86

Triangle 0 0 0 0 50 1.00

Model 0.952

Confusion matrices of the different parameter combinations used for the LDA analyses of geometric shapes
Values in bold represent true positive classifications of the LDA model and overall discriminative success
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Fig. 2 LDA Geometric shapes. Canonical plot of the linear discriminants. The parameters used for the analyses were a) STANDARD, b) RQA,
c) STANDARD & RQA and d) STANDARD & RQA & ESQ

Table 6 LDA Geometric shapes

RQA LD1 LD2 LD3 LD4

Clustering coefficient −3.3203 e-02 −7.3117 e + 01 −2.8931 e + 01 −6.0119 e + 01

Determinism 1.4724 e + 02 −4.3258 e + 01 2.0517 e + 01 6.1069 e + 01

Entropy Diagonal Length 1.5459 e + 00 7.7545 e-01 9.2093 e-01 −1.4666 e + 00

Laminarity −2.8086 e + 02 1.0565 e + 01 1.1170 e + 00 −2.3284 e + 02

Longest Diagonal Length −2.2921 e-02 1.2801 e-02 −1.7178 e-02 −5.2463 e-03

Longest Vertical Length −9.7082 e-03 −1.7140 e-03 5.9098 e-03 2.1794 e-03

Mean Diagonal Length −2.2354 e-01 2.4054 e-02 −2.8575 e-02 −3.5738 e-01

Recurrence Period Density −1.6803 e + 00 5.0734 e + 00 4.5539 e + 00 7.5552 e + 00

Recurrence Rate 1.2637 e + 01 −6.0927 e + 00 1.3810 e + 01 −6.1760 e + 01

Recurrence Time1 −1.8844 e + 01 6.3186 e + 01 3.1819 e + 01 −1.8392 e + 01

Recurrence Time2 6.3736 e-02 −1.7368 e-01 5.0725 e-02 −1.7492 e-01

Transitivity −3.3545 e + 01 1.0021 e + 02 7.0535 e + 01 5.9794 e + 01

Trapping Time 2.6801 e-01 1.3032 e-01 −7.1610 e-03 6.1896 e-01

Proportion of Trace 0.7342 0.1413 0.0918 0.0327

Loading coefficients of the linear discriminants using the geometric image set and the RQA toolbox parameters
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Table 7 LDA Geometric shapes

STANDARD & RQA LD1 LD2 LD3 LD4

Area −5,9401E-05 −1,9400E-04 −6,2879E-05 1,0076E-04

Compact 3,5423E + 00 −2,5172E + 01 1,1080E + 01 9,1550E-01

Contrast 2,9356E-06 −4,7963E-06 −2,9805E-06 −6,5782E-06

Eccentricity 7,2951E + 00 −6,3447E + 00 −2,1702E + 00 −9,3084E-01

HU1 1,5031E + 01 5,4044E + 01 1,4604E + 01 −1,5518E + 01

Homogeneity −1,4477E + 01 −2,6754E + 01 1,4672E-01 −3,4403E + 00

LengthBoundary −2,5076E-03 1,1792E-02 −1,6241E-03 −2,6010E-03

Solidity 1,4425E + 00 3,5392E + 01 −1,7666E + 01 3,9915E + 00

Clustering coefficient −2,6156E + 01 −2,8633E + 01 −3,7726E + 01 −7,8372E + 00

Determinism 1,5009E + 01 −7,2239E + 01 8,2244E + 01 5,3571E + 01

Entropy diagonal length 1,1423E + 00 2,3649E + 00 1,8728E + 00 −1,3749E + 00

Laminarity −5,2600E + 01 7,8644E + 01 −1,4305E + 02 −2,0549E + 02

Longest diagonal length −2,5076E-03 1,1792E-02 −1,6241E-03 −2,6010E-03

Longest vertical length −5,8332E-03 −6,5336E-03 −4,0279E-03 −4,7670E-03

Mean diagonal length −2,0581E-01 −9,1709E-02 −1,3184E-01 −1,6458E-01

Period density 5,9440E-01 −4,4322E + 00 3,2363E + 00 2,4944E + 00

Recurrence rate 3,3347E + 01 1,4299E + 01 −1,5627E + 01 −4,9725E + 01

RecurrenceTime1 4,3389E + 00 2,6093E + 00 −1,1137E + 00 −4,4655E + 01

RecurrenceTime2 1,2758E-02 −1,2454E-01 −7,1585E-02 −1,0382E-01

Transitivity 1,9919E + 01 4,1271E + 01 5,6892E + 01 −3,2801E + 01

TrappingTime 2,4661E-01 2,3180E-01 2,6364E-01 3,2499E-01

Proportion of Trace 0.5982 0.3163 0.0532 0.0323

Loading coefficients of the linear discriminants using the geometric image set and the STANDARD and RQA parameters
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with 28.97 % (Table 9). Cumulated proportions of trace of
LD3 and LD4 explain less than 16 %. The confusion
matrix (Table 10) shows a total discrimination success of
62.8 %. The canonical plot (Fig. 3a) reveals good separ-
ation between some classes. Dinoflagellata and Bacillario-
phyceae separate well from Appendicularia, Vertebrates
and Cnidarians. The majority of Crustacea, Annelida, and
Mollusca overlap largely with Marine snow.

RQA
The first discriminant root (LD1) explained 60.66 % of the
observed variance, while the second (LD2) contributed with
an additional 19.77 % (Table 11). Cumulated LD3 and LD4
contributed with less than 16 %. The confusion matrix
(Table 10) shows a total discrimination success of 55.0 %. As
in the previous LDA, centroids of Bacillariophyceae and
Dinoflagellata separate from the majority of objects in the
canonical plot (Fig. 3b). The same is observed for Appendi-
cularia and Vertebrata, although separation on LD2 is more
pronounced, than in the previous plot on LD1.

Standard, RQA
The first discriminant root (LD1) explained 41.58 % of
the observed variance, while the second root (LD2)
contributed with 31.35 % (Table 12). The cumulative ex-
planatory power of LD3 and LD4 was 20.78 %. The con-
fusion matrix shows a total discriminative success of
66.1 %. In the canonical plot (Fig. 3c) it can be seen that
centroids of the formerly identified classes (Bacillario-
phyceae, Dinoflagellata, Appendicularia and Vertebrata)
again separate but are now more spread out in the LD1/
LD2 plane, allowing better discrimination.

Standard, RQA, ESQ
The first discriminant root (LD1) explained 40.15 % of the
observed variance, while the second (LD2) explained 32.18 %
(Table 13). Roots LD3 and LD4 contributed with a cumula-
tive observed variance of 20.88 %. In the confusion matrix
the total discriminative success is found to be 65.8 %
(Table 10). The canonical plot (Fig. 3d) is comparable to the
previous LDA (STANDARD & RQA), but shows a slight shift
of Vertebrata, better separating from the remaining classes.

Importance of the image features
Geometric shapes
The features with highest loadings for LDA image classifica-
tion of the geometric shapes are listed in Table 14. The most
frequently occurring features are Transitivity, Determinism,



Table 8 LDA Geometric shapes

STANDARD, RQA & ESQ LD1 LD2 LD3 LD4

Area −1.1784 e-04 −1.9232 e-04 −1.1059 e-04 1.9359 e-04

Compact 3.4301 e + 00 −2.5118 e + 01 1.1435 e + 01 2.4919 e + 00

Contrast 1.5530 e-06 −3.7785 e-06 −5.2896 e-06 −3.2900 e-06

Eccentricity 7.7392 e + 00 −6.2394 e + 00 −2.3488 e + 00 −5.5377 e-01

HU1 −1.1736 e + 01 5.6397 e + 01 1.5916 e + 01 1.0685 e + 01

Homogeneity −1.7666 e + 01 −2.6344 e + 01 1.4941 e + 00 −2.1289 e + 00

Length Boundary −1.7489 e-02 1.2571 e-02 −5.3791 e-03 1.4207 e-02

Solidity −1.4304 e + 00 3.5787 e + 01 −1.9367 e + 01 4.7933 e + 00

Clustering Coefficient −3.6658 e + 01 −2.5735 e + 01 −3.8500 e + 01 −7.0815 e + 00

Determinism 2.5800 e + 01 −8.5462 e + 01 9.3743 e + 01 5.6418 e + 01

Entropy diagonal Length 1.2321 e + 00 2.4068 e + 00 2.1062 e + 00 −1.3100 e + 00

Laminarity −3.7915 e + 01 1.0449 e + 02 −1.6604 e + 02 −2.3688 e + 02

Longest diagonal Length −1.7489 e-02 1.2571 e-02 −5.3791 e-03 1.4207 e-02

Longest vertical Length −6.1717 e-03 −7.0950 e-03 −4.9047 e-03 −3.3528 e-03

Mean diagonal Length −2.0822 e-01 −7.9261 e-02 −9.9609 e-02 −2.1448 e-01

Recurrence period density 7.2700 e-01 −5.8102 e + 00 3.4804 e + 00 4.6755 e + 00

Recurrence rate 4.2988 e + 01 1.4841 e + 01 −1.8897 e + 01 −4.9004 e + 01

Recurrence time1 7.8288 e + 00 3.4506 e + 00 2.8467 e + 00 −4.5792 e + 01

Recurrence time2 1.3043 e-02 −1.1242 e-01 −4.3600 e-02 −1.3724 e-01

Transitivity 3.0299 e + 01 4.0309 e + 01 6.5165 e + 01 −3.5768 e + 01

Trapping time 2.7737 e-01 2.1055 e-01 2.2561 e-01 3.5996 e-01

Mean size eyes −5.0701 e-04 −5.3573 e-05 −1.5723 e-04 3.5322 e-04

Median pixels in eyes 3.2251 e-04 −4.0013 e-05 −4.4404 e-05 1.2952 e-04

Num eyes 2.0862 e-03 −3.9122 e-03 8.4803 e-03 −1.8939 e-03

Sum pixels in eyes 1.3377 e-04 −1.0762 e-06 4.1416 e-05 −1.6796 e-04

Proportion of Trace 0.6232 0.2984 0.0490 0.0294

Loading coefficients of the linear discriminants using the geometric image set and the STANDARD, RQA and ESQ parameters

Table 9 LDA Plankton images

STANDARD LD1 LD2 LD3 LD4

Area 9,5536E-06 1,2253E-05 −2,0796E-05 2,2256E-05

Compact 3,5030E + 00 −1,7440E + 00 7,3339E + 00 8,8077E + 00

Contrast −6,3512E-06 −2,5975E-06 1,8473E-05 −1,3421E-05

Eccentricity −4,2015E + 00 1,7316E + 00 1,6618E + 00 −1,1651E + 00

HU1 8,9741E + 02 2,9666E + 02 4,1634E + 01 −2,2460E + 02

Homogeneity −9,5771E + 00 −2,1946E + 01 −6,0204E + 00 −1,8834E + 01

Length boundary −5,3401E-04 −5,7619E-04 −8,0676E-04 7,3831E-04

Solidity 1,6513E + 00 −8,8657E-01 −8,2544E + 00 −8,1160E + 00

Proportion of Trace 0.5193 0.2897 0.1026 0.0534

Loading coefficients of the linear discriminants using the STANDARD features
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Table 10 LDA Plankton images

STANDARD Annelida Appendicularia Bacillariophyceae Cnidaria Crustacea Dinoflagellata Marine
snow

Mollusca Vertebrata Prediction
success

Annelida 15 1 0 2 30 0 0 0 2 0.30

Appendicularia 0 37 0 0 8 1 0 0 4 0.74

Bacillariophyceae 0 0 34 0 8 16 37 5 0 0.34

Cnidaria 8 9 0 29 8 2 3 1 0 0.48

Crustacea 21 2 6 4 455 0 15 4 3 0.89

Dinoflagellata 0 1 3 0 0 38 0 3 0 0.84

Marine snow 4 2 23 0 103 0 18 0 0 0.12

Mollusca 0 0 8 0 6 3 2 9 0 0.32

Vertebrata 3 10 0 0 8 0 0 0 4 0.16

Model 0.628

RQA

Annelida 5 1 0 15 29 0 0 0 0 0.10

Appendicularia 0 24 0 0 23 0 0 0 3 0.48

Bacillariophyceae 0 0 35 0 22 26 12 5 0 0.35

Cnidaria 6 2 0 13 33 0 0 0 6 0.22

Crustacea 7 6 10 16 432 0 28 0 11 0.85

Dinoflagellata 0 0 12 0 6 22 4 1 0 0.49

Marine snow 0 0 14 3 107 8 17 1 0 0.11

Mollusca 0 0 4 0 19 2 3 0 0 0.00

Vertebrata 0 8 0 1 4 0 0 0 12 0.48

Model 0.550

STANDARD &
RQA

Annelida 22 1 0 3 24 0 0 0 0 0.44

Appendicularia 0 39 0 0 6 0 0 0 5 0.78

Bacillariophyceae 1 0 48 0 3 20 20 8 0 0.48

Cnidaria 10 1 1 39 5 0 1 2 1 0.65

Crustacea 18 3 6 2 437 0 33 7 4 0.86

Dinoflagellata 0 1 3 0 0 34 0 7 0 0.76

Marine snow 2 2 20 1 86 1 33 5 0 0.22

Mollusca 0 0 5 0 6 2 4 11 0 0.39

Vertebrata 1 7 0 0 7 0 0 0 10 0.40

Model 0.661

STANDARD &
RQA & ESQ

Annelida 24 1 0 3 22 0 0 0 0 0.48

Appendicularia 0 40 0 0 5 0 0 0 5 0.80

Bacillariophyceae 1 0 47 0 2 21 22 7 0 0.47

Cnidaria 6 1 0 36 6 0 4 4 3 0.60

Crustacea 19 4 5 2 436 0 30 7 7 0.85

Dinoflagellata 0 1 3 0 0 33 0 8 0 0.73

Marine snow 2 2 19 1 89 1 31 5 0 0.20
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Table 10 LDA Plankton images (Continued)

Mollusca 0 0 4 0 5 2 5 12 0 0.43

Vertebrata 1 7 0 0 6 0 0 0 11 0.44

Model 0.658

Confusion matrices of the different parameter combinations used for the LDA analyses
Values in bold represent true positive classifications of the LDA model and overall discriminative success

Schulz et al. Journal of the European Optical Society-Rapid Publications  (2016) 12:5 Page 12 of 21
Hu1, Laminarity, Recurrence rate. Less frequent are Com-
pact, Clustering coefficient, Solidity, while Eccentricity,
Homogeneity, Recurrence time 1 and Recurrence period dens-
ity rarely contribute with high loadings to the LDA.

Plankton Images
As observed for the set of geometric shapes, a few key
features can be identified, which contribute frequently with
high loadings to the LDA (Table 15). For the plankton images
these are Laminarity, Hu1 and Determinism, followed by
Homogeneity and Transitivity. Compactness, Clustering coeffi-
cient, Recurrence rate, Eccentricity, Entropy diagonal length
and Recurrence period density were observed seldomly.

Discussion
Method
The first principle task of this study was to apply the well-
established methods of Recurrence Plots (RP) and Recurrence
Fig. 3 Plankton images. Canonical plot of the linear discriminants. a) STAND
Quantification Analysis (RQA) in the new context of circular
contour line data of an imaged object’s outer hull. To set up
the circular contour line data for the proposed methods, each
point of the contour line was enumerated and its distance to
an arbitrary point was calculated. This arbitrary reference
point was static. In contrast to traditional RP and RQA inves-
tigations, we augmented the contour line distance data during
the embedding process. Thus, the distance data are recycled
to allow creating a number of embedding vectors equal to the
number of contour lines points. By this, opposite sides of the
RP wrap up. This allowed the introduction of the eye struc-
ture quantification (ESQ).

Image discrimination
The second principle task was to perform an initial test of
these methods on both real life plankton data of high con-
tour line variability and a synthetic sample data with similar
intra-class structure and symmetry.
ARD, b) RQA, c) STANDARD & RQA, and d) STANDARD & RQA & ESQ



Table 11 LDA Plankton images

RQA LD1 LD2 LD3 LD4

Clustering coefficient 9,1646E + 00 1,9776E + 01 −3,6456E + 01 −1,1311E + 01

Determinism 1,2212E + 02 1,3704E + 01 9,8008E + 01 8,7217E + 01

Entropy diagonal length 4,7223E-01 −2,2824E + 00 3,7802E-02 1,0338E + 00

Laminarity −1,6675E + 02 3,8020E + 01 −1,5864E + 02 −2,2712E + 02

Longest diagonal length −2,2621E-04 −5,7530E-04 −8,2800E-04 3,0824E-04

Longest vertical length −4,4431E-04 2,7945E-03 4,2438E-03 −3,9008E-03

Mean diagonal length 1,2616E-02 1,0422E-01 −1,3931E-02 5,9189E-02

Recurrence period density 4,0592E + 00 5,9616E + 00 1,3806E + 00 −4,4946E + 00

Recurrence rate 6,6090E + 00 1,0217E + 01 −6,5513E + 00 8,8718E + 00

Recurrence time1 −1,5261E + 00 1,6415E + 00 −5,5278E + 00 9,3753E-01

Recurrence time2 −5,3167E-03 −4,8862E-03 2,3380E-02 5,0237E-02

Transitivity −1,7820E + 01 −1,1284E + 01 1,6588E + 01 2,1919E + 00

Trapping time 2,4517E-03 −8,2911E-02 −4,2520E-02 −1,3478E-01

Proportion of Trace 0.6066 0.1977 0.1317 0.0281

Loading coefficients of the linear discriminants RQA features

Table 12 LDA Plankton images

STANDARD & RQA LD1 LD2 LD3 LD4

Area 8,3468E-06 −8,5546E-06 2,3240E-05 1,2083E-05

Compact 2,8489E + 00 −1,1584E + 00 −6,0993E-01 1,1657E + 01

Contrast −4,3517E-06 4,8338E-07 −1,6700E-05 −4,2536E-06

Eccentricity −3,3070E + 00 −5,1458E-01 −2,8622E-01 −1,9799E + 00

HU1 8,1832E + 02 −3,9860E + 02 1,5677E + 02 −7,3236E + 00

Homogeneity −1,0228E + 01 1,1102E + 01 6,8220E + 00 −7,5339E-01

Length boundary −2,0340E-04 2,1637E-04 6,8411E-04 2,4935E-04

Solidity 1,7137E + 00 1,7562E + 00 4,4218E + 00 −7,7258E + 00

Clustering coefficient 6,8073E + 00 −1,8136E + 01 −4,4149E-01 −1,8076E + 01

Determinism −6,0420E + 01 −6,0060E + 01 8,9124E + 00 7,5204E + 01

Entropy Diagonal length −1,2037E-01 6,6271E-01 2,2168E + 00 8,3095E-01

Laminarity 8,1272E + 01 6,4581E + 01 −5,1721E + 01 −1,3652E + 02

Longest diagonal length −2,0340E-04 2,1637E-04 6,8411E-04 2,4935E-04

Longest vertical length 4,4576E-04 −5,3818E-04 −5,0247E-03 4,8416E-04

Mean diagonal length −7,4275E-04 −3,6588E-02 −6,5053E-02 −2,0883E-02

Recurrence period density −6,5591E-01 −4,1900E + 00 −3,3693E + 00 3,1853E + 00

Recurrence rate −3,1627E + 00 −9,4214E + 00 1,2058E + 00 3,9744E + 00

Recurrence time1 1,7024E + 00 −4,0523E-01 8,3799E-01 −1,7335E + 00

Recurrence time2 −1,2678E-02 1,3795E-02 −1,1402E-02 −2,7078E-04

Transitivity 3,2961E + 00 1,7547E + 01 −6,0033E + 00 6,6110E + 00

Trapping time 1,9478E-02 8,2368E-03 8,0562E-02 1,2844E-02

Proportion of Trace 0.4158 0.3135 0.1500 0.0578

Loading coefficients of the linear discriminants using the STANDARD & RQA features
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Table 13 LDA Plankton images

STANDARD, RQA & ESQ LD1 LD2 LD3 LD4

Area 7,9128E-06 −7,4814E-06 −2,0536E-05 −1,9393E-05

Compact 3,5193E + 00 −1,9512E + 00 5,9329E-01 −1,1089E + 01

Contrast −4,0052E-06 −2,7805E-06 1,3528E-05 7,4554E-06

Eccentricity −3,0145E + 00 −1,2020E + 00 1,3014E-01 1,6067E + 00

HU1 8,3916E + 02 −3,0765E + 02 −8,7893E + 01 −7,9133E + 01

Homogeneity −1,0727E + 01 7,8797E + 00 −8,9586E + 00 7,7979E-01

Length boundary −4,6620E-04 −6,1266E-04 −1,4366E-03 1,3844E-04

Solidity 1,1912E + 00 2,3733E + 00 −4,3375E + 00 6,8645E + 00

Clustering coefficient 7,3574E + 00 −1,4573E + 01 3,1754E + 00 1,7005E + 01

Determinism −6,7257E + 01 −5,9122E + 01 −6,8447E + 00 −6,9468E + 01

Entropy diagonal length −1,0037E-01 9,8246E-01 −1,8145E + 00 −1,1907E + 00

Laminarity 9,4881E + 01 5,1073E + 01 4,1259E + 01 1,2378E + 02

Longest diagonal length −4,6620E-04 −6,1266E-04 −1,4366E-03 1,3844E-04

Longest vertical length 6,7974E-04 −4,3464E-04 5,0085E-03 −1,0819E-04

Mean diagonal length 4,3436E-03 −4,0438E-02 6,0747E-02 3,6780E-02

Recurrence period density −1,3176E-01 −4,2263E + 00 3,7156E + 00 −3,2918E + 00

Recurrence rate −3,2024E + 00 −5,5922E + 00 2,4596E + 00 −7,2368E + 00

Recurrence time1 1,6874E + 00 7,3116E-01 2,1852E-02 8,4096E-01

Recurrence time2 −1,1802E-02 1,0745E-02 7,7042E-03 9,9184E-03

Transitivity 2,8574E + 00 1,4969E + 01 2,9577E + 00 −5,0812E + 00

Trapping time 1,6490E-02 1,3611E-02 −7,2016E-02 −3,7084E-02

Mean size eyes −5,7648E-06 1,3136E-05 8,6921E-06 −2,4460E-05

Median pixels in eyes 5,2174E-06 −9,6114E-06 −3,9947E-06 1,2096E-05

Num eyes 5,3709E-03 −2,6717E-03 2,0588E-03 −5,2218E-03

Sum pixels in eyes 1,4634E-07 6,8848E-07 6,0735E-07 −1,2721E-07

Proportion of Trace 0.4015 0.3218 0.1488 0.0600

Loading coefficients of the linear discriminants using the STANDARD, RQA and ESQ features
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The multivariate analyses revealed that neither RQA
nor RQA & ESQ are well suited as exclusive features for
the classification task at hand. Nevertheless, used in
combination with the STANDARD features, they in-
creased discrimination success.
An important feature of the STANDARD feature class

was the HU1-moment, which is scale and transformation
invariant. Therefore it is able to describe the characteristic
shape of an organism irrespective to camera rotation in
plane view or magnification. One of the key features of the
RQA was the Recurrence rate, which simply gives the dens-
ity of observed recurrences indicating the degree to which
the organism’s contour line exhibits repetitions of similar
structures (e.g. polychaete parapodia). It is thus a measure
of the structural regularity of the organism. The key RQA
features Laminarity and Determinism focus on the vertical
and diagonal structures. These two features have been
shown before to be some of the most characteristic proper-
ties of an RP (details on RQA and how to read an RP can
be found in [20]). They characterise diagonals and vertical
lines and thus, length and type of contour line segment
similarity. The key feature Transitivity further gives a prob-
ability on the phase space neighbourhood situation.
As successive roots explain less of the observed variance,

the general discrimination success is often identified by plot-
ting the scores of the first roots (Figs. 2 and 3). Within the
plots better clustering of objects of the same class and better
separation among classes mean a higher discrimination suc-
cess. The ability to discriminate between classes of similar
shape structure can be improved by using RQA parameters.
There is also an indication, that the use of ESQ can further
improve discrimination between objects of different size
classes and regularity (e.g. Appendicularians and Vertebrata
vs. Crustaceans), but does not improve general classification.
However, these improvements can be used to separate at
least 1–2 classes from the entire population. After excluding
identified classes a downstream model with less classes al-
lows improving discrimination during the next iterations.



Table 14 LDA Geometric shapes

Analyses Hyper-plane side LD1 LD2 LD3 LD4

STANDARD - - Compact - HU1 - Compact - Compact

- Eccentricity - Solidity - HU1 - HU1

+ - HU1 - Compact - Solidity - Solidity

- Homogeneity - Homogeneity

RQA - - Laminarity - Clustering coefficient - Clustering coefficient - Clustering coefficient

- Transitivity - Determinism - Laminarity

- Recurrence rate

+ - Determinism - Laminarity - Recurrence time 1 - Determinism

- Transitivity - Determinism - Recurrence period density

- Recurrence Rate - Transitivity

- Transitivity

STANDARD & RQA - - Homogeneity - Determinism - Solidity - Recurrence rate

- Clustering coefficient - Compact - Recurrence rate - Transitivity

- Laminarity - Homogeneity - Clustering coefficient - Laminarity

- Clustering coefficient - Laminarity - Recurrence time 1

+ - Eccentricity - HU1 - Determinism - Determinism

- Determinism - Solidity - Compact

- Compact - Recurrence rate - HU1

- HU1 - Transitivity - Transitivity

- Recurrence rate - Laminarity

- Transitivity

- Recurrence Time 1

STANDARD & RQA & ESQ - - HU1 - Determinism - Solidity - Recurrence rate

- Homogeneity - Compact - Recurrence rate - Transitivity

- Clustering coefficient - Homogeneity - Clustering coefficient - Laminarity

- Laminarity - Clustering coefficient - Laminarity - Recurrence Time 1

+ - Eccentricity - HU1 - Determinism - Determinism

- Determinism - Solidity - Compact - HU1

- Recurrence rate - Recurrence rate - HU1

- Transitivity - Transitivity - Transitivity

- Recurrence time 1 - Laminarity

Importance of features included in LDA. Features were considered to be important when their loading reached at least 10 % of the maximum loading on the
respective side of the hyperplane, set up by the discriminant roots (LD)
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Study design
This study is a first conceptual approach to introduce and
test the general usability of RQA and ESQ feature sets for
image classification. In the overview presented here, some
pre-tests and verifications (e.g. [24]) have been intentionally
neglected and the approach was directly applied to a highly
diverse plankton set. Criticisms may include, that objects
were analysed by using a ‘one-fits-all’ embedding approach
and analysed diagonal/vertical line length histograms for
several features included lengths as low as 2 recurrence
points. Nevertheless, it was found that classificatory systems
can benefit from the use of RQA features. Thus, this paper
primarily sketches out the method and gives first examples
how to use it. We assume that the ESQ features gain higher
importance with decreasing neighbourhood threshold ε.
Thus, future work needs to focus on avoidance of potential
problems and consideration of specific adaptations. In de-
tail it seems appropriate to use recurrence analyses with
RQA and ESQ specifically in tailored models, to first split
distinct classes from the image population. In succeeding
steps then better customised RQA and ESQ with adjusted
values for m, t and e can be used.
It is also obvious that some of the included features, es-

pecially those that characterise textural properties, are
barely sufficient for proper discrimination of the geomet-
rical line art shapes. Respectively the parameter Contrast



Table 15 LDA Plankton images

Analyses Hyper-plane side LD1 LD2 LD3 LD4

STANDARD - - Eccentricity - Homogeneity - Homogeneity - HU1

- Homogeneity

+ - HU1 - HU1 - Compact - Compact

- HU1

RQA - - Laminarity - Entropy Diagonal length - Clustering coefficient - Laminarity

- Transitivity - Transitivity - Laminarity

+ - Determinism - Clustering coefficient - Determinism - Determinism

- Laminarity - Transitivity - Recurrence rate

- Recurrence period density

- Determinism

- Recurrence rate

STANDARD & RQA - - Determinism - Determinism - Transitivity - Clustering coefficient

- Homogeneity - HU1 - Laminarity - Laminarity

+ - HU1 - Homogeneity - HU1 - Determinism

- Transitivity - Compact

- Laminarity

STANDARD & RQA & ESQ - - Determinism - Determinism -
- HU1

- Determinism

- Homogeneity - HU1 - Homogeneity - HU1

- Compact

+ - HU1 - Transitivity - Laminarity - Clustering coefficient

- Laminarity - Laminarity - Laminarity

- Homogeneity

Importance of features included in LDA. Features were considered to be important when their loading reached at least 10 % of the maximum loading on the
respective side of the hyperplane, defined by the respective root
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showed negligible loadings (Table 4, Tables 6 and 7). How-
ever, to date these features are important in automated
plankton discrimination and often appear to be among
the most important ones in plankton discrimination [12].
It is also clear that Linear Discriminant Analysis is not

the most powerful classificatory system available for
such multivariate data. As an LDA tries to insert separ-
ating hyperplanes in a dimensional space that is defined
by the number of given variables, linear classifications
often fail. Especially for low inter- and high intra-class
variances, as generally expected for in-situ plankton im-
ages, it is recommended to apply methods for mapping
input features into higher dimensional spaces, using the
kernel trick (e.g. Support Vector Machines). However,
the advantage of a LDA is the simple access and inter-
pretation of the feature loadings and thus an initial as-
sessment of the importance of the different variables.

Conclusions
It could be shown, that the principle of recurrence plots
and subsequent analyses can be applied to contour line
data of imaged and pre-segmented objects. The tailored
embedding algorithm enabled our application to derive
new image features for automated classification systems of
plankton organisms. Additionally, a new set of features
was derived by measurement of contiguous elements of
given phase space dissimilarity (eye-structures in the re-
currence plots).
The discriminative success of the LDA was enhanced by

using a combination of standard image features, recur-
rence quantification analysis features and the newly pro-
posed eye-size features. This improvement was observed
both for the synthetic data set of geometric and the real-
world phytoplankton images. The characterization of
images by recurrence quantification analysis and eye
structure quantification offers auxiliary image features
that could not be derived by applying standard image
features alone. We recommend the use of the standard
features in combination with the features derived from
the application of recurrence analysis to discriminate
between classes of phytoplankton. With further im-
provements the class of such methods may further im-
prove automated plankton identification, which represents
an important step forward in the effective processing of
large numbers of under-water images and autonomous
monitoring stations.
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Appendix A
Fig 4 The set of geometric forms used for the analyses
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Appendix B
In the following some recurrence plot panels are
shown for different values of m, t and ε. To the left
one sample organism is shown for each of the 9 taxo-
nomic/morphologic classes (Appendicularia, Annelida,
Bacillariophyceae, Cnidaria, Crustacea, Dinoflagellata,
Marine snow, Mollusca, and Vertebrata). The red line
Fig. 5 Recurrence plots for m = 6, t = 6 and varying ε
marks the extracted organism’s contour line. The cyan
dot inside the imaged object area indicates the ob-
ject’s centroid. The yellow star displays the first entry
of the contour line, which is the contour line point
with the highest distance to the centroid. The follow-
ing columns show the recurrence plots for varying re-
currence parameters.



Fig. 6 Recurrence plots for t = 6, ε = 3 and varying m
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Fig. 7 Recurrence plots for m = 6, ε = 3 and varying t
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