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Abstract

To characterize the individual patient’s hearing impairment as obtained with the matrix sentence recognition test, a simu-

lation Framework for Auditory Discrimination Experiments (FADE) is extended here using the Attenuation and Distortion

(AþD) approach by Plomp as a blueprint for setting the individual processing parameters. FADE has been shown to predict

the outcome of both speech recognition tests and psychoacoustic experiments based on simulations using an automatic

speech recognition system requiring only few assumptions. It builds on the closed-set matrix sentence recognition test which

is advantageous for testing individual speech recognition in a way comparable across languages. Individual predictions of

speech recognition thresholds in stationary and in fluctuating noise were derived using the audiogram and an estimate of the

internal level uncertainty for modeling the individual Plomp curves fitted to the data with the Attenuation (A-) and Distortion

(D-) parameters of the Plomp approach. The “typical” audiogram shapes from Bisgaard et al with or without a “typical” level

uncertainty and the individual data were used for individual predictions. As a result, the individualization of the level uncer-

tainty was found to be more important than the exact shape of the individual audiogram to accurately model the outcome of

the German Matrix test in stationary or fluctuating noise for listeners with hearing impairment. The prediction accuracy of

the individualized approach also outperforms the (modified) Speech Intelligibility Index approach which is based on the

individual threshold data only.
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Introduction

The adequate modeling of the speech recognition in
background noise observed in listeners with impaired
hearing and the identification of the most relevant sen-
sory and cognitive factors to be incorporated in correctly
predicting the individual speech recognition thresholds
(SRT) in quiet and in noise has been a topic of interest
for several decades already (e.g., Kollmeier, 1990;
Pavlovic, Studebaker, & Sherbecoe, 1986; Plomp, 1978;
Rhebergen, Lyzenga, Dreschler, & Festen, 2010). One of
the most influential and practically applicable ways of

performing a systematic, but comparatively simple
model-driven classification of the SRT dependence on
background noise level was proposed by Plomp (1978)
which has been used by several authors since then to
characterize their empirical data (Duquesnoy, 1983;
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Plomp, 1986; Smoorenburg, 1992; Wagener, 2004). For
each type of background noise, the Plomp approach esti-
mates an individual A- (Attenuation) parameter charac-
terizing the average loss in sensitivity due to hearing
impairment (largely controlled by the audiogram) separ-
ately from a D- (Distortion) parameter characterizing
the suprathreshold distortion component across frequen-
cies (see later). However, the relation between these indi-
vidually fitted parameters characterizing the SRT data
for a specific speech material and noise and the charac-
terization of hearing impairment (e.g., the audiogram
and measures of individual suprathreshold processing
deficits) is still unclear. This lack of a theoretical concept
underpinning the A- and D- component with independ-
ent evidence from other data is one of the major draw-
backs of the Plomp approach. Such a theoretical concept
should be able to explain the empirically fitted A- and D-
component on the basis of a functional model of the
effective signal processing in the auditory system and
the factors underlying the individual hearing impair-
ment. The current contribution therefore attempts to
provide a computational model that should help to
bridge this gap between psychoacoustics, speech recog-
nition in noise, and individualized assessment of the
effect of hearing impairment. It is based on the
Framework for Auditory Discrimination Experiments
(FADE) proposed by Schädler, Warzybok, Hochmuth,
and Kollmeier (2015) and is extended here toward pre-
dicting SRTs for hearing-impaired listeners incorporat-
ing different degrees of individualization.

Traditional modeling approaches for speech recogni-
tion have primarily used the individual audiogram as an
input parameter without explicitly taking suprathreshold
distortions into account. These approaches are either
based on predefined features (like an energy increase in
a certain auditory band) or on instrumental measures that
are calibrated using a set of reference thresholds (like the
Articulation Index, French and Steinberg, 1947, or Speech
Intelligibility Index [SII]-based methods, see ANSI, 1997;
Meyer & Brand, 2013; Rhebergen et al., 2010). Using dif-
ferent extensions of the SII for predicting SRT in station-
ary and fluctuating noise, Meyer and Brand could
demonstrate an increase in prediction accuracy over the
original SII if either frequency-independent or frequency-
dependent level fluctuations of the noise are considered or
if frequency-dependent fluctuations of both speech and
noise are taken into account. However, irrespective of
the variation of the SII employed, an individual audio-
gram-based prediction of speech recognition in fluctuating
noise can only be obtained with a comparatively low pre-
diction quality (Festen & Plomp, 1990; George, Festen, &
Houtgast, 2006; Meyer & Brand, 2013; Rhebergen &
Versfeld, 2005).

More elaborated approaches are based on psychoa-
coustical processing models, such as those used in

Holube and Kollmeier (1996), Dau, Kollmeier, and
Kohlrausch (1997), and Jürgens and Brand (2009), but
require an optimal detector that possesses perfect prior
knowledge about the to-be-recognized signals. This
strong assumption of a detector with perfect a priori
knowledge of the speech signal to be detected provides
the model with a strong advantage over human listeners
performing the same task. This makes it questionable if
the requirements for the auditory-system-inspired pro-
cessing front end to achieve human-like performance
are realistic. This, in turn, could be crucial to accurately
model human sound perception.

An alternative way of predicting both sentence recog-
nition thresholds and psychoacoustic performance using
automatic speech recognition (ASR) without requiring a
predefined task-dependent reference criterion or using an
“optimum detector” was recently proposed by Schädler
et al. (2015) and Schädler, Warzybok, Ewert, and
Kollmeier (2016). In a first study, they predicted the out-
come of the German Matrix sentence recognition test
(Kollmeier et al., 2015) for normal-hearing listeners in
different types of stationary background noise. The
ASR-based model uses Mel-frequency cepstral coefficients
(MFCCs) as a front end and whole-word Gaussian
Mixture or Hidden Markov Models (HMMs) as a back
end. By training and testing the ASR system with noisy
matrix sentences on a broad range of signal-to-noise
ratios (SNRs), they were able to predict SRTs for
normal-hearing listeners with a remarkably high preci-
sion, outperforming SII-based predictions. In a second
study, they extended FADE to successfully simulate
basic psychoacoustical experiments as well as more com-
plex matrix sentence recognition tasks with a single set of
parameters even when employing a range of feature sets
(front ends). Even though the proposed FADE frame-
work uses some a priori knowledge (e.g., training of the
HMM for each target item for a range of SNR values,
availability of a performance measure across all trained
versions to determine the training SNR yielding the best
performance), Schädler et al. (2015, 2016) concluded that
the proposed FADE framework is able to predict empir-
ical data from the literature with fewer assumptions and
less restrictions than the optimal detector approach.
Moreover, in comparison to the SII or other traditional
modeling approaches, FADE does not rely on an empir-
ical reference condition. This article therefore applies this
framework to the individual prediction of sentence recog-
nition in hearing-impaired listeners.

Plomp Curves

A desirable property of any valid sentence recognition
model is its compatibility with the AþD approach intro-
duced by Plomp (1978, 1986). This approach assumes
that the SRT is available for several levels of the
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background noise NL (including the SRT in quiet, i.e., a
noise level below the absolute detection threshold for
noise). It then fits a function to the data (denoted as
“Plomp curve” in the following) with the parameters A
and D as follows:

SRTPlomp,orig ¼ 10log10 10
L0þAþDð Þ

10 þ 10
NLþSRTNþDð Þ

10

� �
ð1Þ

where SRTPlomp,orig denotes the speech level at threshold
as originally proposed by Plomp, L0¼ 19.9 dB is the SRT
in quiet and SRTN¼ –7.1 dB (expressed as SNR) denotes
the SRT in suprathreshold noise for the average normal-
hearing listener for the German Matrix sentence
recognition test employed here. Note that the speech-
material-dependent values of L0 and SRTN employed
here are taken from Brand and Kollmeier (2002) and
are consistent with a number of other studies employing
the same test in normal-hearing listeners (e.g., Wagener,
2004; Wagener, Brand, & Kollmeier, 2006). The task-
dependent parameters A and D are fitted to the individ-
ual data from each patient.

Equation (1) was employed here in a slightly modified
form: A power-law additivity parameter 05P4100 is
introduced to better reflect the fluctuating noise case:

SRTPlomp ¼ 10 log10 10
L0þAþDð Þ�P

10 þ 10
NLþSRTNþDð Þ�P

10

� �.
P

ð2Þ

Note that for P¼ 1, Equation (1) is identical to Equation
(2). The general shape of the Plomp curves is depicted in
Figure 1: An increase in parameter A (“Attenuation
component”) produces an increased SRT in quiet hence
characterizing the loss in audibility caused by a hearing
impairment without assuming a specific frequency depend-
ence, while the SRT at higher noise levels basically
remains unchanged. An increase in parameter D
(“Distortion component”), on the other hand, corres-
ponds to an upward shift toward higher SRT values of
the whole SRT curve as a function of noise level.

For a given hearing loss, the SRT in quiet is domi-
nated by the sum of AþD (horizontal part of the Plomp
curves depicted in Figure 1, A). With increasing noise
level NL, a transition region (controlled by P) occurs
until a constant SNR at SRT is achieved across a wide
range of noise levels which reflects the D-value. Note
that the value of P is critically dependent on very few
data points in the vicinity of the transition region.

While in theory only two SRT data points at two
different noise levels are sufficient to estimate the fitting
parameters A and D, a somewhat higher precision of the
estimate is achieved if more data points are available and
if both very low and sufficiently high noise levels are
covered by the data. Wagener (2004) demonstrated

that the Plomp parametrization fits very well the individ-
ual data for the Matrix sentence recognition test in
German for a number of hearing-impaired listeners.
Hence, the Plomp approach appears to provide a valid,
but task-dependent description of SRT data from hear-
ing-impaired listeners when employing the German
Matrix sentence recognition test. Since an increasing
number of highly comparable Matrix sentence recogni-
tion tests exists for different languages (Kollmeier et al.,
2015), it can be assumed that this Plomp curve represen-
tation of individual SRT data might as well be suitable
for a number of languages.

Principles of the FADE Approach for Simulating the
Effect of Hearing Impairment

The FADE approach outlined earlier has been extended
to model the effect of hearing impairment on SRTs as
described by the empirically fitted Plomp curves for data
obtained with the German Matrix test in stationary and
fluctuating noise. The automatic speech recognizer oper-
ates on the log-scaled Mel-spectrogram (logMS) of the
signal and the noise (see Figure 2, upper two panels for

Figure 1. Cartoon of the Plomp curves according to Equation

(2): The speech recognition threshold (SRT) in noise is given as

speech level on the y-axis, the noise level is plotted on the x-axis.

The effect of altering the parameters A, D, and P, respectively, is

demonstrated by the five different Plomp curves generated by the

respective parameter values listed above the respective curve: The

sum AþD produces a shift of the SRT in quiet, D produces an

upward shift of the whole Plomp curve, and lowering P below 1

produces a less abrupt transition from the horizontal part of the

Plomp curve (i.e., SRT in quiet) to the linear increasing part

characterizing the increase of the speech level at SRT with

increasing noise level.
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an example), from which the MFCCs were derived as the
input to a HMM-based speech recognizer. To account
for the loss of sensitivity in hearing impairment usually
assessed by the audiogram, the individual hearing thresh-
old was applied to the spectro-temporal representation
by setting any input spectrogram level to the audiogram
level if it is below this value (see, for e.g., Figure 2, third
panel). Moreover, to account for any suprathreshold dis-
tortion, an increase in the internal noise was considered
(see Figure 2, last panel). It was implemented by adding
an uncertainty to the representation of levels in the
logMS, in the form of an additive Gaussian white
noise with a standard deviation of uL. The effect of an
additive noise following a logarithmic compression
would be roughly equivalent to a multiplicative noise
applied to the input signals. It can be interpreted as cen-
tral detector noise or individual internal noise due to, for
example, insufficiency of the central, internal neural
representation or lack of attention or cognitive process-
ing abilities. By setting the hearing threshold and the
level uncertainty parameter uL appropriately, an individ-
ual Plomp curve can be generated for each individual
hearing-impaired subject which fits the empirical data
best.

The following research questions are addressed in this
article:

1. Are the model predictions of the FADE approach for
hearing-impaired listeners in stationary and fluctuat-
ing noise compatible with the AþD approach by
Plomp (1986)? How does this compare to the trad-
itional SRT prediction methods like the (extended)
SII?

2. How should the individual parameters of the FADE
model (i.e., the hearing threshold and the level uncer-
tainty parameter uL) be set in order to best predict the
data (i.e., without using the data to be predicted as a
priori knowledge and with a reasonable computa-
tional effort)? Is it sufficient to use “typical” param-
eter values interpolated across the 10 typical
audiogram configurations from Bisgaard, Vlaming,
and Dahlquist (2010) or is it necessary to set the par-
ameters individually (preferably without computing
an individual SRT for each individual audiogram
and each value uL for each background noise type
and level)?

3. How does this approach of setting the hearing thresh-
old and the level uncertainty parameter uL using

Figure 2. Example for the speech and noise (upper two panels) represented as log-scaled Mel-spectrogram (LogMS) with the

modifications introduced by the thresholding procedure (third panel) to represent the individual audiogram and the level uncertainty

(fourth panel) introduced to represent individual suprathreshold processing deficits. From these patterns, the Mel-frequency cepstral

coefficients (MFCCs) were derived as the input to a Hidden Markov Model-based speech recognizer. In this example, the German matrix

test speech sample “Peter sieht sieben schwere Steine” is presented at 75 dB SPL, and the fluctuating noise (ICRA5-250) is presented at

85 dB SPL. The simulated “typical” audiogram N4 was taken from Bisgaard et al. (2010). The value uL has been set to 10 dB in this example.
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FADE compare to traditional SRT prediction
approaches where only the individual hearing thresh-
old is accounted for?

To answer these questions, first general predictions
were derived both for FADE and the (extended) SII
based on typical audiogram shapes from Bisgaard et al.
(2010). In a second step, individual predictions were
derived and compared with SRT data using the German
Matrix test in stationary and fluctuating noise obtained
from Brand and Kollmeier (2002). This allows for a com-
parison across different methods to set the FADE model
parameters individually (using a limited computational
effort) and across different versions of the SII approach.

Methods

FADE Approach

The simulation FADE from Schädler et al. (2015, 2016)
was used to simulate the outcome of the German Matrix
test in a stationary and a fluctuating noise condition (cf.
Schädler et al., 2015, for details). The speech material of
the German Matrix test (see review by Kollmeier et al.,
2015) consists of 120 semantically unpredictable sen-
tences with a fixed syntax (name-verb-number-adjec-
tive-object, like “Peter sees eight wet chairs”). For each
word class, 10 alternative words exist. For each of these
words between 8 and 10 alternative recordings exist from
which the sentences are constructed. The SRT denotes
the SNR that corresponds to 50%-words-correct per-
formance and is usually adaptively measured for
human subjects. To obtain SRTs with FADE, an auto-
matic speech recognizer was trained and tested with
noisy sentences on a broad range of SNRs (–24 dB to
þ6 dB), and the lowest SNR which resulted in 50%-
words-correct recognition performance was interpolated
and used as the predicted SRT. As the front end for the
ASR system, modified MFCCs were used. On the back
end side, HMMs were used to model speech with whole-
word models based on the “parametrically hearing-
impaired” acoustical representation provided by the
front end. Hearing impairment was modeled in the
front end and was implemented in the logMS, from
which the MFCC features were derived. A frequency-
dependent attenuation was used to model the effect of
the elevated threshold in quiet (i.e., the audiogram) by
clipping the amplitude values in each channel to the cor-
responding (interpolated) threshold from the audiogram.
To model a suprathreshold distortion component of
hearing impairment, a level uncertainty was implemented
in the logMS by adding a Gaussian white noise with a
standard deviation of uL.

To generate general predictions based on typical
audiogram shapes, simulations were performed for

different noise types and noise levels using the 10 typical
audiogram configurations from Bisgaard et al. (2010)
depicted in Figure 3 without any level uncertainty (i.e.,
uL¼ 0). In addition, a normal-hearing audiogram and a
systematic variation of uL between 0 and 50 dB was
employed. Plomp curves were fitted to these simulations
to estimate the best-fitting A-, D-, and P-values, for each
condition. This “database of Plomp curves” plotted in
Figures 6(a), (b), and 7 is used for all further steps
described later. Note that a complete FADE simulation
with all combinations of possible audiograms and all
possible values of uL would have been desirable but
was not performed here due to its excessive computa-
tional complexity. Also, no individual, iterative fitting
of uL could be performed. Instead, FADE simulations
with the individual audiogram and uL¼ 0 were per-
formed, and an individual estimate of uL was derived
using the simulation results for the normal-hearing
audiogram and different values of uL (“individual” vs.
“typical” distortion correction, see later).

Audiological Data

To derive “typical,” that is, nonindividualized predic-
tions of the Plomp curves (i.e., SRT dependence on
noise level for a given hearing loss), the 10 “typical”
audiograms defined by Bisgaard et al. (2010)

Figure 3. The 10 “typical” audiograms defined by Bisgaard et al.

(2010) plotted in an audiogram representation (in dB HL) that are

used to predict the Plomp curves in a nonindividualized manner

both by the FADE approach and by the SII.

Kollmeier et al. 5



were employed that were originally derived by a vector
quantization approach from 28,244 patient cases (cf.,
Figure 3).

The index parameter Nx/Sx¼ 1 . . . 10 (which is a
combined form of N1 . . .N7 and S1 . . . S3) is used in the
following to address these 10 different classes primarily
for interpolating the corresponding audiological data
and predictions across adjacent audiogram shapes.

In a second step, individual audiometric and speech
recognition data of 99 listeners (198 separately measured
ears) ranging in age from 23 to 82 years (mean and
standard deviation: 61.4� 13.2 years) from Brand and
Kollmeier (2002) were employed. The patients cover a
broad range of hearing loss with the pure tone average
varying from 0 to 80 dB HL (mean and standard devi-
ation: 40.5� 16.1 dB HL). SRTs were obtained with the
German Matrix test in stationary ICRA1 and fluctuating
ICRA5-250 noise (Dreschler, Verschuure, Ludvigsen, &
Westermann, 2001). The ICRA5-250 noise is a speech-
like modulated noise, which simulates the long-term fre-
quency spectrum and modulation properties of a single
male speaker with silent intervals limited to 250ms
(Wagener, 2004). An individual noise level was selected
between 65 and 85 dB. It was set to the individual
medium loudness level L25cu measured using an adaptive
categorical loudness scaling with the ICRA1 noise. The
noise level was set to 85 dB if the individual L25cu (i.e.,
the level corresponding to 25 categorical loudness units)
was larger than 85 dB.

Individual Parameter Selection for the FADE Approach

Figure 4 sketches the simulation approach where an indi-
vidual FADE simulation is performed using the individ-
ual audiogram for each subject and uL¼ 0 to derive an
SRT value for each noise type, and those noise levels
which were also employed for the audiological data.
Subsequently, either a “typical” or an “individual” dis-
tortion correction is performed by estimating the appro-
priate individual D-parameter of the Plomp curve from
additional data.

– An “individual” estimation of the value of uL can be
performed by first computing the Plomp curve assum-
ing no level uncertainty (uL¼ 0) and then using the
mismatch between this curve and the actual data for
one given background noise condition to derive an
individual uL-estimate. This value can then be used as
an input for the respective other noise condition to
compute the Plomp curve and to derive the appropriate
D-value for correcting the simulated Plomp curve for
the individual patient. Hence, independent data for the
same individual subject are employed to estimate the
individual suprathreshold distortion component.

– For a “typical” estimate of D, the uL and, succes-
sively, the noise-type-specific D-value belonging to
the average of the most suitable group of audiograms
is employed: For each of the 10 classes of audiograms
from Bisgaard et al. (2010), first the deviation between

Figure 4. Flow diagram of simulating the individual speech recognition threshold (SRT) from the audiogram with FADE simulation and

either an individual or a typical distortion correction (denoted by an a priori selection in the rhomboid box). It is performed by estimating

the individual D-value using an interpolation across the index Nx/Sx¼ 1. . .10, i.e. the ten typical audiograms by Bisgaard et al. (2010).
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prediction and empirical SRT (either for the station-
ary or for the fluctuating noise) is averaged across all
those data sets that belong to the respective class.
Second, a value of uL is determined that provides
least deviation between the FADE model output
and the empirical averaged data. These estimated typ-
ical uL-values are used to derive and interpolate the
appropriate D-values to individually correct the simu-
lated Plomp curve for the individual patient.

Figure 5 sketches the interpolation-based prediction
approach where the individual audiogram is first
approximated by an interpolation across the 10 “typical”
audiograms defined by Bisgaard et al. (2010). To do so,
the two nearest neighbors of the individual audiogram
are looked up, and the value of the index Nx/Sx (ranging
from 1 to 10) is interpolated to determine and interpolate
across the corresponding Plomp curves from the data-
base. Similar as earlier, the “typical” distortion correc-
tion estimate of the value of uL is obtained and used to
perform an individual interpolation to predict the most
likely Plomp curve for the individual patient.
Alternatively, an “individual” estimation of the value
of uL can be performed by first computing the Plomp
curve assuming no level uncertainty (uL¼ 0) and then
using the mismatch between this curve and the actual
data for the respective other background noise condition

to derive an individual uL-estimate. This value can then
be used as an input to compute the Plomp curve.

Note that the prediction approach depicted in Figure 5
is less computational expensive than the simulation
approach depicted in Figure 4, because a complete
FADE simulation has only to be performed once for
the limited set of Plomp curves in the database (10 audio-
grams plus several values of uL), whereas the remainder of
the prediction process is straightforward interpolations
that do not require much computational effort.

SII Predictions

To compare the nonindividualized FADE simulations
based on the typical audiogram shapes with predictions
from the standard SII model (ANSI, 1997), an SII pre-
diction of the Plomp curves was also performed using the
10 typical audiograms from Bisgaard et al. (2010). For
the stationary noise case, the original SII model was
employed, whereas for the fluctuating noise case, the
time-dependent eSII-model by Rhebergen and Versfeld
(2005) without masking was employed.

For the individualized SII predictions, again the same
audiological data were employed as earlier and the three
extensions of the SII for predicting SRT in stationary
and fluctuating noise methods as described by Meyer
and Brand (2013). They used the same noise conditions
and a group of 113 listeners (of whom the 99 listeners

Figure 5. Flow diagram of predicting the individual Plomp curve from the audiogram and either an individual or a typical estimate of the

level uncertainty parameter uL. As a further input, the database of typical Plomp curves is provided generated by the FADE approach using

the 10 typical audiograms by Bisgaard et al. (2010, characterized by their index Nx/Sx¼ 1 . . . 10). Note that the computationally expensive

individual FADE simulation from Figure 4 is replaced by an interpolation across a database, and that distortion correction is based on the uL

lookup rather than on the fitted D-parameters from the Plomp curve.

Kollmeier et al. 7



considered here are a subgroup) for comparing four SII
versions: (a) original SII (ANSI, 1997) which is only con-
sidering the long-term frequency spectra of speech and
noise, (b) considering frequency-independent level fluc-
tuation of the noise (the SII is calculated using a fixed
frequency spectrum of the speech and a fixed shape of
the frequency spectrum of the noise, the level fluctu-
ations of the noise are considered using 30ms time
frames and averaging the resulting SII values across
frames), (c) considering frequency-dependent level fluc-
tuations of the noise similar to Rhebergen et al. 2010
(like version B, however, the noise level fluctuations are
considered independently for each frequency band of the
SII), and (d) considering frequency-dependent fluctu-
ations of the speech and the noise (like version C, how-
ever, the fluctuations are considered also for the speech).
Note that all versions included the same basic calcula-
tions as the original SII, that is, the effect of spread of
masking on speech intelligibility is accounted for.

Results

General Predictions Based on Typical
Audiogram Shapes

(a) FADE simulations without suprathreshold distortion:
Figure 6(a) and (b) shows the simulated SRTs for the 10
typical audiograms (N1 . . .N7, S1 . . . S3) defined by
Bisgaard et al. (2010) as a function of level of the sta-
tionary noise (solid lines) and the fluctuating ICRA5-250
noise (dashed lines). In general, the curves follow well the
general expected shape of the curves according to Plomp
(1978) (see earlier).

The A-, D-, and P- values fitted to the simulated curves
using the Plomp (1978) formula for the different typical
audiograms are given in the insert tables in Figure 6.

Note that most of the variation across the typical
audiograms are captured by the variation in the
“Attenuation” parameter, whereas only the more
severe hearing losses require an additional “Distortion”
parameter which also reflects some deviation of the
audiogram shape from the standard speech spectrum.

(b) FADE simulations for different levels of level
uncertainty: Figure 7 displays the simulated SRT using
the FADE approach for a normal-hearing listener with a
set of fixed “level uncertainty parameter” uL-values
(between 0 and 50 dB) in order to model an increasing
amount of suprathreshold distortions. Note that the
curves exhibit a parallel shift to higher SRT values
with increasing parameter uL which is very similar to
the effect of the D-parameter of the Plomp model.
However, an increase by 10 dB in the level uncertainty
parameter uL does not translate directly into an equally
spaced increase of the D-parameter fitted to the curves in
Figure 7 (see inlaid table in Figure 7): At low and high

uL-values, the largest resulting difference in D for a 10-
dB step in uL is observed, whereas in the midrange the
simulations exhibit a higher robustness against an
increase in level uncertainty.

(c) SII predictions: Figure 6(c) and (d) shows the SII-
predicted SRTs for stationary noise (solid lines) and the
eSII-predicted SRTs for fluctuating noise (dashed lines)
for the 10 typical audiograms (N1 . . .N7, S1 . . .S3)
plotted in a similar way as for the FADE approach.
Note that curves are similar to the corresponding
FADE simulations (Panels (a) and (b)) and follow as
well the general expected shape of the curves according
to Plomp (1978).

However, the SRT in quiet (reflected by the A-values
fitted to the curves) are higher than predicted with the
FADE approach and do not coincide between the SII
and the eSII approach which is due to different reference
data to be used for both approaches while FADE does
not require such a reference or calibration curve (see
Discussion section).

Moreover, with increasing level of the background
noise the SII-curves tend to no longer follow a diagonal
line but deviate toward higher SRT values which reflects
the “level distortion factor” at higher levels which is
included in the SII (ANSI, 1997). This behavior differs
from the assumed diagonal line shape of the Plomp
curves. As a result, the D-values of the Plomp curves
fitted to the SII predictions are increased, and the devi-
ation parameter �-indicate a lesser goodness-of-fit in
comparison to the FADE approach for the same audio-
gram class. A similar relative increase in D-values
is observed for the Plomp curves fitted to the SII
predictions with increasing hearing loss—especially
for the three classes of sloping loss in comparison to
the nonsloping loss classes with a comparable aver-
age loss. This reflects the tendency that an audibility
loss at high frequencies leads to a fitted Plomp curve
with a high D-factor even though its alteration is more
related to a lack in audibility and not necessarily related
to a suprathreshold deficit as discussed by Lee and
Humes (1993).

However, besides these general factors that produce
an increase in the fitted D-value as a fixed consequence
of the respective audiogram, the SII model does not offer
another independent variable to reflect the suprathres-
hold distortion component in a way comparable to the
parameter uL from the FADE approach.

Individual Predictions

(a) Individualized FADE predictions and simulations for
stationary noise: Figure 8 displays the predictions and
simulations for the individual SRT in stationary
ICRA1-noise for an increasing degree of individualiza-
tion. The SRT predictions (black dots) obtained by
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interpolating across the 10 prototype audiograms
(according to Figure 5) are plotted against the empirical
values (given on the x-axis). For comparison, the indivi-
dualized FADE simulations (according to Figure 4) are
given as gray symbols using the individual audiogram.
The connection lines between the predicted values (that
require only a very small computational load) and the
simulated values (that are computationally more expen-
sive) indicate already a high coincidence in SRT predic-
tion between both methods.

Panel (a) denotes the predictions based on the audio-
gram alone. Note that neither method is able to model
the empirical SRT in stationary noise in a satisfactory
way since the large spread in the empirical data (ranging
from �9 toþ 7 dB in SNR) is not reflected in the predic-
tions based on the audiogram alone. The correlation
coefficient (Pearson’s R2 with 95% confidence intervals)
between data and predictions or simulations is provided
in Table 1. A somewhat (but not significantly) higher
correlation between data and predictions is achieved

Figure 6. Speech recognition thresholds (SRT) as a function of the noise level for the German matrix sentence test in the test-specific,

stationary noise condition (solid lines) and for the fluctuating ICRA5-250 noise (dashed lines) simulated by the FADE approach (Panels (a)

and (b)) and by the (extended) SII model (Panels (c) and (d)). The curves correspond to different grades of hearing impairment based on

the 10 standard audiograms (N1 . . . N7 in Panels (a) and (c), and S1 . . . S3 in Panels (b) and (d)) from Bisgaard et al. (2010) displayed in

Figure 3. The embedded tables report the best fitting A and D parameters (in dB) and the power coefficient P of the best-fitting Plomp

curves as well as the maximum deviation between the fitted curve and the data (denoted as � in dB).
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for the “typical” distortion correction method employing
the distortion correction either from the stationary noise
(Figure 8(b)) or the fluctuating noise (Figure 8(c)) than
for the predictions based on the audiogram alone. The

highest correlation (which significantly exceeds the cor-
relation for all the remaining cases) is achieved for the
individual distortion correction (Figure 8(d)) where for
each patient the deviation between the prediction and the
data for the fluctuating noise is used to correct for the
distortions to be expected in the stationary noise case
considered here.

(b) Individualized FADE predictions and simulations
for fluctuating noise: The same representation as in
Figure 8 for the stationary noise is presented in
Figure 9 for the fluctuating noise. Table 1 shows the
correlation coefficients (Pearson’s R2) between modeled
SRTs for the fluctuating noise and the empirical data
(last column). Again, with increasing degree of individu-
alization, the correlation between data and predictions
or simulations is improved without exhibiting significant
differences between the cases without distortion correc-
tion and with the two typical distortion corrections.
However, a significant increase in correlation between
data and model predictions for the fluctuating noise
case is reached for the individualized distortion correc-
tion obtained from the stationary noise data (displayed
in Figure 9(d)).

Note that the R2 scores for the stationary noise case
reported here for the four versions of the SII prediction
methods from Meyer and Brand (2013) do not deviate
significantly from most of the R2 values reported for the
different FADE predictions and simulations with typical
distortion corrections. The SII versions A to C provide
even a higher prediction accuracy than the FADE with-
out distortion correction. Only the FADE simulations
with individual, fluctuating-noise-based distortion cor-
rection provide a significantly higher prediction accuracy
than all versions of the SII.

Figure 8. Modeled SRT for 198 ears from 99 subjects plotted against the empirical data (x-axis) for stationary noise. The predicted SRTs

(according to Figure 5, employing typical audiograms) are given as black dots, the simulated data (according to Figure 4, employing the

individual audiogram) are given as grey dots. The simulations are performed for different degree of distortion correction: No distortion

correction (Panel (a)), stationary-noise-, typical-audiogram-based distortion correction (Panel (b)), fluctuating-noise-, typical-audiogram-

based distortion correction (Panel (c)), and fluctuating noise-based, individual distortion correction (Panel (d)).

Figure 7. Speech recognition thresholds (SRT) for a normal-

hearing listener with different values of level uncertainty uL in the

test-specific, stationary noise condition as a function of the noise

level from simulations with FADE. The dashed lines show the same

results for the fluctuating ICRA5-250 noise. The embedded table

reports the best-fitting parameters for the fitted Plomp curves

according to Equation (2).
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For the fluctuating noise case, the SII-based correl-
ations are generally lower or their R2 deviate not signifi-
cantly from the FADE predictions without distortion
correction. With the exception of SII version D, all
FADE predictions and simulations with distortion cor-
rection exhibit a significantly higher prediction accuracy.
The FADE simulations with all kinds of distortion cor-
rections even surpass SII version D with respect to its R2

value.
Taken together this indicates that the FADE simula-

tions with individualized distortion corrections provide
superior prediction accuracy against all other FADE
approaches and all SII versions considered here. In the

stationary noise case, FADE with distortion correction
and SII perform approximately equally well, whereas in
the fluctuating noise case the SII predictions perform
generally worse than the FADE approach (with some
exceptions).

Discussion

A concept based on the broadly applicable FADE
approach has been introduced here for individualized
SRT prediction in noise for hearing-impaired listeners.
The nonindividualized, typical-audiogram-based version
was demonstrated to predict well the curves fitted with

Table 1. Statistical Analysis of the Predicted or Simulated SRT.

Model Distortion correction

Stationary noise Fluctuating noise

R2 Interval B RMS R2 Interval B RMS

FADE prediction None .31 [.21 .42] –4.1 4.6 .48 [.38 .58] –4.6 6.1

Typical stationary based .44 [.33 .54] 0.0 1.9 .57 [.47 .65] 3.7 5.4

Typical fluctuation based .42 [.31 .52] –1.9 2.7 .56 [.46 .64] 0.0 3.8

Individual stationary based – – – – .78 [.72 .83] 3.4 4.3

Individual fluctuation based .63 [.54 .71] –1.6 2.3 – – – –

FADE simulation None .36 [.25 .46] –4.3 4.7 .57 [.47 .65] –4.5 5.9

Typical stationary based .49 [.38 .58] –0.1 1.8 .63 [.55 .71] 3.8 5.2

Typical fluctuation based .46 [.35 .56] –2.0 2.7 .63 [.54 .70] 0.1 3.5

Individual stationary based – – – – .83 [.78 .87] 3.8 4.5

Individual fluctuation based .70 [.62 .76] –1.9 2.4 – – – –

SII version A .55 – – – .24 – – –

SII version B .59 – – – .42 – – –

SII version C .51 – – – .42 – – –

SII version D .35 – – – .52 – – –

Note. Pearson’s correlation coefficients (R2) are reported (including their 95% confidence intervals according to Fisher, 1958) along with the RMS prediction

error and the bias (B) for predicted or simulated SRTs with different distortion correction methods and SII-based predictions from Meyer and Brand (2013).

SRT¼ speech recognition threshold; RMS¼ root-mean-square; FADE¼ Framework for Auditory Discrimination Experiments; SII¼ Speech Intelligibility

Index.

Figure 9. Modeled SRT for 198 ears from 99 subjects plotted against the empirical data (x-axis) similar to Figure 8 but for fluctuating

noise. SRT¼ speech recognition thresholds.
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the AþD approach from Plomp (1986) using the model
parameter uL to model the apparent suprathreshold pro-
cessing deficits (which is also reflected by the fitted
D-component) independently from the audiogram-
data-driven audibility component reflected by the fitted
A-component. This positively answers research question
1 from the introduction. In comparison to the SII model
and its modifications, the independent control of the
model parameter uL appears to be advantageous.

Second, the FADE model has been evaluated with
data from the literature for 198 ears in comparison to
the SII and modified SII. The individualization of SRT
prediction is based either on simulations using the indi-
vidual audiogram which requires more computational
effort than an interpolation approach utilizing the “typ-
ical” audiograms provided by Bisgaard et al. (2010) to
create a precomputed database. These two versions do
not differ significantly in their prediction accuracy which
is also comparable to the accuracy achieved with appro-
priately modified SII model versions for the stationary
noise case. In the fluctuating noise condition, most ver-
sions of the FADE approach outperform the modified
SII model versions.

Moreover, the possibility of a “typical” or “individ-
ual” distortion correction is explored. The correction is
based on the assumption of an individually tailored cen-
tral noise which may be interpreted as level uncertainty
or multiplicative, random detector noise. The individual
amplitude uL of this noise can be estimated from the
difference between prediction and actual data for typical
audiograms or from a different noise condition than the
one under test. This answers research question 2 from the
introduction by providing different ways to set the indi-
vidual parameters of the FADE model with a reasonable
computational effort and a high prediction accuracy.

Third, using the FADE approach with an individual
audiogram and an individual distortion correction out-
performs both the SII prediction accuracy and the per-
formance for all other individualization approaches for
the FADE model both for the stationary and fluctuating
noise case, thus answering research question 3 from the
introduction. Obviously, the highest prediction accuracy
is achieved if not typical parameter sets, but individua-
lized audiogram and uL-values are employed.

Advantages of the FADE Approach Presented Here

– It is based on a reference-free simulation principle
that primarily relies on basic principles employed in
machine learning and ASR. Hence, this approach
does not require any normative data or reference
speech intelligibility curves (as required, e.g., by the
SII or related SNR-derived estimates of speech intel-
ligibility). Moreover, the FADE approach uses only a
mixture of signal and noise at several SNRs for

training and replaces the optimum detector used in
the “effective” psychoacoustic processing models
(like PEMO [Dau et al., 1997] and CASP [Jepsen,
Ewert, & Dau, 2008]) by a HMM Detector which
allows for local stretching and compressing in time.
Hence, the FADE approach does not require the
exact a priori knowledge of the desired signal and
the background noise (as required by the “effective”
psychoacoustic models). Instead, it derives an abstrac-
tion of this a priori knowledge by training of the
HMM and by deciding which training condition pro-
vides the lowest threshold estimate. This still assumes
a certain amount of a priori knowledge but makes the
recognition back end more versatile than a fixed cross-
correlation-based optimum detector.

– As already outlined by Schädler et al. (2015), the same
basic processing approach can be used to predict both
the outcome of speech recognition data and psychoa-
coustic discrimination experiments using the same
processing frontend and back end. Hence, the simul-
taneous prediction of psychoacoustic data and speech
recognition data with hearing-impaired listeners using
the same parameter set for individualization may
become possible. This yields a high flexibility for
inserting the putative causes of a hearing impairment
into the prediction process both of speech recognition
and psychoacoustic data. Currently, the simplest
assumption was employed which utilizes a threshold-
ing procedure to account for the loss in sensitivity and
the addition of a level uncertainty at a central stage.
Such a level uncertainty on a logarithmically com-
pressed internal representation stage can be inter-
preted as an “effective multiplicative” noise if
projected back on the linear, peripheral signal pro-
cessing stage. Such a multiplicative noise is a
common, most simple “Ansatz” for a central detector
noise or individual internal noise due to, for example,
insufficiency of the central, internal neural representa-
tion or the lack of attention or cognitive processing
abilities.

– The approach offers a way to investigate the mechan-
isms involved in speech recognition in fluctuating
noise for normal hearing and hearing-impaired lis-
teners which has been one of the unsolved problems
in audiology since many years (Dreschler et al., 2001;
Festen & Plomp, 1990; George et al., 2006; Meyer &
Brand, 2013; Wagener et al., 2006). While even the
most sophisticated version D of the modified SII
from Meyer and Brand (2013)—using a time- and
frequency-dependent SNR measure to derive the
SRT estimate—provides only a moderate prediction
accuracy (Pearson’s R2 of .52, see Table 1)—which is
comparable to the best performing SII version B for
the stationary noise case (R2 of .59)—it is already out-
performed by the FADE approach with a comparable

12 Trends in Hearing



simple set of assumptions (e.g., FADE simulation
with the individual audiogram and typical distortion
correction). This provides evidence that the model
structure underlying the FADE approach is more
appropriate than even the most sophisticated SII ver-
sion D to correctly model speech recognition in fluc-
tuating noise (see later). A more detailed analysis
appears necessary to pinpoint the exact element of
the FADE model which provides this advantage.

– The approach to combine the predictions from the
FADE model with the parameter fitting of the
AþD model by Plomp has the advantage of limiting
the computational load for the FADE simulations as
not every combination of audiogram and uL has to be
computed. Instead, the Plomp curves are utilized as a
patient-specific interpolation method to compute the
SRT for each possible noise level characterized by
only few fitting parameters (A, D, and P) that are
individually determined by only few empirical data
points and predicted by only few model simulations.
The elegance of this approach is highlighted by the
fact that the FADE simulations for a given audio-
gram produce SRT values that are fit very well with
the Plomp curves (as can be seen by the low �– values
in Figures 6(a), (b), and 7) and that changes in the
FADE model parameter uL does only produce a
change in the D-value of the fit without much affect-
ing the A- and P-values—at least for the normal-
hearing listener case displayed in Figure 7. The basic
assumption for the different individualization
methods considered here is that this independence
also holds for complete simulations of hearing impair-
ment with FADE. This is supposed to be less the case
for the fluctuating noise in comparison to the station-
ary noise conditions and will have to be checked by
more extensive computations in the future.

– Building on this independence assumption, the FADE
prediction and individualization concept introduced
here yields the advantage that only very little compu-
tational costs are required to perform the predictions.
It utilizes the “typical,” vector-quantized-audiograms
provided by Bisgaard et al. (2010) to firstly compute a
limited database of only few computational expensive
ASR modeling results and then combines them with
an interpolation method utilizing the general relations
provided by the Plomp curves. This makes the predic-
tion method very easy to use for practical applica-
tions. Both the “typical” and the “individual”
distortion correction methods also require little com-
putational effort. However, the latter method provides
the additional prediction accuracy at the cost of
requiring an independent set of measurements for a
second noise condition. Since the improvements in
prediction accuracy by using the complete, indivi-
dual-audiogram-based simulation (when employing

the same respective distortion correction method) is
only very small and statistically not significant, this
added effort in individual modeling should only be
performed if sufficient computational resources are
available.

Comparison of the FADE Approach to SII

The concepts underlying SII and FADE differ consider-
ably: SII considers spectrally (and in its modifications
also temporally) resolved SNR estimates that are trans-
formed with a reference curve to average human speech
recognition with the respective speech material, thus
automatically taking into account many factors involved
in speech perception without explicitly modeling them.
FADE, on the other hand, explicitly models human
speech recognition as a pattern recognition process
with a certain internal representation of the speech
material obtained from ASR (like the MFCC features
used here) or from auditory “effective” signal processing
models (Schädler et al., 2016) and a recognizer back end
which has evolved from progress in ASR research (like
the HMM used here). The training procedure and the
test setup employed aims at predicting not the average,
but the best possible performance under these circum-
stances. Given the complexity of the task to be
simulated—especially for individual hearing-impaired
patients—it is surprising that such a simple approach
performs so well and satisfying that it performs about
equally with the SII approach for a number of versions
provided in Table 1. However, a few differences exist that
need attention:

– Predictions at low noise level (thresholds in quiet):
The predicted thresholds for a given typical audio-
gram (Figure 6) are higher for the SII than for
FADE and do not coincide for the SII and the eSII
predictions (which is due to a different calibration
process or different reference curves for the latter).
The low thresholds for the FADE—which are about
10 dB lower than the average for listeners with normal
hearing, may partially result from the high variability
in absolute thresholds even for normal listeners
(amounting to at least 10 dB) and the property of
FADE to predict the lowest achievable threshold.
Moreover, SII tends to overestimate the effect of the
hearing loss at high frequencies which leads to an
increasingly higher difference to the FADE simula-
tions especially for the classes of sloping hearing
loss. This may be due to the approximately uniform
weighting across frequency channels in the main
speech frequency range by the SII whereas sentence
materials—as employed here—tend to be better pre-
dicted with higher weighting of lower frequency
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channels. One advantage of FADE is that it does not
require such a frequency weighting but rather learns
the salience of different speech cues available above
the audiogram-based threshold from the statistical
training procedure. This might be a more adequate
model of human perception than a predetermined fre-
quency weighting resulting from a compromise
between different speech materials as used in the SII.

– Predictions at very high noise levels (above 80 dB
SPL): The predictions by SII and eSII do not converge
toward a constant SNR (as with FADE and as
assumed by the Plomp curves), but rather show a
slight increase in SRT with increasing noise level
which appears to model human behavior appropri-
ately (level distortion factor due to, e.g., larger
spread of masking at high levels). A more realistic,
level-dependent front end processing would be
required for FADE to be more accurate at these
high levels.

– Transition region (40–80 dB SPL): FADE consistently
predicts lower thresholds for stationary noise (which
is either below or barely above the absolute threshold)
than for fluctuating noise which occasionally exceeds
the audibility threshold and hence disturbs speech cue
detection more than in the stationary case. At higher
noise levels, the situation reverses, that is, the SRT for
fluctuating noise is well below the corresponding SRT
for stationary noise at the same noise level. This
expected intersection between the Plomp curves for
fluctuating and stationary noise can be observed for
the FADE predictions in Figure 6(a) and (b) but not
for the SII and eSII in Figure 6(c) and (d), respect-
ively. One reason for this deviation from expectation
for the SII is the different SRT predictions in quiet for
SII (used for the stationary noises) and eSII according
to Rhebergen and Versfeld (2005, used for the fluctu-
ating noise, see earlier). However, even if this effect
would be compensated for by an appropriate vertical
shift of the eSII-based curves for modulated noise,
still no intersection with the curves for stationary
noise would result because the knee point of the
curves is located at much higher noise levels than
for the FADE approach. Apparently the eSII version
from Rhebergen and Versfeld (2005) misses the nega-
tive effect of the short intervals where the fluctuating
noise exceeds the stationary threshold level. This is to
a lesser degree the case for the SII version D by Meyer
and Brand and not the case for the FADE approach.

– It is unclear why the FADE approach (without the
individual distortion correction which is not available
for the SII and eSII) works so much better in the case
of the fluctuating noise and relatively poorly in the
stationary noise case as compared with the best SII
version (cf. Table 1). One reason is that the SII was
especially constructed and appropriately calibrated to

predict the effect of stationary masking noise as cor-
rect as possible whereas the FADE approach has a
much harder problem to solve right from the start
by having to predict the correct range of SRT based
on simple processing principles. Hence, it is not sur-
prising that FADE does not outperform the SII for
those prediction tasks for which it is best at.

– Even though FADE predictions and simulations with
individual distortion correction outperform the
respective SII and eSII predictions (cf. Table 1), this
is not a fair comparison because extra individual
information has been added to the FADE predictions
from a separate measurement that is not accessible to
the SII. In theory, the SII could be modified as well by
adding a simple individual bias (to be estimated from
the respective other noise condition). Such a proced-
ure has been suggested by Brand and Kollmeier (2002)
and by Rhebergen et al. (2010) in a similar way and is
expected to increase the prediction accuracy of the SII
based on a pure heuristic approach. More work
should be invested to provide the SII and its modifi-
cations with some of the properties of the current
FADE approach and to perform an unbiased, fair
comparison with an equal amount of information
being released to all model variations.

Limitations of the Approach Presented Here

Some serious limitations have to be kept in mind when
applying the method:

– The FADE approach shows a bias which clearly
underestimates the individual thresholds for the ver-
sion without distortion correction (amounting to a
bias of �4.1 to �4.6 dB, cf. Table 1) and for the sta-
tionary noise using fluctuating noise-based distortion
corrections (bias between �1.6 and �2.0 dB). This can
partially be attributed to the property of FADE to
model the best possible performance rather than the
average across human listeners. According to expect-
ations, this bias is removed if a “typical” distortion
correction based on the average performance in the
same task for the group of listeners within the same
audiogram class is performed. Similarly, FADE over-
predicts the threshold for the fluctuating noise condi-
tion if a distortion correction from the typical or
individual performance in stationary noise is per-
formed (bias between 3.4 and 3.8 dB), that is, per-
formance of the individual subjects is better than
predicted. This overcorrection of the bias based on
the stationary noise data (in combination with an
undercorrection of the bias for the stationary noise
predictions based on the fluctuating noise data) may
be a consequence of the wider range of SRT values
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across listeners for the fluctuating noise case (approx.
30 dB, see Figure 9) as opposed to the range of SRT
values for the stationary noise (approx. 18 dB).

– The model assumptions employed here to model the
effect of sensorineural hearing impairment are only
very basic: The individual audiogram is simply repre-
sented by a frequency-specific thresholding procedure
(i.e., setting the output to a constant value if the input
does not exceed this predefined threshold). Moreover,
the limitations of the central human sound recogni-
tion process are simply modeled by a noise represent-
ing a certain level uncertainty or central blurring of
the internal representation of the input signal. This
representation is very simplistic and does not model
all aspects of human speech perception and signal
processing in the impaired auditory system as
known from physiology and psychoacoustics. For
example, the loss of compression due to malfunction
of the outer hair cells is ignored as well as the loss of
temporal fine structure or other signal representation
at the brainstem level as produced by a putative loss
of inner hair cells. Any deterioration of binaural inter-
action is also ignored. No differentiation between a
central “detector-degradation-simulating” noise as
opposed to a more peripherally located noise is per-
formed which could indicate any deterioration in
signal processing at the auditory nerve and brainstem
level. More physiology-inspired front ends than the
MFCC features employed here would be required to
adequately represent a more sophisticated modeling
of the auditory periphery.

– The listeners considered in the study have a large age
range (23–82 years) leading to the assumption that
besides the audiogram further suprathreshold process-
ing deficits as well as cognitive factors play a significant
role that covary with age as expected from the litera-
ture (e.g., Patterson, Nimmo-Smith, Weber, & Milroy,
1982). The limited success of the “typical” distortion
correction (where all audiograms for a certain class
were considered despite the age range) may be due to
this simplification of not considering age and specific
cognitive factors. On the other hand, the significant
improvement in prediction accuracy by the individual
distortion correction may be due to this large variation
in individual factors in our patients not covered by the
audiogram. It has to be noted though, that a large
remaining variance across subjects remains even after
individual distortion correction. This hints to the fact
that our simple model approach with a central level
uncertainty characterized by only one parameter uL is
not sufficient to completely capture the multidimen-
sional effect of ageing and hearing impairment on
speech recognition in noise.

– The “individual” distortion correction method pro-
posed here utilizes information from a different

speech recognition experiment in noise in order to
set the individual distortion correction. Even though
this eventually leads to a superior performance of the
model in comparison to the SII, this utilization of
additional data from a different experiment may be
considered as an unfair advantage of the current
approach. However, the underlying model assump-
tion is that a single, individual distortion correction
is universally applicable to several speech recognition
and psychoacoustic experiments with the same sub-
ject—an assumption that still has to be tested using
data from more experiments.

Potential Applications of the Approach Presented Here

If one accepts these limitations and even more practical
limitations of the approach presented here (e.g., compu-
tational complexity of the FADE model, sophisticated
mixture of a priori computation, interpolation, and com-
paratively imprecise estimation of threshold and distor-
tion components), it nevertheless may show the
following potential applications in the future:

– Even though the ASR method employed here was
especially tailored to the German Matrix test OLSA
(Wagener, Kühnel, & Kollmeier, 1999), the same gen-
eral method can be used for all closed-set sentence
recognition tests that follow the same format. This
closed-set format has the advantage of being able to
test a patient in his or her own language by touching
the appropriate words on a response device thus elim-
inating the requirement for the test conductor to
understand the language and to assess the correctness
of the (verbal) response. Fortunately, 16 of the matrix
tests already exist to date in different languages
(review by Kollmeier et al., 2015, recommendations
for development a test in a given language by
Akeroyd et al., 2015) which will make it possible to
adapt the prediction method proposed here to an
increasing number of languages with comparatively
little extra effort. This will help to compare audio-
logical study results across languages by the predic-
tion methods presented here as a kind of objective
yardstick. This will enable research to concentrate
on those effects that cannot already be predicted
from the acoustics of the language-specific test
materials.

– Using various possible alternatives for the preprocess-
ing or feature extraction of the FADE model, a
straightforward route becomes possible to compare
a number of model assumptions about hearing
impairment against each other: While for the current
computations, a simple MFCC was used, Schädler
et al. (2016) already used a more sophisticated,
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“effective” auditory model-based preprocessing after
Dau et al. (1997) which may also be replaced by more
sophisticated psychoacoustical models and appropri-
ate model assumptions about how to change the pro-
cessing and its parameters as a consequence of
sensorineural hearing loss.

– Such a comparative approach of models and the
required modifications of processing parameters for
predicting most of the observable deficits in hearing-
impaired listeners by a minimum set of assumptions
and parameters is a very good candidate to find a
connection between several audiological outcome
measures within the same audiological patient. One
might eventually be able to check the consistency
across the different performance measures and to
determine the minimum number of assumptions and
free parameters to be used to completely characterize
the individual hearing impairment. This may prove to
be a new road toward modeling sensorineural hearing
loss with as few parameters and as few prior assump-
tions as possible.

– Moreover, the fact that the current model does not
need the desired speech signals and the background
noise as separate signals, but only requires the mixed,
complete signal with a set of SNRs for training qua-
lifies this approach for aided performance prediction:
Performing the same speech recognition prediction
both for the unaided and the aided input signal to
be presented to a patient, the effect of a hearing
device (or other acoustical assistive listening device)
may eventually be assessed in an objective way. This
opens a completely new path toward rehabilitative
audiology in connection with modern methods of
machine learning.

Conclusions

– The ASR-based, broadly applicable FADE approach
can predict the empirically found relation between the
SRT and noise level as parameterized by Plomp (1978).
This quantitatively describes the effect of hearing
impairment on SRTs in stationary and fluctuating noise.

– In comparison to using the SII for stationary noise
and the eSII (Rhebergen & Versfeld, 2005) for fluctu-
ating noise for the same purpose, a more consistent
SRT estimate across both noise types is achieved at
least for low and intermediate noise levels.

– Suprathreshold processing deficiencies can be model-
led by the level uncertainty parameter uL which
should be individually determined for high prediction
accuracy. The highest prediction accuracy (expressed
by Pearson’s R2) across all conditions and models is
achieved with FADE if an independent data set is
used for an individual distortion correction.

– The prediction accuracy achieved with the optimized
modifications of the SII (data from Meyer & Brand,
2013) is roughly the same for the stationary noise case
and in most cases worse for the fluctuating noise than
for the FADE approach if a “typical” distortion cor-
rection is employed. This approach utilizes an average
across all audiograms belonging to the same class of
hearing loss.

– Interpolating from FADE simulations using a “typ-
ical” audiogram is not only much less computation-
ally expensive but also not significantly different in
prediction accuracy from using the individual audio-
gram for FADE if the same kind of distortion correc-
tion is used.

– Hence, for practical purposes, the typical audiogram
interpolation approach with an individual distortion
correction (with input from independent data) is rec-
ommended which requires only minimal computa-
tional effort and yields a higher prediction accuracy
than all modifications of the SII employed
here—especially for the fluctuating noise case.

– Taken together, the FADE approach is not only more
versatile and makes much less assumptions than the
SII but also yields a higher prediction accuracy if
appropriate independent data for estimating the indi-
vidual distortion correction is available.
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