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Abstract

The concept of Schur rings was introduced in 1933 by I. Schur. For several decades applications of
Schur rings were restricted to the investigation of permutation groups. Starting in the fifties, simi-
lar concepts like association schemes, cellular algebras and coherent configurations were introduced
independently by different authors. They were used for various questions in algebraic combinatorics
and statistics. In this thesis three different tasks which are related to these concepts are considered:
(1) characterization of commuting graphs, (2) consideration of strongly regular graphs and partial
difference sets and (3) investigation of cyclotomic schemes. The first part deals with graphs with
commuting adjacency matrices. Here, we give results for commuting regular graphs and discuss the
case of non-regular graphs. The second part deals with the construction of partial difference sets
by using strongly regular Cayley graphs. Theoretical and computational approaches are discussed
and all regular partial difference sets in groups up to order 49 are determined. Moreover, regular
partial difference sets for strongly regular graphs up to 255 vertices which have primitive auto-
morphism group, are constructed. In the third part an algorithm for the determination of cellular
subrings of cellular rings is adopted for cyclotomic schemes. This algorithm uses the information
given by cyclotomic numbers for the complete theoretical determination of all subschemes. The
determination of subschemes for cyclotomic schemes with three, four and six classes are described
in detail.

Zusammenfassung

Die Theorie der Schur Ringe, eingeführt 1933 von I. Schur, spielte über mehrere Jahrzehnte nur
auf dem Gebiet der Permutationsgruppen eine Rolle. Seit den fünfziger Jahren wurden unabhängig
voneinander ähnliche Konzepte wie Assoziationsschemata, zellulare Ringe oder kohärente Konfi-
gurationen für verschiedene Probleme in der Algebraischen Kombinatorik und Statistik entwick-
elt. In dieser Dissertation werden Fragestellungen aus den Gebieten (1) vertauschbare Graphen,
(2) streng reguläre Graphen und partielle Differenzenmengen und (3) zyklotomische Schemata vor
dem Hintergrund dieser Konzepte betrachten. Der erste Teil behandelt Graphen mit kommutieren-
den Adjazenzmatrizen. Ergebnisse für vertauschbare reguläre Graphen werden präsentiert und die
Fragestellung für nicht reguläre Graphen diskutiert. Der zweite Teil beschäftigt sich mit der Kon-
struktion von partiellen Differenzenmengen durch streng reguläre Cayley Graphen. Dazu werden
theoretische und computer-basierte Verfahren diskutiert und eine vollständige Liste regulärer par-
tieller Differenzenmengen in allen Gruppen mit bis zu 49 Elementen konstruiert. Außerdem werden
reguläre partielle Differenzenmengen für streng reguläre Graphen bis zu 255 Ecken mit primitiver
Automorphismengruppe bestimmt. In einem dritten Teil der Dissertation wird eine Methode zur
Bestimmung alle Unterschemata in einem zyklotomischen Schema beschrieben. Dazu wird ein
Algorithmus, der alle zellularen Unterringe eines zellularen Ringes bestimmt, verwendet. Dieser
Algorithmus benutzt Informationen, die durch die zyklotomischen Zahlen des Schemas gegeben
werden. Abschließend werden Unterschemata der zyklotomischen Schemata mit drei, vier und
sechs Klassen beschrieben.

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2001/heiapp01/heiapp01.html
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Chapter 1

Introduction

In 1933 I. Schur introduced a new concept for the investigation of permutation groups [Sch33]:
To each permutation group which contains a regular permutation group H as a subgroup
he associated a subring of the group ring Z(H). This was the starting point for a notion
which we nowadays call Schur ring and which Schur’s student H. Wielandt later pointed
out explicitly ([Wie35], [Wie49], [Wie64]). For several decades Schur rings were regarded as
a tool for purely group theoretical problems. However, in the seventies M. H. Klin und R.
Pöschel elaborated first applications for problems in graph theory (e.g., [KliP78]). Presently,
Schur rings are also considered as an important tool in algebraic combinatorics.

In the last fifty years several concepts similar to Schur rings were introduced. On the
one hand, there is the notion of association scheme and its associated Bose-Mesner algebra
which was introduced by R. C. Bose and T. Shimamoto resp. R. C. Bose and D. M. Mesner
([BosS52], [BosM59]). On the other hand, in 1970 D. G. Higman published his concept of
coherent configurations [Hig70]. The coherent configurations coincide up to language with a
special class of cellular algebras which were already introduced in 1968 by B. Y. Weisfeiler
and A. A. Leman in [WeiL68]. The fact that similar concepts were introduced independently
by different mathematicians for different problems indicates that the underlying idea is as
well natural as important. We will discuss these notions in Section 2.2.

If we consider a very special class of Schur rings, the primitive, symmetric Schur rings of rank
3, then we have objects which, on the one hand, correspond to nontrivial strongly regular
Cayley graphs (see Proposition 3.1.26) and, on the other hand, to nontrivial, regular partial
difference sets (see Proposition 3.1.27).

Strongly regular graphs were first studied by R. C. Bose in connection with partial geometries
and symmetric association schemes with two classes [Bos63]. A short time later, D. G.
Higman initiated the study of rank 3 permutation groups using strongly regular graphs
[Hig64]. Both, the combinatorial and the group theoretical aspects have been developed
over the years (see for example [HesH71], [Hub75], [CamGS78], [Bro96]). Strongly regular
graphs have become a popular area in algebraic combinatorics during the last decades. A
strong increase of the interest in these graphs at the end of the sixties was based on the
discovery of new simple finite groups in connection to strongly regular graphs. Until today
the search for unknown strongly regular graphs is one of the most challenging tasks for

9
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mathematicians working on this field.
Partial difference sets were named by I. M. Chakravarti in 1969 [Cha69]. However, they
were introduced some years earlier by R. C. Bose and J. M. Cameron in their studies of
calibration designs and the bridge tournament problem [BosC65]. A systematical study of
partial difference sets as a generalization of difference sets was started by S. L. Ma ([Ma84],
[Ma89]). Many results were obtained already in the seventies in terms of strongly regular
graphs since strongly regular Cayley graphs are directly connected to partial difference sets.
The development of the theory of partial difference sets is on a similar stage as in case of
strongly regular graphs: The determination of unknown partial difference sets resp. the
discovering of new connections between the known results is the challenge. An extended
survey of partial difference sets is given in [Ma94]. It includes a table of all known parameter
sets for partial difference sets in abelian groups.
The present thesis is dedicated to three subjects: the main part deals with techniques for
the determination of partial difference sets and, after that, the complete determination of
partial difference sets for certain groups, in particular, by strongly regular graphs. A second
part presents a method for the determination of subschemes in cyclotomic schemes where
the focus is on subschemes with two classes. Each 2-class subscheme corresponds to a partial
difference set. The third part is concerned with the investigation of commuting graphs.

In the past, research in the area of partial difference sets refers mainly to a qualitative level,
i.e., proving of existence and non-existence results for partial difference sets with certain
parameters, connections between known partial difference sets and so on. By the complete
determination of partial difference sets in certain groups resp. for certain strongly regular
graphs this thesis follows a more quantitative conception. In Section 4 the determination
of all nontrivial, regular partial difference sets in all groups of order up to 49 is presented.
The partial difference sets were obtained by theoretical and computational approaches. The
techniques of the determination of partial difference sets are described in Chapter 3. Basis
for this work was the correspondence between strongly regular Cayley graphs and partial
difference sets. The main source was a complete catalogue of strongly regular Cayley graphs
which was obtained from the list of strongly regular graphs on the website of E. Spence
[Spe01] in combination with some theoretical results. For each of these Cayley graphs all
partial difference sets were determined.
In our work we were restricted by the bound 49 since a complete catalogue for strongly reg-
ular Cayley graphs with more than 49 vertices does not exists. This fact is not surprising,
since the phenomenon of ”combinatorial explosion”, the enormous growth of the number of
objects by increasing order, also affects the class of strongly regular graphs. Only for some
special parameter sets all strongly regular graphs are known. To extend our work to graphs
with more than 49 vertices without loosing the idea of completeness we restricted ourselves
to strongly regular graphs with a certain property. Since we were concerned with graphs
with transitive automorphism group, from both algebraic and combinatorial points of view
it was natural to restrict the investigation to graphs with primitive automorphism group.
A nearly complete catalogue of strongly regular graphs up to 255 vertices with primitive
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automorphism group was created by C. Pech one year ago with the aid of computers (C.
Pech, private communication). We were able to determine the missing graphs (with 121 and
169 vertices) theoretically. Using the same techniques as for the small cases we succeeded
to determine almost all partial difference sets for strongly regular graphs up to 255 vertices
with primitive automorphism groups (see Section 4.2). However, we were not successful for
seven out of 95 graphs, since the computer facilities were not sufficient.

As already mentioned before, in this thesis a second subject is treated. In Chapter 5 a special
class of association schemes, the class of cyclotomic schemes, is considered. We present a
method for the determination of all subschemes of a cyclotomic scheme. Here we are mainly
interested in 2-class schemes which correspond to partial difference sets and strongly regular
graphs. The method is based on an algorithm developed by I. A. Faradžev and M. H. Klin
(cf. [FarKM94]) which computes all cellular subrings of a given cellular ring. A program
implementation, the computer package COCO, is briefly described in Section 3.3.1.
We adopted this algorithm for cyclotomic schemes. This allows us to determine all sub-
schemes of a cyclotomic scheme purely theoretically provided we have formulas for the
so-called cyclotomic numbers of the scheme. In Chapter 5 we determine all subschemes
for cyclotomic schemes with three and four classes and give a brief idea for the case of
cyclotomic schemes with six classes.

Besides partial difference sets and cyclotomic schemes this thesis contains a section which is
dedicated to the starting point of the authors scientific interest (see Section 2.3). The very
first task which finally led to the present thesis was the investigation of pairs of commuting
graphs, i.e., pairs of graphs with commuting adjacency matrices. The aim was to find a
characterization for such graphs which is independent of the vertex labelings. One approach
is to consider properties of the structure of commuting graphs. A second approach which
is more natural is to investigate matrix algebras which contain adjacency matrices of com-
muting graphs. Following the second approach the author became acquainted with cellular
rings, Bose-Mesner algebras, etc. which, finally, changed his research interests from a purely
graph theoretical task to a task in algebraic combinatorics.

There are several places in this thesis where a wider presentation of the theoretical back-
ground would be nice. Especially in Chapter 3 and 4 we use objects and results from coding
theory, design theory, and other areas without presenting a comprehensive explanation.
However, presenting all these topics in detail would go far beyond the scope of this thesis.

Acknowledgements
First of all I like to thank Prof. Dr. Dr. h.c. Ulrich Knauer and Prof. Dr. Mikhail H.
Klin. In the lectures of U. Knauer I became acquainted with algebra and graph theory.
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Chapter 2

Groups and Graphs

2.1 Preliminaries

In this section we will give necessary preliminaries and notations which we use throughout
this thesis. We restrict ourselves to the presentation of definitions and results, proofs are
omitted. Basic definitions and results in classical group theory are not presented here, we
refer to [Hup67] or [Hal76]. For information about special finite groups (names, symbols,
notations), which are not explained in this thesis, we refer to the Atlas of finite groups
[CCNPW85] and the Atlas of finite group representations [BLNPRSTWW01]. A more gen-
eral introduction into the theory of permutation groups is the book of Wielandt [Wie64].
An overview of combinatorial objects can be found in [vLiW92], for further results in graph
theory see [Har95]. For more information about cellular rings (resp. coherent algebras) we
refer to [FarKM94], a detailed introduction is also given in [KliRRT99].

2.1.1 Permutation groups

Let V be a set of order v. A one-to-one mapping of V onto itself is called a permutation
on V . The image of an element x ∈ V with respect to a permutation α is denoted by xα.
For two permutations α, β on V we define the product αβ by xαβ := (xα)β for all x ∈ V .
Clearly, this product is again a permutation on V . The set of all permutations on V forms
a group which is called the symmetric group. The symmetric group on V is denoted by
SV ; if V = {1, . . . , v}, then we will also write Sv instead of SV . Each subgroup H of order n
of the symmetric group SV is called a permutation group on V of order n and degree
v, it will be denoted by (H, V ) or simply by H if it is clear that H acts on V .
Notice that by this definition permutation groups are always finite and act on finite sets. It
is possible to give an extended definition, e.g., permutation groups acting on infinite sets.
However, in this thesis we only consider the finite case.

Each permutation group (H, V ) of degree v can be represented as a group of v× v-matrices
with entries 0 and 1: For each permutation σ ∈ H we define a matrix P (σ) = (pij)i,j∈V

by pij := 1 if iσ = j and pij := 0 otherwise. The matrix P (σ) is called the permutation

13
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matrix of σ. It is easy to see that each permutation matrix has exactly one entry 1 in each
row and in each column.

For the permutation groups of order n with degree v we define an equivalence relation:

Definition 2.1.1 Let V, W be two sets of order v and let (H, V ), (K, W ) be two permutation
groups. The groups (H, V ), (K, W ) are called similar permutation groups, if there exists
a bijection σ : V → W , such that K = {σ−1hσ|h ∈ H}.

In the following we will give some results for permutation groups which are important for
this work. For further results on permutation groups we refer to [Wie64].
Let (H, V ) be a permutation group. Then for x ∈ V the set {xα|α ∈ H} is called the
orbit of x under H. The permutation group (H, V ) induces a permutation group H̃ on
V ×. . .×V (k times, k ≥ 1 ) by (x1, . . . , xk)

α̃ := (xα
1 , . . . , xα

k ) for all (x1, . . . , xk) ∈ V ×. . .×V
and α ∈ H. The orbits of H̃ are called k-orbits of H. The group (H, V ) also induces a

permutation group Ĥ on the set of k-element subsets of V by {x1, . . . , xk}α̂ := {xα
1 , . . . , xα

k}
for distinct xi ∈ V, 1 ≤ i ≤ k and α ∈ H. The orbits of the group Ĥ are called {k}-orbits.

Definition 2.1.2 A permutation group (H, V ) is called transitive, if it has exactly one
orbit in V , i.e., {xα|α ∈ H} = V for all x ∈ V .

Definition 2.1.3 Let (H, V ) be a permutation group. Then for an element x ∈ V the set
Hx := {α ∈ H|xα = x} is called the stabilizer of x in H.

It is easy to check that for all x ∈ V the stabilizer Hx is a subgroup of (H, V ).

Definition 2.1.4 A permutation group (H, V ) is called semiregular, if for each x ∈ V we
have Hx = {e}. If (H, V ) is semiregular and transitive, then it is called regular.

There exists a helpful characterization of regular permutation groups:

Proposition 2.1.5 ([Wie64], Proposition 4.2)
A transitive permutation group (H, V ) acting on a set V with |V | = v is regular if and only
if H is of order v.

By a well-known Theorem of Cayley each abstract group H has a representation as a regular
permutation group (H, H), where the action is defined by multiplication from the right
(cf. [Hal76], Theorem 1.4.2). In this case the permutation group (H, H) is called the right
regular representation of H.

In the following we give some results from classical group theory which contain a complete
characterization for classes of groups of a certain order (cf. [Hal76], Section 4.4).

Lemma 2.1.6 Each group H of order p, p a prime, is isomorphic to Zp, i.e. H is cyclic.
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Lemma 2.1.7 Each group of order p2, p a prime, is isomorphic to Zp2 or to Zp × Zp.

Lemma 2.1.8 Each group H of order pq, where p, q are primes, p > q and p 6≡ 1 mod q, is
isomorphic to Zpq, i.e. H is cyclic.

Lemma 2.1.9 Let H be a group of order p3, p a prime. Then for H one of the following
cases holds:

1) The group H is abelian and isomorphic to one of the groups Zp3 , Zp2×Zp, Zp×Zp×Zp;

2) The group H is non-abelian, has order 8 and is isomorphic to the dihedral group D4

or the quaternion group Q;

3) The group H is non-abelian, has order p3 6= 8 and is isomorphic to the group 〈a, b〉
with ap2

= bp = 1, ab = bap+1 or to the group 〈a, b, c〉 with ap = bp = cp = 1,
ab = bac, ac = ca, bc = cb.

The next proposition gives another important characterization of a special class of groups:

Proposition 2.1.10 (cf. [Hal76], Theorem 2.5.2)
A group H is isomorphic to the direct product of subgroups Ki, i = 1, . . . , k, if

1) the subgroups Ki are normal, i = 1, . . . , k,

2) H = K1 · . . . ·Kk := {x1 · . . . · xk|xi ∈ Ki, i = 1, . . . , k} and

3) Ki ∩ (K1 · . . . ·Ki−1 ·Ki+1 · . . . ·Kk) = {e} for i = 1, . . . , k.

The definition of transitive and regular permutation groups given above can be generalized:

Definition 2.1.11 A permutation group (H, V ) is called k-transitive, k ≥ 1, if the induced
permutation group (H̃, V ×. . .×V ) acts transitively on the set of k-tuples with all coordinates
different. If this action is regular, then H is called sharply k-transitive. The group (H, V )

is called k-homogeneous, k ≥ 1, if the induced permutation group Ĥ on the set of k-
element subsets of V is transitive. If this action is regular, then (H, V ) is called sharply
k-homogeneous.

Notice that the 1-transitive resp. 1-homogeneous permutation groups are the transitive
permutation groups. It is easy to see that a k-transitive permutation group is k-homogeneous
and that a k-transitive permutation group is (k − 1)-transitive (k ≥ 2). The fact that each
k-homogeneous permutation group of degree n is also (k − 1)-homogeneous (n

2
≥ k ≥ 2) is

more difficult to prove (cf. [LivW65]).

Definition 2.1.12 Let (H, V ) be a transitive permutation group. Then the number of
2-orbits of (H, V ) is called the rank of (H, V ).
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It is not difficult to check the following remark:

Remark 2.1.13 For an element x ∈ V the rank of a transitive permutation group (H, V )
is equal to the number of orbits of Hx on V .

Now we turn to special transitive permutation groups.

Definition 2.1.14 Let (H, V ) be a transitive permutation group. The group (H, V ) is called
primitive if each equivalence relation R ⊆ V ×V , which satisfies (x, y) ∈ R ⇒ (xα, yα) ∈ R
for all α ∈ H, is trivial, i.e., R = ∆ or R = V × V where ∆ is the diagonal {(x, x)|x ∈ V }.
A transitive permutation which is not primitive is called imprimitive.

For primitive permutation groups exists an important characterization:

Theorem 2.1.15 ([Wie64], Theorem 8.2)
Let V be a set with |V | > 1 and let x ∈ V . A transitive permutation group (H, V ) is primitive
if and only if Hx is a maximal subgroup of H.

The following statements give sufficient conditions for the primitivity of permutation groups.

Proposition 2.1.16 ([Wie64], Theorem 8.3)
A transitive group of prime degree is primitive.

Proposition 2.1.17 ([Wie64], Theorem 9.6)
Every 2-transitive permutation group is primitive.

Finally, we give a result for normal subgroups of primitive permutation groups.

Proposition 2.1.18 ([Wie64], Theorem 8.8)
Let N be a normal subgroup of a primitive permutation group (H, V ) with |N | > 1. Then N
acts transitively on V .

Another special class of transitive permutation groups are the so-called generously transitive
permutation groups:

Definition 2.1.19 A transitive permutation group (H, V ) is called a generously transi-
tive permutation group, if for all i, j ∈ V there exists a permutation σ ∈ H, such that
iσ = j and jσ = i.

The terminology of generously transitive permutation groups was introduced by P. M. Neu-
mann in [Neu75].

Next we introduce the semidirect product (H o K, H) for groups H and K ≤ Aut(H).

Definition 2.1.20 Let (H, H) be a permutation group, i.e., the group H acts on itself
by right multiplication (right regular representation). Let K ≤ Aut(H) be a subgroup of
the automorphism group of H. Then the permutation group (H o K, H) with the action
h(α,β) := hβα for h ∈ H, (α, β) ∈ H o K is called the semidirect product of H and K.
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As an example for the semidirect product of two permutation groups we consider the nor-
malizer of a permutation group in the symmetric group:

Definition 2.1.21 Let H be a group and (H, H) its right regular representation. Then the
normalizer NSv((H, H)) of (H, H) in the symmetric group Sv is called the holomorph of
H.

Remark 2.1.22 (cf. [Cam99], Chapter 1.7)
Let H be a group. Then H o Aut(H) is the holomorph of H.

There are different binary operations for two permutation groups (H, V ), (K, W ) like the
product (H ×K, V ×W ), the wreath product (H, V ) o (K, W ) = (KV o H, V ×W ) where
KV is the set of all mappings V → K, the exponentiation (K,W ) ↑ (H, V ) = (KV oH, W V ),
etc. For details about their definitions we refer to [KliPR88], Chapter 1.7. Here we only
want to mention the exponentiation of two permutation groups:

Definition 2.1.23 Let (H, V ) and (K, W ) be two permutation groups. The permutation
group (K, W ) ↑ (H, V ) = (KV o H, W V ) is called exponentiation of (K, W ) with (H, V )
and is defined as follows: For h, h′ ∈ H and α, α′ ∈ KV we have (α, h) · (α′, h′) := (α′′, hh′),
where α′′ : V → K with α′′(x) := α(x)α′(xh), x ∈ V . For the action of KV o H on W V we
consider f ∈ W V and (α, h) ∈ KV o H. We have

f (α,h) : V → W with f (α,h)(x) := (f(xh−1

))α(xh−1
), x ∈ V.

We give an example in order to explain the action of the exponentiation of two permutation
groups.

Example 2.1.24 Let V := {0, 1} and W := {0, 1, 2} and consider the groups (S2, V ) and
(S3, W ). The exponentiation of (S3, W ) with (S2, V ) acts on the nine elements of W V which
can be described as pairs (f(0), f(1)) := (w1, w2), w1, w2 ∈ W , where f ∈ W V . An element
(α, h) ∈ (SV

3 o, S2) acts as follows: The element h permutes {0, 1}, i.e., the coordinates of
(f(0), f(1)) := (w1, w2) and for i ∈ V the permutation α(i) ∈ S3 acts on the ith coordinate.

In Example 3.2.48 the exponentiation (Sn ↑ S2), n ≥ 2, occurs as the automorphism group
of the lattice graph L2(n).
For the investigation of permutation groups we have some further theory. A strong tool to
describe permutation groups is the notion of its centralizer ring.

Definition 2.1.25 (cf. [FarKM94], p. 7)
Let (H, V ) be a permutation group acting on the set V of order v and for all σ ∈ H let P (σ)
be the permutation matrix corresponding to the permutation σ. The ring of v × v integer
matrices, which commute with P (σ) for every σ ∈ H, is called the centralizer ring of
(H, V ) and is denoted by V(H, V ).

In the next section we give a generalization of the centralizer ring which is not defined by a
permutation group but by axioms.
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2.1.2 Graphs

Definition 2.1.26 Let V be a finite set. A pair of sets (V, R), where R ⊆ V × V , is called
a directed, simple graph. The set V is called the vertex set and the set R is called the
arc set.
For v ∈ V the arc (v, v) is called a loop.
A graph Γ without loops is called undirected, if for each arc (v, w) of Γ there exists also the
arc (w, v) of Γ. In this case we will identify the opposite arcs (v, w) and (w, v) with the edge
{v, w}. The set of all edges E of an undirected graph Γ = (V, E) is a set of two-element
subsets of V and is called the edge set.

In this work we only consider simple, undirected graphs without loops, i.e., the edge set
consists of 2-subsets of the vertex set. If we need in some cases directed graphs, like in
Section 2.2, then we will mention this. Moreover, in general for a (directed) graph Γ = (V, E)
with n vertices we assume V = {1, . . . , n}, i.e., the vertices of the graph are labeled by the
numbers 1, . . . , n.
For σ ∈ Sn we say that the graph Γσ = (V, Eσ) with Eσ := {{vσ, wσ}|{v, w} ∈ E} is
obtained from Γ by a relabeling σ. The class of graphs Γσ, σ ∈ Sn is called an unlabeled
graph (cf. [Cam99], p. 32). The unlabeled graphs with n vertices are orbits of Sn on the
class of graphs with n vertices (using the notion of graph isomorphisms (see below) it is easy
to see that the unlabeled graphs are the isomorphism classes of graphs). Relabelings and
unlabeled graphs can be defined for directed graphs analogously.

Definition 2.1.27 Let Γ = (V, E) be a graph. Two vertices v, w ∈ V are called adjacent,
if there exists an edge {v, w} ∈ E. Then v is called a neighbour of w and vice versa.
The number of neighbours of a vertex v ∈ V is called the valency of the vertex v. If all
vertices of Γ are of the same valency k, then Γ is called regular of valency k.
A sequence of (k + 1) vertices v0, v1, . . . , vk ∈ V with {vi, vi+1} ∈ E, i = 0, ..., k − 1 is called
a path of length k. The length of the shortest path from a vertex v to a vertex w is called
the distance dΓ(v, w) of v and w. If for v, w ∈ V such a path does not exists, then we
define dΓ(v, w) := ∞. The maximal distance occurring in a graph Γ is called the diameter
of Γ.
A graph Γ = (V, E) is called connected, if for each v, w ∈ Γ there exist a path from v to w.

For a disconnected graph consisting of i components, each of these isomorphic to a graph Γ,
we will write i ◦ Γ.

For a graph Γ = (V, E) we define the complement Γ as follows: It has also vertex set V ,
but two vertices are adjacent if and only they are non-adjacent in Γ.
The line graph L(Γ) of a graph Γ = (V, E) has as vertex set the edge set E of Γ. Two
vertices are adjacent in L(Γ) if and only if they have one common vertex in Γ.
The graph Kn with n vertices, which has all possible edges between its vertices, is called a
complete graph. The graph denoted by Kn,m is called a complete bipartite graph and
can be described as follows: For its vertex set V there exists a partition V = V1 ∪ V2 with
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|V1| = n and |V2| = m, such that all vertices in Vi are non-adjacent, i = 1, 2, and all possible
edges between the vertices from V1 and the vertices from V2 exist.

Definition 2.1.28 Let Γ = (V, E) be a graph. For V ′ ⊆ V the graph Γ′ = (V ′, E(V ′)),
where E(V ′) consists of all edges {v, w} ∈ E with v, w ∈ V ′, is called the subgraph of Γ
induced by V ′.

There are different ways to primitive graphs. Here we follow the definition given in [BroCN89]:

Definition 2.1.29 ([BroCN89], p. 437)
Let Γ = (V, E) be a connected graph of diameter d. For i ∈ {1, . . . , d} let Γi be the graph
with vertex set V and edge set Ei := {{v, w}|dΓ(v, w) = i}. If all graphs Γi, i = 1, . . . , d, are
connected, then the graph Γ is called primitive. Otherwise, it is called imprimitive.

Since we can consider the edge set of a graph as a binary relation on the vertex set, it is
possible to describe a graph by a (0, 1)-matrix.

Definition 2.1.30 Let Γ = (V, E) be a (directed) graph. Then the matrix A = (aij)i,j∈V

with

aij :=

{
1 if (i, j) ∈ E
0 otherwise

is called the adjacency matrix of Γ.

Notice that the adjacency matrix for an undirected graph is symmetric.
In many cases the results concerning the adjacency matrix of a graph do not depend on the
concrete labeling of this graph, because a relabeling yields a graph with adjacency matrix
similar to that of the original graph.
In this thesis we have to take care of the labeling of graphs only in Section 2.3.

Important properties of (directed) graphs are their internal symmetries. The symmetries of
combinatorial objects can be described by permutation groups under which these objects
are invariant.

Definition 2.1.31
Let Γ and Γ′ be two (directed) graphs. A bijective mapping ϕ : V (Γ) → V (Γ′) is called an
graph isomorphism, if for all vertices v, w ∈ V (Γ) holds

(v, w) ∈ E(Γ) ⇐⇒ (vϕ, wϕ) ∈ E(Γ′).

An isomorphism from Γ onto itself is called an automorphism of Γ.

Remark 2.1.32 Each automorphism of a (directed) graph Γ = (V, E) is a permutation on
V . The automorphisms of Γ form a permutation group. It is called the automorphism
group of Γ and will be denoted by Aut(Γ).
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If the automorphism group of a (directed) graph acts transitively, then the graph is called
vertex transitive.
Notice that we introduced the concepts of automorphisms and adjacency matrices also
for directed graphs. We need this more general definition, including directed graphs, in
Section 2.2.
There is a connection between the primitivity of a graph and primitivity properties of its
automorphism group.

Proposition 2.1.33 ([BroCN89], Proposition A.5.1)
Let Γ be a connected graph, and let G be a subgroup of the automorphism group of Γ. Then
Γ is primitive, if G is primitive.

2.1.3 Designs, projective geometries and two-graphs

In this subsection we will give a brief introduction to the notions of designs, Steiner systems,
projective geometries and two-graphs. These objects are not in the center of this thesis,
however, they are connected to the construction of strongly regular graphs, difference sets
and partial difference sets (see Chapter 3 and 4).

Definition 2.1.34 Let V be a finite set, B be a set of nonempty subsets of V and I ⊆ V ×B
be a relation. Then the triple (V,B, I) is called an incidence structure with point set V ,
block set B and incidence relation I.
Let S = (V,B, I) be an incidence structure. For integers v, k, t, λ with v ≥ k ≥ t ≥ 0 and
λ ≥ 1 the incidence structure S is called a t-(v, k, λ)-design, if |V | = v, |B| = k for all
B ∈ B and if for each subset T ⊆ V with |T | = t there exist exactly λ blocks in B each of
them containing the elements of T .
A t-(v, k, λ)-design is called symmetric, if v = |B|, i.e., the number of points is equal to
the number of blocks.

There are several classes of designs which are of special interest in design theory. In the
following we give some examples which are used in this thesis. For an introduction to design
theory we refer to [HugP88].

Definition 2.1.35 A t-(v, k, λ)-design is called a Steiner system, if λ = 1. It will be
denoted by S(t, k, v).
A Steiner system S(2, 3, v), i.e., a 2-(v, 3, 1)-design, is called Steiner triple system and
will be denoted by STS(v).

Another class of designs we get by the so-called projective geometries:

Definition 2.1.36 Let W be a vector space of dimension n over a field Fq, where q is a
prime power. Let V be the set of all one-dimensional subspaces of W and let B be the set
of all two-dimensional subspaces of W . We can define an incidence relation I as follows:
an element x ∈ V is incident to an element B ∈ B, if x is contained in B. The incidence
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structure (V,B, I) is called a projective geometry and is denoted by PG(n − 1, q) or
PG(W ). The set V is called the point set of PG(W ) and each element of the set B is
called a line.

A projective geometry PG(2, q) is a 2-(q2+q+1, q+1, 1)-design. Is is also called a projective
plane.

For more information about projective geometries and associated permutations groups we
refer to [BigW79], Chapter 2.

Besides the Steiner systems and projective geometries a third special class of incidence
structures plays a role in the present work. These are the so-called two-graphs.

Definition 2.1.37 Let (V,B, I) be an incidence structure where each block has size 3 and
an even number of 3-subsets of each 4-subset of V are blocks in B. Then (V,B, I) is called
a two-graph and is denoted by (V,B).

A two-graph (V,B) is called regular, if there exists an integer k such that each 2-subset of
V is a subset in exactly k blocks.

From each graph Γ = (V, E), we can derive a two-graph as follows: a 3-subset of V is a
block, if an odd number of its 2-subsets are edges in E. The constructed two-graph will
be denoted by (V,B(Γ)). The switching class of a two-graph (V,B) consists of all graphs
Γ = (V, E) with B = B(Γ).

Let (V,B) be a two-graph. For each ω ∈ V there is in the switching class of (V,B) a graph
Γ which has ω as an isolated vertex. The graph with |V | − 1 vertices we get by deleting the
vertex ω in Γ is called a descendant of (V,B).

For more details about two-graphs we refer to [Sei76].

2.2 Cellular rings, association schemes and Schur rings

In this section we give an introduction to the notions of cellular rings, association schemes
and Schur rings; three concepts which are very close to each other.

2.2.1 Cellular rings

The concept of cellular rings is the most general of these three notions. It was introduced
by B. Y. Weisfeiler and A. A. Leman in [WeiL68]. For the definition of cellular rings and
their basic properties presented below we refer to [FarKM94], Chapter 1.
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Definition 2.2.1 (cf. [FarKM94], p.4)

A cellular ring W of degree n and rank r is a ring of n × n integer matrices which
satisfies the following conditions:

1. W as a Z-module has a basis {A1, . . . , Ar} of (0, 1)-matrices;

2. ∀i ∈ {1, . . . , r} ∃ j ∈ {1, . . . , r} : At
i = Aj;

3.
∑r

i=1 Ai = Jn, where Jn is the matrix with all entries equal to 1;

4. In ∈ W , where In is the unit matrix.

In general, the last condition is not necessary for the definition of a cellular ring; cellular
rings can also be defined without unit matrix. However, in this work we only consider cellular
rings with unit matrix.

The basis in Condition 1 is called the standard basis of W . If W is a cellular ring with
standard basis {A1, . . . , Ar}, we will also write W := 〈A1, . . . , Ar〉. We will call the elements
of the standard basis of a cellular ring W the basis matrices of W .

Since the basis matrices are (0, 1)-matrices, they can be interpreted as adjacency matrices of
directed graphs Γ(Ai), i = 1, . . . , r. These graphs are called the basis graphs of W . If it is
convenient, we will use the notation W := 〈Γ(A1), . . . , Γ(Ar)〉 instead of W := 〈A1, . . . , Ar〉.
If all basis graphs of a cellular ring W are regular, i.e., all vertices of a graph have the same
number of incoming arcs and the same number of outgoing arcs, then W is called a cell.

By Condition 3 all basis graphs together form a complete graph. It can be considered as a
complete colored graph, if the arcs of a basis graph have the same color and we have different
colors for different basis graphs.

The multiplication in a cellular ring W := 〈A1, . . . , Ar〉 is completely determined by nonneg-
ative integers pk

ij, 1 ≤ i, j, k ≤ r, which are called the structure constants of the cellular
ring W : For basis matrices Ai, Aj we have

AiAj =
r∑

k=1

pk
ijAk.

For given numbers i, j, k ∈ {1, . . . , r}, the number pk
ij can be interpreted as the number of

paths of length 2 in the complete colored graph of W connecting the ends of a fixed arc
(u, w) of color k along an arc (u, v) of color i and an arc (v, w) of color j:

pk
ij = |{v |(u, v) has color i, (v, w) has color j}|, where (u, w) has color k.

If the cellular ring is commutative, then we have pk
ij = pk

ji for all 1 ≤ i, j, k ≤ r. For
commutative cellular rings we have a sufficient condition:
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Proposition 2.2.2 Let W := 〈A1, . . . , Ar〉 be a cellular ring. If all basis matrices A1, . . . , Ar

are symmetric, i.e., all basis graphs are undirected, then W is commutative.

Proof: Since the basis matrices are symmetric, all matrices in W are symmetric. Thus, for
A, B ∈ W we have AB ∈ W and AB = (AB)t = BtAt = BA. 2

Remark 2.2.3 If in Definition 2.2.1 we take matrices with entries from the complex field
C, then we get a matrix algebra which is called a coherent algebra (cf. [Hig70]). Coherent
algebras are of importance for investigations where computations in a field are necessary.
For our purposes it is sufficient to consider cellular rings with matrices over Z.

For historical remarks about cellular rings and coherent algebras see Section 2.2.4.

A simple example of a cellular ring is W = 〈In, Jn − In〉 which is a cellular ring of rank 2.
Cellular rings of rank 2 will be called trivial. Examples of nontrivial cellular rings are the
centralizer rings of permutation groups which are not 2-transitive (see Definition 2.1.25).
The rank of a cellular ring which is a centralizer ring of a permutation group (H, V ) equals
the rank of the permutation group (H, V ). The arcs of the basis graphs of this cellular ring
are the 2-orbits of (H, V ). If the group H acts transitively on V , then the centralizer ring
V(H, V ) is a cell.

Example 2.2.4 The non-reflexive basis graphs of the centralizer ring V(D6) of the dihedral
group D6 acting on {1, . . . , 6}:

Since all basis graphs are undirected, the cellular ring V(D6) is commutative.

It turns out that, in general, a cellular ring is not a centralizer ring of a suitable permutation
group. An example of H. Wielandt is given in [Wie64] (Theorem 26.4). This fact leads to
the following definition:

Definition 2.2.5 A cellular ring is called Schurian, if it is the centralizer ring of a suitable
permutation group.

Now we introduce cellular subrings:

Definition 2.2.6 A subring W ′ of a cellular ring W is called a cellular subring, if it
satisfies the conditions in Definition 2.2.1.
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It is easy to see that the basis elements of a cellular subring W ′ ≤ W can be obtained by
summing basis elements of W . However, in general, we cannot sum up basis matrices arbi-
trarily for the construction of basis matrices of cellular subrings. This is only in exceptional
cases possible:

Definition 2.2.7 (cf. [GolIK94], p. 169)
A cellular ring W = 〈In, A1, . . . , Ar〉 is called an amorphic cellular ring, if for each
partition M1 ∪ . . . ∪ Ms = {1, . . . , r} and matrices Bi :=

∑
j∈Mi

Aj, i = 1, . . . , s, the set
{In, B1, . . . , Bs} is a basis of a cellular subring of W .

The amorphic cellular rings have a lot of nice properties: Each cellular subring of an amorphic
cellular ring is again amorphic. It is clear that cellular rings of rank 3 are amorphic; first
nontrivial cases appear for cellular rings of rank 4. Each basis matrix of an amorphic cellular
ring of rank 4 is the adjacency matrix of a (possibly trivial) strongly regular graph (strongly
regular graphs are defined in Definition 3.1.1). For further results for amorphic cellular rings
we refer to [GolIK94].

Since the matrices of the standard basis of a cellular ring can be interpreted as (basis) graphs,
we define the automorphism group of a cellular algebra W := 〈A1, . . . , Ar〉 by

Aut(W ) :=
r⋂

i=1

Aut(Γ(Ai)).

With the concept of cellular rings a Galois correspondence between permutation groups and
cellular rings can be described. We do not want to go into details here and only mention
two simple facts:

Remark 2.2.8 ([FarKM94], p. 16)
Let (H, V ), (H ′, V ) be two permutation groups with H ≤ H ′. Then for the corresponding
centralizer rings we have V(H ′, V ) ≤ V(H, V ).
Let W, W ′ be two cellular rings with W ≤ W ′. Then we have Aut(W ′) ≤ Aut(W ).
Moreover, for a permutation group (H, V ) and a cellular ring W we have the following
inclusions:

Aut(V(H, V )) ≥ (H, V ) and V(Aut(W )) ≥ W.

For cells, i.e., cellular rings where all basis graphs are regular, we consider the special case
when all non-reflexive basis graphs are connected. Notice, that we call a directed graph
Γ = (V, R) connected, if the undirected graph Γ′ = (V, E) with E := {{u, v}|(u, v) ∈ R} is
connected.

Definition 2.2.9 (FarKM94], Definition 2.3.1)
The cell W = 〈In, A1, . . . , Ar〉 is called primitive, if all non-reflexive basis graphs
Γ(A1), . . . , Γ(Ar) are connected. Otherwise, W is called imprimitive.
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Proposition 2.2.10 (FarKM94], Proposition 2.3.1)
The permutation group (H, V ) is primitive if and only if the centralizer ring V(H, V ) is
primitive.

Corollary 2.2.11 (FarKM94], Corollary 2.3.2)
Let W be a cellular ring. If Aut(W ) is a primitive permutation group, then W is also
primitive.

2.2.2 Association schemes

In this section we will introduce association schemes which can be considered as special
cellular rings. However, the theory of association schemes was developed independently
from the theory of cellular rings and was based on a different motivation (see Section 2.2.4).

Definition 2.2.12 ([FarKM94], pp. 9-10)
Let V be a finite set and let Ri ⊆ V × V, i = 0, . . . , d, satisfy the following conditions:

1. R0 = ∆ := {(x, x)|x ∈ V };

2. R0 ∪R1 ∪ . . . ∪Rd = V × V, Ri ∩Rj = ∅ for i 6= j;

3. Rt
i := {(y, x)|(x, y) ∈ Ri} = Rj for some j ∈ {0, . . . , d};

4. For all i, j, k ∈ {0, . . . , d} and for (u, w) ∈ Rk the number

pk
ij = |{v ∈ V |(u, v) ∈ Ri, (v, w) ∈ Rj}|

does not depend on the choice of the pair (u, w) ∈ Rk.

Then M = (V, {Ri}d
i=0) is called an association scheme on V with d classes. The

numbers pk
ij are called the intersection numbers of M.

If we have Rt
i = Ri for each i ∈ {0, . . . , d} in Condition 3, then the association scheme is

called symmetric.
For an association scheme M = (V, {Ri}d

i=0) we denote by Ai = A(Ri) the adjacency matrix
of the graph Γi := (V, Ri), i ∈ {0, . . . , d}. The matrices A0, . . . , Ad generate a coherent
algebra A(M) (over C) which is called the adjacency algebra of M or the Bose-Mesner
algebra of M.
One can check that the concept of association schemes coincides with the concept of cells,
i.e., with the class of cellular rings, where all basis graphs are regular (A(M) over Z).
On the basis of this fact we can switch between these two concepts in case of applications
for different tasks. Traditionally, the language of association schemes is often used in the
symmetric case. In this work we will use the language of association schemes in Chapter 5.
Otherwise we will use the notion of cellular rings.
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2.2.3 Schur rings

Schur rings first were studied by I. Schur [Sch33] and H. Wielandt [Wie35], [Wie49] in their
work about permutation groups. The idea of Schur was to investigate a permutation group
(G, H) containing a regular subgroup (H, H), by its transitivity module B(G, H) in the
group ring Z(H).

Definition 2.2.13 (cf. [Wie64], Chapter 21)
Let H be a group. Then the set of all formal sums

∑
h∈H ahh with integer coefficients ah

and the below given operations is called the group ring Z(H). For T ⊆ H the element
T :=

∑
h∈T h is called a simple quantity.

In a group ring Z(H) we have the following operations for elements
∑

h∈H ahh,
∑

h∈H bhh:∑
h∈H

ahh +
∑
h∈H

bhh :=
∑
h∈H

(ah + bh)h, c
∑
h∈H

ahh :=
∑
h∈H

(cah)h, c ∈ Z,

(∑
h∈H

ahh

)(∑
h∈H

bhh

)
:=

∑
h∈H

( ∑
g·g′=h

agbg′

)
h.

Definition 2.2.14 (cf. [FarKM94], p.8)
Let H be a group. A subring S of the group ring Z(H) is called a Schur ring over H of
rank r, if the following conditions are satisfied:

1. S as a Z-module has a basis {T1, . . . , Tr} formed of simple quantities;

2. T1 = {e} and
∑r

i=1 Ti = H, i.e., {T1, . . . , Tr} is a partition of H;

3. ∀i ∈ {1, . . . , r} ∃j ∈ {1, . . . , r} : T−1
i := {h−1|h ∈ Ti} = Tj.

For a Schur ring S with basis {T1, . . . , Tr} we write S = 〈T1, . . . , Tr〉; in this case the
simple quantities T i, 1 ≤ i ≤ r are called basis quantities. If we have T−1

i = Ti for all
i ∈ {1, . . . , r}, then the Schur ring is called symmetric. The Schur rings S1 = 〈{e}, H \ {e}〉
and S2 = 〈{x}|x ∈ H〉 over a group H are called trivial.

Example 2.2.15 We consider the Schur rings over the group (Z5, +); notice that the group
is given in additive notation. There exist three Schur rings over (Z5, +), two trivial Schur
rings and S := 〈{0}, {1, 4}, {2, 3}〉. As an example for the manipulation with basis quantities
of S consider:

{1, 4}+ {2, 3} = {1, 2, 3, 4},

{1, 4} {1, 4} = {1 + 1, 4 + 1, 1 + 4, 4 + 4} = 2{0}+ {2, 3}.
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Definition 2.2.16 Let H be a group and let (G, H) be a permutation group which has a
regular subgroup (H, H). Let {T1, . . . , Tr} be the orbits of the stabilizer Ge of the identity
element where T1 := {e}. Then B(G, H) := 〈T 1, . . . , T r〉 is called the transitivity module
of (G, H).

The following proposition is an important result of Schur:

Proposition 2.2.17 (cf. [Sch33], §2, Satz E)
Let H be a group and let (G, H) be a permutation group which has a regular subgroup (H, H).
The transitivity module B(G, H) is a Schur ring over H.

We have a relation between the transitivity module B(G, H) and the centralizer ring V(G, H):

Theorem 2.2.18 ([Wie64], Theorem 28.8)
Let H be a group and let (G, H) be a permutation group which has a regular subgroup (H, H).
Then the transitivity module B(G, H) = 〈T 1, . . . , T r〉 is isomorphic to the centralizer ring
V(G, H) := 〈A1, . . . , Ar〉. The basis matrices A1, . . . , Ar correspond to the basis quantities
T 1, . . . , T r.

In particular, B(H, H) and V(H, H) are isomorphic and one can check that there is a one-
to-one-correspondence between the cellular subrings of the centralizer ring V(H, H) and the
Schur rings over H, i.e., the Schur subrings of B(H, H).
As mentioned in Section 2.2.1 it is not true that every cellular ring is the centralizer ring
of a suitable permutation group. The same result holds for Schur rings, in general, a Schur
ring over a group H is not the transitivity module of a suitable permutation group (G, H).
As in Definition 2.2.5 we will call a Schur ring which is the transitivity module of a suitable
permutation group Schurian.

Definition 2.2.19 ([Wie64], Definition 23.2)
A Schur ring S over a group H is called primitive, if K = {e} and K = H are the only
subgroups of H for which K ∈ S holds. Otherwise, S is called imprimitive.

As in the case of cellular rings it turns out that primitive Schur rings which are Schurian
correspond to primitive permutation groups:

Theorem 2.2.20 ([Wie64], Theorem 24.12)
Let H be a group and let (G, H) be a permutation group which has a regular subgroup (H, H).
The group (G, H) is primitive if and only if the transitivity module B(G, H) is a primitive
Schur ring.

An important theorem about the basis quantities of Schur rings over abelian groups is due
to Schur and Wielandt.

Theorem 2.2.21 (Schur-Wielandt) (cf. [Wie64], Theorem 23.9)
Let S be a Schur ring over an abelian group H of order n. For a basis quantity T the quantity
T (m) :=

∑
h∈T hm is a basis quantity, if gcd(m, n) = 1.
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For gcd(m,n) = 1 the quantity T (m) is called a quantity conjugated to T . The sum of
all quantities conjugated to T is called the trace of T .

Definition 2.2.22 Let S be a Schur ring over a group H of order n and let (K, H) be
a permutation group acting on the elements of H. We say that (K, H) preserves basis
quantities of the Schur ring S = 〈T 1, . . . , T r〉, if for Ti ∈ {T1, . . . , Tr} and for all α ∈ K
holds Tα

i := {hα|h ∈ Ti} ∈ S.

Proposition 2.2.23 ([FarKM94], Proposition 2.4.1)
Let (H, +) be an abelian group of order n and let Z∗

n be the multiplicative group of residues
mutually prime with n. For h ∈ H and µ ∈ Z∗

n let hµ := h + . . . + h (µ times). Then the
permutation group (Z∗

n, H) preserves all basis quantities for any Schur ring over H.

The statement of Proposition 2.2.23 follows with the Theorem of Schur-Wielandt (notice
that we changed to additive notation (H, +)). Moreover, we get that for each basis quantity
T of a Schur ring S over a group (H, +) the image µT , µ ∈ Z∗

n is again a basis quantity in S.
Thus, we can say that the permutation group (Z∗

n, H) preserves all Schur rings over (H, +).

Proposition 2.2.24 ([FarKM94], Proposition 2.4.6)
Let (H, +) be an abelian group of order n and (Z∗

n, H) be a permutation group preserving
all Schur rings over H. Let O0 = {0}, O1, . . . , Ok be all distinct orbits of (Z∗

n, H). Then
〈O0, . . . , Ok〉 is a Schur ring over H.

Remark 2.2.25 In the previous proposition we get the same Schur ring 〈O0, . . . , Ok〉 if we
take the orbits of the permutation group (Z∗

m, H) instead of (Z∗
n, H), where m is the exponent

of the group (H, +) (i.e., m := min{µ ∈ N|µh = 0 for all h ∈ H}).

Definition 2.2.26 ([FarKM94], Definition 2.4.3)
The Schur ring 〈O0, . . . , Ok〉 over the abelian group H in Proposition 2.2.24 is called the
complete Schur ring of traces over H.

The complete Schur ring of traces allows us to determine some classes of primitive Schur
rings over certain abelian groups (see Section 3.2.3).

2.2.4 Historical remarks

In this Section 2.2 we gave the definitions of three concepts, namely, cellular rings, association
schemes and Schur rings, which are very close to each other: The concept of association
schemes coincides with the class of cells and the class of cells corresponds by Theorem
2.2.18 to the class of Schur rings. The reason for the existence and for the application of
three similar objects we find in the development of these three concepts by different authors
working on different problems.
The mathematician I. Schur and his student H. Wielandt developed the theory of Schur rings
for the investigation of permutation groups (cf. [Sch33], [Wie35], [Wie49], [Wie64]). With aid
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of the theory of Schur rings they wanted to find sufficient conditions that each permutation
group (G, H), which contains a given regular group (H, H) as subgroup, is either imprimitive
or doubly transitive, i.e., that (H, H) is a B-group (Burnside group). Later in the 50’s H.
Wielandt intensified the consideration of the centralizer ring of a permutation group. His
main results are published in [Wie64].

Association schemes were introduced by R. C. Bose and T. Shimamoto in [BosS52]. The
motivation came from the investigation of special kinds of partitions of the cartesian square
for the construction of partially balanced block designs. In [BosM59] R. C. Bose and D.
M. Mesner gave a definition of an associated matrix algebra for each association schemes,
which nowadays is called Bose-Mesner algebra. The investigation of association schemes
was intensified after a connection to algebraic codes, strongly regular graphs and distance
regular graphs was discovered (e.g., [Del73]). Association schemes became one of the most
important objects in algebraic combinatorics.

The concept of cellular rings, or more general, the concept of cellular algebras was intro-
duced by B. Y. Weisfeiler and A. A. Leman from Moscow in [WeiL68]. Their motivation
was based on various questions like identification of graphs, computation of automorphism
groups of graphs, enumeration of special classes of graphs, etc. (see [Wei76]). Some time
after Weisfeiler and Leman, in 1970, D. G. Higman independently introduced his concept of
coherent configurations (see [Hig70]). Higman’s main aim was to extend certain results of
group representation theory to the theory of coherent configurations. Later, when the results
of Weisfeiler and Leman were published in the western world, it turned out that the concept
of coherent configurations coincides (up to language) with the concept of cellular algebras
with identity. Due to the fact that these two concepts were developed independently, in this
thesis we will use the name coherent algebra in the complex case and the name cellular ring
in the integer case.

For a more detailed historical survey we refer to [FarKM94], Section 1.4 or [KliRRT99],
Section 10.

2.3 Graphs, commuting with a given graph

In this section the author wants to give a brief overview about the initial point of his
scientific interest: the investigation of commuting graphs. At first view, the distance from
this initial point, a pure graph-theoretical problem, to the present thesis, the investigation
of special classes of Schur rings, seems to be far. However, the way the author has gone
resp. his interests developed is not unnatural. In fact, most of the result that were obtained
by arguments based on structural properties of graphs, can be also explained in terms of
cellular rings.

In Proposition 2.2.2 we have shown that a cellular ring with symmetric basis matrices is
commutative. If we consider these basis matrices as (basis-)graphs, we get a property for sets
resp. pairs of graphs, which one can investigate as a graph-theoretical problem independently
of the theory of cellular rings. The investigation of pairs of graphs with commuting adjacency
matrices may give new information about eigenvectors of graphs (see below). This was the
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initial motivation for the author.
A part of the results in this Section are published in [Hei99].

Definition 2.3.1 Let ΓA, ΓB be graphs with n vertices. We say that the graph ΓB com-
mutes with ΓA, if there exists a relabeling σ ∈ Sn such that the adjacency matrices of ΓA

and Γσ
B commute, i.e., one has A(ΓA)A(Γσ

B) = A(Γσ
B)A(ΓA). In this case the graphs ΓA, ΓB

are also called commuting graphs.

Recall that we assume that the vertices of a graph are labeled by {1, . . . , n} and that a
relabeling is a permutation σ ∈ Sn (see Page 18).

The investigation of commuting graphs is connected with the study of eigenvalues and eigen-
vectors of graphs. One question that is being investigated for a long time is the question
of relations between structural properties of a graph and its eigenvalues and eigenvectors
(cf. [CveDS80], [CveRS97]). One strategy to get results in the case of eigenvalues is to con-
sider pairs of isospectral nonisomorphic graphs (PINGs), i.e., pairs of graphs which have the
same spectrum. It follows immediately that on the one hand, different properties of these
graphs cannot depend on the spectrum. On the other hand, common properties of these
isospectral graphs may depend on the spectrum. In the case of eigenvectors of graphs we
can consider pairs of graphs with ”same” eigenvectors. Here we have to explain the meaning
of ”same” eigenvectors. Since we find for each graph on n vertices an orthonormal basis of
Rn consisting of the eigenvectors of the graph, it is natural to consider pairs of graphs ΓA

and ΓB with n vertices for which an orthonormal basis of Rn exists such that all vectors
of this basis are eigenvectors of ΓA and eigenvectors of ΓB. These graphs are exactly the
commuting graphs, because we have the following statement from linear algebra:

Proposition 2.3.2 (cf. [Gan86], Kapitel 8.5, Folgerung 3)
Let A1, ..., Am ∈ M(n × n, R) be symmetric matrices. Then the following statements are
equivalent:

(i) AiAj = AjAi, for all i, j ∈ {1, ...,m}.

(ii) There exists an orthonormal basis {v1, ..., vn} of Rn such that v1, ..., vn are eigenvectors
of Ai, i = 1, ...,m.

We can immediately give some trivial examples of pairs of commuting graphs:

Remark 2.3.3
1. Every graph commutes with itself.
2. Every graph with n vertices commutes with Kn.

If we interpret the product of two adjacency matrices of graphs in a graph-theoretical way,
we get another characterization of commuting graphs.

Let ΓA = (VA, EA) be a graph. Then for a vertex i ∈ VA and a permutation σ ∈ Sn we
denote by Nσ

A(i) := {j ∈ VA|{i, j} ∈ Eσ
A} the set of neighbours of i in the graph Γσ

A. If
σ is the identity in Sn, then we also write NA(i) instead of Nσ

A(i).
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Remark 2.3.4 ([Hei99], Remark 5)
Let ΓA = (VA, EA), ΓB = (VB, EB) be graphs with adjacency matrices A = (aij)ij, B = (bij)ij.
Then for all i, j ∈ VA = VB = {1, . . . , n} we have

n∑
k=1

aikbkj = |NA(i) ∩NB(j)|.

Proof: Since

AB =

(
n∑

k=1

aikbkj

)
ij

,

we obtain for all i, j ∈ VA = VB :

n∑
k=1

aikbkj =
n∑

k∈NA(i)∩NB(j)

1 = |NA(i) ∩NB(j)|.

2

Proposition 2.3.5 ([Hei99], Lemma 6)
Two graphs ΓA = (VA, EA), ΓB = (VB, EB) commute if and only if a relabeling σ of ΓB exist,
such that for all i, j ∈ VA = VB the following holds

|NA(i) ∩Nσ
B(j)| = |NA(j) ∩Nσ

B(i)|.

Proof: Two symmetric matrices commute if and only if the matrix product is symmetric:

AB = ((AB)t)t = (BtAt)t = (BA)t.

The assertion follows with Remark 2.3.4. 2

The characterization of commuting graphs in Proposition 2.3.5 depends on the relabeling of a
graph. Thus, this proposition is not very helpful for checking directly if two given graphs com-
mute, because it takes too much time to check the condition |NA(i)∩Nσ

B(j)| = |NA(j)∩Nσ
B(i)|

for all i, j ∈ VA = VB and for each relabeling σ of ΓB. However, this proposition is a useful
theoretical result for proving further statements.

At this point we have two main questions:

1. Is there a way of finding out, if two given graphs commute, without considering rela-
belings of these graphs?

2. Is there a possibility to construct pairs of commuting graphs?

In case of regular graphs there are some results for the first question.
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Proposition 2.3.6 ([Hei99], Proposition 7)

1. A graph Γ with n vertices commutes with the complete graph Kn if and only if Γ is
regular.

2. Let Γ1 and Γ2 be commuting graphs and let Γ2 be regular. Then Γ2 commutes with Γ1,
the complement of Γ1.

3. A graph Γ = (V, E) with |V | = 2n commutes with the complete bipartite graph Kn,n, if
Γ is a regular subgraph of Kn,n.

Proof:

1. For all vertices i, j of the graphs Γ and Kn we have:

|NKn(i) ∩NΓ(j)| = |NKn(j) ∩NΓ(i)| ⇔ |NΓ(j)| = |NΓ(i)|.

Since Γ is regular, the equality |NΓ(j)| = |NΓ(i)| is satisfied for all vertices i, j and by
Proposition 2.3.5 we get the assertion.

2. By hypothesis we assume that the graph Γ2 is relabeled such that the adjacency ma-
trices A(Γ1), A(Γ2) commute. By the definition of the complementary graph we know
that A(Kn)−A(Γ1) is the adjacency matrix of Γ1. By 1 and the hypothesis it follows:

A(Γ1)A(Γ2) = (A(Kn)− A(Γ1))A(Γ2) = A(Kn)A(Γ2)− A(Γ1)A(Γ2)
= A(Γ2)A(Kn)− A(Γ2)A(Γ1) = A(Γ2)(A(Kn)− A(Γ1))
= A(Γ2)A(Γ1).

3. Since Γ is a subgraph of Kn,n there exists a common relabeling for Γ and Kn,n such that
A(Γ) =

(
0 C1

Ct
1 0

)
and A(Kn,n) =

(
0 C2

Ct
2 0

)
, where C1, C2 are (0, 1)-matrices with n

rows and columns. All row sums and column sums of the matrix C1 are equal because
Γ is regular. All the entries of the matrix C2 are 1 because Kn,n is completely bipartite.
Thus, the equations C1C

t
2 = C2C

t
1 and C2C

t
1 = C1C

t
2 hold and Assertion 3 follows.

2

With Proposition 2.3.6 and Remark 2.3.3 we can construct examples of families of commuting
graphs:

Example: Below, we have a family of six pairwise commuting graphs. Clearly, by Remark
2.3.3 each graph with six vertices commutes with K6. Since all graphs are regular, by
Proposition 2.3.6.1 they all commute with K6. The graph C6 is a regular subgraph of K3,3,
hence, they commute by Proposition 2.3.6.3. The remaining cases follow by Proposition
2.3.6.2.
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The fact that the graphs in the previous example commute pairwise can be explained from
another point of view: Notice that all the graphs of this family can be described as elements
in the centralizer ring of the dihedral group D6. Since the graphs of the non-reflexive basis
matrices of this centralizer ring are the undirected graphs C6, 2 ◦ K3, 3 ◦ K2 (see Example
2.2.4), it is clear that the above given graphs commute (Proposition 2.2.2).

The main result of the following proposition is that a connected, regular graph does not
commute with a non-regular graph.

Proposition 2.3.7 ([Hei99], Proposition 8)
Let Γ be a graph. The graph Γ is regular if and only if there exists a connected, regular graph
that commutes with Γ.

Proof:
”⇒” By Proposition 2.3.6 every regular graph with n vertices commutes with Kn, which is
connected and regular.
”⇐” Let Γ1, Γ2 be commuting graphs and let Γ2 be connected and regular. Then we know
that Γ2 has a one-dimensional eigenspace {λ(1, ..., 1)|λ ∈ R} ([CveDS80], Theorem 3.23,
[ColS57], Satz 2). Since Γ1 and Γ2 commute, by Proposition 2.3.2 there exists an orthonormal
basis of Rn consisting of common eigenvectors of Γ1 and Γ2. One vector of this basis is
1√
n
(1, ..., 1). Thus, (1, ..., 1) is eigenvector of Γ1 and the graph Γ1 is regular.

2

With aid of Lemma 2.3.5 we can proof a sufficient condition, when two given graphs commute.

Proposition 2.3.8 Let ΓA = (V, EA), ΓB = (V, EB) be two vertex transitive graphs. The
graphs ΓA and ΓB commute, if there exists a relabeling σ ∈ Sn such that for all i, j ∈ V a
common automorphism ϕ ∈ Aut(ΓA) ∩ Aut(Γσ

B) exists with iϕ = j and jϕ = i.
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Proof: We know by Lemma 2.3.5 that ΓA and ΓB commute if and only if a relabeling σ of
ΓB exists with

|NA(i) ∩Nσ
B(j)| = |NA(j) ∩Nσ

B(i)| for all i, j ∈ V.

Since there is a relabeling σ such that for all i, j ∈ V there exists an automorphism
ϕ ∈ Aut(ΓA) ∩ Aut(Γσ

B) with iϕ = j and jϕ = i, it follows for all i, j ∈ V with suitable
automorphism ϕ:

|NA(i) ∩Nσ
B(j)| = |(NA(j) ∩Nσ

B(i))ϕ| = |(NA(i))ϕ ∩ (Nσ
B(j))ϕ|

= |NA(iϕ)) ∩Nσ
B(jϕ)| = |NA(j) ∩Nσ

B(i)|.
2

From the view point of centralizer rings the graphs ΓA = (V, EA), Γσ
B = (V, Eσ

B) in the
previous proposition are elements of the centralizer ring of G := Aut(ΓA) ∩ Aut(Γσ

B). The
group G acts on the set V generously transitively (cf. Definition 2.1.19) and since for each
pair (i, j) ∈ V ×V there exist a permutation ϕ ∈ G such that (iϕ, jϕ) = (j, i), the 2-orbits of
G are symmetric. Symmetric 2-orbits imply symmetric basis matrices of the centralizer ring
of G and thus, the centralizer ring of G is commutative by Proposition 2.2.2, in particular,
the graphs ΓA, ΓB commute.
A further investigation of centralizer rings of permutation groups shows that symmetric basis
matrices occur exactly in the case of generously transitive permutation groups:

Proposition 2.3.9 Let (G, V ) be a permutation group. The centralizer ring V(G) has sym-
metric basis matrices if and only if (G, V ) is transitive and for all pairs (i, j) ∈ V × V
there exists a permutation ϕ ∈ G such that (iϕ, jϕ) = (j, i), i.e., if and only if (G, V ) is a
generously transitive permutation group.

Proof: The basis matrices of V(G) are symmetric if and only if the 2-orbits of (G, V ) are
symmetric. A 2-orbit is symmetric, if for all elements (i, j) the pair (j, i) is also element
of this 2-orbit, i.e., if and only if there exists a permutation ϕ ∈ G with (iϕ, jϕ) = (j, i).
Since the 2-orbits form a partition of V × V , this condition must be satisfied for all pairs
(i, j) ∈ V ×V , i.e., (G, V ) is transitive and for all pairs (i, j) ∈ V ×V it exists a permutation
ϕ ∈ G with (iϕ, jϕ) = (j, i).

2

A short time before submitting this thesis the author was informed by M. H. Klin that the
result of Proposition 2.3.9 is already known (e.g., see [BanI84], Example 2.1). Moreover, in
1980 J. Saxl gave a classification of all generously transitive representations of the symmetric
groups Sn, n > 18 (in terms of multiplicity-free representations, see [Sax81]). The task for
n ≤ 18, where many ”sporadic” examples appear, was finally finished by I. E. Pankratova
(Kiev) in her Phd-thesis.

The centralizer rings of transitive groups are cells, i.e., all basis graphs are regular. In the
following we turn to the case of non-regular graphs, where the groups are intransitive.
It is easy to construct pairs of non-regular, commuting graphs when the graphs are discon-
nected.
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Remark 2.3.10 Let Ci, Di ∈ M(ni × ni, R), i = 1, . . . , k. Then the matrices
C1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Ck

 and


D1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Dk


commute if and only if Ci and Di commute, i = 1, . . . , k.

Proof: We get the assertion immediately by matrix multiplication. 2

Hence, if we have pairs of commuting, regular graphs (Γi, Φi), i = 1, ..., k, it is easy to join
them and to get a pair of commuting regular graphs, one with components Γi, i = 1, . . . , k
and one with components Φi, i = 1, . . . , k.

The more difficult case is to construct pairs of non-regular, connected, commuting graphs.
The following lemma gives an idea how to get such a pair of graphs.

Lemma 2.3.11 ([Hei99], Lemma 9)

Let C1, D1 ∈ M(n×n, R), C2, D2 ∈ M(m×m, R) and X ∈ M(n×m, R). Then the matrices

(
C1 X
Xt C2

)
and

(
D1 X
Xt D2

)

commute if and only if Ci and Di commute (i = 1, 2) and (C1 −D1)X = X(C2 −D2).

Proof: Again, we get the assertion immediately by matrix multiplication. 2

Now we consider the case when the matrices Ci, Di are adjacency matrices of commuting
graphs ΓCi

, ΓDi
, i = 1, 2. If there exists a nonzero (0, 1)-matrix X as described in Lemma

2.3.11, then the two composed matrices in Lemma 2.3.11 commute, they are symmetric and
have only entries 0 and 1. Thus, these composed matrices are adjacency matrices of graphs
and we have constructed a new pair of commuting graphs.

This reduces the problem of constructing pairs of commuting graphs to the problem of solving
the matrix equation (C1−D1)X = X(C2−D2). In matrix theory there are descriptions how
to solve such an equation for general matrices (cf. [Gan86]). Here a method for this special
case of (0, 1)-matrices will be presented.

Denoting A := C1 − D1 and B := C2 − D2, we get the matrix equation AX = XB where
A, B are matrices with entries 0,1 or -1. The matrices A, B can be considered as adjacency
matrices of weighted graphs ΓA, ΓB with edge weights 1 or -1. Weighted graphs are defined
as follows:
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Definition 2.3.12 Take a graph Γ = (V, E). The mapping w : V × V → R with

1. (u, v)w 6= 0 if {u, v} ∈ E and (u, v)w = 0 if {u, v} /∈ E,

2. (u, v)w = (v, u)w for all u, v ∈ V .

is called a weight function and Γ = (V, E, w) is called a weighted graph. For an edge
e = {u, v} ∈ E we call (u, v)w an edge weight of e.

For the adjacency matrix A = (auv)u,v∈V of a weighted graph Γ = (V, E, w) we define
auv := (u, v)w.

The following proposition gives necessary conditions to solve the matrix equation AX = XB
for our special case.

Proposition 2.3.13 ([Hei99], Proposition 11)
Let ΓA = (VA, EA, wA), ΓB = (VB, EB, wB) be weighted graphs with edge weights 1 or -1 and
suppose that VA = {1, ..., n}, VB = {1, ...,m} with n ≤ m. If there exists a surjective mapping
ϕ : VB → VA with ∑

k∈NB(j)

kϕ=i

(k, j)wB = (i, jϕ)wA

for all i ∈ VA, j ∈ VB, then the matrix X = (xij) i∈VA
j∈VB

with

xij :=

{
1 if jϕ = i
0 otherwise

satisfies AX = XB.

Proof: We have to show that the equation AX = XB holds, i.e., for all vertices i ∈ VA,

j ∈ VB we have
n∑

l=1

ailxlj =
m∑

k=1

xikbkj. For all i ∈ VA, j ∈ VB it holds that

(i, jϕ)wA =
∑

k∈NB(j)

kϕ=i

(k, j)wB ⇐⇒ ai,jϕ =
∑

k∈NB(j)

kϕ=i

bkj

⇐⇒
∑

l∈VA
jϕ=l

ail =
∑

k∈VB
kϕ=i

bkj

⇐⇒
n∑

l=1

ailxlj =
m∑

k=1

xikbkj.

2

Example: Constructing commuting graphs
We take two pairs of commuting graphs ΓC1 , ΓD1 and ΓC2 , ΓD2 . As described we get the
weighted graphs ΓA and ΓB, where the edges of ΓC2 get weight 1 and the edges of ΓD2

weight -1 (dotted line).
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The needed mapping ϕ : VB → VA can be taken as follows:

It is easy to check that the condition of Proposition 2.3.13 is satisfied.
With this mapping ϕ we get the matrix X and as described in Lemma 2.3.11 we get a new
pair of commuting graphs.

X =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
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In this case we cannot use the argumentation with commutative centralizer rings. Both
graphs have identical automorphism groups of order 12. This group is isomorphic to the
dihedral group D6 and has two 1-orbits: {1, 2, 3} and {4, 5, 6, 7, 8, 9}. The 2-orbits are

O1 := {(1, 1), (3, 3), (2, 2)},
O2 := {(4, 4), (6, 6), (8, 8), (7, 7), (9, 9), (5, 5)},
O3 := {(1, 2), (3, 1), (2, 3), (1, 3), (2, 1), (3, 2)},
O4 := {(1, 4), (3, 6), (2, 8), (1, 7), (3, 9), (2, 5)},
O5 := {(1, 5), (3, 7), (2, 9), (1, 9), (2, 7), (3, 5), (1, 8), (3, 4), (2, 6), (1, 6), (2, 4), (3, 8)},
O6 := {(4, 1), (6, 3), (8, 2), (7, 1), (9, 3), (5, 2)},
O7 := {(4, 2), (6, 1), (8, 3), (4, 3), (8, 1), (6, 2), (7, 2), (9, 1), (5, 3), (7, 3), (5, 1), (9, 2)},
O8 := {(4, 5), (6, 7), (8, 9), (4, 9), (8, 7), (6, 5), (7, 8), (9, 4), (5, 6), (7, 6), (5, 4), (9, 8)},
O9 := {(4, 6), (6, 8), (8, 4), (4, 8), (8, 6), (6, 4), (7, 9), (9, 5), (5, 7), (7, 5), (5, 9), (9, 7)},
O10 := {(4, 7), (6, 9), (8, 5), (7, 4), (9, 6), (5, 8)}

We can see that the 2-orbits O1 and O2 are reflexive, the 2-orbits O3, O8, O9 and O10

are symmetric and the pairs (O4, O6) and (O5, O7) are pairs of antisymmetrical 2-orbits.
Thus, the centralizer ring of the automorphism group of the two graphs has non-symmetric
2-orbits and, hence, it is not necessarily commutative. In fact, it is non-commutative, since
the corresponding matrices for O4 and O8 do not commute.



Chapter 3

Determination of partial
difference sets I:
Methods and theoretical background

In this chapter we will introduce the notions of strongly regular graphs and partial difference
sets. Moreover, we will describe the connection between these two objects and theoretical
and computational methods for the determination of partial difference sets.

In the first section necessary definitions and basic results are introduced. For the proofs we
refer to the given references.

3.1 Strongly regular graphs and partial difference sets:

a survey

3.1.1 Strongly regular graphs

Definition 3.1.1 A graph Γ = (V, E) is called a (v, k, λ, µ)-strongly regular graph if
and only if it has v vertices, it is regular of valency k, each pair of adjacent vertices has
exactly λ common neighbours and each pair of non-adjacent vertices has exactly µ common
neighbours.

A well-known example of a strongly regular graph is the Petersen graph. It is a (10, 3, 0, 1)-
strongly regular graph. The graph C5, the cycle with five vertices, is a (5, 2, 0, 1)-strongly
regular graph.

Remark 3.1.2 (cf. [vLiW92], p. 231)

If Γ is a (v, k, λ, µ)-strongly regular graph, then the complement Γ is a
(v, v − k − 1, v − 2k + µ− 2, v − 2k + λ)-strongly regular graph.

39
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A strongly regular graph Γ is called trivial , if Γ or Γ is disconnected. Otherwise, Γ is called
nontrivial.
Notice that for a disconnected (v, k, λ, µ)-strongly regular graph Γ follows λ = k − 1 and
µ = 0, i.e., it is a union of copies of complete graphs Kk+1. If v = s(k + 1), then Γ consists
of s copies of Kk+1, i.e., Γ ∼= s ◦ Kk+1. The nontrivial strongly regular graphs are exactly
the primitive strongly regular graphs (cf. Definition 2.1.29).

In this work we will only consider nontrivial strongly regular graphs.

Definition 3.1.3 (cf. [BroCN89], p. 434)
Let Γ be a strongly regular graph. Then for a vertex v ∈ V the subgraph Γ(v) := (V, E(v))
with E(v) := {{v, w} ∈ E|w ∈ V } is called a first subconstituent of Γ. The subgraph
Γ2(v) := (V, E2(v)) with E2(v) := {{v, w}|{v, w} /∈ E} is called a second subconstituent
of Γ.

For the parameters of a (v, k, λ, µ)-strongly regular graph Γ we have some necessary con-
ditions. Since the parameters for Γ and Γ are nonnegative and we consider only nontrivial
strongly regular graphs, we have

v − 1 > k > µ > 0, v − 2k + µ− 2 ≥ 0, v − 2k + λ ≥ 0.

A simple counting of vertices and edges gives the necessary equality k(k−1−λ) = µ(v−k−1)
(cf. [vLiW92], p. 232).
Some other necessary conditions are obtained from the investigation of the adjacency matrix
of a strongly regular graph.
The following remark is an easy consequence from the Definition 3.1.1:

Remark 3.1.4 A graph Γ is a (v, k, λ, µ)-strongly regular graph if and only if for the adja-
cency matrix A of Γ holds

AJ = kJv and A2 + (µ− λ)A + (µ− k)Iv = µJv,

where Jv is the matrix with all entries are 1 and Iv is the unit matrix.

Furthermore, it is not difficult to show the following remark:

Remark 3.1.5 The matrix ring 〈Iv, A,A〉 over Z generated by the unit matrix Iv and adja-
cency matrices A and A of a strongly regular graph and its complement is a cellular ring of
rank 3.

The eigenvalues of the adjacency matrix of a strongly regular graph play an important
role because they yield some further necessary conditions for the parameters. Since we
only consider connected graphs which are regular of valency k, the number k is a simple
eigenvalue of A ([ColS57], Satz 2, [CveDS79], Theorem 3.23). In addition to k, there are
only two further eigenvalues:
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Theorem 3.1.6 ([HesH71], (4.13))
For a (v, k, λ, µ)-strongly regular graph we have the eigenvalues k, r, s, where

r :=
1

2
(λ− µ +

√
(λ− µ)2 + 4(k − µ)) and s :=

1

2
(λ− µ−

√
(λ− µ)2 + 4(k − µ)).

With the spectral properties of strongly regular graphs one can prove the following theorem:

Theorem 3.1.7 (cf. [HesH71], (4.16))
For a (v, k, λ, µ)-strongly regular graph the numbers

f :=
1

2

(
v − 1 +

(v − 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

)
and g :=

1

2

(
v − 1− (v − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)

are nonnegative integers.

This condition is called the integrality condition. It turns out that f and g are the
multiplicities of the two eigenvalues r, s different from k. Moreover, from the results about
eigenvalues and their multiplicities we get:

Proposition 3.1.8 ([Hig64], Lemma 7)
For a (v, k, λ, µ)-strongly regular graph with eigenvalues r, s different from k and correspond-
ing multiplicities f, g one of the following cases holds:

1) f 6= g then (µ − λ)2 + 4(k − µ) is a square of integers and the eigenvalues r, s are
integers;

2) f = g then v = 4m + 1, k = 2m, λ = m− 1, µ = m for an integer m ∈ N.

The second case of the previous proposition is the so-called half case where we have integer
eigenvalues if the number of vertices v of the graph is a square of integers.

A further important condition for the eigenvalues of a strongly regular graph is the Krein
condition given in the next theorem.

Theorem 3.1.9 ([vLiW92], Theorem 21.3)
Let A be the adjacency matrix of a (v, k, λ, µ)-strongly regular graph. Then for the eigenvalues
k, r, s of A we have

1) (r + 1)(k + r + 2rs) ≤ (k + r)(s + 1)2,

2) (s + 1)(k + s + 2sr) ≤ (k + s)(r + 1)2.

For the multiplicities of the eigenvalues different from k we have another important property,
the so-called absolute bound:
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Theorem 3.1.10 ([vLiW92], Theorem 21.4)
Let A be the adjacency matrix of a (v, k, λ, µ)-strongly regular graph. Then for the multiplic-
ities f, g of the eigenvalues r, s 6= k of A we have

v ≤ 1

2
f(f + 3) and v ≤ 1

2
g(g + 3).

All the above mentioned conditions must be satisfied by all (v, k, λ, µ)-strongly regular
graphs. From this point of view, one can call parameters (v, k, λ, µ) satisfying all this con-
ditions feasible parameters. In the literature feasible parameters are sometimes defined
in different ways. For example, in [vLiW92], Chapter 21, a parameter set is called feasible,
if it satisfies the integrality condition. In this case the parameters (28,9,0,4) are feasible,
but one can show that there does not exist a (28,9,0,4)-strongly regular graph, because the
spectral properties of such strongly regular graph would contradict the Krein condition and
the absolute bound.
In Table 4.1 in Section 4.1.1 we give all parameter sets for strongly regular graphs up to 49
vertices which are feasible in the sense of [vLiW92].

3.1.2 Difference sets

Difference sets are well-known in design theory and group theory. Here we will give a short
introduction into the main properties. For further details we refer to [Bau71].

Definition 3.1.11 Let (H, +) be a group of order v. Then a (v, k, λ)-difference set is a
k-subset D ⊆ H such that each nonzero element h ∈ H occurs exactly λ times in the multiset
(x− y|x, y ∈ D).

Sometimes, it is more useful to write difference sets in multiplicative notation. Then for a
(v, k, λ)-difference set D in a group (H, ·) we have each nonidentity element h ∈ H exactly
λ times in the multiset (xy−1|x, y ∈ D). In this case the name quotient set would be more
suitable for D, but due to the tradition we will denote D as difference set though throughout
this thesis we will use the multiplicative notation.
A natural way to work with difference sets is the computation in group rings.
With the notation in a group ring (T :=

∑
h∈T h, see Definition 2.2.13) one can easily check

the following characterization of difference sets:

Lemma 3.1.12 A subset D in a group H of order v is a (v, k, λ)-difference set in H if and
only if

D D−1 = k {e}+ λ H \ {e}.

Proof: We have D D−1 = (xy−1|x, y ∈ D) = k {e}+ λ H \ {e}. 2

Let H be a group and S ⊆ H be a subset. Then for each x ∈ H we denote Sx as a shift
of S by x. An important result is that each shift of a (v, k, λ)-difference set is again a
(v, k, λ)-difference set:
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Proposition 3.1.13 Let D be a (v, k, λ)-difference set of a group H. Then for each x ∈ H
the shift Dx is also a (v, k, λ)-difference set.

Proof: We have Dx(Dx)−1 = Dxx−1D−1 = D D−1 = k {e}+ λ H \ {e}. 2

A similar result as for the shifts we get for the image of a difference set by a group automor-
phism:

Proposition 3.1.14 Let D be a (v, k, λ)-difference set of a group H. Then for each
α ∈ Aut(H) the image Dα := {dα|d ∈ D} is also a (v, k, λ)-difference set in H.

Proof: Since each nonidentity element of the group H occurs exactly λ times in the multiset
(xy−1|x, y ∈ D), for α ∈ Aut(H) each nonidentity element of Hα = H occurs exactly λ times
in the multiset (xy−1|x, y ∈ Dα). 2

Propositions 3.1.13 and 3.1.14 enable us to define an equivalence relation on the set of
difference sets of a fixed group (see Definition 3.1.35). We will discuss this in Section 3.1.4.
Here we will give the definition of multipliers which are of a special interest in the theory of
difference sets.

Definition 3.1.15 (cf. [vLiW92], p. 345)
Let D be a (v, k, λ)-difference set of a group H. An automorphism α ∈ Aut(H) is called
a multiplier of the difference set D, if an element h ∈ H exists with Dα = Dh, i.e., the
difference set Dα is a shift of D.

Difference sets have great relevance in design theory. One important result is the following
theorem:

Theorem 3.1.16 (cf. [HugP88], Theorem 2.9)
Let H be a group and D ⊆ H a subset. Then (H, {Dh|h ∈ H}) is a symmetric
2-(v, k, λ)−design if and only if D is a (v, k, λ)-difference set in H.

Furthermore, we like to mention that for each regular subgroup of the automorphism group
of a symmetric 2-(v, k, λ)−design there exists a (v, k, λ)-difference set, which creates the
design as described in the above theorem (see [HugP88] for details).

3.1.3 Partial difference sets

In this subsection at first we will introduce Cayley graphs and give some important proper-
ties. Then we discuss the notion of partial difference sets.

Definition 3.1.17 Let H be a group and S ⊆ H be a subset of H with S = S−1 and e /∈ S.
Then the graph Cay(H, S) with vertex set H and edge set E := {{h, sh}|h ∈ H, s ∈ S} is
called a Cayley graph over H with connection set S.
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Here we gave a restricted definition of Cayley graphs, because we are only interested in
undirected graphs without loops. In literature one can find more general definitions for
Cayley graphs, e.g., directed Cayley graphs, or so-called Cayley objects (cf. [Bab77]).
For Cayley graphs we have several important and well-known observations:

Proposition 3.1.18 Let H be a group and S ⊆ H be a subset. The Cayley graph Cay(H, S)
is connected if and only if S is not contained in a proper subgroup of H.

The following proposition and lemma is of particular importance for the present work:

Proposition 3.1.19 (cf. [Big74], Lemma 16.3)
A graph Γ is isomorphic to a Cayley graph if and only if Aut(Γ) has a regular subgroup.

If we know that a graph Γ is isomorphic to a Cayley graph, then by the above proposition
we have a regular subgroup H of the automorphism group. This regular subgroup H implies
a Cayley graph Cay(H, S) isomorphic to Γ with a suitable connection set S. The following
lemma determines this connection set S:

Lemma 3.1.20 (cf. [Big74], Lemma 16.3)
Let Γ be a graph whose automorphism group contains a regular subgroup H. Then for a
vertex x of Γ we get for S := {ω ∈ H|xω is adjacent to x} that e /∈ S, S−1 = S and
Γ ∼= Cay(H, S).

Next we will introduce partial difference sets. The notion of partial difference sets is a
generalization of the notion of difference sets.

Definition 3.1.21 Let H be a group of order v. Then a k-subset D ⊆ H is called a
(v, k, λ, µ)−partial difference set if each nonidentity element d ∈ D occurs exactly λ
times in the multiset (xy−1|x, y ∈ D) and each nonidentity element h ∈ H \D occurs exactly
µ times in the multiset (xy−1|x, y ∈ D).

As for difference sets we will always use the multiplicative notation for partial difference sets.

Like for difference sets we have for partial difference sets an alternative description:

Lemma 3.1.22 A subset D in a group H of order v is a (v, k, λ, µ)-partial difference set in
H if and only if

D D−1 = k {e}+ λ D \ {e}+ µ (H \D) \ {e}.

The proof is analogous to the case for difference sets.

With the notion of partial difference sets we can describe an important connection between
the concepts of strongly regular graphs, Cayley graphs and partial difference sets:

Theorem 3.1.23 ([Ma94], Proposition 1.1)
A Cayley graph over a group H with connection set D is a (possibly trivial) (v, k, λ, µ)-
strongly regular graph, if and only if D is a (v, k, λ, µ)-partial difference set in H with
D = D−1 and e /∈ D.
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This theorem is the key for the present work. We determine partial difference sets by strongly
regular Cayley graphs.
Notice that there exist partial difference sets D which are connection sets for trivial strongly
regular Cayley graphs over a certain group H. One can show that this can only occur, if
D ∪ {e} or (H \D) ∪ {e} is a subgroup of H (cf. [Ma94], p. 223). For these cases we will
call the partial difference sets trivial:

Definition 3.1.24 A partial difference set D in a group H is called trivial, if either D∪{e}
or (H \D) ∪ {e} is a subgroup of H. It is called reversible, if we have D = D−1 in H.
A reversible partial difference set D is called regular, if e /∈ D.

For the investigation of partial difference sets and strongly regular graphs by Theorem 3.1.23
it seems to be natural to restrict ourselves to the consideration of nontrivial, regular partial
difference set.
The following theorem shows that this ”regular condition” is not very restrictive:

Theorem 3.1.25 (cf. [Ma84], Theorem 2.2, Proposition 3.1)
If D is a (v, k, λ, µ)−partial difference set with λ 6= µ, then D = D−1.
If D is a reversible partial difference set with e ∈ D, then D \ {e} is also a reversible partial
difference set.

In Theorem 3.1.23 we described the connection between strongly regular graphs and regular
partial difference sets which is given by the concept of Cayley graphs. There is also a
connection between strongly regular graphs and Schur rings which can be described by Cayley
graphs. In Remark 3.1.5 we already mentioned that a strongly regular graph corresponds to
a cellular ring W of rank 3. If we consider a strongly regular Cayley graph Γ over a group
H, then H corresponds to a regular subgroup of Aut(Γ) and by the Galois correspondence
in Remark 2.2.8 it follows that W is a cellular subring of the centralizer ring of the regular
permutation group (H, H). By Theorem 2.2.18 the cellular ring W corresponds to a Schur
ring over H of rank 3. This leads to the following proposition:

Proposition 3.1.26 ([Ma89], Proposition 4.1)
Let H be a group and D be a subset of H with D = D−1 and e /∈ D. Then the Cayley graph
Cay(H, D) is a strongly regular graph if and only if 〈{e}, D, (H \D) \ {e}〉 is a symmetric,
primitive Schur ring of rank 3 over H.

By Theorem 3.1.23 it is clear that the connection set D in Proposition 3.1.26 is a nontrivial,
regular partial difference set:

Proposition 3.1.27 ([Ma89], Proposition 5.1)
Let H be a group and D be a subset of H with D = D−1 and e /∈ D. Then D is a nontrivial,
regular partial difference set if and only if 〈{e}, D, (H \D) \ {e}〉 is a symmetric, primitive
Schur ring of rank 3 over H.
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Since the notion of partial difference sets is a generalization of difference sets we can consider
(v, k, λ)−difference sets as (v, k, λ, λ)−partial difference sets. However, in this case it can
happen that the partial difference sets are not reversible (cf. Theorem 3.1.25). Neverthe-
less, the following corollary of Proposition 3.1.13 gives an important method to get partial
difference sets from difference sets.

Corollary 3.1.28 Let D be a (v, k, λ)−difference set in a group H.
1. Then Dx is a regular (v, k, λ, λ)−partial difference set if and only if e /∈ Dx and Dx is
reversible.
2. The set (Dx) \ {e} is a regular (v, k − 1, λ − 2, λ)−partial difference set if and only if
x−1 ∈ D and Dx is a reversible set.

For sake of simplicity we will write partial difference set instead of nontrivial, regular partial
difference set in the following chapters, since we are only interested in partial difference sets
related to strongly regular graphs.

3.1.4 Equivalent partial difference sets

There are different kinds of equivalence relations for partial difference sets. First of all, we
consider the equivalence relation for partial difference sets of a given group which we get
from the investigation of Cayley graphs. Considering two Cayley graphs Cay(H1, S1) and
Cay(H2, S2) we can ask when the pairs (H1, S1) and (H2, S2) should be called equivalent:

Definition 3.1.29 For i=1,2 let Hi be a group with subset Si, such that e /∈ Si and Si = S−1
i .

The pairs (H1, S1) and (H2, S2) are called equivalent, if there exists a group isomorphism
ϕ : H1 → H2 which maps S1 onto S2.

Since the groups in Definition 3.1.29 are isomorphic we can modify the situation. Without
loss of generality, for the case of equivalence it is sufficient to investigate subsets S1, S2 in one
group H. In the case of Cayley graphs we call connections sets S1 and S2 in H equivalent,
if there exists a group automorphism ϕ ∈ Aut(H) such that Sϕ

1 := {sϕ|s ∈ S1} = S2.
If we have equivalent connection sets S1, S2, then it is easy to see that the automorphism
ϕ induces a graph isomorphism between Cay(H, S1) and Cay(H, S2). However, in general
there exist non-equivalent connection sets which also generate isomorphic Cayley graphs.
Concerned with this problem L. Babai introduced in [Bab77] the notion of a CI-group
(CI stands for Cayley isomorphism property):

Definition 3.1.30 (cf. [Bab77], p. 330)
Let H be a group. The group H is called a CI-group if and only if for all connection sets S1

and S2 in H with Cay(H, S1) ∼= Cay(H, S2) there exists an group automorphism ϕ ∈ Aut(H)
with Sϕ

1 = S2.

In other words: The group H is a CI-group if and only if each pair of non-equivalent connec-
tion sets in H generates non-isomorphic Cayley graphs over H. Moreover, all isomorphisms
between isomorphic Cayley graphs over H are induced by automorphisms of H.
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In 1967 A. Ádám [Ada67] conjectured that all cyclic groups have the Cayley isomorphism
property, i.e., all cyclic groups are CI-groups. But it turns out that this is not true. B. Elspas
and J. Turner showed in [ElsT70] that Z8 is not a CI-group. However, since 1967 Ádám’s
conjecture was proved for several special cases, some are given in the following proposition.

Proposition 3.1.31 Let p, q be prime numbers and p 6= q. Then

1) Zp is a CI-group ([ElsT70], [Djo70]);

2) Zp × Zp is a CI-group ([BabF78]);

3) Zpq is a CI-group ([KliP75],[KliP78],[KliP81]).

For more information about Ádám’s conjecture we refer to the survey of P. P. Pálfy [Pál87]
which gives an overview over the history of this conjecture over 20 years. In [MuzKP01]
M. E. Muzychuk, M. H. Klin and R. Pöschel give a survey of the application of Schur rings
in this area.
Regarding partial difference sets we define the following:

Definition 3.1.32 Let D1, D2 ⊆ H be two partial difference sets in a group H. The partial
difference sets D1, D2 are called CI-equivalent if and only if there exists a group automor-
phism ϕ ∈ Aut(H), such that Dϕ

1 = D2.

For equivalent connection sets of Cayley graphs we have a useful characterization which we
can also use for CI-equivalent partial difference sets:

Lemma 3.1.33 (cf. [Bab77], Lemma 3.1)
Let Γ be a connected graph whose automorphism group Aut(Γ) contains regular subgroups
H1, H2. For vertices x1, x2 of Γ define Si := {ω ∈ Hi|xω

i is adjacent to xi}, i = 1, 2. Then
the connection sets S1, S2 are equivalent if and only if H1 is conjugated to H2 in Aut(Γ).

With this lemma we can determine all partial difference sets (up to CI-equivalence) for a
strongly regular graph Γ, if we know all regular subgroups of Aut(Γ) (up to conjugacy).
Two partial difference sets of a group which are not CI-equivalent may generate isomorphic
strongly regular Cayley graphs. Later, we will see some examples.

Sometimes, it is more useful to divide the set of partial difference sets of a group in a coarser
partition, e.g., where all partial difference sets which generate isomorphic Cayley graphs are
equivalent:

Definition 3.1.34 Let D1, D2 ⊆ H be two partial difference sets in a group H. The partial
difference sets D1, D2 are called srg-equivalent if and only if the corresponding Cayley
graphs are isomorphic, i.e., Cay(H, D1) ∼= Cay(H, D2).

In the special situation when partial difference sets are difference sets, one has further pos-
sibilities for equivalence relations.
For difference sets we have an equivalence relation which we can adopt for (v, k, λ, λ)−partial
difference sets:
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Definition 3.1.35 (cf. [vLiW92], p. 333)
Let D1, D2 ⊆ H be two (v, k, λ, λ)−partial difference sets in a group H. Then D1 and D2 are
called difference equivalent, if and only if there exists a group automorphism ϕ ∈ Aut(H)
and a group element h ∈ H, such that Dϕ

1 · h = D2.

Comparing this definition with Definition 3.1.32, one can see that the conditions of
CI-equivalence are somewhat stronger than for difference equivalence. Later, we give ex-
amples of partial difference sets which behave differently for the three kinds of equivalences
given above.

Like in the case of partial difference sets and strongly regular graphs we have for difference
sets the option to define an equivalence relation by the generated symmetric 2-designs. We
mention this definition here for the sake of completeness, it does not play a role in this work
(for the definition of isomorphic designs see [HugP88]):

Definition 3.1.36 Let D1, D2 ⊆ H be two (v, k, λ, λ)−partial difference sets in a group
H. Then D1 and D2 are called design equivalent if and only if the symmetric 2-designs
generated by H and D1 resp. H and D2 are isomorphic.

3.2 Determination of partial difference sets for certain

classes of strongly regular graphs

In the previous section we discussed the connection between partial difference sets and
strongly regular graphs. In particular, it was shown that the non-CI-equivalent partial
difference sets which are connection sets for a strongly regular Cayley graph Γ correspond
to the non-conjugated regular subgroups of the automorphism group of Γ (Lemma 3.1.33).
In several cases it is possible to determine these non-conjugated regular subgroups of the
automorphism group resp. the non-CI-equivalent partial difference sets for the strongly
regular graph theoretically. In this section we will present different classes of strongly regular
graphs, for which we were able to determine a complete list of partial difference sets or at
least some existence or non-existence results. However, in many cases theoretical approaches
did not lead to results and, as we present in Section 3.3, computational approaches could be
used.

3.2.1 Paley graphs

The discovering of strongly regular graphs that we nowadays call Paley graphs is a conse-
quence of the work of R. Paley on Hadamard matrices (see [Pal33]).

Definition 3.2.1 Let q be an odd prime power. The graph with vertex set Fq, where two
vertices are adjacent if and only if their difference is a nonzero square in Fq, is called Paley
graph P (q).
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Not all graphs of the series of Paley graphs are strongly regular graphs. We can divide the
Paley graphs into two classes: on the one hand, strongly regular graphs and on the other
hand, the so-called tournaments. A tournament is an orientation of a complete graph for
which the vertices can be numbered in such a way that (i, j) is an arc if and only if i < j
for vertices i, j ∈ {1, . . . , n} (see [BroR72]).

Remark 3.2.2 ([FarKM94], p. 130)

Let q be an odd prime power. For q ≡ 1 mod 4 the Paley graph P (q) is a strongly regular
graph with parameters (q, 1

2
(q − 1), 1

4
(q − 5), 1

4
(q − 1)). For q ≡ 3 mod 4 the graph P (q) is a

tournament.

In [Muz87] M. E. Muzychuk described the automorphism group of the Paley graph P (q), q
an odd prime power. Later it turned out that this group can also be obtained by translating
a result of L. Carlitz [Car69] in the language of graphs. However, the proofs are based on
different ideas.

For q = pn denote by H(q) the group consisting of all permutations on Fq of the form

x 7→ axpk
+ b, where a is a nonzero square in Fq, x, b ∈ Fq and k ∈ {0, . . . , n− 1}:

Proposition 3.2.3 ([Muz87], cf. [Car69])

Let q be an odd prime power. For the automorphism group of the Paley graph P (q) we have
Aut(P (q)) = H(q).

From the construction of H(q) it follows immediately that {x 7→ x + b|b ∈ Fq} ∼= (Fq, +) is
a regular subgroup of H(q). For q = pn and p . n we can easily get a result for the number
of non-conjugated regular subgroups of H(q).

Proposition 3.2.4 For q = pn, p an odd prime, and p . n there exists exactly one regular
subgroup of Aut(P (q)) (up to conjugacy). This subgroup is isomorphic to (Fq, +).

Proof: The order of Aut(P (q)) = H(q) is pn · pn−1
2
· n. We have p . pn−1

2
and by assumption

p . n. From this follows that a Sylow p-subgroup of Aut(P (q)) has order pn. By the
respective Sylow theorem all Sylow p-subgroups are conjugated. Thus, we have only one
subgroup of order q = pn in Aut(P (q)) (up to conjugacy). A representative of this subgroup
is {x 7→ x + b|b ∈ Fq} ∼= (Fq, +), which obviously acts regularly on Fq. 2

In the case of p vertices, p a prime, one can get a more general statement about vertex
transitive graphs with p vertices, which does not only hold for Paley graphs.

Proposition 3.2.5 (cf. [Tur67])

Let p be a prime. The automorphism group of a connected, vertex transitive graph with p
vertices contains exactly one regular subgroup (up to conjugacy) which then is isomorphic to
Zp.
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Proof: By [Tur67] a connected, vertex transitive graph Γ with p vertices is isomorphic to a
Cayley graph over Zp (Γ is circulant).
Let H be a regular subgroup of Aut(Γ), i.e., H ∼= Zp. Since H ≤ Aut(Γ) ≤ Sp and
p p p! = |Sp| but p2 . p!, the subgroup H is a Sylow p-subgroup of Sp and, consequently, H is
a Sylow p−subgroup of Aut(Γ). By the respective Sylow theorem all Sylow p-subgroups are
conjugated and H is the only regular subgroup of Aut(Γ) (up to conjugacy). 2

From the definition of Paley graphs and from Proposition 3.2.4 we get a statement about
the partial difference sets for Paley graphs:

Proposition 3.2.6 For q ≡ 1 mod 4, q = pn, p an odd prime, and p . n we get exactly
one partial difference set for the Paley graph P (q). This partial difference set consists of the
nonzero squares of Fq.

Proof: By Proposition 3.2.4 the automorphism group of P (q) has exactly one regular sub-
group (up to conjugacy). Thus, by Lemma 3.1.33 we have exactly one partial difference set.
From Definition 3.2.1 we get that this partial difference set consists of the nonzero squares
of Fq. 2

In addition to this result, it is known that the partial difference sets for Paley graphs given
in Proposition 3.2.6 are the only partial difference sets in groups of order p, when p is an
odd prime with p ≡ 1 mod 4. In [Pös74] R. Pöschel classified all Schur rings over Zp.
From his results and the correspondence between partial difference sets and certain Schur
rings (cf. Proposition 3.1.27) we get the following proposition which independently was also
formulated by W. G. Bridges and R. A. Mena:

Proposition 3.2.7 (cf. [Pös74], [BriM79])
There exists a partial difference set in the group Zp if and only if p is a prime with
p ≡ 1 mod 4. In this case the partial difference set is unique (up to CI-equivalence) and
consists of the non-zero squares in Zp.

Propositions 3.2.5 and 3.2.7 give us the following result about vertex transitive strongly
regular graphs with prime number of vertices. (Recall that we only consider nontrivial
strongly regular graphs).

Theorem 3.2.8 Let Γ be a vertex transitive strongly regular graph with p vertices, p an odd
prime, p ≡ 1 mod 4. Then Γ is isomorphic to the Paley graph P (p).

Proof: Since by Proposition 3.2.5 all automorphism groups of vertex transitive strongly
regular graphs with prime number of vertices have exactly one regular subgroup (up to
conjugacy), i.e., each of these graphs yields exactly one partial difference set (up to CI-
equivalence, Lemma 3.1.33), and since by Proposition 3.2.7 groups of order p, p an odd
prime, p ≡ 1 mod 4, have exactly one partial difference set (up to CI-equivalence), which
generates the Paley graph, it follows that for all odd primes p with p ≡ 1 mod 4 there exists
only one vertex transitive strongly regular graph (up to isomorphism) and this is the Paley
graph.

2
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3.2.2 Triangular graphs

Definition 3.2.9 (cf. [vLiW92], p. 232)
Let V be the set of 2-element subsets of a set of cardinality n, n ≥ 5. The graph T (n) with
vertex set V , where two vertices are adjacent if and only if they are not disjoint, is called the
triangular graph T (n).

Remark 3.2.10
1) The triangular graph T (n), n ≥ 5, is a (

(
n
2

)
, 2n− 4, n− 2, 4)-strongly regular graph.

2) It is easy to see that T (n) ∼= L(Kn), n ≥ 5.

From [Whi32] we know that Aut(Kn) ∼= Aut(L(Kn)), n 6= 2, 4. Thus, for the automorphism
group of the triangular graphs we have Aut(T (n)) ∼= Aut(Kn) ∼= Sn, n ≥ 5. It follows with
T (n) ∼= L(Kn) that a regular subgroup of Aut(T (n)) is isomorphic to a subgroup of Sn of
order 1

2
n(n− 1) which acts 2-homogeneously but not 2-transitively on {1, ..., n}.

In [Kan69] W. M. Kantor proved the following proposition and corollary:

Proposition 3.2.11 ([Kan69], Proposition 3.1)
If H is a transitive permutation group on a finite set V , where n = |V | > 3, then the
following statements are equivalent:

i) H has rank 3 and all orbits of Hx, x ∈ V have odd lengths.

ii) H is 2-homogeneous but not 2-transitive on V .

iii) n is a prime power, n ≡ 3 mod 4, H is similar to a 2-homogeneous subgroup of
{x 7→ xαt + a|α ∈ Aut(Fn), t ∈ F∗

n, a ∈ Fn} the group of all semilinear mappings on
Fn.

If H is represented as in iii), then H contains the set of all translations {x 7→ x + a|a ∈ Fn}
as a normal subgroup. H ∩ {x 7→ xt + a|t ∈ F∗

n, a ∈ Fn} is a normal Frobenius subgroup of
H. If Q is the group of nonzero squares of Fn, then the orbits of H0 are {0}, Q,−Q.

Corollary 3.2.12 ([Kan69], Corollary 3.2)
If H is a sharply 2-homogeneous permutation group of degree n, then H is similar to the
group of mappings x 7→ xt + a on a Dickson nearfield K, where a ∈ K and t is in the group
of nonzero squares of K.

For information about nearfields we refer to [Zas36] or [DixM96], Chapter 7.
From Proposition 3.2.11 follows that there exists a 2-homogeneous but not 2-transitive sub-
group H of Sn if and only if n is a prime power, n > 3 and n ≡ 3 mod 4.
If there exists a subgroup H which moreover acts regularly on the 2-subsets of {1, . . . , n},
then it is sharply 2-homogeneous (Definition 2.1.11) and from Corollary 3.2.12 we get that
there is at least one such subgroup (up to similarity), which we get for the (near-)field Fn.
If for a prime power n with n ≡ 3 mod 4 there exist more than one nearfield, then there are
more options for the existence of sharply 2-homogeneous permutation groups of degree n.
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The existence of such a sharply 2-homogeneous permutation group H implies the existence
of a regular subgroup of Aut(T (n)). In the following we will adopt the result of W. M.
Kantor for the determination of regular subgroups of Aut(T (n)) and the corresponding
partial difference sets.

Lemma 3.2.13 Let n be a prime power and n ≡ 3 mod 4 and let K be the subgroup of F∗
n of

order 1
2
(n− 1) consisting of all nonzero squares of Fn. Then for all t ∈ K we have −t /∈ K.

Proof: It is sufficient to show, that −1 /∈ K.
We know that n ≡ 3 mod 4, so there exists s ∈ N with n = 4s + 3. Let ω be a primitive
element of F∗

n. Then −1 = ω
n−1

2 . If −1 is a square in F∗
n, then n−1

2
is even. But we have

n−1
2

= 4s+2
2

= 2s + 1. Thus, −1 is no square. 2

Theorem 3.2.14
Let n be a prime power, n > 3 and n ≡ 3 mod 4. Let H := {x 7→ xt+a|t ∈ K, a ∈ Fn}, where
K is the subgroup of F∗

n of order 1
2
(n− 1) consisting of all nonzero squares of Fn, and define

S := {σs,0, σt,−t, σt,1, σs,1−s|s, t ∈ K, s 6= 1}, where σa,b ∈ H with xσa,b := xa + b, x ∈ Fn.
Then:

a) There exist a regular subgroup of Aut(T (n)) which is similar to H.

b) The set S ⊂ H is a partial difference set and the Cayley graph over H with connection
set S is isomorphic to the strongly regular graph T (n).

c) If n is not a prime power or n 6≡ 3 mod 4, then Aut(T (n)) has no regular subgroup.

Proof: a) The group H acts regularly on the 2-subsets of Fn:
The images of {0, 1} are of the form {a, t + a}, t ∈ K, a ∈ Fn; they are different for all pairs
(a, t), because if there exist t, t′ ∈ K, a, a′ ∈ Fn with {a, t+a} = {a′, a′+ t′}, then in the case
of a = a′ we get a′ + t′ = a + t′ = a + t ⇒ t′ = t and in the case of a = a′ + t′ and a + t = a′

we get a′ = a − t′ and a + t = a − t′ ⇒ t = −t′. The last case is impossible, because from
Lemma 3.2.13 we know t ∈ K ⇒ −t /∈ K for all t. Thus, for the 2-subset {0, 1} we get all
|K| · |Fn| = 1

2
(n − 1)n = (n

2
) images by the (n

2
) permutations in H and H is similar to a

regular subgroup of Aut(T (n)) ∼= Sn.
b) Consider the vertex {0, 1} of T (n). This vertex is adjacent to all vertices of the form {0, i}
or {1, j}, i, j ∈ Fn \ {0, 1}. By Lemma 3.1.20 a partial difference set of H that generates the
graph T (n) consists of all permutations of H which map the vertex {0, 1} onto its neighbours:
The permutations σs,0 with xσs,0 = sx, s ∈ K \ {1} maps {0, 1} onto {0, s},
the permutations σt,−t with xσt,−t = tx− t, t ∈ K maps {0, 1} onto {0,−t},
the permutations σs,1−s with xσs,1−s = sx + 1− s, s ∈ K \ {1} maps {0, 1} onto {1, 1− s},
the permutations σt,1 with xσt,1 = tx + 1, t ∈ K maps {0, 1} onto {1, t + 1}.
Since

Fn \ {0, 1} = {−t, s|s, t ∈ K, s 6= 1} = {1− s, t + 1|s, t ∈ K, s 6= 1}

the permutations {σs,0, σt,−t, σt,1, σs,1−s|s, t ∈ K, s 6= 1} map the vertex {0, 1} onto all of
its neighbours {{0, i}, {1, j}|i, j ∈ Fn \ {0, 1}} and by Lemma 3.1.20 they form a partial
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difference set of H which generates the graph T (n) as a Cayley graph. Consequently, it is a
partial difference set with parameters (

(
n
2

)
, 2n− 4, n− 2, 4).

c) Assume n is not a prime power or n 6≡ 3 mod 4 and assume that Aut(T (n)) has a
regular subgroup H. Then H is isomorphic to a 2-homogeneous subgroup of Sn that is
not 2-transitive. By Proposition 3.2.11 n must be a prime power and n ≡ 3 mod 4 which
contradicts the assumption. 2

Notice that the group H := {x 7→ xt + a|t ∈ K, a ∈ Fn} in the previous theorem is the
semidirect product Fn o K, where K is the subgroup of F∗

n of order 1
2
(n − 1) consisting of

all nonzero squares of Fn.

For our purpose it is sufficient to consider prime parameters p for T (p), because the smallest
prime power pm with p ≡ 3 mod 4 and m ≥ 2 appears for pm = 27 and T (27) is a graph with
351 vertices. As mentioned in the introduction we consider strongly regular graphs with at
most 255 vertices.
If the parameters are restricted to prime parameters we can prove that there exist exactly one
regular subgroup of Aut(T (n)) (up to conjugacy), i.e., we get exactly one partial difference
set (up to CI-equivalence):

Proposition 3.2.15
Let p be a prime, p > 3 and p ≡ 3 mod 4. Let H := {x 7→ xt + a|t ∈ K, a ∈ Zp} = Zp o K,
where K is the subgroup of Z∗

p of order 1
2
(p−1) consisting of all nonzero squares of Zp. Then

there exists only one regular subgroup in Aut(T (p)) (up to conjugacy) and this subgroup is
similar to H.

Proof: By Theorem 3.2.14 there exists a regular subgroup of Aut(T (p)) which is similar to
H = Zp o K. The group H has Zp as a normal subgroup, therefore H is a subgroup of the
holomorph Zp oAut(Zp) of Zp (cf. Definition 2.1.21, Remark 2.1.22). Since H is a subgroup
of index 2, it is a normal subgroup of the holomorph Zp o Aut(Zp) and the holomorph is a
subgroup of the normalizer NSp(H) of H in Sp.
Let h ∈ NSp(H), i.e., we have hHh−1 = H. Since Zp is a normal Sylow p-subgroup in
H, by the respective Sylow theorem it is unique, and we have hZph

−1 = Zp. Hence, Zp is
a normal subgroup of NSp(H) and NSp(H) is a subgroup of the holomorph Zp o Aut(Zp).
Consequently, the holomorph Zp o Aut(Zp) is the normalizer NSp(H) of H.
The holomorph has order p(p− 1), such that the number of conjugates cH of H in Sp is

cH =
|Sp|

|NSp(H)|
=

p!

p(p− 1)
= (p− 2)!.

Moreover, we have exactly (p−1)! elements of order p in Sp. Each group similar to H includes
exactly p−1 elements of order p, because H has exactly one cyclic subgroup of order p. Since
different subgroups (similar to H) have different cycles, we have exactly (p−1)!

p−1
= (p − 2)!

options for subgroups in Sp similar to H. These subgroups are the groups in the conjugacy
class of H. 2
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Since each regular subgroup of Aut(T (n)) is connected to a nearfield (Corollary 3.2.12), we
can get this result also from the complete characterization of nearfields which was obtained
by H. Zassenhaus [Zas36].

3.2.3 Partial difference sets for graphs with p2 vertices

In this section we determine all partial difference sets for groups of order p2, p a prime.
First of all recall that by Lemma 2.1.7 there exist only two non-isomorphic groups of order
p2, the cyclic group Zp2 and the elementary abelian group Zp × Zp. Thus, it is sufficient
to consider these two groups for the determination of all partial difference sets in groups of
order p2.
The next step is to investigate all primitive Schur rings over Zp2 resp. Zp × Zp. In the case
of Zp2 we have the following result by Wielandt and Schur:

Theorem 3.2.16 ([Wie64], Theorem 25.4)
Let H be a finite abelian group which has at least one cyclic Sylow subgroup. There does not
exist a nontrivial primitive Schur ring over H unless the order of H is prime.

By the previous theorem there exists no nontrivial primitive Schur ring over Zp2 . Thus, it
follows that the strongly regular Cayley graphs of all possible partial difference sets in Zp2

are trivial (cf. Proposition 3.1.26 and 3.1.27).

For groups isomorphic to Zp × Zp there exist primitive Schur rings. For the description of
symmetric primitive Schur rings over Zp×Zp of rank 3 we consider the complete Schur ring
of traces over Zp×Zp and all its subrings. Recall that the complete Schur ring of traces over
Zp × Zp is the Schur ring 〈O0, ..., Ol〉, where Oi, 0 ≤ i ≤ l, are the orbits of Z∗

p in Zp × Zp

(Definition 2.2.26).

Lemma 3.2.17 (M. E. Muzychuk, private communication)
Let (H, +) be an abelian group and T ⊆ H such that Cay(H, T ) has a rational spectrum.
Let m be the exponent of the group H. Then for each µ ∈ Z∗

m we have µT = T .

Proposition 3.2.18 Each symmetric, primitive Schur ring S over Zp × Zp of rank 3 is a
subring of the complete Schur ring of traces over Zp × Zp.

Proof: By Proposition 3.1.8 we know that each strongly regular graph with p2 vertices has
integer eigenvalues and with Proposition 3.1.26 follows that each strongly regular Cayley
graph with p2 vertices corresponds to a nontrivial, symmetric, primitive Schur ring S of
rank 3 over Zp×Zp. With Lemma 3.2.17 we get for each basis quantity T ∈ S that T is the
union of orbits of Z∗

p in Zp × Zp. Therefore, S is a subring of the Schur ring of traces over
Zp × Zp.

2

For the previous lemma and proposition we have to add two remarks:
1) Lemma 3.2.17 is of a folklore nature, the author was not able to find a precise formulation
or proof for it in literature.
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2) In principle, Proposition 3.2.18 is known, as it is mentioned by S. L. Ma in [Ma89] it
follows from the results of W. G. Bridges and R. A. Mena in [BriM79], [BriM82].

For the determination of all symmetric primitive Schur rings over Zp × Zp of rank 3 by
Proposition 3.2.18 it is sufficient to determine all symmetric primitive subrings of rank 3 of
the complete Schur ring of traces over Zp × Zp. Then, by Proposition 3.1.27, we have all
partial difference sets in Zp × Zp.
We have p + 2 orbits of Z∗

p in Zp × Zp:

O0 = {(0, 0)}, O1 = {(0, a)|a ∈ Z∗
p}, Ok+2 = {(a, ka)|a ∈ Z∗

p}, k ∈ Zp.

If we consider the Cayley graph for each orbit Oi, we get Ci := Cay(Zp × Zp, Oi) ∼= p ◦Kp,
1 ≤ i ≤ p + 1. The vertex sets of the p complete graphs Kp are the cosets of Zp × Zp with
respect to the subgroup O0 ∪Oi.

As described in [GolIK94], p. 171 these Cayley graphs are associated graphs of parallel classes
of an affine plane of order p (this affine plane can be considered as a 2-(p2, p, 1)-design, where
the blocks have p points and correspond to the lines of the plane):
For each graph Ci (∼= p ◦Kp), 1 ≤ i ≤ p + 1 each subgraph Kp corresponds to a line and the
vertices of Kp are points on this line. For each Cayley graph Ci we get p parallel lines that
form a parallel class of lines (in the language of design the parallel lines are the blocks which
have no point in common). Altogether, we have p+1 parallel classes of lines. All these lines
together with the corresponding points define an affine plane.
From this fact follows by Theorem 3.3 in [GolIK94] that 〈C0, ..., Cp+1〉 resp. 〈O0, ..., Op+1〉
is an amorphic cellular ring, i.e., we know that each partition of the set of basis quantities
of this ring corresponds to the basis quantities of a cellular subring (cf. Definition 2.2.7).
Hence, from all partitions of the set of basis quantities we get all cellular subrings of the
complete Schur ring of traces over Zp × Zp. In particular, we get all primitive symmetric
Schur rings of rank 3 over Zp ×Zp which correspond to all possible partial difference sets of
Zp × Zp (cf. Proposition 3.1.27):

Proposition 3.2.19 Let W := 〈O0, . . . , Op+1〉 be the Schur ring of traces over Zp×Zp with

O0 = {(0, 0)}, O1 = {(0, a)|a ∈ Z∗
p}, Ok+2 = {(a, ka)|a ∈ Z∗

p}, k ∈ Zp.

Then we get all partial difference sets of Zp × Zp by merging the elements of i-subsets of
{O1, ..., Op+1}, 2 ≤ i ≤ p+1

2
. Each partial difference set we get in this way has order i(p− 1)

and generates a strongly regular Cayley graph over Zp × Zp with valency i(p− 1).

Proof: By Theorem 3.3 in [GolIK94] we know, that W is an amorphic cellular ring. Let D
be a union of elements of an i-subset of {O1, ..., Op+1}, 2 ≤ i ≤ p+1

2
, i.e., D = Oj1 ∪ . . .∪Oji

,
where 1 ≤ j1 < . . . < ji ≤ p + 1. Then 〈O0, D, ((Zp × Zp) \D) \O0〉 is a Schur ring of
rank 3 which is primitive and symmetric. By Proposition 3.1.27 D is a partial difference
set of Zp ×Zp which generates a strongly regular Cayley graph with p2 vertices and valency
i(p− 1). 2
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Notice that the partial difference sets we get in the case i = 1 are trivial. For i > p+1
2

we

have partial difference sets which correspond to partial difference sets we get for i < p+1
2

(”complementary cases”).

Proposition 3.2.19 yields all partial difference sets in Zp × Zp. Since we are only interested
in partial difference sets up to CI-equivalence, it remains the question which of these partial
difference sets in Zp × Zp are CI-equivalent. Here we have to investigate the induced action
of the automorphism group of Zp × Zp on the i-subsets of {O1, ..., Op+1}, 2 ≤ i ≤ p+1

2
.

Lemma 3.2.20 The automorphism group G of the group Zp×Zp is isomorphic to the general
linear group GL(2, p). The induced action of G on the i-subsets of {O1, ..., Op+1}, 2 ≤ i ≤ p+1

2

corresponds to the action of PGL(2, p) on the i-sets of one-dimensional subspaces of the
vector space Zp × Zp over the field Zp, i.e., the action of PGL(2, p) on PG(1, p).

Proof: Let G be the automorphism group of Zp × Zp. Clearly, every automorphism of
the vector space Zp × Zp over Zp is an element in G. Conversely, we have to take a group
automorphism ϕ ∈ G and have to show, that ϕ is an automorphism of the vector space.
We know that ϕ is a bijective mapping that respects the operation ”+”. For k ∈ Zp and
(i, j) ∈ Zp × Zp we have:

(k(i, j))ϕ = ((i, j) + ... + (i, j)︸ ︷︷ ︸
k times

)ϕ = (i, j)ϕ + ... + (i, j)ϕ︸ ︷︷ ︸
k times

= k (i, j)ϕ.

Thus, ϕ is a bijective vector space homomorphism and G is the automorphism group of the
vector space which is isomorphic to GL(2, p).
By definition the sets Oj, 1 ≤ j ≤ p + 1, are the orbits of Z∗

p in Zp × Zp. Thus, Oj ∪ O0,
1 ≤ j ≤ p+1, are exactly the one-dimensional subspaces of the vector space Zp×Zp over Zp.
The group acting on these subspaces induced by GL(2, p) is the group PGL(2, p). Hence,
the induced action of G on the i-subsets of {O1, ..., Op+1}, 2 ≤ i ≤ p+1

2
corresponds to the

action of PGL(2, p) on the i-sets of one-dimensional subspaces (projective points). 2

Now we can characterize the CI-equivalent partial difference sets in Zp×Zp by the action of
the group PGL(2, p) on PG(1, p):

Lemma 3.2.21 Two partial difference sets in Zp × Zp of order i(p − 1), 2 ≤ i ≤ p+1
2

, are
CI-equivalent if and only if the corresponding i-sets of projective points in PG(1, p) are in
the same {i}-orbit of PGL(2, p).

Proof: Partial difference sets with i(p−1), 2 ≤ i ≤ p+1
2

elements are mergings of i-subsets of
{O1, ..., Op+1} (cf. Proposition 3.2.19). Two of such partial difference sets are CI-equivalent
if and only if the corresponding i-subsets of {O1, ..., Op+1} are in the same {i}-orbit of the
automorphism group of Zp×Zp. By Lemma 3.2.20 the action of this automorphism group on
the i-subsets corresponds to the action of the group PGL(2, p) on the i-subsets of PG(1, p).

2
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The next proposition is a well-known fact in group theory:

Proposition 3.2.22 (cf. [BigW79], Theorem 2.6.2)
The group PGL(2, p) acts sharply 3-transitive on the p + 1 points of PG(1, p).

By this proposition it is clear that we have exactly one {2}-orbit and exactly one {3}-orbit.
With Lemma 3.2.21 we get immediately:

Corollary 3.2.23 All partial difference sets of Zp × Zp with 2(p − 1) or 3(p − 1) elements
are CI-equivalent.

Since each merging of i-subsets of {O1, ..., Op+1} gives CI-equivalent partial difference sets
with i(p−1) elements for i = 2 and i = 3, it remains the question what happens when i > 3.
This case occurs the first time for p = 7, because we have i ≤ p+1

2
. For our purpose we have

to consider all prime numbers p ≤ 13, because we want to investigate groups up to order
255.
We have to examine the partial difference sets of order:
4(p− 1) for p = 7,
4(p− 1), 5(p− 1), 6(p− 1) for p = 11 and
4(p− 1), 5(p− 1), 6(p− 1), 7(p− 1) for p = 13.
An easy computation with the computer package GAP [GAP99] (see Section 3.3.3 for in-
formation about this program) gives the number of {4}-orbits, {5}-orbits, {6}-orbits and
{7}-orbits of PGL(2, p) on PG(1, p) for all suitable p = 7, 11, 13. We have

p #4-orbits #5-orbits #6-orbits #7-orbits
7 2 - - -
11 2 2 4 -
13 3 3 5 5

However, we do not know how the resulting representatives for the {i}-orbits of the group
PGL(2, p), which we get by this computation with GAP, correspond to the concrete {i}-sets
of {O1, ..., Op+1} (the orbits O1, ..., Op+1 are defined in a special way (e.g., see Proposition
3.2.19) and it is not clear that the orbit Oj corresponds to the projective point j in PG(1, p)
in GAP). The application of the group PGL(2, p) is very useful for the determination of the
number of non-CI-equivalent partial difference sets in Zp × Zp, but if we want to compute
the partial difference sets for a concrete prime number p by GAP, then we have to do all
the computations for the action of the automorphism group of Zp × Zp on the i-subsets of
{O1, ..., Op+1}.
For

O1 = {(0, a)|a ∈ Z∗
p}, Ok+2 = {(a, ka)|a ∈ Z∗

p}, k ∈ Zp

we get the following representative non-CI-equivalent partial difference sets Oj1 ∪ . . . ∪ Oji

in Zp × Zp, (4 ≤ i ≤ p+1
2

):
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p [j1, j2, j3, j4] [j1, j2, j3, j4, j5] [j1, j2, j3, j4, j5, j6] [j1, j2, j3, j4, j5, j6, j7]
7 [1, 2, 3, 4]

[1, 2, 3, 5]
11 [1, 2, 3, 4] [1, 2, 3, 4, 5] [1, 2, 3, 4, 5, 6]

[1, 2, 3, 5] [1, 2, 3, 5, 6] [1, 2, 3, 4, 5, 7]
[1, 2, 3, 4, 5, 8]
[1, 2, 3, 4, 5, 9]

13 [1, 2, 3, 4] [1, 2, 3, 4, 5] [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6, 7]
[1, 2, 3, 5] [1, 2, 3, 4, 6] [1, 2, 3, 4, 5, 7] [1, 2, 3, 4, 5, 6, 8]
[1, 2, 3, 6] [1, 2, 3, 5, 6] [1, 2, 3, 4, 5, 9] [1, 2, 3, 4, 6, 7, 8]

[1, 2, 3, 4, 5, 10] [1, 2, 3, 4, 6, 7, 10]
[1, 2, 3, 5, 6, 7] [1, 2, 5, 6, 7, 8, 11]

Each partial difference set generates a strongly regular Cayley graph over Zp × Zp. In
principle, it can happen that one gets isomorphic graphs for non-CI-equivalent partial dif-
ference sets. However, since the group Zp × Zp is a CI-group (see Proposition 3.1.31), all
non-CI-equivalent partial difference sets yield non-isomorphic Cayley graphs over Zp × Zp.

Example 3.2.24 Consider the case p = 7. We have nine orbits of Z∗
7 on Z7 × Z7:

O0 = {(0, 0)},
O1 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)}, O2 = {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)},
O3 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}, O4 = {(1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5)},
O5 = {(1, 3), (2, 6), (3, 2), (4, 5), (5, 1), (6, 4)}, O6 = {(1, 4), (2, 1), (3, 5), (4, 2), (5, 6), (6, 3)}
O7 = {(1, 5), (2, 3), (3, 1), (4, 6), (5, 4), (6, 2)}, O8 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

We get non-CI-equivalent partial difference sets, if we merge two, three or four orbits; merg-
ings of five orbits provide partial difference sets which are complementary to the partial
difference sets we get by mergings of three orbits.

We get exactly one partial difference set (up to CI-equivalence) by merging two orbits, e.g.,

O1 ∪O2 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)}.

This partial difference set generates the lattice graph L2(7) with parameters (49, 12, 5, 2)
(cf. Section 3.2.5 for graphs L2(n)).

Merging three orbits provides also exactly one partial difference set, e.g.,

O1 ∪O2 ∪O3 = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (2, 0), (3, 0),
(4, 0), (5, 0), (6, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

This partial difference set generates the graph L3(7) with parameters (49, 18, 10, 6), one can
get from a latin square over Z7 (cf. Remark 3.2.36 for graphs L3(n)).
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Merging four orbits provides two non-CI-equivalent partial difference sets as shown in the
table above. Two representatives are

O1 ∪O2 ∪O3 ∪O4 =
{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5)},

O1 ∪O2 ∪O3 ∪O5 =
{(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0),
(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (2, 6), (3, 2), (4, 5), (5, 1), (6, 4)}.

These two partial difference sets generate two non-isomorphic, selfcomplementary graphs
with parameters (49, 24, 11, 12) of latin square type L4(7) (cf. Definition 3.2.34 for latin
square type graphs). The first graph is isomorphic to the Paley graph P (49).

3.2.4 Latin square type graphs

The class of latin square type graphs consists of strongly regular graphs one can define by
latin squares. In the first part of this section we will give some necessary information about
latin squares.

Definition 3.2.25 (cf. [DenK74], p. 15)
An n× n-matrix with n different entries, n ≥ 2, is called a latin square of order n if and
only if each entry occurs exactly once in any row and in any column of the matrix.

An equivalent description of latin squares we find in [vLiW92], p. 157:

Remark 3.2.26 Let R,C, S be sets of order n, n ≥ 2, and let M : R×C → S be a mapping,
such that the equation M(i, j) = k for any two of the three variables i ∈ R, j ∈ C and k ∈ S
determines the third one. Then the quadrupel (R,C, S; M) is called a latin square of order
n.

In [GolIK94], p. 182, we find a third equivalent description; it is an abstract combinatorial
description of latin squares which is taken from [ArlBGF78]:

Remark 3.2.27 Let V := {1, . . . , n} be a set of order n and let L ⊂ V × V × V be a set of
order n2. The set L is called a latin square of order n if and only if each of the three sets

L1 := {(i, j)|(i, j, k) ∈ L}, L2 := {(i, k)|(i, j, k) ∈ L} and L3 := {(j, k)|(i, j, k) ∈ L}

has n2 distinct elements.

Since we have three equivalent descriptions of latin squares, in the following in each situation
we will choose the description which is the most convenient for us.
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Next we will give some definitions and statements from the area of latin squares which are
of importance for our purpose. For a general introduction into the theory of latin squares
we refer to the book of J. Denes and A. D. Keedwell [DenK74].

It is easy to see that the multiplication table of a group (the Cayley table of the group)
corresponds to a latin square. More general, one can prove the following theorem:

Theorem 3.2.28 ([DenK74], Theorem 1.1.1)
The multiplication table of a quasigroup is a latin square.

A quasigroup is a set Q with a binary operation ”·” such that for all a, b ∈ Q the equations
a · x = b and y · a = b have a unique solution in Q. It follows that the converse of the
previous theorem is also true: every latin square can be interpreted as a multiplication table
of a quasigroup (cf. [DenK74], p. 23). In [vLiW92] quasigroups are even defined by latin
squares.

For every latin square there exist so-called conjugate latin squares. One conjugate is the
transpose of a latin square, but we have some more conjugates because we can interchange
more than only rows and columns of a latin square:

Proposition 3.2.29 (cf. [DenK74], p. 125)
Let L = (R,C, S; M) be a latin square of order n, n ≥ 2. Then the following objects are also
latin squares of order n:

−1L = (S, C,R;−1 M) with −1M(x, j) = i ⇔ M(i, j) = x,
L−1 = (R,S, C; M−1) with M−1(i, x) = j ⇔ M(i, j) = x,
L∗ = (C, R, S; M∗) with M∗(j, i) = x ⇔ M(i, j) = x,
(−1L)∗ = (S, R, C; (−1M)∗) with (−1M)∗(x, i) = j ⇔ M(i, j) = x,
(L−1)∗ = (C, S,R; (M−1)∗) with (M−1)∗(j, x) = i ⇔ M(i, j) = x.

Proof: The proof follows immediately from the definition of a latin square. 2

Definition 3.2.30 Let L = (R,C, S; M) be a latin square of order n, n ≥ 2. Then the latin
squares defined in Proposition 3.2.29 together with L are called conjugates of L.

If we define a latin square L as a set of triples (α, β, γ) as described in Remark 3.2.27, then
the concept of conjugates of L corresponds to the permutation of the three coordinates.

The concept of isotopy which is known in the theory of quasigroups can be transformed to
isotopy of latin squares:

Definition 3.2.31 (cf. [vLiW92], p. 158)
Two latin squares L = (R,C, S; M), L′ = (R′, C ′, S ′; M ′) of order n, n ≥ 2, are called
isotopic if and only if we get L′ from L by rearranging rows, columns and renaming
symbols, i.e., if there exist bijections σ : R → R′, τ : C → C ′, π : S → S ′ such that
M ′(iσ, jτ ) = (M(i, j))π.
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Isotopic latin squares are also called equivalent.
The concepts of isotopy and conjugates provide a partition of the set of all latin squares of
order n, n ≥ 2:

Definition 3.2.32 ([DenK74], p. 126)
Let Ωn be the set of all latin squares of order n, n ≥ 2. A subset of Ωn that consists of all
elements of an isotopy class together with their conjugates is called a main class.

There are some more possibilities of partitioning the set Ωn. For further information see
[DenK74].

One of the most famous concepts in the history of the investigation of latin squares is the
concept of orthogonality. Already in 1779 L. Euler was concerned with orthogonal latin
squares in the case of his ”36 officers problem” (see [DenK74], p. 11 or [vLiW92], p. 251).

Definition 3.2.33 (cf. [DenK74], p. 154, p. 158)
Let L1 := (aij) and L2 := (bij) be two latin squares with n symbols, n ≥ 2. The latin squares
L1, L2 are called orthogonal if and only if every ordered pair of symbols occurs exactly once
among the n2 pairs (aij, bij), i, j = 1, . . . , n.
A set of latin squares of order n where each pair of latin squares are orthogonal is called set
of mutually orthogonal latin squares (MOLS).

There exists a connection between latin squares and strongly regular graphs. From each
system of mutually orthogonal latin squares of order n, n ≥ 2, one can get a strongly regular
graph in the following way:
The vertices are the n2 items of a square of order n and two vertices are adjacent if and only
if the items are in the same row, in the same column or if they have the same symbol in one
of the orthogonal latin squares.

Definition 3.2.34 The graph constructed above from a set of g − 2 mutually orthogonal
latin squares of order n, n ≥ g ≥ 2, is called a latin square type graph. The class of
latin square type graphs will be denoted by Lg(n).

Proposition 3.2.35 (cf. [GolIK94], p. 172)
Every latin square type graph in Lg(n), n ≥ g ≥ 2, is a strongly regular graph with parameters
(n2, g(n− 1), n− 2 + (g − 1)(g − 2), g(g − 1)).

Remark 3.2.36 A special class of the latin square type graphs is the class of so-called latin
square graphs L3(n), n ≥ 2. By definition the vertices are the n2 items of the square and
two vertices are adjacent if and only if they are in the same row, in the same column or if
they have the same symbol in the latin square.
If we take the description of latin squares which is given in Remark 3.2.27, then we can
describe the latin square graph of a latin square L as follows: The vertices are the triples in
L and two vertices are adjacent if and only if they coincide in one coordinate.
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If we consider a latin square which corresponds to the Cayley table of a group H of order
n, n ≥ 2, then we will call the associated graph the latin square graph L3(n) over the
group H and denote it by L3(H).
In the following we will focus on the case of latin square graphs L3(n), n ≥ 2.

Lemma 3.2.37 Two latin square graphs of conjugated latin squares are isomorphic.

Proof: Let L and L′ be two conjugated latin squares and Γ and Γ′ the corresponding
latin square graphs. In the notation of Remark 3.2.27 we get L′ from L if we permute the
three coordinates of all elements in L by a suitable permutation σ simultaneously. This
permutation of the coordinates induces a bijective mapping σ̃ from the vertex set of Γ to
the vertex set of Γ′. Since two triples in L coincide in exactly one coordinate if and only if
their images with respect to σ coincide in exactly one coordinate, the mapping σ̃ is a graph
isomorphism and Γ ∼= Γ′. 2

With Lemma 3.2.37 we can prove that latin square graphs from latin squares of the same
main class are isomorphic.

Proposition 3.2.38 Let L = (R, C, S; M), L′ = (R′, C ′, S ′; M ′) be two latin squares of order
n, n ≥ 2, which are in the same main class. Then the corresponding latin square graphs Γ
resp. Γ′ are isomorphic.

Proof: The main classes consist of an isotopy class of latin squares and the conjugates of
these latin squares. We know by Lemma 3.2.37 that two conjugate latin squares provide
isomorphic latin square graphs. Thus, it is sufficient to show that two latin square graphs
of isotopic latin squares are isomorphic.
By Definition 3.2.31 we have bijections σ : R → R′, τ : C → C ′, π : S → S ′ such that
M ′(iσ, jτ ) = (M(i, j))π. Furthermore, we know that the vertex sets of the graphs are
V (Γ) = R × C and V (Γ′) = R′ × C ′. Now, we define a mapping σ × τ : V (Γ) → V (Γ′)
where (i, j)(σ×τ) := (iσ, jτ ) for all (i, j) ∈ V (Γ). Clearly, this mapping is a bijection. Let
{(i, j), (k, l)} be an edge in Γ, i.e., by the construction of Γ from L we have i = k or j = l
or M(i, j) = M(k, l). The image of this edge by (σ, τ) is {(iσ, jτ ), (kσ, lτ )}. Clearly, i = k if
and only if iσ = kσ, and j = l if and only if jτ = lτ , because σ and τ are bijections. In the
case of M(i, j) = M(k, l) we have

M(i, j) = M(k, l) ⇔ (M(i, j))π = (M(k, l))π ⇔ M ′(iσ, jτ ) = M ′(kσ, lτ ),

because the latin squares are isotopic.
Thus, we have a bijection from V (Γ) to V (Γ′) such that two vertices in Γ are adjacent if and
only if they are adjacent in Γ′, i.e., Γ and Γ′ are isomorphic. 2

Example 3.2.39 For n = 3 we have only one main class of latin squares (cf. [DenK74],
p. 129). One representative is the latin square over the cyclic group with three elements. By
Proposition 3.2.38 we have only one latin square graph (up to isomorphism). This strongly
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regular graph is trivial, because its complement is disconnected and has three components
each isomorphic to K3.
For n = 4 we have two main classes of latin squares (cf. [DenK74], p. 129). These
are the Cayley tables of the cyclic group with four elements and the Klein four-group. The
complements of the corresponding latin square graphs are known as the Shrikhande graph and
the lattice graph L2(4). The Shrikhande graph is also called the pseudolattice (see Proposition
3.2.46).

Now we consider the automorphisms of a latin square graph which we get from the Cayley
table of a group of order n, n ≥ 2.
For this purpose it is convenient to use the description of latin squares as it was given in
Remark 3.2.27. In the case when we have the Cayley table of a group H, the corresponding
latin square L corresponds to a set of n2 triples (i, j, k) with i, j, k ∈ H and ijk = e, where
e is the identity element in H. As described in Remark 3.2.36 the n2 elements of L are the
vertices of the graph L3(H) and two vertices are adjacent if and only if they coincide in one
coordinate.
It is easy to see that the automorphism group of H induces a subgroup of Aut(L3(H)),
because for all σ ∈ Aut(H) and i, j, k ∈ H with ijk = e we have (i, j, k)σ̃ := (iσ, jσ, kσ) and
iσjσkσ = (ijk)σ = eσ = e. Thus, σ induces a bijection σ̃ : L → L and if two triples coincide
in one coordinate, then the images also coincide in one coordinate.
Moreover, we can show that H3 = H × H × H corresponds to a subgroup of Aut(L3(H)):
For (α, β, γ) ∈ H3 and (i, j, k) ∈ L we define (i, j, k)(α,β,γ) := (αiβ−1, βjγ−1, γkα−1). We
have αiβ−1βjγ−1γkα−1 = αijkα−1 = αeα−1 = e, thus, (α, β, γ) is a bijection L → L and
if two triples coincide in one coordinate, then the images also coincide in one coordinate.
However, there are elements of H3 which have an identical action. It is not difficult to check
that these are exactly the elements N := {(α, α, α)|α ∈ Z(H)}, where Z(H) is the center of
H. Hence, H3/N is isomorphic to a subgroup of Aut(L3(H)).
A third subgroup of Aut(L3(H)) is isomorphic to the symmetric group S3. This subgroup
permutes the three coordinates of the elements of the latin square.
In [GolIK94], p. 182, the automorphism group Aut(L3(H)) is given without a proof:

Remark 3.2.40 ([GolIK94], p. 182)
The automorphism group of a latin square graph L3(H) over a group H is isomorphic to

H3 o (S3 × Aut(H))/
Ñ

,

where Ñ is the kernel of the action of H3 o (S3 × Aut(H)). If H is abelian, then the
automorphism group is isomorphic to H2 o (S3 × Aut(H)).

We already described the action of the three groups H3, S3, Aut(H). One can check that
the groups S3 and Aut(H) are acting independently. Moreover, it is not difficult to show
that each of these two groups normalizes the group H3. Thus, we get the semidirect product
H3 o (S3 × Aut(H)). The determination of the group Ñ which is the kernel of the action
of the group H3 o (S3 × Aut(H)) needs more sophisticated computations which go beyond
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the scope of this thesis. However, it is clear that the group N (see above) is contained in Ñ .
Moreover, one can show that Ñ contains a subgroup isomorphic to H.

Proposition 3.2.41 Let L3(H) be the latin square graph constructed by a latin square over
a group H of order n, n ≥ 2. Then there exists a regular subgroup in the automorphism
group of L3(H) isomorphic to H ×H.

Proof: Let L := {(i, j, k)|i, j, k ∈ H, ijk = e} be a latin square which corresponds to the
Cayley table of the group H. Consider the action of H×H on L which is defined as following:
For (α, γ) ∈ H×H we have (i, j, k)(α,γ) := (αi, jγ−1, γkα−1). As described above this action
is a bijection L → L because αijγ−1γkα−1 = αijkα−1 = αeα−1 = e and it induces an
automorphism of the graph L3(H).
It remains the question, if the induced action of H ×H on the set of n2 triples (i, j, k) ∈ L
is regular. This fact follows immediately because we have n2 elements (α, γ) ∈ H ×H and
each element (α, γ) yields a different image (αi, jγ−1, γkα−1) of the element (i, j, k) ∈ L (as
one can see at the first and second coordinate). 2

Proposition 3.2.42 Let H be a group of order n, n ≥ 2. Then the set

D := {(α, e), (e, α), (α, α)|α ∈ H, α 6= e}

is a (n2, 3(n− 1), n, 6)-partial difference set in H ×H and the Cayley graph Cay(H ×H, D)
is isomorphic to the latin square graph L3(H) over H.

Proof: Since L3(H) is the latin square graph over the group H, it is a (n2, 3(n − 1), n, 6)-
strongly regular graph. By Proposition 3.2.41 we know that H ×H is a regular subgroup of
Aut(L3(H)). Since (e, e, e) is an element of the latin square, it is a vertex of L3(H). Thus,
by Lemma 3.1.20 we get that for

D := {(α, γ) ∈ H ×H|(e, e, e)(α,γ) is adjacent to (e, e, e)}

the Cayley graph Cay(H ×H, D) is isomorphic to L3(H). As described above the action of
H × H on the vertex set of L3(H) is defined by (i, j, k)(α,γ) := (αi, jγ−1, γkα−1). Since in
L3(H) two vertices are adjacent if and only if they coincide in one coordinate and we have
(e, e, e)(α,γ) = (α, γ−1, γα−1) for (α, γ) ∈ D, it follows that α = e, γ 6= e or α 6= e, γ = e or
α = γ 6= e if the vertex (α, γ−1, γα−1) is a neighbour of (e, e, e). Hence, we have

D := {(α, e), (e, α), (α, α)|α ∈ H, α 6= e}

and since L3(H) is a (n2, 3(n − 1), n, 6)-strongly regular graph, by Theorem 3.1.23 the set
D is a (n2, 3(n− 1), n, 6)-partial difference set in H ×H. 2

From Proposition 3.2.41 follows that latin square graphs from latin squares over groups are
always vertex transitive. However, it is not true that latin square graphs of arbitrary latin
squares are vertex transitive. Below we describe an example for a latin square graph which
is not vertex transitive. But there are also examples of vertex transitive latin square graphs
which are not constructed by a latin square over a group.
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Example 3.2.43 The latin square graph of the latin square L1 (No. 5.1.2 in [DenK74],
p. 130) has an intransitive automorphism group of order 48 with three orbits.

L1 :=

1 2 3 4 5 6
2 1 4 5 6 3
3 5 1 6 2 4
4 6 5 1 3 2
5 3 6 2 4 1
6 4 2 3 1 5

L2 :=

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 1 3
5 4 6 3 2 1
6 5 4 1 3 2.

There are three non-isomorphic latin square graphs with 36 vertices which are Cayley graphs
(cf. Section 4.1.2). These graphs correspond to latin squares of different main classes.
Since there are only two non-isomorphic groups of order 6 (symmetric group S3 and cyclic
group Z6), one of these vertex transitive graphs must be a latin square graph over a proper
quasigroup. The Cayley table of this quasigroup resp. the latin square is the above given
L2 (No. 3.1.1 in [DenK74], p. 130). The corresponding latin square graph has a transitive
automorphism group of order 648.

From Proposition 3.2.35 we can determine the parameters of the strongly regular latin square
graphs. All graphs of the class L3(n), n ≥ 3, have parameters (n2, 3(n− 1), n, 6). But there
exist other strongly regular graphs with this parameter set which are no latin square graphs.
For example for n = 5 we have two main classes of latin squares of order n. The corresponding
graphs are the vertex transitive latin square graph over the cyclic group with five elements
and another latin square graph with automorphism group of order 72 which has two orbits.
In addition to these two graphs there exist exactly 13 strongly regular graphs with parameter
set (25, 12, 5, 6) (cf. [Ros76]). This leads to the following definition:

Definition 3.2.44 Let Γ be a strongly regular graph with parameter set (n2, 3(n− 1), n, 6).
If Γ is not a latin square graph, then it is called pseudo latin square graph.

The definition of pseudo latin square graphs can be generalized to pseudo latin square
type graphs, i.e., the class of strongly regular graphs with parameters
(n2, g(n − 1), n − 2 + (g − 1)(g − 2), g(g − 1)), n ≥ 3, g ≥ 2, that are not latin square
type graphs. There exist conditions for n and g when strongly regular graphs with these pa-
rameters are latin square type graphs (cf. [GolIK94], p. 172). These results are consequences
of R. H. Brucks work on nets (see [Bru51]; [Bru63]; [DenK74], Chapter 9).
Finally, we want to mention that there exist a class of strongly regular graphs with param-
eters (n2, g(n + 1),−n− 2 + (g + 1)(g + 2), g(g + 1)), n ≥ 4, g ≥ 2. These graphs are called
negative latin square type graphs.

3.2.5 Square lattice graphs

The square lattice graph (or lattice graph) with n2 vertices, n ≥ 2, is a special latin square
type graph.
The vertices of this graph are the items of an n × n-square. Two vertices are adjacent if
and only if they are in the same row or in the same column. In accordance with Definition
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3.2.34 this graph will be denoted by L2(n). By Proposition 3.2.35 the graph L2(n) is a
strongly regular graph with parameter set (n, 2(n− 1), n− 2, 2). For n = 2 the lattice graph
is isomorphic to the cycle with four vertices. This is a trivial strongly regular graph because
its complement is disconnected.

Remark 3.2.45 The lattice graph L2(n), n ≥ 2, is isomorphic to the line graph of the
complete bipartite graph Kn,n.

Proof: Let V := {v1, ..., vn} and W := {w1, ..., wn} be two disjoint sets. Consider V ∪W
as the vertex set of the bipartite graph Kn,n, where we have all possible edges between V
and W , i.e., E(Kn,n) = {{v, w}|v ∈ V, w ∈ W}. The line graph has vertex set E(Kn,n) and
two vertices of the line graph are adjacent if and only if the corresponding edges have one
common vertex in Kn,n, i.e., {vi, wj}, {vk, wl} ∈ E(Kn,n) are adjacent if and only if i = k
or j = l. Since V and W are disjoint, we can consider E(Kn,n) as the square V ×W and
two vertices (vi, wj), (vk, wl) ∈ V ×W are adjacent if and only if they are in the same row
or same column. This is just the definition of the lattice graph. 2

It is well-known that the lattice graphs L2(n) for n 6= 4 are determined by their parameters:

Proposition 3.2.46 (cf. [Shr59])
For n ≥ 2, n 6= 4, every strongly regular graph with parameters (n, 2(n − 1), n − 2, 2) is
isomorphic to the lattice graph L2(n).

In the case of n = 4 there is exactly one other strongly regular graph with parameters
(16, 6, 2, 2). This graph is called Shrikhande graph (see Example 3.2.39).

All lattice graphs L2(n) can be generated as Cayley graphs because for all n ≥ 2 we have a
regular subgroup of Aut(L2(n)):

Proposition 3.2.47 Let L2(n), n ≥ 2, be the lattice graph. Then the automorphism group
Aut(L2(n)) has a regular subgroup similar to H × K, where H, K are regular permutation
groups of degree n. Moreover, the Cayley graph Cay(H×K, D) over H×K with connection
set D := {(h, e), (e, k)|h ∈ H, k ∈ K, h, k 6= e} is isomorphic to L2(n).

Proof: From [Whi32] we know that

Aut(Kn,n) ∼= Aut(L(Kn,n)) ∼= Aut(L2(n)), n ≥ 2,

i.e., we can consider Aut(Kn,n) instead of Aut(L2(n)). From the structure of the complete
bipartite graph Kn,n we know that there is a partition V ∪W of the vertex set, such that the
vertices in V resp. in W are not adjacent, but each vertex of V is adjacent to each vertex
of W . It follows that any permutation of the vertices of V or of W is an automorphism of
Kn,n. Thus, we can permute each of the disjoint parts of the vertex set independently in
an arbitrary way. Hence, for all regular permutation groups H, K of degree n there exists
a regular subgroup of Aut(Kn,n) similar to the group H ×K. It is easy to check that this
subgroup induces a regular subgroup of Aut(L2(n)).
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Since H × K corresponds to a regular subgroup of the automorphism group of L2(n), we
can construct a Cayley graph with vertex set H × K which is isomorphic to L2(n). By
Lemma 3.1.20 the connection set for this Cayley graph can be chosen as all elements of
H × K which maps the vertex (e, e) onto its neighbours. Since this mapping is defined
by right multiplication, this connection set is D := {(h, e), (e, k)|h ∈ H, k ∈ K,h, k 6= e},
because by definition of the lattice graph the neighbours of (e, e) are all vertices of the form
(h, e), (e, k), h ∈ H, k ∈ K,h, k 6= e.

2

The fact that for groups H, K of order n the set D := {(h, e), (e, k)|h ∈ H, k ∈ K,h, k 6= e}
is a (n2, 2(n − 1), n − 2, 2)-partial difference set in the group H × K is also mentioned in
[Ma84], Theorem 3.1 (1).

Although it is easy to determine some partial difference sets for L2(n), it is not easy at
all to find all partial difference sets (up to CI-equivalence) which generate a lattice graph.
By Lemma 3.1.19 and Lemma 3.1.33 this is equivalent to finding all regular subgroups of
Aut(L2(n)) (up to conjugacy). Therefore we need a description of Aut(L2(n)).

Proposition 3.2.48 (cf. [KliPR88] Example, 4.3.24 c)
The automorphism group of L2(n) is the exponentiation Sn ↑ S2, n ≥ 2.

Proof: If we take into account that Aut(Kn,n) ∼= Aut(L2(n)), n ≥ 2, we can easily check that
the two disjoint parts of the vertex set of Kn,n can be permuted arbitrarily and independently.
Thus, we get all permutations of Sn×Sn. Furthermore, we can interchange these to disjoint
subsets and we get S2 o Sn for the automorphism group of Kn,n. Now, we have to consider
the induced action of this group on the edges of Kn,n. If we consider {0, 1} × N , with
N := {0, . . . , n−1}, as vertex set of this graph, then N{0,1} can be taken as the edge set, i.e.,
as the vertex set of L(Kn,n) ∼= L2(n). One can check that the action of S2 oSn on {0, 1}×N
induces exactly the action of Sn ↑ S2 on N{0,1}. 2

Notice that in general the wreath product H oK of two permutation groups is not similar
to the exponentiation K ↑ H, but these two groups are isomorphic as abstract groups
(cf. [KliPR88], Chapter 1.7).
The description of the automorphism group of L2(n) reduces the problem of determining
all partial difference sets for L2(n) to a pure group theoretical problem. Nevertheless, it is
difficult to solve it in general. If n is a prime number, then it is possible to determine all
partial difference sets (see Section 3.2.3). If n is not a prime, then the situation is much
more sophisticated; here up to a certain bound for n computational approaches yield results.
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3.3 Computational methods for the determination of

partial difference sets

There are several methods for the enumeration of partial difference sets which are based on
distinct modes of thinking.

The most general approach is to consider the determination of partial difference sets as a
special case of the determination of all Schur rings. By Theorem 3.1.27 we know that the
existence of partial difference sets in a group H is equivalent to the existence of primitive
symmetric Schur rings of rank 3 over H. Thus, the complete determination of all Schur rings
over H, in particular, provides all partial difference sets in H. However, in the moment we
can use this general approach only for small groups because we are not able to compute
complete lists of Schur rings over groups of large order.

A second approach is based on the knowledge of complete lists of other objects. Using
complete lists of (v, k, λ)-difference sets in a group we are able to determine complete lists
of certain partial difference sets in this group. This method of transforming difference sets
works only for partial difference sets with parameters (v, k, λ, λ) and (v, k− 1, λ− 2, λ), but
in these cases it is very efficient.

Another method is to use complete lists of vertex transitive strongly regular graphs. Here
we have to investigate the automorphism groups of these graphs and to determine all reg-
ular subgroups which then provides partial difference sets. If we know all vertex transitive
strongly regular graphs with parameters (v, k, λ, µ), then by this method we can determine
all (v, k, λ, µ)-partial difference sets. However, even if we know all vertex transitive strongly
regular graphs with certain parameters, sometimes the automorphism groups are too large
for the necessary computations.

Below, we will present these three methods in detail.

3.3.1 Computations in the group ring

According to Theorem 3.1.27 the existence of partial difference sets is equivalent to the
existence of primitive symmetric Schur rings of rank 3. Hence, for the complete determination
of partial difference sets in a given group we have to discover all primitive symmetric Schur
rings of rank 3 over this group.

For this purpose it is possible to use computer programs like the computer package COCO.
The computer package COCO (COherent COnfigurations) was created in Moscow in 1990
- 1992 by I. A. Faradžev and M. H. Klin. Its main features are introduced in [FarK91],
the algorithm and the methodology are described in [FarKM94], Chapter 2. The computer
package COCO has different functions which, in particular, allows to compute all cellular
subrings of a given cellular ring. These functions are: the inducing of permutation groups on
combinatorial objects, the computation of the colored graph corresponding to the centralizer
ring of a permutation group, the computation of the structure constants of a cellular ring,
the computation of the cellular subrings of a given cellular ring and the computation of the
automorphism group of a cellular ring.
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We give a concrete example for the use of COCO:

Example 3.3.1 We consider the automorphism group of order 432 of one of the vertex tran-
sitive strongly regular graphs with parameters (36,14,4,6) (see Section 4.1.6). With COCO
we get the information that this group has eight 2-orbits and that there exists an imprim-
itive symmetric cellular ring resp. Schur ring of rank 8 over this group. The computer
package COCO computes all cellular subrings of this cellular ring. Altogether there are 29
symmetrical cellular subrings, three of them are primitive. These three primitive cellular sub-
rings are of rank 3 with parameters (36,10,4), (36,14,4) and (36,15,6). One can check that
they correspond to three strongly regular graphs resp. partial difference sets with parameters
(36,10,4,2), (36,14,4,6) and (36,15,6,6).

The computer package COCO is very useful for finding explanations for some computational
results given in this thesis. Sometimes it is even possible to make a further, second step and
to explain computational results without the aid of computers (so-called interpretation, see
Section 3.3.6). An example for such an interpretation we have for the Schläfli graph (see
Section 4.1.6).
Unfortunately, there are some restrictions for COCO. In its computations COCO determines
a set of intermediate objects (so-called ”good subsets”, see Section 5.2). If this set has more
than 1000 elements, then COCO stops the computations. But also if there are less than
1000 ”good subsets” the computations sometimes need a very long time and in some cases
the computations will practically not terminate because they need weeks or months. The
latter case even occurs for groups like (Z2)

5. A special program for COCO written by
F. Fiedler overcame this problem for small groups. With this program F. Fiedler was able
to determine all Schur rings over groups of order up to 31 [Fie98]. Recently, C. Pech found
a way to manage the case (Z2)

5.

Besides the ”classical” functions of COCO there exist a new function called srg (cf. [FieK98]).
This new function, written by F. Fiedler, is still in an experimental stage. With this sub-
routine it is possible to find all strongly regular graphs which are invariant with respect
to a prescribed permutation group. The first new strongly regular graph that was discov-
ered with this function was a graph with parameters (512,73,12,10) which is described in
[FieK98]. This is the first known strongly regular graph with parameters (512,73,12,10). For
this graph there exists an associated partial difference set in the group (Z2)

9; it is the first
partial difference set with this parameters (512,73,12,10).

Apart from the fact that the computer package COCO is useful in general, in special situa-
tions for the computations in the group ring it may be a more promising way to write small
ad hoc programs. For example, in [Smi95] K. W. Smith found a reversible difference set with
parameters (100,45,20) by using the computer after restricting the problem theoretically to
a special task. From the existence of this (100,45,20)-difference set follows the existence
of a (100,44,18,20)-partial difference set which was recently discovered by L. Jørgensen and
M. H. Klin together with some other partial difference sets with 100 elements by switching
of edges in strongly regular graphs ([Kli00], M. H. Klin, private communication).
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3.3.2 Transformation of difference sets

The transformation of (v, k, λ)-difference sets of a given group H allows us to determine
(v, k, λ, λ)- and (v, k−1, λ−2, λ)-partial difference sets in H. If we have a complete list of all
(v, k, λ)-difference sets in a group H, then this transformation is a simple and efficient way to
determine all partial difference sets in H with parameter sets (v, k, λ, λ) and (v, k−1, λ−2, λ).

The transformation procedure is based on Proposition 3.1.13 and Corollary 3.1.28. By
Proposition 3.1.13 we know that each shifting of a difference set is again a difference set.
From Corollary 3.1.28 we get that each shifting D′ of a (v, k, λ)-difference set D provides a
(v, k, λ, λ)-partial difference set if and only if D′ does not contain the identity element and
D′−1 = D′. Furthermore, if the set D′ contains the identity element, then D′ \ {e} is a
(v, k − 1, λ− 2, λ)-partial difference set if and only if D′−1 = D′.
Hence, if we start with a (v, k, λ)-difference set of a group H, then:

1. We construct all shifts Dx, x ∈ H.

2. We select those shifts which are reversible sets in H, i.e., those for which holds
(Dx)−1 = Dx.

3. Each shift Dx which does not contain the identity element is a (v, k, λ, λ)-partial
difference set;

4. Each shift which contains the identity element implies a (v, k − 1, λ − 2, λ)-partial
difference set (Dx) \ {e}.

As an example we consider a difference set with 16 elements. In [Kib78] R. E. Kibler gives
a complete list of all (16, 6, 2)-difference sets.

Example 3.3.2 Let H be a regular permutation group of degree and order 16 similar to
Z2 ×D4 with generators

a := (1, 3, 2, 4)(5, 7, 6, 8)(9, 11, 10, 12)(13, 15, 14, 16),
b := (1, 5)(2, 6)(3, 8)(4, 7)(9, 13)(10, 14)(11, 16)(12, 15),
c := (1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16).

We consider the difference set No. E10 from Kibler’s list in [Kib78]:

D := {e, a, b, a2b, c, a3c}.

The shifts by abc, by a2bc and by b provide the following sets:

D1 := Dabc = {abc, a2bc, a3c, ac, ab, b},
D2 := Da2bc = {a2bc, a3bc, a2c, c, a2b, ab},
D3 := Db = {b, ab, e, a2, bc, a3bc}.
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For all sets we have D−1
i = Di, i = 1, 2, 3 in the group H. By Corollary 3.1.28 the sets

D1, D2 and D3 \{e} are partial difference sets in H, where D1 and D2 are (16, 6, 2, 2)-partial
difference sets and D3 \ {e} is a (16, 5, 0, 2)-partial difference set. If we consider the Cayley
graphs over the group H which are generated by these partial difference sets, then we get
the Shrikhande graph for D1, the lattice graph L2(4) for D2 and the Clebsch graph for D3.
Notice that in addition to the shift with b resp. abc resp. a2bc there exist other possibilities
to shift the difference set D for getting partial difference sets. Each of these shifts implies
one of these three strongly regular graphs as Cayley graph.

3.3.3 Examination of vertex transitive strongly regular graphs and
their automorphism groups

The main computational technique that we used to determine partial difference sets is the
investigation of the automorphism groups of vertex transitive strongly regular graphs. By
Theorem 3.1.23 a strongly regular Cayley graph over a group H is generated by a partial
difference set in H and, conversely, each partial difference set in H generates a strongly
regular Cayley graph over the group H. Thus, for the determination of all partial difference
sets first we have to determine all strongly regular Cayley graphs and then to find all partial
difference sets for each graph. Clearly, it is possible that we get more than one partial
difference set (up to CI-equivalence) for one strongly regular graph. In the following we will
present a procedure, how we can determine all partial difference sets (up to CI-equivalence)
for a given strongly regular graph Γ.

1. Check whether the strongly regular graph Γ is vertex transitive.

2. If Γ is vertex transitive, then determine all regular subgroups of its automorphism
group (up to conjugacy). By Proposition 3.1.19 we know that Γ is isomorphic to a
Cayley graph if and only if there exists a regular subgroup of the automorphism group.
From Lemma 3.1.33 it follows that non-conjugated regular subgroups correspond to
partial difference sets which are not CI-equivalent.

3. For each regular subgroup from Step 2 determine the partial difference set as described
in Lemma 3.1.20. The result is a complete list of non-CI-equivalent partial difference
sets for the strongly regular graph Γ.

We will give an example for the above procedure.

Example 3.3.3 Let Γ be the Schläfli graph on 27 vertices (see Section 4.1.6 for more details
about this strongly regular graph). The automorphism group of Γ has order 51840. Using
the computer package GAP [GAP99] we get two regular subgroups of the automorphism
group (up to conjugacy). Thus, by Lemma 3.1.33 we have two partial difference sets (up
to CI-equivalence). Lemma 3.1.20 yields the partial difference sets, here written in abstract
notation with group generators a and b:
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group GAP partial difference set
a3 = b3 = 1, bab = (aba)2 (27, 3) {a, a2, b, b2, aba, ab2a, a2b2a2, a2ba2, ab2a2b, a2b2ab}
a9 = b3 = 1, ba = a4b (27, 4) {a, a3, a6, a8, ab, ab2, a2b2, a3b, a5b, b2a6}

The column GAP gives the identification number of the group in the GAP catalogue for small
groups (see Section 3.3.4 for more information about this group library).

Unfortunately, the knowledge about the existence of strongly regular graphs is still far away
from a general classification of these objects. The same situation we have for the strongly
regular Cayley graphs. Our knowledge of strongly regular graphs is restricted to some
infinite series and a number of exceptional graphs. Only for graphs up to 49 vertices we have
a complete catalogue of all strongly regular Cayley graphs. With these graphs we determine
a complete list of partial difference sets in groups up to order 49. For strongly regular Cayley
graphs with more than 49 vertices a complete determination is given only for some special
parameter sets. But up to 255 vertices we have a complete catalogue of all vertex transitive
strongly regular graphs with a primitive automorphism group (see Section 4.2). For these
graphs we also used the above given procedure to determine almost all corresponding partial
difference sets.
The missing knowledge of strongly regular Cayley graphs is one restriction for this approach
to determine partial difference sets. There are other restrictions by the power of the com-
puters and the programs.
For our computations we used the computer package GAP [GAP99], which was developed at
the Rheinisch-Westfälische Technische Hochschule Aachen, and the share package GRAPE
(see [Soi93]). The development of GAP (Groups, Algorithms and Programming) was started
in 1986 at the Lehrstuhl D für Mathematik at the RWTH Aachen. The idea for this project
came from J. Neubüser who directed the GAP-project until 1997. After his retirement
the project management was transferred to the University of St. Andrews. The computer
package GAP is a system for computational discrete algebra with particular emphasis on
computational group theory. There are several share packages for different applications like
codes, monoids and graphs. The share packe GRAPE which was created by L. Soicher is a
share package for computations with graphs. It is primarily designed for constructing and
analyzing graphs related to groups and finite geometries. For more information about the
program GAP we refer to the GAP-websites at the University of St. Andrews (see [GAP99]).

Our task for the system GAP is to determine all regular subgroups (up to conjugacy) of the
automorphism group of a given strongly regular graph. Our basis data is a list of strongly
regular graphs and their automorphism groups given in GAP-format. For the computation
of the regular subgroups of these groups GAP has different commands which are based on
different algorithms. However, in many cases the execution of a simple GAP-command is
not successful, because the automorphism groups are too large. In such situations we have
to use some special tricks or methods which are based on the properties of the groups and
regular subgroups. In the following we will present six methods which we used for our task.
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Method 1 The simplest way to get all regular subgroups (up to conjugacy) for a given
permutation group G with degree n by GAP is to compute the whole subgroup lattice and
to check which representatives of the resulting conjugacy classes of subgroups act regularly.
This can be done by the GAP-command LatticeSubgroups(G). GAP returns the lattice of
subgroups of G from which one can compute a list of representatives of the conjugacy classes
of the subgroups of G. From these representatives we only take the groups of order n and
check if these act regularly. The result is a list of regular subgroups of G up to conjugacy.
The Gap-commands are the following:

l:= LatticeSubgroups(G);;

k:=List(ConjugacyClassesSubgroups(l),Representative);;

l:=Filtered(k,x->Size(x)=n);;

regsub:=Filtered(l,IsRegular);;

Clearly, this bruteforce algorithm only works for groups with few subgroups. In case of
subgroup lattices with too many subgroups, one gets no answer in a reasonable time resp.
the system will interrupt.

For the case when G is a solvable group, GAP has the command SubgroupsSolvableGroup(G).
With this command the system computes representatives of the conjugacy classes of sub-
groups of G. The underlying algorithm uses the so-called homomorphism principle and is
described in [Hul99]. There is the option to choose some special functions which give condi-
tions for the properties of the subgroups. If one gives an optional function for the order of the
subgroups, then GAP computes all the subgroups which have this order (sometimes it can
happen that GAP returns in addition some subgroups of other order!). For the determination
of the regular subgroups of G with degree n one can use the following GAP-commands:

l:=SubgroupsSolvableGroup(G, rec(consider:=SizeConsiderFunction(n)));;

regsub:=Filtered(l,IsRegular);;

Method 2 A second method to compute subgroups of a given group G by GAP is the
command LatticeByCyclicExtension(G). This command computes the lattice of subgroups of
G using the cyclic extension algorithm, i.e., the subgroup lattice is computed by starting
from the smallest subgroup and repeated extensions.

A somewhat improved method is to use this GAP-command together with a function f :
LatticeByCyclicExtension(G, f). In this case in the cyclic extension algorithm all subgroups
will be discarded which do not satisfy the conditions in the function f .

If one chooses a function f that checks whether the computed subgroups are semiregular
and of order m, where m divides the degree of G, the program has to do less work than for
the first bruteforce algorithm. Starting from the trivial subgroup the algorithm will compute
semiregular subgroups of small order and extend them to semiregular subgroups of larger
order. The GAP-commands are the following (n is the degree of the automorphism group
G):
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f:= function(H)
if n mod Size(H) = 0 then return IsSemiRegular(H);
else return false; fi;

end;
l := LatticeByCyclicExtension(G, f);;
regsub:=Filtered(l,x− >Size(x)=n);;
The result is the list regsub which consists of all regular subgroups of G (up to conjugacy).
Nevertheless, the improved algorithm has problems with groups of a large order. If the order
of the automorphism groups is too large, one has to check if some other tricks are possible.

Method 3 The third method can be described as ”computing regular subgroups with GAP
step by step”. It is a function which investigates elements of the right cosets of the stabilizer
Ga in the permutation group (G, V ), where a ∈ V . Since G = Gaσ1 ∪ . . . ∪ Gaσn, where
σ1 = e is the identity of G and σi ∈ G \ Ga, i = 2, . . . , n , and each coset Gaσi consists of
the permutations which map a onto aσi , it is clear that if there exists a regular subgroup of
G, it must contain one element of each right coset.
The function starts with computing representatives of the conjugacy classes of the elements
of G. From each representative a group is generated and if this group is semiregular and
the order of this group divides n, then it is joined to the list l. Now l is a list of semiregular
subgroups and each regular group that is contained in G must have a conjugate which has a
semiregular subgroup in l. These semiregular groups in the list l will be extended by suitable
elements of the right cosets of G1 in G (we assume that V := {1, . . . , n}). Here ”suitable”
means that for each semiregular group S the new permutation maps the point 1 onto a point
x which is not contained in the orbit of 1 with respect to S. The algorithm first determines
such a point x and then checks which permutations of the corresponding right coset can be
added to S such that S is still semiregular and has an order dividing n. This procedure is
repeated until each semiregular group is regular or omitted from the list l because there was
no possibility to extend it to a regular subgroup.
The described function in the language of GAP is the following:
regsub := function(G)
local cl,clr,s,sl,rc,rcr,l,ll,lll,n,i,j,k,gens,extended,orb,h;
cl := ConjugacyClasses(G); clr := List(cl,Representative);
s := Stabilizer(G,1); sl := AsList(s);
rc := RightCosets(G,s); rcr := List(rc,Representative);
n := LargestMovedPoint(G);
l := Filtered(clr,x− >Order(x) > 1 and (n mod Order(x) = 0));
l := List(l,Group); l := Filtered(l,IsSemiRegular);
Now l is a list of subgroups, each of them generated by one element, with the following
property: Every group in l is semiregular and for every regular subgroup of G there is a
conjugate containing at least one of the groups in l.
while l <> [ ] and not ForAll(l,h− >Size(h) = n) do
h := First(l,h− >Size(h) < n);
k := Difference([1..n],Orbit(h,1))[1];
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k := Position(List(rcr,x− >1ˆ x),k);

ll := List(sl,x− >x * rcr[k]); ll := Filtered(ll,x− > n mod Order(x) = 0);

if ll = [ ] then return [ ]; fi;

Now, ll is a list of permutations, each of them is element in a ”suitable” right coset. In the
following these permutations will be added to the semiregular groups in the list l. If the
resulting groups are again semiregular and their orders divide n, then they will be joined to
l.

lll := [ ];

for i in [1..Length(l)] do

if Size(l[i]) = n then Add(lll,l[i]);

else orb := Orbit(l[i],1);

if 1ˆ ll[1] in orb then Add(lll,l[i]);

else gens := GeneratorsOfGroup(l[i]);

for j in [1..Length(ll)] do

if n mod Order(ll[j]) = 0 then

h := Group(Concatenation(gens,[ll[j]]));

if IsSemiRegular(h) then Add(lll,h); fi; fi; od;

fi; fi; od;

l := lll; od; return l; end;

Finally, we have a list l of regular subgroups of G, which may contain groups which are
conjugated in G. Hence, we have to check this by the GAP-command IsConjugate(G, H1, H2)
for all pairs of groups H1, H2 in l and to omit the conjugates of each group.

Method 4 The fourth method is a special case of Method 2. In Method 2 semiregular
subgroups of a given group G are computed by the cyclic extension algorithm. At the end
the semiregular subgroups of order n are the regular subgroups. In the case of large groups
or groups which have many semiregular subgroups, this algorithm needs very much time or is
interrupted because of lack of working memory. However, for the computational verification
that no regular subgroup exists in a given group G, in many cases it is not necessary to
compute all semiregular subgroups up to order n. If we assume that in G a regular subgroup
H of order n exists, then we know that there also exists a Sylow p-subgroup S of H which
has order pk ≤ n for a suitable prime number p and suitable k ∈ N. The group S must be
semiregular, because it is a subgroup of the regular group H. Consequently, if we want to
show that no regular subgroup H of G exists, it is sufficient to show that no such semiregular
group S of G exists. Since S is a p-group, it is sufficient to check that no such group S exists
in the Sylow p-subgroup of G. If the order of S is smaller than the order of H, the cyclic
extension algorithm which starts at the smallest group, needs less time for this method than
for the other methods. Clearly, this method only makes sense if H is no p-group (because
then H = S). For a group G of degree n = upk where p . u and p is a suitable prime number
we have the GAP-commands:
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T:=SylowSubgroup(G,p);;
f:= function(H)

if pk mod Size(H) = 0 then return IsSemiRegular(H);
else return false; fi;

end;
l := LatticeByCyclicExtension(T, f);;
semiregsub:=Filtered(l,x− >Size(x)=pk);;
If the list semiregsub is empty, then a regular subgroup of G does not exist.

Method 5 In cases were we have to investigate automorphism groups G of degree pn, where
p is a prime number, we can simplify the computations. In these cases first we compute a
Sylow p-subgroup S of G by the GAP-command S:=SylowSubgroup(G, p);;. Notice that all
Sylow p-subgroups are conjugated in G (by the Sylow theorems), hence, it is sufficient to
consider an arbitrary Sylow p-subgroup. Then we compute all regular subgroups of S with
Method 1, Method 2 or Method 3. Afterwards, we have to check, if the regular groups which
are non-conjugated in S are conjugated in G. This can be done by the GAP-command
IsConjugate(G, H1, H2) (where H1, H2 are non-conjugated regular subgroups of S).

Method 6 If we have some knowledge about the existence of a normal subgroup NH of
each possible regular subgroup H of a group G, then we know that H ≤ NG(NH), i.e., H
is a subgroup of the normalizer NG(NH) of the group NH in G. Hence, it is sufficient to do
the computations in the normalizer NG(NH) ≤ G which is hopefully smaller than the group
G. This method is very useful because in many cases we know that in regular subgroups H
of G a normal subgroup NH exists.
As an example consider a group G with degree 100. Each regular subgroup H of G has order
100. Since 100 = 22 · 52 we can use the following lemma:

Lemma 3.3.4 Let H be a group of order p2q2, where p, q are distinct primes. Then a Sylow
p-subgroup of H is normal if p > q2.

Proof: By the respective Sylow theorem a Sylow p-subgroup of H is normal, if the number
of Sylow p-subgroups np in H is one. Moreover, we know that np | q2 and np ≡ 1 mod p.
From these conditions it follows that np ∈ {1, q, q2} and p | (np − 1). Since p > q2 we get
np = 1, i.e., we have exactly one Sylow p-subgroup of H which, consequently, is normal. 2

The lemma grants that a Sylow 5-subgroup (of order 25) of each possible regular subgroup
H (of order 100) of G is normal in H. Thus, we can compute a Sylow 5-subgroup S of G and
determine all semiregular subgroups S1, . . . , Sk of S of order 25 (for example by Method 2).
Now, each regular subgroup H of G has a conjugate which contains one of these semiregular
groups S1, . . . , Sk as normal subgroup. For each of these semiregular groups we compute the
normalizer Ni := NG(Si) by the GAP-command Ni:=Normalizer(G, Si);; and determine all
regular subgroups of order 100 for each Ni, i = 1, ..., k (by Method 1, Method 2 or Method
3). Finally, with the GAP-command IsConjugate we have to check if the resulting regular
subgroups are conjugated in G.
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After the calculation of all non-conjugated regular subgroups of a given group, by Lemma
3.1.20 we can determine all partial difference sets up to CI-equivalence. Here we also used the
computer package GAP. A special algorithm which we created for GAP provided one partial
difference set for each regular subgroup (see Appendix A). Moreover, with a function IsPds
the algorithm checked again if the computed result has the property of a partial difference
set. Then it was directly saved in a format which was readable for our LaTex-editor. Thus,
all results which appear in this thesis were checked by a second function and we tried to
minimize the possibility for mistake by the ”human factor”.

3.3.4 Presentation of groups

In the present work a complete list of partial difference sets in groups up to order 49 is given.
Moreover, partial difference sets for strongly regular graphs with primitive automorphism
group and less than 256 vertices are determined. Hence, we have to deal with groups up to
order 255 and the question of the presentation of these groups must be discussed.
In general, for the presentation of the groups and for the partial difference sets we give an
abstract description in form of generators (like in Example 3.3.3). Nevertheless, in addition
to this it is convenient to use the small group library of the computer package GAP [GAP99]
which yields group identification numbers. In this library we have all isomorphism classes
of groups up to order 1000 (with some exceptions), each isomorphism class is determined
by a group identification number. The identification of a group G is possible with the
GAP-command IdGroup(G). GAP returns a pair of numbers (order,No.), where the order
of the group is given and the number in the group library of GAP. Conversely, one can
get representatives of groups by the GAP-command SmallGroup(order, No.). For example,
SmallGroup(9, 2) is a group isomorphic to Z3 × Z3.
The generators of the groups for which we determined partial difference sets are also deter-
mined by a GAP command. For a group G one has to take the command GeneratorsOfGroup(G).
Here we have to mention that this generating set is sometimes much larger than necessary,
such that we omitted redundant generators.

3.3.5 Correctness of results

Part of the results in this thesis is obtained with the aid of computers. Hence, the natural
question arises whether these results are correct. Certainly, a computational result is not a
proof and only a complete theoretical description of all partial difference sets we obtained by
our computational approach can yield such a proof. However, the reason for the computer
based determination of certain partial difference sets is the fact that, presently, a theoretical
description is too tedious. Hopefully, for a number of the computer results a theoretical
description will be found in the future. First promising attempts are done (e.g., for the
Schläfli graph, see Section 4.1.6) .
A confirmation of a computational result (not a proof!) can be obtained by an independent
verification with a computer approach based on different algorithms. This means, if a result
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is obtained independently by another computational approach which is based on different
algorithms, then we will consider this result as correct. This claim is due to C. W. H. Lam
[KolLT90], [Lam91].
For some of our results there are different possibilities for a confirmation. As mentioned
before, F. Fiedler has determined all Schur rings over groups of order less than 32 (up to a
certain equivalence) [Fie98], i.e., in particular, he has determined partial difference sets in
these groups. Due to his approach we can extract from this results all primitive, symmetric
Schur rings of rank 3 in groups of order less than 32 up to isomorphism of the corresponding
strongly regular graphs, i.e., for each group each such Schur ring corresponds to a different
strongly regular graph. With these results we can confirm our computational results for
partial difference sets for the Schläfli graph and most of the results for the strongly regular
graphs with 16 vertices (all other partial difference set for strongly regular graphs up to 31
vertices are determined without the computer).
As we already mentioned in Section 3.3.2 there is the possibility to determine complete
lists of certain partial difference sets by difference sets. We find complete lists of difference
sets with parameters (16,6,2) and (36,15,6) in [Kib78]. We can use this information for the
confirmation of our results for partial difference sets with parameters (16,6,2,2), (16,5,0,2),
(36,15,6,6), (36,14,4,6) which we determined by regular subgroups of the automorphism
groups of the associated strongly regular Cayley graphs. Moreover, we can confirm the
non-existence result for (40,12,2,4)-partial difference sets by the complete list of (40,13,4)-
difference sets. We will describe these cases in detail in the next chapter.

3.3.6 Explanation and interpretation of computational results

As described in the previous section the correctness of mathematical results obtained by
computers must be carefully discussed. However, computational results often provide a
deeper understanding of certain properties of mathematical objects. The discovering of new
properties or even new examples of mathematical objects by the computer gives the pos-
sibility to explain this computational results afterwards. Sometimes, computational results
give new ideas which even provide a complete theoretical description, i.e., an interpretation
of the results.
In the present thesis partial difference sets are determined with the aid of the computer pack-
age GAP. As described before some of the results can also be obtained without computers.
However, in many cases a proof of the existence of certain partial difference sets is unknown.
The question arises how these ”new” partial difference sets resp. the existence of regular
subgroups of the automorphism groups of the corresponding strongly regular graphs can be
explained or even interpreted. For some cases there are first approaches. Examples are the
Schläfli graph (see Section 4.1.6) and the six strongly regular Cayley graphs with parameters
(36,14,4,6) and (36,15,6,6) (see Sections 4.1.6 and 4.1.5). For these cases an interpretation
resp. explanation of the computational results were obtained by M. H. Klin and the author
a short time before submitting this thesis. A detailed description will be prepared in nearest
future.
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Determination of partial difference
sets II:
Results

4.1 Determination of small partial difference sets

4.1.1 A brief survey of all known strongly regular graphs up to 49
vertices

A systematical investigation of strongly regular graphs was started in 1963 in a paper by R.
C. Bose [Bos63]. After this starting point strongly regular graphs have become a popular
area in algebraic combinatorics during the last decades. As mentioned in the introduction
the discovering of unknown strongly regular graphs is one of the most challenging tasks for
mathematicians working on this field. A brief survey of known strongly regular graphs can
be found in [Bro96]. Notice that since 1996 new graphs were discovered.
The main source for the determination of small partial difference sets in the present work
is the complete list of strongly regular graphs from E. Spence. On his website E. Spence
gives a list which is complete for strongly regular graphs up to 36 vertices and those with 40
vertices [Spe01]. Moreover, he gives complete lists of strongly regular graphs with 45 and 64
vertices for certain parameter sets. Besides this main source we used some other sources. For
example, in the case of strongly regular graphs with 35 and 36 vertices we used information
about the determination of these graphs which is presented in [Spe95] and [BusMS81].
In Table 4.1 on Page 80 we list all feasible parameters for strongly regular graphs up to 49
vertices, the number of these graphs (# srg) and of vertex transitive graphs (# vertex trans.
srg), and further information. Most of the vertex transitive graphs are introduced in Section
3.2; some graphs are derived from two-graphs (see Section 2.1.3) and in the non-existence
case we have conditions described in Section 3.1.1 resp. the connection to the non-existence
of a certain conference matrix (see [vLiW92], p. 235 and Chapter 18). For each parameter
set there exists a parameter set of the complementary graph (cf. Remark 3.1.2). We dispense
with the presentation of these parameters to keep the table as compact as possible.
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Table 4.1: General information about strongly regular graphs.

# vertex vertex transitive graphs /
n k λ µ # srg trans. srg comments
5 2 0 1 1 1 P (5)
9 4 1 2 1 1 L2(3) ∼= P (9)

10 3 0 1 1 1 Petersen (T (5))
13 6 2 3 1 1 P (13)
15 6 1 3 1 1 T (6)
16 5 0 2 1 1 Clebsch graph
16 6 2 2 2 2 L2(4), Shrikhande graph
17 8 3 4 1 1 P (17)

21 10 3 6 1 1 T (7)
21 10 4 5 - - Conference
25 8 3 2 1 1 L2(5)
25 12 5 6 15 1 L3(5) ∼= P (25)
26 10 3 4 10 -
27 10 1 5 1 1 Schläfli graph
28 9 0 4 - - Krein condition, absolute bound
28 12 6 4 4 1 T (8)
29 14 6 7 41 1 P (29)
33 16 7 8 - - Conference
35 16 6 8 3854 1 from a two-graph
36 10 4 2 1 1 L2(6)
36 14 4 6 180 4 from two-graphs
36 14 7 4 1 1 T (9)
36 15 6 6 32548 4 from two-graphs (3 L3(6)-graphs)
37 18 8 9 ≥ 6760 1 P (37)
40 12 2 4 28 2 no specified name
41 20 9 10 ≥ 1 1 P (41)
45 12 3 3 78 -†

45 16 8 4 1 1 T (10)
45 22 10 11 ≥ 1 -†

49 12 5 2 1 1 L2(7)
49 18 7 6 ≥ 1 1† L3(7)
49 24 11 12 ≥ 2 2† L4(7), P (49)

† number of strongly regular Cayley graphs.
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All strongly regular graphs with 25, 26 and 28 vertices and the orbits of their automorphism
groups are given in [Ros76].

In the case of 37, 41, 45, 49 vertices there still does not exist a complete list of strongly
regular graphs for each parameter set (for the parameter set (37, 18, 8, 9) B. McKay gives
the number of 6760 strongly regular graphs on his website [McK01]). However, by Theorem
3.2.8 we know, that any vertex transitive strongly regular graph with p vertices, p a prime
and p ≡ 1 mod 4, is isomorphic to the Paley graph P (p) which has exactly one partial
difference set (in Zp). By Proposition 3.2.7 the partial difference set of the Paley graph P (p)
is the only partial difference set in a group of order p. Thus, for 29, 37 and 41 we have
exactly one vertex transitive graph. In the case of p2 vertices, p a prime, we can determine
the number of strongly regular Cayley graphs theoretically (see Section 3.2.3). Hence, in the
case of 49 vertices we give the number of strongly regular Cayley graphs.

For the graphs with parameters (45, 12, 3, 3) E. Spence announced on his website [Spe01]
that he has created a complete catalogue of these graphs. In the case of the strongly regular
graphs with parameters (45, 22, 10, 11) we have no information. Nevertheless, in both cases
there does not exist any strongly regular Cayley graph: By Proposition 3.1.26 the existence
of strongly regular Cayley graphs over a group H is equivalent to the existence of a primitive,
symmetric Schur ring over H of rank 3. By Theorem 3.2.16 such a Schur ring does not exist,
if H is abelian, H is not of prime order and H has a cyclic Sylow subgroup. It is clear that
each group of order 45 has a cyclic Sylow 5-subgroup and that 45 is not a prime. Moreover,
we can show that all groups of order 45 are abelian: By the Sylow theorems a group of order
45 has a normal Sylow 5-subgroup and a normal Sylow 3-subgroup which both satisfy the
conditions of Proposition 2.1.10. Hence, each group of order 45 is the direct product of its
Sylow 5-subgroup and its Sylow 3-subgroup. Since by Lemma 2.1.7 there are two options
for the Sylow 3-subgroup, there exist exactly two non-isomorphic groups of order 45, namely
Z45 and Z5 × Z3 × Z3. Both are abelian and, thus, there does not exist a strongly regular
Cayley graph with 45 vertices.

The vertex transitive strongly regular graphs with 40 vertices were determined from the
complete list of E. Spence [Spe01] using GAP.

In the following we will determine all partial difference sets for each Cayley graph in Table
4.1. Since we restricted the parameters (v, k, λ, µ) of the strongly regular graphs in the table
by the condition k ≤ v

2
, i.e., we did not give the complementary graphs (except the case

of self-complementary graphs), the determination of (v, k, λ, µ)-partial difference sets is also
restricted by this condition. However, it is easy to see that each partial difference set D
in a group H corresponds to a partial difference set (H \ D) \ {e}, and this is exactly the
”complementary” partial difference set (cf. Propositions 3.1.27 and 3.1.26). In the tables of
partial difference sets we give in this thesis we do not list the ”complementary cases”.

The small partial difference sets are determined theoretically if possible. In the other cases
the partial difference sets were determined by a computational approach. In these cases we
computed the regular subgroups of each automorphism group (up to conjugacy) once with
Method 1 and as verification with Method 2. The complete list of partial difference sets is
given in Appendix D. The groups are described in Appendix C.
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4.1.2 Vertex transitive strongly regular graphs which do not have
partial difference sets

As described in Section 3.1.3 vertex transitive graphs cannot be constructed as Cayley graphs
in general: By Proposition 3.1.19 we know that only strongly regular graphs whose auto-
morphism group contains a regular subgroup are isomorphic to Cayley graphs and, hence,
have a partial difference set.
With the results of Chapter 3 we can easily determine some vertex transitive strongly regular
graphs of Table 4.1 which do not have partial difference sets.

Triangular graphs

From Theorem 3.2.14 we get that the automorphism group of the triangular graph T (n),
n ≥ 5, has a regular subgroup if and only if n is a prime power and n ≡ 3 mod 4. Thus,
the graphs T (5), T (6), T (8), T (9) and T (10) have no partial difference set because their
automorphism groups have no regular subgroups.

The vertex transitive strongly regular graph with parameters (35,16,6,8)

There is exactly one vertex transitive strongly regular graph with parameters (35, 16, 6, 8).
It has an automorphism group of order 40320 (cf. [Spe95]). This graph can be constructed
as a descendant from a two-graph (cf. [BusMS81]), however, we can also get this graph by
the induced action of the symmetric group S7 on the 3-subsets of the set {1, . . . , 7}, i.e.,
the action of the permutation group (S7, {7

3
}). Here we take the 3-subsets as vertices and

two vertices are adjacent if and only if they are disjoint or have two common elements (in
other words: we consider the centralizer ring 〈ψ0, . . . , ψ3〉 of the group (S7, {7

3
}), where the

vertices A, B ∈ {7
3
} are adjacent in the basis graph ψi if and only if |A∩B| = i, i = 0, . . . , 3.

Then the edge set of the strongly regular graph is the union of the edge sets of ψ0 and ψ2,
see [KliPR88], Chapter 3.4).
The automorphism group of this graph is determined by the following theorem:

Theorem 4.1.1 (cf. [FarKM94], Theorem 3.2.2 b)
If n ≥ 3 and v = 2n+1, then there exists only one nontrivial group which contains the group
(Sv, { v

n
}) as subgroup, and this group is isomorphic to Sv+1.

Thus, the automorphism group of the strongly regular graph is isomorphic to the symmetric
group S8 which has order 40320.

For this strongly regular graph we can proof in two different ways that there is no partial
difference set.
By Proposition 3.1.27 the existence of a partial difference set over a group H is equivalent
to the existence of a symmetric, primitive Schur ring over H of rank 3. Since each group
H of order 35 is cyclic (Lemma 2.1.8), it is also abelian and with Theorem 3.2.16 one can
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show that there exists no primitive, non-trivial Schur ring over H. Thus, we have no partial
difference set in this case.
Furthermore, we can prove the following for the automorphism group of the strongly regular
graph with parameters (35,16,6,8):

Remark 4.1.2 The symmetric group S8 has no subgroup of order 35.

Proof: Suppose there exists a subgroup H of S8 with order 35. Then H is cyclic and hence,
abelian (Lemma 2.1.8). There exists an element h ∈ H with order 7 and h = (a1, . . . , a7),
1 ≤ a1 < . . . < a7 ≤ 8. Since H is abelian, we have for the centralizer of h: CH(h) = H and
CH(h) ≤ CS8(h), i.e., |CS8(h)| ≥ 35.
On the other hand, we know that

|CS8(h)| = j1!1
j1 · j2!2

j2 · . . . · j8!8
j8 ,

where jk is the number of cycles of length k in the permutation h, 1 ≤ k ≤ 8 (cf. [KliPR88],
Theorem 2.4.6 and 2.4.7). We get |CS8(h)| = 1! · 71 = 7 in contradiction to |CS8(h)| ≥ 35.

2

From the remark it follows that there does not exist a subgroup of order 35 in the auto-
morphism group of the strongly regular graph. Thus, there is no regular subgroup in the
automorphism group and for this strongly regular graph we cannot get a partial difference
set.

There are some other vertex transitive graphs in Table 4.1 which are not isomorphic to Cayley
graphs. For the verification we took the computer package GAP and got the following results:

Strongly regular graphs with parameters (36,14,4,6)

There are four vertex transitive strongly regular graphs with parameters (36,14,4,6). Three
of them are elements in switching classes from latin square type two-graphs, one is from a
Steiner type two-graph (cf. [BusMS81] for details). Only the graph of the switching class of
the Steiner type two-graph has no regular subgroup. Its automorphism group of order 12096
is isomorphic to the group PΓU(3, 32) and by GAP no regular subgroup of order 36 exists.

Strongly regular graphs with parameters (36,15,6,6)

Like in the preceding case we have four vertex transitive strongly regular graphs. Two of
them are latin square graphs over groups, i.e., by Proposition 3.2.41 their automorphism
group contains a regular subgroup and they are isomorphic to Cayley graphs.
Moreover, there is another latin square graph over a quasigroup. A computation with GAP
yields the existence of a regular subgroup of its automorphism group.
The fourth vertex transitive strongly regular graph with parameters (36,15,6,6) is not of latin
square type. It is from the switching class of a Steiner type two-graph. The automorphism
group is isomorphic to the group PSp(4, 3) : 2 of order 51840. By GAP this group has no
regular subgroup of order 36.
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Since the three vertex transitive strongly regular graphs with parameter sets (35,16,6,8),
(36,14,4,6) and (36,15,6,6) which are not isomorphic to Cayley graphs are all connected to
the same Steiner type two-graph (cf. [BusMS81]), it remains the question, if there is a more
unified way to get the described results.

Strongly regular graphs with parameters (40,12,2,4)

There are two vertex transitive graphs with parameters (40,12,2,4). With GAP we get that
the corresponding automorphism groups have no regular subgroups. Thus, by Proposition
3.1.19 it follows that all strongly regular graphs with parameters (40,12,2,4) are not isomor-
phic to Cayley graphs, i.e., there is no partial difference set with parameters (40,12,2,4).

This result can be confirmed in another way: In the complete catalogue of difference sets
from Kibler [Kib78] we find exactly one difference set with parameters (40, 13, 4). It is in
the group H := 〈a, b〉 with a5 = b8 = e, ba = a4b. This group has the identification number
(40, 1) in the small group library of GAP [GAP99]. If we assume that a (40, 12, 2, 4)-partial
difference set D in a group K exists, then it is easy to show that D′ := D ∪ {e} is a non-
regular (40, 13, 4, 4)-partial difference set in K. Since D′ as difference set must be equivalent
to the (40, 13, 4)-difference set in [Kib78], the group K is isomorphic to the group H defined
above. Conversely, as described in Section 3.3.2 it is possible to determine all (40, 12, 2, 4)-
partial difference sets by the known (40, 13, 4)-difference set. However, computations with
GAP show that we do not get any (40, 12, 2, 4)-partial difference set by this difference set.

4.1.3 Computer-free determination of partial difference sets

For several classes of strongly regular graphs it is possible to determine the partial difference
sets on a non-computational level.

Paley graphs

In Table 4.1 we have several Paley graphs. By Proposition 3.2.6 the Paley graph P (pn) with
pn ≡ 1 mod 4, p . n, p a prime, has exactly one partial difference set. This partial difference
set consists of the nonzero squares of Fq. Hence, we get all partial difference sets for the
Paley graphs in Table 4.1.

Strongly regular graphs with p2 vertices

In Section 3.2.3 the determination of all partial difference sets for strongly regular graphs
with p2 vertices, p a prime, was discussed. These partial difference sets are always partial
difference sets of groups isomorphic to Zp × Zp. They can be represented by mergings of
i-subsets of the set {O1, ..., Op+1}, 2 ≤ i ≤ p+1

2
, where

O1 = {(0, a)|a ∈ Z∗
p}, Ok+2 = {(a, ka)|a ∈ Z∗

p}, k ∈ Zp.
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Moreover, we know by Corollary 3.2.23 that all partial difference sets we get by merging of
two resp. three subsets are CI-equivalent. Hence, for each graph in Table 4.1 with 9 resp.
25 vertices we have exactly one partial difference set (up to CI-equivalence). The partial
difference sets in the group Z7 × Z7 were discussed in Example 3.2.24.

Triangular graphs

The partial difference sets generating the triangular graphs T (n) as Cayley graphs were
described in Section 3.2.2. There exist partial difference sets if and only if n is a prime
power and n ≡ 3 mod 4. By Proposition 3.2.15 the partial difference sets are unique up to
CI-equivalence if n is a prime number. For the triangular graphs in Table 4.1 we have only
for T (7) a partial difference set. It is a subset of the group Z7 o K, where K := {1, 2, 4} is
a subgroup of Z∗

7. With Theorem 3.2.14 we get the partial difference set

D = {(1, 1), (1, 6), (2, 0), (2, 1), (2, 5), (2, 6), (4, 0), (4, 1), (4, 3), (4, 4)}

for T (7).

4.1.4 Partial difference sets for L2(n)-type graphs

In Section 3.2.3 we gave a complete description of all partial difference sets for the lattice
graphs L2(n) when n is a prime. For each prime number n there exists exactly one partial
difference set (up to CI-equivalence) for L2(n).
However, in the case when n is not a prime the situation is much more difficult. We used
the computer package GAP to solve the problem of determining all partial difference sets
for the strongly regular graphs L2(4), L2(6) and the Shrikhande graph.

The graph L2(4)

The lattice graph L2(4) has parameters (16,6,2,2) and its automorphism group is isomorphic
to the exponentiation S4 ↑ S2 of order 1152 (cf. Section 3.2.5). Furthermore, we know by
Proposition 3.2.47 that in each of the groups Z4 × Z4, Z4 × (Z2)

2 and (Z2)
2 × (Z2)

2 exists
at least one partial difference set for L2(4) (these are CI-equivalent to the partial difference
sets L1, L9, L13 in Table 4.2 on Page 86 ). From the parameter set (16,6,2,2) we immediately
see that all partial difference sets from this graph are of special form, because they are also
(16,6,2)-difference sets (cf. Section 3.1.3).
Computations with GAP give 13 regular subgroups (up to conjugacy) of the automorphism
group of L2(4). By Lemma 3.1.20 we get 13 partial difference sets associated to L2(4). In
Table 4.2 the 13 regular subgroups of Aut(L2(4)) and the associated partial difference sets
are given in an abstract description by generators. The list of 13 partial difference sets
was verified by the construction of (16, 6, 2, 2)-partial difference sets from (16, 6, 2)-difference
sets. From [Kib78] we know all (16, 6, 2)-difference sets. As described in Section 3.3.2 we can
create all (16, 6, 2, 2)-partial difference sets from this list. We get exactly 13 partial difference
sets (up to CI-equivalence) which generate the lattice graph L2(4) and which correspond to
the partial difference sets in the table.
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Table 4.2: Regular subgroups of the automorphism group of the lattice graph L2(4) (up to
conjugacy) and their partial difference sets.

name abstract description of group GAP partial difference sets
L1 a4 = b4 = 1 abelian (16,2) {ab3, a2b, a2b2, a2b3, a3b, b2}
L2 a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc (16,3) {a2, ab, a2c, a2c3, a3b, b}
L3 a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc (16,3) {a2, abc, a2bc, a2c, a3bc, b}
L4 a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc (16,3) {ab, abc, a3b, a3c, bc, c}
L5 a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc (16,3) {a2, ab, abc, a2b, a3b, a3c}
L6 a4 = b4 = 1, ba = a3b (16,4) {ab2, a2, a3b, a3b2, a3b3, b2}
L7 a8 = 1, b2 = a2, ba = a5b (16,6) {a3, a5, ab, a5b, b3, b5}
L8 a8 = 1, b2 = a4, ba = a3b (16,8) {ab3, a2b, a2b3, a3b, a3b2, a5b2}
L9 a4 = b2 = c2 = 1 abelian (16,10) {a2, ac, a2bc, a2c, a3c, b}
L10 a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc (16,11) {a2b, a3b, a2c, abc, a2bc, c}
L11 a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc (16,11) {a2, abc, a2b, a2c, a3bc, bc}
L12 a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc (16,11) {a2, ab, ac, a2c, a3c, a3bc}
L13 a2 = b2 = c2 = d2 = 1 abelian (16,14) {abcd, ac, acd, ad, bd, c}

The first column gives a name for each partial difference set. In all tables the column GAP
gives the identification number of the groups in the SmallGroup Library of GAP4 [GAP99].

Notice that L2, L3, L4, L5 are partial difference sets in the same group, but they are not
CI-equivalent, because this group has four non-conjugated representations which are regular
subgroups of Aut(L2(4)). An analogue situation we have for L10, L11, L12. Moreover, we get
the following remark with the aid of GAP:

Remark 4.1.3 The partial difference sets L11 and L12 in Table 4.2 are equivalent as differ-
ence sets, i.e., difference equivalent. They are clearly srg-equivalent as partial difference sets
but not CI-equivalent.

The different equivalence relations are described in Section 3.1.4.

The Shrikhande graph

As described in Proposition 3.2.46 the Shrikhande graph is an exceptional graph: It is the
only graph in the class of L2(n)-type graphs that is not a lattice graph. For this reason it
is also called a pseudolattice. The Shrikhande graph is the complement of the latin square
graph L3(Z4) (cf. Example 3.2.39). It has an automorphism group of order 192. The group
order can be explained by the description of the automorphism group of a latin square graph
given in Remark 3.2.40.
Since we can describe the Shrikhande graph as the complement of a latin square graph over
the group Z4, we know by Proposition 3.2.41 that there is at least one partial difference set
(this is CI-equivalent to Sh1 in Table 4.3 on Page 87). As for the lattice graph L2(4) all
partial difference sets of the Shrikhande graph are also (16,6,2)-difference sets.
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Table 4.3: Regular subgroups of the automorphism group of the Shrikhande graph (up to
conjugacy) and their partial difference sets.

name abstract description of group GAP partial difference set
Sh1 a4 = b4 = 1 abelian (16,2) {a, a3, ab3, a3b, b, b3}
Sh2 a8 = 1, b2 = a2, ba = a5b (16,6) {a, a7, a3b, a3b5, b, b7}
Sh3 a8 = 1, b2 = a2, ba = a5b (16,6) {a, a2, a6, a7, b3, b5}
Sh4 a8 = 1, b2 = a4, ba = a3b (16,8) {a, a7, a3b, a5b, b, b3}
Sh5 a8 = 1, b2 = a4, ba = a3b (16,8) {a, a2, a6, a7, a5b, a7b}
Sh6 a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc (16,11) {a, a3, a2bc, a3b, a3bc, b}

With the aid of GAP we computed all regular subgroups (up to conjugacy) of the automor-
phism group of the Shrikhande graph and by Lemma 3.1.20 we get the associated partial
difference sets. In Table 4.3 the groups and partial difference sets are given in an abstract de-
scription by generators. Like for the lattice graph L2(4) all these partial difference sets where
verified by the determination of (16, 6, 2, 2)-partial difference sets by (16, 6, 2)-difference sets.
Notice that the partial difference sets Sh2, Sh3 resp. Sh4, Sh5 are not CI-equivalent

In Remark 4.1.3 we already gave a first example for two partial difference sets that are not CI-
equivalent but srg-equivalent and difference equivalent (see Section 3.1.4 for the definitions).
Below, we give some further interesting examples. Since the two partial difference sets in
Remark 4.1.3 generate isomorphic Cayley graphs, i.e., they are srg-equivalent, we have in the
following remark pairs of partial difference sets which are difference equivalent and generate
non-isomorphic Cayley graphs, i.e., they are not srg-equivalent.

Remark 4.1.4 The partial difference sets of the following groups from Table 4.2 and Table
4.3 are difference equivalent but not srg-equivalent:

group GAP partial difference set KiblerNo.
L7 (16, 6) {a3, a5, ab, a5b, b3, b5} J23
Sh3 (16, 6) {a, a2, a6, a7, b3, b5}
L8 (16, 8) {ab3, a2b, a2b3, a3b, a3b2, a5b2} K25
Sh4 (16, 8) {a, a7, a3b, a5b, b, b3}
L10 (16, 11) {a2b, a3b, a2c, abc, a2bc, c} E10
Sh6 (16, 11) {a, a3, a2bc, a3b, a3bc, b}

The column Kibler No. gives the number of the corresponding difference set in the catalogue
of Kibler [Kib78].

The graph L2(6)

The lattice graph L2(6) with parameter set (36,10,4,2) has an automorphism group of order
1036800 which is isomorphic to S6 ↑ S2. Furthermore, we know by Proposition 3.2.47 that
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in each of the groups Z6 × Z6, Z6 × S3 and S3 × S3 exists at least one partial difference set
for L2(6) (these are the partial difference sets labeled with * in Table 4.4).
Like for the Shrikhande graph and the graph L2(4) we computed all regular subgroups of the
automorphism group Aut(L2(6))(up to conjugacy) and determined the corresponding partial
difference sets. With the aid of GAP we found 16 regular subgroups (up to conjugacy), thus,
we have 16 non-CI-equivalent partial difference sets with parameter set (36,10,4,2) (see Table
4.4). Notice that we can divide these 16 groups in six isomorphism classes.

Table 4.4: Regular subgroups of the automorphism group of the lattice graph L2(6) (up to
conjugacy) and their partial difference sets.

GAP abstract description of group / partial difference sets
(36, 6) a3 = b3 = c4 = 1, ab = ba, ca = ac, cb = b2c

{a2b2, ab, c3, a2bc3, ab2c3, a2b, ab2, c, a2b2c, abc}
(36, 9) a3 = b3 = c4 = 1, ab = ba, ca = bc, cb = a2c

{b, b2, c3, ac3, a2c3, a, a2, c, bc, b2c}
(36, 10) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, cb = bc, ca = a2c, db = b2d

{a, a2, d, ad, a2d, b, b2, cd, b2cd, bcd}
{a, a2, b2d, ab2d, a2b2d, a2b, ab2, b2cd, abcd, a2cd}
{a, a2, c, a2c, ac, b, b2, cd, b2cd, bcd}

* {a, a2, c, a2c, ac, b, b2, d, b2d, bd}
{a, a2, c, a2c, ac, a2b, ab2, cd, ab2cd, a2bcd}
{a, a2, bd, abd, a2bd, b, b2, c, bc, b2c}

(36, 12) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, db = bd, ca = a2c, cb = bc
{d, ab2, ab2d, a2b, a2bd, b, b2, c, bc, b2c}
{d, a2b, a2bd, ab2, ab2d, a, a2, c, ac, a2c}
{d, b, bd, b2, b2d, a, a2, c, a2c, ac}
{a, a2, c, a2c, ac, b, b2, cd, bcd, b2cd}

* {d, a, ad, a2, a2d, b, b2, c, bc, b2c}
(36, 13) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, db = bd, ca = a2c, cb = b2c

{d, a, ad, a2, a2d, b, b2, c, b2c, bc}
{a, a2, c, a2c, ac, b, b2, cd, b2cd, bcd}

(36, 14) a3 = b3 = c2 = d2 = 1, abelian
* {c, a, ac, a2, a2c, d, b, bd, b2, b2d}

4.1.5 Partial difference sets for other latin square type graphs

Besides the lattice graphs and the pseudolattice graph there are some other latin square
type graphs in our list which have partial difference sets. These are the latin square graphs
L3(5), L3(6) and L3(7) and the latin square type graphs L4(7).
Since five and seven are prime numbers, the job for L3(5), L3(7) and L4(7) has already been
done in Section 3.2.3: We have exactly one graph for L3(5) resp. L3(7) and two graphs of
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type L4(7) (one is P (49)). For each graph we get exactly one partial difference set (up to
CI-equivalence).
For the case L3(6) the situation is more sophisticated. As described in Section 4.1.2 we have
three vertex transitive strongly regular graphs of type L3(6) with parameters (36,15,6,6).
Two of these graphs are latin square graphs over groups, namely, L3(S3) and L3(Z6). For
the second graph the order of its automorphism group (= 432) can be easily explained by
the description of the automorphism group of latin square graphs in Remark 3.2.40. For
the latin square graph over S3 (|Aut(L3(S3))| = 1296) the case is a bit more sophisticated,
because of the description of the kernel Ñ in Remark 3.2.40.
By Proposition 3.2.41 we know that for each graph there exists at least one partial difference
set (in the group S3 × S3 for L3(S3) resp. in the group Z6 × Z6 for L3(Z6). These partial
difference sets are CI-equivalent to those labeled with * in Table 4.5.

Table 4.5: Regular subgroups of the automorphism group of the latin square graphs of type
L3(6) (up to conjugacy) and their partial difference sets.

graph GAP partial difference set
L3(S3) (36, 9) {c, bc, a, a2, b2c, c3, a2bc2, a2c3, ab, b, a2b2, b2, b2c2, ac3}

(36, 9) {b2c3, bc3, a, a2, c3, c2, c, abc2, ac, ab, b, a2b2, b2, a2b2c2, a2c}
* (36, 10) {c, a2c, a, a2, ac, acd, d, a2bcd, bd, ab, b, a2b2, b2, b2cd, b2d}

(36, 10) {ad, a2d, a, a2, d, c, cd, bc, ab2cd, b, a2b, b2, ab2, b2c, a2bcd}
(36, 12) {d, a2bd, ab2, a2b, ab2d, c, ab2cd, a2c, abcd, a, b, a2, b2, ac, acd}

L3(Z6) (36, 6) {a2c2, a, c2, a2, ac2, ac3, a2c, a2b, ab, b2c3, b2c, ab2, a2b2, a2bc3, abc}
(36, 6) {b2c2, b, c2, b2, bc2, a2b2c, a2bc3, ab2, ab, c, c3, a2b, a2b2, abc, ab2c3}
(36, 11) {a, a2bd, c, ac, a2bcd, a2, ab2d, abc, a2b2d, d, cd, a2d, ab2c, abcd, a2b2c}
(36, 13) {a2d, a, d, a2, ad, c, a2cd, b, a2b, b2c, b2cd, b2, ab2, bc, abcd}

* (36, 14) {a2c, a, c, a2, ac, b2d, ab2cd, b, a2b, d, cd, b2, ab2, bd, a2bcd}
L3(6) over (36, 9) {a, a2, ab2c2, b2c2, a2b2c2, a2b2, a2b, ab, ab2, c, abc3, ab2c, a2bc, a2b2c3, c3}
quasigroup (36, 10) {ab, a2b2, b2cd, a2bcd, acd, a, b, a2, b2, d, bc, ad, b2c, a2d, c}

For the abstract description of the groups see Table 4.4. Here the group (36,11) occurs the
first time. The abstract description is a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ac, db =
bd, cda = ad, cb = bc.

The third graph of type L3(6) comes from a latin square which corresponds to a proper
quasigroup. The latin square was given in Example 3.2.43, the automorphism group of the
associated latin square graph has order 648. This graph is of special interest, since it is
the ”smallest” latin square graph which is a Cayley graph and which is not a latin square
graph over a group (the latin square Cayley graphs with 9, 16 and 25 vertices correspond to
groups!). Therefore, it is a task for further research, if this example of a Cayley graph, which
was discovered ”experimentally” by our computations, can be generalized to an infinite series
of Cayley graphs (resp. partial difference sets) or if it is a ”sporadic” example.
We computed for each of these three strongly regular graphs all regular subgroups of the
automorphism groups (up to conjugacy) and determined the associated partial difference
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sets. The results are given in Table 4.5.

For the strongly regular graphs with parameters (36,15,6,6) we have again the situation
that all partial difference sets are also (36,15,6)-difference sets. Since we have a complete
list of all (36, 15, 6)-difference sets in [Kib78], we were able to verify each of the computed
(36, 15, 6, 6)-partial difference set by the method described in Section 3.3.2.

Like for the other graphs we have partial difference sets in a group which are not CI-equivalent
but which are srg-equivalent. Since all (36, 15, 6, 6)-partial difference sets are also (36, 15, 6)-
difference sets it is possible that some of the non-CI-equivalent partial difference sets are
equivalent as difference sets. But it turns out, that for these graphs there are no non-CI-
equivalent partial difference sets which are equivalent as (36,15,6)-difference sets.

4.1.6 Partial difference sets of other strongly regular graphs

At this point there remain three parameter sets in Table 4.1 for which the partial difference
sets are not discussed. These are the parameters for the Clebsch graph, for the Schläfli graph
and for the strongly regular graphs with parameter set (36,14,4,6).

The Clebsch graph

The Clebsch graph with parameter set (16,5,0,2) is named after Alfred Clebsch (1833 -
1872), a mathematician from Germany. The Clebsch graph can be defined by the 16 lines
of the Clebsch quartic surface, a pair of lines being adjacent if and only if they are skew (cf.
[vLiW92], p. 246). Another possibility is, to get the Clebsch graph as a subgraph of the
Schläfli graph (see Remark 4.1.5).

In the following we present a third way to create the Clebsch graph based on results of the
investigation of the n-dimensional cube (cf. [KliPR88], Chapter 4).

Consider the set Zn
2 . For n ∈ N and i = 0, . . . , n define the graphs Bi(n) of order 2n with

vertex set V (Bi(n)) := Zn
2 and edge set E(Bi(n)) := {{x, y}|d(x, y) = i}, where d(x, y)

denotes the Hamming distance of x, y ∈ Zn
2 .

The graph B1(n) is the n-dimensional cube which has automorphism group S2 ↑ Sn. The
centralizer ring of the group S2 ↑ Sn is 〈B0(n), . . . , Bn(n)〉. In [KliPR88], Satz 4.1.20 all
primitive cellular subrings of this centralizer ring are determined.

Since we are interested in a graph with 16 = 42 vertices, we consider the case n = 4
where we have the centralizer ring W := 〈B0(4), . . . , B4(4)〉. There exist five cellular sub-
rings of W , two of them, the subring 〈B0(4), B1(4) + B2(4), B3(4) + B4(4)〉 and the subring
〈B0(4), B1(4) + B4(4), B2(4) + B3(4)〉, have automorphism groups isomorphic to (Z2)

4 o S5.
Their basis graphs B1(4) + B4(4) resp. B3(4) + B4(4) are isomorphic to the Clebsch graph
(here B1(4)+B4(4) means the graph whose edge set is the union of the edge sets of the basis
graphs B1(4), B4(4)).

Thus, the Clebsch graph can be created with vertex set Z4
2 and two vertices are adjacent,

if and only if their Hamming distance is 1 or 4 (resp. 3 or 4). The automorphism group of
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the Clebsch graph is isomorphic to (Z2)
4 o S5 and has order 1920 (cf. [KliPR88], Beispiel

4.1.19).
Since the automorphism group of the Clebsch graph is isomorphic to (Z2)

4 o S5, one can
check that there exists a subgroup isomorphic to (Z2)

4 which acts regularly on the vertex set
Z4

2. Thus, by Proposition 3.1.19 the Clebsch graph can be generated as a Cayley graph and
consequently, at least one partial difference set exists. It is not difficult to see that this partial
difference set is {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)}, since two vertices are
adjacent if and only if their Hamming distance equals 1 or 4. This partial difference set is
the last one in Table 4.6; it can also be described by cyclotomic schemes (see Example 5.3.2
on Page 124).
With the aid of GAP we computed all regular subgroups of the automorphism group (up to
conjugacy) and then determined all partial difference sets (up to CI-equivalence). Altogether
there are twelve regular subgroups in the automorphism group (up to conjugacy) and, hence,
we get twelve non-CI-equivalent partial difference sets. They are listed in Table 4.6.

Table 4.6: Regular subgroups of the automorphism group of the Clebsch graph (up to
conjugacy) and their partial difference sets.

GAP abstract description of group partial difference set
(16,2) a4 = b4 = 1 abelian {a2b2, a, a3, b, b3}
(16,3) a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc {a, a3, a2b, c, c3}
(16,3) a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc {a, a3, ac, ac3, a2b}
(16,3) a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc {a, a3, b, ac3, a3c}
(16,4) a4 = b4 = 1, ba = a3b {a, a3, b, b3, a2b2}
(16,6) a8 = 1, b2 = a2, ba = a5b {a, a4, a7, b, b7}
(16,8) a8 = 1, b2 = a4, ba = a3b {a, a4, a7, ab3, a3b3}
(16,10) a4 = b2 = c2 = 1 abelian {a, a3, a2bc, b, c}
(16,11) a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc {a2, ab, a3bc, b, bc}
(16,11) a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc {ab, a2c, a3b, b, bc}
(16,11) a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc {ac, a2c, a3c, b, bc}
(16,14) a2 = b2 = c2 = d2 = 1 abelian {a, b, c, d, abcd}

Like for the other graphs here we find non-CI-equivalent partial difference sets in a group
(groups No. (16,3), (16,11)).
As described in Section 3.3.2 we can determine partial difference sets for the Clebsch graph
by investigating all (16,6,2)-difference sets. If we do this job with the complete list of
(16,6,2)-difference sets from Kibler [Kib78], then we get all partial difference sets listed in
Table 4.6 as well. Since there exist three partial difference sets (up to CI-equivalence) in
the group (16, 11) but only two difference sets (No. E9 and E10 in [Kib78]) we have the
situation that the difference set D := {e, a, a2, b, ac, a2bc} (No. E9 in [Kib78]) provides two
non-CI-equivalent partial difference sets: (Da2bc) \ {e} and (Da3c) \ {e}.
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The Schläfli graph

The Schläfli graph with parameters (27,10,1,5), named after the swiss mathematician Ludwig
Schläfli (1814 - 1895), is well-known as an example for a nontrivial, sharply 4-homogeneous
graph (cf. [KliPR88], 4.3.32). For the construction of the Schläfli graph there are several
possibilities (cf. [GolK78], [KliPR88], [vLiW92]). One possibility is, to created the graph by
a generalized quadrangle GQ(2, 4) (cf. [vLiW92], p. 245). A more ”local” description we
find in [KliPR88], 4.3.33:
Let V := {x, y} ∪ Va ∪ Vb ∪ Vc ∪ Vd be the vertex set, where

Va := {ai|i ∈ I}, Vb := {bi|i ∈ I}, Vc := {ci|i ∈ I}, Vd := {dij|i, j ∈ I, i 6= j},

with I := {1, 2, 3, 4, 5} and E := E1 ∪ E2 be the edge set, where

E1 := {{x, ai}, {x, bi}, {y, ai}, {y, ci}, {ai, bi}, {ai, ci}|i ∈ I},
E2 := {{bi, cj}, {ak, dij}, {bi, dij}, {ci, dij}, {dij, dkl}|i, j, k, l ∈ I pairwise disjoint}.

Then the graph (V, E) is isomorphic to the Schläfli graph.
As remarked in Section 4.1.6 the Clebsch graph is a subgraph of the Schläfli graph:

Remark 4.1.5 (cf. [KliPR88], p. 188)
Let Γ = (V, E) be the Schläfli graph and x ∈ V . The subgraph Γ(x) of Γ which is induced by
the vertices {y ∈ V |({x, y} /∈ E} is isomorphic to the Clebsch graph.

The Schläfli graph has an automorphism group of order 51840. With the aid of GAP we found
two regular subgroups of order 27 (up to conjugacy). In Table 4.7 we give the subgroups
and the associated partial difference sets (cf. Example 3.3.3).

Table 4.7: Regular subgroups of the automorphism group of the Schläfli graph (up to con-
jugacy) and their partial difference sets.

group GAP partial difference set
a3 = b3 = 1, bab = (aba)2 (27, 3) {a, a2, b, b2, aba, ab2a, a2b2a2, a2ba2, ab2a2b, a2b2ab}
a9 = b3 = 1, ba = a4b (27, 4) {a, a3, a6, a8, ab, ab2, a2b2, a3b, a5b, b2a6}

For the groups we have the following description:
The group (27,3) is isomorphic to the semidirect product (Z3 × Z3) o 〈α〉 with
α ∈ Aut(Z3 × Z3) and aα := ab, bα := b for generators a, b of Z3 × Z3.
The group (27,4) is isomorphic to the semidirect product Z9 o 〈β〉 with β ∈ Aut(Z9), where
aβ := a4 for a generator a of Z9.

In the following we will describe very briefly a computer-free interpretation of the Schläfli
graph. This interpretation covers also the existence of the two non-CI-equivalent partial dif-
ference sets. It was obtained post factum by M. H. Klin (M. H. Klin, private communication),
i.e., after the computer results given in this thesis were known.
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We consider the graph Γ := 3 ◦K3. One can easily check that this graph has the automor-
phism group G := S3 o S3 of order 1296. Counting the edges of the graph we get exactly 27
edges. Let G̃ be the induced action of G on the 27 edges, i.e., G̃ is a permutation group
with degree 27. One can check with the computer package COCO that the Schläfli graph
is invariant with respect to G̃. An investigation of the group G̃ yields that there are two
subgroups both acting regularly on 27 points, thus, they are acting regularly on the Schläfli
graph. These two subgroups coincide with the computational results given above.

But one can avoid the use of COCO. We consider the following incidence structure (V,B):
The points in V are the 27 edges of Γ and the blocks in B will be represented by sets of
three edges of the following two kinds:

1) induced triangles, i.e., from each of the three components K3 in Γ we take one vertex and
these three vertices will be joined to a triangle;

2) matchings between two components K3 in Γ, i.e., each vertex of one component K3 will
be joined to one vertex of the second component K3 such that the three resulting edges do
not meet in a vertex.

In this incidence structure we have 33 = 27 induced triangles and 3 · 3! = 18 matchings, i.e.,
altogether 45 blocks. This incidence structure represents a generalized quadrangle GQ(2, 4),
i.e., an incidence structure with 27 points and 45 lines where for each point P and each
non-incident line L there exists exactly one line through P which intersects L. The fact that
our incidence structure is a GQ(2, 4) can be checked as follows:

Since G acts transitively on the edges of Γ it acts transitively on the points of V . Hence, it is
sufficient to consider only one point in V , i.e., one edge of Γ. In the picture below this is the
edge {1, 3} (thick line). Now we have to check for each block B1 in B which does not contain
{1, 3} if there exists another block B2 ∈ B which contains {1, 3} and intersects with B1 in
one point. In other words, we have to show that for each induced triangle resp. matching
B1 (see above) which does not contain the edge {1, 3} there exist an induced triangle resp.
matching B2 which contains {1, 3} and has one common edge with B1. Taking into account
the action of the group G we can reduce this problem to four cases, which are given in the
picture (in each case the block B1 is represented by the thin lines, the block B2 is described
by the dotted lines, the edge {1, 3} is the thick line and {0, 3, 6}, {1, 4, 7}, {2, 5, 8} are the
vertex sets of the three components K3 of Γ):

Thus, as shown in the picture, the incidence structure (V,B) coincides with the structure
of the generalized quadrangle GQ(2, 4) and it is well-known that the Schläfli graph can be
constructed from GQ(2, 4) (cf. [vLiW92], p. 245).
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The strongly regular graphs with parameters (36,14,4,6)

As described in Section 4.1.2 we have three strongly regular graphs with parameters (36,14,4,6),
each of them isomorphic to a Cayley graph. Each of these graphs is in a switching class of
a latin square type two-graph with 36 vertices (cf. [BusMS81]). The graphs have automor-
phism groups of order 144, 432 and 216.
Since the vertex transitive latin square graphs with parameters (36,15,6,6) are in the switch-
ing classes of the same two-graphs, we have some connections between these graphs:

No. of two-graph (36,14,4,6) (36,15,6,6)
in [Spe95] # |Aut| # |Aut|

184 1 144 1 432
224 1 432 1 1296
227 1 216 1 648

For every line in the table the automorphism group of the strongly regular graph with
parameters (36,14,4,6) is a subgroup of the automorphism group of the corresponding latin
square graph with parameters (36,15,6,6). Consequently, from the Galois correspondence
described in Remark 2.2.8 follows that each of the latin square graphs appears as a basis
graph of a cellular subring in the centralizer ring of the automorphism group of one of these
(36,14,4,6)-strongly regular graphs (one example is described in Section 3.3.1).
If we compute the non-conjugated regular subgroups for each automorphism group of the
(36,14,4,6)-graphs with GAP and determine the associated partial difference sets we get the
results of Table 4.8 on Page 95.
Like for the Clebsch graph we can use for these strongly regular graphs the method of
determining partial difference sets from difference sets (see Section 3.3.2). In [Kib78] we have
a complete list of all (36,15,6)-difference sets. From these we also get all partial difference
sets in Table 4.8.
Here we have the situation that there exists only one difference set (No. I. B20 in [Kib78])
for the group (36, 13) which provides the two partial difference sets for the graph with
automorphism group of order 144 (see Table 4.8). The group elements for the necessary
shiftings of the difference set No. I. B20 are c and abd. For the graph with automorphism
group of order 432 there are three difference sets (No. II. D28 - D30 in [Kib78]) which provide
the four partial difference sets for the group (36, 10) (see Table 4.8). From the difference set
II. D28 we get two partial difference sets by shifting with the group elements d and a2bc and
eliminating the identity element afterwards.
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Table 4.8: Regular subgroups of the automorphism group of the strongly regular graphs with
parameters (36,14,4,6) (up to conjugacy) and their partial difference sets.

graph GAP partial difference set
srg with (36, 6) {c, a2bc2, a2b2c3, ab2c2, abc2, abc3, a, ab2c, ac2, a2, a2b2c2, a2c2, a2bc, c3}
|Aut| = 144 (36, 6) {c, ab2c2, abc3, a2bc2, a2b2c3, abc2, b, ab2c, bc2, b2, a2b2c2, b2c2, a2bc, c3}

(36, 13) {d, c, cd, a2b2c, a2b2cd, ac, a, bd, bc, a2, ab2c, a2bc, b2d, abcd}
(36, 13) {c, abd, a2b2cd, a2b2d, abcd, bd, a, b2c, ad, a2, b2d, a2d, bc, cd}
(36, 14) {c, abcd, abd, a2b2cd, a2b2d, bcd, a, bc, acd, a2, b2cd, a2cd, b2c, d}

srg with (36, 9) {ac3, a2bc, a2bc2, ac, c2, b2c2, bc3, a, bc2, a2b2c2, a2b2c3, a2, a2c2, b2c}
|Aut| = 432 (36, 9) {c, c2, c3, a2bc3, abc2, a2bc2, abc2, b, bc2, a2c2, a2b2c, b2, ac2, ab2c3}

(36, 10) {a2cd, c, a2d, ac, ad, ab2d, ab2cd, ab2, abd, a2bd, bcd, a2b, a2b2d, a2c}
(36, 10) {d, a2c, a2cd, c, cd, a2b2cd, b2d, a2b, abcd, bcd, bd, ab2, ab2cd, ac}
(36, 10) {c, a2d, acd, ad, a2cd, ab2cd, bc, a2b, bcd, a2bcd, b2c, ab2, b2cd, d}
(36, 10) {b2cd, d, a2bc, a2d, bc, b2c, a2bcd, ab2, c, a2c, acd, a2b, a2b2c, ad}
(36, 12) {d, a2c, a2cd, c, cd, bcd, abd, ab2, b2cd, a2b2cd, a2b2d, a2b, a2bcd, ac}
(36, 12) {d, b2cd, b2c, bc, bcd, a2bcd, abd, a2b, abcd, ab2cd, a2b2d, ab2, a2b2cd, c}
(36, 12) {c, a2cd, a2d, a2b2cd, a2b2d, ad, ac, a2b2, bd, b2d, a2c, ab, abd, a2bcd}

srg with (36, 9) {c2, c, c3, a2b2c2, a2b2, ac3, bc2, bc, ac2, ab, ab2c2, a2bc2, a2bc2, a2c3}
|Aut| = 216 (36, 10) {d, c, cd, a2bd, a2b, abcd, abd, bc, bd, ab2, a2d, ad, b2ca2b2cd}

(36, 10) {cd, d, c, a2bcd, a2b, b2c, b2cd, ad, acd, ab2, abcd, a2b2cd, a2d, bc}
For the abstract description of the groups see Table 4.4.

4.2 Determination of partial difference sets by strongly

regular graphs with primitive automorphism group

Besides the results for strongly regular graphs up to 49 vertices we investigated strongly
regular graphs with a larger number of vertices. Unfortunately, there does not exist a
complete determination for strongly regular graphs with v vertices, where v > 49. Only
for some special parameter sets the complete number of strongly regular graphs is known.
These cases are either exceptional cases where we have exactly one strongly regular graph
for a parameter set (e.g., the Hoffman-Singleton graph), infinite series like the triangular
graphs (see Section 3.2.2), or cases where all strongly regular graphs where determined by
computers like for the parameters (64, 18, 2, 6) (cf. [Spe01]).

It is well-known that the task of determining a complete list of graphs with certain properties
is obstructed by the phenomenon of ”combinatorial explosion” which means the enormous
growth of the number of graphs when the number of vertices increases. This also affects the
class of regular graphs and even the strongly regular graphs. Hence, the fact that a complete
list of strongly regular graphs does not exist if the number of vertices is over a certain bound
is not surprising.

For the present work we are interested in strongly regular Cayley graphs. One approach



96

to get a complete list of strongly regular Cayley graphs with v vertices is to investigate all
transitive permutation groups of degree v and to determine the strongly regular graphs which
have these transitive groups as automorphism groups. But here we are again faced with the
problem of ”combinatorial explosion”: the number of transitive permutation groups of degree
v explodes if v increases. A. Hulpke has determined all transitive permutation groups with
degree up to 31 in his PHD-thesis [Hul86]. To our knowledge this bound is not improved until
now. Consequently, by this approach it is only possible to determine all vertex transitive
strongly regular graphs up to 31 vertices. But these graphs are already known.
Since the case of transitive permutation groups does not lead to an acceptable result for the
determination of strongly regular graphs, it is natural to restrict ourselves to the case of
primitive permutation groups.
Since the GAP catalogue [GAP99] on primitive groups contains all primitive groups with
degree smaller than 256 (the GAP manual refers to [DixM88], [Sho92] and [The97]), it is
possible to determine all strongly regular graphs with primitive automorphism group up to
255 vertices. Using the GAP catalogue of primitive permutation groups C. Pech started
to compute all strongly regular graphs which have these primitive groups as automorphism
groups. Currently, the catalogue of C. Pech contains all these graphs except the cases with
121 and 169 vertices (C. Pech, private communication). Since these numbers are squares of
primes, in both cases we can determine all partial difference sets theoretically (see Section
3.2.3), which completes the catalogue of C. Pech in our sense.

4.2.1 A brief survey of strongly regular graphs up to 255 vertices
with primitive automorphism group

In this section we will give a brief survey of the strongly regular graphs which will be
investigated in the next sections. Altogether there are 95 strongly regular graphs with
primitive automorphism group and v vertices, where 49 < v ≤ 255 (see Table 4.9 starting on
Page 97). In the table we give the parameters of the strongly regular graphs and, if known,
the name of the graph. Moreover, from the catalogue of C. Pech we took the names of the
primitive groups with slight changes to make the table better readable (for some groups no
name has been specified). The groups in the GAP library of primitive groups are named like
in the thesis of H. Theißen [The97]. The names reflect the cohort structure which is given
in [DixM88]. A group ”G#n.i” in the table is the ith representation of a permutation group
of degree n with socle G in the GAP library. A group G : H is the semidirect product with
normal subgroup H and factor group G. The group G ◦H is the central product of matrix
groups G and H. The group ”G on i-sets.j” is the jth permutation group with degree n
and socle G in the GAP library of primitive groups which acts on i-subsets of {1, . . . , n}.
Analogously, the group ”G on 1-sets2.j” is the jth permutation group with degree n and
socle G in the GAP library which acts on the elements of {1, . . . , n}2. Cyclic groups of order
n are simply named by n. The extension of a group G by a group H is denoted by G.H. For
the groups in the lines 7, 8 and 22 we did not find a description in [The97], we only get the
information that the names are ”ad-hoc names” which are not necessarily natural for group
theorists (A. Hulpke, private communication).
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In this thesis we do not give further information about the automorphism groups. Only
in some cases when it is necessary we will give details. Most of the groups listed in the
table are primitive representations of classical groups. For information about the groups we
refer to the Atlas of finite groups [CCNPW85] and the Atlas of finite group representations
[BLNPRSTWW01]. Furthermore, the groups can be found in the GAP group library of
primitive groups.

The strongly regular graphs which are isomorphic to Cayley graphs will be described in
detail below. The strongly regular graphs with 121 and 169 vertices (resp. the associated
partial difference sets) were determine theoretically and added to the table afterwards. For
the graphs with latin square type parameters we checked with the aid of the GAP-package
GRAPE if these graphs are so-called point graphs of partial linear spaces. Is this the case
then the graphs are in fact latin square type graphs and otherwise they are pseudo latin
square type graphs. The underlying idea of this procedure is based on the results of R. C.
Bose [Bos63] on strongly regular graphs and partial geometries. An algorithm similar to the
GRAPE function was developed by S. Reichard (see [Rei97], [Rei98] for the algorithm and
theory).

Table 4.9: Strongly regular graphs with primitive automorphism group

No. parameters primitive group graph
1 50,7,0,1 PSU(3, 52) : 2 Hoffman-Singleton
2 55,18,9,4 A11 on 2-sets.2 T (11)
3 56,10,0,2 PSL(3,4)#56.5 Sims-Gewirtz
4 63,30,13,15 PSU(3,3)#63.2
5 63,30,13,15 PSp(6,2) on projective points.1
6 64,14,6,2 A8 on 1-sets2.4 L2(8)
7 64,18,2,6 3.A6.2 max GL(3, 4).2
8 64,21,8,6 PSL(2, 7) : 2 max PSU(3, 3) : 2 max Sp(6, 2) pseudo L3(8)
9 64,21,8,6 26 : SL(3, 2) ◦ SL(2, 2) L3((Z2)3)
10 64,27,10,12 26 : O−1(6, 2)
11 64,28,12,12 26 : O+1(6, 2) pseudo L4(8)
12 66,20,10,4 A12 on 2-sets.2 T (12)
13 77,16,0,4 M22#77.2
14 78,22,11,4 A13 on 2-sets.2 T (13)
15 81,16,7,2 A9 on 1-sets2.4 L2(9)
16 81,20,1,6
17 81,24,9,6 pseudo L3(9)
18 81,30,9,12
19 81,32,13,12 L4(9)
20 81,32,13,12 L4(9)
21 81,40,19,20 Paley
22 81,40,19,20 34 : NΓ(SL2(5))3 L5(9)
23 85,20,3,5 PSp(4, 4) on projective points.2
24 91,24,12,4 A14 on 2-sets.2 T (14)
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No. parameters primitive group graph
25 100,18,8,2 A10 on 1-sets2.4 L2(10)
26 100,22,0,6 HS#100.2 Higman-Sims
27 100,36,14,12 J2#100.2 Hall-Janko-Wales
28 105,26,13,4 A15 on 2-sets.2 T (15)
29 105,32,4,12 PSL(3, 4)#105.6
30 112,30,2,10 PSU(4, 3)#112.8
31 117,36,15,9 PSL(4, 3)#117.2
32 119,54,21,27 O−1(8, 2)#119.2
33 120,28,14,4 A16 on 2-sets.2 T (16)
34 120,42,8,18 PSL(3, 4)#120.5
35 120,51,18,24 PSp(4, 4)#120.2
36 120,56,28,24 A7#120.1
37 120,56,28,24 O+1(8, 2)#120.2
38 120,56,28,24 A10 on 3-sets.2
39 121,20,9,2 L2(11)
40 121,30,11,6 L3(11)
41 121,40,15,12 L4(11)
42 121,40,15,12 L4(11)
43 121,50,21,20 L5(11)
44 121,60,29,30 L6(11)
45 121,60,29,30 L6(11)
46 121,60,29,30 Paley
47 125,62,30,31
48 125,62,30,31
49 125,62,30,31
50 125,62,30,31 Paley
51 126,25,8,4 A10#126.2
52 126,45,12,18 PSU(4, 3)#126.5
53 130,48,20,16 PSL(4, 3)#130.5
54 135,64,28,32 O+1(8, 2)#135.2
55 136,30,15,4 A17 on 2-sets.2 T (17)
56 136,60,24,28 PSp(4, 4)#136.2
57 136,63,30,28 PSL(2, 17)#136.1
58 136,63,30,28 O−1(8, 2)#136.2
59 144,22,10,2 A12 on 1-sets2.4 L2(12)
60 144,39,6,12 PSL(3, 3)#144.2
61 144,55,22,20 M12#144n.1 pseudo L5(12)
62 144,66,30,30 M12#144.2 pseudo L6(12)
63 144,66,30,30 M12#144n.1 pseudo L6(12)
64 153,32,16,4 A18 on 2-sets.2 T (18)
65 155,42,17,9 PSL(5, 2)#155.1
66 156,30,4,6 PSp(4, 5) on projective points.2
67 156,30,4,6 PSp(4, 5)#156.2
68 162,56,10,24 PSU(4, 3)#162.5
69 165,36,3,9 PSU(5, 2) on isotropic projective points.2
70 169,24,11,2 L2(13)
71 169,36,13,6 L3(13)
72 169,48,17,12 L4(13)
73 169,48,17,12 L4(13)
74 169,48,17,12 L4(13)
75 169,60,23,20 L5(13)
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No. parameters primitive group graph
76 169,72,31,30 L6(13)
77 169,72,31,30 L6(13)
78 169,72,31,30 L6(13)
79 169,84,41,42 Paley
80 171,34,17,4 A19 on 2-sets.2 T (19)
81 175,72,20,36 PSU(3, 5)#175.2
82 176,40,12,8 PSU(5, 2) on non-isotropic projective points.2
83 176,70,18,34 M22#176.1
84 190,36,18,4 A20 on 2-sets.2 T (20)
85 196,26,12,2 A14 on 1-sets2.4 L2(14)
86 208,75,30,25 PSU(3, 4) on non-isotropic projective points.3
87 210,38,19,4 A21 on 2-sets.2 T (21)
88 225,28,13,2 A15 on 1-sets2.4 L2(15)
89 231,30,9,3 M22#231.2
90 231,40,20,4 A22 on 2-sets.2 T (22)
91 243,22,1,2
92 243,110,37,60
93 253,42,21,4 A23 on 2-sets.2 T (23)
94 253,112,36,60 M23#253a.1
95 255,126,61,63 PSp(8, 2) on projective points.1

A table with some more details is given in Appendix E.
Most of these graphs belong to special classes of graphs which we already described in
Chapter 3. For example, there are eight lattice graphs (L2(8), . . . , L2(15)), 13 triangular
graphs (T (11), . . . , T (23)), 23 latin square type graphs and seven pseudo latin square type
graphs.

Some of the graphs are exceptional graphs in the sense that they are determined by their
parameters and they are not members of one of the described infinite series. Here we have:

- the Hoffman-Singleton graph with parameters (50, 7, 0, 1) (see [HofS60], [Jam74]),

- the Sims-Gewirtz graph with parameters (56, 10, 0, 2) (see [Gew69a] [Gew69b]),

- the graph with parameters (77, 16, 0, 4) which is a subconstituent of the Higman-Sims
graph (see [Bro83]),

- the graph with parameters (81, 20, 1, 6) (see [vLiS81], [BroH92]),

- the Higman-Sims graph with parameters (100, 22, 0, 6) (see [HigS68]),

- the graph with parameters (112, 30, 2, 10) which is a subconstituent of the McLaughlin
graph with parameters (275, 162, 105, 81) (see [CamGS78]),

- the graph with parameters (162, 56, 10, 24) which is also a subconstituent of the McLaugh-
lin graph (see [CamGS78]).

Below we will show that some of these graphs yield partial difference set and others not.
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4.2.2 Strongly regular graphs with primitive automorphism group
which do not have partial difference sets

The systematical investigation of the strongly regular graphs in Table 4.9 gives 40 strongly
regular graphs which are not isomorphic to a Cayley graph, i.e., there does not exist any
partial difference set for these graphs. These results were obtained by theoretical and com-
putational methods described in Chapter 3.

We do not give a detailed description of the strongly regular graphs in the non-existence
cases. However, some of these graphs play a role for the construction of strongly regular
Cayley graphs which we discuss in detail below.

Theoretical results in non-existence cases

As described in the preceding sections there are several results and conditions for the exis-
tence of partial difference sets for given strongly regular graphs.

In the case of triangular graphs T (n) by Theorem 3.2.14 we have only partial difference
sets, if n is a prime power and n ≡ 3 mod 4. Since in Table 4.9 the triangular graphs
T (11), . . . , T (23) occur, we immediately see that only T (11), T (19) and T (23) yield partial
difference sets. For the other graphs T (12), T (13), . . . , T (18), T (20), T (21), T (22) no partial
difference sets exist.

By Theorem 3.2.16 we know that nontrivial, primitive Schur rings do not exist over abelian
groups which are not of prime order and which have a cyclic Sylow subgroup. Thus, for
all strongly regular graphs with v = pq vertices, where p > q and q . (p − 1), we have no
partial difference sets. In these cases all groups of order v = pq are cyclic (Lemma 2.1.8) and,
consequently, abelian groups, which have a cyclic Sylow subgroup. Therefore, we do not get
any partial difference set for the graphs No. 13 with parameters (77, 16, 0, 4), No. 23 with
parameters (85, 20, 3, 5) and No. 32 with parameters (119, 54, 21, 27). Moreover, one can
check that there exists only one group of order 255 which is cyclic: We have 255 = 3 · 5 · 17
and from the Sylow theorems and some calculations it follows that all Sylow subgroups
satisfy the conditions of Proposition 2.1.10, i.e., each group of order 255 is a direct product
of three subgroups of prime order. Since there is only one option for each subgroup (the cyclic
group), there exists only one group of order 255 and this is cyclic. Hence, with Theorem
3.2.16 one can show that for the graph No. 95 with parameters (255, 126, 61, 63) there does
not exist a partial difference set.

Computational results in non-existence cases

Since we obtain theoretical non-existence results only in 14 cases, the remaining 26 strongly
regular graphs of Table 4.9, which do not yield partial difference sets, were investigated by
the computer package GAP with the methods described in Section 3.3.3. In Table 4.10 we
give all strongly regular graphs of Table 4.9 for which we checked by GAP that no partial
difference sets exist. In the column ”methods” we give the methods which we used (they
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are described in Section 3.3.3). If possible we verified a result obtained by one method by a
second method.

No. parameter set methods No. parameter set methods
1 50,7,0,1 Method 3 & 6 56 136,60,24,28 Method 4
3 56,10,0,2 Method 2 & 3 57 136,63,30,28 Method 2 & 3
4 63,30,13,15 Method 2 & 3 58 136,63,30,28 Method 6
5 63,30,13,15 Method 3 & 6 61 144,55,22,20 Method 3 & 4
29 105,32,4,12 Method 2 & 3 63 144,66,30,30 Method 3 & 4
30 112,30,2,10 Method 6 66 156,30,4,6 Method 3 & 6
31 117,36,15,9 Method 6 67 156,30,4,6 Method 3 & 6
34 120,42,8,18 Method 2 & 3 69 165,36,3,9 Method 6
38 120,56,28,24 Method 4 81 175,72,20,36 Method 3 & 6
51 126,25,8,4 Method 3 & 6 82 176,40,12,8 Method 4
52 126,45,12,18 Method 6 83 176,70,18,34 Method 3 & 4
53 130,48,20,16 Method 6 86 208,75,30,25 Method 3 & 4
54 135,64,28,32 Method 6 89 231,30,9,3 Method 3 & 6

Table 4.10: Non-existence results

4.2.3 Triangular graphs

By Theorem 3.2.14 we have a partial difference set for T (n), if n is a prime power and
n ≡ 3 mod 4. In Table 4.9 this is the case only for T (11), T (19) and T (23). Since the numbers
11, 19 and 23 are prime numbers, by Proposition 3.2.15 we have exactly one partial difference
set D for each of the three graphs. For the graph T (p), p = 11, 19, 23, this partial difference
set D exists in the group Zp oK, where K is the subgroup of Z∗

p of order 1
2
(p− 1) consisting

of all non-zero squares of Zp, and we have D := {σs,0, σt,−t, σt,1, σs,1−s|s, t ∈ K, s 6= 1}, where
σa,b ∈ Zp o K with xσa,b := xa + b, x ∈ Zp.
(Though the partial difference sets for these triangular graphs are determined theoretically,
the partial difference sets for the triangular graphs listed in Appendix G are results of
computations by Method 6 in GAP.)

4.2.4 Partial difference sets for lattice graphs L2(n)

In Table 4.9 we find the lattice graphs L2(8), . . . , L2(15). By Proposition 3.2.47 each lattice
graph L2(n) yields a partial difference set D in each group H×K, where H, K are groups of
order n and D = {(h, e), (e, k)|h ∈ H, k ∈ K, h, k 6= e} with identity element e in H and K.
In the case of L2(p), p a prime, by Corollary 3.2.23 we have exactly one partial difference
set (up to CI-equivalence) in Zp × Zp . Thus, for n = 11, 13 we have a complete theoretical
result.
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For the remaining graphs L2(n), n = 8, 9, 10, 12, 14, 15, we used a computational proce-
dure for the investigation of the automorphism groups. It turns out that for the graphs
L2(8), L2(12), L2(14) and L2(15) all our attempts for the calculation of the regular sub-
groups of the automorphism groups failed. In each of these cases the computer capacity
was not sufficient. However, for the graphs L2(9) and L2(10) we were successful and got
a complete list of 12 resp. 18 partial difference sets (up to CI-equivalence). The regular
subgroups of Aut(L2(8)) were computed by Method 3 and those of Aut(L2(10)) by Method
6. The results are listed in Appendix G.

4.2.5 Partial difference sets for the graphs Lg(p), p a prime

The partial difference sets for latin square type graphs Lg(p), g ≥ 3, p a prime, are all
determined in Section 3.2.3. In the table on Page 58 we gave representatives corresponding
to all non-CI-equivalent partial difference sets for p = 11, 13. We have ten strongly regular
graphs with 121 vertices and each graph yields exactly one partial difference set. An analogue
situation we have for the 18 latin square type graphs with 169 vertices, here we have also
exactly one partial difference set for each graph. In Appendix G all the partial difference
sets are given. Notice that in some cases the corresponding strongly regular graphs have
no primitive automorphism group (they are not listed in Table 4.9). Though they are not
part of our investigation of graphs with primitive automorphism group we add these partial
difference sets in the table in Appendix G, because here we were able to complete the job
for all cases.

4.2.6 Partial difference sets for strongly regular graphs with 64
vertices

There exist six strongly regular graphs with 64 vertices and primitive automorphism group.
One of these is the lattice graph L2(8) which was discussed in Section 4.2.4. For all these
strongly regular graphs we used computational methods for the determination of partial
difference sets. However, in two case we were not successful.

The graph with parameters (64, 18, 2, 6)

The strongly regular graph with parameters (64, 18, 2, 6), No. 7 in Table 4.9, has an auto-
morphism group of order 138240. The graph has parameters like a negative latin square type
graph. Since we are looking for regular subgroups which have order 64 = 26, it is sufficient
to consider the Sylow 2-subgroup of the automorphism group. This subgroup has order
1024. With Method 5 we were able to determine all non-conjugated regular subgroups of
the automorphism group of graph No. 7 and hence, to compute all partial difference sets up
to CI-equivalence. This graph yields 58 partial difference sets in 30 non-isomorphic groups
of order 64. The results are given in Appendix G.
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The graphs with parameters (64, 21, 8, 6)

There are two graphs with parameters (64, 21, 8, 6) in Table 4.9.
The graph No. 9 in Table 4.9 is the latin square graph over the group (Z2)

3. The order of its
automorphism group is 64512; we can explain this order by the automorphism group of latin
square graphs given in Remark 3.2.40. By Proposition 3.2.42 we have one partial difference
set D := {(a, e), (e, a), (a, a)|a ∈ (Z2)

3, a 6= e}, where e is the identity in (Z2)
3.

Computations with the computer package GAP yield 58 partial difference sets (up to CI-
equivalence). The computations were done by Method 5. The 58 partial difference sets are
in 30 non-isomorphic groups of order 64. The results are given in Appendix G.
Observing the 58 non-conjugated regular subgroups of the automorphism group of this graph,
it turns out that there is a one-to-one correspondence between these groups and those 58
regular subgroups which we found in the automorphism group of the preceding graph No.
7. We have the same number of representative groups in the 30 isomorphism classes. On a
first glance it is not clear why this appear; one has to check carefully if there are parallel
operations in the construction of these graphs.

For the second graph with parameters (64, 21, 8, 6), the pseudo latin square graph No. 8 in
Table 4.9, we calculated 36 non-conjugated regular subgroups of the automorphism group.
The computations were done by Method 5. These regular subgroups yield 36 partial differ-
ence sets (up to CI-equivalence) in 11 non-isomorphic groups (see Appendix G).

Unsolved cases: The graphs with parameters (64, 27, 10, 12) and (64, 28, 12, 12)

The two strongly regular graphs No. 10 and No. 11 with parameters (64, 27, 10, 12) and
(64, 28, 12, 12) belong to the seven strongly regular graphs in Table 4.9 for which all com-
putations failed. For both graphs for the calculation of all regular subgroups of the auto-
morphism group it is sufficient to consider the Sylow 2-group of the automorphism group,
which in both cases has order 8192. Nevertheless, all attempts for the computation of the
regular subgroups of these groups failed. In all cases the computer system interrupts the
computations after a certain time (hours or days) and reports a lack of workspace.
Using some special functions in GAP we were able to determine at least one regular subgroup
in the automorphism group of each graph. Hence, we know that for both graphs partial
difference sets exist. In the table in [Ma94] also occur partial difference sets with parameters
(64, 28, 12, 12) and (64, 27, 10, 12). But in the first case the partial difference set is derived
from a latin square type graph and in the second case the (64, 27, 10, 12)-partial difference set
corresponds to a difference set. Therefore, these results do not cover our pseudo latin square
type graph with parameters (64, 28, 12, 12) and it is not clear if the (64, 27, 10, 12)-partial
difference sets in our case is covered by the presently known difference sets.

Since we have equal parameters λ and µ for graph No. 11, it is clear that each (64, 28, 12, 12)-
partial difference set is also a (64, 28, 12)-difference set. Hence, as described in Section 3.3.2
it is possible to determine all (64, 28, 12, 12)-partial difference sets (up to CI-equivalence), if
a complete list of non-equivalent (64, 28, 12)-difference sets is available. Moreover, we can
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determine the (64, 27, 10, 12)-partial difference sets with this method. However, unfortu-
nately to our knowledge no such complete list was created until today (James Davis, private
communication).

4.2.7 Partial difference sets for strongly regular graphs with 81
vertices

We have eight strongly regular graphs with 81 vertices in Table 4.9. One of these graphs is
the lattice graph L2(9), which was discussed in Section 4.2.4. In the following we will discuss
the other strongly regular graphs with 81 vertices and give results about the associated
partial difference sets.

The graph with parameters (81, 20, 1, 6)

The strongly regular graph with parameters (81, 20, 1, 6), No. 16 in Table 4.9, is one of
the exceptional graphs. It is determined by its parameters (cf. [BroH92]). This graph can
be constructed by mergings of classes in a cyclotomic scheme. A cyclotomic scheme is an
association scheme which can be created by the cosets of a subgroup of F∗

q, where q is a prime
power, together with the class {0}. This means that the classes of this association scheme
correspond to a partition of Fq. For details about cyclotomic schemes, in particular, for this
graph see Chapter 5 and Example 5.3.12. Regarding the field F34 we take the four cosets
which we get by the cyclic group H ≤ F∗

34 of order 20 for creating the non-reflexive classes of
an association scheme. If we take one class and merge the remaining three classes, then we
get an association scheme with two classes which corresponds to the strongly regular graph
with parameters (81, 20, 1, 6).

In [vLiS81] the above mentioned construction is described in a simpler way: The vertex set
of the graph is F34 and two vertices are adjacent, when their difference is a fourth power
in F34 . Besides this construction there exist other descriptions of this graph. In [BroH92]
one can find six further descriptions of the unique strongly regular graph with parameters
(81, 20, 1, 6). The construction of this graph by the truncated ternary Golay code is analogous
to the construction of the strongly regular graph with parameters (243, 22, 1, 2) (see below).

The regular subgroups of the automorphism group were computed by Method 5. Overall
we obtained four regular subgroups of the automorphism group (up to conjugacy) which
provide four partial difference sets (up to CI-equivalence). For these four groups we can give
standard representatives, these are

Z3 o Z3, (Z3)
4, Z3 × ((Z3 × Z3) o 〈α〉), Z3 × (Z9 o 〈β〉),

with α ∈ Aut(Z3×Z3) and β ∈ Aut(Z9) (the last two groups contain the GAP groups (27,3)
and (27,4) as subgroups, see Section 4.1.6, Schläfli graph, for details). The partial difference
sets are given in Appendix G.
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The graph with parameters (81, 24, 9, 6)

We have one strongly regular graph with parameters (81, 24, 9, 6) in Table 4.9. Its automor-
phism group has order 93312. The parameters of this graph are of latin square type, but
this graph is a pseudo latin square graph.

We computed all non-conjugated regular subgroups of the automorphism group by Method
5. We get nine such subgroups (up to conjugacy). Hence, we could determine nine partial
difference sets (up to CI-equivalence). These partial difference sets are in five non-isomorphic
groups of order 81. For four groups we have standard representatives, these are the same as
for the graph with parameters (81, 20, 1, 6). The partial difference sets are listed in Appendix
G.

The graph with parameters (81, 30, 9, 12)

The strongly regular graph with parameters (81, 30, 9, 12) can also be created by merging
of classes of a cyclotomic scheme. We take a cyclotomic scheme over F34 created by the
eight cosets of a cyclic subgroup of F∗

34 of order 10. If we merge three ”suitable” classes
resp. the remaining five classes, then we get an association scheme with three classes which
corresponds to this strongly regular graph with parameters (81, 30, 9, 12). Again we refer
to Chapter 5 and Example 5.3.12 for details about cyclotomic schemes and this strongly
regular graph.

A second possible description of this graph was given by J. H. van Lint and A. Schri-
jver. They gave a construction of a partial geometry which is called van Lint-Schrijver
partial geometry (see [BroCN89], Section 11.5). The point graph of this partial geometry
is a strongly regular graph with parameters (81, 30, 9, 12) isomorphic to that in Table 4.9
(cf. [vLiS81] for details).

With the aid of GAP we computed all regular subgroups of the automorphism group (up
to conjugacy). By Methods 3 and 5 we calculated seven non-conjugated regular subgroups.
These groups yield seven non-CI-equivalent partial difference sets (see Appendix G).

The graphs with parameters (81, 32, 13, 12)

Among the strongly regular graphs with parameters (81, 32, 13, 12) there exist two graphs
with primitive automorphism group. Their automorphism groups are of order 5184 and
186624. Both graphs belong to the class of latin square type graphs L4(9).

For each of these strongly regular graphs we computed the non-conjugated regular subgroups
of the automorphism group. In both cases we used the Methods 3 and 5. For the first graph
(No. 19 in Table 4.9 with automorphism group of order 5184) GAP computed exactly one
regular subgroup (up to conjugacy), which is isomorphic to (Z3)

4. For the second graph (No.
20) there exist six regular subgroups of the automorphism group (up to conjugacy), two of
these groups are isomorphic. For four groups we have standard representatives, these are the
same like in the case for the strongly regular graph with parameters (81, 20, 1, 6). Finally,
we get exactly one partial difference set (up to CI-equivalence) for the first graph (No. 19)
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and six partial difference sets (up to CI-equivalence) for the second graph (No. 20). For
details see Appendix G.

The graphs with parameters (81, 40, 19, 20)

We have two strongly regular graphs with parameters (81, 40, 19, 20) in Table 4.9. Both
graphs can be created as subschemes in the cyclotomic scheme mentioned for the strongly
regular graph (81, 20, 1, 6) above. For these two graphs we have to merge each time two
”suitable” cyclotomic classes (see Chapter 5 and Example 5.3.12). We get two association
schemes with two classes which yield these two strongly regular graphs. One of these graphs
(No. 21 in Table 4.9) is isomorphic to the Paley graph P (81) with automorphism group
of order 12960. The other graph (No. 22) has an automorphism group of order 38880.
Both graphs belong to the class of L5(9)-graphs. For the Paley graph P (81) we know by
Proposition 3.2.4 that there exists exactly one regular subgroup in the automorphism group
Aut(P (81)). Hence, we have exactly one partial difference set which by Proposition 3.2.6
consists of all non-zero squares in F34 .
For the other strongly regular graph we computed by GAP three regular subgroups of its
automorphism group (up to conjugacy). For this computation we used Method 2. These
three regular subgroups yield three partial difference sets (up to CI-equivalence). Standard
representatives of the three groups are (Z3)

4 and twice the group Z3 × ((Z3 × Z3) o K1),
with K1 := 〈α〉 ≤ Aut(Z3 × Z3). For the partial difference sets see Appendix G.

4.2.8 Partial difference sets for strongly regular graphs with 100
vertices

There exist exactly three strongly regular graphs with 100 vertices and primitive automor-
phism group. These are the lattice graph L2(10) (see Section 4.2.4), the Higman-Sims graph
and the Hall-Janko-Wales graph.

The Higman-Sims graph with parameters (100, 22, 0, 6)

The Higman-Sims graph is a strongly regular graph which plays an important role in the
theory of simple finite groups: Its automorphism group has the Higman-Sims group HS
as normal subgroup of index 2. The group HS was discovered in 1968 and it is one of
the sporadic simple groups (see [HigS68]). The Higman-Sims graph corresponds to a rank
3 representation of the group HS, i.e., it is a basis graph in the centralizer ring of this
representation of HS.
The Higman-Sims graph can also be constructed by the unique Steiner system S(3, 6, 22)
which has 22 points and 77 blocks (cf. [BroCN89], Chapter 13.1 B, see Definition 2.1.35
for Steiner systems). As vertex set we take {Ω} ∪ W ∪ B, where Ω is a symbol, W is the
vertex set of the Steiner system and B is the set of blocks of S(3, 6, 22). Let Ω be adjacent
to all elements of W and let w ∈ W adjacent to B ∈ B if and only if w and B are incident.
Furthermore, let no two elements of W be adjacent and let B, B′ ∈ B be adjacent if and
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only if B ∩ B′ = ∅. This defines a strongly regular graph with parameters (100, 22, 0, 6)
isomorphic to the Higman-Sims graph.
Computations by GAP with Method 6 provides four non-conjugated regular subgroups of the
automorphism group of the Higman-Sims graph. These correspond to four non-CI-equivalent
partial difference sets (see Appendix G for details). Recently, these four partial difference
sets were also determined by L. Jørgensen and M. H. Klin [Kli00].

The Hall-Janko-Wales graph with parameters (100, 36, 14, 12)

The Hall-Janko-Wales graph is connected to the simple group of Hall-Janko J2 (see [HalW68],
[Jan69]). The automorphism group of the graph is isomorphic to J2.2, i.e. a group which
has a subgroup of index 2 isomorphic to J2. The graph can be constructed as follows: The
Janko group J2 has a subgroup of index 100 which is isomorphic to the group PSU(3, 3)
of order 6048. The action of J2 on the 100 cosets of this subgroup yields a representation
of J2 as a permutation group with degree 100. This representation is of rank 3, i.e., its
centralizer ring has two non-reflexive basis graphs. These are the Hall-Janko-Wales graph
and its complementary graph.
The automorphism group of the Hall-Janko-Wales graph has exactly two non-conjugated
regular subgroups. These groups were determined by Method 2. The subgroups provide two
partial difference sets up to CI-equivalence which are listed in Appendix G. Like for the
Higman-Sims graph these partial difference sets were recently determined by L. Jørgensen
and M. H. Klin [Kli00].

4.2.9 Partial difference sets for strongly regular graphs with 120
vertices

We have six strongly regular graphs with 120 vertices and primitive automorphism group.
Three of them are Cayley graphs: one with parameters (120, 51, 18, 24), the other two graphs
have parameters (120, 56, 28, 24).

The graph with parameters (120, 51, 18, 24)

The strongly regular graph with parameters (120, 51, 18, 24) can be described by a primitive
representation of the projective symplectic group PSp(4, 4) (see [FarKM94], Section 3.5).
This primitive representation of the group PSp(4, 4) corresponds to a centralizer ring of
rank 3. The non-reflexive basis graphs of this centralizer ring are complementary strongly
regular graphs with parameters (120, 51, 18, 24) and (120, 68, 40, 36).
With the aid of GAP we computed all regular subgroups of the automorphism group. Since
the graph has a large automorphism group, the computations took some time. Finally, by
Method 3 we get a result after computations of several hours. We have exactly one regular
subgroup in the automorphism group (up to conjugacy). This group is isomorphic to the
symmetric group S5. The single partial difference set (up to CI-equivalence) is listed in
Appendix G.
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The graphs with parameters (120, 56, 28, 24)

In Table 4.9 we have three graphs with parameters (120, 56, 28, 24). One of these graphs is no
Cayley graph; this graph (No. 38 in Table 4.9) corresponds to the 3-subsets of a 10-element
set where two of these 120 subsets are adjacent, if they have one or three common elements
(cf. [FarKM94], Section 3.2). The other two graphs are Cayley graphs.

The first graph (No. 36 in Table 4.9) has an automorphism group of order 5040 which is
isomorphic to the symmetric group S7. By Method 2 we determined all regular subgroups of
the automorphism group up to conjugacy. We get two such subgroups, both isomorphic to
S5. This result was confirmed by Method 3. The two corresponding partial difference sets
are listed in Appendix G.

A short time before submitting this thesis the author was informed by M. H. Klin that he
obtained this result already in 1995. A part of it was presented in the talk [Kli95]. Moreover,
based on the idea given in [Kli95] one can also explain the (partial) result for the second
graph with parameters (120, 56, 28, 24) (see below).

The second graph (No. 37 in Table 4.9) can be constructed by a quadratic form. A function
Q : Fn

q → Fq is called a quadratic form, if (αx)Q = α2xQ for all α ∈ Fq, x ∈ Fn
q and the

function B : Fn
q ×Fn

q → Fq with (x, y)B := (x+y)Q−xQ−yQ for all x, y ∈ Fn
q is a symmetric

bilinear form. By [vLiW92], p. 317, a quadratic form can be defined by a homogeneous
polynomial of degree 2 in n indeterminates:

xQ = (x1, . . . , xn)Q =
n∑

i,j=1

cijxixj,

where cij ∈ Fq. Two quadratic forms Q1 and Q2 are called projectively equivalent, if
there exists a non-singular n × n-matrix A over Fq with xQ1 = (xA)Q2 . For a quadratic
form Q the least number of indeterminates that occur (with nonzero coefficients) in any
projective equivalent quadratic form is called the rank of Q. If the rank equals the number
of indeterminates of a quadratic form, then it is called non-degenerate. A quadratic form
of even rank is called hyperbolic, if it is projectively equivalent to a quadratic form Q
defined by xQ = x1x2 + x2x3 + . . . + xn−1xn.

For a quadratic form Q a set of projective points {〈x〉 ∈ PG(n, q)|xQ = 0} is called a
quadric in PG(n, q). A vector x ∈ Fn

q is called isotropic, if we have < x, x >= 0 for the
symmetric inner product in Fn

q . For more details about quadratic forms in combinatorial
theory we refer to [vLiW92], Chapter 26.

Now, consider a hyperbolic, non-degenerate quadric in the projective geometry PG(7, 2).
The graph consisting of all non-isotropic points of this quadric, where two distinct points are
adjacent if they are not orthogonal, is a strongly regular graph with parameters (120, 56, 28, 24)
(cf. [BroCN89], 10.3.6; [Bro96]). If we take all points (isotropic and non-isotropic) of this
hyperbolic, non-degenerate quadric in the projective geometry PG(7, 2) (by Theorem 26.5 in
[vLiW92] these are exactly 135 points), then we can construct a strongly regular graph with
parameters (135, 64, 28, 32) (cf. [Bro96]), which has also a primitive automorphism group
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isomorphic to the automorphism group of the strongly regular graph with 120 vertices. How-
ever, the graph with 135 vertices does not yield any partial difference sets (see Table 4.10
with the non-existence results).
For the automorphism group of the strongly regular graph with 120 vertices we have at least
one regular subgroup (up to conjugacy) and, hence, one partial difference set (up to CI-
equivalence). The regular subgroup is isomorphic to S5. In this case we were not successful
in the complete determination of all partial difference sets. No computational method led
to a result, because the automorphism group is too large. By GAP and the library of small
groups in GAP it was possible to check that all groups of order 120 with one exception have
a normal Sylow 5-subgroup or a normal Sylow 2-subgroup. Using Method 6 we get the result
that there does not exist a regular subgroup of the automorphism group which has a normal
Sylow subgroup. Thus, only the mentioned exception, the symmetric group S5, is a candidate
for a regular subgroup and, indeed, in one of the normalizers of a semiregular subgroup which
we used in Method 6 such a regular subgroup isomorphic to S5 was determined. However,
we were not able to determine the number of non-conjugated regular subgroups isomorphic
to S5 in the automorphism group.

4.2.10 Partial difference sets for strongly regular graphs with 125
vertices

We have four strongly regular graphs with 125 vertices and primitive automorphism group.
Each of these graphs has Paley-type parameters (125, 62, 30, 31). Two of the strongly regular
graphs yield one partial difference set respectively, and each of the other two yields three
partial difference sets.
The four strongly regular graphs with parameters (125, 62, 30, 31) can be described as de-
scendants of certain regular two-graphs (see Section 2.1.3 for the definition). As described
in [BroCN89], Section 1.5 these regular two-graphs correspond to Taylor graphs, distance
regular graphs with certain parameters which are antipodal double covers of complete graphs
(see [BroCN89] for the notions). Each Taylor graph Γ = (V, E) is determined by any induced
subgraph Γ(ω) where ω ∈ V . This subgraph Γ(ω) is a strongly regular graph with parame-
ters (v, k, λ, µ) where 2v +2 = |V |, k = 2µ and v is the valency of the distance regular graph
Γ. In the case of the four strongly regular graphs with parameters (125, 62, 30, 31) we have
k = 62 = 2 · 31 = 2µ. For further details about Taylor graphs we refer to [BroCN89] or to
the origin articles of D. E. Taylor [Tay77] and D. E. Taylor & R. Levingston [TayL78].
As mentioned above, two of the strongly regular graphs yield exactly one partial difference
set. One of these graphs is the Paley graph P (125) (No. 50 in Table 4.9) which has an
automorphism group of order 23250. By Proposition 3.2.4 the group Aut(P (125)) has exactly
one regular subgroup (up to conjugacy) which corresponds to one partial difference set (up
to CI-equivalence). This partial difference set is contained in the group (Z5)

3. The second
graph (No. 47) has an automorphism group of order 3000. In this case we computed all
non-conjugated regular subgroups of the automorphism group by Method 2 and 3. There
is exactly one such subgroup which corresponds to exactly one partial difference set (up to
CI-equivalence). Like for the Paley graph, this partial difference set is contained in a group
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isomorphic to (Z5)
3.

The other two (125, 62, 30, 31)-strongly regular graphs (No. 48 and No. 49) have automor-
phism groups of order 15000. By Method 2 and 3 we found three non-conjugated regular sub-
groups in each case, which each time yield three partial difference sets (up to CI-equivalence).
In both cases we have one group isomorphic to (Z5)

3 and two isomorphic non-abelian groups
of order 125 (see Appendix F for the groups and Appendix G for the partial difference sets).

4.2.11 Partial difference sets for strongly regular graphs with 144
vertices

In Table 4.9 we find five strongly regular graphs with 144 vertices. As we explained in
Section 4.2.4 we did not get a complete result for the lattice graph L2(12), because the
automorphism group of this graph was too large. For two strongly regular graphs (No. 61
and No. 63 in Table 4.9) with parameters (144, 55, 22, 20) and (144, 66, 30, 30) there does not
exists any partial difference set. The remaining two cases we will describe in the following
two subsections.

The graph with parameters (144, 39, 6, 12)

The strongly regular graph with parameters (144, 39, 6, 12) in Table 4.9 can be constructed
as follows (cf. [FarKM94], pp. 121/122): We consider the induced action of the group
PSL(3, 3) on its subgroups of order 13. Since there are 144 cyclic subgroups of order 13 in
PSL(3, 3) we obtain a group with degree 144. The centralizer ring of this group has rank
6 and one of the basis graphs is isomorphic to the strongly regular graph with parameters
(144, 39, 6, 12) (hence, it follows that this centralizer ring has a cellular subring of rank 3).
The automorphism group of this strongly regular graph has order 11232 and contains a
subgroup of index 2 isomorphic to PSL(3, 3).
With the aid of GAP we determined by Method 2 and 3 exactly one regular subgroup (up to
conjugacy) in the automorphism group of this (144, 39, 6, 12)-strongly regular graph. Hence,
we have exactly one partial difference set (up to CI-equivalence) which is given in Appendix
G.
The existence of a partial difference set for this graph is already mentioned in [Kli00]; it was
determined by M. H. Klin and E. K. Lloyd. Here we showed with GAP that there is exactly
one partial difference set (up to CI-equivalence).

The graph with parameters (144, 66, 30, 30)

In Table 4.9 we have two graphs with parameters (144, 66, 30, 30) (No. 62 and No. 63). Like
the (144, 55, 22, 20)-strongly regular graph in Table 4.9 they are pseudo latin square type
graphs and related to the Mathieu group M12. Only the graph No. 62 is a Cayley graph.
Let G := Aut(M12) be the automorphism group of the Mathieu group M12. As described
in [ChuI94] the group G has a subgroup H isomorphic to PGL(2, 11) and, hence, we can
consider the action of G on the cosets of H. It turns out that there are two orbits O1 and
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O2 of length 144. Now we consider the action of G on each orbit separately. The action of
G on O1 resp. on O2 is primitive. Thus, we have two primitive representations G1, G2 of G
on sets of 144 points; these are not similar. One representation, say G1, yields a centralizer
ring of rank 4 which has cellular subrings of rank 3 corresponding to two strongly regular
graphs with parameters (144, 55, 22, 20) and (144, 66, 30, 30) (No. 61 and No. 63 in Table
4.9). The representation G2 also yields a rank 4 centralizer ring which has only one cellular
subring of rank 3 which corresponds to the second strongly regular graph with parameters
(144, 66, 30, 30) (No. 62). For more details about this subject we refer to [ChuI94].

Only the graph No. 62 is a Cayley graph. For this graph associated to the group
G2 (= M12.2 in Table 4.9) we computed exactly one regular subgroup of G2 (up to conjugacy)
by Method 3. Thus, there exists exactly one partial difference set (up to CI-equivalence) for
this graph, which is given in Appendix G.

4.2.12 Partial difference sets for strongly regular graphs with 243
vertices

In Table 4.9 are two strongly regular graphs with 243 vertices. These graphs have isomorphic
automorphism groups which have as a one-point-stabilizer a group isomorphic to M11.2
(a group containing the Mathieu group M11 as normal subgroup of index 2). Both graphs
are constructed by a two-weight-code and both provide partial difference sets.

Let Fn
q be a vector space. A linear (n, k)-code C is a k-dimensional subspace of Fn

q . For q = 3
the code C is called a ternary code. For a codeword x = (x1, . . . , xn) ∈ C the number
of components xi with xi 6= 0 is called the weight of x. If for all codewords exactly two
different weights occur, i.e., |{w(x)|x ∈ C \ {0}}| = 2, then C is called a two-weight code.
The code C⊥ := {y ∈ Fn

q |ytx = 0} is called the dual code of C. If the minimum weight of
the codewords in C⊥ is greater than 2, then C is called projective. A truncation of C is
a code with codewords of length n− 1 obtained by deleting a fixed coordinate position. For
a more detailed introduction to coding theory we refer to [vLi82].

In [Del72] P. Delsarte proved a one-to-one correspondence between strongly regular Cayley
graphs over a group (Zp)

n and projective two-weight codes (see also [Ma94], Theorem 8.1 in
terms of partial difference sets).

One possibility to construct graphs by codes is the following:

Definition 4.2.1 Let C be a linear (n, k)-code in Fn
q . Let V be the set of cosets of C

in Fn
q . The graph Γ(C) with vertex set V , where two vertices are adjacent if and only if

representatives of the corresponding cosets exist which differ only in one coordinate (i.e.,
have Hamming distance one), is called the coset graph of C.

In the following we will give two examples where the coset graph of a code is strongly regular;
these are coset graphs of so-called Golay codes. Notice that the strongly regular graph with
parameters (81, 20, 1, 6) can also be described as the coset graph of the truncated ternary
Golay code. For information about the Golay codes we refer to [Gol49] and [DelG75].
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The graph with parameters (243, 22, 1, 2)

In Table 4.9 we have one strongly regular graph with parameters (243, 22, 1, 2). This graph
can be constructed as the coset graph of the ternary Golay code which is the unique linear
(11, 5)-code with weights 6 and 9. Since this fact was a result of E. R. Berlekamp, J. H. van
Lint and J. J. Seidel [BervLS73], this graph is called the Berlekamp-van Lint-Seidel graph.
With the aid of GAP we computed all non-conjugated regular subgroups of the automor-
phism group. There exist four such subgroups which were determined by Method 5. As
mentioned above, by the result of P. Delsarte in [Del72] one group is isomorphic to (Z3)

5.
The other groups and the partial difference sets are given in Appendix F and G.
Strongly regular Cayley graphs with parameters (243, 22, 1, 2) over an abelian group (and
their complementary graphs) are in a certain sense exceptional graphs:

Theorem 4.2.2 (cf. [AraJMP90])
The following are all possible parameters for a nontrivial (v, k, λ, µ)-strongly regular Cayley
graph with λ− µ = −1 over an abelian group:

1) v ≡ 1 mod 4 and (v, k, λ, µ) = (v, v−1
2

, v−5
4

, v−1
4

);

2) (v, k, λ, µ) = (243, 22, 1, 2) or (v, k, λ, µ) = (243, 220, 199, 220).

The graph with parameters (243, 110, 37, 60)

This strongly regular graph with parameters (243, 110, 37, 60) was discovered by P. Delsarte
in [Del73]. It can be constructed as a coset graph of a projective ternary (55, 5)-code with
weights 36 and 45.
With GAP we get by Method 5 a complete list of six non-conjugated regular subgroups of
the automorphism group of this strongly regular graph. One group is isomorphic to (Z3)

5.
The other groups and the partial difference sets are given in Appendix F and G.
By [BervLS73], p. 72 both strongly regular graphs with 243 vertices considered here can
also be constructed by mergings of classes in a cyclotomic scheme over F5

3 (see Chapter 5 for
definitions).

4.2.13 Partial difference sets for other strongly regular graphs

In this section we discuss the remaining three strongly regular graphs of Table 4.9.

The graph with parameters (155, 42, 17, 9)

In the catalogue of primitive groups in GAP [GAP99] we have only one nontrivial primitive
permutation group with degree 155. This is the group PSL(5, 2) with its induced action on
the lines of the projective geometry PG(4, 2). The points of the projective geometry PG(4, 2)
are the 31 non-zero vectors of (Z2)

5 (which represents the one-dimensional subspaces of (Z2)
5)

and the lines of PG(4, 2) are the 155 distinct two-dimensional subspaces.
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If we take the lines of PG(4, 2) as vertices and say that two vertices are adjacent if and only
if the corresponding lines intersect, then we get a strongly regular graph with parameters
(155, 42, 17, 9) (cf. [Hub75], 8.1).
By Method 6 we computed the non-conjugated regular subgroups of the automorphism
group. We have exactly one such regular subgroup and this is isomorphic to Z31 o Z5.
Hence, we get exactly one partial difference set (up to CI-equivalence) which is presented in
Appendix G.

The graph with parameters (162, 56, 10, 24)

The strongly regular graph with parameters (162, 56, 10, 24) is one of the exceptional graphs,
which is determined by its parameters. As mentioned above, it is a subconstituent of the
McLaughlin graph with parameters (275, 112, 30, 56). The McLaughlin graph Γ = (V, E)
can be created by the unique regular two-graph (X,D) with 276 vertices (see [GoeS75] for
details about this two-graph): We have V := X \{ω} and E := Dω, where ω is a vertex in X
and Dω := {D \ {ω}|ω ∈ D ∈ D}. The McLaughlin graph was first constructed in [McL69];
its automorphism group is McL.2, i.e., the group with McL as normal subgroup of index 2
where McL is the sporadic simple group discovered by McLaughlin.
For a vertex v ∈ V the subconstituents Γ(v) and Γ2(v) of the McLaughlin graph Γ are
strongly regular graphs with parameters (112, 30, 2, 10) and (162, 105, 72, 60) which are both
determined by their parameters (see [CamGS78], Theorems 9.1 and 9.2).
As mentioned in Section 4.2.2 the automorphism group of the strongly regular graph with
parameters (112, 30, 2, 10) has no regular subgroups, thus, there exist no partial difference
sets for this graph.
For the strongly regular graph with parameters (162, 105, 72, 60) we determined six partial
difference sets (up to CI-equivalence) by the six non-conjugated regular subgroups of the
automorphism group. These six subgroups were calculated by Method 3. For the partial
difference sets see Appendix G.

The graph with parameters (253, 112, 36, 60)

In Table 4.9 we have one strongly regular graph with 253 vertices. Its automorphism group
is a primitive representation of the Mathieu group M23. The graph can be created by the
Steiner system S(4, 7, 23). The vertices are the 253 blocks and two vertices are adjacent, if
the blocks intersect in a single point (cf. [Hub75], S. 6).
By Method 6 we computed all regular subgroups of the automorphism group. We get exactly
one such group (up to conjugacy). This regular subgroup is isomorphic to the group Z23oZ11.
The associated partial difference set is given in Appendix G.
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Chapter 5

Cyclotomic schemes:
A special class of association schemes

The class of cyclotomic schemes is a special class of association schemes which is constructed
by finite fields. An important property of cyclotomic schemes is the fact that their inter-
section numbers pk

ij with i, j, k 6= 0 coincide with so-called cyclotomic numbers which are
associated to the scheme (see Definition 5.1.4). As described in Section 2.2 (in terms of
cellular rings) the intersection numbers (resp. structure constants) of an association scheme
determine the multiplication in the associated Bose-Mesner algebra completely. Moreover,
as we describe in this chapter, the knowledge of the intersection numbers is sufficient to
determine all subschemes of an association scheme.
For an association scheme with d classes we have (d + 1)3 intersection numbers pk

ij. Due
to the construction of the cyclotomic schemes it is possible to determine the d3 intersection
numbers pk

ij, i, j, k 6= 0 by d2 cyclotomic numbers. Furthermore, the cyclotomic numbers of
a cyclotomic scheme over Fpn are determined by formulas which depend on the parameters
pn, x, y, where pn = x2+ay2 is a certain representation of the prime power pn. Thus, since the
existence of subschemes of an association scheme depends on its intersection numbers, in the
special case of cyclotomic schemes the existence of subschemes depends on the parameters
pn, x, y. In principle, it is possible to determine purely theoretically all subschemes of a
cyclotomic scheme. However, this approach is restricted by the knowledge of the necessary
formulas for the cyclotomic numbers and the extensive calculations one has to do. In this
chapter we will present the method for the determination of subschemes of a cyclotomic
scheme and we will give results for cyclotomic schemes with three and four classes. In the
case of six classes we will give a brief outline.

5.1 Basic definitions and results

In this section we will give the necessary definitions and some basic results about cyclotomic
schemes. For a detailed introduction to the theory of cyclotomic schemes we refer to [Sto67].

Throughout this section let p be a prime, n ∈ N, and as usual Fpn the field with pn elements.
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Let ω ∈ F∗
pn be a primitive element of the multiplicative group of Fpn . It is easy to check

that for e, f ∈ N with pn = ef + 1 the set C1 := {ωek|k = 0, . . . , f − 1} is a cyclic subgroup
of F∗

pn . The cosets Ci := ωi−1C1, i = 2, . . . , e, of C1 together with C0 := {0} correspond to
the classes of an association scheme (Fpn ,R), where Ri ∈ R is defined by

(x, y) ∈ Ri :⇔ x− y ∈ Ci−1 for i = 1, . . . , e + 1.

Definition 5.1.1 The association scheme (Fpn ,R) constructed above is called a cyclotomic
scheme, the cosets Ci, i = 1, . . . , e are called cyclotomic classes.

A first important observation we find in [ClaG89]:

Lemma 5.1.2 (cf. [ClaG89], Lemma 4.3.6)
A cyclotomic scheme (Fpn ,R) with pn = ef + 1 is non-symmetric if and only if e is even
and f is odd.

As described in Section 2.2 we have a connection between association schemes and Schur
rings:

Remark 5.1.3 Let C1, . . . , Ce be the cyclotomic classes of the cyclotomic scheme (Fpn ,R)
in Definition 5.1.1 and let C0 := {0}. Then the quantities C0, . . . , Ce generate a Schur ring
over Fpn.
We have CiCj =

∑e
k=0 pk

ijCk, where pk
ij are the intersection numbers of the cyclotomic

scheme.

Notation: In the following for the description of cyclotomic schemes we will switch be-
tween the language of Schur rings and the language of association schemes, i.e., we will
denote the association scheme that corresponds to 〈C0, . . . , Ce〉 as well as the Schur ring
〈C0, . . . , Ce〉 as a cyclotomic scheme and the numbers pk

ij as intersection numbers resp. as
structure constants of the cyclotomic scheme. We will always denote C0 := {0}. For a
cyclotomic scheme over a field Fpn with e classes we will write C(pn, e). If it is convenient
for us we will describe the cyclotomic classes by their corresponding adjacency matrices or
(directed) basis graphs (cf. Section 2.2).

Definition 5.1.4 Let Fpn be a field with pn = ef + 1 and primitive element ω ∈ F∗
pn. Then

for i, j ∈ N the numbers

(i, j)e := |{(s, t)|ωes+i + 1 = ωet+j, 0 ≤ s, t ≤ f − 1}|

are called cyclotomic numbers.

From the definition it follows that each cyclotomic number (i, j)e can interpreted as the
number of successors of the elements of Ci+1 in the class Cj+1, (0 ≤ i, j ≤ e− 1).
For a cyclotomic number (i, j)e we will also write (i, j) if it is clear that it is associated to a
pair (Fpn , e) where pn = ef + 1.
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Lemma 5.1.5 (cf. [Sto67], Lemma 3)

For a field Fpn with pn = ef +1 let C(pn, e) = 〈C0, . . . , Ce〉 be a cyclotomic scheme. For the
cyclotomic numbers the following equations hold (with addition modulo e):

1) (i, j) = (i + ke, j + le) for all k, l ∈ Z;

2) (i, j) = (e− i, j − i) =

{
(j + e

2
, i + e

2
) e even, f odd,

(j, i) otherwise;

3)
e−1∑
j=0

(i, j) = f − ni, where ni :=


1 i ≡ 0 mod e and f even,
1 i ≡ 0 mod e and e, f odd,
1 i ≡ e

2
mod e and e even, f odd,

0 otherwise.

Proof: The statement 1 follows from the definition of cyclotomic numbers.

The proof of 2 is given in [Sto67], Lemma 3 for e even or f even. It remains the case for
e, f odd: Here −1 ∈ F∗

pn equals 1, because ef + 1 is even and this implies p = 2. Thus, for
a primitive element ω of F∗

pn we get ωxe+i + 1 = ωye+j ⇔ ωxe+i = ωye+j + 1 and from this
(i, j) = (j, i) follows by the definition of cyclotomic numbers.

The proof of 3 is also given in [Sto67], Lemma 3 except the case e, f odd. In this case we
have p = 2. The sum

∑e
j=1(i, j) is the number of successors of the f elements of Ci+1 in all

other classes Cj, i.e., in F∗
pn . Hence, we get f as result if −1 /∈ Ci+1 and f − 1 if −1 ∈ Ci+1

because the successor of −1 is 0 and 0 is not contained in any cyclotomic class. Since p = 2
implies −1 = 1 we have −1 ∈ C1 and consequently, we get the result in 3 for e, f odd.

2

Lemma 5.1.6 (cf. [Man65], p. 91; [Sto67], Lemma 13)

For pn = ef + 1 and s, t, s + t not divisible by e we get for the cyclotomic numbers

pn =
∣∣∣ e−1∑

j=0

exp
(

2sjπi

e

) e−1∑
h=0

(j, h)e exp
(−(s+t)hπi

e

) ∣∣∣2.
This lemma gives a relation between the cyclotomic numbers which is very useful. In general,
for s, t one chooses small numbers, e.g., s, t ∈ {1, 2}.
As mentioned above the cyclotomic numbers coincide with certain structure constants of the
Schur ring over Fpn with basis quantities C0, C1, . . . , Ce:

Lemma 5.1.7 (cf. [ClaG89], Lemma 4.3.4.2)

Let C0, . . . , Ce be the basis quantities of a Schur ring over Fpn corresponding to the cyclotomic
scheme C(pn, e). Then we have

(j − 1, k − 1) = pk
1,j, j, k ∈ {1, . . . , e}.
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Proof: For j ∈ {1 . . . , e} we have

C1Cj =
e∑

k=0

pk
1jCk.

Each element of C1 has the form ωxe and each element of Cj has the form ωye+j−1, where

ω is a primitive element of F∗
pn and x, y ∈ {0, . . . , f − 1}. The structure constant pk

1,j,
j, k ∈ {1, . . . , e}, equals the number of solutions (x, y, z) of ωxe + ωye+j−1 = ωze+k−1. This
equation is equivalent to 1 + ω(y−x)e+j−1 = ω(z−x)e+k−1 and the number of solutions of the
last equation is (j − 1, k − 1). 2

If we know the cyclotomic numbers of the cyclotomic scheme 〈C0, . . . , Ce〉, then it is possible
to compute all structure constants pk

ij, i, j, k 6= 0 of 〈C0, . . . , Ce〉:

Lemma 5.1.8 ([ClaG89], Lemma 4.3.4.3)
Let C(pn, e) = 〈C0, . . . , Ce〉 be a cyclotomic scheme. Then for i, j, k ∈ {1, . . . , e} and l ∈ N
we have

pk
ij = pk+1

i+1,j+1 = . . . = pk+l
i+l,j+l,

where the ”+” is defined by a + b := [(a + b− 1) mod e] + 1.

Proof: The sets C1, . . . , Ce are cosets of F∗
pn with respect to the subgroup C1, where

Ci = ωi−1C1, i ∈ {1, . . . , e}. Thus, there is a cyclic transitive action of F∗
pn on C1, . . . , Ce.

Generalizing the idea of the proof of Lemma 5.1.7 we can say that the structure constant
pk

ij equals the number of solutions (x, y, z) of the equation ωxe+i−1 + ωye+j−1 = ωze+k−1,
i, j, k ∈ {1, . . . , e}. Since F∗

pn acts transitively on the cosets by right multiplication we have
the same solutions (x, y, z) for the equation ωxe+i−1+l + ωye+j−1+l = ωze+k−1+l, l ∈ N. The
number of solutions of the last equation equals pk+l

i+l,j+l (where ”+” is defined as described

above). Hence, we have pk
ij = pk+l

i+l,j+l for l ∈ N. 2

5.2 Merging of classes in a cyclotomic scheme

In [FarKM94], Section 2.7.5 an algorithm for the computation of all subschemes of a given
association scheme is described (Notice that in [FarKM94], Section 2.7.5 the language of
cellular rings is used, i.e., the algorithm computes all cellular subrings of a cell.). The
computation of subschemes is based on the knowledge of the intersection numbers of the
association scheme. The following theorem is essential for this algorithm:

Theorem 5.2.1 (cf. [FarKM94], p.40)
Let W = 〈A0, . . . , Ad〉 be a cellular ring and let I = {0, . . . , d}. Let {T0, . . . , Tr} be a partition
of the set I and define Bα :=

∑
k∈Tα

Ak, α = 0, . . . , r. Then W ′ = 〈B0, . . . , Br〉 is a cellular
subring of W if and only if for all α, β, γ ∈ {0, . . . , r} and for all k, l ∈ Tγ we have∑

i∈Tα

∑
j∈Tβ

pk
ij =

∑
i∈Tα

∑
j∈Tβ

pl
ij,

where pk
ij, i, j, k ∈ {0, . . . , d} are the structure constants of W .
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The idea of the proof is based on the property of the product of basis matrices Bα, Bβ,
α, β ∈ {0, . . . , r}. If W ′ is a cellular subring of W , we have BαBβ =

∑r
γ=0 qγ

αβBγ, where the
coefficients qγ

αβ are the structure constants of W ′. Replacing Bα by
∑

k∈Tα
Ak, α = 0, . . . , r,

we get the condition for the structure constants pk
ij for the cellular ring W given in the

theorem.

If we want to determine cellular subrings of a cell, then it is clear that the unit matrix
is always a basis matrix. In general, we will denote the unit matrix by A0, hence, in the
above theorem it is sufficient to consider partitions of the set {1, . . . , d}. Since cyclotomic
schemes are association schemes and these correspond to cells (see Section 2.2.2), for the
determination of subschemes it is also sufficient to investigate partitions of {1, . . . , d}.
The algorithm for the determination of all nontrivial subschemes of a given cyclotomic scheme
C(pn, e) investigates all nontrivial partitions of the index set {1, . . . , e} of the cyclotomic
classes. This investigation is carried out in two steps. At first the so-called ”good subsets”
are computed (see below) and in a second step all partitions consisting of good subsets will
be checked by the condition of Theorem 5.2.1, whether they correspond to a subscheme.
A subset T of {1, . . . , e} is called a good subset, if it satisfies the following conditions
(cf. [FarKM94], p. 83, here we switch to the language of group rings (cf. Definition 2.2.13)
for the explanation of the conditions):

1. The set of basis quantities ST := {Ci|i ∈ T} is either symmetric (i.e., in ST are only
self-inverse basis quantities Ci = Ci

−1 or pairs of inverse basis quantities Ci, Ci
−1), or

ST is antisymmetric (i.e., there are only basis quantities Ci in ST for which Ci
−1 /∈ ST ).

2. Let n ∈ N. Then for each m ∈ {1, . . . , n} the coefficients hk in the decomposition of
the mth power

(∑
i∈T Ci

)m
=

∑e
k=0 hkCk are equal for all k ∈ T , e.g., for m = 2 we

have (∑
i∈T

Ci

)2

=
∑
i,j∈T

CiCj =
∑
i,j∈T

e∑
k=0

pk
ijCk

and for all k ∈ T the coefficients hk :=
∑

i,j∈T pk
ij are equal (cf. Theorem 5.2.1 with

α = β).

In [FarKM94], p. 83 it is mentioned that one cannot save much time choosing numbers n ≥ 4
in the second condition. Experiments with computers have shown that the time for verifying
Condition 2 for higher powers is not a sufficient compensation for the slight reduction of the
number of good subsets. We will use n = 2 in our theoretical determination of subschemes
of cyclotomic schemes.
It is easy to check that if a set T , which corresponds to a antisymmetric set of basis quantities
ST , satisfies the second condition, then the set T ′ formed by the indices of the inverse basis
quantities in ST ′ := {Ci

−1|i ∈ T} satisfies also the second condition, i.e., T ′ is a good subset
if and only if T is a good subset. The subsets of order one and the complete set of all indices
are trivial good subsets.
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The merge
∑

i∈T Ci =
⋃

i∈T Ci of the basis quantities corresponding to a good subset T is a

candidate for a basis quantity in a cellular subring.
In the second step of the algorithm all partitions {T1, . . . , Tr} of {1, . . . , e} consisting of
good subsets Tα will be investigated (cf. [FarKM94], pp. 84/85). At first we have to check,
if for each good subset Tα, which corresponds to an antisymmetric set ST , the associated
good subset T ′

α := {j|C−1
j ∈ ST} belongs to the partition (cf. Condition 3 in Definition

2.2.14). If this is the case then for Bα :=
∑

i∈Tα
Ci, α ∈ {1, . . . , r} all products Bα Bβ must

be computed and checked whether there exist coefficients qγ
αβ such that

Bα Bβ =
r∑

γ=1

qγ
αβBγ + q0

αβB0.

If these coefficients exist, then by Theorem 5.2.1 this partition corresponds to a subscheme.
We will give a small example:

Example 5.2.2 We consider the trivial cyclotomic scheme C(5, 5) over the field Z5. We
have C0 := {0} and the cyclotomic classes are Ci := {i}, i = 1, . . . , 4. Now, consider the
subset {1, 4} of the index set {0, . . . , 4}. This subset is a good subset: (1) It is symmetric,
because it consists of two elements whose corresponding basis quantities are inverse to each
other (C1

−1 = {−1} = {4} = C4), i.e., the elements form a pair of antisymmetric elements
and (2) we have

(C1 ∪ C4)
2 = ({1, 4})2 = {1 + 1, 1 + 4, 4 + 1, 4 + 4} = 2{0}+ {2, 3},

i.e., the coefficients for C1 and C4 in the decomposition of (C1 ∪ C4)
2 are equal (to 0). In

the same way we get that {2, 3} is a good subset.
The next step is to check the products (C1 ∪ C4) (C2 ∪ C3), C0 (C1 ∪ C4), C0 (C2 ∪ C3). For
example, we have

(C1 ∪ C4) (C2 ∪ C3) = {1, 4} {2, 3} = {1 + 2, 1 + 3, 4 + 2, 4 + 3} = {1, 4}+ {2, 3},

i.e, the coefficients for C1 and C4 are equal (to 1) and the coefficients for C2 and C3 are
also equal (to 1). Analogously, we can show that the condition in Step 2 of the algorithm
is satisfied for the other two products. Since the one-element subset {0} is always a good
subset, the partition {{0}, {1, 4}, {2, 3}} corresponds to a subscheme of C(5, 5) with classes
C0, C1 ∪ C4, C2 ∪ C3.

Since it is possible that this algorithm determines all subschemes of an association scheme
with d classes by the intersection numbers (structure constants) the advantage in the spe-
cial case of cyclotomic schemes is clear: Here the necessary d3 intersection numbers are
determined by d2 cyclotomic numbers and by Lemma 5.1.5 certain cyclotomic numbers are
equal. In general, the existence of good subsets and of subschemes of a cyclotomic scheme
depends on equations for cyclotomic numbers which only some of the cyclotomic numbers
must satisfy. We describe this in the next section.
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5.3 Subschemes of cyclotomic schemes

In this section we determine subschemes of cyclotomic schemes by cyclotomic numbers.
Therefore, we use the algorithm given in the previous section. We explain the procedure for
the first case C(pn, 3) with pn = 3f + 1, f odd, in detail. For the other cases the necessary
steps are presented in a brief manner.
Notice that there exist already results for the investigation of cyclotomic schemes by cy-
clotomic numbers: In [ClaG89], Sections 4.4 and 4.5., H. L. Claasen and R. W. Goldbach
considered 2-class and 3-class cyclotomic schemes. Their aim was to describe the intersection
number of the cyclotomic schemes by cyclotomic numbers. The case of so-called uniform
cyclotomic numbers is described in [BauMW82]. Here the cyclotomic numbers satisfy the
equations (i, 0) = (0, i) = (i, i) = (0, 1) for i 6= 0 and (i, j) = (1, 2) for 0 6= i 6= j 6= 0. In
Section 8 in [BauMW82] results for difference sets are considered. In [vLiS81] and [CalK86]
the investigation of cyclotomic schemes was focused on strongly regular graphs and partial
difference sets, i.e., the description of certain 2-class cyclotomic schemes.
In this section we make a further step. We want to determine systematically all possible
subschemes of certain cyclotomic schemes by the method described in the previous section.
Since 2-class association schemes have only trivial subschemes, we start with the case e = 3.

5.3.1 The case e=3, f odd

We consider cyclotomic schemes C(pn, 3) with pn = 3f + 1, f odd. It is easy to check that
in this case p = 2. By Lemma 5.1.5.2 we have the following equations for the cyclotomic
numbers:

(0, 1) = (1, 0) = (2, 2), (0, 2) = (2, 0) = (1, 1), (1, 2) = (2, 1). (5.1)

With this equations we get by Lemma 5.1.6:

pn = |(0, 0) + 2(1, 2) + 3(0, 1)exp(2πi
3

) + 3(0, 2)exp(4πi
3

)|2

= |(0, 0) + 2(1, 2)− 3
2
(0, 1)− 3

2
(0, 2) + i3

√
3

2
((0, 1)− (0, 2))|2.

Defining x := 2(0, 0) + 4(1, 2)− 3(0, 1)− 3(0, 2) and y := (0, 1)− (0, 2) we have

4pn = x2 + 27y2.

Lemma 5.1.5.3 yields the equations

(0, 0) + (0, 1) + (0, 2) = f − 1, (1, 0) + (1, 1) + (2, 1) = f, (2, 0) + (2, 1) + (2, 2) = f.

Using the fact that certain cyclotomic numbers are equal gives the equations

(0, 0) + (0, 1) + (0, 2) = f − 1 =
pn − 4

3
and (0, 1) + (0, 2) + (1, 2) = f =

pn − 1

3
.

Now we have the situation that each cyclotomic number is equal to one of the four cyclotomic
numbers (0, 0), (0, 1), (0, 2), (1, 2) which are determined by four equations:
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2(0, 0) + 4(1, 2)− 3(0, 1)− 3(0, 2) = x (0, 1)− (0, 2) = y

(0, 0) + (0, 1) + (0, 2) = pn−4
3

(0, 1) + (0, 2) + (1, 2) = pn−1
3

.

Solving this system of equations we get the following formulas for the cyclotomic numbers
with variables pn, x and y (see also [Sto67], Lemma 7):

1. (0, 0) = 1
9
(x + pn − 8),

2. (0, 1) = (1, 0) = (2, 2) = 1
18

(2pn + 9y − x− 4),

3. (0, 2) = (2, 0) = (1, 1) = 1
18

(2pn − 9y − x− 4),

4. (1, 2) = (2, 1) = 1
9
(pn + x + 1).

Notice that the parameters x, y, pn are not independent, because we have 4pn = x2 + 27y2.
Moreover, it is not true that all x, y ∈ N with 4pn = x2 + 27y2 give rise to cyclotomic
numbers. By [Sto67], Chapter 6 resp. [ClaG89], Remark 4.5.3 these equations for the
cyclotomic numbers only hold, if we have x ≡ 1 mod 3.

As described in the previous section the existence of subschemes of the cyclotomic scheme
depends on certain equalities for the cyclotomic numbers of the scheme. In the following
we will determine these conditions and then check, if they contradict the conditions for the
numbers x, y and pn.

We have to check if the following subsets of {1, 2, 3} are good subsets:

{1, 2}, {1, 3}, {2, 3}.

In the case of three cyclotomic classes all classes are symmetric (Lemma 5.1.2). So, each of
these subsets satisfies the first condition for good sets. For the second condition we have to
investigate the structure constants in the decomposition

(Ci ∪ Cj)
2 =

3∑
k=0

(pk
ii + pk

ij + pk
ji + pk

jj)Ck

for i = 1, 2 and j = 2, 3. By Lemma 5.1.8 we get for all three subsets the same conditions
for the structure constants, because the decompositions of (C1 ∪ C2)

2, (C1 ∪ C3)
2, (C2 ∪ C3)

2

provides the equations

p1
11 + p1

12 + p1
21 + p1

22 = p2
11 + p2

12 + p2
21 + p2

22,
p1

11 + p1
13 + p1

31 + p1
33 = p3

11 + p3
13 + p3

31 + p3
33,

p2
22 + p2

23 + p2
32 + p2

33 = p3
22 + p3

23 + p3
32 + p3

33.

These three equations are equivalent by Lemma 5.1.8. Thus, it is sufficient to consider only
one set, e.g., the set {1, 2}.
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From

p1
11 + p1

12 + p1
21 + p1

22 = p2
11 + p2

12 + p2
21 + p2

22

we get by Lemma 5.1.7

(0, 0) + (1, 0) + (2, 2) + (0, 2) = (0, 1) + (1, 1) + (2, 0) + (0, 0)

and simplified by the equalities in (5.1), p. 121 we get

(0, 0) + 2(0, 1) + (0, 2) = (0, 0) + (0, 1) + 2(0, 2) ⇔ (0, 1) = (0, 2).

If we substitute the cyclotomic numbers (0, 1) and (0, 2) by their representations in x, y, pn

we get the equation

1

18
(2pn + 9y − x− 4) =

1

18
(2pn − 9y − x− 4)

which is equivalent to y = −y. Consequently, we get y = 0 and thus, 4pn = x2 + 27y2 = x2.
It follows that x = ±2

√
pn and since p = 2 (e, f are odd!) we have x = ±2

n+2
2 , i.e., n must

be even.
The sets {1, 2}, {1, 3}, {2, 3} are good subsets, if n is even, x = ±2

n+2
2 and, as mentioned

above, x ≡ 1 mod 3.
Now we have to investigate the following partitions (recall that one-element sets are always
good subsets):

{{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}.

Again, by Lemma 5.1.8 the condition that a partition corresponds to a subscheme is equiv-
alent for all of these three partitions. We only consider the first partition {{1, 2}, {3}}:
We have already checked the case (C1 ∪ C2)

2. For (C1 ∪ C2)C3 and C3C3 we get:

p1
13 + p1

23 = p2
13 + p2

23

⇔ (2, 0) + (1, 2) = (2, 1) + (1, 0)
⇔ (0, 1) = (0, 2) ⇔ y = 0.

p1
33 = p2

33 ⇔ (0, 1) = (0, 2) ⇔ y = 0.

Altogether, there is no further condition and we get the following theorem:

Theorem 5.3.1 Let C(x2

4
, 3) = 〈C0, C1, C2, C3〉 be a cyclotomic scheme where x = ±2

n+2
2

x ≡ 1 mod 3. Then the scheme has the following nontrivial subschemes: 〈C0, C1 ∪ C2, C3〉,
〈C0, C1, C2 ∪ C3〉 and 〈C0, C1 ∪ C3, C2〉.

Notice that the cyclotomic scheme in the theorem corresponds to an amorphic cellular ring,
because we can merge arbitrarily the cyclotomic classes for the construction of subschemes
(cf. Definition 2.2.7).
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Example 5.3.2 As an example we consider the case n = 4 (n must be even!). We have
24 = 16 and x = ±23 = ±8. The condition x ≡ 1 mod 3, implies x = −8. Merging two
classes, e.g., C1 and C2, in the cyclotomic scheme gives a subscheme which corresponds
to the Clebsch graph. Moreover, all three subschemes correspond to the (16, 5, 0, 2)-partial
difference set in the group (Z2)

4 which is unique up to CI-equivalence (cf. Table 4.6).

In the table we list some cases for small numbers n with the corresponding strongly regular
graphs and if possible we give reference to the partial difference sets in the appendix (the
computations were done with GAP):

n pn parameters graph partial difference set
2 4 (4,1,0,0) 2 ◦K2

4 16 (16,5,0,2) Clebsch App. D 4.1.8.1
6 64 (64,21,8,6) L3((Z2)

3) App. G 23.2.30.1
8 256 (256,85,24,30)

5.3.2 The case e=3, f even

In the case e = 3, f even, the cyclotomic classes are again symmetric (Lemma 5.1.2). We
have to execute the same computations as in the case e = 3, f odd. Since we get by Lemma
5.1.5 the same equalities for the cyclotomic numbers, we have the same formulas and the
same conditions for the existence of subschemes with one exception: if p ≡ 1 mod 3 then
the representation 4pn = x2 + 27y2, x ≡ 1 mod 3 only determines the cyclotomic numbers,
if gcd(p, x) = 1 (cf. [Sto67], Chapter 6 resp. [ClaG89], Remark 4.5.3).
The fact that the number f is even implies p 6= 2. Thus, we have pn = x2

4
resp. x = ±2

√
pn,

where x ≡ 1 mod 3. It follows that n and x are even. However, the condition gcd(p, x) = 1 in
the case p ≡ 1 mod 3 is not satisfied because gcd(p, x) =gcd(p, 2

√
pn) = p > 1. Hence, there

are no subschemes for p ≡ 1 mod 3 which can be created by merging cyclotomic classes.

Theorem 5.3.3 Let p be an odd prime with p ≡ 1 mod 3 and let n ∈ N even. Then
no nontrivial subscheme of the cyclotomic scheme C(pn, 3) can be constructed by merging
cyclotomic classes.

For p ≡ 2 mod 3 we do not have this extra condition gcd(p, x) = 1 and, hence, there exists
subschemes in these cases. The condition x ≡ 1 mod 3 determines the sign of x.

Theorem 5.3.4 Let p be an odd prime with p ≡ 2 mod 3 and let n ∈ N even. Then
the cyclotomic scheme C(pn, 3) = 〈C0, C1, C2, C3〉 has the following nontrivial subschemes:
〈C0, C1 ∪ C2, C3〉, 〈C0, C1, C2 ∪ C3〉 and 〈C0, C1 ∪ C3, C2〉.

For the case p ≡ 2 mod 3, p an odd prime and n even we get a cyclotomic scheme C(pn, 3)
which corresponds to an amorphic cellular ring, since arbitrary mergings of its cyclotomic
classes yield subschemes.
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Example 5.3.5 Consider the case p = 5, n = 2. We have the cyclotomic scheme C(25, 3).
Merging two cyclotomic classes yields a subscheme which corresponds to the lattice graph
L2(5). Moreover, it corresponds to the (25,8,3,2)-partial difference set in Z5 × Z5 which is
unique up to CI-equivalence (see Corollary 3.2.23).

Again with GAP we computed some cases for small numbers n with the corresponding strongly
regular graphs and if possible we give reference to the partial difference sets in the appendix:

n p pn parameters graph partial difference set
2 5 25 (25,8,3,2) L2(5) App. D 8.1.1.1
4 5 625 (625,208,63,72) NL8(25)†

2 11 121 (121,40,15,12) L4(11) App. G 39.1.1.1
2 17 289 (289,96,35,30) L6(17)

† negative latin square type graph (see Page 65)

In the case of Theorem 5.3.3 we have no subschemes. For example, if we take p = 7 ≡ 1 mod
3, n = 2, then a subscheme of C(49, 3) would correspond to a strongly regular graph with 49
vertices and valency 16. Feasible parameters are (49, 16, 3, 6) (cf. [Bro96]). In [BusHMW89]
a proof is given that such a strongly regular graph does not exist.

5.3.3 The case e=4, f odd

Like in the case e = 3 we get for e = 4, f odd, equalities for several cyclotomic numbers by
Lemma 5.1.5. And as in the previous case with the representation pn = x2 + 4y2 which we
get by Lemma 5.1.6 we can determine formulas for the cyclotomic numbers which depend
on parameters pn, x and y. By [Sto67] the additional property x ≡ 1 mod 4 ensures that
x, y, pn determine the cyclotomic numbers. Notice that pn = 4f + 1 ≡ 1 mod 4, i.e., if p ≡ 3
mod 4, then n must be even.
For the cyclotomic numbers we get by Lemma 5.1.5 and Lemma 5.1.6 the following equations
and formulas where pn = x2 + 4y2, x ≡ 1 mod 4 (see also [Sto67], Lemma 19):

1. (0, 0) = (2, 2) = (2, 0) = 1
16

(pn + 2x− 7),

2. (0, 1) = (1, 3) = (3, 2) = 1
16

(pn + 2x + 1− 8y),

3. (0, 2) = 1
16

(pn − 6x + 1),

4. (0, 3) = (1, 2) = (3, 1) = 1
16

(pn + 2x + 8y + 1),

5. (1, 0) = (2, 1) = (2, 3) = (3, 3) = (3, 0) = (1, 1) = 1
16

(pn − 2x− 3).

For the determination of subschemes we have to consider the following subsets of {1, . . . , 4}:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.
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Notice that by Lemma 5.1.2 the cyclotomic scheme for e = 4, f odd is not symmetric: The
cyclotomic classes C1 and C3 resp. C2 and C4 are antisymmetric pairs. Thus, the 3-subsets
of {1, . . . , 4} cannot be good subsets, because a 3-subset always contains two indices which
are associated to a pair of antisymmetric classes and one index which is associated to a single
antisymmetric class. Hence, the first condition for good subsets is not satisfied.
One can check that by Lemma 5.1.8 the conditions for being a good subset are equivalent
for the subsets {1, 2}, {1, 4}, {2, 3}, {3, 4} resp. for the subsets {1, 3}, {2, 4}. Thus, we only
have to consider the subsets {1, 2} and {1, 3}.
For the second condition for good sets we have to check for i = 1, j = 2, 3, if the coefficients
pk

ij in the expression

(Ci ∪ Cj)
2 =

4∑
k=0

pk
ijCk

satisfy the equation
pi

ii + pi
ij + pi

ji + pi
jj = pj

ii + pj
ij + pj

ji + pj
jj.

Since by Lemma 5.1.8 the equality p1
11 = p2

22 = p3
33 holds, the second condition for good

subsets simplifies to
pi

ij + pi
ji + pi

jj = pj
ii + pj

ij + pj
ji,

where {i, j} = {1, 2} or {i, j} = {1, 3}.

1. The subset {1, 2}:
We have

p1
12 + p1

21 + p1
22 = p2

11 + p2
12 + p2

21.

By Lemma 5.1.7 and Lemma 5.1.8 we obtain:

(1, 0) + (3, 3) + (0, 3) = (0, 1) + (1, 1) + (3, 1)

and by the above given table of cyclotomic numbers and equations this equation simplifies
to (0, 3) = (0, 1). Replacing the cyclotomic numbers by the formulas we get

1

16
(pn + 2x + 8y + 1) =

1

16
(pn + 2x− 8y + 1)

and this implies y = 0. Since pn = 4f + 1 and f odd, with f = 2k + 1, k ∈ N we have
pn = 8k + 5 ≡ 5 mod 8. With pn = x2 + 4y2 and y = 0 we have pn = x2, where x ≡ 1 mod
4. Since x = 4l + 1, l ∈ N implies x2 = 16l2 + 8l + 1 ≡ 1 mod 8, it follows that the equation
pn = x2 has no solution. Thus, the subsets {1, 2}, {1, 4}, {2, 3}, {3, 4} are not good subsets.

2. The subset {1, 3}:
We get

p1
13 + p1

31 + p1
33 = p3

11 + p3
13 + p3

31

and obtain
(2, 0) + (2, 2) + (0, 2) = (0, 2) + (2, 2) + (2, 0).
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This is always true.
Now we have to consider all possible partitions of {1, 2, 3, 4} consisting of good subsets. No-
tice that for each good subset T in a partition there must be also a good subset
T ′ := {j|C−1

j = Ci, i ∈ T} in the partition. Since C−1
1 = C3 and C−1

2 = C4 we have to
consider the following non-trivial partitions:

1) {{1, 3}, {2}, {4}} 2) {{1}, {2, 4}, {3}} 3) {{1, 3}, {2, 4}}

Now each of these partitions must be checked, whether it corresponds to a subscheme of the
cyclotomic scheme. Again, we can use the fact that by Lemma 5.1.8 for some partitions the
conditions are equivalent. This is the case for the Partitions 1 and 2. Thus, we only have to
consider the Partitions 1 and 3.
Partition 1:
We have already checked (C1 ∪ C3)

2. It remains the investigation of the decompositions of
(C1 ∪ C3)C2 and (C2)

2.

(C1 ∪ C3)C2 : p1
12 + p1

32 = p3
12 + p3

32

⇔ (1, 0) + (3, 2) = (1, 2) + (3, 0)
⇔ −y = y ⇔ y = 0.

As we have seen before the condition y = 0 yields no solution. Thus, the Partitions 1 and 2
do not correspond to a subscheme.
Partition 3:

(C1 ∪ C3)
2 : p2

11 + p2
13 + p2

31 + p2
33 = p4

11 + p4
13 + p4

31 + p4
33

⇔ (0, 1) + (2, 1) + (2, 3) + (0, 3) = (0, 3) + (2, 3) + (2, 1) + (0, 1).
(C2 ∪ C4)

2 : p1
22 + p1

24 + p1
42 + p1

44 = p3
22 + p3

24 + p3
42 + p3

44

equivalent to first line.
(C1 ∪ C3)(C2 ∪ C4) : 1) p1

12 + p1
32 + p1

14 + p1
34 = p3

12 + p3
32 + p3

14 + p3
34

⇔ (1, 0) + (3, 2) + (3, 0) + (1, 2) = (1, 2) + (3, 0) + (3, 2) + (1, 0).
2) p2

12 + p2
32 + p2

14 + p2
34 = p4

12 + p4
32 + p4

14 + p4
34

⇔ (1, 1) + (3, 3) + (3, 1) + (1, 3) = (1, 3) + (3, 1) + (3, 3) + (1, 1).

For Partition 3 we get no further condition. Thus, in every case the merging of the two
antisymmetric pairs of cyclotomic classes will give a subscheme:

Theorem 5.3.6 Let pn = 4f +1, where f is odd and let C(pn, 4) = 〈C0, C1, C2, C3, C4〉 be a
cyclotomic scheme. Then there exists only one nontrivial subscheme. It can be constructed
by merging the classes C1, C3 resp. C2, C4. This subscheme is symmetric and corresponds to
the Paley graph P (pn).

The subscheme is symmetric, because C−1
1 = C3 and C−1

2 = C4. For a primitive element
ω ∈ Fpn the sets C1, C3 consist of the elements ω4s and ω4s+2, s = 0, . . . , f − 1. These
elements are exactly the non-zero squares in Fpn and therefore, the set C1 ∪C3 is the partial
difference set which corresponds to the Paley graph (cf. Proposition 3.2.6).
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The fact that the merging of each pair of antisymmetric cyclotomic classes yields the classes
of a symmetric subscheme is known as the symmetrization or the symmetric closure of
an association scheme (cf. [BanI84], [ClaG89]). Hence, the result that the merging of C1, C3

resp. C2, C4 yields a subscheme is not new. However, the important fact in Theorem 5.3.6 is
that this subscheme is the only nontrivial subscheme in the mentioned cyclotomic scheme.

5.3.4 The case e=4, f even

For the case e = 4, f even, we have the same representation of pn by x and y, namely
pn = x2 +4y2, where x ≡ 1 mod 4. For the cyclotomic numbers we get by this representation
and by Lemma 5.1.5 the following equalities and formulas (see also [Sto67], Lemma 19):

1. (0, 0) = 1
16

(pn − 6x− 11),

2. (0, 1) = (3, 3) = (1, 0) = 1
16

(pn + 2x + 8y − 3),

3. (0, 2) = (2, 2) = (2, 0) = 1
16

(pn + 2x− 3),

4. (0, 3) = (1, 1) = (3, 0) = 1
16

(pn + 2x− 8y − 3),

5. (1, 2) = (2, 1) = (2, 3) = (3, 2) = (3, 1) = (1, 3) = 1
16

(pn − 2x + 1).

We have to check the same subsets as in the case e = 4, f odd and, in addition, the 3-subsets
of {1, 2, 3, 4}. Here 3-subsets are candidates for good subsets since all cyclotomic classes are
symmetric (Lemma 5.1.2). By Lemma 5.1.8 the condition that a 3-subsets is a good subset
is the equivalent for all 3-subsets of {1, 2, 3, 4}.
1. The subset {1, 2}:
We have

p1
12 + p1

21 + p1
22 = p2

11 + p2
12 + p2

21.

By Lemma 5.1.7 and Lemma 5.1.8 we obtain:

(1, 0) + (3, 3) + (0, 3) = (0, 1) + (1, 1) + (3, 0)

which simplifies to (0, 1) = (0, 3). Replacing the cyclotomic numbers by the corresponding
formulas we get 8y = −8y ⇔ y = 0 (in this case y = 0 is possible).
2. For the subset {1, 3} we get the same equation as for e = 4, f odd. Thus, this subset is
always a good subset.
3. The subset {1, 2, 3}:
We have for (C1 ∪ C2 ∪ C3)

2:

p1
11 + p1

12 + p1
13 + p1

21 + p1
22 + p1

23 + p1
31 + p1

32 + p1
33

= p2
11 + p2

12 + p2
13 + p2

21 + p2
22 + p2

23 + p2
31 + p2

32 + p2
33

= p3
11 + p3

12 + p3
13 + p3

21 + p3
22 + p3

23 + p3
31 + p3

32 + p3
33

⇔ (0, 0) + (1, 0) + (2, 0) + (3, 3) + (0, 3) + (1, 3) + (2, 2) + (3, 2) + (0, 2)
= (0, 1) + (1, 1) + (2, 1) + (3, 0) + (0, 0) + (1, 0) + (2, 3) + (3, 3) + (0, 3)
= (0, 2) + (1, 2) + (2, 2) + (3, 1) + (0, 1) + (1, 1) + (2, 0) + (3, 0) + (0, 0)
⇔ 3(0, 2) + (0, 1) = 2(0, 1) + 2(0, 3) = 3(0, 2) + (0, 3)
⇔ 8y = 0 = −8y ⇔ y = 0.
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Hence, we get the following non-trivial good subsets:

{1, 2}, {1, 4}, {3, 4}, {2, 3} if y = 0,
{1, 3}, {2, 4} for all x, y,
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} if y = 0,

where x ≡ 1 (mod 4) and pn = x2 + 4y2.

Now we have to consider all possible partitions of {1, 2, 3, 4} consisting of good subsets.

partition condition
1 {{1, 2}, {3}, {4}} y = 0
2 {{1, 3}, {2}, {4}}
3 {{1, 4}, {2}, {3}} y = 0
4 {{1}, {2, 3}, {4}} y = 0
5 {{1}, {2, 4}, {3}}
6 {{1}, {2}, {3, 4}} y = 0
7 {{1, 2}, {3, 4}} y = 0
8 {{1, 3}, {2, 4}}
9 {{1, 4}, {2, 3}} y = 0
10 {{1, 2, 3}, {4}} y = 0
11 {{1, 2, 4}, {3}} y = 0
12 {{1, 3, 4}, {2}} y = 0
13 {{2, 3, 4}, {1}} y = 0

Since the Partitions 1, 3, 4 and 6 resp. 2 and 5 resp. 7 and 9 resp. 10, 11, 12 and 13 yield
equivalent conditions, we only have to check the Partitions 1, 2, 7 and 10.

Moreover, the Partition 8 yields the same condition as in the case f odd. Thus, here we
have the same result and Theorem 5.3.6 can be reformulated:

Theorem 5.3.7 Let pn ≡ 1 mod 4 and let C(pn, 4) = 〈C0, C1, C2, C3, C4〉 be a cyclotomic
scheme. Then there exists a nontrivial subscheme which can be constructed by merging the
classes C1, C3 resp. C2, C4. This subscheme is symmetric and corresponds to the Paley graph
P (pn).

Now we consider the other partitions.
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Partition 1:
(C1 ∪ C2)C3 : p1

13 + p1
23 = p2

13 + p2
23

⇔ (2, 0) + (1, 3) = (2, 1) + (1, 0)
⇔ (0, 2) = (0, 1) ⇔ 8y = 0 ⇔ y = 0.

(C1 ∪ C2)C4 : p1
14 + p1

24 = p2
14 + p2

24

⇔ (3, 0) + (2, 3) = (3, 1) + (2, 0)
⇔ (0, 3) = (0, 2) ⇔ −8y = 0 ⇔ y = 0.

(C3)
2 : p1

33 = p2
33 ⇔ (0, 2) = (0, 3) ⇔ y = 0.

(C4)
2 : p1

44 = p2
44 ⇔ (0, 1) = (0, 2) ⇔ y = 0.

C3 C4 : p1
34 = p2

34 ⇔ (1, 2) = (1, 3) always true.

Hence, for the Partitions 1, 3, 4 and 6 we have the condition y = 0. In contrast to the case
e = 4, f odd, here the condition y = 0 does not lead to a contradiction. We have pn = 4f +1
and with f = 2k, k ∈ N, we have pn = 8k + 1 ≡ 1 mod 8. Since we have also pn = x2 ≡ 1
mod 8 (see the case f odd), we have no contradiction. We only get the condition that n is
even. Hence, we have the following theorem:

Theorem 5.3.8 (Partitions 1, 3, 4, 6) Let p2n ≡ 1 mod 8 and let C(p2n, 4) = 〈C0, C1, C2, C3, C4〉
be a cyclotomic scheme. Then there exist nontrivial subschemes

〈C0, C1 ∪ C2, C3, C4〉, 〈C0, C1, C4, C2 ∪ C3〉, 〈C0, C1, C2, C3 ∪ C4〉 and 〈C0, C1 ∪ C4, C2, C3〉.

Partition 2:

(C1 ∪ C3)C2 : p1
12 + p1

32 = p3
12 + p3

32

⇔ (1, 0) + (3, 2) = (1, 2) + (3, 0)
⇔ (0, 1) = (0, 3) ⇔ y = −y ⇔ y = 0.

(C1 ∪ C3)C4 : p1
14 + p1

34 = p3
14 + p3

34

is equivalent to the first line.
(C2)

2 : p1
22 = p3

22 ⇔ (0, 3) = (0, 1) ⇔ y = 0.
(C4)

2 : p1
44 = p3

44 is equivalent to the previous line.
C2 C4 : p1

24 = p3
24 ⇔ (2, 3) = (2, 1) always true.

For the Partitions 2 and 5 we have the condition y = 0. Hence, we get the following theorem:

Theorem 5.3.9 (Partitions 2, 5) Let p2n ≡ 1 mod 8 and let C(p2n, 4) = 〈C0, C1, C2, C3, C4〉
be a cyclotomic scheme. Then there exist nontrivial subschemes 〈C0, C1 ∪ C3, C2, C4〉 and
〈C0, C1, C3, C2 ∪ C4〉.
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Now we consider Partition 7:

(C1 ∪ C2)
2 : p3

11 + p3
12 + p3

21 + p3
22 = p4

11 + p4
12 + p4

21 + p4
22

⇔ (0, 2) + (1, 2) + (3, 1) + (0, 1) = (0, 3) + (1, 3) + (3, 2) + (0, 2)
⇔ (0, 1) = (0, 3) ⇔ y = 0.

(C3 ∪ C4)
2 : p1

33 + p1
34 + p1

43 + p1
44 = p2

33 + p2
34 + p2

43 + p2
44

equivalent to the first line.
(C1 ∪ C2)(C3 ∪ C4) : 1) p1

13 + p1
14 + p1

23 + p1
24 = p2

13 + p2
14 + p2

23 + p2
24

⇔ (2, 0) + (3, 0) + (1, 3) + (2, 3) = (2, 1) + (3, 1) + (1, 0) + (2, 0)
⇔ (0, 3) = (0, 1) ⇔ y = 0.
2) p3

13 + p3
14 + p3

23 + p3
24 = p4

13 + p4
14 + p4

23 + p4
24

⇔ (2, 2) + (3, 2) + (1, 1) + (2, 1) = (2, 3) + (3, 3) + (1, 2) + (2, 2)
⇔ (0, 3) = (0, 1) ⇔ y = 0.

Thus, for Partition 7 and Partition 9 we have the condition y = 0.

Theorem 5.3.10 (Partitions 7, 9) Let p2n ≡ 1 mod 8 and let C(p2n, 4) = 〈C0, C1, C2, C3, C4〉
be a cyclotomic scheme. Then there exist nontrivial subschemes 〈C0, C1 ∪ C2, C3 ∪ C4〉 and
〈C0, C1 ∪ C4, C2 ∪ C3〉.

It remains Partition 10:

(C1 ∪ C2 ∪ C3)C4 p1
14 + p1

24 + p1
34 = p2

14 + p2
24 + p2

34 = p3
14 + p3

24 + p3
34

⇔ (3, 0) + (2, 3) + (1, 2) = (3, 1) + (2, 0) + (1, 3) = (3, 2) + (2, 1) + (1, 0)
⇔ (0, 3) = (0, 2) = (0, 1) ⇔ −8y = 0 = 8y ⇔ y = 0.

(C4)
2 : p1

44 = p2
44 = p3

44

⇔ (0, 1) = (0, 2) = (0, 3) ⇔ 8y = 0 = −8y ⇔ y = 0.

We have the condition y = 0 for the partitions 10, 11, 12 and 13. Thus, we get the following
theorem:

Theorem 5.3.11 (Partitions 10, 11, 12, 13)

Let p2n ≡ 1 mod 8 and let C(p2n, 4) = 〈C0, C1, C2, C3, C4〉 be a cyclotomic scheme. Then any
merging of three cyclotomic classes yields a nontrivial subscheme.

We summarize the results in a table. For a cyclotomic scheme C(pn, 4) with cyclotomic
classes C1, C2, C3, C4 we have the following subschemes:



132

classes of subscheme condition Theorem
C0, C1 ∪ C2, C3, C4 pn ≡ 1 mod 8, n even 5.3.8
C0, C1 ∪ C3, C2, C4 pn ≡ 1 mod 8, n even 5.3.9
C0, C1 ∪ C4, C2, C3 pn ≡ 1 mod 8, n even 5.3.8
C0, C1, C2 ∪ C3, C4 pn ≡ 1 mod 8, n even 5.3.8
C0, C1, C3, C2 ∪ C4 pn ≡ 1 mod 8, n even 5.3.9
C0, C1, C2, C3 ∪ C4 pn ≡ 1 mod 8, n even 5.3.8
C0, C1 ∪ C2, C3 ∪ C4 pn ≡ 1 mod 8, n even 5.3.10
C0, C1 ∪ C3, C2 ∪ C4 pn ≡ 1 mod 4 5.3.7
C0, C1 ∪ C4, C2 ∪ C3 pn ≡ 1 mod 8, n even 5.3.10
C0, C1 ∪ C2 ∪ C3, C4 pn ≡ 1 mod 8, n even 5.3.11
C0, C1 ∪ C2 ∪ C4, C3 pn ≡ 1 mod 8, n even 5.3.11
C0, C1 ∪ C3 ∪ C4, C2 pn ≡ 1 mod 8, n even 5.3.11
C0, C1, C2 ∪ C3 ∪ C4 pn ≡ 1 mod 8, n even 5.3.11

Example 5.3.12 We consider the cyclotomic scheme C(34, 4). We have 34 = 81 and
81 ≡ 1 mod 8. There are four cyclotomic classes C1, C2, C3, C4 of F81, each has 20 ele-
ments. Now, by the previous theorems for the case e = 4, f even, we get the following types
of subschemes:

1) A subscheme 〈C0, C1 ∪ C2 ∪ C3, C4〉 which corresponds to the strongly regular graph
(81, 20, 1, 6);

2) A subscheme 〈C0, C1 ∪ C2, C3 ∪ C4〉 which corresponds to a strongly regular graph
(81, 40, 19, 20) that is not isomorphic to the Paley graph P (81);

3) A subscheme 〈C0, C1 ∪ C3, C2 ∪ C4〉 which corresponds to the Paley graph P (81) with
parameters (81, 40, 19, 20).

All these graphs appear in Section 4.2.7.
We want to mention that if we consider the cyclotomic scheme C(34, 8) we get also the
three strongly regular graphs above by merging of classes (since C(34, 4) is a subscheme of
C(34, 8)). But, moreover, we get another strongly regular graph with parameters (81,30,9,12)
which also is given in Section 4.2.7.

5.3.5 The case e=5

In the case e = 5, f even or odd the determination of the necessary formulas for the cyclo-
tomic numbers for a field Fpn where pn = 5f +1 is much more sophisticated. As described in
the preceding sections these formulas are derived from the solution of a system of equations
we get by the Lemmas 5.1.5 and 5.1.6 (see Section 5.3.1 for this procedure in the case e = 3, f
odd). In the case e = 5 we do not have enough equations to solve this system of equations
and thus, we do not get a description of the cyclotomic numbers which depends only on the
parameters p, n, x and y.
To solve this problem we need some further relations between the cyclotomic numbers.
However, this is a difficult task, such that we continue with the case e = 6.
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5.3.6 The case e=6, f odd

The last case which we will consider very briefly is e = 6, f odd. We want to stress that the
cyclotomic numbers are determined for further cases, e.g., e = 6, f even and e = 8, f odd.
However, the computations for e ≥ 6 are very extensive and it would go beyond the scope
of this thesis to perform all these computations and to present them here. For this last case
e = 6, f odd, we will restrict ourselves to the determination of good subsets.

By Lemma 5.1.5 we have the following equalities for the 36 cyclotomic numbers.

1. (0, 0) = (3, 3) = (3, 0),

2. (0, 1) = (4, 3) = (2, 5),

3. (0, 2) = (5, 3) = (1, 4),

4. (0, 3),

5. (0, 4) = (1, 3) = (5, 2),

6. (0, 5) = (2, 3) = (4, 1),

7. (1, 0) = (2, 2) = (5, 5) = (3, 4) = (3, 1) = (4, 0),

8. (2, 0) = (3, 2) = (3, 5) = (4, 4) = (1, 1) = (5, 0),

9. (1, 2) = (5, 1) = (5, 4) = (4, 2) = (2, 4) = (1, 5),

10. (2, 1) = (4, 5).

In [Sto67], Theorem 15’ (p. 72), formulas for these cyclotomic numbers are given. These
formulas are determined by Lemma 5.1.6 for different pairs (s, t). The cyclotomic numbers
are given by the representation pn = x2 + 3y2, x ≡ 1 mod 3. We have two consider three
different cases which depends on z ∈ {0, . . . , 5}, where ωz = 2 := ω0 + ω0 ∈ Fpn .

Case 1 ω3 = 2 Case 2 ω2 = 2 or ω5 = 2
(0, 0) = 1

36
(pn − 11− 8x), (0, 0) = 1

36
(pn − 11− 2x),

(0, 1) = 1
36

(pn + 1− 2x + 12y), (0, 1) = 1
36

(pn + 1− 2x− 12y),
(0, 2) = 1

36
(pn + 1− 2x + 12y), (0, 2) = 1

36
(pn + 1− 8x + 12y),

(0, 3) = 1
36

(pn + 1 + 16x), (0, 3) = 1
36

(pn + 1 + 10x + 12y),
(0, 4) = 1

36
(pn + 1− 2x− 12y), (0, 4) = 1

36
(pn + 1− 2x− 12y),

(0, 5) = 1
36

(pn + 1− 2x− 12y), (0, 5) = 1
36

(pn + 1 + 4x),
(1, 0) = 1

36
(pn − 5 + 4x + 6y), (1, 0) = 1

36
(pn − 5 + 4x + 6y),

(2, 0) = 1
36

(pn − 5 + 4x− 6y), (2, 0) = 1
36

(pn − 5− 2x− 6y),
(1, 2) = 1

36
(pn + 1− 2x), (1, 2) = 1

36
(pn + 1 + 4x),

(2, 1) = 1
36

(pn + 1− 2x). (2, 1) = 1
36

(pn + 1− 8x + 12y).
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Case 3 ω1 = 2 or ω4 = 2
(0, 0) = 1

36
(pn − 11− 2x),

(0, 1) = 1
36

(pn + 1 + 4x),
(0, 2) = 1

36
(pn + 1− 2x + 12y),

(0, 3) = 1
36

(pn + 1 + 10x− 12y),
(0, 4) = 1

36
(pn + 1− 8x− 12y),

(0, 5) = 1
36

(pn + 1− 2x + 12y),
(1, 0) = 1

36
(pn − 5− 2x + 6y),

(2, 0) = 1
36

(pn − 5 + 4x− 6y),
(1, 2) = 1

36
(pn + 1 + 4x),

(2, 1) = 1
36

(pn + 1− 8x− 12y).

Now we investigate all possible partitions of {1, . . . , 6} consisting of good subsets. Since the
cyclotomic scheme is not symmetric (Lemma 5.1.2), we must take into account that we have
three pairs of antisymmetric cyclotomic classes: C−1

1 = C4, C−1
2 = C5 and C−1

3 = C6.
In the following we will give representatives of subsets which satisfy the first condition for
good subsets, i.e. they are symmetric or antisymmetric. These subsets are representatives
because we can get all other candidates for good subsets by the cyclic action of F∗

pn (cf.
Lemma 5.1.8):

{1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 3, 5}, {1, 2, 4, 5}.

There are no further candidates, especially, no 5-subsets, because we have three pairs of
antisymmetric cyclotomic classes and in each good subsets are only indices of symmetric
or pairs of antisymmetric classes resp. only indices of antisymmetric, pairwise non-inverse
classes.
1. The subset {1, 2}:

p1
12 + p1

21 + p1
22 = p2

11 + p2
12 + p2

21 ⇔ (1, 0) + (5, 5) + (0, 5) = (0, 1) + (1, 1) + (5, 0)
⇔ 2(1, 0) + (0, 5) = 2(2, 0) + (0, 1).

The last equation must be checked for the formulas in the three tables. In the first case
ω3 = 2 the equation is always true, for the second case ω2 = 2 or ω5 = 2 follows x = −2y
and in the third case ω1 = 2 or ω4 = 2 follows x = 2y.
2. The subset {1, 3}:
We get

p1
13 + p1

31 + p1
33 = p3

11 + p3
13 + p3

31

and obtain
2(2, 0) + (0, 4) = (0, 2) + 2(1, 0).

Here we get for the cases 1, 2 and 3: y = 0 resp. x = −8y resp. x = 8y.
3. The subset {1, 4}:
We get

p1
14 + p1

41 + p1
44 = p4

11 + p4
14 + p4

41
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and obtain
2(3, 0) + (0, 3) = (0, 3) + (3, 3) + (3, 0).

This is always true.
4. The subset {1, 2, 3}:
We have for (C1 ∪ C2 ∪ C3)

2:

p1
11 + p1

12 + p1
13 + p1

21 + p1
22 + p1

23 + p1
31 + p1

32 + p1
33

= p2
11 + p2

12 + p2
13 + p2

21 + p2
22 + p2

23 + p2
31 + p2

32 + p2
33

= p3
11 + p3

12 + p3
13 + p3

21 + p3
22 + p3

23 + p3
31 + p3

32 + p3
33

⇔ (0, 5) + (0, 4) + 2(1, 2) = (0, 1) + (0, 5) + 2(2, 1) = (0, 2) + (0, 1) + 2(1, 2)

Here we get in the first case: y = 0, in the second and third case x = y resp. x = −y. The
last two cases cannot appear, because pn = 6f + 1 = x2 + 3y2 = 4x2 is impossible since
6f + 1 is odd and 4x2 even.
5. The subset {1, 3, 5}:
We have for (C1 ∪ C3 ∪ C5)

2:

p1
11 + p1

13 + p1
15 + p1

31 + p1
33 + p1

35 + p1
51 + p1

53 + p1
55

= p3
11 + p3

13 + p3
15 + p3

31 + p3
33 + p3

35 + p3
51 + p3

53 + p3
55

= p5
11 + p5

13 + p5
15 + p5

31 + p5
33 + p5

35 + p5
51 + p5

53 + p5
55

⇔ (2, 0) + (1, 0) + (1, 2) = (1, 0) + (1, 2) = (2, 0) = (1, 2) = (2, 0) + (1, 0).

This is always true.
6. The subset {1, 2, 4, 5}:
Here we only give the result. All equations are equivalent to one equation.
We have for (C1 ∪ C2 ∪ C4 ∪ C5)

2:

2(1, 0) + (0, 1) + (0, 4) = 2(2, 0) + (0, 2) + (0, 5).

In the first case we have y = 0, in the second and third case we have x = y resp. x = −y.
As shown above the last two cases cannot occur.
We have the following representatives of good subsets (the entry ”-” means ”impossible” and
no entry means no condition):

condition condition condition
set case 1 case 2 case 3

1 {1, 2} x = −2y x = 2y
2 {1, 3} y = 0 x = −8y x = 8y
3 {1, 4}
4 {1, 2, 3} y = 0 − −
5 {1, 3, 5}
6 {1, 2, 4, 5} y = 0 − −

The next step is to check which partitions of good subsets give rise to a subscheme. We
did not perform all the computations. Only for the partitions {{1, 3, 5}, {2, 4, 6}} and
{{1, 4}, {2, 5}{3, 6}} we want to mention that they always correspond to a subscheme.
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[KliPR88] Klin, M. H.; Pöschel, R.; Rosenbaum, K.: Angewandte Algebra. VEB Deutscher
Verlag der Wissenschaften, Berlin, 1988.
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circulant graphs via Schur ring theory. In: Barg, A.; Litsyn S. (eds.): Codes and
Association Schemes. DIMACS, Ser. Discrete Math. Theor. Comput. Sci. 56,
A.M.S., Providence RI, 2001, pp. 241 - 264.

[Neu75] Neumann, P. M.: Generosity and characters of multiply transitive permutation
groups. Proc. Lond. Math. Soc., III. Ser. 31 (1975), pp. 457 - 481.

[Pal33] Paley, R.: On orthogonal matrices. J. Math. Phys. 12 (1933), pp. 311 - 320.

[Pál87] Pálfy, P. P.: Isomorphism problem for relational structures with a cyclic automor-
phism. Eur. J. Comb. 8 (1987), No. 1, pp. 35 - 43.
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Appendix A

Algorithms

In this chapter we present the algorithms we used for the determination and further handling
of partial difference sets. For each algorithm we give a short description.

A.1 Computation of partial difference sets

The following algorithm computes the partial difference set for a regular subgroup u in the
automorphism group of a strongly regular graph g. The resulting partial difference set pds
will be described by tuples of exponents for the generators of the group u. The generators
are given as input in the list m. Furthermore, the algorithm will check by the function IsPds,
if pds is a partial difference set in the group u. Hence, for all computed partial difference
sets pds in this thesis we got a confirmation that pds is really a partial difference set. The
function IsPds is described in the next section.

pds:= function(g,u,m)

#g is srg, u is group, m is list of generators

local i,j,o,z,x,y,t,s,w,pds,p,q1,q2,q3,q4;

#determination of the order of the generators

o:=[ ];;z:=1;;

for i in [1..Length(m)] do o[i]:= Order(m[i]);;od;

x:=Maximum(o);;y:=Length(m);;

#determination of all possible tuples (i,j,k,...) for the

#generator products (a^i*b^j*c^k...)

t:=Tuples([0..x-1],y);;

for i in [1..Length(t)] do

for j in [1..y] do

if t[i][j]>Order(m[j])-1 then z:=0;; fi;

od;

if z=0 then Unbind(t[i]); z:=1; fi;

od;

t:=Set(t);;
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#determination of pds

w:=[ ];;pds:=[ ];;s:=Adjacency(g,1) ;;

#permutations in group u which have representation (a^i*b^j*c^k*...)

for q1 in t do p:=[ ];;

for i in [1..y] do p[i]:= m[i]^q1[i];;od;

if 1^Product(p) in s then w[Length(w)+1]:=q1;

pds[Length(pds)+1]:=Product(p);

Unbind(s[Position(s,1^Product(p) )]);;s:=Set(s);;

fi;

od;

#permutations in group u which have representation

#(a^i*b^j*c^k*...)(a^s*b^t*c^u*...)

if Length(s)>0 then

for q1 in t do

for q2 in t do p:=[ ];;

for i in [1..y] do

p[i+y]:=m[i]^q2[i];; p[i]:= m[i]^q1[i];;

od;

if 1^Product(p) in s then

w[Length(w)+1]:=Concatenation(q1,q2);

pds[Length(pds)+1]:=Product(p);

Unbind(s[Position(s,1^Product(p) )]);;s:=Set(s);;

fi;

od;od;

fi;

#permutations in group u which have representation

#(a^i*b^j*c^k*...)(a^s*b^t*c^u*...)(...)

if Length(s)>0 then

for q1 in t do

for q2 in t do

for q3 in t do p:=[ ];;

for i in [1..y] do

p[i+2*y]:=m[i]^q3[i];;p[i+y]:=m[i]^q2[i];; p[i]:= m[i]^q1[i];;

od;

if 1^Product(p) in s then

w[Length(w)+1]:=Concatenation(q1,q2,q3);

pds[Length(pds)+1]:=Product(p);

Unbind(s[Position(s,1^Product(p))]);;s:=Set(s);;

fi;

od;od;od;fi;
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#permutations in group u which have representation

#(a^i*b^j*c^k*...)(a^s*b^t*c^u*...)(...)(...)

if Length(s)>0 then

for q1 in t do

for q2 in t do

for q3 in t do

for q4 in t do p:=[ ];;

for i in [1..y] do

p[i+3*y]:=m[i]^q4[i];;p[i+2*y]:=m[i]^q3[i];;

p[i+y]:=m[i]^q2[i];;p[i]:= m[i]^q1[i];;

od;;

if 1^Product(p) in s then

w[Length(w)+1]:=Concatenation(q1,q2,q3,q4);

pds[Length(pds)+1]:=Product(p);

Unbind(s[Position(s,1^Product(p))]);;s:=Set(s);;

fi;

od;od;od;od;

fi;

#check, if list pds is really a PDS in group u

Read("ispds.txt");

if IsPds(u,pds) then return w; fi;

Print("fail "); return false;

end;

A.2 Verifying partial difference sets

We have two functions for checking if a given subset d of a group g is a partial difference
set. These functions differ only in their output: one function returns ”true” or ”false” and
is used in the above given algorithm for the determination of partial difference sets. The
second function, which is given below, returns in addition the parameter set of the partial
difference set.

IsPds:= function(g,d)

local cd,di,h,e,i,s,lambda,mu;

#checking if PDS d is reversible, i.e., d^-1 = d

di:=List(d,x->x^-1); if Set(di)<>Set(d) then return false; fi;

#computing set (g\d)\e, where e is identity element

cd:=Difference(Elements(g),d);; cd:=Difference(cd,[Identity(g)]);;

#compute multiset h:=(xy^-1|xy in d)

h:=[ ];s:=[ ];
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for i in [1..Length(d)] do

s[i]:=d*d[i]^-1;

h:=Concatenation(h,s[i]);

od;

k:=Collected(h);

# now k is a tuple which contains pairs (i,n) where i is an

#element in g and n is the multiplicity of i in the multiset

#h=(xy^-1|xy in d). hence, if d is a partial difference set, then

#for all i in d we have (i,lambda) in k, for all j in cd we have

#(j,mu) in k and for e we have (e,Length(d)) in k. This will be

#checked below.

lambda:=0; mu:=0;

for e in k do

if d[1]=e[1] then lambda:=e[2]; fi;

if cd[1]=e[1] then mu:=e[2];fi;

od;

for e in k do

if e[1] = Identity(g) then if e[2]<> Length(d) then return false;fi;fi;

if e[1] in d then if e[2] <> lambda then return false; fi;fi;

if e[1] in cd then if e[2]<> mu then return false;fi;fi;

od;

Print("(", Size(g),",",Length(d),",",lambda,",",mu,")-partial difference set, ");

return true;

end;

A.3 Transfer of a computed partial difference set to

the editor program

After the determination of a partial difference set for a given group in GAP, this partial
difference set was saved in a special data format which was useful for the further handling
in the editor program we used for preparing the tables.
The input of the function is a partial difference set given as a list t of tuples. Each tuple con-
tains the exponents for a description of the partial difference set by certain known generators
a, b, c, d, ... .The output of the function is a list of the form

[[a^3,b^2,c^5,d^2], [a^3,b^3,c^2,d^5], [a^4,b^2,c^5,d^4], ...]

where for example the first sublist corresponds to the element a3b2c5d2 of the partial difference
set in the representation by generators a, b, c, d.
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pdsprint:=function(t,p)

#t is list of tuples, p is filename

local n,l,i,j,pds,ts,tt,h,k,j1;

#this function works only for groups with at most 8 generators.

n:=Length(t[1]);

if n>8 then return Print("too many generators!");fi;

#n is number of generators

l:=["a","b","c","d","e","f","g","h"];;

ts:=List(t,Length);; tt:=[ ];; tt[1]:=0;pds:=[ ];;

h:=Length(t[Length(t)])/n;;

for k in [1..h] do

if Position(ts,(k+1)*n) = fail then

tt[k+1]:= Length(t);

else tt[k+1]:=Position(ts,(k+1)*n)-1;

fi;

for i in [tt[k]+1..tt[k+1]] do

pds[Length(pds)+1]:=[ ];

for j in [1..k*n] do

if t[i][j]<>0 then

if j mod n =0 then j1:=n;

else j1:=j mod n;

fi;

if t[i][j]=1 then

pds[Length(pds)][j]:=[l[j1]];

else pds[Length(pds)][j]:=[l[j1],"^",t[i][j]];

fi;

else pds[Length(pds)][j]:=[ ];

fi;

od;

od;

od;

PrintTo(p,pds);

Print("pds is printed to ’",p, "’ \n"); return "ready";

end;
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Appendix B

Table of strongly regular graphs up to 49 vertices

In the following table we give information about the feasible parameters for strongly regular graphs up to 49 vertices. In
particular, we give the vertex transitive strongly regular graphs up to 49 vertices: each line in the table corresponds to a
vertex transitive strongly regular graph if such a graph exists. In the non-existence case we give a comment.
Moreover, the table contains: (1) the number of known strongly regular graphs for each parameter set (in the column #srg
in the line where the parameter set appears the first time), (2) all vertex transitive graphs for each parameter set (in the
cases labeled with † we have only knowledge about the strongly regular Cayley graphs), (3) the order of the automorphism
groups of the vertex transitive graphs, (4) the number of partial difference sets we have determined (in the column #pds),
(5) how we get these partial difference sets (theoretical approach or by GAP) and (6) in the last column where one can
find the partial difference sets in Appendix D.

vertex transitive order No. in
No. n k λ µ # srg graph Γ /comment of Aut(Γ) #pds how App. D
1 5 2 0 1 1 P (5) 10 1 theo 1.1
2 9 4 1 2 1 L2(3) ∼= P (9) 72 1 theo 2.1

3 10 3 0 1 1 Petersen (T (5)) 120 - theo
4 13 6 2 3 1 P (13) 78 1 theo 3.1
5 15 6 1 3 1 T (6) 720 - theo
6 16 5 0 2 1 Clebsch graph 1920 12 GAP 4.1
7 16 6 2 2 2 Shrikhande graph 192 6 GAP 5.2
8 16 6 2 2 L2(4) 1152 13 GAP 5.1
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vertex transitive order No. in
No. n k λ µ # srg graph Γ /comment of Aut(Γ) #pds how App. D
9 17 8 3 4 1 P (17) 136 1 theo 6.1
10 21 10 3 6 1 T (7) 5040 1 theo 7.1
11 21 10 4 5 - Conference
12 25 8 3 2 1 L2(5) 28800 1 theo 8.1
13 25 12 5 6 15 L3(5) ∼= P (25) 600 1 theo 9.1
14 26 10 3 4 10 no vertex transitive srg
15 27 10 1 5 1 Schläfli graph 51840 2 GAP 10.1
16 28 9 0 4 - Krein cond., abs. bound
17 28 12 6 4 4 T (8) 40320 - theo
18 29 14 6 7 41 P (29) 404 1 theo 11.1
19 33 16 7 8 - Conference
20 35 16 6 8 3854 descendant from two-graph 40320 - theo
21 36 10 4 2 1 L2(6) 293452 16 GAP 12.1
22 36 14 4 6 180 descendant from two-graph 144 5 GAP 13.1
23 36 14 4 6 descendant from two-graph 216 3 GAP 13.3
24 36 14 4 6 descendant from two-graph 432 9 GAP 13.2
25 36 14 4 6 descendant from two-graph 12096 - GAP
26 36 14 7 4 1 T (9) 362880 - theo
27 36 15 6 6 32548 L3(Z6) 432 5 GAP 14.2
28 36 15 6 6 L3(6) over quasigroup 648 2 GAP 14.3
29 36 15 6 6 L3(S3) 1296 5 GAP 14.1
30 36 15 6 6 descendant from two-graph 51840 - GAP
31 37 18 8 9 ≥ 6760 P (37) 666 1 theo 15.1
32 40 12 2 4 28 no specified name 51840 - GAP
33 40 12 2 4 no specified name 51840 - GAP
34 41 20 9 10 ≥ 1 P (41) 810 1 theo 16.1
35 45 12 3 3 78 no Cayley graph†

36 45 16 8 4 1 T (10) 27345271 - theo
37 45 22 10 11 ≥ 1 no Cayley graph†

38 49 12 5 2 1 L2(7) 29345272 1 theo 17.1
39 49 18 7 6 ≥ 1 L3(7)† 1764 1 theo 18.1
40 49 24 11 12 ≥ 2 P (49) 2352 1 theo 19.1
41 49 24 11 12 L4(7)-type† 3528 1 theo 19.2
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Appendix C

Table of all small groups containing partial
difference sets

One aim of this work is to give a complete list of partial difference sets in groups of order v, v ≤ 49. In Appendix D we
present a table with all partial difference sets we have determined for these groups. In this section we want to describe the
groups for which we discovered the partial difference sets.

In the table on the following page we list all groups up to order 49 which occurred throughout this work. The groups are
ordered by their identification number of the small group library of GAP [GAP99] (see Section 3.3.4). For each group we
give an abstract description by generators and, if possible, standard representatives.
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standard
GAP description of generators representatives
(5, 1) a5 = 1 Z5

(9, 2) a3 = b3 = 1, abelian Z3 × Z3

(13, 1) a13 = 1 Z13

(16, 2) a4 = b4 = 1, abelian Z4 × Z4

(16, 3) a4 = b2 = 1, ba = ab, c2 = b, ca = a3bc
(16, 4) a4 = b4 = 1, ba = a3b
(16, 6) a8 = 1, b2 = a2, ba = a5b M4(2) †1

(16, 8) a8 = 1, b2 = a4, ba = a3b SD4
†2

(16, 10) a4 = b2 = c2 = 1, abelian (Z2)2 × Z4

(16, 11) a4 = b2 = c2 = 1, bab = a3, ac = ca, cb = bc Z2 ×D4

(16, 14) a2 = b2 = c2 = d2 = 1, abelian (Z2)4

(17, 1) a17 = 1 Z17

(21, 1) a7 = b3 = 1, ab = ba4 Z7 o K †3

(25, 2) a5 = b5 = 1, abelian Z5 × Z5

(27, 3) a3 = b3 = 1, bab = (aba)2 (Z3 × Z3) o 〈α〉 †4
(27, 4) a9 = b3 = 1, ba = a4b Z9 o 〈β〉 †4
(29, 1) a29 = 1 Z29

(36, 6) a3 = b3 = c4 = 1, ab = ba, ca = ac, cb = b2c Z3 ×M †5

(36, 9) a3 = b3 = c4 = 1, ab = ba, ca = bc, cb = a2c
(36, 10) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, cb = bc, ca = a2c, db = b2d S3 × S3

(36, 11) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ac, db = bd, cda = ad, cb = bc Z3 ×A4

(36, 12) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, db = bd, ca = a2c, cb = bc Z6 × S3

(36, 13) a3 = b3 = c2 = d2 = 1, ab = ba, cd = dc, da = ad, db = bd, ca = a2c, cb = b2c
(36, 14) a3 = b3 = c2 = d2 = 1, abelian Z6 × Z6

(37, 1) a37 = 1 Z37

(41, 1) a41 = 1 Z41

(49, 2) a7 = b7 = 1, abelian Z7 × Z7

†1 The group Mm(p) :=< x, y|xpm−1
= yp = 1, y−1xy = x1+2m−2

> occurs in [Gor80], p. 190.
†2 The group SDm :=< x, y|x2m−1

= y2 = 1, y−1xy = x−1+2m−2
> is called semidihedral group (cf.[Gor80], p. 191).

†3 K ≤ Z∗
7, K = {1, 2, 4}.

†4 α ∈ Aut(Z3 × Z3), β ∈ Aut(Z9), see section 4.1.6 for the action of α and β.

†5 The group M is the matrix group generated by
(

0 i
i 0

)
,

(
ε 0
0 ε2

)
, where ε ∈ C \ R with ε3 = 1.
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Appendix D

All partial difference sets in groups of order up to
49

On the following pages we give tables with all determined small partial difference sets, i.e., a complete list of partial
difference sets in groups of order up to 49. Notice that for each partial difference set D with parameters (v, k, λ, µ) there
exist a (v, v−k−1, v−2k+µ−2, v−2k+λ)−partial difference sets which is the ”complement” of D. These ”complements”
are not contained in the table, consequently, the parameter k is restricted to k ≤ v

2
.

Each partial difference set is coded by four numbers which are ordered hierarchically. The first number represents the
parameter set (v, k, λ, µ), the second represents the strongly regular graphs for this parameter set, the third number stands
for the non-isomorphic regular subgroups of the automorphism group of the corresponding graph and finally, the fourth
number represents the non-CI-equivalent partial difference sets in a regular subgroup.

As an example consider the number 5.2.3.2: the fifth parameter set is (16, 6, 2, 2), the second graph with this parameters in
the table is the Shrikhande graph. The automorphism group of this graph has several non-isomorphic regular subgroups,
the third subgroup has the GAP-identification number (16, 8) and here we consider the second partial difference set in this
group.

The partial difference sets are given in an abstract description by the generators of the corresponding groups. The generators
of the groups are described in the table in Appendix C.

Since our table gives a complete list of all partial difference sets for groups of order up to 49, it is clear that some of the
partial difference sets are already known. In these cases we give a reference in the last column, however, we are not able
to give each time the reference where the respective partial difference set was described the first time.
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No. v k λ µ srg GAP partial difference set reference reference
to literature

1.1.1.1 5 2 0 1 Paley (5, 1) {a, a4} Prop. 3.2.6 [Ma84], 3.5
2.1.1.1 9 4 1 2 L2(3) (9, 2) {a, a2, b, b2} Sec. 4.1.3 [Ma84], 3.4 (1)
3.1.1.1 13 6 2 3 Paley (13, 1) {a, a3, a4, a9, a10, a12} Prop. 3.2.6 [Ma84], 3.5
4.1.1.1 16 5 0 2 Clebsch (16, 2) {a, a3, b, b3, a2b2} Table 4.6 [Ma94], 12.8

2.1 16 5 0 2 Clebsch (16, 3) {a, a3, a2b, c, c3} Table 4.6
2.2 16 5 0 2 Clebsch (16, 3) {a, a3, ac, ac3, a2b} Table 4.6
2.3 16 5 0 2 Clebsch (16, 3) {a, a3, b, ac3, a3c} Table 4.6
3.1 16 5 0 2 Clebsch (16, 4) {a, a3, b, b3, a2b2} Table 4.6
4.1 16 5 0 2 Clebsch (16, 6) {a, a4, a7, b, b7} Table 4.6
5.1 16 5 0 2 Clebsch (16, 8) {a, a4, a7, ab3, a3b3} Table 4.6
6.1 16 5 0 2 Clebsch (16, 10) {a, a3, a2bc, b, c} Table 4.6 [Ma94], 12.8
7.1 16 5 0 2 Clebsch (16, 11) {a2, ab, a3bc, b, bc} Table 4.6
7.2 16 5 0 2 Clebsch (16, 11) {ab, a2c, a3b, b, bc} Table 4.6
7.3 16 5 0 2 Clebsch (16, 11) {ac, a2c, a3c, b, bc} Table 4.6
8.1 16 5 0 2 Clebsch (16, 14) {a, b, c, d, abcd} Page 91 [Ma94], 12.8

5.1.1.1 16 6 2 2 L2(4) (16, 2) {ab3, a2b, a2b2, a2b3, a3b, b2} Prop. 3.2.47 [Ma84], 3.4 (1)
2.1 16 6 2 2 L2(4) (16, 3) {a2, ab, a2c, a2c3, a3b, b} Table 4.2
2.2 16 6 2 2 L2(4) (16, 3) {a2, abc, a2bc, a2c, a3bc, b} Table 4.2
2.3 16 6 2 2 L2(4) (16, 3) {ab, abc, a3b, a3c, bc, c} Table 4.2
2.4 16 6 2 2 L2(4) (16, 3) {a2, ab, abc, a2b, a3b, a3c} Table 4.2
3.1 16 6 2 2 L2(4) (16, 4) {ab2, a2, a3b, a3b2, a3b3, b2} Table 4.2
4.1 16 6 2 2 L2(4) (16, 6) {a3, a5, ab, a5b, b3, b5} Table 4.2
5.1 16 6 2 2 L2(4) (16, 8) {ab3, a2b, a2b3, a3b, a3b2, a5b2} Table 4.2
6.1 16 6 2 2 L2(4) (16, 10) {a2, ac, a2bc, a2c, a3c, b} Prop. 3.2.47 [Ma84], 3.4 (1)
7.1 16 6 2 2 L2(4) (16, 11) {a2b, a3b, a2c, abc, a2bc, c} Table 4.2
7.2 16 6 2 2 L2(4) (16, 11) {a2, abc, a2b, a2c, a3bc, bc} Table 4.2
7.3 16 6 2 2 L2(4) (16, 11) {a2, ab, ac, a2c, a3c, a3bc} Table 4.2
8.1 16 6 2 2 L2(4) (16, 14) {abcd, ac, acd, ad, bd, c} Prop. 3.2.47 [Ma84], 3.4 (1)
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No. v k λ µ srg GAP partial difference set reference reference
to literature

5.2.1.1 16 6 2 2 Shrikhande (16, 2) {a, a3, ab3, a3b, b, b3} Prop. 3.2.42 [Ma84], 3.4 (2)
2.1 16 6 2 2 Shrikhande (16, 6) {a, a7, a3b, a3b5, b, b7} Table 4.3
2.2 16 6 2 2 Shrikhande (16, 6) {a, a2, a6, a7, b3, b5} Table 4.3 [Ma94], 5.10.2
3.1 16 6 2 2 Shrikhande (16, 8) {a, a7, a3b, a5b, b, b3} Table 4.3 [Ma94], 5.10.1
3.2 16 6 2 2 Shrikhande (16, 8) {a, a2, a6, a7, a5b, a7b} Table 4.3
4.1 16 6 2 2 Shrikhande (16, 11) {a, a3, a2bc, a3b, a3bc, b} Table 4.3

6.1.1.1 17 8 3 4 Paley (17, 1) {a, a2, a4, a8, a9, a13, a15, a16} Prop. 3.2.6 [Ma84], 3.5

7.1.1.1 21 10 3 6 T (7) (21, 1) {a2, a3, a4, a5, a2b, a3b, a4b, a2b2, a5b2, a6b2} Prop. 3.2.15
8.1.1.1 25 8 3 2 L2(5) (25, 2) {a, a2, a3, a4, b, b2, b3, b4} Sec. 3.2.3 [Ma84], 3.4 (1)
9.1.1.1 25 12 5 6 L3(5) (25, 2) {a, a2, a3, a4, b, b2, b3, b4, ab, a2b2, a3b3, a4b4} Sec. 3.2.3 [Ma84], 3.4 (2)

10.1.1.1 27 10 1 5 Schläfli (27, 3) {a, a2, b, b2, aba, ab2a, a2b2a2, a2ba2, ab2a2b, a2b2ab} Table 4.7 cf.[Ma94], 14.1
2.1 27 10 1 5 Schläfli (27, 4) {a, a3, a6, a8, ab, ab2, a2b2, a3b, a5b, b2a6} Table 4.7 cf.[Ma94], 14.1

11.1.1.1 29 14 6 7 Paley (29, 1) {a, a4, a5, a6, a7, a9, a13, a16, a20, a22, a23, a24, a25, a28} Prop. 3.2.6 [Ma84], 3.5
12.1.1.1 36 10 4 2 L2(6) (36, 6) {a2b2, ab, c3, a2bc3, ab2c3, a2b, ab2, c, a2b2c, abc} Table 4.4

2.1 36 10 4 2 L2(6) (36, 9) {b, b2, c3, ac3, a2c3, a, a2, c, bc, b2c} Table 4.4
3.1 36 10 4 2 L2(6) (36, 10) {a, a2, d, ad, a2d, b, b2, cd, b2cd, bcd} Table 4.4
3.2 36 10 4 2 L2(6) (36, 10) {a, a2, b2d, ab2d, a2b2d, a2b, ab2, b2cd, abcd, a2cd} Table 4.4
3.3 36 10 4 2 L2(6) (36, 10) {a, a2, c, a2c, ac, b, b2, cd, b2cd, bcd} Table 4.4
3.4 36 10 4 2 L2(6) (36, 10) {a, a2, c, a2c, ac, b, b2, d, b2d, bd} Prop. 3.2.47 [Ma84], 3.4 (1)
3.5 36 10 4 2 L2(6) (36, 10) {a, a2, c, a2c, ac, a2b, ab2, cd, ab2cd, a2bcd} Table 4.4
3.6 36 10 4 2 L2(6) (36, 10) {a, a2, bd, abd, a2bd, b, b2, c, bc, b2c} Table 4.4
4.1 36 10 4 2 L2(6) (36, 12) {d, ab2, ab2d, a2b, a2bd, b, b2, c, bc, b2c} Table 4.4
4.2 36 10 4 2 L2(6) (36, 12) {d, a2b, a2bd, ab2, ab2d, a, a2, c, ac, a2c} Table 4.4
4.3 36 10 4 2 L2(6) (36, 12) {d, b, bd, b2, b2d, a, a2, c, a2c, ac} Prop. 3.2.47 [Ma84], 3.4 (1)
4.4 36 10 4 2 L2(6) (36, 12) {a, a2, c, a2c, ac, b, b2, cd, bcd, b2cd} Table 4.4
4.5 36 10 4 2 L2(6) (36, 12) {d, a, ad, a2, a2d, b, b2, c, bc, b2c} Table 4.4
5.1 36 10 4 2 L2(6) (36, 13) {d, a, ad, a2, a2d, b, b2, c, b2c, bc} Table 4.4
5.2 36 10 4 2 L2(6) (36, 13) {a, a2, c, a2c, ac, b, b2, cd, b2cd, bcd} Table 4.4
6.1 36 10 4 2 L2(6) (36, 14) {c, a, ac, a2, a2c, d, b, bd, b2, b2d} Prop. 3.2.47 [Ma84], 3.4 (1)
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No. v k λ µ srg GAP partial difference set reference reference to
literature

13.1.1.1 36 14 4 6 |aut| = 144 (36, 6) {c, a2bc2, a2b2c3, ab2c2, abc2, abc3, a, ab2c, ac2, a2, a2b2c2, a2c2, a2bc, c3} Table 4.8
1.2 36 14 4 6 |aut| = 144 (36, 6) {c, ab2c2, abc3, a2bc2, a2b2c3, abc2, b, ab2c, bc2, b2, a2b2c2, b2c2, a2bc, c3} Table 4.8
2.1 36 14 4 6 |aut| = 144 (36, 13) {d, c, cd, a2b2c, a2b2cd, ac, a, bd, bc, a2, ab2c, a2bc, b2d, abcd} Table 4.8
2.2 36 14 4 6 |aut| = 144 (36, 13) {c, abd, a2b2cd, a2b2d, abcd, bd, a, b2c, ad, a2, b2d, a2d, bc, cd} Table 4.8
3.1 36 14 4 6 |aut| = 144 (36, 14) {c, abcd, abd, a2b2cd, a2b2d, bcd, a, bc, acd, a2, b2cd, a2cd, b2c, d} Table 4.8 [Ma94], 12.8

13.2.1.1 36 14 4 6 |aut| = 432 (36, 9) {ac3, a2bc, a2bc2, ac, c2, b2c2, bc3, a, bc2, a2b2c2, a2b2c3, a2, a2c2, b2c} Table 4.8
1.2 36 14 4 6 |aut| = 432 (36, 9) {c, c2, c3, a2bc3, abc2, a2bc2, abc, b, bc2, a2c2, a2b2c, b2, ac2, ab2c3} Table 4.8
2.1 36 14 4 6 |aut| = 432 (36, 10) {a2cd, c, a2d, ac, ad, ab2d, ab2cd, ab2, abd, a2bd, bcd, a2b, a2b2d, a2c} Table 4.8
2.2 36 14 4 6 |aut| = 432 (36, 10) {d, a2c, a2cd, c, cd, a2b2cd, b2d, a2b, abcd, bcd, bd, ab2, ab2cd, ac} Table 4.8
2.3 36 14 4 6 |aut| = 432 (36, 10) {c, a2d, acd, ad, a2cd, ab2cd, bc, a2b, bcd, a2bcd, b2c, ab2, b2cd, d} Table 4.8
2.4 36 14 4 6 |aut| = 432 (36, 10) {b2cd, d, a2bc, a2d, bc, b2c, a2bcd, ab2, c, a2c, acd, a2b, a2b2c, ad} Table 4.8
3.1 36 14 4 6 |aut| = 432 (36, 12) {d, a2c, a2cd, c, cd, bcd, abd, ab2, b2cd, a2b2cd, a2b2d, a2b, a2bcd, ac} Table 4.8
3.2 36 14 4 6 |aut| = 432 (36, 12) {d, b2cd, b2c, bc, bcd, a2bcd, abd, a2b, abcd, ab2cd, a2b2d, ab2, a2b2cd, c} Table 4.8
3.3 36 14 4 6 |aut| = 432 (36, 12) {c, a2cd, a2d, a2b2cd, a2b2d, ad, ac, a2b2, bd, b2d, a2c, ab, abd, a2bcd} Table 4.8

13.3.1.1 36 14 4 6 |aut| = 216 (36, 9) {c2, c, c3, a2b2c2, a2b2, ac3, bc2, bc, ac2, ab, ab2c2, a2bc2, b2c, a2c3} Table 4.8
2.1 36 14 4 6 |aut| = 216 (36, 10) {d, c, cd, a2bd, a2b, abcd, abd, bc, bd, ab2, a2d, ad, b2c, a2b2cd} Table 4.8
2.2 36 14 4 6 |aut| = 216 (36, 10) {cd, d, c, a2bcd, a2b, b2c, b2cd, ad, acd, ab2, abcd, a2b2cd, a2d, bc} Table 4.8

14.1.1.1 36 15 6 6 L3(S3) (36, 9) {c, bc, a, a2, b2c, ac2, c3, a2bc2, a2c3, ab, b, a2b2, b2, b2c2, ac3} Table 4.5
1.2 36 15 6 6 L3(S3) (36, 9) {b2c3, bc3, a, a2, c3, c2, c, abc2, ac, ab, b, a2b2, b2, a2b2c2, a2c} Table 4.5
2.1 36 15 6 6 L3(S3) (36, 10) {c, a2c, a, a2, ac, acd, d, a2bcd, bd, ab, b, a2b2, b2, b2cd, b2d} Prop. 3.2.42 [Ma84], 3.4 (2)
2.2 36 15 6 6 L3(S3) (36, 10) {ad, a2d, a, a2, d, c, cd, bc, ab2cd, b, a2b, b2, ab2, b2c, a2bcd} Table 4.5
3.1 36 15 6 6 L3(S3) (36, 12) {d, a2bd, ab2, a2b, ab2d, c, ab2cd, a2c, abcd, a, b, a2, b2, ac, acd} Table 4.5

14.2.1.1 36 15 6 6 L3(Z6) (36, 6) {a2c2, a, c2, a2, ac2, ac3, a2c, a2b, ab, b2c3, b2c, ab2, a2b2, a2bc3, abc} Table 4.5
1.2 36 15 6 6 L3(Z6) (36, 6) {b2c2, b, c2, b2, bc2, a2b2c, a2bc3, ab2, ab, c, c3, a2b, a2b2, abc, ab2c3} Table 4.5
2.1 36 15 6 6 L3(Z6) (36, 11) {a, a2bd, c, ac, a2bcd, a2, ab2d, abc, a2b2d, d, cd, a2d, ab2c, abcd, a2b2c} Table 4.5
3.1 36 15 6 6 L3(Z6) (36, 13) {a2d, a, d, a2, ad, c, a2cd, b, a2b, b2c, b2cd, b2, ab2, bc, abcd} Table 4.5
4.1 36 15 6 6 L3(Z6) (36, 14) {a2c, a, c, a2, ac, b2d, ab2cd, b, a2b, d, cd, b2, ab2, bd, a2bcd} Prop. 3.2.42 [Ma84], 3.4 (2)

14.3.1.1 36 15 6 6 L3(6)o.Qg (36, 9) {a, a2, ab2c2, b2c2, a2b2c2, a2b2, a2b, ab, ab2, c, abc3, ab2c, a2bc, a2b2c3, c3} Table 4.5
2.1 36 15 6 6 L3(6)o.Qg (36, 10) {ab, a2b2, b2cd, a2bcd, acd, a, b, a2, b2, d, bc, ad, b2c, a2d, c} Table 4.5

15.1.1.1 37 18 8 9 Paley (37, 1) {a, a3, a4, a7, a9, a10, a11, a12, a16, a21, a25, a26, a27, a28, a30, a33, a34, a36} Prop. 3.2.6 [Ma84], 3.5
16.1.1.1 41 20 9 10 Paley (41, 1) {a, a2, a4, a5, a8, a9, a10, a16, a18, a20, a21, a23, a25, a31, a32, a33, a36, a37, a39, a40} Prop. 3.2.6 [Ma84], 3.5
17.1.1.1 49 12 5 2 L2(7) (49, 2) {a, a2, a3, a4, a5, a6, b, b2, b3, b4, b5, b6} Exa. 3.2.24 [Ma84], 3.4(1)
18.1.1.1 49 18 7 6 L3(7) (49, 2) {a, a2, a3, a4, a5, a6, b, b2, b3, b4, b5, b6, ab, a2b2, a3b3, a4b4, a5b5, a6b6} Exa. 3.2.24 [Ma84], 3.4(2)
19.1.1.1 49 24 11 12 Paley (49, 2) {a, a2, a3, a4, a5, a6, b, b2, b3, b4, b5, b6, ab, a2b2, a3b3, a4b4, a5b5, a6b6, ab2, a2b4,

a3b6, a4b, a5b3, a6b5} Exa. 3.2.24 [Ma84], 3.5
19.2.1.1 49 24 11 12 L4(7) (49, 2) {a, a2, a3, a4, a5, a6, b, b2, b3, b4, b5, b6, ab, a2b2, a3b3, a4b4, a5b5, a6b6, ab3, a2b6,

a3b2, a4b5, a5b, a6b4} Exa. 3.2.24 [Ma84], 3.4(3)
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Appendix E

Strongly regular graphs with primitive
automorphism group

On the following pages we list the 95 strongly regular graphs with primitive automorphism group and v vertices, where
49 < v ≤ 255 (see Table 4.9). All graphs except those with 121 and 169 vertices are from the catalogue from C. Pech. In
the table we give (1) the parameters of the strongly regular graphs, (2) if known, the name of the strongly regular graph,
(3) the number of partial difference sets for this graph (#pds), (4) how we get the partial difference sets (by a theoretical
approach or by GAP) and (5) where one can find the partial difference sets in Appendix G. Moreover, from the catalogue
of C. Pech we took the names of the primitive groups and we computed their order. The groups are named like in [The97].
The names reflect the cohort structure which is given in [DixM88]. A group ”G#n.i” in the table is the ith representation
of a permutation group of degree n with socle G in the GAP library. A group G : H is the semidirect product with normal
subgroup H and factor group G. The group G ◦ H is the central product of matrix groups G and H. The group ”G on
i-sets.j” is the jth group of degree n with socle G in the GAP library of primitive groups which acts on the i-subsets of
{1, . . . , n}. Analogously, the group ”G on 1-sets2.j” is the jth group of degree n with socle G in the GAP library which
acts on the elements of {1, . . . , n}2. Cyclic groups of order n are simply named by n. The extension of a group G by a
group H is denoted by G.H. For the groups in the lines 7, 8 and 22 we did not find a description in [The97], we only
get the information that the names are ”ad-hoc names” which are not necessarily natural for group theorists (A. Hulpke,
private communication). For some groups the GAP library of primitive groups specifies no name.

Most of the groups are primitive representations of classical groups. For information about the groups we refer to the Atlas
of finite groups [CCNPW85] and the Atlas of finite group representations [BLNPRSTWW01].
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No. parameters primitive group order graph #pds how No. in
App. G

1 50,7,0,1 PSU(3, 52) : 2 252000 Hoffman-Singleton - GAP.
2 55,18,9,4 A11 on 2-sets.2 28345271111 T (11) 1 theo. 20.1
3 56,10,0,2 PSL(3,4)#56.5 80640 Sims-Gewirtz - GAP
4 63,30,13,15 PSU(3,3)#63.2 12096 - GAP
5 63,30,13,15 PSp(6,2) on projective points.1 29345171 - GAP
6 64,14,6,2 A8 on 1-sets2.4 215345272 L2(8) ≥ 1 theo
7 64,18,2,6 3.A6.2 max GL(3, 4).2 138240 58 GAP 22.1
8 64,21,8,6 PSL(2, 7) : 2 max PSU(3, 3) : 2 max Sp(6, 2) 21504 pseudo L3(8) 36 GAP 23.1
9 64,21,8,6 26 : SL(3, 2) ◦ SL(2, 2) 64512 L3((Z2)3) 58 GAP 23.2
10 64,27,10,12 26 : O−1(6, 2) 2133451 ≥ 1
11 64,28,12,12 26 : O+1(6, 2) 213325171 pseudo L4(8) ≥ 1
12 66,20,10,4 A12 on 2-sets.2 210355271111 T (12) - theo
13 77,16,0,4 M22#77.2 887040 - theo
14 78,22,11,4 A13 on 2-sets.2 210355271111131 T (13) - theo
15 81,16,7,2 A9 on 1-sets2.4 215385272 L2(9) 12 GAP 26.1
16 81,20,1,6 233280 4 GAP 27.1
17 81,24,9,6 93312 pseudo L3(9) 9 GAP 28.1
18 81,30,9,12 116640 7 GAP 29.1
19 81,32,13,12 5184 L4(9) 1 GAP 30.1
20 81,32,13,12 186624 L4(9) 6 GAP 30.2
21 81,40,19,20 12960 Paley 1 theo 31.1
22 81,40,19,20 34 : NΓ(SL2(5))3 38880 L5(9) 3 GAP 31.2
23 85,20,3,5 PSp(4, 4) on projective points.2 283252171 - theo
24 91,24,12,4 A14 on 2-sets.2 211355272111131 T (14) - theo
25 100,18,8,2 A10 on 1-sets2.4 217385472 L2(10) 18 GAP 32.1
26 100,22,0,6 HS#100.2 210325371111 Higman-Sims 4 GAP 33.1
27 100,36,14,12 J2#100.2 28325271 Hall-Janko-Wales 2 GAP 34.1
28 105,26,13,4 A15 on 2-sets.2 211365372111131 T (15) - theo
29 105,32,4,12 PSL(3, 4)#105.6 241920 - GAP
30 112,30,2,10 PSU(4, 3)#112.8 210365171 - GAP
31 117,36,15,9 PSL(4, 3)#117.2 283651131 - GAP
32 119,54,21,27 O−1(8, 2)#119.2 213345171171 - theo
33 120,28,14,4 A16 on 2-sets.2 215365372111131 T (16) - theo
34 120,42,8,18 PSL(3, 4)#120.5 80640 - GAP
35 120,51,18,24 PSp(4, 4)#120.2 293252171 1 GAP 35.1
36 120,56,28,24 A7#120.1 5040 2 GAP 36.1
37 120,56,28,24 O+1(8, 2)#120.2 213355271 ≥ 1 GAP 36.2
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No. parameters primitive group order graph #pds how No. in
App. G

38 120,56,28,24 A10 on 3-sets.2 28345271 - GAP
39 121,20,9,2 L2(11) 1 theo 37.1
40 121,30,11,6 L3(11) 1 theo 38.1
41 121,40,15,12 L4(11) 1 theo 39.1
42 121,40,15,12 L4(11) 1 theo 39.2
43 121,50,21,20 L5(11) 1 theo 40.2
44 121,60,29,30 L6(11) 1 theo 41.1
45 121,60,29,30 L6(11) 1 theo 41.3
46 121,60,29,30 Paley 1 theo 41.4
47 125,62,30,31 3000 1 GAP 42.1
48 125,62,30,31 15000 3 GAP 42.2
49 125,62,30,31 15000 3 GAP 42.3
50 125,62,30,31 23250 Paley 1 theo 42.4
51 126,25,8,4 A10#126.2 28345271 - GAP
52 126,45,12,18 PSU(4, 3)#126.5 29365171 - GAP
53 130,48,20,16 PSL(4, 3)#130.5 293651131 - GAP
54 135,64,28,32 O+1(8, 2)#135.2 213355271 - GAP
55 136,30,15,4 A17 on 2-sets.2 215365372111131171 T (17) - theo
56 136,60,24,28 PSp(4, 4)#136.2 293252171 - GAP
57 136,63,30,28 PSL(2, 17)#136.1 2448 - GAP
58 136,63,30,28 O−1(8, 2)#136.2 213345171171 - GAP
59 144,22,10,2 A12 on 1-sets2.4 2213105472112 L2(12) ≥ 1 theo 43.1
60 144,39,6,12 PSL(3, 3)#144.2 11232 1 GAP 44.1
61 144,55,22,20 M12#144n.1 190080 pseudo L5(12) - GAP
62 144,66,30,30 M12#144.2 190080 pseudo L6(12) 1 GAP 45.1
63 144,66,30,30 M12#144n.1 190080 pseudo L6(12) - GAP
64 153,32,16,4 A18 on 2-sets.2 216385372111131171 T (18) - theo
65 155,42,17,9 PSL(5, 2)#155.1 210325171311 1 GAP 46.1
66 156,30,4,6 PSp(4, 5) on projective points.2 273254131 - GAP
67 156,30,4,6 PSp(4, 5)#156.2 273254131 - GAP
68 162,56,10,24 PSU(4, 3)#162.5 29365171 6 GAP 47.1
69 165,36,3,9 PSU(5, 2) on isotropic projective points.2 2113551111 - GAP
70 169,24,11,2 L2(13) 1 theo 48.1
71 169,36,13,6 L3(13) 1 theo 49.1
72 169,48,17,12 L4(13) 1 theo 50.1
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No. parameters primitive group order graph #pds how No. in
App. G

73 169,48,17,12 L4(13) 1 theo 50.2
74 169,48,17,12 L4(13) 1 theo 50.3
75 169,60,23,20 L5(13) 1 theo 51.3
76 169,72,31,30 L6(13) 1 theo 52.1
77 169,72,31,30 L6(13) 1 theo 52.2
78 169,72,31,30 L6(13) 1 theo 52.4
79 169,84,41,42 Paley 1 theo 53.3
80 171,34,17,4 A19 on 2-sets.2 216385372111131171191 T (19) 1 theo 54.1
81 175,72,20,36 PSU(3, 5)#175.2 252000 - GAP
82 176,40,12,8 PSU(5, 2) on non-isotropic projective points.2 2113551111 - GAP
83 176,70,18,34 M22#176.1 443520 - GAP
84 190,36,18,4 A20 on 2-sets.2 218385472111131171191 T (20) - theo
85 196,26,12,2 A14 on 1-sets2.4 2243105474112132 L2(14) ≥ 1 theo 55.1
86 208,75,30,25 PSU(3, 4) on non-isotropic projective points.3 249600 - GAP
87 210,38,19,4 A21 on 2-sets.2 218395473111131171191 T (21) - GAP
88 225,28,13,2 A15 on 1-sets2.4 2243125674112132 L2(15) ≥ 1 theo 56.1
89 231,30,9,3 M22#231.2 887040 - GAP
90 231,40,20,4 A22 on 2-sets.2 219395473112131171191 T (22) - theo
91 243,22,1,2 253751111 Berlekamp- 4 GAP 57.1

van Lint-Seidel
92 243,110,37,60 253751111 8 GAP 58.1
93 253,42,21,4 A23 on 2-sets.2 219395473112131171191231 T (23) 1 theo 59.1
94 253,112,36,60 M23#253a.1 27325171111231 1 GAP 60.1
95 255,126,61,63 PSp(8, 2) on projective points.1 216355271171 - theo

164



Appendix F

Table of groups for primitive cases

The groups are described by generators. In general, the generating set is not minimal. The first column gives the
GAP identification number of the group in the small group library of GAP [GAP99]. The last column gives a standard
representative. However, we were not able to give a representative for the groups in all cases.

GAP abstract description of generators representative
(55, 1) a5 = b11 = 1, ab = b3a Z11 o Z5

(64, 9) a4 = b4 = c4 = 1, ba = abc, ca = ab2c, cb = bc3

(64, 18) a4 = b4 = c4 = 1, ba = abc, ca = ac, cb = bc
(64, 23) a4 = b4 = c2 = d2 = 1, ba = abc, ca = acd, da = ad, cb = bc, db = bd, dc = cd
(64, 32) a4 = b2 = c2 = d2 = e2 = 1, ba = abc, ca = acd, da = ade, ea = ae; b, c, d, e commute Z4 o Z2

(64, 33) a4 = b4 = c2 = d2 = 1, ba = abc, ca = acd, da = ab2d, cb = bc, db = bd, dc = cd
(64, 34) a4 = b4 = c2 = d2 = 1, ba = abd, ca = acb, da = ab2d, bc = cb3, db = bd, dc = cd
(64, 35) a4 = b4 = c4 = d2 = 1, ba = abc, ca = acd, da = ab2d, b2 = c2, bc = cb3, db = bd, dc = cd
(64, 56) a4 = b4 = c2 = d2 = 1, ba = abd, ca = ac, da = ad, bc = cb, db = bd, dc = cd
(64, 60) a4 = b4 = c2 = d2 = e2 = 1, ba = abd, ca = ace, da = ad, ea = ae; b, c, d, e commute
(64, 62) a4 = b4 = c2 = d2 = 1, ba = abd, ca = ab2c, da = ad, cb = bc, db = bd, dc = cd
(64, 67) a4 = b4 = c2 = d2 = 1, ba3 = ab3, ca = acd, da = ad, cb = bc, db = bd, dc = cd
(64, 74) a4 = b4 = c2 = d2 = e2 = 1, ba = ab3, ca = acd, da = ad, ea = ae, cb = bce, db = bd, eb = be; c, d, e commute
(64, 88) a8 = b2 = c2 = d2 = 1, ba = abd, ca = a5c, da = ad, cb = bc, db = bd, dc = cd
(64, 90) a4 = b2 = c2 = d2 = e2 = 1, ba = abd, ca = ac, da = ade, ea = ae; b, c, d, e commute
(64, 92) a8 = b2 = c2 = d2 = 1, ba = abd, ca = ac, da = a5d, cb = bc, db = bd, dc = cd
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GAP abstract description of generators representative
(64, 102) a8 = b4 = c2 = d2 = 1, ba = a5b, ca = ac, da = adb, cb = bc, db = a4bd, dc = a4cd
(64, 136) a4 = b4 = c2 = d2 = e2 = 1, ba = ab3, ca = ace, da = adb, ea = ae, cb = a2bc, bd = a2db, eb = be, dc = cd,

ce = ec, ed = a2de
(64, 138) a2 = b2 = c2 = d2 = e2 = f2 = 1, ba = abd, ca = ace, cb = bc, db = bd, eb = bef, fb = bf, dc = cdf,

ec = ce, fc = cf ; a, d, e, f commute Z2 o (Z2 × Z2)
(64, 139) a4 = b2 = c2 = d2 = e2 = 1, ba = abd, ca = ace, cb = bc, db = bd, eb = a2be, dc = a2cd, ec = ce; a, d, e commute
(64, 193) a4 = b2 = c2 = d2 = e2 = 1, ba = abe, ca = ac, da = ad, ea = ae; b, c, d, e commute Z2 × Z2 × (16, 3)
(64, 199) a4 = b2 = c2 = d2 = e2 = 1, ba = abe, ca = ac, da = ade, ea = ae, cb = bce, db = bd, eb = be; c, d, e commute
(64, 202) a2 = b2 = c2 = d2 = e2 = f2 = 1, ba = abe, ca = acf, da = ad, ea = ae, fa = af ; b, c, d, e, f commute Z2 × ((Z2 × Z2) o Z2)
(64, 206) a4 = b2 = c2 = d2 = e2 = 1, ab = ba, ac = ca, bd = a2db, cb = bc, eb = be, cd = dce, ec = ce; a, d, e commute
(64, 215) a2 = b2 = c2 = d2 = e2 = f2 = 1, ba = abe, ca = acf, da = ade, ea = ae, fa = af, cb = bce, db = bd, eb = be,

fb = bf ; c, d, e, f commute
(64, 219) a4 = b2 = c2 = d2 = e2 = 1, ba = abe, ca = ace, da = ad, ea = ae, cb = a2bc, db = bde, eb = be; c, d, e commute
(64, 224) a4 = b4 = c2 = d2 = e2 = 1, ba = ab3, ca = ace, da = ade, ea = ae, bc = cbe, bd = db, be = eb; c, d, e commute
(64, 226) a4 = b4 = c2 = d2 = 1, ac = ca3, bd = db3, ab = ba, ad = da, bc = cb, cd = dc D4 ×D4

(64, 227) a4 = b2 = c2 = d2 = e2 = 1, ba = a3b, ca = ace, da = ad, ea = ae, cb = bc, db = a2bd, eb = be; c, d, e commute
(64, 232) a4 = b4 = c2 = d2 = 1, ba = a3b, ca = ab2c, da = ad, cb = bc, db = a2bd, cd = dc
(64, 241) a2 = b2 = c2 = d2 = e2 = f2 = 1, ba = abe, ca = acf, da = adef, ea = ae, fa = af, cb = bcef, db = bde, eb = be,

fb = bf ; c, d, e, f commute
(64, 242) a4 = b4 = c2 = d2 = e2 = 1, ba = a3b, ca = ace, da = a3de, ea = ae, cb = a2bce, db = a2bd, eb = be; c, d, e commute
(64, 264) a2 = b2 = c2 = d2 = e2 = f2 = 1, ba = abf, ca = ac, da = adf, ea = ae, fa = af, cb = bcf, db = bd, eb = be, fb = bf ;

c, d, e, f commute
(64, 267) a2 = b2 = c2 = d2 = e2 = f2 = 1; abelian (Z2)6

(81, 2) a9 = b9 = 1, abelian Z9 × Z9

(81, 3) a9 = b3 = c3 = 1, ba = abc, ca = ac, cb = bc
(81, 4) a9 = b9 = 1, ba = ab4

(81, 7) a3 = b3 = c3 = d3 = 1, ab = bac2, ac = cad2, ad = da, bc = cb, bd = db, cd = dc Z3 o Z3

(81, 8) a3 = b9 = c3 = 1, ab = bac2, ac = cab6, bc = cb
(81, 9) a3 = b9 = c3 = 1, ab = bac2, ac = cab3, bc = cb
(81, 11) a9 = b3 = c3 = 1, abelian Z3 × Z3 × Z9

(81, 12) a3 = b3 = c3 = 1, bab = (aba)2, ac = ca, bc = cb Z3 × (27, 3)
(81, 13) a9 = b3 = c3 = 1, ba = a4b, ac = ca, bc = cb Z3 × (27, 4)
(81, 15) a3 = b3 = c3 = d3 = 1, abelian (Z3)4

(100, 6) a4 = b5 = c5 = 1, ba = ab, ca = ac4, bc = cb
(100, 9) a4 = b5 = c5 = 1, ba = ab, ca = ac2, bc = cb Z5 × (Z5 o Z4)
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(100, 10) a4 = b5 = c5 = 1, ba = ab4, ca = ac3, bc = cb
(100, 11) a4 = b5 = c5 = 1, ba = ab2, ca = ac2, bc = cb
(100, 12) a4 = b5 = c5 = 1, ba = ab3, ca = ac2, bc = cb
(100, 13) a2 = b2 = c5 = d5 = 1, ba = ab, ca = ac, da = ad4, cb = bc4, db = bd, dc = cd D5 ×D5

(100, 14) a2 = b2 = c5 = d5 = 1, ba = ab, ca = ac, da = ad4, cb = bc, db = bd, dc = cd Z10 ×D5

(100, 15) a2 = b2 = c5 = d5 = 1, ba = ab, ca = ac4, da = ad4, cb = bc, db = bd, dc = cd
(100, 16) a2 = b2 = c5 = d5 = 1, abelian (Z2)2 × (Z5)2

(120, 34) a5 = b2 = 1, ab = (ba4)3 S5

(121, 2) a11 = b11 = 1, abelian Z11 × Z11

(125, 3) a5 = b5 = c5 = 1, ba = abc, ca = ac, bc = cb
(125, 5) a5 = b5 = c5 = 1, abelian (Z5)3

(144, 182) a8 = b2 = c3 = d3 = 1, ab = ba3, ca = ad, da = acd2, cb = bcd2, db = bd2, cd = dc
(155, 1) a5 = b31 = 1, ab = b2a Z31 o Z5

(162, 11) a2 = b3 = c3 = d3 = e3 = 1, ba = ab, ca = ac2, da = ad2, ea = ae2, cb = bcd, db = bde, eb = be, dc = cd, ec = ce, de = de
(162, 19) a2 = b3 = c3 = d3 = e3 = 1, ba = ab2, ca = ac2, da = ade2, ea = ae2, cb = bcd, db = bde, eb = be, dc = cd, ec = ce, de = de
(162, 20) a2 = b3 = c9 = d3 = 1, ba = ab2, ca = ac8, da = adc6, cb = bcd, db = bdc3, dc = cd
(162, 36) a2 = b3 = c3 = d9 = 1, ba = ab, ca = ac, da = ad8, cb = bc, db = bd7, dc = cd
(162, 52) a2 = b3 = c3 = d3 = e3 = 1, ba = ab, ca = ac, da = ad2, ea = ae2, cb = bc, db = bd, eb = be, dc = cd, ec = ce, de = ed
(162, 54) a2 = b3 = c3 = d3 = e3 = 1, ba = ab2, ca = ac2, da = ad2, ea = ae2, cb = bc, db = bd, eb = be, dc = cd, ec = ce, de = ed
(169, 2) a13 = b13 = 1, abelian Z13 × Z13

(171, 3) a9 = b19 = 1, ab = b5a Z19 o Z9

(243, 6) a3 = b9 = c3 = d3 = 1, ba = abc, ca = acb6, da = ad, cb = bcd, db = bd, cd = dc
(243, 38) a9 = b3 = c3 = d3 = 1, ba = a4b, ca = acd, da = ad, cb = bc, db = bd, cd = dc
(243, 51) a3 = b3 = c3 = d3 = e3 = 1, ab = bac2, ac = cad2, ad = da, ae = ea, bc = cb, bd = db, be = eb, cd = dc, ce = ec, de = ed Z3 × (Z3 o Z3)
(243, 56) a3 = b3 = c3 = d3 = e3 = 1, ba = abd, ca = ac, da = ade, ae = ea, cb = bce, bd = db, be = eb, cd = dc, ce = ec, de = ed
(243, 57) a9 = b3 = c3 = d3 = 1, ab = bad, ca = a4c, da = ad, cb = bc, db = a3bd, cd = dc
(243, 59) a9 = b9 = c3 = d3 = 1, a6 = b3, ba = abd, ca = ac, da = a4d, cb = a3bc, db = bd, cd = dc
(243, 66) a9 = b3 = c3 = d3 = 1, ba = a4b, ca = ac, da = a4d, cb = a3bc, db = bd, cd = dc
(243, 67) a3 = b3 = c3 = d3 = e3 = 1; abelian (Z3)5

(253, 1) a11 = b23 = 1, ab = b12a Z23 o Z11
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Appendix G

Partial difference sets for strongly regular graphs
up to 255 vertices with primitive automorphism
group

On the following pages we give all partial difference sets (up to CI-equivalence) we determined for the strongly regular
graphs listed in Appendix E. The table is organized like the table in Appendix D. The groups, given by the GAP
identification number of the small group library in GAP [GAP99], are described in Appendix F. In the column srg we
give the names of the graphs. In cases where we do not know a name we give the number of the graph in the table of
Appendix E.

In the last column we give references for the partial difference sets we found in the survey in [Ma94] or in other sources.
However, in some case we were not able to recognize if our partial difference sets coincide with those listed in the table in
[Ma94], (especially regarding the elementary abelian groups (64,267), (81,15), (125,5), (243,67)).

Notice that the determination of partial difference sets in groups of order 121 and 169 is complete. For these cases we also
present the partial difference sets where the associated strongly regular graph has an imprimitive automorphism group and
add the comment ”not primitive”.

As mentioned in Section 4.2 in seven cases we were not successful. However, in all these cases there exist partial difference
sets. We add the parameters to this table, but do not give partial results (except No. 36.2.1.i, where all partial difference
sets are contained in the group S5).
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No. v k λ µ srg GAP partial difference set reference comment/
reference

20.1.1.1 55 18 9 4 T (11) (55, 1) {b, b10, a, ab3, ab4, ab10, a2, a2b4, a2b5, a2b10, a3, a3b8, a3b9, a3b10, a4, a4b2, a4b3, a4b10} Prop. 3.2.15
21.1.1.1 64 14 6 2 L2(6) no complete determination Sec. 4.2.4
22.1.1.1 64 18 2 6 7 (64, 9) {c, c3, bc, b2, b2c2, b3c, a, ab, abc3, ab2c3, a2c2, a2b2, a2b3, a2b3c2, a3, a3c, a3bc3, a3b3c2} Sec. 4.2.6

2.1 64 18 2 6 7 (64, 18) {b, bc, b3, b3c3, a, ac2, ac3, abc2, ab2c, ab3, a2b2, a2b2c2, a3, a3c, a3c2, a3bc3, a3b2c, a3b3c3} Sec. 4.2.6
3.1 64 18 2 6 7 (64, 23) {c, cd, b, b2, b2d, b3, a, ab2c, ab3d, ab3cd, a2, a2d, a2bcd, a2b3c, a3, a3bd, a3bc, a3b2cd} Sec. 4.2.6
3.2 64 18 2 6 7 (64, 23) {b, bd, bc, b3, b3d, b3c, a, acd, abcd, ab3, a2bc, a2b2, a2b2d, a2b3cd, a3, a3c, a3bcd, a3b3d} Sec. 4.2.6
3.3 64 18 2 6 7 (64, 23) {cd, b, bc, b2cd, b3, b3c, a, ab2d, ab3, ab3d, a2d, a2c, a2cd, a2b2, a3, a3bc, a3bcd, a3b2d} Sec. 4.2.6
3.4 64 18 2 6 7 (64, 23) {c, cd, bd, b2c, b2cd, b3d, a, ab2c, ab3, ab3c, a2c, a2cd, a2bc, a2b3cd, a3, a3b, a3bcd, a3b2cd} Sec. 4.2.6
3.5 64 18 2 6 7 (64, 23) {bd, b3d, a, ac, abc, ab3, a2c, a2cd, a2b, a2b2, a2b2d, a2b2c, a2b2cd, a2b3d, a3, a3cd, a3bcd, a3b3} Sec. 4.2.6
3.6 64 18 2 6 7 (64, 23) {b, b2, b2d, b2c, b2cd, b3, a, ac, abcd, ab3d, a2c, a2cd, a2bd, a2b3, a3, a3cd, a3bc, a3b3d} Sec. 4.2.6
4.1 64 18 2 6 7 (64, 32) {b, bd, bc, bcde, a, ae, ace, acd, ab, abde, a2d, a2de, a3, a3e, a3c, a3cd, a3bce, a3bcde} Sec. 4.2.6
4.2 64 18 2 6 7 (64, 32) {ce, cd, b, be, bce, bcde, a, ac, abd, abcd, a2, a2e, a2d, a2de, a3, a3cde, a3bde, a3bc} Sec. 4.2.6
4.3 64 18 2 6 7 (64, 32) {a, ae, ac, acd, abe, abd, a2d, a2de, a2b, a2bd, a2bce, a2bcd, a3, a3e, a3c, a3cde, a3bc, a3bcd} Sec. 4.2.6
4.4 64 18 2 6 7 (64, 32) {c, ce, b, be, bcd, bcde, a, ade, ab, abd, a2be, a2bde, a2bce, a2bcd, a3, a3d, a3bc, a3bcde} Sec. 4.2.6
4.5 64 18 2 6 7 (64, 32) {c, cd, b, bde, bcd, bcde, a, acde, abd, abce, a2bc, a2bce, a2bcd, a2bcde, a3, a3ce, a3be, a3bc}
5.1 64 18 2 6 7 (64, 33) {b, bd, bc, b3, b3d, b3c, a, ab2cd, ab3, ab3cd, a2d, a2bc, a2bcd, a2b2, a3, a3b2c, a3b3d, a3b3cd} Sec. 4.2.6
5.2 64 18 2 6 7 (64, 33) {cd, b, bc, b2cd, b3, b3c, a, ad, abd, ab3, a2b, a2bc, a2bcd, a2b3d, a3, a3b2d, a3b3c, a3b3cd} Sec. 4.2.6
5.3 64 18 2 6 7 (64, 33) {c, cd, bc, b2c, b2cd, b3c, acd, ab, abcd, ab2, a2d, a2bc, a2bcd, a2b2, a3c, a3bd, a3bcd, a3b2} Sec. 4.2.6
6.1 64 18 2 6 7 (64, 34) {bc, b2c, b2cd, b3cd, a, ab2, ab3, ab3d, ab3c, ab3cd, a2d, a2b2d, a3, a3c, a3b, a3b2, a3b2cd, a3b3d} Sec. 4.2.6
7.1 64 18 2 6 7 (64, 35) {b, bc2, a, ac3, abd, abc3d, a2, a2d, a2c, a2cd, a2c2, a2c2d, a2bcd, a2bc3, a3, a3c3d, a3bc, a3bc2d} Sec. 4.2.6
7.2 64 18 2 6 7 (64, 35) {d, c, c2d, c3, b, bc2, a, acd, abcd, abc2, a2c2, a2c2d, a2bc, a2bc3d, a3, a3c3, a3bd, a3bcd} Sec. 4.2.6
7.3 64 18 2 6 7 (64, 35) {bcd, bc3d, a, ac3d, abd, abc, a2c2, a2c2d, a2b, a2bd, a2bcd, a2bc2, a2bc2d, a2bc3, Sec. 4.2.6

a3, a3c, a3bc, a3bc2}
7.4 64 18 2 6 7 (64, 35) {a, ac2, ac3, ac3d, ab, abc2d, a2d, a2c2d, a2bc, a2bc2, a2bc2d, a2bc3d, a3, a3c, a3c2, Sec. 4.2.6

a3c3d, a3bc3, a3bc3d}
8.1 64 18 2 6 7 (64, 56) {d, b, bcd, b2d, b3, b3cd, a, ab2c, ab3, ab3c, a2d, a2c, a2cd, a2b2, a3, a3bd, a3bcd, a3b2c} Sec. 4.2.6
9.1 64 18 2 6 7 (64, 60) {d, de, cd, cde, b, bd, ae, ace, ab, abcd, a2, a2e, a2bce, a2bcd, a3e, a3c, a3bd, a3bce} Sec. 4.2.6
9.2 64 18 2 6 7 (64, 60) {b, bd, bce, bcd, a, ae, ade, acde, ab, abc, a2c, a2ce, a3, a3e, a3de, a3cd, a3bd, a3bcde} Sec. 4.2.6
9.3 64 18 2 6 7 (64, 60) {b, bd, a, acd, abe, abce, a2, a2e, a2d, a2de, a2c, a2ce, a2bc, a2bcde, a3, a3cde, a3bde, a3bcd} Sec. 4.2.6
9.4 64 18 2 6 7 (64, 60) {c, ce, b, be, bd, bde, a, acd, ab, abcde, a2be, a2bde, a2bce, a2bcd, a3, a3cde, a3bd, a3bc} Sec. 4.2.6

10.1 64 18 2 6 7 (64, 88) {d, b, bd, bcd, a, abc, a2bd, a2bc, a3bd, a3bcd, a4d, a4bc, a5c, a5b, a6bd, a6bc, a7, a7c} Sec. 4.2.6
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22.1.11.1 64 18 2 6 7 (64, 90) {d, de, b, bde, bc, bcd, ae, acde, ab, abcd, a2d, a2de, a2cd, a2cde, a3e, a3cd, a3bde, a3bc} Sec. 4.2.6
11.2 64 18 2 6 7 (64, 90) {d, cde, b, bde, bce, bcd, a, ae, ab, abc, a2de, a2c, a2ce, a2cde, a3, a3e, a3bde, a3bcde} Sec. 4.2.6
11.3 64 18 2 6 7 (64, 90) {c, ce, b, bde, bc, bcd, a, acd, abe, abcde, a2, a2e, a2d, a2de, a3, a3cde, a3bd, a3bce} Sec. 4.2.6
11.4 64 18 2 6 7 (64, 90) {d, de, a, ace, abd, abcd, a2e, a2d, a2c, a2cd, a2b, a2be, a2bcd, a2bcde, a3, a3ce, a3b, a3bc} Sec. 4.2.6
11.5 64 18 2 6 7 (64, 90) {d, de, b, bde, bc, bcd, a, acd, abe, abcde, a2bd, a2bde, a2bcd, a2bcde, a3, a3cde, a3bd, a3bce} Sec. 4.2.6
11.6 64 18 2 6 7 (64, 90) {c, ce, b, bde, bc, bcd, a, acd, abe, abcde, a2c, a2ce, a2cd, a2cde, a3, a3cde, a3bd, a3bce} Sec. 4.2.6
11.7 64 18 2 6 7 (64, 90) {cd, cde, b, be, bd, bde, a, ace, ab, abc, a2e, a2de, a2c, a2cde, a3, a3ce, a3bde, a3bcde} Sec. 4.2.6
12.1 64 18 2 6 7 (64, 92) {c, b, bd, a, ab, abcd, a2bc, a3bd, a4c, a4b, a4bd, a5cd, a6b, a6bd, a6bcd, a7, a7cd, a7bc} Sec. 4.2.6
13.1 64 18 2 6 7 (64, 102) {d, c, b2c, b3d, a, ad, abd, abcd, ab2d, ab3c, a2cd, a2b3cd, a3d, a3bd, a3bc, a3b2, a3b2cd, a3b3d} Sec. 4.2.6
14.1 64 18 2 6 7 (64, 136) {d, c, ce, cd, bc, bce, bcde, b2c, b2ce, b3d, ac, ab, abde, ab2de, ab2ce, ab2cd, ab3, ab3cde} Sec. 4.2.6
14.2 64 18 2 6 7 (64, 136) {d, c, ce, bd, b2cd, b3cde, a, ade, ac, abc, abce, abcd, ab2, ab2ce, ab2cde, ab3de, ab3c, ab3ce} Sec. 4.2.6
15.1 64 18 2 6 7 (64, 138) {ef, d, c, ce, b, bdf, bc, bcf, bcde, bcdef, a, ad, adf, ade, acf, acef, abef, abde} Sec. 4.2.6
15.2 64 18 2 6 7 (64, 138) {ef, d, cf, cef, bf, bd, a, ad, adf, ade, ac, ace, abe, abdef, abce, abcef, abcd, abcdf} Sec. 4.2.6
16.1 64 18 2 6 7 (64, 139) {e, d, b, bc, bcde, ad, ace, abe, abde, abce, a2e, a2d, a2c, a2ce, a2bd, a3d, a3c, a3bcd} Sec. 4.2.6
16.2 64 18 2 6 7 (64, 139) {ce, b, bd, bc, bcde, a, ae, ade, ab, abcd, a2c, a3, a3e, a3de, a3cd, a3cde, a3bd, a3bce} Sec. 4.2.6
17.1 64 18 2 6 7 (64, 193) {d, de, c, cd, b, be, a, ace, ab, abcde, a2c, a2cde, a2bd, a2bde, a3, a3ce, a3be, a3bcd} Sec. 4.2.6
18.1 64 18 2 6 7 (64, 199) {d, de, c, cd, b, be, a, ace, ab, abcde, a2c, a2cde, a2bd, a2bde, a3, a3ce, a3be, a3bcd} Sec. 4.2.6
20.1 64 18 2 6 7 (64, 202) {de, def, c, cf, cd, cdf, b, be, bc, bcef, af, aef, adf, ade, ab, abe, abcd, abcdef} Sec. 4.2.6
20.2 64 18 2 6 7 (64, 202) {d, def, cde, cdef, b, be, a, ae, ad, adf, ac, acf, abf, abef, abc, abcef, abcdf, abcde} Sec. 4.2.6
21.1 64 18 2 6 7 (64, 206) {d, de, c, ce, b, bc, ac, acd, abde, abce, a2cd, a2cde, a2b, a2bce, a3c, a3cde, a3bd, a3bce} Sec. 4.2.6
22.1 64 18 2 6 7 (64, 215) {d, de, b, bef, bd, bdf, bcf, bcef, bcd, bcde, a, af, acdf, acde, abde, abdef, abcdf, abcde} Sec. 4.2.6
23.1 64 18 2 6 7 (64, 219) {d, de, bd, bde, bc, bcd, ae, acd, abe, abc, a2b, a2be, a2bc, a2bcde, a3e, a3cde, a3b, a3bc} Sec. 4.2.6
24.1 64 18 2 6 7 (64, 224) {d, de, cd, cde, be, bce, b2c, b2ce, b3e, b3c, a, ad, ab, abcd, ab2, ab2de, ab3, ab3cde} Sec. 4.2.6
25.1 64 18 2 6 7 (64, 226) {d, c, cd, bc, b2cd, b3c, acd, abcd, ab2c, ab3d, a2c, a2bd, a2b2d, a2b3d, a3c, a3bcd, a3b2cd, a3b3d} Sec. 4.2.6
26.1 64 18 2 6 7 (64, 227) {de, c, ce, b, bc, bcd, acd, ab, abe, abcd, a2de, a2be, a2bc, a2bcd, a3cde, a3bc, a3bce, a3bcde} Sec. 4.2.6
27.1 64 18 2 6 7 (64, 232) {d, b, bd, bc, b3, b3c, a, ab2d, ab2cd, ab3c, a2d, a2c, a2b2c, a2b3d, a3, a3cd, a3bc, a3b2d} Sec. 4.2.6
27.2 64 18 2 6 7 (64, 232) {d, c, b2c, b3cd, a, ac, ab, abd, ab2d, ab3, a2d, a2bcd, a3, a3bc, a3b2d, a3b2c, a3b3d, a3b3c} Sec. 4.2.6
28.1 64 18 2 6 7 (64, 241) {b, bef, bd, bde, bcde, bcdef, a, af, adf, ade, acd, acde, abdf, abde, abc, abce, abcd, abcdf} Sec. 4.2.6
29.1 64 18 2 6 7 (64, 242) {d, ce, cd, be, b2de, b2c, b2cde, b3e, b3c, b3ce, a, ad, ade, ab, ab2, ab3, ab3cd, ab3cde} Sec. 4.2.6
30.1 64 18 2 6 7 (64, 264) {df, def, c, ce, cd, cde, be, bef, bdf, bde, a, aef, ac, acf, abd, abdef, abc, abcf} Sec. 4.2.6
31.1 64 18 2 6 7 (64, 267) {f, e, ef, de, cef, cdf, b, bd, bce, bcde, a, adef, ac, acdef, ab, abdf, abcf, abcd} Sec. 4.2.6

170



No. v k λ µ srg GAP partial difference set reference comment/
reference

23.1.1.1 64 21 8 6 8 (64, 23) {d, c, cd, b, bd, bc, b3, b3d, b3c, abc, ab2, ab2cd, ab3d, a2bcd, a2b2c, a2b2cd, a2b3c, a3bc, Sec. 4.2.6
a3b2, a3b2c, a3b3}

1.2 64 21 8 6 8 (64, 23) {d, b, bd, bcd, b2c, b2cd, b3, b3d, b3cd, abc, ab2d, ab2c, ab3d, a2c, a2cd, a2bc, a2b3cd, a3bc, a3b2d, Sec. 4.2.6
a3b2cd, a3b3}

2.1 64 21 8 6 8 (64, 35) {cd, c2, c3d, b, bc2, ac2d, ac3, ab, abc3d, a2, a2d, a2c, a2c2, a2c2d, a2c3d, a2b, a2bd, a3d, a3c3d, Sec. 4.2.6
a3bc2d, a3bc3d}

2.2 64 21 8 6 8 (64, 35) {cd, c2, c3d, b, bc2, ad, ac, ab, abc3d, a2c, a2c3d, a2bc, a2bcd, a2bc2, a2bc2d, a2bc3, a2bc3d, a3cd, Sec. 4.2.6
a3c2d, a3bc2d, a3bc3d}

3.1 64 21 8 6 8 (64, 60) {e, d, de, c, ce, bce, bcd, a, ae, ade, ac, abe, abce, a2b, a2bd, a3, a3e, a3de, a3ce, a3bde, a3bcd} Sec. 4.2.6
3.2 64 21 8 6 8 (64, 60) {e, c, ce, a, ae, ad, ace, abe, abcde, a2d, a2de, a2be, a2bde, a2bce, a2bcd, a3, a3e, a3d, a3c, Sec. 4.2.6

a3bde, a3bc}
3.3 64 21 8 6 8 (64, 60) {e, c, ce, b, be, bd, bde, bc, bcde, ad, ace, abe, abce, a2, a2e, a2be, a2bde, a3d, a3c, a3bde, a3bcd} Sec. 4.2.6
4.1 64 21 8 6 8 (64, 62) {d, bcd, b3cd, a, ad, abd, ab2c, ab2cd, ab3, a2, a2cd, a2b, a2b2d, a2b2cd, a2b3, a3, a3d, a3c, a3cd, Sec. 4.2.6

a3bd, a3b3}
5.1 64 21 8 6 8 (64, 67) {c, bd, bcd, b2d, b2c, b3d, b3cd, a, ac, ab2d, ab2cd, ab3c, ab3cd, a2, a2d, a3, a3cd, a3b2d, a3b2c, Sec. 4.2.6

a3b3c, a3b3cd}
5.2 64 21 8 6 8 (64, 67) {bc, b2d, b3c, a, acd, ab, abd, ab2d, ab2c, a2, a2bc, a2b2, a2b2c, a2b2cd, a2b3c, a3, a3c, a3b2d, Sec. 4.2.6

a3b2cd, a3b3c, a3b3cd}
5.3 64 21 8 6 8 (64, 67) {d, bcd, b3cd, a, ab2d, ab3, ab3d, ab3c, ab3cd, a2, a2c, a2bd, a2b2d, a2b2c, a2b3d, a3, a3b, a3bd, Sec. 4.2.6

a3b2d, a3b3c, a3b3cd}
5.4 64 21 8 6 8 (64, 67) {c, bd, bcd, b2d, b2c, b3d, b3cd, a, ac, ab, abd, ab2d, ab2cd, a2b2c, a2b2cd, a3, a3cd, a3b2d, a3b2c, Sec. 4.2.6

a3b3c, a3b3cd}
5.5 64 21 8 6 8 (64, 67) {b, bc, b2, b2c, b2cd, b3, b3c, ad, ab2, a2, a2bd, a2bc, a2b2d, a2b3d, a2b3c, a3d, a3bc, a3bcd, Sec. 4.2.6

a3b2, a3b3, a3b3d}
5.6 64 21 8 6 8 (64, 67) {cd, b2d, b2cd, a, ac, ab, abd, ab2d, ab2cd, a2b, a2bcd, a2b2, a2b2d, a2b3, a2b3cd, a3, a3cd, a3b2d, Sec. 4.2.6

a3b2c, a3b3, a3b3d}
6.1 64 21 8 6 8 (64, 74) {be, bc, bcd, b2e, b2d, b2de, b3e, b3ce, b3cde, ae, ac, acde, ab, abc, abce, ab2e, ab2ce, ab2cd, ab3, Sec. 4.2.6

ab3cd, ab3cde}
6.2 64 21 8 6 8 (64, 74) {d, de, c, ce, cd, cde, bd, bc, bcd, b2e, b3d, b3ce, b3cde, ae, ace, acd, abde, ab2e, ab2c, ab2cde, ab3de} Sec. 4.2.6
7.1 64 21 8 6 8 (64, 90) {c, cd, cde, a, ade, ac, acde, abe, abc, a2d, a2cde, a2b, a2be, a2bcd, a2bcde, a3, a3d, a3c, a3cd, Sec. 4.2.6

a3bd, a3bcde}
7.2 64 21 8 6 8 (64, 90) {c, bcd, bcde, a, ad, ac, acd, abe, abc, a2d, a2c, a2ce, a2cde, a2bd, a2bde, a3, a3de, a3c, a3cde, Sec. 4.2.6

a3bd, a3bcde}
7.3 64 21 8 6 8 (64, 90) {c, bcd, bcde, a, ade, ac, acde, abe, abc, a2, a2e, a2d, a2cde, a2bcd, a2bcde, a3, a3d, a3c, a3cd, Sec. 4.2.6

a3bd, a3bcde}
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23.1.7.4 64 21 8 6 8 (64, 90) {e, b, be, bd, bde, ade, acde, abe, abc, a2e, a2d, a2ce, a2cde, a2b, a2be, a2bcd, a2bcde, Sec. 4.2.6
a3d, a3cd, a3bd, a3bcde}

7.5 64 21 8 6 8 (64, 90) {d, de, ce, bc, bce, bcd, bcde, ad, acd, ab, abde, abce, abcd, a2e, a2ce, a3de, a3cde, Sec. 4.2.6
a3be, a3bde, a3bc, a3bcd}

7.6 64 21 8 6 8 (64, 90) {e, b, bd, bce, bcd, ade, ac, abe, abcd, a2, a2e, a2d, a2de, a2bd, a2bde, a2bcd, a2bcde, a3d, a3c, Sec. 4.2.6
a3bd, a3bc}

7.7 64 21 8 6 8 (64, 90) {e, b, bd, bce, bcd, ade, ac, abe, abcd, a2c, a2ce, a2cd, a2cde, a2b, a2be, a2bc, a2bce, a3d, a3c, Sec. 4.2.6
a3bd, a3bc}

8.1 64 21 8 6 8 (64, 138) {def, ce, cef, bde, bdef, bc, bcd, bcdf, bcde, af, ade, ac, ace, acdf, acde, ab, abef, abd, abde, Sec. 4.2.6
abc, abcdef}

8.2 64 21 8 6 8 (64, 138) {ef, d, df, cf, cef, bce, bcef, bcde, bcdef, adf, ade, acdf, acde, ab, abe, abd, abdef, Sec. 4.2.6
abcf, abcef, abcdf, abcde}

8.3 64 21 8 6 8 (64, 138) {e, ef, de, c, cf, ce, cef, bcf, bcde, aef, adf, acf, acef, acd, acdef, ab, abef, abd, abde, Sec. 4.2.6
abce, abcd}

8.4 64 21 8 6 8 (64, 138) {ef, cf, cef, cd, cdf, bde, bdef, bce, bcef, adf, ade, acdf, acde, ab, abe, abd, abdef, Sec. 4.2.6
abcf, abcef, abcdf, abcde}

9.1 64 21 8 6 8 (64, 193) {c, bcd, bcde, a, ad, ac, acde, abe, abce, a2, a2d, a2de, a2ce, a2bc, a2bce, a3, a3d, a3c, a3cde, Sec. 4.2.6
a3b, a3bc}

9.2 64 21 8 6 8 (64, 193) {e, de, c, b, be, bd, bde, bc, bce, ace, acd, abe, abce, a2de, a2ce, a2bcd, a2bcde, Sec. 4.2.6
a3ce, a3cd, a3b, a3bc}

10.1 64 21 8 6 8 (64, 202) {ef, d, df, c, cf, cd, cdf, bf, bef, bcf, bce, bcdf, bcde, ad, ade, abdf, abdef, Sec. 4.2.6
abc, abcef, abcdf, abcde}

10.2 64 21 8 6 8 (64, 202) {f, df, def, c, cf, cd, cdf, bcdf, bcde, adf, ade, ace, acef, acd, acdf, ab, abe, abdf, abdef, Sec. 4.2.6
abc, abcef}

10.3 64 21 8 6 8 (64, 202) {f, c, cf, cde, cdef, bd, bde, bcf, bce, a, aef, adf, adef, ac, acf, acd, acdf, Sec. 4.2.6
abf, abef, abcf, abce}

10.4 64 21 8 6 8 (64, 202) {d, df, de, cef, cd, bef, bd, bc, bcdef, ac, acf, acd, acdf, ab, abe, abd, abde, Sec. 4.2.6
abc, abcef, abcdf, abcde}

10.5 64 21 8 6 8 (64, 202) {f, e, df, ce, cd, bf, bdef, bcef, bcdf, ad, adf, ade, adef, ac, acf, acd, acdf, Sec. 4.2.6
ab, abe, abdf, abdef}

10.6 64 21 8 6 8 (64, 202) {de, c, cf, ce, cdf, bef, bd, bcf, bcde, ade, adef, acde, acdef, ab, abe, abd, abde, abc, Sec. 4.2.6
abcef, abcdf, abcde}

11.1 64 21 8 6 8 (64, 267) {e, d, def, c, cf, b, bf, bc, bcf, af, aef, adf, adef, acf, acef, acd, acde, abf, abe, abdf, abde} Sec. 4.2.6
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23.2.1.1 64 21 8 6 L3(Z2)3 (64, 9) {c2, b, b2c, b2c3, b3, a, ac3, ab, ab3c, a2, a2b, a2bc, a2bc2, a2bc3, a2b2c2, a2b3, a2b3c2, a3, Sec. 4.2.6
a3b, a3bc3, a3b2c}

2.1 64 21 8 6 L3(Z2)3 (64, 18) {c2, b, bc3, b2, b2c2, b3, b3c, a, ac, ac3, ab, ab2, ab3, a2, a2c2, a3, a3c, a3c3, a3bc3, a3b2c2, a3b3c} Sec. 4.2.6
3.1 64 21 8 6 L3(Z2)3 (64, 23) {d, b, bd, bcd, b2, b2d, b3, b3d, b3cd, a, acd, abcd, ab3, a2, a2d, a2bcd, a2b3c, a3, a3c, a3bcd, a3b3d} Sec. 4.2.6
3.2 64 21 8 6 L3(Z2)3 (64, 23) {d, c, b, bc, b2, b2d, b2c, b3, b3c, a, ab2d, ab3, ab3d, a2, a2b2d, a2b2c, a2b2cd, a3, a3bc, a3bcd, a3b2d} Sec. 4.2.6
3.3 64 21 8 6 L3(Z2)3 (64, 23) {d, b, b2, b2d, b3, a, ab2c, ab3, ab3c, a2, a2d, a2bcd, a2b2, a2b2d, a2b2c, a2b2cd, a2b3c, a3, Sec. 4.2.6

a3b, a3bcd, a3b2cd}
3.4 64 21 8 6 L3(Z2)3 (64, 23) {d, c, cd, b, b3, a, ab2c, ab3, ab3c, a2, a2d, a2c, a2cd, a2bcd, a2b2c, a2b2cd, a2b3c, a3, Sec. 4.2.6

a3b, a3bcd, a3b2cd}
3.5 64 21 8 6 L3(Z2)3 (64, 23) {d, c, cd, b, b2, b2d, b2c, b2cd, b3, a, ac, abc, ab3, a2, a2d, a2bd, a2b3, a3, a3cd, a3bcd, a3b3} Sec. 4.2.6
3.6 64 21 8 6 L3(Z2)3 (64, 23) {d, b, b2c, b2cd, b3, a, ab2c, ab3, ab3c, a2c, a2cd, a2bcd, a2b2, a2b2d, a2b2c, a2b2cd, a2b3c, a3, a3b, Sec. 4.2.6

a3bcd, a3b2cd}
4.1 64 21 8 6 L3(Z2)3 (64, 32) {e, d, de, c, cd, b, bde, bcd, bcde, a, acd, ab, abcd, a2, a2e, a2d, a2de, a3, a3c, a3bde, a3bcde} Sec. 4.2.6
4.2 64 21 8 6 L3(Z2)3 (64, 32) {e, d, de, c, cd, b, bde, bcd, bcde, a, acd, ab, abcd, a2bc, a2bce, a2bcd, a2bcde, a3, a3c, a3bde, a3bcde} Sec. 4.2.6
4.3 64 21 8 6 L3(Z2)3 (64, 32) {e, d, de, c, ce, b, be, bc, bce, a, ad, abc, abcde, a2b, a2bd, a2bc, a2bcde, a3, a3de, a3b, a3bd} Sec. 4.2.6
4.4 64 21 8 6 L3(Z2)3 (64, 32) {e, d, de, b, bd, bc, bcde, a, ad, acd, acde, ab, abd, a2d, a2de, a3, a3de, a3c, a3ce, a3bc, a3bcde} Sec. 4.2.6
4.5 64 21 8 6 L3(Z2)3 (64, 32) {e, d, de, a, ad, acd, acde, abce, abcd, a2d, a2de, a2be, a2bde, a2bce, a2bcd, a3, a3de, a3c, a3ce, Sec. 4.2.6

a3be, a3bde}
5.1 64 21 8 6 L3(Z2)3 (64, 33) {d, c, cd, b, b2, b2d, b2c, b2cd, b3, a, ac, abc, ab3, a2, a2d, a2bd, a2b3, a3, a3b2cd, a3b3, a3b3cd} Sec. 4.2.6
5.2 64 21 8 6 L3(Z2)3 (64, 33) {d, b, bd, bc, b2, b2d, b3, b3d, b3c, a, acd, abd, ab3c, a2, a2b2d, a2b3c, a2b3cd, a3, a3c, a3b, a3b3c} Sec. 4.2.6
5.3 64 21 8 6 L3(Z2)3 (64, 33) {d, cd, b, bcd, b2, b2d, b2cd, b3, b3cd, a, abc, abcd, ab2d, a2bd, a2bc, a2bcd, a2b3, a3, a3d, a3bd, a3b3} Sec. 4.2.6
6.1 64 21 8 6 L3(Z2)3 (64, 34) {d, c, cd, bc, b2, b2d, b3cd, a, ad, ac, acd, ab, ab3, a2d, a2b2d, a3, a3bd, a3bc, a3b2d, a3b3d, a3b3cd} Sec. 4.2.6
7.1 64 21 8 6 L3(Z2)3 (64, 35) {d, c2, c2d, b, bc2, a, ac, abc2, abc3, a2, a2d, a2c, a2cd, a2c2, a2c2d, a2bcd, a2bc3, a3, Sec. 4.2.6

a3cd, a3b, a3bcd}
7.2 64 21 8 6 L3(Z2)3 (64, 35) {d, c2, c2d, bc, bc3, a, acd, abd, abc3, a2cd, a2c3, a2b, a2bd, a2bc, a2bcd, a2bc3, a2bc3d, a3, a3c3, Sec. 4.2.6

a3b, a3bc}
7.3 64 21 8 6 L3(Z2)3 (64, 35) {c, c2, c3, b, bd, bc, bc2, bc2d, bc3, a, ac3, abd, abc3d, a2c3, a2c3d, a2bc, a2bc3d, a3, Sec. 4.2.6

a3c3d, a3bc, a3bc2d}
7.4 64 21 8 6 L3(Z2)3 (64, 35) {d, c2, c2d, a, ad, ac, ac3, abcd, abc3, a2d, a2c2d, a2b, a2bd, a2bcd, a2bc3, a3, a3cd, a3c2d, a3c3d, Sec. 4.2.6

a3b, a3bd}
8.1 64 21 8 6 L3(Z2)3 (64, 56) {c, cd, b, bc, b2, b2c, b2cd, b3, b3c, a, acd, abcd, ab3, a2, a2c, a2cd, a2b2d, a3, a3cd, a3bd, a3b3c} Sec. 4.2.6
9.1 64 21 8 6 L3(Z2)3 (64, 60) {d, c, ce, b, bd, bc, bcde, a, ae, ad, ac, abde, abcd, a2, a2d, a3, a3e, a3d, a3ce, a3be, a3bce} Sec. 4.2.6
9.2 64 21 8 6 L3(Z2)3 (64, 60) {e, d, de, c, ce, b, bd, bc, bcde, a, ac, ab, abc, a2, a2e, a2d, a2de, a3, a3ce, a3bd, a3bcde} Sec. 4.2.6
9.3 64 21 8 6 L3(Z2)3 (64, 60) {e, d, de, c, ce, cd, cde, b, bd, a, ac, ab, abcd, a2c, a2ce, a2bce, a2bcd, a3, a3ce, a3bd, a3bce} Sec. 4.2.6
9.4 64 21 8 6 L3(Z2)3 (64, 60) {e, c, ce, cd, cde, b, bd, bc, bcde, a, acde, ab, abcde, a2, a2e, a2c, a2ce, a3, a3cd, a3bd, a3bc} Sec. 4.2.6
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23.2.10.1 64 21 8 6 L3(Z2)3 (64, 88) {c, cd, b, bd, bc, a, ab, a2b, a2bc, a4, a4c, a4cd, a4bcd, a5cd, a5bcd, a6b, a6bc, a7, Sec. 4.2.6
a7cd, a7bd, a7bc}

11.1 64 21 8 6 L3(Z2)3 (64, 90) {e, c, ce, cd, cde, b, bde, bc, bcd, a, acd, ab, abcd, a2bd, a2bde, a2bcd, a2bcde, Sec. 4.2.6
a3, a3cde, a3bde, a3bc}

11.2 64 21 8 6 L3(Z2)3 (64, 90) {e, de, c, ce, cde, b, bde, bc, bcde, a, ae, ab, abce, a2, a2e, a2d, a2cde, a3, Sec. 4.2.6
a3e, a3bde, a3bcd}

11.3 64 21 8 6 L3(Z2)3 (64, 90) {e, d, de, c, ce, b, be, bd, bde, a, ac, ab, abce, a2, a2d, a2c, a2cde, a3, a3c, a3bde, a3bcd} Sec. 4.2.6
11.4 64 21 8 6 L3(Z2)3 (64, 90) {e, c, ce, cd, cde, a, ac, abd, abcde, a2, a2de, a2c, a2cd, a2bd, a2bde, a2bc, a2bce, a3, Sec. 4.2.6

a3c, a3b, a3bce}
11.5 64 21 8 6 L3(Z2)3 (64, 90) {e, d, de, cd, cde, b, bde, bce, bcde, a, acde, ab, abcde, a2, a2e, a2d, a2de, a3, Sec. 4.2.6

a3cd, a3bde, a3bce}
11.6 64 21 8 6 L3(Z2)3 (64, 90) {e, d, de, cd, cde, b, bde, bce, bcde, a, acde, ab, abcde, a2c, a2ce, a2cd, a2cde, a3, a3cd, Sec. 4.2.6

a3bde, a3bce}
11.7 64 21 8 6 L3(Z2)3 (64, 90) {e, c, ce, cd, cde, b, bde, bc, bcd, a, acd, ab, abcd, a2d, a2de, a2cd, a2cde, a3, Sec. 4.2.6

a3cde, a3bde, a3bc}
12.1 64 21 8 6 L3(Z2)3 (64, 92) {d, cd, b, a, ab, a2bc, a2bcd, a3bd, a3bc, a4, a4d, a4cd, a4bd, a4bc, a4bcd, a5cd, Sec. 4.2.6

a5bcd, a6bc, a6bcd, a7, a7cd}
13.1 64 21 8 6 L3(Z2)3 (64, 102) {d, b2, b3d, a, ad, acd, abd, abc, ab3d, a2cd, a2b, a2bc, a2b3, a2b3c, a2b3cd, a3d, a3bd, Sec. 4.2.6

a3b2, a3b2d, a3b3c, a3b3cd}
14.1 64 21 8 6 L3(Z2)3 (64, 136) {e, d, c, cd, bd, b2, b2e, b2ce, b3cde, ac, ace, acde, ab, ab2d, ab2c, ab2ce, ab3, ab3d, Sec. 4.2.6

ab3c, ab3ce, ab3cd}
14.2 64 21 8 6 L3(Z2)3 (64, 136) {e, d, c, ce, cd, bc, bce, b2, b2e, b3d, b3c, b3ce, b3cde, a, ad, ac, acd, abd, Sec. 4.2.6

abcde, ab2, ab2ce}
15.1 64 21 8 6 L3(Z2)3 (64, 138) {f, e, ef, d, de, c, cf, ce, cef, b, bd, bc, bcde, a, aef, ad, adf, ab, abd, abce, abcd} Sec. 4.2.6
15.2 64 21 8 6 L3(Z2)3 (64, 138) {f, e, ef, d, de, b, bd, bcf, bcdef, a, aef, ad, adf, acd, acdf, acde, acdef, Sec. 4.2.6

ab, abd, abcef, abcdf}
16.1 64 21 8 6 L3(Z2)3 (64, 139) {d, c, ce, b, bc, bcde, a, ae, ad, ac, abe, abde, abce, a2, a2d, a2bd, a3, a3e, Sec. 4.2.6

a3d, a3ce, a3bcd}
16.2 64 21 8 6 L3(Z2)3 (64, 139) {e, d, de, c, ce, b, bd, bc, a, ac, ab, abc, abcde, a2, a2e, a2d, a2de, a2bcde, a3, a3ce, a3bd} Sec. 4.2.6
17.1 64 21 8 6 L3(Z2)3 (64, 193) {e, d, de, c, cd, b, be, bd, bde, a, ac, ab, abcd, a2, a2e, a2c, a2cde, a3, a3c, a3be, a3bcde} Sec. 4.2.6
18.1 64 21 8 6 L3(Z2)3 (64, 199) {e, d, de, c, ce, cd, cde, b, bd, a, acd, abd, abcde, a2, a2e, a2be, a2bd, a3, Sec. 4.2.6

a3cde, a3bd, a3bcd}
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23.2.19.1 64 21 8 6 L3(Z2)3 (64, 202) {f, e, ef, d, df, b, be, bcd, bcdef, a, ae, ad, adef, ac, acf, acd, acdf, Sec. 4.2.6
ab, abe, abc, abcef}

19.2 64 21 8 6 L3(Z2)3 (64, 202) {f, e, ef, d, de, cd, cdf, b, be, bd, bde, bc, bcef, a, aef, ad, adf, ac, acf, abc, abcef} Sec. 4.2.6
20.1 64 21 8 6 L3(Z2)3 (64, 206) {e, d, de, c, ce, cd, cde, b, bc, ac, acd, abd, abc, a2, a2e, a2b, a2bce, a3c, Sec. 4.2.6

a3cde, a3bde, a3bc}
21.1 64 21 8 6 L3(Z2)3 (64, 215) {f, e, ef, d, de, b, bef, bd, bdf, bc, bce, bcd, bcde, a, af, acd, acdef, abd, Sec. 4.2.6

abdf, abcdf, abcde}
22.1 64 21 8 6 L3(Z2)3 (64, 219) {e, d, de, b, be, bd, bde, bc, bcd, a, acd, ab, abc, a2, a2e, a2bc, a2bcde, a3, Sec. 4.2.6

a3cde, a3be, a3bc}
23.1 64 21 8 6 L3(Z2)3 (64, 224) {e, d, de, c, ce, cd, cde, b, bc, b2, b2e, b3, b3ce, a, ad, ab, abcd, ab2, Sec. 4.2.6

ab2de, ab3, ab3cde}
24.1 64 21 8 6 L3(Z2)3 (64, 226) {d, c, cd, bd, b2, b3d, b3cd, ac, ab3d, a2, a2b2, a2b2d, a2b2c, a2b2cd, a2b3cd, Sec. 4.2.6

a3c, a3cd, a3bc, a3b2cd, a3b3d, a3b3c}
25.1 64 21 8 6 L3(Z2)3 (64, 227) {e, d, c, ce, b, bc, bcd, acd, ab, abe, abc, abce, abcde, a2, a2e, a2d, a2be, a2bc, Sec. 4.2.6

a2bcd, a3cde, a3bcd}
26.1 64 21 8 6 L3(Z2)3 (64, 232) {d, c, bcd, b2, b2c, a, ad, ac, ab, abd, abc, ab3, ab3c, a2, a2d, a2b2, a2b3cd, a3, a3d, Sec. 4.2.6

a3b2c, a3b3d}
26.2 64 21 8 6 L3(Z2)3 (64, 232) {d, c, b, bd, bc, b2, b2c, b3, b3c, a, ad, acd, ab3c, a2, a2d, a2b2, a2b3d, a3, Sec. 4.2.6

a3d, a3bc, a3b2cd}
27.1 64 21 8 6 L3(Z2)3 (64, 241) {f, e, ef, b, bef, bd, bde, bcd, bcdf, a, af, ad, adef, acd, acde, abdf, abde, abcf, Sec. 4.2.6

abcef, abcd, abcdf}
28.1 64 21 8 6 L3(Z2)3 (64, 242) {e, d, c, cd, b, bc, bce, b2, b2e, b2de, b2ce, b2cde, b3, a, ad, ade, ab, ab2, Sec. 4.2.6

ab3, ab3cd, ab3cde}
29.1 64 21 8 6 L3(Z2)3 (64, 264) {f, e, ef, d, def, c, cef, cd, cdef, b, bf, bd, bde, a, ae, ac, acf, Sec. 4.2.6

abd, abde, abc, abcf}
30.1 64 21 8 6 L3(Z2)3 (64, 267) {f, e, ef, d, df, c, ce, cd, cdef, b, bf, bd, bdf, a, ae, ac, ace, ab, abef, abcd, abcdef} Prop. 3.2.42 [Ma84], 3.4 (2)

24.1.1.1 64 27 10 12 10 no complete determination Sec. 4.2.6
25.1.1.1 64 28 12 12 11 no complete determination Sec. 4.2.6
26.1.1.1 81 16 7 2 L2(9) (81, 2) {b, b2, b3, b4, b5, b6, b7, b8, a, a2, a3, a4, a5, a6, a7, a8} Prop. 3.2.47 [Ma84], 3.4(1)

2.1 81 16 7 2 L2(9) (81, 3) {c, c2, b, bc, bc2, b2, b2c, b2c2, a, a2, a3, a4, a5, a6, a7, a8} Sec. 4.2.4
2.2 81 16 7 2 L2(9) (81, 3) {b, b2, a, a2, a3, a3c, a3bc, a3b2c, a4, a5, a6, a6c2, a6bc2, a6b2c2, a7, a8} Sec. 4.2.4
3.1 81 16 7 2 L2(9) (81, 4) {b, b2, b3, b4, b5, b6, b7, b8, a, a2, a3, a4, a5, a6, a7, a8} Sec. 4.2.4
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3.2 81 16 7 2 L2(9) (81, 4) {a, ab, a2, a2b5, a3, a3b3, a4, a4b4, a5, a5b8, a6, a6b6, a7, a7b7, a8, a8b2} Sec. 4.2.4
4.1 81 16 7 2 L2(9) (81, 7) {d, d2, cd2, c2d, b, bcd2, bc2d, b2, b2cd2, b2c2d, a, ad, ad2, a2, a2d, a2d2} Sec. 4.2.4
4.2 81 16 7 2 L2(9) (81, 7) {d, d2, c, c2, b, bc, bc2, b2, b2c, b2c2, ab, abd, abd2, a2b2c, a2b2cd, a2b2cd2} Sec. 4.2.4
5.1 81 16 7 2 L2(9) (81, 11) {c, c2, b, bc, bc2, b2, b2c, b2c2, a, a2, a3, a4, a5, a6, a7, a8} Prop. 3.2.47 [Ma84], 3.4(1)
6.1 81 16 7 2 L2(9) (81, 12) {c, c2, b, bc, bc2, b2, b2c, b2c2, a, a2, bab2, ba2b2, b2ab, b2a2b, aba2b2, ab2a2b} Sec. 4.2.4
6.2 81 16 7 2 L2(9) (81, 12) {c, c2, b, bc, bc2, b2, b2c, b2c2, a, a2, bab2c, ba2b2c2, b2abc2, b2a2bc, aba2b2c2, ab2a2bc} Sec. 4.2.4
7.1 81 16 7 2 L2(9) (81, 13) {c, c2, b, bc, bc2, b2, b2c, b2c2, a, a2, a3, a4, a5, a6, a7, a8} Sec. 4.2.4
8.1 81 16 7 2 L2(9) (81, 15) {d, d2, c, cd, cd2, c2, c2d, c2d2, b, b2, a, ab, ab2, a2, a2b, a2b2} Prop. 3.2.47 [Ma84], 3.4(1)

27.1.1.1 81 20 1 6 16 (81, 7) {d, d2, bd, bcd, bc2d2, b2d2, b2cd, b2c2d2, ab, abcd2, abc2d2, ab2d2, ab2cd2, ab2c2d, Sec. 4.2.7
a2bd2, a2bc, a2bc2d2, a2b2d, a2b2cd2, a2b2c2d2}

2.1 81 20 1 6 16 (81, 8) {b, bc2, b3, b4c, b5c2, b6, b8, b8c, ab, abc, ab4c2, ab5, ab8c, ab8c2, a2b, a2b5c, a2b7c, Sec. 4.2.7
a2b7c2, a2b8, a2b8c2}

3.1 81 20 1 6 16 (81, 13) {ab2c, a2, a3, a4c, a4c2, a4b, a4bc, a5c, a5c2, a5bc2, a5b2c, a6, a7, a7bc2, a7b2, Sec. 4.2.7
a7b2c2, a8b, a8bc, a8b2, a8b2c2}

4.1 81 20 1 6 16 (81, 15) {d, d2, c, c2, bcd2, bc2d, b2cd2, b2c2d, acd2, ac2d, abcd, abc2d2, ab2cd, ab2c2d2, Exa. 5.3.12 [Ma94], 2.7(2)
a2cd2, a2c2d, a2bcd, a2bc2d2, a2b2cd, a2b2c2d2}

28.1.1.1 81 24 9 6 17 (81, 7) {bd2, bcd2, bc2, b2d, b2c, b2c2d, ac2, ac2d, ac2d2, abd2, abc, abc2d2, ab2d, ab2cd2, Sec. 4.2.7
ab2c2d2, a2c, a2cd, a2cd2, a2bd, a2bc, a2bc2, a2b2, a2b2c, a2b2c2d2}

1.2 81 24 9 6 17 (81, 7) {bc2, bc2d, bc2d2, b2c, b2cd, b2cd2, ad2, acd2, ac2d2, ab, abcd2, abc2d, ab2d2, ab2c, Sec. 4.2.7
ab2c2d, a2d, a2c, a2c2d2, a2bd2, a2bcd2, a2bc2d2, a2b2d, a2b2cd2, a2b2c2}

1.3 81 24 9 6 17 (81, 7) {c, cd, cd2, c2, c2d, c2d2, bd, bcd, bc2d2, b2d2, b2cd, b2c2d2, abd, abc, abc2, ab2d2, Sec. 4.2.7
ab2cd2, ab2c2d, a2bd2, a2bc, a2bc2d2, a2b2, a2b2cd, a2b2c2d}

2.1 81 24 9 6 17 (81, 9) {bc, b4, b4c2, b5, b5c, b8c2, ac2, abc, abc2, ab3c2, ab5, ab5c2, ab6c2, ab7, ab8c, a2c, Sec. 4.2.7
a2bc2, a2b3c, a2b4, a2b4c, a2b5c, a2b5c2, a2b6c, a2b8}

2.2 81 24 9 6 17 (81, 9) {c, c2, b2, b2c, b3c, b3c2, b4c, b5c2, b6c, b6c2, b7, b7c2, ab, abc, ab2, ab7c2, ab8c, ab8c2, Sec. 4.2.7
a2b, a2b2c, a2b4c, a2b4c2, a2b8, a2b8c2}

3.1 81 24 9 6 17 (81, 12) {bc, b2c2, ac2, abc, a2c, a2b2, ba, bab, babc, babc2, bab2, ba2bc, ba2b2, b2abc, b2ab2c2, Sec. 4.2.7
b2a2c2, b2a2bc2, b2a2b2, b2a2b2c, b2a2b2c2, aba2c, aba2bc2, ab2a2c2, ab2a2b2c}

4.1 81 24 9 6 17 (81, 13) {c, c2, ac, ac2, a2, a2bc2, a3c, a3c2, a4bc2, a4b2c, a5b2, a5b2c2, a6c, a6c2, a7, a7b, Sec. 4.2.7
a7bc, a7b2, a7b2c2, a8c, a8c2, a8b, a8bc, a8b2c}

4.2 81 24 9 6 17 (81, 13) {bc, b2c2, abc, ab2c2, a2c, a2c2, a2b, a2bc2, a2b2c2, a3bc, a3b2c2, a4, a4b, a4bc2, Sec. 4.2.7
a4b2, a4b2c, a5, a5bc, a6bc, a6b2c2, a7c, a7c2, a8b2, a8b2c}

5.1 81 24 9 6 17 (81, 15) {bc2, bc2d, bc2d2, b2c, b2cd, b2cd2, ad, acd, ac2d, abd, abcd2, abc2, ab2d, ab2c, Sec. 4.2.7
ab2c2d2, a2d2, a2cd2, a2c2d2, a2bd2, a2bcd, a2bc2, a2b2d2, a2b2c, a2b2c2d}

29.1.1.1 81 30 9 12 18 (81, 7) {b, bc, bc2d, b2, b2cd2, b2c2, a, ad, ad2, ac, acd, acd2, ab, abcd, abc2, ab2d, ab2cd2, a2, Sec. 4.2.7
ab2c2d2, a2d, a2d2, a2c2, a2c2d, a2c2d2, a2bd, a2bc, a2bc2, a2b2d2, a2b2cd2, a2b2c2d}
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1.2 81 30 9 12 18 (81, 7) {c, cd, cd2, c2, c2d, c2d2, b, bc, bc2d, b2, b2cd2, b2c2, ac2, ac2d, ac2d2, abd2, abc, abc2d2, Sec. 4.2.7
ab2, ab2cd, ab2c2d, a2c, a2cd, a2cd2, a2bd2, a2bcd, a2bc2d, a2b2, a2b2c, a2b2c2d2}

2.1 81 30 9 12 18 (81, 8) {c, c2, b, bc2, b3c, b3c2, b4c, b5c2, b6c, b6c2, b8, b8c, ac2, abc, abc2, ab3c2, ab4, ab5c, Sec. 4.2.7
ab6c2, ab8, ab8c2, a2c, a2b, a2bc, a2b2c, a2b2c2, a2b3c, a2b4c2, a2b6c, a2b8}

2.2 81 30 9 12 18 (81, 8) {b, bc2, b4c, b5c2, b8, b8c, ac, ac2, abc, ab2c2, ab3c, ab3c2, ab5, ab5c, ab6c, ab6c2, ab7, Sec. 4.2.7
ab7c2, a2c, a2c2, a2bc, a2b3c, a2b3c2, a2b5c2, a2b6c, a2b6c2, a2b7, a2b7c2, a2b8, a2b8c}

3.1 81 30 9 12 18 (81, 13) {c, c2, bc, b2c2, a, abc, ab2, ab2c, a2c, a2c2, a2bc, a2b2c2, a3c, a3c2, a3bc, a3b2c2, Sec. 4.2.7
a4b2c2, a5b, a5bc2, a5b2, a5b2c, a6c, a6c2, a6bc, a6b2c2, a7c, a7c2, a7b, a7bc2, a8}

3.2 81 30 9 12 18 (81, 13) {b, bc2, b2, b2c, a, ac, ab, ab2c, a2b2, a3b, a3bc2, a3b2, a3b2c, a4c2, a5c, a5bc2, a5b2c, Sec. 4.2.7
a5b2c2, a6b, a6bc2, a6b2, a6b2c, a7bc, a7bc2, a7b2, a7b2c2, a8, a8c2, a8b, a8bc}

4.1 81 30 9 12 18 (81, 15) {d, d2, c, c2, b, b2, a, ad, ac, acd, abd2, abcd2, abc2, abc2d, ab2d2, ab2cd2, ab2c2, ab2c2d, Sec. 4.2.7 [Ma94], 10.6(1)
a2, a2d2, a2c2, a2c2d2, a2bd, a2bc, a2bcd2, a2bc2d, a2b2d, a2b2c, a2b2cd2, a2b2c2d}

30.1.1.1 81 32 13 12 L4(9) (81, 15) {c, c2, bd2, bcd, bc2d2, b2d, b2cd, b2c2d2, ac, acd2, ac2d, abd, abd2, abcd2, Sec. 4.2.7
abc2, abc2d, abc2d2, ab2d2, ab2c2, ab2c2d2, a2cd2, a2c2, a2c2d, a2bd, a2bc, a2bcd, a2b2d,
a2b2d2, a2b2c, a2b2cd, a2b2cd2, a2b2c2d}

30.2.1.1 81 32 13 12 L4(9) (81, 7) {d, d2, c, cd, cd2, c2, c2d, c2d2, b, bd, bd2, b2, b2d, b2d2, a, ac, ac2, abd, abc, abc2d2, ab2, Sec. 4.2.7
ab2cd, ab2c2d2, a2, a2cd2, a2c2d, a2bd, a2bcd, a2bc2d, a2b2, a2b2cd, a2b2c2d2}

1.2 81 32 13 12 L4(9) (81, 7) {d, d2, b, bc, bc2d, b2, b2cd2, b2c2, a, ad, ad2, ac2, ac2d, ac2d2, ab, abcd2, abc2d2, ab2, ab2c, Sec. 4.2.7
ab2c2d2, a2, a2d, a2d2, a2c, a2cd, a2cd2, a2bd, a2bcd2, a2bc2d, a2b2d, a2b2cd2, a2b2c2d2}

2.1 81 32 13 12 L4(9) (81, 9) {b, bc2, b2c2, b3, b6, b7c, b8, b8c, a, ac, ab2c, ab3, ab3c, ab4, ab6, ab6c, ab7c, ab7c2, Sec. 4.2.7
ab8, ab8c2, a2, a2c2, a2b, a2bc, a2b2, a2b3, a2b3c2, a2b6, a2b6c2, a2b7c2, a2b8c, a2b8c2}

3.1 81 32 13 12 L4(9) (81, 12) {c, c2, a, abc2, ab2c2, a2, a2b, a2b2, ba, babc, bab2, ba2c, ba2bc2, ba2b2, b2a, b2ab, Sec. 4.2.7
b2ab2c, b2a2c, b2a2b, b2a2b2c2, aba2, aba2c, aba2c2, aba2b2, aba2b2c, aba2b2c2,
ab2a2, ab2a2c, ab2a2c2, ab2a2b, ab2a2bc, ab2a2bc2}

4.1 81 32 13 12 L4(9) (81, 13) {b, bc2, b2, b2c, a, ab, abc2, ab2, ab2c, a2b2, a2b2c, a3, a3b, a3bc2, a3b2, a3b2c, a4c, Sec. 4.2.7
a4c2, a5c, a5c2, a5b, a5bc2, a5b2c2, a6, a6b, a6bc2, a6b2, a6b2c, a7bc, a7b2c2, a8, a8bc}

5.1 81 32 13 12 L4(9) (81, 15) {d, d2, b, bd, bd2, bc, bcd, bcd2, b2, b2d, b2d2, b2c2, b2c2d, b2c2d2, a, acd2, ac2d2, ab, Sec. 4.2.7
abc, abc2d, ab2, ab2cd, ab2c2, a2, a2cd, a2c2d, a2b, a2bc, a2bc2d2, a2b2, a2b2cd2, a2b2c2}

31.1.1.1 81 40 19 20 Paley (81, 15) {c, cd2, c2, c2d, b, bc, bcd2, b2, b2c2, b2c2d, a, ad2, ac, acd, acd2, ac2d2, abd2, abc, abcd, abc2, P rop. 3.2.6 [Ma84], 3.5
abcd2, d, a2c2d2, a2bd2, a2bcd2, a2bc2, a2b2d, a2b2c, a2b2cd2, a2b2c2, a2b2c2d, a2b2c2d2}

31.2.1.1 81 40 19 20 L5(9) (81, 12) {b, bc, b2, b2c2, abc, ab2, ab2c2, a2bc, a2bc2, a2b2, ba, bab, babc, bab2, bab2c, bab2c2, ba2, ba2c, Sec. 4.2.7
ba2bc, ba2b2, ba2b2c, ba2b2c2, b2ac, b2ac2, b2ab2c2, b2a2c2, b2a2b2, b2a2b2c2, aba2, aba2c,
aba2b, aba2bc2, aba2b2, aba2b2c2, ab2a2, ab2a2c2, ab2a2b, ab2a2bc, ab2a2b2, ab2a2b2c}

1.2 81 40 19 20 L5(9) (81, 12) {c, c2, bc, b2c2, a, ac, ac2, abc, ab2, ab2c2, a2, a2c, a2c2, a2b, a2bc2, a2b2c, bac2, babc, Sec. 4.2.7
babc2, ba2, ba2c, ba2b, b2a, b2ac, b2ab, b2abc, b2abc2, b2ab2, b2a2c2, b2a2b, b2a2bc,
b2a2bc2, b2a2b2c, b2a2b2c2, aba2c, aba2bc2, aba2b2c, ab2a2c2, ab2a2bc2, ab2a2b2c}
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2.1 81 40 19 20 L5(9) (81, 15) {b, bd, bc, bcd2, bc2d2, b2, b2d2, b2cd, b2c2, b2c2d, a, ad2, ac, acd, acd2, ab, abd, Exa.5.3.12
abcd, abcd2, abc2, ab2, ab2d2, ab2cd2, ab2c2, ab2c2d2, a2, a2d, a2c2, a2c2d,
a2c2d2, a2b, a2bd, a2bc, a2bcd, a2bc2d, a2b2, a2b2d2, a2b2c, a2b2c2d, a2b2c2d2}

32.1.1.1 100 18 8 2 L2(10) (100, 6) {bc, bc4, b2c2, b2c3, b3c2, b3c3, b4c, b4c4, a, abc4, ab2c3, ab3c2, ab4c, a3, a3bc, Sec. 4.2.4
a3b2c2, a3b3c3, a3b4c4}

2.1 100 18 8 2 L2(10) (100, 9) {bc2, bc4, b2c3, b2c4, b3c, b3c2, b4c, b4c3, a, abc4, ab2c3, ab3c2, ab4c, a3, a3bc2, Sec. 4.2.4
a3b2c4, a3b3c, a3b4c3}

3.1 100 18 8 2 L2(10) (100, 10) {bc3, bc4, b2c, b2c3, b3c2, b3c4, b4c, b4c2, a, abc3, ab2c, ab3c4, ab4c2, a3, a3bc4, Sec. 4.2.4
a3b2c3, a3b3c2, a3b4c}

4.1 100 18 8 2 L2(10) (100, 12) {bc, bc4, b2c2, b2c3, b3c2, b3c3, b4c, b4c4, a, abc4, ab2c3, ab3c2, ab4c, a3, a3bc, Sec. 4.2.4
a3b2c2, a3b3c3, a3b4c4}

5.1 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, c, c2, c3, c4, b, bd, bd2, bd3, bd4, a, ac, ac2, ac3, ac4} Sec. 4.2.4
5.2 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, c, c2, c3, c4, b, bc, bc2, bc3, bc4, a, ad, ad2, ad3, ad4} Prop. 3.2.47 [Ma84], 3.4(1)
5.3 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, c, c2, c3, c4, a, ad, ad2, ad3, ad4, ab, abc, abc2, abc3, abc4} Sec. 4.2.4
5.4 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, cd4, c2d3, c3d2, c4d, a, ad, ad2, ad3, ad4, ab, abcd4, abc2d3, Sec. 4.2.4

abc3d2, abc4d}
5.5 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, cd4, c2d3, c3d2, c4d, bc2, bc2d, bc2d2, bc2d3, bc2d4, ab, abcd4, Sec. 4.2.4

abc2d3, abc3d2, abc4d}
5.6 100 18 8 2 L2(10) (100, 13) {d, d2, d3, d4, c, c2, c3, c4, a, ac, ac2, ac3, ac4, ab, abd, abd2, abd3, abd4} Sec. 4.2.4
6.1 100 18 8 2 L2(10) (100, 14) {d, d2, d3, d4, c, c2, c3, c4, b, bc, bc2, bc3, bc4, a, ad, ad2, ad3, ad4} Prop. 3.2.47 [Ma84], 3.4(1)
6.2 100 18 8 2 L2(10) (100, 14) {d, d2, d3, d4, cd3, c2d, c3d4, c4d2, b, bcd3, bc2d, bc3d4, bc4d2, a, ad, ad2, ad3, ad4} Sec. 4.2.4
6.3 100 18 8 2 L2(10) (100, 14) {d, d2, d3, d4, c, c2, c3, c4, b, bd, bd2, bd3, bd4, a, ac, ac2, ac3, ac4} Sec. 4.2.4
6.4 100 18 8 2 L2(10) (100, 14) {c, cd4, c2, c2d3, c3, c3d2, c4, c4d, b, bcd4, bc2d3, bc3d2, bc4d, abd3, abcd3, abc2d3, Sec. 4.2.4

abc3d3, abc4d3}
6.5 100 18 8 2 L2(10) (100, 14) {d, d2, d3, d4, c, c2, c3, c4, a, ac, ac2, ac3, ac4, ab, abd, abd2, abd3, abd4} Sec. 4.2.4
7.1 100 18 8 2 L2(10) (100, 15) {d, d2, d3, d4, c, c2, c3, c4, a, ac, ac2, ac3, ac4, abc3, abc3d, abc3d2, abc3d3, abc3d4} Sec. 4.2.4
7.2 100 18 8 2 L2(10) (100, 15) {d, d2, d3, d4, c, c2, c3, c4, b, bd, bd2, bd3, bd4, a, ac, ac2, ac3, ac4} Sec. 4.2.4
8.1 100 18 8 2 L2(10) (100, 16) {c, cd9, c2, c2d8, c3, c3d7, c4, c4d6, c5, c5d5, c6, c6d4, c7, c7d3, c8, c8d2, c9, c9d} Prop. 3.2.47 [Ma84], 3.4(1)

33.1.1.1 100 22 0 6 Higman− (100, 9) {c2, c3, ac3, abc, ab2, ab3, ab4c, a2c, a2c2, a2bc3, a2bc4, a2b2, a2b2c4, Sec. 4.2.8 [Kli00]
Sims a2b3, a2b3c4, a2b4c3, a2b4c4, a3c, a3bc2, a3b2, a3b3, a3b4c2}

2.1 100 22 0 6 Higman− (100, 10) {c2, c3, ac3, ab, ab2c4, ab3, ab4c3, a2c3, a2c4, a2b, a2bc, a2b2c, a2b2c2, Sec. 4.2.8 [Kli00]
Sims a2b3c, a2b3c2, a2b4, a2b4c, a3c4, a3b, a3b2c2, a3b3, a3b4c4}

3.1 100 22 0 6 Higman− (100, 11) {bc2, b4c3, ac2, ac4, ab2c2, ab4c3, ab4c4, a2c4, a2b, a2bc2, a2bc3, a2bc4, Sec. 4.2.8 [Kli00]
Sims a2b2c3, a2b3c, a2b3c4, a2b4, a2b4c4, a3c3, a3c4, a3b3c, a3b3c3, a3b4c4}

4.1 100 22 0 6 Higman− (100, 12) {b2, b3, abc3, ab3, ab3c, ab4c2, ab4c4, a2c, a2c2, a2bc4, a2b2c4, a2b3, Sec. 4.2.8 [Kli00]
Sims a2b3c3, a2b4, a2b4c, a2b4c2, a2b4c3, a3b2c3, a3b2c4, a3b3c, a3b4, a3b4c2}
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34.1.1.1 100 36 14 12 Hall− (100, 11) {c2, c3, b, bc3, b4, b4c2, a, ac3, abc, ab2, ab3, ab3c2, ab4, ab4c2, ab4c3, Sec. 4.2.8 [Kli00]
Janko− ab4c4, a2c, a2c3, a2c4, a2bc, a2b2, a2b2c, a2b3c4, a2b4, a2b4c2, a2b4c4,
Wales a3, a3c, a3b, a3bc4, a3b2c2, a3b3, a3b3c, a3b3c3, a3b3c4, a3b4}

2.1 100 36 14 12 Hall− (100, 12) {c, c4, bc2, bc3, b4c2, b4c3, a, ac2, ac3, ac4, abc, abc2, ab2, ab3, ab4c, Sec. 4.2.8 [Kli00]
Janko− ab4c2, a2c2, a2c4, a2bc2, a2b2, a2b2c, a2b2c4, a2b3, a2b3c, a2b3c4, a2b4c2,
Wales a3, a3c, a3c3, a3c4, a3b, a3b2c2, a3b2c4, a3b3c2, a3b3c4, a3b4}

35.1.1.1 120 51 18 24 35 (120, 34) {a2, a3, bab, ba4b, abab, aba2, aba3, a2ba, a2bab, a2ba3b, a2ba4, a3ba, Sec. 4.2.9
a3ba2b, a3ba4, a3ba4b, a4ba2, a4ba3, a4ba4b, baba2, baba2b, baba3b, ba2bab,
ba2ba4b, ba3bab, ba3ba4b, ba4ba2b, ba4ba3, ba4ba3b, aba2ba2, aba2ba2b,
aba3ba, aba4ba2, aba4ba3, aba4ba3b, a2ba2ba, a2ba2bab, a2ba4ba, a2ba4ba2,
a2ba4ba3, a3ba4ba, a3ba4bab, a3ba4ba2, baba2ba2, baba2ba2b, baba4ba3,
baba4ba3b, ba2ba2ba, ba2ba2bab, ba3ba4ba, ba3ba4bab, aba2ba2bab}

36.1.1.1 120 56 28 24 36 (120, 34) {b, ab, a2, a3, a3b, bab, ba2, ba4, ba4b, abab, aba2, aba3, aba4, a2bab, a2ba3, Sec. 4.2.9 cf. [Kli95]
a2ba3b, a2ba4, a2ba4b, a3bab, a3ba2, a3ba2b, a3ba4, a4ba, a4bab, a4ba2b,
a4ba3b, baba3, baba3b, baba4b, ba2ba, ba2bab, ba2ba4b, ba3ba, ba3bab, ba4ba,
ba4bab, ba4ba2, ba4ba2b, ba4ba3, ba4ba3b, aba2bab, aba2ba4b, aba4bab,
aba4ba2, aba4ba2b, a2ba2ba, a2ba2ba2b, a2ba4ba, a2ba4ba3, a3ba4ba,
a3ba4bab, a3ba4ba2, a3ba4ba3b, baba4ba3b, ba3ba4ba, aba2ba2ba}

1.2 120 56 28 24 36 (120, 34) {ab, a2, a3, a3b, a4b, ba, bab, ba2, ba4, ba4b, aba, aba3, aba4b, a2ba, a2bab, Sec. 4.2.9 cf. [Kli95]
a2ba2b, a2ba3, a2ba4, a2ba4b, a3ba, a3ba4b, a4ba2, a4ba3, a4ba4, a4ba4b,
baba2, baba2b, baba3, baba3b, baba4, ba2ba4b, ba3ba3, ba3ba4b, ba4bab, ba4ba3,
aba2bab, aba2ba2, aba2ba4, aba3ba, aba3bab, aba3ba4, aba3ba4b, aba4ba,
aba4ba2, a2ba2ba, a2ba2ba4b, a2ba4ba2, a2ba4ba2b, a2ba4ba3, a2ba4ba3b,
a3ba4bab, a3ba4ba2b, a3ba4ba3, baba2ba2b, ba3ba4ba, aba2ba2ba}

36.2.1.1 120 56 28 24 37 (120, 34) {ab, a2, a2b, a3, a3b, a4b, ba, bab, ba2, ba3, ba4, ba4b, aba2, aba3b, aba4b, Sec. 4.2.9 M. H. Klin
a2ba, a2bab, a2ba2b, a2ba4b, a3bab, a3ba3b, a3ba4, a3ba4b, a4bab, a4ba2b, private comm.
a4ba3, baba2, baba2b, baba3, baba4, ba2bab, ba2ba2, ba2ba4, ba3ba, ba3ba3,
ba3ba4b, ba4ba, ba4ba2, ba4ba3, ba4ba3b, aba2ba, aba2ba4b, aba3ba3b,
aba3ba4b, aba4ba, aba4ba2, aba4ba2b, a2ba2ba2, a2ba2ba4b, a2ba4ba, a2ba4bab,
a2ba4ba3, a2ba4ba3b, a3ba4ba2, a3ba4ba2b, a3ba4ba3}

1.i 120 56 28 24 37 (120, 34) there may be more than one partial difference set in group (120,34) Sec. 4.2.9
37.1.1.1 121 20 9 2 L2(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10} Sec. 3.2.3 [Ma84], 3.4(1)
38.1.1.1 121 30 11 2 L3(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(2)

ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10}
39.1.1.1 121 40 15 12 L4(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)

ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6,
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9}
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39.2.1.1 121 40 15 12 L4(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab3, a2b6, a3b9,
a4b, a5b4, a6b7, a7b10, a8b2, a9b5, a10b8}

40.1.1.1 121 50 21 20 L5(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 not primitive
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6, [Ma84], 3.4(3)
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9, ab3, a2b6, a3b9, a4b, a5b4, a6b7, a7b10,
a8b2, a9b5, a10b8}

40.2.1.1 121 50 21 20 L5(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab3, a2b6, a3b9,
a4b, a5b4, a6b7, a7b10, a8b2, a9b5, a10b8, ab4, a2b8, a3b, a4b5, a5b9, a6b2, a7b6, a8b10,
a9b3, a10b7}

41.1.1.1 121 60 29 30 L6(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6,
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9, ab3, a2b6, a3b9, a4b, a5b4, a6b7, a7b10,
a8b2, a9b5, a10b8, ab4, a2b8, a3b, a4b5, a5b9, a6b2, a7b6, a8b10, a9b3, a10b7}

41.2.1.1 121 60 29 30 L6(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 not primitive
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6, [Ma84], 3.4(3)
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9, ab3, a2b6, a3b9, a4b, a5b4, a6b7, a7b10,
a8b2, a9b5, a10b8, ab5, a2b10, a3b4, a4b9, a5b3, a6b8, a7b2, a8b7, a9b, a10b6}

41.3.1.1 121 60 29 30 L6(11) (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6,
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9, ab3, a2b6, a3b9, a4b, a5b4, a6b7, a7b10,
a8b2, a9b5, a10b8, ab6, a2b, a3b7, a4b2, a5b8, a6b3, a7b9, a8b4, a9b10, a10b5}

41.4.1.1 121 60 29 30 Paley (121, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, b, b2, b3, b4, b5, b6, b7, b8, b9, b10, Sec. 3.2.3 [Ma84], 3.4(3)
ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, a10b10, ab2, a2b4, a3b6,
a4b8, a5b10, a6b, a7b3, a8b5, a9b7, a10b9, ab3, a2b6, a3b9, a4b, a5b4, a6b7, a7b10,
a8b2, a9b5, a10b8, ab7, a2b3, a3b10, a4b6, a5b2, a6b9, a7b5, a8b, a9b8, a10b4}

42.1.1.1 125 62 30 31 47 (125, 5) {c, c4, b, bc, bc4, b2c, b2c4, b3c, b3c4, b4, b4c, b4c4, a, ac, ac2, ac3, ac4, ab, abc, abc4, Sec. 4.2.10
ab2c2, ab2c3, ab3c2, ab3c3, ab4, ab4c, ab4c4, a2b, a2bc2, a2bc3, a2b2c, a2b2c4,
a2b3c, a2b3c4, a2b4, a2b4c2, a2b4c3, a3b, a3bc2, a3bc3, a3b2c, a3b2c4, a3b3c, a3b3c4,
a3b4, a3b4c2, a3b4c3, a4, a4c, a4c2, a4c3, a4c4, a4b, a4bc, a4bc4, a4b2c2, a4b2c3,
a4b3c2, a4b3c3, a4b4, a4b4c, a4b4c4}

42.2.1.1 125 62 30 31 48 (125, 3) {c, c4, b, bc2, bc4, b2c3, b2c4, b3c, b3c2, b4, b4c, b4c3, a, ac, ac2, ac3, ac4, ab, abc2, Sec. 4.2.10
abc4, ab2, ab2c4, ab3c, ab3c2, ab4c, ab4c2, ab4c4, a2b, a2bc2, a2bc3, a2b2, a2b2c4,
a2b3c2, a2b3c3, a2b4, a2b4c2, a2b4c4, a3bc, a3bc3, a3bc4, a3b2c3, a3b2c4, a3b3, a3b3c4,
a3b4, a3b4c2, a3b4c4, a4, a4c, a4c2, a4c3, a4c4, a4b, a4bc2, a4bc3, a4b2c,
a4b2c2, a4b3c2, a4b3c3, a4b4c, a4b4c2, a4b4c4}
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1.2 125 62 30 31 48 (125, 3) {c2, c3, b, bc, bc2, b2, b2c2, b3, b3c3, b4, b4c3, b4c4, a, ac, ac2, ac3, ac4, ab, abc3, abc4, Sec. 4.2.10
ab2, ab2c2, ab3c, ab3c4, ab4c, ab4c2, ab4c3, a2b, a2bc, a2bc2, a2b2c2, a2b2c4, a2b3,
a2b3c3, a2b4, a2b4c, a2b4c2, a3bc, a3bc2, a3bc3, a3b2c, a3b2c3, a3b3, a3b3c2, a3b4,
a3b4c, a3b4c2, a4, a4c, a4c2, a4c3, a4c4, a4bc, a4bc2, a4bc3, a4b2c2, a4b2c4, a4b3,
a4b3c2, a4b4c, a4b4c2, a4b4c3}

2.1 125 62 30 31 48 (125, 5) {c, c4, b, bc, bc2, bc4, b2c, b3c4, b4, b4c, b4c3, b4c4, a, ac3, ac4, abc2, ab2c, ab2c4, ab3c3, Sec. 4.2.10
ab4c, ab4c3, ab4c4, a2c2, a2c4, a2b, a2bc2, a2bc3, a2bc4, a2b2, a2b2c, a2b2c2,
a2b2c3, a2b3, a2b3c4, a2b4, a2b4c, a2b4c4, a3c, a3c3, a3b, a3bc, a3bc4, a3b2, a3b2c, a3b3,
a3b3c2, a3b3c3, a3b3c4, a3b4, a3b4c, a3b4c2, a3b4c3, a4, a4c, a4c2, a4bc, a4bc2,
a4bc4, a4b2c2, a4b3c, a4b3c4, a4b4c3}

42.3.1.1 125 62 30 31 49 (125, 3) {c, c4, bc, bc2, bc3, b2, b2c2, b3, b3c3, b4c2, b4c3, b4c4, a, ac2, ab, abc, abc2, ab2, Sec. 4.2.10
ab2c, ab2c2, ab2c3, ab2c4, ab3, ab3c3, ab3c4, ab4, ab4c3, a2, a2c, a2c2, a2bc2, a2bc4,
a2b2, a2b2c2, a2b3c2, a2b3c3, a2b3c4, a3, a3c3, a3c4, a3b2c2, a3b2c3, a3b2c4, a3b3c2,
a3b3c4, a3b4, a3b4c3, a4, a4c3, a4bc, a4bc4, a4b2, a4b2c3, a4b2c4, a4b3, a4b3c,
a4b3c2, a4b3c3, a4b3c4, a4b4, a4b4c, a4b4c4}

1.2 125 62 30 31 49 (125, 3) {c, c4, bc2, bc3, bc4, b2c2, b2c4, b3c, b3c3, b4c, b4c2, b4c3, a, ac3, ab, abc, abc4, ab3, Sec. 4.2.10
ab3c, ab3c4, ab4, ab4c2, a2c, a2c2, a2c3, a2bc, a2bc4, a2b2, a2b2c3, a2b3c, a2b3c2,
a2b3c3, a2b4, a2b4c, a2b4c2, a2b4c3, a2b4c4, a3c2, a3c3, a3c4, a3b, a3bc, a3bc2, a3bc3,
a3bc4, a3b2, a3b2c3, a3b2c4, a3b3c, a3b3c4, a3b4c, a3b4c3, a4, a4c2, a4bc2,
a4bc4, a4b2c2, a4b2c3, a4b2c4, a4b4, a4b4c, a4b4c2}

2.1 125 62 30 31 49 (125, 5) {c, c4, b, bc, bc2, bc4, b2c, b3c4, b4, b4c, b4c3, b4c4, a, ac, ac2, ab, abc3, abc4, ab2c4, ab3c2, Sec. 4.2.10
ab3c4, ab4, a2c, a2c3, a2b, a2bc, a2bc2, a2b2c2, a2b2c4, a2b3c, a2b3c2, a2b3c3,
a2b3c4, a2b4, a2b4c, a2b4c2, a2b4c4, a3c2, a3c4, a3b, a3bc, a3bc3, a3bc4, a3b2c, a3b2c2,
a3b2c3, a3b2c4, a3b3c, a3b3c3, a3b4, a3b4c3, a3b4c4, a4, a4c3, a4c4, a4b,
a4b2c, a4b2c3, a4b3c, a4b4, a4b4c, a4b4c2}

42.4.1.1 125 62 30 31 Paley (125, 5) {c, c4, b, bc, bc2, bc4, b2c, b3c4, b4, b4c, b4c3, b4c4, a, ab, abc2, abc4, ab2c, ab2c2, P rop. 3.2.6 [Ma84], 3.5
ab2c4, ab3, ab4c3, ab4c4, a2c, a2c2, a2c3, a2c4, a2bc, a2bc2, a2bc3, a2bc4, a2b2c,
a2b2c2, a2b3, a2b3c2, a2b3c4, a2b4, a2b4c, a3c, a3c2, a3c3, a3c4, a3b, a3bc4, a3b2, a3b2c,
a3b2c3, a3b3c3, a3b3c4, a3b4c, a3b4c2, a3b4c3, a3b4c4, a4, a4bc, a4bc2, a4b2,
a4b3c, a4b3c3, a4b3c4, a4b4, a4b4c, a4b4c3}

43.1.1.1 144 22 10 2 L(12) no complete determination Sec. 4.2.4
44.1.1.1 144 39 6 12 60 (144, 182) {b, bd, bcd, bcd2, bc2, bc2d2, a, acd, ac2, abc, abc2, abc2d, a2d, a2cd, a2c2, a2bc, a2bcd2 Sec. 4.2.11 cf. [Kli00]

, a2bc2, a3bd, a3bd2, a3bcd, a4, a4d, a4c, a4b, a4bc2, a4bc2d, a5bd, a5bd2, a5bcd, a6d,
a6c2d, a6c2d2, a7, a7cd, a7cd2, a7bc, a7bcd2, a7bc2d}
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45.1.1.1 144 66 30 30 62 (144, 182) {c, cd, cd2, c2, c2d, c2d2, b, bd2, bc, bcd2, bc2, bc2d, ad2, ac, ac2d, abd, abc2, abc2d2, Sec. 4.2.11
a2d, a2c, a2c2d, a2b, a2bd, a2bd2, a2bcd, a2bc2d, a2bc2d2, a3d2, a3cd, a3cd2, a3c2,
a3c2d, a3c2d2, a3b, a3bc, a3bc2d2, a4, a4d, a4cd, a4cd2, a4c2, a4c2d, a4bc, a4bcd, a4bcd2,
a5d2, a5c, a5cd, a5c2, a5c2d, a5c2d2, a5bd, a5bc, a5bc2d, a6c, a6cd2, a6c2d2, a6b,
a6bc, a6bc2, a7d, a7c, a7c2d2, a7b, a7bc2, a7bc2d2}

46.1.1.1 155 42 17 9 65 (155, 1) {b, b13, b14, b17, b18, b30, a, ab, ab8, ab14, ab15, ab17, ab21, ab22, ab30, Sec. 4.2.13
a2b, a2b6, a2b7, a2b12, a2b14, a2b15, a2b24, a2b25, a2b26, a3b2,
a3b3, a3b6, a3b7, a3b14, a3b20, a3b24, a3b27, a3b28, a4, a4b, a4b2, a4b3, a4b15,
a4b18, a4b20, a4b28, a4b29}

47.1.1.1 162 56 10 24 68 (162, 11) {e, e2, ce2, cde2, cd2, c2e, c2d, c2d2e, bce, bcde2, bcd2e, bc2e, bc2de2, bc2d2e2, b2ce, b2cd, Sec. 4.2.13
b2cd2, b2c2e, b2c2de, b2c2d2, ae, ae2, ad, ade, ad2e, ad2e2, ace2, acd, acd2e, ac2e, ac2d,
aac2d2e, b, abe2, abd, abde, abd2, abd2e, abce, abcde, abcd2e, abc2e2, abc2de, abc2d2e2, ab2,
ab2e2, ab2d, ab2de2, ab2d2e, ab2d2e2, ab2ce, ab2cd, ab2cd2e2, ab2c2e2, ab2c2de, ab2c2d2e2}

2.1 162 56 10 24 68 (162, 19) {e, e2, c, cd, cd2e, c2, c2de2, c2d2, bce2, bcde, bcd2e, bc2, bc2d, bc2d2e2, b2ce, b2cde2, b2cd2e, Sec. 4.2.13
b2c2e2, b2c2d, b2c2d2, a, ae, ad, ade, ad2e, ad2e2, ace2, acde2, acd2, ac2e2, ac2d, ac2d2e, abe,
abe2, abd, abde, abd2, abd2e, abc, abcd, abcd2e, abc2e2, abc2de2, abc2d2e2, ab2, ab2e, ab2de,
ab2de2, ab2d2, ab2d2e, ab2ce2, ab2cde2, ab2cd2, ab2c2e, ab2c2d, ab2c2d2e2}

3.1 162 56 10 24 68 (162, 20) {c2, c3, c4d, c4d2, c5d, c5d2, c6, c7, bc, bcd2, bc2d, bc4d, bc5, bc5d2, b2c2d2, b2c4, b2c4d, b2c5, Sec. 4.2.13
b2c5d, b2c7d2, ad2, acd, ac2d, ac3, ac4, ac4d2, ac5, ac5d, ac5d2, ac6d, ac8, ac8d2, abcd2, abc2,
abc2d, abc2d2, abc3, abc3d, abc3d2, abc4, abc4d, abc5, abc5d2, abc8d, ab2d2, ab2c,
ab2c2, ab2c2d, ab2c2d2, ab2c3d, ab2c4d, ab2c4d2, ab2c5, ab2c5d2, ab2c6, ab2c8d}

4.1 162 56 10 24 68 (162, 36) {d3, d4, d5, d6, cd2, cd4, c2d5, c2d7, bd5, bd7, bcd4, bcd5, bc2d2, bc2d4, b2d7, b2d8, Sec. 4.2.13
b2cd, b2cd2, b2c2d2, b2c2d7, a, ad, ad2, ad4, ac, acd, acd7, acd8, ac2, ac2d, ac2d7, ac2d8,
ab, abd, abd2, abd7, abcd, abcd3, abcd7, abcd8, abc2d, abc2d4, abc2d6, abc2d8, ab2, ab2d,
ab2d4, ab2d8, ab2cd4, ab2cd5, ab2cd6, ab2cd7, ab2c2d, ab2c2d3, ab2c2d4, ab2c2d5}

5.1 162 56 10 24 68 (162, 52) {e, e2, de2, d2e, cde, cd2e2, c2de, c2d2e2, bd, bd2, bcd, bcd2, bc2de, bc2d2e2, b2d, b2d2, Sec. 4.2.13
b2cde, b2cd2e2, b2c2d, b2c2d2, ae2, ade, ad2e, ad2e2, ace, acde, acd2, acd2e, ac2e, ac2de,
ac2d2, ac2d2e, abe2, abd, abd2, abd2e, abc, abcde, abcd2, abcd2e2, abc2e2, abc2de2,
abc2d2, abc2d2e2, ab2e2, ab2d, ab2d2, ab2d2e, ab2ce2, ab2cde2, ab2cd2, ab2cd2e2,
ab2c2, ab2c2de, ab2c2d2, ab2c2d2e2}

6.1 162 56 10 24 68 (162, 54) {de, d2e2, ce, cd, cde, c2e2, c2d2, c2d2e2, be2, bde, bde2, bce, bce2, bcde, b2e, b2d2e, Sec. 4.2.13
b2d2e2, b2c2e, b2c2e2, b2c2d2e2, ad2, ad2e, ad2e2, ace2, acd, acde, acde2, acd2, acd2e2,
ac2e, ac2d2e2, ac2e2, abe, abd, abde, abde2, abd2e, abd2e2, abc, abcd, abcde2, abc2e2,
abc2de2, abc2d2e2, ab2e, ab2e2, ab2d2e2, ab2ce, ab2cd, ab2cd2e2, ab2c2, ab2c2e,
ab2c2e2, ab2c2d, ab2c2de2, ab2c2d2e2}
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48.1.1.1 169 24 11 2 L2(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(1)
b8, b9, b10, b11, b12}

49.1.1.1 169 36 13 6 L3(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(2)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12}

50.1.1.1 169 48 17 12 L4(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11}

50.2.1.1 169 48 17 12 L4(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10}

50.3.1.1 169 48 17 12 L4(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9}

51.1.1.1 169 60 23 20 L5(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4, a11b7, a12b10}

51.2.1.1 169 60 23 20 L5(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b, a11b5, a12b9}

51.3.1.1 169 60 23 20 L5(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b, a11b5, a12b9}

52.1.1.1 169 72 31 30 L6(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9}
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52.2.1.1 169 72 31 30 L6(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11,
a11b3, a12b8}

52.3.1.1 169 72 31 30 L6(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab7, a2b, a3b8, a4b2, a5b9, a6b3, a7b10, a8b4, a9b11, a10b5,
a11b12, a12b6}

52.4.1.1 169 72 31 30 L6(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab8, a2b3, a3b11, a4b6, a5b, a6b9, a7b4, a8b12, a9b7, a10b2,
a11b10, a12b5}

52.5.1.1 169 72 31 30 L6(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11,
a11b3, a12b8}

53.1.1.1 169 84 41 42 L7(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11, a11b3, a12b8}

53.2.1.1 169 84 41 42 L7(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, a9b, a10b4,
a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab6, a2b12, a3b5, a4b11, a5b4, a6b10, a7b3, a8b9, a9b2, a10b8, a11b, a12b7}
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53.3.1.1 169 84 41 42 Paley (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 [Ma84], 3.4(3)
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9,
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11,
a11b3, a12b8, ab6, a2b12, a3b5, a4b11, a5b4, a6b10, a7b3, a8b9, a9b2, a10b8, a11b, a12b7}

53.4.1.1 169 84 41 42 L7(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7, a8b8, a9b9, [Ma84], 3.4(3)
a10b10, a11b11, a12b12, ab2, a2b4, a3b6, a4b8, a5b10, a6b12, a7b, a8b3, a9b5, a10b7,
a11b9, a12b11, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11,
a11b3, a12b8, ab8, a2b3, a3b11, a4b6, a5b, a6b9, a7b4, a8b12, a9b7, a10b2, a11b10, a12b5}

53.5.1.1 169 84 41 42 L7(13) (169, 2) {a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, b, b2, b3, b4, b5, b6, b7, Sec. 3.2.3 not primitive
b8, b9, b10, b11, b12, ab3, a2b6, a3b9, a4b12, a5b2, a6b5, a7b8, a8b11, [Ma84], 3.4(3)
a9b, a10b4, a11b7, a12b10, ab4, a2b8, a3b12, a4b3, a5b7, a6b11, a7b2, a8b6, a9b10, a10b,
a11b5, a12b9, ab5, a2b10, a3b2, a4b7, a5b12, a6b4, a7b9, a8b, a9b6, a10b11,
a11b3, a12b8, ab6, a2b12, a3b5, a4b11, a5b4, a6b10, a7b3, a8b9, a9b2, a10b8,
a11b, a12b7, ab9, a2b5, a3b, a4b10, a5b6, a6b2, a7b11, a8b7, a9b3, a10b12, a11b8, a12b4}

54.1.1.1 171 34 17 4 T (19) (171, 3) {b, b18, a, ab14, ab15, ab18, a2b14, a2b15, a2b17, a2b18, a3b10, P rop. 3.2.15
a3b11, a3b17, a3b18, a4b, a4b2, a4b10, a4b11, a5b, a5b2, a5b3, a5b4,
a6b3, a6b4, a6b11, a6b12, a7b5, a7b6, a7b11, a7b12, a8, a8b, a8b5, a8b6}

55.1.1.1 196 26 12 2 L2(14) no complete determination Sec. 4.2.4
56.1.1.1 225 28 13 2 L2(15) no complete determination Sec. 4.2.4
57.1.1.1 243 22 1 2 91 (243, 6) {b, b3d, b3d2, b4cd2, b4c2d, b5cd, b5c2d2, b6d, b6d2, b8, ab2cd, ab4c, ab7, ab7c2, ab8d, Sec. 4.2.12

ab8c2d, a2b, a2bcd, a2b5, a2b5cd2, a2b7c2d2, a2b8c2d}
2.1 243 22 1 2 91 (243, 38) {d, d2, ad, ab, ab2cd2, ab2c2, a2cd, a2c2d2, a2bd, a2b2, a3d2, a4b2d2, a5bcd2, a5bc2d2, Sec. 4.2.12

a5b2c, a5b2c2d2, a6d, a7cd2, a7c2d, a7bcd2, a7bc2d2, a8d2}
3.1 243 22 1 2 91 (243, 51) {e, e2, de2, d2e, bd2, bcd2, bc2, b2d, b2c, b2c2d, abe2, abcd2, abc2d2e, ab2, Sec. 4.2.12

ab2ce2, ab2c2d2e, a2bde2, a2bcd2e, a2bc2d, a2b2d, a2b2cd2e, a2b2c2d2e2}
4.1 243 22 1 2 91 (243, 67) {ce2, c2e, bc, bcde, bc2, bc2de2, b2c, b2cd2e, b2c2, b2c2d2e2, ade, ade2, ac2e, Sec. 4.2.12 [Ma94], 8.3(2)

ac2d2e, abce2, ab2cd2e2, a2d2e, a2d2e2, a2ce2, a2cde2, a2bc2de, a2b2c2e}
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58.1.1.1 243 110 37 70 92 (243, 38) {bcd, bcd2, bc2, bc2d, b2c, b2cd2, b2c2d, b2c2d2, ac, abcd, ab2, ab2c, ab2cd, ab2c2d, a2, Sec. 4.2.12
a2cd2, a2c2, a2c2d2, a2bc2d2, a2b2c2, a3, a3c, a3cd, a3cd2, a3c2, a3c2d, a3c2d2, a3bc,
a3bcd2, a3bc2, a3bc2d2, a3b2cd, a3b2cd2, a3b2c2, a3b2c2d2, a4d, a4d2, a4c, a4cd, a4cd2,
a4c2d, a4c2d2, a4bd, a4bd2, a4bc, a4bcd, a4bcd2, a4bc2, a4bc2d, a4b2cd2, a5d, a5d2,
a5c, a5cd, a5c2, a5c2d, a5c2d2, a5b, a5bcd, a5bc2, a5bc2d, a5b2, a5b2c, a5b2c2d, a5b2c2d2,
a6, a6c, a6cd, a6cd2, a6c2, a6c2d, a6c2d2, a6bc, a6bcd, a6bc2d, a6bc2d2, a6b2c, a6b2cd,
a6b2c2, a6b2c2d, a7, a7cd, a7cd2, a7c2, a7b, a7bc, a7bcd2, a7bc2d2, a7b2d, a7b2d2,
a7b2c, a7b2cd, a7b2cd2, a7b2c2, a7b2c2d2, a8c2d, a8bd, a8bd2, a8bc, a8bcd2, a8bc2, a8bc2d,
a8bc2d2, a8b2d, a8b2d2, a8b2cd, a8b2cd2, a8b2c2, a8b2c2d, a8b2c2d2}

2.1 243 110 37 70 92 (243, 51) {d, d2, be2, bd2, bd2e, bce2, bcd2, bcd2e, bc2, bc2e, bc2de2, b2e, b2d, b2de2, b2c, b2ce2, Sec. 4.2.12
b2cd2e, b2c2e, b2c2d, b2c2de2, ae, ae2, ad, ade2, ad2, ad2e, acd, acde, acde2, acd2, acd2e,
acd2e2, ac2, ac2e2, ac2de, ac2de2, ac2d2, ac2d2e, ab, abe, abe2, abd, abde2, abd2e, abce,
abce2, abcd, abcd2, abcd2e, abcd2e2, abc2, abc2e, abc2de2, abc2d2, abc2d2e, abc2d2e2, ab2e,
ab2d, ab2de2, ab2ce2, ab2cd, ab2cde, ab2c2e, ab2c2e2, ab2c2d2, a2e, a2e2, a2d, a2de2, a2d2,
a2d2e, a2c, a2ce2, a2cde, a2cde2, a2cd2, a2cd2e, a2c2, a2c2e, a2c2e2, a2c2d2, a2c2d2e,
a2c2d2e2, a2be, a2be2, a2bd, a2bcd, a2bcde2, a2bcd2e, a2bc2, a2bc2e, a2bc2de2, a2b2e,
a2b2e2, a2b2d, a2b2de, a2b2de2, a2b2d2, a2b2ce2, a2b2cd, a2b2cde, a2b2cd2, a2b2cd2e,
a2b2cd2e2, a2b2c2e, a2b2c2d, a2b2c2de2, a2b2c2d2, a2b2c2d2e, a2b2c2d2e2}

2.2 243 110 37 70 92 (243, 51) {d, d2, b, be, be2, bd, bde2, bd2e, bc, bce, bce2, bcd, bcde2, bcd2e, bc2e, bc2d, bc2de, bc2de2, Sec. 4.2.12
bc2d2, bc2d2e2, b2, b2e, b2e2, b2de2, b2d2, b2d2e, b2ce2, b2cd, b2cde, b2cd2,
b2cd2e, b2cd2e2, b2c2, b2c2e, b2c2e2, b2c2de2, b2c2d2, b2c2d2e, ae, ae2, ad, ade2, ad2, ad2e,
ac, ace2, acde, acde2, acd2, acd2e, ac2, ac2e, ac2e2, ac2d, ac2de, ac2de2, abe2, abd2,
abd2e, abce, abce2, abcd, abc2e, abc2d2, abc2d2e2, ab2e, ab2d, ab2de2, ab2cd, ab2cd2e,
ab2cd2e2, ab2c2de2, ab2c2d2, ab2c2d2e, a2e, a2e2, a2d, a2de2, a2d2, a2d2e, a2cd, a2cde,
a2cde2, a2cd2, a2cd2e, a2cd2e2, a2c2e, a2c2e2, a2c2d, a2c2de, a2c2d2, a2c2d2e2, a2bd,
a2bde2, a2bd2e, a2bce, a2bce2, a2bcd, a2bc2, a2bc2e, a2bc2de2, a2b2e, a2b2e2, a2b2d2,
a2b2c, a2b2ce2, a2b2cd2e, a2b2c2de2, a2b2c2d2, a2b2c2d2e}
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58.1.3.1 243 110 37 70 92 (243, 56) {e, e2, b, be, bd, bde, bd2, bd2e, bc, bce, bcde, bcde2, bcd2, bcd2e2, bc2e, bc2e2, bc2d, bc2de, Sec. 4.2.12
bc2d2, bc2d2e2, b2, b2e2, b2d, b2de2, b2d2, b2d2e2, b2c, b2ce, b2cd, b2cde2,
b2cd2e, b2cd2e2, b2c2, b2c2e, b2c2de, b2c2de2, b2c2d2, b2c2d2e2, a, ae2, ad, ade2, ad2e, ad2e2,
ac, ace, acde, acde2, acd2e, acd2e2, ac2e, ac2e2, ac2d, ac2de, ac2d2e, ac2d2e2, abe, abde,
abd2e2, abce, abcde2, abcd2e, abc2, abc2de2, abc2d2e2, ab2e, ab2d, ab2d2, ab2ce2, ab2cde,
ab2cd2e, ab2c2e, ab2c2d, ab2c2d2, a2, a2e, a2d, a2de, a2d2e, a2d2e2, a2ce, a2ce2, a2cd, a2cde,
a2cd2, a2cd2e, a2c2, a2c2e2, a2c2d, a2c2de, a2c2d2, a2c2d2e2, a2b, a2bde2, a2bd2, a2bce,
a2bcd, a2bcd2e, a2bc2e, a2bc2d, a2bc2d2e, a2b2e2, a2b2de, a2b2d2e2, a2b2c, a2b2cde,
a2b2cd2e, a2b2c2e2, a2b2c2de2, a2b2c2d2e}

4.1 243 110 37 70 92 (243, 57) {b, bd, bc, bcd, bcd2, bc2d, bc2d2, b2, b2d, b2c2, b2c2d, ad2, ac, acd, ac2d2, ab, abd, abcd, abcd2, Sec. 4.2.12
ab2c2, a2, a2d2, a2c, a2cd, a2cd2, a2c2, a2c2d2, a2b, a2bcd2, a2bc2,
a2bc2d2, a2b2d2, a2b2c, a2b2c2, a2b2c2d2, a3, a3b, a3bd2, a3bc2, a3bc2d2, a3b2d, a3b2d2,
a3b2c, a3b2cd, a3b2cd2, a3b2c2, a3b2c2d2, a4, a4d, a4d2, a4cd2, a4c2, a4c2d, a4c2d2, a4bd2,
a4bc, a4bc2, a4bc2d2, a4b2, a4b2d, a4b2c, a4b2cd2, a5, a5d, a5d2, a5cd, a5c2, a5c2d, a5c2d2,
a5bd, a5bd2, a5bc, a5bcd, a5b2, a5b2d, a5b2cd, a5b2cd2, a6, a6bd, a6bd2, a6bc, a6bcd, a6bcd2,
a6bc2, a6bc2d, a6b2, a6b2d2, a6b2c, a6b2cd, a6b2cd2, a6b2c2d, a6b2c2d2, a7,
a7d, a7c, a7cd, a7cd2, a7c2, a7c2d, a7bc2d, a7b2d2, a7b2cd, a7b2c2d, a7b2c2d2, a8d, a8c,
a8cd2, a8c2d, a8bc2d, a8b2c2d}

5.1 243 110 37 70 92 (243, 59) {bc2d, b2, b2cd2, b2c2, b2c2d2, b3, b4d, b4d2, b4c, b4cd, b5d, b5d2, b5c, b5cd, b6, b7, Sec. 4.2.12
b7cd2, b7c2, b7c2d2, b8c2d, ac, abd, abd2, abc, abcd, abc2, abc2d, abc2d2, ab2,
ab2d, ab2d2, ab2cd, ab2c2, ab2c2d, ab2c2d2, ab3, ab3cd, ab3cd2, ab3c2, ab4, ab4d, ab4cd, ab4cd2,
ab5d, ab5d2, ab5c, ab5cd, ab5cd2, ab5c2, ab5c2d, ab6d, ab6d2, ab6c2d, ab6c2d2, ab7, ab7d2,
ab7c, ab7cd2, ab7c2, ab7c2d, ab7c2d2, ab8, ab8c, ab8cd2, ab8c2d2, a2, a2d, a2c, a2cd, a2b, a2bd,
a2bd2, a2bc, a2bcd, a2bcd2, a2bc2, a2b2, a2b2d, a2b2d2, a2b2cd, a2b2cd2, a2b2c2d, a2b2c2d2,
a2b3d2, a2b3cd2, a2b3c2, a2b3c2d, a2b4d, a2b4cd2, a2b4c2d, a2b4c2d2, a2b5c,
a2b5cd2, a2b5c2, a2b5c2d, a2b6c2d2, a2b7, a2b7d2, a2b7c, a2b7cd, a2b7c2, a2b7c2d,
a2b7c2d2, a2b8, a2b8d, a2b8d2, a2b8c, a2b8cd, a2b8c2, a2b8c2d2}

6.1 243 110 37 70 92 (243, 66) {c, cd2, c2, c2d, bc2d, bc2d2, b2c, b2cd2, b2c2, b2c2d, b2c2d2, ac, acd, acd2, ac2d2, abd, Sec. 4.2.12
abd2, abc, abc2d, ab2, ab2d2, ab2c, ab2cd, ab2cd2, ab2c2d, ab2c2d2, a2, a2d,
a2c2d2, a2bd, a2bd2, a2bc, a2bcd2, a2bc2, a2bc2d, a2b2cd, a2b2cd2, a2b2c2d2, a3, a3cd, a3cd2,
a3c2, a3c2d2, a3bc, a3bcd, a3bcd2, a3bc2, a3bc2d2, a3b2c, a3b2cd, a4d2, a4c, a4c2, a4c2d,
a4bcd, a4bcd2, a4bc2, a4bc2d2, a4b2c, a5d2, a5c, a5cd, a5c2, a5c2d, a5c2d2, a5b, a5bcd, a5bc2d2,
a5b2, a5b2d2, a5b2c, a5b2c2, a5b2c2d, a5b2c2d2, a6, a6c, a6cd, a6c2d, a6c2d2, a6bc, a6bcd,
a6bcd2, a6bc2, a6bc2d, a6b2cd, a6b2cd2, a6b2c2, a6b2c2d, a6b2c2d2, a7, a7d,
a7cd, a7cd2, a7b, a7bc, a7bcd, a7bcd2, a7b2d, a7b2cd, a7b2cd2, a7b2c2, a8cd2, a8c2, a8c2d,
a8bc2, a8bc2d, a8bc2d2, a8b2d, a8b2c2, a8b2c2d}
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58.1.7.1 243 110 37 70 92 (243, 67) {de, d2e2, c, ce2, cd, cde, cde2, cd2, c2, c2e, c2d, c2d2, c2d2e, c2d2e2, be, bd, bde, bce2, bcd2, Sec. 4.2.12
bcd2e2, bc2d, bc2de, bc2de2, bc2d2, bc2d2e, bc2d2e2, b2e2, b2d2, b2d2e2, b2cd, b2cde, b2cde2,
b2cd2, b2cd2e, b2cd2e2, b2c2e, b2c2d, b2c2de, ae2, ad, ade, ade2, ad2, ad2e2, ac2e,
ac2d, ac2de, ac2d2, ac2d2e, ac2d2e2, abe, abe2, abde, abde2, abd2e, abd2e2, abcd, abcd2,
abcd2e2, abc2d, abc2de, abc2d2, ab2de, ab2d2, ab2d2e, ab2cd, ab2cde2, ab2cd2e2, ab2c2e,
ab2c2e2, ab2c2d, ab2c2de, ab2c2d2, ab2c2d2e2, a2e, a2d, a2de, a2d2, a2d2e, a2d2e2, a2ce2,
a2cd, a2cde, a2cde2, a2cd2, a2cd2e2, a2bd, a2bde2, a2bd2e2, a2bce, a2bce2, a2bcd, a2bcde,
a2bcd2, a2bcd2e2, a2bc2de, a2bc2d2, a2bc2d2e, a2b2e, a2b2e2, a2b2de, a2b2de2, a2b2d2e,
a2b2d2e2, a2b2cd, a2b2cd2, a2b2cd2e2, a2b2c2d, a2b2c2de, a2b2c2d2}

59.1.1.1 253 42 21 4 T (23) (253, 1) {b, b22, a, ab20, ab21, ab22, a2b16, a2b17, a2b20, a2b21, a3b8, a3b9, P rop. 3.2.15
a3b16, a3b17, a4b8, a4b9, a4b15, a4b16, a5b6, a5b7, a5b15, a5b16,
a6b6, a6b7, a6b11, a6b12, a7b11, a7b12, a7b21, a7b22, a8b18, a8b19, a8b21, a8b22,
a9b12, a9b13, a9b18, a9b19, a10, a10b, a10b12, a10b13}

60.1.1.1 253 112 36 60 94 (253, 1) {b, b2, b5, b7, b8, b11, b12, b15, b16, b18, b21, b22, ab, ab4, ab7, ab8, ab10, Sec. 4.2.13
ab12, ab13, ab16, ab18, ab21, a2b2, a2b5, a2b6, a2b8, a2b12, a2b15,
a2b16, a2b18, a2b19, a2b22, a3b3, a3b4, a3b6, a3b7, a3b9, a3b12, a3b13, a3b15, a3b16,
a3b18, a4, a4b4, a4b5, a4b6, a4b8, a4b9, a4b10, a4b12, a4b14, a4b18, a5,
a5b2, a5b4, a5b6, a5b10, a5b12, a5b14, a5b15, a5b16, a5b19, a6, a6b, a6b3, a6b4, a6b6,
a6b7, a6b10, a6b11, a6b14, a6b20, a7, a7b2, a7b4, a7b5, a7b8, a7b11, a7b14,
a7b17, a7b19, a7b21, a8b, a8b2, a8b5, a8b7, a8b10, a8b11, a8b14, a8b15, a8b19,
a8b21, a9b, a9b2, a9b6, a9b7, a9b10, a9b11, a9b16, a9b19, a9b20, a9b21, a10b,
a10b5, a10b8, a10b11, a10b14, a10b15, a10b17, a10b18, a10b19, a10b21}
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