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Abstract

This work considers the behavior the Ising model of a ferromagnet subject
to a strong, randomly switching external driving field. A formalism based
on the master equation to handle such nonequilibrium systems is introduced
and applied to a mean field approximation, and one- and two-dimensional
variants of the model. A novel type of phase transition related to sponta-
neous symmetry breaking and dynamic freezing occurs which depends on the
strength of the driving field. The complex analytic structure of the stationary
magnetization distributions is shown to range from singular-continuous with
euclidean or fractal support to all continuous. Analytic results are presented
for the mean field and one-dimensional cases, whereas Monte-Carlo simula-
tions provide insight into the two-dimensional model. Also, an interpretation
of the model from a neurobiological point of view is given.

Diese Arbeit beschäftigt sich mit dem Verhalten des Ising-Modells eines
Ferromagneten unter dem Einfluß eines starken, zufällig geschalteten ex-
ternen Magnetfeldes. Ein auf der Master-Gleichung basierender Formalis-
mus für Nicht-Gleichgewichts-Systeme wird eingeführt und auf eine Moleku-
larfeldtheorie des Modells, sowie auf ein- und zwei-dimensionale Varianten
angewendet. In Abhängigkeit von der Stärke des Antriebs tritt ein neuartiger
Phasenübergang auf, der mit spontaner Symmetriebrechung und dynami-
schem Einfrieren in Zusammenhang steht. Die stationären Magnetisierungs-
verteilungen zeigen in weiten Bereichen des Phasendiagramms fraktale Eigen-
schaften. Für die Molekularfeldtheorie und den eindimensionalen Fall werden
analytische Ergebnisse präsentiert, während für das zweidimensionale Mod-
ell auf Monte-Carlo-Simulationen zurückgegriffen werden muß. Abschließend
wird auf eine neurobiologische Interpretation des Modells eingegangen.
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Chapter 1

Introduction

The original motivation to study the statistical mechanics of strongly driven,
complex systems originates from several roots. First and foremost, there is
the interplay between the curiosity of a physicist on one hand, and feasibility
estimates on the other. Considering that fluid dynamics, climatology, or
even the function of the human brain (which consists of around one hundred
billion signal processing cells called neurons) might fall into this category,
one can surmise the enormous hurdles that contemporary physics has yet to
overcome, that is, feasibility is rather restrictive with respect to the choice
of interesting problems one might investigate.

As a concrete example, one of the projects in SFB 517 “Neurokognition”
has as its goal the understanding of the way information is coded by the
retina, which transforms the optical images we perceive into electrical signals
called spikes. It is these spikes that are further processed by the nerve cells of
the brain, giving in the end rise to our sense of vision. It is generally accepted
that a typical patch of cells processing spikes receives input signals following
a Poisson distribution. From a statistical mechanics point of view, one would
like to understand how “noise transformation” takes place in such a system
of many, strongly connected units driven by an external source of noise. Of
course, choosing a physical approach will involve an extreme simplification
with respect to the complex nature of nerve tissue but there’s hope to learn
something about the properties of such a model that may be transferred to
the “real thing”.
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From previous work of Pál Ruján[GyRu84] related to the so-called random
field Ising model[BrAe83, AeBr83] stems the suggestion of an experiment
that fits perfectly into this context. The idea is to take a simple, well-known
model from statistical mechanics like the Ising ferromagnet and to drive it
with a strong, random external magnetic field, thus creating a nonequilibrium
situation. As the model lives on the border of dynamic systems theory, mostly
concerned with few degrees of freedom, and statistical physics, it may interest
the theorist how these two domains interact.

The subject of this work is the randomly driven Ising ferromagnet. The re-
sults presented in the following have been published in [HaRu97], [HaRu99a],
and [HaRu99b]. In the remainder of this chapter, the model itself will be
specified and put in relation to previous work. In Chapter 2, a theoretical
framework is developed to handle this type of system. Next, in Chapter 3,
the model is discussed in mean field approximation. Chapter 4 and 5 de-
tail results for one and two dimensions, the former exact, the latter derived
from Monte Carlo simulations. Then, an interpretation of the model in the
above-mentioned neurobiological context is given in Chapter 6. Concluding
remarks complete the work in Chapter 7.

1.1 The randomly driven Ising ferromagnet

This section serves to give a general idea of the model underlying the work
in the following chapters, the randomly driven Ising ferromagnet (RDIM).
Some of the typical quantities of interest are defined in the context of the
well-known Ising model of a magnet in one dimension. Following this, the
key concept of the random external driving field is explained. More details
will follow in Chapter 2, and later on when required.

Consider a line of lattice sites numbered from i = 1 . . . N . At each site i,
let there be a microscopic magnetic moment, or spin, pointing either parallel
or antiparallel to some preferred direction. As usual, define a spin variable
si ∈ {−1,+1} for each site having two possible configurations. Configuration
space thus consists of the set of 2N corners of the N-dimensional hypercube
defined on [−1, 1]⊗ [−1, 1]⊗ · · · ⊗ [−1, 1].

In general, the energy of interaction of two magnetic moments is propor-
tional to their dot product ~µ1 · ~µ2. The presence of an external magnetic
field ~H gives rise to an energy proportional to ~µ · ~H. Hence, the simplest
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choice of interactions between next neighbors and a global field defines the
Hamiltonian

H := −J
N∑
i=1

sisi+1 −H
N∑
i=1

si, (1.1)

where J and H are global coupling constants, that is, the interactions are
translation invariant. The model is called ferromagnetic if J > 0 or anti-
ferromagnetic if J < 0.

The usual approach in equilibrium statistical mechanics provides the link
from microscopic interactions defined by the above Hamiltonian to stationary
thermodynamic properties by evaluating exactly or approximately the (in
this case canonical) partition function

Z(T,H) :=
∑
{C}

e−βE[C], (1.2)

where β := 1
kBT

with the Boltzmann constant kB and the temperature T of
the heat bath the system is in contact with. {C} is the set of hypercube
corners mentioned (or generally, the set of all possible configurations). If Z
is available, one may calculate, for example, the free energy F , the mean
magnetization M , and the magnetic susceptibility χ,

F(T,H) = −kT lnZ (1.3)

M(T,H) = − ∂

∂H
F (T,H) (1.4)

χ =
∂

∂H
M(T,H) |H=0, (1.5)

or any other thermodynamic quantity associated with the model. Typically,
one performs the thermodynamic limit N 7→ ∞ to describe macroscopic
systems. This completes the description of equilibrium stationary states of
statistical physical models. It is the calculation of Z that most often proves
to be a highly nontrivial matter1.

The key component of the RDIM distinguishing it from previous work
is the dynamics of the external driving field. If this dynamics is slow in
the sense that the system remains near global equilibrium at all times, the
usual methods may be adapted to still correctly describe it. This is not
the case for a field changing fast in comparison with relaxation to global

1except for the simplest of models like the one defined by Eq. 1.1
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equilibrium. A driving field H(t) governed by a fast chaotic or stochastic
dynamics prohibits the normal evolution towards a Boltzmann distribution
of states. Adjusting the time scale of the field below the system’s relaxation
time leads to competition between two objectives defined by the Hamiltonian,
Eq. 1.1: Try to achieve local equilibrium on one hand, but follow the driving
field on the other hand. Before some of the properties of the nonequilibrium
stationary states of the RDIM are analyzed, the stage is set in the next
section with an overview of related work.

1.2 What’s been done

Due to the time-dependent external driving field, the RDIM is a dynamic
system. It is also a statistical physics model, as it possesses a macroscopic
number of degrees of freedom.

Coming from the theory of dynamic systems, there are several recent ar-
ticles concerned with many body problems. In [SiSz96], Simányi and Szász
prove the Boltzmann-Sinai ergodic hypothesis for a system of N ≥ 2 hard
balls of mass mi for i = 1 . . . N for almost every distribution of masses. The
balls move uniformly on a ν-dimensional torus (ν ≥ 3) and interact through
elastic collisions. Gallavotti and Cohen [GaCo95a] discuss the application
of a principle similar to the ergodic hypothesis to a many-particle model of
a strongly sheared fluid, deriving results on the (macroscopic) entropy pro-
duction fluctuations. In [GaCo95b], they develop this idea into the chaotic
hypothesis for reversible, dissipative many-particle systems in a nonequilib-
rium stationary state, which allows one to derive macroscopic properties of
such systems.

A model closely related to the RDIM is the random field Ising model
(RFIM), first introduced by [BrAe83]. Its Hamiltonian is modified with re-
spect to Eq.1.1 by allowing for a binary random field Hi instead of the global
field H, that is, at each site i of the chain there is an external field Hi = H0

with probability p and Hi = −H0 with probability 1− p, respectively:

H := −J
N∑
i=1

sisi+1 −
N∑
i=1

Hisi, (1.6)

It is still a static model as the random field is quenched. Nonetheless, there
are qualitative similarities to the RDIM, for example, the integrated proba-
bility distribution is a devil´s staircase [BrAe83, AeBr83]. In [Ru78], it was
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shown that the problem may be reduced to a single spin in a local field gov-
erned by a discrete map. In the case of the RFIM, the map is stochastic,
leading to an invariant measure with possibly fractal support due to the ex-
istence of a strange attractor for the (random) local field. Quantities like the
free energy or Edwards-Anderson parameter thus must be calculated using
a fractal measure [GyRu84]. Furthermore, the multifractal spectrum of this
measure may be determined [Ev87] and its relation to free energy fluctu-
ations [BeSz88] established. An alternate view of the strange attractor as
the repellor of the backward iteration of the inverse map [SzBe87] leads to
a generalized eigenvalue equation from which generalized dimensions of the
measure may be calculated [Be89]. Many of the methods developed for this
model may be transferred to the RDIM.

More recently, attention has been focused on the Ising ferromagnet in a
time-dependent, sinusoidal external field. The phenomenon of interest here is
magnetic hysteresis. In [RaKr90], a detailed study of the cubic O(N)-model
in the N 7→ ∞ limit is presented. The evolution of the shapes of hysteretic
loops depends on the strength of the external field and on its frequency, lead-
ing to five types of loops. Their area shows a scaling behavior described by
A ∼ Hα

0 Ωβ with α ≈ 0.66 and β ≈ 0.33 for low values of H0 and Ω, corre-
sponding to the first three loop types. The mean field kinetic Ising model in
a sinusoidal field shows a dynamic phase transition related to the symmetry
of solutions [ToOl90]. For a strong field/high temperature, the stationary
solution is symmetric in the sense m(t+ τ

2
) = −m(t). As the time-averaged

magnetization m is zero, this phase is called paramagnetic. Conversely, in a
weak field/low temperature situation, m oscillates around a non-zero mean,
leading to a ferromagnetic phase. An analysis of the stability of these solu-
tions shows that there exists an area in the H − T -phase diagram where the
para- and ferromagnetic phases overlap, and there exists a tricritical point.
Monte Carlo simulations of the 2D kinetic Ising model [LoPe90] and cell-
dynamical simulations [SeMa92] confirm the dynamic phase transition and
indicate scaling behavior, but not the existence of the tricritical point. Fur-
ther Monte Carlo studies [SiRa96] show that the response of an Ising system
depends on the decay mechanism of the metastable states. The lifetimes of
latter were previously shown to depend on system size, temperature, and
(exponentially on the inverse) strength of the unfavorable field using droplet
theory and Monte Carlo simulations [RiTo94].
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M. Accharyya has followed an approach very similar to the RDIM in
[Ac98]. 2D Monte Carlo simulations and numerical integration of a mean
field Ising model in a random field with a uniform distribution on a given
interval show a (continuous) nonequilibrium phase transition. It is related to
dynamical symmetry breaking of the time-averaged magnetization. Details
on this paper will be presented in the appropriate sections.

Turning to an experimental view, much progress has been made in the
past few years to handle ultrathin magnetic films. In [BaBr89], the magnetic
aftereffect of Co films (0.4 to 2.0 nm thick) is investigated. Magnetization
reversal seems to occur due to domain wall motion as opposed to the rever-
sal of independent particles. In [PoMe90], the time development of magnetic
domains in a similar experiment was visualized using a magneto-optic mi-
croscope. Reversal is dominated by nucleation or wall motion depending on
the sample and the strength of the field. The formation of magnetic domains
is studied in [AlSt90] where it is found that there is a transition from out-
of-plane to in-plane magnetization as the thickness of a Co film is increased.
Also, the size of domains depends linearly on sample thickness. The scaling
law for the area of the hysteretic loop is confirmed for Fe films of a few mono-
layers using the magneto-optic Kerr-effect in [HeWa93]. These experiments
indicate that ultrathin ferromagnetic films indeed belong to a dynamic Ising
universality class. The current state of experimental techniques is such that
a verification of the effects seen in the RDIM seems to be in reach.

Hopefully this brief introduction of the randomly driven Ising model and
the background scene surrounding it will suffice to persuade the reader that
the investigation of its properties proves to be highly interesting. The next
chapter introduces a general formalism designed to handle a system of spins
in a nonequilibrium situation. It is based on the Master equation for the
time-dependent probability distribution of a system of spins.
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Chapter 2

Formalism

This chapter is devoted to the introduction of a theoretical formalism to de-
scribe the behavior of a statistical mechanical spin model driven by a time-
dependent external magnetic field. In the first section, the basic assump-
tions necessary to start the analysis are presented. In the second section,
simplifications are made using a random, dichotomic driving field, leading
to a discrete “coarse-grained” Master equation. Thirdly, one needs to define
quantities from dynamical systems theory to describe the stationary proper-
ties and the dynamical aspects of the model.

2.1 The Master equation

We will discuss a system of spins ~µ = (s1, s2, . . . , sN), si = ±1 for i =
1, . . . , N , in contact with a thermal heat bath, envisioning the later as the
result of spin interactions with phonons. Assume now that the evolution
of this system is completely described by a joint probability distribution
|P ({si}, t)〉 subject to the Master equation

∂t|P ({si}, t)〉 = −L̂B(t)|P ({si}, t)〉 (2.1)

where L̂B(t) is the Liouville operator describing the probability flow into and
out of the probability of states ~µ if the system is subject to an external
magnetic field B(t) at time t. Note that in general, [L̂B, L̂B′ ] 6= 0 for B 6=
B′. The ket |P 〉 indicates that we have a choice of bases to describe the
distribution.
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2.1.1 Spin configuration and spin product basis

The obvious choice is the spin configuration basis in which |P 〉 is expressed
using P (~µ, t) for each ~µ in the set of all 2N possible configurations {si}.
Hence we have

~P (t) = (P (~µ(1), t), P (~µ(2), t), . . . , P (~µ(2N ), t))T (2.2)

with P (~µ(i), t) denoting the probability of the i-th spin configuration at time
t. An alternate expression of |P 〉 in the space of spin products is given by

P ({si}, t) =
1

2N

(
1 +

N∑
i=1

mi(t)si +
N∑
i<j

ci,j(t)sisj + · · ·+ c1,2,...,N(t)s1s2 . . . sN

)

where mi(t) :=
∑
{si} siP ({si}, t) is the average local magnetization of spin i

at time t, ci,j the two-spin correlation between spins i and j, and so forth1. In-
troducing the 2N index sets α obvious from the last equation and defining the
averages of all products of spins πα(t) = 〈

∏
j∈α sj〉 =

∑
{si} P ({si}, t)

∏
j∈α sj

this may be written more compactly as

P ({si}, t) =
1

2N

 2N∑
α=1

πα(t)
∏
j∈α

sj

 .

In this basis |P (t)〉 may be expressed as

~π(t) =
1

2N
(1, 〈s1〉t, 〈s2〉t, . . . , 〈sN〉t, 〈s1s2〉t, . . . , 〈s1s2 · · · sN〉t)T (2.3)

where 〈·〉t is the thermal average at time t. Thus in both cases, |P 〉 may
be expressed as a 2N -dimensional vector2, and the action of the Liouville
operator may be expressed in matrix form.

2.1.2 Some properties of L̂
Keeping in mind the first representation (2.2), we can say the following on

the eigenvalues of Lij. As the components of ~P are the probabilities of spin
1This representation is a generalization to N dimensions of the fact that any spin

function can be parameterized as f(s1, s2) = a+bs1 +cs2 +ds1s2, where s1, s2 ∈ {−1,+1}.
2Normalized with respect to the L1 norm
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configurations, its evolution is described by

~P (t+ ∆t) :=M~P (t) (2.4)

whereM must be a stochastic matrix3. The definition of the Liouville oper-
ator is

~P (t+ ∆t)− ~P (t) = (M−E)~P (t) =: −∆tL~P (t), (2.5)

where E is the unit matrix. From the characteristic polynomial of M we
gather

2N−1∏
i=0

(µ− µi) = det(M−E + E − µE) (2.6)

= det(−∆tL − (µ− 1)E) =: det(∆tL − λE), (2.7)

so if we know the eigenvalues ofM we also know those of L, and vice versa.
From the stochasticity property we immediately figure

(1, 1, . . . , 1)M = 1 · (1, 1, . . . , 1), (2.8)

and (1, 1, . . . , 1)L = 0 · (1, 1, . . . , 1). (2.9)

Therefore (1, 1, . . . , 1) is a left eigenvector of L̂ for eigenvalue λ0 = 0, or
generally, λi ∼ 1 − µi. The operator L̂ is not necessarily symmetric, but it
may be expanded in a biorthogonal basis of its left and right eigenvectors
〈ln|rn〉 = aδn,m, respectively:

L̂ =
1

a

2N−1∑
n=0

|rn〉λn〈ln|. (2.10)

Like in quantum mechanics, functions of L̂ may be expressed via series ex-

pansions, f(L) = 1
a

∑2N−1
n=0 |rn〉f(λn)〈ln|. For a constant external field, the

formal solution of the Master equation then is

|P (t)〉 = exp(−tL̂)|P (0)〉 =
1

a

2N−1∑
n=0

|rn〉e−λnt〈ln|P (0)〉, (2.11)

where |P (0)〉 is the state of the system at t = 0 (consistent with whatever
macroscopic constraints there are). Ordering the eigenvalues λ0 = 0 ≤ λ1 ≤

3 ∀i, j : 0 ≤Mij ≤ 1 and ∀j :
∑
iMij = 1. All its eigenvalues are real and ≤ 1.
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· · · ≤ λ2N−1, we see that Eq. (2.11) describes the system´s relaxation towards
global thermal equilibrium4,

|Peq〉 = lim
t7→∞
|P (t)〉 =

1

a
|r0〉. (2.12)

Thus the components of |r0〉 in the spin configuration basis are the Boltzmann
factors e−E/kBT , and its L1-norm 〈l0|r0〉 ≡ a =

∑
{si} e

−E/kBT = Z yields the

stationary canonical partition function. Note that the L2-norm of |P (t)〉 is

〈P (t)|P (t)〉 =
1

Z2

∑
n,m

〈P (0)|rn〉e−tλn〈ln|rm〉e−tλm〈lm|P (0)〉 (2.13)

=
1

Z

∑
n

e−2tλn〈P (0)|rn〉〈ln|P (0)〉. (2.14)

Hence, if the system is in a state |P (0)〉 =
∑

n αn|rn〉 (with the corresponding
bra 〈P (0)| =

∑
m βm〈lm|),

lim
t7→∞
〈P (t)|P (t)〉 =

1

Z

∑
n

〈l0|r0〉〈l0|r0〉α0β0 = Zα0β0. (2.15)

Turning back to a time-dependent field, there are three characteristic
time scales of interest: That of spin-phonon interactions τflip, the slowest
relaxation mode of the system as a whole, τsys = λ−1

1 , and τB describing the
field dynamics. Assuming τflip � τsys � τB, i.e. a slowly changing magnetic
field, the system is always in local and global thermal equilibrium on the
field´s time scale. It´s a different story if we do not permit this relaxation
by rapidly switching the field. If τflip � τB � τsys the system remains in
local equilibrium, but it does not have the time to reach global equilibrium.

2.2 Driving field distribution and discrete Mas-

ter Equation

As mentioned in the introduction, the external driving field might be a ran-
dom variable or subject to a chaotic dynamics. In the following, it is sampled

4If we ignore the possibility that L is degenerate!
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identically and independently from a distribution ρ(B). Furthermore, the
field is constant during time intervals of length τB,

B(t) = Bρ(B)
∞∑
n=0

Θ(t− nτB)Θ((n+ 1)τb − t). (2.16)

As before, the Master Eq. (2.1) can be integrated exactly for the time inter-
vals during which the field is constant,tn−1 < t < tn:

|P (t)〉 = exp(−(t− tn−1)L̂B(tn−1))|P (tn−1)〉. (2.17)

For t := limε7→0(tn − ε) we see

|P (tn)〉 = exp(−τBL̂B(tn−1))|P (tn−1)〉 = M̂τB
B(tn−1)|P (tn−1)〉. (2.18)

2.2.1 Coarse-graining the Master Equation

Focusing on the case of a rapidly switching field, τB � τsys or λ1τB � 1,
Eq. (2.18) may be approximated by expanding the exponential to first order
giving

|P (tn)〉 ≈ (E − τBL̂B(tn−1))|P (tn−1)〉. (2.19)

Eq. (2.19) may be rewritten as

|P (tn)〉 − |P (tn−1)〉
τB

≈ −L̂B(tn−1)|P (tn−1)〉, (2.20)

which is the “coarse-grained” Master Equation announced at the beginning
of this chapter. Of course, it only describes correctly the long term behav-
ior of Eq. (2.19) due to those eigenvalues of L̂ that satisfy λiτB � 1. At
time scale τB, the short term effects due to the larger eigenvalues may be
considered to have already relaxed. They are not taken into further account.
The approximated form Eq. (2.20) defines a discrete dynamics for the evolu-
tion of the probability distribution |P (tn)〉. It is this dynamics that we will
investigate in the following chapters.

2.2.2 An iterated function system

To further simplify things, restrict the external driving field distribution to
a symmetric, binary-valued one,

ρ(B) =
1

2
δ(B −B0) +

1

2
δ(B +B0). (2.21)
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This choice leads to the iterated function systems (IFSs)5 developed by
Barnsley and Demko [BaDe85]. Thinking again in terms of matrices, the
original problem Eq. (2.1) is now transformed to the action of two maps,

f+/−(~P ) := MτB
+/−

~P on a (normalized) vector ~P . A trajectory is given by
choosing at random a sequence of signs + or − and applying the correspond-
ing map f+/−. The stationary properties of the RDIM will thus be closely
linked to those of the attractor of the associated IFS. Many of the results
coming from the mathematics of fractals [Ma77] apply to the RDIM, as will
become clear in the next chapter.

2.3 Stationary and dynamical properties

In order to make sensible statements about the nonequilibrium stationary
states of the RDIM, several concepts from the theory of dynamical systems
should be mentioned.

An important object in dynamical systems is the invariant measure in-
duced by a dynamics6, in our case the Master Equation (2.20) (see, for ex-
ample, [ChWr81]). In the spin product basis, denote by Ps(~π) the stationary
probability distribution induced by (2.20). It has to satisfy a self consistency
relation called the Chapman-Kolmogorov equation:

Ps(~π) =

∫
d~ν

∫
dBδ[~π − exp(−LBτB)~ν]ρ(B)Ps(~ν) =: K̃Ps(~π), (2.22)

where ~ν is also in the spin product representation. K̃ is called Frobenius-
Perron operator. The meaning of Eq. (2.22) is that the probability of state
~π has to be invariant when subject to the dynamics Eq. (2.18). The contri-
bution to this probability of a state ~ν that maps into ~π when the field is B

5Recall, for example, the famous middle third Cantor set. The associated IFS comprises
of two linear functions mapping the unit interval to [0, 1

3 ]∪ [ 2
3 , 1]. The resulting set is then

iteratively mapped, leading in the limit of infinitely many iterations to “fractal dust”, the
Cantor set. This “dust” is rather peculiar: On one hand, its Lebesgue measure is zero,
but on the other hand, it is much “fatter” than the (countably infinite) set of rational
numbers in the unit interval. This led to the development of a generalized concept of
dimension related to measure theory. Fractal sets are commonly associated with non-
integer dimension, for example, the Cantor set has Hausdorff dimension dF = ln 2

ln 3 . A
good mathematical introduction is given by Kenneth Falconer [Fa90].

6If the dynamics is characterized by a mapping f : D 7→ D, a measure µ on D is called
invariant if for every subset A ⊂ D : µ(f−1(A)) = µ(A) holds.
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is ρ(B)Ps(~ν). Those states that do not map into ~π are filtered out by the
Dirac-δ. The sum of all contributions, i.e. the integral in the above equation,
must be Ps(~π).

The calculation of the nonequilibrium stationary value of some spin ob-
servable A(~π) thus requires a thermal 〈·〉 and a dynamic average [·],

A(~π) = [〈A〉] =

∫
d~ν

∫
dBδ[~π − exp(−LBτB)~ν]A(~ν)ρ(B)Ps(~ν). (2.23)

An interesting question is how a randomly driven system like the RDIM
relaxes to its stationary state. To assess this, one would have to solve the
right eigenvalue problem of the Frobenius-Perron operator introduced above,

K̃Rm = κmRm. (2.24)

The largest eigenvalue must be κ0 = 1, which is associated with the stationary
distribution R0 ≡ Ps.

The formalism outlined this far seems quite involved and the question
arises if it can be successfully applied to a physical system. As already
indicated, further discussions will be limited to a spin system in a random,
dichotomic external field. The next chapter shows that indeed a mean field
theory can be developed that leads to some surprising results.
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Chapter 3

Mean Field Approximation

In order to legitimate the formalism developed in the last chapter, we will
consider now a mean field theory of the RDIM. Similar to the zero-field
mean field Ising model, there is a transition from a paramagnetic phase
to a ferromagnetic one. The dependence on temperature and the strength
of the external field, though, is not what one would expect following the
conventional statistical physics approach. Instead, the transition is related to
a dynamic freezing of the system. To show these results, a mean field map is
introduced in the next section. The phase transition is then calculated in the
usual fashion. Next, this result is contrasted with a geometric interpretation
of what is happening, followed by an explanation of the freezing process. A
discussion of the multifractal regime rounds up the picture. Finally, a note
on the character of the driving field is due.

3.1 The mean field map

As usual, the mean field Ising model is constructed by considering the ther-
modynamic limit of an N -dimensional simplex where all spins are next neigh-
bors. The (extensive) energy then is

E = − J
N

N∑
i6=j

sisj − µBB(t)
N∑
i=1

si. (3.1)

Here, µB is the Bohr magneton and the external field B(t) is given by
Eq. (2.16) with the binary distribution Eq. (2.21). For a state ~µ, define
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~µi := (s1, s2, . . . ,−si, . . . , sN). The Liouville operator may be represented
using the well-known Glauber transition rate[Gl63]

w(~µi|~µ) =
1

2α

(
1− si tanh

(
K

N

N∑
j 6=i

sj +H

))
, (3.2)

where K := J
kBT

=: βJ and H := βµBB and α sets the time scale. Eq. (2.20)
now leads to the following equation in the spin configuration basis:

P (~µ, t+ τB)− P (~µ, t) = τB

(
N∑
i=1

w(~µ|~µi)P (~µi, t)− P (~µ, t)
N∑
i=1

w(~µi|~µ)

)
.

Defining the average magnetization m(t) := 1
N

∑N
i=1 si(t) ∈ [−1, 1], one re-

covers in the thermodynamic limit N 7→ ∞ the usual result

m(t+ 1) = tanh(Km(t) +H(t)). (3.3)

Here time is measured in units of α = τB. Due to the driving field distribu-
tion (2.21), this is a stochastic map,

m(t+ 1) =

{
tanh(Km(t) +H0) with probability 1

2

tanh(Km(t)−H0) with probability 1
2

(3.4)

withH0 := βµBB0. This map is the basis for the investigation in the following
sections.

3.2 The stationary phase diagram

This section first presents the standard expansion of moments of the dynamic
average magnetization. It implies a relation between K and H0 that describes
the transition of the RDIM from para- to ferromagnetic behavior. Then, the
mean field map is interpreted from a geometrical point of view related to the
fixed points of the map’s branches, which leads to an alternate approach to
the phase diagram yielding a different critical field. It turns out that the
phase transition is not continuous, but that [m] jumps at a critical value of
the driving field.
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3.2.1 Expansion of moments

Due to the fact that the dynamic average of moments of the magnetization
is constant in the stationary state, [mk(t+ 1)] = [mk(t)],

[mk(t)] =

[(
v + h

1 + vh

)k]
, (3.5)

where v := tanh(Km(t)) and h := tanh(H(t)). In the conventional approach,
one assumes that the free energy of the system is analytic in [m]. Then
Eq. (3.5) for k = 1 may be expanded in terms of the k-th moments of [m]
and h:

[m] =

[(
Km(t)− 1

3
(Km(t))3 +

2

15
(Km(t))5 − · · ·+ h

)
×
(

1−
{
Km(t)− 1

3
(Km(t))3 +

2

15
(Km(t))5 − . . .

}
h

+

{
Km(t)− 1

3
(Km(t))3 +

2

15
(Km(t))5 − . . .

}2

h2 − . . .

)]
. (3.6)

Thus

[m] = K[m] + [h]−K2[m2][h]−K[m][h2]

+K3[m3][h2] +K2[m2][h3]− 1

3
K3[m3] + . . . (3.7)

From similar expressions for higher odd moments one obtains [mk] = O([h2k]).
Noting that odd functions of h vanish in the dynamic average due to the sym-
metry of the field distribution, the first order expansion of [m] in h2 leads to

[m] ≈ K(1− tanh2(H0))[m]. (3.8)

The critical driving field, as a function of temperature, is given by

1 = K(1− tanh2(H0)) (3.9)

⇒ Hc =
1

2
ln

(
1 +m†

1−m†

)
, (3.10)

with m† :=
√

K−1
K

for K ≥ 1. As expected, in the absence of a driving field,

Hc = 0, the result for the critical temperature Kc = 1 is consistent with the
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standard mean field result. With a bit of patience, higher order expansions
may be obtained in the same way, as well as expressions for higher moments
of the magnetization (see also [HaRu99a]).

3.2.2 Geometric analysis

Turning now to a geometric view, consider the stochastic map Eq. (3.4) shown
in Fig. 3.1 for K = 2, H0

K
= 0.5. To generate a trajectory we have to chose a

sequence of signs + and −, i.i.d. with p+ = p− = 1
2
, describing the sign of the

external driving field, in accordance with (2.21). Starting from an arbitrary
initial value m(0) ≡ m0 ∈ [−1, 1], the sequence prescribes which branch
f+(m) := tanh(Km + H0) or f−(m) := tanh(Km−H0) of the map to take
in the next time step, m(t+1) = f+(m(t)) or m(t+1) = f−(m(t)). Note that
each branch has a (stable) fixed point f+(m1) = m1 and f−(−m1) = −m1,
respectively. For example, a sequence consisting only of + signs leads to

∀m0 ∈ [−1, 1] : lim
t7→∞

f
(t)
+ (m0) = m1 (3.11)

with f
(1)
+ (m0) := f+(m0) and f

(t)
+ (m) := f+(f

(t−1)
+ (m)). This trajectory is

indicated by the arrows in Fig. 3.1. Note that no matter how close to a fixed
point of one branch a trajectory is, say m1, it can always move away from it
along the other branch, in this case f−. Thus one may think of the dynamics
as the competition between the two fixed points of the map.

3.2.3 An alternate approach to the phase diagram

In order to derive a phase diagram in the K-H0

K
-plane, one needs to analyze

the behavior of the fixed points as functions of K and H0. Fig. 3.2 shows
that the upper branch f+ has one, two, or three fixed points m1 ≥ m2 ≥ m3.
The arrows on the branches indicate in which direction points are mapped.
The symmetry of tanh implies that −m1 ≤ −m2 ≤ −m3 are the fixed points
of f−.

At high temperatures K ≤ 1, m1 = m2 = m3, independent of the field1

H0. An example is presented in Fig. 3.3. Due to the symmetry of the
driving field distribution and the fact that a trajectory cannot be trapped
near a fixed point, the dynamic averaged magnetization is [m] = 0. Hence,

1This is simply a property of f : R 7→ [−1, 1], x 7→ tanh(x).
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Figure 3.1: Upper and lower branches f+ and f− of the mean field map for
K = 2.0 and H0

K
= 0.5. The arrows indicate the motion of m0 = −1 subject

to iteration along the upper branch.
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Figure 3.2: Upper branch f+ of the mean field map for K = 2 and driving
field strengths H0
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= 0.5, 0.266, and 0.1 (from left to right). The arrows on

each branch show in which direction points are mapped.
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Figure 3.3: Mean field map for K = 0.4 and H0
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paramagnetic phase.
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the system is in a paramagnetic phase. Fig. 3.4 displays the approximate
stationary magnetization distribution P (m). It was computed by tracking
the evolution of 1000 initial values m0 uniformly distributed in the interval
[−1, 1] for five thousand iterations2 of the map Eq. (3.4). The stationary
dynamics is confined to the interval [−m1,m1]. Note the well-separated peaks
and the devil’s staircase structure of the integrated distribution (the latter
shown in red).

For low temperature K > 1, the slope of tanh(Km) at m = 0 for the first
time becomes greater than the slope of the diagonal m(t + 1) = m(t), thus
permitting m1 > m2 > m3. From Fig. 3.2 it is obvious that this situation
occurs for small driving fields. Note that m2 is unstable, i.e. all points to
the left of m2 are mapped towards m3 and all to the right of m2 are mapped
towards m1 along the upper branch. Taking into account both branches, it
is immediately clear from Fig. 3.5 that all m > m2 are mapped towards m1

regardless of whether f+ or f− is chosen. The same is true for all m < −m2,
which are mapped towards −m1. Due to the stochastic nature of the driving
field, all initial values m ∈ [−m2,m2] will be eventually mapped outside this
interval with probability 1 and can never return to the boxed area in Fig. 3.5,
which may also be seen from its stationary distribution in Fig. 3.6. The sign
of [m] ≷ 0 depends on the initial state m0, and on the realization of the
driving field sequence in case the initial value is m0 ∈ [−m2,m2]. This leads
to the conclusion that the system is in a ferromagnetic phase.

Consider again the case of low temperature but with a strong driving field,
as depicted in Fig. 3.1. As in the paramagnetic phase at high temperature,
there is only one fixed point for each branch. Hence the trapping effect seen
in the ferromagnetic phase cannot occur, even below the equilibrium critical
temperature. The situation is best described as a driven paramagnetic phase.
The corresponding stationary magnetization distribution is shown in Fig. 3.7.
Note the possibility of type I intermittency around m ≈ 0, to which we will
come back to in the next section.

The most interesting case occurs when the field H0 is such that m1 >
m2 = m3, which is possible at K > 1. It is easy to see that the branches
then tangentially touch the diagonal at m† = ±m2, see Fig. 3.8. The cor-
responding distribution is depicted in Fig. 3.9. The fixed point equation for

2Taking a close look, you may notice that P (m) is not exactly symmetric around m = 0.
This is a numerical artifact due to the finite number of iterations and the limited resolution
of the graph.
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Figure 3.5: Same as Fig. 3.3, but for K = 2.0 and H0
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inside the box marked in green are eventually mapped outside the box and
can never return. Thus the system shows ferromagnetic behavior.
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m† leads to

Km† +Hc =
1

2
ln

(
1 +m†

1−m†

)
(3.12)

⇒ Hc =
1

2
ln

(
1 +m†

1−m†

)
−Km† (3.13)

For a given K > 1, it is at H0 = Hc that a second, distinct fixed point
appears. As long as H0 > Hc, no trajectories can be trapped, as discussed
above. But as soon as H0 ≤ Hc, the stationary magnetization [m] is bounded

away from zero by |m†|, for example
√

1
2

in Fig. 3.8. The RDIM is thus

subject to a first order phase transition. The results for the critical field,
Eq. (3.10) and (3.13), are shown in Fig. 3.10.

3.3 Dynamic freezing

The phase transition of the RDIM takes place due to dynamic freezing, which
will be explained in this section. Fig. 3.11 displays the map at K = 2 for a
driving field slightly above the critical one, H0

K
= 0.3 & Hc

K
. The green arrows

indicate the movement of m(t) through an “intermittent tunnel” which has
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from the region around m3 occurs. The “laminar” regime shows a sawtooth
dynamics. The intermittent burst in the middle of the graph is characterized
by a monotonous increase of m(t), after which the system settles again in a
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to be passed in order to escape from the region around the negative fixed
point m3. Part of a trajectory is shown in Fig. 3.12 where this happens the
first time. The “laminar” behavior of the magnetization is sawtooth-like, as
can be seen in the left and right part of the trajectory. The monotonous
increase in the middle of the graph is the intermittent burst.

Consider first what happens when iterating along the upper branch of
the map only. As in the theory of chaotic maps (see [PoMa80]), f+(m) =
tanh(Km+H0) is approximated to second order at m†, in the middle of the
tunnel, for fields close to Hc:

mt+1 ≈ m† + (mt −m†) +
H0 −Hc

K
+

1

2

{
−2Km†(mt −m†)2

−4m†(mt −m†)
H0 −Hc

K
− 2Km†

(
H0 −Hc

K

)2}
(3.14)

Changing variables xt := mt −m†, small deviations of the driving field from
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Hc lead to
xt+1 = xt + αx2

t + ε, (3.15)

where α := −Km† > 0 and ε := H0−Hc
K

> 0. The difference equation may be
approximated by the differential equation

dx

dt
= αx2 + ε, (3.16)

from which the number of steps in the tunnel may be approximated by

n := tout − tin =

∫ xout

xin

dx

ε+ αx2
=

1

αε
arctan

(
x

√
α

ε

) ∣∣∣xout
xin

. (3.17)

Typically, one assumes that after exiting from the tunnel, |x| > xout, a
trajectory is reinjected into the tunnel at |x| < xout with probability P (x) =
P (−x). The expectation of the number of steps in the tunnel is

〈n〉 =
1

αε
arctan

(
xout

√
α

ε

)
. (3.18)

The result for xout
√

α
ε
� 1 is

〈n〉 ∼ ε−
1
2 =

(
H0 −Hc

K

)− 1
2

. (3.19)

This behavior is known as an inverse tangent bifurcation in literature3.
But what happens to the RDIM in a parameter range where the above

discussion is applicable? We need to iterate on average 〈n〉 =
(
H0−Hc
K

)− 1
2

steps along the upper branch, which happens with probability p〈n〉 = 2−〈n〉.
Each time the field is −H0, the trajectory is moved back to the entrance of
the tunnel, as indicated by the blue line in Fig. 3.11. Therefore, the escape
rate for a population of N(t) trajectories starting near m3 is governed by

Ṅ(t) = −const 2−〈n〉 N(t), (3.20)

yielding the mean escape time

τesc = const 2〈n〉 ∼ 2(H0−Hc)−
1
2 . (3.21)

Dynamic freezing occurs because τesc diverges exponentially as the driving
field approaches the critical field value from above, H0 7→ Hc.

3See, for example, the book by Schuster[Sc88]
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3.4 The multifractal regime

Recall that the RDIM is an IFS (see Sec. 2.2), which suggests that the mag-
netization distribution will be a fractal in a certain parameter range. This is
indeed the case.

As already mentioned, the values of m(t) in the stationary state are lim-
ited to the interval [−m1,m1]. As is obvious from the top graph of Fig. 3.13,
if Km1 −H0 < 0 there is a gap

∆ = tanh(−Km1 +H0)− tanh(Km1 −H0)

= 2 tanh(H0 −Km1) > 0 (3.22)

of values around m = 0 that cannot be reached from either branch of the
map. Therefore, the support of the invariant density is fractal with dimension
dF < 1 in the paramagnetic region up to the boundary line given by Km1 =
H0 displayed in red in Fig. 3.14. Following the notation developed in [Ra93],
the magnetization distribution is singular-continuous with fractal support
(SC-F).

Taking a closer look at the map in the ferromagnetic region, displayed in
the bottom graph of Fig. 3.13, there is another possibility for a gap to open.
In the stationary state, the dynamics is confined to the interval [m1,−m3]4,
which implies

∆ := tanh(−Km3 +H0)− tanh(Km1 −H0) > 0 (3.23)

⇔ K(m1 +m3) < 2H0. (3.24)

The magnetization distribution in the ferromagnetic phase is also singular-
continuous with fractal support in the region bounded by K(m1+m3) = 2H0.
In Fig. 3.14, its boundary is marked in blue.

Obviously, something happens in between these two regions. To this end,
introduce the generalized dimensions of a set (as first reported in [HePr83]).
For the limit set of the IFS represented by the mean field map, they are

dq :=
1

q − 1
lim
ε7→0

1

ln ε
ln

∫
dPs(m)Ps(Bε(m))q−1 (3.25)

where q ≥ 0 and Bε(m) is a ball of diameter ε around m. A numerically more
tractable definition is given by Halsey et al [HaJe86], where balls of different

4Or [−m1,m3], but we will look only at the positive interval.
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Figure 3.13: Top: Gap in the paramagnetic mean field map for K = 0.5 and
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K
= 2.
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Figure 3.14: Classification of the RDIM’s magnetization distributions follow-
ing [Ra93].

diameters are used to cover a set5. They define a kind of partition function

ΓN(q, τ) :=
N∑
i=1

pqi
lτi

(3.26)

where li is the length of the i-th interval needed to cover N disjoint sets. pi
is the probability associated with the i-th interval. Then there is a unique
τ for which Γ is non-zero and finite in the limit N 7→ ∞, which is used to
define the generalized dimensions via

(q − 1)dq := τ(q). (3.27)

The Legendre transform of −τ(q) leads to the so-called multifractal spectrum

f(α(q)) := q
∂τ

∂q
− τ(q) = qα− τ(q). (3.28)

The minimum scaling index αmin ≡ d∞ corresponds to the most concentrated

5This is a good thing to do as it leads to df ≡ d0 ≡ dHausdorff . The latter is a
dimension in a mathematically rigorous sense.
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region of Ps. Following [Ev87],

d∞ = − ln 2

ln f ′±

∣∣∣
m1

, (3.29)

hence the border d∞ = 1 is given by

K(1−m2
1) =

1

2
, (3.30)

which is the green line in Fig. 3.14. Note that in the region marked AC
(for absolutely continuous), all generalized dimensions are dq = 1 and the
magnetization distribution is square integrable in the usual sense (see [Ra93]).
In the area marked SC-E (for singular-continuous with euclidean support),
the support of the distributions is the complete interval m ∈ [−1,+1]. Here,
only those generalized dimensions with q > 0 may be less than unity. This
situation occurs in all three regions of the phase diagram.

3.5 A comment on the driving field

One may suspect that the properties of the RDIM discussed so far are due
to the fact that we are looking at a binary driving field. Consider now a field
uniformly distributed in the interval I := [−Hlim, Hlim]. The evolution of
the RDIM is now given by choosing H0 ∈ I at each time step and following
a mean field map

m(t+ 1) = tanh(Km(t) +H0). (3.31)

Trajectories are generated by choosing from a continuum of maps in each time
step, so to speak. The limiting maps for H0 = ±Hlim are shown in green in
Fig. 3.15. The critical maps for H0 = ±Hc are displayed in red. Recall now
the discussion of the dynamic freezing transition. Say a trajectory has run
into the region m ≈ −1. Then, as long as

Hlim > Hc =
1

2
ln

(
1−m†

1 +m†

)
+Km†, (3.32)

there are maps allowing escape from this region. The probability to chose
such a map is obviously

pesc =
1

2Hlim

(Hlim −Hc) =
1

2

(
1− Hc

Hlim

)
<

1

2
. (3.33)
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Figure 3.15: For a uniform distribution of the driving field, H0 ∈
[−Hlim,+Hlim], a continuum of maps is available which is bounded by the
limiting maps shown in green. As long as the critical maps, displayed in
red, are inside the continuum, the RDIM remains paramagnetic. The phase
transition occurs at Hlim = Hc. The zero field map corresponding to the
non-driven Ising model is shown in black.

From Eq. (3.19) for H0 = Hlim one deduces

〈n〉 >
(
Hlim −Hc

K

)− 1
2

(3.34)

as maps closer to Hc than Hlim may be chosen. Thus, one may be sure to
underestimate the escape time by

τesc ∼
(

2Hlim

Hlim −Hc

)(Hlim−Hc)−
1
2

. (3.35)

Therefore, as before in the case of a binary-valued driving field, there is a
freezing transition. The time averaged magnetization, which is the order pa-
rameter, remains zero until Hlim ≤ Hc. Then, it again immediately jumps to
a value [m] ≷ m†. The arguments presented to describe the phase transition
of the RDIM thus hold even for continuous driving field distributions, as long
as there is a limiting field value Hlim.
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This is in contrast to the results presented in [Ac98], who numerically
solved the mean field dynamic equation of motion. There, it is claimed that
the transition is continuous. This result may be due to the fact that the
escape time (3.35) is extremely diverging. Hence, the order parameter must
be calculated for very long times, otherwise it may indicate a phase transition
where there is none.

This chapter has revealed some surprising properties of the RDIM in
mean field approximation. The phase transition from para- to ferromagnetic
behavior is first order, the order parameter jumps. The transition takes place
due to dynamic freezing, which leads to a bifurcation of the stationary mag-
netization distribution. The latter is a multifractal for a wide parameter
range. In both phases, there are regimes where the support of the magneti-
zation distribution is a true fractal with dF < 1. Finally, the restriction to a
dichotomic driving field distribution is not so severe. The freezing transition
also takes place, for example, for a uniform distribution in an interval. The
critical ingredient is the existence of limiting maps, that is, the set of driving
field strengths must be bounded. In the next chapter, the discussion will be
extended to the one dimensional case.
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Chapter 4

One Dimension

This chapter is devoted to the analysis of the RDIM in one dimension. The
coarse grained Master Equation (2.20) here leads to maps for the local mag-
netization and two spin correlations, in a similar fashion as in the mean field
case. Solutions for the translation invariant sectors are presented. Then, the
phase transition at Tc = 0 is discussed. These results are formally similar
to those of [Gl63] for a non-driven Ising model. Finally, the map of the
translation invariant magnetization again leads to a distribution with fractal
support.

4.1 Local magnetization and two spin corre-

lations

The energy of the one dimensional Ising chain is given by

E = −J
N∑
i=1

sisi+1 + µBB(t)
N∑
i=1

si, (4.1)

where sN+1 = s1 for periodic boundary conditions. The Glauber transition
rate describing the Liouville operator is now

w(si) := w(~µi|~µ) =
1

2α

(
1− si tanh

(
K(si−1 + si+1) +H

))
(4.2)
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where K = βJ and H = βµBB are defined as before. For the local magneti-
zation

mi(t) = 〈si〉t =
∑
~µ

siP (~µ, t), (4.3)

the time evolution may be calculated from (see [Gl63])

ṁi(t) = −2〈siw(si)〉t =
1

α

(
−mi(t) + 〈tanh

(
K(si−1 + si+1) +H

)
〉t
)
. (4.4)

Using again the coarse grained Master Equation and measuring time in units
of τB, one obtains a map similar to the mean field one, namely

mi(t+ 1) = 〈tanh
(
K(si−1 + si+1) +H

)
〉t. (4.5)

Defining the constants γ = tanh 2K and h = tanhH, Eq. (4.5) may be
transformed to the spin product representation

mi(t+ 1) =

〈
h

2

(
1− γ2

1− γ2h2
+ 1

)
+
γ

2

(
1− h2

1− γ2h2

)
(si−1 + si+1) +

h

2

(
1− γ2

1− γ2h2
− 1

)
si−1si+1

〉
t

. (4.6)

In a more compact form,

mi(t+ 1) = a+
γ̃

2
(mi−1(t) +mi+1(t)) + d〈si−1si+1〉t (4.7)

with

a :=
h

2

(
1− γ2

1− γ2h2
+ 1

)
(4.8)

d := a− h (4.9)

γ̃ = γ

(
1− h2

1− γ2h2

)
. (4.10)

Thus, for the driving field distribution (2.21), the dynamics of the one di-
mensional model are subject to the map

mi(t+ 1) =

{
a+ γ̃mi−1(t)+mi+1(t)

2
+ d〈si−1si+1〉t with p = 1

2

−a+ γ̃mi−1(t)+mi+1(t)
2

− d〈si−1si+1〉t with p = 1
2
,

(4.11)
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where a, d, and γ̃ are evaluated at h = tanhH0. Again following [Gl63], one
obtains for the two spin correlation ci,j = 〈sisj〉t

ċi,j = −2〈sisj
(
w(si) + w(sj)

)
〉t. (4.12)

Now, choosing the time unit α = 2τB leads to another map,

ci,j(t+1) =
1

2
〈sj tanh

(
K(si−1+si+1)+H

)
+si
(
K(sj−1+sj+1)+H

)
〉t. (4.13)

For H = 0, note that a = d = 0 and γ̃ = γ. As expected, the results due to
[Gl63] are reproduced.

The last term of the local magnetization map (4.7) indicates that it is
coupled to the two spin correlation ci−1,i+1(t). Similarly, transformation of
Eq. (4.13) would show that the correlation map couples to a three spin cor-
relation ci,j,k(t), and so forth. This means that one can get some results for
the translation invariant sectors, but the others are unsolvable. Recall that
the dynamic average of a spin function satisfies [A(t+ 1)] = [A(t)], hence

[mi] =

[
γ̃

2
(mi−1 +mi+1)

]
. (4.14)

Therefore, the translation invariant magnetization m(t) = 1
N

∑
imi(t) obeys

[m] = γ̃[m] (4.15)

as [a] = [d] = 0 due to the driving field symmetry and where γ̃ is again
evaluated for h = tanhH0, explicitly

γ̃ = tanh(2K)
1− tanh2(H0)

1− tanh2(H0) tanh2(2K)
, (4.16)

The translation invariant two spin correlation, cj(t) = 1
N

∑
i ci,i+j, gives

[cj] =

[
γ̃

2
(cj−1 + cj+1)

]
, (4.17)

the solution of which is (again, refer to [Gl63])

[cj] = η|j| with η =
1−

√
1− γ̃2

γ̃
. (4.18)

Note that even though the recursion relations Eqs. (4.14) and (4.17) are
formally equivalent, they do not have the same solution. The solution given
for [cj] rest upon the fact that c0 ≡ 1, whereas generally m0 6= 1 (see [Gl63]).
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4.2 The phase transition at Tc = 0

Similar to the non-driven case, the magnetization of the one dimensional
RDIM vanishes except for γ̃ = 1, which requires K 7→ ∞ (corresponding to
T 7→ 0). A ferromagnetic phase may only exist at Tc = 0. From Eq. (4.16) it
is easy to see that limK 7→∞ γ̃ = 1 if H0 is fixed. But if additionally H0 7→ ∞,
one may run into trouble1.

To make this more precise, consider the correlation length ξ, which is
related to η by

η|j| ∼ e−
|j|
ξ ⇒ ξ = − 1

ln η
. (4.19)

It is straightforward to rewrite γ̃ in terms of exponentials in K and κ,

γ̃ =
(1− e−4K)(2 + e−4K(1−κ) + e−4K(1+κ))

8(1 + e−8K + e−4K(1−κ) + e−4K(1+κ))
(4.20)

with κ := H0

2K
. Expansion of γ̃ near Tc = 0 leads to

γ̃ ≈

{
1− e−4K(1−κ) for κ < 1,

e−4K(κ−1) for κ > 1.
(4.21)

From Eq. (4.15), [m] = 0 due to γ̃ = 0 for κ > 1. Thus, in addition to
the paramagnetic behavior for T > 0, the RDIM remains in a paramagnetic
phase in the T = 0 limit provided that the driving field is strong enough.
This corresponds to the driven paramagnetic phase discussed in the mean
field approximation. For weaker fields, κ < κc = 1, there is a symmetry-
breaking ferromagnetic phase.

Inserting Eq. (4.21) in Eq. (4.19) one finds that the correlation length is
in leading order

ξ ∼

{
e2K(1−κ) for κ < 1,

1
4K(κ−1)

for κ > 1.
(4.22)

The relaxation time corresponding to the decay of the order parameter, the
translation invariant magnetization, reads

1

τsys
= 1− γ̃ ∼

{
ξ−2 for κ < 1,

1 for κ > 1.
(4.23)

1Recall that H0 = βµBB0 = KµBB0/J . Thus the limit H0 7→ ∞ occurs naturally in
the low temperature limit provided B0 is fixed.
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In a strong field situation, κ > 1, all spins on the chain follow the external
driving field. Furthermore, Eq. (4.23) tells us that for temperatures near
Tc, the spins are almost always parallel to the field. Conversely, if κ < 1,
the system’s relaxation time is proportional to the square of the correlation
length, that is, τsys diverges with critical dynamic exponent z = 2. Yet, from
Eq. (4.22), the divergence of ξ decreases continuously with κ. A physical
explanation reconciling these results is presented in the next section.

4.3 Kink dynamics

In order to understand why the critical dynamic exponent remains z = 2
even though the divergence of the correlation length decreases with κ < 1,
one needs to analyze the behavior of domain walls.

First, take a look what happens to a domain barrier at H0 = T = 0.
From Eq. (4.2), the interface between two domains of oppositely oriented
spins, a kink, moves left or right with p = 1

2
, which may be interpreted as

a random walk. If the typical domain length is ξ, two such kinks meet via
diffusive motion in the characteristic time τ ∼ ξ2, which is the reason why
z = 2. Once there is only one spin left between two kinks they annihilate
with probability p = 1 in the next time step and the two domains merge.
An example of this kink dynamics for a closed chain of two thousand spins
tracked for five hundred time steps is depicted in Fig. 4.1. The situation is
similar in the neighborhood of Tc = 0.

Switching on the external driving field (with κ < 1) causes domains
with spins parallel to the field start to grow. The kinks at the end of such a
cluster move outwards one step during each time step where the field remains
favorable. If the field switches into the unfavorable direction, the cluster
shrinks again. This “breathing” behavior is displayed in Fig. 4.2. From the
transition rate Eq. (4.2) it is clear that for κ = 1 nucleation inside a cluster
becomes possible with probability p = 1

2
. Consider now, for example, that

the external field takes on the value +H0 (τ +n)-times in 2τ iteration steps.
Due to the driving field distribution, this occurs with a probability given by
the Bernoulli distribution, p2τ (n) =

(
2τ
τ+n

)
2−2τ . At T = 0, a domain of down

spins of length L0 will shrink to L0−2n and will thus be eliminated if L0 ≤ 2n.
Due to the fact that 〈n2〉 = τ

2
, the random walk of the field is expected to

deviate from 〈n〉 = 0 by
√

t
2

at time step t. Therefore, one expects either all
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Figure 4.1: Zero temperature kink dynamics for κ = 0, the non-driven case.
The graph shows the location i of kinks vs. time t, which may be interpreted
as a random walk.
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Figure 4.2: Zero temperature kink dynamics for 0 < κ < 1. The clusters
“breathe” in accordance with a favorable or unfavorable driving field. Note
the rapid depletion of small domains in comparison with the non-driven case,
Fig. 4.1.
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up domains or all down domains of size L0 ≤
√

τ
2

to vanish. Note that small
domains and the kinks associated with them will be eliminated rapidly, as
can be seen by comparing Figs. 4.2 to 4.1. However, once only a few large
clusters remain, the kinks again perform a random walk. Here, it is due to
the driving field dynamics that we recover z = 2.

4.4 The fractals are back...

In the previous chapter it was shown that the stationary probability distri-
bution induced by the mean field map displays multifractal behavior. In the
present case, a part of these results may be recovered.

From the local magnetization map (4.11) the map for the translation
invariant magnetization is

m(t+ 1) =

{
γ̃m(t) + a+ dc2(t) =: f+(m(t)) with p = 1

2

γ̃m(t)− a− dc2(t) =: f−(m(t)) with p = 1
2
.

(4.24)

In order to decouple m(t) from the two spin correlation c2(t), one may ap-
proximate the latter with its stationary value, c2(t) ≈ [c2] = η2. Hence, in
the stationary state both branches f± are linear and there is one fixed point

each, m± := ±a+dη2

1−γ̃ . An example map and the corresponding stationary

distribution P (m) for K = 0.2 and H0 = 0.4 is shown in Fig. 4.3. A gap
opens up if

∆ := f+(m−)− f−(m+) =
2(a+ dη2)(1− 2γ̃)

1− γ̃
> 0 (4.25)

As a, d, and 1− γ̃ are positive and c2(t) ∈ [0, 1] for ferromagnetic coupling
J > 0, the condition for a gap is γ̃ < 1

2
. But note that the border between

fractal and non-fractal support given by γ̃ = 1
2

is actually independent of
η2, and hence c2(t). Therefore, in this regime the map Eq. (4.24) always
induces a fractal support. The boundary HF (K) may easily be calculated
from Eq. (4.10),

hF ≡ tanhHF = ±
√

1− 2γ

γ2 − 2γ
(4.26)
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Figure 4.3: Top: Truncated one dimensional magnetization map with ∆ >
0. Parameters are K = 0.2 and H0 = 0.4. Bottom: The corresponding
stationary magnetization distribution. Strictly speaking, the distribution
should be constant on its support. The fluctuations seen here are due to the
finite bin size.
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2
.

Unless H0 = 0, the support is always fractal, dF < 1, for K < 1
4

ln 3.

which leads to

HF =
1

2
ln

(
γ2 − 4γ + 1 + 2

√
5γ2 − 2γ − 2γ3

1− γ2

)
. (4.27)

In the stationary state, the magnetization distribution support is a strictly
self-similar Cantor set. Its fractal dimension is

d0 ≡ dF =
ln 2

ln
(
2(a+ dη2)γ̃

)
− ln(1− γ̃).

(4.28)

This result is displayed in Fig. 4.4. Unless H0 = 0, the support is always
fractal for K < 1

4
ln 3 ≈ 0.275.

We close here the discussion of the one dimensional RDIM. As in the mean
field approximation, the coarse grained Master Equation leads to stochastic
maps, of which the translation invariant sector may be solved analytically.
The phase transition occurs at Tc = 0, similar to the non-driven case. A
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truly ferromagnetic phase requires that the driving field is not too strong,
κ < 1. Again, the map of the translation invariant magnetization may lead
to a fractal support of the magnetization distribution. The next chapter is
concerned with the last purely physical model discussed in this thesis, the
two dimensional Ising model.
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Chapter 5

Two Dimensions

The two dimensional Ising model has been the subject of myriads of publica-
tions, yet no solution has been found for non-zero external magnetic fields.
Therefore, all the results presented in this chapter are derived from numer-
ical simulations, namely a Monte Carlo approach. As usual, the spins are
arranged on a square lattice and interact with their four nearest neighbors.
Generally speaking, the problem with such a simulation is that in addition to
the thermal average, a dynamic average is required. To approximate these,
as large a set as possible of trajectories has to be tracked. This requires a
vast amount of computing power.

In the first section of this chapter, the Monte Carlo algorithm that allows
for a parallel simulation of several RDIMs on the neurocomputer SYNAPSE-
1/N1101 is described. Next, a rough approximation of the phase diagram is
presented. The chapter concludes with a discussion of the RDIM´s behav-
ior in the para- and ferromagnetic phases, again focusing on the possibly
multifractal character of the stationary magnetization distribution.

5.1 SYNAPSE visiting Monte Carlo

The name of the machine indicates what it originally was designed for: The
fast solution of typical problems encountered when simulating artificial neu-
ral networks. Basically, this means fast matrix multiplications. In order to
make efficient use of its computational power, we need a matrix Monte Carlo

1Pál Ruján and J.H. wish to express their gratitude to U. Ramacher at ZFE Siemens
AG for kindly providing to us this machine for extensive simulations.
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algorithm2. Such an algorithm may easily be designed for the parallel simu-
lation of a population of similar models. This alleviates the problem of many
long simulation runs mentioned above.

Consider an L×L square lattice of spins skm,n ∈ {−1, 1} where k denotes
the number of the system and m,n = 0, 1, . . . , L − 1 specify the lattice
coordinates. Ignoring for the moment the choice of boundary conditions, the
nearest neighbors of a spin located at (m,n) are {(m,n ± 1), (m ± 1, n)}.
Renumbering the spins si with i = mL + n we find the set of neighbors is
N (i) := {i± 1, i± L}. Now, setting i 7→ i+ L2 for i < 0 and i 7→ i− L2 for
i ≥ L2 enforces helical boundary conditions. In this way, one lattice may be
viewed as an L2-dimensional vector (s0, s1, . . . , sL2−1), and k systems can be
represented as an L2 × k matrix3.

In two dimensions, the energy of one spin is

Ei = K
∑
j∈N (i)

sisj +Hsi (5.1)

where K = βJ and H = βµBB as before. Thus the Glauber dynamic rule is

w(si) := w(~µi|~µ) =
1

2

1− si tanh

K ∑
j∈N (i)

sj +H

 , (5.2)

and time is measured in units of α = τB again. The well-known (local) Monte
Carlo scheme to simulate an Ising system follows:

1. Start with i = 0.

2. Choose a random number z ∈ [0, 1] from a uniform distribution.

3. If z < 1
2

(
1− si tanh

(
K
∑

j∈N (i) sj +H
))

, update the spin si 7→ −si.

4. Repeat until all L2 spins have been updated.

2SYNAPSE-1 is a coprocessor linked to a Sun workstation via S-BUS. It consists of a
systolic array of eight neural signal processors MA16. The interface used to drive it is a
set of C++ library functions implementing matrix operations.

3The systolic array of the neurocomputer always operates on fields of size 64× 8, so k
and L should be chosen accordingly.
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This is usually called a Monte Carlo step (MCS)4. Recall thatH(t) is constant
for intervals of length τB. Consequently, the value ±H0 of the driving field
should remain fixed for a complete MCS, that is, the time unit is again set
to τB. We need to adapt this scheme to the matrix representation described
above.

The neurocomputer provides a parallel random number generator, there-
fore all the updates necessary for one MCS for all systems could be done
in one step. Furthermore, matrices may be piped through function lookup
tables at no extra computational cost. It makes sense to transform the above
flip condition to

si 7→

{
−si if

∑
j∈N (i) sisj <

1
2K

ln
(

0.5−z′
0.5+z′

)
− si H(t)

K
,

si else,
(5.3)

where z′ is drawn from a uniform distribution on [−1
2
, 1

2
]. In this way,

the terms in Eq. (5.3) may be generated in four ELementary OPerationS
(ELOPS). The RHS of the flip condition requires the generation of a ran-
dom number matrix piped through the lookup table z′ 7→ 1

2K
ln
(

0.5−z′
0.5+z′

)
and

one weighted matrix addition. The LHS requires a convolution type matrix
multiplication and an elementwise matrix product. Two further ELOPs are
necessary to construct and evaluate a flip indicator matrix.

There is a small technical problem, namely, a simultaneous update leads
to non-physical metastable states5. To avoid this, the spins in each lattice
are split into a checkerboard of black and white sites. One ends up with two
matrices encoding the k RDIMs, each containing the neighbor sites of the
other. For simplicity, each spin vector is augmented with a copy of its first
and last row at the end, respectively beginning. Note, though, if L is odd, the
spins of the first and last row have neighbors of their own color. If L is even,
this is true for the first and last columns. For technical reasons we choose L
odd. These sites need to be treated separately, which is computationally not
problematic as they are not in bulk.

After proper initialization of the matrices representing the black and
white spins, we are ready to specify the algorithm we need. One MCS is
taken by:

4Often, the spins on the lattice are not run through sequentially. Rather, one repeats
the procedure N ∼ L2 times, choosing at random the site i for each update

5A non-driven system, for example, runs into an antiferromagnetic configuration even
though the coupling J > 0 is ferromagnetic.

51



1. Randomly choosing the direction of the driving field for this MCS,
H(t) = ±H0.

2. Calculation of the terms in Eq. (5.3) (4 ELOPS).

3. Generation of a flip indicator matrix for the black sites (1 ELOPS).

4. Updating the black sites (1 ELOP).

5. Repeating Steps 2. to 4. for the white sites (6 ELOPS).

6. Fixing the blocks corresponding to the first and last row.

Some more operations are required to calculate the mean magnetization of
each lattice.

The result presented in the following sections are calculated from two
variants of this scheme. For the large lattices of size 415× 415, we simulate
eight systems. Each of these is subject to the same external driving field.
The spins of each lattice are initialized to si = +1 with probability p and
si = −1 with 1 − p where p = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0 In addition,
there is one lattice with all spins up in the upper half and all spins down
in the lower half. The phase diagram is computed from parallel simulation
of 64 smaller lattices (size 143 or 63 × 63). Here, each system has its own
driving field trajectory. All spins are initialized to si = +1 with probability
p = 1

2
. For completeness, the snapshots shown are taken from a run of a

single RDIM of size 128 × 128. Note that this is the only case where the
boundary conditions are periodic, not helical. Again, all spins are initialized
to si = +1 with probability p = 1

2
.

One further note before the discussion of the simulation results. The
temperature K in this chapter is normalized with the critical temperature of
the non-driven two dimensional Ising model, Kc = J

kBT
= 1

2
ln(1+

√
2) ≈ 0.44.

In this way, K = 1 corresponds to the critical temperature at H0 = 0.

5.2 Dynamics and phase diagram for two di-

mensions

To start off this section, the T = 0 dynamics of the two dimensional RDIM
is analyzed. Next, the behavior of an equilibrium state at H ≡ −H0 is
considered when switching the field to the unfavorable direction H = +H0
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Figure 5.1: Annihilation of a 4× 4 cluster at T = 0 and 0 < κ′ < 1 in three
steps. Only the corner spins follow the external field, which favors the white
sites.

Figure 5.2: Annihilation of a 4 × 4 cluster at T = 0 and 1 < κ′ < 2 in two
steps. Here, only the inner spins do not follow the external field.

and how this relates to the RDIM. Finally, a rough approximation to the
phase diagram is presented.

In analogy to the discussion of kink dynamics for the one dimensional
model, one may ask what happens to a (square) cluster of 2N × 2N parallel
spins at T = 0. According to Eq. (5.2), transition rates are 0, 1

2
, or 1 in this

limit. Recalling that K is measured in units of Kc, define κ′ := H0

2K
= κKc.

Assume now that the external field is antiparallel to the cluster’s spins. It
is easy to see that for a weak field 0 < κ′ < 1, the corner spins flip with
probability p = 1. All others remain antiparallel to the field. Therefore, the
cluster disappears if the external field remains in the unfavorable direction
for 2N −1 consecutive steps. This is shown in Fig. 5.1. Next, in the medium
field range 1 < κ′ < 2, edge spins additionally flip with p = 1. Only at inner
sites do they remain antiparallel to the external field. Hence, a cluster is
destroyed in N steps, as displayed in Fig. 5.2. Moving on to strong fields
κ′ > 2, there exists again a driven paramagnetic phase. All spins will flip
parallel to the driving field with p = 1. In the cases κ′ = 0, κ′ = 1, and κ′ = 2
the corner, edge, and inner spins flip with p = 1

2
, respectively. For example,

at κ′ = 1, the edges of a cluster may roughen. At κ′ = 2, nucleation flips
may take place inside a cluster. This type of behavior also occurs at T > 0.
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Figure 5.3: Average lifetime of a metastable state as a function of inverse
field strength.

The next question to address is what happens to an equilibrium state
of the non-driven model at H(t) ≡ −H0 when switching the field to the
unfavorable direction, H(t) = +H0. Obviously, the system will relax from
the now metastable state to the new equilibrium state. The lifetime of the
metastable state depends on the strength of the external field. This has
been discussed in detail in the ferromagnetic phase both numerically, via
Monte Carlo simulation, and theoretically using droplet theory [RiTo94].
There, four distinct regimes were identified according to their main decay
mechanism, displayed schematically in Fig. 5.3. Numerically, the average
lifetime is calculated by approximating the average first passage time (FPT)
of the system’s mean magnetization m :=

∑
i si from the equilibrium value6

at −H0 to m = +0.7. As an example, this relaxation at K = 1.25 and
H0

K
= 0.08 is shown on the top of Fig. 5.4. The average magnetization and

its standard deviation is evaluated at each time step from an ensemble of
64 systems of size 143 × 143. All spins were initialized to si = −1. For
comparison purposes, the result of a mean field iteration started at m = −1
with K = 1.2 and H0

K
= 0.057 is shown on the bottom.

6Or simply starting from m = −1.
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Figure 5.4: Top: Monte Carlo simulation showing the relaxation of the two
dimensional model at K = 1.25 in a constant unfavorable field H0

K
= 0.08.

The solid line is the average magnetization at time t from 64 systems of
linear dimension L = 143, the dotted lines demark a 1-σ range. Bottom:
Mean field iteration at K = 1.2 and H0
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= 0.057.
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simulation of 64 systems of linear size L = 143.

The mean FPT 〈t(m = 0.7)〉 for the RDIM is shown in Fig. 5.5. Again,
the number of MCSs required to reach m = 0.7 when starting at m = −1
is averaged from an ensemble of 64 systems of size L=143 at K = 1.25,
slightly below the critical temperature of the non-driven model. For strong
fields κ′ > 2, the phase is driven paramagnetic. Due to the driving field
distribution, 〈t(m = 0.7)〉 = O(1) because the probability of the field not
taking on the value +H0 in the time interval [0, t] is exponentially distributed,
p(t) = λe−λt with λ = 1

2
. Keeping in mind that the field’s random walk is

expected to deviate from its expectation 〈n〉 = 0 by
√

t
2

at time t, it is clear

that the increase of the FPT with decreasing field is much larger than in the
non-driven case with constant unfavorable field.

Finally, the top graph of Fig. 5.6 displays the phase diagram of the two
dimensional RDIM. It was calculated numerically from a simulation of an
ensemble of 64 systems of size L = 63. A driving field range from H0 = 0
to H0 = 5 was covered with step size ∆H = 0.5. In turn, for each H0,
temperatures from T = 1.5Tc to T = 0.1Tc were evaluated with step size
∆T = 0.01Tc. For each set of parameters (H0, T ) a simulation was run
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for eleven thousand MCS7, tracking the first and second moment of each
system’s magnetization. One may numerically evaluate the susceptibilities
χi(T,H0) = 〈m2

i 〉− 〈mi〉2 for i = 1, 2, . . . , 64, as well as the ensemble average
χ(T,H0), which is shown in the bottom graph of Fig. 5.6. The phase transi-
tion from para- to ferromagnetic behavior is now identified from the maxima
of χ(T,H0) at a given field strength H0 with respect to T . As expected, the
phase is paramagnetic for K < 1. For K ≥ 1, there exists a critical field
separating a ferromagnetic from a driven paramagnetic phase, similar to that
of the mean field model. The phase boundary near K = 1 does not corre-
spond to the first order transition seen in the mean field model. Rather, a
second order transition seems likely, in qualitative agreement with further re-
sults of [Ac98]. There, a numerical study of the two dimensional Ising model
with the driving field uniformly distributed in the interval [−H0,+H0] also
indicates a second order transition. Recall, though, the discussion of this
type of field distribution for the mean field model in chapter 3.5. Due to
the extremely long metastable lifetimes (Fig. 5.5) for weak driving fields, we
cannot conclusively assess the order of the transition. Note also that in the
low temperature limit, K 7→ ∞, the phase boundary should approach κ′ = 2
(corresponding to H0

K
= 4).

5.3 The para- and ferromagnetic phases

The RDIM shows paramagnetic behavior provided H0 > Hc, where Hc = 0
for high temperature K < 1. In this phase, the system´s relaxation towards
the stationary state is usually fast, as may be seen from Fig. 5.4. Similar to
the kink dynamics discussed for the one dimensional model, the dynamics
is determined by nucleation and annihilation, as well as radial growth and
shrinking of droplet-like clusters. As the driving field approaches Hc, crit-
ical slowing down sets in due to effects similar to the type-I intermittency
discussed in the mean field case (see chapter 3.3).

From the discussion of the mean field model, one expects to see an in-
dication of fractality in the stationary magnetization distribution. Indeed,
thermal fluctuations and finite size effects cannot completely erase this be-
havior, as shown in Fig. 5.7. The top graph displays P (m) obtained from a
numerical simulation at K = 0.4 and H0

K
= 0.5. Eight lattices of linear size

L = 415 with different initial conditions were tracked for more than 2× 105

7The first one thousand MCS are not taken into account.
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Figure 5.7: Top: Magnetization distribution of the two dimensional RDIM
from eight systems of linear dimension L = 415 with different initial condi-
tions. Parameters are K = 0.4, H0

K
= 0.5, and τB = 1. The simulation ran for

more than 2× 105 MCS. Note the similarity to Fig. 3.3 in chapter 3, where
the distribution of the mean field model is shown in the paramagnetic phase.
Bottom: The same distribution for K = 1.0 and H0

K
= 1.0. Here, note the

similarity to the driven paramagnetic case in the mean field model, Fig. 3.7.
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MCS. Clearly, the distribution has a structure similar to the Cantor set of
the mean field case, see Fig. 3.3. On the bottom, the stationary distribu-
tion at K = 1 and H0

K
= 1 from a corresponding simulation run is depicted.

Note here the similarity to the driven paramagnetic distribution shown in
Fig. 3.7. The sharp peaks in both distributions arise from droplets that are
large enough to survive even long series of unfavorable field draws.

For K ≥ 1 and H0 < Hc, the RDIM is in the ferromagnetic phase. Recall
that in mean field approximation the spontaneous magnetization distribution
remained multifractal for a wide range of temperature and subcritical driving
fields, Figs. 3.13 and 3.14. As shown in Fig. 5.8, this feature is retained in two
dimensions. At the top, for K = 2 and H0

K
= 1 one finds a structure similar

to that seen in Fig. 3.5, the mean field distribution in the ferromagnetic case.
The bottom graph for K = 1.33 and H0

K
= 0.75 resembles the critical mean

field distribution displayed in Fig. 3.8. In both cases there are well separated
peaks which are smoothed out by the thermal fluctuations not present in the
mean field model.

Finally, to indicate the complexity of the two dimensional model in the
ferromagnetic phase, Fig. 5.9 shows a time series of the average magnetization
of the RDIM. Only one model of linear dimension L = 128 with periodic
boundary conditions is tracked at K = 2, H0

K
= 1, and τB = 1. Note the

intermittent bursts at times t ≈ 1000, near t ≈ 4000, and so on. Snapshots of
the system of the stretches marked Series 1 . . . 3 are displayed on the following
pages. We see both multidroplet (series 1 and 3) and domain-wall (series 2)
type dynamics. Note also the droplet within droplet structures, for example
at t = 2900 and t = 16210.

Clearly, there are indications that the two dimensional RDIM inherits
some of the features of the mean field approximation and the one dimen-
sional model. Parameters may be tuned to obtain magnetization distribu-
tions whose fine structure is smoothed out by thermal fluctuations. Yet, their
similarity to mean field results is obvious. The T = 0 dynamics resembles
the kink dynamics discussed in the one dimensional case. Yet, the phase
transition does not correspond to the first order one seen in the mean field
theory, a second order transition is more likely. As the computational effort
required to achieve these results is already immense, the Monte Carlo study
presented leaves open many interesting aspects of the model. For instance,
the rough phase diagram should be computed in more detail with respect to
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Figure 5.8: Magnetization distribution of the two dimensional RDIM in the
ferromagnetic phase. As in Fig. 5.7, the linear dimension is L = 415 and
τB = 1. Top: K = 2.0 and H0

K
= 1, the simulation run covers more than

2 × 105 MCSs. Only the region from m = 0.8 to m = 1.0 is shown, the
distribution is, of course, symmetric. It resembles that of the mean field
model shown in Fig. 3.5. Bottom: K = 1.33 and H0

K
= 0.75, the simulation

covers 1.5 × 105 MCSs. Compare to the critical mean field distribution in
Fig. 3.8.
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system size and the length of simulation runs, and analyzed regarding finite
size scaling. Also, the dynamics of droplets or domain walls might prove to
be an interesting topic. In the final chapter, the RDIM will be discussed
from a more application oriented point of view: It may be reinterpreted as
a very primitive model of spiking neural tissue – leading to a novel view of
cortical noise.
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Figure 5.9: Time series of the mean magnetization of the two dimensional
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Chapter 6

On cortical noise

It is a well-known fact in neurobiology that communication between nerve
cells (neurons) is based mainly on electrical impulses called spikes. A spiking
neuron may thus be viewed as a simple input-output unit, gathering sig-
nals from and passing its own signal, or activity, to other nerve cells. The
complexity of information processing in neural tissue, for instance the hu-
man brain, arises due to the sheer number of such units and their complex
connectivity pattern1. To give an impression, the visual system from eye to
cortex is schematically depicted in Fig. 6.1 (taken from [Ch89]). Incoming
photons are detected by photoreceptors in the retina. The latter is an input
device, so to speak, which transforms visual stimuli to spikes. These signals
are passed on from ganglion cells, the last layer of cells in the retina, to the
lateral geniculate nucleus (LGN) along the optic nerve. The LGN serves as a
kind of traffic controller, feeding signals to different areas in the visual cortex.

From a neurobiological point of view, this chapter is rather abstract, so
the reader is referred to the literature for an introduction to the field2 . The
following sections focus on how an Ising-type model may be interpreted as a
very primitive model of neural tissue – and the role of the RDIM in this con-
text. If one accepts the neural analogy, the consequences are the multifractal
magnetization distributions, dynamic freezing, and the para- to ferromag-
netic phase transition appearing in the physical model. These properties
need to be interpreted in terms of information processing in nerve tissue –
which leads far beyond this work. Yet, state of the art technology may be em-

1For example, the human cortex consists of around 1011 neurons, each of which is
connected on average to one to ten thousand other neurons.

2A good kerman book is [Re90].
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ployed to examine experimentally if remnants of RDIM effects appear in such
tissue. Similar to the experimental possibilities ultrathin ferromagnetic films
present for the “physical” model, neurobiological experiments are waiting to
be done.

6.1 The neurobiological interpretation of the

RDIM

The complexity of the electrophysiological details of the process of spike gen-
eration and propagation in a single neuron is enormous. Neural communica-
tion based on chemical agents called neurotransmitters obscures the situation
even more, to the point that it is currently absolutely hopeless to specify and
handle a complete model of nerve tissue. A compromise between the level
of detail of single cells versus their number has to be made. As the RDIM
is a statistical mechanics model of externally driven coupled spins, the level
of physiological detail will obviously be very low. Yet, due to the fact that
neural communication may be viewed as digitized through the transmission
of spikes, we may gain some insight about the behavior of neural assemblies
driven by external stimuli.

Consider first the non-driven model. The system is intended to mimic a
patch of neural tissue, or cell assembly. Each spin is interpreted as a neuron
that may take on the states “spike”, si = +1, or “no spike”, si = −1 during
each time step. As before, time is discretized in intervals τB. This is, of
course, the first simplification we make – disregarding completely the chem-
ical processes in the cells. In the mean field, one, or two dimensional model,
each neuron-spin is connected to all others, its left and right neighbors, or
its four nearest neighbors, respectively. In contrast to biological neural net-
works, these connections are all of the same strength J , and as the model is
ferromagnetic, J > 0, there is no inhibitory mechanism. Both assumptions
are typically not valid in real nerve tissue – the next simplification. The
external driving field H0 represents spikes arriving from outside the cell as-
sembly. The strength of the field could be interpreted either with respect to
the typical number of spikes arriving during the time unit τB, or with the
impact of an input spike on the assembly. Finally, there is the notion of
temperature T , an interpretation of which remains an open question at this
point.
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Figure 6.2: Structure of the primary visual cortex. Neurons are grouped
in minicolumns perpendicular to the general six layer arrangement. Mini-
columns are in turn grouped in supercolumns. Long-range connections be-
tween supercolumns lead to the formation of clusters.

Clearly, when subject to a stimulus constant in time, the system will
evolve towards an equilibrium state – of which there is no indication in neu-
robiology. The interesting case occurs for time-dependent stimuli. The simple
driving field dynamics of the RDIM may serve as a first approximation of
sensory input3. Note that this field is homogeneous across all model neu-
rons, hence one should consider assemblies of cells with a common receptive
field. This situation is present, for example, in the primate visual cortex,
where neurons are grouped in columns perpendicular to the general six layer
structure (see Fig. 6.2, also taken from [Ch89]). The cells comprising these
cortical pegs have such a common receptive field. Closer to the input side,
photo receptors in the retina project onto neighboring ganglion cells, the
first spiking neurons in the visual pathway. Thus, stimulating the eye with
a large enough spot of light turned on and off at random again corresponds
to a homogeneous external driving field.

3Which is not so unrealistic. Consider, for example, what must happen in the retina,
and later on in the visual cortex, when you rapidly blink your eyes.
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The results discussed in the previous chapters for the “physical” RDIM
are mostly related to the mean magnetization. In the neural picture, this is
equivalent to the average output signal of the neurons. Hence, the RDIM
magnetization must be viewed as a population code, where m(t)+1

2
is the frac-

tion of this population firing a spike at time t. Thus, the RDIM naturally
leads to a nonequilibrium stationary code distribution. There is consent
among neurobiologists that such populations play a major part in the neural
information game, even though there are indications that the exact timing
of individual spikes should not be ignored.

6.2 Asymmetric driving field distribution

Recall that the driving field distribution is symmetric, see Eq. (2.21). Thus,
incoming spikes, corresponding to +H0, appear with probability p+ = 1

2
in

each time step. Alternately, the number of spikes n arriving in a given time
interval [0, τ ] follows a Poisson distribution, pn = λn

n!
e−λτ with λ = 1

2
≡ p+.

This type of distribution is believed to approximate the spiking behavior in
neural tissue, though not necessarily with λ = 1

2
. To control the frequency

of external spikes one can tune λ by adjusting p+ in the asymmetric field
distribution

ρ(B) = p+δ(B −B0) + (1− p+)δ(B +B0). (6.1)

From the results presented for the mean field RDIM in Chapter 3 one
may deduce that this modification of the driving field distribution will have
no major impact. The phase transition due to dynamic freezing does not
depend on p+ – except that two maps are required, p+ > 0. Similarly, if
a magnetization gap occurs, the associated distribution will again have a
fractal support. The boundaries of the SC-F regions in Fig. 3.14 remain
the same. This is generally not true for the SC-E and AC regions as the
multifractal spectrum varies with p+.

Four code distributions of the mean field map at K = 1.0 and p+ = 0.4
are shown in Figs. 6.3 and 6.4 for different field strengths. This parameter
range corresponds to driven paramagnetic behavior, even though the average
magnetization is m < 0. Obviously, the probability for an inactive cell as-
sembly, m ≈ −1, is enhanced due to the asymmetric field. Yet, the structure
of the distributions remains – it is not continuous and the codes may live on
a fractal support. Note that these distributions are calculated in the same
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fashion as in the mean field case, that is, one thousand mean field maps are
tracked for five thousand iterations. In the cortical picture, they represent
the average code distribution of one thousand independent cell assemblies, in
which each neuron is connected to all others. The connectivity giving rise
to supercolumns and clusters indicated in Fig. 6.2 is not taken into account
here.

Similar structures may be seen in the two dimensional case, depicted
in Figs. 6.5 and 6.6. Here, 64 systems of linear dimension L = 143 were
simulated in parallel for close to 105 Monte Carlo steps, taking into account
the new driving field distribution Eq. (6.1). Again, each system represents an
independent cell assemblies, following a dynamics like that shown in Fig. 5.9
in the last chapter.

The neurobiological interpretation of the RDIM given in this chapter is
only rudimentary. Yet, the focus on a strong, random external field leads to
the observation that the distribution of the activity of a population of cells
may have a complex, multifractal structure.
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Chapter 7

Concluding remarks

To finish up this work, a short summary of results and several concluding
remarks are in order. After introducing a formalism to describe strongly
driven, nonequilibrium systems based on the Master Equation, the randomly
driven Ising model (RDIM) was introduced and discussed as a prototype of
such a system.

• The mean field RDIM was described by a stochastic map. The phase
transition from para- to ferromagnetic behavior is first order. Below the
equilibrium critical temperature, the magnetization jumps at a critical
value of the driving field. This is due to dynamic freezing, which was
discussed from a geometric point of view. The multifractal properties
of the stationary magnetization distribution were revealed. Depend-
ing on temperature and driving field strength, they were categorized
following [Ra93] as singular-continuous with fractal or euclidean sup-
port, or all-continuous. The phase transition does not depend on the
dichotomic driving field, which may be replaced by any bounded con-
tinuous distribution.

• The one dimensional chain was solved only in part. Maps for the local
magnetization and two spin correlation were constructed. Their trans-
lation invariant sectors may be solved, similar to the non-driven case
[Gl63]. As expected, the phase transition occurs at TC = 0, but again,
only if the driving field is below a critical value. It was shown that
the translation invariant magnetization map in the stationary state is
a linear IFS, hence the support of the magnetization distribution is a
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Cantor set. Its fractal dimension depends on both temperature and
driving field strength.

Apart from the divergence of the relaxation time near Tc = 0, critical
exponents were not investigated. Their analysis, and more specifically,
their dependence on the form of the transition rate, could lead to fur-
ther interesting results.

• The two dimensional RDIM cannot be solved analytically. Monte Carlo
simulations performed on the neurocomputer SYNAPSE1/N110 indi-
cate that the features seen in the mean field and one dimensional case
survive the presence of thermal fluctuations. A rough phase diagram
was derived from such simulations. Furthermore, the distributions of
the mean magnetization show remnants of fractal behavior in both the
para- and ferromagnetic phase.

Here, a more detailed phase diagram would be of interest, especially
with respect to finite size scaling. Also, a study of the dynamics of
droplets and domain walls could prove to be worthwhile.

• The RDIM was interpreted as a primitive model of neural tissue. A
spin was considered to be a neuron taking on the states “spike” or “no
spike” and connectivity between cells was restricted to that of a ferro-
magnetic Ising model. In this view, the RDIM represents an assembly
of cells with a common receptive field driven by external spikes. This
situation occurs, for instance, in the primary visual cortex. One is
led to the notion of population codes, the neurons passing information
through their average state. The distribution of these codes is similar
to the physical model’s mean magnetization. In order to control the
frequency of driving spikes, asymmetric driving field distributions may
be employed.

The neural picture was presented to draw attention to the fact that
neurons may well be viewed as strongly driven statistical systems. Here,
experimental evidence of RDIM-type behavior could be the incentive to
move on to more realistic systems, including more complex connectivity
patterns and, for instance, integrate-and-fire neurons.
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