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Chapter 1

General Introduction

Every cocktail-party makes great demands on the visitors’ ‘neural processors’ (Strube,
1981; von der Malsburg and Schneider, 1986). Extracting a single voice from a babble
of multiple speakers and background noise is a highly non-trivial task, and the human
ear’s performance is still unsurpassed in this situation. However, this capability de-
grades in persons with hardness of hearing, creating the need for smart hearing aids
which can mimic the signal processing performed by the healthy auditory system.
Very similar problems are encountered when automatic speech recognition systems are
required to operate under noisy conditions. Even though recognition on undisturbed
signals can be almost perfect, additional noise still results in a drastic decrease of
the performance. Therefore, capabilities similar to those of the human ear are also
desirable for automatic speech recognition.
In an attempt to mimic the auditory system’s abilities, several noise reduction schemes
have been developed which try to suppress signal components corresponding to ‘noise’
and enhance the ‘speech’ components by exploiting their respective characteristics.
For instance, in the application of spectral noise suppression schemes (Ephraim and
Malah, 1984; Cappé, 1994) to speech enhancement it is assumed that the signal of
interest is speech with its typical speech pauses, whereas the noise signal is regarded as
stationary and uninterrupted. Therefore, it is possible to estimate the noise spectrum
during speech pauses and subsequently subtract it from the spectrum of the noise
contaminated speech segments in order to obtain the enhanced speech signal. Similarly,
a clear notion of ‘speech’ and ‘noise’ is also built into the binaural directional filter
(Wittkop et al., 1997; Wittkop, 2001), where speech is assumed to impinge from the
frontal direction, whereas noise is assumed to originate laterally. Accordingly, it is
attempted to suppress signal components that have been identified as lateral.
An alternative point of view is to regard the acoustic scene as being generated by
several simultaneously active signal sources at different spatial positions. By decom-
posing the recorded sound into its components corresponding to the different sources,
and by subsequently picking out the particular source which is of interest (e.g. a speech
source), it is also possible to suppress the unwanted ‘noise’ sources. However, in this
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approach a distinction between ‘speech’ and ‘noise’ needs only to be made in the last
step, where a particular source of interest is selected. In the first, and presumably
more difficult step of decomposing the acoustic scene into its underlying sources, the
notion of physically separated, i.e., ‘independent’ sources suffices.
Blind source separation (BSS) constitutes an approach which tries to achieve this de-
composition with as little prior-knowledge as possible, hence the term ‘blind’. The
formulation of the task as a source separation problem points to many more possible
applications than the example of noise reduction, since in many situations it is not
possible to measure ‘pure’ signals, corresponding to a single source, only. Rather, a
superposition of several sources is measured in many applications. Examples are the
areas of wireless communications where signals from multiple cellular phones are re-
ceived by a transmitter, analysis of biomedical signals obtained by electroencephalog-
raphy (EEG, e.g. Jung et al., 2000), magnetoneurography (MNG, e.g. Ziehe et al.,
2000) and functional magnetic resonance imaging (fMRI, e.g. McKeown et al., 1998)
where each sensor picks up signals from several neural generators, and text analysis
(e.g. Kablán and Girolami, 2000) where words from several topics are found in a single
text document.
Also in application where it is not known a-priori that the measured data is composed
of mutually independent parts, one might attempt to perform such a decomposition
in order to facilitate further analysis of the signals. Areas where such attempts have
been pursued are, e.g., the analysis of small patches from natural images (Bell and
Sejnowski, 1997), short sound segments (Bell and Sejnowski, 1996) and financial data
(Back and Weigend, 1997).
Several choices exist for the definition of mutually ‘different’ or ‘independent’ sources,
as will be discussed below.
In the first place the question is, which transformation should be employed to obtain
the independent signals from the measurements. In general, an arbitrarily complex
function might be chosen which maps a number of sensor signals to a (possibly differ-
ent) number of independent components. However, without any additional assump-
tions, the resulting problem is ill-determined. To make the problem tractable, it is as-
sumed that a linear transformation suffices to map N measured signals x1(t), . . . , xN (t)
to M independent signals u1(t), . . . , uM (t),

u(t) = Wx(t), (1.1)

where the vectors u(t) = [u1(t), . . . , uM (t)]T and x(t) = [x1(t), . . . , xN (t)]T contain the
independent components and the measured signals, respectively, W denotes the M×N
transformation matrix, and t numbers the observations. Hence, the task is to find W
and u(t) from knowledge of x(t), only. Since the matrix W can also be regarded as a
linear (and in general non-orthogonal) coordinate transform to coordinates in which
the signals are independent, the sources must be characterized by different directions
in N -dimensional space in order to allow the decomposition (1.1), i.e., the sources must
be spatially separated. It is noted that from (1.1) the reconstructed signals ui(t) are
only determined up to an arbitrary rescaling and permutation, since any (invertible)
rescaling and permutation of independent signals is again independent.
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Obviously, the requirement to obtain independent signals implies that M ≤ N , since
otherwise the components of u(t) would be linearly dependent. However, also this
simplified version of the original problem was regarded as unsolvable in the early
1980s (see the reference to Bienvenu and Kopp (1983) in Jutten and Taleb (2000)).
Extensions of (1.1) involving non-linear transformations and the possibility to obtain
more independent components than the number of mixed signals are investigated by
several researchers, but no solution has been shown to work for real-world problems,
yet.
A solution for (1.1) was obtained by Hérault and Jutten (1986) based on non-linear
correlations of the ui(t), and elaborated by Jutten and Hérault (1991). Within this
approach, the notion of ‘different’ or ‘independent’ reconstructed signals ui(t) is defined
as ‘statistical independence’, and the method is generally referred to as independent
component analysis (ICA). ICA is based on higher order statistics, i.e., the underlying
source signals are assumed to have a non-Gaussian probability density function (at
most one source may be Gaussian) which can be exploited for separation. The theory
of ICA was further developed by, e.g., Comon (1994), Bell and Sejnowski (1995),
Cardoso and Laheld (1996), Amari et al. (1996) and Lee (1998a).
Alternatively, the criterion of ‘different’ reconstructed signals may be based on shifted
correlations, as proposed by, e.g., Molgedey and Schuster (1994). This approach ex-
ploits information originating from the sources’ spectra which must be different for all
sources.
Non-stationarity has been proposed by Matsuoka et al. (1995) as another criterion
for blind source separation. Note that non-stationarity and higher-order statistics are
closely related (Parra et al., 2001).
Hence, if the data can be split into independent components using the transforma-
tion (1.1), several sufficiently well elaborated algorithms exist for finding the solution.
In the case of acoustic mixing, however, the simple model (1.1) is not sufficient to
separate signals. Since the superposition of sound sources by the acoustic medium
involves time-delays, echoes and reverberation, it constitutes a convolutive mixing
system, which requires algorithms of convolutive BSS for its inversion. That is, in-
stead of a multiplication as in (1.1), filters have to be employed in order to obtain
independent components ui(t) from the mixed signals.
Several solutions have been proposed for this problem, too, and again they can be
classified with respect to their notion of independence. Furthermore, they differ with
regard to their implementation of the filtering operation, which can be performed
either in the time- or in the frequency domain.
Time domain methods were proposed by several authors, e.g., by Weinstein et al.
(1993), Gerven and Compernolle (1995), Chan et al. (1996) and Lindgren and Broman
(1998) using second-order statistics; by Yellin and Weinstein (1994), Bell and Sejnowski
(1995), Torkkola (1996a), Yellin and Weinstein (1996) and Lee et al. (1997) using
higher-order statistics; and by Kawamoto et al. (1998) exploiting the non-stationarity
of the source signals.
Frequency domain methods were proposed by, e.g., Capdevielle et al. (1995) using
higher-order statistics, Murata et al. (1998) using second order statistics and Parra
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et al. (1998) exploiting non-stationarity.
Several methods may be classified as ‘hybrids’, performing some computations in the
time domain and some in the frequency domain (e.g. Ehlers and Schuster, 1997; Amari
et al., 1997; Lee et al., 1998).
First results for the separation of real room recordings were reported by Yellin and
Weinstein (1996), using recordings from a large laboratory room with a short distance
of 20 cm to 30 cm between speakers and microphones, and 16ms long separating
filters. The algorithms of Ehlers and Schuster (1997), Lee et al. (1998) and Murata
et al. (1998) also employed small distances between speakers and microphones or short
filters of up to 15 ms length, a filter size that is too small to obtain separation in rooms
with considerable reverberation.
Improved quality for the separation of existing data sets, and the ability to separate
sources in more difficult acoustical situations, was attained by the frequency domain
algorithm of Parra et al. (1998), which is still the benchmark algorithm in the field
of acoustic source separation (an extended paper is published as Parra and Spence
(2000a)).
The convolutive blind source separation algorithms presented in this thesis work en-
tirely in the frequency domain, where both second-order statistics (cf. chapter 4) and
higher-order statistics (cf. chapters 2 and 3) are employed for separation. Since the
convolution in the time domain factorizes into a product in the frequency domain, the
Fourier transformation permits an elegant formulation of the problem. However, this
procedure results in the drawback of recovering the source signals in disparate order in
different frequency bands, making a time domain reconstruction of the original sources
impossible without additional precautions (Capdevielle et al., 1995; Ikram and Mor-
gan, 2000). Therefore, three different methods to avoid such ‘local permutations’ are
presented in this thesis, and it is attempted to shed some light on the origin of local
permutations.
Across-frequency interactions serve as the means to avoid permutations. The first
algorithm (cf. chapter 2) employs interactions of the filter parameters across frequen-
cies, whereas the remaining algorithms (cf. chapters 3 and 4) make use of statistical
dependencies of the source signals’ components at different frequencies. In all three
approaches, the across-frequency interactions are not used solely to sort permutations,
but they are also utilized to improve quality of separation; a feature which distinguishes
the algorithms from most of the literature.
Chapter 2 presents an algorithm which separates acoustic sources under the idealized
assumption that the superposition of sources in rooms can be approximated as a
superposition in the free field, involving time- and level differences and diffuse noise,
but only negligible reflections and reverberation. After deriving a general blind source
separation algorithm for Fourier transformed speech signals, the free field assumption
is incorporated into the framework, yielding a simple, fast and adaptive algorithm that
is able to track moving sources.
Chapter 3 approaches the problem from the opposite direction, not imposing any
constraints on the separating filters and thereby being applicable also in rooms with
reverberation. Rather it is assumed that the source signals exhibit a modulation struc-
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ture similar to speech. Since the modulation in different frequency channels of speech
signals is highly interrelated, envelope correlations across different frequencies are em-
ployed to solve the source separation task. The resulting ‘AMDecor’ algorithm is eval-
uated in different acoustical situations, including strong reverberation, and compared
to other source separation algorithms. Performance is further analyzed in appendix B
by applying the AMDecor algorithm as a preprocessing stage in an automatic speech
recognition system and comparing the resulting recognition rates to the performance
of other noise reduction algorithms on the same task.
Motivated by the previous chapter’s results, chapter 4 expands the concept of across-
frequency interactions to applications in other domains, such as color images, by in-
troducing the notion of multidimensional sources. In addition, an algorithm based
on second order statistics is given which leads to a solution in closed form for the
separating system. The permutation problem is solved by a condition on the order of
eigenvalues corresponding to the separating system.





Chapter 2

Adaptive separation of
acoustic sources in the free
field:
A constrained frequency
domain approach

2.1 Introduction

The need to separate some sound sources from others is ubiquitous in acoustic signal
processing. A typical example is the field of signal processing for the hearing impaired,
where speech intelligibility needs to be enhanced in situations with multiple simulta-
neous speakers or with speech embedded in a background of noise. Similar problems
are encountered in the field of automatic speech recognition where recognition rates
still drastically degrade in the presence of interfering sources.
Blind source separation (BSS) and the related field of independent component analysis
(Jutten and Hérault, 1991) represent a relatively novel approach to this problem which
has gained some attention over the past years. In contrast to other noise reduction
schemes, BSS techniques aim at incorporating as little prior knowledge as possible into
the algorithms, hence the term ‘blind’. The key assumptions made incorporate basic
knowledge about the (second-order or higher-order) statistics of the different sources
and about the principles of the mixing process by which the sound source signals are
superimposed to form the recorded microphone signals. However, explicit knowledge
about, e.g., typical source or noise spectra, or spatial locations of microphones or
sources are not made which distinguishes BSS from such techniques as beam-forming,

1This chapter has been submitted for publication in Speech Communication.
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directional filtering and spectral subtraction.
The lack of a-priori knowledge opens a great potential of BSS techniques, with some re-
markable results for separating speech from interfering sounds. However, the generality
of the assumed demixing filters also results in a large number of free parameters which
need to be determined to achieve separation, and in the related problem of finding the
optimal parameters fast, with modest computational requirements, and adaptively to
compensate for changes in the acoustic environment. Therefore, the general problem
of separating sources that have been mixed in real rooms with realistic reverberation
is still an active area of research.
Recently proposed algorithms for convolutively mixed sources that have been shown
to perform well with real-room sound recordings include Lee et al. (1998), Sahlin
and Broman (1998), Murata et al. (1998) and Anemüller and Kollmeier (2000). In
particular, the algorithm of Parra and Spence (2000a) has gained attention, since
the algorithm performs successful separation in some difficult acoustic situations. An
adaptive version of this algorithm has been presented by the same authors (Parra
and Spence, 2000b), showing good separation after as little as 1 s of signal time and
reaching its optimum separation after about 6 s time. However, evaluation of the
algorithm was done for spatially fixed sources, only.
One area of application for BSS algorithms is automatic speech recognition, results
on which have been reported by several authors (e.g. Anemüller et al., 2000). This
field appears to be promising for preprocessing by BSS algorithms since the acoustic
environment is relatively stationary, the delay due to preprocessing is not problematic,
and today’s desktop computers offer fast computation.
In contrast, the field of signal processing for digital hearing aids poses much stronger
constraints on algorithms. Here, the acoustic environment can change rapidly due to
head turns of the subject, the processing delay should be on the order of only few tens
of milliseconds, and the computational cost of algorithms should be modest. There-
fore, potential BSS algorithms for hearing aids should be fast, simple and adaptive.
It might not be of greatest importance to aim at the optimal solution in terms of
quality of separation, but to simplify the problem at hand by introducing additional
constraints and assumptions, hence making the algorithms ‘semi-blind’. Following this
idea, the approach presented in this paper is based on the assumption that time- and
level differences between microphones are the most prominent effects of sound super-
position in real rooms that can be used for source separation. Note that this ‘free field’
assumption is only approximately met in real rooms with short reverberation time and
a small distance between sound sources and microphones, respectively.
It should also be noted that BSS algorithms for delayed and attenuated sources have
been proposed previously in the literature. Platt and Faggin (1992) report results on
an adaptive time-domain algorithm that achieves separation after 2.5 s signal time
for digitally delayed and mixed signals. Torkkola (1996b) proposes a time-domain
algorithm which adapts from 15 ms long signal blocks and achieves separation after
1.5 s to 3 s. The algorithm is also evaluated using digitally mixed signals, only, and
local minima of the proposed algorithm are found.
In contrast, the algorithm presented in this paper is based on a frequency domain
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approach to the BSS problem, that could in principle be used to separate sources that
have been mixed by an arbitrary convolution operation (including reverberation). By
incorporating the free field constraint into this framework, an adaptive algorithm is
derived that separates sources within approx. 250 msec of signal time and is easily
implemented in real-time. Due to its adaptive nature, separation of mixtures of moving
speakers in anechoic environment is also possible. Since the algorithm works entirely in
the frequency domain, it is particularly well suited for incorporation into the filterbank-
based noise reduction schemes of modern hearing aids.
The outline of the present paper is as follows. In section 2.2 the unconstrained and
constrained acoustic mixing and the corresponding demixing models are introduced.
Based on the maximum likelihood principle, a blind source separation algorithm for
Fourier transformed speech signals is derived in section 2.3. Section 2.4 is devoted
to the incorporation of the free field constraint into the algorithm. Implementation
details are given in section 2.5, and evaluation is performed in section 2.6.
Throughout the paper, vectors and matrices are denoted by bold font; time-domain
signals are denoted by, e.g., x(t) and the corresponding frequency domain signals by
x(T, f); the imaginary unit

√
−1 is denoted as i. Transposition is denoted by xT ,

complex conjugation by x∗, transposition and complex conjugation by xH .

2.2 Acoustic Mixing and Demixing

Mixing of sound sources in air is linear and involves finite propagation speed and
reverberation. The signal component originating from source sj(t), j = 1, . . . , N , and
recorded by microphone i, i = 1, . . . , N , is therefore obtained as the convolution of
sj(t) with the room’s impulse response aij(t) from the place of the source to the place
of the microphone. The microphone signals xi(t) stemming from simultaneously active
sources are composed as the sum over the individual source components, together with
some small measurement noise ni(t),

xi(t) =
∑

j

∫
dt′ aij(t′) sj(t− t′) + ni(t). (2.1)

In the free field, sound propagating from source to microphone is attenuated by a gain
factor aij and delayed by a time τij . The corresponding impulse response simplifies to
aij(t) = aijδ(t− τij), where δ(t) denotes the Dirac delta function. Therefore, the free
field mixing system is

xi(t) =
∑

j

aijsj(t− τij) + ni(t). (2.2)

If no prior knowledge is assumed to be known about the sources or the mixing sys-
tem, an arbitrary gain factor ãj and time delay τ̃j can be interchanged between each
source and the corresponding column of the mixing system aij(t) without altering the
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Figure 2.1: The mixing system assumed for the current approach.

microphone signals. Specifically, setting

a′ij(t) =
aij

ãj
δ(t− τij + τ̃j) (2.3)

s′j(t) = ãjsj(t + τ̃j) (2.4)

leaves the mixed signals invariant. Furthermore, any permutation π(j) of the sources
sj(t) and of the corresponding columns of aij(t) leaves the mixed signals unchanged.
The corresponding rescaling- and permutation-ambiguities for linear, memoryless mix-
tures of sources are well-known in the field of blind source separation (Tong et al.,
1991).
Since the absolute gain factors and propagation times from the sources to the micro-
phones are in principle unidentifiable, we are only concerned with the level- and time
differences between the source components received at different microphones and nor-
malize the diagonal elements of aij(t) to unity. The corresponding mixing system for
the situation of two sources recorded by two microphones in the free field is therefore

x1(t) = s1(t) + a12 s2(t− τ12) + n1(t) (2.5)
x2(t) = s2(t) + a21 s1(t− τ21) + n2(t),

which is illustrated in figure 2.1.

Frequency domain formulation

The approach pursued in the present paper is to separate the sources in the frequency
domain. To this end, spectrograms are computed from the time domain signals using
the windowed short time Fourier transformation (windowed STFT). The spectrogram
xj(T, f) corresponding to signal xj(t) is defined as

xi(T, f) =
2K−1∑
t=0

xi(T + t) h(t) e−iπft/K . (2.6)

Indices t = 0, 1, . . . and f = 1, . . . ,K denote time and frequency, respectively. The
short-time spectra are computed at times T = 0,∆T, 2∆T, . . . using the window func-
tion h(t), e.g., the hanning window. Similarly, aij(f), sj(T, f) and ni(T, f) denote the
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spectrograms of aij(t), sj(t) and ni(t), respectively. Note that since aij(t) is assumed
to be short and stationary over time, its STFT does not dependent on time t.
In the frequency domain formulation, the convolution in the acoustic mixing model (2.1)
factorizes, provided the window-length is larger than the length of the impulse re-
sponses aij(t), yielding the mixing model

xi(T, f) =
∑

j

aij(f)sj(T, f) + ni(T, f). (2.7)

Under the free field assumption, model (2.7) is a good approximation to the acoustic
mixing, and the transfer functions aij(f) are computed from the corresponding level-
and time differences (2.2) as

aij(f) = aij e−i2πfτij . (2.8)

In the remainder of the paper, the focus is on the case of two microphones and two
sources. However, the discussion directly carries over to the N×N -case. The frequency
domain formulation of the mixing system (2.5) therefore is(

x1(T, f)
x2(T, f)

)
=
(

1 a12(f)
a21(f) 1

)(
s1(T, f)
s2(T, f)

)
+
(

n1(T, f)
n2(T, f)

)
. (2.9)

, and the unmixed signals’ spectrograms ûi(T, f) are obtained as

ûi(T, f) =
∑

j

ŵij(f)xj(T, f). (2.10)

Without noise, the perfect solution for the parameters ŵij(f) would be(
ŵ11(f) ŵ12(f)
ŵ21(f) ŵ22(f)

)
= c(f)

(
1 −a12(f)

−a21(f) 1

)
(2.11)

c(f) = (1− a12(f) a21(f))−1,

which recovers the first source as recorded at the first microphone if the second source
was silent and similarly the second source as recorded at the second microphone.
In the presence of noise ni(T, f), however, the complex factor c(f) results in the
amplification of the noise energy at harmonic frequencies since the magnitudes |a12(f)|
and |a21(f)| of the off-diagonal elements are in practice close to unity (cf. section 2.6 for
experimentally obtained parameter values). Therefore, it is advisable to set ŵ11(f) =
ŵ22(f) = 1 resulting in the separating system(

û1(T, f)
û2(T, f)

)
=
(

1 ŵ12(f)
ŵ21(f) 1

)(
x1(T, f)
x2(T, f)

)
(2.12)

which is depicted in figure 2.2. Note that after this normalization the filters ŵij(f)
do not correspond to the inverse of aij(f) and, hence, filtered versions of the original
sources will be recovered. However, the noise energy gets limited to

E {|ûi(T, f)− si(T, f)|} ≈ E
{
|n1(T, f)|2

}
+ E

{
|n2(T, f)|2

}
, (2.13)

where the level differences between the microphones, |a12(f)| and |a21(f)|, have been
approximated by unity.
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Figure 2.2: The separating system assumed to unmix the signals from the mixing
system depicted in figure 2.1.

2.3 BSS algorithm for Fourier transformed speech

The superposition of sources in the frequency domain (2.7) has the form of a matrix
vector product in each frequency channel f . In contrast to the time domain represen-
tation (2.5), which contains coupling across different time-points, equation (2.7) can
be regarded as a set of K decoupled instantaneous blind source separation problems,
albeit with complex valued variables. Several algorithms (e.g. Pham et al., 1992; Bell
and Sejnowski, 1995; Cardoso and Laheld, 1996) have been proposed in the literature
to solve the instantaneous BSS problem, however, most are concerned with real valued
variables, only.
In this section, the standard method of maximum likelihood estimation is applied to
the problem of separating Fourier transformed speech signals to obtain an adapta-
tion algorithm for the complex valued separating parameters ŵij(f). It is noted that
the derivation given in this section applies to the general frequency domain mixing
model (2.7). The combination of this section’s learning rule with the prior knowledge
about the free field constraint (2.8) for the mixing model is given in section 2.4.

Maximum likelihood estimation

Speech signals, both in the time and in the frequency domain, exhibit a non-Gaussian
histogram with positive kurtosis, i.e., small signal amplitudes occur with higher prob-
ability than for a Gaussian distribution of equal variance, and also large amplitudes
tend to be more likely than for a Gaussian (e.g. Zelinski and Noll, 1977; Brehm and
Stammler, 1987, and reference therein). Intermediate amplitudes, in contrast, occur
with lower probability than it would be the case for a Gaussian distribution.
This property allows to distinguish between a speech signal originating from a single
source and a mixture of speech signals from multiple independent sources, since the
mixture’s histogram is more Gaussian, due to the central limit theorem. A large
class of algorithms for blind source separation, those which are based on higher-order
statistics (e.g. Comon, 1994), exploit this principle by aiming to reconstruct unmixed
signals whose histogram resembles the non-Gaussian histogram of the original source
signals.
The maximum likelihood principle (e.g. Bishop, 1995) represents a general statistical
tool for the estimation of optimal parameter values. As such, it can be employed to
derive algorithms for estimating the separation parameters in BSS tasks, as has been
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shown by Pham et al. (1992) for the separation of real-valued time-domain signals. To
give a brief outline, under the maximum likelihood approach it is aimed to find param-
eters of the mixing system A which maximize the probability P(x|A) that measured
data x has been generated by this particular A. Assuming that the sources s(T, f) can
be recovered using the demixing system W(f) = A−1(f), it can be shown (MacKay,
1996) that for a single observation x(T, f) the log-likelihood L(W(f),x(T, f)) of ma-
trix W(f) being the desired unmixing system is

L(W(f),x(T, f)) = logP(x(T, f)|W(f)) (2.14)
= log det(W(f)) + logP(W(f)x(T, f)).

The separating system W(f) is obtained by maximizing the expectation of L(W(f),
x(T, f)) with respect to W(f),

W(f) = argmax
W(f)

E {L(W(f),x(T, f))} . (2.15)

Model density for P(s(T, f))

In order to use the log-likelihood (2.14) to build an optimization algorithm based on
it, the sources probability density function (pdf) P(W(f)x(T, f)) = P(s(T, f)) needs
to be modeled. Due to the sources’ mutual independence it follows that their joint
pdf P(s(T, f)) factorizes into the product of the individual source pdfs, P(s(T, f)) =
ΠjP(sj), so that a model for P(sj(T, f)) is needed. Since the Fourier transformed
speech signal sj(T, f) is complex, the model for P(sj(T, f)) must be a two-dimensional
probability density function, taking into account real and imaginary part of sj(T, f).
First, it is noted that the phase arg(sj(T, f)) depends on two quantities: the speech
signal sj(t) and the position of the window h(t) relative to the speech signal. Since
the window position is chosen independently of the signal, and since the signal itself is
non-periodic (at least for time-scales larger than 100msec), it immediately follows that
all values of arg(sj(T, f)) have equal probability and, moreover, that P(sj(T, f)) must
necessarily be circularly symmetric. I.e., P(sj(T, f)) only depends on the magnitude
|sj(T, f)| and can be written as

P(sj(T, f)) = g(|sj(T, f)|) (2.16)

for some properly chosen function g(·) which models the dependence of P(sj(T, f)) on
the source amplitude.
In accordance with time-domain blind source separation algorithms, which frequently
model the probability density function (pdf) of real valued source signals s as P(s) =
cosh−1(s) (MacKay, 1996), the function g(·) is chosen to be

g(x) = c−1 cosh−1(x), c =
∫

dx g(|x|). (2.17)

Equation (2.17) is not intended to be a precise model for the pdf of speech sig-
nals. Rather, (2.17) represents a compromise between a faithful approximation to
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the sources’ pdf and a function g(·) that results in an adaptation rule with good con-
vergence properties. It is acknowledged that speech signals exhibit a higher kurtosis
than is accounted for by (2.17). On the other hand, choosing g(·) to model the true pdf
of speech results in the nonlinear term (2.20) for the gradient (2.19) being divergent
at ui = 0. This compromise is justified by the finding of many researchers (e.g. Lee,
1998a, and references therein) that an approximation to the true pdf is in practice suf-
ficient, and this finding has also been justified by theoretical results (Yang and Amari,
1997). It is important, however, that both true and model pdfs have the same sign of
kurtosis (Lee, 1998a), which is fulfilled in the present situation. Applicability of (2.17)
is also confirmed by the results obtained with the proposed algorithm.
Note that from the non-Gaussianity and circular symmetry of P(sj(T, f)) it follows
immediately, that the real- and imaginary part of sj(T, f) are not independent, since
for any two independent random variables with circular symmetric distribution it
follows that their pdfs are Gaussian (see Papoulis, 1991).

Adaptation rule for BSS in the frequency domain

In order to obtain an adaptive algorithm, stochastic gradient ascent optimization is
used to maximize the log-likelihood. Since the searched parameters wij are complex
valued, optimization is based on the complex stochastic gradient δwij(T, f),

δwij(T, f) =
(

∂

∂<wij(f)
+ i

∂

∂=wij(f)

)
L(W(f),x(T, f)), (2.18)

where ∂/∂<wij(f) denotes differentiation with respect to the real-part of wij(f) and
∂/∂Iwij(f) differentiation with respect to the imaginary-part.
As the result of the derivation, the matrix ∇W(T, f) with elements δwij(T, f) is given
by

∇W(T, f) =
(
I + v(T, f)uH(T, f)

)
W−H(f), (2.19)

where I is the identity matrix and the unmixed signals are denoted as

u(T, f) = W(f)x(T, f) = (u1(T, f), u2(T, f))T .

The vector v(T, f) = (v1(T, f), v2(T, f))T is computed as a nonlinear function of
u(T, f),

vi(T, f) = − ui(T, f)
|ui(T, f)|

g′(|ui(T, f)|)
g(|ui(T, f)|)

(2.20)

= − ui(T, f)
|ui(T, f)|

tanh(|ui(T, f)|), (2.21)

where g′(·) is the derivative of g(·).
It is well known in for BSS algorithms that the gradient (2.19) leads to a rather slow
convergence to the separating solution. Speed of convergence can be improved by
orders of magnitude by using the modified gradient

∇̃W(T, f) = (∇W(T, f))WH(f)W(f) =
(
I + v(T, f)uH(T, f)

)
W(f), (2.22)
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which has been denoted as the ‘natural’ or ‘equivariant’ gradient by Amari et al. (1996)
and Cardoso and Laheld (1996), respectively.
We note that in contrast to the unmixing system proposed in (2.12), the parameters
w11(f) and w22(f) will not converge to 1. Rather their optimum values will be such
that the variance of the unmixed signals matches the variance specified by choice of
the sources’ pdf g(·). This fact simply corresponds to a different scaling of the rows of
wij(f) with respect to the rows of ŵij(f) in (2.12). The relationship between the two
is given by

ŵij(f) = wij(f)/wii(f), (2.23)

or, in terms of the unmixed signals,

ûi(T, f) = ui(T, f)/wii(f). (2.24)

Since P(s(T, f)) is assumed to be circularly symmetric, there is no preferred complex
phase of the unmixed signals. Hence, each row of W(f) can be multiplied by a complex
number of magnitude one without altering the likelihood L(W(f),x(T, f)). To fix this
invariance, we require that wii(f) is normalized to be real and positive for all i,

wii(f) ∈ R and wii(f) ≥ 0. (2.25)

The learning rule (2.22) should be compared to the corresponding equation for real
variables. In the case of real valued signals, the only difference is in the definition of
vi (2.26), which simplifies to

vi = −g′(ui)
g(ui)

. (2.26)

I.e., in the case of complex signals, the nonlinearity is simply computed from the
magnitude and the result acquires the original complex phase.
It is noted that the nonlinearity (2.20) for circular symmetric source distributions
coincides with the nonlinearity given (albeit without explanation) by Cardoso and
Laheld (1996) for the generalization of their separation algorithm from real-valued
sources to the complex case. However, for sources without circular symmetry, the
simple form of (2.20) does not hold (for a discussion of complex sources with non-
symmetric distributions encountered in digital communications, see Torkkola, 1998).
E.g., the nonlinearity proposed by Smaragdis (1998) for the separation of Fourier
transformed speech signals cannot be written in the form of (2.20) and therefore implies
source signals without circular symmetry which, for the reasons given above, appears
to be unrealistic.
Since the unmixing (2.10) takes the form of a matrix-vector product for each frequency
f , a straight-forward solution would be to maximize the likelihood function (2.14) for
each separating matrix W(f) separately. This procedure results in a set of separat-
ing matrices W(f), one for each frequency f . However, since each of the separating
matrices is derived independently, the source signals’ components are in general re-
constructed in (unknown) disparate order in different frequency channels, making a
time-domain reconstruction of the unmixed signals impossible, as depicted in figure 2.3.
To deal with such permutations, supplementary methods for sorting them need to be
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Figure 2.3: Performing separation independently in each frequency (depicted on
the right) results in unmixed signals components whose order with respect to the
corresponding source components is permuted in different frequencies (see right).

employed (e.g. Murata et al., 1998). A further disadvantage of working in each fre-
quency separately is, that relatively long signal-segments need to be known in order
to achieve descent separation (Smaragdis, 1998, reported signal lengths of at least 2s).
Rather than performing separation in each frequency independently, we are pursuing
the aim of incorporating the prior knowledge of free field mixing into the algorithm.
By exploiting this knowledge, a constrained adaptive algorithm is derived which avoids
local permutations, which is easily implemented in real-time, and which exhibits rapid
convergence.

2.4 Constrained optimization

Due to the free field assumption (2.8) and (2.25), separation can be achieved by the
matrix

W(f) =
(

w11(f) w12(f)
w21(f) w22(f)

)
=
(

w11 −w12 e−i2πfτ12

−w21 e−i2πfτ21 w22

)
(2.27)

where wij is real and positive for all i, j. Hence, the quantities which need to be known
to perform separation are the wij and τij .
The parameters wij are readily computed as wij = |wij(f)|. Hence, if |wij(f)| is known
for some frequency f , the corresponding magnitudes |wij(f ′)| for all other frequencies
f ′ 6= f are known, as well. Therefore, improving on the estimate of wij(f) for some
frequency f using the algorithm presented in section 2.3, results in improved estimates
of |wij(f ′)| for all f ′.
However, the situation is more complex for the phase factors − exp(−i2πfτ12) and
− exp(−i2πfτ21). Due to the 2π-ambiguity of the complex phase, it is in general not
possible to obtain τij from − exp(−i2πfτ21). In contrast, the 2π-ambiguity does not
exist for the corresponding change of parameters τij during update steps (2.22).
Therefore, we change from the complex parameter wij(f) to the (real) parameters of
magnitude and time-delay, wij and τij , respectively. The stochastic gradient for the
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Figure 2.4: Iterating the separation algorithm across frequencies (left) results in the
same order of unmixed components with respect to the corresponding sources for all
frequencies (right).

new parameters (δwij , δτij) is obtained from (2.18) and (2.27) as

δ̃wij(T, f) =
1

wij
<
(
wij(f) δw∗

ij(T, f)
)

(2.28)

δ̃τij(T, f) =
1

2πfw2
ij

=
(
wij(f) δw∗

ij(T, f)
)
,

where <(·) and =(·) denote real- and imaginary-part, respectively, and δ̃wij(T, f) is
the (i, j)-element of ∇̃W(T, f), calculated from (2.20) and (2.22) as

∇̃W(T, f) =
(
I + v(T, f)uH(T, f)(T, f)

)
W(f). (2.22)

Given some initial estimate (wij , τij) for magnitudes and time-delays, any measure-
ment x(T, f) for arbitrary (T, f) can be used to calculate improved estimates (w′

ij , τ ′ij)
by the following steps:

1. Using (2.27), calculate W(f) from (wij , τij).

2. From (2.22), calculate the complex gradient δwij(T, f) of the parameter wij(f).

3. From (2.28), calculate the corresponding gradient (δwij , δτij) of the magnitude
and time-delay parameters (wij , τij).

4. The improved estimates for wij and τij are given by

w′
ij = wij + η δwij τ ′ij = τij + η δτij (2.29)

where 0 < η � 1 is the adaptation rate.
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2.4.1 Adaptation scheme

Using this update procedure, the data at arbitrary points in the time-frequency plane
can be used to iteratively improve the estimate of wij and τij . In particular, it is
possible to first use data x(T, f) from all frequencies at a particular time T before
moving to the next time point T + 1. We propose the following adaptation scheme:

1. Start with some initial guess for (wij , τij), and with T = 1 and f = 1.

2. Based on the signal x(T, f), calculate improved estimates (w′
ij , τ ′ij) for (wij , τij),

using the procedure described above.

3. Compute the algorithm’s output signals ûi(T, f) from (2.24).

4. If f is not the highest possible frequency, set f ′ = f + 1 and T ′ = T .

5. If f is the highest frequency, set f ′ = 1 and T ′ = T + 1.

6. Use (T ′, f ′) and (w′
ij , τ ′ij) as the new values for (T, f) and (wij , τij).

7. Continue with step 2.

Using this adaptation scheme, the algorithm iterates in ‘loops’ across the spectrogram,
as depicted in figure 2.4. Since the parameter wij and τij ‘tie’ together the different fre-
quencies, the source components are reconstructed in the same order in all frequencies,
making a reconstruction of the time-domain signals by, e.g., the overlap-add technique
possible (cf. figure 2.4).

2.5 Implementation

Adaptive algorithms pose additional problems compared to their non-adaptive coun-
terparts, in particular if the signals to be processed are as non-stationary as speech
signals are. In this section, three implementation techniques are described which have
been found indispensable in order to ensure that the algorithm converges fast and
reliably to the separating solution, and to ensure that it remains, with small variance,
in the vicinity of the solution while still being adaptive.

Variable adaptation rate for different frequencies

As in any on-line adaptation algorithm with fixed adaptation rate, the estimate of the
parameters is biased by data which was presented most recently to the algorithm. This
effect is to some extend desirable, since it enables the algorithm to adapt to changing
environments. However, for the proposed scheme of iterating the algorithm also across
frequencies, the estimates for (wij , τij) are not only biased towards the most recent
samples in time, but also to samples at nearby lower frequencies. And, as can be seen
from figure 2.4, the estimates obtained at low frequencies are biased by samples from
high frequencies at the previous time-step.



2.5 Implementation 23

In our investigations, we found that this effect reduces the stability of the algorithm and
should be avoided. Therefore, different methods have been examined to compensate
for this effect. The scheme which yielded the best results, both in terms of speed
of convergence and robustness, is a simple 1/f -decay in the adaptation rate for the
magnitudes wij . Hence, (2.29) should be replaced by

w′
ij = wij +

η

f
δwij τ ′ij = τij + η δτij (2.30)

This is justified by the theoretical result from neural network theory that a 1/t decay in
the learning rate yields a parameter estimate which is not biased towards the samples
which occurred most recent in time (Sompolinsky et al., 1995). Hence, with (2.30)
the estimates for wij are not biased by the samples which occurred at the most recent
frequencies. However, the bias with respect to samples most recent in time remains,
so that the algorithm can still adapt.
We also experimented with a 1/f -decay in the adaptation rate for the time-delay τij ,
but it was found to decrease the speed of convergence too much while the robustness
of the τij was already sufficient without the decay. This can be explained by the fact
that a decay is already inherent in δτij of (2.28) through the factor 1/f , and therefore
an additional decay of the adaptation rate for τij is not necessary.
The 1/f -decay introduced here can intuitively be interpreted as follows: The low
frequencies may be forced to a rapid convergence at high adaptation rates to the
vicinity of the correct solution because it is more difficult to find an exact solution
than for higher frequencies. The higher frequencies, from which a time-delay can be
better estimated, provide improved accuracy at a lower adaptation rate.

Preemphasis

Convergence of the algorithm was further improved by applying a preemphasis filter to
the original microphone signals x

(o)
i (t), resulting in input signals xi(t) = x

(o)
i (t + 1)−

x
(o)
i (t) for the algorithm. It is easily verified that the free field mixing and demixing

models (2.2) and (2.12) still apply if the original sources s
(o)
j (t) are replaced by filtered

sources s(t) = s
(o)
j (t + 1)− s

(o)
j (t). After separation has been performed, the unmixed

signals must be low-pass filtered to compensate for the effect of the preemphasis.
Two reasons can be regarded to account for the beneficial effect of the preemphasis on
the algorithms’ performance.
First, the preemphasis has the effect of reducing the source signals’ kurtosis consider-
ably, as shown in table 2.1. Due to the low signal energy towards high frequencies, the
original kurtosis is very high, and by approximately flattening the spectrum the pre-
emphasis results in a more uniformly distributed variance across frequencies, thereby
reducing the kurtosis and improving the match between the true and the assumed
model pdf (for a discussion of the effects of non-stationarity on a signal’s pdf, see, e.g.,
Parra et al., 2001).
Furthermore, the preemphasis operation results in a larger effect of high frequencies
on the adaptation steps. However, it should be noted that according to the update
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equation (2.22), the preemphasis is not equivalent to a higher adaptation rate for
high frequencies. Therefore, it is advisable to use both preemphasis and decay of the
adaptation rate.

kurtosis

time domain 5.5
frequency domain 289.8
frequency domain, high-pass filtered 21.2

Table 2.1: Kurtosis of speech in the time-domain, in the frequency domain and the
kurtosis of differentiated (high-pass filtered) speech in the frequency domain.

Speech pause detection

Speech pauses in one source which, in the examples of section 2.6, last up to 700
milliseconds, can be a problem for the adaptive algorithm. Without additional pre-
cautions, the algorithm would diverge during these intervals, since it would attempt
to find an alternative source to be separated. One possibility to account for this effect
could be to preset a fixed energy threshold for each source, below which no parameter
adaptation is performed in order to avoid divergence. However, a fixed threshold is
inconsistent with the framework of blind separation where no assumptions are made
about the sources’ level. Therefore, we have opted to introduce a relative threshold
for the power of the sources. If the energy of any reconstructed signal in the current
FFT-frame is less than 15% of the energy of the other reconstructed signal, then solely
separation but no parameter update is performed.

2.6 Evaluation

Results from experiments with artificially mixed sources and with real-world recordings
in an anechoic chamber are reported. In the first experiment, we verify the proposed
algorithm using speech signals which have been mixed digitally in the time-domain
with time- and level differences. In the second experiment, source separation is per-
formed on real-world recordings of two speakers in an anechoic chamber. Finally, it is
demonstrated that the proposed algorithm successfully separates moving speakers by
applying it to anechoic recordings where one speaker is standing while the second is
moving.
In all experiments the following preprocessing was used in order to obtain the input
spectrograms: The signals were recorded using a sampling rate of 48 kHz and a preem-
phasis was applied. Speech pauses were not removed. Spectrograms were computed
using a Hanning-window of length 30 ms and a window-shift of 10 ms. The resulting
frames were padded with zeros to 2048 samples before a Fast-Fourier-Transform was
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applied. Spectral components from 23Hz to 10kHz were used for adaptation, since the
main energy of the signals occurs in this range.
The parameters of the algorithm were initialized to w11 = w22 = 1, w12 = w21 = 0,
τ12 = τ21 = 0, i.e., the algorithm started off from the (wrong) assumption that no
mixing occurs. The initial adaptation rate was set to η = 0.4 in order to pass first
transients. It was then lowered proportionally to 1/T until it reached η = 0.001 after
4 seconds. η = 0.001 was then kept constant for the remaining time.
Finally, the separated signals were transformed back to the time-domain, using the
overlap-add method (e.g. Oppenheim and Schaefer, 1975), and the effect of the pre-
emphasis was compensated by low-pass filtering the separated signals.
The entire processing, including spectral decomposition, source separation and overlap-
add reconstruction, was implemented as a C++ program which performed processing
approximately in real-time on a Silicon Graphics workstation with computing power
equivalent to a Pentium 133 PC.
Sound files corresponding to all experiments can be downloaded from the internet-
address http://medi.uni-oldenburg.de/demo/ane/specom.

2.6.1 Artificially mixed sources

Two mono speech signals were digitally mixed in the time-domain according to the
mixing system (2.5), using time- and level differences of τ21 = 0.5 ms and a21 = 0.95,
respectively, for the first source, and τ12 = 1.0 ms and a12 = 0.90, respectively, for the
second source.
Figure 2.5 displays the time-course of estimated time- and level differences assumed
by the demixing system for both reconstructed signals. The estimates of the time
differences have converged to the correct solution after only 0.2 s, already resulting
in very good separation. It takes up to approx. 1 s, unless the level differences have
also adapted to their optimum, which results in a small improvement of the separation.
Due to the non-stationary nature of speech signals, the parameters remain to fluctuate
slightly during the remaining time of the recording.
Informal listening to the reconstructed signals reveals that separation is almost perfect
and the remaining crosstalk is nearly inaudible. The improvement in signal separa-
tion is displayed in table 2.2. It was measured as the increase of direct-to-cross-talk
energy from before separation to after separation. The fast and almost perfect sepa-
ration demonstrates that the proposed algorithm operates successfully under optimal
conditions.

situation signal separation (dB)

synthetic delay and gain 26.5
anechoic chamber 15.5

Table 2.2: Signal separation caused by the algorithm.

http://medi.uni-oldenburg.de/demo/ane/specom


26 Adaptive separation of acoustic sources in the free field

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

le
ve

l−
ra

tio

Time  [s]

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

tim
e−

di
ffe

re
nc

e 
[m

s]

Time  [s]

Figure 2.5: Time-course of estimated level- (left) and time differences (right) assumed
by the demixing system for the separation of artificially mixed sources. For better
visual presentation, 1/w21 and τ21 correspond to the solid lines, whereas w12 and −τ12

correspond to the dashed lines. Therefore, parameter values corresponding to a source
in the right hemisphere are found in the upper half of the figures, and vice versa. The
optimum is attained at 1/w21 = 1.11, τ21 = 1ms, w12 = 0.95, and −τ12 = −0.5ms.
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Figure 2.6: Setup for the recordings performed for evaluation. Microphones are
located at positions A and B. Speaker positions for the experiment from section 2.6.2
are L and R, respectively. For the experiments of section 2.6.3, the moving speaker
started at position M, followed the indicated route and returned to position M, while
the standing speaker was at position L.

2.6.2 Stationary sources in anechoic environment

Recordings for this experiment were performed in the anechoic chamber of the Uni-
versity of Oldenburg, so that the free field assumption was fulfilled to a first approxi-
mation.
Two microphones were placed 35 cm apart. Stereo recordings were performed of one
male speaker talking from two positions of approximately 60 degrees to the left and
60 degrees to the right of the mid-perpendicular of the microphones, respectively. The
recordings were of moderate quality, in particular, recording noise is clearly audible.



2.6 Evaluation 27

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70

le
ve

l−
ra

tio

Time  [s]

−1

−0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70

tim
e−

di
ffe

re
nc

e 
[m

s]

Time  [s]

Figure 2.7: Time-course of estimated level- (left) and time differences (right) assumed
by the demixing system for the separation of a moving and a standing speaker in
anechoic environment. As in figure 2.5, 1/w21 and τ21 correspond to the solid lines,
whereas w12 and −τ12 correspond to the dashed lines. Therefore, parameter values
corresponding to a source in the right hemisphere are found in the upper half of the
figures, and vice versa.

The distance between speakers and microphones was 3 m (cf. figure 2.6). The two
stereo recordings were digitally added in the time-domain to obtain the mixed signals,
a procedure that is justified by the linearity of sound superposition in air. Since with
this recording method the source signals as recorded at the position of the microphones
are known, direct-to-crosstalk energy ratios can be computed both for the mixed signals
and for the unmixed signals obtained by the proposed algorithm.

Using the parameters as described above, the mixed signals were processed by the
algorithm. The improvement of the direct-to-crosstalk ratio was determined to be
15.5 dB. Analysis of the separation parameters’ time-course again revealed the rapid
convergence of the algorithm within less than 1 s. In informal listening tests, only a
very soft crosstalk of the unmixed signals was audible.

The result of 15.5 dB is compared to the results obtained by another algorithm
(‘AMDecor algorithm’) which has been proposed by the authors for the non-adaptive
separation of convolutive mixtures (including reverberation) of speech signals (see
Anemüller and Kollmeier, 2000). The AMDecor algorithm has been shown to result
in very good separation which is close to the physical limits imposed by the length of
the separation filters. In the same anechoic situation, the AMDecor algorithm caused
an improvement in direct-to-crosstalk energy of 15.3 dB, though with a window length
of 85 ms. Since the longer windows favor the AMDecor algorithm by allowing for
longer separation filters, it is concluded that the adaptive algorithm proposed in this
paper performs excellent. Even though it is adaptive, and even though it uses shorter
separation filters, it obtains a slightly better signal separation than its non-adaptive
counterpart.
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Figure 2.8: First ten seconds of speech recordings from the separation of moving
sources. Top row: Original signals of the moving speaker (left) and the standing
speaker (right). Center row: left and right channel of the mixed signals. Bottom row:
unmixed signals obtained by the algorithm.

2.6.3 Moving sources in anechoic environment

In the final experiment, signals from a moving and a stationary speaker in anechoic
environment were separated, demonstrating that the adaptation of the separation
algorithm is sufficient to track moving sources.
With the exception of the moving speaker, the experimental setup was the same as
in the previous experiment. The moving speaker started in a distance of 4.7 m at
a position at 70 degrees to the right, walked in a straight line parallel to the mi-
crophones until he reached a position at about 30 degrees left of the microphones’
mid-perpendicular, and then returned to his original position (cf. figure 2.6).
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Figure 2.8 displays the source signals, the mixed signals, and the unmixed signals
obtained by the algorithm. Time-courses of the time- and level difference parameters
estimated by the algorithm are displayed in figure 2.7.
Again, it is observed that the timing parameters τ12 and τ21 assumed by the demixing
system converge rapidly to the separating solution. Their time-course clearly displays
the movement of one speaker from the right to the left and back, while the second
speaker remains stationary. The convergence of the level difference parameters is
again slower, however the separation solution is also attained in less than one second.
Comparing in figure 2.8 the first ten seconds of the source signals with the algorithm’s
output signals shows that separation is already very good after less than 0.2 s, since
the individual sources’ waveforms are clearly recognizable in the unmixed signals.
Informal listening reveals that very good signal separation is achieved almost instantly.
However, quality of separation is slightly lower for the position reached at about 35 s
signal time where both sources are at their closest distance. In this position, source
separation is most difficult to achieve since the transfer functions are almost identical
for both sources, making the inversion of the mixing system an almost ill-posed inverse
problem. As a side effect, recording noise contained in the signals (cf. section 2.6.2) is
slightly amplified. However, this does not affect the algorithm’s convergence.

2.7 Discussion

In this paper, an algorithm for the blind separation of acoustically mixed sources was
proposed. Based on a general algorithm for the separation of Fourier transformed
speech, constraints derived from the free field assumption were incorporated in or-
der to obtain an adaptive algorithm with good convergence properties. Effectiveness
was investigated using both digitally mixed signals and recordings from anechoic envi-
ronment, including the situation of spatially moving sources. In conclusion, methods
from the fields of acoustics, digital signal processing, blind source separation and neural
network theory have contributed to the fast and robust convergence of the presented
algorithm, which, to the authors’ knowledge, represents the first algorithm described
in the literature that performs the separation of real recordings of moving speakers
(intermediate results presented in Anemüller and Gramß, 1999).
In comparison with previous algorithms for the separation of delayed and attenuated
sources (for references, cf. section 2.1), the main differences are the implementation in
the frequency domain, the evaluation with real-world signals, the fact that the algo-
rithm does not get trapped in local minima, and the rapid convergence. In particular,
it is surprising that the convergence towards the correct time-delay parameters is so
fast and stable for the present algorithm, whereas for the time-domain algorithm of
Torkkola (1996b) convergence problems involving local minima were reported for the
delay parameters. While the frequency domain implementation introduces a process-
ing delay that is larger than the time-delays τ12 and τ21, it should be noted that
the processing delay depends only on the length of the FFT windows (30ms in our
experiments), but not on the convergence time.
For the goal of fast adaptation, the frequency domain formulation allows the use
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of the improved gradient expression (2.22) which results in much faster convergence
than the standard gradient (2.19). Furthermore, the frequency domain is beneficial
for the algorithm’s applicability within more complex processing schemes. Since many
other noise reduction schemes, in particular spectral approaches, work in the frequency
domain, as well, it is possible to combine them with the presented algorithm at a
low computational cost. Taking into account that the C++ implementation used
for this paper performed the spectral decomposition at 48 kHz, source separation for
frequencies up to 10 kHz, and overlap-add reconstruction at 48 kHz approximately
in real-time with computing power equivalent to a 133 MHz Pentium computer, it is
obvious that much faster implementations are possible for lower sampling rates and,
in particular, if the data at hand is already split into spectral components.

Since the frequency domain implementation allows for fractional delays, it appears to
be well suited for applications with closely spaced microphones, as in modern multi-
microphone hearing aids. For truly binaural hearing aids, where head related transfer
functions replace the delay-and-gain assumption of equation (2.2), it is in principle
possible to include this prior knowledge into the algorithm by parameterizing the
unmixing system by the azimuth, i.e., using certain combinations of interaural time-
and level differences instead of tracking them independently.

It is expected that the algorithm also achieves some degree of source separation in real
rooms if sources and microphones are placed at a small distance, i.e., within the ra-
dius of reverberation (e.g. Heckl and Müller, 1994), and if only diffuse noise is present.
Late reflections, which are decorrelated at the microphones, can be regarded as diffuse
noise. In contrast, early reflections with correlated components at both microphones,
effectively constitute a third signal source which violates the assumed mixing model
and therefore might hinder convergence. Within the radius of reverberation, the al-
gorithm might also be used as a preprocessing step for unconstrained blind source
separation algorithms which separate convolutive (reverberant) mixtures: The direct
sound can be separated by means of the current free field algorithm, whereas the re-
verberant signal components are separated by an unconstrained BSS algorithm. By
splitting the problem into two parts, the overall adaptation speed might be increased
since the convolutive algorithm can be implemented with shorter separation filters.

For the application in digital hearing aids, the presented ‘blind’ algorithm will have to
be combined with a ‘non-blind’ control algorithm which incorporates additional prior
knowledge. The control algorithm should activate the algorithm only in those acous-
tical situations in which the assumptions of the current source separation algorithm
are approximately fulfilled. This analysis of room acoustics could be performed, e.g.,
based on a measure like the degree of diffusiveness (Wittkop, 2001) which characterizes
the reverberation in the present acoustic environment. Furthermore, the control algo-
rithm should identify which of the separated signals represents the signal of interest
for the listener. This decision could be based on, e.g., speech activity detection. Al-
ternatively, the time difference parameters τ12 and τ21 could be compared to reference
values corresponding to directions where signals of interest are expected (such as the
frontal incidence direction).
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2.8 Conclusion

The current algorithm has been shown to separate two sound sources fast, with a small
processing delay (about 30 msec) and with a moderate computational effort. However,
since a satisfactory suppression of one of two sound sources only takes place if the free
field assumption is approximately met, a combination of the current approach with
other algorithms appears to be necessary in hearing aid applications.





Chapter 3

Amplitude Modulation
Decorrelation for Convolutive
Blind Source Separation

3.1 Introduction

The problem of blind source separation (BSS) is encountered in various applications
where it is desired to reconstruct multiple original source signals while only mixtures of
them can be observed. Lack of additional information, e.g., about spatial locations of
the sources, is indicated by the term ‘blind’. One example is the area of noise reduction
algorithms where the aim is to separate out a speech signal from a background of noise
or competing speech signals, in order to enhance speech intelligibility for hearing aid
users or to improve the recognition rate of automatic speech recognition systems.
Many further applications exist in domains such as image processing, biomedical data
analysis and document analysis.
In its simplest form, the BSS setting assumes that M source signals are superimposed
by a linear and instantaneous transformation to form N mixed signals, where the
number of observed signals is larger or equal to the number of sources, N ≥ M . A
vast number of algorithms has been proposed in the literature to find estimates of the
original sources (e.g. Lee, 1998a, and references therein). Their common goal is to find
an unmixing matrix which transforms the mixed signals into separated signals that are
by some measure as distinct as possible and resemble the original sources. Principles
on which the algorithms are based rely on the sources’ second-order statistics (e.g.
Molgedey and Schuster, 1994; Belouchrani et al., 1997), on their higher-order statistics
(e.g. Jutten and Hérault, 1991; Comon, 1994; Bell and Sejnowski, 1995; Cardoso and
Laheld, 1996) or on non-stationarity of the sources (e.g. Matsuoka et al., 1995). It is
well known (Tong et al., 1991) that the original sources can only be reconstructed upto
an unknown permutation and rescaling operation since independent sources remain
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independent if their order is permuted or they are rescaled.
The blind source separation problem in the field of acoustics is more intricate due to
the propagation in the acoustic medium. While the acoustic superposition of sound
signals is still linear at normal sound pressure levels, it involves finite propagation
speed and reverberation which gives rise to a convolutive mixing. Fewer algorithms
have been proposed in the literature for the case of convolutive mixing, and the search
for methods which are capable of signal separation for a wide range of real-world
situations is still being carried on.
To separate convolutively mixed source signals, filtering of the microphone signals
must be performed—instead of a multiplication in the case of non-convolutive mixing.
Depending on the domain in which the filters are implemented, algorithms from the
literature fall into the classes of time domain or frequency domain based algorithms.
Some algorithms can be regarded as ‘hybrid’ algorithms since they implement the sep-
aration structure and the optimization cost-function in the time-domain but switch to
the frequency domain during parameter adaptation (e.g. Lambert, 1996; Amari et al.,
1997). Time-domain algorithms (e.g. Weinstein et al., 1993; Yellin and Weinstein,
1996; Lee et al., 1997) have to solve a non-trivial optimization problem in which all
coefficients of the unmixing filters are coupled. Lindgren and Broman (1998) report
that this leads to local minima which make it difficult to find the global optimum.
Existence of local minima is also indicated by Ehlers and Schuster (1997) using a
Monte-Carlo optimization of time-domain parameters.
Frequency domain algorithms (e.g. Capdevielle et al., 1995; Murata et al., 1998; Parra
and Spence, 2000a), in contrast, are based on the property of the Fourier transfor-
mation that the convolution in the time domain results in a multiplication in the
frequency domain. Thereby, the convolutive source separation problem in the time
domain is transformed into K decoupled instantaneous source separation problems
in the frequency domain, one for each frequency f = 1, . . . ,K. After separation has
been performed in the frequency domain, the separated sources are transformed back
to time domain signals using, e.g., the overlap-add technique (e.g. Oppenheim and
Schaefer, 1975).
The drawback of frequency domain methods is that in general local permutations
arise, i.e., the sources’ spectral components are recovered in a different (unknown)
order in different frequency channels, thereby making a time domain reconstruction of
the source signals impossible. Several approaches, as discussed in section 3.2.2, have
been proposed in the literature to deal with the problem of local permutations.
It is common to all frequency domain based algorithms found in the literature that two
processing stages are used to obtain separated signals. In the first stage, a solution for
the blind source separation problem in a single frequency channel is searched by taking
into account signal components at the same frequency, only. In a consecutive stage, it
is aimed at reordering the unmixing filters and the separated signal components such
that local permutations do not occur.
In contrast, the algorithm proposed in the present paper for the separation of speech
signals introduces a novel cost-function which integrates information across different
frequencies in order to perform separation. Different methods for taking into account
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across-frequency information have been proposed by a few authors (see Gramss, 1995;
Shamsunder and Giannakis, 1997; Diamantaras et al., 2000). Unlike existing methods,
the proposed algorithm employs correlations of signal envelopes at different frequen-
cies. It is shown that this approach solves the problem of local permutations and
results in a good quality of signal separation.
The outline of the paper is as follows. In section 3.2 the convolutive blind source
separation problem and its invariances are formulated. Section 3.3 introduces the
amplitude modulation correlation property of speech signals and section 3.4 explains
its application to blind source separation. Experimental evaluation is performed in
section 3.5.
Throughout the paper, the following notation is used. Vectors and matrices are printed
in bold font; [A]ij denotes the (i, j)-element of matrix A; x(T, f) denotes the spectro-
gram of signal x(t); complex conjugation is denoted by x∗; the expectation operator
is denoted by E {·}; transposition of vector x is denoted by xT ; transposition and
complex conjugation by xH ; the imaginary unit

√
−1 is denoted as i.

3.2 Problem Formulation

Superposition of sound sources in the acoustic medium involves echoes and time-delays
and is linear at the sound pressure levels normally encountered in conversations. Hence,
if N independent sound sources sj(t), j = 1, . . . , N in a room are recorded by M
microphones, the relation between sources and microphone signals xi(t), i = 1, . . . ,M ,
is

xi(t) =
N∑

j=1

∑
t′

aij(t′)sj(t− t′), (3.1)

where aij(t) denotes the room’s impulse response from the location of source j to
microphone i.
The goal of blind source separation is to recover the source signals sj(t) from knowl-
edge of the xi(t) only, by approximating them with unmixed signals uj(t). Ideally, the
unmixed signals would be identical to the source signals. However, if only the sources’
mutual independence and the linearity of the mixing system (3.1) are known a priori, it
is at best possible to reconstruct signals which resemble the sources upto an unknown
filtering. This invariance is due to the fact that independent signals remain inde-
pendent if they are transformed by invertible filters. Furthermore, the reconstructed
signals uj(t) might be arranged in a different order than the source signals sj(t) since
also the permutation of their order leaves independent signals independent.
If at least as many microphones as sources are present (M ≥ N), the reconstruction
can be performed by the linear unmixing system

uj(t) =
M∑
i=1

∑
t′

wij(t′)xi(t− t′). (3.2)

In the present paper, the approach is pursued to implement the unmixing system (3.2)
in the frequency domain.
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3.2.1 Frequency domain formulation

The standard time-frequency representation used for the analysis and filtering of speech
signals is the spectrogram. The spectrogram xi(T, f) corresponding to signal xi(t) is
obtained by computing the windowed short time Fourier transformation (STFT) of
xi(t) which is defined as

xi(T, f) =
2K−1∑
t=0

xi(t + T )h(t) e−2πift/(2K). (3.3)

Here, h(t) denotes the windowing function, f = 1, 2, . . . ,K denotes frequency and
T = 0,∆T, 2∆T, . . . is the time-index of the spectrogram. Similarly, sj(T, f), uj(T, f),
aij(f) and wij(f) are the STFTs of sj(t), uj(t), aij(t) and wij(t), respectively. Note
that aij(f) and wij(f) do not depend on time since the mixing system in (3.1) is
stationary.
The convolutive blind source separation problem (3.1) can be recast in the frequency
domain using the spectrogram. Provided that the frames for computing the short–
time spectra are sufficiently long, the linear convolution in (3.1) can be approximated
by the circular convolution in (3.3). In consequence, (3.1) factorizes into a set of K
equations, each corresponding to a matrix multiplication in a single frequency band,

x(T, f) = A(f) s(T, f). (3.4)

x(T, f) = [x1(T, f), . . . , xN (T, f)]T denotes the vector of the mixed spectrograms and
s(T, f) = [s1(T, f), . . . , sM (T, f)]T is the corresponding vector for the source signals.
The (i, j)-element aij(f) of matrix A(f) denotes the room transfer function from
source j to microphone i.
Hence, the convolutive source separation problem (3.1) has been transformed to a set
of K linear instantaneous source separation problems for complex variables.
Unmixed spectrograms u(T, f) = [u1(T, f), . . . , uM (T, f)]T ,

u(T, f) = W(f)x(T, f), (3.5)

are obtained by finding matrices W(f) with (i, j)-elements wij(f) such that the un-
mixed signals are independent. It is well known (Tong et al., 1991) that it is only
possible to reconstruct the source signals subsequent to a permutation and rescaling,

u(T, f) = P(f)D(f) s(T, f), (3.6)

where P(f) and D(f) denote a permutation and diagonal matrix, respectively. After
separation has been performed in the frequency domain, separated time-domain signals
are obtained by transforming the separated spectrograms back to the time-domain
using the overlap-add technique (e.g. Oppenheim and Schaefer, 1975).

3.2.2 Invariances

If (3.5) is interpreted as K independent source separation problems, one for each
frequency f = 1, . . . ,K, then the matrices P(f) and D(f) are obtained independently
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for each frequency. Hence, both will in general be different at different frequencies.
However, if P(f) is different for frequencies f and f ′, this results in a different ordering
of the sources’ spectral components in the two frequency channels. We denote such
different ordering in different frequencies as ‘local permutations’, for an illustration
see figure 3.1. If reconstructed time-domain signals are computed from separated
spectrograms with inherent local permutations, the inverse Fourier transformation
mixes spectral components belonging to different sources. Even if perfect separation
has been accomplished within each frequency channel, the effect of local permutations
therefore is very poor or no separation at all.
Therefore, it must be ensured that the reconstructed signals’ ordering with respect to
the original signals is the same in every frequency channel, i.e.,

P = P(f1) = P(f2) = . . . = P(fK). (3.7)

Note that even after all local permutations have been eliminated, the ‘global permuta-
tion’ P, which is independent of frequency f , is still present and remains by principle
unknown. However, since it is constant over frequency, it does not hinder time-domain
reconstruction of the separated signals, as illustrated in figure 3.1.
Several methods have been proposed to correct local permutations in the unmixed
signals. Some authors propose to exploit source signal properties to correct local per-
mutations. Murata et al. (1998) minimize the overlap between the unmixed signals’
broad-band and narrow-band envelopes to find the correct order of reconstructed spec-
tral components. Mejuto et al. (2000) compute fourth order cross cumulants to realign
the unmixed components of wireless communication signals.
Alternatively, constraints on the unmixing filters have been proposed to avoid local
permutations. Attias and Schreiner (1998) and Parra and Spence (2000a) propose to
restrict the allowed separating filters to those with a limited length of their impulse
response, resulting in smooth transfer functions in the frequency domain. However,
this goes at the expense of possibly lower signal separation due to the limited filter
length.
It has been proposed by Capdevielle et al. (1995) and Servière (1999) to use properties
of the discrete Fourier transform to correct permutations. However, this method is
computationally expensive since it requires computation of short-time-spectra with a
window shift of one sample.
Finally, some authors have combined the good convergence properties of frequency
domain methods with the observed robustness of time domain methods with respect
to local permutations. Ehlers and Schuster (1997) and Lee et al. (1998) use a sequential
scheme of frequency-domain and time-domain algorithms to perform separation.
In contrast to previous methods, the approach pursued in the present paper is to define
a cost function that inherently avoids local permutations.
To fix the invariance with respect to arbitrary rescaling D(f) in each frequency chan-
nel, two different approaches exist in the literature.
The first is back-projection of the (rescaled) separated signals to the microphone sig-
nals, as proposed by Murata et al. (1998). As a result, it is possible to reconstruct
the separated source signals as they were recorded at the microphones in the absence



38 Amplitude Modulation Decorrelation for Convolutive Blind Source Separation

time

frequency

output 1

output 2

source 1

source 2

source 2

source 1

source 1

source 2

time

frequency

output 1

output 2

source 1

source 2

Figure 3.1: Effect of local permutations. Left: At the medium frequency band, the
ordering of the source components is permuted relative to the other frequency bands.
Right: Same ordering of source components in all frequency channels.

of the other sources. Under the assumption of an ideal situation this method obtains
separated signals with little distortion. However, the step of back-projecting the sig-
nals leads to problems in the presence of even small levels of recordings noise, since
it involves the inversion of the matrix W(f) which might be ill-conditioned at several
frequencies. In some experiments Anemüller et al., this approach has the side-effect of
adding additional reverberation to the signals and slightly enhancing recording noise.
The second approach with respect to the rescaling problem consists of imposing con-
straints on the matrix W(f). The simplest and probably most popular constraint is
to simply set the diagonal elements of W(f) equal to one. This leads to less problems
with noise. However, it is still possible that recording noise gets amplified at several
frequencies. Alternatively, the norm of the rows of W(f) can be constrained to unity.
This guarantees that noise does not get amplified, however at the expense of slightly
distorting the signals. In the case of a complex matrix W(f) this constraint still leaves
undetermined a factor for the complex phase in each row of W(f). This indeterminacy
can be fixed by, e.g., setting the imaginary part of the diagonal elements of W(f) to
zero.

3.3 Amplitude Modulation Correlation

3.3.1 Structure in Speech

Speech, as an important means of communication, is generally believed to contain
information in the time-frequency distribution of the signal energy, a fact that gives
rise to the strong amplitude modulation which is present in speech. It has been found
by several researchers that neither the transmitted information nor the amplitude
modulation are independent in different spectral bands.
From the speech processing literature, it is known that the amplitudes in different
frequencies are interrelated. In the context of speech enhancement, Kollmeier and
Koch (1994) employ an analysis based on the amplitude modulation spectrogram and
observe that vowels are characterized by clusters of signal energy at different positions
with respect to frequency and modulation-frequency. The property of acoustical ob-



3.3 Amplitude Modulation Correlation 39

jects to be distributed across frequency is confirmed by Tchorz and Kollmeier (2000)
and exploited for the robust estimation of the signal-to-noise ratio of noise contam-
inated speech signals. Michaelis et al. (1997) find high correlations between Hilbert
envelopes computed from different frequency bands of speech signals in the context of
speech quality assessment.
For speech signals, semantic structure and the physiology of speech production are
regarded as the origin for the observed similarities in different frequency. The com-
position of speech from small elements — phonemes, syllables and words — which
are separated by minima in the signal amplitude directly contributes to interrelated
modulation in different frequencies, most prominent at, but not limited to the typical
modulation frequency of four Hertz. Vowels, in turn, are themselves characterized
by simultaneous spectral peaks at the formant frequencies (Paulus, 1998). The main
energy source for speech production is the glottis which emits a broadband sound
with spectral peaks at the harmonics of the speaker’s pitch frequency. Therefore, any
modulation of the glottis excitation affects all frequencies simultaneously. Subsequent
filtering by the vocal tract involves a smooth transfer function so that any change in
the shape of the vocal tract also alters the signal amplitude at multiple frequencies
simultaneously.
The human auditory system appears to be tuned to such interrelated activity in differ-
ent spectral bands, as evidence from psychoacoustic experiments suggests. The effect
of ‘comodulation masking release’ (Hall et al., 1984) may in part be explained on the
basis of across-frequency interactions in the auditory system (Verhey et al., 1999).
Furthermore, the improvement in the prediction of speech intelligibility accomplished
by taking into account redundant information at different frequencies (Steeneken and
Houtgast, 1999) may be regarded as an indication for across-frequency processing in
the auditory system, as well.
The basis for the algorithm presented in this paper is formed by the described speech
signal property of highly interrelated amplitude modulation in different and even dis-
tant frequency channels. This property is termed amplitude modulation (AM) corre-
lation (Anemüller and Kollmeier, 2000). Quantitative analysis of AM correlation is
based on the amplitude spectrogram which is obtained from the complex valued spec-
trogram by preserving only the amplitude and discarding the phase information. To
illustrate AM correlation, figure 3.2 displays the amplitude spectrogram of a speech
sample. Note that many elements of this image change smoothly over both time and —
more important for the present purpose — frequency, and that even distant frequency
channels exhibit related changes in amplitude.

3.3.2 Amplitude Modulation Correlation

A natural way to measure the synchrony of the amplitude modulation in two frequency
channels of two (possibly different) signals is to compute the correlation between the
corresponding frequency specific signals envelopes. Due to the low-pass filtering prop-
erty of the magnitude operation, the envelope correlation can be computed as the
correlation of the time-courses in two frequency channels of amplitude spectrograms.
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Figure 3.2: Amplitude spectrogram of a speech signal. Time is plotted on the ordinate
and frequency on the abscissa. The signal’s intensity for each combination of time and
frequency is given on a grayscale where white denotes minimum values and black
denotes maximum values. The respective value on the grayscale is proportional to the
logarithm of the intensity which spans a total range of 80 dB.

The amplitude modulation correlation (AMCor) c(x(T, fk), y(T, fl)) between the fre-
quency channel fk of spectrogram x(T, f) and frequency channel fl of spectrogram
y(T, f) is defined as

c(x(T, fk), y(T, fl)) = E{|x(T, fk)| |y(T, fl)|} − E{|x(T, fk)|}E{|y(T, fl)|} (3.8)

Note that the AMCor is a real valued quantity since it is computed from the magnitude
spectrogram. In this respect it differs from the notion of coherence, which is computed
from the complex valued spectrum. Computing the complex correlation of two different
frequency channels results in very low correlations since the STFT has the property of
approximately decorrelating the Fourier coefficients at different frequencies. Therefore,
the complex correlation is not appropriate to capture the properties of speech signals
discussed above.
By computing the AMCor for all possible pairs of frequencies (fk, fl) of a single signal
s(T, f), the AM auto-covariance matrix C(s) is obtained which is of size K ×K and
whose (k, l)-element is

[C(s, s)]kl = c(s(T, fk), s(T, fl)). (3.9)

We use C(s) as short-hand notation for C(s, s).
The AM auto-covariance matrix corresponding to the first signal from figure 3.3 is
displayed in figure 3.3 (bottom row, left). As expected, particularly high values of
AMCor are reached for nearby frequencies (i.e., near the diagonal), and high values of
AMCor can also be found for distant frequencies.
It is expected that the amplitude modulation of two independent speech signals is
unrelated and therefore the corresponding amplitude modulation correlation is zero.
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To this end the AM correlation is computed between the amplitudes |s1(T, fk)| at
frequency channel fk of source s1 and the amplitudes |s2(T, fl)| at frequency channel
fl of source s2. Performing this operation for all possible pairs of frequencies (fk, fl)
yields the AM cross-covariance matrix C(s1, s2) which is of size K × K with (k, l)-
element

[C(s1, s2)]kl = c(s1(T, fk), s2(T, fl)). (3.10)

The AM cross-covariance matrix computed from the two speech signals in figure 3.3
is displayed in figure 3.3 (bottom row, right). As expected, the AM correlation across
the two different signals is close to zero compared to the AM auto-covariance matrix
from figure 3.3 (bottom row, left).
It could be argued that in the case of two sentences spoken by the same speaker or
in the same language, the AM cross-covariance might not vanish due to speaker- or
language-characteristics. Since the two speech signals in figure 3.3 are spoken by the
same speaker in the same language, the corresponding AM cross-covariance matrix
in figure 3.3 (bottom row, right) also demonstrates that, apart from small residual
correlations, this is not the case.
Similarities in two related, but not identical signals result in high values in the cor-
responding AM cross-covariance matrix. However, the correlations found are not as
high as for the corresponding auto-covariance matrices computed from the individual
signals. This is displayed in figure 3.11, corresponding to signals used for evaluation
in section 3.5.3, which shows the auto- and cross-covariance matrices computed from
two microphone signals of two simultaneously speaking persons.

3.4 Source Separation by Amplitude Modulation
Decorrelation

Since amplitude modulation correlation provides a measure of the similarity of speech
signals, it can be used as a criterion for blind source separation by requiring that the
AM cross-covariance matrix of the reconstructed signals vanishes. It is demonstrated
that this requirement of amplitude modulation decorrelation of the unmixed signals
solves both the blind source separation problem and the problem of local permutations
simultaneously.

3.4.1 Separation

For the proposed algorithm to be applicable, the source signals are assumed to have
the AM auto-covariance property

[C(si)]kl 6= 0 ∀i∀k, l. (3.11)

Since different sources are independent, the AM cross-covariance for any pair (si, sj),
i 6= j, of different sources vanishes,

[C(si, sj)]kl = 0 ∀i 6= j ∀k, l. (3.12)
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Figure 3.3: Spectrograms and the corresponding amplitude modulation auto- and
cross-covariance matrices. Top row: Spectrograms of two different speech signals,
spoken by the same male speaker. Bottom row, left: AM auto-covariance matrix of
the first (top row, left) source spectrogram. Bottom row, right: AM cross-covariance
matrix of both spectrograms. The frequencies for which the correlations have been
computed are plotted on the ordinate and abscissa. Hence, each point in the dia-
gram displays the correlation for the corresponding pair of frequencies. For better
visualization the normalized correlation is displayed.
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Following the mixing by the acoustic mixing model (3.4), contributions from each
source are in general recorded at all microphones. Hence it follows from (3.11) that
the AM cross-covariance for all possible pairs (xi, xj) of microphone signals is non-zero,

[C(xi, xj)]kl 6= 0 ∀i, j ∀k, l. (3.13)

For the unmixed signals to be independent, the source signals’ AM decorrelation prop-
erty (3.12) must be fulfilled by the unmixed signals,

[C(ui, uj)]kl = 0 ∀i 6= j ∀k, l, (3.14)

corresponding to zero AM cross-covariance for all possible pairs (ui, uj), i 6= j, of
different unmixed signals.
Of course, the AM auto-covariance for each reconstructed signal ui is non-zero,

[C(ui)]kl 6= 0 ∀i∀k, l. (3.15)

Equation (3.14) is termed the ‘AM decorrelation principle’.
If in practice complete separation is not possible, the AM cross-covariance matri-
ces (3.14) are minimized, making the reconstructed signals as independent as possible.
Clearly, (3.14) constitutes a necessary condition for source separation. Intuitively, any
signal components from a particular source are characterized by their specific AM
auto-covariance (3.11). If components originating from source si are present in two
different unmixed signals, ui and uj , i 6= j, the source’s AM auto-covariance results
in the non-zero AM cross-covariance of the unmixed signals. Hence, the cross-talk
of source si to two unmixed signals results in the violation of the AM decorrelation
principle. While a rigorous prove of the intuitive explanation is difficult due to the
non-linear magnitude operation in (3.8), experiments performed with synthetic data
and speech signals demonstrate that in practice the AM decorrelation principle (3.14)
is sufficient in order to achieve a good quality of source separation.

3.4.2 Effect of permutations

In this section it is shown that the AM decorrelation principle (3.14) also has the
desirable property of avoiding local permutations.
Without loss of generality, it is assumed that a local permutation at frequency f ′

relative to all other frequencies f 6= f ′ occurs. Ignoring the scaling ambiguity which
is irrelevant at the moment, the local permutation results in

ui(T, f) =

{
si(T, f) if f 6= f ′

sπ(i)(T, f) if f = f ′
(3.16)

where π(i) denotes the permutation of the indices i.
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Computing the AM cross-covariance for any pair (ui, uj), i 6= j, of different outputs
gives

∀ i 6= j : [C(ui, uj)]kl =


0 if fk = fl = f ′

0 if fk 6= f ′ and fl 6= f ′

δπ(i),j [C(si)]kl if fk = f ′ and fl 6= f ′

δπ(j),i [C(si)]kl if fk 6= f ′ and fl = f ′

(3.17)

where δij denotes the Kronecker delta. Result (3.17) is in contradiction to the AM
decorrelation principle (3.14) which requires a vanishing cross-covariance for all k, l
in (3.17).
Furthermore, computing the AM auto-covariance for any single reconstructed output
ui gives

∀ i : [C(ui)]kl =



[
C(sπ(i))

]
kk

if fk = fl = f ′

[C(si)]kl if fk 6= f ′ and fl 6= f ′

δπ(i),i [C(si)]kl if fk = f ′ and fl 6= f ′

δπ(i),i [C(si)]kl if fk 6= f ′ and fl = f ′.

(3.18)

In contrast, the auto-covariance (3.15) is non-zero for all i, k, l.
Hence, the local permutation violates both conditions (3.14) and (3.15) simultaneously.
Conversely, if any of conditions (3.14) and (3.15) is fulfilled, local permutations are not
present. It is noted that conditions (3.14) and (3.15) apply to any number of sources
and are not limited to M = 2. The effect of local permutations on the covariance
matrices C(ui) and C(ui, uj) is visualized in figure 3.4.
While (3.15) can solely be used to detect local permutations, (3.14) can serve as a
criterion for both separation and absence of local permutations. Therefore, (3.14)
is used as the single condition which needs to be fulfilled in order to achieve both
separation and and correct ordering of unmixed components simultaneously. It is
observed experimentally that the additional use of criterion (3.15) does not have a
significant effect on the results.

3.4.3 AM decorrelation algorithm

To achieve separation without local permutations, the AM decorrelation algorithm
is proposed. It is based on the definition of a cost-function whose minimization with
respect to the separating matrices results in a solution that fulfills the AM decorrelation
principle (3.14).
Clearly, for a particular pair of different unmixed signals (ui, uj), i 6= j, the corre-
sponding condition in equation (3.14) is fulfilled if the squared Frobenius norm

‖C(ui, uj)‖2Fro =
∑
k,l

[C(ui, uj)]
2
kl (3.19)

of the cross-covariance matrix C(ui, uj) is minimized, since the Frobenius norm is
bounded from below by zero and acquires its minimum if and only if C(ui, uj) = 0.
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Figure 3.4: The effect of local permutations on the AM covariance matrices. Top
row: The two spectrograms from figure 3.3, but with the frequency range from 2kHz
to 3kHz permuted between the two signals. Bottom row, left: Normalized AM auto-
covariance matrix of the first (top row, left) source spectrogram. Bottom row, right:
Normalized AM cross-covariance matrix of both spectrograms.
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Since the AM decorrelation principle (3.14) requires AM decorrelation for all possible
pairs of different outputs (ui, uj), i 6= j, condition (3.14) as a whole is fulfilled if and
only if the sum H of the squared Frobenius norms of all outputs pairs with i 6= j,

H =
∑
i 6=j

‖C(ui, uj)‖2Fro =
∑
i 6=j

∑
k,l

[C(ui, uj)]
2
kl , (3.20)

is minimized.
It is noted that equation (3.20) cannot be written as a sum of energy terms which are
computed from each frequency channel separately, as is the case in other approaches
proposed in the literature. Rather, the contributions of all frequencies to the total
energy H are coupled.
Since the unmixed signals ui(T, f) are determined from the known mixed signals
xi(T, f) by the linear demixing model

u(T, f) = W(f)x(T, f), (3.5)

the parameters to be optimized in order to minimize H are the matrices W(f), f =
1, . . . ,K.
A gradient based optimization algorithm is employed which relies on the gradient of
H with respect to the matrices W(f). Note that while the cost-function (3.20) is
real-valued (since it is defined via the amplitudes of the unmixed signals), all variables
in the demixing model (3.5) are complex. Therefore, the derivatives with respect to
the parameters wij(f) are also complex-valued and are computed as

δwij(f) =
∂

∂<wij(f)
H + i

∂

∂=wij(f)
H, (3.21)

where ∂/∂<wij(f) and ∂/∂=wij(f) denote differentiation with respect to the real-
and imaginary-part of wij(f), respectively. The (i, j)-element of the gradient matrix
∇W(f) is

[∇W(f)]ij = δwij(f) (3.22)

Evaluation of (3.21) and (3.22) yields the expression

∇W(f) = 2 E
{
θ(T, f)xH(T, f)

}
(3.23)

with the abbreviations

θ(T, f) = [θ1(T, f), . . . , θM (T, f)]T

θi(T, f) =
ui(T, f)
|ui(T, f)|

∑
i 6=j

∑
f ′

c(ui(T, f), uj(T, f ′)) ξj(T, f ′)

ξj(T, f ′) = |uj(T, f ′)| − E {|uj(T, f ′)|} .

It is noted that the gradient ∇W(f) at frequency f depends on the unmixed signals
ui(T, f ′) for all frequencies f ′ = 1, . . . ,K and hence also on the unmixing matrices
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W(f ′) for frequencies f ′ 6= f . Consequently, the separation parameters for all fre-
quencies are coupled.
The optimization has to be done subject to one of the constraints for W(f) men-
tioned in section 3.2.2. Otherwise the algorithm would converge to the trivial solution
W(f) = 0 for all f . The simplest solution is to set the diagonal entries W(f) to one
and the corresponding entries of the gradient (3.23) to zero. Another possibility is
to normalize the rows of W(f) to unit norm and the imaginary parts of the diagonal
elements to zero. Both normalizations have been tested experimentally and lead to
successful separation. Most robust separation performance over a variety of situa-
tions was obtained by employing a variant of the whitening preprocessing step which
is standard in several blind source separation algorithms (e.g. Comon, 1994; Cardoso
and Souloumiac, 1996; Murata et al., 1998). Details are given in appendix A.1.

3.4.4 Optimization scheme

Minimization of (3.20) constitutes an optimization problem in a high-dimensional
space. In general, gradient based optimization methods converge to the nearest local
minimum of the cost-function, which is not necessarily the global optimum. Analy-
sis of the convergence on the error surface is therefore beneficial in order to assure
convergence to the vicinity of the global minimum for a variety of situations.
Experiments have shown that ‘direct’ optimization, i.e., optimization with respect to
W(f) for all frequencies f = 1, . . . ,K simultaneously, in many situations leads to
convergence to local minima which are far from the solution of signal separation. The
local minima partly seem to be due to separating solutions with local permutations,
which are locally optimal, but not globally.
Therefore, a particular optimization scheme is used in which the W(f) are sequen-
tially optimized, one frequency after another. Sequential optimization of the W(f)
for different frequencies corresponds to holding most of the parameters constant and
moving only in the direction of a few coordinates in parameter space. If convergence
to the nearest local minimum is required, this is an optimization strategy which can
lead to poor convergence speed (see Press et al., 1992). In the present case, however,
the purpose of this procedure is to ensure convergence to the vicinity of the global
optimum and our experiments prove that it is the appropriate method for the problem
at hand.
In detail, the procedure is as follows:

1. Determine the frequency channel, fstart, with the highest signal energy. It is
assumed that in the presence of recording noise, which is always present in
real-world recordings, we find a particularly high signal-to-noise ratio at this
frequency. Set the current frequency to fcurr = fstart.

2. Minimize (3.20) with respect to W(fcurr), holding all other W(f), f 6= fcurr,
constant.

3. Iteratively, increase fcurr to the next higher frequency and minimize (3.20) with
respect to W(fcurr), holding all other W(f), f 6= fcurr, constant.
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4. If fcurr has reached the highest frequency, set fcurr = fstart − 1 and perform
optimization for W(fcurr).

5. Iteratively, decrease fcurr by one and perform optimization for that frequency
until the lowest frequency is reached.

6. Three iterations (sweeps) through all frequencies usually suffice to achieve good
separation.

7. Convergence is further improved if during the first sweep energy (3.20) and
gradient (3.23) are evaluated taking into account only correlations with those
frequencies which have already been optimized. Using this procedure, the first
frequency to be optimized converges to some random permutation and, due
to the cross frequency terms in (3.20) and (3.23), the consecutively optimized
frequencies are driven to converge to the same permutation.

3.5 Experimental evaluation

To demonstrate the capabilites of the proposed AMDecor algorithm, several experi-
ments are performed. Synthetic source signals are employed to show that the algorithm
successfully separates signals which are inseparable for algorithms working in isolated
frequency channels. Quality of separation and ability to avoid local permutations are
addressed using real-room recordings from several acoustic situations. Performance on
publicly available benchmark datasets is compared with results from previous blind
source separation algorithms. Sound files corresponding to the experiments presented
can be obtained from http://medi.uni-oldenburg.de/demo/ane/diss.

3.5.1 Synthetic data

The aim of this section is to demonstrate that the proposed algorithm with its coupling
across frequencies has the ability to separate signals which cannot be separated by
algorithms which attempt to perform separation within each frequency separately.
To this end, synthetic source spectrograms si(T, f) are constructed which have the
property that within each frequency channel they contain purely independent and iden-
tically distributed (i.i.d.) noise with Gaussian distribution. However, looking across
different frequencies, the signals exhibit a common amplitude modulation. Therefore,
the AM auto-covariance matrix for a single synthetic source spectrogram is non-zero.
The signals cannot be separated by looking at a single frequency channel only, since
neither cues from higher order statistics (Comon, 1994), nor from autocorrelation
information (Molgedey and Schuster, 1994), nor from non-stationarity in the data
(Matsuoka et al., 1995) that could be used to perform separation are present.
The construction of the synthetic source signals is performed as follows. Random
Gaussian i.i.d. data ζi(T, f) of variance one and mean zero is generated for each source
si(T, f). Amplitude modulation correlation is introduced by multiplying all ζi(T, f)

http://medi.uni-oldenburg.de/demo/ane/diss
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for a particular source i with a modulator µi(T ) ≥ 0 which is constant over frequency
f but uncorrelated for different sources,

E {µi(T )µj(T )} − E {µi(T )} E {µj(T )} = 0 for i 6= j. (3.24)

Since the multiplication with µi(T ) alters the probability density function (pdf) of
ζi(T, f), a non-linear function gi,f (·) is applied for each source i and frequency chan-
nel f which transforms the data in each frequency channel such that the result has
Gaussian pdf with variance one and mean zero.
Hence, the synthetic source spectrograms are defined as

si(T, f) = gi,f (µi(T )ζi(T, f)) .

The non-linear function gi,f (·) is implemented by a ranking transformation of the
product time-series µi(T )ζi(T, f) to order numbers and a subsequent transformation
of the order numbers to a Gaussian random variable with unit variance and mean zero.
Since for each source i and frequency f the auto-correlation function of si(T, f) is a
delta-peak and since the pdf is Gaussian, the signals do not contain cues related to
auto-correlation information or higher-order statistics that could be used for separa-
tion.
To ensure that also information from non-stationarity of the signals is not available
as a cue for signal separation, the modulator has to be chosen properly. It could,
e.g., be chosen to be a slowly varying, possibly periodic function, say, µi(T ) = 1 +
sin(iT ). However, this would result in fluctuations in signal power on a slow time-
scale which could be exploited by algorithms that use non-stationarity in the data to
separate sources (e.g. Matsuoka et al., 1995; Parra and Spence, 2000a). Therefore, we
choose a random variable with uniform distribution in the interval [0, 1] as modulator.
This results in AM correlation across different frequencies since the same value of the
modulator function is applied to all frequencies at a given time instance. However,
the choice for the modulator does not result in non-stationarity of the data on a slow
time-scale since the modulator fluctuates as quickly as the signal itself.
Note that the time-series in two different frequencies fk 6= fl of a single source si are
second order uncorrelated. However, they are not mutually independent since the same
amplitude modulation has been applied to both frequencies. The resulting statistical
dependency is of higher than second order and can be detected by computing the
correlation of the amplitudes, i.e., the AM auto-covariance C(si).
Figure 3.5 displays an example illustrating the construction of synthetic spectrograms
from Gaussian noise and the random modulator function, together with the corre-
sponding AM auto-covariance matrices.
To demonstrate that the AMDecor algorithm successfully separates mixes of synthetic
source spectrograms, a simulation was carried out with two synthetic sources, each
with K = 20 frequencies and 10000 time-points. The source spectrograms were mixed
using 2×2 mixing matrices A(f), which were chosen at random and independently for
each frequency. The total signal-to-interference ratio (SIR, as defined in appendix A.2)
before separation was approximately 0 dB. The SIR after separation by the AMDecor
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Figure 3.5: (Facing page) Construction and separation of synthetic spectrogram data.
Top row: Gaussian i.i.d. noise ζ(T, f) in each frequency channel (left) and the cor-
responding AM auto-covariance matrix (right). Since the Gaussian noise is unmodu-
lated, the AM auto-covariance is zero. Middle row, left: Synthetic source spectrogram
s(T, f) obtained by multiplying the Gaussian noise ζ(T, f) with the modulator µ(T )
and transforming the result by the non-linear function gf (·) to make the pdf Gaus-
sian. Middle row, right: AM auto-covariance matrix corresponding to the synthetic
source spectrogram s(T, f). Since the same amplitude modulation is applied to each
frequency channel, the AM correlation across different frequencies is non-zero. Bottom
row, left: The random modulator function µ(T ) which is independent of frequency.
Bottom row, right: Frequency-dependent signal-to-interference-ratio (SIR) after sepa-
ration of a mixture of two synthetic source spectrograms with K = 20 frequencies and
10000 time-points.
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algorithm is also displayed in figure 3.5, showing that the algorithm has successfully
separated the mixed signals. Since the SIR after separation has the same sign for
all frequencies, local permutations did not occur and the source signals have been
reconstructed with the same order in each frequency channel.
The successful separation, together with the fact that this data cannot be separated
by looking at isolated frequency channels separately, shows that taking into account
information from AM correlation across different frequencies constitutes a distinct and
novel criterion for source separation.

3.5.2 Separation in different acoustic situations

In this section, we present results obtained in different acoustic situations which in-
clude recordings in reverberant and non-reverberant environment and data obtained
by digitally convolving speech signals with impulse responses of a real room. Since
the recordings were performed such that the original source signals are available, and
since the corresponding room impulse responses have also been recorded, the record-
ings allow for a detailed evaluation and analysis of the AM decorrelation algorithm.
The issues addressed in the evaluation concern performance in different acoustic sit-
uations, comparison with the performance of a non-blind reference method (MMSE
method), analysis of permutations present in the unmixed signals and analysis of im-
portance of across-frequency interactions in the AM decorrelation algorithm.
Speech signals from a total of four acoustic situations were recorded in two rooms. In
the first room, a medium-sized seminar room at University of Oldenburg, speech was
recorded from three different distances between speakers and microphones, ranging
from 0.5 m to 3.5 m. The details of the setup are shown in figure 3.6. Note that the
room contained a large window front to the right of the microphones and a blackboard
behind the microphones. These surfaces contribute very strong reflections to the room
acoustics, resulting in a reverberation time T60 of 0.5 s.
The signals used as original source signals were two different speech segments, each of
length 5 s, spoken by the same male speaker. Therefore, the long-time spectrum of
both signals was approximately identical, making spectral suppression of either of the
signals impossible. The recordings were performed as stereo recordings of the separate
source signals transmitted via a loudspeaker. The first stereo recording was performed
with the first speech signal coming from the location of source one, and subsequently
the second stereo recording was performed with the second speech signal coming from
the location of source two. To obtain the mixed signals, both stereo signals were
digitally mixed in the computer. This recording procedure has the advantage that
the original source signals from their respective positions are available and make it
possible to calculate signal-to-interference-ratios. The described procedure is justified
by the fact that sound propagation in air at normal acoustic levels is fully linear, as are
the microphones. All recordings were performed with omnidirectional microphones at
48kHz sampling rate.
The fourth acoustic situation was recorded in the anechoic chamber at University
of Oldenburg. In first approximation this situation contains only propagation time
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Figure 3.6: The setup for the real-room recordings with microphones to the left and
speakers at close (C), medium (M) and far (F) positions to the right.

differences, but no reverberation. The relative locations of microphones and speakers
were approximately those of position ‘far’ in figure 3.6. The source signals were two
texts, length 5 s, read by the same male speaker from two positions. Recordings were
done at 48 kHz sampling rate with the procedure of separate stereo recordings for each
source signal, as described above.
In addition to the sound recordings, room impulse responses were measured in the
seminar room setup from all speaker positions (with approx. 5 cm realignment error)
to the microphones. Measurement was performed with maximum length sequences
of length 65535 samples at a sampling rate of 48kHz. This amounts to about 1.35 s
length of the measured impulse responses which is sufficiently long considering the
given reverberation time of 0.5 s. Determination of the room impulse responses aims
at two purposes. First, simulated stereo signals of the sources were computed by
convolving the original source signals with the room’s impulses responses. Thereby,
all factors due to non optimal recording conditions, such as recording noise, were
eliminated.
Furthermore, the impulse responses were used to quantify acoustic characteristics of
the room. By splitting the impulse responses into their first part, which corresponds to
the path of direct sound propagation from speakers to microphones, and their second
part, which corresponds to the reverberation, the direct-to-reverberation-energy-ratio
(DRR) was computed. For close spacing of microphones and speakers, the DRR is
positive, showing their placement within the radius of reverberation (e.g. Heckl and
Müller, 1994), while for medium and large distance between microphones and speakers
it is negative, indicating that more energy from signal reflections than from the direct
path arrives at the microphones. For the latter case, mixing involves longer impulse
responses and therefore makes separation harder, as is demonstrated below. The
measured DRR coefficients are given in table 3.1.
Spectrograms were computed from the mixed signals using a Hanning window of length
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Position DRR

close 4.7 dB
medium -1.0 dB
far -6.9 dB

Table 3.1: Ratio of direct to reverberant energy contributions (DRR) at the micro-
phones for different distances to the speakers.

situation

nonrev close medium far

SIR prior to separation (dB) 0.86 3.35 0.28 0.89

SIR gain (dB) MMSE 19.68 7.07 5.78 3.05
AMDecor 15.29 4.37 5.96 -0.25
AMDecor + PC 15.30 5.08 6.57 3.88
AMDSF -0.11 -1.74 0.51 -0.36
AMDSF + PC 9.14 3.83 4.46 3.28

Table 3.2: Summary of separation results for sound recordings from different acous-
tic situations. Situation ‘nonrev’ denotes non-reverberant environment while ‘close’,
‘medium’ and ‘far’ correspond to the respective speaker position in figure 3.6. Separa-
tion was performed with the MMSE method from appendix A.4 (‘MMSE’), the pro-
posed AMDecor algorithm (‘AMDecor’) and amplitude modulation in single frequency
channels (‘AMDSF’, see text). For the blind methods, performance has also been
evaluated using non-blind correction of permutations as described in appendix A.3
(‘AMDecor+PC’ and ‘AMDSF+PC’, respectively).

4096 samples (which amounts to 85 ms), window-shift of 1024 samples and FFT-
length of 8192 samples. Separation with all methods described below was done using
frequencies up to 4 kHz since the main energy of the speech signals falls into this range.

Separation by AM Decorrelation algorithm

In the first experiment, it is investigated how separation varies with the acoustical
situation and whether the AM Decorrelation algorithm leads to separation without
local permutations.
Data from all four acoustic situations and from the simulated mixed signals obtained
by the room impulse responses was processed using the proposed AM decorrelation
algorithm. The signal-to-interference-ratios (SIR) prior to and after separation are
displayed in figure 3.7 and tables 3.2 and 3.3. For details about the computation
of the SIR values, refer to appendix A.2. It is concluded from the results that the
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situation

close medium far

SIR prior to separation (dB) 2.98 0.41 1.12

SIR gain (dB) MMSE 5.80 5.55 4.16
AMDecor 5.39 5.73 3.30
AMDecor + PC 5.70 5.86 4.03
AMDSF -1.16 0.12 -0.52
AMDSF + PC 4.29 3.91 3.18

Table 3.3: Summary of separation results for signals mixed by room impulse responses.
For explanation of the situations and the algorithm abbreviations, refer to table 3.2.
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Figure 3.7: The signal-to-interference-ratios (SIR) prior to separation (‘input’), after
separation by the AM decorrelation algorithm (‘AMDecor’) and with remaining local
permutations corrected by the non-blind method from appendix A.3 (‘AMDecor+PC’).
The different acoustic situations are non-reverberant (‘nr’), close (‘cr’, ‘ci’), medium
(‘mr’, ‘mi’) and far (‘fr’, ‘fi’). Data for ‘nr’, ‘cr’, ‘mr’ and ‘fr’ was obtained by sound
recordings in a room, while data for ‘ci’, ‘mi’ and ‘fi’ was obtained by convolving the
original source signals with impulse responses measured in the room.

AMDecor algorithm successfully improves the SIR. The general trend is that SIR
after separation is highest for the most ‘simple’ acoustic situation, the non-reverberant
condition, and monotonically drops down towards more ‘complex’ situations where the
impulse responses become longer. The monotonic decrease does not hold for the gain in
SIR accomplished by the algorithm. In the ‘close’ position, the SIR prior to separation
is already quite large, reducing the corresponding gain in SIR even below the gain that
can be achieved for the more difficult ‘medium’ position.
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Figure 3.8: Comparison of the gain is SIR accomplished by AM decorrelation algo-
rithm (‘AMDecor’) and MMSE method (‘MMSE’). Gain in SIR with the AM Decor
algorithm and corrected permutations (‘AMDecor+PC’) is also shown. Acoustic situ-
ations (‘nr’, ‘cr’, ‘ci’, ‘mr’, ‘mi’, ‘fr’, ‘fi’) are denoted as in figure 3.7.

An important question is whether the overall gain in SIR could be further increased
if possibly remaining local permutations were sorted correctly. To this end, we have
applied a method for computing the SIR that is obtained if no local permutations
occur. The method exploits the availability of the source signals to correct local
permutations and is outlined in appendix A.3. It is displayed in figure 3.7 that the
possible gain from correcting local permutations is below 0.73 dB in all cases except
one. Therefore, it is concluded that the AM decorrelation algorithm does avoid local
permutations to a very good degree. The only exception occurs for the room recording
in the ‘far’ position. For this position, the AM decorrelation appears to converge to
a local minimum of the cost-function in which local permutations reduce the gain in
SIR to less than zero dB. Notably, if the permutations are corrected, the accomplished
gain in SIR rises to a decent value.

Separation by MMSE method

The quality of separation is limited by the length of the unmixing filters, i.e., by
the length of the window function used for computing the spectrograms. Therefore,
perfect separation of the signals cannot be accomplished, even in the case of computing
simulated mixed signals from the room impulse responses. By using a blind method
only, it is not possible to determine how close the attained separating solution is to the
best possible solution. Therefore, a non-blind method based on the minimum mean
squared error (MMSE) method is employed to find the optimal linear reconstruction
of the source signals from the mixed signals’ spectrograms. Details of the method are
given in appendix A.4.
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Figure 3.9: Comparison of separation by the proposed AM decorrelation algorithm
(‘AMDecor’) based on cost-function (3.20) with separation obtained by decorrelation in
single frequency bands (‘AMDSF’) based on cost-function (3.25). For both algorithms,
the gain in SIR is also given for remaining permutations corrected using the non-
blind method from appendix A.3 (‘AMDecor+PC’ and ‘AMDSF+PC’, respectively).
Acoustic situations (‘nr’, ‘cr’, ‘ci’, ‘mr’, ‘mi’, ‘fr’, ‘fi’) are denoted as in figure 3.7.

Figure 3.8 compares the separation results obtained by the AM decorrelation algorithm
with separation by the MMSE method. In the case of simulated mixing, the result of
the AMDecor separation is close to the MMSE result and in one case even better. In
the case of real recordings, AMDecor performs on average slightly worse, however still
close to the MMSE result. In the ‘medium’ situation, AMDecor outperforms MMSE
and in the problematic case of the ‘far’ situation, the AMDecor result with corrected
permutations is also better than the MMSE result. In conclusion, the separation
obtained by AM decorrelation is on average in the vicinity of the optimum.

Separation by AM decorrelation without across-frequency interactions

Finally, the question is addressed, whether the across-frequency terms in the AM
decorrelation cost function (3.20) actually improve quality of separation or whether
they merely serve to avoid local permutations. To elucidate this point, the alternative
cost function Hsf,

Hsf =
∑
i 6=j

∑
k

[C(ui, uj)]
2
kk , (3.25)

is investigated which is similar to (3.20) but contains single-frequency terms only and
lacks the across-frequency interactions of (3.20). Therefore, Hsf does not have the
ability to avoid local permutations.
Figure 3.9 compares the separation based on cost-functions (3.20) and (3.25), with
and without local permutations being corrected by the method from appendix A.3.
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As expected, the results from Hsf without permutations corrected are very poor since
the local permutations result in an average gain in separation of around 0 dB. If
the local permutations are corrected, it becomes clear that Hsf does result in some
degree of signal separation. However, comparing with the results obtained with the
cost function H, the latter performs significantly better. In particular, H without
permutations corrected is in all situations (with the exception of the pathological ‘far’
situation) better than Hsf with permutations corrected. If, in addition, the remaining
permutations in the results with H are corrected, then H outperforms Hsf even further.
Therefore, it is concluded that the across-frequency terms in (3.20) are not only needed
in order to avoid local permutations, but that they also improve on the quality of
separation.

3.5.3 Performance on benchmark data

In this section, the AM decorrelation algorithm is applied to publicly available real
room recordings of speech signals. The quality of separation is evaluated and compared
to the quality accomplished by previous algorithms on the same data.

Separation of data provided by Lee

The first data set was obtained from Lee (1998b). It consists of two speakers counting
from zero to ten in English and Spanish language, respectively. According to Lee
(1998a), the recording was performed in rectangular order of speakers and microphones
in an office room, with a distance of 40cm between the microphones and 60cm between
microphones and speakers.
This dataset can be regarded as relatively easy to separate and successful separation
has been performed by several researchers with different algorithms. Since the original
source signals are not available, it is difficult to compare the performance of the differ-
ent algorithms on this dataset quantitatively. E.g., it is not possible to compute the
improvement in signal-to-interference-ratio accomplished by the different algorithms.
In an attempt to apply some measure of how ‘independent’ the unmixed signals are, we
have computed the value of the AM decorrelation cost-function (3.20) for the recorded
signals and for the unmixed signals obtained by different algorithms. The result is
displayed in figure 3.10 (left). It shows that the AM decorrelation algorithm has the
best performance and improves slightly on the algorithm of Parra and Spence (2000a)
which is generally regarded as exhibiting high-quality output signals and excellent
separation results. Admittedly, the value of the AM decorrelation cost-function is a
very crude measure for the performance. Also, it may be argued that quite naturally
our algorithm achieves the best performance using this measure since it directly aims
at minimizing the AM correlation. However, from informal listening to the unmixed
signals we conclude that the quality of separation as perceived by human listeners
coincides quite well with the numeric results. In particular, the perceived difference in
separation quality is quite high between the results of Lee and the AM decorrelation
algorithm, and it is relatively small between the results of Parra and the AM decorre-
lation algorithm, while the improvement due to the AMDecor algorithm is still clearly
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Figure 3.10: Separation of real-room recordings of speech by different algorithms. Left
side refers to speech data recorded by Lee (1998b), right side to speech data recorded
by Parra (1998). The value of the AMCor cost-function (3.20) (‘AMCor’) is shown
for the amplitude modulation decorrelation algorithm (‘A’), Lee’s algorithm (‘L’, Lee
et al. (1998), results for Lee’s speech data only) and Parra’s algorithm (‘P’, Parra and
Spence (2000a)), relative to the mixed signals (‘M’). Total energy of the signals was
normalized prior to computing the cumulative AMCor.

audible.
To illustrate minimization of AM cross-covariance by the AM decorrelation algorithm,
figures 3.11 and 3.12 display spectrograms of the recorded and the unmixed signals and
their corresponding auto- and cross-covariance matrices. Separation was performed
using a 384 samples long Hanning window, DFT length 512 samples and window shift
64 samples at a sampling rate of 16 kHz.

Separation of data provided by Parra

The second dataset has been provided by Parra (1998), accompanied with the sepa-
ration results obtained by the algorithm of Parra and Spence (2000a) on this data.
It consists of a person talking and a TV set in the background. The signals were
recorded in a hotel room with microphones attached to a laptop computer and are of
relatively poor sound quality. This dataset is known by several researchers in the field
and regarded as difficult to separate. To the authors’ knowledge, only two algorithms
—the algorithm of Parra and Spence (2000a) and the proposed AM decorrelation
algorithm— have been shown to perform successful separation on this dataset.
Since the original source signals are not available, we again resort to use the value
of the cost-function (3.20) as an indication for the algorithms’ performance and use
listening tests to assess subjective quality of separation. The corresponding values
of the cost-function are displayed in figure 3.10 (right). Both algorithms achieve a
strong reduction of the AM correlation relative to the mixed signals. Again, the AM
decorrelation algorithm attains slightly better values than the algorithm of Parra and
Spence (2000a). Listening to the results, quality of separation is very good for both
algorithms with the AM decorrelation accomplishing slightly better separation. In
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Figure 3.11: Spectrograms and corresponding AM covariance matrices for the dataset
provided by Lee (1998b). Top row: Spectrograms of the left and right microphone
signal, respectively. Bottom row, left: Normalized AM auto-covariance matrix of the
first microphone signal. Clearly, the speech signals exhibit similar amplitude modu-
lation even at very distant frequencies. Bottom row, right: Normalized AM cross-
covariance matrix of the both microphone signals. Since both microphones receive
contributions from both sources, the AM cross-covariance is almost as high as the AM
auto-covariance displayed on the left.
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Figure 3.12: Top row: Separated signals obtained by the proposed algorithm from
the mixed signals of figure 3.11. Bottom row, left: Normalized AM auto-covariance
matrix of the first (top row, right) separated signal’s spectrogram. Since correlations
within each signal remain after separation, the AMCor within each signal is non-zero.
Bottom row, right: Normalized AM cross-covariance matrix of both separated signals’
spectrograms. Obviously, the algorithm has caused a reduction of AMCor to low
residual levels.
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particular the AM decorrelation algorithm almost completely eliminates the speech
signal in the output corresponding to the TV set while some crosstalk from the TV
set is still audible in the output corresponding to the single talker. This result is
attributed to the speaking person being closer to microphones than the interfering TV
set. Therefore, the impulse responses from the speaker to the microphones can be
assumed to exhibit the better direct- to reverberation-energy ratio which may make
them easier to be canceled out by the algorithm.
For separation of the data, very long filters were used. Length of the Hanning window
was 3584 samples, DFT length 4096 samples, window shift 1024 samples at a sampling
rate of 8 kHz.

3.6 Conclusion

Amplitude modulation correlation in speech arises naturally from the structure of
speech and from the physiology of speech production. Quantification of AM correlation
is possible by computing auto- and cross-covariance matrices from amplitude spectro-
grams. A novel cost-function and algorithm for blind separation of convolutively mixed
speech signals were proposed, based on minimization of AM cross-covariance matrices
for all pairs of different unmixed signals. Its key feature, which distinguishes it from al-
gorithms in the existing literature, is the incorporation of envelope correlations across
different frequencies. It was shown analytically and experimentally that the introduc-
tion of across-frequency interactions into the cost-function solves the problem of local
permutations which arises in frequency domain blind source separation algorithms.
Because of its cross-frequency terms, the algorithm successfully separates mixtures of
synthetic signals with Gaussian i.i.d. statistics which cannot be separated by algo-
rithms working in single frequency bands. Furthermore, the experimental evaluation
showed that the across-frequency interactions improve on the quality of separation of
real-room recordings of speech.
The observation of AM correlation in speech signals is closely related to the underly-
ing statistical model of speech signals which is (implicitly or explicitly) assumed. E.g.,
the assumption of statistically independent Fourier transform coefficients in different
frequency channels is stated explicitly by Attias and Schreiner (1998). The same as-
sumption is made implicitly by any algorithm that attempts to solve the blind source
separation problem in each frequency channel separately. In contrast, it is shown in
the present paper that for speech signals the assumption of independency of different
frequency channels does not hold. Furthermore, the results presented permit the con-
clusion that the problem of local permutations arises if different frequency channels
are assumed to be statistically independent. However, if statistical dependencies be-
tween signal components in different frequency channels are taken into account, the
permutation problem can be solved.
Measuring the correlations between amplitude time-courses in different frequency chan-
nels might appear as a very crude measure of statistical dependency, and indeed it has
been proposed based on empirical observations and knowledge from speech process-
ing. However, it should be noted that AM correlation is closely related to the notion
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of fourth order cross cumulants (Nikias and Petropulu, 1993) which, for zero-mean
random variables x(f) and y(f), can be defined as

c4(x(fk), y(fl)) =E{|x(fk)|2 |y(fj)|2} − E{|x(fk)|2}E{|y(fj)|2}

−
∣∣E{x(fk) y∗(fl)}

∣∣2 − ∣∣E{x(fk) y(fl)}
∣∣2. (3.26)

For speech spectrogram data, the fourth term on the r.h.s. of (3.26) is zero, and the
third term on the r.h.s. is essentially a diagonal contribution for fk = fl. Hence, the
fourth order cross cumulant expression (3.26) is very similar to the proposed measure
of AM correlation (3.8).
This analogy permits the interpretation of AM correlation as a quantity which mea-
sures higher-order statistical dependencies between Fourier transform coefficients in
different frequency channels. The present paper has shown that taking into account
this higher-order structure in speech signals results in an improved algorithm for blind
source separation.





Chapter 4

Separation of
multidimensional sources

4.1 Introduction

The aim of blind source separation (BSS, Jutten and Hérault, 1991) is to recover in-
dependent source signals from knowledge of their superpositions, only. One typical
example is the ‘Cocktail-Party’ situation, i.e., mixed signals of several speakers are
recorded with multiple microphones whereas the signals of interest are the individual
speaker signals, which BSS tries to reconstruct. Methods based on different principles
have been proposed to achieve this goal. Their common basis is the assumption that
the sources are independent systems. By reconstructing signals which are as inde-
pendent as possible, an attempt is made to recover the original sources. Since little
additional knowledge is assumed to be known, the methods are termed ‘blind’.
The class of the probably most widely employed methods relies on the notion of ‘inde-
pendence’ in the sense of statistical independence, and is also referred to as independent
component analysis (ICA). This method decomposes mixed signals into statistically
independent source signals by exploiting the assumed non-Gaussian probability den-
sity functions of the sources (e.g. Jutten and Hérault, 1991; Comon, 1994; Bell and
Sejnowski, 1995; Cardoso and Laheld, 1996).
Another group of algorithms employs methods based on second order statistics and
recovers the sources by requiring that the cross-correlation functions of different un-
mixed signals must vanish (e.g. Weinstein et al., 1993; Molgedey and Schuster, 1994;
Belouchrani et al., 1997).
Finally, algorithms have been proposed that separate mixed signals based on the non-
stationarity of the underlying sources (e.g. Matsuoka et al., 1995; Parra and Spence,
2000a).
An assumption common to all of the algorithms mentioned is that the N underlying
sources si(t), i = 1, . . . , N , are essentially one-dimensional, i.e., they depend on a
single variable t, only, where t may denote time. Even in applications where the raw
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data is higher dimensional, it is rearranged into a one-dimensional feature vector. For
blind source separation of two-dimensional images, for example, the data is reordered
into a one-dimensional vector which contains the concatenation of all pixel values (Bell
and Sejnowski, 1997; Wachtler et al., 2001). This is justified by the assumption of a
translation invariant mixing process so that the sources’ pixels are superimposed in the
same way at all spatial positions. Furthermore, the data is assumed to be stationary
with respect to two-dimensional space.
In the context of blind source separation, the case of multidimensional signals (e.g.
Priestley, 1981) is encountered in frequency-domain based approaches to the separa-
tion of acoustically mixed sound sources. Due to time-delays and reverberation, the
acoustic medium causes the convolutive mixing of sources. By computing consecu-
tive short-time spectra, the data is transformed into the time-frequency spectrogram
representation, and the convolutive mixing in the time domain factorizes into instanta-
neous mixing (i.e., mixing without time-delays) in each frequency band (for details cf.
section 4.4.3). Hence, each source i, i = 1, . . . , N , is no longer represented by the one-
dimensional signal si(t), but rather by the two-dimensional spectrogram si(t, f), where
the coordinates t and f correspond to the time- and frequency dimension, respectively.
In contrast to the situation for image data outlined above, two aspects of the problem
prohibit its simplification to a single one-dimensional problem. First, the signal mixing
varies with frequency, which is a result of the convolution operation in the time domain.
Second, the data is non-stationary with respect to the frequency dimension, since the
power of, e.g., speech signals varies considerably across frequency. Since both mixing
and data are non-stationary, this problem is truly multidimensional.
Several researchers have proposed to split the multidimensional problem into a set of
K independent one-dimensional BSS problems, one for each frequency f = 1, . . . ,K,
and separate source components independently in each frequency (e.g. Capdevielle
et al., 1995; Ehlers and Schuster, 1997; Murata et al., 1998; Parra and Spence, 2000a).
However, this approach causes in particular the problem that the sources’ components
are recovered in disparate (unknown) order in different frequencies, which makes the
direct assignment of unmixed components to the corresponding sources impossible.
The need to sort the source components’ permutations has led to additional post-
processing steps which incorporate further prior knowledge that had not been assumed
for the sake of separation. In contrast, it has recently been shown by Anemüller and
Kollmeier (2000) for the case of separating convolutively mixed speech signals that
taking into account the multidimensional nature of the source signals by modeling the
statistical dependencies between different frequency channels resolves the permutation
problem without post-processing and results in improved quality of separation.
The aim of the present paper is to suggest that proper consideration of multidimen-
sional sources can be beneficial also in applications other than the separation of acous-
tically mixed sound signals. Furthermore, a novel solution to the separation of mixed
multidimensional sources is given, which is based on second-order statistics.
The outline of the paper is as follows. In section 4.2 the notion of multidimensional
source signals and the assumed mixing model is specified. Examples for situations
exhibiting multidimensional source signals are given. Section 4.3 is dedicated to a
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particular algebraic solution, together with conditions for identifiability and resolving
permutations. Evaluation of the proposed algorithm is presented in section 4.4.
Throughout the paper, vectors and matrices are printed in bold font. x∗ denotes
complex conjugation. Transposition is denoted by xT , and transposition and complex
conjugation by xH . The expectation operator is denoted by E{·}. The exposition is
given for complex variables.

4.2 Multidimensional sources and mixing

The multidimensional signal generated by source s is denoted by s(t1, . . . , tL, f1, . . . , fK).
The parameters (t1, . . . , tL, f1, . . . , fK) denote coordinates in L+K-dimensional space,
and for each dimension the source signal is defined at coordinate values tl,1, . . . , tl,Tl

,
l = 1, . . . , L, and fk,1, . . . , tk,Fk

, k = 1, . . . ,K. Without loss of generality, we limit our
treatment to zero mean sources.
The t-dimensions, corresponding to coordinates t1, . . . , tL, are denoted as ‘stationary
dimensions’ since it is assumed that both the mixing system and the source signals’
statistics are stationary with respect to a shift in the t-dimensions. Hence, expectations
can be computed by averaging over the t-parameters, assuming ergodicity. It is noted
that due the stationarity of mixing and data, the t-dimensions can be regarded as
essentially one-dimensional, as explained in section 4.1.
In contrast, the f -dimensions, corresponding to coordinates f1, . . . , fK , are denoted
as ‘non-stationary dimensions’ since it is assumed that the mixing system varies with
respect to a shift in each coordinate fk, and the source signals may be non-stationary
with respect to each fk. Therefore, it is not possible to compute expectations as
averages over the f -parameters.
Let N independent sources si, with signals si(t1, . . . , tL, f1, . . . , fK), be mixed linearly
by an invertible mixing system with coefficients aij(f1, . . . , fK) which depend on the f -
dimensions’ coordinates, only. An equal number of mixed signals xi(t1, . . . , tL, f1, . . . ,
fK), i = 1, . . . , N , is obtained as

xi(t1, . . . , tL, f1, . . . , fK) =
N∑

j=1

aij(f1, . . . , fK) sj(t1, . . . , tL, f1, . . . , fK). (4.1)

For the sake of a concise notation, the exposition in the remainder of the paper is
given for two-dimensional sources s(t, f). However, the derivation directly carries over
to the case of L + K-dimensional sources.
Combining all sources in one vector yields, in the two-dimensional case, the source
vector s(t, f) = [s1(t, f), . . . , sN (t, f)]T . Denoting in analogy the mixed signals’ vector
as x(t, f) = [x1(t, f), . . . , xN (t, f)]T , and the N ×N mixing matrix with (i, j)-element
aij(f) by A(f), the mixing system in matrix-vector notation reads

x(t, f) = A(f) s(t, f). (4.2)

From knowledge of the mixed signals x(t, f), only, it is aimed to find an estimate Â(f)
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of the mixing matrix so that unmixed signals u(t, f) = Â−1(f)x(t, f) can be obtained
which resemble the source signals.

Choice of the symbols t and f is motivated by previous work on convolutive sig-
nal separation using time-frequency representations (Anemüller and Kollmeier, 2000).
For this reason, the parameters t and f are also referred to as ‘time’ and ‘frequency’,
respectively. However, from the exposition of multidimensional sources above and
examples given below it should be clear that the characteristic properties of t- and
f -dimension are their stationarity and non-stationarity, respectively. Therefore, exam-
ples of applications are given below where t and f do not denote ‘time’ and ‘frequency’,
respectively.

In image processing, multidimensional signals similar to the time-frequency spectro-
gram of acoustic sources are encountered. For the analysis of spectral image data, the
sources are represented by 3-dimensional signals si(t1, t2, f) where t1 and t2 represent
the spatial (x, y)-coordinates, and f denotes the spectral wavelength. We assume that
the mixing matrix A(f) is frequency-dependent, which may be due to, e.g., different
surface reflectance at different wavelengths, With respect to the spatial position (t1, t2),
however, the mixing is regarded as stationary, as is the statistics of the sources. For the
algorithm presented in this paper to be applicable, it is furthermore required that each
source’s components at different wavelengths are interrelated, such that non-vanishing
correlations between different spectral components are exhibited. This assumption is
fulfilled for many visual scenes since natural objects are hardly ever monochromatic
in color. Such correlations also exist between broad spectral bands, as is illustrated in
section 4.4.2 for RGB encoded color images.

As in the case of spectrogram data, source components could be separated indepen-
dently for each wavelength f , which would, however, lead again to the problem of
recovering the source components in permuted order in different spectral bands. In
contrast, the proposed algorithm performs separation by making use of correlations
between different spectral bands, and thereby leads to reconstruction of consistently
ordered source components. Furthermore, it opens the possibility to unmix signals
which cannot be separated by taking into account information at individual spectral
bands, only, as is demonstrated in section 4.4.1.

As a final example, the analysis of signals mixed by a time-varying mixing system
involves multidimensional source signals, as well. Consider, e.g., the time-varying
mixture of an image sequence. Again, the mixing is regarded as spatially invariant and,
therefore, the spatial (x, y)-coordinates are denoted by the parameters (t1, t2) which
correspond to the ‘stationary’ dimensions. Since the mixing changes over time, time
is regarded as the ‘non-stationary’ dimension and, hence, denoted by the parameter
f . Without averaging over time, the proposed algorithm makes it possible to estimate
the mixing system at each time by taking into account signal values at other times,
as well. The condition which needs to be fulfilled by the source signals to make this
possible is that their auto-correlation function is non-zero also at non-zero time-lag.
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4.3 Solution based on correlations across frequency

Having introduced the basic concepts underlying the algorithm, we now turn to a
quantitative description. Since the sources are assumed to be independent systems,
all correlations computed from two different sources si and sj , i 6= j, vanish. In
particular, if correlations are computed from source components at two frequencies,
the result is zero for all pairs of frequencies (f, f ′),

E
{
si(t, f) s∗j (t, f

′)
}

= 0 ∀i 6= j, ∀f, f ′. (4.3)

However, this does not hold for correlations computed from two frequencies of the same
source, since data generated by a single source cannot be assumed to be independent.
Therefore, correlations within a single source are in general non-zero,

E {si(t, f) s∗i (t, f
′)} 6= 0. (4.4)

Defining the sources’ cross-covariance matrix Rs(f, f ′) computed from frequencies f
and f ′ as

Rs(f, f ′) = E
{
s(t, f) sH(t, f ′)

}
, (4.5)

equations (4.3) and (4.4) can be restated such that Rs(f, f ′) is diagonal for all (f, f ′),

[Rs(f, f ′)]ij = δijE {si(t, f) s∗i (t, f
′)} , (4.6)

where δij is the Kronecker symbol.
Since the mixed signals are not independent, their covariance matrix Rx(f, f ′),

Rx(f, f ′) = E
{
x(t, f)xH(t, f ′)

}
, (4.7)

is not diagonal. It can be expressed in terms of the sources’ covariance matrix as

Rx(f, f ′) = A(f)Rs(f, f ′)AH(f ′). (4.8)

If the mixing system was identical in both frequencies, A(f) = A(f ′), then an eigen-
value equation could be derived in exactly the same manner as presented by Molgedey
and Schuster (1994). However, since in general A(f) 6= A(f ′), the analog derivation
is not possible.
It is observed that by forming the products

Qs(f, f ′) = Rs(f, f ′)R−1
s (f ′, f ′)Rs(f ′, f) (4.9)

Qx(f, f ′) = Rx(f, f ′)R−1
x (f ′, f ′)Rx(f ′, f) (4.10)

the algebraic relation between the sources’ Qs(f, f ′) and the mixed signals’ Qx(f, f ′)
involves matrix A(f), but not A(f ′),

Qs(f, f ′) = A−1(f)Qx(f, f ′)A−H(f). (4.11)

Hence, A−1(f) diagonalizes Qx(f, f ′) for all f ′.
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An eigenvalue equation for A(f) can be derived from (4.11) by forming the product

Qx(f, f ′)Q−1
x (f, f), (4.12)

yielding
A(f)Λ(f, f ′) = Qx(f, f ′)Q−1

x (f, f)A(f), (4.13)

where
Λ(f, f ′) = Qs(f, f ′)Q−1

s (f, f) (4.14)

is diagonal and contains the eigenvalues of Qx(f, f ′)Q−1
x (f, f).

Similarly, A(f ′) is obtained from the Eigenvalue equation

A(f ′)Λ(f ′, f) = Qx(f ′, f)Q−1
x (f ′, f ′)A(f ′). (4.15)

4.3.1 Conditions for identifiability

Equation (4.13) has a unique solution if all eigenvalues on the diagonal of Λ(f, f ′) are
different. Similarly, for (4.15) it must hold that the diagonal elements of Λ(f ′, f) are
different. Since Rs(f, f ′) is diagonal and Rs(f, f ′) = RH

s (f ′, f), we obtain

Λ(f, f ′) = Λ(f ′, f) = Rs(f, f ′)RH
s (f, f ′)R−1

s (f, f)R−1
s (f ′, f ′). (4.16)

Hence, together with (4.6) it follows that for A(f) and A(f ′) to be identifiable it must
be fulfilled that∣∣E{si(t, f) s∗i (t, f

′)
}∣∣2

E
{
|si(t, f)|2

}
E
{
|si(t, f ′)|2

} 6= ∣∣E{sj(t, f) s∗j (t, f
′)
}∣∣2

E
{
|sj(t, f)|2

}
E
{
|sj(t, f ′)|2

} ∀i 6= j. (4.17)

4.3.2 Solving the permutation problem

Since the eigenvectors corresponding to the solution of (4.13) are unambiguous only
upto their order and a scale factor, the mixing matrix A(f) cannot be determined
uniquely. Rather, any matrix A′(f) which can be expressed as

A′(f) = A(f)D(f)P(f), (4.18)

where D(f) is a diagonal matrix and P(f) a permutation matrix, represents a solution
of (4.13). Hence, it is only possible to determine A(f) upto an unknown rescaling and
permutation of its columns by D(f) and P(f), respectively. This corresponds to the
well-known invariances inherent to all blind source separation algorithms (see Tong
et al., 1991).
For one-dimensional source signals this is usually not a problem. With multidimen-
sional sources, however, the components belonging to a single source are reconstructed
with disparate (unknown) order and scale in different frequencies f 6= f ′ if the corre-
sponding frequency-specific permutation and diagonal matrices differ, i.e.,

P(f) 6= P(f ′) D(f) 6= D(f ′). (4.19)
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Thus, a coherent picture of each source’s activity cannot be obtained.
No solution is given for the invariance with respect to varied scaling in different fre-
quencies. Instead, each row of the estimated unmixing matrix Â−1(f) is rescaled to
have unit norm.
The solution to the permutation problem is based on the observation that transfor-
mation (4.18) results in rearranged eigenvalues Λ′(f, f ′),

Λ′(f, f ′) = PT (f)Λ(f, f ′)P(f). (4.20)

That is, the column permutation of A(f) results in a corresponding permutation of
the eigenvalues’ order on the diagonal of Λ(f, f ′).
Denote by Â(f) and Â(f ′) the estimates of the true mixing matrices A(f) and A(f ′),
respectively. Without loss of generality, we assume

Â(f) = A(f) Â(f ′) = A(f ′)P, (4.21)

so that the estimates Λ̂(f, f ′) and Λ̂(f ′, f) of the true eigenvalue matrices Λ(f, f ′)
and Λ(f ′, f), respectively, are

Λ̂(f, f ′) = Λ(f, f ′) (4.22)
Λ̂(f ′, f) = PT Λ(f ′, f)P. (4.23)

Since, according to (4.16) we have Λ(f ′, f) = Λ(f, f ′), it follows

Λ̂(f ′, f) = PT Λ(f, f ′)P = PT Λ̂(f, f ′)P. (4.24)

Therefore, the permutation matrix P can be directly read from the relative ordering of
the eigenvalues on the diagonals of Λ̂(f, f ′) and Λ̂(f ′, f). Permutations are corrected
by forming the matrix Â′(f ′) = Â(f ′)PT whose columns are ordered in accordance
with Â(f).

4.3.3 More than two frequencies

Separation

If frequencies f = 1, . . . , F , F ≥ 2, are to be used for separation, the mixing matrix
A(f) is obtained as the matrix which simultaneously solves the F diagonalization
equations

Qs(f, 1) = A−1(f)Qx(f, 1)A−H(f) (4.25)
Qs(f, 2) = A−1(f)Qx(f, 2)A−H(f)

...
Qs(f, F ) = A−1(f)Qx(f, F )A−H(f).

The solution can be obtained by using numerical techniques for simultaneous diago-
nalization (Bunse-Gerstner et al., 1993; Cardoso and Souloumiac, 1996).
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Identifiability

Equations (4.25) have a unique solution (up to rescaling and permutation) if, analogous
to equation (4.17), for each f = 1, . . . , F there exists at least one frequency f ′ for which
it is fulfilled that∣∣E{si(t, f) s∗i (t, f

′)
}∣∣2

E
{
|si(t, f)|2

}
E
{
|si(t, f ′)|2

} 6= ∣∣E{sj(t, f) s∗j (t, f
′)
}∣∣2

E
{
|sj(t, f)|2

}
E
{
|sj(t, f ′)|2

} ∀i 6= j. (4.26)

Permutations

The permutations must be sorted for each pair of frequencies (f, f ′) by using the
method outlined in section 4.3.2.

4.3.4 Time-delayed correlations

If in addition to (4.4) not only the source correlations at equal time are non-zero, but
also the time-delayed source correlations do not vanish, i.e., if in general

E {si(t, f) s∗i (t + τ, f ′)} 6= 0, (4.27)

then this additional information can be used to derive further diagonalization equations
which correspond to time-delayed versions of (4.11). Since time-delayed correlations
are also the basis of other source separation algorithms (e.g. Molgedey and Schuster,
1994; Belouchrani et al., 1997), the incorporation of time-delays into the algorithm
presented above can be regarded as the combination with existing methods of blind
source separation. Time-delayed correlations must vanish for all pairs of different
sources due to the assumption of independent sources. Therefore we have

E
{
si(t, f) s∗j (t + τ, f ′)

}
= 0 ∀i 6= j, ∀τ, ∀f, f ′, (4.28)

which is a generalization of (4.3).
Defining, in analogy to (4.5), (4.7), (4.9), (4.10),

Rs(τ, f, f ′) = E
{
s(t, f) s(t + τ, f ′)H

}
(4.29)

Rx(τ, f, f ′) = E
{
x(t, f)x(t + τ, f ′)H

}
(4.30)

Qs(τ, f, f ′) = Rs(τ, f, f ′)Rs(τ, f ′, f ′)−1 Rs(τ, f ′, f) (4.31)
Qx(τ, f, f ′) = Rx(τ, f, f ′)Rx(τ, f ′, f ′)−1 Rx(τ, f ′, f), (4.32)

the inverse mixing matrix A−1(f) diagonalizes Qx(τ, f, f ′) since

Qs(τ, f, f ′) = A−1(f)Qx(τ, f, f ′)A−H(f). (4.33)

Eigenvalue equations corresponding to (4.13) and (4.15), and equations for simultane-
ous diagonalization corresponding to (4.25) follow immediately. In analogy to (4.26),
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a unique solution exists if for each frequency f there is some frequency f ′ and some
time-delay τ for which it is fulfilled that∣∣E{si(t, f) s∗i (t + τ, f ′)

}∣∣2
E
{
|si(t, f)|2

}
E
{
|si(t + τ, f ′)|2

} 6= ∣∣E{sj(t, f) s∗j (t + τ, f ′)
}∣∣2

E
{
|sj(t, f)|2

}
E
{
|sj(t + τ, f ′)|2

} ∀i 6= j.

(4.34)
Since in contrast to (4.26) also τ 6= 0 is permitted, condition (4.34) is weaker than (4.26).
Permutations are corrected homologously to the method of section 4.3.3, with triples
(f, f ′, τ) instead of pairs (f, f ′) being used.

4.4 Evaluation

To evaluate the algorithm, results are presented for the separation of three data sets.
By separating multidimensional data with independent and identically distributed
(i.i.d.) Gaussian noise in each frequency, it is demonstrated that the proposed algo-
rithm has the ability to separate data that is inseparable for other algorithms. Next,
the correlation structure of color images is analyzed and the proposed algorithm is
used to separate mixtures of the images, where each frequency channel has been mixed
with a different mixing matrix. Finally, the algorithm is applied to spectrogram data
of speech signals from a standard data set and the result is compared to unmixed
signals obtained by a different, particularly good separation algorithm on the same
data.

4.4.1 Synthetic signals

In the first evaluation, a synthetic data set of Gaussian i.i.d. noise in two frequency
channels is separated. Since the data in each frequency channel is purely Gaussian,
this data cannot be separated by looking at a single frequency only. The actual values
of the relevant quantities are given in order to demonstrate in detail the processing
steps of the algorithm.
The data consisted of four sources s1(t, f), . . . , s4(t, f), with time-points t = 1, . . . , 10000
and two frequencies f = 1, 2. Within each frequency channel of each source, the data
was chosen to be i.i.d. noise with Gaussian distribution. To enable separation by
the proposed algorithm, correlations were introduced between the data in different
frequency channels of each source by composing the signals as the sum

si(t, f) = ξi(t, f) + ζi(t) (4.35)

of frequency-dependent and frequency-independent Gaussian random variables ξi(t, f)
and ζi(t), respectively.
Since the data within each frequency contained neither cues related to higher-order
statistics, nor cues related to auto-correlation information or non-stationarity, it is
inseparable for any algorithm looking at isolated frequency channels, only. However,
taking into account correlations across different frequencies, it can be separated as is
demonstrated below.
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The correlations within each source and the independence of the different sources are
reflected by the covariance matrices1 Rs(f, f ′),

Rs(1, 1) =


1.99 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

 Rs(1, 2) =


1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

 (4.36)

Rs(2, 1) =


1.00 0.00 0.00 0.00
0.00 0.64 0.00 0.00
0.00 0.00 0.16 0.00
0.00 0.00 0.00 0.04

 Rs(2, 2) =


2.00 0.00 0.00 0.00
0.00 0.89 0.00 0.00
0.00 0.00 0.20 0.00
0.00 0.00 0.00 0.04

 . (4.37)

Since the different sources are independent, the off-diagonal terms of all covariance
matrices are zero. The diagonals of Rs(1, 2) and Rs(2, 1) are non-zero due to the
correlations across frequency within each source.
The eigenvalues of equation (4.16) are computed as

diag Λ(1, 2) = ( Λ1(1, 2), . . . , Λ4(1, 2) ) = ( 0.25, 0.51, 0.64, 1.00 ). (4.38)

Since all eigenvalues are different, the condition for identifiability (4.17) is fulfilled and
mixtures of the sources can be separated by the proposed algorithm.
The mixing matrices A(1) and A(2) were randomly chosen as

A(1) =


−1.66 0.18 2.48 0.82
−2.53 −0.51 −1.42 −0.30

0.47 0.51 0.50 2.40
0.75 −2.54 −0.81 0.05

 A(2) =


−0.71 0.59 −0.79 −0.60

0.61 −0.99 −0.85 −1.02
0.13 0.27 −0.87 1.06

−1.56 −1.13 −0.45 0.24

 .

(4.39)
Mixing the data by the mixing system (4.2) results in covariance matrices of the mixed
signals of

Rx(1, 1) =


6.78 7.55 −1.15 −3.26
7.55 13.31 −2.77 −2.37

−1.15 −2.77 0.95 −0.52
−3.26 −2.37 −0.52 6.96

 Rx(1, 2) =


0.91 −1.50 −0.49 2.28
1.79 −1.03 −0.22 4.41

−0.27 −0.19 0.18 −1.12
−1.38 2.17 −0.24 0.73


(4.40)

Rx(2, 1) =


0.91 1.79 −0.27 −1.38

−1.50 −1.03 −0.19 2.17
−0.49 −0.22 0.18 −0.24

2.28 4.41 −1.12 0.73

 Rx(2, 2) =


1.46 −1.23 0.07 1.70

−1.23 1.81 0.02 −0.85
0.07 0.02 0.30 −0.58
1.70 −0.85 −0.58 6.08


(4.41)

which are processed by the proposed algorithm, using the eigenvalue method. The
separating matrices computed by the algorithm are

Â−1(1) =


0.47 0.87 −0.06 −0.14

−0.77 0.54 0.33 −0.10
−0.33 −0.03 0.12 −0.93
−0.01 0.23 0.96 0.15

 Â−1(2) =


0.56 0.34 −0.74 −0.18

−0.50 0.50 0.32 −0.63
0.71 −0.49 0.07 −0.50
0.50 0.47 0.73 0.02

 ,

(4.42)

1All numbers are rounded to two significant digits.
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so that the combined mixing-unmixing system Â−1A is given by

(Â−1A)(1) =


-3.11 −0.03 0.01 −0.02

0.00 0.01 -2.43 −0.02

−0.01 2.39 0.04 −0.01

0.00 0.00 0.00 2.23

 (4.43)

(Â−1A)(2) =


0.00 0.00 0.00 -1.50

1.69 0.01 −0.03 −0.02

−0.01 1.49 0.02 0.02

0.00 0.00 -1.43 −0.01


Since each row of the combined system contains only one non-zero element, the al-
gorithm has successfully separated the signals. The increase in signal-to-signal from
before to after separation amounts to 37.8 dB. However, as can be seen from the dif-
ferent positions of the non-zero elements of (Â−1A)(1) and (Â−1A)(2), the sources’
components are reconstructed in a different order in the two frequency channels.
Therefore, the method for sorting permutations described in section 4.3.2 must be
employed. To this end, the estimated eigenvalue matrices Λ̂(1, 2) and Λ̂(2, 1) obtained
from solving the eigenvalue problems (4.13) and (4.15), respectively, are

Λ̂(1, 2) =


0.25 0.00 0.00 0.00

0.00 0.64 0.00 0.00

0.00 0.00 0.51 0.00

0.00 0.00 0.00 1.00

 Λ̂(2, 1) =


1.00 0.00 0.00 0.00

0.00 0.25 0.00 0.00

0.00 0.00 0.51 0.00

0.00 0.00 0.00 0.64

 .

(4.44)

By permuting the eigenvalues on the diagonals of Λ̂(1, 2) and Λ̂(2, 1) to occur in the
same order in both matrices, and by performing the same permutations for the rows
of Â−1(1) and Â−1(2), respectively, it is ensured that the sources’ components are
reconstructed in the same order in both frequencies.

4.4.2 Color image data

In this section it is demonstrated that the proposed algorithms can be applied to RGB
(‘red-green-blue’) coded color image data and that it successfully separates images
which have been mixed with a different mixing matrix for each color plane. A color
version of the results presented in tables 4.1, 4.3 and 4.4 can be obtained from http:
//medi.uni-oldenburg.de/demo/ane/diss.
The three source images are displayed in table 4.1 as the color image (converted to
grey-levels) and as the corresponding RGB color planes. From visual inspection it is
already obvious that the information contained in the three color planes is not mutually
independent but highly correlated since the original images are recognizable in each of
the color planes. This fact is also reflected in table 4.2 which displays the correlation
coefficients c(si(f), sj(f ′)),

c(si(f), sj(f ′)) =
E{si(f) sj(f ′)} − E{si(f)}E{sj(f ′)}√

E{s2
i (f)}E{s2

j (f ′)}
, (4.45)

http://medi.uni-oldenburg.de/demo/ane/diss
http://medi.uni-oldenburg.de/demo/ane/diss
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sources’ spectral components

color image fred component fgreen component fblue component

s1

s2

s3

Table 4.1: Original images. Left column: Color images. Three columns to the right:
Red, green and blue color planes of the color images.

between data in the different color planes of the different sources. Due to the use of
the normalized correlation, the diagonal in table 4.2 is equal to one. Since the data
in different color planes of the same source is correlated, high correlations are found
for all elements of the 3 blocks on the diagonal of table 4.2. However, across different
images, the correlations between any two color planes are close to zero, reflecting that
the different source images are almost independent.

The sources were mixed by a different, randomly chosen mixing matrix A(f) for each
frequency f = fred, fgreen, fblue which is shown in table 4.5. The resulting color planes
of the mixed signals are displayed in table 4.3.

Separation was performed by jointly diagonalizing equation (4.25) for all possible fre-
quency pairs, using the algorithm of Cardoso and Souloumiac (1996). Afterwards,
remaining permutations were corrected for each pair of frequencies, as described in
section 4.3.3. The obtained unmixing system Â−1(f) is shown in table 4.5. The un-
mixed image color planes, shown in table 4.4, and the total mixing-unmixing system
(Â−1A)(f), see table 4.5, demonstrate that the color planes have been successfully
separated and that the separated components appear in the same order in every color
plane.
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Source s1 Source s2 Source s3

fred fgreen fblue fred fgreen fblue fred fgreen fblue

s1 fred 1.00 0.80 0.42 -0.03 0.02 0.00 -0.03 -0.03 -0.02
s1 fgreen 0.80 1.00 0.61 -0.06 0.00 -0.01 0.01 0.00 0.02
s1 fblue 0.42 0.61 1.00 -0.03 -0.01 0.00 0.03 0.02 0.03

s2 fred -0.03 -0.06 -0.03 1.00 0.65 0.48 0.04 0.03 0.03
s2 fgreen 0.02 0.00 -0.01 0.65 1.00 0.90 0.06 0.05 0.07
s2 fblue 0.00 -0.01 0.00 0.48 0.90 1.00 0.08 0.08 0.08

s3 fred -0.03 0.01 0.03 0.04 0.06 0.08 1.00 0.99 0.99
s3 fgreen -0.03 0.00 0.02 0.03 0.05 0.08 0.99 1.00 0.99
s3 fblue -0.02 0.02 0.03 0.03 0.07 0.08 0.99 0.99 1.00

Table 4.2: Correlation coefficients computed between all frequency pairs of all sources.
(Rounded to two significant digits.)

mixed spectral components

mixture fred component fgreen component fblue component

x1

x2

x3

Table 4.3: Mixed color planes. A different, randomly chosen mixing matrix was
used for each color plane to mix the three sources. (For better visual appearance, the
contrast has been normalized for each image.)
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separated spectral components

demix fred component fgreen component fblue component

u1

u2

u3

Table 4.4: Separated color planes obtained from the mixed images (cf. table 4.3) and
the estimated separating matrices (cf. table 4.5).

f = fred f = fgreen f = fblue

A(f)

 −0.43 0.29 1.19
−1.67 −1.15 −0.04

0.13 1.19 0.33

  0.17 −0.59 0.11
−0.19 2.18 1.07

0.73 −0.14 0.06

  −0.10 −1.34 −0.69
−0.83 0.71 0.86

0.29 1.62 1.25



Â−1(f)

 1.00 −0.31 −0.54
−3.37 1.00 11.26
−0.27 0.87 1.00

  1.00 0.27 −0.16
−18.62 1.00 3.66
−0.46 −0.03 1.00

  1.00 0.15 0.76
18.98 1.00 10.26
0.69 −0.93 1.00



(Â−1A)(f)


0.01 0.00 1.02

1.20 11.29 −0.36

-1.21 0.12 −0.03




0.01 0.02 0.39

−0.78 12.64 −0.84

0.65 0.08 −0.02




0.00 0.01 0.39

0.37 -7.99 0.60

1.00 0.03 −0.02



Table 4.5: Mixing matrices A(f), separating matrices Â−1(f) computed by the algo-
rithm, and the resulting total mixing-unmixing system (Â−1A)(f) for each frequency.
(Rounded to two significant digits.)

4.4.3 Speech signals

In the final experiment, convolutively mixed speech signals, recorded in a real room
by Lee (1998b), were separated. The corresponding sound files can be obtained from
http://medi.uni-oldenburg.de/demo/ane/diss.
The signals were transformed to the time-frequency spectrogram representation (e.g.

http://medi.uni-oldenburg.de/demo/ane/diss
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Oppenheim and Schaefer, 1975) and the resulting spectrograms of the microphone
signals were separated by the proposed algorithm. Spectrograms of mixed signals
xi(t) were computed using the short-time Fourier transformation (STFT)

xi(t, f) =
2F−1∑
τ=0

xi(τ + t) h(τ) e−πifτ/F , (4.46)

where h(t) denotes the windowing function, and a window of length 64 ms, a win-
dow shift of 16 ms and a DFT length of 128 ms were used. Since the correlations
across different frequencies are very low for spectrogram data, nine adjacent frequency
channels were used to determine the separation matrix for each frequency f by the
diagonalization method (4.25). After separation, the resulting spectrograms of the
unmixed signals were transformed back into the time-domain using the overlap-add
method (see also Oppenheim and Schaefer, 1975).
The original microphone signals and the unmixed signals obtained by the algorithm are
shown in figure 4.1. As can be seen, and as can also be heard from the sound files of the
unmixed signals, separation is quite good, but a clear crosstalk remains audible. For
comparison, we have included unmixed signals obtained by the AMDecor algorithm
(see Anemüller and Kollmeier, 2000) that almost perfectly separates the signals, cf.
figure 4.1. Comparing the two algorithms’ performance, the AMDecor algorithm is
clearly superior.
It should be noted that further experiments with acoustic signals did not yield more
promising results. Even in anechoic environment it was not possible to improve the
signal-to-interference ratio by more than 5 dB using the proposed algorithm. This
contrasts to an improvement of 15 dB using the AMDecor algorithm and 20 dB using
the non-blind minimum-mean-squared-error method.
The reason for this comparably poor performance is seen in the property of the discrete
Fourier transformation which results in almost decorrelated spectral components. If
instead of the DFT of finite length, an infinitely long Fourier transformation was
used, the correlations of different spectral components would be completely eliminated
(Papoulis, 1991). In this sense, the remaining correlations can be regarded as a result
of the finite window function h(t). In contrast, correlations of frequency specific signal
envelopes, as employed by the AMDecor algorithm, have a clear origin in the structure
of human speech, and it may be argued that this is a more reliable criterion for source
separation than the rather artificial effect of a windowing function. Therefore, it might
not be surprising that the AMDecor algorithm outperforms the method presented in
this paper.
From the point of view of signal statistics, the present algorithm is based on second-
order statistics, whereas the AMDecor algorithm exploits signal properties that are
related to the notion of fourth-order cross-cumulants from the field of higher-order
statistics (e.g. Nikias and Petropulu, 1993). Therefore, the different performance of
both algorithms can also be interpreted such that higher-order statistics is the more
appropriate mathematical tool to capture across-frequency dependencies of Fourier
transformed speech signals.
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Figure 4.1: Separation of acoustics signals recorded in a real room. Top row: mixed sig-
nals recorded by Lee (1998b). Middle row: separated signals obtained by the proposed
algorithm. Bottom row, included for comparison: separated speech signals obtained
by the AMDecor algorithm (Anemüller and Kollmeier, 2000).
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The advantage of the second-order method presented in this paper, however, is that
the linear transformation properties of the covariance matrices allow for a fast solution
by algebraic methods. In particular, the numerical optimization routine by which the
eigenvalue and joint diagonalization equations are solved performs computations that
involve the cross-covariance matrices of the mixed signals, only. In contrast, the non-
linearity of the magnitude operation which enters the cost-function of the AMDecor
algorithm, does not allow for an algebraic solution. Therefore, the separated signals
have to be recomputed at each update step of the iterative optimization procedure,
which results in a higher computational load.

4.5 Discussion

The present paper is based on the notion of multidimensional source signals with di-
mensions of stationary and non-stationary data and mixing systems. In dimensions
of stationary data and mixing both the mixing system and the second order statis-
tics of the source signals remain unchanged with respect to a parameter shift in this
dimension. In contrast, the mixing system and second order statistics of the data
may change under a parameter shift in those dimensions which are denoted as non-
stationary. A typical example are color images which have been mixed with a different
mixing matrix for each spectral band. While with respect to the spatial dimension
the mixing system is constant and the data assumed to be stationary, both mixing
and statistics of the data are distinct in different spectral bands. Motivated by the
similar application of sound signal separation using time-frequency representations,
the stationary dimensions are denoted as ‘time’ dimensions, and the non-stationary
dimensions as ‘frequency’ dimensions.
We have proposed to compute cross-covariance matrices from mixed signals at different
frequencies bands in order to reconstruct the sources. Depending on whether data at
two or more frequencies is used for separation, the unmixing system is obtained by an
eigenvalue decomposition or by solution of a simultaneous diagonalization problem,
respectively. Permuted solutions at different frequencies are rearranged by a criterion
based on the order of eigenvalues. Evaluation with Gaussian noise, image, and sound
data has demonstrated the algorithms’ potential.
Some previous work in the literature has dealt with related problems. Gramss (1995)
comments on across-frequency correlations for acoustic signal separation and suggests
an iterative optimization scheme, however without addressing the permutation prob-
lem. Shamsunder and Giannakis (1997) describe an algorithm based on polyspectra
and give a solution for the permutation invariance. Anemüller and Kollmeier (2000)
propose an algorithm for the separation of speech signals based on across-frequency
correlations of narrow-band signal envelopes, which is closely related to fourth-order
cross-cumulants and also constitutes a solution to the permutation problem.
Diamantaras et al. (2000) propose an algorithm for the identification of two-input-two-
output FIR channels which is similar to the method presented in this paper. By em-
ploying a whitening preprocessing step, a special case of the eigenvalue equations (4.13)
and (4.15) is derived. As a consequence, the method proposed in (Diamantaras et al.,
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2000) for correcting permutations is based on different principles than the method
in the present paper, and is limited to the case of two sources. The unmixing sys-
tem is estimated using correlations of pairs of two frequencies, only, and separation is
performed for convolutively mixed one-dimensional signals.
In view of the existing literature, it is concluded that the present paper elaborates
on some ideas previously mentioned in the literature on convolutive signal separation,
and extends them to the field of multidimensional sources and to the use of an arbi-
trary number of sources and frequencies. Furthermore, a novel and appealingly simple
solution to the problem of permutations in different frequency channels is given.
It is expected that the methods developed in the present paper can be useful in two ap-
plications. For the separation of data with multiple spectral bands, e.g., spectrogram
sound data or spectral image data, correlations across different frequencies constitute
a criterion for source separation that can be used on its own, or in addition to ex-
isting methods of decorrelation with respect to time- or spatial shifts, as outlined in
section 4.3.4. By using this additional source of information, it should be possible to
improve on the performance of source separation algorithms in a similar way as, e.g.,
decorrelation with multiple time-delays improves over decorrelation with only a single
time-delay (e.g. Murata et al., 1998).
Furthermore, the separation of time-varying mixtures can be improved. Present ap-
proaches to time-varying mixtures average over short time segments to estimate the
averaged unmixing system. The present method may improve the quality of separa-
tion since it allows to estimate the unmixing system for time t taking into account
data from time t + τ even though the unmixing system at both times is different, and
without necessarily averaging over the entire time from t . . . t + τ .
Generalization of the presented approach to take into account also information from
higher-order statistics is an open issue. The ansatz presented by Anemüller and
Kollmeier (2000) is regarded as a first step into this direction, which makes use of
statistical quantities that are closely related to fourth-order cross-cumulants, however,
at the expense of a higher computational load than the present algorithm. Further
improvements in this direction, e.g., by incorporating ideas from the information max-
imization framework (e.g. Bell and Sejnowski, 1995), appear as a promising route.



Chapter 5

Summary and Conclusion

Three different algorithms for the problem of separating convolutively mixed acoustic
signals have been proposed in the present thesis.
In the first approach (cf. chapter 2) the structure of the separating filters was limited
to a signal delay and attenuation. Under this constraint, optimal separation can be
achieved only in the free field, where the sound signals are superimposed with a finite
propagation speed and attenuation, however, without echoes and reverberation. The
free field assumption constitutes a first approximation to the true signal propagation
and is expected to be appropriate only in rooms with little reverberation and a close
distance between sources and microphones.
Adaptation of the filter coefficients is performed by an ICA algorithm for Fourier trans-
formed speech signals which was derived from the principle of maximum likelihood.
In the next step, the ICA algorithm was combined with the described filter structure.
By devising an unwrapping algorithm for the phases of the complex valued filter co-
efficients, an algorithm was obtained which uses information from all frequencies to
estimate the optimal separating filters.
By making efficient use of information contained in all frequency channels of the mixed
signals, this algorithm achieves a very robust and fast convergence within approx. 0.2 s
of signal time. Estimation of the separating filter is continuously adapted and compu-
tations can be performed in real-time. Therefore, the algorithm is also applicable for
the separation of non-stationary signal mixing and represents the first published blind
source separation algorithm which has been shown to separate moving speakers and
track their position. Intermediate results were published in (Anemüller and Gramß,
1998) and (Anemüller and Gramß, 1999).
The ‘AMDecor’ algorithm presented in chapter 3 can be regarded as complementary to
the first approach since no limiting assumptions were imposed with regard to the sep-
arating filters. Therefore, the algorithm can be employed to separate signals in rooms
with echoes and reverberation. Rather, assumptions are made about the sources’ mod-
ulation structure which is assumed to bear similarities with modulations observed in
speech signals.
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The information transmitted in speech is coded in the frequency dependent change
of the signal amplitude. This amplitude modulation of a single speech signal is not
independent in different frequency channels, but highly correlated. Considering two
different speech signals, however, the corresponding correlations vanish due to the
assumption of independent sources. This correlation property of speech signals is
employed for the task of blind source separation by requiring that the across-frequency
correlations of signal amplitudes must vanish for the unmixed signals.
The advantage of this criterion for convolutive blind source separation is that it allows
for the first time to achieve both separation of the source components and their con-
sistent ordering across all frequency channels in a single processing step and without
limitations for the separating filter. Furthermore, making use of correlations across-
frequency exploits information for separation that is not considered in other algorithms.
Thereby, quality of signal separation is improved, and it is possible to separate also
signals which are inseparable for other algorithms. The application to standard data
sets showed that the separation is improved compared to other state-of-the-art blind
source separation methods. Evaluation using signals with strong reverberation proved
that the quality of separation is close to the physical optimum also under very difficult
conditions. The comparison with non-blind noise reduction schemes by means of an
automatic speech recognition task (cf. appendix B) revealed that source separation
exhibits the best improvement in recognition rate for strong interfering noise, whereas
alternative methods are superior for soft noise. Intermediate results were presented in
(Anemüller, 1999) and (Anemüller and Kollmeier, 2000).
The algorithm presented in chapter 4 also refrains from imposing constraints on the
separating filters. Its spirit is very similar to the AMDecor algorithm (cf. chapter 3),
however, while the latter has been shown to be based on higher-order statistics, this
algorithm approaches the problem by using second-order correlations.
Since the approach involving second-order statistics results in a fully linear problem
formulation — in contrast to the AMDecor approach which involves the non-linear
magnitude operation — it admits an analytic solution which results in a system of
eigenvalue equations and a system of diagonalization equations, respectively, both
of which can be solved by efficient numerical techniques. The algorithm has been
evaluated using synthetic data, image data and real room speech recordings.
Regarding the separation of acoustic signals, it is shown that the second-order corre-
lations encountered in spectrogram data of speech signals result from the finite length
of the discrete Fourier transformation. These second-order correlations are small com-
pared to the envelope correlations used in the AMDecor algorithm. This fact is re-
garded as the reason why the resulting algorithm does not perform as good as the
AMDecor algorithm on acoustic signals.
However, the proposed algorithm can still be of interest for the separation of sources
like spectral image data, for which the notion of multidimensional sources has been
introduced. Furthermore, the formalism of multidimensional sources applies to the
separation of sources which are mixed with a time-varying mixing system, as well.
The common approach in blind source separation algorithms for time-varying mixing
systems is to average over short time-intervals during which the mixing system is re-
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garded as constant. The proposed method appears to have the potential to obtain
better signal separation with shorter averaging intervals since it allows to estimate the
current mixing system from data at several time-points without assuming the station-
arity of the mixing system over the corresponding time interval. This possibility could
be of great interest for several applications, however, it remains to be demonstrated
that the theoretical advantage can be achieved in practice.
In conclusion, the present thesis addressed the problem of convolutive blind source
separation from different points of view.
By specifying a constrained model for the separating filter, rapid convergence and
adaptation has been demonstrated.
By equipping the algorithms with appropriate models of statistical dependencies within
each source, very good performance and correct ordering of unmixed spectral compo-
nents have been achieved in difficult acoustical situations.
It has been wondered (e.g. Ikram and Morgan, 2000) why frequency domain based
blind source separation algorithms are susceptible to local permutations of unmixed
signal components at different frequencies, while time-domain algorithms do not ap-
pear to have this problem. The results presented in this thesis allow to draw the
conclusion that local permutations occur only if the assumed model for the sources is
not appropriate, e.g., if it is assumed that source components at different frequencies
were independent. While frequency domain algorithms based on such assumptions
are invariant with regard to local permutations, algorithms with a cost function de-
fined in the time domain can detect permutations. Since applying the inverse Fourier
transformation to permuted spectral components from different sources results, due to
the central limit theorem, in a more Gaussian histogram of the time domain signals
than would be the case if no permutations had been present, permutations of source
components result in higher values of the time domain cost function and are therefore
penalized by time domain blind source separation algorithms.
Finally, it has been shown that introducing the notion of multidimensional sources
and modeling the dependencies by means of second-order statistics results in a novel
approach which may be applicable in domains such as image processing and in the
field of blind source separation involving time-varying mixing systems.





Appendix A

Technical Appendix

A.1 Optimization under unitary matrix constraint

A preprocessing step is described which reduces the number of free parameters of
the optimization problem (3.20). It is based on a standard pre-whitening method
employed in several blind source separation algorithms (e.g. Comon, 1994; Cardoso
and Souloumiac, 1996; Murata et al., 1998), which is slightly modified to fit to the
application to speech signals. It is based on the fact that any separating matrix W(f)
can be written as the product of a ‘whitening matrix’ V(f) and a unitary matrix U(f)
(Comon, 1994),

W(f) = U(f)V(f). (A.1)

Since the unmixed signals must be second order uncorrelated, the decorrelation is
imposed on the signals in a pre-processing step. Hence, the recorded signals x(T, f)
are transformed to uncorrelated signals x̃(T, f) by a matrix V(f) such that

x̃(T, f) = V(f)x(T, f) (A.2)

E
{
x̃(T, f) x̃H(T, f)

}
= η(f) I, (A.3)

where η(f) I is the rescaled identity matrix and V(f) is chosen such that the total
power of x̃(T, f) at each frequency f equals the total power of x(T, f) at the same
frequency f .
The standard pre-whitening method sets the scaling of V(f) such that η(f) = 1 for
all frequencies. However, this choice would result in the same signal power at all fre-
quencies, which for speech signals amounts to an amplification of the high frequencies.
Hence, V(f) is chosen such that the signal power in each frequency channel is con-
served. Note that the decorrelation is performed separately for each frequency and
that it ensures second order decorrelation of the complex spectrograms x̃(T, f). The
energy function (3.20), in contrast, is computed from the amplitude spectrograms and
constitutes a more restrictive condition on the unmixed signals.
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Any unitary matrix U can be written as U =
( y z

z∗ y

)
with complex numbers y and

z which fulfill |y|2 + |z|2 = 1 (Cardoso and Souloumiac, 1996). Taking into account
the invariance with respect to rescaling of the rows, the unitary separating matrix is
parameterized as

U(f) =
(

cos(θ(f)) sin(θ(f)) exp(iφ(f))
− sin(θ(f)) exp(−iφ(f)) cos(θ(f))

)
. (A.4)

Hence, the number of parameters which need to be determined is reduced from two
complex numbers without the preprocessing step to only two real angles after the
preprocessing.
After preprocessing, the optimization scheme presented in section 3.4.4 is performed
for the uncorrelated signals x̃(T, f) and the unitary matrices U(f) instead of the
microphone signals x(T, f) and the matrices W(f), respectively. Matrices U(f) are
parameterized by angles θ(f) and φ(f) and evaluation of the gradient of H with respect
to θ(f) and φ(f) is performed numerically.
Since the preprocessing with the subsequent rotation results in separated signals with
each output u1(T, f), . . . , uM (T, f) having equal mean power, it is necessary to rescale
the output signals. This is done by first computing the total separating system as

W(f) = U(f)V(f). (A.1)

and subsequently rescaling the rows of W(f) such that each row has norm one and the
diagonal of rescaled W(f) is real. Afterwards, the output signals of the algorithm are
computed from the matrix product (3.5) of rescaled matrix W(f) with the microphone
spectrograms x(T, f).

A.2 Determination of the SIR

Signal-to-interference-ratios (SIRs) are computed based on knowledge of each source’s
energy transmission to the left and right microphone, respectively. Denote by s(1)(t) =
[s(1)

1 (t), s(1)
2 (t)]T the stereo signal of source one as recorded by the two microphones.

Homologously, denote by s(2)(t) = [s(2)
1 (t), s(2)

2 (t)]T the stereo signal corresponding to
source two.
From the corresponding spectrograms, s(1)(T, f) and s(2)(T, f), and the unmixing
matrix W(f) determined by the algorithm, the unmixed spectrograms

u(1)(T, f) = W(f) s(1)(T, f) (A.5)

and
u(2)(T, f) = W(f) s(2)(T, f) (A.6)

are computed.
In the case of perfect separation, u(1)(T, f) has non-zero signal components in only one
component, e.g., u

(1)
2 (T, f) = 0. Conversely, u(2)(T, f) has non-zero signal-components

in only the other component, i.e., u
(2)
1 (T, f) = 0.
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For the more realistic case of cross talk energy between both components, the SIR is
computed as follows. Denote by Pij(f) = E{|u(j)

i (T, f)|2} the power in frequency f
and component i of the j-th unmixed signal. The total power in component i is

Pij =
∑

f

Pij(f) (A.7)

The signal to interference ratio (SIR) is defined as the ratio of direct-path energy
to cross-talk energy where the assignment of direct-path and cross-talk is done such
that the resulting SIR is maximized. For two sources, two assignments are possible,
therefore the SIR is defined as

SIR = max
{

P11 + P22

P12 + P21
,

P12 + P21

P11 + P22

}
. (A.8)

Depending on which quotient in (A.8) is larger, the frequency specific SIR is computed
as

SIR(f) =


P11(f)+P22(f)
P12(f)+P21(f) for SIR = P11+P22

P12+P21

P12(f)+P21(f)
P11(f)+P22(f) for SIR = P12+P21

P11+P22

(A.9)

The SIR prior to separation is computed analogously from the stereo recordings
s(1)(T, f) and s(2)(T, f) without the unmixing systems (A.5) and (A.6) being applied.
The gain in SIR accomplished by the processing is computed as the difference between
input and output SIR,

SIRgain = SIRout − SIRin (A.10)
SIRgain(f) = SIRout(f)− SIRin(f). (A.11)

A.3 Non-blind correction of local permutations

Since for the purpose of evaluation the original source signals are known, this knowl-
edge is exploited to correct for local permutations in the unmixed signals. The as-
signment of unmixed signals’ components to each source is performed such that the
components of the first unmixed signal correspond to the first source’s components in
each frequency channel. The correct assignment is determined by requiring that for
each frequency the frequency specific SIR must be equal to

SIR(f) =
P11(f) + P22(f)
P12(f) + P21(f)

. (A.9)

After the unmixed components have been assigned accordingly, the total SIR is com-
puted from (A.8).
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A.4 Non-blind MMSE separation

As a reference method, we perform non-blind separation based on the minimum-mean-
squared-error method (MMSE) by determining the optimal linear reconstruction of the
source signals’ spectrograms from the mixed signals’ spectrograms. The computation
is performed in the frequency domain to obtain the optimal separation that can be
achieved by a non-blind method, subject to the given filter-length.
The unmixing model for each frequency f is given by

w
(ls)
11 (f) x1(T, f) + w

(ls)
12 (f) x2(T, f) = s

(1)
1 (T, f) + ε1(T, f) (A.12)

w
(ls)
21 (f) x1(T, f) + w

(ls)
22 (f) x2(T, f) = s

(2)
2 (T, f) + ε2(T, f), (A.13)

where s
(i)
j (T, f) is defined as in appendix A.2. The parameters w

(ls)
ij are to be deter-

mined such that the reconstruction errors

E
{
|ε1(T, f)|2

}
and E

{
|ε2(T, f)|2

}
(A.14)

are minimized for all frequencies f .
The optimal solution of w

(ls)
ij (f) is determined from the linear equations(

E{|x1(T, f)|2} E{x∗1(T, f)x2(T, f)}
E{x1(T, f) x∗2(T, f)} E{|x2(T, f)|2}

)(
w

(ls)
11 (f)

w
(ls)
12 (f)

)
=

(
E{s(1)

1 (T, f)x∗1(T, f)}
E{s(1)

1 (T, f)x∗2(T, f)}

)
(A.15)(

E{|x1(T, f)|2} E{x∗1(T, f) x2(T, f)}
E{x1(T, f) x∗2(T, f)} E{|x2(T, f)|2}

)(
w

(ls)
21 (f)

w
(ls)
22 (f)

)
=

(
E{s(2)

2 (T, f)x∗1(T, f)}
E{s(2)

2 (T, f)x∗2(T, f)}

)
.

(A.16)



Appendix B

Blinde Quellentrennung als
Vorverarbeitung zur robusten
Spracherkennung

B.1 Einleitung

In diesem Beitrag evaluieren wir den Nutzen blinder Quellentrennung als Vorverar-
beitungsstufe zum Zwecke robuster automatischer Spracherkennung. Blinde Quellen-
trennung (QT) ist eine Signalverarbeitungstechnik, die es ermöglicht, aus mehreren
Aufnahmen akustischer Überlagerungen (etwa Sprache im Störgeräusch) die zugrunde
liegenden Quellsignale (Sprache getrennt vom Störgeräusch) zu rekonstruieren. Ein
spezieller Algorithmus für QT in verhallter Umgebung ist bereits vorgestellt worden
(Anemüller, 1999). Eine potentielle Anwendung solcher Algorithmen besteht in der
Störgeräuschbefreiung für die robuste automatische Spracherkennung. Das Perzeption-
modell (PEMO) nach Dau et al. (Dau et al., 1996) wurde bereits zur Merkmalsextrak-
tion in der automatischen Spracherkennung verwendet. Insbesondere in Kombination
mit Neuronalen Netzen hat diese gehörgerechte Vorverarbeitung zu einer robusten
Erkennungsleistung im Störgeräusch geführt (Tchorz and Kollmeier, 1999). Wir kom-
binierten den QT–Algorithmus mit einem Einzelworterkennungssystem auf Basis des
PEMO, um eine weitere Verbesserung der Erkennungsleistung zu erreichen. Zur Eva-
luation vergleichen wir die Erkennungsraten bei QT–Vorverarbeitung mit denen ohne
Vorverarbeitung und mit alternativen Störgeräuschunterdrückungssystemen. Berück-
sichtigt werden hierbei Aufnahmesituationen in verhallter und unverhallter Umgebung
und bei unterschiedlichen Signal–Rausch Abständen.

1This appendix is a reprint of the publication (Anemüller et al., 2000).
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Abbildung B.1: Schematische Darstellung des Versuchsaufbaus.
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Abbildung B.2: Die Architektur des verwendeten Quellentrenners.

B.2 Blinde Quellentrennung

Algorithmen zur blinden Quellentrennung zeichnen sich dadurch aus, dass sie sehr ge-
ringe Annahmen über die vorliegenden Signale machen. Es wird nur vorausgesetzt,
dass die Signalquellen voneinander unabhängig sind, und dass die gleiche Anzahl Mi-
krofone wie Signalquellen vorhanden ist. Insbesondere sind die räumlichen Positionen
von Quellen und Mikrofonen unbekannt — daher “blind” —, was blinde Quellentren-
nung für robuste Spracherkennung besonders interessant macht. Sind die Annahmen
erfüllt, dann ist durch Filtern und Überlagern der Mikrofonsignale eine Rekonstruk-
tion der getrennten Quellsignale, bis auf eine prinzipiell unbestimmbare Verzerrung,
möglich.
Da die dazu benötigten Filter unbekannt sind, werden sie durch einen Optimierungs-
algorithmus iterativ geschätzt, siehe Fig. B.2. Die Schlüsselfrage hierzu lautet, wie
der Algorithmus bestimmt, ob die rekonstruierten Signale unabhängig oder noch ver-
mischt sind. Kriterien hierfür können aufgrund verschiedener statistischer Maße de-
finiert werden, siehe etwa (Nadal and Parga, 1997). Der von uns verwendete Algo-
rithmus (Anemüller, 1999) benutzt — motiviert durch Eigenschaften von Sprache —
die in verschiedenen Frequenzbändern korrelierte Amplitudenmodulation der Quell-
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signale. Dazu werden zwischen den rekonstruierten Signalen die Korrelationen der
frequenzspezifischen Einhüllenden frequenzübergreifend berechnet, also zwischen allen
Frequenzbändern fi des ersten rekonstruierten Signals und allen Frequenzbändern fj

des zweiten rekonstruierten Signals. Die Signale sind dann getrennt, wenn in die-
sem Sinn eine maximale Dekorrelation erreicht ist. Für eine genauere Beschreibung
verweisen wir auf (Anemüller, 1999).
Der benutzte Algorithmus rekonstruiert jeweils die von einer Quelle an den Mikro-
fonen hervorgerufenen Signale; eine Entfaltung der Raumübertragungsfunktion wird
also nicht vorgenommen. Tests mit verschiedenen Signalen zeigen, dass der Algorith-
mus eine gute Signaltrennung erreicht. Audio–Beispiele sind von der oben genannten
WWW–Seite abrufbar.

B.3 Robuste Spracherkennung

Das Perzeptionsmodell (PEMO) nach Dau et al. (Dau et al., 1996) ist ein funktionelles
Modell der Signalverarbeitung im peripheren auditorischen System. Es ist in der Lage,
das Antwortverhalten von Versuchspersonen in einer Vielzahl von psychoakustischen
Experimenten quantitativ nachzubilden. Das PEMO extrahiert aus einem eintreffen-
den akustischen Signal die dazugehörige interne Repräsentation, welche sich bereits als
ein robustes Merkmal für die automatische Spracherkennung bewährt hat (Tchorz and
Kollmeier, 1999). Insbesondere in Kombination mit dem lokal–rekurrenten neurona-
len Netz (LRNN) als Klassifikator übertrifft die PEMO Vorverarbeitung konventionelle
Mel–Cepstralkoeffizienten deutlich an Robustheit gegenüber additiven Störgeräuschen
(Kasper et al., 1997). Weiterhin wurde gezeigt, dass sich durch eine Filterung der ein-
treffenden Zeitsignale mittels monauraler (Kleinschmidt et al., 1998a) und binauraler
(Kleinschmidt et al., 1998b) Algorithmen zu Störgeräuschreduktion die Erkennungslei-
stung des PEMO/LRNN Systems bei additiven Störgeräuschen beträchtlich steigern
lässt. Vorraussetzung ist dabei allerdings eine zuverlässige Sprachpausendetektion und
Stationarität des Störgeräusches für die monaurale, bzw. die Kenntnis der Lage der
Schallquellen im Raum für die binaurale Störgeräuschreduktion.

B.4 Methoden

Es wurden Kunstkopfaufnahmen von Sprache und Störgeräusch aus reflexionsarmer
und aus verhallter Umgebung benutzt. Die Aufnahme in verhallter Umgebung fand in
einem Seminarraum mit einer Nachhallzeit T60 von ca. 0.5s statt. In allen Fällen betrug
der Abstand zwischen Kunstkopf und Lautsprechern etwa 2.5m. Das Sprachsignal
kam von vorn, das Störgeräusch von 30 Grad schräg rechts. Diese Signale wurden
nachträglich abgemischt bei Signal–Rausch–Abständen (SNR) von −10dB, 0dB und
10dB.
Als Sprachsignale wurden die Wörter “Null” bis “Neun” aus dem ZIFKOM Datensatz
verwendet. Insgesamt standen 2000 Artikulationen der Wörter, gesprochen von 200
verschiedenen Sprecherinnen und Sprechern, zur Verfügung. Diese wurden jeweils zur
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Hälfte als Trainings– und als Testdatensatz für die sprecherunabhängige Spracherken-
nung benutzt. Als Störgeräusch diente ein sprachähnliches Rauschen (‘babble–noise’),
das aus der Überlagerung mehrerer Sprachsignale besteht. Zur Schätzung der opti-
malen Filter standen dem Quellentrenner für jede Versuchssituation nur die Wörter
“Null”bis“Fünf”eines einzigen Sprechers, überlagert mit dem Störgeräusch, zur Verfü-
gung, da die Benutzung des gesamte Testmaterials zu rechenaufwendig gewesen wäre.
Die so gefundenen Filter dienten zur Trennung des gesamten Testmaterials in Sprache
und Störgeräusch. Die Klassifikation in Sprach– bzw. Störsignal wurde anhand der er-
zielten Erkennungsrate vorgenommen. Die verwendeten Filter hatten eine Länge von
1536 taps bei einer Samplingrate von 16kHz. Diese große Filterlänge wurde gewählt,
um sicherzustellen, dass die Trennung der Signale bei der gegebenen Raumakustik mit
langer Nachhallzeit und großem Abstand zwischen den Kunstkopfmikrofonen und den
Lautsprechern überhaupt möglich ist.
Zur Spracherkennung wurde die beschriebene Kombination aus PEMO–Vorverarbeitung
und LRNN–Klassifikation benutzt. Hierbei wurden zwei neuronale Netzwerke benutzt,
die sich darin unterscheiden, dass eines auf reflexionsarm aufgenommenes Trainings-
material und das zweite auf verhalltes Trainingsmaterial trainiert wurde.
Der beschriebene Aufbau, siehe Abb. 1, entspricht genau dem der Experimente von
Kleinschmidt et al. (Kleinschmidt et al., 1999), so dass die durch den QT Algorithmus
erreichte Verbesserung der Erkennungsleistung direkt mit den bereits vorliegenden
Werten für den Ephraim–Malah Algorithmus und das binaurale Richtungsfilter nach
Wittkop verglichen werden kann.

B.5 Ergebnisse

Die Erkennungsraten in reflexionsarmer Umgebung für die drei verwendeten SNR–
Werte sind in Fig. B.3 dargestellt. Für den SNR von −10dB liegt die Erkennungs-
rate ohne Vorverabeitung nur unwesentlich über dem Zufallsniveau von 10%. Blinde
Quellentrennung erreicht hier eine drastische Verbesserung bis hin zu fast 80% Er-
kennungsrate. Diese Verbesserung ist signifikant größer als die durch die alternativen
Störgeräuschunterdrücker erreichten. Bei 0dB SNR erzielt die Quellentrennung im
Vergleich zu den anderen Algorithmen eine vergleichbare bzw. geringfügig niedrigere,
jedoch signifikante Verbesserung. Bei einem Pegel von 10dB SNR schließlich bricht die
Erkennungsrate bei Quellentrennung ein und liegt sowohl unter der Erkennungsrate
ohne Störgeräuschunterdrückung als auch unter dem für 0dB SNR mit Quellentren-
nung erreichten Wert.
Es fällt auf, dass der auf verhallte Sprache trainierte LRNN–Klassifikator bei Quel-
lentrennung in reflexionsarmer Umgebung besser klassifiziert als der auf reflexionsarm
aufgenommene Sprache trainierte LRNN–Klassifikator. Dies ist vermutlich die Folge
eines geringfügigen Kammfiltereffektes, der in diesem Fall bei der Quellentrennung als
Artefakt auftrat und auch bei Hörtests wahrnehmbar war.
Die Erkennungsraten in verhallter Umgebung sind in Fig. B.4 dargestellt. Die Er-
gebnisse sind vergleichbar mit denen in reflexionsarmer Umgebung: bei −10dB SNR
erreicht Quellentrennung die größte Verbesserung aller betrachteten Störgeräuschun-
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Abbildung B.3: Erkennungsleistung im reflexionsarmen Raum für drei SNR–Werte.
No: Keine Störgeräuschunterdrückung, EM : monaural nach Ephraim–Malah, Bin:
binaurales Richtungsfilter, QT : Quellentrenner und reflexionsarum trainiertes LRNN,
QT∗: Quellentrenner und verhallt trainiertes LRNN
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Abbildung B.4: Erkennungsleistung verhallter Umgebung. Bezeichnungen wie in
Fig. B.3, außer QT : Quellentrenner und verhallt trainiertes LRNN
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terdrücker; bei 0dB ist die Erkennungsrate für alle Störgeräuschunterdrücker ähnlich;
bei 10dB bricht die Erkennungsrate bei Quellentrennung ein.
Der Grund für die schlechten Ergebnisse mit Quellentrennung bei 10dB SNR liegt
vermutlich darin, dass bei diesem Pegel die Annahmen des Quellentrenners verletzt
sind. Eine Schätzung des diffusen Aufnahmerauschens in den Sprachsignalen ergibt,
dass dessen Pegel frequenzabhängig im Bereich von etwa −35dB bis −10dB relativ
zum Sprachsignal liegt. Bei 10dB SNR erreicht damit das diffuse Aufnahmerauschen
in einigen Frequenzbereichen vergleichbare Pegel wie das lokalisierte Störgeräusch.
Es stellt damit effektiv eine dritte Signalquelle dar, was die Annahme von nur zwei
Signalquellen verletzt, so dass der Quellentrenner keine Signaltrennung mehr erreichen
kann.

B.6 Zusammenfassung

Wegen ihrer minimalen Annahmen über Sprach– und Störsignal ist blinde Quellentren-
nung interessant als Störgeräuschunterdrückung für robuste Spracherkennung. Der
verwendete Quellentrennungsalgorithmus erreicht erfahrungsgemäß eine gute Signalt-
rennung. Dies resultiert für SNR–Werte von −10dB in einer deutlichen Verbesserung
der Erkennungsleistung des Spracherkenners. Bei 0dB SNR ist die Verbesserung durch
den Quellentrenner vergleichbar mit den durch alternative Störgeräuschunterdrücker
erreichten. Sind jedoch die Annahmen des Quellentrenners verletzt, in diesem Fall
durch Aufnahmerauschen bei 10dB SNR, dann kann die Erkennungsleistung zusam-
menbrechen. Ein weiteres Problem für automatische Spracherkenner können durch
die Quellentrennung erzeugte spektrale Veränderungen der Signale, wie etwa Nach-
hall, darstellen.

Bedanken möchten wir uns bei Klaus Kasper und Herbert Reininger von der Universi-
tät Frankfurt dafür, dass sie uns ihre LRNN Implementation zur Benutzung überlassen
haben.
Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Gra-
duiertenkollegs Psychoakustik unterstützt.
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Weiterhin bin ich dankbar für das Privileg, daß ich die Arbeit mit zahlreichen anderen
Forschern diskutieren konnte. Viele Fragen, Anregungen und Diskussionen haben
wesentlich zum Gelingen der Arbeit beigetragen. Hierfür geht ein großer Dank an
viele Wissenschaftler, von Berlin, Göttingen und Zürich bis Boston, Princeton und
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