
Phase transitions in

magnetic clusters

and other finite systems

Am Fachbereich Physik
der Universität Oldenburg
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von

Heinrich Wilhelm Stamerjohanns

geboren am 6. Juni 1968
in Brake/Unterweser.

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2002/stapha01/stapha01.html


Erstreferent:
Korreferentin:

Tag der Disputation:

Prof. Dr. Dr. Eberhard R. Hilf
Prof. Dr. Jutta Kunz-Drolshagen

30. November 2001



Phase transitions in

magnetic clusters

and other finite systems

Am Fachbereich Physik
der Universität Oldenburg
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von

Heinrich Wilhelm Stamerjohanns

geboren am 6. Juni 1968
in Brake/Unterweser.

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2002/stapha01/stapha01.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2002/stapha01/stapha01.html


Erstreferent:
Korreferentin:

Tag der Disputation:

Prof. Dr. Dr. Eberhard R. Hilf
Prof. Dr. Jutta Kunz-Drolshagen

30. November 2001



Preface

This dissertation is of cumulative type and consists of seven papers dealing with phase
transitions of magnetic clusters or other finite systems which have been published in,
accepted by, or submitted to major physics journals.

The main topic of all papers is the investigation and identification of thermodynamic
phase transitions in various finite systems. We show that phase transitions in finite
systems, which can be experimentally seen only in floppy humps of the specific heat
or the magnetic susceptibility, can be quantitatively described by an analysis of an
optimized estimation of the probability distribution of the system states combined with
Landau free energy, or by analyzing the partition function in complex time, or other
complex-time response functions such as the complex specific heat.

We show that new efficient methods, such as the Ferrenberg analysis, not applicable
to infinite systems, can be applied to finite systems, even if the systems have more
than one external parameter. With an Optimized Multidimensional Data Analysis of
histograms produced by canonical Monte Carlo simulations, we are able to compute
the phase behaviour of finite magnetic systems over a wide temperature and magnetic
field range just by determining observables at a few given temperatures and magnetic
fields.

Specifically, in Chapter II-1, we present a new method to determine potential and ki-
netic energies of atomic clusters directly from experimental scattering spectra. We use
Path Integral Monte Carlo Simulations and an Optimized Data Analysis to compute
pair correlation functions for ‘experimental’ scattering spectra. From the scattering
functions generated in these simulations we have calculated the caloric curves and
compare them with the exact results from the simulations [1].

With numerical simulations we investigate in Chapters II-2 to II-4 the phase behaviour
of clusters consisting of a few magnetic nanoparticles, which are dissolved in a suspen-
sion, called ferrofluids. With a multidimensional Optimized Data Analysis we deter-
mine the potential energy surface with two stable isomers and show how the nature of a
phase transition can be tuned by the variation of the external parameters, the magnetic
field B and the temperature T [2–4].

We address in Chapter II-5 the classification of the phase transition of a finite number
of non-interacting bosons in a power-law trap within a semi-analytic approach with
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Preface IV

a continuous one-particle density of states Ω(E) ≈ Ed−1 [5]. We use the classifica-
tion scheme based on the distribution of zeros of the canonical partition function by
GROSSMANN et al. [8] and FISCHER et al. [9] which has been extended by BORR-
MANN et al. [10] as a classification scheme for small systems.

Among others GROSS et al. have suggested a microcanonical treatment [11–13] where
phase transitions of different order can be distinguished by the curvature of the entropy
S = ln Ω(E), where Ω(E) is the density of states. In Chapter II-6, we compare these
classification schemes by means of a Multiple Normal Modes model and show that
transitions in these systems can only completely be understood by considering the
whole complex temperature plane [6].

In Chapter II-7 we use a simple statistical model for small magnetic clusters to show
that the common indicators of phase transitions like the magnetic susceptibility or
the specific heat might eventually cause misleading interpretations of the underlying
physics [7].

An introduction to the issues raised in the articles, which is meant to be a introduction
for the more interested general reader is presented in the first Part. I will shortly discuss
clusters and present some examples of the systems used in the articles. I will also give
an outline of the numerical methods that have been used in these articles in Chap. 2.
There I will concentrate on an Optimized Data Analysis, because this method has
not been mentioned in detail in the papers dealing with phase transition of ferrofluid
clusters. An overview about the identification of phase transitions in finite systems
follows in Chap. 3.

All papers presented here have been written in teamwork with current and former
members of the group Smallsystems of PD Dr. Peter Borrmann, three papers (the sec-
ond, third and fourth one) have been done in good collaboration with the group of
Prof. Dr. David Tománek at the Michigan State University. For these papers most of
the numerical work has been performed in Oldenburg, while the quaternion Molecular
Dynamics have been done by the group at MSU. All Monte Carlo simulations and the
implementation of an Optimized Data Analysis have been done by myself.

The papers Temperature measurement from scattering spectra of cluster. Theoretical
treatment (Z. Phys. D 40, 190 (1997); see Chap. II-1) and Self-assembly of mag-
netic nanostructures (Z. Phys. D 40, 539 (1997); see Chap. II-2) were included in my
diploma thesis, because they had already been published by that time. The articles
Thermodynamics of finite magnetic two-isomer systems (J. Chem. Phys. 111, 10689
(1999); see Chap. II-3) and Paradoxical magnetic cooling in a structural transition
model (E. Phys. J. B, 19, 117 (2001); see Chap. II-4) are successions from that work
and have been published later.

While in the paper Classification of phase transitions of finite Bose-Einstein conden-
sates in power-law traps by Fisher zeros (Phys. Rev. A 64, 013611 (2001); see Chap. II-
5) my contribution to the paper is confined to a search algorithm for zeros in the com-
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plex plane and support for the graphical representations of the results, my contribution
to the other papers was the production, analysis and interpretation of results and its
textual and graphical representation.

The calculations for the articles The Origins of Phase Transitions in Small Systems
(Phys. Rev. E (2001) in press; see Chap. II-6) and Deceptive Signals of phase transi-
tions in Small Magnetic Clusters (submitted; see Chap. II-7) have been done in equal
portions by Oliver Mülken and me, the articles were written in teamwork by all au-
thors.

I thank Ebs Hilf and Peter Borrmann for a long lasting mentorship. Their ideas, prolific
discussions and useful suggestions have always been productive. Further I am grateful
to my collaborators David Tománek, Habbo Heinze and especially Jens Harting and
Oliver Mülken, because it is just fun to work in such an environment.

I also thank the Regionales Rechenzentrum für Niedersachsen in Hannover for excel-
lent support and the possibility to use uncounted hours of CPU time on the Crays in
Hannover and Berlin.
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INTRODUCTION



1
Clusters

Clusters are aggregates of atoms or molecules. The properties of clusters differ quan-
titatively and qualitatively from bulk matter. Clusters may be classified by their size as
small, medium or large clusters. Small clusters consist of a few up to about thousand
particles, their properties vary strongly with size and shape, so that no simple depen-
dence on cluster size can normally be given. Properties of medium-sized clusters vary
smoothly with size, while the properties of large clusters approach the behaviour of
bulk material. Quantitative properties, like the melting point, differ from bulk values,
because a large fraction of the particles are on the surface, and large energy gaps be-
tween energy states lead to different behaviour as known from the corresponding bulk.
In macroscopic systems fluctuations about the mean values of fluctuating extensive
variables such as the volume V or the energy E can be neglected since they are very
small. In small systems though, the second moment (the square of the standard devia-
tion) and higher moments must be taken into account [14].

Van der Waals forces, ionic forces, or metallic bonds may hold a cluster together.
Molecules however are mostly bound by covalent forces, and have definite numbers
and mostly specific structures, apart from isomers, while clusters may be composed
of any specific number of particles. With growing cluster-size the number of stable
structures and therefore the number of structural isomers rapidly increases.

Free clusters can be produced by many different methods:

• Clusters (e.g. rare-gas clusters) can be formed in a supersonic jet expansion,
where a gas is expanded from high pressure through a nozzle into vacuum. The
atoms which move at random speed and direction prior to expansion are almost
thermalized and cooled adiabatically during the expansion process. The relative
velocities are extremely reduced and clusters are formed by condensation [15].

• In gas aggregation sources atoms or molecules are blown into a rare gas flow.
After cooling by collision processes with the rare gas atoms these atoms accu-
mulate to clusters [16, 17].

• Clusters can also be produced by desorption from a solid surface by photons
(laser desorption) where high power laser pulses are focused on a small surface
area, so atoms, molecules or clusters are ejected, and the few ionized are ex-
tracted by an electric field and measured by time of flight. Energetic ion beams
can also be used to ablate material from a solid surface, locally from the ion-
impact zone [18].

2



1.1 Rare-Gas Clusters 3

In mass spectra of clusters some cluster sizes exhibit intensity peaks, because of their
higher stability. This has its reason in the geometrical nature of binding as a function
of the cluster size N. For metallic clusters, when all states in a shell are filled up with
electrons, there is a gap in the energy difference to the next vacant state. After the
production, most clusters are in an excited state (hot clusters). They can give away
energy by evaporating atoms from their surface. If a cluster of some size is extremely
stable (geometrically or electronically), then the evaporation of atoms is less probable
than in a less stable cluster. Clusters with geometrically or electronically closed shells
have therefore a higher appearance in mass spectra (magic numbers).

One goal of modern cluster-science is to use clusters to build new materials or use
them for applications. Novel properties that have been found include single magnetic
domains that may be used for magnetic recording [19], a small mean free path of elec-
trons to build new special conductors (nanowires) [20] or non-linear optical properties
that may be applied in photovoltaics or to produce molecular filters. Clusters may coat
surfaces in order to increase the scratching and abrasion resistance or to produce highly
reactive catalysts.

1.1 Rare-Gas Clusters

Rare-gas clusters are ideal for theoretical studies, since they are loosely bound. Elec-
trons are neither exchanged nor delocalized because of the stability of the atoms in the
neutral cluster. Therefore the pairwise interaction of the atoms can be modeled with a
Lennard-Jones potential

V (r) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

(1.1)
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Figure 1.1: The Lennard-Jones effective pair potential.

with a long-range attractive van der Waals part and a short range repulsive part because
of the overlap of the elecron wave-functions. r describes the distance between two
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atoms, the parameters σ = 3.405 Å and ε = 10.3 eV are used for Argon. The pairwise
force approximation and these parameters give a good description of the properties
of Argon via computer simulations because average three-body effects are included
in this effective pair potential. These values thus do not apply for an isolated pair of
Argon atoms nor for the bulk material because of the different number of neighbour
atom pairs [21].

Rare-gas clusters have been theoretically and experimentally investigated in great de-
tail [22–25]. Theoretical simulations indicated that Argon clusters of certain sizes, e.g.
Ar7, Ar13 or Ar19 exhibit a well-defined temperature region where they are in equi-
librium between their solid and liquid forms [26, 27]. BERRY et al. [23] also found
unequal freezing and melting temperatures for clusters. There is a transition phase
between solid and liquid phase, the so called “coexistence phase” [27]. For Ar55,
LABASTIE [28] found a first-order melting transition.

Ar13, Ar55, Ar147... can arrange themselves as complete Mackay icosahedra, which
consist of twenty face-centered-cubic (fcc) tetrahedra that share a common point
and have six five-fold axes of symmetry. Because of their larger number of nearest-
neighbour contacts than other structures, icosahedra are here minimal in energy per
atom.

Electron diffraction experiments, X-ray absorption spectroscopy or neutron beams that
are normally used to investigate such structures, have found those low energetic struc-
tures in experiment. To analyze these experimental scattering spectra, theoretical scat-
tering spectra are produced with Monte-Carlo or Molecular Dynamics methods for
given cluster geometries and are then visually compared [29–31]. Many simulations
had to be done in order to have a reasonable number of theoretical spectra, also the
expected structures must be a priori assumed.

In Chapter II-1 we show for Argon-clusters that potential and kinetic energies and the
classical temperature can be expressed as functionals of scattering spectra and an inter-
action potential. We use classical Monte-Carlo and Path-Integral Monte-Carlo (PIMC)
simulations of Argon and Neon as “ideal experiments” and compute expectation values
for the energy and classical temperature and identify coexistence phases. This result
has a far reaching potential for applications to determine thermodynamic properties
just from measuring structural scattering data.

1.2 Ferrofluid-Clusters

In contrast to many other finite systems like noble gas clusters, where one given para-
meter, e.g. the total energy or temperature determines all other properties, because the
cluster relaxes its volume or structure automatically, magnetic cluster properties are
determined by two external parameters, namely the Temperature T and the magnetic
field B.
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Ferrofluids consist of clusters of many small magnetic nanoparticles which are solved
in a colloidal suspension. The experimentally realized spherical particles have a typical
diameter of σ ≈ 10−100 nm and are covered with a surfactant (e.g. oleic acid) in order
to prevent aggregation. Ferrofluids do not exist in nature, but must be synthesized
[32]. If the ferrofluid is prepared with magnetic nanoparticles of a suitable size, the
fluid is stable, because of the thermal fluctuations of the particles and the inhibition of
aggregation by the surfactant layer.

Most applications with commercial importance use the possibility to fix a ferrofluid in
a certain position by a magnetic field, as it is used to seal the gap between a magnet and
a rotating shaft in small devices. New ideas in the biomedical field have been proposed,
e.g. to enclose an active drug and magnetic nanoparticles in a microcapsule, which
will then burst at the preferred region of the human body by local application of a
magnetic field [33]. Also the Ferromagnetic Embolization Hyperthermia (FEH), where
heat is locally generated in tumor tissue by magnetically induced reorientation of the
particles in an alternating magnetic field is a promising field of research for cancer
treatment [34–36]. Current research also focuses on the use of magnetic nanoparticles
for hard disks with limiting bit densities of 40 Gb/inch [37, 38].

1.00 1.10 1.20
distance rij / σ

−10

0

10

V
 / 

ε
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u
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 + u
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Figure 1.2: The pair potential for magnetic nanoparticles of a diameter of σ= 20 nm.
The black solid line describes the magnetic dipole-dipole interaction, while the green
line shows the non-magnetic interaction. The sum of these interaction is shown by the
blue line.

The potential energy Ep of a system of magnetic nanoparticles in the external field
~Bext consists of the interaction between each particle i and the applied field, given by
ui = −~µi · ~Bext, and the pair-wise interaction between the particles i and and j, given
by [39]

uij = (µ2
0/r

3
ij) [µ̂i · µ̂j − 3(µ̂i · r̂ij)(µ̂j · r̂ij)]

+ ε

[

exp

(

−
rij − σ

ρ

)

− exp

(

−
rij − σ

2ρ

)]

. (1.2)

The first term in Eq. (1.2) is the magnetic dipole-dipole interaction energy. The second
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Figure 1.3: Magnetic marbles show possible structures of small ferrofluid clusters. For
a few particles the most stable isomers are the chain and ring structure. More particles
form complex labyrinthine patterns.

term describes a non-magnetic interaction between the surfactant covered tops in a
ferrofluid that is repulsive at short range and attractive at long range [40]. The most
significant part of this interaction, which we describe by a Morse-type potential with
parameters ε = 0.121 eV and ρ = 2.5 Å, is the short-range repulsion, since even
at equilibrium distance the attractive part does not exceed 10% of the dipole-dipole
attraction. For our simulations of nanoparticles we have chosen a diameter of σ =
200 Å which carries a large permanent magnetic moment µ0 = 1.68×105 µB.

Systems of 10-100 particles are known to form complex labyrinthine pattern [39] while
for less particles ring and chain structures are the most thermally stable isomers. These
isomers have almost equal potential energy, while the magnetic moment is very differ-
ent. This behaviour has also been found for transition-metal clusters [41].

Figure 1.4: Ring and chain structures for system of six particles, visualized from a
Monte-Carlo run. For a video see http://www.smallsystems.de/∼stamer/ff/.

The ring structure is more stable at low temperatures and zero magnetic field, while at
higher temperatures and increasing magnetic fields the chain structure is predominant
because of its higher vibrational entropy. In Chap. II-2 we have used quaternion Mole-
cular Dynamics to describe the magnetic and structural transitions in a microcanonical
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ensemble, and show that is possible to interconvert the chain- and ring structure with
a magnetizable tip. We have also studied the magnetic nanoparticles with histogram
Monte Carlo techniques combined with an improved data analysis (see Chap. 2.4) to
investigate the phase-behaviour of a six-particle system.



2
Numerical Methods

Small systems can on one hand be experimentally studied, but because of the low num-
ber of particles computer simulations are also well suited to study the phase behaviour
of a system. The thermodynamic ensemble of choice then depends on the system to
be studied, e.g. for an isolated cluster, the microcanonical ensemble, a constant-energy
system, is preferred and studied with Molecular Dynamics (MD) simulations.

2.1 Molecular Dynamics

With Molecular Dynamics solutions of the equations of Newton’s second law for clas-
sical systems are determined numerically.

With given positions and momentum, Newton’s equation of motion are solved to de-
termine positions and velocities as a function of time. The resulting trajectory yields
a complete description of the system in phase space. The dynamical information from
MD is limited, because computer-induced, random errors destroy the reversibility of
integration. Thus the simulation of slow processes is not very reliable, while for short-
time dynamics it has been established as an important method to study small systems.

The group of D. Tománek has used quaternion molecular dynamics to describe the
phase behaviour of magnetic nanoparticles. Here four quaternion parameters are used
as generalized coordinates, in order to avoid problems with the divergence in orienta-
tional equations of motion [21, 42].

Numerical methods have to deal with progressing errors. Any two classical trajectories
which are initially close will eventually diverge from another exponentially with time.
A small error by finite floating point arithmetic will cause a computer generated tra-
jectory to diverge from the true classical trajectory with which it initially overlapped.

But for the generation of states sampled from the microcanonical ensemble it is not
necessary to generate exact classical trajectories, but to ensure that particle trajectories
remain on the constant-energy hypersurface in phase space in order to ensure energy
conservation. This must be especially obeyed with the enormous increase of computing
time while dealing with soft potentials.

8



2.2 MC-Methods 9

2.2 MC-Methods

If a cluster is treated in contact with a heat reservoir, a canonical ensemble of constant
temperature is used.

The system is studied with Metropolis Monte-Carlo simulations [43], where the phase-
space is sampled by Markov-chains, which yield no dynamic link from one step to the
next. Detailed descriptions of the Monte Carlo method can be found in textbooks by
BINDER [44–46], HAMMERSLEY [47] or KALOS [48].

Monte-Carlo methods rely, due to their stochastic nature, on the quality of the com-
puter generated pseudo-random numbers. If there are correlations between succes-
sively generated numbers only parts of the multidimensional phase space might be
explored by the generated Markov-chains. We have developed [49] a new portable
pseudo-random number generator based on an improved Marsaglia-Zaman algorithm
[50] and based on the work by Lüscher [51] to guarantee efficiently generated random
numbers with good statistical properties, long period (∼ 2100) and reproducibility.

After the development of the ‘Mersenne Twister’ [52], we have switched to this best-
known random number generator for Monte Carlo simulations. This random number
generator has a far longer period and far higher order of equidistribution than any
other implemented generator. Its very long period of 219937−1, and its 623-dimensional
equidistribution property, which is especially important for the generation of Monte
Carlo steps, makes it the most promising generator for numerical simulations at present
time.

2.3 Multiple Normal Modes Model

For a first orientation of thermodynamic properties of clusters it is also possible to give
a qualitative description of the phase behaviour by restricting the phase space to some
discrete points, namely the most important potential minima. This superposition ap-
proach has been used in earliest cluster calculations [53–55], but has also been applied
to larger clusters in recent years [56, 57].

With this simple statistical model only energy differences between different poten-
tial minima must be taken into account. An extension to this method is the Multiple
Normal Modes (MNM) model [24, 57], where the mobility of the atoms by the de-
termination of the normal modes is taken into account. Transitions between different
isomers can be modeled simply by considering the vibrational eigenfrequencies ωij

and permutational degeneracy σi of the isomer i. Then the partition function for M
isomers of an N−particle cluster reads

Z(β) =

M
∑

i=1

σi exp(−βEi)

3N−6
∏

j=1

2π

βωij
, (2.1)
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where β = 1/T . In Chap. II-6 we have used this method to investigate the validity and
applicability of different classification schemes for phase transitions in small systems.
In order to investigate small magnetic clusters with this model the magnetic field has
to be included. For simplicity we only consider two isomers with magnetic moments
µi and ground state energies E0(i). With the magnetic field pointing in z-direction the
partition function reads [41]

Z(β) =

2
∑

i=1

exp[−βE0(i)]
2

βµiH
sinh(βµiH). (2.2)

This method is practical for smaller clusters, but for larger clusters an impractically
larger number of minima have to be taken into account.

The simple assumption that the phase space volumes of the minima are of equal size
might lead to quantitatively wrong results. In order to sum the phase space volumes for
each minimum independently, it is assumed that these volumes do not overlap, which
might lead to an overestimation of the density of states Ω(E) [58].
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2.4 Optimized Data Analysis

For systems with large free energy barriers between low-energy states, as they occur in
first order phase transitions, it is difficult to calculate low-temperature thermodynamic
properties because the barriers hinder ergodicity, which is an essential neccessity for
succesful simulations [21, 59]. At low temperatures the simulated system might get
stuck in metastable states [46], so depending on the start configurations the simulations
might yield different results.

With the Optimized Data Analysis method it is possible to circumvent this prob-
lem by simulating a system at temperatures where high mobility of particles is en-
sured. By an optimized estimate of the density of states Ω(E) which does not de-
pend on the temperature, the phase behaviour of the system can be determined. With a
histogram-reweighting method, a method which is analogous to the approach of BEN-
NETT [60] who computed free energy differences, FERRENBERG and SWENDSEN [61]
have shown that by reweighting histograms taken from Monte-Carlo simulations it is
possible to describe the phase behaviour over a broader parameter range, e.g. the tem-
perature.

Basically a probability distribution P (E, T0) which is collected in histograms for a
given temperature T0 = 1/β0 is reweighted with exp(β0E) to obtain an estimation for
the density of states Ω(E). To obtain a probability estimation of P (E, T ) for another
temperature T this density is reweighted at the new temperature T to obtain P (E)
exp(−βE).

The probability distribution collected in histograms is approximately a Gauss curve as
a function of energy, so only few events will be counted at both wings and the statis-
tical uncertainty is high. In these wings of the distribution the statistical errors may be
greatly magnified by reweighting methods. This can be eased by combining histograms
from several simulations taken at different temperatures [62]. Analogous approaches
have been used in the so called umbrella sampling [63,64], the multicanonical ensem-
ble [65] or the multimagnetic ensemble [66, 67] or in simulated tempering [68].

We have extended this method in a way that multiple multidimensional histograms
can be used for systems which depend on two or more external parameters, thus the
temperature T and external magnetic field B may be varied. With this method it is
possible to describe the phase behaviour of e.g. magnetic nanoparticles in a magnetic
field, because with some Monte Carlo simulations being run at just a few parameter
points one is able to obtain all thermodynamic functions of interest in a broad region
of the (T,B) plane.

We will elaborate this method in greater detail, because the knowledge on these new
methods is not well distributed and in use yet, although they have the potential of to be
applied to cover a huge spectrum of quite different small systems.

In the case of the magnetic nanoparticles, the canonical partition function, from which
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all thermodynamical quantities can be derived, is given by

Z(Bext, T ) =(2πβ)−6N/2

∫

[

N
∏

i=1

d~xi dφi dθi dψi

]

× exp

(

−β(

N
∑

i<j

uij −

N
∑

i

µi,zBext)

)

, (2.3)

where β = T−1 and where the field ~Bext is aligned with the z-axis. The pre-exponential
factor addresses the fact that each particle has three rotational and three center-of-
mass degrees of freedom. The key quantities are the formation enthalpy of the isolated
system, E∗ =

∑

i<j uij = Ep + µzBext, and the z-component of the total magnetic
moment of the aggregate, µz, both of which are functions of T andBext. The energyE∗

is the appropriate thermodynamic potential describing the present system; its definition
is analogous to the enthalpy of a (p,V,T)-ensemble.

For each Monte-Carlo Simulation which we carry out for given external parameters,
the temperatures Tk and the external magnetic fields Bext,m, we measure the two-
dimensional histograms Gk,m(E∗, µz), the number of configurations with energy E∗

and the magnetic moment µz in one run with nk,m Monte-Carlo steps.

The probability P (E∗, µz; βk, Bm) that the system has the energy E∗ and the magnetic
moment µz at the external parameters βk = 1/Tk and ~Bext = Bm is proportional to the
histogram Gk,m(E∗, µz), so the density of states can be written as

ρ(E∗, µz) =
Gk,m(E∗, µz)

nk,m

exp(βk(E
∗ − µzBm) − fk,m), (2.4)

with fk,m = βkF (βk, Bm).
The free energy F of the system is defined by F = 1/β lnZ. The density of states
of all simulations can be estimated by a weighted sum of the density of states of each
simulation [62],

ρ(E∗, µz) =
∑

k,m

pk,m(E∗, µz)Gk,m(E∗, µz)

nk,m

× exp[−fk,m + βk(E
∗ + µzBm)].

(2.5)

where the sum runs over all simulations at T = Tk and ~Bext = Bm, and the number of
Monte Carlo steps nk,m is defined by min(1, nk,m), so we can just sum over all points
in the parameter space even if we have not simulated at the particular point. If we have
not simulated at the external parameters βk and Bm, Gk,m is just zero. The addend is
then zero, because Gk,m is zero.

Inserting the histograms and minimizing the error in the estimate for ρ(E∗, µz) we find
for the weighting-function

pk,m(E∗, µz) =
nk,m exp[−βk(E

∗ − µzBm) + fk,m]
∑

k,m nk,m exp[−βk(E∗ − µzBm) + fk,m]
. (2.6)
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With the unnormalized probability density

D(E∗, µz; β,B) = ρ(E∗, µz) exp[−β(E∗ − µzB)] (2.7)

we find by inserting equation (2.5) and (2.6) in (2.7)

D(E∗, µz; β,B) =

∑

k,mGk,m(E∗, µz) exp[−β(E∗ − µzB)]
∑

k,m nk,m exp[−βk(E∗ − µzBm) + fk,m]
, (2.8)

where
exp(−fk,m) =

∑

E∗,µz

D(E∗, µz, βk, Bm). (2.9)

The expectation value of an arbitrary function of E∗ can be calculated by

〈A(E∗, µz)〉(β,B) =
∑

E∗,µz

A(E∗, µz)P (E∗, µz; β,B), (2.10)

where the normalized probability density is determined by

P (E∗, µz, β, B) =
D(E∗, µz; β,B)

∑

E∗,µz

D(E∗, µz; β,B)
. (2.11)

By self-consistent iteration over (2.8) and (2.9) the free energy can be computed.

Implementation

The probability function P (E∗, µz, β, B) depends on four parameters, thus the above
equations cannot be directly used to determine thermodynamic functions because it
consumes too much memory. But the exponential term in (2.8) is independent of βk

und Bm, so all histogramsGk,m(E∗, µz) can be combined in G̃(E∗, µz) =
∑

k,mGk,m.

The free energy (2.9) needs only to be determined by self-consistent iteration for the
discrete external parameters βk, Bm, at which the simulations have actually been car-
ried out. The partition function at these points is given by

Z(βk, Bm) =
∑

E∗,µz ,i,j

ni,j exp
[

(−βk − βi)E
∗ + µz(βiBj − βkBm) + fi,j

]

(2.12)

and the f(βk, Bm) can be calculated by

f(βk, Bm) = − lnZ(βk, Bm). (2.13)

By self-consistent iteration of these two equations we determine f(βk, Bm).

With these free energies we store the denominator in (2.8) as a function of E∗, µz as
D̃den(E

∗, µz) defined as
∑

k,m nk,m exp[−βk(E
∗ − µzBm) + fk,m], therefore the sum
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over all histograms only needs to be computed once. The unnormalized probability
distribution DE∗,µz ,β,B is calculated for all E∗, µz, β, B,

DE∗,µz ,β,B = G̃(E∗, µz) exp[−βE∗ + βµzB] × D̃den(E
∗, µz), (2.14)

where the partition function Z(β,B) and arbitrary thermodynamic values like
〈E∗〉(β,B) can be determined by continuous summation.

With this method many Monte Carlo Simulations in a multi-dimensional parameter
space can be combined and evaluated on workstations, where the computing cost nei-
ther depends on the number of histograms to be evaluated nor depends on the chosen
interval size for the thermodynamic functions. The additional cpu time and amount of
memory is negligible. It is also possible to determine the probability densityP (Ep, µz),
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Figure 2.1: Monte Carlo results for the probability to find an aggregate in a state with
its magnetic moment in the field direction µz and potential energy Ep. The individual
contour plots show our results for the temperature T = 250 K at the field values (a)
Bext = 0 G, (b) Bext = 40 G, (c) Bext = 60 G, and T = 450 K at the field values (d)
Bext = 0 G, (e) Bext = 40 G, (f) Bext = 60 G.

with Ep = E∗ − µzBext, at fixed parameters T and Bext by corresponding subsumma-
tion, The configuration space of the system can be easily calculated and represented
(see Fig. 2.1). These plots nicely reveal the two different phases and its transition.

We have used the Optimized Data Analysis in order to determine the phase behaviour
of the magnetic nanoparticles. For the Metropolis Monte Carlo simulations, we chose
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the temperature to be low enough so that the particles do not evaporate, but at the same
time high enough so there is enough mobility to explore the configuration space.

When particles evaporate, which means that the distance in between them is so large,
that the interaction is negligible, the simulation is stopped. The physical meaning is of
course also a phase transition to a lower (N − 1)−particle cluster, which we have not
further investigated here.

We carry out some simulations at high enough temperature (T = 400 to 450 K) and
different external magnetic fields Bext. Then with the Optimized Data Analysis we
determine the approximate phase behaviour of the system by calculating the specific
heat (2.15), the susceptibility and (2.16) and the maxima of the functions. The specific
heat per particle in a canonical ensemble is given by cB = d〈E/N〉/dT , where the
total energy is given by E = 6

2
NkBT + Ep. Correspondingly, we define the magnetic

susceptibility per particle as χ = d〈µz/N〉/dBext.
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Figure 2.2: Schema for self-correcting, self-consisting MC.



2.4 Implementation 16

These response functions are related to the fluctuations of Ep and µz by

cB =

[

6N

2
kB + kBβ

2(〈E2〉 − 〈E〉2)

]

/N , (2.15)

χ =
[

β(〈µ2
z〉 − 〈µz〉

2)
]

/N . (2.16)

The data generated from the Optimized Data Analysis can be fed back into the input
data for the Monte-Carlo simulations so the simulations can be carried out at critical
field at high enough temperature to ensure ergodicity. A scheme (cmp. Fig. 2.2) illus-
trates this self-correcting self-consistent Monte Carlo method. A simulation generates
histograms Gk,m(E∗, µz) from which the free energy is computed by self-consistent
iteration.

From this the probability distribution P (E∗, µz, β,H), other thermodynamic functions
and the statistical error [62]

δP (E∗, µz, β, B) =
P (E∗, µz, β, B)

√

∑

k,mGk,m(E∗, µz)
(2.17)

is obtained, and new parameters βk and Hm to reduce the statistical error are deter-
mined. These parameters are then fed back into the Monte Carlo engine and are used
as input parameters for further simulations.

Additionally the pseudo-dynamics of the magnetic nanoparticles are visualized in an
animated film (see Fig. 1.4). One has to keep in mind though that Monte Carlo sim-
ulations compute only (correlated) states in the configurational phase space which do
not yield true dynamics [45, 59], although at least for Lennard-Jones fluids it has been
recently shown, that Monte Carlo simulations can be used to describe dynamical pro-
cesses [69].



3
Phase Transitions

One of the most interesting events in nature are transitions between different states
of matter. The classical phase transitions between solid, fluid and gaseous phases have
been investigated extensively. In recent years a rich world with a variety of phenomena
including superfluidity, superconductivity, liquid crystals, surface melting or magnetic
ordering have been investigated.

3.1 Identification of Phase Transitions

In the bulk a phase transition occurs, when the free energy or one of its derivatives
exhibits a singularity. If there is a discontinuity in a first derivative of the appropriate
thermodynamic potential the transition is called first-order. If the first derivative is con-
tinuous, but the second derivative are discontinuous or infinite the transitions is termed
to be of second or higher order or called a continuous phase transition. Originally
phase transitions have been classified by EHRENFEST including third and fourth order,
but FISHER has proved this classification to be to inappropriate and nowadays second-
order and continuous transitions are mostly used synonymously. Another classification
scheme by PIPPARD [70] varies the classification of EHRENFEST and orientates on
physical systems. PIPPARD distinguishes between second and third order transitions
and classifies the superconducting transition, the Weiss model of ferromagnetism and
the order-disorder transitions in many solids as to be of second order, while the Curie
transition the transition in the 2D Ising model and the Bose-Einstein condensation of
liquid 4He are classified to be of third order.

Singularities in the free energy or one of its derivatives are caused by fluctuations,
which persist not only at the microscopic level, but cover all length scales. WILSON

[71] has shown in his renormalizations groups theory that phase behaviour of many
different systems can be divisioned into universality classes, which are determined
by fundamental properties of the system such as the spatial dimension or range of
interaction.

For finite systems these correlations are of course finite which lead to rounded curves
in the derivatives of thermodynamic potentials. Thus there are no singularities, the
derivatives are continuous, so that the phase transitions of finite systems cannot be
classified on the basis of discontinuities of the derivatives of the appropriate thermo-
dynamic potential. The specific heat exhibits finite peaks in the transition regions and

17
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can therefore not be used to classify phase transitions non-ambiguously, which has led
to many discussions and considerable confusion. The absence of singularities has led
to the thesis that finite systems do not even exhibit phase transitions. Some authors like
BERRY [72] rather use the term phase changes to distinguish from phase transitions
in bulk systems because they cannot be classified according to ‘order’ in the Ehrenfest
sense. However, because of many analogies to the bulk most authors also use the term
phase transitions for finite systems.

We have investigated and classified phase transitions in finite systems by two different
approaches. In Chap. II-2 to II-4 we have calculated the partition function and appro-
priate thermodynamic functions. By inspection of the probability distribitution and the
free energy, we have determined that the system of magnetic nanoparticles undergoes
a phase transition of first order.

In Chap. II-5 to II-7 we have calculated the complex partition function for non-
interacting bosons in a power law trap, and simple model clusters and have classified
the transitions according to the scheme which has been proposed by BORRMANN et
al. [10] and will be explained in the next Section.

With the finite-size scaling theory, which has been developed by FERDINAND and
FISHER [73] it is possible to extrapolate finite-system properties found by e.g. Monte
Carlo simulations to the thermodynamic limit. For the system of magnetic nanopar-
ticles finite-size scaling cannot be applied, because the transition between rings and
chains can only be observed for very small systems. Other characteristics must be in-
vestigated in order to classify the type of transition.

A solid-liquid transition of argon-clusters bears a coexistence of two phases [26, 27],
which cannot be occupied at the same time, because due to their finite size the clusters
can be only in one state or the other. This transition is identified to be of first-order,
because the free energy of the system has two minima at the critical temperature. Since
the barrier between two minima of the free energy of a finite system can only be fi-
nite, there is a finite probability for the system to cross the barrier. The system cannot
only cross from a metastable to a stable state but also vice versa. This is called the
coexistence phase.

In order to distinguish between different phases, we introduce an order parameter Φ
[74, 75]. For the system of magnetic nanoparticles the order parameter is given by the
sum of the magnetic moments of all particles. With Φ = µz/µ

max
z , the order parameter

Φ is close to zero for a ring, while for chains Φ is close to 1, because the chains
align along the field. At a continuous phase transition the order parameter approaches
continuously zero. While approaching the critical point, the probability distribution
P (Φ) will show only one maximum, because no metastable states exist. On the other
hand the existence of metastable phases is an indicator of first order phase transitions.
If convergence of the simulation is guaranteed, P (Φ) will then show (at least) two
maxima. With

F (Φ) = −
1

β
lnP (Φ) (3.1)
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Figure 3.1: The Landau free energy F (Φ) as a function of the applied magnetic field
at T = 300 K. At zero magnetic field the only minimum can be found at Φ = 0. With
increasing field the free energy exhibits a second minimum.

we determine the Landau free energy as a function of the order parameter [59, 76, 77].
With the Optimized Data Analysis we determine F (Φ; β,B) by

F (Φ; β,B) = −
1

β
ln

∑

E∗ D(E∗, µz; β,B)
∑

E∗,µz

D(E∗, µz; β,B)
. (3.2)

At a first-order transition F (Φ) shows (at least) two minima [75]. By plotting the prob-
ability density P in dependence of Ep or Φ the coexistence phase can be determined.
The distribution must be bimodal, if there is coexistence.

3.2 Zeros of the Partition Function

YANG and LEE [78, 79] have shown that the grand canonical partition function can be
written as a function of its zeros in the complex fugacity plane. They are e.g. located
on a unit circle in the case of hard-core interactions for the Ising model.

GROSSMANN et al. [8, 80–82] have extended this approach to the canonical ensemble
by analytic continuation of the inverse temperature to the complex plane β → B =
β + iτ . BORRMANN and MÜLKEN and HARTING [10] have extended this scheme to
classify phase transitions in finite systems, where the distribution of zeros is discrete
and the zeros of Z(B) do not lie dense on lines in the complex temperature plane and
do not approach the real temperature axis infinitely close.
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The canonical partition function

Z(β) =

(

1

2πβ

)3N/2 ∫

dx3N exp[−βV (x)], (3.3)

can be factored into a product of the kinetic part and a product depending on the zeros
Bk = βk + iτk, with B−k = B∗

k of the integral function in the complex temperature
plane.

Z(β) =

(

1

2πβ

)3N/2 M
∏

k=−M

(

1 −
β

Bk

)

exp

(

β

Bk

)

, (3.4)

where 2M is the number of its complex conjugate zeros.

All thermodynamic quantities can then be derived from the distribution of the zeros
of the partition function. The internal energy U(B) or the specific heat CV (B) can be
determined by standard differentiation. The interaction part of the specific heat, e.g.
yields

CV (B) = −B2

M
∑

k=−M

(

1

(Bk − B)2

)

. (3.5)

Zeros of the partition function Z(B) are poles in U(B) and Cv(B). Zeros close to
the real axis contribute most to the specific heat, a zero that approaches the real axis
infinitely close will result in divergence of the specific heat.
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Figure 3.2: a) Schematic illustration of the zeros in the complex temperature plane, b)
The black circles illustrate a typical distribution of zeros for α = 0 and γ = 0, which is
identified as a first order transition. The blue squares illustrate a distribution of zeros
for α = 0.5 which indicate a transition of second order, while the red triangles show a
transition of higher order with α > 1.

The distribution of zeros close to the real axis can approximately be described by three
parameters, where two of them, namely α and γ, reflect the order of the transition
while the third τ merely describes the size of the system.
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According to the Grossmann scheme they assume the zeros to lie on straight lines.
with a discrete density of zeros given by

φ(τk) =
1

2

(

1

|Bk − Bk−1|
+

1

|Bk+1 − Bk|

)

. (3.6)

with k = 2, 3, 4, . . . , and approximate for small τ the density of zeros by a simple
power law φ(τ) ∼ τα. By considering only the first three zeros the exponent α can be
estimated as

α =
lnφ(τ3) − lnφ(τ2)

ln τ3 − ln τ2
. (3.7)

The second parameter describes the distribution of zeros, which is given by γ =
tan(ν) ∼ (β2 − β1)/(τ2 − τ1) where ν is the crossing angle of the line of zeros
with the real axis. With these parameters they give a distinct characterization of phase
transitions in small systems:

• 1st order: α ≤ 0 and γ = 0,

• 2nd order:

{

0 < α < 1 and γ = 0

γ 6= 0

• higher order: α > 1 and arbitrary γ,

The discreteness of the system is reflected in the imaginery part τ1 of the zero closest
to the real axis. While α describes the density increase of the zeros, γ describes the
angle of the zeros to the real axis. A first-order transition will thus have always equally
or increasingly spaced zeros perpendicular to the real axis.

A calculation of the distribution of zeros for the system of magnetic nanoparticles (see
Fig. 3.3) backs the conclusion that the chain-ring transition is of first order. The zeros
are equally spaced on a line perpendicular to the real axis at T ≈ 180 K. The param-
eters α and γ are zero, therefore the transition can be regarded as to be of first order.
The large bright area at higher temperatures reflects the order-disorder transition of the
system. In this region the numerical data taken from the Monte-Carlo simulations are
not reliable enough to classify the order of transition.

In 1995 ANDERSON et al. observed Bose-Einstein condensation in vapor of Rubidium,
where atoms were confined in a magnetic trap. Bose-Einstein condensation has also
been realized in Natrium [83] and in Lithium [84, 85]. The trapped Bose gases are
finite systems, the number is typically between hundreds and a few millions of atoms.

In Chap. II-5 we determine the order of the phase transition of a finite number of
non-interacting bosons in a power-law trap. We calculate the canonical partition func-
tion for N non-interacting bosons by a recursion formula found by BORRMANN and
FRANKE [86].
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Figure 3.3: Distribution of zeros for a system of six magnetite particles at B = 40G.
Here the specific heat is computed in the complex temperature plane. Bright spots
indicate the location of zeros.

For the investigated dimensions equal to one to six, one can deduce that there is no
transition in the one-dimensional case as it is expected. With the parameters α and γ,
the transitions can be classified in a non-ambiguous way to be of higher order in the
two-dimensional case and to be of second-order for the dimensions d = 3 − 6. The
distance of the imaginary part τ1 of the zero closest to the real axis can be used to
measure the finiteness of the system or equivalently the distance of a phase transition
from being a true phase transition in the Ehrenfest sense.

3.3 Other classification schemes

GROSS et al. have suggested another classification of phase transitions in small sys-
tems [11–13]. They classify phase transitions by the topological properties of the de-
terminant D(E,N) of the microcanonical entropy surface S(E,N). The determinant
is defined by

D(E,N) =

∥

∥

∥

∥

∂2S
∂E2

∂2S
∂N∂E

∂2S
∂E∂N

∂2S
∂N2

∥

∥

∥

∥

, (3.8)

where N is the number of particles and E is the energy of the system. The transitions
are classified as follows:

• The system is considered to be in a single phase if the determinantD(E,N) > 0.

• A first order transition for D(E,N) < 0. The depth of the intruder is supposed
to be a measure of the intra-phase surface tension. This corresponds to a back
bending in the microcanonical caloric curve.
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• That region is bounded by a line with D(E,N) = 0, where the transition is
supposedly continuous, with no convex intruder in S(E,N).

From classical statistical mechanics it is clear that the back bending is forbidden in
the thermodynamic limit by the van Hove concavity condition [87]. However, in finite
systems the microcanonical caloric curve may exhibit such a negative slope which
results in negative heat capacities. Such a neagtive heat capacity has been observed
in several numerical simulations [28, 88, 89] and has even been found indirectly in
experiments with sodium clusters [90]. However, by comparing microcanonical and
canonical caloric curves based on simple model systems BIXON and JORTNER [88]
have shown that in a canonical ensemble a negative slope is impossible because it is
proportional to the mean squared energy fluctuation.
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Figure 3.4: Microcanonical caloric curves for the Multiple Normal Modes model with an
energy difference ∆E = 20 between two isomers. a) With constant ρ2/ρ1 = 50000 and
increasing particle number the back bending can be easily tuned out. b) With constant
N = 10 and decreasing ratio ρ2/ρ1 the back bending can also be tuned out.

In Chapter II-6 we show that the back bending of the microcanonical caloric curve can
be easily tuned by variation of the particle number N and the ratio ρ2/ρ1, thus we infer
that the back bending which can be only seen in the microcanonical treatment of a sys-
tem might not be sufficient to classify phase transitions in finite systems, see Fig. 3.4.
By using the Multiple Normal Modes model (see Chap. 2.3) we have also shown that
the classification of finite systems by the zeros of its complex partition function is
robust against variations of the particle number N , as long as the assumption of the
model for the structure of the cluster is suited.

As it has been discussed in Chap. 3.1, the investigation of the specific heat or the
magnetic susceptibibily is not sufficient to determine the order of transition. For a
simple system of magnetic clusters (see Chap. 2.3), we also demonstrate that even
signals of the specific heat in the positive temperature range may have their origin at
complex negative temperatures. Thus one may find for a commonly used indicator such
as the specific heat, a deceptive signal for a phase transition at positive temperatures,
although the phase transition takes place at negative temperatures.
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Figure 3.5: a) the magnetic susceptibility versus temperature and b) the absolute value
of the average magnetic moment for different magnetic fields.

For example, at 0.5 mGauss (see Fig. 3.5) this simple system exhibits many humps in
the magnetic susceptibility, but a strong difference in the magnetization can only be
found for magnetic fields above 1.1 mGauss.

Finite systems with finite energy range may show an inverse change of entropy. With
the canonical definition for the inverse temperature β = ∂ES(E) = ∂E ln Ω(E), the
system can be regarded as in a state of negative temperature. LiF-crystals have been
found in negative temperature states by decoupling the spin-temperature from the ki-
netic energy contribution [91–93].

The inspection of the zeros of the average magnetic moment and the specific heat
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Figure 3.6: The absolute value of the average magnetic moment in the complex tem-
perature plane for (a) 0.1 mGauss, (b) 1.2 mGauss, and (c) 2.0 mGauss and the
specific heat in the complex temperature plane for (d) 0.1 mGauss, (e) 1.2 mGauss,
and (f) 2.0 mGauss.
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Figure 3.7: The magnetic susceptibility χ over the complex invers temperature plane
for χ = 0.5 mGauss. The z-axis has a logarithmic scale and coloring to better illustrate
the radiation of the poles onto the real axis.

reveal a very different formation of the zeros in the complex inverse temperature plane,
see Fig. 3.6. The poles of |〈µz〉| coincide with the zeros of the canonical partition
function Z(B). With increasing magnetic field the distribution changes and for higher
fields a second distribution appears which corresponds to a structural transformation
between the two isomers. The classification parameters are α = 0 and γ = 0, therefore
this transition is of first order.

By a closer investigation of the complex inverse temperature plane we demonstrate
that the origin for the first maximum of H = 0.5 mGauss at T = 40 K in Fig. 3.5 has
its origin in the distribution of zeros in the complex negative temperature plane. The
zeros “radiate” onto the real axis. Also the hump in χ at T ≈ 3 K (β ≈ 3800 1/eV) has
its origin in the distribution of zeros at negative temperatures. Figure 3.7 illustrates the
radiation of the poles onto the real axis.



4
Conclusion

In the early days of cluster science many people were doubtful whether phase transi-
tions for small systems even exist. With the strict definition of EHRENFEST for bulk
material in mind, they denied the existence of phase transitions in small systems since
divergencies and discontinuities in typical thermodynamic response functions were
absent. With the advances in numerical simulation and investigation of small systems,
many effects such as cluster melting or structural transformations in clusters have been
found and are now fairly well understood. But the determination of phase changes in-
volved great numerical effort, because simulations had to be run at many parameter
points to extract the thermodynamical properties in order to describe the phase be-
haviour of the system.

With a few simulations for given temperature and magnetic field, and subsequent mul-
tidimensional data analysis we have been able to describe the phase behaviour of mag-
netic nanoparticles over a broad parameter range. We successfully determined the pre-
ferred structures of the magnetic system and identified the order of the transition by
different methods, such as the investigation of the Landau free energy and the distri-
bution of zeros of the partition function in the complex temperature plane.

The method of determining the order of a transition by the zeros of the partition func-
tion has also been applied to other small systems, such as non-interacting bosons
trapped in a small volume, where we have found a dependence of the order on the
dimensionality, a property which is also known from Ising-models.

We have also compared the classification scheme with other propositions for the deter-
mination of the order of transitions in small systems. We have clearly shown that the
proposed equivalence of microcanonical back bending in the caloric curve and first-
order phase transtions is not suitable, although in the microcanonical treatment the
resulting negative heat capacity might be a sufficient, but not neccessary condition.

The commonly used indicators like specific heat or magnetic susceptibility are not
only unsuitable to be able to assign an order to a phase transition in small systems, but
might also show misleading signals. By the investigation of the whole complex inverse
temperature plane we were able to show that the origins of such signals might be in
the negative temperature region, although the peak is found in the positive temperature
range.
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5
Outlook

Clusters offer the opportunity to understand more precisely how nanoscale structures
lead to physical and chemical properties of macroscopic phases.

The numerical methods which have been used to ease the investigation of the phase
behaviour of small systems, such as the Optimized Data Analysis have interesting
prospectives to be applied to other small systems, for instance social and financial
networks. Especially the exploration of phase transitions in such systems may give
new insights and yield new applications in the future. A good theoretical framework
on phase transitions in small systems will support and ease the investigation.

The finding of equivalent conditions for first-order transitions such as the bimodality
in probability distributions or the existence of two minima in the Landau free energy
or equally spaced zeros perpendicular to the real axis in the complex temperature plane
are such steps towards a common view on phase transitions in finite systems.

The classification by the zeros of the complex partition function has been successfully
applied to many systems, but in order to spread these ideas further, standard models
like the Ising model or the Potts model should be taken into account, since these mod-
els have been intensively studied and there are numerous results that can be used to
compare with our findings.
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Abstract. Scattering spectra from X-ray, electron or neutron
diffraction experiments are sufficient to describe the phase
behaviour of noble gas clusters and to determine their tem-
perature. Using classical Monte Carlo simulations combined
with optimized data analysis and Path Integral Monte Carlo
calculations as “idealized experiments” we obtain scattering
spectra of Ar- and Ne-clusters. Starting from the classical
and quantum mechanical hypervirial theorems we devise a
method to estimate the temperature and the caloric curves
(which describe the phase behaviour of the noble gas clus-
ters) directly from these scattering spectra using an inter-
atomic potential function as input. As applications we stud-
ied for Ar-clusters the effect of different model potentials
on the temperature estimate thus contributing to the intricate
question of what experimentally is the temperature of an iso-
lated cluster. For Ne-clusters we investigate the differences
between classical and quantum mechanical treatment.

PACS: 36.40.+d; 05.20.Gg; 05.30.-d

1 Introduction

Although in the last few years the thermodynamics of small
clusters have been a research topic of steadily increasing in-
terest [1–9], there is relatively little progress in connecting
experimental and theoretical results. The most crucial exper-
imental task in determining the thermodynamic properties of
small clusters is the measurement of the temperature itself.

Early attempts have been made by Farges et al. [10]
in 1980 to determine the temperature of clusters produced
from free jet expansion by comparison of experimental and
theoretical electron diffraction spectra.

This method has two major drawbacks: First, theoretical
diffraction spectra have to be calculated for each individ-
ual cluster size and several temperatures by time consuming
Monte Carlo or Molecular Dynamics simulations. Second,
the determination of the experimental temperature has to be
done by visual comparison of the theoretical and experimen-
tal spectra. A new method is presented here to determine the

kinetic energy of a cluster directly from experimental scat-
tering spectra. If the cluster behaves almost classically the
canonical ensemble temperature is directly related to the in-
ternal kinetic energy by Ekin = 3/2(N − 1)kBT . The kinetic
energy is a simple functional of the scattering spectra and
an assumed interatomic potential and can be evaluated by a
simple one dimensional integration.

In Sect. 2 we derive the necessary quantum mechani-
cal equations for calculating the temperature and the kinetic
energy. To test the applicability of our method we use classi-
cal Monte Carlo and Path Integral Monte Carlo simulations
of small Argon and Neon clusters as idealized experiments
(Sect. 3). From the scattering functions generated in these
simulations we then calculate the caloric curves and compare
them with the exact results from the simulations (Sect. 4).

2 Theoretical method

From kinematic scattering theory it is well known [11] that
the real-space pair correlation function

Γ (r) =
2

N (N − 1)

〈

∑

1≤i<j≤N

δ(|xi − xj | − r)

〉

(1)

is directly related to the 3-dimensional Fourier transform

Γ (r) =
∫ ∞

0
ds

(

I(s)
N |f (s)|2

− 1

)

4πs2 sin(sr)
sr

(2)

of the scattering intensity I(s) of X-ray, electron or neutron
diffraction experiments, respectively. Here the xi denote par-
ticle positions and f (s) is the atomic structure factor. This
function can be determined experimentally and is tabulated
for most cases [12].

The pair correlation function is the probability distribu-
tion of all possible 2-particle distances r in the clusters. The
basic idea of our method is to express quantum mechan-
ical expectation values of the kinetic energy Ekin and the
potential energy Epot in terms of Γ (r).

To accomplish this goal we recall the hypervirial theorem
of Hirschfelder [13], which is a generalization of the well
known virial theorem of Clausius:
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Theorem Let H be a nonrelativistic, time-independent
Hamiltonian and W be a linear operator that is time-indepen-
dent. If the expectation value of W for stationary energy
eigenstates Ψ of H is not infinite, then the expectation value
of the commutator [H,W] for the same eigenstates vanishes:
〈Ψ |[H,W]|Ψ〉 = 0 .

For a large number of experiments the thermodynamics
of noble gas clusters of N identical atoms can be described
[14] by a canonical ensemble with a Hamiltonian of the form

H =

(

N
∑

i=1

p2
i

2m
−

P2

2M

)

+
∑

i<j

V (rij), (3)

with rij = |xi − xj |. Here we subtracted the center of mass
motion of the system to indicate that only the internal de-
grees of freedom are of interest.

In coordinate representation the expectation value of the
internal kinetic energy is given by

Ekin =
1
Z

∑

k

e−βEk 〈k|Hkin|k〉. (4)

where the sum runs over all energy eigenstates, |k〉 =
|Ψk(x1, . . . , xN )〉 is the N -particle eigenfunction correspond-
ing to energy eigenvalue Ek and Z =

∑

k exp(−βEk) is the
canonical partition function.

As our final goal is the evaluation of the kinetic energy
in terms of Γ (r) we use the hypervirial theorem to find an
expression which is related to Γ (r). Choosing the operator
W as

W =
N
∑

i=1

xi · ∇i, (5)

the hypervirial theorem for this system reduces to

〈k|

(

N
∑

i=1

p2
i

2m
−

P2

2M

)

|k〉

= 〈k|
1
2

N
∑

i=1

xi · ∇i

∑

m<n

V (rmn)|k〉

= 〈k|
1
2

∑

i<j

rijV
′(rij)|k〉 (6)

Equation (6) can be interpreted as the quantum mechanical
version of Clausius’ virial theorem of classical mechanics.

Now the potential as well as the kinetic energy can be
represented as expectation values of functions depending
only on the interparticle distances rij :

Ekin =
1
Z

∑

k

e−βEk 〈k|
1
2

∑

i<j

rijV
′(rij)|k〉, (7)

Epot =
1
Z

∑

k

e−βEk 〈k|
∑

i<j

V (rij)|k〉. (8)

Since the pair correlation function (1) gives the proba-
bility of finding two particles at distance r we easily derive

Ekin =
N (N − 1)

4

∫ ∞

0
dr Γ (r) r V ′(r), (9)

and

Epot =
N (N − 1)

2

∫

dr Γ (r)V (r). (10)

In the classical limit it is possible to express the temperature
T in terms of the internal kinetic energy as

T =
2

3(N − 1)kB
Ekin =

N

6kB

∫ ∞

0
dr Γ (r) r V ′(r). (11)

In a typical experimental situation with a normalized size
distribution σ(N ) of clusters (e.g. in a cluster beam produced
by supersonic jet expansion) we find

T =
1

6kB

∫

dr Γ̃ (r) r V ′(r)
∫

dN σ(N )N−1
(12)

where Γ̃ (r) is the Fourier transform (2) of the measured
intensity. Note that (12) is obviously only valid if the clusters
of different sizes are in thermal equilibrium.

3 Numerical experiments

Neon clusters are expected to show distinct quantum effects.
This makes a comparison between a quantum mechanical
and a classical treatment reasonable. Argon clusters are very
well investigated clusters and can, somehow, be regarded
as a reference system. We therefore decided to take both,
Argon and Neon clusters, as test systems for the temperature
measurement method presented above.

To obtain appropriate scattering spectra we performed
classical and Path Integral Monte Carlo calculations [15] for
Argon and Neon clusters of different sizes up to N=56. We
used a Lennard-Jones (12-6) potential to model the interac-
tion between the atoms

V (r) = 4ε

[

(σ

r

)12
−
(σ

r

)6
]

(13)

with parameters σ = 3.405 Å and ε = 10.3 eV for Argon
and σ = 2.745 Å and ε = 3.068 eV for Neon. With this
potential choice all classical results for Neon clusters can be
inferred from those for Argon clusters by means of simple
scalings. For Argon clusters the classical treatment is almost
appropriate. For Neon clusters it is not and only made for
comparison with the full quantum mechanical treatment.

The scattering spectra are obtained from canonical en-
semble Metropolis [16] samplings with 2×107 steps per tem-
perature combined with a subsequently applied data analysis
similar to the method of Ferrenberg et.al. [17].

Since we carefully checked all our results for conver-
gence and obtained error estimates well below 0.3 % we
regard the results of our very demanding computer exper-
iments, which took e.g for the quantum mechanical calcu-
lation of Ne13 about 10 days on a Convex SPPUX parallel
computer with 16 processors, as quasi exact. A more de-
tailed account of our simulation techniques will be given in
a subsequent publication.

As an example Fig. 1 displays some scattering spectra
and the corresponding pair correlations functions for Ar13,
Ar14, Ar55, Ar56, and Ne13. For simplicity we have set the
atomic structure factor f (s) appearing in (2) to 1.
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Fig. 1a–f. Scattering spectra I(s) and the corresponding pair correlation functions Γ (r) of a Ar55 and Ar56, b Ar13 and Ar14, and c Ne13 and d-f. The
results for Argon are from classical Monte Carlo calculations only, while for Neon classical (cl.) and quantum mechanical (q.m.) results are plotted
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4 Results

Since in canonical (Path Integral) Monte Carlo simulations
the temperature T acts as an external parameter and Ekin,
Epot, and CV can easily be evaluated on the fly, these (as
quasi exact regarded) values can be compared to those ob-
tained from scattering spectra.

Figure 2 displays the caloric curves for Ar13 and Ar14
clusters. The scattering spectra for Argon are results of clas-
sical MC simulation. For both cluster sizes the agreement
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Fig. 4. Identification of phase transitions from scattering functions: Constant
volume heat capacity CV of Ne13

between the exact curves and those derived using the hyper-
virial method is almost perfect.

For Ne13 we utilized Path Integral Monte Carlo simu-
lations to calculate the caloric curves shown in Fig. 3. Al-
though there are slight deviations of the virial estimate curve
from the exact curve in the well known coexistence phase
of different cluster isomers at about 23.7 meV the phase be-
haviour of the clusters can be judged very accurately from
this curve.

Figure 4 shows the specific heat CV of Ne13 as a function
of temperature as obtained by numerical differentiation of
the caloric curves. Again the agreement between the exact
and the curve based on the virial estimate is almost perfect.

The absolute error of the temperature estimate based on
(11) for Ar12−14 turns out to be less than 2 K in the whole
examined region from 10-40 K (see Fig. 5). Since (11) is
exact in the classical case the source of the error is easily
identified to be the noise in the scattering spectra.

Some tests on the influence of the interatomic potential
functions on the temperature estimates revealed that all com-
monly used realistic potentials give similar results with only
slight deviations.
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5 Conclusion

We presented a method to determine the kinetic energy and
the temperature directly from scattering spectra. This method
is superior in its numerical effort as compared to others
since only one Fourier transform and one integration have to
be performed. Numerical tests for Argon and Neon clusters
have shown that it is applicable for classical and quantum
mechanical systems. From (12) we infer that this computa-
tional technique is quite useful even in experimental situa-
tions with broad distributions of cluster sizes.

References

1. C.L. Briant, J.J. Burton, J. Chem. Phys. 63, 2045 (1975).
2. M.R. Hoare, Adv. Chem. Phys. 40, 49 (1979).

3. G. Natanson, F. Amar, R.S. Berry, J. Chem. Phys. 78, 399 (1983), R.S.
Berry, J. Jellinek, G. Natanson, Chem. Phys. Lett 107, 227 (1984).

4. H.L. Davis, J. Jellinek, S. Berry, J. Chem. Phys. 86, 6456 (1987).
5. F.G. Amar, R.S. Berry, J. Chem. Phys. 85, 5943 (1986); J. Jellinek,

T.L. Beck, S. Berry, J. Chem. Phys. 84, 2783 (1986); T.L. Beck, J.
Jellinek, S. Berry, J. Chem. Phys. 87, 545 (1987); T.L. Beck, S. Berry,
J. Chem. Phys. 88, 3910 (1988); R.S. Berry, Z. Phys. D 12, 161 (1989).

6. R. Stephen Berry, Phys. Rev. Lett. 71, 3987 (1993); R. Stephen Berry,
Phys. Rev. Lett. 73 2875 (1993).

7. G. Franke, E. R. Hilf, L. Polley, Z. Phys. D 9, 343 (1988); G. Franke,
J. Schulte, Z. Phys. D 12, 65 (1989).

8. G. Franke, E.R. Hilf, P. Borrmann, J. Chem. Phys. 98, 3496 (1993).
9. P. Borrmann, D. Gloski, E.R. Hilf, Surface Review and Letters 3, 103

(1996).
10. J. Farges, M.F. de Feraudy, B. Raoult, and G. Torchet, J. Phys. (Paris)

C 3, No. 4, 41, (1980); Surf. Sci. 106, 95 (1981).
11. L.E. Sutton, in Molecular Structure by Diffraction Methods - Volume

1, Spec. Period. Rep., (The Chemical Society, 1973).
12. L.S. Bartell, Chem. Rev. 86, 491 (1986) and references therein.
13. J.O. Hirschfelder, J. Chem. Phys. 33, 1462 (1960).
14. R.S. Berry, in Atomic and Molecular Clusters I, edited by H. Haberland

(Springer, Berlin Heidelberg, 1994).
15. P. Borrmann, COMMAT 2, 593 (1994); P. Borrmann, Ph.D. thesis,

Carl von Ossietzky University Oldenburg (1995).
16. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E.

Teller, J. Chem. Phys. 21, 1087 (1953).
17. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988);

63, 1195 (1989).

This article was processed by the author using the LaTEX style file pljour2
from Springer-Verlag.



2
Self-assembly of magnetic
nanostructures

D. Tománek, S. G. Kim, P. Jund, P. Borrmann,
H. Stamerjohanns and E. R. Hilf

Zeitschrift für Physik D 40, (1-4) 539-541 (1997)

41



Self-assembly of magnetic nanostructures 42

Z. Phys. D 40, 539–541 (1997) ZEITSCHRIFT
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Abstract. We use Monte Carlo and quaternion molecular
dynamics simulations to study the self-assembly of intrigu-
ing structures which form in colloidal suspensions of small
magnetite particles. We show that the only stable isomers
with few particles, a ring and a chain, can be efficiently
interconverted using a magnetizable tip. We propose to use
the oscillating dipole field of the tip to locally anneal the ag-
gregates to either a ring in zero field or a chain in nonzero
applied field.

PACS: 75.50.Mm

Given the present advanced stage of miniaturization, the
most promising way to significantly reduce the dimension
of devices involves a transition from micro-manufacturing to
self-assembly of nanostructures [1]. Inspired by the richness
of structures observed in aggregates of magnetic nanoparti-
cles [2, 3] and the possibility of their structural transfor-
mation [4, 5], we propose a hybrid thermodynamic self-
assembly technique capable of producing magnetic patterns
of unprecedented packing density [6]. The key ingredients
are a system of magnetic nanoparticles in a colloidal sus-
pension, resonant magnetic heating on the nanometer scale
that we postulate, and the possibility to manipulate indi-
vidual nanostructures using a local magnetic field. In the
following, we prove our technique to work using realistic
Monte Carlo and Molecular Dynamics simulations address-
ing the self-assembly, the field-assisted interconversion, and
the long-term stability of the magnetic nanostructures.

In the following, we will describe microscopically the
structural and magnetic transitions in microcanonical and
canonical ensembles of few magnetic particles. Commer-
cially available spherical nanoparticles of magnetite are cov-
ered by a thin surfactant layer to inhibit irreversible coales-
cence in a viscous liquid at room temperature [2]. Such col-
loidal suspensions, called ferrofluids, have recently become
a focus of experimental and theoretical attention due to their
interesting behavior in applied magnetic fields [2, 3, 7–12].
We will discuss the effect of field and temperature on the
stability of the individual isomers, which – for few particles
– are known to be either a chain or a ring [4]. More impor-
tant, we will show how to locally modify their equilibrium
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Fig. 1. a Magnetic moment distribution p at Bext = 0 (solid line) and
Bext = 100 Gauss (dashed line), both at T = 300 K. b Temporal evolution
of the total magnetic moment of the aggregate during the assembly causing
the transformation from a ring to a chain, and transformation from a chain to
a ring. The solid lines illustrate successful trajectories and the gray shaded
areas statistical ensemble averages

structure by changing the field and temperature (assembly of
nanostructures) and how to distinguish magnetically between
the different isomers (detection of nanostructures).

The Hamiltonian describing our model system of six [13]
magnetic particles has been described in [4] and can be eas-
ily parametrized [14]. Depending on the magnetic field, the
equilibrium geometry of this system at low temperatures is
either a ring with zero total magnetic moment or a chain
with the magnetic moment µ = µmax = Nµ0. As illustrated
in the inset of Fig. 1a, rings are more stable in zero field,
whereas chains are more stable in high magnetic fields Bext
[4]. The large minimum potential energy barrier per particle
∆E ≈ 0.16 eV, corresponding to a “melting” temperature
TM ≈ 630 K, prevents metastable chains in zero field from
closing to rings at room temperature. On the other hand,
rings do not fragment into chains, unless exposed to high
magnetic fields Bext

�
600 Gauss [4, 5], and hence are

not disturbed by the low fields generated by aggregates in
neighboring cells. This establishes the required stability of
the magnetic structure [15].

Next, we studied the efficiency of the field-assisted as-
sembly process. Results of a room temperature Monte Carlo
simulation in applied fields Bext = 0 and Bext = 100 Gauss
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are presented in Fig. 1a. These data indicate that upon the ap-
plication of a high magnetic field for sufficiently long time,
the majority of the systems will form a chain. In absence of
a field, after careful annealing, the majority of the systems
will form a ring. Both isomers can be easily distinguished
by separate peaks in the distribution of magnetic moments.
Consequently, we will use the magnetic moment as the sin-
gle characteristic of the nanostructure.

In order to estimate the time needed to assemble a nano-
structure, we performed Molecular Dynamics simulations of
the transition between a ring and a chain in a microcanoni-
cal ensemble of six magnetite particles. We made use of the
quaternion formalism [16–18] to avoid divergencies in the
orientational equations of motion which would otherwise oc-
cur in this system of magnetic spherical tops (with a nonvan-
ishing mass and inertia) due to discontinuities in Euler angle
coordinates. We used time steps ∆t = 5×10−11 s and inte-
grated the equations of motion numerically using a fourth-
order Runge-Kutta algorithm, since this method proved to be
more stable and to better conserve the energy than alternate
integration schemes.

These and our above Monte Carlo studies suggest that
heating up the system 100 K above room temperature re-
duces the average time for a structural transformation by one
order of magnitude and hence significantly accelerates the
assembly. On the other hand, the higher vibrational entropy
of the chain in zero field (as compared to the ring) plays
an increasingly important role at these higher temperatures.
This has no adverse effect on the ring-to-chain conversion in
nonzero fields, but reduces the fraction of rings in zero field
and hence the efficiency of the chain-to-ring conversion.

The feasibility of a high packing density of nanostruc-
tures depends on the availability of an extremely localized
source of magnetic field and heat. As a promising technical
realization, we suggest to use a soft magnetic nanotip, sur-
rounded by a coil, as the source of localized static and oscil-
lating magnetic field. This nanoscopic electromagnet assem-
bly can be suspended on a cantilever using the technology
developed for the Atomic Force Microscope (AFM) [19].
The capability to assist in the assembly and detection of
magnetic nanostructures with a precision of 100 − 1000 Å
might be relatively simple to achieve in view of the AFM’s
success to obtain atomic resolution [19].

For field assisted assembly, a sharp magnetic tip has sev-
eral advantages. (i) The field inhomogeneity guarantees that
neighboring structures are not disturbed and that magnetite
particles aggregate faster in the tip region. (ii) The tip can
be used to generate a locally large static field to assemble a
chain. (iii) Fast field reversal can be used to detach any ag-
gregate from the tip. (iv) An oscillating high-frequency field,
generated by the tip, can be used to excite preferentially the
transverse bending modes of the chain, hence accelerating
ring closure in a cooling environment [20].

The sharp tip, suspended on the cantilever of a Mag-
netic Force Microscope, can also be used to investigate the
magnetic structures. The detection process is initiated by
applying a weak inhomogeneous magnetic field which will
attract only magnetic aggregates (chains, but not nonmag-
netic rings) to the tip. The presence of a chain attached to
the tip will lead to a lowering of the mechanical resonance
frequency of the cantilever-tip system that can be detected.

This allows for a discrimination between a chain and a ring
in a nondestructive way.

We model the magnetic tip by a nonmagnetic cone with
an opening angle of 60◦, which is rounded off at the end and
terminated by a magnetizable sphere (see Fig. 2). The diame-
ter of this sphere, σtip = 400 Å, is twice that of the magnetite
particles in the colloidal suspension, and its magnetic mo-
ment is aligned with the cone axis. The nonmagnetic part of
the interaction between the tip and the magnetite particles
is assumed to be purely repulsive. In analogy to the non-
magnetic interaction between the particles [14], it is given
by ur = ε exp(−d/ρ1), where d is the minimum distance
between the surfaces of the tip and the magnetite particle in
the colloid. The inhomogeneous magnetic field produced by
this tip attracts magnetic aggregates and aligns their mag-
netic moment with the cone axis.

The dynamics of the structural transformation, assisted
by the local field of a sharp magnetic tip, is illustrated in
Fig. 1b. To accelerate a ring-to-chain conversion, we first
heated the system locally. We found that an oscillating dipole
field of frequency ν = 1 MHz, generated by changing pe-
riodically the direction of the dipole moment at the tip
µtip = 7×105 µB, was most efficient in heating up the system
by exciting resonantly its low-frequency eigenmodes, such
as the bending mode. The system, which had reached an
average temperature of 500 K after 5 µs, was subsequently
cooled down during the next 5 µs in the static field of the tip
dipole µtip = 7×105 µB by extracting stepwise the energy
doses of 15 meV, each followed by 1 µs equilibration time.
The same annealing schedule has been used for a chain-to-
ring conversion, with the exception of using a smaller value
for the oscillating tip dipole moment µtip = 4×105 µB dur-
ing the annealing process and µtip = 0 during the cooling
process. As seen in Fig. 1b, the average time needed to con-
vert a ring to a chain or vice versa lies close to 5µs [21].

The field-assisted assembly process with a sharp mag-
netic tip is illustrated in Fig. 2 by snapshots from a Molecular
Dynamics simulation. At the starting point of our simulation,
shown in Fig. 2a, the magnetite particles are randomly dis-
tributed and oriented in zero field. The assembly of a chain is
initiated by a static magnetization of the tip. This causes the
particles to aggregate in the region of strongest Bext-field and
to form a chain aligned with the field lines that is attached to
the tip, as shown in Fig. 2b. Subsequent reversal of the mag-
netization of the tip causes the chain to detach from the tip,
as shown in Fig. 2c. At this point, a stable chain is formed.
As illustrated in Fig. 2d, applying a high-frequency dipole
field excites the bending mode of the chain efficiently, fa-
cilitating closure to a ring. Figure 2e shows the spontaneous
self-assembly of the ring structure after the field had been
switched off. The stability of this structure increases as it
cools down in the suspending liquid.

In conclusion, we proposed and modeled a hybrid self-
assembly technique for aggregates consisting of magnetite
nanoparticles, that is capable of producing magnetic patterns
with unprecedented density. When viewed as information,
this data density would by far exceed that of conventional
magnetic and protein-based memories [22]. The key to tai-
lored magnetic nanopatterns are the substantially different
magnetic moments of the only stable isomers with few mag-
netite particles which are a ring and a chain. We proposed an
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Fig. 2a–e. Snapshots of the nanostructure assembly process. The spheres
represent the magnetite dipoles and the shading of the hemispheres the
dipole orientiation. The cone in the upper part of the cell represents the
magnetic tip as source of the localized magnetic field. Grey shading shows
the polarity of the tip when a field is applied. a Initial random configuration
in zero field. b In a static dipole field, particles form a chain attached to the
tip. c Field reversal causes the intact chain to detach from the tip. d Local
magnetic “heating” of the system by a high-frequency field of the tip excites
predominantly the bending mode of the chain. e Spontaneous aggregation
in zero field in the suspending liquid concludes the assembly to a ring

efficient process to assemble and to detect individual nano-
structures using the localized static and oscillating dipole
field of a sharp magnetic tip. We believe that the technique
proposed here may bring us closer to nanopatterning on the
atomic scale.
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We use Monte Carlo simulations to investigate the thermodynamical behavior of aggregates
consisting of few superparamagnetic particles in a colloidal suspension. The potential energy
surface of this classical two-isomer system with a stable and a metastable ‘‘ring’’ and ‘‘chain’’
configuration is tunable by an external magnetic field and temperature. We determine the complex
‘‘phase diagram’’ of this system and analyze thermodynamically the nature of the transition
between the ring and the chain ‘‘phase.’’ © 1999 American Institute of Physics.
@S0021-9606~99!51747-9#

I. INTRODUCTION

With progressing miniaturization of devices,1 there is a
growing interest in the thermodynamical behavior of finite-
size systems. A central question in this respect is, whether
small systems can exhibit well-defined transitions that could
be interpreted as a signature of phase transitions which,
strictly speaking, are well defined only in infinite systems.2

So far, reproducible features of the specific heat have been
interpreted as indicators of ‘‘melting’’ transitions in small
rare gas clusters.3,4 While most of the computational studies
of cluster thermodynamics have considered only one external
variable, namely either the temperature or the energy, there
is only one study by Cheng et al.,5 where the pressure p
entered as a second variable.

Here, we investigate the thermodynamical behavior of a
finite system which is also controlled by two external vari-
ables, namely the temperature T and the magnetic field Bext .
The system of interest consists of few near-spherical, super-
paramagnetic particles with a diameter of '10– 500 Å in a
colloidal suspension. Such systems, covered by a thin surfac-
tant layer, are readily available in macroscopic quantities, are
called ferrofluids, and are known to form complex labyrinth6

or branched structures7 as many-particle systems, whereas
the only stable isomers for systems with few particles (N
,14) are the ‘‘ring’’ and the ‘‘chain.’’8

The existence of two environmental variables, yet still
only two isomer states, gives rise to a rich thermodynamic
behavior, as compared to that of other small clusters such as
the noble gas clusters.3,4 This classical, externally tunable
finite two-isomer system is quite different from finite spin
lattices, where magnetic interactions between fixed sites are
parametrized.2,9 The magnetic tops in our system are free to
move in three-dimensional space and their magnetic dipole–

dipole interaction has a nontrivial spatial dependence.
We will show that the system exhibits a phase transition

between two ordered phases, one magnetic and the other
nonmagnetic, as well as phase transitions between these or-
dered phases and a disordered phase. Whereas the system is
not susceptible to small magnetic fields, it shows a strong
paramagnetic response when exposed to larger magnetic
fields.

II. MODEL

Our model system consists of six spherical magnetite
particles with a diameter of s5200 Å and a large permanent
magnetic moment m051.683105 mB . The potential energy
Ep of this system in the external field Bext consists of the
interaction between each particle i and the applied field,
given by u i52mi3Bext , and the pair-wise interaction be-
tween the particles i and j, given by8

u i j5~m0
2/r i j

3 !@m̂ i3m̂ j23~m̂ i3 r̂ i j!~m̂ j3 r̂ i j!#

1eFexpS 2

r i j2s

r
D2expS 2

r i j2s

2r
D G . ~1!

The first term in Eq. ~1! is the magnetic dipole–dipole inter-
action energy. The second term describes a nonmagnetic in-
teraction between the surfactant covered tops in a ferrofluid
that is repulsive at short range and attractive at long range.7

We note that the most significant part of this interaction,
which we describe by a Morse-type potential with param-
eters e50.121 eV and r52.5 Å, is the short-range repulsion,
since even at equilibrium distance the attractive part does not
exceed 10% of the dipole–dipole attraction. The thermal
equilibrium structures of small clusters are either rings or
chains, which can be easily distinguished by their mean mag-
netic moment ^m&.

III. NUMERICAL METHOD

The canonical partition function, from which all thermo-
dynamical quantities can be derived, is given by
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Z~Bext ,T !5~2pb !26N/2E F)
i51

N

dxi df i du i dc iG
3expS 2bS (

i, j

N

u i j2(
i

N

m i ,zBextD D , ~2!

where b5(kBT)21 and where the field Bext is aligned with
the z-axis. The pre-exponential factor addresses the fact that
each particle has three rotational and three center-of-mass
degrees of freedom. The key quantities are the formation
enthalpy of the isolated system, E*5( i, ju i j5Ep1mzBext ,
and the z-component of the total magnetic moment of the
aggregate, mz , both of which are functions of T and Bext . E*
is the appropriate thermodynamic potential describing the
present system; its definition is analogous to the enthalpy of
a ~p,V,T!-ensemble.

We studied the thermodynamical behavior of the system
in a set of 32 extensive Metropolis Monte Carlo
simulations,10 each of which consisted of 63109 steps. We
used the multiple histogram method of Ferrenberg et al.11,12

to combine the results of all simulations and to calculate the
normalized density of states r(E*,mz) with a minimized sta-
tistical error.13 In order to cover the 6N-dimensional configu-
ration space properly and to eliminate any potential depen-
dencies on the starting configurations, we based our data
analysis on simulations performed with B and T close to the
‘‘phase boundary’’ between rings and chains.

With the density of states r(E*,mz) at hand, the parti-
tion function Z can be rewritten as

Z~Bext ,T !5~2pb !26N/2E dE* dmz r~E*,mz!

3exp~2b~E*2mzBext!!, ~3!

and the field- and temperature-dependence of the expectation
value of any function F(E*,mz) can be obtained from

^F~E*,mz ;Bext ,T !&

5Z21~Bext ,T !E dmzE dE* F~E*,mz!r~E*,mz!

3exp~2b~E*2mzBext!!.

IV. RESULTS

In order to obtain a rough idea of the stable and meta-
stable states of the system, we plotted in Fig. 1 the probabil-
ity of finding the aggregate in a state with potential energy
Ep and total magnetic moment in the field direction mz . This
is the projection of the probability to find the system in a
specific state in the high-dimensional configuration space
onto the (Ep ,mz) subspace. High probability regions in this
subspace indicate not only the energetic preference of the
corresponding states, but also their entropic preference due
to a large associated phase space volume.

Rings always have an absolute magnetic moment
um/mmaxu that is close to zero. Consequently, the
z-component of the magnetic moment of rings is also near
zero, as seen in Fig. 1. Even though the absolute magnetic
moment um/mmaxu of chains is close to 1, these aggregates

cannot be distinguished easily from rings in the absence of a
field. In the zero field, chains have no orientational prefer-
ence and the z-component of their magnetic moment
mz /mz

max averages to zero. Of course, this is not a serious
complication within our simulations but in an experimental
situation the measurement of one component of the magnetic
moment m would not be sufficient to determine the dominant
structure of an ensemble of clusters.

Chains—unlike rings—do align with a nonzero magnetic
field and, especially at low temperatures, show a magnetic
moment mz /mz

max'1 in the field direction.
The relative stability of an aggregate is reflected in its

potential energy Ep . We find Ep to increase ~corresponding
to decreasing stability! with increasing temperature. On the
other hand, applying a magnetic field destabilizes rings in
favor of field-aligned chains. With increasing field, chains
are confined to a gradually decreasing fraction of the con-
figurational space which sharpens their distribution in the
(Ep ,mz) subspace, as seen when comparing Figs. 1~a!–1~c!
and Figs. 1~d!–1~f!.

Under all conditions, we find two more or less pro-
nounced local maxima in the probability distribution P, cor-
responding to a ring with 0&mz /mz

max
!1, and a chain with

0!mz /mz
max

&1. At zero field we observe a predominant oc-
cupation of the more stable ring state. Due to the relatively
small energy difference with respect to the less favorable
chain DEp

cr/N5(Ep
chain

2Ep
ring)/N50.06 eV, both states be-

come more evenly occupied at higher temperatures. At fields
as low as Bext540 G, the energy difference between chains
and rings drops significantly to DEp

cr/N50.02 eV. As seen in
Fig. 1~b!, this results in an equal occupation of both states
even at low temperatures. At the much higher field value
Bext560 G, chains are favored with respect to the rings by a
considerable amount of energy DEp

cr/N520.2 eV. This
strongly suppresses the occurrence of rings, as seen in Figs.
1~c! and 1~f!.

A first-order phase transition in an infinite system can be
identified by a discontinuous change of the energy at the
critical point.

In corresponding finite systems, this critical point ex-

FIG. 1. Monte Carlo results for the probability to find an aggregate in a state
with its magnetic moment in the field direction mz and potential energy Ep .
The individual contour plots show our results for the temperature T5250 K
at the field values ~a! Bext50 G, ~b! Bext540 G, ~c! Bext560 G, and T
5450 K at the field values, ~d! Bext50 G, ~e! Bext540 G, ~f! Bext560 G.
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pands to a ‘‘critical region.’’ Even though the energy
changes continuously in the finite system, such a transition
may still be classified as a first-order transition or a higher-
order phase transition, like in the work of Proykova and
Berry,14 due to its physical similarity to those in infinite sys-
tems. We investigated the nature of the transition in our sys-
tem by inspecting the temperature dependence of the bimo-
dal distribution, shown in Fig. 1, following a procedure
outlined in Refs. 15–17. This analysis revealed the transition
between rings and chains, which is a transition between two
ordered phases being ‘‘first-order like’’. We have to empha-
size that this classification is drawn by analogy. Unlike other
small systems like those considered by Cheng et al.,5 it does
not make sense to ask if the ‘‘transition’’ observed would
become a true first-order phase transition in the limit of large
particle numbers. Here, we discuss explicitly a finite mag-
netic two-isomer system. With increasing system size the
number of different isomers ~complex labyrinth6 or branched
structures7! will increase dramatically and features like the
bimodal probability distribution will probably disappear. For
this reason, methods like finite-size scaling cannot be applied
for the system under consideration. The ring–chain transition
observed for small ferrofluid clusters will definitely disap-
pear for larger clusters. Thus, the traditional way to classify
phase transitions by studying the behavior of the probability
distribution as a function of N cannot be used here. There is
also some experimental evidence that this way might not be
suitable for other clusters types, e.g., sodium clusters which
exhibit a transition from molecular-like to jellium-like clus-
ters with increasing particle number.18 In such cases it is
easy to imagine that the type of phase transition as extracted
from the probability function changes from first to higher
order by going from N to N11 or N21. The phase behavior
of a small sodium cluster might be more similar to that of a
large argon cluster than to that of a large sodium cluster.
There is apparently a growing need for a systematic defini-
tion of phase transitions in finite systems. Recently, an at-
tempt to solve this problem has been made by analyzing the
distribution of zeros of the canonical partition function in the
complex temperature plane.19

Figure 1 shows not only the stable and metastable states
under the given conditions, but also the states found along
the preferential transition pathway between a ring and a
chain in the projected (Ep ,mz) subspace. During this transi-
tion each aggregate must undergo a continuous change of Ep

and mz . The favored transition pathways are then associated
with high-probability trajectories in the (Ep ,mz) subspace.
The value of the activation barrier DEp

act is then given by the
smallest increase of Ep along the optimum transition path
which connects the stable and metastable ring and chain is-
lands. In our simulations we found that the activation barrier
always occurred at mz /mz

max'0.22. Consequently, we con-
cluded that the field dependence of the activation energy
follows the expression DEp

act(Bext)5DEp
act(Bext50)

20.22 mz
maxBext .

In order to quantitatively describe the phase transitions
occurring in this system, we focused our attention on the
specific heat and the magnetic susceptibility. The specific
heat per particle in a canonical ensemble is given by cB

5d^E/N&/dT , where the total energy is given by E
5(6/2)NkBT1Ep . Correspondingly, we define the mag-
netic susceptibility per particle as x5d^mz /N&/dBext . These
response functions are related to the fluctuations of Ep and
mz by

cB5F6N

2
kB1kBb2~^E2&2^E&2!GY N , ~4!

x5@b~^mz
2&2^mz&

2!#/N . ~5!

As already mentioned, transitions in finite systems are
gradual.2 Still, it makes physical sense to compare them to
phase transitions in infinite systems. There, first-order phase
transitions are associated with a diverging specific heat at the
phase boundary. In the T2Bext ‘‘phase diagram’’ in Fig.
2~a!, a well-defined yet not sharp ‘‘crest line’’ separates the
ring and the chain phase. Similar phase diagrams, albeit for
nonmagnetic systems, have been discussed in Refs. 3 and 20.
Our results illustrate how the critical magnetic field for the
ring–chain transition decreases with increasing temperature.
At high temperatures, the ‘‘line’’ separating the phases
broadens significantly into a region where rings and chains
coexist.

The line plot in Fig. 2~b! is the respective constant-field
cut through the contour plot in Fig. 2~a!. As can be seen in
Fig. 2~b!, there is no transition from chains to rings, indi-
cated by a peak in cB at fields exceeding 50 G which is close
to the critical field value at which chains become favored
over rings at zero temperature. At fields Bext!40 G, on the
other hand, there is no region where chains would be ther-
modynamically preferred over the rings, and we observe

FIG. 2. Specific heat per particle cB of the system as a function of tempera-
ture T and the external magnetic field Bext . Results for the entire tempera-
ture and field range investigated here are presented as a contour plot in ~a!.
The temperature dependence of cB for selected values of Bext is presented in
~b!.
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only a gradual transition from the ring phase into the coex-
istence region with increasing temperature. The specific heat
behavior at zero field resembles that of a small system with a
gradual melting transition close to 150 K and an onset of
disorder at about 350 K.21 As seen in Fig. 2~b!, the critical
temperature and the width of the transition region can be
externally tuned by the second thermodynamical variable,
the external magnetic field Bext .

Figure 3 displays the magnetic susceptibility x , another
prominent indicator of phase transitions in magnetic systems,
as a function of T and Bext . Like the specific heat in Fig.
2~a!, the crest line in x separates the chain phase from the
ring phase in this T2Bext phase diagram. Moreover, Fig. 3
reveals the fundamentally different magnetic character of
these phases. Whereas the system is nonmagnetic in the ring
phase found below 40 G, it behaves like a ferromagnet con-
sisting of Langevin paramagnets in the chain phase at higher
fields. The transition between these states is again gradual.
The line plot in Fig. 3~b! is the respective constant-field cut
through the contour plot in Fig. 3~a!. When the system is in
the chain phase, it behaves like a paramagnet obeying the
Curie–Weiss law, as can be seen in Fig. 3~b!.22

At relatively low temperatures, where the aggregates are
intact, the expectation value of the magnetic moment first
increases with increasing magnetic fields. This is due to the
gradual conversion from nonmagnetic rings to paramagnetic
chains. According to Fig. 3~b!, this uncommon behavior per-
sists up to T5200 K at Bext540 G. This trend is reversed at
higher temperatures, where all aggregates eventually frag-
ment into single paramagnetic tops. In this temperature range
the magnetic moment as well as the susceptibility decrease

with increasing temperature. Snapshots from our simulations
at temperatures in the melting region indicate that rings and
chains break up to form a number of different isomers.
Single particles leave the chain and ring structures and attach
at arbitrary positions. We interpret this as the onset of disor-
dering or melting. For computational reasons the dissociation
process has not been studied in detail.

Since the transition probability between both states is
extremely low at low temperatures and fields, magnetically
distinguishable metastable states can be frozen. A chain con-
figuration, which is metastable in zero field, can be prepared
by first annealing the system to T*350 K and subsequent
quenching in a strong field. Similarly a frozen-in ring con-
figuration is unlikely to transform to a chain at low tempera-
tures, unless exposed to very large fields. Thus, the above-
described phase diagrams can be used to externally
manipulate the self-assembly of magnetic nanostructures.

In conclusion, we have studied the thermodynamic be-
havior of a finite two-isomer system, which is externally tun-
able by two independent variables, namely the temperature
and the magnetic field. Much of the behavior encountered in
this system such as transitions between different states has a
well-defined counterpart in infinite systems. The reason for
the encountered richness of the thermodynamic and magnetic
properties is the relative ease of structural transformations
which is typical for finite systems. Consequently, we expect
other finite magnetic systems, e.g., small transition metal
clusters, where a small number of structural isomers with
substantially different magnetic moments could coexist,23 to
follow this behavior. Moreover, we expect that our results
can also be transferred to nanocrystalline material, such as
magnetic clusters encapsulated in the supercages of zeolites,
which will likely retain some of the intriguing properties of
the isolated finite systems.
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8 P. Jund, S. G. Kim, D. Tománek, and J. Hetherington, Phys. Rev. Lett. 74,
3049 ~1995!.

9 A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 ~1969!.
10 N. Metropolis, A. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller, J. Chem. Phys. 21, 1087 ~1953!.
11 A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 ~1988!.
12 A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 ~1989!.
13 We extended the Ferrenberg analysis in a straightforward way to deal with

a two-dimensional density of states.
14 A. Proykova and R. S. Berry, Z. Phys. D: At., Mol. Clusters 40, 215

~1997!.
15 M. Glosli and J. Plischke, Can. J. Phys. 61, 1515 ~1983!.
16 O. G. Mouritsen, Computer Studies of Phase Transitions and Critical

Phenomena ~Springer, Berlin, 1984!.
17 Y. Zhou, C. K. Hall, and M. Karplus, Phys. Rev. Lett. 77, 2822 ~1996!.
18 C. Ellert, M. Schmidt, T. Reiners, and H. Haberland, Z. Phys. D: At., Mol.

Clusters 39, 317 ~1997!.
19 P. Borrmann and O. Muelken, eprint: cond-mat/9909184 1999.

FIG. 3. Magnetic susceptibility per particle x of the system as a function of
temperature T and the external magnetic field Bext . Results for the entire
temperature and field range investigated here are presented as a contour plot
in ~a!. The temperature dependence of x for selected values of Bext is pre-
sented in ~b!.

10692 J. Chem. Phys., Vol. 111, No. 23, 15 December 1999 Borrmann et al.

 



Thermodynamics of finite magnetic two-isomer systems 50

20 S. Sugano and S. Sawada, Z. Phys. D: At., Mol. Clusters 12, 189 ~1989!.
21 R. S. Berry, J. Jellinek, and G. Natanson, Chem. Phys. Lett. 107, 227

~1984!; G. Natanson, F. Amar, and R. S. Berry, J. Chem. Phys. 78, 399
~1983!.

22 Our numerical approach did not allow us to investigate the temperature

region below 50 K. The onset of the Curie–Weiss behavior, indicated by
a maximum in x at nonzero temperature, can be seen whenever the system
is in the chain phase.

23 P. Borrmann, B. Diekmann, E. R. Hilf, and D. Tománek, Surf. Rev. Lett.
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Abstract. In contrast to the experimentally widely used isentropic demagnetization process for cooling
to ultra-low temperatures we examine a particular classical model system that does not cool, but rather
heats up with isentropic demagnetization. This system consists of several magnetite particles in a colloidal
suspension, and shows the uncommon behavior of disordering structurally while ordering magnetically in
an increasing magnetic field. For a six-particle system, we report an uncommon structural transition from
a ring to a chain as a function of magnetic field and temperature.

PACS. 05.70.Fh Phase transitions: general studies – 75.10.-b General theory and models of magnetic
ordering – 75.50.Mm Magnetic liquids

1 Introduction

Cooling to ultra-low temperatures is presently experimen-
tally achieved using the isentropic demagnetization pro-
cess suggested in 1926 by Debye and Giauque [1,2]. Here
we study the thermal and magnetic properties of a par-
ticular model system consisting of six magnetite nanopar-
ticles in a colloidal suspension. Our calculations indicate
that changing the temperature or magnetic field leads to
a transition from a ring-like to a chain-like structure. We
demonstrate that such a model system, that could be re-
alized in a ferrofluid, would not cool but rather heat up
during an isentropic demagnetization. The system of mag-
netic nanoparticles shows the uncommon behavior of dis-
ordering structurally, i.e. increasing its volume in phase
space, while ordering magnetically in an increasing mag-
netic field. This behavior, associated with the break-up of
the relatively rigid rings to floppy chains, occurs once the
energy gain upon aligning a chain of dipoles with the field
exceeds the energy cost of breaking up a ring. Thus sys-
tems that disorder structurally in high fields may be used
as coolants based on isentropic magnetization instead of
demagnetization. So far, only ferrofluid systems with a
large number of particles have been discussed as candi-
dates for use in magneto-caloric heat engines [3]. Here we
report a paradoxical magnetic cooling phenomenon that
is unique to systems with only few particles.

Both the conventional and paradoxical process utilize
the energy change associated with particular structural
changes for cooling. The conventional isentropic demag-
netization process uses the fact that a magnetic system,
such as a spin system, orders magnetically and thus low-
ers its entropy in presence of an external magnetic field.

a e-mail: stamer@uni-oldenburg.de

Removal of the external magnetic field at constant temper-
ature leads to an increase in entropy due to magnetic dis-
ordering, which requires energy. Decreasing the external
magnetic field at constant entropy consequently leads to
a temperature lowering. With this method, systems such
as copper have been cooled down to temperatures as low
as 50 nK [4].

In the following we address model systems consisting
of a finite number of magnetic particles that may undergo
structural transitions. Both the structural and magnetic
degrees of freedom are important in this system and can
not be decoupled. Applying a sufficiently high magnetic
field causes the system to order magnetically while disor-
dering structurally, at the cost of internal energy. Conse-
quently, such a system will exhibit the paradoxical phe-
nomenon of cooling by isentropic magnetization.

The transformation from a ring to a chain is associ-
ated with freeing up a structural degree of freedom, with
a corresponding increase in entropy. Such a transformation
can be induced by a magnetic field in a system of mag-
netic dipoles, where the energetics is governed by dipole-
dipole interactions between the particles and an interac-
tion of each particle with the external field. In small fields,
the ring is stabilized with respect to the chain structure
if the gain in dipole-dipole interaction upon connecting
the chain ends energetically outweighs the dipole mis-
alignment energy in a bent structure. The energy gain
upon aligning all individual dipoles with a sufficiently
high applied field, on the other hand, stabilizes the chain
structure.

One system that satisfies all the requirements on
a paradoxical magnetic coolant consists of a few
(4 ≤ N ≤ 14) super-paramagnetic particles of magnetite.
Such particles are the key constituents of ferrofluids, which
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have attained rapidly increasing interest during the past
few years [5,6]. Recently we have shown that such systems
exhibit intriguing phase transitions between the ordered
ring and chain phases and one disordered phase [7]. We
also pointed out that self-assembly in these systems could
be used to store information [8].

2 The model

In the following, we study the thermodynamic behavior
of a six-particle system, where the chain and the ring are
the dominant stable structural isomers. We chose this par-
ticular system as it allows a simple discussion of the two
thermodynamical features characteristic of isomer transi-
tions in finite systems, namely the isomeric phase space
and the transition probability that is linked to the transi-
tion time. It is true that such ring and chain isomers are
also stable at much larger sizes. Nevertheless, the ther-
modynamical behavior becomes more complex in larger
systems, where the number of relevant structural isomers
grows rapidly with increasing N .

Here we calculate the entropy and the dependence of
temperature on an external magnetic field at constant en-
tropy (∂T/∂B)S for a model system of six magnetite par-
ticles with a radius σ = 50 Å and a permanent magnetic
moment of µ = 2.63× 103 µB. The total potential energy
U of this system is given by [6]

U =
N

∑

i<j

{

(µ2
0/r3

ij) [µ̂iµ̂j − 3(µ̂ir̂ij)(µ̂j r̂ij)] (1)

+ε

[

e

�
−

rij−σ

ρ � − e

�
−

rij−σ

2ρ � ]}

+
N

∑

i=1

µi
zBext.

The pairwise interaction energy is given by the dipole-
dipole and a non-magnetic interaction energy. The latter
is dominated by a repulsion between the spherical par-
ticles, but contains also a weak attractive part due the
van der Waals interaction. It is modelled by the above
Morse-type potential with parameters [10] ε = 15.1 µeV
and ρ = 2.5 Å. The second sum reflects the interaction be-
tween the magnetite particles and the external magnetic
field Bext that is aligned with the z-axis.

We would like to point out that the finite ferrofluid sys-
tems undergo all the intriguing transitions described be-
low occur independent of these parameter values. Our par-
ticular choice has been taken to bring the transition into
an experimentally accessible and interesting region [9].

All thermodynamic quantities can be derived from the
canonical partition function Z(B, T ) by appropriate dif-
ferentiation. We determined Z using the Metropolis Monte
Carlo method [11], which we combined with a special type
of optimized data analysis [12] to calculate all thermody-
namic properties as functions of the temperature T and
the magnetic field Bext as external variables [7]. The en-
tropy S is given by

S = kB

(

ln(Z) − β
∂ ln(Z)

∂β

)

, (2)

B
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Fig. 1. Contour plot of the entropy S as a function of the ex-
ternal magnetic field Bext and temperature T . The model sys-
tem discussed here shows a temperature decrease of up to few
degrees Kelvin as the field B is increased at constant entropy.

where β = 1/kBT . The fundamental thermodynamic
expression dE = TdS − µzdB yields immediately the
Maxwell relation

(

∂T

∂B

)

S

=
− (∂S/∂B)T

(∂S/∂T )B
(3)

that describes the temperature response to the external
field in isentropic processes. We calculate this quantity
using the expectation values of the potential energy U
and the z-component of the magnetic moment µz of the
whole system as

(

∂T

∂B

)

S

= −β
〈Uµz〉 − 〈U〉〈µz〉

6
2
NkB + kBβ2(〈U2〉 − 〈U〉2)

· (4)

3 Results

Our results for S and
(

∂T
∂B

)

S
as a function of Bext and T

are represented by contour plots in Figure 1 and Figure 2,
respectively [13]. The steps in the isentropes displayed in
Figure 1 indicate a temperature decrease with increasing
magnetic field at constant entropy. For example, an in-
crease of the field from 45 to 55 Gauss cools the system
down from T = 12 K to T ≈ 8 K. The narrow region
in the Bext − T space, where these kinks occur, separates
the chain and ring phases. It is only in this narrow region
of the Bext − T space that (∂T/∂B)S shows a nonzero
value and hence a potential for magnetic cooling, indi-
cated in Figure 2. A closer inspection of Figure 1 shows
that the S = const. lines change their slope in the chain
phase at high fields, which also corresponds to a positive
value of (∂T/∂B)S in Figure 2. This behavior is simply
related to the fact that chains behave like a conventional

magnetic system, since their magnetic and structural or-
der increases with increasing external magnetic field. In
the six-particle system discussed above, the conventional
cooling mechanism by isentropic demagnetization in high
fields is about one order of magnitude less important than
the paradoxical magnetic cooling that is related to the
ring-chain transition.
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Fig. 2. Contour plot of (∂T/∂B)S as a function the external
magnetic field Bext and temperature T .

Let us now discuss some details related to a possible re-
alization of the system. In our simulations we disregarded
the internal degrees of freedom of the magnetic particles
and the colloidal suspension. Obviously, the cooling effi-
ciency of this particular composite system is highest when
the magnetic degrees of freedom of the particles dominate.
A potential candidate paradoxical cooling system is a di-
lute gas consisting of both magnetic particles, which could
aggregate, and non-magnetic particles of similar size. The
actual thermal transition is initiated by vibrational excita-
tions that lead either to the breakup of rings into chains or
a reconnection of chain ends to a ring. Let us now consider
a mixture of chains, rings, and other isomers exposed to
an oscillating magnetic field. Whereas the breakup energy
increases as the neighboring dipoles gradually line up in
the larger rings, the vibrational excitation spectrum gets
dense especially in the range of low frequencies that drop
with 1/N2. Hence it is preferentially the larger rings that
are broken up to chains by a low-frequency external field.
Also the chain structures experience an analogous soften-
ing of the vibrational spectrum with the factor of 1/N2.
Yet due to the larger phase space volume, the likelihood of
two chain ends to reconnect to a ring decreases drastically
in larger systems.

The chain ends (which are to meet for a chain-to-ring
transition) not only move more slowly with larger N but
have to explore a much larger space in which the other end
can be. The time required for the two ends to reconnect
rises dramatically with N , so that chain-to-ring transitions
can not be realized in a reasonable time in an ensemble of
long chains.

In a realistic experiment, we also have to consider that
the average size of the ferrofluid aggregates depends not
only on the initial conditions, but increases as a function
of time due to further aggregation. To prevent this gradual
size increase, we propose to expose the ferrofluid suspen-
sion to a low frequency magnetic field that should prefer-
entially break apart the larger aggregates and to stabilize
the mixture of prevalent isomers in the region of five to
seven particles per aggregate.

Paradoxical magnetic cooling is by no means restricted
to the model system discussed here. We believe that the
same effect should also occur in other nanostructures, such
as transition metal clusters, and even in bulk matter con-
sisting of finite-size substructures. We hope that our re-
sults will stimulate a search for experimentally realizable
systems that may find application in the fascinating field
of ultra-low temperature physics.
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We present a detailed description of a classification scheme for phase transitions in finite systems based on
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this scheme to finite Bose systems in power-law traps within a semi-analytic approach with a continuous
one-particle density of states V(E);Ed21 for different values of d and to a three-dimensional harmonically
confined ideal Bose gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein
condensation phase transition sensitively depends on the confining potential.
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I. INTRODUCTION

In 1924, Bose and Einstein predicted that in a system of
bosons at temperatures below a certain critical temperature
TC , the single-particle ground state is macroscopically occu-
pied @1#. This effect is commonly referred to as Bose-
Einstein condensation, and a large number of phenomena,
such as the condensation phenomena in alkali-metal atoms,
the superfluidity of 4He, and the superconductivity, are iden-
tified as signatures of this effect. However, the physical situ-
ation is very intricate in most experiments.

Recent experiments with dilute gases of alkali-metal at-
oms in magnetic @2# and optical @3# traps are in some sense
the best experimental approximation up to now of the ideal
noninteracting Bose-Einstein system in an external power-
law potential. The achievement of ultralow temperatures by
laser cooling and evaporative cooling provides the opportu-
nity to study Bose-Einstein condensation under systematic
variation of adjustable external parameters, e.g., the trap ge-
ometry, the number of trapped atoms, the temperature, and
by the choice of the alkali-metal atoms the effective interpar-
ticle interactions. Even in the approximation of noninteract-
ing particles, an explanation of these experiments requires
some care, because the number of bosons in these novel traps
is finite and fixed and the standard grand-canonical treatment
is not appropriate. The effect of the finite particle numbers
on the second moments of the distribution function, e.g., the
specific heat and the fluctuation of the ground-state occupa-
tion number, has been addressed in a number of publications
@4,5#. In @4,6#, we have presented a recursion method to cal-
culate the canonical partition function for non-interacting
bosons, and we investigated the dependency of the thermo-
dynamic properties of the condensate on the trap geometry.

The order of the phase transition in small systems sensi-
tively depends on finite-size effects. Compared to the mac-
roscopic system, even for systems as simple as the three-
dimensional ideal gas, the order of the phase transition might
change for mesoscopic systems where the number of par-
ticles is finite or for trapped gases with different trap geom-
etries.

In this paper, we address the classification of the phase
transition of a finite number of noninteracting bosons in a

power-law trap with an effective one-particle density of
states V(E)5Ed21 being formally equivalent to a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. We use a classification scheme based on the distribution
of zeros of the canonical partition function initially devel-
oped by Grossman et al. @7# and Fisher et al. @8#, which has
been extended by us @9# as a classification scheme for finite
systems. On the basis of this classification scheme, we are
able to extract a qualitative difference between the order of
the phase transition occurring in Bose-Einstein condensates
in three-dimensional traps @10,11# and in two-dimensional
traps that was recently discovered by Safonov et al. in a gas
of hydrogen atoms absorbed on the surface of liquid helium
@12#. Since we do not consider particle interactions, this dif-
ference is only due to the difference in the confining poten-
tial.

We give a detailed review of the classification scheme in
Sec. II. In Sec. III, we present a method for the calculation of
the canonical partition function in the complex plane and
describe details of the numerical implementation. Our results
for d5126 and particle numbers varying from 10 to 300
are presented in Sec. III as well as calculations for a three-
dimensional parabolically confined Bose gas.

II. CLASSIFICATION SCHEME

In 1952, Yang and Lee showed that the grand-canonical
partition function can be written as a function of its zeros in
the complex fugacity plane, which, for systems with hard-
core interactions and for the Ising model, lie on a unit
circle @13#.

Grossmann et al. @7# and Fisher @8# extended this ap-
proach to the canonical ensemble by analytic continuation of
the inverse temperature to the complex plane b→B5b
1it . Within this treatment, all phenomenologically known
types of phase transitions in macroscopic systems can be
identified from the properties of the distribution of zeros of
the canonical partition function.

In @9#, we presented a classification scheme for finite sys-
tems that has its macroscopic equivalent in the scheme given
by Grossmann. As usual, the canonical partition function
reads
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Z~B!5E dEV~E !exp~2BE !, ~2.1!

which we write as a product Z(B)5Z lim(B)Z int(B), where
Z lim(B) describes the limiting behavior of Z(B) for T→` ,
imposing that limT→`Z int(B)51. This limiting partition
function will only depend on the external potential applied to
the system, whereas Z int(B) will depend on the specific in-
teraction between the system particles. For example, for an
N-particle system in a d-dimensional harmonic trap,
Z lim(B)5B

2dN and thus the zeros of Z(B) are the same as
the zeros of Z int(B). Since the partition function is an integral
function, the zeros Bk5B

2k* 5bk1itk(kPN) are complex
conjugate and the partition function reads

Z~B!5Z lim~B!Z int~0 !exp„B]BlnZ int~0 !…

3 )
kPN

S 12

B

Bk
D S 12

B

Bk*
D expS B

Bk
1

B

Bk*
D .

~2.2!

The zeros of Z(B) are the poles of the Helmholtz free
energy F(B)52(1/B)lnZ(B), i.e. The free energy is ana-
lytic everywhere in the complex temperature plane except at
the zeros of Z(B).

Different phases are represented by regions of holomor-
phy that are separated by zeros lying dense on lines in the
complex temperature plane. In finite systems, the zeros do
not squeeze on lines, which leads to a more blurred separa-
tion of different phases. We interpret the zeros as boundary
posts between two phases. The distribution of zeros contains
the complete thermodynamic information about the system,
and all thermodynamic properties are derivable from it.
Within this picture, the interaction part of the specific heat is
given by

CV , int~B!52kBB
2 (

kPN
F 1

~Bk2B!2
1

1

~Bk*2B!2G .

~2.3!

The zeros of the partition function are poles of CV(B). As
can be seen from Eq. ~2.3!, a zero approaching the real axis
infinitely close causes a divergence at real temperature. The
contribution of a zero Bk to the specific heat decreases with
increasing imaginary part tk . Thus, the thermodynamic
properties of a system are governed by the zeros of Z close to
the real axis.

The basic idea of the classification scheme for phase tran-
sitions in small systems presented in @9# is that the distribu-
tion of zeros close to the real axis can be described approxi-
mately by three parameters, where two of them reflect the
order of the phase transition and the third merely the size of
the system.

We assume that the zeros lie on straight lines ~see Fig. 1!
with a discrete density of zeros given by

f~tk!5

1

2 S 1

uBk2Bk21u
1

1

uBk112Bku
D , ~2.4!

with k52,3,4, . . . , and we approximate for small t the den-
sity of zeros, by a simple power law f(t);ta. Considering
only the first three zeros the exponent a can be estimated as

a5

ln f~t3!2ln f~t2!

ln t32ln t2
. ~2.5!

The second parameter to describe the distribution of zeros is
given by g5tan n;(b22b1)/(t22t1), where n is the
crossing angle of the line of zeros with the real axis ~see Fig.
1!. The discreteness of the system is reflected in the imagi-
nary part t1 of the zero closest to the real axis.

In the thermodynamic limit, we have always t1→0. In
this case, the parameters a and g coincide with those defined
by Grossmann et al @7#, who have shown how different types
of phase transitions can be attributed to certain values of a
and g . They claimed that a50 and g50 correspond to a
first-order phase transition, second-order transitions corre-
spond to 0,a,1 with g50 or gÞ0, third-order transitions
to 1<a,2 with arbitrary values of g , and that all higher
order phase transition correspond to a.1. For macroscopic
systems ~with t1→0), a cannot be smaller than zero, be-
cause this would cause a divergence of the internal energy.
However, in small systems with a finite t1 this is possible.

In our classification scheme, we therefore define phase
transitions in small systems to be of first order for a<0,
while second- and higher-order transitions are defined in
complete analogy to the Grossmann scheme augmented by
the third parameter t1. The definition of a critical tempera-
ture bC in small systems is crucial and ambiguous since no
thermodynamic properties diverge. Thus, different defini-
tions are possible. We define the critical temperature as
bcut5b12gt1, i.e., the crossing point of the approximated
line of zeros with the real temperature axis. An alternative
definition is the real part of the first complex zero b1. In the
thermodynamic limit, both definitions coincide.

Comparing the specific heats calculated for different dis-
crete distributions of zeros shows the advantages of this clas-
sification scheme. Figure 2 shows ~a! three distributions of
zeros lying on straight lines corresponding to a first-order
transition (a50 and g50), a second-order transition (a

FIG. 1. Schematic illustration of the zeros in the complex tem-
perature plane.
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50.5 and g520.5), and a third-order phase transition (a
51.5, and g521) and ~b! the pertinent specific heats. In all
cases the specific heat exhibits a hump extending over a
finite-temperature region and cannot be used to classify the
phase transition. In contrast, even for very small systems
~large t1), the order of the phase transition is extractable
from the distribution of zeros.

The zeros of the canonical partition function have a dis-
tinct geometrical interpretation, which explains the smoothed
curves of the specific heat and other thermodynamic proper-
ties in finite systems.

Figure 3 shows ~a! the ground-state occupation number
uh0(B)u/N in the complex temperature plane and ~b! the
ground-state occupation number at real temperatures for a
finite ideal Bose gas of N5120 particles, where h0(B) is
given by the derivative of the logarithm of the canonical
partition function Z(B) with respect to the ground-state en-
ergy e0, i.e., h0(B)52(1/B)]e0

Z(B)/Z(B).

Zeros of the partition function are poles of h0(B) and are
indicated by dark spots, which influence the value of the
ground-state occupation number at real temperatures impres-

sively. Every pole seems to radiate onto the real axis and
therefore determines the occupation number at real tempera-
tures. This radiation extends over a broad temperature range
so that the occupation number for real temperatures does not
show a discontinuity but rather a smoothed curve. A closer
look at Eq. ~2.3! gives the mathematical explanation for this
effect. The discrete distribution of zeros, i.e., t1.0, inhibits
the specific heat and all other thermodynamic properties to
show a divergency at some critical temperature because the
denominators of the arguments of the sum remain finite.

Without going into a detailed analysis, we note that in the
thermodynamic limit the parameter a is connected to the
critical index for the specific heat by

CV;~b2bc!a21. ~2.6!

However, since critical indices are used to describe the shape
of a divergency at the critical point, an extension to small
systems seems to be more or less academic.

The introduction of complex temperatures might seem ar-
tificial at first sight, but, in fact, the imaginary parts tk of the
complex zeros Bk have an obvious quantum-mechanical in-
terpretation. We write the quantum-mechanical partition
function as

Z~b1it/\ !5Tr„exp~2itĤ/\ !exp~2bĤ !… ~2.7!

5^Ccanuexp~2itĤ/\ !uCcan& ~2.8!

5^Ccan~ t50 !uCcan~ t5t !& , ~2.9!

introducing a canonical state as a sum over Boltzmann-
weighted eigenstates uCcan&5(kexp(2bek/2)ufk& . We ex-
plicitly write the imaginary part as t/\ since the dimension
is 1/@energy# and the imaginary part therefore can be inter-
preted as time. Then the imaginary parts tk of the zeros
resemble those times for which the overlap of the initial ca-
nonical state with the time-evoluted state vanishes. However,
they are not connected to a single system but to a whole
ensemble of identical systems in a heat bath with an initial
Boltzmann distribution.

III. BEC IN POWER-LAW TRAPS

In this section, we assume a continuous single-particle
density of states V(E)5Ed21 as an approximation for a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. For example, for the harmonic oscillator this corre-
sponds to the limit of \v→0 and taking only the leading
term of the degeneracy of the single-particle energy levels.
The one-particle partition function is given by the Laplace
transformation

Z1~B!5E dEEd21exp~2BE !5~d21 !!B 2d. ~3.1!

The canonical partition function for N noninteracting bosons
can be calculated by the following recursion @6#:

FIG. 2. Plot of ~a! generated zeros lying on straight lines to
simulate first- (a50 and g50), second-, (a50.5 and g520.5),
and third- (a51.5 and g521) order phase transitions and ~b! the
appropriate specific heats per particle.

FIG. 3. Comparison of ~a! uh0u/N with ~b! the appropriate value
of h0 at real temperatures for a 120-particle harmonically trapped
ideal Bose gas ~note that \5kB5v51).
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ZN~B!5

1

N (
k51

N

Z1~kB!ZN2k~B!, ~3.2!

where Z1(kB)5( iexp(2kBe i) is the one-particle partition
function at temperature kB and Z0(B)51. For small particle
numbers, this recursion works fine, even though its numeri-
cal effort grows proportional to N2.

With Eq. ~3.1! as Z1, Eq. ~3.2! leads to a polynomial of
order N in (1/B)d for ZN , which can be easily generated
using MAPLE or MATHEMATICA. The zeros of this polynomial
can be found by standard numerical methods.

Figure 4 displays the zeros of the N-particle partition
function for d5126 in the complex temperature plane for
particle numbers N525, 50, and 100. For d5226, the ze-
ros approach the positive real axis with increasing particle
number and are shifted to higher temperatures, which is al-
ready an indicator of phase transitions. For d51, the zeros
approach the real axis only at negative temperature. This
behavior is consistent with the usual prediction that there is
no Bose-Einstein condensation for the one-dimensional har-
monic oscillator and the two-dimensional ideal Bose gas
@10#.

The symmetry of the distributions of zeros is due to the
fact that ZN is a polynomial in B

2d. For this reason, it can be
inferred that for d→` the zeros lie on a perfect circle.

Figure 5 shows the corresponding specific heats calcu-
lated using Eq. ~2.3!. As expected, for d51 the specific heat
has no hump and approaches with increasing temperature the
classical value. We therefore expel the analysis of d51 from
the discussions below. For d5226, the specific heats show
humps or peaks, which get sharper with increasing d and
increasing particle number. However, from these smooth
curves the orders of the phase transition cannot be deduced.

In Fig. 6, the classification parameters a ,g ,t1 defined
above are plotted for two to six dimensions and particle
numbers up to N5100. For all values of d, the parameter a
is only a slightly varying function of N and approaches very
fast an almost constant value. Since a is the primary classi-
fication parameter, from Fig. 6~a! we can directly infer that
the d52 system exhibits a third-order phase transition (a
.1) while the transition for all higher dimensions is of sec-
ond order (0<a<1). For N550, the dependence of a on d
is plotted in Fig. 7~a!. Since a decreases rather rapidly with
increasing d, it can be speculated that systems corresponding
to a large d exhibit a phase transition that is almost of first
order. As mentioned above, for finite systems even values
a<0 cannot be excluded for mathematical reasons. We note
that two-dimensional Bose gases are an interesting and
growing field of research. As is well known, the ideal free
Bose gas in two dimensions (d51) does not show a phase

FIG. 4. Distribution of zeros for Bose-Einstein condensates with
continuous one-particle density of states V(E)5Ed21 for d51
26.

FIG. 5. Specific heat scaled by dN of Bose-Einstein condensates
with continuous one-particle density of states for d5126.
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transition due to thermal fluctuations that destabilize the con-
densate @14#. Switching on a confining potential greatly in-
fluences the properties of the gas, the thermal fluctuations are
suppressed, and the gas will show Bose-Einstein condensa-
tion. Recent experiments @12# have shown that Bose-Einstein

condensation is possible even though it is called a quasicon-
densate. In our notion, the quasicondensate is just a third-
order phase transition. Thus, our results are in complete
agreement with recent experiments and earlier theoretical
work. An interesting question in this respect is whether the
order of the transition changes for d52 in the limit N→` .
Additional calculations for larger N, which are not printed in
Fig. 6, indicate that a approaches 1 or might even get
smaller. Note that d52 is equivalent to a hypothetical four-
dimensional ideal Bose gas or bosons confined in a two-
dimensional parabolic trap. Our results indicate that the order
of the phase transition depends sensitively on d for values
around 2. This might be the reason why phase transitions in
three space dimensions are sometimes classified as second-
and sometimes as third-order phase transitions.

The parameter t1 is a measure of the finite size of the
system, i.e., the scaling behavior of t1 as a function of N is a
measure of how fast a system approaches a true nth-order
phase transition in the Ehrenfest sense. The N dependence of
t1 is displayed in Fig. 6~c!. The scaling behavior can be
approximated by t1;N2d with d ranging between 1.06 and
1.12 for d5226.

The d dependence of the classification parameter is visu-
alized in Fig. 7 for 50 particles. For this system size, we
found a;d24/3 and t1;d24/3.

The results presented above for continuous single-particle
densities of states V(E)5Ed21 are obtained within semiana-
lytical calculations. In order to compare these results to sys-
tems with a discrete level density, we adopt as a reference
system the three-dimensional harmonic oscillator with the
partition function given by

Z~B!5 (
n50

~n12 !~n11 !

2
exp„2B~n13/2!…, ~3.3!

with \5v5kB51.
Figure 8~a! displays the zeros of the partition function

~3.1! for d52 and d53. Figure 8~b! displays a contour plot
of the absolute value of the ground-state occupation number
h0(B)52(1/B)]e0

Z(B)/Z(B) with Z given by Eq. ~3.3! cal-
culated using an alternative recursion formula @4#. The zeros
of Z are poles of h0 and are indicated by dark spots in this
figure.

FIG. 6. Classification parameters a , g , and t1 for d5226
versus particle numbers N.

FIG. 7. Classification parameters for N550 for different densi-
ties of states V(E)5Ed21 and d52210.

FIG. 8. Comparison between calculated zeros of the canonical
partition function for three-dimensional trap geometries with ~a! a
continuous single-particle density of states and ~b! discrete energy
levels for N540.
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Analyzing the distribution of zeros consolidates our
speculation that the order of the phase transition depends
sensitively on d. The distribution of zeros behaves like the
above calculated values for d52 but quantitatively like d
53. Since the degeneracy of the three-dimensional harmoni-
cally confined ideal Bose gas is a second-order polynomial,
the quadratic term is not the only term that must be taken
into account. The linear term becomes dominant for lower
temperatures, so for very low temperatures the best approxi-
mation of a continuous one-particle density of states is
V(E)5E . The parameter a supports this statement @9#, i.e.,
a resides in a region above 1, whereas the parameter g be-
haves like the d53 case. Finally, the parameter t1, which is
a measure for the discreteness of the system, shows a t1
;N20.96 dependence that is comparable to the one for d
52. Thus, for small systems the phase transition is of third
order; it can be speculated whether it becomes a second-
order transition in the thermodynamic limit.

Our calculations are in very good agreement with recent
theoretical works, not only qualitatively but also quantita-
tively @15,16#. Comparing the critical temperature, which we
defined in Sec. II, with the usually utilized temperature of the
peak of the specific heat b(CV ,max) or the grand canonically
calculated TC;N1/3 confirms our approach. In Fig. 9, three
possible definitions of the critical temperature are given that
all coincide in the thermodynamic limit. All definitions show
a b;N2r dependence with r ranging between 2

5 and 1
3 .

IV. CONCLUSION

Starting with the old ideas of Yang and Lee and Gross-
mann et al., we have developed a classification scheme for
phase transitions in finite systems. Based on the analytic con-
tinuation of the inverse temperature b into the complex

plane, we have shown the advantages of this approach. The
distribution of the so-called Fisher zeros Bk draws enlighten-
ing pictures even for small systems, whereas the usually re-
ferred to thermodynamic properties such as the specific heat
fail to classify the phase transitions properly. The classifica-
tion scheme presented in this paper enables us to name the
order of the transition in a nonambiguous way. The complex
parts tk of the zeros Bk resemble times for which a whole
ensemble of identical systems under consideration in a heat
bath with an initial Boltzmann distribution loses its memory.

We have applied this to ideal noninteracting Bose gases
confined in power-law traps. We have found that the order of
the phase transition sensitively depends on the single-particle
density of states generated by the confining potential. The
distribution of zeros exactly reveals the order of the phase
transition in finite systems.
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The identification and classification of phases in small systems, e.g. nuclei, social and financial networks,

clusters, and biological systems, where the traditional definitions of phase transitions are not applicable,
is important to obtain a deeper understanding of the phenomena observed in such systems. Within a sim-
ple statistical model we investigate the validity and applicability of different classification schemes for
phase transtions in small systems. We show that the whole complex temperature plane contains necessary
information in order to give a distinct classification.
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The thermodynamics of small systems, e.g. Bose-Einstein
condensates in magneto-optical traps[1–3], the nuclear liquid-
gas transition observed by multifragmentation in heavy ion re-
actions [4–6], and the solid-liquid phase transition of sodium
clusters [7–9], have gained increasing interest over the last few
years. Because these systems are far away from the thermo-
dynamic limit the standard tools for the description of phase
transitions are not applicable and new concepts are needed.
Within the last few years several classification schemes for
phase transitions in finite systems have been proposed [10]. In
this Letter we compare these classification schemes by means
of a simple statistical models for atomic clusters and show that
graveling transitions occurring in these models can only com-
pletely understood by considering the whole complex temper-
ature plane.

Among others Gross et al. have suggested a microcanon-
ical treatment [10–12], where phase transitions of different
order are distinguished by the curvature of the entropy S =
kB ln Ω(E). According to their scheme a back-bending in the
microcanonical caloric curve T (E) = 1/∂E ln(Ω(E)), i.e.
the appearance of negative heat capacities, is a mandatory cri-
terion for a first order transition. Caloric curves without back-
bending, where the associated specific heat shows a hump, are
classified as higher order transitions.

From classical statistical mechanics it is clear that the back-
bending feature is forbidden in the thermodynamic limit by
the van Hove theorem [13]. Since the canonical and the mi-
crocanoncical caloric curves must give the same results in this
limit and the canonical caloric curve is proportional to the
mean-squared energy fluctuations the microcanonical caloric
curve cannot exhibit a back-bending. However, in small sys-
tems necessary and sufficient conditions for this type of mi-
crocanonical caloric curves have been derived by Wales et
al. [14, 15]. An analysis of thermodynamic stability has
gained that a loop in the microcanonical caloric curve with
turning points Tm > Tf occurs if the entropy S is bimodal for
canonical temperatures in this range. As an equivalent con-
dition the authors showed that neglecting phase space regions

corresponding to intermediate compositions, i.e. solidlike and
liquidlike forms, also result in a back-bending.

We have proposed a classification scheme based on the dis-
tribution of zeros of the canonical partition function in the
complex temperature plane [16]. The classical partition func-
tion

Z(β) =

(

1

2πβ

)3N/2 ∫

dx3N exp(−βV (x)) (1)

can be factored into a product of the kinetic part and a product
depending on the zeros Bk = βk + iτk, with B−k = B∗

k of
this integral function in the complex temperature plane,

Z(β) =

(

1

2πβ

)3N/2 M
∏

k=−M

(

1 −
β

Bk

)

exp

(

β

Bk

)

. (2)

Phase transitions then can be classified by a set of three pa-
rameters (α, γ, τ1), describing the distribution of zeros close
to the real axis, where γ = tan ν is the crossing angle between
the real axis and the line of zeros, and α is determined from
the approximated density of zeros φ(τ) ∼ τα on this line. For
infinite systems it has been exactly shown that α = 0, γ = 0
and τ1 = 0 corresponds to a first order phase transition, while
α > 0 corresponds to a higher order phase transition [17].
For finite systems τ1 is always greater than zero reflecting the
size of the system. The classification scheme can be extended
to values of α < 0 also being interpreted as first order phase
transitions. This scheme sensitively reproduces the space di-
mension and particle number dependence of the transition or-
der in Bose Einstein condensates[18] and the first order nature
of the nuclear multifragmentation phase transition[19].

The differences between both schemes can be revealed
within a simple statistical model for atomic clusters. A
harmonic superposition of different vibriational densities of
states is well established in the cluster literature [20–22]. This
multiple normal-modes model describes structural transitions
within small noble gas clusters by considering several isomers
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FIG. 1: Logarithm of the canonical potential energy difference expectation value log (〈∆E〉) in the complex temperature plane for (a) ρ2/ρ1

= 50000, (b) ρ2/ρ1 = 5000, and (c) ρ2/ρ1 =0.5. The location of the zeros of the partition function are signaled by the sharp needles. In all
cases the distributions of zeros indicate first order phase transitions.

and the vibrational eigenfrequencies of the isomers. For a two
isomer system the partition function can be written as

Z(β) =

2
∑

i=1

σi exp(−βEi)

3N−6
∏

j=1

2π

βωij
(3)

= β−(3N−6) (ρ1 exp(−βE1) + ρ2 exp(−βE2)) ,

where the ωij are the normal modes of isomer i and the σi

are the permutational degeneracies of the isomers and ρi =

σi

∏3N−6
j=1

2π
ωij

. The zeros of Z

Bk = (ln(ρ2/ρ1) + i(2k + 1)π) /∆E, (4)

lie on a straight line and are equally spaced yielding α =
γ = 0 thus implying a first order phase transition in any case
(∆E = E2 − E1) (see Figure 1). It is important to note, that
with increasing system size the energy difference between the
isomers will also increase, thus τ1 approaches zero. The mi-
crocanonical caloric curve T (E) = 1/∂E ln(Ω(E)) for this
model can be calculated via the inverse Laplace transform
Ω(E) = L−1 {Z(β)}. Fig. 2 shows that the back-bending
arrogated in the Gross scheme for a first order phase transition
can be tuned in an out by variation of the model parameters.

The kinetic part of the partition function β−(3N−6) plays
the crucial role. If this is taken into account the micro-
canonical caloric curves change dramatically, whereas this
part has no effect on the distribution of zeros (the particle
number dependence of the canonical partition function is not
only reflected by the kinetic part itself but also implicitly by
the ground state energies). The change in the topology of the
configuration space or equivalently configurations space re-
gions with significantly chaniging vibrational entropies seems
to be a necessary condition for phase transitions in small sys-
tems. Similary results have been pointed out by Franzosi
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FIG. 2: Microcanonical caloric curves for the multiple normal-
modes model with energy difference between the isomers ∆E = 20.
For a) N=10,12, and 15 and constant ρ2/ρ1 = 50000 the back-
bending is manifest for N = 10, can be tuned out by increasing the
particle number, and disappears for N as low as N =15. In b) for
constant N = 10 the back-bending can be tuned out by decreasing
the ratio ρ2/ρ1.

et al. [23, 24]. Equivalent findings are those of Wales et
al. [14, 15]. Utilizing also the harmonic superposition of vibri-
ational densities of states and assuming ”coexistence” of liq-
uidlike and solidlike phases the loop in the microcanonical
caloric curve is also tunable by variations of system-inherent
parameters. Especially the mean difference in the potential
energy of both phases correspond to variations of ρ2/ρ1 in
our model.

Within classical statistical mechanics the kinetic part of
canonical partition function is separable and the partition
function splits up into a kinetic and a potential part which can
be handled independently. Within the microcanonical ensem-
ble structural phase transition might be washed out or hidden
by the kinetic energy contributions to the entropy.
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FIG. 3: Canonical specific heat reduced by the kinetic contribution
for the same values of ρ2/ρ1 as in Figure 1. For values with ρ2/ρ1

larger than 1 the expected signals of a first order phase transition
are seen. The value ρ2/ρ1=0.5 corresponds formally to a first order
phase transition at negative temperature. This graveling transition
exhibits at positive temperature a very weak hump in the specific
heat (the graph is amplified by a factor of 25).

A very interesting feature of the multiple normal-modes
model occurs in the case where the isomer with the lower
ground state energy has a larger vibrational entropy (see Fig. 1
(c)). In this case formally a first order phase transition at neg-
ative temperatures occurs. The structural transition between
the isomers, which occurs when the temperature is increased
is accompanied by a drop in the vibrational entropy. This is
a graveling transition with a significantly smaller signal in the
specific heat than that of the normal transition (see Fig. 3).
Fig.3 and Fig.4 show i) that the zeros in the complex tempera-
ture plane sensitively detect phase transitions and ii) it is very
important to use β as the natural variable since only this yields
continuous pictures of thermodynamic properties.

In conclusion we have found that the classification of phase

B
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/  
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]
∆

FIG. 4: Specific heat in the complex temperature plane for
ρ2/ρ1=0.5. The figure displays how the interplay of the zero and
the pole of the specific heat influences the behaviour of the specific
heat curve at positive temperatures.

transitions in small systems based on the curvature of the mi-
crocanonical caloric curves seems to be not rigorous enough
to make distinct statements about the order. In the Zero-
classification scheme the potential energy surface character-
izes the phase behavior of the system, while in the scheme of
Gross the density of states is the characterizing quantity. We
have shown that the investigation of the whole complex tem-
perature plane adds a valuable amount of information in order
to classify phase transitions in small systems.
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We present an analysis of the thermodynamic properties of small transition metal clusters and show how
the commonly used indicators of phase transitions like peaks in the specific heat or magnetic susceptibility
can lead to deceptive interpretations of the underlying physics. The analysis of the distribution of zeros of
the canonical partition function in the whole complex temperature plane reveals the nature of the transition.
We show that signals in the magnetic susceptibility at positive temperatures have their origin at zeros lying at
negative temperatures.

PACS numbers: 64.60.-i, 36.40.Ei, 05.70.Fh

Experiments on Bose-Einstein condensation [1–3] or the
experimental determination of structural, electronic and ther-
mal properties of clusters [4–6] are prototypes of physical in-
vestigations of transitions in small systems. Intuitively phase
transitions in such systems do exist. While the atomic struc-
ture at low temperatures is more or less rigid, at high temper-
atures the atoms move resembling a liquid drop. But the the-
oretical description is complicated since the thermodynamic
functions of clusters do not show singularities at the transition
point. Phase changes are seen in blurred slopes or humps.
To have the physical concept of phase transitions and their
properties of bulk material in mind and apply it to interpret
the smooth thermodynamic functions for small systems, e.g.
clusters, of a given size accordingly and assign a “first” or
“second” order phase transition may be inconclusive. Despite
the ambiguity in these signals, it is still reasonable to attribute
an order to phase changes in small systems because funda-
mental differences between the kind of the transitions such as
the existence of metastabilities for first-order transitions still
persist. Therefore, various approaches for the classification of
phase transitions in small systems have been developed which
have to coincide in the thermodynamic limit and should be
mathematically rigourous.

Gross et al. have proposed a microcanonical treatment,
where phase transitions are distinguished by the curvature of
the entropy S(E) [7, 8]. If S(E) has a convex intruder, i.e. the
microcanonical caloric curve T (E) shows a backbending, the
phase transition is assumed to be of first order. Franzosi et
al. have started by investigating the topology of the potential
energy surface and established a connection between topolog-
ical changes and phase transitions [9, 10]. However, they are
not able to determine the order of the phase transition. Re-
cently we have proposed a classification scheme based on the
distribution of zeros of the analytically continued canonical
partition function Z(B), with B = β + iτ (β = 1/T ), in the
complex temperature plane [11–14].

The basic principle of the description of phase transitions
by the zeros of the partition function is the product theorem of
Weierstrass and the theorem of Mittag-Leffler which relate in-
tegral functions to their zeros [15]. Applying these theorems,

the canonical partition function can be written as

Z(β) =

(

1

2πβ

)3N/2 ∫

d3Nq exp [−βV (q)] (1)

=

(

1

2πβ

)3N/2 M
∏

k=−M

(

1 −
β

Bk

)

exp

(

β

Bk

)

.(2)

We assume the zeros to lie on a line with a density φ(τ) ∼
τα and to have a crossing angle ν with the plummet on the real
temperature axis (γ = tan ν). Together with the imaginary
part τ1 of the first zero B1 this leads to a distinct classification
of phase transitions in small systems. For zeros perpendicular
to the real axis with equal or increasing spacing, i.e., α ≤ 0
and γ = 0, the transition is of first order, for 0 < α < 1 and
arbitrary γ as well as for γ 6= 0 and α ≤ 0 of second order, see
Fig. 1. The imaginary part τ1 reflects the “discreteness” of the
system. Thus, in the thermodynamic limit we have τ1 → 0
and our scheme coincides with the scheme given by Gross-
mann and coworkers [16].
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FIG. 1: Examples of distributions of zeros for 1st and 2nd order
phase transitions along with the corresponding specific heat, calcu-
lated as functions of the zeros.

We utilize small magnetic clusters exposed to an external
magnetic field in order to show how the common treatment
of phase transitions in small systems like the identification by
humps of response functions eventually leads to misinterpre-
tations of physical properties.

Metal clusters have the intriguing property that they occur
as different isomers with almost equal ground state energies
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but very different magnetic moments and different geome-
tries [17, 18]. For simplicity, we consider in our model two
isomers with magnetic moments µ1 = 1µB and µ2 = 10µB,
and their ground state energy difference ∆E = E0(2) −
E0(1) = 1 meV. In the presence of an external magnetic field
H pointing in z-direction the partition function reads

Z(β) =

2
∑

i=1

exp[−βE0(i)]
2

βµiH
sinh(βµiH). (3)

We have assumed equal vibrational energies. The two isomers
can be identified by their average magnetic moment 〈µ〉 which
are calculated by standard differentiation of Eq.(3) with regard
to the magnetic field

〈µ〉 = β−1 ∂H ln Z(β) =
∑

i

pi 〈µi〉 (4)

=
∑

i

pi [µi tanh−1(βµiH) − 1/(βH)], (5)

where pi is the probability of finding isomer i.
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FIG. 2: Contour plot af the average magnetic moment 〈µ〉 versus
temperature T and magnetic field H . Note the non-linear scale.

This system is driven by two effects, the entropy increase
due to thermal excitation and the alignment of the magnetic
moments along the magnetic field. For low temperatures,
there is a transition from 〈µ〉 ' 1 to 〈µ〉 ' 10 at about
1.1 mGauss, as shown in Fig. 2. At higher temperatures the
magnetic field does not align the magnetic moments along the
field resulting in a general decrease of 〈µ〉.

Figure 3(a) shows the occupation probability of isomer 1
(µ1 = 1µB) for different magnetic fields. At low magnetic
fields, the lower energetic isomer is predominantely occupied,
while higher magnetic fields lower the ground state energy of
isomer 2 (µ2 = 10µB) and therefore the occupation is re-
versed. With increasing temperature the probabilities become
equal. The contributions of both isomers to the total average
magnetic moment 〈µ〉 are plotted in Fig.3(b) and (c). At low
temperatures, small magnetic fields align the magnetic mo-
ment of isomer 1 H . With increasing temperature the mobil-
ity of the atoms is raised which decreases the contribution of
isomer 1 to 〈µ〉.

From Fig. 2 and Fig. 3 we can infer that for temperatures
T . 1 K and an increasing magnetic field a transition with
a coexistence phase occurs (for coexistence in small systems
see [19–22]). As the magnetic field is raised the contributions
of both isomers to 〈µ〉 are inverted which causes a bimodal
probability distribution P (µz) of the order parameter µz . The
response of the system is observable as a hump in the suscep-
tibility χ = ∂H〈µ〉 at about 30 K for H = 2.0 mGauss, see
Fig. 3(d).
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FIG. 3: Plots of physical properties versus temperature T for H =

0.1, 0.5, 1.0, and 2.0 mGauss. (a) Probability for isomer 1. (b)
Contribution of isomer 1 and (c) of isomer 2 to the total average
magnetic moment 〈µ〉. (d) Magnetic susceptibility χ.

However, at temperatures about 10 − 1000 K the situation
is a bit more complicated. With increasing temperature and
at “intermediate” fields (H . 1.0 mGauss) the contribution
of isomer 1 decreases, while the contribution of isomer 2 to
〈µ〉 for is raised up to 1 µB . This also results in humps of the
susceptibility χ but P (µz) is unimodal because the magnetic
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moments of the 10µB isomer are less aligned along the mag-
netic field. Since the first effect can be regarded as pure mag-
netic field driven, it is not clear whether one should attribute
the humps for H . 1.0 mGauss to a magnetic field effect or
to a temperature effect. The “coexistence” observable in the
contributions of both isomers to 〈µ〉 is fundamentally differ-
ent, it would be more correct to associate this with thermal
excitation.

Magnetic clusters are finite spin-systems. Such systems, if
their energy has an upper limit, can show an inverse change
of entropy with respect to energy corresponding to negative
inverse temperatures, β = 1/T = ∂ES(E) = ∂E ln Ω(E)
with Ω(E) being the density of states. Note, that negative
temperatures are attributed to the spin temperature of the sys-
tem. Negative temperatures have been measured, e.g. in LiF-
crystals [23–25] by decoupling the spin temperature from the
kinetic energy contribution. The spin-lattice relaxation time
is large enough (up to hours) to assure that the spin system is
thermally stable and thus can come to equilibrium [26].

Obviously, the above presented indicators of phase transi-
tion thwart the classification and to some extent the distinction

between different phase transitions. Within the microcanon-
ical ensemble the occurence of negative temperatures arises
naturally because T is an internal parameter in contrast to the
canonical ensemble. We consider the positive and negative
inverse temperatures within the canonical treatment to assure
having sufficient information.

Figure 4 shows 3-dimensional images of the distribution of
zeros of Z(B) in the complex temperature plane. The poles of
|〈µ〉| coincide with the zeros of the canonical partition func-
tion Z(B). For H = 0.1 mGauss only one distribution of ze-
ros lying at negative temperatures is present (Fig. 4(a)) corre-
sponding to the inverse occupation of the two isomers at neg-
ative temperatures. With increasing magnetic field the shape
of the distribution changes (Fig. 4(b)) and the influence of
the poles of |〈µ〉| on the real temperature axis becomes vis-
ible. While this effect is hardly seen for H = 0.1 mGauss,
one is not able to distinguish the isomers due to their real-
temperature values of 〈µ〉. For H = 1.2 mGauss and β > 0
the average magnetic moment equals 1µB , whereas we have
〈µ〉 = 10µB for negative temperatures. At higher mag-
netic fields a second distribution of zeros corresponding to the
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structural transition between both isomers is seen.
An inspection of both distributions of zeros reveals that the

structural transition is of first order, i.e., for the classification
parameters we have α = γ = 0. Whereas for the transition lo-
cated at negative temperatures we find α > 0 and γ 6= 0, i.e., a
second-order transition, unless the magnetic field completely
disappears.

Another interesting example for first-order transitions,
which become second order with growing size have been
found by Proykova et al. [27]. There, two transitions have
been found in TeF6 clusters. They conclude that one of them
is supposed to be of first-order, which becomes continuous for
larger clusters, because they find two minima in the free en-
ergy as a function of an order parameter which merge to one
mimimum for larger cluster sizes. The arbitrary choice of the
order parameter, however, might lead to different results [22].

Figure 5 displays the the magnetic susceptibility χ within
the complex temperature plane. The susceptibility is plotted
versus the complex inverse temperature. The blurred peaks
of χ in Fig. 3(d) can be clearly related to “radiations” of the
zeros onto the real axis.

An inspection of the whole complex temperature plane re-
veals the origin of the two maxima of the susceptibility at
H = 0.5 mGauss on the real axis (cmp. Fig. 3(d)). For
H = 0.5 mGauss the hump in χ located at T ≈ 3 K
(β ≈ 3800 1/eV) has its origin in the distribution of zeros
lying at negative temperatures. Also the hump at T = 80 K,
where earlier calculations have suggested that it is also related
to a structural transition [17], has its origin in this distribution
of zeros. For 2.0 mGauss the distribution of zeros lying at pos-
itive temperatures contributes most to χ for real temperatures
at β ≈ 400 1/eV =̂ T ≈ 30 K corresponding to the structural
transition seen in Fig. 3(d).

Since the distribution of poles of the considered thermody-
namic function (the distribution of zeros of Z(B)) is discrete
the influences on the real axis might be shielded by zeros of
these function. For example, the distributions of poles of 〈µ〉
and χ are surrounded by distributions of zeros which are dif-
ferent for 〈µ〉 and χ. These thermodynamic functions are an-
alytic everywhere except at the poles and zeros. Thus, if there
is a zero in the vicinity of a pole near the real axis the decrease
of 〈µ〉 or χ cannot be compensated.

In conclusion we have shown that the use of the complex
inverse temperature plane has advantages to common investi-
gations of thermodynamic functions. Within our classification
scheme the order of a transition can be clearly identified. By
means of a simple two-isomer model for small magnetic clus-

ters we are able to identify two different types of phase tran-
sitions. Furthermore, we found that signals in the magnetic
susceptibility at positive temperatures might have their origin
at negative temperatures. This also indicates that the inverse
temperature is analytic at β = 1/T = 0 and therefore should
be used in calculations of thermodynamic properties.

We thank E. R. Hilf for fruitful discussions and valuable
comments.

[1] M. Anderson, et al., Science 269, 198 (1995).
[2] C. Bradley, C. Sackett, J. Tollett, and R. Hulet, Phys. Rev. Lett.

75(9), 1687 (1995).
[3] K. Davis, et al., Phys. Rev. Lett. 75(22) (1995).
[4] M. Schmidt, et al., Phys. Rev. Lett. 79, 99 (1997).
[5] M. Schmidt, B. von Issendorf, and H. Haberland, Nature 393,

238 (1998).
[6] M. Schmidt, et al., Phys. Rev. Lett. 86, 1191 (2001).
[7] D. H. E. Gross, Phys. Rep. 279, 119 (1995).
[8] D. H. E. Gross and E. Votyakov, E. Phys. J. B 15, 115 (2000).
[9] R. Franzosi, L. Casetti, L. Spinelli, and M. Pettini, Phys. Rev.

E 60, 5009 (1999).
[10] R. Franzosi, M. Pettini, and L. Spinelli, Phys. Rev. Lett. 84,

2774 (1999).
[11] P. Borrmann, O. Mülken, and J. Harting, Phys. Rev. Lett. 84,

3511 (2000).
[12] O. Mülken, P. Borrmann, J. Harting, and H. Stamerjohanns,

Phys. Rev. A 64, 013611 (2001).
[13] O. Mülken and P. Borrmann, Phys. Rev. C 63, 023406 (2000).
[14] O. Mülken, H. Stamerjohanns, and P. Borrmann, Phys. Rev. E

64, 047105 (2001).
[15] E. Titchmarsh, The Theory of Functions (Oxford University

Press, 1964).
[16] S. Grossmann and W. Rosenhauer, Z. Phys. 207, 138 (1967);

218, 437 (1969); S. Grossmann and V. Lehmann, ibid. 218, 449
(1969).

[17] P. Borrmann, B. Diekmann, E. R. Hilf, and D. Tománek, Sur-
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