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Abstract  

 

 

The outline of the dissertation consists of four parts. First, the general framework about 

the recent impact that neuroimaging is having with respect to CNS pharmacology will be 

presented (Chapter 1). Subsequently, an EEG experiment based on the administration of 

nicotine during a resting-state task in healthy non-smokers will be introduced. The 

research question regarded whether nicotine impacts vigilance. The same data set and the 

same within-subject experimental design were used for conducting three different 

analyses. Each method of each analysis was considered appropriate for detecting 

vigilance modulations in the brain. In Chapter 2, the results of the first analysis based on 

source reconstruction (Current Source Density, CSD) in the whole-brain will be shown. 

In Chapter 3 two further analyses were based on the extraction of time-series. There it 

will be shown the results of these last two analyses: connectivity analysis by renormalized 

Partial Directed Coherence (rPDC); phase-amplitude coupling analysis by Mean 

Resultant Vector Length (VL). In the final chapter, the results of the three analyses will 

be compared. It will be emphasized that all three results converged in the finding that 

nicotine significantly increased vigilance. It will then be suggested that nicotine might 

unravel its cognitive-enhancing properties through its ability to counteract drowsiness. In 

conclusion, the present dissertation aims to show recent progress in the field of CNS 

pharmacology by using state-of-the-art non-invasive neuroimaging techniques and by 

using nicotine as a pharmacological probe in healthy subjects.    
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Zusammenfassung 

 

 

Die vorliegende Dissertation ist in vier Teile gegliedert. Zunächst wird dargestellt, welche 

Rolle funktionelle Bildgebung zur Untersuchung von Pharmaka Effekten im zentralen 

Nervensystem (ZNS) hat (Kapitel 1). Anschließend wird ein EEG- Experiment 

vorgestellt,  Einfluss  die neuronale Bildgebung auf die Zentrales Nervensystem (ZNS)-

Pharmakologie hat (Kapitel 1). Anschließend wird ein EEG- Experiment vorgestellt, 

welches die Applikation von Nikotin während einer Ruhezustandsaufgabe (sog.“resting-

state“) bei gesunden Nichtrauchern untersucht. Dabei soll der Einfluss von Nikotin auf 

die Vigilanz erforscht werden. Der gleiche Datensatz wurde dann für drei 

unterschiedliche „within-subject“ Analysen verwendet. Jede der drei Analysemethoden 

eignet sich zur Detektion der Vigilanzmodulation im Gehirn. Im zweiten Kapitel werden 

die Ergebnisse der ersten Analyse gezeigt, welche auf „whole-brain source 

reconstruction” basieren (Current Source Density, CSD). Im dritten Kapitel werden zwei 

weitere Methoden vorgestellt, welche auf der Extraktion von Zeitreihen beruhen. Die 

Ergebnisse dieser letzten zwei Analysen; einer Konnektivitätsanalyse via „renormalized 

Partial Directed Coherence“ (rPDC) sowie der Analyse der Phasen-Amplituden Kopplung 

mittels „mean resultant vector length“ (VL) werden hier vorgestellt. Im letzten Kapitel 

werden die Ergebnisse der drei Analysen verglichen. Es wird hervorgehoben, dass alle 

drei Ergebnisse übereinstimmend einen signifikanten Anstieg der Vigilanz als Folge von 

Nikotin zeigen. Darauf basierend wird vorgeschlagen, dass die gesteigerte 

Kognitionsleistungdurch Nikotinaufeine müdigkeitsmindernde Wirkung zurückzuführen 

ist. Zusammenfassend wird mit der vorliegenden Dissertation beabsichtigt, unter der 

Verwendung neuster nicht-invasiver bildgebender Methode und Nikotin als 

Pharmazeutikum in gesunden Probanden die aktuelle Entwicklung der ZNS-

Pharmakologie aufzuzeigen.    
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1.1 Introduction  

The main goal of the present dissertation will be to convince the reader that non-invasive 

neuroimaging is slowly revolutionizing Central Nervous System (CNS) pharmacology. 

Indeed, it never happened before that we can track the effect of a psychoactive drug on-

line (when the drug is actually in action) and in the end-user (human beings) (Wong et al. 

(2009)).  

In this paragraph, I will discuss the rationale behind the claim that non-invasive 

neuroimaging offers an unprecedented opportunity to shape next generation of CNS 

pharmacology. At the beginning I will provide a working definition and a historical 

perspective of CNS pharmacology, highlighting the recent improvement driven by 

neuroimaging (Paragraph 1.2). Further, some warnings will be issued regarding the 

problem of reproducibility in pharmacology and in neuroscience (Paragraph 1.3). I will 

address the recent potential of neuroimaging for the pharmaceutical industry, namely in 

terms of early drug development (Paragraph 1.4).   

 

 
1.2 Definition and historical perspective of Central Nervous System pharmacology  

In terms of definitions, at the moment there is no agreed terminology to define the field 

which stands at the intersection of the two disciplines of pharmacology and non-invasive 

neuroimaging. With non-invasive neuroimaging I mean the use of various imaging 

techniques for detecting brain dynamics. Electroenchephalography (EEG) belongs to 

neuroimaging and it is the main technique used in the analyses presented in Chapter 2 and 

Chapter 3. 

One of the reasons for missing an agreed terminology could be the lack of novel methods 

which guarantees a stand-alone discipline. Indeed, such a field blends together methods 

and techniques which belonged originally to either pharmacology or neuroimaging. For 

example, a dose-response assessment or the recording of brain oscillatory activity are 

solid methods that belong to either pharmacology or neuroimaging, respectively. Hence, 

pharmacology and neuroimaging could be considered a sub-discipline, which originates 

from the two independent disciplines of either pharmacology or neuroimaging. I will not 

coin a new term (e.g. pharmaco-neuroimaging) for such sub-discipline. Therefore the 

terms pharmacology and neuroimaging will be used throughout the manuscript, referring 

to the bulk of work which has been created by combining these two disciplines.  
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In order to appreciate the revolution which is taking place within CNS 

pharmacology, I need to put it into perspective. Therefore I will briefly describe the 

historical landmarks which shaped CNS pharmacology up to modern ages. The choice of 

landmarks is personal and reflects a subjective way of organizing new discoveries and 

new techniques in CNS pharmacology. Each landmark triggered a sort of revolution in 

the bulk of knowledge about CNS pharmacology. In other words, each landmark provides 

a further layer of knowledge in characterizing a psychoactive molecule. For example, 

nicotine action on the CNS can be described by a behavioral, biochemical, genetic or 

neuroimaging point of view. Each point of view provides a new layer of knowledge 

which adds to the previous one. Having all layers of knowledge together helps with “drug 

profiling”: all the amount of knowledge which characterizes a molecule is gathered, and a 

coherent picture is attempted.  

CNS pharmacology became a rigorous science around 1950. Back then, trained 

physicians observed the overt behavior (signs and symptoms) of people under the 

influence of CNS drugs. By observing behaviors, researchers could - for example - 

discover either an antipsychotic or an antidepressant effect of a specific molecule. Indeed, 

chloropromazine as an antipsychotic and imipramine as an antidepressant were 

discovered serendipitously by behavioral observations only. Lastly, the taxonomy of CNS 

drugs (e.g. anxiolytics; antipsychotics etc.) was developed in those years. These examples 

demonstrate how observing behaviors can provide insight to the understanding of the 

“rough” effects that CNS drugs can have. 

Around 1980, biochemistry started to revolutionize CNS pharmacology. For 

example, metabotropic receptors (called also G-protein-coupled receptors) were 

discovered. Indeed, the signaling pathway (namely, a complex protein phosphorylation) 

triggered by the binding between a molecule and its receptor is a good example of how 

pharmacology was advanced by biochemistry. Further, the development of radioligands 

helped to characterize the receptors to which a molecule binds. A modern version of the 

radioligand methodology applied to CNS pharmacology is the Positron Emission 

Tomography (PET), today widely used in drug development.   

 Around 1990, pharmacogenomics started to come into play in CNS 

pharmacology. Indeed, it was clear that the genetic milieu could play a role in 

characterizing the pharmacokinetics of a molecule (e.g. liver enzymes which distinguish a 

“poor metabolizer” from “good metabolizer” of a specific molecule). Another application 
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of genetic to CNS pharmacology was the use of knock-out mice. Lastly, optogenetics 

from 2000 began to inform CNS pharmacology as well. 

At the beginning of the new millennium (around 2000), non-invasive 

neuroimaging started to push CNS pharmacology to the next level of understanding. 

This led into an astonishing time for CNS pharmacology, since we have never had such 

an accuracy: studying how CNS drugs work on the CNS of a living human being. Among 

the different neuroimaging techniques currently available, functional Magnetic 

Resonance Imaging (fMRI), was the most successful in convincing the pharmaceutical 

industries that neuroimaging does help the early drug development process. Indeed, one 

of the first papers showing a potential application of fMRI as a tool for early drug 

development was published by Borsook et al. (2002). Another worthwhile new technique 

which is starting to be used by CNS pharmacologists is Magnetic Resonance 

Spectroscopy (MRS). It can detect the modification of neurotransmitters by a 

psychoactive drug in the human brain non-invasively (Waschkies et al. (2014).  

 

1.3 Non-invasive neuroimaging is revolutionizing CNS pharmacology 

As mentioned in the previous paragraph, non-invasive neuroimaging is slowly reshaping 

modern CNS pharmacology. Regarding EEG and Magnetoencephalography (MEG), in 

recent years a big interest has been raised in detecting how pharmacological challenges 

could modify brain oscillatory activity. In current neuroscience, neuronal circuits seem to 

be the interface between brain biochemistry, oscillations and behaviors (Whittington et al. 

(2011), (Womelsdorf et al. , 2014)). What oscillations measured by EEG and MEG can 

realistically tell to CNS pharmacology is confined mainly to what we know about the 

correlation between oscillations and behavior. Interestingly, oscillations can correlate 

very well with sedation (e.g. slow waves which characterize either deep sleep or general 

anesthesia). Particularly, EEG and MEG are powerful in detecting on-line drowsiness 

(Sander et al. (2015)). Such a property could be used to the advantage of CNS 

pharmacology: EEG and MEG can precisely detect whether a drug has either increased 

vigilance (e.g. psychostimulants) or decreased vigilance (e.g. sedatives). The two studies 

presented (Chapter 2 and Chapter 3) will exploit a similar rationale: asking the subjects to 

close their eyes triggers a drowsy brain state. Such a brain state can be probed by the 

administration of a psychostimulant (i.e. nicotine). The combination of a drowsy brain 
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state and a psychostimulant is called an orthogonal experimental design: it guarantees the 

maximization of the effect by comparing two opposite experimental conditions.  

 

1.4 Current problems in pharmacology and neuroimaging 

In science as a whole there is a big problem of replicating results from other laboratories 

(Collins and Tabak (2014)). In the whole neuroscience, this problem - and 

countermeasures to alleviate it - have been addressed previously (Button et al. (2013) and 

Hartshorne and Schachner (2012)). Overall it seems that there are six main causes which 

converge in the abovementioned lack of reproducibility (namely, idiosyncratic results 

produced by the same scientific field). The causes seem to be lack of standardization, 

inter-subject variability and intra-subject variability. Such causes are also linked with the 

overall problem of defining objective biomarkers in CNS pharmacology, which translate 

to the current inability to make predictions about the individual’s response to a CNS 

molecule. Lastly, there are still some problems for a smooth translation of results 

regarding the effect of the same CNS drug measured from different species (translational 

neuroscience). These six potential sources of the lack of replication will be discussed in 

details later. 

The immediate consequences which emerge in an industrial setting because of 

lack of replication affect early drug development. The effects of lack of replicability 

emerge clearly in a multi-site research environment. Specifically, the consequences of the 

lack of replicability make it difficult to meet go/no-go decisions in early drug 

development (Leiser et al. (2011)). Indeed, lack of consistent results regarding a specific 

CNS molecule can make it complex to decide whether the molecule is worth more 

investment or the project should be halted. More about the go/no-go decision in early 

drug development will be discussed in paragraph 1.5.3.  

As follows, each of the six potential sources of the lack of replication which affect 

CNS pharmacology will be addressed separately. A set of possible remedies for each 

source will be addressed as well. When possible, I will show how we attempted to 

implement some of the remedies in our two studies about the nicotine effect in the brain.   
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1.4.1 Lack of standardization  

Regarding CNS pharmacology lack of standardization is defined as a problem which 

hinders the chances to obtain replicable results among different laboratories (Wilson et al. 

, 2014). Indeed, the lack of standardization can be a problem because pieces of research 

of a drug candidate are run in different laboratories around the world. Often these pieces 

of iformation can be hardly combined together, even if the same drug molecule is studied.  

A possible remedy is to develop a standardized experimental setting in order to 

obtain replicable results among different laboratories. For example guidelines like Jobert 

et al. (2012) should help the neuroscientific community to comply with standards when 

studying CNS molecules. At large, there is a need in biological sciences to follow agreed-

upon protocols and benchmarks (Collins and Tabak (2014)). 

Another problem linked with the lack of standards in the design of an experiment is the 

cognitive task chosen to probe the pharmacological activity of a CNS drug. Indeed, huge 

variety exists in terms of cognitive tasks. Also the “versions” of a specific cognitive task 

could vary a lot.  

One strategy suggested in Jobert et al. (2012) to overcome such a problem is the 

use of a "minimalistic" benchmark based on the resting-state: eyes-open (EO) and eyes-

closed (EC). This should help running head-to-head comparisons of different 

psychoactive drugs since it avoids the variability intrinsic to the choice of cognitive tasks. 

Indeed, the variability intrinsic with the CNS drug could interact with the variability in 

terms of cognitive task chosen, thus jeopardizing an easy interpretation how the drug 

impacts the CNS. Further, implementing resting-state design is pretty straightforward in 

terms of programming burden.  

The drawback in opting for resting-state only is less flexibility in the experimental design. 

Indeed, when using only eyes-open and eyes-closed designs we force the experiment to 

overlook the interaction between a CNS molecule and a cognitive task. Unless there are 

agreements on a standard cognitive task to be used, I think that is better to limit the 

explorative research to resting-state activity.  

For the above reasons we decided to run our nicotine experiment focusing only on 

resting-state activity (eyes-open and eyes-closed).  
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1.4.2 Inter-subject variability  

Inter-subject variability is a long-standing problem in pharmacology. Particularly, the 

difference between responders and non-responders to a CNS drug is a major issue in the 

field. Indeed, different individual will often react differently to the same CNS drug.  

The simplest way to deal with such problem is to stratify subjects in responders and non-

responders. This could be done by using end-points like rising blood pressure in 

responders versus non-responders of a nicotine treatment. 

There are also some methods to predict beforehand whether a specific subject is either 

responder or non-responder. Pharmacogenomics (e.g. detecting how liver enzymes are 

different in different individuals) has been suggested as a method to stratify subjects 

before running the experiment.  

Beyond pharmacogenomics, also neuroimaging methods have tried to predict responders 

versus non-responders of a drug treatment. Some early attempts used EEG source 

reconstruction for predicting who will either respond or not to the antidepressant 

nortriptyline (Pizzagalli et al. (2001)). More recently Support Vector Machine (SVM) 

techniques applied to fMRI has being used for stratifying the subjects in a predictive 

fashion (Doyle et al. (2015)).    

In our study we have not used any technique for stratifying the group of subjects 

who received nicotine. Such analysis has been done elsewhere using cardiovascular 

measurements after nicotine administration (Logemann et al. (2014). We have also not 

used predictive ways of stratifying subjects, for example by using complex SVM 

methods.  

 

1.4.3 Intra-subject variability  

Intra-subject variability regards how one subject’s brain activity changes from one 

session to another. Such a difference between the two session recorded in the same 

subject can be present even within the same day. That is puzzling since the same CNS 

drug has been administered in the two different sessions in the same subject. As for inter-

subject variability, also intra-subject variability could generate discrepancy in a 

pharmacological study. As it will be explained later, a key issue of intra-subject 

variability concerns the estimation of single-subject variability. Single-subject variability 

is a combination of intra-subject variability (e.g. single-subject's homeostatic responses 
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and own biology) and within-session errors of measurement (Sinkkonen and Tervaniemi 

(2000)).  

A mixed-effects design can be used for tackling intra-subject variability. Indeed, it 

effectively estimates at first single-subject variability (Friston et al. (2005)), then inter-

subject variability (Stelzer et al. (2014)). In simple words, a mixed-effects design is an 

evolution of a longitudinal design (also called “repeated measures” design). For example, 

a key step at the foundation of pharmacological research is modeling at first single-

subject variability and then computing variability at a population level. Such hierarchical 

statistical modeling (Friston et al. (2005)) stands at the core of a mixed-effects design. 

Within a pharmacological framework, single-subject variability is a combination of the 

individual reaction with respect to the administration of a drug and the within-session 

errors of measurement (Lavielle (2015)). Lastly, Bernal-Rusiel et al. (2013) demonstrated 

how a mixed-effects analysis outperforms the more traditional repeated measures 

analysis. In simple words, among the two factors of a basic pharmacological experiment 

(time x drug) the mixed-effects design allows to sort the drug effect out, by properly 

estimating the effect of time (time is measured in a longitudinal fashion).  

Worth mentioning recent approaches in CNS pharmacology aimed to improve the 

detection of the pharmacodynamics by neuroimaging tools (Brain et al. (2014)). One of 

these approaches is generalized semi-linear canonical correlation analysis (GSLCCA). It 

is based on correlating the single-subject’s pharmacokinetics (i.e. level of the drug in the 

blood) with the single-subject’s pharmacodynamics (e.g. EEG changes in alpha-power). 

In simple words, it provides a better estimate of intra-subject variability (e.g. via 

normalization of response), thus improving the analysis at the population level. This 

happens because after normalization the two groups are now more homogenous. Intra-

subject variability is called elsewhere “single-subject analysis”, whereas population level 

analysis is called also “group-level analysis”.  

The first study (Chapter 2) shows the use of a mixed-effect design in a 

pharmacological experiment. 
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1.4.4 Defining objective biomarkers 

One of the challenges of CNS pharmacology is to find objective biomarkers which should 

be considered as a “common brain signature” of how a specific molecule works in the 

brain. An even more complex problem is finding biomarkers of signs and symptoms of 

mental diseases. For the present discussion I avoid dealing with the topic of biomarkers 

for mental diseases. Instead, I will focus only on the topic of pharmacological biomarkers 

(e.g. the pattern that a CNS drug systematically triggers in the brain of healthy subjects). 

In recent terminology there is an interest in biomarkers candidates: it is a less 

strict definition with respect to biomarkers. Indeed, a biomarkers candidate implies some 

correlation between the neuroimaging pattern and the effect of a CNS drug. In 

pharmacological terms is called “Proof of concept” validation, and it entails the concept 

of surrogate end-points: e.g. a pain-killer should show some decrease of activity exactly 

in the area of the brain stem where a painful stimulus has previously generated an 

increase of activity (Wanigasekera et al. (2016)). Therefore, with surrogate end-points a 

mechanistic explanation how the drug works is not necessary. Indeed, Wanigasekera et 

al. (2016) showed how it is possible to use neuroimaging in a head-to-head comparison of 

two pain-killers (ibuprofen and gabapentin) and see which one of the two is superior. 

Therefore with surrogate end-points the drug under investigation has to change some 

parameters in the direction expected. This is enough for claiming that the drug is 

efficacious. The concept of surrogate end-points, is identical to what in clinical 

neuroimaging is called the key-lock principle (Saletu et al. (2010)): the medication should 

resolve the brain pattern which is correlated with a neurological/mental disease. Then the 

terminology “key-lock”, since the CNS medication should act only in areas considered 

dysfunctional, bringing the brain activity - possibly - back to normal. At the moment, 

scientific evidence of the existence of the key-lock principle is present mainly in pain 

research.  

Further, the effect recorded in the brain can be tracked by its dose-response curve. 

Such a curve shows how pharmacodynamics is linked with the dose of the drug molecule. 

This means that “common brain signature” (response) changes according to the amount of 

molecule administered (dose). A beautiful example in fMRI literature of a linear dose-

response curve using anfentanil is Fig. 1 in Oertel et al. (2008). Just as a reminder, 

anfentanil is a synthetic opioid. Such linear dose-response curve shows clearly how the 

brain pattern changes in a linear fashion according to the dose of drug. Instead examples 
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of classical sigmoidal dose-response curves detected by EEG are Fig. 5 and 6 in 

Bewernitz and Derendorf (2012). In Fig. 5 they used sevoflurane - an anesthetic -, 

whereas in Fig. 6 they used midazolam and diazepam - benzodiazepines -. Neuroimaging 

can also unravel very complex pharmacodynamics processes. Indeed,  Fig. 4 in Barbanoj 

et al. (2006) showed the pharmacological effect of hyteresis (a lagged dose-response 

curve). Further, Barbanoj et al. (2006) showed that EEG can detect subtle drug-drug 

interactions: a compound with its metabolites (e.g. midazolam with its main metabolite 
1-hydroxymidazolam); different enantiomers of the same compounds (e.g. S-ketamine 

and R-ketamine); a compound with another compound (e.g. paroxetine and alpraxolam). 

More recently, advanced EEG pharmacodynamics approaches based on canonical 

correlation analysis were able to show consistency in the temporal structure 

(pharmacokinetics) of the effect of remifentanil (Brain et al. (2014)). For example, at 3 

min after administration, the peak of remifentanil in blood was paralleld by the strongest 

brain modulation.  

Such strong correlation between pharmacokinetics (level of drug in the blood) and 

pharmacodynamics (brain response) allows consistency among results recorded by using 

different neuroimaging techniques. Although anfentanil and remifentanil have a different 

chemical structure, they can be considered structural analogs; therefore for our purpose 

they have comparable properties. What was striking that both fMRI (anfentanil, Oertel et 

al. (2008)) and EEG (remifentanil, Brain et al. (2014)) showed the strongest correlation at 

3 min after administration between their peaks in the blood (pharmacokinetics) and the 

strongest brain modifications (pharmacodynamics). Therefore the temporal structure of 

the effect (e.g. 3 min after administration) of the drug class is shared by all neuroimaging 

techniques. Lastly, it was discussed above that almost all neuroimaging techniques can 

detect both basic and complex pharmacodynamics properties. Detecting such 

pharmacodynamics is key for making neuroimaging appealing for CNS pharmacology. 

Summarizing, not mechanistic but simple correlational analysis between 

pharmacokinetics and pharmacodynamics can provide a common brain signature (Paulus 

and Stein (2007)), which identifies the effect on the brain of a specific CNS drug. Also 

the common brain signature could be very useful in terms of early drug development 

(Paulus and Stein (2007)), because of its intrinsic predictability potential. Early drug 

development will be addressed in paragraph 1.5.  

So far the field of neuroscience which showed the most reliable biomarkers 

candidates is pain research. Indeed, neuroimaging was there successful in identifying 
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“fingerprint of CNS drug efficacy signatures”, as called by Hargreaves et al. (2015). Such 

concept is equivalent to the above mentioned common brain signature. Further 

Hargreaves et al. (2015) proposed to develop surrogate end-points as early as possible in 

the early drug development. Possibly, already in Phase 1 clinical trials should be a 

surrogate end-point (namely, something quantitative to detect the efficacy of the 

molecule) created. This is particularly true for PET research where radioligands should be 

developed in parallel as the new molecule. Radioligands are radioactive molecules bound 

to the research molecule. Using radioligands should show target engagement, which 

means that the research molecule binds the receptors which are supposed to be targeted. 

Such phenomenon is called also “proof of concept”. Showing that the compound can 

enter the target area is sufficient for considering it efficacious and then move to the next 

phase of the clinical trials (Wong et al. (2009)). Note that target engagement is another 

example of surrogate end-points. 

Target engagement is only possible in vivo by using PET in humans or fMRI and 

contrast agents in animals. Target engagement is a pharmacodynamics measure which 

should be investigated prior to other pharmacodynamics measures (e.g. deactivation of 

amygdala by fMRI or vigilance assessment by EEG and MEG). In a nutshell, we have 

different pharmacodynamics parameters which can be extracted by either the same or 

different neuroimaging techniques. These pharmacodynamics parameters are also called 

surrogate end-points since a mechanistic explanation is not required. These surrogate end-

points reflect nevertheless different priorities: target engagement should be investigated 

prior to any other surrogate end-points in order to be at least sure that the molecule binds 

expected receptors.  

  In our experiment (Chapter 2, CSD study) we tried to replicate at first previous 

results. Indeed, Fisher et al. (2012) found that nicotine impacts left frontal cortex power 

during eyes-open condition. We found the same results during EO condition (see Chapter 

2,). Therefore, such replication was considered like a biomarker candidate of the effect of 

nicotine: each time we introduce nicotine into the system, it should show its peculiar 

“signature” in terms of brain activity.  

In Chapter 4, I will address further replications of our CSD results. In a nutshell, 

our results matched a recent fMRI meta-analysis (Sutherland et al. (2015)) which showed 

that left frontal cortex and anterior cingulate cortex are involved in the effect of nicotine. 

In simple words, I think that the consistency of our results with previous results are a 

good example of a biomarker candidate: every time we administered nicotine we should 
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expect changes in power (by EEG) or in BOLD (by fMRI) at the very same locations (i.e. 

left frontal cortex and anterior cingulate cortex).   

 

1.4.5 Inability to make predictions 

Overall, the inability to make predictions about the response of an individual to a CNS 

molecule is still affecting neuroimaging. In simple words, the inability to make 

predictions means that a “trial and error” approach for administering a specific CNS drug 

at specific dosages is still widely used. This problem is hindering the field of personalized 

medicine applied to CNS pharmacology. Ideally, personalized medicine should help the 

clinician during the administration process of a specific CNS drug. This should translate 

to the adagio of giving “the right pill, at the right dosage to the right person”. Up to now 

such level of precision in CNS pharmacology is at the moment not possible.  

Nevertheless, new approaches are emerging in order to fill the gap in terms of 

predictability potential of neuroimaging techniques. For example, a simple correlational 

approach (see paragraph 1.4.4) offers the ability to use biomarker candidates in a 

predictive way. Further, SVM algorithms can predict the effect of a new CNS drug by 

using old neuroimaging datasets of similar compounds (Doyle et al. (2015) and 

Khodayari-Rostamabad et al. (2013)). The last approach will be discussed in paragraph 

1.5.5.  

Neither predictability issues or SVM approaches have been addressed in the two 

studies with nicotine.  

 

1.4.6 Translational neuroscience 

Another hurdle of CNS pharmacology and neuroimaging is the translational component. 

With this I mean the difficulty to translate the results from one species to the other, even 

though the same CNS molecule is studied. For example, eyes-closed resting-state with 

humans is different from eyes-closed resting-state in rats. To such extent it seems that 

more potential for translation resides in cognitive tasks other then resting-state - 

specifically eyes-closed activity - : engaging all primates in the same task (e.g. fixating a 

cross on the screen) could force all of them to be in the same brain state. In summary, the 

resting-state paradigm could be difficult to implement in animals. For such a reason a 
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standardized cognitive task done both in humans and animals could help in translating 

results from one species to the other.  

 Although some old neuroimaging techniques (e.g. EEG and PET) were not able to 

succeed yet in making a smooth transition between results from one species to the other, 

recent efforts hold promises. Indeed, almost all neuroimaging techniques are making 

effort to close the gap between the species difference: PET (Finnema et al. (2015); fMRI 

(Smucny et al. (2014)) and EEG (Drinkenburg et al. (2015)). Therefore a bigger potential 

for translational neuroscience in CNS pharmacology seems to be likely to occur in the 

near future.  

 In both studies (Chapter 2 and Chapter 3) we made some connections of our 

results with the animal literature about the effect of nicotine in the brain. I strongly 

believe that CNS pharmacology should be multi-disciplinary and researchers should be 

trained both in human models as well as in animal models. Certainly, there is a strong 

common thread between animal models and human models: the very same CNS drug 

(namely, the very same chemical structure) has been used in both types of models. This 

should ease the comparison between the effects of a CNS drug on different species.  

 

1.5 Current applications of neuroimaging to early drug development 

The second aim of such chapter is to try to justify how the implementation of the 

neuroimaging framework to CNS pharmacology fits the necessities of the pharmaceutical 

industries.  

Connecting with what said in paragraph 1.4.4, the use of biomarkers candidates in CNS 

pharmacology - and their predictive potential - could be useful for two purposes: one is 

personalized medicine and the other is early drug development. For personalized 

medicine I mean again the right amount of knowledge which should be used for 

administering the right CNS molecule at the right dose to a specific subject. I will not talk 

about the use of neuroimaging for personalized medicine here, rather about the use of 

neuroimaging for early drug development.  

Specifically, it will be discussed the role of neuroimaging in light of modern early drug 

development for CNS drugs. 
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1.5.1 Early drug Development 

As described in paragraph 1.4.4 the potential of neuroimaging with respect to early drug 

development is its superior ability of tracking pharmacodynamics. Indeed, questionnaires 

(e.g. depression checklists) usually don’t track pharmacodynamics (namely, an 

improvement of symptoms) as well as neuroimaging (Oertel et al. (2008)). Therefore, the 

superiority of neuroimaging in terms of detecting important pharmacodynamics processes 

makes it appealing for CNS drug evaluation within an industrial setting.  

A key problem in drug development for new CNS drugs is the huge attrition ratio: very 

few new compounds can survive the research and development process, thus being 

brought to the market. This translates to huge research costs undertaken by the 

pharmaceutical industries (Hargreaves et al. (2015)). Therefore the pharmaceutical 

industries are asking to the neuroimaging community to figure out methods in order to 

decrease costs.  

As follows four main strategies for decreasing costs/increasing revenues could be 

potentially addressed by neuroimaging: escalation studies; go/no-go decisions; 

repurposing; predictability of drug action.   

 

1.5.2 Escalation studies 

The escalation studies are typically Phase I clinical trials: the dose is gradually increased 

in order to test tolerability. At Phase I, the right and safest dose is looked for. Some 

researchers postulated the use of neuroimaging already at the level of Phase I clinical 

trials. Indeed, neuroimaging can be helpful in finding the right dosages (Doyle et al. 

(2015)). Therefore neuroimaging could have an impact in measuring pharmacokinetics as 

well as pharmacodynamics.  

Further, I already discussed in paragraph 1.5.1 that many neuroimaging techniques have 

superior sensitivity in delineating dose-response curves as questionnaires (Oertel et al. 

(2008)). Therefore neuroimaging has a remarkable potential in measuring 

pharmacodynamics. This could have an impact in Phase II and Phase III clinical trials, as 

it will be explained in the next paragraph.  
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1.5.3 Go/no-go decisions 

The efficacy studies are called also “pharmacodynamics studies” and they traditionally 

belonged to the Phase II and Phase III clinical trials. Further, traditionally during Phase 

III clinical trials go/no-go decisions (called also “cost-benefit analysis”) are achieved (see 

below).  

I already discussed in paragraph 1.5.1 that many neuroimaging techniques have superior 

sensitivity in delineating dose-response curves as questionnaires (Oertel et al. (2008). 

Therefore neuroimaging has a remarkable potential in measuring pharmacodynamics. 

There is a recent trend in running efficacy studies as soon as possible. There is a proposal 

to reach go/no-go decisions already at the Phase II clinical trial, instead of Phase III 

clinical trial (Wilson and Danjou (2015)). This maneuver should help saving costs. 

Go/no-go decision should be made at each intermediate step of a clinical trial, as well 

(e.g.  from Phase IIa to Phase IIb clinical trial). The continuous monitoring guarantees 

online tracking of the progresses in terms of efficacy of the drug (i.e. marketable potential 

of the compound).  

Early go decisions have the function of increasing the confidence that the molecule under 

investigation is promising and deserves further investments. Early no-go decisions have 

the advantage in decreasing the costs, focusing the investment on the most promising 

molecule only. For EEG analysis Gilles and Luthringer (2007) showed how EEG can 

effectively ascertain “go decision” regarding novel compounds. More recently, Wilson 

and Danjou (2015) described how it is also possible to use EEG for effective no-go 

decisions. The parameters which are chosen as surrogate end-points are selected on a 

case-by-case basis. It could be that ERPs are better for a specific molecule (e.g. cognitive 

enhancers), whereas power spectrum of source reconstructed data could be optimal for 

another molecule (e.g. antidepressants). Previous literature coming from both animal and 

human models can guide the selection of the parameters to be measured with respect to 

the molecule under investigation. This is the case when the same (e.g. in animal models) 

or a similar (e.g. in human models) molecule have been previously studied. 
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1.5.4 Repurposing 

Another strategy which leverages the pharmacodynamic superiority (namely, detecting 

drug efficacy) of neuroimaging with respect to questionnaires, regards repurposing an old 

compound for a new clinical entity. The goal of such repurposing study is to find a new 

market for the old drug. A recent example is the use of quetiapine for treating sleep 

disorders, even if it was originally marketed as an antipsychotic. 

This could be now done in Phase III or earlier, when looking for drug efficacy. 

Traditionally, repurposing happened in Phase IV clinical trials (post-marketing). As for 

the go/no-go decisions, repurposing should be done as soon as possible in terms of 

clinical trials. The reason is the long amount of time before getting FDA approval for the 

second usage of the drug (e.g. sleep-inducing properties of quetiapine), in case the first 

usage (e.g. antipsychotic properties of quetiapine) would not be commercially profitable. 

This holds also for further expanding commercial domains and having parallel income 

from two distinct marketplaces.  

The use of biomarker candidates could hamper the repurposing process since it forces the 

neuroimaging researcher to look to the specific effect expected. An example of using 

biomarker candidates by fMRI is subgenueal area 25 in case of a study with a molecule 

with potential antidepressant properties. Therefore some aside effects of the drug under 

investigation could be overlooked. It is therefore important to use multidisciplinary 

approach. Indeed, using EEG simultaneously with fMRI could provide extra knowledge 

of the secondary effect of the compound. Taking the example of a molecule with alleged 

antidepressant properties we formulate a case: from an fMRI looks like an antidepressant, 

but the EEG showed it has also a sleep-inducing effect. Practically, if the revenues of the 

molecule are low when it is sold as antidepressant, it can be re-sold and re-branded as a 

sleeping pill. 

In summary, neuroimaging can enhance repurposing and thus offers a “plan B” to the 

pharmaceutical industry. Indeed, it can help finding an alternative “niche” in the market, 

making it profitable whenever previous attempts showed to be unsuccessful.   
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1.5.5 Predictability of drug action  

There are SVM approaches used for predicting whether a new investigational molecule 

will be efficacious with respect to a particular disease/problem. In a nutshell, an old 

dataset of an already marketed drug can provide the ability to make predictions how a 

new drug is going to work in the brain. Such methods have been mainly produced within 

the SVM community (Doyle et al. (2015), Duff et al. (2015) and Khodayari-Rostamabad 

et al. (2013)). Such an approach does hold promises for early drug development. 

A more simple approach based on correlation is impinged on the concept of 

biomarkers candidates (see paragraph 1.4.4). Indeed, biomarkers candidates should have 

potential for the predictability of the efficacy of the new CNS drug themselves 

(Hargreaves et al. (2015)). 

Another flavor of the SVM approach regarded the stratification of subjects. Doyle 

et al. (2015) claimed that stratification via SVM can produce a more homogenous dataset 

which could be advantageous for early drug development. Specifically, it could be used 

for selecting responders and non-responders, and finding the active dose (done in Phase I 

clinical trial) only in the responders. The drawback of stratification is the lack 

generalization of the results to the whole population. 

 

1.6 Outline of the dissertation 

In Chapter 2 and Chapter 3, practical applications of neuroimaging to 

pharmacology will be provided. How nicotine impacts brain activity will be presented. 

The modulation of brain activity was detected by EEG. Specifically, a source 

reconstruction analysis was used in order to estimate the brain activity from scalp 

electrodes. The first study (Chapter 2) has been already published as Ranzi et al. (2016), 

whereas the second study (Chapter 3) is currently (May 2016) under review.  

In Chapter 2, the first study regarding how nicotine affects the current source 

density (CSD) using a source reconstruction method will be shown. To avoid confusion, 

CSD is in essence a power spectrum analysis. In terms of source reconstruction the 

Minimum Norm algorithm (Hamalainen and Ilmoniemi (1994)) was used. Then whole-

brain CSD was extracted.  

In Chapter 3 we conducted two further analyses. In terms of source reconstruction 

the eLORETA algorithm (Pascual-Marqui et al. (2011)) was used and thirteen time-series 
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representing thirteen sources belonging to the resting-state network were extracted (Chen 

et al. (2013)). A connectivity analysis using the renormalized Partial Directed Coherence 

(rPDC) algorithm (Schelter et al. (2009)) was first adopted with the thirteen time-series. 

Then a phase-amplitude coupling analysis utilizing the Mean Resultant Vector Length 

(VL) algorithm (Miyakoshi et al. , 2013) was computed on these thirteen time-series. In 

conclusion, two studies will be presented. Overall, three analyses have been carried out 

on the same dataset: CSD (first study, Chapter 2); rPDC and VL (second study, Chapter 

3).  

In Chapter 4 I will present the concluding remarks about the dissertation. First, I 

will try to converge the results of the three analyses. I will explain how the three analyses 

showed that nicotine does increase vigilance. I will then try to sum up the material 

presented in the introduction, by reinforcing the concept that non-invasive neuroimaging 

can boost the development of modern CNS pharmacology. 

 

1.7 Experimental design of the nicotine experiment  

We run three analyses of the same experiment. First analysis (CSD) is in Chapter 2, 

whereas second (rPDC) and third (VL) analyses are located in Chapter 3. All three 

analyses share the common experimental design. For this reason I will introduce now the 

common experimental design adopted.  

The research question here was whether the well-known nicotine-induced increase of 

vigilance (Gilbert et al. (2000)) could be captured by neuroimaging techniques. In order 

to answer such question the focus on brain oscillations was considered appropriate, since 

their well known correlation with drowsiness (Sander et al. (2015)). Therefore using EEG 

was considered paramount since its ability to detect oscillatory patterns which correlate 

with drowsiness. The choice of nicotine was due the decision to study whether a well-

known cognitive enhancer as nicotine (Thiel et al. (2005)) exploits its properties by 

increasing vigilance. Such question was so far unexplored by previous neuroscientific 

research.  

The use of three EEG techniques (CSD, rPDC and VL) was justified by the fact that 

previous literature used such techniques for detecting online modulations of vigilance. In 

simple words, they correspond to three different biomarkers of drowsiness. Then we 

tested whether nicotine could possibly change such biomarkers, thus unraveling how the 

molecule modulates vigilance. As follows, I will explain in detail the rationale.  
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CSD analysis was used because its ability to detect the phenomenon of 

anteriorization of alpha (Olbrich et al. (2009)). Anteriorization of alpha is a natural 

phenomenon that happens during eyes-closed, when alpha migrates from occipital region 

to frontal region within minutes. When such a process occurs, it means that the subject 

gets drowsy. Further, we found out that a connectivity measure (rPDC) is also sensitive to 

an online decrease of vigilance (Maksimow et al. (2014)). Specifically, the authors were 

able to observe a specific direction of the effect: when we are pharmacologically drowsy 

the forward connectivity increases, whereas the backward connectivity decreases. Indeed, 

they discovered that the two types of connectivity are anti-correlated. Lastly, we found in 

the literature that phase-amplitude coupling is influenced by drowsiness (Blain-Moraes et 

al. (2015)). Specifically, they found that a decrease of phase-amplitude coupling 

correlates with a decrease of vigilance. Therefore, we used VL technique in order to 

detect the effect that nicotine can have on vigilance. In conclusion, as a first step we use 

previous literature to guide us in the selection of three methods/biomarkers which are 

more sensitive in detecting modulations of vigilance. As a second step, we analyzed the 

impact of nicotine on these three methods selected.  

Regarding the tasks, resting-state tasks were adopted: eyes-open fixation on a 

cross (EO) and eyes-closed (EC) conditions were employed. Indeed, research on model 

organisms with small neuronal circuits suggests that the physiological state of a network 

impacts the effects of neuromodulators (Marder et al. (2014)). Therefore effects of 

centrally acting drugs on oscillatory activity may thus depend on the resting-state 

condition employed. The EO condition was considered ideal for testing the effect of 

nicotine, because nicotine appears to target attentional networks (Lawrence et al. (2002), 

Thiel et al. (2005)). The EC condition was considered also important since nicotine 

impacts this condition as well (Bowers et al. (2015)). The rationale behind the EC 

condition was to induce a state of drowsiness by asking the subjects to close their eyes 

(Olbrich et al. (2009)). Regarding the terminology, drowsiness, sleepiness, tiredness and 

fatigue are all synonyms for reduced wakefulness (Sander et al. (2015)). For consistency 

reason, the term drowsiness will be used throughout the dissertation. 

According to the previous literature (Bowers et al. (2015), Fisher et al. (2012) and Foulds 

et al. (1994)) it seems that nicotine preferentially operates within three frequency ranges 

during eyes-open and eyes-closed activity in non-smokers: α1, 8.5-10.4 Hz; α2,10.5-

12.4Hz; β1, 12.5-18.4Hz. Such previous knowledge helped us in selecting a priori the 

frequency ranges where a nicotine effect was expected.  In conclusion, the present study 
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represents a standardized benchmark for conducting pharmacological research (nicotine) 

non-invasively in humans. 

 

1.8 Conclusion 

Despite of the problems that are cursing the field (e.g. lack of standardization), I think 

that a revolution is taking place within CNS pharmacology. Such revolution is mainly 

driven by non-invasive neuroimaging. A direct consequence of the marriage between 

CNS pharmacology and neuroimaging is a commercial implementation of neuroimaging 

in early drug development. I discussed thoroughly the process of early drug development 

in CNS drugs and the role of neuroimaging is having in it.  

In the following, I will present one experiment using nicotine administered in healthy 

subjects. Such experiment represents the optimal use of a standardized experimental 

design for conducting pharmacological research non-invasively in humans. Indeed, we 

tried to develop an experimental design suited for mitigating the problems listed in 

paragraph 1.4. The experiment consisted in three analyses (CSD, rPDC and VL) which 

provide different hence converging perspectives in characterizing the effect of nicotine in 

the brain. Chapter 2 will present the CSD analysis, whereas Chapter 3 is dedicated to 

rPDC and VL analyses. The common thread to the three analyses was the research 

question whether nicotine modulates vigilance. Further in common, the three analyses 

have all used EO and EC resting-state activity for testing the pharmacological activity of 

nicotine in male healthy non-smokers. In Chapter 4 I will sum up and I will show how the 

results of the three analyses converged. Anticipating the results, I will demonstrate that 

nicotine does increase vigilance. 
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2.1 Abstract 

 Modern psychopharmacological research in humans focuses on how specific 

psychoactive molecules modulate oscillatory brain activity. Here we present state-of-the-

art EEG methods applied in a resting-state drug study.  

 Thirty healthy male non-smokers were randomly allocated either to a nicotine 

group (14 subjects, 7 mg transdermal nicotine) or to a placebo group (16 subjects). EEG 

activity was recorded in an eyes-open and eyes-closed condition before and after drug 

administration. A source reconstruction (Minimum Norm algorithm) analysis was 

conducted within a frequency range of 8.5 to 18.4 Hz subdivided into three different 

frequency bands.  

 During eyes-open, nicotine reduced the power of oscillatory activity in the 12.5-

18.4 Hz frequency band in left middle frontal gyrus. In contrast, in the eyes-closed 

condition, nicotine reduced the power in the 8.5-10.4 Hz frequency band in superior 

frontal gyri and in the 10.5-12.4 Hz and 12.5-18.4 Hz frequency bands in supplementary 

motor areas. In summary, nicotine reduced power of the 12.5-18.4 Hz band in the left 

middle frontal gyrus during eyes-open, and it reduced power from 8.5 to 18.4 Hz in a 

brain area spanning from superior frontal gyri to supplementary motor areas during eyes-

closed.  

 In conclusion, the results suggest that nicotine counteracts the phenomenon of 

anteriorization of alpha activity, hence potentially increasing the level of vigilance. 
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2.2 Introduction 

In recent years, much interest has been raised in detecting how pharmacological 

challenges could modify oscillatory brain activity. Nonetheless, a problem in current 

neuroscience is low replicability (Button et al. (2013), Hartshorne and Schachner (2012)). 

Three key factors in designing an experiment are essential: replicability (i.e. finding the 

same results among different labs); reproducibility (i.e. using a simplified experimental 

design, describing protocols transparently and adhering to agreed benchmarks); reliability 

(i.e. the correlation between a measurement and the true value). By maximizing 

reproducibility and reliability, an increase of replicability is expected. In terms of 

experimental design, two recommendations are here suggested to alleviate the problem of 

low replicability which complement the guidelines presented in Jobert et al. (2012).  

 The first recommendation aims to increase reproducibility. There's a need to 

follow agreed-upon protocols and benchmarks (Collins and Tabak (2014)), which is key 

to increasing reproducibility. Likewise, pharmaco-electroencephalographical research is 

currently affected by lack of standardization (Wilson et al. (2014)). Further, a simplified 

design (i.e. resting-state) has the advantage of high translational potential for drug 

research (Marder et al. (2014), Smucny et al. (2014)). Functional magnetic resonance 

imaging studies suggest that the patterns of brain activation during resting-state differ 

between eyes-closed, eyes-open or fixation conditions (Patriat et al. (2013)). Between the 

two alternatives of either eyes-open fixating on a cross or eyes-open without fixation, the 

first was considered the ideal condition for testing the effect of nicotine, since nicotine 

appears to target attentional networks (Lawrence et al. (2002), Thiel et al. (2005)).  

  The second recommendation aims to increase reliability. Among many 

factors which determines reliability, a key issue concerns the correct estimation of intra-

subject variability. Shortly, intra-subject variability corresponds to a combination of intra-

subject variability (i.e. single-subject's homeostatic responses and own biology) and 

within-session errors measurement (Sinkkonen and Tervaniemi (2000)). A reliable way of 

estimating such intra-subject variability is to run a repeated measures design (Sinkkonen 

and Tervaniemi (2000)). A recent departure from the repeated measures design is the 

mixed-effects design, which seems to outperform the more traditional repeated measures 

analysis (Bernal-Rusiel et al. (2013)). Further, a hierarchical mixed-effects design can 

effectively estimate at first intra-subject variability (Friston et al. (2005), Mumford and 

Nichols (2009)) and then inter-subject variability (Stelzer et al. (2014)). In conclusion, a 
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hierarchical mixed-effects design seems particularly useful in increasing reliability in a 

pharmacological study, since the appropriate estimation of individual reaction with 

respect to the administration of a drug is of fundamental importance (Lavielle (2015)).  

 Regarding the neuroimaging technique used, source reconstruction on EEG time-

series was employed, since it was considered a privileged window for looking at the drug-

induced modulations of brain oscillations (Saletu et al. (2010)). In short, the technique is 

based on the estimation of dipolar sources which reflect the power of brain oscillations. 

Each dipolar source corresponds to the activity generated from 10.000 to 50.000 

synchronized pyramidal cells (Murakami and Okada (2006)). 

 A previous study with non-smokers (Foulds et al. (1994)) investigated whether  

nicotine would impact EEG brain activity during eyes-open resting-state. The authors 

found a significant increase in the single-subject's dominant alpha (namely, the highest 

spectral power within the 8-13 Hz range), induced by nicotine. A more recent study with 

non-smokers (Fisher et al. (2012)) investigated the effect of nicotine when the subjects 

fixated on a cross. They found a significant nicotine-induced increase in power within the 

frequency range of 10.5-13.0 Hz at a left frontal electrode (electrode F3).   

 Particularly intriguing is the question what generates the already established 

nicotine-induced cognitive enhancing properties (Giessing and Thiel (2012)). Our 

hypothesis was that nicotine induces a cognitive improvement via an increase of 

vigilance. To test such hypothesis we used the eyes-closed activity as a benchmark. 

Indeed, it was already demonstrated that eyes-closed activity induces a decrease of 

vigilance itself and this can be monitored by EEG (Olbrich et al. (2009)). Therefore our 

hypothesis was that nicotine could counteract a naturally induced decrease of vigilance. 

For detecting vigilance modulations we use EEG as technique of choice.   

 In summary, the aim of the present paper is twofold. On the one hand, two 

recommendations (e.g. increasing standardization of experimental design; employing 

mixed-effects designs) will be implemented with the assumption that they can alleviate 

the problem of low replicability in current psychopharmacological EEG studies. On the 

other hand, we present a state-of-the-art source reconstruction analysis approach to 

localize drug-induced changes of oscillatory activity. Given prior evidence of the effects 

of nicotine on brain activity in the alpha frequency range, we focused our analysis on the 

alpha and lower beta band and assessed the drug effect in eyes-closed (EC) and eyes-open 

(EO) resting-state conditions. The hypothesis to be tested is whether nicotine would 

induce an increment of vigilance, particularly within the alpha range during EC. To the 
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best of the authors' knowledge, this is the first paper using a source reconstruction 

analysis to investigate the effects of nicotine in an eyes-closed resting-state in healthy 

non-smoker male subjects.  

 

2.3 Methods  

 

2.3.1 Subjects 

Thirty right-handed, nonsmoking male subjects (age: 27 years ± 3, weight: 81.1 kg ± 9.5, 

height: 1.82 meter ± 0.05) participated in this study. Subjects were recruited by 

advertisement from the local university. Subjects were not on any kind of medication nor 

reported any history of major medical illness or neurological or psychiatric disorders. 

Non-smokers (no more than 10 cigarettes consumed during their whole life) were studied 

to avoid confounding effects of withdrawal symptoms (Fisher et al. (2012)). We recruited 

only male subjects to minimize gender-related confounds (Jausovec and Jausovec (2010)) 

and possible hormonal interaction with nicotine (Duncan and Northoff (2013)). All 

subjects gave written informed consent. The study was approved by the Ethics Committee 

of the German Psychological Association.  

 

2.3.2 Drugs 

All subjects refrained from taking any legal psychoactive drugs such as alcohol, caffeine 

24 hours before the experiment. Following a double-blind procedure, each subject 

was randomly allocated to receive either nicotine (NIC, n=14) or placebo (PLA, n=16). A 

7 mg nicotine patch (Niquitin® Clear 7 mg, GlaxoSmithKline Consumer Healthcare 

GmbH) and a matched placebo (plaster of same shape and thickness). The patches were 

administered by a third person, not otherwise involved in the study, onto the subject's 

lower back, covered with a standard plaster and removed after 50 min. In order to 

minimize side effects in non smokers, the patch was administered for 50 min only and 

then removed prior to the second EEG recording session. A similar procedure was 

previously used by Breckel et al. (2015) and Potter and Newhouse (2008) and yielded 

significant behavioural effects of nicotine. Since very little time elapsed between the 
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removal of the patch and EEG recording (~10 min refilling the electrodes + 14 min EO + 

7 min EC), nicotine level in the blood is expected to be stable during the whole EEG 

recording session (Benowitz et al. (2009)).  

 

2.3.3 Experimental design 

We employed a mixed-effects design, which investigates the effects of nicotine both, 

within and across subjects. Subjects were randomly allocated to the placebo or nicotine 

group (between-subject factor drug) and measured in two sessions, before (PRE) and after 

(POST) the respective intervention (within-subject factor time), namely immediately after 

removal of the placebo or nicotine patch. Each EEG recording session consisted of 14-

min eyes-open fixation on a cross condition (EO) as well as a 7- min eyes-closed 

condition (EC). The EC session always followed the EO session. A 40-min cognitive task 

was also performed thereafter, but was not analyzed due to a systematic software error. 

Testing took place at the same time of day (3:00 pm) for all subjects in order to minimize 

the influence of circadian rhythms. Subjects remained with the EEG cap mounted during 

the whole experiment. Before the second recording, the gel in the electrodes was refilled 

in order to return their impedance to 10 kΩ for each electrode (see section 2.5). 

 

2.3.4 Subjective and physiological  measures 

To investigate subjective and cardiovascular effects of nicotine, mood rating scales as 

well as heart rate and blood pressure were assessed two times: upon arrival (PRE) and 

immediately after removal of the placebo or nicotine patch (POST). Subjective mood was 

assessed with visual analogue scales (Bond and Lader (1974)). Rating scores were 

grouped into the three factors ‘alertness’, ‘contentedness’, and ‘calmness’, according to 

Bond and Lader (1974). Immediately after removal of the placebo or nicotine patch, 

subjects were also asked to assess whether they received the nicotine or placebo patch. 
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2.3.5 EEG recording 

The EEG data were recorded with 63 Ag/AgCl-electrodes attached to an elastic cap 

(Easycap GmbH, Herrsching-Breitbrunn, Germany) with standard 10-20 montage. The 

reference was placed at the tip of the nose and electrode AFz set as ground (see standard 

10-20 montage). One EOG electrode was positioned on the external canthus of the right 

eye, again referenced to the tip of the nose. Impedances were kept below 10 kΩ for each 

electrode. The EEG signal was sampled with 500 Hz and amplified using a BrainAmp 

system (Brain Products, Munich, Germany). Data were recorded and digitalized with the 

BrainVision Recorder (Brain Products, Munich, Germany). Data were stored in a 

computer and analyzed off-line.  

 All recordings were performed in an electrically shielded, sound insulated and 

dimly-lit chamber. Subjects were seated in a comfortable chair with firm armrests up to 

the wrists. During the EO condition the subjects were asked to keep their eyes-open and 

fixate their gaze on a cross located on the screen. The cross was light grey (size 0.86o) 

and superimposed on a dark-grey background. During EC the cross was kept on the 

screen, but the subject was asked to close his eyes and to keep them closed until the 

experimenter asked to open them again.  

 

2.3.6 EEG data preprocessing 

Preprocessing was performed using EEGLAB (Delorme and Makeig (2004)), version 

12.0.2.5b and included the following steps: first, raw time-series from BrainVision 

Analyzer (Brain Products, Munich, Germany) were converted to an EEGLAB compatible 

format. Afterwards, PRE and POST time-series belonging to the same subject were 

concatenated (i.e. 14 min + 14 min = 28 min length time-series). The assumption was that 

a concatenated time-series belonging to the same subject provides a better estimate of 

ICA-rejected artifacts than a single time-series (i.e. only 14 min), according to Tsai et al. 

(2014). The two conditions (EO and EC) were concatenated separately. Data were then 

high-pass symmetric FIR filtered at 2 Hz with Blackman windows (transition band 0.9 

Hz, filter order 1000), downsampled to 250 Hz and low-pass symmetric FIR filtered at 40 

Hz with Blackman windows (transition band 5 Hz, filter order 276). The channel location 

according to standard 10-20 montage was then added (necessary step for generating ICA 

topographies). ICA estimation was computed. Then ICA-based artifacts rejection (i.e. 
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blinks; muscular movements; heart-beats;) was performed in a semi-automated way on a 

subject-by-subject basis by considering the concatenated data according to published 

guidelines (Jung et al. (2000)). It should be noted that using ICA-based artifact rejection 

instead of manually rejecting corrupted epochs, guarantees no data loss. This means that 

the clean EO and EC time-series always have the same length as the raw time-series. The 

ICA-based artifact rejection was considered particularly important for source 

reconstruction analysis: such a procedure does significantly improve source estimation 

(Fatima et al. (2013)). The concatenated file was then split back into the two original 

time-series (i.e. from 28 min length time-series back again to two separated 14 min time-

series), now cleaned of artifacts. Further, the EOG channel was deleted from each time-

series. Lastly, each time-series was split into 5-sec epochs (i.e. 14 min = 168 epochs of 5 

sec each).     

 

2.3.7 Source reconstruction analysis and statistical inference on sources 

Source reconstruction was carried out using the Minimum Norm algorithm implemented 

in SPM12 version 6225 (Litvak et al. (2011)). The 5-sec epochs from EEGLAB were first 

converted to an SPM-compatible format. In order to create the head model, an ICBM152 

template was used according to Litvak et al. (2011). For all subjects a cortical mesh was 

extracted by using a three-layer Boundary Element Model (BEM) head model. Therefore 

all subjects had the very same cortical mesh. The computation of the sources was band-

limited according to standard frequency ranges  8.5-10.4 Hz, α1; 10.5-12.4 Hz, α2; 12.5-

18.4 Hz, β1 according to Jobert et al. (2012). Standard frequency ranges - instead of 

custom frequency ranges - were chosen in order to maximize reproducibility while 

minimizing circular inference (Kriegeskorte et al. (2009)). The estimation of sources was 

computed within each frequency range. The Minimum Norm algorithm (Hamalainen and 

Ilmoniemi (1994)), as implemented in SPM, was used. No mask was used for restricting 

sources to a particular location. A smoothing kernel of 32 mm was set. This resulted in a 

32-bit image representing the power of estimated sources at a specific frequency range 

within a 5-sec epoch. All the images for each subject and for each condition were later 

averaged using the 'spm_reslice.m' Matlab function with 7th Degree B-Spline interpolation 

available in SPM. This resulted in a single averaged image per subject per session (either 

PRE or POST) and per condition (either EO or EC).  
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 Statistical inference on the sources was performed with Statistical NonParametric 

Mapping version 13 (SnPM13, Nichols and Holmes (2002)). The averaged single subject 

images of the PRE and POST condition in the PLA and NIC group entered into a mixed-

effects analysis based on non-parametric statistics and permutation. The mixed-effects 

design relies on a hierarchical generalized linear model (GLM) according to Friston et al. 

(2005). 

To illustrate the effect of EO and EC we first validated the pipeline by performing a two-

sample paired T-test by SnPM13 using the data of 29 subjects of the PRE condition only 

and comparing between EO and EC. Only 29 subjects instead of 30 were computed due to 

software limitation. Note that only the first 7 min of EO were considered, to have a 

similar length as the EC condition. This procedure of pipeline-validation follows the same 

rationale of standard pipeline-validation used in fMRI research (Liu et al. (2013)): if the 

pipeline can  detect the often reported EO versus EC differences (i.e. typical increase of 

occipital alpha in EEG during EC), then it should also be possible to gauge drug effects. 

Our validation yielded the typical increase of occipital alpha (see Chen et al. (2008)).  

Then, in order to isolate drug effects, the single subject data in the EO and EC condition 

were entered separately into the '2 Groups: Test diff of response; 2 conditions, 1 scan per 

condition' option in SnPM13. This analysis tests for an interaction and represents a 

special case of a mixed-effect design which holds when exactly two measurements per 

subject are available (Mumford and Nichols (2009)). Note that the procedure is 

equivalent to a two-sample unpaired T-test on the PRE-POST differences (Mumford and 

Nichols, 2009). For each condition (e.g. EC) a total of 60 images (2 images per subject, 1 

PRE and 1 POST) were used as input for SnPM13. Here the whole time points were used 

for either EO (14 min) or EC (7 min), without data loss. Significant differences between 

PLA and NIC were then estimated using the following two planned contrasts for each 

frequency range in the EO and EC condition: (NIC PRE-NIC POST) - (PLA PRE-PLA 

POST) to isolate stronger decreases of power under nicotine and (PLA PRE-PLA POST) 

- (NIC PRE-NIC POST) to isolate stronger increases of power under nicotine. The 

number of permutations for all analyses was set to 5000, according to Douaud et al. 

(2013). The statistical inference chosen was a cluster-inference analysis on pseudo t-

statistics values (Nichols and Holmes (2002)). Although, cluster-inference analysis 

suffers from low spatial specificity when significant clusters are large (Woo et al. 

(2014)), this is not considered an issue for the already low spatial resolution of EEG 

source reconstruction methods (Akalin Acar and Makeig (2013). The smoothing at 
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statistical level was again set at 32 mm in order to comply with the smoothing already 

used for computing the sources. Note that even though high smoothing was applied, it 

should have not biased the results. Indeed, permutation-based methods - like SnPM13 - 

are resistant to changes of smoothing values (Pantazis et al. (2005)). All P-values 

reported and discussed were significant at P-value < 0.05 FWE-corrected. MNI 

coordinates of the significant clusters were translated to anatomical labels according to 

the Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. (2002)). Further, the 

AAL labels where plugged into the Online Brain Atlas Reconciliation Tool (OBART) 

(Bohland et al. (2009)) in order to obtain standardized names of anatomical labels.  

 The pipeline used here (by using SPM and SnPM) is very similar to the pipeline 

implemented in the famous LORETA software (Pascual-Marqui et al. (1994)), both from 

a source reconstruction algorithm point of view as from a nonparametric permutation-

based statistic standpoint. We opted for SPM and SnPM since they are implemented in a 

MATLAB environment, thus providing more flexibility with the analysis. In conclusion, 

we  believe that the pipeline used and the pipeline already implemented in LORETA 

software should convey approximately the same results, hence they are comparable.   

 The direction of the nicotine effect was computed according to Douaud et al. 

(2013). In short, the summary statistics image was used as mask for all raw images and 

voxel intensity at those locations were extracted per subject and condition and averaged. 

A value of 100 % was attributed at the PRE image, whereas the POST image provided a 

difference in percentage with respect to the PRE image.  

 

2.4 Results  

 

2.4.1 Subjective and physiological  measures 

A Two-way ANOVA (Weighted Least Square algorithm) was performed with the 

between-subject factor drug (either placebo or nicotine) and the within-subject factor time 

(PRE and POST) both for cardiovascular measures and mood ratings. Cardiovascular 

measures are depicted in Table 1. 
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Table 1: Cardiovascular measures pre and post nicotine/placebo.  

         Measure 

 

Nicotine  

 

Placebo 

  

PRE 

 

POST 

 

PRE 

 

POST 

Systolic pressure  

 

129  (12) 

 

125  (12) 

 

132 (11) 

 

122 (10) 

Diastolic pressure  

 

81 (8)  

 

82 (8)  

 

81 (7)  

 

82 (8)  

Heart rate  

 

78 (15) 

 

65 (16) 

 

79 (14) 

 

60 (9) 

Note. Systolic and diastolic pressure in mmHg. Heart rate in bpm. Means and standard 

deviation (in parentheses). 

 

 For systolic blood pressure we found a significant interaction between the two 

factors (F1,28 = 4.33, p < 0.047), which was related to a stronger decrease of systolic blood 

pressure under placebo as compared to nicotine. There was neither a significant main 

effect of drug nor a significant main effect of time. The heart rate showed a tendency for a 

significant interaction between the two factors showing a stronger decrease under placebo 

as compared to nicotine. The heart rate showed neither a significant main effect of drug 

nor a significant main effect of time. No significant effects (neither main effects nor 

interaction) were found for diastolic blood pressure.  

 We found no significant interaction between the two factors on mood ratings with 

respect to alertness (F1,28= 0.844, p < 0.367), contentedness (F1,28 = 0.140, p < 0.720) or 

calmness (F1,28 = 0.170, p < 0.685). There was neither a significant main effect of drug 

nor a significant main effect of time. A Two-way ANOVA (Ordinary Least Square 

algorithm) was performed with the between-subject factor drug (either placebo or 

nicotine) both for vertigo and nausea after the patch was removed. Neither for vertigo nor 

nausea a significant was found. Lastly, we found a significant effect with respect to the 

subjects' guesses whether they received either placebo or nicotine. Indeed, Chi-square 

showed a significant effect (χ2 = 8.134, p < 0.004). 
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2.4.2 Source reconstruction analysis  

To validate our data analysis we compared oscillatory activity in the EC and EO 

condition with the data from prior to the intervention (PRE). A drug by time interaction 

was computed on the data acquired prior to drug/placebo administration comparing EC 

and EO.  

 

Figure 1: Eyes-open (EO) vs eyes-closed (EC) condition. Data were taken from the 

session prior (PRE) to drug/placebo administration. a,  Occipital increase of power within 

8.5-10.4 Hz during EC as compared  to EO. b, Frontal decrease of power within 8.5-10.4 

Hz during EC as compared to EO. The figures show FWE-corrected cluster-inference 

results at p < 0.05 (two-sample paired T-test). 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 

 

 First, we found an increase of power within 8.5-10.4 Hz in the occipital lobe 

during EC with respect to EO (Fig. 1a). Further, we found a decrease of power within 8.5-

10.4 Hz in the frontal lobe during EC with respect to EO (Fig. 1b).  
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Table 2: FWE-corrected P-values of the nicotine-induced power changes in eyes-open 

(EO) and eyes-closed (EC).  

 

Eyes-open (EO), decrease of power under nicotine;  

Frequency range P-value  

12.5-18.4 0.0148 

10.5-12.4 ns 

8.5-10.4 ns 

 

 

    Eyes-open (EO), increase of power under nicotine;  

Frequency range  P-value 

12.5-18.4 ns 

10.5-12.4 ns 

8.5-10.4 ns 

 

 

   Eyes-closed (EC), decrease of power under nicotine;  

Frequency range P-value 

12.5-18.4 0.0024 

10.5-12.4 0.0008 

8.5-10.4 0.0022 

 

 

   Eyes-closed (EC), increase of power under nicotine;  

Frequency range  P-value 

12.5-18.4 ns 

10.5-12.4 ns 

8.5-10.4 ns 

Note. Frequency range in Hz. All  P-values are FWE-corrected for whole brain 

comparisons and Bonferroni-corrected (p < 0.016) for each direction (either increase or 

decrease). 'ns' means not significant (p > 0.016).  



47 
 

 To investigate the effects of nicotine on resting-state oscillations, we analyzed the 

factor drug (nicotine/placebo) by factor time (PRE/POST) interaction using a mixed-

effects design. In the EO condition, we found a significant decrease of power from the 

PRE to the POST session under nicotine as compared to placebo within the frequency 

range of 12.5-18.4 Hz in the orbital part of the left middle frontal gyrus (p = 0.0148 , 

FWE-corrected; MNI coordinates - x,y,z - -44, 48, -6; Fig. 2a). Further, a tendency for a 

significant decrease of power was found in the left angular gyrus (p = 0.093, FWE-

corrected; MNI coordinates - x,y,z- -40, -70, 44; figure not shown). No further decreases 

or increases in power were found for other frequency ranges (see Table 2). 

 

 

Figure 2: Effects of nicotine in the 12.5-18.4 Hz frequency range. a,  EO condition. 

Decrease of power within the frequency range of 12.5-18.4 Hz in left middle frontal gyrus 

comparing the PRE and POST condition under NIC with PLA; b, EC condition. Decrease 

of power within the frequency range of 12.5-18.4 Hz in right supplementary motor area 

comparing the PRE and POST condition under NIC with PLA. Both figures show FWE-

corrected cluster-inference results at p < 0.05. 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 

 

In the EC condition, we found a significant decrease of power from the PRE to the POST 

condition under nicotine as compared to placebo: within frequency range of 8.5-10.4 Hz 

in right and left superior frontal gyrus (both areas p = 0.002, FWE-corrected; MNI 
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coordinates - x,y,z - either 20, 20, 58 or -18, 10, 62; Fig. 3a). A significant decrease of 

power was also present within the 10.5-12.4 frequency range in the right supplementary 

motor area (most significant cluster p = 0.0008, FWE-corrected; MNI coordinates - x,y,z 

- 10, 22, 60; Fig. 3b) and in the 12.5-18.4 Hz frequency range in right supplementary 

motor area (most significant cluster p = 0.0024, FWE-corrected, MNI coordinates - x,y,z 

- 10, 22, 60; Fig. 2b). Hence, in the EC condition widespread frontal decreases in power 

were observed in alpha and beta frequency bands. Further, a tendency for a significant 

increase of power was found within 12.5-18.4 Hz in left and right middle occipital gyri 

(both areas p = 0.076, FWE-corrected; MNI coordinates - x,y,z - either -50, -78, 6 or  38, 

-84, 26; figure not shown). No further decrease or increase in power was found in the 

investigated frequency ranges (see Table 2). 

 

 

Figure 3: Effects of nicotine on 8.5-10.4 Hz and 10.5-12.4 Hz frequency ranges in the EC 

condition. a, Decrease of power within the frequency range of 8.5-10.4 Hz in right and 

left superior frontal gyrus comparing the PRE and POST condition under NIC with PLA; 

b, Decrease of power within the frequency range of 10.5-12.4 Hz in right supplementary 

motor area comparing the PRE and POST condition under NIC with PLA. Note that no 

effect of nicotine was found in these frequency ranges in the EO condition. Both figures 

show FWE-corrected cluster-inference results with p < 0.05. 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 
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 The direction of the nicotine effect was computed to further illustrate the nicotine-

induced decrease of brain oscillatory power with respect to PLA. The box plot 

representing the frequency range from 10.5 to 12.4 Hz during EC condition is shown in 

Fig. 4. All other frequency bands which were significant in Table 2, showed the same 

pattern as Fig. 4 after computing their respective box plots (not shown). 

 

Figure 4: Direction of the nicotine effect on 10.5-12.4 Hz in the EC condition. The x-axis 

refers to the condition of either NIC or PLA. The y-axis refers to percentage change 

between PRE and POST for each condition. The figure shows a significant decrease 

(negative percentage values) from 10.5 to 12.4 Hz of NIC with respect to PLA. On each 

box plot, the central mark is the median, whereas the edges of the box are the 25th and 

75th percentiles and the whiskers extend to the most extremes data points not considered 

outliers.  

Copyright © 2016 Karger Publishers, Basel, Switzerland. 
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2.5 Discussion 

The aim of the article was to establish and test a standardized benchmark procedure for 

studying the drug-induced modulation of oscillatory brain activity by EEG. As an aside, it 

has been briefly discussed about practical steps in order to incentivize replicability in 

pharmacological research. 

 Regarding the cardiovascular effects of nicotine are in line with many prior 

findings showing a relative increase of heart rate and/or blood pressure under nicotine 

(Fisher et al. (2012), Thiel et al. (2005), Ahrens et al. (2015), Logemann et al. (2014)).  

 Regarding the pipeline-validation, the increase of power within 8.5-10.4 Hz in the 

occipital lobe during EC with respect to EO replicates previous results quite accurately 

(Chen et al. (2008)). We also found a decrease of power within 8.5-10.4 Hz in the frontal 

lobe during EC with respect to EO. Overall, the increase of power occipitally during EC 

and the decrease of it frontally during EO, resembles the different correlation of EEG 

alpha activity and BOLD activity pattern found in Sadaghiani et al. (2010). These authors 

used simultaneous EEG-fMRI recordings and focused specifically on the alpha 

frequency. In their data, occipital alpha amplitude during an eyes-closed condition 

correlated negatively with BOLD activity fluctuations while frontal alpha amplitude 

correlated positively with BOLD activity fluctuations. These findings seem to be in line 

with our data. 

 Regarding the EEG analyses of the pharmacological manipulation, a nicotine-

induced modulation of power was found during EO (decrease within the frequency range 

of 12.5-18.4 Hz in the left middle frontal gyrus) and during EC (decrease within a 

frequency range of 8.5-10.4 Hz in the frontal gyri and decrease within 10.5-12.4 Hz and 

12.5-18.4 Hz in the supplementary motor areas).  

 Although one previous study examined the effect of nicotine during EC and EO 

by EEG (Gilbert et al. (2000)), their analysis was limited to smokers. Therefore, a direct 

comparison with either the present study is not possible. Instead, the present study is very 

similar to Fisher et al. (2012) and a more direct comparison is therefore possible.   

 As a comment, the significant decrease within the frequency range of 12.5-18.4 

Hz in the left middle frontal gyrus during EO condition is somewhat in line with the 

nicotine-induced changes in the higher alpha-band over left frontal electrodes reported by 

Fisher et al. (2012). The direction of the effect was however different with increases 

reported by Fisher et al. (2012). Five reasons may have contributed to this discrepancy. 
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First the different definition of frequency ranges, either 12.5-18.4 Hz (present paper) or 

10.5-13 Hz (Fisher et al. (2012)). Second the lower plasma nicotine concentration that is 

obtained by a 7 mg patch (present paper) as compared to a 6 mg nicotine gum used by 

Fisher et al. (2012) (see Table 1 in Benowitz et al. (2009)). Indeed, a non-linear dose-

response pattern could lead to completely opposite effects (i.e. in terms of vigilance) 

(Husain and Mehta (2011)). A third source of discrepancy could have been a difference in 

sampling the groups of subjects. Indeed, only males were used in the present paper, 

instead of a mixed sample of males and females (Fisher et al. (2012)). Fourth, the 

different statistical models used: a mixed-effects design with fourteen NIC repeated 

measures and sixteen PLA repeated measures was used in the present paper. Instead, in 

Fisher et al. (2012) twenty subjects were assessed in a within-subject design both under 

the influence of nicotine and under placebo. Fifth, the discrepancy could be generated by 

using different measurements of resting-state activity of 14 min (present paper) as 

compared to 2 min in Fisher et al. (2012).  

 In contrast to the EO condition, the EC condition showed novel results. Namely, 

the decrease in power in a range from 8.5 to 18.5 Hz during EC spread through the frontal 

lobe and was stronger than the effect of nicotine during EO. Indeed, the significant P-

values are smaller in EC compared to EO, notwithstanding halved signal-to-noise ratio 

(SNR) during EC (7 min) with respect to EO (14 min).    

 As follows, we provide an interpretation of the results which will be limited to the 

EC condition since existing scientific evidence about a clear link between frontal alpha 

and sedation. The phenomenon we are referring to is called anteriorization of alpha (see 

below) and it appears simultaneously as a decrease of vigilance experienced by the 

subject. First, Olbrich et al. (2009) demonstrated that during 30 minutes eyes-closed (no 

drug) the brain activity tends to naturally move from higher vigilance stages to lower 

vigilance stages. One of the key issues of such process is the phenomenon of 

anteriorization of alpha: using a predefined alpha range between 8 to 12 Hz, the authors 

showed that the power within such frequency range gradually decreases in the occipital 

lobe but increases frontally during eyes-closed. This pattern can be observed already a 

few minutes after closing the eyes. Second, Vijayan et al. (2013) showed that the 

anesthetic propofol during eyes-closed could artificially reproduce the abovementioned 

anteriorization of alpha in healthy subjects. This pattern was correlated  - together with an 

increase of < 1Hz oscillation -, with the gradual loss of responsiveness to stimuli as the 

anesthetic dose was increased. 
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Note that a prior study found a phenomenon similar to anteriorization of alpha 

during eyes-closed after smoking (Knott, 1989). There were however several differences 

in the design of that study and our study that may account for these conflicting results. 

For example, EEG recordings with eyes-closed were limited to 3 min which may not be 

enough to detect the anteriorization of alpha. Further, smokers were studied and opposite 

effects of nicotine on brain activity in smokers and non-smokers have been described 

previouslyErnst et al. (2001). 

 Summarizing the nicotine effect during the EC condition, it seems that nicotine 

counteracts a well preserved pattern which leads to a decrease of vigilance level. In 

conclusion, it seems that the decrease in power shown during EC could reflect a nicotine-

induced increase of vigilance.   

 The frontal location of our nicotine effect is in line with Picard et al. (2013). 

These authors used PET and radioligands for localizing the α4β2nicotinic receptors in 

humans. Particularly interesting, they combined their result with the brain areas which 

were involved during eyes-closed activity within alpha activity in a previous EEG-fMRI 

study (Sadaghiani et al. (2010)).  The authors (Picard et al., 2013) were able to find that 

the brain areas with highest concentration of α4β2 receptors were located within the 

insular and anterior cingulate cortex. Note that our EC results showed the most significant 

clusters (the darkest spots in the figures) located in the region that could correspond 

perfectly to the CI: they are located close to the midline. Therefore we speculate that 

nicotine binds to the α4β2 receptors directly located in CI. The consequence of such 

binding could be a decrease of oscillatory power recorded by EEG. Such interpretation is 

further corroborated by an in vitro study showing that a low concentration of nicotine can 

activate α4β2 receptors and decrease the overall oscillatory power (Sigalas et al. , 2015). 

In conclusion, it is plausible that the decrease of power found fronto-centrally during EC 

in our experiment, reflects -at least partially- the direct action of low concentration of 

nicotine on α4β2receptors located in the cingulate cortex. 

     Worth mentioning are recent pharmacogenomic approaches which try to link the 

nicotine individual response with the COMT genotype in non-smokers (de la Salle et al. 

(2013)). A more recent study (Bowers et al. (2015)) investigated the modulatory role of 

COMT genotype on nicotine effects resting-state condition in non-smokers. They found 

an increase of upper alpha power frontocentrally in Met/Met carriers. Although the 

direction was opposite with respect to ours, the location and frequency range still 

converged.  
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 Several limitations have occurred in the present experiment. The first limitation 

regards nicotine administration. Indeed, in nonsmokers, it relies for ethical reasons mainly 

on pharmacokinetic techniques based on a slow release of nicotine into the body. Instead, 

it would have been optimal to use an intravenous route of administration, since the slow 

absorption of nicotine may have favored nAChR desensitization, rather than activation 

(Grady et al. (2012)). 

 The second limitation was the lack of blood samples. Therefore individual 

pharmacokinetic variability is still an issue. Bewernitz and Derendorf (2012) showed how 

pharmacokinetics could inform pharmacodynamics (i.e. drug-induced brain activity). 

Therefore future pharmacological experiments may also include the collection of a blood 

sample for optimally investigating how the drug impacts brain activity. Note however, 

that plasma blood levels of acute nicotine in nonsmokers do not show strong correlations 

with behavioural and neural measures (Vossel et al. (2008)). 

 The third limitation relates to the organization of EO and EC sessions. At first we 

explain why the two conditions were not randomized. Having first EO and then EC 

precludes straightforward comparison between them. Nonetheless this was a necessary 

choice in order to avoid doubling the number of subjects, since a meaningful comparison 

would have needed a permutation of the two conditions. Second, we justify the different 

length of the two conditions: 14-min EO and 7-min for EC. The 14-min EO was chosen 

due to the high reliability in terms of frontal asymmetry during resting EEG when the 

recording is longer than 12 min (Hagemann (2004)). Indeed, the initial hypothesis 

designing the experiment, included the possibility that nicotine could have an effect on 

frontal asymmetry (analysis later not carried out). The author claimed that the same 

length should be used also during EC. Instead, it was agreed upon in the present study to 

limit the EC to 7 min, in order to prevent the subject from falling asleep, thus potentially 

increasing the muscular artifacts (Olbrich et al. (2009)).  

 The forth limitation regards the fact that previous EEG literature (Akalin Acar and 

Makeig (2013)) suggested that a four-layer BEM head model wrapped on a single 

subject's MRI image should provide the minimal localization error (mean 5.4 mm error). 

Instead in the present study a three-layer BEM head model was wrapped on a MNI 

template image for all subjects. Therefore the configuration used in the present study 

should be affected by a mean localization error of 7.6 mm. Thus a difference of a 2.2 mm 

of mean localization error between the optimal configuration and the actual configuration 

was considered tolerable and the source estimates were considered valid.  
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 The fifth limitation is the use of standardized frequency ranges, which could have 

smeared the effect along the whole frequency range. Nonetheless, it was a mandatory step 

due to the authors' decision to adhere as much as possible to published guidelines (Jobert 

et al. (2012)). The sixth limitation regards the lack of use of genetic test in order to 

stratify the subjects. Particularly, the COMT genotype seems to be important in 

determining the individual response to nicotine (Bowers et al. (2015)). The seventh 

limitation regards the moderate number of subjects used. 

 Additional comments regard the lack of stratification in terms of responders 

versus non-responders (present paper), by using nicotine-induced cardiovascular changes 

as done elsewhere (Logemann et al. (2014). Nonetheless, both papers share the 

leveraging on intra-subject variability either by a mixed-effects design (present paper) or 

by stratifying the sample in responders versus non-responders (Logemann et al. (2014)). 

Lastly, the present study converged with Logemann et al. (2014) about the finding that 

subjects can properly guess above chance whether they have been administered either 

nicotine or placebo. 

 Independent of the limitations and comments, we would suggest that future 

studies conducting pharmacological research non-invasively in humans, would measure 

oscillatory activity in a eyes-open and eyes-closed conditions and use a mixed-effects 

design. We would further recommend to localize changes in oscillatory activity with a 

source reconstruction analysis.  

 In conclusion, we have found that during EO condition, the intake of nicotine 

reduced the power of oscillatory activity between 12.5-18.4 Hz in the orbital part of the 

left middle frontal gyrus, while during EC we found a nicotine-induced reduction of 

power from 8.5 to 18.4 Hz involving an area spanning from the supplementary motor 

areas to the superior frontal gyri. Altogether the results suggest that nicotine inhibits the 

phenomenon of anteriorization of alpha, thus potentially increasing the level of vigilance.  
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Chapter 3: Study 2, renormalized Partial Direct 
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3.1 Abstract 

We present an EEG connectivity study where thirty healthy male non-smokers 

were randomly allocated either to a nicotine group (14 subjects, 7 mg transdermal 

nicotine) or to a placebo group.  

EEG activity was recorded in an eyes-open and eyes-closed condition before and 

after drug administration. This is a re-analysis of a previous dataset. Through a source 

reconstruction procedure we extracted thirteen time-series representing thirteen sources 

belonging to resting-state network. Here we conducted connectivity analysis 

(renormalized Partial Directed Coherence, rPDC) on sources, focusing on the frequency 

range of 8.5 to 18.4 Hz, subdivided into three frequency bands (α1, α2 and β1) with the 

hypothesis that an increase in vigilance would modulate connectivity. Further, a phase-

amplitude coupling (Mean Resultant Vector Length, VL) analysis was performed 

investigating whether an increase of vigilance would modulate phase-amplitude coupling. 

In VL analysis we estimated the coupling of the phases of three low frequencies (α1, α2 

and β1) respectively, with amplitude of high frequency oscillations (30 to 40 Hz, low γ). 

 With rPDC we found that during eyes-closed, nicotine decreased feedback 

connectivity (from precentral gyrus to precuneus, angular gyrus, cuneus and superior 

occipital gyrus) at 10.5-12.4 Hz. The VL analysis showed nicotine-induced increases in 

coupling at 10.5-18.4 Hz in precuneus, cuneus and superior occipital gyrus during eyes-

closed. During eyes-open, no significant results were found neither in connectivity nor 

phase-amplitude coupling measures at any frequency range.  

In conclusion, the results suggest that nicotine potentially increases the level of 

vigilance in the eyes-closed condition. 
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3.2 Introduction  

New developments in pharmacology are based on non-invasive neuroimaging, 

particularly by leveraging and optimizing techniques and methodologies already validated 

in basic neuroscience. An example is the use of connectivity measures which provide a 

unique perspective on the interaction of oscillatory brain dynamics (Kometer et al. 

(2015)). Particularly interesting is the use of connectivity measures of electromagnetic 

oscillatory activity regarding the modulation of vigilance (Piantoni et al. (2013)). Indeed, 

there has been recent interest in directed connectivity detected by renormalized Partial 

Directed Coherence (rPDC), with a particular emphasis to the pharmacological 

modifications of vigilance (Maksimow et al. (2014)). Thus, the experimental question 

here was whether the well-known nicotine-induced increase of vigilance (Gilbert et al. 

(2000)) could be captured by connectivity analysis as well.  

 Another example of methods which can be transferred to pharmacology is the 

study on nested oscillations by phase-amplitude coupling (Monto (2012)). Indeed, there 

were already previous attempts to use phase-amplitude coupling in combination with 

anesthetics. For example, Kullback-Leibler divergence (Tort et al. (2010)) has been used 

for assessing the action of propofol in the brain (Mukamel et al. (2014)), as well as 

Canolty’s Modulation Index (Canolty et al. (2006)) for assessing the effect of sevoflurane 

on brain dynamics (Blain-Moraes et al. (2015)). Although the correlation between rPDC 

estimates and vigilance is well-established (Maksimow et al. (2014), less so is the 

correlation of phase-amplitude cross-frequency coupling (CFC) and vigilance. Therefore 

the main focus of the paper will be the connectivity analysis, whereas phase-amplitude 

CFC analysis is considered a catalyst for stimulating further research in the field. 

 For the purpose of the present paper, rPDC (Schelter et al. (2009)) was used for 

computing directed connectivity, due to its previously known sensitivity in detecting 

pharmacological manipulations (Maksimow et al. (2014)). In addition, for the phase-

amplitude CFC analysis we employed Mean Resultant Vector Length algorithm (VL) 

(Miyakoshi et al. (2013). Unfortunately, terminology is not consistent throughout 

literature: for instance, the "mean vector length" in Tort et al. (2010) is "Canolty's 

modulation index (MI)", while Tort's "modulation index (MI)" (Tort et al. (2010), Roux 

et al. (2013) and Aru et al. (2015)) is the Kullback-Leibler divergence. VL as defined in 
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Miyakoshi et al. (2013) is constructed in parallel to an index termed "phase-locking-value 

(PLV)" elsewhere. Although Kullback-Leibler divergence is considered the gold standard 

(Tort et al., 2010)), a recent paper challenged its sensitivity to spectral changes (Aru et al. 

(2015). We think that VL is a more robust measure of phase-amplitude CFC since 

restriction to the largest (top 2 %) of observed amplitudes probably causes a good 

tolerance to noise. In other words, VL should be more tolerant to changes in signal-to-

noise ratio and to the effect of outliers. In a nutshell, rPDC and VL algorithms were 

employed in the present study on source-reconstructed EEG time-series.  

 Regarding the experimental design, eyes-open fixation on a cross (EO) and eyes-

closed (EC) conditions were employed. The EO condition was considered ideal for 

testing the effect of nicotine, because nicotine appears to target attentional networks 

(Lawrence et al. (2002), Thiel et al. (2005)). The EC condition was considered also 

important since nicotine impacts this condition as well (Bowers et al. (2015)). Lastly, a 

mixed-effects design where subjects were randomly allocated to a drug or placebo 

condition and each subject was tested before and after drug or placebo administration. 

Such designs are reliable in decreasing intra-subject variability by estimating the 

individual reaction with respect to the administration of a drug (Lavielle (2015)).  

 According to the previous literature (Bowers et al. (2015), Fisher et al. (2012) and 

Foulds et al. (1994)) nicotine preferentially exploits its effect within three frequency 

ranges during eyes-open and eyes-closed activity in non-smokers: α1, 8.5-10.4 Hz; 

α2,10.5-12.4Hz; β1, 12.5-18.4Hz. Such previous knowledge helped us in selecting the 

frequency ranges where a nicotine effect was expected. We have previously shown in the 

same dataset as used here that nicotine increased vigilance during eyes-closed activity 

(Ranzi et al. (2016)). The analysis presented here offers a new complementary 

perspective in the way the molecule modifies oscillatory brain activity. Further, not 

attempt of a mechanistic explanation of a causal relationship between nicotine and 

vigilance will be provided. Thus the study has to be considered descriptive in its nature, 

intending it as a guide for future research in the field.  

 In summary, we aimed to investigate whether nicotine-induced modulations of 

vigilance impact both connectivity (rPDC) and phase-amplitude CFC (VL) computed on 

EEG time-series during resting-state. Particularly for connectivity analysis, a plausible 

link between nicotine-induced modification of connectivity and vigilance is provided. To 

the best of the authors' knowledge, this is the first paper showing results of nicotine-
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induced modification of connectivity during the resting-state condition in healthy non-

smoker male subjects. 

 
3.3 Subjects and methods 

 

3.3.1 Subjects 

Thirty right-handed, nonsmoking male subjects (age: 27 years ± 3, weight: 81.1 kg ± 9.5, 

height: 1.82 meter ± 0.05) participated in this study. Subjects were not on any kind of 

medication nor reported any history of major medical illness or neurological or 

psychiatric disorders. Only non-smokers (no more than 10 cigarettes consumed during 

their whole life) were recruited to avoid confounding effects of withdrawal symptoms 

(Fisher et al. (2012)). We decided to use only male subjects in order to minimize gender-

related confounds (Jausovec and Jausovec (2010)) and possible hormonal interaction with 

nicotine (Duncan and Northoff (2013)). All subjects gave written informed consent. The 

study was approved by the Ethics Committee of the German Psychological Association. 

 

3.3.2 Drugs 

All subjects were told to refrain from legal psychoactive drugs such as alcohol and 

caffeine 24 hours before the experiment. Following the double-blind procedure, each 

subject was randomly allocated to receive either nicotine (NIC, n=14) or placebo (PLA, 

n=16). A 7 mg nicotine patch (Niquitin® Clear 7 mg, GlaxoSmithKline Consumer 

Healthcare GmbH) and a matched placebo (plaster of same shape and thickness) were 

used. The patches were administered by a third person, not otherwise involved in the 

study, onto the subject's lower back, covered with a traditional plaster and removed after 

50 min. In order to minimize side effects in non smokers, the patch was administered for 

50 min only and then removed prior to the second EEG recording session. A comparable 

procedure was used in previous studies (Breckel et al. (2015), Potter and Newhouse 

(2008)) and provided significant behavioural effects of nicotine. Because very little time 

elapsed between the removal of the patch and EEG recording (~10 min refilling the 
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electrodes), nicotine level in the blood is expected to be stable during the whole EEG 

recording session (Benowitz et al. (2009)). 

 

3.3.3 Experimental design 

A mixed-effects design was employed, which investigates the effects of nicotine both 

within and across subjects. Subjects were randomly allocated to the placebo or nicotine 

group (between-subject factor drug) and measured in two sessions, before (PRE) and after 

(POST) the respective intervention (within-subject factor time), namely immediately after 

removal of the placebo or nicotine patch. Each EEG recording session consisted of 14-

min eyes-open fixation on a cross condition (EO) and a 7-min eyes-closed condition 

(EC). The EC session always followed the EO session. A 40-min cognitive task was also 

performed thereafter, but was not analyzed due to a systematic software error. The same 

time of day (3:00 pm) was used for all subjects in order to minimize the influence of 

circadian rhythms. Subjects kept the EEG cap mounted during the whole experiment. 

Before the second recording, the gel in the electrodes was refilled in order to regain an 

impedance below 10 kΩ for each electrode (see section 2.5). 

 

3.3.4 Subjective and physiological measures 

To address subjective and cardiovascular effects of nicotine, mood rating scales as well as 

heart rate and blood pressure were assessed twice: upon arrival (PRE) and immediately 

after removal of the placebo or nicotine patch (POST). Subjective mood was measured by 

visual analogue scales (Bond and Lader (1974). Rating scores were grouped into the three 

factors ‘alertness’, ‘contentedness’, and ‘calmness’, following Bond and Lader (1974).  

 

3.3.5 EEG recording 

The EEG data were recorded with 63 Ag/AgCl-electrodes attached to an elastic cap 

(Easycap GmbH, Herrsching-Breitbrunn, Germany). A standard 10-10 montage was used, 

where the reference was positioned at the tip of the nose and electrode AFz served as 

ground (see standard 10-10 montage). One EOG electrode was set on the external canthus 

of the right eye, again referenced to the tip of the nose. Impedances were kept below 10 
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kΩ for each electrode. The EEG signal was sampled with 500 Hz and amplified using a 

BrainAmp system (Brain Products, Munich, Germany). Data were recorded and 

digitalized with the BrainVision Recorder (Brain Products, Munich, Germany). Data were 

stored in a computer and analyzed off-line.  

 All recordings were conducted in an electrically-shielded, sound-insulated and 

dimly-lit chamber. Subjects were seated in a comfortable chair with firm armrests up to 

the wrists. During the EO condition the subjects were asked to keep their eyes-open and 

fixate their gaze on a cross located on the screen. The cross was light grey (size 0.86o). It 

was superimposed on a dark-grey background. During EC the cross was kept on the 

screen, but the subject was asked to close his eyes and to keep them closed until the 

experimenter asked to open them again. 

 

 

3.3.6 EEG data preprocessing 

Preprocessing was performed using EEGLAB (Delorme and Makeig (2004)), version 

12.0.2.5b and included the following steps: first, raw time-series from BrainVision 

Analyzer (Brain Products, Munich, Germany) were converted to an EEGLAB format. 

Afterwards, PRE and POST time-series belonging to the same subject were concatenated 

(i.e. 14 min + 14 min = 28 min length time-series). According to Tsai et al. (2014) a 

concatenated time-series belonging to the same subject provides a better estimate of ICA-

rejected artefacts than a single time-series (i.e. only 14 min). The two conditions (EO and 

EC) were concatenated separately. Data were then high-pass symmetric FIR filtered at 2 

Hz with Blackman windows (transition band 0.9 Hz, filter order 1000), downsampled to 

250 Hz and low-pass symmetric FIR filtered at 40 Hz with Blackman windows (transition 

band 5 Hz, filter order 276). The channel location according to standard 10-20 montage 

was then included (necessary step for generating ICA topographies). ICA estimation was 

computed. Then ICA-based artefacts rejection (i.e. blinks; muscular movements; heart-

beats;) was performed in a semi-automated way on a subject-by-subject basis by 

considering the concatenated data according to Jung et al. (2000). It should be noted that 

using ICA-based artefact rejection instead of manually rejecting corrupted epochs, 

guarantees no data loss. This means that the clean EO and EC time-series always have the 

same length as the raw time-series. The ICA-based artefact rejection was considered 

important for source reconstruction analysis, since it does significantly improve source 
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estimation (Fatima et al. (2013)). The concatenated file was then split back into the two 

original time-series (i.e. from 28 min length time-series back again to two separated 14 

min time-series), now cleaned from artefacts. Further, the EOG channel was deleted from 

each time-series. Lastly, each time-series was split into 5-sec epochs (i.e. 14 min = 168 

epochs of 5 sec each).     

 

3.3.7 Extraction of reconstructed sources 

The 5-sec epochs from EEGLAB were first converted to an SPM-compatible format by 

SPM12 version 6225 (Litvak et al. (2011)). Source reconstruction was carried out using 

the eLORETA algorithm (Pascual-Marqui et al. (2011)) implemented using SPM12 

beamforming toolbox (https://code.google.com/p/spm-beamformingtoolbox/). The 

regularization parameter for eLORETA was set to 0.05 (default in SPM12). In order to 

create the head model, an ICBM152 template was used according to Litvak et al. (2011). 

For all subjects a cortical mesh was extracted by using a three-layer Boundary Element 

Model (BEM) head model. Therefore all subjects had the very same cortical mesh which 

was MNI-aligned. The computation of the sources was band-limited to 4-40 Hz in order 

to avoid line noise (50 Hz). For all three analyses we further subdivided the time-series 

into standard frequency ranges of 8.5-10.4 Hz, α1; 10.5-12.4 Hz, α2; and 12.5-18.4 Hz, β1 

according to Jobert et al. (2012). Lastly, the 5-sec epochs were merged using EEGLAB 

and the whole time-series for each brain area was rebuilt. 
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Table 3: Anatomical labels and corresponding MNI coordinates of 13 ROIs belonging to 

the resting-state network. 

Note. Showing anatomical labels from either the Online Brain Atlas Reconciliation Tool 

(OBART) in the -leftmost column - or Automated Anatomical Labeling (AAL) - central 

column - corresponding to a specific MNI coordinates - rightmost columns-. 

 

Regions of Interest (ROIs) were chosen according to Chen et al. (2013) who identified 

thirteen brain regions that show increased connectivity in the alpha band in an eyes-open 

state with respect to an eyes-closed resting-state. We centred a sphere (5 mm radius) at 

each specific MNI coordinate defining the respective ROI and we then extracted the time-

series. The 13 time-series were then used as input for either rPDC or VL analyses. Since 

the areas in Chen et al. (2013) were in Talairach coordinates, a conversion to MNI 

  OBART terminology 

Anatomical label 

(AAL) 

MNI 

coordinates 

 

  

 

 

    x y z 

 
       

 

right superior frontal gyrus Frontal_Mid_Orb_R 8 60 -9 

 

 

left middle frontal gyrus Frontal_Mid_L -29 43 25 

 

 

right middle frontal gyrus Frontal_Mid_R  44 52 18 

 

 

left superior frontal gyrus Frontal_Sup_Medial_L -3 53 26 

 

 

left precentral gyrus Precentral_L  -43 2 39 

 

 

right precentral gyrus Precentral_R 56 -3 36 

 

 

left inferior parietal gyrus Parietal_Inf_L -41 -45 44 

 

 

left  precuneus Precuneus_L -4 -58 44 

 

 

right  inferior parietal gyrus Parietal_Inf_R 45 -48 54 

 

 

right angular gyrus Angular_R 39 -60 44 

 

 

left angular gyrus Angular_L  -57 -62 27 

 

 

right cuneus  Cuneus_R 7 -90 20 

 

 

left superior occipital gyrus Occipital_Sup_L -20 -99 21 
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coordinates was conducted (Lancaster et al. (2007)), by using 'tal2icbm_spm.m' (see 

http://www.brainmap.org/). Further, SPM12 recognized some MNI coordinates as outside 

the brain, therefore a slight modification of the MNI coordinates outputted by 

'tal2icbm_spm.m' was necessary. The MNI coordinates used in the present paper are 

shown in Table 3. These MNI coordinates were also used for the spatial dimensionality 

reduction needed for optimizing the source reconstruction procedure, as suggested in 

Oswal et al. (2014). Further, MNI coordinates for each ROI were translated to anatomical 

labels according to the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et 

al. (2002)), by using xjView toolbox (http://www.alivelearn.net/xjview). Lastly, the AAL 

labels where plugged in the Online Brain Atlas Reconciliation Tool (OBART) (Bohland 

et al. (2009)) in order to obtain standardized names of anatomical labels.   

In summary, 13 time-series were extracted from 13 ROIs representing 13 brains 

areas which belong to the resting-state network. Table 3 displays 13 anatomical labels of 

the corresponding ROI centred at specific MNI coordinates. 

 

3.3.8 Connectivity measure 

The inference of directed connections between pairs of reconstructed sources from related 

time series must necessarily go beyond classical correlation measures which are 

symmetric under an exchange of pair constitutents. A vector autoregressive process of 

order p (VAR[p]) serves as starting point for the inference. The order p must be 

sufficiently large to cover the time range of the suspected causal interaction. We 

deliberately chose the order p=30 which covers the time span 𝑇𝑇 = 𝑝𝑝 𝑓𝑓𝑠𝑠⁄ = 30 250⁄ 𝐻𝐻𝐻𝐻 =

0.12 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and roughly corresponds to one period of an 8 Hz signal. On the other hand, a 

VAR[30] for 13 sources requires the estimation of  30 × 13 × 13 = 5070 parameters. To 

estimate these parameters we extracted epochs of   21 seconds which comprise  

21 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 250𝐻𝐻𝐻𝐻 = 5250 data samples per source. The time series of sources are thus 

segmented into 40 and 20 epochs for EO and EC, respectively (e.g. PRE_NIC_EC 

corresponds to 20 epochs per subject). 

The so-called partial directed coherence PDC (Baccala and Sameshima (2001)) is 

a spectral equivalent of Granger-causality and based on the Fourier transform of the 

estimated VAR[30] coefficients. Since it includes the concept of partialization it can 

exclude indirect connections between a pair of sources; therefore it accounts for directed 
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direct connections. The final step is a renormalization of the PDC yielding the rPDC 

which allows for a statistical assessment of estimated values and makes them robust 

against spectral changes (details in Schelter et al. (2009)). 

We thus obtained for each epoch an asymmetrical 13-by-13 array of rPDC curves 

over a spectral axis (Nyquist interval) for each epoch. For each of the 13 × 12 =

156 ordered unequal source pairs, i.e. the off-diagonal entries of the 13-by-13 array, 

rPDC averages over the subbands of interest (α1=8.5-10.4 Hz, α2=10.5-12.4 Hz, and 

β1=12.5-18.4 Hz) were computed. In summary, for each subband (α1, α2, β1), for each 

ordered source pair (13 x 12) and for each epoch (EO: 40 / EC: 20)) we collected related 

rPDC values and (without assessing statistical significance) passed these on to the 

statistical inference (see paragraph 2.11).  

 

3.3.9 Phase-amplitude CFC 

We considered only nested phase-amplitude CFC, i.e. the coupling between the amplitude 

of high frequency oscillations (hfo band low γ) and the phase of low-frequency 

oscillations (lfo bands α1, α2, β1) within the same source. For a CFC a wider hfo band 

would surely be beneficial, however, also Monto (2012) found  the most interesting 

phase-amplitude CFC phenomena during EC below 35 Hz. 

All 13 source signals were segmented into 168 (EO) / 84 (EC) epochs of 5-sec 

each. Each segment was bandpass filtered with respect to lfo and hfo frequency bands 

using the Phase-Amplitude Coupling Toolbox (PACT http://sccn.ucsd.edu/wiki/PACT). 

This was followed by a computation of the analytic signal and an extraction of the lfo 

phase and hfo amplitude by using built-in MATLAB's commands. To avoid edge effects 

resulting from the Hilbert transform we snipped off 0.5-sec long head and tail segments 

of each 5-sec epoch. The computation of the VL from remaining 4-sec was left to the 

PACT; in this toolbox hfo amplitudes are ranked and a certain percentage (selected by a 

threshold rate) of the largest are selected to compute the vector sum with related lfo 

phases. From a global pre-assessment of our data in the context of Rayleigh statistics we 

fixed the threshold rate at 2%.  

In summary, for each of the 13 sources, for each subband (α1, α2, β1) - 13 × 3 =

39 entries per matrix − and for each epoch  (EO: 168 / EC: 84) we collected related VL 
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values and (without assessing statistical significance) passed these on to the statistical 

inference (see paragraph 2.11). 

 

3.3.10 Statistical inference  

LIMO EEG toolbox version 1.5 (Pernet et al. (2011)) provided the statistical inference for 

a hierarchical mixed-effects design (Friston et al. (2005)) based on robust regression 

(Wilcox (2012)). A Weighted Least Square algorithm was used for computing linear 

regression. A t-test (either paired or unpaired or one sample t-test, depending on the 

analysis) was employed.  

 Regarding the validation of the two pipelines, two separate methods were used in 

order to replicate previous results as much as possible. Regarding the validation of rPDC-

pipeline, a paired t-test with bootstrapping was performed on the EO and EC conditions 

in all subjects prior to placebo or drug application. Note that only the first 7 min of EO 

were considered, in order to have the same length as the EC condition. This procedure of 

methodological control allowed the same rationale of standard pipeline-validation used in 

fMRI research (Liu et al. (2013)) and EEG research (Blain-Moraes et al. (2015)): if the 

pipeline can detect a previously reported effect (e.g. EO versus EC differences), then it 

should also be possible to gauge drug effects. The validation of the rPDC-pipeline aimed 

to replicate the findings of Piantoni et al. (2013). Our results were almost all significant. 

In order to generate an interpretable graphical output, only the strongest effect was 

considered. Threshold-free Cluster Enhancement (TFCE) (Smith and Nichols (2009)) was 

used for clustering the brain areas with the strongest effect. Specifically, the maximum 

(max) of TFCE scores (using t-values as input) was computed, which in practice is 

similar to the maximum-likelihood estimation approach (having a matrix of statistical 

values, the max within such matrix is taken). For the validation of VL-pipeline, a 

different procedure was undertaken in order to provide a replication as close as possible 

to the methods of Roux et al. (2013). Particularly, a one sample t-test with bootstrapping 

at a frequency range from 8 to 13 Hz was performed on the median (it is the most robust 

estimator with respect to outliers, Wilcox (2012)) of the PRE_EC values over all trials 

belonging to each subject. The results were all significant. To further select the strongest 

effect, the medians were used as input for computing TFCE scores. Lastly, the max of 

TFCE scores was computed, which practically resembles the maximum-likelihood 

estimation approach. Note that TFCE scores are sufficiently flexible to any statistical 
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input (Smith and Nichols (2009)). Further, TFCE scores are dimension-less, therefore 

they can have different ranges depending on the statistical values used as input.  

 Contrary to methodological control, two unpaired t-test were used on the PRE and 

POST data to gauge the effect of nicotine. Beta values for each subject were obtained 

with first-order statistics (within-subject factor time; input: raw values PRE and POST; 

output: two Betas, one for PRE, one for POST). These Beta values were entered into two 

second-order statistics using two unpaired t-tests (between-subject factor drug). 

Regarding the multiple comparison problem the cluster-based approach TFCE (Smith and 

Nichols (2009)) was implemented by percentile bootstrap (Pernet et al. (2015)). The 

neighbourhood matrix was created in a data-driven manner by using wrappers to 

FieldTrip (Oostenveld et al. (2011) available in LIMO. As parameters, a threshold of 60 

as Euclidian distance and a minimum number of channels set to 2 were considered 

optimal. All parameters (e.g. iterations of bootstrap, TFCE parameters etc.) were set 

according to Pernet et al. (2015). All two analyses used the same aforementioned set up. 

The direction of the nicotine effect was computed by following the procedure suggested 

in Douaud et al. (2013) which is appropriate for our design and the generation of box 

plots is the last step in the analysis. Briefly, the summary statistics image from the 

second-order level was used as mask for the Betas measured previously (first-order 

statistic) at those significant brain areas. These Betas were extracted per subject and per 

condition and then the median was computed along the single-subject trials. Finally these 

data were then plotted in a box plot. 

 

 
3.3.11 Graphical output 

To visualize the output of the statistical analysis, BrainNet Viewer toolbox (Xia et al. 

(2013) was employed. The same template (ICBM152) was used as a headmodel both for 

source reconstruction and for the graphical output. The location of the ROIs and the 

arrows presented in the figures are anatomically precise with respect to the computed 

source estimations. 
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3.4 Results  

 

3.4.1 Subjective and physiological measures 

As previously reported (Ranzi et al. (2016)), a Two-way ANOVA was performed with 

the between-subject factor drug (either placebo or nicotine) and the within-subject factor 

time (PRE and POST) both for cardiovascular measures and mood ratings. 

 We found a significant interaction between the two factors regarding systolic 

blood pressure (F1,28 = 4.33, p< 0.047), which meant a stronger decrease of systolic blood 

pressure under placebo as compared to nicotine. There was neither a significant main 

effect of drug nor a significant main effect of time. Regarding diastolic blood pressure 

and heart rate, no significant effects (neither main effects nor interaction) were found.  

 No significant interaction between the two factors on mood ratings with respect to 

alertness (F1,28= 0.844, p < 0.367), contentedness (F1,28 = 0.140, p < 0.720) or calmness 

(F1,28 = 0.170, p < 0.685) were found. Neither a main effect of drug nor a main effect of 

time was found significant.  

 

3.4.2 Connectivity analysis (rPDC) 

 To validate our connectivity analysis we compared connectivity detected by rPDC 

in the EC and EO condition using the data prior to the intervention (PRE) by a paired t-

test. We found a significant increase (Fig. 5a) of rPDC connectivity within 10.5-12.4 Hz 

during EC with respect to EO (Fig. 5b) in the following direction: from left superior 

occipital gyrus to right superior frontal gyrus, to left middle frontal gyrus and to left 

superior frontal gyrus. Fig. 5b illustrates the significant increase in feedforward 

connectivity under EO as compared to EC. An increase of feedforward connectivity by 

comparing eyes-closed with respect to eyes-open was found also in previous study 

(Piantoni et al. (2013)). 
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Figure 5: Methodological control using connectivity detected by rPDC within 10.5-12.4 

Hz during EO with respect to EC. a, Significant increase of the EO forward connectivity 

with respect to EC is shown in the box plot. Data represented by the Betas after being 

masked by the max of TFCE scores. The x-axis refers to the condition of either EC or 

EO. The y-axis refers to median of Beta values in EC and EO, respectively. On each box 

plot, the central mark is the median, whereas the edges of the box are the 25th and 75th 

percentiles and the whiskers extend to the most extreme data points not considered 

outliers. b, Axial view of the feedforward connectivity. Red arrows indicate an increase of 

EO connectivity with respect to EC. The figure shows brain areas with maximum of 

TFCE scores. 13 ROIs analyzed are depicted in green. Nose at the top.  

Copyright © 2016 Karger Publishers, Basel, Switzerland. 

 

To investigate the effects of nicotine on resting-state oscillations, we analyzed the 

between-subject factor drug (nicotine/placebo) PRE and POST. In the EC condition, we 

found a significant decrease of connectivity in the POST session under nicotine as 

compared to placebo within the frequency range of 10.5-12.4 Hz from right precentral 

gyrus to left  precuneus, right angular gyrus, right cuneus and left superior occipital gyrus 

(p < 0.0167, FWE-corrected within each frequency band and Bonferroni-corrected for 3 

frequency bands investigated; Fig. 6b). There was no significant effect in the PRE 

session. The box plot illustrates the difference between PRE and POST values under 

nicotine and placebo (Fig. 6a), with smaller differences under nicotine. No further 
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decreases or increases in connectivity were found neither for different frequency ranges 

nor during EO. 

 

 
Figure 6: Nicotine-induced decrease of connectivity detected by rPDC within 10.5-12.4 

Hz during EC. a, Direction of the nicotine effect on 10.5-12.4 Hz in the EC condition on 

rPDC connectivity. The box plot shows a significant decrease from 10.5 to 12.4 Hz of 

NIC with respect to PLA. The x-axis refers to the condition of either NIC or PLA. The y-

axis refers to median of Beta values in NIC and PLA, respectively. On each box plot, the 

central mark is the median, whereas the edges of the box are the 25th and 75th percentiles 

and the whiskers extend to the most extreme data points not considered outliers. Outliers 

are marked with a red cross. b, Decrease (blue arrows) of rPDC connectivity induced by 

nicotine within 10.5-12.4 Hz during EC (unpaired T-test). The figure shows brain areas 

FWE-corrected cluster-based results at p < 0.0167 (Bonferroni-corrected for 3 frequency 

bands investigated). 13 ROIs analyzed in green. Nose at the top. 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 

 

3.4.3 Phase-amplitude CFC analysis (VL) 

 To validate our VL analysis we compared phase-amplitude CFC detected by VL 

in EC condition in all subjects prior to placebo or drug application with a one sample t-

test. All ROIs yielded statistically significant results. We found the most significant VL 

values (namely, max TFCE scores; e.g. TFCE score 0.00895 in Table 4) within 8-13 Hz 
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in left  precuneus, left inferior parietal gyrus, right angular gyrus and right cuneus (Fig. 

7). The pattern shown in Fig. 7 resembles the increase of phase-amplitude CFC found 

occipitally previously by one sample t-test during eyes-closed (Roux et al., 2013). 

 

 
Figure 7: Methodological control using phase-amplitude CFC detected by VL during EC 

at baseline (PRE). Plot of the max TFCE scores computed within 8-13 Hz during EC. 

Nose at the top. For actual TFCE scores see Table 4. 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 
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Table 4: Anatomical labels and corresponding TFCE scores obtained by using medians of 

VL values computed within 8-13 Hz during EC. 

Anatomical label (AAL) of 

ROIs 

TFCE 

scores 

  right superior frontal gyrus 0.00686 

left middle frontal gyrus  0.00686 

right middle frontal gyrus 0.00544 

left superior frontal gyrus 0.00686 

left precentral gyrus 0.00001 

right precentral gyrus 0.00544 

left inferior parietal gyrus 0.00544 

left  precuneus  0.00895 

left inferior parietal gyrus 0.00895 

right angular gyrus  0.00895 

left angular gyrus 0.00544 

right cuneus 0.00895 

left superior occipital gyrus  0.00727 

 

 

Note. Data were taken from the session prior (PRE) to drug/placebo administration. In 

Fig. 7 the only the max of TFCE scores are shown.  

 

To investigate the effects of nicotine on phase-amplitude CFC, we analyzed the between-

subject factor drug (nicotine/placebo) PRE and POST. In the EC condition, we found a 

significant increase of VL values from POST session under nicotine as compared to 

placebo within the frequency range of 10.5-18.4 Hz (α2 and β1) in left precuneus, right 

cuneus and left superior occipital gyrus  ( p < 0.03, FWE-corrected; Fig. 8b). There was 

no significant effect in the PRE session. The box plot illustrates the difference between 

PRE and POST values under nicotine and placebo (Fig. 8a), with larger differences under 

nicotine. No further significant decreases or increases in VL values were found neither for 

different frequency ranges nor during EO. 
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Figure 8: Nicotine-induced increase of phase-amplitude CFC detected by VL within 10.5-

18.4 Hz during EC. a, Direction of the nicotine effect at 10.5-18.4 Hz in the EC condition 

measured by VL. The box plot shows a significant increase in the frequency bands from 

10.5 to 18.4 Hz of NIC with respect to PLA. The x-axis refers to the condition of either 

NIC or PLA. The y-axis refers to the median of Beta values in NIC and PLA, 

respectively. On each box plot, the central mark is the median, whereas the edges of the 

box are the 25th and 75th percentiles and the whiskers extend to the most extreme data 

points not considered outliers. b, Increase (red ROIs) of VL values induced by nicotine 

within 10.5-18.4 Hz during EC. The results are FWE-corrected cluster-based results at p 

< 0.03 (unpaired T-test). Nose at the top. 

Copyright © 2016 Karger Publishers, Basel, Switzerland. 

 

3.5 Discussion 

The main goal of the article was to detect nicotine-induced modulations of 

connectivity (rPDC algorithm) which should reflect nicotine-induced modifications of 

vigilance. Additionally, the nicotine-induced modulations of phase-amplitude CFC (VL 

algorithm) were also addressed. The oscillatory brain activity was originally measured by 

scalp EEG during resting-state and thirteen ROIs belonging to a resting-state network 

were extracted.  
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 About the methodological control of our rPDC-pipeline, the increase of power 

within 10.5-12.4 Hz during EO with respect to EC (Fig. 5a and Fig. 5b) is in line with 

previous findings that reported eyes-open connectivity in the forward direction to be 

greater compared to eyes-closed (Piantoni et al. (2013)). As a caveat there are differences 

between the present article and Piantoni et al. (2013): the frequency range; algorithm used 

for computing connectivity, and the number and location of the estimated sources. 

Nonetheless, the authors believe that the pattern emerged in the present study looked 

similar to the discovery mentioned in the abovementioned article. Therefore, our rPDC-

pipeline was considered validated. 

 Regarding the results of the connectivity analysis (rPDC), a nicotine-induced 

decrease of connectivity was found during EC within the frequency range of 10.5-12.4 

Hz, mainly in parietal and occipital regions. Prior studies suggest that feedforward 

connectivity - from back to front - is related to increases in vigilance (Maksimow et al. 

(2014), Piantoni et al. (2013)), whereas feedback connectivity - from front to back - is 

increased with a decrease of vigilance (Maksimow et al. (2014)). In a nutshell, the two 

patterns of connectivity are anti-correlated and both indicate the on-line level of vigilance 

(Maksimow et al. (2014)). In the present study, we have demonstrated how nicotine can 

decrease the feedback connectivity during EC. We suggest that the increase of feedback 

connectivity in PLA during EC (Fig. 6b) was due to natural tiredness which characterizes 

the PLA_EC_POST versus the PLA_EC_PRE period. Therefore nicotine seems to be 

able to counteract the natural increase of feedback connectivity, hence counteracting 

sedation. In conclusion, nicotine seems to increase vigilance by dampening feedback 

connectivity.   

 Increases in phase-amplitude CFC in our methodological control under EC 

resemble findings in Osipova et al. (2008) and Roux et al. (2013). Using MEG, they 

showed the strongest phase-amplitude CFC between the phase of alpha and the amplitude 

of gamma during eyes-closed being located in parieto-occipital brain areas. A caveat is 

the fact that the above paper computed low and high gamma (up to 70 Hz), whereas in the 

present paper only low gamma (up to 40 Hz) is computed. A minor caveat regards some 

technicalities which differ between the present paper and the aforementioned paper (e.g. 

different length of EC). VL showed the strongest phase-amplitude CFC at alpha range (8-

13 Hz) parieto-occipitally (Fig. 7). Therefore we considered VL-pipeline validated. 

Regarding the results of the phase-amplitude CFC analysis (VL), a nicotine-

induced increase of VL values was found parieto-occipitally at 10.5-18.5 Hz during EC. 
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Regarding the interpretation of results of our VL analysis, Blain-Moraes et al. (2015) 

found a parietal decrease of coupling during eyes-closed when subjects became sedated 

after the administration of an anaesthetic. Although they used a different phase-amplitude 

CFC algorithm (Canolty’s Modulation Index, Canolty et al. (2006)), we conclude that 

their measure is nonetheless comparable with our VL estimation. Therefore our nicotine-

induced increase of VL phase-amplitude CFC during EC could indicate that nicotine 

actually increased vigilance. Corroborating the validity of our VL phase-amplitude CFC 

results, the effect of nicotine was found occipito-parietally despite the fact that nicotine-

induced changes in power spectrum were found frontally (Ranzi et al. (2016)). Further, 

we conducted a Kullback-Leibler divergence analysis (not published) and we found 

comparable results with our VL analysis. In other words, we think that our results from 

VL analysis are unlikely to be false positives, rather the actual nicotine effect on phase-

amplitude CFC. In conclusion, the nicotine-induced increase of VL estimates could 

indicate an increase of vigilance.  

 Now we will compare the results from the two analyses. Overall, a direct 

comparison is not possible, since they reflect potentially different neurophysiological 

phenomena (i.e. connectivity measures more linked with vigilance modulations). Further, 

the frequency range where the effect was found, differed in the three analyses as well 

(10.5-12.4 Hz for rPDC; 10.5-18.4 Hz for VL;). Nonetheless, there were some 

commonalities among the two analyses. For example, both analyses showed a significant 

effect during EC condition but not during EO condition. This was surprising since EO 

data had a twice as good SNR (namely, a twice as long time-series) as the EC condition. 

A possible explanation for such a result could be attributed to a ceiling effect during EO 

condition. In other words, it seems that the EC condition induces a decrease in vigilance 

(Olbrich et al. (2009)), whereas the psychostimulant effect of nicotine could effectively 

counteract this drop of vigilance. Instead, during EO the brain activity is possibly already 

in a state of high vigilance. 

 As a last point, note that the five general limitations mentioned in Ranzi et al. 

(2016) apply also to the present analyses (e.g. lack of blood sample; using standardized 

frequency ranges etc.). 

 In conclusion, brain activity is changed by nicotine during eyes-closed, but not 

during eyes-open. The connectivity analysis (rPDC) showed a parieto-occipital decrease 

of connectivity at 10.5-12.4 Hz during eyes-closed condition. Instead, the phase-

amplitude CFC analysis (VL) showed a parieto-occipital increase of phase-amplitude 
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CFC at 10.5-18.4 Hz during eyes-closed condition. Particularly for the connectivity 

analysis, previous literature confirmed a relationship between the increase of feedback 

connectivity and the decrease of vigilance. What was shown here was a nicotine-induced 

decrease of feedback connectivity. Altogether it seems that nicotine favours a brain state 

that is characterized by an increase of vigilance.  
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3.7 Supplementary material: Preventing false positives, a checklist  

In what follows, we present a checklist extracted from Aru et al. (2015) with the 

aim of avoiding errors and pitfalls of interpretation. Although the checklist originates 

from a method review on CFC, we think it may also apply (at least partly) to the directed 

connectivity analysis. Namely, the nine-items checklist was considered valid for all both 

rPDC and VL analyses.  

First, the presence of oscillations in the alpha frequency have already been well-

documented in eyes-closed (Bazanova and Vernon (2014)) and eyes-open activity 

(Haegens et al. (2014)). In a spectral analysis of the same dataset (Ranzi et al. (2016)) it 

was found that these three lfo bands used here, indeed cover a dominant oscillatory 

component which is a prerequisite for a meaningful analysis. Second, we selected fixed 

bandwidths in order to standardize the procedure (Jobert et al. (2012)) and knowing a 

priori the frequency ranges where nicotine has an effect (Bowers et al. (2015) and Fisher 

et al. (2012)). Specifically for phase-amplitude CFC, the hfo band was selected as the 

range from 30-40 Hz. While the bandwidth of 10 Hz is less than twice the lfo 

(mathematically, 10 Hz < (2 x lfo)), it means that the bandwidth is too narrow to capture 

the side peaks. Such situation was described as a significant source of false negatives 

(Aru et al. (2015)). Nonetheless it will at least not lead too false positives. Third, 

regarding the interpretation of instantaneous phase, such problem affects only phase-

amplitude CFC estimation (VL) but not connectivity estimation (rPDC). We found that 

the extracted lfo phases were meaningful since we consistently observed a monotonic 

growth with time. Fourth, regarding precision by snipping of 0.5 (head and tail) as 

described in paragraph 2.9 we automatically checked for edge effects. We have also 

computed the data without snipping and we found no essential changes of the value 

statistics. Fifth, since resting-state time-series are considered weakly non-linear with 

respect to evoked activity (Stam (2005)) and since we used only resting-state data, we 

considered it not necessary to test for non-linearities. Sixth, non-stationarities in the 

source reconstructed time-series have been forcibly eliminated, with the averaging of all 

voxels belonging to a specific ROI (Brookes et al. (2014)). See paragraph 2.7 for details. 

Therefore our 13 ROI’s time-series have been forced to be stationary. Seventh, regarding 

temporal structure we look at changes between at 1 min vs at 7 min for PRE_NIC and 

PRE_PLA during EC. We snipped 10 secs at the beginning and at the end of 1 min and of 
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7 minutes, having two epochs per subject of 60-sec each. We then plot box plots of the 

sources where we found a nicotine effect in the VL analysis. The box plot showed no 

evident temporal difference between min 1 vs min 7. Therefore, we think that the 

temporal structure should have not contributed to the nicotine-induced significant changes 

found in our VL analysis. Eighth, regarding the surrogate method used, we are confident 

that the bootstrap method and permutation-based methods in general should control quite 

well against false positives both in connectivity (Schoffelen and Gross (2009)) and in 

phase-amplitude coupling (van Driel et al. (2015) analyses. Ninth, regarding the 

specificity of effects it is clear that nicotine does change the power spectrum in both eyes-

closed (Bowers et al. (2015)) and eyes-open (Fisher et al. (2012)) activity. Therefore the 

generation of false positives in rPDC and VL caused by power changes is possible. For 

rPDC the renormalization allows more robustness against changes in power (Schelter et 

al. (2009)). As explained in the Introduction, for VL the 2% cut-off guarantees that VL 

estimates values are robust against power changes. In conclusion, we think that both 

rPDC and VL analyses fulfilled current standards necessary for mitigating the presence of 

false positives.  
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Chapter 4: General discussion 
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4.1 Potentials of non-invasive neuroimaging and pharmacology 

In the first part (Chapter 1) I presented the motivation why it is important to bring 

neuroimaging at the attention of the CNS pharmacology community. Such increase 

awareness should improve the way we currently understand CNS pharmacology. 

First I proposed an historical framework of the improvements which took place 

within CNS pharmacology. The scientific discipline started in the 1950 by systematically 

looking at signs and symptoms of the effect of CNS drugs on humans. Then the discipline 

began to incorporate the advances in animal models: it was the time of big discoveries in 

CNS pharmacology lead by biochemistry and by genetics. The current state of CNS 

pharmacology relates with the leading role overtaken by non-invasive neuroimaging. So 

far no new terminology has been developed. Therefore I preferred to name the field at the 

intersection between CNS pharmacology and non-invasive neuroimaging as simply 

“pharmacology and neuroimaging”.  

Second I listed six main sources of problems which are currently affecting CNS 

pharmacology and neuroimaging. I dealt with each one separately. Although the six 

sources of problems could be extended to the biological sciences as a whole, I particularly 

emphasized their role for CNS pharmacology. I attempted to delineate potential remedies 

for each source of problem. Lastly, I mentioned the remedies whenever we implemented 

them in our three EEG analyses about nicotine in the brain.  

I then expanded further the topic of non-invasive neuroimaging and early drug 

development. We have to recall that around 2010 there was a trend of pharmaceutical 

industries to abort neuroscientific projects due to their intrinsic excessive costs, high-

failure rates and high-risk investments (Abbott (2011)). However, there is a recent 

attempt to reverse previous skepticism of big pharmaceutical industries towards the 

development of CNS drugs. Indeed, there are attempts to motivate pharmaceutical 

industries in doing research by granting them special patenting issues for CNS drugs 

(Choi et al. (2014)). Further, private-public partnerships seem to be at the horizon with 

the aim of sharing risks (Wegener and Rujescu (2013)). In general, there is also some 

research that quantified financially the decreased costs for the industries if they would 

include neuroimaging as a standard tool in early drug development (e.g. Iannetti and Wise 

(2007)). In conclusion, since the potential ability of neuroimaging to decrease research 

costs, early drug development seems to be the immediate consequence of the combination 
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of CNS pharmacology and neuroimaging. Therefore an industrial implementation of 

neuroimaging is considered realistic and holds promises in the forthcoming future.  

In chapter 2 and 3 I have presented the results of three EEG analyses: Chapter 2 

(CSD analysis); Chapter 3 (rPDC and VL analyses). Those two chapters represent real-

life implementations of neuroimaging and pharmacology. The research question was 

whether nicotine improves vigilance. Our experimental design was appropriate for a 

pharmacological study since it has faithfully followed the principles presented both in 

Chapter 1 and in already published guidelines (Jobert et al. (2012)). Therefore we think 

that our experimental design was robust, in the sense that all potential confounders have 

been controlled. In a nutshell, we believe that the results of our three EEG analyses are 

unlikely to be biased. Indeed, we used the highest standards in terms of both experimental 

design and statistics. 

In Chapter 4 I will further strengthen the topic regarding the potential that  

neuroimaging could have for CNS research. I will first show how the results of our three 

EEG analyses converged. I will then provide a framework in order to interpret and 

understand the results achieved regarding the acute effect of nicotine. Later I will provide 

a broader framework and I will integrate our results with what is known so far about the 

effect of nicotine in the brain. Then I will suggest which of the three EEG analyses 

undertaken seems to have more chances to be used. Indeed, I will evaluate the three 

analyses using as criteria the simplicity of use and the existence of previous literature 

supporting its use as a biomarker candidate. I will then present some improvements which 

can increase the performances of a CNS experiment. I will then show the current hurdles 

which affect CNS experiments. Lastly I will summarize the whole dissertation, focusing 

on the key points emerged.   

 

4.2 Convergence of results among the three analyses  

Overall, I presented three EEG analyses (CSD, rPDC and VL) which results converged. 

They showed that nicotine does increase the neural correlates of vigilance. Further, all 

analyses showed that the nicotine effect is particularly strong during EC. Instead during 

EO we found a weaker effect with respect to EC. I hypothesized that the reason for such a 

difference in strength could be due to a ceiling effect: during EO the subject is already in 

an awake state, therefore the wakefullness-promoting effect of nicotine should be 

minimal. Instead, during EC the subject is forced to move into a drowsier brain state 
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(Olbrich et al. (2009) and Putilov and Donskaya (2014)), thus the effect of nicotine is 

likely to be more evident.  

In simple terms, we confirmed what was already demonstrated behaviorally: 

nicotine does increase vigilance (Gilbert et al. (2000)). This is particularly intriguing 

since it shows how behavioral and neuroimaging do converge in terms of results. It seems 

like that the use of different methods and the convergence of results resulted in an 

increase of coherent knowledge how nicotine works. Although some problems with 

replication of results still exist (Chapter 1), at least from an EEG points of view it seems 

that some concordance in the results is found. In other words, at least using the same 

method (EEG) but different techniques (CSD, VL and rPDC) we discovered a commong 

ground in terms of results. In paragraph 4.4 I will discuss more how different methods 

(e.g. fMRI and EEG) showed also convergence regarding the acute effect of nicotine. In 

general, convergence of results help us to gain a comprehensive understanding how the 

CNS drug works, possibly unraveling important aspects about its mechanisms of action.  

 

4.3 Interpretation of results 

The results of our three analyses suggest that the cognitive enhancing properties of 

nicotine are possibly due to its ability to decrease drowsiness. We generated such 

interpretation by matching behavioral results (Gilbert et al. (2000)) present already in the 

literature. As follows I will present the steps which help us to come to such conclusion.  

First, we found proofs in the literature showing how nicotine improves vigilance 

(Gilbert et al. (2000)). Then, we found a recent meta-analysis confirming the cognitive 

enhancing properties of acute nicotine administration (Heishman et al. (2010)). Note the 

nicotine improvement of cognitive performance appears to be smaller with respect to 

other psychostimulants (caffeine), but still significant (Gilbert et al. (2000)).  

Our interpretation that nicotine exerts its cognitive enhancing properties by 

decreasing drowsiness is in line with a previous study on psychostimulants (Husain and 

Mehta (2011)): the cognitive enhancing properties of psychostimulants seem particularly 

effective in sleep-deprived subjects. In other words, the ability to hinder drowsiness could 

be at the core of the psychostimulants-induced cognitive enhancement. This is what was 

suggested by studies using modafinil as cognitive enhancer (Minzenberg and Carter 

(2008)): sleep-deprived subjects taking modafinil have possibly better cognitive 

improvements with respect to not sleep-deprived subjects.  
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In conclusion, it seems that the cognitive enhancement properties of nicotine - 

which were measured in the study of Gilbert et al. (2000) - could be largely due to its 

ability to decrease natural drowsiness. Nonetheless, it is still a matter of debate if true 

cognitive enhancement could be separated by wakefullness/arousal (Berridge and Arnsten 

(2013)). 

 

4.4 Convergence of results with previous literature 

I have already discussed in paragraph 2.5 that our CSD results (Ranzi et al. (2016)) 

during EO were able to replicate previous results (Fisher et al. (2012)). Indeed. Both 

papers show that - during eyes-open fixating on a cross - nicotine impacts the left frontal 

cortex only.  

Moreover our CSD results (Ranzi et al. (2016) matched quite well a recent meta-

analysis about fMRI and nicotine (Sutherland et al. (2015)). Unfortunately they combined 

eyes-closed, eyes-open and task-dependent BOLD activation. Further, they merged the 

data from both smokers and non-smokers. Nevertheless, Fig. 3B in Sutherland et al. 

(2015) shows a strikingly convergence with our CSD results (Chapter 2). They found that 

anterior cingulate gyrus and left dorsolateral prefrontal cortex manifested an increased of 

BOLD activation. These two areas match the effect of nicotine I showed in Fig. 2 and 

Fig. 3 in Chapter 2 of the present dissertation. Further, the direction of the effect seems to 

converge given that BOLD signal and alpha activity appear to be anti-correlated 

according to Sadaghiani et al. (2010): when alpha goes down (our nicotine effect) the 

BOLD signal should increase (Sutherland et al. (2015)). Further, the nicotine-induced 

decrease of alpha power fronto-centrally during EC discovered in our CSD analysis 

makes sense according to the general agreement about the inhibitory role of alpha (van 

Dijk et al. (2008)). Therefore, I can speculate that nicotine likely improves 

attention/vigilance by decreasing the alpha brain oscillatory activity. In conclusion, even 

if the techniques used were either different (fMRI, Sutherland et al. (2015)) or the same 

(EEG, Fisher et al. (2012), our results seem to replicate quite well previous literature. 

Reminding what I said in paragraph 1.4.4 the activation of left frontal cortex and anterior 

cingulate cortex after acute nicotine administration are a perfect example of biomarkers 

candidates. This means that each time we administered nicotine - during eyes-open or 

eyes-closed -, the two areas should be activated (by BOLD fMRI). Such consistent 
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pattern corresponds to “common signature/biomarker candidate” described in paragraph 

1.4.4.  

Such a “common signature” could be used for “reversed engineering” purposes: 

administering a recently discovered compound and seeing that the same areas get 

activated by BOLD fMRI should give us the chance to formulate an educated guess. 

Particularly, we can generate a reasonable expectation that the compound under 

investigation has similarities with nicotine. Therefore we could expect some ability of the 

compound to counteract drowsiness. Further, we could also expect that the ability of EEG 

to detect pharmacodynamics should discern whether or not an unknown compound 

belongs to a specific neurotransmitter system. For example, Reeves et al. (2002) found 

that the administration of donepezil decreased the alpha activity frontally. As a short 

digression, donepezil is an acetylcholinesterase inhibitor drug which triggers the 

acetylcholinergic system and it is considered a cognitive enhancer. In other words, it 

seems that we can generalize the above “common signature” (e.g. decrease of frontal 

alpha) to a specific neurotransmitter system (e.g. acetylcholine) and to a specific function 

(e.g. cognitive enhancement).  

Although some problems with replication of results still exist (see Chapter 1), it 

seems by all means possible to find a “common thread” across different neuroimaging 

techniques and incrementally increase the pharmacological knowledge. Such an increase 

of knowledge should unravel important mechanisms of action how a specific CNS drug 

works in the brain.  

 

4.5 Discussion about the EEG techniques used  

As neuroimaging techniques, I preferred to use EEG instead of fMRI, since it has 

better sensitivity to vigilance modifications. As said in Chapter 1, oscillations correlates 

very well with drowsiness, thus EEG was considered appropriate. In Chapter 2 and 3 I 

presented three EEG analyses which unravel different aspects how nicotine works in the 

brain of healthy male non-smokers. 

As a rule of thumb, the use of multiple techniques/methods should be endorsed in 

order to provide different layers of knowledge how the specific molecule works in the 

brain. Such a process has been referred in an industrial setting as drug profiling: it is 

generally better to collect as much information as possible how a specific molecule works 

in the brain. Such a gathering of qualitatively different pieces of information should 
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improve the general understanding of the mechanisms of action of the specific CNS drug 

under investigation.  

Idiosyncrasies could also appear by using different techniques for the drug 

profiling process. Nevertheless, as time goes by we should incrementally understand 

better the mechanisms of action of a specific CNS drug. Therefore, it should become 

easier in the future to find convergence between results generated by the use of different 

techniques. If this would happen, than we should make sense of disparate pieces of 

information that we have in these days. Such a fragmentation could be generated by 

measuring the effect of a specific CNS drug by different techniques. In conclusion, I 

believe that future holds promises in finding a general and comprehensive framework 

regarding the understanding how specific CNS drugs work in the brain.  

In terms of the type of the EEG analyses chosen CSD, rPDC and VL have been 

used to track the nicotine-induced modulation of vigilance. I now briefly remind the 

discussion had in paragraph 1.7 about the rationale behind the choice of CSD, rPDC and 

VL techniques. CSD, rPDC and VL were used because previous literature (Olbrich et al. 

(2009), Maksimow et al. (2014) and Blain-Moraes et al. (2015), respectively) indicated 

that such techniques are sensitive enough for detecting online modulations of vigilance. 

Indeed, they correspond to three different biomarkers of drowsiness. Therefore they 

represent the ideal benchmark for investigating whether nicotine could counteract the 

effect of natural drowsiness. Note that drowsiness and its biomarkers can occur within 

few minutes just by closing our eyes (Olbrich et al. (2009)). Then we tested whether 

nicotine could possibly change such biomarkers.  

In simple words, the rationale behind the benchmarking of the nicotine effect 

consisted in three steps. The first step was to select the most sensitive techniques which 

are able to detect natural drowsiness. I will describe the three biomarkers of drowsiness 

which we selected. The second step was to induce a temporary state of drowsiness by 

asking the subjects to close their eyes. The third step was to study how an investigational 

molecule could depart from (e.g. psychostimulants) or enhance (e.g. sedatives) a state of 

drowsiness. 

The three biomarkers of drowsiness were: anteriorization of alpha - see later - (for 

CSD analysis); decrease of forward connectivity and increase of backward connectivity 

(for rPDC analysis) and decrease of phase-amplitude coupling (for VL analysis).  

As follows I will explain in detail the three biomarkers of drowsiness chosen. We 

used CSD analysis because its sensitivity to detect the phenomenon of anteriorization of 
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alpha (Olbrich et al. (2009)). Anteriorization of alpha is a physiological phenomenon that 

occurs when we close our eyes: alpha power seems “to migrate” from occipital region to 

frontal region within few minutes. When such a migration occurs, it means that the 

subject gets drowsy.  

Regarding connectivity measures instead, we found out that a directed 

connectivity measure (rPDC) is also sensitive to an online decrease of vigilance. Such a 

decrease of vigilance correlates strongly with the pharmacologically-induced drowsiness 

(Maksimow et al. (2014)). These authors were able to discover a specific direction of the 

effect: when we are pharmacologically drowsy - by bolus dose of the anesthetic propofol 

- then the forward connectivity increases, whereas the backward connectivity decreases. 

Lastly, it is interesting to remember that the two types of connectivity are anti-correlated 

(Maksimow et al. (2014) and Piantoni et al. (2013)): when forward connectivity increase, 

backward connectivity decrease.  

Regarding VL, we found in the literature that cross-frequency coupling (known 

also as simply phase-amplitude coupling) is influenced by drowsiness (Blain-Moraes et 

al. (2015)). Specifically, they tracked the effect of the anesthetic sevoflurane detected 

along time, and they found that a decrease of phase-amplitude coupling – namely, the 

coupling between the phase of low-frequency (1 Hz) with respect to the amplitude of 

alpha (10 Hz) - correlates with a decrease of vigilance.   

As follows, I will present personal recommendations about the best techniques to 

be used for forthcoming research. The criteria for considering some techniques as better 

as others depends on the strength of the biomarkers used. Such strength depends on its 

simplicity as well as on the abundance of previous literature which is able to link clearly a 

specific biomarker with behavior. Therefore the stronger the agreement in the 

neuroscientific community, the more solid the biomarker is considered. Likewise, the 

more replications found in the literature about a specific biomarker, a better trust of the 

validity of such biomarker is reachable. As follows I will suggest two techniques which 

are particularly sensitive in detecting modulations of drowsiness. 

I would personally recommend at first CSD (namely, the anteriorization of alpha), 

specifically during eyes-closed. Indeed, there is plenty of literature showing the existence 

of the phenomenon of anteriorization of alpha (e.g. Olbrich et al. (2009)). Such a 

phenomenon correlates strongly with drowsiness. Therefore, the anteriorization of alpha 

can be considered one of the strongest biomarker of drowsiness. This one should be used 

as first-line assessment tool of the pharmacological activity of a CNS drug. 
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As a second choice I would opt for some connectivity measures which work well 

in tracking modifications of drowsiness in real-time. Indeed, in the literature there are 

plenty of examples which are showing both the existence of two connectivity patterns 

(either forward or backward connectivity) and how they correlate with drowsiness 

(Piantoni et al. (2013)). These two patterns are anti-correlated (Maksimow et al. (2014)): 

when one goes up the other goes down. Lastly, an increase of backward connectivity 

accompanied by a decrease of forward connectivity are both sensitive measures to a 

pharmacologically-induced drowsiness (Maksimow et al. (2014)). 

The last techniques I would recommend to use for tracking pharmacologically-

induced modulations of drowsiness is VL. Indeed, there is up to now scarce literature 

showing a clear link between cross-frequency coupling and drowsiness.  

In conclusion, in order to track pharmacologically-induced vigilance modulation I 

would start with using CSD technique during eyes-closed condition. Indeed, CSD during 

eyes-closed offers at the moment the simplest biomarker for tracking drowsiness 

(“anteriorization of alpha”). The “anteriorization of alpha” should be best captured when 

the EEG power spectrum becomes also spatially localized. Therefore techniques like 

“EEG scalp topography” and “EEG source reconstruction” are advisable. In simple 

words, “anteriorization of alpha” cannot be fully captured by single-electrode recording.  

Nonetheless, drowsiness is a pervasive brain state that can be detected also by measuring 

the power spectrum at a single-electrode level. Indeed, Putilov and Donskaya (2014) 

showed that the “attenuation of alpha” (another - simpler - variant of “anteriorization of 

alpha”) that occurs when we close our eyes can be measured by a single occipital scalp 

electrode. The attenuation of alpha is another valid biomarker of drowsiness. The CSD 

method we used in Chapter 1, it is just the evolution of the power spectrum measured at a 

single electrode, but now brought to a three dimensional level via source reconstruction 

algorithms. In fact, CSD source reconstruction methods allows computing the power 

spectrum in different location within the brain. 

 
4.6 Improvements for pharmacological research 

What I consider paramount for future pharmacological research is to collect blood 

samples. Such a procedure has at least two advantages:  

1) it allows to check on-line the pharmacokinetics. In other words, the subject’s 

absorption of the drug is measured objectively. Indeed, there are individualized 
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absorption ratios and they can affect the experimental results. Particularly interesting are 

correlational analyses (e.g. generalised semi-linear canonical correlation analysis, 

GSLCCA) which are able to correlate blood concentration of the investigational drug 

with the effect of the drug in the brain (Brain et al. (2014) and Diniz et al. (2016)). In 

such an approach, pharmacokinetics (i.e. blood level of the drug) and pharmacodynamics 

(e.g. neuroimaging output) would be correlated in a more realistic way. In such a way is 

possible to obtain advanced PK/PD models (pharmacokinetics, PK; pharmacodynamics, 

PD) which are crucial for testing the efficacy of a drug.  

Another simple consequence of measuring the pharmacokinetics is the possibility 

of discarding the subjects who did not reach the expected absorption of the drug in the 

system. Those subjects are in fact to be considered generally as “non-responders”.  

2) collecting blood samples it allows also to screen the subjects regarding polypharmacy. 

Indeed, the experimenter does not want any other CNS drug in the system apart the one 

under investigation.  

In general, such a procedure of collecting blood sample would allow to strengthen 

the results and decrease noise in the dataset. Indeed, it allows to stratify the data set by 

discarding either the non-responders (e.g. little amount of drug in the blood) or the 

“contaminated” subjects (e.g. polypharmacy). In conclusion, thanks to the collection of 

blood samples it is possible to have an objective measure of both the actual level of drug 

in the individual’s system and a proof that other chemicals are not present in the system. 

In conclusion, blood sampling alone should improve a lot the consistency of an 

experiment: by reducing the variability in the sample of subjects, more replicable results 

are expected.  

Another potential improvement would be designing a specific session where 

behavioral measurements would be collected. Such behavioral assessment would be 

important for tracking vigilance modulations, eventually. Such session should be 

separated from the other two resting-states (either EO or EC), otherwise we would 

threaten the very definition of resting-state. A good example is Khodayari-Rostamabad et 

al. (2015): the authors were able to run a vigilance task during eyes-closed activity. They 

used acoustic continuous stimuli towards which the subjects should guess which direction 

they come from (either left or right ear) by simple reaction time task (pressing a button).  

Another improvement amenable for future pharmacological research is combining 

two different neuroimaging techniques together. For example, recently simultaneous 

recording of either EEG and fMRI or EEG and MEG are becoming more utilized in 
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neuroscientific research. Regarding the pharmacological CNS research there are already 

some articles showing the use of simultaneous EEG-fMRI at the advantage of CNS 

pharmacology (e.g. Warbrick et al. (2012)). Instead, some applications of simultaneous 

EEG-MEG to CNS pharmacology are still missing. 

Combining two neuroimaging techniques together should capitalize in the wealth 

of results that can be obtained regarding the drug profiling process for a specific CNS 

drug. Indeed, the rule-of-thumb is to collect as many data as possible regarding the 

activity of a CNS drug in order to have a complete picture how that molecule works in the 

brain.  

From a neuroimaging perspective, it is true that different neuroimaging techniques 

have different sensitivity to different pharmacological agents. As first example I mention 

the strong sensitivity of EEG to remifentanil (an anesthetic) in detecting anesthetic-

induced drowsiness (Khodayari-Rostamabad et al. (2015)). Further, an fMRI study using 

anfentanil (anesthetic with similar chemical structure as remifentanil) showed better 

sensitivity with respect to EEG in localizing the effect of such compound in the brain 

(Oertel et al. (2008)). As a second example I mention articles regarding the effect of 

antidepressants which can be detected both by fMRI (Bredt et al. (2015)) and by EEG 

(Koo et al. (2015)). A more relevant example for the present dissertation is nicotine, 

whose central effects were captured both by fMRI (Sutherland et al. (2015)) and by EEG 

(Fisher et al. (2012)), as discussed above. In conclusion, there is room for using 

simultaneous neuroimaging techniques in pharmacological CNS drug research. Current 

CNS pharmacology should capitalize on our modern ability to acquire different levels of 

understanding how the specific CNS drug works, thanks to the usage of simultaneous 

neuroimaging techniques.   

 

4.7 Caveats with current pharmacological research 

Unfortunately, there are still insurmountable problems which are intrinsic with a 

pharmacological experiment. The first problem is how to effectively control for the 

placebo effect. Indeed, many CNS drugs (e.g. alcohol) have an immediate impact in the 

subject’s mood and perception. This cannot be unnoticed. Therefore both the subject and 

the experimenter “know” whether the subject has taken the actual drug. Instead, there are 

other CNS drugs which effect is delayed in time and not clearly noticeable neither by the 
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subject nor by the experimenter (e.g. antidepressants). These last type of compounds suit 

better undergoing a placebo-controlled blinding procedure.  

Second and third problems regard the lack of objective measures for two further 

confounders which can play a role in biasing the experiment: sleep deprivation and 

withdrawal syndrome. With sleep deprivation I mean the lack of good quality sleep which 

can bias the behavioural and neuroimaging endpoints (Samann et al. (2010)). Indeed, in 

sleep deprived subjects homeostatic brain processes can be detected both by EEG 

(Knoblauch et al. (2002)) and by fMRI (Klumpers et al. (2015)). Witdrawal from some 

chemicals can also be a source of bias because it can impact neural activity as well (Chu 

et al. (2015)). Lastly, I do recognize that the most frequent biases in neuroimaging studies 

are sleep deprivation and simultaneous administration of other chemicals (polypharmacy). 

Instead, neural changes due to withdrawal from substances is unlikely to be observed.   

Expanding the second problem, the lack of objective markers of sleep deprivation 

could be an issue with techniques like EEG and MEG which are sensitive to changes in 

the brain oscillatory activity. Instead, fMRI and PET are less burdened by such problem. 

The partial solution regarding the assessment of sleep deprivation is to ask the subject via 

a questionnaire how much he/she slept during the previous night. The experimenter must 

rely on those subjective measures of sleep deprivation. Another suggestion to mitigate the 

problem of understating sleep deprivation is recording a bigger sample of subjects. In this 

way, the effect of outliers present in the sample should be minimized.  

As third problem we have a lack of objective markers regarding an ongoing 

withdrawal syndrome. With full-blown withdrawal syndrome we have a situation where 

several symptoms are clearly observable by a trained experimenter and detected by 

neuroimaging techniques as well (e.g. withdrawal syndrome from opioids in Chu et al. 

(2015)). If such situation would be observed, obviously the subject will be excluded from 

the data analysis. However there are small symptoms of withdrawal syndrome which are 

not readily observed by the experimenter. For example, even if it looks surprising 

withdrawal syndrome from caffeine deprivation could be an issue according to some 

authors (James and Rogers (2005)) because it can bias the experimental results. 

Unfortunately, an objective measure of ongoing withdrawal symptoms is not achieved 

neither by a blood collection nor by neuroimaging nor by behavioral measurements. So 

the experimenter should rely only on self-reports coming directly from the subject. The 

partial remedy to such a problem would be increasing the sample: such a confounder 

should then be mitigated.  
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4.8 Future research 

I now point out which could the potential improvements, having as starting point the 

experimental design used.  

As a first improvement, it would be useful to include women in the sample. This 

means obviously doubling the sample of subjects. Nonetheless the advantage would be to 

generalize the effect of a drug to the whole population.    

As a second improvement, it would be interesting to quadruple the amount of 

subjects in order to have at least 28 subjects per group (e.g. 28 males under nicotine, 28 

males under placebo and so forth). Above such threshold strongest statistical power 

should be achieved (Pernet et al. (2011)).  

  As a third improvement, it would be to run source reconstruction using single-

subject MRI image. This should decrease the localization error intrinsic in the source 

reconstruction methods (Akalin Acar and Makeig (2013)). Lastly, it will be interesting to 

run a simultaneous EEG/fMRI recording, in order to further indentify common brain 

areas activated by the CNS drug. Regarding nicotine, simultaneous EEG/fMRI should 

provide results that replicate previous findings (Sutherland et al. (2015)). Specifically 

regarding nicotine, a simultaneous EEG/MEG recording could be done since at the 

moment such studies are not existent. MEG could be considered complementary to EEG, 

since its sensitivity to magnetic field generated by the brain which cannot be captured by 

EEG alone (Ahlfors et al. (2010)).  

As a fourth improvement, I have already mentioned the collection of blood 

samples as key to generate accurate PK/PD models. Please see paragraph 4.6 about the 

advantages of collecting blood samples in a pharmacological research.  

 

4.9 Overall conclusion 

I stressed throughout the dissertation that neuroimaging is currently shaping CNS 

pharmacology. I strongly support the idea that we are into a revolutionary period for CNS 

pharmacology. Indeed, there is now a huge opportunity of looking at the effect of CNS 

drugs on-line and non-invasively in humans. Such opportunity was not possible before. 

Particularly for EEG, there is now a large amount of quantitative EEG techniques that can 

be readily used in the early drug development of new CNS drugs (Diniz et al. (2016)), 

thus meeting the needs of pharmaceutical industries. In conclusion, neuroimaging 
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deserves in these day a lot of attention since it seems to be a revolutionary and powerful 

tool for providing new understanding of CNS pharmacology.   
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