
Fachbereich Informatik

Symbolic Timing Diagrams:
A Visual Formalism

for Model Verification

Rainer C. Schlör

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften
des Fachbereichs Informatik

der Carl-von-Ossietzky Universität
Oldenburg

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2002/schsym01/schsym01.html

Gutachter: Prof.Dr. Werner Damm
Prof.Dr. Wolfgang Thomas

Tag der Disputation: 3. März 2001

c©2002 by the author

email: Rainer.Schloer@ewetel.net

To my family

Contents

Part I: Introduction and Motivation 1

1 Introduction 1
1.1 The goal . 1
1.2 Verification versus Validation 4
1.3 “Visual” versus sentential logic 5
1.4 Related work . 6
1.5 Structure of this book . 6

2 Methodology of model verification 9
2.1 Methodology . 9

2.1.1 Example: PCI–interface 11
2.2 Requirements . 13
2.3 Symbolic Timing Diagrams: An introduction by example . . . 14

2.3.1 Requirement T1 . 14
2.3.2 Requirement T2 . 21
2.3.3 Requirement T3 . 23
2.3.4 Requirement T4 . 24

2.4 Carrying out verification in a tool environment 24
2.5 Summary . 30

Part II: Theoretical Framework 31

3 Theoretical foundation of specification 33
3.1 Assertion Language . 34
3.2 Symbolic Automata . 37

3.2.1 Basic definition . 37
3.2.2 Computations . 38
3.2.3 Runs and notion of acceptance 38
3.2.4 Properties of Symbolic Automata 39

v

vi CONTENTS

3.2.5 Deterministic Symbolic Automata 40
3.3 Partially ordered SA . 42
3.4 (Linear–time) Temporal Logic 45

3.4.1 Formal semantics of temporal logic 46
3.4.2 Validity and satisfiability 48
3.4.3 Formula schemes . 50

3.5 Sub–logics of Temporal Logic 56
3.6 Translation from Symbolic Automata to Temporal Logic 64

3.6.1 Temporal logic characterization of POSA 64
3.6.2 Stuttering invariant specifications 70
3.6.3 Temporal logic characterization of deterministic POSA . 74

3.7 Summary . 76

4 Theoretical foundation of model construction 77
4.1 Fair transition systems . 77

4.1.1 Structure and semantics of FTS 78
4.2 Transition graph systems . 80

4.2.1 Semantics of transition graph systems 83
4.2.2 Verification of properties of a TGS 85

4.3 Modules and composition . 87
4.3.1 Open Transition Graphs Systems 88
4.3.2 Module composition . 90

4.4 Basis for compositional reasoning 93
4.5 Kripke–structures . 95
4.6 Summary . 98

Part III: The novel Visual Formalism 101

5 Linear Symbolic Timing Diagrams 103
5.1 Motivation . 104
5.2 Syntax of LSTD . 109
5.3 Semantics of LSTD . 112

5.3.1 Translation from LSTD–diagrams to temporal logic . . 115
5.3.2 Translation from deterministic POSA to LSTD 121

5.4 Transformation of LSTD specifications 124
5.4.1 Transformation of LSTD–phases 126
5.4.2 Transformation of LSTD–bodies 134
5.4.3 Transformation of LSTD–diagrams 147
5.4.4 Transformation of LSTD–specifications 154

5.5 Compositional reasoning . 157

CONTENTS vii

5.6 Summary . 163

6 Symbolic Timing Diagrams 167
6.1 LSTD–diagram composition . 168

6.1.1 Chaining . 168
6.1.2 Parallel composition . 177

6.2 Structure of STD–diagrams . 179
6.2.1 Definition of STD–diagrams 179
6.2.2 Activation mode of STD–diagrams 183

6.3 Semantics of STD–diagrams . 185
6.3.1 Derivation of SA from STD–body 186
6.3.2 Definition of semantics of STD–diagram 194

6.4 Translation of STD–diagrams to temporal logic 196
6.4.1 Properties of the characterization of STD–body by SA . 196
6.4.2 Characterization of STD semantics in LTL−V 202

6.5 Linear Decomposition . 205
6.6 Summary . 210

7 Resume 211
7.1 Using STD for practical specification 211
7.2 Considerations about the user interface for STD 212

7.2.1 The design of STDx . 212
7.2.2 Guidelines for property specification using STD 213
7.2.3 Witness–test . 214

7.3 Enhancement of expressiveness of STD 214
7.4 Related developments . 216

A Proofs 219
A.1 Proof of theorem 3.3 . 219
A.2 Proof of lemma 3.14 . 225
A.3 Proof of theorem 4.1 . 228

B Remarks on chapter 3 235
B.1 Note on the assertion language 235
B.2 Note on first–order specifications 236
B.3 Notes on LINLTLV . 238

C Notations 243

viii CONTENTS

Acknowledgements

The work described in this thesis builds alongside the results and contributions
of many people. First of all, I would like to thank Werner Damm for providing the
basic ideas about using timing diagram in a formal way which finally lead to the
developments presented here. He also shaped my first publications on this subject. I
am also grateful to Wolfgang Thomas for many valuable comments on this work, in
particular on the logic part of the thesis.

The work would not have been possible without the prior development of a frame-
work for compositional reasoning based on the temporal logic MCTL by Bernhard
Josko, who also took part in several extensions of this work and was helpful at any
time when I needed sophisticated expert advice.

While the years passed by, I worked in different teams. Most enjoyable was the
cooperation during the FORMAT project with several people 1: Massimo Bombana,
Patricia Cavalloro, Alberto Allara (Italtel, Milano), Bob Harris, Simon Finn, Chris
Read, Colin Saunders (Abstract Hardware, London), Thomas Filkorn, Ronald Her-
rmann, and Jörg Bormann (Siemens ZT, Munich). I also enjoyed a follow-up project
with Dieter Werth (Siemens AT, Nürnberg).

Around the same time, Franz Korf developed a system for interface controller
synthesis (ICOS) from a dialect of temporal logic, which was inspired by the semantics
of STD presented in this work. His work was an important building block for the vision
how STD could be practically used.

Another important cooperation was performed with Johannes Helbig, who devel-
oped an axiomatic semantics for Statecharts using STD-idioms. One goal of his work
was to provide a basis for compositional verification of Statecharts with STD. This
work came to a practical implementation during the past years with the development
of a verification framework for StatemateTM .

Most of the implementation work which was needed to embed STD into a practical
framework for property specification (including graphical editor design, compiler and
database integration) was performed by Hartmut Wittke, with important building
blocks (in particular abstract datatypes) contributed by Ingo Schinz. Without their
work, STD would probably not have survived until the time of writing of this book.

Special thanks are due to Henning Dierks for his careful reading of this thesis,
which allowed me to fix many typos and subtle problems before publication. Also
thanks to Martin Fränzle for a great lecture on duration calculus and related issues.

Finally , I thank my family for their patience, while waiting for this work to
be completed. Like many other researchers, I had to spend many weekends and
some nights out of my home. I would never have managed without their support, in
particular from my wife.

Oldenburg, January 24, 2002

This thesis was typeset with LATEX by the author.

1This work has partially been funded by ESPRIT project No.6128 (FORMAT).

Zusammenfassung

In der vorliegenden Arbeit wird eine neuartige visuelle Spezifikationtech-
nik mit der Bezeichnung STD (Symbolic Timing Diagrams) eingeführt und
untersucht. Die Spezifikationstechnik wurde speziell für die Verifikation von
Modellen reaktiver Systeme entwickelt.

Die Arbeit hat drei Teile: Zunächst wird eine Einführung und Motivation
zur Verwendung von STD gegeben. Im zweiten Teil der Arbeit werden die
theoretischen Werkzeuge und Begriffe eingeführt, auf deren Basis die Seman-
tik von STD beruht. Der Formalismus STD wird in zwei Stufen eingeführt
und erklärt: Zunächst wird eine syntaktische Untermenge von STD (mit
der Bezeichnung LSTD) analysiert, und das Verständnis der Semantik von
LSTD durch die Vorstellung eines Satzes von Beweisregeln (Ableitungsregeln)
unterstützt. Im zweiten Schritt wird der Hauptformalismus STD definiert.
Der Zusammenhang zwischen LSTD und STD wird durch einen Hauptsatz
hergestellt, der zeigt, daß sich jede STD Spezifikation in eine äquivalente LSTD
Spezifikation überführen läßt.

Obwohl die Arbeit sich auf die theoretischen Grundlagen von STD konzen-
triert, wurden zahlreiche ergänzende praktische Studien seit 1995 durchgeführt
und das Konzept von STD bis zur Entwicklung eines in der Praxis anwend-
baren Werkzeugsatzes fortgeführt. Dies wird kurz im ersten Teil der Ar-
beit beschrieben. Der Formalismus wurde in verschiedene Verifikationsum-
gebungen integriert, insbesondere für die bekannten Modellierungssprachen
VHDL und StatemateTM .

Summary

The work described in this thesis introduces a novel visual specification
formalism named STD which can be used to verify models of reactive systems.

The presentation has three parts: First, an introduction and motivation is
given. Second, a theoretical framework needed to describe the context of the
design of STD is layed out. Third, the novel formalism itself is introduced in
two steps: First, a syntactical subset (LSTD) of STD is analyzed in detail, and
the semantics is illustrated by a representative set of derivation proof rules.
Second, the main formalism STD is defined. The connection between LSTD
and STD is established by a theorem, which shows that a STD specification
can be represented by an equivalent LSTD specification.

While the presentation is focused on the theoretical foundation of STD,
complementary work has been performed over the past five years to bring
the concept of STD to a usable implementation. This is shortly described in
the first part of the thesis. The formalism has been integrated into existing
verification frameworks for different specification languages, in particular for
VHDL and the StatemateTM framework.

Chapter 1

Introduction

The introduction outlines the motivation and the decisions taken for the work
described in this book.

First, the goal of the work is characterized. The following sections discuss
some fundamental issues related to the topic of verification and logic, as well
as a discussion of related work as far as it is relevant for this thesis.

1.1 The goal

The title of this book is: “Symbolic Timing Diagrams: A visual formalism for
model verification”. From the title, the following keywords need an explana-
tion:

• Symbolic

• Timing Diagram

• Visual formalism

• Model, and

• Verification.

We start with the explanation of the familiar keywords. The concept and
notion of Timing Diagrams has been used for a long time. It refers to a
diagrammatic representation of the values on a set of wires observed over
time. In hardware, the value of a wire is an analogue voltage level. In logic,
the value is one of a set of logic values, e.g. high (’1’), low (’0’), unknown
(’X’), or high–impedance (’Z’).

2 CHAPTER 1. INTRODUCTION

Usually a (strictly) monotonic increasing progress of time is assumed along
the X–axis of a timing diagram. The according values on a wire over time are
depicted in so–called waveforms. Several wires with their associated waveforms
are depicted in a timing diagram. The wire–names and the waveforms are
allocated along the Y–axis of a timing diagram.

The advantage of such a visual representation is given by the fact that a
complex interplay of values over time on a set of wires can be understood easily
from the diagram. A corresponding representation in textual (e.g., tabular)
form would be much harder to read. A typical application for timing diagrams
is the presentation of bus protocols or parts thereof (e.g. read–cycle, write–
cycle etc).

This brings us to the next keyword. Visual formalism is a term referring to
a special type of formalism, which has a mathematical rigorous notation. The
standard definition of a formalism is by means of a grammar. The derivations
of a grammar lead e.g. to formulas. Formalisms are simpler than programming
languages, which involve further concepts and notions such as variable and
function declarations, block structure, and scope.

A visual formalism can be defined by a grammar, which shows how the
graphical objects are derived. It could also be defined by any other type of
definition; the point is that from a given diagram the constituents can be
unambiguously distinguished and that a formal semantics can be assigned to
the constituents.

The word Model is a term with a broad meaning. In this book we use the
term in the context of a development process, which starts from high–level
requirements, and ends at a “golden device”, i.e. a description of a system,
which can be translated (mostly) automatically into code. E.g., for a subset
of the hardware description language VHDL [2], synthesis can be performed.
Similarly, code generators exist for designs developed in the Statemate envi-
ronment [20].

In reality, a model is almost never complete or even accurate; in the best
case, it is useful. This thesis relies on the assumption that models are useful
during the development process, and worthwhile to be constructed with the
highest possible precision.

The consideration of the term verification will be postponed to the follow-
ing section.

The probably most unfamiliar term in the title of this book is Symbolic.
Like the term model, has the term symbolic a broad meaning. A symbol — or,
more specifically, a (symbolic) expression – is a compact denotation of another
object or set of objects. For instance, the expression x < 5 (where x denotes a
natural number) can be used as a compact notation for the set 0, 1, 2, 3, 4. The

1.1. THE GOAL 3

(infinite) set of points constituting a circle of radius R around the origin of
the 2–dimensional plane of real numbers can be described as the set of points
(x, y), which are a solution to the formula x2 + y2 = R2 .

Here, the attribute “symbolic” is used as part of the more specific notion
of a symbolic waveform. Recall that in traditional timing diagrams waveforms
show the values on a wire over time, which is for instance a sequence of high–,
low– and don’t–care values. A symbolic waveform generalizes this concept as
follows: Each region of the waveform is associated with a Boolean expression.
For instance, the Boolean constant true corresponds to a don’t–care region.
The special case of a value sequence on some signal sig is represented by a
sequence of assertions (Boolean expressions). For example, a value sequence
for a Bit–valued signal Request could be described by a sequence of assertions
as follows: Request = ’0’, Request = ’1’, Request = ’0’, etc. Graphical examples
of this idea are given in chapter 2.

Why this book was written. For any research endeavour, there is always
at least one incentive:

• An open (unsolved) question

• An open issue (e.g. a manufacturing problem)

• Some other incentive (e.g. need of a handbook on a particular topic)

In the case of this thesis, the starting point was an issue: How can we pave
the way to formal model verification? Given the fact that testing is the com-
mon industrial practice of verification, formal (or mathematical) verification
is a new issue in industry, which just starts to gain attention. In particular,
the invention and facilitation of a technique known as model–checking [8] has
been a major breakthrough for the idea of formal verification of industrial–
scale applications.

However, model–checking relies on a description of (safety–critical) require-
ments stated in a logical formalism. This turns out to be unacceptable given
the current state of experience of a “normal” designer.

Thus, the challenge behind this thesis can be stated in one sentence as fol-
lows: Given the fact that (traditional) timing diagrams have been in widespread
use for a long time, build a visual formalism that resembles timing diagrams,
and at the same time can be used as an input language for model–checking.
This thesis introduces an approach to fulfil this wish and explores the conse-
quences following from the invented definitions. It builds on a vision expressed
in [11], stated over 10 years ago.

4 CHAPTER 1. INTRODUCTION

No open questions are solved in this thesis, except for the questions which
originate from the definitions themselves. Thus the material is of limited inter-
est for the scientific community. On the other hand, the idea explored in this
thesis has — thanks to an early implementation acquired during an ESPRIT
project in collaboration with several industrial partners, in particular with
SIEMENS R&D — attracted an astonishing amount of attention by indus-
trial partners, who were interested in trial uses (in preparation of a possible
development process improvement) of a verification framework. This trend
has recently increased thanks to the availability of a verification module (see
[6]) available for the Statemate design environment.

1.2 Verification versus Validation

In a nutshell, the term Verification means: Building the system right, i.e.
flawless with respect to written statements (requirements). Thus, verification
is a technique to reassure that particular work is done correctly. For instance,
a theorem prover can be used to verify a complicated mathematical proof. In
fact, (subtle) errors have been found in published (and thoroughly reviewed)
mathematical proofs.

Given the existence of a golden device in a development process, i.e. of
a model which incorporates all requirements and fills in as many details as
needed to obtain running code, verification becomes an important issue. It is
used to ensure that all requirements are captured correctly in the model.

Model–checking can be used as a mostly automatic method of verification.
Two basic prerequisites are needed in order to apply model–checking:

1. The requirements need to be cast into a formalism (which should be
done as “smooth” as possible)

2. The language used to describe the model — e.g. Statecharts — needs
to be compiled into a finite–state–machine (FSM).

The main practical problem with verification is model–complexity. Even
with sophisticated encoding techniques, the maximum size amenable to verifi-
cation using model–checking is the size of (major) building blocks of an ASIC
or of an embedded system in automotive controller (e.g. a central locking
system in a car). Verification can be applied also to full designs using either
abstraction techniques or techniques of compositional reasoning. The latter
topic will be further expanded in the second and the fourth chapter.

By contrast, the term Validation means: Building the right system, i.e.
using the correct total conception. Validation touches on the question, whether

1.3. “VISUAL” VERSUS SENTENTIAL LOGIC 5

the requirements are correctly stated and consistent, whether assumptions
(regarding system integration) are valid and so on.

Sometimes the terms verification and validation are confused, although
validation is in fact something quite different from verification. It can only
take place if the complete real system is build, consisting e.g. of a controller,
sensors/actuators and the physical environment.

Thus the role of verification is well defined with respect to its duties and
limits. Verification greatly emphasizes a modular conception of system archi-
tecture, and — with respect to model–checking — relies on clean interfaces
and well–structured design style.

1.3 “Visual” versus sentential logic

Mathematicians and engineers work with visual representations quite often.
Mostly, diagrams and pictures are used to illustrate a thought, or to efficiently
depict a situation, which is awkward to explain in words.

The reverse idea — using a visual representation in the first place for an
explanation or even specification — is rather seldom used, probably because
of the inherent risk of ambiguity in pictures.

The work described herein is based on the assumption that a direct visual
representation is useful for requirement specification. Even experts in the field
of formal specification (e.g. L.Lamport as well as Z.Manna and A.Pnueli) have
experimented with this idea.

The lessons learned by the author of this book over several years are not
conclusive regarding the question whether visual formalisms offer a real ad-
vantage in the context of formal verification. On the one hand, they appeal to
an immediate understanding, which is why even designers without any back-
ground in formal methods jump on the idea of formal verification using a
graphical input format for specification.

On the other hand, requirement specification is an inherently difficult task.
There is no such thing as an easy way to requirement specification. All one can
hope for, is to get a designer started on the idea of applying formal verification
in the everyday work. Once results are seen (e.g. some nasty error found,
which was overlooked even after intensive model review), the commitment to
further training on formal methods is increased.

In summary, the freedom of choice between “over–visualisation” and “over–
formalization” appears to be smaller than expected. If a visual formalism is
applied with care, then there is definitely a benefit both for documentation
and for specification maintenance.

6 CHAPTER 1. INTRODUCTION

1.4 Related work

Closest to the work described here is the book [22] by Cheryl Kleuker on
Constraint Diagrams (a visual formalism developed by herself). Her book
also contains a comprehensive account on related work on timing diagrams
and other visual formalisms as known until 1999.

At the time where the fundamental decisions regarding the basic definitions
of STD were taken (which were published in [32] and in the final form in [13]),
there existed only isolated publications about using timing diagrams for formal
verification, in particular using model–checking. Closest were the publications
[16] and [3], but none of the publications known by that time took into account
a concept for compositional reasoning.

Therefore, the structure and the semantics definitions of STD are really
novel inventions. The only real influence came from the famous “UNITY”
book by M.Chandy and J.Misra [9], which had an impact on many researchers
during the 90’s. Readers familiar with the UNITY–logic will find correspon-
dences in the design of the sub–formalism LSTD presented in chapter 5.

1.5 Structure of this book

This book is organised into seven chapters. The rest of this introduction
provides a short characterization for each of the following chapters.

An introductory chapter on Symbolic Timing Diagrams (chapter 2).
Symbolic Timing Diagrams (STD for short) are the main objects of investi-
gation of this thesis. Their syntax and intuitive semantics is illustrated by an
example, which shows how requirements are specified in STD. This chapter
also gives a sketch of two existing verification environments, which can be
used together with STD to verify models. The first verification environment
is for designs written in VHDL or Verilog, the second is an extension of the
StatemateTMdesign environment.

An introduction to symbolic automata and temporal logic (chap-
ter 3). The semantics of STD can be expressed in terms of (discrete time)
temporal logic. This is the key to applying model–checking of finite–state–
machines obtained from designs written in some high–level design language
such as VHDL.

The semantics of STD is not defined directly in terms of temporal logic,
but by a two–step definition: First, an (automaton based) intermediate format

1.5. STRUCTURE OF THIS BOOK 7

called symbolic automata is used to define the semantics of the body of a
(symbolic) timing diagram. Second, the semantics of diagram–activation is
defined directly in terms of temporal logic.

This chapter shows that for a subset of SA (partially ordered SA), which
suffices to characterize the semantics of diagram bodies, the semantics can be
characterized by temporal logic formulas.

Theoretical foundation of model construction (chapter 4). This chap-
ter introduces a model which can be used as foundation of the methodology
of compositional reasoning. The exposition follows essentially the approach of
the book [26], with only little customization.

In this chapter we also introduce a running example for the rest of the
book, which is used for illustration both of specification and of verification
issues.

LSTD: Linear (Symbolic Timing) diagrams and their semantics (chap-
ter 5). The traditional reading of timing diagrams assumes a homogenous
progress of time along the X–axis of a timing diagram. This is in contrast to
the semantics of STD, where the waveforms rather correspond to concurrent
processes of a Petri–net: The progress of time is monotonic on each waveform,
but can occur at different speed along each waveform of a STD diagram.

Linear (Symbolic Timing) diagrams consist of exactly one waveform. In
this case, the classical linear interpretation of the progress of time is preserved.

This chapter investigates the semantics of LSTD in detail, and presents a
set of derivation rules which could be used as foundation for an embedding of
LSTD into an interactive verification environment (theorem prover).

Definition of STD, and the relation to LSTD (chapter 6). In this
chapter, a formal definition of STD diagrams and their semantics is given. Al-
though the definition of linear STD diagrams seems like a very strong restric-
tion compared to STD, it is shown in this chapter that each STD diagram can
be “decomposed” into a set (conjunction) of linear diagrams with equivalent
semantics. Thus, the general definition of STD does not add expressiveness
to the concept of linear diagrams.

Resume and direction for further research work (chapter 7). The
book is concluded by a summary with pointers to related research work and
suggestions for further extension of the results obtain in this thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Methodology of model
verification

The second chapter aims to give the reader an overview picture of the approach
of Symbolic Timing Diagrams (STD). Several items are touched: Methodol-
ogy of model verification based on model–checking, examples of informal re-
quirements (taken from the PCI–bus specification) and their formalization,
the semantics of STD–diagrams, and two examples of verification environ-
ments, which have been implemented on top of standard design environments
for VHDL respectively Statemate, integrating STD as method for property
specification.

2.1 Methodology

Formal verification should be part of a development process, which guides
the construction of (safety–critical) software– or hardware–systems through
a sequence of steps. Various models have been proposed for development
processes. The most familiar model is the waterfall–model, which consists of
the following sequence of phases [29]:

• Requirements Analysis

• Requirements Definition

• Design

• Coding

• Testing, and

10 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

• Maintenance.

In software development, the results of all development phases are val-
idated by reviews and inspections. Clearly, reviews and inspections are not
infallible; subtle errors are likely to be overlooked. Therefore it is helpful to use
automatic verification tools to ensure that the result of a development phase is
correct, i.e. conforms with the requirements and results of the previous phase.

The method suggested in this book is applicable to verify that a (prototype–
)model developed in the design phase conforms to the requirements stated in
the requirements definition phase. It assumes that the semantics of the model
developed in the design phase can be expressed by a finite–state machine
(FSM), e.g. by a classical Moore– or Mealy–automaton.

The emphasis of this work is on the verification of models of reactive sys-
tems, i.e. of systems whose behaviour is characterized by continous interaction
with their (physical or logical) environment. Examples of reactive systems are
embedded controllers, operating systems, and specifically bus–controllers.

Controllers of real–life embedded systems — for example, an electronic
niveau–controlling sub–system in a car — grow large and complex. Sometimes
this happens even in the early phases of model development, where not all
details of the final design have been considered yet.

Controllers are usually represented by a parallel composition of interacting
state–machines. While the representation of such a model using parallel com-
position is compact and well suited for simulation, it must be elaborated in
order to perform verification. Elaboration means that each possible interacting
behaviour must be represented.

The complexity of such a representation grows exponentially in the num-
ber of the parallel system components. An attempt to verify a system as a
whole suffers from the well–known state–explosion problem, which means that
a representation of the full computation tree is not possible. This happens
with most real–life full designs.

There are two approaches to address the problem of state–explosion. In
this book, we favour a methodology which is based on a divide–and–conquer
strategy: Verification of a large design is done by specification of the interfaces
of its sub–components, and requirements stated for the full design (represented
by a parallel composition of its sub–components) are derived logically from the
specification of the sub–components.

There is also another approach, which has proved to be very efficient. Re-
cent work has demonstrated that abstraction on the model of a full design
also allows to verify properties of a complex design. Essentially, both ap-
proaches are related and can be used with the model–checking approach and

2.1. METHODOLOGY 11

Figure 2.1: Interface signals of PCI–target sequencer and backend.

the specification formalism STD in the same fashion. Application of abstrac-
tion techniques to verify large designs using STD for requirement specification
is discussed in [5].

2.1.1 Example: PCI–interface

As running example for this chapter we use a verification study, which has
been performed in co–operation with Siemens–AT. The results of this work
are summarized in [33].

The focus of this verification study was on the PCI–interface of a bus–
bridge (the PMIO–bridge). The specification of the PCI–interface using STD
has also be considered in the context of automatic controller synthesis (see
[23]).

The PMIO–ASIC consists of several units, each of which implement spe-
cific functionalities; examples are: an arbitration unit, a timer unit, and an
interface to a PCI–Bus. The PCI–interface implements part of the standard-
ized functionality of a PCI–target unit, defined in [28] (the implementation
described here uses the term slave instead of the term target).

A PCI–target consists of a sequencer unit and a so–called backend. Corre-
spondingly, there are two units called SLAVE SEQ fsm and SLAVE CTRL fsm
in the PMIO–design, which implement the respective functionality. The rele-
vant interface signals of these two units are shown in figure 2.1.

Both components are synchronous, triggered by signal CLK. We consider

12 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

the following informal requirement (more requirements will be stated in the
next section):

After STOP N has been asserted,

then it can be de–asserted only if FRAME N is de–asserted.

Without going into the detailed meaning of this statement, it is clear that
a relation on the behaviour between signals STOP N and FRAME N is stated.
Figure 2.1 suggests that it may suffice to consider the behaviour of the se-
quencer unit SLAVE SEQ fsm in isolation. This means that the inputs signals
TDISCON, TABORT, ADRHIT, MREAD and READY , which are in fact
driven by the unit SLAVE CTRL fsm , are virtually cut and driven by what-
ever faulty test sequences.

In the ideal case, a system–component (unit) is designed in a robust way
with respect to critical requirements. Even faulty input stimuli should not be
able to affect the required properties of the input/output behaviour of the unit.
In real–life, however, this ideal case is seldom found. Much more common is
the situation, that certain assumptions (sometimes undocumented) are made
in the design of a unit with respect to the values observed on input signals
(which in turn may depend on the values observed on output signals of the
unit). For example, the VHDL–design considered in this section turned out
to be designed in a less robust way than expected. In particular, the unit
SLAVE CTRL fsm appeared to have no independently meaningful behaviour.

The next step was to consider the parallel composition of the two units
SLAVE SEQ fsm and SLAVE CTRL fsm, which were apparently designed to
work together. These two components incorporate still a fraction of the total
complexity of the ASIC, and can be verified using the automatic verification
method described later in this chapter.

These observations suggests a methodology that can be summarized as
follows:

1. Given a property, determine the set of signals referred to in the property.

2. Determine the minimal subset of units, whose composition may be able
to guarantee the required property, and perform verification.

3. If the subset of considered units does not suffice, add further components
to the composition, as far as complexity issues permit, and perform
verification again. Repeat step 3, if necessary.

This methodology can be automated based on data–flow–analysis. Another

2.2. REQUIREMENTS 13

Table 2.1: Requirements T1–T5. The numbers in (. . .) brackets refer to the
corresponding operating rule numbers used in [28].

Name Description

T1 Signal DEVSEL# must be asserted at latest at the point, where
the target asserts the signals STOP# and TRDY# for the first
time (17).

T2 After DEVSEL# has been asserted, then it can be de–asserted
only after the end of the last data phase – except in order to
signal target–abort (18).

T3 After STOP# has been asserted, then it can be de–asserted only
if FRAME# is de–asserted (12b).

T4 If FRAME# has been de–asserted, then STOP# must be de–
asserted thereafter (12b).

T5 After one of the signals TRDY# and STOP# has been asserted,
then the signals DEVSEL#, TRDY# and STOP# may not be
changed before the end of the current data phase (12c).

methodology (based on a divide–and–conquer approach) will be described in
detail in chapter 4.

2.2 Requirements

The requirements of a bus interface are particular in the sense that they can
be stated “anchored” at well–defined start–conditions (e.g. the bus being in
a logical idle–state). Moreover, the start–conditions can be explicitly repre-
sented as logical expressions over the set of interface signals.

In the following (table 2.1 and 2.2), a number of informal requirements
(taken from [28]) referring to the interface signals explained above are stated
and named.

In the next section, some of these requirements will be formalized using
the visual formalism of STD–diagrams.

14 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Table 2.2: Requirements T6–T10.

Name Description

T6 After STOP# has been asserted, then TRDY# must be de–
asserted, after data has been transferred.

T7 After STOP# has been asserted, then TRDY# and DE-
VSEL# may not be asserted until the end of the last trans-
action phase.

T8 After the last transaction phase, DEVSEL#, TRDY# and
STOP# must be de–asserted.

T9 If DEVSEL# is de–asserted in order to indicate target–abort,
then signal STOP# must be asserted and TRDY# must be
(or remain) de–asserted.

T10 The signals DEVSEL#, TRDY# and STOP# may be as-
serted only (immediately) after the address phase.

2.3 Symbolic Timing Diagrams: An introduction
by example

In this section, we show how to formulate some of the requirements stated in
the last section by a corresponding set of STD–diagrams. At the same time,
we will explain informally how STD–diagrams are constructed, and how their
semantics is obtained using concepts from automata–theory.

2.3.1 Requirement T1

Textual formulation(operating rule 17): DEVSEL# must be asserted with or
prior to the edge at which the target enables its outputs (TRDY#, STOP#,
or (on a read) AD lines).

According to requirement T1, none of the considered outputs may be en-
abled before DEVSEL# is asserted, as expressed by diagram T not oe before de 10
shown in figure 2.2.

We will explain the following items of the diagram T not oe before de 10 :

• Graphical syntax: Symbolic waveforms and constraints

• Concrete diagram as template instances

2.3. SYMBOLIC TIMING DIAGRAMS: AN INTRODUCTION BY EXAMPLE 15

Figure 2.2: Diagram T not oe before de 10 .

• Semantics in terms of symbolic automata

At first sight, the diagram looks very much like a “classical” timing dia-
gram, except for the fact that no real–time axis is shown. The diagram has
two waveforms, named DEVSEL N O and w1 , respectively. The first waveform
name coincides with the name of a signal <sig>. This is a special case in STD:
it means, that the conditions shown as annotation of the associated waveform
must have the form ’= <expr>’ , which is completed to the expression: <sig>
= <expr>.

The second waveform named w1 shows the general case of a waveform. The
name of the waveform has the only purpose to uniquely identify the associated
waveform. The waveform consists of two regions, labelled

waveform region assertion

w1.0 not OUTPUTS ENABLED

w1.1 OUTPUTS ENABLED

where OUTPUTS ENABLED is an abbreviation for a Boolean expression de-
fined in the global scope of the specification. The concrete expression depends
on implementation details and does not matter here.

In the special case that a waveform describes a two–valued signal (as is the
case for signal DEVSEL N O), then the value = ’1’ respectively = ’0’ can be
graphically emphasized by corresponding high and low–levels of the waveform.
Note, however, that this is just a display option for better readability, and has
no semantic meaning. The default graphical shape of a waveform region is the
lozenge–shape, as shown for example on waveform w1 in figure 2.2.

16 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

The points separating waveform regions — graphically displayed by falling
and/or rising lines — are called (symbolic) events and represent possible
changes of the component interface state. A symbolic event has the dura-
tion of one model step.

Time can be imagined to proceed as a cut through the waveforms, pro-
gressing from left to right. When the timeline cuts the waveforms in regions
labelled e.g. by Boolean expressions <bool–expr–1> and <bool–expr–2>,
then this means that the actual component interface state must satisfy the
conjunction of all expressions cut by the time–line (e.g.: <bool–expr–1> and
<bool–expr–2>).

The progress of the timeline may be restricted by constraints. A constraint
originates from one event to the right (the source of the constraint) and enters
into another event from the left (the target of the constraint).

The diagram T not oe before de 10 has only one constraint, which orig-
inates from the (only) event on the waveform associated with signal DE-
VSEL N O and ends at the (only) event on the waveform named w1 . The
shape of this constraint is a curved line, which denotes a so–called precedence
constraint : The target event is required not to happen before the source event
of the constraint while the timeline moves forward. The automaton repre-
sentation of this diagram given later in this section will make this concept
precise.

It is often useful to construct diagrams as instances of (generic) tem-
plates. For example, the diagram T not oe before de 10 can be derived from
the diagram–template TL P and not Q unless Q shown in figure 2.3, using the
mapping:

Parameter Mapping

Q : Q 7−→ DEVSEL N O = ’0’

P : P 7−→ not(OUTPUTS ENABLED)

The semantics of this diagram is illustrated in figure 2.4. Model execution
is performed in an infinite sequence of steps, starting from step 0. A so–
called activation of diagram TL P and not Q unless Q occurs, whenever the
activation–condition of that diagram is met. The activation condition is de-
fined as conjunction of the first predicates taken from all waveforms of the
diagram. Thus, the activation condition of diagram TL P and not Q unless Q
is (not(Q) and P).

When activation happens in some step i (which may happen more than

2.3. SYMBOLIC TIMING DIAGRAMS: AN INTRODUCTION BY EXAMPLE 17

Figure 2.3: Diagram–template TL P and not Q unless Q.

once, even infinitely often during a model–run), then the diagram is matched
from step i on.

Matching is defined by the following rule: Whenever the state of a compo-
nent interface changes, then the effect of this change on each currently active
diagram of a specification is evaluated.

There are two possibilities (with respect to a particular diagram of the
specification):

• The new valuation still satisfies the conditions pointed to by the actual
matching–timeline

• In one or more waveforms of the diagram, the event lying ahead of the
actual matching–timeline is matched, which means that the timeline is
advanced. However, matching must conform to the constraints of the
diagram. For instance, the target event of the constraint of diagram
TL P and not Q unless Q must not be matched before the source event.

In the following, the semantics will be explained in an automata–theoretic
setting (which will be familiar to a reader with theoretical background).

In order to define the semantics of the matching process, an automaton
is constructed which takes each possible run of the matching process into ac-
count. This is illustrated in figure 2.5 , which shows in the form of a transition
system how the timeline advances along the diagram during matching.

The automaton shown in figure 2.6 — called the unwinding structure of
the diagram – is constructed from the transition system shown in figure 2.5.

18 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.4: Activation scenario of diagram–template
TL P and not Q unless Q. Ignore what happens beyond step i ; this will
be explained later in this chapter.

Figure 2.5: Advancement of timeline during matching process.

2.3. SYMBOLIC TIMING DIAGRAMS: AN INTRODUCTION BY EXAMPLE 19

Figure 2.6: Unwinding structure obtained from diagram
TL P and not Q unless Q .

The transition labels are Boolean expressions constructed from the expres-
sion annotations of the waveform regions, which are cut by the timeline after
the matching step has happened.

The loop label of a state s is always either identical to the label of the
transition which leads into s , or a weaker condition. The latter exception
is due to the fact that the final expressions of waveform which have been
completely matched, are no longer considered to be restricting the running
behaviour. Thus, the end of a waveform is (by default) labelled with the
Boolean expression true , although this is not displayed. In chapter 6, this is
explained in detail.

This automaton accepts — by definition – all behaviour suffixes starting
from the next step after activation of a diagram has happened. It follows
from the construction that the transition relation of the unwinding structure
automaton always forms a directed acyclic graph (DAG) with self–loops. This
property is the key for describing later the semantics in terms of temporal
logic.

In order to explore the “language” (set of behaviours) accepted by the
unwinding automaton, the following sequence of semantics–preserving trans-
formations is applied.

First, the DAG can be expanded into a tree; the construction is obvious,
the result is shown in figure 2.7.

Second, the upper branch of the automaton shown in figure 2.7 can be
“tail–optimized”, which produces the optimized version of the automaton

20 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.7: Unwinding structure expanded into tree.

Figure 2.8: Unwinding structure expanded into tree, optimized.

shown in figure 2.8 .
After this optimization step, further simplification becomes possible. The

result is shown in the next figure 2.9; note that the condition for a transition
from state s0 to s2 is equivalent to Q.

We now reconsider figure 2.4 (see figure 2.10); it remains to explain what
happens beyond step i . From step i+1 on, the automaton shown in figure 2.9
can be considered to “watch” the ongoing behaviour. The automaton allows
two further continuations:

1. All steps following step i satisfy condition (not Q and P) (control loops
in state s0)

2. After a finite number of steps following step i , which all satisfy condition

2.3. SYMBOLIC TIMING DIAGRAMS: AN INTRODUCTION BY EXAMPLE 21

Figure 2.9: Unwinding structure expanded into tree, further simplified.

Figure 2.10: Activation scenario and semantics of diagram–template
TL P and not Q unless Q.

(not Q and P), a step j follows which satisfies condition Q . In this
moment, control in the unwinding structure advances from state s0 to
state s2 , which accepts whatever behaviour follows. The activation of
the diagram which took place in step i is then satisfied. Note, however,
that there may be other activations of the same diagram later on.

2.3.2 Requirement T2

Textual formulation (operating rule 18): Once DEVSEL# has been asserted, it
cannot be de–asserted until the last data phase has completed, except to signal
target abort.

According to requirement T2, once asserted (= ’0’), DEVSEL# can only
be de–asserted after the end of the last data phase. The exception (target
abort) of the requirement is implemented in diagram T not de 01 until eldp in
waveform w2 using a so–called weak constraint (depicted by a dashed curved

22 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.11: Diagram T not de 01 until eldp.

line, cf. figure 2.11 and the following explanation).
If DEVSEL# is de–asserted to signal target abort (i.e. at the same time

where TRDY# is de–asserted and STOP# is asserted), then the diagram is
deactivated.

Diagram T not de 01 until eldp consists of three waveforms, consisting of
one symbolic event each, and two constraints. The two constraints have dif-
ferent colour and line–type (black/continous versus light grey/stippled). The
“normal” constraint type — referred to as strong constraint – is drawn in
black/continous and expresses a requirement with respect to the matching
process.

By contrast, the other type — referred to as weak constraint, drawn in
light grey/stippled line style — expresses an expectation with respect to the
matching process. This means that the requirements imposed on the matching
process by constraints are expressed under the expectation that the matching
process satisfies the weak constraints.

In other words, if the matching process does violate a weak constraint,
then this has the effect of preemption on the matching process: The matching
process terminates and the diagram accepts (!) the behaviour detected up to
the step where the preemption occurred.

In summary, the effect of an implication is obtained: For each step of the
matching process, the step either violates (at least) one weak constraint (the
“premise”), or it does not violate any weak constraints, and then it must not
violate any strong constraints in this step (the “conclusion”).

2.3. SYMBOLIC TIMING DIAGRAMS: AN INTRODUCTION BY EXAMPLE 23

Stated in one sentence, the requirement on each step can be described in
the form:

If no weak constraints are violated,
then no strong constraint must be violated.

Looking again at the constraint shapes of figure 2.11, it can be seen that
both have the form of precedence constraints, with an additional label #
attached. This constraint type is called precedence + conflict, which is — for
strong constraints — a stronger requirement than for normal precedence. It
requires in addition, that source and destination event of the constraint must
not be matched in the same step. This semantics applies equally for strong
and weak constraints.

2.3.3 Requirement T3

Textual formulation (operating rule 12b): Once asserted, STOP# must re-
main asserted until FRAME# is de–asserted, whereupon STOP# must be
de–asserted.

In this case it is possible to capture both requirements of the above rule
in one diagram, named T st 01 after fr 01 (figure 2.12):

First, STOP# must not be de–asserted before FRAME# is de–asserted,
and second, STOP# must be de–asserted immediately after the de–assertion of
FRAME#. So whenever both FRAME# and STOP# are asserted, the first
requirement is the FRAME# de–assertion. In the following cycle STOP#
must be de–asserted as well.

Here the constraint has the shape of a distance measure (arrow–heads both
at the source an the target of the constraint), with an interval annotation
defining the required distance in terms of model steps. In fact, this type of
constraint is not part of STD, but has been introduced in an extension of STD
named STDx [31].

Since we are assuming here the discrete step semantics of a synchronous
model, in standard STD the lower bound [1, ... of the interval could be ex-
pressed by a precedence+conflict constraint. The upper bound ..., 1] cannot
be expressed directly using constraints in STD. We will show in chapter 5,
how this part of the requirement can be expressed in the related formalism
named LSTD using an extension of the concept of symbolic waveforms.

24 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.12: Diagram T st 01 after fr 01 .

2.3.4 Requirement T4

Textual formulation (operating rule 12c): Once a target has asserted TRDY#
or STOP# it can not change DEVSEL#, TRDY# or STOP# until the cur-
rent data phase completes.

This rule includes five different requirements regarding which signal is
asserted (TRDY# or STOP#), which signal must not change (DEVSEL#,
TRDY# or STOP#) and which type of change is considered (assertion or de–
assertion). As an example, we consider diagram T not de 01 until ecdp (figure
2.13), which states that if TRDY# or STOP# is asserted while DEVSEL#
is asserted, DEVSEL# must not be de–asserted until the end of the last data
phase.

This diagram consists of two “proper” waveforms, and one “stubbed”
waveform, where only the first condition is present ((TRDY N O = ’0’) or
(STOP N O = ’1’)). The stubbed waveform expresses an activation context :
Diagram activation shall take place only in situations, where the context con-
dition ((TRDY N O = ’0’) or (STOP N O = ’1’)) holds.

The notion of an activation context can be implemented as further at-
tribute of a diagram, which has been done in the extension STDx.

2.4 Carrying out verification in a tool environment

The most important requirement about the conception of the formalism STD
was the ability to carry out fully–automatic formal verification of synchronous
models against requirements formalized by STD diagrams.

2.4. CARRYING OUT VERIFICATION IN A TOOL ENVIRONMENT 25

Figure 2.13: Diagram T not de 01 until ecdp.

By the time of the first publication of the basic concepts of STD ([32]), a
technique for verification called model–checking was already available in sev-
eral implementations. A verification environment supporting model–checking
of models generated from VHDL– or Statemate–designs (to name just two
examples) can have the coarse structure depicted in figure 2.14. In the figure,
the data–flow of a verification environment for StatemateTMdesigns is shown.

The following data–formats play a key role in this verification environment:

• STD — An ASCII–file format representation for STD–specifications.
These representations are created and modified in a design–capture tool
(graphical editor and manager) for STD. When a version of the specifica-
tion has been completed, then this version is checked into a verification
database.

• Component Profiles — As explained earlier in this chapter, verification is
usually carried out not on a full–design, but on a sub–tree of the design,
called a (component) profile in the Statemate terminology. Designs are
created and profiles are defined in the Statemate–design environment.

• Temporal Logic — STD–specification are translated into equivalent tem-
poral logic representations, which can be used as input format for a
(symbolic) model–checker such as the VIS model–checker. The defini-
tion of this translation is a central part of this book.

• Finite State Machine — A symbolic representation of the finite state
machine defining the chosen semantics for the design (depending on the

26 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

modelling language, there are options like: choosing a certain clocking
scheme, step– vs. superstep semantics etc).

• Error Path — A representation of an error–path can be translated back
in the form of a timing diagram. The big advantage of a visual formalism
such as STD lies in the fact that the error diagnosis format is then very
close to the specification format.

The verification environment sketched in figure 2.14 is described in detail in
the thesis [6]; it has evolved from a close collaboration between the company
i–Logix and the research centre OFFIS. The verification base engine is the
VIS–model–checker [34].

Verification of VHDL designs. Another existing verification for VHDL–
designs called CVE has been extended to be used together with the STD–
specification formalism. The CVE–verification environment was originally
developed by Siemens [10]; later on, it was extended and marketed by the
company Abstract–Hardware under the product name CheckOff.

During a cooperation of several years with the research centre OFFIS, this
company also provided a graphical design capture tool for STD–specification
development, which consists of the STD–database–manager (STD–manager,
for short), and the STD–editor, which allows to create STD–diagrams of the
kind shown in the examples in this chapter.

To illustrate these activities, we will demonstrate the CheckOff interface
in a few snapshots.

The main–window of the CheckOff–system is depicted in figure 2.15. The
work–area of the main window depicts, what happens during a model–checking
proof. First, a model is generated (automatically) from a given VHDL–design.
Similar to the Statemate–environment, a sub–tree of the design is usually
selected for compilation. Here, the example introduced at the beginning of this
chapter is shown, where the composition consisting of the PCI–sequencer and
the PCI–backend component was compiled into a single finite–state–machine
(slave ctrl seq arch 1).

A modification step was applied to remove unnecessary outputs from the
model, resulting in a new model named slave ctrl seq arch. Other modifications
could be applied in a sequence, e.g. setting input pins to constant values.

Right to the icon of the generated finite–state–machine of the implemen-
tation, another icon type can be seen (named slave ctrl seq), which represents
a temporal–logic formula, which was generated from one selected diagram of
the STD–specification.

2.4. CARRYING OUT VERIFICATION IN A TOOL ENVIRONMENT 27

Figure 2.14: Architecture of verification environment based on model–
checking.

28 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.15: Main window of the CheckOff–toolset.

Figure 2.15 just shows the situation, where the model of the (selected
part of the) VHDL–design and the temporal logic formula generated from
the selected STD–specification clause are checked for conformance. This is
done by the verification–module CheckOff–M (for Model–checking). While
the verification process is running, an hourglass is shown.

To the right of the work area, further buttons for verification process cus-
tomization can be seen. The Proof Mode can be changed from Sequential
(model–checking mode) to equivalence–checking mode (checking that two im-
plementations are either structurally or — at least – input/output–equivalent).
Also, semantic modes according to different clocking schemes can be selected.
Finally, the starting state (step 0) of the model can be defined to be either
the initial state (based on the definition of the VHDL–language), or the state
which the design will reach after a reset has occurred.

The result of a model–checking run is either true — which means that
the implementation model satisfies the requirements specification — or false ,
which means that at least one system run exists, which violates the selected
specification clause.

The result false is always useful (assuming that the specification logic is
correct): It demonstrates that for a particular sequence of input stimuli (one
which may have been overlooked during testing), the component will respond
in a way which violates the requirement. A great advantage of the model–
checking approach is that it is possible (as far as complexity permits it) to

2.4. CARRYING OUT VERIFICATION IN A TOOL ENVIRONMENT 29

Figure 2.16: Error–diagnosis explains the violation of a requirement.

automatically construct a counter–example, which demonstrates how the vio-
lation occurred.

The CheckOff system provides two ways of error diagnosis. First, there is
a low–level debugging interface, which is shown in figure 2.16.

The error–path is shown as a sequence of values assigned to the component
interface signals in a sequence of model steps, corresponding to the chosen
clocking scheme.

While this is perfectly adequate for a verification engineer, it is also pos-
sible to construct a test–environment in order to be able to demonstrate a
particular erroneous behaviour. The system automates the construction of
this test–environment, so that it can be executed immediately using a stan-
dard commercial simulator.

An example is shown in figure 2.17. Note that it is possible to step through
the code, so that the position where the error occurred can be precisely iden-
tified.

A similar option exists for the verification environment built around State-
mate. It is possible to translate an error–path into a so–called simulation con-
trol program (SCP), which can be used with the Statemate simulator, to drive
the model precisely into the state where the error occurred.

30 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Figure 2.17: Simulating an error–path found by model–checking.

2.5 Summary

In this chapter, the basic motivation for the introduction of a graphical spec-
ification formalism aiming at formal verification of industrial designs was laid
out.

First, examples were shown how requirements can be translated into cor-
responding STD–diagrams. It was explained how the semantics of individual
STD–diagrams is constructed, based on the concept of diagram activation and
the unwinding–structure (automaton) as acceptor of a behaviour continuing
from the point of diagram activation.

Second, the principle software architecture for a verification environment
based on model–checking against STD–specifications has been sketched, corre-
sponding to an existing verification environment which has been built around
the StatemateTMdesign environment.

It has been argued that the model–checking approach can be used with a
similar software architecture for different design languages, including VHDL,
Verilog, and Statemate. The great advantage of the model–checking approach
is given by the fact that it is possible to construct automatically testing en-
vironments in order to analyze a particular behaviour which violates a given
diagram (specification clause).

Up to now, verification environments supporting STD for requirement
specification have been built for VHDL and Statemate.

2.5. SUMMARY 31

Three questions arising immediately from the suggested approach are:
Have we written enough properties? Are the informally stated requirements
correctly translated into diagrams? Are the requirements consistent?

These questions can in principle be answered based on an evaluation of
the semantics of the formalized specification, e.g. by synthesizing (C–code)
controllers from specifications and testing the behaviour of the code. This
approach has been considered by [23] (which includes as example a robotics–
application case study) and recently by [25].

32 CHAPTER 2. METHODOLOGY OF MODEL VERIFICATION

Chapter 3

Theoretical foundation of
specification

In this chapter, the prerequisites for a formal treatment of the semantics of
STD–specifications are introduced.

The following items are discussed:

• Assertion language,

• Boolean expressions,

• Symbolic Automata (SA),

• runs and validity,

• specification of properties (examples),

• partially ordered SA,

• temporal logic and sub–logics thereof.

Note that the exposition style in this chapter is on an elementary level,
so that it should be understandable by readers with basic logic background
(which can be assumed e.g. for a hardware designer). It will be sufficient
for the logic expert to read over this chapter fast in order to recognize the
definitions, theorems and citations.

34 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

3.1 Assertion Language

The connection between an abstract specification and a concrete implementa-
tion model is established using the sub–language of Boolean–expressions.

The sub–language of Boolean expressions can be used as an assertion lan-
guage. For instance, the language VHDL has a statement assert(<VHDL–
Boolean–expression>) which is checked by a simulator during program execu-
tion (simulation). For example, suppose that two signals Grant1 and Grant2
must never be high at the same time. In order to check this requirement, it
is possible to insert a statement: assert(not(Grant1 = ’1’ and Grant2 = ’1’))
within the code at all critical instances.

The use of an assertion language is an integral part of all formal program
verification techniques. The classical method of (sequential) program verifica-
tion established by Hoare in the late 60’s [19] uses correctness formulas (CF’s)
of the form

{P} S {Q}

where P , Q are assertions (Boolean expressions) constructed from the pro-
gram variables using some set of operations, and S is a (sequential) program
statement (e.g. a variable assignment).

For instance, the correctness formula

{ n > 0} n := n — 1 ; { n ≥0}

claims that for any program state where the natural–type variable n is positive,
execution of the statement S ≡ n := n – 1 ; yields a program state where n ≥0.
Note that the assertion n > 0 abstracts from (the values of) any program
variable other than n.

The concrete implementation language, called IL, and its concrete sub–
language of Boolean expressions does not matter here; all that is of interest
is the fact, that a given Boolean expression bexpr defines a set of solutions
(mappings of a specified set of variables to concrete values).

The general expression–language EL of the implementation language IL is
a family of languages

EL ≡Def
⋃

ELτ ,

where ELτ is the language of expressions of type τ .
The assertion language AL is a particular expression–language, where ex-

3.1. ASSERTION LANGUAGE 35

pressions are of the type Boolean:

AL ≡Def ELBoolean .

A program semantics assigns to each expression Eτ ∈ ELτ constructed
from a set of (typed) variables

V ≡Def
⋃
Vτ

a value

[[Eτ]]ρ ∈ Dτ

where ρ is a (type–consistent) valuation of the variables in V, i.e. a mapping

ρ ∈ Val(V) : vτ ∈ Vτ 7→ dτv ∈ Dτ ,

where Dτ is the domain of values of type τ , and Val(V) is the domain of
valuations of V.

E.g., the domain of Boolean constants is

DBoolean ≡Def {true, false} .

The precise (language dependent) definition of the expression semantics [[.]]ρ
is not important for our exposition and is assumed to be given 1. The main
point is that the semantics of a Boolean–type expression EBoolean can be used
to define a set of valuations L ⊆ V al(V) of the variables in V, which contains
all valuations satisfying EBoolean as follows:

L ≡Def {ρ ⊆ V al(V) | [[EBoolean]]ρ = true}.

On the level of logic, we use the domain of truth values

Dtruthval =Def {TRUE,FALSE}

which should not be confused with the domain DBoolean of values of Boolean
expressions.

1We deliberately avoid to go into the details of the definition of the assertion language.
See appendix B for additional notes on this topic.

36 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Next, we define the language of Boolean expressions.

Definition 3.1 (Classical logic expressions based on an assertion lan-
guage) Assume an assertion language AL, and a set V of (typed) variables.
Then the language of classical logic expressions based on AL is defined by the
following grammar with the production sets (0)–(1):

φ −→ 〈|E|〉 | (φ1) (0)

| φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ1 (1)

where E is a Boolean expression of the assertion language AL over V.
The set of formulas which can be derived from the productions (0) — (1)

is referred to as BoolAL, called the Boolean fragment of the assertion language
AL. Note: The logical constants TRUE and FALSE are syntactically repre-
sented as 〈|true|〉 and 〈|false|〉, respectively. In the context of temporal logic
we will later sometimes write β instead of φ to emphasize the fact that φ is a
Boolean formula.

For a formula φ ∈ BoolAL, state ρ ∈ Val(V), we define the validity of a state
with respect to the formula, denoted by ρ |= φ.

Definition 3.2 (Validity of a state w.r.t. a formula) The validity of a
state ρ ∈ Val(V) w.r.t. a formula φ ∈ BoolAL is defined by induction on the
structure of φ.

ρ |= 〈|E|〉 iff [[E]]ρ ≡ true

ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2

ρ |= φ1 ∨ φ2 iff ρ |= φ1 or ρ |= φ2

ρ |= ¬φ1 iff not ρ |= φ1

ρ |=(φ1) iff ρ |= φ1

A formula φ is called a tautology, denoted

|= φ

if ρ |= φ for all states ρ ∈ Val(V).

3.2. SYMBOLIC AUTOMATA 37

3.2 Symbolic Automata

Symbolic Automata are the basis of the semantics definition of STD. The no-
tion of symbolic automata is derived from (non–deterministic) Büchi–automata
(NBA, cf. [7] and [36]), extended to allow expressions as transition labels. Cor-
respondingly, the semantics of acceptance has to take into account the notion
of assertion satisfaction.

In the following, we consider an assertion language AL as given.
We will introduce symbolic automata as a formalism, which can be used to

specify qualitive timing requirements of a system behavior. The formalism is
operational in nature and is adequate for the formulation of “abstract” views
about a system behavior.

3.2.1 Basic definition

We introduce the definition of symbolic automata without prior motivation;
it is close to the well known concept of (nondeterministic) Büchi automata.

Definition 3.3 (Symbolic Automaton) Assume an assertion language AL,
and a set V of variables.

A symbolic automaton (SA) A over V is a structure

A : (V,Locs,Edges, L0, F)

with the following components:

• V ⊆ V is a finite set of variables,

• Locs is a finite set of locations, and

• Edges is a finite set of edges. Edges are triples

(`, φ, `′)

where `, `′ are locations, and φ ∈ BoolAL is a formula over V ,

• L0 ⊆ Locs is the set of initial locations;

• F ⊆ Locs is a designated set of acceptance states (whose semantics will
be defined below).

38 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

3.2.2 Computations

The formulas of BoolAL introduced in definition 3.1 can be used to make
assertions about the state ρ of a non–terminating (reactive) program at any
particular moment in time.

We consider a notion of time which is adequate to describe discrete syn-
chronous systems.

The time domain is denoted by Time; each element t ∈ Time is called a
moment. For models of synchronous systems, a notion of time is appropriate
which is isomorphic to the set of natural numbers, i.e.

Time ≡Def N0 .

This definition implies (1) that there is a first moment 0 in time, (2) time
advances in discrete steps, (3) time is infinite (there is no “last” moment),
and (4) the moments in time are linearly ordered. As a consequence, it is
possible to argument by induction over the time domain.

Definition 3.4 (Computation sequence) Given a set of variables V , a
computation σ over V (of a system) is a mapping

σ ∈ Comp(V) : t ∈ Time 7→ ρt ∈ Val(V) ,

where the set of all computations over V is denoted as Comp(V).

3.2.3 Runs and notion of acceptance

Deterministic automata can be used to classify computations by judging the
effect which it has on the internal state of the automaton.

For the definition of the semantics of nondeterministic automata, there is
usually more than one possible effect on the internal state transitions. In this
case, all possible effects are taken into account.

Definition 3.5 (Semantics of Symbolic Automaton) Assume an asser-
tion language AL, a set V of variables, and a symbolic automaton A over
V ⊆ V.

Given a computation sequence σ over V , a run σ` of A over σ ≡Def (ρi)i≥0

is an infinite sequence of locations of A:

σ` : i ∈ N0 7→ `i ∈ Locs

satisfying the following conditions (1) and (2):

3.2. SYMBOLIC AUTOMATA 39

`0 ∈ L0 (1)

∀i ≥ 0 : ∃φ . (`i, φ, `i+1) ∈ Edges ∧ ρi |= φ (2)

{i | `i ∈ F} is an infinite set (of F–locations) (3)

σ` is called an accepting run, if condition (3) is also satisfied.
The semantics (language) L(A) of SA A is the set of computation se-

quences σ over V for which one accepting run over σ exists.

3.2.4 Properties of Symbolic Automata

This section lists a key property of SA which is referenced often in later chap-
ters. The property is called the statement of monotonicity : “Relaxing” the
label of a transition (i.e. replacing a formula φ by a weaker formula φ′) yields
a new automaton, which accepts at least all runs of the original SA.

Lemma 3.1 (Monotonicity of SA) Assume an assertion language AL, a
set V of variables, and a symbolic automaton A = (V,Locs, Edges, L0, F) over
V ⊆ V.

Assume further another SA A′ = (V,Locs, Edges′, L0, F) over V , which is
identical to A except for one edge e ∈ Edges, which becomes e′ in A′:

e ≡Def (`, φ, `′) in A, and

e′ ≡Def (`, φ′, `′) in A′

where φ implies φ′(φ⇒ φ′). The set Edges′ is defined by

Edges′ = Edges\{e} ∪ {e′}

Then

L(A) ⊆ L(A′) .

Note: The notion of formula implication is given in definition 3.13.

40 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

3.2.5 Deterministic Symbolic Automata

The understanding of the semantics of a symbolic automaton is simplified if
runs are uniquely determined by given computations. This is the case for
deterministic automata.

Definition 3.6 (Complete and deterministic Symbolic Automaton)
Assume an assertion language AL, a set V of variables, and a symbolic au-
tomaton A = (V,Locs, Edges, L0, F) over V ⊆ V.

Define for a location ` ∈ Locs the set of formulas

Φ` =Def {φ | ∃`′ ∈ Locs . (`, φ, `′) ∈ Edges}

for which an edge to a successor state of ` labelled with a formula φ ∈ Φ`

exists. A is called to be deterministic at ` iff

∀φ1, φ2 ∈ Φ` : |= φ1 → ¬φ2 ; (disjoint labeling)

A is called to be complete at ` iff

|=
∨

φ∈Φ`

φ (exhaustive labeling)

A is called complete, if it is complete at all locations ` ∈ Locs, and called
deterministic, if it is deterministic at all locations ` ∈ Locs and the set L0 of
initial locations contains exactly one location.

The next lemma is a consequence of the deterministic property.

Lemma 3.2 (Unique run of deterministic SA) Assume that A = (V,Locs,
Edges, L0, F) is a deterministic and complete SA over V .

Then A has for any given computation sequence σ ≡Def (ρi)i≥0 over V
exactly one run σ` (either accepting of not) over σ, which is defined by

σ` =Def (0 7→ any ` . ` ∈ L0

i > 0 7→ any `′ . ∃φ . (σ`(i− 1), φ, `′) ∈ Edges ∧ ρi−1 |= φ)

Proof of lemma 3.2:

3.2. SYMBOLIC AUTOMATA 41

Definedness of σ` . We have to show that the given definition of σ` over σ
defines σ` as a function, which is the case if the any –constructs used in the
definition of σ` define unique values. Since A is deterministic, L0 = {`0} for
some `0 ∈ Locs,

↪→[def. of any] (any ` . ` ∈ L0) = `0 .

It remains to show the well–definedness of σ` for the second definition–
clause (case i > 0). Consider for ` ∈ Locs, ρ ∈ Val(V) the set

S`,ρ =Def {`′ ∈ Locs | ∃φ . (`, φ, `′) ∈ Edges ∧ ρ |= φ} .

Our next goal to show that

|S`,ρ| = 1 (*)

for all ` ∈ Locs, ρ ∈ Val(V).

S`,ρ 6= ∅ . By premise, A is (in particular) complete at `.

↪→[by condition (exhaustive labeling)] ρ |=
∨

φ∈Φ`

φ

↪→[def. of
∨

] ∃φ0 ∈ Φ` . ρ |= φ0

↪→[def. of Φ`, φ0 ∈ Φ`] ∃`′ . (`, φ0, `
′) ∈ Edges

↪→[ρ |= φ0] `′ ∈ S`,ρ .

|S`,ρ| < 2 . Assume the opposite, i.e.

∃`1, `2 ∈ S`,ρ . `1 6= `2 (**)

For i = 1, 2: `i ∈ S`,ρ
↪→[def.of S`,ρ] ∃φi ∈ Φ` . (`, φi, `i) ∈ Edges ∧ ρ |= φi (*)

On the other hand, by condition (disjoint labeling):

↪→[|= φ1 → ¬φ2] ρ |= φ1 → ¬φ2,

↪→[def. of →, ¬] not (ρ |= φ1 and ρ |= φ2).

But this contradicts (*), hence assumption (**) must be false.

↪→[S`,ρ 6= ∅ and |S`,ρ| < 2] |S`,ρ| = 1

42 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Consider again the clause:

any `′ . ∃φ . (σ`(i− 1), φ, `′) ∈ Edges ∧ ρi−1 |= φ)

and let ` ≡Def σ`(i− 1), ρ ≡Def ρi−1.
Then

S`,ρ = {`′ ∈ Locs | ∃φ . (`, φ, `′) ∈ Edges ∧ ρ |= φ} = {`′0}

for some `′0 ∈ Locs.

↪→[by def.] (any `′ . ∃φ . (σ`(i− 1), φ, `′) ∈ Edges ∧ ρi−1 |= φ) = `′0

It follows that σ` is well–defined.

Example 3.1 (Specification of properties using SA) We assume a for-
mula φ ∈ BoolAL over some set of variables V and define:

Aeventually φ =Def (V,Locs,Edges, L0, F)

The components Locs, Edges, L0, F are specified in the conventional dia-
grammatic notation used for graphs and transition systems, with the following
definition: (1) Each initial location ` ∈ L0 is represented by a arrow without
source pointing to it, and (2) each acceptance state ` ∈ F is denoted by a
double–circle (as opposed to single–circles for non–acceptance states).

Using these conventions, we define Aeventually φ over V by the diagram
shown in figure 3.1. The automaton accepts all computations over V , which
contain at least one φ–state.

3.3 Partially ordered SA

We will next consider a particular subclass of SA, which is the class of symbolic
automata which contain no (non–trivial) cycles.

Definition 3.7 (Partially ordered SA) Assume an assertion language AL,
and a set V of variables.

A partially ordered symbolic automaton (POSA) A over V is a SA

A : (V,Locs,Edgespo, L0, F) (POSA)

with the following restriction on the set Edgespo: Define a binary relation →
on the set Locs (denoted in infix notation) by

3.3. PARTIALLY ORDERED SA 43

Figure 3.1: Symbolic Automaton Aeventually φ. From this figure on, we will
simply write true as edge label instead of 〈|true|〉.

`1 → `2 iff ∃φ . (`1, φ, `2) ∈ Edgespo .

Then the SA A is called a partially ordered SA, iff the relation →∗ (the reflex-
ive, transitive closure of →) is a partial order. In particular, it is required to
be anti–symmetric, i.e.:

(`1 →∗ `2) ∧ (`2 →∗ `1) =⇒ `1 = `2 .

For a POSA A, the relation →∗ is denoted by �A (or simply by �).

Example 3.2 (POSA Aeventually φ) The SA Aeventually φ shown in figure
3.1 is a POSA, where

�Aeventually φ
= {(`0, `0), (`0, `1), (`1, `1)} .

Lemma 3.3 (Runs of a POSA) Let A be a POSA over some set V of vari-
ables. Then each run σ` of A has the form

σ` = (`0, `1, . . . , `k, `k+1, . . .)

for some k ≥ 0, where

44 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

`0 ∈ L0 (1)

∀i . 0 ≤ i < k : `i � `i+1 (2)

∀i ≥ k : `i = `k (3)

Proof of Lemma 3.3:

Proof of (1),(2) . Let σ` ≡Def (`i)i≥0 be a run of A. Then (1) holds by
definition (`0 ∈ L0). Also by definition:

∀i ≥ 0 : `i → `i+1

↪→[`→ `′ =⇒ ` � `′] ∀i ≥ 0 : `i � `i+1

↪→[(in particular)] (2).

Proof of (3). First, we show that σ` cannot have non–trivial loops, i.e. for
some positions i1 < i3 < i2 in σ`: `i1 = `i2 and `i3 6= `i1 .

Assume by contrary that this were the case;

↪→[∀j . i1 ≤ j < i2 : `j � `j+1, transitivity of �] `i1 � `i3 and `i3 � `i2

↪→[`i1 = `i2 , `i3 � `i2 ⇒ `i3 � `i1 , anti–symmetry of �] `i3 = `i1

which contradicts the assumption; hence σ` cannot have non–trivial loops.
Now assume, by contrary to (3), that for σ`, ∀k ≥ 0∃i ≥ k . `i 6= `k (*).
Consider a sequence (`′i)i≥0, defined by:

`′0 =Def `0

`′i+1 =Def `k where k =Def any j . j > i ∧ `j 6= `′i (∗∗)

By assumption (*), the clause (∗∗) is satisfiable, hence some sequence σ`′

with the required properties exists under the assumption (*).
Let |Locs| = m ≥ 2 (the case |Locs| = 1 is trivial), and consider the set

Sσ`′,m =Def {`′0, . . . , `′m}. Since this set has m+1 elements, there must be two
indices j1 < j2, such that `′j1 , `

′
j2
∈ Sσ`′,m and `′j1 = `′j2 . Since by construction

`′j1 6= `′j1+1, it follows that j1 < j1 + 1 < j2. By construction of σ`′, this
implies that σ` would have a non–trivial loop at those positions i1,i3,i2, for

3.4. (LINEAR–TIME) TEMPORAL LOGIC 45

which `′j1 = `i1 , `′j3 = `i1+1 and `′j2 = `i2 , which is impossible; hence (3) must
be true. q.e.d.

Lemma 3.3 implies that for a partially ordered SA A, each run σ` eventu-
ally remains forever at some location `f ∈ Locs, after “climbing up” in Locs
w.r.t. the partial order �; this final location `f “decides” whether the run is
accepting (`f ∈ FA) or not (`f 6∈ FA).

In the following, we will assume that any SA (POSA) is in a normal form,
which can be assumed without loss of generality due the next lemma.

Lemma 3.4 (SA–normalization, SA–normal form) Assume a set V of
variables, and some SA A over V . Then we can find another SA A′ ≡Def

(V,Locs′,Edges′, L′0, F
′) over V , which is language–equivalent to A (i.e.: L(A) =

L(A′)) and satisfies the following normal–form requirements:

1. (completeness) A′ is complete (cf. def. 3.6),

2. (selfloop–closure) For each location ` ∈ Locs′, ` → `, i.e. there exists a
(selfloop–)edge (`, φ, `) ∈ Edges′ for some φ, and

3. (no–parallel–edges) For all locations `, `′ ∈ Locs′, ` 6= `′ holds:

(`, φ1, `
′) ∈ Edges′ ∧ (`, φ2, `

′) ∈ Edges′ =⇒ φ1 = φ2 .

A SA which has the three properties stated above is said to be in SA–normal
form.

For example, the automaton Aeventually φ shown in figure 3.1 is in SA–normal
form.

3.4 (Linear–time) Temporal Logic

We further assume some assertion language AL as given.
We next introduce the language of (linear–time) temporal logic on top of

a given assertion language.

Definition 3.8 ((linear–time) temporal logic) Assume an assertion lan-
guage AL, and a set V of variables. Then the language of linear–time temporal
logic based on AL(LTLAL) is defined by the following grammar with the pro-
duction sets (0)–(4):

46 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

φ −→ 〈|E|〉 | (φ1) (0)

| φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ1 (1)

| always φ1 | eventually φ1 (2)

| φ1 until φ2 | φ1 unless φ2 (3)

| next φ1 (4)

where E is a Boolean expression of the assertion language AL over V . With-
out the production (4), the grammar defines the language LTLAL without
“nexttime–operator” (denoted LTLAL

st).

We allow in addition using the Boolean connectives → and ↔, which are
defined as abbreviations:

φ1 → φ2 ≡Def (¬φ1 ∨ φ2)

φ1 ↔ φ2 ≡Def (φ1 → φ2) ∧ (φ2 → φ1)

The precedences of the operators introduced in definition 3.8 are as follows:
The unary operators ¬, always , eventually , next bind stronger than the
binary operators until , unless , which bind stronger than ∧; as usual, ∧
binds stronger than ∨ , which binds stronger than→,↔. All binary operators
are left–associative. Parentheses (and) can be used to define the grouping of
sub–formulas.

The interesting part of definition 3.8 is the introduction of the temporal
operators always , eventually , until , unless and next in the production
sets (2)–(4). We will explain the meaning of these operators together with the
formal semantics definition of LTL.

3.4.1 Formal semantics of temporal logic

Given a set of variables V , the semantics of the temporal logic language is
defined in terms of validity formulas of the form

σ |=V φ ,

where σ is a computation, φ is a temporal logic formula, and the operator |=V

is read “satisfies”; if the set of variables V is clear from the context, we simply
write |= instead of |=V .

3.4. (LINEAR–TIME) TEMPORAL LOGIC 47

For the semantics definition, we define as preparation the notion of the
j–suffix of a computation σ, denoted as σ(j):

σ(j) : i ∈ N0 7→def σ(i+ j) (computation–suffix)

Definition 3.9 (Semantics of temporal logic) Assume an assertion lan-
guage AL, and a set V of variables. Then the semantics of the temporal
logic language LTLAL is defined by induction on the structure of a formula
φ ∈ LTLAL.

For any computation σ ∈ Comp(V), the validity of the clause σ |= φ is
defined by induction on the structure of φ.

σ |= 〈|E|〉 iff [[E]]σ(0) = true

σ |= (φ1) iff σ |= φ1

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2

σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= ¬φ1 iff not σ |= φ1

σ |= always φ1 iff ∀j ≥ 0 : σ(j) |= φ1

σ |= eventually φ1 iff ∃j ≥ 0 : σ(j) |= φ1

σ |= φ1 until φ2 iff ∃j ≥ 0 : σ(j) |= φ2 and

∀i : 0 ≤ i < j : σ(i) |= φ1

σ |= φ1 unless φ2 iff σ |= φ1 until φ2 or σ |= always φ1

σ |= next φ1 iff σ(1) |= φ1 .

With definition 3.9 at hand, we will next explain the informal meaning
of the temporal logic operators always , eventually , until , unless and
next .

First, always φ1 holds for a computation σ, iff φ1 holds for all moments
in the Time–domain of σ; by contrast, eventually φ1 holds for σ, iff φ1 holds
(at least) for one moment of the domain of σ.

Second, φ1 until φ2 holds for a computation σ, iff φ2 holds (at least) for
one moment of the domain of σ and φ1 holds for all preceding moments of
the time–domain of σ (note that the domain Time is linearly ordered).

Similarly, φ1 unless φ2 holds for a computation σ, iff either φ1 until φ2

48 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

holds for σ (i.e. in particular φ2 holds (at least) for one moment of the time–
domain of σ) or φ1 holds for all moments of the time–domain of σ.

Third, next φ1 holds for a computation σ, iff φ1 holds starting from the
next moment after the initial moment of the time–domain of σ.

The definition 3.9 is rooted at its first clause,

σ |= 〈|E|〉 iff [[E]]σ(0) = true ,

which says that a state–assertion E (denoted as 〈|E|〉 on the logic level) holds
for a computation σ, iff it holds at the initial moment of the time–domain of
σ.

3.4.2 Validity and satisfiability

We can now formalize the notion L(φ) , which is the set of computations
“accepted by” a formula φ. Given a set of variables V ,

L(φ) ≡Def {σ ∈ Comp(V) | σ |= φ} .

In general, L(φ) ⊆ Comp(V), i.e. a formula φ “accepts” some computation
and “rejects” other ones.

There are cases of a formula φ, which accept any computation; in other
words, they are valid independent of the interpretation of their variables. Such
a formula is called a “valid formula” or a “tautology”. Given a set of variables
V , define

φ ∈ LTLAL is a tautology iff L(φ) = Comp(V) ;

the fact that a formula φ is a tautology is denoted as |= φ.
The opposite case is that a formula rejects all computations. A formula

is called “satisfiable”, if it accepts at least one computation. Given a set of
variables V , define

φ ∈ LTLAL is satisfiable iff L(φ) 6= ∅ .

Validity and satisfiability are dual notions, as stated by the next lemma.

Lemma 3.5 (Validity and satisfiability) Assume a set of variables V , for-
mula φ ∈ LTLAL. Then

3.4. (LINEAR–TIME) TEMPORAL LOGIC 49

L(¬φ) = Comp(V)− L(φ) (1)

φ is a tautology iff ¬φ is not satisfiable (2)

The first fact (1) of lemma 3.5 follows from the definition of L(φ); the second
fact (2) is a special case of the first one.

The temporal operator always is also known under name “globally”. A
formula φ is called globally valid iff formula always φ is valid. The tempo-
ral logic language introduced in definition 3.8 contains only so–called “future
time” operators, i.e. operators which do not refer to the past of the actual
moment, but only to the future. For this type of temporal logic, we have the
next lemma.

Lemma 3.6 (Global validity) Assume a set of variables V, formula φ ∈
LTLAL. Then

|= φ iff |= always φ (*),

i.e. a valid formula is globally valid, and (in particular) vice versa.

Proof of lemma 3.6 :

Proof of (*), ⇒ . Assume that (*),⇒ does not hold.

↪→[def. of |=] (i) ∀σ . σ |= φ and (ii) ∃σ0 . σ0 6|= always φ

↪→[from (ii)] ∃i0 . σ(i0)
0 6|= φ (**)

↪→[choose in (i) σ(i0)
0 for σ] σ

(i0)
0 |= φ (***)

↪→[Contradiction between (**) and (***)] (*), ⇒ is valid.

Proof of (*), ⇐ . Assume that (*), ⇐ does not hold.

↪→[def.of |=] (i) ∃σ0 . σ0 6|= φ and (ii) ∀σ . σ |= always φ

↪→[def. of always] ∀i ≥ 0∀σ . σ(i) |= φ

↪→[in particular with i = 0 (σ(0) ≡ σ)] ∀σ . σ |= φ

↪→[Contradiction to (i)] (*),⇐ is valid. (q.e.d.)

50 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Following the terminology of [26], we define two formulas φ1,φ2 ∈ LTLAL
to be equivalent, denoted as φ1 ∼ φ2, by:

φ1 ∼ φ2 iff |= φ1 ↔ φ2 ; (equivalent formulas)

we further define the formulas φ1, φ2 ∈ LTLAL to be congruent, denoted as
φ1 ≈ φ2, by:

φ1 ≈ φ2 iff |= always (φ1 ↔ φ2) . (congruent formulas)

From lemma 3.6 it follows immediately that for the temporal logic language
defined in definition 3.8 the notions of equivalence and congruence coincide.
It is easy to show that ∼ is an equivalence relation on the set of formulas (i.e.,
reflexive, symmetric, and transitive).

3.4.3 Formula schemes

Further insight into the mathematical properties of (linear) temporal logic can
be gained by considering formula schemes. A formula scheme is built upon
schematic variables taken from some domain U of schematic variables disjoint
from the set of variables V. These schematic variables represent yet unknown
temporal logic sub–formulas. A formula scheme is constructed from these
schematic variables by application of temporal operators 2.

Definition 3.10 (LTL–formula schemes) The language LTL of temporal
logic over some assertion language AL (introduced in definition 3.8) defines
the class of LTL–formula schemes by the following grammar :

Φ −→ u | (Φ1) (0)

| . . . (1)–(4)

where u ∈ U is a schematic variable, and the production sets (1)–(4) are
defined as for LTL in definition 3.8, with Φ instead of φ.

Let free(Φ) denote the set of (free) schematic variables in the formula
scheme Φ. For u1, . . . , uk ∈ free(Φ), φ1, . . . , φk ∈ LTLAL,

2Formula schemes will play a central role in chapter 6, where the so–called chaining rule
6.1 for LSTD is introduced.

3.4. (LINEAR–TIME) TEMPORAL LOGIC 51

Φ[φ1/u1, . . . , φk/uk]

denotes the instantiated scheme, where the schematic variable u1, . . . , uk have
been instantiated (substituted by) the corresponding LTL–formulas φ1, . . . , φk.

An instantiated scheme Φ[φ1/u1, . . . , φk/uk] is called fully instantiated, if
{u1, . . . , uk} = free(Φ).

The next lemma states that substitution of equivalent sub–formulas in a
temporal logic formula yields an equivalent formula.

Lemma 3.7 (Substitution of equivalent sub–formulas) Let φ1, φ2 be for-
mulas in LTLAL and Φ an LTL–scheme with one (free) schematic variable u.
Then

φ1 ∼ φ2 ⇒ Φ[φ1/u] ∼ Φ[φ2/u] .

Note: In the special case of a single occurrence of the schematic variable
u in the scheme Φ, the fully instantiated scheme Φ[φ1/u] can be regarded as a
formula φ with sub–formula φ1. A consequence of lemma 3.7 is that replacing
sub–formula φ1 by an equivalent sub–formula φ2 yields an equivalent formula
φ′ ≡ DefΦ[φ2/u].

Lemma 3.7 can be used to establish the property of the temporal logic LTLAL,
that it is possible to apply a sequence of equivalence–preserving transforma-
tions, by which the negation operator ¬ can be “pushed inwards”. This is
possible because of the following set of equivalences:

¬(φ1 ∧ φ2) ∼ ¬φ1 ∨ ¬φ2

¬(φ1 ∨ φ2) ∼ ¬φ1 ∧ ¬φ2

¬¬φ1 ∼ φ1

¬always φ1 ∼ eventually ¬φ1

¬eventually φ1 ∼ always¬φ1

¬(φ1 until φ2) ∼ ¬φ2 unless (¬φ1 ∧ ¬φ2)

¬(φ1 unless φ2) ∼ ¬φ2 until (¬φ1 ∧ ¬φ2)

¬next φ1 ∼ next¬φ1

An easy induction argument shows that each formula can be transformed in
a finite numer of steps into an equivalent formula, where the negation operator
occurs only immediately in front of an assertion formula.

52 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Definition 3.11 (Negation normal form) A formula φ ∈ LTLAL is said
to be in negation normal form (¬–NF), if for each subformula φ1 of φ

φ1 ≡ ¬φ′ =⇒ φ′ ≡ 〈|E|〉, for some E ∈ AL.

Definition 3.12 (Negation free formula schemes) A formula scheme Φ
is called negation free, if it does not contain any negation .

We will use in the following the notion that a formula φ1 “is stronger than”
or “implies” another formula φ2.

Definition 3.13 (Formula implication) Let φ1, φ2 ∈ LTLAL. Formula φ1

is said to imply formula φ2, denoted by

φ1 ⇒ φ2 ,

iff

|= φ1 → φ2 ,

i.e. iff φ1 → φ2 is a tautology.

The temporal operators of LTL have – similar to the Boolean operators
∧, ∨ – a monotonic behavior, which is stated in the next lemma 3.

Lemma 3.8 (Monotonicity of negation–free formulas) Let φ1, φ2 ∈ LTLAL,
Φ a negation free formula scheme with one schematic variable u. Then

always (φ1 → φ2)⇒ Φ[φ1/u]→ Φ[φ2/u] .

Proof of lemma 3.8 . By definition of⇒(definition 3.13), we have to show
that

∀σ : σ |= always (φ1 → φ2)→ Φ[φ1/u]→ Φ[φ2/u]

We assume σ to be arbitrarily fixed, and establish that
3Similar results can be found in the standard literature on temporal logic; see in particular

[24].

3.4. (LINEAR–TIME) TEMPORAL LOGIC 53

σ |= always (φ1 → φ2) (LHS)

implies

σ |= Φ[φ1/u]→ Φ[φ2/u] (RHS)

By definition, (LHS) means:

∀i≥0 : σ(i) |= φ1 → σ(i) |= φ2 (LHS’)

The proof is by induction on the height of the parse tree of Φ, which is denoted
by |Φ|.

• case |Φ| = 0 : Then, Φ ≡ u, and

Φ[φ1/u]→ Φ[φ2/u] ≡ φ1 → φ2 ;

hence RHS follows from LHS’.

• case |Φ| = 1 , Φ ≡ φ′ ∧ u : Then,

Φ[φ1/u]→ Φ[φ2/u] ≡ φ′ ∧ φ1 → φ′ ∧ φ2 ;

RHS follows from LHS’ by the monotonicity of ∧. Similar cases (e.g.
Φ ≡Def u ∧ φ′) are omitted.

• case |Φ| = 1 , Φ ≡ φ′ ∨ u : Same argument as for case Φ ≡Def φ
′ ∧ u .

• case |Φ| = 1 , Φ ≡ always (u) : Then,

Φ[φ1/u]→ Φ[φ2/u] ≡ always (φ1)→ always (φ2) ;

We have to show that

σ |= always (φ1)→ σ |= always (φ2) ;

Assume that for some ∀ k≥0, σ(k) |= φ1. From LHS follows (in partic-
ular) that ∀ k≥0, σ(k) |= φ2, so σ |= always (φ2).

• case |Φ| = 1 , Φ ≡ eventually (u) : Then,

Φ[φ1/u]→ Φ[φ2/u] ≡ eventually (φ1)→ eventually (φ2) .

54 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

We have to show that

σ |= eventually (φ1)→ σ |= eventually (φ2) ;

Assume that for some k≥0, σ(k) |= φ1. From LHS follows (in particular)
that σ(k) |= φ2, so σ |= eventually (φ2).

• case |Φ| = 1 , Φ ≡ next (u) : Then,

Φ[φ1/u]→ Φ[φ2/u] ≡ next (φ1)→ next (φ2) .

We have to show that

σ |= next (φ1)→ σ |= next (φ2) ;

Assume that for some σ(1) |= φ1. From LHS follows (in particular) that
σ(1) |= φ2, so σ |= next (φ2).

• case |Φ| = 1 , Φ ≡ φ′ until u : We have to show that

σ |= φ′ until φ1 → σ |= φ′ until φ2 ;

Assume that for some k≥0, σ(k) |= φ1, and ∀i, 0≤i < k, σ(i) |= φ′. From
LHS follows (pointwise implication) that σ(k) |= φ2, so σ |= φ′ until φ2.

• case |Φ| = 1 , Φ ≡ u until φ′ : We have to show that

σ |= φ1 until φ′ → σ |= φ2 until φ′ ;

Assume that for some k≥0, σ(k) |= φ′, and ∀i, 0≤i < k, σ(i) |= φ1. From
LHS follows (in particular for the interval 0 . . . k − 1) that ∀i, 0≤i < k,
σ(i) |= φ2, so σ |= φ2 until φ′.

• case |Φ| = 1 , Φ ≡ φ′ unless u : We have to show that

σ |= φ′ unless φ1 → σ |= φ′ unless φ2 ;

Assume that for some k≥0, σ(k) |= φ1, and ∀i, 0≤i < k, σ(i) |= φ′.
Then, the argument of case Φ ≡ u until φ′ applies. Otherwise, σ |=
always (φ′), so RHS holds trivially.

• case |Φ| = 1 , Φ ≡ u unless φ′ : We have to show that

σ |= φ1 unless φ′ → σ |= φ2 unless φ′ ;

Assume that for some k≥0, σ(k) |= φ′, and ∀i, 0≤i < k, σ(i) |= φ1.
Then, the argument of case Φ ≡ u unless φ′ applies. Otherwise, σ |=
always (u), then the argument of case Φ ≡ always (u)applies.

3.4. (LINEAR–TIME) TEMPORAL LOGIC 55

Now, assume that the lemma 3.8 has been proven for all schemes up to a
fixed depth K≥1,K ≡Def |Φ|.

Then, one of the following cases applies:

• case |Φ| = K + 1 , Φ ≡ op1(Φ′), where op1 is a unary LTL operator.
Then |Φ′|≤K, so by induction hypothesis LHS implies

σ |= Φ′[φ1/u]→ Φ′[φ2/u] .

Then by the same argument used in the proof of the induction base
case,

σ |= op1(Φ′[φ1/u])→ op1(Φ′[φ2/u]) ,

hence RHS follows.

• case |Φ| = K+1 , Φ ≡ φ′ op2 Φ′ or Φ ≡ Φ′ op2 φ
′, where op2 is a binary

LTL operator. Then |Φ′|≤K, so by induction hypothesis LHS implies

σ |= Φ′[φ1/u]→ Φ′[φ2/u] .

Then by the same argument used in the proof of the induction base
case, RHS follows.

This concludes the proof of lemma 3.8. (q.e.d.)
The next lemma is an immediate consequence of lemma 3.8.

Lemma 3.9 (Monotonicity of negation–free formulas) Let φ1, φ2 ∈ LTLAL,
Φ a negation free formula scheme with one schematic variable u.

Then

φ1 ⇒ φ2

implies

Φ[φ1/u]⇒ Φ[φ2/u] .

Proof of lemma 3.9 . By lemma 3.6, we can conclude from the premise
that

∀σ : σ |= always (φ1 → φ2) (*)

Assume that for some σ0,

56 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

¬(σ0 |= Φ[φ1/u]→ Φ[φ2/u]) . (#)

From (*) follows in particular that

σ0 |= always (φ1 → φ2)

Since all premises are the same, (#) would contradict the statement of lemma
3.8; hence the conclusion of lemma 3.9 follows.

3.5 Sub–logics of Temporal Logic

The formalisms introduced so far (LTL, POSA) are sufficient to explain the
semantics of STD.

However, in order to prepare a main theorem about STD (linear decompo-
sition), we need to go a step further, anticipating the definition of the structure
of STD–specifications.

STD–specifications are sets of diagrams, with a conjunctive interpreta-
tion of the set–constructor. The semantics of a STD–specification SPEC has
therefore the following structure in LTL:

φSPEC = φα1 ∧ . . . ∧ φαk

where φαi describes the semantics of a particular diagram in the set.
A STD–diagram has one of two possible interpretations (called activation

modes):

• initial, in which case the semantics of the diagram body is bound to a
particular moment in time, namely the very first step (step 0)

• invariant, in which case the semantics of the diagram is evaluated in every
step of a computation.

It follows that the semantics of an STD–diagram has either the form φ or
always (φ), where φ is a characterization of the diagram body.

The semantics of an STD–diagram body can be characterized by a nested
until / unless –formula; more precisely, nesting occurs only in the second ar-
gument of the until / unless –formula, yielding the form:

3.5. SUB–LOGICS OF TEMPORAL LOGIC 57

φ1 U (. . . φ2 U (. . . φ3 U . . .) . . .) (∗)

where U is either until or unless .
For an even more detailed discussion, we need to distinguish between purely

Boolean formulas – henceforth denoted by letter β ∈ BoolAL – and “really”
temporal logic formulas – denoted by letter φ.

Given the distinction between Boolean– and temporal–logic formulas, we
will show later in this section (in full detail in chapter 6) that the right argu-
ment of the until –respectively unless –operator in the formula (∗) has the
form ∨

i=1...k
(βi ∧ φi)

i.e. it is a finite disjunction of conjuncts φi with “guard” βi.
Moreover, in the case of the STD–semantics, the guards βi are pairwise

disjoint (i.e., mutually exclusive); the same restriction applies between the
first and the second argument of each U –operator.

We will call this logic restricted LTL (over set of variables V), denoted
LTL−V .

Definition 3.14 (Restricted (linear–time) temporal logic) Assume an
assertion language AL, and a set V of variables. Then the language of re-
stricted linear–time temporal logic based on AL(LTL−V) is defined by the fol-
lowing grammar with the production sets (1)–(7):

φα −→ φα1 ∧ φα2 (1)

| φ1 | always φ1 (2)

φ −→ β1 | (φ1) (3)

|
∨

i=1...k
(βi ∧ φi) (k > 0) (4)

where all βi are pairwise disjoint
(βi ⇒ ¬βj , i 6= j)

| β1 until (¬β1 ∧ φ1) (5)

| β1 unless (¬β1 ∧ φ1) (6)

β −→ ¬β1 | β1 ∧ β2 | β1 ∨ β2 | 〈|E|〉 (7)

where E is a Boolean expression of the assertion language AL over V .

58 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Remark. For readers familiar with the notions of linear–time and branching–
time temporal logic, we note the following fact: The linear–time and the
branching–time semantics are equivalent for formulas of LTL−V , if in case
of the branching time semantics (where formulas are interpreted relative to
computation trees instead of computations) the temporal operators are inter-
preted as follows: “For all paths starting from the root of the computation
tree, ...“. This means in particular that the efficient branching–time model–
checking procedure (with a linear complexity in the size of the formula) can be
used for model verification with STD, although STD has a linear–time seman-
tics definition. The interested reader is referred to [4] for full details on the
comparison between the semantics of linear–time and branching–time temporal
logic.

It turns out that formulas in LTL−V can be syntactically rewritten to a
normal form, which will be exploited later to obtain a normal form for the
graphical presentation of STD.

The next definition avoids disjunction of temporal formulas.

Definition 3.15 (Restricted (linear–time) temporal logic without tem-
poral disjunction) Assume an assertion language AL, and a set V of vari-
ables. Then the language of restricted linear–time temporal logic without tem-
poral disjunction based on AL(LTL−∧V) is defined by the following grammar
with the production sets (1)–(8):

φα −→ φα1 ∧ φα2 (1)

| φ1 | always φ1 (2)

φ −→ ((β1 ∧ φ1) ∨ β2) (3)

| β1 until ((β2 ∧ φ1) ∨ β3) (4)

| β1 unless ((β2 ∧ φ1) ∨ β3) (5)

| β1 | (φ1) (6)

| φ1 ∧ φ2 (7)

β −→ ¬β1 | β1 ∧ β2 | β1 ∨ β2 | 〈|E|〉 (8)

where E is a Boolean expression of the assertion language AL over V, and
β1, β2, β3 are disjoint in production (3)–(5).

The next lemma is the key to the first normalization transformation.

Lemma 3.10 (Transformation of temporal disjunction to conjunction)
Assume an assertion language AL, and a set V of variables.

3.5. SUB–LOGICS OF TEMPORAL LOGIC 59

Assume Boolean expressions β1 . . . , βk (for some k > 0), and LTL−V for-
mulas φ1, . . . , φk over V .

Define formulas φA and φB as follows:

φA ≡Def
∨

j=1...k
(βj ∧ φj)

and

φB ≡Def ((β1 ∧ φ1) ∨
∨

j=1...k,j 6=1
βj) ∧

. . . ∧
((βk ∧ φk) ∨

∨
j=1...k,j 6=k

βj)

If the Boolean expressions β1 . . . , βk are pairwise disjoint (cf. def. 3.14),
then formulas φA and φB are equivalent, i.e. φA ∼ φB.

Proof of lemma 3.10 . We assume an arbitrary fixed computation sequence
σ.

• φA ⇒ φB : Assume that σ |= φA ; show that σ |= φB. σ |= φA implies
σ |= (βi0 ∧ φi0) , for some i0. Then σ |= (βi0 ∧ φi0) in the conjunct with
index i0 of φB. The other conjuncts with index r 6= i0 are also satisfied,
because

∨
j=1...k,j 6=r

βj contains βi0 .

• φB ⇒ φA : Assume by contrary that σ |= φB and σ 6|= φA. σ 6|= φA
means that ∀i : σ 6|= (βi ∧ φi). Since σ |= φB , this means that
∀i : σ |=

∨
j=1...k,j 6=i

βj . It is easy to see that this is impossible under the

assumption that the Boolean expressions β1 . . . , βk are pairwise disjoint,
hence the implication φB ⇒ φA must hold.

q.e.d.

The next theorem shows that each formula of LTL−V can be transformed
into an equivalent formula in LTL−∧V .

Theorem 3.1 (Transformation of LTL−V in LTL−∧V) For each formula
φ ∈ LTL−V , there is an equivalent formula φ′ ∈ LTL−∧V .

60 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

Proof of theorem 3.1 . The idea of the proof is that for a production
sequence in LTL−V which leads to formula φ, there is a corresponding – se-
mantics preserving – production sequence in LTL−∧V , which leads to formula
φ′. Semantics preserving means: Each derivation step in the generation of
formula φ consists of replacing a subformula φ̃ of φ by the right side of the
selected production. The right side may include 0 or more temporal formulas,
i.e. it is a term Φ(φ1, . . . , φk), for some k ≥ 0.

For each such production step, we can find a finite production (sub–
)sequence in LTL−∧V , which transforms φ̃ into an equivalent term Φ′(φ′1, . . . , φ

′
k)

in LTL−∧V . with subformulas φ′1, . . . , φ
′
k.

For each of the subformulas φi, similar transformations are applied, yield-
ing eventually a finite production sequence in LTL−∧V of a formula φ′i, which
is equivalent to φi.

• case production sets (1),(2) in LTL−V : There exist corresponding produc-
tions in LTL−∧V .

• case production set (3) in LTL−V : There exist corresponding productions
(set 6) in LTL−∧V .

• case production set (4) in LTL−V : Assume that we expand subformula φ̃
using the production:

φ̃ −→
∨

i=1...k

(βi ∧ φ1)

By lemma 3.10, the production

φ̃ −→
∧

i=1...k

((βi ∧ φi) ∨
∨

j=1...k,j 6=i
βj)

produces an equivalent subformula, which can be generated in LTL−∧V
by (k − 1) applications of production (7), k applications of production
(3), and the generation of the Boolean formula

∨
βj .

• case production set (5) in LTL−V : Assume that we expand subformula φ̃
using the production:

φ̃ −→β1 until (¬β1 ∧ φ1)

With β2 ≡Def ¬β1, β3 ≡Def 〈|False|〉 we can use production (4) in
LTL−∧V to obtain an equivalent subformula. Note, that β1, β2, β3 with
the above definitions are pairwise disjoint.

3.5. SUB–LOGICS OF TEMPORAL LOGIC 61

• case production set (6) in LTL−V : This case is handled similarly, using
production (5) in LTL−∧V to obtain an equivalent subformula.

• case production set (7) in LTL−V : There exist corresponding productions
(set 8) in LTL−∧V .

q.e.d.

The next lemma is the key to another normalization step, “lifting” con-
junction of temporal formulas to the top–level of the specification formula.

Lemma 3.11 (Outwards conjunction transformation) Assume an asser-
tion language AL, and a set V of variables.

Assume Boolean expression β and LTLV formulas φ1, φ2 over V .
Define formulas φA and φB as follows:

φA ≡Def β U (¬β ∧ φ1 ∧ φ2)

and

φB ≡Def β U 1(¬β ∧ φ1)∧
β U 2(¬β ∧ φ2)

Then the following facts hold:

1. case U = U 1 = U 2 = unless : φA ∼ φB.

2. case U = U 1 = U 2 = until : φA ∼ φB.

3. case U = U 1 = until , U 2 = unless : φA ∼ φB.

Proof of lemma 3.11 . The implication φA ⇒ φB follows in all three cases
by expansion of the definition of the U operator.

We consider the interesting case 3, φB ⇒ φA ; the implication is proven
similarly for cases 1 and 2.

Assume an arbitrary fixed computation sequence σ.
σ |= φB

↪→[Def. of φB] σ |=β until (¬β ∧ φ1) ∧ σ |=β unless (¬β ∧ φ2)

↪→[Def. until , unless]

62 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

∃l1≥0 . σ(l1) |= (¬β ∧ φ1) and ∃l2≥0 . σ(l2) |= (¬β ∧ φ2)
and ∀i . 0≤i < max{l1, l2} : σ(i) |= β.
This is only possible if l1 = l2 ≡Def l, because σ(li) |= ¬β(i=1,2). Hence,

σ(l) |= (¬β ∧ φ1 ∧ φ2) , and therefore σ |= φA. q.e.d.

Our goal is the transformation of LTLV formulas into a logic called LINLTL−V ,
which is defined next (definition 3.16).

The definition of LINLTLV reintroduces the next –operator which will be
needed in chapter 5. Here we are interested in the next –free fragment of the
definition, called LINLTL−V . As in the case of LTL−V , LINLTL−V avoids the
nondeterminism which is inherent in the semantics definition of the temporal
until and unless operator.

Definition 3.16 ((Restricted) sequencing (linear–time) temporal logic)
Assume an assertion language AL, and a set V of variables. Then the language
of sequencing linear–time temporal logic based on AL(LINLTLV) is defined by
the following grammar with the production sets (1)–(8):

ξα −→ ξα1 ∧ ξα2 (1)

| ξ1 | always ξ1 (2)

ξ −→ ((β1 ∧ ψ1) ∨ β2) (3)

| β1 until ((β2 ∧ ψ1) ∨ β3) (4)

| β1 unless ((β2 ∧ ψ1) ∨ β3) (5)

| β1 (6)

ψ −→ ξ |next ξ (7)

β −→ ¬β1 | β1 ∧ β2 | β1 ∨ β2 | 〈|E|〉 (8)

where E is a Boolean expression of the assertion language AL over V.
The logic of restricted sequencing linear–time temporal logic based on AL(LINLTL−V)

is defined by the same grammar, except for the following restrictions:

1. In clause (3)–(5), all Boolean formulas βi are disjoint, and

2. in clause (7), only the production ψ−→ξ is allowed, i.e., the logic LINLTL−V
has no next –operator.

Theorem 3.2 (Transformation of LTL−∧V in LINLTL−V) For each formula
φ ∈ LTL−∧V , there is an equivalent formula φ′ ∈ LINLTL−V .

3.5. SUB–LOGICS OF TEMPORAL LOGIC 63

Proof of theorem 3.2 . The idea of the proof is similar to the argument
used to show the existence of the negation normal form for LTL–formulas by
a series of equivalences concerning the negation operator in front of temporal
operators (cf. def.3.11).

For each production result in the definition of LTL−∧V , we show that an
occurrence of the conjunction operator in the production term can be moved
(one level) “outwards”.

• case always (φ): always (φ1 ∧ φ2) ∼ always (φ1) ∧ always (φ2)

• case (β1∧φ)∨β2: (β1∧(φ1∧φ2))∨β2 ∼ ((β1∧φ1)∨β2)∧((β1∧φ2)∨β2)

• case β1 U ((β2 ∧ φ) ∨ β3), U ∈ { until , unless }:

β1 U ((β2 ∧ (φ1 ∧ φ2)) ∨ β3)

∼ [βi ⇒ ¬β1, i = 2, 3]

β1 U (¬β1 ∧ ((β2 ∧ (φ1 ∧ φ2)) ∨ β3))

∼ β1 U (¬β1 ∧ ((β2 ∧ φ1) ∨ β3) ∧ ((β2 ∧ φ2) ∨ β3))

∼ [lemma 3.11]

β1 U (¬β1 ∧ ((β2 ∧ φ1) ∨ β3)) ∧ β1 U (¬β1 ∧ ((β2 ∧ φ2) ∨ β3))

∼ [βi ⇒ ¬β1, i = 2, 3]

β1 U ((β2 ∧ φ1) ∨ β3) ∧ β1 U ((β2 ∧ φ2) ∨ β3) .

q.e.d. From theorem 3.1 and 3.2 we get the next important result.

Corollary 3.1 (Transformation of LTL−V in LINLTL−V) For each formula
φ ∈ LTL−V , there is an equivalent formula φ′ ∈ LINLTL−V .

Since LINLTL−V is a syntactical subset of LTL−V , is follows that both logics
have the same expressive power.

Note that the introduction of the logic–formalisms LTL−∧V and LINLTL−V
has the only purpose to provide the basis for the decomposition theorem 6.2
from STD to LSTD introduced in chapter 6. The logics have not been further
analyzed in the context of this thesis with respect to expressiveness and their
ability to be used as specification formalisms 4.

4See appendix B for further notes on this topic.

64 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

3.6 Translation from Symbolic Automata to Tem-
poral Logic

So far, we have introduced two quite different formalisms for specification:
Symbolic automata, which are operational in nature, and temporal logic, which
is declarative in nature.

3.6.1 Temporal logic characterization of POSA

The central observation made in this section is that there is a close connection
between the sub–class of partially–ordered symbolic automata and temporal
logic.

In particular it is shown that the semantics of a POSA can be characterized
in terms of linear temporal logic.

Theorem 3.3 (Temporal logic characterization of POSA) Assume an
assertion language AL, and let A be a POSA over some set V of variables.
Then there exists a formula φA ∈ LTLAL over V such that

L(A) = L(φA) . (*)

Construction. According to lemma 3.4 , we can assume that A is normal-
ized.

Let A ≡Def (V,Locs,Edges, L0, F). We construct φA as follows: For each
pair of locations `, `′ ∈ Locs, `→ `′, let

φ`,`′ =Def any φ . (`, φ, `′) ∈ Edges .

Note that A is normalized, so in particular (1) ` → ` (existence of self–
loops) and (2) no parallel edges exist; hence |{φ | (`, φ, `′) ∈ Edges}| = 1 ,
which means that φ`,`′ is uniquely defined for all `, `′ ∈ Locs.

Define for all locations ` ∈ Locs

φχ` =Def φ`,` U (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ`′)

where

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 65

Figure 3.2: Symbolic Automaton Aeventually φ.

U =Def unless if ` ∈ F , and

U =Def until if ` 6∈ F

and let

φA =Def
∨
`∈L0

φχ` .

(Note that A is assumed to be normalized, hence complete; therefore the
disjunction in the definitions of φ` and φA is always over nonempty sets.)
Given these definitions, we claim that (*) holds.

Example 3.3 (Translation of SA to temporal logic) We reconsider the
automaton

Aeventually φ = (V,Locs,Edges, L0, F)

where the components Locs, Edges, L0, F are specified in diagrammatic nota-
tion in figure 3.2.

Note that `1 ∈ F is an accepting state, whereas `0 is not an accepting state.

According to theorem 3.3 we first construct the basic formula according to
transition labels:

66 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

φ`0,`0 = ¬φ
φ`0,`1 = φ

φ`1,`1 = true

Next, we construct the formulas characterizing the states:

φ`0 = φ`0,`0 until (φ`0,`1 ∧ next φ`1)

φ`1 = φ`1,`1 unless false

Putting all the parts together, we obtain

φA = φ`0

= φ`0,`0 until (φ`0,`1 ∧ next φ`1)

= φ`0,`0 until (φ`0,`1 ∧ next (φ`1,`1 unless false))

= ¬φ until (φ ∧ next (true unless false))

= [(1,2)] ¬φ until φ

= [(3)] eventually φ

where the following equivalences where used to simplify the formulas

(true unless φ) ∼ true (1)

next true ∼ true (2)

¬φ until φ ∼ eventually φ (3)

Proof of theorem 3.3 . It suffices to consider those locations ` ∈ Locs,
which can be reached by a run starting from some initial location `0 ∈ L0; we
denote these “reachable” locations by the set

R ≡Def RL0,� =Def {` ∈ Locs | ∃`0 ∈ L0 . `0 � `} ;

obviously (by definition of R, reflexivity of �), L0 ⊆ R.
The main idea of the proof is to define a monotone sequence (Ti)i≥0 of sets

such that

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 67

Ti =Def {` ∈ R |∆T(`) ≤ i} (Ti–def)

where

T ≡Def TL0,� =Def {` ∈ R | ¬∃`′ 6= ` . `→ `′}
δ(`, `f) =Def max {|D| − 1 |D ⊆ R, and D is an

→–chain with first element ` and

last element `f} if ` � `f ,

δ(`, `f) =Def ⊥ (undefined) else ;

∆T(`) =Def max {δ(`, `f) | `f ∈ T, ` � `f}

The set T contains the maximal (“terminal”) elements of the set of reach-
able locations R with respect to the partial order �. For a location ` ∈ R,
∆T(`) defines the “maximal number of remaining →–steps” between ` ∈ R
and the terminal element set T .

The next lemma analyzes the essential properties of (Ti) implied by this
definition.

Lemma 3.12 (Properties of (Ti)) Under the assumptions of theorem 3.3,
let the sequence (Ti)i≥0 be defined by definition (Ti–def). Then

(1) T = {` ∈ R | ` is a maximal element w.r.t. �|R}
(2) ∀` ∈ R : ∆T(`) ≥ 0

(3) T = T0

(4) ∃i ≥ 0 . T0 ⊆ T1 ⊆ . . . ⊆ Ti = R and ∀k ≥ 0 : Ti = Ti+k

(5) ∀i ≥ 0∀`, `′ ∈ Locs . ` 6= `′ : ` ∈ Ti+1 ∧ `→ `′ =⇒ `′ ∈ Ti

where the property (5) is the key for the inductive argument used in the
proof of theorem 3.3.

Proof of lemma 3.12 .

Proof of (1) T ⊆ RHS(1) . Let ` ∈ T (∗) and assume that ` 6∈ RHS(1)

↪→[` is not maximal w.r.t. �: ∃`“ 6= ` . ` � `“

=⇒ ∃`′ 6= ` . `→ `′] ` 6∈ T

68 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

↪→[contradiction to (∗)] ` ∈ RHS(1) .

RHS(1)\T = ∅ . Let ` ∈ R\T ;

↪→[∃`′ 6= ` . `→ `′, so ` � `′] ` 6∈ RHS(1) .

Proof of (2). Let ` ∈ R be arbitrarily fixed;

↪→[by definition of the set R] ∃`0 ∈ L0 . `0 � `.

↪→[def. of �] ∃k ≥ 0,∃{`0, . . . , `k} ⊆ Locs . `0 → . . .→ `k = `

↪→[with D ≡Def {`0, . . . , `k}, D is a →–chain

whose first element is a minimal element of �]
∃d ≥ 0, D̄ ≡Def {`0, . . . , `k+d} .

(1) D ⊆ D̄ ⊆ R,
(2) D̄ is a →–chain, and
(3) the last element `k+d of D̄ is a maximal element of �

↪→[prop.(1)]

∃`0 ∈ L0, `max ∈ T . `0 → . . .→ `k = `→ . . .→ `k+d = `max.

↪→[def. of δ(`, `max), ` � `max, `max ∈ T] ∆T(`) ≥ δ(`, `max) ≥ d ≥ 0.

Proof of (3). Show that: T = T0, where T0 = {` ∈ R |∆T(`) ≤ 0} .
T ⊆ T0: Let ` ∈ T ; show that ∆T(`) = 0.

↪→[` ∈ T] ` ∈ R and ¬∃`′ 6= ` . `→ `′ (∗)

Assume that ∆T(`) > 0

↪→[def. of ∆T(`)] ∃`f ∈ T . ` � `f ∧ δ(`, `f) > 0

↪→[def. of δ(`, `f)] ∃k > 0, D ≡Def {`0, . . . , `k} .

(1) D ⊆ R,
(2) D is a →–chain s.t. ` = `0 → `1 → . . .→ `k = `f

↪→[k > 0] ∃`′ = `1 6= ` . `→ `′

which contradicts (∗); hence it must hold that ¬(∆T(`) > 0).

↪→[property (2): ∆T(`) ≥ 0] ∆T(`) = 0.

T0 ⊆ T : Let ` ∈ T0, i.e. ∆T(`) ≤ 0.

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 69

↪→[property (2): ∆T(`) ≥ 0] ∆T(`) = 0 (#)

Assume that ` were not a maximal element w.r.t. �|R
↪→[` is not maximal w.r.t. �: ∃`“ 6= ` . ` � `“

=⇒ ∃`′ 6= ` . `→ `′] ∆T(`) ≥ 1

↪→[contradiction to (#)] ` is a maximal element w.r.t. �|R

↪→[property (1)] ` ∈ T .

Proof of (4). From the definition Ti =Def {` ∈ R |∆T(`) ≤ i}
follows immediately the monotonicity of the sequence (Ti) within the set

R, i.e.

∀i ≥ 0 : Ti ⊆ Ti+1 ∧ Ti ⊆ R .

Let iR =Def max {∆T(`) | ` ∈ R}; show that

↪→[∀` ∈ R : ∆T(`) ≤ iR] ∀k ≥ 0 : R ⊆ TiR+k

↪→[Ti+k ⊆ R ⊆ Ti+k, monotonicity of (Ti)]

T0 ⊆ T1 ⊆ . . . ⊆ TiR = R and ∀k ≥ 0 : R = TiR+k

↪→[∃i ≡Def iR] (4).

Proof of (5). Assume arbitrary fixed number i ≥ 0, location `, `′ ∈ Locs
such that ` 6= `′; show that

` ∈ Ti+1 ∧ `→ `′ =⇒ `′ ∈ Ti

Let ` ∈ Ti+1

↪→[def. of Ti+1] ∆T(`) ≤ i+ 1

Assume further that `→ `′; we want to show that ∆T(`′) ≤ i follows.
Assume by contrary that ∆T(`′) > i

↪→[def. of ∆T(`′)] ∃k > i ∃`f ∈ T . δ(`′, `f) = k ∧ `′ � `f

↪→[def. of δ(`′, `f)]

∃k > i,D ≡Def {`0, . . . , `k} .
(1) D ⊆ R, (2) D is a →–chain with
first element `0 = `′ and last element `k = `f

70 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

↪→[`→ `′, ` 6= `′]

∃D̄ ≡Def {`, `0, . . . , `k} .
(1) D ⊆ D̄ ⊆ R, (2) D is a →–chain with
first element `, `→ `0 = `′, and last element `k = `f

↪→[def. of ∆T(`)] ∆T(`) ≥ δ(`, `f) ≥ |D̄| − 1 = k + 1 > i+ 1

which contradicts the premise that ` ∈ Ti+1;

↪→[¬(∆T(`′) > i)] ∆T(`′) ≤ i

↪→[def. of Ti] `′ ∈ Ti .

The rest of the proof of theorem 3.3 is given in the appendix.

3.6.2 Stuttering invariant specifications

We next consider a particular subclass of specifications, which are not able to
“count” steps (e.g. the number of cycles in a clocked device) 5.

The motivation for using this kind of specifications is that it abstracts
from the “speed” of a computation. Instead of saying e.g.: “A request will
be answered within N cycles”, we would only require that a request will be
granted eventually.

The next definition presents a subclass of Symbolic Automata (SA), which
does not distinguish between stuttering–equivalent behaviours of a system.

Definition 3.17 (Stuttering–invariant SA) Assume an assertion language
AL, and a set V of variables.

A stuttering–invariant symbolic automaton (SA) A over V is an SA in
normal form (cf. lemma 3.4)

A ≡Def (V,Locs,Edges, L0, F)

where

∀`1, `2 . `1 → `2, `1 6= `2 : (`1, φ1, `2) ∈ Edges ∧
(`2, φ2, `2) ∈ Edges

=⇒ φ1 ⇒ φ2

in words: The condition φ1, which allows a transition from `1 to `2, must be
5The expert is referred in particular to a large body of work by Thomas Wilke for an

in–depth coverage of the subject beyond the scope of this thesis; see e.g. [37] and other
publications by Wilke and Wolper.

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 71

equivalent or stronger than the condition φ2, which allows a loop at location
`2.

The main consequence of this definition is stated in the next lemma.

Lemma 3.13 (Stuttering invariance) Let A be a stuttering–invariant SA
over some set of variables V .

Let σ ∈ L(A) be a computation over V which is accepted by A.
Then:

∀i≥0 : σ′ ≡Def σ(0) . . . σ(i− 1)σ(i)σ(i)σ(i) ∈ L(A)

i.e. a computation where step i is repeated, is also accepted by A.

Proof of lemma 3.13 . The proof is trivial, because each transition in a run
can be followed by an additional loop–step (by def. of stuttering invariance of
A).

Therefore, for the extended computation σ′, there is an accepting run
derived from the run which accepts the original computation σ.

q.e.d.

The next lemma indicates that a combination of the properties stuttering
invariance and deterministic transition labels (def. 3.6) allows to eliminate the
next –operator in certain LTLV –specifications.

Lemma 3.14 (LTL–equivalences concerning next) Assume an assertion
language AL, a set V of variables, LTL–formulas φ0, φ1, φ2 ∈ LTLV and define
for U ∈ { unless , until }

φ U ≡Def φ0 ∧ next (φ1 U φ2)

φ◦U ≡Def φ0 ∧ (φ1 U φ2) .

Then, for U ∈ { unless , until }:
If φ0 ⇒ φ1 then

φ U ⇒ φ◦U ; (1)

if φ0 ⇒ φ1 ∧ φ1 ⇒ ¬φ2 then:

φ U ∼ φ◦U . (2)

72 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

The proof of this lemma is given in the appendix.
The next theorem shows that the semantics of a stuttering–invariant and

deterministic POSA can be characterized by an LTL−V formula.

Theorem 3.4 (Translation from stuttering–invariant det. POSA to
temporal logic) Assume an assertion language AL, and let A be a stuttering–
invariant and deterministic POSA over some set V of variables. Then there
exists a formula φ◦A ∈ LTL−V over V such that

L(A) = L(φ◦A) . (*)

Proof of theorem 3.4 – Construction. The construction is similar to the
construction described in theorem 3.3.

Let A ≡Def (V,Locs,Edges, L0, F). We construct φ◦A as follows:
For all locations ` ∈ Locs , define

φ◦` =Def φ`,` U (¬φ`,` ∧ (
∨

` 6=`′ : `→`′
φ`,`′ ∧ φ◦`′))

where

U =Def unless if ` ∈ F , and

U =Def until if ` 6∈ F

and let

φ◦A =Def
∨
`∈L0

φ◦` .

Recall that a deterministic SA has one (unique) start location `0, so

φ◦A =Def φ`0

We claim that under these definitions the following claims hold:

∀` : φ◦` ∼ φ` (1)

φ◦A ∼ φA (2)

where φ` is defined in theorem 3.3.
Since L(A) = L(φA) (according to theorem 3.3), fact (2) implies (*).

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 73

Proof of claim (1). The proof is by induction, using the same monotonic
sequence (Ti)i≥0 of sets

Ti =Def {` ∈ R |∆T(`) ≤ i}

as defined in the proof of theorem 3.3 (where R is the set of reachable locations
in A; the main properties of the sequence (Ti)i≥0 are stated in lemma 3.12).

case ` ∈ T0 (set of final locations). Recall that T0 is the set of maximal
locations with respect to the partial order �|R (cf. lemma 3.12). For elements
` ∈ T0, no successor (different from `) exists.

↪→[
∨
i∈∅

φi ∼ false] φ◦` ∼ (φ`,` U false) ∼ φ`

case ` ∈ Tk+1 , some k≥0 . Assume that we have proven claim (1) for all
i, 0≤i≤k.

From the assumption made in the theorem – A is deterministic –, we get

∀`′, ` 6= `′, `→ `′ : φ`,` ⇒ ¬φ`,`′ (1)

↪→[def. of
∨

] φ`,` ⇒ ¬(
∨

` 6=`′ : `→`′
φ`,`′ ∧ . . .) (2)

↪→[definition of φ` in theorem 3.3]

φ` ≡Def φ`,` U (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ`′)

↪→[(2)]

φ` ∼ φ`,` U (¬φ`,` ∧ (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ`′))

where `′ ∈ Tk for all successors `′ of `.

↪→[induction premise: φ`′ ∼ φ◦`′]

φ` ∼ φ`,` U (¬φ`,` ∧ (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ◦`′)) (∗∗)

From the assumption made in the theorem – A is stuttering invariant –,
we have φ`,`′ ⇒ φ`′,`′ for successor locations `, `′; hence by lemma 3.14

74 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

(**) φ` ∼ φ`,` U (¬φ`,` ∧ (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ◦`′))

∼ [φ◦`′ =Def φ`′,`′ U (¬φ`′,`′ ∧ . . .)]
φ`,` U (¬φ`,` ∧ (

∨
` 6=`′ : `→`′

φ`,`′ ∧ φ◦`′))

∼ φ◦` .

Hence, claim (1) is proven.

Proof of claim (2). The claim is a corollary of claim (1): For the particular
case of a deterministic POSA (with unique start location `0),

φA = φ`0 ∼[claim (1)] φ◦`0 ∼ φ
◦
A .

q.e.d.

3.6.3 Temporal logic characterization of deterministic POSA

This subsection is an application of the transformations described in theorem
3.1 and 3.2.

We will show that for a deterministic POSA, an equivalent characterization
in LINLTLV (cf. def. 3.16) is possible.

Theorem 3.5 (Translation from deterministic POSA to sequencing
temporal logic) Assume an assertion language AL, and let A be a deter-
ministic POSA over some set V of variables. Then there exists a formula
ξA ∈ LINLTLV such that

L(A) = L(ξA) . (*)

Proof of theorem 3.5 . The proof is based on the construction of the
formulas φ` given in theorem 3.3.

Note that A is deterministic and has therefore a unique initial location `0;
hence φA = φ`0 .

We show that for each formula φ`, there is an equivalent formula ξ` ∈
LINLTLV , ξ` ∼ φ`. The proof is by induction, using the same monotonic
sequence (Ti)i≥0 of sets as defined in the proof of theorem 3.3 .

3.6. TRANSLATION FROM SYMBOLIC AUTOMATA TO TEMPORAL LOGIC 75

case ` ∈ T0 (set of final locations). For elements ` ∈ T0, no successor
(different from `) exists.

Define

ξ` ≡Def φ`,` U ((false ∧ false) ∨ false) ∈ LINLTLV

↪→[
∨
i∈∅

φi ∼ false] φ` ∼ (φ`,` U false) ∼ ξ`

case ` ∈ Tk+1 , some k≥0 . We assume that for each ` ∈ Tk, there exists a
formula ξ` ∈ LINLTLV such that ξ` ∼ φ`.

By definition,

φ` ≡Def φ`,` U (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ`′)

∼[lemma 3.10, A det.]

φ`,` U (
∧

` 6=`′ : `→`′
((φ`,`′ ∧ next φ`′) ∨ φ̄`,`′))

where

φ̄`,`′ ≡Def

∨
`′′ 6=`′, 6̀=`′′,`→`′′

φ`,`′′

∼[lemma 3.11, A det.]∧
` 6=`′ : `→`′

φ`,` U ((φ`,`′ ∧ next φ`′) ∨ φ̄`,`′)(∗)

By induction hypothesis, we can assume that for φ`′ there is an equivalent
formula ξ`′ ∈ LINLTLV , which has the form

ξ`′ = ξ1 ∧ . . . ∧ ξk(`′)

for some k(`′)≥1; for each i = 1 . . . k(`′), ξi has the form

ξi ≡Def β
i
1 U ((βi2 ∧ next ξi1) ∨ βi3) .

Hence, (*) is equivalent to:
∼[next distributes over conjunction]∧

` 6=`′ : `→`′
φ`,` U ((φ`,`′ ∧

∧
i=1...k(`′)

next ξi) ∨ φ̄`,`′)

76 CHAPTER 3. THEORETICAL FOUNDATION OF SPECIFICATION

∼[by lemma 3.11]

∧
` 6=`′ : `→`′

∧
i=1...k(`′)

φ`,` U ((φ`,`′ ∧ next ξi) ∨ φ̄`,`′) ≡Def ξ` .

With this definition, ξ` ∈ LINLTLV , which concludes the proof.
q.e.d.

3.7 Summary

This chapter has introduced the theoretical basis for the semantics definition
of the graphical specification language STD.

It has been shown that for a certain subclass of automata with Büchi–
fairness condition (POSA), a corresponding characterization in LTL (LTLV)
can be found.

Furthermore, an interesting subclass of LTLV , LTL−V , has been intro-
duced. In this chapter we focused on the property that for each formula
φ ∈ LTL−V , there exists an equivalent formula in the – even more restricted –
logic LINLTLV . The logic LINLTLV will provide the basis for the semantics
definition of LSTD (see chapter 5).

Finally, a certain subclass of POSA – deterministic POSA – has been
considered. It has been shown that for this type of SA, a characterization in
LINLTLV can be given.

Deterministic POSA will play an important role in chapter 6 to describe the
semantics of an STD body. In chapter 5, it will be shown that the semantics
of deterministic POSA can be characterized in the framework of LSTD, which
can be considered as a graphical variant of the sequencing logic LINLTLV .

Chapter 4

Theoretical foundation of
model construction

In this chapter, we introduce a formal framework for the definition of imple-
mentation models.

In chapter 2, we mentioned that the verification environment for Statemate
uses an intermediate language called SMI to represent models. Whereas SMI
is a full–fledged language, the model which we will use here is much simpler.
Yet, it is sufficiently rich to express our demands — namely, the definition
of models for synchronous systems. The baseline for the exposition in this
chapter is mainly adopted from the approach presented in [26].

This chapter introduces the following items:

• Fair transition systems

• Transition graphs, and

• transition graph systems (TGS)

• open TGS

• module composition, and

• compositional reasoning.

4.1 Fair transition systems

In this chapter we introduce a formalism for the representation of a system
model M. The formalism is adopted from [26] and called “fair transition
system” (FTS).

78 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

FTS is a formalism to describe generators of computations. As has been
demonstrated in [26], this basic formalism is well suited to serve as a model for
operational semantics definitions of more complicated operational specification
languages using various constructs of concurrent programming languages (e.g.
parallel processes, synchronous and asynchronous communication etc.).

4.1.1 Structure and semantics of FTS

The next definition defines the structure of fair transition systems.

Definition 4.1 (Fair transition system) Assume a set of variables V, and
an assertion language AL. A fair transition system TS over V is a structure

(V,Θ, T ,J , C) (FTS)

with the following components:

• V ⊆ V is a finite set of state variables,

• Θ ∈ AL is an initial condition, which is satisfiable; i.e., φ0 =Def 〈|Θ|〉 is
satisfiable in the sense of temporal logic (L(φ0) 6= ∅);

• T is a finite set of transitions. A transition τ ∈ T is a mapping

τ : ρ ∈ Σ 7→ R′ρ ⊆ Σ ,

where Σ =Def Val(V) is the set of valuations of the variables in V . It is
required that T always contains one particular transition τI , called idling
transition, defined by τI =Def (ρ 7→ {ρ}).

• J ⊆ T is set of weakly fair (or “just”) transitions;

• C ⊆ T is set of strongly fair (or “compassionate”) transitions.

The definition of a transition in definition 4.1 is rather abstract. Since
for a transition τ ∈ T , τ(ρ) ⊆ Σ is a set with possibly more than one value,
“taking” transition τ in state ρ means a nondeterministic transition to one
successor state ρ′ ∈ τ(ρ). In the special case that τ(ρ) is empty (τ(ρ) = ∅) in
state ρ, transition τ is said to be disabled at ρ; otherwise (τ(ρ) 6= ∅), τ is said
to be enabled at ρ.

4.1. FAIR TRANSITION SYSTEMS 79

The name “fair transition system” indicates that the formalism FTS com-
bines two different aspects: (1) the notion of a (state–)transition system (STS),
and (2) the notion of fairness.

Fairness plays an important role in the theory of concurrent programming
languages as “abstract” model of a scheduler, and has been a dedicated re-
search topic ([15]).

In FTS, two different notions of fairness are supported. Informally, a
transition τ ∈ J disallows a computation where τ is continously enabled
from some point on but not taken (justice requirement). A transition τ ∈ C
disallows a computation where τ is infinitely often enabled, but only taken a
finite number of times (compassion requirement).

The semantics of a FTS TS over a set of variables V is a set of computations
over V , denoted as L(TS). The next definition defines when a computation
σ ∈ Comp(V) is generated by TS (i.e., σ ∈ L(TS)).

Definition 4.2 (Computations of FTS) Let TS be a FTS over a set of
variables V . A computation

σ = (t ∈ N0 7→ ρt ∈ Val(V)) ∈ Comp(V)

over V is a computation of TS (σ ∈ L(TS)), iff the following conditions
hold:

• Initiation: The first state of the computation σ (ρ0) is initial, i.e.ρ0 |=
〈|Θ|〉.

• Consecution: For each pair of consecutive states ρt, ρt+1 in σ, there is a
transition τ ∈ T such that ρt+1 ∈ τ(ρt) (ρt+1 is a τ–successor of ρt). We
refer to the pair ρt, ρt+1 as a τ–step, and say that τ is taken at moment
t. Note that it is possible for a given pair ρt, ρt+1 to be both a τ–step and
a τ ′–step for some τ ′, τ 6= τ ′.

• Justice: For each transition τ ∈ J it is not allowed that τ is continually
enabled in σ from some moment t on, but never taken after t.

• Compassion: For each transition τ ∈ C it is not allowed that τ is en-
abled at infinitely many moments, but only taken at a finite number of
moments.

80 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

4.2 Transition graph systems

The FTS formalism is a semantic model rather than a language. Next we will
introduce the notion of a “transition graph system” as simple operational lan-
guage which is appropriate for the specification of non–terminating concurrent
programs, based on an interleaving semantics.

A transition graph system consists of two parts: (1) a declarative part, and
(2) a “concurrent process” definition part. First, we introduce a diagrammatic
method for the specification of processes, called “transition graphs”.

Definition 4.3 (Transition Graph) Assume a set V of variables and an
assertion language AL. A transition graph (TG) is a directed graph

G : (Locs,Edges, `0, EJ̄ , EC) ,

where

• Locs ⊆ DLocs is a finite set of nodes (referred to as locations) taken from
a designated set DLocs of control locations, and

• Edges is a set of edges. Edges are triples

(`,label, `′)

where `, `′ are control locations and label is an (atomic) instruction,
which has the form of a guarded (multiple) assignment

c→ x̄ := Ē

where c ∈ AL is an assertion called the guard of the instruction, x̄ ≡
[x1, . . . , xk] is a list of variables with

xi ∈ V ,

and Ē ≡ [E1, . . . , Ek] is a list of expressions, such that xi and Ei have
the same type (i = 1 . . . k).

4.2. TRANSITION GRAPH SYSTEMS 81

Figure 4.1: Diagrammatic presentation of transition.

• `0 ∈ Locs is the initial control location.

• EJ̄ ⊆ Edges is a set of edges which are not subject to the requirement
of justice;

• EC ⊆ Edges\EJ̄ is a set of edges which are subject to the requirement of
compassion. The semantics of these sets will be explained in definition
4.5 below.

We allow the following abbreviations in a transition graph: The empty
assignment [] := [] is abbreviated as skip; instead of c → skip we write c?.
Another special case is c = true; instead of true→ x̄ := Ē we write x̄ := Ē.

In a diagrammatic presentation of the transition graph, locations are rep-
resented by labelled circles, and an edge e ∈ Edges,

e ≡Def (`, c→ x̄ := Ē, `′)

is represented by a labelled arrow between the circles representing the source
and destination, as shown in figure 4.1.

If e ∈ EJ̄ , then the arrow–label label is enclosed in square brackets [label];
if e ∈ EC, then it is denoted as � label� . The initial location is represented
by a circle with a (dangling) arrow pointing to it.

The notion of a transition graph system is formalized in next definition.

Definition 4.4 (Transition Graph System) Assume a set V of variables
and an assertion language AL. A transition graph system (TGS) has the
following form:

82 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

GS : program 〈program-name〉
〈interface-declaration〉

G1‖ . . . ‖Gm

where

• G1, . . . ,Gm, m ≥ 1 are transition graphs defining a set of concurrent pro-
cesses; the operator ‖ denotes the (interleaved) concurrent composition
of these processes. W.l.o.g. we assume that the sets of control–locations
LocsGi of the respective transition graphs are pairwise disjoint.

• 〈interface-declaration〉 defines a set VGS ⊆ V of typed variables accessible
to all concurrent processes for reference and modification. An interface–
declaration consists of a sequence of interface–declaration–statements of
the form

〈mode〉 〈var1〉, . . . , 〈vark〉 : 〈type〉 [where〈init-cond〉]

where the token 〈mode〉 of each declaration statement is defined to be
either in, out or local, x ≡Def 〈var〉 declares a variable x ∈ V τ with
τ ≡Def 〈type〉, and the optional “where” part contains with E ≡Def

〈init-cond〉 a so–called initialization–assertion E ∈ AL.

A number of well–formedness conditions are imposed on a TGS. We call a
TGS well–formed, if the following conditions are met:

1. For each transition labelled by the multiple assignment statement

c→ x̄ := Ē

all variables in x̄ must be of mode out or local;

2. for an interface–declaration–statement of mode in, the initialization as-
sertion refers only to variables declared with mode in;

3. for an interface–declaration–statement of mode out or local, the initialization–
assertion must be of the form

x1 = E1 and . . . and xn = En

where xi is a variable declared in that statement, and Ei is an expression
that refers only to variables declared with mode in, for i = 1 . . . n.

4.2. TRANSITION GRAPH SYSTEMS 83

In the following we will assume that a TGS is well–formed.
As can be seen from the well–formedness conditions stated above, the

modes of the interface–declaration play an important role for the static, and
also (as will be demonstrated later) for the behavioral semantics. Only vari-
ables of mode in and out are considered to be “observable” from the concur-
rent program specified by the TGS. Variables of mode in can be initialized
externally once, viz. at the beginning of a computation; the values for these
variables must conform to the associated initialization assertion (if present).

Thus the program may run under various initial conditions. Variables
of mode local are considered to be “hidden” from an external observer; in
particular, an abstract specification of the program cannot refer to (the values
of) local variables.

4.2.1 Semantics of transition graph systems

We have already stated that the formalism FTS introduced in definition 4.1
serves as a means for operational semantics definition. We now show how the
semantics of the simple language TGS can be formalized using FTS.

The key concept of this semantics definition is that concurrency is mod-
elled by “interleaving” with additional fairness constraints. This model of
concurrency is especially appropriate w.r.t. verification. We refer the reader
to [26] for a detailed discussion of this approach.

The next definition defines the semantics of TGS.

Definition 4.5 (Semantics of TGS) Assume a set V of variables, an asser-
tion language AL, and a transition graph system GS, whose concurrent process
definition part is

G1‖ . . . ‖Gm ;

let Gi ≡Def (Locsi,Edgesi, `0,i, EJ̄i, ECi), for i = 1 . . .m. Then the semantics
of GS, denoted L(GS), is defined to be the set of computations of the FTS

TSGS ≡Def (V,Θ, T ,J , C)

The components of TSGS are defined as follows:

• V =Def VGS∪̇{π1, . . . , πm}, where each of the fresh variables πi, {π1, . . . , πm} ⊆
VLocs, taken from a designated variable set VLocs disjoint from V, rep-
resents the current control location in the TG Gi.

84 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

• Θ =Def (andr
i=1IAi) and (andm

j=1(πj = `0,j)), where IAi is the initial-
ization assertion of the i–th out of r interface declaration statements in
GS, and `0,j the initial location of the j–th transition graph in GS.

• T is the set of transitions defined by the following rule (R): For each
labelled edge

e ≡Def (`1, c→ x1, . . . , xk := E1, . . . , Ek, `2),

e ∈ Edgesi and k ≥ 0, T contains a transition τe, defined by the extended
guarded assertion over V

τe =Def (ρ 7→ ∅, if [[(πi = `1) and c]]ρ = false ;

7→ {ρ′ ∈ Val(V) | (ρ(πi) = `2) and ρ′(xi) = [[Ei]]ρ, i = 1 . . . k,

and ∀y ∈ V \{x1, . . . , xk} . ρ′(y) = ρ(y)} ,

if [[(πi = `1) and c]]ρ = true).

The set T contains exactly the transitions defined by rule (R), plus one
special state–preserving transition τI called idling transition, defined by

τI : ρ ∈ Val(V) 7→ {ρ} .

• J =Def {τe | e ∈
⋃m
i=1 Edgesi\EJ̄i} is the set of transitions subject to

the requirement of justice; and

• C =Def {τe | e ∈
⋃m
i=1ECi} is the set of transitions subject to the re-

quirement of compassion.

“Interleaving” means that the execution of a concurrent program consists of
an (infinite) sequence of interleaved actions (state transitions) of its processes.
The fairness conditions ensure, that the interleaving is “fair”, e.g. that each
process is scheduled infinitely often.

The “standard” fairness condition defined by the semantics of TGS is the
requirement of justice, which is attributed to each transition representing an
edge in one of the transition graphs of the TGS, unless it is excluded explicitly
from this requirement (via the set EJ̄ of the TGS).

4.2. TRANSITION GRAPH SYSTEMS 85

Figure 4.2: TGS model of 4–phase handshake protocol.

The possibility to release the fairness for a transition allows a simple mod-
eling of non–deterministic behavior. On the other hand, the possibility to
attribute the stronger requirement of compassion to a transition representing
an edge allows to strengthen the fairness requirement (via the set EC of the
TGS) in order to handle situations where more than one transitions leave from
the same control location.

Example 4.1 (Req/Ack–handshake protocol) We consider a simple ver-
sion of a 4–phase asynchronous handshake protocol, assuming a type Bit with
value domain DBit =Def {’0’, ’1’}.

We define a TGS as follows:

GSReq,Ack : program Req Ack Protocol

out Req : Bit where Req = ’0’

out Ack : Bit where Ack = ’0’

G1‖G2

where G1 represent the model of a master responsible for setting the Req–
signal, and G2 represents the model of a slave responsible for setting the Ack–
signal. The slave can reset the Ack–signal while the Req–signal is active
(Req = ’1’). G1,G2 are defined in the diagrammatic presentation of the graphs
shown in figure 4.2.

4.2.2 Verification of properties of a TGS

We discuss possible computations of the TGS GS ≡Def GSReq,Ack shown in
example 4.1. We use the following abbreviations for the defined edges (where

denotes the unique label of the corresponding TGS transition):

86 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

esij =Def (si, , sj) and erij =Def (ri, , rj) ;

the corresponding transitions induced in the FTS TS ≡Def TSGS are abbre-
viated as τ sij and τ rij , respectively.

For a TGS GS and temporal logic formula φ, define the correctness asser-
tion GS |= φ by

GS |= φ iff L(GS) ⊆ L(φ) .

We investigate if the following properties hold for all computations of GS.

Property 1: “(In all computations,) Req will be eventually
asserted.“

This property is described by the temporal logic formula

φ1 =Def eventually 〈|Req = ’1’|〉 ;

Does the correctness assertion GS |= φ1 hold ?
The answer is no. First note that the set of variables of the FTS TS is

VTS = { Req , Ack , π1, π2}. Each computation starts with the unique initial
state ρ0 for which

[[Req = ’0’ and Ack = ’0’ and π1 = s0 and π2 = r0]]ρ0 = true .

In state ρ0, exactly two transitions are enabled: (1) transition τ s01, and
(2) the state–preserving idling transition τI . Since τ s01 ∈ J̄1, this transition
is excluded from the requirement of justice. Therefore a computation exists
where the idling transition τI is taken infinitely often, and the state remains
unchanged. In particular, no state ρ is ever reached such that [[Req = ’1’]]ρ =
true holds.

Property 2: “(In all computations,) whenever Req is as-
serted, then it will be de–asserted eventually thereafter.“

This property is described by the formula

φ2 =Def always (〈|Req = ’1’|〉 → eventually 〈|Req = ’0’|〉) ;

4.3. MODULES AND COMPOSITION 87

Does the correctness assertion GS |= φ2 hold ?
Again, the answer is no. It is possible to find a computation which violates

φ2, i.e. one which satisfies ¬φ2, which is

¬φ2 ∼ eventually (〈|Req = ’1’|〉 ∧ always¬〈|Req = ’0’|〉) ;

¬φ2 can be read as: “Eventually a state is reached where Req is asserted
and is never de–asserted thereafter.“

One computation which satisfies ¬φ2 is the state–sequence σ ≡Def (ρi)∞i=0

resulting from the following sequence στ of transitions:

στ ≡Def τ
s
01τ

s
12(τ r01τ

r
12τ

r
20)ω ,

where (. . .)ω means the infinite repetition of After taking the first two
transitions of this sequence, state ρ2 is reached, for which

[[Req = ’1’ and Ack = ’0’ and π1 = s2 and π2 = r0]]ρ2 = true .

For the rest of the transition sequence (τ r01τ
r
12τ

r
20)ω, each of the resulting

state ρi, i > 2, satisfies

[[Req = ’1’]]ρi = true .

Obviously the state sequence (computation) σ satisfies ¬φ2; the remaining
question is whether the transition sequence respects the fairness constraints. In
particular, consider transition τ s23, which is enabled and disabled periodically
during the transition sequence (τ r01τ

r
12τ

r
20)ω; but since it is not enabled from

some moment on constantly, the justice requirement does not apply.
The situation becomes different, if edge es23 is included into the compassion

set C1 of the transition graph G1. Then, the requirement of compassion is vio-
lated for the transition sequence στ , where transition τ s23 is enabled infinitely
often, but not taken infinitely often. If this modification (C1 =Def {es23}) is
applied to the TGS GS, then property 2 holds.

4.3 Modules and composition

The model of transition graph systems introduced in the previous section
is used to describe non–terminating concurrent programs. These programs
represent models of “closed” systems, where no external interaction is possible

88 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

during the runs (computations) of the program. The only possibility of an
external influence is during the choice of initial values for variables of mode in.
Note that this choice may be restricted by the program via the initialization
condition.

In order to model reactive systems – i.e., systems whose behavior is deter-
mined by continous interaction with their environment – we will next gener-
alize the notion of TGS.

4.3.1 Open Transition Graphs Systems

The notion of an “open” transition graph system is formalized in next defini-
tion.

Definition 4.6 (Open Transition Graph System) Assume a set V of
variables and an assertion language AL. An open transition graph system
(OTGS) has the following form:

GM : module 〈module-name〉
〈interface-declaration〉

G1‖ . . . ‖Gm

where

• G1, . . . ,Gm, m ≥ 1 are transition graphs defining a set of reactive con-
current processes; the operator ‖ denotes the (interleaved) concurrent
composition of these processes. W.l.o.g. we assume that the sets of
control–locations LocsGi of the respective transition graphs are pairwise
disjoint.

• 〈interface-declaration〉 defines a set VGM ⊆ V of typed variables accessi-
ble to all processes and the system environment for reference and mod-
ification. An interface–declaration consists of a sequence of interface–
declaration–statements of the form

〈mode〉 〈var1〉, . . . , 〈vark〉 : 〈type〉 [where 〈init-cond〉]

where the token 〈mode〉 of each declaration statement is defined to be
either in, out or local (as for TGS), and in addition external. x ≡Def

〈var〉 declares a variable x ∈ V τ with τ ≡Def 〈type〉 , and the optional

4.3. MODULES AND COMPOSITION 89

“where” part contains with E ≡Def 〈init-cond〉 a so–called initialization–
assertion E ∈ AL. For variables of mode external, no initialization–
assertion is allowed.

A number of well–formedness conditions are imposed on a OTGS similar as
done for TGS. We call a OTGS well–formed, if the following conditions are
met:

1. For each transition labelled by the statement

c→ x̄ := Ē

all variables in x̄ must be of mode out or local;

2. for an interface–declaration–statement of mode in , the initialization
assertion refers only to variables declared with mode in;

3. for an interface–declaration–statement of mode out or local, the initialization–
assertion must be of the form

x1 = E1 and . . . and xn = En

where xi is a variable declared in that statement, and Ei is an expression
that refers only to variables declared with mode in, for i = 1 . . . n.

In the following we will assume that an OTGS is well–formed.
The new concept of variables of mode external is best illustrated by the

definition of the formal semantics of OTGS.

Definition 4.7 (Semantics of OTGS) Assume a set V of variables, an as-
sertion language AL, and a transition graph system GM . Then the semantics
of GM , denoted L(GM), is defined to be the set of computations of the FTS

TSGM ≡Def (V,Θ, T ,J , C)

where the components of TSGM are defined as for TGS (cf. def. 4.5), which
one modification: The set of transitions T is augmented by an additional
transition τE which represents a transition of the system environment. Such
a transition may modify only variables of mode external; we denote this set
of variables by VE and define

τE : ρ ∈ Val(V) 7→ {ρ′ ∈ Val(V) | ∀x ∈ V \VE . ρ′(x) = ρ(x)} .

90 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

Comparison of OTGS versus VHDL. It is interesting to note the re-
lationship of the concept of variable modes in OTGS versus port modes in
VHDL. (1) The mode in in OTGS means, that a variable can be set only
once, at the beginning of a computation; this corresponds to the notion of
generics (system parameters) in VHDL. (2) The mode external in OTGS
means, that a variable can be changed by the environment infinitely often
during a system computation; this corresponds to the port mode in in VHDL.
(3) The mode out in OTGS defines a variable which can be read inside the
system, and is also visible for the system environment; this corresponds to the
notion of buffer ports in VHDL. Finally, (4) the mode local in OTGS models
a “private” variable of the system, which is hidden from the environment; this
corresponds to the notion of signals in VHDL.

4.3.2 Module composition

The notion of concurrent programs as modelled by TGS relies on a parallel
composition of processes, which communicate via (shared) variables declared
in the program interface. Similarly, modules (modelled by OTGS) can be
composed to form more complex modules or (closed) concurrent programs.

First we define the notion of interface compatibility with respect to parallel
composition of modules.

Definition 4.8 (interface compatibility w.r.t. parallel composition)
Assume two OTGS GM1, GM2 with respective interface declarations (ID)
ID1, ID2. The interface declarations ID1 and ID2 are said to be compatible
with respect to parallel composition, if the following conditions hold:

• (compatible modes) a variable x, which is declared both in ID1 and ID2,
has either mode external or mode in in both interface declarations, or
mode external in one and mode out in the other interface declaration;

• (compatible initialization) for a variable x, which is declared both in ID1

and ID2 with mode in and initialization–assertions IA1 and IA2, respec-
tively, IA1 and IA2 must be satisfiable under some initial state ρ0, i.e.
the following must hold:

∃ρ0 . [[IA1 and IA2]]ρ0 = true .

4.3. MODULES AND COMPOSITION 91

Two modules – referred to as (module) “component” – can be composed to
form a more complex module, if their interfaces are compatible in the sense of
definition 4.8.

The interface of a composed module is mainly determined by the compo-
nent interfaces; the only choice concerns the visibility of some of the declared
variables, i.e. a choice can be made to declare a variable of mode out in a
component to have either mode out or mode local in the composition. In the
latter case, the variable is hidden by the composition.

Definition 4.9 (Module composition) Assume two OTGS GM1, GM2 of
the form

GM i : module 〈module-namei〉
〈interface-declarationi〉

Gi1‖ . . . ‖Gimi

for i = 1, 2 with compatible interface declarations IDi ≡Def 〈interface-declarationi〉
. W.l.o.g. we assume that the (union–)sets of control locations defined in the
transition graphs of GM1 and GM2 are disjoint.

Then the OTGS GM is a composition of GM1 and GM2, denoted by

GM : GM1‖GM2 ,

if it has the form

GM : module 〈module-name〉
〈interface-declaration〉

G1
1‖ . . . ‖G1

m1 ‖ G2
1‖ . . . ‖G2

m2

and the interface declaration ID ≡Def 〈interface-declaration〉 obeys to the
following rules:

• R–ext/ext: If a variable x is declared both in ID1 and ID2 with mode
external, then it is declared in ID with mode external.

• R–in/in: If a variable x is declared both in ID1 and ID2 with mode in and
initialization–assertions IA1 and IA2, respectively, then it is declared in
ID with mode in and initialization–assertions IA1 and IA2.

92 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

• R–out/ext: If a variable x is declared in IDi with mode out and initialization–
assertion IAi, and in IDı̄ with mode external, for i ∈ {1, 2}, ı̄ ∈ {1, 2}\{i},
then it is declared in ID with mode out or mode local and initialization–
assertion IAi.

• R–unique: If a variable x is declared in exactly one interface with mode
external, in or out with initialization–assertion IA(let IA ≡Def true
if no IA is given), then x is declared in ID with the same mode and the
same initialization–assertion IA.

• R–max: The interface declaration ID contains only variable declarations
induced by one of the rules R–ext/ext, R–in/in, R–out/ext or R–unique.

In order to illustrate definition 4.9 of module composition, we consider an
equivalent variant of example 4.1.

Example 4.2 (Distributed Req/Ack–handshake protocol) Assume the
definition of the following OTGS :

GMReq : module Master

out Req : Bit where Req = ’0’

external Ack : Bit

G1

and

GMAck : module Slave

out Ack : Bit where Ack = ’0’

external Req: Bit

G2

where G1 and G2 are defined as in example 4.1. Then

GMReq,Ack : module Distributed Req Ack Protocol

out Req : Bit where Req = ’0’

out Ack : Bit where Ack = ’0’

G1‖G2

4.4. BASIS FOR COMPOSITIONAL REASONING 93

is a composition of GMReq and GMAck.

It is easy to see that for the special case of an OTGS GM with no variables
of mode external, the OTGS can be transformed into an TGS GS , replacing
keyword module by keyword program, without changing the semantics: The
additional environment transition τE in the FTS TSGM generated from GM
is in this case the same as the idling transition τI . Omitting the redundant
transition τE gives the FTS TSGS generated from GS as result; hence L(GM) =
L(GS). In particular, the module Distributed Req Ack Protocol in example 4.2
is equivalent to program Req Ack protocol in example 4.1.

4.4 Basis for compositional reasoning

An important aspect of the semantics of modules (OTGS) with respect to ver-
ification is the question, whether a property proven of a module remains valid,
if this module is composed with another module (property “preservation” un-
der composition). More general, we would like to establish the following rule

R–comp:

GM1 |= φ1, GM2 |= φ2, GM : GM1‖GM2

GM |= φ1 ∧ φ2

where GM1, GM2 are OTGS, GM is a composition of GM1 and GM2, and
φ1,φ2 are temporal logic formulas.

Equally important is the reverse interpretation of rule R–comp: In order to
establish a property φ for a system (module composition) GM , it is sufficient
to establish (if possible) φ for one of the components of GM (e.g. for GM1, the
“decomposition” φ ≡Def φ1 ∧ true justifies the argument with the according
rule instantiation).

The main theorem which justifies rule R–comp makes extensive use of the
next lemma.

Lemma 4.1 (Variable restriction) Assume a set V ⊆ V of typed variables,
a subset V1 ⊆ V , and an assertion language AL. For E ∈ AL, denote by
free(E) the set of free variables in E. For a temporal logic formula φ ∈ LTLAL
built over assertions E1 . . . Ek, k ≥ 1, define free(φ) =Def

⋃k
i=1 free(Ei).

Then

94 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

∀ρ ∈ Val(V), ρ̃ ≡Def ρ|V1
, E ≡Def E

Boolean ∈ AL :

free(E) ⊆ V1 =⇒ [[E]]ρ = true⇔ [[E]]ρ̃ = true , (1)

and

∀σ ∈ Comp(V), σ̃ ≡Def σ|V1
, φ ∈ LTLAL :

free(φ) ⊆ V1 =⇒ σ |= φ⇔ σ̃ |= φ . (2)

where σ|V1
=Def (ρi|V1

)i≥0 if σ = (ρi)i≥0.

The next theorem is the justification for the rule R–comp.

Theorem 4.1 (Composition theorem) Assume a set V of variables and an
assertion language AL, OTGS GM1, GM2, and formulas φ1, φ2 over Vi ≡Def

VGM i (for i = 1, 2); let GM be a composition of GM1 and GM2, V ≡Def VGM .
Then

GM1 |= φ1 and GM2 |= φ2 =⇒ GM |= φ1 ∧ φ2 .

Proof outline . Assume that GM1 |= φ1 and GM2 |= φ2 (*),
i.e.

∀σ ∈ L(GM1) : σ |= φ1 and ∀σ ∈ L(GM2) : σ |= φ2

Show that

∀σ ∈ L(GM) : σ |= φ1 ∧ φ2 (**)

Assume that (**) does not hold, i.e.

∃σ0 ∈ L(GM) . σ0 6|= φ1 ∧ φ2 (**¬)

W.l.o.g we may assume that σ0 6|= φ1;

↪→[σ0 ∈ L(GM)] σ0 ∈ L(TSGM) .

σ0 is a computation over V , i.e. a sequence (ρi)i≥0 of states over V .
By definition, σ0 ∈ L(TSGM) implies (with TS =Def TSGM):

↪→[Initiation] [[ΘTS]]ρ0 = true (***) and

4.5. KRIPKE–STRUCTURES 95

↪→[Consecution] σ0 is “justified” by some transition sequence στ =Def

(τi)i≥0 of transitions contained in T ≡Def TGM , i.e.

∀i ≥ 0 : ρi+1 ∈ τi(ρi) (****)

It remains to show that under assumption (**¬) we may conclude that

σ1 ≡Def σ0|V1
∈ L(GM1) (*****)

Since V1 ⊆ V and free(φ1) ⊆ V1, lemma 4.1, fact(2) applies; in particular

↪→[σ0 6|= φ1] σ1 6|= φ1 which is together with (*****) a contradiction to

premise (*); hence (**) follows from (*).
The rest of the proof of theorem 4.1 is given in the appendix.

4.5 Kripke–structures

We consider next a slightly simplified version of example 4.1.

Example 4.3 (Basic Req/Ack–handshake protocol) We consider a “pure”
version of the 4–phase asynchronous handshake protocol, assuming again type
Bit with value domain DBit =Def {’0’, ’1’}.

We define a TGS as follows:

GSbasicReq,Ack : program Basic Req Ack Protocol

out Req : Bit where Req = ’0’

out Ack : Bit where Ack = ’0’

G1‖G2

where G1,G2 are defined in the diagrammatic presentation of the graphs
shown in figure 4.3.

In order to get a comprehensive overview over the possible computations of the
program GS ≡Def GS′Req,Ack, we introduce the notion of a Kripke–structure,
which can be considered as a special case of a transition graph.

Definition 4.10 (Kripke–structure with fairness) Assume a finite set V
of variables and an assertion language AL. A Kripke–structure (with fairness
requirements) K (KS) is a structure

96 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

Figure 4.3: TGS model of basic 4–phase handshake protocol.

(V,Locs,KEdges, `0, θ0, EJ̄ , EC) ,

where (Locs,KEdges, `0, EJ̄ , EC) is a transition graph (as defined in defi-
nition 4.3) and

• KEdges is a set of edges such that each edge is a triple

(`, label, `′)

where `, `′ are control locations and label is a constant assignment, which
has the form

x̄ := c̄

where x̄ ≡ [x1, . . . , xk] is a complete list of the variables of V in some
fixed order (without doubles) ({x1, . . . , xk} = V) and c̄ ≡ [c1, . . . , ck] is
a list of constants, such that xi and ci have the same type (i = 1 . . . k).

• All edges ending at the same location have the same label, i.e.

∀e1, e2 :

e1 ≡Def (`1, label1, `′) ∈ KEdges∧
e2 ≡Def (`2, label2, `′) ∈ KEdges

→ label1 = label2 .

• For each location ` ∈ Locs there is an outgoing edge, i.e.

∀`∃`′, label . (`, label, `′) ∈ KEdges

4.5. KRIPKE–STRUCTURES 97

• There is no edge which ends at the initial location `0.

• The initial valuation θ0 is a mapping of the variables to some initial
constants,

θ0 : x ∈ V 7→ c0,x ,

such that c0,x has the same type as x, ∀x ∈ V .

The diagrammatic representation of a Kripke–structure is similar to that of a
transition graph, with one exception: The (common) label x̄ := c̄ of any edge
entering the (destination–)location `′ is denoted next to `′ in the assertional
form x̄ = c̄, or (if the vector x̄ is clear from the context) simply in the form c̄.

For the initial location, the initial valuation is denoted in the form x̄ = c̄0,
where c̄0 ≡Def [c0,x1 , . . . , c0,xk] (or simply as c̄0).

An edge e ∈ EJ̄ , which is excepted from the requirement of justice, is
drawn as a dashed arrow; an edge e ∈ EC, which is subject to the requirement
of compassion, is drawn as a solid arrow with a double head.

The semantics L(K) of a Kripke–structure K over a set of variables V is a
subset L(K) ⊆ Comp(V), which is defined via the semantics of an associated
fair transition system TSK.

Definition 4.11 (Semantics of a Kripke–structure) Assume a finite set
V of variables, an assertion language AL and a Kripke–structure (KS)

K : (V,Locs,KEdges, `0, θ0, EJ̄ , EC) .

Then the semantics of K, denoted by L(K), is defined to be the set of
computations of the FTS

TSK ≡Def (V ′,Θ, T ,J , C)

i.e.: L(K) =Def L(TSK).
The components of TSK are defined as follows:

• V ′ =Def V ∪̇{πK}, where the fresh variable πK 6∈ V represents the cur-
rent control location in the KS K.

• Θ =Def andx∈V (x = θ0(x)),

• T is the set of transitions defined by the following rule (R): For each
labelled edge e ≡Def (`1, x1, . . . , xk := c1, . . . , ck, `2), e ∈ Edgesi and
k ≥ 0, T contains a transition τe, defined by

98 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

τe =Def (ρ 7→ ∅, if [[(πK = `1)]]ρ = false ;

7→ {ρ′ ∈ Val(V) | (ρ(πK) = `2) and ρ′(xi) = [[ci]]ρ, i = 1 . . . k,

and ∀y ∈ V \{x1, . . . , xk} . ρ′(y) = ρ(y)} ,

if [[(πK = `1)]]ρ = true).

The set T contains exactly the transitions defined by rule (R).

• J =Def {τe | e ∈ KEdges\EJ̄ } is the set of transitions subject to the
requirement of justice; and

• C =Def {τe | e ∈ EC} is the set of transitions subject to the requirement
of compassion.

A Kripke–structure is a convenient representation to calculate the effects
of the transitions of a TGS, while retaining the control–information of each
transition graph in the TGS; the control–information is captured in according
designated variables ranging over the respective domain of control locations.

Example 4.4 (Kripke–structure of the basic Req/Ack–handshake pro-
tocol) We claim that the computations of the TGS GS′Req,Ack are given by the
semantics of the Kripke–structure

K′ : (V,Locs,KEdges, `0, θ0, EJ̄ , EC) .

where V = [Req,Ack, π1, π2] (πi ranges over the control locations of the TG
Gi, for i = 1, 2), Locs = {`0} ∪ {`i,j | 0 ≤ i, j ≤ 3} and the other components
are shown in the diagrammatic presentation of the Kripke–structure in figure
4.4.

Except for the initial location `0, all of the displayed locations `i,j have a
loop–edge (`i,j , , `i,j) ∈ KEdges, which is, however, shown explicitly only for
the location `0,0.

4.6 Summary

We have presented in this chapter the outline of a formal foundation of a
verification environment, which has actually been implemented for verification
of VHDL–based hardware designs and STATEMATETM –designs.

4.6. SUMMARY 99

Figure 4.4: Kripke–structure for the basic Req/Ack–Protocol.

100 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

Figure 4.5: Divide–and–conquer strategy.

Consider for the following discussion figure 4.5 (taken from [30]).
It is seldom possible to verify properties of full ASICs or of full models

of embedded systems of the typical size used e.g. in the area of automotive
electronics directly using model–checking.

Thus, the following approach has been successfully applied to large designs:

• The property is split at the top–level composition into a conjunction of
“local” properties, which are guaranteed by the sub–components.

• If the sub–components can be verified using the model–checking ap-
proach, then we are done. If not,

• split the specification of large sub–components again into sub–specifications
of the processes (corresponding e.g. to specific functions of an embedded
controller) of the large subcomponents.

• Verify the local properties of the sub–components using model–checking;

• Verify that the local specifications imply (in the sense of temporal logic)
the global property.

In practice, we seldom encountered a case where more than a two–level
decomposition was necessary.

4.6. SUMMARY 101

Clearly, splitting a property logically into local properties, which together
imply the global property, can become a hard task. Chances are good in those
cases, where the sub–components have clean interfaces and cooperate in a
well–defined way (e.g. use global shared variables only in a disciplined way).

This approach has also been extended (in a prototype implementation) to
treat compositions of an arbitrary number of N identical sub–components, as
reported in [30]. This approach relies on a theorem prover (e.g. the LAMBDA–
prover) and on an axiomatization of the underlying assertion language (e.g. a
selected subset of the language of VHDL–Boolean expressions).

Although powerful, the use of a theorem prover is as of today not accepted
in an industrial environment. Therefore, logical derivations are performed in
practice using a tableaux–based decision procedure called tautology–checking.

102 CHAPTER 4. THEORETICAL FOUNDATION OF MODEL CONSTRUCTION

Chapter 5

Linear Symbolic Timing
Diagrams

We introduce the formalism of Symbolic Timing Diagrams in two steps: First,
we consider a syntactical subset of STD, called Linear Symbolic Timing Dia-
grams, which has an easily understandable semantics.

We will consider several aspects which are of interest w.r.t. the verification
methodology, in particular

• Semantics in terms of Symbolic Automata and temporal logic

• Monotonicity properties, and

• Derivation rules.

Recall that our main goal is the design of a visual formalism for property
specification. Why do we need a visual formalism? Temporal logic is already
a concise and powerful formalism for the specification of reactive systems, and
many tools have been built using temporal logic as input format for property
specification (e.g. the SMV–system, [27]).

The main problem with a mathematical notation — e.g. the notation of
temporal logic — is documentation. It is possible to write down a number of
formulas, equipped with additional verbal comment, but large specifications
constructed in that way become hard to understand.

A realistic document for a requirement specification may contain in the
order of 100 distinct statements (this is a typical figure taken from the design
of an embedded controller in the automotive area).

104 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

The hope of a visual formalism is to be at the same time rigorous and to
a high degree self–documenting. Several developments of visual formalisms
have been made in the past 10 years based on this motivation.

An example of a visual language which has gained widespread acceptance
is the Statecharts–formalism invented by D. Harel [17]. This formalism is
operational in nature and is particularly suited for graphical presentation,
integrating notions of hierarchy and parallel execution.

5.1 Motivation

From the Kripke–structure KReq,Ack shown in example 4.4 we can see, that
all computations of the TGS GSbasicReq,Ack result from the infinite repetition of a
cyclic pattern `0,0, . . . `0,0, `1,0, . . . , `0,0 (for the very beginning of each compu-
tation, `0 instead of `0,0), representing the frame of a bus read– or write–cycle
after some idle period (spent at location `0,0). Since the edge from `0,0 to
`1,0 is excluded from the requirement of justice, eventually there may be no
further cycle initiation.

For each cycle, there are actually three possible computation paths in order
to move from `1,0 to `0,0 (via either of the locations `0,2, or `3,3 followed by
`0,3, or `3,0), dependent on the “relative speed” of the atomic actions in G1

and G2.
These differences are, however, not observable at the interface variables

(Req,Ack), whose valuations in any case follow the pattern

Req : ’0’ . . . ’0’’1’ . . . ’1’ . . . ’0’ . . . ’0’

Ack : ’0’ . . . ’0’’0’ . . . ’1’ . . . ’1’ . . . ’0’

“Linear” parts of a behaviour (e.g. of part of a protocol) are tedious to
express in temporal logic, while a graphical representation is natural. We
note that the sequence shown above consists of an alternating sequence of
“stuttering” steps — which are steps where no value changes occur — and
steps, where a value change has occurred.

Consider the following alternative way to present this sequence:

φ0,0
φ1,0

φ1,0
φ1,1

φ1,1
φ0,1

φ0,1
φ0,0

where

5.1. MOTIVATION 105

φ0,0 = 〈|Req = ’0’ and Ack = ’0’|〉
φ1,0 = 〈|Req = ’1’ and Ack = ’0’|〉
φ1,1 = 〈|Req = ’1’ and Ack = ’1’|〉
φ0,1 = 〈|Req = ’0’ and Ack = ’1’|〉

We may further simplify the graphical notation using the following convention:
If the stuttering steps following a value change are characterized by the same
formula as the one used to specify the new values reached by the last change,
then this formula can be omitted.

Using this convention, we present the Req,Ack–sequence as follows:

φ0,0
φ1,0 φ1,1 φ0,1 φ0,0

More precisely, we might want to express that whenever the interface variables
Req,Ack have the value ’0’, ’0’ , then the following sequence of stuttering steps
and value–changes must be as specified above.

We will use the following notation to express the “whenever” part of the
statement:

φ0,0

Using the convention not to repeat identical formulas, we may now combine
the “whenever”–part and the “sequence”–part by juxtaposition as follows:

φ0,0 φ1,0 φ1,1 φ0,1 φ0,0

which is read in the following way: Whenever the value of Req,Ack is ’0’, ’0’,
then the values in subsequent steps must conform to the displayed sequence
pattern.

It remains to clarify what happens at the end of the sequence specification.
We adopt the convention, that the pattern is said to be completely matched
after the last formula (here formula φ0,0) has been matched by the actual
behaviour. Then, no further restriction is expressed.

Note, however, that the semantics of the “whenever”–clause becomes active
again at the point of satisfaction of the final formula φ0,0, and insists on the

106 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

repeated satisfaction of the sequence.
We can make the requirement specification complete by stating what hap-

pens after system initialization.
This is expressed in the form:

φ0,0

which says that in step 0 the system interface variables must satisfy φ0,0.
Thus, a complete specification of the basic Req/Ack–protocol is displayed

as follows:

Initialization:

φ0,0

Invariance:

φ0,0 φ1,0 φ1,1 φ0,1 φ0,0

This is essentially the basis of the semantics definition of Symbolic Timing
Diagrams, presented here for the special case that the diagrams consist of one
symbolic waveform only.

We can state the following facts about STD so far:

• A STD–specification consists of a set of diagrams (which are interpreted
conjunctively), and

• STD–diagrams always have one of two possible activation modes: Either
Initial or Invariant.

Now, reconsider the Slave–module of the distributed version of the Req/Ack–
protocol introduced in example 4.2.

The slave–module was defined as

GMAck : module Slave

out Ack : Bit where Ack = ’0’

external Req: Bit

G2

5.1. MOTIVATION 107

Figure 5.1: Implementation of Slave–model of the basic 4–phase handshake
protocol.

where G2 is defined as shown in figure 5.1.
We would like to construct a “local” specification of the Slave–module with

respect to the interface variables Req,Ack . The important point to consider
now is that the variable Req is external, which means that it can be set by the
environment of the module to any value in each step.

Of course, we know that we will finally compose the Slave–module with a
“matching” Master–module in a way, that a proper 4–phase handshake pro-
tocol is implemented by the composition.

This brings us to the following suggestion of a local specification of the
sequence part of the Req/Ack–protocol:

φ0,0 φ1,0
φ1,1
〈φ0,X〉

φ0,1
φ0,0
〈φ1,X〉

where

φ0,X = 〈|Req = ’0’ and true|〉 ∼ 〈|Req = ’0’|〉
φ1,X = 〈|Req = ’1’ and true|〉 ∼ 〈|Req = ’1’|〉

The formula in angle brackets is called an exit–condition. Consider the follow-
ing fragment of the sequence specification:

φ1,0
φ1,1
〈φ0,X〉

108 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

The exit condition relaxes the requirement, that any change after a sequence of
states which satisfy formula φ1,0 must lead to new values which satisfy formula
φ1,1. In addition, the change is now allowed to lead to new values which
satisfy the exit–condition φ0,X . This is a legal (!) behaviour with respect
to the specification. It causes an “exit” from the matching process, which
means that the diagram terminates its restricting effect. An exit–condition is
a critical point with respect to a correct system specification. It means that
the specification depends on a proper complementation by other diagrams
(contributed from the specification of other modules).

In this case, a proper complementing specification of the Req/Ack–sequence
contributed from the master–module is as follows:

φ0,0
φ1,0
〈φX,1〉

φ1,1
φ0,1
〈φX,0〉

φ0,0

where

φX,0 = 〈|true and Ack = ’0’|〉 ∼ 〈|Ack = ’0’|〉
φX,1 = 〈|true and Ack = ’1’|〉 ∼ 〈|Ack = ’1’|〉

The conjunctive effect of the local sequence specification of the Slave and
the local sequence specification of the Master implies the sequence specification
of the Req/Ack–protocol, because at all points, where an exit might occur, this
is prohibited by the other diagram.

The initial specification has to be adapted in a similar way for the local
specification of the Slave module, because the initial values of external vari-
ables is determined by the environment. Again, adding an exit–condition to
an initial specification, relaxes the requirement on the initial condition.

Thus, the following local specification is obtained for the Slave–module:

Initialization:

φ0,0
〈φ1,0〉

Invariance:

φ0,0 φ1,0
φ1,1
〈φ0,X〉

φ0,1
φ0,0
〈φ1,X〉

Let us take another look at the implementation of the Slave module, shown

5.2. SYNTAX OF LSTD 109

in figure 5.1. At (the initial) location r0, the module waits for an assertion of
the Req signal (Req = ’1’). If this happens, the transition to location r1 is
enabled.

If Req remains asserted (Req = ’1’), then the requirement of justice de-
mands that the transition will eventually be taken, transferring control to
location r1. At this point, the transition to r2 is (unconditionally) enabled.
Again, the requirement of justice demands that the transition will eventually
be taken, transferring control to location r2, and asserting Ack (Ack = ’1’).

This can be expressed graphically in the following way:

φ1,0

-

φ1,1
〈φ0,X〉

The arrow under the timeline after the point where formula φ1,0 holds means
that something must eventually (in the sense of temporal logic) happen with
respect to the values of Req,Ack.

There are two possibilities: Either, Ack is asserted (which is the expected
behaviour), of Req is de–asserted (which is an unexpected behaviour from the
environment). A proper implementation of the Master–module guarantees
that de–assertion of Req cannot happen at this point, hence the expected
reaction (assertion of Ack) will eventually occur.

The final sequence specification of the Slave–module is as follows:

φ0,0 φ1,0

-

φ1,1
〈φ0,X〉

φ0,1

-

φ0,0
〈φ1,X〉

5.2 Syntax of LSTD

We will now introduce the formalism of Linear Symbolic Timing Diagrams
(LSTD) formally. The idea is that a sequence specification, called an LSTD–
body, can be considered to consist of a sequence of LSTD–phases, which is
terminated by a (final) LSTD–phase.

Definition 5.1 (LSTD–body) Assume an assertion language AL, and a set
V of variables. Then the language of Linear Symbolic Timing Diagram bodies
(LSTD–body), denoted by ∆) is defined by the following grammar with the
production sets (1)–(4):

110 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

∆ −→ ∆E (1)

| ∆E ∆1 (2)

∆E −→ φ1

φ2
〈φ3〉 (3)

| -
φ1

φ2
〈φ3〉 (4)

where φ1, φ2, φ3 ∈ BoolAL are Boolean formulas over V. The meaning of
these productions is as follows: Production (1) and (2) define a LSTD–body to
be a non–empty sequence of LSTD–phases, (also called phase, for short) where
a LSTD–phase is denoted in one of the graphical forms shown in production
(3) respectively (4). Note that a sequence of phases is formed by graphical
juxtaposition such that the impression of a single graphical object is obtained,
as e.g. in

φ1

φ2
〈φ3〉

-
φ4

φ5
〈φ6〉. . .

An LSTD–body is not yet a diagram: It must be closed on the left side by a
so–called activation–specification.

The activation specification is an essential part of the semantics of LSTD
(and STD); it decides whether a sequence specification is required either to
hold initially, or whenever a specified state–formula holds.

Definition 5.2 (LSTD Diagram) Assume an assertion language AL, and
a set V of variables. Then the language of Linear Symbolic Timing Diagrams
(LSTD, denoted by α∆) is defined by the following grammar with the produc-
tion sets (1)–(3):

α∆ −→ αE ∆ (1)

αE −→
φ1

(2)

|
φ1
〈φ2〉 (3)

where φ1, φ2 ∈ BoolAL are Boolean formulas over V , and ∆ is a LSTD–
body as defined by definition 5.1. The productions (2) and (3) define activation

5.2. SYNTAX OF LSTD 111

specifications: The first type, defined by production (2), means that whenever
a system state occurs which satisfies φ1, then the further computation must
conform to the semantics of the LSTD–body ∆; the second type, defined by
production (3), means that the initial system state must either satisfy φ1 and
then the further computation must conform to the semantics of the LSTD–body
∆, or satisfy φ2(the so–called initial–exit–specification).

Note that a diagram is formed by graphical juxtaposition of an activation
specification and an LSTD–body such that the impression of a single graphical
object is obtained, as e.g. in

φ1
〈φ2〉

-
φ3

φ4
〈φ5〉. . .

We adopt for LSTD–bodies and for activation specifications the convention,
that an (initial–)exit–specification can be omitted, in which case it is assumed
to be false by default. E.g.,

φ1

-
φ2

φ3

is equivalent to

φ1
〈false〉

-
φ2

φ3
〈false〉. . .

112 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

5.3 Semantics of LSTD

We will define the semantics of the language LSTD by a translation of LSTD–
bodies into Symbolic Automata and an explicit definition of the semantics of
activation specifications, which together can be turned into a characterizing
temporal logic formula. This opens the way for using LSTD in a formal
verification framework based on model–checking and tautology–checking.

In preparation of the next definition, we need to make a small extension
to the notion of a POSA. We say that a POSA A has a top state, denoted by

`top(A) (unique top element of A)

if the partial order �A (cf. definition 3.7)has a unique maximal element. For
a POSA A, `top(A) is undefined, is A has no unique maximal element.

The next definition will provide a SA of a LSTD–body, which is by con-
struction (in all cases) a POSA with a top state. Furthermore, the construction
ensures that the SA of a LSTD–body has a unique initial state.

Definition 5.3 (SA of LSTD–body) Assume an assertion language AL, a
set V of variables, and a LSTD–body ∆ over V . Then we define the associated
SA A∆ to be the SA

A∆ ≡Def (V,Locs,Edges, {`0}, F)

by induction on the structure of ∆:

• Production sequence: 1→ 3: Assume that ∆ ≡Def ∆E is a single LSTD
phase; assume further that

∆E ≡Def
φ1

φ2
〈φ3〉 .

Then the components of A∆ are defined as follows: Locs =Def {`0, `1},
Edges =Def {(`0, φ1, `0), (`0, φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2), `1), (`1, true, `1)}
and F =Def {`0, `1}; A∆ is graphically depicted as

5.3. SEMANTICS OF LSTD 113

• Production sequence: 1 → 4: In the case that

∆E ≡Def -
φ1

φ2

〈φ3〉

all components of A∆ are defined as in the previous case (∆E ≡Def

φ1

φ2
〈φ3〉), with the exception that the first location `0 of A∆ is not

an acceptance state, i.e. F =Def {`1}.

• Production sequence: 2 → 3 → . . .: This case is the inductive step of
the definition of LSTD–bodies. We consider a LSTD–body of the form
∆ ≡Def ∆E ∆1, and assume that

A′ ≡Def (V,Locs′,Edges′, {`′0}, F ′)

is the SA constructed for ∆1, A′ ≡Def A∆1; let `′1 ≡Def `
top(A′). First,

assume that

∆E ≡Def
φ1

φ2
〈φ3〉 .

Then the components of A∆ are defined as follows: Locs =Def {`0} ∪
Locs′ (where `0 is a new location, `0 6∈ Locs′); with `1 ≡Def `

′
1 = `top(A),

Edges =Def {(`0, φ1, `0), (`0, φ2, `
′
0), (`0, (φ3 ∧ ¬φ1 ∧ ¬φ2), `1)} ∪ Edges′

and F =Def {`0} ∪ F ′; A∆ is graphically depicted as

114 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

• Production sequence: 2 → 4 → . . .: In the case that

∆E ≡Def -
φ1

φ2
〈φ3〉

all components of A∆ are defined as in the previous case (∆E ≡Def

φ1

φ2
〈φ3〉), except that the first location `0 is not an acceptance state,

i.e. F =Def F
′.

The definition of the semantics of LSTD–diagrams is a combination of a declar-
ative definition (of the kind used for the semantics of temporal logic) and the
semantics defined for Symbolic Automata.

Definition 5.4 (LSTD–diagram semantics) Assume an assertion language
AL, a set V of variables, and a LSTD–diagram α∆ over V . Then the seman-
tics of α∆, denoted by L(α∆), is defined as follows:

• case α∆ ≡Def

φ1

∆: In this case,

L(α∆) =Def {σ ∈ Comp(V) | ∀k ≥ 0 : σ(k) |= φ1 → σ(k+1) ∈ L(∆)}

• case α∆ ≡Def

φ1
〈φ2〉∆: In this case,

5.3. SEMANTICS OF LSTD 115

L(α∆) =Def {σ ∈ Comp(V) | σ(0) |= φ2 or σ(0) |= φ1 ∧ σ(1) ∈ L(∆)}

where L(∆) ≡Def L(A∆) is the semantics of the SA A obtained from ∆
according to definition 5.3.

We have shown already in chapter 2 that a STD–specification (and in par-
ticular an LSTD–specification) consists in general or a set of diagrams; the
definition of the structure and the semantics of an LSTD–specification is given
in the next definition.

Definition 5.5 (LSTD–specification) Assume an assertion language AL,
and a set V of variables. A LSTD–specification (LSTD–Spec) ∆S is a finite
set of LSTD–diagrams over V , i.e. for some k ≥ 1

∆S = {α∆i | i = 1 . . . k} .

The semantics of a LSTD–Spec ∆S, denoted by L(∆S), is defined to be the
intersection of the semantics of the diagrams contained in ∆S, i.e.

L(∆S) =Def
⋂
i=1...k L(α∆i) .

5.3.1 Translation from LSTD–diagrams to temporal logic

We know by theorem 3.3 that the semantics of a partially ordered Symbolic
Automaton (POSA) can be characterized by a temporal logic formula, and
how the formula is constructed from a given POSA.

First, we claim that the Symbolic Automaton constructed from LSTD–
bodies according to definition 5.3 is a POSA. Then, we apply the construction
given in theorem 3.3 to define a temporal logic formula characterizing the
semantics of LSTD–bodies.

Lemma 5.1 (Structure of SA constructed from LSTD–body) Assume
an assertion language AL, a set V of variables, and a LSTD–body ∆ over V .
Then the associated SA A∆ defined by the construction in definition 5.3 is a
POSA.

The proof follows directly from the construction given in definition 5.3: For
the basic steps (Production sequence 1 → 3 and 1 → 4), the constructed
automaton is clearly a POSA. For the inductive definition steps (Production

116 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

sequence 2 → 3 → . . . and 2 → 4 → . . .), the added new first element has
only (a loop and) outgoing transitions and therefore extends the partial order
of the transition relation of the automaton assumed in the hypothesis of the
inductive construction steps.

Therefore, we can apply theorem 3.3 to define the temporal logic formula
characterizing the semantics an LSTD–body ∆ .

Definition 5.6 (Formula characterizing the semantics of a LSTD–
body) Assume an assertion language AL, a set V of variables, and a LSTD–
body ∆ over V . Then we define the associated temporal logic formula φ∆ by
induction on the structure of ∆:

• Production sequence: 1→ 3: Assume that ∆ ≡Def ∆E is a single LSTD
phase; assume further that

∆E ≡Def
φ1

φ2
〈φ3〉 .

Then by definition 5.3 , A∆ is defined as

Hence, according to theorem 3.3 ,

φ∆ =Def φ1 unless

((φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2))

∧next (true unless false))

∼ φ1 unless

(φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2)) .

5.3. SEMANTICS OF LSTD 117

• Production sequence: 1→ 4: Assume that ∆ ≡Def ∆E is a single LSTD
phase, where

∆E ≡Def -
φ1

φ2
〈φ3〉 .

This case is similar to the preceding case (Production sequence: 1→ 3),
except that for the associated POSA A∆, `0 is not an accepting state.
Hence, according to theorem 3.3 ,

φ∆ =Def φ1 until

((φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2))

∧next (true unless false))

∼ φ1 until

(φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2)) .

• Production sequence: 2 → 3 → . . .: This case is the inductive step of
the definition of LSTD–bodies. We consider a LSTD–body of the form
∆ ≡Def ∆E ∆1, and assume that φ∆1 is the formula constructed for
∆1. By definition 5.3 , A∆ is defined as

Assume that

∆E ≡Def
φ1

φ2
〈φ3〉 .

Then according to theorem 3.3 ,

118 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φ∆ =Def φ1 unless

((φ2 ∧ next φ`′0)

∨(φ3 ∧ ¬φ1 ∧ ¬φ2)

∧next (true unless false))

[φ`′0 = φA∆1
= φ∆1] ∼ φ1 unless

((φ2 ∧ next φ∆1)

∨(φ3 ∧ ¬φ1 ∧ ¬φ2))

• Production sequence: 2 → 4 → . . .: We consider a LSTD–body of the
form ∆ ≡Def ∆E ∆1, and assume that

∆E ≡Def -
φ1

φ2
〈φ3〉 .

Then A∆ is defined as in the previous case (Production sequence: 2 →
3 → . . .) except that `0 is not an accepting state. Hence, according to
theorem 3.3 ,

φ∆ =Def φ1 until

((φ2 ∧ next φ`′0)

∨(φ3 ∧ ¬φ1 ∧ ¬φ2)

∧next (true unless false))

[φ`′0 = φA∆1
= φ∆1] ∼ φ1 until

((φ2 ∧ next φ∆1)

∨(φ3 ∧ ¬φ1 ∧ ¬φ2))

The next step is to determine the characterizing temporal logic formula for
LSTD–diagrams.

Lemma 5.2 (Characterizing formula for LSTD–diagrams) Assume an
assertion language AL, a set V of variables, and a LSTD–diagram α∆ over
V . Let formula φα∆ be defined by:

5.3. SEMANTICS OF LSTD 119

• case α∆ ≡Def

φ1
∆:

φα∆ =Def always (φ1 → next φ∆) ;

• case α∆ ≡Def

φ1
〈φ2〉∆:

φα∆ =Def φ2 ∨ (φ1 ∧ next φ∆) .

is a characterizing formula for the semantics of α∆ (as defined by definition
5.4), i.e.

L(α∆) = L(φα∆)

The proof of lemma 5.2 follows immediately from the definition of the (tem-
poral) logic operators used in the construction of formula φα∆ .

We give two examples to illustrate the definition of the construction of
φα∆.

Example 5.1 (LSTD–diagram α∆eventually φ) Assume an assertion lan-
guage AL, a set V of variables, and a LSTD–diagram α∆eventually φ over V ,
defined by

α∆eventually φ =Def

¬φ
〈φ〉
-

φ
.

Applying the default rules for LSTD–diagrams about omission of exit–specification,
this is equivalent to:

α∆eventually φ =Def

¬φ
〈φ〉
-
¬φ

φ
〈false〉

Define the LSTD–phase of α∆eventually φ by

∆1 =Def -
¬φ

φ
〈false〉

120 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

From lemma 5.2 we get:

φα∆ =Def φ ∨ (¬φ ∧ next φ∆1)

∼ φ ∨ (¬φ ∧ next (¬φ until φ))

∼ φ ∨ (¬φ ∧ next (eventually φ))

∼ φ ∨ next (eventually φ)

∼ eventually φ .

Example 5.2 (LSTD–diagram α∆always φ) Assume an assertion language
AL, a set V of variables, and a LSTD–diagram α∆always φ over V , defined by

α∆always φ =Def

φ
φ

false

Applying the default rules for LSTD–diagrams about omission of exit–
specification, this is equivalent to:

α∆always φ =Def

φ
〈false〉 φ

false
〈false〉

Define the LSTD–phase of α∆always φ by

∆2 =Def
φ

false
〈false〉

From lemma 5.2 we get:

φα∆ =Def (φ ∧ next φ∆2)

∼ (φ ∧ next (φ unless false))

∼ (φ ∧ next (always φ))

∼ always φ .

Finally, the characterizing formula of an LSTD–specification is given by
the next lemma (the proof is trival).

5.3. SEMANTICS OF LSTD 121

Lemma 5.3 (Characterizing formula of LSTD–specification) Assume an
assertion language AL, a set V of variables and an LSTD–specification (LSTD–
Spec) ∆S , where for some k ≥ 1

∆S ≡Def {α∆i | i = 1 . . . k} .

Then the formula

φ∆SPEC =Def
∧

i=1...k
φα∆i .

is a characterizing formula for the semantics of ∆S (as defined by definition
5.5), i.e.

L(∆S) = L(φ∆SPEC)

This establishes an essential property of the conception of LSTD: An LSTD–
specification can be translated into a characterizing temporal logic formula,
and can therefore be used in a verification environment based on temporal
logic model–checking and tautology–checking.

5.3.2 Translation from deterministic POSA to LSTD

We reconsider the concept of deterministic POSA introduced in chapter 3.
From theorem 3.5 we know, that a deterministic POSA A can be charac-

terized by a formula ξA ∈ LINLTLV .
In this section, we will use the construction of the proof of theorem 3.5

again and show that a set of LSTD–bodies can be derived which characterizes
the semantics of A.

Theorem 5.1 (Translation from deterministic POSA to LSTD) As-
sume an assertion language AL, and let A be a deterministic POSA over some
set V of variables. Then there exists a set of LSTD–bodies {∆1, . . . ,∆k} such
that

L(A) =
⋂
i=1...k L(∆i) . (*)

Proof of theorem 5.1 – Construction. The construction of the set {∆1, . . . ,∆k}
corresponds to the definition of the formulas φ` in theorem 3.3:

122 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φ` =Def φ`,` U (
∨

` 6=`′ : `→`′
φ`,`′ ∧ next φ`′)

Note that A is deterministic and has therefore a unique initial location `0;
hence φA = φ`0 .

We show that for each formula φ`, there is an equivalent set of LSTD–
bodies

∆S` ≡Def {∆`
1, . . . ,∆

`
k(`)}

such that L(φ`) =
⋂
i=1...k(`) L(∆`

i) .
The proof is by induction, using the same monotonic sequence (Ti)i≥0 of

sets as defined in the proof of theorem 3.3 .
The proof is based on the fact that set ∆S` can be presented as

∆S` ≡Def

⋃
`′ 6=`,`→`′

∆S`,`′

where

∆S`,`′ ≡Def {
;

φ`,`
φ`,`′
〈φ̄`,`′〉∆1 |∆1 ∈ ∆S`′} .

The notation
;

φ`,`
φ2
〈φ3〉 means:

φ`,`
φ2
〈φ3〉 if ` ∈ F ;

-
φ`,`

φ2
〈φ3〉 if ` 6∈ F .

where F is the set of acceptance states of A.
The notation φ̄`,`′ is defined as in theorem 3.3 :

φ̄`,`′ ≡Def

∨
`′′ 6=`′,`′′ 6=`,`→`′′

φ`,`′′ .

case ` ∈ T0 (set of final locations). For elements ` ∈ T0, no successor
(different from `) exists.

Define

5.3. SEMANTICS OF LSTD 123

∆S` ≡Def {∆`
1}

where

∆`
1 ≡Def

;

φ`,`
false
〈false〉.

Then

L(∆`
1) = L(φ`,` U ((false ∧ next true) ∨ false)) = L(φ`) .

case ` ∈ Tk+1\Tk , some k≥0 . We assume that for each `′ ∈ Tk, there
exists a set ∆S`′ ≡Def ∆S′ such that L(∆S′) = L(φ`′).

The semantics of set ∆S`,`′ is characterized by

L(∆S`,`′) ≡Def L(
∧

∆1∈∆S′

φ`,` U ((φ`,`′ ∧ next φ∆1) ∨ φ̄`,`′)) .

By definition of set ∆S`, L(∆S`) =

⋂
`′ 6=`,`→`′

L(∆S`,`′) = L(
∧

`′ 6=`,`→`′

∧
∆1∈∆S′

φ`,` U ((φ`,`′ ∧ next φ∆1) ∨ φ̄`,`′))

=[lemma 3.11]

L(
∧

`′ 6=`,`→`′
φ`,` U ((φ`,`′ ∧ next

∧
∆1∈∆S′

φ∆1) ∨ φ̄`,`′)) (∗)

By induction hypothesis,

L(
∧

∆1∈∆S′

φ∆1) = L(∆S`′)

so ∧
∆1∈∆S′

φ∆1 ∼ φ`′ ;

hence

124 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

(∗) = L(
∧

`′ 6=`,`→`′
φ`,` U ((φ`,`′ ∧ next φ`′) ∨ ¯φ`,`′)) = L(φ`) .

q.e.d.

5.4 Transformation of LSTD specifications

We will next investigate how the semantics of LSTD–specifications behaves
under syntactic transformations of (particular diagrams of) the specification.

As preparation, the next lemma contains an important observation.

Lemma 5.4 (Negation–free characterization of LSTD) Assume an as-
sertion language AL, a set V of variables and an LSTD–specification ∆S.

Then the characterizing formula φ∆SPEC of ∆S , constructed according to
5.3 , is in negation–normal form (as defined in definition 3.11).

The proof of lemma 5.4 follows immediately from the constructions used to
define formula φ∆SPEC . The consequence is that lemma 3.9 can be applied,
which states that for a formula in negation normal–form, replacing a sub–
formula by another stronger sub–formula, yields a stronger formula.

These facts can be exploited to formulate a number of weakening rules
about LSTD–diagrams. In the following, we will treat LSTD–phases, LSTD–
bodies and LSTD–diagrams in a way as if they were merely graphical abbre-
viations of their characterizing formulas.

In particular, we use the notion of implication between LSTD objects, as
well as the notion of tautology; an example is given next.

Example 5.3 (LSTD–diagram tautology) We use for LSTD–diagrams
the notation of implication introduced for temporal logic formulas (cf. examples
5.1 and 5.2)

φ
φ

false
⇒

¬φ
〈φ〉
-

φ
(∗)

(*) is a tautology because

|= φα∆always φ
→ φα∆eventually φ

(∗∗)

is a temporal logic tautology.

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 125

An important point to note about example 5.3 is the fact, that the two LSTD–
diagram shown in the implication (*) are not structurally similar, at least
not in an obvious way. The fact that the diagram on the right side of the
implication follows from the diagram on the left side of the implication is
based on an analysis of the semantics of these diagrams. On the level of
the equivalent reformulation of the implication in terms of the temporal logic
characterization of the diagrams (**), the fact that (**) is a tautology follows
immediately from the definition of the temporal logic operators always and
eventually .

The rest of this section considers the case, where two LSTD–diagrams are
structurally similar. In this case, implication between LSTD–diagrams can
often be decided based on “local” conditions, concerning relations between
corresponding Boolean formulas occurring in the diagrams.

Implication tautologies between LSTD–diagrams (and LSTD–fragments,
e.g. LSTD–phases) will be presented in the form of rules, which are displayed
in the form

Rule 〈name〉 :

. . .1 (premise–1)

. . .2 (premise–2)

. . . (conclusion)

i.e. the premise–1 . . . premise–k (here shown for k = 2) are shown on top of
the conclusion, separated from the conclusion by a horiontal line.

Logically related premises can be grouped on a single line, where the indi-
vidual premises are separated by a , (comma); so the displayed rule can also
be denoted in the equivalent form

Rule 〈name〉 :

. . .1 , . . .2 (premise)

. . . (conclusion)

The displayed rule is equivalent to a theorem (or lemma) 〈name〉 which says:

126 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

T–〈name〉 :

Assume that . . .1 and . . .2 holds. (premise)

Then. . . holds. (conclusion)

Rule 〈name〉 has to be proven as if it were formulated as theorem T–〈name〉.

5.4.1 Transformation of LSTD–phases

The next rule is a first example.

Rule 5.1 (LSTD–phase weakening) Assume an assertion language AL, a
set V of variables and an LSTD–phase ∆E,

∆E ≡Def
φ1

φ2
〈φ3〉

Consider further a similar LSTD–phase ∆E′,

∆E′ ≡Def
φ′1

φ′2
〈φ3〉

Then the following rule holds:

Rule LSTD–PW–1:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

(φ3 ∧ ¬φ1 ∧ ¬φ2)

∼ (φ3 ∧ ¬φ′1 ∧ ¬φ′2) (premise–2)

∆E ⇒ ∆E′ (conclusion)

Proof of rule 5.1 . We have to prove that under the premises of rule 5.1,

φ1

φ2
〈φ3〉 ⇒ φ′1

φ′2
〈φ3〉 (*)

is a tautology.

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 127

This can be established by showing that on the level of the characterizing
temporal logic formulas,

φ1 unless (φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2))⇒ φ′1 unless (φ′2 ∨ (φ3 ∧ ¬φ′1 ∧ ¬φ′2))

is a tautology.

Alternatively, we can investigate the semantics of the associated (partially
ordered) Symbolic Automaton.

By definition 5.3, A∆E is defined (graphically depicted) as

Automaton A′∆E has the same structure, where φ′1 replaces φ1, and φ′2 replaces
φ2.

By premise–1 and premise–2 ,

φ1 ⇒ φ′1

and φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2)⇒ φ′2 ∨ (φ3 ∧ ¬φ′1 ∧ ¬φ′2)

Hence, by lemma 3.1, L(A∆E) ⊆ L(A′∆E), so (*) follows.

Rule 5.1 has two variants, which cover most common application situations.

Rule 5.2 (LSTD–phase weakening, variant 1) Assume an assertion lan-
guage AL, a set V of variables and an LSTD–phases ∆E,

∆E ≡Def
φ1

φ2

and ∆E′,

128 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

∆E′ ≡Def
φ′1

φ′2

Then the following rule holds:

Rule LSTD–PW–1–v1:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

∆E ⇒ ∆E′ (conclusion)

This rule holds, because it is a special case of rule 5.1 . Note that premise–2
of rule 5.1 follows immediately from the fact, that an omitted exit condition
is by definition (by default) equivalent to false.

Rule 5.3 (LSTD–phase weakening, variant 2) Assume an assertion lan-
guage AL, a set V of variables and LSTD–phases ∆E,

∆E ≡Def
φ1

φ2
〈φ3〉

and ∆E′,

∆E′ ≡Def
φ′1

φ′2
〈φ3〉

Then the following rule holds:

Rule LSTD–PW–1–v2:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

φ3 ⇒ (φ1 ∨ φ2) (premise–2)

∆E ⇒ ∆E′ (conclusion)

This rule also holds, because it is a special case of rule 5.1 . Note that premise–
2 of rule 5.1 follows from the fact, that

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 129

φ1 ⇒ φ′1 , φ2 ⇒ φ′2

φ3 ⇒ (φ1 ∨ φ2)

(φ3 ∧ ¬φ1 ∧ ¬φ2) ∼ false

and (φ3 ∧ ¬φ′1 ∧ ¬φ′2) ∼ false

Another variant of rule 5.1 can be built for phases with liveness require-
ment.

Rule 5.4 (LSTD–phase weakening, additional liveness requirement)
Assume an assertion language AL, a set V of variables and an LSTD–phase
∆E,

∆E ≡Def -
φ1

φ2
〈φ3〉

Consider further a similar LSTD–phase ∆E′,

∆E′ ≡Def -
φ′1

φ′2
〈φ3〉

Then the following rule holds:

Rule LSTD–PW–1’:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

(φ3 ∧ ¬φ1 ∧ ¬φ2)

∼ (φ3 ∧ ¬φ′1 ∧ ¬φ′2) (premise–2)

∆E ⇒ ∆E′ (conclusion)

The proof of this rule is literally the same as for rule 5.1 .
It is obvious that omitting the liveness requirement of a phase weakens the

phase requirement.

Rule 5.5 (LSTD–phase weakening, omitting liveness requirement)
Assume an assertion language AL, a set V of variables and LSTD–phases
∆E,

130 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

∆E ≡Def -
φ1

φ2
〈φ3〉

and ∆E′,

∆E′ ≡Def
φ1

φ2

〈φ3〉

Then the following rule holds (rule without premise):

Rule LSTD–PW–2:

∆E ⇒ ∆E′ (conclusion)

It remains to consider what is the effect of a transformation (in particual
weakening) of the exit condition of a LSTD–phase. This is answered by the
next rules.

Rule 5.6 (LSTD–phase exit condition weakening) Assume an assertion
language AL, a set V of variables and LSTD–phases ∆E,

∆E ≡Def
φ1

φ2
〈φ3〉

and ∆E′,

∆E′ ≡Def
φ1

φ2
〈φ′3〉

Then the following rule holds:

Rule LSTD–PW–EC:

φ3 ⇒ φ′3 (premise)

∆E ⇒ ∆E′ (conclusion)

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 131

Rule 5.7 (LSTD–phase exit condition weakening, additional liveness
requirement) Assume an assertion language AL, a set V of variables and
LSTD–phases ∆E,

∆E ≡Def -
φ1

φ2
〈φ3〉

and ∆E′,

∆E′ ≡Def -
φ1

φ2
〈φ′3〉

Then the following rule holds:

Rule LSTD–PW–EC’:

φ3 ⇒ φ′3 (premise)

∆E ⇒ ∆E′ (conclusion)

The proof of rule 5.6 and rule 5.7 is the same as for rule 5.1.
The automaton A∆E′ has the same structure as automaton A∆E , where

φ′3 replaces φ3.
The premise

φ3 ⇒ φ′3

implies φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2)⇒ φ2 ∨ (φ′3 ∧ ¬φ1 ∧ ¬φ2)

Hence, by lemma 3.1, L(A∆E) ⊆ L(A∆E′), so the conclusion of the rule follows
in both cases from the premise.

Another type of rule considers the case, where two phases are “active” at
the same time. This is important, because a LSTD–specification contains in
general more than one diagram.

We will use the notation

. . .

{∆E1,∆E2} ⇒ ∆E (conclusion)

132 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

to denote that fact that the conjunction of ∆E1 and ∆E2 implies the LSTD–
phase ∆E.

On the visual level, the simultaneous effect of two LSTD–objects (phases
or diagrams) working in cooperation is called superposition. Superposition
assumes, that activation of the phases occurs at the same time, which must
be ensured by the context of the phases.

Rule 5.8 (LSTD–phase superposition) Assume an assertion language AL,
a set V of variables and an LSTD–phase ∆E1,

∆E1 ≡Def
φ1

φ2
〈φ1

3〉

Consider further similar LSTD–phases ∆E2,

∆E2 ≡Def
φ1

φ2
〈φ2

3〉

and

∆E ≡Def
φ1

φ2
〈φ3〉

Then the following rule holds:

Rule LSTD–SUP:

φ1
3 ∧ φ2

3 ⇒ φ3 (premise)

{∆E1,∆E2} ⇒ ∆E (conclusion)

Under the premise of this rule, ∆E is called a superposition of the phase.

Rule 5.9 (LSTD–phase superposition, with additional liveness re-
quirement) Assume an assertion language AL, a set V of variables and an
LSTD–phase ∆E1,

∆E1 ≡Def -
φ1

φ2
〈φ1

3〉

Consider further similar LSTD–phases ∆E2,

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 133

∆E2 ≡Def
φ1

φ2
〈φ2

3〉

and

∆E ≡Def -
φ1

φ2
〈φ3〉

Then the following rule holds:

Rule LSTD–SUP’:

φ1
3 ∧ φ2

3 ⇒ φ3 (premise)

{∆E1,∆E2} ⇒ ∆E (conclusion)

For the proof of rule 5.8 and of rule 5.9 we have to show that

L(A∆E1) ∩ L(A∆E2) ⊆ L(A∆E) (*)

i.e. for all computations σ ∈ Comp(V): (LHS) ⇒ (RHS), where

σ ∈ L(A∆E1) ∧ σ ∈ L(A∆E2) (LHS)

σ ∈ L(A∆E) (RHS)

We have to consider the following cases:

• case 1: σ |= always φ1 . In case of rule 5.8, σ is accepted by A∆E , and
(RHS) holds. In case of rule 5.9, we must consider further sub–cases.

• case 1.1: ∃k≥0 . σ(k) |= φ2 . Then σ is accepted by A∆E , and (RHS)
holds.

• case 1.2: σ |= always¬φ2. Since σ |= always φ1, this implies that

σ |= always¬(φ2 ∨ (φ3 ∧ ¬φ1 ∧ ¬φ2))

134 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Hence, σ is not accepted by A∆E . Furthermore, σ is not accepted by
A∆E1 for the same reason (φ1

3 replaces φ3 in the argument). Hence,
(LHS) does not hold, and the implication (LHS) ⇒ (RHS) is true.

• case 2: ¬(σ |= always φ1) , i.e.

∃k≥0 . (∀i, 0≤i < k : σ(i) |= φ1) ∧ σ(k) |= ¬φ1

• case 2.1: ∃i≤k . σ(i) |= φ2 . Then σ is accepted by A∆E , and (RHS)
holds.

• case 2.2: ∀i≤k : σ(i) |= ¬φ2. In this case we have to consider further
sub–cases:

• case 2.2.1: σ(k) |= (φ3 ∧ ¬φ1 ∧ ¬φ2). Then σ is accepted by A∆E , and
(RHS) holds.

• case 2.2.2: σ(k) |= ¬(φ3 ∧ ¬φ1 ∧ ¬φ2). Then σ is not accepted by A∆E .
By premise, ¬φ3 implies that either ¬φ1

3 or ¬φ2
3 holds in step k. Assume

w.l.o.g that ¬φ1
3 holds in step k, then σ is not accepted by A∆E1 . Hence,

(LHS) does not hold, and the implication (LHS) ⇒ (RHS) is true.

5.4.2 Transformation of LSTD–bodies

An LSTD–body ∆ consists of a non–empty sequence of phases,

∆ ≡Def ∆E1, . . . ,∆Ek

We will next investigate the effect of the transformation of a phase within an
LSTD–body. This will be done in two steps:

1. Transformation on the head of an LSTD–body is considered;

2. Transformation of an “inner” part (phase) of an LSTD–body is consid-
ered.

Transformation of LSTD–body head phase. The main result of this
section is that the monotonicity rules derived for single LSTD–phases can be
extended to the level of LSTD–bodies.

First, for each rule presented in the previous section, there is a correspond-
ing rule on the level of LSTD–bodies, where the head of the body (i.e. the

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 135

“leftmost” phase) is weakened. Moreover, the argument of the corresponding
proof of the rule remains essentially the same.

Rule 5.10 (LSTD–head–phase weakening) Assume the assumptions of
rule 5.1 and an LSTD–phase ∆1 over V . In particular,

∆E ≡Def
φ1

φ2
〈φ3〉

and

∆E′ ≡Def
φ′1

φ′2
〈φ3〉

Then the following rule holds:

Rule LSTD–HPW–1:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

(φ3 ∧ ¬φ1 ∧ ¬φ2)

∼ (φ3 ∧ ¬φ′1 ∧ ¬φ′2) (premise–2)

∆E ∆1 ⇒ ∆E′ ∆1 (conclusion)

Proof of rule 5.10 . Assume the premises of rule 5.10.

We investigate the semantics of the associated (partially ordered) Symbolic
Automata of the LSTD–bodies

∆1 ≡Def ∆E ∆1

∆2 ≡Def ∆E′ ∆1

By definition 5.3, A∆1 is defined (graphically depicted) as

136 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Automaton A∆2 has the same structure, where φ′1 replaces φ1, and φ′2 replaces
φ2.

By premise–1 and premise–2 , lemma 3.1 applies. Hence L(A∆1) ⊆ L(A∆2),
and the conclusion of the rule follows.

We omit the reformulation of the rules 5.2 and 5.3. The next two rules
consider LSTD–head–phase weakening with additional liveness requirements,
and the omission of the liveness requirement from a head phase.

Rule 5.11 (LSTD–head–phase weakening, additional liveness require-
ment) Assume the assumptions of 5.4 and an LSTD–phase ∆1 over V . In
particular,

∆E ≡Def -
φ1

φ2
〈φ3〉

and

∆E′ ≡Def -
φ′1

φ′2
〈φ3〉

Then the following rule holds:

Rule LSTD–HPW–1’:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise–1)

(φ3 ∧ ¬φ1 ∧ ¬φ2)

∼ (φ3 ∧ ¬φ′1 ∧ ¬φ′2) (premise–2)

∆E ∆1 ⇒ ∆E′ ∆1 (conclusion)

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 137

The proof of this rule is the same as for rule 5.10 and exploits again the
monotonicity argument of lemma 3.1 .

For the same reason, it is obvious that omitting the liveness requirement
of a phase weakens the phase requirement.

Rule 5.12 (LSTD–head–phase weakening, omitting liveness require-
ment) Assume the premises of rule 5.5 , in particular

∆E ≡Def -
φ1

φ2
〈φ3〉

and

∆E′ ≡Def
φ1

φ2
〈φ3〉

and an LSTD–phase ∆1 over V .
Then the following rule holds (rule without premise):

Rule LSTD–HPW–2:

∆E ∆1 ⇒ ∆E′ ∆1 (conclusion)

Next, the rules about LSTD–phase exit condition weakening are extended.

Rule 5.13 (LSTD–head–phase exit condition weakening) Assume the
premises of rule 5.6 , in particular

∆E ≡Def
φ1

φ2
〈φ3〉

and

∆E′ ≡Def
φ1

φ2
〈φ′3〉

and an LSTD–phase ∆1 over V .
Then the following rule holds:

138 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Rule LSTD–HPW–EC:

φ3 ⇒ φ′3 (premise)

∆E ∆1 ⇒ ∆E′ ∆1 (conclusion)

Rule 5.14 (LSTD–head–phase exit condition weakening, additional
liveness requirement) Assume the premises of rule 5.7 , in particular

∆E ≡Def -
φ1

φ2
〈φ3〉

and

∆E′ ≡Def -
φ1

φ2
〈φ′3〉

and an LSTD–phase ∆1 over V .
Then the following rule holds:

Rule LSTD–HPW–EC’:

φ3 ⇒ φ′3 (premise)

∆E ∆1 ⇒ ∆E′ ∆1 (conclusion)

Next, the rules for LSTD–phase superposition are extended.

Rule 5.15 (LSTD–head–phase superposition) Assume the premises of
rule 5.8, in particular

∆E1 ≡Def
φ1

φ2

〈φ1
3〉

and similar LSTD–phases ∆E2,

∆E2 ≡Def
φ1

φ2
〈φ2

3〉

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 139

and ∆E,

∆E ≡Def
φ1

φ2
〈φ3〉

and an LSTD–phase ∆1 over V . Then the following rule holds :

Rule LSTD–HP–SUP:

φ1
3 ∧ φ2

3 ⇒ φ3 (premise)

{∆E1 ∆1,∆E2 ∆1} ⇒ ∆E ∆1 (conclusion)

Rule 5.16 (LSTD–head–phase superposition, with additional liveness–
requirement) Assume the premises of rule 5.9, in particular

∆E1 ≡Def -
φ1

φ2
〈φ1

3〉

and similar LSTD–phases ∆E2,

∆E2 ≡Def
φ1

φ2
〈φ2

3〉

and ∆E,

∆E ≡Def -
φ1

φ2
〈φ3〉

and an LSTD–phase ∆1 over V . Then the following rule holds :

Rule LSTD–HP–SUP’:

φ1
3 ∧ φ2

3 ⇒ φ3 (premise)

{∆E1 ∆1,∆E2 ∆1} ⇒ ∆E ∆1 (conclusion)

The proof of these rules is similar to the proofs of rules 5.8 and 5.9, with small
adaptations.

140 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Let

∆1 ≡Def ∆E1 ∆1

∆2 ≡Def ∆E2 ∆1

∆ ≡Def ∆E ∆1

We have to show that

L(A∆1) ∩ L(A∆2) ⊆ L(A∆) (*)

i.e. for all computations σ ∈ Comp(V): (LHS) ⇒ (RHS), where

σ ∈ L(A∆1) ∧ σ ∈ L(A∆2) (LHS)

σ ∈ L(A∆) (RHS)

Recall that the SA A∆ is (graphically depicted in case of rule 5.15) defined as

We have to consider the following cases:

• case 1: σ |= always φ1 . In case of rule 5.15, σ is accepted by A∆, and
(RHS) holds. In case of rule 5.16, we must consider further sub–cases.

• case 1.1: ∃k≥0 . σ(k) |= φ2∧σ(k+1) ∈ L(A∆1). In this case, σ is accepted
by A∆, i.e.(RHS) holds.

• case 1.2: ∀k≥0 : σ(k) |= ¬φ2 ∨ σ(k+1) 6∈ L(A∆). Consider LHS, au-
tomaton A∆1 : Since σ |= always φ1, the only possibility that σ could
be accepted by A∆ is by taking a transition from `0 to `′0 in some step
k, with subsequent acceptance by A∆1 . Since this possibility is excluded
in this case, (LHS) does not hold.

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 141

• case 2: ¬(σ |= always φ1) , i.e.

∃k0≥0 . (∀i, 0≤i < k0 : σ(i) |= φ1) ∧ σ(k0) |= ¬φ1

(k0 is the first step where σ(k0) |= ¬φ1.)

• case 2.1: ∃i≤k0 . σ(i) |= φ2∧σ(i+1) ∈ L(A∆1). In this case, σ is accepted
by A∆, i.e.(RHS) holds.

• case 2.2: ∀i≤k0 . σ(i) |= ¬φ2 ∨ σ(i+1) 6∈ L(A∆1).

• case 2.2.1: σ(k0) |= (φ3 ∧ ¬φ1 ∧ ¬φ2). Then σ is accepted by A∆, and
(RHS) holds.

• case 2.2.2: σ(k0) |= ¬(φ3 ∧ ¬φ1 ∧ ¬φ2). Since σ(k0) |= ¬φ2 ∨ σ(k0+1) 6∈
L(A∆1), σ is not accepted by A∆. By premise, ¬φ3 implies that either
¬φ1

3 or ¬φ2
3 holds in step k0. Assume w.l.o.g that ¬φ1

3 holds in step k0.
Since σ(k0) |= ¬φ1 and σ(k0) |= ¬(φ1

3 ∧¬φ1 ∧¬φ2), σ is not accepted by
A∆1 . Hence, (LHS) does not hold, and the implication (LHS) ⇒ (RHS)
is true.

An important extension of the rules 5.15 and 5.16 is possible in the case
that the phase ∆E is deterministic, i.e. φ1 ⇒ ¬φ2.

Rule 5.17 (LSTD–deterministic–head–phase superposition) Assume
the premises of rule 5.8, in particular

∆E1 ≡Def
φ1

φ2
〈φ1

3〉

and similar LSTD–phases ∆E2,

∆E2 ≡Def
φ1

φ2

〈φ2
3〉

and ∆E,

∆E ≡Def
φ1

φ2
〈φ3〉

and LSTD–phases ∆1
1,∆

2
1 and ∆1 over V . Then the following rule holds :

142 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Rule LSTD–DHP–SUP:

φ1 ⇒ ¬φ2 (premise–1)

{∆1
1,∆

2
1} ⇒ ∆1 (premise–2)

φ1
3 ∧ φ2

3 ⇒ φ3 (premise–3)

{∆E1 ∆1
1,∆E

2 ∆2
1} ⇒ ∆E ∆1 (conclusion)

Rule 5.18 (LSTD–deterministic–head–phase superposition, with add.
liveness req.) Assume the premises of rule 5.9, in particular

∆E1 ≡Def -
φ1

φ2
〈φ1

3〉

and similar LSTD–phases ∆E2,

∆E2 ≡Def
φ1

φ2
〈φ2

3〉

and ∆E,

∆E ≡Def -
φ1

φ2
〈φ3〉

and LSTD–phases ∆1
1,∆

2
1 and ∆1 over V . Then the following rule holds :

Rule LSTD–DHP–SUP’:

φ1 ⇒ ¬φ2 (premise–1)

{∆1
1,∆

2
1} ⇒ ∆1 (premise–2)

φ1
3 ∧ φ2

3 ⇒ φ3 (premise–3)

{∆E1 ∆1
1,∆E

2 ∆2
1} ⇒ ∆E ∆1 (conclusion)

The proof of these rules is similar to the proof of rules 5.15 and 5.16; in
particular, similar abbreviations are used:

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 143

∆1 ≡Def ∆E1 ∆1
1

∆2 ≡Def ∆E2 ∆2
1

∆ ≡Def ∆E ∆1

Again, we have to show that

L(A∆1) ∩ L(A∆2) ⊆ L(A∆) (*)

i.e. for all computations σ ∈ Comp(V): (LHS) ⇒ (RHS), where

σ ∈ L(A∆1) ∧ σ ∈ L(A∆2) (LHS)

σ ∈ L(A∆) (RHS)

The SA A∆ is (graphically depicted in case of rule 5.17) defined as

We have to consider the following cases:

• case 1: σ |= always φ1 . In case of rule 5.17, σ is accepted by A∆, and
(RHS) holds. In case of rule 5.18, σ is not accepted by A∆1 , so (LHS)
does not hold.

• case 2: ¬(σ |= always φ1) , i.e.

∃k0≥0 . (∀i, 0≤i < k0 : σ(i) |= φ1) ∧ σ(k0) |= ¬φ1

(k0 is the first step where σ(k0) |= ¬φ1.)

If σ ∈ L(A∆) , then RHS holds. Hence, assume that σ 6∈ L(A∆). Then

144 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

σ(k0) |= ¬(φ3 ∧ ¬φ1 ∧ ¬φ2) (1), and

σ(k0) |= ¬φ2 ∨ σ(k0+1) 6∈ L(A∆1) (2)

By case 2, σ(k0) |= φ1 , and by premise, σ(k0+1) 6∈ L(A∆1) implies σ(k0+1) 6∈
L(A∆1

1
) or σ(k0+1) 6∈ L(A∆2

1
). Thus, the following facts hold:

σ(k0) |= ¬φ3 ∨ φ2 (1’), and

σ(k0) |= ¬φ2 ∨ σ(k0+1) 6∈ L(A∆1
1
) ∨ σ(k0+1) 6∈ L(A∆2

1
) (2’)

If σ(k0) |= ¬φ2 , then by (1’) σ(k0) |= ¬φ3. By premise φ1
3 ∧ φ2

3 ⇒ φ3 , which
means that either σ(k0) |= ¬φ1

3 or σ(k0) |= ¬φ2
3, so either σ 6∈ L(A∆1) or

σ 6∈ L(A∆2).
If σ(k0) |= φ2 , then the same conclusion follows from (2’). q.e.d.

Transformation of inner phases of an LSTD–body. The rules consid-
ered so far can be further extended to cover the case, where an “inner” phase
of an LSTD–body is weakened.

In general, an LSTD–body ∆ consists of a non–empty sequence of phases,

∆ ≡Def ∆E1 . . .∆Ej . . .∆Ek (*)

for some k≥1. We would like to extend the rules about LSTD–head–phase
weakening to the case, where ∆Ej ⇒ ∆E′j .

This can be done by the following argument: Assume that in (*), 2≤j≤k.
Then ∆ can be presented in the form

∆ ≡Def ∆E1 . . .∆Ej−1∆1

where

∆1 ≡Def ∆Ej , . . . ,∆Ek (**)

If a rule about LSTD–head–phase–weakening applies due to the similarity
of ∆Ej and ∆E′j , then we can possibly derive

∆′1 ≡Def ∆E′j . . .∆Ek

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 145

from ∆1, defined in (**). The next two rules show that this can be used in
turn to derive

∆′ ≡Def ∆E1 . . .∆E′j . . .∆Ek

from ∆.

Rule 5.19 (LSTD–tail weakening) Assume an assertion language AL, a
set V of variables , an LSTD–phase ∆E and LSTD–bodies ∆1 and ∆′1 over
V .

Then the following rule holds:

Rule LSTD–TW:

∆1 ⇒ ∆′1 (premise)

∆E ∆1 ⇒ ∆E ∆′1 (conclusion)

Proof of rule 5.19 . Let

∆1 ≡Def ∆E ∆1

and

∆2 ≡Def ∆E ∆′1 .

By definition 5.6 of φ∆1 ,

φ∆1 ≡Def Φ[φ∆1/u]

Where the formula–scheme Φ (cf. definition 3.10) is defined by

Φ ≡Def φ1 U (φ2 ∧ u
∨(φ2 ∧ ¬φ1 ∧ ¬φ2))

Similary,

φ∆2 ≡Def Φ[φ∆′1
/u]

By premise,

146 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φ∆1 ⇒ φ∆′1

Hence by lemma 3.9,

φ∆1 ≡ Φ[φ∆1/u]

⇒ Φ[φ∆′1
/u] ≡ φ∆2

the conclusion of rule 5.19 follows.

Rule 5.20 (LSTD–tail–part weakening) Assume an assertion language
AL, a set V of variables , LSTD–phases ∆E1 . . .∆Ek and LSTD–bodies ∆1

and ∆′1 over V .
Let

∆1 ≡Def ∆E1 . . .∆Ek ∆1

and

∆2 ≡Def ∆E1 . . .∆Ek ∆′1 .

Then the following rule holds:

Rule LSTD–TPW:

∆1 ⇒ ∆′1 (premise)

∆1 ⇒ ∆2 (conclusion)

Proof of rule 5.20 . The proof is by induction on k.

• case k = 1: In this case, the conclusion follows from rule 5.19.

• case k → k+1: Assume that the rule has been proven up to a fixed value
of k (Induction premise). By the inductive definition of LSTD–bodies
(cf. def. 5.1), we can (uniquely) present

∆1 ≡Def ∆E1 . . .∆Ek∆Ek+1 ∆1

as

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 147

∆1 ≡Def ∆E1 . . .∆Ek ∆11

where

∆11 ≡Def ∆Ek+1 ∆1 ;

similarly, we can present

∆2 ≡Def ∆E1 . . .∆Ek∆Ek+1 ∆′1

as

∆2 ≡Def ∆E1 . . .∆Ek ∆′11

where

∆′11 ≡Def ∆Ek+1 ∆′1 .

Then we can derive the conclusion of rule 5.20 as follows:

∆1 ⇒ ∆′1 premise of rule 5.19

∆Ek+1 ∆1︸ ︷︷ ︸
∆11

⇒ ∆Ek+1 ∆′1︸ ︷︷ ︸
∆′11

Induction premise of this rule

∆1 ⇒ ∆2 (conclusion)

5.4.3 Transformation of LSTD–diagrams

The last block of LSTD–rules covers the remaining LSTD constructions, which
are LSTD–diagrams and LSTD–specifications.

Since these constructions (like all the other constructions of LSTD objects)
are “negation–free”, the weakening rules can be canonically extended to the
level of diagrams and specifications.

Rule 5.21 (LSTD–initial–diagram condition weakening) Assume an
assertion language AL, a set V of variables , Boolean formulas φ1, φ2, φ

′
1, φ
′
2

and an LSTD–body ∆1 over V .
Let

148 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

α∆1 ≡Def

φ1
〈φ2〉∆1

and

α∆2 ≡Def

φ′1 〈φ′2〉∆1

Then the following rule holds:

Rule LSTD–IDW–1:

φ1 ⇒ φ′1 , φ2 ⇒ φ′2 (premise)

α∆1 ⇒ α∆2 (conclusion)

Proof of rule 5.21 . By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

φα∆1 = φ2 ∨ (φ1 ∧ next φ∆1)

and

φα∆2 = φ′2 ∨ (φ′1 ∧ next φ∆1)

Then

φα∆1 ⇒ φα∆2

follows immediately from the definition of the notion of a temporal logic tau-
tology, so the conclusion of rule 5.21 follows.

Rule 5.22 (LSTD–initial–diagram body weakening) Assume an asser-
tion language AL, a set V of variables , Boolean formulas φ1, φ2, and LSTD–
bodies ∆1 and ∆′1 over V .

Let

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 149

α∆1 ≡Def

φ1
〈φ2〉∆1

and

α∆2 ≡Def

φ1
〈φ2〉∆′1

Then the following rule holds:

Rule LSTD–IDW–2:

∆1 ⇒ ∆′1 (premise)

α∆1 ⇒ α∆2 (conclusion)

Proof of rule 5.22 . By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

φα∆ ≡Def Φ[φ∆1/u]

where the formula–scheme Φ (cf. definition 3.10) is defined by

Φ ≡Def φ2 ∨ (φ1 ∧ next u)

Similary,

φα∆2 ≡Def Φ[φ∆′1
/u]

By premise,

φ∆1 ⇒ φ∆′1

Hence by lemma 3.9,

φα∆1 ≡ Φ[φ∆1/u]

⇒ Φ[φ∆′1
/u] ≡ φα∆2

150 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

the conclusion of rule 5.22 follows.

Rule 5.23 (LSTD–invariant–diagram activation condition weaken-
ing) Assume an assertion language AL, a set V of variables , Boolean for-
mulas φ1, φ

′
1 and an LSTD–body ∆1 over V .

Let

α∆1 ≡Def

φ1
∆1

and

α∆2 ≡Def

φ′1
∆1

Then the following rule holds:

Rule LSTD–ADW–1:

φ′1 ⇒ φ1 (premise)

α∆1 ⇒ α∆2 (conclusion)

Proof of rule 5.23 . By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

φα∆1 = always (φ1 → next φ∆1)

and

φα∆2 = always (φ′1 → next φ∆1)

We have to show that

φα∆1 ⇒ φα∆2

follows from the definition of the notion of a temporal logic tautology; in
particular,

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 151

∀σ ∈ Comp(V) :
σ |= α∆1 → σ |= α∆2

(*)

Assume that (*) does not hold, i.e. there exists some computation σ0 such
that σ |= α∆1and:

∃k≥0 . σ0(k) |= φ′2 ∧ σk+1
0 |= φ∆1

Then, from the premise of rule 5.23 (with the same value of k) it follows that

∃k≥0 . σ0(k) |= φ2 ∧ σk+1
0 |= φ∆1

So σ |= α∆1 does not hold under the assumption that (*) does not hold; hence
the conclusion of rule 5.23 follows.

Rule 5.24 (LSTD–invariant–diagram body weakening) Assume an as-
sertion language AL, a set V of variables , Boolean formula φ1, and LSTD–
bodies ∆1,∆′1 over V .

Let

α∆1 ≡Def

φ1

∆1

and

α∆2 ≡Def

φ1
∆′1

Then the following rule holds:

Rule LSTD–ADW–2:

∆1 ⇒ ∆′1 (premise)

α∆1 ⇒ α∆2 (conclusion)

Proof of rule 5.24 . By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

152 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φα∆ ≡Def Φ[φ∆1/u]

where the formula–scheme Φ (cf. definition 3.10) is defined by

Φ ≡Def always (φ1 → next u)

The remaining part of the proof of this rule is omitted, since it uses the same
substitution argument as the proof of the similar rule 5.22.

The next rules extend the rules about superposition to the level of LSTD–
diagrams.

Rule 5.25 (LSTD–initial–diagram superposition) Assume an assertion
language AL, a set V of variables , Boolean formulas φ1, φ2, φ

1
2, φ

2
2, and an

LSTD–body ∆1 over V .
Let

α∆1 ≡Def

φ1
〈φ1

2〉∆1 ,

α∆2 ≡Def

φ1
〈φ2

2〉∆1

and

α∆ ≡Def

φ1
〈φ2〉∆1 .

Then the following rule holds:

Rule LSTD–ID–SUP:

φ1
2 ∧ φ2

2 ⇒ φ2 (premise)

{α∆1, α∆2} ⇒ α∆ (conclusion)

Proof of rule 5.25. By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 153

φα∆ ≡ φ2 ∨ (φ1 ∧ next φ∆1) ;

the formulas φα∆1and φα∆2are defined similarly, where φ1
2 respectively φ2

2 re-
places φ2. By premise,

φα∆1 ∧ φα∆2 ∼ (φ1
2 ∧ φ2

2) ∨ (φ1 ∧ next φ∆1)

[by premise] ⇒ φα∆

Rule 5.26 (LSTD–invariant–diagram superposition) Assume an asser-
tion language AL, a set V of variables , Boolean formula φ1, and LSTD–bodies
∆1

1, ∆2
1 and ∆1 over V .

Let

α∆1 ≡Def

φ1
∆1

1 ,

α∆2 ≡Def

φ1
∆2

1

and

α∆ ≡Def

φ1
∆1 .

Then the following rule holds:

Rule LSTD–AD–SUP:

{∆1
1,∆

2
1} ⇒ ∆1 (premise)

{α∆1, α∆2} ⇒ α∆ (conclusion)

Proof of rule 5.26. By lemma 5.2 (characterizing formula φα∆ of LSTD–
diagram α∆),

154 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φα∆ ≡ always (φ1 → next φ∆1) ;

the formulas φα∆1and φα∆2are defined similarly, where φ∆1
1

respectively φ∆2
1

replaces φ∆1 .
The following derivation establishes the conclusion:

φα∆1 ∧ φα∆2 ∼ always (φ1 → next φ∆1
1
) ∧ always (φ1 → next φ∆2

1
)

[by LTL–tautology] ∼ always ((φ1 → next φ∆1
1
) ∧ (φ1 → next φ∆2

1
))

[by prop–tautology] ∼ always (φ1 → (next φ∆1
1
∧ next φ∆2

1
))

[by LTL–tautology] ∼ always (φ1 → next (φ∆1
1
∧ φ∆2

1
))

[by premise] ⇒ always (φ1 → next (φ∆1))

∼ φα∆

5.4.4 Transformation of LSTD–specifications

Recall that by definition 5.5 a LSTD–specification (LSTD–Spec) ∆S is a finite
set of LSTD–diagrams over V , i.e. for some k ≥ 1

∆S = {α∆i | i = 1 . . . k} .

The semantics of a LSTD–Spec ∆S, denoted by L(∆S), is defined to be the
intersection of the semantics of the diagrams contained in ∆S, and can by
lemma 5.3 be characterized by the temporal logic formula

φ∆SPEC =Def
∧

i=1...k
φα∆i .

We will next formulate rules with conclusions of the form

Rule 〈name〉:
. . . (premise)

{α∆1, . . . , α∆k} ⇒ {α∆′1, . . . , α∆′r} (conclusion)

which means that the premise . . . implies

5.4. TRANSFORMATION OF LSTD SPECIFICATIONS 155

φ∆SPEC ⇒ φ∆SPEC′

where

∆S ≡Def {α∆1, . . . , α∆k}

and

∆S′ ≡Def {α∆′1, . . . , α∆′r} .

The following transformations can be applied to LSTD–specifications:

• diagrams can be omitted from the set;

• diagrams can be replaced by similar diagrams, according to on of the
weakening rules presented in this chapter;

• further diagrams can be adjoined to the set, which follow by logical
implication (tautology) from the diagrams in the set. The implication
can be established e.g. by the superposition rule, or by some other
method (in particular tautology checking).

Rule 5.27 (LSTD–specification diagram elimination) Assume an as-
sertion language AL, a set V of variables , and an LSTD–specification

∆S = {α∆i | i = 1 . . . k}

over V (for some k≥1). Let α∆ ∈ ∆S be a diagram in the set ∆S.
Then the following rule holds (without premise):

Rule LSTD–SPW–1:

∆S ⇒ ∆S\{α∆} (conclusion)

The proof of rule 5.27 goes without saying.

Rule 5.28 (LSTD–specification diagram weakening) Assume an asser-
tion language AL, a set V of variables , and an LSTD–specification

156 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

∆S = {α∆i | i = 1 . . . k}

over V (for some k≥1). Let α∆ ∈ ∆S be a diagram in the set ∆S, and α∆′

be a similar LSTD–diagram.
Then the following rule holds:

Rule LSTD–SPW–2:

α∆⇒ α∆′ (premise)

∆S ⇒ ∆S ∪ {α∆′} (conclusion)

The proof of rule 5.28 is obvious: From the premise,

φα∆ ⇒ φα∆′

and α∆ ≡ α∆j for some j, 1≤j≤k , so

φ∆SPEC =Def
∧

i=1...k
φα∆i

implies

φ∆SPEC ∪ {α∆′} =Def
∧

i=1...k
φα∆i ∧ φα∆′ .

Rule 5.28 can be applied if one of the LSTD–diagram weakening rules can
be used to establish the premise.

A general form of this rule is given next.

Rule 5.29 (LSTD–specification diagram implication) Assume an as-
sertion language AL, a set V of variables , and an LSTD–specification

∆S = {α∆i | i = 1 . . . k}

over V (for some k≥1). Let ∆S′ ⊆ ∆S be a subset of the diagram in the set
∆S, and α∆′ be a similar LSTD–diagram.

Then the following rule holds:

5.5. COMPOSITIONAL REASONING 157

Rule LSTD–SPW–3:

∆S′ ⇒ α∆′ (premise)

∆S ⇒ ∆S ∪ {α∆′} (conclusion)

The proof of this rule is omitted; it is similar to the proof of rule 5.28.
This rule is the basis for a verification environment which uses tautology

checking. New diagrams are derived from an existing set of (established)
diagrams by choosing a subset ∆S′ of the existing set as premise, and the new
diagram α∆′ as “implication goal”.

The premise is established by checking that the temporal logic formula

φ∆SPEC′ → φα∆′

is a tautology.
The rule is applicable whenever tautology–checking is possible, which re-

quires that the assertion language (at least the fragment relevant for the proof)
contains only finite data–types. Note that practical experience shows that
complexity problems (known to be the major obstacle of model–checking) sel-
dom arise with this approach, since the set of diagrams used in the premise of
rule 5.28 is considerably small.

5.5 Compositional reasoning

We reconsider again the distributed version of the Req/Ack–protocol intro-
duced in example Now, reconsider the Slave–module of the distributed version
of the Req/Ack–protocol introduced in example 4.2.

The slave–module was defined as

GMAck : module Slave

out Ack : Bit where Ack = ’0’

external Req: Bit

G2

where G2 is defined as shown in figure 5.1.
We have argued that a “local” specification of the Slave–module with re-

spect to the interface variables Req,Ack is

158 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

∆SS ≡Def {α∆S
0 , α∆S

1 }

where

Initialization:

α∆S
0 ≡Def

φ0,0
〈φ1,0〉

Invariance:

α∆S
1 ≡Def

φ0,0 φ1,0

-

φ1,1
〈φ0,X〉

φ0,1

-

φ0,0
〈φ1,X〉

and

φx,y ≡Def 〈|Req =x|〉 ∧ 〈|Ack =y|〉 ,

using the convention that 〈|〈sig〉 = X|〉 ≡Def true.

For reasons of uniform presentation, an initial diagram is required by defi-
nition 5.2 to have a non–empty body. We define a “pure” (static) initialization
to be an abbreviation as follows:

φ1
〈φ2〉≡Def

φ1
〈φ2〉 true

false

Let

α∆ ≡Def

φ1
〈φ2〉.

Then the semantics of α∆ is by definition of the abbreviation:

φα∆ ≡Def φ2 ∨ (φ1∧
∼ next (true unless false))

∼ φ2 ∨ φ1 .

The master–module is defined similar to the slave–module:

5.5. COMPOSITIONAL REASONING 159

Figure 5.2: Implementation of Master–model of the basic 4–phase handshake
protocol.

GMReq : module Master

out Req : Bit where Req = ’0’

external Ack: Bit

G1

where G1 is defined as shown in figure 5.2.

We claim that a “local” specification of the Master–module with respect
to the interface variables Req,Ack is

∆SM ≡Def {α∆M
0 , α∆M

1 }

where

Initialization:

α∆M
0 ≡Def

φ0,0
〈φ0,1〉

Invariance:

α∆M
1 ≡Def

φ0,0
φ1,0
〈φX,1〉

φ1,1

-

φ0,1
〈φX,0〉

φ0,0

and

160 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

φx,y ≡Def 〈|Req =x|〉 ∧ 〈|Ack =y|〉 ,

We will next show that the conjunctive effect of the local specification of
the Slave and the local specification of the Master implies the specification of
the Req/Ack–protocol, defined as follows:

∆SM‖S ≡Def {α∆0, α∆1}

where

Initialization:

α∆0 ≡Def

φ0,0

Invariance:

α∆1 ≡Def

φ0,0 φ1,0

-

φ1,1

-

φ0,1

-

φ0,0

We next consider a reformulation of the composition rule R–comp formu-
lated in chapter 4.

Rule 5.30 (LSTD–composition rule) Let GM1, GM2 be OTGS, GM a
composition of GM1 and GM2, and ∆S1,∆S2 LSTD–specifications over the
set of variables defined by union of the local interfaces of GM1 respectively
GM2.

Then the following rule holds :

Rule LSTD–COMP:

GM : GM1‖GM2

GM1 |= ∆S1 , GM2 |= ∆S2

GM |= ∆S1 ∪ ∆S2

This rule is a direct consequence of theorem 4.1, where φ1 ∼ φ∆SPEC1 ,
φ2 ∼ φ∆SPEC2 and

φ1 ∧ φ2 ∼ φ∆SPEC1 ∪ ∆SPEC2 .

The next rule complements the basis of compositional reasoning.

5.5. COMPOSITIONAL REASONING 161

Rule 5.31 (LSTD–derivation rule) Let GM be an OTGS, and ∆S1,∆S2

LSTD–specifications over the set of variables defined by the interface of GM .

Then the following rule holds :

Rule LSTD–DERIV:

GM |= ∆S1

∆S1 ⇒ ∆S2

GM |= ∆S2

The proof of this rule is an obvious consequence of the transitivity of language
inclusion:

L(GM) ⊆ L(∆S1) ⊆ L(∆S2)

We will demonstrate the application of proof rules in the next example.
As preparation, we need a few abbreviations.

Let

∆S
4 ≡Def -

φ0,1

φ0,0
〈φ1,X〉

∆S
3 ≡Def

φ1,1
φ0,1

∆S
4

∆S
2 ≡Def -

φ1,0

φ1,1
〈φ0,X〉 ∆S

3

∆S
1 ≡Def

φ0,0
φ1,0

∆S
2

Similary, let

162 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Figure 5.3: Basis of derivation of the protocol of the distributed
Master/Slave–system.

[Rule MC]

GMReq |= ∆SM ,
[Rule MC]

GMAck |= ∆SS
[Rule 5.30]

GMReq,Ack |= ∆SM ∪ ∆SS

∆M
4 ≡Def

φ0,1
φ0,0

∆M
3 ≡Def -

φ1,1

φ0,1

〈φX,0〉 ∆M
4

∆M
2 ≡Def

φ1,0
φ1,1

∆M
3

∆M
1 ≡Def

φ0,0

φ1,0
〈φX,1〉 ∆M

2

Together with abbreviation introduced earlier, we get

α∆S
1 ≡

φ0,0
∆S

1

and

α∆M
1 ≡

φ0,0
∆M

1 .

Example 5.4 (Derivation of basic 4–phase handshake protocol) The
following sequence of figures shows a derivation of the basic 4–phase handshake
protocol .

The figure 5.3 shows the basis of the derivation of the protocol of the com-
bined system. The LSTD–specifications of the Master– and the Slave–module
are assumed to be verified by model–checking. This means that we take the
validity of the local specifications for granted.

Next, the composition rule is applied, which allows to continue reasoning on
a purely logical level (i.e., without taking the semantics of module composition
into further account).

First, we derive the initial diagram α∆0 from the corresponding local spec-

5.6. SUMMARY 163

Figure 5.4: Derivation of initialization of the basic 4–phase–handshake pro-
tocol.

φ1,0 ∧ φ0,1 ⇒ false

[Rule 5.25]

{α∆M
0 , α∆S

0 } ⇒
φ0,0

︸︷︷︸
α∆0

[Rule 5.29]

∆SM ∪ ∆SS ⇒ ∆SM ∪ ∆SS ∪ {α∆0}

ifications α∆M
0 ∈ ∆SM and α∆S

0 ∈ ∆SS.
Second, we derive the invariant diagram α∆1 from the corresponding local

specifications α∆M
1 ∈ ∆SM and α∆S

1 ∈ ∆SS. The derivation tree is con-
structed by repeated application of rule 5.9 and 5.18.

5.6 Summary

The approach of LSTD presented in this chapter has some similarity with the
UNITY programming logic [9]. In particular, the idea of compositional reason-
ing by specification composition, which has been illustrated for the UNITY–
programming notation by many examples in the book [9], has motivated the
structure of LSTD–specifications.

The availability of proof rules for LSTD opens the way for an axiomati-
zation of the proof rules in an interactive theorem proving environment. A
prototype implementation of a LSTD–theory for LSTD, working in cooper-
ation with an axiomatization of a subset of VHDL–expression language, has
been developed on basis of the LAMBDA–theorem prover. The results of this
project have been surveyed in [30].

The set of proof rules presented in this chapter is not complete. Many
more proof rules can be formulated; in particular, a proof rule called chaining
will be introduced in the next chapter.

On the other hand, given that we consider a verification methodology based
on a combination of model–checking and tautology–checking, all datatypes
can be assumed to have finite–data types (although this requirement can be
relaxed by the application of abstraction techniques). Thus, rule 5.29 alone
would suffice to ensure completeness of the derivation rules.

Proofs of the sort shown in example 5.4 are hard to find in practice. Often,
the interplay of diagrams is very involved, and can only be decided by a
tableaux–analysis.

164 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Figure 5.5: Derivation of invariant part of the basic 4–phase–handshake
protocol.

φ1,X ∧ false⇒ false

[Rule 5.9]

{∆M
4 ,∆S

4 } ⇒ -
φ0,1

φ0,0

φ0,1 ⇒ ¬φ0,0

φX,0 ∧ false⇒ false

[Rule 5.18]

{∆M
3 ,∆S

3 } ⇒ -
φ1,1

φ0,1

-
φ0,1

φ0,0

φ1,1 ⇒ ¬φ0,1

φ0,X ∧ false⇒ false

[Rule 5.18]

{∆M
2 ,∆S

2 } ⇒ -
φ1,0

φ1,1

-
φ1,1

φ0,1

-
φ0,1

φ0,0

φ1,0 ⇒ ¬φ1,1

φX,1 ∧ false⇒ false

[Rule 5.18]

{∆M
1 ,∆S

1 } ⇒ φ0,0

φ1,0

-
φ1,0

φ1,1

-
φ1,1

φ0,1

-
φ0,1

φ0,0

[Rule 5.26]

{∆M
1 ,∆S

1 } ⇒
φ0,0

φ0,0

φ1,0

-
φ1,0

φ1,1

-
φ1,1

φ0,1

-
φ0,1

φ0,0

︸ ︷︷ ︸
α∆1

[Rule 5.29]

∆SM ∪ ∆SS ⇒ ∆SM ∪ ∆SS ∪ {α∆1}

5.6. SUMMARY 165

The idea of semantical analysis of a LSTD–specification can be taken fur-
ther towards an approach of automatic synthesis from requirements specifica-
tions. A realization of this approach has been implemented early along with
the development of STD in the ICOS system [23], and has been recently ex-
tended, now constituting the component of a rapid–prototyping–environment
([25]).

166 CHAPTER 5. LINEAR SYMBOLIC TIMING DIAGRAMS

Chapter 6

Symbolic Timing Diagrams

The concept of LSTD–diagrams, which has been introduced in chapter 5, is
based on a mathematical notation. In particular, the two–dimensional “visual”
characteristic, which is typical of conventional timing diagrams, has not been
introduced yet.

In fact, LSTD–diagrams could be considered as a visualization of a sub–
dialect of (linear) temporal logic, which has certain useful mathematical prop-
erties supporting compositional reasoning.

In this chapter we will define and analyze the formalism of Symbolic Timing
Diagrams (STD), which has already been introduced informally in chapter 2.

The STD formalism has more syntactical elements than the LSTD formal-
ism, in particular the syntactic category of constraints, which serve to express
restrictions on the relative occurrence sequence of events on two different wave-
forms.

However, this additional notation merely adds to the convenience of nota-
tion and to the graphical appeal. As a main result of this chapter, it will be
shown that an STD–specification can be translated into an equivalent LSTD–
specification.

168 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

6.1 LSTD–diagram composition

Before the introduction of STD, we will further extend the set of rules for
transformation of LSTD–diagrams.

In particular, we will consider a composition operation for LSTD–diagrams
called chaining, which consists of the extension of one LSTD–diagram body
by another body of a “matching” invariant LSTD–diagram.

6.1.1 Chaining

The idea of chaining is derived from the observation, that an valid LSTD
diagram with “invariant” activation mode can be interpreted as a (dynamic)
invariant property.

This is expressed precisely by the next rule.

Rule 6.1 (LSTD–chaining) Assume an assertion language AL, a set V of
variables , Boolean formulas φ1 and φi1, φ

i
2, φ

i
3, i = 1 . . . r, and an LSTD–bodies

∆,∆1 over V ,
where

∆ ≡Def ∆E1 . . .∆Er ,

∆Ei ≡Def
φi1

φi2
〈φi3〉 or ∆Ei ≡Def -

φi1

φi2
〈φi3〉 , i = 1 . . . r ,

and

α∆ ≡Def

φ1
∆1 .

Then the following rule holds:

Rule LSTD–CHAIN:

φr2 ⇒ φ1 (premise)

{∆, α∆} ⇒ ∆ ∆1 (conclusion)

Proof of rule 6.1. We have to show that

6.1. LSTD–DIAGRAM COMPOSITION 169

φ∆ ∧ φα∆ ⇒ φ∆∆1 ,

i.e.

∀σ : σ |= φ∆ ∧ φα∆ → φ∆∆1 .

In an equivalent formulation,

∀σ : σ |= φα∆ → (φ∆ → φ∆∆1) ,

which is the same as

φα∆ ⇒ (φ∆ → φ∆∆1) . (*)

Formula φ∆ can be written in the form:

φ∆ =Def Φ[φ1/u]

where

Φ ≡Def (φ1
1 op

1 ((φ1
3 ∧ ¬φ1

1 ∧ ¬φ1
2)∨

(φ1
2 ∧ next

(φ2
1 op

2 ((φ2
3 ∧ ¬φ2

1 ∧ ¬φ2
2)∨

(φ2
2 ∧ next

. . .

(φr1 op
r ((φr3 ∧ ¬φr1 ∧ ¬φr2)∨

[+] (φr2 ∧ u))))))) . . .))

and opi is either the operator unless or until , dependent on the definition
of ∆Ei. Note that the extension marked [+] ist justified by the premise, which
implies that

φr2 ∧ φ1 ∼ φr2 .

From the definition of the construction of the characterizing formula of the
LSTD–body ∆∆1 it is easy to see that

170 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

φ∆∆1 ≡ Φ[next φ∆1/u] .

From lemma 3.8 we know that

always (φ1 → next φ∆1)⇒ Φ[φ1/u]→ Φ[next φ∆1/u] .

This is equivalent to (*), since by definition

φα∆ = always (φ→ next φ∆1) ;

hence rule 6.1 is proven.
An immediate and useful consequence of the chaining rule is the following

rule about LSTD extension.

Rule 6.2 (LSTD–extension) Assume the same assumption as for rule 6.1,
in particular

∆ ≡Def ∆E1 . . .∆Er ,

and some LSTD–body ∆1.
Then the following rule holds:

Rule LSTD–EXT:

φ∆1 ∼ true (premise)

∆⇒ ∆ ∆1 (conclusion)

Proof of rule 6.2. First, note that next true ∼ true. Using the same
notation as in the proof of rule 6.1, we get:

φ∆∆1 = Φ[next φ∆1/u] ∼ Φ[true/u] ∼ φ∆ ,

so φ∆∆1 ∼ φ∆ , hence the conclusion holds in particular.

Example 6.1 (Complementary event extension) Assume an assertion
language AL, a set V of variables , and Boolean formula φ . Let

∆ ≡Def ∆E1 . . .∆Er ,

6.1. LSTD–DIAGRAM COMPOSITION 171

be an LSTD–body over V and

∆E ≡Def
¬φ

φ
.

Then

∆⇒ ∆ ∆E .

This follows from rule 6.2, because

φ∆E ∼ ¬φ unless φ ∼ true .

The next rule allows to apply rule 6.1 on the level of LSTD–specifications.

Rule 6.3 (LSTD–diagram–chaining) Assume an assertion language AL,
a set V of variables , Boolean formulas φ1 and φi1, φ

i
2, φ

i
3, i = 1 . . . r, and

LSTD–bodies ∆,∆1 over V , where

∆ ≡Def ∆E1 . . .∆Er ,

∆Ei ≡Def
φi1

φi2
〈φi3〉 or ∆Ei ≡Def -

φi1

φi2
〈φi3〉 , i = 1 . . . r ,

α∆1 ≡Def

φ′

∆ ,

α∆2 ≡Def

φ1
∆1 ,

and

α∆ ≡Def

φ′

∆ ∆1 .

Then the following rule holds:

172 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Rule LSTD–AD–CHAIN:

φr2 ⇒ φ1 (premise)

{α∆1, α∆2} ⇒ α∆ (conclusion)

Proof of rule 6.3. The proof is completely analogue to the proof of rule
6.1.

We have to show that

φα∆1 ∧ φα∆2 ⇒ φα∆ ,

which is the same as

φα∆2 ⇒ (φα∆1 → φα∆) . (*)

Formula φα∆1 can be written in the form:

φα∆1 =Def Φα[φ1/u]

where

Φα ≡Def always (φ′ → next Φ)

and Φ is defined as in the proof of rule 6.1.
It is easy to see that

φα∆ ≡ Φα[next φ∆1/u] .

By lemma 3.8 ,

always (φ1 → next φ∆1)⇒ Φα[φ1/u]→ Φα[next φ∆1/u]

which is equivalent to (*), since

φα∆2 = always (φ1 → next φ∆1) ;

hence rule 6.3 is proven.

6.1. LSTD–DIAGRAM COMPOSITION 173

Figure 6.1: Implementation of Master–model of the basic 4–phase handshake
protocol.

We reconsider as example the local specification of the master component
of the basic 4–phase handshake protocol.

Example 6.2 (Phase–level specification of master–protocol) Recall the
definition of the master–module introduced in chapter 5 :

GMReq : module Master

out Req : Bit where Req = ’0’

external Ack: Bit

G1

where G1 is defined as shown in figure 6.1.

We claim that the implementation shown in figure 6.1 satisfies the following
local specification with respect to the interface variables Req,Ack :

∆SM4 ≡Def {α∆M
0 , α∆M

11 , α∆M
12 , α∆M

13 , α∆M
14}

where

174 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Initialization:

α∆M
0 ≡Def

φ0,0
〈φ0,1〉

Invariance:

α∆M
11 ≡Def

φ0,0
φ1,0
〈φX,1〉

α∆M
12 ≡Def

φ1,0 φ1,1

α∆M
13 ≡Def

φ1,1

-

φ0,1
〈φX,0〉

α∆M
14 ≡Def

φ0,1 φ0,0

and

φx,y ≡Def 〈|Req =x|〉 ∧ 〈|Ack =y|〉 .

We will next show that the specification of the Master–component defined
in example 6.2 implies the specification of the master–component introduced
in chapter 5 as basis of the protocol derivation shown in example 5.4:

∆SM ≡Def {α∆M
0 , α∆M

1 }

where

Initialization:

α∆M
0 ≡Def

φ0,0
〈φ0,1〉

Invariance:

α∆M
1 ≡Def

φ0,0
φ1,0
〈φX,1〉

φ1,1

-

φ0,1
〈φX,0〉

φ0,0

and

6.1. LSTD–DIAGRAM COMPOSITION 175

φx,y ≡Def 〈|Req =x|〉 ∧ 〈|Ack =y|〉 .

Example 6.3 (Local specification derivation) Let ∆SM4 and ∆SM be
specifications of the master component, as defined previously .

Then

∆SM4 ⇒ ∆SM (*)

By definition,

∆SM = {α∆M
0 , α∆M

1 } ;

since α∆M
0 ∈ ∆SM4 , it suffices to prove that

∆SM4 ⇒ α∆M
1 .

This is demonstrated by the derivation shown in figure 6.2, where the following
abbreviations are used:

α∆1...2 ≡Def

φ0,0
φ1,0
〈φX,1〉

φ1,1

,

α∆1...3 ≡Def

φ0,0
φ1,0
〈φX,1〉

φ1,1

-

φ0,1
〈φX,0〉.

176 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Figure 6.2: Derivation of the LSTD–diagram α∆M
1 .

φ1,0 ⇒ φ1,0

[Rule 6.3]

{α∆M
11 , α∆M

12} ⇒
φ0,0

φ1,0

〈φX,1〉
φ1,1

[Rule 5.29]

∆SM4 ⇒ ∆SM4 ∪ {α∆1...2}

φ1,1 ⇒ φ1,1

[Rule 6.3]

{α∆1...2, α∆M
13} ⇒

φ0,0
φ1,0

〈φX,1〉
φ1,1

-

φ0,1

〈φX,0〉
[Rule 5.29]

∆SM4 ⇒(2) ∆SM4 ∪ {α∆1...2, α∆1...3}

φ0,1 ⇒ φ0,1

[Rule 6.3]

{α∆1...3, α∆M
14} ⇒

φ0,0
φ1,0

〈φX,1〉
φ1,1

-

φ0,1

〈φX,0〉
φ0,0

[Rule 5.29]

∆SM4 ⇒(3) ∆SM4 ∪ {α∆1...2, α∆1...3, α∆M
1 }

6.1. LSTD–DIAGRAM COMPOSITION 177

6.1.2 Parallel composition

The operation of diagram–chaining can be described, figuratively speaking, as
“horizontal” composition.

It is also possible to define a “vertical” composition operation, which will
lead us to the definition of STD–diagrams.

First, consider the following simple construction: Given two LSTD–diagrams
α∆1, α∆2, defined by

α∆1 ≡Def

φ1

∆1
1

and

α∆2 ≡Def

φ′1
∆2

1 ,

we could build the following diagram:

(α∆1

α∆2

)
≡Def

φ1∧φ′1
∆1

1

∆2
1

The construction
(α∆1

α∆2

)
is called the parallel composition of the diagrams

α∆1 and α∆2.
We define the semantics of

(α∆1

α∆2

)
as equivalent to the semantics of the

LSTD–specification ∆S1‖2:

L(
(α∆1

α∆2

)
) ≡Def L(∆S1‖2)

where

∆S1‖2 ≡Def {
φ1 ∧ φ′

∆1
1 ,

φ1 ∧ φ′1
∆2

1 }

i.e. the activation condition of the parallel composition is distributed over the
waveforms occuring in the composition.

There are no new effects introduced by the pure parallel composition of
LSTD–diagrams. The semantics allows all possible interleavings of the occur-
rence of events on the waveforms of a parallel composition.

178 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Figure 6.3: STD Diagram TL P and not Q unless Q.

The classical notion of timing diagrams uses timing constraints to express
restrictions on the occurrence time of different events of a diagram. Similary,
STD uses constraints to define (primarily) restrictions on the order of the
occurrence of events. By definition, the events on a waveform are linearly
ordered. Thus, ordering constraints relate events on different waveforms.

Some examples have been introduced earlier in chapter 2. For instance,
reconsider the diagram shown in figure 6.3.

The diagram named TL P and not Q unless Q can be considered to be a
parallel composition of the LSTD–diagrams

α∆1 ≡Def

〈|not(Q)|〉 e1 : 〈|Q|〉

and α∆2 ≡Def

〈|P |〉 e2 : 〈|not(P)|〉

with an additional ordering constraint e1 → e2 , which requires that event e2

must not occur before event e1.
STD–diagram can thus be considered to be a parallel composition of two or

more LSTD–diagrams constituting the waveforms of an STD–diagram, possi-
bly equipped with additional constraints between the events of the waveforms.

6.2. STRUCTURE OF STD–DIAGRAMS 179

6.2 Structure of STD–diagrams

The next definition introduces the concept of an STD–diagram as parallel
composition of LSTD diagrams with constraints. The definition is more elab-
orate than the definition of LSTD–diagrams, since it is oriented to the concrete
graphical representation of STD–diagrams.

6.2.1 Definition of STD–diagrams

An STD–diagram contains a named collections of LSTD–diagrams with equal
activation mode (initial or invariant). The names are drawn from a designated
set IDW of waveform names.

Definition 6.1 (STD–diagram) Assume an assertion language AL, a set
V of variables , Boolean formulas φ1

w and LSTD–bodies ∆w over V (the index
w is specified below).

We define a “bundle” W of waveforms over V to be a collection of LSTD–
diagrams with equal activation mode:

W = (w ∈ IDW 7→ α∆w)

where IDW ⊆ IDW is a finite set of diagram waveform names and either

α∆w ≡Def

φ1
w

∆w

or α∆w ≡Def

φ1
w

∆w ,∀w ∈ IDW .

A special waveform with the designated name wα ∈ IDW is allowed to be
“stubbed”, i.e.

α∆wα ≡Def

φ1
wα

respectively α∆wα ≡Def

φ1
wα 〈φ2

wα〉 .

where φ2
wα is another Boolean formula. This waveform is needed in order to

define the activation condition in the same general way as for LSTD (cf. def.
6.3).

180 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

A bundle W of waveforms induces a set

SEVENTSW ≡Def {〈w, i〉 |w ∈ IDW , 1≤i≤|α∆w|}

of so–called symbolic events of W (abbreviated sevents or simply events). The
special event 〈wα, 0〉 is called the activation event of W.
|α∆w| is the length of the LSTD–diagram α∆w. If the body of α∆w is ∆w,

∆w ≡Def ∆E1∆E2 . . .∆Ekw (|α∆w| = kw)

then 〈w, i〉 refers to the phase ∆Ei for i>0; the special notation 〈w, 0〉 refers
to the activation specification of α∆w.

The phases of ∆w are required to have no additional liveness requirement,
i.e. each phase ∆Ei has the form

∆Ei ≡Def
φi1

φi2
〈φi3〉 .

Two further requirements are made on the static semantics of waveform
events: First, all phases are required to be deterministic and complete, i.e.

φi2 ⇒ ¬φi1, ∀j = 1 . . . kw (1)

φi1 ∨ φi2 ∨ φi3 ∼ true, ∀j = 1 . . . kw . (2)

Second, each stable condition of a phase must be identical to the enabling
condition of the preceding phase, i.e.

φi1 ∼ φi−1
2 ,∀i = 1 . . . kw ;

in particular, the stable–condition φ1
1 must be equivalent to the activation spec-

ification of the waveform ∆w, i.e.

φ1
1 ∼ φ1

w ≡Def φ
0
2 .

An STD–diagram W∆ over V is a bundle W of waveforms over V equipped
with additional functional elements. It is defined as a structure

W∆ ≡Def (W,XPOS,Prec!,Conf !,Prec?,Conf ?,Leadsto)

6.2. STRUCTURE OF STD–DIAGRAMS 181

where

XPOSW∆ : (e ∈ SEVENTSW 7→ ne ∈ N0) ;

ne is called the X–position of sevent e. The activation event of each wave-
form has the X–position 0. Inner sevents have a positive X–position, which
is strictly monotonic increasing along the index position 〈w, i〉 for each wave-
form w, i = 1 . . . |α∆w|. PrecµW∆ and Conf µW∆ are binary relations on the set
SEVENTSW , where µ is a mode tag, which is either ! (for a requirement),
or ? (for an expectation). Conf µW∆ is a symmetric relation (for µ ∈ {?, !}),
i.e.

(e1, e2) ∈ Conf µW∆ ⇒ (e2, e1) ∈ Conf µW∆ .

The elements of Conf µW∆are written in set notation, i.e. {e1, e2} ∈ Conf µW∆.
LeadstoW∆ is a binary relation on the product SEVENTS0

W × SEVENTSW ,
where

SEVENTS0
W =Def SEVENTSW ∪ {〈wα, 0〉}.

The constraints represented by elements of the three asymmetric relations
Prec!

W∆,Prec?
W∆ and LeadstoW∆ are required not to go “backwards”, i.e. for

a relation R ∈ {Prec!
W∆,Prec?

W∆,LeadstoW∆}

(e1, e2) ∈ R⇒ ne2≥ne1 .

The idea of having designated sorts of ?–constraints is similar to the con-
cept of exit–conditions in the LSTD formalism. These constraints (which are
also called weak constraints) allow to express an expected order of events on
those signals which are controlled by the environment of a component inter-
face.

The elements of the sets Prec!,Conf !,Prec?,Conf ?,Leadsto represent the
classes of strong precedence, strong conflict, weak precedence, weak conflict,
and leadsto–constraints, respectively.

STD–diagrams can be conveniently denoted in a tabular notation of the
following form:

182 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

〈STD-diagram-name〉
[optional:] α∆wα

〈wf-name-1〉 α∆1

.

〈wf-name-k〉 α∆k

Prec! {. . .}
Conf ! {. . .}
Prec? {. . .}
Conf ? {. . .}

Leadsto {. . .}

In STD, the X–position has no relevance for the semantics; therefore, the
definition of XPOS will in the following be omitted. Note however, that an
extension of STD exists (called STDx) which associates the X–position with
a clock–cycle count of a synchronous design.

Example 6.4 (Tabular representation of STD–diagram) The diagram
shown in figure 6.3 is represented by the following tabular notation :

TL P and not Q unless Q Induced
sevents:

v
〈|not(Q)|〉 〈|Q|〉

{〈v, 0〉, 〈v, 1〉}

w
〈|P |〉 〈|not(P)|〉

{〈w, 0〉, 〈w, 1〉}

Prec! {(〈v, 1〉, 〈w, 1〉)}
Conf ! ∅
Prec? ∅
Conf ? ∅

Leadsto ∅

Empty constraint sets will be omitted in forthcoming examples.

6.2. STRUCTURE OF STD–DIAGRAMS 183

For technical reasons, it is convenient to consider each waveform to be “closed”
at the end by addition of a special pseudo–sevent

∆E> ≡Def
true

false
.

The effect of this “top–event” is that it can never be matched. The top event
has a special graphical denotation:

∆E> ≡Def .

From example 6.1 we know that a top event can be added to the end of a
LSTD–diagram without changing the semantics (note that true ∼ ¬false).

Example 6.5 (Tabular representation of STD–diagram with top–event
completion) The diagram shown in figure 6.3 is represented after waveform
completion by the following tabular notation :

TL P and

not Q unless Q

Induced
sevents:

v
〈|not(Q)|〉 〈|Q|〉

{〈v, 0〉, 〈v, 1〉, 〈v, 2〉}

w
〈|P |〉 〈|not(P)|〉

{〈w, 0〉, 〈w, 1〉, 〈w, 2〉}

Prec! {(〈v, 1〉, 〈w, 1〉)}

In the following, we will assume that all waveforms of an STD–diagram are
extended by top–events.

6.2.2 Activation mode of STD–diagrams

Recall from the definition of LSTD–diagrams, that there are two so–called
activation modes: Invariant activation (Whenever . . .), and initial activation
(Initially, . . .).

The same concept is used for STD–diagrams.

Definition 6.2 (Activation mode) Assume an assertion language AL, a

184 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

set V of variables, and an STD–diagram W∆ over V with a bundle of wave-
forms W = (w ∈ IDW 7→ α∆w).

We define a function actmode of W∆ as follows:

actmode(W∆) ≡Def invariant iff all waveforms of W∆ have the form:

α∆w ≡Def

φ1
w

∆w

actmode(W∆) ≡Def initial iff all waveforms of W∆ have the form:

α∆w ≡Def

φ1
w

∆w

Note that by definition 6.1 there are no further possibilities for the wave-
forms in a STD–diagram, hence the function actmode is well–defined for all
diagrams W∆.

The concept of an activation specification is also derived from the correspond-
ing concept in LSTD:

For both types of STD–diagrams (invariant or initial), the activation speci-
fication is the conjunction of the activation specifications of the waveforms of
the diagram.

Note that in the case of initial–type diagrams, by definition 6.1 the only
waveform allowed to have an initial–exit specification is the special waveform
wα.

Definition 6.3 (Activation specification) Assume an assertion language
AL, a set V of variables, and an STD–diagram W∆ over V with a bundle of
waveforms W = (w ∈ IDW 7→ α∆w).

We define a function actspec of W∆ as follows:

• case actmode(W∆) ≡Def invariant :

Assume that

α∆w ≡Def

φ1
w

∆w ,∀w ∈ IDW .

Then

actspec(W∆) ≡Def
∧

w∈IDW

φ1
w .

6.3. SEMANTICS OF STD–DIAGRAMS 185

• case actmode(W∆) ≡Def initial :

Assume that

α∆w ≡Def

φ1
w

∆w ,∀w ∈ IDW .

Then

actspec(W∆) ≡Def
∧

w∈IDW

φ1
w

For initial–type diagrams, we also define a function actexitspec(W∆), as
follows: If a special waveform exists of the form

α∆wα ≡Def

φ1

〈φ2〉

then

actexitspec(W∆) ≡Def φ2

otherwise,

actexitspec(W∆) ≡Def false .

6.3 Semantics of STD–diagrams

The semantics of a STD–diagram W∆ is defined similarly to the semantics of
an LSTD–diagram α∆ in two steps:

1. From the body of the waveforms of the diagram, a POSA is derived by
evaluation of the parallel matching progress on waveforms, considering
the effect imposed by constraints during the construction;

2. the final diagram semantics is a LTL–formula, which combines the char-
acterizing formula of the POSA constructed in step 1 with the activation
semantics (either initial or invariant) of the diagram.

186 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Figure 6.4: Illustration of the matching process for diagram
TL P and not Q unless Q.

6.3.1 Derivation of SA from STD–body

As illustration of the idea, consider figure 6.4, which appeared earlier in chapter
2.

The figure 6.4 shows how the “timeline” associated with the matching
process moves over the diagram from the left side (the activation bar) to the
end of the waveforms. A waveform is said to be completed (with respect to
the matching process), if the last sevent of the waveform has been matched,
i.e. if the timeline has reached the top–event of that waveform.

The position of a timeline can be characterized by the set of events which
have already been matched (the past–set), and the set of events which have
not yet been matched (the future–set).

The following table defines the position of the timeline for each of the nodes
displayed in figure 6.4.

node past–set future–set

s0 {〈v, 0〉, 〈w, 0〉} {〈v, 1〉, 〈v, 2〉, 〈w, 1〉, 〈w, 2〉}
s1 {〈v, 0〉, 〈v, 1〉, 〈w, 0〉} {〈v, 2〉, 〈w, 1〉, 〈w, 2〉}
s2 {〈v, 0〉, 〈v, 1〉, 〈w, 0〉, 〈w, 1〉} {〈v, 2〉, 〈w, 2〉}

The next definition associates a SA to the body of a STD–diagram.

6.3. SEMANTICS OF STD–DIAGRAMS 187

Definition 6.4 (SA of STD–body) Assume an assertion language AL, a
set V of variables , and an STD–diagram W∆ over V ,

W∆ ≡Def (W,Prec!,Conf !,Prec?,Conf ?,Leadsto) .

Define the body of W∆ to be the set

W∆′ ≡Def {∆v | ∆v is the body of α∆v , α∆v =W(v) for some v ∈ IDW} .

We define the components of an SA A over V , A ≡Def AW∆′ in the rest of
this section.

Definition of AW∆′ . The SA AW∆′ is defined by

AW∆′ ≡Def (V,Locs,Edges, {ζ0}, FW∆)

where the set of locations Locs contains the set of timeline positions encoun-
tered during the matching process of diagram W∆. The set Edges is a union
of three sets,

Edges ≡Def Edgesu ∪ Edgese ∪ Edgess .

The definition is given in three steps:

1. definition of the set Locs of reachable timelines,

2. definition of the sets Edgesu , Edgese and Edgess of “unwinding”–,
“exit”– and “stuttering”–transitions, and

3. definition of the set FW∆ of acceptance states.

Definition of the set Locs . Each “location” of the SA AW∆ describes the
current status of a matching process using the concept of a timeline position.

Definition 6.5 (Timeline position) A timeline position, denoted by ζ, is a
mapping

ζ : (v ∈ IDW 7→ 〈v, i〉 ∈ SEVENTS>W∆) .

where

188 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

SEVENTS>W∆ ≡Def SEVENTSW∆ ∪ {〈v, |α∆v|+ 1〉 | v ∈ IDW}

is the set of inner sevents plus the set of added top–events of the diagram W∆.
Note that after extension, each waveform v has at least one sevent (〈v, 1〉).

A transition from a timeline ζ to another timeline ζ ′ happens, if one or more
sevents in the set E?ζ of events enabled at ζ are matched; this set is defined by

E?ζ ≡Def {ζ(v) | v ∈ IDW , ζ(v) 6= ζ>(v)} ;

note that top–events are excluded from the set E?ζ . The set ℘E?ζ of non–empty
subsets of events which are enabled at ζ is defined by

℘E?ζ ≡Def ℘(E?ζ)\∅ .

Elements of ℘E?
ζ are typically denoted by letter E .

The progress to a successor timeline ζ ′ induced by matching an event set
E ∈ E?ζ at position ζ is denoted by ζ + E , which is defined by

ζ + E ≡Def (v 7→ ζ(v) if ζ(v) 6∈ E ,

〈v, i+ 1〉 if ζ(v) ∈ E and ζ(v) = 〈v, i〉)

The next definitions are fundamental to the idea of the matching process.

Definition 6.6 (Successor timeline) Let ζ, ζ ′ be timelines, i.e. mappings
from IDW to SEVENTS>W∆.

Then ζ ′ is defined to be a successor of ζ, denoted by ζ → ζ ′, as follows:

ζ → ζ ′ iff ∃E ∈ ℘E?
ζ . ζ

′ = ζ + E .

A transition from ζ to a successor ζ ′ due to a match of the events in E is also
denoted more specifically by

ζ
E−→ ζ ′ .

Note that for a timeline position ζ, ζ + E is again a timeline position for
E ∈ ℘E?ζ ; in particular,

6.3. SEMANTICS OF STD–DIAGRAMS 189

(ζ + E)(v) ∈ SEVENTS>W∆,∀v ∈ IDW .

This is the case, because top–events are by definition excluded from the
set E?ζ .

Definition 6.7 (Partial order of timelines) Define a partial order �W on
the set SEVENTS>W by:

〈v, k〉 �W 〈v′, k′〉 iff v = v′ ∧ k ≤ k′ .

The partial order �W on the set of sevents induces a partial order on the
set of timelines, denoted by � :

ζ � ζ ′ iff ∀v ∈ IDW : ζ(v) �W ζ ′(v) .

It is easy to see that �W and � are indeed partial orders (i.e. reflexive and
transitive).

The partial order � has a unique minimal element ζ0 and a unique maximal
element ζ>(called the top–timeline), defined by

ζ0 ≡Def (v 7→ 〈v, 1〉) , v ∈ IDW

respectively

ζ> ≡Def (v 7→ 〈v, |α∆v|+ 1〉) , v ∈ IDW .

A timeline ζ cuts a precedence–constraint, if the target of the constraint
has been matched, but the source has not been matched yet.

A timeline ζ cuts a leadsto–constraint, if the source of the constraint has
been matched, but the target has not been matched yet.

Definition 6.8 (Constraint cut of a timeline) Given a timeline ζ, define

past(ζ) ≡Def {〈v, i〉 | v ∈ IDW , 1≤i < jv if ζ(v) = 〈v, jv〉} and

future(ζ) ≡Def SEVENTS>W∆\past(ζ) .

Let →c∈ Prec! ∪ Prec?,→c≡Def (e1, e2).

190 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

The fact that ζ cuts a precedence–constraint, denoted by ζ o→c, is defined
by:

ζ o→c iff e2 ∈ past(ζ) ∧ e1 ∈ future(ζ) .

Let ;c∈ Leadsto,;c≡Def (e, e′).
The fact that ζ cuts a leadsto–constraint, denoted by ζ o;c, is defined by:

ζ o;c iff e ∈ past(ζ) ∧ e′ ∈ future(ζ) .

While the fact that a precedence– or leadsto–constraint is cut by a timeline ζ
can be attributed to the timeline reached after matching a set E of sevents, a
violation of a conflict constraint is attributed to the set E .

Definition 6.9 (Conflict–free set of sevents) Let ζ be a timeline, E ∈
℘E?

ζ .
The fact that a set E is called conflict–free, denoted E

√
, is defined by

E
√

iff R#(E) ∩ (Conf ! ∪ Conf ?) = ∅

where the definition of the (irreflexive and symmetric) conflict–relation R#(E)
induced by set E is

R#(E) ≡Def {(e1, e2) | e1 6= e2 and {e1, e2} ⊆ E} , E ⊆ SEVENTS>W∆ .

Definition 6.10 (Unwinding successor) Let ζ ′ be a successor of ζ. ζ ′ is

called an unwinding–successor of ζ, denoted by ζ
√

=⇒ ζ ′, iff

1: ¬(∃ →c∈ Prec! ∪ Prec? : ζ ′ o→c)

2: ∃E ∈ ℘E?ζ . E
√
∧ ζ E−→ ζ ′ .

Condition 1 means, that ζ ′ does not cut any precedence constraint, and
condition 2 means that step E is a conflict–free match, which leads from ζ to
ζ ′.

Given these definitions, we can next define the set of timelines reachable
from the initial timeline ζ0 as follows:

6.3. SEMANTICS OF STD–DIAGRAMS 191

Locs =Def {ζ | ζ0

√
=⇒∗ ζ} .

We define the set of “unwinding” transitions, denoted Transu, by

Transu ≡Def {ζ
E−→ ζ ′ | ζ, ζ ′ ∈ Locs, ζ ′ = ζ + E , E ∈ ℘E?

ζ , E
√
} .

An unwinding transition is caused by a conflict–free match, which leads
from a reachable timeline to an (again reachable) successor timeline.

Definition of the set Edgesu . The set Edgesu is a functional image of the
set of unwinding transition Transu, referring to the contents of the phases of
the waveforms of the diagram W∆.

Recall the structure of an STD–diagram described in definition 6.1.
If the body of a waveform named v is ∆v,

∆v ≡Def ∆E1∆E2 . . .∆Ekv

then the waveform extended with top–event is defined by

∆v ≡Def ∆E1∆E2 . . .∆Ekv∆Ekv+1 ;

〈v, i〉 refers to the phase ∆Ei , for 1≤i≤kv + 1. If

∆Ei ≡Def
φi1

φi2
〈φi3〉

then we define

stab(〈v, i〉) ≡Def φi1 (stable condition),

enab(〈v, i〉) ≡Def φi2 (enable condition),

exit(〈v, i〉) ≡Def φi3 (exit condition) .

An unwinding transition corresponding to a match of some event set E may
occur, if all enable conditions of the sevents of set E are satisfied. For those
sevents of a timeline, which are not matched during an unwinding transition,
the stable condition must be satisfied.

This leads to the following definition of the set Edgesu:

192 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Edgesu ≡Def {(ζ, φEζ , ζ ′) | ∃E ∈ ℘E?ζ . (ζ E−→ ζ ′) ∈ Transu}

where φEζ ≡Def is defined in the next definition.

Definition 6.11 (Unwinding condition) The condition φEζ is defined as

φEζ ≡Def
∧

v∈IDW ,ζ(v)6∈E
stab(ζ(v)) ∧

∧
v∈IDW ,ζ(v)∈E

enab(ζ(v)) .

Definition of the set Edgese . Recall from the definition of the semantics of
LSTD–diagrams, that two sorts of transitions exist: First, the set of unwinding
transitions, and second the set of transitions due to an “exit” condition of an
sevent.

In the case of LSTD–diagrams, an sevent–exit happens, if the exit–condition
of a LSTD–phase is satisfied and neither the stable– nor the enable–condition
of the phase is satisfied.

The situation is more complicated with STD–diagrams: An exit may also
occur due to violation of a weak constraint.

Therefore, Edgese is a union two sets:

Edgese ≡Def Edgeswe ∪ Edgesce

where Edgeswe contains the set of so–called waveform–exit–edges, and Edgesce

contains the set of so–called (weak–)constraint–exit–edges.
We first consider the definition of set Edgeswe. At a current timeline

position ζ, a waveform exit is defined to occur, if on at least one waveform
an sevent–exit occurs. An exit causes a direct move from the current timeline
position to the top–timeline ζ>.

This leads to the following definition of the set Edgeswe:

Edgeswe ≡Def {(ζ, φweζ , ζ>) | ζ ∈ Locs\{ζ>}} ,

where

φweζ ≡Def
∨

v∈IDW
(exit(ζ(v)) ∧ ¬stab(ζ(v)) ∧ ¬enab(ζ(v))) .

6.3. SEMANTICS OF STD–DIAGRAMS 193

Weak constraint violation. Weak constraint violation happens, if either
a weak conflict or a weak precedence constraint is violated.

As preparation, we need the definition of weak–conflict and weak–precedence
violation.

Definition 6.12 (Weak–conflict set of sevents) Let ζ be a timeline, E ∈
℘E?

ζ .
The fact that a set E has a weak–conflict, denoted Ew#, is defined by

Ew# iff R#(E) ∩ Conf ? 6= ∅ .

Definition 6.13 (Constraint–exit successor) Let ζ ′ be a successor of ζ.

ζ ′ is called a constraint–exit–successor of ζ, denoted by ζ
w#
=⇒ ζ ′, iff (at

least) one of the following conditions holds:

a: (∃ →c∈ Prec? : ζ ′ o→c)

b: ∃E ∈ ℘E?ζ . Ew# ∧ ζ E−→ ζ ′ .

Condition 1 means, that ζ ′ cuts some weak precedence constraint, and con-
dition 2 means that step E is a match which has a weak–conflict, and leads
from ζ to ζ ′.

The concept of a constraint–exit–successor is mainly used for technical sim-
plicity. In fact, a step to an exit successor means termination of the matching
process, with positive (accepting) result.

This semantics can be described easily in the way that all exit–successor
timelines are identified with the top–timeline ζ>.

This motivates the following definition of the set Transce of transitions
corresponding to violation of a weak constraint:

Transce ≡Def {ζ
E−→ ζ> | ζ ∈ Locs,∃E ∈ E?ζ . ζ

w#
=⇒ ζ + E} .

The set Edgesce of edges is defined as a functional image of the set of
transitions Transce ; the definition of the set Edgesce is as follows:

Edgesce ≡Def {(ζ, φEζ , ζ>) | ∃E ∈ E?ζ . (ζ E−→ ζ>) ∈ Transce}

where φEζ is defined as for Edgesu (see definition 6.11).

194 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Construction of the set Edgess . The set Edgess is a functional image of
the set of reachable timeline locations, defined by

Edgess ≡Def {(ζ, φsζ , ζ) | ζ ∈ Locs}

where φsζ is defined in the next definition.

Definition 6.14 (Stable condition) The condition φsζ is defined as

φsζ ≡Def
∧

v∈IDW
stab(ζ(v)) .

Construction of the set FW∆ . Intuitively, a timeline describes either
a “stable” or an “instable” situation. A situation ζ is called stable, if an
infinite repetition of states, which satisfy the stable condition φsζ , is an accepted
behavior.

The distinction is made by the class of so–called leadsto–constraints. If a
timeline “cuts” a leadsto–constraint, than the situation is called instable. The
term “instable” means here that something must happen which leads out of
the instable situation. The only possibility to leave an instable situation is to
have a progress of the timeline (corresponding to a matching of sevents).

This intuition is captured by the following definition of the set FW∆ of
stable situations:

FW∆ ≡Def Locs\{ζ ∈ Locs | ∃〈v, k〉 ∈ past(ζ), 〈v′, k′〉 ∈ future(ζ) .

(〈v, k〉, 〈v′, k′〉) ∈ LeadstoW∆}

Note that the top–timeline ζ> always describes a stable situation, because it
consists of the added top–events (which can not cut any constraint).

6.3.2 Definition of semantics of STD–diagram

The definition of the semantics of STD–diagrams is analogous to the definition
of the semantics of LSTD diagrams, namely a combination of a declarative
definition and the semantics defined for Symbolic Automata.

Definition 6.15 (STD–diagram semantics) Assume an assertion language
AL, a set V of variables, and an STD–diagram W∆ over V . Then the se-
mantics of W∆, denoted by L(W∆), is defined as follows:

6.3. SEMANTICS OF STD–DIAGRAMS 195

• case actmode(W∆) ≡Def invariant : In this case,

L(W∆) =Def {σ ∈ Comp(V) | ∀k ≥ 0 :

σ(k) |= actspec(W∆)→ σ(k+1) ∈ L(∆)}

• case actmode(W∆) ≡Def initial : In this case,

L(W∆) =Def {σ ∈ Comp(V) | σ(0) |= actexitspec(W∆) or

σ(0) |= actspec(W∆) ∧ σ(1) ∈ L(∆)}

where L(∆) ≡Def L(AW∆) is the semantics of the SA A obtained from
W∆ according to definition 6.4.

196 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

6.4 Translation of STD–diagrams to temporal logic

In the beginning of this chapter, we motivated the concept of STD as a kind
of parallel composition of LSTD–diagrams.

The definitions of STD and LSTD are “incompatible”, because the defini-
tion of STD does not allow “non–deterministic” sevents (cf. definition 6.1).
On the other hand, e.g. the possibility to express preemptive behaviour using
weak constraints appears to increase the expressive power of STD over LSTD.

Therefore, the expressive power of STD and LSTD seems to be unrelated.
Interestingly, this is not the case, due to the following line of reasoning:

1. The semantics of a STD–body can be characterized by a stuttering–
invariant and deterministic POSA.

2. Due to theorem 5.1, the semantics of a deterministic POSA can be char-
acterized by an equivalent set ∆S of LSTD bodies.

3. The activation semantics is defined in the same way for STD and LSTD;
hence, the semantics of a STD–diagram can be characterized by an equiv-
alent LSTD–specification SPEC.

In this section we will establish the first step, i.e. we investigate the struc-
ture of the SA derived from an STD–body in detail.

6.4.1 Properties of the characterization of STD–body by SA

The next lemma is the key to the characterization of the semantics of STD–
diagrams in terms of temporal logic.

Lemma 6.1 (POSA of STD–body) Assume an assertion language AL, a
set V of variables, and an STD–diagram W∆ over V , with body W∆′. Then
the SA AW∆′ constructed in 6.4 is a POSA.

Proof of lemma 6.1 . Recall that according to definition 3.7, a partially
ordered symbolic automaton (POSA) A over V is a SA

A : (V,Locs,Edgespo, L0, F)

with the following restriction on the set Edgespo: Define a binary relation →
on the set Locs (denoted in infix notation) by

6.4. TRANSLATION OF STD–DIAGRAMS TO TEMPORAL LOGIC 197

`1 → `2 iff ∃φ . (`1, φ, `2) ∈ Edgespo .

Then the SA A is called a partially ordered SA, iff the relation →∗ (the
reflexive, transitive closure of→) is a partial order. In particular, it is required
to be anti–symmetric, i.e.:

(`1 →∗ `2) ∧ (`2 →∗ `1) =⇒ `1 = `2 .

According to definition 6.4, the SA AW∆′ is defined by

AW∆′ ≡Def (V,Locs,Edges, {ζ0}, F)

where the set Edges consists of the following edge types:

• unwinding edges: An unwinding edge corresponds to a transition ζ E−→ ζ ′

where matching the set E of events advances the timeline from ζ to ζ ′;
this implies by definition 6.7 that ζ � ζ ′ .

• exit edges: an exit edge has always the form (ζ E−→ ζ>); in this case, by
definition ζ � ζ> .

• stuttering (loop) edges: a stuttering edge has the form (ζ −→ ζ); again,
by definition, ζ � ζ.

It follows that the relation → is a subset of the partial order �; therefore,
→∗ must also be a partial order.

q.e.d.

An immediate consequence of lemma 6.1 is the fact, that theorem 3.3 can
be applied as follows:

1. The automaton A ≡Def AW∆′ derived from the STD–body W∆′ is a
POSA;

2. by theorem 3.3 , there exists a formula φA ∈ LTLAL over V such that

L(A) = L(φA) .

Our next goal is to show that the POSA derived from an STD–body is 1)
deterministic and 2) stuttering invariant.

198 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Theorem 6.1 (Properties of POSA derived from STD body) Assume
an assertion language AL, a set V of variables, and an STD–diagram W∆
over V , with body W∆′. Let A ≡Def AW∆′ be the POSA derived from the
STD–body W∆′ .

Then the following facts hold:

1. A is stuttering–invariant, and

2. A is deterministic and complete.

Proof of theorem 6.1 . Let A ≡Def (V,Locs,Edges, L0, F). Recall the
following abbreviation from theorem 3.3 : For each pair of locations `, `′ ∈
Locs, `→ `′, let

φ`,`′ =Def any φ . (`, φ, `′) ∈ Edges .

Note that A is not normalized by construction.
The first criterion of normalization (the requirement that for all locations

`, `→ ` , i.e. self–loops exist), is satisfied by construction.
The second requirement is that no parallel edges exist; this is not satisfied

by construction, because there may be two parallel edges from any location `
to the top–location `>, corresponding to waveform–exit and to constraint–exit,
respectively.

However, it can be assumed that these parallel edges are combined by
joining the labels of the parallel edges into a disjunction.

We can thus assume thatA is normalized. Hence |{φ | (`, φ, `′) ∈ Edges}| =
1 , which means that φ`,`′ is uniquely defined for all `, `′ ∈ Locs.

For the two claims of the theorems, we have to establish the following
propositions:

(1) ∀` 6= `′, `→ `′ : φ`,`′ ⇒ φ`′,`′ A stuttering–invariant

(2.1) ∀` 6= `′, `→ `′ : φ`,` ⇒ ¬φ`,`′ A deterministic

(2.2) ∀`′1 6= `′2, `
′
1 6= ` 6= `′2,

`→ `′1, `→ `′2 : φ`,`′1 ⇒ ¬φ`,`′2 (disjoint successors)

(3) ∀` : φ`,` ∨
∨

` 6=`′,`→`′
φ`,`′ ∼ true . A complete

6.4. TRANSLATION OF STD–DIAGRAMS TO TEMPORAL LOGIC 199

Proof of proposition (1). It is useful to consider what these tautologies
mean with respect to the matching process associated with an STD body (cf.
figure 6.4).

Condition (1) states that whenever an unwinding step occurs (due to
matching a non–empty set of events), the same state–condition which allows
the matching step will allow to remain in the state reached after the matching
step, if the state–condition does not change.

This follows immediately from the definition 6.1 of STD–diagrams, which
requires that the stable–condition of a phase ∆E must be identical to the
trigger condition of the preceding phase.

We consider a transition from ζ (corresponding to location `) to ζ ′ (corre-
sponding to location `′) due to a match of event–set E , i.e., ζ ′ = ζ + E . Recall
that the unwinding condition φEζ is defined in definition 6.11 as

φEζ ≡Def
∧

v∈IDW ,ζ(v)6∈E
stab(ζ(v)) ∧

∧
v∈IDW ,ζ(v)∈E

enab(ζ(v)) ;

while the condition φsζ′ (the stable condition) is defined in definition 6.14 as

φsζ′ ≡Def
∧

v∈IDW
stab(ζ ′(v)) .

For v ∈ IDW , ζ(v) 6∈ E , stab(ζ ′(v)) = stab(ζ(v)) .
For v ∈ IDW , ζ(v) ∈ E , either stab(ζ ′(v)) = enab(ζ(v)) or stab(ζ ′(v)) =

true , which is the case when the last event of a waveform has been matched
(cf. example 6.5).

Thus, in any case it follows that

φ`,`′ = φEζ ⇒ φsζ′ = φ`′,`′ .

which proves that A is stuttering–invariant.

Proof of proposition (2.1). We have to show that the progress of the
matching process is deterministic. With every change of the state–condition,
exactly one of four possibilities exist:

1. either no matching happens (because the stable–condition is satisfied),
or

200 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

2. a waveform exit condition is met, or

3. a match occurs which leads to a weak constraint exit , or

4. a match occurs which leads to an unwinding step.

We recall the relevant definitions:

• Stutter step:

A stutter step occurs in location ζ, if the actual state condition ρ satisfies
the stable–condition φsζ , defined by

φsζ ≡Def
∧

v∈IDW
stab(ζ(v)) .

• Waveform exit:

A waveform exit step occurs in location ζ, if the actual state condition ρ
satisfies φweζ , defined by

φweζ ≡Def
∨

v∈IDW
(exit(ζ(v)) ∧ ¬stab(ζ(v)) ∧ ¬enab(ζ(v))) .

• Weak constraint violation exit or unwinding condition:

With respect to the matching process, weak constraint exit and unwind
steps are similar; they are due to the match of an event set E , satisfying the
condition φEζ , defined by

φEζ ≡Def
∧

v∈IDW ,ζ(v)6∈E
stab(ζ(v)) ∧

∧
v∈IDW ,ζ(v)∈E

enab(ζ(v)) .

Proposition (2.1) states that a state–condition which allows to remain in
a state reached after some matching step, does not allow a matching step at
the same time.

First, confer φsζ against φweζ : ρ |= φweζ implies that ρ does not satisfy on
some waveform v the stable condition, i.e. ρ |= ¬stab(ζ(v)) . Thus, is is not
possible that ρ |= φsζ .

6.4. TRANSLATION OF STD–DIAGRAMS TO TEMPORAL LOGIC 201

Second, confer φsζ against φEζ : ρ |= φEζ implies that ρ does satisfy on some
waveform v the enable (trigger) condition, i.e. ρ |= enab(ζ(v)) . Due to the
deterministic property of events of STD–waveforms, this implies that ρ |=
¬stab(ζ(v)). Thus, it is not possible that ρ |= φsζ .

Thus, proposition (2.1) is proved.

Proof of proposition (2.2). It remains to prove proposition (2.2).
We have to demonstrate the disjointness of the “transition guards” φ`,`′ ,

which correspond to either waveform exit or match condition (causing either
an unwind step or weak constraint violation).

First, confer some matching condition φEζ against the waveform exit con-
dition φweζ : ρ |= φweζ implies that ρ does not satisfy on some waveform v the
stable condition, i.e. ρ |= ¬stab(ζ(v)) and ρ |= ¬enab(ζ(v)). We have to
consider two cases:

• case 1: ζ(v) 6∈ E . Then ρ 6|= φEζ , because ρ 6|= stab(ζ(v)) .

• case 2: ζ(v) ∈ E . Then ρ 6|= φEζ , because ρ 6|= enab(ζ(v)) .

Second, confer some matching condition φE1ζ against another matching con-
dition φE2ζ , E1 6= E2. Consider some event e ∈ E1\E2, where e ≡Def ζ(v) for
some waveform v.

Assume that ρ |= φE1ζ , so by definition ρ |= enab(ζ(v)); on the other hand,
this implies ρ 6|= φE2ζ , because ρ 6|= stab(ζ(v)) follows from the definition of
STD (stab(ζ(v))⇒ ¬enab(ζ(v))).

Thus, proposition (2.2) is proven.

Proof of proposition (3). We have to show that the matching process
is complete, i.e. for each timeline ζ, state–condition ρ we have one of the
following cases:

ρ |= φsζ (1)

ρ |= φweζ (2)

∃E . ρ |= φEζ (3)

Assume that for some timeline ζ, state–condition ρ, condition (1) and (2) do
not hold.

By (1), ρ |= ¬φsζ , so by definition of φsζ : ∃v0 ∈ IDW . ρ |= ¬stab(ζ(v0)).
Define

202 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

E0 =Def {ζ(v) | ρ |= ¬stab(ζ(v)), v ∈ IDW}

which is a non–empty set (v0 ∈ E).
We show that ρ |= φE0ζ , i.e.

∀v, v ∈ IDW , ζ(v) ∈ E0 : ρ |= enab(ζ(v)) (i)

∀v, v ∈ IDW , ζ(v) 6∈ E0 : ρ |= stab(ζ(v)) . (ii)

The second fact (ii) follows from the definition of E0.
Consider (i): Assume that ∃v1, ζ(v1) ∈ E0 . ρ |= ¬enab(ζ(v1)). Since (2) is

assumed not to hold, ρ |= ¬φweζ , i.e.

ρ |= ¬(exit(ζ(v1)) ∧ ¬stab(ζ(v1)) ∧ ¬enab(ζ(v1))) . (*)

Since ζ(v1) ∈ E0, ρ |= ¬stab(ζ(v1)).
The waveform–completeness requirement for STD (def. 6.1) ensures that

exit(ζ(v1)) ∨ stab(ζ(v1)) ∨ enab(ζ(v1)) ∼ true ;

since ρ |= ¬enab(ζ(v1)), this implies that ρ |= exit(ζ(v1)), which is a contra-
diction to (*); thus proposition (3) is proven. q.e.d.

6.4.2 Characterization of STD semantics in LTL−V

Recall the definition of the semantics of STD–diagrams (definition 6.15), which
has been given explicitly, referring to the semantics of the POSA derived from
an STD–body. The next lemma shows that the semantics of STD–diagrams
can be expressed by a characteristic formula in LTLV .

Lemma 6.2 (Temporal logic characterization of STD–diagram semantics)
Assume an assertion language AL, a set V of variables, and an STD–diagram
W∆ over V . Then the semantics of W∆, denoted by L(W∆), can be charac-
terized by an equivalent LTLV –formula φW∆ as follows:

• case actmode(W∆) ≡Def invariant : In this case,

φW∆ =Def always (actspec(W∆)→ next φA)

6.4. TRANSLATION OF STD–DIAGRAMS TO TEMPORAL LOGIC 203

• case actmode(W∆) ≡Def initial : In this case,

φW∆ =Def actexitspec(W∆) ∨ (actspec(W∆) ∧ next φA)

where φA is the characteristic formula derived from the STD–body A ≡Def

AW∆ according to theorem 6.1.

The proof of lemma 6.2 follows immediately from definition 6.15 and the def-
inition of the semantics of the always –operator.

We have seen in chapter 3 that it is possible to omit the next –operator
in LTL–specifications under certain circumstances (cf. lemma 3.14).

In terms of a POSA A, the corresponding precondition for a Next–free
characterization is that A is deterministic and stuttering–invariant (theorem
3.4).

Theorem 6.1 has shown that these requirements are satisfied for a POSA
derived from an STD–body. Hence, the semantics of a STD–body can be
characterized in LTL−V .

Lemma 6.3 (Characterization of STD–diagram semantics in LTL−V)
Assume an assertion language AL, a set V of variables, and an STD–diagram
W∆ over V . Then the semantics of W∆, denoted by L(W∆), is characterized
by the LTL−V –formula φ◦W∆ , i.e.

φ◦W∆ ∼ φW∆ .

where φ◦W∆ is defined as follows:

• case actmode(W∆) = invariant : In this case,

φ◦W∆ =Def always (actspec(W∆)→ φ◦A)

• case actmode(W∆) = initial : In this case,

φ◦W∆ =Def actexitspec(W∆) ∨ (actspec(W∆) ∧ φ◦A)

where φ◦A is the characteristic formula derived from the STD–body A ≡Def

AW∆ according to theorem 3.4.

204 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Proof of lemma 6.3 . We have to consider the two possible activation
modes:

• case actmode(W∆) = invariant :

φW∆ =Def always (actspec(W∆)→ next φA)

∼ always (¬actspec(W∆) ∨ (actspec(W∆) ∧ next φA)) (∗)

Recall that φA ∼ φ◦A = φ◦ζ0 , where ζ0 is the (unique) initial location of A.
According to theorem , the structure of the formula φ◦ζ0 is (with ` ≡Def ζ0)

φ◦` =Def φ`,` U (
∨

` 6=`′ : `→`′
φ`,`′ ∧ φ◦`′)

By lemma 3.14,

actspec(W∆) ∧ next φ◦ζ0
∼ actspec(W∆) ∧ next (φζ0,ζ0 U (

∨
. . .))

∼ [actspec(W∆)⇒ φζ0,ζ0 , φζ0,ζ0 ⇒ ¬(
∨
. . .)]

actspec(W∆) ∧ (φζ0,ζ0 U (
∨
. . .))

hence

(∗) ∼ always (¬actspec(W∆) ∨ (actspec(W∆) ∧ φ◦A))

≡Def φ◦W∆ .

• case actmode(W∆) ≡Def initial : In this case,

φ◦W∆ =Def actexitspec(W∆) ∨ (actspec(W∆) ∧ next φ◦A)

∼ [(**)] actexitspec(W∆) ∨ (actspec(W∆) ∧ φ◦A)

∼ φ◦W∆ .

where (**) is the same argument as used in the preceding case (actmode(W∆) ≡Def

invariant).
q.e.d.

6.5. LINEAR DECOMPOSITION 205

6.5 Linear Decomposition

In chapter 5, we have developed a set of proof rules to reason with LSTD–
specifications.

In this section, we show that the semantics of STD–diagrams can be
mapped to corresponding (semantically equivalent) LSTD–specifications.

The basis for the decomposition result is theorem 5.1: For each determin-
istic POSA A, there is an equivalent set ∆S of LSTD bodies, i.e. L(A) =
L(∆S).

Theorem 6.2 (Linear decomposition of STD–diagrams) Assume an
assertion language AL, a set V of variables, and an STD–diagram W∆ over
V , with body W∆′.

Then there is an equivalent LSTD–specification SPEC ≡Def SPECW∆,
i.e.

L(W∆) = L(SPEC)

Proof of theorem 6.2 – Construction. Let A ≡Def AW∆′ be the POSA
derived from the STD–body W∆′, and

∆SA = {∆1, . . . ,∆k}, k≥1

be an equivalent set of LSTD–bodies constructed according to theorem
5.1.

We construct SPEC dependent of the activation mode of W∆:

• case actmode(W∆) = invariant : Define

SPECW∆ = {
φ1

∆ |∆ ∈ ∆S}

where φ1 ≡Def actspec(W∆).

• case actmode(W∆) = initial : Define

SPECW∆ = {
φ1

φ2 ∆ |∆ ∈ ∆S}

where φ1 is defined as above and φ2 ≡Def actexitspec(W∆).

206 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Proof of correctness of construction. We will show that the respective
temporal logic characterizations are equivalent:

φ(W∆) = φ(SPEC) .

• case actmode(W∆) = invariant :

φ(SPECW∆) =
∧

∆∈∆S
always (φ1 → next φ∆)

∼ always (
∧

∆∈∆S
(φ1 → next φ∆)

∼ always (φ1 → next
∧

∆∈∆S
φ1 → next φ∆)

≡ φ(W∆) .

• case actmode(W∆) = initial :

φ(SPECW∆) =
∧

∆∈∆S
((φ1 ∧ next φ∆) ∨ φ2)

∼ ((φ1 ∧ next
∧

∆∈∆S
φ∆) ∨ φ2)

≡ φ(W∆) .

q.e.d.

Example 6.6 (Linear decomposition of diagram TL P and not Q unless Q)
Consider again the diagram shown in figure 6.5 (introduced earlier in this
chapter in figure 6.3) and the structure of the body–unwinding shown in figure
6.6. We show the decomposition of diagram TL P and not Q unless Q in the
following in the sequence of steps:

1. Deriving the characteristic formula of the diagram body

2. Decomposition of the characteristic formula

3. Building the equivalent set of LSTD–diagram bodies

4. Adding the activation semantics to the set of LSTD–bodies, i.e. con-
struction of an equivalent set of LSTD–diagrams.

6.5. LINEAR DECOMPOSITION 207

Step 1: Deriving the characteristic formula of the diagram body.
According to theorem 6.1, we construct subformulas for the nodes labelled ζ0

= s0, s1, and s2 = ζ>:
Define for all locations ` ∈ Locs

φA =Def φs0 = (φs0,s0 unless (
∨

s06=s′ : s0→s′
φs0,s′ ∧ next φs′))

φs1 = (φs1,s1 unless (
∨

s1 6=s′ : s1→s′
φs1,s′ ∧ next φs′))

φs2 = (φs2,s2 unless false)

where

φs0,s0 = 〈| not(Q) and P |〉
φs1,s1 = 〈| P |〉
φs2,s2 = true

The successor relation is: s0→ s1, s0→ s2, and s1→ s2, and

φs0,s1 = 〈| Q and P |〉
φs0,s2 = 〈| Q and not(P) |〉
φs1,s2 = 〈| not(P) |〉

Note that U = unless , because all states s0, s1, and s2 are acceptance
states.

Note that the next –operator in the definition of φsi can be omitted ac-
cording to lemma 6.3.; thus the definition can be rewritten equivalently as
follows:

φA =Def φs0 = (φs0,s0 unless (¬φs0,s0 ∧ ((φs0,s1 ∧ φs1) ∨ (φs0,s2 ∧ φs2))))

φs1 = (φs1,s1 unless (¬φs1,s1 ∧ (φs1,s2 ∧ φs2)))

φs2 = (φs2,s2 unless false)

Step 2: Decomposition of the characteristic formula. We can next
apply decomposition theorem 3.1 to the characteristic formula φA.

Applying this theorem to formula φs0 defined above, we get a conjunctive
decomposition of formula φs0 into two “linear” formulas:

208 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

Figure 6.5: STD Diagram TL P and not Q unless Q.

Figure 6.6: Example of POSA derived from an STD–body.

6.5. LINEAR DECOMPOSITION 209

φ1
s0 = (φs0,s0 unless (¬φs0,s0 ∧ ((φs0,s1 ∧ φs1) ∨ (φs0,s2))))

φ2
s0 = (φs0,s0 unless (¬φs0,s0 ∧ ((φs0,s2 ∧ φs2) ∨ (φs0,s1))))

Note that formulas φs1 and φs2 are already in linear form.

Step 3: Building the equivalent set of LSTD–diagram bodies. Next
we derive an equivalent set of LSTD–diagram bodies, which characterizes the
semantics of the body of diagram TL P and not Q unless Q. The basic idea is
that each unless / until –formula corresponds to the head–phase of a LSTD–
body.

Therefore, we obtain the following LSTD–bodies:

φs2 ∼ φs2,s2
false

φs1 ∼ φs1,s1
φs1,s2

φs2,s2
false

φ1
s0 ∼ φs0,s0

φs0,s1

〈φs0,s2〉 φs1,s1
φs1,s2

φs2,s2
false

φ2
s0 ∼ φs0,s0

φs0,s2

〈φs0,s1〉 φs2,s2
false

Thus, the following set of LSTD–bodies is equivalent to the semantics of
the body of diagram TL P and not Q unless Q:

{φ1
s0, φ

2
s0} .

Step 4: Adding the activation semantics to the set of LSTD–bodies.
The final step is the addition of the activation semantics. Diagram TL P and not Q unless Q
has the activation mode Invariant, and the activation specification is:

actspecW∆ ≡Def φact ≡Def 〈| not(Q) and P |〉 .

Thus, the following set of LSTD–diagrams is semantically equivalent to
the diagram TL P and not Q unless Q:

210 CHAPTER 6. SYMBOLIC TIMING DIAGRAMS

{
φact

φs0,s0

φs0,s1

〈φs0,s2〉 φs1,s1
φs1,s2

φs2,s2
false

,

φact
φs0,s0

φs0,s2

〈φs0,s1〉 φs2,s2
false

}

q.e.d. (end example)

6.6 Summary

This chapter has introduced the definition and semantics of STD–diagrams.
STD–specifications are defined in the same way as LSTD–specifications,

i.e. as sets of diagrams with a conjunctive interpretation of the diagrams in
the set.

The main result of this chapter is the close connection between STD and
the concept of LSTD introduced in chapter 5: The semantics of a STD diagram
(and, therefore for a STD specification) can be expressed by an equivalent
LSTD specification.

This allows to use the derivation rules developed for LSTD in order to
establish derivation proofs between two STD diagrams W∆1, W∆2 as follows:

• Compute the conjunctive decompositions SPEC1 and SPEC2 for the
corresponding STD diagrams W∆1, W∆2;

• Show that SPEC1 ⇒ SPEC2, using proof rules developed in chapter 5.

It is worth mentioning, that using linear decomposition of STD diagrams
allows to perform model–checking in seperate steps, where each LSTD–diagram
of the linear decomposition is verified seperately.

This can allow verification in those cases, where verification of the full
formula characterizing the STD–diagram is not feasable.

Chapter 7

Resume

We have reached the end of this treatise on the development of a visual for-
malism for model verification.

This chapter gives a short overview of further issues, which have not been
discussed in this book:

• Using STD for practical requirements capture (e.g. considerations about
user interface),

• specification–pattern libraries,

• assumption/commitment style–specification,

• enhancement of expressiveness (observer specification), and

• related developments.

7.1 Using STD for practical specification

The emphasis of this work was on the theoretical foundation of STD, not on
practical issues such as user interface design and the development of specifi-
cation libraries.

Nevertheless, collaborate work has been performed on these topics. The
first design of a user interface for STD was developed by the company Abstract
Hardware (Chris Read and Colin Saunders) within the course of the FORMAT
project. Later on, another implementation of a graphical editor for STD has
been developed on top of Tcl/Tk by Hartmut Wittke.

212 CHAPTER 7. RESUME

7.2 Considerations about the user interface for STD

It turned out during evaluations performed by industrial project partners that
subtle issues of the graphical syntax were important to the usage. For instance,
the first implementation of a design tool for STD by Abstract Hardware used a
graphical notation, where the precedence constraint was denoted by an arrow
running “forward”. The arrow was annotated with an interval [0,∞] indicating
that the difference of the occurrence time of the target event was required to
be greater or equal than the occurrence time of the source event.

Later on, some users found this notation confusing, because from a func-
tional point of view, a precedence constraint really means a past–implication:
If the target event has happened (has been matched), then the source event
must have happened (be matched) at the same time or earlier. Consequently,
users found that an arrow pointing “backwards” (i.e. from the target to the
source event) would be more appropriate.

In this thesis, we have followed the suggestion made by Johannes Helbig
in his thesis [18] to denote a precedence constraint simply by a curved line,
originating to the right from the source event, and entering from the left into
the target event. If this constraint is superimposed by a leadsto constraint,
than a (forward pointing) curved arrow is used. A “pure” leadsto–constraint
is denoted by a straight arrow.

7.2.1 The design of STDx

The actual development called STDx1 extends the fundamental concepts of
STD into several directions.

Structural extensions. As an illustration, consider the figure 7.1 showing
the user–interface for the STDx–design–manager.

The layout of the user–interface of the STDx–specification–manager re-
flects the logical structure of STDx–specifications.

A specification consists of three layers:

• STDx–definitions (diagrams)

• STDx–declarations (diagram instances), and

• STDx–specification–clauses.

1The work on the design of STDx was partially funded by ESPRIT project no.24013
(V–FORMAT).

7.2. CONSIDERATIONS ABOUT THE USER INTERFACE FOR STD 213

Figure 7.1: Snapshot of the STDx–design–manager.

A STDx–specification–clause represents an implication, which denotes a
proof–obligation of the following form:

“Prove that – provided the environment exhibits only a behaviour which is
accepted by a set of assumption–diagrams – the system–component satisfies a
specified commitment–diagram.“

Furthermore, references in STDx–specifications are not made directly to
diagrams, but to so–called (diagram–) declarations. The reason is that from a
practical point of view it is useful to define diagrams in the form of (simple)
macros, allowing parameter substitution as shown in the examples in chapter 2.
An STDx–declaration is simply an instance of a STDx–definition (–diagram),
where all parameters are mapped to concrete expressions.

STDx–definitions are dedicated to be used as assumptions or commitments,
unless they have the type “general”, which allows usage in both assumption–
and commitment–declarations. General definitions are used primarily to al-
low the inclusion of application–specific pattern–sets. For instance, figure 7.1
shows a loaded set of definitions corresponding to basic temporal–logic idioms.

7.2.2 Guidelines for property specification using STD

The assumption/commitment–style approach to verification using STD raises
a number of issues concerning safe usage. Most of these issues and observations
are summerized in the poster shown in figure 7.2 (which also shows how model–

214 CHAPTER 7. RESUME

verification can be integrated into the standard methodology for a VHDL–
based design flow). Some of the remarks are related to the assumption/commitment–
approach, others are related specifically to the STD–method.

7.2.3 Witness–test

Although the obvious goal of verification is to obtain the result “TRUE”
(meaning the proof that all possible system runs satisfy a stated property),
the negative result “FALSE” is more immediately convincing. This is because
the model–checker then produces a counter–example, which can be used to
simulate the run which violates the property.

A similar idea can be used to ensure that the result “TRUE” is not trivially
obtained (e.g. not caused by contradictory assumptions). It is only necessary
to turn the top–frontstate into a non–accepting state. The consequence is that
the model–checker searches for a path, which (a) activates the diagram describ-
ing the property, and (b) shows a complete matching sequence which leads to
the top–frontstate of that diagram. Then, the error–path stops, because no
further continuation is possible.

This is called the “witness–test“. E.g., in figure 7.1 several specification
clauses are shown. Some of these are used to demonstrate the impossibility of
transitions between certain control–modes of an embedded controllers, while
others exploit the technique of the witness–test to prove the opposite case,
i.e. the existence (or possibility) of certain control–mode transitions in the
controller.

7.3 Enhancement of expressiveness of STD

The expressiveness of STD can be extended into various directions, including:

• support of (synchronous) real–time (RTSTD, STDx), and

• support of specification variables.

Timing constraints. STDx supports the possibility to express properties
using quantiative timing constraints. A quantitative timing constraint is a
precedence constraint with an annotated timing interval [m,n], where m and
n are constant natural numbers, m≤n. The semantics is similar to the devel-
opment of RTSTD ([14]); the main difference is the definition of constraint–
priority (violation of weak constraints have priority over the violation of strong
constraints) and the restriction that quantitative–timing constraints in STDx

7.3. ENHANCEMENT OF EXPRESSIVENESS OF STD 215

Figure 7.2: Guidelines for property verification of VHDL models.

216 CHAPTER 7. RESUME

refer to a discrete clock. Thus, it is possible to describe the semantics of
STDx using the nexttime–operator of LTL. This ensures still an efficient veri-
fication complexity, provided the numbers occuring in constraint intervals are
reasonably small.

Specification variables. Another important extension is the possibility to
define and refer to specification variables inside STDx–specifications. There
are two types of specifications variables:

• rigid specification variables are used to express universal quantification,
typically over variables carrying multi–valued data (e.g. array–indices).
This technique is described in detail in the standard text [26].

• flexible specification variables behave like additional model–inputs. They
can be used as a memory for the specification.

The addition of flexible specification variable increases the expressive power
of the STD–formalism and also allows to introduce structure into a specifica-
tion.

Typically the behaviour of specification variables is controlled by so–called
observer specifications. An observer is an automaton, which monitors the
logical state of an interface dependent on the history of events. An observer
can most naturally be described by a finite state machine, but it is also possible
to use STD–assumptions to define an observer. The report [1] describes this
approach in more detail.

7.4 Related developments

Recently, an extension of message–sequence–charts named life–sequence–charts
(LSC’s) has been developed by W.Damm and D.Harel [12]. The approach of
LSC is complementary to STD due to the focus on the interaction between
components (while in STD the focus is on the interface of an isolated system–
component).

LSC extends some ideas from STD, e.g. “hot” and “cold” conditions cor-
responding to instable respectively stable frontstates in STD diagrams, the
concept of activation, and the concept of an exit from a chart.

LSC is also intended to be used for property specification. Although this
has not been formally developed yet, it is likely that (at least a close variant
of the current definition) will subsume the possibilities provided by the STD
formalism.

7.4. RELATED DEVELOPMENTS 217

A big advantage of LSC is that it adheres to the widely used standard
definition of MSC’s (which is not the case for STD).

218 CHAPTER 7. RESUME

Appendix A

Proofs

A.1 Proof of theorem 3.3

We present here the remaining part of the proof of theorem 3.3 (see page 64)

Proof of theorem 3.3 , continued. We continue the proof of theorem 3.3 by
induction; show that

∀i ≥ 0 ∀` ∈ Ti : L`(A) = L(φχ`)

where

L`(A) ≡Def L(A`) , and

A` ≡Def (V,Locs,Edges, {`}, F)

is the same SA as A, except for the changed set {`} of initial locations. In
particular,

σ ∈ L`(A) iff ∃σ` . σ` is an accepting run

over σ in A starting from location `

case i = 0 (Induction base case). Show that ∀` ∈ T0 : L`(A) = L(φχ`) (∗).

case (i). Consider arbitrary fixed ` ∈ T0 ∩ F ; show (∗).
⊆: Assume arbitrary fixed σ ∈ L`(A), σ ≡Def (ρi)i≥0.
By definition, ` ∈ T0,

↪→[prop.(3): T = T0] ` ∈ T .

219

220 APPENDIX A. PROOFS

↪→[def. of T] ¬∃`′ 6= ` . `→ `′ ↪→[σ ∈ L`(A)]

∃ accepting run σ` over σ in A starting from location `

↪→[¬∃`′ 6= ` . `→ `′] σ` = ` ` . . . ∧ ∀i ≥ 0 : ρi |= φ`,`

↪→[def. of φχ`, ` ∈ F ,
∨
∅
φ ∼ false] φχ` = φ`,` unless false

↪→[def. of unless] σ ∈ L(φχ`) .

⊇: Assume that σ ∈ L(φχ`), σ ≡Def (ρi)i≥0. Again, ` ∈ T0 = T

↪→[def. of T] ¬∃`′ 6= ` . `→ `′

↪→[def. of φχ`, ` ∈ F ,
∨
∅
φ ∼ false] φχ` = φ`,` unless false

↪→[σ ∈ L(φχ`)] σ |= φ`,` unless false

↪→[φ unless false ∼ always φ] ∀i ≥ 0 : ρi |= φ`,`

↪→[with σ` = ` ` . . ., and ∀i ≥ 0 : ρi |= φ`,`]

∃ accepting run σ` over σ in A starting from location `

↪→[def. of L`(A)] σ ∈ L`(A) .

case (ii) . Consider arbitrary fixed ` ∈ T0\F ; show L`(A) = ∅ = L(φχ`), from
which in particular (∗) follows. L`(A) = ∅ Assume that some σ ∈ L`(A) (#̄) exists.
The only possible run starting from ` is σ` = ` ` . . .; but since ` 6∈ F , σ` is not
accepting and (#̄) cannot be true.

Hence, L`(A) = ∅. ∅ = L(φχ`) By premise, ` 6∈ F ,

↪→[def. of φχ`, ` 6∈ F ,
∨
∅
φ ∼ false] φχ` = φ`,` until false

↪→[φ until false ∼ false] L(φχ`) = ∅ .

case i→ i+ 1 (Induction step). Assume that for arbitrary fixed i,
∀` ∈ Ti : L`(A) = L(φχ`) (∗).

Let ∀i ≥ 0 : ∂Ti+1 =Def Ti+1\Ti. It suffices to show that
∀` ∈ ∂Ti+1 : L`(A) = L(φχ`) (∗∗)

↪→[Ti+1 = ∂Ti+1 ∪ Ti, (∗)] ∀` ∈ Ti+1 : L`(A) = L(φχ`).

case (i). Consider arbitrary fixed ` ∈ ∂Ti+1 ∩ F ; show (∗∗). ⊆ Let σ ∈ L`(A),
σ ≡Def (ρi)i≥0.

↪→[def. of L`(A)]

∃ accepting run σ` over σ in A starting from location `, ` ∈ F .

A.1. PROOF OF THEOREM 3.3 221

case 1. σ` = ` ` . . .

↪→[σ` is a run over σ] ∀i ≥ 0 : ρi |= φ`,`

↪→[def. of always φ`,`] σ |= always φ`,`

↪→[∀φ′ : always φ⇒ φ unless φ′, ` ∈ F ,

φχ` = φ`,` unless φ′ for some φ′]
σ |= φχ`

↪→[def. of L(φχ`)] σ ∈ L(φχ`) .

case 2. σ` ≡Def (`i)i≥0 has the form
σ` = ` . . . `︸ ︷︷ ︸

k≥1

`′ . . .︸︷︷︸
σ`(k)

for some k ≥ 1, where ` 6= `′, and `→ `′.

↪→[` ∈ Ti+1, lemma 3.12, property (5)] `′ ∈ Ti

↪→[with φj ≡Def φ`j ,`j+1] ∀j ≥ 0 : (`j , φj , `j+1) ∈ Edges ∧ ρj |= φj

↪→[σ` = ` . . . `︸ ︷︷ ︸
k≥1

`′ . . . =⇒ ∀j . 0 ≤ j ≤ (k − 1) : `j = ` ∧ `k = `′]

(<) ∀j . 0 ≤ j < (k − 1) : ρj |= φ`,`

(=) ∧ [j = k − 1] ρk−1 |= φ`,`′

(>) ∧ σ`(k) is a run in A over σ(k)

starting from location `′

Our next goal is to show that

σ |= φ`,` unless (φ`,`′ ∧ next φχ`′) (#)

↪→[∀φ, φ1, φ2 : φ1 ⇒ φ2 =⇒ φ unless φ1 ⇒ φ unless φ2]

σ |= φ`,` unless (
∨

6̀=`′ : `→`′
φ`,`′ ∧ next φχ`′)

↪→[def. of φχ`] σ |= φχ`

↪→[def. of L(φχ`)] σ ∈ L(φχ`) .

So, it remains to show (#), under the premise that the clauses marked (<), (=)
and (>) hold.

↪→[(<) and (=), k′ ≡Def k − 1, k ≥ 1]

∃k′ ≥ 0 . σ(k′) |= φ`,`′ ∧ ∀j . 0 ≤ j < k′ : σ(j) |= φ`,`

222 APPENDIX A. PROOFS

From (>) follows that σ`(k) is an accepting run over σ(k) in A starting from
location `′, since each location which occurs infinitely often in σ`, does also occur
infinitely often in σ`(k).

Hence, if σ` is accepting, then so is σ`(k).

↪→[`′ ∈ Ti] σ(k) ∈ L`′(A)

↪→[Induction hypothesis] σ(k) |= φχ`′

↪→[def. of next] σ(k−1) |= next φχ`′ .

↪→[summarizing the above argument, k′ ≡Def k − 1]

∃k′ ≥ 0 . σ(k′) |= φ`,`′ ∧ σ(k′) |= next φχ`′ ∧ ∀j . 0 ≤ j < k′ : σ(j) |= φ`,`

↪→[def. of unless] (#).

⊇ Let σ ∈ L(φχ`), ` ∈ F .

↪→[def. of L(φχ`)] σ |= φχ`

↪→[def. of φχ`] σ |= φ`,` unless (
∨

6̀=`′ : `→`′
φ`,`′ ∧ next φχ`′)

↪→[def. of unless] σ |= always φ`,`

∨ σ |= φ`,` until (
∨

6̀=`′ : `→`′
φ`,`′ ∧ next φχ`′)

case 1. σ |= always φ`,`

↪→[def. of always] ∀i ≥ 0 : ρi |= φ`,`

↪→[σ` ≡Def ` ` . . ., ` ∈ F]

∃σ` . σ` is an accepting run in A over σ starting from location `

↪→[def. of L`(A)] σ ∈ L`(A).

case 2. σ |= φ`,` until (
∨

6̀=`′ : `→`′
φ`,`′ ∧ next φχ`′)

↪→[def. of until] ∃k′ ≥ 0 . σ(k′) |= (
∨

6̀=`′ : `→`′
φ`,`′ ∧ next φχ`′)

∧ ∀j . 0 ≤ j < k′ : σ(j) |= φ`,`

↪→[def. of
∨

] ∃k′ ≥ 0 ∃`′ . ` 6= `′ ∧ `→ `′∧

σ(k′) |= φ`,`′ ∧ next φχ`′
∧ ∀j . 0 ≤ j < k′ : σ(j) |= φ`,`

↪→[k′ ≡Def k − 1, def. of next , σ(k−1)(1) = σ(k−1+1)]

∃k ≥ 1 ∃`′ . ` 6= `′ ∧ `→ `′∧
σ(k−1) |= φ`,`′ ∧ σ(k) |= φχ`′

A.1. PROOF OF THEOREM 3.3 223

∧ ∀j . 0 ≤ j < (k − 1) : σ(j) |= φ`,`

↪→[`′ ∈ Ti and σ(k) ∈ L(φχ`′), so by induction hypothesis: σ(k) ∈ L`′(A)]

∃k ≥ 1 ∃`′ . ` 6= `′ ∧ `→ `′∧

(1) ∀j . 0 ≤ j < (k − 1) : ρj |= φ`,`

(2) ∧ ρk−1 |= φ`,`′

(3) ∧ ∃σ`′ . σ`′ is an accepting run in A
over σ(k) starting from location `′

↪→[if σ`′ is accepting, then so is σ` ≡Def ` . . . `︸ ︷︷ ︸
k≥1

σ`′, for all k ≥ 1]

∃σ` = ` . . . `︸ ︷︷ ︸
k≥1

`′ . . .︸︷︷︸
σ`′

such that

σ` is an accepting run in A over σ starting from location `

↪→[def. of L`(A)] σ ∈ L`(A) .

case (ii). Consider arbitrary fixed ` ∈ ∂Ti+1\F ; show (∗∗).
This case is a special case of (i). Since ` 6∈ F , in both directions ⊆ and ⊇

case 1 does not exist; the argument chains of the directions ⊆ and ⊇ in case 2 can
be transcribed easily replacing the operator unless by the operator until at the
obvious places. Hence, (∗∗) holds.

Proof of ∗χ . So far, we have established that

∀` ∈ R : L`(A) = L(φχ`) (∗ ∗ ∗).

It remains to show that

L(A) =
⋃
`∈L0

L`(A) (##)

since for all σ ∈ Comp(V),

σ ∈ L(A) ⇔[def. of L(A),(##)] ∃`0 ∈ L0 . σ ∈ L`0(A)

⇔[L0 ⊆ R, (∗ ∗ ∗)] ∃`0 ∈ L0 . σ ∈ L(φχ`0)

⇔[def. of φA] σ ∈ L(φA)

hence ∗χ follows from (##).
For all σ ∈ Comp(V),

σ ∈ L(A)

⇔[def. of L(A)] ∃`0 ∈ L0, ∃ accepting run in A over σ starting from `0

224 APPENDIX A. PROOFS

⇔[def. of L`0(A)] ∃`0 ∈ L0 . σ ∈ L`0(A)

⇔[def. of
⋃

] σ ∈
⋃
`∈L0

L`(A).

hence (##) follows and the proof of theorem 3.3 is complete.

A.2. PROOF OF LEMMA 3.14 225

A.2 Proof of lemma 3.14

Proof of lemma 3.14 , (1). Consider the case U ≡is unless ; let φ ≡Def

φ unless and φ◦ ≡Def φ
◦
unless . We have to show that

∀σ ∈ Comp(V) : σ |= φ→ σ |= φ◦.

Assume that for arbitrary fixed σ, σ |= φ holds, i.e.

σ |= φ0 (*) and σ |= next (φ1 unless φ2)

↪→[def. of next] σ(1) |= φ1 unless φ2 .

• Case 1: σ(1) |= always φ1

↪→[def. of always] ∀k ≥ 0 : σ(1)(k) |= φ1

↪→[σ(1)(k)
= σ(1+k)] ∀k ≥ 0 : σ(1+k) |= φ1

↪→[k′ ≡Def (k + 1)] ∀k′ . k′ − 1 ≥ 0 : σ(k′) |= φ1

↪→[k′ − 1 ≥ 0 iff k′ ≥ 1] ∀k′ ≥ 1 : σ(k′) |= φ1

↪→[(*): σ |= φ0; since φ0 ⇒ φ1, σ |= φ1; σ = σ(0)]

σ(0) |= φ1 and ∀k′ ≥ 1 : σ(k′) |= φ1

↪→[k′ ≥ 0 iff k′ ≥ 1 ∨ k′ = 0] ∀k′ ≥ 0 : σ(k′) |= φ1

↪→[def. of always] σ |= always φ1;

↪→[def. of unless] σ |= φ1 unless φ2

↪→[with (*)] σ |= φ◦ .

• Case 2: σ(1) 6|= always φ1

↪→[def. of unless] ∃k ≥ 0 . σ(1)(k) |= φ2

∧ ∀j . 0 ≤ j < k : σ(1)(j) |= φ1

↪→[σ(1)(k)
= σ(1+k)] ∃k ≥ 0 : σ(1+k) |= φ2

∧ ∀j . 0 ≤ j < k : σ(1+j) |= φ1

↪→[k′ ≡Def (k + 1)] ∃k′ . k′ − 1 ≥ 0 ∧ σ(k′) |= φ2

∧ ∀j . 0 ≤ j < (k′ − 1) : σ(1+j) |= φ1

226 APPENDIX A. PROOFS

↪→[j′ ≡Def (j + 1)] ∃k′ . k′ − 1 ≥ 0 ∧ σ(k′) |= φ2

∧ ∀j′ . 0 ≤ (j′ − 1) < (k′ − 1) : σ(j′) |= φ1

↪→[k′ − 1 ≥ 0 iff k′ ≥ 1, 0 ≤ (j′ − 1) < (k′ − 1) iff 1 ≤ j′ < k′]

∃k′ . k′ ≥ 1 ∧ σ(k′) |= φ2

∧ ∀j′ . 1 ≤ j′ < k′ : σ(j′) |= φ1

↪→[(*): σ |= φ0; since φ0 ⇒ φ1, σ |= φ1; σ = σ(0)]

∃k′ . k′ − 1 ≥ 0 ∧ σ(k′) |= φ2

∧ ∀j′ . 1 ≤ j′ < k′ : σ(j′) |= φ1

∧ σ(0) |= φ1

↪→[for k′ ≥ 1: 0 ≤ j′ < k′ iff 1 ≤ j′ < k′ ∨ 0 = j′]

∃k′ . k′ − 1 ≥ 0 ∧ σ(k′) |= φ2

∧ ∀j′ . 0 ≤ j′ < k′ : σ(j′) |= φ1

↪→[∃k′ ≥ 1 . P (k′)⇒ ∃k′ ≥ 0 . P (k′), def. of unless] σ |= φ1 unless φ2

↪→[(*)] σ |= φ◦ .

Second, consider the case U ≡is until ; let φ ≡Def φ until and φ◦ ≡Def φ
◦
until .

The proof runs as shown above in case 2; note that case 1 cannot occur.
q.e.d.

Proof of lemma 3.14 , (2). Consider first the case U ≡is unless ; let φ ≡Def

φ unless and φ◦ ≡Def φ
◦
unless . It suffices to show that under the premise

φ0 ⇒ φ1 ∧ φ1 ⇒ ¬φ2 (**)

it follows that φ◦ ⇒ φ (+). Under the premise (**), φ ⇒ φ◦ holds by property
(1), hence (2) follows from (1) and (+).

So we have to show (+), i.e.

∀σ ∈ Comp(V) : σ |= φ◦ → σ |= φ .

Assume that for arbitrary fixed σ, σ |= φ◦ holds, i.e. σ |= φ0(∗+) and σ |=
(φ1 unless φ2).

• Case 1: σ |= always φ1;

↪→[def. of always] ∀k′ ≥ 0 : σ(k′) |= φ1

↪→[in particular] ∀k′ ≥ 1 : σ(1+(k′−1)) |= φ1

A.2. PROOF OF LEMMA 3.14 227

↪→[k ≡Def (k′ − 1)] ∀k . k + 1 ≥ 1 : σ(1+k) |= φ1

↪→[k + 1 ≥ 1 iff k ≥ 0, σ(1+k) = σ(1)(k)
] ∀k ≥ 0 : σ(1)(k) |= φ1

↪→[def. of always] σ(1) |= always φ1

↪→[def. of unless] σ(1) |= φ1 unless φ2

↪→[def. of next] σ |= next (φ1 unless φ2)

↪→[def. of φ, (∗+)] σ |= φ .

• Case 2: σ 6|= always φ1

↪→[def. of unless] ∃k′ ≥ 0 . σ(k′) |= φ2

∧ ∀j′ . 0 ≤ j′ < k′ : σ(j′) |= φ1

↪→[k′ ≥ 0 iff k′ = 0 ∨ k′ ≥ 1] σ(0) |= φ2∨

∃k′ ≥ 1 . σ(k′) |= φ2

∧ ∀j′ . 0 ≤ j′ < k′ : σ(j′) |= φ1

↪→[By premise (∗∗), φ0 ⇒ φ1 ∧ φ1 ⇒ ¬φ2;

so from (∗+) (σ |= φ0) follows σ |= ¬φ2]
∃k′ ≥ 1 . σ(1+(k′−1)) |= φ2

∧ ∀j′ . 1 ≤ j′ < k′ : σ(1+(j′−1)) |= φ1

↪→[k ≡Def k
′ − 1, j ≡Def j

′ − 1]

∃k . k + 1 ≥ 1 . σ(1+k) |= φ2

∧ ∀j . 1 ≤ (j + 1) < (k + 1) : σ(1+j) |= φ1

↪→[k + 1 ≥ 1 iff k ≥ 0, 1 ≤ (j + 1) < (k + 1) iff 0 ≤ j < k]

∃k . k ≥ 0 . σ(1+k) |= φ2

∧ ∀j . 0 ≤ j < k : σ(1+j) |= φ1

↪→[σ(1+k) = σ(1)(k)
]

∃k . k ≥ 0 . σ(1)(k) |= φ2 ∧ ∀j . 0 ≤ j < k : σ(1)(j) |= φ1

↪→[def. of unless] σ(1) |= φ1 unless φ2

↪→[def. of next] σ |= next (φ1 unless φ2)

↪→[def. of φ, (∗+)] σ |= φ .

Second, consider the case U ≡is until ; let φ◦ ≡Def φ
◦
until and φ ≡Def φ until .

The proof runs as shown above in case 2; note that case 1 cannot occur.
q.e.d.

228 APPENDIX A. PROOFS

A.3 Proof of theorem 4.1

Recall the claim of theorem 4.1:
Assume a set V of variables and an assertion language AL, OTGS GM1, GM2,

and formulas φ1, φ2 over Vi ≡Def VGMi
(for i = 1, 2); let GM be a composition of

GM1 and GM2, V ≡Def VGM .
Then

GM1 |= φ1 and GM2 |= φ2 =⇒ GM |= φ1 ∧ φ2 .

Proof outline. Assume that GM1 |= φ1 and GM2 |= φ2 (*), i.e.
∀σ ∈ L(GM1) : σ |= φ1, and ∀σ ∈ L(GM2) : σ |= φ2.
Show that

∀σ ∈ L(GM) : σ |= φ1 ∧ φ2 (#)

Assume that (#) does not hold, i.e.

∃σ0 ∈ L(GM) . σ0 6|= φ1 ∧ φ2 (#̄)

W.l.o.g we may assume that σ0 6|= φ1;

↪→[σ0 ∈ L(GM)] σ0 ∈ L(TSGM) .

σ0 is a computation over V , i.e. a sequence (ρi)i≥0 of states over V .
By definition, σ0 ∈ L(TSGM) implies (with TS =Def TSGM)

↪→[Initiation] [[ΘTS]]ρ0 = true (∗∗); and

↪→[Consecution] σ0 is justified by some transition sequence

στ =Def (τi)i≥0 of transitions contained in T ≡Def TGM , i.e.

∀i ≥ 0 : ρi+1 ∈ τi(ρi) (∗ ∗ ∗)

Our next proof goal (goal 1) is to show that under assumption (#̄) we may con-
clude that

σ1 ≡Def σ0|V1 ∈ L(GM1) (∗̃)

Since V1 ⊆ V and free(φ1) ⊆ V1, lemma 4.1,(2) applies; in particular

↪→[σ0 6|= φ1] σ1 6|= φ1

which is together with (∗̃) a contradiction to premise (∗); hence we will have
shown that (#) follows from (∗).

A.3. PROOF OF THEOREM 4.1 229

Proof of goal 1 . We have to show (∗̃); let σ1 =Def (ρ̃i)i≥0. First show that

[[ΘTS1]]ρ̃0 = true (Initiation)

where TS1 ≡Def TSGM1 , ρ̃0 = ρ0|V1 .
It can easily be seen from the construction of ΘTS , that ΘTS1 has less and–

conjuncts than ΘTS

↪→[[[P and Q]]ρ = true⇒ [[P]]ρ = true, (∗∗)] [[ΘTS1]]ρ0 = true.

↪→[lemma 4.1,(1)] [[ΘTS1]]ρ̃0 = true (∗̃∗̃).

The next goal (goal 2) is to show the requirement of consecution for σ1; as prepa-
ration we establish the following lemma.

Lemma A.1 (Edge–transition under variable restriction) In order to refer to
the graph components of a module, let IGM be the set of indices of the graphs contained
in GM ; if the context is clear, then instead of i ∈ IGM we allow using the shorthand
notation i ∈ GM .

Under the assumptions of theorem 4.1, let τ̃ ≡Def τ̃e be a transition resulting
from some edge e ∈

⋃
j∈GMs

Edgesi , s ∈ {1, 2}, τ ≡Def τe be the transition resulting
from the same edge in GM .

Then for all states ρ, ρ′ ∈ Val(VGM), ρ̃, ρ̃′ ∈ Val(VGMj) with ρ̃ = ρ|Vj
, ρ̃′ = ρ′|Vj

(Vj ≡Def VGMj
) :

(1) τ is enabled in ρ ⇔ τ̃ is enabled in ρ̃

(2) ρ′ ∈ τ(ρ) =⇒ ρ̃′ ∈ τ̃(ρ̃) .

Proof . W.l.o.g., we show the correctness for the case s = 1 (GMs = GM1).
Assume that the edge e ∈ Edgesj , for some j ∈ GM1, has the form

(`1, c→ x̄ := Ē, `2)

where x̄ = (x1, . . . , xk), Ē = (E1, . . . , Ek), for some k ≥ 0; hence

Γe : πj = `1andc;x′1 = E1, . . . , x
′
k = Ek, π

′
j = `2

Proof of (1) . τ is enabled in ρ

⇔ [[πj = `1andc]]ρ = true
⇔ [free(πj = `1andc) ⊆ V1, lemma 4.1,(1) ⇒

[[πj = `1andc]]ρ = [[πj = `1andc]]ρ̃] ⇔ [[πj = `1andc]]ρ̃ = true.
⇔ τ̃ is enabled in ρ̃ .

230 APPENDIX A. PROOFS

Proof of (2) . Assume that ρ′ ∈ τ(ρ),

↪→[by def. of ρ′ ∈ τ(ρ)]

(i) [[πj = `1andc]]ρ = true ;
(ii) ρ′(xr) = [[Er]]ρ, r = 1 . . . k ;
(iii) ∀y ∈ V \{x1, . . . , xk} : ρ′(y) = ρ(y).
Show that ρ̃′ ∈ τ̃(ρ̃), by the following sub–goals:
(̃ı) [[πj = `1andc]]ρ̃ = true.
This follows from (i) as shown in the proof of (1).
(̃ı̃ı) ρ̃′(xr) = [[Er]]ρ̃, r = 1 . . . k .
Assume (ii): ρ′(xr) = [[Er]]ρ, xr ∈ V1, r = 1 . . . k ;

↪→[free(Er) ⊆ V1, xr ∈ V1,ρ̃′ = ρ′|V1
, ρ̃ = ρ|V1 ,lemma 4.1,(1) ⇒

[[Er]]ρ̃ = [[Er]]ρ = ρ′(xr) = ρ̃′(xr)] ρ̃′(xr) = [[Er]]ρ̃, r = 1 . . . k.
(̃ı̃ı̃ı) ∀y ∈ V1\{x1, . . . , xk} : ρ̃′(y) = ρ̃(y).
Assume (iii), ∀y ∈ V \{x1, . . . , xk} : ρ′(y) = ρ(y)

↪→[ρ̃′ = ρ′|V1
, ρ̃ = ρ|V1 , V1\{x1, . . . , xk} ⊆ V \{x1, . . . , xk} ⇒

∀y ∈ V1\{x1, . . . , xk} : ρ̃′(y) = ρ′(y) = ρ(y) = ρ̃(y)]
∀y ∈ V1\{x1, . . . , xk} : ρ̃′(y) = ρ̃(y).

↪→[̃ı – ı̃̃ı̃ı]

ρ̃′ ∈ τ̃(ρ̃) .
q.e.d.

Proof of goal 2. We have to show the requirement of consecution, i.e. that σ1

is justified by some transition sequence στ̃ =Def (τ̃i)i≥0 of transitions contained in
T1 ≡Def TGM1 , such that ∀i ≥ 0 : ρ̃i+1 ∈ τ̃i(ρ̃i) (∗̃∗̃∗̃).

We derive each transition τ̃ ≡Def τ̃i in στ̃ from the corresponding transition
τ ≡Def τi in στ (i ≥ 0) as follows:

1. If τ ≡ τe is an edge transition resulting from some graph Gj in GM1, defined
by the EGA Γe over V , then define τ̃ =Def τ̃e by the same EGA Γe, but over
the restricted variable set V1.

2. If τ ≡ τI (over V), then define τ̃ =Def τI (over V1).

3. If τ ≡ τE (over V), then define τ̃ =Def τE (over V1).

4. If τ ≡ τe is an edge transition resulting from some graph Gj in GM2, then
define τ̃ =Def τ̃E (over V1).

In order to show ∗̃∗̃∗̃, let i ≥ 0 be arbitrarily fixed chosen. Let again τ̃ ≡Def τ̃i
and τ ≡Def τi.

A.3. PROOF OF THEOREM 4.1 231

Case 1. τ ≡ τe is an edge transition resulting from some graph Gj in GM1.
By assumption, with ρ′ ≡Def ρi+1 and ρ ≡Def ρi,
ρ′ ∈ τ(ρ)

↪→[lemma A.1, ρ̃ ≡Def ρ|V1 , ρ̃′ ≡Def ρ
′
|V1

]

ρ̃′ ∈ τ̃(ρ̃) ↪→[ρ̃′ = ρ̃i+1 and ρ̃ = ρ̃i]

ρ̃i+1 ∈ τ̃(ρ̃i) .

Case 2. (τ ≡ τI over V).
We define τ̃ =Def τI (over V1) and have to show that ρ̃i+1 ∈ τ̃(ρ̃i).
By premise (∗ ∗ ∗), ρi+1 ∈ τ(ρi).

↪→[τI = (ρ ∈ Val(V) 7→ {ρ})] ρi+1 = ρi.

↪→[τ̃ = (ρ̃ ∈ Val(V1) 7→ {ρ̃}), ρ̃i+1 = ρi+1|V1 = ρi|V1 = ρ̃i]

ρ̃i+1 ∈ τ̃(ρ̃i).

Case 3. (τ ≡ τE over V).
We define τ̃ =Def τE (over V1) and have to show that ρ̃i+1 ∈ τ̃(ρ̃i). We denote

the set of variables with mode external in GM by VE .
By premise (∗ ∗ ∗), ρi+1 ∈ τ(ρi).

↪→[τE = (ρ ∈ Val(V) 7→ {ρ ∈ V | ∀x ∈ V \VE : ρ′(x) = ρ(x)})]

∀x ∈ V \VE : ρi+1(x) = ρi(x) (∗ ∗ ∗∗).
Assume that ρ̃i+1 6∈ τ̃(ρ̃i); denote the set of variables with mode external in

GM1 by V1,E .

↪→[τ̃E = (ρ̃ ∈ Val(V1) 7→ {ρ̃ ∈ V1 | ∀x ∈ V1\V1,E : ρ̃′(x) = ρ̃(x)})]

∃x0 ∈ V1\V1,E . ρ̃i+1(x0) 6= ρ̃i(x0).
The relation between V1,E and VE is as follows: If x is a variable of mode external

in GM , then it must have had mode external in GM1; hence VE ⊆ V1,E .

↪→[V1 ⊆ V] V1\V1,E ⊆ V \VE .

↪→[x0 ∈ V \VE] ∃x0 ∈ V \VE . ρi+1(x0) = ρ̃i+1(x0) 6= ρ̃i(x0) = ρi(x0),

which is a contradiction to (∗ ∗ ∗∗); hence ρ̃i+1 ∈ τ̃(ρ̃i) must be true.

Case 4. (τ ≡ τe is an edge transition resulting from some graph Gj in GM2).
We define τ̃ =Def τE (over V1) and have to show that ρ̃i+1 ∈ τ̃(ρ̃i).
Assume that the edge e has the form

(`1, c→ x̄ := Ē, `2)

where x̄ = (x1, . . . , xk), Ē = (E1, . . . , Ek), for some k ≥ 0; hence

232 APPENDIX A. PROOFS

Γe = : πj = `1andc;x′1 = E1, . . . , x
′
k = Ek, π

′
j = `2

Since ρi+1 ∈ τ(ρi),
(i) [[πj = `1andc]]ρi = true ;
(ii) ρi+1(xr) = [[Er]]ρi, xr ∈ V2(!), r = 1 . . . k ;
(iii) ∀y ∈ V \{x1, . . . , xk} : ρi+1(y) = ρi(y).
Assume that ρ̃i+1 6∈ τ̃(ρ̃i) (again, denote the set of variables with mode external

in GM1 by V1,E).

↪→[τ̃E = (ρ̃ ∈ Val(V1) 7→ {ρ̃ ∈ V1 | ∀x ∈ V1\V1,E : ρ̃′(x) = ρ̃(x)})]

∃x0 ∈ V1\V1,E . ρ̃i+1(x0) 6= ρ̃i(x0) (∗ ∗ ∗ ∗ ∗).
The modes of the variables {x1, . . . , xk} must be either out or local; one of these

variables could be declared in GM1 only with the mode external

↪→[x0 ∈ V1\V1,E] x0 6∈ {x1, . . . , xk}.

↪→[(iii)] ρi+1(x0) = ρ̃i+1(x0) = ρ̃i(x0) = ρi(x0),

which is a contradiction to (∗ ∗ ∗ ∗ ∗); hence ρ̃i+1 ∈ τ̃(ρ̃i) must be true.

Fairness. In order to establish that σ1 ∈ L(GM1), σ1 ≡Def (ρ̃i)i≥0, it remains to
show that σ1 is GM1–fair, i.e. fair with respect to the sets J1 and C1 of the transition
system TS1 ≡Def TSGM1 which defines the semantics of GM1.

We will show the opposite direction: From the assumption that σ1 does not
conform to either of the fairness requirements in TS1, it follows that σ0, σ0 ≡Def

(ρi)i≥0, also violates an according fairness requirement in TS ≡Def TSGM (where
σ1 = σ0|V1).

A violation of one of the fairness requirements in TS1 can happen only, if there
is a transition τ̃ ∈ T1 (T1 ≡Def TTS1), which is enabled during the computation
σ1 at infinitely many moments i ∈ I, for some infinite set of moments I ⊆ N0

(Time = N0). Furthermore, τ̃ ≡Def τ̃e must be an edge transition resulting from
some edge e ∈ Edgesj , j ∈ GM1.

Consider the transition τ ≡Def τe derived from the same edge in GM (over V).
Then by lemma A.1,(1)

∀i ≥ 0 : τ̃(ρ̃i) 6= ∅ ⇔ τ(ρi) 6= ∅ (ENBτ)

i.e. τ̃ is enabled at the same moment during σ1 where τ is enabled during σ0.

Justice. Assume that τ̃ ∈ J1 ⊆ T1 violates the requirement of justice over σ1, i.e.
from some moment i0 ≥ 0 on, τ̃ is permanently enabled over σ1, but not taken:

∀i ≥ i0 : ρ̃i+1 6∈ τ̃(ρ̃i) ∧ τ̃(ρ̃i) 6= ∅ .

By definition of TS1,

A.3. PROOF OF THEOREM 4.1 233

J1 = {τ̃e | e ∈
⋃

j∈GM1

Edgesj\EJ̄j}

i.e. τ̃ ≡Def τ̃e for some edge e in GM1.
Consider the transition τ ≡Def τe derived from the same edge in GM (over V).

↪→[J = {τe | e ∈
⋃
j1∈GM1

Edgesj1\EJ̄j1 ∪
⋃
j2∈GM2

Edgesj2\EJ̄j2}]
τ ∈ J .

We show that τ would violate the requirement of justice over σ0.
∀i ≥ i0 : ρ̃i+1 6∈ τ̃(ρ̃i) ∧ τ̃(ρ̃i) 6= ∅

↪→[by lemma A.1,(2): ρ̃i+1 6∈ τ̃(ρ̃i)⇒ ρi+1 6∈ τ(ρi), and ENBτ]

∀i ≥ i0 : ρi+1 6∈ τ(ρi) ∧ τ(ρi) 6= ∅
hence σ0 6∈ L(GM), by contradiction to the premise.

Compassion. Assume that τ̃ ∈ C1 ⊆ T1 violates the requirement of compassion
over σ1, i.e. τ̃ is enabled during the computation σ1 at infinitely many moments i ∈ I,
for some infinite set of moments I ⊆ N0 (Time = N0), but from some moment i0 ≥ 0
on, τ̃ is never taken:

∀i ≥ i0 : ρ̃i+1 6∈ τ̃(ρ̃i) , and ∀i ∈ I : τ̃(ρ̃i) 6= ∅ .

By definition of TS1,

C1 = {τ̃e | e ∈
⋃

j∈GM1

ECj}

i.e. τ̃ ≡Def τ̃e for some edge e in GM1.
Consider the transition τ ≡Def τe derived from the same edge in GM (over V).

↪→[C = {τe | e ∈
⋃
j1∈GM1

ECj1 ∪
⋃
j2∈GM2

ECj2}]
τ ∈ C .

We show that τ would violate the requirement of compassion over σ0.
∀i ≥ i0 : ρ̃i+1 6∈ τ̃(ρ̃i) ∧ ∀i ∈ I : τ̃(ρ̃i) 6= ∅

↪→[by lemma A.1,(2): ρ̃i+1 6∈ τ̃(ρ̃i)⇒ ρi+1 6∈ τ(ρi), and ENBτ]

∀i ≥ i0 : ρi+1 6∈ τ(ρi) , and ∀i ∈ I : τ(ρi) 6= ∅
hence σ0 6∈ L(GM), by contradiction to the premise.

q.e.d.

234 APPENDIX A. PROOFS

Appendix B

Remarks on chapter 3

In the following, we present supplementary material which does not belong to
the mainstream of the thesis.

B.1 Note on the assertion language

We have motivated in chapter 2 the introduction of the visual formalism STD
as a method for requirement specification and (finite) model verification, using
a verification environment based on model–checking.

High–level modelling languages, for example VHDL or StatemateTM , use
rich sets of basic and composite data–types. For example, a bundle of hardware
wires is typically modelled in VHDL as an array of signals of type Bit. Consider
a simple arbitration unit in isolation (this unit is taken from the bus–bridge
example used earlier in chapter 2, see figure B.2).

The interface of this unit is depicted in figure B.1.

Figure B.1: Interface of arbiter unit.

235

236 APPENDIX B. REMARKS ON CHAPTER 3

The state of each of the interface signals GNT[0] . . . GNT[2] at a given
moment in (simulation) time is given by a corresponding assertion GNT[i] = x
(i = 0 . . . 2) , where x is the constant ’0’ or ’1’ (assuming a two–valued domain
for type Bit). A sample informal statement of a property of (the interface
signals of) this device is:

always (〈|GNT [0] = ’1’|〉 → eventually 〈|GNT [0] = ’0’|〉)

The operator 〈| . . . |〉 is a type–cast of the domain of Boolean values (the result
type of the comparison operator =) into the domain of truth values.

The concrete syntax of expressions (in particular Boolean expressions,
which we use to specify sets of system states) has no relevance for our frame-
work.

What is of importance, however, is the visibility of signals; only signals
which are part of a component interface may be included in specification ex-
pressions.

B.2 Note on first–order specifications

Our definition of temporal logic (LTLV) does not allow any form of quantifi-
cation. In practice, the lack of expressive power due to missing quantification
in the specification logic can be addressed by another method, namely the
introduction of so–called rigid specification variables.

A rigid specification variable can be considered as a further unconnected
input, which has a random value at the beginning of each system run. Once
the system starts running, the value of the new signal remains fixed.

Using this technique, we can write the property stated above in a more
general way, introducing a rigid specification variable linenr (cf. figure B.3),
in the following way (using ad–hoc syntax declare . . . require . . .):

declare rigid linenr : integer 0 .. 2;

require always (〈|GNT [linenr] = ’1’|〉 → eventually 〈|GNT [linenr] = ’0’|〉)

It is easy to see that the effect of model–checking of this specification is the
verification of the following property with quantification:

∀linenr : always (〈|GNT [linenr] = ’1’|〉 → eventually 〈|GNT [linenr] = ’0’|〉)

The use of rigid specification variables has been included in the design of

B.2. NOTE ON FIRST–ORDER SPECIFICATIONS 237

Figure B.2: Structure of a PCI–to–host bus–bridge device.

238 APPENDIX B. REMARKS ON CHAPTER 3

Figure B.3: Extended interface arbiter unit, with auxiliary input–signal linenr.

STDx, making the model–checking technique more powerful. Note however
that compositional reasoning using specification variables is usually very com-
plicated; moreover, verification results can often be obtained much easier using
reasoning about the model semantics (in particular, using abstraction).

B.3 Notes on LINLTLV

We have introduced different temporal logics and notions in chapter 3. The
technical devices of chapter 3 are needed in the first place to explain the
semantics of LSTD and STD (chapter 5 and 6). Nevertheless, the logic expert
might be interested to learn more about the logics themselves.

This appendix is not a complete account on the nature of the logic for-
malisms introduced in chapter 3; such an investigation was outside the scope
of this thesis. Our aim is here to outline the main properties of the sub–logics
of LTL and to add some illustrative example.

The figure B.4 recalls, that LTL−V and LINLTLV are subsets (sub–logics)
of the standard (linear–time) temporal logic LTLV .

The logic LINLTL−V is in turn a sub–logic of LTL−V . As corollary 3.1 has
shown, for each formula in LTL−V there is an equivalent formula in LINLTL−V ;
hence the expressive power of these logics is the same.

In this appendix we will further discuss two aspects:

• How the logic LINLTLV evolves naturally in the context of the semantics
of LSTD

B.3. NOTES ON LINLTLV 239

Figure B.4: Overview of the relationship of the logic formalisms introduced
in this thesis.

• how first–order aspects are handled in the logics, as well as in STD.

The structure of the logic LINLTLV (introduced in chapter 3, def. 3.14)
reflects two different semantic paradigms:

• declarative – through the initial/invariant semantics

• operational – through the nesting structure of unless (until) combi-
nations, where nesting occurs only in the second argument of unless
(until).

We rephrase an example given in chapter 6 in temporal logic notation.

Example B.1 (Phase–level specification of master–protocol) Recall
the definition of the master–module introduced in chapter 5 :

GMReq : module Master

out Req : Bit where Req = ’0’

external Ack: Bit

G1

where G1 is defined as shown in figure B.5.

240 APPENDIX B. REMARKS ON CHAPTER 3

Figure B.5: Implementation of Master–model of the basic 4–phase handshake
protocol.

Then the implementation shown in figure B.5 satisfies the following local
specification with respect to the interface variables Req,Ack :

φM ≡Def φ
M
0 ∧ φM11 ∧ φM12 ∧ φM13 ∧ φM14

where

Initialization:

φM0 ≡Def φ0,1 → φ0,0

Invariance:

φM11 ≡Def always (φ0,0 → next (φ0,0 unless (φ1,0 ∨ φX,1)))

φM12 ≡Def always (φ1,0 → next (φ1,0 unless φ1,1))

φM13 ≡Def always (φ1,1 → next (φ1,1 until (φ0,1 ∨ φX,0)))

φM14 ≡Def always (φ0,1 → next (φ0,1 unless φ0,0))

and

φx,y ≡Def 〈|Req =x|〉 ∧ 〈|Ack =y|〉 .

The specification style of example B.1 is common for temporal logic specifica-
tions. A similar style is also used in UNITY specifications [9]. On the other
hand, the graph structure of figure B.5 suggests a specification, where the it-

B.3. NOTES ON LINLTLV 241

eration points of the protocol (4–phase Req/Ack handshake) are highlighted.
For our example, the iteration point is characterized by the state assertion
φ0,0.

This leads to a specification style, where different specification fragments
are combined in one specification clause, which is essentially the idea of wave-
forms in LSTD and STD.

This leads to the structure of LINLTLV .

Example B.2 (Phase–level specification of master–protocol, using
LINLTLV) With respect to example B.1 , the following specification is equiv-
alent:

φMlin ≡Def φ
M
0 ∧ φM1

where

Initialization:

φM0 ≡Def φ0,1 → φ0,0

Invariance:

φM1 ≡Def always (φ0,0 →
next (φ0,0 unless (φ1,0∧
next (φ1,0 unless (φ1,1∧
next (φ1,1 until (φ0,1∧

next (φ0,1 unless φ0,0)) ∨ φX,0)))

∨φX,1)))

Note that the formula φM1 is equivalent to the LSTD diagram α∆M
1 introduced

in chapter 5.

α∆M
1 ≡Def

φ0,0
φ1,0
〈φX,1〉

φ1,1

-

φ0,1
〈φX,0〉

φ0,0

(cf. lemma 5.2.)

242 APPENDIX B. REMARKS ON CHAPTER 3

Appendix C

Notations

ρ ∈ Val(V) valuation Def. 3.2

A symbolic automaton Def. 3.3

σ ∈ Comp(V) computation

σ` run Def. 3.5

L(A) sem. of A Def. 3.5

any x . x ∈M any –operator Lem. 3.2

φ ∈ LTLAL lin. temp. logic formula Def. 3.8

σ |= φ satisfies Def. 3.9

Φ formula scheme Def. 3.10

ξ sequencing LTL formula Def. 3.16

τ ∈ T transition Def. 4.1

G transition graph Def. 4.3

GS trans. graph system Def. 4.4

TSGS transition system Def. 4.5

243

244 APPENDIX C. NOTATIONS

GM open trans. graph system Def. 4.6

GM1‖GM2 module composition Def. 4.9

K Kripke structure with fairness Def. 4.10

∆ LSTD–body Def. 5.1

∆E LSTD–phase Def. 5.1

α∆ LSTD–diagram Def. 5.2

αE activation spec. Def. 5.2

∆S LSTD–specification Def. 5.5

W bundle of waveforms Def. 6.1

W∆ STD–diagram Def. 6.1

ζ timeline–position Def. 6.5

Bibliography

[1] A. Allara, M. Bombana, S. Comai, B. Josko, R. Schlör, and D. Sciuto.
Specification of embedded monitors for property checking. In Proceedings,
Forum on Design Languages, FDL’99, pages 117–126, 1999.

[2] ANSI/IEEE Std 1076–1987. IEEE Standard VHDL Language Reference
Manual. IEEE, New York, USA, March 1988.

[3] C. Antoine and B. Le Goff. Timing diagrams for writing and checking
logical and behavioral properties of integrated systems. In P.Prinetto
and P.Camurati, editors, Correct Hardware Design Methodologies, pages
441–453. Elsevier Science Publishers B.V., 1992.

[4] B. Josko. Modular Specification and Verification of Reactive Systems.
Habilitationsschrift, Universität Oldenburg, 1993.

[5] T. Bienmüller, J. Bohn, H. Brinkmann, U. Brockmeyer, W. Damm,
H. Hungar, and P. Jansen. Verification of automotive control units. In
Ernst-Rüdiger Olderog and Bernd Steffen, editors, Correct System De-
sign, volume 1710 of LNCS, pages 319–341. Springer Verlag, 1999.

[6] U. Brockmeyer. Verifikation von STATEMATE Designs. Dissertation,
Fachbereich Informatik, Universität Oldenburg. Berichte aus dem Fach-
bereich Informatik; Nr.16, 1999.

[7] J. R. Büchi. On a decision method in restricted second order arithmetic.
In E. Nagel et.al., editor, Logic, Methodology and Philosophy of Science,
pages 1–11. Stanford University Press, 1962.

[8] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proceedings of the fifth
annual Symposium on Logics in Computer Science, pages 428–439, June
1990.

245

246 BIBLIOGRAPHY

[9] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[10] CVE (Circuit Verification Environment): User’s Guide. Siemens AG,
1997.

[11] W. Damm, G. Döhmen, V. Gerstner, and B. Josko. Modular verifica-
tion of petri nets: The temporal logic approach. In Jaco W. de Bakker,
Willem-Paul de Roever, and Grzegorz Rozenberg, editors, Stepwise Re-
finement of Distributed Systems. Models, Formalisms, Correctness, Lec-
ture Notes in Computer Science, 430, pages 180–207. Springer-Verlag,
1990.

[12] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. In FMOODS’99 IFIP TC6/WG6.1 Third International Con-
ference on Formal Methods for Open Object-Based Distributed Systems,
pages 293–312, 1999.

[13] W. Damm, B. Josko, and R. Schlör. Specification and verification of
VHDL-based system-level hardware designs. In E. Börger, editor, Speci-
fication and Validation Methods, pages 331–409. Oxford University Press,
1995.

[14] K. Feyerabend and B. Josko. A visual formalism for real time re-
quirement specifications. In Miquel Bertran and Teodor Rus, editors,
Transformation-Based Reactive Systems Development, Proceedings, 4th
International AMAST Workshop on Real-Time Systems and Concur-
rentand Distributed Software, ARTS’97, volume 1231 of Lecture Notes
in Computer Science, pages 156–168. Springer-Verlag, 1997.

[15] N. Francez. Fairness. Springer-Verlag, 1987.

[16] M. Fujita and H. Fujisawa. Specification, verification and synthesis of
control circuits with propositional temporal logic. In J.A.Darringer and
F.J.Rammig, editors, Computer Hardware Description Languages and
their Applications, pages 265–279. Elsevier Science Publishers B.V., 1990.

[17] D. Harel, A. Pnueli, J.P. Schmidt, and R.Sherman. On the Formal Se-
mantics of Statecharts. In Proceedings of the First IEEE Symposium on
Logic in Computer Science, pages 54–64, 1987.

[18] J. Helbig. Linking Visual Formalisms: A Compositional Proof System
for Statecharts Based on Symbolic Timing Diagrams. Dissertation, Fach-

BIBLIOGRAPHY 247

bereich Informatik, Universität Oldenburg. Berichte aus dem Fachbereich
Informatik; Nr.4, 1998.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Journal
ACM, 12:576–580, 1969.

[20] i-Logix, 22 Third Avenue, Burlington, Mass. 01803, USA. Languages of
STATEMATE, January 1991.

[21] K. Fisler. A logical formalization of hardware design diagrams. Technical
Report 416, Indiana University Computer Science Department, Septem-
ber 1995.

[22] Ch. Kleuker. Constraint Diagrams. Dissertation, Fachbereich Informatik,
Universität Oldenburg. Berichte aus dem Fachbereich Informatik; Nr.3,
2000.

[23] F. Korf. System-Level Synthesewerkzeuge: Von der Theorie zur Anwen-
dung. Dissertation, Fachbereich Informatik, Universität Oldenburg, 1997.

[24] Fred Kröger. Temporal Logic of Programs. EATCS-Monographs.
Springer-Verlag, 1987.

[25] K. Lüth. The ICOS Synthesis Environment. In A.P. Ravn and H. Rischel,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, vol-
ume 1486 of LNCS, pages 294–297. Springer Verlag, 1998.

[26] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems (Specification). Springer-Verlag, 1992.

[27] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[28] PCI local bus specification, rev. 2.0. PCI Special Interest Group, 1993.

[29] S. Rakitin. Software verification and validation: A practitioners guide.
ARTECH HOUSE, INC., 1997.

[30] R. Schlör. A Prover for VHDL–based Hardware Design. In IFIP Inter-
national Conference on Computer Hardware Description Languages and
their Applications, pages 643–650, Sep. 1995.

[31] R. Schlör, A. Allara, and S. Comai. System Verification using User-
Friendly Interfaces. In Design, Automation and Test in Europe / User
Forum, pages 167–172. IEEE Computer Society Press, 1999.

248 BIBLIOGRAPHY

[32] R. Schlör and W. Damm. Specification and verification of system-level
hardware designs using timing diagrams. In Proceedings, The European
Conference on Design Automation, pages 518–524. IEEE Computer So-
ciety Press, 1993.

[33] R. Schlör, B. Josko, and D. Werth. Using a visual formalism for de-
sign verification in industrial environments. In Tiziana Margaria, editor,
services and visualization, volume 1385 of Lecture Notes in Computer
Science, pages 208–221. Springer-Verlag, 1998.

[34] VIS: Verification Interacting with Synthesis.
http://www-cad.eecs.berkeley.edu/Respep/Research/vis, 1995.

[35] W.-D. Tiedemann. Synthese von synchronen Steuerwerken mit
Echtzeitbedingungen. In W. Grass and M. Mutz, editors, 3. GI/ITG
Workshop zur Anwendung formaler Methoden beim Entwurf von Hard-
waresystemen, Berichte aus der Informatik, pages 21–31. Shaker Verlag,
1995.

[36] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133–191.
Elsevier Science Publishers, 1990.

[37] Thomas Wilke. Classifying discrete temporal properties. In Christoph
Meinel, editor, STACS’99, volume 1563 of Lecture Notes in Computer
Science, pages 32–46. Springer Verlag, 1999.

Rainer C. Schlör

married with Elsa Funk–Schlör

two children (Sebastian and Tabea Schlör)

Curriculum Vitae

21.09.1960 born in Wuppertal, Germany

1970–1979 school (Wilhelm–Dörpfeld–Gymnasium Wuppertal)

1981–1987 study of computer science at the Rheinisch
Westfälische Universität Aachen. The study was
partially supported by a scholarship of the Studien-
stiftung des Deutschen Volkes

1989–2000 member of the research group of Prof. Dr. Werner
Damm at the Carl–von–Ossietzky Universität Olden-
burg and the research institute OFFIS (since 1993)

March 2, 2001 defense of the thesis

April 25, 2001 joined McKinsey&Company, Munich, as practice spe-
cialist

*** last page ***

	Title
	Contents
	Acknowledgements
	Zusammenfassung
	Summary
	Introduction
	The goal
	Verification versus Validation
	``Visual'' versus sentential logic
	Related work
	Structure of this book

	Methodology of model verification
	Methodology
	Example: PCI--interface

	Requirements
	Symbolic Timing Diagrams: An introduction by example
	Requirement T1
	Requirement T2
	Requirement T3
	Requirement T4

	Carrying out verification in a tool environment
	Summary

	Theoretical foundation of specification
	Assertion Language
	Symbolic Automata
	Basic definition
	Computations
	Runs and notion of acceptance
	Properties of Symbolic Automata
	Deterministic Symbolic Automata

	Partially ordered SA
	(Linear--time) Temporal Logic
	Formal semantics of temporal logic
	Validity and satisfiability
	Formula schemes

	Sub--logics of Temporal Logic
	Translation from Symbolic Automata to Temporal Logic
	Temporal logic characterization of POSA
	Stuttering invariant specifications
	Temporal logic characterization of deterministic POSA

	Summary

	Theoretical foundation of model construction
	Fair transition systems
	Structure and semantics of FTS

	Transition graph systems
	Semantics of transition graph systems
	Verification of properties of a TGS

	Modules and composition
	Open Transition Graphs Systems
	Module composition

	Basis for compositional reasoning
	Kripke--structures
	Summary

	Linear Symbolic Timing Diagrams
	Motivation
	Syntax of LSTD
	Semantics of LSTD
	Translation from LSTD--diagrams to temporal logic
	Translation from deterministic POSA to LSTD

	Transformation of LSTD specifications
	Transformation of LSTD--phases
	Transformation of LSTD--bodies
	Transformation of LSTD--diagrams
	Transformation of LSTD--specifications

	Compositional reasoning
	Summary

	Symbolic Timing Diagrams
	LSTD--diagram composition
	Chaining
	Parallel composition

	Structure of STD--diagrams
	Definition of STD--diagrams
	Activation mode of STD--diagrams

	Semantics of STD--diagrams
	Derivation of SA from STD--body
	Definition of semantics of STD--diagram

	Translation of STD--diagrams to temporal logic
	Properties of the characterization of STD--body by SA
	Characterization of STD semantics in ${unhbox voidb @x hbox {sl LTL^-_V}}$

	Linear Decomposition
	Summary

	Resume
	Using STD for practical specification
	Considerations about the user interface for STD
	The design of STDx
	Guidelines for property specification using STD
	Witness--test

	Enhancement of expressiveness of STD
	Related developments

	Proofs
	Proof of theorem 3.3
	Proof of lemma 3.14
	Proof of theorem 4.1

	Remarks on chapter 3
	Note on the assertion language
	Note on first--order specifications
	Notes on {unhbox voidb @x hbox {sl LINLTL$_V$}}

	Notations
	Bibliography
	Curriculum Vitae

	link: Zur Homepage der Dissertation

