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Abstract. In the present article, numerical simulations have been performed to find the bond and site
percolation thresholds on two-dimensional Gabriel graphs (GG) for Poisson point processes. GGs belong
to the family of “proximity graphs” and are discussed, e.g., in context of the construction of backbones
for wireless ad-hoc networks. Finite-size scaling analyses have been performed to find the critical points
and critical exponents v, § and 7. The critical exponents obtained this way verify that the associated

universality class is that of standard 2D percolation.

1 Introduction

In this article standard percolation on Gabriel graphs [1] is
under scrutiny. Standard percolation addresses the ques-
tion of connectivity [2,3]. E.g. in respect to site percola-
tion, each site on a lattice is occupied randomly with prob-
ability p or empty with probability 1—p. Then, the pivotal
objects of interest are clusters composed of occupied and
adjacent sites. The geometrical properties of these clusters
change by shifting p from small values to values close to 1.
If p is below a certain value p., the clusters will be small
and disconnected. For p > p. instead, there will be ba-
sically one large cluster which covers almost the whole
lattice. Due to its fundamental nature and its adaptabil-
ity to many different systems, there is already an abun-
dance of literature about percolation. E.g., it has been
studied in context of marketing [4], forest fire [5] or disease
spreading [6]. But also percolation by itself has been inves-
tigated extensively [2,3,7]. Besides simple configurational
statistics there are many variants of the percolation prob-
lem such as the negative-weight percolation problem [8]
or domain-wall excitations in 2D spin glasses [9,10] that
requires a high degree of optimization. Furthermore, more
related to this work, the percolation phenomena has also
been studied extensively on planar random graphs and
their respective duals [11-20]. E.g. in reference [12], the
2D Voronoi graph and its dual the Delaunay triangula-
tion, which is a super graph of the Gabriel graph, are
considered.

In this article we study standard percolation, i.e. bond
and site percolation, on the Gabriel graph (GG) for a
set of N randomly placed points in the planar Euclidean
space. In general, a graph G = (V, F) consists of a node
set V' and an edge set E [21]. In respect to a node set in a
two-dimensional plane there will only exist an undirected
edge e;; € E between two different nodes 4,7 € V in the
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Fig. 1. (a) Sketch of the construction rule for designing a
GG. Node-pair 4,5 as well as j,k are linked, since circ(, j) and
circ(7, k) do not contain further nodes. In contrast, circ(i, k)
contains node j, thus ¢ and k are not connected directly by
an edge. (b) GG of size N = 8. If the dashed edges were
removed, the graph would change to a relative-neighborhood
graph. (c) Delaunay triangulation for the same node-set as in
(b). Removing the dashed edges would result in a GG.

Gabriel graph if the following condition is fulfilled:

d?,j < d?,k + d?k V ke V\{ij}, (1)
where d; ; denotes the Euclidean distance between ¢ and
J [22]. This means there will be an edge between two
nodes 7 and j only if the disk which has the connecting line
between ¢ and j as its diameter contains no further nodes
k € V\{i,j}. Furthermore, nodes in the Gabriel graph are
never linked to themselves. The described linking rule is
sketched in Figure 1a. The gray-shaded areas between two
nodes illustrate the aforementioned disc used for checking
whether the nodes get connected or not. As shown in the
sketch both node-pairs 4,5 and j,k are linked since their
respective disc is empty. In contrast, the nodes ¢ and k
are not connected, because their respective disc embeds
node j. Consequently, regarding this small example, the
GG is: G = ({i, . kb, (i, 1), G, b)}).

Due to its construction the Gabriel graphs exhibit
some characteristic properties, e.g., rather short paths be-
tween all node-pairs, that are of interest in the context
of communication networks. For that reason, GGs are
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discussed of being potential candidates for “virtual back-
bones” in ad-hoc networks, i.e., collections of radio devices
without fixed underlying infrastructure [22-25]. GGs have
also been applied frequently in geographic variation stud-
ies in biology [26-28]. In reference [29] the bond and site
percolation thresholds of a Euclidean relative neighbor-
hood graph (RNG) for a planar point set are studied. In
that article it is emphasized that the RNG is designed
as a supergraph of the minimum weight spanning tree
(MST) [30], i.e. regarding the same point set, all edges
contained in the MST are also included in the RNG, and
a subgraph of the Delaunay triangulation (DT) [31]. The
containment principle due to Fisher [32] states that if G’ is
a subgraph of G, the bond and site percolation thresholds
exhibit p¢" > pC. Tt is shown in reference [29] that this
is true for the MST C RNG C DT hierarchy. The linking
rule of the GG implies that the GG is a supergraph of
the RNG and a subgraph of the DT, which is illustrated
in Figures 1b and 1c for a node set composed of N = 8
nodes. Consequently, it is expected that pf}&%d =0.771(2)
(Ref. [29]) > pSS 4 > p2inq = 0.333069(2) (Ref. [12]) as
well as pRG = 0.796(2) (Ref. [29]) > pS§, > pof. = 0.5
(Ref. [33]). This will be confirmed in Section 3. A straight-
forward implementation to design the GG for a given
set of points would terminate in time O(N?), since for
each node-pair all other nodes must be taken into ac-
count to check equation (1). A substantially faster algo-
rithm is introduced in reference [34] to design the RNG,
which, however, also works to construct the GG. This al-
gorithm utilizes that the GG is a subgraph of the DT.
For points on two-dimensional surfaces, the DT can be
computed fast terminating in time O(N log(N)) [35,36].
After computing the DT, equation (1) can be checked for
each of its edges resulting in a worst case running time of
O(N?). However, the running time can further increased
by implementing “range queries” (see Sect. 2) leading to
O(Nlog(N)). Note that the fast implementation works
solely in the planar case and for the Euclidean metric. In
principle, the GG as well as the DT or RNG can be de-
signed for other metrics and in other dimensions. We study
bond and site percolation here. Thus, for a given instance
of the GG a fraction p of the edges (bond percolation)
or nodes (site percolation) gets occupied. Then we con-
sider the geometrical properties of the appearing clusters
consisting of adjacent nodes that are either connected by
occupied edges (bond percolation) or which are occupied
by themselves (site percolation). For three different values
of p the largest cluster is illustrated in Figure 2 regarding
bond percolation for an instance of N = 100 nodes. Since
it is known that there are nontrivial percolation thresh-
olds for Poisson point processes on the DT [12] and that
the percolation thresholds of the MST are equal to 1, the
question what subgraphs of the DT exhibit nontrivial per-
colation thresholds has been addressed in reference [37].
Regarding the GG, this has been answered by Bertin et al.
in reference [38]. In the latter article it is proven analyt-
ically that there are nontrivial percolation thresholds for
Poisson point processes. Also numerical simulations have
been made to obtain rough estimates for the critical points
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Fig. 2. Ilustration of bond percolation on a GG of size
N = 100. The fraction of occupied edges is given by p. The
largest cluster is highlighted black. All other edges, even those
which are occupied, but do not belong to the largest clus-
ter, are colored gray. (a) p = 0.4 (subcritical), (b) p = 0.52
(slightly above the critical point p. = 0.5170(3)) and p = 0.7
(supercritical).

(pesite = 0.52 and pe ponda = 0.64). Here, we measure the
critical points numerically with much higher accuracy us-
ing finite-size scaling analyses. Note, besides this method
there are various other techniques to find critical points.
Recently another method has been introduced to estimate
critical quantities with high accuracy utilizing quite low
statistical sample [39]. For consistency, we also measure
several critical exponents v, 3, and v which are expected
to be equal to those of standard 2D percolation due to uni-
versality. Universality classes are collections of mathemat-
ical models whose behavior become increasingly similar as
the limit scale is approached. Here, the scaling behavior of
several observables (percolation probability, binder ratio,
order parameter, susceptibility, averaged size of finite clus-
ters) at the phase transition point are described by critical
exponents which characterize the nature of the transition.
Different models that belong to the same universality class
exhibit the same critical exponents.

The remainder of this article is organized as follows.
In Section 2, the algorithm for designing Gabriel graphs
on randomly placed nodes is introduced. In Section 3, we
present our numerical results. Finally, we conclude with a
summary in Section 4.

2 Construction of Gabriel graphs

In a naive implementation of the GG each pair of nodes 1,5
must be considered successively terminating in a running
time O(N?). Additionally, for each node-pair all other
nodes k € V\{i, j} have to be taken into account to check
equation (1) resulting in a running time of O(N?). How-
ever, realizing that one single node lying on the disc be-
tween ¢ and j is sufficient to reject edge (,j), one can
obtain a substantial speed-up. Here, we consider points
on a two-dimensional surface and we apply the Euclidean
metric to determine their distances. For this case, we can
design GGs by means of an efficient algorithm [34] which
utilizes that the GG is a subgraph of the DT. For a given
point set, the DT can be constructed first. We did this
using the Qhull computational geometry library [36] ter-
minating in time O(N log(N)). Subsequently, each edge of
the DT can be checked and possibly deleted by examining
the disc between the adjoined nodes. For this we used the
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“cell-list” method [29]. After placing N nodes randomly
on a [0,1] x [0,1] surface, we divide the unit square into
L x L cells (L = v/N) and equip each cell with a list of all
nodes contained in. Consequently, if the disc between two
nodes is to be checked for being blank, just the nodes in
the respective cells must be taken into account. A running-
time analysis and a more precise description of the cell-list
method is given in reference [29] in the context of RNGs.

3 Results

The current section is divided into two subsections. First,
in Section 3.1, the general concepts of finite-size scaling
analyses will be explained and different observables to
study the percolation phenomenon will be introduced. The
analysis regarding bond percolation will be illustrated in
detail. The results of site percolation are presented in Sec-
tion 3.2 in a more brief manner, since the analysis is con-
ceptually equal to that of bond percolation.

The Euclidean GGs are constructed using the effi-
cient DT-based algorithm (cf. Sect. 2) for planar sets of
N = 962...384? points which are placed randomly on a
unit square. For system sizes up to N = 2562 all quanti-
ties framed by (...) are averaged over 10000 independent
instances of the GG. For systems of size N = 3842 the
quantities are averaged over 2000 instances.

3.1 Results for bond percolation on planar GGs

For a given GG instance, the bond percolation (as well
as site percolation) problem has been simulated using the
highly efficient, union-find based algorithm by Newman
and Ziff [7,40]. In the vicinity of the expected values of the
percolation thresholds (p € [p&*Pect — 0.05, p&*Pect + 0.05])
several observables y(p, L) have been monitored. Following
a common scaling assumption [3], these observables can be
rescaled according to

y(p, L) = L™ f[(p — pe) L"), (2)

where p. denotes the critical point, and v and b repre-
sent dimensionless critical exponents. f[-] is an unknown
scaling function. It becomes evident from equation (2)
that all data points of L%y(p, L) have to lie on one single
curve if p., v and b are chosen correctly. Thus, in order
to find the critical point, one just has to measure y(p, L)
for different values of p and L. Then plotting L'y (p, L)
against € = (p — p.)LY¥, and adjusting the unknown
constants sufficiently will result in a “data collapse” in-
dicating that the right values of the constants are found.
In this way the finite-size effects are exploited in order
to estimate the critical parameters. However, note that
the scaling behavior of small systems might differ slightly
from equation (2) [41]. All data collapses in this article
have been made by means of a computer-assisted scaling
analysis [42]. The results obtained for bond and site per-
colation are listed in Table 1.
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Table 1. Critical points and critical exponents for bond perco-
lation (GG-BP) and site percolation (GG-SP) on the Euclidean
GG for planar point-sets. The listed estimates for p., v and 3
are obtained by the scaling analyses of the order parameter
(cf. Fig. 4b regarding GG-BP). The listed estimates for v are
obtained by considering the averaged size of the finite clusters
(cf. Fig. 4d regarding GG-BP).

Type Pe v ﬁ vy
GG-BP  0.5170(3) 1.33(3) 0.138(7) 2.38(3)
GG-SP  0.6340(3) 1.36(3) 0.147(9) 2.38(2)
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Fig. 3. Bond-percolation probability P(p) over p in the vicinity
of the critical point on GG for planar point sets (inset). Using
the scaling assumption (Eq. (2)), the data are collapsed to one
curve providing estimates of p. and v (main plot). The data for
system sizes up to N = 65 536 have been obtained by averaging
over 10 000 realizations of the disorder, i.e. different point sets.
For N = 147 456 the data has been averaged over 2000 samples.

3.1.1 Percolation probability

In order to measure the percolation probability we first
determine the L nodes that are closest to the left border
of the unit square. We do the same for the right, top and
bottom border. These nodes are considered as being the
border of the planar graph. Then a cluster consisting of
adjacent nodes linked by occupied edges will be considered
as percolating if it contains at least one node from each of
these four borders. E.g. the clusters depicted in Figures 2b
and 2c percolate. The finite size scaling analysis regarding
the percolation probability P(p) is depicted in Figure 3.
Since P(p) is a dimensionless quantity, b = 0 is set in equa-
tion (2). Regarding P(p) the region € € [—0.25, 0.5], repre-
senting the “critical scaling window”, has been considered
only. The estimates p. = 0.5171(4) and v = 1.33(8) pro-
vide the best data collapse with quality S = 0.74. The
quality S denotes the mean-square distance of the data
points to the unknown scaling function in units of the
standard error [42]. v describes the correlation length ex-
ponent and matches well with the known value of standard
2D percolation: v = 4/3 ~ 1.333.
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Fig. 4. Finite-size scaling analyses for different observables obtained by considering the bond-percolation problem on GGs for
planar sets of up to N = 147456 points. All data have been obtained by averaging over 10000 (or 2000 regarding systems of
size N = 147 456, respectively) instances. The insets illustrate the raw data. The main plots show the collapsed data obtained
following a rescaling according to equation (2). (a) Binder ratio (cf. Eq. (3)), (b) order parameter, i.e. the relative size of the
largest cluster, (c) fluctuations of the order parameter (cf. Eq. (5)), and (d) averaged size of the finite clusters (cf. Eq. (6)). For
obtaining the estimates p., v, 8 and =, all systems sizes N = 9216...147 456 have been considered.

3.1.2 Order parameter statistics

We also monitor the relative size of the largest cluster
Smax, 1.€. the number of nodes in the largest cluster divided
by N. A common quantity of interest in this regard is the
dimensionless Binder ratio

am ()]

2 Stax(P))?

which features a nice crossing point for different IV at the
critical point. This can be seen in the inset of Figure 4a.
Considering € € [-0.75,1], we find p. = 0.5177(5) and
v = 1.32(6) with quality S = 1.34. Again, the estimate of
v is in accordance with the known literature value. Next
we consider the order parameter

Pmax(p) = <5max(p)>~ (4)

The best data collapse yields p. = 0.5170(3), v = 1.33(3)
and § = 0.138(7) with quality S = 1.09 by considering
€ € [—0.25,0.75]. The estimates are in good agreement
with the analytical values v and § = 5/36 ~ 0.139. We
also consider the order parameter fluctuations

X(p) = N[<312nax(p)> - <3max(p)>2] :

b(p) = (3)

(5)

This quantity provides a further critical exponent whose
value is also known: v = 43/18 ~ 2.389. The best data
collapse for € € [—1,0.4] provides p. = 0.5165(7), v =
1.32(8) and v = 2.40(4) with quality S = 1.17.

3.1.3 Average size of the finite clusters

The last observable describes the average size of all finite
(non-percolating) clusters that appear in one instance of
the GG. This quantity is also averaged over 10 000 (or 2000
for N = 147456, respectively) instances. The definition
is [3,43]:

_ X 8% ng(p)
Sﬁn(p) Z/Sns(p) )

where n,(p) denotes the probability mass function of clus-
ter sizes for a single instance of the GG. The sum 3’
runs over all clusters except the percolating ones. It is ex-
pected that this quantity scales similar to the fluctuations
of the order parameter. Considering ¢ € [—1,1.5] we ob-
tain p. = 0.5167(4), v = 1.34(3) and v = 2.38(3) with
quality S = 1.18.

(6)
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Fig. 5. Site-percolation probability P(p) over p in the vicinity
of the critical point on GG for planar point sets (inset). Using
the scaling assumption (Eq. (2)), the data are collapsed to one
curve providing estimates of p. and v (main plot). The data for
system sizes up to N = 65 536 have been obtained by averaging
over 10 000 realizations of the disorder, i.e. different point sets.
For N = 147 456 the data has been averaged over 2000 samples.

3.2 Results for site percolation on planar GGs

The analysis of site percolation on planar GGs is anal-
ogous to bond percolation (Sect. 3.1). For that reason
we merely present the data plot regarding the percola-
tion probability P(p) (cf. Fig. 5). We find p. = 0.6335(5)
(percolation probability), p. = 0.6346(6) (binder ratio),
pe = 0.6340(3) (order parameter), p. = 0.6331(7) (fluctu-
ations of the order parameter) and p. = 0.6335(5) (aver-
age size of the finite clusters). All obtained estimates of
the critical exponents (not shown here) are in agreement
with the known analytical values. The most accurate es-
timate of the critical points is obtained by studying the
order parameter. This is also the case in the bond per-
colation study. For that reason we list these estimates in
Table 1.

4 Summary

In this article we have performed numerical simulations
to find the bond and site percolation thresholds for the
Gabriel graph. Recently, it has already been proven [38]
that there are nontrivial thresholds, but accurate esti-
mates of these thresholds have not existed (to the best of
our knowledge). In particular, there was no proper finite-
size scaling analysis. Considering different observables, we
find p. = 0.5170(3) (bond percolation) and p. = 0.6340(3)
(site percolation) by means of finite-size scaling analy-
ses. We also find estimates of the critical exponents v, 8
and v that are in good agreement with the known values
obtained from standard 2D percolation. The considered
Gabriel graph is a subgraph of the Delaunay triangulation
whose percolation thresholds (pebona = 0.333069(2) and
Pesite = 0.5) are already well understood [12,33]. Also the
percolation thresholds of the relative-neighborhood graph
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Fig. 6. Averaged degree values (deg) for different system sizes
are plotted against N /2. The data are fitted to (deg) = fo —
aN~'? with fo = 3.9995(3) and a = 4.33(2) (x> = 0.8583).

(Pe,pona = 0.771(2) and pesite = 0.796(2)) are known
yet [29]. Following the containment principle due to Fisher
and Essam [32], it should hold that pRNG > pGG& > pDT for
both percolation problems, which has been confirmed. The
averaged degree of the Gabriel graph seems to be 4 (we
have measured (deg) = 3.9995(3), cf. Fig. 6). Just for com-
parison, the percolation thresholds for the 2D square lat-
tice, which also exhibits a degree of 4, are slightly smaller:
De,pond = 0.5 and pe site = 0.592746010(2) [44].
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