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Abstract: A one-dimensional wave function is assumed whose logarithm is a quadratic form in
the configuration variable with time-dependent coefficients. This trial function allows for general
time-dependent solutions both of the harmonic oscillator (HO) and the reversed harmonic oscillator
(RO). For the HO, apart from the standard coherent states, a further class of solutions is derived with
a time-dependent width parameter. The width of the corresponding probability density fluctuates,
or "breathes" periodically with the oscillator frequency. In the case of the RO, one also obtains
normalized wave packets which, however, show diffusion through exponential broadening with time.
At the initial time, the integration constants give rise to complete sets of coherent states in the three
cases considered. The results are applicable to the quantum mechanics of the Kepler-Coulomb
problem when transformed to the model of a four-dimensional harmonic oscillator with a constraint.
In the classical limit, as was shown recently, the wave packets of the RO basis generate the
hyperbolic Kepler orbits, and, by means of analytic continuation, the elliptic orbits are also obtained
quantum mechanically.

Keywords: inverted harmonic oscillator; harmonic trap; Kepler-Coulomb problem;
Kustaanheimo-Stiefel transformation

1. Introduction

Coherent states of the harmonic oscillator (HO) were introduced already at the beginning of
wave mechanics [1]. Much later, such states were recognized as being useful as a basis to describe
radiation fields [2] and optical correlations [3]. The reversed harmonic oscillator (RO) refers to a model
with repulsive harmonic forces, and was discussed in [4] in the context of irreversibility. Recently, in [5],
which also communicates historical remarks, the RO was applied to describe nonlinear optical phenomena.
As mentioned in [5], the term “inverted harmonic oscillator” (IO) originally refers to a model with
negative kinetic and potential energy, as proposed in [6]. Nevertheless, most articles under the headline
IO, actually consider the RO model, see, e.g., [7–9].

The RO model formally can be obtained by assuming a purely imaginary oscillator frequency. It is
then not anymore possible to construct coherent states by means of creation and annihilation operators;
for a text book introduction see [10]. In [9], the RO was generalized by the assumption of a time-dependent
mass and frequency. The corresponding Schrödinger equation was solved by means of an algebraic
method with the aim to describe quantum tunneling.

In the present study, emphasis is laid on the derivation of complete sets of coherent states both for
the HO and the RO model, together with their time evolution. In the case of the HO, in addition to
the standard coherent states, a further function set is found with a time-dependent width parameter.
Both in the HO and RO case, the integration constants of the time-dependent solutions induce complete
function sets which, at time t = 0, are isomorphic to the standard coherent states of the HO.
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In Section 6, an application to the quantum mechanics of the Kepler-Coulomb problem will be
briefly discussed. As has first been observed by Fock [11], the underlying four-dimensional rotation
symmetry of the non-relativistic Hamiltonian of the hydrogen atom permits the transformation to
the problem of four isotropic harmonic oscillators with a constraint; for applications see, e.g., [12–14].
The transformation proceeds conveniently by means of the Kustaanheimo-Stiefel transformation [15].
In [14], the elliptic Kepler orbits were derived in the classical limit on the basis of coherent HO states.
By means of coherent RO states, the classical limit for hyperbolic Kepler orbits was achieved in [16,17],
whereby the elliptic regime could be obtained by analytic continuation from the hyperbolic side.
Recently, by means of the same basis, a first order quantum correction to Kepler’s equation was
derived in [18], whereby the smallness parameter was defined by the reciprocal angular momentum in
units of h̄.

As compared to the classical elliptic Kepler orbits, the derivation of hyperbolic orbits from
quantum mechanics was accomplished quite recently [16,17]. For this achievement, it was crucial to
devise a suitable time-dependent ansatz for the wave function, see (1) below, in order to construct
coherent RO states. As it turns out, the wave function (1) contains also the usual coherent HO
states, and, unexpectedly, a further set of coherent states, which we call type-II states. The latter
are characterized by a time-dependent width parameter and are solutions of the time-dependent
Schrödinger equation of the HO. Section 4 contains the derivation. Essentially, the type-II states
offer a disposable width parameter which allows us, for instance, to describe arbitrarily narrowly
peaked initial states together with their time evolution in a harmonic potential. In this paper, a unified
derivation is presented of coherent states of the HO, RO, and type-II HO states. Furthermore, the
connection of HO and RO with the quantum mechanics of the Kepler-Coulomb problem is briefly
discussed in the context of the derivation of the classical Kepler orbits from quantum mechanics.

2. Introducing a Trial Wave Function

In order to solve the Schrödinger equation for the harmonic oscillator (HO) and the reversed
oscillator (RO), a trial wave function of Gaussian type is assumed as follows

ψ(x, t) = C0 exp
[
C(t) + B(t)x− Γ(t)x2

]
, x ∈ R, Real(Γ) > 0, (1)

where C, B, Γ are complex functions of time t and C0 the time-independent normalization constant.
When the Schrödinger operator [i h̄∂t − H] is applied to ψ for a Hamiltonian with harmonic potential,
then the wave function ψ is reproduced up to a factor which is a quadratic polynomial and must
vanish identically in the configuration variable x:

0 = p0(t) + p1(t)x + p2(t)x2. (2)

The conditions p0 = 0, p1 = 0, and p2 = 0, give rise to three first-order differential equations
for the functions C(t), B(t), and Γ(t). In the following we examine two cases for the HO: type-I and
type-II are characterized by a constant and time-dependent function Γ, respectively. In the case of the
RO, only a time-dependent Γ leads to a solution. By a suitable choice of the parameters, the ansatz (1)
solves the time-dependent Schrödinger equation both for the HO and the RO Hamiltonian

H = p2/(2m) + (mω2/2)x2 and HΩ = p2/(2m)− (mΩ2/2)x2, ω, Ω > 0,

respectively.

3. Standard (Type-I) Coherent States of the HO

In the following, the time-dependent solutions are derived, within the trial function scheme,
for the Hamiltonian

H = p2/(2m) + (mω2/2)x2 = (h̄ω/2)
[
−∂2

ζ + ζ2
]

, (3)
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where ζ = αx is dimensionless with α2 = mω/h̄. For later comparison, we list the standard definition
of coherent states from the textbook [10], see Equations (4.72) and (4.75):

|z〉 = exp
[
−1

2
zz∗
] ∞

∑
n=0

zn
√

n!
|n〉, (4)

ψz(ζ) = π−1/4 exp
[
−1

2
(zz∗ + z2)

]
exp

[
−1

2
ζ2 +

√
2ζz
]

, ζ = αx, α2 =
mω

h̄
, (5)

where ψz(ζ) = 〈ζ|z〉, |n〉 denotes the n-th energy eigenvector, and the star superscript means
complex conjugation. The time evolution gives rise to, see [10],

|z, t〉 = exp[−i ωt/2] |z exp[−i ωt]〉, (6)

ψz(ζ, t) = exp[−i ωt/2]ψ(z exp[−i ωt])(ζ). (7)

The state |z〉 is minimal with respect to the position-momentum uncertainty product ∆x ∆p,
and there exists the following completeness property, see [3],

1
π

∫ ∞

0
udu

∫ 2π

0
dϕ |z〉〈z| = ∑

n
|n〉〈n|, z = u exp[i ϕ]. (8)

The relation (8) follows immediately from the definition (4). An equivalent statement is

1
π

∫ ∞

0
udu

∫ 2π

0
dϕ 〈ζ2|z〉〈z|ζ1〉 = δ(ζ2 − ζ1), (9)

which corresponds to the completeness of the energy eigenfunctions of the harmonic oscillator.
In Appendix B, we reproduce a proof of (9), which is appropriate, since the proof has to be extended to
the modified coherent states in the type-II HO and the RO cases.

In terms of the scaled variables ζ and τ = tω, the trial ansatz reads

ψ(ζ, τ) = C0 exp
[
c(τ) + β(τ)ζ − γ(τ)ζ2/2

]
, (10)

where c, β, γ are dimensionless functions of τ, and the re-scaling factor of the probability density,
1/
√

α, is taken into the normalization constant C0.
We assume that γ = γ0 = const. Then, the polynomial (2) gives rise to the equations

γ2
0 = 1, i β′(τ) = β(τ), 2i c′(t) = 1− β2(t), (11)

which implies that γ0 = 1 is fixed. The further solutions emerge easily as

β(τ) = C2 exp[−i τ], c(τ) = −i τ/2− (C2
2/4) exp[−2i τ] + C3, (12)

where C2 and C3 are complex integration constants. A comparison with (5), at t = 0, suggests to set

C2 =
√

2 z, C3 = −(1/2)zz∗, (13)

which specifies the functions β and c as follows

β(τ) =
√

2 (z exp[−i τ)], c(t) = −i τ/2− (1/2)
[
zz∗ + (z exp[−i τ])2

]
. (14)
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The normalization integral with respect to ζ amounts to the condition

C2
0
√

π exp[zz∗] = 1; (15)

hence (7) with (5) is reproduced.

4. Type-II Solutions of the Harmonic Oscillator

With γ being a function of time, one obtains the following differential equations with prime
denoting the derivative with respect to the scaled time τ:

i γ′ = γ2 − 1, i β′ = γ β; 2i c′ = γ− β2. (16)

The solution for γ is

γ(τ) =
exp(2i τ)− C1

exp(2i τ) + C1
C1 =

1− γ0

1 + γ0
. γ0 = γ(0). (17)

Splitting γ into its real and imaginary parts, one can write

γ(τ) = γR + i γI ; γR = (1− C2
1)N−1

1 , γI = 2 C1N−1
1 sin(2τ),

N1(τ) = 1 + C2
1 + 2C1 cos(2τ) = 4(1 + γ0)

−2
[
1 + (γ2

0 − 1) sin2(τ)
]

. (18)

In order that the wave function is square integrable, γR has to be positive, which implies that

C2
1 < 1 or γ0 > 0. (19)

The initial value γ(t = 0) ≡ γ0 > 0 emerges as a disposable parameter.
The probability density, P = |ψ(ζ, τ)|2, is characterized by a width of order of magnitude

d = 1/
√

γR:

d(τ) =
√[

1 + (γ2
0 − 1) sin2(τ)

]
/γ0. (20)

Obviously, the width fluctuates, or "breathes", periodically with time. Of course, this is not a
breathing mode as observed in systems of confined interacting particles, see [19,20], e.g.,

Integration of the β equation leads to

β = C2 exp(i τ) [exp(2i τ) + C1]
−1 = C2N−1

1 [exp(−i τ) + exp(i τ)C1] . (21)

Later on, the complex integration constant C2 ≡ A2 + i B2 will serve as a state label. The third
differential equation of (16) amounts to

c(τ) = i τ/2− C2
2 [4 (exp(2i τ) + C1)]

−1 − (1/2) ln
(√

exp(2i τ) + C1

)
+ C3. (22)

By reasons explained in Appendix A, we dispose of the integration constant C3 as follows

C3 = −(1 + γ0)(8γ0)
−1(A2

2 + γ0B2
2), C2 = A2 + i B2. (23)

In Appendix A, the probability density P is derived in the following form

P(ξ, τ) =
C2

0√
N1

exp
[
−γR (ξ − βR/γR)

2
]

, (24)
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where the time-dependent functions γR and N1 are defined through (17) and (18), and βR comes out as

βR(τ) = (1/8)(1 + γ0)
−1N−1

1 [A2 cos(τ) + B2 sin(τ)] . (25)

The complex integration constant C2 corresponds to the familiar complex quantum number z in
the case of the standard coherent states; hence, the real numbers A2, B2 characterize different states.
The normalization constant C0 obeys the following condition, see Appendix A,

1 = (1/2)C2
0

√
π/γ0(1 + γ0). (26)

4.1. Completeness of Type-II States

Combining the above results, we write the time-dependent wave function as follows

ψ(ξ, τ) =
C0√

exp(2i τ) + C1
exp

[
C3 −

C2
2 (exp(−2i τ) + C1)

4N1
+ β(τ)ξ − γ(τ)ξ2/2

]
, (27)

where γ, β, and C3 are defined in (18), (21), and (23), respectively. Let us consider ψ at zero time:

ψ(ξ, 0) =
C0√

1 + C1
exp

[
C3 −

C2
2

4(1 + C1)
+ C2(1 + γ0) ξ/2− γ0ξ2/2

]
. (28)

In (28), we set ξ = ξ̃/
√

γ0 to write

ψ(ξ̃, 0) =
C0γ−1/4

0√
1 + C1

exp

[
C3 −

C2
2

4(1 + C1)
+ C2(1 + γ0)/

√
γ0 ξ̃/2− ξ̃2/2

]
. (29)

Now we substitute the complex variable z for the integration constant C2 as follows

C2
1 + γ0

2
√

γ0
=
√

2 z (30)

and obtain

ψ(ξ̃, 0) =
C0√

1 + C1
exp

[
C3 − z2 γ0

1 + γ0
+
√

2 z ξ̃ − ξ̃2/2
]

. (31)

In C3, given in (23), we make the following replacements which are induced by (30):

A2 → κ(z + z∗), B2 → −i κ(z− z∗), κ =
√

2γ0/(1 + γ0). (32)

There occur some nice cancelations, and one obtains

ψz(ξ̃) =
C0γ−1/4

0√
1 + C1

exp
[
−1

2

(
zz∗ + z2

)
+ i D +

√
2 z ξ̃ − ξ̃2/2

]
, D =

1− γ0

2(1 + γ0)
Im(z2). (33)

Comparison with (5) shows that the wave function (33) has the same structure apart from the
purely imaginary phase i D. The latter drops out in the completeness proof, see (A15) in Appendix B.
As a consequence, the states (33) form a complete set of states with respect to the state label z.

At τ = 0, the states (33) differ from the standard coherent states (5) by the state dependent phase
D, through the variables ζ and ζ̃ which denote the differently scaled space variable x, and also through
the different definition of the quantum number z, which for simplicity was denoted by the same
symbol in (30). Essentially, type-I and type-II states differ by their time evolution and width parameter
γ0 which is equal to α2 = mω/h̄ and to an arbitrary positive number, respectively.
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4.2. Mean Values and Uncertainty Product

In the following, we list mean values for the time-dependent states (27) including the position
momentum uncertainty product ∆xp. They are periodic in time with the oscillator angular frequency
ω ≡ 2π/T. The uncertainty product is minimal at the discrete times tn = (1/4)nT, n = 0, 1, . . . .
For comparison, the traditional coherent states are always minimal [10]. We use the abbreviations
(∆x)2 = 〈x2〉 − 〈x〉2 and (∆v)2 = 〈v2〉 − 〈v〉2 for the mean square deviations of position and
velocity, respectively.

〈x(τ)〉 = (1/α)(1 + γ0)(2γ0)
−1 [A2 cos(τ) + B2γ0 sin(τ)] ; (34)

〈v(τ)〉 = h̄α(2mγ0)
−1 [−A2 sin(τ) + B2 cos(τ)] ; (35)

(∆x)
2 = (4α2γ0)

−1
[
1 + γ2

0 + (1− γ2
0) cos(2τ)

]
; (36)

(∆v)
2 = h̄2α2(4m2γ0)

−1
[
1 + γ2

0 + (γ2
0 − 1) cos(2τ)

]
; (37)

〈H〉 = h̄ω(8γ2
0)
−1
[
(1 + γ0)

2
(

A2
2 + γ2

0B2
2

)
+ 2γ0(1 + γ2

0)
]

. (38)

It is noticed that the mean square deviations do not depend on the state label (A2, B2).
The uncertainty product follows immediately from (36) and (37) as

∆xp := (∆x)
2(∆p)

2 ≡ m2(∆x)2(∆v)2 =
h̄2

16γ2
0

[
(1 + γ2

0)
2 − (1− γ2

0)
2 cos2(2τ)

]
. (39)

In the special case γ0 = 1, the product is always minimal. As a matter of fact, γ0 = 1 is the type-I
case of Section 3.

By (38), the mean energy does not depend on time and is positive definite, as it must be. The limit
to the standard case with γ0 = 1, gives the known result

〈H〉γ0=1 = h̄ω(zz∗ + 1/2). (40)

and the state with z = 0 is the ground state of the HO with zero point energy h̄ω/2.

5. Wave Packet Solutions for the RO

For convenience, we will keep the same symbols for the trial functions γ(τ), β(τ), and c(τ).
Setting ω = i Ω with Ω > 0, implies that α2 = −mΩ/h̄. In the coherent state (5), the exponential part,
−ζ2/2 ≡ −(mω/h̄)x2/2, is then replaced by +(mΩ/h̄)x2/2, which precludes normalization.

We introduce 1/αΩ as the new length parameter and define the dimensionless magnitudes

ζ = αΩx, τ = t Ω, with α2
Ω = mΩ/h̄. (41)

The Schrödinger equation, with the ansatz (10), has to be solved for the RO Hamiltonian

HΩ = p2/(2m)−mΩ2/2 x2 = −h̄Ω/2
[
∂2

ζ + ζ2
]

. (42)

From (2), the following differential equations result:

i γ′(τ) = 1 + γ2(τ), i β′(τ) = γ(τ)β(τ), 2i c′(τ) = γ(τ)− β2(τ), (43)
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where, as compared with the HO case in (16), only the equation for γ differs. Beginning with γ,
one successively obtains the following solutions

γ(τ) = −i tanh(τ + i C1), (44)

β(τ) = C2/ cosh(τ + i C1), (45)

c(τ) = C3 − (1/2) ln (cosh(τ + i C1)) + (i /2)C2
2 tanh(τ + i C1), (46)

where C1, C2, C3 are integration constants. We assume that

γ0 ≡ γ(0) = tan(C1) > 0, 0 < C1 < π/2, (47)

which implies that
cos(C1) = (1 + γ2

0)
−1/2, sin(C1) = γ0(1 + γ2

0)
−1/2. (48)

In order to decompose the functions c(τ), β(τ), γ(τ) into their real and imaginary parts, we take
over the following abbreviations from [16]

f (τ) = cosh(τ)− i γ0 sinh(τ), h(τ) = [ f f ∗]−1. (49)

After the decompositions β = βR + i β I , γ = γR + i γI , C2 = A2 + i B2, we infer from (44) to (46):

γR = h(τ)γ0, γI = − (h(τ)/2) (1 + γ2
0) sinh(2τ); (50)

βR = h(τ)
√

1 + γ2
0 [A2 cosh(τ) + γ0B2 sinh(τ)] ,

β I = h(τ)
√

1 + γ2
0 [B2 cosh(τ)− γ0 A2 sinh(τ)] ; (51)

exp[c(τ)] = [cosh(τ + i C1)]
−1/2 exp

[
C3 − C2

2γ(τ)/2
]

. (52)

According to (50), γR is larger zero, which makes the wave function (10) a normalizable wave packet.
The probability density reads:

P(ζ, τ) = C2
0 exp

[
c + c∗ + 2βRζ − γRζ2

]
. (53)

Integration with respect to ζ leads to the normalization condition

1 = C2
0

√
π/γR exp

[
c(τ) + c∗(τ) + β2

R/γR

]
. (54)

The normalization constant C0 was determined in [16] for real constants C2. With C2 = A2 + i B2,
we dispose of the integration constant C3 as

C3 = −(1/2)(A2
2/γ0 + B2

2γ0) (55)

to obtain in a straightforward manner

C2
0 =

√
π(γ−1

0 + γ0), (56)

which is a time independent condition as it must be.
With the aid of elementary trigonometric manipulations and the normalization constant C0 given

in (56), the wave function can be written as follows

ψ(ζ, τ) = (γ0/π)1/4
√

h(τ) f (τ) exp
[
C3− (1/2)C2

2γ(τ) + β(τ)ζ − γ(τ)ζ2/2
]

. (57)



Symmetry 2016, 8, 46 8 of 12

5.1. Coherent States of the RO

As before, let us consider the wave function at time t = 0, where in particular h = f = 1:

ψ(ζ, 0) ≡ ψ(ζ, τ = 0) = (γ0/π)1/4 exp
[

C3− 1/2C2
2γ0 + C2

√
1+ γ2

0 ζ − γ0ζ2/2
]

. (58)

After the re-scaling ζ → ζ̃ with ζ̃ =
√

γ0 ζ, one obtains

Ψ(ζ̃, 0) = π−1/4 exp
[

C3− 1/2C2
2γ0 + C2

√
(1+ γ2

0)/γ0 ζ̃ − ζ̃2/2
]

. (59)

In view of the standard HO wave function (5), we replace the integration constant C2 by z:

C2

√
(1+ γ2

0)/γ0 =
√

2 z (60)

and obtain
Ψz(ζ̃) = π−1/4 exp

[
C3− γ2

0 z2/(1+ γ2
0) +
√

2 z ζ̃ − ζ̃2/2
]

. (61)

In C3, given in (55), the relation (60) gives rise to the substitutions

A2 → κ1(z + z∗), B2 → −i κ1(z− z∗), κ1 = (1/2)
√

2γ0/(1+ γ2
0), (62)

and hence to
C3 =

[
4(1+ γ2

0)
]−1 [

(γ2
0 − 1)(z2 + z∗z∗)− 2(1+ γ2

0)zz∗
]

. (63)

After some elementary re-arrangements, one finds

Ψz(ζ̃) =
1

π1/4 exp
[
−1

2
(zz∗ + z2) + i D1 +

√
2 z ζ̃ − ζ̃2

2

]
, D1 =

1− γ2
0

2(1+ γ2
0)

Im(z2). (64)

Apart from the purely imaginary phase i D1, the wave functions Ψz are the same as the standard
coherent states (5). Since in the completeness proof the D1 phase drops out, see (A15) in Appendix B,
the states Ψz form a complete function set.

5.2. Mean Values

With the aid of Mathematica [21], we get the following mean values for position x, velocity v,
their mean square deviations (∆x)2, (∆v)2, and the mean energy 〈HΩ〉:

〈x〉 = (αΩ)
−1
√

1+ γ−2
0 [A2 cosh(τ) + γ0B2 sinh(τ)] ; (65)

(∆x)2 =
(

2α2
Ωγ0

)−1 [
cosh2(τ) + γ2

0 sinh2(τ)
]

; (66)

〈v〉 = (h̄αΩ/m)
√

1+ γ−2
0 [A2 sinh(τ) + γ0B2 cosh(τ)] ; (67)

(∆v)2 = (h̄αΩ/(2m))2 γ−1
0

[
γ2

0 − 1+ (1+ γ2
0) cosh(2τ)

]
; (68)

〈HΩ〉 = h̄Ω(4γ0)
−1
[
γ2

0 − 1+ 2(γ0 + γ−1
0 )

(
γ2

0B2
2 − A2

2

)]
. (69)

The mean energy does not depend on time, as it must be. With the aid of (62), the mean energy
could also be expressed in terms of the complex state label z. Since A2 and B2 are arbitrary real
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numbers, the mean energy can have any positive or negative value. From (66) and (68) one infers the
position-momentum uncertainty product ∆xp as

∆2
xp(τ) = h̄2/(8γ2

0)
[
cosh2(τ) + γ2

0 sinh(τ)
] [

γ2
0 − 1+ (1+ γ2

0) cosh(2τ)
]

. (70)

This product obeys the inequality

∆2
xp(τ) > ∆2

xp(0) = h̄2/4, τ > 0. (71)

Obviously, the uncertainty product is minimal at τ = 0, which means for the coherent states (64).
By (66), the wave packets broaden exponentially with time.

6. Application to the Kepler-Coulomb Problem

The connection of the non-relativistic Hamiltonian for the hydrogen atom with the model
of a four-dimensional oscillator is conveniently achieved by means of the Kustaanheimo-Stiefel
transformation [15], which we write as follows [16,22]

u1 =
√

r cos(θ/2) cos(ϕ−Φ); u2 =
√

r cos(θ/2) sin(ϕ−Φ);
u3 =

√
r sin(θ/2) cos(Φ); u4 =

√
r sin(θ/2) sin(Φ),

(72)

where r, θ, ϕ are three-dimensional polar coordinates with r > 0, 0 < θ < π, 0 ≤ ϕ < 2π,
and 0 ≤ Φ < 2π generates the extension to the fourth dimension. The vector u = {u1, u2, u3, u3} covers
the R4 and the volume elements are related as [16]

du1du2du3du4 = (1/8)r sin(θ)drdθdϕdΦ. (73)

The stationary Schrödinger equation Hψ = Eψ for the Hamiltonian H = p2/(2m) − λ/r is
transformed into the following form of a four-dimensional harmonic oscillator [14]:

HuΨ(u) = λΨ(u), Hu = −h̄2/(8m)∆u − E u · u, ∆u = ∂2
u1
+ ...∂2

u4
(74)

with the constraint
∂ΦΨ(u) = 0. (75)

It should be noticed that, by (72), the components u2
i have the dimension of a length rather than

length square. As a consequence, in the evolution equation i h̄∂σΨ = HuΨ, the parameter σ, which has
the dimension time/length, is not the time parameter of the original problem. For negative energies
with E < 0, four-dimensional coherent oscillator states (of type-I) were used in [14] to show that elliptic
orbits emerge in the classical limit whereby σ turns out being proportional to the eccentric anomaly.

In the spectrum of positive energies (ionized states of the hydrogen atom) with E > 0,
coherent states of the RO were constructed in [16] and gave rise to hyperbolic orbits in the classical limit;
by analytic continuation, also the elliptic orbits were derived from the RO states in the classical
limit [17]. In addition, Kepler’s equation was obtained by the assumption that time-dependence enters
through the curve parameter σ only. Recently [18], based on the coherent RO states, the first order
quantum correction to Kepler’s equation could be established for the smallness parameter ε = h̄/L
where L denotes the orbital angular momentum.

7. Conclusions

Besides the standard coherent states of the harmonic oscillator (H0), a further solution family of
the time-dependent Schrödinger equation was derived with the following properties: (i) The functions
are normalizable of Gaussian type and contain a disposable width parameter. The latter allows us,
for instance, to use arbitrarily concentrated one-particle states independently of the parameters of
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a harmonic trap; (ii) The functions are complete and isomorphic to the standard coherent states at
time t = 0; (iii) The states minimize the position-momentum uncertainty product at the discrete times
Tn = n π/(2ω), n = 0, 1, . . . ; (iv) The width of the wave packets “breathes” periodically with period
T/2 = π/ω. (v) There is no diffusion, T = 2π/ω is the recurrence time of the states.

In the case of the reversed harmonic oscillator (RO), there exists only one family of time-dependent
solutions. They share the properties (i) and (ii) of the type-II HO states, and (iii) is fulfilled at time t = 0,
only. There is no recurrence, instead there is diffusion with a broadening which increases exponentially
with time. The application to the Kepler-Coulomb problem was briefly discussed. The HO coherent
states of type-I and the RO coherent states served as basis to derive, in the classical limit, the elliptic
Kepler orbits [14] and the hyperbolic ones [16,17], respectively.

Acknowledgments: The author expresses his gratitude to Jürgen Parisi for his constant encouragement and
support. He also profited from his critical reading of the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Probability Density for Type-II States

We have to decompose the functions β(τ) and c(τ), as given by (21)and (22), into their real and
imaginary parts. To this end, we set C2 = A2 + i B2 with real constants A2 and B2 and β = βR + i βI .
Using the definitions of N1 and C1 in terms of γ0, we obtain

βR =
1+ γ0

2
A2 cos(τ) + B2γ0 sin(τ)

1+ γ2
0 sin2(τ)

,

βI =
1+ γ0

2
B2 cos(τ)− A2γ0 sin(τ)

1+ γ2
0 sin2(τ)

. (A1)

In view of the function c(τ), we make use of the following auxiliary relations

Fc ≡ −C2
2 [4 (exp(2i τ) + C1)]

−1 = FR + i FI,

FR = (1/(4N1))
[
(B2

2 − A2
2) cos(2τ)− 2A2B2 sin(2τ) + (B2

2 − A2
2)C1

]
,

FI = (1/(4N1))
[
(A2

2− B2
2) sin(2τ)− 2A2B2 cos(2τ)− 2A2B2C1

]
, (A2)

exp [c(τ) + c∗(τ)] = (1/
√

N1) exp [2C3 + 2FR] , (A3)

where the integration constant C3 is assumed being real and the star suffix means complex conjugation.
The probability density P results from the wave function (10) in the form

P(ξ, τ) =
C2

0√
N1

exp
[
2C3 + 2FR + 2βRξ − γRξ2

]
, (A4)

where C0 is defined through the normalization integral

1 =
∫ ∞

−∞
dξ P(ξ, τ) =

C2
0
√

π√
N1γR

exp(G), G = 2C3 + 2FR + β2
R/γR. (A5)

From the expression of G, it is not obvious that C0 is independent of τ which was assumed in (10).
Clearly, since Φ := ψ/C0 obeys the Schrödinger equation and H is hermitian, one has the property

∂τ〈Φ|Φ〉 = 0. (A6)

As a matter of fact, it is straightforward to show that

2FR + β2
R/γR =

[
B2

2(C1− 1)− A2
2(1+ C1)

] [
2(C2

1 − 1)
]−1

(A7)
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does not depend on τ. We now dispose of the integration constant C3 such that the exponent G vanishes:

C3 = −
[
B2

2(C1− 1)− A2
2(1+ C1)

] [
4(C2

1 − 1)
]−1

. (A8)

In view of G = 0, we replace 2C3 + 2FR by −β2
R/γR, so that

P(ξ, τ) =
C2

0√
N1

exp
[
−γR (ξ − βR/γR)

2
]

, (A9)

which is the result (24). The normalization condition comes out immediately in the form

1 =
C2

0
√

π√
N1γR

=
C2

0
√

π√
1−C2

1

=
C2

0
√

π(1+ γ0)

2
√

γ0
. (A10)

Appendix B. Proof of Completeness

In order to prove the completeness of the functions (5), i.e., for the type-I HO case, we take
advantage of the following generating function of the Hermite polynomials [23]:

exp
[
2XZ− Z2

]
=

∞

∑
n=0

Zn

n!
Hn(X). (A11)

In the function (5), we replace z by
√

2 Z to obtain

ψz(ζ) = π−1/4 exp
[
−ZZ∗ − (1/2)ζ2

]
exp

[
−Z2 + 2ζZ

]
. (A12)

With the aid of (A11), one can write

ψz(ζ) = exp [−(1/2)zz∗]
∞

∑
n=0

zn
√

n!
ϕn(ζ), (A13)

where
ϕn(ζ) =

1√
n!2n
√

π
Hn(ζ) exp

[
−(1/2)ζ2

]
. (A14)

By means of (A13) and setting z = u exp[i ϕ], we obtain

〈ζ2|z〉〈z|ζ1〉 = exp
[
−u2

] ∞

∑
m,n=0

un+m exp [i (m− n)ϕ]√
m!n!

ϕm(ζ2)ϕn(ζ1). (A15)

In (A15), the ϕ integration projects out the terms n = m with the result

1
π

∫ ∞

0
udu

∫ 2π

0
dϕ 〈ζ2|z〉〈z|ζ1〉 = 2

∫ ∞

0
udu exp[−u2]

∞

∑
n=0

u2n

n!
ϕn(ζ2)ϕn(ζ1). (A16)

After changing the integration variable u→ v with v = u2 with udu = dv/2, one uses∫ ∞

0
dv

vn

n!
exp[−v] = 1, n = 0, 1, . . . (A17)

and, in view of the completeness of the Hermite polynomials, arrives at

1
π

∫ ∞

0
udu

∫ 2π

0
dϕ 〈ζ2|z〉〈z|ζ1〉 =

∞

∑
n=0

ϕn(ζ2)ϕn(ζ1) = δ (ζ2− ζ1) . (A18)
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In the type-II HO and the RO cases, there appear additional purely imaginary phases in the
wave function, which do not depend on ζ1, ζ2, and drop out at the step (A15) of the completeness
proof above.
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