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Mitglieder der Prüfungskommission:
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Zusammenfassung

Diese Forschungsarbeit präsentiert Scheduling-Algorithmen für NP-schwere
kombinatorische Optimierungsprobleme in der Fertigung und im Transport-
bereich. Scheduling spielt eine wichtige Rolle im Erfolg der meisten Lo-
gistiksysteme wie zum Beispiel Produktion, Materialumschlag, Verpackung,
Warenbestand, Transport, Lagerhaltung etc. Scheduling-Aufgaben wurden
seit den späten Fünfzigerjahren untersucht. Wegen der NP-schweren Eigen-
schaften der meisten dieser Aufgaben, wurden diese weitestgehend unter Ver-
wendung metaheuristischer Algorithmen gelöst, bestehend aus Genetische Al-
gorithmen, Simulated Annealing, Ant Colony Optimization, etc. Diese meta-
heuristischen Algorithmen weisen ein unermessliches Potential für fast alle
NP-schweren Optimisierungsaufgaben auf. Trotzdem kann je nach Umfang
der Aufgabe eine optimale Lösung nicht immer gefunden werden.

Auer diesen Methoden können solche Aufgabenstellungen auch mit Inte-
ger Programming (IP) angegangen werden. Wegen der exponentiell steigen-
den Anzahl von Entscheidungsvariablen scheitern IP-Anwender jedoch, gröere
Aufgaben mit herkömmlichen Computern zu lösen. Diese Arbeit basiert auf
der Aufteilung des 0-1 Integer Programming in zwei Teile, hauptsächlich um
die Gröe des Suchraumes zu verkleinern. Diese Teilung führt zu einem lin-
earen Programm und einem Satz von Entscheidungsvariablen. Weil Lineare
Programmierung (LP) polynomiell lösbar ist, kann es in den metaheuristis-
chen Algorithmus integriert werden, um eine optimale bzw. nahezu optimale
Lösungen zu erzielen. Die Nutzung von LP-Solvern mit iterativen metaheuris-
tischen Algorithmen ist jedoch zeitaufwendig, da diese Solver nicht schnell
genug sind. Folglich ist für eine effektive Nutzung dieses Ansatzes die En-
twicklung von schnellen spezialisierten polynomiellen Algorithmen für das
resultierende Lineare Programm notwendig. Die Entwicklung dieser exakten
polynomiellen Algorithmen ist jedoch kompliziert - auer für triviale Fälle und
erfordert zuerst eine theoretische Analyse des spezifischen Linearprogramms.

In der vorliegenden Arbeit wird dieser Ansatz für verschiedene NP-schwere
Scheduling-Aufgaben verwendet, hauptsächlich in den Bereichen Transport
und Fertigung. Um optimale bzw. nahezu optimale Lösungen zu erhalten,



werden neue spezialisierte Algorithmen für resultierende LPs entwickelt und
diese mit den metaheuristischen Algorithmen kombiniert. Die Entwicklung
des polynomiellen Algorithmus erfolgt durch eine intensive Analyse der sich
ergebenden Linearen Programme für alle Scheduling-Probleme, die in dieser
Arbeit berücksichtig wurden. Die Ergebnisse verschiedener Scheduling - Bench-
marks beweist das Potential dieses Ansatzes. Ein weiterer Vorteil dieses
Ansatzes ist dessen inhärente Parallelisierbarkeit, die später in dieser Arbeit
mit Hilfe von GPGPU (General Purpose Computation on Graphics Process-
ing Unit) gezeigt wird. Auerdem wird auch diskutiert, wie dieser allgemeine
Ansatz für andere kombinatorische Optimierungsprobleme angepasst werden
kann.

Abhishek Awasthi
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Abstract

This research work presents scheduling algorithms for NP-hard combinato-
rial optimization problems in manufacturing and transportation. Scheduling
plays an important role in the success of most of the logistic systems such
as production, material handling, packaging, inventory, transportation, ware-
housing, etc.. Scheduling problems have been investigated since the late fifties.
Due to the NP-hard nature of most of these problems, they have predomi-
nantly been solved utilizing the metaheuristic algorithms, consisting of Ge-
netic Algorithm, Simulated Annealing, Ant Colony Optimization, etc.. These
metaheuristic algorithms have proven to be of immense potential for almost
all the NP-hard optimization problems. Nonetheless, a solution to optimality
can be hard to come by, depending on the instance size of the problem.

Apart from these methodologies, these problems can also be tackled with
Integer Programming (IP). However, due to the exponentially increasing num-
ber of decision variables, IP solvers fail to solve large sized problem instances
on conventional computing devices. This work is based on splitting the 0-1
Integer Programming in two parts to basically reduce the size of the search
space. This split leads to a linear program and a set of decision variables.
Since Linear Programming (LP) is polynomially solvable, they can be inte-
grated with the metaheuristic algorithms to obtain optimal/near-optimal so-
lutions. However, using LP solvers with an iterative metaheuristic algorithm
is time consuming as these solvers are not fast enough. Hence, an effective
utilization of this approach requires the development of some fast specialized
polynomial algorithms for the resulting LP. However, developing these exact
polynomial algorithms is not straight forward except for trivial cases, and
requires theoretical analyses of the specific linear program at hand.

In this work, we utilize this approach over several NP-hard scheduling
problems mainly in the field of transportation and manufacturing. We develop
novel specialized algorithms for the resulting LPs to exploit them in conjunc-
tion with the metaheuristic algorithms to provide optimal/near-optimal so-
lutions. The development of efficient polynomial algorithms is carried out by
in-depth theoretical studies of the resulting LPs of all the scheduling prob-



lems considered in this work. Our results over several scheduling problems
prove the potential of this approach. Another benefit of this approach is its
inherent parallel structure which is demonstrated later in this work with the
help of Graphics Processing Unit (GPU) computing. Moreover, we also dis-
cuss how this generalized approach can be extended to other combinatorial
optimization problems, apart from scheduling.

Abhishek Awasthi
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1

Introduction

Scheduling is a decision-making process that is used on a regular basis in many
manufacturing and service industries. It deals with the allocation of resources
to tasks over given time periods and its goal is to optimize one or more
objectives. The resources and tasks in an organization can take many different
forms. The resources may be machines in a workshop, runways at an airport,
crews at a construction site, processing units in a computing environment
and so on. The tasks may be operations in a production process, arrivals
and departures at an airport, stages in a construction project, executions of
computer programs, and so on. Each task may have a certain priority level,
for instance, an earliest possible starting time and a due date along with
a processing time. The objectives can also take many different forms. One
objective may be the minimization of the completion time of the last task
and another may be the minimization of the number of tasks completed after
their respective due dates.

Scheduling problems have been investigated since the late fifties [16, 142,
137]. Two types of applications have mainly motivated research in this area:
project planning and machine scheduling [64, 89]. While in machine schedul-
ing a large number of specific scheduling situations depending on the machine
environment and the job characteristics have been considered [91], the early
work in project planning investigated scheduling situations with precedence
constraints between activities assuming that sufficient resources are available
to perform the activities [81]. On the other hand, also in machine schedul-
ing more general and complex problems have been investigated. Due to these
developments, today both areas are much closer to each other. Furthermore,
applications like timetabling, industrial scheduling and several other logistics
are connected to both areas [29]. Scheduling plays an important role in the
success of most of the logistic systems such as; material handling, produc-
tion, packaging, inventory, transportation, warehousing etc. [119]. One of the
first works related to scheduling was presented by Henry Gantt, who gave
the idea of Gantt Charts, a graphical representation of tasks in general pro-
duction planning [59]. However, it took many years for the first scheduling



1.1. Motivation

publications to appear in the industrial engineering and operations research
literature. Some of the first publications appeared in Naval Research Logistics
Quarterly in the early fifties and contained results by W.E. Smith, S.M. John-
son and J.R. Jackson [130, 75, 71]. During the sixties a significant amount of
work was done on branch-and-bound and integer programming formulations
of scheduling problems [98, 2]. Integer Program (IP) is a mathematical model
of an optimization problem, comprising of all the constraints and the objective
function of the problem, and the conventional Branch-and-Bound algorithm
works by relaxing the integer decision variables of an IP.

1.1 Motivation

An IP formulation of a scheduling problem is a combination of linear con-
straints and a set of integer decision variables. IP solvers are a strong tool to
solve several NP-hard problems to optimality. However, since an IP itself is
NP-hard, it ceases to solve problems with high number of integer decision vari-
ables. Hence, one of the best tools available today to produce optimal/near-
optimal solutions to these problems are the metaheuristic algorithms.

A metaheuristic algorithm in general can be viewed as a problem-oriented
intelligently randomized algorithm, generally based on a naturally occurring
phenomenon, for any optimization problem, as opposed to mathematical op-
timization algorithms such as the linear programming algorithms. A lot of
problems in scheduling are NP-hard and require a high runtime complexity
even with the present state-of-the-art [29, 119, 79]. In recent years the main fo-
cus has been on developing metaheuristic or hybrid metaheuristic algorithms
to solve the NP-hard scheduling problems in general [50, 54, 53, 110, 99, 1, 52,
13, 57]. Some of the benchmark problems such as the relatively small instances
of job shop problem with 10 jobs and 10 machines, proposed by Muth and
Thompson (1963) [111] remained unsolved for more than a quarter of a cen-
tury and these problems were solved later with the advancement of the meta-
heuristic algorithms [146]. These mainly include Evolutionary Algorithms [63],
Local Search [107], Tabu Search [62] etc.. Another related area which has been
proven to be very efficient for these problems is hybridization of different ap-
proaches, where the strategies of two or more metaheuristics are combined
together in a single algorithm [23]. Many of these algorithms have been im-
plemented on CPUs and have turned out to be extremely useful for a large
class of combinatorial problems in general [50, 54, 53, 110, 99, 1, 52, 13, 57].

In this work we focus on solving an NP-hard problem utilizing the Integer
Programming (IP) formulation and the metaheuristic algorithms. The inter-
esting aspect of an IP formulation which is utilized in this research work is
that discarding the integer constraint on the decision variables renders us a
linear programming formulation, which is polynomially solvable [78]. The idea
is to fix the decision variables to a feasible set of values with the help of meta-
heuristic algorithms and utilize the resulting linear programming formulation.

2



Chapter 1. Introduction

However, even though a linear programming formulation is polynomially solv-
able to optimality, they are considerably slower when used with any iterative
heuristic algorithm.

Due to the slowness of the LP solvers, faster specialized polynomial al-
gorithms known as the timing algorithms are required to effectively utilize
the benefit of the discussed approach. Hence, in this work we make extensive
theoretical studies on several NP-hard scheduling problems and develop fast
specialized polynomial algorithms for the resulting linear program, and uti-
lize them with the metaheuristic algorithms. We demonstrate the advantage
of this two-layered approach with the help of our computational results as
well as its apparent straight forward benefit for multi-core processing.

1.2 Summary of the Book

We now present a short introduction and summary of each chapter of this
book. Chapter 2 describes the generalized two-layered approach adopted in
this work to optimize NP-hard scheduling problems. A general framework in
the 0-1 mixed integer programming formulation of a combinatorial scheduling
problem is utilized. This strategy helps us in the rest of this work to optimize
the studied scheduling problems by combining the specialized polynomial al-
gorithms with metaheuristic algorithms. We also present the inherent parallel
structure in this approach for NP-hard scheduling problems. Related work for
this strategy is also discussed.

We then study four different NP-hard scheduling problems utilizing the
two-layered approach. In Chapter 3 we study the Aircraft Landing Problem
(ALP), which involves landing of a certain number of planes at an airport
on single or multiple runways with special constraint on the safety distances.
The Aircraft Landing Problem is studied since the 90s till recently, by several
authors [11, 12, 13, 52, 124, 126, 144]. In this work we propose a polynomial
algorithm to optimize the landing times of the aircraft on runway(s) for a
special case of the safety constraint. This algorithm is developed taking into
account the integer programming formulation of the ALP. This formulation
can be divided in two parts, where one part is solved with our polynomial
algorithm, and the second part is dealt with by a metaheuristic algorithm.
Our algorithm also accounts for the general case of the safety constraint in
the sense that we provide high quality feasible solutions, which is evident from
our experimental studies on the benchmark instances and its comparison with
the sate-of-the-art results in this field.

Chapter 4 discusses another scheduling problem which is in the field of
Just-in-Time philosophy, known as the Common Due-Date problem (CDD).
The objective of this NP-hard combinatorial optimization problem is to sched-
ule and sequence a set of jobs on single or parallel machines against a com-
mon due-date, to minimize the total weighted earliness/tardiness cost. This
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scheduling problem is of practical relevance to several mass producing man-
ufacturing industries. Once again we utilize the two-layered approach and
develop fast specialized deterministic algorithms to optimize the schedule of
jobs in any given sequence. We present two different algorithms to solve the
resulting linear program of the fixed job sequence. First algorithm is derived
by reducing the CDD to ALP and the second algorithm is developed utilizing
some intrinsic properties of this scheduling problem. Moreover, a simple yet
highly effective heuristic is also proposed to locally improve any jobs sequence.
We then club our algorithm with the Simulated Annealing metaheuristic and
carry out experimental analysis on the benchmark instances. Our results are
compared with the best known results found in the literature and the benefit
of our strategy is justified. We then go on to study an extension of the com-
mon due-date problem known as the Common Due-Window (CDW) problem
in Chapter 5. This scheduling problem is quite similar to the CDD except
that in CDW the jobs are scheduled against a due-window bounded by two
due-dates. Yet again, we break the integer programming formulation for this
problem and solve the resulting linear program with a linear algorithm. This
algorithm is developed by making a theoretical study of the problem and ex-
tending an important property of the CDD to the CDW problem. Similar to
the CDD, we also propose a simplified heuristic which utilizes the V-shaped
property. Henceforth, we present our results on the benchmark instances which
are far superior to the best known solutions.

Next, we study the Un-restricted Common Due-Date problem with Con-
trollable Processing times (UCDDCP), in Chapter 6. The idea behind the
solution for this problem is based on the same principle. We make an exten-
sive theoretical study and propose novel properties for this scheduling prob-
lem. These properties are then exploited to develop a linear timing algorithm
to optimize any job sequence. We also provide new benchmark instances and
combine simulated annealing and threshold accepting metaheuristics with our
O(n) algorithm to provide optimal/near-optimal solutions to all the bench-
mark instances. In Chapter 7 we show the utilization of the inherent parallel
structure of the two-layered approach. We provide GPGPU based parallel
metaheuristic algorithms to optimize CDD and UCDDCP. The tailor-made
ease and efficiency of our approach for parallel processing is well described
and justified with our experimental analyses. We conclude our work with
Chapter 8, where the proposed strategy and this research work are summa-
rized along with the discussions on its benefit and extension of the proposed
approach to other NP-hard combinatorial optimization problems.
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The Generalized Two-layered Approach

In this chapter we provide a short introduction to Linear Programming (LP)
and Integer Programming (IP), for scheduling problems. We then explain the
two-layered approach of solving an NP-hard scheduling problem by breaking-
up the mixed integer programming formulation in two parts. One part is
solved optimally by specialized polynomial algorithms, while the second part
is solved utilizing a metaheuristic algorithm. We explain the benefits of the
specialized polynomial algorithms over the LP solvers. Additionally, we also
discuss the apparent advantage of the two-layered approach for multi-core
processing, predominantly for parallel GPGPU computing.

2.1 Linear and Integer Programming

A mathematical model of a real world optimization problem helps us to formu-
late the exact requirements and constraints for better analysis. Linear Pro-
gramming is one such methodology to meet the requirements of real world
problems of different nature, such as allocation of resources, transportation,
manufacturing etc. [69]. Linear Programming is a strong and useful numeri-
cal optimization tool, especially in Operations Research. In general, LP refers
to a mathematical program of a min/max optimization problem, where the
objective function and the constraints are all linear in terms of the decision
variables. Linear programming formulation in general can be expressed as

minimize cT x̄

subject to Ax̄ ≤ b

Aeqx̄ = beq

x̄ ≥ 0.
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In the above formulation, c, b and beq are the vectors of known parameters,
A, Aeq are the matrices of known parameters and x̄ is the vector of decision
variables. On the other hand, an Integer Program is a special case of a linear
program which possesses an additional constraint that all the decision vari-
ables must be integers, i.e., x̄ ∈ Zn. Evidently, a Mixed Integer Programming
(MIP) forces only some of the decision variables to take integer values, while
the remaining variables are only upper/lower bounded [29, 119].

Although Simplex method is a highly effective and works well in practice to
solve a linear program, in the worst case it can take exponential runtime [48,
84]. However, LP is polynomially solvable using the Ellipsoid method and
Interior point methods like the Karmarkar’s algorithm [78]. A 0-1 integer
programming on the other hand is an NP-complete optimization problem [79]
and the best methods to solve an IP are branch-and-bound and heuristic
algorithms. Several NP-hard combinatorial optimization problems such as the
scheduling problems can be expressed as a 0-1 mixed integer programming
formulation, where certain decision variables are restricted to 0 or 1.

2.2 The Two-Layered Approach

We now present the intuition and the exact strategy for the two-layered ap-
proach. As a simple exemplary case, let us consider the 0-1 mixed integer
programming formulation of an NP-hard scheduling problem [66]. The prob-
lem consists of scheduling and sequencing a certain number of jobs (n) against
a common due-date (d) on a single machine. The processing time and the com-
pletion time for any job i is denoted by Pi and Ci, respectively. The objective
of this problem is to minimize the total absolute deviation of the completion
times of the jobs with the due-date.

The problem is NP-hard and its mixed integer formulation is shown below
in Equation (2.1). The idea behind the approach is to break the integer pro-
gramming formulation of an NP-hard scheduling problem in two parts, i.e.,
(i) finding the optimal/near-optimal processing sequence and (ii) finding the
optimal values of the completion times Ci for all the jobs in this processing
sequence. The job sequences are optimized by using a metaheuristic algorithm
and for each candidate job sequence, the metaheuristic solves the sub-problem
(ii) as a linear program by applying specialized deterministic algorithm. To
better understand this strategy, we need to look at the integer programming
formulations for one such problem mentioned above.

minimize
n∑
i=1

|Ci − d| (2.1)

6
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subject to

C1 ≥ P1,

Ci ≥ Pi + Cj −G · δij , i = 1, . . . , n− 1, j = i+ 1, . . . , n,

Cj ≥ Pj + Ci −G · (1− δij), i = 1, . . . , n− 1, j = i+ 1, . . . , n,

δij ∈ {0, 1} i = 1, . . . , n− 1, j = i+ 1, . . . , n.

In the above formulation, G is some very large positive number and δij
is the decision variable with δij ∈ {0, 1}, i = 1, 2, . . . , n − 1, j = i + 1, . . . , n.
We have δij = 1 if job i precedes job j in the sequence (not necessarily right
before it) and vice-versa. It is interesting to observe that the sole purpose of
this binary decision variable in the above formulation is to find the optimal job
sequence. Additionally, any feasible set of δij values also fetches us a feasible
job sequence, although not necessarily optimal. For example, let us take one
feasible set of values for δij for a job sequence size of n = 4, where δ12 = 0,
δ13 = 0, δ14 = 1, δ23 = 0, δ24 = 1 and δ34 = 1. With this assignment of δij ,
we get a job sequence {3, 2, 1, 4}. Likewise, there are several possible feasible
sets of values for δij . Hence, if we take any such feasible set of values of δij ,
we actually have a feasible job sequence at hand, and substituting those fixed
δij values in Equation (2.1) converts the above MIP formulation to a linear
programming formulation.

Apparently, that linear program basically solves for the optimal comple-
tion times of the jobs for that particular job sequence. We know that linear
programming problem is polynomially solvable and that is how we utilize the
above strategy to break our NP-hard problems in two parts. One part deals
in finding the completion times (Ci) of the jobs for any given job sequence.
The second part, utilizes a metaheuristic algorithm to efficiently search for
the optimal/best job sequence. Even though LP is polynomially solvable, the
LP solvers are quite slow when run iteratively on some heuristic algorithm.
Hence, to gain from the above mentioned strategy, some faster specialized
polynomial algorithm for the resulting linear program still needs to be found.

There have been a few research works on optimizing the completion times
of a fixed job sequence against distinct due-dates for minimizing the earliness-
tardiness costs on a single machine. Szwarc and Mukopadhyay proposed an
O(n2) timing algorithm for minimizing the total weighted earliness/tardiness
for a fixed job sequence, with each job possessing a distinct due-date [133]. In
2001, Chrétinne provided an O(n3 log n) for the general case of asymmetric
and task-dependent earliness/tardiness costs [40]. Chrétinne and Sourd then
improved the complexity of this algorithm and proposed an algorithm which
ran in O(n2) [41]. In 2006, Bauman and Józefowska presented an O(n log n)
polynomial algorithm for minimizing earliness/tardiness costs problem, for
any given job sequence [10]. In 2007, Hendel and Sourd present an O(n log n)
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algorithm for the weighted earliness/tardiness problem with convex piecewise
linear cost function for any job [68]. They extend this algorithm for the permu-
tation flow shop scheduling problem. However, there is hardly any research
work which utilizes this strategy to solve an NP-hard problem completely
providing optimal or near-optimal solutions and prove its efficiency.

Although, this two-layered approach usually calls for the development of
specialized polynomial algorithms for the resulting LP, evidently there are
also some NP-hard problems, where the resulting LP is trivial. One example
for such a case is the famous Travelling Salesman Problem (TSP). Consider a
network of n cities with each city connected by a direct path. The objective
of the TSP is for the salesman to start from its source, visit all the cities
and return back to the source, with minimum possible distance covered. Let
the source point of the salesman be represented as i = 0 and xij be a binary
decision variable such that xij is equal to 1 if the salesman traverses the direct
path between cities i and j, and 0 otherwise. Let cij be the distance between
cities i and j. We can then formulate the integer programming for the TSP
as

minimize
n∑
i=0

n∑
i6=j,j=0

cij · xij

subject to

n∑
i=0

xij = 1, ∀j ∈ {0, 1, 2, . . . , n}, i 6= j,

n∑
j=0

xij = 1, ∀i ∈ {0, 1, 2, . . . , n}, i 6= j,

xij ∈ {0, 1} ∀(i, j) ∈ {0, 1, 2, . . . , n}2, i 6= j.

Clearly, we have single decision variable in the above formulation and fixing
xij ∀i, j with a feasible set of values provides us with a feasible complete path
for the travelling salesman, and the resulting LP is trivial in the sense that
we only need to calculate the objective function value for those xij values.
However, there are several NP-hard problems where the resulting LP is not
trivial as in the case of above formulation mentioned in Equation (2.1), and
thus development of a specialized polynomial algorithm becomes an important
aspect of this approach. We study several such NP-hard scheduling problems
and develop novel algorithms to solve the LP in polynomial time and prove
their effectiveness with experiments on benchmark instances.

Not only does this approach help to reduce the overall complexity of the
optimization problem, it also possesses an inherent parallel structure. Any
population based metaheuristic can be easily parallelized if the evaluation for
each instance of the population is the same. Besides, increasing the population

8



Chapter 2. The Generalized Two-layered Approach

size of a metaheuristic increases its probability to achieve an optimal or near
optimal solution. However, if this increase in size is carried out on a single
core processing unit, it increases the runtime of the computation, proportion-
ately. With the help of our two-layered approach we can optimize any feasible
problem instance in polynomial time and hence utilizing a multi-core process-
ing unit is extremely efficient. For the above example in Equation (2.1), since
any job sequence can be solved optimally in polynomial time, we can easily
carry out parallel computations for several job sequences utilizing multi core
processors. In this research work, we also exploit this parallel structure and
combine our polynomial algorithms with parallel metaheuristic algorithms for
some of the studied problems for GPGPU computations.
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3

Efficient Polynomial Algorithm to Optimize a
Given Landing Sequence of the Aircraft
Landing Problem

We present a polynomial algorithm for optimizing the overall penalty cost
incurred by the earliness/tardiness of the aircraft in a given landing sequence
at one or more runways, against their target landing times. Scheduling against
due-dates is a general problem in the production and transportation industry.
In this work, we investigate the Aircraft Landing Problem (ALP) as an ex-
emplary case and show how this problem is related to the general scheduling
problem of weighted earliness-tardiness machine scheduling problems. Hence-
forth, we present our strategy of breaking down the problem in two parts,
solving one part with a number of steps polynomial in the problem scale and
the other by using a modified Simulated Annealing (SA) algorithm. Our poly-
nomial algorithms optimize a given landing sequence for the ALP, while the
SA is implemented to calculate the optimal processing sequence of the planes.
Thereafter, we show the effectiveness of our approach by presenting extensive
results for benchmark instances from the OR-library for both the problems
and conduct a comparison with other recent work in the literature.

3.1 Introduction

Air Traffic Control (ATC) at any airport has the task to manage the incom-
ing and outgoing flights at the airport. The ATC gives instructions to the
aircraft regarding to the choice of runway, speed, and altitude in order to
align it with the allocated runway and maintain the safety distance with its
preceding aircraft. The first and foremost priority of the ATC is to guide
the aircraft in its jurisdiction such that the safety distance between any two
aircraft is maintained. The other priorities include the commercial aspect of
the business, i.e., to land the aircraft as close as possible to their scheduled
landing times to avoid the capital losses. However, during peak hours this job
becomes increasingly complicated as the controllers must handle safe and ef-
fective landings of a continuous flow of aircraft entering the radar range onto
the assigned runway(s). The capacity of runways is highly constrained and
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this makes the scheduling of landings a difficult task. Increasing the capacity
of an airport by building new runways is an expensive and difficult affair.
Hence, the air traffic controllers face the problem of allocating a landing se-
quence and landing times to the aircraft in the radar range. Additionally, in
case of airports with multiple runways, they have to make a decision on the
runway allotment too, i.e., which aircraft lands on which runway. These de-
cisions are made based on certain information about the aircraft in the radar
range [11, 52, 121]. A target landing time is defined as the time at which an
aircraft can land if it flies straight to the runway at its cruise speed (most eco-
nomical). This target landing time is bounded by an earliest landing time and
a latest landing time commonly referred to as the time window. The earliest
landing time is determined as the time at which an aircraft can land if it flies
straight to the runway at its fastest speed with no holding, while the latest
landing time is determined as the time at which an aircraft can land after it
is held for its maximal allowable time before landing. All the aircraft have to
land within their time window and there are asymmetric penalties associated
with each aircraft for landing earlier or later than its target landing time.
Besides, there is the constraint of the safety distance that has to be main-
tained by any aircraft with its preceding aircraft. This separation is necessary
as every aircraft creates a wake vortices at its rear and can cause a serious
aerodynamic instability to a closely following aircraft. There are several types
of planes which land on a runway and the safety distance between any two
aircraft depends on their types. This safety distance between any two aircraft
can be easily converted to a safety time by considering the required separa-
tion and their relative speed. If several runways are available for landing, the
application of this constraint for aircraft landing on different runways usually
depends upon the relative positions of the runways [11, 52, 121]. A formal
definition of the ALP is given in Section 3.3.

The objective of the ALP is to minimize the total penalty incurred due
to the deviation of the scheduled landing times of all the aircraft with their
target landing times. Hence, the air traffic controllers not only have to find
suitable landing times for all the aircraft but also a landing sequence so as to
minimize the total penalty. This work considers the static case of the aircraft
landing problem where the set of aircraft that are waiting to land is already
known. For a special but practically very common case of the safety constraint,
we present a polynomially bound exact algorithm for optimizing any given
feasible landing sequence for the single runway case and an effective strategy
for the multiple runway case. In the later part of the chapter we present our
results for all the benchmark instances provided by [14] and compare the
results with previous works on this problem, as in [3].
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3.2 Related Work

The aircraft landing problem described in this chapter was first introduced by
[14] and since then, it has been studied by several researchers using different
metaheuristics, linear programming, variants of exact branch and bound al-
gorithms etc., for both the static and dynamic cases of the problem. In 1997,
Ciesielski et al. developed a real time algorithm for the aircraft landings us-
ing a genetic algorithm and performed experiments on landing data for the
Sydney airport on the busiest day of the year [42]. Beasley et al. presented a
mixed-integer zero-one formulation of the problem for the single runway case
and later extended it to the multiple runway case [11]. The ALP was studied
for up to 50 aircraft with multiple runways using linear programming based
tree search and an effective heuristic algorithm for the problem. Ernst et al.
presented a specialized simplex algorithm for the linear program which eval-
uates the landing times based on some partial ordering information. This
method was used in a problem space search heuristic as well as a branch-and-
bound method for both, the single and multiple runway case, for again up to
50 aircraft [52]. Beasley et al. adopted similar methodologies and presented
extended results [11]. In 2001, Beasley et al. developed a population heuristic
and implemented it on actual operational data related to aircraft landings at
the London Heathrow airport [13].

The dynamic case of the ALP was studied again by Beasley et al. by ex-
pressing it as a displacement problem and using heuristics and linear program-
ming [12]. In 2006, Pinol and Beasley presented two heuristic techniques, Scat-
ter Search and the Bionomic Algorithm and published results for the available
test problems involving up to 500 aircraft and 5 runways [121]. The dynamic
case of the problem for the single-runway case was again studied by [109].
They used extremal optimization along with a deterministic algorithm to op-
timize a landing sequence. In 2008, Tang et al. implemented a multi-objective
evolutionary approach to simultaneously minimize the total scheduled time
of arrival and the total cost incurred [135]. In 2009, Bencheikh et al. ap-
proached the ALP using hybrid methods combining genetic algorithms and
ant colony optimization by formulating the problem as a job shop scheduling
problem [18]. The same authors presented an ant colony algorithm in conjunc-
tion with a heuristic (non-optimal) to adjust the landing times of the aircraft
in a given landing sequence in order to minimize the total penalty cost, in
2011 [17].

In 2012, a hybrid meta-heuristic algorithm was suggested by Salehipour et
al. using simulated annealing with variable neighbourhood search and variable
neighbourhood descent [126]. Xie et al. presented a hybrid metaheuristic based
on BAT algorithm to optimize the ALP. They incorporate four different ap-
proaches for the initial landing times of the aircraft [144]. Hancerliogullari et
al. study the arrival-departure problem for multiple runways and propose
greedy and metaheuristic algorithms. They test their algorithms on their own
problem instances up to 25 aircraft 5 runways [67]. Faye proposes an approach
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to solve ALP using an approximation of the separation time required between
any two aircraft, to calculate a lower bound of the problem [56]. They then
incorporate a constraint generation algorithm to solve the problem. However,
there results are not so promising compared to other works mentioned in the
literature. Ma et al. proposed an approximation algorithm for the aircraft ar-
rival for optimizing the makespan of the landing sequence of the aircraft [105].
Moghaddam et al. proposed a fuzzy programming approach for aircraft land-
ing on single runway and present their results only up to 20 aircraft [108].
Lieder et al. study the aircraft landing problem with aircraft classes on mul-
tiple runways and propose a dynamic programming approach for the prob-
lem [93]. Lider and Stolletz study the similar problem but with both landings
and take-offs and propose again a dynamic programming approach [94]. Sabar
and Kendall implemented an Iterated Local Search algorithm along with local
search phase [124]. In this work, we compare our approach with the four most
recent works and algorithms proposed by [121, 144, 124, 126].

3.3 Problem Formulation

In this section, we present the mathematical formulation of the static aircraft
landing problem based on Pinol and Beasley [121] and Beasley et al. [11].
We also define some new parameters which are later used in our algorithm,
presented in the next sections.

3.3.1 Notation

Let,
N = total number of aircraft,
R = total number of runways,
ETi = earliest landing time for aircraft i, i = 1, 2, . . . , N ,
LTi = latest landing time for aircraft i, i = 1, 2, . . . , N ,
TTi = target landing time for aircraft i, i = 1, 2, . . . , N , such that

ETi < TTi < LTi,
STi = scheduled landing time for aircraft i,
Sij = required separation time between planes i and j, where plane i lands

before plane j on the same runway, where (i, j) ∈ {1, 2, . . . , N}2 and
i 6= j,

sij = required separation time between planes i and j, where plane i lands
before plane j on different runways, (i, j) ∈ {1, 2, . . . , N}2 and i 6= j,

gi = earliness (time) of plane i from TTi,
hi = tardiness (time) of plane i from TTi,
αi = penalty cost per time unit associated with aircraft i for landing

before its target landing time TTi,
βi = penalty cost per time unit associated with aircraft i for landing

after its target landing time TTi.

14
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Mathematically, the earliness and tardiness of any plane i from its target
landing time can be expressed as

gi = max{0, TTi − STi}
hi = max{0, STi − TTi}

}
i = 1, 2, . . . , N .

The total penalty corresponding to any aircraft i is then expressed as
giαi + hiβi. If aircraft i lands at its target landing time then both gi and hi
are equal to zero and the cost incurred by its landing is equal to zero. However,
if aircraft i does not land at TTi, either gi or hi is non-zero and there is a
strictly positive cost incurred. The objective function of the problem can now
be defined as

min

N∑
i=1

(gi · αi + hi · βi). (3.1)

We now discuss the 0-1 mixed integer programming formulation for the
ALP with single runway and later in the chapter deal with the multiple runway
case. The decision variables for the Aircraft Landing Problem with single
runway are STi, gi, hi and δij , where,

δij =

{
1, if aircraft i lands before j and i 6= j,

0, otherwise.
(3.2)

Note that in any landing sequence, either aircraft i will land before j, or
vice-versa, hence we have δij + δji = 1.

3.3.2 Constraints

The first constraint on any aircraft landing at the airport is its time-window
constraint. The landing time of any plane has to be within its time window,
i.e., ETi ≤ STi ≤ LTi. Another constraint which is forced over the aircraft
landings is the safety distance constraints between the aircraft. This constraint
is mathematically expressed as STj ≥ STi + Sij − G · δij , where (i, j) ∈
{1, 2, . . . , N}2 and i 6= j. Pinol and Beasley use this formulation with G >> 0
being a relatively large positive integer, to ensure that the above equation
becomes redundant if aircraft j lands before i, i.e., δji = 1 [121].

We can now express the complete 0-1 mixed integer programming formu-
lation as

15



3.4. The Exact Algorithm

Minimize
N∑
i=1

(αi · gi + βi · hi) (3.3)

subject to
ETi ≤ STi ≤ LTi, ∀i ∈ {1, 2, . . . , N},
STj ≥ STi + Sij −G · δij , ∀(i, j) ∈ {1, 2, . . . , N}2, i 6= j,
STi = TTi − gi + hi, ∀i ∈ {1, 2, . . . , N},
0 ≤ gi ≤ TTi − ETi, ∀i ∈ {1, 2, . . . , N},
gi ≥ TTi − STi, ∀i ∈ {1, 2, . . . , N},
0 ≤ hi ≤ LTi − TTi, ∀i ∈ {1, 2, . . . , N},
hi ≥ STi − TTi, ∀i ∈ {1, 2, . . . , N},
δij + δji = 1, ∀(i, j) ∈ {1, 2, . . . , N}2, i 6= j,
δij ∈ {0, 1}, ∀(i, j) ∈ {1, 2, . . . , N}2, i 6= j.

As we can observe in Equation (3.3), δij is the sole decision variable with
integer constraint. Besides, this decision variable is also responsible for deter-
mining the optimal landing sequence. As discussed in the previous chapter,
in this work we solve the resulting linear program by fixing δij with a feasible
set of values, by developing an efficient polynomial algorithm. This algorithm
essentially optimizes the landing times of the aircraft in any given feasible se-
quence, where the safety constraint is forced only between the planes landing
consecutively. Later we extend our polynomial algorithm for the general case
of the safety constraint and compare our results with several other approaches
in the literature.

3.4 The Exact Algorithm

In this section we present our exact polynomial algorithm for the aircraft
landing problem with a special case of the safety constraint for the single
runway case. The algorithm takes a feasible landing sequence and computes
the optimal landing times to minimize Equation (3.1).

Once we are given a feasible landing sequence, we initialize the landing
times of the aircraft by vector ST where any element STi is computed as

STi =

{
LTi if i = N

min{PSi, LTi} if 1 ≤ i ≤ N − 1,
(3.4)

where,
PSi = min

j=i+1,i+2,...,N
{(STj − Sij)} . (3.5)

Lemma 3.1. If the initial assignment of the landing times of all the air-
craft in any feasible landing sequence for a single runway is done according
to Equation (3.4) and (3.5), then the optimal scheduled landing times STi
for this landing sequence can be obtained only by reducing the landing times
of the aircraft while respecting the constraints or leaving the landing times
unchanged.

16



Chapter 3. Efficient Polynomial Algorithm to Optimize a Given Landing
Sequence of the Aircraft Landing Problem

Proof. Equation (3.4) schedules the landing times of the aircraft in the reverse
order starting from the last plane to the first plane in the landing sequence.
The last plane is assigned a landing at its latest landing time LTN and any of
the preceding planes are assigned as late as possible from their target landing
time, while maintaining the safety distance constraint. This is ensured by
min{PSi, LTi}, where LTi is the latest landing time of aircraft i and PSi is
the closest landing time possible for aircraft i to all its following aircraft. We
define PSi according to Equation (3.5), where any plane i maintains the safety
distance with all its following planes. Since the landing times are assigned as
close as possible to their latest landing times, increasing the landing time of
any aircraft will cause infeasibility as the last aircraft is landing at its latest
landing time and all the preceding planes are scheduled as close as possible.
Hence, the optimal solution can be obtained only by decreasing the landing
times or leaving them unchanged if there is no reduction possible. �

It is important to note here that with the above initialization, if any of the
airplanes in the given sequence lands outside its time window, it shows that
this landing sequence is infeasible. In such a case, that particular sequence of
aircraft cannot be landed and hence, our algorithm rejects it straight away.

We now present some new parameters, definitions and lemmas which are
useful for the explanation of our algorithm. We first define vector D such that
element i of this vector is represented by Di as the algebraic deviation of the
scheduled landing time of plane i from its target landing time, Di = STi−TTi,
i = 1, 2, . . . , N . We also define vector ES, such that any element ESi of ES is
the minimum of extra separation times maintained between plane i and all its
preceding planes, and the deviation from its earliest landing time, for i > 1.
For i = 1, we define ESi as the deviation of its scheduled landing time with
its earliest landing time, as there are no planes landing before the first plane.
Mathematically, ESi can be written as

ESi =

{
STi − ETi, if i = 1,

STi −max{SPi, ETi}, if 2 ≤ i ≤ N,
(3.6)

where,
SPi = max

j=1,2,...,i−1
(STj + Sji) . (3.7)

Here, SPi is the time at which an aircraft i can land maintaining the safety
constraint with all its preceding planes. Let P be a given landing sequence of
the planes where the ith plane in this sequence is denoted by i, i = 1, 2, . . . , N .
Note that without loss of any generality we can assume this, since the planes
can be ranked in any sequence according to their order of landing.

Given this initialization, it is possible to reduce the landing times straight
away to improve the solution. Algorithm 1 presents this improvement of the
initial landing times for the single runway case. We would like to point out that
Algorithm 1 will not necessarily return the optimal solution but only fetch an
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Algorithm 1: Improvement of Individual Landing Times

1 Initialization: Equation (3.4)
2 Compute Di, ESi ∀i
3 for i = 1 to N do
4 if (Di > 0) then
5 STi ← STi −min{Di, ESi}
6 Update Di, ESi ∀i
7 i← i+ 1

8 return ST,ES,D

improvement to the initial assignment of the landing times. The explanation of
this improvement algorithm goes as follows. Let the initial landing times of the
aircraft be assigned according to Equation (3.4) for any given feasible landing
sequence. If any aircraft i with i = 1, 2, . . . , N , has a positive deviation Di

from its target landing time and maintains a positive extra safety separation
ESi, then we can decrease the landing time STi by min{Di, ESi}. The reason
behind it is the fact that this reduction of the landing time is independent
of other aircraft as we do not disturb the safety constraint and reduce the
landing time of i only to bring it closer to its target landing time, which is the
requirement of Equation (3.1). If Di > ESi we reduce the landing time by ESi
to maintain the safety constraint and if Di < ESi, we reduce the landing time
to its target landing time. Note that ESi ≥ 0 ∀ i, since the safety distance
constraint is always maintained and STi ≥ ETi is a feasible solution.

However, if after initializing the landing times as per Equation (3.4), the
value of Di ≤ 0 for all the aircraft, then there is no improvement possible and
Equation (3.4) determines the optimal assignment for this landing sequence
with respect to Equation (3.1).

Lemma 3.2. When run on a setup according to Equation (3.4), Algorithm 1
will yield either one of the below mentioned cases for any aircraft i, i =
1, 2, 3, . . . , N :

a) Di > 0, ESi = 0, b) Di = 0, ESi > 0,

c) Di = 0, ESi = 0, d) Di < 0, ESi = 0,

e) Di < 0, ESi > 0.

(3.8)

Proof. The initialization of the landing times using Equation (3.4) can assign
the landing time to any aircraft i anywhere in its time window, if the landing
sequence is feasible. Hence, we have for each aircraft one of the following five
cases after running Algorithm 3.2:
Case 1: STi = ETi .
If i = 1, then Di < 0 and ESi = 0 from Equation (3.6). If i > 1 then Di < 0

18



Chapter 3. Efficient Polynomial Algorithm to Optimize a Given Landing
Sequence of the Aircraft Landing Problem

but we need to check for the value of ESi. According to Equation (3.6), we
have ESi ← STi−max{SPi, ETi}. Note that STi ≥ SPi, i = 2, 3, . . . , N since
the safety separation is always maintained between any two aircraft landing
consecutively. This implies that we can write max{SPi, ETi} = STi due to the
case constraint, i.e. ETi = STi. Hence, we have ESi = 0 from its definition.
Since a reduction in the landing time is possible only if Di > 0, the values
of Di and ESi will remain unchanged by the implementation of Algorithm 1,
satisfying Case d.

Case 2: ETi < STi < TTi .
We have Di < 0 for any i, which means that the landing time for aircraft i will
remain unchanged. If i = 1, then ESi > 0 from Equation (3.6). If i > 1 then
again from Equation (3.6) we can deduce that ESi ≥ 0 because STi ≥ SPi
(safety constraint) and STi > ETi (case constraint). This proves that if the
initial landing time for any aircraft lies between ETi and TTi then Algorithm 1
will not fetch any reduction, hence satisfying Case d or e of Lemma 3.2.

Case 3: STi = TTi .
We have Di = 0 for any i since the landing occurs at the target landing time.
And ESi ≥ 0 for any i, by the same reasons as in Case 2. In this case as well
there will be no reduction and Case b or c of Lemma 3.2 is satisfied.

Case 4: TTi < STi < LTi .
If the initial landing time for any aircraft i lies between TTi and LTi, then
Di > 0 by definition and ESi ≥ 0 because STi > ETi and STi ≥ SPi.
Hence, Algorithm 1 will reduce the landing time of plane i by min{Di, ESi}.
If min{Di, ESi} = Di, then the reduction in the landing time will fetch Di = 0
and ESi > 0, satisfying Case b. If min{Di, ESi} = ESi then the reduction
in the landing time will fetch Di > 0 and ESi = 0, satisfying Case a. How-
ever, if after the initialization the values of Di and ESi are equal, then the
implementation of Algorithm 1 will fetch Di = 0 and ESi = 0, satisfying
Case c. Finally, if ESi = 0 then there will be effectively no reduction because
min{Di, ESi} will be equal to zero and Case a of Lemma 3.2 will be satisfied.

Case 5: STi = LTi .
We have Di > 0 and ESi > 0 after the initialization and yet again the
Algorithm 1 will fetch either one of Case a, b or c, with the same arguments
as explained in Case 4. �

3.5 Illustration of the Improvement Algorithm

We now illustrate Algorithm 1 with a small example and explain why it pro-
vides an improvement to the initialization of the landing times, and not nec-
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essarily an optimal schedule. Let’s say we have 3 aircraft to be landed on a
single runway as per the data mentioned in Table 3.1.

i ETi TTi LTi αi βi

1 1 9 12 3 4
2 2 10 15 4 5
3 7 15 20 4 2

Table 3.1. Data set for an example
with 3 aircraft.

Si,j j

i
- 4 6
2 - 2
5 6 -

Table 3.2. Safety distance Sij for all
i and j.

We test this problem instance for a landing sequence of 1, 2 and 3, and illus-
trate that Algorithm 1 only returns an improvement of the landing times and
not the optimal solution. Initialization of the landing times of the aircraft as
per Equation (3.4) leads to

ST3 = LT3 = 20,
ST2 = min{PS2, LT2} = min{(ST3 − S23), 15} = min{(20− 2), 15} = 15,
ST1 = min{PS1, LT1} = min{min{(ST2 − S12), (ST3 − S13)}, LT1} =

min{min{(15− 4), (20− 6)}, 12} = 11.
This schedule of landing times is feasible since all the three planes land within
their permitted time window. Besides, referring to Table 3.1 it turns out that
they are landing past their target landing times. Hence, the total penalty in-
curred with this schedule is (0 · 3 + 2 · 4) + (0 · 4 + 5 · 5) + (0 · 4 + 5 · 2) = 43.

We now apply Algorithm 1. For i = 1, we first calculate D1 and ES1. Recall
the definition of Di and ESi from Section 3.4. Hence, we have D1 = ST1 −
TT1 = 2 and ES1 = ST1 − ET1 = 10. Since, D1 > 0 we set ST1 = ST1 −
min{D1, ES1} = 9. For i = 2, D2 = ST2 − TT2 = 5 and ES2 = ST2 −
max{SP2, ET2} = 15−max{(ST1 + S12)} = 2. Again D2 > 0, ST2 = ST2 −
min{D2, ES2} = 15 − 2 = 13. Following the same procedure for i = 3, D3 =
ST3 − TT3 = 5, and ES3 = ST3−max{SP3, ET3} = 20 − max{max{(ST1 +
S13), (ST2 +S23)}, ET3} = 5. D3 > 0 leads to a reduction in the landing time
of aircraft 3, with ST3 = ST3 −min{D3, ES3} = 15.

The vectors D and ES are updated again, as per the improved landing
times STi, as shown in Table 3.3.

i TTi STi Di ESi αi βi

1 9 9 0 8 3 4
2 10 13 3 0 4 5
3 15 15 0 0 4 2

Table 3.3. Improved landing times with a total penalty of 15, as per Algorithm 1.
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As is clear from Table 3.3, this landing scheduling offers only a tardiness
penalty to aircraft 2, while airplanes 1 and 3 land at their designated target
landing times and offer no penalties. Hence, the objective function value for
this schedule is (3 · 5) = 15, which corresponds to the tardiness penalty of
plane 2. Clearly, we have obtained an improvement from the initial landing
schedule which offered a total penalty of 43, but the new schedule with an
overall penalty of 15 is not optimal for this landing sequence. This can be
proved very easily. Suppose we reduce the landing times of aircraft 1 and 2
by time units of 3, then airplanes 2 and 3 land at their target landing time
but aircraft 1 gets early by 3 time units, as shown in Table 3.4.

i TTi STi Di ESi αi βi

1 9 6 -3 5 3 4
2 10 10 0 0 4 5
3 15 15 0 3 4 2

Table 3.4. Adjusted feasible landing times, after the improvement. The total
penalty of this schedule is 9.

Note that this schedule is also feasible, as all the aircraft land within their
time-windows and any pair of airplanes maintain the required safety distance.
Besides, the new overall penalty of this schedule is (3 ·3) = 9. Needless to say,
the schedule from Algorithm 1 is definitely not optimal but it only provides an
improvement to the initial landing times, which is what we are trying to obtain
at this point. More specifically, Algorithm 1 is a non greedy improvement
of the initialised landing times, in the sense, that after this improvement
none of the lands before its target landing time while maintaining the safety
constraint. In the next sections, we go on to explain the procedure of obtaining
the optimal schedule once an improvement is obtained using Algorithm 1.

We now give some additional definitions necessary for the understanding
of our main algorithm.

Definition 3.3. PL is a vector of length N and any element of PL (PLi) is
the net penalty possessed by any aircraft i, i = 1, 2, . . . , N . We define PLi,
i = 1, 2, . . . , N , as

PLi =

{
−αi, if Di ≤ 0

βi, if Di > 0 .
(3.9)

With the above definition we can now express the objective function stated
in Equation (3.1) in a compact form as

min

N∑
i=1

(Di · PLi) . (3.10)
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Definition 3.4. Let i be any aircraft landing at STi then we define σ(i) as the
algebraic deviation of the landing time of aircraft i from its earliest landing
time ETi. Mathematically, σ(i) = STi − ETi, i = 1, 2, . . . , N .

The value σ(i) for any aircraft i can be interpreted as the maximum feasible
reduction in the landing time of aircraft i within its time window. In other
words, any reduction in the landing time of an aircraft i can not exceed its
σ(i) value.

Definition 3.5. Let aircraft (i, i+ 1, . . . , j) be the aircraft in any given se-
quence which land consecutively in this order on the same runway, we define
µ such that µ is the last plane in (i, i + 1, . . . , j) with Dµ ≤ 0. Formally,
µ = argmax

m=i,i+1,...,j
(Dm ≤ 0).

Definition 3.6. Let γ = {i, i+1, . . . , j} or in shorthand γ = (i : j), be a set of
aircraft landing consecutively in that order, such that ESi > 0, ESm = 0, for
m = i+ 1, . . . , j,

∑j
m=i PLm > 0 and σ(m) > 0, for m = i, . . . , j. Needless

to say, there may be more than one γ set in a landing sequence, γ1, γ2 and
so on, such that they are pairwise disjoint collection of sets, i.e., γu ∩ γv = ∅,
∀u 6= v.

Example: The above definition of γ can be well understood with the help of
a small example presented here. Let the values of σ(i), ES,D and PL be as
given in Table 3.5.

i 1 2 3 4 5 6 7 8

σ(i) 4 7 8 7 0 7 9 0
ES 4 3 0 0 0 2 0 0
D 0 0 4 -3 -5 0 3 -7
PL -2 -1 6 -3 -1 -2 4 -2

Table 3.5. A small example to explain the γ sets for a given landing sequence.

Using Equation (3.6), we see that for aircraft {2, 3, 4, 5}, the first three
properties are satisfied, but for aircraft 6, σ(5) = 0. Hence the first γ set for
the above example is γ1 = {2, 3, 4}. Likewise, we also have γ2 = {6, 7}, since
σ(10) = 0.

Definition 3.7. Define Γ = {i, i+ 1, . . . , j} ⊆ γ, such that,
∑j
ρ=µ PLρ > 0 if

µ exists for γ. However, if
∑j
ρ=µ PLρ ≤ 0, then Γ = {i, i+ 1, . . . , µ− 1}. Let

c be the number of such sets of Γ.

Using the same example as for γ, we have γ1 = {2, 3, 4}. For calculation of
Γ we need to check if µ exists for γ. As is clear, we have µ = argmax

m=2,3,4
(Dm ≤

0) = 4. Since
∑4
ρ=4 PLρ < 0, we end up with Γ(1) = {2, 3}. Likewise, the
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other set Γ(2) = {6, 7}, since @ µ for γ2. And the number of sets of Γ is two,
i.e., c = 2.

Definition 3.8. We define Ψ(Xi:j) as the smallest strictly positive number in
vector X from elements Xi to Xj, (i < j).

With the above concepts and definitions we present our main algorithm
(Algorithm 2) for optimizing a given landing sequence P on a single run-
way for the special case of the ALP when the safety constraint for any air-
craft is to be maintained only with its preceding plane. In other words, when
SPi = STi−1 + Si−1,i and PSi = STi+1 − Si,i+1. For the general case of the
safety constraint the algorithm still returns a feasible solution but not nec-
essarily optimal. As said before, we provide optimal schedules for the case
when the safety constraint is considered only between consecutively landing
planes. Later we show with our results that this special case of the safety con-
straint holds for several instances and we obtain optimum results for many of
them. Moreover we also obtain better results than the best known solutions
for several instances.

Our algorithm is based on an iterative shifting of blocks of consecutive
airplanes (in the landing sequence). The shift for any block of aircraft occurs
if the block all-together can improve the overall penalty of the schedule. Hence,
at every stage of the iterative shift of the landing times, we need to calculate Γ
sets in the sequence. Each set of Γ is on such block of airplanes, whose landing
times are shifted by the same amount, depending on the penalties offered by
them. Once we reach a stage when there are no block of aircraft that satisfies
the condition of Γ, then we have our optimal schedule for the given landing
sequence. We explain our algorithm with the help of an illustrative example.

3.6 Illustration of the Algorithm

We consider the ’airland1 ’ benchmark instance provided in the OR-
library [14], with 10 aircraft and illustrate Algorithm 2 for a landing sequence
which is ordered with respect to the target landing times of the aircraft, i.e.
P = {3, 4, 5, 6, 7, 8, 9, 1, 10, 2}. As explained before, without loss of generality
we can rank the aircraft as per their landing sequence. Let i denote the ith
aircraft in the landing sequence then Si for i denotes the safety separation
required between aircraft i−1 and i such that i−1 lands before aircraft i. For
the first aircraft we take its value to be equal to zero (S1 = 0), as there is no
safety constraint for aircraft 1. The notations used in this section are the same
as throughout this chapter. Table 3.6 shows the initialization of the landing
times using Equation (3.4). Aircraft 2 which is scheduled to land at the end
is allocated a landing time equal to its latest landing time. All the preceding
aircraft are scheduled in such a manner that they are as close as possible to
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Algorithm 2: Main Algorithm: Single Runway

1 Apply Algorithm 1
2 Calculate PL,Γ, c, σ
3 while Γ 6= ∅ do
4 for k = 1 to c do
5 (ik, jk)← Γ(k)
6 Φ = min

ρ=ik,...,jk
σ(ρ)

7 pos = min(Ψ(DΓ(k)), ESik ,Φ)
8 for p = ik to jk do
9 STp ← STp − pos

10 Dp ← Dp − pos
11 ESik ← ESik − pos
12 if jk < N then
13 ESjk+1 ← ESjk+1 + pos

14 Calculate Γ, c

15 Sol←
N∑
i=1

(Di · PLi)

16 return Sol

Table 3.6. Initial landing times of all aircraft.

i Si ETi TTi STi LTi Di ESi

1 0 89 98 496 510 398 407
2 8 96 106 504 521 398 0
3 8 110 123 512 555 389 0
4 8 120 135 520 576 385 0
5 8 124 138 528 577 390 0
6 8 126 140 536 573 396 0
7 8 135 150 544 591 394 0
8 15 129 155 559 559 404 0
9 15 160 180 657 657 477 0
10 15 195 258 744 744 486 0

their latest landing time while maintaining the safety constraint. With this
initialization, all the aircraft have a positive deviation form their target land-
ing time. The value of ESi is equal to zero for all the aircraft except aircraft
1, for which ES is defined as its deviation from its earliest landing time, as
shown in Equation (3.6). Thus, ES1 = ST1−ET1 = 407 and the penalty cost
for this initialization is equal to 105710, where all the aircraft are scheduled
to land as late as possible.

Following the initialization, we implement Algorithm 1, where all the land-
ing times are reduced by maximum possible time units such that all the air-
craft are either late or land at their target landing times. With the implemen-
tation of Algorithm 2 we obtain updated values for Di and ESi. Note that
the value of PL for all the aircraft which land at their target landing times
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Table 3.7. Improvement of the initial landing times using Algorithm 1.

i ETi TTi STi LTi Di ESi PLi PNi

1 89 98 98 510 0 9 -30 0
2 96 106 106 521 0 0 -30 0
3 110 123 123 555 0 9 -30 0
4 120 135 135 576 0 4 -30 0
5 124 138 143 577 5 0 30 150
6 126 140 151 573 11 0 30 330
7 135 150 159 591 9 0 30 270
8 129 155 174 559 19 0 10 190
9 160 180 189 657 9 0 30 270
10 195 258 258 744 0 54 -10 0

1210

Table 3.8. First iteration of the while loop in line 4 of Algorithm 2.

i ETi TTi STi LTi Di ESi PLi PNi

1 89 98 98 555 0 9 -30 0
2 96 106 106 576 0 0 -30 0
3 110 123 123 577 0 9 -30 0
4 120 135 131 573 -4 0 -30 120
5 124 138 139 591 1 0 30 30
6 126 140 147 559 7 0 30 210
7 135 150 155 657 5 0 30 150
8 129 155 170 510 15 0 10 150
9 160 180 185 744 5 0 30 150
10 195 258 258 521 0 58 -10 0

810

is negative by Definition 3.3. The values of PNi in Table 3.7 are defines as
the net weighted penalty incurred by any aircraft, where PNi = Di · PLi.
Summation of PNi values for all the aircraft is the value of Sol in line 3 of
Algorithm 2, which is equal to 1210.

In the next step we calculate all the sets of Γ. Any set of Γ should hold all
the properties mentioned in Definition 3.7. In this example, Γ has only one
set of aircraft 4 to 9 which possess all the required properties and the value of
c is equal to 1. Thus we have k = 1, ik = 4 and jk = 9, since there is only one
set in Γ we have c = 1 which implies that the for loop at line 9 in Algorithm 2
will run only once with k = 1. We then need to calculate the value of pos.
The value of Ψ(DΓ(1)) is equal to 5 for aircraft 5 , ESik = 4 and Φ = 15,
which implies that pos = 4. So the scheduled landing times ST of the aircraft
and the deviation in the landing times D in the set Γ(1) are reduced by 4.
The value of ESjk+1 is also increase by 4 as per line 15 in Algorithm 2 since
jk < N , along with an update to the PL. The new values of D,ES and PL
are presented in Table 3.8. After this first iteration of the while loop we get
Sol = 810.
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Table 3.9. Second iteration of the while loop.

i ETi TTi STi LTi Di ESi PLi PNi

1 89 98 98 555 0 9 -30 0
2 96 106 106 576 0 0 -30 0
3 110 123 122 577 -1 8 -30 30
4 120 135 130 573 -5 0 -30 150
5 124 138 138 591 0 0 -30 0
6 126 140 146 559 6 0 30 180
7 135 150 154 657 4 0 30 120
8 129 155 169 510 14 0 10 140
9 160 180 184 744 4 0 30 120
10 195 258 258 521 0 59 -10 0

740

Table 3.10. Final iteration of the while loop.

i ETi TTi STi LTi Di ESi PLi PNi

1 89 98 98 555 0 9 -30 0
2 96 106 106 576 0 0 -30 0
3 110 123 118 577 -5 4 -30 150
4 120 135 126 573 -9 0 -30 270
5 124 138 134 591 -4 0 -30 120
6 126 140 142 559 2 0 30 60
7 135 150 150 657 0 0 -30 0
8 129 155 165 510 10 0 10 100
9 160 180 180 744 0 0 -30 0
10 195 258 258 521 0 63 -10 0

700

Following the same procedure, Γ again consists of a single set 3 to 9. The
value of pos in this case is 1 and the update in the values of all the parameters
for the aircraft in the new set of Γ will fetch us a solution value of 740 as shown
in Table 3.9. The next iteration leads to another new set of Γ and this time
it will again comprise of aircraft from 3 to 9. The value of pos is equal to 4
and the updates to all the parameters will now lead to the final solution of
Sol = 700, as shown in Table 3.10. There is no further improvement possible
since the set Γ = ∅. Hence, this value of Sol = 700 is also the optimum value
for the ’airland1 ’ benchmark instance.

3.7 Proof of Optimality

In this section we explain and prove that Algorithm 2 gives the optimal value
to the objective function for a special case of the ALP. We first prove a lemma
which is later used in the proof of optimality of Algorithm 2.

Lemma 3.9. If Γ(k) 6= ∅ then pos exists and pos > 0.

26



Chapter 3. Efficient Polynomial Algorithm to Optimize a Given Landing
Sequence of the Aircraft Landing Problem

Proof. From Algorithm 2, pos = min(Ψ(DΓ(k)), ESik ,Φ) holds. So pos will
exist with a positive value only if Ψ(DΓ(k)) > 0, ESik > 0 and Φ > 0.
Clearly, ESik > 0 from the definition of Γ(k). Besides, ESm = 0 for m =

ik + 1, . . . , jk and
∑jk
m=ik

PLm > 0 again from Definition 3.7. Note that we
proved in Lemma 3.2 that if ESi = 0 for any i = 1, 2, 3, . . . , N then Di ≤ 0.
Moreover,

∑jk
m=ik

PLm > 0 shows that for at least one aircraft m in the Γ(k)
has PLm > 0. Recall from Equation (3.3) that for any aircraft m, PLm > 0
only if Dm > 0. Thus, we have ESik > 0 and Dm > 0 at least for one aircraft
m, where m = ik, ik + 1, . . . , jk. Furthermore, if Γ 6= ∅ then obviously Φ > 0
since the Φ = min

ρ=ik,...,jk
σ(ρ) and σ(ρ) > 0 for all the aircraft in the set Γ(k)

from Definition 3.7. Hence, this proves that pos will exist and will be greater
than zero if Γ(k) 6= ∅. �

Theorem 3.10. Algorithm 2 returns the optimal value for Equation (3.10) for
any given feasible landing sequence on a single runway when SPi = STi−1 +
Si−1,i for i = 2, 3, . . . , N and PSi = STi+1 − Si,i+1 for i = 1, 2, . . . , N − 1.

Proof. The initialization of the landing times for any sequence is done ac-
cording to Lemma 3.1. It allocates the landing times as late as possible, hence
the solution can be improved only by reducing the landing times. Thereafter,
we show that we can reduce the landing time of any aircraft i straight away,
independent of other aircraft, if Di > 0 and ESi > 0. The reason is, if there is
an extra safety separation between i− 1 and i as well as a positive deviation
from the target landing time, then the reduction of STi by min{Di, ESi} will
bring aircraft i closer to TTi and hence yield an overall reduction in the total
weighted tardiness thereby improving the overall solution. Note that this re-
duction will neither cause any aircraft to land earlier than its target landing
time nor will it disrupt the safety separation. The implementation of Algo-
rithm 1 will fetch one of the five possibilities to all the aircraft, mentioned
and proved in Lemma 3.2.

The next step is to prove that a further improvement to the solution is
possible iff Γ 6= ∅. If Γ 6= ∅, then we have ESik > 0, ESm = 0, (m =

ik + 1, . . . , jk),
∑jk
ρ=ik

PLρ > 0, σ(ρ) > 0 where ρ are all the planes in the

set Γ(k) and
∑jk
ρ=µ PLρ > 0, if µ exists. We have ESik > 0 and ESm =

0, (m = ik + 1, . . . , jk). Reducing the landing time of any aircraft in m will
cause infeasibility as it will disrupt the safety constraint since ESm = 0.
But, reducing the landing times of all the aircraft from ik to jk by pos =
min(Ψ(DΓ(k)), ESik ,Φ) will not cause any infeasibility for two reasons. First,
the definition of Γ(k) ensures that all the planes have a positive deviation from
their earliest landing times since σ(ρ) > 0 and the reduction of the landing
times by pos will not cause any infeasibility since all the aircraft in set Γ(k) will
be allocated a landing time within their time window since pos ≤ Φ. Second,
we would reduce all the landing times by the same amount and not more
than ESik . This will maintain the safety separation between all the aircraft in
Γ(k) and also the required separation between aircraft ik − 1 and ik. Notice
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that PLρ is the net penalty of aircraft ρ as stated in Definition 3.3. Hence, a
positive value for the summation of the net penalties of aircraft ik to jk landing
consecutively means, that the total tardiness penalty is higher than the total
earliness penalty and an increase in the landing times of all the aircraft in
Γ(k) by the same amount is only going to worsen the solution. As for µ, let’s

say there exists a µ for the set γk such that
∑jk
ρ=µ PLρ < 0. This shows that

aircraft µ to jk already possess a net earliness penalty and further reducing
their landing times will fetch an increase in the overall penalty. However,∑jk
ρ=ik

PLρ > 0 means that
∑µ−1
ρ=ik

PLρ > 0 which implies that aircraft ik to
µ− 1 possess a net positive tardiness penalty. Thus, a reduction in landing
times by min(Ψ(Dik:µ−1), ESik ,Φ) will reduce the total weighted tardiness as
well as ensure that the increase in the earliness penalty (if any) of aircraft ik to
µ− 1 does not exceed the reduction in the net tardiness penalty and thereby
reducing the overall penalty. In such a case Γ(k) will become (ik : µ− 1).

Conversely, if Γ = ∅, then either one of the cases will not hold in Defini-
tion 3.6 and 3.7. We prove this by contradiction for all these cases:

Case 1: ESik > 0 .
If ESik = 0 and all the other conditions hold then there is no scope of reduc-
tion and an increase in the landing times will only worsen the solution. Note
that ESik will never be negative, for any ik, ik = 1, 2, . . . , N − 1.

Case 2: ESm = 0,m = ik + 1, . . . , jk .
If ESm 6= 0, (m = ik + 1, . . . , jk) then we have two cases. One, if for some m,
ESm < 0, then the solution is infeasible. Second, if for some m, ESm > 0
then it contradicts the definition of Γ.

Case 3: σ(ρ) > 0, ρ = ik, . . . , jk .
If the value of σ(ρ) = 0, then a reduction of the landing times for all the
planes in the set Γ(k) by any positive value will make the solution infeasible
since the aircraft ρ is already landing at its earliest landing time. Note that
the value of σ(ρ) cannot be negative for any aircraft ρ at any stage.

Case 4:
∑jk
ρ=ik

PLρ > 0 .

If
∑jk
ρ=ik

PLρ = 0 for any plane ρ, then any change to the landing times of
all the aircraft in Γ(k) will only worsen the solution by increasing the total

lateness penalty or the total earliness penalty. If
∑jk
ρ=ik

PLρ < 0, then the
reduction of landing times is again going to worsen the solution as the total
earliness penalty is already higher than the total lateness penalty. Moreover,
an increase in the landing time is not good either, because it will only take us
back to an earlier step where

∑jk
ρ=ik

PLρ > 0. Hence, if Γ = ∅, then there is
no more improvement possible to the schedule.

From Lemma 3.9 it is clear that pos exists and it is greater than positive
if Γ(k) 6= ∅. This makes it clear, that if Γ(k) 6= ∅, then there needs to
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be reduction in the landing times of the planes in set Γ(k). The reduction
of the landing times is done by pos = min(Ψ(DΓ(k)), ESik ,Φ), because this
will neither disrupt the safety constraint nor cause infeasibility. Besides, this
will not alter the number of planes arriving early (Dm < 0). If we reduce
the landing times by a greater quantity, we will certainly reduce the lateness
penalty but we might as well end up increasing the earliness penalty by a
greater amount. Hence we do not want to change the number of planes arriving
early. Notice that a reduction in the landing time for aircraft jk by pos means
that it will increase the extra safety separation between jk and jk + 1, which
is why we have line 14 in Algorithm 2. Hence, to summarize, Algorithm 2
initializes the latest possible landing times to all the aircraft and then makes
improvements to the solution at every step until there is no improvement
possible. �

3.8 Multiple Runways

In this section we propose an effective approach for allocating the runways to
all the aircraft in a given landing sequence. We do not prove the optimality of
this approach but our results show that it is an effective strategy and performs
better than other approaches mentioned in the literature. In the multiple
runway case, the only difference is the initial assignment of the runways to
all the aircraft in a given sequence. We propose an initialization algorithm for
the multiple runway case which again takes the input as a landing sequence
of planes waiting to land and the number of runways R at the airport. We
make an assumption as in Pinol and Beasley [121], that if aircraft i and j land
on different runways, then the required safety distance (sij) between them is
zero. Proposition (3.11) assigns the appropriate runway to all the aircraft and
the landing sequence on each runway.

Proposition 3.11. Assign the first R air planes 1, 2, . . . , R, one on each
runway at their respective target landing times. For any following aircraft
i, i = R + 1, R + 2, . . . , N assign the same runway as i− 1 at a landing time
of TTi if TTi is greater than or equal to the allowed landing time for plane
i by maintaining the safety distance constraint with all the preceding aircraft
on the same runway. Otherwise, assign a runway r at TTi which offers zero
deviation from TTi. If none of the above two conditions hold, then select a
runway which gives the least feasible positive deviation to plane i from its
target landing time.

Here we make an obvious assumption that the number of air planes waiting
to land is more than the number of runways present at the airport. The landing
sequence in this proposition is maintained in the sense that any aircraft i
does not land before i− 1 lands. Once we have this assignment of aircraft
to runways, each runway has a fixed number of planes landing in a known
sequence. Using this to our benefit, we can now apply Algorithm 2 to each
runway separately.
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3.9 Algorithm Runtime Complexity

In this section we study and prove the runtime complexity of Algorithm 2.

Lemma 3.12. The runtime complexity of Algorithm 2 is O(N3) for the gen-
eral case of the safety constraint (Si,i+2 > Si,i+1 + Si+1,i+2), and O(N2)
for the special case of the safety constraint, when Si,i+2 ≤ Si,i+1 + Si+1,i+2,
∀i = 1, 2, . . . , N − 2.

Proof. For the general case of the safety constraint, it is straight forward to
observe that the runtime required to calculate ST and ES is O(N2). Calcu-
lating Γ requires finding all the sets of planes landing consecutively, such that
they hold certain properties as mentioned in Definition 3.6 and 3.7. The worst
case scenario for the calculation of Γ will occur when every aircraft lies in one
of the sets of Γ. Let any set Γ(k) have xk aircraft where k = 1, 2, . . . , c, then
we have,

∑c
k=1

xk = N , since all the sets of Γ are disjoint. The runtime for
calculating a γ set from Definition 3.6 is O(xk). However, the computation of

µ and checking
∑jk
ρ=µ PLρ > 0 requires a computation of all the prior prop-

erties, if µ exists. In the worst case the value of jk will drop down to ik + 1
and this would require a total runtime of O(xk) where xk is the number of
aircraft in the set Γ(k) obtained initially by the computation of the first four
properties in Definition 3.7. Let T be the runtime of the computation of all
the sets of Γ. Since all the properties are calculated in a sequential manner,
we have, T =

∑c
k=1

O(xk). Now using
∑c
k=1

xk = N we get T = O(N). The
computation of PL and Sol in Algorithm 2 are both in O(N) each. The while
loop in line 3 involves several iterations so we first study the runtime of a
single iteration of the while loop. The for loop in line 4 is run for the number
of sets in Γ. Hence, the total runtime of the for loop is

∑c
k=1

O(xk), which is
again equal to O(N). The next steps inside the while loop involve the com-
putation of Sol with a runtime of O(N) and all the sets of Γ which requires
O(N) runtime each at every iteration. Since the computation of ES and Γ
is carried out sequentially, the total runtime complexity of the algorithm is
basically equal to O(λN2), where λ is the number of times the while loop is
iterated. Clearly, the maximum value of λ can be equal to the maximum num-
ber of aircraft in any set Γ(k), which is equal to the total number of aircraft
N . Hence the runtime complexity of Algorithm 2 is O(N3) for the general
case of the safety constraint.

However, for the special case of the safety constraint when Si,i+2 ≤ Si,i+1+
Si+1,i+2, the computations of ES and ST along with Γ sets can be carried
out in O(N) runtime and thus reducing the overall complexity of Algorithm 2
to O(N2), for this case. �

3.10 Results and Discussion

We now present our results for the aircraft landing problem with single run-
ways for the benchmark instances provided by Beasley in the OR-library [14].

30



Chapter 3. Efficient Polynomial Algorithm to Optimize a Given Landing
Sequence of the Aircraft Landing Problem

We implement the algorithm as described above to find the optimal solu-
tion for the special case of the ALP in conjunction with Simulated Annealing
(SA). In this work, the simulated annealing algorithm is used only to evolve
the landing sequence of the given set of planes. While the landing times of
the aircraft in a given landing sequence are computed by using our polyno-
mial algorithm. Hence, at each iteration of the SA, a new landing sequence
is generated via perturbation and the fitness function value of the perturbed
sequence is calculated by Algorithm 2. As we have mentioned before, Algo-
rithm 2 optimizes any given landing sequence such that the safety constraint
is considered only between any aircraft and its preceding plane, not all the
preceding aircraft. However, to avoid infeasibility, we incorporate a check of
feasibility for the general case after any fitness function evaluation. If the so-
lution obtained by Algorithm 2 is infeasible, it is discarded. However, in our
tests we observe that this scenario occurs only for one instance with 50 air-
craft. The rest of the benchmark instances have been solved feasibly by our
polynomial algorithm.

The ensemble size for SA is taken to be 20 for all the instances. The
initial temperature T0 is kept as twice the standard deviation of the energy
at infinite temperature, hence T0 = 2 ·

√
〈E2〉T=∞ − 〈E〉2T=∞. We estimate

this quantity by randomly sampling the configuration space [125]. An ex-
ponential schedule for cooling is adopted with a cooling rate of 0.999. One
of the modifications from the standard SA is in the acceptance criterion.
We implement two acceptance criteria: the Metropolis acceptance probabil-
ity, min{1, exp((−4E)/T )} [125] and a constant acceptance probability of
c1 · 10−2, c1 being a constant with c1 < 10. A solution is accepted with this
constant probability if it is rejected by the Metropolis criterion. This concept
of a constant probability is useful when the SA is run for many iterations
and the metropolis acceptance probability is almost zero, since the tempera-
ture would become infinitesimally small. Apart from this, we also incorporate
elitism in our modified SA. Elitism has been successfully adopted in evolu-
tionary algorithms for several complex optimization problems [60, 82]. Lässig
and Sudholt made theoretical studies analysing speed-ups in parallel evolu-
tionary algorithms combinatorial optimization problems [87, 88]. As for the
perturbation rule, we first randomly select a certain number of aircraft in any
given landing sequence and permute them randomly to create a new sequence.
The number of planes selected for this permutation is taken as c2 +b

√
N/c3c,

such that N is the number of aircraft; c2 and c3 are positive constants. With
our experimental analysis, we concluded that c2 = 3 and c3 = 10, works best
for our algorithm. For large instances the size of this permutation is quite
small but we have observed that it works well with our modified simulated
annealing algorithm. We take the initial landing sequence for our algorithm
as the sequence as per the order of their target landing times. As per the
stopping criterion is concerned, Sabar and Kendall [124] propose a maximum
of 150 iterations for their Iterative Local Search algorithm. For our PSA algo-
rithm, we adopt a maximum number of 1500 Simulated Annealing iterations,
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given the fact that our polynomial algorithm runs fast and provides superior
results to the state-of-the-art on this problem. Our Simulated Annealing algo-
rithm is replicated 100 times for all the 49 instances, ranging from 10 to 500
aircraft. All the computations were carried out in MATLAB utilizing C++
mex-functions on a 1.73 GHz machine with 2 GB RAM. To better explain and
compare our results we first define some new parameters used in Table 3.12
and 3.13. Most of these parameters are derived from [121] with slight changes
as explained below.
Let,
SC = Results obtained by the Scatter Search Algorithm [121],
BA = Results obtained by the Bionomic Algorithm [121],
HBA = Results obtained by the Hybrid Bat Algorithm [144],
SA-VND = Results obtained by the Hybridized Simulated Annealing and

Variable Neighbourhood Descent [126],
ILS = Results obtained by the Iterated Local Search Algorithm,

proposed in [124],
PSA = Results obtained by the approach explained in this work,
Zopt = Optimal solution value,
Zbest = Best known solutions for ALP provided in [121],
Trun = Average runtime in seconds,
Gbest = Percentage deviation between the best obtained results and

Zopt if the optimal solution known and Zbest if the optimal
solution is not known.

Gbest is defined as Gbest = 100 · (best solution obtained −Zbest)/Zbest; if
the optimal solution is known then Zbest = Zopt. However, if Zbest = 0 we
follow the same notation as assumed in [121]. If Zbest = 0, then the value
of Gbest = 0 if the best solution obtained is also zero and n/d (not defined)
if the best solution obtained is greater than zero. This definition of Gbest is
the same as explained by [121]. If for any instance the result obtained by
us is better than the best known solution then Gbest is negative. The val-
ues of Zbest are the best results obtained by [121] during the course of their
work. The results shown in Table 3.12 and 3.13 are obtained by using Al-
gorithm 2, Proposition 3.11 and simulated annealing depending on single or
multiple runways. For the single runway case we use simulated annealing to
generate the landing sequences and Algorithm 2 to optimize each sequence.
For the multiple runway case we first generate a complete landing sequence
of all the aircraft using simulated annealing, allocate the aircraft and their
landing sequence to each runway using Proposition 3.11 and then apply Al-
gorithm 2 to each runway separately for optimization. For brevity we call this
approach PSA. Table 3.11 shows the configuration of the machines and the
programming platform used by all the mentioned approaches. We follow this
table from Sabar and Kendall [124], who present this data for fair comparison
of the runtimes and as an indication of their algorithms efficiency.
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Table 3.11. Computer hardware and programming platform for all the compared
algorithms

No. Algorithm Language Hardware

1 SC C++ Intel 2 GHz Pentium, 512 MB RAM
2 BA C++ Intel 2 GHz Pentium, 512 MB RAM
3 SA-VND C++ Intel 2.4 GHz Pentium, 512 MB RAM
4 HBA MATLAB 3 GHz AMD Athalon PC, 2 GB RAM
5 ILS JAVA Intel 2.66 GHz Pentium, 2 GB RAM
6 PSA MATLAB Intel 1.73 GHz, 2 GB RAM

Before, we go on to present our result, we would like to emphasize here that
the runtime provided by [121] in their paper for their algorithms, is the total
time for 10 different replications of their algorithms (SC and BA), and not the
average of 10 different runs. However, this fact has been misinterpreted as the
latter, by some recent works. Hence, we in this work, present the runtimes of
SC and BA, as 1/10th of the values mentioned in the results section of [121].

Table 3.12. Results for small benchmark instances and comparison of six different
approaches.

SC BA HBA SA-VND ILS PSA
N R Zopt Gbest Trun Gbest Trun Gbest Trun Gbest Trun Gbest Trun Gbest Trun

10
1 700 0 0.40 0 6.00 NA NA 0 0.00 0 0.00 0 0.00
2 90 0 2.40 0 4.50 0 0.08 0 0.00 0 0.00 0 0.00
3 0 0 3.90 0 3.40 0 0.11 0 0.00 0 0.00 0 0.00

15
1 1480 0 0.60 0 9.00 NA NA 0 1.59 0 0.00 0 0.06
2 210 0 4.50 0 4.90 0 0.09 0 1.66 0 0.00 0 0.00
3 0 0 4.60 0 4.30 0 0.10 100 1.98 0 0.00 0 0.00

20
1 820 0 0.80 0 9.90 NA NA 0 1.78 0 0.00 0 0.09
2 60 0 4.80 0 5.80 0 0.09 16.66 3.12 0 0.80 0 0.00
3 0 0 6.20 0 6.30 0 0.10 100 3.29 0 0.10 0 0.00

20

1 2520 0 0.80 0 9.50 NA NA 0 1.98 0 1.70 0 0.00
2 640 0 5.20 0 5.50 0 0.55 3.12 3.56 0 1.90 0 0.00
3 130 0 4.60 0 5.70 0 0.14 23.07 3.74 0 2.00 0 0.00
4 0 0 5.60 0 5.20 0 0.14 100 4.06 0 2.30 0 0.00

20

1 3100 0 0.90 0 10.00 NA NA 0 1.85 0 1.30 0 0.08
2 650 0 5.00 3.08 6.10 36.92 1.44 0 3.04 0 2.40 0 0.35
3 170 0 5.40 0 4.30 0 0.16 0 4.11 0 3.70 0 0.00
4 0 0 5.60 0 6.80 0 0.21 100 4.35 0 3.10 0 0.00

30
1 24442 0 15.80 0 27.40 NA NA 0 2.12 0 1.70 0 0.00
2 554 0 7.00 3.61 10.10 14.8 1.61 0 3.98 0 2.60 0 0.47
3 0 0 5.40 0 8.70 0 0.30 0 4.41 0 2.50 0 0.00

44
1 1550 0 19.50 0 7.90 NA NA 0 2.68 0 1.80 0 0.00
2 0 0 11.80 0 12.40 0 0.09 0 2.83 0 1.60 0 0.00

50
1 1950 52.05 4.20 36.15 28.70 NA NA 0 7.10 0 4.80 2.31 1.45
2 135 0 12.10 0 19.60 33.33 2.01 0 10.73 0 6.20 0 0.93
3 0 0 13.90 0 18.10 0 0.16 100 14.11 0 9.50 0 0.00

Average 2.08 6.04 1.71 9.60 5.0 0.43 21.71 3.52 0 2.00 0.09 0.14
NA: Results not available.

Table 3.12 shows our results and its comparison with five other approaches
for the small instances till 50 aircraft. Our approach is much faster and finds
the optimal solution for all benchmark instances except for one. The reason
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that the optimum is found for all other instances is that the optimal sequences
for all those instances hold the special case of the safety constraint, i.e., the
safety constraint for any aircraft depends only on its preceding plane. However,
for the instance ’airland8 ’ with 50 aircraft and a single runway, our algorithm
does not return the optimal solution as the optimal landing sequence does not
satisfy the special case of the safety constraint. Figure 3.1(a) and (b) show
the bar plots of the average percentage deviation and the average runtimes,
respectively, for all the six approaches mentioned in Table 3.12. The closest
algorithms to our approach are the HBA ba Xie et al. [144] and ILS by Sabar
and Kendall [124] in terms of the runtime and the average percentage devi-
ation. However, we would like to point out that HBA has only been applied
to multiple runway problems and not on the single runway cases. Hence, the
average runtime for HBA, plotted in Figure 3.1(b) is the runtime for mul-
tiple runways only, unlike other algorithms, which have been applied to all
instances.
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Fig. 3.1. The comparison of six different approaches in the terms of the percentage
deviations and the runtimes for the small instances till 50 aircraft.

Comparing the runtime of HBA exactly with our approach, (i.e. comparing
the runtimes only for multiple runway cases) suggests that HBA takes 0.434
seconds as opposed to 0.10 seconds with our approach, which shows that our
approach performs better than HBA in terms of both the solution quality
and runtime. The ILS algorithm performs perfectly for small instances and
finds optimal solution for all the 25 instances in Table 3.12. However, when
compared for the runtime, it is 14 times slower than PSA. Considering the
machines used by the two approaches, this speed-up owes to the two-layered
approach of PSA. The average runtimes for Scatter Search, Bionomic Algo-
rithm and the SA with Variable Descent are 6.04, 9.604 and 3.52 seconds,
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respectively, which makes our algorithm 43, 68 and 25 times faster than these
algorithms, respectively, on the same benchmark instances. Moreover, consid-
ering the percentage deviation with the best known results reveals that our
algorithm has a deviation of only 0.09 percentage over all the instances and
finds optimal values for 24 out of 25 instances. Hence, for small instances, PSA
is just as superior to other approaches when compared for both the solution
quality and the required runtime. However, the real benefit of our two-layered
approach is evident from our experiments on large instances with 100 to 500
planes.

Table 3.13. Results for large benchmark instances and comparison of six different
approaches.

SC BA HBA SA-VND ILS PSA
N R Gbest Trun Gbest Trun Gbest Trun Gbest Trun Gbest Trun Gbest Trun

100

1 30.06 11.9 14.51 55.4 NA NA 8.55 11.6 0 7.6 0.00 5.67
2 5.67 34.2 54.73 48.7 10.28 16.0 -0.58 13.8 -1.74 11.4 -1.95 3.88
3 0 39.0 87.46 46.6 1.69 16.5 0 18.0 -2.31 10.9 0.00 0.36
4 0 33.6 n/d 43.9 0 16.6 0 19.7 0 13.7 0.00 0.00

150

1 44.96 22.7 33.9 92.5 NA NA 0 20.1 -0.06 14.3 2.20 11.96
2 7.87 60.8 25.95 84.5 9.21 18.6 -5.39 21.3 -1.37 15.6 -10.83 8.83
3 8.88 66.8 195.88 80.3 1.51 21.0 -6.49 27.6 -9.41 17.3 -7.06 3.24
4 16.74 64.7 292.4 78.8 0 20.6 3.09 30.1 -6.16 22.7 0.00 1.12
5 0 60.7 n/d 76.2 0 23.1 100 39.9 0 34.3 0.00 0.00

200

1 17.95 25.6 16.67 141.7 NA NA 0 24.2 -0.05 18.4 1.67 18.54
2 9.19 95.9 38.54 128.7 8.64 23.2 -8.04 29.1 -8.49 21.7 -12.38 13.77
3 21.59 102.1 290.09 120.3 -0.06 26.1 -2.81 41.2 -3.46 34.2 -9.88 7.62
4 2.77 99.3 474.47 116.8 0 27.4 0 42.4 -6.47 37.1 0.00 0.00
5 0 95.6 n/d 115.8 0 27.2 0 66.2 0 54.8 0.00 0.00

250

1 22.15 38.1 23.58 201.1 NA NA 0 219.0 0 197.7 3.75 32.39
2 18.8 126.6 50.18 183.5 26.56 28.3 0 362.6 0 310.4 -13.38 22.22
3 17.48 145.4 198.01 171.0 -15.95 31.5 -3.56 412.7 -6.21 401.5 -23.47 15.19
4 271.63 144.5 13216.91 168.8 -30.09 33.3 0 410.3 -2.57 398.1 -30.09 0.24
5 0 138.6 n/d 166.2 0 34.6 0 394.6 0 357.6 0.00 0.00

500

1 3.24 123.7 1.03 585.2 NA NA -7.54 566.8 -7.7 486.4 -10.57 153.21
2 3.72 383.6 37.47 537.9 -5.78 58.0 -0.47 1047.9 -0.79 1011.2 -25.58 109.12
3 1.98 456.0 182.69 515.8 -31.88 60.7 -32.79 1241.0 0 1123.4 -39.21 83.14
4 22.98 441.3 1186.81 497.7 -52.23 63.7 -46.62 1201.8 -50.71 1181.2 -52.27 44.94
5 0 442.1 22308.44 488.7 -100 65.9 -48.16 1203.9 -59.18 1152.4 -100.00 0.00

Average 21.9 135.5 1936.5 197.8 -9.4 32.3 -2.1 311.1 -6.945 288.91 -13.71 22.31
NA: Results not available.
n/d: Not defined.

Table 3.14. The best known solution values for large instances with single and
multiple runways, as provided by Pinol and Beasley [121].

100 150 200 250 500

R

1 5611.7 12329.31 12418.32 16209.78 44832.38
2 452.92 1288.73 1540.84 1961.39 5501.96
3 75.75 220.79 280.82 290.04 1108.51
4 0 34.22 54.53 3.49 188.46
5 0 0 0 0 7.35
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Fig. 3.2. The comparison of six different approaches in terms of the percentage
deviations and the runtimes for large instances.

Table 3.13 presents the results for large instances for the six approaches.
The optimal solutions of these instances are unknown and hence we compare
our results with the best known solutions provided by [121], shown in Ta-
ble 3.14. The average percentage deviation of PSA is −13.71 percent, which
means that on average we achieve results that are 13.71 percent better than
the best known results. The average runtime for PSA is 22.31 seconds which
is almost 13 times faster than the recent works of Sabar and Kendall [124]
and Salehipour et al. [126]. Yet again, we cannot compare our single runway
results to HBA on the average basis, since Xie et al. [144] present their results
for the multiple runway case only. However, for the multiple runway case, the
average runtime for PSA is 16.51 seconds with a percentage gap of −17.16,
whereas HBA requires 32.3 seconds to achieve a percentage deviation of −9.4
percent. The graphical comparison of the percentage deviations and runtimes
can also be found in Figure 3.2. It is clear from the bar plots that on average,
our approach is better than the state-of-the-art in both the runtimes and the
percentage deviations.

Figure 3.3 shows the average percentage deviation of all the six approaches
for every fleet size, irrespective of the number of runways. It can be seen that
ILS is the closest to our approach, however, for large instances of 100 to 200,
PSA performs just as well as ILS. Besides, for even larger fleet size of 250
and 500 aircraft, we outperform ILS and SA-VND by a good margin, and we
obtain results that are on average superior than that of SA-VND and ILS. We
do plot HBA in the figure, but the comparison is not fair, as the results for
single runway case are not provided by HBA. Figure 3.4 provides the average
runtime for each fleet size and clearly PSA is the best among all the instances,
consistently.

Hence, we show that the use of our polynomial algorithm fetches faster
and better results than previous approaches. We would like to mention here
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Fig. 3.3. Plot of average percentage deviation for each fleet size, comparing six
different approaches.

that although we do not prove that Proposition (3.11) returns optimal results,
nevertheless we obtain optimal solutions for all the small instances in much
less time. For the large instances, the results again show that it is an effective
approach and yields better results faster for all the instances. Interestingly,
the runtime for multiple runways decreases significantly as the number of run-
ways increases, as shown in Table 2. The reason for this observation is due
to our approach. Since we implement our polynomial algorithm with the SA,
we need O(N3) for each fitness function evaluation, for the single runway
case. However, when the aircraft are divided on to R different runways (R
being the number of runways), the total runtime required to optimize each
runway is O(N2) +R ·O(N3/R3). Here, the first term corresponds to runway
assignment, done in O(N2), in the worst case, and the second term corre-
sponds to the runtime of optimizing the landing times on each runway. The
runtime of O(N2 +N3/R2) is faster than O(N3) (runtime for single runway

case) if R2

R2−1 < N . In practice and in all the tested benchmark instances, this

inequality always holds, since 1 < R2

R2−1 ≤
4
3 for any R ≥ 2.

In addition to these comparison of results with other recent approaches,
we also present some measures of central tendencies, of our multiple runs of
the Simulated Annealing algorithm on all the instances. As mentioned before,
we carry out 100 different replications for all the benchmark instances. Hence,
in Table 3.15 we present some measures of central tendency along with the
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Fig. 3.4. Plot of the average runtimes for each fleet size, comparing six different
approaches mentioned in the literature.

standard deviation and the number of fitness function evaluations required to
obtain the results presented above. Table 3.15 shows the minimum, maximum,
mean, median and mode of the percentage deviation for the results of Pinol
and Beasley [121]. It also shows the standard deviation of the percentage de-
viation for the all the instances with different number of runways. As can be
seen our standard deviation for any instance is less than or equal to 4.91 per-
cent. Given, the complexity of the problem incorporating several parameters,
our approach is quite robust and consistent over several benchmark instances.
The fitness function evaluations are the average number of fitness functions
which is Algorithm 2 in this case.

In Figure 3.5 We also present a graphical representation of the percentage
deviation of the solution values obtained and the number of fitness function
evaluations, along with their standard deviation, for problem instances with 50
aircraft and higher. Clearly, our algorithm produces results of higher quality
as the problem size increases, owing to the exact methodology for optimizing
any given landing sequence deterministically.

3.11 Summary

The Aircraft landing problem has mostly been approached using linear pro-
gramming, metaheuristic approaches or branch and bound algorithms in the
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Table 3.15. Measures of central tendency and Standard Deviation of the obtained
results and the total number of fitness function evaluations on average for all the
instances.

N R Minimum Maximum Mean Median Mode Std. FFEs

10
1 0.00 0.00 0.00 0.00 0.00 0.00 20
2 0.00 0.00 0.00 0.00 0.00 0.00 20
3 0.00 0.00 0.00 0.00 0.00 0.00 20

15
1 0.00 0.00 0.00 0.00 0.00 0.00 2309
2 0.00 0.00 0.00 0.00 0.00 0.00 20
3 0.00 0.00 0.00 0.00 0.00 0.00 20

20
1 0.00 0.00 0.00 0.00 0.00 0.00 2483
2 0.00 0.00 0.00 0.00 0.00 0.00 20
3 0.00 0.00 0.00 0.00 0.00 0.00 20

20

1 0.00 0.00 0.00 0.00 0.00 0.00 20
2 0.00 0.00 0.00 0.00 0.00 0.00 20
3 0.00 0.00 0.00 0.00 0.00 0.00 20
4 0.00 0.00 0.00 0.00 0.00 0.00 20

20

1 0.00 0.00 0.00 0.00 0.00 0.00 2276
2 0.00 9.23 1.49 0.00 0.00 2.46 3588
3 0.00 0.00 0.00 0.00 0.00 0.00 20
4 0.00 0.00 0.00 0.00 0.00 0.00 20

30
1 0.00 0.00 0.00 0.00 0.00 0.00 20
2 0.00 0.00 0.00 0.00 0.00 0.00 7688
3 0.00 0.00 0.00 0.00 0.00 0.00 20

44
1 0.00 0.00 0.00 0.00 0.00 0.00 20
2 0.00 0.00 0.00 0.00 0.00 0.00 20

50
1 2.31 8.46 3.42 3.85 3.85 1.34 11435
2 0.00 0.00 0.00 0.00 0.00 0.00 6619
3 0.00 0.00 0.00 0.00 0.00 0.00 20

100

1 0.00 9.90 2.84 2.46 0.00 2.08 25198
2 -1.95 8.29 -0.77 -1.47 -1.95 1.67 15915
3 0.00 0.00 0.00 0.00 0.00 0.00 1661
4 0.00 0.00 0.00 0.00 0.00 0.00 20

150

1 2.20 14.84 9.10 9.24 10.34 3.16 28362
2 -10.83 2.50 -6.32 -7.00 -10.83 2.83 24051
3 -7.06 15.04 -1.57 -5.29 -5.29 5.7 21596
4 0.00 0.00 0.00 0.00 0.00 0.00 3620
5 0.00 0.00 0.00 0.00 0.00 0.00 20

200

1 1.67 10.52 5.86 6.03 6.44 1.75 27960
2 -12.38 -0.96 -8.44 -8.78 -9.19 2.07 24210
3 -9.88 -2.19 -9.50 -9.88 -9.88 1.29 14874
4 0.00 0.00 0.00 0.00 0.00 0.00 20
5 0.00 0.00 0.00 0.00 0.00 0.00 20

250

1 3.75 11.45 6.77 6.63 6.34 1.69 28331
2 -13.38 -1.86 -9.41 -9.98 -12.53 2.43 24381
3 -23.47 -3.20 -18.34 -20.20 -21.26 4.91 19443
4 -30.09 -30.09 -30.09 -30.09 -30.09 0.00 372
5 0.00 0.00 0.00 0.00 0.00 0.00 20

500

1 -10.57 -3.06 -7.08 -7.20 -5.65 1.87 29190
2 -25.58 -19.77 -23.25 -23.28 -25.58 1.21 27972
3 -39.21 -30.87 -36.64 -37.12 -37.77 1.92 24757
4 -52.27 -27.47 -50.51 -52.27 -52.27 3.83 14656
5 -100.00 -100.00 -100.00 -100.00 -100.00 0.00 20

last two decades [11, 52, 13, 144, 126, 124]. In this work, we use a two-layered
approach to solve the ALP. We optimize any given feasible landing sequence
with a polynomial algorithm and implement a modified Simulated Anneal-
ing to evolve the landing sequences. This approach is not a new one and
has been utilized by a few researchers for the earliness/tardiness scheduling
problem [49, 10, 132]. However, this work is the first attempt to schedule the
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landings of the aircraft for a given feasible landing sequence using a polyno-
mially bound algorithm. The benefit of this approach lies in the fact that the
search space for any metaheuristic reduces considerably, and reduces to only
finding a processing sequence. In the general sense, this idea fits with any NP-
hard problem where the IP-formulation consists of a single decision variable.
We demonstrate a specialized algorithm for the ALP along with appropriate
illustrations. Specially for the Aircraft Landing Problem, it is sometimes in-
evitable to change the sequence of the aircraft landings at an airport due to
weather conditions. In such a case, one needs to calculate the landing times of
the aircraft for the known first-come-first-serve landing. This work provides
an optimal algorithm for the special case of the safety constraint and a sub-
optimal feasible solution for the general case of the safety constraint. As a
matter of fact, our results show that we find better solutions for most of the
benchmark instances than any other previous and recent research works. We
demonstrate our results along with the hardware configuration used by other
approaches, and the runtime and solution quality comparisons with prominent
and recent works. Our algorithm for the special case of the safety constraint is
also applicable for the general weighted earliness/tardiness scheduling prob-
lem with distinct release dates and deadlines, with no job pre-emption. The
parameters involved in the ALP correspond directly to the parameters in-
volved in the earliness/tardiness (E/T) job scheduling problem. The earliest
landing time is the counterpart of the release date for a job, the safety dis-
tance between two consecutive landing aircraft corresponds to the sum of the
processing time and set-up time of the job, the target landing time of any air-
craft in the ALP is the due-date of any job in the E/T job scheduling problem
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and the latest landing time for an aircraft corresponds to the deadline of a
job processing. Hence, our algorithm is just as well application to optimize
any job sequence of the general E/T scheduling problem on a single machine
and runs in O(N2) time, N being the number of jobs to be processed. In
the next chapter we study the Common Due-Date problem. We present two
polynomial algorithms to optimize a given job sequence.
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4

Common Due-Date Problem: Exact Polynomial
Algorithms for a Given Job sequence

In this chapter we present an extensive work on the Common due-date (CDD)
scheduling problem on single and parallel machines. The CDD problem con-
sists of scheduling jobs against a common due-date with an objective to mini-
mize the weighted sum of the earliness and tardiness penalties. This scheduling
problem has been proven to be NP-hard and we present two algorithms to op-
timize any job sequence for the CDD on a single machine. The first algorithm
runs in time complexity of O(n2), n being the number of jobs. This algorithm
is derived by reducing the common due-date problem to the aircraft landing
problem discussed in the previous chapter. Thereafter, we make a theoretical
study of the CDD and develop a faster algorithm which runs in O(n) time.
Additionally a simple heuristic based on the V-shaped property to improve
a job sequence has also been proposed. Henceforth, the linear algorithm and
the heuristic are used with a Simulated Annealing algorithm to obtain the
optimal or best job sequence. Besides, it has also been proven that the linear
algorithm is well suited for the dynamic case of the CDD. Furthermore, we
also show that our approach for the parallel machine case is also equipped for
non-identical parallel machines. Our solution approach is well tested on the
benchmark instances along with the comparison with the best results in the
literature and we find that our methodology can update 23 best-known solu-
tions and significantly outperforms the state-of-the-art algorithms on several
problem instances.

4.1 Introduction

The manufacturing industry often applies certain strategy to improve the effi-
ciency of their productions, thereby avoiding both over and under production
of their goods. Just-In-Time (JIT) is one such strategy which aims at main-
taining the process efficiency while reducing any excess production. Scheduling
against due-dates is based on the JIT philosophy, which aims to produce any
good just at the right-time, neither too soon nor too late. For instance, any
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job at a machine shop has to be processed at a certain time only, to avoid any
inventory cost if produced early, as well as minimizing customer dissatisfac-
tion, if the completion of the job occurs later than the shipment deadline. In
this work we deal with the problem of scheduling a given number of jobs on
a single machine, against a common due-date.

An occurrence of the common due-date problem in an industry can be ex-
plained in the following manner. Suppose a small auto-mobile manufacturing
industry is required to produce some 5000 units of cars of different models,
on a certain date. The aim of the industry becomes not only to ship the re-
quirements by the deadline, but also to reduce the inventory costs for the cars
which are manufactured well ahead of the deadline. Obviously, this inventory
cost can not be avoided completely, as all the cars can not be produced in
a single day. On the other hand, if the units are not delivered on time, it
leads to customer dissatisfaction and the industry has to bear some penalty
due to late delivery of the unit(s). We can quantify the inventory cost and
the cost of late delivery of the units as the earliness and tardiness penalties,
respectively. Hence, the objective of the industry boils down to manufacturing
the cars in a way that the total penalty involved due to earliness/tardiness
is minimized so as to earn the highest possible profit from its manufactured
cars. In practice, a Common due-date (CDD) problem occurs in almost any
manufacturing industry adopting the JIT philosophy.

The Common due-date scheduling problem can be viewed as sequencing
and scheduling of a certain number of jobs over a single machine against a
common due-date (d). Each of these jobs possesses a required processing time
along with the earliness/tardiness penalties per unit time in case the job is
completed before or after the due-date. When scheduling on a single machine
against a common due-date, at most only one job can be completed exactly
at the due-date. Hence, some jobs will be processed earlier than the due-date
while the others will finish later. Generally speaking, the CDD problem is
categorized in two classes, each of which have proven to be NP-hard [66, 70]. A
CDD problem is said to be restrictive when the optimal value of the objective
function depends on the due-date of the problem instance. In other words,
changing the due-date of the problem changes the optimal solution as well.
However, in the non-restrictive case a change in the value of the due-date for
the problem instance does not affect the solution value. It can be easily proved
that in the restrictive case, the sum of the processing times of all the jobs is
strictly greater than the due-date and in the non-restrictive case the sum of
the processing times is less than or equal to the common due-date.

In this work we solve the CDD problem by breaking up the 0-1 integer pro-
gramming in two-layers. One layer is solved using a specialized deterministic
polynomial algorithm and the other layer is solved using metaheuristic algo-
rithms. We propose two polynomial algorithms for the problem. One algorithm
is developed by reducing the CDD to ALP while the second algorithm results
from some intrinsic properties of the CDD problem. We make extensive theo-
retical analysis of the CDD problem and present important properties which
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are derived from the work of [35]. We also present an improvement heuristic
to any given job sequence based on the V-shaped property. Henceforth, we
utilize our linear algorithms and the heuristic for the CDD) in conjunction
with Simulated Annealing to obtain the optimal/near-optimal solution to the
studied NP-hard scheduling problems. The effectiveness and efficiency of our
approach is presented via comparisons with previous results. The algorithms
in the literature and this work are implemented and tested on the benchmark
instances of the CDD provided in the OR-library [14].

4.2 Related Work

The common due-date problem has been studied extensively during the last
30 years, along with its several simplifications and variants. In 1981, Kanet
presented an O(n log n) algorithm, n being the total number of jobs, for a
simplified penalty function which only minimizes the total absolute deviation
of the completion times of jobs but not the weighted earliness/tardiness [77].
Panwalkar et al. considered the problem of the common due-date assignment
to minimize the total penalty for one machine. However, they again simplified
the problem by considering constant earliness/tardiness penalties for all the
jobs and developed an O(n log n) algorithm for the simplified case [128, 118].
Garey et al. also proposed an O(n log n) algorithm to solve the fixed-sequence
problem with symmetric earliness/tardiness penalties [65]. Cheng again con-
sidered an easy variant of the CDD where the earliness and tardiness penalties
were the same for each job. This simplification again led to a polynomial so-
lution and a linear programming formulation was presented [35]. It should be
noted here that all these works considered special simplified variants of the
CDD problem which were no longer NP-Complete in nature. In this work, we
propose a novel strategy where we present a heuristic solution to the NP-hard
CDD problem which requires minimization of the weighted earliness/tardiness
penalties with different asymmetric earliness/penalties, by solving one part of
the problem polynomially and the other part by using the Simulated Anneal-
ing (SA) algorithm. More precisely, each job sequence is optimized in O(n)
time, while the generation of the best job sequence is carried out by the SA.
Cheng and Kahlbachar [38] and Hall et al. [66] studied the CDD problem
extensively, presenting some useful properties for the general case. These two
properties have been of vital importance and have been exploited by many
researchers over the years to device strategies for optimizing the CDD. This
work also utilizes these properties to develop the O(n) algorithm for a given
job sequence, in addition to another property discussed later on.

Property 4.1. The optimal solution of the CDD has no machine idle time
between any two jobs.

Proof. Refer to [38]. �
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Property 4.2. Let t∗ be the starting time for the first job and Ci be the
completion time of job i, then for every instance of the CDD, there exists an
optimal schedule with at least one of the following properties:
a) an optimal schedule with t∗ = 0
b) an optimal schedule with Ci = d .

Proof. Refer to Hoogeveen and van de Velde [70]. �

A pseudo-polynomial algorithm with a runtime complexity of O(n2d) was
presented by Hoogeveen and van de Velde for the restrictive case with one
machine when the earliness and tardiness penalty weights are symmetric for
all the jobs [70]. Hall et al. studied the un-weighted earliness and tardiness
problem and presented a dynamic programming algorithm [66]. Besides these
earlier works, there have been some research on heuristic algorithms for the
general common due-date problem with asymmetric penalty costs. James pre-
sented a tabu search algorithm for the general case of the problem [72]. In
2003, Feldmann and Biskup approached the problem using metaheuristic al-
gorithms namely Simulated Annealing (SA) and threshold accepting (TA) and
presented the results for the benchmark instances up to 1000 jobs on a single
machine [20, 57]. Sourd and Sidhoum present a branch and bound algorithm
for minimizing the earliness/tardiness of the jobs with the distinct due-dates
and release dates for all the jobs [132].

In 2006, Pan et al. [115] proposed a discrete particle swarm optimization
along with a heuristic algorithm based on the V-shaped property of the CDD,
mentioned below.

Property 4.3. In the optimal schedule of the solution to the CDD problem,
the jobs that are completed at or before the due date are sequenced in non-
increasing order of the ratio Pi/αi . On the other hand, jobs whose processing
starts at or after the due date are sequenced in non-decreasing order of the
ratio Pi/βi. This property is also known as the V-shaped property of the CDD
problem. [15]

A variable neighborhood search hybridized with Tabu Search was proposed
by Liao and Cheng in 2007 [92]. In the same year, Tasgetiren et al. presented
a Discrete Differential Evolution Algorithm for the CDD problem [136]. In
2008, Nearchou proposed a Differential Evolution approach [113]. Ronconi
and Kawamura made a theoretical study on the lower bound of the CDD
problem and proposed a branch and bound algorithm in 2010 for the general
case of the CDD and gave optimal results for small benchmark instances till 20
jobs [123]. Another variant of the problem was studied by Toksari and Guner,
where they considered the common due-date problem on parallel machines
under the effects of time dependence and deterioration [138].

Kacem provides a polynomial time approximation to the total weighted
tardiness problem against a common due-date [76]. In 2012, Rebai et al. pro-
posed metaheuristic and exact approaches for the common due-date prob-
lem to schedule preventive maintenance tasks [122]. In 2013, Banisadr et al.
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studied the single-machine scheduling problem for the case that each job is
considered to have linear earliness and quadratic tardiness penalties with no
machine idle time. They proposed a hybrid approach for the problem based
upon evolutionary algorithm concepts [9]. The best and detailed results till
date for the CDD problem have been proposed by Liu and Zhou in 2013,
where the authors proposed a Population-based Harmony Search hybridized
with Variable Neighborhood Search [97]. The authors provided detailed anal-
ysis of their results along with the exact solution values for all the benchmark
instances. Xu et al. study the CDD problem on parallel machine with the ob-
jective to minimize the total weighted tardiness, depending on the start time
of the jobs, and propose metaheuristic algorithms to solve the problem [145].

CDD has been extensively studied by many researchers and some useful
properties have been proven. Cheng and Kahlbacher proved that in the opti-
mal solution of the CDD machine has no idle time between any two jobs [38].
Hall et al. showed that if t∗ is the starting time for the first job, then in the
optimal schedule of every instance of the CDD, either t∗ = 0 or Ci = d for
some i [66].

4.3 Problem Formulation

In this section we give the mathematical notation of the common due-date
problem based on [20]. We also define some new parameters which are later
used in the presented algorithm in the next section. Let,
n = number of jobs,
m = total number of machines,
nj = number of jobs processed by machine j (j = 1, 2, . . . ,m),
d = common due-date,
Pi = actual processing time for job i, ∀i = 1, 2, . . . , n,
Mj = time at which machine j finished its previous job,
W k
j = kth job processed by machine j,

Ci = completion time of job i,
gi = earliness of job i, where gi = max{0, d− Ci},
hi = tardiness of job i, where hi = max{0, Ci − d},
αi = earliness penalty per time unit for any job i,
βi = tardiness penalty per time unit for any job i.
The objective functions for the CDD problem can then be expressed as

min

n∑
i=1

(αi · gi + βi · hi) . (4.1)

4.4 Motivation and Strategy for the Algorithms

In this section we present the intuition and the exact strategy for the devel-
oped algorithm for the sub-problem of CDD. As discussed in Chapter 2, the
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idea behind our approach is to break the integer programming formulation of
these NP-hard problems in two parts, i.e., (i) finding a good (near optimal)
job sequence and (ii) finding the optimal values of the completion times Ci
for all the jobs in this job sequence. Using the above parameters mentioned in
Section 4.3, the mixed 0-1 integer programming (IP) formulation of the CDD
can be presented as follows:

Minimize
n∑
i=1

(αi · gi + βi · hi) (4.2)

subject to

C1 ≥ P1,

Ci ≥ Pi + Cj −G · δij , i = 1, . . . , n− 1, j = i+ 1, . . . , n,

Cj ≥ Pj + Ci −G · (1− δij), i = 1, . . . , n− 1, j = i+ 1, . . . , n,

gi ≥ d− Ci, i = 1, . . . , n,

hi ≥ Ci − d, i = 1, . . . , n,

gi, hi ≥ 0, i = 1, . . . , n,

δij ∈ {0, 1} i = 1, . . . , n− 1, j = i+ 1, . . . , n.

The variables have the same meaning as explained in Section 4.3, except
for G and δij . G is some very large positive number and δij is the decision
variable with δij ∈ {0, 1}, i = 1, 2, . . . , n− 1, j = i+ 1, . . . , n. We have δij = 1
if job i precedes job j in the sequence (not necessarily right before it) and
vice-versa. Hence any feasible set of values of δij offers a feasible job sequence
and we obtain a resultant linear program. In the course of this chapter, we
make some theoretical analysis of the problem and develop two polynomial
algorithms to the sub-problem of optimizing any given job sequence.

4.5 Polynomial Algorithm for CDD Job Sequence

We now present the ideas and the algorithm for solving the single machine case
for a given job sequence, which is obtained by reducing the common due-date
problem to the aircraft landing problem. We assume that there are n jobs
to be processed by a machine and all the parameters stated in Section 4.3
represent the same meaning.

Lemma 4.4. If the initial assignment of the completion times of the jobs,
for a given sequence J is done according to Ci where,
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Ci =

{
max{P1, d} if i = 1

Ci−1 + Pi if 2 ≤ i ≤ n ,
(4.3)

then the optimal solution for this sequence can be obtained only by reducing
the completion times of all the jobs or leaving them unchanged.

Proof. We prove the above lemma by considering two cases of Equation (4.3).
Case 1: d > P1

In this case Equation (4.3) will ensure that the first job is completed at the
due-date and the following jobs are processed consecutively without any idle
time. Moreover, with this assignment all the jobs will be tardy except for
the first job which will be completed at the due-date. The total penalty (say,
PN) will be

∑n
i=1

(βi · hi), where hi = Ci − d, i = 1, 2, . . . , n. Now if we
increase the completion time of the first job by x units then the new com-
pletion times C ′i for the jobs will be Ci + x ∀ i, (i = 1, 2, . . . , n) and the new

total penalty PN ′ will be
∑n
i=1

(βi · h
′

i), where h
′

i = hi + x (i = 1, 2, . . . , n).
Clearly, we have PN ′ > PN which proves that an increase in the completion
times cannot fetch optimality which in turn proves that optimality can be
achieved only by reducing the completion times or leaving them unchanged
from Equation (4.3).
Case 2: d ≤ P1

If the processing time of the first job in any given sequence is more than the
due-date then all the jobs will be tardy including the first job as P1 > D. Since
all the jobs are already tardy, a right shift (i.e. increasing the completion
times) of the jobs will only increase the total penalty hence worsening the
solution. Moreover, a left shift (i.e. reducing the completion times) of the jobs
is not possible either, because C1 = P1, which means that the first job will
start at time 0. Hence, in such a case Equation (4.3) is the optimal solution.
In the rest of the chapter we avoid this simple case and assume that for any
given sequence the processing time of the first job is less than the due-date.
�

Before stating the algorithm we first introduce some new parameters, def-
initions and theorems which are useful for the description of the algorithm.
We first define DTi = Ci − d, i = 1, 2, . . . , n and Gstart = C1 − P1. It is clear
that DTi is the algebraic deviation of the completion time of job i from the
due-date and Gstart is the maximum possible shift (reduction of completion
time) for the first job.

Lemma 4.5. Once Ci for each job in a sequence is assigned according to
Lemma 4.4, a reduction of the completion times is possible only if Gstart > 0.

Proof. Lemma 4.4 proves that only a reduction of the completion times can
improve the solution once the initialization is made as per Equation (4.3).
Besides there is no idle time between any jobs, hence an improvement can be
achieved only if Gstart > 0, in which case all the jobs will be shifted left by
equal amount. �
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Definition 4.6. PL is a vector of length n and any element of PL (PLi) is
the penalty possessed by job i. We define PL, as

PLi =

{
−αi, if DTi ≤ 0

βi, if DTi > 0 .
(4.4)

With the above definition we can now express the objective function stated
by Equation (4.1) as min(Sol), where Sol:

Sol =

n∑
i=1

(DTi · PLi) . (4.5)

Algorithm 3: Exact Algorithm for Single Machine

1 Initialize Ci ∀ i (Equation 4.3)
2 Compute PL,DT,Gstart

3 Sol←
n∑
i=1

(DTi · PLi)

4 j ← 2
5 while (j < n+ 1) do
6 Ci ← Ci −min{Gstart, DTj}, ∀ i
7 Update PL,DT,Gstart

8 Vj ←
n∑
i=1

(DTi · PLi)

9 if (Vj < Sol) then
10 Sol← Vj
11 else
12 break
13 j ← j + 1

14 return Sol

4.6 Proof of Optimality

Theorem 4.7. Algorithm 3 finds the optimal solution for a single machine
common due-date problem, for a given job sequence.

Proof. The initialization of the completion times for a sequence P is done
according to Lemma 4.4. It is evident from Equation (4.3) that the deviation
from the due-date (DTi) is zero for the first job and greater than zero for
all the following jobs. Besides, DTi < DTi+1 for i = 1, 2, 3, . . . , n − 1, since
Ci < Ci+1 from Equation (4.3) and DTi is defined as DTi = Ci − d. By
Lemma 4.4 the optimal solution for this sequence can be achieved only by
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reducing the completion times of all the jobs simultaneously or leaving the
completion times unchanged.

The total penalty after the initialization is PN =
∑n
i=1

(βi ·Ti) since none
of the jobs are completed before the due-date. According to Algorithm 3 the
completion times of all the jobs is reduced by min{Gstart, DTj} at any it-
eration. Since DT1 = 0, there will be no loss or gain for j = 1. After any
iteration of the while loop in line 5, we decrease the total weighted tardiness
but gain some weighted earliness penalty for some jobs. A reduction of the
completion times by min{Gstart, DTj} is the best non-greedy reduction. Let
min{Gstart, DTj} > 0 and t be a number between 0 and min{Gstart, DTj}.
Then reducing the completion times by t will increase the number of early
jobs by one and reduce the number of tardy jobs by one. With this opera-
tion; if there is an improvement to the overall solution then a reduction by
min{Gstart, DTj} will fetch a much better solution (Vj) because reducing the
completion times by t will lead to a situation where none of the jobs either
start at time 0 (because Gstart > 0) nor any of the jobs finish at the due-date
since the jobs 1, 2, 3, . . . , j − 1 are early, jobs j, j + 1, . . . , n are tardy and the
new completion time of job j is C

′

j = Cj − t.
Since after this reductionDTj > 0 andDTj < DTj+1 for j = 1, 2, 3, . . . , n−

1, none of the jobs will finish at the due-date after a reduction by t units. More-
over, it was proved by Cheng et al. [38] that in an optimal schedule for the
restrictive common due-date, either one of the jobs should start at time 0 or
one of the jobs should end at the due-date. This case can occur only if we
reduce the completion times by min{Gstart, DTj}. If Gstart < DTj the first
job will start at time 0 and if DTj < Gstart then one of the jobs will end at
the due-date. In the next iterations we continue the reductions as long as we
get an improvement in the solution and once the new solution is not better
than the previous best then we do not need to check any further and we have
our optimal solution. This can be proved by considering the values of the ob-
jective function at two iterations indices; j and j + 1. Let Vj and Vj+1 be the
value of the objective function at these two indexes then we can prove that
the solution cannot be improved any further if Vj+1 > Vj by Lemma 4.8. �

Lemma 4.8. Once the value of the solution at any iteration j is less than the
value at iteration j + 1, then the solution cannot be improved any further.

Proof. If Vj+1 > Vj then it means that further left shift of the jobs does not
fetch a better solution. Note that the objective function has two parts, penalty
due to earliness and penalty due to tardiness. Let us consider the earliness and
tardiness of the jobs after the jth iterations are gji and hji for i = 1, 2, . . . , n.

Then we have Vj =
∑n
i=1

(αig
j
i + βih

j
i ) and V j+1 =

∑n
i=1

(αig
j+1
i + βih

j+1
i ).

Besides, after every iteration of the while loop in Algorithm 3, the completion
times are reduced or in other words the jobs are shifted left. This leads to an
increase in the earliness and a decrease in the tardiness of the jobs. Let’s
say, the difference in the reduction between V j+1 and V j is x. Then we have
gj+1 = gj + x and hj+1 = hj − x. Since V j+1 > V j , we have:

∑n
i=1

(αig
j+1
i +
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βih
j+1
i ) >

∑n
i=1

(αig
j
i +βih

j
i ). By substituting the values of gj+1 and hj+1 we

get,
∑j+1
i=1

αix >
∑n
i=j+2 βix. Hence, at the (j+1)th iteration the total penalty

due to earliness exceeds the total penalty due to tardiness. This proves that for
any further reduction there can not be an improvement in the solution because
a decrease in the tardiness penalty will always be less than the increase in the
earliness penalty. �

j=1 j=arg min{Vj} j=n

j

Vj

Fig. 4.1. The trend of the solution value against each iteration of Algorithm 3, for a
job sequence. The value of the solution does not improve any further after a certain
number of reductions.

4.7 Algorithm Run-Time Complexity

In this section we study and prove the runtime complexity of the Algorithm 3.

Lemma 4.9. The runtime complexity of Algorithm 3 is O(n2) where n is the
total number of jobs.

Proof. For Algorithm 3 the calculations involved in the initialization step
and evaluation of PL,DT,Gstart, Sol are all of O(n) complexity and their
evaluation is irrespective of the any conditions unlike inside the while loop.
The while loop again evaluates and updates these parameters at every step
of its iteration and returns the output once their is no improvement possible.
The worst case will occur when the while loop is iterated over all the values
of j, j = 2, 3, . . . , n. Hence the complexity of Algorithm 3 is O(n2) with n
being the number of jobs processed by the machine. �
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4.8 Exponential Search: An Efficient Implementation of
Algorithm 3

Algorithm 3 shifts the jobs to the left by reducing the completion times of all
the jobs by min{Gstart, DTj} on every iteration of the while loop. The run-
time complexity of the algorithm can be improved form O(n2) to O(n log n)
by implementing an exponential search instead of a step by step reduction,
as in Algorithm 3. To explain this we first need to understand the slope of
the objective function values for each iteration. In the proof of optimality of
Algorithm 3, we proved that there is only one minimum present in V j ∀j.
Besides, the value of DTj increases for every j as it depends on the comple-
tion times. Also note that the reduction in the completion times is made by
min{Gstart, DTj}. Hence, if for any j, Gstart ≤ DTj then every iteration after
j will fetch the same objective function value, V j . Hence the trend of the
solution values after each iteration will have trend as shown in Figure 4.1.

With such a slope of the solution values (Vj), we can use the exponential
search as opposed to a step by step search, which will in turn improve the
runtime complexity of Algorithm 3. This can be achieved by increasing or
decreasing the step size of the while loop by orders of 2 (i.e. 2, 22, 23, . . . , n)
while keeping track of the slope of the solution. The index of the next iteration
should be increased if the slope is negative and decreased if the slope is non-
negative. At each step we need to keep track of the previous two indices and
once the difference between the indices is less than the minimum of the two,
then we need to perform binary search on the same lines. The optimum will
be reached if both the adjacent solutions are greater than the current value.
In this methodology we do not need to search for all values of j but in steps of
2j . Hence the runtime complexity with exponential search will be O(n log n)
for the single machine case.

In the next section we present some useful properties for the CDD which
later help us to develop an algorithm with O(n) complexity for finding the
optimal completion times of the jobs in any given job sequence of CDD prob-
lem. We first present an extension of the property proved by [35] for the CDD
with symmetric earliness/tardiness penalties. These properties are extended
for the general CDD problem with asymmetric penalties.

4.9 Property for the CDD Job Sequence

We now present and prove a property for the CDD problem. This property is
an extension to the one presented by Cheng [35], where the authors provide
a theorem for the due-date assignments when there is a constant waiting al-
lowance associated with each job. We prove a property for both the possible
cases (restrictive and un-restrictive due-date) of the optimal schedule for the
CDD problem. Furthermore, later in the chapter we describe how we com-
bine the properties proved by Cheng and Kahlbachar [38] and Hall et al. [66]
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with Theorem 4.10 for the general case of the CDD and present a linear al-
gorithm for optimizing any given job sequence for both the restrictive and
un-restrictive cases of the CDD.

Theorem 4.10. If the optimal due-date position in any given job sequence
of the CDD lies between Cr−1 and Cr, i.e., Cr−1 < d ≤ Cr, then the following
relations hold for the two cases
Case 1: If Cr−1 < d < Cr

i)
k−1∑
i=1

αi ≤
n∑
i=k

βi, k = 1, 2, 3, . . . , r .

Case 2: If Cr = d

i)
n∑

i=k+1

βi ≤
k∑
i=1

αi, k = r, r + 1, . . . , n and

ii)
k−1∑
i=1

αi ≤
n∑
i=k

βi, k = 1, 2, 3, . . . , r .

Proof. We know from Property 4.2 that the optimal schedule of the CDD for
any job sequence either has t∗ = 0 or one of the job finishes at the due-date.
Hence, we consider these two cases separately.
Case 1: optimal schedule with Cr−1 < d < Cr
Let us first consider the case when the optimal schedule for any sequence lies

1 r − 1 r n

−−−−−− −−−−−−

t = 0 d

y

Fig. 4.2. Assume that the first job starts at time t = 0 and the due-date lies between
the completion times of two consecutive jobs, with y = d− Cr.

strictly between Cr−1 and Cr, i.e. Cr−1 < d < Cr, as shown in Figure 4.2.
We know from Property 4.2 that such a case can occur only when the first
job starts at time t = 0 and all the following jobs are processed without any
machine idle time. Let the difference between Cr−1 and d be y such that
y = d − Cr−1, as shown in Figure 4.2. Let gi and hi be the earliness and
tardiness penalties of any job i, for this particular case, respectively. Hence,
the solution value Sold for the schedule in Figure 4.2 can be written as

Sold =

r−1∑
i=1

gi · αi +

n∑
i=r

hi · βi . (4.6)

Now, the only possibility to get another schedule is to shift all the jobs to the
right such that one of the jobs finishes at the due-date, as per Property 4.2.
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Figure 4.3 shows the right shift of all the jobs by y units. It is clear that after
this right shift of all the jobs, job r− 1 offers no penalty. Hence, the earliness
of the early jobs in Figure 4.3 will be gi − y for i = 1, 2, . . . , r − 2 and the
tardiness of the tardy jobs will be hi + y for i = r, r + 1, . . . , n. We can now
write the solution value for Figure 4.3 as Sol′d where

Sol′d =

r−2∑
i=1

(gi − y)·αi +

n∑
i=r

(hi + y)·βi . (4.7)

1 n

−−−−−− −−−−−−

t = 0 Cr−1 = d

Fig. 4.3. Assume that the (r − 1)th job finishes at the due-date d in the optimal
schedule.

Since we already assumed that Figure 4.2 is the optimal schedule, we have

Sold ≤ Sol′d . (4.8)

Note that in Figure 4.2, the earliness of job r is y. Hence Sold can be rewritten
as

Sold =
r−1∑
i=1

gi · αi +
n∑
i=r

hi · βi ,

=
r−2∑
i=1

gi · αi + y · αr−1 +
n∑
i=r

hi · βi .
(4.9)

Likewise, the terms in Sol′d can also be manipulated as

Sol′d =
r−2∑
i=1

(gi − y) · αi +
n∑
i=r

(hi + y) · βi ,

=
r−2∑
i=1

gi · αi −
r−2∑
i=1

y · αi +
n∑
i=r

hi · βi +
n∑
i=r

y · βi .
(4.10)

Substituting the value of Sold from Equation (4.9) and Sol′d from Equa-
tion (4.10) in Equation (4.8), we get

y · αr−1 ≤ −
r−2∑
i=1

y · αi +
n∑
i=r

y · βi
r−1∑
i=1

y · αi ≤
n∑
i=r

y · βi .
(4.11)

Since y > 0 due to the case constraint, Equation (4.11) fetches us

r−1∑
i=1

αi ≤
n∑
i=r

βi . (4.12)
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Clearly, if Equation (4.12) holds for any k = r, then it will also hold for any
k < r, since αi and βi are positive for all i, i = 1, 2, . . . , n. This proves the
first case of Theorem 4.10.
Case 2: optimal schedule at Cr = d
In this case we assume that the optimal solution lies at the completion time
of some job r. Consider Figure 4.4, where the optimal schedule occurs with
the due-date position at the completion time of job r, i.e. Cr = d. Let, gi and

1 n

−−−− −−−

t = 0 Cr = d

Fig. 4.4. Assume that the rth job finishes at the due-date d in the optimal schedule.

hi be the earliness and tardiness of any job i, respectively, for this particular
case (Figure 4.4) and the solution value for this case be Solr, then using
Equation (4.1) we have

Solr =

r−1∑
i=1

gi · αi +

n∑
i=r+1

hi · βi . (4.13)

1 n

−−−− −−−

t = 0 Cr+1 = d

Fig. 4.5. Schedule with the completion time of job r + 1 lying at the due-date,
Cr+1 = d.

Let the solution value for the case when all the jobs are shifted to the left by
Pr+1, i.e., the (r + 1)th job ends at the due-date, be Solr+1, see Figure 4.5.
Then the earliness of jobs 1 to r − 1 will increase by the processing time of
job r + 1, compared to Figure 4.4, since the due-date position shifts to right
by the same amount and job r will be early by Pr+1. Besides, job r+ 1 offers
no penalty and the tardiness of the all the jobs from r + 2 to n reduces by
Pr+1. Hence, the objective function value when the due-date is situated at
Cr+1 becomes

Solr+1 =

r−1∑
i=1

(gi + Pr+1) · αi + Pr+1 · αr +

n∑
i=r+2

(hi − Pr+1) · βi . (4.14)
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1 n

−−−− −−−

t = 0 Cr−1 = d

Fig. 4.6. Schedule with the completion time of job r − 1 lying at the due-date,
Cr−1 = d.

Likewise, when all the jobs are shifted to the right such that the (r− 1)th job
finishes at the due-date, in comparison to Figure 4.4, then jobs 1 to r− 2 will
have their earliness reduced by Pr, job r will be tardy by Pr and the all the
jobs from r+1 to n will have their tardiness increased by Pr. Let the solution
value for Figure 4.6 where the (r − 1)th job ends at the due-date be Solr−1,
then

Solr−1 =

r−2∑
i=1

(gi − Pr) · αi + Pr · βr +

n∑
i=r+1

(hi + Pr) · βi . (4.15)

Since we assume that Solr is the optimal value, we have,

Solr ≤ Solr+1, and (4.16)

Solr ≤ Solr−1 . (4.17)

Notice that in the first case, when Cr = d, the tardiness of job r + 1 is Pr+1

and the earliness of job r − 1 is Pr. Hence, rearranging the terms in Solr we
get,

Solr =
r−1∑
i=1

gi · αi +
n∑

i=r+1

hi · βi

=
r−1∑
i=1

gi · αi + Pr+1 · βr+1 +
n∑

i=r+2

hi · βi .
(4.18)

Splitting the earliness penalty of job r − 1, Solr can also be expressed as

Solr =
r−1∑
i=1

gi · αi +
n∑

i=r+1

hi · βi

=
r−2∑
i=1

gi · αi + Pr · αr−1 +
n∑

i=r+1

hi · βi .
(4.19)

Substituting the values of Solr from Equation (4.18) and Solr+1 from Equa-
tion (4.14) in Equation (4.16) we get

Solr ≤ Solr+1 ,
n∑

i=r+1

Pr+1 · βi ≤
r∑
i=1

Pr+1 · αi, and

n∑
i=r+1

βi ≤
r∑
i=1

αi .

(4.20)
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Likewise, substituting the values of Solr from Equation (4.19) and Solr−1

from Equation (4.15) in Equation (4.17),

Solr ≤ Solr−1 ,
r−1∑
i=1

Pr · αi ≤
n∑
i=r

Pr · βi, and

r−1∑
i=1

αi ≤
n∑
i=r

βi .

(4.21)

Since αi and βi are positive for all i, Equation (4.20) also implies,

n∑
i=k+1

βi ≤
k∑
i=1

αi, k = r, r + 1, . . . , n , (4.22)

i.e., if the sum of the tardiness penalties for the jobs (r + 1) to n is less than
the sum of the earliness penalties for the jobs from 1 to r, then the same
inequality also holds for any k ≥ r, since βi > 0 and αi > 0 for i = 1, 2, . . . , n.
Likewise, Equation (4.21) implies that

k−1∑
i=1

αi ≤
n∑
i=k

βi, k = 1, 2, . . . , r , (4.23)

i.e., if the sum of the earliness penalties for the jobs 1 to (r − 1) is less
than the sum of the tardiness penalties for the jobs from r to n, then the
same inequality also holds for any k ≤ r, since βi > 0 and αi > 0 for i =
1, 2, . . . , n. Equation (4.22) and (4.23) prove that the difference of the sum of
the earliness and the sum of the tardiness penalties changes sign before and
after the optimal position of the due-date, provided the due-date position in
the optimal solution lies at completion time of a job. �

4.10 Linear Algorithm for the CDD Job Sequence on a
Single Machine

We now present the ideas and the algorithm for solving the single machine
CDD problem for a given job sequence, mentioned in Algorithm 4. The in-
tuition for our approach comes from the properties presented and proved by
Cheng and Kahlbachar [38] (Property 4.1), Hall et al. [66] (Property 4.2) and
Theorem 4.10. Cheng and Kahlbachar proved that the machine has no idle
time between processing of any two jobs and Hall et al. proved that in the
optimal schedule either the first job starts at time t = 0 or one of the jobs fin-
ishes processing at the common due-date. Besides, we proved in Theorem 4.10
that the difference in the sum of the tardiness and earliness penalties changes
sign before and after the optimal due-date position, if the optimal solution has
the due-date position at the completion time of a job. Now using Property 4.2
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Algorithm 4: Linear algorithm to optimize a given job sequence of a
CDD instance.

1 Ci ←
∑i
k=1 Pk ∀ i = 1, 2, . . . , n

2 DTi ← Ci − d ∀ i
3 τ ← arg max

i=1,2,...,n
(DTi ≤ 0)

4 l← τ
5 if (τ 6= 0) then
6 pe←

∑τ
i=1 αi

7 pl←
∑n
i=τ+1 βi

8 t← 0
9 if (DTτ < 0) ∧ (pl < pe) then

10 DTi ← DTi −DTτ ∀ i
11 while (τ > 0) ∧ (pl < pe) do
12 pe← pe− ατ
13 pl← pl + βτ
14 t← 1
15 l← τ
16 τ ← τ − 1

17 if (t = 1) then
18 DTi ← DTi −DTl ∀ i
19 Ci ← DTi + d, i = 1, 2, . . . , n
20 gi ← max{d− Ci, 0}, i = 1, 2, . . . , n
21 hi ← max{Ci − d, 0}, i = 1, 2, . . . , n

22 return Sol←
∑l
i=1 αi · gi +

∑n
i=l+1 βi · hi

and Theorem 4.10, it becomes clear that the optimal solution of any job se-
quence will either start at time t∗ = 0 or possess the two properties proved
in Theorem 4.10. Hence, it is evident that to achieve the optimal solution we
must first start scheduling the jobs from time t = 0.

Let J be the input job sequence where Ji is the ith job in the sequence
J . Note that without loss of any generality we can assume Ji = i, since we
can rank the jobs for any sequence as per their order of their processing. Our
algorithm first assigns the initial completion times to all the jobs such that
the first job starts at time t = 0 and the rest of the jobs follow without any
idle time, i.e. Ci =

∑i
k=1 Pk.

If the sum of the tardiness penalties is already greater than the sum of the
earliness penalties then we know that this initialization is the optimal solution,
as well. The reason is clear from Case 1 of Theorem 4.10, which basically states
that the sum of the earliness penalties will be less than or equal to the sum
of the tardiness penalties for the maximum value of k. Evidently, the jobs
can not be shifted to the left any further and hence the maximum value of
k will occur for the initial schedule with the first job starting at time t = 0.
However, if the sum of the tardiness penalties is less than or equal to the sum
of earliness penalties, then we shift all the jobs towards increasing completion
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times by placing the due-date position at the end of the completion times of
jobs sequentially as long as the second property of Theorem 4.10 Case 2 holds.
This procedure is continued until the sum of the tardiness penalties remains
less than or equal to the sum of the earliness penalties.

We further explain Algorithm 4 with the help of an illustrative example
consisting of n = 5 jobs. We optimize the given sequence of jobs J where
Ji = i, i = 1, 2, . . . , 5. The data for this example is given in Table 4.1. There are
five jobs to be processed against a common due-date (d) of 16. The objective is
to minimize Equation (4.1). We first initialize the completion times of all the

Table 4.1. The data for the exemplary case of the CDD problem. The parameters
possess the same meaning as explained in Section 4.3.

i Pi αi βi

1 6 7 9
2 5 9 5
3 2 6 4
4 4 9 3
5 4 3 2

jobs (Ci, i = 1, 2, , . . . , n), such that Ci =
∑i
k=1 Pk as shown in Figure 4.7.

Hence, we have Ci = {6, 11, 13, 17, 21}. The first job starts processing at
time t = 0 and the following jobs are processed without any machine idle
time. The due-date position lies in between the completion times of job 3
and 4. In the next step we compute the vector DTi = Ci − d, which gives

2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

t = 0 d = 16

Fig. 4.7. Initialization of the schedule with the first job starting at time t = 0 and
the remaining jobs following with no machine idle time.

us DTi = {−10,−5,−3, 1, 5}. Notice that vector DTi fetches us the earliness
and tardiness values of the jobs with the negative values for the earliness
and the positive values for the tardiness. We then calculate the maximum
index τ of DTi ≤ 0 or in other words, maximum index of the job which is
either early or finishes at the due-date. In this example we have τ = 3 and
l = 3. Since τ 6= 0, we calculate the sum of the earliness and the tardiness
of the jobs as indicated by line 6 and 7 of Algorithm 4. Hence, pe = 22 and
pl = 5. In the next step we shift all the jobs by DTτ to check if the property
(ii) of Case 2 in Theorem 4.10 holds. After a right shift of 3 units, we have
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DTi = {−7,−2, 0, 4, 8} and the 3rd job finishes at the due-date, as shown in
Figure 4.8. Since this schedule still satisfies pl < pe, we again shift the jobs to

2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

t = 0 d = 16

Fig. 4.8. Schedule with the completion time of job 3 lying at the due-date, after
the right shift of all the jobs by 3 units.

the right, this time by the processing time of job 3. This also means that the
3rd job will now be tardy implying that the sum of the earliness penalty (pe)
will reduce by ατ = 6 and the sum of the tardiness penalties will increase by
βτ = 4. Hence from lines 12 and 13 of the algorithm, we have pe = 16 and
pl = 9. Figure 4.9 shows the schedule after the second right shift of the jobs
with job 2 finishing at the due-date. After updating the values of t, l and τ , we
have t = 1, l = 3 and τ = 2. Yet again pl < pe, which calls for another right
shift such that the first job now finishes at the due-date. We again update the
values inside the while loop and we have pe = 7, pl = 14, t = 1, l = 2 and
τ = 1. Since, pl > pe, the while loop condition is not satisfied anymore and
we update vector DTi since t = 1. The value t = 1 simply implies that there
was a right shift of the jobs and l signifies the job till which the shifts were
made. In this case l = 2 and hence we end up with DTi = {−5, 0, 2, 6, 10}, as
is clear from Figure 4.9. Finally, we multiply the corresponding penalties with
each vector element of DTi and the sum of the resultant vector gives us the
objective function value. Clearly we do not need to update the DTi vector in

2 4 6 8 10 12 14 18 20 22 24 26 28

6 5 2 4 4

t = 0 d = 16

Fig. 4.9. Schedule with the completion time of job 2 lying at the due-date, after an
additional right shift of all the jobs by 2 units.

every shift inside the while loop, but only update the sum of the penalties,
because the right shift is always equal to the processing time of the closest
early job to the due-date. It is clear from this illustration that due to the right
shifting nature of the algorithm, we do not need to check for the first property
in every step but only the second property, as is adopted in Algorithm 4. And
once it is satisfied we have our optimal schedule.
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4.11 Proof of optimality and Runtime Complexity of
Algorithm 4

Theorem 4.11. Algorithm 4 returns the optimal solution value for a given
sequence of the Common due-date problem with linear time runtime complex-
ity.

Proof. Since there is only one way that the due-date position may be between
the completion times of two consecutive jobs, we need to first calculate the
sum of penalties before and after the due-date such that the first job starts at
time zero and all the jobs follow without any machine idle time. The schedule
with t∗ = 0 will be optimal if the sum of the tardiness penalties is already
greater than the sum of earliness penalties, due to Case 1 of Theorem 4.10,
which states that the sum of the tardiness penalties will be less than or equal
to the sum of the earliness penalties for maximum value of k. If that is not the
case, we shift all the jobs towards right, as long as the sum of the tardiness
penalties of jobs finishing after the due-date is less than or equal to the some
of the earliness penalties of all the jobs which complete before the due-date,
according to Theorem 4.10.

As for the runtime complexity, the calculations involved in the initializa-
tion step and the evaluation of DT are both of linear time. All the steps inside
the while loop are of constant time. Evaluation of DTi and Sol are again of
complexity O(n), but they are calculated only once. Hence the overall com-
plexity of Algorithm 4 is O(n). �

4.12 Parallel Machine Case

For the parallel machine case we first need to assign the jobs to each machine
to get the number of jobs and their sequence in each machine. In addition to
the parameters explained in Section 4.3, we define a new parameter λ, which
is the machine assigned to each job, as mentioned in [4].

Definition 4.12. We define λ as the machine which has the earliest scheduled
completion time of the last job on that machine. Using the notation mentioned
in Section 4.3, λ can be mathematically expressed as

λ = argmin
j=1,2,...,m

Mj .

Algorithm 5 assigns the first m jobs to each machine respectively such
that they all finish processing after their processing time. For the remaining
jobs, we assign a machine λ to job i since it offers the least completion time.
Likewise each job is assigned at a specific machine such that the tardiness
for all the jobs is the least for the given job sequence. The job sequence is
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Algorithm 5: Exact Algorithm: Parallel Machine

1 Mj ← 0 ∀j = 1, 2, . . . ,m
2 nj ← 1 ∀j = 1, 2, . . . ,m
3 i← 0
4 for j ← 1 to m do
5 i← i+ 1
6 W 1

j ← i
7 Mj ← Pi
8 for i← m+ 1 to n do
9 Compute λ

10 nλ ← nλ + 1
11 W

nλ
λ ← i

12 Mλ ←Mλ + Pi
13 for each machine do
14 Algorithm 4

maintained in the sense that for any two jobs i and j such that job j follows i;
the Algorithm 5 will either maintain this sequence or assign the same starting
times at different machines to both the jobs. Finally, Algorithm 5 will give us
the number of jobs (nj) to be processed by any machine j and the sequence
of jobs in each machine, W k

j . This is the best assignment of jobs at machines
for the given sequence. Note that the sequence of jobs is still maintained here,
since Algorithm 5 ensures that any job i is not processed after a job i + 1.
Once we have the jobs assigned to each machine, the problem then converts
to m single machine problems, since all the machines are independent.

For the non-identical parallel machine case we need a slight change in the
definition of λ in Definition 4.12. Recall that Mj is the time at which machine
j finished its latest scheduled job and λ is the machine which has the least
completion time of jobs, among all the machines. In the non-identical machine
case we need to make sure that the assigned machine not only has the least
completion time but it is also feasible for the particular job(s). Hence, for the
non-identical machines case, the definition of λ in Algorithm 5 will change to
λi where

λi = argmin
j=1,2,...,m

Mj , such that machine j is feasible for job i .

For the remaining part, the Algorithm 5 works in the same manner as
for the identical parallel machines. Algorithm 5 can then be applied to the
non-identical independent parallel machine case for the initial allocation of
jobs to machines.
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4.13 Illustration of the Parallel Machine Case

In the parallel machine case we consider two parallel machines and illustrate
how we first assign the jobs in the same job sequence J to the machines and
optimize them independently. The data used in this example is the same as in
Table 4.1. The common due-date for the instance is also the same as earlier,
d = 16.
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Fig. 4.10. Illustration of the assignment of jobs to machines. After the assignment,
each machine has a certain number of jobs in the given sequence.

As shown in Figure 4.10(a), there are five jobs to be processed on two
independent identical parallel machines, against a due-date of 16. Hence, we
first assign the jobs to a machine. We start with the first two jobs in the
sequence J and assign them to the machines separately at Pi, Figure 4.10(b).
For the remaining jobs, we subsequently choose a machine which offers least
completion time for each job. The third job in the sequence is assigned to
the first machine (bottom machine) and the fourth job goes to the second
machine on the same lines, as depicted in Figure 4.10(c). Finally, we have
all the jobs assigned to a machine (Figure 4.10(d)) and each machine has a
certain number of jobs to process in a given sequence. In this example, the
first machine processes 3 jobs with the processing times of 5, 2 and 4, while
the second machine processes 2 jobs with processing times of 6 and 4, in
that order. Once we have this assignment of jobs to machines, we can apply
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our single machine algorithm to both of them independently to optimize the
overall earliness and tardiness penalty. Figure 4.11 (d) shows the best schedule
for both the machines with an overall penalty of 32.
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4

Fig. 4.11. Final optimal schedule for both the machines for the given sequence of
jobs. The overall penalty of 32 is reached, which is the best solution value as per
Algorithm 4 and 5.

4.14 A Dynamic Case of CDD

In this Section we discuss about a dynamic case of the common due-date
problem for the single machine case at the planning stage, as discussed in [5].
Recall that in Algorithm 4 we shift all the jobs to the right as long as the
property mention in Theorem 4.10 is satisfied. However, the same technique
can also be implemented by initializing the jobs such that the first job starts
at the due-date instead of time t = 0. In this case, all the jobs will be tardy
and we would be required to shift the jobs to the left until the sum of the
earliness penalties becomes greater than or equal to the some of the tardiness
penalties. The benefit of left shifting the jobs as opposed to the right shifting
proposed in Algorithm 4, lies in the fact that a dynamic case of the CDD
problem can be dealt with easily. Consider the case when an optimal schedule
has been calculated for a certain number jobs, and then an unknown number of
jobs with unknown processing times arrive later. We assume that the original
schedule is not disturbed and the new sequence of jobs can be processed after
the first set of jobs. We show that in such a case the optimal schedule for
the new extended job sequence can be achieved only by further reducing the
completion times of all the jobs. We would like to emphasize here that we are
considering the dynamic case at the planning stage when none of the jobs of
the original known job sequence has gone to the processing stage.

Let us assume that at any given point of time there are a certain number
of jobs (n) in a sequence J , for which the optimal schedule against a common
due-date D on a machine has been already calculated using Algorithm 4. In
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such a case, if there are some additional jobs n′ in a sequence J ′ to be processed
against the same due-date and by the same machine without disturbing the
sequence J , the optimum solution for the new sequence of n+ n′ jobs in the
extended sequence J + J ′1 can be found by further reducing the completion
times of jobs in J and the same reduction in the completion times of jobs in
J ′ using Algorithm 4. We prove it using Lemma 4.13.

Lemma 4.13. Let, Ci (i = 1, 2, . . . , n) be the optimal completion times of
jobs in sequence J and C ′j (j = 1, 2, . . . , n, n + 1, . . . , n + n′ − 1, n + n′) be
the optimal completion times of jobs in the extended job sequence J + J ′ with
n+ n′ jobs. Then,

i) ∃ γ ≥ 0 s.t. Ci − C ′i = γ for i = 1, 2, . . . , n

ii) C ′k = Cn − γ +
∑k
τ=n+1 Pτ , (k = n+ 1, n+ 2, . . . , n+ n′) .

Proof. Let SolJ denote the optimal solution for the job sequence J . This
optimal value for sequence J is calculated using Algorithm 4 which is optimal
according to Theorem 4.10. In the optimal solution let the individual penalties
for earliness and tardiness be gi and hi, respectively, hence

SolJ =

n∑
i=1

(αigi + βihi) . (4.24)

Clearly, the value of SolJ cannot be improved by either reducing the comple-
tion times any further as explained in Theorem 4.10. Now, processing an ad-
ditional job sequence J ′ starting from Cn (the completion time of the last job
in J) means that for the new extended sequence J + J ′ the tardiness penalty
increases further by some value, say PJ′ . Besides, the due-date remains the
same, the sequence J is not disturbed and all the jobs in the sequence J ′ are
tardy. Hence the new solution value (say VJ+J′) for the new sequence J + J ′

will be

VJ+J′ = SolJ + PJ′ . (4.25)

For this new sequence we do not need to increase the completion times
since it will only increase the tardiness penalty. This can be proved by con-
tradiction. Let x be the increase in the completion times of all the jobs in
J +J ′ with x > 0. The earliness and tardiness for the jobs in J become gi−x
and hi + x, respectively and the new total penalty (VJ) for the job sequence
J becomes

VJ =
n∑
i=1

(αi · (gi − x) + βi · (hi + x))

=
n∑
i=1

(αi · gi + βi · hi) +
n∑
i=1

(βi − αi) · x .
(4.26)

1 J and J ′ are two disjoint sets of jobs, hence J + J ′ is the union of two sets
maintaining the job sequences in each set.
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Equation (4.24) yields

VJ = SolJ +

n∑
i=1

(βi − αi) · x . (4.27)

Since SolJ is optimal SolJ ≤ VJ , we have

n∑
i=1

(βi − αi) · x ≥ 0 . (4.28)

Besides, the total tardiness penalty for the sequence J ′ will further increase
by the same quantity, say δ, δ ≥ 0. With this shift, the new overall solution
value V ′J+J′ will be

V ′J+J′ = VJ + PJ′ + δ . (4.29)

Substituting VJ from Equation (4.27) we have

V ′J+J′ = SolJ +

n∑
i=1

(βi − αi) · x+ PJ′ + δ . (4.30)

Using Equation (4.25) gives

V ′J+J′ = VJ+J′ +

n∑
i=1

(βi − αi) · x+ δ . (4.31)

Using Equation (4.28) and δ ≥ 0 we have

V ′J+J′ ≥ VJ+J′ . (4.32)

This shows that only a reduction in the completion times of all the jobs can
improve the solution. Thus, there exists a γ, γ ≥ 0 by which the completion
times are reduced to achieve the optimal solution for the new job sequence
J +J ′. Clearly, Ci−C ′i = γ for i = 1, 2, . . . , n and C ′k = Cn−γ+

∑k
τ=n+1 Pτ ,

(k = n+ 1, n+ 2, . . . , n+n′) since all the jobs are processed one after another
without any idle time. �

4.15 Local Improvement of the Job sequence for the
CDD

We now present a straight forward heuristic algorithm which is utilized to
locally improve any CDD job sequence, by implementing the V-shaped prop-
erty mentioned earlier in this chapter. We utilize Property 4.3 to develop an
improvement heuristic to evolve any job sequence, optimized by Algorithm 4.
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We use Algorithm 4 to obtain the ’breaking-point ’, in other words, the posi-
tion of the due-date in the optimal schedule for the job sequence J . Let l be
the last job which is early or finishes at the due-date. It can happen that the
optimal position of the due-date lies at the completion of job l or in between
job l and l + 1. We deal with these two cases separately.

We utilize the above property to develop an improvement heuristic to
evolve any job sequence, optimized by Algorithm 4. We use Algorithm 4 to
obtain the ’breaking-point ’, in other words, the position of the due-date in the
optimal schedule for the job sequence J . Let l be the last job which is early
or finishes at the due-date. It can happen that the optimal position of the
due-date lies at the completion of job l or in between job l and l+ 1. We deal
with these two cases separately.

Case 1: If Cl = d
Since job l finishes at the due-date in the optimal schedule of the job sequence
J , it is clear that changing the order of the early jobs will still keep the changed
sequence optimal, with Cl = d. The reason is that the Case 2 of Theorem 4.10
still holds. Likewise, changing the order of the tardy jobs will also not change
the position of the due-date for the new job sequence.

Hence, keeping this in mind we can arrange all the early jobs and job l
which finishes at the due-date in the non-increasing order of the ratio Pi/αi.
In the same manner, the order of the tardy jobs can as well be arranged in
the non-decreasing order of the ratio Pi/βi.

Case 2: If Cl < d < Cl+1

If the position of the due-date appears in between two jobs, then changing
the order of the early jobs will still retain the optimal schedule for the new
job sequence. However, changing the order of the jobs which are tardy can
change the position of the due-date, due to the straddling job l + 1. Hence,
for the straddling case we need to iteratively change the order of the early
and tardy jobs with respect to the V-shape property, and optimize the new
sequence as per Algorithm 4, as long as both the V-shaped property and
the properties of Theorem 4.10 are consistent with each other. Although,
in this work we do not apply this correction for the straddling case as our
experimental results show that solutions of high quality can be obtained by
applying the mentioned heuristic. Algorithm 6 shows this heuristic algorithm
for improving a job sequence.

4.16 Results for the CDD Problem

In this section we present our results for the CDD problem for single and par-
allel machines. The benchmark instances for the CDD problem have been pro-
vided by Biskup and Feldmann [20] in the OR-library [14]. We combine our lin-
ear algorithms with the Simulated Annealing algorithm. For the CDD, we also
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Algorithm 6: Heuristic to evolve a job sequence.

1 l← Algorithm 4 till line 16
2 JE ← {1, 2, . . . , l}
3 JT ← {l + 1, l + 2, . . . , n}
4 J ′E ← Jobs sorted in non-increasing order of Pi/αi, ∀i ∈ JE
5 J ′T ← Jobs sorted in non-decreasing order of Pi/βi,∀i ∈ JT
6 J ′ = {J ′E , J ′T }
7 Sol← Algorithm 4 on J ′

utilize the improvement heuristic mentioned in Section 4.15, to improve any
job sequence with the help of the V-shaped property. Henceforth we present
our results and compare them with the previous works of [115, 113, 136, 92]
and [97], where the authors have implemented several metaheuristic algo-
rithms for the CDD problem. All the computations in this work are carried
out on MATLAB utilizing C++ mex functions. We implement our results
on a 2 GB RAM PC with 1.73 GHz Intel dual core processor. As we state
earlier, our polynomial algorithm optimizes any given job sequence of CDD.
Nonetheless, finding the optimal (near-optimal) job sequence is still an open
question. Hence, the job sequences for both the problems are evolved using
the heuristic and Simulated Annealing.

4.16.1 Modified Simulated Annealing

We implement the modified Simulated Annealing explained in Chapter 3 to
generate the job sequences. The parameters for the SA are deduced by ex-
perimental analysis on the CDD problem. For the CDD problem we take an
ensemble size of 2 for any number of jobs, and the maximum number of SA
iterations is taken as 500·n, n being the problem size. An exponential schedule
for cooling is adopted with a cooling rate of 1 − 10−4. As for the perturba-
tion rule, we first randomly select two jobs in any job sequence and permute
them randomly to create a new sequence. The job sequence obtained after the
improvement heuristic is shuffled only once. Two jobs are selected randomly,
one each from the set of tardy jobs (J ′T ) and early set of jobs (J ′E). These two
jobs are swapped, eventually belonging to different sets.

4.16.2 Experimental Results

We now present our results for the CDD problem using the improvement
heuristic mentioned in Section 4.15 and the modified simulated annealing
algorithm explained in the previous section. We call our algorithm LHSA for
reference. The results are compared with all the available data provided by
several recent and the best works on this problem. Let, FREF denote the
reference fitness function value reported by Feldmann and Biskup [57] and Fi
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Table 4.2. Results obtained for the single machine case for the common due-date
problem and comparison with five other approaches mentioned in the literature. The
results shown for each h value for any job is the average over 10 different benchmark
instances provided in OR-library by [20].

n h DDE DE DPSO VNS/TS PHVNS LHSA

10

0.2 0 0 0 0 0 0
0.4 0 0 0 0 0 0
0.6 0 0 0 0 0 0
0.8 0 0 0 0 0 0

20

0.2 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84
0.4 -1.63 -1.63 -1.63 -1.63 -1.63 -1.63
0.6 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72
0.8 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

50

0.2 -5.69 -5.69 -5.68 -5.70 -5.70 -5.70
0.4 -4.66 -4.66 -4.66 -4.66 -4.66 -4.66
0.6 -0.34 -0.32 -0.34 -0.34 -0.34 -0.34
0.8 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24

100

0.2 -6.19 -6.17 -6.19 -6.19 -6.19 -6.19
0.4 -4.94 -4.89 -4.94 -4.94 -4.94 -4.94
0.6 -0.15 -0.13 -0.15 -0.15 -0.15 -0.15
0.8 -0.18 -0.17 -0.18 -0.18 -0.18 -0.18

200

0.2 -5.77 -5.77 -5.78 -5.78 -5.78 -5.78
0.4 -3.75 -3.72 -3.74 -3.75 -3.75 -3.75
0.6 -0.15 0.23 -0.15 -0.15 -0.15 -0.15
0.8 -0.15 0.20 -0.15 -0.15 -0.15 -0.15

500

0.2 -6.43 -6.43 -6.42 -6.42 -6.43 -6.43
0.4 -3.56 -3.57 -3.56 -3.56 -3.58 -3.58
0.6 -0.11 1.72 -0.11 -0.11 -0.11 -0.11
0.8 -0.11 1.01 -0.11 -0.11 -0.11 -0.11

1000

0.2 -6.76 -6.72 -6.76 -6.75 -6.77 -6.77
0.4 -4.38 -4.38 -4.38 -4.37 -4.40 -4.40
0.6 -0.06 1.29 -0.06 -0.05 -0.06 -0.06
0.8 -0.06 2.79 -0.06 -0.05 -0.06 -0.06

be the solution values obtained by the algorithms reported in this work and
the literature, then the value of the percentage deviation ∆ for any approach
is calculated as

∆ =
Fi − FREF
FREF

· 100 .

In Table 4.2 we present the comparison of our results in terms of this per-
centage deviation (∆) with five other approaches mentioned in the literature.
These approaches include the Discrete Particle Swarm Optimization (DPSO)
by Pan et al. [115], Variable Neighborhood Search hybridized with Tabu Seach
(VNS/TS) by Liao and Cheng [92], Discrete Differential Evolution (DDE) by
Tasgetiren et al. [136], Differential Evolution (DE) by Nearchou [112] and the
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Table 4.3. Best solution values for small benchmark instances till 100 jobs, obtained
by PHVNS and LHSA.

n k PHVNS LHSA PHVNS LHSA PHVNS LHSA PHVNS LHSA

101010

1 1936 1936 1025 1025 841 841 818 818
2 1042 1042 615 615 615 615 615 615
3 1586 1586 917 917 793 793 793 793
4 2139 2139 1230 1230 815 815 803 803
5 1187 1187 630 630 521 521 521 521
6 1521 1521 908 908 755 755 755 755
7 2170 2170 1374 1374 1101 1101 1083 1083
8 1720 1720 1020 1020 610 610 540 540
9 1574 1574 876 876 582 582 554 554
10 1869 1869 1136 1136 710 710 671 671

202020

1 4394 4394 3066 3066 2986 2986 2986 2986
2 8430 8430 4847 4847 3206 3206 2980 2980
3 6210 6210 3838 3838 3583 3583 3583 3583
4 9188 9188 5118 5118 3317 3317 3040 3040
5 4215 4215 2495 2495 2173 2173 2173 2173
6 6527 6527 3582 3582 3010 3010 3010 3010
7 10455 10455 6238 6238 4126 4126 3878 3878
8 3920 3920 2145 2145 1638 1638 1638 1638
9 3465 3465 2096 2096 1965 1965 1965 1965
10 4979 4979 2925 2925 2110 2110 1995 1995

505050

1 40697 40697 23792 23792 17969 17969 17934 17934
2 30613 30613 17907 17907 14050 14050 14040 14040
3 34425 34425 20500 20500 16497 16497 16497 16497
4 27755 27755 16657 16657 14080 14080 14080 14080
5 32307 32307 18007 18007 14605 14605 14605 14605
6 34969 34969 20385 20385 14251 14251 14066 14066
7 43134 43134 23038 23038 17616 17616 17616 17616
8 43839 43839 24888 24888 21329 21329 21329 21329
9 34228 34228 19984 19984 14202 14202 13942 13942
10 32958 32958 19167 19167 14366 14366 14363 14363

100100100

1 145516 145516 85884 85884 72017 72017 72017 72017
2 124916 124916 72981 72981 59230 59230 59230 59230
3 129800 129800 79598 79598 68537 68537 68537 68537
4 129584 129584 79405 79405 68759 68759 68759 68759
5 124351 124351 71275 71275 55286 55286 55103 55103
6 139188 139188 77778 77778 62398 62398 62398 62398
7 135026 135026 78244 78244 62197 62197 62197 62197
8 160147 160147 94365 94365 80708 80708 80708 80708
9 116522 116522 69457 69457 58727 58727 58727 58727
10 118911 118911 71850 71850 61361 61361 61361 61361

best known results reported by Liu and Zhou [97], where the authors provide a
Permutation-based Harmony Search hybridized with Variable Neighborhood
Search (PHVNS). Our results of LHSA shown in Table 4.2 are the best results
obtained in 100 different replications of LHSA over all the 280 benchmark in-
stances.

Note that for each job size there are 10 different benchmark instances
and hence the values presented in Table 4.2 are the average over those 10
instances. Additionally, there is a restrictive factor h, which determines the
value of the due-date (d) for any instance as d = bh·

∑n
i=1 Pic. Consistent with

the benchmarking of Biskup and Feldmann [20], we presented the results for
4 different h values ranging from 0.2 to 0.8. Table 4.2 shows the comparison of
six different approaches in terms of ∆ and it is clear that LHSA and PHVNS
outperform all other approaches, since these two approaches achieve the best
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Table 4.4. Best solution values for large benchmark instances till 1000 jobs and
their comparison with PHVNS.

n k PHVNS LHSA PHVNS LHSA PHVNS LHSA PHVNS LHSA

200200200

1 498653 498653 295684 295684 254259 254259 254259 254259
2 541180 541180 319199 319199 266002 266002 266002 266002
3 488665 488665 293886 293886 254476 254476 254476 254476
4 586257 586257 353034 353034 297109 297109 297109 297109
5 513217 513217 304662 304662 260280 260278260278260278 260278 260278
6 478019 478019 279920 279920 235702 235702 235702 235702
7 454757 454757 275017 275017 246307 246307 246307 246307
8 494276 494276 279172 279172 225215 225215 225215 225215
9 529275 529275 310400 310400 254637 254637 254637 254637
10 538332 538332 323077 323077 268353 268353 268353 268353

500500500

1 2954852 2954852 1787693 1787693 1579031 1579031 1579031 1579031
2 3365830 3365830 1994777 199477119947711994771 1712195 1712195 1712195 1712195
3 3102561 3102561 1864365 1864365 1641438 1641438 1641438 1641438
4 3221011 3221011 1887284 1887284 1640783 1640783 1640783 1640783
5 3114756 3114756 1806978 1806978 1468232 146823114682311468231 1468231 1468231
6 2792231 2792231 1610015 1610015 1411830 1411830 1411830 1411830
7 3172398 3172398 1902624 190261719026171902617 1634330 1634330 1634330 1634330
8 3122267 3122267 1819186 181918518191851819185 1540377 1540377 1540377 1540377
9 3364310 3364310 1973635 1973635 1680188 168018716801871680187 1680188 168018716801871680187
10 3120383 3120383 1837325 1837325 1519181 1519181 1519181 1519181

100010001000

1 14054917 14054917 8110907 811089281108928110892 6410875 6410875 6410875 6410875
2 12295997 12295997 7271371 7271371 6110091 6110091 6110091 6110091
3 11967282 11967282 6986822 698681669868166986816 5983303 5983303 5983303 5983303
4 11796603 117965941179659411796594 7024058 702405070240507024050 6085846 6085846 6085849 608584660858466085846
5 12449586 12449586 7364795 7364795 6341477 6341477 6341477 6341477
6 11644090 116440851164408511644085 6927593 692758469275846927584 6078373 6078373 6078375 607837360783736078373
7 13276996 13276996 7861297 7861297 6574306 657429765742976574297 6574306 657429765742976574297
8 12274736 12274736 7222137 7222137 6067328 606731260673126067312 6067328 606731260673126067312
9 11757063 11757063 7058786 705876670587667058766 6185321 6185321 6185321 6185321
10 12427443 124274411242744112427441 7275973 727593572759357275935 6145742 614573761457376145737 6145742 614573761457376145737

results consistently over all the benchmark instances. However, to make a
more detailed comparison with the work of Liu and Zhou [97], who provide
the state-of-the-art results for the CDD, we carry out an exact instance-by-
instance comparison with the PHVNS algorithm along with the comparison
of the robustness of our approach.

In Table 4.3 and 4.4 we present a detailed comparison of the exact solution
values obtained by LHSA and PHVNS. Evidently, for small instances till 100
jobs both PHVNS and LHSA obtain the best known solution values for all
the instances. However, the superiority of LHSA is proven for harder large
instances of job size 200 to 1000. In Table 4.4 we show that LHSA obtains
better solutions that the state-of-the-art results of PHVNS for a total of 24
different benchmark instances. Another interesting aspect of our approach is
evident from the fact that LHSA improves the solution value of 1 instance
with job size 200, 6 instances for 500 jobs and 17 instances with the job size
of 1000. This shows that our algorithm is more and more adaptable for larger
instances which are harder to solve in general.

Additionally, we also carry out statistical analysis of LHSA and com-
pare the robustness of our approach with PHVNS. The results of LHSA and
PHVNS are obtained over 40 different replications of the algorithms over all
the instances. Hence, in Table 4.5 we show the comparison of the average rel-
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Table 4.5. Experimental analysis of the robustness of LHSA and its comparison
with the results of PHVNS.

n h %∆̄PHVNS %∆̄LHSA sdPHVNS sdLHSA

10

0.2 0.0000 0.0000 0.0000 0.0000
0.4 0.0000 0.0000 0.0000 0.0000
0.6 0.0000 0.0000 0.0000 0.0000
0.8 0.2378 0.0000 0.0000 0.0000

20

0.2 0.0000 0.0000 0.0000 0.0000
0.4 0.0061 0.0000 0.0000 0.0000
0.6 0.0034 0.0000 0.0000 0.0000
0.8 0.0421 0.0001 0.0000 0.0003

50

0.2 0.0000 0.0095 0.0000 0.0111
0.4 0.0022 0.0206 0.0070 0.0218
0.6 0.0113 0.0089 0.0143 0.0126
0.8 0.0227 0.0040 0.0295 0.0074

100

0.2 0.0030 0.0083 0.0047 0.0059
0.4 0.0036 0.0154 0.0056 0.0128
0.6 0.0085 0.0007 0.0096 0.0013
0.8 0.0108 0.0007 0.0115 0.0014

200

0.2 0.0020 0.0024 0.0021 0.0017
0.4 0.0045 0.0062 0.0045 0.0030
0.6 0.0020 0.0004 0.0022 0.0007
0.8 0.0017 0.0003 0.0018 0.0005

500

0.2 0.0004 0.0008 0.0005 0.0006
0.4 0.0011 0.0023 0.0006 0.0009
0.6 0.0011 0.0001 0.0010 0.0001
0.8 0.0013 0.0001 0.0009 0.0001

1000

0.2 0.0005 0.0004 0.0005 0.0002
0.4 0.0013 0.0012 0.0008 0.0004
0.6 0.0008 0.0000 0.0010 0.0000
0.8 0.0016 0.0000 0.0019 0.0000

Average 0.0132 0.0029 0.0036 0.0030

ative percentage deviation and the standard deviations of LHSA and PHVNS
from their best obtained solution values over the 40 replications of the al-
gorithms, for each benchmark instance. We first define the average relative
percentage deviation, adopted by Liu and Zhou [97]. Let F ∗LHSA be the best
value obtained for any instance over 10 different runs and F̄LHSA denote the
average objective value for these 10 replications, then the relative deviation
of LHSA (%∆LHSA) for any instance is calculated as

%∆LHSA =
F̄LHSA − F ∗LHSA

FREF
· 100 .

Henceforth, the average relative percentage deviation over ten different
instances, denoted by k = 1, 2, . . . , 10, is represented as %∆̄PHVNS, where
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%∆̄LHSA =

10∑
k=1

%∆
(k)
LHSA/10 .

Table 4.5 shows the average relative percentage deviation values along the
standard deviations (sdLHSA and sdPHVNS) of both the approaches for all the
instances with distinct restrictive factor h. Since each job size consists of 10
different instances, the comparison of these two parameters show that LHSA
obtains the best results consistently better than PHVNS for 16 out of 28
different benchmark instances on average. Likewise, the standard deviation
values for LHSA are also better than PHVNS for a total of 14 different job
sizes and due-date factors. With the help of our results, we show that not only
do we obtain the best known solutions for several large and difficult instances,
but we also edge ahead in terms of the robustness of our algorithm.

We now present the runtime analysis of LHSA and PHVNS in Table 4.6.
Liu and Zhou implement their PHVNS algorithm on a PIV machine with
1.2 GHz processor [97]. Although, LHSA is implemented on a 1.73 GHz dual
core machine, the runtime comparison clearly shows that LHSA algorithm is
faster than PHVNS. For small instances till 100 jobs, LHSA runs faster than
PHVNS, but the time required by both the approaches is quite low. However,
for larger instances of 200, 500 and 1000, the speed-ups obtained by LHSA
compared to PHVNS are of the order of 18, 15 and 12, respectively. These
speed-up values prove that LHSA is indeed faster than PHVNS even if we
consider the difference in the machines utilized for the computations.

Table 4.6. Average runtimes in seconds for the obtained solutions of PHVNS and
LHSA. The runtime for any job is the average of all the 10 different instances for
each restrictive factor h.

h 10 20 50 100 200 500 1000

PHVNS

0.2 0.015 0.038 0.167 0.497 19.133 264.047 1283.282
0.4 0.016 0.039 0.190 0.649 23.334 303.231 1617.400
0.6 0.015 0.039 0.211 0.753 2.687 19.453 116.002
0.8 0.017 0.051 0.283 0.904 2.856 22.753 127.032

Average 0.016 0.042 0.213 0.701 12.003 152.371 785.929

LHSA

0.2 0.000 0.001 0.009 0.072 0.747 10.626 65.933
0.4 0.000 0.001 0.006 0.088 0.866 12.810 68.599
0.6 0.000 0.001 0.004 0.044 0.509 8.283 55.702
0.8 0.000 0.001 0.003 0.041 0.503 8.291 56.044

Average 0.000 0.001 0.005 0.061 0.656 10.003 61.570

Our results for the CDD problem show that LHSA obtains better results
than the state-of-the-art for several instances. Moreover, we also prove that
our algorithm is highly robust and better adapted to large instances which
are harder to solve. To further prove the consistency and robustness of our
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approach, in Table 4.7 we present some measures of central tendency. Table 4.7
shows the minimum, mean, maximum, median, mode along with the standard
deviation of the percentage deviation ∆, over 40 replication of LHSA on 280
different instances. The results obtained by LHSA in both the best and worst
cases for any instances are quite consistent in terms of the solution quality.
Additionally, this can be better understood be the fact the standard deviation
of the percentage error is of the order of 10−3 for most of the instances. Even
in the worst case, our standard deviation for 40 different replications, still falls
at 0.041. This goes to show that our approach not only obtains good solutions
but on a consistent basis, as well.

Table 4.7. Measures of central tendency with respect to the objective function
values and the average number of fitness function evaluations, for 40 different repli-
cations of the instances.

n h Minimum Mean Maximum Std. Median Mode FFEs

10

0.2 0.000 0.000 0.000 0.000 0.000 0.000 48
0.4 0.000 0.000 0.000 0.000 0.000 0.000 257
0.6 0.000 0.000 0.000 0.000 0.000 0.000 23
0.8 0.000 0.000 0.000 0.000 0.000 0.000 17

20

0.2 -3.842 -3.842 -3.842 0.000 -3.842 -3.842 313
0.4 -1.630 -1.630 -1.630 0.000 -1.630 -1.630 625
0.6 -0.721 -0.721 -0.721 0.000 -0.721 -0.721 820
0.8 -0.409 -0.409 -0.405 0.001 -0.409 -0.409 656

50

0.2 -5.696 -5.686 -5.651 0.016 -5.689 -5.695 3772
0.4 -4.658 -4.637 -4.490 0.041 -4.652 -4.652 2581
0.6 -0.336 -0.327 -0.278 0.020 -0.335 -0.335 1678
0.8 -0.242 -0.238 -0.216 0.009 -0.242 -0.242 1344

100

0.2 -6.194 -6.185 -6.146 0.011 -6.189 -6.189 8287
0.4 -4.939 -4.923 -4.859 0.023 -4.931 -4.938 10794
0.6 -0.145 -0.145 -0.141 0.001 -0.145 -0.145 5860
0.8 -0.176 -0.175 -0.174 0.001 -0.176 -0.176 5399

200

0.2 -5.778 -5.776 -5.764 0.004 -5.777 -5.778 40772
0.4 -3.754 -3.748 -3.724 0.007 -3.749 -3.752 46864
0.6 -0.154 -0.154 -0.152 0.001 -0.154 -0.154 28878
0.8 -0.154 -0.154 -0.152 0.001 -0.154 -0.154 28415

500

0.2 -6.433 -6.432 -6.428 0.001 -6.432 -6.432 209392
0.4 -3.583 -3.581 -3.572 0.003 -3.582 -3.583 257597
0.6 -0.112 -0.112 -0.112 0.000 -0.112 -0.112 173059
0.8 -0.112 -0.112 -0.112 0.000 -0.112 -0.112 173201

1000

0.2 -6.773 -6.772 -6.771 0.000 -6.772 -6.772 600753
0.4 -4.400 -4.398 -4.395 0.001 -4.399 -4.399 627233
0.6 -0.057 -0.057 -0.057 0.000 -0.057 -0.057 518594
0.8 -0.057 -0.057 -0.057 0.000 -0.057 -0.057 522636
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Figure 4.12 shows the graphical representation of the percentage deviation
averaged over all the due-date factors, along with the average fitness function
evaluations and its standard deviation.
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Fig. 4.12. The average percentage deviation and standard deviation of LHSA av-
eraged over all the due-date positions for each job size.

4.17 Summary

In this work we predominantly make a theoretical study of scheduling prob-
lem against a common due-date. The intuition behind our approach for the
problem is to break the integer programming formulation of these NP-hard
problems in two parts, i.e., (i) finding a good (near optimal) job sequence and
(ii) finding the optimal values of the completion times Ci for all the jobs in
this job sequence. The job sequences are optimized by using a modified Simu-
lated Annealing (SA) algorithm explained later in the chapter. The SA solves
the sub-problem (ii) as linear program by applying specialized determinis-
tic algorithms. Most of the work in this chapter emphasizes on the second
sub-problem of finding specialized algorithms for the linear program.

We first develop an O(n2) algorithm by reducing the common due-date
problem to the aircraft landing problem. We then implement important prop-
erties and develop an improved linear algorithms to optimize any given job
sequence. We prove the CDD property which states that for any job sequence,
the position of the due-date depends only on the earliness/tardiness penal-
ties, irrespective of the processing times. Using this property, we are able to
develop an O(n) algorithm to optimize any given job sequence. Additionally,
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we also present a straight forward heuristic to improve any job sequence.
This heuristic is developed using the V-shaped property of the CDD problem,
which basically states that the arrangement of the jobs pertaining to both
their processing times and the earliness/tardiness property. This property has
already been exploited by several previous works [115, 136, 97], but the over-
all approach in this work is more simplified and achieves better results than
any other previous work on this problem. We improve solution values for sev-
eral benchmark instances and prove that our algorithm is much accurate and
robust than the present state-of-the-art [97].

Additionally, we also propose a heuristic for the parallel machine case of
the CDD problem. This heuristic first allocates jobs to machines depending
on the machine availability. We then optimize the produced job sequences on
each machine by using our linear algorithm and the improvement heuristic.
Henceforth, we explain how our approach is beneficial to a dynamic case of
the CDD when the jobs arrive after the optimization process is started for
any given sequence. Hence, once again we show that the development of these
specialized algorithms for the result linear program are advantageous in many
respect.
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5

Common Due-Window Problem: Polynomial
Algorithms for a Given Processing Sequence

This chapter discusses and presents an algorithm for a variant of the CDD
problem known as the Common Due Window problem. The set-up of this
scheduling problem is similar to that of CDD, except that the jobs are sched-
uled against a common due window, as opposed to a common due date in the
CDD. This due-window is defined by the left and right common due-dates.
Similar to the CDD problem, each job possesses different processing times but
different and asymmetric earliness and tardiness penalties. The objective of
the problem is to find the processing sequence of jobs, their completion times
to minimize the total penalty incurred due to tardiness and earliness of the
jobs. Jobs that finish before (after) the left (right) due-date are termed as early
(tardy) jobs. This work presents an exact polynomial algorithm for optimiz-
ing any given job sequence for a single machine with the runtime complexities
of O(n), where n is the number of jobs. The algorithm takes a job sequence
Ji consisting of all the jobs (i = 1, 2, . . . , n) as input and returns the optimal
completion times of the jobs, which offers the minimum possible total penalty
for the given sequence. Furthermore, we also present a heuristic based on the
V-shaped property to improve any job sequence. We then incorporate our
polynomial algorithm with the heuristic, in conjunction with the Simulated
Annealing (SA) algorithm to obtain the optimal/near-optimal solutions. The
results of our approach are compared with the benchmark results provided by
Biskup and Feldmann [21] for different due-window lengths.

5.1 Introduction

The Common Due-Window (CDW) scheduling problem involves sequencing
and scheduling of jobs over machine(s) against a given common due-window.
The objective is to find the position of the due-window of a given length and
the job sequence to minimize the total tardiness and earliness penalties. Each
job possesses a processing time and different penalties per unit time in case
the job is completed before or later than the due-window. The jobs which
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are completed between or at the due-window are called straddle jobs and do
not incur any penalty. Similar to the Common Due-Date (CDD) problem,
the CDW also occurs in the supply chain management industry to reduce the
earliness and tardiness of the goods produced.

Common due-date problems have been studied extensively during the last
30 years with several variants and special cases [128, 77, 118, 70, 35, 72].
CDW is an extension of the CDD with the presence of a common due-window
instead of a common due-date. However, several important similar properties
hold for both the problems. In 1994, Krämer and Lee studied the due-window
scheduling for the parallel machine case and presented useful properties for
the CDW [85], explained later in the chapter.

Krämer and Lee also showed that the CDW with unit weight case is also
NP-complete and provided a dynamic programming algorithm for the two
machine case [85]. Liman et al. considered the CDW with constant earliness/-
tardiness penalties and proposed an O(n log n) algorithm to minimize the
weighted sum of earliness, tardiness and due-window location [95]. The same
authors also studied the CDW on a single machine with controllable process-
ing times with constant penalties for earliness, tardiness and window location,
and different penalties for compression of job processing times. They showed
that the problem can be formulated as an assignment problem and can be
solved using the well-known algorithms [96].

In 2002, Chen and Lee studied the CDW on parallel machines and solved
the problem using a Branch and Bound algorithm and showed that the prob-
lem can be solved up to 40 jobs on any number of machines [34] in a rea-
sonable time. In 2005, Biskup and Feldmann dealt with the general case of
the CDW problem and approached it with three different metaheuristic algo-
rithms, namely, evolutionary strategy, simulated annealing and threshold ac-
cepting. They also validated their approaches on 250 benchmark instances up
to 200 jobs [21]. Wan studied the common due-window problem with control-
lable processing times with constant earliness/tardiness penalties and distinct
compression costs, and discussed some properties of the optimal solution along
with a polynomial algorithm for the solving the problem in 2007 [143]. Zhao et
al. studied the CDW with constant earliness/tardiness penalties and window
location penalty, and proposed polynomial time approximation schemes [153].

In 2010, Yeung et al. formulated a supply chain scheduling control problem
involving single supplier and manufacturer and multiple retailers. They formu-
lated the problem as a two machine CDW and presented a pseudo-polynomial
algorithm to solve the problem optimally [148]. Cheng et al. considered the
common due-window assignment problem with time-dependent deteriorating
jobs and a deteriorating maintenance activity. They proposed a polynomial
algorithm for the problem with linear deterioration penalties and its special
cases [37]. Gerstl and Mosheiov studied the due-window assignment problem
with unit-time jobs and proposed an O(n3) algorithm for solving the prob-
lem [61]. Yin et al. considered the batch delivery single-machine scheduling
problem with assignable common due-window with constant penalties and
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proposed an O(n8) dynamic programming algorithm under an assumption
on the relationship among the cost parameters [151]. In 2013, Janiak et al.
presented a survey paper on the common due-window assignment scheduling
problem and discussed more than 30 different variations of the problem [74].
Again in 2013, Janiak et al. studied the CDW assignment problem on par-
allel machines to minimize the earliness/tardiness penalties along with the
penalties associated with the location and size of the due-window [73].

In this work, we consider the single machine case for the CDW problem
with asymmetric penalties for the general case. We make a theoretical study
of the CDW problem and present a linear exact algorithm to optimize any
given job sequence on a single machine. Henceforth, we present a heuristic
algorithm to evolve and improve any job sequence. This heuristic is similar to
Algorithm 6 presented in the previous chapter for the CDD problem.

5.2 Problem Formulation

In this section, we give the mathematical notation of the common due-window
problem based on [21]. We also define some new parameters which are later
used in the presented algorithms in the next section.
Let
n = the total number of jobs,
dl = the left common due-date,
dr = the right common due-date,
Pi = the processing time of job i, i = 1, 2, . . . , n,
Ci = the completion time of job i,
gi = the earliness of job i, where gi = max{0, dl − Ci}, i = 1, 2, . . . , n,
hi = the tardiness of job i, where hi = max{0, Ci − dr}, i = 1, 2, . . . , n,
αi = the earliness penalty per unit time for job i,
βi = the tardiness penalty per unit time for job i.

The objective of the problem is to schedule the jobs against the due-
window to minimize the total weighted penalty incurred by the earliness and
tardiness of all the jobs.

min

n∑
i=1

{αi · gi + βi · hi} . (5.1)

We now present some important properties for the CDW problem and
prove that the property proved in Theorem 4.10 of Chapter 4 is also valid for
CDW problem.

Property 5.1. There exists an optimal schedule without machine idle time
between the first and the last job [85, 90].

Property 5.2. In any optimal schedule, jobs completed before the left due-
date are sequenced in the non-increasing order of the ratio Pi/αi and the jobs
that are tardy are sequenced in non-decreasing order of the ratio Pi/βi [21].
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Property 5.3. Let Ci be the completion time of job i, then there exists an
optimal schedule where one of the jobs finishes at dl or at dr, i.e.,

a) Ci = dl for some i, or
b) Ci = dr for some i [85, 90].

5.3 Property for the Common Due-Window

In this section we show that the relationship between the sum of the earliness
penalties and the tardiness penalties proved in Theorem 4.10 for the CDD
problem also holds for the CDW problem. We know from Property 5.3 that
the optimal schedule of the CDW will either start at time t = 0 or one of the
due-dates will fall at the completion time of some job.

Theorem 5.4. In the optimal schedule of a CDW instance, if the jobs
1, 2, . . . , r − 1 are early, job r finishes at the left due-date and jobs k, k +

1, . . . , n, k > r are tardy, then we have,
n∑
i=k

βi ≤
r∑
i=1

αi for minimum possible

values of k and r.

Proof. Let us assume without loss of any generality that in the optimal sched-
ule the left due-date dl lies at the completion time of a job r and the right
due-date dr lies between the completion times of two adjacent jobs k−1 and k,
as shown in Figure 5.1. In this case the jobs which are finishing in between the
due-window do not offer any penalty and hence do not participate to either
tardiness/earliness penalty.

1 2 r r+1 r+2 k−1 k n−2 n−1 n

−−− −−− −−−

dl dr

Fig. 5.1. Schedule for the due-window case, with the left due-date (dl) situated at
Cr and the right due-date (dr) in between the completion times of jobs k− 1 and k.

In other words, this schedule become equivalent to a schedule shown in
Figure 5.2, wherein the jobs lying in the due-window are completely removed,
and in the new schedule job k has a smaller schedule. If the schedule in
Figure 5.1 is optimal, then the schedule in Figure 5.2 is also optimal as the
other jobs offer no penalty.

The problem now converts to the CDD with dl being the due-date. Hence,
the properties of Theorem 4.10 will also hold for the CDW on the same lines
as for the CDD. �
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1 2 r k n−2 n−1 n

−−− −−−

dl

Fig. 5.2. Schedule for the CDW such that all the straddling jobs are removed. The
problem now converts to the CDD with the due-date position at Cr.

5.4 The Exact Algorithm

Using Theorem 5.4, we now present our exact polynomial algorithm for the
CDW problem to optimize any given job sequence. As mentioned above in
Property 5.1, we know that the optimal schedule of the CDW has no idle
time of the machine between C1 and Cn. Hence, for our algorithm, the first
job starting at time t = 0 and are shifted to the right by minimum deviation
of the completion times from the right and the left due-dates. This way, every
shift ensures that one of the jobs finishes at one of the due-dates (Property 5.3)
and we do not skip over the optimal position of the due-dates. Once the
property mentioned in Theorem 5.4 is satisfied, we have our optimal schedule
and no more shifting is required. This approach of right-shifting-the-jobs is
implemented in [7]. However, it requires the update of the completion times
Ci of all the jobs and thus accounts for a runtime complexity of O(n) for
each shift. We present a much faster approach where the calculation of the
completion times of all the jobs needs to be done only once, throughout the
algorithm.

The idea behind our approach lies in the fact that the calculation of the
objective function or checking the property mentioned in Theorem 5.4, only
requires the relative deviation of the completion times of all the jobs with the
left and right due-dates. Hence, shifting all the jobs and due-dates together
with the same amount does not effect the objective function value, as well as
the set of early and tardy jobs. For our algorithm, we initialize the completion
times of the jobs such that C1 = P1 and the subsequent jobs are followed with-
out any machine idle time. The Ci values remain fix for the whole algorithm.
Thereafter, we find the optimal position of a movable due-window (d′l, d

′
r) of

the same length as of the original due-window (dr−dl). This optimal position
is calculated using the property mentioned Theorem 5.4, by shifting the mov-
able due-window from extreme right to left as long as the sum of the tardiness
penalties is less than the sum of the earliness penalties. If the optimal position
of this new due-window lies to the left of the original due-window i.e., d′l < dl
or d′r < dr, (note that both the inequalities will be satisfied simultaneously,
since the due-windows are of same lengths, d′l < dl ⇒ d′r < dr), then we take
d′l and d′r for calculating the final earliness/tardiness of the jobs. However,
if the position of this movable due-window lies to the right of the original
due-window, i.e., d′l > dl or d′r > dr, then we retain the original due-dates for
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calculating the final earliness/tardiness of the jobs. The reason for the above
statements can be proved by considering the two cases separately.
Case 1: d′l < dl
If the optimal position of the movable due-window is such that d′l < dl, then it
means that the property mentioned in Theorem 5.4 is satisfied for some value
k but the original due-date falls at some job index i where i > k. Hence, prac-
tically we need to shift all the jobs to the right such that jobs k, k + 1, . . . , n
are tardy. Instead, we can just take the d′l and d′r as the due-dates to calculate
the final earliness/tardiness of the jobs to obtain the objective function value,
because of the fact that the earliness/tardiness are relative deviations with
the due-dates.
Case 2: d′l > dl
If the optimal position of the movable due-window is such that d′l > dl, then it
means that the property mentioned in Theorem 5.4 is satisfied for some value
k but the original due-date falls at some job index i where i < k. In this case,
we are actually required to practically shift the jobs to the left, which can not
be done as the schedule of the jobs is already starting at time t = 0. Hence,
for this case we need to take the original due-window (dl, dr) to calculate the
final earliness/tardiness of the jobs. The case, d′l = dl is apparent.

Our algorithm first assigns the right due-date (d′r) of the movable due-
window as Cn and d′l = d′r − dr + dl. This ensures that the right due-date
falls at the completion time of the last job and the left due-date lies at some
job i < k. In the next steps, this movable due-window is shifted to the left
as long as we obtain the optimal position using the property mentioned in
Theorem 5.4.

We now formalize some parameters which are essential for the understand-
ing of the exact algorithm. Let ηl, ϕl, ηr, ϕr and be as defined in Equation 5.2.

ηl = arg max
i=1,2,...,n

(Ci − d′l < 0), ϕl = arg max
i=1,2,...,n

(Ci − d′l ≤ 0),

ηr = arg max
i=1,2,...,n

(Ci − d′r < 0), ϕr = arg max
i=1,2,...,n

(Ci − d′r ≤ 0) .
(5.2)

In the above equation, ηl depicts the last job which finishes strictly before
the left due-date d′l, while ϕl is the last job which finishes at or before d′l.
Clearly, if for some schedule the completion time of a job i lies at the left
due-date then ϕl = i and ηl = i− 1. However, if Ci < d′l < Ci+1, i.e. the left
due-date falls in between the completion times of jobs i and i+ 1, then we get
ϕl = ηl = i. ηr and ϕr can be understood on the same lines, with respect to
the right due-date d′r.

We also define ∆l and ∆r as the deviation of the completion time of the job
which finishes right before the left and right due-date, respectively. Notice that
ηl ( or ηr) is the last job which finishes completion, strictly before the left (or
right) due-date. Hence, one can write ∆l = d′l−Cηl and ∆r = d′r−Cηr . Clearly,
min{∆l, ∆r} is the minimum possible left shift of the due-window required
such that either one of the left/right due-dates falls at the completion time of
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Algorithm 7: Linear algorithm for any CDW job sequence.

1 Ci ←
∑i
k=1 Pk ∀ i = 1, 2, . . . , n

2 d′r ← Cn
3 d′l ← d′r − dr + dl
4 Compute ηl, ϕl, ηr, ϕr
5 ∆l ← d′l − Cηl
6 ∆r ← d′r − Cηr
7 pe←

∑ϕl
i=1 αi

8 pl← 0
9 while pl < pe do

10 LeftDueDate ← d′l
11 RightDueDate ← d′r
12 ∆← min{∆l,∆r}
13 d′l ← d′l −∆
14 d′r ← d′r −∆
15 if (ηl < ϕl) then
16 pe← pe− αϕl
17 ϕl ← ϕl − 1

18 if (ηr < ϕr) then
19 pl← pl + βϕr
20 ϕr ← ϕr − 1

21 if ∆l < ∆r then
22 ηl ← ηl − 1
23 else if ∆r < ∆l then
24 ηr ← ηr − 1
25 else if ∆r = ∆l then
26 ηl ← ηl − 1
27 ηr ← ηr − 1

28 if ηl > 0 then
29 ∆l ← d′l − Cηl
30 ∆r ← d′r − Cηr
31 else
32 break

33 if LeftDueDate ≤ dl then
34 dl ← LeftDueDate
35 dr ← RightDueDate

36 gi ← max{dl − Ci, 0}, ∀i
37 hi ← max{0, Ci − dr}, ∀i
38 Sol←

∑n
i=1 (gi · αi + hi · βi)

39 return Sol

a job. With the help of these parameters and the properties proved earlier, we
now present our linear algorithm to optimize any given job sequence for the
CDW problem, shown in Algorithm 7. We explain the steps of the algorithm
in detail with the help of an illustrative example. The data for this example
is given in Table 5.1.
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Table 5.1. The data for the exemplary case of the CDW problem. The parameters
possess the same meaning as explained in Section 5.2.

i Pi αi βi

1 2 9 6
2 6 7 6
3 8 1 4
4 6 2 5
5 10 8 4

We consider 5 jobs with the due-window defined by the left (dl) and right
(dr) due-dates of 12 and 19, respectively. As explained above, we initialize the
completion times of the jobs with the first job starting at time t = 0 as shown
in Figure 5.3. Meanwhile, we consider a movable due-window of same length
as the original due-window. The right due-date of this movable due-window
is initialized as d′r = Cn = 32 and the left due-date as d′l = d′r − dr + dl = 25,
as shown in Figure 5.3. In the next steps we move this due-window to the left
while keeping the completion times of the all the jobs, unchanged. Note that
the gray boxes in Figure 5.3 represent the jobs, and the number inside any
box depicts the processing time of that particular job.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 6 8 6 10

d′l d′r

Fig. 5.3. Schedule for the initialization of the completion times of the jobs and the
initial placement of the movable due-window.

After the initialization step, we first calculate the parameters mentioned in
Equation (5.2). These parameters basically determine the jobs that are finish-
ing just before or at the due-dates. For our initialization shown in Figure 5.3,
we get ηl = 4, ϕl = 4, ηr = 4, ϕr = 5, ∆l = 3 and ∆r = 10. We also need to
calculate the sum of the earliness penalties (pe =

∑ϕl
i=1 αi) of all the jobs that

have their completion times with Ci − d′l ≤ 0. For the initialized schedule, we
have pe = 19. Clearly, the sum of the tardiness penalties of the tardy jobs
is pl = 0 since there are no tardy jobs. From Figure 5.3 we have ηl = ϕl
and ηr < ϕr, which tells us that left due-date lies somewhere in between the
completion times of jobs ηl and ηl + 1, while the right due-date falls at Cϕr .
Additionally, we also have ∆l = d′l −Cηl = 3 and ∆r = d′r −Cηr = 10, which
means that we need to shift the due-window by 3 time units, such that the
left due-date d′l falls at C4 = 22 and d′r is placed at 29.

Figure 5.4 shows the next step after the left shift of the due-window, with
d′l = 22 and d′r = 29. As it is clear from the figure, we now have tardy job
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Fig. 5.4. Schedule with the first left shift of the movable due-window by the amount
of ∆l = 3.

and hence the sum of the tardiness penalties is increased by β5 = 4, which
implies pl = 4. Note that for the property mentioned in Theorem 5.4, we need
to add the early penalty of the job that completes at the left due-date. Thus
with this shift, we do not need update the value of pe. Also note that since we
shifted the due-window such that d′l falls at C4, we need to reduce ηl by 1 as
the last early job for the left due-date is now job 3, hence the updated value
of ηl = 3 while ϕl = 4 remains unchanged. Likewise, the last early job for
the right due-date is still job 4 thus keeping ηr = 4. But the value of ϕr will
reduce by 1 because the right due-date now lies in between the completion
times of the job 4 and 5, fetching ϕr = 4.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 6 8 6 10
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Fig. 5.5. Schedule with the second left shift of the movable due-window by the
amount of ∆l = 6.

From the first left shift, pl < pe since pl = 4 and pe = 19, hence need
to shift the due-window further to the left to check if pl < pe still holds, in
accordance with Theorem 5.4. From Figure 5.4, we have ∆l = 6 and ∆r = 7,
hence the amount of shifting required such that one of the due-dates falls at
the completion time of some job is ∆l = 6, as shown in Figure 5.5. With this
shift, since d′l is shifted from the completion time of job 4 to its preceding job
3, hence we need to reduce both ηl and ϕl by 1, which gives us ηl = 2 and
ϕl = 3. However, the values ηr = 4 and ϕr = 4 because the right due-date
d′r still lies between C4 and C5. Beside, the we also need to reduce pe by α4

since job 4 is no longer early or falls at d′l, implying pe = 17. The value of
pl remains unchanged from the previous step since the tardy jobs remain the
same, and this pl = 4. Yet again pe < pl asks for the further left shift or the
due-window to check if this property holds. Since the new values for ∆l and
∆r are ∆l = d′l − Cηl = 8 and ∆r = d′r − Cηr = 1, respectively, we shift the
due-window by min{∆l, ∆r} = 1, as shown in Figure 5.6.

Figure 5.6 shows that the right due-date now falls at the completion time
of job 4 while the left due-date is situated between C2 and C3. Since d′l is
moved from C4 to a position between jobs 3 and 4, ηl = 2 remains unchanged,
but ϕl is reduced by 1 to 2, by its definition. Likewise, the value of ηr is
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Fig. 5.6. Schedule with the third left shift of the movable due-window by the amount
of ∆r = 1.

reduced by 1 to 3 but ϕr = 4 remains unchanged. Also note that pe will be
reduce by β3 as it is past the left due-date, thus pe = 16. However, pl = 4
remains the same as the tardy jobs are unchanged. Since, pe is still less than
pl we need to shift the due-window further to the left.

The reason that in any case we reduce the values of ηl (ηr) or ϕl (ϕr) by
only 1, lies in the fact that we shift the due-window by the minimum possible
amount such that one of the due-dates fall at the completion time of any job.
In doing so, we do not skip over any job and thus are required to reduce ηl
(ηr) or ϕl (ϕr) by just 1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
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Fig. 5.7. Schedule with the fourth left shift of the movable due-window by the
amount of ∆r = 6.

Figure 5.7 shows the fourth left shift of the due-window, with d′l = C2 and
C2 < d′r < C3. After this shift we obtain, ηl = 1, ϕl = 2, ηr = 2, ϕr = 2. The
value of pe = 16 and pl becomes 9 since job 4 is now tardy.
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Fig. 5.8. Schedule with the fifth left shift of the movable due-window by the amount
of ∆l = 1.

This procedure of left shift is continued as long as pl < pe. Figure 5.8
shows the optimal schedule for this example with d′l = 8 and d′r = 15. A
further left shift (Figure 5.9) renders pe = 9 and pl = 13, thus violating
Theorem 5.4. Hence we know that the schedule in Figure 5.8 is optimal for
this movable due-window, with d′l = 8 and d′r = 15. Recall, that the original
due-windows were defined by dl = 22 and dr = 29. Since, the new due-dates
of the movable due-window are less than the original due-dates we can take d′l
and d′r to calculate the final earliness/tardiness of the jobs. The reason again

88



Chapter 5. Common Due-Window Problem: Polynomial Algorithms for a
Given Processing Sequence

is the fact that we can as well shift all the jobs together to the right such
that the second job finishes at dl = 22. However, the objective function value
would not change because the earliness/tardiness are relative to the position
of the due-dates. Hence we can calculate the earliness/tardiness of the jobs
against d′l and d′r, for the schedule where the first job starts at time t = 0,
thus obtaining the optimal objective function value of 161 for the studied job
sequence.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

2 6 8 6 10

d′l d′r

Fig. 5.9. Schedule with the sixth left shift of the movable due-window by the amount
of ∆l = 6.

5.5 Proof of Optimality

In this section, we present the optimality of Algorithm 7 with respect to the
objective function value of Equation (5.1), for any given job sequence.

Theorem 5.5. Algorithm 7 is optimal for any given sequence of the CDW
problem, with respect to the objective function value.

Proof. We first schedule the given job sequence such that the processing of
the first job starts at time t = 0 and the remaining jobs are processed without
any machine idle time, maintaining the sequence of the jobs. We then place
the movable due-window in a way such that d′r = Cn for some n and d′l =
d′r−dr +dl as shown in Figure 5.3, maintaining the length of the due-window
same as the original. From this point on, we refer to this movable due-window
as the due-window itself, unless mentioned otherwise.

Meanwhile, we also calculate ηl, ϕl, ηr and ϕr to keep track of the jobs
that are closest to the due-dates. The ηl (or ηr) values represent the last job
processed strictly before the left (or right) due-date, while the combination
of ηl, ϕl (or ηr, ϕr) values tells us if the left (or right) due-date falls at the
completion time of some job or lies in between the completion times of two
consecutive jobs. In other words, one can interpret the ηl (ηr) or ϕl (ϕr) values
to indicate the position of the due-window. At each step of the iterative left
shift, the due-window is shifted by the minimum possible amount such that
one of them falls at the completion time of some job, while keeping track of
the pe and pl values to find the optimal schedule. This shift is calculated as
∆ = min{∆l, ∆r}, where ∆l = d′l − Cηl and ∆r = d′r − Cηr . Apparently,
any left shift of min{∆l, ∆r} ensures that we do not skip over any job while
checking for the property mentioned in Theorem 5.4. However, depending on

89



5.5. Proof of Optimality

the position of the due-window (or the ηl, ϕl and ηr, ϕr values), we can have
several different cases that can occur during the left shift.

0 Cu−2 Cu−1 Cu Cv−1 Cv Cn

−−− u−1 u −−− v−1 v −−−

d′l d′r

Fig. 5.10. Schedule representing the case when d′l falls at the completion time of a
job and d′r lies in between the completion time of two jobs, along with ∆l < ∆r.

During the course of any left shift, if ηl < ϕl then we are certain that d′l
falls at the completion time of some job, as shown in Figure 5.10. Recall that
ηl = arg max(Ci − d′l < 0), and ϕl = arg max(Ci − d′l ≤ 0). Hence, ηl < ϕl
necessarily implies that ϕl = arg max(Ci − d′l ≤ 0) = u for some job u, such
that Cu = d′l and ηl = u− 1. Moreover, at any instance of the algorithm, we
never make a left shift that is greater than ∆l. Hence, the value of pe will
be reduced by αϕl , since for any shift which is greater than zero, job u will
fall after the left due-date. Likewise, whatever the left shift, the value of ϕl
will also be reduced by 1, for the same reason that u will no longer fall at
d′l, after the shift of the due-window. Also note that the only possible case
such that ηl = ϕl, is the one when d′l falls in between the completion time of
two jobs, after the left shift, say u − 1 and u. Since, ∆ = min{∆l, ∆r}, the
maximum possible shift will lead to d′l = Cu. However, in this case we do not
need to update pe and ϕl as per their definitions. The value of ηl will indeed
get reduced by 1, if the shift is made by ∆l, i.e., the left due-date falls at
the completion time of a job after the left shift of the due-window. Hence, to
check if ηl needs to be updated or not, we only need to check if the shift if
made by ∆l, or in other words, ∆l ≤ ∆r, as implemented in Algorithm 7.

On the same lines of argument, if ηr < ϕr, then we have a case when the
right due-date d′r falls at the completion time of some job, say v, such that
ηr = v − 1 and ϕr = v. Hence, any left shift greater than zero will lead to
job v being tardy, and so we are required to increase sum of the tardiness
penalty by βϕr . As for the left due-date, since we never make a shift greater
than ∆r, the value of ϕr will get reduced by 1. Concerning the value of ηr,
recall that the value of ηr changes only when the right due-date falls at the
completion time of some job, after the left shift. Since, we shift the due-window
by min{∆l, ∆r}, the only possible case when the right due-date will land at
some Ci (for some i), when ∆r ≤ ∆l, as shown in Algorithm 7.

After every left shift, we update the values for ηl, ϕl, ηr, pe and pl depend-
ing on the position of the due-window and the amount of left shift. Henceforth,
we update the values of ∆l and ∆r with the new values of ηl and ηr, respec-
tively. Note that we need to check for a special case where the earliness penalty
of the first job is higher than the sum of the tardiness penalties of the jobs
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which are completed after the right due-date. In this case, the optimal sched-
ule will occur when the left due-date falls at C1. It is for this case, that we
need to check that ηl > 0 before making a left shift, as depicted in Algorithm 7
line 28. For the next iteration of the while loop in line 9 of Algorithm 7, we
update the positions of the left and right due-date by ∆ = min{∆l, ∆r} and
repeat the same procedure as long as pl < pe, according to Theorem 5.4.

We then check if the optimal position of this movable due-window lies
to the left or the right of the original due-window. If the optimal position
of the left due-date of the movable due-window is situated to the left of the
original left due-date then we take the positions of the movable due-window
for calculating the final earliness/tardiness of the jobs. If this is not the case,
then we retain the original due-window for the objective function calculation.
The reason for this has been stated in Section 5.4.

One important fact about this iterative left shift is that we can end up
with a maximum of 2 · n different left shifts. It can be understood by the fact
that after every left shift we can have a case where d′l = Cu, Cv−1 < d′r < Cv,
and vice-versa. Note that in our illustrative example we made 7 different left
shifts, for a sequence of 5 jobs. �

5.6 Algorithm Runtime Complexity

In this section we study and prove the runtime complexity of Algorithm 7.

Theorem 5.6. The runtime complexity of Algorithm 7 is O(n) where n is the
total number of jobs.

Proof. It can easily observed that the complexity of the Algorithm 7 is O(n),
since all the initialization steps and the calculation of the parameters all re-
quire O(n) runtime. As for the iterative while loop, all the computations inside
the loop are of O(1) as we update the values of any parameter by simple one
step computation. However, as said before, this iterative left shift can take
2 · n steps in the worst case, however, it does not affect the complexity of
Algorithm 5.4. Hence, the complexity of Algorithm 7 is O(n). �

5.7 Improvement Heuristic for CDW Job Sequence

We now present a straight forward heuristic algorithm which is utilized to
locally improve any CDW job sequence, by implementing the V-shaped prop-
erty given below. This heuristic is exactly the same as the one we present
for the CDD problem in Chapter 4. As we mentioned in Property 5.2, the
V-shaped property holds for the CDW problem in the similar fashion to the
CDD problem. We utilize this property to develop an improvement heuristic
to evolve any job sequence, optimized by Algorithm 7. Algorithm 7 is imple-
mented to obtain the straddling jobs of the sequence, or in other words, the
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position of the due-window in the optimal schedule of any job sequence J .
As we know from Algorithm 7 and Property 5.3, the optimal schedule for the
CDW occurs when one of the due-dates for the due-window lies at the comple-
tion time of some job, or when the first job starts at times t = 0. Let, l be the
last early job and m be the first tardy job. Our heuristic arranges the early
jobs JE = {1, 2, . . . , l} in the non-increasing order of their Pi/αi values, where
i = 1, 2, . . . , l. Likewise, the tardy jobs JT = {m,m+1, . . . , n} are arranged in
the non-decreasing order of their Pi/βi values. The new sequence is obtained
by placing the straddling job JS = {l + 1, l + 2, . . . ,m − 1} in between the
sorted sequences of JE and JT . Algorithm 8 shows our improvement heuristic
to locally improve and job sequence, as per the V-shaped property.

Algorithm 8: Heuristic to evolve any job sequence of the CDW problem.

1 Apply Algorithm 7
2 l← last early job
3 m← first tardy job
4 JE ← {1, 2, . . . , l}
5 JS ← {l + 1, l + 2, . . . ,m− 1}
6 JT ← {m,m+ 1, . . . , n}
7 J ′E ← Jobs sorted in non-increasing order of Pi/αi, ∀i ∈ JE
8 J ′T ← Jobs sorted in non-decreasing order of Pi/βi, ∀i ∈ JT
9 J ′ = {J ′E , JS , J ′T }

10 Sol← Algorithm 7 on J ′

5.8 Computational Results

We now present our computational results for our approach discussed in this
chapter. We use the CDW benchmark instances provided by Biskup and Feld-
mann in [21] and compare our results with theirs. All the computations were
carried out on a 1.73 GHz PC with 2 GB RAM on MATLAB with C++
mex functions. As described in the previous chapters, we implement a mod-
ified Simulated Annealing algorithm to generate job sequences, while each
job sequence is optimized with Algorithm 7 and further improved by the im-
provement heuristic explained in the previous section. The SA parameters and
methodology to generate the job sequences is similar to the one we use for
the CDD problem in Chapter 4. The only difference is in the perturbation
rule due to the problem structure. As for the perturbation rule, we first ran-
domly select a certain number of jobs in any job sequence and permute them
randomly to create a new sequence. The number of jobs selected for this per-
mutation is taken as 3 + b

√
n/10c, where n is the number of jobs. In addition

to this, we also incorporate swapping of one job each from the set J ′E and J ′T
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with each other. This swapping is specially useful for the instances with large
due-window size, as random perturbation might cause little to no effect on
the job sequence if all the jobs that are perturbed belong to the straddling
set of jobs JS . The reason for this is that changing the sequence of straddling
jobs does not change the objective function value.

We present our results for the CDW where the due-window size for any
instance is calculated using the values of h1 and h2, known as the due-window
restriction factor. A due-window has a left (dl) and right (dr) due-date, where
dl = bh1 ·

∑n
i=1 Pic and dr = bh2 ·

∑n
i=1 Pic, as described in [21]. For each due-

window there exists 10 different benchmark instances for every problem size.
Hence there a total of 50 different benchmark instances for each job size. We
carry out 100 different replications of our Simulated Annealing algorithm on
each of the 250 benchmark instances of different job sizes and 5 due-window
factors given by h1 and h2. In Table 5.2 and 5.3 we present our results for
the CDW where the due-window size for any instance is calculated using the
values of h1 and h2. A due-window has a left (dl) and right (dr) due-date,
where dl = bh1 ·

∑n
i=1 Pic and dr = bh2 ·

∑n
i=1 Pic, as described in [21]. As

can be seen in Table 5.2, for the first 50 instances with 10 jobs we obtain the
optimal solution for all the instances. For the instance size of 20 we reach the
benchmark results for 47 instances and achieve better results for 3 instances.
The benefit our approach is highlighted with the results for jobs 50 or more.
We achieve better solution for 42 instances out of 50 and equal results for 6
benchmark instances, for the instance size of 50 jobs. Furthermore, for the job
size of 100 our approach offers better solution values for 49 out of 50 instances
provided in [21]. With the job size of 200, we again achieve better results for
a total of 49 instances out of the 50 instances with varying due-window sizes,
as shown in Table 5.3.

Additionally, we also carry out statistical analysis of our results for the
benchmark instances till 200 jobs, and provide the best, worst, mean, median,
mode, standard deviation and the average number of fitness function eval-
uations, along with the average runtime, for each job size and due-window
location defined by h1 and h2. These results are presented in Table 5.4 and
are expressed in terms of the percentage error with respect to the benchmark
results provided by Biskup and Feldmann [21]. Let F kREF be the benchmark
solution for an instance k and F ki be the solution obtained with our approach
for ith replication of SA, then the percentage error ∆k

i for that run of SA is
calculated as

∆k
i =

(F ki − F kREF) ∗ 100

F kREF

. (5.3)

As mentioned before, there are 10 different benchmark instances for each job
size for any given due-window, i.e., k = 1, 2, . . . , 10, we represent our results in
terms of the average percentage error ∆i for the ith replication of SA, where

∆i =
(∑10

k=1∆
k
i

)
/10. In Table 5.4, ∆best = min

i=1,2,...,100
{∆i} represents the

best average percentage error with the benchmark results, for 100 different
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Table 5.2. Results obtained for single machine common due-window problem till
50 jobs. For each job there are 10 different instances each with a value for k and for
each k there are 5 different due-windows.

k h1 - h2
10* 20 50

BR Algo 7+SA BR Algo 7+SA BR Algo 7+SA

1

0.1 - 0.2 1896 1896 4089 4089 39250 39461
0.1 - 0.3 1330 1330 2713 2713 28225 28225
0.2 - 0.5 540 540 1162 1162 12756 12754
0.3 - 0.4 919 919 2294 2294 21137 21110
0.3 - 0.5 587 587 1559 1559 14002 13971

2

0.1 - 0.2 947 947 8251 8251 29110 29043
0.1 - 0.3 539 539 5950 5950 20133 20133
0.2 - 0.5 191 191 2770 2770 8480 8470
0.3 - 0.4 432 432 4482 4482 15166 15150
0.3 - 0.5 265 265 2923 2923 9436 9428

3

0.1 - 0.2 1488 1488 5881 5881 33407 33180
0.1 - 0.3 1012 1012 4067 4067 23027 23020
0.2 - 0.5 398 398 1675 1675 9935 9969
0.3 - 0.4 760 760 3035 3035 17640 17508
0.3 - 0.5 462 462 1998 1998 11402 11389

4

0.1 - 0.2 2128 2128 8977 8977 25869 25856
0.1 - 0.3 1576 1576 6609 6609 17568 17544
0.2 - 0.5 712 712 3113 3113 7378 7373
0.3 - 0.4 1162 1162 4832 4830 13633 13609
0.3 - 0.5 740 740 3210 3210 8448 8418

5

0.1 - 0.2 1150 1150 4028 4028 31468 31456
0.1 - 0.3 755 755 2850 2850 21693 21689
0.2 - 0.5 284 284 1192 1192 8954 8947
0.3 - 0.4 542 542 2112 2112 15767 15747
0.3 - 0.5 339 339 1341 1341 9994 9956

6

0.1 - 0.2 1479 1479 6306 6306 33452 33452
0.1 - 0.3 1023 1023 4247 4247 23267 23261
0.2 - 0.5 439 439 1557 1557 10245 10221
0.3 - 0.4 779 779 3042 3042 17400 17392
0.3 - 0.5 500 500 1778 1778 11207 11178

7

0.1 - 0.2 2093 2093 10204 10204 42257 42234
0.1 - 0.3 1521 1521 7492 7492 29277 29274
0.2 - 0.5 717 717 3573 3573 12014 12000
0.3 - 0.4 1190 1190 5722 5722 20718 20696
0.3 - 0.5 809 809 3846 3846 12953 12935

8

0.1 - 0.2 1644 1644 3749 3742 42220 42218
0.1 - 0.3 1287 1287 2519 2519 28411 28403
0.2 - 0.5 670 670 991 990 11167 11154
0.3 - 0.4 952 952 1801 1801 21014 20965
0.3 - 0.5 680 680 1069 1069 12917 12913

9

0.1 - 0.2 1466 1466 3317 3317 33222 33222
0.1 - 0.3 1121 1121 2342 2342 23848 23840
0.2 - 0.5 492 492 1056 1056 10987 10977
0.3 - 0.4 772 772 1767 1767 17999 17972
0.3 - 0.5 513 513 1187 1187 11951 11935

10

0.1 - 0.2 1835 1835 4673 4673 31492 31492
0.1 - 0.3 1384 1384 3266 3266 22056 22040
0.2 - 0.5 691 691 1355 1355 9653 9653
0.3 - 0.4 1047 1047 2419 2419 16538 16510
0.3 - 0.5 717 717 1474 1474 10628 10597
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Table 5.3. Results obtained for single machine common due-window problem for
larger instances with 100 and 200 jobs.

k h1 - h2
100 200

BR Algo 7+SA BR Algo 7+SA

1

0.1 - 0.2 139595 139573 474756 474431
0.1 - 0.3 95217 95219 324620 324499
0.2 - 0.5 39553 39515 136994 136824
0.3 - 0.4 72187 72121 246945 246672
0.3 - 0.5 46020 45832 158530 158158

2

0.1 - 0.2 120511 120484 517562 517316
0.1 - 0.3 82105 82031 353194 353020
0.2 - 0.5 35399 35303 145664 145495
0.3 - 0.4 62458 62423 267993 267706
0.3 - 0.5 39813 39720 169796 169574

3

0.1 - 0.2 124365 124317 466715 466706
0.1 - 0.3 86305 86241 319485 319373
0.2 - 0.5 38195 38179 134770 134657
0.3 - 0.4 67204 67054 245096 245023
0.3 - 0.5 44184 44054 157146 157013

4

0.1 - 0.2 122983 122901 564907 564840
0.1 - 0.3 84155 84117 396769 396636
0.2 - 0.5 35640 35511 177161 176946
0.3 - 0.4 65082 65062 304831 304646
0.3 - 0.5 41770 41591 200878 200675

5

0.1 - 0.2 119151 119115 489018 488841
0.1 - 0.3 82506 82398 333670 333486
0.2 - 0.5 34956 34873 140147 139995
0.3 - 0.4 61038 60965 254798 254525
0.3 - 0.5 38976 38785 162410 162152

6

0.1 - 0.2 133656 133545 458252 458022
0.1 - 0.3 89634 89567 311964 311882
0.2 - 0.5 35341 35146 126460 126426
0.3 - 0.4 65622 65474 233685 233382
0.3 - 0.5 40987 40880 146369 146288

7

0.1 - 0.2 129866 129849 428986 428115
0.1 - 0.3 91045 90963 285446 285332
0.2 - 0.5 39449 39344 115633 115499
0.3 - 0.4 67858 67797 220974 220294
0.3 - 0.5 43870 43737 139361 139088

8

0.1 - 0.2 154029 153974 474702 474457
0.1 - 0.3 106558 106525 320865 320704
0.2 - 0.5 45070 44963 130149 129966
0.3 - 0.4 80338 80272 235612 235490
0.3 - 0.5 51540 51417 147181 146988

9

0.1 - 0.2 111521 111474 509383 508283
0.1 - 0.3 75280 75159 350521 350375
0.2 - 0.5 31417 31279 147224 147298
0.3 - 0.4 57168 57102 263963 263255
0.3 - 0.5 36386 36319 168249 168090

10

0.1 - 0.2 112942 112799 515112 514939
0.1 - 0.3 78771 78670 358610 358495
0.2 - 0.5 34152 34074 158191 157948
0.3 - 0.4 60096 59922 274262 273839
0.3 - 0.5 38775 38639 178679 178480
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runs of SA on each instance. Likewise, ∆mean and ∆worst depict the mean
and the worst average percentage error obtained on 100 different runs of SA,
respectively. We also present the percentage standard deviation, depicted by
∆σ, along with the average runtime in seconds as well as the total number
of fitness function evaluations (FFEs) on average for all job sizes depending
on the due-window location. A negative value for ∆best, ∆mean, ∆worst,
∆median and ∆mode shows that the results obtained by our approach are
better than the best known solution for this problem. Not only do we obtain
better results in the best runs of SA but also on average of 100 runs. In the
worst case as well, our results are within a percentage error of 1.1 percent.

Table 5.4. Average runtime in seconds and percentage gap of our solutions with
the benchmark results of [21], for each due-window size. The values presented are
the average over all 10 k-values.

n h1-h2 ∆best ∆worst ∆mean ∆median ∆mode ∆σ Runtime FFEs

10 0.1-0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 34

10 0.1-0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 44

10 0.2-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 304

10 0.3-0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 88

10 0.3-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.001 353

Average 0.000 0.000 0.000 0.000 0.000 0.000 0.000 164

20 0.1-0.2 -0.187 0.060 -0.018 -0.016 -0.019 0.002 0.014 4898

20 0.1-0.3 0.000 0.085 0.003 0.012 0.012 0.005 0.030 7029

20 0.2-0.5 -0.101 0.000 -0.010 -0.010 -0.010 0.000 0.020 7676

20 0.3-0.4 -0.041 0.000 -0.004 -0.004 -0.004 0.000 0.020 7623

20 0.3-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.021 7896

Average -0.066 0.029 -0.006 -0.004 -0.004 0.002 0.021 7024

50 0.1-0.2 -0.679 0.555 -0.037 -0.039 -0.039 0.010 0.189 32252

50 0.1-0.3 -0.137 0.169 0.020 0.021 -0.007 0.032 0.191 32909

50 0.2-0.5 -0.234 1.132 0.219 0.197 0.069 0.177 0.138 23517

50 0.3-0.4 -0.748 0.171 -0.124 -0.124 -0.163 0.049 0.133 20229

50 0.3-0.5 -0.380 0.473 -0.021 -0.030 -0.094 0.120 0.103 18612

Average -0.436 0.500 0.011 0.005 -0.047 0.078 0.151 25504

100 0.1-0.2 -0.127 0.049 -0.029 -0.030 -0.034 0.010 0.680 53430

100 0.1-0.3 -0.161 0.183 -0.016 -0.023 -0.051 0.040 0.804 65115

100 0.2-0.5 -0.552 0.443 -0.079 -0.087 -0.151 0.109 0.897 72869

100 0.3-0.4 -0.290 0.075 -0.100 -0.103 -0.111 0.020 0.846 71505

100 0.3-0.5 -0.490 0.105 -0.214 -0.221 -0.284 0.066 0.885 71371

Average -0.324 0.171 -0.088 -0.093 -0.126 0.049 0.822 66858

200 0.1-0.2 -0.215 0.029 -0.062 -0.062 -0.061 0.005 3.675 155644

200 0.1-0.3 -0.055 0.168 0.001 -0.003 -0.017 0.026 4.044 173108

200 0.2-0.5 -0.160 0.641 0.073 0.061 0.017 0.106 4.392 184657

200 0.3-0.4 -0.309 0.013 -0.109 -0.109 -0.106 0.014 4.310 182128

200 0.3-0.5 -0.242 0.212 -0.054 -0.060 -0.081 0.046 4.298 180953

Average -0.196 0.213 -0.030 -0.035 -0.050 0.039 4.144 175298
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Fig. 5.11. Average Number of Fitness Function Evaluations and its standard devi-
ation.

Figure 5.11 shows the average number of fitness function evaluations re-
quired for each job size over different due-window lengths and locations. As
can be seen from the figure our approach performs consistently over all job
sizes with relatively same standard deviation. We also present the graphical
representation of the average percentage error obtained by our algorithm. The
negative value indicates that we obtain better results than the benchmark so-
lutions, in Figure 5.12. Evidently, the worst possible solution values by our
approach are for the case when the due-window size is as big as the 30% of
the total length of the schedule, i.e., with the due-window restriction factor
of 0.2 to 0.5. As explained before, the reason behind it is the fact that the
perturbation causes the least change in the processing sequence of the jobs as
several jobs belong to the straddling set. In such a case, swapping of jobs from
J ′E to J ′T is highly useful. However, it must be noted that the percentage error
values presented in Figure 5.12 are averaged over 100 different replications of
SA and the worst value for ∆mean over all the instances is only 0.2 percent.
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Regardless, over all the replications of SA, in the average case we still obtain
solutions better than the best known values as is clear from Table 5.4.
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Fig. 5.12. Comparative average percentage deviation of CDW along with its stan-
dard deviation.

Furthermore, the robustness of our approach is highlighted by the small
standard deviation values ∆σ over all the instances, as shown in Figure 5.12.
Our algorithm consistently obtains good quality solutions with the worst
possible standard deviation of just 0.177%. The average runtime over 100
different replications of our algorithm for job size of 20 and above is only
0.018, 0.151, 0.822 and 4.144 seconds. A previous approach for this problem
involved an O(n2) algorithm to optimize any job sequence [7] and the aver-
age runtimes for 10 different replications of SA were 0.173, 0.465 and 6.028
seconds for 10, 20 and 50 jobs, respectively, on the same machine. This com-
parison shows that the approach mentioned in this work offers a speedup of
25 and 40 for job sizes of 20 and 50, respectively. As far as the solution quality
is concerned, not only our approach is robust over all the instances, we also
improve several benchmark results provided in [21].
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5.9 Summary

In this chapter we present a novel strategy for the Common Due-Window
problem based on developing specialized linear algorithm for the linear pro-
gram resulting from a given fixed job sequence. We prove the property for the
CDW and prove its similarity to the CDD problem. Thereafter, we provide
an O(n) algorithm for a the general case of the CDW to optimize a given
job sequence, proving its runtime complexity and its optimality with respect
to the solution value. Additionally, we also propose an improvement heuristic
similar to the CDD problem to locally improve any job sequence with the
help of the V-shaped property. We applied our algorithms to the benchmark
instances provided by Biskup and Feldmann [21] and obtain better results for
137 instances out of 150 benchmark instances for the job size of 50 and higher.
The benefit of our approach is evident from the results and its adaptability to
certain other problems that are a variant of CDW. One of the obvious case is
one when the processing times of all the jobs are equal or of unit time length.
Our approach for that problem would be same except for the fact that on
Algorithm 7 each shift will be equal to the length of the processing time. The
remaining procedure of improvement heuristics and the SA can be utilized
as described in this chapter. Our approach also works for the Common Due
Window Assignment (CDWA) problem with no penalty on the due-window
assignment. Recall that for any job sequence, we first locate the best position
of the movable due-window and then adjust it depending on the original due-
window position. However, for the CDWA we do not need any adjustment as
the position of the due-window is itself a decision variable. Hence, our ap-
proach can find the optimal (near optimal) due-window assignment in exactly
the same manner. Similar to the parallel machine case of the CDD problem,
the algorithm mentioned in this chapter is also suitable for the parallel ma-
chine case of the CDW problem. A brief version of this chapter has also been
accepted for publication in [155].
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6

Un-restricted Common Due-Date Problem
with Controllable Processing Times:
Polynomial Algorithm for a Given Job
Sequence

This chapter considers another variant of the CDD problem known as
the un-restricted case of the Common Due-Date problem with controllable
processing times. The problem consists of scheduling jobs with controllable
processing times on a single machine against a common due-date to minimize
the overall earliness/tardiness and the compression penalties of the jobs. The
objective of the problem is to find the processing sequence of jobs, the optimal
reduction in the processing times of the jobs and their completion times. We
first present and prove an essential property for the controllable processing
time CDD problem for the un-restricted case along with an exact polynomial
algorithm for optimizing a given job sequence for a single machine with a
runtime complexity of O(n), where n is the number of jobs. Henceforth, we
implement our polynomial algorithm in conjunction with a modified Simulated
Annealing algorithm and Threshold Accepting to obtain the optimal/best
processing sequence while comparing the two heuristic approaches, as well.
The implementation is carried out on appended CDD benchmark instances
provided in the OR-library.

6.1 Introduction

When a production is made against a due-date, the manufacturer can have
another modification to reduce the over penalty of the production. If a job
can be processed in a shorter time than its actual processing time, or in other
words, the processing time of the job is reduced, then the overall earliness/-
tardiness penalties can be reduced further. However, reducing the processing
time of a job essentially means that the job is processed by the machine faster
than its usual processing time. In doing so, the machine needs to operate at
rather extreme pace, consuming more resources such a fuel. Due to this rea-
son, a penalty per unit time is associated with each job in case it is processed
faster, in other words, when the processing time is reduced. This penalty is
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termed as the compression penalty of the job. This modification leads to an-
other variation of the CDD, known as the Common Due-Date Problem with
controllable processing time (CDDCP).

As explained in the previous chapter, CDD involves minimization of the
total weighted earliness/tardiness penalty against a common due-date. For
the controllable processing time case, in addition to the CDD, the processing
times of some or all the jobs can be reduced to a certain minimum value at
a cost of some penalty per unit of reduction. This controlling of the process-
ing times can help the jobs to reduce their earliness/tardiness penalties if the
penalties incurred due to the compressions are relatively smaller than the ear-
liness/tardiness penalties. The objective of solving the problem is to obtain
the optimal job sequence, final processing times of the jobs and the completion
times of all the jobs to minimize the total weighted penalty. Generally speak-
ing, there are two classes of common due-date problem, which have proven
to be NP-hard, namely the restrictive and the un-restrictive CDD problem.
In this work, we consider the un-restrictive case of this problem, where the
common due-date is greater than or equal to the sum of the processing times
of all the jobs and each job possesses different penalties. The CDD has already
been proven to be NP-hard, and clearly the controllable case is NP-hard as
well [149, 20].

6.2 Related Work

Panwalkar and Rajagopalan studied the CDDCP problem with constant ear-
liness/tardiness penalties and distinct compression penalties against a com-
mon due-date and presented a polynomial algorithm for the special case [117].
Cheng et al. considered the single machine scheduling with compressible pro-
cessing times and assignable due-date with constant penalties for earliness/-
tardiness and compression [36]. In 1999 Biskup and Cheng studied the control-
lable processing times common due-date problem with constant penalties for
earliness/tardiness and distinct penalties for compression. They also consid-
ered the penalty for the completion time of the jobs and proved the similarity
of the problem to the assignment problem [19]. In 2001 Biskup and Jahnke
studied a slightly different version of the problem. They analyse the assignable
due-date problem with controllable processing times but instead of arbitrary
compression of the jobs, they consider the case where each job is reduced by
a constant proportional amount. Besides, they consider the case where each
job possesses constant penalties for earliness/tardiness and the compression
of the jobs [22].

In 2007 Shabtay and Steiner made an extensive survey for scheduling with
controllable processing times, covering research in this field from the last 25
years [129]. Wan studied the common due-window problem with controllable
processing times with constant earliness/tardiness penalties and distinct com-
pression costs and discussed some properties for the optimal solution along
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with a polynomial algorithm for solving the problem, in 2007 [143]. In 2009,
Tseng et al. studied the general problem with compressible processing times
with distinct due-dates and presented a heuristic algorithm to minimize the to-
tal tardiness and the compression penalties [139]. Nearchou studied a slightly
different version of the problem in 2010, where the objective was to mini-
mize the total weighted completion times and the compression costs and pre-
sented a population based metaheuristic algorithm, considering four different
heuristic approaches namely, differential evolution, particle swarm optimiza-
tion, genetic algorithms and evolution strategies [113]. Yin et al. considered
the single machine batch delivery scheduling with assignable common due-
date and controllable processing times with constant penalties and presented
a O(n5) dynamic programming algorithm, in 2013 [149]. Again in 2013 Kay-
vanfar et al. studied the general case with distinct due-dates for all the jobs.
Additionally, they also consider the case where the processing times of the jobs
can be both compressed and expanded. They also study the parallel machine
case with the additional constraint to the objective function which minimizes
the makespan of the schedule, as well [80]. Yin et al. consider the problem of
controllable processing times against a CDD, and study the case with constant
earliness/tardiness penalties. Additionally, the common due-date is taken as
a decision variable, in 2014 [150]. Again in the same year, Lu et al. study the
due-date assignment problem for the case where the processing times of the
jobs is dependent on the resource. However, they also consider the case with
constant earliness/tardiness penalties [100]. In 2014, Yang et al. consider the
problem multiple due-window assignments with controllable processing times,
with constant penalties for earliness/tardiness, compression of the jobs and
due-window position for any job [147].

We consider the single machine case for the un-restricted CDD problem
with asymmetric penalties and controllable processing times with distinct lin-
ear costs. We make a theoretical study of the problem and first present an
important property for this problem. We then present an O(n) exact polyno-
mial algorithm to optimize a given job sequence on a single machine.

6.3 Problem Formulation

In this Section, we present the mathematical notation of the common due-
date problem with the controllable processing times. Let,
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n = number of jobs,
d = common due-date,
Pi = actual processing time for job i, ∀i = 1, 2, . . . , n,
mPi = minimum processing time for job i, ∀i = 1, 2, . . . , n, mPi ≤ Pi ∀ i
Ci = completion time of job i,
gi = earliness of job i, where gi = max{0, d− Ci},
hi = tardiness of job i, where hi = max{0, Ci − d},
xi = actual reduction in the processing time of job i,
αi = earliness penalty per time unit for any job i,
βi = tardiness penalty per time unit for any job i,
νi = compression penalty per time unit for any job i,
The objective functions for the studied problem can then be expressed as,

min

n∑
i=1

(αi · gi + βi · hi + ν · xi) . (6.1)

6.4 Important Properties for the UCDDCP

1 n

−−−− −−−

t = 0 Cr = d

Fig. 6.1. Assume that the rth job finishes at the due-date d in the optimal solution.

In this section we prove some properties for the un-restricted CDD with con-
trollable processing times. Let the solution value for the case when there is no
compression of the processing times and the due-date lies at the completion
time of job r, as shown in Figure 6.1, be Solr. Then we have

Solr =

r−1∑
i=1

r∑
j=i+1

Pjαi +

n∑
i=r+1

i∑
j=r+1

Pjβi , (6.2)

where
r−1∑
i=1

r∑
j=i+1

Pj = the total earliness for any job i and

n∑
i=r+1

i∑
j=r+1

Pj = the total tardiness for any job i.

Let us assume that the reductions in the processing times in the optimal
schedule be xi for all i = 1, 2, . . . , n. Then the objective function value (Sol′r)
when the due-date position is at Cr will be
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Sol′r =

r−1∑
i=1

r∑
j=i+1

(Pj − xj)αi +

n∑
i=r+1

i∑
j=r+1

(Pj − xj)βi +

n∑
j=1

xjνj . (6.3)

We first present and prove an important property regarding the amount of
compression of the processing times of the jobs.

Property 6.1. If controlling the processing times fetches a better solution,
then the compression of the processing times should be to their minimum
value.

Proof. If the compression of the processing times fetches a better solution,
then we have Sol′r ≤ Solr. Using Equation (6.2) and (6.3), we obtain

r−1∑
i=1

r∑
j=i+1

xjαi +

n∑
i=r+1

i∑
j=r+1

xjβi −
n∑
j=1

xjνj ≥ 0 . (6.4)

Let us assume that instead of reducing the processing times by xj , we reduce
them by yj , where yj < xj ∀j = 1, 2, . . . ,. Let the solution value for this case
be Sol′r′ and xj − yj = εj . If Sol′r′ < Sol′r, then with some manipulation of
the terms we get

r−1∑
i=1

r∑
j=i+1

εjαi +

n∑
i=r+1

i∑
j=r+1

εjβi −
n∑
j=1

εjνj ≤ 0 . (6.5)

Since xj ≥ 0 ∀j = 1, 2, . . . , n, Equation (6.4) should also hold for any εj >
0. However, Equation (6.5) is a contradiction. Hence, our assumption that
Sol′r′ < Sol′r is wrong. This proves that the solution value only improves if we
reduce the processing times further, which in turn shows that the best solution
value will be obtained for maximum possible compression of the processing
times. �

We now present and prove a novel property for the UCDDCP problem.
Recall from Chapter 4 that we presented a property for the common due-
date problem, where the optimal schedule position was independent of the
processing times of the jobs but depended only on the earliness/tardiness
penalties of the jobs. Since we are dealing with only the un-restricted case of
the CDD, Equation (6.6) and (6.7) depict this property if the optimal schedule
occurs when the due-date d falls at the completion time of job r.

n∑
i=k+1

βi ≤
k∑
i=1

αi, k = r, r + 1, . . . , n and (6.6)

k−1∑
i=1

αi ≤
n∑
i=k

βi, k = 1, 2, 3, . . . , r . (6.7)
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We now use this property of the CDD prove an essential property for the
un-restricted case of the CDD with controllable processing times.

Theorem 6.2. If the due-date position in the optimal schedule of the un-
restricted case of the CDD falls at the completion time of some job r, then its
position remains unchanged for the controllable case of the un-restricted CDD
problem.

Proof. We know from Theorem 4.10 that if the optimal CDD schedule has the
due-date at the completion time of job r, then Equation (6.6) and (6.7) hold.
Besides, we also proved in Property 6.1 that if a job is reduced then it has to
be reduced to its minimum processing time, to gain from the compression of
the jobs. Let us consider that the optimal reduction of the processing times
of the jobs is given by xi ∀ i to minimize Equation (6.1) for the given job
sequence. Then, for this reduction the objective function value Sol′r for the
case when due-date position is at Cr can be written as Equation (6.3).
Rearranging the terms of Sol′r from Equation (6.3), we have

Sol′r =

r−1∑
i=1

r∑
j=i+1

(Pj − xj)αi +

n∑
j=1

xjνj +

n∑
i=r+1

i∑
j=r+1

(Pj − xj)βi ,

Sol′r =

r−1∑
i=1

r∑
j=i+1

Pjαi −
r−1∑
i=1

r∑
j=i+1

xjαi −
n∑

i=r+2

i∑
j=r+2

xjβi +

n∑
j=1

xjνj

+

n∑
i=r+1

(Pr+1 − xr+1)βi +

n∑
i=r+2

i∑
j=r+2

Pjβi .

(6.8)

With some manipulations of terms, Sol′r can be also written as

Sol′r =

r−2∑
i=1

r−1∑
j=i+1

Pjαi −
r−2∑
i=1

r−1∑
j=i+1

xjαi +

r−1∑
i=1

(Pr − xr)αi +

n∑
j=1

xjνj

+

n∑
i=r+1

i∑
j=r+1

Pjβi −
n∑

i=r+1

i∑
j=r+1

xjβi .

(6.9)

1 n

−−−− −−−

t = 0 Cr+1 = d

Fig. 6.2. Schedule with the completion time of job r + 1 lying at the due-date,
Cr+1 = d.
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Likewise, if the jobs are shifted to the left such that the due-date now falls
at the completion time of job r + 1 (Figure 6.2), the objective function value
for the optimal reduction xi for this case can be written as Sol′r+1, where

Sol′r+1 =

r∑
i=1

 r+1∑
j=i+1

(Pj−xj)

αi+ n∑
j=1

xjνj +

n∑
i=r+2

 i∑
j=r+2

(Pj−xj)

βi . (6.10)

As for Sol′r, the terms of Sol′r+1 in Equation (6.10) can also be rearranged
such that

Sol′r+1 =

r∑
i=1

r+1∑
j=i+1

(Pj − xj)αi +

n∑
i=r+2

i∑
j=r+2

(Pj − xj)βi +

n∑
j=1

xjνj

=

r−1∑
i=1

r∑
j=i+1

Pjαi −
r−1∑
i=1

r∑
j=i+1

xjαi +

n∑
i=r+2

i∑
j=r+2

Pjβi

+

r∑
i=1

(Pr+1 − xr+1)αi −
n∑

i=r+2

i∑
j=r+2

xjβi +

n∑
j=1

xjνj .

(6.11)

1 n

−−−− −−−

t = 0 Cr−1 = d

Fig. 6.3. Schedule with the completion time of job r − 1 lying at the due-date,
Cr−1 = d.

Now, if the jobs from Figure 6.1 are shifted to the right such that the due-
date now falls at the completion time of job r − 1 (Figure 6.3), the objective
function value for the optimal reduction xi can be written as

Sol′r−1 =

r−2∑
i=1

 r−1∑
j=i+1

(Pj − xj)

αi +

n∑
i=r

 i∑
j=r

(Pj − xj)

βi +

n∑
j=1

xjνj . (6.12)

Likewise Sol′r−1 in Equation (6.12) can also be expressed as
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Sol′r−1 =

r−2∑
i=1

r−1∑
j=i+1

(Pj − xj)αi +

n∑
i=r

i∑
j=r

(Pj − xj)βi +

n∑
j=1

xjνj

=

r−2∑
i=1

r−1∑
j=i+1

Pjαi −
r−2∑
i=1

r−1∑
j=i+1

xjαi +

n∑
i=r+1

i∑
j=r+1

Pjβi

+

n∑
i=r

(Pr − xr)βi −
n∑

i=r+1

i∑
j=r+1

xjβi +

n∑
j=1

xjνj .

(6.13)

Now we prove by contradiction that the position of the due-date will not
change even after the optimal reduction in the processing times. Let us assume
that Sol′r is not optimal, then we have

Sol′r > Sol′r+1 and (6.14)

Sol′r > Sol′r−1 . (6.15)

Substituting values of Sol′r from Equation (6.8) and Sol′r+1 from Equa-
tion (6.11) in Equation (6.14), we have

Sol′r >Sol
′
r+1 ,

n∑
i=r+1

(Pr+1 − xr+1)βi >

r∑
i=1

(Pr+1 − xr+1)αi and

(Pr+1 − xr+1)

(
n∑

i=r+1

βi −
r∑
i=1

αi

)
> 0 . (6.16)

Now, using Equation (6.6), we obtain

Pr+1 < xr+1 . (6.17)

Likewise, substituting the values of Sol′r from Equation (6.9) and Sol′r−1 from
Equation (6.13) in Equation (6.15), we get

Sol′r >Sol
′
r−1 ,

r−1∑
i=1

(Pr − xr)αi >
n∑
i=r

(Pr − xr)βi and
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(Pr − xr)

(
r−1∑
i=1

αi −
n∑
i=r

βi

)
> 0 . (6.18)

Equation (6.7) then fetches

Pr < xr . (6.19)

Equation (6.17) and (6.19) show that if the optimal solution for the uncom-
pressed case occurs such when the due-date position is at Cr for some r, then
for the compressed case, the position of the due-date will remain fixed at Cr as
well, since a change in the position of the due-date will require a compression
in the processing time which is more than the actual processing time itself. �

6.5 The Exact Algorithm

In the previous section we proved that if the due-date position for the gen-
eral common due-date problem lies at the completion time of a job then its
position remains unchanged for the controllable processing time case as well.
We now present how to utilize this property to formulate an exact algorithm
to optimize a given job sequence for the un-restricted case of the CDD with
controllable processing times.

To optimize a given sequence for the un-restricted case, we first find the
optimal position of the due-date without any compression of the jobs and
then reduce the processing times of the jobs closest to the due-date moving
outward. Consider Figure 6.1, the optimal position of the due-date is at Cr.
In the next step, we first reduce the processing times of tardy jobs starting
with job r + 1. Reducing its processing time such that Cr+1 moves closer to
d will not only reduce the tardiness of job r + 1 but of all the jobs which
follow, provided the penalty incurred by compressing the processing time of
job r + 1 is less than the reduction in the weighted tardiness penalties of
the jobs r + 1, r + 2, . . . , n. Thereafter, we compress job r + 2 and reduce its
tardiness along with all the jobs following it. If a compression does not offer
any reduction in the overall penalty then we move on to the next job without
compressing the current job.

We perform the same operations in the sequential manner for the remain-
ing jobs, starting with job r to job 2. However, in this case the reduction in
the processing times leads the jobs to move towards right, i.e., closer to the
due-date. Notice that the reduction in the first job is never going to improve
the penalty since the earliness of the first job will not be altered by its com-
pression but will only offer more penalty due to compression. Algorithm 9
presents the pseudo code for optimizing a given sequence.
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Algorithm 9: Exact polynomial algorithm with O(n) runtime com-
plexity to optimize any given sequence of the un-restricted CDD with
controllable processing times.

1 Ci ← Algorithm 4
2 τ ← arg min

i=1,2,...,n
(Ci > d)

3 pls←
∑n
i=τ βi

4 i← τ
5 lShift← 0
6 while (i ≤ n) do
7 if (νi ≤ pls) ∧ (Pi > mPi) then
8 dec← Pi −mPi
9 lShift← lShift+ dec

10 pls← pls− βi
11 Ci ← Ci − lShift
12 i← i+ 1

13 τ ← τ − 1

14 ple←
∑τ−1
i=1 αi

15 i← τ
16 rShift← 0
17 while (i > 1) do
18 if (νi ≤ ple) ∧ (Pi > mPi) then
19 inc← Pi −mPi
20 rShift← rShift+ inc

21 ple← ple− αi−1

22 Ci−1 ← Ci−1 + rShift
23 i← i− 1

24 x1 ← 0
25 xi ← Pi − Ci + Ci−1, i = 2, 3, . . . , n
26 Calculate gi, hi ∀ i
27 return

∑n
i=1(αi · gi + βi · hi + νixi)

We now illustrate Algorithm 9, to optimize a job sequence of UCDDCP.
The data for the example is given in Table 6.1. Observe that the only ad-
ditional details for this problem than the CDD are the minimum processing
times and the compression penalties. Since we deal with the un-restricted
case we take the due-date d = 22 (≥

∑n
i=1 Pi). The minimum processing time

of a job is the time it takes to complete, if processed faster. The compres-
sion penalty is the penalty per unit time associated with each job when the
processing time of the job is reduced.

The idea of the algorithm for the UCDDCP is to first optimize the sequence
for the CDD problem and then compress the jobs towards the due-date. Fig-
ure 6.4 shows the optimal schedule for the CDD problem with the second job
completing at the due-date. As Property 6.2 suggests, the position of the due-
date will remain unchanged for the UCDDCP problem. This, in turn means
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Table 6.1. The data for the exemplary case of the UCDDCP. The parameters
possess the same meaning as explained in Section 6.3.

i Pi mPi αi βi νi
1 6 5 7 9 5
2 5 5 9 5 4
3 2 2 6 4 3
4 4 3 9 3 2
5 4 3 3 2 1

that if the compression of the jobs yield a better solution, they necessarily have
to be compressed towards the due-date (indicated by the arrows in Figure 6.4.

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 4 4

t = 0 d = 22

Fig. 6.4. Schedule with the completion time of job 2 lying at the due-date, after an
additional right shift of all the jobs by 2 units.

Property 6.1 shows that compression of the jobs should be to their mini-
mum value, if it fetches an improvement. Hence it gets clear that if required,
the processing time of the jobs has to be reduced to their minimum possible
value, indicated by mPi in Table 6.1. Ultimately, we only need to determine
which jobs should be reduced in terms of the processing times. To determine
that, we start from the last job of the sequence. In the above example, we
first consider job 5 which is tardy. The compression penalty of this job is
1, while the tardiness penalty is 2. Hence reduction of the processing time
from P5 = 4 to mP5 = 3 will increase the compression penalty by x5 · ν5

(where, x5 = P5 − mP5) but reduce the tardiness penalty by x5 · β5 (since
the job is compressed towards the due-date). Since β5 > ν5, reducing the
processing time of job 5 fetches us an overall improvement in the penalty by
x5 · (β5− ν5) = 1. The schedule after this compression is shown in Figure 6.5.

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 4 3

t = 0 d = 22

Fig. 6.5. Schedule with the reduction of job 5 to its minimum value of 3 time units.
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In the next step, we move to the second last job, job 4 in this case. Job
four is reducible by 1 time unit. Since there should not be any machine idle
time in between jobs, observe that reducing job 4 towards the due-date will
reduce the tardiness of job 4 as well as job 5. Hence, a reduction will offer
an improvement by x4 · (β4 + β5 − ν4). Since β4 + β5 − ν4 = 3, reduction of
job 4 gives us a further improvement of 3 cost units, as shown in Figure 6.6.
This procedure is iterated over all the jobs. The procedure for all the tardy

8 10 12 14 16 18 20 24 26 28 30 32 34

6 5 2 3 3

t = 0 d = 22

Fig. 6.6. Schedule with the reduction of job 4 to its minimum value of 3 time units.

jobs remains the same as just explained. The jobs which are early or the one
which finishes at the due-date have to be dealt with in the opposite manner. A
job is reduced if the compression penalty is less than the sum of the earliness
penalties of all its preceding jobs. In our exemplary case, Figure 6.6 depicts
the optimal schedule for the studied sequence with an overall penalty cost of
77, as any further reduction will not improve the objective function value.

6.6 Proof of Optimality and Runtime Complexity

We now provide the proof of the optimality of Algorithm 9 with respect to
the solution value. Recall that we consider the un-restricted case of the CDD.

Theorem 6.3. Algorithm 9 returns the optimal solution value to the un-
restricted case of the CDD with controllable processing times for any given
job sequence with a runtime complexity of O(n).

Proof. Since there is only one way that the due-date position may be between
the completion times of two consecutive jobs, we need to first calculate the
sum of penalties before and after the due-date such that the first job starts
at time zero and all the jobs follow without any idle time. The schedule with
t∗ = 0 will be optimal if the sum of the tardiness penalties is already greater
than the sum of earliness penalties. If that is not the case, we shift all the jobs
towards right, as long as the sum of the tardiness penalties of jobs finishing
after the due-date is less than or equal to the some of the earliness penalties of
all the jobs which complete before the due-date, according to Equation (4.22)
and (4.23).

Hence, we first optimize any given sequence for the general CDD problem
and obtain the due-date position. We have already proved in Theorem 6.2 that
the due-date position for the general CDD and the controllable processing
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times cases will be unaltered for the un-restricted case of the CDD. It is
clear that the optimal solution will occur only if the jobs are brought closer
to the due-date since the due-date position should not change and the best
case would be the one when all the jobs finish at the due-date, which is
impossible. Hence, we reduce the processing times of jobs starting from the
most adjacent one to the due-date moving further away. The processing time
of a job is reduced only if the penalty incurred due to compression is less than
the penalty reduced by the reduction in the earliness (tardiness) of the jobs
before (after) it.

As for the runtime complexity, the first part of Algorithm 9 is to optimize a
given sequence for the un-restricted CDD problem to find the optimal position
of the due-date. It can be easily observed that the complexity for this part
is of linear runtime. The next expensive operations in terms of the runtime
occur at the next two while loops and they are both of O(n) in the worst
case. The remaining steps are all linear and hence the overall complexity of
Algorithm 9 is O(n). �

6.7 Computational Experiments

Due to the unavailability of benchmark instances for this problem as per
our knowledge, we first present our methodology to append the benchmark
instances of the general CDD provided in the OR-library with the extra pa-
rameters for the controllable processing time case [14]. The instances pro-
vided in [14] provide the processing times, earliness/tardiness penalties and
the due-date. Hence, we append the information about the minimum pro-
cessing times and the cost of controlling the processing times per unit time.
We take the minimum processing time of any job as mPi ∼ DU(0.6Pi, Pi)
and νi ∼ DU(1, 5), where ∼ DU(a, b) is a discrete uniform random num-
ber between a and b. The rest of the parameters remain the same as
in [14]. These benchmark instances for the UCDDCP problem are available
at http://eadgroup.org/research/benchmark-data.html. In this work we
implement our polynomial algorithm for any given job sequence in conjunction
with the Simulated Annealing and Threshold Accepting, as explained below.

6.7.1 Modified Simulated Annealing

We use a modified Simulated Annealing (SA) algorithm explained in Chapter 3
to generate job sequences and Algorithm 9 to optimize each sequence to its
minimum penalty. Our experiments over all the instances suggest that an
ensemble size of ≈ n/10 and the maximum number of iterations of 500n,
where n is the number of jobs, work best for the provided instances in general.
As for the perturbation rule, we first randomly select a certain number of jobs
in any job sequence and permute them randomly to create a new sequence,
in the same manner as explained in Chapter 3. The number of jobs selected
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for this permutation is taken as c+ b
√
n/10c, where n is the number of jobs

and c is a constant.

6.7.2 Threshold Accepting

Threshold Accepting (TA) is another heuristic algorithm based on Simulated
Annealing, proposed by Dueck and Scheuer [51]. The basic difference from
the SA is the different acceptance rules. Unlike the standard SA where a
worse solution is accepted as per the metropolis acceptance criterion, TA
instead accepts ’every new configuration which is not much worse than the
old one’ [51]. The exact details of the acceptance criterion are as follows.

The initial temperature (T0) is kept the same as in the Simulated An-
nealing. As opposed to the exponential cooling schedule of SA, we adopt
probabilistic arithmetic cooling scheduling in TA. Let, mEj and mEj−1 be
the mean of the energy (in this optimization problem, energy is the objective
function values) of all the states in the current (j) and the previous iteration
(j − 1), respectively. Then, the temperature Tj is reduced as

Tj =

{
Tj−1 − θ, if mEj −mEj−1 ≤ prob,
Tj−1, otherwise .

(6.20)

In Equation (6.20), θ and prob are defined as θ = % · T0 and prob = ω ·
T0/
√
M ,where % = c1 ·10−1 and ω = c2 ·10−4 , c1 and c2 are integer constants

less than 5 and M is the ensemble size. The acceptance criterion for Threshold
Accepting as proposed by Dueck and Scheuer [51] is the current temperature
Tj at any iteration j. The remaining parameters such as the ensemble size,
perturbation size and the number of iterations are kept the same for both SA
and TA, to exactly compare the two approaches.

Table 6.2. Results obtained for single machine common due-date problem with
controllable processing times. For any given number of jobs, there are 10 different
instances provided and each instance is designated a number k.

Jobs 10 20 50 100

Approach SA TA SA TA SA TA SA TA

k=1 763 763 2576 2589 14681 14605 60107 60110

k=2 598 598 2555 2555 11955 11877 50359 50369

k=3 672 672 3127 3123 13776 13774 57551 57475

k=4 757 757 2761 2761 11859 11867 60689 60995

k=5 473 473 1936 1936 12408 12376 46003 45991

k=6 669 669 2767 2767 12201 12194 51989 52034

k=7 913 913 3124 3124 14848 14848 53724 53720

k=8 497 497 1492 1492 17599 17604 68079 68030

k=9 510 510 1760 1760 11848 11864 48744 48756

k=10 601 601 1824 1824 11850 11841 50989 50991
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Table 6.3. Results obtained for single machine common due-date problem with
controllable processing times. For any given number of jobs, there are 10 different
instances provided and each instance is designated a number k.

Jobs 200 500 1000

Approach SA TA SA TA SA TA

k=1 205083 205088 1320625 1321074 5324784 5325158

k=2 224091 224103 1421489 1423335 5092028 5092486

k=3 215488 215492 1366170 1365806 5022548 5023318

k=4 242867 242846 1367905 1367758 5094669 5097182

k=5 214950 214894 1209465 1209331 5244483 5242728

k=6 199051 199163 1185855 1185316 5039738 5041527

k=7 210797 210694 1353048 1353037 5480493 5481022

k=8 189845 189763 1282900 1283187 5067156 5067322

k=9 215633 215524 1393380 1394423 5165348 5164056

k=10 228101 228335 1260302 1260234 5158166 5157819

Table 6.4. Measures of central tendency, standard deviation, runtime and number
of fitness function evaluations for Simulated Annealing and Threshold Accepting,
obtained over 25 replications of both the algorithms, over all the benchmark in-
stances.

Simulated Annealing
Jobs Min. Max. Mean Median Mode Std. Runtime FFEs

10 0.000 0.196 0.022 0.000 0.000 0.055 0.064 7111
20 0.000 2.504 0.849 0.716 0.270 0.701 0.492 52243
50 0.019 1.474 0.546 0.503 0.374 0.358 1.767 156736
100 0.020 0.704 0.237 0.209 0.104 0.178 5.563 386254
200 0.014 0.323 0.129 0.117 0.055 0.075 16.567 789042
500 0.002 0.117 0.058 0.060 0.028 0.030 90.015 2204361
1000 0.002 0.080 0.044 0.044 0.002 0.021 353.931 4687141

Threshold Acceptance
Jobs Min. Max. Mean Median Mode Std. Runtime FFEs

10 0.000 2.667 0.841 0.481 0.079 0.884 0.146 10423
20 0.763 10.582 3.576 3.101 1.094 2.486 0.537 36093
50 0.065 1.549 0.603 0.477 0.241 0.420 2.572 152054
100 0.027 0.724 0.257 0.221 0.171 0.169 7.110 355286
200 0.017 0.280 0.134 0.125 0.107 0.073 18.953 744273
500 0.015 0.131 0.074 0.073 0.039 0.030 97.483 2178340
1000 0.006 0.093 0.048 0.048 0.006 0.021 373.345 4670832

6.7.3 Comparison of Results

In Table 6.2 and 6.3 we present our results for the un-restricted common
due-date problem with controllable processing times, where the due-date
d ≥

∑n
i=1 Pi, for the benchmark instances. For the first 10 instances with

10 jobs, we reach the optimal solutions for all the instances, as it turns out by
comparing our results with that of integer programming. However, for larger
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instances, integer programming is unable to solve the instances, hence we are
not aware if our results are optimal or not.
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Fig. 6.7. Average percentage deviation and its standard deviation for all job sizes
for Simulated Annealing and Threshold Accepting averaged over all the due-date
positions for each job size.

The results for Simulated Annealing and Threshold Accepting as quite
similar with respect to the solution values for the benchmark instances, for
problem instance size of 20 and more. Simulated Annealing obtains better
results than Threshold Accepting for 28 instances, while later performs better
than SA for 25 instances, as shown in Table 6.2 and 6.3. Both the metaheuristic
algorithms obtain equal results for 7 instances, for job sizes of 20 or more.
Hence, as far as the quality of the solution is concerned, Threshold Accepting
and Simulated Annealing offer almost the same results, with SA performing
better for 3 more instances than TA.

For further analysis, we also carry out some statistical tests to compare the
two algorithms in detail. Recall we carry out 25 different replications for each
of the 250 benchmark instances for both SA and TA. In Table 6.4 we present
some measures of central tendency for the metaheuristic algorithms. It can be
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seen that Simulated Annealing obtains better results in the best and average
cases for all job sizes of 20 or more. However, the standard deviation of the two
algorithms is better for Threshold Accepting for instances with 100 or more
jobs. This leads to concluding that Threshold Accepting gets stagnant and is
not able to come out of the local minima, considering the fact that SA obtains
better results, although with a slightly higher value for its standard deviation.
Interestingly, TA also offers a high standard deviation for small instances of
10, 20 and 50 jobs. The graphical representation of the percentage gap of the
solutions obtained by SA and TA is provided in Figure 6.7. We also provide
the Mann-Whitney U-test for comparing the results of SA and TA, and in
Table 6.5, it can be seen that the p-test value for the two algorithms is quite
high at 0.815 in terms of the objective function value. Note that the p-values
mentioned in Table 6.5 are the minimum values for which the null-hypothesis
of equal medians can be rejected, i.e., H=1. A p-value of 0.815 indicate null
hypothesis of equal medians can be rejected only with a significance level of
19%.

Considering the runtime and fitness function evaluations (FFEs), shown
in Table 6.4, it can seen that SA requires only slightly higher number of FFEs
than TA but SA is considerably faster in evaluations for large instances. The
plot of the average FFEs and its standard deviation is presented in Figure 6.8.
It is clear from the figure and p-test value for FFEs in Table 6.4, both the algo-
rithms are quite similar. However, looking at the p-test results and the runtime
values in Table 6.4 for the runtime, SA clearly performs better with the p-
value of 0.01156 for the comparison. This suggests that the null-hypothesis of
equal medians can be rejected with a significance level of 98%.

Table 6.5. Results of the Mann-Whitney U-test for solution value, number of fit-
ness function evaluations and the runtime required by Simulated Annealing and
Threshold Accepting.

Parameter Objective Function Fitness Function Evaluations Runtime

p-value 0.81530 0.17541 0.01156

6.8 Summary

In this work, we once again implement the two-layered approach. For develop-
ing the specialized polynomial algorithm for the resulting linear program, we
make extensive theoretical study of the problem and present a novel property
for the problem of scheduling against a common due-date with controllable
processing times for the un-restricted case. We show that the due-date po-
sition in the optimal schedule for the un-restricted case remains the same
for both the CDD and for controllable processing time cases. This essential
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Fig. 6.8. Average number of fitness function evaluations and its standard deviation
for Simulated Annealing and Threshold Accepting averaged over all the due-date
positions for each job size.

and important property helps us to develop a specialized linear algorithm for
the resulting linear program of scheduling jobs of any given sequence. We
then present and explain our O(n) algorithm for any given job sequence and
prove the runtime complexity and its optimality with respect to the solution
value. Due to the unavailability of any set of benchmark instances in the lit-
erature, for the problem studied, we offer a new set of benchmark instances.
These instances are appended to the CDD benchmarks by Biskup and Feld-
mann [20]. Henceforth, we carry out experimental analysis of our approach
with Simulated Annealing and Threshold Accepting metaheuristic algorithms,
and notice that our modified SA performs better that TA.

We have studied a total four NP-hard scheduling problems which are solved
using a common underlying approach mentioned in Chapter 2. We develop
specialized polynomial algorithms for all these problems and club them with
a metaheuristic algorithm. Our results show that this approach is certainly
effective and possesses an intrinsic parallel structure. In the next chapter
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we utilize this inherent parallel structure and present GPGPU parallelized
algorithm for the CDD and UCDDCP problems.
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7

GPGPU-based Parallel Algorithms for
Scheduling Against Due Dates

This work demonstrates an in-depth analysis and successful implementation
of parallel programming on combinatorial optimization problems, namely, the
Common Due Date (CDD) problem and the Un-restricted CDD with Con-
trollable Processing Times (UCDDCP), examples of NP-hard problems. The
CDD and UCDDCP consist of scheduling and sequencing a certain number
of jobs with different processing times on a single machine against a common
due-date to minimize the total weighted penalty incurred due to earliness or
tardiness of the jobs and the penalty due to the compression of the processing
times of the jobs. We present a parallel Simulated Annealing (SA) algorithm
based on CUDATM programming and implement our parallel approach on
SA and the Discrete Particle Swarm Optimization (DPSO) Algorithm. Op-
timization for these two problems is carried out in two parts, any given job
sequence is first optimized using linear algorithms and the best job sequence
is obtained by the parallel SA and DPSO, implemented over Nvidia R© graph-
ics processing unit. Our parallel approaches are tested upon the benchmark
instances provided in the OR-library. The success of our parallel approach is
evident from the quality of our results with respect to the solution value as
well as the runtime.

7.1 Introduction

Given the possibility of massive parallelization it makes good sense to try
and exploit the GPU computing for real world combinatorial optimization
problems. Many of the NP-hard combinatorial optimization problems and the
ones which we consider in this work do not possess any intrinsic parallel com-
ponent. Hence, we combine the two-layered approach to exploit the massive
parallelization of GPUs. GPUs have transitioned from graphics-only process-
ing to become a general purpose parallel computing architecture. Today, it is
possible to use GPUs on a PC or a compute cluster for high-performance scien-
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tific computing applications. One of the goals in High-Performance Computing
(HPC) is to achieve the best possible performance from parallel computers.

Recent advances in consumer computer hardware makes parallel comput-
ing capabilities widely available to most users. Platforms like OpenCLTM

and CUDATM have made it easier to write the code for GPU programming.
OpenCLTM was the first open, royalty-free standard for cross-platform, par-
allel programming of modern processors found in personal computers, servers
and hand-held/embedded devices. CUDATM is a parallel computing platform
and programming model that enables dramatic increases in computing per-
formance by harnessing the power of the NVIDIA R© graphics processing unit
(GPU). Graphics Processing Units (GPUs) are very efficient for computer
graphics computations, and their highly parallel structure makes them more
effective than central processing units (CPUs) for a range of algorithms. GPU
computing is to use a CPU and GPU together in an independent co-processing
computing model. The sequential parts of the application run on the CPU and
the computationally-intensive part can in the ideal case be accelerated by par-
allelization on GPUs. The basic difference between a CPU and GPU lies in
their design architecture as shown in Figure 7.1.

CPU

DRAM

Cache

Control
ALU

ALU

ALU

ALU

GPU

DRAM

Fig. 7.1. Architecturally, the CPU is composed of a only few cores with lots of cache
memory that can handle a few software threads at a time. In contrast, a GPU is
composed of hundreds of cores that can handle thousands of threads simultaneously.
(Source: www.Nvidia.com)

The design of a CPU is optimized for sequential code performance. It
makes use of sophisticated control logic to allow instructions from a single
thread of execution to execute in parallel or even out of their sequential
order while maintaining the appearance of sequential execution. More im-
portantly, large cache memories are provided to reduce the instruction and
data access latencies of large complex applications. Neither control logic nor
cache memories contribute to the peak calculation speed. As of 2009, the
new general-purpose, multi-core microprocessors typically have several large
processor cores designed to deliver strong sequential code performance [83].
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Whereas, the GPU hardware takes advantage of a large number of execu-
tion threads to find work to do when some of them are waiting for long-latency
memory accesses, thus minimizing the control logic required for each execu-
tion thread. Small cache memories are provided to help control the bandwidth
requirements of these applications so multiple threads that access the same
memory data do not need to all go to the DRAM. As a result, much more
chip area is dedicated to the floating-point. GPUs are designed as numeric
computing engines, and they will not perform well on some tasks (e.g. se-
quential calculations) on which CPUs are designed to perform well; therefore,
one should expect that most applications will use both CPUs and GPUs, ex-
ecuting the sequential parts on the CPU and numerically intensive parts on
the GPUs [83].

7.2 Related Work

GPUs have gained popularity as a flexible, accessible, and low cost option
for parallel processing. Algorithms with a high degree of arithmetic intensity
are well suited to processing on GPUs; a high ratio of arithmetic operations
to memory operations indicates that a significant speed-up could be achieved
when computed on a GPU architecture. As an example, applications handling
operations such as computing several Fast Fourier Transforms in parallel, or
mathematical operations, such as large matrix operations, map efficiently to
GPUs. Many of the combinatorial optimization problems are NP-hard. These
problems occur in several industrial contexts like planning, logistics, man-
ufacturing, finance, telecommunications and many more. Recent years have
witnessed an accelerated development and utilization in massive computa-
tional capability of the GPUs. In the nineties, GPUs were mainly designed
to assist in the display and usability of graphical operating systems [127].
However, GPUs can now be used to perform complex scientific computations,
too, which has led to the term GPGPU (i.e. General Purpose Computation
on Graphic Processing Units). The highly parallel structure of a GPUs makes
them more effective for a range of algorithms than CPUs. For combinatorial
optimization problems, GPUs have been successfully utilized, yielding several
folds of speed-ups and better solutions. Applications that make effective use
of the GPUs have reported significant performance gains [101, 103, 141, 27].

Researchers have been trying to develop fast metaheuristic algorithms us-
ing GPU computing. In 2010, Luong et al. [101] to compute the best approxi-
mation of the Weierstrass-Mandelbrot functions [104] using parallel evolution-
ary algorithms. They showed many-fold speed-ups on GPUs compared to a
CPU. The second implementation was the parallel island model of the genetic
algorithm on the same problem.

Zhou and Tan developed a parallel Particle Swarm Optimization algorithm
for the GPUs and obtained speeds-up of up to 11 times to that of a CPU im-
plementation, on high dimensional functions [154]. A speed-up of 12 times was
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reported by Tsutsui and Fujimoto, who implemented a GPU parallelized evo-
lutionary algorithm for the Quadratic Assignment Problem [140]. GPUs have
also been successfully used to solve combinatorial optimization problems with
metaheuristic algorithms. Some of these approaches have evaluated the solu-
tions in parallel on the GPU, while the others outsource some computations
to it or perform the full computation on the GPU. Choong et al. presented a
parallel simulated annealing algorithm for the FPGA placement, which was
about 10 times faster than the CPU version [39]. In 2010 Luong et al. also
investigated the parallelization of large neighborhood local search algorithms
and experimented on binary problems and achieved runtime speed-ups of up
to 25 times [102]. Czapiński and Barnes proposed a GPU based parallel tabu
search algorithm for the Permutation Flowshop Scheduling Problem and com-
puted the solutions 89 times faster than the CPU [46].

In 2012 Melab et al. studied the problem using GPU and implemented the
Branch and Bound algorithm on the GPU cores, fetching speed-ups of 10 to
50 times [106]. Same year they also presented their speed-ups for the same
problem but on multi-GPUs [32]. Bożejko et al. studied the flow shop prob-
lem on GPUs by parallel evaluation of the fitness function on GPU cores and
presented speed-ups on Taillard flow shop problem benchmark instances up
to 10000 operations [26]. They also obtained a speed-up of up to 25 on GPU
compared to a CPU for the Taillard instances of the job shop scheduling prob-
lem using the disjunctive graph [27, 134]. Again in 2012, they implemented
a parallel tabu search metaheuristic on multi-GPU cluster [25]. Bożejko et
al. also provide parallel tabu search algorithms for the job shop scheduling
problem [28]. Coelho et al. proposed a hybrid CPU-GPU parallel local search
algorithm for the unrelated parallel machine scheduling problem to minimize
the total makespan [43]. A parallel variant of genetic algorithm was proposed
by Pinel et al. for minimizing makespan for the batch scheduling of inde-
pendent tasks on a fixed number of machines [120]. In 2013, Luong et al.
implemented parallel local search metaheuristic algorithms using GPU com-
puting on the Taillard instances of quadratic assignment problem and showed
a speed up of up to 25 times compared to a CPU [103]. Bukata et al. de-
veloped parallel tabu search algorithms for the resource constrained project
scheduling problem [31, 30].

Chakroun et al. proposed a branch and bound algorithm to solve the NP-
hard combinatorial optimization problems on GPUs [33]. They performed
experiments on the flow shop scheduling problem and the speed-ups which
are achieved up to 160 compared to the corresponding CPU implementations.
Luong et al. introduced a parallel local search algorithm using the GPU, in
2013 [103]. They performed computational studies on the Travelling Salesman
Problem, the Quadratic Assignment Problem and the Permuted Perceptrons
Problem while showing significant speed-ups in comparison to the serial CPU
implementations. Somani and Singh present a parallel genetic algorithm for
the job shop scheduling using topological sort [131]. Dali et al. proposed a
parallel particle swarm optimization algorithm on GPUs for the maximal con-
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strained satisfaction problem [47]. Zelanzy and Penpera presented a parallel
tabu search algorithm for the multi-objective permutation flow shop prob-
lem [152].

In this research work, we investigate GPU parallelization using CUDA on
two NP-hard scheduling problems, the Common Due Date problem (CDD)
and the Un-restricted Common Due Date problem with Controllable Process-
ing Times (UCDDCP). For both the problems, any given sequence is opti-
mized to its minimum weighted penalties by polynomial algorithms and the
best job sequence is obtained with parallel versions of Simulated Annealing
(SA) and Discrete Particle Swarm Optimization (DPSO). The realization and
development of these parallel metaheuristics on a GPU using CUDA is been
explained in detail. Later on, we present the results obtained via these parallel
approaches for the benchmark problem instances and compare the quality of
the solutions and runtimes between CPU and GPU implementations.

7.3 CUDA Memory Model

Any computation on the GPU is carried out by threads of the blocks. Each
block consists of a number of threads (1024 in the device used for this work),
while the blocks are placed inside the grids of the device. CUDA accesses and
processes the data on threads of the blocks with different levels of hierarchy
and accessibility, depending on the type of memory. Each thread has a private
local memory and registers associated with it. On the next level, each block
of any grid contains a shared memory which is accessible by all the threads of
the block. The global memory is the main memory of the GPU device with
read and write permissions to all the threads of the device [114]. The lifetime
of the shared memory lasts till the lifetime of the block, while the lifetime of
the global memory spans from data allocation to de-allocation from host to
device. The transfer of the data between the host and device requires a huge
overhead, hence the best strategy for GPU computations, is to store all the
data required in the GPU device till the end of the computation [55]. CUDA
enabled GPGPUs contain on-chip and on-board memory. Farber describes on-
chip streaming multiprocessor (SM) memory as the fastest and most scalable
memory on the device measured in KB (Kilobyte), while the on-board global
memory which can be accessed all the SMs is measured in GB (Gigabytes).
The global on-board memory is the largest and most commonly used, however,
it is the slowest memory of the GPU [55].

Figure 7.2 illustrates several types of device memories that can be used
with CUDA. The constant, texture and global memory can be written on
and read from the host. The threads in any block can read and write to
the global memory, while the constant and texture memories offer read only
accessibility. The shared memory and registers are readable and writable, only
by the threads of the block. Each thread in a block consists of its own registers,
which are not accessible by other threads of the same block. Table 7.1 shows
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the bandwidth and the latency values for different memory types [44]. The
usage of registers provides the best bandwidth and lowest latency. The shared
memory has a lower bandwidth and memory latency than registers. Texture,
constant and global memory all have the same values, but are much lower
than those of the shared memory and registers.

Constant Memory

Texture Memory

Global Memory

Thread
(0,0)

Thread
(1,0)

Thread
(1,0)

Thread
(0,0)

Registers Registers Registers Registers

Shared Memory Shared Memory

Block (0,0) Block (1,0)

(Device) Grid

Host

Fig. 7.2. CUDA memory model, representing the memory hierarchy of CUDA
capable compute devices [83].

Table 7.1. Bandwidth and latency of the hierarchical CUDA memory types. Band-
width and Latency decide the time it takes to transfer a given set of data. [44]

Storage
Registers

Shared Texture Constant Global
Type Memory Memory Memory Memory

Bandwidth 8TB/s 1.5TB/s 30GB/s 30GB/s 30GB/s

Latency
1 1 to 32 400 to 600 400 to 600 400 to 600

cycle cycles cycles cycles cycles

7.4 Parallel Approach

The idea behind our approach is to break the NP-hard problem in two parts,
one part deals with finding the completion times of the jobs for any given job
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sequence using the algorithms presented in Chapter 4 and 6. And the second
part, utilizes the GPGPU parallelized metaheuristic algorithms to efficiently
search for the optimal/best job sequences. There are several strategies pro-
posed by Ferreiro et al. to parallelize SA [58]. One strategy they proposed
is an application dependent parallelization, where the operations of the ob-
jective function itself could be broken down and computed in parallel. This
approach is not applicable here since the operands of our objective functions
occur sequentially, i.e., each operand needs to wait for its preceding operand
to complete. Another technique for parallelization could be a domain decom-
position strategy, where the search space is basically segregated in several
sub-domains, with different processors carrying out the search of the best so-
lutions in their respective sub-domain, while sharing their subsequent results
with the other processors [58]. The drawback of this strategy is the enormous
size of the search space itself, and it becomes ineffective for a job size of 50 or
more. The last and the best SA parallelization strategy they propose is the
utilization of multiple Markov chains. In this strategy, several Markov chains
are executed asynchronously. After a certain period or at the end of the pro-
cess, the processors communicate their results to each other. Depending on
the number of communications, this strategy is classified by Ferreiro et al. [58]
into Asynchronous and Synchronous simulated annealing.
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Fig. 7.3. Schematic representation of the asynchronous approach of parallel simu-
lated annealing algorithm as suggested by Ferreiro et al. [58].

7.4.1 Asynchronous Simulated Annealing

The asynchronous SA basically performs several independent annealing pro-
cesses in parallel on the available processors i.e., each processor (CUDA
thread) performs a separate SA asynchronously. When all these annealing
processes are completed, the best result is selected among all the threads us-
ing a reduction operation. The configuration of SA for initialization on each
thread can be same or different for all the Markov chains [58]. Figure 7.3
shows represents the schematic diagram of the asynchronous SA, where ω
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processors (or threads) carry out independent SA simultaneously. The initial
temperature T0 and the cooling rate µ are kept the same for all the threads.
Each chain carries out t iterations and at the end a reduction operation is
used to select the best solution smint .

7.4.2 Synchronous Simulated Annealing

The synchronous parallel version of SA starts in the similar manner as the
asynchronous SA. However, after each temperature state, all the threads com-
pute a Markov chain of some constant length and at the end report their
current solution sij , where i = 0, 1 . . . , ω − 1, and j = 1, 2, . . . , t. A reduc-

tion operation is then carried out to obtain the best solution sminj , among
all the threads. In the next step (or the next temperature state), each thread
performs the same calculations all over again, with the exception that each
thread starts its Markov chain with the best solution obtained in the previous
temperature state, i.e. sminj . Evidently, Ferreiro et al. [58] claim that the ex-
change of the states and results can be very intensive in terms of the runtime.
Figure 7.4 shows the synchronous approach with ω processors for t iterations
of SA at each temperature level.
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Fig. 7.4. Schematic representation of the synchronous approach of parallel simu-
lated annealing algorithm as suggested by Ferreiro et al. [58].

7.5 GPU Based Simulated Annealing

We now explain our parallel implementation of the Asynchronous Simulated
Annealing algorithm [58]. The reason for choosing the asynchronous version
over the synchronous SA is due to the premature convergence of the latter
approach, examined from our experimental analysis. SA implemented on each
CUDA thread involves the standard metropolis acceptance criterion and the
exponential cooling schedule, as shown in Algorithm 10. The initial temper-
ature T0 is taken as the standard deviation of fitness values of 5000 different
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job sequences, generated randomly. This value for the initial temperature has
been suggested by [125]. The exponential cooling rate is adopted in this work
and the neighborhood of any individual (i.e. job sequence) is generated by a
perturbation mechanism, where a certain number of consecutively processed
jobs are selected at random from the current sequence and shuffled using the
Fisher Yates algorithm, provided in [45].

Algorithm 10: The core Simulated Annealing algorithm running in
each CUDA thread.
1 s← s0

2 T ← T0

3 E ← Fitness(s)
4 while (i ≤ #Iterations) do
5 snew ← Neighbour(s)
6 Enew ← Fitness(snew )
7 if exp((E − Enew)/T ) ≥ rand (0, 1) then
8 s← snew
9 E ← Enew

10 T ← T · µ
11 i← i+ 1

12 Return s

Host

Initial Population,

SA Parameters,

Problem Data

Final Solution

DEVICE

Copy to Global Memory

Run Asynchronous SA

Copy Result to CPU

Fig. 7.5. Schematic representation of data transfer between the host and device. The
data is transferred two times, back-and-forth, while the SA iterations are performed
by the device.

The parallelization of the SA is initiated by allocating the number of
threads and blocks on the GPU. CUDA offers three dimensional grids and
blocks in (x, y, z) directions. The grid configuration G can be written as
(gx, gy, gz) and the block configuration B as (bx, by, bz). The grid configu-
ration G implies that there are gx, gy and gz number of blocks in x, y and z
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directions, respectively. Likewise, B configuration for the blocks implies bx, by,
bz threads in the three dimensions. Let N be the total ensemble size and NB
be the block size, then a grid size of dN/NBe is allocated in the device for the
parallel runs of the algorithms. In our work, we consider linear configurations
for both the grid and the blocks, with G = (dN/NBe, 1, 1) and B = (NB , 1, 1).
Henceforth, the initial job sequences are copied to the GPU global memory,
along with the earliness, tardiness penalties and the processing times of the
jobs. The due-date d and the number of jobs n are transferred to the con-
stant memory of the device to benefit from its broadcast mechanism. For the
UCDDCP, the minimum processing times and the compression penalties are
also copied to the GPU. Figure 7.5 shows the data transfer mechanism from
the host to device and vice-versa. We then launch four different kernels, one
after the other to calculate the i) cuRand initial states, ii) fitness function,
iii) perturbation, and iv) SA acceptance. Figure 7.6 shows these kernels in
CUDA standard double bra-ket notation. The CUDA threads are depicted
as T1, T2, etc., implying that each thread is running the same algorithm in
parallel.

T3T2T1 T4 T5

Initial Population

<<Initial cuRand states>>

<<Fitness Evaluation>>

<<Perturbation>>

<<Fitness Evaluation>>

<<SA Acceptance>>

End?

<<Best Value>>

G
lo

b
a
l

M
em

o
ry

yes

no

Fig. 7.6. Flow chart of the parallel Asynchronous Simulated Annealing.

7.5.1 Initialization of cuRand states

The first kernel (Initial cuRand states) that is launched is to initialize the
cuRand states to generate the random numbers, required for perturbation and
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SA acceptance. This kernel is launched only once, before the computations
for SA begin. The random numbers are then created using the cuRand library
on each thread [114].

7.5.2 Fitness Function Kernel

The fitness kernel first copies the processing times, earliness and tardiness
cost per unit of time, inside the shared memory of a block, because this mem-
ory has shorter latency than global memory, as depicted in Table 7.1. For
the UCDDCP problem, we also copy the minimum processing times and the
compression penalty of the jobs to the shared memory. After transferring
these constant parameters to the shared memory of each block, the kernel
synchronizes the current block. This must be done because the warps within
the block can be at different positions of the program depending on their
scheduling. This synchronization ensures that all the write operations on the
shared memory are finished before reading them. Otherwise, a thread would
have the chance to read from an address where no thread has written. Next,
the fitness value for the job sequence in each thread uses the linear algorithms
illustrated in Chapter 4 and 6 for CDD and UCDDCP, respectively.

7.5.3 Perturbation Kernel

The neighborhood of any job sequence is calculated by applying the Fisher
Yates algorithm on part of the parent job sequence. For CDD problem, a sub-
sequence of size Pert = 4 is selected from the parent job sequence and then the
Fisher Yates algorithm is implemented on this sub-sequence while retaining
the position of other jobs in the sequence. Likewise, same methodology is
adapted for UCDDCP with Pert = c + b

√
N/10c, where c is a constant less

than 5 and N is the number of jobs. The random numbers required for the
acceptance criterion are generated using the cuRand library of CUDA. Since
cuRand provides only integer values, a normalization is carried out to obtain
a floating point value in [0, 1]. After creating a new permutation for each
thread, the fitness kernel is launched again to evaluate the solution for each
newly created job sequence.

7.5.4 Acceptance Kernel

Henceforth, the acceptance kernel is launched, which simply checks if the given
solution should be accepted or not, depending on the standard metropolis
acceptance criterion of the SA algorithm. Additionally, if any thread contains
the best solution obtained so far, it is not accepted. The random numbers in
this kernel are again created using the cuRand library. In the same kernel, we
also carry out the reduction operation to find the best solution obtained thus
far.
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After invoking all these kernels, there should be a synchronization of the
device, because all kernel calls are asynchronous and inside a queue. Hence, the
synchronization operation is performed by the CPU. Through this operation,
the CPU waits until the GPU finishes processing. At the end of the number of
iterations, the global best solution is copied back to the host. We now present a
short explanation and the implementation of the core discrete particle swarm
optimization algorithm. The parallel implementation of the DPSO algorithm
on the GPU is carried out in the asynchronous manner, as explained for the
SA. In the forthcoming section, we then present and compare our results for
our GPGPU utilized parallelization of both SA and DPSO with the CPU
implementations.

7.6 Discrete Particle Swarm Optimization (DPSO)

In this section, we explain the core part of the DPSO algorithm. Since, the
traditional Particle Swarm Optimization [23] was developed to work on real
valued positions, for the problems studied we required the discrete version
of PSO. Pan et al. have previously used DPSO on the no-wait flow shop
problem [116]. DPSO contains an adjusted method to update the particles
position, based on discrete job permutations. The updated method includes
particles’ position (pi(t)), its best position (pbi (t)) and the swarms best position
(g(t)) [116]. The new position pi(t+ 1) of the particle is given by

pi(t+ 1) = c2 ⊕ F3

(
c1 ⊕ F2

(
F1 (pi(t)) , p

b
i (t)
)
, g(t)

)
. (7.1)

In the above equation, operator ⊕ in any clause x′ = c ⊕ f(x) means,
operate function f on x with a probability of c, i.e. x′ = f(x), if rand(0, 1) < c
and x′ = x, if rand(0, 1) > c. The first component of the update mechanism
in Equation (7.1) is the particles velocity given by λi(t+1) = F1(pi(t)), where
F1 represents a swap operator which selects two different jobs in the sequence
(pi(t)) randomly and swaps their position in the job sequence.

The second component is given by ϑi(t+1) = c1⊕F2(λi(t), p
b
i (t)) and rep-

resents the particles cognition part, where F2 is a one-point crossover operator
with a probability of c1, given by Equation (7.2).

ϑi(t+ 1) =

{
F2(λi(t), p

b
i (t)), rand() ≤ c1

λi(t), rand() > c1 .
(7.2)

The one-point crossover is implemented by generating an integer uniform
random number within the job size and then the first part of the two job
sequences are swapped with each other, preserving the precedence constraint
for both the sequences. The one-point crossover carried out in this work runs
in linear runtime complexity, with respect to the number of jobs.
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The last component is the particles social part, representing the orientation
on the swarm behaviour. This third component results in the new position of
a particle and can be defined as Xi(t+ 1) = c2 ⊕ F3(ϑi(t), g(t)), according to
Equation (7.3), where we retain F3 as a one point crossover similar to F2. F3

is carried out every 5 iterations of the DPSO.

si(t+ 1) =

{
F3(ϑi(t), g(t)), rand() ≤ c2
ϑi(t), rand() > c2 .

(7.3)

Apart from the core aspect of the algorithm, the parallelization approach
remains the same as for SA. Algorithm 11 provides the pseudo code for the
DPSO implemented in this work, based on Pan et al. [116].

Algorithm 11: The core Discrete Particle Swarm Optimization Algo-
rithm implemented.

1 Initialize Population
2 Evaluate fitness-function
3 while (i ≤ #Iterations) do
4 find particles’ best
5 find swarms best
6 Update particles’ position
7 Evaluate fitness-function
8 i← i+ 1

9 Return Best Particle

7.7 Results

In this section, we present our results for the SA and DPSO parallelization
on the GPU for the CDD and UCDDCP problems. We compare the two al-
gorithms for both the problems and present the results for the benchmark
instances. The runtime of the presented GPU based metaheuristics is influ-
enced by the number of generations and the number of GPU threads which
perform the optimization. Figure 7.7 shows the influence of both parameters
for the CDD.

It is evident that increasing the number of generations or threads is in-
creases the runtime. However, to achieve a good quality solution in a consider-
ably short time, one needs to keep a balance between these two parameters and
avoid run unnecessary iterations as well not invoking several serial processing
of the blocks. Increasing the number of threads also increases the runtime of
the algorithm, since a SM is limited in the number of blocks and in the number
of threads it can perform at the same time. This implies that loading several
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Fig. 7.7. Runtime in seconds for the parallel fitness function evaluations of the CDD
problem, with respect to the number of threads (population size) and the number
of generations.

threads within a block results in serial processing of the blocks through the
SM. On the other hand, increasing the block size offers less registers which a
thread can use.

The theoretical limit for the number threads in one block of the Kepler
device we use is 1024. However, after several experimental evaluations we ob-
served that the best results for both the problems were achieved with a block
size of 192. Selecting the number of grids and the number of iterations, is a
rather complex task and usually problem dependent, due to the above men-
tioned trade-off between the number of iterations and the number of threads.
Having a high value for these parameters results in less performance but on
the other hand it also fetches us better results. Hence, after testing our ap-
proach on several experimental values, we chose to present our results for two
best configurations, which resulted in best speed-ups compared to the results
provided by [86] and [6]. In both the cases the grid size was kept at a constant
value of four. This was not a high value considering the GPU device we used,
but the results obtained were of excellent quality with a high speed-up in
comparison to the CPU runtimes. Hence, the total number of threads, which
is also the population size was equal to 768. The number of generations for
the first case was kept at 1000 and in the other case as 5000. The cooling
factor for the Simulated Annealing was kept at 0.99 with an exponential cool-
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ing rate. The implementation of the parallel algorithm was carried out on a
Nvidia GeForce GT 740M device, with 2 GB graphics card memory on a host
CPU of 8 GB RAM with Intel i5 1.6 GHz processor. We replicate all the 280
instances of CDD and 70 instances of UCDDCP, 25 times each for SA and
DPSO. Before presenting the results, we first explain some parameters used
in the analysis of our results. Let,
SA1000 = SA algorithm with 1000 iterations,
SA5000 = SA algorithm with 5000 iterations,
DPSO1000 = DPSO algorithm with 1000 iterations,
DPSO5000 = DPSO algorithm with 5000 iterations,
Z = Solution value obtained with our parallel approach,
Zbest = Solution obtained with the CPU versions of [86], Chapter 4

for CDD and the best results for UCDDCP in Chapter 6,
%∆ = Percentage deviation between Z and Zbest,

where %∆ = (Z−Zbest)
Zbest

· 100.

Table 7.2. Average percentage deviation for the best results of our approaches for
each problem size for CDD, relative to the CPU implementation of LHSA mentioned
in Chapter 4 and the results of Lässig et al. [86].

Jobs SA1000 SA5000 DPSO1000 DPSO5000

[86] LHSA [86] LHSA [86] LHSA [86] LHSA

10 0.000 0.000 0.000 0.000 0.104 0.104 0.000 0.000
20 -0.089 0.000 -0.089 0.000 1.298 1.393 1.231 1.327
50 -0.215 0.591 -0.798 0.000 1.898 2.739 1.794 2.634
100 -0.684 1.139 -1.633 0.151 0.738 2.621 0.710 2.592
200 -0.462 1.466 -1.352 0.539 0.463 2.433 0.449 2.418
500 -0.424 1.889 -1.147 1.127 0.260 2.611 0.247 2.598
1000 -0.157 2.446 -0.929 1.631 0.425 3.060 0.415 3.049

7.7.1 Results for the CDD

We now present our results for the Common Due Date problem obtained with
our parallel approaches. Table 7.2 presents the average percentage deviation
(%∆) of the best results obtained over 25 replications for the CDD problem
relative to the sequential implementation in Lässig et al. [86] and the results
presented in Chapter 4. It should be mentioned here that the results in [86] are
obtained by incorporating only Algorithm 4 with the Simulated Annealing al-
gorithm, however the results in Chapter 4 incorporates both the Algorithm 4
and 6 in conjunction with Simulated Annealing. Moreover, the parallel im-
plementation of SA and DPSO for CDD is carried out utilizing Algorithm 4
only without the improvement heuristic mentioned in Algorithm 6. This is
important to notice as we show that not only our parallel implementation ob-
tains better results from its exact sequential implementation as in [86], but it
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Fig. 7.8. Comparative average percentage deviation of our four parallel algorithms
relative to the solutions of [86] for the CDD problem.

Table 7.3. Obtained speed-ups of the parallel algorithms for the CDD problem
relative to [86] and CPU implementation of LHSA mentioned in Chapter 4.

Jobs
SA1000 SA5000 DPSO1000 DPSO5000

[86] LHSA [86] LHSA [86] LHSA [86] LHSA

10 8.043 0.000 1.754 0.000 5.968 0.000 1.307 0.000
20 10.253 0.013 2.213 0.003 8.351 0.010 1.653 0.002
50 17.578 0.022 3.836 0.005 14.682 0.019 2.878 0.004
100 41.236 0.135 8.845 0.029 35.312 0.115 7.049 0.023
200 46.485 0.761 9.665 0.158 38.979 0.638 7.673 0.126
500 85.578 4.882 17.804 1.016 60.907 3.474 12.117 0.691
1000 95.460 15.493 19.711 3.199 61.495 9.981 12.351 2.005

furnishes good speed-ups compared to the CPU implementation of Chapter 4
where we incorporate an improvement heuristic along with a linear algorithm.
The reason for not implementing the improvement heuristic for the GPU is to
show that the even without the improvement heuristic (Algorithm 6) which
offers better results for the CPU; the parallel implementation of the linear
algorithm as well achieves good results within a percentage gap of only 1.6%
and a maximum speed-up of 15 times. Additionally, we compare our parallel
implementation with the exact CPU implementation and show that not only
does the GPU offer high speed up of 95 times, but it also improves solution
values for all benchmark instances higher than a job size of 10. The percent-
age deviation shown in the table is the average over 40 different instances
for each job size. The graphical representation of these percentage deviations
with the exact CPU implementation is shown in Figure 7.8 as a bar chart. As
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Fig. 7.9. Graphical representation of the obtained speed-ups of the parallel algo-
rithms for the CDD problem relative to [86].

can be seen from the table and the bar chart, SA performs extremely well and
obtains better results for all the benchmark instances except for job size 10,
where we reach the optimal solutions. Comparison with the results of Chap-
ter 4 shows that the parallel SA offers results which are within 1.63% of the
CPU implementation of LHSA. However, the DPSO algorithm is not able to
improve the CPU results of both LHSA and [86]. On average DPSO with 1000
iterations offers a percentage deviation of 0.74 with [86] and 2.137 with LHSA,
additionally for 5000 iterations of DPSO the results do not improve as much
as SA with 5000 iterations. Evidently, as the problem size increase the DPSO
algorithm does not converge to better solutions than SA. Among all the four
approaches, SA5000 performs the best and fetches us a superior solution qual-
ity with average percentage deviation within 1.63 percent of the efficient CPU
implementation of CDD in Chapter 4, for any instance. Moreover, comparing
the runtimes of the CPU implementations by Lässig et al. [86] and LHSA,
we observe that the speed-ups obtained by our parallel algorithms certainly
prove their worth, as shown in Table 7.3 and Figure 7.9. The speed-ups of all
the four approaches increase several folds as the problem size increases, with
SA1000 offering a 95 times faster runtime in comparison to [86] for 1000 jobs,
as well as improving the benchmark results. DPSO1000 is again not as fast
and it is 1.5 times slower than Simulated Annealing. The comparison of the
speed-ups with the results of LHSA in Chapter 4 are not as high as LHSA also
incorporates a improvement heuristic. Nonetheless, SA1000 is 15 times faster
and achieves solutions values which are within 2.5% of the LHSA. As it can
be seen in Table 7.3 the speed-ups of DPSO are not as high as that of SA,
moreover the results of DPSO with both 1000 and 5000 iterations are worse
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Fig. 7.10. Graphical representation of the obtained speed-ups of the parallel algo-
rithms for the CDD problem relative to CPU implementation of LHSA mentioned
in Chapter 4.

than the parallel SA algorithm. The graphical representation of the speed-ups
of our four parallel algorithms compared to the CPU implementations are
shown in Figure 7.9 and 7.10. Considering the level of percentage deviation,
the speed-ups obtained and the fact that we same CUDA thread counts and
the number of iterations for both SA and DPSO, we reckon that DPSO does
not perform as efficient as the Simulated Annealing.

Additionally, we also present the measures of central tendency four our
four parallel approaches, with minimum, maximum, mean, median, mode and
standard deviation for all job sizes in average. It is clear that the standard
deviations of all the approaches are very low, suggesting that the algorithms
are robust and consistent in achieving the results mentioned above. We do
not present the fitness function evaluations, since the number of iterations
is fixed and calculating the iteration number at which the solution does not
improve would requires unnecessary memory transfer between the host and
device. Hence the total number of FFEs for all the approaches are fixed at
number of iterations times the population size of 768, which corresponds to
the total number of threads utilized for our GPU implementation.

7.7.2 Results for the UCDDCP

We now present our results for the Un-restricted Common Due Date Prob-
lem with Controllable Processing Times (UCDDCP) using the parallel SA and
DPSO with 1000 and 5000 generations, each. The exact percentage deviations
for all the jobs on average for the best results obtained can be found in Ta-
ble 7.5. The negative values mean that the results obtained by these parallel
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Table 7.4. Measures of central tendency with respect to the percentage error of the
best solution obtained by GPU implementation of Simulated Annealing and Discrete
Particle Swarm Optimization for 1000 and 5000 iterations, for the CDD problem.

Simulated Annealing 1000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000
50 0.591 0.961 0.760 0.108 0.760 0.697
100 1.139 1.818 1.488 0.207 1.487 1.371
200 1.466 2.029 1.759 0.152 1.772 1.629
500 1.889 2.201 2.066 0.077 2.076 1.894
1000 2.446 2.641 2.562 0.049 2.569 2.452

Simulated Annealing 5000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000
100 0.151 0.268 0.213 0.031 0.213 0.211
200 0.539 0.723 0.643 0.048 0.646 0.557
500 1.127 1.308 1.232 0.045 1.238 1.135
1000 1.631 1.757 1.702 0.032 1.704 1.632

Discrete Particle Swarm Optimization 1000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.104 0.480 0.274 0.156 0.344 0.333
20 1.393 2.206 1.813 0.341 1.847 1.817
50 2.739 3.477 3.146 0.241 3.199 3.047
100 2.621 3.186 2.929 0.163 2.950 2.786
200 2.433 2.837 2.682 0.105 2.690 2.622
500 2.611 2.789 2.727 0.046 2.734 2.653
1000 3.060 3.172 3.129 0.030 3.136 3.075

Discrete Particle Swarm Optimization 5000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.178 0.053 0.073 0.020 0.010
20 1.327 2.466 1.807 0.363 1.664 1.606
50 2.634 3.556 3.145 0.261 3.185 3.094
100 2.592 3.205 2.923 0.178 2.945 2.782
200 2.418 2.838 2.674 0.115 2.690 2.595
500 2.598 2.793 2.724 0.049 2.732 2.639
1000 3.049 3.169 3.127 0.031 3.133 3.078

algorithms are better than the CPU results provided in Chapter 6. Figure 7.11
shows the graphical representation of these relative percentage deviation of
the GPU results in comparison to the CPU based algorithm. Note that the
results presented here are improved over our results in [8], for both SA and
DPSO, however the superiority of SA over DPSO is nonetheless evident.
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Table 7.5. Average percentage deviation for the best results of our approaches
for each problem size for UCDDCP, relative to CPU implementation of Simulated
Annealing mentioned in Chapter 6.

Jobs SA1000 SA5000 DPSO1000 DPSO5000

10 0.000 0.000 0.000 0.00
20 -0.038 -0.038 -0.038 -0.038
50 0.084 -0.129 0.043 -0.122
100 0.094 -0.090 0.315 0.067
200 0.157 0.074 0.516 0.127
500 0.501 0.087 0.933 0.389
1000 0.799 0.185 1.048 0.717
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Fig. 7.11. Comparative average percentage deviation of our four parallel algorithms
relative to the CPU implementation of UCDDCP mentioned in Chapter 6.

As in the case for CDD, we again observe that DPSO computes worse
results from job size 100 and above, compared to SA, for 1000 iterations. Ta-
ble 7.5 shows that both versions of DPSO obtains equal results to SA for input
sizes of 10 and 20 jobs, while the results for 50 jobs are better for DPSO with
1000 iterations and slightly worse for 5000 iterations. For higher job sizes, SA
consistently achieves better results than DPSO for both 1000 and 5000 iter-
ations. For 1000 jobs the deviation for DPSO1000 is 1.05 percent, while that
of SA1000 is just 0.8 percent. The DPSO5000 obviously performs better than
DPSO1000 as far as the solution quality is concerned, however the improve
obtained by DPSO5000 is still comparable to SA1000. Simulated Annealing on
the other hand, again achieves better results for all instances of 100 jobs and
above. Although the solution quality of DPSO is only slightly worse than the
SA, the comparison of the speed-up obtained by the two approaches is highly
contrasting. Table 7.6 presents the speed-ups obtained by our four parallel ap-
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Table 7.6. Obtained speed-ups of the parallel algorithms for the UCDDCP problem
relative to CPU implementation mentioned in Chapter 6

Jobs SA1000 SA5000 DPSO1000 DPSO5000

10 1.032 0.217 0.688 0.142
20 4.717 1.007 3.154 0.595
50 6.288 1.294 4.043 0.766
100 10.285 2.104 7.710 1.266
200 15.927 3.310 11.863 2.373
500 34.907 7.083 23.419 4.697
1000 65.909 13.892 44.051 8.881
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Fig. 7.12. Graphical representation of the obtained speed-ups of the parallel al-
gorithms for the UCDDCP problem relative to CPU implementation mentioned in
Chapter 6.

proaches with the CPU runtime of Simulated Annealing presented Chapter 6.
As can be seen, the parallel asynchronous SA version with 1000 iteration of-
fers the highest amount of speed-up among all the benchmark instances, with
the highest speed-up reaching a value of 65 for jobs size of 1000. The corre-
sponding DPSO implementation with 1000 iterations achieves a speed-up of
44 times, while the solution quality is not as good as SA1000. Comparing the
speed-up of SA and DPSO for 5000 iterations, SA again outperforms DPSO
by being around 1.5 times faster. We also present these speed-ups in a graph-
ical representation in Figure 7.12, where the superiority of SA over DPSO is
evident. Additionally, as in the case of CDD we present the measures of central
tendency for our parallel approaches in terms of minimum, mean, maximum,
median mode and the standard deviation against the percentage deviation of
the results, compared to CPU implementation. Clearly, the superiority of SA
is again proved as it not only performs in the best case best also in the worst
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Table 7.7. Measures of central tendency with respect to the percentage error of
the best solution obtained by GPU implementation of Simulated Annealing and
Discrete Particle Swarm Optimization for 1000 and 5000 iterations, for the UCDDCP
problem.

Simulated Annealing 1000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 -0.038 0.035 0.011 0.034 0.031 0.035
50 0.084 0.133 0.094 0.017 0.090 0.089
100 0.094 0.165 0.118 0.019 0.113 0.112
200 0.157 0.191 0.177 0.009 0.178 0.174
500 0.501 0.548 0.529 0.012 0.530 0.521
1000 0.799 0.831 0.820 0.008 0.821 0.804

Simulated Annealing 5000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 -0.038 -0.038 -0.038 0.000 -0.038 -0.038
50 -0.129 -0.121 -0.128 0.002 -0.129 -0.129
100 -0.090 -0.047 -0.074 0.011 -0.077 -0.079
200 0.074 0.078 0.076 0.001 0.077 0.077
500 0.087 0.093 0.090 0.001 0.090 0.090
1000 0.185 0.203 0.195 0.005 0.196 0.188

Discrete Particle Swarm Optimization 1000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 -0.038 0.437 0.126 0.161 0.115 0.026
50 0.043 0.310 0.179 0.072 0.179 0.169
100 0.315 0.379 0.349 0.017 0.350 0.341
200 0.516 0.594 0.561 0.020 0.562 0.557
500 0.933 0.979 0.958 0.012 0.959 0.938
1000 1.048 1.076 1.065 0.006 1.066 1.055

Discrete Particle Swarm Optimization 5000 Generations

Jobs Minimum Maximum Mean Std. Median Mode

10 0.000 0.000 0.000 0.000 0.000 0.000
20 -0.038 -0.038 -0.038 0.000 -0.038 -0.038
50 -0.122 -0.071 -0.112 0.014 -0.118 -0.118
100 0.067 0.179 0.133 0.028 0.136 0.124
200 0.127 0.143 0.136 0.004 0.136 0.135
500 0.389 0.434 0.415 0.011 0.416 0.394
1000 0.717 0.748 0.736 0.008 0.738 0.720

and average cases. Moreover, the standard deviation of Simulated Annealing
is also better than DPSO. Our experimental results certainly conclude that
GPU parallelization is very powerful and efficient. Another observation which
cannot be overlooked is that GPU technology has proven to be worthwhile
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only for large instances as shown in [102] and [33]. However, we show that with
an efficient strategy for data transfer and algorithm parameters, high level of
speed-ups are also possible for small instances. Concluding, our results and
comparisons show that the best solutions can be achieved with SA and 5000
generations. To improve the values for 20 and 50 jobs, DPSO can be used
but for larger problem instances DPSO does not work well with the given
parameters. Reason for this could be that SA is an intensification oriented
metaheuristic which searches intensively on a promising part of the domain,
where as the DPSO is a diversification oriented metaheuristic which works
more scattered [24].

7.8 Summary

This work presents an efficient parallelization of the Simulated Annealing al-
gorithm for the Common Due Date (CDD) problem and the Un-restricted
CDD with Controllable Processing Times. We utilize the 2-layered approach
to break up the NP-hard problem in two components to parallelize the meta-
heuristic algorithms. Henceforth, two strategies for parallelizing the SA algo-
rithm are explained, based on Ferreiro et al. [58]. Later on in the chapter, we
focus on exhaustively explaining our parallel SA algorithm and its exact im-
plementation. The NP-hard problems which are covered in this work are the
CDD and the UCDDCP. We effectively use the polynomial algorithms pro-
vided in recent works of Lässig et al. [86] and Awasthi et al. [6], to optimize
the given sequences for both these problems and to develop the parallel meta-
heuristic algorithms. Section 7.5 describes how the SA metaheuristic algorithm
is mapped on to the CUDA programming model. Finally, we present our ex-
tensive evaluations of our parallel strategies for the two NP-hard scheduling
problems. The algorithms are implemented over the benchmark instances pro-
vided in the OR-library [14] and by Awasthi et al. [6]. The efficiency of our
parallel Simulated Annealing algorithm is proven by the comparison of our
results with the previous CPU implementations, as well as the parallel DPSO
algorithm on the same GPU architecture.

Not only do we obtain high speed-ups, our parallel algorithms also pro-
vide improvements to the best known solution values for several benchmark
instances, in comparison to its corresponding CPU implementation. It is ev-
ident from our results that parallel DPSO does not perform as well as the
parallel SA, at least for the studied problems. The speed-ups obtained with
SA are massive compared to the very recent work of [86] and [6]. The speed-
up values obtained are of the order of 100 and 50, even for a relatively small
problem instance of 1000 jobs. However, DPSO is not just slow compared
to the SA but it is also not able to find solutions of high quality, compared
to the parallel SA. With this work, we show that the two-layered approach
is not only easily parallelizable but it is also highly effective in utilizing the
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GPGPU parallelization. Parts of this chapter have been adapted, modified
and improved from our previous publication [8].
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8

Discussions and Conclusion

Scheduling is an important aspect of industrial production, transporta-
tion, transshipment, allocation of resources and many more commercial/non-
commercial businesses. Developments in scheduling processes have improved
efficient utilization and management of available resources and aided in
smoother planning of several industries as well as provided economic ben-
efits. Efficient import/export freight transport of endless commodities, trans-
portation management from traffic to flight, mass productions of goods, etc.,
involve utilization of scheduling concepts. There is no doubt that schedul-
ing plays an important role in our everyday life, directly or indirectly. Many
of this scheduling problems are NP-hard, and hence to solve these problems
deterministically, is impossible, if P 6= NP .

8.1 Contribution and Synopsis

In this research work, we deal with several real world scheduling problems in
production and transportation. We implement a two-layered approach which
is the product of splitting the integer programming formulation of an NP-hard
scheduling problem in two layers. We develop novel polynomial algorithms to
solve the resulting linear program and utilize metaheuristic heuristic algo-
rithms to obtain an optimal or near-optimal solution. We first work on the
Aircraft Landing Problem, where we utilize the two-layered approach and
break the 0-1 mixed IP formulation in two parts. For the ALP, fixing the bi-
nary decision variables provides us with a landing sequence, and the resulting
LP is solved polynomially. We carry out extensive theoretical analysis of the
problem and provide an efficient O(N3) algorithm, where N is the number of
aircraft in the landing sequence. Our algorithm not only returns optimal land-
ing times for more practical case of safety constraint between consecutively
landing planes, but also offers high quality solution for the general case of the
safety constraint, which is highlighted by our results. The algorithm basically
works by initializing the worst possible landing times to all the air-planes in
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the sequence, and then reducing the time between blocks of aircraft. Each such
block of planes is identified with the help of our theoretical analysis of the
problem. After developing the algorithm, we carry experimental analysis of
our approach and compare our results with the state-of-the-art results on this
problem. The significance of the two-layered approach is justified over several
other recent and famous works. Developing a polynomial algorithm for the
ALP also provides a solution to other scheduling problems against due-dates
to minimizes weighted earliness/tardiness (E/T). We discuss this similarity of
the ALP with the general E/T problem comprising of release-dates, distinct
due-dates, distinct integer/non-integer penalties with sequence dependent set
up times, for all the jobs.

Consider a scheduling problem where n jobs have to be processed on a
single machine and each job possesses a processing time, distinct due-date
and asymmetric earliness/tardiness penalties. Any job which is completed
before or after its corresponding due-date incurs an earliness or tardiness
penalty, respectively. Additionally, a release-date is associated with each job,
before which a job can not be processed by the machine. Apart from these
constraints, each job also requires a non-zero set-up time for the machine and
a deadline before which the machine has to complete the processing of the
job. The objective of the problem is similar to the ALP, i.e., minimizing the
weighted earliness/tardiness penalties, while maintaining all the constraints.
Using algorithmic reduction, any given feasible job sequence of this scheduling
problem can be easily optimized with our algorithm for the Aircraft Landing
Problem. First of all, considering the similarities between the two problems,
the obvious parameters are the due-dates, release-dates, deadlines, processing
times, set up times and the earliness/tardiness penalties. It easy to observe
that the due-date of a job in the E/T problem corresponds to the target
landing of an aircraft in the ALP. The release-date of the E/T problem is the
earliest time at which the machine can start the processing of a job, likewise
the earliest landing time of an aircraft is the earliest time at which it can land
at the runway. The deadline of a job is the latest time at which the machine
must complete its processing, which is equivalent to the latest landing time
of an aircraft in the ALP. The processing time and the set-up time of a job
correspond to the safety distance constraint between any two aircraft. As a
machine has to wait for a certain time to start a job processing, on the same
lines an aircraft has to maintain some safety time with its preceding aircraft.
However, in the E/T problem the time required for the setup and processing
effects only its immediate following job, while an aircraft in the ALP has to
maintain a safety distance with all its preceding planes. Hence, it is apparent
to observe the clear similarity between the two problems and our polynomial
algorithm is just as well suited for this general Earliness/Tardiness scheduling
problem.

Henceforth in this work, we show the importance and benefit of the two-
layered approach for the Common Due-Date problem. We utilize our ALP
algorithm and develop an O(n log n) algorithm for the CDD scheduling prob-
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lem. This is also done by reducing the CDD to ALP. Parameters corresponding
to the earliest landing time, latest landing time do not exist in the CDD. More-
over, CDD contains a common due-date for all the jobs and time between any
two jobs is only defined by the processing time of the preceding job, unlike the
ALP where the landing time of an air-plane is constrained by all the planes
ahead of it. Hence, the complexity of our algorithm for the common due-date
problem, with the help of exponential search reduces to O(n log n), where
n is the problem size, i.e., the number of jobs in the processing sequence.
In addition to this specialized polynomial algorithm for the resulting linear
program of the CDD, we also carry out theoretical analysis of the CDD and
prove an important property which states that the position of the due-date
in the optimal schedule of any job sequence of the CDD is independent to
the processing times of the jobs. With the help of this property we develop
a linear algorithm for the CDD job sequence. Furthermore, we utilize the V-
shaped property and provide an improvement heuristic to locally improve any
job sequence to obtain a better solution value for the objective function. Our
computational analyses show that the two-layered approach in conjunction
with a modified simulated annealing algorithm is effective in solving all the
benchmark instances to the best known solution values with a competitive
runtime to other approaches mentioned in the literature. On the same lines of
the CDD problem, we study the Common Due-Window scheduling problem
along with its theoretical analysis. Once again we work on developing a spe-
cialized polynomial algorithm for the resulting linear program by fixing the
binary decision variables of the 0-1 mixed integer programming formulation
of the CDW, to feasible set of values. With the help of the property which
is also valid for the CDD, we develop an O(n) algorithm to optimize an job
sequence. Our experimental analysis over the benchmark instances shows that
we certainly perform better by obtaining better results than the best known
solutions for several benchmark instances.

In the next chapter, we discuss and develop linear algorithms for the Un-
restricted Common Due-Date problem with Controllable Processing Times.
This scheduling problem is a variant of the CDD and we present and prove
two important properties which help us to develop an O(n) algorithm for any
given processing sequence. One of these properties states that if reducing the
processing time of a job can fetch a better solution value to the objective
function of the UCDDCP, then this reduction in the processing time has to
be made to its maximum possible value. In addition to this property, we also
prove that if the due-date falls at the completion time of some job r in the
optimal schedule for the CDD, then the position of the due-date relative to
the jobs remains unchanged for the UCDDCP job sequence. We derive this
property by utilizing the CDD property of Chapter 4 and the property of
maximum compression. These two properties are then exploited to develop
linear algorithm for any given job sequence of the UCDDCP. In this work, we
also provide a complete set of benchmark instances for the problem which are
derived from the CDD instances of Biskup and Feldmann [20], and provide our
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best results by combining Simulated Annealing and Threshold Accepting with
our polynomial algorithms. All these NP-hard scheduling problems have been
dealt with the two-layered approach which requires the development of effi-
cient specialized polynomial algorithms for the resulting linear program of the
specific scheduling problem. Moreover, we also highlight the added advantage
of this approach for parallel processing to solve the NP-hard problems.

8.2 Utilization of Parallel Computing

One of the best tools available today to solve the NP-hard optimization prob-
lems are the metaheuristic algorithms. However, implementing these heuris-
tic algorithms solely, both to optimize the job sequences and search for the
optimal/near-optimal job sequence leads to a fair amount of unnecessary com-
putation. Hence, the possible search space gets quite large. However, with this
approach we make sure that any processing sequence is solved to optimal so-
lution value in polynomial time and thus requirement of the metaheuristic
essentially boils down to searching for the job sequences only. With this in
mind, it paves a clear way for any population based metaheuristic algorithm
to solve a problem with the two-layered approach, to be parallelized with ease.

Hence, we exploit this idea and incorporate our linear algorithms for the
common due-date problem and the un-restricted common due-date problem
with controllable processing times, with parallel metaheuristic algorithms,
namely the simulated annealing and discrete particle swarm optimization
on the graphical processing units. GPUs have recently evolved from being
graphics-only processing units to become a general purpose parallel comput-
ing architecture. Although, a single core of a CPU is faster than a single GPU
core, utilizing the high number of computing threads in a GPU clearly out-
runs a CPU, provided the GPU must carry out a large amount of simple and
repetitive computations. Our results for the two exemplary cases of the NP-
hard problems reflect the utility of the specialized LP algorithms and yield
speed-ups of several folds in comparison to the exact same implementation on
a CPU.

8.3 Adaptability to Other Optimization Problems

This work highlights and proves the importance of the mentioned approach
for several NP-hard scheduling problems, both for single and multi-core pro-
cessing units. Moreover, we now show that this approach is not only effective
for the scheduling problems but also for other optimization problems. We dis-
cuss one such problem known as the Warehouse Location Problem (WLP).
The WLP consists of allocating resources of distributed customers to capaci-
tated or uncapacitated warehouses, such that the overall transportation cost
as well as the storage cost is minimized. Each customer j requires its goods
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in the amount of dj to be stored at the storage facilities such that its stor-
age demand is met completely. Each of these customers is situated at different
locations and at the same time there are several possible locations for the ware-
houses, with each warehouse i may or may not be restricted to a maximum
possible storage capacity. The distance of each customer to every warehouse
is represented in terms of the transportation cost cij , such that the cost of
transporting a unit amount of good from customer j to warehouse i is cij . We
discuss the capacitated WLP where each warehouse is limited with a maxi-
mum storage capacity of bi. In addition to this capacity constraint there is
an additional fixed cost Fi associated with each warehouse, which is incurred
if the warehouse is serviced for storage. Hence, the optimization problem is
to figure out the location of these warehouses which fulfills the demands of
all the customers completely and each warehouse does not exceed its capacity
limit, such that the total transportation cost and the fixed cost of opening
a warehouse i is minimized. We now present the 0-1 mixed integer program-
ming formulation of this problem below and demonstrate the utilization of
the two-layered approach for the WLP.

minimize
m∑
i=1

n∑
j=1

cij · xij +
m∑
i=1

Fi · yi

subject to
m∑
i=1

xij ≥ dj , ∀j ∈ {1, 2, . . . , n}

n∑
j=1

xij ≤ yi · bi, ∀i ∈ {1, 2, . . . ,m}

xij ≥ 0, ∀i ∈ {1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . , n}

yi ∈ {0, 1}, ∀i ∈ {1, 2, . . . ,m},

In the above formulation, the binary decision variable yi is equal to 1 if
the warehouse i is opened and 0 otherwise. Clearly, the above formulation is
similar to the formulation to other IP formulations of scheduling problems
discussed in this work, in the sense that if we have a feasible set of ware-
houses which need to be opened, then the above MIP converts to a linear
programming formulation for that set of warehouses. In other words, fixing
the decision variable yi to a set of feasible set of values, we are then left to
solve the resulting LP, which is polynomial. We do not go into the details of
development of the specialized polynomial algorithm for the above problem,
but only prove that the two-layered approach is not restricted to scheduling
problems but also to other NP-hard optimization problems.
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[86] Lässig, J., Awasthi, A., Kramer, O.: Common due-date problem: Linear
algorithm for a given job sequence. In: 17th IEEE International Con-
ferences on Computational Science and Engineering (CSE), pp. 97–104
(2014)
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