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Preface

Automatic speech recognition (ASR) these days seems to be a major
technology mastered by big companies with large research teams that
provide speech recognition services for millions of people and applications
—so why should a PhD thesis in physics be concerned with this technology?
Admittedly, using the limited resources of a single brain, the strict time
limit of a few years and the limited computer resources of a university
environment, typically associated with a dissertation, mean an uphill
battle when trying to compete with Google and similar giants — how big
are the chances to achieve any significant progress in this area?

If the reader wants a response to these questions, she or he should read
this dissertation: In the end, it is the brain that counts, a set of good
ideas, and the stimulating research environment that make the difference.
Marc René Schédler has succeeded to advance the field of automatic
speech recognition for acoustically difficult conditions in noise by im-
plementing knowledge from neurophysiology and psychophysics — thus
providing ears to the computer!

The biologically inspired Gabor feature sets proposed by him are shown
to work better for a number of conditions than the standard speech
recognition technology used so far. Moreover, Marc René demonstrated
the advantage of so-called separable Gabor feature filter banks (that
are composed of a pure spectral and a pure temporal processing part)
in comparison to the complete two-dimensional time-frequency Gabor
feature representation. This allows to speculate that spectral resolution
and temporal resolution in the auditory system are not as coupled as has
been thought before — please read yourself to find out!

But Marc René would not be himself if he did not provide significant
progress to other fields as well that are classically separated from auto-
matic speech recognition: By applying his ASR technology to predict
human speech recognition in a specialized task (the so-called Matrix
sentence test using syntactically fixed, but semantically unpredictable
sentences) a surprisingly well-working prediction of human speech recog-
nition (HSR) becomes possible. It is solely based on the available speech
material, the recognition task employed and some general ASR principles



—and produces a prediction accuracy for speech in stationary noise, which
was totally unexpected! Please find out yourself how Marc René’s new
method clearly outperforms the “work horse” of speech intelligibility
modeling on which generations of researchers have already elaborated for
decades, i.e., the speech intelligibility index (SII).

Moreover, Marc René carries this approach further towards predicting
classical psychoacoustic experiments using the same ASR front end as
developed before and a standard speech recognizer back end — an ap-
proach that seems as unorthodox as to predict the result of expert wine
tasting using methods from quality control of fabricating sausages — but
it works! It is this non-standard, non-mainstream, unorthodox thinking
that enables Marc René to master not only the field of automatic speech
recognition, but also to excel in speech intelligibility prediction and in
psychoacoustic modeling — always using the same approach which he then
terms the “FADE framework”. This approach has the great potential of
connecting these three classically diverse fields by employing a common,
unifying modeling method — please yourself to find out how Marc René
achieved this great task!

Besides all the work with machines and implementing physiology- and
psychology motivated models it should not be forgotten that this work is
just one aspect of Marc René’s great personality and life as a researcher,
colleague and caring family father: His inspiring, open and friendly way
of communicating with colleagues and friends, his overwhelming charm
to motivate coworkers to collaborate with him, and his preparedness to
take care of nearly all social affairs in the department (from the weekly
“Medi-breakfast” to organizing research group meetings and student ex-
change visits) have been very valuable components of his dissertation
project. It has been a great pleasure to work with him and I have no
doubt that Marc René Schédler has a great career as a scientist ahead of
him — please read yourself to get convinced!

Birger Kollmeier, November 2015
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Abstract

Automatic speech recognition (ASR) systems still do not perform as
well as human listeners under realistic listening conditions. The vast
variability of speech signals in the world is too much for any of the
current approaches. Even under selected “lab conditions” no current
recognition system reaches the performance of listeners with normal
hearing. The unmatched ability of humans to understand speech in the
most difficult conditions originates from the superior properties of their
auditory system. Hence, this thesis focuses on integrating knowledge
about the auditory system into ASR systems in order to improve their
capacity to cope with realistic listening conditions, which is also referred
to as robustness. A long-term strategy to achieve human-like performance
on ASR tasks, which includes validating the correct implementation of
auditory principles into ASR systems is proposed, where the ASR systems
are considered to be “auditory models” and are compared to the human
perception of sound.

In the first part of this work, the physiologically-inspired extraction
of spectro-temporal modulation patterns was integrated into a standard
ASR system to successfully improve its robustness. These patterns were
extracted with a bank of two-dimensional Gabor filters (GBFB) which
perform a joint spectro-temporal processing. In addition, it was shown
that the joint spectro-temporal filter processing can be replaced by a
separate spectral and temporal one which extracts separable Gabor filter
bank (SGBFB) features and further increases the robustness of a stan-
dard ASR system. In the second part of this work, ASR systems were
employed to simulate auditory discrimination experiments in order to
test their “auditory fidelity”. The employed experiments were tone-in-
noise detection experiments and speech intelligibility tests in stationary
and fluctuating noise conditions. The performance with several feature
extraction algorithms, including traditional ASR features and an effec-
tive model of the human auditory signal processing, were compared to
empirical data. The standard ASR system using SGBFB features was
found to provide the most suitable model of human performance across
the considered experiments. Further, the spectral modulation processing
was found to be crucial to recognize speech in fluctuating noise.

The fact that SGBFB features faithfully implement some basic auditory
principles, i.e., an ASR system using SGBFB features obtained human-
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like performance in the corresponding experiments, and improve the
robustness of a standard ASR system could be interpreted as a faint hint
that spectral and temporal modulations in the human auditory system
might be separately processed. In future work, it would be interesting to
investigate which auditory principles are essential to achieve human-like
performance with ASR systems in increasingly more complex (speech)
recognition tasks.
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Zusammenfassung

Automatische Spracherkennungssysteme (engl. automatic speech recogni-
tion (ASR) systems) erreichen unter realistischen Kommunikationsbe-
dingungen noch immer nicht die Spracherkennungsleistung menschlicher
Hérer. Die immense Variabilitidt von Sprachsignalen auf der Welt iiberfor-
dert alle aktuellen Ansétze zur automatischen Spracherkennung. Selbst
unter ausgewéahlten ,Laborbedingungen* erreichen heutige ASR-Systeme
nicht die Leistung normal hérender Menschen. Die Fahigkeit gesprochene
Sprache unter den schwierigsten akustischen Bedingungen zu verstehen,
verdanken wir den besonderen Eigenschaften unseres auditorischen Sy-
stems. Aus diesem Grund bildet die Integration von Wissen iiber das
menschliche auditorische System in ASR-Systeme, mit dem Ziel der Ver-
besserung deren Erkennungsleistung in realistischen Horsituationen (auch
Robustheit genannt), den Kern dieser Arbeit. Eine langfristig ausgelegte
Strategie, um mit ASR-Systemen menschenédhnliche Erkennungsleistung
zu erzielen, wird vorgestellt. Der Hauptpunkt der Strategie ist zu tiber-
priifen, ob auditorische Prinzipien wirkungsvoll in ASR-Systeme imple-
mentiert wurden, wozu diese als auditorische Modelle betrachtet und
in Experimenten mit der menschlichen Schallwahrnehmung verglichen
werden.

Im ersten Teil der Arbeit wurde die physiologisch motivierte Extrak-
tion spektro-temporaler Modulationsmuster erfolgreich in ein géngiges
ASR-System integriert und dessen Robustheit dadurch verbessert. Die-
se Muster wurden mit einer Filterbank zweidimensionaler Gaborfilter
(GBFB), welche sich durch eine gekoppelte spektro-temporale Signalverar-
beitung auszeichnen, berechnet. Zudem wurde gezeigt, dass die gekoppelte
spektro-temporale Modulationsverarbeitung der GBFB-Merkmale durch
eine entkoppelte (engl. separable), rein zeitliche und rein spektrale Mo-
dulationsverarbeitung ersetzt werden und die Robustheit eines géngigen
ASR-System mit diesen separablen GBFB (SGBFB) Merkmalen sogar
noch weiter verbessert werden kann.

Im zweiten Teil der Arbeit wurden auditorische Diskriminationsexpe-
rimente mit ASR-Systemen simuliert, um deren ,,Modellierungstreue*
zu bestimmen. Die eingesetzten Experimente waren ,, Ton-in-Rauschen'
Detektionsexperimente und Sprachverstandlichkeitstests in stationdrem
und fluktuierendem Storgerdusch. Die Leistung der ASR-Systeme, so-
wohl mit typischen ASR-Merkmalen als auch mit effektiven Modellen
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der menschlichen auditorischen Signalverarbeitung als 'front-end’, wur-
de mit empirischen Daten aus Horexperimenten verglichen. Unter allen
betrachteten Merkmalen waren die SGBFB-Merkmale diejenigen, mit
denen die simulierten Ergebnisse am besten mit den empirischen Daten
iibereinstimmten. In diesem Zusammenhang hat sich in den Simulatio-
nen des Sprachverstindlichkeitstests in fluktuierendem Storgerdusch die
spektrale Modulationsverarbeitung, welche eine frequenziibergreifende
Verarbeitung der Signale darstellt, als besonders wichtig herausgestellt.
Der Umstand, dass SGBFB-Merkmale grundlegende auditorische Prin-
zipien besonders originalgetreu modellieren, was heifft, dass in den ent-
sprechenden Simulationen mit diesen Merkmalen menschendhnliche Er-
gebnisse erzielt werden, konnte als Anzeichen dafiir gedeutet werden, dass
spektrale und temporale Modulationen im menschlichen auditorischen
System getrennt voneinander verarbeitet werden. Eine interessante Auf-
gabe fiir zukiinftige Forschungsprojekte wére es, zu untersuchen, welche
auditorischen Prinzipien essentiell sind, um auch in komplexeren (Sprach-)
Erkennungsexperimenten menschenahnliche Leistung zu erreichen.

vi



Contents

1 General Introduction

2 Gabor filter bank features for robust ASR

2.1

2.2

2.3

2.4

2.5

INTRODUCTION

GABOR FILTER BANK FEATURES

2.2.1 Calculation of the GBFB features

2.2.2 Experiments

2.2.3 Results and discussion

ROBUSTNESS OF THE GABOR FILTER BANK FEA-

TURES

2.3.1 Baseline features

2.3.2 Experiments

2.3.3 Results and discussion

SUMMARY AND FURTHER DISCUSSION

2.4.1 Robustness of GBFB features against extrinsic vari-
ability

2.4.2 Complementary information

2.4.3 Future work

CONCLUSIONS

3 Normalization of GBFB features for improved robust ASR

3.1
3.2

3.3

INTRODUCTION

METHODS

3.2.1 Gabor filter bank features

3.2.2 Normalization of feature value statistics
3.2.3 Recognition experiment and baseline
3.2.4  Spectral and temporal contribution
RESULTS AND DISCUSSION

10
14
14
22
26

32
33
33
36
49

49
49
50
51

53
o4
55
95
57
58
o8
59

vii



Contents

viii

3.3.1
3.3.2

Normalized GBFB features
Spectral vs. temporal normalization

3.4 CONCLUSIONS

GBFB features for robust medium-size vocabulary ASR
4.1 INTRODUCTION
4.2 METHODS

4.2.1
4.2.2
4.2.3

Gabor filter bank features
Recognition experiment and baseline
Parameter search

4.3 RESULTS AND DISCUSSION
4.4 CONCLUSIONS

Separable, less complex GBFB features for robust ASR
5.1 INTRODUCTION
5.2 METHODS

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

Spectro-temporal representation
Gabor filter bank features
Separate Gabor filter bank features
Feature normalization

Recognition experiment
Robustness measure

Reference systems

Man-machine gap

Reference implementations

5.3 RESULTS

5.3.1

5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

Performance of reference system and data repre-
sentation

Single SGBFB features

Dual SGBFB features

Complete SGBFB features

Quantity of training data

Remaining man-machine gap

5.4 DISCUSSION

5.4.1
5.4.2
5.4.3

Modulation phases
1D vs 2D Gabor filter complexity
Remaining man-machine gap

5.5 CONCLUSIONS

59
60
62

63
63
65
65
67
68
69
72

73
74
79
79
80
83
88
89
91
91
93
94
94

94
96
97
98
99
99
100
100
102
103
104



Contents

6 Speech intelligibility prediction with ASR 105
6.1 INTRODUCTION 106
6.2 METHODS 110

6.2.1 Speech intelligibility measurements 110
6.2.2 Automatic speech recognizer 111
6.2.3 Predicting SRTs with the automatic speech recognizer114
6.2.4 Speech intelligibility index 115
6.3 RESULTS 115
6.3.1 Empirical data 115
6.3.2 ASR-based predictions 116
6.4 DISCUSSION 120
6.5 CONCLUSIONS 124

7 Modeling auditory discrimination experiments with ASR 125
7.1 INTRODUCTION 126
7.2 METHODS 129

7.2.1 Experiments 129
7.2.2 Signal representations 131
7.2.3 Simulation framework for auditory discrimination
experiments 137
7.3 RESULTS 142
7.3.1 Simultaneous masking 142
7.3.2 Spectral masking 144
7.3.3 German Matrix sentence test 146
7.3.4 Effect of back-end parameter variations 150
7.3.5 Man-machine gap 152
7.3.6  Effect of feature vector normalization 153
7.4 DISCUSSION 153
7.4.1 Interpretation of simulated thresholds 154
7.4.2  Signal processing dependence of simulated thresholds155
7.4.3 Required assumptions for ADE simulations 156
7.4.4 Generalization of the FADE approach 158
7.4.5 Across-frequency processing and relation to tempo-
ral processing 158
7.5 CONCLUSIONS 160
8 General Conclusions 161
Bibliography 165

ix






]_ General Introduction

The most natural way of communication between human beings is spoken
language. Automatic speech recognition (ASR) is the art of building
a machine which is able to transcribe spoken into written language
automatically. Ever since humans tried to teach—or in technical terms,
to program—machines to recognize their language they found that speech
recognition is a complex task and that human listeners are incredibly good
at it, al least, compared to their automatic counterparts (e.g., Lippmann,
1997; Cooke and Scharenborg, 2008; Meyer et al., 2011b). The reason for
this gap between human and machine speech recognition performance
(man-machine gap) is the vast variability within spoken languages, e.g.,
gender, dialects, or mood, combined with the—maybe even vaster—
variability of the acoustical situations that spoken language is found in,
e.g, on the telephone, in crowded places, in a reverberant church hall,
or in a cockpit. Hence, the long-term goal of all efforts to improve ASR
systems is to reach or surpass human recognition performance. Currently,
no universal solution to this problem exists.

A common approach to automatic speech recognition

Most of the common ASR systems consist of, at least, three characteristic
components, which are: 1) A corpus of labeled speech data, 2) a signal
processing algorithm to extract features, and 3) a classifier. The raw
speech data, which may also contain non-speech signals, is usually first
processed to extract the features which are relevant for the speech recogni-
tion task, e.g., changes in the spectral composition. At the same time the
processing often suppresses signal characteristics which do not contain
usable speech information, e.g., the “spectral color” of the recording
due to the used microphone. During the training stage, the classifier
learns the characteristics of the different parts that speech consists of,
e.g., phonemes, from the features of the labeled speech data. The trained
ASR system can than be used to recognize, i.e., assign labels, to new
recordings, which were not part of the training data.
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Speech recognition experiments

To compare the performance of different systems, usually recognition
experiments are performed. Often, labeled training and testing speech
data sets—also called corpora—are defined. The training speech data
set is used to train different ASR systems, and the trained ASR systems
are then used to assign labels to the test speech data. Comparing the
testing data labels and the ASR-assigned labels the performance of
the corresponding ASR system can be quantified by the achieved word
recognition rate (WRR) or word error rate (WER) in percent.

Robust automatic speech recognition

Humans possess the amazing ability to recognize spoken language of unfa-
miliar speakers even in acoustically adverse situations, such as the famous
cocktail party where a multitude of different sources compete with the
target speaker. Hence, humans are said to be robust speech recognizers,
because they are capable to compensate for the variability in speech sig-
nals. To give a more detailed explanation of the shortcomings of ASR sys-
tems, their susceptibility to variability in the recordings originating from
different sources could be distinguished (Meyer and Kollmeier, 2011a):
Variability within the speech signals—also called intrinsic variability—,
such as dialects, and variability due to the situation—also called eztrinsic
variability—, such as background noise but also reverberation. Of course,
the two classes themselves could be in turn subdivided into more specific
sources of variability, such as a type of background noise, e.g., stationary
vs. modulated, or the speaker’s age. Hence, in the context of speech
recognition, “robustness” is not clearly defined.

A practical solution to the definition of a robust ASR system is to
define a speech recognition experiment in realistic conditions. Then, an
ASR system which performs better under these realistic conditions could
be considered more robust. Consequently, standardized ASR tasks exist
with the objective of comparing the robustness of ASR systems (e.g.,
Cole et al., 1995; Pearce and Hirsch, 2000; Barker et al., 2013).

Approaches to improve the robustness of ASR systems

In the past, the components of ASR systems were subject to attempts
of improving their “robustness”; or rather, improving their performance
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Figure 1.1: Taken from Schidler and Kollmeier (2012b). Spectro-
temporal representation of a recording of read speech. Light areas denote
high energy.

under realistic conditions. Besides technical improvements, mimicking
human strategies to recognize speech is a logical approach to achieve
human-like recognition performance.

A common, successful strategy that focuses on the signal processing—
also front-end or feature extraction—is to integrate auditory principles
into it (e.g, Hermansky, 1990; Tchorz and Kollmeier, 1999; Kleinschmidt
and Gelbart, 2002a; Domont et al., 2008; Meyer and Kollmeier, 2011a).
These principles were found in, e.g., psycho-acoustical (Stevens, 1957;
Zwicker, 1970; Dau et al., 1997) or physiological studies (Depireux et al.,
2001; Qiu et al., 2003) and include the limitations of the human auditory
system, such as, e.g., a limited spectral resolution or just noticeable
differences in sound intensity. The least common denominator for all
feature extraction algorithms is a somewhat blurred spectro-temporal
representation of the sound signal. It shows the temporal evolution of
the frequency-decomposition of a signal over time. Figure 1.1 shows an
example of a spectro-temporal representation of a speech signal which is
commonly used in ASR systems. Another example of a spectro-temporal
representation would be a spectrogram, which can be calculated using a
short-term Fourier transform.

In Chapter 2, this work sets out with the aim of improving the ro-
bustness of an ASR system and for that purpose introduces an auditory-
motivated and physiologically-inspired feature extraction scheme called
Gabor filter bank (GBFB) features. These features extract spectro-
temporal modulation patterns from a spectro-temporal representation,
such as the one depicted in Fig. 1.1, and provide high-dimensional
(d = 311) signal representations compared to traditional features (d = 39).
The robustness of GBFB features against intrinsic and extrinsic sources
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of variability in speech was evaluated and compared to the results of
traditional ASR features. In Chapter 3, the effect of normalizing the
feature value statistics of GBFB features on the robustness of an ASR
system was investigated. While in Chapter 2 and 3 small vocabulary
(< 100 words) ASR tasks were targeted, in Chapter 4 an ASR system
using GBFB features was evaluated on a medium-size (~ 5000 words)
task. There, it was tested if the high dimensionality of the GBFB signal
representation interfered with the more complex recognition task. One
observation was that the employed back-end was more complex than in
the small-vocabulary task but the differences in performance resulting
from the different feature sets were much smaller. Consequently, in
Chapter 5, where the hypothesis that the joint spectro-temporal GBFB
feature extraction can be divided into a separate spectral and temporal
processing was tested, a small-vocabulary recognition task which allowed
to compare the ASR systems at different SNRs was employed.

Another approach of integrating biologically-inspired principles into
ASR systems, which focuses on the classifier—or back-end—instead of
the feature extraction, was to extend the systems with artificial neural
nets to improve their robustness (e.g., Hermansky et al., 2000; Dahl
et al., 2012). Artificial neural networks were inspired by biological neural
networks and can be trained as recognizers. A big advantage of neural
networks is that they can learn to handle diverse types of input signals,
given sufficient training data is provided.

Conflict of objectives between performance and knowledge

Recent developments indicate that increasingly complex artificial neural
networks, such as deep neural networks, could eventually replace parts
of the feature extraction stage in ASR systems (Castro Martinez et al.,
2014) because they possibly can also learn the optimal feature extraction
algorithm for a given data set. Unfortunately, the signal processing
mechanisms learned by a deep neural network are not easily accessible
anymore. This leads to the following questions:

Would we be satisfied with super-human ASR performance? Or do
we still want to know how speech recognition actually works?

Besides the severe possible social impact (e.g., mass-surveillance), it
seems tempting to bury the burden to deal with the complexity of speech
recognition tasks in a black-neural-network-box using massive amounts



of training data. But the gained improvements in performance do not
reflect any gained knowledge. We humans can understand speech without
a clue about how spoken language works, just like we can ride a bike
without understandings its physics. Put another way, one could possibly
train a neural network with a gyroscope and attached actuators to ride a
bike without learning anything about the physics of riding a bike. Hence,
a conflict of objectives can be identified which, on one hand, consists of
the desire to build ASR systems which are as robust as a human listeners,
and on the other hand, the wish to discover what the different parts of
the speech recognition puzzle are and to learn how they interact.

This conflict is directly reflected in the speech recognition experiments
by whose means the robustness of ASR systems is defined. On the one
hand, there are simple ASR corpora/tasks (Cole et al., 1995; Pearce and
Hirsch, 2000; Vincent et al., 2013a) which allow to evaluate the robustness
of ASR systems under comparatively controlled, but “unrealistic”, condi-
tions, e.g., the recognition of digits or letters at different signal-to-noise
ratios (SNRs). On the other hand, there are complex corpora/tasks
(Barker et al., 2015, (submitted)) which allow to evaluate the robust-
ness of ASR systems under comparatively realistic, but “uncontrolled”,
conditions, e.g., the recognition of read Wall street Journal articles in a
highly dynamic environment. More complex tasks naturally introduce
additional challenges which usually require more complex solutions. The
recognition performance on a task reflects how well these challenges were
mastered on average.

The main problem with increasingly complex tasks is that ASR
systems still perform worse than human listeners even on simple
tasks (e.g., Vincent et al., 2013b).

While tracking down the origin of the man-machine gap on a simple task
poses a difficult problem, it surely seems impossible on a complex task
where the recognition results depend on the interactions of a multitude
of highly non-linear systems. Hence, realistic and controlled conditions
are always a compromise, and the robustness of an ASR system and its
specific weaknesses cannot be assessed using a single speech recognition
task.
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Understanding speech perception and improving ASR

Before focusing research on increasingly complex speech recognition
tasks, the man-machine gap should be closed for the simpler tasks

first.

If one imagines robust ASR as a very high-dimensional parameter opti-
mization problem—and with parameters one could think of every decision
which could be taken in the process of building an ASR system—the
recognition performance would describe a cliffy and hilly high-dimensional
(d >1) landscape. The hills would be due to the non-linear interaction
between the parameters and the cliffs due some parameter-subspaces
being discrete. Even if the parameter space was smooth, we would be
stuck in a local optimum trapped by the curse of dimensionality, i.e.,
there are too many—at least O(2¢)—directions that would need to be
explored.

The human recognition performance provides evidence that it is a
local optimum that we are stuck in. Further, considering more complex
recognition tasks could be thought of as exponentially inflating the
parameter space by adding more dimensions. Even worse, if we improve
recognition performance, there is no evidence that the “direction” in
which we turned points towards the global optimum, or at least the
human local optimum; it might even be the “wrong direction” to go.

A solution to this problem could consist in deflating the parameter
space, i.e., taking simpler/more controlled tasks, as much as necessary to
find the human local optimum and tracking it afterwards while gradually
increasing the task complexity. The outlined path is guided by the human
performance and could be seen as taking a short-cut “slipping” past the
dimensions. In this work the first steps down this path were taken.

Opportunities along the way

Once on track, following the path comes down to meticulously
assuring that the recognizer “has ears.”

In a first step, the path, i.e. a recognition experiment in which human
and machine performance are on par, needed to be found. Therefore,
the key is to employ recognition tasks that allow a direct comparison to
the performance of human listeners, preferably tasks for which empirical
data already exists. In Chapter 6 hence, speech recognition experiments



simulating a speech intelligibility test in simple, stationary noise condi-
tions were performed. In Chapter 7, the approach was generalized to
simulate basic psycho-acoustic experiments to test if automatic (speech)
recognition systems could “hear” as well as listeners with normal hearing.
This generalized approach can be used to assess the man-machine gap in
experiments which belong to the class of auditory discrimination experi-
ments. Further, the speech intelligibility test was simulated in a more
challenging, fluctuating noise condition and it was tested if a system with
SGBFB features exhibited “more auditory” behavior than recognition
systems with other signal representations.

Apparently, the outlined path to more robust ASR systems crosses
other disciplines of hearing research, such as the prediction of speech
intelligibility and classical psychoacoustic modeling. This might offer the
opportunity to comprehend classical modeling of experimental results
from a performance-oriented perspective. The most important difference
between classical models and the proposed ASR-based approach is that
the former only need to perform well in a set of very specific tasks,
while the latter eventually must perform all tasks on the way to large
vocabulary continuous speech recognition as good as human listeners
with normal hearing. Down the road, some of the auditory principles as
they are understood today might prove essential while others could prove
harmful, and still others may require a recast. Hence, the current thesis
might be a first step towards hearing research as viewed from a machine
learning perspective which may be denoted as “computational hearing
research”.






Spectro-temporal modulation
subspace-spanning filter bank features for
robust automatic speech recognition

ABSTRACT

In an attempt to increase the robustness of automatic speech recognition
(ASR) systems, a feature extraction scheme is proposed that takes spectro-
temporal modulation frequencies (MF) into account. This physiologically
inspired approach uses a two-dimensional filter bank based on Gabor
filters, which limits the redundant information between feature compo-
nents, and also results in physically interpretable features. Robustness
against extrinsic variation (different types of additive noise) and intrinsic
variability (arising from changes in speaking rate, effort, and style) is
quantified in a series of recognition experiments. The results are com-
pared to reference ASR systems using Mel-frequency cepstral coefficients
(MFCCs), MFCCs with cepstral mean subtraction (CMS) and RASTA-
PLP features, respectively. Gabor features are shown to be more robust
against extrinsic variation than the baseline systems without CMS, with
relative improvements of 28% and 16% for two training conditions (using
only clean training samples or a mixture of noisy and clean utterances,
respectively). When used in a state-of-the-art system, improvements
of 14% are observed when spectro-temporal features are concatenated
with MFCCs, indicating the complementarity of those feature types. An
analysis of the importance of specific MF shows that temporal MF up to
25Hz and spectral MF up to 0.25 cycles/channel are beneficial for ASR.

This chapter is a reformatted reprint. The original article can be found at
http://dx.doi.org/10.1121/1.3699200. Reproduced with permission from “Spectro-
temporal modulation subspace-spanning filter bank features for robust automatic
speech recognition”, M. R. Schéadler, B. T. Meyer, and B. Kollmeier, J. Acoust. Soc.
Am. Vol. 131, pp. 4134-4151. Copyright 2012, Acoustical Society of America.
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2 Gabor filter bank features for robust ASR

2.1 INTRODUCTION

Decades of research in the field of automatic speech recognition (ASR)
brought numerous methods to improve the recognition performance by
increasing the robustness against variability of speech signals. Several of
these methods are inspired by the principles of human speech perception,
which is motivated by the fact that the robustness of human recognition
performance exceeds by far the robustness of ASR performance even in
acoustically optimal conditions (Lippmann, 1997; Cooke and Scharenborg,
2008; Meyer et al., 2011b). The sources of variability in spoken language
can be categorized into extrinsic sources (e.g., background noise, the room
acoustics, or distortions of the communication channel) and intrinsic
sources, which are associated with the speech signal itself (e.g., the
talkers’ speaking style, gender, age, mood, etc.). Compared to the human
auditory system, ASR was found to be far less robust against both types
of variability (Lippmann, 1997; Benzeghiba et al., 2007).

In this study, the focus lies on the improvement of feature extraction
by using a set of physiologically inspired filters (Gabor filters), which
is applied to a spectro-temporal representation of the speech signal. In
order to choose a set of filters suitable for ASR tasks, a filter bank is
defined and used to extract a wide range of spectro-temporal modulation
frequencies (MF) from the signal, while at the same time limiting the
redundancy on feature level.

Most state-of-the-art ASR systems perform an analysis of short-time
segments of speech and use spectral slices, typically calculated from
25ms segments of the signal as feature input. The most successful
implementations of such spectral processing are Mel-frequency cepstral
coefficients (MFCCs) (Davis and Mermelstein, 1980) and perceptual
linear prediction features (PLPs) (Hermansky, 1990). These features are
usually concatenated with their first and second order discrete temporal
derivation (delta and double-delta features) to incorporate information
about the temporal dynamics of the underlying signal on feature level.
The PLP feature extraction was later refined by performing RASTA
(RelAtive SpecTrA) processing, which effectively suppresses temporal
fluctuations that correspond to background noise or changes of the
transmission channel (Hermansky and Morgan, 1994). The idea of using
temporal cues was implemented in form of temporal pattern (or TRAPS)
features, which were found to increase robustness of ASR systems in
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noisy environments (Hermansky and Sharma, 1999). These approaches
suggest that both spectral and temporal integration of a spectro-temporal
representation of the signal may be useful for speech processing, which
has therefore motivated studies that incorporate such spectro-temporal
processing for ASR.

From a physiological point of view, it seems worthwhile to feed spectro-
temporal features to ASR engines, since several studies indicate that a
similar processing is performed by the auditory system: These findings
indicate that some neurons in the primary auditory cortex of mammals
are explicitly tuned to spectro-temporal patterns. For example, Qiu
et al. (2003) used specific spectro-temporal patterns to identify spectro-
temporal receptive fields (STRFs) in the auditory cortex in cats. An
STRF is associated with a particular neuron or a group of neurons;
it is an estimate for the spectro-temporal representation of the sound
stimulus that optimally “drives” the neuron. More recent findings show
that spectro-temporal representations of human speech found in the
primary auditory cortex of ferrets are well-suited to distinguish phonemes
(Mesgarani et al., 2008). The observation that such information is encoded
in auditory processing stages serves as motivation for the explicit use of
this type of representation in speech pattern recognition.

Different types of spectro-temporal features for ASR have been in-
vestigated in the past. Ezzat et al. (2007a) and Bouvrie et al. (2008)
analyzed spectro-temporal patches with a 2D discrete cosine transform.
They used this representation as a tool for speech analysis and for the
extraction of robust features. Heckmann et al. (2008) and Domont et al.
(2008) employed spectro-temporal patches to derive STRFs from artificial
neurons. Another type of spectro-temporal features originates directly
from the modeling of the patterns observed in the STRFs in the auditory
cortex in cats.

Qiu et al. (2003) modeled these patterns with two-dimensional Gabor
functions. This motivated Kleinschmidt and Gelbart (2002a) to apply
Gabor filters to the problem of ASR, with the aim of explicitly incor-
porating spectro-temporal cues on the feature level. An example of a
two-dimensional Gabor filter is shown in Fig. 2.1. These filters were also
shown to be suitable for the analysis of speech properties [e.g., for the dis-
tinction of plosives, fricatives and nasals (Ezzat et al., 2007b)]. Mesgarani
et al. (2006) found that the use of auditory Gabor features improves
classification results for speech/nonspeech detection in noisy environ-
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Figure 2.1: 2D Gabor filter. (left) Real part. Black and white shading
correspond to negative and positive values, respectively. (right) Absolute
values of the filter’s transfer function in the modulation domain. White
shading corresponds to high amplitude.

ments. The extraction of features requires a set of Gabor filters in order
to capture information about spectral, temporal and spectro-temporal
patterns.

One of the challenges when applying Gabor filters to speech-related
tasks is finding a suitable set of filters from the vast number of parameter
combinations and which extracts relevant information from the spectro-
temporal representation. Standard back-ends such as Hidden Markov
Models (HMMs) using Gaussian Mixture Models (GMMs) often require
the components of input features to be decorrelated, and computational
restrictions make the use of very large vectors (with more than 1000
components) difficult.

In the past, different methods were proposed to cope with this challenge.
Kleinschmidt (2003) and Meyer and Kollmeier (2011a) used a stochastic
feature selection algorithm [the Feature Finding Neural Network (FFNN)
(Gramss, 1991)] that was initialized with a random set of 80 filters. Based
on the performance on a simple recognition task (i.e., isolated digits),
filters that were found to decrease ASR performance were discarded and
replaced with a new random filter, which eventually resulted in a set
that was found to increase the noise robustness for the recognition of
noisy digit strings. Improvements over the MFCC baseline were obtained
by using Gabor features as input to a Tandem system that consists
of an artificial neural net (or multi-layer perceptron, MLP). The MLP
transformed the Gabor input features into posterior probabilities for
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phonemes. These posteriors were then decorrelated and used as input to
a conventional GMM/HMM classifier.

A different approach is to consider the outputs of the different Gabor
filters as feature streams, and start with a very high number of filters
(up to tens of thousands compared to the 80 filters mentioned before),
and subsequently merging filter outputs that are organized in streams
with neural nets. A merger MLP was used to combine isolated streams,
and a PCA was applied to its output. This approach was used by Chi
et al. (2005), Zhao and Morgan (2008), and Mesgarani et al. (2010).

These studies have shown that spectro-temporal information helps to
increase the robustness of ASR systems. Meyer and Kollmeier (2011a)
assumed that the benefits observed for spectro-temporal features (com-
pared to purely spectral feature extraction) arise from a local increase
of the SNR since the Gabor functions serve as matched filters for spe-
cific spectro-temporal structures in speech, such as formant transitions.
However, for several studies (Kleinschmidt and Gelbart, 2002a; Meyer
and Kollmeier, 2011a), a different database was used for MLP training
than for the task for which results were reported, and it is unclear if this
additional training material might result in an advantage over setups that
do not make use of additional training data. Since all of these studies
use the combination of MLPs and PCA, the physical meaning (in terms
modulation frequencies) is not directly interpretable from the features
that are ultimately fed to the back end. However, when using front-ends
as a tool for analysis that might give a hint on what kind of input data
is actually helpful, the physical interpretability is a desirable feature.

The aims of this study are to design a filter bank of spectro-temporal
filters that are applicable to extract ASR features, and to use these for an
analysis of parameters relevant for speech recognition based on spectro-
temporal features. Among the design decisions are the number of filters
considered for the filter bank, their phase sensitivity, and the spectral
and temporal modulation frequencies to be used. Such a 2D filter bank
can then be employed to analyze the relative importance of modulation
frequencies. Kanedera et al. (1999) performed a series of experiments
that quantified the importance of purely temporal modulation frequencies
for ASR. One of the results is that temporal modulations in the range of
2Hz to 16 Hz play the dominant role for ASR performance. In this study,
this analysis is extended to spectral and spectro-temporal modulation
frequencies by performing ASR experiments when specific modulation
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frequencies are disregarded. Nemala and Elhilali (2010) analyzed the
contribution of different temporal and spectral modulation frequencies
for robust speech/non-speech classification and found temporal mod-
ulations from 12Hz to 22Hz and spectral modulations from 1.5 to 4
cycles/octave to be particularly useful to achieve robustness in highly
noisy and reverberant environments.

We then evaluate the robustness of these features in the presence
of intrinsic and extrinsic sources of variability, and compare them to
a range of spectral feature types that are commonly applied in ASR.
ASR performance in the presence of additive noise and varying channel
characteristics is investigated with two experimental setups (i.e., the
widely used Aurora2 digit recognition task that employs the HTK back
end, and the Numbers95 task for which a state-of-the-art backend was
used). The effect of intrinsic variation is explored using a phoneme
detection task (in which phonemes are embedded in short nonsense
utterances).

The structure of this paper is reflected by these aims: We first present
the design decisions for the Gabor filter bank (Sec. 2.2), how it is applied
to feature extraction, and which modulation frequencies were found to
be relevant for this ASR task (Sec. 2.2.1). Section 2.2.3 presents the
corresponding results. The experiments that investigate the sensitivity
of spectro-temporal and baseline features against extrinsic and intrinsic
variability are presented in Sec. 2.3.2. Sections 2.3.3 and 2.4 present the
results, the discussion and conclusions.

2.2 GABOR FILTER BANK FEATURES

This section describes the design of the Gabor filter bank, the choice
of its parameters, and the calculation of the Gabor filter bank features
(GBFB). With these features, we perform an analysis of the importance
of phase information in spectro-temporal pre-processing, evaluate the
effect of selecting specific modulation frequencies.

2.2.1 Calculation of the GBFB features

An overview of the feature extraction scheme with the Gabor filter bank
process is illustrated in Fig. 2.2. First, a Mel-spectrogram is calculated
from the speech signal using an implementation of the ETSI Distributed
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Input: Gabor filter bank: Example filter output Representative Features:
log mel-spectrogram 41 filters of one filter channels Representative
of this filter channels of all 41
(here: 3) filters

Figure 2.2: [llustration of the Gabor filter bank feature extraction. The
input log Mel-spectrogram is filtered with each of the 41 filters of the Gabor
filter bank. An example filter output is shown. The representative channels
of this filter output are selected and concatenated with the representative
channels of the other 40 Gabor filters. The resulting 311-dimensional
output is used as feature vector.

Speech Recognition Standard (ETSI, 2003, Standard 201 108 v1.1.3).
This standard defines the calculation of a Mel-spectrogram that consists
of 23 frequency channels with center frequencies in the range from 124 Hz
to 3657 Hz. The calculation is based on frames of 25ms length, while
the temporal resolution is 100 frames/s. The spectrogram incorporates
a Mel-frequency scale that is logarithmic for frequencies above 1kHz
and therefore mimics the mapping of frequencies to specific regions of
the basilar membrane in the inner ear. Since the frequency mapping is
not strictly logarithmic (with approximately linear at frequencies below
800 Hz), the spectral modulation frequencies are specified in cycles per
channel. The absolute output values of the spectrogram are compressed
with the logarithm, roughly resembling the amplitude compression per-
formed by the auditory system. The spectrogram is then processed
with the filters from the GBFB, which are introduced in Sec. 2.2.1.1,
by calculating the two-dimensional convolution of the spectrogram and
the filter. This results in a time-frequency representation that contains
patterns matching the modulation frequencies associated with a specific
filter. The filtering process is illustrated in Fig. 2.3, which shows the
original spectrogram, a sample filter, and the filter output.
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Figure 2.3: Illustration of the filtering process with a Gabor filter.
(top) Mel-spectrogram of the German sentence “Gleich hier sind die
Nahrungsmittel” (The food is right over here) that exhibits spectro-
temporal (diagonal) structures that arise from wvowel transitions and
Gabor filter (real part shown in the lower left corner of the spectrogram).
(bottom) 2D filter output obtained by calculating the convolution of the
Mel-spectrogram and the real part of the filter. White shading corresponds
to high energy on the logarithmically scaled color encoding.

2.2.1.1 Gabor filter bank

The localized complex Gabor filters are defined in Eq. (2.1), with the
channel and time-frame variables k and n; ko denoting the central fre-
quency channel; ng the central time frame; wy the spectral modulation
frequency; w, the temporal modulation frequency; v and v, the number
of semi-cycles under the envelope in spectral and temporal dimension;
and ¢ an additional global phase:

2rx
0.5—-0.5 == -2 b
ho(z) = COS( b ) 2 <F<y (2.1a)
0 else
su(z) = *7, (2.1b)

g(ko,no,wk,wn,k,na kayn,¢) =

Sy, (k = ko) 8w, (n —no) - h%(k — ko) hﬁ;(n —no)- € (2.1c)
carrier function phase

envelope function
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A Gabor filter is defined as the product of a complex sinusoid carrier
[Eq. (2.1b)] with the corresponding modulation frequencies wy, and wy,,
and an envelope function [Eq. (2.1a)]. For purely temporal and purely
spectral modulation filters (w,, = 0 or wy = 0) this definition results
in filter functions with infinite support. For that reason the filter size
of all filters is limited to 69 channels and 40 time frames. These limits
correspond roughly to the maximum size of the spectro-temporal filters
in the respective dimensions. Due to the linear relation between the
modulation frequency and the extension of the envelope, all filters with
identical values for v, and v,, are constant-Q filters.

Since relative energy fluctuations are of special interest for the classifi-
cation of speech, the DC bias of each filter is removed. This is achieved
by subtracting a normalized version of the filter’s envelope function from
the filter function, so that their DC values cancel each other out. Filters
that are centered near the edges of the spectrogram usually do not lie
completely within the boundaries of the spectrogram. Hence, the DC
removal is applied for all center frequencies separately to avoid artifacts.
The effect of the DC removal is that the resulting representation is inde-
pendent of the global signal energy. Since a removal of the mean on a
logarithmic energy scale is the same as dividing by it on a linear scale,
this corresponds to a normalization. While cepstral coefficients normalize
spectrally, and RASTA processing and discrete derivatives normalize
temporally, DC-free Gabor filters naturally normalize in both directions.

The filter bank is designed with the aim of evenly covering the mod-
ulation frequencies in the modulation transfer space as schematically
illustrated in Fig. 2.4. Cross-sections of the filter transfer functions along
the x axis and y axis of this representation are depicted in Fig. 2.5.

The distribution of spectro-temporal modulation frequencies is defined
by Eq. (2.2), which ensures that adjacent filters exhibit a constant overlap
in the modulation transfer domain:

, 1+ <
wtt = Wi —2, (2.2a)
=3
8
¢ = dy—. (2.2b)
Vx

The advantage of this definition is that each filter accounts for a different
combination of spectral and temporal modulation frequencies (wy,,ws)
and thus has limited correlation with the other filters.
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Figure 2.4: Illustration of the distribution and size of the transfer func-
tions of the Gabor filter bank filters. Each circle/ellipse corresponds to one
Gabor filter and is centered on its center frequency. The circles/ellipses
mark the —1 dB level of the filters. With the exception of filters on the
azxis, the relation between the center modulation frequency and the band-
width of its pass-band is proportional. Since only the real part of the filter
output is considered for feature extraction, centrally symmetric filters
yield identical outputs. Therefore, only the filters that correspond to the
filled circles/ellipses are used for feature extraction.
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Figure 2.5: Cross-section along the spectral and the temporal axis of
the modulation transfer space showing the gains of the individual transfer
functions. The width of a filter w is proportional to the center modulation
frequency w and anti-proportional to the number of half-waves under the
envelope v, and is indicated here for the highest modulation frequency.
The distance to the point where two adjacent filters have equal gains
(marked for the filter with the highest modulation frequency with an x) is
proportional to the width and the distance factor d. Note that the distance
parameter d also controls the overlap between adjacent filters. In the
upper panel dy is chosen 0.3, where in the lower panel d,, is 0.2.
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Figure 2.5 also explains the meaning of the parameters of the GBFB.
The upper and lower bounds for the modulation frequencies are given
by w™ and w™™. The width of a filter w is proportional to the center
modulation frequency w and anti-proportional to v, which results in
constant-Q filters. The distance to the point where two adjacent filters
have equal gains (marked with an x) is proportional to the width and the
distance factor d. This factor is used to adjust the overlap of adjacent
filters, with small values for d resulting in a large overlap and with
d =1 corresponding to a coincidence of the first zeros of adjacent filters.
The redundancy of the filter outputs due to their overlap can thus be
controlled by the distance parameter d.

The modulation frequencies (wy,,wy) can assume positive or negative
values. The signs determine the spectro-temporal direction the filter is
tuned to. Filters with only one negative modulation frequency correspond
to rising spectro-temporal patterns, while other filters correspond to
falling spectro-temporal patterns. Since the feature extraction uses the
real part of the filter outputs, only filters with positive modulation
frequencies and their symmetric versions with one sign inverted are
considered, as inverting both signs would yield identical filters. This
relation is illustrated in Fig. 2.4. Only the filters that correspond to the
filled circles/ellises are used. The corresponding filters are depicted in
Fig. 2.6.

2.2.1.2 Selection of representative frequency channels

When using the filter output of all 41 filters, the resulting feature vector
is relatively high-dimensional with 23 (frequency channels) x 41 (filters).
We reduce the number of feature components by exploiting the fact that
the filter output between adjacent channels is highly correlated when the
filter has a large spectral extent (cf. Fig. 2.2). Since highly correlated
feature components can result in reduced ASR performance (especially
when only a small amount of training data is available), a number of
representative channels is selected by subsampling the 23-dimensional
filter output for each filter. The central channel, corresponding to about
1kHz, is selected for all feature vectors because the most important cues
for ASR are more likely to be found in the center rather than at the edges
of the spectrum. Additionally, channels with an approximate distance of
a multiple of 1/4 of the filter width to the center channel are included.
The value 1/4 is motivated by the sampling theorem in the same way as
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Figure 2.6: Real part of the 41
Gabor filters used for the Gabor
filter bank feature extraction in
time-frequency domain. Black
and white shading corresponds to
negative and positive values, re-
spectively.
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the minimum window overlap that is needed in a spectrogram for perfect
reconstruction.

For filters with the lowest spectral extent, all 23 components are
selected for the feature vector, while for the largest filters only a single
component (the central frequency channel) is kept. An example with
three selected channels is shown in Fig. 2.2. This selection scheme reduces
the filter bank output to 311 dimensions, which is referred to as GBFB
features. Alternatively, a principal component analysis (PCA) may be
applied to the full filter bank output, which has the same effect as the
channel selection (i.e., the decorrelation of feature components, and the
reduction of dimensionality). We therefore test the application of PCA
to the filter bank output and compare the results to the proposed scheme
of channel selection.

2.2.1.8 Implementation

The calculation of GBFB features results in higher computational load
compared to standard front-ends (by a factor of 80 compared to MFCC
features), which may be an issue on small-footprint systems. However,
GBFB feature calculation can be performed in real-time on a single-core
standard PC, and with the current development of dual- and many-core
processors, considerable speedups can be achieved by parallelizing the
2D convolutions of the filters. A reference implementation of the GBFB
feature extraction in MATLAB is available online!.

2.2.2 Experiments

Before describing the experiments with the Gabor filter bank, the Aurora 2
framework, the automatic speech recognition framework that is used in
all of the following experiments in this section to determine performance
and robustness, is introduced.

2.2.2.1 Aurora 2: Digits in noise recognition task

To evaluate robustness against extrinsic variability the Aurora 2 frame-
work is used (Pearce and Hirsch, 2000). It consists of the Aurora 2
speech database, a reference feature extraction algorithm (MFCC), a
recognizer setup [Hidden Markov Toolkit (HTK) (Young et al., 2001)],

LURL: http://medi.uni-oldenburg.de/ GBFB
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and rules for training and testing. The recognition task is the classi-
fication of connected digit strings with artificially added noise. The
database contains digits spoken by native English speakers and everyday
noise signals recorded at 8 different sites (subway, babble, car, exhibition,
restaurant, street, airport, trainstation). The test set consists of digits
with noises added at different SNRs ranging from 20dB to —5dB. The
standard features used in the Aurora 2 framework are MFCC features
with their first and second discrete derivative. For speech data modeling
the HTK recognizer employs Gaussian Mixture Models (GMMs) and
Hidden Markov Models (HMMs).

In the Aurora 2 framework, two training and three test conditions
are defined: Clean training uses only clean utterances, while for multi-
condition training a mixture of noisy (subway, babble, car, exhibition)
and clean digit strings is used. Test set A contains noises also used for
training, while for test set B unknown noise types (restaurant, street,
airport, station) are used. Test set C contains samples that have been
filtered with a different transfer function than the samples of test set A,
B, and the training data to simulate a change in communication channel
properties.

The HMM back end is configured according to the Aurora 2 guidelines
for all feature types: The number of HMM states per word is 18, the
number of Gaussian mixtures per state is three; an additional tuning
of the back end is not performed. Although tuning might improve
results especially when the feature dimension strongly differs from the
dimensionality of baseline features, we keep the parameters for reasons of
comparability with other studies that use the Aurora 2 framework. For
all features the number of time frames is kept constant, because skipping
a few frames at the beginning and the end of the utterances improves
the performance as it narrows the region to where speech occurs.

The experiments are carried out with different feature types to compare
their robustness with respect to the effect of the mismatches between
the training and the test data, represented by test sets A, B, and C.
The results obtained with the Aurora 2 setup consist of the results for
multi-condition and clean training. Word recognition accuracies (WRA)
in percent are calculated for each noise condition and for each signal-to-
noise ratio (SNR) separately. We also present the relative reduction of the
word error rate (WER), which is calculated by determining the relative
reduction of error WER =1 — WRA for each SNR/noise condition (with
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Table 2.1: GBFB parameter values used for feature extraction in compar-
ison with values derived from parameters of the baseline features. Spectral
modulation frequecies wy are reported in cycles per channel, and temporal
modulation frequencies w, are reported in Hz.

Parameters (or their approximated analogues)
Features wkmi" wp ™ wmin - ymax g, Un d dn
GBFB 0.0254 0.2500 4.38 25 3.5 3.5 0.3 0.2
MFCC WI007 |~ 0.022 ~ 0.28 0.0 50 1-13 =1-3 =~0.13 -
RASTA-PLP - - =26 =20 - - - -

SNRs ranging from 0 to 20 dB) and averaging over those improvements.
The average relative improvements of each noise condition and of test set
A, B, and C are calculated to differentiate the effect of different types of
mismatches between training and test data. Furthermore, the average
word recognition accuracy and the relative improvement for each SNR is
calculated.

2.2.2.2 GBFB parameters

This section describes how several of the parameters of the filter bank were
chosen. We also compare this choice to the corresponding parameters of
the baseline features. Given the structure of the filter bank (that defines,
for example, the position of filters in temporal and spectral dimension
given a spacing between those filters), we are left with eight parameters
that need to be specified: The lowest and highest temporal and spectral
modulation frequencies (W™, wp®*, w WM™y the number of periods
used for the filters (v, 1), and the overlap of adjacent filters (dg, d,,). The
initial values for these parameters are chosen based on the corresponding
values of the baseline features (cf. Table 2.1). For instance, the spectral
modulation frequencies associated with the baseline MFCCs range from
0.022 to 0.28 cycles/channel, and the parameters for GBFB features
were chosen accordingly. The same is true for the temporal modulation
frequencies that are relevant in RASTA-processing of signals. Further
optimization was carried out by performing a series of ASR experiments
varying the parameters one after another on the Aurora 2 task, finding
the parameters that result in best overall performance. The optimization
was carried out with a fixed phase setting of (¢ = 0), because this way

min
n b
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the maximum amplitude of the filters coincides with the center of the
filter independently of its modulation frequency. The parameters were
not optimized in any particular order which could have led to finding a
local optimum in the parameter space.

To test if GBFB features are overfitted to the Aurora 2 task by the
selection of a specific set of parameters, variations of all parameters to the
best performing set are evaluated. From the default set of parameters in
Table 2.1, each parameter is set to different values, covering a wide range
of the plausible parameter space. The selection of frequency channels
(Sec. 2.2.1.2) was not optimized. Instead we apply the outlined scheme to
the full output of the filter bank, and compare the results to transforming
the full output with a PCA. The results are presented and discussed in
Sec. 2.2.3.1.

2.2.2.8 Importance of GBFB phase information

From the output of the Gabor filter bank, either the real or imaginary
part, or the absolute values may be used. Using the imaginary part
of the output is equivalent to choosing the parameter ¢ = 7/2, and
effectively using the filters as edge detectors of spectro-temporal events.
The absolute values of the output are less sensitive to the exact spectro-
temporal location. The phase of the Gabor filters does not matter in this
case. To test the importance of the phase information of the filter bank
output for robust ASR the performance of the real part, the imaginary
part and absolute values of the filter output is compared on the Aurora 2
task. The results are presented and discussed in Sec. 2.2.3.2.

2.2.2.4 Relative importance of specific modulation frequencies

In order to evaluate the importance of specific modulation frequencies for
ASR, a band-stop experiment is performed that quantifies the contribution
of specific combinations of spectral and temporal modulation frequencies
(Wi, wr) to the overall ASR performance. For this evaluation, the feature
components associated with a specific modulation frequency are removed
from the output of the Gabor filter bank. This approach results in
41 different reduced filter sets. Since the number of center frequencies
associated with a specific spectro-temporal modulation frequency varies
(cf. Sec. 2.2.1.2), the number of dimensions removed from the GBFB
output ranges from 0 to 22. When the accuracy decreases when omitting
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filters with a particular modulation frequency, these filters are likely to
extract relevant information that is not covered by the remaining Gabor
filters. On the other hand, if the accuracy increases when filters are
omitted, this indicates that the filters capture information that is either
covered by the remaining filters or not relevant for this specific speech
recognition task.

The importance of the filters is evaluated with the Aurora 2 task, since
this speech material is expected to exhibit a more natural distribution of
temporal modulation frequencies compared to the very short utterances
from the OLLO database. The Aurora 2 recognizer is trained and tested
with each reduced feature representation. The results are presented and
discussed in Sec. 2.2.3.3.

2.2.3 Results and discussion
2.2.8.1 GBFB parameters

Overall recognition performance in % WRA and % relative reduction of
the WER over the MFCC WI007 baseline for variations of the GBFB
parameters of Table 2.1 are presented in Table 2.2. The recognition
performance for the GBFB features with altered parameters changes
compared to the original set. For some parameters the best values are
different for clean and multi-condition training. Hence, the set of parame-
ters that is used for feature extraction is a trade-off between performance
for clean training and performance with multicondition training and each
could be improved further by selecting different parameters. With many
of the changes to the original parameter set, the GBFB features still
improve the MFCC WI007 baseline. Some parameters affect more the
overall performance, some affect more the relative improvement over the
baseline, but there is no clear trend.

The presented results were obtained by selecting frequency channels
from the filter output as described in Sec. 2.2.1.2. In order to evaluate if
a decorrelation and dimension reduction with a PCA should be preferred
over channel selection, we apply a PCA either to the full filter bank
output (i.e., channel selection is not performed) or the 311-dimensional
GBFB features. In each case, the transformation statistics is obtained
from the corresponding (clean or multi-condition) training material, and
the feature dimension is reduced to 39 (the dimension of the baseline
features). From each dimension of the data the mean is removed and
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Table 2.2: Overall word recognition accuracies (WRA) and relative
reduction of word error rates (relative improvement) compared to the
MFCC baseline with clean and multi condition training on the Aurora 2
task for various modifications to the GBFB parameters.

Parameter Vi Vn
Values 2.5 3.0 4.0 4.5 2.5 3.0 4.0 4.5
clean 56.7 63.0 68.2 70.0| 69.6 68.6 62.6 61.2
WRA [%] multi| 86.4 88.1 86.5 &87.3 83.3 86.7 87.6 87.0
Rel. Tmp. [%] clean | —18.8 14.5 33.9 37.7| 30.8 33.0 14.3 10.0
’ b 17 multi| —2.8 18.6 9.2 5.27|—-48.0 -—-2.2 134 10.2
Parameter di dn
Values 0.1 02 04 0.1 0.3 0.4
clean 63.6 65.1 67.4 65.3 67.0 64.8
WRA [%] multi 87.1 87.8 87.9 87.8 87.5 84.6
Rel. 1 [7] clean 22.7 27.0 28.9 28.1 294 11.4
ek P O lti 12.0 14.0 125 175 11.4 —17.7
Parameter w1077 wi'™* [Hz|
Values 18.75 12.5 18.75 12.5
clean 62.1 61.9 69.3 69.0
WRA [%] multi 86.8 85.0 87.5 88.2
clean 16.0 14.2 34.2 33.4
Rel. Tmp. [%] | i 3.9 ~5.0 7.9 7.4
Parameter wp™ 10772 wp™ [Hz]
Values 1.9 3.8 7.61 219 3.5 8.75
clean 66.2 61.4 59.0 67.8 65.5 65.7
WRA [%] multi 88.1 86.5 &89.3 88.9 88.7 &87.6
clean 28.4 12.0 —8.3 35.0 28.2 26.3
Rel. Tmp. [%0] |1 166 6.1 24.1 105 17.2 155

the variance is normalized before calculating the PCA coefficients. The
results are shown in Table 2.3.

The application of a PCA to the full filter bank output results in
recognition rates below the GBFB features and the MFCC baseline. When
a PCA is applied to the GBFB features with representative channels, the
absolute score for clean training is improved, whereas multi-condition
results are better with GBFB features. The relative improvements
over the baseline are slightly higher with the original GBFB approach.
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Table 2.3: Comparison of GBFB features that incorporate the selection
of frequency channels from the filter output (GBFB), processing the full
filter bank output with a PCA (§8¥B and PCA) and application of a PCA
to the GBFB features (GBEFB and PCA). The recognition performance is
presented in word recognition accuracies in % and as relative improvement
over the MFCC baseline for clean (c) and multi (m) condition training.

Method GBFB [GBFB and PCA [$5FE and PCA
PCA Traindata - | clean multi| clean multi
c 66.2| 69.6 64.5| 56.5 45.4
WRA [%] m| 88.1| 829 84.6| 85.0 86.2
c| 284| 283 —23.6|—-28.6 —79.0
Rel.lmp. [%] | | 16| 473 142 -141  —9.2

We therefore argue that the direct use of GBFB features should be
preferred over PCA-transformed features, since GBFB features are easier
to calculate, produce slightly better results on average, and the physical
meaning of feature components is retained (i.e., each feature component
is associated with a modulation frequency, which enables experiments
such as the evaluation of the contribution of such physical parameters to
ASR).

The results of the parameter variation and the PCA show that the
feature extraction can be optimized for a specific condition. For multi-
condition training for example, even less robust patterns may serve for
the recognition, as their uncertainty is known. These patterns could
be matched by Gabor filters with diverse shapes. In this sense, the
GBFB structure limits the fitting to a specific task by greatly reducing
the degree of freedom of the feature extraction in contrast to a set of
independent Gabor filters. The GBFB features project the log Mel-
spectrogram to a over-complete basis of a subspace of the log Mel-
spectrogram. The sub-space is limited by the lower and upper bounds for
the modulation frequencies (W™ to w® and w™™ to wma). Its degree
of over-completeness is adjusted by the distance parameter d and the
shape of the basis functions is determined by v.

It is likely that for different tasks different sets of parameters are
optimal, as it is also the case with traditional features. However, we
found that none of the parameters of this very generic projection is
critical to outperform the MFCC baseline. Nonetheless, ASR systems are
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Table 2.4: Average word recognition accuracies (WRA) and relative
reduction of word error rates (relative improvement) compared to the
MFCC baseline with clean (c¢) and multi (m) condition training on the
Aurora 2 task for the real part, the imaginary part and the absolute values
of the GBFB features.

Modification None (real) Imaginary Absolute
¢ 66.2 67.0 48.8
WRA [7] m 88.1 87.8 81.8
c 28.4 31.6 —59.7
Rel. Imp. [%] 16.2 107 —422

non-linear and complex so that the front end and the back end cannot
be judged independently. Back ends make strong assumptions about the
feature’s statistical characteristics, which lead to degraded recognition
performance if ignored. A remaining question is if the improvements
made with GBFB features for the Aurora 2 task will translate to other
ASR setups. For that reason the GBFB features that are adapted to work
well with the GMM/HTK back end of the Aurora 2 task are evaluated
on another recognition task with a different back end in Sec. 2.3.

2.2.3.2 Importance of GBFB phase information

Overall recognition performance in % WRA and % relative reduction of
the WER over the MFCC WI007 baseline for the real part, the imaginary
part and the absolute values of the GBFB features are presented in
Table 2.4. The accuracies obtained with the real and imaginary part are
in the same range, whereas the performance with absolute values (for
which the location of spectro-temporal events is smeared out) is reduced
considerably. This indicates that phase information is an important factor
for ASR, and should be considered in spectro-temporal feature extraction.
Since the real-valued filter output performs slightly better than features
based on imaginary filters on average, we use the real output for ASR
experiments.
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Figure 2.7: Differences in overall accuracy on the Aurora 2 digit recog-
nition task when omitting the output of filters with a particular spectro-
temporal modulation frequency for multi and clean condition training.
The difference in accuracy is encoded in grayscale and displayed at the
position of the corresponding center modulation frequency of the omitted

filter. Filters that are not used for feature extraction are marked with an
X.

2.2.3.83 Relative importance of specific modulation frequencies

In this section, the digit recognition performance is determined based on
reduced filter sets, for which a spectro-temporal modulation frequency
is omitted as described in Sec. 2.2.2.4. The aim of this experiment is to
estimate the relative importance of specific modulation frequencies. Fig-
ure 2.7 shows the difference between the recognition scores obtained with
the original and the reduced features. Therefore, low values correspond
to filters with a relatively high contribution to the recognition scores.
The patterns observed in Fig. 2.7 show a symmetry with respect
to upward and downward filters (i.e., those with negative and positive
modulation frequencies, respectively). On average, filters tuned to upward
spectro-temporal patterns and filters tuned to downward spectro-temporal
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patterns appear to be equally important for the recognition with clean
training. For multi-condition training the effect of omitting a filter is
smaller (Fig. 2.7, right), but symmetry of upward and downward filters is
not affected. The most important feature is the output of the DC filter,
which encodes the level of the recording averaged over about 300 ms.
The DC feature may be seen as a simple voice activity detector, and its
information is not encoded in any of the other feature channels, as these
do not have a DC component. Its exclusion reduces the average word
recognition accuracy by about 4 percentage points, with multi-condition
training it causes a drop by approximately 0.6 percentage points. The
most important modulation frequency belongs to the purely spectral
filter (w, = 0Hz) with the highest modulation frequency (wy = 0.25
cycles/channel). Tt accounts for the finer spectral structure of the log
Mel-spectrogram. We assume that this is the filter that best extracts
information about voicing, as voicing features are represented by localized
patterns that usually do not exceed two frequency channel and do not
exhibit strong temporal changes.

Several filters have a detrimental effect on the overall performance,
since their removal from the feature vector results in an increase of
recognition performance: Omitting the filters with the highest modulation
frequencies (w, = £0.25 cycles/channel and w,, = 25 Hz) improves the
recognition performance by about 2 percentage points with clean training.
The spectral filter (w, = 0Hz) with the lowest modulation frequency
(wr, = 0.03 cycles/channel) also has a detrimental effect. This filter
accounts for the very coarse spectral shape of the log Mel-spectrogram
averaged over about 300 ms. It extracts mainly information about the
spectral color of the communication channel. The improvement in overall
scores upon deletion of specific components indicates that feature selection
may further improve the recognition accuracy.

Kanedera et al. (1999) found that temporal modulation frequencies
below 2 Hz and above 16 Hz may be detrimental for specific ASR tasks.
The temporal modulation center frequencies used for the filter bank
range from 6.2 Hz to 25 Hz and are subdivided into spectro-temporal
upward and spectro-temporal downward filters. With GBFB features, an
upper limit of about 18 Hz (cf. Table 2.2) seems to improve performance
with clean condition training from 66.2% to 69.3% overall but reduce
performance with multi-condition training from 88.1% to 87.5%. The
range of modulation frequencies used with GBFB features is higher than
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the range found by Kanedera et al. (1999). Some temporal modula-
tion frequencies are only beneficial in combination with certain spectral
modulation frequencies. Nemala and Elhilali (2010) found temporal
modulation frequencies from 12 Hz up to 22 Hz to be useful for robust
speech /non-speech recognition in an experiment that considered spectral
and temporal modulation frequencies. The range of modulation frequen-
cies used with the GBFB is in line with these findings. It is possible that
an interaction between spectral and temporal modulation frequencies
results in a shift of the specific frequencies important for ASR.

The most frequent temporal modulation frequency in speech is 4 Hz,
but it was not found to be of particular importance for the recognition
of connected digits that spectro-temporal filters tuned to 4 Hz existed at
the feature level. This does not mean that it is of no importance at all,
since temporal modulation frequencies below 6.2 Hz are captured by the
purely spectral filters and the back-end models changes of this rate. An
example for such a filter is the DC filter that changes with a temporal
rate of up to about 4Hz (cf. filter transfer function in Fig. 2.5) and plays
an important role.

Another factor that might affect the overall recognition accuracy is
the number of individual feature components associated with a spectro-
temporal modulation frequency: The results of the filtering process is a
spectro-temporal output with 23 frequency channels; in most cases, not
all of these channels are included in the feature vector to avoid a high
redundancy of feature components. The number of selected channels
ranges from 1 (for low values of wy) to 23 (for high values of wy). Since
modulation filters are disregarded in the band-stop experiment, the
number of components ranges from 288 to 310, which might have an
effect on the overall performance.

2.3 ROBUSTNESS OF THE GABOR FILTER
BANK FEATURES

In this part of the study the Gabor filter bank features are compared
to several traditional feature extraction schemes in terms of robustness
against extrinsic and intrinsic variability of speech. It is structured as fol-
lows: First, in Sec. 2.3.1 the traditional feature extraction schemes which
serve as reference are introduced. Then, in Sec. 2.3.2 the experiments
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used for evaluation are presented. Finally, the results are presented and
discussed in Sec. 2.3.3.

2.3.1 Baseline features

Standard Mel-frequency Cepstral Coeffient (MFCC) (Davis and Mermel-
stein, 1980) features are used as a reference. MFCCs are calculated by ap-
plying a discrete cosine transform to spectral slices of the Mel-spectrogram.
The coefficients, encoding the spectral envelope of quasi-stationary speech
segments, are then used as features for ASR. The Rastamat toolbox for
Matlab (Ellis, 2005) is used to generate 13-dimensional MFCC features
(MFCCs), which resemble the features obtained with the HTK package
(Young et al., 2001). Adding the first and second discrete derivative
results in 39-dimensional features. As a second reference, cepstral mean
subtraction (CMS), a blind deconvolution technique which Schwartz et al.
(1993) found to improve recognition accuracy and robustness to changes
of communication channel characteristics is applied to the MFCCs; these
features are referred to as MFCC CMS. The baseline MFCC features on
the Aurora 2 task from Pearce and Hirsch (2000) are referred to as MFCC
WI007. As a third reference, 8th order Perceptual Linear Prediction
(PLP) (Hermansky, 1990) features that have undergone additional modu-
lation band pass filtering, are calculated with the Rastamat toolbox. The
filtering emphasizes the relative differences between spectra, hence, these
features are referred to as RASTA-PLP features (Hermansky and Morgan,
1994). RASTA-PLPs have been reported to be robust, especially in the
presence of channel distortions (Hermansky and Morgan, 1994). The
addition of delta and acceleration coefficients results in 27-dimensional
feature vectors.

2.3.2 Experiments

In this section, the experimental setups that are employed to evaluate
the robustness against extrinsic and intrinsic variability in speech are
presented.

2.8.2.1 Effect of extrinsic factors (Aurora 2 and Numbers95)

For evaluation of robustness against extrinsic variability the Aurora 2
framework (Sec. 2.2.2.1) is used. Since several parameters of the GBFB
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features were optimized with the Aurora 2 framework, additional ex-
periments are performed with a different speech corpus and a different
state-of-the-art back end. The aim of this experiment is to check whether
the results for GBFB features on the Aurora 2 task translate to a different
ASR setup without further adaptation. The speech database chosen was
NUMBERS95 (Cole et al., 1995) that contains strings of spoken numbers
collected over telephone connections. The data consists of zip codes and
street numbers, extracted from thousands of telephone dialogues. In ad-
dition, this corpus contains data from male and female American-English
speakers of different ages. Following the experimental setup from Zhao
and Morgan (2008), the corpus was divided in a training set (with 3590
utterances which approximates to 3h of data) and a testing set (1227
utterances or 1h of data). There are two experimental conditions for the
testing set; one contains all testing-set utterances in clean condition; the
other contains the utterances in noise-added conditions. The noise-added
test set is created using the principles delineated in the Aurora 2 task
(Pearce and Hirsch, 2000) using noises of different signal-to-noise ratios
from the NOISEX-92 collection (Varga and Steeneken, 1993).

Features were mean and variance normalized and used to train the
GMM/HMM recognizer Decipher developed by Stanford Research Inter-
national (SRI). This state-of-the-art system is used to compare spectro-
temporal and other features against a competitive baseline. Gender-
independent, within-word triphone HMM models were based on a phone
model comprising 56 consonants and vowels. Parameters were shared
across 150 states clustered with a phonetic decision tree, and a diagonal-
covariance GMM with 16 mixture components modeled the observation
distribution. Maximum Likelihood estimation was used to estimate the
parameters. Features are used either as direct input to Decipher, or
processed in a Tandem system (Hermansky et al., 2000) that uses a multi-
layer perceptron (MLP) to estimate the phone posterior probabilities
for each feature frame. The posteriors are then log-transformed and
decorrelated with a principal component analysis, in order to match the
orthogonality assumption of the HMM decoder. For experiments that
employ MLP-processing, the training of the neural net was carried out
with phonetically labeled digit sequences from Numbers95 training set.
The phoneme labels were obtained from forced alignment. The MLP
used 9 frames of temporal context which resulted in 9 x 331 = 2927
input units, 160 and 56 units were used for the hidden and output layer,
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respectively. For the last set of experiments, 13-dimensional MFCC
features with delta and double-delta features were appended to the MLP-
transformed Gabor features, resulting in 71-dimensional feature vectors,
since this has been reported to increase accuracies in other research
that used spectro-temporal features as input to ASR (Zhao and Morgan,
2008). The results for the MFCC, MFCC CMS, RASTA-PLP and GBFB
features are presented, compared and discussed in Sec. 2.3.3.1 on the
Aurora 2 task, and in Sec. 2.3.3.2 on the Numbers95 task.

2.8.2.2 Effect of intrinsic factors (OLLO framework)

To evaluate the robustness against intrinsic variability in speech, an
experimental framework that aims at the analysis of factors such as
speaking style, effort, and rate is proposed. In this framework the
sensitivity of different feature types against such variabilities is evaluated
by performing experiments with a mismatch between the training and test
data. The degradation in performance quantifies the robustness against
a specific mismatch. A statistical test, McNemar’s Test as suggested
by Gillick and Cox (1989), is employed to test the results for significant
differences between the feature types.

The speech database used for this framework is the Oldenburg Logatome
Corpus (OLLO) (Wesker et al., 2005), which consists of nonsense vowel-
consonant-vowel (VCV) and consonant-vowel-consonant (CVC) logatomes
with identical outer phonemes (e.g., [p u p] or [a p a]). The database
contains 150 different logatomes (70 VCVs and 80 CVCs), spoken by
German speakers in different speaking styles. During the recordings,
the speakers were asked to produce the utterances normally, with varied
speaking effort (loud and soft speaking style), varied speaking rate (fast
and slow), and with rising pitch, which is referred to as category “ques-
tioning”. Three repetitions of each logatome in each speaking style were
collected in order to obtain a sufficient amount of ASR training data.
This resulted in 150 (logatomes) x 6 (speaking styles) x 3 (repetitions)
= 2700 utterances per speaker.

For the OLLO framework that we propose to evaluate robustness
against intrinsic variability in speech, speech data from ten speakers
without dialect is used. Six training and six test conditions are defined,
which correspond to the various speaking styles contained in the OLLO
corpus (fast, slow, loud, soft, questioning and normal). Training and
testing on each condition resulted in 36 individual experiments. The
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experiments are carried out using a 10-fold cross validation, i.e., speech
signals of nine speakers are used for training, and the data of the remaining
speaker is used for testing. This procedure is repeated for all speakers,
and the individual scores are averaged.

As for the Aurora 2 framework, results for MFCC features serve as
baseline. These are fed to an HMM using HTK (Young et al., 2001).
The HMM is configured as word recognizer, i.e., the classification task
is to make a 1-out-of-150 decision based on a dictionary that contains
the transcription of the 150 logatomes. The number of HMM states per
logatome is set to 16, which was found to be the optimal value in pilot
experiments for MFCC features. Other parameters, such as the increase
of Gaussian mixtures during training, are copied from the Aurora 2 setup.
Additionally, performance of MFCC features with CMS and RASTA-PLP
features is evaluated. Since the PLP part of this algorithm accounts
for the reduction of speaker-dependent information it is interesting to
see whether it improves the robustness against intrinsic variability. The
results are presented in Sec. 2.3.3.3.

2.3.3 Results and discussion
2.8.3.1 Robustness against extrinsic variability (Aurora 2)

This section presents the results of recognition experiments with GBFB,
MFCC, MFCC CMS and RASTA-PLP features that are carried out
with the aim of quantifying the robustness against extrinsic variability
(additive noise and channel distortions) on the Aurora 2 task (employing
the HTK recognizer).

Absolute results for the various feature types are presented in Table 2.5.
In terms of average word recognition accuracies (WRAs) GBFB features
outperform MFCC and RASTA-PLP features with clean (multi) con-
dition training by 8 (1) percentage points and 2 (3) percentage points,
respectively. With cepstral mean subtraction MFCC features achieve a
slightly higher average WRA than GBFB features. The overall relative
improvement over MFCC WI007 standard features, which is calculated
as described in Sec. 2.2.2.1 is presented in Table 2.6. GBFB features
improve the WER of standard MFCC WI007 features by more than 16%
on average with multi condition training and by 28% on average with
clean condition training. The use of MFCCs with CMS improves the
baseline by 12% on average with multi condition training and by 27%
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Table 2.5: Recognition accuracies in percent for GBFB, MFCC WI007,
MFCC CMS, and RASTA-PLP features on the Aurora 2 task for different
noise conditions, average word recognition accuracies for each test set
and standard deviation over all noise conditions. The average values
presented here are obtained by averaging over SNRs from 0 dB to 20 dB.

Test set A Test set B Test set C

Sub. Bab. Car Exh.|Res. Str. Air. Sta.|Sub.m Str.m| Avg. rms

M mul.| 89.0 88.0 86.1 88.1/90.0 88.2 90.7 85.9 88.8 86.3| 88.1 1.62
[, avg. 87.8 88.7 87.6

g cle. |70.9 67.0 60.0 64.3/69.2 64.5 68.9 65.0{ 68.8 63.4| 66.2 3.33
avg. 65.6 66.9 66.1

o mul.| 87.5 84.6 83.7 83.7|83.8 84.5 85.6 82.1| 87.1 84.3| 84.7 1.64
— avg. 84.9 84.0 85.7

E cle. |64.3 63.1 59.5 59.9/66.3 63.8 66.4 63.1| 64.5 63.7| 63.5 2.30
avg. 61.7 64.9 64.1

O mul.| 89.1 88.4 86.8 80.0|86.6 87.8 83.3 86.2| 83.5 85.7| 87.0 1.67
O avg. 88.1 87.2 84.6

E cle. |66.7 47.8 58.1 62.3|50.0 60.7 49.6 53.1 65.3 66.7] 58.1 7.40
avg. 58.7 53.4 66.0

g mul.| 90.3 89.8 84.9 88.0/90.0 87.9 91.1 86.7 89.9 87.9/88.7 1.92
% avg. 88.2 88.9 88.9

8 cle. |64.1 67.7 62.2 62.8|71.3 65.6 72.0 67.7 64.2 65.4/66.3 3.35
= avg. 64.2 69.2 64.7

on average with clean condition training. When concatenating GBFB
features with MFCC features from the Rastamat toolbox with CMS
applied, a further improvement of a few percent is achieved, indicating
that these feature types carry complementary information. RASTA-PLP
features outperform the standard MFCC WI007 features by about 14%
with clean condition training, but with multi condition training they
perform 31% worse than MFCCs.

The relative improvements over the baseline for the test sets A, B, and
C are also presented in Table 2.6. In addition to the reference features, the
performance of GBFB features concatenated with MFCC CMS features
is shown. GBFB features outperform the MFCC WI0O07 baseline in
all test conditions (test sets A, B and C). For multi-condition training,
the relative improvements for test set A and test set B are comparable
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Table 2.6: Relative reduction of the word error rate obtained with GBFB,
MFCC CMS, RASTA-PLP features, and with GBFB features concate-
nated with MFCC CMS features compared to the MFCC WI007 baseline
for the test sets A, B and C.

Test, Test Test  Average

set A set B set C over all

4 conditions 4 conditions 2 conditions conditions

clean 22.9 40.6 15.1 28.4

GBFB multi 11.4 15.2 27.7 16.1
oms clean 15.9 45.5 10.9 26.7
MFCC multi 3.6 16.1 19.0 11.6
clean 2.6 31.4 4.0 14.4

RPLP multi —33.3 —40.0 —12.7 —31.9
GBFB clean 26.3 43.8 18.0 31.6
&MFCCOMS ]t 16.7 24.4 33.0 23.0

with improvements of about 13%, which indicates that GBFB features
generalize as well as MFCC features with respect to mismatches in
noise types when training with noisy data. For test set C, the relative
improvement for GBFB features is more distinctive with about 28%.
MFCC features with CMS improve the WIO07 baseline in test set B and
C, i.e., when noise or communication channel characteristics changed
compared to the training data. The improvements with test set C (channel
distortions) for MFCCs with CMS is smaller than with GBFB features.
RASTA-PLP features perform worse than the MFCC WI007 baseline
with multi condition training on all test sets. For test set C (channel
distortions), the difference between RASTA-PLP and MFCC features is
smaller than on test set A and B.

For clean training, the differences between GBFB and MFCC WI007
features are larger compared to multi-condition training with a relative
decrease of the WER, for GBFB features in the range of 15% to 40%.
With MFCC CMS features and clean condition training the improvements
are also larger compared to the multi condition training. The smaller
relative improvements in test set C are a result of the relatively high
performance of the MFCCs (cf. Table 2.5). RASTA-PLP are consistently
better than the baseline for clean condition training, but do not improve
results with multi-condition training.
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The standard deviation of recognition scores for various noise conditions
is reported as a measure for the stability of scores in the last column
of Table 2.5. The results for clean condition training are of special
interest in this case, since they can be interpreted as the robustness in the
presence of unknown noise sources. The standard deviation for MFCCs
(7.4 percentage points) is approximately twice as high as for GBFB and
three times as high as for RASTA-PLP features (3.4 percentage points
and 2.3 percentage points, respectively). This indicates that GBFB and
RASTA-PLP features are less sensitive to mismatches between training
and test data than MFCC features. When applying CMS to the MFCC
features the standard deviation decreases to the level of GBFB features.
For multi-condition training, the standard deviations are smaller than 2
percentage points, with only small differences between the feature types
but MFCCs with CMS, which show a slightly higher standard deviation.

A comparison of the relative improvements of GBFB features over
MFCC features in Table 2.6 with the absolute results in Table 2.5 shows
that the differences between both in terms of WRAs is rather small.
This suggests that the improvements of GBFB over MFCC features are
obtained at high SNRs. This is investigated further by separating the
WRA results by SNRs. The average WRAs for each feature type and for
each SNR are depicted in Fig. 2.8. The ordinate is scaled as a logarithmic
error axis and labeled with the corresponding WRA. The distance of
two horizontal lines corresponds to a halving/doubling the WER so that
the results in terms of relative improvements are projected linearly, i.e.,
they are proportional to the relative improvement of the averages over
all noise conditions.

For all feature types, a strong decrease of the WRA is observed when
the noise level is raised, with 95% WRA for clean utterances to down to
scores below 30% at an SNR of —5dB. The major differences between
the feature types are observed at high SNRs (20dB to 5dB). For clean
training, the decrease in performance is more pronounced than for multi-
condition training. While using noisy training data and testing with clean
utterances results in lower scores compared to clean training, the overall
performance (tested over multiple SNRs and noise types) is improved
with multi-condition training as expected. When training with clean
utterances, RASTA-PLP features outperform the MFCC WI007 baseline
at almost all SNRs, which confirms the observation that RASTA-PLPs are
more robust than short-term spectrum based features in unknown noise
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Figure 2.8: Recognition accuracies in percent for GBFB, MFCC and
RASTA-PLP features at different test SNRs for multi and clean condition
training on the Aurora 2 task. The ordinate is a logarithmically scaled
WER-azis and labeled with the corresponding WRA. The distance of two
horizontal lines corresponds halving/doubling the WER.

conditions (Hermansky and Morgan, 1994). However, for multi-condition
training, which allows the ASR system to adapt to different noise types,
the MFCCs produce higher scores than RASTA-PLPs. GBFB features
improve the scores of MFCC WI007 and RASTA features at almost
all SNRs: The robustness against additive noise is found to be higher
than for RASTA features over a wide range of test conditions (i.e., clean
signals and SNRs from 5dB to 20dB), and additionally are found to
outperform the MFCC WI007 baseline for multi-condition training in
these test conditions. MFCCs with CMS and GBFB features perform
similarly well. However, when testing on clean or low-noise signals with
multi-condition training, GBFBs outperform all feature types.

The average relative improvement of GBFB, MFCC CMS and RASTA-
PLP over MFCC WI007 features depending on the SNR (averaged over
all noise conditions) is depicted in Table 2.7. The results are comparable
to those presented in Fig. 2.8. GBFB features outperform MFCCs at all
SNRs. The best improvements are obtained at SNRs above 0dB SNR,
while at low SNRs the differences are negligible. While RASTA-PLP
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Table 2.7: Relative reduction of the word error rate obtained with GBFB
and RASTA-PLP features compared to the MFCC baseline (averaged over

all noise conditions). Values in the column average are averaged over
SNRs from 20 dB to 0 dB.

SNR [dB] o 20 15 10 5 0 —5| Avg.
GBFB mlt| 239 234 21.0 21.3 135 1.7 18| 162

cn| 270 451 451 349 143 28 15| 284
RASTA- mlt| —274.6 —56.4 —38.5 —31.8 —18.4 —14.5 —3.7|—31.9

PLP cln -3.8 169 284 16.7 4.7 53 39| 144
MFCCCMS mlt —7.6 53 134 130 163 101 29| 11.6
cln 5.5 422 459 299 8.0 76 52| 26.7

features outperform MFCCs with clean training at all SNRs they do
not improve MFCC results when testing on clean data. The relative
improvements for low SNRs (0dB, —5dB) are higher than with GBFB
features but still below 6%. This means that RASTA-PLP and GBFB
features are more robust than MFCCs when the noise signal energy still
is about 5dB below the level of the speech signal energy. When learning
the noise characteristics (multi-condition), GBFB features perform better
and RASTA-PLP features perform worse than MFCCs, with the greatest
differences in relative improvements at high SNRs. MFCCs with CMS
improve the MFCC WI007 baseline at almost all SNRs, with the single
exception of multi-condition training and clean testing. When testing
on clean data GBFB features improve the MFCC baseline by more than
6%, while the baseline was not improved with the other feature types.
For testing on clean speech data, GBFB features improve the baseline by
about 25%.

A 28% relative improvement of GBFB features over the MFCC baseline
is observed when the channel characteristics of training and testing differ.
We assume that MFCCs are stronger affected by such influences since
the spectrogram is integrated over the full bandwidth, which might
be a disadvantage compared to the localized GBFBs. Cepstral mean
subtraction seems to alleviate this disadvantage, but not to the extent
that was observed for GBFB features. Further, considering even higher
frequencies (above 4kHz) could be beneficial with the Gabor filter bank
features. While the MFCC features would change fundamentally, for the
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Gabor filter bank features it would mean an extension to more center
frequencies. This should be evaluated on a suitable task in the future.
GBFB features were shown to perform better in the high SNR range
from 20dB to 5dB than MFCC and RASTA-PLP features and equally
well at lower SNRs (0dB and —5dB) on the Aurora 2 task, which evaluates
robustness of ASR systems against extrinsic variability. GBFB features
also slightly outperform MFCC features with CMS. This suggests that
the physiologically inspired representation of speech signals by GBFB
features is more robust to extrinsic variability than those of MFCCs
and RASTA-PLPs over a wide range of SNRs and is similarly robust
to extrinsic variability as MFCC with CMS. Further, improvements of
about 25% for testing on clean data are observed which points out the
beneficial effect of spectro-temporal information on feature level.

2.8.3.2 Robustness against extrinsic variability (Numbers95)

In this section the results for the NUMBERS recognition task, which
was conducted with the aim of checking whether the results from the
Aurora 2 task translate to a different ASR setup, are presented. Absolute
and relative results obtained on the NUMBERS recognition task with
the SRI Decipher recognizer are shown in Table 2.8. In this scenario,
MFCC and MFCC CMS features perform best, while for GBFB and
RASTA-PLP features relatively high error rates are observed. A possible
reason may be that GBFB features encode up to 400 ms context and
RASTA-PLP features up to 200 ms context, and may thus not be suited
as well as the MFCCs (up to 100 ms context) for triphone based models.

We then tested if mapping the features to phoneme posteriors, which
we assume to be suitable to build phone base models, by means of a
multi-layer perceptron (MLP) improves the recognition performance.
This MLP processing, which was reported to improve results in earlier
studies (Hermansky et al., 2000), almost halved the error rate of GBFB
features without MLP processing for clean testing and also improved
the results with RASTA-PLP features, but the performance was still
below the baseline. Using MFCCs and MFCCs with CMS in conjunction
with MLP processing leads to small improvements when testing on noisy
data, but not for testing on clean data. The results with “long-term
context” features, i.e., GBFB features and also RASTA-PLP to a smaller
extent, improved much more by the MLP processing than the results
with the already well performing “short-term context” features. Another
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Table 2.8: Word error rates for the NUMBERS95 task with SRI’s ASR
system Decipher. Features were either used as direct input to the classifier,
processed with an MLP, or first MLP-processed and then concatenated
with a different feature vector.

Absolute WER Rel. imp.

Feat. Avg. Avg.

dim. | Clean noisy | Clean noisy
MFCC 39 3.7 19.4 - —
MFCCcums 39 3.7 17.8 1.1 8.1
RASTA-PLP 27 6.0 23.2| —59.6 —19.7
GBFB 311 9.1 22.9|—142.3 —16.2
MLP (MFCC) 32 4.0 19.2| -79 1.0
MLP (MFCCcus) 32 3.7 16.9 1.1 127
MLP (RASTA-PLP) 32 5.7 20.8| —51.1 —7.6
MLP (GBFB) 32 4.6 199 —21.9 -26
MLP (GBFB) and MFCC 71 3.3 16.8 10.7 135
MLP (GBFB) and MFCCcums 71 3.2 16.6 15.2  14.1

reason for the high error rate with GBFB features may be the high
dimensionality of the features. While the GMM/HTK back end of the
Aurora 2 framework had no problems with high dimensional features,
the Decipher recognizer may be tuned to the dimensionality of typical
feature types, hence performing better with the low dimensional MLP
processed GBFB features.

The improvements over the MFCC baseline that were observed on the
Aurora 2 task with GBFB features do not translate directly to setups
with different back ends. This is because the back end imposes strong
restrictions upon the statistical characteristics of the used features. These
restrictions depend on many factors like the training material, the acoustic
model type, and the complexity of the recognizer. We assume that the
shorter triphone models of the Decipher back end favor features with
less temporal context compared to the whole word models of the HTK
recognizer on the Aurora 2 task. However, adapting the features to the
restrictions of the back end improves the recognition performance. GBFB
features are long-term context features and seem to work better with
models that can make full use of long-term context (word models).
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The fact that error rates were lower when combining MFCC and GBFB
features for the Aurora 2 task motivated a combination of MLP-processed
features with MFCCs. For this setup, the MFCC baseline is outperformed
by more than 10% (for combinations with MFCCs), and 14 — 15% for
combinations with MFCC CMS. We also tested other combinations (such
as MLP-processed spectral features that are combined MFCCs); however,
none of these yielded results above the baseline.

With the Decipher back end, the baseline was not improved when only
using GBFB features, but when using the features in a Tandem system and
combining them with spectral features, the baseline was outperformed
by 14 — 15%. This result confirms earlier studies that reported an
increase of the robustness of ASR system against additive noise and
channel distortions when using MLP-processed spectro-temporal features
in conjunction with concatenated MFCCs (Meyer and Kollmeier, 2011a;
Zhao et al., 2009). It also supports the hypothesis that MFCCs and
GBFB features encode complementary information that is useful for
robust ASR.

2.83.3.3 Robustness against intrinsic variability

This section presents the results of recognition experiments with GBFB
and baseline features that are carried out with the aim of quantifying
the robustness against variability due to intrinsic sources (arising from
variation in speaking rate, effort and style). The ASR task is to classify
VCV and CVC utterances from the OLLO database, as described in
Sec. 2.3.2.2. The absolute word recognition accuracies are depicted in
Table 2.9. Scores are presented for each combination of training and test
speaking styles, which results in 6 x 6 individual scores per feature type.
RASTA-PLP and MFCC CMS features produce almost consistently worse
scores than MFCC and GBFB features and are therefore not included in
Table 2.9.

When averaging over all scores obtained for mismatched training
and test conditions (off-diagonal elements in Table 2.9), the recognition
scores for GBFB and MFCC features are very similar with 59.3% and
58.8%. RASTA-PLPs produce an average of 55.6% (not shown) and
MFCC CMS features produce an average of 56.4% (also not shown).
All feature types exhibit similar error patterns, which are depicted in
Fig. 2.9. Not surprisingly, the best scores are obtained with matched
condition training. Compared to matched train-test conditions, the word
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Table 2.9: Absolute WRA in percent for GBFB and MFCC features on
the OLLO logatome recognition task. Averages are calculated over
mismatched conditions. Matched conditions are printed in italics and
are not considered for averages.

Train\Test | Fast Slow Loud Soft Quest. Normal Average
Fast 74.0 47.0 62.7 52.6  49.5 72.7 56.9
Slow 45.6 76.7 46.5 66.3 394 69.9 53.5
A | Loud 70.3 56.3 78.7 47.7  50.5 75.6 60.1
E Soft 51.9 64.0 429 74.1 49.1 67.7 55.1
o Questioning | 61.8 65.7 56.0 68.0 78.3 74.9 65.3
Normal 70.7 65.7 64.4 66.5 56.0 81.4 64.7
Average 60.1 59.7 545 60.2  48.9 72.2 59.3
Fast 72.4 522 60.8 49.7 494 72.3 56.9
Slow 51.3 77.5 50.5 66.2  50.0 73.1 58.2
8 Loud 68.6 589 77.1 43.1 525 72.7 59.2
= | Soft 50.1 62.7 319 71.0 45.0 64.1 50.8
= Questioning | 61.0 66.0 54.8 63.9 76.8 72.2 63.6
Normal 70.6 684 61.3 644 56.4 79.9 64.2
Average 60.3 61.6 51.8 57.5  50.6 70.9 58.8

recognition accuracies of the mismatched conditions show a degradation
of about 17 percentage points on average. For MFCCs, the category
“normal” for training yields the highest scores when considering the
average over all six test conditions. For GBFB features, the category
“questioning” for training yields slightly better (0.6 percentage points)
word recognition accuracies than the category “normal”. When using
normally spoken utterances for the training, the reduction in WER is
roughly —70% when testing on mismatch conditions (average over all
feature types).

For the chosen order of sources of variability in Fig. 2.9, a checker
board pattern is observed in the upper left part of each matrix. Rela-
tively high accuracies are obtained for the training-test pairs (fast, loud)
and (slow, soft), which indicates that utterances from these categories
share properties that are embedded in the acoustic models of the HMM
during training. On the other hand, the pairs (fast, slow), (fast, soft),
(loud, soft) and (loud, slow) yield a score that is degraded by about 24
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Figure 2.9: Logarithmic word error rates for different training and
testing conditions on the OLLO logatome recognition task. The colorbar
indicates the corresponding word recognition accuracies. (left) GBFB
features; (middle) MFCC features; (right) RASTA-PLP features.

Table 2.10: Relative improvement of GBFB features over MFCC features
in percent. Scores for matched conditions (diagonal elements of the table,
printed in italics) are not considered for the average values.

Train\Test | Fast Slow Loud Soft Quest. Normal | Average
Fast +6 —11 +5 46 +0 +2 +0
Slow —-12  —4 -8 40 —21 —12 —11
Loud +5 -6 +7 48 —4 +11 +3
Soft +4 +4 +16 +11 +8 +10 +8
Quest. +2 -1 43 +11 +6 +10 +5
Normal +0 -9 48 +6 -1 +8 +1
Average -0 -5 +5 46 —4 +4 +1

percentage points on average (average over all feature types) compared
to the respective matched condition.

While GBFB and MFCC features perform similarly well on average, a
detailed analysis of the recognition results with respect to speaking rate,
style, and effort reveals systematic differences. Figure 2.10 shows in which
particular conditions the differences between MFCC features and GBFB
features are significant, i.e., the p-values are less than 0.01 according to
McNemar’s Test as proposed by Gillick and Cox (1989). The differences
in terms of relative improvement of WER are depicted in Table 2.10.
Only the mismatch conditions (off-diagonal elements) are considered for
the average. These values can be interpreted as the sensitivity of GBFB
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Figure 2.10: Analysis of differences between the feature types according
to McNemar’s Test. Black: Significant differences with p < 0.01; white:
Not significant. (left) Differences between GBFB and MFCC features;
(middle) differences between GBFB and RASTA-PLP features; (right)
Differences between MFCC and RASTA-PLP features.

features (compared to MFCC results), or the robustness against intrinsic
variability.

The results show that on average GBFB features are slightly more
sensitive against such mismatches (with a 0.2% relative degradation when
averaging over all combinations of training and testing). The relative
reduction of the WER with GBFB features compared to MFCCs shows
that MFCCs exhibit a better recognition performance for high and low
speaking rate (categories “fast” and “slow”), while GBFB features are
better suited when the talker changes his speaking effort (categories
“loud” and “soft”). This trend is consistent both for training and for
testing. Interestingly, when the recognizer is trained with utterances
with rising pitch (“questioning”), GBFB feature perform better than
MFCC features (row “questioning” in Table 2.9). On the other hand,
when testing is performed with logatomes spoken as question, this results
in higher scores with MFCC features than with GBFB features (column
“questioning” in Table 2.10).

On average, the performance with MFCC features deteriorates by
about 70% (relative improvement calculated as explained in Sec. 2.2.2.1),
the GBFB features’ performance drops by about 80% when training and
test data categories mismatch. Compared to MFCCs, GBFB features
seem to perform similarly well on average in the tested mismatching
conditions of intrinsic sources of variability. However, they appear to be
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slightly more susceptible to such variations than MFCCs, since they tend
to perform better in matched conditions, which are not considered for
averages.

In the presence of intrinsic variation (measured with the OLLO recog-
nition task, cf. Sec. 2.3.2.2) considerable degradations are observed for
all feature types. Compared to the matched condition scores, the aver-
age relative increase of the word error rate is between 70 and 85% (for
MFCC and MFCC CMS features, respectively). In order to analyze the
robustness against intrinsic factors, the scores obtained with mismatched
training are of special interest. In the presence of variation caused by
intrinsic sources, GBFB and MFCC features exhibit a comparable over-
all performance. However, when individual sources of variability are
considered, the error patterns for both feature types show statistically
significant differences, indicating that these feature types carry — at
least to some extent — complementary information.

Using mismatched conditions in training and testing shows that the
training-test pairs (fast, loud) and (slow, soft) produce relatively high
accuracies. This trend is observed for all feature types. The combinations
(fast, soft) and (slow, loud) on the other hand produce rather low scores.
It may be that these categories share several acoustic properties, since
speakers, e.g., unconsciously increase their speaking effort when asked to
produce an utterance with high speaking rate. Such an interaction might
also explain the high scores for the pair (soft, slow).

GBFB features are observed to perform better than MFCCs when
training on utterances pronounced with rising pitch (category “question-
ing”), but worse when testing on utterances of this category. A possible
explanation for this observation is that GBFB features can account for
spectral details such as pitch information. However, to account for the
larger variability caused by changes in pitch, the according speech data
has to be included in the training material.

For matched training and test conditions, the best average results
are obtained with GBFB features. However, GBFB features are not
found to be more robust than MFCC features against intrinsic variability,
i.e., spectro-temporal information does not seem to improve robustness
against intrinsic variability in general. The differences observed between
the feature types indicate that the information captured in the feature
calculation process is at least partially complementary; hence, the combi-
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nation of these features (e.g., in a multi-stream framework) could result
in an improvement of the ASR performance.

For RASTA-PLP and MFCC CMS features, relatively low scores
are obtained. The fact that both the training and testing with the
OLLO database are performed with clean utterances might explain this
observation for RASTA-PLP, since the Aurora 2 experiment showed that
these features only improved the baseline for additive noise and channel
distortions. Moreover, the calculation of RASTA-PLPs includes temporal
filtering, which might be suboptimal for very short utterances such as
the phoneme combinations used for the OLLO corpus, although GBFB
features also capture temporal information to a comparable extent. For
CMS, an integration over the whole utterance is needed. Maybe the
shortness of the utterances does not allow for a good estimation of the
mean value, thus resulting in a mismatch that deteriorates performance.

2.4 SUMMARY AND FURTHER DISCUSSION

2.4.1 Robustness of GBFB features against extrinsic
variability

The performance of a robust speech recognition system depends on the
interaction of its parts. The results presented in this study show that
improvements over a MFCC baseline can be obtained with physiologically
inspired spectro-temporal features when the back end’s assumptions
about the statistical feature characteristics are met. It can be assumed
that the properties of the Gabor filter bank result in a filter output
with limited redundancy between individual components and mostly
independent features with up to 400 ms of temporal context. Depending
on the task and the back end it may be favorable to apply MLP processing
to the GBFB features in order to meet the back end’s assumptions about
the features. In this case improvements over the unprocessed GBFB
features can be expected, but not necessarily an improvement of a MFCC
baseline.

2.4.2 Complementary information

The experiments show that the combination of MFCC CMS and GBFB
features, possibly processed with an MLP, results in a further increase
of recognition performance. Presumably, there most possibly is a part
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of information important for ASR represented in a better suited form
by MFCCs than by GBFB features and vice versa. This also means
that neither MFCC nor GBFB features are sufficient to extract all the
characteristics of human speech.

FEarlier studies using spectro-temporal features for ASR presented
evidence that MFCCs and spectro-temporal features carry complementary
information (Meyer and Kollmeier, 2011a; Zhao et al., 2009). This finding
is also supported by the experiment that analyzed the sensitivity against
intrinsic variation, since the performance obtained with MFCC and GBFB
features significantly differ in many conditions. For example, cepstral
features are found to be better suited for recognition of fast and slowly
spoken utterances, while GBFB features produce better results when
the speaking effort is varied. The results of the multi-stream experiment
carried out on the Aurora 2 task, which improves performance over
GBFB and MFCC CMS features by concatenating them also supports
this finding.

2.4.3 Future work

The Gabor filter bank could be used for speech analysis in order to eval-
uate the importance of modulation frequencies: The integration of the
outputs of the localized Gabor filters results in a spectro-temporal repre-
sentation resembling the original spectrogram. When isolated spectro-
temporal components are removed from the filter bank, their contribution
to speech recognition may be assessed in tests with human listeners (re-
sembling the ASR band-stop experiments carried out in this study).
The results investigating intrinsic variation of speech show that spectro-
temporal and purely spectral ASR features produce significantly different
results depending on the specific source of variability. Further, small
improvements over using GBFB features are achieved when combining
them with MFCC CMS features. Based on these observations, it may
be worthwhile to further investigate methods to combine information
from different feature streams, thereby exploiting the complementary
information of the feature types. The output of the Gabor filter bank
also contains purely spectral output, which may not be required (or even
detrimental) when combined with MFCC features, which may also be
subject of future investigations. Alternatively, the purely spectral output
of the GBFB might be modified to closely resemble the extraction of
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cepstral features, which would effectively integrate the informational
content of MFCCs into Gabor features.

The GBFB features extend naturally to higher frequency bands. It
should be evaluated if this behavior has an advantage over MFCC features
that always project the whole bandwidth of the log Mel-spectrogram.

The parameters of the Gabor filter bank (i.e., the optimal number
of oscillations under the envelope) are optimized on the Aurora 2 digit
recognition task, but also show good performance on the OLLO logatome
recognition task. However, when changing the back end, the GBFB
features do not necessarily meet the assumptions made about them and
can perform worse than traditional features. In this case the robustness of
these systems may be improved by processing the GBFB features with a
MLP and concatenating MFCC features. This suggests that the proposed
GBFB features, possibly with MLP processing, may be applicable to a
wider range of ASR recognition tasks with the same parameters, which
should be assessed in future experiments. To further validate the findings,
GBFB features should be tested on a large vocabulary speech recognition
task.

It seems that not all of the 311 filter outputs extract useful information.
Especially the highest spectro-temporal modulation frequencies seem
to have a negative effect on the recognition performance. It could be
that covering a rectangular region of the modulation domain is not
optimal. Hence, feature selection techniques could further improve the
performance.

2.5 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— The use of spectro-temporal Gabor filter bank (GBFB) features
increases the robustness of ASR systems against additive noise and
mismatches of channel transmission characteristics (i.e., extrinsic
sources of variability) compared to MFCC and RASTA-PLP features.
For this, it can be necessary to process the GBFB features with a multi-
layer perceptron (MLP) and combine them with MFCCs depending
on the task and the back end. A MFCC baseline was also improved for
high SNRs and clean speech. With a standard GMM/HMM recognizer,
improvements of over 40% with clean training and over 20% with
multi training were observed when the GBFB features were used as
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direct input to the classifier. A state-of-the-art baseline system was
outperformed by 14 — 15% when GBFB features were first processed
with a MLP and then combined with MFCC features. These findings
indicate that the proposed feature extraction scheme results in a good
representation of speech signals for ASR tasks. GBFB and MFCC
features were found to extract partly complementary information
regarding extrinsic and intrinsic sources of variability, which may be
exploited in feature stream experiments.

— On average, MFCC and GBFB features are similarly affected by
intrinsic variability of speech, while for RASTA-PLP features and
MFCCs with CMS higher degradations are observed. When analyz-
ing train-test pairs with unmatched intrinsic variations, the MFCC
and GBFB scores show significant differences, which shows that the
feature types exhibit different strength and weaknesses with respect
to intrinsic factors.

— The analysis of specific modulation frequencies for ASR with GBFB
features shows that temporal modulation frequencies from 6 Hz to
25 Hz and spectral modulation frequencies from 0.03 cycles/channel
to 0.25 cycles/channel are important for robust speech recognition.
Besides the information about the input level, spectral modulation
frequencies of about 0.25 cycles/channel were found to be especially
important for robust speech recognition. When using spectro-temporal
features for ASR, the usable temporal modulation frequencies are
shifted to higher frequencies than reported in the literature that
analyzed spectral and temporal information separately.
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Normalization of spectro-temporal Gabor
filter bank features for improved robust
automatic speech recognition systems

ABSTRACT

Physiologically motivated feature extraction methods based on 2D-Gabor
filters have already been used successfully in robust automatic speech
recognition (ASR) systems. Recently it was shown that a Mel Fre-
quency Cepstral Coefficients (MFCC) baseline can be improved with
physiologically motivated features extracted by a 2D-Gabor filter bank
(GBFB). Besides physiologically inspired approaches to improve ASR
systems technical ones, such as mean and variance normalization (MVN)
or histogram equalization (HEQ), exist which aim to reduce undesired
information from the speech representation by normalization. In this
study we combine the physiologically inspired GBFB features with MVN
and HEQ in comparison to MFCC features. Additionaly, MVN is applied
at different stages of MFCC feature extraction in order to evaluate its
effect to spectral, temporal or spectro-temporal patterns. We find that
MVN/HEQ dramatically improve the robustness of MFCC and GBFB
features on the Aurora 2 ASR task. While normalized MFCCs perform
best with clean condition training, normalized GBFBs improve the ETSI
MFCCs features with multi-condition training by 48%, outperforming the
ETSI advanced front-end (AFE). The MVN, which may be interpreted
as a normalization of modulation depth works best when applied to
spectro-temporal patterns. HEQ was not found to perform better than
MVN.

This chapter is a reformatted reprint of “Normalization of spectro-temporal Gabor
filter bank features for improved robust automatic speech recognition systems”; M. R.
Schédler and B. Kollmeier, which was published in the proceedings of INTERSPEECH
2012 pp. 1812-1815. Reprinted by permission of the publisher. The original article can
be found at http://www.isca-speech.org/archive/interspeech  2012/i12_ 1812.html.
Copyright 2012, International Speech Communication Association.
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3 Normalization of GBFB features for improved robust ASR
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Figure 3.1: Logarithmically scaled Mel-spectrogram of speech. Light
areas denote high energy. The representation of speech through a log
Mel-spectrogram is an element of many feature extraction algorithms for
robust ASR systems.

3.1 INTRODUCTION

After decades of research in the area of automatic speech recognition
(ASR) still no system exists that would equal humans ability to recognize
speech. Especially in acoustically adverse conditions (background noise,
spectral coloring, reverberation) there is a big gap in performance of
about 15dB between humans and machines. Tackling the long-term goal
to improve the robustness of ASR systems to the level of humans, several
approaches exist. One approach is to mimic the signal processing of the
human auditory system or rather, to integrate its principles in terms
of effective models into ASR systems. This proved to work for the well
known part of the auditory system as today many robust ASR systems
employ features based on a logarithmically scaled Mel-spectrogram like
the one depicted in Fig. 3.1. This representation of speech roughly reflects
the frequency selectivity and the compressive loudness perception of the
human ear. Beyond the log Mel-Spectrogram there were several successful
attempts to integrate single auditory principles, like the extraction of
physiologically motivated (Qiu et al., 2003) spectro-temporal patterns,
into an ASR system to improve its robustness (Kleinschmidt and Gelbart,
2002a). The early spectro-temporal features used additional processing
with neural nets to improve a MFCC baseline. Recently, a filter bank
of spectro-temporal filters which extracts features that can be used
directly with GMM/HMM recognizers and improved a MFCC baseline
was presented (Schadler et al., 2012a). But generally, the use of the most
detailed models of the auditory system does not result in the most robust
ASR systems. One reason for this might be that the use of GMM/HMM
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based back-ends entrains certain restrictions on the feature characteristics.
A different approach is therefore the use of statistical methods to better
match the requirements of state-of-the-art GMM/HMM based back-
ends. Normalization techniques like MVN (Viikki and Laurila, 1998) or
HEQ (De La Torre et al., 2005) have shown to improve the robustness
of systems based on traditional MFCC features. In this study both
approaches are combined and normalization methods are applied to the
physiologically motivated spectro-temporal Gabor filter bank (GBFB)
features in comparison to traditional MFCC features. Further, the effect
of MVN/HEQ is interpreted as a normalization of modulation depth
and its effect on temporal, spectral, and spectro-temporal patterns is
investigated.

3.2 METHODS

3.2.1 Gabor filter bank features

The Gabor filter bank (GBFB) features are based on a log Mel-spectrogram
with 23 Mel-bands between 64 Hz and 4 kHz, 10 ms window shift, and
25 ms window length. An examplary log Mel-spectrogram is depicted in
Fig. 3.1. While for the extraction of MFCCs with A&AA this spectro-
temporal representation is processed spectrally with a DCT and tem-
porally with slope-filters, GBFB features are extracted with 2D-Gabor
filters that perform a simultaneous spectral and temporal processing.
Fig. 3.2 depicts the relation of the spectro-temporal 2D-Gabor filters and
the effective MFCC-DD spectro-temporal patterns. The outer product of
a DCT base function and a Delta base function gives the effective spectro-
temporal pattern that the corresponding MFCC-DD dimension encodes.
The GBFB feature extraction is illustrated in Fig. 3.3. First, spectro-
temporal patterns are extracted by 2D-convolving the 2D-Gabor filter
functions with the log Mel-spectrogram. A subsequent selection of repre-
sentative channels by critically sampling the filtered log Mel-spectrograms
limits the systematical correlation of the feature dimensions. Each 2D-
Gabor filter extracts patterns of a pair of a spectral and a temporal
modulation frequency. These features were shown to improve the robust-
ness of a MFCC baseline system when fed directly into an GMM/HMM
recognizer (Schidler et al., 2012a). The range of modulation frequencies
covered is about 6 to 25Hz and 0.03 to 0.25 cycles/Mel-band. Some
properties of the GBFB features are compared with those of MFCC
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Figure 3.2: Left panel: Effective spectro-temporal patterns of combined
traditional spectral DCT and temporal A&AA processing. Right panel:
The 41 2D-Gabor filters that are used for feature extraction with the Gabor
filter bank. The patterns are scaled and their real spectral extension is
the same as of the MFCC-DD patterns in the left panel.

Input: Gabor filter bank:  Example filter Representative
log Mel-spectrogram 41 filters output of one filter channels

Figure 3.3: Illustration of the Gabor filter bank feature extraction. n:
temporal index; k: spectral index; w: modulation frequencies. The input
log Mel-spectrogram is filtered with each of the 41 filters of the Gabor
filter bank. Representative channels of the filter outputs are selected and
concatenated. The 311-dimensional output is used as feature vector.
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Table 3.1: Properties of MFCCs and GBFBs compared

Feature Spectral Temporal Separable Dimension
MFCC-DD DCT A&AA yes 39
GBFB Gabor Gabor no 311

No normalization

Values

Time Mean and variance normalization

AL

Values

Time  istogram equalization

RN

Values

Tlme| — normal - colored nOiSy |

Figure 3.4: Illustration of mean and variance normalization and his-
togram equalization of the first MFCC wvalues for a speech signal in
different acoustic contexts.

features in Tab. 3.1. The MFCC-DD processing can be described by
separate spectral and temporal operations, while the GBFB processing
cannot.

3.2.2 Normalization of feature value statistics

It has been shown that the robustness of an ASR system with MFCC
features can be increased by removing the mean value and normaliz-
ing the variance of each feature dimension (Viikki and Laurila, 1998).
This processing is called mean and variance normalization (MVN) and
normalizes the first and the second moments of the feature value dis-
tributions. An extension to MVN is mapping the feature values to a
specific reference distribution (De La Torre et al., 2005). This processing
is called histogram equalization (HEQ) and normalizes all moments of
the feature value distributions. The effect of MVN and HEQ on the
first (not zeroth) MFCC is illustrated in Fig. 3.4. A spectral coloring
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(eg. preemphasis) of a speech signal leads to a systematic changes in
the log Mel-spectrogram and consequently to a change of the derived
features (cf. offset/mean value in Fig. 3.4). Likewise, additive noise or
reverberation result in a reduction of the dynamic range by filling up
the “valleys” of the log Mel-spectrogram, which may be interpreted as
a reduction of modulation depth (cf. scale/variance in Fig. 3.4 noisy).
Applying MVN/HEQ to MFCC/GBFB features counteracts the influence
of the most common sources of variability in noisy speech by normalizing
the modulation depth, because the feature values scale linearly with it.
The recognition performance of GBFB and MFCC features is evaluated
with and without MVN and HEQ.

3.2.3 Recognition experiment and baseline

The effect of the different front-ends on the robustness of an ASR system is
evaluated within the Aurora 2 framework (Pearce and Hirsch, 2000). The
task is the recognition of English connected digits which are contaminated
with eight different everyday background noises from 20dB to —5dB.
The framework provides speech data for training and testing as well as
a GMM/HMM classifier and trainings rules. A reference setup defines
whole-word left-to-right HMMs with 16 states, 3 mixtures per state, and
without skips over states. The back-end is not modified and used with
the same parameters as in the reference. Two different training conditions
exist. For clean training only utterances without added noise are used,
while for multi training utterances with and without added noise are
used. Although only four noise types that occur in the testing data are
also included in multi training data, it allows the recognizer to learn the
reliability of feature patterns in noise. As reference features the first 13
MFCCs with first and second order discrete temporal derivative (A&AA)
are used, resulting in 39-dimensional MFCC-DD features. Additionally
the baseline results for ETSI MFCC (ETSI, 2003, Standard 201 108
v1.1.3) and ETSI Advanced Front-End (AFE) (ETSI, 2007, Standard
202 050 v1.1.5) features are reported. The word recognition accuracies
are compared at signal-to-noise ratios (SNR) from 20 to —5dB.

3.2.4 Spectral and temporal contribution

With the aim of evaluating the effect of normalizing only spectral, only
temporal, or spectro-temporal patterns, the separability of spectral and
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Figure 3.5: Word recognition accuracies for GBFB and MFCC-DD
feature with and without mean and variance normalization (N) at different
test signal to noise ratios and training styles.

the temporal processing with MFCC-DD features is exploited The nor-
malization (N) is applied at the following stages of MFCC-DD feature
calculation: MFCC-N-DD, MFCC-DD-N, DD-N-MFCC. With MFCC-
N-DD features, spectral patterns are integrated by the DCT before
normalization. With DD-N-MFCC features, short term temporal pat-
terns are integrated by the A&AA processing before normalization. And
with MFCC-DD-N features, spectral and short term temporal patterns
are integrated before normalization. The recognition performance of the
differently normalized features is evaluated.

3.3 RESULTS AND DISCUSSION

3.3.1 Normalized GBFB features

Average word recognition accuracies (WRA) for GBFB and MFCC fea-
tures with and without MVN are reported in Fig. 3.5. With clean
condition training MVN dramatically improves the robustness of MFCCs
by 5—7dB over a wide range of WRAs (50% to 95%). The improvements
for GBFBs with 2 — 3 dB are smaller, but they perform about 3 dB better
without MVN. Thus, MFCCs perform about 1dB better than GBFBs at

59



3 Normalization of GBFB features for improved robust ASR

low SNRs, but cannot improve the highly optimized ETSI AFE baseline.
However, GBFB features outperform all features when testing on clean
data. In terms of average relative improvement over SNRs from 20dB to
0dB, MFCCs with MVN improve the WRA of the ETST MFCC baseline
by 58% on, while GBFBs with MVN improve the baseline by 54%. With
multi condition training MVN improves the performance of MFCCs al-
most independently of the SNR by about 2—3 dB. For GBFB features the
improvements are with 2.5dB at low SNRs and up to 6 dB at high SNRs
more pronounced. In terms of average relative improvement over SNRs
from 20dB to 0dB, MFCCs with MVN improve the WRA of the ETSI
MFCC baseline by 37%, while GBFBs with MVN improve the baseline
by 48%. GBFB features outperform all other features, including ETSI
AFE, in every noisy testing condition. The the improvements with HEQ
were found to be similar to the improvements with MVN within a range
of £1dB and are therefore omitted. The very high recognition scores
for clean testing data with clean condition training, as well as for high
SNRs with multi condition training (which contains speech data at oo,
20, 15, 10, and 5 dB SNR) indicate a certain sensitivity of GBFB features
to mismatched SNR conditions. Possibly, the 311-dimensional GBFB
features encode more precise information about the speech signal than
the 39-dimensional MFCC features which results in a higher sensitivity
to the SNR. This finding puts the one-model-for-all-SNRs approach into
question, as speech at 0dB SNR and speech at 20 dB SNR have quite
different characteristics. If the hypothesis holds, than GBFB features
with MVN should perform even better in context-dependent models,
which should be evaluated in future experiments.

3.3.2 Spectral vs. temporal normalization

Average word recognition accuracies (WRA) for MFCC features with and
without MVN of spectral, temporal, and spectro-temporal patterns are
depicted in Fig. 3.6.

Normalizing the output after the temporal processing and before the
spectral processing results in worse performance than without normaliza-
tion, with an exception at very low SNRs with multi condition training.
The MVN effectively normalizes all Mel-bands to have the same energy
and the same modulation depth which seems to accompanied by a loss
of information that is relevant for robust ASR. Normalizing the output
after the spectral processing and before the temporal processing results
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Figure 3.6: Word recognition accuracies for MFCC-DD features with
and without mean and variance normalization of spectral (MFCC-N-DD),
temporal (DD-N-MFCC), and spectro-temporal (MFCC-DD-N) patterns
at different signal to noise ratios for clean and multi style training.

in important improvements, but the best performance is achieved by
normalizing after the spectral and temporal processing. This indicates
that spectro-temporal patterns are best extracted from an unprocessed
spectro-temporal representation and normalization is best performed
after spectral and temporal integration.
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3.4 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— Normalization increases the robustness of physiologically motivated
spectro-temporal Gabor filter bank features by 2.5 — 5.0dB SNR
on a digit recognition task, outperforming ETSI AFE features with
multi-style training.

— Normalization of separable spectro-temporal patterns was found to
be best applied after spectral and temporal integration.

— Normalized Gabor filter bank features seem work well in matched
signal to noise ratio conditions, which should be further investigated
with SNR-dependent models.
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High-dimensional spectro-temporal
auditory features for robust medium-size
vocabulary speech recognition systems

ABSTRACT

The robustness of high-dimensional auditory spectro-temporal features
is evaluated on a medium-size vocabulary speech recognition task. For
this, the data of second track of the second CHiME challenge is em-
ployed, which offers a 5k-word speech recognition task in a realistic noisy
environment. The auditory features, called Gabor filter bank features,
are compared to a Mel Frequency Cepstral Coefficient (MFCC) baseline.
However, for a fair comparison a set of parameters has to be tuned
for each feature type. An algorithm that finds the needed parameter
values for a fair comparison of different feature sets is proposed. We find
a 1.54 percentage point improvement in word recognition accuracy by
using GBFB features. While performing better than the baseline fea-
tures, the use of GBFB features does not entail increased computational
requirements.

4.1 INTRODUCTION

Automatic speech recognition (ASR) systems still perform worse than
human listeners in almost any kind of speech recognition task. This
is especially true in acoustically adverse conditions with reverberation
and noise sound at signal-to-noise ratios (SNR) below 0dB. There are
ongoing efforts to narrow the gap between human and machine speech
recognition performance under realistic acoustic conditions, like e.g., in
the second CHiME Challenge (Vincent et al., 2013a). Besides purely
technical approaches to improve the system’s performance at very low
SNRs, attempts exist to integrate knowledge about the human auditory
system—which performs reasonably well—into ASR systems.

One successful approach to increase the robustness of an ASR system
by integrating auditory processing turned out to be the extraction of
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4 GBFB features for robust medium-size vocabulary ASR

normalized spectro-temporal patterns. These patterns are extracted with
a filter bank of physiologically motivated 2D Gabor filters (Schéidler et al.,
2012a) and have been found to improve the robustness of a standard
ASR system on a digit in noise recognition task by 2.5dB to 5.0dB.
(Schidler and Kollmeier, 2012b). Recently, this finding was confirmed
and extended to letters in noise (Moritz et al., 2013).

The aim of this study is to evaluate the robustness of GBFB features
on a speaker independent medium-size vocabulary task with 5000 words
using a bigram language model under difficult acoustic conditions. Un-
like many small-size vocabulary tasks that allow the use of whole-word
acoustic models, medium-size vocabulary tasks require acoustic models
for smaller fragments of speech, such as triphones. The parameters of tri-
phone acoustic models are usually tied with threshold-governed clustering
techniques in the training process because sufficient training data is not
available for all models. Because a good state-tying threshold depends
on many factors—the feature type and dimension being two of them—it
has to be found for each new feature or training data set in order to
be able to perform a fair comparison. Further, medium-size vocabulary
speech recognition tasks require non-binary language models that have
to be weighted with a grammar scale factor that also has to be found for
each new feature or training data set. Finally, an exhaustive search of
the whole state-space for decoding with such a complex language model
is infeasible and usually avoided by pruning unlikely paths. Hence, a
search beam pruning threshold, which determines the search depth and
modulates the needed computation time for recognition, also needs to be
found for each new feature or training data set. Therefore, it is legitimate
to use computation time as a soft constraint, and for a fair comparison
computation time should be similar across the evaluated systems.

The extraction of Gabor filter bank features is explained in Sec. 4.2.1.
The recognition experiment and the baseline features are presented in
Sec. 4.2.2. A solution for the problem of finding the state tying thresholds,
the grammar scale factors, and the search beam pruning thresholds is
proposed in Sec. 4.2.3. Results are presented, compared, and discussed
in Sec. 4.3, while Sec. 4.4 concludes the study.
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4.2 METHODS

4.2.1 Gabor filter bank features

The Gabor filter bank (GBFB) feature extraction, which is motivated by
auditory processing, encodes spectro-temporal modulation patterns in
high-dimensional feature vectors (Schidler et al., 2012a). This feature
extraction scheme improves the robustness of a standard ASR system on
a digit in noise recognition task by 2.5—5.0dB compared to a system with
traditional Mel Frequency Cepstral Coefficient (MFCC) features (Schadler
and Kollmeier, 2012b). GBFB features are extracted by applying a set
of 2D Gabor filters to a spectro-temporal representation of a signal. A
log Mel-spectrogram is employed as the spectro-temporal representation
because it incorporates several properties of the auditory system (i.e.,
non-linear frequency scaling and compression of amplitude values) and is
widely used in ASR. In contrast to the GBFB reference implementation
which uses a log Mel-spectrogram with 23 Mel-bands between 64 Hz and
4kHz, 10ms window shift, and 25 ms window length, we extend the
frequency range to 8 kHz and increase the number of Mel-bands to 31.
This results in the lower 23 Mel-bands to cover the frequency range from
64 Hz to ~ 4kHz, like in the original set-up. The shapes of the 41 GBFB
filters that are used for feature extraction are shown in Fig. 4.1. The
GBFB feature extraction steps are illustrated in Fig. 4.2.

First, spectro-temporal patterns are extracted by 2D-convolving 2D
Gabor filter functions with the log Mel-spectrogram. Each filter extracts
patterns of a different pair of a spectral and a temporal modulation
frequency, where the center modulation frequencies range from 6 to
25Hz, and from 0.03 to 0.25 M‘;{_C];Zid (cf. Fig. 4.1). A subsequent
selection of representative channels by critically sampling the filtered
log Mel-spectrograms limits the systematic correlation of the feature
dimensions and reduces the number of dimensions of the feature vector
from 31 x 41 = 1271 to 455 (Schadler et al., 2012a). Mean and variance
of each of the 455 feature dimensions are normalized on an utterance
basis. In the following these features are referred to as GBFB features or

just GBFBs.
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Figure 4.1: 2D filter functions
of the 41 Gabor filters used
for the filter bank, arranged by
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Figure 4.2: [llustration of the Gabor filter bank feature extraction. n:
temporal index; k: spectral index; w: modulation frequencies. The input
log Mel-spectrogram is filtered with each of the 41 filters of the Gabor filter
bank. Representative channels of each of the filter outputs are selected
and concatenated. The 455-dimensional output is used as feature vector.
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4.2.2 Recognition experiment and baseline

The task that is employed to evaluate the robustness of GBFB features
is the recognition of utterances being spoken in a noisy living room from
recordings made using a binaural mannikin. We employ the isolated
training and development data sets from the second track of the second
CHIME challenge (Vincent et al., 2013a), which are based on the Wall
Street Journal (WSJO0) corpus, a corpus of read speech. The utterances
of these data sets are filtered with a fixed binaural room impulse response
of a living room corresponding to a frontal position at a distance of 2m.
Subsequently, the utterances are mixed with noise samples recorded in
that living room at SNRs from —6dB to 9dB.

The training and testing scripts provided in the CHiME challenge are
based on HTK (Young et al., 2006) and on HTK recipes from Vertanen
(2006) for WSJ. We developed an own set of training and testing scripts
using HTK and the training protocol described by Vertanen (2006),
and adapted the testing scripts in order tune the needed parameters
in an automatic fashion. The speech recognizer employs 3-state left-to-
right triphone acoustic models with up to 8 gaussian mixtures assuming
diagonal covariance matrices, a 3-state 16-mixture background model
with skip and back transitions, and a short pause model tied to the
center state of the background model. The CMU Pronouncing Dictionary
(Carnegie Mellon University, 2007) version 7a is employed to generate
initial monophone labels. The questions that are needed for the tree-
based state tying are taken from Vertanen (2006). For recognition, the
same bk-word bigram language model as in the second track of the second
CHiIiME challenge is used.

The system is trained on the isolated training set, which contains 7138
utterances from 83 speakers mixed with background noise at random SNRs
from —6dB to 9dB. The performance is evaluated on the development
set, which contains 409 utterances from 10 other speakers, at the following
SNRs: —6, —3, 0, 3, 6, and 9 dB. Mel Frequency Cepstral Coefficients
(MFCCs) serve as baseline features. The baseline features are extracted
by first calculating 13 (including 0th) MFCCs from a log Mel-spectrogram
with 26 Mel-Bands from 64 Hz to 8 kHz. To these, a slope filter with a total
width of 5 frames is applied in order to calculate delta and acceleration
coefficients. The MFCCs with delta and acceleration coefficients form
a 39-dimensional feature vector of which for each dimension mean and
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variance are normalized on an utterance basis. In the following, these
features are referred to as MFCC features or just MFCCs.

4.2.3 Parameter search

For the recognition experiment described in Sec. 4.2.2, values for the
following parameters have to be found: A state tying threshold that
determines the total number of tied states. A grammar scale factor
which determines the weight of the language model. And a search beam
pruning threshold that limits the depth of the search of the state sequence
that best explains the observed feature vectors. These values depend—
not exclusively—on: the feature type and dimension, the training data
type and amount, the recognition task, and the language model. For a
fair comparison of systems with different features, an algorithm to find
these values is required.

In HTK, the threshold for the tree-based state clustering, the language
model values that are scaled by the grammar scale factor, and the
search-beam pruning thresholds, are all likelihoods. The maximum log-
likelihood of a separable n-dimensional normal distribution with the
same variance in each dimension is proportional to n. This relationship
between dimensionality and log-likelihood predicts a factor of about 10 for
log-likelihoods with 455-dimensional GBFB features and 39-dimensional
MFCC features. For MFCCs a good value for the state-tying threshold
can be expected between 0 and 1000 (Young et al., 2006; Vertanen, 2006).
Applying the estimated factor of 10, for GBFB features, we expect a
good value between 0 and 10000. Hence, for MFCCs, systems are trained
with state tying threshold of 0, 200, 300, 400, 500, 600, 800, and 1000,
and for GBFBs, systems are trained with state tying threshold of 0, 2000,
3000, 4000, 5000, 6000, 8000, and 10000.

For evaluation of the trained systems, suitable values for the gram-
mar scale factor and the beam pruning threshold that provide a good
recognition accuracy in feasible computation time still have to be found.
As the grammar scale factor modulates the combined likelihood of the
acoustic and the language model, a good value for the pruning threshold
depends on the value for the grammar scale. To find a good pair of values
(scale and pruning), 20 randomly chosen utterances of the development at
0dB SNR are used as a tuning set. Only utterances with a SNR of 0dB
are selected because the used background noises are highly unstationary
and cover a wide range of short-term SNRs. Available computational
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resources demand the low number of utterances in the tuning set that is
used across features and conditions.

The values for scale and pruning are determined as follows: For the
first iteration (i = 1), values considered for scale are 2918 and for
pruning 22312 Time-limited recognition processes are started with all
combinations of the considered values. The time limit for recognition
was set to 40 minutes for the 20 utterances in the tuning set, which
corresponds to a lower limit for recognition speed of 0.13 words per
second. The value pairs that result in the best recognition performance
determine the region of interest for the next iteration, where only value
pairs that result in a recognition of all 20 utterances within the given
time are considered valid. Let s and p be the set of scale and pruning
values of the best performing combinations, respectively. Let s and Ip
be the binary logarithm of s and p, respectively. For the next iteration,
the search grid is refined by halving the step width sw of the exponent
(1 in the first iteration) of the actual iteration. For scale, the following
values are considered for the next iteration: 2min(ls)—sw,..max(ls)+sw.
and for pruning: 2min(p)—sw,...max(ip)+sw T this study, four iterations
were performed. Of the valid scale/pruning value combinations with the
highest recognition performance, the one that required the least time to
complete the recognition is chosen.

Grammar scale factor and pruning thresholds are automatically de-
termined for each trained system using the described algorithm, and a
security margin of 20% is added to the determined pruning thresholds.
The results are presented and compared in Sec. 4.3.

4.3 RESULTS AND DISCUSSION

The automatically determined parameters and the recognition results
of the medium-size vocabulary speech in noise recognition task for ASR
systems with MFCC and GBFB features with different state tying thresh-
olds are reported in Table 4.1. The system with the 39-dimensional
MFCC features covers the range from about 1.2k to 9.5k tied states with
state tying thresholds between 0 and 1000. With GBFB features, state
tying thresholds between 0 and 10000 cover roughly the same range of
tied states. This result indicated the applicability of the approximated
relationship of feature dimensionality and log-likelihood in Sec. 4.2.3. The
recognition accuracies depending on the number of tied states with MFCC
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Figure 4.3: Recognition accura- Figure 4.4: Recognition accura-
cies depending on the number of cies depending on the number of
tied states with MFCC features tied states with GBFB features at
at different test SNRs. different test SNRs.

features are plotted in Fig. 4.3, and with GBFB features in Fig. 4.4. The
best performing system is marked with a cross for each SNR.

The optimal number of tied states for this set-up seems to be somewhere
around 2.4k tied states, which indicates that it could suffice to compare
different systems with a fixed number of tied states. Lower and higher
numbers result in decreased recognition performance. This effect is more
pronounced for high than for low test SNRs, and for GBFB features
than for MFCC features. For MFCCs, the optimal number of tied states
does not depend on the noise energy in the tested utterances, while for
GBFBs there might be a slight trend towards less tied states at low SNRs.
On average over all SNRs, systems with less than about 4k tied states
perform better with GBFB than with MFCC feature, with more tied
states the situation is reversed. For all SNRs, the best performing system
uses GBFB features. On average over all SNRs, the best value for the
state tying threshold is 400 for MFCCs, and 4000 for GBFBs (cf. line
in bold type in Table 4.1). Comparing these systems, GBFB features
improve the MFCC baseline by 1.54 percentage points on average. This
corresponds to an improvement of about 0.74 dB on average over all SNRs,
which is less than the improvement of at least 2dB that is observed on
small-size vocabulary speech recognition tasks.
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On one hand, this could be due to the small amount of speech material
for the high number of relevant speech fragments that have to be modelled,
resulting in less data per relevant model compared to a less complex task.
On the other hand, the recognition of up to 5000 different words is a more
complex task than to tell apart digits or letters, and some “bottleneck”
of this highly nonlinear system could modulate the effect of the features.
Despite the high dimensionality of the GBFB features, the difference in
computation time that is needed for recognition with GBFBs and with
MFCCs is negligible. Recognition speed depends strongly on the chosen
search beam pruning threshold and the “clarity” of the observations; e.g.,
noisy utterances usually take more time to be recognized on the same
hardware. The total of 6779 words was recognized at a rate of 6.0 words
per minute at 9dB SNR and at a rate of 3.2 words per minute at —6 dB
SNR with MFCC features and 2712 tied states. With GBFB features
and 2486 tied states, 7.6 words were recognized per minute at 9dB SNR
and 4.1 at —6dB SNR. This can be explained either with the evaluation
of the observation probability being much less computationally expensive
than the other decoding steps, or with GBFB features offering clearer
observations that result in better pruning decisions and thus allow lower
beam-pruning thresholds.

4.4 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— High-dimensional auditory Gabor filter bank (GBFB) features improve
the robustness of an ASR system on a 5k vocabulary word recognition
task under realistic adverse acoustic conditions compared to MFCC
features.

— For a fair comparison of different feature types on a medium-size
vocabulary speech recognition task, an algorithm for tuning a set of
parameters is needed. Such algorithm has been proposed.

— ASR with high-dimensional GBFB features is as fast as with MFCC
features.
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5 Separable spectro-temporal Gabor filter
bank features: Reducing the complexity of
robust features for automatic speech
recognition

ABSTRACT

To test if simultaneous spectral and temporal processing is required to
extract robust features for automatic speech recognition (ASR), the robust
spectro-temporal two-dimensional-Gabor filter bank (GBFB) front-end
from Schédler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134-4151
(2012)] was de-composed into a spectral one-dimensional-Gabor filter bank
and a temporal one-dimensional Gabor filter bank. A feature set that
is extracted with these separate spectral and temporal modulation filter
banks was introduced, the separate Gabor filter bank (SGBFB) features,
and evaluated on the CHIME (Computational Hearing in Multisource
Environments) keywords-in-noise recognition task. From the perspective
of robust ASR, the results showed that spectral and temporal processing
can be performed independently and are not required to interact with
each other. Using SGBFB features permitted the signal-to-noise ratio
(SNR) to be lowered by 1.2 dB while still performing as well as the GBFB-
based reference system, which corresponds to a relative improvement
of the word error rate by 12.8%. Additionally, the real time factor
of the spectro-temporal processing could be reduced by more than an
order of magnitude. Compared to human listeners, the SNR needed to
be 13 dB higher when using Mel-frequency cepstral coefficient features,
11dB higher when using GBFB features, and 9dB higher when using
SGBFB features to achieve the same recognition performance.

This chapter is a reformatted reprint. The original article can be found at http:
//dx.doi.org/10.1121/1.4916618. Reproduced with permission from “Separable spectro-
temporal Gabor filter bank features: Reducing the complexity of robust features for
automatic speech recognition”, M. R. Schadler and B. Kollmeier, J. Acoust. Soc. Am.
Vol. 137, pp. 2047-2059. Copyright 2015, Acoustical Society of America.
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5 Separable, less complex GBFB features for robust ASR

5.1 INTRODUCTION

After years of investigation on robust automatic speech recognition (ASR),
human listeners still outperform ASR systems in realistic acoustic environ-
ments (Lippmann, 1997; Meyer et al., 2011b; Barker et al., 2013). Inspired
by the ability of the human auditory system to decode speech signals in
the most difficult acoustic conditions, many principles of auditory signal
processing were integrated into ASR systems in attempts to improve
their recognition performance. These approaches usually targeted the
feature extraction stage (front-end), where the more tangible peripheral
auditory processes can be mapped to signal processing algorithms and
which is more specific to auditory processes than the recognition stage
(back-end). The current study aimed to improve the front-end by ex-
tracting spectro-temporal modulation features with independent spectral
and temporal processing instead of joint spectro-temporal processing.

Many of the speech representations (or features) used in ASR sys-
tems stem from spectro-temporal representations of sound that already
incorporate basic auditory principles, such as the log Mel-spectrogram
(LMSpec). The LMSpec is a spectrogram with a logarithmic amplitude
and a Mel frequency scaling. It considers very basic auditory principles
of the human auditory system, such as the resolution across frequencies
and logarithmic perception of intensity. However, these static spectro-
temporal representations themselves are not well suited as robust speech
features because environmental changes, such as additive noise and re-
verberation, strongly affect them. The characteristics of the inherently
dynamic speech signals are better represented in changes that occur in
the spectro-temporal representations across frequencies and over time;
this is why many robust features are extracted by encoding spectral
or temporal changes. An example for spectral processing is the still
widely used Mel-frequency cepstral coefficients (MFCCs), which perform
a discrete cosine transform in the spectral dimension of a LMSpec (Davis
and Mermelstein, 1980). An example for temporal processing is the
calculation of discrete temporal first and second order derivatives, called
deltas and double deltas, which are usually used to encode the dynamics
of MFCC and other features. Many other, differently motivated spectral
and temporal processing schemes were combined with the goal of improv-
ing the robustness of ASR systems (e.g., Hermansky, 1990; Hermansky
et al., 1992; Hermansky and Sharma, 1999; Nadeu et al., 2001; Hermansky
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and Fousek, 2005; Moritz et al., 2011) but without relating the spectral
to the temporal processing nor vice versa.

In approaches to join spectral and temporal modulation processing, and
thus allowing for higher order dependencies between both, Kleinschmidt
(2002b) and Kleinschmidt and Gelbart (2002a) found that the physiologi-
cally motivated (Qiu et al., 2003) two-dimensional (2D) spectro-temporal
Gabor filters were good candidates. Aside from their use in ASR systems,
a number of studies suggested the use of 2D Gabor filters to extract
spectro-temporal features for acoustic signal and speech analysis, (e.g.,
Chi et al., 2005; Mesgarani et al., 2006; Ezzat et al., 2007b). Because
in early approaches to extract features with 2D Gabor filters the filter
parameters were determined in a data driven way, and as a consequence
some feature dimensions were highly correlated, Meyer and Kollmeier
(2011a) mapped these Gabor features to an intermediate phoneme prob-
ability layer by means of a tandem setup to use them with standard
Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)
based recognition back-ends. Recently, in an approach to structure the 2D
Gabor filter parameter space and gain a set of universal 2D Gabor filters
for robust speech recognition, the 2D Gabor filter bank (GBFB) features
were introduced and shown to improve the robustness of ASR systems
when they are used directly with standard GMM/HMM back-ends by
Schédler et al. (2012a) and Moritz et al. (2013). The 2D spectro-temporal
filters of the GBFB, which were used to extract robust speech features
by 2D-convolving each of them with a LMSpec, are depicted in Fig. 5.1
and cover a range of spectral and temporal modulation frequencies that
were found to be beneficial for robust ASR. The extraction of GBFB
features is explained in detail in Sec. 5.2.2. Meyer and Kollmeier (2011a)
attributed the improvements in robustness to a locally increased SNR
due to the higher sensitivity to speech patterns of the more complex
spectro-temporal patterns, most notably to the ability of discriminating
upward and downward spectro-temporal patterns (cf. off-axis filters in
Fig. 5.1). Schroder et al. (2013) found that using GBFB features can
improve the recognition performance in a speech-unrelated acoustic event
detection task; this confirms the universality of the GBFB filter set for
acoustic recognition tasks. However, a model of joint spectro-temporal
processing does not allow changes to the spectral processing without
having an effect on the temporal processing and vice versa; this would
imply that all models of separate spectral and temporal processing are
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5 Separable, less complex GBFB features for robust ASR

Figure 5.1: Taken  from
Schadler et al. (2012a). Filter
shapes of the 2D Gabor filter
bank (GBFB) filters. Each tile
represents the filter function of a
spectro-temporal 2D Gabor filter,
where the horizontal axis within
each tile is the temporal one and
the wvertical axis is the spectral
one. The 2D filter functions
are sorted by their spectral and
temporal  center  modulation
frequencies. To extract GBFB
features, a LMSpec of speech
is filtered by means of a 2D
convolution with these filters.
While the filters on the axis (0 Hz
or 0 cycles/channel) are purely
spectral or purely temporal filters
and can be separated into a
real-valued spectral 1D filter and
a real-valued temporal 1D filter,
the off-axis filters are inseparable
spectro-temporal filters.
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5.1 INTRODUCTION

Figure 5.2: Absolute (E), real (R), and imaginary (I) part of a complez-
valued filter function of a 1D Gabor filter with 3.5 half-waves under the
envelope. Each part is a real-valued function and can be used to filter a
signal where R and I are band-pass filters with the same transfer function
and only differ in the phase, while E describes a low-pass filter.

insufficient. It is unknown to what extent spectral and temporal pro-
cessing in the auditory system of mammals interact with each other
(Depireux et al., 2001; Qiu et al., 2003). Further, the more complex 2D
filtering process results in considerably higher computational costs for the
feature extraction. If spectral and temporal processing were independent
processes, the mentioned limitations would not apply.

In this study, it was investigated whether the improvements in ro-
bustness gained with the structured, spectro-temporal GBFB approach
require the complex joint 2D spectro-temporal processing or if a separate
spectral and temporal processing with two 1D GBFB can be used to
extract features that perform similarly or better. The basic idea was
to replace the inseparable up- and downward 2D patterns of the GBFB
with separable patterns and then perform the spectral and the temporal
filtering separately with 1D Gabor filters. A 1D Gabor filter is depicted
in Fig. 5.2 and the relation of 1D-spectral and 1D-temporal Gabor filters
to the inseparable up- and downward 2D-spectro-temporal Gabor filters
is illustrated in Fig. 5.3.

In Fig. 5.3, it can be observed that the addition (A)/subtraction (S)
of an inseparable 2D spectro-temporal downward (D) filter to/from its
corresponding upward (U) filter is identical to the separable filter RR/II,
which in turn can be described by a separate spectral and temporal
filtering process with the real (R) or imaginary (I) part of 1D Gabor
functions. The relation between a pair of a spectral and a temporal
1D filter, and the corresponding 2D filter is the outer product and is
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Figure 5.3: Inseparable and separable 2D spectro-temporal Gabor filters
and their relation to separate 1D spectral and 1D temporal Gabor filters.
Each tile represents the filter function of a 2D spectro-temporal filter with
the horizontal azxis within each tile being the temporal and the vertical axis
being the spectral one. Left panel: The 2D upward (U) and downward (D)
filters are not separable, while their sum A (U + D) and difference S (U
- D) are; right panel: Effective 2D filter shapes when applying subsequent
spectral and temporal 1D filters using different parts of 1D Gabor filters
(E, envelope; R, real part; I, imaginary part). The amplitude of the 2D
filters is encoded in gray scale, where white means high amplitude and
black low amplitude.

78



5.2 METHODS

explained later in more detail. The combination of spectral and temporal
filters with different phases, which were determined by the use of the real
(R) or imaginary (I) part, but identical center modulation frequencies
resulted in different effective spectro-temporal filter patterns (cf. RR,
RI, IR, and IT in Fig. 5.3). Hence each inseparable 2D filter in Fig. 5.1
could have been replaced with different separable 2D filters that have the
same absolute spectral and temporal center modulation frequencies as
the inseparable 2D filter.

Instead of only replacing the inseparable 2D filters, the whole 2D
GBFB was replaced by two separate 1D GBFB: A spectral one and
a temporal one. For these, the positive spectral and temporal center
modulation frequencies were taken from the 2D GBFB. The phase of the
employed filters was determined by taking the real (R) or the imaginary
(I) part of the 1D Gabor filters. All spectral filters were assumed to have
the same phase, and also all temporal filters were assumed to have the
same phase, while spectral and temporal filters were allowed to have
different phases. This structure allowed four SGBFB feature vectors with
different combinations of spectral and temporal phases: Real-real (RR),
real-imaginary (RI), imaginary-real (IR), and imaginary-imaginary (II)
(cf. RR, RI, IR, and II in Fig. 5.3). To evaluate which of the phase
combinations performs best in a robust ASR task, the four different
SGBFB feature vectors were compared to GBFB and MFCC features
on the CHiME (Computational Hearing in Multisource Environments)
keyword recognition task. Barker et al. (2013) created the CHIME
keyword recognition task to compare the robustness of ASR systems
under controlled, realistic low-SNR conditions and to be able to compare
the ASR performance to performance data from human listeners. Further,
the role of the spectral and temporal modulation phase was assessed in
recognition experiments combining several SGBFB feature vectors with
different phase combinations.

5.2 METHODS

5.2.1 Spectro-temporal representation

The calculation of the LMSpec was based on an amplitude spectrogram
with frames of 25 ms length and a temporal resolution of 100 frames/s.
The linear frequency axis of the spectrogram was transformed to a Mel-
scale using 31 equally spaced triangular filters with center frequencies
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Figure 5.4: Filtering a log Mel-spectrogram (LMSpec) by means of a
2D convolution: The LMSpec in the upper panel is 2D-convolved with a
spectral 1D filter s, a temporal 1D filter t and the corresponding spectro-
temporal 2D filter st. The result of the filtering process is depicted to
the left of the corresponding filter. The amplitude of the 2D filters and
(filtered) spectrograms is encoded in gray scale where white encodes high
amplitude and black encodes low amplitude.

in the range from 124 to 7284 Hz. The values of the amplitude Mel-
spectrogram were subsequently converted to a decibel scale. All feature
extraction schemes that are presented in the following extracted features
from a LMSpec. An example of a LMSpec of a speech signal is depicted
in the upper panel of Fig. 5.4.

5.2.2 Gabor filter bank features

2D GBFB features were extracted from a LMSpec using auditory-motivated
spectro-temporal 2D Gabor filters, as described by Schédler et al. (2012a).
There a LMSpec was 2D convolved (filtered) with a set of 2D Gabor
filters to model the response of a range of neurons in the auditory cortex
to the presented spectro-temporal patterns. The 2D filter shapes that
were used to extract GBFB features are depicted in Fig. 5.1. These filters
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were tuned to specific spectro-temporal modulation patterns that occur
in speech signals and motivated by the fact that some neurons in the
primary auditory cortex of mammals were found to be tuned to very
similar spectro-temporal modulation patterns (Qiu et al., 2003). A 2D
Gabor filter represents an idealized spectro-temporal receptive field and
requires a pairing of spectral and temporal modulation frequencies. The
pair of modulation frequencies determines a filter’s shape and, hence,
which spectro-temporal pattern would yield the strongest response in this
particular filter. The main parameters of the employed 2D Gabor filters
were the spectro-temporal center modulation frequencies and the spectral
and temporal modulation bandwidths. Schédler et al. (2012a) structured
the parameters of the 2D Gabor filters in a filter bank, which limited
the number of free parameters and the correlation between the resulting
feature dimensions. In this study, the same set of GBFB parameters
was used, which was optimized for ASR and confirmed to extract robust
ASR features (Moritz et al., 2013): The considered spectral modulation
frequencies were ws = 0.000, 0.029, 0.060, 0.122, 0.250 cycles/channel.
The considered temporal modulation frequencies were wy = 0.0, 6.2, 9.9,
15.7, 25.0 Hz. The number of half-waves under the envelope, which
determines the bandwidth, in the spectral dimension was v = 3.5. The
number of half-waves under the envelope in the temporal dimension was
vy = 3.5. The maximum extension of the filters in the spectral dimension
was b*** = 3 - 31, which is three times the number of Mel-bands. And
the maximum extension of the filters in the temporal dimension was
brax = 40 frames (400ms). The considered spectro-temporal center
modulation frequencies were combinations of the spectral and tempo-
ral modulation frequencies and hence arranged on a grid (cf. Fig. 5.1).
Spectral and temporal cross-sections through the maximum of the 2D
frequency response of the GBFB filters with these parameters are shown
in Fig. 5.5. To extract GBFB features from a LMSpec, it was convolved
with each of the 41 2D Gabor filters, which resulted in 41 filtered LMSpecs.
Subsequently, the filtered LMSpecs were spectrally sub-sampled at a rate
of a quarter of the extent of the spectral width of the corresponding filter.
This reduced redundancy from the filtered LMSpec, and was shown to
be superior to using a Principle Component Analysis (Schadler et al.,
2012a). The filtered and sub-sampled LMSpecs were concatenated and
formed a 455-dimensional feature vector, which is referred to as GBFB
features. The difference in dimensionality to the original GBFB features,
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Figure 5.5: Modified from Schddler et al. (2012a). Upper panel: Spectral
cross-sections through the mazimum of the 2D frequency response of
GBFB filters; Lower panel: Temporal cross-sections through the maximum
of the 2D frequency response of GBFB filters. The overlap of adjacent
band-pass modulation filters is constant and governed by the distance
between them and by their bandwidth.
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which are 311-dimensional, was due to the larger bandwidth (8 vs 4kHz)
that was considered in this study.

5.2.3 Separate Gabor filter bank features

Separate Gabor filter bank features (SGBFB) were extracted with two
1D Gabor filter banks, one spectral and one temporal, instead of with a
filter bank of 2D Gabor filters.

5.2.3.1 1D Gabor filters

Equation (5.1) describes a 1D Gabor filter, where h; is a Hann envelope
function of width b, s, a sinusoid function with radian frequency w, and
g the product of both:

2
0.5 — 0.5 cos (?) “ber<t

ho(x) = , (5.1a)
0 else

so(z) = e (5.1b)

Jo(®) = su(x)-he(z). (5.1c)

S~ ——

carrier envelope

The width b is inversely proportional to the radian frequency w and
proportional to the number of half-waves under the envelope v. Conse-
quently, all 1D Gabor filters g,, ,, with the same value for v are constant-Q
complex-valued band-pass filters, where w is the (radian) center frequency
and determines the scale of the filter. The complex-valued filter function
of a 1D Gabor filter with v = 3.5 half-waves under the envelope is de-
picted in Fig. 5.2, where E marks the absolute values (or envelope), R
the real part, and I the imaginary part of the filter. Each of the different
parts (E, R, and I) can be used to filter a signal. While E describes a
low-pass filter, R and I are band-pass filters that only differ in phase
and share the same frequency response. The width b of the Gabor filters
is limited by b™#*. Filters with w = 0 would have an infinitely large
support, which is why in this case the width of the envelope is set to b™a*,
effectively resulting in a low pass filter (E). These filters (E, R, and I)
can be applied in the spectral or in the temporal dimension to a LMSpec,
resulting in a spectral or temporal modulation filtering, respectively. In
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the following, a spectral filter bank and a temporal filter bank of 1D
Gabor filters are presented.

5.2.3.2 1D Gabor filter banks

The center modulation frequencies (w), the maximum filter width ™
and the number of half-waves under the envelope v, which determines the
filters’ Q-factor were taken from the GBFB [cf. parameters from Schadler
et al. (2012a)]. Hence the spectral modulation filter bank consisted of
five 1D Gabor filters with v = 3.5, b™** = 93 bands (three times the
number of Mel-bands), and the following spectral modulation frequencies:
w = 0.000, 0.029, 0.060, 0.122, and 0.250 cycles/band. The temporal
modulation filter bank consisted of five 1D Gabor filters with v = 3.5,
b™ma* = 40 frames, and the following spectral modulation frequencies: w
= 0.0, 6.2, 9.9, 15.7, and 25.0 Hz. As with GBFB filters, the envelope
(E) function of width b™** was used as the filter function if the width of
a filter function would exceed the maximum width »™?*, which here was
the case for filters with w = 0. For all other filters (w > 0), only the real
(R) or the imaginary (I) part of the filter was used as the filter function.
As a result, in total, nine different spectral filters: 0.000 (E), 0.029 (R
and I), 0.060 (R and I), 0.122 (R and I), and 0.250 (R and I) cycles/band,
and nine different temporal filters: 0.0 (E), 6.2 (R and I), 9.9 (R and I),
15.7 (R and I), and 25.0 (R and I) Hz were considered. The real (R) part
and the corresponding imaginary (I) part only differed in phase and hence
shared the same frequency response. As a consequence, the frequency
responses of the 1D spectral and 1D temporal Gabor filters were exactly
the same as the cross-sections through the maximum of the 2D frequency
responses of the 2D GBFB filters depicted in Fig. 5.5. Hence the two
1D Gabor filter banks covered the same range of spectral and temporal
modulation frequencies as the 2D Gabor filters of the GBFB.

5.2.3.83 1D and 2D filtering of LMSpecs

The 1D filtering was performed by convolution with the corresponding
filter functions. Temporal modulation filters were represented as row
vectors and were convolved with each channel of the LMSpec indepen-
dently. Likewise, spectral modulation filters were represented as column
vectors and were convolved with each frame of the LMSpec independently.
The temporal and spectral 1D filtering was performed by means of a 2D
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convolution with row and column vectors, respectively. Therefore the
LMSpec was convolved with a 1D row or column vector, as defined in
Eq. (5.2), where k and n are the spectral and temporal indices of the
LMSpec, respectively, and ¢ and j the spectral and temporal offset of the
filter from its center, respectively:

filtered-LMSpec(k, n) :=
Z LMSpec(k — i,n — j) - filterfunction(i, j). (5:2)

i

filtered-LMSpec(k,n) was only calculated if LMSpec(k,n) existed, so
that both the LMSpec and the filtered LMSpec, had the same size. In
the following, a 2D convolution with a 1D filter, i.e., a filter the extent
of which in the spectral dimension is one Mel-band or in the temporal
dimension is one frame, is referred to as a 1D convolution or 1D filtering.
Of course, a LMSpec can first be filtered spectrally, and the output
can than be filtered temporally or vice versa. The order, i.e., if the
spectral or temporal filtering is performed first, of this special form of
spectro-temporal filtering does not affect the outcome. The outcome
of a spectrally and temporally filtered LMSpec, is a spectro-temporally
filtered LMSpec, and the corresponding spectro-temporal filter can be
identified. In Eq. (5.3), a spectral filter s (column vector) and a temporal
filter t (row vector) were applied in arbitrary order to a LMSpec:

filtered-LMSpec = [LMSpec * s] * t, (5.3a)
= [LMSpec * t] s, (5.3b)
= LMSpec * [s * t] , (5.3c)
——
outer product: st
= LMSpec * st. (5.3d)

In Eq. (5.3¢c), the 1D convolution with s and t was identified as the
2D convolution with the outer product of s and ¢. Hence the outer
product of a spectral 1D and a temporal 1D filter is a separable filter
because it can be described by independent spectral and temporal filter
operations. The same is true for any 2D filter that can be described by a
separate spectral and temporal 1D filter. Fig. 5.4 shows an example of
a LMSpec of clean speech after filtering using temporal, spectral, and
spectro-temporal filters. The corresponding filter functions are depicted
to the right of the filtered LMSpecs.
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5.2.83.4 Feature extraction

SGBFB features were extracted by first filtering the LMSpec spectrally,
where either the R or the I phased filters were used, except for the DC
filter (w = 0) for which always the E type was used. Due to the limited
bandwidth in the output of spectral filtering processes with low center
modulation frequencies, high correlations could be observed between
some adjacent channels of the output. To the reduce these correlations,
each spectrally filtered LMSpec was reduced in dimensionality by keeping
only representative Mel-bands. This was achieved by critically sub-
sampling the filtered LMSpec in spectral dimension at a rate of a quarter
of the corresponding filters width b, where at least the center channel
(Mel-band number 16), and at most all channels were kept. The same
procedure for dimensionality reduction was used to extract GBFB features.
The spectrally filtered and spectrally down-sampled LMSpecs were then
filtered temporally, where either the R or the I phased filters were used,
except for the DC filter (w = 0) for which always the E type was
used. By the subsequent spectral and temporal filtering of the LMSpec,
all considered spectral modulation frequencies were combined with all
considered temporal modulation frequencies. The spectro-temporally
filtered LMSpecs were concatenated and formed a 255-dimensional feature
vector. These features are referred to as separate Gabor filter bank
features or just SGBFB features.

With both the spectral and the temporal filter bank, the real (R) or the
imaginary (I) part of the filters can be used. The filters that were actually
employed are indicated by a suffix, where the first letter indicates the
spectral and the second letter the temporal filter phase, e.g., SGBFB-RI.
The effective spectro-temporal filter shapes for all possible combinations
of all considered spectral and temporal E, R, and I filters are depicted in
Fig. 5.6.

5.2.8.5 Spectro-temporal modulation phase

Because all four possible SGBFB feature vectors (SGBFB-RR, SGBFB-
RI, SGBFB-IR, and SGBFB-II) covered the same range and combinations
of spectral and temporal modulation frequencies and only differed in
the phase of the modulation filters, it was investigated which phase
combination offered the most robust representation in a speech-in-noise
recognition experiment. Only two phase values were considered: The
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Temporal modulation frequency [Hz]
0.00, 6.2 9.9 15.7 25.0, 6.2 9.9 15.7 25.0

0.00

Spectral modulation frequency [cycles/channel]

0.25 0.12 0.06 0.03

Figure 5.6: All possible combinations of spectral and temporal 1D GBFB
filters and their equivalent, separable spectro-temporal 2D filter functions.
Each tile represents the outer product of the corresponding spectral and
temporal filter functions with the horizontal axis within each tile being
the temporal and the vertical axis being the spectral one. The 1D filters,
depicted above and to the left of the 2D filters, are sorted by spectral and
temporal center modulation frequencies, and are grouped according to the
part of the complex 1D Gabor filter that is used: Envelope (E), real (R),
imaginary (I). For a specific separate Gabor filter bank (SGBFB) feature
vector, only a subset of these filters is used, which is indicated by a two-
letter suffix. For example, for the SGBFB-RI feature set, the spectral E
and R filters are combined with the temporal E and I filters. Note that each
SGBFB feature vector covers the whole range of considered modulation
frequencies, and that none of the 81 2D filter shapes is repeated.
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first one corresponded to the real (R) part of a Gabor filter (no phase
shift), and the second one corresponded to the imaginary (I) part, where
the carrier phase was shifted by 7/2 rad relative to the real part. The
real-real (RR) and imaginary-imaginary (II) spectro-temporal filters can
be derived from the corresponding upward (U) and downward (D) filters
by addition (A) and subtraction (S) as depicted in Fig. 5.3, while the
real-imaginary (RI) and imaginary-real (IR) phase combinations cannot
be represented by linear combination of any two filters of the 2D GBFB.
To take multiple phase combinations into account, different single SGBFB
feature vectors were concatenated and the robustness of the combined—
or dual—SGBFB feature vectors was determined in a speech-in-noise
recognition experiment. The concatenation of two 255-dimensional, single
feature vectors resulted in a 510-dimensional dual feature vector and is
referred to as SGBFB-X-Y, where X determined the phases of the first and
Y the phases of the second vector, e.g., SGBFB-RR-II. A dual SGBFB
feature vector represented all spectro-temporal modulation frequencies
twice, in contrast to the 455-dimensional GBFB feature vector, where
only the modulation frequencies of the truly spectro-temporal filters
were represented twice [cf. upward (U) and downward (D) filters in
Fig. 5.1]. This explains the difference in dimensionality between dual
SGBFB feature vectors and the GBFB feature vector. The concatenation
of feature vectors with all possible phase combinations combined all
considered spectral and temporal 1D filters and hence extracted 1020-
dimensional feature vectors effectively using all 81 2D patterns depicted
in Fig. 5.6. These feature vectors are referred to as complete SGBFB
features or SGBFB-RR-RI-IR-II.

5.2.4 Feature normalization

Blind feature statistics adaptation, such as mean and variance normaliza-
tion (MVN) (Viikki and Laurila, 1998) or histogram equalization (HEQ)
(De La Torre et al., 2005) can improve the robustness of an ASR system.
All features were normalized using histogram equalization (HEQ). As
each feature dimension was processed independently, the process is only
described for one feature dimension, which is considered to be a time
series. While mean and variance normalization normalizes the first two
statistical moments of the distribution of the values of the time series,
HEQ can normalize even higher statistical moments, such as skewness
and kurtosis. For this, the values of the time series were projected by a
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function that mapped the source distribution to a desired target distribu-
tion. The mapping function was estimated by calculating 100 percentiles
(e.g., 0.5%, 1.5%, ..., 99.5%) of the source distribution and mapping these
to the same percentiles of the desired target distribution, where values
between the percentiles were interpolated linearly. Care needed to be
taken when estimating the percentiles of the source distribution, as the
0% and 100% percentiles could not be reached with finite time series. The
maximum expected percentile p** and minimum expected percentile
pit when drawing N samples from a distribution were estimated using
Eq. (5.4):

pUA = 100

Nl (5.4a)
1

pa® = 100 * NoT (5.4b)

min max

Therefore, 100 equally spaced percentiles between p'™ and pN** were
mapped to the corresponding percentiles of the standard normal distri-
bution, where N was the number of feature vectors. The resulting time
series had—within the limits due to mapping only 100 percentiles—the
same moments as the standard normal distribution. All features were pro-
cessed with HEQ on a per-utterance basis, where the average utterances
length of the employed corpus was 1.8 £+ 0.25s.

5.2.5 Recognition experiment

The task that was employed to evaluate the robustness of ASR systems is
the recognition of English commands being spoken in noisy living room
environments that were recorded using an binaural manikin. Therefore
the training, development, and test data sets from the first track of the
second CHiME challenge (Vincent et al., 2013a) were used. The sentences
of this corpus were recorded from 34 different (male and female) speakers.
They have a fixed syntax of the form “command color preposition letter
number adverb” (e.g., “put red at G9 now”), where the words were drawn
from a closed vocabulary. The utterances of the development and test
data set were filtered with the binaural combined head and room impulse
responses of two rooms (a lounge and a kitchen) corresponding to a frontal
position at a distance of 2m. Subsequently, they were mixed with noise
samples recorded using the binaural manikin in the same environments
at SNRs from —6 to 9dB. In this study, the binaural signals were mixed
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down to one channel prior to the feature extraction by adding the left
and the right channel. The whole sentences had to be recognized but
only the percent correct value of the letter (in the example: G) and the
digit (in the example: 9) was evaluated as in the first track of the second
CHiIiME challenge.

Three different training data sets were available and used to evaluate the
performance of ASR systems depending on the training condition: Clean,
reverberated, and isolated (which is noisy and reverberated). While the
clean data set contained unprocessed speech samples, the utterances of
the reverberated and isolated data sets were filtered with the binaural
impulse responses. The utterances of the isolated (or noisy) data set
were additionally mixed with noise samples that were recorded with the
binaural manikin in the corresponding room at SNRs from —6 to 9dB.
Even though some of the considered front-ends might have performed
better with additional training data, the unmodified training data sets
from the CHiME challenge were used for the sake of comparability. For
evaluation, each ASR system was trained with the three different training
data sets. While all pilot experiments had been conducted with the
development data set, the results were obtained on the test data set.

The training and testing scripts provided in the CHiME challenge
are based on HTK (Young et al., 2006). The differences between the
provided scripts and the scripts that were actually used for conducting
the experiments are highlighted in Sec. 5.2.7. For each training data set,
the recognition performance in percent-of-digits-and-letters correct was
measured at SNRs from —6 to 9dB in 3dB steps. The uncertainty of the
performance measure due to the limited amount of test sentences (600)
was estimated in advance, because it consisted of 1200 independent binary
decisions; 600 for digits and 600 for letters. At 50% correct it happened
to be about 1.45 percentage points, at 70% correct about 1.32 percentage
points, and at 90% correct it was estimated to be about 0.85 percentage
points. The recognition results, which depend on the SNR, were compared
between different systems by calculating the relative change in SNR that
would be required to get the same performance with two different systems,
as described in Sec. 5.2.6. Additionally, human recognition performance
data from the first CHiME challenge was available and used to present
selected results in terms of the remaining man-machine gap, as described
in Sec. 5.2.8.

90



5.2 METHODS

5.2.6 Robustness measure

To report the relative improvement of a system over a reference system in
a single value with physical meaning, the equal-performance increase in
dB SNR (EPSI) is reported. This type of reporting is related to the speech
reception threshold, which is widely used to measure the performance
of human listeners to recognize speech in noise. The speech reception
threshold is the SNR that is required to understand a specific portion, e.g.,
50%, of the presented speech material. To use all available data points,
the comparison was carried out at different performance levels. Hence the
difference in SNR between the performances of two recognition system
was integrated over the performance range where two systems could be
compared. Let P(r) be the performance graph of an ASR system, with r
being the SNR in dB and P being the recognition performance at that
SNR. Applying Eq. (5.5) guarantees the monotonicity of the performance
graphs P™"(r):
mon s
P™°"(SNR) = TIZHSII{IIRP(T‘). (5.5)
The performance levels at which the systems were compared were
interpolated in 0.5 dB steps in the region that data for both systems was
available, as illustrated in Fig. 5.7. The average over the differences in
SNR is invariant under any monotonic transformation of the performance
axis. It is intuitively interpreted as the increase (or decrease) in SNR that
is needed to get the same performance with the compared system as with
the reference system. When comparing two ASR systems A and B, a
symmetric EPSI was achieved by averaging the differences with A as the
reference for B and with B as the reference for A. Ideally, the recognition
performance of human normal-hearing listeners would have been used as a
reference for all experiments. Although human performance data existed
for the employed task, the human speech recognition (HSR) performance
at the lowest SNR (—6dB) was about 90% word recognition rate; so
good that only few ASR systems could have been compared to it. Hence
a reference ASR system was used instead, and only the best performing
systems were compared to HSR performance.

5.2.7 Reference systems

Standard MFCCs and GBFB features with HEQ served as standard
reference features. MFCCs were extracted from a LMSpec by spectrally
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Figure 5.7: Illustration of comparing the robustness of two ASR systems
in terms of changes in signal-to-noise ratio (SNR). The average relative
increase/shift of the SNR for a test ASR system that is required to achieve
equal performance with a reference system can be calculated independently
from the scaling of the performance axis. Therefore the integration points
are selected on the SNR axis in 0.5 dB steps in the range where the
performance graphs overlap on the performance axis.

processing it with a discrete cosine transform, where only the first 18
coefficients, which account for spectral modulation frequencies from 0 to
0.29 cycles/channel, were used. The 18 MFCCs were concatenated with
their first and second discrete temporal derivatives, which were calculated
by applying a temporal slope filter of five frames length once or twice,
respectively. The resulting MFCC feature vector, which included both
derivatives, was 54-dimensional. The extraction of the 455-dimensional
GBFB feature vectors is described in detail in Sec. 5.2.2. All features that
were evaluated in this study were normalized using HEQ as described in
Sec. 5.2.4.

On the back-end side, GMM and HMM were used to model speech. The
training and testing scripts provided in the first CHIME challenge (Barker
et al., 2013) are based on the Hidden Markov Toolkit (HTK) (Young
et al., 2006). Deviating from the default configuration, the reference
system used tri-phone models instead of whole-word models. The required
changes to the training procedure were based on the HTK Wall Street
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Journal Training Recipe from (Vertanen, 2006). Three-state left-to-right
tri-phone speaker-depended acoustic models, a three-state background
model with skip and back transitions, and a one-state short pause model
tied to the center state of the background model were employed. The
CMU Pronouncing Dictionary (Carnegie Mellon University, 2007), version
Ta, was employed to generate initial monophone labels, where an optional
short pause was allowed between two words. After the initial training of
speaker-independent monophone models, tri-phone models of all possible
monophone combinations were generated and initialized with the model
of the center monophone. The parameters of the tri-phones were re-
estimated in four iterations and subsequently tied with tri-phones that
share the same center monophone using HTK’s tree-based state tying
method. The decision tree phonetic questions that are needed for the
tree-based state tying were taken from Vertanen (2006). The threshold
that governs the number of tied states was chosen so that the number of
tied states was 700 & 2. The number of Gaussian mixture components
per state was increased stepwise to 2, 3, 5, and 7 in the course of the
training procedure, with four iterations of parameter re-estimation in-
between. The models were then adapted to the speaker using HTK’s
maximum a posteriori (MAP) method to update the mean values and
the mixture weights, instead of using HTK’s parameter re-estimation.
The recognition of utterances was performed with the corresponding
speaker-dependent model, where a language model enforced the syntax of
recognized sentences (command color preposition letter number adverb).

5.2.8 Man-machine gap

To put the results of this study into the perspective of building an ASR
system that is as robust as a normal-hearing human listener, selected
results were compared to literature data of HSR performance, which
is available from the first CHiME challenge (Barker et al., 2013). The
difference between the first CHiME challenge and the first track of the
second CHiME challenge is that in the latter head movements of the
speaker are simulated, which we consider to have a negligible effect on
the HSR data for our purposes. The equal-performance increase in dB
SNR (EPSI) of the ASR over the HSR results was used to quantify the
remaining man-machine gap. In addition, the results for a GBFB-based
system from the literature, which was presented by Moritz et al. (2013)
during the second CHiME keyword recognition challenge and placed
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second, were also compared. This system, referred to as GBFB-CC,
exploited binaural information using source separation based on non-
negative matrix factorization, and featured a more sophisticated speaker
adaptation, which includes in addition a maximum likelihood linear
regression (MLLR) parameter adaptation step.

5.2.9 Reference implementations

MATLAB reference implementations of several methods, including the

calculation of the LMSpec, MFCC features, GBFB features, SGBFB
features, the HEQ, and the EPSI, are available online’.

5.3 RESULTS

All evaluated features sets were normalized using HEQ, as described in
Sec. 5.2.4, and evaluated on the CHiME keyword-in-noise recognition
task, as described in Sec. 5.2.5, using the ASR system described in
Sec. 5.2.7, where the reference features were replaced with the features
in question. The relative improvements are reported in EPSI, which is
defined in Sec. 5.2.6. The uncertainty of all results was propagated from
the estimated uncertainty due to the limited number of test sentences,
as explained in Sec. 5.2.5.

5.3.1 Performance of reference system and data
representation

The absolute recognition scores of the reference systems along with the
approximate HSR performance depending on the SNR in decibels are
depicted in Fig. 5.8, and reported in numerical form in Table 5.1.

As expected, the human performance was found to be superior to the
performance of the ASR systems. Independent of the used features, the
ASR systems that were trained on the noisy data set performed better at
lower SNRs (less than 3dB), while for high SNRs, particularly at 9dB
SNR, the systems trained on only reverberated data performed better.
The ASR systems that were trained on the clean data set performed
much worse, which is why these results were not considered to be a good
indicator for robustness. Because we were interested in noise robustness,

LURL: http://medi.uni-oldenburg.de/SGBFB
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Figure 5.8: Recognition performance on the test data set of the MFCC
and GBFB-based reference ASR systems depending on the SNR and the
training data set, along with the approrimate human speech recognition
(HSR) performance. The word recognition rate in percent correct is plotted
over the test SNR for systems trained with clean, reverberated, and noisy
speech data. The y axis is a logarithmically scaled word error rate azis,
which is labeled with the corresponding word correct rates in percent.

Table 5.1: Recognition performance of the MFCC and GBFB-based
reference ASR systems on the second CHiME keyword-in-noise recognition
task in percent correct along with the human speech recognition (HSR)
performance, which was measured during the first CHiME challenge.
The systems were trained with clean, reverberated, or noisy data, and
evaluated on the noisy test data set.

Features Train condition —6dB —3dB 0dB 3dB 6dB 9dB
HSR - 90.3 93.0 93.8 95.3 96.8 98.8
MFCC Clean 40.3 42.8 52.1 64.2 725 79.2
MFCC Reverberated 57.4 63.5 74.7 83.0 83.9 92.8
MFCC Noisy 68.7 74.6 82.2 87.5 89.1 92.0
GBFB Clean 36.9 35.1 43.2 55.3 66.8 73.4
GBFB Reverberated 60.0 66.5 75.0 84.1 91.4 94.0
GBFB Noisy 71.4 T77.8 84.2 889 922 92.7
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Table 5.2: Equal-performance increase in dB SNR (EPSI) of the refer-
ence ASR systems over HSR data for different training conditions, where
a value of X means the SNR needs to be increased by X on average for
the corre- sponding system to perform as well as a human listener. Using

GBFB fea- tures reduced the distance to human performance compared to
when using MFCCs from 13.2 dB to 10.6 dB SNR.

Features Noisy Reverberated Clean
MFCC +13.2+£0.95 +12.6+1.00 -
GBFB +10.6 +1.12 +10.3+1.06 -

not the ability of generalizing from quiet to noisy conditions, the results
for ASR systems trained with noisy data were taken as the indicator of
robustness. To compare the ASR system with different features regarding
their robustness on the CHiME task, the EPSI measure presented in
Sec. 5.2.6 was used to report the difference in performance in a single,
physically interpretable value; the equal-performance increase of the SNR
in decibels. The EPSIs of the reference ASR systems over the HSR
performance in dB are reported in Table 5.2. The MFCC-based reference
system required the SNR to be +13.2 £ 0.95dB higher to perform as well
as an average native human listener, while the GBFB-based reference
system required the SNR only to be +10.6 + 1.12dB higher. Hence
the GBFB-based system was found to be more robust than the MFCC
based system on this task. For ASR systems that do not reach HSR
performance, such as the systems trained with clean data, the EPSI over
HSR performance cannot be calculated. This is the reason why in the
following the GBFB-based reference system was used as the baseline for
the comparison.

5.3.2 Single SGBFB features

Table 5.3 reports the EPSIs of the differently phased 255-dimensonal
SGBEFB features over the GBFB reference system. We considered the
results for the noisy training condition to carry the most information about
the features’ ability to facilitate the back-end of the recognition of speech
in noise. The relative increase in SNR to achieve equal performance for the
clean and reverberated training condition are reported for completeness.
The SGBFB-IR system, which uses the imaginary part of the 1D Gabor
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Table 5.3: Average equal-performance increase in dB SNR over the
GBFB reference system to achieve the same performance with single
SGBFB features when training on clean, reverberated, or noisy data. A
positive value indicates that the system under consideration performs
worse than the GBFB reference system.

Features Noisy Reverberated Clean
SGBFB-RR +2.24+045 +40.7£0.30 —0.7£0.36
SGBFB-RI +2.74+045 +40.8+0.27 —1.1+£0.31
SGBFB-IR +1.14+044 +1.5+£0.26 —0.0£0.30
SGBFB-II +254+042 +4+1.7+£0.28 —0.9+£0.35

Table 5.4: Average equal-performance increase in dB SNR over the
GBFB reference system for ASR systems with MFCC or dual SGBFB
features when being trained on clean, reverberated or noisy data.

System Noisy Reverb Clean

SGBFB-RR-RI —0.3 £0.46 +0.4+0.28 +0.7£0.30
SGBFB-RR-IR +1.2+0.42 +0.7£0.28 —0.1 £0.34
SGBFB-RR-II —0.7+0.47 —0.0+0.29 —0.5£0.31
SGBFB-RIFIR —-0.9+0.45 4+0.1+0.29 —1.0£0.35
SGBFB-RI-IT +1.84+0.43 40.7+0.28 —1.7£0.31
SGBFB-IR-II —0.44+0.43 40.6 £0.28 —1.0+£0.36

filter for spectral filtering and the real part for temporal filtering, is the
one that came closest to the GBFB reference with a EPSI of +1.1+0.44 dB.
This means that the ASR system with SGBFB-IR, features required the
SNR to be 1.1 +0.44 dB higher than with GBFB features to get the same
performance. With the other SGBFB features, the EPSI increased to
more than 2dB. The ASR system with GBFB features outperformed all
ASR systems using only single SGBFB feature vectors or MFCCs.

5.3.3 Dual SGBFB features

The required increase in dB SNR for all ASR systems using dual SGBFB
feature vectors, which are combinations of two differently phased single
SGBFB feature vectors, to achieve equal performance with the GBFB
reference system are reported Table 5.4. The best dual SGBFB feature
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set was the one that concatenates SGBFB-RI and SGBFB-IR feature
vectors to 510-dimensional SGBFB-RI-IR feature vectors. It yielded an
improvement over the GBFB reference of —0.9 4+ 0.45dB, i.e., a decrease
in SNR to achieve the same performance. In terms of word error rates,
this translates to an average relative improvement of 8.3% over the GBFB
reference system, and 20.6% over the MFCC reference system, where an
improvement of 50% would correspond to halving the word error rate.
The dual SGBFB feature vectors with the same temporal phase and
different spectral phases (RR-IR, RI-II) performed worse than the GBFB
reference. Those with the same spectral phase and different temporal
phases (IR-II, RR-RI) performed as well as GBFB features within the
uncertainty imposed by the setup. Those with different spectral and
temporal phases (RI-IR, RR-IT) improved the robustness of the GBFB-
based reference system.

Using the MATLAB reference implementation, the 2D GBFB spectro-
temporal filtering achieved a real-time factor of 0.4887 (median of 100
runs), while the 1D SGBFB-RI-IR spectro-temporal filtering achieved
a real time factor of 0.0078 (median of 100 runs) on the same PC
system?, i.e., the separate processing was found to be about 60 times
faster. Hence by using dual SGBFB features instead of GBFB features,
the computational time required for the spectro-temporal filtering was
reduced by more than an order of magnitude, while at the same time the
robustness was increased.

5.3.4 Complete SGBFB features

When concatenating all differently phased SGBFB features to 1020-
dimensional SGBFB-RR-RI-IR-II feature vectors, the EPSI over the
GBFB reference was —1.24+0.42 dB when training on noisy data. In terms
of word error rates, this translates to an average relative improvement
of 12.8% over the GBFB reference system, and 24.8% over the MFCC
reference system, where 50% would mean halving the word error rate.
The most robust front-end evaluated in this study was the complete
SGBFB feature set.

2CPU: AMD A10 PRO-7350B @ 2.1 GHz; RAM: DDR3L-1600 CL9; Matlab R2010b
(single thread) on Linux 3.13
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5.3.5 Quantity of training data

A reasonable question when using ASR systems with high-dimensional
features is whether sufficient training data are available because the
number of GMM parameters increases proportionally with the number
of feature dimensions. On the one hand, using scarce training data could
favor systems that require less parameters to be determined during the
training phase and prevent systems with more parameters from showing
their full potential. On the other hand, using large amounts of training
data could conceal the possibility that systems using high-dimensional
features might require these amounts of data, while systems with low-
dimensional features would not perform worse when using less training
data. To test if one or the other was the case, systems with the low-
dimensional MFCC features and the high-dimensional SGBFB-RI-IR
features were trained with a reduced training data set, which contained
only half of the training sentences that were available per speaker, i.e.,
250 instead of 500. With this reduced training data set, the system
that uses the 54-dimensional MFCC features performed 2.2 4+ 0.44 dB
(EPSI) worse and the system that uses the 510-dimensional SGBFB-RI-
IR features performed 2.0 & 0.46 dB worse compared to when using the
full training data set. This result shows that the systems with high-
and low-dimensional features were equally affected when the amount of
training data was halved, and hence that no system was favored due to
the amount of training data that were used in the recognition experiments.
Compared to the system with MFCC features that was trained on the
full training data set, the system with SGBFB-RI-IR features that was
trained with the reduced training data set performed about (£0.5dB) the
same. Hence we are confident that the training data set from the CHIME
challenge provided a fair comparison of the differently-dimensional feature
sets.

5.3.6 Remaining man-machine gap

Figure 5.9 depicts the absolute word recognition rates of the reference
systems, the best SGBFB system, the GBFB-CC system, and from HSR
experiments. Table 5.5 reports the EPSIs over human speech recognition
performance that quantify the remaining man-machine gap. While the
MFCC-based reference ASR system required the SNR to be about 13 dB
higher to perform as well as a human listener, the GBFB-based reference

99



5 Separable, less complex GBFB features for robust ASR

system still had an EPSI of about 11dB, and the best SGBFB-based
system one of about 9 dB. Hence the gap in speech recognition robustness
between man and machine remains but was reduced by 2dB by using
SGBFB features instead of GBFB features.

5.4 DISCUSSION

5.4.1 Modulation phases

The main results reported in Tables 5.3 and 5.4 indicate that an ASR
system with a combination of SGBFB features may exhibit a greater
robustness than the GBFB reference system if the phase of the spectral
and temporal modulation filters is chosen in an appropriate way. The
ASR systems with single SGBFB features vectors (RR, RI, IR, and II),
which consider only one spectral and one temporal phase constellation,
were found to be less robust than the GBFB reference system, where
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Figure 5.9: Recognition performance on the test data set of different ASR
systems and human speech recognition (HSR) experiments depending on
the SNR and training data set. Besides the performance of ASR systems
using MFCC features, GBFB features, or the complete SGBFB feature
set (SGBFB-all), the performance of a GBFB-based system with binaural
processing (GBFB-CC) from Moritz et al. (2013) from the second CHiME
challenge is depicted. The word recognition rate in percent is plotted over
the test SNR. The y axis is a logarithmically scaled word error axis, which
is labeled with the corresponding word correct rates in percent correct.
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Table 5.5: Equal-performance increase in SNR over HSR performance
in dB for different training conditions, where a value of X means the
SNR needs to be increased by X on average for the corresponding system
to perform as well as a human listener. Using GBFB features reduces the
distance to human performance compared to when using MFCCs from
13.2 to 10.6 dB SNR. The use of dual SGBFB features can reduce the
distance to 9.5 dB, and the use of all SGBFB feature vectors combined
can reduce the distance further to 8.6 dB. The GBFB-based system from
Moritz et al. (2013) which, like humans and opposed to the other systems,
exploits binaural information (GBFB-CC), even gets as near as 6.2 dB to
human performance.

System Isolated Reverb Clean
MFCC +13.2+£0.95 +12.6+1.00 -
GBFB +10.64+1.12 410.3£1.06 -
GBFB-CC +6.2+1.19 +49.4£1.04 -
SGBFB-RI-IR +9.5+1.19 +10.1£1.04 -

SGBFB-RR-RI-IR-II  +8.6+1.01 +10.2£1.09 -

the systems with real-phase temporal filters (IR and RR) performed
better than those with imaginary-phase temporal filters (II and RI). To
build a system with SGBFB features that was at least as robust as the
reference system with GBFB features, a dual SGBFB feature vector with
both temporal phase constellations was required (RR-RI, RR-II, RI-IR,
and IR-II). If the temporal phase was the same (RR-IR or RI-II), the
corresponding system performed worse than the GBFB reference system.
To improve the robustness of the GBFB reference system, both temporal
and both spectral phase constellations were required (RR-II and RI-IR).
Finally, the ASR system using complete SGBFB features, which include
all possible phase combinations (RR-RI-IR-II), was found to be the most
robust one. These findings suggest that the temporal phase is more
important than the spectral phase and that diverse phase information of
modulation filters is beneficial to the robustness of ASR systems.

The phase of the modulation filters was found to be an important
factor. However, it does not affect the frequency response of the filters,
which indicates that modulation filters in the context of robust ASR are
insufficiently described by only specifying their frequency response. A
reason that considering temporal and spectral modulation filters with
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orthogonal, shifted carrier functions (i.e., the real and the imaginary part)
benefits the robustness of ASR systems could be that their output is not
systematically correlated, which is a property that GMMs with diagonal
covariance matrices are well-disposed to. For example, for the temporal
domain, the shape of the imaginary filter (I) is very similar to the shape
of the slope (or delta) filter, which is traditionally used to calculate
the first discrete temporal derivative with MFCCs, and the shape of
the real filter (R) is very similar to the shape of the double-delta filter,
which is traditionally used to calculate the second temporal derivative.
Both describe different properties and seem to encode complementary
information, which is why the combination of differently-phased feature
vectors could improve the robustness. But while with the delta filters
only one temporal center frequency was extracted, with the SGBFB
filters considered here, five different modulation frequencies between 0
and 25 Hz were extracted.

While the whole spectral context was always available to the back-end
in the same feature vector, the temporal context was distributed over
several feature vectors. A reason why the temporal phase was found
to be more important than the spectral phase in this regard could be
that the HMM back-end is inherently probabilistic about timing and
could have benefited from the presence of additional hard-coded temporal
information in the feature vectors. The effect of changing the temporal
phase is that the carrier is shifted in time, while the window function
(the envelope) remains invariant. The output of the temporal filters with
shifted carriers could have conveyed information that otherwise was not
accessible to the back-end.

5.4.2 1D vs 2D Gabor filter complexity

Separating the spectro-temporal 2D GBFB into two SGBFB was not only
found to improve the robustness of an ASR system in difficult acoustic
conditions but also to achieve this with less complex filters. While with
the 2D GBFB filters the spectral filtering and the temporal filtering are
dependent and happen simultaneously, with the 1D SGBFB filters, the
spectral and the temporal filtering are independent and can be carried
out in arbitrary order. This reduces the complexity of the features and
also of the feature calculation because no spectro-temporal interactions
need to be considered. The corresponding reduction in computational
time, that was required for the spectro-temporal processing, was found
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to be more than an order of magnitude. It is yet to be investigated if the
1D Gabor filters and the chosen parameter values for the filter width and
center modulation frequencies are the optimal choice for robust ASR. But,
at least in the studied context, it seems that truly spectro-temporal filters
did not give an advantage over separate spectro-temporal filters. This
suggests that future research on robust speech features might reasonably
assume spectro-temporal interactions (such as, e.g., temporal changes of
spectral information as in glides or formant transitions) to play a minor
role in comparison to having both temporal and spectral information
available simultaneously.

5.4.3 Remaining man-machine gap

A part of the remaining gap between the complete SGBFB feature based
system (SGBFB-RR-RI-IR-II) and the HSR performance in Table 5.5
could be due to the very basic binaural processing (down-mixing) that
was employed in this study, which did not exploit binaural cues for noise
reduction as opposed to the human auditory system and the GBFB based
system from the chime challenge (GBFB-CC). A SGBFB based system
that exploits binaural information could provide further improvements in
robustness. Another, maybe even related, reason could be the negligence
of any phase—not modulation phase—information of the spectral chan-
nels. The temporal fine structure, which encodes binaural information as
well as information about voicing or the harmonic structure of a signal,
is not considered at all when using a LMSpec as a basis for feature
extraction. This information could help to group signal parts and better
separate them from the rest. The current research on this topic in the
field of computational acoustic scene analysis (CASA) might some day
converge with the investigation on robust speech recognition. For now,
the SGBFB feature extraction algorithm permits the investigation of
spectral and temporal modulation processing independently and to assess
the interdependence of both types of processing in the context of speech
recognition.

Even though the omission of certain modulation frequencies or spectro-
temporal modulation pairs might be a good tool to systematically evaluate
the relative importance of these features, this endeavor was beyond the
scope of this paper and might be considered in future work.
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5.5 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— A combination of separate spectral and temporal 1D Gabor modula-
tion filter banks (SGBFB) was successfully employed instead of the
spectro-temporal 2D GBFB to extract robust ASR features. SGBFB
features improved the robustness over GBFB features by up to 1.2dB
SNR, which corresponds to an average relative improvement of the
word error rate of 12.8% over a GBFB based reference system, and
24.8% over a MFCC based reference system.

— While a close interaction between temporal and spectral process-
ing was found to be comparatively irrelevant for robust ASR, the
phase of the spectral and especially the temporal modulation filters
was found to be an important factor, which can be used to provide
complementary and additional temporal information to the back-end.

— Compared to human listeners, the SNR needed to be 13 dB higher
for a MFCC-based system, 11 dB higher for a GBFB-based, and 9 dB
higher for a SGBFB-based system, to achieve the same recognition
performance.
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Matrix sentence intelligibility prediction
using an automatic speech recognition
system

ABSTRACT

Objective: The feasibility of predicting the outcome of the German matrix
sentence test for different types of stationary background noise using
an automatic speech recognition (ASR) system was studied. Design:
Speech reception thresholds (SRT) of 50% intelligibility were predicted
in seven noise conditions. The ASR system used Mel-frequency cepstral
coefficients as a front-end and employed whole-word Hidden Markov
models on the back-end side. The ASR system was trained and tested
with noisy matrix sentences on a broad range of signal-to-noise ratios.
Study sample: The ASR-based predictions were compared to data from
the literature (Hochmuth et al., 2015) obtained with 10 native German
listeners with normal hearing and predictions of the speech intelligibility
index (SII). Results: The ASR-based predictions showed a high and
significant correlation (R? = 0.95,p < 0.001) with the empirical data
across different noise conditions, outperforming the SII-based predictions
which showed no correlation with the empirical data (R? = 0.00,p =
0.987). Conclusions: The SRTs for the German matrix test for listeners
with normal hearing in different stationary noise conditions could well
be predicted based on the acoustical properties of the speech and noise
signals. Minimum assumptions were made about human speech processing
already incorporated in a reference-free ordinary ASR system.

This chapter is a reformatted reprint of “Matrix sentence intelligibility prediction
using an automatic speech recognition system”, M. R. Schadler, A. Warzybok, S.
Hochmuth, and B. Kollmeier, International Journal of Audiology Volume 54:2 pp.
100-107, which was published the 18th of September 2015 by Taylor & Francis Ltd
(www.tandfonline.com). Reprinted by permission of the publisher. The original article
can be found at http://dx.doi.org/10.3109/14992027.2015.1061708. Copyright 2015,
Informa Plc.
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6 Speech intelligibility prediction with ASR

6.1 INTRODUCTION

Accurate speech intelligibility predictions are of great importance for
various practical applications such as the objective evaluation of different
signal processing strategies in hearing assistive devices, or room acoustic
design. If appropriately adjusted, they can also be used as a tool to
assess the effect of different aspects of hearing impairment on speech
intelligibility in an objective way. Several models were proposed to predict
speech intelligibility in noise including static measures (Articulation
index / speech intelligibility index(SII); Kryter (1962); ANSI (1970,
1997), temporal measures (speech transmission index, Steeneken and
Houtgast, 1980), measures based on automatic speech recognition (Cooke,
2006), or measures taking psychoacoustical or physiological aspects of the
auditory periphery into account (Holube and Kollmeier, 1996; Stadler
et al., 2007; Jirgens and Brand, 2009; Jgrgensen et al., 2013). These
models usually make strong assumptions about the relation between
the (time-dependent) signal-to-noise ratio (SNR) in frequency bands
and the resulting speech intelligibility, or about the processing steps
in the auditory system and the auditory pattern recognition process.
Any deviation between predictions and real human data can usually be
attributed to the failure of one or several of these assumptions. Since
the accuracy of predicting speech intelligibility even for listeners with
normal hearing in different listening conditions (such as different types
of background noise) is very limited (e.g., Hochmuth et al., 2015), the
validity and relevance of these assumptions is unclear.

The goal of the present study was to overcome these limitations by
accurately predicting the performance of listeners with normal hearing in
different stationary noise conditions with a minimum set of assumptions.
This should help to assess the relevance of some of the current assump-
tions used in models of human speech intelligibility and to provide a
valid baseline for speech intelligibility modeling with possible applica-
tions in audiology and acoustic communication research. For this, we
employed an ordinary automatic speech recognition (ASR) system to
predict the outcome of the German matrix test using data available from
the literature.

The closed-set matrix sentence test, first proposed by Hagerman (1982),
has primarily been developed for hearing assessment and is widely used
in clinical practice and research in different languages (see review by
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Kollmeier et al., 2015). It uses sentences with a fixed syntax (name-
verb-number-adjective-object), but virtually no semantic meaning, like
“Peter sees eight wet chairs”. However, this test structure is well suited
for the purpose of the current paper due to its limited vocabulary and its
fixed syntactic structure which facilitates the training of an appropriate
ASR system (see below). The advantage of this approach is the direct
modeling of the speech perception process without making as many
assumptions and simplification as with, e.g. the SII, which is one of the
most commonly used objective measures for human speech recognition.

The SIT is based on early findings (Fletcher and Galt, 1950) that human
speech intelligibility depends on the proportion of spectral information
that is audible to the listener. It is computed by dividing the spectrum
of speech and noise separately into frequency bands and estimating
the weighted average of the band-specific signal-to-noise ratios. The
weighting reflects band-importance functions that were determined for
several types of speech material (ANSI, 1997). One basic property of the
SIT is to employ an empirical reference function for each kind of speech
material that relates the available speech information (expressed in the
SII) to the average recognition rate with the specific speech test material.
As long as the tested conditions are closely related to these reference
conditions and deviate, e.g. only in the spectral shape of the speech and
the stationary background, the SII reaches a very high prediction accuracy
(Meyer and Brand, 2013). Hence, the SII is denoted as a reference-based
speech intelligibility prediction method whereas the ASR-based method
introduced in this paper performs the prediction directly without the
need to provide such an empirical reference. Further limitations of the
simplifying SII concept have been discussed in several recent studies
(Jgrgensen and Dau, 2011; Stone et al., 2011, 2012; Hochmuth et al.,
2015). The authors argued that better predictions of speech intelligibility
can be obtained by taking the temporal modulations of the noise and the
speech signal into account.

Cooke (2006) proposed a missing-data ASR-based approach using
“glimpses” in noisy speech, which are spectro-temporal regions where
a speech signal is least affected by a noise signal, to predict human
consonant intelligibility. The ASR system was trained on clean vowel-
consonant-vowel logatomes. The noisy speech was then recognized using
the glimpses as a mask for the missing-data ASR recognizer, where the
glimpses (spectro-temporal regions with positive SNRs) were calculated
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using the clean speech and the noise signal and provided ample prior
knowledge to the recognizer.

An information theoretic approach which uses an auditory model was
presented by Stadler et al. (2007) who refined the idea from Leijon
(2002) to use a Hidden Markov Model (HMM) of speech stimuli to
estimate sensory information transfer. They estimated the information
transmission capability of models of auditory representations of speech
in noise and derived speech reception thresholds (SRTs) for a matrix
sentence test from the estimated transfer rates. This approach is related
to using a HMM based speech recognizer to predict speech intelligibility,
but differs in two important aspects from the approach proposed in this
study. Firstly, Stadler et al. (2007) generated and analysed models of
noisy speech, but these were not tested with noisy speech signals, hence
no recognition of noisy speech is actually performed. Secondly, the model
of noisy speech was not learned from noisy speech signals but generated
from separate models of clean speech and pure noise.

Another auditory-motivated model for human speech recognition mim-
icking the signal processing that is performed in the elementary auditory
parts was proposed by Jiirgens and Brand (2009). This model was based
on the concept of Holube and Kollmeier (1996) and used an automatic
speech recognizer with an auditory model as a front-end and a dynamic-
time-warp based back-end. Jirgens and Brand (2009) showed that their
model was capable of discriminating CVC and VCV logatomes in noise
almost as well as human listeners if the recognizer has perfect prior
knowledge. Here, perfect prior knowledge means that the training and
test speech material is identical (or “frozen”) and the clean speech signal
of the to-be-recognized sentence is known to the recognizer. Another
downside of this approach was that all parts of the speech signal are
assumed to be useful for speech intelligibility, which is not always the case.
In reverberant conditions, for example, the early part of the reverberation
aids the recognition process while the late part is harmful (Lochner and
Burger, 1964; Bradley et al., 2003; Warzybok et al., 2013). Another
example is nonlinearly processed speech signals with artifacts, which may
result in degraded intelligibility (e.g., Ludvigsen, 1993; Hohmann and
Kollmeier, 1995; Rhebergen et al., 2009).

In yet another approach, Jorgensen et al. (2013) estimated the envelope
power SNR which takes temporal amplitude modulations into account
in order to successfully predict the intelligibility of unprocessed and
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processed (reverberation and spectral subtraction) speech in stationary
and fluctuating noise conditions. However, this model relied on the
concept of an ideal observer implying that a theoretical observer had a
perfect prior knowledge about the (“frozen”) speech and noise signals and
it required the fitting of parameters to an empirical reference condition
in order to predict SRTs defined as the SNR yielding 50% intelligibility.

To overcome the limitations and shortcomings of the model approaches
listed so far, in the current work we used an ordinary ASR system which
was trained and tested using only noisy speech signals on a broad range of
SNRs and exploited the fixed semantic structure of the matrix sentence
recognition test to obtain an ASR performance that matches human
performance. From the noisy sentences, the recognizer could learn during
its training procedure which portions of the recordings carried speech
information and how reliable that information is in different contexts,
i.e. in different words and at different SNRs. Reference-free, objective
SRTs were obtained directly from the measured recognition performance
of the ASR system, which constitutes an important difference to the SII-
based approach which requires defining a reference condition to transfer
SII-values to SRTs. Hence, with the SII only differences relative to a
reference condition can be predicted, but no reference-free, objective
measurements can be performed. On the contrary, the proposed ASR
approach predicts reference-free SRTs based on the noisy speech material
without any calibration of the system to the empirical data. Strictly
speaking, the SRTs are not only predicted, but the very same task
that human listeners perform is performed by a standard ASR-based
computer model. The lowest resulting SRT is reported across all possible
training conditions within the limits of the matrix sentence recognition
test materials. Hence, the assumptions about the recognition performance
by humans (included either in the ideal observer or in the SNR-to-speech
intelligibility relation utilized by the models outlined above) is replaced
by a procedural simulation of the task that human listeners perform.
The intention of this approach is that the resulting objectively predicted
thresholds should be essentially constrained by the testing data and the
signal representation and should be independent from the details of the
ASR implementation and the training procedure.

In addition, only very few assumptions about the internal representation
of the acoustical input signal were made by the standard ASR front-end.
It incorporated only basic auditory principles, i.e. time-frequency analy-
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sis using a Mel-frequency scaled filterbank, log transform and cepstral
analysis by considering only the low-frequency cepstral coefficients that
carry vocal tract information and discarding voice-quality carrying higher
frequencies. The temporal change of these Mel-frequency cepstral coeffi-
cient (MFCC) speech features (i.e. delta and double-deltas) were also
included to represent temporal integration and temporal changes within
each frequency band. Hence, the extraction of MFCCs and the ASR
was generally less complex and included much fewer assumptions about
human auditory processing than the auditory models used by Stadler
et al. (2007); Jirgens and Brand (2009); Jeorgensen et al. (2013).

The ASR system was trained and tested in the same conditions as
described in the study of Hochmuth et al. (2015) in which speech in-
telligibility was measured with listeners with normal hearing using the
German matrix sentence test in different noise conditions. Consequently,
the ASR-based predictions of this data set were compared to SII-based
predictions from Hochmuth et al. (2015) in terms of Pearson s correlation
coefficient, bias, and root-mean-square (RMS) errors. Hochmuth et al.
(2015) showed that the SII was not able to predict the measured data in
the stationary noise conditions as they found no statistically significant
correlations of measured and predicted data. This data set therefore
constitutes a good benchmark for any new speech intelligibility predic-
tion method and was used within this study to evaluate the proposed
ASR-based speech intelligibility model.

6.2 METHODS

6.2.1 Speech intelligibility measurements

The empirical data and the SII-based predictions were taken from
Hochmuth et al. (2015). There, a detailed description of the experimental
method and setup was provided. Briefly, a series of speech intelligibility
experiments in nine different noise conditions was conducted. In the
current study, a subset of those six stationary noise conditions and a
babble noise condition was considered for which SII-based predictions
were available. Note that even though variations of time-dependent,
extended SII-estimates exist (see Meyer and Brand (2013) for a review),
no valid standardized SII prediction for non-stationary noises exists that
could be employed and reported in the study by Hochmuth et al. (2015)
in comparison to the empirical data. Hence, the two conditions with
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modulated noise were not included here. Speech intelligibility was mea-
sured adaptively with listeners with normal hearing with the German
matrix sentence test (Wagener et al., 1999a,b,c) to obtain the SRTs. The
matrix-type sentences of a fixed syntactical structure were generated
from a 50-word base matrix consisting of 10 names, 10 verbs, 10 nu-
merals, 10 adjectives, and 10 nouns. The noises included the stationary
test-specific noises of the German, Spanish, Russian, and Polish matrix
test (Hochmuth et al., 2012; Warzybok et al., 2015a; Ozimek et al., 2010),
the stationary, speech-shaped ICRA1 noise with male and female speaker
characteristics (Dreschler et al., 2001), and a multitalker babble noise
composed of the recordings of 12 female and 8 male speakers reading
different English passages (Auditec, 2006, CD “CD101RW2”). Ten listen-
ers with normal-hearing (pure-tone threshold did not exceed 20 decibels
(dB) HL for all octave frequencies from 125 Hz to 8000 Hz) participated
in the measurements. The speech signals were presented monaurally to
the listener’s preferred ear over headphones (Sennheiser HDA200). The
adaptive procedure (A1) of Brand and Kollmeier (2002) was used to
determine the SRT, where the noise level was fixed at 65 dB SPL and the
speech level was varied adaptively to converge to the SRT, while the step
size decreased exponentially after each reversal. The SRT was estimated
from the psychometric function which was fitted to the data using the
maximum-likelihood method. The psychometric function was represented
by the logistic function. The order of the measurement conditions was
randomized across listeners. The listener’s task was to indicate on a
touch screen which words she/he understood from a matrix containing
all 50 words of the test.

6.2.2 Automatic speech recognizer

The word recognition rate of an ASR system was obtained on the noisy
matrix sentences as a function of the training SNR and the testing SNR.
An ordinary ASR setup, using the Hidden Markov Toolkit (HTK, Young
et al., 2006), was employed, which used Mel-frequency cepstral coefficients
(MFCCs, Davis and Mermelstein, 1980) as a front-end, and Hidden
Markov Models (HMMs) as a back-end. The front-end transformed a
signal waveform into a representation that facilitates the recognition
of speech which is also referred to as features. The back-end learned
acoustical models of the words to be recognized based on these features,
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which were then combined to sentence models using the German matrix
sentence grammar.

6.2.2.1 Front-end

As the front-end, MFCCs together with their first and second order
temporal derivatives were used forming a feature set that is widely
used in ASR. The extraction of MFCC features is usually based on a
logarithmically (log) scaled Mel-spectrogram (cf. ETSI, 2003, Standard
201 108). In this study, the log Mel-spectrogram was calculated as follows:
First, an amplitude spectrogram using a window length of 25 ms and a
window shift of 10 ms was calculated from the input waveform. Then, the
linear frequency axis of the amplitude spectrogram was transformed into
a Mel-frequency axis by combining the frequency bins from 64 to 8000
Hz with triangular filters into 31 equally-spaced Mel-bands. Finally, the
amplitude values were compressed with the decade logarithm. MFCCs
were extracted from the log Mel-spectrogram by spectrally processing
it with a discrete cosine transform (DCT), where only the first 18 DCT
coefficients, which account for spectral modulation frequencies from 0
to 0.29 cycles/Mel-band, were used. The 18 MFCCs were concatenated
with their first and second discrete temporal derivatives, which were
calculated by applying a temporal slope filter of 5 frames (= 50 ms)
length once or twice, respectively. The resulting MFCC feature vectors,
which included both derivatives, were 54-dimensional. As stated in
the introduction, the log Mel-spectrogram already incorporates some
auditory processing principles such as an auditory frequency scale with a
limited frequency selectivity and the compressive, logarithmic perception
of sound intensity. The subsequent transformation into the cepstrum
has no auditory processing background, but rather helps to separate the
speaker-specific higher cepstral components from those lower cepstral
components relevant for speech recognition. The extraction across five
time frames of delta and double-delta MFCC features corresponded to
an “effective” amplitude modulation bandpass filter for those modulation
frequencies most relevant for speech perception, with center frequencies
of about 14 Hz and —3 dB widths of 14 Hz and 10 Hz, respectively.
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0.2.2.2 Back-end

On the back-end side, HMMs were used to model speech with whole-
word models based on the acoustical representation provided by the
front-end. Therefore, the freely available HTK was employed to learn
50 whole-word models, one for each of the 50 words of the base matrix.
Each word was modeled with a left-to-right HMM with 16 states. It was
assumed that any word of the German matrix test can be represented
by a sequence of a maximum of 16 different states, and that the feature
vector values for each state were sufficiently well described by a single
Gaussian distribution. In other words, if the feature vectors had been
spectral energy distributions, a word would have been represented by a
sequence of 16 spectral shapes and the energy values would have been
assumed to be normally distributed. The number was limited to 16
because states were not allowed to be skipped and hence, the minimum
length of any modeled word was 16 frames (= 160 ms). The motivation
of using the same number of states for each word was to keep the model
simple by making as few assumptions as possible. The model parameters
were estimated (learned) in a total of eight iterations on whole matrix
sentences, i.e. the speech material was not segmented into single words.
In addition to the word models, a silence model, a start and a stop
model were trained with four states each. Like the word models, the
start and the stop model were left-to-right models where no state was
allowed to be skipped, while the silence model allowed transition between
all states. The start and stop models modeled possible border effects
at the beginning and at the end of a recording, such as the static on-
set at the beginning of a recording, preventing the silence model from
modeling them. The silence model surrounds the sentence which allowed
the sentence to be preceded and followed by noise. It also modeled
the uncertainty of the listener about when the sentence starts or stops.
For the sentence recognition, a language grammar was used to exactly
model the German matrix sentence test syntax and hence, the number
of available alternatives per word group. The grammar was converted
to a word network and used to limit the recognizer to search only for
transcriptions with valid matrix syntax.
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6.2.3 Predicting SRTs with the automatic speech recognizer

An SNR range from —24 dB to 46 dB was considered, which exceeded
the range of expected SRT5s from the literature (Hochmuth et al., 2015).
Within the considered SNR range, training and testing data sets were
generated in 3-dB steps by mixing 120 matrix sentences with portions of
the noise signal. The 120 matrix sentences were the same as used in the
intelligibility measurements with humans in Wagener et al. (1999b) and
Hochmuth et al. (2015). For every mixture of a speech and a noise signal
an independent random part of the noise signal was selected, i.e. the
noise was not “frozen”. For each word of the base-matrix several different
recordings were included in the speech material, i.e. the speech was also
not “frozen”. Hence, the training and the testing data sets may have
contained the same portions of the noise signal but were very unlikely
to share identical mixtures, just like human listeners were unlikely to be
presented with the same stimulus twice.

For the training data set, each of the 120 matrix test sentences was
mixed eight times with a randomly chosen portion of the noise signal
at each considered SNR. Since within 120 sentences each word occurred
exactly twelve times, 96 samples per word-model were present. This
guaranteed, that for each model state at least 96 data points were avail-
able during training. For the testing data set, each of the 120 matrix
test sentences was mixed once with a portion of the noise signal at each
considered SNR. Since each matrix sentence contained five words, the
word recognition performance was evaluated in 600 decisions (120 sen-
tences X 5 words). The uncertainty of the word recognition performance
was estimated by assuming 600 independent binary decisions (correct or
incorrect).

The ASR system was trained and subsequently tested on all SNRs, in
order to obtain a psychometric function which showed the recognition
performance as a function of the testing SNR. This resulted in an 11x11
matrix which contained the average word recognition rate for all com-
binations of training SNRs and testing SNRs. This matrix is referred
to as the “recognition result map” (RRM) in the remainder of the doc-
ument. An example of a RRM is depicted in Figure 6.1, A, where the
average word recognition rates are represented by the gray scale with
white color corresponding to a recognition score of 100% and a black
color corresponding to a recognition score of 0%. For each training SNR,
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a psychometric function of an ASR system can be obtained from the
rows of the RRM.

The SRTs depending on the training SNR were determined from the
RRM by linear interpolation. The dotted black-white iso-performance
line in Figure 6.1 A, marks the interpolated 50% word correct recognition
points, and hence the possible SRTs. The uncertainty was propagated
from the measured word recognition rates to the interpolated SRTs,
assuming normally distributed errors. From the possible SRTs, the lowest
one including a 2-sigma security margin was selected as the predicted
SRT.

The reason for using this automatically selected “optimal” training
condition that yields the lowest possible SRT is simply to minimize its
effect on the predicted thresholds. This should warrant that the predicted
SNR primarily depends on the properties of the testing data and the
signal representation (features), but not on the properties of the training
data.

6.2.4 Speech intelligibility index

The SII-based predictions were taken from Hochmuth et al. (2015). There,
the predictions were performed using the SIP-toolbox provided by (Fraun-
hofer Fraunhofer IDMT, 2014) which implements the calculation of the
SIT according to the (ANSI, 1997, standard). The SII was computed by
dividing the long-term speech spectrum and the long-term noise spectrum
into 20 third-octave bands and estimating the weighted average of the
SNRs. The band-specific SNRs were weighted using the band-importance
function for speech in noise for third-octave bands (Table B2, ANSI, 1997).
The reference SIT was determined to be 0.214 using the test-specific noise
(German matrix test noise) condition. The SRT was then predicted by
the SNR that yielded the SII-value of the reference condition. Due to
this calibration, the SII-based prediction did not differ from the empirical
data in the reference condition.

6.3 RESULTS

6.3.1 Empirical data

The measured SRTs from Hochmuth et al. (2015) to which the ASR-based
predictions were compared are briefly discussed here. The empirical SRTs
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ranged from —10.9dB in the Spanish matrix test noise to —6.2dB in
the multi-talker babble noise with a mean SRT of —7.9 + 1.5dB across
the measurement conditions. Among the language-specific matrix test
noises, the highest SRT of —7.2dB was obtained in the German matrix
test noise, confirming that the best energetic masking effect is obtained
when the noise spectrum matches the speech spectrum. Slightly and not
significantly lower SRTs were observed in the Russian, and Polish matrix
test noises as well as in the Icral female and Icral male noise. In the
Spanish matrix test noise, the SRT was 3.7 dB lower than in the German
matrix test noise. The highest SRT was measured in the babble noise
condition suggesting an additional effect, which could not be explained
with purely spectral masking.

6.3.2 ASR-based predictions

An example of the recognition result map (RRM), which represents the
recognition performance depending on the training and the testing SNR,
is depicted in Panel A of Figure 6.1 for the German matrix test in its
test-specific noise. Generally, ASR systems that were trained at high
SNRs performed well when being tested at high SNRs and ASR systems
that were trained at very low SNRs did not perform above chance level.
The lowest SRT in the test-specific noise condition was achieved when
training at 0 dB SNR. Hence, this training condition was used to predict
the performance of human listeners. The corresponding psychometric
function (row of the RRM) is shown in Panel B of Figure 6.1.

For training at a SNR of 0dB, the recognition performance was found
to be about 10% words correct (chance level) for SNRs below —12dB,
and 100% words correct for SNRs above 0dB. The (interpolated) SRT
was —7.6 £ 0.1dB, and the slope of the psychometric function derived
at that point was 16.1 + 1.2dB/%. Wagener et al. (1999¢c) measured
an SRT of —7.1dB and a slope of 17.1dB/% for listeners with normal
hearing in this condition, which coincides remarkably well.

Table 6.1 reports the predicted SRTs along with the empirical data,
the SII-based predictions from Hochmuth et al. (2015) and the differences
between empirical data and model data in the considered noise conditions.

The absolute deviations from the empirical SRTs in the different noise

conditions were consistently smaller for the ASR-based predictions than
for the SII-based predictions. In other words, the ASR-based predictions
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Figure 6.1: Panel A: Recognition results map (RRM) for the test-specific
noise condition (German Matriz noise). Recognition performance of the
ASR system depending on the training SNR and the testing SNR in
percent word correct is encoded in gray scale, where white corresponds to
100% correct and black to 0% correct. The dashed black-and-white line
marks the iso-50 %-correct contour. Panel B: The psychometric function
obtained with the ASR system trained at 0 dB SNR. The recognition
performance in percent words correct is plotted over the tested SNRs
with the solid lines connecting the data points. The chance level (10%)
and the target level (50%) are indicated with dashed lines. The SRT is
interpolated linearly between the sampled data points.
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Table 6.1: Measured SRTs, predicted SRTs, and differences of both
in various noise conditions in dB. The employed noises included the
stationary test-specific noises for the Matriz sentence test in German
(DE), Spanish (ES), Russian (RU), and Polish (PL) language. In addition
the male and the female version of the stationary ICRA1 noise was used,
and a multitalker babble noise.

SRTs [dB]| Human SII ASR
System Measured | Predicted Diff. | Predicted Diff.
DE matrix noise —7.2 -7.2 0.0 —-7.6 —0.3
ES matrix noise -10.9 —-6.0 4.9 —13.8 —2.9
RU matrix noise —8.3 —-3.1 5.2 —10.2 —2.0
PL matrix noise 7.6 -5.5 2.1 76 0.0
ICRA1 male —7.4 -5.6 1.8 -7.1 04
ICRA1 female —8.0 —-5.0 3.0 -7.8 0.1
Multitalker babble —6.2 —-5.1 1.1 -5.5 0.7

were found to be generally closer to the empirical data than the SII-
based predictions. For the SII-based predictions, the deviation from
the empirical data was found to be at least 1dB in all noise conditions
but the reference condition, in which the SII-based prediction matched
the measured data by definition. The maximum deviations from the
empirical SRTs were found in the Spanish and Russian matrix test noise
conditions, in which the human performance is under-estimated by about
5dB. The mean value of the SII-based predictions was —5.4 + 1.2dB.
For the ASR-based predictions, the most pronounced deviations from
the empirical data were also found for the Spanish and Russian matrix
noise condition, in which the SRTs were over-estimated by about 3 dB and
2dB, respectively. For the remaining five of the seven noise conditions the
predictions did not differ by more than 0.7 dB from the measured data.
The average predicted SRT over all noise conditions was —8.5 £+ 2.7 dB.
In Figure 6.2, the predicted SRTs are plotted against the measured
SRTs in each noise condition for the SII-based (diamonds) and ASR-based
(circles) predictions. The dashed and the dash-dotted lines have a slope
of unity and were fitted by minimizing the mean-square error to the SII-
based and ASR-based predictions, respectively. The distances between
these lines and the bisecting line (solid, black line) were reported as the
bias of the respective models, and the RMS error of the predictions was
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Figure 6.2: Scatter plot of predicted SRTs against measured SRTs for
the ASR system (blue filled circles) and SII (red filled diamonds). The
solid line is the bisecting line. All interrupted lines have a slope of
unity. The dashed line and the dash-dotted line were fitted by minimizing
the mean-square error to the predicted data of the SII-based and ASR-
based predictions, respectively. The distance between each line and the
bisecting line represents the bias of the predictions. The letters identify
the deviating noise conditions where es, Tu, and pl refer to the test specific
noise of the Spanish, Russan, Polish Matriz sentence test, respectively,
i1 refers to ICRA1 (male), ilf refers to ICRA1 (female), and bl to the
multitalker babble noise condition.

calculated from the differences between the predicted and the measured
SRTs. In addition, Pearson’s correlation coefficients (R?) between the
measured SRTs and the predicted SRTs were calculated along with
the probability (significance level p = 0.05) of the null-hypothesis (no
correlation). Table 6.2 presents the results of the correlation analysis (R?
and p), the RMS error, and the bias of the different systems.

The RMS of the differences of the SII-based predictions and the empir-
ical data over all noise conditions was 3.1 dB, while the RMS difference of
the ASR-based predictions and the empirical data was 1.4 dB. The bias
of the SII-based predictions was found to be 2.6 dB, which corresponds
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Table 6.2: Statistical analysis of the predicted SRTs. Pearson’s correla-
tion coefficients (R?) and the probability (p) of the null-hypothesis (no
correlation) are reported along with the root-mean-square prediction error
and the bias for the SII-based and the ASR-based predictions.

System  RZ p RMS error [dB] Bias [dB]
SII 0.00 0.987 3.13 2.59
ASR  0.95 0.000 1.35 —0.56

to an under-estimation of the human performance, while the bias of
the ASR-based predictions was found to be —0.6 dB, which corresponds
to a slight over-estimation of the human performance. No significant
(p = 0.987) correlation was found between the empirical data and the
SII-based predictions, while the predictions of the proposed ASR-based
method were found to be highly and significantly correlated (R? = 0.95,
p < 0.001) with the empirical data.

6.4 DISCUSSION

The proposed ASR-based method was shown to accurately predict speech
reception thresholds (SRTS) in various stationary noise conditions and
a babble noise condition for the German Matrix sentence test, whereas
the SII-based approach failed to accurately predict them although it was
specifically designed for speech intelligibility predictions in stationary
noises (cf. Table 6.2). This is remarkable because the SII considers the
long-term spectrum of both speech and noise and had been shown to
explain those aspects of human speech perception that are primarily
due to SNR differences in the frequency domain. The experimental
data considered here was well suited for testing this property since the
same target speech material was used and the background noises differed
primarily in their spectral content.

With the ASR system, on the other hand, it was possible to obtain
plausible psychometric functions, like the one depicted in Figure 6.1
B, of which a reference-free SRT and the slope of the psychometric
function at that SRT could be derived. Furthermore, the predicted
slope of the psychometric function was remarkably close to the measured
slope indicating that the ASR-based speech recognition process captures
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relevant properties of human speech perception. This outperforming of
the SII-based approach by the new reference-free ASR-based approach
was unexpected, because it occurred in those conditions where the SII is
expected to predict speech recognition in noise very accurately whereas
most of the previously reported ASR-based method were only able to
predict human speech recognition with a considerable man-machine gap
(e.g., Meyer et al., 2011b). It should also be noted that the aim of the
current paper was not to optimize the robustness of the ASR system
under consideration against noise. Instead, the training and testing of the
current system should resemble as much as possible human performance
during the matrix sentence recognition test.

There are several reasons why the SII-based approach was not able to
predict the measured data in Hochmuth et al. (2015). One important
assumption with the SII was that temporal information can be neglected
for speech intelligibility in stationary noise. However, Stone et al. (2011,
2012) argued that even stationary noises exhibit temporal amplitude
modulation patterns, which may influence speech intelligibility. Also,
the band-importance functions that were employed may not have been
adequate for the speech material: First, the SII was not designed to
predict speech intelligibility measured with speech tests consisting of only
very limited speech items (50 words). Furthermore, the standardized
band-importance functions were established only for American English.
However, they may be language- or even speaker-specific (Wong et al.,
2007).

The ASR-based approach learned during the training procedure which
portions of the recordings carry speech information and their reliability.
These portions were allowed to depend on the training SNR, the language,
the speaker, or the type of background noise, which reduced the assump-
tions about them to a minimum. The ASR-based predictions were also
different from the long-term spectrum based SII, in that reference-free
SRTs were predicted which did not require any calibration of the system
to the empirical data.

In distinction to other speech intelligibility prediction models, e.g.
from Stadler et al. (2007), Jiirgens and Brand (2009), or Jorgensen et al.
(2013), no sophisticated auditory model was needed to predict SRTs for
the German matrix sentence test in various stationary and a babble noise
condition for listeners with normal hearing. The rather basic auditory
representation encoded in the MFCCs seemed to be sufficient as long as
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stationary or babble type maskers were considered. This indicates that
only a few assumptions about auditory processing might be needed to
model speech intelligibility in stationary noise conditions.

Also, in contrast to the existing models which require separate clean
speech and noise signals or even frozen speech and noise signals to make
predictions (Cooke, 2006; Jiirgens and Brand, 2009; Jgrgensen et al.,
2013), the ASR-based model is trained and tested only with noisy speech
signals, just as they were presented to a human listener.

The good coincidence between the ASR-based predictions and the
measured data indicates that neither the clean speech signal nor frozen
speech or noise signals might be needed to accurately predict speech
reception thresholds. The remaining assumptions of the proposed ASR
system were that a matrix sentence test is used, that the noisy/mixed
speech material exists for several SNRs, and that the physical properties
of the audio signal encoded in MFCC/delta/double-deltas were sufficient
to perform the recognition task. This makes the proposed setup a suitable
candidate for reference-free, objective measures in future work because it
allows predictions with fewer assumptions than other models and without
the need of any prior measurement.

While the proposed approach employs rather controlled and matched
training/testing conditions, which is an easy condition in terms of an
ASR task, it was unclear if—even being so simple—an ASR system was
able to obtain SRTs as low as those achieved from listeners with normal
hearing. Following good scientific practices, the ASR setup was reduced
to the minimum of complexity that was required to perform the German
matrix sentence recognition task. Contrary to the general expectation
that ASR systems perform worse than listeners with normal hearing in
acoustically challenging conditions, in the proposed setup an ASR system
could perform as well as or even better than those with normal hearing.
This is mainly due to the very specific conditions employed here like, e.g.
training and testing on the same sentences/noise portions that do not
reflect the “standard” ASR problem where neither the speech signal to
be recognized nor the interfering noise is not known beforehand. Such
a restricted training/recognition setup rather resembles the “optimum
detector” assumption employed in some of the psychoacoustical perception
models outlined above, even though it differs in detail due to employing
a HMM-based recognizer rather than a simple correlation detector. We
assumed that the predicted thresholds with this setup were optimal in
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the sense that they could not be improved further by using any other
training data set, whether it be “multi-condition” or “different speaker”.
For the prediction of speech intelligibility it is desirable that the predicted
values only depend on the test data (not on the training data) and the
signal representation (here: MFCCs). However, these restrictions in
the training/recognition setup could be relaxed step-by step in future
research in order to improve current ASR systems, by systematically
investigating their weak points when starting with human and machine
performance being on a par with each other.

The proposed method is word-independent which would facilitate its
application to matrix-type speech materials of different languages and/or
speakers in future work. Since the matrix-type test has been developed
so far for 14 languages (Kollmeier et al., 2015) it is possible to measure
speech intelligibility in a controlled and comparable way across languages.
In future research it could be tested if speech intelligibility predictions for
these tests using a language-independent ASR-based model are feasible.
This opens the possibility to develop a standard, language-independent
way of modeling speech intelligibility as a benchmark for matrix sentence
tests and each noise employed.

For more challenging conditions, e.g. modulated noises, reverberation,
competing talkers, or processed speech, extensions to the proposed setup,
such as using robust ASR features, might be required to perform threshold
predictions in future work. However, this was beyond the scope of the
current work. Nevertheless, for the ASR system it makes no difference if
the distortions originate from the noise signal or from the speech signal
itself (e.g. reverberation).

Further, it could be evaluated if the ASR-based prediction method
could be used to test if a certain representation of speech signals (e.g. from
a sophisticated auditory model with or without a simulated reduction in
information transmission due to hearing impairment or cochlear implant
excitation patterns) provides sufficient information for decent speech-
in-noise recognition performance. Hence, the reference-free ASR-based
approach suggested here might be applicable to a variety of applications
in hearing research, audiology and communication acoustics.
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6.5 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— Speech intelligibility for the German matrix sentence test was accu-
rately predicted for listeners with normal hearing using an ordinary
ASR system which modeled the speech perception process in station-
ary noise conditions and a babble noise condition and outperformed
standard SII-based predictions.

— Compared to other speech intelligibility models (e.g. the speech intel-
ligibility index), only few assumptions were needed: Speech reception
thresholds were predicted without requiring empirical reference values
or assuming an a-priori knowledge-driven optimum detector, thus
providing a truly objective measure.

— The proposed method was designed to be easily extendable, e.g. for
matrix tests in various languages and different conditions or for the
integration of models of impaired signal processing into the front-end,
and could potentially spark further research.
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7 A simulation framework for auditory
discrimination experiments: Revealing the
importance of across-frequency processing
in speech perception

ABSTRACT

A framework for simulating auditory discrimination experiments, based on
an approach from Schédler et al. (2015b) which was originally designed
to predict speech recognition thresholds, is extended to also predict
psychoacoustic thresholds. The proposed framework is used to assess
the suitability of different auditory-inspired feature sets for a range of
auditory discrimination experiments that included psychoacoustic as well
as speech recognition experiments in noise. The considered experiments
were: 2kHz tone-in-broadband-noise simultaneous masking depending
on the tone length, spectral masking with simultaneously presented tone
signals and narrow-band noise maskers, German Matrix sentence test
reception threshold in stationary and modulated noise. The employed
feature sets included: Spectro-temporal Gabor filter bank features, Mel-
frequency cepstral coefficients, logarithmically scaled Mel-spectrograms,
and the internal representation of the Perception Model from Dau et al.
(1997). The proposed framework was successfully employed to simulate all
experiments with a common parameter set and obtain objective thresholds
with less assumptions compared to traditional modeling approaches.
Depending on the feature set, the simulated reference-free thresholds
were found to agree with—and hence to predict—empirical data from
the literature. Across-frequency processing was found to be crucial to
accurately model the lower speech reception threshold in modulated noise
conditions than in stationary noise conditions.

This chapter was accepted on 25th of April 2016 for publication as “A simulation
framework for auditory discrimination experiments: Revealing the importance of
across-frequency processing in speech perception”, M. R. Schadler, A. Warzybok, S.
D. Ewert, and B. Kollmeier, in the Journal of the Acoustical Society of America.
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7.1 INTRODUCTION

Even though robust automatic speech recognition (ASR) systems have
been shown to profit from knowledge about the human auditory system
(Hermansky, 1990; Tchorz and Kollmeier, 1999; Kleinschmidt and Gelbart,
2002a; Meyer and Kollmeier, 2011a; Schédler et al., 2012a) and — in return
— human auditory signal processing models may profit from the framework
and rigid theory behind ASR systems (e.g., Holube and Kollmeier, 1996;
Stadler et al., 2007; Jiirgens and Brand, 2009) both fields of research
have traditionally evolved independently of each other. Typically, any
exchange between the two is unidirectional in the sense that (modified)
auditory signal processing models are considered as front-ends in ASR,
but ASR front-ends are not considered as models of human auditory signal
processing. Hence, the aim of this study is to revise the traditional idea of
“fitting” auditory models “to the task” in favor of finding universally-valid
functional models which are able to perform as well as human listeners in
a range of auditory recognition tasks. Such an approach should bridge the
fields of automatic speech recognition (ASR), human speech recognition
(HSR) and psychoacoustics research. Compared to many models of
human auditory signal processing, which are tailored to describe and
model specific properties of the human auditory system, ASR features
are subject to an extensive set of broad, sometimes even contradictory,
demands, e.g., sufficient spectral/temporal detail but good generalization
over acoustic conditions. These different objectives (descriptive model
vs. universally applicable model) are the reason for auditory models
usually requiring considerable modification and engineering towards the
appropriate ASR framework before they can be employed as front-ends
for ASR purposes. From a modeling point of view, ASR features have
desirable properties as a result of the selection process that they undergo
in ASR experiments: They are the best known compromise between
the diverse demands which are made on the signal representation by
robust ASR tasks and, even beyond, audio classification tasks. Hence,
auditory-inspired robust ASR features are often simpler than the models
by which they were inspired because only the indispensable processing
steps for solving the ASR task were actually used. In fact, many common
ASR features incorporate only basic auditory signal processing principles
such as a limited spectral resolution as well as a compressive intensity
perception, e.g., all features which are based on logarithmically scaled

126



7.1 INTRODUCTION

Mel-spectrograms (LogMS). It seems legitimate to ask for the “auditory
fidelity” of auditory-inspired ASR features, or in other words, if they show
those properties of the auditory system by which they were originally
inspired. Hence, one of the aims of this paper is to demonstrate how the
“auditory fidelity” of signal representations, including traditional models
of auditory signal processing, might be tested and established.

To evaluate ASR features and auditory models on a set of speech
recognition and psychoacoustic discrimination tasks with varying com-
plexity and to provide an unbiased, fair comparison between different
features/models and empirical data, a common simulation framework
which is able to obtain reference-free, i.e., without super-human prior
knowledge, objective thresholds is highly desirable. Thus, in a first step,
such a framework that allows the simulation of simple and complex audi-
tory discrimination experiments (ADE) using ASR features as well as
the output of auditory models with a single universal parameter set is
investigated.

Traditional modeling approaches employ predefined features of the
change in the signal to be detected and are typically based on signal-to-
noise ratios (SNRs) only, such as the power-spectrum model (Patterson
and Moore, 1986), the Speech Intelligibility Index (ANSI, 1997), the
envelope lowpass-filter model (Viemeister, 1979), or the envelope-power
spectrum model (EPSM; Ewert and Dau, 2000). The resulting detection
threshold corresponds to a predefined feature value which may be formal-
ized, e.g., by the Signal Detection Theory (Green and Swets, 1966). While
these models only use long-term features and thus only require statistical
representations of signal and noise, some more refined model versions such
as the multi-resolution speech-based ESPM (mr-sEPSM; Jgrgensen et al.,
2013) require reproducible or so-called “frozen” noise to estimate SNRs
in short time frames. More sophisticated modeling approaches (Holube
and Kollmeier, 1996; Dau et al., 1997; Jepsen et al., 2008; Jirgens and
Brand, 2009), perform a pattern match using an “optimal” detector to
predict human performance, thus providing an automatic way of finding
the appropriate feature(s) to be detected. However, the exact temporal
alignment between template and pattern under consideration can only
be secured by a “double-ended” approach, i.e., by deriving the template
from a prior knowledge of the target signal alone or at a high SNR and a
typical representation of the noise. Moreover, this approach is not able to
predict plausible thresholds for the outcome of complex auditory discrim-
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ination experiments, such as speech intelligibility tests, without requiring
an “optimal” detector that possesses super-human prior knowledge, such
as, e.g., the exact temporal alignment of the target or masker signals.

As an alternative, the approach presented by Schidler et al. (2015b)
relieves the strong assumptions about the fixed temporal structure of the
template, and hence about knowledge of the to-be-recognized target or
noise signal prior to mixing, by assuming a training phase of a Hidden-
Markov-model-based automatic speech recognizer (ASR) at a broad range
of signal-to-noise ratios. During this training phase, the ASR system
learns the task on noisy data, just like human listeners are assumed to
do during an adaptation phase. Unlike other approaches and like human
listeners, the ASR system then needs to infer the temporal alignment
of the target signal from the noisy mixture. This can be denoted as a
pseudo-single-ended approach which only relies on the knowledge of a
probabilistically controlled succession of certain automatically learned
features, which natively allows the use of processed signals (e.g., including
the effect of noise reduction). Furthermore, this approach is reference-
free, since the predicted thresholds are not dependent on any reference
condition which is used by some traditional model approaches to fit
detection parameters (such as, e.g., internal noise) to the average human
performance.

Therefore, the modeling approach from Schidler et al. (2015b), origi-
nally designed to predict the outcome of the German Matrix sentence
speech recognition test, was extended to simulate generic ADE and obtain
reference-free objective thresholds. Schédler et al. (2015b) successfully
predicted the outcome of the German Matrix sentence test for different
types of background noise by simulating the experiment using a standard
ASR system. They trained and tested the ASR system with noisy matrix
sentences on a broad range of SNRs and determined the speech reception
threshold (SRT), i.e., the SNR at which the recognition rate is 50%
correct. In the current study, this approach was extended to recognize
tone-in-masker and only-masker stimuli which allows to simulate classi-
cal psychoacoustic detection and discrimination experiments. A set of
general purpose back-end parameters was established with the aim of
allowing the simulation of different experiments using different signal
representations with the same parameter set. The extended framework
with the general purpose parameters is referred to as the simulation
framework for auditory discrimination experiments (FADE). The goal of
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FADE is to provide a general purpose framework to obtain thresholds
which were constrained by the task and the signal representation.

FADE was used to simulate basic, psycho-acoustical experiments and
more complex Matrix sentence recognition tasks with a range of fea-
ture sets (front-ends). On the side of the psycho-acoustical experiments,
simultaneous masking thresholds depending on tone duration were in-
cluded as well as spectral masking thresholds depending on the tone
center frequency. On the side of Matrix sentence recognition tests, speech
reception thresholds (SRTs) of the German Matrix sentence test were
included in a stationary and a fluctuating noise condition. As signal
representations, logarithmically scaled Mel-spectrograms (LogMS), stan-
dard ASR features, auditory-inspired ASR features, and the output of
a traditional “effective” auditory processing model were employed. Mel
frequency cepstral coefficient (MFCC) features were used as standard
ASR features. The recently proposed Gabor filter bank (GBFB) and
separable Gabor filter bank (SGBFB) features, which were shown to
improve the robustness of standard MFCC-based ASR, systems Schédler
et al. (2012a); Schédler and Kollmeier (2015a), encode spectro-temporal
modulation patterns of audio signals and were used as auditory-inspired
ASR features. The LogMS was also considered as a signal representation
because it represents the common basis for MFCC, GBFB, and SGBFB
features. The signal representation of the perception model (PEMO)
from Dau et al. (1997), referred to as PEMO features, represented the
output of a traditional auditory signal processing model. ASR features
are usually used with feature vector normalization, such as mean and
variance normalization (MVN) (Viikki and Laurila, 1998), while signal
representations in auditory models are not. To assess the effect of MVN,
LogMS, MFCC, and PEMO features were employed with and without
MVN. All considered experiments were simulated using all feature sets
and the obtained thresholds were compared to empirical and model data
from the literature.

7.2 METHODS

7.2.1 Experiments

The stimuli, the empirical data, and the PEMO model data for the audi-
tory discrimination experiments were taken from the literature (Moore
et al., 1998; Derleth and Dau, 2000; Wagener and Brand, 2005; Jepsen
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et al., 2008). While the model and empirical data from the literature
were measured using adaptive methods, the simulations using FADE were
performed using a constant-stimulus method which is explained in detail
in Sec. 7.2.3.

7.2.1.1 Simultaneous masking

The stimuli, the empirical data, and the PEMO model data for the
tone-in-noise simultaneous masking experiment were taken from Jepsen
et al. (2008). There, a 2-kHz tone signal needed to be detected in the
presence of a broadband noise masker. The 500-ms Gaussian noise masker
was limited to the frequency range from 20Hz to 5kHz and included
50-ms raised-cosine ramps. Detection thresholds corresponding to the
70.7%-correct point on the psychometric function were measured for
signal duration from 5 to 200 ms which included 2.5-ms raised-cosine
ramps.

7.2.1.2 Spectral masking

The stimuli and the empirical data for the tone-in-noise spectral masking
experiment were taken from Moore et al. (1998). The signal was a
tone and the masker a 80-Hz wide Gaussian noise centered at 1kHz
and presented at 45 dB SPL. Detection thresholds corresponding to the
79.4%-correct point on the psychometric function were measured. The
tone frequencies considered in this work were those at which the masking
effect was expected to dominate the absolute hearing thresholds: 0.75,
0.90, 1.00, 1.10, 1.25, and 1.50kHz. The original study considered more
conditions including noise signals, tone maskers, additional masker levels,
and additional center frequencies. The PEMO model data was taken
from Derleth and Dau (2000), which used the same model parameters
as Dau et al. (1997). In contrast to the original papers, the thresholds
are presented in dB SPL rather than in dB masking. Therefore, the dB
masking values were transformed to dB SPL using the absolute hearing
thresholds defined in (ISO, 2003, Standard “226: 2003”).

7.2.1.3 German Matriz sentence test

The stimuli and the empirical data for the speech intelligibility experiment
were taken from Wagener et al. (1999¢) and Wagener and Brand (2005).
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In the sentence test from Wagener et al. (1999c¢), listeners needed to
repeat sentences of five words with a fixed syntactical structure which
were presented in noise. The SNR which corresponded to the 50%-correct
point on the psychometric function, i.e., the SRT, was measured using
an adaptive method. The speech material is phonetically balanced and
represents the phonetic variety of the German language. In addition
to the unmodulated test-specific noise condition, a condition with a
single-speaker modulated speech noise from a male speaker at normal
level, the IRCA5 noise from Dreschler et al. (2001), was considered. The
corresponding empirical thresholds were taken from Wagener and Brand
(2005).

7.2.2 Signal representations

The logarithmically scaled Mel-spectrogram (LogMS) is the basis for
all considered ASR features (MFCC, GBFB, SGBFB) in this study.
Mel-spectrograms were extracted from an amplitude spectrogram of the
input waveform with a window length of 25 ms and a window shift of
10ms. Therefore, the linear frequency axis of the amplitude spectrogram
was transformed into a Mel-frequency axis by combining the frequency
bins from 64 Hz to 8 kHz with triangular filters into 31 equally-spaced
Mel-bands. Finally, the amplitude values are compressed with the decade
logarithm. An example of a LogMS is depicted in the upper panel of
Fig. 7.1. This 31-dimensional signal representation is referred to as
LogMS features.

7.2.2.1 Mel frequency cepstral coefficients

MFCCs are widely used in ASR and acoustic detection tasks and are
often used as a baseline. In this work, they were extracted from LogMSs
by applying a discrete cosine transform (DCT) in the spectral dimen-
sion. Subsequently, the MFCCs corresponding to quefrencies above 0.58
cycles/Mel-band were removed and the remaining 18 MFCCs were con-
catenated with their first and second order discrete temporal derivative.
The temporal derivatives are also called deltas and double deltas and
were extracted by applying a slope filter with a total length of 5 frames
once or twice respectively. The 54-dimensional MFCC features were used
with mean and variance normalization as explained in Sec. 7.2.2.5.
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Figure 7.1: Taken from Schadler and Kollmeier (2015a). The LogMS
of clean speech in the upper panel is 2D-convolved with a spectral 1D
filter s, a temporal 1D filter t and the corresponding spectro-temporal
2D filter st. The result of the filtering process is depicted to the left of
the corresponding filter. The amplitude of the 2D filters and (filtered)
spectrograms is encoded in gray scale, where white encodes high amplitude
and black encodes low amplitude.
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7.2.2.2 Gabor filter bank features

GBFB features were successfully employed as robust features for ASR by
Moritz et al. (2013) as well as robust features for acoustic event detection
by Schroder et al. (2013). They are auditory-inspired and extract spectro-
temporal modulation patterns from LogMS using 2D Gabor filters. The
shapes of the 2D Gabor filter that were used are depicted in Fig. 7.2
and were inspired by patterns found in neural correlates in the auditory
cortex of cats by Qiu et al. (2003). To extract GBFB features, the
LogMS was 2D convolved with each of the 2D GBFB filters. Each filtered
version was subsequently (critically) down-sampled in spectral dimension
by a quarter of the width in spectral dimension of the corresponding 2D
filter. The filtered and down-sampled versions of the LogMSs were than
concatenated and formed a 455-dimensional feature vector. Extensive
descriptions of the GBFB feature extraction were given in Schédler et al.
(2012a); Schédler and Kollmeier (2015a). GBFB features were used with

mean and variance normalization as explained in Sec. 7.2.2.5.

7.2.2.83 Separable Gabor filter bank features

The difference between GBFB and SGBFB features is that SGBFB
features are extracted with two separate modulation filter banks, a
spectral and a temporal one, instead of using a filter bank of spectro-
temporal filters. Nonetheless, they cover the same spectro-temporal
modulation space. The SGBFB approach was shown to reduce the
complexity of the features and even to improve the robustness of an ASR,
system (Schadler and Kollmeier, 2015a). All SGBFB filter functions and
the corresponding separable 2D filter functions of all combinations of
spectral and temporal SGBFB filters are depicted in Fig. 7.3. In the
current study 1020-dimensional SGBFB features were extracted using
the full set, i.e., all nine spectral and all nine temporal filters, which
are referred to as SGBFB features. An extensive description of the
SGBFB feature extraction was given in Schiadler and Kollmeier (2015a).
In addition to the 1020-dimensional SGBFB features, a reduced set of
255-dimensional SGBFB features which does not use the filters that are
marked with I (for imaginary phase) in Fig. 7.3, were considered and are
referred to as SGFB-RR features. Due to its design, the SGBFB allows
to apply only the spectral or only the temporal modulation filtering. A
set of features which was extracted using only temporal R (for real phase)
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Figure 7.2: Taken  from
Schadler et al. (2012a). Filter
functions of the 2D Gabor filter
bank (GBFB) filters. FEach tile
represents the filter function of
a spectro-temporal 2D Gabor
filter, where the horizontal axis
within each tile is the temporal
one and the vertical axis is the
spectral one. They are sorted
by their spectral and temporal
center modulation frequencies.
The amplitude of the 2D filter
functions is encoded in gray
scale, where white encodes high
amplitude and black encodes low
amplitude.
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Figure 7.3: Taken from Schidler and Kollmeier (2015a). All possible
combinations of spectral and temporal 1D Gabor filter bank filters, and
their equivalent, separable spectro-temporal 2D filter functions. Each
tile represents a separable spectro-temporal 2D filter function, with the
horizontal azis within each tile being the temporal and the vertical azis
being the spectral one. The 1D filters, depicted above and to the left
of the 2D filters, are sorted by spectral and temporal center modulation
frequencies, and are grouped according to the part of the complex 1D
Gabor filter which is used: envelope (E), real (R), imaginary (I). The
amplitude of the 2D filters is encoded in gray scale, where white encodes
high amplitude and black encodes low amplitude.
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Figure 7.4: Modified from gammatone filter bank
Dau et al. (1997). Block di-
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and E (for envelope) filters is referred to as SGBFB-R-T, and another
set of features which was extracted using only spectral R and E filters is
referred to as SGBFB-R-S. All SGBFB based features were used with
mean and variance normalization as explained in Sec. 7.2.2.5.

7.2.2.4 Perception Model

The PEMO was successfully used to model various experiments in psy-
choacoustics, (e.g., Dau et al., 1997; Verhey et al., 1999; Derleth and
Dau, 2000). It was introduced by Dau et al. (1996a,b) and later extended
with a temporal modulation filter bank by Dau et al. (1997). The PEMO
includes a signal processing part (front-end) which effectively models
several aspects of the human auditory system. In the current study the
PEMO front-end from Dau et al. (1997) is used to extract features from
input waveforms. Therefore, the freely available implementation from
Sendergaard and Majdak (2013) at git commit cc9c0d3c was used, which
considers auditory filters in the frequency range from 80 Hz to 8 kHz and
temporal modulation frequencies in the range from 0 Hz to 150 Hz. A
block-diagram of the PEMO feature extraction is depicted in Fig. 7.4.
A Gammatone filter bank was used to model the response of the basilar
membrane to the input signal. The subsequently applied half-wave recti-
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fication and the 1 kHz low-pass filter model the hair cell deflection. The
adaptation loops account for temporal properties of the nerve cell firing
probability at different stages of the auditory pathway. The output of the
modulation filter bank was low-pass filtered and down-sampled to 100 Hz.
These 275-dimensional feature set is referred to as PEMO features.

7.2.2.5 Feature normalization

Feature vector normalization such as mean and variance normalization
(MVN) or histogram equalization were shown to improve the robustness
of ASR systems (Viikki and Laurila, 1998; De La Torre et al., 2005)
and are usually employed in conjunction with robust ASR features. The
auditory models used to explain psycho-acoustical experiments usually
do not contain a similar processing step. This is why in the current
study by default all ASR features (MFCC, GBFB, and SGBFB) are used
with per-utterance/per-stimulus MVN, while the LogMS and the PEMO
features are not.

In order to assess the effect of feature normalization, LogMS, PEMO
and MFCC features were tested with and without MVN. These feature
sets are indicated by the suffix MVN and NOMVN;, respectively.

7.2.3 Simulation framework for auditory discrimination
experiments

The simulation framework for auditory discrimination experiments (FADE)
is based on the approach from Schéidler et al. (2015b), where an ASR
recognition system was used to simulate—and hence predict the out-
come of—the German Matrix sentence test with only few assumptions
compared to traditional speech intelligibility prediction models. Here,
this approach was extended to simulate tone-in-noise detection (i.e.,
tone-in-noise from only-noise discrimination) experiments. A reference
implementation of FADE is available online!.

7.2.8.1 Front-end

In the original work by Schédler et al. (2015b), only MFCCs were used
as the front-end, while in this work all signal representations presented
in Sec. 7.2.2 were employed with the FADE.

LURL: http://medi.uni-oldenburg.de/FADE
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7.2.8.2 Back-end

The back-end used in FADE is the same as in Schédler et al. (2015b).
HTK was used to build left-to-right whole-word/stimulus Hidden Markov
Models (HMMs) models with 6 states per word/stimulus and Gaussian
Mixture Models (GMMs) with one component per state. For each training
condition, which in the case of the German Matrix sentence test is
determined by the SNR and for the psychoacoustic experiments by the
absolute tone level, the GMM/HMM parameters are estimated (learned)
in a total of 8 iterations. Since the material of the German Matrix test
consists of 50 words, 50 whole-word models were learned during the
training period. For the tone-in-noise detection experiments, two models
were trained: A model for the stimuli in which the target is present (tone
plus noise) and a reference one for the stimuli in which the target is
absent (noise only). In addition to the word/stimuli models, a START,
a STOP, a PRE-SILENCE, and a POST-SILENCE model were trained
for each training condition. The START/STOP model covers border
artifacts which are common to all recordings of a training condition,
while the PRE/POST-SILENCE models represent the indistinguishable
signal parts before and after the speech/target. All four are shared
between all sentences/stimuli of a training condition. The grammar,
in HTK-terms, for a sentence/stimulus was: (START PRE-SILENCE
$sentence/stimulus POST-SILENCE STOP), where $sentence = ($word1
$word2 $word3 $word4 $word5) and $stimulus = (reference | target).
The corresponding grammar was converted to a word network and used
to limit the recognizer to search only for transcriptions with valid syntax
for the corresponding experiment. This implements the knowledge of
a trained listener, who knows about the grammatical structure as well
as about the limited vocabulary of the Matrix test. The effect of the
number states per model and the number of states per special model
(START, STOP, PRE-SILENCE, POST-SILENCE), and the number of
training iterations was assessed in Sec. 7.3.4.

7.2.3.8 Simulation

The regions of interest of the values for the independent variables were
defined as follows: For the simultaneous masking experiment, tone levels
from +45 to +75dB SPL in 5-dB steps were considered. For the spectral
masking experiment, tone levels from —10 to +50dB SPL in 5-dB steps
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were considered. For the German Matrix sentence experiments, SNRs
from —24 to +6dB in 3-dB steps were considered.

For each of these values, datasets for training and testing were generated
in the same manner. For the tone-in-noise masking experiments, the
two different types of stimuli (target and reference) were generated with
random noise, such that a repetition of the same stimulus waveform is
practically impossible. For the German Matrix sentence experiments, the
120 available sentences were mixed with the noise signal with random
temporal offsets, such that a repetition of the same waveform is practically
impossible even if the same sentences were mixed several times with the
same noise signal. The 120 sentences contained each word of the 50-word
vocabulary exactly twelve times, and mixing all sentences once with
random portions of the noise signal resulted in twelve samples per word.

From these (statistical) pools, which directly reflect the difficulty of
the corresponding recognition task at a given tone level or SNR, a
number of samples was drawn and declared as the test data. Because
the performance limiting factor, i.e., the difficulty of the task, is inherent
to the test data under its projection into the feature space, an optimal
training data set was desirable. Hence, the training data sets were drawn
from the same pool as—but separate from—the test data sets. By this
means, we aimed to minimize the influence of the training data set and
at the same time to maximize the influence of the test data set on the
recognition scores.

The recognition of all 120 available sentences of the German Matrix
test produces 600 binary (correct or incorrect) decisions, which was
chosen to be the size of the test data sets. It should be noted that each
Matrix sentence results in five binary decisions, one for each word, while
a presented psychoacoustic stimulus only results in one binary decision.
The size of the training data sets of 96 samples for each word/stimulus
was assessed in Section 7.2.3.4. For the Matrix sentence test, these were
achieved by mixing all sentences eight times with random portions of the
noise signal. Features were then extracted from the generated training
and test data sets.

For each condition (e.g., speech in fluctuating noise) separately, models
were trained and tested for all considered values of the independent
variable. For example, 11 models—one for each considered SNR—were
trained on speech in fluctuating noise and each subsequently tested in the
11 considered SNR conditions, which resulted in 11 x 11 = 121 recognition
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scores. These were represented by a (square) matrix called “recognition
result map” (RRM), where each row represents a psychometric function
of which the value of the independent variable at a given target threshold
could be derived. For the Matrix sentence test, the SNR at 50%-correct,
which is the standard procedure with human listeners, was determined.
For the psychoacoustic experiments, instead of the 50%-correct point
on the psychometric function (i.e., the SRT) the corresponding target
%-correct point was considered. For each psychometric function, the
value of the independent variable at the corresponding target %-correct
point was interpolated together with its estimated uncertainty due to
the size of test data set. Thus, for the tone-in-noise experiments, several
levels at threshold depending on the training level, and for the German
Matrix sentence test, several SRTs dependeding on the training SNR, were
available. As the result of the simulation, the lowest value at threshold
was reported, where two standard deviations of margin were considered
in order to report the outcome with the lowest 95th percentile (assuming
normal distributions). This automatic determination of the optimal
training data set, which may depend on the task itself, the amount
of training data and the feature representation, is aimed to reduce its
influence on the simulation results.

7.2.8.4 General purpose parameter set

At the core of FADE a set of general purpose parameters exists which
was employed for all features and experiments, the simplest task being
the detection of a tone, the most difficult the discrimination of words in
modulated noise, the lowest-dimensional features being 31-dimensional
LogMS features and the highest-dimensional being the 1020-dimensional
SGBFB features. These parameters were:

— HMM states START/STOP: 6
— HMM states per model: 6

— Training samples per model: 96
— Training iterations: 8

These parameters were considered to be especially important when
differently complex features and tasks are involved. To demonstrate that
the chosen parameter values are optimal up to +1 dB for different features
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in differently complex experiments, a set of features and experiments
was performed when varying the parameter values. Optimal here means
that the systems obtained the highest possible recognition rates which
translates to the lowest possible thresholds, an optimization scheme
commonly used in the field of ASR. Optimal here does not mean that
the results were close to the empirical results, which is an optimization
scheme commonly used in the field of psychoacoustic modelling. The
considered values were:

— HMM states START/STOP: 1,2,3,4,6,8,12,16,24
— HMM states per model: 1,2,3,4,6,8,12,16,24

— Training samples per model: 12,2448, 96,192, 384
— Training iterations: 1,2,3,4,6,8,12,16,24

Each of the parameters was varied while the others were left unchanged.
Simulations of the simultaneous masking experiment and the German
Matrix sentence test in the test-specific noise condition were performed
with varied parameter values using MFCC and PEMO features.

7.2.8.5 Uncertainty calculation

The uncertainty of the simulated outcomes due to the limited test data,
which was 600 binary decisions per condition, was estimated using boot-
strapping. It turned out to be about 2.1 percentage points (pp) at 50%
correct, about 1.8 pp at 75% correct, and about 1.2 pp at 90% correct.
These estimated uncertainties were assumed to be normally distributed
and propagated to derived values, such as SRTs or thresholds, where
possible. The uncertainty due to the limited test data was not assessed
as it would have required re-running the training stage several times
with different data. In addition, the limited step size of training and
test conditions could present another source of uncertainty, which was
not assessed either. Hence, the uncertainties reported here only include
those due to the limited test data and should be considered orientative.
Nonetheless, the uncertainty can be assumed to be about 1dB, which
was justified in Sec. 7.2.3.4.
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7.3 RESULTS

Apart from the parameter variation experiment, all simulations were
performed with all features. The results are presented in tables and
selected results are additionally plotted.

7.3.1 Simultaneous masking

Figure 7.5 depicts the simulated detection thresholds depending on the
tone duration with PEMO, MFCC and SGBFB features alongside the
empirical results and PEMO model results from the literature (Jepsen
et al., 2008). Table 7.1 reports the corresponding results in numerical
form for all considered feature sets, and in addition, the average detection
threshold over all conditions.

FADE was able to predict detection thresholds for a simultaneous
masking experiment with a variety of front-ends. All simulated thresholds
were consistent with the empirical thresholds within £10dB, i.e., in
the correct order of magnitude. MFCC features resulted in the most
pronounced over-estimation of the empirical thresholds, with an average
detection threshold of 60.0 £ 0.2dB SPL and PEMO features resulted
in the most pronounced under-estimation of the empirical thresholds
with an average detection threshold of 53.7 + 0.2dB SPL, while the
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empirical results showed an average detection level of 56.6 + 0.5dB SPL.
Simulation results with all other features lay between simulation results
with MFCC and PEMO features. The simulated thresholds with GBFB
based features (GBFB, SGBFB, SGBFB-RR, SGBFB-R-S, SGBFB-R-T)
were consistently found to be close to the empirical thresholds.

The simulated thresholds with PEMO features are generally about
2dB lower than the PEMO data from the literature, over-estimating
the empirical thresholds for tone-durations shorter than 100 ms. The
simulated thresholds with MFCC features under-estimate the empirical
thresholds for tone-durations longer than 15 ms. The simulated thresholds
with SGBFB feature resemble the empirical thresholds remarkably well.
Deviations of simulated thresholds from the empirical data are further
analyzed in Sec. 7.3.5.

7.3.2 Spectral masking

Figure 7.6 depicts the simulated detection thresholds depending on the
tone center frequency in Hz with PEMO, MFCC and SGBFB features
alongside the empirical results and PEMO model results from the litera-
ture (Moore et al., 1998; Derleth and Dau, 2000). Table 7.2 reports the
corresponding results in numerical form for all considered feature sets,
and in addition, the calculated 20-dB-bandwidth.
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FADE was able to predict detection thresholds for the spectral masking
experiment with a variety of front-ends. Almost all simulated thresholds
are within £10dB of the empirical thresholds, i.e., in the correct order of
magnitude. Only the PEMO and LogMS features with MVN resulted in
thresholds outside that range. Generally, the simulations with all features
show the highest thresholds at the noise center frequency of 1000 Hz and
decrease as the tone frequency increases or decreases. Consistent with
the results from the simultaneous masking experiment, the simulated
thresholds with MFCC features exhibit the highest on-masker (1000 Hz)
thresholds with 47.4 +£ 0.2dB SPL and the simulated thresholds with
PEMO features, with 43.2 + 0.3dB SPL, one of the lower thresholds.
These are—unlike in the simultaneous masking experiment—higher than
the empirical threshold, which was 40.9 + 6.4 dB SPL. The empirical 20-
dB-bandwidth was calculated to be 229.5+38.9 Hz. Almost all simulated
results fell into the 2-sigma range (151.3 to 306.7 Hz) and hence did not
differ significantly from the empirically derived bandwidth. Only the
PEMO features with MVN exceeded this range with a bandwidth of
396.2 + 5.8 Hz. All ASR features (MFCC, GBFB, and SGBFB) result in
rather narrow bandwidths around 180 Hz, e.g., using SGBFB features,
172.3 + 3.3 Hz.

The simulated thresholds with PEMO features were found to be similar
or higher than the PEMO model data reported by Derleth and Dau
(2000). With MFCC features, the simulated thresholds resembled the
empirical data well while with SGBFB features the thresholds on the
low frequency flank were over-estimated by about 6 dB. Deviations of
simulated thresholds from the empirical data are further analyzed in
Sec. 7.3.5.

7.3.3 German Matrix sentence test

The recognition result map (RMM), which is the matrix that contains
the recognition rates depending on the training and the test condition,
and its evaluation is illustrated in Fig. 7.7 for the simulation results
of the German Matrix sentence test with MFCC features. In Panel A,
the RRM, i.e., the recognition performance depending on the training
and test SNR, is depicted in gray-scale, where black corresponds to
0%-correct and white to 100%-correct. The iso-50%-correct contour is
indicated by the dotted black-and-white line and the lowest achievable
SRT, which at the same time is the simulation result, is indicated by
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Figure 7.7: Panel A: Recognition result map (RRM) for the test-specific
noise condition with MFCC features. The obtained recognition perfor-
mance s plotted depending on the training and testing SNR. The word
recognition rates are encoded in gray-scale, with white representing 100%
correct and black 0% correct. The dotted black-and-white line marks the
180-50 %-correct contour. The dash-dotted line marks the training SNR
which resulted in the lowest achievable test SNR at 50%-correct WRR
(SRT). The white circle indicates the predicted SRT. Panel B: Word
recognition rates depending on the test SNR for the system that achieves
the lowest SRT (cf. the dash-dotted line in Panel A). The chance level
(10%) and the 50 %-threshold are marked with dashed lines. The white
circle indicates the simulated SRT. The box shows the estimated SRT and
slope of the psychometric function, respectively.
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Figure 7.8: Simulated SRTs in dB SNR for the German Matrix sentence
test depending on the noise condition and the feature set. The empirical
data was taken from Wagener et al. (1999¢) (stationary) and Wagener
and Brand (2005) (fluctuating).

a circle. The corresponding training condition (—3dB SNR) is marked
with a dash-dotted line and the corresponding psychometric function is
depicted in Panel B. As expected, the recognition results are at chance
level (10%-correct) at low SNRs and tend towards 100%-correct for high
SNRs.

Figure 7.8 depicts the simulated SRTs depending on the noise condition
and the employed feature set alongside the empirical results from the
literature (Wagener et al., 1999c; Wagener and Brand, 2005). Table 7.3
reports the corresponding results in numerical form for all considered
feature sets and, in addition, the effect of modulation which is reported
as the difference of the SRT in the modulated noise condition (ICRAS5)
and the test-specific noise condition (Olnoise).

For the stationary noise condition, the simulated SRTs were found to
be in the range from —8.2 to —6.7 dB SNR, where the empirical value
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Table 7.3: Simulated SRTs for the German Matriz sentence test depend-
ing on the noise condition and the feature set in dB SNR. The empirical
data was taken from Wagener et al. (1999c) (Olnoise) and Wagener
and Brand (2005) (ICRA5). The effect of modulation is reported as the
difference of the SRT in the modulated noise condition (ICRA5) and the
test-specific noise condition (Olnoise).

Olnoise ICRA5 | Modulation
System SRT [dB] | SRT [dB]| effect [dB]
Empirical -7.14£0.8 [-21.6+2.0| -14.542.2
LogMS -6.840.1| -0.540.3 +6.34+0.4
LogMS-MVN -7.140.2 | +0.240.4 +7.3+0.5
MFCC -7.440.1]-15.0+0.7 -7.5+£0.7
MFCC-NOMVN | -6.940.1 |-13.74+0.5 -6.8+0.5
GBFB -8.240.1(-16.24+0.5 -7.9+0.5
SGBFB -7.8+0.1(-19.0+£0.4| -11.24+0.4
SGBFB-RR -7.940.1(-18.840.4| -10.84+0.4
SGBFB-R-S -7.3+£0.1(-14.1+0.5 -6.7£0.5
SGBFB-R-T -7.6+£0.2| -1.440.3 +6.2+0.3
PEMO -7.240.1| -3.7+0.3 +3.4+0.3
PEMO-MVN -7.3+0.1| -4.240.3| +3.1£0.3

measured by Wagener et al. (1999c) was —7.1 £+ 0.8dB SNR. Hence,
the stationary noise condtion was well predicted by simulations with all
features. Using GBFB features resulted in the lowest simulation results
(—8.24+0.1dB SNR). For the modulated noise, the picture changes con-
siderably. Simulated SRTs ranged from —19 to 0 dB SNR depending
on the employed feature set, where the empirical values measured by
Wagener and Brand (2005) were on average —21.6 = 2.0dB SNR. The
lowest simulation results and hence, those closest to the empirical data,
were obtained with GBFB and SGBFB features, with —16.2 + 0.5dB
SNR and —19.0 + 0.4dB SNR, respectively, followed by MFCC features
with —15.0 & 0.7dB SNR. At the far end of the range, the use of LogMS
and PEMO features resulted in simulated SRTs higher than in the re-
spective stationary condition with —0.5 +0.3dB and —3.7 +0.3dB SNR,
respectively.
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The effect of modulation, which was defined as the difference in dB
between the modulated (IRCA5) and the stationary (Olnoise) noise
condition, was found to be —14.5 £+ 2.2 dB for the empirical data. This
means that for listeners with normal hearing it was much easier to
recognize speech in the modulated noise condition than in stationary
noise condition. Comparing the modulation effect with the LogMS
feature set (+6.3 = 0.3 dB), which performed no modulation processing,
the SGBFB-R-T feature set (+6.2 + 0.3 dB), which only performed the
temporal modulation filtering, the SGBFB-R-S feature set (—6.7+£0.5 dB),
which only performed the spectral modulation filtering, and the SGBFB-
RR feature set (—10.8 £ 0.4dB), which performed both, shows that
spectral modulation processing alone accounts for the major part of
the modulation effect and that temporal filtering alone has no effect.
Deviations of simulated thresholds from the empirical data are further
analyzed in Sec. 7.3.5.

7.3.4 Effect of back-end parameter variations

The simulation results with varied back-end parameters are depicted in
Fig. 7.9. For the simultaneous masking experiment the average simulated
thresholds and for the German Matrix sentence test the simulated SRTs
are plotted depending on the varied back-end parameters for MFCC and
PEMO features.

Generally, the smallest parameter value from the range of considered
values which resulted in the lowest thresholds £1 dB was chosen if no
reason existed not to do so. While for the Matrix sentence test, the
words were best modeled with HMMs with 6 emitting states, for the
simultaneous masking experiment it was sufficient to use HMMs with a
single emitting state. The special states (START and STOP) were chosen
according to the simulation results from the German Matrix sentence test
because for the simultaneous masking experiment long special states (> 6
states) effectively narrowed the region to search for the target tone and
hence improved the thresholds in an unwanted manner. Hence, the border
effects were modeled best with HMMs with 6 emitting states. Reducing
the amount of training data resulted in higher simulated thresholds, while
increasing the amount of training data did not result in improvements
of simulated thresholds exceeding 1dB. It should be noted that the
number of training samples per model guaranteed that each mean and
each variance in the GMM was estimated from at least 96 samples, which
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Figure 7.10: Differences between simulated thresholds and empirical
data depending on the feature set and experiment group. The differ-
ence 1s interpreted as the gap between human performance and machine
performance; the lower the values, the smaller the gap, where positive
and negative values indicate sub-human and super-human recognition
performance, respectively. For the masking experiments, each of which
has several conditions, the maximum and the minimum difference to the
empirical data is depicted. The error bars indicate the uncertainty of the
corresponding (minimum/maximum,) value.

was only the case if the corresponding HMM state occupied only one
frame, i.e., the shortest possible duration of an HMM state. The number
of training iterations was sufficient, with a security margin of factor 2,
for all models to converge during the training procedure.

7.3.5 Man-machine gap

To get a comprehensive overview of the model fidelity depending on
the employed feature set and experiment, the maximum and minimum
differences from the empirical data is reported in Figure 7.10. While
negative values indicate an over-estimation of the empirical thresholds,
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positive values indicate an under-estimation. It should be noted that for
human listeners no significant difference was found if the German Matrix
test was presented in a closed-set or open response format (Warzybok
et al., 2015b). The over all maximum can be interpreted as the remaining
(unexplained) gap between human performance and machine performance.
In this regard, the German Matrix sentence test in the modulated noise
condition was the decisive condition, or very near (< 1dB) to the decisive
condition, for all feature types. Over all considered experiments, only
the feature sets without spectral modulation processing, or in more
general terms across-frequency processing, (LogMS, PEMO, SGBFB-R-T)
resulted in under-estimated thresholds that were off by more than an
order of magnitude (> 10dB). The ASR features (MFCC, GBFB, and
SGBFB) provided simulation results which came closer to the human
performance or even exceeded human performance in some tasks. The
simulation results which least under-estimated the empirical thresholds
were obtained using SGBFB features, by under-estimating the empirical
performance by no more than 2.6 + 2.0 dB, followed by GBFB features
with 5.5 + 2.1dB, and MFCC features with 6.9 + 3.5dB.

7.3.6 Effect of feature vector normalization

Considering the results in Tables 7.1, 7.2, and 7.3, the MVN was found to
have a minor effect on the simulation results except for the LogMS features
in the spectral masking experiment simulation, where the deviation of a
simulated threshold was exceptionally high. The use of MVN did neither
qualitatively improve the overall simulation fidelity with LogMS-MVN
or PEMO-MVN features nor did its omission when using MFCC-MVN
features.

7.4 DISCUSSION

It was shown that FADE enables the simulation of discrimination ex-
periments of highly variable complexity using different feature vectors.
The simplest experiment was a tone-in-noise detection task and the most
complex the recognition of German Matrix sentences in a modulated
noise condition. The feature vectors included traditional and robust
ASR features as well as the output of a non-linear auditory model. The
simulated thresholds were interpreted as predictions for the outcome of
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the corresponding experiment when performed by listeners with normal
hearing.

7.4.1 Interpretation of simulated thresholds

All simulated thresholds are reference-free (i.e., neither the deviation from
a reference-signal-based “optimal detector” nor an empirical reference
threshold was employed) and were obtained with a recognition system
that was primarily constrained by the input signals and the signal repre-
sentation. In comparison to many models of psychoacoustic performance,
the approach to construct or train an “optimal detector” with prior
knowledge about the exact temporal stimulus alignment (such as, e.g.,
employed by Dau et al. (1996a, 1997)) is replaced by a training phase of
the Hidden Markov Model and the selection of the respective training
condition yielding the lowest predicted threshold. This selection requires
feedback about the recognition performance and is the only information
with that FADE in its current version is provided and human listeners
usually not. However, human listeners could probably guess the SNR at
which they are listening. Hence, to better simulate the human recogni-
tion task, it seems worthwhile to investigate the possibility of taking the
decision blindly in future work. It should be noted that the criterion for
the decision on the optimal training data set is recognition performance
and independent from any empirical data, as opposed to determining a
fixed, e.g., training-test SNR offset, based on empirical data. The FADE
approach, which decodes feature sequences instead of matching patterns,
also models the uncertainty about the temporal alignment of the stimuli.
Hence, it might be considered as more appropriate model of the human
recognition process than an “optimal detector”, which requires a-priori
information that human listeners do not have access to. In comparison
to state-of-the-art methods of robust ASR, the simulation of the German
Matrix sentence test actually is an ASR experiment, but with most of the
generic demands on a robust ASR system moved aside. That is to say,
the ASR setup is not constructed to accommodate, e.g., generalization
over speakers, noise conditions, reverberation, dialects, and other factors.
Over a common ASR experiment, the approach to drastically reduce the
number of those very broad demands has the advantage that it clearly
shows when a feature set is not able to cope with a situation, like in the
fluctuating noise condition of the German Matrix sentence test.
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As a simulation with FADE is a very controlled A(S)R experiment,
the same interpretation as in ASR is valid: the lower the threshold the
“better” the system. In this context, thresholds below the corresponding
empirical thresholds mean super-human recognition performance and
thresholds above the corresponding empirical thresholds mean there is a
gap in performance between the man and the machine, also referred to as
the man-machine-gap. It should be noted that this interpretation is only
possible because the thresholds with FADE are reference-free, objective
thresholds and that this property translates naturally to the domain of
psychoacoustic experiments.

While in the domain of ASR it is difficult to achieve (and hence predict)
super-human performance because of its extensive demands, which result
in a high variability of the signals to be recognized, in the domain of
psychoacoustic experiments it is relatively easy to predict super-human
performance because the trained detector stage (the HMMs in our case)
can be highly specialized to the well-defined stimuli, which show less
variability. This hypothesis is supported by the data in Figure 7.10, where
for the speech recognition tasks no significant super-human performance
was predicted, while for the tone detection tasks, some simulated thresh-
olds were below the corresponding empirical thresholds. For current
“optimal detector”-based psychoacoustic models, the additional a-priori
information about the temporal alignment theoretically further facilitates
achieving super-human performance predictions.

Even though the main prediction result of the current work concerns
the threshold estimation discussed so far, more details of the FADE
simulations might be considered to further validate the modeling of speech
recognition and psychoacoustic tasks performed so far. For example, the
slope of the psychometric function at the threshold could be derived
from the recognition result map (RRM) and compared to empirical
data. Likewise, the RRM could be evaluated for, e.g., each word group
separately and word confusion matrices could be derived. Also, the
selected training conditions could reveal differences between different
feature sets.

7.4.2 Signal processing dependence of simulated thresholds

The simulated thresholds were found to depend on the employed feature
set, where, in the speech recognition cases, the least variability was
observed for the German Matrix sentence test in the test-specific noise
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condition and the most variability was observed for the German Matrix
sentence test in the modulated noise condition. In the latter, the least
fitting thresholds (—0.5dB SNR) were obtained with LogMS features
while the best predicting thresholds (—19.0dB SNR) were obtained with
SGBFB features, spanning a range of almost two orders of magnitude
(20dB). In the tone-in-noise detection experiments the dependence on the
feature set was not as pronounced as in the modulated noise condition of
the German Matrix sentence test. As, apart from the feature set, nothing
in the setup was changed, this finding confirms the hypothesis that the
signal processing employed in the feature extraction process plays an
important role in modeling auditory experiments.

Interestingly, the simulated thresholds for the German Matrix sentence
test in the test-specific noise condition were not found to depend on
the very different feature sets, i.e., PEMO and MFCC features, while
the simulated thresholds in the modulated noise condition exposed the
decisive shortcomings of some of the considered feature sets (cf. Sec. 7.4.5).
Hence, the modulated noise condition was found to be the “critical”
experiment to distinguish across the feature sets employed here.

Schédler and Kollmeier (2015a) observed in a robust ASR experiment
that an ASR system using GBFB features outperformed one using MFCC
features, and one using SGBFB features outperformed one using GBFB
features. Further, one can assume that the LogMS features will generally
not outperform MFCC features in robust ASR tasks as well. The same
pattern was observed in the simulated thresholds of the modulated noise
condition. Obviously, the most complex experiment of the current study,
the German Matrix sentence test in the modulated noise condition,
poses very similar basic demands on the employed feature set as in
realistic robust ASR tasks. In future work, it could be investigated if
this correspondence holds for different features and robust ASR tasks.

7.4.3 Required assumptions for ADE simulations

In comparison to current psychoacoustical modeling approaches, FADE
poses comparatively few assumptions about the tasks and stimuli, i.e., the
following assumptions must be valid in order to simulate an experiment
with FADE.

Psychometric function The primary assumption is, that the goal of
the experiment is to determine a point on a psychometric function.
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The psychometric function needs to indicate the recognition rate on an
auditory discrimination task depending on an independent variable which
controls the difficulty of the task. The number of classes which have to
be discriminated must be limited. In the current study the classes were
either target and reference, or 50 different words of which 10 needed to
be discriminated at a time, i.e., 1-out-of-2 and 1-out-of-10 discrimination
tasks.

The same stimuli as in the original experiment As the basic idea is
to estimate the lowest obtainable threshold given a certain task, a set of
stimuli, and a signal representation (features), the signals used to perform
the simulation must be the same that were used in the original experiment.
More technically, the method to generate signals of different classes (e.g.,
target and reference) for different values of the independent variable
must be provided. The signal representations must exhibit a certain
variability which may be due to the signal itself (such as, e.g., external
noise or other sources of variations within the provided signals) or due to
a stochastic process in the feature extraction (such as, e.g., internal noise
or uncertainty about the signal and which feature is best suited). For
the experiments in the current work, the noise and speech signals caused
sufficient variations, and the feature extraction was deterministic. The
shortest stimulus used in the current study was a tone which lasted 5ms,
the longest was a word (the German word “achtzehn”) which lasted about
900 ms. Technically, no hard limitations with respect to the stimulus
length exist.

Observable effects due to signal processing The observable effect must
originate from the interaction between the stimuli and the signal process-
ing involved in the feature extraction, where the stimuli incorporate the
task requirements and the signal processing the limitations of the human
auditory system. This condition expresses the requirement that, differ-
ences in the stimulus which are not apparent in the signal representation
cannot be detected by the recognition system and will hence not result
in different thresholds.
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7.4.4 Generalization of the FADE approach

One set of parameters was shown to suffice for a variety of experiments
and features (cf. Fig. 7.9). The criterion to determine these parameters
was the lowest obtainable thresholds and hence, they were independent of
the empirical data of the considered tasks. These parameters also worked
well in the simulation of the experiments which are not included in Fig. 7.9,
i.e., the spectral masking experiment and the German Matrix sentence
test in the modulated noise condition. Hence, the FADE approach
generalized well over the considered experiments and features. The fact
that a single set of parameters was sufficient for a variety of complex
tasks and different types of features provides evidence that the underlying
approach might be appropriate to simulate more experiments and that
other features can be incorporated as well to model an even larger variety
of experiments with the same set of parameters.

7.4.5 Across-frequency processing and relation to temporal
processing

The data from Table 7.3 indicates that a correct direction of the modula-
tion effect, (i.e., a reduction in SRT by about 14.5dB in humans due to
modulations imposed on the noise) was only found for feature sets which
incorporated some kind of across-frequency processing. For example,
when extracting MFCCs, the DCT was calculated in the spectral dimen-
sion of the LogMS and hence MFCCs integrated over the whole spectral
bandwidth. With GBFB and SGBFB features the LogMS was spectrally
band-pass filtered. With these feature sets improved thresholds were
found in the modulated noise condition. However, an opposite effect,
i.e., the predicted thresholds increased in the modulated noise condition
compared to the stationary noise condition, was observed for LogMS and
PEMO features, of which the spectral bands are assumed to be indepen-
dent. The SGBFB-RR features, a reduced set of SGBFB features, allowed
to perform either only the temporal modulation processing (SGBFB-R-T)
or only the spectral modulation processing (SGBFB-R-S). The simulated
thresholds with these tailored feature sets showed that the temporal
processing alone (SGBFB-R-T) did not show an appropriate modulation
effect, while the spectral processing alone (SGBFB-R-S) was sufficient to
obtain an improved threshold in the modulated noise condition. With
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the set up implemented in this study it was not possible to explain the
modulation effect without some kind of across-frequency processing.

A representation which allows the reliable detection of local spectral
maxima based on, e.g., slope or curvature, instead of absolute values,
which have to be relied on if no across-frequency comparison is performed,
could probably help the back-end in decision-taking. Hence, it seems
possible that at least some kind of across-frequency processing, in its
most explicit form the spectral modulation processing performed by the
SGFB-R-S feature set, is required to recognize speech in fluctuating noise.
If true, this finding might have far-reaching consequences for any system
(biological or technical) with the intention to recognize human speech,
as it puts the common understanding that speech can be processed in
independent frequency bands into question. For example, it might be
desirable to preserve spectral modulation patterns rather than temporal
modulation patterns in signal processing strategies of hearing devices if
preserving speech intelligibility in non-stationary background noise is a
declared intention.

Another yet unresolved question is if the spectral and temporal modula-
tion processing in the human auditory system interact with each other or
if they are separate processes. Schédler and Kollmeier (2015a) observed
that no spectro-temporal interaction in the modulation filtering, i.e.,
inseparable spectro-temporal filters, was needed to outperform MFCC
and GBFB features in an ASR system employed in acoustically adverse
conditions which included spectrally, temporally and spectro-temporally
modulated noise. This observation is supported by the thresholds of
the modulated noise condition that were simulated in this study. In
Figure 7.10, the simulated thresholds obtained with SGBFB features
were among the most suitable for explaining the empirical data. This
could indicate that the SGBFB features might be a reasonable model of
the auditory processing in the human auditory system and, if so, hint
that spectral and temporal modulations in the human auditory system
might be processed separately.
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7.5 CONCLUSIONS

The most important findings of this work can be summarized as follows:

— A simulation framework for auditory discrimination experiments
(FADE) was successfully employed to simulate, and hence, predict
the outcome of a broad range of auditory detection experiments with
an increasing complexity while requiring fewer assumptions compared
to traditional modeling approaches.

— A single set of general parameters was determined which was used
to simulate all experiments from the basic tone-in-noise detection
experiment to the complex speech-in-modulated-noise recognition
task.

— Across-frequency processing was found to be crucial to predict the
improved speech reception threshold in modulated noise conditions
over stationary noise conditions.

— Of all considered signal representations, the Gabor filter bank based
features with some across-frequency processing, most notably GBFB
and SGBFB features, provide the most suitable model of human
performance across the considered experiments.
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8 General Conclusions

The main goal of this thesis was to improve the robustness of
automatic speech recognition systems by integrating auditory signal
processing principles.

In Chapter 1, a general approach to this goal was outlined. In Chapters
2, 3, and 4, it was successfully tackled by integrating auditory-motivated,
physiologically-inspired spectro-temporal modulation filters which extract
so called Gabor filter bank features (GBFB) into the front-end of a
standard ASR system. Further, in Chapter 5, the GBFB features were
reduced in complexity by decomposing the spectro-temporal modulation
filtering into separate spectral and temporal processes, introducing the
separable Gabor filter bank (SGBFB) features. In Chapter 6, following the
initially outlined approach (cf. Chapter 1), a recognition experiment was
established in which human listeners and a standard ASR system perform
equally well: The simulation of a matrix sentence test in stationary noise.
This approach was then successfully extended to simulating tone-in-noise
detection experiments and a matrix sentence test in a fluctuating noise
condition in Chapter 7.

Spectro-temporal modulation features for robust ASR

The results in Chapters 2, 3, and 4 showed that the direct encoding of
spectro-temporal modulation patterns in the feature vectors can improve
the robustness of an ASR system, even in medium-size vocabulary (= 5000
words) tasks. The results in Chapter 5 confirmed this finding and
showed that the feature extraction can be decomposed into two separate
filtering processes, a spectral and a temporal one. This indicates that no
interaction between the spectral and the temporal signal is required.

Auditory spectro-temporal modulation processing

The results in Chapter 7 confirmed that spectro-temporal features are
required to achieve human recognition performance even in a very simple
and controlled ASR task — at least from an ASR point-of-view — if a
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fluctuating background noise was used. From the considered feature
extraction algorithms, SGBFB features were the only ones with which
a standard recognition system could keep up with human recognition
performance in all of a variety of recognition tasks. This result provides
evidence that SGBFB features are auditory features and could be inter-
preted as a faint hint that spectral and temporal processing in the human
auditory cortex might be separate processes.

Sitmulation of auditory discrimination experiments

In Chapter 7, it was shown that the proposed simulation framework for
auditory discrimination experiments (FADE) is already able to simulate
basic tone-in-noise detection as well as simple speech recognition tasks.
FADE constitutes the foundation for a series of increasingly more com-
plex auditory discrimination experiments to detect, isolate and tackle
potential shortcomings of ASR systems with high precision. For example,
across-frequency processing was found to be crucial to recognize speech
in a modulated noise condition. The proposed framework can also be
seen as a new, performance-oriented approach to modeling the human
perception of sound in auditory discrimination experiments, which offers
important advantages over traditional approaches. The simulated results
are reference-free, i.e. no empirical data is required to calibrate them,
which enables independent, model-based predictions. The proposed ap-
proach is more realistic in that neither frozen nor clean signals but the
same signals which are available to the human listeners, are used for
modeling, i.e. the model has no signal-based advantage because the task
is as difficult as for the human listeners. Further, the approach encour-
ages to make as few assumptions as possible, because every unmatched
assumption adds to the risk that the system will eventually fail on or be
unable to simulate one of the increasingly complex recognition tasks. The
approach is universal in the sense that the same model parameters can
be used to simulate a broad range of auditory discrimination experiments.
The possibility to evaluate a feature set across tasks which put diverse
demands on it helps to prevent or easily identify over-fitting to a specific
task.

In contrast to current psychoacoustic models, exact pattern matching
(“matched filter”) is avoided in favor of a statistically trained recognition
model (HMM) on the back-end side. The most important difference
between the traditional approach of pattern matching and the proposed
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approach which uses sequence decoding is that the former assumes perfect
prior knowledge about the temporal alignment of the stimuli while for
the latter, like for human listeners, determining the temporal alignment
is part of the task. The inherent accuracy limit of current psychoacoustic
models is not determined by the uncertainty about the time-dependent
succession of the assumed “hidden states” (as assumed by the HMM in
the FADE approach) but rather by a limitation/degradation of the signal
representation (e.g. “internal noise” or smearing of the “internal image”).
Note, however, that this assumed degradation requires an adjustment
to empirical data in a reference condition, which is prone to over-fitting.
The additional prior information about the temporal alignment provides
current psychoacoustic models with a performance reserve which might
enable sub-optimal models of auditory signal processing to outperform
human listeners and could possibly discourage further investigation on
important signal processing matters. The performance-oriented perspec-
tive taken by the FADE approach allows to compare models of signal
processing and human listeners on more similar terms, i.e. based on the
same a-priori information. The man-machine gap on a group of tasks is
then easily determined by taking the maximum deviation from the em-
pirical thresholds, as described in Section 7.3.5. By taking the maximum,
it is impossible to average out a flaw, and attention is always drawn
to the condition where the largest gap between human and machine
performance is visible. This interpretation can guide future research
endeavors by clearly demanding solutions to the most imminent problem,
i.e. the largest man-machine gap, first.

Future work

Future robust ASR systems, models of speech intelligibility, and
psychoacoustic models should converge.

A common paradigm for hearing and speech research based on machine
learning would serve all disciplines involved; with more faithful models,
more accurate predictions, more robust features, and eventually a solid
common knowledge base. To allow convergence, this new paradigm
requires:

— implemented (instead of descriptive) models of auditory principles to
enable the simulation of experiments
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— limited information on the signal level, i.e., using the same signals as
in empirical studies

— human-like performance on all auditory discrimination tasks in a
direct comparison to empirical data

For well-designed experiments it enforces a fair comparison of man and
machine performance, disentangling the auditory task from the audi-
tory model. Further, it penalizes over-specific assumptions, e.g. over-
fitting of models to specific tasks, and rewards universally valid ap-
proaches/assumptions, e.g. using spectro-temporal representations. The
framework for simulating auditory discrimination experiments (FADE)
is aimed to implement this paradigm and could serve as a common sim-
ulation/prediction platform for future work. It bridges the gap from
psychoacoustic models over speech intelligibility models to robust ASR,
and allows the interchange of signal representations (features), which
account for the largest part of implementable knowledge about the hu-
man auditory system. A lively exchange of thoughts and approaches in
hearing and speech research would accelerate the development of better
hypotheses about the human auditory system and speech perception.
FADE, although not perfect because it automatically selects the best
training condition based on the simulation results, constitutes a major
step towards a universal model for hearing and speech research in that it
shares as many components/parameters as possible. As a next step, the
basis of auditory discrimination tasks and the basis of auditory signal
representations (features) will need to be extended to get an as-broad-as-
possible view on the strengths and shortcomings of existing models. Time
will tell which auditory signal processing strategies turn out indispensable,
and which untenable. By then, the different research disciplines might
have agreed on a common, universal auditory signal representation.
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