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Kurzfassung

Vorhersagen der Einspeisung aus Photovoltaik-Anlagen (PV) sind von fun-
damentaler Bedeutung für die Steuerung von Stromnetzen mit hohen PV-
Anteilen. Die Entwicklung und Verbesserung von regionalen Kurzzeit-Vor-
hersagen für die Anwendung am Energiemarkt sind Ziel dieser Arbeit. Vor-
hersagen für Horizonte von bis zu 5 Stunden im Voraus für Deutschland und
die Regelzonen der Übertragungsnetzbetreiber stehen dabei im Mittelpunkt.
In dieser Arbeit werden umfangreiche Datensätze aus gemessener PV-Leis-
tung und meteorologischen Parametern wie Einstrahlung und Temperatur
genutzt. Es werden darauf aufbauend robuste und transferierbare Ergeb-
nisse präsentiert, die ein durchgängiges Verständnis der beteiligten Prozesse
ermöglichen. Regionale Vorhersagen basieren auf Vorhersagen der Glo-
balhorizontalstrahlung an den Standorten von einzelnen PV-Anlagen. Diese
Strahlungsvorhersagen werden aus bereits etablierten numerischen Wetter-
prognosen (NWP) gewonnen und durch ein Satelliten-basiertes Verfahren
ergänzt. Dieses Verfahren nutzt Satellitenbilder im sichtbaren Spektralbe-
reich zur Erkennung und Vorhersage der Wolkenbewegung mit Hilfe von
Wolkenzugsvektoren (cloud motion vectors, CMV). Ein Schwerpunkt dieser
Arbeit ist die Bewertung des Potentials und die Weiterentwicklung dieser
Satelliten-basierten Methode. Die Anwendung eines physikalischen Ansatzes
zur PV-Leistungsmodellierung und ein Hochrechnungsverfahren (Upscal-
ing) ermöglichen die Ableitung von regionalen PV-Leistungsvorhersagen
aus Strahlungsvorhersagen. Eine detaillierte Analyse der beteiligten Mo-
delle, der genutzten Eingangsdaten und deren Auswirkung auf regionale
Vorhersagen wird im Rahmen dieser Arbeit durchgeführt. Die Berechnung
von regionalen Prognosen erfolgt auf Basis einzelner repräsentativer Anla-
gen unter Berücksichtigung der räumlichen Verteilung unterschiedlich di-
mensionierter PV-Anlagen in Deutschland. Die so erstellten regionalen
PV-Leistungsvorhersagen auf Basis von NWP- und CMV-Strahlungsvor-
hersagen werden mit regionalen Hochrechnungen der eingespeisten PV-Lei-
stung auf Basis hoch aufgelöster aktueller Messungen einer Vielzahl über-
wachter Anlagen kombiniert. Das in dieser Arbeit entwickelte Verfahren
zur Kombination und die damit verbundende Integration der CMV- und
Messwert-basierten Vorhersagen tragen zu einer deutlichen Steigerung der
Vorhersagegenauigkeit bei. Für zwei Stunden im Voraus wird dadurch eine
Reduzierung des Vorhersagefehlers um über 50% zu entsprechenden Vorher-
sagen rein aus NWP-Modellen erreicht.





Abstract

Forecasts of photovoltaic (PV) power feed-in are essential for energy supply
systems with a high penetration of PV power. In this thesis, the focus is on
short-term regional PV power forecasts for the application at the German
energy market. This comprises forecasts for a few hours ahead for Ger-
many and the control areas of the German Transmission System Operators.
Throughout this thesis large datasets of measured PV power and meteoro-
logical parameters such as irradiance and temperature are used, leading to
high robustness and transferability of the findings presented. Regional PV
power forecasts here are based on predictions of global horizontal irradiance
at specific sites. Irradiance forecasts are derived from established numeri-
cal weather prediction (NWP) models and a newly integrated satellite-based
forecasting approach using cloud motion vectors (CMV). A further analy-
sis and development of this CMV approach is one subject of this thesis.
In a next step, an irradiance-to-power conversion model and an upscal-
ing approach are applied to derive regional PV power forecasts. PV power
is modeled using explicit physical modeling followed by a statistical post-
processing on historical data. An in-depth analysis of all processes involved
in PV power modeling is performed with respect to models applied, input
data used and with respect to their impact on the overall forecast accuracy.
Regional forecasts are derived by applying an upscaling approach based on
single representative sites, considering the spatial distribution of differently
sized PV power plants in Germany. PV power forecasts based on NWP ir-
radiance forecasts are combined with CMV-based forecasts and with online
measured PV power from a large dataset of single sites monitored. Short-
term forecasts significantly improve by including satellite information and
online measured PV power with the combination approach developed in this
thesis: For two hours ahead-forecasts, the error of regional forecasts for
Germany is reduced by over fifty percent compared to NWP forecasts.





Contents

1. Introduction 1

2. Background 5
2.1. Forecast requirements for the German Energy Market . . . . . . . . . . . 5

2.2. PV power forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Evaluation of forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Short-term irradiance forecasting 15
3.1. Global horizontal and clear sky irradiance . . . . . . . . . . . . . . . . . . 15

3.2. Irradiance from satellite data . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Cloud Motion Vector (CMV) forecast . . . . . . . . . . . . . . . . . . . . 18

3.4. Numerical weather predictions (NWP) . . . . . . . . . . . . . . . . . . . . 21

3.5. Persistence forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6. Datasets for forecast evaluation . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7. Evaluation of short-term irradiance forecasts . . . . . . . . . . . . . . . . 24

3.8. CMV forecasts based on all-day cloud index . . . . . . . . . . . . . . . . . 28

3.9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. PV power simulation 31
4.1. Dataset of PV power measurements . . . . . . . . . . . . . . . . . . . . . 32

4.2. PV power modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3. Forecasts of ambient temperature . . . . . . . . . . . . . . . . . . . . . . . 40

4.4. Impact of PV power simulation on forecast accuracy . . . . . . . . . . . . 43

4.5. Evaluation of PV power forecasts . . . . . . . . . . . . . . . . . . . . . . . 51

4.6. Comparison to irradiance forecasts . . . . . . . . . . . . . . . . . . . . . . 55

4.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Forecast combination 59
5.1. Persistence forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2. Combination of PV power forecasts . . . . . . . . . . . . . . . . . . . . . . 63

5.3. Evaluation of the combined forecasts . . . . . . . . . . . . . . . . . . . . . 67

5.4. Evaluation of fit coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5. Contribution of individual forecasts . . . . . . . . . . . . . . . . . . . . . . 71

5.6. Delayed availability of measurements or forecasts . . . . . . . . . . . . . . 72

5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6. Upscaling to regional forecasts 75
6.1. Upscaling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2. RES datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3. Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



viii Contents

6.4. Application of upscaling to the RES datasets . . . . . . . . . . . . . . . . 86
6.5. Evaluation of regional PV power forecasts . . . . . . . . . . . . . . . . . . 90
6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7. Conclusion and Outlook 93

A. Additional figures 105
A.1. Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2. Diurnal variation of PV power clear sky index . . . . . . . . . . . . . . . . 105
A.3. Validation of persistence approaches . . . . . . . . . . . . . . . . . . . . . 106



Glossary

VRE variable renewable energy sources (solar and wind)
PV photovoltaic

TSO transmission system operator
NWP numerical weather predictions

ECMWF European Centre for Medium Range Weather Forecasts
DWD German Weather Service (Deutscher Wetterdienst)
CMV cloud motion vector

RES / EEG renewable energy sources act / Erneuerbare Energien Gesetz
CI cloud index image

MSG Meteosat second generation satellites

I global horizontal irradiance [W/m2]
Id diffuse horizontal irradiance [W/m2]
Ib beam/direct irradiance [W/m2]

IPOA tilted irradiance/irradiance on plane-of-array (POA)[W/m2]
IPOA,d diffuse irradiance on plane-of-array (POA)[W/m2]
IPOA,b beam/direct irradiance on plane-of-array (POA)[W/m2]
IPOA,g ground reflected irradiance on plane-of-array (POA)[W/m2]

Iext extraterrestrial irradiance [W/m2]
I0 solar constant I0 = 1367W/m2

n cloud index
k∗, k∗PV clear sky index for irradiance / PV

k clearness index
ρ reflectivity / surface albedo

P PV power [W ]
Pinst installed PV capacity [W ]

P lr PV power with linear regression applied [W ]
Pscale regional PV power by upscaling approach [W ]

Imeas, Pmeas measured irradiance/PV power
Iclear, Pclear clear sky irradiance/PV power

Isat, Psat satellite-based irradiance/PV power
ICMV , PCMV irradiance/PV power forecast from cloud motion vectors (CMV)
INWP , PNWP irradiance/PV power from numerical weather predictions (NWP)

Ipers, Ppers irradiance/PV power from persistence forecasts

T temperature [◦C]
Ta ambient temperature [◦C]
Tm PV modules’ temperature [◦C]

β tilt/plane-of-array (POA) angle of PV modules [◦]
φ azimuth angle [◦]
Θ angle of incidence [◦]
θz solar zenith angle [◦]
h sun elevation [◦]
ϕ latitude [◦]
λ longitude [◦]





1. Introduction

With a substantial share of solar and wind power feed-in in an energy supply system,
the fluctuating power production increases the complexity of grid operation. These
variable renewable energy sources (VRE) show fundamentally different characteristics
of power generation than conventional power plants. Conventional power plants based
on e.g. fossil fuels are widely adaptable to the actual power need, whereas VRE power
generation contributes a strong weather dependent component: The temporal and spatial
availability of solar and wind power generation is determined by the weather conditions.
Consequently, forecasts of solar and wind power are an integral and invaluable part of
grid operation and management.

The electricity supply system in Germany is a prime example of a system with a high
penetration of VRE. By the end of 2014, 38.5 GW of photovoltaic (PV) and around 39
GW of onshore and offshore wind power capacities were installed, contributing around
18% of the nationwide annual power consumption in 2014. VRE power generation is
strongly decentralized with over 1.5 million PV power plants and 25.000 wind power
generators, with a high share of solar in southern and eastern parts of the country
and of wind in the northern parts [1, 2]. The current legislation aims at a preferential
treatment of solar and wind power with respect to the feed-in priority and provides
incentives for the extension of renewable energy capacities. The integration of VRE power
leads to the development of new approaches or the adaptation of existing methods for
balancing energy supply and demand, aiming at different levels within the energy supply
system: Market-based balancing of power supply and demand enables an adaption of
power generation to available resources; shifting loads to periods with high availability
of VRE power by so-called demand-side-management systems leads to an efficient use of
available power; decentralized and flexible storage capacities are capable of compensating
for temporal fluctuations of power feed-in.

A main instrument for balancing energy supply and demand are electricity markets:
Here, electricity contingents are traded prioritizing renewable energy sources. For this,
forecasts of available and required power are essential. These forecasts of power feed-in
are required for the ’day-ahead’ and the ’intraday’ market: First allocation of expected
power feed-in is done on the day-ahead market, updates of feed-in forecasts can be placed
on the intraday market up to 45 minutes before delivery. Different market participants
use power forecasts: Transmission System Operators (TSOs) are responsible for the
prioritized feed-in of renewable energy contingents and use forecasts for their control
area and nationwide. With current revisions of the legal basis, direct marketing for
single or virtually aggregated power plants is getting more and more important, requiring
localized forecasts of power feed-in. Similar structures and regulations also exist in other
countries, but here the focus is on the situation in Germany.

Costs of the energy supply system rise with inaccuracies of power forecasts, as predicted
power contingents determine pricing at the day-ahead and intraday markets [3]. Remain-
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2 CHAPTER 1. INTRODUCTION

ing discrepancies between traded electricity and actual physical supply and demand can
only be compensated by the costly use of balancing energy. Improvements of forecast
quality contribute to reduce the need for control energy and hereby the costs for the
energy supply system [4]. Besides, in hard-to-predict situations, forecast uncertainties
can get as high as the amount of available balancing energy, potentially affecting the
grid’s stability [5, 6]. The development of forecasting methods thus has to address the
reduction of overall uncertainty, but also focuses on events of exceptional high forecast
uncertainties.

Wind power forecasting has been established in energy market operations for a number
of years, see e.g. [7]. Forecasting of photovoltaic (PV) power feed-in has undergone a
rapid development in recent years, due to the significant increase in PV power capacities
and thus an increased demand for forecasting. In this thesis, PV power forecasts for
energy market application are addressed. PV power feed-in is directly dependent on
solar irradiance, follows distinct diurnal and annual variations, and is subject to strong
weather dependent fluctuations. Temporarily, the share of PV in overall net load in
Germany can reach up to 35% on sunny weekdays or even 50% on weekend days [1]. In
single control areas, shares of even 100% and above were observed on rare occasions [5].

PV power forecasting approaches are based on predictions of solar irradiance. Various
approaches for solar irradiance forecasting exist, addressing different spatial and tem-
poral scales. For an overview on state-of-the-art solar power forecasting, see e.g. [8, 9].
Numerical weather prediction models (NWP) are well established and available in dif-
ferent spatial and temporal resolutions. For short-term forecast horizons satellite-based
approaches have been recently investigated [10, 11, 12]. Other short-term forecasting
methods are based on in-situ irradiance measurements from pyranometers or ground-
based sky imagers [13]. Research on PV power forecasting is so far less present in the
literature than irradiance forecasting and often based on evaluations for a few sites or
single systems only. PV power output simulation is usually done using explicit phys-
ical modeling or statistical methods or a combination of both [8]. In explicit physical
approaches, the PV power is simulated taking irradiance and temperature forecasts as
well as system-specific information into account [14]. This includes the conversion of
global horizontal irradiance to irradiance on the tilted modules’ plane and PV efficiency
models [15, 16]. Statistical methods utilize historic PV power measurements, modeling
the power feed-in according to global horizontal irradiance forecasts or other auxiliary
data, see e.g. [17, 18]. Other forecasting approaches are based on measurements from
close-by PV sites [19]. To obtain regional forecasts, approaches to derive regional feed-in
based on site specific power forecasts exist [20].

This thesis aims at the improvement of forecast accuracy for regional short-term PV
power forecasts. ’Regional’ refers to the control areas of the German TSOs and all of
Germany, ’short-term’ to forecast horizons of up to five hours ahead. All steps in forecast
processing are addressed: From solar surface irradiance and temperature forecasts via a
PV power simulation model through to an upscaling algorithm to derive regional power
feed-in forecasts. By this, new approaches for PV power forecasting are found, the
accuracy of existing methods is increased, and a better understanding of the processes
involved is achieved. In contrast to existing studies, a large amount of distributed sites
are considered and methods adapted accordingly: The dataset used contains over 1000
PV sites, distributed across Germany and received from the monitoring database of
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meteocontrol GmbH. These PV power measurements in 15-minute intervals allow for a
precise assessment of forecast accuracy and the impact of models developed. They are
complemented by meteorological measurements of irradiance and temperature.

Research presented in this thesis is based on an existing and operational PV power fore-
casting system, operated by the University of Oldenburg and meteocontrol GmbH [21].
This system utilizes model output statistics (MOS) for solar irradiance forecasts, based on
NWP models by different forecast providers as well as satellite information and ground-
based irradiance measurements. PV power modeling is done by explicit physical modeling
and regional forecasts are derived using an upscaling approach [20, 22, 23]. According
to these components, following aspects are highlighted in this thesis:

• Irradiance forecast accuracy of a satellite-based forecasting approach using cloud
motion vectors (CMV) is addressed and compared to established numerical weather
prediction (NWP) models in a first step. Potential and limitations of this satellite-
based approach are assessed and further developments initiated.

• PV power simulation for PV power sites with limited knowledge of individual sys-
tem parameters is performed in a second step with focus on the application in
regional forecasting. An in-depth analysis of the datasets and model components
used in power modeling is provided and strategies are developed to handle a large
amount of PV systems.

• PV power forecasts based on satellite data and NWP models are enhanced by
predictions based on online measured PV power. These measurements allow for a
better description of the actual systems’ state and are integrated by an approach
combining individual forecasting methods.

• Regional forecasts are focused on in accordance to the requirements of the German
energy market and to information on the energy system available. An upscaling
approach is introduced with an optimized description of the PV sites’ distribution.

This thesis is organized as following. In chapter 2 background information on require-
ments for PV power forecasting systems is provided, focusing on the integration of VRE
in the electricity supply system by market mechanisms. The forecasting systems’ de-
sign analyzed in this thesis is introduced and metrics for forecast accuracy assessment
are given. In chapter 3, a satellite-based approach for short-term irradiance forecasting,
using cloud motion vectors (CMV), is introduced. A comprehensive evaluation of two
years’ CMV forecasts compared to NWP forecasts is provided and improvements of the
CMV method are addressed. The PV power modeling for application in forecasting is
addressed in chapter 4. Models and parameters for the conversion from global horizon-
tal to plane-of-array irradiance and for conversion to PV power are described and rated
with respect to their impact on the overall forecast accuracy. An evaluation of PV power
forecasts for a one-year dataset is given. In chapter 5, forecasts based on NWP mod-
els, CMVs and measured PV are combined for an optimized PV power forecasting on
short-term scales. The upscaling algorithm for regional forecasts is addressed in chapter
6. Here, the best configuration for projecting regional forecasts from single-site forecasts
is discussed and applied to a one year dataset of measured and predicted PV power.
A summary of the results obtained in this thesis is given in chapter 7 and discussed
conclusively. Results and passages which are already published elsewhere in context of
the thesis are denoted accordingly in the corresponding sections.





2. Background

This thesis addresses the complete processing chain of PV power forecasting, from irradi-
ance forecasts via PV power simulation through to upscaling to regional forecasts. This
chapter provides background information on the framework of PV power forecasting.
First, in section 2.1 an introduction to the energy market design and requirements for
the PV power forecasting system is given. In section 2.2, the characteristics of PV power
feed-in and the design of the PV power forecasting system is presented. Metrics and
terminology when dealing with forecast accuracy assessment are displayed in section 2.3.
Further background information on the models used throughout the thesis are provided
more detailed in the introductory sections of the corresponding chapters.

2.1. Forecast requirements for the German Energy Market

In this section, an overview on the energy market mechanisms and the resulting require-
ments for forecasts of electricity production by VRE sources is given. As an instrument
for balancing electricity production and consumption in Germany and Europe, markets
for energy and control reserve are established. The description given here is focused on
the German energy market, but similar market structures exist e.g. in Europe and the
US [24]. An overview of the market mechanisms is given in fig. 2.1.

t

Intraday-
market

Day-ahead-
market

12am 
previous day

time of
delivery

Forward
market

45 minutes
before

balancing energy aquisition

Intraday-
forecast

Day-ahead-
forecast

horizontal load
balancing

Actual VRE
feed-in

physical balancing

Figure 2.1.: Overview on the process of energy marketing and the resulting need for VRE
power production forecasts and assessment with respect to the time horizons relative to
the delivery time. Blue fields show the energy market related processes, power forecasting
and assessment utilized is displayed in red; based on [25].

2.1.1. Energy market design and participants

Electricity trading is basically organized in three submarkets (see blue fields in fig. 2.1):
On the forward market (dt. ’Terminmarkt’) at the European Energy Exchange [26],
energy deliveries are traded for months up to several years in advance. The spot market,
for Germany at the European Energy Exchange EPEX SPOT [27], houses the markets
focusing on much shorter time spans: On the day-ahead market electricity offerings
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6 CHAPTER 2. BACKGROUND

and bids in hourly contingents for the next day are placed, closing trades at 12 am.
By this, a first allocation of available and required electricity contingents is carried out
based on estimations of feed-in and consumption. Updates of these first allocations
are then possible on the intraday market, starting three hours after the closure of
the day-ahead market and ending on the settlement day, 45 minutes before electricity
delivery in 15 minutes contingents. On the intraday market, being much closer to the
time of delivery, these updates allow for a much better estimation of real feed-in and
consumption. [24, 25, 28]

This organization of the electricity market aims at a high cost-efficiency when balancing
demand and supply. Generation units with lowest variable costs are first placed to satisfy
demand, followed in order of increasing costs (’merit-order’). For the VRE sources, these
costs are lowest as no fuel costs are considered. Consequently, wind and solar power
are placed first in the ’merit-order’, followed by nuclear power plants, lignite and hard
coal powered plants [25]. The resulting cost of the electricity is usually based on the
cost of power plants in use with the highest variable cost (’marginal cost price’). The
marginal cost price is usually specified by the expected power feed-in and demand at the
day-ahead market [29]. Thus, an expected high power production by VRE can lead to a
significant reduction in power generation costs (’merit-order effect’), as plants with high
variable costs are banished and the marginal cost price reduces [30, 31]. The prices at
the intraday market are highly dependent on these day-ahead market prices but respond
to the updates of expected power feed-in and consumption [29].

The market participants at the Energy Exchange are utility and supply companies, trans-
mission system operators (TSOs) and direct marketers of power generation units, but also
energy intensive industries [27]. One focus in this study is on TSOs, being responsible
for the integration of renewable energy sources and grid balancing. Transmission System
Operators in Germany currently are 50hertz, Tennet TSO, Amprion and TransnetBW
(see fig. 2.2)[32].

Figure 2.2.: Transmission system operators (TSOs) and their control areas in Germany.
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The TSOs are obliged to purchase all electricity produced by RE source produced in
their control area from plant operators or distribution network operator, in accordance
to the regulations defined by the RES act [33]. These electricity contingents have to
be sold at the EPEX by the TSOs, normally earning lower revenues than they were
paid to the plant operators regulated by the feed-in tariffs of the RES acht. Financial
losses are compensated for through the so called RES apportionment (’EEG-Umlage’).
A central process here is the equalization of the burden of this process among the TSOs
by the horizontal load balancing (’Horizontaler Belastungsausgleich’). VRE feed-in is
pooled by all TSOs for Germany: TSOs with a comparatively high penetration of VRE
in their control area are compensated by TSOs with below average penetration. The
compensation is proportional with respect to the load consumption for each individual
TSO and is based on the estimation on the actual power feed-in (see fig. 2.1). [33, 34,
35]

Another focus is on direct marketers. These typically are single or affiliated power
generation unit operators who participate at the energy market without involvement of
the TSOs. Direct marketers then act self-responsible at the energy market [36]. Based
on new regulations of the RES act from 2014, all operators of newly established power
generation facilities with nominal power over 500 kWp (from 2016 over 100 kWp) are
obliged to act as direct marketer [33, 37].

2.1.2. Balancing energy

As the energy market balancing is done based on forecasts of supply and demand, care
has to be taken that the physical generation and consumption is matched temporally
and spatially. Reasons for differences in market-based and physical balancing are based
on uncertainties in i) wind and solar power forecasts and in ii) forecasts of electricity
demand as well as on iii) unforeseen power plant shutdowns. To compensate for these
deviations in assigned and actual power generation and consumption, fast-dispatchable
control energy contingents have to be available at any time. Control energy has to be
able to compensate for both, surplus and shortages of electricity (’negative’ and ’positive
control energy’) [24, 38, 39, 40]

Physical balancing is done on different temporal scales by i) primary control reserve, ii)
secondary control reserve to and iii) minute reserve or tertiary control reserve (see green
fields in fig. 2.1). These groups are differentiated by the time of activation (from 30
seconds for primary control reserve to several minutes for secondary and minute reserve)
and by the time span of control power usage (maximum 15 minutes for primary and
up to one hour for minute reserve) [25, 41]. For control reserve, fast-reacting systems
are especially suitable, as gas turbine plants or pumped storage hydro power stations,
but also thermal power plants (e.g. coal power plants) as ’spinning reserve’ for primary
control reserve. Up to today wind or solar power are only suitable as negative control
reserve by curtailment of power generation capacities [42]. In future energy grid design,
decentralized storage facilities are also expected to act as valuable provider of control
energy [43].

In addition to the energy markets for electricity balancing, the control energy market
is also an important instrument for grid operation. Providers of control energy are
compensated for holding capacities available and with an additional allowance for actually
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providing the control energy when needed. Both prices for holding capacities and actually
providing control energy are subject to partially high fluctuations in market prices and
usually are significantly higher than the energy prices at the day-ahead or intraday
markets [24, 31, 44]. By June 2015, around 4.8 GW of positive control reserve (sum of
secondary and tertiary) and 4.1 GW of negative control reserve are tendered, as published
on the joint portal for control reserve statistics by the TSOs [45]. For special situations,
available control reserve is adapted to the expected needs. This for example was done for
the solar eclipse in March 2015 [46], with overall 8.0 GW positive and 7.3 GW negative
control reserve, due to uncertainties of PV power feed-in. Increased balancing energy
capacities also are tendered for christmas days on a regular basis, with e.g. up to 25%
balancing reserves in 2014 [45], due to uncertainties in load forecasts.

In the long run, capacities of control energy have to be dimensioned including considera-
tion of VRE expansion and expected accuracies of feed-in and load forecasts. According
Hirth and Ziegenhagen (2013) each GW of VRE added leads to a 30-70 MW increase in
demand for control energy, depending among other things on the quality of power feed-
in forecasts [4]. However, despite the significant increase in VRE capacities, the trend
shows an actual decline in control energy capacities of 20% from 2008 to 2012, mainly
due to reorganization of the control energy market but also to increased forecast qual-
ity. As the beneficial effect of reorganization is limited, improvement of forecast quality
significantly influences the need for control energy and thus the costs for the energy
supply system [deutsche˙energieagenture˙dena˙dena˙2010, 4]. Quality of intraday
forecasts of VRE power feed-in thus has a direct impact on the need for control energy
and the cost of the energy supply system with a high share of VRE [47].

2.1.3. Prediction and assessment of VRE power feed-in

Fitting into the market design presented in the previous section, forecasts of power feed-
in from RE contribute to a cost-efficient and reliable energy supply. The demand for PV
power forecasting and assessment is oriented at the market requirements (see red fields
in fig. 2.1):

• Day-ahead forecasts are most important for a first allocation of available wind
or solar power resources for the day-ahead market. These forecasts are especially
relevant for defining the marginal cost price (see section above) and thus the pricing
of electricity at the spot market. The accuracies of day-ahead forecasts essentially
determine the costs of electricity at the energy exchange [29, 48].

• Intraday forecasts are used to update the day-ahead trades according to the
newest forecast available. This enables a much better estimation of power feed-
in because forecasts improve with reduced forecast lead time. These forecasts are
especially relevant for balancing supply and demand: Remaining forecast errors can
only be compensated for by the use of control energy, leading to high costs of the
energy supply system [24, 48]. For the interaction of intraday market and control
reserves, forecast lead times of few (usually two) hours ahead before delivery are
especially important: This is a consequence of i) the gate-closure of the intraday
market 45 minutes before delivery and ii) the need for additional time reserves for
forecast processing and decision making.
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• Regional forecasts are utilized by TSOs and other participants as utility compa-
nies for estimating the feed-in for Germany or for the corresponding area of interest.
These forecasts are essential for their participation at the energy exchange. Areas
of interest are usually of several hundred kilometers’ extent for the control areas of
the TSOs, but can also be much smaller as for utility companies.

• Site specific forecasts are most relevant to direct marketers participating at
the energy exchange. Here, localized forecasts for single plants or small regions of
affiliated power generation units are required. This segment gains more and more
importance as direct marketing is focused on. Same is valid for operators of demand
side management systems or self-consumers including storage management.

• The temporal resolution of forecasts according to the energy market demands
is 1 hour for the day-ahead market and 15 minutes for the intraday market.

• For the balancing processes and horizontal burden sharing, estimations of real
power feed-in of the VRE are needed [49]. Due to the limited feed-in metering,
procedures to estimate the total power feed-in for a region are applied based on
monitored VRE generation units.

These requirements define the environment for power feed-in forecasts. Due to the energy
market design, errors in feed-in forecasts significantly influence the costs of electricity.
Studies on the impact of forecast errors on energy prices are mainly focusing on wind
power forecasts, see e.g. [29, 40, 50, 51], others on PV and wind power forecasts, e.g. [3].
All state a negative impact of forecast errors on energy pricing but to different extents.
The importance of high forecast quality can also be seen at events with extraordinary
forecast errors: For example due to a hardly predictable event of persistent high fog
on several days in April 2013, forecast errors of 8.8 GW for day-ahead occurred: This
was leading to the usage of all available control energy contingents available for multiple
hours and to a significant increase peak prices on the intraday market [52]. Besides the
forecast quality also the assessment of forecast uncertainty is addressed in forecasting, see
e.g. [53, 54]. Besides the mentioned requirements, other application areas for PV power
forecasting exists, as e.g. regional forecasts for congestion management, or localized
forecasts for demand-side or storage-management.

2.2. PV power forecasting

In this section, the PV power forecasting scheme used for research in this thesis is in-
troduced. This PV power forecasting system responds to the requirements of the energy
market as introduced in section 2.1.3 above and accounts for the characteristics of PV
power feed-in as briefly summarized in the following section 2.2.1.

2.2.1. Characteristics of PV power feed-in

The (regional) feed-in of PV power shows specific deterministic and weather dependent
features that have to be represented by PV power forecasting algorithms. Fig. 2.3,
left panel, shows typical diurnal PV power feed-in for three days with different feed-in
characteristics. On the 16th January and 2nd August 2013, the power feed-in for a
typical clear sky day shows underlying deterministic behavior of the PV power feed-in
with a maximum at noon, but to very different extents in summer and winter. The
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annual trend of PV power feed-in is displayed in the right panel of fig. 2.3 with high
feed-in in summer months and lower feed-in for winter. Both the diurnal and annual
trends are direct consequence of changing solar geometry.
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Figure 2.3.: Left: Daily pattern of PV power feed-in for Germany for different feed-in
situations. Right: Daily sum of PV power feed-in for Germany for two years (2012 and
2013) and development of installed PV power capacity in Germany. Data sources: RES
dataset ([55, 56, 57, 58]) and EEX transparency platform [59].

In addition to these deterministic trends the weather dependency have to be considered
and is the biggest challenge in PV power forecasting. A typical day with changing
weather conditions is displayed (8th August 2013), showing much lower power feed-in
as for the shown clear sky day (left panel in fig. 2.3). Mainly clouds lead to temporal
and spatial fluctuations of solar irradiance at the ground. In addition to the impact of
solar irradiance, ambient temperature is considered, like heating or cooling of PV power
modules leads to a reduction or enhancement of the efficiency of PV power systems.
Thus, highest PV power feed-in over the course of a year are typically observed in spring
months, with lower average solar irradiance than in summer but also generally lower
average ambient temperatures. Considering the overall PV feed-in for a larger region,
the overall capacities and characteristics of installed PV power units in this region are
important information. Naturally, with installed PV capacities (see right panel in fig. 2.3)
as well as the absolute PV power feed-in increases.

2.2.2. PV power forecasting scheme

Research for this thesis is performed in the context of the existing PV power prediction
system, operated and developed by the University of Oldenburg and meteocontrol GmbH.
This section provides an overview on the forecasting scheme and recent and ongoing
developments in this context. An outline of the forecasting scheme is displayed in fig.
4.1. Following main steps are involved, details on the applied methods and configuration
can be found in the corresponding chapters:

1. Site-specific forecasts of surface global horizontal irradiance are derived, using dif-
ferent data sources, such as numerical weather predictions or satellite data. Recent
developments are described e.g. in [23, 60, 61]. The various forecasting approaches
applied are introduced and discussed in chapter 3.
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Figure 2.4.: Regional PV power prediction system: Forecasts of global horizontal irradiance
are processed via a PV power simulation tool. An upscaling approach derives regional PV
power forecasts from site specific PV power forecasts for a representative set of systems;
from [60].

2. Based on these irradiance forecasts and additional temperature forecasts, PV power
simulation is performed. The approach includes conversion from horizontal irra-
diance to horizontal direct and diffuse and then to tilted irradiance, taking into
account plant specifications such as installed capacity, tilt and orientation. PV
power is modeled by applying a parametric PV efficiency model [14, 20, 22]. This
PV power simulation algorithm is addressed in chapter 4.

3. The so derived single-site PV power forecasts are used for a regional upscaling
algorithm. Here, single-site forecasts for a representative set of PV systems are
used to derive the regional PV power feed-in for regions like the control areas or
the whole of Germany [14, 20, 22]. Details on the upscaling method are described
in chapter 6.

2.3. Evaluation of forecasts

The terminology for evaluating and comparing different forecasts is introduced in the
first part of this section. In the following, metrics used for forecast error quantification
are presented.

2.3.1. Terminology

The PV power and meteorological forecasts here are evaluated on different spatial levels
to emphasize deviating behavior for different applications. Throughout the analysis done
in this thesis, different regional classifications are referred to as summarized in the first
part of table 2.1. Single site forecasts are localized forecasts computed for specific
sites individually. These are of high interest for the application in direct marketing of
single PV power plants or for demand-side-management systems. For the assessment
of forecasts accumulated for differently sized areas, spatially averaged forecasts are
derived by averaging forecasts for single sites within a specific area. Commonly, in the
context of this thesis, spatial averages for all single sites in the dataset are evaluated,
representing the area of Germany and referred to as all sites’ averages. Forecasts derived
by the upscaling approach representing the modeled power feed-in for e.g. the control
areas or all of Germany are denoted as regional forecasts.
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Dealing with temporal classification of forecasts, different terms for points or periods
of time are relevant (second part of table 2.1). Forecast valid times here are points
or periods of time the forecasts are valid for. For the energy market application, this
denotes the time the power availability has to be scheduled for. At the delivery time
forecasts are made available to the user; forecast lead times or horizons describe
the time lag between forecast delivery and forecast valid time. Forecast base time
describes the time a forecast run is initialized, especially relevant for numerical weather
predictions: For example, base times of NWP forecasts (see section 3.4) are every six
or twelve hours, marking the start of a forecast computation; delivery times are usually
several hours later, due to computation time required.

The forecast horizon is a central term throughout this thesis and typically determined
by the application: For the day-ahead market, forecast horizons are at least 18 hours
to 48 hours. In intraday energy markets’ context, delivery times usually are set to 45
minutes before the forecast valid time (’gate closure’), determining the minimal required
forecast horizon. For processing and decision making by the forecast user, an additional
time span is required: Thus, in the context of this thesis, focus is on forecast horizons of
around two hours ahead.

The properties of the forecast dataset evaluated have a high degree of influence on the
outcome of forecast quality assessment, especially when comparing different forecast
models. For the given evaluations, only daytime values are considered, as during night-
time all models would perfectly predict zero irradiance or power production respectively.
To maintain comparability of different models, datasets are selected according to the
availability of forecast data, and consistency among the datasets evaluated is maintained.
For example, CMV forecasts are currently only computed as soon as daytime satellite
images are available: For required forecast horizons of several hours, forecasts are possible
several hours after sunrise at the earliest. In evaluations and comparisons presented, the
evaluated datasets are reduced to hours all forecast models compared have data available.

Table 2.1.: Glossary of relevant terms used in forecasting

single site forecast forecasts computed for single locations and systems

(spatially) averaged ... single site forecasts averaged over differently sized regions

regional ... forecasts derived by the upscaling approach for larger regions

forecast valid time periods or point of time while/for which the forecast is valid

... delivery time/origin point of time a forecast is delivered

... lead time/horizon time interval between delivery and valid time

... base time point of time a forecast run is started
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2.3.2. Metrics

For assessing forecast accuracies, various measures are introduced e.g. in [8, 62, 63, 64].
The metrics applied here are described in this section, based on a similar introduction in
Kühnert et al. (2015) [65]. The forecast error of quantity x, e.g. irradiance I, PV power
P , or temperature T is given as:

ε = xpred − xmeas (2.1)

with xpred the predicted and xmeas the measured value. As standard measures to assess
forecast accuracy, the root mean square error (rmse) and the bias error are used:

rmse =

√
1

N

∑
ε2, bias =

1

N

∑
ε. (2.2)

Due to the quadratic error weighting in the rmse, large forecast errors have a larger
impact than smaller deviations. This behavior reflects the impact and importance of
large errors for costs and stability of the energy supply system. Systematic deviations of
the forecasts are reflected by the bias. A general overestimation of the predicted value
is indicated by a positive bias, underestimation by a negative bias.

Additionally, the nrmse and nbias are used, both normalized to the average measured
quantity xmeas :

nrmse = rmse/ xmeas, nbias = bias/ xmeas (2.3)

The evaluation of single site forecasts is realized by considering ε for each of N time
steps i and for M single systems k equally, using single site measurements as a reference:

rmse =
1√

N ·M

√√√√N,M∑
i,k

ε2i,k, bias =
1

N ·M

N,M∑
i,k

εi,k. (2.4)

For spatially averaged forecasts, all single PV systems or meteorological stations in the
corresponding area are averaged for each time step and accuracy measures are applied to
these values. The reference is defined as the average of all single stations in the dataset:

xarea,i =
1

M

M∑
k

xi,k (2.5)

Often the interest lies in the improvement in rmse of a forecast model with respect
to a reference forecast model, which can easily be quantified via the rmse dependent
Improvement Score IS, defined as:

ISrmse(forecast, reference) = 1−
rmseforecast
rmsereference

(2.6)

With this definition, ISrmse = 0 indicates no difference between the models, positive IS
values an improvement of the model, negative a decline in forecast quality, as expressed
by the rmse. Below, the ISrmse is shortly notated as IS.





3. Short-term irradiance forecasting

Forecasts of global horizontal irradiance are fundamental for PV power forecasting and
introduced in this chapter. Focus here is on forecast horizons of up to five hours ahead as
required for intraday trading. A satellite based forecasting approach using cloud motions
vectors (CMV) is presented and evaluated in comparison to forecasts based on numerical
weather predictions (NWP) and a persistence model. By this, potential and limitations
of this satellite-based approach are assessed.

The physical quantities global horizontal and clear sky irradiance, as well as the clearness
and clear sky index are introduced in section 3.1. Irradiance assessment based Meteosat
Second Generation satellite images and the Heliosat method is described in section 3.2.
Based on this Heliosat method, a cloud motion vector (CMV) forecast approach is intro-
duced in section 3.3. In section 3.4 and section 3.5 irradiance forecasts based on numerical
weather predictions (NWP) and on a persistence model are presented. The forecast qual-
ity based on the approaches introduced is evaluated subsequently, describing the dataset
used in section 3.6 and giving a thorough analysis of forecast errors in section 3.7. A new
CMV forecasting approach for the morning hours based on infrared images is introduced
in section 3.8. Section 3.2, 3.3 and 3.7 are partially based on evaluations presented in
Kühnert et al. (2013) [60], section 3.8 refers to Hammer et al. (2015) [66]. Both were
published in the context of research done for this thesis.

3.1. Global horizontal and clear sky irradiance

Global horizontal irradiance is of main interest when referring to PV power assessment
and forecasting. The irradiance at a specific site on earth’s surface is subject to deter-
ministic and non-deterministic processes. Outside the atmosphere, the extraterrestrial
solar irradiance Iext received by a surface perpendicular to sun is determined by the solar
constant I0 (as defined I0 = 1367 W/m2 by the WMO1) and by the annual variation of
the eccentricity ε of the earth’s orbit around the sun. Deterministic variation of solar ir-
radiance is added on an annual and diurnal basis when referring to a fixed surface on top
of the atmosphere. Here, the solar zenith angle θZ and the azimuth angle φ determine
the irradiance received. When considering irradiance on the earths’ surface, extinction
processes in the atmosphere have to be considered additionally. These processes are
induced by air molecules, water vapor, particles and aerosols in the atmosphere and to
a high extent by clouds. A detailed description of the processes involved can be found
e.g. in Liou (1980) [67] or Iqbal (1983) [68]. Scattering of light in the atmosphere causes
an splitting of irradiance in a diffuse and direct component Id and Ib with the global
horizontal irradiance defined as the sum

I = Id + Ib. (3.1)

1World Meteorological Organisation

15



16 CHAPTER 3. SHORT-TERM IRRADIANCE FORECASTING

Besides the deterministic trends, the processes influencing global horizontal irradiance I
can be separated into two categories: The irradiance in case of clear sky with absorption
processes only by the atmospheric constituents on the one hand and the absorption of
irradiance by clouds on the other.

The clear sky irradiance Iclear includes atmospheric extinction of irradiance in case of
no clouds by water vapor, ozone and aerosols. To give a quantification of the clear sky
irradiance, different models exist, such as the model of Dumortier [69] or the SOLIS
clear sky model [70]. In this thesis, calculations of clear sky are based on the Dumortier
(1995) [69] model according to Fontoynont et al. (1998) [71] with information on turbidity
from Remund (2009) [72] or from Bourges (1992) [73]. The diurnal and annual variation
are mainly dependent on the sun-earth geometry and corresponding to the incident angles
on the horizontal surface. The diurnal and annual dependency of clear sky irradiance is
displayed in fig. 3.1, exemplarily shown for one location in Germany and the 21st June
and the 21st of December. Minimum clear sky irradiance is observed for the 21st of
December (winter solstice), highest on the 21st of June (summer solstice).

Based on the global horizontal irradiance I, the extraterrestrial irradiance Iext and the
clear sky irradiance Iclear, the clearness and clear sky index are defined. The clearness
index relates the irradiance at the surface to the irradiance outside the atmosphere,
without extinction processes by the atmosphere or clouds considered. It is defined as

kt =
I

Iext
(3.2)

Similar to that, the clear sky index k∗, defined as ratio between global and clear sky
irradiance at the surface, is defined as:

k∗ =
I

Iclear
(3.3)
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Figure 3.1.: Left: Clear sky irradiance for 15 minute values for an exemplarily chosen site
(N 53.17◦,E 8.23◦) Germany at the 21st of June and 21st of December. Right: Clear sky
index k∗ for three days with different characteristics of k∗, based on ground measured
irradiance with 1 hour resolution.
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By this definition, a measure of the transmissivity of clouds is given, taking absorption
processes in the clear sky atmosphere into account. The course of k∗ for three typical
weather situations is shown in the right panel of fig. 3.1: For clear sky days (see 30-Sep-
2014, yellow line, in fig. 3.1), the k∗ is constantly equal or close to 1; values above 1
are possible due to inaccuracies in the clear sky model or turbidity information, due to
limited accuracy at low irradiance values especially for zenith angles, or also in situations
of irradiance enhancement by reflection at cloud ceilings. In overcast situations (see
29-Sep-2014, blue line, in fig. 3.1) the clear sky index reaches values as low as around
k∗ ≈ 0.1, whereas k∗ = 0 is never reached as even on overcast days, since diffuse irradiance
is always > 0 W

m2 . At days of variable cloud cover (see 7-Sep-2014, orange line, in fig. 3.1)
due to broken cloud situations or passing cloud field, k∗ changes significantly over the
day. When deriving k∗ from irradiance averaged over a period of time, in broken cloud
situations the average k∗ can be composed of situations of clear sky and overcast and is
not distinguished from constant cloud cover at the same level of k∗.

3.2. Irradiance from satellite data (Heliosat method)

Global surface irradiance information is retrieved from Meteosat satellite (MSG) images
operated by the EUMETSAT2. The MSG satellites are geostationary positioned in orbit
at 0◦ longitude and latitude. The satellites’ sensors receive reflected or emitted radiation
from earth’s surface in 11 spectral channels (from long-wavelength infrared to visible)
with a spatial resolution of 3 km × 3 km at the sub-satellite point. The area of Europe,
Africa and the Atlantic Ocean, as well as parts of Asia and South America are within the
field of view. In addition, a high resolution channel provides visible broadband irradiance
(600 to 900 nm) with a resolution of 1 km × 1 km at the sub-satellite point. This channel
however is restricted to Europe and parts of Africa [74]. Using MSG images for other than
sub-satellite pixels, the lower and non-uniform resolution of the image pixels according
to their longitude and latitude has to be considered. E.g. for sites in Germany, the
size of one image pixel corresponds to approximately 1.2 km in east-west and 1.8 km in
north-south direction for the HRV channel and around 3.6 km × 5.4 km for the channels
with lower resolution. By the MSG satellites, data close to real time is available with a
15 minutes resolution [75].

Irradiance incident on the earth’s surface is determined from Meteosat satellite images by
using the Heliosat method. This method, first published by Cano et al. (1986) [76] and
further developed and improved for solar energy applications by Beyer et al. (1996) [77]
and Hammer et al. (2003) [78], uses the backscattered irradiance measured by the
satellite to gain cloud information. The intensity of reflected irradiance from clouds
in the visible spectral channel is higher than the irradiance intensity reflected by land
and water, except for snow-covered land areas. Therefore, the solar irradiance scattered
back by the earth’s surface and by clouds is proportional to the cloud cover. Based on
this cloud information, the transmission of radiation through the atmosphere and the
resulting global surface irradiance can be derived.

Intensity information from satellite images, i.e. the amount of digital counts c for each
image pixel reduced by a constant value c0 to account for the sensor offset and normalized

2European Organisation for the Exploitation of Meteorological Satellites
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by the solar zenith angle θZ , is used to derive the reflectivity

ρ =
c− c0

cos(θZ)
. (3.4)

The reflection of an individual pixel is assumed to be emanating from ground surface ρgr
and from clouds ρcl:

ρ = n ρcl + (1− n) ρgr (3.5)

The dimensionless cloud index n contains information on the cloud cover and transmissiv-
ity for each pixel and can be calculated using eq. 3.5. Ground clouds reflectivity ρgr and
ρcl are derived from sequences of satellite images. The ground reflectivity ρgr describes
the combined reflectivity from ground surface and the clear atmosphere. It is a function
of the surface type, such as the sea surface or land surface with or without vegetation,
of seasonal changes in vegetation, and of diurnal variations caused by anisotropical re-
flection depending on the solar zenith angles. Creating ground reflectivity maps using
the mean of the lowest reflectivity values for each pixel per time slot in the preceding
30 days leads to accurate and robust ρgr values. The cloud reflectivity ρcl is empirically
determined by analyzing pixel intensity histograms [79].

The clear sky index k∗ (see definition 3.3) can be derived from the cloud index n with
an approximately linear relationship [66]:

k∗ =


1.2 for n ≤ -0.2
1− n for -0.2 < n ≤ 0.8
1.661− 1.7814n+ 0.7250n2 for 0.8 < n ≤ 1.05
0.09 for 1.05 < n.

(3.6)

Global horizontal irradiance I can be derived from Eq. (3.3), using this k∗ derived from
satellite images and clear sky irradiance Iclear. Here, we use the clear sky model by
Dumortier [69, 71], with information on the atmospheric components from the Bourges
(1992) [73] model.

The issue of snow-covered land surfaces is addressed in Heinicke (2006) [80]: Clouds and
snow show similar reflectivity in the visible channel and thus can be confused with each
other. Snow can be detected from satellite images at the visible channels at 0.6µm and
the near-infrared channel at 1.6µm for each pixel and be distinguished from clouds [80,
66]. However, for the evaluated irradiance calculation and forecasting, this approach was
not implemented so far and is subject of ongoing development.

3.3. Cloud Motion Vector (CMV) forecasts

The development of global horizontal irradiance up to some hours ahead is strongly
dependent on the movement of cloud structures. Based on MSG satellite high resolution
visible (HRV) images and the Heliosat method, a short-term irradiance forecast approach
using cloud motion vectors (CMV) is used. This approach was first proposed by Beyer
et al. (1994) [81] and further investigated in Lorenz et al. (2004) [12] and Hammer et
al. (1999) [82]. In the context of this thesis, in Kühnert et al. (2013) [60] an in-depth
evaluation of the CMV forecast accuracy using a one-year dataset is published. A newly
developed nighttime cloud index retrieval was introduced in Hammer et al. (2015) [66].
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An overview of the CMV forecast approach is provided in fig. 3.2:

1. Cloud index (CI) images are derived from MSG images by the Heliosat method,

2. cloud motion vectors (CMV) are computed and future CI images extrapolated,

3. irradiance forecasts are derived by based on the extrapolated CI images.

All-day
cloud index 

Forecast of
cloud index images

Forecast of global
horizontal irradiance

Cloud motion 
 vectors

Irradiance
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Daytime cloud
index (Heliosat)
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Figure 3.2.: Processing of CMV forecasts from daytime cloud index images based on MSG
satellite data from HRV channel and the Heliosat method, being the basis for the follow-
ing evaluations (section 3.7). Nighttime cloud index images based on the MSG infrared
channels are newly introduced in Hammer et al. [66] and described in section 3.8. Based
on these cloud index images, cloud motion vectors (CMV) are derived, future cloud index
images extrapolated and thus forecasts of irradiance derived. From [66], based on [60].

In this section, an overview on the forecasting algorithm is given, based on the description
in Küphnert et al. (2013) [60]. For more details on the approach please refer to this
source or to Lorenz et al. (2004) [12]. CMV forecasts are calculated based on the
following steps:

1. Cloud motion vectors are derived comparing two consecutive cloud index images,

2. cloud movement is extrapolated to the next hours based on the latest CI image,

3. a smoothing post-processing is applied to the predicted cloud index images,

4. irradiance forecasts are derived from predicted CI images with the Heliosat method.

Cloud motion vectors (CMV) are determined by comparing consecutive cloud index
images derived from MSG high resolution visible range channel (HRV) images, see fig. 3.3.
The most recent cloud index image n0 at time t0 is compared with the preceding cloud
index image n−1 at time t−1 = t0 − ∆t, where ∆t represents the time step between
two consecutive images (∆t = 15min for MSG images). Deriving cloud movement by
comparing cloud structures in images n0 and n−1 is performed by assuming i) constant
pixel intensities for cloud structures in both images and ii) smooth wind fields which
usually exist at typical cloud heights. These assumptions allow for detecting cloud motion
by matching the same cloud pattern in consecutive images: Rectangular areas in image
n−1 (’target areas’) around the origin of each motion vector are compared to equally sized
areas within their neighborhood (’search area’) in image n0 to detect the movement of
cloud patterns between these images. The detection of cloud patterns of image n−1 in
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the subsequent image n0 is performed by minimizing the mean square pixel differences
for these target areas, defined as

mse =
1

N

N∑
i=1

(n0(xi + d)− n−1(xi))
2 (3.7)

where d is the shift vector of all pixels xi in the respective area. For each target area in
the search area, the mse is calculated and the area with the minimal error is selected,
defining the motion vector for this area.

Figure 3.3.: CMV forecast approach: (i) detection of motion for existing cloud structures
evaluating the most recent cloud index images, (ii) application of the derived motion
vector field to the most recent cloud index image to extrapolate the movement of cloud
structures and (iii) smoothing of extrapolated images.

The extrapolation of cloud index images is done by segmentally moving the existing cloud
structures along the motion vectors of each area. Assuming persistent cloud patterns
and wind fields, this method allows the prediction of cloud index images for the next
hours: The subsequent cloud index image n+1 is created by applying motion vectors
to the most recent cloud index image n0 to extrapolate the cloud movement. Iterating
this extrapolation on n+1 to gather n+2 up to nn provides extrapolated cloud index
images up to time step tn. The extrapolation of each image step is performed using
the same ∆t = 15min time step. The step-wise iteration of extrapolation, rather than
extrapolating to nn using a single scaled vector, has the advantage of capturing changes
in movement of the clouds in other areas of the image. Thus the change of clouds’
movement in space is captured. However, changes in time with onward forecast horizons
are not considered by this approach. Also, the extrapolation of cloud movement does
not consider the formation and dissolution of clouds.

The extrapolated cloud index images are post-processed using a smoothing filter. This
step reduces the impact of inaccuracies in the extrapolated images which mainly occur
due to spatial differences between the predicted and the actual position of clouds. These
deviations are caused by undetected changes in cloud motion direction and speed, and by
propagation of fine cloud structures which are likely reshaping during cloud movement
and therefore are not predictable. Applying a smoothing filter leads to a considerable re-
duction of rmse by reducing this ’noise’ [60, 12]. As the extrapolation of cloud structures
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leads to an increasing propagation of forecast errors with forecast horizon, the optimal
size of the smoothing area a is changing with each time step of extrapolation. For larger
time scales, favoring larger forecast errors, a more extensive smoothing is favorable. As
a last step, forecasts of irradiance are derived using the Heliosat method introduced in
section 3.2, applied to the extrapolated and smoothed cloud index images.

3.4. Numerical weather predictions (NWP)

Numerical weather predictions (NWP) models are used for predicting the state of the
atmosphere for several days ahead. These predictions are based on the assessment of the
initial state of various parameters from measured data or reanalysis of previous forecast
runs. The development of the atmospheric state is predicted using a parametrization of
atmospheric conditions and the application of numerically solved differential equations,
describing the physical laws involved. A spatial and temporal discretization with fixed
resolution is commonly used.

Numerical weather predictions are available from several forecast providers, such as e.g.
the ECMWF3 or the DWD4. In this thesis, ECMWF global model forecasts from the
integrated forecast system (IFS) are applied. They are used with time steps of 3 hours
and a spatial resolution of 0.25◦ × 0.25◦, corresponding to areas resolved of around
12.5 km × 12.5 km. Forecasts are run by the ECMWF twice a day at 00UTC and
12UTC, with delivery times usually about 5 to 6 hours later due to large and time-
consuming computational efforts. Besides, NWP from the COSMO-EU model operated
by the German Weather Service DWD are also utilized in the PV power prediction
system of the University of Oldenburg and meteocontrol GmbH. For the COSMO-EU
model forecasts in hourly resolution and a spatial resolution of 7 km×7 km are provided.

For the application in the PV power forecasting model, several post-processing steps are
applied in order to achieve an optimization of temporal and spatial resolution for site
specific irradiance forecasts [14, 23]. First, a spatial averaging procedure is performed
leading to an rmse reduction as described in Lorenz et al. [23]. As a second step,
temporal interpolation procedures are implemented using a linear interpolation of the
clear-sky index k∗. From 3-hour mean irradiance INWP,3h values, an average 3 hours
clear-sky index k∗3h = INWP,3h/Iclear,3h is calculated. These k∗3h values are interpolated
linearly to obtain clear-sky indices k∗tres with the required temporal resolution tres. The
irradiance forecast in the required resolution is gained by INWP,tres = k∗tres · Iclear,tres .
Depending on the field of application, tres here is usually 1 hour or 15 minutes. For
the COSMO-EU model, the same interpolation is performed as for the ECMWF IFS
forecasts but adapted to the corresponding model resolutions.

In Lorenz et al. [61] an approach is presented, combining irradiance forecasts from the
ECMWF IFS and DWD COSMO-EU model, and optionally including CMV forecasts
(section 3.3). A significant improvement of forecast accuracy especially for regional
forecasts is achieved by this, as displayed in [61].

3European Centre of Medium Range Weather Forecasts [27]
4Deutscher Wetterdienst, German Weather Service [83]
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3.5. Persistence forecasts

As a simple reference forecast the persistence approach is introduced in this section.
With this approach, i) the cloud cover is assumed to be constant for the hours after
forecast calculation and ii) the deterministic diurnal pattern of irradiance is considered.
Irradiance measurements Imeas at the time t0 the forecast is calculated are used to derive
the clear sky index k∗meas(t0) (see section 3.2) using the clear sky irradiance Iclear(t0) at a
specific site. To obtain future irradiance values, the clear sky index k∗(t) ≡ k∗meas(t0) at
time t = t0 + ∆t is assumed to be constant for the next hours. The persistence forecast
of irradiance Ipers(t) at time t = t0 + ∆t is calculated as

Ipers,∆t(t) = k∗meas(t0) · Iclear(t).

3.6. Datasets for forecast evaluation

Evaluations of forecast accuracy are performed based on measurements at a total of
217 stations (fig. 3.4 left and table 3.1), with different sets of sites distinguished. ’Set
1’ contains all sites in the dataset with measurements of global horizontal irradiance
I. Sets ’2’ and ’3’ are subsets of ’set 1’, with either an additional measurement period
(’set 2’, with Sep 2014 to Feb 2015) or additional parameters measured (’set 3’, with
additionally measured diffuse irradiance Id and ambient temperature Ta). The different
sets are assigned to evaluations performed in different sections of this thesis, as indicated
in the last column of table 3.1. A quality control of the meteorological measurements is
performed, containing a check for availability and consistency of data. Measurements of
I < 0 and I > 1500 W/m2 are not considered in evaluations. Temperature measurements
of Ta are limited to −40◦C ≤ Ta ≤ +60◦C.

Table 3.1.: Datasets of meteorological sites with measured parameters and time periods.

ID measured parameter period section

Set 1 (217 sites) global horizontal irradiance I 01/2012–12/2013 sec. 3.7

Set 2 (116 sites) global horizontal irradiance I 09/2014–02/2015 sec. 3.8

Set 3 (32 sites) ambient temperature Ta 01/2012–12/2012 sec. 4.3
diffuse irradiance Id 01/2012–12/2012 sec. 4.2.1

The temporal resolution for all measurements is 1 hour. Forecasts evaluated are interpo-
lated or averaged to the same temporal resolution: For NWP models, the resolution is
increased from 3 hours forecast resolution to 1 hour in accordance with the interpolation
procedure introduced in section 3.4. For CMV forecasts, with a model resolution of 15
minutes, 1 hour averages are built. This leads to a grouping of sub-hourly forecast hori-
zons: Forecasts e.g. 15 minutes to 1 hour ahead are averaged to hourly values and in the
following designated as the ’1 hour’ forecast horizon. Forecast horizon ’0’ here denotes
the point of time the satellite image is available earliest, neglecting the time needed for
computing forecasts of typically several minutes.

In the following evaluation, irradiance forecasts from different models introduced in the
previous sections are compared. Focus is on the CMV-based irradiance forecasts. In
accordance with the definition of the forecast horizon given above, forecast horizons of 1
to 5 hours are evaluated. These CMV forecasts are compared to:
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Meteorological sites set 1
Meteorological sites set 2
Meteorological sites set 3

1°x1°
2°x2°
4°x4°

Figure 3.4.: Left: Meteorological sites with measured irradiance and temperature, grouped
into different datasets. Right: Division of areas averaged for evaluation, exemplarily for
1◦ × 1◦, 2◦ × 2◦ and 4◦ × 4◦, with overlap of the areas by their half width and height
(except for 1◦ × 1◦ with no overlap).

• NWP irradiance forecasts by the ECMWF of the 12UTC-run of the respective
previous day: Here, the forecast horizon is not defined on an hourly scale but
composed to the intraday forecast horizon. Depending on the forecast valid and
delivery time, this comprises forecast horizons between 6 and 30 hours ahead.

• Persistence forecasts, based on irradiance measurements at the point of time the
forecast is generated (’horizon 0’). The same forecast horizon terminology as for
CMV-based forecasts is used here.

• Irradiance from satellite data, being the accuracy of the Heliosat method applied
to non-predicted satellite images and thus corresponding to forecast horizon ’0’.

Another focus in the evaluations presented is the comparison of single sites’ and spatially
averaged forecasts. Single site forecasts are most relevant to PV plant owners for direct
marketing or for demand side management, as introduced in section 2.1. Based on single
sites’ forecasts, spatial averages are computed, being of interest to the TSOs and the
balancing process at the energy market. The impact of the size of areas averaged on the
forecast rmse is considered: To do so, areas of same size for 1◦× 1◦, 2◦× 2◦, 4◦× 4◦ and
6◦ × 6◦ are used with an overlap of their half width, as exemplarily shown in the right
panel of fig. 3.4. These spatial averages are concatenated and statistical measures are
applied as for single sites.



24 CHAPTER 3. SHORT-TERM IRRADIANCE FORECASTING

3.7. Evaluation of short-term irradiance forecasts

In this section, an evaluation of a two-years dataset of CMV-based irradiance forecasts
is given, compared to the accuracy of NWP-based and persistence forecasts, and to the
accuracy of the Heliosat method as a reference. Focus is on i) the differences in forecast
errors for single sites’ and spatial averages, on ii) the dependence of forecast error on the
forecast horizon and iii) the dependence of forecast error on different parameters as solar
zenith angle, time of day or season.

A qualitative evaluation of forecast quality and the differences for single site and aver-
aged forecasts are visualized by frequency scatter plots (fig. 3.5). Here, cloud motion
vector (CMV) 2 hours-forecasts are compared to measured irradiance. For single sites,
a relatively large scatter is observed, with an increased amount of pairs of values at low
irradiance levels. The scatter for all sites’ averages is significantly lower, as smooth-
ing effects reduce the error for spatially averaged forecasts: Small-scale fluctuations are
smoothed and mainly the overall weather situation has an impact on the spatially aver-
aged forecasts. From both scatter plots, no significant over- or underestimation can be
deduced.

Figure 3.5.: Frequency distribution scatter plots for single site forecasts (left) and all sites’
averages (right). The color code provides information on the frequency of the displayed
pairs of values. Dataset: Jan 2012–Dec 2013, 217 sites, 1 hour resolution, θZ < 80◦.

The impact of spatial averaging can also be found in the quantitative evaluation in terms
of rmse and bias. These are given in dependence on the forecast horizon from 1 to 5
hours ahead in fig. 3.6. As stated above, the level of rmse is significantly smaller for
spatially averaged forecasts (note different scales of fig. 3.6 left and right). For single
sites, the rmse of CMV forecast ranges from around 52 W/m2 to 108 W/m2, for all
sites’ averaged CMV forecasts only from 17 W/m2 to 42 W/m2. CMV and persistence
forecasts show a strong dependence of the rmse on the forecast horizon, whereas the NWP
forecast rmse displayed basically is independent of the horizon. The rmse of satellite-
based irradiance (’sat’) includes no forecasting but displays the accuracy of irradiance
derived from satellite images: This serves as a reference for the minimum rmse (around
50 W/m2 for single sites and 15 W/m2 for all sites’ averages) of the CMV forecasts.
For one hour CMV forecasts, the rmse is similar to this minimum rmse of the Heliosat
method, as cloud movement usually does not have a high impact for this short lead time.
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Figure 3.6.: Evaluation of forecasts for single site (left) and averaged over all sites for
forecast horizons from 1 to 5 hours. Comparison of persistence, CMV and NWP forecasts
and irradiance derived from satellite images (no forecast). Dataset: Jan 2012–Dec 2013,
217 sites, 1 hour resolution, θZ < 80◦.

From that level the CMV forecasts’ rmse increases with forecast horizon. At around 4
hours ahead for single sites, and 5 hours ahead for all sites’ averages, the CMV forecast
rmse reaches a similar level as the NWP intraday forecasts. In both cases, CMV forecasts
shows lower rmse values than the persistence forecasts from around one hour onward for
single sites and from around 2 hours for averaged forecasts.

The bias error measure shows systematic deviations for all forecast approaches. An
overestimation is visible for the NWP-based forecasts by around +10 W/m2, regardless
the forecast horizon. The Heliosat method shows a slight systematic overestimation of
around 5 W/m2. For the CMV forecasts, the bias changes between +5 W/m2 for 1 hour
and −5 W/m2 for 3 hours ahead.

In the evaluation presented, only forecasts generated at solar zenith angles of θZ < 80◦

at the time of forecast calculation are considered. This is a result of low forecast quality
of the CMV approach for high zenith angles, as displayed in fig. 3.7 (left). There the
dependency of CMV 2h ahead forecasts’ rmse on the solar zenith angle at time of forecast
computation is displayed for all sites’ averages. Forecasts generated at θZ ≥ 80◦ show a
significantly higher rmse: The Heliosat method used to derive cloud index images and
surface irradiance is so far restricted to satellite images in the visible spectral range and
shows low performance in the twilight zone (see [60]). This issue is addressed in the
following section 3.8.

The diurnal dependency of forecast rmse for single sites is shown in fig. 3.7 (right),
exemplarily for the months May to July of both years 2012 and 2013. It follows the same
trend as the irradiance incident on ground surface, with highest irradiance and thus
absolute rmse at noon. The limitation of forecast generation by the θZ < 80◦-threshold
leads to an unavailability of CMV forecasts for the morning hours. In winter months,
with a higher share of high solar zenith angles, this can lead to a first availability of
CMV forecasts only at noon hours.
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Figure 3.7.: Left: Dependency of the rmse for CMV 1-5 hour and NWP forecasts and
of the Heliosat method on the solar zenith angle θZ at forecast calculation time for all
sites’ averages. Dataset: Jan 2012–Dec 2013, 217 sites, 1 hour resolution. Right: Diurnal
dependency of forecast rmse for CMV 1-5 hours and NWP forecasts, and the Heliosat
method. Dataset: May–Jul 2012/2013, 217 sites, 1 hour resolution, θZ < 80◦.

The impact of spatial averaging on the forecast rmse is displayed in fig. 3.8: Spatial
averages are evaluated for multiple differently sized areas, as displayed in fig. 3.4. Rmse
and bias are normalized to the single sites’ NWP forecast error. The rmse decreases with
increasing area averaged. For areas of size 4◦ × 4◦, e.g., the error of CMV 2h forecasts
is already less than half of the single sites’ rmse; for all sites’ averages less than 30%
compared to single sites. However, the benefit of spatial averaging is smaller for NWP-
based forecasts: Here the rmse decreases to around 40% for all sites’ averages compared
to single sites. On the one hand, this is a consequence of the higher bias of NWP forecasts,
which is not reduced by spatial averaging as systematic deviations persist (see lower box
in fig. 3.8). On the other hand, CMV forecasts show higher temporal variability than
the NWP forecasts: Spatial averaging has a higher impact on the overall variability of
forecasts and thus shows high potential for a rmse reduction as for the NWP forecasts
with lower temporal model resolution.

The annual dependency of single sites’ absolute rmse, bias and the normalized rmse are
displayed in fig. 3.9 for the months January 2012 to December 2013, compared to the aver-
age measured irradiance for these months. Both, the absolute and relative rmse reveal
a clear annual trend of all forecasting approaches displayed. Like for mean irradiance,
higher absolute rmse values are observed in summer months than in winter. In summer
months May to July the rmse reaches up to 125 W/m2, but only up to 50 W/m2 in
December to February. An inverse behavior is visible for the relative rmse, showing
much higher values in winter than in summer. For these months, the average relative
rmse for NWP and CMV forecasts, and the Heliosat method is above 50% whereas in the
summer months it only reaches up to 30% to 50%. This is a result of different aspects:
In winter months, the mean irradiance is lower than in summer and same absolute rmse
values have higher impact here. Also, the high occurrence of large solar zenith angles and
of snow in the satellite images is relevant here, see Kühnert et al. (2013) [60]. The bias
error of CMV forecasts is mostly independent of seasonal fluctuations. Only for NWP it
shows a significant overestimation in the months January to March of both years.
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Figure 3.8.: Rmse for different forecast horizons and spatial averages according to fig. 3.4
(right), for CMV 1-5 hour and NWP forecasts and the Heliosat method. Rmse and bias
are each normalized to the NWP single sites forecast error. Dataset: Jan 2012–Dec 2013,
217 sites, 1 hour resolution, θZ < 80◦.
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3.8. CMV forecasts based on all-day cloud index

Forecasts based on the cloud motion vector approach using satellite images of the high
resolution visible channel (HRV, fig. 3.10 left) are limited by the availability of satellite
images at daytime only. In Hammer et al. [66], a new approach to generate nighttime
cloud index (CI) images based on MSG infrared channels is developed and examined.
The evaluation of the newly developed method by applying the CMV forecast algorithm
is done in context of this thesis. Main findings of the approach presented are briefly
summarized in this section.

Figure 3.10.: Comparison of a visible channel only cloud index image (left, 01-Nov-2014,
0645 UTC) to an all-day cloud index image (right, 01-Nov-2014, 0600 UTC) with mixed
daytime and nighttime cloud index information; from Hammer et al. (2015) [66].

The limitations of the HRV channel-based forecasts as described above become apparent
in the left panel of fig. 3.10 and in evaluations presented in section 3.7: Forecasts are not
available for early hours at all and show a significantly higher absolute rmse at high solar
zenith angles than compared to e.g. NWP forecasts (fig. 3.7, left). To improve forecast
quality for these hours, an approach for deriving all-day cloud index images (right panel
of fig. 3.10) is developed. The approach presented aims at following innovations of the
cloud index retrieval [66]:

1. Better description of the air mass for the twilight zone by introducing the air-mass
function of Rozenberg (1966) [84],

2. calculation of CI images from infrared images of the channels at 3.9 µm and 10.8 µm
using the brightness temperature differences (BTD) : BTD = T3.9 − T10.8,

3. composition of an all-day cloud index image n by combining nighttime and daytime
cloud index images nnight and nday: n = ω · nnight + (1− ω) · nday, with ω = f(θ).

A direct evaluation of the all-day cloud index images with ground measurements as it
was done in the previous sections for the daytime cloud index is not possible here. The
evaluation of the presented approach thus is performed by applying CMV forecasts to
the all-day cloud index images and by deriving the rmse and bias for irradiance forecasts
compared to ground measurements. CMV forecasts based on all-day cloud index images
are compared to the established daytime cloud index-based CMV forecasts. An evalua-
tion of 3 hours CMV forecasts with hourly measurements of global horizontal irradiance
I is performed. The period for evaluation is from September 2014 to February 2015,
representing a period dominated by high solar zenith angles. Snow cover in Germany
was rarely occurring in these months and is not considered in the presented evaluation.
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The benefit of including a better description of the air mass for the twilight zone is visual-
ized in the left panel of fig. 3.11. Here, for one exemplarily chosen site, the daytime-only
and the all-day CI-based CMV 3h-forecasts are compared, both evaluations restricted
to solar zenith angles 80◦ ≤ θ ≤ 90◦ at the time of forecast calculation. For the all-
day CI-based forecasts, the scatter reduces significantly and indicates a better forecast
performance. The effect of using the all-day cloud index images on the availability of
forecasts is displayed in the right panel of fig. 3.11: Forecasts can now be computed
at solar zenith angles 90◦ < θZ , leading to a much higher forecast availability for the
morning hours. However, the scatter of forecasts calculated at 90◦ < θZ is larger than
for forecasts computed at solar zenith angles 80◦ ≤ θZ ≤ 90◦.
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Figure 3.11.: Scatter plot of 3 hour CMV forecasts versus measured I for a single station.
Left: Forecasts based on daytime only and all-day cloud index, with solar zenith angle
80◦ ≤ θZ ≤ 90◦ at the time of forecast calculation. Right: Forecasts based on all-day
cloud index with 90◦ < θZ or 80◦ ≤ θZ ≤ 90◦ at the time of forecast calculation. Dataset:
Sep 2014–Feb 2015, 1 site (N 51.50◦, E 7.78◦), 1 hour resolution; based on [66].

A quantitative evaluation is provided in fig. 3.12, showing the diurnal dependency of the
forecast rmse evaluated at a total of 116 sites (’Meteorological sites set 2’, see sec. 3.6).
The error of the Heliosat method, applied to the visible spectral ranges’ images only, and
of the NWP-intraday forecasts, using the approach combining models by the ECMWF
and the DWD (see section 3.4), are displayed as a reference. For the daytime CI-based
forecasts, the limited availability and low performance in the early hours (07 to 09 UTC)
is visible here. At the same hours, all-day CI-based forecasts show significant lower
rmse. Also, forecasts are available at earlier hours and show rmse values comparable to
the NWP-based forecasts. Still, NWP forecasts show a slight advantage here. The bias
error of the all-day CI-based CMV forecasts is highest for all forecasts displayed.

With the all-day cloud index images, forecasts now are available already at sunrise and
show lower rmse values for the twilight zone. But, limitations of this method still are
present: The spatial resolution of infrared images utilized is much lower (with sub-
satellite pixels’ resolution is 3 km× 3 km instead of 1 km× 1 km for the HRV channel).
Furthermore, the approach applied to the infrared images relates pixel information only
indirectly to the transmissivity of the cloud [66]). This is in contrast to daytime CI
images, for which a direct correlation of pixel information and clouds transmissivity is
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Figure 3.12.: Diurnal dependency of the forecast rmse and bias for the newly developed
all-day cloud index and the established daytime only-based CMV forecasts. The accuracy
of the Heliosat method is given for reference (’Heliosat’). Dataset: Sep 2014–Feb 2015,
116 sites, 1 hour resolution, forecasts calculated before noon only; based on [66].

derived. Potential for improvement is seen by integrating all-day CI-based forecasts into
the combined CMV-NWP forecasting approach, leading to a reduction of bias error and
thus a further improvement of overall forecast accuracy.

3.9. Conclusion

In this chapter an introduction to short-term irradiance forecasts for horizons of several
hours ahead is given. Forecast accuracy of a cloud motion vector (CMV) forecasting
approach is evaluated and compared to numerical weather predictions (NWP) and fore-
casts based on the assumption of persistence of the clear sky index k∗. Generally, CMV
forecasts show better performance for forecast horizons from one or two hours ahead (for
single sites or regional averages) than persistence forecasts and up to four or five hours
compared to NWP forecasts. Regional forecasts, as most relevant for this application,
benefit from spatial averaging effects and show significantly lower rmse than for single
site evaluations. The CMV forecasting approach evaluated so far is limited by the avail-
ability of images in the visible spectral range. For high solar zenith angles at forecast
calculation time, the CMV approach shows significant high rmse. A new approach us-
ing infrared images for allowing CMV forecasts computation all-day is introduced. The
improvement by this approach of forecast quality and availability for the morning hours
is verified.



4. PV power simulation

In this chapter irradiance-to-power conversion using explicit physical modeling is ad-
dressed. Figure 4.1 shows an outline of the forecasting scheme, with a focus on PV
power simulation. The power output for PV plants is simulated based on the predicted
irradiance and ambient temperature, taking into account plant specifications such as in-
stalled capacity, tilt and orientation. This includes conversion from horizontal irradiance
to horizontal diffuse and direct irradiance, and to tilted plane of array (POA) irradiance
in a first step. PV power efficiency is modeled by applying a parametric efficiency model,
considering the irradiance and temperature dependency of power production. The PV
power simulation is applied to CMV irradiance forecasts, as introduced in chapter 3.3
and to NWP-based forecasts, as described in section 3.4. The so derived site specific
power forecasts are then used as input for regional PV power forecasting. One main
focus in this chapter is the analysis of the simulation process and the contribution of
each simulation step to the overall PV power simulation accuracy. Another focus is on
evaluations of single site and regionally averaged forecasts.

Satellite data

Numerical weather 
predictions (NWP)

ambient
temperature

forecast

PV power simulation

irradiance
forecast

diffuse
irradiance irradiance dependent

efficiency

temperature
 dependent efficiency
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Figure 4.1.: Forecasts of global horizontal irradiance based on satellite data or numerical
weather predictions are processed by a PV power simulation model. This includes the
conversion from global horizontal to plane of array (POA) irradiance by conversion into
diffuse and direct horizontal irradiance and the application of a tilt-conversion model.
Based on this POA irradiance and ambient temperature, the PV power efficiency is mod-
eled. Additional losses by DC to AC-conversion and other effects are considered in a last
step. This PV power simulation is done on single site basis to gather regional forecasts
afterwards; from [65]

First, the dataset of measured PV power used for the evaluations in this and the following
chapters is introduced in section 4.1. This is followed by an introduction to the PV power
simulation model in section 4.2. Temperature forecasts are focused on in section 4.3. In
section 4.4 an impact analysis of the simulation steps on the overall PV power simulation
accuracy is given. Section 4.5 and 4.6 provide an evaluation of PV power forecasts and
a comparison to irradiance forecasts. Section 4.2.2 and 4.4 are cited from a Kühnert et
al. (2015) [65].

31
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4.1. Dataset of PV power measurements

Measured PV power for a huge dataset of more than 1300 sites is used for evaluations.
The measurements were received from the monitoring database of meteocontrol GmbH
[21]. AC power of PV power systems distributed across Germany is logged in 15 minute
intervals. Meta information is provided for each system, like position (longitude λ,
latitude ϕ), installed capacity Pinst, system tilt β and azimuth angle φ. The dataset
available for evaluations here contains two years, from January 2012 to December 2013.
PV systems within the dataset cover a wide range of system sizes with respect to the
installed capacity, from rooftop-mounted system of several kWp up to huge commercial
PV power plants with several MWp. In this section, a characterization of the dataset is
given and the quality control applied on the measured data is described.

The regional distribution of sites is shown in left panel of figure 4.2. A high share of
PV sites are found in southern Germany, with several areas of high PV sites density
especially in south-western areas.
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Figure 4.2.: Left: Regional distribution of PV sites. Right: Distribution of systems’ tilt
and orientation for dataset ’B’. The azimuth angle φ is displayed as polar angle (φ = 0◦

is South), the tilt angle β is represented by the radius (horizontally aligned corresponds
to β = 0).

The dataset covers a high variation of tilt and azimuth angles (right panel of figure 4.2).
Almost all stations are orientated in the range of azimuth angles φ from φ = 0 to
φ = ±90◦ with over 75% showing a south-faced orientation, within φ = ±30◦. Tilt
angles vary between β = 0 and 50◦, with a high share at around 30◦. Sites with φ = 0
and intermediate tilt angles β have a significant large share within the dataset.

An automatic quality control is applied to the measurement data in order to verify time
stamps and information on the systems configuration, as well as to detect measurement
failures. This involves several steps:
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• Adjustment of time stamp: Time stamps are adjusted from local time to the
UTC time system. To correct time information of measurements, a quality control
approach as described in Lorenz (2012) [85] was applied.

• Verification of meta data and physical plausibility: The time series for each
station is analyzed considering the range of measurements normalized to its given
installed capacities. If its normalized measured power feed-in for clear sky days is
constantly above 1.5 or below 0.5, this site is rejected in the following evaluations.
Additionally, single measured values outside the range 0 < Pmeas/Pinst < 1.5 are
also flagged as invalid.

• Data availability: If single values of a stations time series are detected to be
outside a physical range or feature invalid values they are flagged and rejected
from further evaluation. Sites with low data availability were completely rejected
from evaluations.

After the quality control scheme applied, different datasets for evaluation are compiled,
satisfying different requirements:

A 1348 stations: fulfilling the minimum requirements as mentioned above, with at
least 90% availability of measured data considering the periods 2012 and 2013;
used for upscaling evaluation in chapter 6.

B 1196 stations: Stations with more than 95% data availability and normalized
nrmse ≤ 50% of satellite-based PV power simulation Psat; used for evaluating
the physical PV power simulation approach and impact analysis (section 4.4).

C 921 stations: availability close to 95%, passing a stricter manual inspection focusing
on gaps in datasets to fit requirements of statistical methods (see section 5 and Wolff
et al. (2015) [86]).

4.2. PV power modeling

In this section, the approach of PV power modeling is described. The reference PV power
simulation originally was presented e.g. in Lorenz et al. (2011) [20] and consists of the
following steps:

1. modeling the irradiance on plane-of-array IPOA of the PV modules, using a global-
to-diffuse irradiance and a tilt conversion model,

2. simulating the PV power efficiency based on IPOA and the modules’ temperature
Tm using an empirical model,

3. considering losses in PV power generation by the inverter and other loss mecha-
nisms.

4.2.1. Tilted irradiance modeling

The tilt and orientation of PV modules is fundamental for the irradiance on the plane-
of-array IPOA. Various models are available to compute IPOA (see e.g. [15, 16] for an
overview) from global horizontal irradiance I.
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In these approaches, the tilt converted beam and diffuse irradiance IPOA,b and IPOA,d
are derived separately. The overall IPOA is composed of their contributions and the
ground-reflected irradiance IPOA,g:

IPOA = IPOA,b + IPOA,d + IPOA,g. (4.1)

In a first step, the horizontal diffuse Id and direct irradiance Ib are modeled from global
horizontal irradiance I, using a global horizontal to diffuse or -direct irradiance conversion
model. In the analysis presented here, four different state-of-the-art models (see table 4.1)
were chosen for comparison. These models derive either the diffuse ratio d of diffuse
irradiance Id and global horizontal irradiance I, defined as

d =
Id
I

(4.2)

or the direct irradiance ratio (1 − d). All models depend on a parametrization of the
conversion process and utilize different parameters, as listed in table 4.1. All models listed
utilize the clearness index kt and sun elevation h for parameterization. Additionally, other
parameters are used to a varying extent, e.g. the pressure at surface p or the clear sky
index k∗. Also, in current models, information on the variability var of kt is included.
This enables to derive statistical information on the characteristics of clouds in the PV
systems’ field of view, having an influence on the diffuse ratio.

Modeling the tilted diffuse irradiance IPOA,d is a rather complex process due to aniso-
tropic effects in the atmosphere. This conversion is a major subject of several POA
conversion models. See for example [15, 16] for thorough comparisons of different mod-
els. In following evaluations, two state-of-the-art models and a basic reference model
(see table 4.1) are compared. These models also include the conversion of the direct hor-
izontal irradiance to direct irradiance on the plane-of-array IPOA,dir, with the geometric
equation:

IPOA,dir =
cosΘ

cosθz
Ib (4.3)

with the solar zenith angle θz and the angle of incidence Θ. The irradiance IPOA,r
reflected by the ground is calculated determined by the ground albedo ρ and the tilt
angle β:

Table 4.1.: Diffuse irradiance conversion and tilt conversion models. Parameterizations for
the diffuse conversion models are based on the clearness index kt, sun elevation h, pressure
p, clear sky index k∗, or the variability of kt.

Diffuse irradiance model parameters

Skartveit-Olseth 1987 (SkOl87) [87] kt, h
Skartveit-Olseth-Tuft 1998 (SkOlT98) [88] kt, h, var(kt)
Perez et al.1992 (Perez92) [89] kt, h, p, var(kt)
Perez et al.2002 (Perez02) [90] kt, h, p, k∗, var(kt)

Tilt conversion model

Klucher 1979 [91]
Perez 1987 [92]
isotropic model [93]
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IPOA,r =
1

2
Iρ(1− cosβ) (4.4)

In this case, ρ = 0.2 (dark-colored surface) is chosen constant, as no further information
is available and the impact of changes in ground surfaces on IPOA,r is rather small except
for snow-covered areas [94].

Comparison of diffuse models

In order to identify a suitable diffuse model for application in PV power forecasting for
Germany, a selection of state-of-the-art models (table 4.1) are compared in this section.
Here, an evaluation is given based on measurements of Id at stations of the meteorological
sites set 3 (fig. 3.4 of section 3.6). An comparable analysis of the POA-conversion models
was not realized, as measurements of IPOA were not available in same density and quality
as for diffuse irradiance.

The diffuse irradiance models are applied to two sources of global horizontal irradiance
data: i) measurements Imeas at each station and ii) satellite derived irradiances Isat.
The dataset comprises measurements from January to December 2012, with a temporal
resolution of 1 hour. A quality check of the measurements for data availability and for
consistency of Imeas and Imeas,d was performed.

Results of the evaluation are shown in figure 4.3 for the nrmse and nbias of diffuse irra-
diance Id for single site evaluations. The normalized rmse values vary in a comparatively
small range from 25% to 31% for measurement-based diffuse modeling, with Skartveit-
Olseth-Tuft’98 showing best results. Differences between the diffuse models’ performance
are even less noticeable in the Isat dataset, with rmse values spanning 29.5% to 32%.
Here, the bias of the satellite derived global horizontal irradiance compensates partially
the diffuse models’ bias.

The error for modeling the diffuse ratio d based on measured irradiance I, compared
to measured d = Imeas,d/Imeas are shown in the left panel of fig. 4.4: The rmse of the
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Figure 4.3.: Evaluation of diffuse models of table 4.1 in terms of rmse and bias for the year
2012 with respect to the diffuse irradiance Id. The diffuse models were applied to Imeas

and satellite derived irradiance Isat. Dataset: Jan–Dec 2012, 32 sites, 1 hour resolution.
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Figure 4.4.: Left: Evaluation of different diffuse models of table 4.1 in terms of rmse and bias
with respect to the diffuse ratio d, based on measured irradiance. Right: Comparison of
different realizations of variability information derived from satellite data on the rmse and
bias of modeled diffuse irradiance Id. Dataset: Jan–Dec 2012, 32 sites, 1 hour resolution.

different models applied is between 14% and 16%. The relative differences of the error
for the models compared are similar to the differences in fig. 4.3. Only the Perez92
shows better performance than Perez02, opposite to results of the evaluation of Id. This
opposing behavior for evaluations of d to evaluations of Id is caused by a dependency of
the modeling error for d on different levels of irradiance. While the models are optimized
to describe the diffuse ratio d accurately, the error of Id is of higher interest for the
application in forecasting.

In general, models utilizing a description of the variability (all except the ’SkOl87’ model)
show better results in this evaluation. For measurement-based Id, the variability infor-
mation can also be gained directly from measurements. In fig. 4.4 different approaches for
assessing the variability information from satellite data are compared for the ’SkOlT98’
model, with i) var(sat) = std(k3×2px

t ): using the standard deviation of kt for a 3 × 2
pixels area around the sites’ pixel, ii) var(1h) = std(kt±1

t ) the temporal variability of
kt of ∆t = ±1hour or iii) variability index σ = |kt − k±1

t |, according to the definition
in Skartveit, Olseth and Tuft (1998) [88], with k±1

t a modified clearness index of the
preceding and following hour. The errors of modeling Id based on satellite derived irra-
diance for the ’SkOlT98’-model are displayed. The rmse of the ’SkOl87’-model without
variability information included is displayed for reference purpose. Best results with
only slight difference are observed for case i), with an nrmse of 30.8% and a nbias of 3%.
This configuration is used for the comparison in fig. 4.3. Using less accurate variability
information, as for case iii) or when being derived from forecasts, can lead to a com-
pensation of the advantage towards over models not considering the variability (see the
’SkOl87’-model in fig. 4.4).

By this analysis, the influence of the choice of the diffuse model on PV power simulation
is expected to be small, when based on satellite derived irradiance or forecasts. In
section 4.4 a sensitivity study is presented, showing the impact of diffuse model selection
on the accuracy of the overall PV power simulation, also in combination with different
POA-conversion models.
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4.2.2. PV efficiency model

The simulation of PV power efficiency is done using the model of Beyer et al. (2004) [95],
taking plane-of-array irradiance IPOA and ambient temperature Ta into account. First,
the irradiance dependent efficiency with an assumed constant module temperature of
Tm = 25◦C is calculated using a three-parameter model:

ηMPP (It, T = 25◦C) = a1 + a2 IPOA + a3 log IPOA (4.5)

with a1,2,3 empirical device specific parameters. The temperature dependent efficiency
at temperatures deviating from Tm = 25◦C is considered in a second step:

ηMPP (It, Tm) = ηMPP (It, Tm = 25◦C)(1 + α(Tm − 25◦C)) (4.6)

where α the module type dependent temperature coefficient. The modules’ temperature
Tm is calculated as follows:

Tm = Ta + γ IPOA (4.7)

with Ta the ambient temperature. The parameter γ is determined by the mounting
type of the PV system: E.g. roof integrated PV modules show a different temperature
behavior than standalone PV systems.

The overall DC power output then is calculated via:

PDC =
ηMPP (It, Tm)

ηSTC

IPOA

1000 W
m2

Pinst (4.8)

The efficiency ηSTC at Standard Test Conditions (STC) is directly derived from equa-
tion 4.5 with It = 1000 W

m2 . IPOA and Tm are derived from the corresponding irradiance
or temperature forecasts or measurements.

To include the losses by DC to AC conversion and by other loss mechanisms, the AC
power output PAC is given by

PAC = PDC ηinv(r, v) ηlosses (4.9)

The efficiency of the inverter ηinv is given by the inverter model of Schmidt and Sauer
(1996) [96] using system dependent parameters rloss, vloss. This efficiency ηinv is modeled
taking into account different sources for losses within the inverter, like voltage losses, self-
consumption and ohmic losses, each represented by a specific factor. Other losses like the
influence of reflection or spectral effects at the modules, ohmic cable losses or mismatches
of modules within a PV plant are represented by the efficiency ηlosses [20].

4.2.3. Parameter configuration and model variation

Two different variations of the parameter set used in the presented PV power efficiency
model are compared to a simple reference model, as introduced in the following:

• Empirical parameter set In this approach, a fixed parameter set was chosen
representing typical PV modules [20] based on an evaluation of a huge dataset of
systems of meteocontrol GmbH. There, ai and α are kept constant for all sites, as
more precise individual station information were not available. The parameter γ
was estimated from installed capacity of the system: Large plants tend to be freely
mounted, whereas smaller plants usually are roof-top mounted.
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Table 4.2.: Parameters used in the PV power simulation model introduced in section 4.2.2.

a1,2,3 parameter of Beyer et al. (2004) model [95], characterising
the irradiance dependent efficiency ηMPP (It, T = 25◦C)

γ parameter characterizing the influence of POA irradiance
on the modules’ temperature Tm

α parameter characterizing the influence of modules’ temperature Tm
on PV power efficiency ηMPP (It, Tm)

rloss, vloss parameters of inverter model by Schmidt and Sauer (1996) [96]

ηlosses additional losses caused by reflection, cable resistance etc.

• Parameter fitted to historical data As model parameters for each PV system
are not available, parameters are fitted to historical data. The standard PV effi-
ciency model is simplified in favor of a better adaptation of the model parameters:
Inverter losses ηinverter are assumed to be constant and are combined with the other
losses ηsystem, so the AC power PAC is modeled with PDC from equation 4.8:

PAC = PDC ηsystem (4.10)

The remaining parameters ai, α, γ and ηsystem were fitted to a training dataset.
This consists of satellite derived irradiance Isat, ECMWF ambient temperature
forecasts Ta,NWP and PV power measurement data Pmeas. The months April to
September 2012 were taken into account, situations with incident angles higher than
60◦ and solar zenith angles θZ > 80◦ were neglected. A common two-dimensional
least-square algorithm was applied and the parameters were limited to a reason-
able range around the empirical parameters. Figure 4.5 displays the resulting fitted
curves for ηMPP (It, Tm)/ηSTC for all sites. This array of curves is compared against
the equivalent curve for the non-fitted empirical model, for the temperature inde-
pendent case (assuming Tm = 25◦) and the temperature dependent case (with fixed
ambient temperature Ta = 15◦). By fitting all parameters, also site specific fea-
tures of the relationship between irradiance, temperature and PV power output

Figure 4.5.: Fitted efficiency curves compared with curves from empirical dataset, for tem-
perature independent case (module temperature Tm = 25◦) and temperature dependent
case (ambient temperature Ta = 15◦).
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are reflected and included. The influence of the temperature is visible by a decline
of efficiency for high levels of irradiance, as for Tm > 25◦C the efficiency of PV
system decreases significantly.

• Linear PV efficiency model Following the concept of comparing to a trivial
reference models, a simple approach for irradiance to PV power conversion was
additionally applied and compared to. Here PV power output is assumed to be
linear with IPOA, following the equation

PAC = λ IPOA. (4.11)

The parameter λ was fitted for each station individually, using the same dataset as
in section 4.2.3 with same restrictions to solar zenith angles and incidence angles Θ
as mentioned above. This approach completely neglects the temperature dependent
behavior as well as the non-linearity of PV power efficiency.

4.2.4. Linear regression with daily updated PV power measurements

A linear regression procedure is applied in order to achieve ongoing adaption of forecasts
to PV power measurements by a statistical post-processing. This is done based on daily
updated PV power measurements and corresponding PV power forecasts of the preceding
days for each system individually, and for each forecasting method and horizon separately.
By this, an adaption of the PV power forecasts to the seasonal meteorological conditions
of a period close to the forecast computation time is performed. The linear regression
coefficients a and b, as introduced by the equation

P lrAC = a · PAC + b (4.12)

with P lrAC the corrected PV power output based on simulated power output PAC , are
determined by a least-square-fit with PV power measurements.

The optimal length of the training period for coefficients a and b is determined by the
Improvement Score IS(P lrsat, Psat): The satellite-based PV power P lrsat with linear re-
gression (’lr’) applied is compared to Psat without linear regression. In figure 4.6, the
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Figure 4.6.: Improvement score IS(P lr
sat, Psat) in dependence on training period for satellite-

based PV power simulation by the empirical approach Dataset: Apr–Nov 2012, 1196 sites,
15 min resolution.
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IS(P lrsat, Psat) is displayed depending on the amount of preceding training days, with em-
pirical parameter set and temperature TNWP . For single sites a good adaption is found
for 30 days with only little improvements for longer periods. For all sites’ averages a
training period of 15 days shows best results. In further evaluations a common training
period of 30 days is chosen.

4.3. Forecasts of ambient temperature

The PV power efficiency model according to equation 4.6 requires modeling the PV mod-
ules’ temperature Tm. This temperature Tm is mainly depending on the plane-of-array
irradiance IPOA and the ambient temperature Ta. In this section, evaluations of NWP
forecasts of ambient temperature Ta are presented as well as of temperature information
gathered from monthly mean climatology, used for reference purpose. The impact of us-
ing either of them in PV power prediction is picked up in section 4.4. Evaluations given
in this section are based on measurements of ambient temperature at the meteorological
stations set 3 (see section 3.6). Only daytime values, defined by the clear sky irradiance
Iclear > 0 W/m2 at the corresponding site, are considered.

4.3.1. NWP temperature forecasts

Forecasts of ambient temperature are retrieved from the ECMWF IFS and from the
DWD COSMO-EU (see section 3.4) models. To derive spatially and temporally allocated
forecasts, the nearest grid point and a linear temporal interpolation procedure is used. A
frequency scatter plot of ECMWF forecasts interpolated to a hourly resolution is shown
in the left panel of fig. 4.7. Compared to the scatter plot for single site irradiance forecasts
(left panel of fig. 3.5), the scatter is comparatively small, showing a good agreement of
temperature forecasts and measurements. The frequency distribution shows two peaks
for measurements and forecasts at around Ta = 16◦C and at around Ta = 7◦C.
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Figure 4.7.: Left: Frequency scatter plot of ECMWF intraday temperature forecasts vs
ambient temperature measurements. Right: Rmse and bias of ECMWF and DWD single-
site intraday forecasts of ambient temperature Ta in dependence on the hour of day.
Dataset: Jan–Dec 2012, 32 sites, 1 hour resolution, daytime values.
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The daytime dependency of rmse and bias for temperature forecasts is displayed in the
right panel of fig. 4.7. Alongside, the mean ambient temperature for each hour of the
day is displayed. The diurnal course of temperature follows the course of irradiance but
with a lag of a few hours. Typically, lowest temperatures are expected shortly before
sunrise, highest temperature shortly after noon. In contrast to that, in fig. 4.7 highest
temperatures are observed later in the evening and the level of early morning hours is the
same as e.g. for noon in this evaluation. This is a consequence of restricting temperature
evaluations to day-time values only: By this, temperature of the early morning and later
evening hours only occur in summer months when average temperatures are generally
higher than in winter. At the same time, temperature evaluations during the day are
based on all months of the year, shifting the mean to lower values. For comparison to
the evaluation of all-day temperature, refer to fig. A.1 in the appendix. The rmse of
temperature forecasts (fig. 4.7, right) follows the course of mean temperature for both
models. Also, a consistent underestimation of ambient temperature is observed during
the day (from 6 to 19 UTC) for both models similarly, as well as an overestimation for
the morning and evening hours.

The dependence of rmse and bias on the month of the year is displayed in fig. 4.8. For
temperature forecasts of the ECMWF, rmse values differ between 1.3◦C and 2◦C for the
different months, for forecasts of the DWD model between 1.6◦C and 2.5◦C. A slight
seasonal trend with higher rmse in summer and lower rmse in winter months can be
observed for both models. The DWD shows higher rmse for all months compared to
ECMWF forecasts with highest differences in the months January to March and Decem-
ber. The bias of ECMWF forecasts is between −0.5◦C and +0.5◦C with no significant
annual trend. The DWD forecasts show underestimation in winter and overestimation
in summer months, overall the bias is between −1◦C and +0.5◦C.
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Figure 4.8.: Rmse and bias of ECMWF and DWD single-site intraday forecasts of ambient
temperature Ta, in dependence on the month of year 2012. Dataset: Jan–Dec 2012, 32
sites, 1 hour resolution, daytime values.
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4.3.2. Climatological mean temperatures

Monthy climatological mean temperature values are used as a reference for the following
analysis. These are retrieved from the Climate Atlas Germany (Klimaatlas Deutschland,
[97, 98]): There, climatology values were derived using temperature measurements at
DWD sites for the year 1980 to 2010 for the months January to December individually.
Measurements were interpolated to a 1 km×1 km grid covering Germany and considering
topographic effects (fig. 4.9). In this analysis, the nearest grid points corresponding to
the sites evaluated is chosen.

The comparison of the monthly climatological mean to measured ambient temperature
Ta is displayed in the left panel of fig. 4.10. The temperature follows a clear annual trend
with minimum values in January and maximum values in July. A good representation
of mean temperatures as measured for 2012 is visible. But evidently, these monthly
mean values are able to represent neither the diurnal temperature dependency nor any
specific weather situation. Thus, climatological mean temperature shows a significantly
higher rmse between 3.7 and 8◦C when evaluated on an hourly basis. A systematic
underestimation up to −4◦C except for February (with bias of +2.8◦C) is visible.

January August October

Figure 4.9.: Spatial distribution of mean temperature for three exemplary months, in ◦C.
Topographic differences are considered as well as seasonal changes in average temperatures.
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Figure 4.10.: Left: Mean monthly ambient temperature from climatology (based on the
Climate Atlas Germany [97]) compared to measured mean temperature for each month of
the year 2012. Right: Rmse and bias of climatology data compared to ECMWF intraday
forecasts. Dataset: Jan–Dec 2012, 32 sites, 1 hour resolution, daytime values.
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4.4. Impact of PV power simulation on forecast accuracy

The accuracy of PV power forecasts is determined by the accuracy of irradiance and
temperature forecasts, but also by the models used for irradiance-to-power conversion.
Knowledge of parameters describing the behavior of the PV system is an important issue
as well as an adequate modeling of the incidence irradiance and the efficiency of the
system. Here, focus is explicitly on the irradiance-to-power conversion approach. This
is done in order to identify the optimal model configuration, following the scheme in
figure 4.11.
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Figure 4.11.: Overview on PV model validation and comparison. In each section (corre-
sponding to one column each), one aspect of PV power simulation is varied, the remaining
parts are fixed to one configuration. Left→ variation of diffuse and tilted irradiance model
(section 4.4.2), center → variation of PV models (section 4.4.3), right → application of
different temperature data (section 4.4.4).

The impact of the single modeling steps on the overall PV power efficiency is analyzed
with respect to the resulting PV power forecasts in comparison to power measurements
(see section 4.1). Presented results are selected from a multiplicity of possible config-
urations. Variations in each segment are investigated by retaining fixed configurations
within the remaining segments. Additionally, validations using meteorological data of
irradiance or temperature measurements are provided. The influence of each modeling
step is shown for single sites and averaged for all sites to highlight differences with re-
spect to the forecast application. For most steps, the models’ performance is compared
to trivial references.

In this section, the influence of the different models and configurations on PV power sim-
ulation is analyzed with respect to i) diffuse and tilt conversion models (section 4.4.2), ii)
PV power simulation models (section 4.4.3), and iii) temperature information dependency
(section 4.4.4). Comparisons are done by elaborating the sensitivity of the overall power
simulation process towards the changes in models selection and configuration (fig. 4.11).
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These are performed for:

• Irradiance derived from satellite data (further denoted as ’sat’) and CMV forecasts
of 2 hours ahead (’CMV 2h’),

• single sites and all sites’ averages, and

• with and without linear regression with PV power measurements applied to PV
power forecasts.

4.4.1. Characteristics of single site and spatially averaged PV power
forecasts

The CMV 2h forecast error is visualized by frequency distribution scatter plots (fig. 4.12)
based on the empirical PV power model for single sites (left) and all sites’ average (right).
Both, single sites and all sites’ averages have high share of data points along the identity
line. The scatter for all sites’ averages is significantly lower than for single sites average,
as it also is valid for irradiance forecasts due to spatial averaging effects. As 15-minute
values are evaluated here, single site PV power forecasts are more scattered as irradiance
forecasts with 1 hour resolution, as displayed in fig. 3.5, section 3.7).

From the histogram representing the sum of data points at x- and y-axis for each line
or column of the frequency distribution scatter, a high share of measurements and fore-
casts are found within the range of P/Pinst ≤ 20% for single sites. Here, the shape of
the histogram characterizing the predicted values differs slightly from the shape of the
measured ones, showing a small overrating of PV power in this range.

Figure 4.12.: Frequency scatter for CMV 2 hours forecasts for the empirical model, with
SkOl87/Klucher tilt conversion modeling and NWP ambient temperature; left for single
sites, right for all sites averages. Dataset: Apr–Nov 2012, 1196 sites, 15 min resolution,
solar zenith angles θZ < 80◦.

4.4.2. Diffuse and tilted irradiance models

In this section, three diffuse irradiance models, and two state-of-the-art and one reference
tilt conversion models (table 4.1 and left column in figure 4.11) are compared. Error
measures, showing the impact on the PV power simulation, for all possible combinations
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Table 4.3.: Error measures for different conversion models with a) satellite derived irradi-
ance, b) satellite derived irradiance with linear regression and c) CMV 2 hour forecasts
with linear regression applied. Dataset: Apr–Nov 2012, 1196 sites, 15 min resolution,
θZ < 80◦.

a) Isat and Ta,NWP → tilt+diffuse models varied → empirical model
single sites all sites’ averages

tilt conversion + diffuse models rmse bias IS rmse bias IS

Klucher 1979 + SkOl87 9.05 -1.00 0.0 % 2.43 -0.95 0.0 %
Klucher 1979 + SkOlT98 9.09 -1.07 -0.4 % 2.60 -1.01 -7.0 %
Klucher 1979 + Perez92 9.06 -1.02 -0.1 % 2.47 -0.97 -1.6 %

Perez 1987 + SkOl87 9.04 -0.63 0.1 % 2.28 -0.60 6.2 %
Perez 1987 + SkOlT98 9.07 -1.03 -0.2 % 2.52 -0.98 -3.7 %
Perez 1987 + Perez92 9.06 -0.97 -0.1 % 2.41 -0.94 0.8 %

Isotropic + SkOl87 9.24 -1.81 -2.1 % 3.07 -1.74 -26.3 %
Isotropic + SkOlT98 9.31 -1.89 -2.9 % 3.25 -1.81 -33.7 %
Isotropic + Perez92 9.25 -1.84 -2.2 % 3.09 -1.76 -27.2 %

b) Isat and Ta,NWP → tilt+diffuse models varied → empirical model + linear regression
single sites all sites’ averages

tilt conversion + diffuse models rmse bias IS rmse bias IS

Klucher 1979 + SkOl87 8.60 0.18 0.0 % 1.61 0.15 0.0 %
Klucher 1979 + SkOlT98 8.47 0.12 1.5 % 1.43 0.11 11.2 %
Klucher 1979 + Perez92 8.48 0.11 1.4 % 1.42 0.11 11.8 %

Perez 1987 + SkOl87 8.60 0.14 0.0 % 1.61 0.11 0.0 %
Perez 1987 + SkOlT98 8.47 0.12 1.5 % 1.44 0.10 10.6 %
Perez 1987 + Perez92 8.51 0.12 1.1 % 1.44 0.11 10.6 %

Isotropic + SkOl87 8.62 0.10 -0.2% 1.61 0.12 0.0 %
Isotropic + SkOlT98 8.46 0.09 1.6 % 1.42 0.08 11.8 %
Isotropic + Perez92 8.47 0.09 1.5 % 1.40 0.10 13.0 %

c) ICMV,2h and Ta,NWP → tilt+diffuse models varied → empirical model + linear regression
single sites all sites’ averages

tilt conversion + diffuse models rmse bias IS rmse bias IS

Klucher 1979 + SkOl87 12.63 0.40 0.0 % 3.35 0.20 0.0 %
Klucher 1979 + SkOlT98 12.66 0.42 -0.2 % 3.34 0.18 0.3 %
Klucher 1979 + Perez92 12.62 0.38 0.1 % 3.32 0.23 0.9 %

Perez 1987 + SkOl87 12.64 0.37 -0.1 % 3.36 0.19 -0.3 %
Perez 1987 + SkOlT98 12.65 0.39 -0.2 % 3.35 0.17 0.0 %
Perez 1987 + Perez92 12.66 0.39 -0.2 % 3.35 0.18 0.0 %

Isotropic + SkOl87 12.59 0.31 0.3 % 3.34 0.16 0.3 %
Isotropic + SkOlT98 12.61 0.33 0.2 % 3.32 0.14 0.9 %
Isotropic + Perez92 12.65 0.26 -0.2 % 3.36 0.20 -0.3 %

of the named models are displayed in tables 4.3 (a-c). The Improvement Score IS is given
with respect to the Skartveit-Olseth87 and Klucher79 (highlighted in grey) models. The
PV power simulation is done by the empirical model, with satellite-based irradiance or
CMV 2h forecasts as irradiance input, and with and without linear regression ’lr’ applied.

The PV power modeling based on satellite data without linear regression (table 4.3a),
shows little sensitivity to the selection of the diffuse and tilted irradiance model for
single site evaluation, as expected from results in section 4.2.1. Here the range of the IS
measure covers values between −2.9% and 0.1%. Highest rmse is found for the isotropic
model, which also shows the highest bias among the compared models. For averaged
site evaluations, larger differences are found with the IS between −33.7% and +6.2%, or
without considering the isotropic model, between −7.0% and +6.2%.



46 CHAPTER 4. PV POWER SIMULATION

The application of the linear regression ’lr’ model, (table 4.3 b), in general leads to a
reduction of rmse and bias. By the linear regression applied, the bias is reduced and
the amplitude of the predicted time series is adapted to measured time series. This is
observed to varying extents for the models compared: The IS for the different diffuse
models shows an improvement when applying the SkOlT98 or Perez92 model instead of
the SkOl87, as is expected from the measurement-based evaluations in section 4.2.1. For
each diffuse model, all tilt conversion models lead to comparable results, with around
0.4% spread of the IS for single sites and around 1.2% for averaged sites. Remarkably,
with linear regression applied, the isotropic model leads to results similar to or better than
both state-of-the-art models. Applying the ’lr’ thus leads to a correction of systematic
differences among the models and leads a smaller impact of the tilt models’ performance.
Same is valid for the diffuse models, except for the SkOl87 model which benefits less from
linear regression applied.

The application of the model comparison to PV power forecasts is shown exemplary
for the 2 hours CMV forecasts with linear regression applied (table 4.3c). Differences
between the diffuse and tilt model combinations level out almost completely as the impact
of forecast errors of irradiance I gets more dominant and the already small differences
in models performance gets less pronounced. The IS measure varies between −0.3% and
+0.9% for single sites and all sites’ averages. Also the bias error shows little variation
among the model combinations.

This behavior shows that presented PV power modeling for forecast application is rather
insensitive to the selection of diffuse and tilted irradiance conversion models, especially
when an adaption to measurement is realized. Effects in general are much higher for
regional forecasts than for single sites. These results for CMV forecasts are consistent
with the findings in Pelland et al (2011) [16] for NWP-based forecasts. For the PV power
prediction presented in this paper, the Skartveit-Olseth87 diffuse and the Klucher79 tilt
conversion model are chosen.

4.4.3. PV power modeling

In this section, the PV power simulation models as described in section 4.2.2 are com-
pared (see figure 4.11, centre column) with respect to the impact on the overall PV power
simulation accuracy for the application in forecasting. This enables to derive statements
on the impact of using an model based on a standard parameter set (’empirical model’)
versus a parameter set adapted to measurements (’historic fit model’). These models are
also compared to a trivial reference (’linear reference model’). Each variant is presented
with additional linear regression (’lr’) applied as described in section 4.2.4 to demonstrate
the impact of training to daily updated measurements. The Improvement Score refers
to the highlighted ’historic fit model’ for the following evaluations. In analogy to the
section above, satellite-based irradiances and 2 hours’ CMV forecasts as well as ECMWF
intraday temperature forecasts are used in the evaluated PV power simulations.

The effect of employing the historical fit data is compared to the empirical model for 200
single sites randomly selected from the dataset (fig. 4.13), evaluated based on the satellite
derived PV power Psat and sorted by the corresponding rmse or bias for the historic fit
model. This historic fit model shows generally lower rmse than the empirical model for



4.4. IMPACT OF PV POWER SIMULATION ON FORECAST ACCURACY 47

all single sites displayed, with only few exceptions. Also, the bias error indicates an
improvement concerning systematic deviations by the historic fit approach.

Scatter plots of Psat/Pinst for all sites’ averages, for the historic fit and the simple linear
model are displayed in the left panel of fig. 4.14. There, the linear model shows significant
overestimation at P/Pinst > 50% and a slight underestimation at intermediate values
for P/Pinst. This is a direct consequence of not considering the non-linearity of the
PV power efficiency and neglecting the impact of module temperature in the simple
approach. However, th scatter for both variants shows about the same scale.
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Figure 4.13.: Comparison of the empirical PV model with i) the historic fit model and ii)
the empirical model without impact of temperature for satellite-based PV power Psat, for
200 PV sites, randomly selected and sorted by corresponding error measures, for rmse and
bias individually. Dataset: Apr–Nov 2013, 200 sites, 15 min resolution, θZ < 80◦.

Figure 4.14.: Satellite-based PV power Psat for all sites average versus PV power measure-
ments Pmeas for two different PV simulation models (left, historic fit and linear model) and
different temperature information (right, with Ta from NWP or Tm = 25◦C). Dataset:
Apr–Nov 2013, 200 sites, 15 min resolution, θZ < 80◦.
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The impact of the different models applied is summarized in table 4.4. In general, lowest
rmse for the ’historic fit’-PV model are shown there. The remaining approaches show
negative IS compared to that, but to a different extent depending on the configuration:
For single sites, the advantage of the ’historic fit’-model is notably low, valid for satellite
derived irradiance (up to IS = −3.8%) and CMV 2 hours forecasts (up to IS = −3.1%).
The linear model fitted to historic data leads to lower rmse values than the more complex
empirical model, which is not adapted to historic measurements (IS = −0.3% for satellite
derived irradiance and IS = −1.2% for CMV 2h forecasts). For averaged forecasts, the
models’ impact on PV simulation is more prominent: For satellite derived irradiance it
is up to IS = −9.4% for the linear model (see also fig. 4.14, left) and IS = −1.4% for the
empirical model; for CMV forecasts IS = −13.8% for the linear and up to IS = 22.6%
for the empirical model.

When applying the linear regression approach, the overall rmse decreases for all variants
displayed. With this adaption to recent measurements applied, the PV power simulation
shows less sensitivity to the applied model configuration, especially true for the CMV 2
hours’ forecasts. For satellite-based PV power simulation, the IS ranges up to −0.7%
for single sites, and −5.5% for all sites’ averages, for CMV 2 hours forecasts up to
−0.2% (single sites) and −1.4% (averages). According to that, the application of a more
complex model fitted to historical data does not necessarily lead to improvements in
PV power forecasting. Much more important is the adaption to recent measurements,
making the benefit of parameter fitting to historic measurements insignificant. In the
following evaluations, the model fitted to historical data with linear regression is used.

Table 4.4.: Rmse, bias and IS for combinations of different PV models with a) satellite
derived irradiance without linear regression, and b) with linear regression; c) CMV 2 hour
forecasts without and d) with linear regression applied.

a) Isat and Ta,NWP → Klucher79 + SkOl87 → PV model varied
single sites all sites average

error [%] rmse bias IS rmse bias IS
empirical model 9.02 -0.66 -3.8% 2.15 -0.56 -1.4 %

fitted to historical data 8.69 -0.36 0.0 % 2.12 -0.31 0.0 %
linear reference model 8.72 -0.42 -0.3 % 2.32 -0.38 -9.4 %

b) Isat and Ta,NWP → Klucher79 + SkOl87 → PV model varied + linear regression
single sites all sites average

error [%] rmse bias IS rmse bias IS
empirical model 8.60 0.00 -0.7 % 1.87 0.04 -2.7 %

fitted to historical data 8.54 0.00 0.0 % 1.82 0.03 0.0 %
linear reference model 8.57 0.09 -0.4 % 1.92 0.11 -5.5 %

c) ICMV,2h and Ta,NWP → Klucher79 + SkOl87 → PV model varied
single sites all sites average

error [%] rmse bias IS rmse bias IS
empirical model 12.04 -2.50 -3.1% 3.90 -2.40 -22.6 %

fitted to historical data 11.68 -1.58 0.0 % 3.18 -1.09 0.0 %
linear reference model 11.82 -1.24 -1.2% 3.62 -1.20 -13.8 %

d) ICMV,2h and Ta,NWP → Klucher79 + SkOl87 → PV model varied + linear regression
single sites all sites average

error [%] rmse bias IS rmse bias IS
empirical model 11.55 0.05 0.0 % 2.90 0.08 0.0 %

fitted to historical data 11.55 0.07 0.0 % 2.90 0.10 0.0 %
linear reference model 11.57 0.16 -0.2 % 2.94 0.19 -1.4 %
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4.4.4. Temperature modeling

In this section a quantification of the impact of temperature information on PV power
forecasting (fig. 4.11, right column) is given. The module temperature Tm was considered
with equation 4.6 of the PV efficiency model, using ECMWF temperature forecasts
TNWP (see section 4.3) as input for the ambient temperature Ta. This is compared
to simulations using information on Ta from climatology Tclim (see section 4.3.2) or
neglecting temperature information by assuming Tm = 25◦C. The parameters of the
historic fit were trained for each case separately with the appropriate input dataset. All
variants are compared to Ta = TNWP as the highlighted reference.

The effect of choosing a fixed model temperature of Tm = 25◦C is displayed in fig. 4.13,
compared to the same model but with temperature information from NWP forecasts.
In general, with Tm = 25◦C, an systematic overestimation of the PV power is induced.
This is mainly the consequence of not considering heating losses in PV power efficiency
modeling by neglecting temperature information. PV efficiency is reduced in case of high
temperature, which mainly occur at high levels of irradiance. Same effect is visible in
right panel of fig. 4.14, showing the impact of different temperature information on the
PV power forecasts for all sites averages. A strong positive bias at high PV power feed-in
of 50% and above is visible. For low irradiance and temperature levels an underrating
of PV power observed, visible at P/Pinst < 25%, but to a much smaller extent than
the overrating at high irradiances. This is due to the fact, that the PV power efficiency
gain at low module temperatures Tm is modeled correctly with this assumption. When
applying Ta from NWP, a good agreement between simulated and measured PV power
is prevalent.

According to table 4.5, the replacement of temperature forecast information by monthly
mean climatology values shows little effects for single site power simulations when ap-
plied to the empirical model without linear regression applied. The decline in forecast
accuracies amounts up to IS = −0.2% for satellite derived irradiance and IS = +0.2%
for CMV 2h forecasts. The impact is stronger for all sites averages, with IS = −8.5%
for single sites and IS = −1.0% for CMV 2h forecasts. When assuming Tm = 25◦C
the temperature impact is much higher and amounts to as much as IS = −60.9% for
satellite-based irradiance. For CMV 2h forecasts, the positive bias partially compensates
for the negative bias of PV power forecasts, indicating a lower impact of varying the
temperature input.

When applying a best fit model (historic fit with linear regression applied) this impact on
bias and therefore the importance of temperature information lessens. For single sites,
for Tm = 25◦C the IS is reduced from IS = −5.5% to IS = −0.5%, for all sites’ averages
from −60.9% to IS = −6.0%. For CMV 2 hours’ forecasts the impact of temperature
information decreases further and is only leading to maximum negative IS of −0.3% for
single sites and −1.4% for all sites’ averages. The use of climatology data here shows
slightly higher rmse as for the Tm = 25◦C assumption when linear regression applied.

In summary, the impact of temperature information is higher for satellite-based irradi-
ance than for CMV forecasts. Neglecting the impact of changing modules’ temperature
has a high impact on PV power modeling accuracies, especially for all sites averages.
These can be partly compensated for by applying the linear regression approach. Still,
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Table 4.5.: Rmse, bias and IS for combinations of different temperature information with
a) satellite derived irradiance and empirical PV model b) CMV 2 hour forecasts and
empirical PV model, c) and d) satellite derived irradiance / CMV 2 hour forecasts with
historically fit model and linear regression applied. Dataset: Apr–Nov 2013, 1196 sites,
15 min resolution, θZ < 80◦.

a) Isat + T varied → Klucher79 + SkOl87 → empirical model
single sites all sites average

error [%] rmse bias IS rmse bias IS
Ta = TNWP 9.02 -0.66 0.0 % 2.15 -0.56 0.0 %
Tm = 25◦ 9.52 1.32 -5.5 % 3.46 1.25 -60.9 %

Ta = Tclimatology 9.04 -0.98 -0.2 % 2.33 -0.88 -8.4 %

b) ICMV,2h + T varied → Klucher79 + SkOl87 → empirical model
single sites all sites average

error [%] rmse bias IS rmse bias IS
Ta = TNWP 12.04 -2.50 0.0 % 3.90 -2.40 0.0 %
Tm = 25◦ 12.43 -0.07 -3.2 % 4.24 -0.01 -8.7 %

Ta = Tclimatology 12.02 -1.79 0.2 % 3.94 -1.73 -1.0 %

c) Isat + T varied → Klucher79 + SkOl87 → historical fit model + linear regression
single sites all sites average

error [%] rmse bias IS rmse bias IS
Ta = TNWP 8.54 0.00 0.0 % 1.82 0.03 0.0 %
Tm = 25◦ 8.57 0.09 -0.4 % 1.92 0.11 -5.5 %

Ta = Tclimatology 8.58 0.06 -0.5 % 1.93 0.09 -6.0 %

d)ICMV,2h + T varied → Klucher79 + SkOl87 → historical fit model + linear regression
single sites all sites average

error [%] rmse bias IS rmse bias IS
Ta = TNWP 11.55 0.07 0.0 % 2.90 0.10 0.0 %
Tm = 25◦ 11.57 0.15 -0.2 % 2.93 0.17 -1.0 %

Ta = Tclimatology 11.58 0.12 -0.3 % 2.94 0.15 -1.4 %

using temperature forecasts shows best results in all considered configuration and is in-
cluded in PV power forecasting. Being already of high forecast quality (see section 4.3)
and showing little impact on the overall PV power accuracy, temperature forecasts are
not subject to research for further improvements in this context.

4.4.5. Summary

The discussion above shows a weak influence of the chosen diffuse and tilt conversion
model on the overall PV power simulation for the application to PV power forecasting.
Also the selection of the PV efficiency model configuration has only a small influence,
when an adaption of forecasts to PV power measurement is possible. The impact of
using low-level temperature information has a high impact especially for averaged fore-
casts. However, this can also be reduced when adapted to measurements, as it has been
demonstrated with a simple linear regression approach.

Conclusions drawn are only valid for the described application to PV power forecasting,
where forecasts of global horizontal irradiance show the largest impact on PV power
forecast accuracy. Statements which are made especially refer to this specific applica-
tion of the PV power simulation model to forecasting. For other applications such as
PV site assessment, a different conclusion can be drawn when system information and
measured irradiance or temperature is available in more detail. In any case, the forecast
accuracy has been improved most when an adaption to daily updated measurement is
implemented, more so than any variation in the models configuration shown.
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For the following evaluations, the best performing PV power simulation configuration
according to results this section is selected:

• Diffuse irradiance model by Skartveit and Olseth 1987 [87] and plane-of-array ir-
radiance conversion model by Klucher 1979 [91],

• ECMWF intraday forecasts TNWP of ambient temperature Ta,

• PV power model with the configuration fitted to historical data of the year 2012
for each site individually, and

• with linear regression (’lr’) applied, trained at the previous 30 days’ PV power
measurement for each site individually

4.5. Evaluation of PV power forecasts

In this section an evaluation of PV power forecasts for single sites and all sites average is
provided. CMV-based PV power forecasts are compared to NWP forecasts as references.
Here, PV power measurements of the year 2013 in 15 minutes resolution for the dataset
B (1196 sites) are used.

Some features of CMV-based PV power forecasts compared to NWP based forecasts are
visible from PV power times series in fig. 4.15. CMV forecasts, having a comparatively
high temporal and spatial model resolution are capable of following short-term fluctua-
tions of irradiance and hence of PV power more than the NWP-based forecasts. In the
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Figure 4.15.: Time series for four days in May 2013, with PV power measurements, CMV
2h and NWP intra-day forecasts in terms of P/Pinst. Top for one single site, bottom for
all sites’ averages. Dataset: 07-May-2013 to 10-May-2013, single site (top)/averages of
1196 sites (bottom), 15 min resolution.
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bottom time series of figure 4.15 the smoothing effect of regional averaging is visible:
Small scale fluctuations of PV power feed-in are compensated for and the regional PV
power feed-in situation is the main feature to be predicted.

The forecast rmse and bias are displayed in figure 4.16 for CMV 1-5 hours and NWP
forecasts for single sites and all sites’ averages. For single sites, the rmse for CMV
forecasts ranges from 10% of installed capacity for one hour to around 13.5% for five
hours ahead, whereas the NWP forecasts show an rmse of around 12.9%. For averaged
forecasts, rmse ranges from around 2% of installed capacity to 4.2% for CMV forecasts
and 4.7% for the NWP-based forecasts, showing better performance of CMV forecasts
at 5 hours ahead. The comparison of the rmse normalized to the average PV power
feed-in allows a better comparison to irradiance forecast errors. The single site rmse is
around 45% of the average feed-in for NWP and 35% for CMV 2h forecasts, for averaged
forecasts around 18% (NWP) and 8% (CMV 2h).

The bias in all cases is neglectable and not higher than around 0.1% of Pinst (0.25% of
average feed-in) as a result of the linear regression approach applied to the PV power
forecasts.

The PV power forecast accuracy as a function of the time of day in the right panel
of fig. 4.16 shows a strong diurnal dependency, like for irradiance in fig. 3.7. Power
feed-in at noon is the highest, which also applies to the absolute forecast rmse, touching
around 19% of Pinst for CMV 5 hour forecasts at noon. As CMV forecasts are not
applicable when computed at solar zenith angles θZ > 80◦ when using satellite images
of the HRV channel, first forecasts are available at different hours of the day depending
on the forecast horizon.

Tilt and orientation of the PV systems have a relevant impact on the forecast accuracy.
In figure 4.17 (left) the rmse of PV power forecasts is displayed dependent on the tilt and
azimuth angle of the single systems, for PV power based on satellite derived irradiance
and from CMV 2 hour and NWP intraday forecasts. There, the absolute rmse of P/Pinst
and normalized to Pmean/Pinst are compared. A trend of higher absolute rmse for systems
with a higher tilt angle β is observed: For instance for CMV 2h forecasts, the rmse with
respect to angles between 0◦ and 10◦ is around 10.1%, for steeper angles (40◦ to 50◦) the
rmse reaches up to 12.4%. Partially, this is a consequence of higher incident angles and
thus larger average irradiance incident on steeper tilted PV modules. However, for the
normalized rmse the same but less pronounced trend is visible: An increase from 36% to
41.5% for CMV 2h forecasts is observed. The rmse dependence on the azimuth angle of
the PV systems shows a decline with higher azimuth angles (fig. 4.17, right): The nrmse
of 2h CMV forecasts decreases from around 38.3% to 35.8% (for φ = 0◦ to 90◦).

The frequency error distribution for single sites and all sites’ averages in fig 4.18 quantifies
the occurrence of forecast errors magnitudes. For single sites, only 44% (NWP) to
51% (CMV 2h) lie within the error range of rmse ±5% of Pinst (dashed vertical lines),
whereas 98% of all values are within ±35% (NWP) and ±32% (CMV 2h). For all sites
averages, 77% (NWP) to 90% (CMV2h) are within the 5% margin, and 98% of all values
between ±13% (NWP) and ±7.5% (CMV2h). The error frequency distribution is rather
symmetrical with respect to ε = 0, as can be expected from the low bias errors except
for NWP forecasts, showing a higher occurrence of low positive ε.
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Figure 4.16.: Left: Rmse and bias of P/Pinst (left axis) and of Pmean/Pinst (right axis)
for CMV 2 hour forecasts, compared to NWP intra-day forecasts and satellite derived
irradiance (no forecast). Right: Rmse of of P/Pinst for single sites forecasts depending on
the hour. Dataset: Apr–Nov 2013, 1196 sites, 15 min resolution, θZ < 80◦.
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Figure 4.17.: Rmse for 2 hour CMV and NWP intra-day forecasts and satellite-based PV
power (no forecast) in dependence on the tilt angle (left, with azimuth angles |φ| ≤ 30◦),
and on the azimuth angle φ (right, with tilt angles 20◦ ≤ β ≤ 40◦). Rmse of P/Pinst

(left scale, solid lines) and Pmean/Pinst (right scale, dashed lines) for single sites forecasts.
Dataset: Apr–Nov 2013, 1196 sites, 15 min resolution, θZ < 80◦.
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Figure 4.18.: Frequency distribution of error ε for single sites (left) and all sites’ averages
(right) for CMV 2 hour and NWP-based PV power forecasts and satellite-based PV power.
Relative frequency for bins of 1% size, dashed lines at P/Pinst = 5 %. Dataset: Apr–Nov
2013, 1196 sites, 15 min resolution, θZ < 80◦.
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The annual trend of PV power forecast errors is displayed in figure 4.19 for all sites’
averages compared to the average normalized PV power production for all systems. All
months are included in contrast to the evaluations shown above. For the averaged power
feed-in, a strong annual trend is visible, with the highest PV power production in the
summer months. The absolute rmse of PV power simulation based on irradiance forecasts
or satellite derived data remains almost constant over the year, only the months January
and March and April show rmse slightly above average. This disagrees with evaluations
of the global horizontal irradiance forecasts’ rmse (fig. 3.9 in section 3.7), showing a
significant annual trend and higher rmse in summer months. This issue is discussed in
more detail in the following section 4.6. For NWP, a trend of higher rmse for the first
half of the year is observed, as also found for corresponding evaluations of irradiance
forecasts in fig 3.9.

Additionally, a significant increase in bias for the months January and February regard-
less the forecast method or horizon can be seen. This is due to a frequent occurrence
of snow-covered modules in the measurement dataset, leading to an overrating of PV
power from forecasts. The effect varies for NWP and CMV forecasts, having smaller
effect on CMV forecast as partially snow is detected as cloud cover and therefore leading
to a reduced feed-in being forecast. The issue of snow cover forecasting and detection is
addressed in Lorenz et al. (2011) [22] but also is subject to ongoing research. This is also
true for the impact of persistent large-area fog which occurred on a significant number
of days in spring and fall months, contributing to an overrating of PV power forecasts.
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Figure 4.19.: Rmse (top) and bias (bottom) of PV power forecasts depending on the month
of the year 2013 for all sites’ averages, displayed for CMV 1 to 3 hours and NWP intraday
forecasts, and for satellite-based PV power (no forecast). Dataset: Jan–Dec 2013, 1198
sites’ averages, 15 min resolution, θZ < 80◦.
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4.6. Comparison to irradiance forecasts

The correlation of PV power and irradiance forecasts is addressed in this section. In
previous sections, irradiance forecasts were evaluated with temporal resolution of 1 hour,
PV power forecasts with 15 minutes. To compare both, the different temporal resolutions
and effects of spatial averaging on the forecast rmse are addressed. In a next step,
the differences arising from evaluating PV power forecasts with various tilt angles are
quantified.

For comparison, the normalized rmse PV power forecasts for different temporal and
spatial resolutions are displayed in fig. 4.20. The datasets are unified to the months April
to November 2013, with the same restrictions to evaluated situations, i.e. solar zenith
angles and data availability. Irradiance and PV power forecast rmse both are normalized
to the corresponding averages Imean or Pmean. 220 PV power sites are evaluated here,
randomly picked from the overall dataset, to consider a comparable amount of sites as
for irradiance evaluations (217 sites).
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Figure 4.20.: Rmse of PV power and irradiance forecasts, normalized to Pmean or Imean

respectively for different temporal and spatial resolutions. Dataset: Apr–Nov 2013, 220
PV sites, 217 irradiance measurement stations.

In general, spatial and temporal averaging leads to a reduction of the rmse for irradiance
and PV power forecasts. For example, the rmse of CMV 2 hour PV power forecasts
decreases from 39.5% to 33.2% (by 16.0%) from 15 minutes to 1 hour averages for single
sites forecasts. When spatial averaging is applied, rmse decreases to 13.1% for 15 min-
utes all sites’ averaged forecasts, representing an improvement of 66.8% compared to 15
minutes single site forecasts. For 1 hour and all sites’ averages, the rmse is reduced to
12.6%, which is an improvement of 68.1%, compared to 15 minutes single site forecasts.
The beneficial effect on the rmse of temporal averaging from 15 min to 1 hour is smaller
for all sites averages, compared to single sites forecast, with a relative improvement of
3.8% compared to 16.0%).

For irradiance evaluated with respect to 1 hour averages only, rmse is lower than for
normalized PV power with the same temporal resolution. This is valid for both, single
site and all sites’ averages. This is a consequence of PV power forecasts being based on
forecasts of irradiance and of error added by the irradiance-to-power conversion and by
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Figure 4.21.: Comparison of 2 hour CMV forecast error for irradance εI and PV power εP ;
correlation coefficient cc = 0.66. Dataset: Apr–Nov 2013, 1 hour resolution, averages for
220 PV power and 217 irradiance measurement sites, θZ < 80◦

the contribution of differently tilted PV modules in the evaluation. A direct comparison
of PV power and irradiance forecast error is given in figure 4.21. Here, forecasts with same
temporal and spatial resolution are compared: The error ε for 1 hour all sites’ averages
of CMV 2 hour forecasts of PV power and irradiance is compared, each normalized to
the average measured irradiance or PV power. Both errors show a correlation of 0.66,
with a positive offset for errors of PV power forecasts.

For PV power forecasts an additional error is added, induced by the conversion to POA
irradiance and by the PV power simulation process. The annual trend of the rmse of PV
power forecasts (see figure 4.19) shows a different behavior than of horizontally measured
irradiance, see figure 3.9. For irradiance forecasts, evaluated on the horizontal plane only,
the absolute rmse follows the annual trend of mean irradiance, with lower rmse in winter
than in summer months. PV power forecasts’ rmse show a slight opposing trend with
higher absolute rmse for winter than for summer months, see figure 4.19 for all sites’
averages. This can be explained partly by snow-covered modules but is mainly a result
of the tilt dependent rmse for different systems configuration (see figure 4.17). Solar
zenith angles and with it the incidence angle of irradiance on the tilted surfaces changes
within the year: For winter months with high solar zenith angles, steeply tilted PV
modules receive more irradiance than horizontally aligned ones. Same forecast errors for
cloud cover and thus for k∗ have higher impact here than for horizontally aligned planes.

The annual course is displayed separately for different classes of tilt angles in figure 4.22.
The sites displayed are restricted to azimuth angles of |φ| ≤ 30◦ to avoid an impact of
orientation within this analysis. The amount of stations within each class is reduced to be
at a maximum around 100 sites, randomly selected to maintain the comparability among
the different classes of tilt angles. For almost horizontally aligned PV modules (β ≤ 10◦)
the annual trend resembles the trend of irradiance forecast errors with significant lower
rmse in winter months than in summer months. This trend is reversed for tilt angles of
β ≥ 40◦ dominated by higher rmse in winter than summer. For the months May to July
the tilt angles’ impact is not visible as all configuration show similar rmse values.
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4.7. Conclusion

In this chapter the process of irradiance-to-power conversion was introduced and evalu-
ated with respect to its impact on the PV power forecast accuracy. The conversion
approaches presented here are based on explicit physical modeling, complemented by a
simple statistical post-processing. One focus in this chapter was on PV power simu-
lation with respect to the optimized configuration of the models and datasets used for
the application to forecasting. Evaluations show only an insignificant impact of the tilt
conversion model on the overall PV power simulation accuracy. The benefit of adapting
power simulation parameters to a historic dataset and applying post-processing with PV
power measurement data is demonstrated. Also, the value of using NWP temperature
forecasts rather than climatological mean temperatures was confirmed, with its impact
strongly decreasing when an adaption of PV power forecasts to daily updated measure-
ments is possible. The analysis was done in the context of PV power forecasting, being
mainly dominated by the accuracy of irradiance forecasts.

A comprehensive evaluation of PV power forecasts based on different irradiance fore-
casting approaches is provided afterwards. Diurnal trends, the effect of spatial averag-
ing and the better performance of CMV forecasts compared to NWP-based forecasts is
comparable to evaluations provided of irradiance forecasts in chapter 3. However, the
POA-conversion of irradiance and the PV efficiency modeling adds further inaccuracy.





5. Combination of PV power forecasts

Forecasts of PV power based on CMV and NWP presented so far share a limited forecast
quality even for the shortest forecast horizons: For satellite-based forecasts this is due
to the error of the Heliosat method (see section 3.7) and limited spatial and temporal
resolution of MSG images. For numerical weather predictions, limited model resolution
and physical parameterization, as well as insufficient quantification of initial or boundary
conditions are the main restrictions [99]. In each case, the PV power simulation process
adds another level of uncertainty. High potential for improvement is found in the inte-
gration of online-measured PV power, which is capable of representing the actual state
of the system, if available. The combination of CMV- and NWP-based PV power fore-
casts with online measured PV power is subject of this chapter, as visualized in fig. 5.1:
Integrating online measured PV power is achieved by the persistence approach, using a
PV power clear sky model. Combining the individual forecasts is done for single sites
and all sites’ averaged forecasts separately. By this combination approach, an optimized
forecast for each situation and forecast horizon is aimed at.

For the integration of PV power measurement into PV power forecasting a persistence
approach in analogy to the irradiance-based persistence model (sec. 3.5) is used and
introduced in section 5.1. The method of forecast combination and its configuration is
described in section 5.2, weighting the individual forecasting methods with respect to
different parameters. In section 5.3 an evaluation of the combined forecast accuracy is
presented; a detailed analysis of the weighting factors is provided in section 5.4. The
sensitivity of combined forecast accuracy towards different input datasets and delays in
data availability in an operational context is analyzed in sections 5.5 and 5.6.

irradiance forecasts
from CMV

Numerical weather 
predictions (NWP)

site specific CMV
PV power forecast

online measured
PV power

clear sky PV power

site specific per-
sistence forecast

site specific NWP
PV power forecast

site specific 
combined forecast

historic PV power
 measurements

averaged CMV
PV power forecast

averaged per-
sistence forecast

averaged NWP
PV power forecast

combined averaged
 forecast

Figure 5.1.: Forecasts of PV power feed-in based on cloud motion vectors (CMV) and
numerical weather predictions (NWP) are derived for single sites and all sites’ averages.
Online measured PV power, combined with a clear sky PV power model, are the basis of
persistence forecasts. These individual forecasts are combined for single sites and all sites’
averages separately, trained using historic PV power measurements.
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5.1. Persistence forecasts based on online measured PV power

For the intregration of online measured PV power into forecasting, a PV power per-
sistence approach is introduced. This approach is used in an analogous manner to the
persistence approach for irradiance forecasting, see section 3.5 or e.g. Pelland et al.
(2013) [8]. In this section, first, the clear sky PV power Pclear and the PV power clear
sky index k∗PV are described. These quantities are fundamental for the persistence ap-
proach introduced afterwards.

5.1.1. Clear sky and clear sky index for PV power

The clear sky irradiance Iclear describing the irradiance in case of no clouds but including
absorption processes in the atmosphere was introduced in section 3.1. Based on this clear
sky irradiance, a clear sky PV power output Pclear is calculated using the same irradiance-
to-power conversion approach as introduced in section 4, with the configuration given in
section 4.4.5. The simulation of clear sky PV power for each system individually reflects
the diurnal and annual dependency on clear sky power taking account of its specific tilt
and azimuth angles. The issue of temperature information within the PV power clear
sky model is shown in the appendix, section A.3.

For different tilt and azimuth configurations, the clear sky PV power feed-in is displayed
in fig. 5.2 for the 21st June and the 21st December, representing the summer and winter
solstice with lowest and highest solar zenith angles in a year. Highest power feed-in in
both cases is visible for the 30◦-tilted PV system (φ = 0◦). For summer solstice, the
β = 0◦ and β = 50◦ tilted modules (both φ = 0◦) show almost equal amplitudes. In
contrast to that, for the winter solstice with very high average solar zenith angles, PV
systems with a high tilt receive much more irradiance than system with a lower tilt
angle. The PV system displayed with a φ = 90◦ west and a tilt angle of β = 30◦ shows
a strong offset of the typical diurnal cycle towards evening hours. For an equally east
orientated but less tilted PV system (φ = 90◦ and β = 15◦) the same but less pronounced
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Figure 5.2.: Clear sky PV power time series for two days (left: June 21st, right: December
21st) for PV systems with different tilt and azimuth angles (with azimuth angle φ = 0◦

corresponding to South, and tilt angle β = 0◦ to horizontal alignment).
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effect towards morning hours is visible. This typical behavior of clear sky PV power for
different tilt and azimuth angles is of high importance as it significantly influences feed-in
characteristics.

In analogy to the clear sky index for irradiance (sec. 3.1) a PV power clear sky index
k∗PV is gained. According to the definition in equation 3.3 it is written as

k∗PV =
Pmeas
Pclear

(5.1)

with Pmeas for the actual measured PV power feed-in of the system and Pclear the clear
sky PV power introduced in section 5.1.1. The so derived k∗PV is assumed to give a
quantification of cloud cover at the PV site. Being based on online PV power measure-
ments Pmeas, it enables a description of the systems’ actual state without being limited
by resolution and quality of NWP or satellite data. This measure was for example also
used in Engerer et al. (2014) [19]: There, k∗PV was derived with good agreement for a
number of PV systems and used for forecasting of nearby PV systems.

The characteristics of k∗PV differs from the global horizontal irradiance-based k∗ as tilted
irradiance in the clear sky case shows strong dependency on the position of the sun. This
has to be regarded when taking k∗PV as quantification of cloud cover, as it is done by the
persistence approach, introduced in the following section 5.1.2. In case of k∗ based on
horizontally measured irradiance I (see section 3.1) the estimation of cloud cover through
k∗ is a good approximation [100]. For k∗PV the impact of differently tilted modules may
lead to a limited applicability of this assumption.

The response of k∗PV to differently modeled cloud cover situations is analyzed in the fol-
lowing in order to validate the transferability of this assumption to PV power persistence
forecasts: The diurnal characteristics of k∗PV is essential for the persistence approach.
For fixed clear sky indices k∗ = 0.1; 0.5, the behavior of k∗PV for different tilt angles over
the course of the day is modeled (fig. 5.3; for other variations of k∗ refer to fig. A.2 in
the appendix). For k∗ = 1, the PV power clear sky index perfectly matches k∗PV = 1,
as in this case naturally Pmeas = Pclear. For k∗ = 0.5, high shares of the PV power
clear sky index are close to k∗PV = 0.5, but with significant variation in the morning and
evening hours. Except for that, k∗ are mapped comparably well by the PV power clear

k∗ = 1 k∗ = 0.5

Figure 5.3.: Modelled k∗PV for fixed k∗ values in dependence on the hour (UTC) for the
dataset for 12 days a year (each 21st) and for 150 sites with φ < 30◦ and variating β.
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sky index k∗PV , but with a considerably high amount of values tending to k∗PV < 0.5.
This is a result of different angles of incidence on the PV modules and reveals a limita-
tion of estimating the cloud cover through k∗PV , especially for the morning and evening
hours. Still, for a majority of situations, the k∗PV provides a fair approximation of the
irradiance-based k∗.

5.1.2. Persistence of k∗PV

The persistence forecast approach is illustrated in fig 5.4. At time t0, online measured
PV power Pmeas(t0) is used to determine the PV power clear sky index k∗PV (t0). A
constant k∗PV is assumed for the following hours:

k∗PV,pers(t0 + ∆t) ≡ k∗PV (t0) (5.2)

The persistence forecast Ppers is derived using the corresponding clear sky power Pclear.
A forecast of PV power at time step t+∆t is derived by applying the inverse equation 5.1
and leads to:

Ppers(t0 + ∆t) = k∗PV,pers(t0 + ∆t) · Pclear(t0 + ∆t) (5.3)

= k∗PV (t0) · Pclear(t0 + ∆t)
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Figure 5.4.: Visualization of the persistence forecasts Ppers: At t0, the PV power clear sky
index k∗PV (t0) is derived from Pmeas(t0) and Pclear(t0) and assumed to persist for t > t0.

The accuracy of the persistence forecast strongly depends on the variability of cloud cover
and whether applied to single sites or spatially averaged forecasts. For low variability,
the persistence approach shows significant lower rmse than for situations with highly
variable cloud cover, see left panel of fig. 5.5. Due to smoothing effects reducing vari-
ability of spatially averaged forecasts, the persistence approach in general shows better
performance than for single site forecasts, see right panel of fig. 5.5.
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Figure 5.5.: Left: Rmse of 1 hour ahead persistence forecasts in dependency on the intra-
hour variability of k∗PV (standard deviation of k∗PV ) for single sites. Right: Improvement
Score of persistence forecasts compared to CMV-based PV power forecasts in dependency
on the forecast horizon for single sites and all sites’ averages. Dataset: May–Nov 2013,
921 sites, 15 min resolution, θZ < 80◦.

5.2. Combination of PV power forecasts

The combination of the different forecast approaches is performed with a linear regression
approach: By this, a weighting of the approaches according to their individual forecast
rmse within a defined training period and in dependence on the forecast horizon and other
parameters is achieved. In addition, a statistical adaptation to recent measurements is
introduced by this (compare to section 4.2.4).

Persistence forecasts Ppers, CMV forecasts PCMV and NWP forecasts PNWP are com-
bined using linear regression coefficients a, b, c and d. The combined forecast Pcombi then
is written as

Pcombi = a · Ppers + b · PCMV + c · PNWP + d (5.4)

A linear regression with measured PV power Pmeas is performed using a least-square-
algorithm. The allowed range for these coefficients is restricted to positive values to
maintain physical plausibility.

The coefficients a, b, c and d are separately derived for each forecast horizon. This is a
direct consequence of the horizon depending differences in performance of each forecast
approach, as discussed in the previous chapters. Other parameters used as additional
constraints for the coefficients are analyzed, as the different forecasting methods’ perfor-
mance are in depending on various other parameters. Here, the effect of e.g. the hour
of day or solar zenith angles on the combined forecast rmse is compared. The training
of the coefficients is performed based on historic forecasts and measured PV power for a
number of preceding days. Choosing a training period close to the forecast day, in con-
trast to using a fixed set of days, allows to consider seasonal changes in the performance
of the different forecasting approaches.

In the following, the optimal configuration of the forecast combination is found. This con-
figuration is done for single site forecasts and all sites’ averages separately. For this pur-
pose, measured PV power and PV power forecasts in the period April to November 2012
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of the dataset ’B’ (921 sites) is used. The configuration of the irradiance-to-power con-
version as summarized in section 4.4.5, without the application of linear regression ’lr’ is
used. All evaluations shown in this chapter are based on persistence forecasts (sec. 5.1.2),
CMV forecasts (sec. 3.3) and the combined-DWD-ECMWF forecasts (sec. 3.4) unless de-
noted otherwise. For an evaluation of the forecast rmse in dependence on the forecast
horizon for the selected testing period, top row of fig. 5.6, left for single sites, right for
all sites’ averages.

As a reference for evaluation of the combined forecast configuration, the best available
individual approach for each horizon is determined (’best’ in fig. 5.6). In the bottom
row of fig. 5.6, the IS of the individual forecasts to the ’best’ for each forecast horizon
is displayed. By this, the rating of the forecasting methods by the IS is shown, with
IS = 0 for the forecasting method referenced to for each horizon.
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Figure 5.6.: Evaluation of the three individual forecast approaches persistence, CMV and
NWP and representation of best forecast for each horizon from 0 to 5 hours ahead, rmse
of P

Pinst
(top) and Improvement Score of all approaches according to the ’best’ forecast

(bottom). Dataset: Apr–Nov 2012, 921 sites, 15 min resolution, θZ < 80◦.

5.2.1. Configuration for single sites

The benefit of the combination approach depends on its configuration with respect to
i) the selection of additional constraints for the calculation of the fitting coefficients and
ii) the length of the training period applied. The fitting coefficients are trained separately
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for each forecast horizon and for classes of auxiliary parameters (see table 5.1). These
parameters are used to determine classes with varying performance of the individual
forecast approaches that are combined.

The different parameter sets from table 5.1 are compared to each other with respect to
their impact on the combined forecasts rmse. A common training period of 50 days is
used; the parameter sets are compared by the IS(combined, best). This improvement
score relates the rmse of the combined approach, using the tested parameter, to the
best individual forecast approach for each forecast horizon (fig. 5.6). In the left panel of
fig. 5.7, the IS(combined, best) is normalized to the ’hour’ parameter set and displayed
for the forecast horizon 1 to 3 hours ahead.

According to this evaluation, the approach using ’hour’, ’var(k∗PV )’ and the combination
of both ’hour + var(k∗PV )’ almost equally show the highest performance for each horizon.

Table 5.1.: Different parameter sets used in addition to the horizon dependency for combi-
nation of forecasts. For each parameter set the best configuration is displayed with respect
to its impact on the improvement of the combined forecasts.

ID description

simple horizon dependency considered only
sol zenith solar zenith angles θz at forecast calculation time, in classes of

30◦ ≤ θz ≤ 90◦ by 10◦ step size (6 classes)
slots 15 min intervals of a day (96 classes)
hour hour of day (24 classes)
var(k∗PV ) variability by standard deviation of measurement-based k∗PV

of the preceding hour at forecast calculation time (3 classes)
hour + var(k∗PV ) 2 classes of variability of k∗PV for each hour per day (48 classes)
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Figure 5.7.: Comparison of the additional parameter sets for the combined forecast ap-
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2012, 921 stations, 15 min resolution.
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The approach ’var(k∗PV )’ considers the variability of the k∗PV for hourly averages of
the hour before forecast calculation and is derived from measurements. Doing so, the
variation of the forecast performance for different classes of variability is introduced.
Referring to different hours a day (’hour’), the diurnal dependency of the forecast rmse
is considered on an hourly average basis, as the forecast rmse of the different methods
vary over the day. The lower IS than for the ’var(k∗PV )’-approach in these hours is
partially a consequence of a higher amount of classes (24 for ’hours’ compared to 3 for
’var(k∗PV )’) and thus a reduced amount of data in each class. For the ’hour + var(k∗PV )’
approach, the ’hour’ and variability approach are combined using two variability classes.
The combination based on the solar zenith angle θz (’sol zenith’) takes into account the
dependency on the solar zenith angles at forecast origin, here in fixed classes of 10◦.
This considers the diurnal change of forecast performance for each method but does not
differentiate between morning and evening hours. With classes of 15 min intervals of a
day (’slots’), the diurnal dependency of the forecast rmse is represented, like for the ’hour’
parameter. This shows less improvement, as the high amount of classes further reduces
the data availability. The ’simple’ combination does not include any other parameter
and shows also considerable small improvement, as no further information is utilized.
Still, this approach can compete with the ’slots’ or ’sol zenith’.

In the right panel of figure 5.7, the IS in dependence on the length of the training period
is displayed, evaluated for the ’hour’ approach and horizons 1 to 3 hours, for 10 to 90
days prior to the day the forecast is derived at. Using the previous days instead of a fixed
set of training days allows to include seasonal changes of forecast performance for the
different methods. A longer training period would on the one hand increase the amount
of data and thus the stability of coefficient fitting; but on the other hand, the seasonal
changes are less distinct then. An optimum is found at around 40 to 60 days, regardless
the forecast horizon.

For parameter training, using an additional description of relevant parameters proved to
be beneficial to the combination of forecasts. Still, a compromise between size of param-
eter classes and the degree of details depicted has to be found. For forecast combination,
the approach of considering different hours of day ’hour’ and a training period of 50 days
is chosen. In contrast to that, the parameter considering different classes of variability
’var(k∗PV )’ were utilized in Wolff et al. (2015) [86] and Kühnert et al. (2014) [101].

5.2.2. Configuration for spatially averaged forecasts

For spatially averaged forecasts, the configuration of the combined forecasts is determined
separately, as it shows differences in characteristics compared to single site forecasts. Sim-
ilar variation in parameter selection for training was tested as well as the optimal training
horizon derived (see fig. 5.8). This was done using the average of all sites in the dataset
named prior. Here, the ’hour’ parameter for testing shows largest values of IS for all
horizons displayed. Differences to the remaining parameter sets are comparatively small,
even for the ’simple’ approach with no additional training parameter but a larger train-
ing set included. The training with ’var (3cl)’ as additional parameter set shows lowest
improvement especially for larger forecast horizons, as variability is less pronounced for
the regional averages than for single sites and the value of this information decays with
increasing forecast horizon.
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Figure 5.8.: Left: Improvement score of rmse for the combined forecasts referring to the
rmse of the best non-combined forecasts for horizons 1, 2 and 3 hours. For each horizon,
the IS is normalized with respect to the first displayed parameter set (’hour’). Right:
IS as a function of the training period for combination of spatially averaged forecasts,
displayed for combination based on the ’hour’ parameter. Dataset: May–Nov 2012, 921
stations, 15 min resolution.

The IS in dependence on the length of the training period is shown in the right panel
fig. 5.8. Most benefit of increasing the length of the training period is seen for around
30 preceding days. Shorter training periods show a significant lower Improvement Score,
longer training periods do not lead to any improvement. For the combination of spatially
averaged forecasts the ’hour’ parameter and a 30 days training period were chosen.

5.3. Evaluation of the combined forecasts

An evaluation of the combined forecasts, compared to the individual forecast approaches
is displayed in fig. 5.9 for single sites (left) and all sites’ averages (right). The error
of the individual forecast approaches with linear regression applied are displayed. The
evaluation is done for the months May to November 2013, again to omit months with a
high probability of snow-covered modules in the training and evaluation period.

The reduction for forecast rmse by the combined forecasts and including PV power
measurements amounts up to around 15% (at 15 to 30 minutes ahead) for single sites
compared to the CMV-based forecasts. For the forecast horizon of two hours, the im-
provement is around 11%. Naturally, at forecast horizon ’0’ representing the time of fore-
cast calculation, forecast rmse and bias are zero, as the persistence equals the measured
PV power and is weighted with the factor 1. For all sites’ averages, the improvement by
including measured PV power and the combination of forecasts is much higher: Here,
it reaches up to around 60% for 15 to 30 minutes ahead. For 2 hours, the improvement
still is about 28%.

With respect to the size of the area averaged, the benefit of including the persistence
forecasts into the combined forecasts differs. Different sizes of averaged areas are analyzed
with respect to persistence forecasts and the impact on combined forecasts in fig. 5.10.
The areas compared here are based on a similar analysis in chapter 3, see fig. 3.4. Areas
with dimensions 1◦ × 1◦, 2◦ × 2◦ etc. to 10◦ × 10◦ (corresponding to all sites’ averages)
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Figure 5.9.: Evaluation of combined forecasts (’combined’), compared to the persistence,
CMV- and NWP-based PV power forecasts (’pers’,’CMV’,’NWP’). Dataset: May–Nov
2013, 921 stations, 15 min resolution, solar zenith angles θz < 80◦.

are averaged and evaluated. Multiple overlapping regions of the same size with 1◦ shift
in both directions (latitude and longitude) are considered here.

Improvement Scores with CMV forecasts as reference, are displayed in the left panel of
fig. 5.10 in dependence on the forecast horizon for the different area sizes, for i) the com-
bined forecasts (top) and ii) persistence forecasts with linear regression applied (bottom).
The ’IS(combi,CMV)’ for 1 to 3 hours ahead as a function of the region size are displayed
in the right panel of fig. 5.10. This figure includes the forecast horizon IS(pers,CMV)=0,
i.e. the persistence forecast shows same rmse as CMV forecasts.
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Figure 5.11.: Fitting coefficients for single sites (left) and for all sites averages (right)
in dependence on the forecast horizon; error bars give the standard deviation of the fit
parameters. Dataset: Apr-Nov 2013, 921 stations.

From both figures, the skill of the persistence and combined forecast increases with the
size of area averaged, valid for all forecast horizons, with a declining gradient towards
larger areas. The forecast horizon, when the condition IS(pers, CMV ) = 0 is satisfied,
increases with the size of region as well as the IS for the combined forecasts. For per-
sistence forecasts of 3 hours onward, spatial averaging is of less benefit compared to the
gain of regional averaging for the CMV forecasts.

5.4. Evaluation of fit coefficients

In this section, an analysis of the fit coefficients a, b and c and by this the rating of the
individual forecasts Ppers, PCMV and PNWP in the combined forecasts is given. The
dependence of the coefficients on different parameters such as forecast horizon, time of
day and day of year is displayed.

The dependency of the coefficients on the forecast horizon is displayed in fig. 5.11, from
0 (i.e. the time of forecast computation) to 5 hours ahead, for singles sites (left) and
all sites’ averages (right). For horizon 0, the Ppers is weighted with a = 1 (with b =
c = 0), as here the measurement naturally is the perfect match. For single sites, the
persistence forecasts’ weight significantly reduces within the 30 minutes-horizon. At 15
minutes, CMV forecasts already are rated higher than the persistence (with b ≈ 0.55,
a ≈ 0.35 and c ≈ 0.10). From horizons of 3 hours onward, NWP forecasts dominates
the combined forecasts, rated equally with CMV forecasts (b ≈ c ≈ 0.5) between 2 and
3 hours horizons. For all horizons greater than 0 evaluated here, combined forecasts
include rates of all forecast approaches involved. That includes on the one hand NWP
at 15 minutes (c ≈ 0.1) and persistence forecasts at 5 hours ahead (a ≈ 0.1).

When comparing the coefficients of the combined forecasts for all sites’ averages to sin-
gle sites, main differences between the weighting coefficients are visible in the horizon
dependency. A much higher rate of the persistence forecast is displayed for all fore-
cast horizons, dominating the combined approach for up to two hours ahead. This is a
consequence of the better performance of spatially averaged persistence forecasts. For
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horizon 5 the rating of persistence is still around a = 0.25. From around 2.5 hours ahead,
the CMV forecast is rated the highest; from around 3.5 hours onward, the NWP again
dominates the combined forecasts.

The dependency of the coefficients on the time of day (fig. 5.12 left, for single sites) also
reflects the diurnal dependency of the forecast approaches’ rating. As CMV forecasts
usually show higher rmse for high solar zenith angles, this leads towards a comparable
low rating in the combined forecasts for these hours. In these cases, the persistence (for
15 minutes) and the NWP-based forecasts (for 2 hours horizon) are rated higher. The
diurnal course of the fit coefficients is less pronounced for the 2 hour than for the 15
min forecast horizon. For 2 hours ahead, persistence, CMV and NWP show only little
changes in rating after 10 UTC here. For the 15 min horizon, the NWP also features
only small changes in the range from 0.08 to 1.8, but the persistence and CMV rating
varies to a high extent, from 0.4 to 0.8 for the persistence and from 0.14 to 0.5 for CMV.

The change of the weights during the year is displayed in the right panel of fig. 5.12. As
stated in sections above, the rmse of CMV forecasts is usually higher in winter months,
reflected by a comparable low rating for the days of year 0 to 100 and from 300 onward.
This is valid for all forecast horizons displayed with declining characteristics for the
larger forecast horizons. For the weighting of the NWP forecasts, no significantly annual
trend is shown, a slight decrease in its rate can be observed for winter days. For these
months, the persistence is weighted higher than for the summer, being a consequence of
two aspects: The decline in the performance of the CMV in winter and the impact of
snow-covered modules. For snow cover, the persistence forecasts would proof to be more
accurate, which is reflected by the weight coefficients trained in winter months. As snow
cover not necessarily occurs for all modules at the same time and not persistently over
a long period, considering its impact by the coefficient training is not sufficient: Single
days with snow cover cannot be adapted accurately to by this training; moreover, the
other way round, a higher amount of days with snow cover would affect the coefficients
also for days without and lead to a higher rating of the persistence forecasts than usual.

hour of day (UTC)
8 10 12 14 16 18

co
ef

fic
ie

nt
s

0

0.2

0.4

0.6

0.8

1
pers CMV NWP

co
ef

fic
ie

nt
s

0

0.2

0.4

0.6

0.8

1

15
m

in

pers CMV NWP

day of year
0  50 100 150 200 250 300 350

co
ef

fic
ie

nt
s

0

0.2

0.4

0.6

0.8

1

2 
ho

ur
s

Figure 5.12.: Left: Fitting coefficients in dependence on the time of day for forecast horizons
15 minutes (solid lines) and 2 hours (dashed lines), for months May to July 2013. Right:
Fitting coefficients for single sites in dependence on the day of year 2013 for forecast
horizons of 15 minutes (top) and 2 hours (bottom), for noon hours (10 to 12 UTC).
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5.5. Contribution of individual forecasts

In evaluations above, the combined forecast approach is based on Ppers, PCMV and the
PNWP forecasts. In this section, different realizations of the combination approach with
respect to the input data used is evaluated: Successively, each individual forecast (Ppers,
PCMV or PNWP ) is excluded from the combination approach and the response of the
combined forecast accuracy evaluated. By this, the relevance of each single approach
in the combined forecast is shown. Resulting are three two-components-forecast real-
izations, which are compared to the combined forecasts using all three components in
fig. 5.13.
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Figure 5.13.: Comparison of the rmse (left) and the Improvement Score (right) of two-
component combined forecasts in relation to all three forecast models included. Data set:
Apr-Nov 2013, 921 sites averages, 15 minutes values, no restrictions to solar zenith angles.

In general, the forecast rmse increases when based on only two components, to different
extents depending on the component not included as well as on the forecast horizon.
Naturally, the rmse increases most for those horizons, the component not included is
weighted highest according to section 5.4. But all other horizons are also affected, except
for the 15 minutes ahead forecasts when using persistence with CMV or with NWP only.
For example, combined forecasts without the persistence forecasts included, show an
IS ≈ −34% for the 1 hour forecasts, but also still of IS ≈ −2% for the 5 hours forecasts.
Not using CMV forecasts affects all forecast horizons between 1 and 4 hour by more than
10% increase in rmse. Forecast combination without NWP-based forecasts affect later
forecast horizons of 2 hours and more by up to 42%.

In general, all individual forecast approaches are relevant to the combined forecast qual-
ity. For the most relevant 2 hour forecast horizon, the rmse increases between 9% and
18%, with persistence the lowest and NWP the highest impact; not including CMV
forecasts leads to an increase of rmse by 12% for the 2 hour forecast horizon.
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5.6. Delayed availability of measurements or forecasts

The approach presented above takes into account online PV power measured close to the
time of forecast calculation. When considering operational forecasting, measured data
is often not immediately available. Data processing times are always an issue causing a
delay in data availability, as for measured power e.g. the data collecting and processing
consumes time. Also the availability of CMV forecasts may be subject to delay caused
by processing times or missing images on some occasions. As the presented approach of
short-term forecasting utilizes forecast data generated close to the forecast valid time,
this aspect influences forecast quality. In this section a quantification of the impact of
a delay in measurements or CMV forecasts is given. This delay is simulated from 0
minutes (the ideal case) to 2 hours and any combination thereof. As NWP forecasts are
naturally aiming at larger forecast horizons and are available with high reliability, for
these forecasts no delay is simulated. The impact is shown with respect to the combined
forecasts’ rmse (table 5.2) and to the change in fit coefficients (fig. 5.14). The reference
is the (0,0)-delay, as evaluated in all sections above.

In general, with the delay in the availability of persistence or CMV forecasts, the rmse
of the combined forecasts increases and the fit coefficients change. Its extent depends
on the forecast horizon and if for single sites or all sites’ averages. The higher the rate
of the method concerned is in the combined forecast, the stronger the sensitivity of the
combined forecast is towards delays. For example, for single sites 15 minutes forecasts the
rate of persistence forecasts within the combined forecasts drops quickly with increasing
measurement delay; the rmse increases by more than 20% from 0 to 2 hours delay of
measured PV power. For the 2 hours forecasts with little initial share of the persistence
forecasts, the rmse increases only by around 3%. In this case, the delay of CMV forecasts
has a higher impact, a delay of 2 hours increases the rmse by around 10%.

For all sites’ averages, with an initially higher share of persistence forecasts also for
later forecast horizons, persistence forecasts have much higher shares in the combined
forecasts even for larger delays. However, the combined forecasts’ rmse responds stronger
to delays in persistence forecast availability than for the CMV, both valid for the 15
minutes and the 2 hour forecast horizon. Generally, the steeper the increase of rmse with
forecast horizon of the initial combined forecast (fig. 5.9), the higher the modification of
the forecasts coefficients is with increasing delay. For all sites’ averages with a general
higher relative increase in rmse with forecast horizons, modifications of the fit coefficients
responds much stronger towards delays.

The delay of the availability of persistence or CMV forecasts leads to a higher rating of
the other approaches within the combined forecasts. This depends on the initial rating
of the replacing forecast approaches for the corresponding forecast horizon. For single
sites 15 minutes forecasts, the delay in persistence forecasts availability leads to a higher
rating of the CMV-based forecasts, but almost no change in the contribution of the NWP
forecasts’ share. With CMV forecasts’ delay, both the contribution of persistence- and
NWP-based forecasts increases. Concerning all sites’ averages for both, 15 minutes and
2 hours forecast, delays in persistence tend to be compensated for by higher shares of
CMV forecasts and vice versa. This is a result of the NWP forecasts showing small initial
contribution at these forecast horizons, compare to fig. 5.11.
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Table 5.2.: rmse of P/Pinst for combined forecasts with delayed measurements or CMV fore-
casts, for single sites (top) and all sites’ averages (bottom), for 15 minutes (left columns)
and 2 hours (right columns) ahead. Dataset: Apr–Nov 2013, 921 sites, 15 min resolution.

single sites, 15 min single sites, 2 hours

RMSE delay measurement delay measurement
P/Pinst[%] 0min 15min 30min 1h 2h 0min 15min 30min 1h 2h

d
el

ay
C

M
V 0min 6.94 7.74 7.92 8.10 8.55 10.98 11.04 11.06 11.12 11.28

15min 7.21 8.15 8.35 8.53 8.99 11.23 11.30 11.31 11.36 11.51
30min 7.42 8.52 8.78 8.97 9.43 11.45 11.53 11.51 11.55 11.67

1h 7.71 9.03 9.42 9.67 10.15 11.78 11.88 11.89 11.86 11.93
2h 8.11 9.62 10.14 10.51 11.13 11.99 12.09 12.15 12.23 12.28

all sites’ averages, 15 min all sites’ averages, 2 hours

RMSE delay measurement delay measurement
P/Pinst[%] 0min 15min 30min 1h 2h 0min 15min 30min 1h 2h

d
el

ay
C

M
V 0 min 0.67 0.85 1.03 1.28 1.51 2.50 2.57 2.62 2.67 3.29

15min 0.71 0.88 1.09 1.39 1.62 2.72 2.79 2.84 2.93 3.35
30min 0.72 0.90 1.15 1.50 1.78 2.64 2.73 2.79 2.89 3.38

1h 0.92 1.10 1.36 1.76 2.07 2.63 2.75 2.85 3.00 3.36
2h 1.31 1.49 1.73 2.20 3.33 2.54 2.72 2.87 3.11 3.54
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Figure 5.14.: Fit coefficients for delayed measurements or CMV forecasts for single sites
(top) and all sites’ averages (bottom) with a forecast horizon of 15 minutes (left) and 2
hours (right). Dataset: Apr–Nov 2013, 921 sites, 15 min resolution.
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In an operational context, for forecasts of short lead times, the timely availability of
data required for forecasting as well as a short computation times are essential. The
value of the contribution of persistence or CMV forecasts within the combined forecasts
rapidly decreases with delays in the availability of the corresponding forecasts. Especially,
if unavoidable, delays in availability have to be considered in forecast weighting when
computing the combined forecasts.

5.7. Conclusion

In this chapter, an approach for combining PV power forecasts from satellite data and
numerical weather predictions with online measured PV power is introduced. These
combined forecasts lead to a reduction of forecast rmse by e.g. 10% for single sites
and 50% for all sites’ averages with respect to forecast horizons of two hours ahead.
The combination is achieved by a linear regression approach trained at measured PV
power for the preceding days. The approach is optimized by rating the improvement
through the combination approach for different configuration of parameters: best results
are obtained when the individual methods are rated depending on the time of day.
Measured PV power, CMV and NWP forecasts contribute to the combined forecasts to
different extents with respect to the forecast horizon, time of day and season. In Wolff et
al. (2015) [86], this approach is compared to an approach based on advanced statistical
methods (Support Vector Regression): Similar results for both methods are observed.



6. Upscaling to regional forecasts

The assessment of the regional PV power feed-in of all PV plants is relevant for the
control areas of the transmission system operators as well as for whole of Germany (see
chapter 2). By end of 2014 in Germany around 1.5 million PV systems were registered.
Computing PV power forecasts for all installed PV systems in these regions is associated
with unfeasible and unnecessary efforts with respect to computational costs and avail-
ability of PV system information or measurements. Only information on the post code
and installed capacity of every single system is included in the RES site-specific data.
Information on the relevant system configurations such as tilt angle and orientation are
lacking, essential for an accurate PV power simulation (see chapter 4). Regional fore-
casts are derived using an upscaling method, as proposed in Lorenz et al. (2014) [23] and
Lorenz et al. (2011) [20]. Comparable methods are widely used also for wind power feed-
in forecasts, see e.g. Ernst et al. (2007) [7]. The upscaling algorithm defers the feed-in for
a whole region from a representative set of single PV plants with good knowledge about
the systems’ configuration. These single sites have to be representative with respect to
the spatial distribution of all sites (longitude and latitude), to the system configuration
(tilt and azimuth angle of the modules) and to the distribution of installed capacity. In
this chapter a model is developed to find criteria for selecting representative sites for an
optimized upscaling. This upscaling algorithm is applied to PV power forecasts, as well
as to measured PV power to obtain projections of the actual PV power feed-in.

In section 6.1 the upscaling method is introduced. The datasets used and evaluation
settings applied in this chapter are described in section 6.2. The model development
for the upscaling algorithm matching the regional feed-in is described in section 6.3.
Results from this are transferred to a validation with an external reference using the
RES PV power feed-in time series in section 6.4. The forecast accuracy after applying
the upscaling method is analyzed is section 6.5, giving an overview on the achievements
by introducing different forecast methods for short-term intraday forecasts.

6.1. Upscaling approach

With the upscaling algorithm, the overall PV power feed-in Pall of all plants in a region
is modeled. The upscaling of the PV power feed-in is performed by simulating the PV
power for representative systems with the ratio f of overall installed capacity Pinst,all for
the region of interest and of the installed capacity of the representative dataset Pinst,rep.
The overall upscaled power feed-in Pscale is thus derived as:

Pscale = f · Prep =
Pinst,all
Pinst,rep

∑
i

Prep,i (6.1)

Here, a good level of agreement between the spatial distribution of the representative
and the overall dataset is essential [20]. As the representative set is dependent on the

75
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available monitored PV sites do not necessarily feature the same spatial distribution as
the PV systems in the overall system, a detailed upscaling procedure was introduced in
Lorenz et al. (2011) [20]. In this approach, the spatial distribution and variation of the
installed capacity of the PV systems is considered with more detail by introducing an
upscaling factor f(φ, λ) in dependence on the latitude ϕ and λ of a 1◦× 1◦ grid. Within
each grid cell, all PV sites are pooled and their contribution to the overall feed-in is
rated with a weighting factor depending on the installed capacity of all sites in this cell.
This detailed upscaling has shown that the accuracy of the upscaling algorithm increases
when the spatial distribution of the representative PV sites compared to all sites in the
dataset is considered [20].

In this thesis, a further development of the presented method is performed, which takes
information on the systems’ tilt and azimuth angle into account. The consideration of
tilt and azimuth angle not included in the RES data is performed by introducing differ-
ent classes γ of PV system sizes. Each class shows a characteristic distribution of tilt
and orientation of PV models, significantly influencing the power feed-in characteristics
(see e.g. fig. 5.2 in section 5.1.1). For instance, large PV systems in Germany usually
show tilt angles around 30◦ and an optimal south-faced orientation, small rooftop in-
stallations show a higher variety of both angles. As tilt and azimuth angle information
is not included in the RES dataset, this characteristic information is deduced from the
meteocontrol dataset for each chosen system class. Here, the assumption is made, that
classes of system sizes have a similar distribution of tilt and azimuth angles. For the de-
scription of the regional distribution of the PV sites, post code area information is used.
This information is the highest spatial resolution of the PV sites’ location provided by
the RES system specific information. Here, several post code areas close to each other
are grouped to clusters ψ.

Each system class γ in each regional cluster ψ defines the subclass C(ψ, γ). The normal-
ized power feed-in of representative sites Prep,i(t)/Prep,i,inst in each subclass is averaged
and weighted with the sum of installed capacities Pinst,all(ψ, γ) of all sites in this sub-
class. The upscaled power P ′scale is formulated as the sum of the power feed-in for all
subclasses:

P ′scale(t) =
∑

C(ψk,γk)

Pinst,all(ψk, γk) · 1

Rk

Rk∑
i∈

C(ψk,γk)

Prep,i(t)

Prep,i,inst

 (6.2)

with Prep,i measured or predicted power for a site in the representative dataset.

The following model development aims at the optimization of the subclass configuration:
On the one hand, a highest possible resolution of system classes and regional cluster
is intended. On the other hand, a sufficient amount of representative sites have to be
available in each subclass as the representation dataset is limited.

This so defined upscaling algorithm is applied to the measured or predicted PV power:
When applied to measured PV power, a projection of the PV power feed-in in the
corresponding region is derived. For PV power forecasts, the regional PV power feed-in
is predicted by this approach.
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6.2. RES datasets

The installed capacity for all PV systems per subregion and system class is important
information for the presented upscaling approach. By this data the correct system class
dependent distribution of the PV sites is derived. For Germany, all PV (and other
RE) sites have to be registered according to the RES (Renewable Energy Source Act,
Erneuerbare Energien Gesetz EEG, [33]). There, installed capacity, the location with a
post code resolution, and the date of initial operation are registered for each station. No
further information such as the tilt or azimuth angles or any other technical specification
are available. The RES datasets were published on a regular basis by the TSOs ([55, 56,
57, 58], after August 2014 by the Federal Network Agency (Bundesnetzagentur) [102].
From this RES system specific information, following information needed for the
upscaling approach is derived:

1. The installed capacity Pinst(ψ, γ) per subregion ψ and system class γ,

2. The overall installed capacity Pinst for each control area/Germany.

The development of the installed capacities Pinst for each TSO as derived from the RES
system specific information is presented for January 2012 to December 2013 in fig. 6.1.
Except for the TransnetBW dataset, the figures are given with a monthly resolution
derived from the information on the installation date. For TransnetBW, only the end-of-
year reports are available and the monthly installed capacities interpolated linearly from
this. For all control areas, an increase of PV power capacities with some leaps in 2012 is
visible.
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Figure 6.1.: Development of the installed capacity Pinst for each control area, from end of
December 2011 to end of December 2013. Data source: RES datasets ([55, 56, 57, 58]).

The projections of power feed-in and VRE power forecasts for all control areas are manda-
torily published [33] in regular intervals by the TSOs on the European Energy Exchange
transparency portal [59] or at [103] (see also fig. 2.3) as RES feed-in time series.
Among others, the expected and actual solar power generation is published with 15
minutes temporal resolution for each TSO seperately. This published data is based on
projections by different providers: Each provider performs an upscaling procedure using
measured PV power based on their individual models. As a consequence, this information
does not necessarily reflect the actual power feed-in, but only represents the projection
of feed-in based on different models.
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6.3. Model development

The configuration of the upscaling algorithm according to equation 6.2 is derived in this
section, addressing the representation of system classes and the regional distribution.

6.3.1. Dataset for model development

The RES feed-in time series introduced above is not suitable for model development as
the models’ accuracy would only be rated compared to the estimations of providers but
not real feed-in data. For model development, a closed environment is therefore created,
with best possible knowledge of the overall power feed-in. This overall power feed-in
Pall can be the feed-in of all PV sites in a control area or Germany or any other system
that has to be modeled by the upscaling algorithm. For upscaling, the overall feed-in
of a number N of PV systems has to be modeled by referring to a subsystem with M
systems. Or, in terms of installed capacities, the feed-in of sites with an overall Pinst,sum
has to be modeled by a subsystem of sites with Pinst,rep.

The overall feed-in of all Psum =
∑N

i Pi sites has to be reproduced as good as possible by

a subsystem of M � N sites from the same dataset, with Prep =
∑M

k Pk. The advantage
of this approach is the best knowledge of Pall(t) = Psum(t). Taking a smaller subsystem
to model the feed-in of the whole set emulates the upscaling approach using representative
sites to model the overall power production. The configuration of the upscaling approach
is assumed to be transferable to other datasets, for example of modeling on the overall
feed-in in Germany or the control areas. However, due to the limited amount of PV sites
in the dataset with measurements available, results may not be transferable without
restrictions: For example, for modeling the overall power for Germany according to the
RES feed-in data, all representative sites in the meteocontrol dataset can be used; for
model development referring to the sum of all sites in the same dataset, the subsystem
has to be much smaller.

For model development, the dataset ’A’ of measured PV power (see section 4.1) is used
for modeling the upscaling approach, containing a total of 1348 sites, but with lower data
availability than the datasets used above. This is done as a high spatial distribution is
of more importance than temporal data availability. Time steps with more than 10%
missing measured data points are rejected entirely from evaluations. The dataset from
May to November 2012 is used.

6.3.2. Concept of model development

The upscaling rmse of modeling Psum(t) of all N sites in the dataset by Pscale(t) of a
subsystem with M stations is displayed in fig. 6.2 in dependence on the size of subsystem.
In this case, the upscaling algorithm does not consider any regional or system size classi-
fication. The M sites are randomly selected and the median rmse as well as the standard
deviation of the rmse for 100 different randomly generated realizations displayed in de-
pendence on the subsystem size. Figure 6.2 contains two different realizations of the
upscaling algorithm:
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Figure 6.2.: Representation of the power feed-in of the overall system with N sites by
subsystems of size M . Displayed is the median rmse and the standard deviation for 100
randomly generated realizations of the subsystem compilation. Dataset: May–Nov 2012,
1348 sites, 15 min resolution.

• Simple sum of each station in the subsystem (orange line)

Pscale,weighted(t) = Pinst,sum/Pinst,rep
∑M

i Pi(t)

with Pinst,rep =
∑M

k Pinst,rep,i and Pinst,sum =
∑N

i Pinst,i

The median rmse decreases with increasing number of sites M in the subsystem.
Also, the standard deviation follows the same trend: It is highest for small number
of sites, as the accuracy for different realizations is strongly dependent on which
specific sites are selected by the algorithm and their installed capacities. Naturally,
for the subsystem with size N = M , the rmse and standard deviation both are 0,
as the subsystem is equal to the overall system in this case.

• Equally weighting each station (blue line)

Pscale(t) = Pinst,sum · 1/M
∑M

i Pi(t)/Pinst,i

In this case for N = M , the total Psum(t) is not modeled perfectly, as without
weighting each site the distribution of the installed capacity and characteristic feed-
in of the sites is not reflected in this upscaling approach. This approach leads to a
better representation of Psum(t) for smaller subsystems, up to a subsystems’ size of
M = 250, being around 20% of all sites in the system N . The standard deviation
between the different realizations is smaller than for the weighted approach: For
weighting equally, the installed capacity of the randomly selected sites does not
have an impact. In contrast to the weighted approach, adding more stations in
the representative set does not further reduce the upscaling rmse above a certain
threshold at around M = 600.
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This approach of equally weighting all sites in a subclass is used in the following upscaling
approach, as the ratio of number of sites in the representative set to the number of sites in
the overall system is small: For the RES dataset, 1.5 million PV sites have to be modeled
by typically a few thousand sites in the representative system: For the dataset ’A’, the
number of sites is 1348, making up not more than 1%; with respect to the installed
capacity, the dataset contains 500 MWp which is about 1.6% of overall PV capacity in
Germany. In this model development environment, using less than 1% of the sites would
be not applicable at all, as not sufficient sites would be available for each system classes
and subregion. A subsystem size of M = 200 (15% of the overall datasets’ size) is used
as reference value.

6.3.3. Representation of system classes and regional distribution

The amount of subclasses C(ψ, γ) is defined by the amount of subregions ψ and system
classes γ. On the one hand, a high resolution of both is beneficial for the upscaling
process, but at the same time is limited by the number of sites in the representative
dataset used. Building subclasses C(ψ, γ) has to be done leaving a sufficient amount of
representative systems in each subclass.

Considering the systems’ configuration within the upscaling process enables a better
description of the actual PV power feed-in. With respect to the tilt and azimuth angle
of a PV system, the characteristics of power feed-in differs significantly. As information
on the tilt and azimuth angles is not available from the RES dataset, this information
has to be deduced from available information. From analysis of the meteocontrol dataset
(see section 4.1) different system classes with respect to the installed capacity show
characteristic distributions in tilt and azimuth angles. This dataset is assumed to match
characteristics of different system classes which can be transferred to the RES dataset.
Here, four classes with characteristic differences are distinguished (see fig. 6.3 and 6.4)
and all possible combinations of these system classes are compared:

• 0 < Pinst ≤ 30 kWp small, presumably mainly rooftop installed systems, with high
variation in tilt and orientation;

• 30 kWp < Pinst ≤ 1 MWp medium sized systems, moderate variation in tilt, high
variation in orientation, with a comparable high share of low tilt angles,

• 1 MWp < Pinst ≤ 5 MWp large systems, with optimal south-facing orientation
installed modules and various tilt angles,

• 5 MWp < Pinst big solar parks with optimal south-facing orientation and tilt angles
β ≈ 30◦.

For finding the best regional configuration, the resolution of the post code areas (left
panel in fig. 6.5) is reduced to two-digit post code areas (dots in center and right panel
of fig. 6.5). Clusters of regions are constructed by pooling post code areas close to each
other. This is done for different numbers of clustered regions, from 1 to 50. In the centre
panel of fig. 6.5, 5 different clustered regions, and in the right panel, 10 different clustered
regions are exemplarily displayed.
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Figure 6.3.: Polar plots of the distribution of tilt angle β (represented by the radius,
horizontally aligned corresponds to β = 0) and azimuth angle φ (displayed as angle, with
φ = 0◦ corresponding to south), for classes of installed capacity in Wp.
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Figure 6.4.: Normalized frequency distribution of tilt (left) and azimuth angles (right) for
the system classes of installed capacity in Wp, normalized to the maximum occurrence of
each class. The bin size is 5◦.

Figure 6.5.: Left: Spatial distribution of all post code areas in Germany, defining the
maximum resolution of the RES dataset. Centre and right: Accumulation of post code
areas to two-digit post code areas (each circle), clustered in 5 (centre) or 10 (right) areas
for pooling the PV sites.
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6.3.4. Configuration of the upscaling model

The best configuration is determined based on different system classes and region sizes,
as introduced above. The analysis is performed based on measured PV power. For
each possible configuration, the median rmse and the rmse’s standard deviation for 100
different realizations according to stations selected per region and class are derived.
These realizations are computed randomly as done in previous section 6.3.2. By this,
the dependency of the upscaling rmse on which specific site is used in the representative
dataset is considered.

For each number of clusters used, the optimal clustering is determined individually, see
e.g. for 50 clusters in left panel in fig. 6.6:

1. Clusters are constructed with a ’k-mean’ approach, minimizing the distance of all
2-digit post code areas within each cluster by latitude and longitude information.

2. This approach is repeated 100 times with random initial conditions of the k-mean
algorithm, leading to different realizations of clustering (grey lines in fig. 6.6).

3. The realization with a minimal median rmse at the size of the representative set of
M = 200 is chosen as best realization of clustering (black line in fig. 6.6).

number of sites in subsystem
0 100 200 300 400 500 600

m
ed

ia
n 

rm
se

 P
/P

in
st

 [%
]

0

0.5

1

1.5

2

2.5
varied regions
optimal region

stdev installed capacity [MW]
16 18 20 22 24 26

0.6

0.7

0.8

0.9

1

stdev installed capacity
   linear

stdev of number of sites

20 25 30 35 40 45 50

m
ea

n 
rm

se
 P

/P
in

st
 [%

]

stdev number of sites
linear

Figure 6.6.: Left: Median rmse of upscaling algorithm using 50 clustered regions in de-
pendency on the size of the subsystem. The black line indicates the configuration with
the minimum median rmse and its standard deviation, selected for following evaluations.
Right: Dependency of the median rmse at M ≈ 200 sites in the subsystem, for each of
50 clusters versus the standard deviation of installed capacities (lower x-axis) or of the
number of sites (upper x-axis) per region. Dataset: May–Nov 2012, 15 min resolution.

The mean upscaling rmse of differently clustered regions are displayed in right panel
of fig. 6.6 in dependency on the standard deviation of the amount of sites per region
(upper x-axis) and the standard deviation of the sum of installed capacity per region
(lower x-axis). This enables to derive criteria for selecting the best regional clustering:
A low standard deviation of the corresponding feature indicates a more homogeneous
distribution of number of sites or sum of installed capacity among the different regions.
A linear fit of the upscaling rmse is shown for both cases, but with higher correlation in
dependency on the sum of installed capacity: Choosing regional clusters of similar size
with respect to the overall installed capacity is beneficial for the upscaling approach.
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The impact of selecting different numbers of clustered regions on the upscaling rmse is
displayed in fig. 6.7 for measured PV power. Here, the upscaling rmses for one to 50
clustered regions are compared, each with the best configuration as shown above (fig. 6.6).
For one region an median upscaling rmse decreases from around 3.6% for 50 sites in the
subsystem to around 2.5% for above 600 sites in the subsystem. For 5 regions, this
decreases to between around 3% and 2%. Using more clustered regions further reduces
the median rmse but with less relative improvement: For 50 regions the upscaling rmse is
around 1.3% for 400 and more sites in the subsystem, whereas for 10 regions it already is
around 1.5%. In the range of M ≤ 200, increasing the number of regions is not beneficial
and even shows higher upscaling rmse especially at M ≤ 100: By increasing the amount
of regions, the number of sites per region is significantly reduced (for M = 50 even to
only one site per region). This leads to an increase in upscaling rmse when using multiple
classes and regions but a small amount of sites within the representative dataset.
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Figure 6.7.: Median and standard deviation of rmse of Pscale/Pinst,scale compared to
Psum/Pinst,sum for different amounts of clustered regions in dependency on the size M of
the subsystem for 100 random realizations each. For each region size the best configura-
tion of clustered regions is selected, see fig. 6.6, based on measured PV power. Dataset:
May–Nov 2012, 15 min resolution.

The impact of selecting different system classes (see section 6.3.3) for 1 region is displayed
in the left panel of fig. 6.8. For the dataset evaluated here, introducing two classes
reduces the rmse, depending on the interval boundaries for these classes: The effect when
applying a classes limit of 30 kWp is rather small (from a median rmse of around 2.9%
to 2.8%, evaluated at M = 200). Significantly, for classes limits of 1 MWp (≈ 2.15%)
or 5 MWp (≈ 1.35%), the reduction of the upscaling rmse is much higher. Lowest
upscaling rmse is observed for three or four system classes configurations, with both a
median upscaling rmse of ≈ 0.85%, favoring here configurations with interval boundary
at 1 MWp and 5 MWp.

Same comparison but with taking 50 clustered regions into account is shown in the
right panel of fig. 6.8. Similar behavior can be observed: Classes configurations with
interval boundary of 1 MWp or 5 MWp show lowest upscaling rmse. However, due to
the increased segmentation of the representative sites to regions and system classes, a
high amount of system classes is not necessarily beneficial for the upscaling rmse: Taking
no system classes into account (blue line, with rmse ≈ 1.6% at M = 200 sites) shows
lower rmse for the same amount of sites M in the subsystem than considering two classes
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Figure 6.8.: Median rmse and standard deviation of rmse (top) and bias error (bottom) for
100 random realizations of the upscaling approach for different system classes, 1 region
(left) and 50 clustered regions (right), in dependency on the size of the subsystem. Dataset:
May–Nov 2012, 15 min resolution.

with interval boundary at 30 kWp (purple line, with ≈ 1.85%). Same is valid for the
3 and 4 classes configuration with one of the interval boundary at 30 kWp (green and
orange lines, ≈ 1.4% and ≈ 1.2% respectively). Best results for this dataset can be
observed for the 3 classes configuration with 1 MWp and 5 MWp interval boundaries.

In the bottom panels of fig. 6.8, the corresponding bias error is displayed: Here, all system
class realizations are characterized with a negative bias error to different extents. Highest
negative bias is found for realizations with only one or a few system classes involved. Not
considering the differences between power feed-in depending on the system classes leads
to an underestimation of power feed-in within the upscaling approach: For example,
when weighting PV sites of all system classes equally, the contribution of larger PV
plants with optimal south-facing orientation is not sufficiently represented.
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6.3.5. Model configuration for PV power forecasts

In this section, the results of model development for measured PV are summarized for
a fixed subsystem size and are transferred to PV power forecasts. The upscaling rmse
applied to measured PV (left) and CMV 2h hour forecasts (right) is displayed in fig. 6.9,
for a subsystem size of M = 200. The impact of different amounts of regions is empha-
sized and displayed for using one system class only and for the three system classes with
boundaries at Pinst = 1 MWp and 5 MWp).
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Figure 6.9.: Median upscaling rmse and standard deviation for different regions (1 to 50
clustered regions), for 1 system class (left columns) and 3 system classes (-1M-5M-, right
columns) for a subsystem size of M = 200. Left for measured PV power, right for CMV
2h PV power forecasts. Dataset: May–Nov 2012, 15 min resolution.

The usage of multiple clustered regions and system classes reduces the upscaling rmse
significantly, valid for both measured and predicted PV power. The impact of using
multiple regions is largest for measured PV power when not differentiating between
system classes. The differentiation of system classes further reduces the upscaling rmse:
However, the impact of using multiple regions is smaller than in the case of one system
class, contributing merely to an improvement of the rmse from 0.95% to 0.7% atM = 200,
compared to 2.85% to 1.7% for 1 class only.

When based on forecasts (right panel in fig. 6.9), the overall rmse naturally increases as
the forecast error is added to the upscaling error. Similar reduction of the rmse when
using system classes and regional clustering is observed as for measured PV. However,
the impact of using multiple regions is much less pronounced than for upscaling based on
measured PV power. In this case, using 5 different regions or more leads to comparable
results as for using one region only. Differences between best configuration with 10
regions and only one region are comparatively small (median upscaling rmse of 4.85%
compared to 4.9%). This behavior can be a consequence of different interacting aspects:
i) Using less regions leads to the averaging of feed-in over larger areas, which is beneficial
for the application to predicted PV power, dominating the upscaling rmse. ii) The use
of system classes already leads to an adequate representation of spatial distribution for
the model development system used here, as the location of the few large sites within
the subsystem are closely matched to the distribution in the overall system.
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6.4. Application of upscaling to the RES datasets

The upscaling algorithm so far is developed and analyzed with respect to a closed system
for model development with its own characteristic distribution of PV sites according to
system classes and location. A transfer of the findings to the dataset valid for the
situation in Germany is performed in this section. For this, a valid external reference for
validation is hard to obtain, as the feed-in data available merely is based on projections
by the TSO and forecast providers (see section 6.2).

6.4.1. Transfer of the upscaling configuration

The results shown up to this point are valid for the specific configuration within the
dataset used for model development. Findings depend on the actual configuration of the
overall dataset and its specific regional and system class composition.

Fig. 6.10 illustrates the differences between the distribution of the dataset used for model
development (dark blue bars) and the RES dataset (see section 6.2, orange bars). Signifi-
cant differences between both can be observed: The model development dataset contains
a relatively high share of stations with Pinst > 1 MWp, whereas for the RES dataset only
a minority of PV power sites can be found here, both valid in term of number of sites and
overall installed capacity. The RES dataset shows a much higher share of small systems,
which is not reflected within the model development dataset. For an optimal upscaling
configuration, the model development dataset is artificially adapted to the RES dataset
characteristics (light blue bars). This is done by reducing the amount of big systems with
Pinst > 1 MWp and by increasing the amount of small systems with Pinst ≤ 1 MWp,
using existent systems of this size within the model development dataset multiple times.
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Figure 6.10.: Normalized relative frequency of installed capacities (left) and number of
sites (right) for different system classes for the model development dataset (dark blue),
for the RES dataset (orange) and an adapted model development dataset (light blue).

The resulting graphs with the upscaling rmse for the adapted model development dataset
are displayed in fig. 6.11. In contrast to fig. 6.8, system classes featuring interval bound-
aries at 30 kWp show better performance than in the original model development dataset,
where interval boundaries at 1 MWp and 5 MWp showed best performance. This is a
direct consequence of the adaptation of the model development dataset, now showing a
significantly higher share of smaller systems. For considering one regional cluster, best
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configuration is found using 4 classes with an upscaling rmse of around 1.1% at M = 200;
for 50 clustered regions, using 2 or 3 system classes with 1 MWp being one of the inter-
val boundaries show comparable results to the 4 classes configuration (around 0.80% to
0.85%). Here, the 3 system classes −30k − 1M− configuration is chosen.
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Figure 6.11.: Left: Median rmse and standard deviation of rmse for the upscaling approach
for different system classes for subsystem size of M = 200, for 1 region (left set of columns)
and 50 clustered regions (right set of columns), for the model development dataset adapted
to the characteristics of the RES data (see fig. 6.10). Dataset: May–Nov 2012, 15 min
resolution. Right: Regional distribution of 41 clustered subregions as derived for the RES
dataset following the listed conditions.

When transferring the results on the RES dataset, following conditions to the regional
clustering are resulting from the analysis above:

1. Including a sufficient amount of sites of each system class considered in each region,

2. at most homogeneous distribution of installed capacities among the regions (see
right panel of fig. 6.6), determined by the standard deviation of installed capacity
per region of the overall system.

For the definition of regional clusters for application, using an unambiguous assignment
of regions and sites to one of the control areas is an additional constraint that has to
be satisfied. According to these requirements, the resulting configuration for regional
clustering is displayed in fig. 6.11, right panel.

6.4.2. Validation with RES feed-in time series

With this upscaling configuration adapted to the RES site specific information, the up-
scaling rmse is compared to the RES PV power feed-in time series in this section. This
is done to give an evaluation of the upscaling algorithm with an external reference: The
accuracy of the method in terms of rmse thus provides the comparison to the average
projection from forecast providers and does not lead to valid statements concerning the
quality of the upscaling method itself. The dataset has a temporal resolution of 15 min-
utes and is evaluated for the year 2013, the representative sites correspond to all 921
sites within the dataset ’C’.
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The installed capacity Pinst,all(ψ, γ) is derived for each subregion and system class using
the information provided by the dataset of the RES system specific information, resolving
the different post code areas and number of stations within the system classes. These
factors are derived for the available data for June 2013. To consider the change in overall
installed capacity for the control areas, these are factorized on a monthly basis with the
corresponding data from fig. 6.1.

A frequency scatter plot is displayed in the left panel of fig. 6.12, comparing the upscaled
power Pscale and the PV power feed-in based on the RES data for Germany, both nor-
malized to the installed capacity. A good agreement of both is found, showing only a
small scatter and a trend towards a slight overestimation of PV power feed-in.
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Figure 6.12.: Left: Frequency scatter plot for PV power feed-in for Germany from the
RES dataset compared to feed-in derived from single site measurements using the up-
scaling algorithm introduced above. Right: Rmse of upscaling evaluated with respect to
the PV power feed-in from RES data for all months in year 2013 and different upscal-
ing configurations: ’simple’, without considering system classes or subregions, ’detailed’
with configuration of system classes and subregions as derived before, ’det 1 cls’ same
configuration but considering one system class only.

A quantification of the upscaling rmse in dependency on the month of the year 2013 is
displayed in the right panel of fig. 6.12. In this figure, the ’detailed’ upscaling configura-
tion based on different system classes and regions is compared to the ’simple’ approach
without any distinction of system classes or regions and to the approach considering
all regional clusters but one system class only. Apparently, the upscaling using system
classes and regional clustering, as derived above, shows a lower overall rmse than the
simple approach, but comparable results to the approach only distinguishing regional
clusters. For the months March and April, even the simple upscaling approach shows
lower rmse than the more detailed approaches. Analysis show, that this emerges from
one single control area and is an effect of reducing the amount of sites per class and
region by clustering with the detailed upscaling approach: In this specific control area,
some subregions are poorly covered with representative sites.

The average rmse and bias of upscaled measured and predicted PV power are displayed
in fig 6.13 and table 6.1 for each control area and for Germany. Here, all months January
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to December 2013 are included, and the upscaling rmse based on measured PV power
and CMV 2h forecasts are compared. For the single control areas, the rmse is between
2% and 3% of installed capacity for measured PV power, and between 3.5% and 4.1%
for CMV 2 hour forecasts. For overall Germany, the upscaling rmse is significantly
smaller than for the single control areas (1.8% and 2.8% for measured and predicted PV
power respectively). The bias error is between −0.35% and +1.6% for measured PV,
and between −0.9% and +1.6% for predicted PV power, depending on the control area.
Relative differences between the control areas are larger for upscaling based on measured
PV without the additional forecast error.

Evaluations indicate a good performance of the detailed upscaling approach compared
to RES feed-in time series. Some systematic deviations depending on the control area
evaluated appeared, potentially a consequence of not well matched information with
respect to the installed capacity per control area or subregion or the information on the
distribution of the PV systems.
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Figure 6.13.: Rmse (left) and bias (right) for the upscaling rmse for the different control
areas and for Germany, based on measured PV power (left columns) and 2 hour CMV
forecasts (right column) for the ’detailed’ upscaling approach. Dataset: Jan to Dec 2013,
upscaling based on 921 sites, 15 min. resolution, no restrictions with respect to solar
zenith angles.

Table 6.1.: Mean PV power feed-in and upscaling rmse for the control areas and Ger-
many with the detailed upscaling with respect to the RES feed-in time series as reference.
Dataset: Jan–Dec 2013, 15 min resolution, no restrictions with respect to solar zenith
angles.

Control Area Pmean Pinst rmse meas. bias meas. rmse forec. bias forec.
P/Pinst [GW] P/Pinst P/Pinst P/Pinst P/Pinst

50 hertz 20.4 % 6.72 1.91 % -0.33 % 3.45 % -0.74 %

amprion 20.1 % 7.67 2.01 % -0.08 % 3.77 % -0.59 %

Tennet TSO 18.3 % 13.90 2.48 % +1.50 % 3.41 % +1.46 %

TransnetBW 21.4 % 4.73 2.34 % +0.05 % 4.07 % -0.43 %

Germany 19.0 % 33.03 1.54 % +0.56 % 2.56 % +0.24 %
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6.5. Evaluation of regional PV power forecasts

In this section, the combination of PV power forecasts as developed in chapter 5 is
applied to regional forecasts, derived with the upscaling algorithm as developed in sec-
tion 6.4. In contrast to the section before, the forecast accuracy here is rated against
the projections of the regional power feed-in based on measured PV power, and not to
any external reference. To derive combined regional PV power forecasts, as a first step,
the upscaling algorithm is applied to the PV power measurements on the one hand and
individually on CMV, NWP and persistence forecasts on the other. The combination ap-
proach applied uses the configuration for regional forecasting according to section 5.2.2;
the representative dataset here consists of all 921 sites in the meteocontrol dataset ’C’.

The rmse for the 2 hour forecast horizon of the combined forecasts for each control area
and Germany is displayed in table 6.2. Is is given normalized to the installed capacity
per region and in absolute values. For comparison, the average PV power feed-in for
each control area is displayed. This average feed-in is in the range of 25.0% to 26.8% of
the respective installed capacity per control area for the annual average in 2013. The
regional forecast rmse is between 2.17% for Germany and 4.06% for the smallest control
area of TransnetBW. The normalized rmse gets smaller as the control area gets larger
with respect to the installed capacity. This is due to lower forecast rmse for larger areas
averaged and a higher benefit for the combined approach with increasing region size, as
stated in section 5.3. However, in absolute values, the forecast rmse increases with the
absolute installed capacity per control area.

The 5th and 95th percentile in table 6.2 of the upscaled regional 2h combined forecasts
indicates the magnitude of largest errors of the forecast approach shown. It enables an
estimation on the balancing energy needed in events of large forecast errors. Here, values
between 425 MW and 1.5 GW are found, depending on the magnitude of errors and the
installed capacity per control area. It is differentiated between positive and negative
errors, as over- or underestimations of the power affects the usage of control energy in
different ways and leads to different costs.

The Improvement Score relating the rmse of the combined forecasts to the rmse of the
NWP only-based forecasts is displayed in table 6.3. By this, the reduction of forecast
rmse achieved by i) CMV forecasts, ii) online measured PV power, and iii) combining

Table 6.2.: Accuracy of regional combined 2 hour forecasts for the control areas and Ger-
many, given in rmse normalized to the installed capacity and in absolute values. Dataset:
Jan–Dec 2013, upscaling based on 921 sites, 15 min resolution, no restrictions to solar
zenith angles.

Control Area Pmean Pinst rmse 2h forecasts percentiles [MW]
P/Pinst [GW] P/Pinst [MW] 5th 95th

50 hertz 25.2 % 6.72 3.23 % 217 -450 437

amprion 25.5 % 7.67 3.13 % 240 -476 528

Tennet TSO 25.3 % 13.90 2.61 % 363 -747 796

TransnetBW 26.8 % 4.73 4.06 % 192 -425 447

Germany 25.0 % 33.03 2.17 % 717 -1507 1582
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Table 6.3.: Impact of the forecast combination introduced in this thesis on the rmse, com-
pared to the NWP-only forecasts. Evaluated are regional forecasts with the upscaling
algorithm applied for each individual control area and Germany, for forecast horizons of 2
hours ahead. The forecast accuracy when using the combined forecasts with persistence,
CMV and NWP forecasts is compared to the combined forecast accuracy using CMV and
NWP forecasts only, or the persistence and NWP forecasts only. Dataset: Jan–Dec 2013,
upscaling based on 921 sites, 15 min resolution.

Control Area NWP combined (CMV,NWP) (pers,NWP)
rmse rmse IS [%] rmse IS [%] rmse IS [%]

50 hertz 404 MW 217 MW 44.0 248 MW 38.5 246 MW 36.5

amprion 422 MW 240 MW 40.8 262 MW 38.1 281 MW 30.6

Tennet TSO 710 MW 363 MW 46.7 416 MW 41.4 457 MW 32.8

TransnetBW 317 MW 192 MW 36.7 209 MW 34.0 222 MW 26.7

Germany 1.58 GW 717 MW 52.6 866 MW 45.1 888 MW 41.3

these forecast approaches is quantified. The contributions of each individual method
within the combined forecast approach on the overall accuracy of the regional combined
forecasts are additionally displayed; for these figures, the combined forecasts are applied
with using only two individual forecast approaches, as it was also shown in section 5.5.

The CMV forecast approach contributes a 34% to 45% improvement rated against the
NWP forecasts, the introduction of online measured PV power an improvement between
26% and 41%. Combining all three forecast approaches, the IS is between 36% for
the control area of TransnetBW and 52.6% for the area of Germany: Thus, an overall
reduction of forecast rmse to less than half of the NWP-based forecast rmse is achieved
by the methods introduced in this thesis.

6.6. Conclusion

In this chapter, an upscaling algorithm is introduced to derive regional projections from
single site measured or predicted PV power. Lacking a valid external reference, the
model development of the algorithm is done for a closed environment based on measured
PV power from the dataset used throughout the thesis. The differentiation of system
classes according to the installed capacity of the PV power plants and the clustering of
regions to smaller subsystems is beneficial for the upscaling accuracy. In general, with
the amount of sites in the representative dataset the upscaling error decreases, up to a
certain threshold for the amount of representative sites used. The actual configuration
of the classification depends on the dataset that has to be modeled and whether it is
applied to measured or predicted PV power.

With the findings displayed for the model development dataset, a configuration of the
upscaling approach applicable to the RES dataset is found. Evaluations against the
published power feed-in according to the RES act are performed. The upscaling of
measured PV power leads to a rmse of the power feed-in estimations between 1.7% and
3%, normalized to the installed capacity, depending on the control area evaluated. This
error can arise from several sources in the upscaling process, from the upscaling process
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itself on the one hand, and from insufficient quality of datasets included on the other.
Information like the regional distribution of PV sites or overall installed capacities in the
control areas are of fundamental importance.

This chapter concludes with an overview on the achieved reduction of forecast rmse
for regional forecasts by methods introduced in this thesis. Here the impact of using
satellite- and measurement-based forecasts compared to NWP-based forecasts only is
evaluated, based on predicted and measured PV feed-in for the different control areas.
A reduction of the rmse of up to 53% for the forecast horizon of two hours ahead is
observed, depending on the control area evaluated.



7. Conclusion and Outlook

Operation strategies of energy supply systems with a high share of photovoltaic (PV)
power require precise forecasts of the PV power feed-in. The research done in context
of this thesis contributes to an improvement of PV power forecasts for intraday market
applications. Forecasts developed result in a reduction of regional PV power forecasts’
root mean square error (rmse) of over 50% for 2 hours ahead in comparison to numerical
weather prediction models. By analyzing all parts of the PV power prediction system, a
detailed understanding of the processing steps is gained with respect to models involved
and data required. Throughout the research presented, model development and analysis
is done using 15 minute resolved measured PV power data for more than 1000 sites in
Germany. These are complemented by meteorological measurements of irradiance and
temperature. PV power forecasts investigated are based on solar irradiance forecasts,
an explicit physical irradiance-to-power conversion model and an upscaling approach to
derive regional projections based on single site forecasts.

It is shown that short-term irradiance forecasts of a few hours ahead are significantly
improved by a satellite-based approach using cloud motion vectors (CMV), Kühnert et
al. (2013) [60]. The CMV method leads to a reduction of forecast rmse up to four
hours ahead, compared to established numerical weather predictions (NWP). In general,
regionally averaged forecasts show significant lower rmse than forecasts for single sites.
Evaluations of irradiance forecasts are provided with respect to single sites and with
focus on all sites averages, dependent on different parameters such as the time of day or
seasonal changes. Limitations of the CMV method are observed for solar zenith angles
> 80◦ at forecast base time as satellite images in the visible spectral range are used. An
extension of the CMV algorithm to infrared satellite images is evaluated in context of a
joint research paper, Hammer et al. (2015) [66]: Forecast quality and availability in the
morning hours is improved.

The impact of PV power modeling on forecast accuracy is focused on in a next step. A
detailed investigation of the irradiance-to-power conversion by explicit physical modeling
is performed in Kühnert et al. (2015) [65] with respect to an optimization of models
applied and to an assessment of the impact of different input data quality and models’
configuration: PV power forecast accuracy is found to be rather insensitive to the use
of different plane-of-array irradiance conversion models. Best performance of PV power
simulation is found when using a parametric model adapted to historically measured
PV power and utilizing NWP temperature forecasts. However, statistical training by
a simple linear regression approach using measured PV power of a number of previous
days can mitigate the impact on PV power forecast accuracy of the PV efficiency model’s
configuration and of temperature information utilized. PV power forecasts evaluated
show similar characteristics to irradiance forecasts with respect to the performance of
the CMV approach compared to NWP forecasts and with respect to spatially averaged
compared to single-site forecasts.

93
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To derive forecast of power feed-in of all PV sites in an area, an upscaling approach
based on representative sites is developed and applied in this thesis. Lacking a valid
external reference of regional PV power feed-in, a closed environment for model devel-
opment is created. For an optimized projection of PV power feed-in, information on tilt
and azimuth angles of all PV sites contributing are implicitly deduced from available
datasets. Regional clustering of PV sites for regional forecasting has to be performed
with respect to the availability of representative sites, size of the clustered regions and
regional distribution of overall PV power capacities. To do so, information on the energy
systems’ configuration like distribution of PV sites and installed capacities is essential.

It is demonstrated in this thesis that the combination of PV power forecasts from NWP
or satellite data with online measured PV power shows high potential for forecast im-
provement. A method for forecast combination is developed based on a linear regression
approach trained with measured PV power from the previous days. This approach con-
tributes to a significant improvement of regional PV power forecasts and shows equal or
better performance compared to advanced pure statistical approaches, as shown in Wolff
et al. (2015) [86]. In general, the rmse of PV power forecasts strongly decreases when PV
power measurements are integrated directly or implicitly into forecasting. This is shown
by the reduction of systematic deviations using historical data and by improvement of
short-term forecast quality by the online integration of measured PV power.

Several topics for future research emerged from analysis in the context of this thesis:
Special weather conditions such as e.g. persistent fog are not well matched by the ir-
radiance forecasting approaches utilized. Here, potential is seen in the application of
satellite images from the infrared or other channels and by an enhanced integration of
PV power metering data. The presented satellite-based irradiance forecasting approach
can further be improved by the use of auxiliary data e.g. from NWP models or other
satellite-derived products. Irradiance forecasts in general can be enhanced by the appli-
cation of statistical methods as was for example shown for numerical weather predictions
in Brause (2015) [104]. Explicit physical PV power simulation used in this thesis can be
consistently replaced with pure statistical approaches or by the combination of physical
and statistical methods, see e.g. Wolff et al. (2015) [86]. Snow-covered PV modules add
further complexity and are subject to ongoing research: A correct estimation of snow
covering and melting is essential in winter months and strongly depends on the PV site
characteristics.

The assessment of uncertainty information for PV power forecasts is relevant to forecast
applicability: The risk of decisions based on forecasts can be assessed when information
on the expected uncertainty is delivered with the forecast. Here, several strategies exist,
like the use of ensemble forecasts from NWP providers or the application of analogue
ensembles based on statistics of historical forecasts. Probabilistic forecasts for the appli-
cation in PV power forecasting were initially analyzed in Przybilla (2015) [105]: From
this, the need of calibration of these ensemble forecasts with measurement data arose,
which will be focused on in following studies. The application of analogue ensembles for
wind power forecasts was subject to recent research by Junk et al. (2014) [54], a transfer
of methods developed to PV power forecasts is promising.

In general, all approaches presented rely on the availability of accurate information de-
scribing the energy system: Here, further development by improving e.g. system meter-
ing or data assessment of the energy grid characteristics can be beneficial and should
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be considered in future research. With the transition of the energy market and energy
grid operations, e.g. by a shift towards a high share of own consumption from indus-
tries or private households and with the integration of decentralized storage capacities,
fields of application of and requirements towards PV power forecasts changes. From this,
single site forecasts for an optimization of demand-side-management systems or loading
profiles of battery systems move into focus. Introducing these technologies changes the
characteristics of power feed-in and load profiles: Own-consumption reduces and changes
characteristics of PV power feed-in into the grid, storage capacities can contribute to re-
duce feed-in variability. For regional forecasts for energy market application, an adaption
of existing forecasting methods may be a consequence. PV power forecasting will remain
essential for grid operation strategies and gain relevance for future application and for
managing the feed-in of extending PV power generation capacities.
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A. Additional figures

A.1. Ambient temperature
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Figure A.1.: Comparison of mean, maximum and minimum ambient temperature as func-
tion of hour of day for daytime only and all-day temperatures. Dataset: Jan–Dec 2012,
35 sites, 1 hour resolution.

A.2. Diurnal variation of PV power clear sky index

k∗ = 0.75 k∗ = 0.3

Figure A.2.: Modelled k∗PV for fixed irradiance clear sky index k∗ values in dependence
on the hour (UTC) for the data set for 12 days a year (each 21st) and for 150 sites with
φ < 30◦ and variating tilt angles β.
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A.3. Validation of persistence approaches

Table A.1.: Variation of the persistence approach within the combined forecast, with dif-
ferent persistence configurations and variation of the ambient temperature input.

persistence for single sites’ and averages with/without linear regression (fig. A.3)

single persistence for single sites

single + lr persistence for single sites with linear regression (’lr’) applied

averaged(single) spatially averaged single sites’ persistence

averaged(single+lr) spatially averaged single sites’ persistence with (’lr’) applied

averaged(single)+lr spatially averaged single sites’ persistence with (’lr’) applied afterwards

input variation for persistence forecast (fig. A.4 left)

persistence according to section 5.1.2, with k∗
PV from last measurement

1 hour average with k∗
PV averaged over preceding hour at forecast origin

smart persistence smart persistence approach with averaged k∗
PV over same

preceding period as forecast horizon

without clear sky persistence not calculated with clear sky model, Pmeas at
forecast origin adapted by combination

regional pers. persistence calculated based on all sites’ averages for Pmeas and Pclear

smart regional pers. smart persistence based on all sites’ averages of Pmeas and Pclear

input variation for persistence forecast (fig. A.4 right)

pers Pclear(TNWP ) Persistence with Pclear based on NWP temperature forecast TNWP

pers Pclear(Tclim) Persistence with Pclear based on climatology temperature Tclim

pers Pclear(Tclear) Persistence with Pclear based on clear sky temperature Tclear [106]

pers Pclear,fit(Tclim) Persistence with Pclear,fit with fitted system parameters and TNWP

input variation for combined forecast (fig. A.5)

(pers,CMV,NWP) Combination of persistence, CMV and DWD-ECMWF-combined forecasts

(pers,[CMV,NWP]) Combination of persistence and CMV-DWD-ECMWF-combined forecasts

(pers,CMV,NWP)+lr same as (pers,CMV,NWP) with lr applied individually beforehand

(pers,NWP) persistence and DWD-ECMWF-combined forecast without CMV forecasts
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Figure A.3.: Improvement Score IS(pers, CMV ) referring to single site (dashed lines) and
spatial averages (solid lines), in reference to CMV forecasts; Dataset: May–Nov 2013, 921
sites, 15 min resolution.
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Figure A.4.: Variation of the persistence approach as included in the combined forecast
regarding the persistence approach (left) and the ambient temperature impact in Pclearsky

(right), referring to table A.1 Displayed is the IS(combi,CMV) of the combined forecast
with variations compared to the CMV forecast for forecast horizons from one to five hours
ahead. Dataset: May–Nov 2013, 921 sites, 15 min resolution.
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Figure A.5.: Different realizations of the combined forecast with respect to the input data
(see table A.1), forecast rmse (left) and IS compared to the original combined forecast
(right). Dataset: May–Nov 2013, 921 sites, 15 min resolution.
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