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1 Introduction

The necessity of measuring wakes in offshore wind farms and the advantage of
applying LIDAR technique will be motivated in Section 1.1. After that, the scope
of the master thesis work will be clarified in the research question statement in
Section 1.2. For a better understanding of the master thesis, background theory on
the wake effect and LIDAR technique will be presented in Section 1.3.

1.1 Motivation

The wake effects in wind farms can decrease total power output by 10-20% [3]. On a
larger scale, merged wakes of complete wind farms can affect the energy production
of downstream wind farms negatively. Developing a better knowledge of wakes will
enable a wind farm layout optimization for power output and an improved design
of wind turbines. Since sites allocated for offshore wind farms are generally close
together, the layout optimization should take into account the influence of nearby
wind farms in the estimation of the annual energy yield. This makes wakes not only
relevant for wind energy research, but also for the industry.

Nowadays most wake models are validated by power measurements in wind farms
[21]. For the improvement of wake models, a more sophisticated method is needed,
ideally the measurement of the wind speed and direction inside the wind farm wakes
itself. Standard anemometry (e.g. cup or sonic anemometers) applied to measure
wakes is not flexible, because these devices can only measure at one point in space.
Also, the offshore installation requires considerable extra effort.

The use of LIDAR scanning technique in offshore wind farms offers several advan-
tages. In particular:

• LIDARs are able to execute scans over a long range that can cover a large part
of a wind farm in a few minutes time. In other words, they can describe the
spatial evolution of single or multiple wakes. This cannot be established by
one-point measurements.

• When synchronized, two or three LIDARs can enable the direct evaluation of
2D and 3D wind fields, respectively.

• Since LIDARs can be placed on existing platforms, such as wind turbine
foundations and transformer platforms, there is no need to invest in additional
expensive offshore support structures.

For these reasons, the application of measurements with multiple LIDARs scanning
the same region in an offshore wind farm is a present-day research topic. In recent
research, wakes of wind turbines have been characterized by means of both RADAR
[14] and LIDAR [15]. In both of these cases, land based wind turbines were investi-
gated. The research was based on algorithms able to calculate a multi-dimensional
wind field from the radial measurements provided by the applied instruments. The
measurement setup was carefully optimized according to the requirements of the
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algorithms used. Because the location of LIDARs in an offshore wind farm usually
cannot be chosen freely, the measurement setup is not optimized for the application
of any algorithms.

1.2 Research Question Statement

In this master thesis, a LIDAR measurement data processing algorithm will be de-
veloped that is able to produce a steady, 10-minute average, 2D wind field from data
supplied by multiple LIDARs scanning the same region of an offshore wind farm.
The main goal is to characterize wind turbine wakes within the wind farm.

Existing Multiple-Doppler LIDAR data processing algorithms will be studied and
adjusted in order to be applied under the mentioned prevailing sub-optimal con-
ditions of an offshore environment. A vital part of the research is to indicate the
circumstances under which the developed algorithm can or cannot be applied with
sufficient accuracy of the resulting wind field.

The algorithm will be applied to the measurements taken by the Multiple-Doppler
LIDAR system installed by ForWind - University of Oldenburg in the »alpha ven-
tus« wind farm in order to describe steady wakes inside the wind farm. From 2D
wind fields evaluated by the algorithm, horizontal wake profiles will be extracted at
multiple distances downstream of the wind turbine. The wake profiles will eventu-
ally be compared to a wake model generated by the program FLaP [19], which is
based on the steady Ainslie wake model [2].

1.3 Background Theory on Wakes and LIDAR

To have a better understanding of the master thesis work and the issues involved,
basic knowledge about the subject is required. Therefore, this chapter provides
explanations on both wind turbine wake theory and LIDAR scanning technique.
For more details, it is advised to read [7] and [24], respectively.

1.3.1 Wake Theory

Wind turbines are used to generate electricity by extracting energy from the wind.
This means that the wind downstream of an operational turbine must have less en-
ergy than the wind upstream of the same turbine [12]. Since the energy extracted
is kinetic energy, the velocity of the wind is decreased after passing through the
turbine. As the wake moves away from the wind turbine, it expands, mixes with the
ambient flow and recovers. Especially when constructing a wind farm, it is impor-
tant to know how large the velocity deficit in a wake is and how long it takes before
the wake recovers. Wakes can still be present at a distance of 10-15 wind turbine
diameters downstream of a turbine. The shape and behavior of a wake is highly
dependent on:

• The ambient turbulence
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• The atmospheric stratification and vertical velocity profile

• Wind turbine thrust coefficient

• Wind turbine yaw misalignment

Multiple different engineering wake models exist, with varying complexity and ac-
curacy. Most of these models rely on empirical approaches to calculate the velocity
deficit of the near wake, the wake width development and the effects on the turbu-
lence intensity. Some of these models include fluid dynamics considerations. These
engineering wake models are interesting, because they have lower computational
needs than a full CFD simulation of a wake. Three examples are given here:

• Jensen [16] - This model assumes a linear wake expansion and approximates
the velocity deficit as a function of distance downstream of the turbine. The
velocity deficit is assumed to be constant within the wake width and therefore
a discontinuity is found at precisely the wake width. Because the simplicity
and linearity of this model, it can be used to model wake effects of a complete
wind farm by using superposition of the velocity profiles for single turbines.

• Frandsen [11] - This model uses an exponential function to approximate the
wake width as a function of downstream distance and then estimates the ve-
locity deficit. Like the Jensen model, the velocity deficit is assumed to be
constant within the wake width and a discontinuity occurs. The method is
specifically developed to model the multiple wake of a wind farm.

• Ainslie [2] - This model combines empirical estimations of the wake width
and center line velocity deficit with a simplified Navier-Stokes equation and
the continuity equation from fluid dynamics [18]. Initially a Gaussian veloc-
ity deficit profile at a distance of 2 turbine diameters downstream is assumed,
with a linear wake expansion and wind speed recovery. Then, the fluid dy-
namics equations are iteratively solved to calculate a 2D wake wind field. The
model will converge in approximately 5 to 10 iterations.

1.3.2 Doppler LIDAR Scanning Technique

The abbreviation LIDAR stands for ‘light detection and ranging’. With this remote
sensing technique, aerosols (tiny particles) in the air are used to reflect an emitted
laser beam [24]. These particles are assumed to have the same velocity as the wind
itself. A schematic view of this principle can be observed in Figure 1.1.
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Figure 1.1: Schematic view of the basic LIDAR principle.

The speed of these particles, thus the wind speed, causes the frequency of the laser
light to change according to the Doppler effect:

fr = fe

(
1 + 2

vLOS

c

)
(1.1)

Note that the Doppler shift only applies to the line-of-sight wind speed component
vLOS . In the formula, fe and fr are the emitted and reflected light frequencies, re-
spectively and c is the speed of light. Because light frequencies are high (infra-red
has frequencies in the range of 1012 Hz) and the wind speed is relatively low com-
pared to the speed of light, the frequency shift is hard to determine if the two signals
are evaluated separately. For this reason, the difference of the emitted and reflected
signal is computed. The resulting signal then has a frequency proportional to the
Doppler frequency shift. This phenomenon is called the ‘beat’ frequency (see Fig-
ure 1.2). A Fast Fourier Transform (FFT) can be applied on this signal in order to
determine the frequency shift and thus the wind speed.
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Figure 1.2: Determination of frequency shift with the beat effect.

In Figure 1.2, two arbitrary signals with frequencies 50 and 53 Hz are shown. The
difference of these two signals is plotted and a new signal (green curve) with a
frequency of 1.5 Hz, half of the difference, can be seen.

4



Note that on average, for each 106 photons emitted by the laser, only 1 is reflected
back. Since the noise level is high, it is not sufficient to calculate the frequency shift
by the FFT of just one sample. Therefore, the FFT is evaluated for hundreds of
samples and the resulting spectra are averaged. In this way, the Doppler peak which
characterizes all samples can be identified easily.

Frequency

P
ow

er
 s

pe
ct

ru
m

A
1

A
2

 

 

Noise level
Signal peak

Figure 1.3: Averaged frequency spectrum example.

Figure 1.3 illustrates an example of an averaged frequency spectrum, with the signal
peak and the noise level defined by colored areas. Randomly generated data was
used to make this plot. To assess the quality of a measurement, the Carrier-to-Noise
Ratio CNR is defined with Equation 1.2 [23]. It is measured in the unit dB. This
signal will be used as a selection criterion for measurement data further on in the
report.

CNR = 20 log10

(
A1

A2

)
(1.2)

There are two main categories of LIDAR scanners:

1. Continuous wave LIDARs: A continuous signal is emitted and reflected mainly
around the focus point. Although aerosols located at any point on the line-of-
sight will reflect part of the signal, the contributions of the distances far away
from the focus point are insignificant.

2. Pulsed LIDARs: Laser pulses with time lengths in the order of hundreds of ns
are emitted. Since the signal is not reflected at a uniquely determined distance
but over the whole line-of-sight, the pulses appear elongated when received
back. The return signal can be cut into time domains, of which the time of
flight can be calculated. Because the speed of light is a constant, these time
domains directly correspond to different ranges, i.e. locations of reflection.
For each pulse, the vLOS can therefore be estimated at multiple ranges on the
line-of-sight.
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Most LIDARs point the laser beam with a top piece that can be rotated around two
axes or an internal rotating mirror. The direction of the laser beam can be described
by two angles; the azimuth angle χ and the elevation angle δ. The azimuth angle is
either measured clockwise positive from the north (geographical reference frame)
or anti-clockwise positive from the x-axis (Cartesian reference frame). They are
referred to as χ and χC, respectively. See the relation between these two angles in
Equation 1.3. The azimuth is measured in a horizontal plane. The elevation is the
angle measured upwards from the horizontal plane.

χC =
π

2
− χ (1.3)

The basic remote sensing principle for LIDAR is that it evaluates the line-of-sight
velocity vLOS , which is actually a one-dimensional projection of the real wind vector
V . In Figure 1.4, a 2D plane is shown with one LIDAR measurement taking place.
The line-of-sight velocity measurement, the total wind vector and the components u
and v are indicated. The direction of the wind vector is θ. On the right, the LIDAR
formula is shown.

Figure 1.4: Top view of the geometry of a LIDAR measurement.

For a 3D wind vector evaluation, three measurements are needed. The elevation δ
is introduced and the LIDAR formula reported in Figure 1.4 changes to:

vLOS = cos(χC) cos(δ)u + sin(χC) cos(δ)v + sin(δ)w (1.4)

The velocity components u, v and w can be evaluated with multiple vLOS measure-
ments of either one LIDAR or multiple LIDARs. The way in which this is done,
depends on the purpose of the measurement. Different LIDAR types exist to accom-
modate different scanning methods. An overview of common scanning methods is
stated here:
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• PPI (Plan Position Indicator) - This scan has a fixed elevation angle and a
varying azimuth angle. This is often used by pulsed LIDARs with a very low
elevation to make a horizontal plane scan.

• RHI (Range Height Indicator) - This scan has a fixed azimuth angle and a
varying elevation angle. This type of scan can be used for establishing a
vertical wind profile.

• VAD (Vertical Azimuth Display) - This scanning method is actually based
on a PPI with a high elevation (mostly δ = 60◦). A continuous LIDAR is
generally used for this scan. It takes vLOS measurement along a circle in
a horizontal plane and fits a squared sine curve through the measurements.
The wind speed and direction can be derived from the sinusoid. The time
resolution is generally 1 second. Because this scan combines measurements
taken at different locations at different moments in time, the wind field is
assumed to be homogeneous and steady.

• DBS (Doppler Beam Swing) - Similar to the VAD, but it only takes four
measurements at the cardinal positions (north, east, south, west). Again, a
homogeneous and steady wind field has to be assumed. A DBS is normally
executed with a pulsed LIDAR, such that a 3D wind vector can be established
simultaneously at multiple altitudes.

Figure 1.5: Schematic view of a VAD scan
[23].

Figure 1.6: Schematic view of a DBS scan
[23].
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2 Multiple-LIDAR Wind Field Evaluation Algorithm

This chapter describes the development, verification and validation of the Multiple-
LIDAR Wind Field Evaluation Algorithm, abbreviated as MuLiWEA. The devel-
opment consists of three parts:

• Section 2.1 will describe the methodology of the MuLiWEA.

• Section 2.2 contains the estimation of the measurement errors on the LIDAR
system and the numerical errors associated with the MuLiWEA processing.
This way, the LIDAR data and the MuLiWEA can be verified.

• Section 2.3 clarifies how MuLiWEA is validated by applying the algorithm
on simulated LIDAR measurements made in a simulated wind field and then
comparing the evaluated wind field to the simulated one.

2.1 Methodology

Different existing algorithms were studied to establish a best way to process the
Multiple-Doppler LIDAR data in order to characterize wake effects. Simplifications
and adjustments were imposed on the algorithms to be able to apply MuLiWEA on
the available measurement data with the limitations mentioned in Chapter 1. The
most important algorithms considered for establishing the MuLiWEA are 2D ver-
sions of the algorithm as explained by Chong [8] as the Quad-Doppler wind syn-
thesis and the Multiple-Doppler Synthesis and Continuity Adjustment Technique
(MUSCAT) by Bousquet [5], [6], [10]. These techniques are developed to be ap-
plied on airborne RADAR measurements for meso-scale atmospheric wind analy-
sis. For the application on wakes in wind farms, the methodology will be adjusted
accordingly.

The basic scope of any Multiple-Doppler algorithm is to generate a local wind speed
vector [u v w] based on the line-of-sight speed vLOS measured along different direc-
tions in a well defined control volume by different LIDARs. In the scope of this
master thesis, the vertical wind speed w is assumed to be zero. This means that a
2D wind vector [u v] will be generated. The approach is based on a geometrical
wind vector evaluation, but has a adjustment imposed by the continuity equation.

2.1.1 Underlying Assumptions of MuLiWEA

It is important to note that several assumptions had to be made in order to establish
the algorithm and apply it to this specific research. They are listed and explained
below:

1. The vertical speed w is neglected. This is a reasonable solution to a practical
issue; the elevation angles with which the LIDARs measure, are too low to be
able to retrieve a vertical wind speed component larger than the noise level.
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The validity of this assumption is expected from neutral atmospheric strat-
ification. Its application outside from this condition should be treated with
care.

2. It is assumed that the continuity equation can be applied in the horizontal
plane. It means that there is no transport of momentum in the z-direction.
This assumption is actually a direct consequence of the previously mentioned
one.

3. For the continuity equation, density fluctuations are neglected. Because of
the low wind speeds, incompressible flow is a valid assumption. However,
density changes could be caused by the varying humidity of the air above a sea
surface. These effects cannot be measured and are considered insignificant to
the research.

4. The MUSCAT [6] algorithm implements a filter function which smooths large
spatial variations in the wind fields. Namely, the MUSCAT is applied to
meso-scale wind fields, where the mentioned variations are not expected.
When a wind field contains wakes, these variations do occur and therefore
the filtering feature has not been implemented in MuLiWEA.

Applying these assumptions, it is possible to evaluate the horizontal wind vector
on a regular grid which covers the region where the PPI scans measured by two or
more LIDARs overlap within a restricted altitude interval.

2.1.2 Geometrical Wind Vector Evaluation

According to the first assumption made in the previous subsection, the LIDAR equa-
tion can be simplified to the following for any measured point k in space:

sin(χ) cos(δ)u + cos(χ) cos(δ)v = vLOS (2.1)

This equation considers the azimuth (χ) and elevation (δ) angles of a LIDAR, to
express the measured line-of-sight speed (vLOS ) in the horizontal speed components
u and v. Note that the azimuth angle is expressed in the geographical reference
system. Theoretically, one measurement from each of two different LIDARs - mea-
suring with different azimuth angles - per grid point p would create a linear set of
equations that could solve for the 2D wind vector. In practice, this is not applicable
to overlapping PPI scans: Because of the nature of this scanning strategy, the mea-
surements of the two considered LIDARs cannot be synchronized in time and space
at the grid points p. Therefore, a specific way of interpolation will be a vital part of
the algorithm. To decrease the error, multiple measurements will be considered to
get an estimate for the wind speed vector at a grid point p. With this in mind, the
algorithm finds its essentials in the Quad-Doppler wind synthesis by Chong [8].

The sequential steps of evaluating the wind vector is explained below:
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• Sets with 10 minutes of measurement data of two overlapping PPI LIDAR
scans are considered. A Cartesian grid is generated on the area where the
scans overlap. In other words, data sets are selected according to a specific
time and space domain. For convenience, the grid has two ways of indexing.
Consider the grid size m-by-n. Points are indicated by the indexes (i, j). For
numerical computations explained later, it is vital to define a one-dimensional
index p = i + ( j− 1)m which counts the grid points from 1 till mn. Figure 2.1
illustrates the two ways of grid indexing.
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Figure 2.1: Indexing of the grid with index i, j (left) and index p (right) for m = 4, n = 6.

• Around each grid point p, a circle with radius of influence R is drawn. Each
measurement point k within this circle - regardless from which LIDAR - is
taken into account in the calculation of the wind speed vector at that grid
point. The number of measurements taken into account at grid point p is
called K. Figure 2.2 shows a Cartesian grid with an arbitrary grid point p
and a red circle with radius of influence R drawn around it. For an illustrative
purpose, six measurements from each of two LIDARs are contained within
the circle in this figure. Measurements outside of this circle are not visualized.

Figure 2.2: Schematic view of a Cartesian grid and the LIDAR measurement selection
around grid point p.
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• For convenience, the geometrical parameters α and β are defined:

α = sin(χ) cos(δ)
β = cos(χ) cos(δ)

(2.2)

This way, Equation 2.1 can be written in a shorter form:

αu + βv = vLOS (2.3)

• A linear system is established for each grid point p, which takes into account
all measurements K within the circle with radius R. See Equation 2.4:


K∑

k=1

(α2
kwk)

K∑
k=1

(αkβkwk)

K∑
k=1

(αkβkwk)
K∑

k=1

(β2
kwk)


p

[
u
v

]
p

=


K∑

k=1

(αkwkvLOS k)

K∑
k=1

(βkwkvLOS k)


p

(2.4)

The matrix equation basically consists of two lines, which are both a weighed
sum of Equation 2.3: The first line is made by multiplying all terms with
α, then summing over the measurement points. The second line follows the
same logic, but with β as factor. As can be seen, each measurement is also
weighed with the parameter w, which is the product of the two weighing
functions w f and wL. The factor w f is the Cressman function, which assigns a
weight based on distance from the grid point. The factor wL is a weight on the
LIDAR, which makes sure that contributions from multiple LIDARs are the
same, regardless of a possible difference in number of measurements available
per LIDAR in the circle of influence around the grid point p. An elaborate
explanation of the two weighting functions can be found in Appendix A.

• A crucial step for the benefit of the numerical computation time is the creation
of a large matrix which evaluates the wind vector at all grid points simulta-
neously. The grid size is m-by-n, such that the total amount of points p is
mn. The numbering of points p on the grid is explained in Figure 2.1. Instead
of writing the 2-by-2 matrix equation for each point p, it is possible to make
a sparse 2mn-by-2mn matrix M. The wind speed column vector U is now
defined, which contains all mn entries for u and sub-sequentially the same
amount of entries for v. The four entries of the matrix in Equation 2.4 will
each be a diagonal with length mn on the sparse matrix M. A vector Q with
length 2mn is defined, containing the terms from the vector on the right side
of the equal sign in Equation 2.4.

The new linear equation can be written as:

M · U = Q (2.5)

With:
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U =



u1
...
...

umn

v1
...
...

vmn


, Q =



K∑
k=1

(αkwkvLOS k)1

...

...
K∑

k=1

(αkwkvLOS k)mn

K∑
k=1

(βkwkvLOS k)1

...

...
K∑

k=1

(βkwkvLOS k)mn



(2.6)

The sparsity structure of matrix M is shown by Figure 2.3. It can be seen that this
matrix contains one sub-diagonal in each of the four quadrants. Each of these sub-
diagonals represents one of the four values inside the matrix in Equation 2.4 for all
grid points p.

Figure 2.3: Sparsity structure of matrix M for a grid with m = 4, n = 6.

2.1.3 Continuity Equation Implementation

The idea of using a constraint for continuity and the way of implementation are
extracted from the MUSCAT [6]. The continuity equation expresses the principle
of the conservation of mass. When considering an infinitesimal volume of air, it has
to be established that the mass that flows into this volume is equal to the mass that
flows out. With neglecting variations in air density and the vertical speed, the 2D
continuity equation in differential form can be written as [18]:
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∂u
∂x

+
∂v
∂y

= 0 (2.7)

A numerical approximation for these derivatives can be applied on the domain of
points p and included to the matrix system. The central difference scheme is used
where applicable. That is, only on the boundaries of the grid there is a point missing,
such that either upward or downward schemes are used. The numerical approxima-
tions for the derivatives are displayed in Table 2.1. The index (i, j) corresponds to
the position on the Cartesian grid as indicated by Figure 2.2.

Derivative Upward Central Downward
∂u
∂x

ui, j+1 − ui, j

∆x
ui, j+1 − ui, j−1

2∆x
ui, j − ui, j−1

∆x
∂v
∂y

vi−1, j − vi, j

∆y
vi−1, j − vi+1, j

2∆y
vi, j − vi+1, j

∆y

Table 2.1: Numerical approximations for the derivatives.

The numerical approximation of the continuity equation in this form can be added
to the linear system established so far. It is chosen to add the set of linear equations
to the system, which results in an over-determined linear system. This will make the
linear system more robust. The motivation for this structure is that the basic system
is sensitive to scarce amounts of data in the region of interest, the uncertainty of the
measurements and the azimuth angle difference in the line-of-sight of the points k
in the control volume.

By adding a part representing the continuity equation to matrix M, a new matrix
MC is generated with size 3mn-by-2mn. The amount of unknown variables remains
2mn, leaving the vector U unchanged. The vector QC is established by adding an
amount of mn zeros to vector Q. The new linear equation is illustrated by Equation
2.8:

MC · U = QC (2.8)

Solving this system with MATLAB, it performs a minimization of the squared error
on the solution. The sparsity pattern of the matrix MC in the final linear system is
depicted in Figure 2.4. The pattern of the part of the matrix that corresponds to the
continuity adjustment is a consequence of the used numerical differential schemes
and the boundary conditions, combined with the specific grid indexing.
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Figure 2.4: Sparsity structure of matrix MC for a grid with m = 4, n = 6.

2.2 Error Analysis

In this chapter, the error on LIDAR measurements and the propagated numerical
error that is imposed by the algorithm will be evaluated. The three basic accuracies
of the specific LIDAR system are needed:

1. The accuracy on the measured line-of-sight component of the wind speed,
εvLOS .

2. The pointing accuracy for elevation angle, eδ.

3. The pointing accuracy for azimuth angle, eχC .

The goal of the analysis is to estimate the maximum error on the absolute evaluated
wind speed V . It is done in three steps:

1. First the total maximum expected error on the line-of-sight velocity (evLOS ) has
to be estimated. This is a function of the accuracy (εvLOS ) and also includes
the influence of the azimuth and elevation accuracy.

2. After that, it is calculated how the line-of-sight velocity error (evLOS ) propa-
gates in the numerical scheme that determines the wind speed components u
and v. The numerical error propagation is calculated according to the JCGM
standard [1].

3. Finally, the error on the absolute wind speed V can be determined.
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2.2.1 Total Measurement Error

Note that a measured value of vLOS is a projection of the real wind speed. The
total error in this measurement is not only composed of the accuracy εvLOS , but also
depends on the uncertainty in the δ and χ angles. That is, there is an uncertainty in
the velocity itself and also in the precise wind vector projection. Consider vLOS as a
projection of V and see Figure 2.5:

vLOS = | cos(θ − χC) cos(δ)V | (2.9)

Figure 2.5: Measuring vLOS as a projection of V, top view.

Note that in this chapter the azimuth angle in the Cartesian frame (χC) is used, rather
than the one in the geographical frame (χ). These are explained in Section 1.3.

Two partial derivatives can be calculated to be used in the formula for the total
measurement error [1]:

evLOS =

√
ε2

vLOS
+

(
∂vLOS

∂χC
eχC

)2

+

(
∂vLOS

∂δ
eδ

)2

(2.10)

2.2.2 Numerical Error

Because of the specific way of interpolation of measurement data used and the in-
clusion of the correction for continuity, a numerical error propagation of the MuLi-
WEA cannot be done in a straight-forward manner. Therefore a simplified method
is used in order to do the evaluation.

It is assumed that only one measurement from each of two LIDARs is used to eval-
uate the wind vector at a specific grid point. Two unknowns (u and v) can be ex-
pressed with two linear equations by the simple matrix system:

[
cos(χC1) cos(δ1) sin(χC1) cos(δ1)
cos(χC2) cos(δ2) sin(χC2) cos(δ2)

] [
u
v

]
=

[
vLOS 1

vLOS 2

]
(2.11)
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This is based on the LIDAR formula (see Section 1.3) for two different measure-
ments. From the matrix equation, the wind speeds u and v can be evaluated directly:

u =
cos(χC1) cos(δ1)vLOS 2 − cos(χC2) cos(δ2)vLOS 1

cos(χC1) cos(δ1) sin(χC2) cos(δ2) − sin(χC1) cos(δ1) cos(χC2) cos(δ2)
(2.12)

v =
sin(χC1) cos(δ1)vLOS 2 − sin(χC2) cos(δ2)vLOS 1

sin(χC1) cos(δ1) cos(χC2) cos(δ2) − cos(χC1) cos(δ1) sin(χC2) cos(δ2)
(2.13)

Now it is necessary to derive a numerical error on u and v, which will be regarded
to as eu and ev. They are both functions of all the errors associated with measured
variables, i.e. the measured line-of-sight velocities and the azimuth and elevation,
according to the JCGM standard for uncertainty calculations [1].

[eu, ev] = f (evLOS 1
, evLOS 2

, eχC1
, eχC2

, eδ1 , eδ2) (2.14)

eu =

√(
∂u

∂vLOS 1

evLOS 1

)2

+

(
∂u

∂vLOS 2

evLOS 2

)2

+

(
∂u
∂χC1

eχC1

)2

+

(
∂u
∂χC2

eχC2

)2

+

(
∂u
∂δ1

eδ1

)2

+

(
∂u
∂δ2

eδ2

)2

(2.15)

ev =

√(
∂v

∂vLOS 1

evLOS 1

)2

+

(
∂v

∂vLOS 2

evLOS 2

)2

+

(
∂v
∂χC1

eχC1

)2

+

(
∂v
∂χC2

eχC2

)2

+

(
∂v
∂δ1

eδ1

)2

+

(
∂v
∂δ2

eδ2

)2

(2.16)

In the uncertainty calculations for eu and ev, twelve partial derivatives are intro-
duced. The equations for these derivatives are included in Appendix C.

Lastly, the error on the absolute wind speed V is established as:

eV =

√
e2

u + e2
v (2.17)

A plot of the error eV can be observed in Figure 2.6. To calculate it, an accuracy of
εvLOS = 1 m/s is assumed. The other accuracies are neglected. The error is plotted
as a function of the azimuth angle difference ∆χ = |χ1 − χ2|.
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Figure 2.6: The error eV as a function of azimuth angle difference ∆χ.

This is done to demonstrate one of the most important findings of the error analysis:
The error on the absolute wind speed blows up when two LIDARs are measuring
along an identical line-of-sight, i.e. when ∆χ = 0◦ or ∆χ = 180◦. When this
occurs, both LIDARs are actually producing the same single measurement, making
it impossible to evaluate a 2D wind speed vector. The minimum error is reached
when LIDARs are pointing under a relative angle of ∆χ = 90◦ or ∆χ = 270◦.
Actually, in these cases the error is equal to the only accuracy considered, the εvLOS

of 1 m/s. Note that the eV-axis has a logarithmic scale.

2.2.3 Additional Notes

The performed error analysis method is applied on a calculation scheme different
from MuLiWEA itself. Although it is able to estimate a comparable structure of the
error, the values do not have a particularly high accuracy because of the following
shortcomings:

• The error method does not estimate the effect of the specific methods used
for interpolating and averaging a set of multiple measurements for one grid
point. This could either have positive or negative effects on the error.

• It does not estimate the effect introduced by the continuity equation and thus
having an overdetermined linear system. This part of the algorithm is ex-
pected to decrease the error.

• It does not include the fact that the 2D LIDAR measurements are not syn-
chronized, neither in time nor space. This is expected to increase the expected
error in case the wind field is not steady.
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2.3 Validation of the MuLiWEA

The Multiple-LIDAR Wind Field Evaluation Algorithm is validated by comparing
the two following wind fields with each other:

• A 10-minute average of a set of simulated 3D wind fields, calculated by the
large eddy simulation code PALM [22], describing a single, steady wake, with
a resolution of 4 m in all dimensions and a time resolution of 0.4 s.

• The 2D wind field generated by MuLiWEA, applied on 10 minutes of sim-
ulated LIDAR measurements within the simulated wind field. A simulation
script for virtual LIDAR measurements developed at ForWind is used for this
purpose.

The wake of a turbine with diameter D = 62 m and hub height hh = 61 is simulated.
The free-stream has a velocity of 9 m/s at hub height and comes from the west.
Only the near wake is studied, i.e. the part from the location of the turbine to three
turbine diameters downstream.

First the structure of the validation method is presented in Subsection 2.3.1. After
that, a comparison between the two mentioned wind fields is made in Subsection
2.3.2. Then, a more quantitative analysis is executed based on the mean absolute
error in Subsection 2.3.3. The continuity part of the MuLiWEA is treated separately
for the validation afterwards in Subsection 2.3.4. Finally, the validation is concluded
in Subsection 2.3.5.

2.3.1 Validation Structure

The simulated wind field is three-dimensional. LIDAR measurement simulations
are set up in this volume to make multiple PPI scans. Simulations are done for three
LIDARs, placed at different locations, with each of them scanning five PPI planes
with different elevations. The LIDAR trajectory parameters of these simulations
can be observed in Table 2.2. The letters g, b and r in the first column correspond
to the colors green, blue and red, which will later be used in figures to indicate the
different LIDARs.

Table 2.2: LIDAR simulation trajectory parameters.

Azimuth Elevation Range
LIDAR χ [◦] δ [◦] r [m]

Min Step Max Min Step Max Min Step Max
1 (g) 50 0.5 80 2.50 1.25 7.50 400 10 850
2 (b) 100 0.5 130 2.50 1.25 7.50 400 10 850
3 (r) 230 0.5 260 2.50 1.25 7.50 400 10 850

To test the algorithm, different horizontal planes can be evaluated by selecting LI-
DAR measurements in the altitude range [h−∆h , h+∆h] around the height h. Three
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heights h are regarded in this analysis. Six cases are set up, combining three differ-
ent altitude selections with two different dual-LIDAR setups. Two additional cases
(7,8) are based on case 1 and evaluate the influence of blind spots and course data,
respectively. Each of the cases is characterized with the selection of the LIDARs
and the measurement plane height in Table 2.3. Here, hub height is indicated by
h = hh. Furthermore, the parameter ∆χ is used to indicate the difference in azimuth
between two LIDARs.

Table 2.3: LIDAR simulation cases description.

Case LIDARs ∆χ [◦] h [m]
1 1 (g) and 2 (b) 50 hh
2 1 (g) and 2 (b) 50 hh + 0.5D/2
3 1 (g) and 2 (b) 50 hh + 0.9D/2
4 1 (g) and 3 (r) 180 hh
5 1 (g) and 3 (r) 180 hh + 0.5D/2
6 1 (g) and 3 (r) 180 hh + 0.9D/2
7 1 (g) and 2 (b) 50 hh
8 1 (g) and 2 (b) 50 hh
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Figure 2.7: Plane altitude of
cases 1,4,7,8.
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Figure 2.8: Plane altitude of
cases 2,5.
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Figure 2.9: Plane altitude of
cases 3,6.

The different plane altitude selection are illustrated by Figures 2.7-2.9. They show
the wind turbine swept area in blue, the height h is indicated with a black line and
the red lines indicate h − ∆h and h + ∆h. In the plots, an arbitrary value for ∆h is
chosen for illustrative purpose.

Top views of the simulated LIDAR PPI scans can be observed in Figures 2.10-2.13.
Large black dots indicate LIDAR positions. The black continuous line encloses
the sector in which the PPI is executed. The approximate location of the wake is
indicated by a black dashed line. The locations of measurement points are scattered
in two distinct colors, corresponding to the color codes in Tables 2.2 and 2.3.
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Figure 2.10: Simulated measurement point scatter of cases 1,2,3 in the validation.
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Figure 2.11: Simulated measurement point scatter of cases 4,5,6 in the validation.
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Figure 2.12: Simulated measurement point scatter of case 7.
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Figure 2.13: Simulated measurement point scatter of case 8.

Figures 2.10 and 2.11 illustrate the optimal and non-optimal Dual-LIDAR setup,
respectively. The effect of two LIDARs measuring the wind velocity in the same
line-of-sight (∆χ = 180◦) on the numerical error was explained in Section 2.2.
Figures 2.12 and 2.13 illustrate the cases 7 and 8 used to investigate the influence
of blind spots and course data on the error.

Recall that all LIDAR measurements are done in a volume; the measurements con-
sidered for the wind field evaluation at a specific altitude h are spread over multiple
LIDAR scanning planes. This is illustrated by the schematic side view in Figure
2.14, which in fact represents a different perspective on case 1 in Figure 2.10.
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Figure 2.14: Schematic side view of case 1, displaying the LIDAR 1, the wind turbine, the
scanning planes and the selected altitude range.

In this plot, the selected altitude range is [hh − 0.3D/2, hh + 0.3D/2]. This range
is indicated with red lines around the black wind turbine hub height line. LIDAR 1
and its scanning planes with different elevations are displayed in green.

Further on in this report, a range of values for the parameter ∆h and the radius of
influence R are tested in order to optimize these two parameters for a minimum
error. To generalize the results, it is convenient to express height offsets in terms of
the wind turbine diameter or radius. In this case, a parameter Ch is defined such that
∆h = Ch · D/2.

2.3.2 Comparison of MuLiWEA with Simulated Wind Fields

To validate the algorithm, it is vital that the 2D wind fields evaluated by MuLiWEA
are compared with the 3D wind fields simulated by the PALM code. The absolute
wind speed and the wind direction, both in the horizontal plane, will be validated
separately to cover the two dimensions. After that, the assumption of a negligible
vertical wind speed w is assessed by analyzing this third component of the simulated
wind field. Finally wake profiles are extracted and plotted separately. All evaluated
wind fields in this section are the result of a MuLiWEA execution with a Ch of
0.4 and an R of 8 m. As a result of this parameter selection, between 30 and 70
measurement points K are considered per grid point p for the linear equation in the
algorithm. For both the absolute wind speed and the wind direction plots, the first
three figures show the simulation results. The figures after that correspond to the
evaluated eight different cases. The wake profile plots represent the eight cases,
with the evaluated and simulated wake profiles shown in the same graphs.

The simulated absolute velocity wind fields at the three mentioned altitudes can be
observed in Figures 2.15-2.17. Below these, the wind fields evaluated by MuLi-
WEA for all eight cases are visualized by Figures 2.18-2.25.
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Figure 2.15: Simulated wind
field at hub height.

Figure 2.16: Simulated wind
field between hub height and

upper blade tip height.

Figure 2.17: Simulated wind
field around upper blade tip

height.

Figure 2.18: Wind field, case
1.

Figure 2.19: Wind field, case
2.

Figure 2.20: Wind field, case
3.

Figure 2.21: Wind field, case
4.

Figure 2.22: Wind field, case
5.

Figure 2.23: Wind field, case
6.
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Figure 2.24: Wind field, case 7. Figure 2.25: Wind field, case 8.

First of all, the data gaps at the domain boundaries for some cases are caused by a
lack of simulated LIDAR measurements within the selected altitude range. How-
ever, in most of the cases the complete near wake is still visible. Both the wake
width and center velocity deficit are highest at hub height and decrease at higher
altitudes.

The first three cases seem to be able to reproduce the wind field under condition of
data availability. However, in case 3 the wake is not able to reproduce the modeled
wake width correctly, especially in the near wake. Cases with the non-optimal LI-
DAR setup (4,5 and 6) are showing strange artifacts. Fluctuations in the wind field
are visible as a result of a poorly defined linear system in the main MuLiWEA ma-
trix equation. The case 7 with a blind spot for each LIDAR only shows a gap at the
location where the blind spots of the two LIDARs overlap. However, the blind spots
clearly leave a footprint in the evaluated wind field (refer to Figure 2.12 for the blind
spot locations). Case 8 shows that a wind field can still be evaluated from course
data, but the scanning patterns start to appear in the wind field as artifacts. This is a
consequence of the measurement interpolation method and the measurement point
density.

Figures 2.26-2.28 show the simulated wind fields of the wind direction. After that,
Figures 2.29-2.36 visualize the wind fields of the wind direction for all eight evalu-
ated cases.
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Figure 2.26: Simulated wind
direction at hub height.

Figure 2.27: Simulated wind
direction between hub height
and upper blade tip height.

Figure 2.28: Simulated wind
direction around upper blade

tip height.

Figure 2.29: Wind direction,
case 1.

Figure 2.30: Wind direction,
case 2.

Figure 2.31: Wind direction,
case 3.

Figure 2.32: Wind direction,
case 4.

Figure 2.33: Wind direction,
case 5.

Figure 2.34: Wind direction,
case 6.
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Figure 2.35: Wind direction, case 7. Figure 2.36: Wind direction, case 8.

The simulated wind direction plot at hub height (Figure 2.26) shows that the wind is
flowing around the wind turbine, which is indicated with a black dot. First, the wind
is deflected away from the inflow direction and further downstream it realigns to the
main wind direction. For the higher planes (Figures 2.27 and 2.28), a large region of
positively deflected wind can be identified. This is a result of the vorticity induced
by the rotating blades. The wind field simulates a wind turbine which is rotating
clockwise. This means that the vortex behind the rotor will rotate anti-clockwise
and indeed cause a vortex which can be observed in the horizontal planes at higher
altitudes.

Figure 2.37: Wind direction, case 1, without continuity adjustment.

The wind direction field in Figure 2.29 evaluates the initial diversion of the stream-
lines around the wind turbine correctly, but further downstream it develops some
local differences. Namely, a small region with a negative wind direction between
-5 and -10◦ can be observed, where it is supposed to be close to 0. Figure 2.37
shows the same wind direction field as in Figure 2.29, however to generate this plot
the algorithm did not apply the continuity adjustment. It is done to illustrate that
the local erroneous regions are not a negative side effect of neglecting the vertical
transport of momentum as an assumption made for applying the 2D horizontal con-
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tinuity equation. Namely, both with or without including the continuity adjustment,
the same large deviations are produced at the same location.

Figure 2.38: Simulated wind field of the vertical wind speed w.

A different reason for these errors could be underestimation of the vertical wind
speed itself. This can be investigated by means of a simple test. In Figure 2.38
the simulated vertical wind speed field is plotted for case 1. The anti-clockwise
vortex mentioned before can be seen clearly. It reaches values between -1 and 1
m/s. When this is neglected, the vLOS estimation is actually off by a value equal to
sin(δ)w. Considering the elevation range of 1.25-7.50◦ and a vertical velocity of 1
m/s, the error on vLOS will be in the range of 0.02-0.13 m/s. The error of 0.13 m/s
is compared with a reasonable absolute wind speed of 5 m/s inside the wake. The
order of magnitude of the maximum possible wind direction error can be computed
by evaluating arctan(0.13/5) = 1.5◦. Clearly, neglecting the vertical wind speed
cannot be exclusively responsible for the large deviations in the wind direction of
up to 10◦.

A likely explanation is finally found by observing the density of the measurements
K per grid point p over the grid in Figure 2.39:

Figure 2.39: Number of measurements K used per grid point p.
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It can be seen that there is a significantly lower amount of data available exactly at
the location of the local errors in Figure 2.29. This is a consequence of combining
data from the different PPI planes with different elevations and the intrinsically
heterogeneous scanning pattern. When the LIDAR range increases, the distance
between the different planes increases and thus the measurement density decreases.

The wind direction plots for cases 2 and 3 (Figures 2.30 and 2.31) shows some
local deviations from the simulated profiles in the same vicinity as for case 1. Also
the magnitude of the deflection caused by the vortex is overestimated. Cases 4-6
show that the wind field for direction cannot be evaluated properly under the non-
optimal LIDAR setup. Where the absolute velocity wind fields are still recognizable
as the simulated wind fields, the wind direction fields show significant differences
spread throughout the domain. The last two cases 7 and 8 again show some artifacts
produced by the data gaps and perform worse than case 1.

The wake profiles extracted from the wind fields for all eight cases can be observed
in Figures 2.40-2.47. These profiles are extracted at distances (0.5D : 0.5D : 3D)
downstream of the turbine with a total width of 2D of each profile. Here D is the
turbine diameter. The simulated wake is displayed with red and the evaluated wake
is shown in black.
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Figure 2.40: Wake profiles, case 1.
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Figure 2.41: Wake profiles, case 4.
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Figure 2.42: Wake profiles, case 2.
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Figure 2.43: Wake profiles, case 5.
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Figure 2.44: Wake profiles, case 3.
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Figure 2.45: Wake profiles, case 6.
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Figure 2.46: Wake profiles, case 7.
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Figure 2.47: Wake profiles, case 8.

Observing the plots, it is concluded that cases 1 and 2 show a good match between
the simulated wakes and the evaluated wakes. In case 3, especially the width of
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the first wake profile is not evaluated precisely. MuLiWEA estimates a wider wake
than in the actual simulation. This could be a result of mixing measurements from
altitudes around the boundary of the wake, i.e. the altitude range covers measure-
ments both inside and outside the wake. It can be noted that the non-optimal LIDAR
setup (cases 4-6) provides wake profiles that show large differences to the simulated
wind profiles. For the cases with blind spots and course data (7 and 8), some lo-
cal relatively large errors can be observed in comparison with case 1. In general
it is concluded that the wake at hub height can be evaluated more accurately than
at higher altitudes and the non-optimal LIDAR setup performs significantly worse
than the optimal LIDAR setup.

2.3.3 Analysis on the Mean Absolute Error

The quantitative validation method is based on the mean absolute error (MAE) of
the considered three different parameters:

1. The MAE of the absolute wind speed averaged over the total wind field

2. The MAE of the absolute wind speed averaged over the combined set of wake
profiles

3. The MAE of the wind direction averaged over the total wind field

Especially the MAE of the wake profiles is an important criterion. Since the max-
imum measurement error on line-of-sight wind speed by the LIDAR is 0.5 m/s for
long ranges (see Table 3.1 in Section 3.1), it is decided that the numerical error
should be of the same order. Therefore the following limit is set: For the algorithm
and case to be validated, the MAE of both the wind field and the wake profiles
should not exceed 0.5 m/s. For the wind direction validation, the value of the MAE
should not correspond to a wind speed v-component larger than 0.5 m/s. Keep in
mind that for the considered wind field, v = 0 m/s. This criterion corresponds to a
maximum MAE on wind direction of arcsin(0.5/9) = 3.2◦.

The six cases are evaluated for a radius of influence R in the range 4-12 m and a
altitude selection parameter Ch of 0.1-1.0. The MAE is plotted as a function of
these two parameters for case 1 in Figure 2.48.
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Figure 2.48: MAE plots as a function of R and Ch for case 1.

An important conclusion of these plots is that generally, a minimum MAE can be
found for a specific case, enabling the optimization for the R and Ch parameters.
The reasons for the existence of this minimum are:

• There have to be enough measurements available in the altitude range and
circle with radius of influence to establish a proper averaged estimate for a
grid point

• If the considered measurement selection is too large, gradients in the wake
will be smoothed out because of the averaging, so there will be high errors
especially at those locations in the wind field where high gradients are found
(e.g. wake boundaries). As expected, this phenomenon is mainly affecting
the MAE of the wake profiles

The latter is illustrated by the absolute error (AE) of the wind field for two different
values of Ch, see Figures 2.49 and 2.50. The figure on the right shows relatively
high absolute errors on the wake boundaries, due to the large Ch of 0.9.
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Figure 2.49: AE of the wind field of case 1,
with R = 8 [m] and Ch = 0.3.

Figure 2.50: AE of the wind field of case 1,
with R = 8 [m] and Ch = 0.9.

Theoretically, the equilibrium between these two considerations yields a minimum
MAE for the corresponding combination of R and Ch. These optimized parameters
can be observed in Table 2.4. Note that different minima are found for the MAE of
the total wind field velocity and direction and of the wake profiles in particular. As
said, the latter are considered most important for the validation of the algorithm.

Table 2.4: Optimized parameters and minimum MAE for the different cases.

Wind field Wake profiles Direction
Case Ropt Chopt MAEmin Ropt Chopt MAEmin Ropt Chopt MAEmin

[m] [-] [m/s] [m] [-] [m/s] [m] [-] [◦]
1 8 0.6 0.18 5 0.1 0.22 12 0.6 1.29
2 12 0.3 0.21 9 0.3 0.21 12 0.6 1.50
3 11 0.4 0.36 8 0.2 0.39 12 1.0 2.14
4 10 0.7 0.31 10 0.3 0.23 12 1.0 3.48
5 10 1.0 0.37 11 0.3 0.46 12 0.6 5.02
6 12 0.8 0.39 12 0.5 0.38 12 0.4 3.24
7 12 0.5 0.22 6 0.1 0.24 12 1.0 1.82
8 10 0.6 0.22 8 0.3 0.27 12 1.0 1.61

The first observation from Table 2.4 is that no minima can be found for the wind
direction MAE, yet it converges for larger parameters. Namely, the lowest MAE
is always found for the highest evaluated R of 12 m. The reason is that the errors
in direction are mostly a local effect and the MAE is smoothed out by taking into
account a larger volume of the wind field for measurement interpolation.

Regarding the wake profiles MAE, the optima are located at higher values of R and
Ch for the non-optimal LIDAR setup cases with ∆χ = 180◦. Because the linear
system in the Multiple-Doppler algorithm is not well defined for these cases, more
measurements taken into account means that the matrix equation yields a more sta-
ble solution.
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Apart from these observations, no solid conclusion can be drawn from the optimiza-
tion of parameters R and Ch. The results do not seem to follow a clear pattern and
therefore an other approach is used. In order to have a better direct comparison, all
cases are evaluated for the MAE for the specific set of parameters R = 8 and Ch =

0.4. These values have been chosen, because the MAE values do not improve sig-
nificantly anymore when increasing them (See 2.48). This allows for an objective
comparison of the different cases. The results can be observed in Table 2.5.

Table 2.5: MAE values of all cases, for R = 8 and Ch = 0.4.

Case MAE (field) [m/s] MAE (profiles) [m/s] MAE (direction) [◦]
1 0.19 0.23 1.76
2 0.22 0.25 1.89
3 0.36 0.42 2.65
4 0.40 0.26 5.58
5 0.47 0.54 6.53
6 0.51 0.43 3.87
7 0.26 0.31 2.57
8 0.25 0.31 2.24

The following conclusions can be drawn from this table:

• The cases with an non-optimal LIDAR setup (4, 5 and 6) have a relatively
high error. In fact, these three cases are the only ones that do not fulfill the
three imposed validation criteria. For all three cases, the wind direction MAE
is larger than 3.2◦. Case 5 has a wake profile MAE that exceeds 0.5 m/s and
case 6 has a wind field MAE larger than 0.5 m/s in addition to that

• Cases that consider planes at upper wind tip height (3 and 6) have a relatively
high error compared to other evaluation planes. A possible explanation is that
the altitude range will contain LIDAR measurements from both inside and
outside the wake, which will be averaged to evaluate the wind field inside the
wake

2.3.4 Influence of the Continuity Adjustment

Since the implementation of a continuity adjustment is an important part of the
MuLiWEA, it is necessary to assess its influence. Therefore the evaluated wind
fields for cases 1 and 4 are analyzed with and without the continuity implementa-
tion. Again, the parameters R = 8 m and Ch = 0.4 are used. In Figures 2.51-2.54,
the evaluated wind fields can be observed.
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Figure 2.51: Evaluated wind field for case 1,
with continuity.

Figure 2.52: Evaluated wind field for case 1,
without continuity.

Figure 2.53: Evaluated wind field for case 4,
with continuity.

Figure 2.54: Evaluated wind field for case 4,
without continuity.

Significant differences can be observed between the plots with and without conti-
nuity adjustment. In Figure 2.52, the boundary between the fully recovered wind
field and the part of the field that is missing data corresponds to the boundary of the
plane in which the PPI scans of the two LIDARs overlap (see Figure 2.10 for the
PPI scan structure). In Figure 2.54, it can be seen that no wind field is evaluated in
the vicinity of the line that is described by ∆χ = 180◦, as pointed out in the error
analysis (Section 2.2). See also the PPI scan structure in Figure 2.11. In general,
it can be said that including the continuity equation enables a solution at locations
where the main matrix equation of the MuLiWEA is ill-defined. This happens when
the LIDARs are measuring in the same line-of-sight (∆χ = 180◦) or when data from
only one LIDAR is available.
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Table 2.6: MAE values of cases 1 and 4, for R = 8 and Ch = 0.4, with and without
continuity adjustment.

Case MAE (field) [m/s] MAE (profiles) [m/s] MAE (direction) [◦]

With continuity adjustment:
1 0.19 0.23 1.76
4 0.40 0.26 5.58

Without continuity adjustment:
1 0.26 0.23 2.59
4 0.94 1.14 12.91

In Table 2.6, the MAE values for the two cases executed with and without continu-
ity adjustment can be found. It can be seen that including the continuity equation
significantly improves the solution, especially for case 4. However, for this case the
improvement is not enough to pass the validation requirement stated before.

2.3.5 Conclusion

The final conclusion of this validation is that the MuLiWEA is functioning appro-
priately thus valid under the conditions of an optimal Dual-LIDAR system setup,
evaluating the wind field at hub height. Also data that includes blind spots or course
data can be considered, though with care. Data sets in which two LIDARs have the
same line-of-sight (∆χ = 180◦) should be avoided. This was already expected from
the error analysis in Section 2.2. The continuity equation implementation in MuLi-
WEA provides an improved solution of the wind field even with this non-optimal
LIDAR setup, but in this case the solution is still not accurate enough.

The knowledge acquired in this chapter on the general influence of the algorithm
parameters Ch and R can be applied to real measurement cases, but care has to be
taken. The parameter Ch is normalized, such that it proves to be a good estimate.
The parameter R is not normalized, so this will be dependent on the density of
measured points. It has to be noted as well that no measurement error was simulated
for the validation wind field. In reality there are measurement errors that could be
smoothed out partly by the numerical process. The quantitative impact of this effect
on the optimal R parameter is not known. It is expected that for real cases, more
measurements are needed per grid point to reach the same accuracy as the validation
wind fields.

Although the evaluated absolute velocity wind field generally has a good accuracy
compared to the simulated wind field, the wind direction field is more likely to have
local errors. First of all, in the considered case u is the main wind component and the
wind component v is close to zero. Errors on v have a significantly higher relative
impact than errors on u. Secondly, the specific multiple-PPI scanning pattern causes
a heterogeneous measurement point density over the grid and significant errors are
introduced when the number of points used per grid point is not sufficient.
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A small check was done on the assumption of the negligible vertical wind speed
component w. It was found that this is not likely to cause high errors in the wind
field and thus it is a valid assumption to make. However, the simulation was done
regarding neutral atmospheric conditions. Care has to be taken when the prevailing
atmospheric condition differs from this and vertical temperature gradients are more
likely to occur, which affect the vertical wind speed.
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3 Application of the MuLiWEA

In this Chapter, the developed MuLiWEA will be applied to measurement data.
First, the measurement campaign will be introduced in Section 3.1. Information
will be given about the wind farm and the installed LIDARs. The sources of the
measurement data and validation data are listed and the used software is mentioned.
Lastly, wind fields evaluated by MuLiWEA will be compared to wind fields calcu-
lated by wake simulations in Section 3.2.

3.1 Experimental Campaign

The experimental campaign can be divided into two main elements:

• The hardware setup, i.e. the LIDAR scanners and the wind farm

• The software element, i.e. the data chain

First, the used type of LIDAR will be characterized. Then the wind farm layout
including the locations of the LIDARs will be visualized. Limitations of the sys-
tem configuration will be discussed. Finally, it will be made clear how the data is
collected and processed.

3.1.1 LIDAR System

ForWind installed three LIDARs of the type Windcube WLS200S in the »alpha
ventus« wind farm. These are long-range, pulsed LIDARs. An overview of the
LIDAR specifications can be observed in Table 3.1.

As mentioned before, 10-minute average wind fields are ultimately evaluated from
overlapping PPI scans. The 10 minutes are needed to collect sufficient data to apply
the MuLiWEA. Generally it takes between 2 to 5 minutes to perform a PPI scan
with the LIDARs. However, this highly depends on the size and the density of the
area covered by the scan, i.e. the width of the azimuth range and the step size.
Detailed information will be given when evaluating a case in the next section.
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Table 3.1: Technical sheet of the Windcube WLS200S.

Properties
Wave length 1.54 µm
Pulse length (FWHM) 0.1 - 0.4 µs
Max laser power 5 mW
Pulse repetition rate 10-20 kHz
Max range 6500 m
Acquisition
Photodiode sampling rate 250 MHz
FFT length 64 - 128 - 256 points
Accuracy vLOS 0.2 (r< 2 km) - 0.5 (r> 2 km) m/s
Max # range gates 240 -
Scanner
Type 2 DOF
Angular resolution 0.01 deg
Pointing resolution 0.1 deg
Max angular speed 30 deg/s

3.1.2 Layout of the Wind Farm

The »alpha ventus« wind farm is located approximately 44 km north-west of the
German island Borkum, in the North Sea. It is characterized by a regular 4-by-3
array of wind turbines, with a total rated power of 60 MW. Two different manufac-
turers supplied the wind turbines, i.e. the six northern turbines are REpower 5M
and the six southern turbines are AREVA M5000-116. The specifications of these
two wind turbine types are included in Table 3.2 [4]. As can be seen from this data,
the two wind turbine types are highly similar to each other in terms of dimension.
The most significant difference is the substructure they are using.

Table 3.2: Specifications of the wind turbines [4].

Turbines AV1 - AV6 AV7 - AV12
Type REpower 5M AREVA M5000-116
Substructure Jacket Tripod
Hub height hh [m] 92 90
Rotor diameter D [m] 126 116
Rated power P [MW] 5.0 5.0
Cut-in wind speed [m/s] 3.5 3.5
Rated wind speed [m/s] 13 12.5
Cut-out wind speed [m/s] 30 25

A layout of the wind farm and the LIDAR system setup is plotted in Figure 3.1.
The coordinate system is centered around the geometrical wind farm midpoint. The
twelve turbine positions are indicated with black dots and their names AV1 - AV12.
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Figure 3.1: Setup of the »alpha ventus« wind farm and the Multi-LIDAR system, including
its largest occurring blind spot.

The Multi-LIDAR system used by ForWind in the wind farm »alpha ventus« con-
sists of three LIDARs, which will be referred to as WLS1, WLS2 and WLS3. The
LIDAR positions are indicated with red dots. WLS2 is placed on the transformer
platform in the south-east corner of the wind farm. WLS1 and WLS3 are both
placed on the FINO1 support platform near the north-west corner of the wind farm.
Note that these two LIDARs appear as one red dot, because of the close placement
and the scale of the picture.

This specific setup of the LIDAR system has several limitations and consequences
as a function of the offshore environment. The most important ones are listed here:

• There are hard targets in the wind farm, e.g. masts and the wind turbines
themselves. When in the line-of-sight of the LIDARs, these will obstruct
their view in so-called blind spots. The largest and therefore most limiting
blind spot of WLS2 is indicated with a green patch in Figure 3.1. It is caused
by a pole on the transformer platform, close to the LIDAR lens.

• Two out of three LIDARs (WLS1 and WLS3) are placed on the same loca-
tion. This limits the possibilities of executing multiple overlapping PPI scans.
Additionally, it is not possible to execute synchronized single 3D vector mea-
surements, but this is not a limiting factor for the scope of this thesis.

• Since the LIDARs are placed close to the sea surface, there are limitations
to retrieving measurement at hub height with PPI scans. Combining a low
elevation angle with a long range, PPI scans can be done such that a part of the
measurements are located within a sufficiently small altitude range centered
around hub height. A different approach is to scan and then combine multiple
PPI scans with different elevations. This has been investigated during the
validation of MuLiWEA in Section 2.3.
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• Under specific weather conditions such as mist or heavy rain, the LIDARs are
not able to measure with sufficient accuracy, due to laser beam scattering by
the water drops in the air. A significantly low CNR will be recorded for the
measurements in this case.

• Since a large error increase occurs for the azimuth difference ∆χ = 180◦ (see
Section 2.2), the wake of e.g. AV8 cannot be characterized with sufficient
accuracy (see Figure 3.2). The optimal accuracy is reached when scanning
under a relative angle of ∆χ = 90◦, e.g. scanning the wake of AV3 or AV10.

Figure 3.2: Estimated maximum error eV on the calculated absolute wind speed.

In Figure 3.2, the maximum expected error eV is plotted for the major part of the
wind farm (see also Figure 3.1 for the wind farm layout). The LIDAR locations
are in the north-west and the south-east corners of the plot. It can be seen that the
error blows up on the line that connects the two LIDAR locations. This effect was
evaluated in Section 2.2. LIDARs measuring with a relative ∆χ of 180◦ actually
just provide a single measurement. Note that the color scale is topped at 1.5 m/s,
because the error calculation reaches a singularity on the line with ∆χ = 180◦ and
the scale would not be able to show variations in the low error regions.

3.1.3 Data Chain

For the scope of this master thesis, four sources of data are used for analysis:

1. Measurement data from the LIDAR scanners, supplied by ForWind. This
forms the main data, needed for evaluating wind fields and characterizing
wakes with the MuLiWEA algorithm.
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2. Meteorological data from the FINO1 mast [20], to serve as input for the wake
model that is used for validation. Namely, the cup anemometers and the wind
vanes at 33 m and 90 m (hub height) providing the wind speed and the wind
direction, respectively. The 10-min statistics of these data sets, along with
the ones of the air temperature at 30 m and the water surface temperature
measured by a buoy, were considered to calculate the Monin-Obukhov length.

3. SCADA data from AREVA Wind GmbH for the AV10 turbine, in particular
the wind direction provided by the wind vane installed on top of the nacelle.

4. AREVA M5000-116 wind turbine thrust coefficient curve, needed as input for
the wake model.

An overview showing the contents of the different data used for analysis is presented
in Table 3.3. The sources refer to the ones listed before.

Table 3.3: Data variables used for analysis.

Source Variable Meaning
1 t Time stamp

χ Azimuth angle
δ Elevation angle
r Range
x, y, z Cartesian coordinates
vLOS The line-of-sight wind speed
CNR Carrier-to-Noise Ratio

2 V Absolute wind speed at 33 and 90 m
σV Standard deviation of V at 33 and 90 m
θ Wind direction at 33 and 90 m
Ta Air temperature at 30 m
Tw Water surface temperature

3 γ Relative wind direction on the nacelle
4 CT Thrust coefficient

An overview of the software used to process this data is listed below:

• MathWorks MATLAB R2013a is used as the main tool to read and write
data, effectively perform large calculations and execute some simulations.
The MuLiWEA algorithm is implemented in MATLAB.

• FLaP, a wake modeling software developed at the University of Oldenburg
[19].

• AMOK 1.0.3, developed at DTU Risø by S. Ott. It is used to characterize
atmospheric stability by means of calculating the Monin-Obukhov length.
The theory behind this software is explained under the name Monin-Obukhov
method in [13].
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The LIDAR campaign at »alpha ventus« was executed during the time period from
August 2013 until March 2014. The LIDAR measurements vLOS are accompanied
by the time of measurement and the location of the measurement in 3D coordinates.
Both the Cartesian coordinates x, y, z and the geographical coordinates χ, δ, r are
relevant for the research. The CNR value has been introduced in Section 1.3 and
can be used to select data based on accuracy. The CNR is calculated internally by
the LIDARs. In this research, measurements are filtered at both sides of the CNR
range: A low CNR indicates that the signal is scattered, e.g. due to fog, and the
evaluated vLOS will have a large error. On the other hand, a significantly high CNR
can indicate a hard target, which acts as a reflector. Static hard targets such as poles
and wind turbine towers will result in a vLOS of 0 m/s, but moving hard targets such
as wind turbine blades could produce a vLOS much higher than the wind speed itself.
These local outliers are undesired.

At the FINO1 mast [20], the wind speed and its standard deviation are measured
at various heights. This enables for the calculation of the turbulence intensity T I,
which is an input for the wake model. Also air and water surface temperatures are
needed for processing with the software tool AMOK in order to characterize the
atmospheric stability with the Monin-Obukhov length L.

The thrust coefficient CT applied in the Ainslie wake model [2] was evaluated by
means of aeroelastic simulation of a wind turbine model provided by AREVA Wind
GmbH.

A catalog of measurement data is built. It can be observed in Appendix D. Different
LIDAR measurement scenarios are executed and these are split up in sets containing
a few hours of data. The data sets contain the name of the scanning scenario, cor-
responding to the name used in the LIDAR measurement database on the ForWind
server. Furthermore the time domain, the prevailing wind direction, the visible tur-
bine wakes, the measurement altitude, the considered LIDARs, the quality of the
data and some notes are provided. Some of the cases have been removed, leaving
blank spaces in the table. An important note is that, ideally, the wakes are specified
at hub height of the wind turbine. Data sets with the term ‘HH’ for the altitude
specification contain enough measurements within a reasonable altitude range cen-
tered around hub height to be useful. Scattered altitude means that the differences
in altitude are too high to be processed in a reliable manner. Low altitude indicates
that there are measurements in a reasonably narrow altitude range in the low altitude
ranges, i.e. around lower blade tip height or lower. These measurements might be
taken in the lower region of the wake or even below the wake. Particularly useful
data sets are marked in green.

Based on the catalog, data sets can be selected for analysis and comparison with a
wake model. There are limitations on the usefulness of data sets:

• Only data sets with sufficient measurements taken within a reasonably small
altitude range centered around hub height are useful.

• Some data sets are characterized by low CNR values due to bad weather con-
ditions and do not contain enough data to characterize a wake with sufficient
accuracy.
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• In some scenarios, the wake is located outside of the overlapping LIDAR
scan area. This happens when relatively small azimuth sectors are scanned
because of time considerations and if - at the same time - the wind direction
varies from the weather forecast that is used to plan the scanning scenario.

• Only data of the AREVA Wind GmbH turbines are available for this research.
Therefore only turbines AV7 - AV12 can be considered.

Because of these reasons, only one scanning scenario is left to be used for analysis,
spread over cases 21-24 in the catalog.

3.2 Comparison of MuLiWEA Results with FLaP Wake Model

To have a better understanding of the FLaP wake model principles and the com-
parison of evaluated wakes with this model, first a concise description of this wake
model is provided. It focuses on the input parameters and their qualitative effect on
a wake. After that, the scenario selected for analysis will be described and char-
acterized thoroughly, in terms of parameters used for the analysis by MuLiWEA
and the atmospheric conditions during the time intervals. Lastly, the comparison
between the wake profiles evaluated by MuLiWEA and those modeled by FLaP is
presented for the selected cases.

3.2.1 Notes on the FLaP Wake Model

The program FLaP [19] is based on the Ainslie wake model [2]. This model was
already mentioned in Section 1.3. In this model, an initial Gaussian shaped velocity
deficit at a downstream distance of 2D is calculated as a function of the wind turbine
thrust coefficient CT . Both the initial velocity deficit and the wake width increase
with the CT .

An example thrust coefficient curve (Figure 3.3) was calculated by running a simple
Blade Element Momentum optimization code on the NREL 5MW reference turbine
rotor [17]. It is used to give a qualitative understanding of the CT parameter and
its effect on wake characteristics. In the wind speed region below the rated speed
of approximately 11 m/s, the CT has a high value as a consequence of optimizing
the power output of the wind turbine. For higher wind speeds, the CT is lowered by
pitching the blades of the turbine to keep the power output at rated level. Based on
this knowledge, it can be concluded that atmospheric wind speeds higher than the
rated speed will result in a relatively low initial velocity deficit and a smaller wake
expansion.
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Figure 3.3: General shape of a CT curve.

Important atmospheric condition inputs are the turbulence intensity T I and the
Monin-Obukhov length L, which is a quantitative measure of atmospheric stabil-
ity. Table 3.4 presents the stability classes based on the L parameter as presented by
Hansen [13]:

Table 3.4: Overview of the atmospheric stability classes [13].

The turbulence intensity influences the width of the wake and how quickly the wake
recovers. A high T I causes more mixing of the air between the wake and the am-
bient air and therefore a quicker wake deficit recovery. Also the initial velocity
deficit at a 2D distance is smaller for a higher T I. A similar effect can be caused
by unstable stratification. This condition is characterized by vertical temperature
gradients, causing thermal mixing of air in that direction. Therefore unstable cases
have a quicker wake recovery, while for neutral and stable cases the wake will be
relatively long.

3.2.2 Characterization of the Selected Scenario

As stated before, cases 21-24 from the catalog will be evaluated. The internal name
of this scenario is ‘WAKEAV01andWAKEAV0301’. It describes an overlapping
PPI of the LIDARs WLS2 and WLS3, scanning the single wake of AV10. Refer to
Figure 3.1 for the LIDAR and turbine positions. The scanning scenario is executed
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during the whole day 2014-02-20. Different requirements for the available data act
as a filter for useful time intervals within this data set:

• The 10-minute average offset between the wind direction of the wind turbine
inflow and yaw of wind turbine AV10 cannot exceed 3 degrees. Otherwise
the wake might have a deflection and this cannot be modeled by FLaP. It is
assumed that the measured relative wind direction on top of the nacelle γ
represents this offset.

• There has to be a sufficient amount of data from both two LIDARs with a
reasonable CNR for an accurate measurement. The selected CNR range is
between -22 and -4 dB.

• The relevant FINO1 data set (listed in Table 3.3) has to be complete. When
there are gaps in the meteorological data, the corresponding time interval
cannot be modeled and thus will not be used.

In total, fifteen different 10-minute intervals of data fulfill all these requirements
and are considered useful for the analysis. The relevant conditions of these data sets
can be observed in Table 3.5. It contains the starting time of the 10-minute interval,
the wind speed V at hub height, wind direction θ at hub height, turbulence intensity
T I, AV10 relative wind direction on the nacelle γ and the Monin-Obukhov length
L. The selected altitude range is [hh −ChD/2, hh + ChD/2] with a Ch of 0.3, which
corresponds to an altitude range of [72.6, 107.4] m.

Table 3.5: Specification of the relevant data sets for wake model comparison.

Interval Start time V [m/s] θ [deg] T I [%] γ [deg] L [m]
1 01:00:00 10.1 217 6.3 1.0 1590
2 01:10:00 9.3 217 6.5 0.6 5236
3 01:30:00 10.5 214 5.6 2.1 -2083
4 05:40:00 11.1 186 5.6 -2.2 -496
5 06:10:00 10.5 179 5.6 -0.2 -297
6 06:20:00 10.9 181 5.4 -0.1 -305
7 06:30:00 11.1 181 6.1 1.2 -320
8 06:40:00 11.2 182 5.9 2.9 -312
9 06:50:00 11.7 183 5.3 0.8 -301

10 07:00:00 11.8 182 5.3 -1.1 -301
11 07:10:00 11.7 180 5.8 -3.0 -282
12 07:20:00 11.8 179 5.4 -2.3 -315
13 21:40:00 15.8 184 4.2 -2.6 293
14 21:50:00 15.9 187 5.0 -0.6 260
15 22:00:00 16.0 188 5.0 -0.8 301

The prevailing wind during the scanning time frame is coming from the south or
the south-west. The values of the Monin-Obukhov length L cover mostly near sta-
ble and near unstable atmospheric stratification (refer to Table 3.4). Turbulence
intensities between 4.2 and 6.5 % are found.
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Figure 3.4: Top view of the
measurement points of both LIDARs.
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Figure 3.5: Top view of the PPI sectors in the
wind farm.

Figure 3.4 shows the top view of the scattered measurement points within the chosen
altitude range of the PPI scans of each LIDAR. Figure 3.5 next to it illustrates
the position of these PPI scans with respect to the »alpha ventus« wind farm lay-
out. The LIDARs are distinguished by color and the names are indicated. The
parameters characterizing the scanning scenario are listed in Table 3.6. Since the
LIDARs both scan a relatively small azimuth range of 40 or 50 deg, they can cover
the scan area more than once within the 10 minute time frames. WLS2 and WLS3
perform 7 and 5 sweeps per 10 minutes, respectively.

Table 3.6: LIDAR scan parameters of cases 21-24.

WLS2 WLS3
χ [deg] 270-310 130-180
δ [deg] 2 2.8
r [m] 1400-2200 1100-1800

Number of scans 7 5
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Figure 3.6: Number of measurements K used per grid point p.
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Figure 3.6 shows the number of measurements considered for the MuLiWEA main
matrix equation (Section 2.1) per grid point. A grid resolution of 20 m is used
for the wind fields and the radius of influence R is determined to be 20 m as well.
This means that the circles with radius of influence for neighboring grid points
overlap and therefore some data is used more than once in the system. It can be
seen that the LIDAR WLS2 has a few small blind spots in the south region of the
scan. Because of the radially distributed measurements, the measurement density is
not homogeneous and varies between 100 and 350 points per grid point. The reason
for the relatively large R is the attempt to include enough measurement data at all
grid points. The value was found through an iterative method of trial and error. Note
that the plots for the scattered measurement points and the number of measurement
points are highly similar for each time interval. These examples are representative
for the duration of the scenario.
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Figure 3.7: Example 2D wind field plot, normalized to the ambient wind speed at hub
height.

An example of an evaluated 2D wind field is plotted in Figure 3.7. It contains the
wake of time interval 8 (see Table 3.5). The 2D wind field is displayed as a color
plot of the absolute wind speed, with an arrow plot on top of this showing the wind
direction. The wind speed component perpendicular to the main wind direction is
relatively small. For the further wake analysis, only the absolute wind speed in the
wake direction is considered.

3.2.3 Comparison of Wake Profiles

In Figures 3.8-3.22, the evaluated wind fields for the considered time intervals are
plotted. The start of the time interval is indicated above the plot. The number
of the interval corresponds to the list in Table 3.5. In all figures, the position of
AV10 is indicated with a black dot. The wake centerline deficit and lateral profiles
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are indicated with black lines at the positions (1D : 0.5D : 5D) downstream of
the turbine. The width of the lateral lines is 2D. The method used to locate and
extract the wake position is explained in Appendix B. The absolute wind speed V
is normalized with the ambient wind speed at hub height measured at FINO1, see
Table 3.5. With this dimensionless wind speed, it is easier to directly compare the
wakes at different time intervals with each other.
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Figure 3.8: Wind field of
interval 1.
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Figure 3.9: Wind field of
interval 2.
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Figure 3.10: Wind field of
interval 3.
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Figure 3.11: Wind field of
interval 4.
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Figure 3.12: Wind field of
interval 5.
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Figure 3.13: Wind field of
interval 6.
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Figure 3.14: Wind field of
interval 7.
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Figure 3.15: Wind field of
interval 8.
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Figure 3.16: Wind field of
interval 9.
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Figure 3.17: Wind field of
interval 10.
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Figure 3.18: Wind field of
interval 11.
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Figure 3.19: Wind field of
interval 12.
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Figure 3.20: Wind field of
interval 13.
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Figure 3.21: Wind field of
interval 14.
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Figure 3.22: Wind field of
interval 15.

By carefully studying the figures, the following general remarks can be made:

• The blind spots of WLS2, seen as a lack of measurements in Figure 3.6, result
in some data gaps at the south side of the wind fields and just north of the wind
turbine AV10.

• During several time intervals, the wake does not maintain the same direction
throughout its length. Especially during time intervals 4, 10, 11 and 12 a
slight deflection to the left can be noticed. During time intervals 5 and 6,
there is a deflection to the right. The wake deflections do not seem to be
correlated with the marginal offset between the inflow direction and the yaw
of AV10. Possibly the wake direction could be influenced by the wind flow
through the wind farm and presence of other wind turbines.

• The wakes are not always radially symmetric. Especially during time inter-
vals 4, 5 and 6, deviations occur.

• During the time intervals 13, 14 and 15, the wake has a significantly smaller
width compared to the other intervals. This is an effect of the relatively high
ambient wind speed and thus a relatively low CT value (see Figure 3.3). Also
the velocity deficit is relatively small for the same reason.

In Figures 3.23-3.37, the extracted wake profiles for the fifteen time intervals are
plotted. The profiles are shown for positions (2D : 0.5D : 5D) downstream of the
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turbine. Namely, the FLaP model only predicts the far wake (>=2D). The extracted
wake profiles are shown in black and the wake profiles simulated by FLaP are shown
in red. The wind speed is normalized with the FINO1 measured wind speed and the
x- and y-coordinates are normalized to the wind turbine diameter D.
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Figure 3.23: Wake profiles of
interval 1.
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Figure 3.24: Wake profiles of
interval 2.
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Figure 3.25: Wake profiles of
interval 3.
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Figure 3.26: Wake profiles of
interval 4.
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Figure 3.27: Wake profiles of
interval 5.
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Figure 3.28: Wake profiles of
interval 6.
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Figure 3.29: Wake profiles of
interval 7.
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Figure 3.30: Wake profiles of
interval 8.

2
3

4
5

−1

0

1
0

0.2

0.4

0.6

0.8

1

 

x [−]

2014−02−20 06:50:00

y [−]
 

V
 [−

]

Simulated profiles
Extracted profiles

Figure 3.31: Wake profiles of
interval 9.
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Figure 3.32: Wake profiles of
interval 10.
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Figure 3.33: Wake profiles of
interval 11.
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Figure 3.34: Wake profiles of
interval 12.
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Figure 3.35: Wake profiles of
interval 13.
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Figure 3.36: Wake profiles of
interval 14.
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Figure 3.37: Wake profiles of
interval 15.

By studying the wake profile plots, the following remarks can be established:

• For most cases, the simulated wake profiles indicate a quicker wake recov-
ery than measured; in general higher wind speeds are predicted by the wake
model. This could be caused by inaccuracies on the input parameters of the
wake model or other relevant effects that are not included in the wake model.

• For most cases, the evaluated wake profiles in the first part of the wake have
a different shape than the simulated ones. In fact, the FLaP model assumes a
Gaussian shape for the wake profiles, whereas here a double Gaussian would
be a better representation. Figure 3.38 shows a comparison between a single
and a double Gaussian profile. In the evaluated cases, a shape similar to
the latter can be observed within a downstream distance of approximately
3D behind the wind turbine. The shape is a result of the induction factor
distribution over the wind turbine rotor. Most of the energy is extracted from
the wind at the middle sections of a blade. The wind turbine hub and the blade
roots do not contribute a lot to the generated power and therefore the velocity
deficit is smaller directly behind the hub. Therefore this effect is visible in the
centerline deficit. The minimum wind speed in the profile does not coincide
with the center of the profile.
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Figure 3.38: Comparison of a Gaussian and double Gaussian wake profile.

From the wake profiles in Figures 3.23-3.37, the two most relevant parameters that
can be extracted are the wake width Ww and the centerline wake deficit Wd. The
wake width is defined as the 2σ parameter of a Gaussian distribution fit through the
wake profile. This parameter is normalized to the turbine diameter. The velocity
deficit is the difference between the ambient wind speed and the local wake wind
speed, normalized to the ambient wind speed itself. Working with dimensionless
parameters allows for a better comparison between different measurement sets.

The fifteen time intervals as seen in Table 3.5 can be grouped into three sets which
have highly similar atmospheric conditions. They are listed in Table 3.7:

Table 3.7: Conditions of the three wake sets.

Set Time intervals Stability V [m/s]
1 1-3 Neutral 10
2 4-12 Near unstable 11
3 13-15 Near stable 16

From the wake profiles shown before in the 3D view, the parameters Ww and Wd are
extracted and plotted in Figures 3.39-3.44 for the three established wake sets. These
2D plots are a more convenient way to visualize said parameters and analyze them
separately. For all three cases, the measurements of the Ww and Wd parameters are
scattered and a mean trend is plotted through. This is done for both the evaluated
wake and the simulated wake. Also the mean accuracy bounds are shown for the
velocity deficit, as calculated in the error analysis (Section 2.2). The accuracy of the
wake width plot is related to the wind field resolution of 20 m. This is represented by
the resolution bounds around the mean evaluated wake width. This is a conservative
estimate, while the Gaussian fit will probably cause an error which is significantly
smaller than this resolution.
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Figure 3.39: Wake width for intervals 1-3.
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Figure 3.40: Wake deficit for intervals 1-3.

2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

1.2

1.4

1.6

x [−]

W
w
 [−

]

 

 

Scattered evaluated
Mean evaluated
Resolution bounds
Scattered simulated
Mean simulated

Figure 3.41: Wake width for intervals 4-12.
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Figure 3.42: Wake deficit for intervals 4-12.
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Figure 3.43: Wake width for intervals 13-15.
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Figure 3.44: Wake deficit for intervals 13-15.

The following observations can be made based on the figures:

• The wake expansion predicted by the FLaP wake model does not resemble the
measurements well. For the intervals 1-3, the evaluated wake width fluctuates
around 0.9 turbine diameters. For the largest part, the simulation underesti-
mates the width with about 0.2. For the intervals 4-12 but also 13-15, the
measured wake is contracting instead of expanding. Possibly the far wake is
influenced by the flow around wind turbines AV7 and AV8, which are located
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to the north of AV10 (see Figure 3.1). The presence of other turbines is not
modeled by FLaP. Note that there is a significantly high inaccuracy because
of the used resolution. The major part of the simulated wake width lies inside
of the resolution bounds of the evaluated wake width.

• The evaluated wake velocity deficit does not show such a quick wake recov-
ery as the simulation predicts. For the distances below 3D, the wake deficit
evaluated from the measurements is expected to be smaller than the model,
because of the difference between the single and double Gaussian profiles as
explained before. However, in general the wake deficit is underestimated with
0.1-0.2 by the model.

• As expected from the higher wind speeds and thus lower CT values of the
turbine (see Figure 3.3), intervals 13-15 show a significantly smaller wake
width of about 0.5-0.6 and a smaller wake centerline deficit of 0.3-0.4.

• Unfortunately, there is not enough data available to make statements about
the isolated effect of e.g. atmospheric stability on the wake width and deficit.
To do this, more time intervals should be evaluated to be able to cover a wider
range of different wind speeds and atmospheric conditions and thus provide
statistics.

Note that the FLaP wake model was applied without considering the effect of other
turbines. Also the Gaussian shape of the initial wake profile is a simplification of
the actual shape. On top of this, it is not known what the uncertainties are for the
wake model inputs and how this affects the end result.
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4 Conclusion and Future Research Recommendations

The conclusion is separated into two parts. Section 4.1 will evaluate the perfor-
mance of the MuLiWEA algorithm and the limitations on its application. Section
4.2 analyzes the evaluation of the wakes and the comparison to models. In both
two sections, recommendations are made for carrying out further research on the
combined topic of using LIDAR systems to characterize wakes in an offshore wind
farm.

4.1 Conclusion on MuLiWEA

In Section 2.2 on the error analysis of MuLiWEA, the general structure of the nu-
merical error was evaluated. The main conclusion of this analysis is that the numer-
ical error has a large magnification in the vicinity of the line-of-sight that is shared
by two LIDARs, i.e. the line with ∆χ = 180◦. In general, the error is mainly depen-
dent on the accuracy with which the used LIDAR scanner can measure the vLOS . It
has to be noted the analysis was done on an equation system similar to MuLiWEA,
so there might still be some numerical error propagation effects of MuLiWEA that
are not predicted by the used error analysis model.

In Section 2.3, the MuLiWEA was validated. It concludes that the algorithm per-
forms with sufficient accuracy in case of an optimal LIDAR setup. The non-optimal
LIDAR setup with a ∆χ = 180◦ does not provide any useful results due to the in-
trinsically high errors, as predicted before by the error analysis. Although the mean
average error for the absolute wind speed field, the wind direction field and the wake
profiles is sufficiently low, some local significant errors were observed. These errors
are likely caused by the heterogeneous measurement point distribution over the grid
that has some local scarcities of data, which correspond to the local relatively high
errors. Also part of the MuLiWEA numerical error propagation that has not been
modeled could play a part in magnifying these errors.

The best accuracy of an evaluated wind field is reached when evaluating a plane
at hub height. In this case, all the measurements within the selected altitude range
are guaranteed to lie inside the wake. Also the wake is radially symmetric around
this altitude. Especially when evaluating the wake at the upper blade tip height,
mixing of measurements from inside and outside the wake combined with the wake
asymmetry at this height will cause a lower accuracy of the evaluated wind field.

The continuity adjustment part of MuLiWEA significantly improves the accuracy
of the evaluated wind fields. Especially in case of local data gaps or scarce data, the
ill-defined matrix equation is improved by adding the extra lines of the continuity
equation to the system. Unfortunately, the error analysis in Section 2.2 does not
model the general quantitative improvement of the wind fields as a result of the
continuity adjustment implementation.

Rough estimates of the optimal altitude selection parameter Ch and the radius of
influence R are yielded in an attempt to optimize the MAE. The dimensionless
Ch should be in the order of 0.3-0.4 for an accurate wind field evaluation and the
optimal radius of influence R is highly dependent on the measurement density and
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the accuracy of the used LIDAR system. It is hard to generalize the results of the
validation for the parameter R, because no errors were modeled on the LIDAR mea-
surements. In a real wind field, these errors cause the need of more measurements
per grid point thus a larger R to average out the effect and increase the accuracy.

The following recommendations are made for future research:

• Multiple-LIDAR setups have to be chosen carefully, such that two LIDARs
are never measuring in an identical line-of-sight, i.e. the line with ∆χ = 180◦.
An optimal setup is able to scan an area within close range (< 2 km) and a
relative azimuth angle between two LIDARs of ∆χ = 90◦.

• The LIDAR scans have to be planned in such a way that the major part of
the measurements are taken in a reasonable altitude range centered around
hub height. The ideal altitude range has been determined as [hh − ChD/2,
hh + ChD/2] with a Ch of around 0.3-0.4.

• A more thorough numerical error analysis needs to be performed on the spe-
cific linear system of the MuLiWEA, to make a quantification of the effects
of its sub-elements on the wind field error.

• The consequence of neglecting the vertical component of the wind speed has
to be investigated more thoroughly, in terms of the error imposed on the abso-
lute horizontal wind speed. Another option is including this component in the
analysis. To do this, at least three LIDARs are needed, of which one should
measure with relatively high elevation angles to cover a sufficient component
of the vertical wind speed for numerical computation.

• The filter function that is used in the MUSCAT [6] could be implemented
in MuLiWEA to assess its effect. This way, the assumption that the filter is
not applicable in case of measuring large velocity gradients which occur in
wakes, can be verified.
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4.2 Conclusion on the Wake Evaluation

In Section 3.2, one scenario was used to evaluate wakes and compare them to the
FLaP wake model. It is concluded that this wake model is not able to accurately
predict all characteristics of the wake that can be observed from the measurements.
Also, not enough data was available to statistically analyze the effect of atmospheric
conditions.

The following recommendations are made for future research:

• It would be interesting to use and evaluate more sophisticated wake models,
which are able to predict the wind flow through a wind farm and thus accounts
for interaction between wakes. In this master thesis, MuLiWEA was applied
on a single wake. To better understand the behavior of wakes in wind farms,
the algorithm needs to be applied to a larger part of the wind farm to evaluate
multiple wakes. The more sophisticated wake models will be required to
validate these evaluated wind fields.

• In order to make a statistical analysis on the wake characteristics and the
parameters that influence them, a specific well-planned scanning scenario has
to be performed for a significantly long time, preferably a year to include
seasonal weather effects, but at least for a few weeks. This way, there is a
sufficient variety in atmospheric and wind turbine conditions, such that the
influence of each relevant parameter on the wake can be studied separately.
The area of the scan has to be sufficiently large as to capture the wake in case
of different occurring wind directions.
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A Weighting Functions for Grid Interpolation

As explained before, in the interpolation of the LIDAR measurement data on the
desired grid, two weighting functions are needed. One weighs based on the distance
from the grid point with a Cressman weighting function (w f ) [9] and the other is a
weight per LIDAR (wL). The two weights can be multiplied with each other to form
the combined weight w = w f wL.

As stated before, the Cressman weight is assigned as a function on the distance.
Around each grid point, a circle with radius of influence R is drawn. Measurements
with a distance r away from the grid point, get a weight according to the formula:

w f =
R2 − r2

R2 + r2 (A.1)

The weight has a value of 1 for measurements exactly at the grid point, and equals
zero at or outside the boundary R. Plots of the Cressman weighting function can be
observed in Figures A.1 and A.2.

Figure A.1: Cressman weighting
function, top view.

Figure A.2: Cressman weighting function, side view.

Since the measurements from multiple LIDARs are not evenly distributed, it is im-
portant to make sure that each LIDAR contributes to the evaluated grid point to the
same extent.

First, a vector is made containing the measurements per LIDAR within the circle of
influence around a grid point. Then, the weight per LIDAR wL is assigned as:

wL =
1

KL

K
L

(A.2)

In this equation, K is the total amount of measurements considered for the grid
point, KL is the number of measurements per specific LIDAR for the grid point and
L is the amount of LIDARS which contribute to the grid point. This number can
be 1,2 or 3. Each LIDAR gets a unique weight wL for a specific grid point, but this

weight is applied to all the associated measurement points such that
K∑

k=1

wLk = K.
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So in the overall linear system, grid points with more measurements available in the
circle of influence still get a higher importance.
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B Wake Extracting Algorithm

In order to characterize wakes, an algorithm is written that attempts to find the wake
based on a known turbine position and wind direction. With these two function
inputs, it defines lines with length 2D (D is the wind turbine diameter) orthogonal
to the wind direction, at a range of distances (1D : 0.5D : 5D) downstream of the
turbine. It is actually an iterative process, consisting of the following steps:

1. The turbine position and the wind direction from the FINO1 data are used to
predict the center line of the wake downstream of the turbine.

2. Wake profiles are extracted perpendicular to the predicted wake direction.

3. The center of each of these lateral wake profiles is found by fitting a Gaussian
curve through the profile. The offset between these centers and the estimated
center line is calculated.

4. A line is fitted through these centers and the angle between this line and the
initially assumed center line is defined.

5. The wake direction is updated with this correction angle and the wake profiles
are calculated again.

There are a few possible reasons why the direction of the wake needs to be up-
dated, i.e. why the direction of the wake can differ from the FINO1 measured wind
direction at hub height:

• The atmospheric wind direction may vary locally.

• The turbine may have a yaw misalignment, such that the wake direction de-
viates from the inflow wind direction.

• Blockage of the wind vane on the FINO1 mast can occur if the wind is coming
from specific directions. This may cause the wind vane to give an incorrect
reading.

• The wind direction at FINO1 may be different than the ambient wind direction
due to influence by the wind farm.

For case 21 of the catalog (Appendix D), the evaluated wind field of the wake of
turbine AV10 is plotted in Figure B.1 and additionally the extracted wake is shown
separately in Figure B.2. An arbitrary time domain of 10 minutes is selected. The
wake is extracted along the center line predicted by the FINO1 wind direction. In
this specific case, the FINO1 wind direction deviates from the actual wake direc-
tion. This can be seen as a misaligned wake track in Figure B.1 and misalignment
between the centers of the Gaussian profiles and the wake profile centers in Figure
B.2. If the wind direction is updated according to the steps mentioned earlier, the
extraction of the wake has the correct direction. This is illustrated by Figures B.3
and B.4.
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Figure B.1: Wind field with misaligned wake
extraction direction.
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Figure B.2: Extracted wake profiles with
misaligned centers.
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Figure B.3: Wind field with corrected wake
extraction direction.
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Figure B.4: Extracted wake profiles with
corrected centers.
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C Partial Derivatives for the Error Analysis

Here is an overview of the twelve relevant partial derivatives for the determination
of the error on wind fields evaluated by Dual-LIDAR, as presented in Section 2.2.
First the expressions for the wind speeds u and v are repeated:

u =
Nu

Du
=

cos(χC1) cos(δ1)vLOS 2 − cos(χC2) cos(δ2)vLOS 1

cos(χC1) cos(δ1) sin(χC2) cos(δ2) − sin(χC1) cos(δ1) cos(χC2) cos(δ2)
(C.1)

v =
Nv

Dv
=

sin(χC1) cos(δ1)vLOS 2 − sin(χC2) cos(δ2)vLOS 1

sin(χC1) cos(δ1) cos(χC2) cos(δ2) − cos(χC1) cos(δ1) sin(χC2) cos(δ2)
(C.2)

The wind speeds u and v are defined with their numerator and denominator, respec-
tively Nu, Nv and Du, Dv. These terms will be used in the expression for the partial
derivatives in order to keep the notation concise.

∂u
∂vLOS 1

=
− cos(χC2) cos(δ2)

Du
(C.3)

∂u
∂vLOS 2

=
cos(χC1) cos(δ1)

Du
(C.4)

∂u
∂χC1

=
1

D2
u

[
Du

(
− sin(χC1) cos(δ1)vLOS 2

)
−Nu

(
− sin(χC1) cos(δ1) sin(χC2) cos(δ2) − cos(χC1) cos(δ1) cos(χC2) cos(δ2)

)]
(C.5)

∂u
∂χC2

=
1

D2
u

[
Du

(
sin(χC2) cos(δ2)vLOS 1

)
−Nu

(
cos(χC1) cos(δ1) cos(χC2) cos(δ2) + sin(χC1) cos(δ1) sin(χC2) cos(δ2)

)] (C.6)

∂u
∂δ1

=
1

D2
u

[
Du

(
− cos(χC1) sin(δ1)vLOS 2

)
−Nu

(
cos(−χC1) sin(δ1) sin(χC2) cos(δ2) + sin(χC1) sin(δ1) cos(χC2) cos(δ2)

)] (C.7)

∂u
∂δ2

=
1

D2
u

[
Du

(
cos(χC2) sin(δ2)vLOS 1

)
−Nu

(
− cos(χC1) cos(δ1) sin(χC2) sin(δ2) + sin(χC1) cos(δ1) cos(χC2) sin(δ2)

)] (C.8)
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∂v
∂vLOS 1

=
− sin(χC2) cos(δ2)

Dv
(C.9)

∂v
∂vLOS 2

=
sin(χC1) cos(δ1)

Dv
(C.10)

∂v
∂χC1

=
1

D2
v

[
Dv

(
cos(χC1) cos(δ1)vLOS 2

)
−Nv

(
cos(χC1) cos(δ1) cos(χC2) cos(δ2) + sin(χC1) cos(δ1) sin(χC2) cos(δ2)

)] (C.11)

∂v
∂χC2

=
1

D2
v

[
Dv

(
− cos(χC2) cos(δ2)vLOS 1

)
−Nv

(
− sin(χC1) cos(δ1) sin(χC2) cos(δ2) − cos(χC1) cos(δ1) cos(χC2) cos(δ2)

)]
(C.12)

∂v
∂δ1

=
1

D2
v

[
Dv

(
− sin(χC1) sin(δ1)vLOS 2

)
−Nv

(
− sin(χC1) sin(δ1) cos(χC2) cos(δ2) + cos(χC1) sin(δ1) sin(χC2) cos(δ2)

)]
(C.13)

∂v
∂δ2

=
1

D2
v

[
Dv

(
sin(χC2) sin(δ2)vLOS 1

)
−Nv

(
− sin(χC1) cos(δ1) cos(χC2) sin(δ2) + cos(χC1) cos(δ1) sin(χC2) sin(δ2)

)]
(C.14)
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