
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

State-Based Real-Time Analysis of
Synchronous Data-flow (SDF)

Applications on MPSoCs with Shared
Communication Resources

Dissertation zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

vorgelegt von

M.Sc. Maher Fakih

Gutachter:

Prof. Dr. Achim Rettberg
Prof. Dr. Marcio Eduardo Kreutz

Tag der Disputation: 11.07.2016

Abstract
The growing computational demand of real-time applications (in automotive, avionics
and multimedia) requires extensions in the traditional design process to support Multi-
Processor System-on-Chip (MPSoC) architectures. Due to their significantly increased
performance and Space Weight and Power (SWaP) reductions, MPSoCs offer an ap-
pealing alternative to traditional single-processor architectures. The timing analysis of
hard real-time applications running on MPSoC platforms is much more challenging
compared to traditional single processor. This comes from the large number of shared
processing, communication and memory resources available in today’s MPSoCs. Yet,
this is an indispensable challenge for enabling their usage with hard-real time systems
in safety critical application domains (e.g. avionics, automotive). In this thesis, a state-
based real-time analysis methodology for a subset of data-flow oriented applications
using model-checking is proposed. Applications are represented as Synchronous Data
Flow (SDF) graphs, the MPSoC is represented as Architecture Resource Graph (ARG)
and a mapping relation between these graphs describes the implementation of the appli-
cation on the MPSoC architecture. This approach utilizes Timed Automata (TA) as a
common semantic model to represent execution time boundaries (best-case and worst-
case execution times) of SDF actors and communication FIFOs and their mapping as
well as their utilization of MPSoC resources, such as scheduling of SDFGs and shared
communication resource access protocols for interconnects, local and shared memories.
The resulting network of TA is analyzed using the UPPAAL model-checker for ob-
taining safe timing bounds of the chosen implementation. The proposed methodology
is compared with a state-of-the-art analytical method showing a significant precision
improvement (up to a percentage improvement of 300%) compared with the worst-case
bound calculation based on a pessimistic analytical upper-bound delays for every shared
resource access. Furthermore, the analysis feasibility of our approach was demonstrated
for small parallel systems. In addition, the limitations of our approach and abstraction
methods to improve scalability were explored. We also demonstrate the applicability
of our approach to an industrial case-study using a multi-phase electric motor control
application (modeled as an SDFG) mapped to a state-of-the-art MPSoC with both the
burst and single-beat inter-processor communication styles.

Contents

Contents i

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Questions and Contributions 5

1.2.1 Research Questions . 5
1.2.2 Contributions . 7

1.3 Thesis Outline . 9
1.4 Prior Publications . 9

2 Basic Concepts and Background 11
2.1 System Level Design (SLD) Methodologies 12
2.2 Task Model (Model of Computation) 15

2.2.1 Synchronous Data-flow Graphs (SDFGs) 15
2.2.1.1 Scheduling . 16
2.2.1.2 Timing Properties 19
2.2.1.3 Expressiveness . 21
2.2.1.4 Clustering Methods 22

2.2.2 Simulink . 23
2.3 Timing Issues of MPSoCs . 26

2.3.1 Processor Elements . 28
2.3.2 Storage Resources . 29
2.3.3 Communication Resources 30

2.3.3.1 Scheduling (arbitration) 31
2.3.3.2 Timing models . 33

2.3.4 Addressable Devices . 35
2.3.5 Inter-Processor Communication (IPC) Styles 36
2.3.6 Predicable Design of MPSoCs 37

2.4 Interaction with the Environment 38
2.5 Real-time Analysis Methods . 38

i

ii CONTENTS

2.5.1 Dynamic Real-time Methods 40
2.5.2 Static (Formal) Real-time Methods 41

2.5.2.1 State-based RT Analysis Methods 43
2.6 Summary . 52

3 Related Work 53
3.1 Formal Real-time Analysis Methods 53

3.1.1 Analytical Real-Time Analysis Methods 54
3.1.1.1 Generic Tasks on MPSoCs 54
3.1.1.2 SDFAs on MPSoCs 56
3.1.1.3 Discussion . 57

3.1.2 State-based Real-time Analysis Methods 58
3.1.2.1 Generic Tasks on MPSoCs 58
3.1.2.2 SDFAs on MPSoCs 60
3.1.2.3 Discussion . 61

3.2 Model-based Design Flow . 62
3.2.1 Simulink to SDFG Translation 62
3.2.2 Virtual-Platform-in-the-loop Simulation 63
3.2.3 Discussion . 65

3.3 Summary . 66

4 System Model Constraints and Definition 67
4.1 System Constraints enabling State-based RT Analysis 68

4.1.1 Task Model and Interaction with Environment 68
4.1.2 MPSoC Hardware Architecture 70

4.2 System Model Definition . 73
4.2.1 MoC: Synchronous Data-flow Graphs 74
4.2.2 Model of Architecture (MoA) 75
4.2.3 BCET/WCET Analysis on Single-Processor Platforms . . 76
4.2.4 Synthesis . 78

4.2.4.1 Binding Decisions 78
4.2.4.2 Scheduling Decisions 79

4.2.5 Model of Performance (MoP) Extraction 81
4.3 Summary . 84

5 State-based Real-time Analysis of SDFGs on MPSoCs 87
5.1 Representing Performance Model as Timed Automata 88
5.2 Implementation of the Timed-automata Templates 90

5.2.1 Event Trigger Template . 90
5.2.2 SDFG Scheduler Template 91
5.2.3 Actor Templates . 92
5.2.4 Communication Driver Template 94

CONTENTS iii

5.2.5 Shared Interconnect Templates 95
5.2.6 Templates of Shared and Private FIFO Buffers 99
5.2.7 Extensions for DMA Burst Transfer 100
5.2.8 Observer TA Templates for Real-time Analysis 101

5.3 Real-time Analysis via Model-checking 103
5.4 Methods for Improving Scalability 104

5.4.1 Optimizing the Implemented Timed-automata Templates 105
5.4.2 Applying Clustering Method 107
5.4.3 Temporal and Spatial Segregation for a Composable and

Scalable RT Analysis . 109
5.5 Summary . 113

6 Model-based Design Flow for RT-Analysis of Embedded Applica-
tions on MPSoCs 115
6.1 Model-based Design Flow Overview 116
6.2 Simulink to SDFGs Translation . 118

6.2.1 Constraints on the Simulink Model 120
6.2.2 Translation Procedure . 121

6.3 Automation of our State-based RT Approach 126
6.4 Virtual-Platform-in-the-Loop Simulation for MPSoCs 128

6.4.1 Motivation . 128
6.4.2 Bi-simulation Procedure . 129

6.5 Implementation Concepts . 134
6.5.1 Pseudo-code of Static-order Scheduled SDFG 134
6.5.2 Pseudo-code of SDFGs Schedulers 135
6.5.3 Communication Driver Issues 135

6.6 Summary . 143

7 Evaluation 145
7.1 Increasing Confidence in Correctness of Approach 145
7.2 Evaluation of Scalability . 152

7.2.1 Possible Scalability w.r.t number of Tiles and Actors . . . 152
7.2.2 Scalability w.r.t Arbitration Protocols 154
7.2.3 Scalability w.r.t BCET/WCET Interval Variation 155
7.2.4 Possible Scalability Improvement with Actors’ Clustering 157
7.2.5 Possible Scalability Improvement via Temporal Segregation157

7.3 Evaluation of Tightness Improvement 161
7.4 Industrial Applicability: Motor Control Case-Study 164

7.4.1 Motor Control Simulink Model 165
7.4.2 Motor Control Simulink Model to SDFG Translation . . . 165
7.4.3 Aurix TriCore platform . 167
7.4.4 Mapping . 169

iv CONTENTS

7.4.5 BCET/WCET Analysis of Software Components on single
PEs . 172

7.4.6 VPIL Simulation for Aurix TriCore 174
7.4.6.1 Simulation Results 175

7.4.7 SDF2TA RT Results with different Communication Styles 178
7.4.8 Discussion . 179

7.5 Summary . 180

8 Conclusion and Outlook 183
8.1 Discussion . 185
8.2 Future Work and Open Questions 186

Bibliography 191

A SDF2TA Tool 209
A.1 Correctness of SDF2TA Implementation 209
A.2 SDF2TA Ecore model . 210

A.2.1 SDFG Ecore element . 211
A.2.2 Model of Architecture Ecore Element 212
A.2.3 Mapping Ecore Element . 214

B Aurix TriCore Experiment 217
B.1 Simulation Measurements . 217

B.1.1 Single-beat Transfer Measurements 218
B.1.2 DMA-based Burst Transfer Measurements 219

B.2 Abstractions and Annotations for the MoP 220
B.2.1 DMA-based Burst Transfer 220
B.2.2 Single-beat transfer through SRI 221

List of Abbreviations 225

Glossary 227

List of Figures 233

List of Tables 235

Chapter 1

Introduction

1.1 Context and Motivation

The last decade witnessed a significant technological revolution of miniaturiza-
tion technologies of processing devices leading to ubiquitous computing and
the wide-spread of embedded systems1 in our everyday life. For instance, a
look at a modern car in the automotive domain, shows that a premium ver-
sion can have about 70 ECUs (embedded devices) on which hundreds of real-
time applications are run [Buttle, 2012] and the trend is going towards a larger
number of ECUs with more complexity. Depending on their domain of us-
age, the timing criticality of applications running on such systems can vary
from hard real-time systems (e.g. aircraft control or video-processing applica-
tions used in safety-critical automotive systems to detect pedestrians crossing
or the street signs) where a violation of the real-time requirement can lead to
catastrophic results, to non real-time applications (such as an MP3 player in
the infotainment domain) where the harmfulness by a violation is very lim-
ited. In order to guarantee the safety of hard-real time systems, a real-time
(RT) analysis method is indispensable to validate the fulfillment of their hard
real-time requirements. According to safety standards like DO-178B/DO-178C
[Aeronautical Radio, 1992], ISO-26262 [ISO26262, 2011], IEC-61508 [IEC, 2010],
or CENELEC EN-50128 [EN50128, 2009] the functional safety of the software
must be demonstrated with respect to the specified requirements and the ab-
sence of critical non-functional hazards (including timing hazards in real-time
systems) has to be shown [Kästner Daniel and Christian, 2014].

Because of the growing computational demand of such real-time applica-
tions (in automotive, avionics and multimedia), the need for more powerful,

1According to [Marwedel, 2010] an embedded system is defined as: “Embedded systems are
information processing systems embedded into enclosing products.”

1

2 CHAPTER 1. INTRODUCTION

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Figure 1.1: Trend towards MPSoCs’ design (taken from
[Fuller and Lynette I. Millett, 2011])

fast and efficient hardware architectures is emerging. In the last decade, the
chip industry was faced with the challenge that the chip clock frequencies (as
seen in Fig. 1.1 green, x-curve) couldn’t be increased without drastically increas-
ing power consumption (as seen in Fig. 1.1 red,4-curve) and heat wastage. The
above phenomena called “clock-racing” (also called frequency scaling) reached
its limit at the end of year 2003 (as seen in Fig. 1.1 green, x-curve), while the
number of transistors continued to increase (according to Moore’s law number
of transistors doubles every two years as seen in Fig. 1.1 red, ◦-curve). This
made the extension of current design process for supporting MPSoC architec-
tures inevitable. Due to their significantly increased performance and their
Space Weight and Power (SWaP) reductions (see stable power consumption in
Fig. 1.1 red, 4-curve, beginning at the end of 2003 as the number of cores was
increased), MPSoCs offer an appealing alternative to traditional architectures.

Nevertheless, with MPSoCs emerging, their validation process is becoming
a bottleneck. According to [Tang and Wu, 2014], the number of verification en-
gineers needed for nowadays MPSoCs’ projects is wide more than the number
of design engineers reaching a ratio of 2:1 or even 3:1 the fact which can lead
to high costs in the development process. Especially in the real-time (RT) do-
main, the RT validation of applications running on MPSoCs is indispensable to

1.1. CONTEXT AND MOTIVATION 3

guarantee their safe usage. Yet the timing analysis of MPSoC platforms with
hard real-time requirements is very challenging making their usage in safety-
critical real-time domains difficult. In difference to a single-processor platform
an access to a shared resource in an MPSoC can have variable delays depend-
ing on the level of interleaving with other processors trying to access the same
resource; e.g. if Task A on pe0 and Task B on pe1 simultaneously issue an access
request on the shared bus, then depending on the arbitration mechanism either
pe0 or pe1 could win the arbitration and is granted access causing the other
processor to delay. In addition to resource sharing, the fact that in industrial
MPSoCs’ architectures, efficiency (or optimized average-case performance) is
still preferred over predictability makes the real-time analysis of such systems
even harder. A typical example is the abundant usage of shared caches (with
complex replacement strategies) in current MPSoCs which obviously increases
the average-case performance of a platform but makes it difficult to perform a
RT analysis due to the unpredictable nature of caches (with complex replace-
ment strategies see [Cullmann et al., 2010]). Thus, in a full-featured MPSoC,
the contention (as seen in the previous examples) not only can take place at
the level of communication resources (bus, interconnects) but also on the level
of storage resources (shared memory, caches) which makes the RT analysis of
such platforms very challenging.

Due to this fact, adapting traditional static RT analysis methods
which are well-established for single-processor platforms for MPSoCs
is not an easy task. This in turn, stresses the need for novel RT
analysis methods capable of proving the timing predictability of real-
time applications running on MPSoCs at an early project stage. To
cope with the above challenge, there is a lot of active research on de-
signing predictable2 MPSoCs [Chattopadhyay and Roychoudhury, 2011,
Cullmann et al., 2010, Nelis et al., 2011, Hansson et al., 2009,
Metzlaff et al., 2011, Ungerer et al., 2010, Wilhelm and Reineke, 2012,
Zamorano and Juan, 2014] on one side (see Sect. 2.3.6) and enhancing the
traditional static analysis methods to be able to predict execution times of
embedded applications running on MPSoCs on the other side (see Chap. 3).

In [Cullmann et al., 2010], the authors suggested the design of timing pre-
dictable MPSoCs to overcome this challenge and gave receipts how to design
MPSoCs for predictability. They suggested to support shared communication
resources with easy-to-predict arbitration protocols and to use private stor-
age resources (referred to as spacial isolation) to alleviate contention. For
Commercial-Off-The-Shelf (COTS) multicore platforms a smart configuration
can be done for making them predictable. This configuration discourages the

2Predictable MPSoCs are those exhibiting deterministic temporal behavior enabling before-
hand to determine whether or not the right outputs happen at the right (predicted) moment.

4 CHAPTER 1. INTRODUCTION

usage of shared caches in COTS, enables partitioning of memories (if supported
by the hardware) to avoid interferences among the cores and utilizes predictable
arbitration features of communication resources (as in the MPC8641D avionic
processor in [Cullmann et al., 2010]).

An excerpt of first approaches enhancing traditional static analysis towards
MPSoCs will be discussed in Chap. 3. There are mainly two real-time (RT)
analysis approaches for embedded applications: dynamic and static (formal)
methods. In the dynamic methods, use-case driven timing measurements of
the application are performed either using a virtual-hardware platform simu-
lation model (with variable abstraction levels ranging from untimed to cycle
accurate) or by running it on the target hardware employing hardware trac-
ing facilities. This approach is still state-of-the-art in industry since it is ca-
pable of handling systems with a huge state space. Yet it is not applicable to
applications with hard real-time requirements since even exhaustive simula-
tions provide no guarantee that all interesting corner cases are covered. Ac-
cording to DO-178B/DO-178C, dynamic testing-based real-time analysis meth-
ods alone are not enough since testing cannot show the absence of errors
[Kästner Daniel and Christian, 2014]. In a static (formal) approach, mathemati-
cal analysis is performed on a formal representation of both software and hard-
ware. This analysis takes into consideration all possible inputs (use-cases) and
combinations of the running applications with all different hardware states of
the proposed platform. This makes it possible to identify the worst-case path
and to estimate a pessimistic but a safe upper bound on the application exe-
cution time. Formal methods guarantee complete coverage of the considered
model3 but suffer from state explosion and scalability issues on one side and
of obtaining over-pessimistic timing results (depending on the accuracy of the
formal model) on the other side.

As explained above, in order to give safe timing guarantees under all con-
ditions, a formal approach is needed to calculate safe lower/upper bounds
based on Worst-Case-Execution Times (WCETs) of the application computation
and communication phases depending on the target hardware platform. Since
current MPSoCs are composed of concurrent components and their synchro-
nization depends on timing constraints, formal models like timed-automata
and model-checkers like UPPAAL [Bengtsson and Yi, 2004] are very suitable to
capture and verify their temporal behaviors with rigor. In addition, for unmet
timing properties counter examples are provided. Another motivation for us-
ing state-based RT analysis methods for analyzing MPSoCs’ applications in this
thesis, is that they support modularity which makes them easily adaptable to
different hardware models. Furthermore, state-based RT analysis methods pos-

3Of course this does not imply that the considered model is complete (i.e. represents all
relevant corner cases), but formal methods enable complete exploration, independent from the
fact whether this model is complete or not.

1.2. RESEARCH QUESTIONS AND CONTRIBUTIONS 5

sess the capability of getting more accurate results [Perathoner et al., 2009] and
verifying more complex properties than other formal methods (see Sect. 3.1).

But one of the main drawbacks of recent research using state-based RT anal-
ysis methods for analyzing MPSoCs (see Sect. 3.1.2.1) is trying to analyze ar-
bitrarily parallel programs at code-level on MPSoC architectures. Despite the
advantage of such an approach being applicable to any code written/gener-
ated for any domain, yet the fine granularity of the code-level or instruction-
level makes the state-based methods not scalable. In order to circumvent their
scalability problem, enabling a composable state-based RT analysis is a prereq-
uisite. This can only be done if we have a task model which exhibits clean
semantics that enables distinguishing communication from computation parts
in the implemented code which is not the case for generic tasks. With these as-
pects (communication from computation phases) separated, flexible mapping
to different target platforms can be established, and a composable RT analysis
method analyzing different mappings is possible.

In this thesis, we aim to develop a state-based RT analysis method to guar-
antee a timing predictable execution of parallel software on MPSoCs. Our
state-based RT analysis method targets, on the one side, the analysis of larger
systems (for a chosen use-case in Sect. 7.2.1 up to 96 actors mapped to 4-tiles
and up to 320 actors on a 2-tiles platforms) than those analyzable by current
state-based approaches and, on the other side, achieving a significant preci-
sion improvement (up to a percentage improvement of 300%) compared with
a state-of-the-art analytical method. The establishment of our method, would
open the way for safety-critical domains, especially in the most conservative
domains such as avionics4, to adapt MPSoCs (for small-scale systems) in their
design flow, making it easier to pass the strict certification processes imposed
by certification authorities. Clearly, integrating multiple functionalities on a sin-
gle MPSoC would lead to great saving in terms of the hardware used, making
products cheaper and thus more competitive.

1.2 Research Questions and Contributions

1.2.1 Research Questions

As described above, the main concern of a system-level designer is to develop
MPSoCs, benefiting from their performance and energy advantages compared
to a single-processor platforms, and at the same time guaranteeing that the
hard real-time requirements of the applications mapped to them are met. Now
the main challenge here is to provide suitable methods to guarantee timing-
predictable execution of parallel software on MPSoCs. One of these methods

4Currently in the avionics single-core federated architectures are still used.

6 CHAPTER 1. INTRODUCTION

which we will be using in thesis to achieve this goal is the state-based RT anal-
ysis methods (see Sect. 2.5.2.1). As we already explained, for a state-based RT
analysis method a formal model of the hardware and the application should be
built. The question is now how to build a model of the real hardware/software
being of a reasonable size (improving the scalability bottleneck of state-based
RT methods with generic task models see Sect. 3.1.2.1) on one hand and of a
reasonable granularity on the other hand allowing an accurate real-time analy-
sis of the System Under Analysis (SUA).

To answer the above question, the following research subquestions must be
answered:

1. Which constraints should be imposed on the software application in order
to be modeled in an abstract but still accurate form?

2. Which constraints should be imposed on the physical platform and which
timing properties shall be represented in the formal platform model?

3. How does the formal model scale w.r.t to state-space complexity? How
does the approach perform in terms of correctness and accuracy (over-
approximation evaluation)?

4. Which kind of properties can be obtained/validated via a state-based RT
analysis approach? (end-to-end deadline, WCRT, buffers’ sizes etc.)

In order to answer the first question and to circumvent the scalability is-
sues faced by previous state-based RT analysis approaches, we limit appli-
cations to the Synchronous Data-flow (SDF) [Lee and Messerschmitt, 1987b]
Model of Computation (MoC) (see Chap. 4). In the context of MPSoCs re-
search [Sriram and Bhattacharyya, 2000, Shabbir et al., 2010, Ghamarian, 2008,
Kumar, 2009, Moonen, 2009, Stuijk, 2007], the SDF MoC is gaining considera-
tion due to its analyzability features (e.g. deadlocks and bounded buffer prop-
erties are decidable for such models [Lee and Messerschmitt, 1987b]). In an
SDF specification, parallelism is represented explicitly and static schedules can
be obtained. Furthermore, SDF semantics support a clean separation between
computation and communication since no communication (resource access) is
allowed during the computation phase. This enables a compositional timing
analysis where SDF actor execution times can be analyzed independently from
communication delays of message passing between SDF actors.

We also constrain our hardware platform to an MPSoC architecture (see
Chap. 4) where each processor has its own instruction and data memory, called
a “tile”. Tiles are connected through one (or more) arbitrated shared inter-
connect(s) (bus(s), shared DMA(s)). Communication between tiles is realized
through FIFO-style message passing on shared memories accessed via shared
interconnects.

1.2. RESEARCH QUESTIONS AND CONTRIBUTIONS 7

With these constraints a formal model based on timed-automata semantics
can be constructed (see Chap. 5), representing WCETs of SDF actors and access
protocol properties (including timing) of shared interconnects, private local and
shared memories of the MPSoC platform and questions 3&4 can now be exam-
ined (see Chap. 7). With the above knowledge we can now concretely formulate
the main research goal of this thesis as follows:

The main goal of this thesis is to examine (according to metrics defined in questions
3&4) a state-based real-time analysis approach to analyze multiple Synchronous
Data-Flow (SDF) applications running on MPSoCs with shared communication

resources with respect to their hard real-time requirements.

1.2.2 Contributions

We claim the following contributions in this thesis:

C1 We provide a predictable, yet realistic, configuration of MPSoCs (with dy-
namic arbitration protocols) which enables our state-based RT-analysis
method (see Chap. 4).

C2 We enable a state-based real-time analysis of multiple SDF applications
mapped to an MPSoC platform (see Chap. 5):

1. Through capturing the delays of SDFGs when run on an MPSoC in
the form of timed-automata (TA) templates enabling sensitivity to
external events, multiple interconnects, multiple storage resources
and different inter-processor communication styles. For this we pro-
vide the complete set of timed automata templates capturing the
considered system model performance metrics and explaining their
implementation and abstraction decisions,

2. Evaluating different methods to improve the scalability of our state-
based RT analysis method,

3. Allowing the verification of more complex properties (such as live-
ness and reachability properties) compared to other analytical meth-
ods.

C3 Integrating above state-based RT analysis method into a model-based
design-flow which enables functional and temporal analysis of control
applications at different abstraction levels (see Chap. 6):

1. Translation concept of Simulink models to SDFGs enabling
RT analysis of applications implemented in Simulink (im-
plemented by Warsitz in SimulinkToSDF tool [Warsitz, 2015,
Warsitz and Fakih, 2016]),

8 CHAPTER 1. INTRODUCTION

2. Automation concept of our state-based RT analysis (first imple-
mented by Schlaak in SDF2TA tool [Schlaak, 2014]),

3. Combining a simulative method5 with our state-based RT method
for functional and accurate temporal Verification and Validation
(V&V).

C4 Evaluating the viability of our approach (see Chap. 7):

1. Being applicable to industrial use-cases. For this we show that the
timing bounds of different implementations with different commu-
nication styles for a motor control use-case are predictable through
our framework,

2. Tightening real-time results in comparison to a pessimistic analytical
approach from literature [Shabbir et al., 2010],

3. Enabling analysis of larger systems compared to related work
[Gustavsson et al., 2010, Lv et al., 2010].

In this thesis, our major contribution is the development of a state-based
real-time analysis framework (see C2) which enables (using the UPPAAL
model-checker) calculating safe timing bounds of multiple (hard real-time)
SDF-based applications running on an (for predictability pre-configured see
C1) MPSoC (represented as a network of TA), considering variable access de-
lays due to the contention on shared communication resources. The analysis
framework is capable of handling different shared memory architectures, data
access granularities and arbitration protocols (such as Round Robin, Fixed Pri-
ority and First Come First Serve (FCFS)).

To the best of our knowledge, we pioneered the translation of SDFGs
to timed-automata (in [Fakih et al., 2013a]) and we were the first to de-
scribe how to use model-checking to analyze real-time properties (e.g. end-
to-end deadline) of hard real-time multiple SDF applications mapped to
MPSoCs. Our approach has been later taken up by other researchers in
[Malik and Gregg, 2013, Ahmad et al., 2014, Zhu et al., 2014, Zhu et al., 2015,
Skelin et al., 2015, Thakur and Srikant, 2015] in order to model-check SD-
FGs/SADGs6, targeting various objectives (see Sect. 3.1.2.2).

Another major contribution is that we integrated our developed RT method
in a model-based design flow (see C3) simplifying the design of MPSoCs ap-
plications and their validation. Here, we support Simulink models as entry

5The Virtual-Platform-In-the-Loop (VPIL) verification and validation technique was first
demonstrated for single-processor platforms in [Fakih et al., 2011, Fakih, 2011] and in the scope
of this thesis it was then extended for Verification and Validation (V&V) of MPSoCs and pub-
lished in [Fakih and Grüttner, 2012].

6Scenario-aware Data-flow Graphs (SADGs) are more dynamic SDFGs where according to
scenarios, different flavors of the same SDFG are executed.

1.3. THESIS OUTLINE 9

models and describe how such models can be translated to SDFGs to enable
their state-based RT analysis on the one side. On the other side, we introduce
a simulation-based RT analysis (VPIL see C3-3) in the design flow enabling
functional and temporal validation of embedded Simulink applications on MP-
SoCs. Simulative approaches are more accurate and can be applied to analyze
large-scale applications running on large MPSoCs (for e.g. in the case where
the state-based RT analysis fails to analyze the SUA due to the well-known
state-space explosion problem).

1.3 Thesis Outline

This thesis is structured as follows. In Chap. 2 we will first discuss the main
concepts relevant to this thesis. Afterwards we will briefly discuss the related
work in Chap. 3 mainly addressing the RT analysis of SDFGs on MPSoCs. The
core of this thesis lies in chapters 4, 5 and 6 where we first introduce and dis-
cuss the constraints made on the application and hardware model to enable the
applicability of our state-based RT analysis method. Then we illustrate our pro-
posed approach and elaborate on the implementation of our timed-automata
templates used to capture the system model. Afterwards, we describe our
overall model-based design flow. Chap. 7 presents the experimental evaluation
conducted to demonstrate the viability of our state-based RT method. Finally,
Chap. 8 summarizes our findings and gives an outlook on open issues and
future work.

1.4 Prior Publications

Most of the concepts illustrated in this thesis have been published beforehand
in scientific journals, conferences, and workshops by the author (as first au-
thor) together with other researchers which contributed mostly through their
thoughts in discussions, guidance and feedback to the written publications.

A first proposal answering the four questions (see Sect. 1.2) was published
in [Fakih et al., 2013a]. A scalability improvement in terms of the number of
applications being analyzable of our approach through enabling spatial and
temporal segregation in the MPSoC was published in [Fakih et al., 2013b].

The Virtual-Platform-In-the-Loop (VPIL) verification and validation tech-
nique was first demonstrated for single-processor platforms in [Fakih, 2011,
Fakih et al., 2011] and in the scope of this thesis it was then extended for V&V
of MPSoCs (see Sect. 6.4) and published in [Fakih and Grüttner, 2012].

In [Fakih et al., 2014] our simulative approach (VPIL technique) was com-
bined with our state-based RT analysis approach in a model-based design flow

10 CHAPTER 1. INTRODUCTION

and the applicability of our approach was demonstrated on an industrial use-
case.

In [Fakih et al., 2015] the restrictions made in the previous publications
were further relaxed towards enabling sensitivity to external events, multiple
interconnects, multiple storage resources and different inter-processor commu-
nication styles. In addition, we published in [Fakih et al., 2015] the complete
set of used timed automata templates capturing the considered system model
performance metrics and explaining their implementation and abstractions’ de-
cisions.

It is important to note that the first version of the SDF2TA tool (see Sect. 6.3)
enabling the automatic configuration of our timed-automata templates was im-
plemented by Schlaak [Schlaak, 2014]. Also the first version of Simulink-
ToSDF tool which enables translating Simulink models to SDFGs was first de-
veloped by Warsitz in [Warsitz, 2015] (based on a major conceptual contribu-
tion by the author of this thesis summarized in Sect. 6.2) and then published
in [Warsitz and Fakih, 2016]. Both scientific work above were performed under
the guidance and support of the author of this thesis.

Chapter 2

Basic Concepts and Background

DSP

I/O

Communication network

Task4 Task2
Task1

Task3 Task5

CPU Co-Proc.

Subsys. B Subsys. A

Communication
Scheduling

Complex processors
Cache, Pipeline

Many possible inputs
- Complex application programs

Complex Interaction
with environment

Task
Scheduling

Incoming data

Figure 2.1: Timing issues of MPSoCs’ embedded applications (taken from
[Roychoudhury, 2009])

This chapter explains the basic terms important for understanding further
work in this thesis. Definitions of basic keywords can be found in the glos-
sary (see Glossary B.2.2). Fig. 2.1 shows an overview of different issues which
should be taken into consideration when validating the timing properties of
embedded applications running on MPSoCs. These factors vary between the in-
fluences of the different timing patterns of incoming events (periodic, sporadic,
with/without jitter) from the external environment which activate the local
tasks, the task model semantics and task scheduling, the application possible

11

12 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

input behavior and the communication access pattern on the communication
resources. In addition, the hardware properties of MPSoCs largely influence
the timing behavior of the application including the complexity of processors
(including cache, pipelines) and the temporal properties of the communication
(latency, arbitration complexity) and storage resources.

This chapter will be structured according to these issues depicted in Fig. 2.1.
Starting with a short description of current system-level design methodologies,
we will then take a look at the task models (with a focus on the synchronous
data-flow graphs) considered in this thesis and their scheduling mechanisms
in Sect. 2.2.1. Next, the temporal behavior of different MPSoC components
with a focus on the communication resources (arbitration policies and timing
diagrams) temporal behavior is described in Sect. 2.3. Afterwards, a short de-
scription of modeling the interaction with the environment and its timing effect
is given. At the end of this chapter, we will take a look at different real-time
(RT) timing analysis methods with the focus on formal RT analysis methods,
being able of handling the timing issues in Fig. 2.1.

2.1 System Level Design (SLD) Methodologies

One goal of this thesis (see C3) is to implement a suitable design flow to enable
timing validation of functional models (see Chap. 6), that is why some concepts
and terms of the SLD methodologies are presented in the following (partially
taken from the author’s work in [Fakih, 2011]).

Basically SLD methodologies aim at introducing “abstraction” as a solution
for handling the design complexity of embedded systems. In the 1960s capture
and describe methodology was used [Gajski et al., 2009]. Software and hardware
design were separated by a gap because developers had to wait until gate level
design was finished before verifying the system specifications. After that de-
signers began to use the describe and synthesize methodology where designers
first specified what they wanted in boolean equations or Finite State Machines
(FSM) descriptions and synthesis tools were implemented to generate automat-
ically implementations of these descriptions in the form of netlists. But still
there was a great gap between higher system level and these low-level spec-
ifications. Nowadays the specify and explore methodology is the method used
to close this gap, the level of abstraction is increased beginning with a func-
tional model implemented in some Model of Computation (MoC) representing
an executable specification, then possibilities are explored at different refine-
ment levels before finally the model is refined to be implemented on the target
hardware.

In [Gajski et al., 2009], MoCs are defined as follows:

“A Model of Computation (MoC) is a generalized way of describing

2.1. SYSTEM LEVEL DESIGN (SLD) METHODOLOGIES 13

system behavior in an abstract, conceptual form.” [...] MoCs are
generally based on a decomposition of behavior into pieces and their
relationships in the form of well-defined objects and composition rules.”
([Gajski et al., 2009]:50)

MoCs can be classified into process-based and state-based models. Process-
based models are typically used for data-oriented applications and for design
modeling at behavioral level. They are represented by a set of concurrent
processes, that are untimed and ordering is only limited by the data flow
between them. Each process is blocked when trying to read from a chan-
nel with insufficient data and it resumes when enough data is available. In
a data-flow model, which is a special case of process-based models, processes
are replaced by atomic blocks of execution, called actors. Avoiding the need
for context switches in the middle of processes, actors execute according to
firing rules depending on the number of tokens that must be available on ev-
ery input for the actor to fire [Gajski et al., 2009]. Synchronous data-flow (SDF)
MoC [Lee and Messerschmitt, 1987a] is a data-flow model, in which the num-
ber of tokens consumed and produced by an actor per firing is constant and
fixed (see Sect. 2.2.1). State-based models on the other hand, focus on ex-
plicitly exposing and representing control flow. They are used for control-
dominated applications and for modeling of designs at the implementation
level (e.g. for capturing cycle-by-cycle hardware behavior). Process State Ma-
chines (PSM) combines both process-based and state-based concepts in a one
MoC [Gajski et al., 2009]. As an instance SystemC the well-known standard
modeling language [IEEE-1666, 2012] for realizing virtual-hardware-platforms
has a generic MoC which only assumes that the system state changes at discrete
time points. This means that for example both a PSM [Gerstlauer, 2009] or a
Timed Data-Flow (TDF) [Grimm et al., 2009] MoCs can be realized in SystemC.

Fig. 2.2 shows the X-chart [Gerstlauer et al., 2009] which identifies the main
tasks in modern Electronic System Level (ESL) design process. All the defi-
nitions and terms of the system model used in this thesis (see Chap. 4) are
based on the X-Chart defined and described in [Gerstlauer et al., 2009]. The
functionality of the system is first captured in a behavioral model which typ-
ically represents an executable specification of the system functionality. The
expressibility and analyzability of the behavioral model depends on its under-
lying Model of Computation (MoC). In this thesis, we will mainly use the SDF
MoC (see Sect. 2.2.1). Later on, Simulink (see Sect. 2.2.2) will also be supported
in our design flow to capture behavioral made. The Model of Architecture
(MoA) (see Fig. 2.2) represents a platform model where the architectural tem-
plate, decisions and constraints are taken into consideration for e.g., available
resources, their capabilities and their interconnections [Gerstlauer et al., 2009].

14 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

Behavior Constraints

Structure
Quality

numbers

Synthesis

Decision
making

Refinement

MoC MoA

MoS MoP

Allocation,

 Binding,

Scheduling

Specification

Implementation

Figure 2.2: X-Chart (taken from [Gerstlauer et al., 2009])

The synthesis step includes the processes of allocating resources, binding and
scheduling the behavioral model on the defined architecture, and thus trans-
forming a specification into an implementation. An implementation consists of
a structural model and quality numbers (in this thesis only timing delays qual-
ity numbers are considered). The structural model (MoS: Model of Structure)
is a refined model resulting from the behavioral model under the architectural
constraints given in the specification after the synthesis decisions above have
taken place [Gerstlauer et al., 2009]. Different implementations parameters (for
e.g. throughput, response time, latency, area and power) can be estimated
for a specific implementation. Instead of implementing each design possibil-
ity to obtain above parameters’ values, performance models (MoP: Model of
Performance) are used. A MoP comprises all individual elements of the MoS
contributing to a specific design quality (e.g. worst/average/best case latency).
The overall quality estimates can be obtained either through direct measure-
ments, through simulation or through static analysis and highly depends on
the abstraction level and granularities in the MoP [Gerstlauer et al., 2009]. In
this thesis, the performance values considered in the MoP are merely execution
times metrics.

2.2. TASK MODEL (MODEL OF COMPUTATION) 15

2.2 Task Model (Model of Computation)

Model-based Design (MBD) of embedded systems is nowadays, a standard,
easy and efficient way for capturing and verifying embedded software func-
tional requirements. The main idea is to move away from manual coding, and
with the help of mathematical models create executable specifications, and then
provide automatic code generators which generate consistent imperative code
ready to be deployed in real environments. Typically, in MBD abstractions from
non-functional issues are made for allowing much faster simulation speeds
than other models enriched with hardware issues (e.g. Register Transfer Level
(RTL) models). Although this allows the designer to validate requirements at
very rapid speed, yet important issues such as timing violations of a safety
critical embedded application can’t be validated at this abstraction level.

In this thesis, we will mainly use the SDF MoC (see Sect. 2.2.1). Later on, our
proposed design flow (see Sect. 6.1) will be extended to enable entry functional
models modeled in Matlab/Simulink [MathWorks, Inc., 2015c] (see Sect. 2.2.2).

2.2.1 Synchronous Data-flow Graphs (SDFGs)

A synchronous (or static) data-flow graph (SDFG) [Lee and Messerschmitt, 1987b]
is a directed graph (see Fig. 2.3) which, similar to general data-flow graphs
(DFGs), consists mainly of nodes (called actors) modeling atomic functions/-
computations and arcs modeling the data flow (called channels). In difference
to DFGs, SDFGs consume/produce a static number of data samples (tokens)
each time an actor executes (fires). An SDFG suits well for modeling multi-rate
streaming applications and DSP algorithms and also allows static scheduling
and easy parallelization. An application which is modeled as an SDFG and has
a timing requirement will be denoted as a synchronous (or static) data-flow appli-
cation (SDFA) in this thesis. A port rate denotes the number of tokens produced
or consumed in every activation of an actor. The data flow across a chan-

1 2 3 5 4 2 2 3 1 1 1 1 3

3 1
1

1

Channel Delay Tokens Rate Actor

SDF Graph

Figure 2.3: Example of an SDFG (based on [Lin et al., 2011])

16 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

nel (which represents a FIFO buffer) is done according to a First-In-First-Out
(FIFO) fashion. Channels could also store initial tokens (called delays indicated
by bullets in the edges see for e.g. Fig. 2.3) in their initial state which help
resolving cyclic dependencies (see [Lee and Messerschmitt, 1987b]). An actor
in an SDFG can be a consumer (sink), a producer (source) or a transporter actor.
The complete formal definitions of SDFGs will be presented in Sect. 4.2.1.

Synchronous data-flow graphs where the number of tokens which are con-
sumed or produced by all actors when activated, is always equal to 1 are called
homogeneous synchronous data-flow graph [Lee and Messerschmitt, 1987a]. Below
we will give a description of the basic concepts of SDFGs relevant to this the-
sis including their scheduling decisions, their analyzability (properties of SDF
graphs that are analyzable) and expressiveness features compared to more dy-
namic data-flow models and the clustering technique which will be applied in
Sect. 5.4.2.

2.2.1.1 Scheduling

Thanks to the a priori defined rates, a static periodic schedule (at compile time)
for connected SDFGs can be easily constructed. Given an SDF specification,
a schedule can be constructed by solving a topology matrix representing the
SDFG [Lee and Messerschmitt, 1987a]. The number of columns in this matrix is
equal to the number of actors. The entries to the matrix are either the number of
produced tokens (positive number) or consumed tokens (negative). The SDFG
in Fig. 2.3 can be described by following topology matrix:

T =



2 −2 0 0 0
0 3 −1 0 0
0 −3 0 1 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 1 −3


A Periodic Admissible Sequential Schedule (PASS) exists if the rank of

the matrix rank(T) = s − 1 where s is the number of actors in the graph (c.f.
proof in [Lee and Messerschmitt, 1987a]). A topology matrix has a proper rank
(rank(T) = s − 1) if there is a strictly positive integer vector γ in its right
nullspace (according to [Lee and Messerschmitt, 1987b]), meaning that Tγ is
the zero vector:

Tγ = 0

where γ is called repetition vector and it describes the minimum number of
activation of every actor in each scheduling period. An SDFG is said to be
consistent (see Def. 4.2.4) if and only if a positive integer repetition vector γ

2.2. TASK MODEL (MODEL OF COMPUTATION) 17

exists. The schedule should be periodic because the the SDFG is assumed to a
have an infinite stream of input data, admissible meaning that all actors are run
only when data is available, and sequential meaning that the actors are executed
sequentially on a single-processor [Lee and Messerschmitt, 1987b].

In our example in Fig. 2.3, the topology matrix T has a rank of 4 which is
fulfills the condition that rank(T) = s − 1 (where s = 5) which implies that a
valid PASS schedule exists.

γ = J


1
1
3
3
1


for any positive integer J.
Clearly if a schedule for a single processor (PASS) exists, then

there also exists a schedule for multiple processors (PAPS), since in the
trivial case all computation can be scheduled on the same processor
[Lee and Messerschmitt, 1987a]. Heuristics which help constructing PAPS
schedules can be found in [Lee and Messerschmitt, 1987a]. Describing these
heuristics would be out of the scope of this work, since we assume an a pri-
ori constructed schedule for our real-time analysis method (see Sect. 4.1.1 in
Chap. 4).

After describing the basic mathematical method to determine a PASS sched-
ule, we now elaborate on the different existing scheduling methods (suggested
in [Stuijk, 2007]) which can be used to realize scheduling of actors within the
same SDF application on one side and scheduling between different SDF ap-
plications mapped to the same processor on the other side. These schedul-
ing strategies are typically either compile-time scheduling (e.g. static-order
scheduling) or run-time (e.g. round-robin and time division multiplex) strate-
gies [Moonen, 2009]. In general, run-time scheduling requires a run-time su-
pervisor (an operating system) which can lead to severe overheads in terms of
performance. On the other hand, this is not the case for compile-time schedul-
ing where (if any) only small run-time overheads are introduced due to the
scheduling process (no need for an operating system).

In the following a short description of the scheduling mechanisms used in
this thesis. In addition, we will take a look at each scheduling strategy, sim-
ilar to [Stuijk, 2007], to see whether it is composable or flexible. According to
[Stuijk, 2007], a scheduling strategy is said to be composable if the timing be-
havior of applications can be analyzed in isolation. Flexibility of a strategy
is defined, by the ability to deal with dynamically changing dependencies be-
tween actors [Stuijk, 2007].

18 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

Static-order Scheduling A static-order schedule for a set of actors (poten-
tially of different SDFGs) where these actors are executed in a cyclic man-
ner according to statically ordered list, as soon as their input data is available
[Stuijk, 2007]. This means that a scheduler will wait until the first actor in the
list gets ready (as soon as all its input data are available), then executes the
ready actor and move to the next actor in the list ready to be executed. Clearly,
a static-order scheduling is neither flexible nor composable. It is not flexible
since all dependencies between the actors must be fixed and known at compile
time [Stuijk, 2007]. The non-composability of static-order schedules is obvious
since no actor or set of actors within such a schedule can be analyzed in isola-
tion, as the inter-actor dependencies must be always taken into consideration.

Round-Robin Scheduling Round-robin (RR) scheduler can help to achieve
more fairness to the execution of ready actors than the static-order schedule.
Similar to the static-order scheduler, it gets a list of ordered actors, but with
the difference that the RR scheduler checks if the current actor is ready (for e.g.
check for input availability or output capability) then it either fires or gives the
control back to the scheduler if this is not the case. In both cases of blocking
or successful firing, the scheduler switches from the active actor to activate the
next actor in the list. In addition to fairness, RR scheduling gives the required
flexibility to handle actors for which the order of execution are not known when
constructing the schedule [Stuijk, 2007].

Since every actor should wait for all actors to run in the list before it gets to
run in the worst case, the worst-case response time of an actor in RR schedule
can be calculated as follows:

twcrtj = ∑
∀i 6=j

twcrti (2.1)

RR scheduling is not composable since the response time of an ac-
tor strongly depends on the execution time of all actors in the schedule
[Stuijk, 2007].

Time-Division Multiple-Access (TDMA) Scheduling A TDMA scheduler al-
lows an actor to be executed in only specific time slot and switches to the next
slot as soon as the previous slot expires, using the concept of periodically ro-
tating wheel [Stuijk, 2007].

Since we consider, in this thesis, a non-preemptive (for the pre-
emptive one c.f. [Stuijk, 2007]) TDMA scheduler (as assumed also in
[Giannopoulou et al., 2012]), we assume that the worst-case execution time of
an actor (or cluster of actors, details on this will follow in Sect. 5.4.3) does not

2.2. TASK MODEL (MODEL OF COMPUTATION) 19

exceed the size of the corresponding slot. The following equation can now be
used to calculate the worst-case response time of an actor in TDMA schedule:

twcrt =
Sl

∑
i=0

Ti + (Sl × s), (2.2)

where Ti is the slot size (in time units) of current slot i, s is the scheduler worst-
case delay time needed to switch from one slot to another and Sl is the total
number of slots.

It is obvious from Eq. 2.2 that the TDMA scheduling mechanism is com-
posable, due to the fact that the worst-case response time of every actor can
be analyzed in isolation from others since it is only affected by the slot length
and the number of slots. Moreover, the TDMA scheduling is flexible in the
sense that new actors can be added to the TDMA schedule as long as there are
unreserved slots available [Stuijk, 2007].

A comparison was made between the above three scheduling methods in
[Stuijk, 2007]. The author came to the conclusion that even though the TDMA
scheduling is flexible and supports composability, it can (potentially) lead to
over-allocation of resources in order to compensate the timing overheads for
e.g. in the case where large portions of the slots are unoccupied.

In this work, we assume (see Sect. 4.1) that all scheduling strategies are non-
preemptive meaning that actors cannot be preempted by the scheduler and they
have to actively hand the control back to the scheduler after finishing or when
blocking. While non-preemptive schedulers are easy to implement and over-
heads of scheduling are easily assessable, yet the non-preemptive scheduling1

is known to be NP-hard even for single-processor platforms [Jeffay et al., 1991].
The above mentioned worst-case response time of actor (twcrti) is defined in

this thesis as follows:

twcrt = twcet + tcom + twait (2.3)

where twcet is the worst-case execution time of the actor when run on a single
target processor (which can be achieved through a static analyzer see Sect. 2.5),
tcom is the communication time needed by every actor firing to transport a
number of tokens over a communication resource and twait is the waiting time
of the actor induced when waiting for other actors to finish communication on
communication resources.

2.2.1.2 Timing Properties

When mapped to an MPSoC, SDFGs exhibit interesting timing properties as
shown in the example in Fig. 2.4. In this example we have an SDFG of five

1Deciding schedulability for a set of concrete periodic tasks is NP-hard in the strong sense
[Jeffay et al., 1991].

20 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

actors and an MPSoC of three heterogeneous processors: one ARM processor,
one Field Programmable Gate Array (FPGA) and one Digital Signal Processor
(DSP). The next step would be to obtain a valid periodic static-order schedule
(see Sect. 2.2.1.1) represented by the repetition vector as seen in Fig. 2.4 where
except actors 3 and 4 (which should be executed three times) all other actors
should be executed once. Then, the SDFG is partitioned in three partitions
with the first partition consisting of actor 1 and actor 5 which are mapped to
the ARM processor, the second partition consisting of actor 2 and actor 3 which
are mapped to the FPGA, and the third partition consisting of actor 4 which
is mapped to the DSP. These mappings could be reasonable depending on the
nature of the actors and which criteria the designer wants to optimize (for e.g.
energy, performance or cost purposes).

After being mapped to the MPSoC, actors are run according to the periodic
static-order schedule (based on repetition vector in Fig. 2.4) on every processor
and their resulting MPSoC schedule is shown in Fig. 2.4. As we can observe
the SDF application goes through a startup phase (which could comprise several
iterations) before it reaches the stable periodic phase. An iteration is a set of actor
firings such that each actor in the SDFG has the same firing number as calcu-
lated in the repetition vector [Stuijk, 2007] . If we take a look at our example,
then the SDFG needs a period of 7 units of time to complete a single iteration

latency

11 12 13 13 15

21 22 23 24
51 52 53

41 42 43 44 45 46 47 48 49 410
31 32 33 34 35 36 37 38 39 310 311 312

0 1 period 1 period 2 period 3

stable periodic phase startup phase

ARM
FPGA

DSP

time

1 2 3 5 4 2 2 3 1 1 1 1 3

3
1

1
1

FPGA DSP

ARM

Partition:

MPSoC Schedule:

Repetition Vector: [1, 1, 3 ,3 ,1]

Figure 2.4: Example of an SDFG with its relevant timing properties (taken from
[Lin et al., 2011])

2.2. TASK MODEL (MODEL OF COMPUTATION) 21

HSDF

SDF

CSDF

BDF

DDF

KPN

RPN
RPN Reactive Process Network

KPN Kahn Process Network

DDF Dynamic Dataflow

BDF Boolean Dataflow

CSDF Cyclo-Static Dataflow

SDF Synchronous Dataflow

HSDF Homogeneous SDF
 (DFG, with single token)

Figure 2.5: Process-based MoCs (taken from [Basten, 2008]), MoCs from BDF
and above (highlighted with yellow) are Turing-complete

in the stable periodic phase (thus if one unit of time is equal to one cycle, then
every 7 cycles an iteration of the SDFG is completed). For processors having
300 MHz clock frequency, we can reach a maximal throughput of about 43 MHz
or about 43 Million iterations per second. Another relevant timing metric is
the latency which is defined as the time duration from the first instance of the
source actor of an SDFG to the last instance of the sink actor. In our example
the latency is found to be equal to 19 units of time. In this thesis, we will only
consider lower and upper bounds of the timing metrics (such as the worst-case
period). By doing this, average timing estimations (such as average application
throughput estimation) are no longer possible. The formal definitions of rele-
vant properties (period, end-to-end latency, etc.) of SDFGs which are used in
thesis are found in Sect. 5.2.8 and Sect. 4.2.1.

2.2.1.3 Expressiveness

According to [Moonen, 2009] homogeneous SDFGs and SDFGs have the
same expressiveness as marked graphs [Commoner et al., 1971] and weighted
marked graphs, which are a sub-class of timed petri-net theory, respectively.
Despite the analyzability advantage of SDFGs (e.g. deadlocks and bounded
buffer properties are decidable for such models [Lee and Messerschmitt, 1987b]
and with the help of mathematical methods easy-to-analyze compile-time

22 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

schedules can be constructed), yet this comes at the cost of expressiveness.

One of the main limitations of SDF MoC is that dynamism cannot be han-
dled for e.g. in the case where depending on the current scenario the applica-
tion rates changes (this dynamism can be handled by an extension of SDFGs:
the so-called Scenario-Aware Data-Flow (SADF) [Theelen et al., 2006] MoC).
The fact that SDFGs do not support dynamism, makes SDFGs not adequate
for many use-cases. Some of these were stated in [Schaumont, 2013], for e.g.
stopping and restarting an SDFG is not possible since an SDFG can have only
two states either running or waiting for input. In addition, reconfiguration of
an SDFG to be able to (de)activate different parts depending on specific modes
is not possible. Moreover, different rates depending on run-time conditions
is not supported. Also modeling exceptions which might require deactivating
some parts of the graph is not possible.

Another limitation (c.f. [Lee and Messerschmitt, 1987a]) of the SDF MoC is
that conditional control flow is only allowed within an actor functionality but
not among the actors. However, emulating control flow within the SDFG is
possible even though not always efficient (c.f. [Schaumont, 2013]). An addi-
tional issue is that the SDF model does not reflect the real-time nature of the
connections to the real-time environment.

More expressive data-flow graphs are shown in Fig. 2.5. A short descrip-
tion of these data-flow graphs can be found in [Kumar, 2009, Stuijk, 2007]. It
is worth to note that the Boolean Data-flow graph (BDF) MoC which only ex-
tends the SDF MoC by enabling conditional and data-dependent execution (by
adding select and switch control actors with boolean control inputs) is Turing-
complete (c.f. [Buck, 1993]).

2.2.1.4 Clustering Methods

Multiple actors of an SDFG can be merged (clustered) together into one actor
for various optimization purposes. In the following, the formal notation of the
clustering method taken from [Bhattacharyya et al., 1997] (which we will use
in Sect. 5.4.2) is presented.

Given a connected, consistent (see Def. 4.2.4) SDF graph G = (A,D) (where
A is the number of actors and D is the number of channels with a repetition
vector γG, a subset Z ⊆ A, and an actor Ω /∈ A. Clustering Z into Ω means
generating the new SDFG (A′,D′) such that: A′ = A–Z + {Ω} and D′ = D–({e |
(src(e) ∈ Z) or (dst(e) ∈ Z)}) +D∗, where D∗ is a “modification” of the set of
edges that connect actors in Z to actors outside of Z .

2.2. TASK MODEL (MODEL OF COMPUTATION) 23

For each e ∈ D such that src(e) ∈ Z and dst(e) /∈ Z , we define e′ by:

src(e′) = Ω, dst(e′) = dst(e),

delay(e′) = delay(e), cons(e′) = cons(e),

prod(e′) = prod(e)× (γG(src(e))/ρG(Z))

where ρG(Z) = gcd({γG(A) | A ∈ Z}, prod(e) and cons(e) are production and
consumption rates of edge e receptively. Similarly, for each e ∈ D such that
dst(e) ∈ Z and src(e) /∈ Z , we define e′ by:

src(e′) = src(e), dst(e′) = Ω

delay(e′) = delay(e), prod(e′) = prod(e),

cons(e′) = cons(e)× (γG(dst(e))/ρG(Z))

and then, we can specify D∗ by:

D∗ = {e′(src(e) ∈ Z and dst(e) /∈ Z) or

(dst(e) ∈ Z and src(e) /∈ Z)}

The graph that results from clustering Z into Ω in G is denoted clusterG(Z , Ω).
Z is clusterable if clusterG(Z , Ω) is consistent and G is acyclic. If G = (A,D)
is a connected, consistent SDF graph, Z ⊆ A, and G′ = clusterG(Z , Ω), then
γG′(Ω) = ρG(Z), and for each A ∈ (A–Z), γG′(A) = γG(A).

Fig. 2.6 shows an example of clustering an MP3 decoder application2 ac-
cording to the above clustering technique, which we will evaluate later (see
Sect. 7.2.4) to show the possible improvements of our state-based RT method
when utilizing the clustering mechanism.

2.2.2 Simulink

In the following, a short summary (partially taken from the author’s work
in [Fakih, 2011]) about Matlab/Simulink main features (including the simula-
tion kernel and the code-generation features) and its MoC is given. Simulink
is a software package for modeling of dynamic systems and simulating them
in virtual time. Modeling of such systems is carried out graphically through
Simulink graphical editor consisting mainly of blocks and arrows (connections)
between them representing signals. Each block has its input, output and
optionally state variables. The relationship of the inputs with the old state
variables and the outputs update is realized through mathematical functions.
Blocks could be linear or nonlinear, discrete or continuous. Discrete blocks
are basically either logical boolean equations or blocks triggered through events,

2MP3 decoder original definitions and timings were taken from [Stuijk et al., 2006]

24 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

huffman

req0

huffman2req0
1

2

req1

huffman2req1
1

2

reorder0

req0-2reorder0
1

1

stereo

req0-2stereo

1

1

reorder0-2stereo

1

1

reorder1

req1-2reorder1
1

1

req1-2stereo

1

1

reorder1-2stereo

1

1

aliasreduct0

stereo2aliasreduct0
1

1

aliasreduct1

stereo2aliasreduct1
1

1

IMDCT1

stereo2IMDCT1

1

1

IMDCT0

stereo2IMDCT0

1

1

aliasreduct0-2IMDCT0

1

1

aliasreduct1-2IMDCT1

1

1

freqinv1

IMDCT1-2freqinv1
1

1

freqinv0

IMDCT0-2freqinv0
1

1

synth0

freqinv0-2synth0
1

1

synth1

freqinv1-2synth1
1

1

Ω

IMDCT0

chan0
1

2

chan1

1

2

IMDCT1

chan2

1

2
chan3
1

2

freqinv0

IMDCT0-2freqinv0
1

1

synth0

freqinv0-2synth0
1

1

freqinv1

IMDCT1-2freqinv1
1

1

synth1

freqinv1-2synth1
1

1

γG = {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2} γG′ = {1, 2, 2, 2, 2, 2, 2}

Figure 2.6: MP3 decoder clustering: clusterG({hu f f man, req0, req1, reorder0, reorder1,
stereo, aliasreduct0, aliasreduct1}, Ω) with D∗ = {chan0, chan1, chan2, chan3}

while continuous blocks are expressed as differential equations. One of the pow-
erful features of Simulink is the ability to combine multiple simulation domains
(continuous and discrete). This is very useful for embedded systems, where in
general the controller has discrete model and the environment often needs to
be modeled as a continuous one. Simulink also supports a state-based MoC
the Stateflow [MathWorks, Inc., 2015f] which is widely used to model discrete
controllers. Simulink allows a fast Model-in-the-Loop (MIL) verification, where
the functional model (of the controller for example) is simulated and results are
documented to be compared with further refinements.

Model of Computation Since Simulink is our basic framework for capturing
the functional model of the system in our design flow, it is relevant to know the
underlying MoC. Authors in [Gajski et al., 2009] make the following statement:

“Dataflow models map well onto concepts of block diagrams with
continuous streaming of data from inputs to outputs. As a result,
they are widely used in the signal processing domain and as the basis
for many commercial tools such as LabView [96] and Simulink [95].”
([Gajski et al., 2009]: 55)

This means that Simulink supports a data-flow MoC also referred to as
the synchronous block diagram (SBD) in [Pouzet and Raymond, 2009]. In

2.2. TASK MODEL (MODEL OF COMPUTATION) 25

[Lublinerman and Tripakis, 2008] a method was presented to automatically
transform SDFGs into SBDs, such that the semantics of SDF are preserved, and
it was proven that Simulink can be used to capture and simulate SDF models.
As a conclusion from the researches above, we can say that Simulink supports
a timed data-flow MoC3 which could be used to capture SDFGs.

Simulink also offers a control-based MoC represented in the Stateflow tool-
box. The Stateflow language is based on the statecharts formalism supporting
a combination of Statecharts, Flowcharts and Truth tables. The graphical Stat-
echarts language directly realizes a Hierarchical Concurrent Finite State Machine
(HCFSM) model as stated in [Gajski et al., 2009]. This means that a Stateflow
diagram extends the classical finite state machine (pure Mealy or Moore au-
tomaton semantics) formalism by adding hierarchy and concurrency (parallel
states). In this work, the Stateflow is only considered at the block level, thus
abstracting from the single transitions and activities within this block.

Simulation Kernel Simulink uses an idealized timing model for block execu-
tion and communication, with both consuming no simulation time or in other
words running infinitely fast. Typically, blocks are evaluated at certain time
steps depending on a custom fixed-step size (or sample time) parameter, which
can be set globally or individually for each block. This sample time parameter
specifies the period of execution [Lee and Neuendorffer, 2005] of the model (or
for each block). As mentioned before, Simulink supports both discrete time
and continuous time simulation where the simulation of continuous models
is based on differential equations. The values are interpolated using numeri-
cal integration techniques between the different time points of the fundamental
sample time. In Simulink, these techniques are called solvers which are of two
types: variable-step solver and fixed-step solver. In the official Simulink docu-
mentation [MathWorks, Inc., 2015c] we read the following:

“Both fixed-step and variable-step solvers compute the next simulation
time as the sum of the current simulation time and a quantity known
as the step size. With a fixed-step solver, the step size remains constant
throughout the simulation. In contrast, with a variable-step solver, the
step size can vary from step to step, depending on the model dynamics.”
([MathWorks, Inc., 2010]: 592)

In choosing a solver a trade-off between accuracy and performance of the
simulation is made. For example the Runge-kutta-4 solver is more accurate than
Euler solver but consumes more computational time. Since for models with
a variable-step solver code-generation is not possible [MathWorks, Inc., 2015c],

3Since Simulink has a notion of time (sample time) and it supports dynamic blocks with
variable rates (for e.g. the switch block which can switch between data of variable sizes).

26 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

we will only support models with fixed-step solver with a fixed-step size in this
thesis.

Because of scheduling issues and in order for a model with multi-rates (dif-
ferent sample times) to be simulated, some essential blocks for rate conversion
(so called Rate-transition blocks) must be inserted between blocks with
different sample times or else the simulation will fail with an output error mes-
sage.

Code Generation The Embedded Coder [MathWorks, Inc., 2015a] takes
Simulink models as an input and generates C/C++ source code optimized for
embedded systems with configuration/customization options. The generated
code can be optimized for different architectures and run on typical micro-
controllers (MCU). Embedded Coder makes the Software-in-the-Loop (SIL) and
Processor-in-the-Loop (PIL) verification and validation techniques possible. In
the SIL technique the controller model is replaced by the generated code from
the embedded coder (usually embedded in a s-function) and the behavior of
the code is compared with the reference data achieved from MIL (described
above). On the other hand, by the PIL technique the generated code is directly
tested on a target processor, the code is compiled with a target compiler
and downloaded to an evaluation board with the target controller. The PIL
evaluation gives accurate details about the code size, the required RAM/ROM,
the stack consumption over time and the execution times.

In our design flow (see Chap. 6), a Virtual-Platform-in-the-Loop (VPIL) is en-
abled in which the generated code after being mapped and run on a virtual-
platform target processor (before deploying on the real hardware) is run in
the loop with the environmental golden model in Simulink and an evalua-
tion is done regarding functionality and execution times. Also other evalua-
tions are possible with the help of this VPIL such as the code size the required
RAM/ROM, stack/heap size analysis, interrupt analysis, tracing etc.

2.3 Timing Issues of MPSoCs

Current architectures e.g. in the automotive domain are witnessing a strong
trend of increasing the number of processors in order to achieve increased per-
formance and reduced Space Weight and Power (SWaP). In this thesis, we will
consider architectures consisting of various processors (embedded processing
elements, FPGAs, DSP) which are connected to storage resources through inter-
connects. We will use a similar terminology to that defined in [Rochange, 2011]
to differentiate in the MPSoC between storage resources (e.g. memories, buffers
and caches) which keeps information for a while (for several cycles or perma-

2.3. TIMING ISSUES OF MPSOCS 27

MPSoCs

PE

Homogeneous

Heterogeneous

Storage
Resource

Memory
Hierarchy

Shared
Memory

Distributed
Memory

Private
Memory

Message
passing

Technology Type

Caches

Scratchpads

Memory Chips

Communication
Resource

Arbitration Type

Bus

Crossbar

NoC

IPC

Shared
Memory

Message
passing

Figure 2.7: Decision tree of an MPSoC design

nently) and communication resources (buses, interconnects) where information is
transfered from a sender to a receiver at each (number of) cycle(s).

Fig. 2.7 shows the most relevant decisions to be met when developing an
MPSoC application and which can influence its timing behavior. The process-
ing elements (PE) could be homogeneous or heterogeneous where in the latter
case for e.g. the instructions of some PE are optimized for a certain application
domain. In this case, possible conversion4 of data representation (referred to as
endianess) should be performed when different PE are exchanging tokens over
a communication resource.

Concerning storage resources, there are different technology types: volatile
(such as SRAM and DRAM) where data are lost after power being unplugged
and non-volatile (such as ROM or flash memory) where data remains conserved
even if the power supply is no more existent [Lee and Seshia, 2012]. Storage
resources (typically SRAM) which are used to store temporarily working data
are called either scratchpads if they have a distinct set of addresses and the
program is responsible for moving data into them or out of them to the distant
memory [Lee and Seshia, 2012] or are called caches if they are able themselves
to duplicate data existing in the distant memory in them and to synchronize
(according to coherence strategy) or replace them (according to a replacement
strategy) when needed [Lee and Seshia, 2012]. In addition, we can, depending
on the hierarchy level, differentiate between shared memories and distributed
local memories. A shared memory can be typically accessed by any PE in the

4Since every communication partner in a heterogeneous platform can have different data-
formating, data-formatting rules should be applied. These rules can be either defined globally
or locally for every two communication partners [Gajski et al., 2009].

28 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

MPSoC. Whereas local memories can be either private memories with exclusive
access to one PE or can be utilized to realize a message passing between a
subset of existing PEs (typically between two of them).

As to the communication resources in the MPSoC, different types of inter-
connects are available which can support arbitrations of various complexities.
Bus-based communication in MPSoCs is still the state-of-the-art in many in-
dustrial domains (especially in the automotive architectures) and has proven
to be efficient connecting a small numbers of PEs (see controller area network
(CAN) bus [ISO11898-1, 2003]). For more flexibility crossbars were introduced
(see Aurix platform [Infineon Inc., 2013]) which can improve performance by
enabling one-way communication paths (without contention) between masters
and slaves on the platform. With increasing the number of PEs in the platform,
flexibility is required when connecting several PEs and in order to alleviate the
contention bottleneck of traditional communication resources, Network-On-Chip
(NoC) based interconnects were suggested [Bjerregaard and Mahadevan, 2006].

Several inter-processor communication (IPC) types can be applied to achieve
data transfer between two different processor elements ranging between shared-
memory based IPC or direct message passing through dedicated hardware com-
ponents (like FIFOs or mailboxes) which exhibits performance improvements
compared to shared-memory IPC.

Since predictable design is becoming inevitable in safety-critical systems, we
will take a look in the following sections at the most important timing behavior
aspects of the MPSoC components (influencing the predictability) with a focus
on the communication resources’ properties. Tab. 2.1 summarizes the timing
effects at the level of every component in the MPSoC which we will describe in
detail in the following sections.

2.3.1 Processor Elements

In nowadays MPSoCs, sharing of logical/execution units among processor el-
ements is possible if hyperthreading is enabled [Kotaba et al., 2013]. This con-
tention can lead to timing variation at the instruction level depending on the
current number of PEs trying to access these units.

Another major bottleneck for the timing analysis of software applications on
PE are the instruction pipeline stages which can also be shared through parallel
hyper-threads [Kotaba et al., 2013]. In addition, highly optimized (for improv-
ing average performance) pipelines with dynamic branch prediction (based on
speculation) makes it even harder to predict the execution time of single in-
structions [Cullmann et al., 2010].

Since preemptive scheduling is sometimes indispensable to schedule a task
set, preemption is also an issue at the PE level. Preemption (interrupts are
also considered as preempting tasks [Cullmann et al., 2010]) requires context

2.3. TIMING ISSUES OF MPSOCS 29

Table 2.1: Mechanisms affecting the temporal behavior of an MPSoC (based on
[Kotaba et al., 2013])

Class Shared Resource Mechanism

PE
Pipeline stages Contention by parallel hyperthreads

Dynamic branch prediction
Logical units Contention by parallel applications

Storage
resource

Memory (DRAM)
Interleaved access by multiple PEs causes address set-up delay
Delay by memory refresh

Shared Cache

Cache line eviction
Contention due to concurrent access
Coherency:
- Delay due to contention by coherency mechanism
- Read requested by lower level cache
- Read delayed due to invalidated entry
- Contention by coherency mechanism on this level

Local Cache

Coherency:
- Read delayed due to invalidated entry
- Contention by coherency mechanism from lower level cache
Cache line eviction

TLBs Coherency overhead

Communication
resource

Bus

Contention:
- by multiple PE
- by other device: IO, DMA, etc.
- by coherency mechanism traffic

Memory
controller

Contention due to concurrent access

Bridge Contention by other connected buses

Addressable
device

I/O devices

Overhead of locking mechanism accessing the memory
I/O Device state altered by other thread/application
Interrupt routing overhead
Contention on the addressable device
- e.g. DMA, Interrupt controller, etc.
Synchronous access of other bus by the addressable device
- e.g. DMA

switching and could cause non-deterministic timing behavior due to eviction
of data in the cache or in the resources inside the PE such as the pipeline.

2.3.2 Storage Resources

Contention occurs on a physically shared memory (where instructions and data
can be stored and are accessible to all PEs), when PEs perform concurrent
accesses. Especially if the path in between the PE and the memory consists
itself of other shared resources such as the cache, the interconnect and the
memory controller. Typically, in such cases concurrent accesses are serialized
(e.g. through arbitration on the interconnect) but still these interleaved accesses
of multiple PEs operating on different memory pages to the main memory
might cause address set-up variable delays [Kotaba et al., 2013]. In this case,
the memory controller must continuously open and close new pages impacting
the timing behavior of the MPSoC. Beside above issue and only specific to
dynamic RAM, refresh delays due to memory refresh cycles also impact the

30 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

overall timings [Kotaba et al., 2013].
Caches exhibit many challenges concerning their timing behavior assess-

ment due to their complex architectures optimized for fast buffering of data. In
addition, the multi-layer cache hierarchies ranging from first level (L1) to inter-
mediate level (L2) caches which also may be shared (or processor-local) makes
their temporal behavior analysis even harder. Starting with a local (non-shared)
cache which requires a coherency strategy that takes care of invalidating out-
dated cache entries (e.g. by a read access on destination memory through L2
to L1 cache). In addition, coherence strategy could again lead to contention on
another cache with different level [Kotaba et al., 2013]. Since caches have a lim-
ited size, replacement strategies responsible of evicting data (for e.g. when a
new task is accessing the destination memory) also impact the timing behavior
(for more information c.f. [Cullmann et al., 2010]). Beside above issues, by a
shared cache other issues emerge due to the contention resulting from the con-
current access of the different PEs sharing this cache. For e.g. blocking times
are induced when PEs try to concurrently access the shared cache. Moreover,
read requests of the lower level cache invoke the coherency mechanism which
also induces contention and in turn also impacts the overall timing behavior.
Similar coherency overhead exists when using Translation Look-aside Buffer
(TLB) [Kotaba et al., 2013].

2.3.3 Communication Resources

On the communication resource level, contention results when multiple PE try
to access it concurrently. In addition, contention resulting from the coherence
mechanism (for e.g. the case when one PE updates data in the destination
memory, this update invokes an invalidation update on all caches which con-
tain these data). Furthermore, contention could be also invoked by devices
other than the PEs such as the I/O devices, or DMA controller. Depending on
the nature of the communication resource, these contentions can be avoided or
minimized e.g. in the case of Network-on-Chip (NoC) having enough chan-
nels to serve all connected PEs [Kotaba et al., 2013]. Another major issue, is
the kind of arbitration used which decides which PE by a concurrent access
should be served first. While TDMA arbitration policy insures determinism
since maximum latency can be guaranteed, other policies which allow starva-
tion of PEs (e.g. fixed-priority) or highly depend on the run-time state (e.g.
First-Come-First-Serve: FCFS) are more difficult to analyze.

At the level of a Memory controller, contention due to concurrent access (de-
pending on the interconnect type) can take place. In this case, the memory
controller must continuously open and close new pages leading to timing be-
havior impacts of the overall MPSoC timing behavior.

Bridges can be used to connect multiple buses and interconnects to each

2.3. TIMING ISSUES OF MPSOCS 31

other. Also at the level of bridges contention occurs when multiple requests
from the connected interconnects are issued to the bridge.

Since modeling communication resources (see Sect. 5.2.5) will be a major
contribution of this thesis, we will elaborate in the following on their arbitration
issues and their timing models.

2.3.3.1 Scheduling (arbitration)

Similar to the scheduling mechanisms presented in Sect. 2.2.1.1, we will de-
scribe in the following the arbitration mechanisms of shared communication
resources which control concurrent access requests of multiple PEs to a shared
storage resource. All arbitration mechanisms used in this thesis are non-
preemptive (c.f. [Abel et al., 2013] for a description of preemptive arbitration
protocols) meaning that the arbiter grants access to the arriving access only if
no other request is currently served.

We will differentiate (Similar to [Abel et al., 2013]) between Time-driven ar-
bitration (TDMA) where a predefined schedule assigning fixed time slots to
every PE to access the communication resources and Event-driven arbitration
(First-Come-First-Serve, Round-Robin, Fixed-priority) where at run-time the
arbitration mechanism decides which PE should be granted access.

Time-driven Arbitration We have already described the TDMA mechanism
in Sect. 2.2.1.1 used for scheduling SDFGs. In the following, the same mecha-
nism will be described but now applied to arbitration of accessors on a shared
communication resource. In this case, every PE is allocated a priori to a time
slot of a fixed slot length where it can perform its operations (transfers on the
shared storage resource).

In order to insure that every transaction of a PE finishes before the slot time
expires (since we assume a non-preemptive arbitration), the length of all slots
is set to the transaction communication time (including arbitration cycle time
and memory access delay) with the maximal delay which can be requested on
this communication resource i.e. if tmaxn is the maximal communication time of
actor n needed to transport a number of tokens among all its ports to a target
shared storage resource (including the latency of the storage resource) then the
slot size Tsl can be calculated as follows:

Tsl = max{tmax1 , . . . , tmaxn}

Knowing the slot size, we are now able to calculate the WCRT of a PE access
to the shared storage resource according to a TDMA arbitration as follows:

twcrtj = n× Tsl (2.4)

32 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

whereby n specifies the number of PEs and Tsl is the slot size (in time
units). The TDMA arbitration is composable and flexible for the same reasons
mentioned in Sect. 2.2.1.1.

Event-driven Arbitration Here we will elaborate on the event-driven arbitra-
tions used in this thesis. By a fixed-priority arbitration policy, a unique priority
is assigned to each PE and if contention occurs on the communication resource,
the PE with the highest priority is granted access. Suppose that PE with sub-
script 0 is the one with the highest priority then the WCRT of PE0 can be
calculated as follows [Pitter and Schoeberl, 2010]:

twcrt0 = max
0<i≤n−1

{tWCCTi − 1} + t0 (2.5)

where i is the identification of all lower priority PEs, n the number of PEs in the
system, tWCCTi represents the maximum duration among all access instances of
storage resource accesses of PEi and t0 is the time needed to access the storage
resource for PE0. Eq. 2.5 represents the case where another lower priority PE
gets the communication resources and only after one cycle (tWCCTi − 1) PE0 the
one with the highest priority issues a request, which is the worst-case scenario
for PE0. Yet, calculating the WCRT of lower priority PEs accessing storage
resources is much more difficult (according to [Pitter and Schoeberl, 2010]) due
to the fact that it is strongly dependent on the number of active PEs. For e.g.
suppose the higher priority PE prevent the lower priority PE from accessing
the storage resource indefinitely, in this case obviously it is not an easy task to
bound the WCRT of the lower priority PE.

Fair arbitration can be achieved through round-robin (RR) arbitration (sim-
ilar to RR scheduling Sect. 2.2.1.1). By every arbitration, a counter (typically
beginning from 0) indicates the identification of the next PE to be granted the
access to the interconnect and which is incremented after every arbitration and
thus insuring starvation-freedom between accessors. The WCRT of a PE acces-
sor on a communication resource with a RR arbitration can be calculated as
follows [Pitter and Schoeberl, 2010]:

twcrtj = ∑
∀i 6=j

(tWCCTi) + tj (2.6)

where tWCCTi represents the maximum duration among all access instances
to the storage resource accesses of PEi (other processors than PEj), and tj is the
time needed to access the storage resource for PEj.

In a First-Come-First-Serve (FCFS) arbitration a FIFO queue maintains re-
quests from accessors and the oldest request in the queue is granted access to
the shared communication resource. According to this scheme and similar to

2.3. TIMING ISSUES OF MPSOCS 33

HCLK

0xA000 0000

0x2F00 9801

NONSEQ

HREQ

HGRANT

HCNTRL

HADDR

HWDATA

HREADY

time Data Address Arbitration

Figure 2.8: Cycle-accurate Write single-beat transfer (based on [ARM, 2006,
ICVerification , 2015])

RR arbitration, FCFS also insures starvation freedom and fairness among ac-
cessors since the PE which has the oldest request is served earlier as the others.
Authors in [Shabbir et al., 2010] noted that, in the case of a FCFS arbitration,
when a new access request of PEi arrives on the communication resource, it
is assumed that, in the worst-case, it waits for all other PEs which could al-
ready have pending requests in the FIFO queue. This WCRT can be calculated
similarly to the WCRT of a RR arbitration according to Eq. 2.6.

For real-time applications with hard real-time requirements time-driven
arbitration (e.g. TDMA) are superior to event-driven since their compos-
able and predictable behavior makes validating their RT requirements feasible
[Marwedel, 2010].

2.3.3.2 Timing models

Modeling communication resources with their timing properties is indispens-
able for the timing validation of RT requirements of embedded applications
running on MPSoCs (see Chap. 5). In this section, we will describe two dif-
ferent timed models (c.f. bus-functional models in [Cai and Gajski, 2003]) of
the communication resources: time-accurate communication model and cycle-
accurate communication model.

A cycle-accurate model specifies delays (time) in terms of the bus master’s
clock cycles which can be derived from the communication interconnect proto-
col. Fig. 2.8 and Fig. 2.9 show how such a cycle-accurate protocol looks like for a
Write single-beat and a Write burst transfer respectively. In the following, we
will describe exemplary the main differences between the two transfer styles ac-
cording to AHB bus protocol [ARM, 2006, ICVerification , 2015]. In both cases,
an arbitration phase first takes place, where a bus master requests access to the

34 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

HCLK

0x20

Data (0x20)

NONSEQ

HREQ

HGRANT

HCNTRL

HADDR

HWDATA

HREADY

time
Arbitration

SEQ SEQ SEQ

0x28 0x2C 0x24

Data (0x24) Data (0x28) Data (0x2C)

Transfer

Figure 2.9: Cycle-accurate Write burst transfer (4-beats based on [ARM, 2006,
ICVerification , 2015])

bus by using HREQ signal. If the arbiter decides that this master has the highest
priority (according to an arbitration mechanism) then a HGRANT is asserted. Af-
ter some delay the bus master is notified and is set as current master of the bus
by setting HMASTER signal (not depicted in the figures). Afterwards, address
and data phases occur in which some differences can be observed between the
single-beat (see Fig. 2.8) and the burst transfer (see Fig. 2.9). After checking if
the slave is ready (HREADY), the master drives HADDR along with other control
signals that indicate the type (Read/Write), size (byte, half-word, word) and
length of the transaction.

In a single-beat transfer (see Fig. 2.8) the length of transaction is set to sin-
gle and the HTRANS signal (included in the control signals HCNTRL) is set to
NONSEQ. In addition, arbitration is redone directly after the transaction is fin-
ished (signaled by reseting the HGRANT), where the master if wanting to con-
tinue communication must acquire again the bus (by asserting HREQ) and its
access would be granted or blocked depending on the arbitration mechanism.
In a burst transfer (see Fig. 2.9), however, the length may vary from two to sev-
eral single-beats (from 4 8, to 16 single-beats per transfer in the AHB). In Fig. 2.9
four sequential single-beats write accesses are depicted. After the arbitration
phase, the master indicates a burst in the AHB protocol by using HTRANS signal
(belonging to the control signals HCNTRL). HTRANS is set first to NONSEQ indi-
cating the first transfer of a new transaction. In the next address phase, HTRANS
is set to SEQ indicating that a sequential transfer of the same transaction fol-
lows. During this phase, the address is simply incremented to the next “beat”
(incrementing burst: e.g. 0x20, 0x24, 0x28 and 0x2C in Fig. 2.9). Meanwhile,
the bus is reserved for the current master (HGRANT remains high) until the last
“beat” access is done. If any request from other masters is acquired, then it
would be blocked until finishing the burst transfer and a new arbitration phase
begins.

In difference to a cycle-accurate model, in a time-accurate model lower/up-
per latency bounds (for e.g. in Fig. 2.10 the time is limited in the range between

2.3. TIMING ISSUES OF MPSOCS 35

(5, 15)

(10, 20)

(5, 25)

(5, 15)

Lowerbound = 5 + 10 + 5 + 5 = 25

Upperbound = 15 + 20 + 25 + 15 = 75

ack

ready

data [31:0]

address [15:0]

Figure 2.10: Time-accurate bus-functional model (taken from
[Cai and Gajski, 2003])

25 and 75) are determined with the help of the time diagram of interconnect’s
protocol abstracting away from details of the communication protocol. This
model would be appropriate in case no accurate (constant) timings can be ob-
tained when transferring data (of specific size) through an interconnect with a
specific communication protocol.

2.3.4 Addressable Devices

Typically addressable devices (e.g. DMA controller, Input/Output (I/O) de-
vices or interrupt controller) are memory-mapped and can be accessed by the
PEs via the same shared communication resource. For this, there are two op-
tions: either these devices are shared by all PEs or only one PE is connected to
them and responsible of data exchange [Pitter and Schoeberl, 2010]. In the first
case locking mechanism (e.g. spinlocks) are needed to ensure exclusive access
since truly parallel execution is possible in an MPSoC (in difference to single-
processor platform) [Kotaba et al., 2013]. Obviously, the overhead caused by
the locking mechanism influences the timing behavior of the MPSoC.

Another issue is the contention caused by the DMA controller access to
the shared communication resource which is similar to the contention caused
when multiple PEs access the communication resource. In addition, interrupts
controllers in MPSoCs usually routing interrupts to multiple PE are typically
more powerful than those in a single-processor platforms and can play a role
in reducing temporal effects [Kotaba et al., 2013].

36 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

2.3.5 Inter-Processor Communication (IPC) Styles

In general, within an inter-processor communication (IPC), intended to ex-
change data between PEs, mechanisms should be defined such as where to
store shared data (tokens), how these shared data are transfered between sender
and receiver (including routing along multi-hop paths) and how this transfer is
synchronized.

Authors in [Gajski et al., 2009] stated that shared data can be mapped ei-
ther to the local memory of one of the PEs and accessed through the other
PE through the communication resource via a memory-mapped I/O fashion, or a
local copy of the shared data is created in the local memory of every PE (dis-
tributed storage) which requires keeping local copies synchronized by sending
synchronization messages through the communication resource. Another way
is to store the shared data on shared memory where data can be accessed through
the communication resource from both communication partners.

Two main types are identified of IPC (similar to [Grüttner et al., 2011]) in
order to exchange data: shared-memory based IPC and message-passing based
IPC. By the shared storage resource scheme, a memory-mapped interface is
used to reserve address space in the shared storage resource where special-
ized communication mechanisms such as FIFO queues can facilitate the IPC
which is issued to the shared storage resource via the communication re-
source [Schaumont, 2013]. By the message-passing scheme, special commu-
nication memory (like hardware FIFOs or mailboxes [Grüttner et al., 2011]) are
used which can leverage greater performance, but with the restriction that en-
gaged PEs must support extra ports with predefined instructions to move data
through these ports [Schaumont, 2013].

As to synchronization mechanisms which insure that shared data is avail-
able, we differentiate between interrupt-based synchronization and polling-based
synchronization. While interrupt-based synchronization alleviates traffic on the
communication resource by sending events via dedicated set of wires compared
to polling, yet this method can lead to temporal non-deterministic behavior be-
cause of interrupt routing and context switches which are usually provoked by
interrupts.

Another issue is the nature of an IPC whether its synchronous or asyn-
chronous. By synchronous IPC both the initiator and the target are participated
by the communication and both of them must be ready to complete the trans-
fer or else they are blocked and must wait for the communication partner to
get ready. By an asynchronous communication, the communication partners
can send messages independent from the state of each other and continue their
progress without blocking.

2.3. TIMING ISSUES OF MPSOCS 37

2.3.6 Predicable Design of MPSoCs

After elaborating on the timing issues of different MPSoCs components in the
last sections, we will now take a look at an excerpt of recent research and sum-
marize their recommendations for enabling predictable MPSoCs design and RT
analysis of these MPSoCs.

For the certification in the avionics domain, which is one of the restricted
domains towards usage of MPSoCs, a strict temporal and spacial separation of
running tasks on the MPSoC must be guaranteed [Karray et al., 2013]. This
requires assuring that any contention at any component-level of MPSoC is
avoided (c.f. [Karray et al., 2013] for an example how this can be done) which
is indeed a very restrictive approach.

In [Cullmann et al., 2010] the authors gave a classification of architectures
w.r.t predictability considerations in the design of multicores: fully timing com-
positional, compositional with bounded effects and non-compositional platforms. Fully
timing compositional architectures do not exhibit any timing anomalies5 and the
usable hardware platform is constraint to be fully compositional. In this case a
local worst-case path can be analyzed safely without considering other paths.
Compositional with bounded effects architectures exhibit timing anomalies but no
domino effects6. Authors in [Cullmann et al., 2010] argument that it would be
best to use/design fully timing compositional architectures, since then the com-
plexity of RT analysis is strongly reduced with the absence of timing anomalies
and domino effects.

Authors in [Metzlaff et al., 2011] recommend the usage of small and sim-
ple PEs as the best building blocks for a predictable MPSoC. They ar-
gument that while complex PEs with out-of-order execution and sophisti-
cated branch predictions can perform better, yet they are costly in terms
of power, area and lead to significant increase of RT analysis complexity.
Both [Cullmann et al., 2010, Metzlaff et al., 2011] suggested to support shared
communication resources with easy-to-predict arbitration protocols (such as
TDMA) and to use private (distributed) storage resources (referred to as spacial
isolation). Furthermore, [Cullmann et al., 2010] suggests the usage of private
caches with easy-to-predict Least Recently Used (LRU) replacement strategies
instead of shared caches to alleviate contention. The usage of TDMA arbi-
tration is adequate since time slots are assigned to tasks statically and it can
be guaranteed that no unexpected run-time interferences can affect the timing
behavior.

5 Timing anomaly is referred to “the situation where a local worst-case doesn’t contribute to the
global worst-case” in [Cullmann et al., 2010] e.g. shorter execution time of an actor can lead to a
larger response time of the application.

6 Domino effect occurs when the execution time difference is arbitrary high between two states
of the same hardware [Cullmann et al., 2010].

38 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

In [Metzlaff et al., 2011], authors argument that timing uncertainty of a task
running on a PE in an MPSoC comes from non-local memory accesses (e.g.
by IPC or when sharing resources), that is why they recommend to reduce RT
analysis complexity by supporting single task analysis per PE (which is already
supported by static analysis see Sect. 2.5) and independent from the analysis of
the network communication.

For Commercial-Off-The-Shelf (COTS) MPSoCs a smart configuration can
be done for making them predictable. This configuration discourages the usage
of shared caches in COTS, enables partitioning of memories (if supported by the
hardware) to avoid interferences among PEs and utilizes predictable arbitration
features of communication resources (as in the MPC8641D avionic processor in
[Cullmann et al., 2010]).

2.4 Interaction with the Environment

As seen in Fig. 2.1, the interaction with the environment is one of the issues in-
fluencing the timing behavior of an embedded application running on an MP-
SoC. In order to circumvent the lackness of real-time connections of the SDF
MoC to the outside world [Lee and Messerschmitt, 1987b], we will support in
our system model, in this thesis, event arrival models to represent incoming
events (if existent) from the system environment. There are different arrival
models discussed in the literature [Hendriks and Verhoef, 2006]: periodic, pe-
riodic with jitter, sporadic and bursty event streams.

In this work, only independent source actors of single SDFGs can be trig-
gered by an event of an event trigger. In addition, we consider periodic
with jitter event triggers which can be implemented as timed automata as
done in [Hendriks and Verhoef, 2006] (see Sect. 5.2.1). Formally, an event
trigger is characterized by a period p and a jitter j, where p, j ∈ N≥0

and j ≤ p [Hendriks and Verhoef, 2006]. In addition, we assume similar to
[Hendriks and Verhoef, 2006] that the jitter must be smaller than or equal to
the period and thus avoiding bursty events with overlapping subsequent inter-
vals (c.f. [Hendriks and Verhoef, 2006]).

2.5 Real-time Analysis Methods

After describing the task model used in this thesis and the different compo-
nents of the MPSoC influencing its timing behavior, we will now take a look at
the different RT analysis methods which can be utilized to analyze the tempo-
ral behavior of MPSoCs. A RT analysis method is indispensable for a real-time
system where the correctness not only depend on the correct functionality but
also on the fact that their services (results) should be delivered in time. De-

2.5. REAL-TIME ANALYSIS METHODS 39

No
Real-time

Soft
Real-time

System
simulation

User
interface

Internet
video

Tele
communication

Vehicle
control

Aircraft
control

Hard
Real-time

Figure 2.11: Timing criticality (taken from [Ermedahl and Engblom, 2007])

pending on the application domain (see Fig. 2.11), the timing criticality of an
application can vary from hard real-time systems (e.g. aircraft control) where
a violation of the real-time requirement can lead to catastrophic results, to non
real-time application (such as a GUI) where the harmfulness by a violation is
very limited [Ermedahl and Engblom, 2007].

Typically, in order to insure that the real-time system has a correct timing
behavior, upper/lower bounds on the execution time of the software running
on the target hardware must be obtained i.e. it is necessary to determine the
worst-case execution time (WCET) upper bound and best-case execution time (BCET)
lower bound respectively. There are two different approaches to achieve above
goal: the static analysis approach and the dynamic (measurement-based) approach.

In a static (formal) approach mathematical analysis is performed on a formal
representation of both software and hardware with the help of automated tools.
The WCET analysis depends on the state space of the input model including
the timing properties7 of the hardware and the logic of the program code. This
approach indeed guarantees safe upper/lower bounds for all executions of the
functional model, as seen in Fig. 2.12. Nevertheless, the main challenge is
to convert all above mentioned system properties to an abstract mathematical
model which would normally require huge time overheads even for small sys-
tems. Another disadvantage of this approach lies in the obtained pessimistic
upper/lower bounds that overestimate the real WCET. These pessimistic re-
sults can lead to resources’ wastage in the final implementation which can be
unaffordable.

In dynamic methods, use-case driven timing measurements of less critical
applications (see Fig. 2.11) are performed either using a virtual-hardware plat-
form simulation model (with variable abstraction levels ranging from untimed
to cycle-accurate abstraction level see Sect. 2.5.1) or by running it on the tar-
get hardware employing hardware tracing facilities. In this way, the designer
can test the functionality and through guided simulation with clever test-cases

7The hardware model for a single-processor typically includes the time models of the cache,
the PE and its pipelining properties.

40 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

Figure 2.12: Basic notions concerning timing analysis of systems (taken from
[Wilhelm et al., 2008])

can verify critical corner issues. Due to the complexity of the system, a full-
coverage checking is not possible or it would be at least so much expensive as
the formal verification. This approach is still state-of-the-art in industry but not
applicable to applications with hard real-time requirements since there is no
guarantee that the worst/best corner cases are measured (see the bright curve
in Fig. 2.12). Another typical disadvantage of this approach is that the mea-
suring artifacts could influence the timing behavior of the MPSoC also referred
to as invasive timing measurement. This approach can also be combined with
automatic test-case generation trying to reach a full coverage of all possible paths
through the execution of a software task under analysis which in turn increases
the confidence of the estimated execution times.

2.5.1 Dynamic Real-time Methods

Measurement-based techniques are still state of the art to provide an average
case timing behavior of embedded applications executed on MPSoCs. An ex-
cerpt of dynamic RT methods ranging from oscilloscopes, hardware traces, high-
resolution timers, performance counters, profilers, operating system facilities, emulator
and simulators can be found in [Ermedahl and Engblom, 2007]. In the follow-
ing, we will elaborate on the used simulative based method in this thesis which
is based on virtual-hardware platforms.

Typically, implementation models (see Fig. 2.2) are captured in so-called
virtual-platforms [IEEE-1666, 2012, Popovici and Jerraya, 2010]. Virtual plat-
forms (VP) are abstract hardware models implemented via programming
languages for the sake of simulating the behavior of the hardware. VPs
adapt instruction-set simulators for modeling processors, and provide cross-
compilers to load developed software as binaries to the target processor mem-

2.5. REAL-TIME ANALYSIS METHODS 41

ory where it can be executed without any modification. As a result, a fast and
sufficiently accurate (depending on the abstraction level see below) host-based
simulation [IEEE-1666, 2012] of the implementation model is enabled. A host-
based simulation enables execution and verification of the embedded applica-
tion (running on the virtual-hardware platform) natively on the designer’s host
machine. VPs were proved to be efficient in covering the gap between the soft-
ware and hardware in SLD allowing a faster and early simulation and valida-
tion of the developed embedded applications. In addition, VPs take less effort
and time to develop than the costly development of prototyping boards. More-
over, VPs are accessible i.e. unlike physical hardware they can be inspected,
debugged and observed, and when needed flexibly changed, or duplicated.

Transaction-level /Cycle-approximate Models In the system-level design pro-
cess, refining the implementation model is done by the step-by-step integra-
tion of hardware (HW) issues in the model and taking care of the SW/HW
interface synthesis [Gajski et al., 2009]. Typically a designer begins with an un-
timed functional model as seen in Fig. 2.13. This model is then refined to a
Transactional Level Model (TLM) where the communication between the various
components of the model at this level is realized through function calls and is
independent of the later-used bus interfaces. At this level, computation and
communication timing overheads are modeled as annotated delay functions
which are obtained through real-measurements or estimations (e.g. via data-
sheet documentation). TLM models run at fast simulation speeds and give
system designers the ability to estimate design performance metrics, with the
disadvantage of inaccuracy, which might not be acceptable as in the case of
validating timing requirements of hard-real time applications. The next step
is then to refine the TLM to a Cycle-accurate Model (CAM) (see Fig. 2.13) where
both communication and computation models are extended with more hard-
ware details which make them cycle-timed models. CAM is used by HW de-
signers to verify the correctness of the generated system HW components and
by SW designers to verify the system software providing very accurate timing
statements, but with the disadvantage of slow simulation speeds compared to
simulation speeds of TLM models.

2.5.2 Static (Formal) Real-time Methods

Static real-time analysis methods can be either: analytical or state-based
methods. Most of the available static RT methods in the literature (see
Sect. 3.1.1) are of analytical nature (c.f. [Perathoner et al., 2009] for an
overview) since these depend on solving closed-form equations which gives
them the advantage of being scalable to analyze large-scale systems. A well-
known analytical (stateless) method is the Integer Linear Programming (ILP)

42 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

Computation

C
o
m
m
u
n
ic
a
ti
o
n

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Timed functional model
C. Transaction-level model (TLM)
D. Bus cycle-accurate model (BCAM)
E. Computation cycle-accurate model (CCAM)
F. Cycle-accurate model (CAM)

E

Cycle-
timed

Figure 2.13: TLM and CAM models (taken from [Gerstlauer, 2009])

[Ferdinand and Heckmann, 2004, Li et al., 2007, Li et al., 1997] used to search
for the longest execution time path of a Control Flow Graph (CFG) running
on some specific hardware (ILP is typically utilized in a WCET analyzers
for single-processor platform c.f. [Wilhelm et al., 2008]). Real-Time Calcu-
lus (RTC) [Thiele et al., 2000] is another analytical method which won at-
tention in the last decade in the real-time domain. Despite their advan-
tages of being scalable, analytical methods abstract from state-based modus
operandi of the system under analysis (such as complex state-based arbitration
protocols or inter-processor communication task dependencies) which leads
to pessimistic over-approximated results compared to state-based RT meth-
ods [Huber and Schoeberl, 2009, Perathoner et al., 2009]. In addition, complex
properties such as reachability of certain states cannot be verified by such meth-
ods.

State-based RT methods are based on the fact of representing the System
Under Analysis (SUA) as a transition system (states and transitions) and since
they reflect the real operation states of the actual system behavior, tighter re-
sults can be obtained compared to analytical methods. Another advantage
over analytical approaches is the ability to verify complex properties on the
system and to obtain counterexamples in case a property is not satisfied.
In addition, integration of complex hardware models is done easily due to
the modular nature of these methods compared for instance to ILP methods
[Huber and Schoeberl, 2009]. Nevertheless, state-based RT methods are even
for small designs not intuitive, they induce much complexity and can have
great computation time overheads. Especially for large industrial systems these
methods are very hard to be applied or causing high setup costs while risking
a state-space explosion of the SUA. In the following, we will elaborate on the
state-based RT analysis methods, as these would provide the basic foundation

2.5. REAL-TIME ANALYSIS METHODS 43

of our proposed approach in this thesis.

2.5.2.1 State-based RT Analysis Methods

State-based RT analysis methods are based on model-checking meth-
ods which were developed in early 1980’s [Clarke and Emerson, 1982,
Queille and Sifakis, 1982] for the purpose of automatic verification of finite
state-based systems. Model-checking methods are very reliable verification
methods that enable complete coverage checking of certain specified prop-
erties based on an intelligent exhaustive search of the state space of a cer-
tain model (where states are modeled explicitly) i.e. for certain properties
it is verifiable whether they are satisfied by the model implementation or
not [Clarke and Emerson, 1982]. Specification (correctness) properties to be
checked are formalized through propositional temporal logic [Pnueli, 1977].
Thus, as seen in Fig. 2.14, the main inputs to a model-checking based method is
a transition system representation (states, transitions and labels) of the system
model and the temporal properties (causal or temporal) to be proved on this
transition system representation [Gajski et al., 2009]. The main idea of model-
checking (see [Clarke and Emerson, 1982]) is to unroll the transition system to
an infinite computation tree [Gajski et al., 2009] and to utilize a search algo-
rithm which tries, starting by an initial state, to find a state trace which fulfills
or violates the properties to be checked. The output of a model-checker would
be whether or not the given property holds and in the case the property does
not hold, to provide a counter-example.

Our approach in this thesis (see Chap. 5), utilizes Timed Automata (TA)
[Alur and Dill, 1990] as a common semantic model to represent execution time
boundaries (best-case and worst-case execution times) of SDF actors and com-
munication FIFOs, as well as their mapping and utilization of MPSoC resources
such as scheduling of SDFGs, shared communication resource access protocols
for interconnects, local and shared memories. The resulting network of TA is

Model
Checker

P = fT(P1, P2, P3, P4)

True /
False + Counter Example

s1 s2

s3 s4

P1 P2

P4 P3

Figure 2.14: Model-checking Approach (taken from [Gajski et al., 2009])

44 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

analyzed using the UPPAAL [Bengtsson and Yi, 2004] model-checker for pro-
viding safe timing bounds of the implementation. In the following, we will
elaborate on UPPAAL TA defining them to the extent needed by this thesis. Af-
terwards, we reason on the decidability properties of TA and finally we describe
the temporal logic (TCTL) language used for capturing properties specification.

UPPAAL Timed Automata Finite State Machines (FSM) which are essentially
graphs with states as nodes and transitions as edges [Gajski et al., 2009] are one
of the basic foundations of computer science which are suitable to model the
behavior of a system. But when it comes to a real-time domain, reasoning on
the temporal system interaction with the physical environment is indispensable
which disfavors the usage of FSM since they abstract away from time. Timed
automata [Alur and Dill, 1990] are finite automata extended by a finite set of
real-valued variables called clocks (evolving at the same rate) used to model
real-time systems and to circumvent above issue. The main elements of a timed
automaton consists of a number of locations each denoting the state at which an
automaton can be active, edges representing the possible transitions from one
state to another, invariants and guards on edges.

A location in the automaton can have an invariant associated with it. An
invariant is a clock constraint which allows a location to be active only for a
given amount of time. The set of constraints denoted by Φ(X) on the set of
clocks X is defined inductively as follows (c.f. [Olderog and Dierks, 2008]):

ϕ ::= x ∼ c | x− y ∼ c | (ϕ1 ∧ ϕ2) (2.7)

where

• ∼∈ {<,>,≤,≥}, x, y ∈ X and c ∈ Q+

Before defining timed automata formally, we first define some necessary
basic notations. A valuation v of a clock is a function which assigns each clock
a non-negative real number. In addition, the notation v |= ϕ is used to express
the fact that a clock constraint ϕ evaluates to be true under clock valuation v.

The following definitions were taken from [Olderog and Dierks, 2008] (with
minor clarification additions adopted from lecture notes in [Westphal, 2012]) to
give an insight to the basic semantics of timed automata.

Definition 2.5.1 (Pure Timed Automata). A timed automaton
[Olderog and Dierks, 2008] is a structure

A = (L, B, X, I, E, `ini),

where

• L is a finite set of locations,

2.5. REAL-TIME ANALYSIS METHODS 45

• B ⊆ Chan, where a Chan is a set of channel names and for each a ∈ Chan
two visible actions are observable:

– a? and a! denote input and output on the channel respectively

• X is a finite set of clocks,

• I : L→ Φ(X) is a mapping that assigns to each location a clock constraint,
its invariant,

• E ⊆ L × B?! × Φ(X)× P(X)× L is a set of directed edges with guards,
channels and set of clocks to reset. An element (l, α, ϕ, Y, `′) ∈ E describes
an edge from location ` to `′ labeled with an action α, a guard ϕ, and a set
Y of clocks that will be reset.

• `ini ∈ L is an initial location.

Definition 2.5.2 (Operational Semantics of TA). The operational semantics
of a timed automaton A = (L, B, X, I, E, `ini) is defined (according to
[Olderog and Dierks, 2008]) by the labeled transition system:

T (A) = (Con f (A), Time ∪ B?!, {
λ−→ |λ ∈ Time ∪ B?!}, Cini)

where

• Con f (A) = {〈`, v〉|` ∈ L ∧ v : X → Time ∧ v |= I(`)} is the set of configu-
rations of A and v is a valuation of clocks in X assigning each clock the
current time,

• The set Time ∪ B?! contains all labels that may appear at transitions,

• For each λ ∈ Time ∪B?! the transition relation λ−→⊆ Con f (A)× Con f (A)
has one of the following two types:

– Delay transition relation where some time t ∈ Time elapses but loca-
tion is left unchanged. Formally:

〈`, v) t−→ 〈`, v + t〉

iff v + t′ |= I(`) holds for all t′ ∈ [0, t].

– Action transition relation where an action α ∈ B?! occurs and some
clocks may be reset, but time does not advance. Formally:

〈`, v〉 α−→ 〈`′, v′〉

iff there exists an edge (`, α, ϕ, Y, `′) ∈ E with v |= ϕ and v′ = v[Y := 0]
and v′ |= I(`′)

46 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

• Cini = {〈`ini, vini〉} ∩Con f (A) with vini(x) = 0 for all clocks x ∈ X is the set
of initial configurations.

Several timed automata can be assembled to form a network of TA:
A1||· · · ||An which can synchronize between each other through chan-
nels where c! and c? denote sending and receiving an event respectively.
The parallel composition of two timed automata is defined according to
[Olderog and Dierks, 2008] as follows:

Definition 2.5.3 (Parallel Composition of Timed Automata). The parallel composi-
tion of A1||A2 of two timed automata Ai = (Li, Bi, Xi, Ii, Ei, `ini,i), i= 1,2, with
disjoint sets of clocks X1 and X2 yields the timed automaton

A1||A2
def= (L1 × L2, B1 ∪ B2, X1 ∪ X2, I, E, (`ini,1, `ini,2))

where the following hold:

• Conjunction of location invariants: I(`1, `2)⇔ I1(`1)∧ I2(`2),

• The transition relation E (c.f. [Olderog and Dierks, 2008] for exact formal
definition of E) is constructed by the following rules:

– Handshake communication: synchronizing a! with a? yields τ (inter-
nal action) i.e. if (`1, α, ϕ1, Y1, `′1) ∈ E1 and (`2, ᾱ, ϕ2, Y2, `′2) ∈ E2 with
{a! , a? } = {α, ᾱ} then also

((`1, `2), τ, ϕ1 ∧ ϕ2, Y1 ∪Y2, (`′1, `′2)) ∈ E

– Asynchrony: if (`1, α, ϕ1, Y1, `′1) ∈ E1 then for all `2 ∈ L2 also

((`1, `2), α, ϕ1, Y1, (`′1, `2)) ∈ E

and conversely, if (`2, α, ϕ2, Y2, `′2) ∈ E2 then for all `1 ∈ L1 also

((`1, `2), α, ϕ2, Y2, (`1, `′2)) ∈ E

After defining the parallel composition of TA, the network of TA definition
is described as follows (according to [Olderog and Dierks, 2008]):

Definition 2.5.4 (Network of Timed Automata). A timed automaton N is called
network of timed automata if and only if it is obtained as:

chan b1 · · · bm •(A1||· · · ||An)

where a local channel b is introduced by the restriction operator (•) which
for a timed automaton A = (L, B, X, I, E, `ini) yields:

chan b •A := (L, B\{b}, X, I, E′, `ini)

2.5. REAL-TIME ANALYSIS METHODS 47

where

• (`, α, ϕ, Y, `′) ∈ E′ if and only if (`, α, ϕ, Y, `′) ∈ E and α /∈ {b! , b? }.

The state of a network of TA represents a vector of current locations of
all TA including all clocks’ valuations and synchronizations between the au-
tomata [Herber, 2010]. With the help of above definition we are now able to
define the operational semantics of networks of TA as follows (according to
[Olderog and Dierks, 2008]):

Definition 2.5.5 (Operational Semantics of Networks of TA). Let
Ai = (Li, Bi, Xi, Ii, Ei, `ini,i) with i = 1, · · · , n be a set of timed automata with
disjoint clocks. Then the operational semantics of the network

N = chan b1 · · · bm •(A1||· · · ||An)

yields the labeled transition system

T (N) = (Con f (N), Time ∪ B?!, {
λ−→ |λ ∈ Time ∪ B?!}, Cini)

with

• X =
⋃n

i=1 Xi and B =
⋃n

i=1 Bi\{b1, · · · , bm},

• Con f (N) = {〈~̀ , v〉|~̀ ∈ L1 × · · · × Ln ∧ v : X → Time ∧ v |= ∧n
k=1 Ik(`k)},

• Cini = {〈(`ini,1, · · · , `ini,n), vini〉} ∩ Con f (N) where vini(x) = 0 for all clocks
x ∈ X,

• For each λ ∈ Time ∪B?! the transition relation λ−→⊆ Con f (N)× Con f (N)
has one of the three following types:

1. Local transition (~̀ , v) α−→ (~̀′, v′) occurs if for some i ∈ {1, · · · , n} there
is an edge (`i, α, ϕ, Y, `′i) ∈ Ei, α ∈ B?! in the i-th automaton such that

– v |= ϕ (guard is satisfied)

– ~̀′ = ~̀ [`i := `′i] (only i-th location changes),

– v′ = v[Y := 0] (Ai ’s clocks are reset),

– v′ |= Ii(`′i) (destination invariant holds).

2. Synchronization transition relation (~̀ , v) τ−→ (~̀′, v′) occurs if there are
i, j ∈ {1, · · · , n} with i 6= j, and some channel b ∈ Bi ∩ Bj, there are
some edges (`i, b! , ϕi, Yi, `′i) ∈ Ei and (`j, b? , ϕj, Yj, `′j) ∈ Ej, i.e. the
ith and the jth automaton can synchronize their output and input on
the channel b, such that

– v |= ϕi ∧ ϕj, i.e. both guards are satisfied,

– ~̀′ = ~̀ [`i := `′i][`j := `′j],

48 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

– v′ = v[Yi ∪Yj := 0] and v′ |= Ii(`′i)∧ Ij(`′j).

3. Delay transition relation (~̀ , v) t−→ (~̀′, v + t) occurs if for all t′ ∈ [0, t] :

v + t′ |= ∧n
k=1 Ik(`k).

i.e. all invariants are satisfied during the passage of time.

UPPAAL [Bengtsson and Yi, 2004] is a tool used to model, simulate and ver-
ify networks of parameterized extended timed automata. A timed automaton
in UPPAAL is defined by a so-called template. These templates make it possible
(similar to object-oriented classes concept) that a timed automaton once defined
and implemented, can be instantiated to multiple TA each having different
parameters. A system in UPPAAL consists of a finite set of these template in-
stances. In addition to the timed automaton primitives, in UPPAAL the pure
timed automaton properties are extended by the ability of declaring functions,
bounded integer variables, binary uni-cast/multi-cast (broadcast) channels and
urgent/committed locations [Herber, 2010]. Synchronization between timed
automata is done through binary channels and in the case multiple synchro-
nization is possible, one of them is chosen non-deterministically [Herber, 2010].
While broadcast channels never block, synchronizing sender and receiver do
block on an uni-cast channel if the corresponding communication partner is
not ready. Furthermore, all clocks in UPPAAL are initialized to zero and then
increase with the same rate [Gustavsson et al., 2010]. If a location is urgent, this
means that no time is allowed to pass while the template instance remains in
this location. A committed location is more strict than the urgent one in the
sense that additional to the fact that no time is allowed to pass, the automaton
must leave the committed location in the next transition. In order to define a
TA network model, UPPAAL offers three parts of declarations [Herber, 2010]:

1. Global declarations part where global variables, channels and clocks are
declared.

2. Parameterized timed automata part where the TA are implemented with the
help of a graphical editor and their parameters are defined and their local
functions variables are declared.

3. System declarations part where the templates are instantiated and their
network is declared.

Fig. 2.15 shows an example of a light switch, modeled as a system of two
parallel TA. At the top of Fig. 2.15, we can see the system definition consisting
of two template instances: Lamp1 is an instance of template Lamp and User1

is an instance of template User. The automata can synchronize through events

2.5. REAL-TIME ANALYSIS METHODS 49

press?

press?

press?
brightlowoff

y<5

y>=5

y=0 press!

idle

chan press;
Lamp1 = Lamp();
User1= User();
System Lamp1, User1;

start
location

update

synchronization

edge

system definition

guard Lamp User

Figure 2.15: An example of a light switch modeled as a system of Timed Au-
tomata in UPPAAL (based on [Greenyer, 2010])

on channels. The labels press! and press? in Fig. 2.15 are examples for
such channel events. In this case press is an uni-cast channel, which means
that when the sending edge (labeled press!) fires, a currently enabled re-
ceiving edge (labeled press?) must fire synchronously. If more than one
receiving edge is enabled, only one of these enabled edges is chosen non-
deterministically for synchronization. If no receiving edge is enabled, the send-
ing edge cannot fire. The latter two cases will, however, never occur in the lamp
switch example.

UPPAAL extends the timed automata with integer bounded variables,
data variables, urgent and committed channels and their networks which
are used in UPPAAL can be defined as the formal definitions above (c.f.
[Olderog and Dierks, 2008] for the complete formal description of extended
timed automata).

Reachability Analysis and State Explosion Problem From the formal def-
initions of the timed automata networks, we notice that the set of configu-
rations of the transition system is infinite due to the real-valued clock vari-
ables which makes model-checking these networks very difficult. In order to
circumvent this, symbolic semantics were suggested by [Alur and Dill, 1994,
Bengtsson and Yi, 2004] which were inspired from the idea of sym-
bolic model-checking for untimed systems [Bengtsson and Yi, 2004]. In
[Bengtsson and Yi, 2004] we read:

“It adopts the idea from symbolic model checking for untimed
systems, which uses boolean formulas to represent sets of states

50 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

and operations on formulas to represent sets of states transitions.”
([Bengtsson and Yi, 2004]: 92)

In this case, the infinite state space of TA can be finitely represented by
symbolic states. In a first step towards enabling symbolic semantics of TA, au-
thors in [Alur and Dill, 1994] suggested a finite representation of TA networks’
state space in finite regions (equivalence classes using clock constraints) which
is called region graph. A more compact and efficient representation of region
automata called zone graph was presented in [Bengtsson and Yi, 2004]. Zone
graphs on the other hand can be again compactly represented through Dif-
ference Bound Matrices (DBMs) [Bengtsson and Yi, 2004]. More details and for-
mal definitions of the symbolic semantics (including DBMs, region and zone
graphs) of timed automata are given in [Bengtsson and Yi, 2004]. Besides other
optimizations, all above techniques are implemented in the UPPAAL frame-
work [Bengtsson and Yi, 2004].

Despite the fact that the location reachability (reaching a given final state or
a set of final states) is decidable for timed automata [Bengtsson and Yi, 2004],
model-checking of TA can still suffer from the so-called state-explosion prob-
lem. Since the number of global states increases exponentially with the num-
ber of parallel TA and the number of components per TA [Clarke et al., 2012],
a huge state space can be easily reached even for small models which could
drive the model-checker to its limits8. The following example (taken from
[Fränzle, 2012]) stresses the fact how enormous the state space could grow
even for a small example. If we consider 11 components each with 8 states,
this would yield 811 ≈ 9 × 109 nodes in the transition graph. At the other
side, the explicit representation of a transition graph of above nodes (assuming
no optimization) would require about 90 GByte of memory (assuming only 10
bytes memory per node). In general, the global state space of a network of TA
grows exponentially with the number of concurrent components, number of
global and local variables needed for the TA and number of synchronization
channels [Clarke et al., 2012, Giannopoulou et al., 2012]. Another major aspect
which could lead rapidly to a huge state-space, is the level of non-determinism
represented in the considered TA templates.

Temporal Logic for Model-checking of Timed Automata Verification of sys-
tem properties (requirements) formulated as queries is performed by the UP-
PAAL verifier. UPPAAL queries are a subset of the TCTL (Timed Compu-
tation Tree Logic) [Alur et al., 1990] specification language which is an ex-
tension of traditional CTL (Computation Tree Logic) adding temporal con-

8By overrunning the run-time and memory capacities of current computers on which model-
checkers run.

2.5. REAL-TIME ANALYSIS METHODS 51

(a) A[]Ø (b) E<>Ø

(c) A<>Ø (d) E[]Ø

Figure 2.16: TCTL-formula (taken from [Bengtsson and Yi, 2004])

straints. The TCTL formulas which can be checked are (according to
[Bengtsson and Yi, 2004], also see Fig. 2.16 for examples):

• A[] φ — Invariantly

• E<> φ — Possibly

• A<> φ — Always Eventually

• E[] φ — Potentially Always

• φ --> ψ — φ always lead to ψ which is equivalent to:
A [] (φ imply A<> ψ).

where φ and ψ are logical properties to be checked locally on a state
[Bengtsson and Yi, 2004]. A (always) and E (exists) are used to quantify over
paths. Whereas A states that a specific property should hold in all paths, E
states that at least one path exists where the property holds. On the other
hand, symbols [] and <> are used to quantify over states in a path. While the
symbol [] indicates that the property should hold for all states, <> indicates
that at least one state should satisfy the property [Bengtsson and Yi, 2004].

52 CHAPTER 2. BASIC CONCEPTS AND BACKGROUND

TCTL allows to specify constraints over states (expressions ϕ over locations,
variables and clocks) and safety properties (of the form A[] ϕ or E[] ϕ) mean-
ing that a certain property holds in all states of the model, reachability proper-
ties (of the form E<> ϕ) meaning that a certain property holds in some state
of the model, and liveness properties (of the form A<> ϕ) over infinite paths
(see [Bengtsson and Yi, 2004] for more details) meaning that a certain property
holds eventually. Moreover in UPPAAL the statement A[] not deadlock,
verifies whether our system is always deadlock free or not. In addition, the
specification supports temporal operators such as sup which searches for the
supremum of a variable or a clock value in the system. Likewise, we could find
the infimum by utilizing the inf operator.

2.6 Summary

In this chapter, we have presented the basic concepts relevant to our approach.
After a short introduction about system-level design methodologies and the
different MoCs used to capture the behavior of the system, we described the
X-chart defining the main tasks in modern ESL design process. Afterwards,
we elaborated on the SDF MoC with its special semantics, scheduling, express-
ibility and clustering possibilities. In addition, we described Simulink basic
elements used to capture control applications and to enable model-based de-
sign with features such as automatic code generation. Next, we described the
main timing issues which should be taken into consideration when analyzing
the temporal behavior of embedded applications running on MPSoCs. After
that a short overview of the different RT analysis methods was given. Finally,
we presented the formal language of UPPAAL timed automata and the main
constructs of model-checking which enable a state-based RT analysis of sys-
tems in rigor. The main message of this chapter is that timing predictability of
full-featured MPSoCs is a very difficult task and that novel RT analysis meth-
ods are needed to cope with their complexities. Another important issue is the
state-space explosion problem of state-based RT analysis methods, which faces
a system designer when utilizing such methods. Thus, the challenge which is
faced when developing a state-based RT analysis method, is how to choose the
right abstraction level of the input model such that the method scales to be able
to analyze systems with adequate sizes and at the same time can still obtain
tight timing results.

Chapter 3

Related Work

After the comprehensive understanding of the fundamental timing issues in-
fluencing the timing behavior of embedded applications running on MPSoCs
and the different kinds of RT analysis methods which can be used to analyze
such effects, we will take a look in this chapter to existing work of the scien-
tific community and try to spot light on our novel contributions. We will first
consider analytical RT methods used to analyze the performance of generic1 em-
bedded applications on MPSoCs. Afterwards, analytical RT methods used for
timing analysis of SDFGs are presented. Next, an excerpt of related work using
state-based RT analysis methods to analyze generic applications, followed by
an excerpt of research utilizing these state-based methods for analyzing SDFGs
mapped to MPSoC architectures is discussed. At the end of this chapter, we
will discuss the related work concerning our model-based design flow which
will be presented in Chap. 6.

3.1 Formal Real-time Analysis Methods

As already concluded from the last chapter, finding lower and upper bounds
of applications execution times (running on a target hardware platform) is
crucial for real-time analysis of systems with hard real-time requirements.
A short description of the history of formal RT analysis methods was done
in [Gustavsson, 2010], in the following a summary is given. Alan Shaw
[Shaw, 1989] was the first to introduce rules to construct a CFG (Con-
trol Flow Graph) from an executable software for temporal analysis, which

1The term generic is referred to tasks implemented in imperative or declarative program-
ming languages respecting the von-Neumann model [Marwedel, 2010] where communication
and computation cannot be separated in dedicated phases. This means that accesses to
shared communication resource and computation can happen at any time and in any order
[Schranzhofer, 2011].

53

54 CHAPTER 3. RELATED WORK

built the foundation for later WCET reasoning and research. The work
in [Colin and Puaut, 2000, Wilhelm et al., 2008] gives an excellent overview
of the recent WCET research till the year of 2008. A well-known analyt-
ical method used to solve the WCET problem of embedded applications
executing on single-processor platforms is Integer Linear Programming (ILP)
[Ferdinand and Heckmann, 2004, Li et al., 2007, Li et al., 1997]. It is used to
search for the longest execution time path of a Control Flow Graph (CFG) running
on some specific hardware platform. Two approaches were established for com-
puting the ILP problem [Huber and Schoeberl, 2009]: either graph-based ap-
proaches [Puschner and Schedl, 1997] (such as model-checking timed automata
in UPPAAL) or IPET (Implicit Path Enumeration) [Li and Malik, 1995] based
approaches.

Perathoner et al. [Perathoner et al., 2009] gave an overview of formal
RT analysis methods typically used for RT analysis of applications running
on distributed systems and MPSoCs, comprising analytical methods (holistic
scheduling, compositional analysis) and state-based RT analysis methods (timed-
automata based analysis) and tried to evaluate the tightness of the results ob-
tained through these different methods.

In the following, we will elaborate on these formal methods used for RT
analysis of MPSoCs. First we take a look at the analytical methods, and distin-
guish between methods used for generic tasks and those customized for SDFAs.
The same procedure is done later on for state-based RT analysis methods.

3.1.1 Analytical Real-Time Analysis Methods

In the following, we will provide an overview of the state-of-the-art and re-
lated work of analytical RT methods used for both generic tasks and SDFAs
on MPSoC architectures. It is worth to note, that extending formal approaches
(developed for single-processors) towards analyzing applications running on
MPSoCs, requires the consideration of shared communication resources delays
besides delays of task execution on a processing element.

3.1.1.1 Generic Tasks on MPSoCs

Tendell et al. [Tindell and Clark, 1994] were the first to present a holistic ap-
proach2 which analyzes preemptive fixed-priority scheduling on processing el-
ements with a TDMA scheduling on the interconnects. Afterwards, Yen et al.
[Yen and Wolf, 1998] presented a RT approach of a set of tasks executing on
a heterogeneous distributed system with data dependencies, but they did not
consider interprocessor communication and communication resources delays.

2A holistic approach extends traditional scheduling theory to apply on distributed systems
combining the analysis of processor with bus scheduling [Perathoner et al., 2009]).

3.1. FORMAL REAL-TIME ANALYSIS METHODS 55

Pop et al. [Pop et al., 2002] presented also a holistic approach which enables
the analysis of several input task models running on distributed systems with
slot-based communication resources having static and dynamic phases.

Richter et al. presented in [Richter et al., 2003] a new compositional ap-
proach for RT analysis of MPSoCs which uses classical scheduling for the
local analysis of system components and propagate through well-defined in-
terfaces (event-stream models) the local results to other components. Later,
the authors contributed to SymTA/S (Symbolic Timing Analysis for Systems)
[Henia et al., 2005] commercial formal RT analysis tool which build upon the
same compositional approach presented in [Richter et al., 2003]. Schliecker
et al. [Schliecker et al., 2010] presented another extension of above methods,
which analyzes the worst-case delay of a task (scheduled according to a fixed
priority schedule) when accessing a shared resource with FCFS arbitration in
an MPSoC. They assume that the maximum/minimum number of accesses
(defined as above as event models) are known a priori in a time window. Sim-
ilarly, Dasari et al. [Dasari et al., 2011] had similar assumptions (known maxi-
mum/minimum number of accesses) and suggested a method to compute more
tight bounds of tasks’ bus requests to tighten up the pessimistic results from
[Schliecker et al., 2010].

Thiele et al. [Thiele et al., 2000] presented another modular approach based
on real-time calculus (RTC). In this method, resource accesses can be ab-
stracted by a so-called arrival curves [Perathoner et al., 2009] and analysis is
made on the flow of events between different components (communication,
computation resources of the system under analysis). Many extensions (e.g.
[Schranzhofer et al., 2011, Pellizzoni et al., 2010]) for this approach were pre-
sented. In [Schranzhofer et al., 2011, Pellizzoni et al., 2010] it was stated that
for generic execution models and generic arbitration policies, the problem of
determining upper bounds on the WCRT is hard and the results are in general
very pessimistic. In order to circumvent this, they suggested more restrictive
models of execution (superblocks) and with the help of real-time calculus (RTC)
they were able to perform a timing analysis of the interferences on shared re-
sources (with different arbitration protocols). But still, the estimated bounds
compared to a state-based RT analysis are very pessimistic especially in the
case of state-dependent arbitration protocols like FCFS and RR since analyti-
cal methods don’t model the states of resources explicitly. Furthermore, the
proposed RTC analysis requires high design-time effort since the designer him-
self must construct the formal model, whereas in our case the formal model
is automatically constructed from pre-designed timed-automata templates (see
Sect. 5.1).

Anderson et al. [Andersson et al., 2010] presented a highly pessimistic ap-
proach which gave a maximal contention time independent from arbitration

56 CHAPTER 3. RELATED WORK

protocol of the communication resource, by assuming that the current request-
ing task must wait for all other possible concurrent tasks accessing the resource.

3.1.1.2 SDFAs on MPSoCs

Bhattacharyya et al. [Sriram and Bhattacharyya, 2000] proposed to analyze
hard real-time behavior of a single SDFG mapped to a multi-processor system
by decomposing it into a homogeneous SDFG (HSDFG) which could be very
time-consuming and could result in an exponential number of actors in the HS-
DFG compared to the SDFG. This in turn may lead to performance problems
for the analysis method.

Poplavko et al. [Poplavko et al., 2003] was, to the best of our knowledge,
the first to introduce communication modeling (i.e. with more than one latency
actor) in data-flow graphs. Yet they assumed that there is no contention on
communication resources.

A similar approach to [Poplavko et al., 2003] for analyzing SDFGs temporal
properties was done in [Bekooij et al., 2004] where they took use of a network
on chip which provides virtual point-to-point connections with a guaranteed
throughput and maximal latency. Arbitration on shared communication re-
source was fixed to an arbitration protocol very similar to the TDMA protocol,
enabling analysis of temporal effects of contention on the resource through
computing worst-case-response-time.

Moreira et al. [Moreira et al., 2007] presented an approach to analyze hard
real-time properties of multiple SDFGs mapped on MPSoCs with shared re-
sources. They analyzed scheduling strategies on processors and showed that
a combination of Time-Division Multiplex (TDM) and static order scheduling
which can be modeled as extra nodes in the SDFG enable worst-case temporal
analysis. One main decision made is that they assumed an MPSoC architecture
designed to facilitate a worst-case analysis by following the rules presented in
[Bekooij et al., 2004].

Stuijk et al. [Stuijk, 2007] presented a throughput-constrained multiproces-
sor resource allocation technique which extends previous work to deal with
cyclic and multi-rate SDFGs. Like the two previous approaches, also in this
case the communication between different processors is assumed to be a point-
to-point communication through a network-on-chip with fixed latency.

Ghamarian [Ghamarian, 2008] presented novel methods to calculate perfor-
mance metrics for single SDF applications which avoid translating SDFGs to
HSDFGs. Nevertheless, architecture properties and resource sharing were not
considered.

Moonen [Moonen, 2009] analyzed the mapping of SDFGs on a multiproces-
sor platform with limited resource sharing. With the help of a network-on-chip

3.1. FORMAL REAL-TIME ANALYSIS METHODS 57

supporting guaranteed communication services, they were able to easily derive
conservative estimated bounds on the performance metrics of SDFGs.

In summary, authors in [Ghamarian, 2008] didn’t consider shared com-
munication resources, other authors [Poplavko et al., 2003, Bekooij et al., 2004,
Stuijk, 2007, Moreira et al., 2007, Moonen, 2009] considered these, but they as-
sumed a network-on-chip that supports point-to-point network connections
with guaranteed communication services and latency. While our approach can
easily support the analysis of NoCs with fixed latencies, it also goes further and
tries to capture state-of-the-art buses’ behaviors as found for e.g. in automotive
domain, with heavily state-dependent arbitration protocols like FCFS.

Kumar [Kumar, 2009] presented a probabilistic technique to estimate the
performance of SDFGs sharing resources on a multi-processor system. Al-
though this analysis was made taking into account the blocking time due to
resource sharing, the estimation approach focuses on analyzing soft real-time
systems rather than hard real-time systems. Furthermore, the resource analysis
was limited to non-preemptive, round robin scheduling.

Schabbir et al. [Shabbir et al., 2010] presented a design flow to generate
multiprocessor platforms for multiple applications. They also provided two
analysis techniques to predict the performance of the applications: a proba-
bilistic based average-case analysis suitable for soft real-time tasks and a worst-
case analysis for hard real-time. The former analysis is based on calculating the
worst-case waiting time on resources (with a non-preemptive FCFS arbitration)
as the sum of all actors’ execution times which can access this resource. This is
a safe but obviously a very pessimistic approach.

Recently, the work of Hausman et al. [Hausmans et al., 2013] and Lele et
al. [Lele et al., 2014] addressed extending above data-flow based systems to
support non-starvation-free scheduling particularly preemptive fixed-priority
scheduling.

3.1.1.3 Discussion

Above work takes use of a purely analytical approach to obtain upper/lower
timing bounds on the application execution time. While such approaches are
fast and able to handle large systems, unfortunately they deliver pessimistic
results especially when handling state-dependent arbitration protocols (c.f.
[Perathoner et al., 2009]) typically used in MPSoCs. This fact leads to major
concerns when trying to apply them in an industrial context. We will show
in our experiments how far our state-based RT analysis can tighten the re-
sults compared to an exemplarily work [Shabbir et al., 2010] of the analytical
approaches. In addition, interesting/complex functional or temporal proper-
ties (c.f. [Skelin et al., 2015]) cannot be easily analyzed by purely analytical
approaches, for e.g. liveness properties or more general the reachability of a

58 CHAPTER 3. RELATED WORK

certain state (see Sect. 2.5.2.1). We will present in Chap. 7 a set of such proper-
ties which can be validated through our approach.

3.1.2 State-based Real-time Analysis Methods

The discussion whether model-checking is suitable of WCET analysis for
single-processor architectures, was first debated by [Metzner, 2004] and later
evaluated in comparison with IPET in [Huber and Schoeberl, 2009] and com-
pared to other RT methods for distributed systems in [Perathoner et al., 2009].
Metzner showed that model-checking is a feasible tool to compute safe WCET
for CFG programs on pipelined processors with an instruction cache. In the fol-
lowing sections we will provide an overview of the state-of-the-art and related
work in state-based RT analysis methods for both generic tasks and SDFAs
when run on MPSoCs.

3.1.2.1 Generic Tasks on MPSoCs

Norstrom et al. [Norstrom et al., 1999] were the first to enable a real-time
state-based analysis using timed-automata to represent system resources. They
showed that the schedulability problem of their real-time system model, can
be transformed to a reachability problem of the corresponding timed-automata
representation.

Hendrik et al. [Hendriks and Verhoef, 2006] used timed automata to evalu-
ate a RT analysis of a specific embedded application (in-car navigation system)
and compared the results obtained with other analytical methods. They sug-
gested the translation of applications modeled in UML diagrams specifications
to timed automata. Yet, their MPSoC model was constructed for the case-study
and thus not generic as ours and they considered a very simple communication
bus model which lacks the ability to capture arbitration protocols of different
complexities.

Lv et al. [Lv et al., 2010] extended the work of Norstrom et al. and pre-
sented an approach based on model-checking (UPPAAL) combined with ab-
stract cache interpretation to estimate WCET of non-sharing code programs on
a shared-bus multicore platform. Here the C-code of a task is translated into
equivalent control flow graphs (CFG). The execution of every block in the CFG
graph is classified either as cache miss/hit/unknown according to an abstract
cache interpretation method. Next, the classified blocks with their correspond-
ing delays are modeled each as a timed automaton. The task is then modeled as
a timed automaton which represents the composition of these single timed au-
tomata. A bus with a First-Come-First-Server (FCFS) arbitration policy is also
modeled as a timed automaton, and whenever a cache miss occurs, an access
on the bus is issued.

3.1. FORMAL REAL-TIME ANALYSIS METHODS 59

Gustavsson et al. [Gustavsson et al., 2010] moved further and tried to ex-
tend the former work [Lv et al., 2010] concentrating on modeling code sharing
programs and enhancing the hardware architecture with additional data cache
but without the consideration of bus contentions. In their work, the whole mul-
ticore system is modeled as a set of timed automata including a task model, a
core with pipeline model and instructions/data caches’ models. In addition,
they consider generic tasks modeled at assembly level and analyze these when
mapped to an architecture where every core has its private L1 cache and all
cores share an L2 cache without sharing a bus. Yet, the instruction level gran-
ularity of the modeled tasks leads to scalability problems even with a platform
of four cores, on which four (very simple) tasks run and communicate through
a shared buffer.

Despite the advantage of the former two approaches being applicable to any
code generated/written for any domain, the fine granularity of the code-level
or instruction-level impedes the scalability of the model-checking technique. In
this work we intended to limit the application to an SDF MoC and limit the
hardware architecture by disabling caches, in order to reason about the scala-
bility of a model-checking-based method for performance analysis of SDFGs.

Recently, an approach was presented in [Giannopoulou et al., 2012] which
combines model-checking with real-time calculus analysis was presented to ex-
tend the scalability of worst-case response time analysis in multicores. Tasks
are limited to superblocks representation where resource access phases can be
easily identified. In our work, we concentrate on SDF based applications with
their specific properties and constraints. We also consider a less abstracted
system model as the one considered in [Giannopoulou et al., 2012] where we
model blocking at shared FIFO buffers, actors’ multi-ports and hierarchical
scheduling between different applications. Nevertheless, it is possible to use
the abstraction techniques from [Giannopoulou et al., 2012] to analyze SDF ap-
plications.

Brekling et al. [Brekling et al., 2008] presented a timed automata-based ap-
proach to verify the impact of execution platform and application mapping on
the schedulability (meeting hard real-time requirements). The granularity of
the application is considered at the task level. With tasks and processors hav-
ing their own timed automata, the approach scales up to 103 tasks mapped to
3 cores. Yet, the communication model is missing in this approach.

Zhang et al. [Zhang, 2011] proposed a model-checking approach to analyze
the effects of L2 cache (without considering the interferences on a shared bus)
in order to bound WCET for multicores. Their approach is based on providing
a static bound on the number of additional cache misses due to inter-thread
instruction interferences.

Büker et al. [Büker, 2013] presented an approach for testing real-time task

60 CHAPTER 3. RELATED WORK

networks with functional extensions using model-checking. In their work, they
have defined the semantics of function networks for modeling tasks. These
function networks are then converted to timed automata according to templates
defined for every element in the network. The scheduling is also modeled as a
timed automaton. WCRT is then calculated for some test input vector through
model-checking the function network timed automata with the chosen schedul-
ing automaton. The main drawback of this approach is that no guarantees are
given on the estimated WCRT, since it is test based.

3.1.2.2 SDFAs on MPSoCs

Some previous work [Geilen et al., 2005, Gu et al., 2007] used model-checking
to optimize buffer sizes in SDF applications, and others [Liu et al., 2008] used
SAT solvers to enable mapping and scheduling of HSDFGs with throughput
optimization in mind. Other extensions of the above work with same purpose
can be found in literature. In the following, we will only focus on state-based
methods targeting the RT analysis of SDFGs.

Yang et al. [Yang et al., 2010] introduced a state-space exploration approach
to verify the hard real-time performance of applications modeled with SDFGs
that are mapped to a platform with shared resources. Nevertheless, they did
not consider shared communication resources in their approach.

Malik et. al. [Malik and Gregg, 2013]3 presented a similar approach to ours
using model-checking to statically distribute and schedule SDFGs on heteroge-
neous MPSoCs through translating them to timed automata, and showed that
their method outperforms ILP formalization of the same problem in terms of
run-time. No contention on the communication resource is considered and that
is why the communication resources are not modeled explicitly.

Ahmad et al. [Ahmad et al., 2014] followed the same path of our work,
presenting a translation of single SDFGs to timed-automata templates in order
to analyze their behavior using model-checking. In contrast to our work, they
focused on finding a maximal throughput on a given number of processors. In
addition, communication resources (with contention) were not considered in
their system model.

In [Zhu et al., 2014, Zhu et al., 2015] the authors (similar to our work) trans-
form a system model which includes an SDFG and a multiprocessor platform to
a (priced) timed automata network of UPPAAL and utilize an extended model-
checker (UPPAAL CORA) to obtain optimal schedules combining optimization
goals with optimal throughput and energy consumption. In difference to our
approach, the authors didn’t consider communication resources in their work.

3 [Malik and Gregg, 2013] was published in September 2013 later than our work in
[Fakih et al., 2013a] published in March 2013.

3.1. FORMAL REAL-TIME ANALYSIS METHODS 61

Very recently the authors [Skelin et al., 2015] presented a translation from
Finite-State-Machine Scenario-aware-Data-Flow (FSM-SADF) graphs to timed
automata. FSM-SADF is a MoC which is more expressive than SDF allowing
more dynamism but at the same time entailing limitations on the analyzability.
In an FSM-SADF MoC a set of typical scenarios are pre-defined (through a finite
state machine) for a specific SDF application where it reacts to every scenario in
a different manner leading to more efficiency and better throughput. Similar to
our work, the authors used model-checking to analyze FSM-SADF and showed
that complex properties which are not supported by traditional tools such as
SDF3 (utilizing analytical RT methods) can be analyzed. In difference to our
approach, the authors concentrated in their translation and analysis only on
the FSM-SADF MoC and did not consider other aspects as resources’ sharing
(contention on communication resources) in MPSoCs in their work.

Another recent work of Thakur et al. [Thakur and Srikant, 2015] presented
a model-checking based approach (based on timed automata) for statically
scheduling stream programs (based on SDFGs) in order to provide optimal
mapping (in terms of performance) on heterogeneous architectures. In their
work, different to our work they assume no contention on the communication
resources and don’t model them explicitly.

3.1.2.3 Discussion

As seen in the above sections, when using state-based RT methods for the anal-
ysis of generic tasks models on MPSoCs, they usually reach their limits even
for very small systems. Yet, a better scalability can be definitely reached, if
the task model is restricted to SDFGs (since SDFGs have the nice feature of
clean separation of communication phases from computation phases) as we
will show in this thesis. To the best of our knowledge, we pioneered the trans-
lation of SDFGs to timed-automata (in [Fakih et al., 2013a]) and we were the
first to describe how to use model-checking to analyze the real-time proper-
ties (e.g. end-to-end deadline) of (multiple) hard real-time SDF applications
mapped to MPSoCs. In addition, we evaluated different methods to improve
the scalability of our state-based RT analysis method (see Sect. 5.4 and Sect. 7.2).

Our approach has been later taken up by other researchers in
[Malik and Gregg, 2013, Ahmad et al., 2014, Zhu et al., 2014, Zhu et al., 2015,
Skelin et al., 2015, Thakur and Srikant, 2015] in order to model-check SD-
FGs/SADGs, targeting various objectives (as described above). It is worth to
note, that all these researches, unlike our approach, do not support the mod-
eling of communication resources (with their contention properties). Yet, con-
sidering communication resources with their timing properties, as done in this
thesis, is indispensable for a RT analysis method to be applicable on a real
MPSoC.

62 CHAPTER 3. RELATED WORK

3.2 Model-based Design Flow

In Chap. 6, we will present our model-based design flow for RT analysis of
RT applications modeled in Simulink through translating them to SDFGs (see
C3-1). Afterwards, our tool (first developed in [Schlaak, 2014]) takes the role of
automatizing our state-based RT analysis method (see C3-2). And then with the
help of a simulative method the Virtual-Platform-In-the-Loop (VPIL) simulation
extended for MPSoCs (see C3-3), we enable a functional and accurate temporal
Verification and Validation (V&V). In the following, we will position our main
contributions (mainly C3-1 and C3-3) with respect to existing related work.

3.2.1 Simulink to SDFG Translation

In the last decade, several researches [Caspi et al., 2003, Miller et al., 2005,
Zhang et al., 2013, Büker, 2013] have been conducted to enable a transla-
tion of Simulink models to other formal models for the purpose of for-
mal analysis. In the following, we merely discuss previous work enabling
the translation of Simulink models to SDFGs (taken from our prior work
[Warsitz and Fakih, 2016]).

In [Dominik, 2011] a structural translation of Simulink models to ho-
mogeneous SDFGs (HSDFGs) was pursued with the objective of analyz-
ing concurrency. HSDFGs are SDFGs with the restriction that the number
of consumed and produced tokens of each actor must be equal to one 1
[Lee and Messerschmitt, 1987a]. The translation has been done for a fixed num-
ber of functional blocks but important attributes, such as the data type of a
connection between blocks, have not been taken into consideration by the the
translation.

In [Boström and Wiik, 2015] a translation from Simulink models to SDFGs
was described. The aim of this work was to apply a methodology for functional
verification of Simulink models based on Contracts. Contracts define pre- and
post conditions to be fulfilled for programs or program fragments. However,
authors give no clear classification of critical Simulink functional blocks (e.g
the switch block see Sect. 6.2) which cannot be supported in the translation. In
addition, Triggered-/Enabled subsystems and other important attributes such as
the data type of a connection are not supported.

In [Li, 2013], only the source code of a so-called Simulink2SDF tool was pub-
lished which enables a very simple translation of Simulink models to SDFGs. In
this work all Simulink blocks, without any distinction, were translated to data-
flow actors and similarly connections were translated in data-flow channels, the
fact which makes the translation incomplete as we will see in Sect. 6.2.

Unlike the above work, we present a general concept in this work catego-
rizing blocks and connections in Simulink models in different classes. Then we

3.2. MODEL-BASED DESIGN FLOW 63

describe how a translation based on the classification of the given block/con-
nection to one/or more class(es) of the above identified is done. Our approach
enables the translation of critical blocks (such as Enabled /Triggered subsystems)
including the enrichment of the translated SDFG with important attributes such
as the data types of tokens, tokens’ size and sampling rates of actors (in case
of multi-rate models). Another issue is that the target of our translation is dif-
ferent from above mentioned related work. In [Dominik, 2011] the translation
was used for parallelism analysis of Simulink applications implemented on
multicore platform. In [Boström et al., 2010], the purpose was to enable func-
tional safety requirements verification based on contracts. In difference, in our
approach Simulink models are translated to SDFGs (with details relevant to
timings such as tokens’ number and sizes) to enable a RT analysis method of
applications which implement these models.

3.2.2 Virtual-Platform-in-the-loop Simulation

Contribution C3-3 adds some novel issues to related work. In order to highlight
this, we are going to give an excerpt of the research done, mainly focusing
on model-based design flow with support for co-simulation of Simulink and
virtual-hardware platform frameworks such as SystemC (partly taken from our
prior work [Fakih and Grüttner, 2012]) in the following.

Boland et al. [Boland et al., 2005] and Tomasena et al.
[Tomasena et al., 2009] have also achieved (similar to our work) a co-simulation
between SystemC and Simulink using Matlab’s engine interface functions based
on a synchronization at fixed time intervals. In [Boland et al., 2005] the inten-
tion was to reuse test-cases and golden models in Simulink to verify refined
hardware components in SystemC. The approach in [Tomasena et al., 2009]
employs a description of the architecture of the system as a SystemC trans-
action level model and a description of the algorithm in Matlab. During
co-simulation, the SystemC architectural elements use Matlab’s engine to
execute and synchronize with the Matlab model.

Bouchhima et al. [F. Bouchhima, 2005, Bouchhima et al., 2006] presented
a tool (CODIS) which enables the co-simulation of continuous environment
models (e.g. in Simulink) with discrete models (e.g. in SystemC). This tool
supports a more efficient co-simulation than that of [Boland et al., 2005] since
it is based on SystemC’s event driven scheduling mechanisms.

While being similar to our bi-simulation concepts, above re-
search [Boland et al., 2005, Tomasena et al., 2009, F. Bouchhima, 2005,
Bouchhima et al., 2006] assumes that the virtual-hardware platform model
is developed independent from the Simulink model and no code-generation
support is done.

64 CHAPTER 3. RELATED WORK

[Kai Hylla, 2008, Mendoza et al., 2011] presented another approach as the
above work, where Simulink is the master of co-simulation and SystemC mod-
ules are embedded into Simulink using S-functions. While these approaches
are sufficient for functional verification, they lack the ability of validating non-
functional properties such as timing behavior of of the target application on the
target hardware.

Huang et al. [Huang et al., 2009] presented a Simulink-based heteroge-
neous MPSoC design flow for mixed hardware/software refinement and simu-
lation. In their design flow the Simulink model is refined manually to achieve
a Simulink CAAM (Combined Algorithm and Architecture Model). This of-
fers advantages in terms of modular code generation and fast simulation of
the refined system. In their work, it is not obvious how the partitioning in
the CAAM model was done without considering explicit knowledge of the
timing properties after mapping it on the MPSoC platform. So our virtual-
platform-in-the-loop simulation with the Simulink plant model concept would
be complementary for this work towards achieving this.

In [Bartolini et al., 2010] Bartolini et al. presented a co-simulation between
SystemC and Simulink with the focus on exploring power, thermal and reliabil-
ity management control strategies in high-performance multicores. The differ-
ence to our approach is that the controller in Simulink has been coupled with
a model of the plant (environment) represented in SIMICs (a virtual-hardware
platform framework) while we did the opposite by coupling the controller code
executed on the virtual-hardware platform with the Simulink plant model.

Cha et al. [Cha and Kim, 2011] proposed an automatic synthesis of real-
time multicore systems based on Simulink applications. In difference to our
work, no virtual-platform-in-the-loop, but a traditional HIL (Hardware In the
Loop) approach directly evaluating the implementation on a hardware plat-
forms has been performed. Moreover, communication and synchronization
overheads/times between control blocks mapped on different cores were not
considered.

Mühleis et al. [Mühleis et al., 2011] presented a co-simulation between a
SystemC and a Simulink model for a control algorithm performance evalua-
tion, which similar to our approach they consider the VP framework as the
simulation master and synchronization between Simulink are done at each pe-
riod. As proposed in our approach, their model is also automatically compiled
from Simulink into an executable for the virtual-hardware platform. A more
recent publications which is based on the same concept above was published
by the same co-authors in [Glass et al., 2012]. Yet in their approach the delay
caused by the communication and synchronization between different (depen-
dent) control tasks mapped on different processing elements was not consid-
ered. In [Zhang et al., 2013] Zhang et al. built upon the previous two publica-

3.2. MODEL-BASED DESIGN FLOW 65

tions and enabled an automatic conversion of Simulink model to an actor-based
executable specification (modeled in SystemMoC [Falk et al., 2005]).

Based on our approach Poppen et al. [Poppen, F. and Grüttner, K., 2012]
also presented a co-simulation approach of Simulink and OVP (Open Virtual
Platform). While our approach uses a lock-step based bi-simulation, their ap-
proach uses a fully parallel execution of both simulators. The advantage of our
approach is its full accuracy where changes in one simulation will be available
at any time (without any loss) to the other, with some performance degradation
compared to a parallel execution scheme of both simulators.

With respect to the above related work our proposed approach (see Sect. 6.4)
benefits from the co-simulation of a flexible and well accessible virtual-
hardware platform with a generic non-invasive timing measurement concept
with a timing accuracy up to a cycle-accurate level. Our VPIL approach also
enables reuse of test-cases and bi-simulation with golden models for the func-
tional verification and validation of the stepping and timing requirements of
the control algorithm implemented on a dedicated MPSoC.

3.2.3 Discussion

In literature there are many design methodologies which tries to com-
bine RT analysis methods, synthesis and automatic code-generation for ap-
plications captured in a data-flow MoC in one model-based design flow
[Gajski et al., 2009, Gerstlauer et al., 2009]. In [Büker, 2013] authors presented
a design space exploration (DSE) design flow, which also takes Simulink as an
entry model but different to our work translates the Simulink model to function
networks (see Sect. 3.1.2.1), in order to perform a state-based RT analysis. In
addition, to the different modeling approach of the state-based RT analysis, in
their design flow they didn’t consider combining the formal RT analysis with
a simulative-based RT analysis as we have done (see Chap. 6). In another re-
cent work Rosvall et al. [Rosvall and Sander, 2014] also presented a DSE design
flow, which similar to our approach uses SDFGs as a formal model and tries to
perform a DSE of SDFGs mappings to predictable MPSoCs (with guaranteed
Quality of Service: QoS) based on a declarative style constraint programming
approach. In difference to our work they assume a fully predictable MPSoC (no
contention with TDM bus-based MPSoC) with no support for Simulink models
in their design flow.

In addition to the above mentioned novel aspects of our Simulink to SDFG
translation technique and the VPIL simulation technique compared to related
work, to the best of our knowledge, no other work combined the concepts of
simulative and formal RT analysis of Simulink models through translation to
SDF graphs in a model-based design flow as done in this thesis (see Chap. 6).

66 CHAPTER 3. RELATED WORK

3.3 Summary

In this chapter we took a look at an excerpt of the most relevant literature
concerning formal RT analysis of RT applications running on MPSoCs.

Concerning analytical methods and despite their advantages of being
scalable, these methods abstract from state-based modus operandi of the
system under analysis (such as complex state-based arbitration protocols
or inter-processor communication task dependencies) which leads to pes-
simistic over-approximated results compared to state-based RT methods
[Huber and Schoeberl, 2009, Perathoner et al., 2009]. In addition, complex
properties such as reachability of certain states cannot be verified by such meth-
ods. Due to this fact, we will study in this thesis the application of state-based
RT analysis methods on SDF applications running on MPSoCs.

We have shown that, to the best of our knowledge, we pioneered the trans-
lation of SDFGs to timed-automata (in [Fakih et al., 2013a]) and presented re-
cent researches which built upon our approach. To the best of our knowl-
edge, no other approach uses model-checking (see claim C2 in Chap. 1) for
the timing validation of multiple hard real-time SDFGs on a MPSoC platform,
considering the contention on shared on-chip communication resources (buses,
DMA), while supporting different commonly-used arbitration protocols like
First Come First Serve (FCFS), Round-Robin (RR), Fixed-Priority (FP) and Time
Division Multiple Access (TDMA).

Finally, an excerpt of related work was given in this chapter to conclude that
our model-based design flow is novel in the aspect of combining a simulative
and a formal RT analysis of embedded applications modeled in Simulink (with
the help of a translation to SDFGs) and deployed on MPSoCs.

Chapter 4

System Model Constraints and
Definition

One of the contributions (see C1) claimed in this thesis, is the construction
of a (predictable) system model which enables a state-based RT analysis. At
this level, two main challenges should be handled. The first challenge is to
constrain the system under analysis to make it more predictable i.e. the con-
straints should contribute to the fact that the state space of the abstracted sys-
tem model should still be manageable by the suggested RT analysis method. At
the same time, these constraints must still be practical and applicable for a real
implementation. Of course when taking these decisions, trade-offs between ef-
ficiency, scalability, analyzability and expressibility of the system model should
be considered. In Chap. 1 we defined the main problem and came to the hy-
pothesis (in Sect. 1.2) that constraining applications to the Synchronous data-
flow (SDF) MoC and constraining the hardware platform to an MPSoC archi-
tecture with shared communication resources (as we will describe in Sect. 4.1.2)
should circumvent the scalability issues faced by previous state-based RT anal-
ysis approaches (c.f. Sect. 3.1.2.1). In this chapter, we will first describe and
justify the set of constraints made on the considered system model based on
the timing issues presented in the Chap. 2, which will enable our state-based
RT analysis. Next, a formal notation is given to describe in a precise and un-
ambiguous way, the main modeling primitives of the considered system model
in this thesis, beginning with the application model (MoC: Model of Compu-
tation), the architectural model (MoA: Model of Architecture), the synthesis
decisions and the performance metrics in the model (MoP: Model of Perfor-
mance). These model elements will be the basic entry to our state-based RT
analysis method (described in Chap. 5).

67

68 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

4.1 System Constraints enabling State-based RT Analysis

Uncertainties which make a timing analysis of a system difficult are induced
either through the environment, through the application model or through
the hardware on which this application is run. In the following, we will de-
scribe the constraints imposed on our considered system, which improve its
predictability and enable our RT timing analysis.

4.1.1 Task Model and Interaction with Environment

Following assumptions are imposed on the task model in this work:

A1 Applications are restricted to the SDFG Model of Computation (MoC)
where each SDFG possesses a unique source actor and a unique sink actor
(relevant for the model-checking some timing properties see Sect. 7.1). If
this is not the case, pseudo actors representing source/sink actors with
zero execution time could be inserted to the SDFG as suggested by
[Lin et al., 2011]. Additionally, all running SDFGs are independent and
known at design time.

A2 External events if existent (in case an SDFG is sensitive to environment) are
considered periodic. If the SDFG is not sensitive to the environment, then
an infinite stream of input data is expected (for source actors) such that
the SDFG perform infinitely often which is typical for signal processing
applications (see [Lee and Messerschmitt, 1987a]).

A3 Within an SDFG a static-order schedule is assumed, among several SDFGs
non-preemptive scheduling algorithms (Static order, Round-Robin, TDMA)
can be used.

A4 If an SDFG actor blocks on the FIFO buffer, then a polling-based IPC syn-
chronization is used.

As already stated (assumption A1), we consider a more restricted applica-
tion model than a generic task model, called Synchronous Data Flow (SDF),
in order to improve the predictability of our system. The SDF MoC enables
a compositional timing analysis, which allows analyzing computation (execu-
tion times of actors) independent from the communication timings (inter-actor
communication). Furthermore, assuming that all SDFGs are known at design
time is typical for safety-critical applications with hard real-time requirements
and helps improving predictability. In addition, dependencies between differ-
ent SDFGs are in general a possible extension to our system model but could
lead to more complex system model which could become an issue for our state-
based RT analysis method.

4.1. SYSTEM CONSTRAINTS ENABLING STATE-BASED RT ANALYSIS 69

Several (signal processing and control) applications require input data which
are provided through an external source like the A/D converter. This interac-
tion with the environment can have an impact on the timing of the application
and will be considered in this work assuming that this external source has a
periodic behavior (assumption A2).

Concerning scheduling of SDFGs (assumption A3), we only consider non-
preemptive schedulers (c.f. Sect. 2.2.1.1) since analyzing preemptive sched-
ulers in our state-based RT analysis will lead to (possibly unmanageable) large
state space. We differentiate between scheduling within an SDFG and schedul-
ing among SDFGs (which will be denoted by hierarchical scheduling). Several
scheduling strategies were presented in [Stuijk, 2007](c.f. Sect. 2.2.1.1), among
them static-order scheduling which was evaluated to be more appropriate for
hard-real time SDFGs. In this method, actors belonging to the same SDFG are
executed in a fixed order which causes a small run-time overhead and improves
predictability compared to other strategies [Stuijk, 2007]. In this work, we as-
sume non-preemptive static-order scheduling technique for actors belonging to
the same SDFG. If one SDFG (according to a hierarchical scheduling method)
is activated, the first actor (according to a static-ordered list) is granted the
processing resource and starts its execution by checking for firing conditions
(if their is enough space/tokens in the buffer). If these conditions are sat-
isfied, the actor immediately fires while other actors in the same SDFG are
blocked waiting for their turn. Concerning hierarchical scheduling, different
non-preemptive scheduling strategies (static order, round-robin and TDMA)
are supported in this work due to their predictability features compared to pre-
emptive ones. In the case of TDMA hierarchical scheduling (also referred to
in this thesis by TDMA clusters’ scheduling see Sect. 5.4.3), we assume a non-
preemptive TDMA scheduling mechanism where the execution of SDFG starts
only if it can be assured that the execution time of the SDFG doesn’t exceed the
chosen TDMA slot size.

When an actor blocks while accessing a shared FIFO buffer (assumption
A4), an IPC synchronization mechanism (either implemented using polling or
interrupts see Sect. 2.3.5) is needed for synchronization. In this work, we will
use a polling-based mechanism since we mainly consider shared memories as
storage resources in our experiments which typically don’t support interrupts.
In addition, we assume that the polling waiting time in the experiments can
be bounded to a fixed value, even though our method is able to support low-
er/upper bounds of polling waiting time as in [Nelson et al., 2010].

Note that by a given SDFG, mature static analysis methods (such as the one
presented in [Stuijk, 2007]) can be utilized to obtain a consistent repetition vec-
tor (see Def. 4.2.4), the number of initial tokens on all edges (see Def. 4.2.3) and
the sizes of FIFO buffers which realize the asynchronous communication be-

70 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

tween actors. One known method which finds the smallest buffer size without
leading the SDFG to deadlock is described in [Geilen et al., 2005]. Alternative
methods which try to compute optimal buffers sizes depending on a through-
put requirement, such as those implemented in SDF3 [Stuijk et al., 2006], can
also be used. One advantage of the state-based RT method presented in this
thesis, is that it enables to check whether or not the considered system runs
into deadlock, for e.g. in case of non-valid buffer sizes.

4.1.2 MPSoC Hardware Architecture

The following constraints are imposed on the hardware architecture in order
to improve its predictability and in order to enable our state-based RT analysis
method:

A5 We consider fully synchronous Multiprocessor System On Chip (MPSoC).

A6 Every processing element PE (in a tile as in Fig. 4.2) has two local disjoint
memories for instruction (IM) and data (DM). Actors’ private instructions
and data are mapped to these private memories. Moreover, if two con-
nected actors are mapped to the same tile then the message passing (FIFO
buffer) between the two actors can also be mapped to the private memory.
Furthermore, we assume that the PEs do not use (shared) caches.

A7 Actors of SDFGs mapped to different PEs communicate via buffers imple-
mented in the shared memory. Only explicit communication (message
passing) between actors mapped to different PEs will be visible on the
interconnect and the shared memory.

A8 We mainly use buses as interconnects to connect the tiles to shared
storage resources. Bus pipelining and transaction splitting (c.f.
[Schaumont, 2013]) are not supported.

A9 It is assumed that the interconnect supports only non-preemptive arbiters.
This means that if one PE gets access to the interconnect, it will block
the interconnect for all other initiators even if those have higher priorities
until the entire packet has been transported.

A10 Interconnect bridges are considered in this thesis to be one-way di-
rectional component (such as the AHB to APB bridge [ARM, 2006,
ICVerification , 2015]) connecting two interconnects where it acts as a
slave at the input, and as a master at the output. As a result, no con-
tention is allowed on bridges. Also, no contention is allowed on I/O
devices (or addressable devices).

4.1. SYSTEM CONSTRAINTS ENABLING STATE-BASED RT ANALYSIS 71

While fully synchronous MPSoCs are still state of the art (A5), other ap-
proaches such as GALS (Globally Asynchronous Locally Synchronous) are still
not widespread [Tatenguem et al., 2011].

A6 is in compliance with recent research recommendations on how to
design predictable MPSoCs (c.f. [Wilhelm et al., 2008, Cullmann et al., 2010,
Kotaba et al., 2013]). Here we assume that every processor has its own private
instruction memory and data memory, such that no contention is induced on
the same memory port when fetching instructions and data. This enables us-
age of state-of-the-art WCET analysis tools for single processors and improves
the predictability of the considered system. Nevertheless, the above constraint
leads to a limitation concerning the size of private memories particularly for
large applications which we will discuss in Sect. 8.1. In this work, we did not
use caches but predictable caches, such as scratchpads were utilized. Yet, lo-
cal (tilewise) caches can be supported in our approach as long as the WCET
analysis tool supports their replacement policies (c.f. [Cullmann et al., 2010]).
If caches are supported, it should be guaranteed in the implementation that ac-
cesses to the shared resource are not cached while all private memory accesses
can be cached. This is important to avoid cache coherence timing penalties
which are difficult to assess in our approach.

Assumption A7 was made to enable a composable RT-analysis of considered
system, being able to analyze the computation times of actors in isolation from
their inter-processor communication time.

We will examine bus-based MPSoCs in the experiments (see Chap. 7) of
this thesis (A8). Nevertheless, extending the interconnect model towards other
topologies (c.f. [Schaumont, 2013]) such as Network on Chips (NoCs) should
be straight forward and should be evaluated in future work since burst-transfer
modes are already supported by our approach. Yet, NoCs are only meaning-
ful for large number of tiles which can be connected through it. Pipelining
and transaction splitting (c.f. [Schaumont, 2013]) were developed for high-speed
buses in order to improve the speed of bus transfers which are limited by the
sequential phases. These procedures are not supported in our bus model, since
modeling their functionality will require a detailed knowledge of the bus proto-
col from which we abstract away in our modeling (see Sect. 4.2.5). In case upper
and lower bounds can be derived from the communication protocol when uti-
lizing pipelining and transaction splitting, then communication resources with
such optimization techniques can be supported by our approach.

We support synchronous IPC (i.e. synchronous resource accesses realized
through non-preemptive arbiters A9) in our approach since the RT analy-
sis of synchronous resource accesses is much more challenging than that of
the asynchronous case for which already mature RT analysis methods exist
[Giannopoulou et al., 2012]. This is due to the fact that in the synchronous

72 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

case, once an access is granted for a requesting master on a shared resource,
this access cannot be preempted and other requests are stalled which leads
to variable and difficult to predict delays [Giannopoulou et al., 2012]. Another
reason for this decision is that analyzing preemptive arbiters in our state-based
RT analysis will lead to large state space.

In this thesis, we will explore two kinds of IPC styles: burst and single-
beat IPC. While single-beat IPC, in which arbitration is done after every bus-
width size transfer on the interconnect, leads to a complex system state space,
supporting burst transfers on the interconnect helps reducing the state space
being explored by our model-checking based method and improving its scala-
bility as we will show in Chap. 7. If the used interconnect, does not support a
burst mode, a DMA component can be utilized to realize a burst transfer (see
Sect. 4.2.2).

For the same reason (keeping the state space of system model manageable)
as above, contention is not allowed on bridges connecting two buses (A10) or on
I/O devices in our system model. In the case of I/O devices, it is assumed that
only one dedicated tile (I/O tile) is allowed to communicate with I/O devices
which is a typical decision in real-life implementations.

In [Cullmann et al., 2010] the authors gave a classification of architectures
w.r.t predictability considerations in the design of multicores: fully timing com-
positional, compositional with bounded effects and non-compositional platforms (see
Sect. 2.3.6). Our approach can support the analysis of the first two types of
architectures, as timing anomalies are considered at the application and the
hardware level through considering upper and lower bounds on the actors exe-
cution times and on the communication and storage resources latencies (as we
will see in Sect. 4.2.5). The third kind of architectures (non-compositional) ex-
hibit both timing anomalies and domino effects, which require a very accurate
and detailed model and an RT analysis method which has to follow all paths.
We assume that the hardware architecture of our SUA doesn’t exhibit domino
effects.

Since we will use WCET analyzers to obtain lower/upper bounds on the ex-
ecution times of single tasks running on single-processor platforms in our de-
sign flow (see Sect. 4.2.3), the SUA should also adhere to the typical constraints
imposed by WCET analyzers. An excerpt of these constraints can be found in
[Ferdinand and Heckmann, 2004] for the case of utilizing the aiT WCET ana-
lyzer. When analyzing these constraints, we found out that these constraints1,
at least those making the usage of aiT WCET possible, are already covered by
our constraints (A1 to A10).

1For aiT usage it is assumed that no threads/parallelism or waiting for external events
within a task is allowed. Also effects of interrupts, IO or timers are not considered
[Ferdinand and Heckmann, 2004].

4.2. SYSTEM MODEL DEFINITION 73

MoA MoC SDFGs

Timing
Requirements

WCET

Analysis

on Single-

core

Synthesis

MoS MoP

Designer

Decisions

Figure 4.1: Extended X-Chart (based on [Gerstlauer et al., 2009])

4.2 System Model Definition

After elaborating on the constraints made on the system model for enabling our
state-based RT analysis method, we will define our conceptual system model in
this section based on the X-Chart [Gerstlauer et al., 2009]. Fig. 4.1 shows an ex-
tended X-Chart (based on the one in [Gerstlauer et al., 2009], also see Sect. 2.1)
which describes the typical synthesis process of an embedded system. The
synthesis process takes as a first input a set of behavior models with their spe-
cific timing requirements, each implemented in the SDF model of computation
(MoC). The second input comprises resource constraints on the target architec-
ture (MoA: Model of Architecture). We extended the X-Chart by adding a third
input to the synthesis process, representing the results of the WCET analysis
of the computation phase of every actor (see Sect. 4.2.3). The WCET analysis is
performed (for every PE in isolation using available WCET analyzer tools) for
all combinations of actors and available processing elements of the platform.
This extension helps the system designer making binding decisions depend-
ing on the worst-case execution times. In addition, the WCET bounds will be
needed for constructing the Model of Performance (MoP) (see Sect. 4.2.5). The
output of the synthesis process is a structural model (MoS: Model of Struc-
ture) and a MoP. The MoS holds information about the realization of design
decisions from the synthesis step, whereas the MoP, in addition to that, must

74 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

also keep track of all possible timing delays in the system that serves as input
for our RT analysis method. In the following, we will use a formal notation
(inspired from [Sriram and Bhattacharyya, 2000, Stuijk, 2007]) to describe in a
precise and unambiguous way, the main modeling primitives and decisions of
the synthesis process in Fig. 4.1. All definitions and terms of the system model
are based on the X-Chart based synthesis process (defined and described in
[Gerstlauer et al., 2009]).

4.2.1 MoC: Synchronous Data-flow Graphs

The formal semantics (inspired from [Sriram and Bhattacharyya, 2000,
Stuijk, 2007]) of an SDFG consisting of a number of actors, edges and ports
are defined as follows:

Definition 4.2.1. (Port) A Port is a tuple P = (Dir, Rate) where Dir ∈ {I, O} de-
fines whether P is an input or an output port, and Rate ∈ N>0 which specifies
the number of tokens consumed/produced by every port when the correspond-
ing actor fires.

Definition 4.2.2. (Actor) An actor is a tuple A = (P , F) consisting of a finite set
P of ports P, and F a label, representing the functionality of the actor.

Definition 4.2.3. (SDFG) An SDFG is a tuple SDFG = (A,D) consisting of a
finite set A of actors A and a finite set D of dependency edges D. An edge
D ∈ D is represented as a triple D = (Src, Dst, Del) where the source (Src) of
a dependency edge is an output port of some actor, the destination (Dst) is an
input port of some actor, and Del ∈ N0 is the number of initial tokens (also
called delay) of an edge. Every source and destination ports of all actors are
connected to a unique edge, and all edges are connected to ports of some actor.

Definition 4.2.4. (Repetition vector) A repetition vector of an SDFG is defined
as the vector specifying the activation number of every actor in the SDFG such
that the initial state of the graph is obtained. Formally, a repetition vector
(see Sect. 2.2.1.1) of an SDFG is a function γ : A → N0 so that for every
edge (p, q) ∈ D from a ∈ A to b ∈ A, p.Rate × γ(a) = q.Rate × γ(b). A
repetition vector γ is called non-trivial if and only if for all a ∈ A : γ(a) > 0.
If the repetition vector of an SDFG is non-trivial then the SDFG is said to be
consistent. In this thesis, we use the term repetition vector to express the smallest
non-trivial repetition vector.

We assume in this thesis that incoming event triggers (if existent) from the
system environment respect the event streams semantics [Thiele et al., 2000].
In the case where an SDFG is sensitive to an external event source, this event
trigger is defined as follows:

4.2. SYSTEM MODEL DEFINITION 75

Definition 4.2.5. (Event trigger) Formally, an event trigger E = (p, j) is
characterized by a period p and a jitter j, where p, j ∈ N≥0 and j ≤ p
[Hendriks and Verhoef, 2006]. Similar to [Hendriks and Verhoef, 2006], the jit-
ter must be smaller than or equal to the period and thus avoiding bursty events
with overlapping subsequent intervals (c.f. [Hendriks and Verhoef, 2006]).

4.2.2 Model of Architecture (MoA)

In the following, we describe the formal definitions of the considered MoA
consisting of number of tiles, shared interconnects and storage resources:

Definition 4.2.6. (Tile) A tile is a tuple T = (PE, Mp) with processing element
PE = (PEtype, f) where PEtype is the type of the processor and f is its clock
frequency, and Mp = (mi, md) where mi, md ∈N>0 are the instruction and data
memory sizes (in bits) respectively.

Definition 4.2.7. (Execution Platform) An execution platform is defined as EP =
(T , I , IDMA,Bdg,MS , C) consisting of

1. a finite set T of tiles T,

2. a finite set I of shared interconnects I = (Bi, AP, CS) with Bi being the
bandwidth in bits/cycle, AP is the arbitration protocol (FCFS, Fixed-
Priority, Round-Robin, TDMA) and CS = {SingleBeat, Burst} is the com-
munication style supported by the interconnect.

3. a finite set IDMA of shared DMA controllers IDMA = (BDMA, APDMA) with
BDMA being the bandwidth in bits/cycle, APDMA is the arbitration proto-
col of the DMA,

4. a finite set Bdg of bridges each having a bandwidth of Bbridge in bits/cycle.

5. a finite set MS of shared storage resources (such as memories or I/O
slaves) MS = (Bs, ms), each of them having specific size ms in bits and a
bandwidth Bs in bits/cycle,

6. a configuration C = (ζT,M, ζT,DMA, ζDMA, ζbridge) with the functions:

• ζT,M: T → I × MS which maps a tile T to the interconnect I of the
shared storage resource MS,

• ζT,DMA: T → I × IDMA which maps a tile T to the interconnect I of
a DMA controller IDMA allowing its configuration via this intercon-
nect,

• ζDMA: IDMA → T × I × MS which maps a DMA controller IDMA to
access the private memory of tile T and move data to the shared
storage resource MS via interconnect I,

76 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

B
ri

d
g

e

M1

(SRAM)

M1Ctrl

I/O4

(HW)

Interconnect 1 Interconnect 2

S

M S

S

M

S

M/S

M1
M

A
rb

it
e

r1

Arb

I/O3

(HW)

S

I/O2

(HW)

S

I/O1

(HW)

S

S

DMA

Tile 0

D I

M

Tile 1

D I

M

A
rb

ite
r2

Arb

Tile 2

D I

M

Tile 3

D I

M

Figure 4.2: Possible analyzable MPSoC architecture in this thesis (based on
[Gerstlauer, 2009])

• and a configuration ζbridge = I → Bdg × I which (if required) maps
interconnect I1 ∈ I to the bridge which connects it to another inter-
connect I2 ∈ I .

Various configurations of the MPSoC can be supported (see definition of C
in Def. 4.2.7). With the help of configuration ζT,M, a tile connection to a shared
storage resource (such as an I/O device or a memory) through a specific inter-
connect can be described. In the case a burst transfer is needed and the inter-
connect does not support a burst mode, a DMA component can be utilized to
realize a burst transfer. For this, the initiator tile should first configure the DMA
with transfer parameters (which is realized through configuration ζT,DMA). Af-
ter that the DMA controller transfers the requested data (see ζDMA) without
interruption from the private memory of one tile via an interconnect and up-
dating the shared storage resource (where the shared FIFO buffer is mapped).
An example configuration for the Aurix MPSoC is found in Sect. 7.4.3.

Fig. 4.2 shows a possible architecture which can be captured by our MoA,
consisting of multiple tiles, various storage resources and multiple intercon-
nects each with various arbitration complexities and communication styles.

4.2.3 BCET/WCET Analysis on Single-Processor Platforms

The problem of obtaining lower/upper bounds on the execution times of single
tasks running on single-processor platforms (with fairly complex processors)
is considered to be solved [Wilhelm et al., 2008]. Due to this fact, we can uti-
lize any of the available WCET analyzer (aiT [Ferdinand and Heckmann, 2004],
chronos [Li et al., 2007] or SWEET [Lisper, 2014]) to statically obtain the

4.2. SYSTEM MODEL DEFINITION 77

BCET/WCET bounds of software actors executed on a specific tile of the MP-
SoC platform in isolation from the communication accesses on the communi-
cation resources. Fig. 4.3 shows the different execution phases of an SDF actor
on a tile. The execution of an actor starts with the read phase. All tokens on all
input channels required to enable the firing of an actor are read in this phase.
Depending on the mapping of the channels to local or shared storage resource
different communication driver routines are executed. When all tokens have
been copied to the tile’s local memory, the computation phase of the actor starts.
In this phase data from the input tokens are transformed into data of the output
tokens. During the computation phase of an actor, only local data is accessed
(i.e. no accesses on shared resources occur during computation phase). The
final write phase copies all output tokens either into local or shared storage re-
sources depending on the channel’s mapping. Communication driver routines
are executed in the write phase, just as in the read phase. The communication
driver is responsible for establishing the FIFO-style message passing between
actors using private storage resource, shared storage resource or DMA con-
necting to a shared storage resource. After actor execution, a scheduler decides
which actor is activated next. The scheduler realizes the static-order schedule
within an SDFG and hierarchical scheduling among multiple SDFGs (described
later in Sect. 4.2.4).

For using WCET analysis tools, binary code for the instruction-set archi-
tecture of the specific tile is required. For the compute phase of the actors
executable code is needed. In the case the application is available as a Simulink
model (as we will demonstrate in Chap. 6), C-code can be generated from it
using a code-generator (e.g. via Simulink Coder [MathWorks, Inc., 2015a]). Us-
ing a cross-compiler for the tile’s processing element, binary code to be used
with the WCET tool is generated. In the generated code all loops are statically
bound and recursion is avoided to enable the static BCET/WCET analysis. The
WCET tool outputs an lower/upper bounds (number of cycles) for the com-
pute phase of an actor. Only if the read and write accesses of an actor are local
(not accessing the shared communication resource) the WCET can also give an

read compute write

read tokens

from all input

channels

write tokens

to all output

channel

compute output

tokens from input

tokens, access to

local data only

schedule schedule

actor execution

read

Figure 4.3: Execution phases of an SDF actor

78 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

upper/lower bounds for the write/read phases.
Platform dependent communication drivers for the read and write phases,

as well as the scheduler are implemented manually. For the communication
drivers, we differentiate between the software (communication stack) timing
estimation and the communication timing/delay estimation. For the software
part, upper and lower bounds on the execution time of the target binary code
are estimated with the help of a WCET analysis tool. For the estimation of
the variable communication delay, due to contention on a shared communica-
tion medium (e.g. a bus), either a clock-cycle accurate (based on data sheet
information) analysis model (including the functionality of the arbiter) or a
time-accurate model (c.f. Sect. 2.3.3.2) is used.

The estimated execution time lower/upper bounds are then passed over and
annotated in the formal MoP representation (see Sect. 4.2.5), which is then used
to configure the TA templates of the analysis framework described in Sect. 5.2
in order to validate the complete system against its real-time requirements.

4.2.4 Synthesis

The system synthesis (see Fig. 4.1) includes the processes of binding and
scheduling the behavioral model on the defined architecture.

4.2.4.1 Binding Decisions

In the following definition, decisions made when mapping the SDFG(s) on the
MoA are described:

Definition 4.2.8. (Mapping) If A is the set of actors of all SDFGs, D the set of
all SDFG edges, T the set of all tiles of the platform configuration, I the set
of all interconnects, MS the set of all shared storage resources, MP the set of
all private memories, then a mapping can be defined as a tuple M = (α, β, δ, ζ)
with

1. the function α : A → T maps every actor to a unique tile2 (multiple actors
can be assigned to one tile). This function can also be constrained to pro-
hibit the mapping of some actors to some tiles (enabling heterogeneous
MPSoCs),

2. the function β : D → (MP ∪ (I ×MS)∪ (I × IDMA × I ×MS)), where:

• MP : mapping to private memory,

2This means that auto-concurrency property of SDFGs is not supported. Auto-concurrency
for an actor determines the number of multiple instances of that actor which can be executed
concurrently on multiple processors.

4.2. SYSTEM MODEL DEFINITION 79

• (I ,MS): mapping to shared storage resource which can be accessed
using an interconnect (i ∈ I) which directly connects to it or through
a set of transfers on multiple interconnects which lead to the target
memory, where our model supports single-beat and burst transfer,

• (I , IDMA, I ,MS): using DMA as memcopy to realize a burst transfer.
The DMA is configured through an interconnect (i ∈ I) to perform
a memcopy (twice: read/write from/to tile and write/read to/from
shared storage resource) via another interconnect (j ∈ I). E.g. in
Sect. 7.4 the DMA configuration in the Aurix platform was done
through the System Peripheral Bus (SPB) and the memcopy via Sys-
tem Resource Interconnect (SRI).

3. the function δ : D → N≥0 which assigns for every edge (d ∈ D) the
maximum number of tokens it can hold (buffer’s size),

4. the function ζ : D →N≥0 which assigns for every edge (d ∈ D) the token
size attribute Ts (in bits).

The edge mapped to a private or to a shared storage resource represents a
consumer-producer FIFO buffer in an actual implementation. In case the inter-
connect needs extra configuration (e.g. configuration of a DMA burst transfer),
we assume that the configuration phase of an interconnect through one tile
does not interact with the transfer phase of other tiles (e.g. see realization in
Sect. 6.5).

4.2.4.2 Scheduling Decisions

The possible hierarchy of SDFGs and its scheduling configuration in the SUA
is depicted in Fig. 4.4. In the first hierarchy level (leafs of the tree in Fig. 4.4),
actors belonging to an SDFG are scheduled according to self-timed (static-order)
schedule (SO), where these are executed in a cyclic manner according to stati-
cally ordered list, as soon as their input data is available. In the next hierarchy
level, an SDFG Scheduler (see Fig. 4.4) defines the order (priority) of execution of
multiple SDFGs when executed on the same tile. In a static-order SDFG sched-
uler (SO), all SDFGs assigned to a given tile are executed in a static cyclic order
as soon as the input data is available. Yet, the non-preemptive static-order hier-
archical schedule has the disadvantage that all actors running on one processor
belonging to other graphs may be blocked, waiting for current active actor to
fulfill its firing conditions (which could highly undesirable for overall system
performance). In this case, a strategy like round-robin (RR) scheduler can help
to achieve more fairness, by giving the scheduler an option to grant an actor
a chance to check for input availability or output capability and then it either
fires if these are satisfied or give the control back to the scheduler if this is not

80 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

SDFG Scheduler

SDFG

SDFG

SDFG

SO, RR

SO

Actors

…

Figure 4.4: Scheduling hierarchy within an SDFG and among SDFGs

the case. In both cases of blocking or successful firing, the scheduler switches
from the active actor to activate an actor belonging to other SDFG running on
the same processing unit.

The following definitions allow us to express the scheduling behavior of
multiple SDFGs mapped to tiles on the platform:

Definition 4.2.9. (Self-timed (static-order) schedule) For an SDFG with repetition
vector γ, a static-order schedule SO is an ordered list of the actors (to be ex-
ecuted on some tile), where every actor a is included in this list γ(a) times.
Self-timed means that SDFGs are executed in a static cyclic order as soon as the
input data is available.

Definition 4.2.10. (Scheduling Assignment) Let SO be the set of all SO schedules
for all SDFGs considered in the system. A scheduling assignment is a function
S : T → so, which assigns to every tile t ∈ T a subset so ⊆ SO.

Definition 4.2.11. (SDFG Scheduler) An SDFG scheduler is a triple S =
(so, F, Type) where so ⊆ SO is the set of different SDFGs schedules assigned
to one tile, F represents the functionality (code) of the scheduler and Type is
the SDFG scheduling type, defining the order (priority) of execution of inde-
pendent lists of different SDFGs assigned to one tile according to an arbitration
strategy (Static-Order, Round-Robin).

We will denote throughout this thesis, the resulting system with all above
decisions made and for which a RT analysis should be made as System Under
Analysis (SUA).

4.2. SYSTEM MODEL DEFINITION 81

4.2.5 Model of Performance (MoP) Extraction

In order to verify that the performance of the SUA stays within the required
lower/upper bounds, we must keep track of all possible timing delays of all
SDFGs running on the MPSoC platform. To achieve this, a MoP is extracted
after the synthesis process which includes all the SW/HW components with
their properties influencing the timing in the considered system. This MoP will
be the entry model to the state-based RT analysis method (see Chap. 5) and it
comprises the following aspects (see Fig. 4.5):

1. The scheduler execution time which activates actors, and the scheduling
mechanism utilized.

2. If the SDFG is sensitive to an external event trigger then the period of the
trigger would also influence the timing (not depicted in Fig. 4.5),

3. Once activated, the actor undergoes a read phase, after that a compute
phase and then a write phase (see execution phases in Fig. 4.3). As al-
ready described, for the compute phase an upper and lower bounds can
be estimated through a WCET analyzer. In the read and write phase, a
communication driver is triggered to communicate with either the shared
or the private memory. In both cases, the communication driver execu-
tion time influences the overall timing. In addition to functional code,
issues such as endianess and different wordlength (between the tile and
the interconnect) handling [Schaumont, 2013] with their specific timing
influence are captured by the communication driver component. Besides
the binding aspects of actors to processor elements, also actor’s properties
such as number of ports, the ports’ rates and the number of channels are
relevant.

4. If a communication resource is requested for inter-processor communica-
tion between two actors, the communication protocol and the arbitration
mechanism would influence the timing.

5. If an actor blocks on a shared FIFO buffer on the shared memory, then
the IPC synchronization mechanism also influences the timing. In addi-
tion to buffer sizes of the FIFO buffers, the latency delays resulting from
accessing both shared and private memories are also relevant. These also
include delays resulting from different word-length handling mechanisms
(refer to [Schaumont, 2013] for more details) between the interconnect and
the storage resources.

We choose a Bus-Functional-Model (BFM) [Cai and Gajski, 2003] abstraction
level (see Sect. 2.3.3.2) in order to model the interconnect. In this model, the

82 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

• Memory ∆M

• Buffersizes

• Blocking-

mechanism

• Scheduler ∆S

• Actors ∆A

• Commdriver ∆C

[BCET, WCET]

SDFGs properties:

• Actors,

• Channels

• Ports, rates

Time-accurate-

Bus-functional ∆I

1. Read/Write

 [BCT, WCT]

2. Arbitration

(FCFS, RR, FP, TDMA)

3. CommStyle

• Mapping

• Scheduling

 (SO, RR)

Figure 4.5: Timing issues in an example SUA

application layer issues read/write transactions on the interconnect (with arbi-
tration) and the communication is considered either at a cycle-accurate level (as
seen in Fig. 2.8, Fig. 2.9) or at a time-accurate level (see Fig. 2.10).

Since the time-accurate model (see Sect. 2.3.3.2) is the more abstract/general
model, we will use it in this thesis for representing interconnects. However, in
the case where we can accurately estimate the duration of a write/read access
(at a cycle-accurate level) then adapting this to the generic model ca be easily
done through setting the lower and upper bounds to be equal.

After synthesis, the system components event triggers (if required), SDFGs
with their actors and edges, schedulers, communication drivers, interconnects, private
and shared storage resources are annotated with execution times/delays accord-
ing to the following definition:

Definition 4.2.12. (Delay annotations) If E is the set of event triggers (if existing),
SDFG the set of SDFGs, A the set of actors, D the set of edges, S the set of

4.2. SYSTEM MODEL DEFINITION 83

schedulers, C the set of communication drivers, I = I ∪ IDMA the set of inter-
connects, MS the set of shared storage resources, and MP the set of private
memories, the following delay functions are defined:

• ∆E : E × SDFG → N>0 ×N>0 and ∆E1(e) ≤ ∆E2(e) for each e ∈ (E ×
SDFG) where ∆E(e) = (∆E1(e), ∆E2(e)) which represents the delay interval
[p, p + j] for each event trigger invoking an SDFG (see Def. 4.2.5).

• ∆A : A × T → N>0 ×N>0 and ∆A1(a) ≤ ∆A2(a) for each a ∈ (A × T)
where ∆A(a) = (∆A1(a), ∆A2(a)) which provides an execution time interval
[BCET, WCET] for each actor representing the cycles needed to execute
the actor behavior (compute phase) on the corresponding tile. This delay
can be estimated using a static analyzer tool.

• ∆S : S × T →N>0×N>0 and ∆S1(s) ≤ ∆S2(s) for each s ∈ (S × T) where
∆S(s) = (∆S1(s), ∆S2(s)). ∆C : C × T → N>0 ×N>0 and ∆C1(c) ≤ ∆C2(c)
for each c ∈ (C × T) where ∆C(c) = (∆C1(c), ∆C2(c)) represents, in analogy
to ∆A(a), a delay interval for every scheduler and communication driver
which can be estimated same as ∆A.

• ∆D : D × (MP ∪ (I ,MS) ∪ (I , IDMA, I ,MS)) → N>0 × N>0 and
∆D1(d) ≤ ∆D2(d) for each d ∈ (D × (MP ∪ (I ,MS) ∪ (I , IDMA, I ,MS)))
where ∆D(d) = (∆D1(d), ∆D2(d)). ∆D assigns a delay interval to each com-
municating edge d ∈ D, mapped to a communication primitive, which
depends on:

1. the number and size of the tokens being transported,

2. the type of transaction (read or write),

3. ∆I : latency (depending on arbitration, bandwidth of interconnect(s)
and bridge(s) if existent) of the communication interconnect to trans-
port current transaction and

4. ∆M: latency of the target storage resource (∆MS or ∆MP)

• ∆P : A × T → N>0 ×N>0 and ∆P1(a) ≤ ∆P2(a) for each a ∈ (A × T)
where ∆P(a) = (∆P1(a), ∆P2(a)) which provides a polling delay interval of
[BCPT; WCPT] which should be waited by an actor when blocking on a
shared storage resource.

Obviously, as can be noted from above delay annotations, the predictabil-
ity of some timing metric on the defined system model will suffer from the
variability of the execution times [Kirner and Puschner, 2010] i.e the larger the
interval difference of [BCET, WCET] is, the larger is the number of “guesses”
of the execution times that should be explored which could impede the timing
analysis.

84 CHAPTER 4. SYSTEM MODEL CONSTRAINTS AND DEFINITION

After defining the possible delay annotations in our system model, we can
now abstractly represent every tile by the actors mapped to it, its scheduler, and
communication driver. Each of them with their delay annotations as defined
above. Each of the tile’s private memories and the shared storage resources can
be abstracted as a set of (private/shared) FIFO buffers. The sizes of these FIFOs
depend on the rates of the mapped edges (each edge is mapped to exactly one
FIFO buffer) and the schedule of the involved actors.

4.3 Summary

In this chapter we suggested a system configuration imposing important con-
straints on the system under analysis (SUA) (e.g. prohibited saving the in-
struction code of an application in shared memories and allowed only message
passing on interconnects). This configuration targeted a predictable system
with a reasonable state space of its extracted performance model (which will
be evaluated in Sect. 7.2). At the same time, this configuration remains realistic
enough to be implemented on current industrial architectures (as we will show
in the experiments Sect. 7.4). Moreover, we defined our system model with
all decisions which can be made in a synthesis process using an unambiguous
mathematical notation, which allowed us to describe the resulting performance
model (MoP) where all timing delays in the system are captured. A summary
of the decisions made for supported MPSoC components in our system model
can be seen in Fig. 4.6 which is based on the timing issues in Fig. 2.7 identified
and described in Chap. 2.

4.3. SUMMARY 85

M
P

So
C

s

P
E

H
o

m
o

ge
n

eo
u

s

H
et

er
o

ge
n

eo
u

s

St
o

ra
ge

R

e
so

u
rc

e

M
em

o
ry

H

ie
ra

rc
h

y

Sh
ar

ed

M
em

o
ry

D

is
tr

ib
u

te
d

M
em

o
ry

P
ri

va
te

M

em
o

ry

M
es

sa
ge

p

as
si

n
g

Te
ch

n
o

lo
gy

Ty

p
e C
ac

h
e

Sc
ra

tc
h

p
ad

M
em

o
ry

C

h
ip

C
o

m
m

u
n

ic
at

io
n

R

es
o

u
rc

e

A
rb

it
ra

ti
o

n

Ty
p

e B
u

s

C
ro

ss
b

ar

N
o

C

IP
C

Sh
ar

ed

M
em

o
ry

M
es

sa
ge

p

as
si

n
g

R
u

n
ti

m
e

/O
S

Lo
ca

l
G

lo
b

al

Sc
h

ed
u

lin
g

St
ra

te
gi

es

Sy
n

ch
ro

n
is

a
ti

o
n

p

ri
m

it
iv

es

P
o

lli
n

g

In
te

rr
u

p
t

Ta
sk

s
M

ap
p

in
g

O
ff

lin
e

A
t

R
u

n
ti

m
e

b
y

O
S

Su
p

p
o

rt
e

d

M
u

lt
ip

le
 d

e
ci

si
o

n
s

su
p

p
o

rt
e

d

Figure 4.6: MPSoC supported primitives in this thesis

Chapter 5

State-based Real-time Analysis
of SDFGs on MPSoCs

Having defined the Model of Performance (MoP) with all the necessary as-
sumptions in the previous chapter, we now need a formalism which comprises
the MPSoC components capturing their state-based functional and temporal
behavior (including scheduling, arbitration etc.) and at the same time ex-
hibiting parallelism. For this, we find the timed-automata formalism with
its related model-checking capabilities which was investigated to be useful
to model real-time systems (see Sect. 2.5.2.1), most appropriate. Since UP-
PAAL [Bengtsson and Yi, 2004] has grown to be one of the well-known, estab-
lished and well-supported tools offering a highly optimized implementation
for model-checking timed automata, we will be using UPPAAL in this work
for modeling, simulation and verification the resulting networks of timed au-
tomata.

With the help of the MoP delays and abstractions defined in the last chapter,
we will show in this chapter how to capture these delays in the form of timed-
automata (TA) templates. Furthermore, we will elaborate on the TA templates’
implementation and give a relation between every system model component
and its relative TA template which captures its delay. Next, auxiliary observers’
TA templates, which enables us with the help of UPPAAL model-checker to
check timing metrics (such as end-to-end latency or period) are presented. Fi-
nally, complexity issues are discussed and methods to improve scalability of
our state-based method are presented.

87

88 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Figure 5.1: Example of capturing MoP of SUA as a network of TAs (c.f. Sect. 5.2)

5.1 Representing Performance Model as Timed Automata

In this section, we will describe how the components of the MoP from Sect. 4.2.5
can be formalized using the timed-automata semantics. We have chosen TA
formalism since it is a well-established and intuitive formalism for modeling
RT-systems and exhibiting parallel activities occurring within such systems.
Moreover, there are also a lot of tools (such as UPPAAL1) which support the
modeling, verification and simulation of TA.

As concluded in the last chapter, our system consists of an execution plat-
form (MoA), an external event trigger (in case the application is sensitive to an
external source) and a number of SDFGs. Every SDFG consists of a number
of actors and channels. The execution platform consists of a number of tiles,
interconnects and a number of shared FIFO buffers which abstractly represent
the shared storage resources in the platform. Every tile can be abstractly rep-
resented by the actors mapped to it, its scheduler, its communication driver
software components and a number of private FIFO buffers which abstractly
represent the tile’s private memory. Each of them with their delay annotations.
The overall composition of the timed-automata templates representing the sys-
tem components can be described as follows:

1UPPAAL 4.1.19 (rev. 5648), has been used in the experiments.

5.1. REPRESENTING PERFORMANCE MODEL AS TIMED AUTOMATA 89

FinishActor!

FinishComm!

FinishSharedFIFO!

RunActor!

FinishInterconnect! R/W Interconnect!

R/W SharedFIFO!

Read/Write!

FinishPrivateFIFO! R/W PrivateFIFO!

PrivateFIFO(s)

Interconnect(s)

SDFG Scheduling

Static-order Round-Robin

Arbitration Policy

TDMA FCFS Round-Robin FP

event!
EventTrigger(s)

Scheduler(s)

Actor(s) CommDriver(s)

SharedFIFO(s)

Figure 5.2: TA templates of MoP components with all their interactions

System = ExecutionPlatform||gh=1 EventTriggerh||
q
i=1 SDFGi

SDFGi = r
j=1 Consumerj || s

k=1 Producerk || t
l=1 Transporterl

Platform= u
m=1 Tilem || v

n=1 Interconnectn || w
o=1SharedFIFOo

Tilei= Scheduleri || CommDriveri || x
p=1 PrivateFIFOp

where || denotes parallel composition of timed automata, g ≥ 0 is the num-
ber of event triggers (where every SDFG can be triggered by at most one event
trigger), q ≥ 1 is the number of SDFGs, r, s, t represent the number of actors dis-
tinguished according to their types Consumer, Producer and Transporter

(where r + s + t ≥ 1), u ≥ 1 is the number of tiles, v ≥ 1 is the number of shared
interconnects (each representing, in this work, either a DMA or a shared bus),
w ≥ 1 is the number of shared FIFO buffers, and x ≥ 0 is the number of private
FIFO buffers. The edges properties (ports’ rates, delay tokens, connections etc.
c.f. Sect. A.2) of SDFGs, the mapping decisions, and other system configuration
parameters (e.g. BCET/WCET of actors and buffer sizes) are implemented as
global variables.

Fig. 5.1 shows an example of the MoP representing an (environment non-
sensitive) SDFG application mapped to an MPSoC with all properties influenc-
ing the performance (mapping, scheduling, delays etc.). As seen every tile is
represented by a number of TAs (16 TAs in total for all tiles in the example):
one for the scheduler, one for the communication driver and one for every actor
mapped on that tile (for tile1 in the example one TA for τ1 and one TA for τ5).

90 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Furthermore, every FIFO buffer is represented by a TA (7 TAs for the example)
and finally for every interconnect one TA is needed (one TA for the example).

Fig. 5.2 depicts the interactions between the timed automata of different
components of the MoP. The scheduler starts and activates the actors on each
tile (via RunActor) according to its scheduling algorithm. If the actor is a pro-
ducer (source) and the SDFG is sensitive to an external event source, it needs
additionally to wait until it is notified by a periodic event (event) generated
from an event trigger automaton. If an actor needs to communicate with an-
other actor it issues a Read/Write signal to the communication driver which
realizes the communication with the interconnects or the private memory (de-
pending on the mapping). The interconnect arbitrates different requests from
different tiles according to a specific arbitration mechanism and transports to-
kens either directly to the specific shared FIFO buffer or to other interconnect(s)
(not depicted in Fig. 5.2). When the communication with the shared FIFO buffer
is successfully finished, a FinishSharedFIFO signal is returned to the inter-
connect which forwards this notification to the communication driver. The com-
munication driver acknowledges this event by sending a FinishComm signal
to the actor. If the target buffer is blocked, it issues a FinishSharedFIFO -

Block signal which is propagated by the interconnect to the communication
driver and back to the actor which in turn waits for some time before it re-
tries the communication (polling) (not depicted in Fig. 5.2 for clarity reasons
c.f. Sect. 5.2).

5.2 Implementation of the Timed-automata Templates

After identifying the overall composition of timed automata needed to cap-
ture the components of the MoP, we will elaborate in the following on their
templates’ implementation in UPPAAL (for background information refer to
Sect. 2.5.2.1).

5.2.1 Event Trigger Template

We introduce explicit event triggers (see Sect. 2.4) in our analysis model for
modeling periodically triggered control applications, or signal processing ap-
plications which are sensitive to periodic external events. Independent SDFGs
(if sensitive to external trigger) can be triggered through events of a correspond-
ing event trigger. Event arrival models, e.g. the periodic arrival of sensor data
are characterized by a period p, and a jitter j where p, j ∈ N≥0. The imple-
mentation of the event trigger automaton is depicted in Fig. 5.3. The states
of the event trigger alternate between Start, Wait and Releasing. After
some period, the automaton changes its state from Wait to Releasing. In this
state, it waits for some jitter delay (between [0, jitter]) and then activates

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 91

Identifier Type Comment
t clock Used for delay of period
period int (Parameter) Period of the event
jitter int (Parameter) Non-deterministic selection of a (real-valued) delay in the interval [0; jitter]
sdfg int (Parameter) Identification of the SDFG to be activated by the trigger
event broadcast channel array Global channel array used for signaling the arrival of event

Figure 5.3: Template of periodic event trigger

the corresponding SDFG by releasing an event to its corresponding source actor.
Next, the automaton waits for the same period to iterate the whole procedure
again (see ∆E in Def. 4.2.12).

In the case, the SDFGs are not sensitive to external events, no event trig-
ger automaton is instantiated, and the attribute startingActor in all actors’
implementations (see Sect. 5.2.3) is set to false.

5.2.2 SDFG Scheduler Template

Fig. 5.4 shows how the SDFG scheduler (c.f. Def. 4.2.11) is implemented
(refer to a pseudo-code in Sect. 6.5.2) as a timed-automaton template. The
states of the scheduler alternate between Start, Delay, ActivateActor

and ActorsActivation. For every tile, a scheduler automaton must be in-
stantiated which activates the actors mapped to it through an explicit signal
(runActor[id]). This activation is done according to a specific activation
strategy (static-order or round-Robin see Sect. 2.2.1.1). In case of an SO sched-
ule (where the delay is negligible), the scheduler activates the actors accord-
ing to a static ordered list given by the user, if some actor is blocked on
some input/output this will block other actors on the same tile even though
other actors of other SDFGs are ready to execute. If RR is chosen then
fairness between different SDFGs is realized by allowing to switch between
them whenever an actor instance finishes execution (finishActor) or blocks
(finishActorBlock). In the case an actor blocks, then the next actor belong-
ing to the next SDFG is activated. When switching to another SDFGs, current
activation count of the current SDFG is saved (saveActivationCount). In
addition, the SDFG scheduler also registers the finishing of every activated
actor and activates the next one according to the chosen scheduling strategy.
Every time the scheduler timed automaton is activated a delay time (see ∆S in
Def. 4.2.12).

92 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Identifier Type Comment
t clock Used for delay of computation time of the scheduler
tile int (Parameter) Identification of the tile to which this scheduler is mapped
schedStrategy int (Parameter) SDFG scheduling strategy (static-order (SO), Round-robin (RR))
SchedulerDelay array Non-deterministic selection of a (real-valued) delay in the interval ∆S

which represents delay of scheduler code when executed on tile
countActive int (local Counts the activation of current active actor
activeActor int (local) Identification of activeActor which should be activated after scheduling
saveActivationCount() method(local) Saves the current actor ID and its Activation count of the active SDFG
getReadyActor() method(local) implements the scheduling strategy see Sect. 6.5.2
runActor channel array Global channel array used for activating the ready actor
finishActor channel array Global channel array indicating that the active actor finished execution

Figure 5.4: Template of SDFG scheduler

5.2.3 Actor Templates

As already explained in previous sections, we differentiate between three
kinds of actors: Producer, Consumer and Transporter. Fig. 5.5 de-
picts the transporter actor timed-automaton template. The Transporter

actor’s template is the composition of the consumer and producer TA tem-
plates (c.f. Sect. 4.2.3 for single phases of an actor), consisting of consuming
states (ReadAllPorts, WaitReadCommDelay), computing (Compute) and
producing states (WriteAllPorts, WaitWriteCommDelay).

One specific attribute (startingActor) of the transporter template de-
cides whether this actor reacts to the event trigger (event[sdfg]) or not. If
the actor is sensitive to an event trigger and got activated by the scheduler
(runActor) then it changes its state from idle to WaitEvent state where it
waits until a trigger comes from the event trigger before going to ReadAll-

Ports state. If the actor is not sensitive to an event trigger and got acti-
vated by the scheduler then it changes directly to ReadAllPorts state. In
the ReadAllPorts state, the actor reads on all its ports according to their
rates, and for every communication issues a read signal to the communication
driver. When the communication of the last port is finished, a time from the
interval ∆A =[BCET;WCET] (see Def. 4.2.12) is passed (Compute state). Then

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 93

Identifier Type Comment
t clock Used for delay of computation time of the actor
id int (Parameter) Identification of an actor
TargetPort Nr int (Parameter) Nr. of the target ports of the transporter
InitiatorPort Nr int (Parameter) Nr. of the initiator ports of the transporter
Performance array Non-deterministic selection of a (real-valued) delay in the interval ∆A
activeTargPort int (Local) A reference to the id of the current active target port
activeInitPort int (Local) A reference to the id of the current active initiator port
PollingWait array Non-deterministic selection of a (real-valued) polling delay in the interval ∆P
startingActor bool(local) If true this actor is registered to react on event[sdfg]
resetPort() method Resets the port id to the first port of current actor
nextTargPort() method Returns the identification of next target port of an actor
nextInitPort() method Returns the identification of next initiator port of an actor
isFinished() method Returns true if actor finished reading/writing all ports
read/write[id][port][TILE] channel array Used to initiate read/write communication via the communication driver
finishComm Block[id] channel array Signaling that communication attempt failed due to blocking on FIFO buffer
finishComm Ok[id] channel array Signaling that communication attempt succeeded on FIFO buffer

Figure 5.5: Template of SDF transporter actor

the actor writes to all its ports depending on their rates, and after writing to
all ports, the actor sends a finishActor signal, indicating a single successful
execution.

The Consumer actor does not produce any tokens and consists mainly of
consuming (the tokens on all ports needed to fire the SDF actor) and computing
states (ReadAllPorts, ReadWriteCommDelay, the implementation resem-
bles the upper part of transporter actor in Fig. 5.5). A Producer actor mainly
consists of compute and produce states (WriteAllPorts, WaitWriteCom-

mDelay).

Every time, a read or write access blocks on FIFO buffers, a finishComm -

Block signal is received and the actor’s automaton changes to pollingWait

state. After some pollingWait delay (∆P see Def. 4.2.12), it goes to a Sus-

pended state where it waits to be activated by the scheduler. In the case of a
SO hierarchical schedule, this is done directly without any further time delay,

94 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Identifier Type Comment
t clock Used for track the delay of communication driver every time it runs
tile int (Parameter) Identification of tile to which the communication driver is mapped
style bool (Parameter) Type of inter-processor communication: burst-transfer or single-beat
intercon int (local) Id of the interconnect on which the communication is initiated
accessNr int (local) Counter of data (with the same width of the interconnect) to be transported
CommDriverDelay array (Global) Non-deterministic selection of a (real-valued) delay in interval ∆C
isGetSize array (Global) Flag: f alse if current access is getSize access, true if token transfer access (c.f. Sect. 6.5.3)
saveTrans method (local) Saves the current transaction properties (id, type and portId) in local variables
getMapp method (local) Returns the mapping of the current channel
getNrOfInterconAccesses method (local) Returns the number of interconnect accesses to be served for current transaction
write/readInterconnect channel array Used for initiating Read/Write communication on the interconnect
write/readPrivateFIFO channel array Used for initiating Read/Write communication on the private FIFO buffer
finishInterconnect Ok/Block[tile] channel array Signaling that communication attempt succeeded/blocked on shared FIFO buffer
finishPrivateFIFO Ok/Block[tile] channel array Signaling that communication attempt succeeded on private FIFO buffer

Figure 5.6: Template of communication driver

but in case of RR schedule, the actor would stay suspended while other actors
from other SDFGs get the chance to run, before being again activated by the
scheduler to retry the communication attempt by issuing a read/write signal.

5.2.4 Communication Driver Template

Fig. 5.6 shows the implementation of the communication driver template (c.f.
Sect. 6.5.3 for implementation issues of communication drivers). After getting
a read/write request from the corresponding actor, the template saves current
transaction parameters (saveTrans) and switches to a Delay state where time
(see ∆C in Def. 4.2.12) is delayed modeling the upper/lower bounds of driver
execution. The communication driver is responsible of realizing the communi-
cation either with the private FIFO buffer or with the shared FIFO buffer (via
interconnect(s)). After the delay phase, the driver issues a read/write chan-
nel on the communication resource depending on mapping parameters. After
waiting for the communication (WaitComm) to finish, the driver either forwards
the result (finishInterconnect Ok or finishInterconnectBlock) back

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 95

to the actor (in case all accesses are served i.e. accessNr==0) or it contin-
ues accessing the shared FIFO buffer if there are still accesses to be served
(accessNr>0).

Depending on the chosen inter-processor communication style, the commu-
nication driver either issues one burst transfer or in case of single-beat transfer
every read/write transaction is partitioned (with the help of getNrOfInter-
conAccesses() method which is executed every time a new transaction is
issued within the saveTrans() method) to a number (accessNr) of atomic
read/write transactions depending on number of tokens to be transported and
the interconnect width.

For a burst-transfer, the variable accessNr is fixed to merely two accesses:

accessNrburst = 2

where the first access represents a getSize access as shown in Fig. 6.17 in
which the size attribute of the FIFO buffer is first read and the second ac-
cess represents the uninterruptable burst transfer where the actual tokens are
transported.

For the single-beat transfer, we differentiate between write accesses, where
the accessNr can be calculated according to the following equation:

accessNrsingleW = 1 +
⌈

Rate[activeInitPort] · TokenSize[activeInitPort]
Width[intercon]

⌉
and read accesses:

accessNrsingleR = 1 +
⌈

Rate[activeTargPort] · TokenSize[activeTargPort]
Width[intercon]

⌉
In both cases, one access represents the getSize access shown in Fig. 6.17 is
added to the equation. The second part of the equations above represents the
number of single-beat accesses which depend on the rate of the current active
port, the size (in bits) of tokens being transported and the interconnect width.

5.2.5 Shared Interconnect Templates

Fig. 5.7 shows two similar timed-automata templates’ implementation of the
shared interconnect, both having the same interfaces with the difference
that the first template (Fig. 5.7 top) supports round-robin, FCFS, and fixed-
priority arbitration policies (see Sect. 2.3.3.1) and the other one (Fig. 5.7 bot-
tom) supports a TDMA arbitration. The timed automaton in Fig. 5.7 (top)
alternates between Start, RecvReq, ArbitrationPhase, Identify-

Access, IssueBridgeAccess or IssueMemAccess, WaitMemAccess or

WaitInterconAccess, InterconnectTransferDelay or CheckDelay,

96 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Identifier Type Comment
t clock (local) Used to track the delay of every transaction transported
id int (Parameter) Identification of the interconnect
arb int (Parameter) Arbitration protocol of the interconnect
style bool (Parameter) Type of inter-processor communication: burst-transfer or single-beat
bandwidth int (Parameter) Bandwidth of the interconnect
arbRes int (local) Arbitration result: Id of the tile which wins the arbitration
isBridgeAccess bool (local) True: in case of bridge access to other interconnect,

False: in case of an access to other interconnect via a bridge
arbCycle array (global Non-deterministic selection of a (real-valued) delay in interval ∆arb
DelayOfTrans array (local) Non-deterministic selection of a (real-valued) delay in interval [bcat; wcat]

when reading/writing a number of tokens from/to shared FIFO
Check delay array (global) Non-deterministic selection of a (real-valued) delay in interval [bcat; wcat]

when reading size value of shared FIFO buffer
WriteInterconDelay array (global) Non-deterministic selection of a (real-valued) delay in interval [bcat; wcat]

time needed to write a token of bus width size on the interconnect
ReadInterconDelay array (global) Non-deterministic selection of a (real-valued) delay in interval [bcat; wcat]

time needed to read a token of bus width size on the interconnect
emptyBuffer method (local) Returns true if the transaction buffer is empty
write/readInterconnect channel array Used for initiating read/write communication on another interconnect
write/readSharedFIFO channel array Used for initiating read/write communication on the shared FIFO buffer
finishInterconnect Ok/Block[tile] channel array Signaling if communication attempt via other interconnect succeeded or not
finishSharedFIFO Ok/Block[tile] channel array Signaling if communication attempt succeeded on shared FIFO buffer or not

TDMA Specific
ts clock (local) Used to track the delay of slot in case of TDMA arbitration
Slot size array (global) Maximal slot size length which can be set for every interconnect
isTileSlot method (local) Returns true if transaction in buffer and current slot has same id as the tile id
setReqServed method (local) Marks the request served after finishing slot time
updateSlot method (local) Updates the slot Id to the next one after finish serving the current one
PufferTime method (local) Returns the rest time of the slot after finish serving the current transaction

Figure 5.7: Top: TA template of shared interconnect with FCFS/RR/FP arbitra-
tion, Bottom: with TDMA arbitration

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 97

TransOK or FIFOBlocked states (see timing models of the interconnect in
Sect. 2.3.3.2). In RecvReq the interconnect waits for requests either from dif-
ferent tiles or from other interconnects, and when received these transactions
are saved (saveTrans()) to a local buffer. For every arbitration protocol
there are different access methods to that local buffer. For e.g. in case of
Fixed-Priority or Round-Robin arbitration, the transaction is inserted to an ar-
ray index equivalent to that of the tile (tileid), while in case of FCFS the
transactions are enqueued/dequeued according to a typical FIFO manner.
Requests are received as long as the arbitration cycle (with a delay interval
∆arb = [arbCycle[id][0], arbCycle[id][1]]) does not expire. After that, an arbi-
tration phase (arbitrate()) is done according to the configured arbitration
protocol to choose the transaction with the highest priority. Next, depending
on the kind of access (isBridgeAccess: if False then a direct access to shared
FIFO is issued else an indirect access of the shared FIFO via other interconnects
is realized), a read or write transaction is issued (in IssueInterconAccess

or IssueMemAccess states) either to another interconnect (through a bridge2)
which forwards it to the corresponding shared FIFO buffer or directly to the
shared FIFO buffer belonging to a storage resource which is directly connected
to the current interconnect. After waiting (WaitInterconAccessDelay or
WaitMemAccessDelay state) till the access is finished and a correspond-
ing success signal is received (finishInterconnect Ok), a delay modeling
the transfer of the arbitration-winning transaction in InterconnectTrans-

ferDelay state is passed. It is important to note, that in this case, the
above delay either represents the time needed to get the size of the buffers
(which is the case if getSize flag is false) or the time needed to trans-
port the tokens (when getSize flag is true as described in Sect. 5.2.4). If
the access to the FIFO buffer was not successful (finishInterconnect -

Block) a delay is passed which models only reading the variable size of
the FIFO buffer. The result is then forwarded (in TransOK, FIFOBlocked

states) either directly back to the communication driver of the requesting
tile or indirectly through the requesting interconnect(s). In states where
time elapses (RecvReq, ArbitrationPhase, WaitMemAccess/Wait-

InterconAccess, InterconnectTransferDelay/CheckDelay), read-
/write requests (W?© or R?©) are registered and saved to local buffers.

The timed automaton in Fig. 5.7 (bottom) is very similar to the above
one except for the arbitration phase (states: NewSlot, WaitSlot, Check-

Req), which supports a non-preemptive slot based TDMA arbitration (see
Sect. 2.3.3.1). In this arbitration, each tile is mapped to a slot (having the same
id of the tile) of a fixed length where it is allowed to perform inter-processor

2It is important to note here that the delay bounds of the bridge component is included in
the delay of the target interconnect.

98 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

communication. In order to insure that every transaction on the interconnect
finishes before the slot time expires (since it is non-preemptive), the length of
all slots is set to the transaction communication time (including arbitration cy-
cle time) with the maximal delay which can be requested on this interconnect
i.e. if tmaxn is the maximal communication time of actor n needed to trans-
port a number of tokens among all its ports (if necessary traversing multiple
interconnects) to a target shared storage resource then:

Slot sizeI = max{tmax1 , . . . , tmaxn}

where I ∈ I and n ⊆ A is the set of all actors which can access the interconnect
I. As the automaton starts, a new slot (in NewSlot) is initiated and the clock
ts measures the elapsed time since the begin of this slot. Then it first waits for
a read or write request, if received it checks whether the currently requesting
tile is mapped to the current slot, if this is the case then it switches to Iden-

tifyAccess state where it proceeds just as the automaton described above.
The function PufferTime() helps in cases where for e.g. the same tile after
being served once in its slot, it requests the interconnect again or in case the
slot time was already delayed for some time before the request comes from the
tile mapped to it. In above cases, PufferTime() function can calculate if their
is enough rest time to serve the current request or not.

Every time a read/write request is registered, the method saveTrans() is
called where the transaction is saved, and an internal updateDelay() func-
tion is called. This function calculates the delay interval for the current request-
ing tile needed to transport the requested number of tokens on this intercon-
nect. Depending on what type of transfer, we differentiate between three kinds
of delays:

1. The case of only reading the size (c.f. Sect. 6.5.3) of the buffer (if it is still
not read indicated by a false isGetSize flag or if in state CheckDelay):

DelayO f Transt0 = Check Delayi0

DelayO f Transt1 = Check Delayi1

2. In case of single-beat transfer this delay is calculated according to the fol-
lowing formula for a write access:

DelayO f Transt0 = WriteInterconDelayi0

DelayO f Transt1 = WriteInterconDelayi1

and in case of a read access:

DelayO f Transt0 = ReadInterconDelayi0

DelayO f Transt1 = ReadInterconDelayi1

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 99

3. In case of a burst-transfer the delay is calculated according to the following
formula for a write access:

DelayO f Transt0 = accessNrW ×WriteInterconDelayi0

DelayO f Transt1 = accessNrW ×WriteInterconDelayi1

and in case of a read access:

DelayO f Transt0 = accessNrR × ReadInterconDelayi0

DelayO f Transt1 = accessNrR × ReadInterconDelayi1

where t ∈ T , i ∈ I , accessNrR and accessNrW as defined in Sect. 5.2.4
are the number of accesses needed to transport tokens of specific sizes on an
interconnect of specific width, ReadInterconDelayi0, WriteInterconDelayi0 are
best-case time delays for the interconnect to make a read or write access of
data with size equal to that of the interconnect width and ReadInterconDelayi1,
WriteInterconDelayi1 are the worst-case time delays for the interconnect to
make a read or write access of data with size equal to that of the intercon-
nect width. According to Def. 4.2.12 the delay interval ∆I of the interconnect
can now be calculated:

∆I = ∆arb + ∆Trans

where ∆Trans = [DelayO f Transt0, DelayO f Transt1] and as defined above ∆arb =
[arbCycle[id][0], arbCycle[id][1]].

5.2.6 Templates of Shared and Private FIFO Buffers

The FIFO buffer timed-automaton template is straight forward and models
a queue with a blocking synchronization behavior (see Fig. 5.8). The timed
automaton simply models a delay depending on the transaction type (Read-
/Write) and the number of tokens to be consumed or produced of every port.
If there are not enough tokens available (isEmpty()) by a read transaction
or no enough space to store tokens (isFull()) by a write transaction, the
FIFO buffer blocks and sends a corresponding signal (finishSharedFIFO -

Block) back to the interconnect. Now if this is not the case and if the current
access is not a GetSize access (isGetSize[tile]==1), the tokens needed
are enqueued or dequeued (enqueueTokens(), dequeueTokens()) de-
pending on the transaction (read or write). Yet, if it is a GetSize access
(isGetSize[tile]==0), then the flag isGetSize is set to true and no to-
kens are enqueued or dequeued (c.f. Fig. 5.6).

In case of a burst-transfer inter-processor communication style, the number
of tokens (depending on the port’s rate of the current communicating actor) is

100 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

isEmpty()

isFull()

t>=SharedFIFODelay[id][0]

!isFull()

isGetSize[tileId]&&
isWrite&&t>=SharedFIFODelay[id][0]

!isEmpty()

tile:id_tile

tile:id_tile

isGetSize[tileId]&&
!isWrite&&t>=SharedFIFODelay[id][0]

t>=SharedFIFODelay[id][0]

tile:id_tile

!isGetSize[tileId] &&
t>=SharedFIFODelay[id][0]

tile:id_tile

finishSharedFIFO_Block[tileId]!

finishSharedFIFO_Block[tileId]!

finishSharedFIFO_Ok[tileId]!

readSharedFIFO[tile][targetPort]?

writeSharedFIFO[tile][initiatorPort]?

writeSharedFIFO[tile][initiatorPort]?

readSharedFIFO[tile][targetPort]?

saveTrans(tile, initiatorPort, 1), t=0

saveTrans(tile, targetPort, 0),
t=0

enqueueTokens()

saveTrans(tile, targetPort, 0), t=0

isGetSize[tileId]=1

saveTrans(tile, initiatorPort, 1),
t=0

dequeueTokens()

t<=SharedFIFODelay[id][1]

t<=SharedFIFODelay[id][1]

Idle

t<=SharedFIFODelay[id][1]

Start

EmptyBlocking

AccessDelay

FullBlocking

Identifier Type Comment
t clock (local) Used for delay of memory access time of transaction
id int (Parameter) Identification of the FIFO buffer
depth int (Parameter) Depth of FIFO buffer which can be obtained from SDFG schedule
style bool (Parameter) Type of inter-processor communication: burst-transfer or single-beat
isWrite bool (local) Flag set to true when transaction is a write and to false if it is a read one
SharedFIFODelay array (local) Non-deterministic selection of a (real-valued) delay in [bcat; wcat] for access delay
isGetSize array (Global) Flag: f alse if current access is getSize access, true if token transfer access
isFull method (local) Depending on style returns true if buffer is full
isEmpty method (local) Depending on style returns true if buffer is empty
dequeueTokens method (local) Depending on style dequeues the number of tokens from buffer
enqueueTokens method (local) Depending on style enqueues the number of tokens to buffer

Figure 5.8: Template of (private or shared) FIFO buffer

dequeued/enqueued completely in one access (only in case the buffer is not full
or not empty), while in the case of single-beat transfer only one token (of size
equal to interconnect width) is dequeued/enqueued at every access. If success-
ful, a success signal is sent back to the interconnect (finishSharedFIFO -

Ok). The SharedFIFODelay (see ∆Ms in Def. 4.2.12) can be calculated similar
to the calculation of DelayO f Trans (see formula presented in 5.2.5) for both
single-beat and burst-transfer styles, only Write/ReadInterconDelay should be
replaced with the write/read latency of the shared storage resource.

5.2.7 Extensions for DMA Burst Transfer

In the above templates, it is assumed that the interconnect has built-in capabili-
ties supporting burst transfers without extra synchronization primitives. In the
case where a DMA (see Sect. 6.5.3) is used as an interconnect to realize a burst
transfer, some minor changes should be applied to the communication driver
and interconnect TA templates, which will be described in the following.

As we will show in Sect. 6.5.3, in case of DMA for every read/write access
of any actor to the shared storage resource two main accesses are launched
(see Fig. 6.19): first one for making a synchronization of the shared buffer with
the private one (syncPrivate()) and another access to do the opposite by
synchronizing the shared buffer with the private one (syncShared()).

5.2. IMPLEMENTATION OF THE TIMED-AUTOMATA TEMPLATES 101

If we now take a sharp look at the implementation of burst transfer in TA
template of communication driver in Fig. 5.6, we can see that these semantics
are already supported. By a burst transfer, for every read/write transaction of
an actor two accesses are issued: a synchronizing getSize access where the
shared FIFO buffer size is read (without enqueuing/dequeuing tokens) and a
tokens’ transfer access (where the actual enqueue/dequeue action takes place).
If we now consider the first access as the syncPrivate() and the second one
as the syncShared(), only following minor changes concerning the timings
of communication driver and interconnect must be applied:

1. For the communication driver timing we differentiate two cases:
In the case of a syncPrivate() access (signalized through a false is-

ReadSize flag), ∆C can be calculated as follows:

∆C = ∆initDma + ∆con f igDma

otherwise if a syncShared() access is taking place (signalized through
a true isReadSize flag), then :

∆C = ∆initDma + ∆con f igDma + ∆CanGet/CanPut + ∆dequeue/enqueue

where ∆con f igDma is the time interval needed to configure the DMA
through the configuration interconnect Icon f ig, ∆initDma is the local initial-
ization phase of the driver software code with no accesses to the intercon-
nect, ∆CanGet/CanPut, ∆dequeue/enqueue are the BCET/WCET of local methods
executed on the local memory (as seen in Fig. 6.19).

2. The interconnect delay resembles that of the generic interconnect TA
template with the difference that the specific arbitration of the DMA
should be taken into consideration:

∆I = ∆arbDma + ∆DelayO f Trans

where ∆DelayO f Trans is the time needed to transport the whole buffer using
the transfer interconnect Itrans and ∆arbDma is the time delay of the DMA
needed to perform internal arbitration.

5.2.8 Observer TA Templates for Real-time Analysis

Timing properties (see Sect. 2.2.1.2) of timed SDFGs (SDFGs after mapping,
binding and scheduling to specific MPSoC) which will be evaluated in this
work (see Chap. 7), are defined in the following (based on [Lin et al., 2011]):

102 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

Figure 5.9: Observer TA template of the period of an SDFG

Figure 5.10: Observer TA template of end-to-end latency of an SDFG

Definition 5.2.1. (Iteration) Given a timed SDFG with a repetition vector γ, an
iteration of an SDFG is defined as the minimum non-zero execution (i.e. at
least one actor has executed) such that the initial state of the graph is obtained
i.e. according now to Def. 4.2.4 an iteration is a set of actor firings such that for
each a ∈ SDFG, the set contains the γ(a) firings of a.

Definition 5.2.2. (Period) The period of an SDFG is defined as the time an SDFG
takes to complete one iteration.

Definition 5.2.3. (End-to-end latency) The end-to-end latency is defined as the
time starting from activating the first instance of the source actor (upon receiv-
ing the first event e.g. reading sensor values), executing the SDFG application
till the last instance of the sink actor is finished (e.g. updating actuators).

If an SDFG is sensitive to a periodic event trigger, then its period is equal to
that of its event trigger. This is why in this case the end-to-end latency of the
SDFG should always be less than or equal the period of the event trigger.

To obtain the period of an SDFG which is not sensitive to an event trigger,
we have implemented an observer automaton Fig. 5.9 which traces the finishing
time of the last instance of the sink actor of that SDFG (see Fig. 2.4). For this,
the id of the sink actor and its Activation number (activation number in
repetition vector see Def. 4.2.4) are given as parameters for this template.

5.3. REAL-TIME ANALYSIS VIA MODEL-CHECKING 103

Another important metric which will be also evaluated in the experiments is
the end-to-end latency. Fig. 5.10 depicts the timed-automaton template which
allows us to trace the end-to-end latency for an SDFG sensitive to an event
trigger from the time the event triggers the SDFG till the finishing of the sink
actor’s last instance. If an SDFG is not sensitive to an external event, the end-
to-end latency observer TA traces now the time from the first activation of the
source actor in an SDFG (instead of waiting for event[sdfg], it waits for
runActor[id1] where id1 is the id of the source actor) till the finishing of
the sink actor’s last instance. For this, the id1 of the source actor (first actor to
be executed in the SDFG, from which the SDFG id can be obtained), the id2

of sink actor and the activation number (Activation) of the sink actor are
needed as parameters for this template.

5.3 Real-time Analysis via Model-checking

As already described in Sect. 2.5.2.1, UPPAAL can verify whether a property
holds for a given network of timed automata or not. The verification properties
can be formalized in a subset of TCTL (Timed Computation Tree Logic). By
checking A [] not deadlock, we can verify whether or not our system is
deadlock free. We could also take use of the model-checker operator sup which
searches for the supremum of a variable or a clock value in the system. Likewise,
we could find the infimum by utilizing the inf operator.

To obtain the worst/best-case period of an SDFG, we can now utilize the
sup/inf operator of UPPAAL model-checker to search for the maximum/min-
imum delay between two consecutive finishing instances of the sink actor which
coincides with the (worst/best case) period of the graph as implemented in
Fig. 5.9. In addition, we can utilize the same operators to search for the maxi-
mum/minimum delay from the time the first event comes till the time the last
instance of last actors is finished which coincides with the end-to-end latency as
implemented in Fig. 5.10. In order to obtain the Worst-case Period (WCP) and
end-to-end latency of an SDFG respectively, the following two TCTL formula
should be checked through UPPAAL:

sup{obs.Finish} : obs.WCP

sup{obs.Finish} : obs.end2end

where obs represents an object of the corresponding observer template.

Other properties which can be checked by the model-checker are presented
and evaluated in Sect. 7.1.

104 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

5.4 Methods for Improving Scalability

In Sect. 2.5.2.1 we shortly identified the basic elements of TA which can expo-
nentially blow the state space of a network of timed automata implemented in
UPPAAL. In general, the global state space of a network of TA (see Sect. 2.5.2.1)
grows exponentially with the number of concurrent components, number of
global and local variables needed for the TA and number of synchronization
channels. Another major aspect which could lead to a huge state space, is
the level of non-determinism represented in the considered TA templates (for
e.g. the larger the interval between the expected [BCET,WCET] the larger the
non-determinism).

If we now try to identify these parameters for our timed-automata net-
work taking into consideration our system model specific implementation (see
Sect. 5.2), we find out that the total number of TAs (TAtotal) needed to model
the System under analysis (SUA) can be calculated as follows:

TAtotal = (2× T) + A + C + I + E + 1 (5.1)

where T is the number of tiles, since for every tile we have one scheduler
and one communication driver, A is the total number of actors running in the
SUA, C is the sum of channels of all SDFGs in the SUA where for every channel
one TA is needed for representing the corresponding FIFO buffer, I the number
of interconnects, E is the number of event trigger TAs (if needed) and since an
observer automaton would be needed to validate the real-time metric, one TA
is added to the equation above. The total number of clocks would be calculated
the same as above equation, since we have by every TA one clock (except in
case a TDMA arbitration in the interconnect, where two clocks are needed).

On the other hand, the total number of UPPAAL synchronization channels
needed to model the SUA can be calculated as follows:

Chtotal = ChrunActor + Ch f inishActor Ok + Ch f inishActor Block + Ch f inishComm Ok

+ Ch f inishComm Block + Ch f inishPrivateFIFO Ok + Ch f inishPrivateFIFO Block

+ Ch f inishSharedFIFO Ok + Ch f inishSharedFIFO Block + Chread + Chwrite

+ ChreadPrivateFIFO + ChwritePrivateFIFO + ChreadSharedFIFO
+ ChwriteSharedFIFO + ChreadInterconnect + ChwriteInterconnect
+ Ch f inishInterconnect Ok + Ch f inishInterconnect Block + Chevent

= (Ptarget + Pintiator)(2A + (A × T) + (T × I)) + 2(T × I) + 7A + 2T + E
(5.2)

where Ptarget, Pintiator are the total number of target and initiator ports re-
spectively and I is the number of interconnects. From the above equation, we
can notice that the number of channels highly depends on the number of ports,
actors and tiles. Take as an example the case where we have only 3 actors
with 4 ports and 2 tiles, then the total number of channels would grow to be

5.4. METHODS FOR IMPROVING SCALABILITY 105

85 (assuming one interconnect, and no event triggers) according to the above
equation. If the number of ports is now changed to 8 then we will have a to-
tal number of 141 channels. The reason behind this large number induced by
such a small SUA, is that we are modeling the actors at the port level, which
requests synchronization channels at the port level, this in turn requires to ini-
tialize multi-dimensional channel arrays in UPPAAL (for e.g. 3-dimensional
channel arrays in the case of Chread/write or Chread/writeInterconnect)3.

In addition, the level of non-determinism in our timed-automata network
implementation strongly depends on the difference between the upper and
lower bound of delay intervals in these TAs. Also the sequence in which the
tiles (represented by scheduler automaton) start execution is non-deterministic.

In the scope of this work, we applied some methods/optimizations to our
approach targeting state-space improvement of our templates’ implementation.
In the following section, we will describe the application of these methods.

5.4.1 Optimizing the Implemented Timed-automata Templates

The timed-automata templates in Sect. 5.1 were the first-shot intuitive imple-
mentation capturing the MoP of our considered MPSoC (which were presented
and evaluated in [Fakih et al., 2013a]). But if we take a sharp look at these
templates following optimizations/abstractions could be made. These opti-
mizations were applied, when possible, in the evaluation chapter (see Chap. 7)
and lead to major improvements in terms of state space.

Abstracting Shared/Private FIFO Buffers We have described the TA template
of the shared FIFO buffer in Sect. 5.2.6. But according to our system model def-
initions, no parallel accesses can be issued on the shared FIFO buffers, since the
accesses are sequentialized in the interconnect, where the one with the highest
priority wins the earliest access. Taking this into consideration, we are able
to abstract (not modeling explicitly) the shared FIFO buffers and model them
as local queues (with their specific methods) within the interconnect, adding
their timing delays to that of the interconnect without distorting the timing
semantics.

Similarly to the above abstraction, the private FIFO buffers could also be
abstracted. In order to abstract private FIFO buffers, the idea here is to include
the time needed to access these FIFO buffers (since these are mapped to local
private memories) in the communication driver’s BCET/WCET access calcula-
tion and model them as local queues (with their specific methods) within the
communication driver TA template of the corresponding tile.

3Equation 5.2 assumes that UPPAAL doesn’t perform further optimization on the initialized
multi-dimensional channel arrays.

106 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

After applying above abstractions, state-space savings in terms of synchro-
nization channels (since these would be implemented as local methods either
in the interconnect or in the communication driver templates) and Eq. 5.2 be-
comes:

Chtotal = ChrunActor + Ch f inishActor Ok + Ch f inishActor Block + Ch f inishComm Ok

+ Ch f inishComm Block + Chread + Chwrite + ChreadInterconnect + ChwriteInterconnect

+ Ch f inishInterconnect Ok + Ch f inishInterconnect Block + Chevent

= (Ptarget + Pintiator)((A × T) + (T × I)) + 2(T × I) + 5A + E
(5.3)

which leads in the example described above (3 actors, 4 ports, and 2 tiles) to
a large reduction of total number of channels of 55 (85 in Eq. 5.2) and 87 (141
Eq. 5.2) channels when increasing the number of ports to 8. In addition, the
number of timed automata in Eq. 5.1 becomes independent of the number of
SDFGs’ FIFO buffers:

TAtotal = (2× T) + A + I + E + 1 (5.4)

and we are able to spare one TA and one clock for every FIFO buffer, which
significantly improves the scalability of our method.

Merging Scheduler TA Template and Actors’ TA Templates For the case in
which we have a static-order SDFG scheduler, additional optimizations can be
made. Here, the order of the actors defines the execution priority and no extra
scheduling mechanism is needed (for implementation details please refer to
[Schaumont, 2013]). Taking this into consideration, we are now able to spare
the scheduler timed automaton with its primitives for every tile. Additionally,
the following optimization can also be made. Let so be an ordered list of actors
(see Def. 4.2.10), possibly including actors belonging to many SDFGs, which
are executed in a fixed-static order on a specific tile. Now instead of having
the cost of one timed automaton for modeling every actor, we utilize only one
automaton called SOonTile (depicted in Fig. 5.11) to capture the behavior of
all actors (belonging to the sorted list so) mapped to a tile, and this is done
for every tile in the SUA. Obviously, the above optimization leads to significant
savings in terms of instantiated number of TAs, clocks and synchronization
channels, where Eq. 5.4 becomes:

TAtotal = T + I + E + 1 (5.5)

which leads in the example described above (3 actors, 4 ports, and 2 tiles) to
a large reduction of total number of TA of 4 (9 in Eq. 5.4), allowing to analyze
greater number of actors without drastically increasing the state space. Notice
that the number of channels (Eq. 5.3) cannot be reduced since the scheduler

5.4. METHODS FOR IMPROVING SCALABILITY 107

!isTransporter()

!isProducer()

t >= Performance[currActor][0]

!isFinished()

isProducer()

t >= Performance[currActor][0]

!isFinished()

event[sdfg]?

t>=PollingWait[id][0]

isFinished()

t>=PollingWait[id][0]

runActor[currActor]!

FinishWriteAllPorts

t <= Performance[currActor][1]

t <= Performance[currActor][1]

PollingWaitWrite

PollingWaitRead

isTransporter()

!startingActor&&currActor>=0

currActor<0

t<=PollingWait[id][1]

t<=PollingWait[id][1]

startingActor&&currActor>=0

isFinished()

ReadAllPorts

finishActor[currActor]!

finishComm_Ok[currActor]?

finishActor[currActor]!

read[currActor][activeTargPort][tile]!

write[currActor][activeInitPort][tile]!finishComm_Ok[currActor]?

finishComm_Block[id]?

finishComm_Block[id]?

t=0

nextTargPort()

t=0

t=0

t=0

t=0

currActor=getReadyActor()

t=0

nextInitPort()

t=0

t=0

WaitReadCommDelay

ComputeWriteAllPortsWaitWriteCommDelay

FinishCons ComputeCons FinishReadAllPorts

ActorType

WaitEvent

FinishProd

Start GetActor CheckActor

Figure 5.11: Optimization of TA templates in case of SO SDFG scheduler

channels ChrunActor and Ch f inishActor are still needed by the observers templates
(see Sect. 5.3). Fig. 5.11 shows the optimized TA template of SOonTile. The TA
starts by choosing the first actor in the ordered list (in state GetActor) and
then it checks if that actor is sensitive to an event trigger (in state CheckActor
depending on the flag startingActor), where it either proceeds or it waits
for an event (in state WaitEvent). Now depending on the type of the actor (if
a Producer or not in state ActorType), the TA either begins with consuming
tokens on its ports (in case of Consumer or Transporter actor see above part of
Fig. 5.11) or delays ∆A modeling the computation time of the actor. In the latter
case and after producing tokens on all its ports, it finishes (similar to Transporter
TA implementation in Fig. 5.5). In the first case, after finishing consuming on all
ports (in state FinishCons), the actor either finishes (if it is a Consumer actor)
or it continues (if it is a Transporter actor) delaying ∆A and after that producing
tokens on its ports to reach at last the finish state (in the state FinishProd).

5.4.2 Applying Clustering Method

In Sect. 2.2.1.4, we have described a clustering method for SDFGs known from
literature [Bhattacharyya et al., 1997]. This method can obviously improve the
scalability of our RT analysis method when analyzing SDFGs with large num-
ber of actors. With the help of clustering, the number of actors in an SDFG
can be reduced leading to the reduction in the number of TAs which should
be explored by the model-checker. In the following, we will describe how this
method can be applied taking into consideration our system model properties.

108 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

SDFG Scheduler

SDFG2

 RR

SDFG1

2

5

Inter-com-
munication

Part to be
Clustered

6

8

2

1

1
C

G

SDFG Scheduler

SDFG2

 RR

SDFG1

Ʊ

1 1
C H

Ʊ

7 16

Actor on
other tile

A

B

D

E

F

Figure 5.12: Example of clustering timing violation by RR SDFG scheduler

The clustering method as already stated in Sect. 2.2.1.4, assumes connected
and consistent SDFGs. Furthermore, the part of the SDFG to be clustered
should be acyclic. In order to apply this clustering method on the SDFG(s)
in our system model, the following additional conditions should be satisfied:

D1 A static-order SDFG scheduler is assumed.

D2 The mapping of the SDFG(s) actors to the MPSoC must be known since
only actors mapped to the same tile and which do not engage in an inter-
processor communication can be clustered.

It is obvious that the clustering method can be applied only in the case
where a static-order SDFG scheduler is used (D1). For the case, e.g. the round-
robin SDFG scheduler is used, the timing semantics could be violated when
applying the clustering method in its general form as shown in the example in
Fig. 5.12. Here, we assume that both homogeneous SDFGs (SDFG1 and SDFG2)
are mapped to the same tile (except the gray shadowed actors are mapped to
another tiles) and are scheduled according to RR scheduling (see Sect. 4.2.4.2)
with SDFG1 being executed before SDFG2. In addition, we assume that the
BCET and the WCET are equivalent for every actor. This execution time is
annotated to every single actor as seen in Fig. 5.12. The resulting SDFGs after
applying the clustering method are shown in Fig. 5.12 (to the right). Notice that

5.4. METHODS FOR IMPROVING SCALABILITY 109

in the unclustered (to the right of Fig. 5.12) SDFG1 (by RR SDFG scheduler)
actor C comes to execution after 21 time units (under the assumption that no
blocking on the FIFO buffers occurs) while in the clustered version it will come
to execution after 23 time units. This fact obviously proves that the timing
semantics can be violated when applying the clustering method, in its general
form, to SDFGs scheduled according to Round-Robin.

Mapping information (see D2) are needed, since only actors mapped to
same tile and which do not engage in an inter-processor communication can be
clustered. The reason behind this is that actors of an SDFG which are engaged
in an inter-processor communication, when clustered show different timing
semantics (because of possible changes in the rates of the ports in the resulting
hierarchical actor). This in turn, could lead to a distorted access pattern on the
shared interconnect which could lead to false real-time results.

If above conditions hold, clustering can now be applied. After clustering,
one issue remains, which is how to calculate the WCET/BCET of the resulting
hierarchical actor Ω. If n denotes the number of actors in Z , γ(a) is the repeti-
tion vector value of actor a (for notations’ details refer to Sect. 2.2.1.4) then the
new wcet of the hierarchical actor Ω can be calculated as follows:

γ(Ω)× wcet(Ω) =
n

∑
i=1

(γ(ai)× wcet(ai))

⇔ wcet(Ω) =

n
∑
i=1

(γ(ai)× wcet(ai))

γ(Ω)

similarly the bcet of the hierarchical actor Ω can be calculated as follows:

bcet(Ω) =

n
∑
i=1

(γ(ai)× bcet(ai))

γ(Ω)

It is important to note that beyond the estimated WCET/BCET of single
actors when being executed on a target processor, the clustering technique is
fully independent from the target architecture of the MPSoC.

5.4.3 Temporal and Spatial Segregation for a Composable and Scal-
able RT Analysis

Another way to improve the scalability of our approach is to enable compos-
ability by extending the MPSoC with extra hardware components (timers or
hypervisors [Aeronautical Radio, 2003]) which guarantee temporal and spatial
isolation of clusters (where a cluster is defined as a group (or parts) of SDFGs
see Fig. 5.14) mapped to an MPSoC. This allows us to verify these clusters in
isolation and afterwards use the composability property to analyze these clus-
ters when they are integrated on one MPSoC (see Fig. 5.15). We will show

110 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

SDFG Scheduler

SDFG

SDFG

SDFG

Cluster 1 Cluster 2

TDMA Clusters‘ Scheduler

SO, RR

SO

Actors

…

Figure 5.13: Scheduling hierarchy extended with TDMA clusters’ scheduler

(in Sect. 7.2.5) that with the help of this extension, we are able to improve the
number of actors, being analyzable by our approach, on an MPSoC with a fixed
number of tiles.

In the following, we assume that the spatial isolation is already realized (e.g.
either through virtualization with the help of a hypervisor [Fakih et al., 2013b]
or through static memory allocation) and will describe how such a composable
RT analysis can be made based on a TDMA clusters’ scheduler and with the
help of our state-based RT analysis method. Fig. 5.13 shows the scheduling
hierarchy (see Sect. 4.2.4.2) extended with a non-preemptive TDMA clusters’
scheduler in the top hierarchy level. This TDMA scheduler allows clusters of
actors (still respecting the lower two hierarchy scheduling levels: SO within the
SDFG and SO or RR among SDFGs) to be executed in only specific time slots
and switches to next slot as soon as the previous expires, and is defined as
follows:

Definition 5.4.1. (TDMA Clusters’ Scheduler) A TDMA scheduler is defined as
a tuple S = (F, SL) where F represents the functionality (code) of the scheduler
(c.f. pseudo-code in Sect. 6.5.2 which switches between different slots on a tile,
SL is a finite set of slots Sl = (d, Cl) each having a duration d after which the
slot expires and a cluster Cl ⊆ SO of different SDFG schedules to be executed
in this slot. Let T be the number of tiles in the system then every tile t ∈ T has

5.4. METHODS FOR IMPROVING SCALABILITY 111

…
s s

slot1 slot2
s s

Tile 2

PE

D I

Tile 1

PE

D I

Bus

SDFG1 SDFG3 SDFG2 SDFG4

Memory

t
TDMA

Cluster1

Cluster2

slot1 slot2
s

Timer
Channel 1

Channel 2

>=1

IRQ1 IRQ2

IRQ_T1 IRQ_T2

IRQ1 IRQ2 IRQ1 IRQ2 IRQ1 IRQ2 IRQ1 IRQ2 IRQ1

Figure 5.14: Example of TDMA scheduling of clusters of SDFGs

its own sot ⊆ SO (see Def. 4.2.10) and every cluster Cl = {sot0, sot1, . . . , sott}
consists of a set of schedules to be executed on every tile in the current slot
where sot0 ⊆ so0, sot1 ⊆ so1 and sott ⊆ sot respectively.

In this work, we make a simplification of the general case of Def. 5.4.1
concerning at which granularity we allow to construct the clusters and assume
that a cluster can consist of a number of SDFGs and these are independent
from other SDFGs mapped to other clusters. Note that the general case, when
permitting the clustering at the granularity level of actors (see Fig. 5.13), could
easily lead to deadlocks in the SUA if care is not taken, this would not be the
case if the clustering is made at the granularity level of SDFGs.

Let us take a look at a concrete example to understand how the TDMA clus-
ters’ scheduler works. In a first step, clusters of SDFGs are identified as shown
in the simple example in Fig. 5.14, where SDFG1 and SDFG2 are mapped to
cluster1 and SDFG3 and SDFG4 are mapped to cluster2. Next, scheduling
strategy is chosen for the SDFG scheduler (say for e.g. RR).

Now, the worst-case instance of some timing metric (e.g. period or end-to-

112 CHAPTER 5. STATE-BASED RT ANALYSIS OF SDFGS ON MPSOCS

State-based
Real-time
Method

Timed-automata
Templates

Multicore
Design2

Configure TDMA Scheduler with slot length (WCPApp1, WCPApp2 …)

Final Design Results:

WCPApp1 = 146 896 SATISFIED

WCPApp2 = 146 896 SATISFIED

WCPApp3 = 146 896 SATISFIED

WCPApp4 = 146 896 SATISFIED

…..

Period, Latency

Analytical TDMA
Real-time
Method

Allowing Composability

Cluster2 Results:

WCPApp3 = 85 001

WCPApp4 = 44 236

…..

Cluster1 Results:

WCPApp1 = 54 529 SATISFIED

WCPApp2 = 59 895 SATISFIED

…..

Cluster 1
Design

Requirements

Integration

MPSoC
Integrated Design

with TDMA
Scheduler

Design

Tool

Activity

Library

Requirement

Figure 5.15: Two-Tier RT analysis method through TDMA clusters’ scheduler

end latency) for every SDFG in every cluster is obtained in isolation (without
considering other clusters see Fig. 5.15) with the help of our state-based RT
method (presented in the Sect. 5.3). In our example in Fig. 5.14, we can first an-
alyze the Worst-Case Period (WCP) of SDFG1 and SDFG2 belonging to cluster1
considering all contentions on the shared bus (for different arbitrations proto-
cols) between the two SDFGs but without considering cluster2. Then we do the
same for cluster2 SDFGs without considering cluster1 SDFGs. After that, every
cluster is mapped to a slot of a fixed size equal to the maximum of obtained
worst-case time among all SDFGs (obtained from the state-based RT method)
in this cluster so that it is guaranteed that all SDFGs mapped to this slot are
already executed when the slot expires without the need for preemption (see
Fig. 5.15). The TDMA scheduler has the role to switch between the slots of
different clusters when the slot time of every cluster expires.

Assuming that SDFGs running in one slot are independent from those run-
ning in other slots, in order to calculate now the worst-case execution (Tcompos

see Fig. 5.15) of single SDFGs when all clusters are integrated and executed
on the MPSoC platform, we take advantage of composability property of such
a TDMA based scheduling and can calculate it (similar to Eq. 2.2) using the

5.5. SUMMARY 113

following formula:

Tcompos =
Sl

∑
i=0

Tmax(i) + (Sl × s), (5.6)

where T can either be the worst-case period or the worst-case end-to-end dead-
line depending on the timing requirement we are interested in, Tmax(i) is the
maximal T among the SDFGs running in slot i, s is the scheduler worst-case
delay time when switching from one slot to another and Sl is the total number
of slots.

One possible realization of the above TDMA clusters’ scheduler with the
help of hardware customized timers can be found in Sect. 6.5.2. Another real-
ization, which we described in [Fakih et al., 2013b], is used in the experiment
in Sect. 7.2.5 requires the existence of a resource manager (hypervisor) in the
MPSoC which takes care of the temporal and spatial segregation.

5.5 Summary

In this chapter, we have presented the set of flexible and parameterizable timed-
automata templates (including event trigger, scheduler, actor, communication
driver, interconnect and FIFO buffer TA templates) capturing the MoP of SUA
(presented in Chap. 4) and explaining their implementation and abstractions’
decisions (see claim C2 in Chap. 1). We have also shown how these flexible
TA templates support modeling different issues such as sensitivity to exter-
nal events, single-beat/burst transfers (with and without the DMA hardware
component) on the interconnect (with different arbitration protocols), multi-
interconnects extension and multiple storage resources (see claim C2-1). Fur-
thermore, we described how these templates enable us to make a RT analy-
sis with the help of UPPAAL model-checker computing the effects of waiting
times due to contention on the interconnect(s) (see claim C2-3). Finally, we ex-
amined the state space which should be explored when modeling an MPSoC
system with the help of the implemented TA templates, and proposed some
optimizations on these templates to minimize the state space (see claim C2-2).
In addition, techniques from the literature such as clustering and enabling a
TDMA-based composable RT analysis were examined to be useful in terms of
improving the scalability of our approach and their adaptation to our system
model was described.

Chapter 6

Model-based Design Flow for
RT-Analysis of Embedded
Applications on MPSoCs

In this chapter, we will elaborate on the integration of different concepts such
as enabling the RT analysis of applications modeled in Simulink, automation
of our proposed state-based RT analysis method (presented in Chap. 5), and a
virtual-platform-in-the-loop V&V simulation technique in a single model-based
design flow.

Simulink is a wide-spread commercial tool, supporting hierarchy, domain
specific building blocks, functional simulation and automatic code-generation
which makes it well-suited for embedded systems design. Since SDFGs and
timed automata lack above features and especially the ability of high level
building blocks [Srba, 2008], we will extend our design flow for enabling entry
models designed in Simulink and discuss the underlying concept allowing the
translation of these models to SDFGs (implemented in SimulinkToSDF tool).

Furthermore, we will integrate our RT analysis method in a design flow and
automatize its steps via a maintainable SDF2TA tool.

In addition, our design flow is extended with a simulative method in com-
bination with our state-based RT analysis method. While our approach ob-
tains lower/upper timing bounds of multiple Synchronous Data-Flow Appli-
cations (SDFAs) running on an MPSoC, the simulative approach is used for
the functional validation of the SDFA implementation and its mapping on the
targeted hardware platform. Moreover, the simulative approach could be used
to give confidence for the timing values obtained via our state-based RT anal-
ysis method. In our proposed methodology, we use a binary-compatible and

115

116 CHAPTER 6. MODEL-BASED DESIGN FLOW

Virtual-
platform

MoA

Tile

Memory

MoC

Simulink
Model

SDFG

Extract SDFG
Bus

Synthesis

WCET
Analysis

MoS
Timed

automata

Timed-
automata
Templates

Model-
checking
Real-time
Analysis

MoP

Virtual-platform
Framework

Timing
Requirements

DMA

UPPAAL

Results:
WCPApp1 = 120 896
WCPApp2 = 119 896

end2endApp1 = 110 896

…..

Model

Tool

Activity

Library

Document

I/O HW

Designer

Decisions

Results:
WCPApp1 = 146 896
WCPApp2 = 146 896

end2endApp1 = 146 896

…..

VPIL Multicore
Simulation

Simulative
Real-time
Analysis

.

.

SDF2TA

SimulinkToSDF

Figure 6.1: Overall model-based design flow

cycle-accurate virtual-hardware platform representation to simulate and map
all relevant architectural properties.

6.1 Model-based Design Flow Overview

Fig. 6.1 depicts the overall design flow (extending the X-chart in Fig. 4.1)
proposed in this thesis. Typically, the focus of the system designer is on
the representation of the application in the proper MoC and mapping it to
the available platform resources. The mapping constraints considered in this
work depend mainly on the timing requirements. The input of our de-
sign flow is an SDF Model of Computation (MoC) and a Model of Architec-
ture (MoA) (defined in Chap. 4). If the functional input model is described
in Matlab/Simulink, an SDFG can be obtained from the Matlab/Simulink
model using the translation procedure described in Sect. 6.2. For the pur-
pose of automating this step, as highlighted in Fig. 6.1, a SimulinkToSDF tool
[Warsitz, 2015, Warsitz and Fakih, 2016] was developed. The designer provides
the Simulink model (respecting some constraints) and the translation depth
to SimulinkToSDF which in turn generates automatically an equivalent SDF

6.1. MODEL-BASED DESIGN FLOW OVERVIEW 117

graph (in XML format) preserving the structure as well as the precedence/ac-
tivation relationships of the original model.

The target platform is represented in the MoA by combining tiles (processor
with private memories) with other hardware components (DMA, buses, shared
storage resources see Fig. 6.1 top right). Afterwards, a WCET analysis (c.f.
Sect. 4.2.3) is performed for all combinations of actors and available processing
elements of the platform. To enable this timing analysis, C-code implementa-
tion of each actor is needed. In the case where the application is available as a
Simulink model, C-code can be generated from it using a code-generator (e.g.
Simulink Coder). Next, a synthesis activity takes place, which takes mapping
and scheduling decisions (manually chosen by the designer) as input, maps all
SDF actors to tiles and all SDF edges to communication resources and config-
ures the scheduling/arbitration strategies of resources, resulting into an anno-
tated parallel Hardware/Software model (called Model of Structure (MoS)).

In order to be able to verify that the timing of all mapped SDFGs stay
within specified bounds (e.g. WCP: Worst-Case Period), we must keep track of
all possible timing delays including delays caused by communication interfer-
ences in the MPSoC. To achieve this, a Model of Performance (MoP) is extracted
from the synthesis process. The MoP is a network of TA representing all actor
WCETs, communication delays, scheduling and communication resource access
protocols of the platform (see Chap. 5). Pre-defined TA templates (c.f. Sect. 5.2)
are configured and instantiated in the UPPAAL framework, taking into account
the mapping, timing and platform configuration. After converting the timing
requirements into UPPAAL TCTL queries, performance analysis (e.g. end-to-
end deadline) is done using the UPPAAL model-checker. For the purpose of
automating these last steps, as highlighted in Fig. 6.1, the SDF2TA editor was
developed (for details see Sect. 6.3) using the Eclipse Modeling Framework
(emf)1 Ecore model, where the designer can provide all needed parameters
(SDFGs, mapping, hardware constraints) and the equivalent UPPAAL system
can be generated automatically. If required (e.g. through a failed TCTL query,
indicated by a counter example), modifications on the application, the plat-
form or the mapping can be done in order to optimize the performance in
case of timing violations. Optimizations could be realized through different
approaches e.g. when using Simulink, the generated code can be optimized
by replacing default mathematical libraries with optimized and more efficient
implementations.

Parallel to the state-based RT analysis of the SUA, a simulative method
is approached (see Fig. 6.1). For this, a cycle-accurate virtual MPSoC plat-
form is developed in a certain virtual-platform framework (for e.g. based on
SystemC [IEEE-1666, 2012]). After doing that, we are now ready to refine the

1http://www.eclipse.org/modeling/emf/

118 CHAPTER 6. MODEL-BASED DESIGN FLOW

implementation (generated code from Simulink compatible to SDF semantics
see Sect. 6.4) into a binary running on the cycle-accurate virtual-hardware plat-
form of the MPSoC to simulate all relevant architectural properties and validate
the algorithm implementation and its mapping on the target platform. For
this, a virtual-platform-in-the-loop (VPIL) simulation technique (see Sect. 6.4)
validates Simulink control applications running on a concrete MPSoC virtual-
platform in the loop with the Simulink environmental model preserving the
causality of the golden model and enabling a simulation-based validation of
their functional requirements. In addition, it supports a non-invasive measure-
ment based method which helps assessing execution times on a cycle-accurate
virtual-platform allowing the validation of timing requirements of such appli-
cations. These accurate measured values also help bringing certainty to the
state-based RT method estimated values. Finally, if the obtained results are sat-
isfying, the developed virtual-platform can be transformed to a real Register-
Transfer Level (RTL) model which eases its deployment later on real hardware
(not in the scope of this thesis).

In Chap. 4&5 we described the synthesis process and the state-based RT
analysis constituting the main part of this design flow. In the following, we
will elaborate on the extensions introduced, including the concept behind the
translation of Simulink models to SDFGs, automation of our state-based with
the help of SDF2TA tool and enabling a seamless virtual-platform-in-the-loop
(VPIL) simulation in our analysis flow.

6.2 Simulink to SDFGs Translation

Since Simulink (see Sect. 2.2.2) is one of the most wide-spread model-based
modeling tool for embedded systems, supporting a data-flow based MoC (c.f.
Sect. 2.2.2) and providing many features (such as code-generation, simulation
of discrete/continuous systems etc.), we extend our design-flow to support
Simulink models as entry models. In order to still enable our state-based real-
time analysis of applications modeled in Simulink, a translation from Simulink
models to SDFGs is mandatory. In the following, we will present a procedure
(mostly taken from our prior work [Warsitz and Fakih, 2016]) which allows us
to translate a Simulink model (subjected to some constraints) into an equivalent
SDFG.

As already stated (see Sect. 2.2.2), Simulink MoC is much more expressive
than the SDFG MoC. Unlike SDFGs, Simulink supports following additional
features:

U1 Hierarchy (e.g. subsystem blocks): While in Simulink multiple functional
blocks can be grouped into a subsystem, in SDFGs each actor is atomic
and therefore no hierarchy is supported.

6.2. SIMULINK TO SDFGS TRANSLATION 119

U2 Control-flow logic/Conditional (for e.g. switch block or triggered subsystem
see [MathWorks, Inc., 2015e]): In Simulink control flow is supported on
the on block level. This means that depending on the value of a control
signal at a block, different data rates could be output by the block. In
contrary, in SDFGs data rates at input and output ports of an actor are
fixed and control structures are only allowed within the functional code
of an actor and can’t be represented in an SDFG.

U3 Connections:

1. Dataflow without connections (e.g. Goto/From blocks): In contrast
to Simulink, there is no dataflow without a channel connection in
connected and consistent2 SDFGs considered in this thesis.

2. Grouping of connections (e.g. BusCreator block for bus signals): In
Simulink, connections with different properties (e.g. different data
types) can be grouped into one connection. This is not possible in
an SDFG since the tokens transfered among a channel must have the
same properties.

3. Connection style: While in Simulink the storage of data between
blocks has the same behavior as that of a register where data can
be overwritten (in case of multi-rate models), the inter-actor com-
munication via channels in SDFGs follows a (data-flow) FIFO buffer
fashion, where tokens must be first consumed before being able to
buffer new ones.

U4 Sampling rates: In addition to the number of data transported over a con-
nection by every block activation, a periodic sampling rate is assigned to
each block in Simulink to mark its periodic activation at this specific fre-
quency. If all blocks exhibit the same sampling periods in a model, then
this model is called a single-rate model otherwise it is a multi-rate model.
In SDFGs, however, an actor is only activated based on the availability of
inputs. Actors do not have explicit sampling periods and therefore data
rates can only be represented by the rates assigned to their (input/output)
ports.

Because of the above differences, some constraints must be imposed on the
Simulink input model in order to enable its translation to an equivalent SDFG,
which we will discuss in the following (mostly taken from our previous work
[Warsitz and Fakih, 2016] where a more detailed description can be found).

2Inconsistent SDFGs require unlimited storage or lead to deadlocks during
execution[Lee and Messerschmitt, 1987a].

120 CHAPTER 6. MODEL-BASED DESIGN FLOW

6.2.1 Constraints on the Simulink Model

Only Simulink models with fixed-step solver (fixed-step solver is a prerequi-
site for code-generation) are supported in the translation. In case of multi-rates
(which are not in focus of this thesis), rate transitions should be inserted to
the Simulink model and the rates should be divisible. These constraints are in-
dispensable to enable code-generation [MathWorks, Inc., 2015d], since we aim
with the help of Simulink built-in code-generator to generate SDF compati-
ble executable code for the translated SDFG (see Fig. 6.14). In this thesis,
only single-rate Simulink models were evaluated, that is why we constrain
the models to be single-rated (where the classes U3-3 and U4 of differences
between Simulink und SDFGs become no issues anymore). Nevertheless, in
[Boström and Wiik, 2015], a procedure based on adding rate-transition blocks
to the multi-rate models was described to enabling their translation. Since in
our translation we are able to capture these rates and their forward propaga-
tion among the blocks, enabling this translation would be a straight-forward
extension for our work in the future.

Even though it is possible to translate a Simulink model to multiple SDFGs
through our tool, we deal only with one application (implemented in Simulink)
at a time in this thesis, which results after translation into one equivalent SDFG.
This application is considered to be a control application having the general
structure depicted in Fig. 6.14. Moreover, a correct functional simulation of the
Simulink model is a prerequisite for the translation in order to get an executable
SDFG. In addition to above general prerequisites, the following constraints are
imposed on the input Simulink model to enable the translation:

E1 Hierarchy: Hierarchical blocks (e.g. subsystems), in which one or more func-
tional blocks of the types described in U3-1 and U3-2 exist, are not allowed
to be translated to atomic actors. Either these blocks should be removed
from the entry Simulink model as they have no functional behavior (for
signal forwarding and visualization issues) or the hierarchy level at which
these components exist should be dissolved and these blocks should be
translated and connected in accordance with the rest of the SDFG. This
constraint is mandatory, otherwise if we allow an atomic translation of
such hierarchical functional blocks, their contained functional blocks of
the form U3-1 and U3-2, which may be connected with functional blocks
in different hierarchical levels, would disappear in the target SDFG. A
translation of these blocks would thus no longer be possible and would
cause a malfunction of the target SDFG (see restriction E3).

E2 Control-flow logic/Conditional: Blocks such as Triggered/Enabled subsys-
tems can be translated just like the general subsystems. Upon dissolv-
ing the hierarchy of such subsystems, the control flow takes place now

6.2. SIMULINK TO SDFGS TRANSLATION 121

within the atomic functionality of the actor without being in contradic-
tion to SDFG semantics (c.f. Sect. 2.2.1.3) . In such a translation, how-
ever, additional control channels must be defined (see Sect. 6.2.2). Yet,
the case described in U2 must still be prohibited. In order to do that,
there is an option “allowing different data input sizes” in Simulink for
such blocks, which when disabled, prohibits outputs of variable sizes of
a control block3. A special case of these blocks is the powerful stateflow
supported by Simulink (see Sect. 2.2.2). In our translation we do not flat-
ten the stateflow block and we always translate it into one atomic actor.

E3 Connections

1. Dataflow without connections: For blocks having the same
behavior described in U3-1 (such as From/Goto or DataStor-
eRead,/DataStoreWrite blocks), we assume that the source block
(e.g. DataStoreWrite block), intermediate block (e.g. DataStore-
Memory block) and the target block (e.g. DataStoreRead block)
which communicate without connections are available in the input
Simulink model. This constraint is important as Simulink allows in-
stantiating a source blocks without for instantiating for e.g. the sink
block.

2. Grouping of connections: In order to support the translation of
Simulink models with blocks having the same behavior as those de-
scribed in U3-24, two constraints must be imposed. The first one
is that every block which groups multiple signals (e.g. BusCreator)
into one signal must be directly connected to a block which have
the opposite functionality (e.g. BusSelector). The second constraint
is imposed on the block (e.g. BusSelector) which takes the grouped
signals and splits them again. An “Output as bus” should be prohib-
ited in the options of this block. By doing this, grouping of signals
for better visibility in the Simulink model is still with the limitation
above allowed, while prohibiting grouping of signals of different pa-
rameters in one signal in the target translation.

6.2.2 Translation Procedure

The complete workflow and implementation details of SimulinkToSDF tool
can be found in [Warsitz, 2015, Warsitz and Fakih, 2016]. In the following, we
will roughly describe the procedure implemented (mostly taken from our prior

3According to [MathWorks, Inc., 2015e] blocks having this option are: ActionPort, Stateflow,
Enable/Trigger Subsysteme, Switch, Multiport Switch and Manual Switch.

4e.g. BusCreator/BusSelector, Bus Assignment and Merge blocks [MathWorks, Inc., 2015e].

122 CHAPTER 6. MODEL-BASED DESIGN FLOW

Figure 6.2: Original Simulink model (taken from [Warsitz and Fakih, 2016])

work in [Warsitz and Fakih, 2016]) to extract an SDFG from a Simulink model
under the above defined constraints.

1. Translation of blocks: If S is the set of all blocks in Simulink model M
then each block sl ∈ S in M (till the required depth level) is translated
into a unique advanced actor in the translated SDFG al ∈ A∗ (where A∗ is
the set of advanced actors). At this step, an advanced actor (in contrary to
the atomic actor known in SDFGs) can still exhibit hierarchy containing
other (advanced) actors and channels (see Fig. 6.3).

ConstantActor

ConstantActor

InportActor

InportActor
SubsystemActor

BusCreatorActor BusSelectorActor ProductActor UnitDelayActor OutportActor GotoActor

FromActor
StateflowActor

OutportActor

InportActor

EnablePortActor
OutportActor

Figure 6.3: Translation of blocks (taken from [Warsitz and Fakih, 2016])

2. Translation of connections: Each output port sl .o is translated into a
unique initiator port al .pi and each input port sl .i is translated into a
unique target port al .pt. In case multiple connections t1, t2, · · · , tn going
out from an output port po1 in Simulink (which is permitted in Simulink
see connections of statechart before translation Fig. 6.2, but not in SDFGs
see connections of statechart after translation Fig. 6.4), then for each one

6.2. SIMULINK TO SDFGS TRANSLATION 123

ConstantActor

ConstantActor

InportActor

InportActor
SubsystemActor

BusCreatorActor BusSelectorActor ProductActor UnitDelayActor
OutportActor

GotoActor

FromActor
StateflowActor

OutportActor

InportActor

EnablePortActor
OutportActor

Figure 6.4: Translation of connections (taken from [Warsitz and Fakih, 2016])

of these connections, the output port is replicated po11, po12, · · · , po1n (each
having the same properties) in the resulting SDFG, in order to guarantee
that every edge d ∈ D has unique target and initiator ports. Now, each
connection t ∈ M in the Simulink model is translated into an edge d ∈ D
(see Fig. 6.4).

single

single

single

single

boolean

double double
double

double double

2 2

2 2
2 2 2 2 2 2

1 1

1 1

1

1

2 2 10 10

ConstantActor

ConstantActor

InportActor

InportActor
SubsystemActor

BusCreatorActor
BusSelectorActor

ProductActor
UnitDelayActor OutportActor GotoActor

FromActor
StateflowActor

OutportActor

InportActor

EnablePortActor
OutportActor

Figure 6.5: Propagation of number of data to be transfered, datatypes and
sampling rates (taken from [Warsitz and Fakih, 2016])

3. Propagation of number of data, datatypes and sampling rates: In this
step, the number of data transfered over a connection, the datatype and
the sampling rates are obtained for every block/port/connection (see
Fig. 6.5, all blocks having same sample rate of 1, data types are either
single or double and number of data transported ranges between 1 to
10). Since we only consider single-rated models in this thesis, the rates
of initiator and target ports are always equal. The sampling rates are
propagated according to the forward-propagation technique supported
by Simulink (for more details refer to [Warsitz, 2015]).

124 CHAPTER 6. MODEL-BASED DESIGN FLOW

single

single

double

double double

2 2
2 2

1 1

1

2 2 10 10

2 2

ConstantActor

ConstantActor

BusCreatorActor BusSelectorActor ProductActor UnitDelayActor GotoActor

FromActor
StateflowActor

OutportActor

InportActor

EnablePortActor
OutportActor

1
boolean

Figure 6.6: Dissolving hierarchy (taken from [Warsitz and Fakih, 2016])

4. Dissolving hierarchy: In this step, a top-down flattening of the Simulink
model (respecting E1), till the required depth level is reached, is done (see
Fig. 6.6).

5. Inserting delay tokens: In this step, actors representing delay blocks (e.g.
Unit-Delay block) are removed and an equivalent number of delay tokens
are then inserted on the corresponding channels (see Fig. 6.7). Alterna-
tively, these blocks can be transformed to equivalent actors which imple-
ment the delay behavior in their internal process (functionality).

single

single

double double

2 2

1 1

1

2 2 10 10

2 2

ConstantActor

ConstantActor

BusCreatorActor

BusSelectorActor

ProductActor GotoActor

FromActor
StateflowActor

OutportActor

InportActor

EnablePortActor
OutportActor

1
boolean

Figure 6.7: Translating delay blocks (taken from [Warsitz and Fakih, 2016])

6. Removing connecting blocks of type U3-1: Goto/From, DataStore or
other similar blocks are removed in this step. When doing this, the pre-
decessor block of the source block (e.g. DataStoreWrite block) is directly
connected either to the intermediate (if existent) block (e.g. DataMemory
block) or to the successor block of the target block (e.g. DataStoreRead
block) and these connecting blocks (source and target blocks) are removed
(see Fig. 6.8 where Goto/From blocks are removed).

6.2. SIMULINK TO SDFGS TRANSLATION 125

single

single

double

2 2

1 1

1

10 10

2

2

ConstantActor

ConstantActor

BusCreatorActor

BusSelectorActor

ProductActor

StateflowActor
OutportActor

InportActor

EnablePortActor
OutportActor

1
boolean

Figure 6.8: Removing data-flow blocks without connection of type U3-1 (taken
from [Warsitz and Fakih, 2016])

7. Removing connecting blocks of type U3-2: During the translation pro-
cess, blocks respecting the E3-2 constraint are simply removed and
the predecessors’ blocks are connected with the successors’ blocks (see
Fig. 6.9 where BusCreator/BusSelector actors are removed).

double

2
1

1

10 10

2

2

ConstantActor

ConstantActor

ProductActor

StateflowActor

InportActor

EnablePortActor

1
boolean

Figure 6.9: Removing blocks of type U3-2 which group connections (taken from
[Warsitz and Fakih, 2016])

8. Adding event channels: In this step, channels for handling (en-
abling/triggering) events are added. These edges are needed when the
hierarchy of a enabled/triggered subsystem is dissolved. In this case,
each actor, belonging to the triggered or enabled subsystem has to be sen-
sitive to the (triggering/enabling) event and thus is connected with the
event source (see Fig. 6.10).

9. SDFG representation in XML: After the above translation steps, we ob-
tain an SDFG representation compatible to Def. 4.2.3. SimulinkToSDF

outputs the result in XML format which can be imported by SDF2TA see
Sect. 6.3 and graphically plotted using the Dot [Gansner et al., 2015] tool
(see Fig. 6.11).

126 CHAPTER 6. MODEL-BASED DESIGN FLOW

double

2
1

1

10 10

2

2

ConstantActor

ConstantActor

ProductActor

StateflowActor

InportActor

1

boolean

Figure 6.10: Addition of event channels (taken from [Warsitz and Fakih, 2016])

10
10

10
10

2 2 2 2

1

1

1

1
In1

Constant

Constant1

Chart

Out1

Out2

Product

Figure 6.11: Resulting SDFG (taken from [Warsitz and Fakih, 2016])

Finally, the actors in the resulting SDF graph can be statically scheduled to
obtain a minimal periodic admissible sequential schedule (see Sect. 2.2.1.1).

After translating the Simulink model to an equivalent SDFG, we are now
able to generate C/C++ code (with the help of Simulink Embedded Coder)
for every block in the reference Simulink model, corresponding to an actor in
the resulting SDFG. The generated code can now be (manually) customized to
respect the execution semantics of the output SDFG resulting from the transla-
tion (see pseudo-code implementation of SDFGs in Sect. 6.5). With the help of
our VPIL verification and validation technique (presented in Sect. 6.4), we can
verify whether or not the functional semantics of the executable, SDF compat-
ible code of the translated SDFG performs the same as the reference Simulink
model.

6.3 Automation of our State-based RT Approach

For the purpose of automating the highlighted steps in Fig. 6.1, the SDF2TA ed-
itor (first version developed in [Schlaak, 2014]) was developed using the Eclipse
Modeling Framework (EMF)5 Ecore model, where the designer can provide all
necessary parameters (SDFGs, mapping, hardware constraints) and the equiva-
lent UPPAAL system is generated automatically. The Ecore format is an XML-
like format which has the ability to automatically generate equivalent XML,

5http://www.eclipse.org/modeling/emf/

6.3. AUTOMATION OF OUR STATE-BASED RT APPROACH 127

Figure 6.12: Work flow of the SDF2TA tool (based on [Schlaak, 2014])

UML (see the SDF2TA UML diagrams representing the MoP in Appendix A.2)
and Java code.

Fig. 6.12 shows the work flow of the SDF2TA tool. First, the designer needs
to provide all relevant timing properties of the SUA as an input to the SDF2TA
editor. Since the SDF2TA editor is already provided with an Ecore model of the
supported MoP semantics, it can validate whether or not the designer input
conforms with the model definition (see Appendix A). If the input validation
step is successful, the developer can now choose some property to be checked
for the given MoP. Properties that can be checked (refer to Sect. 7.1 for more
details) are either timing properties such as the period, end-to-end deadline or
liveness properties such as checking whether or not the repetition vector of an
SDFG is valid or if specific states can be reached (for e.g. is finishing of sink
actors always guaranteed to be after finishing source actors for all possibilities)
during execution.

After doing this, the SDF2TA generates an XML equivalent representation of
the input model and calls for an XSLT (Extensible Stylesheet Language Trans-
formations) processor which processes it by applying pre-defined XSLT rules
and transforming it into an equivalent UPPAAL XML representation. This
step enables the parametrization and instantiation of our pre-defined UPPAAL
timed-automata templates (see templates’ description in Sect. 5.2), which rep-
resent different components of the MoP. At the end, the generated UPPAAL
model is checked against TCTL queries (which are generated depending on the
designer requirement input) using the verifyta6 tool. Finally, the verification
results are provided to the developer through the SDF2TA editor.

SDF2TA editor (see Fig. 6.13) provides a user-friendly GUI, supports tool-
tips and validates input models in order to generate a correct timed-automata
model. Furthermore, the usage of Ecore as the common modeling language for
capturing the MoP makes SDF2TA maintainable. If any extensions or changes

6This is the stand-alone UPPAAL timed-automata verification tool.

128 CHAPTER 6. MODEL-BASED DESIGN FLOW

Figure 6.13: SDF2TA GUI

should be done on the MoP, the developer only needs to change the Ecore
model and with minimal additional effort, modified the SDF2TA editor is gen-
erated. In addition, our SDF2TA editor allows to import SDFGs from the well
known SDF3 tool [Stuijk et al., 2006], and is able to run SDF3 in the background
to perform different analysis of the SDFGs created in SDF2TA, such as finding
and adapting values of repetition vector, buffer sizes, etc.

6.4 Virtual-Platform-in-the-Loop Simulation for MPSoCs

6.4.1 Motivation

Although moving to higher level of abstraction, as in the case of MBD in
Simulink, allows the designer to easily model the system and verify it’s func-
tionality, the abstraction of non-functional aspects like timing behavior can lead
to severe problems late in the development process causing for expensive re-

6.4. VIRTUAL-PLATFORM-IN-THE-LOOP SIMULATION FOR MPSOCS 129

designs. Even worse, such issues could stay undetected and become a safety
hazard. Virtual-hardware platforms (see Sect. 2.5.1) propose in this context an
efficient way to close the gap between the high level model and the targeted
embedded architecture for functional and non-functional V&V. Also exact tim-
ing verifications can only be applied if the timing behavior of the hardware can
be analyzed (such as bus latencies). For this purpose, we use a cycle-accurate
virtual platform (VP) of the MPSoC. Using a virtual-hardware platform (VP)
instead of the development board is very beneficial in terms of fast software
execution and better debugging capabilities during functional implementation.
Especially for new hardware platforms, (like the Aurix TriCore used in ex-
periments Sect. 7.4), instead of waiting for the first engineering samples to be
developed, manufactured, and delivered, the VP enables early V&V of the SW
implementation together with hardware design.

With the help of Virtual-Platform-in-the-loop (VPIL) simulation, we are able
to combine the benefits of the MBD (see Sect. 2.2) and VP (see Sect. 2.5.1). It
provides a simple and fast approach to handle the complexity of embedded
systems design and allows validating their timing requirements at early de-
sign phases enabling targeted design decisions, minimizing costly redesigns,
improving development effort, cost and time to market, and thereby helping
to design safer systems. It is important to note that the VPIL simulation is
an intermediate step towards Hardware-In-the-Loop (HIL) simulation (as we
have done in [Walter et al., 2014]). In this thesis, we have also used the VPIL
simulation as a mean of validating our model-checking approach.

6.4.2 Bi-simulation Procedure

VPIL simulation is a validation and verification (V&V) technique which we first
developed in [Fakih, 2011] for single-processor platforms and then we extended
it throughout this work [Fakih and Grüttner, 2012] for supporting SDFGs run-
ning on MPSoCs. The VPIL simulation targets data transfer between the VP
framework and Simulink allowing following benefits:

1. Build complex test environment in Simulink and reuse of test-cases de-
veloped for the implementation model,

2. On-the-fly comparison of the functionality of the reference (golden) con-
troller model and that of the generated controller code running on a
virtual-target platform when subjected to the same test-scenarios,

3. Non-invasive timing measurement of the synthesized platform (HW/SW)
at a cycle-accurate level for timing requirements validation and the visu-
alization of the results in Simulink.

130 CHAPTER 6. MODEL-BASED DESIGN FLOW

Figure 6.14: VPIL simulation for MPSoCs

Complaint to the constraints made in Chap. 4 on the MPSoC, we made the
assumption that only one dedicated tile (I/O tile) is allowed to access I/O de-
vices (in the following denoted by Environment Interface7). Moreover, we assume
that the VP software uses a classic bare-metal approach i.e. only manufacturer-
supplied software framework is used which provides basic system manage-
ment and drivers with no explicit real-time operating system being deployed.
In addition, we assume single-rated Simulink models as the use-cases evalu-
ated were single-rated use-cases. Yet extending the VPIL simulation technique
for multi-rated Simulink models should be straight forward (see suggestion in
[Fakih, 2011]).

Fig. 6.14 shows an overview of our VPIL simulation framework. As it can
be seen, the functional model can consist of several sensors and actuators and
possibly multiple controllers that control the same environment model (or the
process to be controlled). After defining functional and non-functional require-
ments of the control system to be developed, the next step is to model it in
Simulink. The controller(s) can be implemented as a combination of Simulink
blocks that must be supported by the code-generator (as already described
in Sect. 6.2). At this level, the control algorithm can be partitioned into con-

7An interface responsible to connect the controller with the environment modeling sensors’
and actuators’ interfaces

6.4. VIRTUAL-PLATFORM-IN-THE-LOOP SIMULATION FOR MPSOCS 131

currently executing blocks in Simulink (see b1, b2, b3 in Fig. 6.14). After
verifying and validating the functionality of the controller model within Mat-
lab/Simulink, we are able to generate target C code from the Simulink control
models (with the help of Simulink Coder (R2011-b) [MathWorks, Inc., 2015a].
This code is then manually customized with the help of a lightweight SDF
library (see pseudo-code in Algorithm 2) to make it compliant to the SDF se-
mantics of the translated SDFG (translation is done according to procedure
described in Sect. 6.2). The result would be the task-sets in Fig. 6.14 which
represent the implementation of the SO list defined in Def. 4.2.9. The addi-
tional sensor and actuator actors (denoted by S and A in Fig. 6.15) represent
the source and the sink actors of the translated SDFG (see Sect. 6.2), which
are responsible of communicating with the Environment Interface getting sen-
sors and updating actuators. After implementing the SDFG actors and con-
figuring the drivers for a chosen inter-processor communication, the code is
cross-compiled and can be executed on the target processors and we are now
ready to start the bi-simulation of our control software on the target VP with
Simulink. But since we want to validate our control software implementation
while interacting with the environment behavior, an environment model is still
missing. This is where our Virtual-Platform-In-the-Loop (VPIL) V&V technique
comes in, to fill this gap and realize a link to the top-level Simulink environ-
ment (golden) model. Fig. 6.14 shows the Environment Interface IP component in
the virtual-platform we developed to realize the communication with the func-
tional Simulink model allowing the bi-simulation of VP implementation and
Simulink, getting sensor values from the environment model (at Simulink-level)
and at the same time supporting the non-invasive execution-time measurement
of the generated code. Whenever the target processor gets an interrupt8 signal
from the Environment Interface (signalizing the availability of sensor data), the
corresponding task-set is executed and runs to completion.

Finally the measured execution-time values with the functional outputs of
the control software are send back to Simulink were they plotted (together with
reference values in an observation scope see Fig. 6.14) and can be analyzed
and evaluated w.r.t to the functional and timing requirements. In the case
of functional mismatch, the implementation on the virtual-hardware platform
must be examined and corrected until the expected behavior is reached. In
the case of timing violation detection, the following actions can be performed:
modifications in the functional model (e.g. from floating point to fixed-point
calculation or other controller algorithm), changing the mapping or changing
the platform architecture (e.g. faster cores, faster interconnect, etc.).

8Alternatively to interrupt-based synchronization, the sensor actor can poll (as we will see
in the experiments) on the specific addresses in the Environment Interface to check if new values
are available from Simulink environment model. In case of polling, extra traffic is induced on
the interconnect which makes the timing measurement (see Fig. 6.16) invasive.

132 CHAPTER 6. MODEL-BASED DESIGN FLOW

Fixed-sample

period

T0 T1 T2 T3

Simulink

T0 T1 T2 T3

Virtual-platform

Framework

control-step

Figure 6.15: Bi-simulation procedure of Simulink and VP Framework (taken
from [Fakih, 2011])

The basic idea behind the bi-simulation with the non-invasive timing mea-
surement in our VPIL simulation is shown in Fig. 6.15. In a Simulink simulation
with a fixed-step solver type, models are stepped periodically according to a
fixed sampling period called fixed-step-size (this variable can be specified in the
simulation configuration). The simulated time proceeds until the fixed-step-size
value is reached and updates the model at this moment (takes an input, makes
the internal computation and produce an output) according to a specified
solver9. We define a control-step as a one such update of the controller model
in a given period which also corresponds to one update of its generated code.
In this update one execution of the generated step functions10 of all task-sets
of the partitioned controller including the communication and synchronization
between them is done. Our VPIL simulation follows a lock-step based schema
(as shown in Fig. 6.15) where one control-step in Simulink is executed and then
the same control-step in the VP framework is executed. The virtual-platform
framework (for e.g. COMET/Virtualizer [Synopsys Inc., 2015] in experiments
in Sect. 7.4) is the master of the bi-simulation. It starts by initializing all virtual-
platform components and then launches an instance of the Simulink model
(with the help of Mathworks engine.h API [MathWorks, Inc., 2015b] used for
data exchange). The basic idea of the non-invasive timing measurement method,
is to measure the execution of every single control-step of needed to finish a
control scenario (specified as a test-case control scenario). In Fig. 6.15, we see

9A solver implements a specific numerical integration technique to interpolate values be-
tween two consequent time instants of simulation.

10The code-generator generates for every block a step function which should be executed
according to the given period. When executed it takes the input values performs an update of
the controller (in Simulink) and produces its output values.

6.4. VIRTUAL-PLATFORM-IN-THE-LOOP SIMULATION FOR MPSOCS 133

Model I/O Tile1Environment
Interface

Tile2FIFO Buffers

S
S

R

W

isPaused()

setActVals()

irq0

getSensVals()

sensVals

ScheduleSO()

setSensVal1()

ComputeT1()

setMsg()

getActVal1()

ActVal1

ScheduleSO()

ComputeT2()

ComputeT3()

Msg

getMsg()

getSensVal1()

setActVal1()

SensVal1

Virtual-Platform (VP) Simulink

W

R

W

C

W

R

C

W

R

C

irq1

R

getSensVals()
sensVals

continueSim()

sendResults()

checkPaused()

Figure 6.16: Sequence of execution in one control-step within a VPIL simulation

that in every period (fixed-step size) a different control-step is executed and for
which different number of processor cycles are measured. In Simulink the exe-
cution of every control-step happens instantaneously (blue vertical lines). The
execution time of the same control-step in the VP is then measured (green/red
horizontal line). If the single duration (end-to-end latency of the SDFG) of
any control-step exceeds the fixed-step size (see Fig. 6.15, at T2 red/fat horizon-
tal line) then we have detected a timing violation. Another timing violation
can be detected if the finish time of some control scenario execution (which is
the summation result of durations of all control-steps of this scenario) violates
the end time requirement for this scenario. It is important to note here that
even if any control-step lasts longer than the upper-bound time requirement,
the target processor still executes it till its end (according the VPIL simulation
procedure). This means that timing violations would not manipulate the time
instants at which the actuator values are updated and thus does not have any
influence on the measured functional results of the controller.

In Fig. 6.16, the sequence diagram shows in detail what happens within a
control-step (highlighted in green/fat activation block of the Environment In-
terface lifeline) for the example in Fig. 6.14. First, the Simulink model steps once

134 CHAPTER 6. MODEL-BASED DESIGN FLOW

and then it is paused (with the help of Simulink customized block). Then, the
Environment Interface component in the VP detects this pause (isPaused()),
gets the current sensor values (getSensVals()) corresponding to this step
from the Simulink environment model and issues interrupts to notify the tiles
(irq0, irq1). On the tiles, the schedule function (for e.g. ScheduleSO())
is executed and tasks (or executable actors) are activated to execute accord-
ing to the SDF execution semantics. On the dedicated I/O tile1, sensor data
are read (getSensVals()) from the Environment Interface through the sen-
sor actor (highlighted in orange/light activation block of I/O Tile1 lifeline in
Fig. 6.14). Likewise, the actuator actor (highlighted in orange in Fig. 6.14)
on tile1 updates the actuator data by writing (setActVals()) to the Envi-
ronment Interface. Every task, when activated (see actor execution phases in
Fig. 4.3), executes its step function (except for the sensor and actuator ac-
tors) once in the compute phase (for e.g. ComputeT1()). During software
execution, the Environment Interface component records the end-to-end execu-
tion time which is the time from the moment where the sensors data were
received until the moment where the last actuator was updated including the
inter-processor communication and synchronization at a cycle-accurate level.
After the execution of the control-step at the VP level has been completed
(green/thick lifeline of sequence diagram in Fig. 6.16), the Environment In-
terface sends the updated actuator values and the timing measured values
(sendResults()) back to Simulink. It also wakes up Simulink to resume the
execution (continueSim()) of another control-step. This procedure can be
iterated until the desired number of control-steps are executed. An elaborated
description of the VPIL methodology with an application on an academical
use-case can be found in [Fakih, 2011, Fakih and Grüttner, 2012].

6.5 Implementation Concepts

In the following, some implementation concepts of the SDFGs and their
scheduling algorithms are are given in a simplified pseudo-code form in or-
der to show how such systems, compatible to our constraints in Chap. 4, can
be implemented on a real platform while remaining analyzable by our state-
based RT analysis method. For a complete code excerpt of a basic SDF library
implementation in C please refer to [Schaumont, 2013]. For the same purpose
mentioned above, we also discuss some major issues of the communication
driver considered in this thesis.

6.5.1 Pseudo-code of Static-order Scheduled SDFG

In Listing 1, the pseudo-code of self-timed static-order SDFGs with auxiliary
functions is depicted. We notice that when actors are blocked they wait some

6.5. IMPLEMENTATION CONCEPTS 135

time (WAIT(t)) and then they go to a Suspended (return false), which also
results in suspending the SDFG (return ACTOR SUSPEND), the fact which will
be registered by the SDFG scheduler (see Algorithm 2 and Algorithm 3). In case
of suspension, actor’s progress information are saved locally (SAVE CONTEXT).

6.5.2 Pseudo-code of SDFGs Schedulers

If an static-order (SO) scheduler is chosen for SDFG scheduling (see Algo-
rithm 2), the scheduler activates the first SDFG in the ordered list. if the SDFG
execution is finished successfully (SDFG(sdfg vector[i])==SDFG FINISH)
then the scheduler executes the next SDFG in the list. If some actor of some
SDFG blocks, the SO scheduler simply reactivates the same SDFG which retries
to run the same actor (after waiting for some time).

In the case of Round-Robin (RR) SDFG scheduler (see Algorithm 3), in both
cases where the actor blocks or finishes execution successfully, the scheduler
switches to the next SDFG and executes it, achieving more fairness among
SDFGs in the system.

Algorithm11 4 depicts a pseudo-code of an interrupt-based implementation
of the TDMA scheduling algorithm (suggested in Sect. 5.4.3 with an example
shown in Fig. 5.14). The input is a sorted list of partial SDFGs (i.e. an ordered
set of actors) per tile and TDMA slot, the duration of each TDMA slot and
the duration of the scheduler ”slot”. The duration of each slot is analyzed
statically, as described in Sect. 5.4.3. The main routine on tile 1 initializes
the two timer channels. Timer channel 1 is configured with the duration of
the scheduling slot and channel 2 is configured with the duration of the next
TDMA slot to be executed. Each timer starts counting down immediately after
its configuration and triggers an interrupt when the timer register hits zero.
The interrupt lines of each timer channel can be logically OR’ed and connected
to each tile’s interrupt port (see Fig. 5.14). Each tile has an interrupt service
routine (ISR) which is executed when the tile’s interrupt occurs. The ISR

implements a simple state machine to detect and handle the start and end of
each TDMA slot. The start state executes the scheduling algorithm on the
list of actors per tile. This can either be an SO (see Algorithm 2) or an RR (see
Algorithm 3) scheduling. The end state switches to the next slot (including
wrap around) and sets the next slot duration (only done by the ISR of tile 1).

6.5.3 Communication Driver Issues

In the following, we will elaborate on the communication driver basic structure
(considered in this thesis) assuming that the SDFGs’ channels are mapped (for

11Both algorithm 2 and Algorithm 3 (each algorithm mainly includes 3 nested loops) have a
run-time complexity of O(n3). Algorithm 4 has a run-time complexity of O(n4) since it includes
one of the above algorithms and execute it n-times depending on the number of slots.

136 CHAPTER 6. MODEL-BASED DESIGN FLOW

Algorithm 1 Self-timed static-order SDF execution
1: channel[m] . FIFO buffers of SDFG j

2: max size[m] . Sizes of FIFO buffers of SDFG j

3: suspendedWrite[l] . resumes flags of actor l

4: activePort[a] . active port of Actor a

5: procedure CanPut(c,n)
6: if num elements(channel[c]) + n > max size[c] then
7: return false
8: else return true
9: procedure CanGet(c,n)

10: if num elements(channel[c])− n < 0 then return false
11: else return true
12: procedure Compute(id) . executes actor’s behavior

13: procedure Wait(t) . polling delay of t time units

14: procedure SaveContext(actor, port, isWrite)
15: suspendedWrite[actor] = isWrite
16: activePort[actor] = port
17: procedure Produce(c,n)
18: if not CanPut(c,n) then
19: Wait(t) return false
20: else
21: enqueue(channel[c], n) return true
22: procedure Consume(c,n)
23: if not CanGet(c,n) then
24: Wait(t) return false
25: else
26: dequeue(channel[c], n) return true
27: procedure Actor(id) . executes actor with index id

28: i← 0
29: if SuspendedWrite[n] then
30: while i < MAX INITIATOR PORTS[id] do
31: if Produce(i,n) then
32: i← i+1
33: else SaveContext(id, i, false) return false
34: else
35: while i < MAX TARGET PORTS[id] do
36: if consume(i,n) then
37: i← i+1
38: else SaveContext(id, i, true) return false
39: Compute(id)
40: i← 0
41: while i < MAX INITIATOR PORTS[id] do
42: if Produce(i,n) then
43: i← i+1
44: else SaveContext(id, i, W) return false
45: return true
46: procedure SDFG(j) . executes SDFG with index j

47: i← 0
48: while i < MAX SDFG ACTORS[j] do
49: if not Actor(i) then return ACTOR SUSPEND
50: else i← i+1 return ACTOR FINISH
51: return SDFG FINISH

6.5. IMPLEMENTATION CONCEPTS 137

Algorithm 2 Static-Order SDFG Scheduling
1: Input Sorted list of SDFGs to be executed on a tile t (SDFG list[t]) and

length of this list (SDFG list size[t])
2: Result Execute SDFGs in a static order
3: procedure ScheduleSO(sdfg vector, sdfg vector size)
4: i← 0
5: while i < sdfg vector size do
6: if SDFG(sdfg vector[i]) == SDFG FINISH then
7: i← i+1
8: procedure main . Main routine of Tile t

9: loop . Infinite loop

10: ScheduleSO(SDFG list[t], SDFG list size[t])

Algorithm 3 Round-Robin SDFG Scheduling
1: Input Sorted list of SDFGs to be executed on a tile t (SDFG list[t]) and

length of this list (SDFG list size[t])
2: Result Executes SDFGs in a static order but switches to next SDFG, if cur-

rently executed SDFG is blocked
3: procedure ScheduleRR(sdfg vector, sdfg vector size)
4: i← 0
5: while i < sdfg vector size do
6: if SDFG((sdfg vector[i])) == (ACTOR FINISH or ACTOR SUSPEND)

then
7: i← i+1
8: procedure main . Main routine of Tile t

9: loop . Infinite loop

10: ScheduleRR(SDFG list[t], SDFG list size[t])

e.g. in Fig. 6.17) to the shared storage resource and must be accessed through
the interconnect. A similar procedure is done if these channels are mapped
to the private storage resources, but in a simpler manner without the need of
the interconnect protocol. We also differentiate between basic communication
drivers for interconnects with single-beat or with built-in burst transfer capa-
bilities (for e.g. AHB-Bus which can perform up to 16 beats [Kesel, 2012]) and
other more complex drivers utilizing the DMA hardware component to realize
a burst transfer.

Basic Communication Driver Fig. 6.17 shows the activity diagram of the write
phase (see PRODUCE in Algorithm 1) of an actor, pointing out at which entry
point the communication driver is called. The activity diagram of the read phase
can be constructed in a similar manner to that of write phase with some minor
differences (see CONSUME in Algorithm 1).

Every time an actor requires to write to a channel, it must first check

138 CHAPTER 6. MODEL-BASED DESIGN FLOW

Algorithm 4 TDMA Scheduling
1: SDFG list[t][s] . Sorted list of SDFGs to be executed per Tile & Slot

2: SDFG list size[t][s] . Size of each SDFG list entry

3: scheduler duration . TDMA scheduler WCET

4: slot duration[s] . Duration of each TDMA slot s

5: enum State{start, end} slot pos[t] . Slot position per Tile t

6: slot[t] . Current active slot per Tile t

7: procedure init(t) . Initialization of Tile t

8: if t == 1 then
9: setTimer(channel1, scheduler duration)

10: setTimer(channel2, slot duration[0])
11: slot pos[t]← start
12: slot[t]← 0
13: procedure ISR(t) . Interrupt Service Routine of Tile t

14: if slot pos[t] == start then
15: list← SDFG list[t][slot[t]]
16: list size← SDFG list size[t][slot[t]]
17: Schedule[SO|RR](list, list size) . SO or RR scheduling

18: slot pos[t]← end
19: if t == 1 then
20: clear timer interrupts()

return
21: if slot pos[t] == end then
22: if slot[t] < MAX SLOTS-1 then
23: slot[t]← slot[t] + 1
24: else
25: slot[t]← 0
26: if t == 1 then
27: setTimer(channel2, slot duration[slot[t]])
28: slot pos[t]← start
29: if t == 1 then
30: clear timer interrupts()

return
31: procedure main . Main routine of Tile t

32: init(t)
33: loop . Infinite loop

6.5. IMPLEMENTATION CONCEPTS 139

read compute write schedule schedule

actor execution

read

enqueue(chan ch, int rate){

 1: word buf[M]; // buffer of bytes

 // number of tokens and fifo primitives to be transported

 2: TokensType tokens[rate+fifoPrim];

 3: for (w in tokens) {

 4: tokens[w]->buf; // partition tokens to words

 5: }

 // begin Interconnect transfer

 6: protocol.write(buf, &ch);

}

CanPut(c,n)
No

Yes

Wait(t)

Return

false

Return

true

enqueue(c,n)

num_elems+n>

max_size[c]

No

Return

false

num_elems(c)

Return

true

Yes

getSize(chan ch){

 // begin Interconnect transfer

 protocol.read(ch.size, &ch);

}

Figure 6.17: Communication driver’s entry calls for a Write access

if there is enough buffer capacity available for this access. To do this the
size attribute of the buffer (located in the shared storage resource) should
be read (getSize()). In this function, an interconnect read access is issued
according to the interconnect protocol (protocol.read()). Now, if there is
enough buffer capacity for writing the tokens (num elems+n≤max size[c])
then an enqueue function is called. In this function, the number of tokens to be
transported are first converted into an untyped ordered byte streams having the
bitwidth of smallest addressable unit (in our case equal to interconnect width
c.f. Sect. 5.2.4) [Gajski et al., 2009]. In addition endianess [Gajski et al., 2009] is
also handled at this level. The number of tokens (line 2 in enqueue()) con-
sists of the actual tokens to be transported depending on the current port’s rate
of the actor plus other FIFO auxiliary variables (fifoPrim: FIFO implemen-
tation specific primitive variables such as the size variable) which should be
updated. Afterwards, an interconnect write access is launched according to the
interconnect protocol (protocol.write()). This access could be realized de-
pending on the chosen inter-processor communication style in a single-beat or
a burst-transfer fashion as seen in Fig. 2.8, Fig. 2.9 respectively (in Sect. 4.2.5).

140 CHAPTER 6. MODEL-BASED DESIGN FLOW

read compute write schedule schedule

actor execution

read

syncShared(chan local, chan toShared){

 1: word buf[M]; // buffer of bytes

 // number of tokens and fifo primitives to be transported

 2: TokensType tokens[rate+fifoPrim];

 3: for (w in tokens) {

 4: tokens[w]->buf; // partition tokens to words

 5: }

 6: configureDMA(); // configure DMA through Intercon1

 // copies fifo buffer from shared to local memory through Intercon2

 7: protocolDMA.memcopy(local, toShared);

}

CanPut(c,n)
No

Yes

Wait(t)

Return

false

Return

true

enqueue(c,n)

syncPrivate(chan toLocal, chan, shared){

 // configure DMA through Intercon1

 1: word buf[M]; // buffer of bytes

 // number of tokens and fifo primitives to be transported

 2: TokensType tokens[rate+fifoPrim];

 3: for (w in tokens) {

 4: tokens[w]->buf; // partition tokens to words

 5: }

 6: configureDMA(); // configure DMA through Intercon1

 // copies fifo buffer from shared to local memory through Intercon2

 7: protocolDMA.memcopy(shared, toLocal);

}

syncPrivate()

syncShared()

Figure 6.18: DMA communication driver’s entry calls for a Write access

Communication Driver for DMA In case, the burst transfer is realized
through the DMA hardware component, the protocol gets more complex and
there are some additional issues which should be taken into consideration.
Typically, a DMA Transaction consists of a number of Transfers, which in turn
consists of a number of Moves. A Move is the basic action of the DMA read-
ing from one (or group of) memory cell(s) and writing to another. In order to
launch a burst transfer through the DMA, every tile first configures the DMA to
send on a specific channel (with each channel having a fixed-priority as in the
case of the Aurix DMA [Infineon Inc., 2013] as we will see in Sect. 7.4). In ad-
dition, the tile configures the DMA transfer parameters (number of moves per
transfer, datawidth etc.). As already stated, we assume that the configuration
phase of an interconnect through one tile does not interact with the transfer
phase of other tiles (in Aurix experiments in Sect. 7.4 we have used the System
Peripheral Bus (SPB) exclusively for the configuration phase, and the System
Resource Interconnect (SRI) exclusively for the transfer phase).

Typically, within the DMA component an arbitration mechanism is sup-
ported which grants access to the channel with the highest priority (for e.g. the
Aurix DMA supports a Fixed Priority (FP) arbitration scheme). After that the
Transfer (in Aurix DMA up to 64 bytes per transfer by a channel width of 32

6.5. IMPLEMENTATION CONCEPTS 141

syncShared()

syncPrivate()

Actor
(fCLB)

DMA
Intercon1

(SPB)
FIFOBuffer

(SENS2fCLB)

writeMove()

arbitrate()

Intercon2
(SRI)

1

readMove()

2

arbitrate()

readMove()

4

Compute() 5

CanGet()

dequeue()

writeMove()

3

Tile
Shared

Memory

configureDMA()

configureDMA()

Figure 6.19: Sequence diagram of a DMA Read burst transfer

bits) is launched in an atomic way, so that re-arbitration is only done when the
Transfer is finished. At this point, the Transfer of a low priority channel is sus-
pended if a higher one is active. If the current request wins the arbitration the
DMA starts moving memory blocks from/to the shared storage resource (from
the LMU in the Aurix platform) from/to local memories through an another
interconnect (SRI in Aurix experiments Sect. 7.4).

By utilizing the DMA for realizing inter-processor communication, some
changes occur on the procedure done in Fig. 6.17. One major difference is
that an extra configuration of the DMA (configureDMA()) is done every time
the actor needs to access a (number of) variable(s) located in the shared stor-
age resource. Another difference, is the memcopy action of different locations
from/to the shared storage resource to/from the local private storage resource.
Fig. 6.18 shows the extensions needed to realize the DMA write burst-transfer.

In order to better understand the DMA inter-processor communication se-
mantics which are the same for both write and read accesses, let us con-
sider the simple read access in Fig. 6.19. We assume that the producer ac-
tor (SENS actor see Fig. 7.11 in Sect. 7.4) already wrote data on the shared
FIFO buffer (SENS2fCLB) allocated in the shared memory (LMU in Fig. 7.11)

142 CHAPTER 6. MODEL-BASED DESIGN FLOW

and now we will show how the communication semantics for one read Trans-
fer look like. Since the shared FIFO buffer is mapped to the shared memory,
every tile communicating through this FIFO buffer should first synchronize
its local buffer with the shared one before updating (enqueuing/dequeuing)
it. The consumer actor (fCLB) when activated, launches a synchronizing ac-
tion (syncPrivate() 1©) to synchronize first the local private buffer with the
shared one. Within 1© (thin/blue line), the DMA configuration parameters are
sent through Intercon1 (SPB see Sect. 7.4) to the DMA. Next, arbitration is done
at the DMA, which in turn by successful arbitration launches a Transfer on In-
tercon2 (SRI see Sect. 7.4) where a number of read Moves and write Moves take
place (bold/green lines 2©). After finishing the read Transfer, a local copy of
the shared FIFO buffer (SENS2fCLB) has been established in the local mem-
ory of the corresponding tile and it can now be checked whether there are
enough data in the buffer or not (CanGet() 3©). If there is not enough tokens
in the buffer then procedures 1©, 2© and 3© are redone after some time (see
Wait(t) in Algorithm 2). If there is enough tokens to read, the needed tokens
are dequeued from the local buffer 4©, and another synchronization mechanism
(syncShared()) is executed which has the same behavior as syncPrivate()
with the difference that now data are moved in the opposite direction in the
Transfer i.e. from the local private FIFO to the shared one. The above steps are
repeated for every inter-processor communication of the actor’s input ports.
After reading all input ports the actor computes internally (Compute() 5©),
and then writes the outputs on the output buffers. If these are mapped to the
shared memory, the same procedure as the (above described) read transaction is
done with the difference that now the buffer is checked whether it has enough
capacity (CanPut()) or not, and if this is the case tokens are written to the
buffer (via enqueue()).

According to above DMA semantics, it is now possible (if not through hard-
ware primitives prohibited) that after a consumer actor synchronizes its local
private buffer with the shared one and while it is busy checking/updating it,
that the producer actor writes to the shared one. In order to avoid Write After
Write (WAW) conflicts on the shared FIFO buffers, we restrict for simplicity
the size of the buffer (during a DMA burst transfer) to be always equal to the
maximal total tokens’ size transported during a burst-transfer by either the con-
sumer or the producer actor when activated. In the case, where the producer
actor has a larger rate than that of the consumer then it will block when trying
to write more data than those produced in one activation (since the buffer’s
size is set to be equal to the size of number of tokens produced by the pro-
ducer in one activation). If on the other side the consumer actor has a larger
rate than that of the producer actor, then the producer actor will always block
when trying to produce more tokens not consumable by the consumer actor in

6.6. SUMMARY 143

one activation (since the buffer’s size is set to be equal to the size of number
of tokens being consumed by the consumer in one activation). Also in the case
the rates are equal, the same happens and the integrity of the transported data
is achieved.

6.6 Summary

In this chapter, we have presented a model-based design flow which enables
taking models implemented and simulated in the widely-spread simulation
framework Simulink as an input model. With the help of the translation from
Simulink (specific Simulink models subjected to restrictions) to SDFGs (see con-
tribution C3-1), we enable the state-based RT analysis of Simulink control ap-
plications when implemented and run on a specific MPSoC and the usage of
Simulink powerful features such as code-generation.

Furthermore, we gave a short description of our SDF2TA tool which au-
tomatize some of our design flow steps and facilitates the application of our
state-based RT analysis (see contribution C3-2). We also pointed out to the
maintainability features (which was enabled through the usage of Ecore mod-
els) of SDF2TA and other features allowing the application of extra analysis
methods supported by the well-known SDF3 tool [Stuijk et al., 2006] to the SD-
FGs modeled in SDF2TA.

In addition, we integrated a VPIL simulation (see contribution C3-3) to our
design-flow which verifies Simulink control applications running on a concrete
MPSoC, in the loop with the Simulink environmental model preserving the
causality of the golden model and enabling a simulation-based verification of
their timing and functional requirements. The proposed simulative approach
contributes to the verification of timing requirements of critical control algo-
rithms through a non-invasive measurement technique of their execution times
on a cycle-accurate level. Using these measurements, design decisions can be
made with minimized costs and shorter development times in early cycles. This
technique also has the advantage of obtaining an average RT analysis in case no
WCET analyzer tools are still mature for novel processors (as for the case of the
Aurix see Sect. 7.4), or in the case of large parallel systems which are beyond
the scope of being analyzable by formal methods. Moreover, a seamless func-
tional verification via the semi-automated virtual-platform-in-the-loop V&V of
the implemented MPSoC application is supported.

Finally, we elaborated on implementation issues which are faced by a de-
veloper and gave hints on how to implement the SDFGs with their different
scheduling mechanisms and how to realize access to shared storage resources
with the help of communication drivers, all being conform to our assumptions
in Chap. 4.

Chapter 7

Evaluation

In this chapter, we describe the set of experiments conducted to demonstrate
the viability of our state-based RT method. We start by providing evidence
for the correctness of our state-based RT method, mainly showing how the TA
templates’ implementation described in Chap. 5, can be validated with the help
of UPPAAL1 model-checker. Next, we will take a look at how far can our RT
method scale in terms of actors, tiles, arbitration protocols and BCETs/WCETs
interval variations. Afterwards, the possible scalability improvement when ap-
plying the methods presented in Sect. 7.2.1 is demonstrated. Following this,
we will evaluate the tightness improvement of the RT results achieved via our
approach when analyzing a benchmark SDFG application compared to an an-
alytical method from [Shabbir et al., 2010]. Finally, we demonstrate our model-
based design flow on an industrial use-case and calibrate the timed automata
described in Sect. 5.1 with the timing properties of the Aurix platform and
the timing values of the automotive case-study to extract timing bounds of
the application execution time. All experiments were done based on a burst-
transfer inter-processor communication (except the single-beat transfer map-
ping in Sect. 7.4) and were conducted on a 64-core (AMD Opteron(tm) 6282 SE
Processor) platform running at 2.6 GHz with about 500 GB of RAM.

7.1 Increasing Confidence in Correctness of Approach

Typically, for a RT analysis method, there are two main sources of doubt (ac-
cording to [Kästner Daniel and Christian, 2014]) which can alleviate the confi-
dence of the obtained results: the logic doubt associated with the validity of the
reasoning and the epistemic doubt associated with uncertainty about the under-
lying assumptions. For e.g. in measurement based RT methods usually logic

1UPPAAL 4.1.19 (rev. 5648) 32-bit version, has been used in the experiments.

145

146 CHAPTER 7. EVALUATION

and epistemic doubts remain [Kästner Daniel and Christian, 2014], since a full
test coverage is in most cases not achievable and because of the fact that they
are either invasive or require an extra hardware setup (see our VPIL simulation
in Sect. 6.4).

In our system model definition in Chap. 4, we have described how our
abstractions are based on sound ground using sound over-approximations on
the execution times in the SUA. This sound abstraction together with the theory
of timed automata which provides a formal methodology to check the SUA
model rigorously, eliminate the logic doubt. It is important to note here, that
since these over-approximations depend mainly on the WCET analyzers, these
analyzers are assumed to be maturely verified and their results can be trusted
(as shown in [Kästner Daniel and Christian, 2014]).

After establishing the soundness of our RT analysis methodology through
sound abstraction, it remains to show the correctness of the SDF2TA imple-
mentation and that of the underlying SUA model. A short description is given
in Appendix A.1 showing how possible errors are prohibited in the SDF2TA
tool with the help of defensive programming mechanisms. We will use model-
checking constructs to gain confidence in the correctness of our TA templates’
implementation representing a certain SUA (including the SDFGs and the hard-
ware platform).

Correctness Validation of TA Templates using Model-checking In the Ap-
pendix A.1, we elaborated on how to detect, avoid/correct syntax and compati-
bility errors (for e.g. if the Ecore model is not compatible to the timed-automata
templates implementation). The question remains, whether the implemented
timed-automata templates capture correctly the semantical behavior of the SUA
or not i.e. how can we gain confidence that we are analyzing the right system
model?

One advantage of the state-based RT method presented in this work using
the well-established academical and industrial model-checking tool UPPAAL,
is that it enables to determine whether some timing and logical properties of
the considered system are satisfied or not. Some of these properties which will
help us to answer the question above, are described in the following:

(a) General Properties:

1. Is the system deadlock free? The network of TA representing a SUA
can deadlock in UPPAAL when no progress (neither by waiting for
some time nor by a transition between locations) can be achieved in
the state space. The reason could be a bug in the implementation
of the TA templates for e.g. a committed state which has no valid
transition to leave the state, or array out of bounds access error.

7.1. INCREASING CONFIDENCE IN CORRECTNESS OF APPROACH 147

The property checking the absence of deadlocks in the TA imple-
mentation is primitively supported by UPPAAL and can be done by
checking the following TCTL property (see Sect. 2.5.2.1):

A[] not deadlock (7.1)

If the network of TA is verified to be deadlock free, this doesn’t
mean necessarily that our SUA is deadlock free. Take as an exam-
ple the case where a consumer actor is blocking on a FIFO buffer
(because there is not enough tokens to consume for e.g. when the
producer is only activated once instead of twice) and after some
time it retries the access, but the producer actor remains blocked
because of a faulty schedule. In this example, UPPAAL doesn’t de-
tect a deadlock of the timed automata since these themselves show
a progress in time. In order to still assure the absence of deadlocks
other properties should be checked (see below liveness property of
SDFGs).

2. May-Happen-in-Parallel (MHP) Analysis for actors: MHP analysis
checks for two given actors whether or not there is a possibility
where these are executed at the same time. MHP analysis could
be useful to optimize mapping decisions (for more information c.f.
[C. Chang, 2015]).

E<> Actor_a0.Compute and Actor_a1.Compute (7.2)

which simply checks if eventually a state can be reached where both
actors Actor_a0 and Actor_a1 are executing in parallel (both in
the Compute state see Fig. 5.5).

3. Resource Contention: Is there any contention on the shared commu-
nication resource? This property could be very interesting, since it
might be that according to a specific mapping and different execu-
tion times, that actors never compete on the shared communication
resource at the same time. In this case, it doesn’t matter which ar-
bitration protocol is used, the timing bounds will be independent
from the arbitration protocol. Another issue here if there is con-
tention at all at any time i.e. whether or not other requests from
other tiles are issued and block while the current tile is performing
an inter-processor communication on the communication resource.

sup: interconnect.buffer.length (7.3)

Above property searches for the maximum buffer length of the in-
terconnect for all paths. If the result is higher than one then we

148 CHAPTER 7. EVALUATION

know that contention exists and arbitration plays a role in the cur-
rent mapping otherwise (if equals to one) no parallel access from
two tiles or more to the shared communication resource ever oc-
curs, and the arbitration scheme does not influence timings of the
SUA. Now, the question remains whether or not one access of some
tile(s) was still blocked/delayed through another one, the fact which
we can find out by checking the following property:

E<> (interconnect.FIFOBlocked or interconnect.TransOK)

and (interconnect.buffer.length>=1) (7.4)

which simply checks if eventually a state can be reached where
the interconnect TA is in one of the finishing states (FIFOBlocked
or TransOK see Fig. 5.7) and there is one or more access(es) pend-
ing in the buffer. If satisfied, then it indicates that communication
contention took place.

4. Maximum Number of Shared Resource Accesses (MNC): The MNC is de-
fined as the maximal number of actor’s accesses to a shared resource
among all activations of this actor in an iteration. This property was
used in Sect. 7.3 to calculate the worst-case response time of every
actor, depending on its MNC, communication latency and execution
time. This enabled the assessment of tightness improvement of our
method compared to a pessimistic analytical RT method.

In order to obtain the maximal/minimal access numbers on the
shared communication resource, we introduce a recording ar-
ray countAccess in the communication driver timed automaton,
which counts for every actor its accesses to the resource (which is
incremented in every transition with an interconnect access from
the state IssueComm to state WaitComm see Fig. 5.6). The coun-

tAccess variable of every actor is reseted after every firing of this
actor and at the end of every iteration of the SDFG. The MNC in-
cludes in addition to the access itself also extra accesses caused by
the blocking mechanism in case the actor blocks. With the help of
the following TCTL, we can let UPPAAL find the min/max resource
access number of some actor ai mapped to a tile tj:

sup:commdrivertj.countAccess[ai] (7.5)

inf:commdrivertj.countAccess[ai] (7.6)

7.1. INCREASING CONFIDENCE IN CORRECTNESS OF APPROACH 149

(b) Correctness of SDFG Model

5. SDF semantics: Do the SDF semantics hold? In order to answer this
question, we take use of the fact defined in Def. 5.2.1 which states
that an SDFG after an iteration, obtains its initial state. This means
that after one iteration (executing the actors according to the rep-
etition vector see Def. 4.2.4) the number of tokens of all channels
of an SDFG should be retrieved to the initial state. After imple-
menting the SDFG on the MPSoC, the above statement is of course
only verifiable if we can guarantee that any of the actors after be-
ing activated according to the repetition vector, does not get extra
activated during the time where one of the actors belonging to the
same SDFG (for e.g. the sink actor) still didn’t finish its execution
in the current iteration2. The above issue can’t be guaranteed by
SDFGs which are non-sensitive to external events, but can be guar-
anteed for periodically-triggered SDFGs. By a triggered SDFG, if
we choose its trigger period large enough (greater than or equal to
its maximal latency), then it can be guaranteed that the source actor
cannot start again to execute (it does not get triggered again) unless
the sink actor has completed its activation, and thus after one iter-
ation the initial tokens’ distribution is retrieved. In a first step (this
step is only for validation reasons, afterwards the event trigger can
be of course removed), we assume that all SDFGs under validation
are sensitive to periodic events. Now, we utilize the end-to-end la-
tency observer timed automaton (see Fig. 5.10) for a specific SDFG,
if the semantics are correct then an iteration of the SDFG should be
completed when the end-to-end latency observer reaches the Fin-
ish state and all buffers in this moment should have restored their
initial states (with initial number of tokens). If this is not the case
then we know that the SDF semantics hold no more.

For an SDFG observed through the end-to-end latency observer
obs, let D = {d1, d2, d3, d4} be the set of edges in the SDFG, with all
edges having no initial tokens except d2 having two initial tokens,
then the following property must be satisfied as described above:

A[] obs.Finish imply(d1.len==0) and (d2.len==2)

and (d3.len==0) and (d4.len==0) (7.7)

2For e.g. in case of pipelining feature of MPSoCs, it could be that after completing one
iteration, the initial token distribution for an SDFG is violated. Take as an example the SDFG
in Fig. 2.4, Actor1 won’t be blocked if the buffer is large enough (larger than 2× consumption
rate of Actor2) and it can produce a different token distribution than the initial one (assuming
initial tokens’ number of 0 on channel a1-to-a2) until the last instance of Actor4 is finished.

150 CHAPTER 7. EVALUATION

6. Maximum Buffer occupancy: this property can obtain for every buffer
(representing a channel) in the SDFG, what is the maximum buffer
occupancy [Skelin et al., 2015]. This in turn can give confidence that
the implemented SDFG semantics hold if we know a priori the max-
imal occupation of all buffers in the SDFG.

Let bi be the buffer to be analyzed, the maximum buffer analysis
can be obtained by utilizing the supremum operator of UPPAAL:

sup: bi (7.8)

7. Liveness property: does every actor finally come to an execution? An
SDFG can deadlock (as mentioned above) if the number of delay to-
kens (on corresponding channels) are not set right (in a cyclic SDFG)
or if the buffer sizes are not chosen right or if the execution order
of actors in an SDFG does not respect the reference schedule. In
this case, even if the SDFG is blocked, the TA templates continue
to progress (as we already described above P1) and that’s why the
primitive supported deadlock check of UPPAAL is not able to detect
this kind of deadlocks.

For a correct execution of an SDFG having the source and sink actors
asrc, asnk, the following liveness property should be valid:

(asrc.Finish) --> (asnk.Finish) which is equivalent to:

A[] (asrc.Finish imply (A<> asnk.Finish)) (7.9)

which mainly checks if always after a source actor have been exe-
cuted, eventually a sink actor is executed for all paths. Another way
to check if every actor ai is always eventually executed on all paths
is:

A <> ai.Finish (7.10)

(c) MoA Correctness

8. Liveness property: is there any state in which tiles’ requests are
served?

In the following TCTL, we are able to check for every tile ti whether
or not the request is eventually being served:

(CommDriverti.IssueComm)-->(CommDriverti.CommFinishedOk)

(7.11)
which states that every time a tile issues (through the communi-

cation driver) a communication request to the storage resource, this
request would be eventually served (see Fig. 5.6).

7.1. INCREASING CONFIDENCE IN CORRECTNESS OF APPROACH 151

9. Arbitration: is there any situation in which the highest priority mes-
sage does not win the arbitration? This property helps verify the
implementation of the arbitration mechanisms of the shared com-
munication resources.

In order to validate that arbitration schemes in the TA implementa-
tion do not exhibit any errors, either already tested C implementa-
tions of the arbitration are imported (UPPAAL has a C like syntax
[Bengtsson and Yi, 2004]) or these can be simulated and verified to
check their behavior. In addition, model-checking can be utilized
to validate them, either by constructing special observers or by in-
troducing extra states. For e.g. for the fixed-priority arbitration,
extra error states (with corresponding variables) are introduced to
the interconnect, and if the error state is never reached, then the im-
plementation is correct. This means that the following TCTL must
never be satisfied:

A <> interconnect.Error (7.12)

For the fixed-priority arbitration, we must first guarantee that
there are multiple requests in the interconnect buffer (where
MultipleRequests is true if interconnect.buffer.length>1)
and that after arbitration, the tile with the highest priority (tileh)
gets the access. If MultipleRequests is true and the arbitration re-
sult is not tileh (in the state IdentifyAccess see Fig. 5.7) then the
interconnect goes into Error state.

We have seen above how with the help of a set of TCTL statements we are
able to validate whether or not the SDF semantics hold. In addition we can
check if the SUA deadlocks and if the arbitration algorithms are implemented
correctly. Moreover, we presented extra TCTL statements which help us verify
other interesting properties (see P2, P3, P4, P6) of the SUA which are typi-
cally not supported by other RT analytical approaches (see contribution C2-3
in Chap. 1).

Apart from the model-checking based validation, we also use
an empirical evaluation (as typically done by WCET tools such as
aiT [Ferdinand and Heckmann, 2004], chronos [Li et al., 2007] or SWEET
[Lisper, 2014]) where the analytically-determined upper bounds for an in-
dustrial use-case in Sect. 7.4 are compared with measured timings (obtained
through our VPIL cycle-accurate simulation). This empirical check must insure
that the measured WCET times are always below the ones computed by our
state-based RT method.

152 CHAPTER 7. EVALUATION

7.2 Evaluation of Scalability

As the state-explosion problem is one of the main bottlenecks faced when using
state-based RT methods with model-checking, we will give an insight about the
state-space scalability of our approach in this section. For every experiment, we
have obtained (with the help of UPPAAL) the number of states explored since
states (in contrary to analysis time) are independent from the target computer
where the analysis is run. First we will analyze the scalability with respect to
the number of actors and tiles, then we will analyze the state-space behavior
when using a specific arbitration protocol and finally we will vary the inter-
val between best-case execution times of actors and their worst-case execution
times to assess their effect on the state space. It is important to note that the
experiments conducted in the following sections were made with fixed param-
eters of the same application (e.g. the JPEG encoder which is replicated in
the experiments) and with a typical mapping for every experiment. The main
goal was to give an insight how good our state-based method scales for a typ-
ical application with a shared-memory communication. It is obvious that the
choice of different mappings, or integrating JPEG encoder application with an-
other application of different timing behavior could produce totally different
state-space results, since such a choice could lead to a larger number of states
to be explored because of the possibly more complex contention and blocking
behaviors.

Next, the possibility to improve the scalability of our approach will be ex-
amined by applying the concepts illustrated in Sect. 5.4, once by applying clus-
tering and once by enabling composability.

7.2.1 Possible Scalability w.r.t number of Tiles and Actors

Fig. 7.1 depicts the SDFG of a JPEG encoder. The JPEG encoder SDFG consists
of four actors: a macro-block sampling (get MB) which parses an input BMP
file and sends 3 macro-blocks (each 16x16 pixels) to a color conversion (CC)
actor. The CC actor can fire if 128 pixels are available on its input edge and
sends 64 pixels to the discrete cosine transform (DCT) actor which in turn

768 128 64 64 64 64

get_MB CC DCT VLC

JPEG Encoder

Figure 7.1: SDFG of a JPEG encoder (based on [Shabbir et al., 2010])

7.2. EVALUATION OF SCALABILITY 153

sends with each firing 64 pixels to the variable length coding (VLC) actor. In
order to test the scalability of our method, we took the JPEG encoder SDFG
which is non-sensitive to external events and used its parameters (see Tab. 7.6,
only WCET are considered) to instantiate the timed-automata templates. In
addition, the polling-wait time was set to 500 cycles in the case of blocking on
shared FIFO buffer. Furthermore, the arbitration is set to a FCFS arbitration
(since as we will see in Fig. 7.3, FCFS arbitration induces the largest state-space
complexity), and all other parameters were fixed throughout the experiments
to typical values. We then varied the number of JPEG SDFGs in the system
and the number of tiles. For every variation, we have recorded the number of
states explored needed to obtain the worst-case period of the SDFG which its
sink actor is the last to be executed on a tile.

The results achieved are shown in Fig. 7.2 and indicate a better scalabil-
ity than in [Gustavsson et al., 2010, Lv et al., 2010] which hardly scaled beyond
two cores where altogether two tasks run on two cores and communicate
through a simple spin-lock. As seen in Fig. 7.2, our approach has the po-
tential to scale up to 96 actors mapped to 4-tiles platform, 196 actors on 3-tiles
platform and even 320 actors running on a 2-tiles platform3 without running
into state-space explosion.

We notice that the number of states explored in Fig. 7.2 grows quite linearly
(with some exceptions esp. in case of the red, square curve of 3-tiles, or in case
of 40 actors running on 4-tiles platforms) as expected after the optimizations
(see Sect. 5.4.1) with the growing number of actors (including their channels
and data variables). This fact is due to the optimization of the previous im-
plementation where instead of instantiating for every new introduced actor a
new timed automaton, one timed automaton is used to represent the group of
actors mapped to a tile. Major exceptions to the above observation occur in
the case of actors running on a 3-tiles platform (see red, square curve). Since
in most of the experimented cases depicted in this curve (except in the cases
where 48 and 96 actors were analyzed) the number of actors cannot be equally
distributed among the three tiles, the partitioning of actors of the same SDFG
was mandatory. This clearly lead, in some cases (depending on the partition-
ing and mapping), to more contention (e.g. in the case of 16 actors) and thus
to an increasing number of states to be explored and, in other cases, to a less
contention (e.g. 32 actors running on a 3-tiles experiment has less states to be
explored than the experiment with 16 actors). The same reason is also behind
the fact that 40 actors running on a 4-tiles platform requires more state space
than 48 actors running on a 4-tiles platform. On the other side, when increas-

3The suggested TA optimizations in Sect. 5.4.1 were directly implemented in SDF2TA and led
to improvements in terms of analyzable actors (see Fig. 7.2) compared to our first experiments
with the same setup (published in [Fakih et al., 2013a]) where analyzing above 96 actors on a
2-tiles platform lead to memory exhaustion.

154 CHAPTER 7. EVALUATION

1000

10000

100000

1000000

10000000

8 16 32 40 48 96 196 320

N
u

m
b

e
r

o
f

St
at

e
s

Number of Actors

2 tiles

3 tiles

4 tiles

Figure 7.2: Influence of number of tiles and actors on the state space

ing the number of tiles, we must introduce for every tile (independent of the
number of actors running on it) a new timed automaton (see Sect. 5.4.1) which
leads to the exponential growth of the state space observed in Fig. 7.2 when
increasing the number of tiles.

In general, the scalability of our approach would be also influenced by the
kind of IPC or by the variably large values of WCETs timings and the mapping,
but again the choice of the set of experiments discussed in this section, is only
to show the potential scalability under a realistic use-case configuration. The
analysis time ranged between 0.1 s and 48 hours for the experiments which ter-
minated successfully. The verification run was aborted by the tool with 8 actors
mapped to 5 tiles after 2 weeks of analysis, as the memory was exhausted4 (Out
Of Memory: OOM).

7.2.2 Scalability w.r.t Arbitration Protocols

In this section, we will analyze how the scalability of our state-based RT method
is affected with the arbitration protocol choices. The following experiments
were done for the same application (JPEG encoder) as in Sect. 7.2.1. For every
variation, we have obtained (with the help of UPPAAL) the number of states
explored. In addition, we have chosen a burst transfer as the inter-processor
communication style since this scales better than single-beat especially for an

4When using the 64 bit version of UPPAAL on a host PC with a large RAM, there is an
improvement potential to analyze applications on more than 4 tiles, but the analysis time would
still remain long since only one CPU is utilized by the UPPAAL model-checker.

7.2. EVALUATION OF SCALABILITY 155

0

10000

20000

30000

40000

50000

60000

70000

FCFS RR FP TDMA

St
at

e
s

Ex
p

lo
re

d 8 Actors

16 Actors

32 Actors

40 Actors

48 Actors

64 Actors

(a) Different arbitration strategies on 2-tiles

0,00E+00

2,00E+05

4,00E+05

6,00E+05

8,00E+05

1,00E+06

1,20E+06

1,40E+06

1,60E+06

FCFS RR FP TDMA

St
at

e
s

Ex
p

lo
re

d 8 Actors

16 Actors

32 Actors

40 Actors

48 Actors

64 Actors

(b) Different arbitration strategies on 4-tiles

Figure 7.3: Influence of different arbitration protocols on the state space

application with high port rates (which is the case for a JPEG encoder). Fur-
thermore, we fixed the execution time of every actor to a fixed-point interval
(WCET = BCET) in this experiment.

Fig. 7.3 shows two sets of experiments which we have made, once varying
the arbitration on 2-tiles platform (see Fig. 7.3a) and once on a 4-tiles platform
(see Fig. 7.3b). Results in Fig. 7.3 show that the FCFS protocol, for all test-
cases (with only one exception in case 8 actors are analyzed on 4-tiles with RR
arbitration), induced the largest state space to be explored by the model-checker
and the number of states explored gets largely increased when the number
of tiles is increased compared to other protocols (as seen in Fig. 7.3b). This
observation can be illustrated with the fact that FCFS arbitration is a heavily
state-dependent protocol (see Sect. 2.3.3.1).

Another interesting issue is that other arbitration protocols (than the FCFS
protocol) have the potential for enabling RT analysis of actors running on more
than 4 tiles5. Yet we only tested scalability w.r.t number of tiles in Sect. 7.2.1
only for FCFS protocol to see how far our method scales with the most complex
arbitration.

7.2.3 Scalability w.r.t BCET/WCET Interval Variation

In this section, we will analyze the effect of BCETs/WCETs intervals of variable
sizes on the state space of our RT analysis method. In order to that, we took the
same application (JPEG encoder) as in Sect. 7.2.1, and then fixed the arbitration
to FCFS arbitration (since FCFS induces the largest state-space complexity see
7.3). We then varied the difference between WCET/BCET execution times of

5For e.g. the same experimental setup of that in Sect. 7.2.1 was done for 8 actors running on
6 tiles, only the arbitration protocol was changed to TDMA. Model-checking the WCP property
needed about one second to finish and the number of states explored was only 33789 states.

156 CHAPTER 7. EVALUATION

1000

10000

100000

1000000

10000000

100000000

1E+09

St
at

e
s

ex
p

lo
re

d

Interval variations of the execution times of actors

8 Actors

16 Actors

32 Actors

Figure 7.4: Influence of interval variation (2-tiles platform) on the state space

every actor and the number of actors (in Fig. 7.4) being run on a 2-tiles platform)
and obtained the number of states being explored in each case when searching
(this time) for the maximal latency of an SDFG.

We notice in Fig. 7.4 that the interval difference has a large effect on the
number of states to be explored by the model-checker (which is a typical bot-
tleneck of a state-based analysis methods see Sect. 2.5.2.1). For e.g. by only en-
larging this interval from 0 to 100 for all 32 actors (see green triangular line in
Fig. 7.4) running on a 2-tiles platform, the number of states explored increases
exponentially (about a factor of 700 times) from 105167 to 73188499 states.
For a 4-tiles platform our approach could not scale beyond 16 actors when the
interval difference is increased only by 10 leading to a memory exhaustion.

Another interesting issue can be seen in Fig. 7.4 for this specific SUA,
when enlarging the execution time interval from [WCET, WCET + 50] to
[WCET, WCET + 100] for all actors. While a significant increase of the number
of states can be observed for this transition, for all number of actors experi-
mented, other intervals’ variation depicted in that graph had a less significant
impact (see Fig. 7.4). This is due to the contention induced by this specific exe-
cution time interval [BCET, BCET + 100], where more blocking/waiting penal-
ties lead to a more complex state space than other intervals.

7.2. EVALUATION OF SCALABILITY 157

Table 7.1: Execution times of actors of MP3 decoder (in cycles taken from
[Stuijk et al., 2006])

huffman req0 req1 reorder0 reorder1 stereo aliasreduct0

twcet 473 279 279 139 139 148 27
tcom 4 3 3 2 2 8 2

aliasreduct1 IMDCT0 IMDCT1 freqinv0 freqinv1 synth0 synth1

twcet 27 1424 1424 473 473 3733 3733
tcom 2 3 3 2 2 1 1

7.2.4 Possible Scalability Improvement with Actors’ Clustering

In the following, we will demonstrate the achievable improvements (increas-
ing the number of actors being analyzable) by applying the clustering method
(presented in Sect. 5.4.2) on a multimedia use-case. Consider the MP3 decoder
example (from SDF3 benchmark) in Fig. 2.6 (to the left). Suppose that we want
to run the MP3 decoder on a 2-tiles platform. For this purpose, we map actors
freqinv0 and freqinv1 to tile2 and all other actors to tile1. The execu-
tion times (taken from [Stuijk et al., 2006]) are shown in Tab. 7.1. In addition,
in case of blocking on shared FIFO buffers a polling-wait time of 50 cycles is
assumed. The clustering in Fig. 2.6 (to the right) can be made according to
the clustering method explained in Sect. 5.4.2, resulting in an MP3 decoder
SDFG of 7 actors only (originally it was 14 actors). Notice that since all six
actors: IMDCT0, IMDCT1, freqinv0, freqinv1, synth0, synth1 en-
gage in an inter-processor communication, they are excluded from the cluster.

The timing requirement of the MP3 decoder requires that decoding one
frame (in one iteration) should not exceed a maximal time of 26 ms (with a 500
MHz clock). Tab. 7.2 shows results obtained from the analysis of the clustered
and non-clustered MP3 decoder. Both show the same timing behavior and
achieve one frame decoding in a maximal period of 19.4 ms which clearly fulfills
the requirement. In terms of analysis time the clustering gives a percentage
improvement of 48.6% and in terms of states being explored an improvement of
4.3 %. Interestingly, for the above experiment even a minor improvement of the
states explored causes a major improvement of the analysis time. This issue was
often observed by other experiments conducted in this thesis, which seems to
be a property of search algorithm implemented in the UPPAAL model-checker.

7.2.5 Possible Scalability Improvement via Temporal Segregation

In the following, we will show how enabling composability in the MPSoC (as
described in Sect. 5.4.3) by extending the MPSoC with an extra TDMA hypervi-
sor hardware component (first published by the author in [Fakih et al., 2013b]),

158 CHAPTER 7. EVALUATION

can improve the scalability of our approach (increasing the number of actors
being analyzable). The same results can be achieved when using the alter-
native method with the help of customized timer for realizing composability
(presented in Algorithm 4). This hypervisor achieves a resource virtualization
using a static time slot per SDFG cluster. The hypervisor switches circularly
between the time slots and takes care of the temporal and spatial segregation.
Each SDFG cluster can access all platform resources until its time slot is over.
When switching to the next slot, the hypervisor takes care of storing the local
state of all platform resources of the terminated slot and restores the local state
of the next time slot to be activated. We assume a worst-case context switch
overhead h when switching between different slots.

Suppose that Application Cluster 1 and Application Cluster 2 (see Fig. 7.5)
were developed independently to be executed on the same MPSoC. Now, an
Original Equipment Manufacturer (OEM) designer has the task to integrate
both applications on the same MPSoC extended with the hypervisor compo-
nent, such that they still meet their timing requirements. Above use-case is
typical in nowadays industrial domains (such automotive and avionics) where
platform-based design is indeed widespread.

In the following experiment, we intend to achieve the following goals:

1. Demonstrate how our proposed method (see Sect. 5.4.3) can be applied to
above use-case

2. Assess the performance degradation in terms of hypervisor’s switching
delay h

3. Show how this extension (together with our RT method) enables the anal-
ysis of larger applications with larger number of actors.

Tab. 7.3 shows the parameters of the eight artificial SDFGs, we constructed
(with the help of SDF3 generate extension of SDF2TA) to achieve the goals
above. The actors’ worst-case execution times were generated randomly (uni-
formly distributed) within a range of [5..500] cycles. We have set the ports’ rates

Table 7.2: Analysis results of clustered and non-clustered MP3 decoder

Analysis time
(in s)

States
explored

WCP
(in ms)

without Clustering 148 281996 19,452
with Clustering 76 270326 19,452

% improvement
with Clustering

48.6% 4.13%

7.2. EVALUATION OF SCALABILITY 159

Table 7.3: Composable RT analysis: experiment setup (in cycles)

SDFG A B C D E F G H

Actors’ Nr. 10 10 10 6 10 10 10 6
Channels’ Nr. 9 9 9 5 9 9 9 5
Ports’ Rates [1200,2400] [200,600] [220,440] [100,200] [500,2000] [300,600] [700,1400] [150, 300]

Table 7.4: Composable RT analysis results on 2-tiles platform (WCP in cycles)

Cluster1 Cluster2

SDFG A B C D

WCPreq 160 000 160 000 160 000 160 000
WCPisol 54 529 59 895 85 001 44 236
WCPnoCompos 140 863 117 439 141 734 119 466

WCPcompos 144 896 +(2×h)

Avg. Performance
degradation %

2,8%
+

(0,0014 ×h)%

23%
+

(0,0017×h)%

2,2%
+

(0,0014×h)%

21,2%
+

(0,0016×h)%

deliberately high, in order to impose more contention on the bus. High rates
lead to longer communication time of the active actor, and this in turn leads
to longer waiting time of other actors trying to access the bus. In addition,
all edges of all SDFGs in all mappings were mapped to the shared memory
in order to achieve a high contention on the bus, and a polling-wait time of
50 cycles is assumed in case of blocking on shared FIFO buffers. The bus has
a bandwidth of 32 bits/cycle, with a FCFS arbitration protocol and all tokens’
sizes were set to 32 bits. Moreover, all SDFGs were scheduled according to a
static-order SDFG scheduler.

Figure 7.5: Integrating two SDFG clusters on a 2-tiles virtualized platform

160 CHAPTER 7. EVALUATION

Table 7.5: Composable RT analysis results on 4-tiles platform (WCP in cycles)

Cluster1 Cluster2

SDFG A B C D E F G H

WCPisolation 135 400 171 000 135 400 69 600 107 850 64 500 66950 37 300

WCPcompos 278 850 +(2×h)

In the first experiment (see Fig. 7.5), we configured our timed-automata tem-
plates to evaluate the mapping of each cluster in isolation (see left of Fig. 7.5
with cluster1: SDFG A, SDFG B and cluster2: SDFG C, SDFG D) on the 2-tile
platform, each having a timing requirement (on the Worst-case Period: WCPreq).
The Worst-case Period results for every SDFG which were calculated in isola-
tion (WCPisol) with the help of our state-based RT method (see first step of the
two-tier RT method on top of Fig. 5.15) are shown in Tab. 7.4.

Next, we integrated the four SDFGs to run on the same MPSoC but with-
out the hypervisor component extensions. Again, we utilized SDF2TA to find
the new WCPnoCompos of every SDFG (see Tab. 7.4). We can observe an aver-
age percentage increase of 121% of the WCP of every SDFG, due to the large
contention and waiting times when integrating the two clusters on the MPSoC.

After that, we took use of the hypervisor extension, configuring two time
slots. cluster1 is assigned to slot1, and cluster2 are assigned to slot2 (see Fig. 7.5
right). The length of every slot (WCPmax) is equivalent to the maximum WCPisol

among the SDFGs assigned to this slot (slot1: 59895, slot2: 85001). The new
WCPs (WCPcompos) can be now calculated according to Eq. 5.6.

Results depicted in Tab. 7.4, show that all SDFGs will still respect their
requirements as long as h ≤ 7552 cycles.

Assuming a hypervisor delay h of 1000 cycles, a minor performance per-
centage degradation of average 14% can be observed in order to insure a tem-
poral and spatial segregation through the hypervisor (where the percentage
degradation is equal to (WCPnocompos

WCPcompos
− 1)× 100).

If we assume that our RT analysis method does not scale beyond 40 actors
mapped to a 4-tiles platform for this considered use-case with the specific map-
ping, then in order to demonstrate the scalability improvement of our proposed
extension, we consider the same set of artificial SDFGs presented above which
have in total 366 actors constituting cluster1, and another set of SDFGs (E, F, G
and H) constituting cluster2 also having in total 36 actors (see Tab. 7.3).

Each cluster was mapped on the same 4-tiles platform (without hypervisor)
and both were first analyzed in isolation with the help of our SDF2TA tool. Af-

6The same experiment would also be possible for clusters each having a maximal number
of 96 actors on a 4-tiles platform, since this number of actors was analyzable through our state-
based RT method (see Sect. 7.2.1) for the chosen JPEG SDFGs.

7.3. EVALUATION OF TIGHTNESS IMPROVEMENT 161

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

N
r.

 o
f

A
ct

o
rs

Nr. of Slots

2 Tiles

3 Tiles

4 Tiles

Figure 7.6: Potential scalability improvements with hypervisor extension

ter obtaining the WCPisol of the single SDFGs in isolation (see Tab. 7.5), we now
integrate the two clusters to run on the same 4-tiles platform with a hypervisor
having two slots: cluster1 was assigned to slot1 with the length 171000 cycles
and cluster2 to slot2 having a length of 107850. Afterwards, we calculated the
new WCPcompos of the single SDFGs according to Eq. 5.6 (see Tab. 7.5).

Results show that our composable analysis has the potential of significantly
increasing the number of actors being analyzable by our method but at the cost
of performance degradation. Obviously, we can now increase the number of
SDFGs that can be analyzed by increasing the number of slots managed by the
hypervisor.

Fig. 7.6 shows that the potential number of actors which can be analyzed by
our method increases linearly with the number of slots reaching up (assuming
the use-case has the same scalability behavior as the one in Fig. 7.2) to 3200
actors on a 2-tiles platform, 1960 actors on 3-tiles platform and 960 actors on
a 4-tiles platform when assigning these actors to 10 slots. Nevertheless, the
designer should be acquainted with the fact that by increasing the number of
slots the performance overhead of the single SDFG would be increased (for
Tab. 7.5 assuming h = 1000 an average increase of 256%) depending on the
context switch overhead h of the hypervisor and the summation nature of the
TDMA based analytical method (see Eq. 5.6).

7.3 Evaluation of Tightness Improvement

In this experiment, our goal is to make a comparison between the output of
our analysis method with that of a pessimistic analytical method considered

162 CHAPTER 7. EVALUATION

Sobel Filter

6 6 1 1

6 1

get_Pixel GX ABS

GY

6

1

6

6

1

1

JPEG Encoder

768 128 64 64 64 64

get_MB CC DCT VLC
768 384 384

τ1 τ2 τ3 τ4

τ5 τ6 τ8

τ7

Mem

Bus

Tile 2
τ2 τ6

Communication
Driver

Tile 1
τ1 τ5

Communication
Driver

Tile 3
τ3 τ7

Communication
Driver

Tile 4
τ8

Communication
Driver

τ4

Figure 7.7: Mapping of JPEG encoder and Sobel filter on a 4-tiles platform (S3)

in [Shabbir et al., 2010]. In their work, the authors calculated the worst-case
waiting times for resources with non-preemptive FCFS strategy by assuming
that all other competing actors mapped to this resource come to run before the
waiting actor. In our case, this means that for every tile (tile A) access to the
interconnect, it should be assumed that the actor with the maximal commu-
nicating time on every other tile runs to completion before tile A gets access
to the interconnect. The authors admit pessimistic results for large number of
applications. We will show in the following how pessimistic these estimations
can grow and how far our RT analysis method can tighten these estimations.

In order to do that, we use the system shown in Fig. 7.7 (depicting scenario
S3 in Tab. 7.7) consisting of two SDFGs mapped to a 4-tiles shared bus plat-
form and configured with the parameters listed in Tab. 7.6. twcet (in cycles) is
the WCET given by a static analyzer for every actor (values were adopted from
[Shabbir et al., 2010]). tcom (in cycles) is the communication time needed by ev-
ery actor firing to transport a number of tokens (each of size 32 bits) over a
bus with a bandwidth of 32 bits/cycle. First we configured the timed-automata
templates to evaluate different mappings and schedules of the considered SD-
FGs (see Tab. 7.7). All edges in all mappings were mapped to the shared mem-
ory in order to achieve a high contention on the bus (as seen in Fig. 7.7). In
addition, a polling-wait time of 500 cycles is assumed in the case of blocking
on shared FIFO buffers.

Table 7.6: Execution times of (in cycles taken from [Shabbir et al., 2010])

getMB CC DCT VLC getPixel GX GY ABS

twcet 13220 4446 20950 5420 320 77 77 123
tcom 768 192 128 64 12 7 7 2

7.3. EVALUATION OF TIGHTNESS IMPROVEMENT 163

Table 7.7: Static-order schedules experimented

Scenario Tile-1 Tile-2 Tile-3 Tile-4

S1 (getMB)(CC)6 (DCT)6(VLC)6 - -
(getPixel)(GX) (GY)(ABS)

S2 (getMB)(CC)6 (getPixel)(GX) - -
(DCT)6(VLC)6 (GY)(ABS)

S3 (getMB)(getPixel) (CC)6(GX) (DCT)6(GY) (VLC)6(ABS)

S4 (getPixel)(getMB) (GX)(CC)6 (GY)(DCT)6 (ABS)(VLC)6

To obtain the worst-case period duration (WCP) for an SDFG, the sched-
ule of the SDFG and the Worst-Case Response Time (WCRT) of every actor are
needed. In Sect. 5.3 we pointed out how the WCP can be computed using our
model-checking based approach. The WCRT for every actor can be calculated
analytically according to Eq. 2.3. For the pessimistic analytical method consid-
ered in [Shabbir et al., 2010], the waiting time twait of an actor A mapped to a
tile M by every activation is defined as follows:

twait = MNCA ×
N

∑
i 6=M

AWCTi, (7.13)

where MNC is the Maximum Number of Communication attempts that an actor
A (by one activation) can launch on the bus in a given period (see P4 in Sect. 7.1).
N is the number of tiles in the system, AWCTi is the Actor With the maximal
Communication Time (tcom) among the actors mapped to tile i (where i ≥ 0 and
i 6= M excluding the tile on which the actor A is mapped).

The MNC highly depends on the number of ports of the actor and on the
polling parameters (when blocking on a shared buffer). To achieve a fair com-
parison, we have extracted for every scenario in Tab. 7.7 the MNC of every
actor with the help of the model-checker (see Eq. 7.5) and used it to calcu-
late the WCRT of every actor according to Eq. 2.3. This guarantees that both
methods work with the same MNC for every actor.

For every scenario, we have calculated the WCP once using our model-
checking-based approach (MC WCP) and once with the help of the pessimistic
method (Pess. WCP). The analysis time of our method for the considered sce-
narios ranged from 0.15 sec (for the case of 2-tiles platform) to a maximal of
13 sec (for the case of 4-tiles platform). We define the percentage improvement
as ((Pess.WCP/MC.WCP)− 1)× 100 which describes how far our approach can
reduce over-approximation compared to the pessimistic worst-case bus delay.
Except for scenario S2 of the JPEG encoder, where the WCP estimated by our
method gave only a minor improvement of 0.1%, all other results in Fig. 7.8 in-
dicate significant tightness improvements of our approach over the pessimistic

164 CHAPTER 7. EVALUATION

1
7

8
4

5
0

1
7

8
6

7
1

2
0

1
2

9
2

1
4

2
5

1
5

1
3

8
1

1
5

1
5

1
2

1
5

1
4

4
8

1
5

0
4

4
4

3
6

7
1

1
2

3
7

0
3

3
9

2
0

1
6

0
6

6
7

9
3

5
9

1
4

5
0

4
7

1
9

8
7

6
0

7
0

5
0

5
3

5
4

9
1

0

2

4

6

8

10

12

N
o

rm
al

iz
e

d
 W

C
P

MC WCP

Pess.WCP
 [3][Shabbir et al.]

Figure 7.8: Worst-case period (WCP) analysis results

method. The minimal improvement in S2 is due to the fact that the waiting
time (twait) of JPEG actors mapped to tile-1 by every bus access was minimal
(12 cycles, compared to the Sobel filter actors in S2 where twait was 768 cycles).
Another factor was that the MNC of all actors in S2 was the smallest among all
other configurations (ranging from 1 to 2 communication attempts on the bus,
where as in S1 the MNC of the actors ranged from 2 to 56 access attempts).
The maximum improvement was achieved in S4 by the JPEG encoder (up to
300%). The reason behind this is that the scheduling and mapping of the actors
caused a very high MNC by the actors (ranging from 3 to 127). In this case,
the waiting penalty by every actor communication according to the pessimistic
method was also high (ranging from 256 to 960 cycles).

7.4 Industrial Applicability: Motor Control Case-Study

In the following, we will go through the steps of our model-based design flow
(presented in Chap. 6) applied on a motor control case-study. First we describe
both the input model and the MPSoC. Afterwards, two possible mappings of
the control application on the hardware platform are implemented, one sup-

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 165

porting a burst-based inter-processor communication and the other one sup-
porting a single-beat IPC. Next, we utilize our VPIL cycle-accurate simulation
(see Sect. 6.4) to assess the timings of the application when run on the target
platform. Finally, we use our SDF2TA tool to perform a RT analysis of the given
application and compare the simulation with the analysis results.

In this experiment, we aim to achieve the following goals:

1. Apply our state-based RT approach on an industrial use-case showing
that the assumptions (made in Sect. 4.1.2) needed for enabling our RT
analysis are applicable on a modern multicore platform (the Aurix Tri-
Core).

2. Demonstration of our model-based design flow steps on the given use-
case.

3. Comparison of the simulative (obtained via VPIL simulation) and formal
(obtained via SDF2TA) timing results, assessing over-approximation and
showing that the measured WCET times are always below the ones com-
puted by our SDF2TA tool.

7.4.1 Motor Control Simulink Model

In our case study, the motor control algorithm is modeled and implemented in
Simulink abstracting away the hardware properties of the underlying platform.
This enables the tuning of the control parameters depending on the simulation
results of this model.

As seen Fig. 7.9 (top), the motor FOC (Field Oriented Control) algorithm
[Park, 1929] is modeled and simulated with an abstract DC motor model (de-
veloped in [MotorBrain Consortium, 2013]). These models will be used as ref-
erence models for subsequent implementation steps. Besides the FOC, other
functions are also implemented on the ECU. CALIB FAST and CALIB SLOW

blocks realize all functions for the assessment and calibration of sensor data.
Voter and Monitor observe the system functionality and sensor values and
compare them with normative behavior [MotorBrain Consortium, 2013]. In the
case of anomaly detection, the monitoring mechanisms switch the motor con-
troller into a Safe state (e.g. limit the requested torque to a safe band or switch-
ing off the motor completely).

7.4.2 Motor Control Simulink Model to SDFG Translation

The next step is to translate the Simulink model into an equivalent SDFG (ac-
cording to the translation procedure defined in Sect. 6.2). The result is shown in
Fig. 7.9 (bottom). For our use-case, we consider the Simulink at the second level

166 CHAPTER 7. EVALUATION

SENS

fCLB FOC

sCLB

MON ACT

VOT

s_I_SENS_MON_sc

11

11

12

12

2

2

5

13

4

4

13

s_T_SENS_sc

s_T_SENSs_I_SENS_MON

VCU_CMDS

s_FOC

s_FOC_SENS

f_OFFSET_VEC

s_MON

s_MCU_STM

s_POS_SENS_CLB

b_POS_SENS_STATUS
5

s_I_ST_CLB

6

6

6

6

s_MCU_STM
2

2

1

1

19

19

5s_FOC_SENS_sc

5

s_FOC_SENS_sc

s_FOC_SENS_sc

VCU_CMDS

s_MCU_STATUS

9

9

4

4

12
12

12

12

s_MCU_STM

2

2

4

4

11

11

9

9

1
b_EMERG_STOP

1

Figure 7.9: Motor control Simulink model and its corresponding SDFG

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 167

hierarchy (seen in the top of Fig. 7.9), which simplifies the translation process
from Simulink to SDFG (compared to a more granular level). The actors fCLB,
sCLB, FOC, VOT, and MON represent the blocks CALIB FAST, CALIB SLOW,
FOC, VOTER and MONITOR respectively. The two actors sensor (SENS) and
actuator (ACT) actors were introduced to realize the communication with the
motor model and for optimization reasons.

Except for the output port with identification 5 (which forwards the Pulse
Width Modulation (PWM) outputs to the motor), all other output ports were
used for debugging and that is why these were omitted in the resulting SDFG.
The actor representing the output port 5 after translation is renamed as ACT

actor, whereas actors representing input ports (1 to 6) were all clustered in SENS

actor to enable an efficient RT analysis. All edges in the Simulink model can be
found in the SDFG, with the difference that ports are replicated if more than
one transition goes from the same port in order to conserve the SDF semantics
(see for e.g. by VOTER output port s MCU STM results into 3 output ports in
the VOT actor in the SDFG each outputting the same tokens when activated).
The ports’ rates depicted in Fig. 7.9 (bottom), represent the number of tokens
transported and consumed by the actors7. Since we have a cyclic SDFG, and
in order to avoid deadlocks, we initialize the edges s MCU STM, s MON, and
b POS SENS STATUS with initial number of delay tokens (just as in Simulink
unit-delays8 blocks are used).

7.4.3 Aurix TriCore platform

In specific, we will describe here the configuration and setup of the Aurix TC275
platform (see Fig. 7.11) to be compliant to the architectural constraints of our
model-checking based performance method.

The MotorBrain team [MotorBrain Consortium, 2013] designed the Aurix
platform for a nine-phase brushless DC motor as part of an electric car design.
Fig. 7.11 shows the most relevant parts of the Aurix platform which we will
be considering in our MoP to obtain the timing bounds of the FOC control
application (see Fig. 7.9). The ECU is based on a multicore architecture con-
taining safety features required in the automotive domain. The main processor

7In the Simulink model, generic arrays of data are transported, but not always all data of
the array are consumed. In the translation process an optimization was made and the rate is
set equal to the effectively consumed/accessed tokens in the consumer actor, which requires
a knowledge of the implementation inside of the corresponding Simulink block (see for e.g.
VCU_CMDS packet in the case of SENS2FOC the transported number of tokens is 4 while the
transported number of tokens is equal to 11 in case of SENS2VOT edge).

8Unit-delay blocks are used in Simulink as seen in Fig. 7.9, to avoid deadlocks. These can be
used in the translation to identify at which edge in the equivalent SDFG the delay tokens should
be placed.

168 CHAPTER 7. EVALUATION

is an Infineon Aurix with three TriCore cores (TC1.6P [Infineon Inc., 2013]9).
Among others, the ECU board contains interfaces (not shown in Fig. 7.11) for
controlling motor power electronics via PWM and Analog-to-digital converters
(ADCs) to measure motor current and rotational position which will not be
considered in this thesis.

In order to make the final software implementation predictable, a smart
configuration of AURIX multicore platform is performed (compliant with our
MoA constraints in Sect. 4.1.2). Looking into the specification of the Aurix plat-
form, we observe that (A5, A6) are fulfilled. We disabled the supported caches
(A6) and utilized the available linker script to link and map the code/data to
the local instruction/data memory of the PE (to limit interferences among the
cores) and to place only shared FIFO buffers (used for inter-processor commu-
nication) in the shared memory (LMU) (A7). A8 is also valid since the cross-
bar System Resource Interconnect (SRI) (supporting a fixed-priority arbitration)
will be used in the experiments as a typical bus (since no parallel accesses to
more than one slave are allowed in the experiments). Moreover, we simply re-
strict the contention on the I/O resources and bridges between different cores
in our implementation (see A10).

The main challenge we encountered was that the Aurix platform does not
support uninterruptable burst transfer, neither on the crossbar System Resource
Interconnect (SRI), nor on the System Periphery Bus (SPB). In order to still be
able to enable burst transfer of messages larger than the bus data width, we
exploited the available Direct Memory Access (DMA) component, which sup-
ports burst-transfer IPC. Please refer to Sect. 6.5.3 for a description of the im-
plementation details of DMA-based IPC semantics. The Aurix platform shown
in Fig. 7.11a configured for a burst-transfer IPC (with the help of the shared
DMA controller), can be described according to Def. 4.2.7 as follows:

EPBurst = ({Tile0, Tile1, Tile2}, {SRI, SPB}, {DMA}, {},
{PFlash, LMU, Environment Interface},
((Tile* 7→ (SRI, PFlash),

Tile0 7→ (SPB, Environment Interface)),

(Tile* 7→ (SPB, DMA)),

(DMA 7→ (Tile*, SRI, LMU)), ())

9In this work, it is assumed that all three cores are identical which is not the case in the real
Aurix (two TC1.6P and one TC1.6E). This was done for compatibility reasons with the Aurix
virtual-hardware platform which makes this assumption (see Sect. 7.4.6).

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 169

The Aurix platform configuration for single-beat IPC as shown in Fig. 7.11b is:

EPSingle = ({Tile0, Tile1, Tile2}, {SRI, SPB}, {}, {},
{PFlash, LMU, Environment Interface},
((Tile* 7→ (SRI, PFlash),

Tile0 7→ (SPB, Environment Interface),

Tile* 7→ (SRI, LMU)), (), (), ())

In the case of a burst transfer, the Aurix DMA component supports two
kinds of arbitrations: DMA channel arbitration and DMA switch arbitration. By a
DMA channel arbitration, if two channels are active at the same time, the chan-
nel with the highest number wins the arbitration (Fixed Priority (FP)). The
DMA switch arbitration takes place in case concurrent SRI accesses from multi-
channels are requested. In this case, the Move Engine of the channel with the
highest number wins the arbitration. We observe that the tile which is assigned
to the highest channel gets the highest priority and wins the arbitration, on both
internal arbiters of the DMA. This means that it would be sufficient to abstract
the DMA internal double arbitration into a single Fixed-Priority arbitration.

After winning arbitration, the Transaction10 control set of the wiring channel
is written to a so-called sub-block active channel. Then the Transfer is launched in
an atomic way, so that re-arbitration is only done when the Transfer is finished.
At this point, the Transfer of a low priority channel is suspended if a higher one
is active. In our implementation, we made sure that all exchangeable data do
not exceed the maximum data which can be transported by one Transfer of the
DMA (maximum 16 moves by data width of 4 bytes = 64 bytes transportable
in one Transfer) so that we can guarantee that no interruption of the transaction
happens. By doing that, we can abstain from the explicit modeling of the DMA
preemption mechanism and A9 is now also fulfilled.

7.4.4 Mapping

As mentioned above, we will consider two different inter-processor communi-
cation styles for the motor control use-case. In the first style (single-beat see
Fig. 7.11b), for realizing inter-processor communication between actors which
are mapped to different tiles, we use the SRI and LMU resources, while in the
second style (burst transfer see Fig. 7.11a) the SPB, DMA, SRI and LMU are
used.

10Typically, a DMA Transaction consists of a number of Transfers, which in its turn consists
of a number of Moves. A Move is the basic action of the DMA reading from one (or group of)
memory cell(s) and writing to another.

170 CHAPTER 7. EVALUATION

SENS

fCLB FOC

sCLB

MON

ACT

VOT

s_FOC_SENS_sc

s_FOC_SENS

s_MCU_STM

SENS2VOT1

s_MCU_STM

s_MCU_STM

2

2

2

2 2

SENS2sCLB0

SENS2sCLB1

s_FOC_SENS_sc

sCLB2MON

VCU_CMDS

s_I_ST_CLB

b_POS_SENS_STATUS

s_MON

f_OFFSET_VEC

12

12

12 12

12

12

11

11

1

1

9

9

9

9

19

19

17

4

4

11

11
5

s_FOC

6

6

10

5

SENS2VOT0

17

fCLB2MON

10

6

6

2

(a) Burst-transfer-aware SDFG

SENS

fCLB FOC

sCLB

MON

ACT

VOT

s_FOC_SENS_sc

s_FOC_SENS

s_MCU_STM

SENS2VOT

s_MCU_STM

s_MCU_STM

2

2

2

2

2 2

SENS2sCLB

s_FOC_SENS_sc

sCLB2MON

VCU_CMDS

s_I_ST_CLB

b_POS_SENS_STATUS

s_MON

f_OFFSET_VEC

12

12

12 12

23

1

1

9

9

9

9

19

19

17

4

4

16

16

s_FOC

6

6

10

17

6

fCLB2MON

10

23

6

(b) Single-beat-aware SDFG

Figure 7.10: Mapping-aware SDFG

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 171

LMU
PFlash

SRI

SPB

DMA

Shared FIFO buffers for
inter-processor
communication
SENS2fCLB, SENS2sCLB0,
SENS2FOC, SENS2sCLB1,
SENS2VOT0, SENS2VOT1,
VOT2sCLB, VOT2MON,
MON2VOT, sCLB2VOT,
MON2fCLB, fCLB2MON,
sCLB2fCLB,FOC2ACT

M/S

M

S S

Tile0

D I

M/S

M

Tile2 M/S

M

Tile1

I

M/S

M

Startup Code

ACT SENS FOC VOT sCLB MON

D

S

Sensor
Addresses

Actuator
Addresses

I

Environment
 Interface

1

4

3

5

2

fCLB

D

Private FIFO buffers
sCLB2MON,
fCLB2FOC, fCLB2VOT,
VOT2FOC

(a) With burst-transfer inter-processor communication via DMA

 LMU PFlash

SRI

SPB

S S

Tile0

D I

M/S

M

Tile2 M/S

M

Tile1

I

M/S

M

Startup Code

ACT SENS FOC VOT sCLB MON

D

S

Sensor
Addresses

Actuator
Addresses

I

Environment
 Interface

1 5

fCLB

D

(b) With single-beat inter-processor communication via SRI

Figure 7.11: Mapping the motor control SDFG to Aurix platform

172 CHAPTER 7. EVALUATION

Fig. 7.11 shows the two styles with a possible mapping11 of the motor con-
trol use-case:

1. Mapping actor(s) SENS and ACT to Tile0, fCLB, FOC and VOT to Tile1,
sCLB, and MON to Tile2.

Obviously, for performance reasons, edges fCLB2VOT, fCLB2FOC,

VOT2FOC, sCLB2MON0 and
sCLB2MON1 should be mapped to the local private memories of their cor-
responding tiles (fCLB2VOT, fCLB2FOC, VOT2FOC to private memory
of Tile1 and
sCLB2MON0, sCLB2MON1 to that of Tile2) while all other edges (since
they invoke inter-processor communication) are mapped to the shared
LMU, which can be accessed via interconnects either through the con-
figuration (SPB, DMA, SRI, LMU) as shown in Fig. 7.11a or through
configuration (SRI, LMU) as depicted in Fig. 7.11b.

Fig. 7.10 shows mapping-aware SDFGs12, where depending on the inter-
processor communication style, changes are applied on the SDFG edges
(with corresponding ports’ rates) to fit this style. Tab. 7.8 depicts the
transformations applied for each style. In the case of a DMA-based inter-
processor communication style, a burst transfer of 16 tokens per transfer
restricts the maximum transferable data to 12 tokens (each of 32 bytes
size) per transfer13. The burst-transfer aware SDFG shows how at every
edge a maximal amount of 12 tokens (the number of tokens transfered on
every edge is depicted in brackets), whereas by the single-beat style this
restriction does not exist, allowing edges with rates beyond 12.

2. Calculating a static-order schedule for the SDFG as follows:
(SENS)(fCLB)(FOC)(VOT)(sCLB)(MON)(ACT)

3. No need for choosing a hierarchical scheduling strategy since we are only
considering one SDFG.

7.4.5 BCET/WCET Analysis of Software Components on single PEs

With the help of Simulink Coder (R2011-b), we are able to generate target C
code from the Simulink motor-control model which then manually customize to
make compliant to the SDF semantics of the translated SDFG (see pseudo-code

11This mapping was suggested by the MotorBrain team [MotorBrain Consortium, 2013] for
its parallelization advantages.

12In both figures, sCLB2MON0, sCLB2MON1 are merged (for optimizations purpose) to one
edge (sCLB2MON) with the number of tokens being summed up. This optimization can be made
preserving semantics, since these two edges are mapped to the same private memory.

13Four tokens are reserved for the FIFO queue implementation-specific control tokens.

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 173

Table 7.8: Burst-aware and single-beat-aware SDFG transformations

Original SDFG Burst-aware SDFG Single-beat-aware SDFG

b EMERG STOP (1)
s MCU STATUS (5)
VCU CMDS (11)

SENS2VOT0 (6)

SENS2VOT1 (11)
SENS2VOT (17)

s I SENS MON (11)
s T SENS (12)

SENS2sCLB0 (11)
SENS2sCLB1 (12)

SENS2sCLB (23)

s FOC SENS sc (5)
b POS SENS CLB (5)

fCLB2MON (10) fCLB2MON (10)

implementation of SDFGs in Sect. 6.5). The generated C code is cross-compiled
using the Hitex compiler (v4.6.2.0 [Hitex Inc., 2013]) and can be executed on the
Tricore 1.6P processors.

In this step, each SDF actor’s C code generated from Simulink and
cross-compiled for the platform should be statically analyzed to obtain its
BCET/WCET when executed on the single processors of type TC1.6P. The
same analysis should be performed for the communication drivers of the plat-
form that are used to establish the FIFO-style message passing communica-
tion between actors. Yet, available commercial WCET analyzers (such as aiT
[Ferdinand and Heckmann, 2004]) still do not support the RT analysis of the
SW components on novel processors in novel platforms such as the Aurix (up
to the date the experiments were made). Due to this fact, we used (minimal/-
maximal) execution times measured when running our software components
on an accurate virtual-hardware platform model of the Aurix (see Sect. 7.4.6).
Thereby the virtual platform enables early flexible and accurate measurements
of the system timings without having the hardware available. These execution
times are then passed over and annotated in the formal MoP representation
and used to configure the TA templates of our analysis framework from (see
Sect. 7.4.7) in order to validate the SUA against its real-time requirements.

With the above decision made, care should be taken when considering the
results achieved via our formal analysis, since these are no longer valid upper
bounds on the application execution time, as they depend on measured timings
instead of WCET timings. But since the annotated timings in the formal MoP of
SDF2TA (see Sect. 6.4) are the worst-case measured timings bounds, our claim
stating that “the measured WCET times should always be below the ones computed by
our SDF2TA tool” still holds, and will be shown in the following section.

174 CHAPTER 7. EVALUATION

Host PC

Matlab WorkSpace

Simulink Model

TC1.6P

TC27x VP

Sensor1 = *(REG32 sensorAddress);
Sensor2 = …

SensorActor.c

EnvironmentInterface PM

sensorAddress actuatorAddress

startMatlab syncMatlab closeMatlab

Intercept function call(s)

Sensor(s)

Actuator (s)

Cross Compilation

SPB

IRQ

Pause/
Continue

startMatlab

closeMatlab

syncMatlab

Engine.h

Figure 7.12: VPIL simulation setup for Aurix platform (based on
[Poppen, F. and Grüttner, K., 2012])

7.4.6 VPIL Simulation for Aurix TriCore

In order to realize the VPIL simulation (see Sect. 6.4), we use a cycle-accurate
virtual platform (VP) of the Aurix TC275 (Aurix TC27x VSP v1.6 2 Release),
which has been developed by Infineon using the Synopsys Virtualizer-CoMET
(G2012.06-SP1 [Synopsys Inc., 2015]) tool. Especially for new hardware plat-
forms, like the Aurix, the virtual platform enables early V&V of the SW imple-
mentation and the approached hardware design, instead of waiting for the first
engineering samples to be developed, manufactured, and delivered.

For code cross-compilation, we use the Hitex compiler (v4.6.2.0
[Hitex Inc., 2013]) which enables the execution of the generated code of the
motor control SDFG, according to the mapping seen in Fig. 7.11 on the TriCore
1.6P processors. The VPIL framework infrastructure is depicted in Fig. 7.12.
On the left side, only relevant components to the VPIL of the Infineon TC275
VP can be seen (only Tile0 can be seen, the other two tiles are not depicted
for visualization clarity purposes). We extended the Aurix VP by develop-
ing a EnvironmentInterface Peripheral Model (PM) (written in a PM C++ API of
Virtualizer-CoMET tool) and connected it to the System Peripheral Bus (SPB).
Attached to the simulated bus of an instruction-set simulator of the TC1.6P
processor model, the PM enables the exchange of sensor(s) and actuator(s) data
with the Matlab/Simulink model via memory-mapped IO. Since the Environ-
mentInterface PM occupies an address space in the TC275 simulated system on
chip, any read/write transaction to this address space on the SPB bus is for-
warded to Matlab/Simulink using Mathworks engine API for data exchange.

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 175

All values exchanged had a single-precision floating-point types.

The single steps of the bi-simulation are described in the following: first,
all the VP components are initialized. When initialized, the EnvironmentInter-
face PM calls a defined function from engine.h library (startMatlab())
to launch an instance of the Simulink model. The Simulink model exe-
cutes till it reaches a synchronization point (defined through a sample time
of the algorithm: 100 µs) where it automatically pauses (time pausing mod-
ule: top right of Fig. 7.12). The EnvironmentInterface PM detects this pause
(syncMatlab()) and it gets the current sensor(s) values from the Simulink
motor model. Since the used virtual-platform framework (Virtualizer-CoMET)
supports built-in Function Tracing with cycle-accurate time measurement ca-
pabilities, it is not necessary in this case to use our generic interrupt-based
time measurement method presented in Sect. 6.4. Instead two synchroniza-
tion techniques between the top-level Simulink model and the virtual-platform
framework are now possible: either Tile0 polls some register(s) at the PM,
till sensor(s) data are available or the PM component issues an interrupts to
notify Tile0. The activated actors on other tiles can then get the sensor values
from the sensor actor running on Tile0 which communicates exclusively with
the EnvironmentInterface PM. The updated actuator values are sent to back to
the actuator actor which forwards them to the EnvironmentInterface PM. During
software execution, the end-to-end execution time which is the time from the
moment where the sensor(s) data is received until the moment where the last
actuator was updated (including the inter-processor communication and syn-
chronization) can be recorded. After the execution completion of the control-step
at the VP implementation level, the EnvironmentInterface PM sends the updated
actuator values back to Simulink (calling syncMatlab()). At the same time,
it wakes up Simulink to resume the execution of another control-step. This
procedure can be iterated until the desired number of control-steps has been
executed and the bi-simulation is then terminated (calling closeMatlab()).

7.4.6.1 Simulation Results

Fig. 7.13 shows the functional results of the VPIL simulation done for one given
scenario which is triggered by setting the requested torque to 50 N.m . Sim-
ulating 10000 control-steps (1 sec simulation time) with basic sampling rate of
100 µs took 944 sec (15.7 min) of real time. This means that we need 15 minutes
for every test-case, which is a reasonable time, taking into consideration that
the virtual-platform model is a very accurate one. The measured values plot-
ted together with the reference top-level Simulink model results are shown in
Fig. 7.13, where only the outputs of the FOC component were considered. The
reference FOC model actuator values (dotted line) and the measured actuator

176 CHAPTER 7. EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

s_duty_cycles_A (Measured vs. Reference)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

s_duty_cycles_B (Measured vs. Reference)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

Time (s)

s_duty_cycles_C (Measured vs. Reference)

Measured
Reference

Figure 7.13: VPIL simulation functional results (for one test-case) of the refer-
ence duty cycles (A, B, C) output values of the 3-phase FOC at Simulink level
(violet/dashed) and the measured ones at the virtual-platform level (blue/non-
dashed)

values (thick solid line) show exactly the same results14. Thus, the functionality
of the generated code mapped to the multicore platform has been successfully
verified against the golden reference model in Simulink for the given scenario.

Another important issue is to examine whether or not our timing require-
ment was satisfied. In order to answer above question, we need to answer the
following question: Is the end-to-end latency of the application starting from
reading sensor values, executing the SDFG application till updating the actua-
tor values always less than 100 µs15 or not?

In the following, we will analyze the implementation of two inter-processor
communication styles and give the measurements’ results. For this we uti-
lized the function tracing tool (VPviewer) in CoMET-Virtualizer to get a trace
the duration of single functions’ execution on the TC275 virtual platform. We
first implemented the inter-processor communication using the DMA controller
(with a fixed-priority arbitration) as shown in Fig. 7.11a. In step 1© the SENS

actor polls for new sensor data which are interfaced with an environment in-
terface (more details about this are found in Sect. 6.4). As soon as the sensor
data are available, the SENS actor propagate these values through the DMA by
writing to corresponding buffers (e.g. SENS2fCLB, SENS2sCLB). To perform

14In Fig. 7.13, the outputs were of a 3-phase FOC controller, but since the 9-phase FOC control
algorithm consists of 3× 3-phase FOC, the validation is done similarly.

15This requirement was the basic timing requirement imposed by the Motorbrain Team.

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 177

Table 7.9: Timing measurements of the motor control application (in cycles with
a 300 MHz clock)

Operation CALIB SLOW FOC VOTER MONITOR CALIB FAST SENS ACT

tcomp [811, 844] [41, 1397] [231, 1389] [78, 255] [223, 247] [344, 344] [34, 34]
tcomsingle 839 290 1031 716 588 1114 207
(with 32 bits/transfer)

tcomdma 2680 1072 3216 2144 2144 3216 536
(with 512 bits/transfer)

end-to-endsingle [20, 25] µs
end-to-endburst [60, 90] µs

these transactions, Tile0 first configures the DMA through SPB in step 2©.
Afterwards, in 3© and 4© the DMA copies the values of the sensors stored in
the local memory of Tile0, to the LMU corresponding locations.

Fig. 7.11b shows the single-beat inter-processor communication procedure,
with step 1© and step 5© remaining the same as in burst-transfer IPC procedure.
Instead of using the DMA, the actors now write/read directly to/from the
shared FIFO buffers through the SRI crossbar switch. The SRI also uses a fixed-
priority arbitration scheme (where the tile with the least id has the highest
priority) that arbitrates after every data word (of size equal to 32 bits) transfer.
Before writing or reading to/from the FIFO buffer, every actor checks a variable
named size, to see if enough space/data is available. If this is not the case,
polling-wait time (of 3454 cycles for the burst IPC and 348 cycles for the single-
beat one16) is used to wait until space/data is available.

Tab. 7.9 depicts the results of the timing measurements which were
the outcome of a series of test-cases (mainly defined by Motorbrain team
[MotorBrain Consortium, 2013]) conducted on the corresponding implementa-
tions. Some of these test-cases were stress tests which had the role to stress
the single actors in order to obtain maximal-execution times in the simulation
on the one side, and to invoke others for obtaining minimal ones on the other
side. We found out through the measurements obtained (see in Tab. 7.9) that
the end-to-end latency in the case of a burst-transfer varied between 60 and
90 µs while in the case of a single-beat implementation it varied between 20
and 25 µs, showing a high improvement compared to the burst-transfer one.
This means that the timing requirement is fulfilled, at least for the simulated
test-cases, according to the simulative RT results.

Please note that tcomdma is large due to the overhead of the DMA controller
(with its synchronization and software driver overheads). For more information
about the simulation parameters please refer to Appendix B.1

16The polling-waiting time value in the case of burst transfer is about ten times larger than
that of the single-beat transfer. This is due to the implementation-specific timing requirement
imposed by the considered DMA to wait for extra time before being able to receive any config-
urations.

178 CHAPTER 7. EVALUATION

7.4.7 SDF2TA RT Results with different Communication Styles

In this section, we will describe how we utilized our SDF2TA tool to obtain
upper and lower bounds on the execution times of the two implementations
described above (for details see Appendix B.2). For the RT analysis of the
burst-transfer based implementation the following further assumptions were
made:

B1 Assume worst-case communicating time on SPB while setting up the DMA.
This means that if any tile initiates the configuration of the DMA through
the SPB, it must be assumed that the other two tiles are doing the same,
and thus must wait for the maximal time delay before getting the config-
uration completed (which is equal to the sum of the response times of the
active actors on the other two tiles). This leads indeed to more pessimistic
results, but allows us to abstract from modeling the SPB and simplifies
our MoP state space which should be explored in our model-checking
based performance analysis method.

B2 During a DMA access on the SRI, no other master is allowed to access the
SRI. With this, we are able to simplify the SRI model. The simplified SRI
model adds the burst’s transport delay of the SRI to the overall DMA
delay (for details see Appendix B.2).

By doing above assumptions for the burst-transfer implementation (see
Fig. 7.11a), we only need one interconnect timed automaton for modeling the
DMA-based IPC, annotated with both the latency delays of the DMA and the
SRI and configured with the DMA specific arbitration (see Appendix B.2). In
this case, the delay of the DMA configuration on the SPB can be merged with
the delay of the communication driver and annotated to the communication
driver timed automaton. Similarly, for the case of a single-beat implementation
(see Fig. 7.11b), also one interconnect timed automaton is needed but this time
this automaton is configured by the timing delays of the SRI and its arbitration.

We configured our SDF2TA tool with the simulative measurements (of the
actors) and the annotations of the hardware latencies (bus delay and memory
accesses, for detailed annotations please refer to Appendix B.2) and evaluated
the two different styles (see Sect. 7.4.4) of the considered motor controller use-
case. The obtained RT results are depicted in Tab. 7.10. We notice that in case
of the DMA implementation, the model-checker was able to find a violation of
the real-time requirement of the motor control application (of 100 µs) exhibiting
an end-to-end latency of 115, 7µs. Unfortunately, the analysis of the single-beat
implementation through our RT method for the full ranged execution times’ in-
tervals of every actor (see Tab. 7.9) lead to memory exhaustion. The end-to-end
latency values for the single-beat implementation in Tab. 7.10 were obtained

7.4. INDUSTRIAL APPLICABILITY: MOTOR CONTROL CASE-STUDY 179

Table 7.10: State-based versus simulative RT analysis results for single-beat and
burst-transfer implementations

Single-beat Burst-transfer

Simulative end-to-end latency [20, 25] µs [60, 90] µs
State-based end-to-end latency [19.4, 39.25] µs [70.8, 115,7] µs

% Overapproximation
State-based vs. simulative

Up to 57% Up to 28.5%

for fixed-point intervals of every actor once by setting its execution time to its
worst-case measured execution time and once to its best-case measured execu-
tion time. Nevertheless, the obtained results for the single-beat implementation
with fixed-point intervals are far away from violating the imposed RT require-
ment. In addition, we observe a higher over-approximation (w.r.t simulation) in
case of the single-beat inter-processor communication style (up to about 57%)
compared to the burst-transfer (up to about 28.5%).

7.4.8 Discussion

Concerning the simulative results and keeping in mind that the whole applica-
tion execution should execute within a maximal time of 100 µs, we observe that,
in the case of a DMA based inter-processor communication, the measured end-
to-end latency is indeed high. This is due to the overhead of the DMA driver
software, the synchronization mechanisms and the hardware latencies which
are imposed at every transfer. Obviously the usage of a DMA is only reason-
able when large amount of the data is being transported. If this is not the case,
large execution time penalties would be imposed on the overall application
(compare tcomsingle and tcomdma in Tab. 7.9). Nevertheless, it is important to note
that the measurements obtained in the above experiment were the outcome of
a first-shot implementation, which still has much room for optimizations and
thus being capable of improving its efficiency drastically (for e.g. optimizing
the driver code of the DMA or the DMA synchronization mechanism which
was out of the scope of this thesis).

Concerning the RT results of our SDF2TA tool, the violation detected in
the burst-transfer implementation, was expected since the simulative timing
measurements of SUA, were already high (up to 90 µs) and very close to vi-
olate the timing requirement (of 100 µs). Another reason for this, is the over-
approximation of the DMA configuration timings in the analytical model (see
assumption B1). This assumption is also responsible for the result in Tab. 7.10
showing that the best-case (BC) the BCend2end obtained by SDF2TA was greater

180 CHAPTER 7. EVALUATION

than the one obtained via simulation, which definitely should not be the case.
Yet, relaxing assumption B1 would require the explicit modeling of the SPB to-
gether with an accurate representation of communication driver accesses from
different tiles trying to configure the DMA. Modeling the SPB is not an issue as
our method supports the modeling of multiple interconnects (see Sect. 5.2.5),
yet we still have chosen not to do that, since this special case would require the
modeling of the DMA complex communication driver at the instruction-level
granularity for the accurate representation of the configuration phase and con-
tention on the SPB. This in turn would lead to an unmanageable state space of
the SUA. Ideally, to overcome such an issue, the target platform can be built
enabling a unique access via a private interconnect of the PE to the DMA com-
ponent (as made in [Shabbir et al., 2010]).

As for the single-beat implementation, with the full-interval variation of the
actors’ execution times, SDF2TA fails to compute lower/upper bounds on the
end-to-end latency. This can be justified by the fact that in general, single-beat
style does not perform as well as the burst-transfer in terms of scalability, due
to the fact that the number of possible interleaving of different cores’ accesses
to the shared interconnect is much higher than that of the burst transfer. An-
other reason is the interval distance between best-case measured values and the
worst-case measured values which could lead very quickly to a state explosion
(as seen even in the case of 2-tiles Sect. 7.2.3).

Similarly, the higher over-approximation of the analytical results w.r.t sim-
ulative results (see Tab. 7.10) in case of the single-beat inter-processor commu-
nication style, is due to the fact that the number of possible interleaving of
different cores’ accesses to the shared interconnect is much higher than that of
the burst-transfer IPC.

7.5 Summary

In this chapter, we elaborated on the model-checking capabilities which enable
us to check more complex properties (see claim C2-3) than those analyzed by
analytical RT methods (see analytical Sect. 3.1.1.2). The model-checking TCTL
statements also allowed us to gain confidence whether or not the instantiated
timed-automata templates correctly capture the semantical behavior of a spe-
cific SUA through checking the validity of SDF semantics and other properties
such as liveness and arbitration protocols’ correctness.

The viability of our state-based RT method (see claim C4 in Chap. 1) was
approved by conducting a set of scalability tests which showed that our method
has the potential of scaling up to 320 actors on a 2-tiles platform and up to 96
actors on a 4-tiles platform (for the chosen use-case), significantly improving
the number of analyzable actors compared to related work (see claim C4-3).

7.5. SUMMARY 181

We have also shown how the clustering mechanism when applied can help
reducing the state space and the needed analysis time (in the MP3 example
4.3% less state space and 48.6% less analysis time). In addition, by enabling
composability and combining a TDMA-based SDFGs’ cluster scheduling with
our state-based method, the RT analysis of larger SDF applications (by TDMA
slot number of 10, potentially thousands of actors on a 2-tiles platform and
hundreds of actors on a 4-tiles platform if the use-case has the same scalability
behavior as the one in Fig. 7.2) with large number of actors is enabled.

In addition, our approach showed a significant precision improvement (up
to a percentage improvement of 300%) compared with the worst-case bound
calculation based on a pessimistic analytical upper-bound delays for every
shared resource access (see claim C4-2).

Finally, we have demonstrated the applicability of our model-based design
flow on an industrial use-case (see claim C4-1) using a multi-phase electric
motor control algorithm (modeled as SDFA) mapped to the Infineon’s TriCore
hardware platform with both the burst and single-beat inter-processor commu-
nication styles. We have shown that the upper bounds timing results estimated
through our approach were always a safe over-approximation of the measured
(through cycle-accurate simulation) ones and that our state-based RT analysis
was able to detect timing violation in the case where a burst inter-processor
style was chosen.

Chapter 8

Conclusion and Outlook

In thesis, we started from the observation that MPSoCs are emerging due to
their performance and power efficiency, and that the real-time analysis of ap-
plications with hard real-time requirements on such architectures is not an easy
task requiring novel RT analysis methods. The underlying research of this the-
sis tried to address the problem whether or not a state-based RT method is
applicable for RT analysis of multiple applications restricted to synchronous
data-flow model of computation when run on MPSoCs with shared communi-
cation resources. More centrally, we tried to handle the challenge of choosing
an appropriate abstract representation (in timed automata) of the SDFG appli-
cations, the MPSoC and their temporal behaviors and interactions, while still
enabling tight timing results’ prediction.

By combining the flexibility of timed automata with the efficiency of SDF
graphs, we enabled a state-based RT analysis of multiple hard real-time SDF
applications mapped to an MPSoC platform with shared communication re-
sources, considering variable access delays due to the contention on commu-
nication resources and utilizing different inter-processor communication styles
(such as burst/single-beat). This was realized through the implementation and
state-space exploration of a set of flexible timed-automata templates capturing
execution times boundaries of SDF actors and their scheduling decisions, map-
ping and utilization of MPSoC resources, shared communication resources ac-
cess protocols (including arbitration of various complexities) and local/shared
memories. These TA templates are also capable of representing a class of MP-
SoCs respecting (or which can be configured to respect) the constraints imposed
in this thesis (see Sect. 4.1).

Since the state-space explosion problem is the main bottleneck which faces
a system designer when utilizing state-based RT analysis methods, we exam-
ined methods which helped improving the state space of our implemented TA

183

184 CHAPTER 8. CONCLUSION AND OUTLOOK

templates. In a first approach, we proposed some optimizations on our TA
templates to minimize the state space. In addition, techniques from literature
such as clustering of actors and extending the MPSoC with extra hardware
components which guarantee temporal and spatial isolation of clusters of ac-
tors (combined with a TDMA clusters’ scheduler), were examined to be useful
in terms of improving the scalability of our approach and their application to
our system model was described.

The viability of our RT method was approved by conducting a set of scal-
ability tests which showed that our method scales up to 320 actors on a 2-tiles
platform and up to 96 actors on a 4-tiles platform, significantly improving the
number of analyzable actors compared to related work. We have also shown
how the clustering mechanism when applied can help reducing the state space
and the needed analysis time (in the MP3 example, 4.3% less state space and
48.6% less analysis time). In addition, by enabling composability and com-
bining a TDMA-based clusters’ scheduling with our state-based method, the
RT analysis of even larger SDF applications (e.g. by ten TDMA slots, poten-
tially thousands of actors on a 2-tiles platform and hundreds of actors on a
4-tiles platform) with large number of actors was demonstrated. Moreover, our
method showed a significant reduction in the worst-case response time predic-
tion (up to a percentage improvement of 300%), compared with the worst-case
bound calculation based on a pessimistic analytical upper-bound delays for ev-
ery shared resource access known from literature. In addition, our approach
enabled the analysis of more complex properties than those supported by tradi-
tional analytical RT methods such as the safety, liveness and reachability prop-
erties.

Finally, we have demonstrated the applicability of our suggested model-
based design flow being able to validate the timing requirements of a small
industrial use-case of a control algorithm (modeled as SDFA) of a multi-phase
electrical motor mapped to a TriCore-based Aurix hardware platform with dif-
ferent inter-processor communication styles (burst and single-beat IPC). We
have shown that the upper bounds timing results estimated through our ap-
proach were always (for the scenarios experimented) a safe over-approximation
of the measured (through cycle-accurate simulation) ones and that our state-
based RT analysis was able to detect a timing violation in the case where a
burst inter-processor style was chosen.

Overall, our approach opened up the way for using timed automata with
its model-checking features for the RT analysis for SDFGs running on MPSoCs
(see Sect. 3.1.2.3). In addition, our proposed RT analysis method feasibility
was demonstrated for small parallel systems, enabling their usage in safety-
critical real-time domain (such as avionics) providing formal guarantees on the
absence of timing hazards.

8.1. DISCUSSION 185

8.1 Discussion

The challenge which we faced when developing our state-based RT analysis
method, is how to choose the right abstraction level of the input model such
that the method scales to be able to analyze systems with adequate sizes and
at the same time can still obtain tight timing results. For this purpose, we
deliberately made the assumptions and restrictions described in Sect. 4.1 to
enable such a state-based RT analysis of SDF applications mapped to an MP-
SoC. While the applicability of our method was demonstrated in the conducted
experiments, there are still some issues that should be discussed. Restrictions
made in this thesis are considered to be very realistic for safety-critical domains,
for e.g. in the avionics domain. In these domains, costs resulting from adapt-
ing such restrictions are typically compromised as long as they help passing
the certification procedures imposed by authorities to approve the deployment
of the target MPSoC system. Nevertheless, the price to be paid, when imposing
such restrictions, could be critical in other domains.

While SDFGs (see A1) are commonly used for capturing the behavior
and implementation of signal-processing applications where infinite streams
of signal samples (which can be represented as tokens) are processed
[Schaumont, 2013], their expressiveness suffers from control-related limitations.
Some of these limitations were stated in [Schaumont, 2013], for e.g. stopping
and restarting an SDFG is not possible since an SDFG can have only two states
either running or waiting for input. In addition, reconfiguration of an SDFG
to be able to (de)activate different parts depending on specific modes is not
possible. Moreover, different rates depending on run-time conditions are not
supported. Also modeling exceptions which might require deactivating some
parts of the graph is not possible. However, emulating control flow within the
SDFG is possible even though not always efficient (c.f. [Schaumont, 2013]). In
addition, control-flow within an actor functionality is allowed, the fact which
enabled us translating event-triggered systems in Simulink into SDFGs (refer
to Sect. 6.2). We also relaxed some of the SDFG MoC limitations in this thesis
by enabling SDFG graphs to be sensitive to external periodic events allowing
us to support the RT analysis of periodic control systems.

Static allocations of actors (see A1), static-order and non-preemptive
scheduling (see A3) (incl. non-preemptive arbitration in A9, non-support of
hardware interrupts in A4) can be very costly in terms of resource utilization.
The fact which can lead to expensive and thus non-competitive designs. On
the other side, a variety of dynamic implementations which are reconfigurable
(e.g. adapting different allocations, scheduling for different situations) depend-
ing on dynamic changes in the environment cannot be supported when making
above restrictions. Also the fact that we restrict external events to be periodic
(see A2) decreases the flexibility of our approach to handle a set of applications

186 CHAPTER 8. CONCLUSION AND OUTLOOK

in the safety-critical domain such as those sensitive to sporadic events.
Moreover, constraining the application code to be mapped to the private

memory of the corresponding processor (see A6), leads to a limitation concern-
ing the size of private memories particularly for large applications. Neverthe-
less, recent research recommendations and current design trends are moving
in this direction where private tasks’ code is stored in private (growing-larger)
memories and only message-passing (see A7) is realized via communication
resources (esp. in the emerging NoCs designs). In addition, the non-usage of
shared caches could also lead to a performance degradation of the application
overall execution time. In the industrial example demonstrated in Sect. 7.4,
however, the Aurix local memories were very fast so that the execution time
measured without caches was even better than that measured when using
caches1. In addition, prohibiting contention on interconnect bridges and IO
devices (see A8, A10) could be too strict for some applications even though
using a dedicated processor element (I/O PE) which is exclusively allowed to
communicate with I/O devices seems to be a typical decision in real-life imple-
mentations.

Overall, the restrictions imposed in this thesis were deliberately made to
obtain a manageable state space. However, most of these restrictions can be
easily relaxed in future work if the ongoing research achieves more powerful
model-checkers with more capabilities. Future model-checkers could highly
benefit from the growing computing power and can utilize for e.g. many-cores
to enable the concurrent exploration of the SUA given state space instead of the
currently supported single-threaded approach.

8.2 Future Work and Open Questions

Based on the method developed in this thesis, the most relevant extensions
which can be addressed in future work are presented in the following:

Improving scalability Concerning scalability, it was shown in the experi-
ments that our method is applicable to small size industrial use-cases. This
method could be easily driven to its limits (as this is a general problem
of state-based RT analysis methods) when the non-determinism in the sys-
tem is increased for e.g. in the case where the difference between BCET
and WCET times is high. In such a case, one could think of trying to con-
strain the implementation in order to decrease/eliminate the difference be-
tween BCET and WCET, for e.g. by enforcing all states of the executed code

1 The comparison was made between the implementations in Sect. 7.4 and another imple-
mentation where the application code is mapped to the shared memory (not to the private one)
and the cache is activated.

8.2. FUTURE WORK AND OPEN QUESTIONS 187

to follow the WCET with the help of a run-time monitor2 as suggested in
[Nowotsch et al., 2014, Wolf et al., 2012].

Another approach would be to optimize the model-checker for the
given problem set, for e.g. through utilizing a multi-core capable model-
checker (instead of the current UPPAAL tool) such as opaal+LTSmin

[Dalsgaard et al., 2012] to tackle the state-space explosion problem. Sta-
tistical model-checking [David et al., 2011] (found to be a good alterna-
tive to exhaustive computation of WCET on single-processor platforms
[Béchennec and Cassez, 2011]) can also be used to obtain the probability dis-
tribution of the execution times and improve the scalability of our approach.
In general, if the probability that a critical violation of the real-time require-
ment is adequately low then this would be acceptable even for hard real-time
applications.

In the case of hierarchical scheduling, a composable TDMA scheduling im-
proves the number of analyzable SDFGs on the same platform compared to
other strategies, also using a TDMA arbitrated interconnect can help.

Possible Architectural Extensions Even though high-speed private scratch-
pads with increasingly larger sizes are emerging to current hardware platforms,
the sizes of these are still considered as a bottleneck especially when dealing
with applications of large memory footprint. In this case, the architecture could
be extended with an off-chip large memory with slower access latencies, which
can be shared between the processors. In order to retain the predictability
through RT analysis method, this large memory should be binded with the
help of a TDMA memory controller to the current architecture, allowing a clear
temporal separation of accesses to shared memory. In this case a cache (which
is supported by the WCET analyzer) could buffer the instructions between the
local and the off-chip memory to achieve a better performance, keeping the
SUA analyzable by our approach.

Additionally, the MPSoC architectural constraints could be relaxed towards
other kinds of communication resources such as cross-bar switches and NoCs
with flexible arbitrations. Extending the interconnect model towards Network
on Chips (NoCs) should be straight forward as burst-transfer modes are already
supported. Nevertheless, NoCs are only meaningful for large number of tiles
which are connected through it.

Furthermore, in order to be able to introduce caches in the current sys-
tem model, the model should be able to consider single tiles loading/writing
instructions from/to the shared memory which requires an instruction abstrac-

2A hardware monitor component can be configured (with the WCET) as a watchdog which
monitors the execution time of actors and in case it finishes before the assigned time, it blocks
and in case of lasting longer than the expected WCET then additional time could be assigned or
an error is detected since WCET must be always larger than measured time.

188 CHAPTER 8. CONCLUSION AND OUTLOOK

tion level in order to be able to model the behavior of caches and contention on
the interconnects. This in turn will hit the state-space wall as already noted in
Sect. 3.1.2.1.

Extending the Scheduling Mechanisms Extending our model towards pre-
emptive schedulers is a difficult issue, since by preemption the current state of
the actor should be saved and a context switch should be done. This is difficult
in our current model, since we abstract the execution of actors in terms of up-
per/lower bounds and we don not consider the actor at the instruction level of
granularity (as done for e.g. in [Lv et al., 2010]).

Typically, scheduling involves three steps with each one can be performed
either at run-time or at compile-time [Sriram and Bhattacharyya, 2000]:

1. Assigning the tasks to processors

2. Determining the order in which tasks may run

3. Setting the start times at which the tasks will be executed

There are many scheduling strategies for SDFG (see
[Sriram and Bhattacharyya, 2000]), ranging from static (fully static, order
transactions, self-timed) to quasi-static to dynamic (static assignment, fully
dynamic) strategies. Future work should explore these options and their
support should be analyzed.

In this work, we made a simplification of the general case of Def. 5.4.1
concerning at which granularity we allow to construct the clusters and assumed
that a cluster can consist of a number of SDFGs and these are independent
from other SDFGs mapped to other clusters. In future work, the general case,
permitting clustering at the granularity level of actors (see Fig. 5.13) should be
examined and it procedures should be analyzed to assure that such clustering
never leads to a deadlocks.

The blocking behavior on the shared FIFO should support besides busy-
waiting (considered in this thesis) suspension-based approaches3 to enable
comparison between them when making decisions for a SDFGs binding and
scheduling. In general, in order to model preemption stopwatch automata (TA
with stoppable clocks) are required (in order to stop the execution time of pre-
empted transaction) which are supported by current versions of UPPAAL and

3Suspension-based blocking mechanism (realized through interrupts) are useful in the case
of shared hardware FIFOs which could notify the blocked actor on the target processor when
data are available.

8.2. FUTURE WORK AND OPEN QUESTIONS 189

for which an over-approximated but efficient reachability analysis4 can still be
applied [Cassez and Larsen, 2000].

Enabling RT-analysis of more Dynamic Data-flow MoC Although the SD-
FGs offer good features for analyzability (e.g. deadlocks and bounded buffer
properties are decidable for such models [Lee and Messerschmitt, 1987b]), they
lack expressiveness. Future work should take into consideration more expres-
sive extensions of SDFGs and analyze their predictability and evaluating how
far our state-based RT method can handle such systems. One example is the
Scenario-Aware Data-Flow (SADF) MoC [Skelin et al., 2015]. This MoC uses a
data-flow model to represent a specific scenario and it uses either a stochastic
(Markov chain) approach or a finite state machine to model the order in which
scenarios occur. A first sketch of an approach, based on our work, targeting
the state-based RT analysis of FSM-SADFGs on MPSoCs with shared memory
communications was accepted to be published in [Stemmer et al., 2016].

Another interesting more dynamic MoC is SysteMoC [Falk et al., 2005]
where applications are modeled similar to SDFGs as a graph of atomic actors
which communicate through FIFO queues but in difference to SDFGs, actors’
production and consumption rates are variable (which is the property of dy-
namic data-flow graphs) [Gajski et al., 2009].

Towards Design-space Exploration Benefiting from clean semantics of the
SDF MoC being able to easily distinguish communication from computation
parts in the application, the complexity of the mapping and platform alterna-
tives can be compositionally managed. Flexible mapping to different target
platforms is now enabled, and with the help of our composable timing analysis
method analyzing different mappings is possible. Future work should address
supporting design-space exploration in our model-based design flow (similar to
[Büker, 2013, Rosvall and Sander, 2014]) exploring mappings with predictabil-
ity, performance efficiency and costs as optimization goals. Genetic algorithms
could also be used for encoding mapping problem as in [Stulova et al., 2012].

Additionally, our timed-automata representation could be extended (with
the help of Priced Timed Automata: PTA [Behrmann et al., 2005]) to support
energy optimal mapping exploration of power-aware SDFGs on MPSoCs (sim-
ilar to [Zhu et al., 2014, Zhu et al., 2015]).

4The reachability problem is in general undecidable for stopwatch automata
[Suman and Pandya, 2006], an over-approximating but efficient reachability analysis is
shown to be decidable in [Cassez and Larsen, 2000].

Bibliography

[IEC, 2010] (2010). IEC 61508. Functional safety of electrical/electronic/programmable
electronic safety-related systems.

[Abel et al., 2013] Abel, A., Benz, F., Doerfert, J., Dörr, B., Hahn, S., Haupenthal, F., Ja-
cobs, M., Moin, A. H., Reineke, J., and Schommer, B. (2013). Impact of resource shar-
ing on performance and performance prediction: A survey. In CONCUR 2013–Con-
currency Theory, pages 25–43. Springer.

[Aeronautical Radio, 1992] Aeronautical Radio, I. (1992). RTCA DO-178B. Software
Consid- erations in Airborne Systems and Equipment Certification.

[Aeronautical Radio, 2003] Aeronautical Radio, I. (2003). Arinc 653: Avionics applica-
tion software standard interface. Technical report, ARINC, 2551 Riva Road Annapo-
lis, MD 21401, U.S.A.

[Ahmad et al., 2014] Ahmad, W., de Groote, E., Hölzenspies, P. K., Stoelinga, M. I. A.,
and van de Pol, J. C. (2014). Resource-constrained optimal scheduling of syn-
chronous dataflow graphs via timed automata. In Proceedings of 14th IEEE Inter-
national Conference on Application of Concurrency to System Design (ACSD). IEEE.

[Akesson et al., 2010] Akesson, B., Molnos, A., Hansson, A., Angelo, J. A., and
Goossens, K. (2010). Composability and Predictability for Independent Application
Development, Verification, and Execution. Multiprocessor System-on-Chip: Hardware
Design and Tool Integration, page 25.

[Alur et al., 1990] Alur, R., Courcoubetis, C., and Dill, D. (1990). Model-checking for
real-time systems. In Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth
Annual IEEE Symposium, pages 414–425.

[Alur and Dill, 1990] Alur, R. and Dill, D. L. (1990). Automata for modeling real-
time systems. In Proceedings of the Seventeenth International Colloquium on Automata,
Languages and Programming, pages 322–335, New York, NY, USA. Springer-Verlag
New York, Inc.

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A Theory of Timed Automata.
Theoretical Computer Science, 126:183–235.

191

192 BIBLIOGRAPHY

[Andersson et al., 2010] Andersson, B., Easwaran, A., and Lee, J. (2010). Finding an
upper bound on the increase in execution time due to contention on the memory
bus in COTS-based multicore systems. ACM Sigbed Review, 7(1):4.

[ARM, 2006] ARM (2006). AMBA 3 AHB-lite protocol v1.0 specification. Technical
report, ARM.

[Baleani et al., 2005] Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli,
A. L., Freund, U., Schlenker, E., and Wolff, H.-J. (2005). Correct-by-construction
transformations across design environments for model-based embedded software
development. In Proceedings of the Conference on Design, Automation and Test in Europe
- Volume 2, DATE ’05, pages 1044–1049, Washington, DC, USA. IEEE Computer
Society.

[Banks Jerry, 2005] Banks Jerry, John S. Carson, B. L. N. u. D. M. N. (2005). Discrete-
Event System Simulation. Pearson Prentice Hall,.

[Bartolini et al., 2010] Bartolini, A., Cacciari, M., Tilli, A., Benini, L., and Gries, M.
(2010). A virtual platform environment for exploring power, thermal and reliability
management control strategies in high-performance multicores. In Proceedings of the
20th symposium on Great lakes symposium on VLSI, pages 311–316.

[Basten, 2008] Basten, T. (2008). Reliable embedded multimedia systems? http://

www.es.ele.tue.nl/˜tbasten/presentations/infcoll20080221.pdf

(07.05.2015). Openning remarks, 2nd Artist workshop on models of computation
and communication last accessed on 01.11.2015).

[Béchennec and Cassez, 2011] Béchennec, J. and Cassez, F. (2011). Computation of
WCET using program slicing and real-time model-checking. CoRR, abs/1105.1633.

[Behrmann et al., 2005] Behrmann, G., Larsen, K., and Rasmussen, J. (2005). Priced
timed automata: Algorithms and applications. In de Boer, F., Bonsangue, M., Graf,
S., and de Roever, W.-P., editors, Formal Methods for Components and Objects, volume
3657 of Lecture Notes in Computer Science, pages 162–182. Springer Berlin Heidelberg.

[Bekooij et al., 2004] Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M.,
and Meerbergen, J. v. (2004). Predictable embedded multiprocessor system design.
In Schepers, H., editor, Software and Compilers for Embedded Systems, number 3199 in
Lecture Notes in Computer Science. Springer Berlin Heidelberg.

[Bengtsson and Yi, 2004] Bengtsson, J. and Yi, W. (2004). Timed Automata: Semantics,
Algorithms and Tools. In In Lecture Notes on Concurrency and Petri Nets. LNCS 3098,
pages 87–124. Springer-Verlag.

[Bhattacharyya et al., 1997] Bhattacharyya, S., Murthy, P., and Lee, E. (1997). APGAN
and RPMC: Complementary heuristics for translating DSP block diagrams into effi-
cient software implementations. Design Automation for Embedded Systems, 2(1):33–60.

[Bjerregaard and Mahadevan, 2006] Bjerregaard, T. and Mahadevan, S. (2006). A sur-
vey of research and practices of Network-on-chip. ACM Computing Surveys, 38(1):1–
es.

http://www.es.ele.tue.nl/~tbasten/presentations/infcoll20080221.pdf
http://www.es.ele.tue.nl/~tbasten/presentations/infcoll20080221.pdf

BIBLIOGRAPHY 193

[Boland et al., 2005] Boland, J.-F., Thibeault, C., Zilic, Z., and others (2005). Using
MATLAB and Simulink in a SystemC verification environment. In Proceedings of
Design and Verification Conference, DVCon.

[Boström et al., 2010] Boström, P., Grönblom, R., Huotari, T., and Wiik, J. (2010). An
Approach to Contract-Based Verification of Simulink Models. Number 985 in TUCS Tech-
nical Reports. Turku Centre for Computer Science.

[Boström and Wiik, 2015] Boström, P. and Wiik, J. (2015). Contract-based verification
of discrete-time multi-rate Simulink models. Software & Systems Modeling, pages
1–21.

[Bouchhima et al., 2006] Bouchhima, F., Briere, M., Nicolescu, G., Abid, M., and
Aboulhamid, E. (2006). A SystemC/Simulink Co-Simulation Framework for
Continuous/Discrete-Events Simulation. In Behavioral Modeling and Simulation Work-
shop, Proceedings of the 2006 IEEE International, pages 1–6.

[Bovet and Crescenzi, 1994] Bovet, D. P. and Crescenzi, P. (1994). Introduction to the
Theory of Complexity. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK.

[Brekling et al., 2008] Brekling, A., Hansen, M. R., and Madsen, J. (2008). Models and
formal verification of multiprocessor system-on-chips. The Journal of Logic and Alge-
braic Programming, 77(1–2):1–19.

[Buck, 1993] Buck, J. (1993). Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. PhD thesis, UNIVERSITY of CALIFORNIA at BERKELEY.

[Buttle, 2012] Buttle, D. (2012). Real-Time in the Prime-Time. http:

//ecrts.eit.uni-kl.de/fileadmin/user_media/ecrts12/

ECRTS12-Keynote-Buttle.pdf. ECRTS (KEYNOTE TALK).

[Büker, 2013] Büker, M. (2013). An Automated Semantic-Based Approach for Creating Task
Structures. Dissertation, University of Oldenburg.

[C. Chang, 2015] C. Chang, R. D. (2015). May-Happen-in-Parallel Analysis of ESL
Models using UPPAAL Model Checking. Grenoble, France. Design, Automation
and Test in Europe Conference 2015.

[Cai and Gajski, 2003] Cai, L. and Gajski, D. (2003). Transaction Level Modeling: an
Overview. In First IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, 2003, pages 19–24.

[Caspi et al., 2003] Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., and
Niebert, P. (2003). From Simulink to SCADE/Lustre to TTA: a layered approach
for distributed embedded applications. In ACM Sigplan Notices, volume 38, pages
153–162.

[Cassez and Larsen, 2000] Cassez, F. and Larsen, K. G. (2000). The impressive power of
stopwatches. In Proceedings of the 11th International Conference on Concurrency Theory,
CONCUR ’00, pages 138–152, London, UK, UK. Springer-Verlag.

http://ecrts.eit.uni-kl.de/fileadmin/user_media/ecrts12/ECRTS12-Keynote-Buttle.pdf
http://ecrts.eit.uni-kl.de/fileadmin/user_media/ecrts12/ECRTS12-Keynote-Buttle.pdf
http://ecrts.eit.uni-kl.de/fileadmin/user_media/ecrts12/ECRTS12-Keynote-Buttle.pdf

194 BIBLIOGRAPHY

[Cha and Kim, 2011] Cha, M. and Kim, K. (2011). Automatic Building of Real-Time
Multicore Systems Based on Simulink Applications. Ubiquitous Computing and Mul-
timedia Applications, pages 209–220.

[Chattopadhyay and Roychoudhury, 2011] Chattopadhyay, S. and Roychoudhury, A.
(2011). Static bus schedule aware scratchpad allocation in multiprocessors. In Pro-
ceedings of the 2011 SIGPLAN/SIGBED conference on Languages, compilers and tools for
embedded systems, pages 11–20.

[Clarke and Emerson, 1982] Clarke, E. M. and Emerson, E. A. (1982). Design and syn-
thesis of synchronization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop, pages 52–71, London, UK, UK. Springer-Verlag.

[Clarke et al., 2012] Clarke, E. M., Klieber, W., Nová\vcek, M., and Zuliani, P. (2012).
Model Checking and the State Explosion Problem. In Tools for Practical Software
Verification, pages 1–30. Springer.

[Colin and Puaut, 2000] Colin, A. and Puaut, I. (2000). Worst case execution time anal-
ysis for a processor with branch prediction. Real-Time Syst., 18(2/3):249–274.

[Commoner et al., 1971] Commoner, F., Holt, A. W., Even, S., and Pnueli, A. (1971).
Marked directed graphs. J. Comput. Syst. Sci., 5(5):511–523.

[Cullmann et al., 2010] Cullmann, C., Ferdinand, C., Gebhard, G., Grund, D., Maiza,
C., Reineke, J., Triquet, B., and Wilhelm, R. (2010). Predictability considerations in
the design of multi-core embedded systems. In Proceedings of the Embedded Real Time
Software and Systems Congress (ERTS2) 2010.

[Dalsgaard et al., 2012] Dalsgaard, A., Laarman, A., Larsen, K., Olesen, M., and van de
Pol, J. (2012). Multi-core reachability for timed automata. In Jurdziński, M. and
Ničković, D., editors, Formal Modeling and Analysis of Timed Systems, volume 7595 of
Lecture Notes in Computer Science, pages 91–106. Springer Berlin Heidelberg.

[Dasari et al., 2011] Dasari, D., Andersson, B., Nelis, V., Petters, S. M., Easwaran, A.,
and Lee, J. (2011). Response time analysis of cots-based multicores considering the
contention on the shared memory bus. In Proceedings of the 2011IEEE 10th Inter-
national Conference on Trust, Security and Privacy in Computing and Communications,
TRUSTCOM ’11, pages 1068–1075, Washington, DC, USA. IEEE Computer Society.

[David et al., 2011] David, A., Larsen, K. G., Legay, A., Mikučionis, M., and Wang, Z.
(2011). Time for statistical model checking of real-time systems. In Proceedings of the
23rd International Conference on Computer Aided Verification, CAV’11, pages 349–355,
Berlin, Heidelberg. Springer-Verlag.

[Davis and Burns, 2011] Davis, R. I. and Burns, A. (2011). A survey of hard real-time
scheduling for multiprocessor systems. ACM Computing Surveys, 43(4):1–44.

[Dominik, 2011] Dominik, C. (2011). Conception and Implementation of Parallelism
Analyses in MATLAB/SIMULINK Models for programming Embedded Multicore-
Systems. Bsc. thesis, TU München.

BIBLIOGRAPHY 195

[EN50128, 2009] EN50128 (2009). CENELEC DRAFT prEN 50128. Railway applications
– Communication, signaling and processing systems – Software for railway control
and protection systems.

[Ermedahl and Engblom, 2007] Ermedahl, A. and Engblom, J. (2007). Execution time
analysis for embedded real-time systems. Handbook of Real-Time Embedded Systems,
SHS Insup Lee, Jospeh YT. Leung, Ed. Chapman & Hall/CRC-Taylor and Francis Group,
pages 35–1.

[F. Bouchhima, 2005] F. Bouchhima, G. N. (2005). Discrete-continuous simulation
model for accurate validation in component-based heterogeneous SoC design. pages
181– 187.

[Fakih, 2011] Fakih, M. (2011). Timing Validation of Functional Models on Virtual
Platforms. Master’s thesis, University of Oldenburg.

[Fakih et al., 2011] Fakih, M., Grüttner, K., , Fränzle, M., and Rettberg, A. (2011).
Simulink and virtual hardware platform co-simulation for accurate timing analy-
sis of embedded control softwares. In ASIM STS/GMMS Workshop 2011.

[Fakih and Grüttner, 2012] Fakih, M. and Grüttner, K. (2012). Virtual Platform in the
Loop Simulation for Accurate Timing Analysis of Embedded Software on Multicore
Platforms. In ASIM Konferenz STS/GMMS, Wolfenbüttel.

[Fakih et al., 2013a] Fakih, M., Grüttner, K., Fränzle, M., and Rettberg, A. (2013a). To-
wards performance analysis of SDFGs mapped to shared–bus architectures using
model–checking. In Proceedings of the Conference on Design, Automation and Test in
Europe, DATE ’13, Leuven, Belgium. European Design and Automation Association.

[Fakih et al., 2014] Fakih, M., Grüttner, K., Fränzle, M., and Rettberg, A. (2014). Multi-
core performance analysis of a multi–phase electrical motor controller. In Proceedings
of the Embedded Real Time Software and Systems Congress (ERTS2) 2014.

[Fakih et al., 2015] Fakih, M., Grüttner, K., Fränzle, M., and Rettberg, A. (2015). State-
based real-time analysis of SDF applications on MPSoCs with shared communica-
tion resources. Journal of Systems Architecture - Embedded Systems Design, 61(9):486–
509.

[Fakih et al., 2013b] Fakih, M., Grüttner, K., Fränzle, M., and Rettberg, A. (2013b).
Exploiting Segregation in Bus-Based MPSoCs to Improve Scalability of Model-
Checking-Based Performance Analysis for SDFAs. In Embedded Systems: Design,
Analysis and Verification, volume 403 of IFIP Advances in Information and Communica-
tion Technology, pages 205–217. Springer Berlin Heidelberg.

[Falk et al., 2005] Falk, J., Haubelt, C., and Teich, J. (2005). Syntax and execution behav-
ior of SysteMoC. Technical Report Co-Design-Report 04 -2005, Department of Com-
puter Science, Hardware-Software-Co-Design University of Erlangen-Nuremberg.

[Ferdinand and Heckmann, 2004] Ferdinand, C. and Heckmann, R. (2004). ait: Worst-
case execution time prediction by static program analysis. In Building the Information
Society, page 377–383. Springer.

196 BIBLIOGRAPHY

[Fränzle, 2012] Fränzle, M. (2012). Introduction to model checking. Lecture notes
(TC-DSD), Carl von Ossietzky Universität, FK II, Dpt. Informatik , Abt. Hybride
Systeme.

[Fuller and Lynette I. Millett, 2011] Fuller, S. H. and Lynette I. Millett, E. C. o. S. G. i.
C. P. N. R. C. (2011). The Future of Computing Performance: Game Over or Next Level?

[Gajski et al., 2009] Gajski, D. D., Abdi, S., Gerstlauer, A., and Schirner, G. (2009). Em-
bedded System Design: Modeling, Synthesis and Verification. Springer Science & Busi-
ness Media.

[Gansner et al., 2015] Gansner, E. R., Koutsofios, E., and North, S. (2015). Drawing
graphs with dot.

[Geilen et al., 2005] Geilen, M., Basten, T., and Stuijk, S. (2005). Minimising buffer
requirements of synchronous dataflow graphs with model checking. In Proceedings
of the 42nd annual Design Automation Conference, pages 819–824.

[Gerstlauer, 2009] Gerstlauer, A. (2009). System-level design. http://users.

ece.utexas.edu/˜gerstl/ee382v_f09/schedule.html (30.04.2015). Lec-
ture notes.

[Gerstlauer et al., 2009] Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski,
D., and Teich, J. (2009). Electronic System-Level Synthesis Methodologies. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(10):1517
–1530.

[Ghamarian, 2008] Ghamarian, A. (2008). Timing Analysis of Synchronous Data Flow
Graphs. PhD thesis, Eindhoven University of Technology.

[Giannopoulou et al., 2012] Giannopoulou, G., Lampka, K., Stoimenov, N., and Thiele,
L. (2012). Timed model checking with abstractions: Towards worst-case response
time analysis in resource-sharing manycore systems. In Proc. International Conference
on Embedded Software (EMSOFT), pages 63–72, Tampere, Finland. ACM.

[Glass et al., 2012] Glass, M., Teich, J., and Zhang, L. (2012). A co-simulation approach
for system-level analysis of embedded control systems. In 2012 International Confer-
ence on Embedded Computer Systems (SAMOS), pages 355–362.

[Greenyer, 2010] Greenyer, J. (2010). Synthesizing modal sequence diagram specifica-
tions with uppaal-tiga. Technical Report tr-ri-10-310, University of Paderborn.

[Grimm et al., 2009] Grimm, C., Barnasconi, M., Vachoux, A., and Einwich, K. (2009).
Introduction to the SystemC AMS Draft Standard. http://www.systemc-ams.

org/documents/einwich_ieeesocc_belfast_070909.pdf (01.11.2015). pre-
sentation slides.

[Grüttner et al., 2011] Grüttner, K., Hartmann, P. A., Reinkemeier, P., Oppenheimer, F.,
and Nebel, W. (2011). Challenges of multi- and many-core architectures for elec-
tronic system-level design. In 2011 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, SAMOS XI, Samos, Greece, July 18-21,
2011, pages 331–338.

http://users.ece.utexas.edu/~gerstl/ee382v_f09/schedule.html
http://users.ece.utexas.edu/~gerstl/ee382v_f09/schedule.html
 http://www.systemc-ams.org/documents/einwich_ieeesocc_belfast_070909.pdf
 http://www.systemc-ams.org/documents/einwich_ieeesocc_belfast_070909.pdf

BIBLIOGRAPHY 197

[Gu et al., 2007] Gu, Z., Yuan, M., Guan, N., Lv, M., He, X., Deng, Q., and Yu, G.
(2007). Static scheduling and software synthesis for dataflow graphs with symbolic
model-checking. pages 353–364. IEEE.

[Gustavsson, 2010] Gustavsson, A. (2010). WCET Analysis of Multicore Architectures.

[Gustavsson et al., 2010] Gustavsson, A., Ermedahl, A., Lisper, B., and Pettersson, P.
(2010). Towards WCET analysis of multicore architectures using UPPAAL. In Lisper,
B., editor, WCET, volume 15 of OASICS, pages 101–112. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany.

[Hansson et al., 2009] Hansson, A., Goossens, K., Bekooij, M., and Huisken, J. (2009).
CoMPSoC: A template for composable and predictable multi-processor system on
chips. ACM Transactions on Design Automation of Electronic Systems (TODAES),
14(1):2.

[Hausmans et al., 2013] Hausmans, J. P. H. M., Wiggers, M. H., Geuns, S. J., and
Bekooij, M. J. G. (2013). Dataflow analysis for multiprocessor systems with non-
starvation-free schedulers. In Proceedings of the 16th International Workshop on Soft-
ware and Compilers for Embedded Systems, M-SCOPES ’13, pages 13–22, New York,
NY, USA. ACM.

[Hendriks and Verhoef, 2006] Hendriks, M. and Verhoef, M. (2006). Timed automata
based analysis of embedded system architectures. In Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International, pages 8–pp. IEEE.

[Henia et al., 2005] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and Ernst,
R. (2005). System Level Performance Analysis - the SymTA/S Approach. In IEE
Proceedings Computers and Digital Techniques.

[Herber, 2010] Herber, P. (2010). A Framework for Automated HW/SW Co-Verification of
SystemC Designs using Timed Automata. Logos Verlag Berlin GmbH.

[Hitex Inc., 2013] Hitex Inc. (2013). Hitex Compiler. http://www.hitex.co.uk/.
(last accessed on 01.11.2015).

[Huang et al., 2009] Huang, K., Yan, X., Han, S., Chae, S., Jerraya, A., Popovici, K.,
Guerin, X., Brisolara, L., and Carro, L. (2009). Gradual refinement for application-
specific MPSoC design from Simulink model to RTL implementation. Journal of
Zhejiang University-Science A, 10(2):151–164.

[Huber and Schoeberl, 2009] Huber, B. and Schoeberl, M. (2009). Comparison of im-
plicit path enumeration and model checking based WCET analysis. In Proceedings
of the 9th International Workshop on Worst-Case Execution Time (WCET) Analysis, pages
23–34.

[ICVerification , 2015] ICVerification (2015). AMBA AHB Protocol. http://www.

icverification.com/BusProtocols/AmbaAHB2.php.

[IEEE-1666, 2012] IEEE-1666 (2012). IEEE Standard SystemC Language Reference
Manual. IEEE Std. 1666–2011, IEEE Computer Society. ISBN 978-0-7381-6801-2.

http://www.hitex.co.uk/
http://www.icverification.com/BusProtocols/AmbaAHB2.php
http://www.icverification.com/BusProtocols/AmbaAHB2.php

198 BIBLIOGRAPHY

[Infineon Inc., 2013] Infineon Inc. (2013). AURIX – Safety joins Performance.
http://www.infineon.com/cms/en/product/microcontrollers/

32-bit-tricore-tm-microcontrollers/aurix-tm-family/channel.

html?channel=db3a30433727a44301372b2eefbb48d9. (last accessed on
01.11.2015).

[ISO11898-1, 2003] ISO11898-1 (2003). Iso11898-1: 2003-road vehicles–controller area
network. International Organization for Standardization, Geneva, Switzerland.

[ISO26262, 2011] ISO26262 (2011). ISO/FDIS 26262. Road vehicles – Functional safety.

[Jeffay et al., 1991] Jeffay, K., Stanat, D. F., and Martel, C. U. (1991). On non-preemptive
scheduling of period and sporadic tasks. In Real-Time Systems Symposium, 1991.
Proceedings., Twelfth, pages 129–139. IEEE.

[Kai Hylla, 2008] Kai Hylla, J.-H. O. (2008). Using SystemC for an extended MAT-
LAB/Simulink verification flow. pages 221 – 226.

[Karray et al., 2013] Karray, H., Paulitsch, M., Koppenhoefer, B., and Geiger, D.
(2013). Design and implementation of a degraded vision landing aid appli-
cation on a multicore processor architecture for safety-critical application. In
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), 2013
IEEE 16th International Symposium on, pages 1–8.

[Kästner Daniel and Christian, 2014] Kästner Daniel, Pister Markus, G. G. and Chris-
tian, F. (2014). Reliability of wcet analysis. In Proceedings of the Embedded Real Time
Software and Systems Congress (ERTS2) 2014.

[Kesel, 2012] Kesel, F. (2012). Modellierung von digitalen Systemen mit SystemC: Von der
RTL- zur Transaction-Level-Modellierung. Oldenbourg Verlag.

[Kirner and Puschner, 2010] Kirner, R. and Puschner, P. (2010). Time-Predictable Com-
puting. In Ungerer, S. L. M. R. P. P. P. T., editor, Software Technologies for Embedded and
Ubiquitous Systems, volume 6399 of Lecture Notes in Computer Science, pages 23–34.
Springer.

[Kotaba et al., 2013] Kotaba, O., Nowotsch, J., Paulitsch, M., Petters, S. M., and Theil-
ing, H. (2013). Multicore in real-time systems - temporal isolation challenges due
to shared resources. In Proceedings of the Workshop on Industry-Driven Approaches for
Cost-effective Certification of Safety-Critical, Mixed-Criticality Systems (WICERT), DATE
’13, Leuven, Belgium. European Design and Automation Association.

[Kumar, 2009] Kumar, A. (2009). Analysis, Design and Management of Multimedia Multi-
processor Systems. PhD thesis, Ph. D. thesis, Eindhoven University of Technology.

[Lee and Messerschmitt, 1987a] Lee, E. and Messerschmitt, D. (1987a). Synchronous
data flow. Proceedings of the IEEE, 75(9):1235–1245.

[Lee and Messerschmitt, 1987b] Lee, E. A. and Messerschmitt, D. G. (1987b). Static
scheduling of synchronous data flow programs for digital signal processing. IEEE
Trans. Computers, 36(1):24–35.

 http://www.infineon.com/cms/en/product/microcontrollers/32-bit-tricore-tm-microc ontrollers/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
 http://www.infineon.com/cms/en/product/microcontrollers/32-bit-tricore-tm-microc ontrollers/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
 http://www.infineon.com/cms/en/product/microcontrollers/32-bit-tricore-tm-microc ontrollers/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9

BIBLIOGRAPHY 199

[Lee and Neuendorffer, 2005] Lee, E. A. and Neuendorffer, S. (2005). Concurrent mod-
els of computation for embedded software.

[Lee and Seshia, 2012] Lee, E. A. and Seshia, S. A. (2012). Introduction to embedded
systems: a cyber physical systems approach. LeeSeshia.org, Lulu, 1. ed., print. 1.08
edition.

[Lele et al., 2014] Lele, A., Moreira, O., Bastos, J., Almeida, R., Pedreiras, P., and van
Berkel, K. (2014). Analyzing preemptive fixed priority scheduling of data flow
graphs. In Embedded Systems for Real-time Multimedia (ESTIMedia), 2014 IEEE 12th
Symposium on, pages 50–59. IEEE.

[Li, 2013] Li, S. (2013). Simulink2sdf - converter. GitHub, open-source Code, (last
accessed on 01.11.2015).

[Li et al., 2007] Li, X., Liang, Y., Mitra, T., and Roychoudhury, A. (2007). Chronos: A
timing analyzer for embedded software. Science of Computer Programming, 69:56–67.

[Li and Malik, 1995] Li, Y.-T. S. and Malik, S. (1995). Performance analysis of embed-
ded software using implicit path enumeration. In Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, DAC ’95, pages 456–461, New York, NY,
USA. ACM.

[Li et al., 1997] Li, Y.-T. S., Malik, S., and Wolfe, A. (1997). Cinderella: A retargetable
environment for performance analysis of real-time software. In Goos, G., Hartmanis,
J., van Leeuwen, J., Lengauer, C., Griebl, M., and Gorlatch, S., editors, Euro-Par’97
Parallel Processing, volume 1300, pages 1308–1315. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Lin et al., 2011] Lin, J., Srivatsa, A., Gerstlauer, A., and Evans, B. L. (2011). Heteroge-
neous multiprocessor mapping for real-time streaming systems. In Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 1605–
1608.

[Lisper, 2014] Lisper, B. (2014). SWEET – a tool for WCET flow analysis (extended ab-
stract). In Margaria, T. and Steffen, B., editors, Leveraging Applications of Formal Meth-
ods, Verification and Validation. Specialized Techniques and Applications, number 8803 in
Lecture Notes in Computer Science, pages 482–485. Springer Berlin Heidelberg.

[Liu et al., 2008] Liu, W., Yuan, M., He, X., Gu, Z., and Liu, X. (2008). Efficient SAT-
Based Mapping and Scheduling of Homogeneous Synchronous Dataflow Graphs
for Throughput Optimization. In Proceedings of the 29th IEEE Real-Time Systems Sym-
posium, RTSS 2008, Barcelona, Spain, 30 November - 3 December 2008, pages 492–504.
IEEE Computer Society.

[Lublinerman and Tripakis, 2008] Lublinerman, R. and Tripakis, S. (2008). Translating
data flow to synchronous block diagrams. In Eles, P. and Pimentel, A. D., editors,
ESTImedia, pages 101–106. IEEE.

[Lv et al., 2010] Lv, M., Yi, W., Guan, N., and Yu, G. (2010). Combining Abstract Inter-
pretation with Model Checking for Timing Analysis of Multicore Software. In 2010
31st IEEE Real-Time Systems Symposium, pages 339–349.

200 BIBLIOGRAPHY

[Malik and Gregg, 2013] Malik, A. and Gregg, D. (2013). Orchestrating Stream Graphs
Using Model Checking. ACM Trans. Archit. Code Optim., 10(3):19:1–19:25.

[Marwedel, 2010] Marwedel, P. (2010). Embedded and cyber-physical systems in a
nutshell. DAC. COM Knowledge Center Article.

[MathWorks, Inc., 2010] MathWorks, Inc. (2010). MATLAB SIMULINK 7 User Manual.
http://www.manualslib.com/download/392936/Matlab-Simulink-7.

html. (last accessed on 01.11.2015).

[MathWorks, Inc., 2015a] MathWorks, Inc. (2015a). Automatic Code Generation -
Simulink Coder. http://www.mathworks.de/products/simulink-coder/.
(last accessed on 01.11.2015).

[MathWorks, Inc., 2015b] MathWorks, Inc. (2015b). Matlab engine API. http://

de.mathworks.com/help/matlab/apiref/engine.html. (last accessed on
01.11.2015).

[MathWorks, Inc., 2015c] MathWorks, Inc. (2015c). Matlab/Simulink. http://www.

mathworks.de/products/simulink/. (last accessed on 01.11.2015).

[MathWorks, Inc., 2015d] MathWorks, Inc. (2015d). Modeling Guidelines for Code
Generation. Technical Report Version 1.10 (Release 2015b).

[MathWorks, Inc., 2015e] MathWorks, Inc. (2015e). Simulink- simulation and model-
based design- blocklist. http://de.mathworks.com/products/simulink/

blocklist.html. (last accessed on 01.11.2015).

[MathWorks, Inc., 2015f] MathWorks, Inc. (2015f). Stateflow official website. http:

//www.mathworks.com/products/stateflow/. (last accessed on 01.11.2015).

[Mendoza et al., 2011] Mendoza, F., Kollner, C., Becker, J., and Muller-Glaser, K.
(2011). An automated approach to SystemC/Simulink co-simulation. In Rapid Sys-
tem Prototyping (RSP), 2011 22nd IEEE International Symposium on, pages 135–141.

[Metzlaff et al., 2011] Metzlaff, S., Mische, J., and Ungerer, T. (2011). A Real-Time
Capable Many-Core Model. RTSS 2011 Organization Committee, page 21.

[Metzner, 2004] Metzner, A. (2004). Why model checking can improve WCET analysis.
In Computer Aided Verification, pages 298–301.

[Miller et al., 2005] Miller, S., Anderson, E., Wagner, L., Whalen, M., and Heimdahl,
M. P. E. (2005). Formal verification of flight critical software. In Proceedings of the
AIAA Guidance, Navigation and Control Conference and Exhibit.

[Moonen, 2009] Moonen, A. (2009). Predictable Embedded Multiprocessor Architecture for
Streaming Applications. PhD thesis, Eindhoven University of Technology.

[Moreira, 2012] Moreira, O. (2012). Temporal analysis and scheduling of hard real-time
radios running on a multi-processor. PhD thesis, Ph. D. dissertation, TU Eindhoven.

http://www.manualslib.com/download/392936/Matlab-Simulink-7.html
http://www.manualslib.com/download/392936/Matlab-Simulink-7.html
http://www.mathworks.de/products/simulink-coder/
http://de.mathworks.com/help/matlab/apiref/engine.html
http://de.mathworks.com/help/matlab/apiref/engine.html
http://www.mathworks.de/products/simulink/
http://www.mathworks.de/products/simulink/
http://de.mathworks.com/products/simulink/blocklist.html
http://de.mathworks.com/products/simulink/blocklist.html
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/stateflow/

BIBLIOGRAPHY 201

[Moreira et al., 2007] Moreira, O., Valente, F., and Bekooij, M. (2007). Scheduling mul-
tiple independent hard-real-time jobs on a heterogeneous multiprocessor. In Pro-
ceedings of the 7th ACM & IEEE international conference on Embedded software, pages
57–66. ACM.

[MotorBrain Consortium, 2013] MotorBrain Consortium (2013). MotorBrain. http:

//www.motorbrain.eu/. (last accessed on 01.11.2015).

[Mühleis et al., 2011] Mühleis, N., Glass, M., Zhang, L., and Teich, J. (2011). A co-
simulation approach for control performance analysis during design space explo-
ration of cyber-physical systems. ACM SIGBED Review, 8(2):23–26.

[Nelis et al., 2011] Nelis, V., Dasari, D., Nikolic, B., and Petters, S. (2011). A Tighter
Analysis of the Worst-Case End-to-End Communication Delay in Massive Multi-
cores. RTSS 2011 Organization Committee, page 25.

[Nelson et al., 2010] Nelson, A., Hansson, A., Corporaal, H., and Goossens, K. (2010).
Conservative application-level performance analysis through simulation of MPSoCs.
In Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010 8th IEEE Workshop on,
pages 51–60. IEEE.

[Norstrom et al., 1999] Norstrom, C., Wall, A., and Yi, W. (1999). Timed automata as
task models for event-driven systems. In Real-Time Computing Systems and Applica-
tions, 1999. RTCSA’99. Sixth International Conference, pages 182–189. IEEE.

[Nowotsch et al., 2014] Nowotsch, J., Paulitsch, M., Henrichsen, A., Pongratz, W., and
Schacht, A. (2014). Monitoring and WCET Analysis in COTS multi-core-SoC-based
Mixed-criticality Systems. In Proceedings of the Conference on Design, Automation &
Test in Europe, DATE ’14, pages 67:1–67:5, 3001 Leuven, Belgium, Belgium. European
Design and Automation Association.

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems —
Formal Specification and Automatic Verification. Cambridge University Press. ISBN
978-0-521-88333-7.

[Page et al., 2001] Page, B., Liebert, H., and heymann, A. (2001). Diskrete Simulation.
Eine Einführung in Modula-2. Springer, Berlin.

[Park, 1929] Park, R. (1929). Two-reaction theory of synchronous machines generalized
method of analysis-part I. American Institute of Electrical Engineers, Transactions of the,
48(3):716–727.

[Pellizzoni et al., 2010] Pellizzoni, R., Schranzhofer, A., Chen, J.-J., Caccamo, M., and
Thiele, L. (2010). Worst case delay analysis for memory interference in multicore
systems. In Design, Automation Test in Europe Conference Exhibition (DATE), 2010,
pages 741—-746, Dresden, Germany. ACM.

[Perathoner et al., 2009] Perathoner, S., Wandeler, E., Thiele, L., Hamann, A.,
Schliecker, S., Henia, R., Racu, R., Ernst, R., and González Harbour, M. (2009). In-
fluence of different abstractions on the performance analysis of distributed hard
real-time systems. Design Automation for Embedded Systems, 13(1):27–49.

http://www.motorbrain.eu/
http://www.motorbrain.eu/

202 BIBLIOGRAPHY

[Pitter and Schoeberl, 2010] Pitter, C. and Schoeberl, M. (2010). A real-time java chip-
multiprocessor. ACM Trans. Embed. Comput. Syst., 10(1):9:1–9:34.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,
Washington, DC, USA. IEEE Computer Society.

[Pop et al., 2002] Pop, T., Eles, P., and Peng, Z. (2002). Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems. In Proceedings of the
tenth international symposium on Hardware/software codesign, pages 187–192. ACM.

[Poplavko et al., 2003] Poplavko, P., Basten, T., Bekooij, M., Meerbergen, J. V., and
Mesman, B. (2003). Task-level timing models for guaranteed performance in multi-
processor networks-on-chip. In CASES, Proc, pages 63–72. ACM.

[Popovici and Jerraya, 2010] Popovici, K. and Jerraya, A. A. (2010). Virtual platforms
in system-on-chip design. In Design Automation Conference.

[Poppen, F. and Grüttner, K., 2012] Poppen, F. and Grüttner, K. (2012). Co-Simulation
of C-based SoC Simulators and MATLAB Simulink.

[Pouzet and Raymond, 2009] Pouzet, M. and Raymond, P. (2009). Modular static
scheduling of synchronous data-flow networks: an efficient symbolic representa-
tion. In Chakraborty, S. and Halbwachs, N., editors, EMSOFT, pages 215–224. ACM.

[Puschner and Schedl, 1997] Puschner, P. and Schedl, A. (1997). Computing maximum
task execution times - a graph-based approach. Journal of Real-Time Systems, 13:67–
91.

[Queille and Sifakis, 1982] Queille, J. and Sifakis, J. (1982). Specification and verifi-
cation of concurrent systems in cesar. In Dezani-Ciancaglini, M. and Montanari,
U., editors, International Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer Berlin Heidelberg.

[Richter et al., 2003] Richter, K., Jersak, M., and Ernst, R. (2003). A formal approach to
MpSoC performance verification. Computer, 36(4):60–67.

[Rochange, 2011] Rochange, C. (2011). An Overview of Approaches Towards the Tim-
ing Analysability of Parallel Architecture. In Lucas, P., Thiele, L., Triquet, B., Un-
gerer, T., and Wilhelm, R., editors, Bringing Theory to Practice: Predictability and Per-
formance in Embedded Systems, volume 18 of OpenAccess Series in Informatics (OA-
SIcs), pages 32–41, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

[Rosvall and Sander, 2014] Rosvall, K. and Sander, I. (2014). A Constraint-based De-
sign Space Exploration Framework for Real-time Applications on MPSoCs. In Pro-
ceedings of the Conference on Design, Automation & Test in Europe, DATE ’14, pages
326:1–326:6, 3001 Leuven, Belgium, Belgium. European Design and Automation As-
sociation.

[Roychoudhury, 2009] Roychoudhury, A. (2009). Embedded Systems and Software Valida-
tion. Morgan Kaufmann.

BIBLIOGRAPHY 203

[Schaumont, 2013] Schaumont, P. R. (2013). A Practical Introduction to Hardware/Soft-
ware Codesign. Springer US.

[Schlaak, 2014] Schlaak, C. (2014). Codegenerator zur automatischen Konfiguration
eines Ausführungszeit-Analyseframeworks für Anwendungen aus der digitalen Sig-
nalverarbeitung. Bsc. thesis, Carl von Ossietzky Universität Oldenburg.

[Schliecker et al., 2010] Schliecker, S., Negrean, M., and Ernst, R. (2010). Bounding
the shared resource load for the performance analysis of multiprocessor systems.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’10,
pages 759–764, 3001 Leuven, Belgium, Belgium. European Design and Automation
Association.

[Schranzhofer, 2011] Schranzhofer, A. (2011). Efficiency and predictability in resource shar-
ing multicore systems. PhD thesis, ETH Zurich.

[Schranzhofer et al., 2011] Schranzhofer, A., Pellizzoni, R., jia Chen, J., Thiele, L., and
Caccamo, M. (2011). Timing analysis for resource access interference on adaptive
resource arbiters. In in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2011 17th IEEE. IEEE, pages 213–222.

[Shabbir et al., 2010] Shabbir, A., Kumar, A., Stuijk, S., Mesman, B., and Corporaal,
H. (2010). CA-MPSoC: An Automated Design Flow for Predictable Multi-processor
Architectures for Multiple Applications. Journal of Systems Architecture, 56(7):265–
277.

[Shaw, 1989] Shaw, A. (1989). Reasoning about time in higher-level language software.
Software Engineering, IEEE Transactions on, 15(7):875–889.

[Skelin et al., 2015] Skelin, M., Wognsen, E. R., Olesen, M. C., Hansen, R. R., and
Larsen, K. G. (2015). Model checking of finite-state machine-based scenario-aware
dataflow using timed automata. In Industrial Embedded Systems (SIES), 2015 10th
IEEE International Symposium on, pages 1–10. IEEE.

[Srba, 2008] Srba, J. (2008). Comparing the Expressiveness of Timed Automata and
Timed Extensions of Petri Nets. In Cassez, F. and Jard, C., editors, Formal Modeling
and Analysis of Timed Systems, number 5215 in Lecture Notes in Computer Science,
pages 15–32. Springer Berlin Heidelberg.

[Sriram and Bhattacharyya, 2000] Sriram, S. and Bhattacharyya, S. S. (2000). Embedded
Multiprocessors: Scheduling and Synchronization. CRC Press, 1 edition.

[Stemmer et al., 2016] Stemmer, R., Fakih, M., Grüttner, K., and Nebel, W. (2016). To-
wards State-Based RT Analysis of FSM-SADFGs on MPSoCs with Shared Memory
Communication. In 2nd International Workshop on Investigating Dataflow in Embedded
computing Architecture (IDEA). (accepted publication).

[Stuijk, 2007] Stuijk, S. (2007). Predictable Mapping of Streaming Applications on Multi-
processors. PhD thesis, Faculty of Electrical Engineering, Eindhoven University of
Technology, The Netherlands.

204 BIBLIOGRAPHY

[Stuijk et al., 2006] Stuijk, S., Geilen, M., and Basten, T. (2006). SDFˆ 3: SDF for free.
In Application of Concurrency to System Design, 2006. ACSD 2006. Sixth International
Conference on, page 276–278.

[Stulova et al., 2012] Stulova, A., Leupers, R., and Ascheid, G. (2012). Throughput
driven transformations of synchronous data flows for mapping to heterogeneous
MPSoCs. In Embedded Computer Systems (SAMOS), 2012 International Conference on,
pages 144–151. IEEE.

[Suman and Pandya, 2006] Suman, V. and Pandya, P. K. (2006). Foundations Of Timed
And Hybrid Automata: A Survey. Technical Report TIFR-PPVS-GM-2006/1, Tech-
nical Report TIFR-PPVS-GM-2006/1, TIFR.

[Synopsys Inc., 2015] Synopsys Inc. (2015). Virtualizer. http://www.synopsys.

com/Systems/VirtualPrototyping/Pages/Virtualizer.aspx. (last ac-
cessed on 01.11.2015).

[Tang and Wu, 2014] Tang, L. and Wu, J. Z. (2014). The Status and Challenges of Multi-
Processor System-on-Chip’s Formal Verification. Applied Mechanics and Materials,
602-605:2926–2929.

[Tatenguem et al., 2011] Tatenguem, H. F., Ludovici, D., Strano, A., Bertozzi, D., and
Reinig, H. (2011). Contrasting multi-synchronous MPSoC design styles for fine-
grained clock domain partitioning: The full-HD video playback case study. In Pro-
ceedings of the 4th International Workshop on Network on Chip Architectures, NoCArc
’11, pages 37–42, New York, NY, USA. ACM.

[Thakur and Srikant, 2015] Thakur, R. K. and Srikant, Y. N. (2015). Efficient Compila-
tion of Stream Programs for Heterogeneous Architectures: A Model-Checking based
approach. Technical Report IISc-CSA-TR-2015-2, Indian Institute of Science, India.

[Theelen et al., 2006] Theelen, B. D., Geilen, M. C. W., Basten, T., Voeten, J. P. M.,
Gheorghita, S. V., and Stuijk, S. (2006). A Scenario-aware Data Flow Model for
Combined Long-run Average and Worst-case Performance Analysis. In Proceedings
of the Fourth ACM and IEEE International Conference on Formal Methods and Models for
Co-Design, 2006. MEMOCODE ’06. Proceedings., MEMOCODE ’06, pages 185–194,
Washington, DC, USA. IEEE Computer Society.

[Thiele et al., 2000] Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-time cal-
culus for scheduling hard real-time systems. In Circuits and Systems, 2000. Proceed-
ings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, volume 4, pages
101–104. IEEE.

[Tindell and Clark, 1994] Tindell, K. and Clark, J. (1994). Holistic schedulability anal-
ysis for distributed hard real-time systems. Microprocess. Microprogram., 40(2-3):117–
134.

[Tomasena et al., 2009] Tomasena, K., Sevillano, J., Arrue, N., Cortés, A., Vélez, I.,
and others (2009). Embedding Matlab in SystemC transaction level modeling for
verification. In Design of Circuits and Integrated Systems Conference, DCIS.

http://www.synopsys.com/Systems/VirtualPrototyping/Pages/Virtualizer.aspx
http://www.synopsys.com/Systems/VirtualPrototyping/Pages/Virtualizer.aspx

BIBLIOGRAPHY 205

[Ungerer et al., 2010] Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov, Z.,
Rochange, C., Quiñones, E., Gerdes, M., Paolieri, M., Wolf, J., Casse, H., Uhrig,
S., Guliashvili, I., Houston, M., Kluge, F., Metzlaff, S., and Mische, J. (2010).
Merasa: Multicore Execution of Hard Real-Time Applications Supporting Analyz-
ability. IEEE Micro, 30(5):66–75.

[Walter et al., 2014] Walter, J., Fakih, M., and Grüttner, K. (2014). Hardware–based
real–time simulation on the raspberry pi. In 2nd Workshop on High-performance and
Real-time Embedded Systems (HiRES 2014).

[Warsitz, 2015] Warsitz, S. (2015). Simulink-Modellübersetzung in Synchrone Daten-
fluss Graphen(SDFG) zur Ausführungszeit-Analyse auf Multi-core Architekturen.
Bsc. thesis, Carl von Ossietzky Universität Oldenburg.

[Warsitz and Fakih, 2016] Warsitz, S. and Fakih, M. (2016). Simulink-Modell-
Übersetzung in synchrone Datenflussgraphen. In Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen
(MBMV’2016). Universität Rostock.

[Westphal, 2012] Westphal, B. (2012). Real-time systems. http://electures.

informatik.uni-freiburg.de/portal/web/guest/detail/-/

modulnavigation/view/4402/13302/. Lecture notes, Albert-Ludwigs-
Universität Freiburg.

[Wilhelm et al., 2008] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., and Stenström, P. (2008). The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7(3):36:1–36.

[Wilhelm and Reineke, 2012] Wilhelm, R. and Reineke, J. (2012). Embedded systems:
Many cores; Many problems. In 2012 7th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 176–180.

[Wolf et al., 2012] Wolf, J., Fechner, B., Uhrig, S., and Ungerer, T. (2012). Fine-grained
timing and control flow error checking for hard real-time task execution. In Industrial
Embedded Systems (SIES), 2012 7th IEEE International Symposium on, pages 257–266.

[Yang et al., 2010] Yang, Y., Geilen, M., Basten, T., Stuijk, S., and Corporaal, H. (2010).
Automated bottleneck-driven design-space exploration of media processing sys-
tems. In Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’10, pages 1041–1046, 3001 Leuven, Belgium, Belgium. European Design and Au-
tomation Association.

[Yen and Wolf, 1998] Yen, T.-Y. and Wolf, W. (1998). Performance estimation for real-
time distributed embedded systems. Parallel and Distributed Systems, IEEE Transac-
tions on, 9(11):1125–1136.

[Zamorano and Juan, 2014] Zamorano, J. and Juan, A. (2014). Memory Isolation in
Many-Core Embedded Systems. High performance and Real-time Embedded System
(HiRES).

 http://electures.informatik.uni-freiburg.de/portal/web/guest/detail/-/modulnavigation/view /4402/13302/
 http://electures.informatik.uni-freiburg.de/portal/web/guest/detail/-/modulnavigation/view /4402/13302/
 http://electures.informatik.uni-freiburg.de/portal/web/guest/detail/-/modulnavigation/view /4402/13302/

206 BIBLIOGRAPHY

[Zhang et al., 2013] Zhang, L., Glab, M., Ballmann, N., and Teich, J. (2013). Bridging
algorithm and ESL design: Matlab/Simulink model transformation and validation.
In Specification & Design Languages (FDL), 2013 Forum on, pages 1–8.

[Zhang, 2011] Zhang, W. (2011). Bounding Worst-Case Performance for Multi-Core
Processors with Shared L2 Instruction Caches. Journal of Computing Science and En-
gineering, 5(1):1–18.

[Zhu et al., 2014] Zhu, X.-Y., Yan, R., Gu, Y.-L., and Zhang, G. (2014). Static Optimal
Scheduling and Mapping of Synchronous Dataflow Graphs on a Heterogeneous
Multiprocessor Platform with Model Checking.

[Zhu et al., 2015] Zhu, X.-Y., Yan, R., Gu, Y.-L., Zhang, J., Zhang, W., and Zhang, G.
(2015). Static Optimal Scheduling for Synchronous Data Flow Graphs with Model
Checking. In FM 2015: Formal Methods, pages 551–569. Springer.

Appendices

207

Appendix A

SDF2TA Tool

A.1 Correctness of SDF2TA Implementation

In the workflow of SDF2TA in Fig. 6.12 different syntax errors may occur at
the highlighted entries (a) to (d). The following listing elaborates on these
errors which can happen at each step (from (a) to (d)) and specifies how
these errors are detected/avoided throughout the workflow (mainly taken from
[Schlaak, 2014]).

(a) Designer Input errors: As seen in Fig. 6.12, the workflow of SDF2TA
starts with the designer who provides SDF2TA with the SUA properties
needed. The designer could provide syntactically incorrect data, which
may be structural errors (such as connecting a channel to an already con-
nected port) or data type errors (e.g. inputting by mistake the execution
time of an actor as a decimal number which is not supported by UP-
PAAL). The designer is the main source of errors in this step and there is
no guarantee that he will construct an intact system model.

Input errors prevention: Many of above errors can be intercepted through
the SDF2TA input mechanisms which forces the designer to respect the
structural design of the Ecore model (see Appendix A.2 Ecore model).
For e.g. it is not possible to instantiate a tile containing more than one
processing element (see Fig. A.3) or to join a channel with more than two
ports (see Fig. A.2). Erroneous data violating data types specified in the
Ecore model are also detected, and a visual feedback is given. In addition,
SDF2TA is blocked and it only continues with next steps (XML export
and XSLT processing (c)) if these errors are corrected. Additional valida-
tion methods (see validation methods in Appendix A.2) that are beyond
the capabilities of Ecore models supported methods, or are application-

209

210 APPENDIX A. SDF2TA TOOL

specific, can be implemented manually. For e.g. ensuring that the WCET
is never less than the BCET (isBCETsmallerWCET see Fig. A.4) or check-
ing whether or not all actors and channels are mapped to tiles and mem-
ories (mapsAllActors(), mapsAllChannels() see Fig. A.4).

(b) Ecore Model errors: In this step as already described in Sect. 6.3,
the SDF2TA editor is generated from the Ecore model (as depicted in
Fig. 6.12). It could be that the Ecore model contains some errors (e.g.
missing some elements/attributes) which makes it incompatible/incon-
sistent to the implementation of timed-automata templates in UPPAAL
(c.f. Sect. 5.2). This kind of errors will manifest at the last step (d) during
the configuration of the TA templates and are detected by UPPAAL.

(c) XSLT errors: In this step, some errors might occur during XSLT process-
ing of the XML (generated from the MoP). These errors stem either from
errors in the XSLT stylesheet itself or come from a defect in the generated
source XML file.

XSLT errors correction: If a critical error occurs during XSLT process-
ing then the operation is aborted. All error messages that occur during
XSLT processing are intercepted and output in a dialogue box in SDF2TA.
This way, the designer can directly identifies the error sources and correct
them.

(d) UPPAAL errors: UPPAAL is the last station for any syntax errors. In
case these are existent, UPPAAL detects them and outputs corresponding
error messages, where the designer can debug the source and trace back
the error to its origin and correct it. Syntax errors detected here could
be as a result of an error in the original Ecore Model (for e.g. some at-
tribute or some element are missing in the Ecore model). In addition,
these could be the result of some syntax error in the implementation of
the timed-automata templates. Moreover, if any error happens in the pro-
cess of generating configuration parameters (performed by SDF2TA), not
recovered by the procedures in (a) and (c), this will be detected by UP-
PAAL. Unit tests assuring that above errors were excluded from SDF2TA
implementation were conducted in [Schlaak, 2014].

A.2 SDF2TA Ecore model

In Sect. 6.3 we have described the work flow of our SDF2TA tool and we men-
tioned that it was developed based on the EMF Ecore model. In the following,

A.2. SDF2TA ECORE MODEL 211

ModelOfPerformance

project : ID
ApplicationType : AppStyle
verifierQuery : EString
verifyAction : VerifyActionType

hasActorsForVerification() : EBoolean

<<enumeration>>
VerifyActionType

firstQuery
deadlock
endToEnd
worstCasePeriod
actorsFinish
checkLiveness
checkRepetitionVector

SDFG

name : ID
period : PositiveInteger
jitter : NonNegativeInteger

hasOnlyOneStartingActor() : EBoolean

Actor

name : ID
function : EString
activationRate : PositiveInteger
startingActor : EBoolean

MoA

CommStyle : CommunicationStyle

isOneInterconConnectedToMemory() : EBoolean

Mapping

mapsAllActors() : EBoolean
mapsAllChannels() : EBoolean
mapsAllSDFGs() : EBoolean
mapsAllTiles() : EBoolean

firstActor

0..1

lastActor
0..1

sdfg1..*platform1 mapping1

actor 0..*

Figure A.1: UML Snapshot of the Ecore element “MoP”

we will elaborate on the main parts of this Ecore model by considering the
equivalent UML models automatically generated from it1.

Fig. A.1 shows the main parts of the MoP (see Sect. 5.1) of SUA which
the designer supplies, depicted as a UML diagram. It constitutes mainly of a
number of SDFGs, the MoA, and the synthesis steps (denoted in the figure
as mapping for a better readability/clarity) which will be described in de-
tails in the following sections. Every MoP is identified by a project name,
an application type AppStyle (which should be set at the mapping level see
Sect. A.2.3) which states whether or not the considered applications are sen-
sitive to the environment, an optional verifier query which gives the user the
option to input customized queries to be checked and the verify action of type
verifyActionType. The verifyActionType enumeration (depicted at the
top left of Fig. A.1) represents the type of verification actions which can be
performed via the model-checker (as described in Sect. 5.3). Two distinguished
actors should be explicitly identified for certain verification queries: the source
(denoted as firstActor in the figure) and sink (denoted as lastActor in
the figure) actor. These actors are needed for some verification actions as in
the case of end-to-end latency and worst-case period observers (see Sect. 5.2.8).
After supplying the needed information of MoP, an XML comprising all the
MoP attributes can the be exported which can be then converted to an XML
configuration file of our UPPAAL-based TA templates’ network (see Fig. 6.12).

A.2.1 SDFG Ecore element

Fig. A.2 shows the main elements of an SDFG (corresponding to Def. 4.2.3).
An SDFG is identified by its name. In addition, if the SDFG is sensitive to an

1Main description and detailed illustrations of the SDF2TA first version were published in
[Schlaak, 2014].

212 APPENDIX A. SDF2TA TOOL

event trigger then a period and jitter should be set. The validation function
hasOnlyOneStartingActor checks whether or not every SDFG has only a
unique starting actor (source) and if not it notifies the user. Since we are con-
sidering MPSoCs applications, every SDFG should constitute of at least one
channel and two actors. An actor could have a number of initiator ports (re-
ferred to PortOut in Fig. A.2) or a number of target ports (referred to PortIn

in Fig. A.2) or both, each having an identifier and a rate. Also the channel is
identified by its name and a delay attribute which indicates the number of
initial tokens on the channel. The validation function isActorNotLinked-

ToItself makes sure that a channel connects unique initiator port of one
actor to the target port of the second actor and that an actor is not connected to
itself through a channel.

SDFG

name : ID
period : PositiveInteger
jitter : NonNegativeInteger

hasOnlyOneStartingActor() : EBoolean

Actor

name : ID
function : EString
activationRate : PositiveInteger
startingActor : EBoolean

PortIn

name : ID
consumeRate : PositiveInteger

PortOut

name : ID
produceRate : PositiveInteger

Channel

name : ID
delay : NonNegativeInteger

isActorNotLinkedToItself() : EBoolean

actor
2..*

channel

1..*

portIn
0..* portOut 0..*

channel
1 channel1

portIn
1

portOut1

Figure A.2: UML Snapshot of the Ecore element “SDFG”

An actor is identified by its name and its functionality (for e.g. DCT). The
activationRate gives the number of actor’s activation within an iteration. In
addition, within an SDFG there should be exactly one source actor for which
the attribute startingActor) is set to true.

A.2.2 Model of Architecture Ecore Element

Fig. A.3 shows the Ecore model of the MPSoC model of architecture. It con-
sists of a number of tiles each having an identifier, a number of shared stor-

A.2. SDF2TA ECORE MODEL 213

MoA

CommStyle : CommunicationStyle

isOneInterconConnectedToMemory() : EBoolean

Tile

name : ID

ProcessingElement

name : ID
type : EString
clockFrequency : PositiveInteger

ProcessorMemory

name : ID
dataMemorySize : PositiveInteger
instructionMemorySize : PositiveInteger

SharedMemory

name : ID
size : PositiveInteger
ReadBCT : NonNegativeInteger
ReadWCT : NonNegativeInteger
WriteBCT : NonNegativeInteger
WriteWCT : NonNegativeInteger

SharedBus

name : ID
width : PositiveInteger
ReadBCT : PositiveInteger
ReadWCT : PositiveInteger
WriteBCT : PositiveInteger
WriteWCT : PositiveInteger
arbitrationCycleBCT : PositiveInteger
arbitrationCycleWCT : PositiveInteger
arbitration : BusArbitration
slotSize : PositiveInteger

hasTDMASlotSize() : EBoolean
isGateWayConnectedToSelf() : EBoolean

tile 1..*

sharedMemory 1..*

sharedBus 1..*

processingElement 1 processorMemory 1

MasterIF

1

SlaveIF

1

GatewayTo

0..1

Figure A.3: UML Snapshot of the ecore element “MoA”

age resources (referred to by shared memory in Fig. A.3 for readability/clarity
purposes) and a number of shared interconnects (referred to by shared bus in
Fig. A.3 for readability/clarity purposes). The inter-processor communication
style can be chosen (which should be set at the mapping level see Sect. A.2.3)
by setting the attribute commStyle either to burst or single-beat based com-
munication. Every tile consists of a processing element having an identifier, a
type and clock frequency attributes, and a processor private memory having
an identifier and size attributes. In case of multiple interconnects, the attribute
MasterIF should be set for every tile to indicate its connection to the specific
interconnects, where in the current implementation a tile is only allowed to be
directly connected to one interconnect.

The sharedBus Ecore element is used to connect tiles to shared memories.
Each sharedBus consists of an identifier attribute, a width attribute which
describes the bus width, the (best-case and worst-case) latencies to read/write
one word of a length equal to the bus length, the (best-case and worst-case)
latency needed to perform an arbitration cycle, the arbitration strategy (which
should be set at the mapping level see Sect. A.2.3) and in case of a TDMA
arbitration scheme a slotSize attribute representing the size of time slot in
a TDMA wheel need to be set. In case of multiple interconnects, the attribute
GatewayTo should be set for every SharedBus to indicate its connection to
other shared buses, where in the current implementation a SharedBus is only
allowed to be directly connected to one interconnect. The validation function
hasTDMASlotSize prohibits the designer from setting the slot-size attribute
except when a TDMA arbitration is chosen. In addition, the validation function

214 APPENDIX A. SDF2TA TOOL

isGateWayConnectedToSelf assures that the case where a shared bus is
connected to itself via a gateway never takes place.

The SharedMemory Ecore element represents the shared storage resources
having an identifier, a size and (best-case and worst-case) latencies attributes
needed to read/write one word of a length equal to the bus length. In case of
multiple interconnects, the attribute SlaveIF should be set for every Shared-
Memory to indicate its connection to the specific interconnects, where in the cur-
rent implementation a SharedMemory is only allowed to be directly connected
to one interconnect. The validation function isOneInterconConnected-

ToMemory notifies the designer, in the case where the last interconnect in the
hierarchy/topology/route, is not connected to any shared memory since is not
allowed.

A.2.3 Mapping Ecore Element

Fig. A.4 shows the mapping element of the Ecore model and the decisions
which can be done in the synthesis step such as mapping the channels to
memories and the actors to tiles, choosing whether or not the SDFA is sen-
sitive to an event trigger through AppStyle attribute, the bus arbitration strat-
egy, the scheduling strategy and the IPC communication style. The validation
function mapsAllActors, mapsAllChannels, mapsAllSDFGs and map-

sAllTiles assure that all actors are mapped, all channels are mapped, all
SDFGs schedules are chosen and that every tile has a number of actors to ex-
ecute, respectively. For every tile, there exists exactly one tileMap. Also for
every physical storage resource there exists exactly one memoryMap either
processorMemoryMap or SharedMemoryMap.

With the help of the tileMap element, actors are mapped to tiles whereas
with the help of either sharedMemoryMap or processorMemoryMap, chan-
nels are mapped either to shared memories or to private memories respectively.
In the tileMap element, the BCET and WCET of both the software driver and
the scheduler code can be obtained with the help of a WCET analyzer and set to
the corresponding attributes. At this level, the validation function isBCETs-

mallerWCET assures that the BCET is always less than or equal the WCET,
whereas isTileUnique assures that every actor is exactly mapped uniquely
on one tile. In addition, the validation function isMemoryUnique assures that
every channel is uniquely mapped on one memory. A tileMap element con-
sists of a number of ActorOnTile elements which contain the properties that
should be considered when an actor is mapped to a tile. For e.g. when exe-
cuted on a specific tile, an actor has now BCET and WCET bounds to be set for
the execution time. In addition, in case of blocking, a polling time should be
waited. A MemoryMap element consists of a number of ChannelOnMemory el-
ements which contain the properties that should be considered when a channel

A.2. SDF2TA ECORE MODEL 215

is mapped to a specific memory. For e.g. the buffers’ sizes and the token sizes
are set in this case. In the SDFGMap, the scheduling mechanism can be chosen
to schedule among different SDFGs mapped to the same tile.

216 APPENDIX A. SDF2TA TOOL

A
ct

o
r

n
a
m

e
 :

 I
D

C
h

a
n

n
e
l

n
a
m

e
 :

 I
D

is
A

ct
o
rN

o
tL

in
ke

d
To

It
se

lf
()

 :
 E

B
o
o
le

a
n

Ti
le

n
a
m

e
 :

 I
D

P
ro

ce
ss

in
g

E
le

m
e
n

t

n
a
m

e
 :

 I
D

P
ro

ce
ss

o
rM

e
m

o
ry

n
a
m

e
 :

 I
D

d
a
ta

M
e
m

o
ry

S
iz

e
 :

 P
o
si

ti
v
e
In

te
g

e
r

in
st

ru
ct

io
n

M
e
m

o
ry

S
iz

e
 :

 P
o
si

ti
v
e
In

te
g

e
r

S
h

a
re

d
M

e
m

o
ry

n
a
m

e
 :

 I
D

si
ze

 :
 P

o
si

ti
v
e
In

te
g

e
r

S
h

a
re

d
B

u
s

a
rb

it
ra

ti
o
n

 :
 B

u
sA

rb
it

ra
ti

o
n

sl
o
tS

iz
e
 :

 P
o
si

ti
v
e
In

te
g

e
r

<
<

e
n

u
m

e
ra

ti
o
n

>
>

B
u
sA

rb
it

ra
ti

o
n

FC
FS

ro
u

n
d

R
o
b

in
fi
xe

d
P
ri

o
ri

ty
T
D

M
A

M
a
p

p
in

g

m
a
p

sA
llA

ct
o
rs

()
 :

 E
B

o
o
le

a
n

m
a
p

sA
llC

h
a
n

n
e
ls

()
 :

 E
B

o
o
le

a
n

m
a
p

sA
llS

D
FG

s(
)

:
E
B

o
o
le

a
n

m
a
p

sA
llT

ile
s(

)
:

E
B

o
o
le

a
n

S
h

a
re

d
M

e
m

o
ry

M
a
p

is
M

e
m

o
ry

U
n

iq
u

e
()

 :
 E

B
o
o
le

a
n

P
ro

ce
ss

o
rM

e
m

o
ry

M
a
p

is
M

e
m

o
ry

U
n

iq
u

e
()

 :
 E

B
o
o
le

a
n

C
h

a
n

n
e
lO

n
M

e
m

o
ry

b
u

ff
e
rS

iz
e
 :

 P
o
si

ti
v
e
In

te
g

e
r

to
ke

n
si

ze
 :

 P
o
si

ti
v
e
In

te
g

e
r

is
B

C
Ts

m
a
lle

rW
C

T
()

 :
 E

B
o
o
le

a
n

Ti
le

M
a
p

d
ri

v
e
rB

C
T
 :

 N
o
n

N
e
g

a
ti

v
e
In

te
g

e
r

d
ri

v
e
rW

C
T
 :

 N
o
n

N
e
g

a
ti

v
e
In

te
g

e
r

sc
h

e
d

u
le

rB
C

E
T
 :

 N
o
n

N
e
g

a
ti

v
e
In

te
g

e
r

sc
h

e
d

u
le

rW
C

E
T
 :

 N
o
n

N
e
g

a
ti

v
e
In

te
g

e
r

is
B

C
E
Ts

m
a
lle

rW
C

E
T
()

 :
 E

B
o
o
le

a
n

is
Ti

le
U

n
iq

u
e
()

 :
 E

B
o
o
le

a
n

<
<

e
n

u
m

e
ra

ti
o
n

>
>

S
D

FG
S

ch
e
d

u
lin

g
Ty

p
e

st
a
ti

cO
rd

e
r

ro
u

n
d

R
o
b

in
A

ct
o
rO

n
Ti

le

B
C

E
T
 :

 P
o
si

ti
v
e
In

te
g

e
r

W
C

E
T
 :

 P
o
si

ti
v
e
In

te
g

e
r

p
o
lli

n
g

W
a
it

 :
 P

o
si

ti
v
e
In

te
g

e
r

is
B

C
E
Ts

m
a
lle

rW
C

E
T
()

 :
 E

B
o
o
le

a
n

<
<

e
n

u
m

e
ra

ti
o
n

>
>

C
o
m

m
u

n
ic

a
ti

o
n

S
ty

le

B
u
rs

tt
ra

n
sf

e
r

S
in

g
le

B
e
a
t

S
D

FG
M

a
p

sd
fg

H
ie

ra
ch

ic
a
lS

ch
e
d

u
lin

g
 :

 S
D

FG
S

ch
e
d

u
lin

g
Ty

p
e

<
<

e
n

u
m

e
ra

ti
o
n

>
>

A
p

p
S

ty
le

E
v
e
n

tS
e
n

si
ti

v
e

N
o
n
E
v
e
n

tS
e
n

si
ti

v
e

p
ro

ce
ss

in
g

E
le

m
e
n

t
1

p
ro

ce
ss

o
rM

e
m

o
ry

1

M
a
st

e
rI

F
1

S
la

v
e
IF

1

sh
a
re

d
M

e
m

o
ry

M
a
p

0
..

*
p

ro
ce

ss
o
rM

e
m

o
ry

M
a
p

0
..

*

ti
le

M
a
p

0
..

*

S
D

FG
H

ie
ra

rc
h

ic
a
lS

ch
e
d

u
le0

..
1

m
e
m

o
ry

1

ch
a
n

n
e
lO

n
M

e
m

o
ry

0
..

*

m
e
m

o
ry

1

ch
a
n

n
e
lO

n
M

e
m

o
ry

0
..

*

ch
a
n

n
e
l

1

ti
le

1

a
ct

o
rO

n
Ti

le

0
..

*

a
ct

o
r

1

Figure A.4: UML Snapshot of the Ecore element “Mapping”

Appendix B

Aurix TriCore Experiment

In Sect. 7.4 the main steps of the Aurix TriCore experiment were briefly de-
scribed. In the following, a detailed description of the measurement and trac-
ing issues of the execution times is given. In addition, the detailed abstraction
and timing delays annotations of the different MPSoC components to the MoP
in the SDF2TA tool is given.

B.1 Simulation Measurements

Table B.1: Interconnect accesses for single-beat and burst transfer IPC

fCLB sCLB FOC MON VOT SENS ACT

Single-beat
Read accesses

16 25 4 12 41 0 9

Single-beat
Write accesses

10 12 9 20 4 52 0

DMA Transfers 4 5 2 4 6 6 1

In Sect. 7.4.6.1 the simulative timing results of the proposed test-cases were
presented. In the following, we will elaborate on the calculation of tcomsingle and
tcomdma found in Tab. 7.9. Tab. B.1 depicts the number of accesses for every actor
(in one firing) on the interconnect which was obtained from the simulation
measurements’ traces of the virtual-hardware platform and analyzed with the
help of VCD (value change dump file) viewer.

For every actor A the communication time for a transfer on the interconnect

217

218 APPENDIX B. AURIX TRICORE EXPERIMENT

Table B.2: Measured parameters of Single-beat transfer (in cycles)

∆CanGet/CanPut ∆readSRI ∆writeSRI ∆arb ∆P

5 5 4 1 348

can be calculated as follows:

tcomsingleA = δR + δW (B.1)

where δR is the delay needed to read all tokens on all ports from the FIFO
buffers and δW is the delay of needed to write all tokens to the target FIFO
buffers.

B.1.1 Single-beat Transfer Measurements

With the help of the VCD viewer, we found out that reading (∆readSRI) a token of
32 bits length in the single-beat IPC transfer takes about 5 cycles, while writing
(∆writeSRI) a token consumes 4 cycles of time (by 300 MHz clock frequency).

Because of the nature of enqueue/dequeue implementation (see Algo-
rithm 1 and Fig. 6.17), for every (read/write) access additional interconnect
(read/write) accesses are issued (for e.g. reading the size of the buffer before
enqueue/dequeue action). Every dequeue function call (by a read transfer),
imposes three read access and two write accesses through the interconnect to
the target FIFO buffer according to the current implementation. On the other
side for every enqueue function call (by write transfer), two read accesses and
three write accesses are observed on the interconnect.

Now the read delay δR (in cycles) of the interconnect single-beat accesses of
an actor can be calculated as follows:

δR = RaccessNr × (3× ∆readSRI + 2× ∆writeSRI) = RaccessNr × 23 (B.2)

and the write delay δW (in cycles) of the interconnect accesses of an actor
can be calculated as follows:

δW = WaccessNr × (2× ∆readSRI + 3× ∆writeSRI) = WaccessNr × 22 (B.3)

Now with the help of above equations and Tab. B.1 the communication time
for every actor tcomsingle in a single-beat transfer can be calculated (as found in
Tab. 7.9).

In addition to the measuring the delays of the read/write access, we also
measured the polling-waiting time to insure a correct annotation. The polling-
waiting time in this case was found to be 348 cycles. Moreover, the arbitration
cycle of the SRI was found to last only for 1 cycle.

B.1. SIMULATION MEASUREMENTS 219

Table B.3: Measured parameters of one DMA transfer (in cycles)

∆CanGet/CanPut ∆dequeue/enqueue ∆driverDma ∆arbDma ∆TransSRI ∆P

5 167 344 2 190 3453

B.1.2 DMA-based Burst Transfer Measurements

By a burst transfer (of the Aurix DMA with a SIXTEEN MOVES PER TRANS-
FER configuration), a fixed packet length of 512 bits (4 control variables each of
size 32 bits and 12 floats effectively-used tokens each of size 32 bits) is commu-
nicated per transfer. In Sect. 5.2.7 we have elaborated on the timing parameters
of timed-automata representing a DMA-based burst transfer. The parameters
in Tab. B.3 were measured with the help of the obtained VCD traces from the
cycle-accurate virtual-hardware platform.

The ∆driverDma delay consists of a software part of the driver code initializa-
tion (∆InitDma= 79 cycles) and the configuration phase1 ∆con f igDma =255 cycles)
of the DMA to start transfer, ∆TransSRI is the time needed to complete the trans-
fer of the number of packet through the SRI from source memory to target
memory including the memory latency (∆M) and ∆arbDma is the time delay of
the DMA needed to perform internal arbitration.

For simplification, we have implemented the local2 dequeue/enqueue such
that always 12 floats of the transfered packet (even if the effectively used num-
ber of tokens is less) are consumed/produced. This is the reason why we have
for all actors the same local delay when enqueuing/dequeuing. In addition,
the polling-waiting time ∆P was set to be equal 3453 cycles (according to the
measurements). Indeed this value is about ten times larger than that of the
single-beat transfer. This is due to the implementation-specific timing require-
ment imposed by the considered DMA to wait for extra time before being able
to receive any configurations..

Thus, a fixed delay can be measured (with the help of VCD traces) of every
burst access of 536 cycles of time. This delay includes the configuration time
of the DMA (tcon f igDma = 344) and the communication time (∆DelayO f Trans =
190 + ∆arbDma = 2) of the tokens through the SRI interconnect. By multiplying
the number of accesses of every actor to the interconnect (depicted in Tab. B.1)
to the delay time, we are able to calculate the communication time tcomdma for
every actor in a DMA-based burst transfer (as found in Tab. 7.9).

1Configuration phase is defined from the moment the first write from the SPB master (tile)
on the SPB the till last write (on SPB slave) before starting the SRI transaction.

2Local means that no interconnect access is issued within the function call and that the
dequeue/enqueue functions are applied on the local copy of the shared buffer.

220 APPENDIX B. AURIX TRICORE EXPERIMENT

B.2 Abstractions and Annotations for the MoP

After describing the relevant measurements and parameters for the MoP of
the Aurix application in the previous section, we will now take a look at the
abstractions done for both IPC implementations and describe the way of cap-
turing their timing behavior in our timed-automata templates (see experiment
in Sect. 7.4.7). It is important to note that we applied the optimizations (for
static-order schedule) described in Sect. 5.4.1 and that is why no explicit TA
were instantiated for the FIFO buffers. Instead for both implementation styles,
array variables (14 shared FIFO buffers and 4 private FIFO buffers) each repre-
senting a FIFO buffer were initialized.

B.2.1 DMA-based Burst Transfer

Fig. B.1 shows the abstractions made for the DMA-based burst IPC implemen-
tation. When applying assumptions B1 and B2 (see Sect. 7.4.7 and Fig. 7.11a),
we are now able to abstract away from modeling explicitly the SRI and SPB
interconnects. In Fig. B.1 the following abstractions steps are done in step 1©:

1. PFlash is not modeled since it was only used for startup code deployment
which doesn’t influence the timing of the application after initialization.

2. Since we assume no contention on the SRI (see B2), no need for explicit
modeling of the SRI. Instead, only the delay of DMA transfer on SRI
(∆TransSRI) should be taken into consideration in the MoP.

3. Since we assume WCCT on SPB (see B1), no need for explicit modeling
of the SPB. Instead, only the delay of DMA configuration on the SPB
(3× ∆con f igDmaSPB) should be taken into consideration in the MoP.

4. If SENS or ACT actors are active on tile0, their duration activity (accessing
the environment interface HW component) is always less than the time
needed by tile0 to configure the DMA. This is the reason why we don’t
consider this case explicitly in the modeling. In that case, whether tile0
is performing access to the environment interface or is configuring the
DMA, always the same pessimistic delay is assumed for accesses to the
SPB (which is 3× ∆con f igDmaSPB).

After doing above steps, the following TA templates network can be con-
structed (see step 2© in Fig. B.1):

1. One Eventtrigger timed automaton is needed to model the periodic
event from the environment interface component with a period of 100 µs.

B.2. ABSTRACTIONS AND ANNOTATIONS FOR THE MOP 221

2. For every tile an SOonTile timed automaton (see Sect. 5.4.1) is initialized
with the ∆A delay of the actors mapped to this tile and their polling-
waiting delay ∆P.

3. Similarly, for every tile a communication driver timed automaton is ini-
tialized. In this case, the delay of the DMA configuration on the SPB can
be merged with the delay of the communication driver software and can
be annotated to the communication driver timed automaton as follows
(as described in Sect. 5.2.7):

∆C = ∆InitDma + 3× ∆con f igDma + ∆dequeue/enqueue + ∆CanGet/CanPut (B.4)

where ∆InitDma is the delay needed for software part of the communica-
tion driver and ∆CanGet/CanPut are delays for local access on local (to PE)
buffers.

4. With our DMA configurations (see Sect. 7.4.3), both arbitrations in the
DMA will grant the tile with the highest identification, and this tile will
in turn perform the transfer without interruption. For this and because of
the abstractions above, only one interconnect timed automaton is needed
for modeling the DMA-based IPC, annotated with both the latency de-
lays of the DMA and the SRI (∆I = ∆arbDma + ∆Trans) and configured with
the DMA specific non-preemptive fixed-priority arbitration. For the cal-
culation of ∆trans in case of DMA-based burst transfer, please refer to
Sect. 5.2.7.

While exploring the resulting TA network, the state space varied between
19240586 states and 19229533 states for the sup and inf TCTL verification
queries respectively.

B.2.2 Single-beat transfer through SRI

Similar abstractions and annotations for the single-beat IPC implementation
were also made with the following minor differences.

1. PFlash is not modeled only for startup code

2. Since no contention on the SPB and only tile0 is allowed to access the
environment interface we can abstract away from the SPB and the envi-
ronment interface component. The access delays of tile0 communicating
with the environment interface component via the SPB is already cap-
tured in the execution times of SENS and ACT actors.

After doing that, the following TA templates network can be constructed
(see step 2© in Fig. B.2):

222 APPENDIX B. AURIX TRICORE EXPERIMENT

1. One Eventtrigger timed automaton is needed to model the periodic
event from the environment interface component with a period of 100 µs.

2. For every tile an SOonTile timed automaton is initialized with the ∆A

delay of the actors mapped to this tile and their polling-waiting delay ∆P.

3. Similarly, for every tile a communication driver timed automaton with
the delay ∆C is initialized. For more details about the calculation of ∆C in
case of a single-beat transfer, please refer to Sect. 5.2.4.

4. Only one interconnect timed automaton is needed for modeling the
single-beat IPC on the SRI. The SRI can be abstracted through an inter-
connect with a non-preemptive fixed-priority arbitration with the delay
∆I = ∆arbSRI + ∆Trans. For more details about the calculation of ∆Trans in
case of single-beat transfer, please refer to Sect. 5.2.5.

While exploring the resulting TA network, the state space varied between
41441659 states and 58910060 states for the sup and inf TCTL verification
queries respectively.

B.2. ABSTRACTIONS AND ANNOTATIONS FOR THE MOP 223

1

2

Figure B.1: Abstractions made for the DMA-based burst IPC implementation

224 APPENDIX B. AURIX TRICORE EXPERIMENT

1

2

Figure B.2: Abstractions made for the single-beat IPC implementation

List of Abbreviations

Abbreviation Description

ADC Analog-to-digital converters
AHB Advanced High-performance Bus
API Application Programming Interface
BCET Best Case Execution Time
CABA Cycle Accurate Bit Accurate
CAN Controller Area Network
CFG Control-Flow Graph
CSFSM Communicating Synchronous
CTL Computation Tree Logic
DBMs Difference Bound Matrices
DC Direct Current
DDR Double Data Rate
DMA Direct Memory Access
DSP Digital Signal Processor
ECP EMF Client Platform
ECU Electronic Control Unit
EMF Eclipse Modeling Framework
FCFS First Come First Serve
FIFO First In First Out queue
FP Fixed-Priority
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GCC GNU C Compiler
HSDF Homogeneous Synchronous Data Flow
ILP Integer Linear Programming
ISS Instruction Set Simulator
KPN Kahn Process Network
MBD Model Based Design
MIL Model In the Loop
MNC Maximum Number of Shared Resource Accesses
MoA Model of Architecture
MoC Model of Computation

225

226 LIST OF ABBREVIATIONS

Abbreviation Description

MoP Model of Performance
MoS Model of Structure
MPSoC Multiprocessor System-on-Chip
NoC Network On Chip
NP Non-deterministic Polynomial time
PAPS Periodic Admissible Parallel Schedule
PASS Periodic Admissible Sequential Schedule
PBD Platform Based Design
PE Processing Element
PIL Processor In the Loop
PSM Process State Machines
PTA Priced Timed Automata
PWM Pulse-width modulation
RMS Rate Monotonic Scheduling
RR Round-Robin
RTC Real-Time Calculus
RTL Register Transfer Level
RTOS Real Time Operating Systems
RTW Embedded Real Time Workshop
SADF Scenario-Aware Data-Flow graph
SBD Synchronous Block Diagram
SDF Synchronous Data Flow
SDFG Synchronous Data-Flow graph
SDRAM Synchronous Dynamic Random-Access Memory
SIL Simulation In the Loop
SLD System Level Design
SPB System Periphery Bus
SRI System Resource Interconnect
SUA System Under Analysis
SW/HW Software/Hardware
TCTL Timed Computation Tree Logic
TDF Timed Data Flow
TDMA Timed Devision Multiple Access
TLB Translation Look-aside Buffer
TLM Transaction Level Model
UMA Uniform Memory Access
UML Unified Modeling Language
V&V Verification and Validation
VCD Value Change Dump
VP Virtual Platform
WCET Worst Case Execution Time
XML EXtensible Mark-up Language
XSLT EXtensible Stylesheet Language Transformation

Glossary

For consistency purposes and in order to unmask ambiguousness, essential key words
used in this thesis are defined in the following (some taken from our own work in
[Fakih, 2011]).

Basic block Is a representation of code fragments (instructions) which are executed
by target processor atomically i.e. no possibility of branching or preemption is allowed
within the basic block.

BCET Is a lower bound of execution time for all possible inputs of a certain exe-
cutable code (task) which can be obtained through a static code analyzer.

Bi-Simulation In difference to a co-simulation, in a bi-simulation a lock-step simu-
lation takes place, where the first simulation environment (master of simulation) exe-
cutes a simulation step and the other one executes the same step.

Clock cycle A clock cycle represents the time delay between two equal edges of a
clock signal.

Co-Simulation In a co-simulation, two simulation environments interact with each
other in order to simulate a common complex system.

Communication Resource such as buses, interconnects where information is trans-
fered from sender to receiver at each (number of) cycle(s).

Composability According to [Akesson et al., 2010], applications in a composable sys-
tem are completely isolated and cannot affect each other’s functional or temporal be-
haviors.

Control step A control-step is defined as a one update of the controller model in a
given period which also corresponds to one update of its generated code.

Cross-compiler is a compiler that runs on a given hardware platform, but creates
compiled files (object files or executable programs) for another platform.

227

228 GLOSSARY

Cycle-accurate A model is said to be cycle accurate, if it describes its state evolvement
on each clock cycle.

End-to-end Latency The end-to-end latency is defined as the time starting from acti-
vating the first instance of the source actor (upon receiving the first event e.g. reading
sensor values), executing the SDFG application till the last instance of the sink actor is
finished (e.g. updating actuators).

Endianess defines the order in which bytes are aligned in a memory where big endi-
aness means that the most significant byte is saved first (in the smallest address) and
then the next highest whereas by little endianess the least significant byte is first saved.

Execution time analysis As defined in [Ermedahl and Engblom, 2007]: “Execution
time analysis is any structured method or tool applied to the problem of obtaining information
about the execution time of a program or parts of a program.”

Flexibility The flexibility in this work was used in context of a scheduling strategy.
It defines the ability to handle potentially changing dependencies between tasks of
an application. A strategy is said to be flexible when it can deal with dynamically
changing dependencies between tasks [Stuijk, 2007].

Hard real-time As defined in ([Moonen, 2009],13): “A hard real-time system must satisfy
the temporal constraints for any input stream and any initial state of the system”.

Homogeneous SDF An SDFG is called homogeneous if all actors produce or con-
sume a single sample (token) on each input or output channel in each invocation
[Lee and Messerschmitt, 1987a].

Host-based simulation A host-based simulation enables execution and verification
of the embedded application (running on the virtual-hardware platform) natively on
the designer’s host machine [IEEE-1666, 2012].

Hyperthreading is the case where different PEs actually use the same execution units
or shared caches [Kotaba et al., 2013].

Implementation Model An implementation consists of a structural model (see MoS)
and quality numbers (in this thesis timing delays) [Gerstlauer et al., 2009].

Instruction-Set-Simulator (ISS) is a processor simulation model. The ISS is able to
execute the machine code of different processors. Using cross-compilers high-level
language code is translated to binary code which can be executed by the target ISS.

229

Integer Linear Programming (ILP) In [Wilhelm et al., 2008] ILP is described as fol-
lows: “Linear programming [Chvatal 1983] is a generic methodology to code the requirements
of a system in the form of a system of linear constraints. Additionally given is a goal func-
tion that has to be maximized or minimized to obtain an optimal assignment of values to the
system’s variables. One speaks of Integer Linear Programming if these values are required to
be integers. While linear programs can be solved in polynomial time, requiring the solution to
be integer makes the problem NP-hard. This indicates that the use of ILP should be restricted
to small problem instances or to subproblems of timing analysis generating only small problem
instances.”

Iteration An iteration is a set of actor firings such that for each a ∈ SDFG, the set
contains the γ(a) firings of a, where γ(a) represents the repetition vector which can be
calculated mathematically (Sect. 2.2.1.1).

Model is a simplified form of a real system at which abstractions and idealizations
take place. It offers a fast analysis platform for the performance and the affecting
relations within a real system. In this thesis, the term functional model is used to refer
the top level model which will be modeled in Simulink where only functionality is
modeled here and performance energy or timing aspects are neglected.

Model of Architecture (MoA) represents a platform model where the architectural
template, decisions and constraints are taken into consideration such as the number of
available resources with their interconnections [Gerstlauer et al., 2009].

Model of Computation (MoC)

“A Model of Computation (MoC) is a generalized way of describing system
behavior in an abstract, conceptual form.” [...] MoCs are generally based on
a decomposition of behavior into pieces and their relationships in the form of
well-defined objects and composition rules.” ([Gajski et al., 2009]:50)

“The MoC describes how each component performs internal computation, how compo-
nents transfer information between them and how they relate in terms of concurrency.”
([Baleani et al., 2005]:1)

Model of Performance (MoP) “Performance models represent the contributions of individ-
ual elements to overall design quality in a given implementation.”([Gerstlauer et al., 2009]:3)
These design qualities could be for e.g. throughput, response time, latency, area and
power. In this thesis we only considered timing design qualities in the MoP.

Model of Structure (MoS) “As such, a structural model is a representation of the result-
ing architecture as a composition of components that are internally described in the form of
behavioral models for input to the next synthesis step.”([Gerstlauer et al., 2009]:3)

230 GLOSSARY

MPSoC “Multiple-Processor System-on-a-Chip (MPSoC) architectures which are heteroge-
neous, custom design, and often made out of standard cores whereof some often are special-
purpose” ([Gustavsson, 2010]:2). In a heterogeneous MPSoC, ”the processors are different;
hence the rate of execution of a task depends on both the processor and the task. Indeed, not all
tasks may be able to execute on all processors” ([Davis and Burns, 2011]:3). On the other
side, in a homogeneous MPSoC “the processors are identical; hence the rate of execution of
all tasks is the same on all processors”. ([Davis and Burns, 2011]:3)

Multi-core are “commodity processors, with mostly homogeneous sets of cores”
([Gustavsson, 2010]:2).

NP-hard Problem Problems which belong to NP-class (non-deterministic
polynomial-time) are problems which can be solved through a non-deterministic
Turing-machine within a polynomial time. An NP-hard problem is at least so hard as
the hardest problem in NP-class, i.e. an algorithm which solves an NP-hard problem
could solve all problems in NP-class [Bovet and Crescenzi, 1994].

Period The period of an SDFG is defined as the time an SDFG takes to complete one
iteration.

Predictable when used means exhibiting deterministic temporal behavior easing the
ability to reason on the timing behavior of a specific component. In the context of real-
time, an application execution on an MPSoC is said to be predictable we are able to
determine beforehand whether or not the right outputs happen at the right (predicted)
moment.

In order to explain that in more detail the following example is quoted from
[Moreira, 2012]:
“Consider two single-processor architectures that make use of the same processor core, but with
different memory hierarchies. In the first of them, the processor accesses the main memory
through a cache. Say that, in this case, a memory read can take anywhere between 2 and 50 pro-
cessor cycles, depending on whether the access is a cache hit or a cache miss. The read operation
in such an architecture is clearly predictable, as we can bound the time it takes to completion
of the operation. Now consider the second architecture, where the access to the main memory
is direct, and due to the arbitration technique employed, it takes exactly 100 cycles for every
access. According to our definition (and according to any intuitive notion of predictability), the
second system is more predictable than the first, as the bound on timing behavior is tighter (0
cycles of variance against the 48 cycles of variance in the first case).”

Register Transfer Level (RTL) RTL is a low abstraction level of a computer system
where the functionality is described as logic operations which are provided by regis-
ters. Typical components at this level are adders, multipliers, registers, etc.

Scheduling A scheduling mechanism determines the order of the tasks to execute
on a given resource, where the tasks with highest priority are granted access first.
Scheduling strategies are typically either compile-time scheduling (e.g. static-order
scheduling) or run-time scheduling where at run-time scheduling decisions are made.

231

Simulation generally means experimenting on models if during a system-analysis a
model is accomplished that replaces the original system and experiments are carried
out on this model [Page et al., 2001]. Simulation Models can be classified according to
the way their state transitions react with respect to time in discrete or continuous. In a
discrete simulation model the state variables change abruptly only at discrete times,
while in a continuous system the state variables change over the time continuously. In
thesis, we will mainly deal with discrete time (discrete-event simulation) and continu-
ous time but our functional model for which the timing validation is applied, is a pure
discrete model. A continuous time environment is periodically sampled by a discrete
controller model.

Soft real-time “A soft real-time system has a target for its average behavior but does not have
temporal constraints. Furthermore, a soft real-time system must have a fall-back mechanism to
recover from deadline misses.” ([Moonen, 2009]:14)

Storage Resource is a resource (e.g. memories, buffers and caches) which keeps
information for a while (for several cycles or permanently).

Synchronous data-flow Graph is a special case of the general data-flow MoC in
which the number of data samples (tokens) produced or consumed by each actor by
each activation is known a priori [Lee and Messerschmitt, 1987a].

System the general definition of a system could be stated as a purposeful collec-
tion of inter-related components working together toward some common objective
[Banks Jerry, 2005]. In this thesis, it is specified to be a control system which has some
critical timing requirements. Without diving in the control theory deepness, a control
system can be simply defined as system having some sensors which gives feedback
from the environment to some control unit(s) which affect the environment through
actuators, to correct or regulate some behaviors within defined time intervals.

System synthesis The synthesis step includes the processes of allocating resources,
binding (assigning the tasks to allocated hardware resources) and scheduling the be-
havioral model (execution order of tasks) on the defined architecture, and thus trans-
forming a specification into an implementation [Gerstlauer et al., 2009].

System-on-a-Chip A System-on-a-Chip (SoC) is a system whose (digital/analog)
components are integrated on a single chip (integrated circuit: IC).

Throughput The throughput of an SDFG is the inverse of the period i.e. the number
of SDFG iterations within a time unit.

Tokens “Tasks also need some input data (or control information) before they can start and
usually also produce some output data; such terms of information are referred to as tokens.”
([Shabbir et al., 2010]:5)

232 GLOSSARY

Turing-complete A MoC or a programming language is said to be Turing-complete
if it is able to calculate all the functions that can be calculated by a universal Turing
machine.

Use-case A use-case is a defined as a scenario used (with specific input data) to
trigger the system (design) under test.

Validation In contrast to verification, a validation process concentrates more on the
satisfaction of stakeholders, i.e. checking if we are building the right product, and if
it meets the requirements of the domain where it will be used and will perform as
expected [Marwedel, 2010].

Verification A verification process checks the compliance of the (SUA) implementa-
tion against functional and non-functional requirements i.e. inspecting if the model
has been built right. In this thesis when used, both formal methods and simulative
verification are used (see Sect. 2.5).

WCET Is an upper bound of execution time for all possible inputs of a certain exe-
cutable code (task) which can be obtained through a static code analyzer.

WCRT Is an upper bound of response time for all possible inputs of a certain exe-
cutable code (task) which is defined as the sum of the WCET of task and the waiting
time which can caused be caused for e.g. due to contention on shared resources.

List of Figures

1.1 Trend towards MPSoCs’ design (taken from
[Fuller and Lynette I. Millett, 2011]) . 2

2.1 Timing issues of MPSoCs’ embedded applications (taken from
[Roychoudhury, 2009]) . 11

2.2 X-Chart (taken from [Gerstlauer et al., 2009]) 14
2.3 Example of an SDFG (based on [Lin et al., 2011]) 15
2.4 Example of an SDFG with its relevant timing properties (taken from

[Lin et al., 2011]) . 20
2.5 Process-based MoCs (taken from [Basten, 2008]), MoCs from BDF and

above (highlighted with yellow) are Turing-complete 21
2.6 MP3 decoder clustering . 24
2.7 Decision tree of an MPSoC design . 27
2.8 Cycle-accurate Write single-beat transfer (based on [ARM, 2006,

ICVerification , 2015]) . 33
2.9 Cycle-accurate Write burst transfer (4-beats based on [ARM, 2006,

ICVerification , 2015]) . 34
2.10 Time-accurate bus-functional model (taken from [Cai and Gajski, 2003]) . . . 35
2.11 Timing criticality (taken from [Ermedahl and Engblom, 2007]) 39
2.12 Basic notions concerning timing analysis of systems (taken from

[Wilhelm et al., 2008]) . 40
2.13 TLM and CAM models (taken from [Gerstlauer, 2009]) 42
2.14 Model-checking Approach (taken from [Gajski et al., 2009]) 43
2.15 An example of a light switch modeled as a system of Timed Automata in

UPPAAL (based on [Greenyer, 2010]) . 49
2.16 TCTL-formula (taken from [Bengtsson and Yi, 2004]) 51

4.1 Extended X-Chart (based on [Gerstlauer et al., 2009]) 73
4.2 Possible analyzable MPSoC architecture in this thesis (based on

[Gerstlauer, 2009]) . 76
4.3 Execution phases of an SDF actor . 77
4.4 Scheduling hierarchy within an SDFG and among SDFGs 80
4.5 Timing issues in an example SUA . 82

233

234 LIST OF FIGURES

4.6 MPSoC supported primitives in this thesis . 85

5.1 Example of capturing MoP of SUA as a network of TAs (c.f. Sect. 5.2) 88
5.2 TA templates of MoP components with all their interactions 89
5.3 Template of periodic event trigger . 91
5.4 Template of SDFG scheduler . 92
5.5 Template of SDF transporter actor . 93
5.6 Template of communication driver . 94
5.7 Top: TA template of shared interconnect with FCFS/RR/FP arbitration,

Bottom: with TDMA arbitration . 96
5.8 Template of (private or shared) FIFO buffer 100
5.9 Observer TA template of the period of an SDFG 102
5.10 Observer TA template of end-to-end latency of an SDFG 102
5.11 Optimization of TA templates in case of SO SDFG scheduler 107
5.12 Example of clustering timing violation by RR SDFG scheduler 108
5.13 Scheduling hierarchy extended with TDMA clusters’ scheduler 110
5.14 Example of TDMA scheduling of clusters of SDFGs 111
5.15 Two-Tier RT analysis method through TDMA clusters’ scheduler 112

6.1 Overall model-based design flow . 116
6.2 Original Simulink model (taken from [Warsitz and Fakih, 2016]) 122
6.3 Translation of blocks (taken from [Warsitz and Fakih, 2016]) 122
6.4 Translation of connections (taken from [Warsitz and Fakih, 2016]) 123
6.5 Propagation of number of data to be transfered, datatypes and sampling

rates (taken from [Warsitz and Fakih, 2016]) 123
6.6 Dissolving hierarchy (taken from [Warsitz and Fakih, 2016]) 124
6.7 Translating delay blocks (taken from [Warsitz and Fakih, 2016]) 124
6.8 Removing data-flow blocks without connection of type U3-1 (taken from

[Warsitz and Fakih, 2016]) . 125
6.9 Removing blocks of type U3-2 which group connections (taken from

[Warsitz and Fakih, 2016]) . 125
6.10 Addition of event channels (taken from [Warsitz and Fakih, 2016]) 126
6.11 Resulting SDFG (taken from [Warsitz and Fakih, 2016]) 126
6.12 Work flow of the SDF2TA tool (based on [Schlaak, 2014]) 127
6.13 SDF2TA GUI . 128
6.14 VPIL simulation for MPSoCs . 130
6.15 Bi-simulation procedure of Simulink and VP Framework (taken from

[Fakih, 2011]) . 132
6.16 Sequence of execution in one control-step within a VPIL simulation 133
6.17 Communication driver’s entry calls for a Write access 139
6.18 DMA communication driver’s entry calls for a Write access 140
6.19 DMA Read burst transfer . 141

7.1 SDFG of a JPEG encoder (based on [Shabbir et al., 2010]) 152
7.2 Influence of number of tiles and actors on the state space 154
7.3 Influence of different arbitration protocols on the state space 155
7.4 Influence of interval variation (2-tiles platform) on the state space 156
7.5 Integrating two SDFG clusters on a 2-tiles virtualized platform 159

7.6 Potential scalability improvements with hypervisor extension 161
7.7 Mapping of JPEG encoder and Sobel filter on a 4-tiles platform (S3) 162
7.8 Worst-case period (WCP) analysis results . 164
7.9 Motor control Simulink model and its corresponding SDFG 166
7.10 Mapping-aware SDFG . 170
7.11 Mapping the motor control SDFG to Aurix platform 171
7.12 VPIL simulation setup for Aurix platform (based on

[Poppen, F. and Grüttner, K., 2012]) . 174
7.13 VPIL simulation functional results (for one test-case) of the reference duty

cycles (A, B, C) output values of the 3-phase FOC at Simulink level (vio-
let/dashed) and the measured ones at the virtual-platform level (blue/non-
dashed) . 176

A.1 UML Snapshot of the Ecore element “MoP” 211
A.2 UML Snapshot of the Ecore element “SDFG” 212
A.3 UML Snapshot of the ecore element “MoA” . 213
A.4 UML Snapshot of the Ecore element “Mapping” 216

B.1 Abstractions made for the DMA-based burst IPC implementation 223
B.2 Abstractions made for the single-beat IPC implementation 224

List of Tables

2.1 Mechanisms affecting the temporal behavior of an MPSoC (based on
[Kotaba et al., 2013]) . 29

7.1 Execution times of actors of MP3 decoder (in cycles taken from
[Stuijk et al., 2006]) . 157

7.2 Analysis results of clustered and non-clustered MP3 decoder 158
7.3 Composable RT analysis: experiment setup (in cycles) 159
7.4 Composable RT analysis results on 2-tiles platform (WCP in cycles) 159
7.5 Composable RT analysis results on 4-tiles platform (WCP in cycles) 160
7.6 Execution times of (in cycles taken from [Shabbir et al., 2010]) 162
7.7 Static-order schedules experimented . 163
7.8 Burst-aware and single-beat-aware SDFG transformations 173
7.9 Timing measurements of the motor control application (in cycles with a 300

MHz clock) . 177

235

236 LIST OF TABLES

7.10 State-based versus simulative RT analysis results for single-beat and burst-
transfer implementations . 179

B.1 Interconnect accesses for single-beat and burst transfer IPC 217
B.2 Measured parameters of Single-beat transfer (in cycles) 218
B.3 Measured parameters of one DMA transfer (in cycles) 219

	Title: State-Based Real-Time Analysis of Synchronous Data-flow (SDF) Applications on MPSoCs with Shared Communication Resources
	Abstract
	Contents
	1 Introduction
	1.1 Context and Motivation
	1.2 Research Questions and Contributions
	1.2.1 Research Questions
	1.2.2 Contributions

	1.3 Thesis Outline
	1.4 Prior Publications

	2 Basic Concepts and Background
	2.1 System Level Design (SLD) Methodologies
	2.2 Task Model (Model of Computation)
	2.2.1 Synchronous Data-flow Graphs (SDFGs)
	2.2.1.1 Scheduling
	2.2.1.2 Timing Properties
	2.2.1.3 Expressiveness
	2.2.1.4 Clustering Methods

	2.2.2 Simulink

	2.3 Timing Issues of MPSoCs
	2.3.1 Processor Elements
	2.3.2 Storage Resources
	2.3.3 Communication Resources
	2.3.3.1 Scheduling (arbitration)
	2.3.3.2 Timing models

	2.3.4 Addressable Devices
	2.3.5 Inter-Processor Communication (IPC) Styles
	2.3.6 Predicable Design of MPSoCs

	2.4 Interaction with the Environment
	2.5 Real-time Analysis Methods
	2.5.1 Dynamic Real-time Methods
	2.5.2 Static (Formal) Real-time Methods
	2.5.2.1 State-based RT Analysis Methods

	2.6 Summary

	3 Related Work
	3.1 Formal Real-time Analysis Methods
	3.1.1 Analytical Real-Time Analysis Methods
	3.1.1.1 Generic Tasks on MPSoCs
	3.1.1.2 SDFAs on MPSoCs
	3.1.1.3 Discussion

	3.1.2 State-based Real-time Analysis Methods
	3.1.2.1 Generic Tasks on MPSoCs
	3.1.2.2 SDFAs on MPSoCs
	3.1.2.3 Discussion

	3.2 Model-based Design Flow
	3.2.1 Simulink to SDFG Translation
	3.2.2 Virtual-Platform-in-the-loop Simulation
	3.2.3 Discussion

	3.3 Summary

	4 System Model Constraints and Definition
	4.1 System Constraints enabling State-based RT Analysis
	4.1.1 Task Model and Interaction with Environment
	4.1.2 MPSoC Hardware Architecture

	4.2 System Model Definition
	4.2.1 MoC: Synchronous Data-flow Graphs
	4.2.2 Model of Architecture (MoA)
	4.2.3 BCET/WCET Analysis on Single-Processor Platforms
	4.2.4 Synthesis
	4.2.4.1 Binding Decisions
	4.2.4.2 Scheduling Decisions

	4.2.5 Model of Performance (MoP) Extraction

	4.3 Summary

	5 State-based Real-time Analysis of SDFGs on MPSoCs
	5.1 Representing Performance Model as Timed Automata
	5.2 Implementation of the Timed-automata Templates
	5.2.1 Event Trigger Template
	5.2.2 SDFG Scheduler Template
	5.2.3 Actor Templates
	5.2.4 Communication Driver Template
	5.2.5 Shared Interconnect Templates
	5.2.6 Templates of Shared and Private FIFO Buffers
	5.2.7 Extensions for DMA Burst Transfer
	5.2.8 Observer TA Templates for Real-time Analysis

	5.3 Real-time Analysis via Model-checking
	5.4 Methods for Improving Scalability
	5.4.1 Optimizing the Implemented Timed-automata Templates
	5.4.2 Applying Clustering Method
	5.4.3 Temporal and Spatial Segregation for a Composable and Scalable RT Analysis

	5.5 Summary

	6 Model-based Design Flow for RT-Analysis of Embedded Applications on MPSoCs
	6.1 Model-based Design Flow Overview
	6.2 Simulink to SDFGs Translation
	6.2.1 Constraints on the Simulink Model
	6.2.2 Translation Procedure

	6.3 Automation of our State-based RT Approach
	6.4 Virtual-Platform-in-the-Loop Simulation for MPSoCs
	6.4.1 Motivation
	6.4.2 Bi-simulation Procedure

	6.5 Implementation Concepts
	6.5.1 Pseudo-code of Static-order Scheduled SDFG
	6.5.2 Pseudo-code of SDFGs Schedulers
	6.5.3 Communication Driver Issues

	6.6 Summary

	7 Evaluation
	7.1 Increasing Confidence in Correctness of Approach
	7.2 Evaluation of Scalability
	7.2.1 Possible Scalability w.r.t number of Tiles and Actors
	7.2.2 Scalability w.r.t Arbitration Protocols
	7.2.3 Scalability w.r.t BCET/WCET Interval Variation
	7.2.4 Possible Scalability Improvement with Actors' Clustering
	7.2.5 Possible Scalability Improvement via Temporal Segregation

	7.3 Evaluation of Tightness Improvement
	7.4 Industrial Applicability: Motor Control Case-Study
	7.4.1 Motor Control Simulink Model
	7.4.2 Motor Control Simulink Model to SDFG Translation
	7.4.3 Aurix TriCore platform
	7.4.4 Mapping
	7.4.5 BCET/WCET Analysis of Software Components on single PEs
	7.4.6 VPIL Simulation for Aurix TriCore
	7.4.6.1 Simulation Results

	7.4.7 SDF2TA RT Results with different Communication Styles
	7.4.8 Discussion

	7.5 Summary

	8 Conclusion and Outlook
	8.1 Discussion
	8.2 Future Work and Open Questions

	Bibliography
	A SDF2TA Tool
	A.1 Correctness of SDF2TA Implementation
	A.2 SDF2TA Ecore model
	A.2.1 SDFG Ecore element
	A.2.2 Model of Architecture Ecore Element
	A.2.3 Mapping Ecore Element

	B Aurix TriCore Experiment
	B.1 Simulation Measurements
	B.1.1 Single-beat Transfer Measurements
	B.1.2 DMA-based Burst Transfer Measurements

	B.2 Abstractions and Annotations for the MoP
	B.2.1 DMA-based Burst Transfer
	B.2.2 Single-beat transfer through SRI

	List of Abbreviations
	Glossary
	List of Figures
	List of Tables

