

Realisierung und Konzipierung von Syntheserouten zur diversitätsorientierten Darstellung diverser N-Heterocyclen durch Kombination von Multikomponentenreaktionen und anschließenden Cyclisierungen

Von der Fakultät für Mathematik und Naturwissenschaften

der Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften

– Dr. rer. nat. –

angenomme Dissertation

von

Torben Schlüter, M.Sc. Geboren am 10. August 1986 in Neumünster

Oldenburg, Juni 2016

Erstgutachter: Prof. Dr. Jürgen Martens Zweitgutachter: Prof. Dr. Jens Christoffers Tag der Disputation: 06.07.2016 Die vorliegende Arbeit wurde im Zeitraum von Dezember 2013 bis Juni 2016 unter der Leitung von Herrn Prof. Dr. Jürgen Martens am Institut für Chemie an der Carl von Ossietzky Universität Oldenburg angefertigt.

Danksagung

An erster Stelle gilt mein Dank meinem Doktorvater Herrn Prof. Dr. Jürgen Martens für die mir gegebene Möglichkeit die vorliegende Dissertation in seinem Arbeitskreis anzufertigen und für das mir von ihm entgegengebrachte Vertrauen. Insbesondere für seine stetige Diskussionsbereitschaft, die Unterstützung jeglicher Art und den gewährten Freiraum bei der Gestaltung der Forschungsarbeit möchte ich mich recht herzlich bedanken.

Bei Herrn Prof. Dr. Jens Christoffers bedanke ich mich für die freundliche Übernahme des Korreferats.

Für das Korrekturlesen dieser Arbeit ist ein ganz, ganz großer Dank Dr. Fabian Brockmeyer, Dr. Denis Kröger, Dipl.-Chem. Anne Ruffing, meiner Frau Inga und meinem Schwiegervater Dr. Karl Bumke auszusprechen.

Ein großer Dank für die hervorragende Arbeitsatmosphäre gilt zudem allen aktuellen Mitarbeitern des Arbeitskreises: Dipl.-Chem. Anne Ruffing, M.Sc. Max Franz, B.Sc. Stefanie Rühlicke, B.Sc. Henning Steinert, B.Sc. Tobias Helte, Jana Hatzfeld, Hergen Haase, Ludmilla Hermann und Natalia Krom.

Weiterhin bedanke ich mich bei allen ehemaligen Mitarbeitern, die ich während meiner Promotionszeit kennen lernen durfte. Namentlich sind dies: Dr. Fabian Brockmeyer, Dr. Denis Kröger, Dr. Timo Stalling, M.Sc. Pia Fangmann, M.Sc. Sven Hoffmeister, M.Sc. Tim Hollmann, M.Sc. Jan Pauly, B.Sc. Ina Speckmann, B.Sc. Nils Frerichs, B.Sc. Christoph Kahrs, B.Sc. Dennis Lübken, B.Sc. Raoul Schaper, B.Sc. Daniel Wachtendorf, Kevin Obermann, Jan-Steffen Haverkamp und Jonas Knake.

Für die gemeinsame Zeit im Labor und Büro, die während der Promotionszeit zur zweiten Heimat geworden sind, als auch für die stete Hilfs- und Diskussionsbereitschaft möchte ich mich besonders herzlich bei Dr. Fabian Brockmeyer, Dr. Denis Kröger, Dr. Timo Stalling, Dipl.-Chem. Anne Ruffing und M.Sc. Max Franz bedanken. Neben fachlichen Diskussionen hatte stets jemand ein offenes Ohr für fachfremde Themen und Diskussionen, wodurch die letzten Jahre wie im Flug vergangen sind. Ausdrücklich hervorheben möchte ich Dr. Fabian Brockmeyer und Dr. Denis Kröger für die vielen unvergesslichen Momente bei freizeitlichen außeruniversitären Aktivitäten. Ein herzliches "Dankeschön!" für die gute und äußerst erfolgreiche Zusammenarbeit möchte ich allen Studenten sagen, die bei mir ihr Forschungspraktikum absolviert haben, sowie allen Bachelorabsolventen, die ich während ihrer Zeit im Arbeitskreis unterstützen konnte. Dieses "Dankeschön!" geht an: B.Sc. Stefanie Rühlicke, B.Sc. Cedric Müller, B.Sc. Pascal Müller, B.Sc. Ina Speckmann, B.Sc. Nils Frerichs, B.Sc. Dennis Lübken, B.Sc. Raoul Schaper und B.Sc. Daniel Wachtendorf.

Bei Ludmilla Herrmann, Natalia Krom, Kevin Obermann, Jan Steffen Haverkamp und Jonas Knake möchte ich mich für die gewissenhafte Durchführung einiger Experimente bedanken.

Bei allen übrigen Mitgliedern der weiteren Arbeitskreise des Instituts für Chemie von der Carl von Ossietzky Universität Oldenburg, insbesondere den Arbeitskreisen von Herrn Prof. Dr. Rüdiger Beckhaus, Herrn Prof. Dr. Sven Doye, Herrn Prof. Dr. Jens Christoffers und Herrn Prof. Dr. Thorsten Klüner möchte ich mich für den freundschaftlichen, fast schon familiären, Umgang untereinander bedanken und selbstverständlich auch für die konstruktive und stets gute Zusammenarbeit sowie für den Austausch von Chemikalien und Laborgeräten.

Für die Durchführung der analytischen Untersuchungen danke ich den Mitarbeitern der zentralen Analytik, Andrea Tschirne, Dieter Neemeyer, und Dipl.-Ing. Francesco Fabbretti. Für die Anfertigung der Röntgenkristallstrukturen möchte ich mich ganz besonders bei Dr. Marc Schmidtmann bedanken und auch Dr. Christian Adler meinen Dank aussprechen.

Der Firma GRACE SILICA GmbH danke ich dafür, dass das häufig verwendete Kieselgel für einen freundschaftlichen Preis zur Verfügung gestellt wurde.

Vielen lieben Dank auch an meine Freunde, die mich unterstützt haben und immer Interesse am Fortgang meiner Arbeit gezeigt haben.

Ein großer Dank gilt meinen Eltern, meinem Bruder und seiner Familie, sowie meinen Schwiegereltern, meinem Schwager und seiner Freundin, für die langjährige Unterstützung während der gesamten Studien- und Promotionszeit und in allen weiteren Lebenslagen. Mein größtes Dankeschön gilt aber meiner Frau Inga, für ihr Verständnis für die durchgearbeiteten Wochenenden und für die vollste Unterstützung während des Zusammenschreibens dieser Arbeit. Ab sofort können wir die Sonnenstunden genießen.

Publikationen

- D. Kröger, T. Schlüter, M. Fischer, I. Geibel, J. Martens "Three-Component Reactions toward Polyannulated Quinazolinones, Benzoxazinones and Benzothiazinones" ACS Comb. Sci. 2015, 17, 202–207.
- A. Ziyaei Halimehjani, J. Martens, T. Schlüter "A one-pot three-component synthesis of dithiocarbamates under solvent- and catalyst-free conditions" *Tetrahedron* 2016, 72, 3958–3965.
- T. Schlüter, A. Ziyaei Halimehjani, D. Wachtendorf, M. Schmidtmann, J. Martens "A Four-Component Reaction for the Synthesis of Dithiocarbamates starting from Cyclic Imines" ACS Comb. Sci., akzeptiert.
- T. Schlüter, N. Frerichs, M. Schmidtmann, J. Martens "Sequential Multicomponent Reactions for the Synthesis of Propargylamides Containing a Thiazolidine Substructure" In Vorbereitung.

Kurzzusammenfassung

Im Zentrum der vorliegenden Dissertation steht die Synthese fünf-, sechs-, sieben- und achtgliedriger N-Heterocyclen. Ein Kernelement zur Realisierung eben jener angestrebten Zielstrukturen stellen die Multikomponentenreaktionen dar, mithilfe derer Precursoren synthetisiert werden, die sich für nachfolgende intramolekulare Cyclisierungsreaktionen eignen, um zu den anvisierten Ringsystemen zu gelangen. Im ersten Projekt führt die Aneinanderreihung von ASINGER-Reaktion, Kupfer-katalysierter bzw. Kupfer-vermittelter Säurechloridaddition und anschließender 1,3-dipolarer Cycloaddition zu polyanellierten sechs- und siebengliedrigen Lactamstrukturen. Zusätzlich werden ausgiebige Untersuchungen innerhalb der Kupfer-katalysierten bzw. Kupfer-vermittelten Säurechloridaddition auf Basis S,N- und O,N-heterocyclischer Aldimine durchgeführt. In einem weiteren Projekt wird ein innovatives, dreistufiges Synthesekonzept präsentiert, das einen leichten Zugang zu den literaturunbekannten Strukturmotiven der achtgliedrigen 1,3,6-Oxadiazocin-4-onen sowie 1,3,6-Triazocin-4-onen bietet. Abschließend beschäftigt sich die Dissertation mit der Entwicklung einer neuartigen Vierkomponentenreaktion zur Darstellung von Dithiocarbamaten. In diesem Zusammenhang wird das Potential der Cyclisierung dieser Substanzklasse durch die Initiierung einer Lewis-Säure zu fünfgliedrigen N-Heterocyclen vorgestellt.

Abstract

The present doctoral thesis is focused on the synthesis of five-, six-, seven- and eightmembered *N*-heterocycles. A major element for the realization of the desired ringsystems are multicomponent-reactions. By means of this synthetic methodology precursors are synthesized, which are suitable for subsequent intramolecular cyclizations. A synthetic route involving the ASINGER-reaction, a cooper-catalyzed or copper-mediated acid chloride addition and a 1,3-dipolar cycloaddition leads to the synthesis of polyannulated sixand seven-membered lactams. Furthermore, the reported three component-reaction is investigated extensively. Moreover, an innovative and facile concept for the synthesis of the literature unknown eight-membered ring motifs of the 1,3,6-oxadiazocin-4-ones and the 1,3,6-triazocin-4-ones is presented. Finally, a new four component-reaction for the synthesis of dithiocarbamates and their potential for possible cyclization to a five-membered ringsystem by means of a Lewis-acid is described.

Inhaltsverzeichnis

1	Einleitung	1
2	Zielsetzung	4
3	Heterocyclische Imine	7
3.1	Die ASINGER-Reaktion zur Synthese der 3-Thia- und 3-Oxazoline	7
3.2	Ergebnisse	8
4	Synthese von Propargylamiden und deren Cyclisierung zu	10
	tricyclischen sechs- und siebengliedrigen Lactamen	
4.1	Synthese von diversen Propargylamiden mittels Kupfer-katalysierter MCR	13
4.1.1	Literaturübersicht zur Säurechloridaddition	13
4.1.2	Optimierung der Kupfer-katalysierten Dreikomponentenreaktion	14
4.1.3	Ergebnisse	17
4.2	Synthese tricyclischer 3,6-Dihydropyrazin-2(1H)-on-Derivate	22
4.2.1	Literaturübersicht	22
4.2.2	Orientierender Versuch und Reaktionsoptimierung zur Synthese geeigne-	23
	ter Ausgangsverbindungen	
4.2.3	Synthese der Chloracetyl-substituierten Propargylamide	25
4.2.4	Cyclisierung via 1,3-dipolarer Cycloaddition	27
4.2.4.1	Literaturübersicht	27
4.2.4.2	Ergebnisse	28
4.3	Synthese tricyclischer 3,4,6,7-Tetrahydro-5H-1,4-diazepin-5-on-Derivate	30
4.3.1	Literaturübersicht	30
4.3.2	Synthese der 3-Chlorpropionyl-substituierten Propargylamide via Kupfer-	31
	katalysierter MCR	
4.3.3	Cyclisierung	33
5.	Entwicklung von Syntheserouten zur Darstellung tricyclischer Acht-	37
	ringlactame	
5.1	Synthese der tricyclischen 1,3,6-Oxadiazocin-4-one	40

5.1.1	Reaktionsoptimierung zur Darstellung der Alkoxyamide	40
5.1.2	Synthese der Alkoxyamide	42
5.1.3	Cyclisierung	46
5.2	Synthese der tricyclischen 1,3,6-Triazocin-4-one	50
5.2.1	Synthese der Alkinylaminoamide	50
5.2.2	Cyclisierung	53
5.2.3	Ausgewählte Substitutionsreaktionen zur Derivatisierung der	55
	Aminofunktion der 1,3,6-Triazocin-4-one	
5.2.4	Exemplarische Oxidation	58
6	Entwicklung einer Vier-Komponentenreaktion zur Darstellung von	60
	Dithiocarbamaten ausgehend von heterocyclischen Iminen	
6.1	Synthese zur Darstellung von Dithiocarbamaten via MCR	62
6.1.1	Literaturübersicht	62
6.1.2	Initiierende Untersuchungen und Optimierung der MCR	63
6.1.3	Ergebnisse	66
6.2	Lewis-Säure-vermittelte Umlagerungs-/Cyclisierungsreaktion zu	70
	C-N-verknüpften Bicyclen	
6.2.1	Syntheseplanung	70
6.2.2	Synthese geeigneter Dithiocarbamate ausgehend von heterocyclischen	71
	Aldiminen	
6.2.3	Orientierender Versuch zur intramolekularen Cyclisierung und Struktur-	72
	aufklärung	
6.2.4	Literaturübersicht	74
6.2.5	Ergebnisse	75
7	Zusammenfassung	78
8	Experimenteller Teil	82
8.1	Allgemeines	82
8.1.1	Abkürzungen	82
8.1.2	Analytische Verfahren	83
8.1.3	Chromatographie	84

10	Literaturverzeichnis	262
9	Kristallographischer Anhang	250
8.2.17	Darstellung der C-N-verknüpften bicyclischen 1,3-Thiazolidin-2-thione	238
	bicyclischer 1,3-Thiazolidin-2-thione	
8.2.16	Darstellung von Dithiocarbamaten zur Synthese C-N-verknüpfter	230
8.2.15	Darstellung diverser Dithiocarbamate via MCR	212
8.2.14	Darstellung eines tricyclischen 1,3,6-Triazocin-4,8-dions	210
	1,3,6-Triazocin-4-ons	
8.2.13	Darstellung eines N-Methyl-substituierten tricyclischen	209
8.2.12	Darstellung eines N-Methyl-substituierten Alkinylaminoamids	207
8.2.11	Darstellung der tricyclischen 1,3,6-Triazocin-4-one	203
8.2.10	Darstellung der Alkinylaminoamide	194
8.2.9	Darstellung der tricyclischen 1,3,6-Oxadiazocin-4-one	176
8.2.8	Darstellung der Alkoxyamide	158
8.2.7	Darstellung der tricyclischen 3,4,6,7-Tetrahydro-5 <i>H</i> -1,4-diazepin-5-one	147
8.2.6	Darstellung der 3-Chlorpropionyl-substituierten Propargylamide	135
8.2.5	Darstellung der tricyclischen 3,6-Dihydropyrazin-2(1 <i>H</i>)-one	127
8.2.4	Darstellung der Chloracetyl-substituierten Propargylamide	117
8.2.3	Darstellung diverser Propargylamide <i>via</i> Kupfer-katalysierter MCR	94
8.2.2	Darstellung eines literaturunbekannten Thiazolins	93
8.2.1	Allgemeine Arbeitsvorschriften	87
8.2	Synthesen	87
8.1.4	Lösungsmittel und Reagenzien	85

1 Einleitung

Im Jahr 1838 wurde von LAURENT und GERHARDT^[1] eine Reaktion beobachtet und 1850 von STRECKER^[2] beschrieben, die einen Meilenstein für die organische Synthesechemie darstellte. Die Reaktion eines Aldehyds mit einem Amin und Cyanwasserstoff zu einem α -Aminocyanid wurde als erste den Multikomponentenreaktionen (MCRs, engl.: <u>multicomponent reactions</u>) zugeordnet. Diese Art der Reaktion ist gekennzeichnet durch die Verknüpfung von drei oder mehr Edukten zu komplexen Zielmolekülen mit höchster Diversität in einer Eintopfreaktion. Die Bildung des Produkts erfolgt durch die Aneinanderreihung mehrerer Elementarreaktionen, bei der nach Ablauf der Reaktionen die essentiellen Bestandteile der Edukte im Produkt wiederzufinden sind (Abb. 1.1).^[3]

Abb. 1.1: Schematische Darstellung des Prinzips einer MCR. Aus den drei Edukten **A**, **B** und **C** wird das Produkt **D** gebildet.

In den letzten Jahrzehnten wurden die MCRs zu einem immer wichtigeren synthetischen Instrumentarium für den Synthesechemiker, was durch den immensen Anstieg an Publikationen zu dieser Thematik bestätigt wird.^[3b] Diese Entwicklung ist auf die Vorteile der MCRs gegenüber alternativen mehrstufigen Synthesesequenzen zurückzuführen. Innerhalb eines Syntheseschrittes ist der Aufbau komplexer Moleküle und die gleichzeitig stattfindende Ausbildung einer Vielzahl neugeknüpfter Bindungen (BFI,^[3d] = bondforming-index) unter Verwendung von kostengünstigen und leicht zugänglichen Edukten realisierbar. Durch den Verzicht auf die Isolierung etwaiger Zwischenprodukte können die Zielstrukturen mit gesteigerter Effizienz erhalten werden, was zu einer Reduzierung des praktischen und finanziellen Aufwands führt. Der schnelle und ressourceneffiziente Aufbau komplexer Strukturen, der mit einer hohen Diversität einhergeht, eignet sich besonders für die kombinatorische Chemie im Bereich der pharmazeutischen Forschung.^[3, 4] Die große Variabilität der Edukte ermöglicht die Synthese von Substanzbibliotheken oder bestimmten Leitstrukturen, die in einem High-Throughput-Screening auf ihre biologische Aktivität und pharmakologische Wirkung hin untersucht werden.^[5, 6] Ein besonderes Augenmerk bei der Synthese von Leitstrukturen wird dabei den Heterocyclen zuteil. Diese besondere Verbindungsklasse macht mehr als die Hälfte aller bekannten organischen Verbindungen aus und ist definiert als cyclisches Molekülgerüst, das zusätzlich zum Kohlenstoff aus einem oder mehreren ringbildenden Atomen anderer Elemente wie z. B. Stickstoff, Sauerstoff oder Schwefel besteht.^[7] Das hohe Interesse an der Erforschung und Weiterentwicklung von Heterocyclen drückt sich darin aus, dass über 70 % der gelisteten pharmazeutischen Wirkstoffe sowie Agrochemikalien mindestens ein heterocyclisches Strukturmotiv enthalten.^[8] Eine interessante Leitstruktur für pharmakologisch wirksame Heterocyclen stellen die fünfgliedrigen S,N-heterocyclischen 1,3-Thiazolidine dar. Das wiedererkennbare Strukturmotiv ist unter anderem Hauptbestandteil der Penicilline, die zu der am weitesten verbreiteten und am besten untersuchten Gruppe wirksamer Pharmazeutika zu zählen sind.^[9] Ihre Wirkung als Antibiotikum wurde 1928 von FLEMMING durch die Entdeckung des Benzylpenicillins I (Penicillin G) bekannt (Abb. 1.2).^[10] Im Laufe der Zeit wurde eine Vielzahl weiterer Penicilline synthetisiert, die als Grundgerüst die 1,3-Thiazolidine enthalten. Eines dieser Arzneimittel ist das Piperacillin II (Abb. 1.2).

Abb. 1.2: Benzylpenicillin **I**, und Piperacillin **II** (Das Gerüst der 1,3-Thiazolidine ist rot markiert.).^[9b, 11]

Das β -Lactam-Antibiotikum II besitzt ein breites Wirkungsspektrum gegenüber grampositiven als auch gramnegativen aeroben und anaeroben Bakterien. Piperacillin II findet u. a. Anwendung bei der Behandlung von komplizierten Harnwegsinfektionen und Lungenentzündungen. Allerdings zeigt es gegenüber β -Lactamasen eine gewisse Labilität und wird durch die β -Lactamase TEM-1 hydrolysiert, wodurch die antibiotische Wirkung aufgehoben wird.^[11] Aus diesem Grund wird das Piperacillin **II** mit dem β -Lactamase-Inhibitor Tazobactam **III** kombiniert und ist im Handel unter dem Handelsnamen Tazobac[®] erhältlich.^[12a]

Abb. 1.3: Der β -Lactamase-Inhibitor Tazobactam **III** (Das Gerüst der 1,3-Thiazolidine ist rot markiert und das des 1,2,3-Triazols blau.).^[12b]

Das Tazobactam **III** trägt zusätzlich zu dem 1,3-Thiazolidin-Gerüst einen weiteren bedeutsamen Heterocyclus in seiner Molekülstruktur. Das heteroatomhaltige Ringsystem der 1,2,3-Triazole (Abb. 1.3, blau eingefärbt) ist ein wichtiges Pharmakophor.^[13] Substanzen, die diesen Heterocyclus enthalten, zeigen verschiedene biologische Aktivität z. B. gegenüber dem HI-Virus^[14] und bestimmten Krebszellen.^[15] Aber auch als potentielles antimikrobielles^[16], entzündungshemmendes^[17] oder Anti-Malaria-Mittel^[18] können die 1,2,3-Triazole Anwendung finden.

Die aufgeführten Beispiele bestätigen die nicht enden wollende Bedeutsamkeit heterocyclischer Verbindungen und macht die Forschung auf diesem Gebiet zu einer besonderen Herausforderung. In Kombination mit der Entwicklung kreativer und geringstufiger Synthesekonzepte, die als essentielles synthetisches Instrumentarium eine oder mehrere MCRs beinhalten, ist der Anreiz für die Synthese neuartiger Ringsysteme unter atomökonomischen und diversitätsorientierten Gesichtspunkten gegeben.

2 Zielsetzung

Der Kern der vorliegenden Dissertation liegt in der Entwicklung von Syntheserouten zur Synthese von fünf-, sechs-, sieben- und achtgliedrigen *N*-Heterocyclen unter Verwendung von Multikomponentenreaktionen (Abb. 2.1).

Abb. 2.1: Angestrebte Precursoren und *N*-Heterocyclen (X = S, O).

Durch die sequentielle Abfolge zweier Multikomponentenreaktionen sollen geeignete Precursoren synthetisiert werden, die sich durch anschließende intramolekulare Cyclisierungsreaktionen in die angestrebten *N*-Heterocyclen überführen lassen. Eine Vielzahl der angestrebten Ringsysteme ist sowohl durch mehrfache Anellierung, hohe Komplexität, vielfältige Diversität als auch durch pharmakologisch relevante Strukturelemente gekennzeichnet.

Als zentrales Charakteristikum besitzen alle angestrebten Produkte einen Thiazolidinoder Oxazolidin-Cyclus. Die literaturbekannten fünfgliedrigen *S*,*N*- und *O*,*N*-Heterocyclen sollen aus den cyclischen Iminen **1** und **2** erhalten werden (Abb. 2.2), die wiederum aus einfachsten Grundchemikalien und mit Hilfe der modifizierten ASINGER-Reaktion (Kapitel 3) zugänglich sind.

Abb. 2.2: Grundstruktur der als Precursor dienenden heterocyclischen Imine 1 und 2 $(R^1-R^4 = H, Organyl).$

Die Synthese der iminischen Precursoren 1 bzw. 2 ist in den geplanten Syntheserouten dabei durchgehend als beginnender Syntheseschritt innerhalb der sequentiellen Abfolge der Multikomponentenreaktion anzusehen.

Die polyanellierten 3,6-Dihydropyrazin-2(1H)-one 7 und 3,4,6,7-Tetrahydro-5H-1,4diazepin-5-one 9 sollen durch die Aneinanderreihung zweier MCRs und einer anschließenden intramolekularen 1,3-dipolaren Cycloaddition realisiert werden (Kapitel 4). Die dabei angestrebte Kupfer-katalysierte Säurechloridaddition zur Synthese der Propargylamide 3, 6 und 8 wird erstmals auf die 3-Thiazoline 1 bzw. das 3-Oxazolin 2 übertragen und in diesem Zusammenhang umfangreich untersucht und optimiert. Strukturelle Ähnlichkeiten zu potentiellen pharmakologischen Wirkstoffen sowie das Vorhandensein von pharmakologisch relevanten Heterocyclen in einem polyanellierten Molekülgerüst macht die Synthese zu den sechs- und siebengliedrigen Heterocyclen 7 und 9 besonders erstrebenswert. Die Darstellung der literaturunbekannten Strukturmotive der 1,3,6-Oxadiazocin-4-one **12** und 1,3,6-Triazocin-4-one **15** ($\mathbb{R}^7 = \mathbb{H}$)

und **17** ($\mathbb{R}^7 = \mathbb{CH}_3$) soll mit Hilfe einer, zu der in Kapitel 4 dargelegten, vergleichbaren Syntheseroute realisierbar sein (Kapitel 5). Der angestrebte Syntheseplan ist durch eine schnelle und einfache Durchführbarkeit zur Darstellung der tricyclischen Achtringlactame gekennzeichnet. Im Rahmen dieses Projekts durchgeführte Untersuchungen zur Derivatisierbarkeit der synthetisierten Tricyclen **15** bilden den Abschluss des Kapitels. Für die Realisierung der Thioether-verknüpften Bicyclen **21** wird im letzten Kapitel eine neue Vierkomponentenreaktion angestrebt, die den direkten Zugang zu der Substanzklasse der Dithiocarbamate **19** und **20** ausgehend von den Iminen **1** und **2** ermöglichen soll (Kapitel 6). Das Strukturmotiv der Dithiocarbamate **20** soll sich hierbei als geeigneter Precursor für eine intramolekulare Cyclisierungreaktion erweisen.

3 Heterocyclische Imine

Während der durchgeführten Untersuchungen zur Erarbeitung sequentieller Multikomponentenreaktionen und den anschließenden Cyclisierungen zu den angestrebten fünf-, sechs-, sieben- und achtgliedrigen N-Heterocyclen (Kapitel 2) dienten die 3-Thiazoline 1 sowie das 3-Oxazolin 2 als Precursoren. Auf Grund der potentiellen biologischen und pharmakologischen Aktivität von 3-Thia- und 3-Oxazolidin-Derivaten ist die Implementierung dieser Molekülgerüste in komplexe Strukturen von permanentem Interesse.^[19] Die Synthese der Imine soll mit Hilfe der modifizierten ASINGER-Vierkomponentenreaktion (A-4CR) erfolgen, die zugleich als erster Teilschritt zur Synthese der komplexen N-Heterocyclen anzusehen ist.

3.1 Die ASINGER-Reaktion zur Synthese der 3-Thia- und 3-Oxazoline¹

Im Jahre 1956 beschrieb ASINGER eine einfache und ergiebige Synthese der 3-Thiazoline (2,5-Dihydro-1,3-thiazole), die den Grundstein für ein breites und ausgesprochen attraktives Forschungsfeld legte. In der von ihm entwickelten Dreikomponentenreaktion wird ein Keton, welches in α -Position ein Wasserstoffatom trägt, mit gasförmigem Ammoniak und elementarem Schwefel unter lösungsmittelfreien Bedingungen umgesetzt (Abb. 3.1).^[21]

Abb. 3.1: Klassische ASINGER-Dreikomponentenreaktion zur Synthese von 3-Thiazolinen ($R^1-R^3 = H$, Organyl).^[21]

Im Laufe der Jahre erfolgten mehrere Modifikationen der ASINGER-Reaktion von ASINGER selbst, was zu einer Vielzahl mannigfaltigster Derivate der 3-Thiazoline führte.^[22] Eine dieser Modifikationen beinhaltete das Modifizieren der Carbonylverbindung zu einem α -Mercaptoketon, welches anschließend mit einem weiteren Keton oder einem

¹ Auf eine umfangreiche Beschreibung der ASINGER-Reaktion (inkl. des Mechanismus) wird im Rahmen dieser Dissertation verzichtet und stattdessen auf einschlägige Literatur verwiesen.^[20]

Aldehyd zu den 3-Thiazolinen umgesetzt werden konnte.^[23] Aufbauend auf diese Weiterentwicklung der klassischen Variante wurde von MARTENS et al.^[24] 1981 eine modifizierte Variante der ASINGER-Reaktion (Abb. 3.2) publiziert.

Abb. 3.2: Modifizierte ASINGER-Vierkomponentenreaktion zur Darstellung von 3-Thiazolinen 1 und 3-Oxazolinen 2 ($R^1-R^5 = H$, Organyl; X = S, O).^[24]

Das Syntheseprotokoll sieht zu Beginn die Synthese eines α -Chloraldehyds vor, der im Folgenden mit wässriger Ammoniaklösung, einer weiteren Carbonylverbindung und Natriumhydrogensulfid zu den 3-Thiazolinen **1** umgesetzt wird. Aufgrund des Verzichts auf gasförmigen Ammoniak und elementaren Schwefel wird die Handhabung im Labor immens erleichtert, was einen großen Vorteil gegenüber der klassischen Variante darstellt. In Analogie zu den schwefelhaltigen Vertretern dieser Substanzklasse, wurde mit Hilfe der modifizierten ASINGER-Reaktion ein synthetischer Zugang zu den artverwandten 3-Oxazolinen **2** durch die Verwendung von Wasser oder Natriumhydroxid entwickelt.^[25]

3.2 Ergebnisse

Im Rahmen der vorliegenden Arbeit wurden insgesamt sieben verschiedene heterocyclische Imine **1** und **2** synthetisiert, die den Aldiminen ($\mathbb{R}^5 = H$) zuzuordnen sind. Dazu wurden zunächst die für die Reaktion benötigten α -Chloraldehyde nach einer etablierten Synthesemethode, durch die Umsetzung des entsprechenden Aldehyds mit Sulfurylchlorid, hergestellt.^[25] In einer anschließenden Eintopfreaktion konnten fünf literaturbekannte 3-Thiazoline **1** und ein literaturbekanntes 3-Oxazolin **2** durch Versetzen des jeweiligen α -Chloraldehyds mit dem entsprechenden Keton oder Aldehyd (Aceton für **1a**, **1b**, **2**; Cyclohexanon für **1c**, **1d** und Pivalaldehyd für **1f**), einer wässrigen Ammoniaklösung und Natriumhydrogensulfid bzw. Wasser erhalten werden (Tab. 3.1). Zur Synthese des literaturunbekannten 3-Thiazolins **1e** wurde als Oxokomponente Tetrahydrothiopyran-4-on in der Eintopfreaktion verwendet.

Tab. 3.1: Synthese der 3-Thiazoline 1 und dem 3-Oxazolin 2nach der modifizierten ASINGER-Reaktion.

R ¹ F	NH R ² Cl Na Od H	l _{3(aq)} + O≓ ASH der ₂ O	3 4 CH ₂ 16 h, 0	<u>,</u> Cl ₂ , °C–RT	$R^{1} \xrightarrow{R^{2}} R^{3}$ $R^{2} \xrightarrow{X} R^{4}$ $1 (X = S)$ $2 (X = O)$
\mathbf{R}^1	R^2	R^3	R^4	Х	Produkt: Ausbeute ^a [%]
CH ₃	CH ₃	CH ₃	CH ₃	S	1a : 60 ^b
-(CH	I ₂) ₅ -	CH ₃	CH ₃	S	1b : 91 ^b
CH ₃	CH ₃	-(CI	$H_2)_5-$	S	1c : 80 ^b
–(CH	H ₂) ₅ -	-(CI	$H_2)_5-$	S	1d : 76 ^b
-(CH ₂) ₅ -		-(CH ₂) ₂	S(CH ₂) ₂ -	S	1e : 45
CH ₃	CH ₃	Н	(CH ₃) ₃	S	1f : 69 ^b
CH ₃	CH ₃	CH ₃	CH ₃	0	2 : 22 ^b

[a] Es handelt sich um isolierte Reinausbeuten.

[b] Diese Verbindungen sind literaturbekannt: $1a^{[26]}$, $1b^{[27]}$, $1c^{[28]}$, $1d^{[29]}$, $1f^{[30]}$, $2^{[25]}$.

Die Aldimine 1 und 2 wurden in moderaten bis ausgezeichneten Ausbeuten erhalten, die im Bereich vergleichbarer Literaturwerte liegen. Die cyclischen Imine 1 und 2 sind zum einen durch ihre hohe Reaktivität charakterisiert zum anderen sind die erhaltenen 3-Thiazoline 1 auf Grund ihrer hohen Stabilität unter Kühlung (~4 °C) über mehrere Monate lagerfähig. Das 3-Oxazolin 2 weist auch bei gekühlter Umgebung eine höhere Labilität auf und kann folglich nur über einen deutlich kürzeren Zeitraum gelagert werden.

4 Synthese von Propargylamiden und deren Cyclisierung zu tricyclischen sechs- und siebengliedrigen Lactamen

Die Darstellung potentiell pharmakologisch wirksamer Heterocyclen mit Hilfe von Syntheserouten bestehend aus der sequentiellen Abfolge von Multikomponentenreaktionen zur Darstellung geeigneter Precursoren, die sich einer anschließenden Ringschlussreaktion unterziehen lassen können, stellen eine effektive Synthesestrategie dar.^[31] Als Resultat ist der Aufbau mannigfaltiger heterocyclischer Scaffolds in wenigen Syntheseschritten auf einem eleganten Syntheseweg gegeben. Die angewendeten Ringschlussreaktionen können z. B. Cycloadditionsreaktionen oder Metall-katalysierte Kreuzkupplungen sein.^[3b] Dieser Strategie folgend gelang z. B. KRÖGER 2015 die Synthese von 1,4-Benzodiazepin-2,5-dionen, Isoindolin-1-onen, Dihydrochinoxalinen und Chinoxalinen ausgehend von Bisamiden.^[32] Eine weitere interessante Substanzklasse stellen in diesem Zusammenhang die Propargylamide dar. Zum einen eignen sich diese Verbindungen hervorragend als Ausgangssubstrate zur Synthese diverser Heterocyclen^[33] und zum anderen besitzen biologisch relevante Moleküle dieses Strukturelement. So findet beispielsweise das Oxotremorin IV (Abb. 4.1) Anwendung als Parasympathomimetikum bei der Erforschung potentieller Anti-Parkinson-Wirkstoffe. Als nicht selektiver Agonist für die muskarinischen Acetylcholinrezeptoren löst das Oxotremorin IV das für die Parkinson-Krankheit charakteristische Zittern aus.^[34] Des Weiteren können Propargylamide auch als Herbizide eingesetzt werden. Ein Beispiel hierfür ist das im April 2004 in der EU zugelassene und erstmals in den 1970er Jahren durch SWITHENBANK synthetisierte 3,5-Dichlor-N-(1,1,-dimethylprop-2-inyl)benzamid V, das unter dem Handelsnamen Kerb[®] erhältlich ist (Abb. 4.1).^[35]

Abb. 4.1: Zwei Strukturen von biologisch relevanten Propargylamiden:
Das Parasympathomimetikum Oxotremorin IV^[34] und das als Herbizid verwendete Kerb[®] V^[35]
(Das Strukturelement der Propargylamide ist rot markiert.).

Das aktuelle Forschungsinteresse an der Substanzklasse der Propargylamide wird durch die Untersuchungen von MOOTZ^[36], OVAA^[37] und BADEMANN^[38] aus dem Jahr 2013 bestätigt. Diese konnten feststellen, dass C-terminale Propargylamide von Ubiquitin potente irreversible Inhibitoren von Cysteinproteasen sind, obwohl unter den genutzten Reaktionsbedingungen angenommen wurde, dass sich die Propargylamide biochemisch und chemisch inert verhalten.

In der Literatur lassen sich viele verschiedene Synthesemethoden zur Darstellung von Propargylamiden finden. Die Synthese gelingt zum Beispiel durch Umsetzung eines Carbonsäurehalogenids mit primären Propargylaminen^[39], durch die Kupplung einer Aminosäure an Propargylamin unter Verwendung des Kupplungsreagenzes DCC (Dicyclohexylcarbodiimid)^[40] oder mit Hilfe der RITTER-Reaktion.^[41] 2004 publizierte die Arbeitsgruppe um ARNDTSEN eine Multikomponentenreaktion, die zur Bildung von Propargylamiden führte.^[42] Die Synthese der Zielprodukte gelang durch die Umsetzung von Iminen, Säurechloriden und Alkinen unter Verwendung katalytischer Mengen Kupfer(I)-iodid in Acetonitril. Die Reaktion zeichnet sich durch eine kurze Reaktionszeit und die dabei entstehenden relativ komplexen Zielstrukturen aus, da unter den von ARNDTSEN beschriebenen Reaktionsbedingungen zahlreiche acyclische sowie aromatische Imine, Säurechloride und Alkine toleriert werden.^[42, 43] Wie zuvor erwähnt, eignen sich die Propargylamide zur Darstellung von diversen Hetereocyclen, wodurch die Attraktivität dieser Substanzklasse gesteigert wird. CHANDRASEKARAN et al.^[44] veröffentlichten 2008 eine Syntheseroute zur Darstellung von 4,5,6,7-Tetrahydro[1,2,3]triazolo[1,5-a]pyrazin-6-onen ausgehend von Aminen und Aminosäuren, bei der der ringbildende Syntheseschritt mit Hilfe einer thermisch induzierten intramolekularen 1,3-dipolaren Cycloaddition von Proparpargylamiden erfolgte. Eine ähnliche Synthesestrategie verfolgten auch BALLET et al.^[45], bei der durch die intramolekulare thermale 1,3-dipolare Cycloaddition von Propargylamiden 1,4-Diazepin-5-one erhalten wurden, die zusätzlich ein 1,2,3-Triazol-anelliertes Ringsystem aufwiesen. WAN et al.^[46] beschrieben ausgehend von Propargylamiden eine selektive Synthese von Tetrazolen und Dihydroimidazolen unter Einsatz von Trimethylsilylazid und dem Natrium-Iodid-Symporter (NIS).

Die dargelegten Beispiele verdeutlichen das vorhandene Potential zur Darstellung interessanter Heterocyclen auf Basis der Propargylamide. Die geplante Syntheseroute (Abb 4.2) sieht zunächst die sequentielle Abfolge von zwei MCRs zur Darstellung der Propargylamide **3** vor. Mithilfe der in Kapitel 3 beschriebenen A-4CR sollen zunächst die heterocyclischen Imine 1 und 2 erhalten werden, die im Anschluss in der von ARNDTSEN entwickelten Kupfer-katalysierten Säurechloridaddition zu den Proparglamiden 3 umgesetzt werden sollen.

Abb. 4.2: Syntheseplanung zur Darstellung der Propargylamide 3, 6 und 8 sowie zu den tricyclischen 3,6-Dihydropyrazin-2(1*H*)-onen 7 und den 3,4,6,7-Tetrahydropyrazin-5*H*-1,4-diazepin-5-onen 9 (R¹–R⁶ = Organyl, X = S, O).

Erstmalig würden auf diese Weise die 3-Thiazolidine bzw. 3-Oxazolidine über eine Alkinfunktion in α -Position zum ehemaligen iminischen Kohlenstoffatom verfügen.

In der geplanten Synthese der tricyclischen 3,6-Dihydropyrazin-2(1H)-one **7** soll erstmals die Kombination der Thiazolidin- bzw. Oxazolidin-Grundstruktur mit der Struktur von 1,2,3-Triazol-anellierten 3,6-Dihydropyrazin-2(1H)-onen realisiert werden. Die dreistufige Synthesesequenz sieht den Aufbau der entsprechenden Propargylamide **6**, in Analogie zur Synthese der Propargylamide **3**, in der Abfolge von zwei aufeinanderfolgenden MCRs vor. Durch die geschickte Wahl des Säurechlorids soll das tricyclische Lactam **7** in einer nachfolgenden Substitutions-/1,3-dipolaren Cycloadditionsreaktion unter Verwendung von Natriumazid darstellbar sein. Eine analoge Syntheseroute ist zur Darstellung der tricyclischen 3,4,6,7-Tetrahydropyrazin-5H-1,4-diazepin-5-one **9** angedacht. Hierbei wird das einzusetzende Säurechlorid variiert, was die Synthese der polyanellierten siebenglied-rigen Lactame **9** ermöglichen soll.

4.1 Synthese von diversen Propargylamiden mittels Kupferkatalysierter MCR

Dieser Kapitelabschnitt befasst sich mit der Reaktionsoptimierung und der Synthese zu den Propargylamiden **3** ausgehend von den heterocyclischen Iminen **1** und **2**. Unter Verwendung von Alkinen und einem Kupfer(I)-Katalysator sollte die Synthese unter Anwendung der Säurechloridaddition erfolgen. An dieser Stelle wird außerdem die verwendete Säurechloridaddition in einer kurzen Übersicht beschrieben.

4.1.1 Literaturübersicht zur Säurechloridaddition²

Die Säurechloridaddition stellt eine vielseitige und gut einsetzbare Reaktion dar, bei der der Aufbau von Amiden aus der Umsetzung von Iminen mit Säurechloriden erfolgt. Erstmalige Erwähnung findet eine derartige Reaktion 1914 in einer Arbeit von JAMES und JUDD.^[47] Als Reaktionsprodukte nach der Umsetzung von Benzylidenanilin mit Benzoylchlorid sowie anschließender Hydrolyse wiesen JAMES und JUDD Benzaldehyd, Benzanilid und Chlorwasserstoff nach. LEUCHS et al.^[48] übertrugen im Jahr 1932 die Reaktion auf die Substanzklasse der *3H*-Indol-Derivate und somit auf cyclische Imine. Die Weiterentwicklung war dahingehend prägend, als dass sie eine nucleophile Substitution

² Auf eine ausführliche Betrachtung des Mechanismus wird im Rahmen der vorliegenden Arbeit verzichtet und stattdessen auf einschlägige Literatur verwiesen.^[32]

mit entsprechenden Nucleophilen, wie z. B. Wasser oder Alkoholen, an das *in situ* generierte Chloramid anschlossen und die erwarteten substituierten Reaktionsprodukte erhielten.^[48] Resultierend aus den Ergebnissen von LEUCHS et al.^[48] wurde die Säurechloridaddition somit erstmalig als Mehrkomponentenreaktion beschrieben. Einen weiteren Meilenstein für die Säurechloridaddition stellen die Untersuchungen von MARTENS et al. in den 1980er Jahren dar.^[49] Diese übertrugen das Prinzip der Additionsreaktion auf den *S,N*-Heterocyclus der 3-Thiazoline **1** und somit auf heterocyclische Imine. In Abbildung 4.3 ist die Übertragung der Säurechloridaddition auf die 3-Thiazoline **1** dargestellt.

Abb. 4.3: Säurechloridaddition an die heterocyclischen 3-Thiazoline **1** mit anschließender nucleophiler Substitution.^[49]

Im Laufe der Zeit wurde die Säurechloridaddition zu einem etablierten und vielseitig einsetzbaren Syntheseinstrumentarium im Arbeitskreis MARTENS. Neben einer Vielzahl unterschiedlichster *S*,*N*- und *O*,*N*-Heterocyclen werden darüber hinaus etliche Nucleophile sowie Carbonsäurechloride in der MCR toleriert.^[50] Aufgrund der hohen Toleranz gegenüber einer Vielzahl an Edukten erlaubt dieser Reaktionstyp einen höchst effizienten sowie einfach durchführbaren Zugang zu diversen Reaktionsprodukten. Die resultierende Produktpalette reicht von Precursor-Verbindungen,^[51] die u. a. aufgrund der vergleichsweise leichten Aktivierung der neugeknüpften Bindung zwischen dem ehemaligen iminischen Kohlenstoffatom und dem eingesetzten Nucleophil eine interessante Folgechemie ermöglichen^[52], bis hin zu direkt geschlossenen Ringsystemen.^[53]

4.1.2 Optimierung der Kupfer-katalysierten Dreikomponentenreaktion

Unter Berücksichtigung der vielfältigen Anwendungsmöglichkeiten von Propargylamiden und der Effizienz der von ARNDTSEN entwickelten MCR wurde diese der ASINGER-Reaktion nachgeschaltet. In einem ersten orientierenden Versuch sollte durch Adaption des Syntheseprotokolls von ARNDTSEN et al.^[42] die Synthese zur Darstellung der Propargylamide 3 realisiert werden. Als Modellreaktion wurde die Umsetzung vom 3-Thiazolin 1a mit Benzoylchlorid, Phenylacetylen, Kupfer(I)-iodid und der Base N,N-Diisopropylethylamin (DIPEA) in Acetonitril gewählt (Tab. 4.1, Eintrag 1). Erfreulicherweise konnte das angestrebte Propargylamid 3a erhalten werden, wenngleich die Ausbeute von lediglich 8 % sehr ernüchternd war. Ungeachtet dessen gelang erstmalig die Übertragung der vorgestellten MCR auf 3-Thiazoline. Dieses stellt somit das erste Beispiel dar, bei dem das ursprüngliche iminische Kohlenstoffatom im Produkt in α -Position einen Alkinrest aufweist. Motiviert durch das erhaltene Ergebnis sollte die Kupfer-katalysierte MCR optimiert werden. Da die Säurechloridaddition, wie bereits erwähnt, ein etabliertes Synthesekonzept im Arbeitskreis MARTENS ist, wurde in einem nächsten Experiment die Reaktionsführung anhand dieser Erfahrung verändert. Bei dem orientierenden Versuch, wurde zunächst eine Mischung aus dem Imin 1a, dem Säurechlorid und dem Alkin zu einem Reaktionsgemisch bestehend aus dem Katalysator und der Base gegeben. Im Vergleich dazu sah die veränderte Reaktionsführung vor, dass zunächst das Imin 1a und das Säurechlorid vorab reagieren sollten, bevor jeweils, in chronologischer Reihenfolge, das Kupfer(I)-iodid, die Base und das Alkin zu der Reaktionslösung gegeben wurden. Des Weiteren wurde die von ARNDSTEN et al. ermittelte Rührzeit von 15 Minuten auf 16 Stunden verlängert. Die Veränderung der Reaktionsführung lieferte eine Ausbeutesteigerung auf 12 % (Tab. 4.1, Eintrag 2). In einer sich anschließenden Versuchsreihe wurde der Einfluss des Lösungsmittels untersucht. Die untersuchten Lösungsmittel Dichlormethan, Tetrahydrofuran (THF) und Aceton (Tab. 4.1, Einträge 3 bis 5) führten dabei nicht zur gewünschten Produktbildung. Andererseits stellen lösungsmittelfreie Multikomponentenreaktionen ein vielversprechendes Forschungsgebiet dar.^[54] Diesem Konzept folgend wurde ein Optimierungsversuch unter lösungsmittelfreien Bedingungen durchgeführt, der eine signifikante Ausbeutenerhöhung auf 30 % zur Folge hatte (Tab 4.1, Eintrag 6). Aufbauend auf diesem positiven Ergebnis wurde eine Optimierung der Stoffmengenverhältnisse vorgenommen. Als Resultat dieser Versuchsreihe konnte festgestellt werden, dass durch den Einsatz des Alkins und der Base in einem Überschuss von 1.5 (Alkin) bzw. 2.5 Äquivalenten (Base) sowie einer Erhöhung der Katalysatormenge auf 40 mol%, die Ausbeute des anvisierten Propargylamids **3a** auf ausgezeichnete 90 % angehoben werden konnte (Tab. 4.1, Eintrag 12).

Tab. 4.1: Reaktionsoptimierung der Dreikomponentenreaktion

zur Synthese des racemischen Propargylamids 3a ausgehend von dem 3-Thiazolin 1a.^a

$\langle \rangle$	
///	+ CI CO
	S N
	1a

Nr.	Lösungs-	Phenylacetylen	CuI	DIPEA	Reaktions-	Ausbeute ^b
111.	mittel	[eq.]	[eq.]	[eq.]	temperatur	3a [%]
1	CH_3CN^c	1.0	0.1	1.5	RT	8
2	CH_3CN^d	1.0	0.1	1.5	0 °C–RT	12
3	$\mathrm{CH}_{2}\mathrm{Cl}_{2}^{d}$	1.0	0.1	1.5	0 °C–RT	_
4	THF^d	1.0	0.1	1.5	0 °C–RT	_
5	Aceton ^d	1.0	0.1	1.5	0 °C–RT	_
6	_	1.0	0.1	1.5	0 °C–RT	30
7	_	1.0	0.2	1.5	0 °C–RT	45
8	_	1.0	0.2	2.25	0 °C–RT	59
9	_	2.0	0.2	3.0	0 °C–RT	64
10	_	3.0	0.2	4.5	0 °C–RT	43
11	_	1.5	0.4	2.25	0 °C–RT	88
12	_	1.5	0.4	2.5	0 °C–RT	90
13	$\operatorname{CH}_2\operatorname{Cl}_2^e$	1.5	0.4	2.5	0 °C–RT	96

 [a] Alle Reaktionen wurden unter Schutzgasatmosphäre und unter Verwendung von 2.00 mmol Thiazolin
 1a, 2.60 mmol Säurechlorid und den jeweils angegebenen Äquivalenten von Phenylacetylen, Kupfer(I)-iodid (CuI) und Diisopropylethylamin (DIPEA) durchgeführt. Die optimalen Reaktionsbedingungen sind fett formatiert.

[b] Es handelt sich hierbei um isolierte Reinausbeuten.

[c] Die Rührzeit betrug 15 Minuten.

[d] Die eingesetzte Lösungsmittelmenge betrug 7.0 mL je 2.00 mmol Imin 1a.

[e] Die eingesetzte Lösungsmittelmenge betrug 1.0 mL je 2.00 mmol Imin 1a.

Während der Optimierung der Stoffmengenverhältnisse unter lösungsmittelfreien Bedingungen kam es bei den Reaktionen, die in einer hohen Ausbeute resultierten, zur Bildung eines Feststoffes, der sehr gut in geringfügigen Mengen Dichlormethan löslich war. Schlussendlich konnte mit der Verwendung von lediglich einem Siebtel der ursprünglichen eingesetzten Lösungsmittelmenge von Dichlormethan eine Ausbeutesteigerung des Produkts **3a** auf exzellente 96 % erzielt werden (Tab. 4.1, Eintrag 13).

4.1.3 Ergebnisse

Die Betrachtung der synthetischen Planung verdeutlicht, dass, durch die hohe Anzahl modifizierbarer Reste, die neuartigen Propargylamide **3** eine hohe Diversität besitzen. Unter Anwendung der optimierten Reaktionsbedingungen sollte die Einsetzbarkeit verschiedener Imine, Säurechloride (Tab. 4.2) und Alkine (Tab. 4.3) in der MCR untersucht werden. Die anvisierten Propargylamide **3** konnten mit Hilfe der optimierten MCR in moderaten bis exzellenten Ausbeuten erhalten werden. Alle eingesetzten Imine **1** und **2** ließen sich in die dazugehörigen Propargylamide **3** überführen. Die in der Kupferkatalysierten MCR eingesetzten Säurechloride konnten ebenfalls alle erfolgreich in die korrespondierenden Produkte **3** überführt werden. Erwartungsgemäß lieferte der Einsatz eines aromatischen Säurechlorids, das eine elektronenziehende Gruppe in *para*-Position trägt, eine höhere Ausbeute (Produkt **3g**), im Gegensatz zu dem eingesetzten Säurechlorid, das eine elektronenschiebende Gruppe besitzt (Produkt **3h**). Des Weiteren konnten sehr gute Ausbeuten bei der Verwendung von Benzoylchlorid (Produkt **3i**) und Acryloylchlorid (Produkt **3j**) erzielt werden.

(Teil 1: Variation des Imins und des Säurechlorids).

	R	$+$ X^{1} X^{2} X^{1} X^{2} X^{1} X^{2}	R ⁵ ⊂CI -R ³ R ⁴		<u>kat. Cu</u> CH₂Cl₂) °C–RT	$ \begin{array}{c} $	$ \begin{array}{c} $
Edukt	Х	R^1	R^2	R ³	\mathbf{R}^4	R ⁵	Produkt: Ausbeute ^a [%]
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	3a : 96
1b	S	-(CH	H ₂) ₅ -	CH ₃	CH_3	Ph	3b : 99
1c	S	CH ₃	CH_3	–(CH	2)5-	Ph	3c : 72
1 d	S	-(CH	H ₂) ₅ -	–(CH	2)5-	Ph	3d : 78
1e	S	-(CH	$H_2)_5-$	-(CH ₂) ₂ S	(CH ₂) ₂ -	Ph	3e : 46
2	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	3f : 49
1b	S	-(CH	$H_2)_5-$	CH ₃	CH ₃	$4-NO_2-C_6H_4$	3g : 96
1b	S	-(CH	$H_2)_5-$	CH ₃	CH_3	$4-OCH_3-C_6H_4$	3h : 73
1b	S	-(CH	$H_2)_5-$	CH ₃	CH_3	CH ₂ Ph	3i : 82
1 a	S	CH ₃	CH_3	CH ₃	CH ₃	CH ₂ CH=CH ₂	3j : 82

[a] Es handelt sich hierbei um isolierte Reinausbeuten.

Da die Einführung von terminalen Alkinylresten an die cyclischen Imine **1** und **2** zu den anvisierten Produkten **3** erstmalig im Rahmen dieser Arbeit beschrieben wird, sind die eingesetzten Alkine von besonderer Bedeutung. Umso erfreulicher ist die Tatsache, dass ein breites Spektrum verschiedener Alkine als Edukte in der MCR toleriert werden (Tab. 4.3). Die Einsatzfähigkeit reicht dabei von mehreren aliphatischen Resten (z. B. **3m**) über verschiedene aromatische Reste (z. B. **3l**) bis hin zu einer Vielzahl funktioneller Gruppen (z. B. **3o**).

(Teil 2: Variation des Alkins).

	CI DIPEA, kat. Cul abs. CH ₂ Cl ₂ 16 h, 0 °C–RT	$R^{1} \qquad \qquad$
Edukt	R^1	Produkt:Ausbeute ^{<i>a</i>} [%]
1b	4-NO ₂ -C ₆ H ₄	3k : 82
1b	4-OCH ₃ -C ₆ H ₄	31 : 89
1b	(CH ₂) ₃ CH ₃	3m : 93
1b	C(CH ₃) ₃	3n : 50
1b	Si(CH ₃) ₃	30 : 81
1b	CH ₂ OH	3 p: –
1b	COOCH ₃	3q : 71
1b	(CH ₂) ₂ COOH	3r: –
1b	$(CH_2)_3NH_2$	3 s: –

[a] Es handelt sich um isolierte Reinausbeuten.

Obwohl einige funktionelle Gruppen in der MCR toleriert wurden, so ist bei der Verwendbarkeit potentieller Alkine eine Limitierung erkennbar. Trägt das einzusetzende Alkin als Rest eine Amin-, Alkohol- oder Säurefunktion, so wird das Amid **3** nicht erhalten.

Die Reaktion der 4-Pentinsäure resultierte in der Isolierung des Esters 5 (Abb. 4.4). Anzunehmen ist, dass während der Reaktion das Säurechlorid zu geringen Teilen in die dazugehörige Säure überführt wurde. Die dann erhaltene Benzoesäure hat im Folgenden mit dem α -Chloramid, aufgrund der hohen Nucleophilie der Hydroxy-Gruppe, zum Produkt 5 reagiert. Diese Eigenschaft konnte auch bei der Verwendung von Propargylalkohol beobachtet werden. Hierbei reagierte die Hydroxy-Gruppe des eingesetzten Alkins mit dem *in situ* generierten α -Chloramid anstelle des terminalen Alkins, was zur Bildung des Alkoxyamids **4** führte (Abb. 4.4).

Abb. 4.4: Isoliertes Alkoxyamid 4 und der isolierte Ester 5.

Im Fall des eingesetzten 4-Pentin-1-amins waren ähnliche Eigenschaften oder Nebenprodukte nicht zu erkennen, dennoch konnte das Amin nicht zu dem gewünschten Produkt **3s** umgesetzt werden. Zur Realisierung einer Aminofunktion am Rest R⁵ wurde versucht, diese über einen zweistufigen Umweg zu erhalten (Abb. 4.5). Dieser sah den Einsatz von 4-Pentin-1-phthalimid anstelle des vorher verwendeten 4-Pentin-1-amins vor. Das auf diese Weise erhaltene Propargylamid **3t** sollte in einer anschließenden Hydrazinolyse zum Propargylamid **3s** umgesetzt werden. Das Propargylamid **3t** konnte hierbei mit einer exzellenten Ausbeute von 99 % erhalten werden. Die nachfolgende Hydrazinolyse führte zum anvisierten Propargylamid **3s**. Schlussendlich konnte das Propargylamid **3s** mithilfe dieses synthetischen Umwegs in einer sehr guten Ausbeute von 85 % erhalten werden.

Abb. 4.5: Realisierter Umweg zur Darstellung des Propargylamids 3s
a) 1.50 eq. des jeweiligen Alkins, 2.50 eq. Diisopropylethylamin, 0.40 eq CuI, *abs*. Dichlormethan, 16 h, 0 °C–RT; b) 1.50 eq. Hydrazin, Ethanol, 3 h, Rückfluss.

Von dem mittels Kupfer-katalysierter MCR synthetisierten Propargylamid **3a** konnte ein geeigneter Einkristall aus einem Verdunstungsansatz aus *n*-Hexan und Dichlormethan gezüchtet werden, an dem eine Röntgenstrukturanalyse durchgeführt wurde. Die postulierte Struktur des Propargylamids **3a** konnte mithilfe der Analysemethode verifiziert werden (Abb. 4.6). Eine vergleichende Betrachtung weiterer analytischer Daten (u. a. ¹H-NMR, ¹³C-NMR und IR) des Produkts **3a** mit denen der Propargylamide **3b–t** zeigt, dass die dargestellte Struktur repräsentativ für alle synthetisierten Derivate **3** und dem damit einhergehenden Gelingen der anvisierten MCR steht.³

³ Das durchgeführte Analogieverfahren findet nachfolgend für alle Substanzklassen Anwendung, die mittels Röntgenstrukturanalyse eines exemplarischen Derivats verifiziert werden.

Abb. 4.6: Röntgenstruktur des Propargylamids 3a (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich das Proton am stereogenen

Zentrum gezeigt wird. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

4.2 Synthese tricyclischer 3,6-Dihydropyrazin-2(1*H*)-on-Derivate

Im Kontext der Untersuchung zur potentiellen Verwendung als Substrat für nachfolgende Ringschlussreaktionen beinhaltet dieser Kapitelabschnitt die Synthese der zur Cyclisierung befähigten Propargylamide **6** und deren Cyclisierung zu den tricyclischen 3,6-Dihydropyrazin-2(1*H*)-onen **7**. Überraschenderweise zeigte sich, dass die Verwendung katalytischer Mengen des Kupfer(I)-Katalysators nicht ausreichte, um die Amide **6** in einer akzeptablem Ausbeute zu synthetisieren. Infolgedessen wurde eine erneute Optimierung der Reaktionsbedingungen durchgeführt. Mittels thermisch induzierter 1,3-dipolarer Cycloaddition gelang die Synthese der tricyclischen Zielstrukturen **7**, die eine anellierte 3-Thiazolidin- bzw. 3-Oxazolidin-Struktur sowie eine 1,2,3-Triazol-Struktur aufweisen.

4.2.1 Literaturübersicht

Trotz intensiver Literaturrecherche sind nur wenige bekannte Synthesen zu finden, die die Darstellung von 3,6-Dihydropyrazin-2(1H)-onen mit einem 1,2,3-Triazol-anellierten Heterocyclus zum Ziel hatten, weshalb dieses Ringsystem wenig erforscht ist. Eine Reaktionssequenz aus MCR und anschließender Ringschlussreaktion zu den

3,6-Dihydropyrazin-2(1H)-on-Derivaten wurde von AKRITOPOULOU-ZANZE et al.^[55] im Jahr 2004 durchgeführt. Hierbei erfolgreich wurde mittels der UGI-4-Komponentenreaktion, bei der ein Aldehyd mit einem Amin, einer Carbonsäure und einem Isocyanid umgesetzt wurde, ein Bisamid synthetisiert. Dieses wurde anschließend einer intramolekularen 1,3-dipolaren Cycloaddition unterzogen, woraus bicyclische 3,6-Dihydropyrazin-2(1H)-one resultierten. Weitere Synthesewege wurden 2004 von CHANDRASEKARAN et al.^[44] und 2007 von POKORSKI et al.^[56] beschrieben. Beide Syntheserouten gehen von halogenhaltigen Propargylamiden aus, wobei unter Verwendung von Natriumazid eine Substitutions-/1,3-dipolare Cycloadditionsreaktion durchführt wurde und so die gewünschten 1,2,3-Triazol-anellierten 3,6-Dihydropyrazin-2(1H)-one erhalten wurden.

4.2.2 Orientierender Versuch und Reaktionsoptimierung zur Synthese geeigneter Ausgangsverbindungen

Die Kupfer-katalysierte MCR stellt nach der A-4CR den zweiten Syntheseschritt zur Darstellung der anvisierten tricyclischen 3,6-Dihydropyrazin-2(1H)-one 7 dar. Ein Versuch unter analogen Reaktionsbedingungen wie zur Darstellung der Propargylamide 3 verlief zwar erfolgreich, letztlich war die Ausbeute mit lediglich 32 % jedoch alles andere als zufriedenstellend (Tab. 4.4, Eintrag 1). Daraufhin wurde eine Optimierung der Reaktionsbedingungen durchgeführt, um die Ausbeute des Precursors 6a zu erhöhen. In der ersten Versuchsreihe wurden die Lösungsmittel Acetonitril, Aceton, Dimethylformamid (DMF) und THF untersucht (Tab. 4.4, Einträge 3 bis 6). Hierbei war zu erkennen, dass unter der Verwendung der Lösungsmittel Aceton, DMF und THF keine Produktbildung zu beobachten war. Lediglich Acetonitril lieferte das gewünschte Produkt 6a, wenngleich die Ausbeute bei vergleichender Betrachtung mit Dichlormethan geringer ausfiel (Tab. 4.4, Einträge 2 und 3). Somit war Dichlormethan als Lösungsmittel am besten geeignet für die geplante MCR. Dies steht im Einklang mit den Ergebnissen der Optimierung zur Synthese der Propargylamide **3** (Kapitel 4.1.2). In der zweiten Versuchsreihe (Tab. 4.4, Einträge 7 bis 14) wurde die Optimierung der Stoffmengenverhältnisse vorgenommen. Aus den Resultaten geht hervor, dass die Verwendung katalytischer Mengen an Kupfer(I)-iodid nicht zu einer Ausbeutensteigerung führt.

Tab. 4.4: Reaktionsoptimierung der Dreikomponentenreaktion zur Synthese

des racemischen Propargylamids 6a ausgehend von dem 3-Thiazolin 1a.^a

	CI		CI
/// +	CI	DIPEA, Cul	
/==N		Lösungsmittel,	>*-N
\neq_{s}	t	16 h, 0 °C–RT	XsX
1a			6a

Nr.	Lösungsmittel	1a:Säurechlorid:Alkin [eq.]	CuI [eq.]	DIPEA [eq.]	Ausbeute ^b 3a [%]
1	CH ₂ Cl ₂	1.0:1.3:1.5	0.4	2.5	32
2	CH ₂ Cl ₂	1.0:1.3:1.5	0.5	2.25	29
3	CH ₃ CN	1.0:1.3:1.5	0.5	2.25	17
4	DMF	1.0:1.3:1.5	0.5	2.25	_
5	Aceton	1.0:1.3:1.5	0.5	2.25	_
6	THF	1.0:1.3:1.5	0.5	2.25	_
7	CH ₂ Cl ₂	1.0:1.3:1.5	0.4	1.5	19
8	CH ₂ Cl ₂	1.0:1.3:1.5	0.5	2.25	29 ^c
9	CH ₂ Cl ₂	1.0:1.3:1.5	1.0	4.5	46/49 ^d
10	CH ₂ Cl ₂	1.0:1.3:1.5	1.5	4.5	46
11	CH ₂ Cl ₂	1.0:2.0:1.5	1.0	4.5	37 ^d
12	CH ₂ Cl ₂	1.0:2.0:1.5	1.0	6.0	68
13	CH ₂ Cl ₂	1.0:2.0:1.5	1.5	6.0	57
14	CH ₂ Cl ₂	1.0:2.0:1.5	1.0	10.0	53

[a] Alle Reaktionen wurden unter Schutzgasatmosphäre durchgeführt und mit 1 mL *abs*. Dichlormethan je mmol Imin **1a**. Die optimalen Reaktionsbedingungen sind fett formatiert.

[b] Es handelt sich hierbei um isolierte Reinausbeuten.

[c] Die Reaktionszeit zwischen dem Imin 1a und dem Säurechlorid betrug 30 Minuten.

[d] Die Reaktionszeit zwischen dem Imin 1a und dem Säurechlorid betrug 16 Stunden.

Erst mit dem Einsatz äquimolarer Mengen des Kupfer-Salzes war es möglich eine Erhöhung der Ausbeute zu erreichen (Tab. 4.4, Eintrag 9). Zu beachten ist, dass ein Überschuss an Kupfer(I)-iodid nicht zu höheren Ausbeuten führt (Tab. 4.4, Einträge 10 und 13). Als Ergebnis der Optimierungsversuche werden die Derivate der Propargylamide **6** im Folgenden mittels einer Kupfer-vermittelten anstelle einer Kupfer-katalysierten MCR synthetisiert. Des Weiteren wurden optimale Reaktionsbedingungen unter Verwendung von 2.0 Äquivalenten des Carbonsäurechlorids und 6.0 Äquivalenten der Base DIPEA ermittelt. Der Einsatz der aromatischen Base Pyridin sowie von Caesiumcarbonat führte nicht zur gewünschten Produktbildung.

4.2.3 Synthese der Chloracetyl-substituierten Propargylamide

Nach der Ermittlung der optimalen Reaktionsbedingungen konnten die Synthesen zur Darstellung der benötigten Precursoren 6 durchgeführt werden. Die Ausbeuten der literaturunbekannten, racemischen Produkte 6 der Kupfer-vermittelten MCR sind in Tabelle 4.5 aufgeführt. Wie den Resultaten zu entnehmen ist, konnten alle eingesetzten 3-Thiazoline 1 und das 3-Oxazolin 2 in die korrespondierenden Propargylamide 6 überführt werden. Entgegen der Annahme, dass bei gleichbleibendem Substitutionsmuster der S,N-Heterocyclus 1a eine merklich höhere Ausbeute als der O,N-Heterocyclus 2 liefert, konnte das Produkt, welches die Oxazolidin-Struktur aufweist, mit einer signifikant höheren Ausbeute isoliert werden. Durch die Variation der Alkin-Komponente gelang die Implementierung von Alkyl-, Aryl- und Silyl-Resten in das Molekülgerüst der Propargylamide 6. Eine Limitierung der Reaktion ist gegeben, wenn das verwendete Alkin einen *tert*-Butyl-Rest (6i) oder eine Esterfunktion (6k) als Rest \mathbb{R}^5 beinhaltet. In beiden Fällen konnte eine Produktbildung jedoch nicht beobachtet werden. Die Ausbeuten bei der Variation der Imine 1 und 2 waren tendenziell höher als bei der Variation der Alkin-Komponente. Einzige Ausnahme bildet in diesen Zusammenhang das 3-Thiazolin 1c, das eine Ausbeute von lediglich 18 % lieferte. Ein Grund für die geringe Ausbeute könnte vermutlich auf die optimierten Reaktionsbedingungen zurückzuführen sein. So ist anzunehmen, dass die Reaktion zwischen dem Imin 1c und dem Chloracetylchlorid deutlich langsamer abläuft und somit auch das in situ generierte α -Chloramid deutlich langsamer gebildet wird. Nach Zugabe der übrigen Komponenten reagiert vermutlich das eingesetzte Alkin unter den gegebenen Bedingungen mit dem bis
dahin nicht umgesetzten Chloracetylchlorid ab, wodurch kein weiteres α -Chloramid gebildet werden kann, was letztlich zu einer Verringerung der Ausbeute führt.

	R⁵ ∭ R¹ R	$+$ $\sum_{x^{2}}^{n} \sum_{x^{2}}^{n}$ $1, 2$	CI CI R ³ R ⁴	DIP abs. 16 h,	EA, Cul CH ₂ Cl ₂ 0 °C–RT	R ⁵ R ¹ R ²	$ \begin{array}{c} CI \\ O \\ O \\ O \\ N \\ R^{4} \\ G \\ \end{array} $
Edukt	Х	\mathbf{R}^1	R^2	R ³	\mathbb{R}^4	R ⁵	Produkt: Ausbeute ^a [%]
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	6a : 68
1b	S	-(CH	H ₂) ₅ -	CH ₃	CH ₃	Ph	6b : 70
1c	S	CH_3	CH_3	-(Cl	$H_2)_5-$	Ph	6c : 18

 Tab. 4.5: Dargestellte racemische Chloracetyl-substituierte Propargylamide 6.

2 0 CH_3 CH_3 CH_3 CH₃ Ph **6e**: 79 1b S $-(CH_2)_5 CH_3$ CH_3 $4-NO_2-C_6H_4$ **6f**: 31 1b S -(CH₂)₅-CH₃ CH_3 $4-OCH_3-C_6H_4$ **6g**: 13 S **6h**: 45 1b $-(CH_2)_5-$ CH₃ CH₃ $(CH_2)_3CH_3$ 1b S $-(CH_2)_5 CH_3$ CH_3 $C(CH_3)_3$ 6i: -1b S $-(CH_2)_5 CH_3$ CH_3 Si(CH₃)₃ **6j**: 30 1b S -(CH₂)₅-COOCH₃ 6k: – CH_3 CH_3

-(CH₂)₅-

Ph

6d: 48

[a] Es handelt sich um isolierte Reinausbeuten.

S

1d

-(CH₂)₅-

Insgesamt lieferte das Propargylamid **6g** (13 %) die niedrigste und das Propargylamid **6e** (79 %) die höchste Ausbeute. Im Allgemeinen lagen die erzielten Ausbeuten jedoch im moderaten bis guten Bereich.

4.2.4 Cyclisierung via 1,3-dipolarer Cycloaddition

Zur Realisierung des intramolekularen Ringschlusses *via* 1,3-dipolarer Cycloaddition ist das Vorhandensein einer Kohlenstoff-Kohlenstoff-Dreifachbindung und einer Azid-Funktion innerhalb des Molekülgerüsts vorausgesetzt. Der benötigte Alkinylrest konnte, wie vorab erwähnt, mit Hilfe der Kupfer-vermittelten MCR eingefügt werden. Die Implementierung der Azid-Gruppe wurde *in situ* über eine nucleophile Substitution unter Verwendung von Natriumazid angestrebt, wodurch die Voraussetzungen für einen stattfindenden intramolekularen Ringschluss gegeben sein sollten.

4.2.4.1 Literaturübersicht⁴

Die 1,3-dipolare Cycloaddition ist seit dem 19. Jahrhundert bekannt und gilt als eine der am weitverbreitetsten und wichtigsten Ringschlussreaktion.^[57] Als Ausgangskomponenten werden im Allgemeinen 1,3-dipolare Verbindungen wie z. B. Nitrone^[58], Nitriloxide^[59], Ozon^[60] oder Azide^[61] und ein Dipolarphil (z. B. Alkene oder Alkine) in der Additionsreaktion eingesetzt, die zur Darstellung von fünfgliedrigen Heterocyclen führt. Die revolutionären und wegweisenden Untersuchungen von HUISGEN seit Beginn der 1960er Jahre, weshalb 1,3-dipolare Cycloadditionen in der Literatur gelegentlich als HUISGEN-Cycloaddition bezeichnet werden^[62a], führten zu einem neuartigen synthetischen Zugang zahlreicher fünfgliedriger Heterocyclen.^[62a, b] Ein allgemeines Schema dieser Reaktion ist in der Abbildung 4.7 aufgeführt.

Abb. 4.7: Allgemeines Schema der 1,3-dipolaren Cycloaddition.

Eine auf diese Weise zu synthetisierende Substanzklasse ist die der 1,2,3-Triazole, bei der eine Azid-Gruppe mit einer Kohlenstoff-Kohlenstoff-Dreifachbindung zu dem gewünschten Heterocyclus reagiert. Wie einleitend beschrieben, besticht das heterocyclische Ringsystem der 1,2,3-Triazole durch eine Vielzahl möglicher Anwendungsgebiete (Kapitel 1)

⁴ Auf eine intensive Betrachtung des Mechanismus der 1,3-dipolaren Cycloaddition wird im Rahmen dieser Arbeit verzichtet und stattdessen auf einschlägige Literatur verwiesen^[62a, 63].

und ist weiterhin Gegenstand zahlreicher Forschungsarbeiten.^[44, 56, 61] Erstmalige Erwähnung fand dieses einfache und ergiebige Synthesekonzept in einer 1893 erschienenen Publikation von MICHAEL, der die Umsetzung von Phenylazid mit einem Acetylendicarbonsäureester beschrieb.^[64] Im Laufe der Zeit wurde die Reaktion umfangreich untersucht und fand aufgrund der großen Variabilität und der leichten Zugänglichkeit der Edukte eine breite Anwendung in der organischen Synthesechemie.^[65, 44] Die 1,3-dipolare Cycloaddition beschränkt sich dabei nicht nur auf die intermolekulare Variante, sondern kann, wie im Rahmen dieser Arbeit durchgeführt, auch intramolekular erfolgen. Durch den Einsatz der intramolekularen Variante ergibt sich die Möglichkeit zur Erhöhung der Komplexität des Moleküls, da innerhalb eines einzigen Reaktionsschrittes Bicyclen aufgebaut werden können.^[60] Auf diesem Weg wird zusätzlich die Bildung eines Regioisomerengemisches verhindert, welches im Fall der intermolekularen Variante auftreten kann.

4.2.4.2 Ergebnisse

Die in situ Azid-Bildung und der angestrebte Ringschluss wurden analog zu einer Synthesevorschrift von CHANDRASEKARAN et al.^[44] versucht zu realisieren. Hierzu wurde in absolutiertem DMF die Verbindung 6a vorgelegt und anschließend unter Einsatz von Natriumazid die Reaktion durchgeführt. Umsetzung des Edukts Die wurde dünnschichtchromatographisch kontrolliert. Auf diese Weise konnte festgestellt werden, dass nach fünfstündigem Rühren bei 100 °C die Umsetzung des Edukts abgeschlossen war. Nach wässriger Aufarbeitung und säulenchromatographischer Aufreinigung wurde das Produkt 7a in einer sehr guten Ausbeute von 86 % isoliert. Nun wurden unter diesen Bedingungen die übrigen Propargylamide 6 umgesetzt. Die isolierten Reinausbeuten der literaturunbekannten tricyclischen 3,6-Dihydropyrazin-2(1H)-one 7 sind in Tabelle 4.6 zusammengefasst. Insgesamt konnten acht der neun eingesetzten Edukte in das anvisierte Ringschlussprodukt 7 überführt werden. Die Ausbeuten der erhaltenen Lactame 7 lagen alle im guten bis exzellenten Bereich. Das einzige Edukt, das nicht in das entsprechende Ringsystem 7 überführt werden konnte, ist die Verbindung 6f, bei der sich in *para*-Position des aromatischen Restes R⁵ eine Nitro-Gruppe befindet. Die damit vermutlich einhergehende veränderte elektronische Situation an der C-C-Dreifachbindung durch die Elektronenziehende-Gruppe führt dazu, dass der angestrebte intramolekulare Ringschluss nicht stattfinden kann.

	F	$ \begin{array}{c} $		NaN₃ <i>abs.</i> DMF 5 h, 100 °C		$R^{5} \xrightarrow{N^{-N}}_{R^{2}} \xrightarrow{N^{-N}}_{R^{2}} \xrightarrow{N^{-N}}_{F}$	=O R ³ X ⁴
Edukt	Х	R^1	R^2	R ³	\mathbf{R}^4	R^5	Produkt: Ausbeute ^a [%]
6a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	7a : 86
6b	S	-(CH	I ₂) ₅ -	CH ₃	CH ₃	Ph	7b : 82
6c	S	CH ₃	CH ₃	-(CH	$(I_2)_5 -$	Ph	7c : 73
6d	S	-(CH	I ₂) ₅ —	-(CH	I ₂) ₅ -	Ph	7d : 92
6e	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	7e : 84
6f	S	-(CH	I ₂) ₅ -	CH ₃	CH ₃	$4-NO_2-C_6H_4$	7 f : –
6g	S	-(CH	I ₂) ₅ -	CH ₃	CH ₃	$4\text{-OCH}_3\text{-C}_6\text{H}_4$	7g : 88
6h	S	-(CH	I ₂) ₅ -	CH ₃	CH ₃	(CH ₂) ₃ CH ₃	7h : 83
6i	S	-(CH	I ₂) ₅ —	CH ₃	CH ₃	Si(CH ₃) ₃	7i : 97

Tab. 4.6: Dargestellte racemische 3,6-Dihydropyrazin-2(1*H*)-one 7.

[a] Es handelt sich um isolierte Reinausbeuten.

Als eindeutiger Beweis für den eingetretenen Ringschluss konnte ein Einkristall der Verbindung **7e** gewonnen werden, der einer Röntgenstrukturanalyse unterzogen wurde und die postulierte Molekülstruktur der 3,6-Dihydropyrazin-2(1*H*)-one **7** bestätigt (Abb. 4.8). Durch die neugeknüpften Bindungen zwischen dem aromatischen Kohlenstoffatom C10A und Stickstoffatom N2 sowie dem aromatischen Kohlenstoffatom C11 und dem Stickstoffatom N4A wird der erfolgte Ringschluss belegt (Die Nummerierung entspricht nicht der IUPAC-Nomenklatur und wird ausschließlich für die Diskussion der Röntgenstruktur verwendet.).

Abb. 4.8: Ermittele Röntgenstruktur des 3,6-Dihydropyrazin-2(1*H*)-ons 7e
(Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich das Proton an dem stereogenen Zentrum angezeigt wird. A = fehlgeordnet besetzte Positionen. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

4.3 Synthese tricyclischer 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-on-Derivate

Der abschließende Abschnitt dieses Kapitels befasst sich mit der Synthese der tricyclischen 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one **9**. Mittels der geplanten dreistufigen Synthesesequenz bestehend aus ASINGER-4CR, Kupfer-katalysierter Säurechloridaddition und anschließender Substitutions-/1,3-dipolarer Cycloadditions-reaktion wurde das angestrebte polyanellierte Ringsystem der 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one **9** erfolgreich synthetisiert.

4.3.1 Literaturübersicht

Die Molekülstruktur der 1,4-Diazepin-5-one ist Bestandteil zahlreicher biologischer aktiver Substanzen und Arzneimittel. Einer dieser Wirkstoffe ist das tricyclische 1,4-Diazepin-5-on Flumazenil **VI**, das auch unter dem Handelsnamen Anexate[®] erhältlich ist.^[66] Dieses Substrat erreichte klinischen Erfolg bei der Behandlung von Störungen des zentralen Nervensystems (Abb. 4.9).^[66a] Ein weiterer Vertreter dieser Wirkstoffgruppe ist das tetracyclische Bretazenil **VII** (Abb. 4.9), das bei der Behandlung von neurodegenerativen Krankheiten Verwendung findet.^[67]

Abb. 4.9: Zwei pharmaklogisch relevante Wirkstoffe, die das 1,4-Diazepin-5-on-Grundgerüst tragen: Links das Flumazenil VI^[66a] und rechts das Bretazenil VII^[67]
 (Das 1,4-Diazepin-5-on-Grundgerüst ist rot markiert).

Die aufgeführten Beispiele verdeutlichen das exorbitante Interesse an dem Heterocyclus der 1,4-Diazepin-5-one. CHEN et al.^[67] veröffentlichten 2015 eine Syntheseroute zur Darstellung von 1,2,3-Triazol-anellierten 1,4-Benzodiazpin-5-onen, die als potentielle Pharmakophore in der medizinischen Chemie dienen können. Die erfolgreiche Anellierung des 1,2,3-Triazol-Ringsystems gelang ausgehend von 2-Iodbenzamiden mit Hilfe einer Kupfer-katalysierten Tandem-Reaktion bestehend aus einer ULLMANNähnlichen Kupplung und einer anschließenden Cycloaddition. 2011 beschrieben al.^[45] et die Synthese bicyclischen BALLET von 1,2,3-Triazol-anellierten 1,4-Diazepin-5-onen auf zwei verschiedenen Syntheserouten. Bei der ersten Synthesesequenz wird der angestrebte Bicyclus in einer mehrstufigen Reaktion aufgebaut. BALLET et al. synthetisierten zunächst das 1,2,3-Triazol mittels intermolekularer Rutheniumkatalysierter Azid-Alkin-Cycloaddition. Im Anschluss wurde der anvisierte Bicyclus durch eine intramolekulare Reaktion aufgebaut. Die zweite Syntheseroute beinhaltete den simultanen Aufbau des angestrebten Ringsystem mittels einer thermisch induzierten intramolekularen 1,3-dipolaren Cycloaddition.^[45]

4.3.2 Synthese der 3-Chlorpropionyl-substituierten Propargylamide *via* Kupferkatalysierter MCR

Zur Darstellung der 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one **9** wurden zunächst geeignete Ausgangsverbindungen benötigt, die in einer anschließenden intramolekularen Cyclisierung Verwendung finden sollten. Die Synthese der Precursoren **8** sollte in Analogie zur Synthese der Propargylamide **3** mittels einer Kupfer-katalysierten MCR erfolgen. Als Säurechloridkomponente wurde das 3-Chlorpropionsäurechlorid verwendet. Die Ergebnisse dieser Untersuchungen sind in der Tabelle 4.7 aufgeführt. Bis auf eine Ausnahme (**8i**) konnten alle anvisierten Propargylamide **8** erhalten werden. Die erzielten Ausbeuten lagen nahezu allesamt im moderaten (z. B. **8e**) bis sehr guten (z. B. **8f**) Bereich. Des Weiteren konnte gezeigt werden, dass Alkine, die einen aromatischen Rest besitzen eine deutlich höhere Ausbeute lieferten als Alkine, die einen aliphatischen Rest tragen. Wie auch schon bei der Synthese der Propargylamide **6** läuft die Reaktion unter Verwendung eines quartären Kohlenstoffrestes (**8i**) nicht ab, dennoch wurden Silyl- (**8j**) und Ester-Gruppen (**8g**) toleriert.

Bei der Synthese des Propargylamids **8a** wurde ein Nebenprodukt mit einer Ausbeute von 14 % isoliert, das nach Analyse der erhaltenen NMR-Spektren eindeutig dem Propargylamid **3j** zuzuordnen ist (Abb. 4.10).

Abb. 4.10: Isoliertes racemisches Nebenprodukt 3j bei der Synthese des Propargylamids 8a.

Es ist anzunehmen, dass der Grund für die Bildung des Nebenprodukts **3j** auf der im hohen Überschusses verwendeten Base in der MCR zurückzuführen ist. Nach Ablauf der erfolgten Synthese zum Produkt **8a** wird das Chlorid-Ion abgespalten und in einer konkurrierenden Eliminierungsreaktion das Acrylamid-Derivat **3j** gebildet. Obwohl alle synthetisierten Propargylamide **8** die konkurrierende Eliminierungsreaktion eingehen könnten, wurde das Eliminierungsprodukt **3j** letztlich ausschließlich bei der Synthese des Propargylamids **8a** beobachtet.

Tab.	4.7: Dargeste	ellte racemische	3-Chlorpro	pionvl-substit	tuierte Propargy	lamide 8.

	R⁵ F	$ + $ $R^{1} = N$ $R^{2} X$ $I, 2$	CI CI CI R^3 R^4	DIPEA abs. 16 h, 0	<u>, <i>kat.</i> Cul</u> CH ₂ Cl ₂ 0 °C–RT	$\xrightarrow{R^{5}}$ $\xrightarrow{R^{1}}$ $\xrightarrow{R^{2}}$ $\xrightarrow{R^{2}}$ $\xrightarrow{R^{2}}$ $\xrightarrow{R^{2}}$	$ \begin{array}{c} CI \\ R^{5} \\ R^{1} \\ R^{2} \\ R^{4} \\ 8 \end{array} $		
Edukt	Х	\mathbf{R}^1	R^2	R ³	\mathbf{R}^4	R^5	Produkt: Ausbeute ^a [%]		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	8a : 76		
1b	S	-(C]	H ₂) ₅ -	CH ₃	CH ₃	Ph	8b : 63		
1c	S	CH ₃	CH ₃	-(CH	$(I_2)_5 -$	Ph	8c : 7		
1d	S	-(C]	H ₂) ₅ -	-(CH	[₂) ₅ -	Ph	8d : 27		
2	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	8e : 30		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-NO_2-C_6H_4$	8f : 80		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	4-OCH ₃ -C ₆ H ₄	8g : 71		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	(CH ₂) ₃ CH ₃	8h : 22		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	C(CH ₃) ₃	8i : –		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	Si(CH ₃) ₃	8j : 15		
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	COOCH ₃	8k : 76		

[a] Es handelt sich um isolierte Reinausbeuten.

Aus der Tabelle 4.7 ist klar erkennbar, dass ein breites Spektrum an verschiedenen Iminen und Alkinen in der Reaktion zur Synthese der Propargylamide **8** einsetzbar ist.

4.3.3 Cyclisierung

Den Abschluss dieses Themenkomplexes bildet die Untersuchung zur Synthese der polyanellierten tricyclischen 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one **9**. Aufgrund der

strukturellen Ähnlichkeit zu bekannten pharmakologisch relevanten Wirkstoffen, ist die Synthese neuartiger polyanellierter siebengliedriger Ringsysteme von großer Bedeutung.^[66, 67]

	R ⁵	$ \begin{array}{c} $	\rightarrow O $\left< \frac{R^3}{R^4} \right $	<u>NaN</u> <i>abs.</i> E 6 h, 10	N ₃ → → → → → → → → → → → → → → → → → → →	$ \begin{array}{c} $		
Edukt	Х	\mathbf{R}^1	\mathbf{R}^2	R^3	\mathbb{R}^4	R^5	Produkt: Ausbeute ^a [%]	
8a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	9a : 49	
8 b	S	-(CH	-(CH ₂) ₅ -		CH ₃	Ph	9b : 63	
8c	S	CH ₃	CH ₃	-(C]	H ₂) ₅ -	Ph	9c : 46	
8d	S	-(CH	$(I_2)_5 -$	-(CH ₂) ₅ -		Ph	9d : 44	
8e	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	9e : 42	
8f	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-NO_2-C_6H_4$	9f : 4	
8g	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-OCH_3-C_6H_4$	9g : 42	
8h	S	CH ₃	CH ₃	CH ₃	CH ₃	(CH ₂) ₃ CH ₃	9h : 55	
8j	S	CH ₃	CH ₃	CH ₃	CH ₃	Si(CH ₃) ₃	9j : 29	
8k	S	CH ₃	CH ₃	CH ₃	CH ₃	COOCH ₃	9k: –	

Tab. 4.8: Dargestellte racemische 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one 9.

[a] Es handelt sich um isolierte Reinausbeuten.

Die Synthese der Siebenringlactame **9** wurde in Analogie zur Synthese der 3,6-Dihydropyrazin-2(1H)-one **7** durchgeführt. Die Ergebnisse, die in Tabelle 4.8 dargelegt sind, belegen, dass im Vergleich zu den Sechsringlactamen **7** die Cyclisierung mit deutlich geringeren Ausbeuten von nur bis zu 63 % (**9b**) verläuft. Dies deckt sich mit Ergebnissen von BALLET et al., die bei der Synthese bicyclischer 1,4-Diazepin-5-one einen

ähnlichen Ausbeutenbereich beobachteten.^[45] Alle eingesetzten Propargylamide **8a–8j** konnten in den jeweiligen korrespondierenden Tricyclus **9** überführt werden mit Ausnahme des Derivats **8k**. NMR- und IR-spektroskopische sowie massenspektrometrische Daten deuten darauf hin, dass anstelle des angestrebten Tricyclus **9k** der C-C-verknüpfte Bicyclus **10** in einer Ausbeute von 9 % erhalten wurde (Abb. 4.11).

Abb. 4.11: Isoliertes racemisches Produkt 10 bei der Synthese des anvisierten Tricyclus 9k.

Weiterhin ist festzuhalten, dass im Gegensatz zur Synthese der tricyclischen 3,6-Dihydropyrazin-2(1H)-one 7 eine Produktbildung bei der Verwendung eines elektronenziehenden Restes am Aromaten zu beobachten ist (**9f**), wenngleich die Ausbeute nur 4 % beträgt.

Die erfolgreiche Gestaltung der intramolekularen 1,3-dipolaren Cycloaddition zu den tricyclischen Ringschlussprodukten **9** wurde durch eine Röntgenkristallstruktur des Derivats **9a** verfiziert. Bei der Analyse der Einkristalls wurde festgestellt, dass sich in dem erhaltenen Einkristall ein Molekül Wasser befand. Dieses wurde zwecks Übersichtlichkeit bei der Darstellung der Molekülstruktur **9a** aus der Abbildung 4.12 entfernt. Im Rahmen der Cyclisierungsreaktion wurde die Bindung zwischen dem Stickstoffatom N4 und dem aromatischen Kohlenstoffatom C9, sowie zwischen dem Stickstoffatom N2 und dem aromatischen Kohlenstoffatom C8 neu ausgebildet. Die Bindungslänge zwischen den aromatischen Kohlenstoffatom C8 und C9 liegt mit einer Bindungslänge von

1.3877(11) Å im Bereich typischer C-C-Bindungslängen innerhalb des 1,2,3-Triazol-Gerüsts.^[68] Dies bestätigt die postulierte Molekülstruktur der tricyclischen 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one **9**.

Abb. 4.12: Röntgenstruktur des siebengliedrigen Lactams 9a (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich das Proton an dem stereogenen Zentrum angezeigt wird.
 Das im Kristall eingelagerte Wasser wurde zwecks Übersichtlichkeit entfernt.
 Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

5 Entwicklung von Syntheserouten zur Darstellung tricyclischer Achtringlactame

Die Synthesen der 3,6-Dihydropyrazin-2(1*H*)-one **7** und 3,4,6,7-Tetrahydro-5*H*-1,4diazepin-5-one **9** haben gezeigt, dass komplexe polyanellierte Molekülstrukturen in wenigen Syntheseschritten aufzubauen sind. In Anlehnung an die in Kapitel 4 entwickelten Synthesesequenzen zur Darstellung der Propargylamide **3**, **6** und **8** sowie deren Ringschlussprodukte stand die Synthese der tricyclischen 1,3,6-Oxadiazocin-4-one **12** und den 1,3,6-Triazocin-4-one **15** im Fokus der Untersuchungen.

Abb. 5.1: Retrosynthetische Betrachtung der geplanten Synthese zu den 1,3,6-Oxadiazocin-4-onen **12** und den 1,3,6-Triazocin-4-onen **15** ($R^1-R^5 = Organyl$).

Die retrosynthetische Analyse offenbart, dass die 1,3-dipolare Cycloaddition den elementaren Syntheseschritt zur Realisierung der tricyclischen Achtringlactame 12 und 15 darstellt. Dazu war die Synthese der geeigneten Precursoren 11 und 13 mittels Säurechloridaddition angedacht. Im Gegensatz zu den Propargylamiden aus Kapitel 4 sollte auf die Kupfer-katalysierte Variante verzichtet werden können, da die eingesetzten Nucleophile reaktiv genug sind, um ohne zusätzlichen Katalysator eine Substitution am ehemaligen iminschen Kohlenstoffatom durchführen zu können. Die angestrebte Syntheseroute sollte einen geringstufigen und leicht durchführbaren synthetischen Zugang zu den Achtringlactamen 12 und 15 ermöglichen. Weil das Interesse an Synthesen von heterocyclischen Systemen, deren pharmakologisches Potential gar nicht oder nur wenig erforscht ist, fortwährend besteht, ist die Darstellung der achtgliedrigen heterocyclischen Lactamsysteme 12 und 15 besonders attraktiv. Obwohl eine Vielzahl triheteroatomhaltiger Achtringsysteme in der Literatur bekannt ist^[69], sind die Strukturmotive der 1,3,6-Oxadiazocin-4-one 12 und der 1,3,6-Traiazocin-4-one 15 in Gänze literaturunbekannt und stellen somit neuartige heterocyclische Strukturmotive dar. Ein strukturähnliches 1,4,6-Oxadiazocin-5-on konnten BOEHMER et al.^[70] durch die Reaktion von 2,2'-Oxydianilin mit p-Nitrophenylchlormethansäureester herstellen. Weitere strukturähnliche achtgliedrige Lactame meldete der Pharmakonzern IMMUPHARMA 2007 an. Das Patent beinhaltet die Synthese von Aza-Heterocyclen, die als möglicher Wirkstoff bei der Behandlung von an Malaria oder AIDS erkrankten Patienten dienen können.^[71]

Abb. 5.2: Zwei pharmakologisch relevante strukturähnliche 1,3,6-Oxadiazocine:
 Der potentielle Anti-MalariaWirkstoff ID-1 VIII^[71] (links; das 1,3,6-Oxadiazocan-2,5-dion-Gerüst ist rot markiert) und das 1,3,6-Oxadiazocin-Strukturmotiv IX mit antimikrobiellen Eigenschaften^[72] (rechts; das 1,3,6-Oxadiazocin-Gerüst ist rot markiert; R = Organyl).

Eines dieser heteroatomhaltigen Ringsysteme war u. a. der Heterocyclus mit der Bezeichnung ID-1 **VIII**, der das Strukturmotiv der 1,3,6-Oxadiazocan-2,5-dione aufweist (Abb. 5.2).^[71] Als zusätzliches Beispiel für ein strukturverwandtes pharmakologisch interessantes Achtringsystem der 1,3,6-Oxadiazocine dient das im Jahr 2013 von der Firma ITHEMBA PHARMACEUTICALS patentierte Strukturmotiv der 4-Nitroimidazol-anellierten 1,3,6-Oxadiazocine **IX** (Abb. 5.2). Verbindungen dieses Motivs können als möglicher Wirkstoff gegen den Tuberkulose-Erreger *Mycobacterium tuberculosis* oder gegen andere mikrobiellen Infektionen Anwendung finden.^[72]

Wie bei den sauerstoffanalogen Verbindungen ist das Strukturmotiv der achtgliedrigen 1,3,6-Triazocin-4-one **15** in der Literatur bislang noch nicht beschrieben worden und findet erstmalige Erwähnung im Rahmen dieser Arbeit. Strukturell ähnlich aufgebaute achtgliedrige Ringsysteme können als potentiell physiologisch aktive Substanzen Verwendung finden^[73] und zeigen u. a. antiarrhytmethische^[74] sowie antihypertensive^[75] Wirkung. Im Jahr 2008 konnten ŘEZANKA et al. aus der Gorgonie *Subergorgia hicksoni* den Naturstoffe Hicksoan A **X** isolieren, dessen achtgliedriges Grundgerüst eine starke Ähnlichkeit zu dem anvisierten Achtringlactam **15** aufweist (Abb. 5.3).^[76]

Abb. 5.3: Der Naturstoff Hicksoan A X mit dem strukturähnlichen 1,3,6-Triazocan-4,7-dion-Gerüst (rot markiert).^[76]

Die aufgeführten Beispiele belegen das vorhandene Interesse an triheteroatomhaltigen achtgliedrigen *N*-Heterocyclen und legen die Vermutung nahe, dass auch die anvisierten 1,3,6-Oxadiazocin-4-one **12** und die stickstoffanalogen 1,3,6-Triazocinon-4-one **15** über eine pharmakologische Wirkung verfügen könnten.

5.1 Synthese der tricyclischen 1,3,6-Oxadiazocin-4-one

Dieser Kapitelabschnitt beinhaltet die Synthese der 1,3,6-Oxadiazocin-4-one **12** ausgehend von den Alkoxyamiden **11**. Neben der Synthese lag ein weiteres Hauptaugenmerk auf der Optimierung der Reaktion zu den Alkoxyamiden **11**. In Analogie zum vorherigen Kapitel ist das auffälligste Merkmal des neuartigen achtgliedrigen Lactams **12** die Anellierung eines 1,2,3-Triazols sowie eines Thiazolidin- oder Oxazolidin-Gerüsts.

5.1.1 Reaktionsoptimierung zur Darstellung der Alkoxyamide

Bei der retrosynthetischen Planung des Synthesekonzepts zur Darstellung der achtgliedrigen 1,3,6-Oxadiazocin-4-one **12** (Abb. 5.1) ist im Anschluss an die ASINGER-Reaktion, die Synthese einer geeigneten Precursor-Verbindung angestrebt. Diese sollten sich durch die Umsetzung eines cyclischen Imins mit einem Säurechlorid und einem Alkohol realsieren lassen. Als Modellreaktion für einen orientierenden Versuch diente die Umsetzung des 3-Thiazolins **1a** mit Chloracetylchlorid und Propargylalkohol. Als Versuchsvorschrift wurde das Syntheseprotokoll zur Darstellung der Propargylamide **6** ohne Einsatz des Kupfer(I)-iodids übernommen. Das anvisierte Alkoxyamid **11a** konnte hierbei mit einer Ausbeute von 52 % erhalten werden (Tab. 5.1). Wenngleich bereits dieses Ergebnis ein äußerst Positives darstellt, wurde eine Reaktionsoptimierung für die Synthese der benötigten Ausgangsverbindungen **11** durchgeführt. Die Ergebnisse dieser Untersuchung sind in der Tabelle 5.1 aufgeführt. Aufgrund des adaptierten Syntheseprotokolls wurden zunächst sechs Äquivalente der Base Diisopropylethylamin (DIPEA) eingesetzt (Tab. 5.1, Eintrag 1). Im Folgenden wurde untersucht, ob der Basenüberschuss für das erfolgreiche Ablaufen der MCR essentiell ist.

Eintrag	Propargyl- alkohol [eq.]	Lösungsmittel	Base [eq.]	Rührzeit Säurechlorid- addition [min]	Ausbeute ^b 11a [%]
1	1.5	CH_2Cl_2	DIPEA 6.0	90	52
2	1.5	CH_2Cl_2	DIPEA 4.0	90	65
3	1.5	CH_2Cl_2	DIPEA 2.0	90	13
4	1.5	CH_2Cl_2	DIPEA 1.5	90	17
5	1.5	CH ₂ Cl ₂	Et ₃ N 6.0	90	48
6	1.5	CH_2Cl_2	Et ₃ N 4.0	90	41
7	1.5	CH_2Cl_2	Et ₃ N 2.0	90	41
8	1.5	CH ₂ Cl ₂	Et ₃ N 1.5	90	18
9	1.5	DMF	DIPEA 4.0	90	65
10	1.5	CH ₃ CN	DIPEA 4.0	90	73
11	1.5	CH ₃ CN	DIPEA 4.0	120	76
12	1.5	CH ₃ CN	DIPEA 4.0	240	44
13	1.5	CH ₃ CN	DIPEA 4.0	360	62
14	1.5	CH ₃ CN	DIPEA 4.0	60	68
15	2.0	CH ₃ CN	DIPEA 4.0	120	63
16	1.75	CH ₃ CN	DIPEA 4.0	120	61
17	1.25	CH ₃ CN	DIPEA 4.0	120	59

[a] Alle Reaktionen wurden unter Verwendung von 2.00 mmol 3-Thiazolin 1a, 4.00 mmol Chloracetylchlorid, der jeweiligen Äquivalenten an Propargylakohol und der jeweiligen Base unter Schutzgasatmosphäre zwischen 0 °C bis Raumtemperatur durchgeführt. Die optimalen Reaktionsbedingungen sind fett formatiert.

[b] Es handelt sich hierbei um isolierte Reinausbeuten.

Dabei konnte festgestellt werden, dass eine Verringerung von sechs auf vier Äquivalente eine Ausbeutensteigerung auf 65 % liefert, wohingegen die Verwendung von zwei oder 1.50 Äquivalenten der Base die Ausbeute merklich verringert (Tab. 5.1, Einträge 2 bis 4). Der Einsatz der Base Triethylamin, die im Arbeitskreis MARTENS als klassische Base für Additionsreaktionen an heterocyclische Imine gilt, erbrachte ebenfalls nicht die gewünschte Ausbeutenerhöhung. Zusätzlich bestätigte sich, dass ein Basenüberschuss essentiell ist, damit die Reaktion höhere Ausbeuten liefert (Tab. 5.1, Einträge 5 bis 8). Dennoch wurden höhere Ausbeuten bei der Verwendung von Diisopropylethylamin im Vergleich zu Triethylamin erzielt. Als Resultat der Ergebnisse der Optimierung zur Synthese der Propargylamide **6** (Kapitel 4.2.2) wurde auf den Einsatz von Carbonatbasen oder aromatischen Aminen bei dieser Untersuchung verzichtet.

In der nächsten Versuchsreihe wurden die Lösungsmittel DMF und Acetonitril innerhalb der Reaktion getestet. Während unter Verwendung von DMF das Produkt **11a** in einer Ausbeute von 65 % erhalten wurde, gelang in Acetonitril eine Ausbeutesteigerung auf 73 % (Tab. 5.1, Einträge 9 und 10). Eine Verlängerung der Reaktionszeit des Imins **1a** mit dem Chloracetylchlorid vor der Zugabe des Nucleophils von 90 auf 120 Minuten brachte eine Ausbeutensteigerung um weitere 3 Prozentpunkte auf 76 %. Andere Änderungen der Reaktionszeit resultierten nicht in einer anvisierten Ausbeutenerhöhung (Tab. 5.1, Einträge 12 bis 14). Zum Schluss der Untersuchungen wurden die Äquivalente des als Nucleophil agierenden Propargylalkohols variiert. Die Ergebnisse dieser Untersuchungen zeigten, dass die im Vorfeld gewählten stöchiometrischen Verhältnisse zwischen den einzelnen Reaktionskomponenten sich als optimal herausstellten. Sowohl eine Erhöhungen als auch eine Reduzierung der Stoffmenge an Propargylalkohol resultierte in einen signifikanten Abfall der Ausbeute.

5.1.2 Synthese der Alkoxyamide

Mit den optimierten Reaktionsbedingungen wurde im Folgenden eine Vielzahl unterschiedlicher Alkoxyamide **11** synthetisiert, die in moderaten bis sehr guten Ausbeuten erhalten wurden. Ein Blick auf die retrosynthetische Planung dokumentiert, dass dem Rest R⁵ in der Syntheseplanung eine wichtige Bedeutung zukommt. Dieser trägt entweder ein Proton, eine Methyl- oder eine Phenyl-Gruppe am Propargylalkohol. Erfreulicherweise konnten alle Alkine erfolgreich in der MCR umgesetzt werden. Wie schon in Kapitel 4, zeigten die Thiazoline **1a** und **1b** auch in der hier untersuchten MCR die höchste Reaktivität aller eingesetzten cyclischen Imine. Die Umsetzung des Propargylalkohols mit dem entsprechenden 3-Thiazolin **1b** und dem Chloracetylchlorid zu dem korrespondierenden Alkoxyamid **11d** konnte mit einer sehr guten Ausbeute von 88 % erhalten werden, was der höchsten Ausbeute des gesamten Screenings entspricht. Der Vergleich zwischen den gleichsubstituierten 3-Thiazolin **1a** und dem sauerstoffanalogen 3-Oxazolin **2** zeigt, dass unter Verwendung des schwefelhaltigen Aldimins **1a** die anvisierten Produkte **11a** bis **11c** (Tab 5.2) in signifikant höheren Ausbeuten als die Produkte **11m** bis **11o** (Tab. 5.3) erhalten wurden.

R ⁵	F	OH + R^{1} X R^{2} X 1a, 1b,	$ \begin{array}{c} CI \\ CI \\ CI \\ R^{3} \\ R^{4} \\ 1c \end{array} $	D <i>abs.</i> 16 h,	IPEA CH₃CN 0 °C–RT	R⁵	$ \begin{array}{c} $		
Edukt	Х	\mathbf{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	\mathbb{R}^5	Produkt: Ausbeute ^a [%]		
1a	S	CH_3	CH ₃	CH ₃	CH ₃	Н	11a : 76		
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	11b : 69		
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	11c : 74		
1b	S	-(Cl	H ₂) ₅ -	CH ₃	CH ₃	Н	11d : 88		
1b	S	-(Cl	H ₂) ₅ -	CH ₃	CH ₃	CH ₃	11e : 48		
1b	S	-(Cl	H ₂) ₅ -	CH ₃	CH ₃	Ph	11f : 78		
1c	S	CH ₃	CH ₃	-(CH	$H_2)_5-$	Н	11g : 38		
1c	S	CH ₃	CH ₃	-(CH	$H_2)_5-$	CH ₃	11h : 50		
1c	S	CH ₃	CH ₃	-(CH	H ₂) ₅ -	Ph	11i : 25		

Tab. 5.2: Dargestellte racemische Alkoxyamide 11 (Teil 1).

[a] Es handelt sich um isolierte Reinausbeuten.

Bei den 3-Thiazolinen **1b** bis **1d** zeigte sich, dass große Differenzen bei den isolierten Ausbeuten der Produkte **11** vorliegen, wenn der Rest R^5 ein Proton, eine Methyl- oder Phenylgruppe trägt. Dennoch ist kein allgemeingültiges Schema zu erkennen, das eine fundierte wissenschaftliche Aussage über die Relation zwischen Art der Substitution am Rest R^5 und der zu erwartenden Ausbeute der Produkte **11** zulässt.

R⁵	F	$ \begin{array}{c} DH \\ + \\ R^{1} \\ R^{2} \\ R^{2} \\ Id, 1f, \end{array} $	CI CI R^3 R^4 2	[abs 16 h	DIPEA . CH₃CN , 0 °C–RT	$ \begin{array}{c} $		
Edukt	Х	R^1	R^2	R ³	R^4	R^5	Produkt: Ausbeute ^a [%]	
1d	S	-(CH	H ₂) ₅ -	-(C	H ₂) ₅ -	Н	11j : 78	
1d	S	-(CH	H ₂) ₅ -	-(C	-(CH ₂) ₅ -		11k : 26	
1d	S	-(CH	H ₂) ₅ -	-(C	-(CH ₂) ₅ -		111 : 30	
2	0	CH ₃	CH ₃	CH ₃	CH ₃	Н	11m : 47	
2	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	11n : 51	
2	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	11o : 49	
1f	S	CH ₃	CH ₃	Н	C(CH ₃) ₃	Н	11p : 53 ^b	

 Tab. 5.3: Dargestellte racemische Alkoxyamide 11 (Teil 2).

- -

[a] Es handelt sich um isolierte Reinausbeuten.

[b] Aus dem Rohspektrum der Verbindung **11p** wurde bei Raumtemperatur in CDCl₃ ein Diastereomerenverhältnis von 86:14 bestimmt.

Zusätzlich zu den verschiedenen Alkinen war auch die Einführung einer olefinischen Doppelbindung unter Verwendung von Allylalkohol in die Alkoxyamide **11** angestrebt. Mit Hilfe der MCR konnte das Alkoxyamid **11q** in einer Ausbeute von 69 % erhalten werden.

Abb. 5.4: Synthese des racemischen Alkoxyamids 11q.

Zur Verifizierung der Substanzklasse der Alkoxyamide **11** konnte ein Einkristall des Amids **11b** gewonnen werden. Nach der röntgenographischen Untersuchung des Einkristalls konnte die postulierte Molekülstruktur der Alkoxyamide **11** eindeutig bestätigt werden (Abb. 5.5).

Abb. 5.5: Röntgenstruktur des Alkoxyamids 11b (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich das Proton am stereogenen Zentrum angezeigt wird. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

Im Zuge der Untersuchungen zur Synthese der monocyclischen Amide **11** war auch der Einsatz des chiralen 3-Thiazolins **1f** angestrebt. Dieses besitzt ein stereogenes Zentrum an der 2-Position innerhalb des heterocyclischen Grundgerüsts, wodurch das anvisierte Produkt **11p** zwei stereogene Zentren enthält. Anhand des Rohspektrums in deuteriertem Chloroform bei Raumtemperatur konnte ein Diastereomerenverhältnis von 86:14 bestimmt werden. Der enorme Überschuss eines Diastereomers ist damit zu erklären, dass die sterisch anspruchsvolle *tert*-Butyl-Gruppe, die an das chirale 3-Thiazolin **1f** substituiert ist, und der Chloracetyl-Rest am Stickstoffatom des heterocyclischen Grundgerüsts einen möglichst großen Abstand zueinander generieren. Daraus resultierend ergibt sich eine solch hohe Diastereoselektivität. Eine Trennung der racemischen Diastereomere konnte nicht erzielt werden, weshalb eine Verifizierung der relativen Konfiguration des Überschussdiastereomers als auch des Unterschussdiastereomers nicht möglich war.

5.1.3 Cyclisierung

In Analogie zur Synthese der tricyclischen sechs- und siebengliedrigen Lactame (Kapitel 4) erfolgte die Cyclisierung der Alkoxyamide **11** zu den achtgliedrigen Lactamen **12** mit Hilfe der thermisch induzierten intramolekularen 1,3-dipolaren Cycloaddition. Die tricyclischen 1,3,6-Oxadiazocin-4-one **12** konnten dabei in moderaten bis exzellenten Ausbeuten erhalten werden (Tab. 5.4 und 5.5).

	R	$ \begin{array}{c} $	$ \begin{array}{c} $	<u>Na</u> abs. 5 h, 1	<u>N₃</u> DMF 00 °C	R^{5} N O R^{1} R^{2} X 12a	
Edukt	Х	\mathbf{R}^1	R^2	R^3	\mathbf{R}^4	\mathbb{R}^5	Produkt: Ausbeute ^a [%]
11a	S	CH ₃	CH ₃	CH ₃	CH ₃	Н	12a : 86
11b	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	12b : 30
11c	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	12c : 35
11d	S	-(CI	$H_2)_5-$	CH_3	CH ₃	Н	12d : 99
11e	S	-(CI	$H_2)_5-$	CH ₃	CH ₃	CH ₃	12e : 30
11f	S	-(CI	$H_2)_5-$	CH ₃	CH ₃	Ph	12f : 44
11g	S	CH ₃	CH ₃	-(CH	H ₂) ₅ -	Н	12g : 68
11h	S	CH ₃	CH ₃	-(CH	H ₂) ₅ -	CH ₃	12h : 50
11i	S	CH ₃	CH ₃	–(Cł	$H_2)_5-$	Ph	12i : 53

Tab. 5.4: Dargestellte racemische 1,3,6-Oxadiazocin-4-one 12 (Teil 1).

[a] Es handelt sich um isolierte Reinausbeuten.

Alle eingesetzten Alkoxyamide **11**, die eine C-C-Dreifachbindung aufweisen, konnten in die korrespondierenden polyanellierten achtgliedrigen Heterocyclen **12** überführt werden. Die aufgeführten Ergebnisse belegen, dass ein Zusammenhang zwischen der Substitution am Rest R^5 und den isolierten Ausbeuten besteht. So wurden die Lactame **12** mit $R^5 = H$

in einer signifikant höheren Ausbeute als jene mit $R^5 = CH_3$, Ph erhalten. Dies ist vermutlich auf den erhöhten sterischen Anspruch der Alkoxyamide **11** zurückzuführen, sobald diese einen Alkyl- oder Aryl-Substituenten am Rest R^5 aufweisen. Möglicherweise erschwert diese Substitution den Angriff des Azids auf das Alkin während der intramolekularen Cycloaddition.

	R ^t	5 —O R ¹ -/ R ² 11j–	$ \begin{array}{c} $	N abs 5 h,	aN ₃ . DMF 100 °C	$ \begin{array}{c} R^{5} \\ 0 \\ R^{1} \\ R^{2} \\ 1 \end{array} $	N N N N N N N N N N N N N N N N N N N
Edukt	Х	\mathbf{R}^1	R^2	R ³	R^4	R^5	Produkt: Ausbeute ^a [%]
11j	S	-(CH ₂) ₅ -		-(C	2H ₂) ₅ -	Н	12j : 50
11k	S	-(CI	$H_2)_5-$	-(C	² H ₂) ₅ –	CH ₃	12k : 29
111	S	-(CI	$H_2)_5-$	-(C	-(CH ₂) ₅ -		12l : 38
11m	0	CH ₃	CH ₃	CH ₃	CH ₃	Н	12m : 88
11n	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	12n : 24
110	0	CH ₃	CH ₃	CH ₃	CH ₃	Ph	120 : 35
11p	S	CH ₃	CH ₃	Н	C(CH ₃) ₃	Н	$(5aS^*, 8S^*)$ - 12p : 21 ^b $(5aS^*, 8R^*)$ - 12p : 12 ^b

Tab. 5.5: Dargestellte racemische 1,3,6-Oxadiazocin-4-one 12 (Teil 2).

[a] Es handelt sich um isolierte Reinausbeuten.

[b] Aus dem Rohspektrum der Verbindung 12p wurde bei Raumtemperatur in $CDCl_3$ ein Diastereomerenverhältnis von 68:32 bestimmt.

Im Zuge der Untersuchungen zur Synthese des neuartigen Strukturmotivs der 1,3,6-Oxadiazocin-4-one **12** wurde bei der Umsetzung des Alkoxyamids **11d** zum Achtring **12d** die höchste Ausbeute erzielt, die mit einer nahezu quantitativen Ausbeute von 99 % in einem exzellenten Bereich liegt. Ein Vergleich zwischen den *S*,*N*- und *O*,*N*-heterocyclischen Grundgerüsten der Lactame **12** (**12a–12c**; **12m–12o**) zeigt, dass keine Tendenz bei der Cyclisierung zu erkennen ist und alle korrespondierenden

Achtringe 12 in nahezu identischer Ausbeute erhalten wurden. Die Verwendung des Alkoxyamids 11q, das als Rest R^5 eine Allyl-Gruppe aufweist, führte nicht zu dem angestrebten neuartigen Achtring. Somit scheint die Triebkraft zur Bildung eines aromatischen Systems für eine erfolgreich ablaufende Synthese zu den tricyclischen Produkten 12 essentiell zu sein.

Repräsentativ für die postulierte Struktur der neuartigen 1,3,6-Oxadiazocin-4-one **12** konnte ein Einkristall gezüchtet werden, der einer Röntgenkristallstrukturanalyse unterzogen wurde. Die gezeigte Kristallstruktur des 1,3,6-Oxadiazocin-4-ons **12d** (Abb. 5.6) belegt durch die Verknüpfung des ehemals alkinischen Kohlenstoffatoms C4 mit dem Stickstoffatom N2 des substituierten Azids die Bildung des Achtrings. (Die Nummerierung entspricht nicht der IUPAC Nummerierung und wird ausschließlich für die Diskussion der Röntgenstruktur verwendet.)

Abb. 5.6: Röntgenstruktur des 1,3,6-Oxadiazocin-4-ons 12d (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich das Proton am stereogenen Zentrum angezeigt wird.
 Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

Durch den Einsatz des chiralen Alkoxyamids **11p** liegt neben dem obligatorischen stereogenen Zentrum am ehemaligen iminischen Kohlenstoffatom ein weiteres stereogenes Zentrum in β -Position zur Carbonylgruppe vor. Aus dem Rohprodukt der racemischen Diastereomere **12p** konnte NMR-spektroskopoisch bei Raumtemperatur in deuteriertem Chloroform ein Diastereomerenverhältnis von 68:32 bestimmt werden. Zusätzlich zur Bestimmung des Diastereomerenverhältnisses gelang die säulenchromatographische Trennung der beiden Diastereomere **12p**. Da das Überschussdiastereomer als Feststoff vorliegt, konnte dieses durch einen Verdunstungsansatz aus Dichlormethan und *n*-Hexan kristallisiert und somit ein geeigneter Einkristall gewonnen werden, der sich für die Röntgenstrukturanalyse eignete.

Abb. 5.7: Röntgenstruktur des (5aS^{*}, 8S^{*})-1,3,6-Oxadiazocin-4-ons 12p (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen an den stereogenen Zentren angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

Die in Abbildung 5.7 gezeigte Molekülstruktur des Überschussdiastereomers von 12p zeigt eindeutig eine (S, S)-Konfiguration des Überschussdiastereomers. Resultierend aus der erhaltenen stereochemischen Information kann dem racemischen Unterschussdiastereomer 12p eine relative (S^*, R^*) -Konfiguration zugeordnet werden. Neben den stereochemischen Informationen wird mit der vorliegenden Röntgenkristallneuartige Struktur struktur die postulierte der tricyclischen achtgliedrigen 1,3,6-Oxadiazocin-4-one 12 abermals bewiesen.

5.2 Synthese der tricyclischen 1,3,6-Triazocin-4-one

Dieser Abschnitt befasst sich mit der Synthese der als Precursoren verwendeten Alkinylaminoamide **13** und deren Umsetzung zu den polyanellierten tricyclischen 1,3,6-Triazocin-4-onen **15**. Die dabei neu geschaffene sekundäre Aminofunktion bildet aus strategischer Sicht einen idealen Ausgangspunkt für den Aufbau noch komplexerer Molekülsysteme. Das Potential einer möglichen Derivatisierung an der sekundären Aminofunktion soll anhand ausgewählter Reaktionen exemplarisch aufgezeigt werden.

5.2.1 Synthese der Alkinylaminoamide

Zur Synthese der achtgliedrigen 1,3,6-Triazocin-4-one 15 waren die Alkinylaminoamide 13 als Edukte erforderlich. Für die Anwendung der MCR zur Synthese eben dieser Verbindungen wurde ein Syntheseprotokoll von WATZKE^[77] übernommen. Im Gegensatz zur Synthese der Alkoxyamide wurde die MCR in Dichlormethan und in Anwesenheit der Triethylamin durchgeführt. Zusätzlich wurde auf die Verwendung von Base Chloracetylchlorid als Säurechloridkomponente in der MCR verzichtet und stattdessen das Azidoacetylchlorid eingesetzt. Die Gefahr einer Substitution des zweiten Chloratoms durch das im Überschuss vorhandene Propargylamin war durch die Verwendung von Azidoacetylchlorid nicht mehr gegeben. In einer zweistufigen Synthesesequenz wurde zunächst aus Bromessigsäure die dazugehörige Azidoessigsäure synthetisiert, die im Anschluss unter Verwendung von Oxalylchlorid zum Säurechlorid umgesetzt wurde.^[78] Bei den Synthesen zu den Alkinylaminoamiden 13 wurden neben verschiedenen heterocyclischen Iminen 1 und 2 auch das Propargylamin, sowie das But-2-in-1-amin eingesetzt. Insgesamt konnten auf diese Weise acht Alkinylaminoamide 13 in moderaten bis sehr guten Ausbeuten synthetisiert werden (Tab. 5.6). Die Tendenzen bezüglich der isolierten Ausbeute die bereits bei der Synthese der Alkoxyamide 11 zu erkennen waren, konnten durch die erzielten Resultate bestätigt werden. Erneut lieferte das 3-Thiazolin 1b bei der Synthese des Produkts 13c mit 75 % die höchste Ausbeute aller dargestellten Alkinylaminoamide 13. Der Vergleich der gleichsubstituierten S,N- und O,N-haltigen Imine 1a und 2 zeigt erneut, dass die Alkinylaminoamide, die den S,N-Heterocyclus aufweisen, in höheren Ausbeuten erhalten werden konnten. Eine weitere Tendenz ist im Zusammenhang mit dem Substituenten R^5 zu erkennen. Ist R^5 ein Wasserstoffatom bildeten sich die Produkte 13a, c, e und f in vergleichsweise besseren Ausbeuten als im Fall $R^5 = CH_3$.

R ⁵	F	$H_{2} + 0$ $R^{1} \xrightarrow{= N}$ $R^{2} \times 1, 2$	$-R^3$ R^4	Et ₃ abs. C 16 h, 0	F 3 <mark>N H₂Cl₂ °C−RT</mark>	R ⁵ R ¹ R ²	$ \begin{array}{c} $
Edukt	Х	R^1	R^2	R^3	\mathbf{R}^4	R^5	Produkt: Ausbeute ^a [%]
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	Н	13a : 65
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	13b : 36
1b	S	-(CH	H ₂) ₅ -	CH ₃	CH ₃	Н	13c : 75
1b	S	-(CH	H ₂) ₅ -	CH ₃	CH ₃	CH ₃	13d : 41
1d	S	-(CH	H ₂) ₅ -	-(C	H ₂) ₅ -	Н	13e : 62
1d	S	-(CH	H ₂) ₅ -	-(C	H ₂) ₅ -	CH ₃	13f : 28
2	0	CH ₃	CH ₃	CH ₃	CH ₃	Н	13g : 48
2	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	13h : 33
1f	S	CH ₃	CH ₃	Н	C(CH ₃) ₃	Н	13i: -

 Tab. 5.6: Dargestellte racemische Alkinylaminoamide 13.

[a] Es handelt sich um isolierte Reinausbeuten.

Ein überraschendes Ergebnis wurde bei der Synthese des anvisierten Produkts **13i** erzielt. Im Zuge von Diastereoselektivitätsuntersuchungen wurde das Imin **1f** eingesetzt. Unter den gegebenen Reaktionsbedingungen wurde jedoch nicht die gewünschte Verbindung **13i** isoliert (Abb. 5.8). Nach umfangreicher Analyse diverser NMR- und IR-spektroskopischer als auch massenspektrometrischer Daten wurde das isolierte Produkt als der Aldehyd **14** identifiziert.

Abb. 5.8: Bildung des Aldehyds 14 anstelle des angestretben Alkinylaminoamids 13i.

Anzunehmen ist, dass sich während der Reaktion, der wässrigen Aufarbeitung und anschließender säulenchromatographischer Aufreinigung das Hydroxyprodukt **XI** gebildet hat, welches durch anschließende Umlagerungen in den Aldehyd **14** umgewandelt wurde (Abb. 5.9).

Abb. 5.9: Postulierte Umlagerung des Hydroxyprodukts XI zum Aldehyden 14.

Von dem Alkinylaminoamid **13a** konnten Einkristalle gezüchtet werden. Durch eine anschließende Röntgenstrukturanalyse konnte die postulierte Struktur verifiziert werden. Diese ist in der Abbildung 5.10 dargestellt.

Abb. 5.10: Röntgenstruktur des Alkinylaminoamdis 13a (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen am stereogenen Zentrum sowie am Stickstoffatom N2 angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

5.2.2 Cyclisierung

Die Synthese der polyanellierten tricyclischen 1,3,6-Triazocin-4-one 15 erfolgte durch Modifikation der Synthesevorschrift zur Darstellung der 1,3,6-Oxadiazocin-4-one 12. Aufgrund des eingesetzten Azidoacetylchlorids konnte auf den Einsatz von Natriumazid verzichtet werden. Daraus resultierend wurden die Azide 13 in DMF bei 100 °C ohne Zusatz weiterer Komponenten gerührt. Ein orientierender Versuch zeigte, dass bei fünf Stunden Rührzeit weder das anvisierte Produkt 15a noch das Edukt 13a in den NMR-Spektren wiederzufinden waren. Daher wurde in den nachfolgenden Versuchen per DC-Kontrolle die Umsetzung des Eduktes überprüft. Nachdem das Edukt vollständig umgesetzt war, wurde die Reaktion gequencht und das Reaktionsgemisch gemäß der Versuchsvorschrift aufgearbeitet und gereinigt. Von den acht eingesetzten Alkinylaminoamiden 13 konnten vier in die neuartigen 1,3,6-Triazocin-4-one 15 überführt und die Produkte in moderaten Ausbeuten erhalten werden. Die geringe Ausbeute erklärt sich dadurch, dass die angestrebten Achtringe 15 eine gewisse Labilität bei der Reaktionstemperatur zeigen und sich bei längerer Rührzeit zersetzen. Wie aus der 5.7 ersichtlich ist. konnten ausschließlich die achtgliedrigen Tabelle gut 1,3,6-Triazocinon-4-one 15 erhalten werden, bei denen der Rest R⁵ ein Wasserstoffatom ist. Alle Azide 13, die an dieser Stelle eine Methylgruppe aufweisen, konnten nicht in die anvisierten Ringsysteme 15 überführt werden. Auffällig ist hierbei, dass die Edukte, die

eine Methylgruppe am Rest R⁵ aufweisen, eine deutlich längere Reaktionszeit benötigten, bis das Edukt vollständig verbraucht war. Eine Umsetzung der Edukte **13** zu den Produkten **15** und eine gleichzeitig einsetzende Zersetzung des gebildeten Achtrings aufgrund der Temperaturlabilität ist nicht auszuschließen, konnte aber nicht bestätigt werden.

		R° H R ¹ R	N N N N N N N N N N	I ₃ =0 -R ³ -	<i>abs</i> . DMI 75–360 m 100 °C	- , in,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) 3
Edukt	X	R^1	R^2	R^3	\mathbf{R}^4	R^5	Reaktionszeit [min]	Produkt: Ausbeute ^{<i>a</i>} [%]
13a	S	CH ₃	CH ₃	CH ₃	CH ₃	Н	75	15a : 44
13b	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	240	15b: –
13c	S	–(CH	I ₂) ₅ -	CH ₃	CH ₃	Н	100	15c : 50
13d	S	–(CH	I ₂) ₅ -	CH ₃	CH ₃	CH ₃	105	15d: –
13e	S	–(CH	I ₂) ₅ -	-(CI	H ₂) ₅ -	Н	90	15e : 56
13f	S	–(CH	I ₂) ₅ -	-(CI	H ₂) ₅ -	CH ₃	360	15f: –
13g	0	CH ₃	CH ₃	CH ₃	CH ₃	Н	120	15g : 14
13h	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	300	15h: –

Tab. 5.7: Dargestellte racemische tricyclische 1,3,6-Triazocin-4-one 15.

[a] Es handelt sich um isolierte Reinausbeuten.

Stellvertretend für die Substanzklasse der polyanellierten tricyclischen 1,3,6-Triazocin-4-one **15** konnte ein erhaltener Einkristall der Verbindung **15a** einer Röntgenstrukturanalyse unterzogen werden. Die Analyse des Einkristalls konnte eindeutig die postulierte Molekülstruktur der Achtringlactame **15** nachweisen. Zusätzlich wird durch die Röntgenstruktur die erfolgreiche Synthese der Alkinylaminoamide **13** nochmals bestätigt.

Abb. 5.11: Röntgenstruktur des 1,3,6-Triazocin-4-ons 15a (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen am stereogenen Zentrum sowie am Stickstoffatom N1 angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

5.2.3 Ausgewählte Substitutionsreaktionen zur Derivatisierung der Aminofunktion der 1,3,6-Triazocin-4-one

Sekundäre und primäre Amine sind für ihre hohe Reaktivität bekannt, wodurch die Möglichkeit vielseitiger Derivitatisierungen an Aminen in einer Vielzahl von Reaktionen gegeben ist. Zu den klassischen Reaktionen von Aminen gehören die Umsetzungen mit halogenhaltigen Verbindungen oder mit Isocyanaten.^[79] Diese Eigenschaft ausnutzend wurden einige dieser Reaktionen auf das tricyclische Achtringlactam 15a übertragen. Hierzu wurde dieses mit Acetylchlorid, Methansulfonylchlorid, Benzylbromid sowie mit Phenylisocyanat umgesetzt (Abb. 5.12). Zur allgemeinen Ernüchterung zeigte der einge-Achtring 15a keinerlei Reaktivität weshalb keines der anvisierten setzte Derivatisierungsprodukte erhalten wurde. In allen Fällen wurde nach wässriger Aufarbeitung und Entfernung des Lösungsmittels ausschließlich die Ausgangsverbindung reisoliert. Ein wiederholendes Experiment ausgehend vom Produkt 15c und Acetylchlorid bestätigte die geringe Reaktivität des Amins. Auf eine Erhöhung der Reaktionstemperatur wurde aufgrund der Temperaturlabilität der synthetisierten Ringsystems 15 verzichtet. Vermutlich ist der Grund der geringen Reaktivität auf die geometrische Anordnung des

Ringsystems zurückzuführen, wodurch ein möglicher Angriff des jeweiligen Nucleophils aufgrund sterischer Hinderung nicht stattfinden kann und letzten Endes ausschließlich die Edukte zurückerhalten werden.

Abb. 5.12: Versuche zur Derivatisierung der Aminofunktion des 1,3,6-Triazocin-4-ons 15a;
a) 1.00 eq. Amin, 1.00 eq. Halogenverbindung, 1.75 eq. Et₃N, *abs*. CH₂Cl₂, über Nacht, 0 °C – RT;
b) 1.00 eq. Amin, 1.00 eq. Isocyanat, *abs*. CH₂Cl₂, über Nacht, 0 °C – RT.

Um dennoch eine tertiäre Aminofunktion an dem an Position 1 befindlichem Stickstoffatom zu realisieren, wurde die vorgegebene Derivatisierung am Stickstoffatom vorab eingefügt (Abb. 5.13).

Abb. 5.13: Synthese des *N*-Methyl-substituierten 1,3,6-Triazocin-4-ons 16; a) 1.00 eq Imin, 1.00 eq. Säurechlorid, 2.00 eq. *N*-Methylpropargylamin, 1.75 eq. Et₃N, *abs*. CH₂Cl₂, 5 h, Rückfluss; b) *abs*. DMF, 5 h, 100 °C (angegeben ist jeweils die isolierte Reinausbeute.).

Dafür wurde das sekundäre Amin *N*-Methylpropargylamin anstelle des primären Propargylamins in der MCR eingesetzt. Das gewünschte *N*-Methyl-alkinylaminoamid **16** konnte in einer Ausbeute von 42 % erhalten werden. Im Anschluss wurde das Amid **16** mittels thermisch induzierter 1,3-dipolarer Cycloaddition in das anvisierte Ringschlussprodukt **17** überführt. Ebenso wie bei den vorherigen Synthesen zu den Achtringen **15**, wurde per DC-Kontrolle die Umsetzung des Edukts **16** beobachtet. Hierbei zeigte sich, dass die Umsetzung erst nach fünf Stunden beendet war und das Cyclisierungsprodukt **17** erfreulicherweise in einer guten Ausbeute von 71 % isoliert werden konnte. Dies stellte die höchste Ausbeute während der gesamten Untersuchungen zur Synthese der achtgliedrigen Ringsysteme dar und lässt den Schluss zu, dass eine Substitution des Stickstoffatoms an Position 1 dazu führt, dass die vorher erwähnte Temperaturlabilität der anvisierten Achtringe nicht mehr gegeben ist. Die modifizierte Syntheseroute verdeutlicht das Potential der Möglichkeit zur Derivatisierung der Achtringlactame **15** unter der limitierenden Bedingung, dass das Einführen von Kohlenwasserstoffresten bereits vorab durchgeführt werden muss.

5.2.4 Exemplarische Oxidation

Eine weitere Möglichkeit zur Derivatisierung von Aminen sind die Oxidationsreaktionen.^[80] Die Verwendung verschiedener Oxidationsmittel führt u. a. zu Aminoxiden^[81], Iminen^[82] oder Amiden^[83]. Im Rahmen der exemplarischen Oxidation der 1,3,6-Triazocinon-4-one **15** wurde die Verbindung **15a** als Substrat für die Oxidation der Amino-Gruppe gewählt. Eine im Arbeitskreis MARTENS klassische Variante der Oxidation von Aminen ist die Darstellung von Ketiminen unter Verwendung des Oxidationsmittels Kaliumpermanganat in Aceton.^[50d, 79] In Abbildung 5.14 ist das Ergebnis der exempla-rischen Oxidation dargestellt.

Abb. 5.14: Oxidation vom 1,3,6-Triazocin-4-on 15a zum 1,3,6-Triazocin-4,8-dion 18.
a) 2.50 eq. Kaliumpermanganat, *abs*. Aceton, 2 h, Rückfluss (angegeben ist die isolierte Reinausbeute.).

Nach der Durchführung der Reaktion wurde anstelle eines angestrebten Ketimins das Diamid **18** erhalten. Das Ergebnis ist das Resultat einer konkurrierenden Oxidation, welche durch das verwendete Oxidationsmittel hervorgerufen wird. Neben der Möglichkeit zur Oxidation des Amins ist auch die Oxidation der Methylengruppe, die in α -Position zum Aromaten steht, gegeben. Weitere Versuche zur Oxidation des Amins zum Imin z. B. durch die Verwendung von Sauerstoff, wie von CHE et al. beschrieben^[84] oder nach einer Synthesevorschrift von NICOLAOU et al.^[85], bei der mit IBX (2-Iodobenzoesäure) eine Oxidation erfolgreich durchgeführt wurde, führten ausschließlich zur Reisolierung des eingesetzten Edukts **15a**. Dennoch zeigt das Resultat das Potential zur Oxidation an dem neuartigen Ringsystem. Zusätzlich findet das Strukturmotiv des Diamids **18** im Rahmen dieser Arbeit erstmalig Erwähnung in der Literatur.

Von dem Oxidationsprodukt **18** konnten geeignete Einkristalle gezüchtet werden. Die Röntgenstruktur belegt eindeutig die erfolgreich durchgeführte Oxidation des 1,3,6-Triazocin-4-ons **15a** zum Diamid **18** und bestätigt die Molekülstruktur durch die neu ausgebildete zweite Carbonylgruppe am Kohlenstoffatom C11. (Die Nummerierung entspricht nicht der IUPAC Nomenklatur und wird lediglich bei der Diskussion der Röntgenstruktur angewendet.).

Abb. 5.15: Röntgenstruktur des 1,3,6-Triazocin-4,8-dions 18 (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen am stereogenen Zentrum und am Stickstoffatom N2 angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

6 Entwicklung einer Vierkomponentenreaktion zur Darstellung von Dithiocarbamaten ausgehend von heterocyclischen Iminen

Die Synthese neuer potentieller pharmakologischer Wirkstoffe ist ein zeitaufwändiger und ressourcenverbrauchender Vorgang, weshalb MCRs im Laufe der Zeit eine unverzichtbare Synthesestrategie geworden sind. Die Verwendung relativ einfacher Ausgangsverbindungen, die mit einer Vielzahl variierender Substituenten käuflich zu erwerben oder gut zugänglich sind, kennzeichnen die am häufigsten verwendeten MCRs. Als Folge dessen ergibt sich eine hohe Effizienz bei der Konstruktion von Substanzbibliotheken mit multifunktionalen Strukturmotiven, inklusive heterocyclischer Grundgerüste, als auch eine hohe Molekülkomplexität sowie Moleküldiversität.^[86] Aufbauend auf diesem Gedankengang war die Entwicklung einer neuen MCR zu Dithiocarbamaten ausgehend von heterocyclischen Iminen ein Ziel im Rahmen dieser Forschungsarbeit. Eine essentielle Rolle sollte dabei Kohlenstoffdisulfid (CS₂) zuteil werden, das aufgrund seiner Eigenschaft als C₁-Baustein bei der Entwicklung neuartiger MCRs und der Synthese heterocyclischer Systeme häufig Verwendung findet. HUMPHLETT et al.^[87] beschrieben eine Synthese zu den fünfgliedrigen 4-Hydroxythiazolidin-2-thionen, die von GAN et al.^[88] sowie STALLING et al.^[89] optimiert worden ist. STALLING gelang die Synthese von fünfgliedrigen 4-Hydroxythiazolidin-2-thionen durch die Umsetzung eines α -Chloraldehyds, mit einem primären Amin und CS2. BROCKMEYER und KRÖGER realisierten eine Dreikomponentensynthese zur Darstellung sechsgliedriger 4-Hydroxy-3,4-dihydro-2H-1,3-thiazine, bei der der α -Chloraldehyd durch ein β -Chlorvinylaldehyd ersetzt wurde.^[90] Weiterhin konnten STALLING und KRÖGER zeigen, dass der Austausch des β -Chlorvinylaldehyds durch einen ortho-halogenierten Benzaldehyd zur Bildung von benzanellierten 4-Hydroxy-3,4dihydro-2H-1,3-thiazinen führt.^[91] Auf Basis der vorgestellten Synthesekonzepte wurde die retrosynthetische Planung der Synthese zu den Dithiocarbamaten vorgenommen (Abb. 6.1). Der ressourceneffizienten Vierkomponentensynthese folgend sollten sich die gewünschten Produkte 19 und 20 unter Verwendung eines heterocyclischen Imins 1 oder 2, eines Säurechlorids, eines primären bzw. sekundären Amins sowie Kohlenstoffdisulfids realisieren lassen.

Abb. 6.1: Retrosynthetische Planung zur Darstellung der Dithiocarbamate 19 und 20 (19: $R^1-R^6 = H$, Organyl, $R^7 \neq CH_2CH(OCH_3)_2$, X = S, O; 20: $R^1-R^6 = H$, Organyl, $R^7 = CH_2CH(OCH_3)_2$, X = S, O).

Die Möglichkeit der Variation an sieben variablen Stellen des Moleküls als auch des Heteroatoms innerhalb des cyclischen Imins bieten die Option einer mannigfaltigen Diversifikation der anvisierten Dithiocarbamate **19** und **20**. In Analogie zu den vorherigen Kapiteln stand auch eine sich anschließende intramolekulare Cyclisierung im Fokus der Planungen, bei denen den Resten R^6 und R^7 sowie der Dithiocarbamat-Gruppe eine besondere Bedeutung zukommt. Durch den Einsatz einer Lewis-Säure sollten die Thioether-verbrückten Bicyclen **21** zugänglich gemacht werden.

Abb. 6.2: Syntheseplanung zur Darstellung der Dithiocarbamate **20** und deren verbrückte 2-Thiazolin-Derivate **21** (R^1 – R^6 = H, Organyl, R^7 = CH₂CH(OCH₃)₂, X = S, O).

Die Untersuchungen der neu entwickelten Vierkomponentensynthese erfolgte im Rahmen eines Kooperationsprojektes mit ZIYAEI HALIMEHJANI von der Kharazmi Universität in Teheran.
6.1 Synthese zur Darstellung von Dithiocarbamaten via MCR

Der nachfolgende Abschnitt beschäftigt sich mit der Entwicklung und der ausführlichen Untersuchung der MCR zur Darstellung der Dithiocarbamate **19** ausgehend von den aldiminschen Heterocyclen **1** und **2**. Aufbauend auf den Untersuchungen von STALLING^[89, 91], BROCKMEYER^[90] und KRÖGER^[90, 91] wurde die anvisierte MCR realisiert und das Forschungsgebiet CS₂-basierter MCRs im Arbeitskreis MARTENS erweitert.

6.1.1 Literaturübersicht

Ein Blick in die Literatur bestätigt, dass die Entwicklung neuer CS2-basierter Multikomponentenreaktion und deren Anwendung zur Realisierung verschiedenster funktioneller Gruppen und Heterocyclen ein erstrebenswertes Synthesekonzept darstellt.^[92] Eine Vielzahl der Publikationen beschäftigt sich dabei mit der Synthese von Dithiocarbamaten mittels einer Dreikomponentenreaktion. Der zugrunde liegende Syntheseplan sieht hauptsächlich die Umsetzung eines primären oder sekundären Amins mit CS2 und der damit einhergehenden in situ Bildung einer reaktiven Zwischenstufe vor, die im Folgenden entweder mit einem Alkylhalogenid^[93], einem Epoxid^[94], einer α,β -ungesättigten Carbonylverbindung^[95] oder einem Allylether^[92b] umgesetzt wird. Die Synthesen können dabei in den klassischen Lösungsmitteln^[96], in Wasser^[92b, 95], in ionischen Flüssigkeiten^[92c] oder sogar lösungsmittelfrei^[92a] durchgeführt werden. Auch ist der Einsatz kostspieliger Katalysatoren oder Liganden nicht zwingend erforderlich um diese Substanzklasse darzustellen.^[92a, 97] Im Gegensatz zu den Dreikomponentensynthesen sind MCRs mit vier Komponenten zur Synthese von Dithiocarbamaten wenig erforscht und selten beschrieben worden. 2009 veröffentlichten LI et al.^[98] eine Vierkomponentensynthese zu den korrespondierenden Dithiocarbamten durch die Umsetzung eines Aminoalkohols, eines Ketons, eines Alkylhalogenids und CS₂. AZIZI et al.^[99] präsentierten im Jahr 2013 eine Synthese, bei der die Umsetzung eines Aldehyds, eines Ketons, eines Amins und CS₂ in Anwesenheit von Natriumhydroxid zu der gewünschten Substanzklasse führt.

Molekülgerüste, die das Strukturmotiv der Dithiocarbamate beinhalten, zeigen z. B. pharmakologische Eigenschaften als potentieller Antitumor-^[100] oder Antikrebs-Wirkstoff^[101] sowie antibakterielle Wirkung^[101]. Weitere Verwendungen finden sie u. a. als Pestizid, Fungizid oder Herbizid in der Landwirtschaft^[103], als radiopharmalogisches Mittel in der bildgebenden Diagnostik^[104], als Liganden in der Koordinationschemie^[105], als Kettenübertragungsmittel in der RAFT-Polymerisation (reversible <u>a</u>ddition-

<u>fragmentation chain transfer</u>)^[106] sowie als Zwischenprodukt oder Precursor in der organischen Synthesechemie^[107].

Die multiplen Verwendungsmöglichkeiten in einer Vielzahl interessanter Einsatzgebiete manifestiert das enorme Interesse zur Entwicklung schneller und einfach durchführbarer synthetischer Zugänge zur Darstellung der vorgestellten Substanzklasse.

6.1.2 Initiierende Untersuchungen und Optimierung der MCR

Aufbauend auf der retrosynthetischen Überlegung wurde eine Modellreaktion entwickelt, um die Realisierbarkeit der geplanten Vierkomponentenreaktion zu überprüfen. Für einen initiierenden Versuch wurde die Umsetzung von 2,2,5,5-Tetramethyl-1,3-thiazolin 1a mit Acetylchlorid, Allylamin und Kohlenstoffdisulfid in Dichlormethan gewählt. Wie einleitend bereits erwähnt, sind CS2-basierte MCRs in den letzten Jahren im Arbeitskreis MARTENS in den Fokus der Forschung gerückt, weshalb die Wahl des stöchiometrischen Verhältnisses der Reaktanden anhand optimierter Literaturbedingungen erfolgte.^[89, 90] Der initiierende Versuch zeigte, dass nach erfolgter Säurechloridaddition, anschließender Zugabe von Kohlenstoffdisulfid und einem Gemisch aus Base und Allylamin das angestrebte Dithiocarbamat 19a mit einer Ausbeute von 19 % erhalten werden konnte (Tab. 6.1, Eintrag 1). Angetrieben durch den Erfolg der Synthese von 19a wurden weitere mögliche Lösungsmittel innerhalb der zu optimierenden MCR getestet. In den Arbeiten von STALLING^[89, 108] sowie BROCKMEYER und KRÖGER^[90] wird Wasser bzw. Methanol als bevorzugtes Lösungsmittel beschrieben. Diese scheiden jedoch auf Grund der hohen Hydrolyseempfindlichkeit des Säurechlorids und des nucleophilen Charakters des Alkohols als geeignete Lösungsmittel aus. Somit fiel die Wahl auf die für Säurechloridaddition etablierten Lösungsmittel Acetonitril und Dimethylformamid (Tab. 6.1, Einträge 2 und 3). Obwohl auch in diesen Fällen das jeweilige Produkt 19a erhalten wurde, waren die Ausbeuten mit 18 % (Eintrag 2) bzw. 14 % (Eintrag 3) alles andere als zufriedenstellend.

zur Synthese des racemischen Dithiocarbamats 19a.^a

Eintrag	Methode ^b	Lösungs- mittel	Temperatur	Base [eq.]	Ausbeute ^c 19a [%]
1	А	CH_2Cl_2	$0 \circ C - RT$	Et ₃ N 1.0	19
2	А	CH ₃ CN	$0 \ ^{\circ}C - RT$	Et ₃ N 1.0	18
3	А	DMF	$0 \ ^{\circ}C - RT$	Et ₃ N 1.0	14^d
4	В	CH_2Cl_2	$0 \circ C - RT$	Et ₃ N 1.0	51
5	В	CH ₃ CN	$0 \ ^{\circ}C - RT$	Et ₃ N 1.0	49
6	В	DMF	$0 \circ C - RT$	Et ₃ N 1.0	44^d
7	В	CH_2Cl_2	$0 \ ^{\circ}C - RT$	DIPEA 1.0	47
8	В	CH ₃ CN	$0 \ ^{\circ}C - RT$	DIPEA 1.0	40
9	В	DMF	$0 \ ^{\circ}C - RT$	DIPEA 1.0	46^d
10	С	CH ₂ Cl ₂	0 °C – RT	Et ₃ N 1.0	68
11	С	CH ₃ CN	$0 \ ^{\circ}C - RT$	Et ₃ N 1.0	63
12	С	CH_2Cl_2	$0 ^{\circ}\mathrm{C} - \mathrm{RT}$	Et ₃ N 2.0	68
13	С	CH ₃ CN	0-40 °C	Et ₃ N 1.0	65
14	D	CH_2Cl_2	$0 \circ C - RT$	Et ₃ N 1.0	63

[a] Alle Reaktionen wurden unter Verwendung von 2.00 mmol 3-Thiazolin 1a, 2.00 mmol Acetylchlorid, 3.00 mmol Allylamin, 6.00 mmol Kohlenstoffdisulfid und der jeweiligen Base unter Argonatmosphäre durchgeführt. Die optimalen Reaktionsbedingungen sind fett formatiert.

[b] Methode A: Acetylchlorid und 1a wurden im entsprechenden Lösungsmittel für zwei Stunden zwischen 0 °C – RT gerührt, dann wurde CS_2 und ein Gemisch aus der Base und Allylamin im jeweiligen Lösungsmittel bei 0 °C zugegeben und für 18 Stunden bei RT gerührt. **Methode B**: Acetylchlorid und **1a** wurden im entsprechenden Lösungsmittel für zwei Stunden zwischen 0 °C – RT gerührt, dann wurde in chronologischer Reihenfolge CS_2 , die Base und Allylamin bei 0 °C zugegeben und für 18 Stunden bei RT gerührt. **Methode C**: Acetylchlorid und **1a** wurden im entsprechenden Lösungsmittel für zwei Stunden zwischen 0 °C – RT gerührt, dann wurde in chronologischer Reihenfolge CS_2 , die Base und Allylamin bei RT stunden bei RT (sofern nicht anders angegeben) gerührt. **Methode D**: Acetylchlorid und **1a** wurden zunächst über Nacht gerührt. Anschließend wurde in chronologischer Reihenfolge CS_2 , die Base und Allylamin bei RT zugegeben und für drei Stunden bei RT gerührt.

- [c] Es handelt sich hierbei um isolierte Reinausbeuten.
- [d] Das Produkt 19a wurde als Gemisch mit einem undefinierten Nebenprodukt isoliert.

In einer weiteren Optimierungsreihe erfolgte die Variation der Eduktzugabe. Durch die Zugabe von Kohlenstoffdisulfid, der Base und Allylamin in deren reiner und ungelöster Form unter Eisbadkühlung konnte die Produktbildung von 19a signifikant auf bis zu 51 % Ausbeute gesteigert werden (Tab. 6.1, Einträge 4 bis 6). Ein Wechsel von Triethylamin zu der sterisch anspruchsvolleren Base Diisopropylethylamin resultierte in einer geringfügigen Senkung der Ausbeute (Tab. 6.1, Einträge 7 bis 9). Zusätzliche Basen wie Kaliumcarbonat, Kalium-tert-butanolat oder Pyridin wurden in diesem Zusammenhang nicht getestet, da sich diese, wie mehrfach erwähnt, bei Additionsreaktionen als auch bei CS₂basierten MCRs in früheren Forschungsarbeiten als ungeeignet erwiesen.^[53, 90, 109] Bei der Verwendung von DMF als Lösungsmittel (Tab. 6.1, Einträge 3, 6 und 9) stellte sich nach Analyse der ¹H-NMR-Spektren des isolierten Produkts **19a** heraus, dass dieses regelmäßig mit einem undefinierten Nebenprodukt als Gemisch erhalten wurde, weshalb im weiteren Verlauf des Optimierungsprozesses auf dieses Lösungsmittel verzichtet wurde. Aufbauend auf den Beobachtungen, dass eine enorme Ausbeutesteigerung durch den Einsatz ungelöster Edukte zu erzielen war, wurden Kohlenstoffdisulfid, Triethylamin und Allylamin in weiterführenden Optimierungsschritten bei Raumtemperatur zu dem in situ hergestellten α -Chloramid gegeben (Tab. 6.1, Einträge 10 und 11). Mit Hilfe dieser Modifikation wurde die höchste Ausbeute von 68 % erzielt (Eintrag 10). Weiterhin konnte festgestellt werden, dass Dichlormethan im Gegensatz zu Acetonitril das geeignetere Lösungsmittel für die entwickelte Vierkomponenten-Eintopfreaktion darstellt. Weitere Untersuchungen zeigten, dass eine Erhöhung der Basenkonzentration von 1.0 auf 2.0 Äquivalente als auch eine Erhöhung der Reaktionstemperatur auf 40 °C zu identischen bzw. minimal niedrigeren Ausbeuten führt (Tab. 6.1, Eintrag 12 und 13). Eine Umkehr der Reaktionszeiten, bei der zunächst das cyclische Imin 1a und Acetylchlorid über Nacht gerührt und anschließend die restlichen Komponenten hinzugefügt wurden, führte ebenfalls nicht zu einer höheren Produktbildung (Tab. 6.1, Eintrag 14).

6.1.3 Ergebnisse

Innerhalb der Vierkomponentensynthese zur Darstellung der Dithiocarbamate ist sowohl eine Variation des cyclischen Imins, des Säurechlorids (Tab. 6.2), als auch des Amins (Tab. 6.3) möglich. Zahlreiche Dithiocarbamate **19** konnten in moderaten bis guten Ausbeuten dargestellt werden.

 Tab. 6.2: Dargestellte racemische Dithiocarbamate 19

(Teil 1: Variation des cyclischen Imins und des Säurechlorids).

Edukt	Х	R^1	R^2	R ³	R^4	R^5	Produkt: Ausbeute ^a
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	19a : 68
1b	S	-(CH	$H_2)_5-$	CH ₃	CH ₃	CH ₃	19b : 33
1c	S	CH ₃	CH ₃	-(C	H ₂) ₅ -	CH ₃	19c : 22
1d	S	-(CH	H ₂) ₅ -	-(C	H ₂) ₅ -	CH ₃	19d : 25
2	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	19e : 29
1f	S	CH ₃	CH ₃	Н	C(CH ₃) ₃	CH ₃	19f : 19 ^b
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	19g : 50
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-NO_2-C_6H_4$	19h : 75
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-OCH_3-C_6H_4$	19i : -
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	4-OCH ₃ -C ₆ H ₄ -CH ₂	19j : 65
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH=CH ₂	19k : –
1 a	S	CH ₃	CH ₃	CH ₃	CH ₃	C ₆ H ₅ -CH=CH	191 : 28

[a] Es handelt sich um isolierte Reinausbeuten.

[b] Nur ein Diasteromer wurde nach der säulenchromatographischen Aufreinigung isoliert.

Neben dem cyclischen Imin **1a**, was in der Modellreaktion verwendet wurde, konnten auch alle anderen *S*,*N*-Aldimine erfolgreich in der neuentwickelten MCR eingesetzt werden. Auffällig ist, dass unter identischen Reaktionsbedingungen das Dithiocarbamat **19a** mit einer signifikant höheren Ausbeute erhalten wurde als die Produkte, bei denen das 3-Thiazolin **1a** nicht als cyclisches Imin eingesetzt wurde. Auch der Einsatz des Sauerstoffanalogons 3-Oxazolin **2** konnte ebenfalls nicht in die Ausbeuteregion vordringen, die bereits während der Optimierungsphase erreicht wurde. Der Versuch einer Diastereoselektivitätsuntersuchung der MCR konnte erfolgreich durchgeführt werden (Produkt **19f**). Nach der säulenchromatographischen Aufreinigung und Analyse der spektroskopischen Daten wurde festgestellt, dass ausschließlich ein Diastereomer isoliert wurde. Die Bestimmung der relativen Konfiguration des erhaltenen racemischen Diastereomers **19f** erfolgte mit Hilfe eines NOE-Experiments. Dieses ergab, dass das isolierte racemische Diastereomer **19f** in einer (S^* , R^*)-Konfiguration vorliegt.

Neben aliphatischen Säurechloriden (z. B. Produkt 19b), werden auch aromatische Säurechloride innerhalb der MCR toleriert. Die Ausbeute der jeweiligen Produkte ist dabei abhängig von der Substitution des eingesetzten Säurechlorids. Während die Verwendung von Benzoylchlorid zu guten Ausbeuten des Produkts 19g führte, konnte eine deutliche Ausbeutesteigerung des Produkts 19h durch die Verwendung des elektronenarmen Einsatz 4-Nitrobenzoylchlorids erzielt werden. Der des elektronenreichen 4-Methoxybenzoylchlorids führte hingegen nicht zur Bildung des gewünschten Produkts 19i. Die Verwendung von 4-Methoxyphenylacetylchlorid führte zur Synthese des Dithiocarbamats 19j und ist dadurch als Substrat dienlich für die Einführung einer elektronenschiebenden funktionellen Gruppe in para-Position. Ein ähnlicher Sachverhalt konnte bei der Umsetzung von Acrylsäurechlorid und Zimtsäurechlorid festgestellt werden. Trotz intensiver NMR-Spektrenanalyse wurde keine Produktbildung bei der Verwendung von dem olefinischen Acrylsäurechlorid zu dem entsprechenden Dithiocarbamat **19k** beobachtet, wohingegen die Verwendung von (E)-Zimtsäurechlorid zur Produktbildung von 191 führte und somit die Möglichkeit gab, eine Doppelbindungsfunktion in die angestrebten Dithiocarbamte 19 einzuführen. Neben Allylamin konnten auch Benzylamin und weitere aliphatische Amine, reine acyclische sowie cyclische Alkylamine, erfolgreich in der MCR eingesetzt werden (siehe Tab. 6.3). Im Rahmen der Untersuchungen wurde

beobachtet, dass die Verwendung von *tert*-Butylamin, Anilin und Phthalimid nicht zur Produktbildung führte und daraus resultierend Versuche zur Variation des Amins ausschließlich erfolgreich verlaufen, wenn das eingesetzte Amin mindestens eine Methingruppe in α-Position zur Aminofunktion aufweist. Ein besonderes Augenmerk liegt auf der Verbindung **19r**, bei der der Naturstoff Tryptamin als Aminkomponente in der MCR fungierte und die als potentieller Pharmawirkstoff Anwendung finden könnte. Dithiocarbamate, die das Tryptamin-Motiv beinhalten, weisen verschiedene biologische und pharmakologische Eigenschaften u. a. als Indolamin-2,3-Dioxygenase Inhibitor oder als Fungizid auf.^[110] Die Verwendung sekundärer Amine, die ZIYAEI HALIMEHJANI im Rahmen dieses Kooperationsprojektes untersuchte, führte in allen Fällen zu den anvisierten Dithiocarbamaten.^[111]

(Teil 2: Variation des Amins).

R ² -NH R ² -NH S	$ \begin{array}{c} 1 \\ CI \\ + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\xrightarrow{\text{Et}_{3}\text{N}} \text{R}^{2}-\text{N}$ $\xrightarrow{abs. CH_{2}Cl_{2}}$ 20 h, 0 °C-RT	R^{1} S S S S S S S S
Edukt	\mathbf{R}^1	R ²	Produkt: Ausbeute ^a [%]
1a	Н	$C_6H_5CH_2$	19m : 56
1a	Н	(CH ₂) ₃ CH ₃	19n: 49
1a	Н	Су	190: 54
1a	Н	C(CH ₃) ₃	19p: –
1a	Н	Ph	19q: –
1a	Н	(CH ₂) ₂ CHCNHC ₆ H ₄	19r: 41
1a	-(C0	$O)C_6H_4(CO)-$	19s: –

[a] Es handelt sich um isolierte Reinausbeuten.

Gegenüber den bereits zahlreich vorhandenen Methoden zur Darstellung von Dithiocarbamaten, zeichnet sich das hier vorgestellte Synthesekonzept besonders durch die einfache Durchführbarkeit, die leichte Zugänglichkeit und hohe Variabilität der Edukte aus. Erstmalig wurde im Rahmen dieser Dissertation über eine Vierkomponentenreaktion zur Darstellung von Dithiocarbamaten ausgehend von Iminen berichtet. Zur Verifizierung der angestrebten Dithiocarbamate **19** konnte stellvertretend für die Substanzklasse ein Einkristall des Dithiocarbamats **19m** gewonnen werden, der sich für die Röntgenkristallstrukturanalyse eignete. Im Rahmen der MCR wurden die Bindungen zwischen dem Kohlenstoffatom C10 und dem Stickstoffatom N2, zwischen dem Kohlenstoffatom C1 und dem Schwefelatom S2 als auch zwischen dem Stickstoffatom N1 und dem Kohlenstoffatom C8 neu ausgebildet. (Die Nummerierung entspricht nicht der IUPAC-Nomenklatur und wird ausschließlich für die Diskussion der Röntgenkristallstruktur verwendet.).

Abb. 6.3: Röntgenstruktur des Dithiocarbamats **19m** (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen am stereogenen Zentrum und am Stickstoffatom-N2 angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

6.2 Lewis-Säure-vermittelte Umlagerungs-/Cyclisierungsreaktion zu C-N-verknüpften Bicyclen

Das abschließende Kapitel beschäftigt sich mit der Entwicklung eines dreistufigen Synthesekonzepts zur Darstellung der Thioether-verbrückten Bicyclen **21** und den dabei überraschend auftretenden Ergebnissen. Die Cyclisierung der geeigneten Precursoren **20**, die mit Hilfe der in Kapitel 6.1 vorgestellten MCR synthetisiert wurden, ist als Schlüsselschritt in der anvisierten Syntheseroute anzusehen.

6.2.1 Syntheseplanung

Das Hauptaugenmerk der nachfolgenden Untersuchung lag auf der Synthese der Thioether-verbrückten Bicyclen **21**, die durch eine Lewis-Säure-vermittelte Cyclisierungsreaktion aus den Dithiocarbamaten **20** synthetisiert werden sollten (Abb. 6.4). Als Lewis-Säure sollte Bortrifluoriddiethyletherat ($BF_3 \cdot OEt_2$) Verwendung finden. Diese Reaktion wäre das erste Beispiel für die Cyclisierung eines Dithiocarbamats zu einem 2-Thio-1,3-thiazol, welches über eine Thioether-Brücke mit einem 3-Thiazolidin- bzw. 3-Oxazolidin-Gerüst verknüpft ist. In Anlehnung an Arbeiten von LEE et al.^[112] wurde die Synthese geplant.

Abb. 6.4: Retrosynthetische Planung der Synthese der Schwefel-verbrückten Bicyclen 21 $(R^1-R^5 = Organyl; X = S, O).$

Die retrosynthetische Überlegung sieht vor die angestrebten Bicyclen **21** durch die Cyclisierung geeigneter Dithiocarbamate **20** darzustellen, die wiederum mit Hilfe von der im Vorfeld entwickelten MCR zu synthetisieren sind. Die Verwendung der heterocyclischen Aldimine **1** und **2** bildet die Grundlage der geplanten Synthesesequenz. Dadurch ist

eine hohe Diversität und eine relative Komplexität der angestrebten Bicyclen gewährleistet. Die Synthesesequenz ist gekennzeichnet durch den Einsatz von 2,2-Dimethoxyethylamin als essentieller Synthesebaustein. Die Verwendung dieses Substrats generiert das Strukturelement, welches für die spätere Ringschlussreaktion zu den anvisierten Bicyclen **21** benötigt wird.

6.2.2 Synthese geeigneter Dithiocarbamate ausgehend von heterocyclischen Aldiminen

Nachfolgend auf die ASINGER-Reaktion beinhaltet die Synthesesequenz als zweiten Schritt die Darstellung geeigneter Dithiocarbamate **20** mittels der entwickelten MCR, die im Vorwege detailliert beschrieben wurde.

 Tab. 6.4: Vierkomponentensynthese zur Darstellung der als Precursoren geeigneten racemischen Dithiocarbamate 20.

		R^{1}	$= 0$ $= N$ $X R^{3}$ R^{4} Y	E <i>abs</i> . 20 h,	Et ₃ N CH₂Cl₂ 0 °C−RT	$+ HN $ $+ N $ $S $ $R^{1} $ $R^{2} $ 20	$ \begin{array}{c} $
Edukt	Х	R^1	R^2	\mathbf{R}^3	\mathbf{R}^4	R^5	Produkt: Ausbeute ^a [%]
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	20a : 55
1b	S	-(CH	$H_2)_5-$	CH ₃	CH ₃	CH ₃	20b : 42
1c	S	CH ₃	CH ₃	-(CI	H ₂) ₅ -	CH ₃	20c : 36
2	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	20d : 51
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	20e : 37
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-NO_2-C_6H_4$	20f : 69
1a	S	CH ₃	CH ₃	CH ₃	CH ₃	$4-OCH_3-C_6H_4$	20g : –

[a] Es handelt sich um isolierte Reinausbeuten.

Zusätzlich zu den Aldiminen 1 und 2 fanden auch mehrere Säurechloride in der Synthese der Dithiocarbamate 20 Anwendung (Tab. 6.4). Durch die gegebene Möglichkeit eine Vielzahl an Säurechloriden in der MCR zu verwenden, wurden geeignete Precursoren 20 mit aliphatischen (z. B. Produkt 20a) als auch mit aromatischen Resten (z. B. Produkt 20e) synthetisiert. Es konnte bestätigt werden, dass der Einsatz von aromatischen Säurechloriden, die einen elektronenschiebenden Rest in *para*-Position aufweisen, nicht in der entwickelten MCR toleriert wird und eine Produktbildung dementsprechend nicht erfolgt.

6.2.3 Orientierender Versuch zur intramolekularen Cyclisierung und Strukturaufklärung

Wie bereits in der Einleitung dieses Kapitels beschrieben, sollten mittels einer Lewis-Säure-vermittelten Cyclisierung die Schwefel-verbrückten Bicyclen **21** aus den korrespondieren Dithiocarbamaten **20** dargestellt werden. Zur Überprüfung der Realisierbarkeit der Syntheseplanung wurde das Dithiocarbamat **20a** verwendet (Abb. 6.5).

Abb. 6.5 : Orientierender Versuch zur Cyclisierung des Dithiocarbamats 20a.

Die Synthese der Bicyclen **21** sollte durch Adaption der Synthesevorschrift von LEE et al. erfolgen.^[112] Dazu wurde das Dithiocarbamat **20a** in absolutiertem Dichlormethan gelöst und die Lewis-Säure bei einer Temperatur zwischen 0 bis 5 °C tropfenweise zu der Lösung gegeben und das Reaktionsgemisch anschließend bei Raumtemperatur gerührt. Die

Umsetzung des Edukts wurde kontinuierlich per Dünnschichtchromatographie überprüft. Im Gegensatz zur Vorschrift von LEE et al., bei der die Umsetzung des Edukts lediglich 20 Minuten benötigte, wurde für eine vollständige Umsetzung des Dithiocarbamats **20a** die Notwendigkeit einer Erweiterung der Reaktionszeit um zehn Minuten festgestellt. Nach wässriger Aufarbeitung, anschließender säulenchromatographischer Aufreinigung und intensiver Studien der aufgenommenen NMR-Spektren wurde festgestellt, dass anstelle des angestrebten Produkts **21** der literaturunbekannte C-N-verknüpfte Bicyclus des 3'-Organyl-1',3'-thiazolidin-4'-yl-5-methoxy-1,3-thiazolidin-2-thions **22a** isoliert wurde. Mit Hilfe eines geeigneten Einkristalls konnte die Konstitution als auch die Konfiguration des überraschenden Reaktionsprodukts **22a** *via* Röntgenstrukturanalyse bestätigt werden (Abb. 6.6).

Abb. 6.6: Röntgenstruktur des Bicyclus $(4'R^*, 5R^*)$ -**22a** (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen an den stereogenen Zentren angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

Mit Blick auf die Röntgenstruktur ist erkennbar, dass die anvisierte Thioether-Brücke nicht im isolierten Produkt **22a** enthalten ist. Des Weiteren bildete sich an dem als Brückenelement angedachten Schwefelatom eine Thiocarbonylgruppe aus. Die Verknüpfung des entstandenen 1,3-Thiazolidin-2-thions mit dem 1,3-Thiazolidin-Gerüst erfolgt über eine Kohlenstoff-Stickstoff-Einfachbindung, wodurch auch die Bildung des eigentlich angedachten Imins verhindert wird und somit ebenfalls nicht im isolierten Produkt wiederzufinden ist. Motiviert durch den überraschenden Reaktionsverlauf zur Darstellung des Bicyclus 22a wurde zur Überprüfung der Reproduzierbarkeit das Dithiocarbamat 20a zunächst nur das $(4^{\circ}R^{*}, 5R^{*})$ -Diastereomer erneut umgesetzt. Da des 1,3-Thiazolidin-2-thions 22a isoliert wurde, sollte zudem untersucht werden, ob die Reaktion diastereoselektiv verläuft, oder ein zweites Diastereomer zu isolieren ist. Nach säulenchromatographischer Aufreinigung konnten die beiden Diastereomere voneinander getrennt erhalten werden und ein Einkristall des $(4^{\circ}S^{*}, 5R^{*})$ -Diastereomers 22a gezüchtet werden, der sich für eine Röntgenstrukturanalyse eignete. Dieser verifizierte nicht nur die Konfiguration des zweiten Diastereomers sondern bestätigte erneut die synthetisierte Molekülstruktur der 3'-Organyl-1',3'-thiazolidin-4'-yl-5-methoxy-1,3-thiazoldin-2-thione (Abb. 6.7).

Abb. 6.7: Röntgenstruktur des Bicyclus $(4'S^*, 5R^*)$ -22a (Nur ein Enantiomer des Racemats ist dargestellt, bei dem lediglich die Protonen an den stereogenen Zentren angezeigt werden. Die Nummerierung entspricht nicht der IUPAC-Nomenklatur.).

6.2.4 Literaturübersicht

Die Umsetzung des Dithiocarbamats **20a** zu dem C-N-verknüpften Bicyclus **22a** ist ein höchst interessantes Forschungsresultat. Arbeiten von $\text{LEE}^{[112]}$ als auch SZÁNTAY^[113] berichteten zwar von BF₃·OEt₂ vermittelten Cyclisierungen von Dithiocarbamaten, allerdings erhielten diese als Cyclisierungsprodukte 2-Thio-1,3-thiazole. Über BF₃·OEt₂ vermittelte Umlagerungsreaktionen wurde u. a. bereits von KHAN^[114] berichtet. Dennoch ist die Umsetzung des racemischen Dithiocarbamts 20a zu dem C-N-verknüpften 1,3-Thiazolidin-2-thion 22a mittels der vorgestellten Umlagerungs-/Cyclisierungsreaktion in Gänze unbekannt. Aufgrund der sequentiellen Abfolge von der modifizierten ASINGER-Reaktion und der neu entwickelten CS2-basierten MCR sowie der damit einhergehenden hohen Variabilität der Reste R¹ bis R⁵, ist eine hohe Diversität sowie eine relative Komplexität bei den darzustellenden Umlagerungsprodukten 22 gewährleistet. Das Molekülgerüst der 1,3-Thiazolidin-2-thione bildet eine enorm interessante Substanzklasse, was nicht nur auf vielfältige Synthesemethoden zurückzuführen ist,^[79, 108, 115] sondern auch auf die biologische und pharmakologische Aktivität dieser Substanzklasse. Studien belegen, dass Thiazolidin-2-thione sowohl in Gold-^[116] als auch in Ruthenium-Komplexen^[117] vielversprechende cytotoxische Wirkung gegenüber bestimmten Tumorzellen zeigen und somit als potentielle Antitumor-Wirkstoffe dienen können. Neben der exzellenten Eigenschaft als Ligand in der Koordinationschemie fungieren Vertreter dieser Substanzklasse auch als Auxiliare in stereoselektiven Synthesen^[118] oder finden u. a. Anwendung als Antidepressiva^[119] oder Fungizide^[120]. Diese Eigenschaften bestätigen eine potentielle pharmakologische Relevanz des synthetisierten Bicyclus 22a.

6.2.5 Ergebnisse

Nun sollte geklärt werden, ob das Synthese-Prinzip auf die weiteren Dithiocarbamate 20b-f übertragbar ist (Tab. 6.5). Die Untersuchungen zeigten, dass erfreulicherweise nahezu alle Dithiocarbamate 20 in die entsprechenden 1,3-Thiazolidin-2-thione 22 überführt korrespondierenden $(4^{\circ}R^{*}, 5R^{*})$ werden konnten. Die Zuordnung der und $(4^{\circ}S^{*}, 5R^{*})$ -Diastereomere erfolgte mit Hilfe charakteristischer Kopplungsmuster aus dem ¹H-NMR-Spektrum der isolierten Produkte. Die Cyclisierungsprodukte wurden hierbei mit einer Gesamtausbeute von bis zu 72 % erhalten. Die spiroverknüpften Thiazolidin-Derivate 22b und c wurden hierbei in höheren Ausbeuten erhalten als das mit vier Methylgruppen substituierte Thiazolidin-Derivat 22a. Die Diastereomere des sauerstoffanalogen Umlagerungsprodukts **22d** konnten als einziges Beispiel nicht voneinander getrennt werden.

Tab. 6.5: Dargestellte racemische $(4^{\circ}R^{*}, 5R^{*})$ - und $(4^{\circ}S^{*}, 5R^{*})$ -3°-Organyl-1°,3°-thiazoldin-4°-yl-5-methoxy-1,3-thiazolidin-2-thione**22**.

Ċ		S R ¹ R ² 20	$ \begin{array}{c} $	BF ₃ abs. 30 0	<mark>₃• OEt₂</mark> CH₂C 0 min, °–RT	I ₂	$ \begin{array}{c} & & \\ & & $	$S = R^{5}$ $H = O$ R^{3} R^{4} atiomer $SR^{*})-22$ $S = R^{5}$ R^{5} R^{3} R^{4} atiomer $SR^{*})-22$
Edukt	X	\mathbf{R}^1	\mathbf{R}^2	R^3	R^4	R^5	Produkt: Ausbeute ^a [%]	$\frac{dv^b}{[R^*, R^*: S^*, R^*]}$
20a	S	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	$(4^{?}R^{*}, 5R^{*})$ - 22a : 23 $(4^{?}S^{*}, 5R^{*})$ - 22a : 20	53:47
20b	S	-(C]	H ₂) ₅ -	CH ₃	CH ₃	CH ₃	(4' <i>R</i> [*] , 5 <i>R</i> [*])- 22b : 36 (4' <i>S</i> [*] , 5 <i>R</i> [*])- 22b : 36	49:51
20c	S	CH ₃	CH ₃	–(CH	H ₂) ₅ -	CH ₃	$(4^{\circ}R^{*}, 5R^{*})$ - 22c : 24 $(4^{\circ}S^{*}, 5R^{*})$ - 22c : 24	54:46
20d	0	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	$(4^{\prime}R^{*}, 5R^{*})$ - und $(4^{\prime}S^{*}, 5R^{*})$ - 22d : 20 ^c	32:68
20e	S	CH ₃	CH ₃	CH ₃	CH ₃	Ph	$(4'R^*, 5R^*)$ - 22e : 29 $(4'S^*, 5R^*)$ - 22e : 15	60:40
20f	S	CH ₃	CH ₃	CH ₃	CH ₃	4-NO ₂ - C ₆ H ₄	$(4^{*}R^{*}, 5R^{*})$ - 22f : 2 $(4^{*}S^{*}, 5R^{*})$ - 22f : $-^{d}$	70:30

[a] Es handelt sich um isolierte Reinausbeuten.

[b] Das Diastereomerenverhältnis wurde aus dem ¹H-NMR-Rohspektrum in deuteriertem Chloroform bei Raumtemperatur ermittelt.

[c] Das Produkt **22d** wurde als nicht trennbares Diastereomerengemisch erhalten.

[d] $Das(4^{\circ}S^{*}, 5R^{*})$ -Diastereomer **22f** war nur in Spuren im Rohspektrum zu erkennen und konnte nach säulenchromatographischer Aufreinigung nicht isoliert werden.

Neben aliphatischen konnten auch aromatische Reste \mathbb{R}^5 in der Umlagerungs-/Cyclisierungsreaktion über das Säurechlorid eingeführt werden. Die Untersuchungen zeigten, dass der Einsatz eines unsubstituierten Phenylrestes \mathbb{R}^5 in der Reaktion toleriert wird und moderate Ausbeuten liefert. Im Gegensatz dazu lieferte die Reaktion eines mit einer Nitrogruppe in *para*-Position substituierten Phenylrestes \mathbb{R}^5 das Umlagerungsprodukt **22f** in einer sehr geringen Ausbeute. Für das (S^* , \mathbb{R}^*)-Diastereomer **22f** waren ausschließlich Spuren im ¹H-NMR-Rohspektrum zu erkennen, welches mit Hilfe der klassischen Aufreinigungsmethoden nicht zu isolieren war. Aufgrund der stark variierenden Diastereomerenverhältnisse während der Versuchsreihe kann keine allgemeingültige Aussage bezüglich etwaiger Selektivitäten über die unerwartete Umlagerungs-/Cyclisierungsreaktion getätigt werden.

Schlussendlich demonstriert dieses simple und erstmalig in der Literatur beschriebene Synthesekonzept dennoch das synthetische Potential zur Verknüpfung zweier pharmakologisch interessanter Heterocyclen.

7 Zusammenfassung

Die vorliegende Dissertation beschäftigte sich mit der Synthese verschiedenster fünf- bis achtgliedriger *N*-Heterocyclen ausgehend von cyclischen Iminen. Ein Hauptaugenmerk lag dabei auf der Synthese diverser Ausgangsverbindungen unter Verwendung von Multikomponentenreaktionen, die sich für anschließende intramolekulare Cyclisierungsreaktionen und somit zur Darstellung der angestrebten Ringsysteme eigneten. Als Basis der Edukte dienten die mittels modifizierter A-4CR synthetisierten literaturbekannten sowie -unbekannten 3-Thiazoline **1** und das 3-Oxazolin **2**. Diese MCR besticht durch die Verwendung einfachster und kostengünstiger Grundchemikalien, die zu den hochreaktiven heterocyclischen Aldiminen führt. Im ersten Projekt wurde die Synthese der literaturunbekannten Propargylamide **3**, **6** und **8** realisiert.

Nach erfolgreicher Optimierung konnten die Propargylamide **3** und **8** unter Kupferkatalysierten Bedingungen in z. T. exzellenten Ausbeuten isoliert werden. Wohingegen die Synthese der Propargylamide 6 in guten Ausbeuten ausschließlich unter Verwendung äquimolarer Mengen des Katalysators abläuft. Mit Hilfe der Aneinanderreihung von zwei MCRs konnten erstmalig terminale Alkine an das iminische Kohlenstoffatom der 3-Thiazoline 1 bzw. das 3-Oxazolin 2 addiert werden. Durch die geschickte Wahl des Säurechlorids waren die Propargylamide 6 und 8 für eine Cyclisierungsreaktion geeignet. Mittels einer intramolekularen Substitutions-/ 1,3-dipolaren Cycloadditions-reaktion konnte die Synthese zu den jeweiligen literaturunbekannten polyanellierten Sechsringlactamen 7 bzw. Siebenringlactamen 9 erfolgreich durchgeführt werden. Diese dreistufige Synthesesequenz besticht insbesondere durch die Simplizität der Reaktionsführung und den gleichzeitig stattfindenden Aufbau der komplexen heterocyclischen Ringsysteme 7 und 9. die durch eine hohe strukturelle Diversität gekennzeichnet sind. In Analogie zum ersten Projekt wurde ein nachfolgendes Projekt bearbeitet, welches die Darstellung verschiedener achtgliedriger Lactamsysteme zum Ziel hatte.

Ausgehend von den heterocyclischen Aldiminen 1 und 2 gelang die Synthese zu den jeweils literaturunbekannten Alkoxyamiden 11 und Alkinylaminoamiden 13 und 16 mittels einer geeigneten MCR. Diese wurden nach erfolgreicher Reaktionsoptimierung in z. T. sehr guten Ausbeuten erhalten und stellten die Grundlage für die anschließende intramolekulare Cyclisierungsreaktion dar. Der intramolekulare Ringschluss der Amide 11, 13 und 16 zu den polyanellierten Achtringlactamen 12, 15 und 17 erfolgte in Korrespondenz zum ersten Projekt *via* thermisch induzierter 1,3-dipolarer Cycloaddition. Die achtgliedrigen Strukturmotive der 1,3,6-Oxadiazocin-4-one 12 bzw. der stickstoffanalogen 1,3,6-Triazocin-4-one 15 und 17 finden im Rahmen dieser Arbeit erstmalig Erwähnung in der Literatur. Die polyanellierten Achtringlactame konnten mittels der entwickelten Synthesesequenz in z. T. exzellenten Ausbeuten erhalten werden.

Die erhaltenen Forschungsergebnisse sind in höchstem Maße interessant, da die Synthese der komplexen polyanellierten Achtringlactame **12**, **15** und **17** nur wenige Syntheseschritte umfasst und ohne den Einsatz etwaiger Metall- oder anderer Katalysatoren auskommt. Daraus resultierend eröffnet die entwickelte Synthesesequenz eine leichte Zugänglichkeit zu bisher unbekannten komplexen Achtringlactamen und erweitert die Substanzklasse der Achtringsysteme, die drei Heteroatome innerhalb ihres Ringsystems tragen. Eine erfolgreich durchgeführte Oxidationsreaktion bestätigte das Derivatisierungspotential der Achtringlactame **15**. Die Bestätigung aller synthetisierten Lactamtrukturen wurde mit Hilfe diverser Röntgenkristallstrukturen erbracht.

In einem abschließenden Projekt stand die Entwicklung einer MCR auf Basis der heterocyclischen Imine **1** und **2** zur Darstellung der Dithiocarbamate **19** und **20**. Nach ausgiebigen Optimierungsarbeiten und eingehenden Untersuchungen wurde eine ökonomische, effiziente und variable Darstellungsmöglichkeit von Dithiocarbamaten ausgehend von leicht zugänglichen Substraten entwickelt. Eine derartige MCR mit vier Komponenten ausgehend von Iminen wurde in der Literatur noch nicht beschrieben und eröffnet für diese Substanzklasse einen komplett neuen Forschungssektor. Hervorzuheben ist die Verwendung des Naturstoffs Tryptamin als Substrat innerhalb der entwickelten MCR, da dieses Indol-Gerüst höchst interessante pharmakologische Eigenschaften aufweist. Zur Darstellung der Dithiocarbamate **20** wurde ein bifunktionelles Amin eingesetzt, das die Möglichkeit zu einer anschließenden intramolekularen Cyclisierungsreaktion besaß. Durch Initiierung mittels einer Lewis-Säure (BF₃·Et₂O) wurde in einer Umlagerungs/Cyclisierungsreaktion überraschenderweise der C-N-verknüpfte Bicyclus **22** erhalten. Die Verifizierung der anvisierten Dithiocarbamate **19** sowie von den Bicyclen $(4^{\circ}R^{*}, 5R^{*})$ - und $(4^{\circ}S^{*}, 5R^{*})$ -**22** erfolgte mit Hilfe von Röntgenkristallstrukturen.

Die Ergebnisse der vorliegenden Dissertation dokumentieren, dass die sequentielle Abfolge von Multikomponentenreaktionen mit anschließender Cyclisierung in der präparativen Chemie zum Aufbau diversitätsorientierter und komplexer *N*-heterocyclischer Systeme eine attraktive Synthesestrategie darstellen.

8 Experimenteller Teil

8.1 Allgemeines

8.1.1 Abkür	zungen
AAV	Allgemeine Arbeitsvorschrift
Abb.	Abbildung
abs.	absolutiert
ATR	abgeschwächte Totalreflexion (engl.: Attenuated total reflection)
Ar	aromatisch
bs	breites Singulett
CDCl ₃	deuteriertes Chloroform
Cq	quartäres Kohlenstoffatom
Су	Cyclohexyl
d	Dublett
DC	Dünnschichtchromatographie
dv	Diastereomerenverhältnis
EI	Elektronenstoß-Ionisation (engl.: Electron ionization)
ESI	Elektrospray-Ionisation (engl.: Electrospray ionization)
HRMS	Hochaufgelöste Massenspektrometrie (engl.: High resolution mass
	spectrometry)
IR	Infrarotspektroskopie
IUPAC	Internationale Union für Reine und Angewandte Chemie
	(engl.: International Union of Pure and Applied Chemistry)
Μ	Molekulargewicht
m	Multiplett
MCR	Multikomponentenreaktion (engl.: Multicomponent reaction)
MS	Massenspektrometrie
m/z	Masse/Ladung
n.a.	nicht aufgelöst
NMR	Kernresonanzspektroskopie (engl.: Nuclear magnetic resonance
	spectroscopy)
ppm	parts per million
q	Quartett

R_{f}	Retentionsfaktor
8	Singulett
t	Triplett
TOF	Flugzeit (engl.: Time of flight)

8.1.2 Analytische Verfahren

IR-Spektroskopie

Infrarot-Spektren wurden auf einem IR-Spektrometer TENSOR 27 mit MKII Golden Gate Signal Reflection Diamant ATR-System der Firma BRUKER aufgenommen.

Kernresonanz-Spektroskopie

Die Aufnahme der Kernresonanzspektren der isolierten Produkte erfolgte an einem BRUKER AMX R 500 (Messfrequenzen: ¹H-NMR = 500.1 MHz, ¹³C-NMR = 125.8 MHz) oder einem BRUKER AVANCE III 500 (Messfrequenzen: ¹H-NMR = 499.9 MHz, ¹³C-NMR = 125.7 MHz) Kernresonanz-Spektrometer. Als deuterierte Lösungsmittel wurden Chloroform (CDCl₃) oder Dimethylsulfoxid (DMSO-*d*₆) eingesetzt. Das Restsignal des verbliebenden nicht-deuterierten Lösungsmittels diente als Referenzwert der chemischen Verschiebungen δ , welche in ppm angegeben wurden [CDCl₃: 7.26 ppm (¹H-NMR), 77.16 ppm (¹³C-NMR), DMSO-*d*₆: 2.50 ppm (¹H-NMR), 39.52 ppm (¹³C-NMR)]^[121]. Zur Bestimmung exakter struktureller Zuordnungen wurden DEPT135, sowie zweidimensionale HMBC und ¹H/¹H, ¹H/¹³C-COSY Experimente durchgeführt. Sofern nicht anders angebeben, erfolgten die Messungen bei Raumtemperatur. Bei Erhalt von Isomeren wurde das Isomerenverhältnis aus dem ¹H-NMR-Spektrum des Rohprodukts mit einer Genauigkeit von ± 5 % bestimmt. Diese Spektren wurde an einem BRUKER AMX 300 (Messfrequenz: ¹H-NMR = 300.1 MHz) aufgenommen.

Massenspektrometrie

Massenspektren, niedrigaufgelöste (MS) als auch hochaufgelöste (HRMS), wurden mit einem WATERS Q-TOF Premier-Spektrometer (ESI) oder einem FINNIGAN-MAT-Spektrometer (EI) aufgenommen. Bei der Elektronenstoßionisation wurde eine Ionisationsspannung von 70 eV verwendet.

Röntgenkristallstruktur

Der gezüchtete Einkristall wurde mit einem Inertöl an einem Markröhrchen fixiert, in einem Stickstoffstrom auf 100 K oder 120 K gekühlt oder bei 296 K einer monochromatischen Mo-K_{α}-Strahlung (λ = 0.71073 Å) ausgesetzt. Die Messung der Reflexintensitäten wurden entweder auf einem STOE-IPDS-Diffraktometer oder einem BRUKER APEX II CCD-Diffraktometer durchgeführt. Nach Lorentz- und Polarisationskorrektur wurden die erhaltenen Intensitäten zu Strukturfaktoren reduziert. Die Struktur wurde nach direkter Methode (SHELXL-2013 oder SHELXL-2014) gelöst und verfeinert. Das Gewichtsschema basiert auf einer statistischen Varianz der Messwerte. Die Atomfaktoren sind den *International Tables* zu entnehmen.

Die ORTEP-Darstellungen der Kristallstrukturen wurden mit dem Programm Diamond 4.0.5 der Firma CRYSTAL IMPACT erstellt. Die dabei verwendete Nummerierung entspricht nicht der IUPAC Nomenklatur und wird ausschließlich im Zusammenhang mit der Röntgenstruktur verwendet.

Schmelzpunkt

Die Schmelzpunktbestimmungen erfolgten in offenen Kapillaren an einer MEL-TEMP Schmelzpunktapparatur der Firma LABORATORY DEVICES. Bei den Schmelzpunkten handelt es sich um unkorrigierte Werte.

8.1.3 Chromatographie

Säulenchromatographie

Zur säulenchromatographischen Trennung wurde das Kieselgel (Typ 60, Korndurchmesser 40–63 µm) der Firma GRACE GMBH & CO. KG eingesetzt. Die verwendeten Laufmittel und Mischverhältnisse sind beim jeweiligen Experiment angegeben.

Dünnschichtchromatographie

Die Dünnschichtchromatogramme wurden auf DC-Alufolien mit Fluoreszenzindikator (Kieselgel 60 F_{254}) der Firma MACHEREY-NAGEL angefertigt. Die R_{f} -Werte, sowie die benötigten Laufmittel sind für die jeweiligen Verbindungen angegeben. Die Detektion erfolgte entweder im UV-Licht bei 254 nm oder durch Entwickeln in einer Iodkammer. Im Rahmen der Synthese der Triazocinone wurde teilweise das EHRLICH-Reagenz (4-Dimethylaminobenzaldehyd in Salzsäure) zur Entwicklung verwendet.

8.1.4 Lösungsmittel und Reagenzien

Inertgas

Für unter Schutzgasatmosphäre durchgeführte Synthesen wurde das Inertgas Argon (5.0) eingesetzt. Dabei wurde das Gas vor der Verwendung über einen mit Phophorpentoxid gefüllten Trockenturm geleitet. Die unter Argon durchgeführten Experimente erfolgten in zuvor dreifach ausgeheizten Apparaturen.

Lösungsmittel

Für die einzelnen Experimente wurden meist getrocknete Lösungsmittel verwendet, weshalb diese in den Versuchsdurchführungen mit dem Index *abs*. betitelt werden. Die verwendeten Lösungsmittel wurden über folgende Methoden getrocknet:

Aceton wird über Calciumchlorid getrocknet und abdestilliert.

Acetonitril wird mit Natriumhydrid suspendiert, zwei Stunden refluxiert und abdestilliert. Im Anschluss wird das Destillat mit Phosphorpentoxid versetzt, erneut zwei Stunden refluxiert, abdestilliert und unter Lichtausschluss in der Kälte gelagert.

Dichlormethan wird über Calciumhydrid getrocknet und abdestilliert.

Dimethylformamid wird mit Toluol und Wasser versetzt, fraktionierend destilliert und anschließend über Molsieb 4 Å unter Lichtausschluss in der Kälte gelagert.

Triethylamin wird destilliert und über Molsieb 4 Å in der Kälte gelagert.

Bei dem verwendeten Wasser handelt es sich um vollentsalztes Wasser (VE), welches dezentral von der Universität Oldenburg zur Verfügung gestellt wird.

Reagenzien

Die folgenden Reagenzien wurden nach Literaturvorschriften synthetisiert:

α-Chlorisobutyraldehyd^[25], 1-Chlorcyclohexan-carboxaldehyd^[122], 2,2,5,5-Tetramethyl-2,5-dihydro-1,3-thiazol (1a)^[26], 2,2-Dimethyl-1-thia-3-azaspiro[4.5]dec-3-en (1b)^[27], 2,2-Dimethyl-1-thia-4-azaspiro[4.5]dec-3-en (1c)^[28], 7-Thia-14-azadispiro- $[5.1.5^{8}.2^{6}]$ -dec-14-en (1d)^[29], 2-(*tert*-Butyl)-2,5-dihydro-5,5dimethyl-1,3-thiazol (1f)^[30], 2,2,5,5-Tetramethyl-2,5-dihydro-1,3-oxazol (2)^[25], 4-Methoxybenzoylsäurechlorid^[123], 2-Azidoessigsäure^[78], 2-Azidoessigsäurechlorid^[78], But-2-in-amin^[124], (*E*)-Zimtsäurechlorid^[125].

Nicht aufgeführte Chemikalien standen im Arbeitskreis MARTENS zur Verfügung oder wurden über die Chemikalienausgabe der Universität bezogen. Zudem wurden einige Chemikalien über den Chemikalienhändler SIGMA ALDRICH bezogen.

8.2 Synthesen

8.2.1 Allgemeine Arbeitsvorschriften

Darstellung der Propargylamide

AAV 1 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen cyclischen Imins in *abs*. Dichlormethan (0.5 mL je mmol Imin) gelöst und mittels Eisbadkühlung auf 0 °C gekühlt. Anschließend werden 1.30 Äquivalente des jeweiligen Säurechlorids vorsichtig zugetropft. Feste Säurechloride werden vorweg in wenig *abs*. Dichlormethan gelöst und anschließend zugetropft. Das Reaktionsgemisch wird für 30 Minuten bei 0 °C und weitere 30 Minuten bei Raumtemperatur gerührt. Im Anschluss werden zu dem Reaktionsgemisch im Argon-Gegenstrom zunächst 0.40 Äquivalente Kupfer(I)-iodid gegeben und nachfolgend 2.50 Äquivalente *N,N*-Diisopropylethylamin vorsichtig zugetropft. Anschließend werden 1.50 Äquivalente des jeweiligen Alkins vorsichtig zum Reaktionsgemisch getropft. Feste Alkine werden im Argon-Gegenstrom portionsweise zugegeben. Nachfolgend wird das Reaktionsgemisch über Nacht und bei Raumtemperatur gerührt. Die Reinigung des Rohprodukts erfolgt ohne wässrige Aufarbeitung direkt säulenchromatographisch oder durch Umkristallisation.

Darstellung der Chloracetyl-substituierten Propargylamide

AAV 2 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen cyclischen Imins in abs. Dichlormethan (0.5 mL je mmol Imin) gelöst und mittels Eisbadkühlung auf 0 °C gekühlt. Zu der gekühlten Lösung werden vorsichtig 2.00 Äquivalente 2-Chloressigsäurechlorid getropft. Nach der vollständigen Zugabe wird die Lösung für 30 Minuten unter Eisbadkühlung gerührt. Hierbei ist der Ausfall eines farblosen Feststoffs zu erkennen. Das Kältebad wird entfernt und die Lösung für 60 Minuten bei Raumtemperatur gerührt. Anschließend werden 1.00 Äquivalente Kupfer(I)-iodid zugegeben. Die entstandene Suspension wird erneut auf 0 °C temperiert. Anschließend werden 6.00 Åquivalente N,N-Diisopropylethylamin zugetropft. Hierbei kommt es zu einer starken Rauchentwicklung und das Reaktionsgemisch verfärbt sich schwarz. Nach der vollständigen Zugabe der Base wird erneut auf Raumtemperatur erwärmt und 1.50 Äquivalente des jeweiligen Alkins werden vorsichtig zugetropft. Feste Alkine werden im Argon-Gegenstrom portionsweise zugegeben. Das dunkle Reaktionsgemisch wird anschließend über Nacht bei Raumtemperatur gerührt. Im Anschluss an das Rühren wird die Suspension über Kieselgel 60 filtriert und mit Dichlormethan nachgespült. Das Lösungsmittel des erhaltenen Filtrats wird am Rotationsverdampfer entfernt und das Rohprodukt wird säulenchromatographisch aufgereinigt.

Darstellung der tricyclischen 3,6-Dihydropyrazin-2(1H)-one

AAV 3 In *abs. N,N*-Dimethylformamid (5.0 mL je mmol Propargylamid) werden 1.00 Äquivalente des jeweiligen 2-Chloracetyl-substituierten Propargylamids **6** vorgelegt und anschließend 5.00 Äquivalente Natriumazid zugegeben. Das Reaktionsgemisch wird anschließend für fünf Stunden bei 100 °C gerührt. Nachfolgend wird die Reaktion mit einer gesättigten, wässrigen Natriumchlorid-Lösung (15 mL je mmol Propargylamid) gequencht, Essigsäureethylester zugegeben (15 mL je mmol Propargylamid) und eine Phasentrennung durchgeführt. Die wässrige Phase wird mit Essigsäureethylester (15 mL je mmol Propargylamid) extrahiert. Die vereinigten organischen Phasen werden mit einer gesättigten, wässrigen Natriumchlorid-Lösung (4 × 10 mL je mmol Propargylamid) und Wasser (1 × 10 mL je mmol Propargylamid) gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Die Reinigung des Rohprodukts erfolgt säulenchromatographisch oder durch Umkristallisation.

Darstellung der 3-Chlorpropionyl-substituierten Propargylamide

AAV 4 Unter Schutzgasatmosphäre werden 1.00 Äquivalent des jeweiligen cyclischen Imins in abs. Dichlormethan (0.5 mL je mmol Imin) gelöst und mittels Eisbadküh-0 °C 1.30 lung auf gekühlt. Anschließend werden Äquivalente 3-Chlorpropionsäurechlorid vorsichtig zugetropft. Hierbei verfärbt sich die Reaktionslösung beim Zutropfen schwarz. Das Reaktionsgemisch wird für 30 Minuten bei 0 °C und weitere 30 Minuten bei Raumtemperatur gerührt. Im Anschluss werden zu dem Reaktionsgemisch im Argon-Gegenstrom zunächst 0.40 Äquivalente Kupfer(I)-iodid gegeben und nachfolgend 2.50 Äquivalente N,N-Diisopropylethylamin vorsichtig zugetropft. Anschließend werden 1.50 Äquivalente des jeweiligen Alkins vorsichtig zum Reaktionsgemisch getropft. Feste Alkine werden im Argon-Gegenstrom portionsweise zugegeben. Nachfolgend wird das Reaktionsgemisch über Nacht und bei Raumtemperatur gerührt. Die Reinigung des Rohprodukts erfolgt ohne wässrige Aufarbeitung direkt säulenchromatographisch.

Darstellung der tricyclischen 3,4,6,7-Tetrahydro-5H-1,4-diazepin-5-one

AAV 5 In *abs. N,N*-Dimethylformamid (5.0 mL je mmol Propargylamid) werden 1.00 Äquivalente des jeweiligen 3-Chlorpropionyl-substituierten Propagylamids **8** vorgelegt und anschließend 5.00 Äquivalente Natriumazid zugegeben. Das Reaktionsgemisch wird im Anschluss sechs Stunden bei 100 °C gerührt. Nachfolgend wird die Reaktion mit einer gesättigten, wässrigen Natriumchlorid-Lösung (15 mL je mmol Propargylamid) und eine Phasentrennung durchgeführt. Die wässrige Phase wird mit Essigsäureethylester (15 mL pro mmol Propargylamid) extrahiert. Die vereinigten organischen Phasen werden mit einer gesättigten, wässrigen Natriumchlorid-Lösung (4 × 10 mL je mmol Propargylamid) und Wasser (1 × 10 mL je mmol Propargylamid) gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wird säulenchromatographisch gereinigt.

Darstellung der Alkoxyamide

AAV 6 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen cyclischen Imins in *abs*. Acetonitril (0.5 mL je mmol Imin) vorgelegt. Mittels Eisbadkühlung wird die Lösung auf 0 °C temperiert. Im Anschluss werden 2.00 Äquivalente 2-Chloressigsäurechlorid vorsichtig zugetropft. Die Reaktionslösung wird für 30 Minuten bei 0 °C und weitere 90 Minuten bei Raumtemperatur gerührt. Unter erneuter Eisbadkühlung werden langsam 4.00 Äquivalente *N,N*-Diisopropylethylamin tropfenweise zugegeben. Hierbei kann es zu einer starken Rauchentwicklung, sowie einer Schwarzfärbung des Reaktionsgemisches kommen. Nach Erwärmen des Reaktionsgemisches auf Raumtemperatur werden vorsichtig 1.50 Äquivalente des jeweiligen Alkohols zugetropft. Nach anschließendem Rühren über Nacht bei Raumtemperatur wird die Reaktionslösung über Kieselgel 60 filtriert und mit Dichlormethan nachgespült. Das Lösungsmittel des erhaltenen Filtrats wird am Rotationsverdampfer entfernt und das Rohprodukt wird säulenchromatographisch oder durch Umkristallisation gereinigt.

Darstellung der tricylischen 1,3,6-Oxadiazocin-4-one

AAV 7 In *abs. N,N*-Dimethylformamid (5.0 mL je mmol Alkoxyamid) werden 1.00 Äquivalente des jeweiligen Alkoxyamids **11** wird vorgelegt und anschließend 5.00 Äquivalente Natriumazid zugegeben. Das Reaktionsgemisch wird für fünf Stunden bei 100 °C gerührt. Nach Beendigung der Reaktion wird mit einer gesättigten, wässrigen Natriumchlorid-Lösung (15 mL je mmol Alkinoxyamid) gequencht, Essigsäureethylester (15 mL je mmol Alkinoxyamid) zugegeben und eine Phasentrennung durchgeführt. Die organische Phase wird mit einer gesättigten, wässrigen Natriumchlorid-Lösung $(3 \times 10 \text{ mL} \text{ je mml} \text{ Alkoxyamid})$ und Wasser $(1 \times 10 \text{ mL} \text{ je mmol} \text{ Alkoxyamid})$ gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Die Reinigung des Rohprodukts erfolgt säulenchromatographisch oder durch Umkristallisation.

Darstellung der Alkinylaminoamide

AAV 8 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen cyclischen Imins in abs. Dichlormethan (3.5 mL je mmol Imin) vorgelegt. Mittels Eisbadkühlung wird die Lösung auf 0 °C gekühlt und 2.00 Äquivalente 2-Azidoessigsäurechlorid, gelöst in abs. Dichlormethan (2.5 mL je mmol Imin), vorsichtig zugetropft. Im Anschluss wird die Reaktionslösung für drei Stunden bei Raumtemperatur gerührt. Nachfolgend wird eine Lösung aus 3.75 Äquivalenten Propargylamin und 1.75 Äquivalenten abs. Triethylamin, gelöst in abs. Dichlormethan (0.5 mL je mmol Imin), unter erneuter Eisbadkühlung vorsichtig zugetropft. Nach beendeter Zugabe wird die Lösung über Nacht bei Raumtemperatur gerührt. Im Anschluss wird das Reaktionsgemisch mit Eiswasser, einer gesättigten, wässrigen Natriumhydrogencarbonat-Lösung und Wasser (je 1×15 mL je mmol Imin) gewaschen. Die wässrige Phase wird mit Dichlormethan (2×20 mLje mmol Imin) extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet, das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch gereinigt.

Darstellung der tricyclischen 1,3,6-Triazocin-4-one

AAV 9 In *abs. N,N*-Dimethylformamid (5.0 mL je mmol Alkinylaminoamid) werden 1.00 Äquivalente des jeweiligen Alkinylaminoamids **13** wird vorgelegt und bei 100 °C gerührt. Der Reaktionsfortschritt wird mittels DC-Kontrolle beobachtet. Nach Beendigung der Reaktion wird mit einer gesättigten, wässrigen Natriumchlorid-Lösung (15 mL je mmol Alkinylaminoamid) gequencht, Essigsäureethylester (2×15 mL je mmol Alkinylaminoamid) zugegeben und eine Phasentrennung durchgeführt. Die organische Phase wird mit einer gesättigten, wässrigen Natriumchlorid-Lösung $(3 \times 10 \text{ mL} \text{ je mmol} \text{ Alkinylaminoamid})$ und Wasser $(1 \times 10 \text{ mL} \text{ je mmol} \text{ Alkinylaminoamid})$ gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Die Reinigung des Rohprodukts erfolgt säulenchromatographisch.

Darstellung der Thiocarbamoylmercapto-1,3-thiazolidine

AAV 10 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen cyclischen Imins, gelöst in abs. Dichlormethan (1.0 mL je mmol Imin), vorgelegt. Mittels Eisbadkühlung wird die Lösung auf 0 °C gekühlt und ein Aquivalent des jeweiligen Säurechlorids vorsichtig zugetropft. Feste Säurechloride werden vorweg in wenig abs. Dichlormethan gelöst und anschließend zugetropft. Die Reaktionslösung wird für 30 Minuten bei 0 °C und weitere 60 Minuten bei Raumtemperatur gerührt. Im Anschluss werden, in chronologischer Reihenfolge, 3.00 Äquivalente Kohlenstoffdisulfid, 1.00 Äquivalente *abs*. Triethylamin und 1.50 Äquivalente des jeweiligen Amins tropfenweise bei Raumtemperatur zugegeben. Feste Amine werden portionsweise im Argon-Gegenstrom zu dem Reaktionsgemisch gegeben. Bei der Zugabe des Amins kommt es zu einer Erwärmung und einem gelinden Sieden des Reaktionsgemisches. Nach Rühren über Nacht bei Raumtemperatur wird das Reaktionsgemisch mit Dichlormethan (2.0 mL je mmol Imin) verdünnt, eine gesättigte, wässrige Natriumhydrogencarbonat-Lösung (5.0 mL je mmol Imin) zugegeben und eine Phasentrennung durchgeführt. Die organische Phase wird mit Wasser (1×10 mL je mmol Imin) gewaschen und die vereinigten wässrigen Phasen werden mit Dichlormethan $(3 \times 15 \text{ mL je mmol Imin})$ extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Die Reinigung des Rohprodukts erfolgt säulenchromatographisch, durch Waschen mit wenig kaltem Lösungsmittel oder durch Umkristallisation.

Darstellung der 1,3-Thiazolidin-2-thione

AAV 11 Unter Schutzgasatmosphäre werden 1.00 Äquivalente des jeweiligen Dithiocarbamats **20** in *abs*. Dichlormethan (2.0 mL je mmol Dithiocarbamat) vorgelegt. Mittels Eisbadkühlung wird die Lösung auf 0 °C gekühlt und 1.10 Äquivalente Bortrifluoriddiethyletherat vorsichtig zugetropft. Die Reaktionslösung wird im Anschluss 30 Minuten bei Raumtemperatur gerührt. Nach dem Rühren wird die Reaktionslösung mit einer wässrigen, gesättigten Natriumhydrogencarbonat-Lösung neutralisiert, mit Dichlormethan (1×15 mL je mmol Dithiocarbamat) die Phasen getrennt und die wässrige Phase mit Dichlormethan (2×15 mL je mmol Dithiocarbamat) extrahiert. Die vereinigten organischen Phasen werden mit Wasser (1×15 mL je mmol Dithiocarbamat) gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Die Reiningung des Rohprodukts erfolgt säulenchromatographisch.

8.2.2 Darstellung eines literaturunbekannten Thiazolins

3,7-Dithia-15-azadispiro[5.1.5⁸.2⁶]pentadec-14-en (1e)

Zu einer Lösung aus 21.44 mmol (2.495 g) Tetrahydrothiopyran-4-on, gelöst in Dichlormethan (0.25 mL je mmol α -Chloraldehyd), und 21.44 mmol (1.460 g) Ammoniak (25% ig in Wasser) werden 10.72 mmol (0.601 g) Natriumhydrogensulfid-Monohydrat gegeben. Unter Eisbadkühlung werden im Anschluss 10.72 mmol (1.572 g) 1-Chlorcyclohexan-1-carbaldehyd zu der Reaktionslösung getropft. Die erhaltene Lösung wird mit Dichlormethan (0.25 mL je mmol α -Chloraldehyd) verdünnt und über Nacht bei Raumtemperatur gerührt. Anschließend werden die Phasen getrennt und die wässrige Phase mit Dichlormethan (2×25 mL je mmol α -Chloraldehyd) extrahiert. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Essigsäureethylester/Dichlormethan 8:1) wird das Thiazolin **1e** als farbloser Feststoff erhalten.

Ausbeute: 1.167 g (4.83 mmol, 43 %).—

 $M = 241.41 \text{ g/mol}, C_{12}H_{19}NS_2$

Schmelzpunkt: 64–66 °C. —

DC (Essigsäureethylester/Dichlormethan 8:1): $R_f = 0.56$.—

IR (ATR): $\tilde{v} = 2928$, 2855, 2833 (CH-, CH₂-Valenz), 1654 (C=N-Valenz), 1444, 1424, 1319, 1294 (CH-, CH₂-Deform.), 991, 956, 854, 707(=CH-Deform., C-S-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.19-1.29$ [m, 1H, CH_{2,Cy}], 1.44–1.56 [m, 2H, CH_{2,Cy}], 1.65–1.72 [m, 3H, CH_{2,Cy}], 1.73–1.87 [m, 4H, CH_{2,Cy}], 1.97–2.03 [m, 2H, CH₂CH₂S], 2.28–2.35 [m, 2H, CH₂CH₂S], 2.73–2.85 [m, 4H, CH₂CH₂S], 7.03 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.10$, 25.14 [3 CH_{2,Cy}], 26.63 [2 SCH₂], 38.51 [2 CH_{2,Cy}], 43.19 [2 SCH₂<u>C</u>H₂], 71.57 [S<u>C</u>_q(CH_{2,Cy})₂CH], 92.46 [S<u>C</u>_q(CH₂)₂N], 165.64 [C=N] ppm.—

MS (ESI, TOF): m/z (%) = 242.1 [MH]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{20}NS_2]^+$: 242.1037, gefunden: 242.1038.—

8.2.3 Darstellung diverser Propargylamide via Kupfer-katalysierter MCR

(RS)-3-Benzoyl-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-thiazolidin (3a)

Die Darstellung erfolgt gemäß AAV 1 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3a** als schwach gelber Feststoff erhalten.

Ausbeute: 667 mg (1.91 mmol, 96 %).---

 $M = 349.49 \text{ g/mol}, C_{22}H_{23}NOS$

Schmelzpunkt: 111–113 °C.—

DC (Dichlormethan): $R_f = 0.28$.—

IR (ATR): $\tilde{v} = 3044$ (=CH-Valenz), 2994, 2973, 2932 (CH-, CH₃-Valenz), 2199 (C=C-Valenz), 1637 (C=O-Valenz), 1603, 1488 (Ringschwingung), 1465, 1447 (CH-, CH₃-Deform.), 1389, 1372, 1317, 1208, 1167, 1142, 1110, 1070 (C-N-Valenz), 1030, 986, 919, 894, 849, 785, 760, 700, 690, 621 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): δ = 1.49, 1.66 [2s, 6H, SC_q(CH₃)₂CH], 2.11, 2.12 [2s, 6H, SC_q(CH₃)₂N], 4.65 [s, 1H, NCH], 7.29–7.36 [m, 3H, CH_{Ar}], 7.38–7.44 [m, 5H, CH_{Ar}], 7.47–7.52 [m, 2H, CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 25.20$ [SC_q(<u>C</u>H₃)₂CH], 30.18 [SC_q(<u>C</u>H₃)₂N], 31.32 [SC_q(<u>C</u>H₃)₂CH], 32.46 [SC_q(<u>C</u>H₃)₂N], 51.91 [S<u>C</u>_q(CH₃)₂CH], 68.27 [NCH], 73.16 [S<u>C</u>_q(CH₃)₂N], 86.55 [C_q=<u>C</u>_qCH], 87.44 [<u>C</u>_q=C_qCH], 122.38 [<u>C</u>_q,_{Ar}C_q=C_q], 125.84, 128.52, 128.70, 128.75, 129.42, 131.62 [10 CH_{Ar}], 139.03 [<u>C</u>_q,_{Ar}C_q=O], 170.12 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 372.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₂H₂₃NNaOS]⁺: 372.1398, gefunden: 372.1390.—

(RS)-3-Benzoyl-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (3b)

Die Darstellung erfolgt gemäß AAV 1 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3b** als farbloser Feststoff erhalten.

Ausbeute: 773 mg (1.98 mmol, 99 %).---

 $M = 389.56 \text{ g/mol}, C_{25}H_{27}NOS$

Schmelzpunkt: 195–197 °C.—

DC (Dichlormethan): $R_f = 0.30$.—

IR (ATR): $\tilde{v} = 3050$ (=CH-Valenz), 2989, 2936, 2852 (CH-, CH₂-, CH₃-Valenz), 2250 (C=C-Valenz), 1646 (C=O-Valenz), 1602, 1575, 1491 (Ringschwingung), 1445, 1371 (CH-, CH₂-, CH₃-Deform.), 1319, 1289, 1264, 1176, 1120, 1073 (C-N-Valenz), 1030, 1006, 995, 953, 909, 869, 782, 758, 693, 624 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.20-1.38$ [m, 2H, CH_{2,Cy}], 1.49–1.60 [m, 3H, CH_{2,Cy}], 1.65–1.74 [m, 2H, CH_{2,Cy}], 1.78–1.87, 1.96–2.04 [2m, 2H, CH_{2,Cy}], 2.07 [s, 3H, C_q(CH₃)₂], 2.09–2.14 [m, 1H, CH_{2,Cy}], 2.11 [s, 3H, C_q(CH₃)₂], 4.78 [s, 1H, NCH], 7.28–7.35 [m, 3H, CH_{Ar}], 7.38–7.45 [m, 5H, CH_{Ar}], 7.45–7.50 [m, 2H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.27$, 24.67, 25.53 [CH_{2,Cy}], 30.27, 32.77 [C_q(CH₃)₂], 35.03, 38.61 [CH_{2,Cy}], 57.56 [SC_q(CH_{2,Cy})₂], 66.51 [NCH], 72.20 [SC_q(CH₃)₂], 85.93 [C_q=C_qCH], 87.56 [C_q=C_qCH], 122.63 [C_{q,Ar}C_q=C_q], 125.84, 128.49, 128.69, 128.72, 129.44, 131.62 [10 CH_{Ar}], 138.98 [C_{q,Ar}C_q=O], 170.32 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 390.2 [MH]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₅H₂₇NNaOS]⁺: 412.1711, gefunden: 412.1701.—

(RS)-4-Benzoyl-3-phenylethinyl-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (3c)

Die Darstellung erfolgt gemäß AAV 1 aus 2.00 mmol (367 mg) 3-Thiazolin 1c, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3c** als farbloser Feststoff erhalten.

Ausbeute: 562 mg (1.44 mmol, 72 %).—

 $M = 389.56 \text{ g/mol}, C_{25}H_{27}NOS$

Schmelzpunkt: 101–103 °C.—

DC (Dichlormethan): $R_f = 0.39$.—

IR (ATR): $\tilde{v} = 2931$, 2856 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1599, 1489 (Ringschwingung), 1461, 1443 (CH-, CH₂-, CH₃-Deform.), 1361, 1315, 1250, 1205, 1181, 1118, 1071 (C-N-Valenz), 1028, 989, 929, 905, 826, 780, 756, 691, 619 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.23-1.43$ [m, 2H, CH_{2,Cy}], 1.48 [s, 3H, C_q(CH₃)₂], 1.58–1.66 [m, 2H, CH_{2,Cy}], 1.62 [s, 3H, C_q(CH₃)₂], 1.77–1.83 [m, 1H, CH_{2,Cy}], 1.84–1.91 [m, 2H, CH_{2,Cy}], 2.37–2.44, 2.95–3.04, 3.28–3.36 [3m, 3H, CH_{2,Cy}], 4.66 [s, 1H, NCH], 7.30–7.36 [m, 3H, CH_{Ar}], 7.37–7.43 [m, 5H, CH_{Ar}], 7.44–7.49 [m, 2H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.64$, 25.09 [CH_{2,Cy}], 25.35 [C_q(<u>C</u>H₃)₂], 26.17 [CH_{2,Cy}], 31.35 [C_q(<u>C</u>H₃)₂], 37.48, 37.84 [CH_{2,Cy}], 50.89 [<u>C</u>_q(CH₃)₂], 68.18 [NCH], 80.95 [S<u>C</u>_q(CH_{2,Cy})₂], 86.82 [C_q=<u>C</u>_qCH], 87.23 [<u>C</u>_q=C_qCH], 122.66 [<u>C</u>_{q,Ar}C_q=C_q], 125.67, 128.50, 128.70, 128.74, 129.24, 131.62 [10 CH_{Ar}], 139.58 [<u>C</u>_{q,Ar}C_q=O], 170.34 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 390.2 [MH]⁺ (100).

HRMS (ESI, TOF): Berechnet für [C₂₅H₂₇NNaOS]⁺: 412.1711, gefunden: 412.1701.—

(RS)-14-Benzoyl-15-phenylethinyl-7-thia-14-azaspiro[5.1.5⁸.2⁶]pentadecan (**3d**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) und anschließende Umkristallisation aus Essigsäureethylester wird das Propargylamid **3d** als farbloser Feststoff erhalten.

Ausbeute: 671 mg (1.56 mmol, 78 %).---

 $M = 429.62 \ g/mol, \ C_{28}H_{31}NOS$

Schmelzpunkt: 228–230 °C.—

DC (Dichlormethan): $R_f = 0.68$.—

IR (ATR): $\tilde{v} = 3055$, 3029 (=CH-Valenz), 2928, 2857 (CH-, CH₂-Valenz), 1638 (C=O-Valenz), 1598, 1489 (Ringschwingung), 1441, 1371 (CH-, CH₂-Deform.), 1312, 1284, 1254, 1232, 1204, 1181, 1122, 1093, 1072 (C-N-Valenz), 1026, 990, 950, 921, 904, 851, 830, 781, 759, 694, 676 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.21-1.33$ [m, 2H, CH_{2,Cy}], 1.34–1.46 [m, 2H, CH_{2,Cy}], 1.47–1.58 [m, 3H, CH_{2,Cy}], 1.59–1.65 [m, 2H, CH_{2,Cy}], 1.66–1.72 [m, 2H, CH_{2,Cy}], 1.73–1.77 [m, 1H, CH_{2,Cy}], 1.78–1.89 [m, 3H, CH_{2,Cy}], 1.94–2.02, 2.03–2.10, 2.37–2.44, 2.93–3.02, 3.24–3.34 [5m, 5H, CH_{2,Cy}], 4.79 [s, 1H, NCH], 7.28–7.35 [m, 3H, CH_{Ar}], 7.36–7.40 [m, 2H, CH_{Ar}], 7.41–7.48 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.27$, 24.60, 24.67, 25.01, 25.57, 26.06, 35.10, 37.51, 38.14, 38.56 [CH_{2,Cy}], 56.36 [SC_q(CH_{2,Cy})₂CH], 66.44 [NCH], 79.68 [SC_q(CH_{2,Cy})₂N], 86.28 [C_q=C_qCH], 87.33 [C_q=C_qCH], 122.73 [C_{q,Ar}C_q=C_q], 125.70, 128.46, 128.62, 128.73, 129.26, 131.62 [10 CH_{Ar}], 139.61 [C_{q,Ar}C_q=O], 170.53 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 452.2 [MNa]⁺ (100).—
HRMS (ESI, TOF): Berechnet für [C₂₈H₃₁NNaOS]⁺: 452.2024, gefunden: 452.2011.—

(*RS*)-15-Benzoyl-14-phenylethinyl-3,7-dithia-15-azaspiro[5.1.5⁸.2⁶]pentadecan (**3e**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (483 mg) 3-Thiazolin **1e**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3e** als farbloser Feststoff erhalten.

Ausbeute: 412 mg (0.92 mmol, 46 %).---

 $M = 447.66 \text{ g/mol}, C_{27}H_{29}NOS_2$

Schmelzpunkt: 226–228 °C.—

DC (Dichlormethan): $R_f = 0.37$.—

IR (ATR): $\tilde{v} = 3059$ (=CH-Valenz), 2931, 2853 (CH-, CH₂-Valenz), 1648 (C=O-Valenz), 1600, 1490 (Ringschwingung), 1444, 1428 (CH-, CH₂-Deform.), 1363, 1313, 1270, 1240, 1205, 1164, 1097 (C-N-Valenz), 1028, 986, 951, 908, 783, 757, 732, 693, 622 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.22-1.32$, 1.36–1.45 [2m, 2H, CH_{2,Cy}], 1.48–1.60 [m, 3H, CH_{2,Cy}], 1.64–1.75 [m, 2H, CH_{2,Cy}], 1.76–1.85 [m, 1H, CH_{2,Cy}], 1.96–2.07 [m, 3H, 2 CH_{2,Cy}, CH₂], 2.62–2.75 [m, 3H, CH₂], 2.85–2.94, 3.08–3.16, 3.26–3.37, 3.58–3.68 [4m, 4H, CH₂], 4.82 [s, 1H, NCH], 7.30–7.35 [m, 3H, CH_{Ar}], 7.36–7.39 [m, 2H, CH_{Ar}], 7.41–7.47 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.34$, 24.64, 25.49 [CH_{2,Cy}], 27.62, 28.86 [CH₂], 35.12 [CH_{2,Cy}], 38.74, 38.89 [CH_{2,Cy}, CH₂], 39.51 [CH₂], 57.17 [S<u>C</u>_q(CH_{2,Cy})₂CH], 66.37 [NCH], 78.41 [S<u>C</u>_q(CH₂)₂N], 86.00 [C_q=<u>C</u>_qCH], 87.66

[$\underline{C}_q \equiv C_q CH$], 122.52 [$\underline{C}_{q,Ar}C_q \equiv C_q$], 125.78, 128.55, 128.80, 128.81, 129.50, 131.63 [10 CH_{Ar}], 139.24 [$\underline{C}_{q,Ar}C_q \equiv O$], 170.63 [$C_q \equiv O$] ppm.— MS (ESI, TOF): m/z (%) = 470.2 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für [$C_{27}H_{29}NNaOS_2$]⁺: 470.1588, gefunden: 470.1603.—

(RS)-3-Benzoyl-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-oxazolidin (3f)

Die Darstellung erfolgt gemäß AAV 1 aus 2.00 mmol (254 mg) 3-Oxazolin 2, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butyl-methylether 9:1) wird das Propargylamid **3f** als gelber Feststoff erhalten.

Ausbeute: 327 mg (0.98 mmol, 49 %).—

 $M = 333.43 \text{ g/mol}, C_{22}H_{23}NO_2$

Schmelzpunkt: 85–87 °C.—

1. DC (Dichlormethan): $R_f = 0.26$.—

2. DC (*n*-Hexan/*tert*-Butylmethylether 9:1): $R_f = 0.25$.—

IR (ATR): $\tilde{v} = 3062$ (=CH-Valenz), 2989, 2939 (CH-, CH₃-Valenz), 1644 (C=O-Valenz), 1600, 1489 (Ringschwingung), 1442, 1395, 1372 (CH-, CH₃-Deform.), 1323, 1273, 1261, 1243, 1201, 1159, 1137, 1116, 1070 (C-N-Valenz), 1028 (C-O-C-Valenz), 1005, 907, 870, 819, 782, 758, 701, 692 (=CH-Deform.) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.45$, 1.49 [2s, 6H, OC_q(CH₃)₂CH], 1.83, 1.84 [2s, 6H, OC_q(CH₃)₂N], 4.49 [s, 1H, NCH], 7.28–7.35 [m, 5H, CH_{Ar}], 7.41–7.45 [m, 3H, CH_{Ar}], 7.52–7.57 [m, 2H, CH_{Ar}] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.50$ [OC_q(<u>C</u>H₃)₂CH], 27.76 [OC_q(<u>C</u>H₃)₂N], 28.03, 28.14 [OC_q(<u>C</u>H₃)₂CH, OC_q(<u>C</u>H₃)₂N], 60.72 [NCH], 80.55 [O<u>C</u>_q(CH₃)₂CH], 85.99 [C_q=<u>C</u>_qCH], 87.14 [<u>C</u>_q=C_qCH], 96.05 [O<u>C</u>_q(CH₃)₂N], 122.42 [<u>C</u>_{q,Ar}C_q=C_q], 126.46, 128.50, 128.58, 128.78, 129.71, 131.58 [10 CH_{Ar}], 137.96 [<u>C</u>_{q,Ar}C_q=O], 169.12 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 356.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₂H₂₃NNaO₂]⁺: 356.1626, gefunden: 356.1625.—

(RS)-3-(4-Nitrobenzoyl)-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (3g)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (482 mg) 4-Nitrobenzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylace-tylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3g** als gelber Feststoff erhalten.

Ausbeute: 835 mg (1.92 mmol, 96 %).---

 $M = 434.55 \text{ g/mol}, C_{25}H_{26}N_2O_3S$

Schmelzpunkt: 55–57 °C.—

DC (Dichlormethan): $R_f = 0.63$.—

IR (ATR): $\tilde{v} = 3077$, 3051 (=CH-Valenz), 2977, 2931, 2855 (CH-, CH₂-, CH₃-Valenz), 2195 (C=C-Valenz), 1650 (C=O-Valenz), 1601 (Ringschwingung), 1523 (NO₂-Valenz), 1490 (Ringschwingung), 1444, 1376 (CH-, CH₂-, CH₃-Deform.), 1345 (NO₂-Valenz), 1313, 1289, 1209, 1107, 1070 (C-N-Valenz), 1015, 914, 859, 842, 756, 710, 691, 633 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.22-1.38$ [m, 2H, CH_{2,Cy}], 1.47–1.59 [m, 3H, CH_{2,Cy}], 1.63–1.74 [m, 2H, CH_{2,Cy}], 1.79–1.88, 1.96–2.04, 2.06–2.13 [3m, 3H, CH_{2,Cy}],

2.07, 2.10 [2s, 6H, $C_q(CH_3)_2$], 4.57 [s, 1H, NCH], 7.32–7.37 [m, 3H, 2 *m*-CH_{Ar}($C_q \equiv C_q$), *p*-CH_{Ar}($C_q \equiv C_q$)], 7.38–7.42 [m, 2H, *o*-CH_{Ar}($C_q \equiv C_q$)], 7.64–7.68 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.29–8.34 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.23$, 24.58, 25.43 [CH_{2,Cy}], 30.14, 32.69 [C_q(<u>C</u>H₃)₂], 34.92, 38.59 [CH_{2,Cy}], 57.80 [S<u>C</u>_q(CH_{2,Cy})₂], 66.45 [NCH], 72.56 [S<u>C</u>_q(CH₃)₂], 85.14 [C_q=<u>C</u>_qCH], 88.16 [<u>C</u>_q=C_qCH], 122.10 [<u>C</u>_{q,Ar}C_q=C_q], 124.22 [2 *o*-CH_{Ar}(NO₂)], 126.92 [2 *m*-CH_{Ar}(NO₂)], 128.63 [2 *m*-<u>C</u>H_{Ar}(C_q=C_q)], 129.06 [*p*-<u>C</u>H_{Ar}(C_q=C_q)], 131.62 [2 *o*-<u>C</u>H_{Ar}(C_q=C_q)], 144.53 [<u>C</u>_{q,Ar}C_q=O], 148.27 [C_{q,Ar}NO₂], 167.92 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 457.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{25}H_{26}N_2NaO_3S]^+$: 457.1562, gefunden: 457.1548.—

(*RS*)-3-(4-Methoxybenzoyl)-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**3h**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (444 mg) 4-Methoxybenzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 8:1) wird das Propargylamid **3h** als farbloser Feststoff erhalten.

Ausbeute: 612 mg (1.46 mmol, 73 %).— M = 419.58 g/mol, $C_{26}H_{29}NO_2S$ Schmelzpunkt: 107–109 °C.— 1. DC (Dichlormethan): $R_f = 0.49$.— 2. DC (*n*-Hexan/*tert*-Butylmethylether 8:1): $R_f = 0.23$.—

IR (ATR): $\tilde{v} = 2923$, 2851 (CH-, CH₂-, CH₃-Valenz), 1639 (C=O-Valenz), 1609, 1513, 1489 (Ringschwingung), 1443 (CH-, CH₂-, CH₃-Deform.), 1362, 1316, 1292, 1251, 1212, 1174, 1123, 1109, 1071 (C-N-Valenz), 1027 (C-O-C-Valenz), 952, 913 874, 839, 767, 755, 738, 691 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.27-1.38$ [m, 2H, CH_{2,Cy}], 1.51–1.62 [m, 3H, CH_{2,Cy}], 1.67–1.77 [m, 2H, CH_{2,Cy}], 1.78–1.87, 1.98–2.03 [2m, 2H, CH_{2,Cy}], 2.05 [s, 3H, C_q(CH₃)₂], 2.08–2.15 [m, 1H, CH_{2,Cy}], 2.10 [s, 3H, C_q(CH₃)₂], 3.84 [s, 3H, OCH₃], 4.88 [s, 1H, NCH], 6.91–6.95 [m, 2H, *o*-CH_{Ar}(OCH₃)], 7.28–7.35 [m, 3H, 2*m*-CH_{Ar}(C_q=C_q), *p*-CH_{Ar}(C_q=C_q)], 7.37–7.41 [m, 2H, *o*-CH_{Ar}(C_q=C_q)], 7.43–7.47 [m, 2H, *m*-CH_{Ar}(OCH₃)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.29$, 24.66, 25.53 [CH_{2,Cy}], 30.36, 32.74 [C_q(<u>C</u>H₃)₂], 35.07, 38.70 [CH_{2,Cy}], 55.43 [OCH₃], 57.40 [S<u>C</u>_q(CH_{2,Cy})₂], 66.56 [NCH], 72.15 [S<u>C</u>_q(CH₃)₂], 86.07 [C_q=<u>C</u>_qCH], 87.54 [<u>C</u>_q=C_qCH], 113.94 [2 *o*-<u>C</u>H_{Ar}(OCH₃)], 122.65 [<u>C</u>_q,ArC_q=C_q], 127.75 [2 *m*-<u>C</u>H_{Ar}(OCH₃)], 128.45 [2 *m*-<u>C</u>H_{Ar}(C_q=C_q)], 128.64 [*p*-<u>C</u>H_{Ar}(C_q=C_q)], 131.43 [<u>C</u>_q,ArC_q=O], 131.60 [2 *o*-<u>C</u>H_{Ar}(C_q=C_q)], 160.42 [<u>C</u>_q,ArOCH₃], 170.34 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 442.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{26}H_{29}NNaO_2S]^+$: 442.1817, gefunden: 442.1814.—

(RS)-3-Phenylacetyl-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (3i)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (402 mg) Phenylessigsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylace-tylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts

(1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 9:1) wird das Propargylamid **3i** als gelber Feststoff erhalten.

Ausbeute: 663 mg (1.64 mmol, 82 %).—

 $M = 403.58 \text{ g/mol}, C_{26}H_{29}NOS$

Schmelzpunkt: 81-83 °C.---

1. DC (Dichlormethan): $R_f = 0.82$.—

2. DC (*n*-Hexan/*tert*-Butylmethylether 9:1): $R_f = 0.58$.—

IR (ATR): $\tilde{v} = 3064$, 3025 (=CH-Valenz), 2973, 2929, 2858 (CH-, CH₂-, CH₃-Valenz), 1663, 1650 (C=O-Valenz), 1599, 1492 (Ringschwingung), 1443, 1427 (CH-, CH₂-, CH₃-Deform.), 1365, 1309, 1276, 1253, 1239, 1210, 1195, 1165, 1122 (C-N-Valenz), 1031, 992, 947, 911, 891, 840, 760, 739, 707 (=CH-Deform, C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.04-1.15$ [m, 1H, CH_{2,Cy}], 1.18–1.30 [m, 2H, CH_{2,Cy}], 1.31–1.40, 1.41–1.50 [2m, 2H, CH_{2,Cy}], 1.51–1.58 [m, 2H, CH_{2,Cy}], 1.65–1.73, 1.75–1.85, 1.93–1.99 [3m, 3H, CH_{2,Cy}], 1.96, 1.97 [2s, 6H, C_q(CH₃)₂], 3.87 [d, ²*J* = 15.4 Hz, 1H, CH₂C_q=O], 3.92 [d, ²*J* = 15.4 Hz, 1H, CH₂C_q=O], 4.86 [s, 1H, NCH], 7.24–7.37 [m, 8H, CH_{Ar}], 7.42–7.46 [m, 2H, *o*-CH_{Ar}(C_q=C_q)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.96$, 24.65, 25.44 [CH_{2,Cy}], 29.94, 32.76 [C_q(<u>C</u>H₃)₂], 35.10, 38.26 [CH_{2,Cy}], 45.01 [<u>C</u>H₂C_q=O], 56.97 [S<u>C</u>_q(CH_{2,Cy})₂], 66.93 [NCH], 72.68 [S<u>C</u>_q(CH₃)₂], 85.40 [C_q=<u>C</u>_qCH], 87.13 [<u>C</u>_q=C_qCH], 122.51 [<u>C</u>_{q,Ar}C_q=C_q], 127.21, 128.50, 128.75, 128.77, 128.97 [8 CH_{Ar}], 131.79 [2 *o*-<u>C</u>H_{Ar}(C_q=C_q)], 135.04 [<u>C</u>_{q,Ar}CH₂], 170.24 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 426.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₆H₂₉NNaOS]⁺: 426.1868, gefunden: 426.1873.—

(RS)-3-Acryloyl-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-thiazolidin (3j)

Die Darstellung erfolgt gemäß AAV 1 aus 4.00 mmol (573 mg) 3-Thiazolin 1a, 5.20 mmol (471 mg) Acrylsäurechlorid, 1.60 mmol (305 mg) Kupfer(I)-iodid und 10.00 mmol (1293 mg) N,N-Diisopropylethylamin und 6.00 mmol (613 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3j** als gelbes Öl erhalten.

Ausbeute: 976 mg (3.26 mmol, 82 %).—

 $M = 299.43 \text{ g/mol}, C_{18}H_{21}NOS$

DC (Dichlormethan): $R_f = 0.61$.—

IR (ATR): $\tilde{v} = 2986$, 2930 (CH-, CH₃-Valenz), 2224 (C=C-Valenz), 1654 (C=O-Valenz), 1610, 1489 (Ringschwingung), 1466, 1443, 1409, 1347, 1375 (CH-, CH₃-Deform.), 1347, 1319, 1286, 1257, 1205, 1166, 1132 (C-N-Valenz), 1032, 974, 916, 874, 793, 755, 733, 690, 642 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.59$, 1.65 [2s, 6H, SC_q(CH₃)₂CH], 1.96, 2.05 [2s, 6H, SC_q(CH₃)₂N], 4.90 [s, 1H, NCH], 5.70 [dd, ²J = 1.8 Hz, ³J_{cis} = 10.5 Hz, 1H, CH₂], 6.36 [dd, ²J = 1.8 Hz, ³J_{trans} = 16.7 Hz, 1H, CH₂], 6.68 [dd, ³J_{trans} = 16.7 Hz, ³J_{cis} = 10.5 Hz, 1H, CH=CH₂], 7.27–7.34 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.38–7.43 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.53$ [SC_q(<u>C</u>H₃)₂CH], 29.89 [SC_q(<u>C</u>H₃)₂N], 31.55 [SC_q(<u>C</u>H₃)₂CH], 32.87 [SC_q(<u>C</u>H₃)₂N], 51.50 [SC_q(CH₃)₂CH], 66.55 [NCH], 73.86 [SC_q(CH₃)₂N], 85.89 [C_q=C_qCH], 87.28 [C_q=C_qCH], 122.39 [C_{q,Ar}], 128.07 [CH₂], 128.45 [2 *m*-CH_{Ar}], 128.77 [*p*-CH_{Ar}], 130.81 [<u>C</u>H=CH₂], 131.72 [2 *o*-CH_{Ar}], 165.30 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 322.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₁NNaOS]⁺: 322.1242, gefunden: 322.1232.—

(RS)-3-Benzoyl-4-(4-nitrophenylethinyl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (3k)

Die Darstellung erfolgt gemäß **AAV 1** aus 1.00 mmol (183 mg) 3-Thiazolin **1b**, 1.30 mmol (183 mg) Benzoylchlorid, 0.40 mmol (76 mg) Kupfer(I)-iodid, 2.50 mmol (323 mg) N,N-Diisopropylethylamin und 1.50 mmol (221 mg) 4-Nitrophenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3k** als gelber Feststoff erhalten.

Ausbeute: 358 mg (0.82 mmol, 82 %).—

 $M = 434.55 \text{ g/mol}, C_{25}H_{26}N_2O_3S$

Schmelzpunkt: 154–156 °C.—

DC (Dichlormethan): $R_f = 0.61$.—

IR (ATR): $\tilde{v} = 2979$, 2949, 2931, 2841 (CH-, CH₂-, CH₃-Valenz), 1653 (C=O-Valenz), 1590, 1508 (Ringschwingung), 1444 (CH-, CH₂-, CH₃-Deform.), 1366 (NO₂-Valenz), 1346, 1306, 1280, 1211, 1196, 1165, 1110, 1074 (C-N-Valenz), 1014, 950, 909, 856, 779, 751, 706, 691, 623 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.23-1.38$ [m, 2H, CH_{2,Cy}], 1.52–1.62 [m, 3H, CH_{2,Cy}], 1.66–1.77 [m, 2H, CH_{2,Cy}], 1.78–1.87, 1.95–2.02 [2m, 2H, CH_{2,Cy}], 2.06, 2.08 [2s, 6H, C_q(CH₃)₂], 2.10–2.16 [m, 1H, CH_{2,Cy}], 4.84 [s, 1H, NCH], 7.41–7.48 [m, 5H, 2 *o*-CH_{Ar}(C_q=O), 2 *m*-CH_{Ar}(C_q=O), *p*-CH_{Ar}(C_q=O)], 7.51–7.54 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.17–8.20 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.20, 24.63, 25.46$ [CH_{2,Cy}], 30.39, 32.64 [C_q(<u>C</u>H₃)₂], 35.01, 38.50 [CH_{2,Cy}], 57.45 [S<u>C</u>_q(CH_{2,Cy})₂], 66.40 [NCH], 72.30 [S<u>C</u>_q(CH₃)₂], 85.63 [<u>C</u>_q=C_qCH], 91.42 [C_q=<u>C</u>_qCH], 123.78 [2 *o*-CH_{Ar}(NO₂)], 125.79, 128.84 [2 *o*-CH_{Ar}(C_q=O), 2 *m*-CH_{Ar}(C_q=O)], 129.29 [<u>C</u>_q, ArC_q=C_q], 129.68 [*p*-CH_{Ar}(C_q=O)], 132.42 [2 *m*-CH_{Ar}(NO₂)], 138.68 [<u>C</u>_q, ArC_q=O], 147.43 [C_q, ArNO₂], 170.23 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 457.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{25}H_{26}N_2NaO_3S]^+$: 457.1562, gefunden: 457.1555.—

(*RS*)-3-Benzoyl-4-(4-methoxyphenylethinyl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (31)

Die Darstellung erfolgt gemäß **AAV 1** aus 1.00 mmol (183 mg) 3-Thiazolin **1b**, 1.30 mmol (183 mg) Benzoylchlorid, 0.40 mmol (76 mg) Kupfer(I)-iodid, 2.50 mmol (323 mg) N,N-Diisopropylethylamin und 1.50 mmol (198 mg) 4-Methoxyphenyl-acetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3l** als gelber Fest-stoff erhalten.

Ausbeute: 373 mg (0.89 mmol, 89 %).—

 $M = 419.58 \text{ g/mol}, C_{26}H_{29}NO_2S$

Schmelzpunkt: 109–111 °C.—

DC (Dichlormethan): $R_f = 0.37$.—

IR (ATR): $\tilde{v} = 2929$, 2856 (CH-, CH₂-, CH₃-Valenz), 2228 (C=C-Valenz), 1647 (C=O-Valenz), 1605, 1509 (Ringschwingung), 1460, 1444 (CH-, CH₂-, CH₃-Deform.), 1366, 1291, 1249, 1209, 1171, 1106, 1073 (C-N-Valenz), 1030 (C-O-C-Valenz), 909, 832, 805, 784, 734, 700 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.23-1.35$ [m, 2H, CH_{2,Cy}], 1.48–1.60 [m, 3H, CH_{2,Cy}], 1.64–1.73 [m, 2H, CH_{2,Cy}], 1.77–1.86, 1.96–2.03 [2m, 2H, CH_{2,Cy}], 2.06 [s, 3H, C_q(CH₃)₂], 2.07–2.13 [m, 1H, CH_{2,Cy}], 2.10 [s, 3H, C_q(CH₃)₂], 3.81 [s, 3H, OCH₃], 4.76 [s, 1H, NCH], 6.82–6.86 [m, 2H, *o*-CH_{Ar}(OCH₃)], 7.31–7.35 [m, 2H,

m-CH_{Ar}(OCH₃)], 7.40–7.44 [m, 3H, 2 *m*-CH_{Ar}(C_q=O), *p*-CH_{Ar}(C_q=O)], 7.45–7.50 [m, 2H, *o*-CH_{Ar}(C_q=O)] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.27$, 24.67, 25.54 [CH_{2,Cy}], 30.25, 32.77 [C_q(<u>C</u>H₃)₂], 35.04, 38.62 [CH_{2,Cy}], 55.46 [OCH₃], 57.60 [S<u>C</u>_q(CH_{2,Cy})₂], 66.59 [NCH], 72.15 [S<u>C</u>_q(CH₃)₂], 84.49 [C_q=<u>C</u>_qCH], 87.51 [<u>C</u>_q=C_qCH], 114.10 [2 *o*-<u>C</u>H_{Ar}(OCH₃)], 114.75 [<u>C</u>_q, ArC_q=C_q], 125.85 [2 *o*-<u>C</u>H_{Ar}(C_q=O)], 128.67 [2 *m*-<u>C</u>H_{Ar}(C_q=O)], 129.40 [*p*-<u>C</u>H_{Ar}(C_q=O)], 133.05 [2 *m*-<u>C</u>H_{Ar}(OCH₃)], 139.03 [<u>C</u>_q, ArC_q=O], 159.91 [<u>C</u>_q, ArOCH₃], 170.34 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 442.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{26}H_{29}NNaO_2S]^+$: 442.1817, gefunden: 442.1814.—

(RS)-3-Benzoyl-4-(hex-1-in-1-yl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (3m)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (246 mg) 1-Hexin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: n-Hexan/tert-Butylmethylether 15:1) wird das Propargylamid **3m** als farbloser Feststoff erhalten.

Ausbeute: 682 mg (1.85 mmol, 93 %).— M = 369.57 g/mol, $C_{23}H_{31}NOS$ Schmelzpunkt: 51–53 °C.— 1. DC (Dichlormethan): $R_f = 0.68$.— 2. DC (*n*-Hexan/*tert*-Butylmethylether 15:1): $R_f = 0.26$.— IR (ATR): $\tilde{v} = 3060$ (=CH-Valenz), 2961, 2925, 2851 (CH-, CH₂-, CH₃-Valenz), 2231 (C=C-Valenz), 1643 (C=O-Valenz), 1602, 1492 (Ringschwingung), 1461, 1443, 1371 (CH-, CH₂-, CH₃-Deform.), 1311, 1284, 1210, 1180, 1167, 1136, 1119, 1086, 1073 (C-N-Valenz), 1027, 966, 957, 920, 909, 868, 781, 741, 698, 674 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.91$ [t, ³J = 7.2 Hz, 3H, CH₂CH₃,], 1.17–1.32 [m, 2H, CH_{2,Cy}], 1.36–1.42 [m, 2H, CH₂CH₃], 1.44–1.55 [m, 5H, 3 CH_{2,Cy}, 2 CH₃CH₂CH₂], 1.56–1.66 [m, 2H, CH_{2,Cy}], 1.73–1.82, 1.86–1.97, 2.00–2.07 [3m, 3H, CH_{2,Cy}], 2.02, 2.04 [2s, 6H, C_q(CH₃)₂], 2.17–2.22 [m, 2H, CH₂C_q \equiv C_q], 4.54 [t, ⁵J = 1.9 Hz, 1H, NCH], 7.36–7.45 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 13.67$ [CH₂<u>C</u>H₃], 18.52 [<u>C</u>H₂C_q=C_q], 22.01 [<u>C</u>H₂CH₃], 23.26, 24.61, 25.52 [CH_{2,Cy}], 30.09 [C_q(<u>C</u>H₃)₂], 30.67 [CH₃CH₂<u>C</u>H₂], 32.75 [C_q(<u>C</u>H₃)₂], 34.95, 38.57 [CH_{2,Cy}], 57.40 [S<u>C_q</u>(CH_{2,Cy})₂], 66.09 [NCH], 72.00 [S<u>C_q</u>(CH₃)₂], 76.66 [C_q=<u>C_q</u>CH], 88.25 [<u>C_q</u>=C_qCH], 125.84, 128.55, 129.30 [5 CH_{Ar}], 139.07 [C_{q,Ar}], 170.25 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 392.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{23}H_{31}NNaOS]^+$: 392.2024, gefunden: 392.2019.—

(*RS*)-3-Benzoyl-4-(3,3-dimethylbut-1-in-1-yl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**3n**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (246 mg) 3,3-Dimethylbut-1-in. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3n** als gelber Feststoff erhalten.

Ausbeute: 365 mg (0.99 mmol, 50 %).---

 $M = 369.57 \text{ g/mol}, C_{23}H_{31}NOS$

Schmelzpunkt: 154–156 °C.—

DC (Dichlormethan): $R_f = 0.81$.—

IR (ATR): $\tilde{v} = 2969$, 2935, 2861 (CH-, CH₂-, CH₃-Valenz), 2242, 2212 (C=C-Valenz), 1644 (C=O-Valenz), 1603, 1581, 1494 (Ringschwingung), 1446, 1372 (CH-, CH₂-, CH₃-Deform.), 1315, 1292, 1266, 1212, 1179, 1168, 1123, 1076 (C-N-Valenz), 1026, 962, 922, 912, 869, 840, 779, 761, 700, 683, 622 (=CH-Deform., C-S-Valenz) cm⁻¹.— ¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.16-1.32$ [m, 2H, CH_{2,Cy}], 1.20 [s, 9H, C_q(CH₃)₃], 1.43-1.54 [m, 3H, CH_{2,Cy}], 1.55-1.65 [m, 2H, CH_{2,Cy}], 1.72-1.81, 1.85-1.91, 1.99-2.07 [3m, 3H, CH_{2,Cy}], 2.02, 2.04 [2s, 6H, SC_q(CH₃)₂], 4.49 [s, 1H, NCH], 7.35-7.40 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.41-7.45 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.24$, 24.62, 25.53 [CH_{2,Cy}], 27.67 [<u>C</u>_q(CH₃)₃], 30.06 [SC_q(<u>C</u>H₃)₂], 30.79 [3 C_q(<u>C</u>H₃)₃], 32.80 [SC_q(<u>C</u>H₃)₂], 34.99, 38.70 [CH_{2,Cy}], 57.29 [S<u>C</u>_q(CH_{2,Cy})₂], 66.08 [NCH], 72.01 [S<u>C</u>_q(CH₃)₂], 75.45 [C_q=<u>C</u>_qCH], 96.31 [<u>C</u>_q=C_qCH], 125.79 [2 *o*-CH_{Ar}], 128.48 [2 *m*-CH_{Ar}], 129.20 [*p*-CH_{Ar}], 139.20 [C_{q,Ar}], 170.30 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 392.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₃H₃₁NNaOS]⁺: 392.2024, gefunden: 392.2009.—

(RS)-3-Benzoyl-4-trimethylsilylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (30)

Die Darstellung erfolgt gemäß **AAV 1** aus 1.00 mmol (183 mg) 3-Thiazolin **1b**, 1.30 mmol (183 mg) Benzoylchlorid, 0.40 mmol (76 mg) Kupfer(I)-iodid, 2.50 mmol (323 mg) *N*,*N*-Diisopropylethylamin und 1.50 mmol (147 mg) Trimethylsilylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **30** als farbloser Feststoff erhalten.

Ausbeute: 312 mg (0.81 mmol, 81 %).---

 $M = 385.64 \text{ g/mol}, C_{22}H_{31}NOSSi$

Schmelzpunkt: 124–126 °C.—

DC (Dichlormethan): $R_f = 0.72$.—

IR (ATR): $\tilde{v} = 2955$, 2928, 2858 (CH-, CH₂-, CH₃-Valenz), 2181 (C=C-Valenz), 1645 (C=O-Valenz), 1602, 1493 (Ringschwingung), 1445, 1369 (CH-, CH₂-, CH₃-Deform.), 1311, 1291, 1251, 1211, 1175, 1099, 1074 (C-N-Valenz), 1024, 954, 907, 834, 776, 757, 700, 654 (=CH-Deform., C-S-Valenz, C-Si-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.16$ [s, 9H, Si(CH₃)₃], 1.19–1.31 [m, 2H, CH_{2,Cy}], 1.44–1.56 [m, 3H, CH_{2,Cy}], 1.57–1.66 [m, 2H, CH_{2,Cy}], 1.73–1.82, 1.89–1.96, 2.00–2.07 [3m, 3H, CH_{2,Cy}], 2.03, 2.04 [2s, 6H, SC_q(CH₃)₂], 4.52 [s, 1H, NCH], 7.37–7.45 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = -0.20 [3 Si(CH₃)₃], 23.21, 24.62, 25.50 [CH_{2,Cy}], 29.95, 32.82 [SC_q(<u>C</u>H₃)₂], 34.91, 38.58 [CH_{2,Cy}], 56.99 [S<u>C</u>_q(CH_{2,Cy})₂], 66.57 [NCH], 72.28 [S<u>C</u>_q(CH₃)₂], 92.98 [<u>C</u>_q=C_qCH], 102.24 [C_q=<u>C</u>_qCH], 125.77, 128.62, 129.37 [5 CH_{Ar}], 138.97 [C_{q,Ar}], 170.28 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 408.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{22}H_{31}NNaOSSi]^+$: 408.1793, gefunden: 408.1798.—

(RS)-3-Benzoyl-4-(3-methoxy-3-oxopropinyl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**3q**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (252 mg) Propinsäuremethylester. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **3q** als gelber Feststoff erhalten.

Ausbeute: 525 mg (1.41 mmol, 71 %).---

 $M = 371.50 \text{ g/mol}, C_{21}H_{25}NO_3S$

Schmelzpunkt: 97–99 °C.—

DC (Laufmittel: Dichlormethan): R_f = 0.26.—

IR (ATR): $\tilde{v} = 2995$, 2936, 2858 (CH-, CH₂-, CH₃-Valenz), 2235 (C=C-Valenz), 1713, 1645 (C=O-Valenz), 1601, 1578, 1493 (Ringschwingung), 1446, 1434 (CH-, CH₂-, CH₃-Deform.), 1358, 1318, 1248, 1209, 1170, 1119, 1098, 1075 (C-N-Valenz), 1053 (C-O-C-Valenz), 968, 944, 905, 790, 753, 740, 701, 681, 622 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.21-1.35$ [m, 2H, CH_{2,Cy}], 1.46–1.58 [m, 3H, CH_{2,Cy}], 1.61–1.69 [m, 2H, CH_{2,Cy}], 1.74–1.84, 1.89–1.97 [2m, 2H, CH_{2,Cy}], 2.03, 2.04 [2s, 6H, C_q(CH₃)₂], 2.05–2.11 [m, 1H, CH_{2,Cy}], 3.77 [s, 3H, OCH₃], 4.69 [s, 1H, NCH], 7.38–7.45 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.12, 24.52, 25.38$ [CH_{2,Cy}], 30.24, 32.64 [C_q(<u>C</u>H₃)₂], 34.75, 38.28 [CH_{2,Cy}], 53.00 [OCH₃], 57.11 [S<u>C</u>_q(CH_{2,Cy})₂], 65.62 [NCH], 72.46 [S<u>C</u>_q(CH₃)₂], 78.88 [<u>C</u>_q≡C_qCH], 83.64 [C_q≡<u>C</u>_qCH], 125.69, 128.96, 129.76 [5 CH_{Ar}], 138.30 [C_{q,Ar}], 153.51 [<u>C</u>_qOCH₃], 170.04 [C_{q,Ar}<u>C</u>_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 394.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{21}H_{25}NNaO_3S]^+$: 394.1453, gefunden: 394.1448.—

(*RS*)-4-(5-Amino-pent-1-in-1-yl)-3-benzoyl-2,2-dimethyl-1-thia-3-azaspiro-[4.5]decan (**3s**)

Zu Beginn der Reaktion werden 0.92 mmol (461 mg) des Phthalimids **3t** in Ethanol (8.0 mL je mmol Amid) gelöst. Anschließend werden 1.38 mmol (69 mg)

Hydrazin-Monohydrat zu der entstandenen Lösung gegeben und das Reaktionsgemisch für drei Stunden unter Rückfluss gerührt. Nach etwa einer Stunde ist die Bildung eines farblosen Niederschlags zu beobachten. Der Niederschlag wird, nach Beendigung der Reaktion, abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wird in wenig Dichlormethan aufgenommen, anschließend mit 3 M Natronlauge (1×8.0 mL je mmol Amid) und Wasser (2×5.0 mL je mmol Amid) gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Das Propargylamid **3s** wird als farbloses Öl erhalten.

Ausbeute: 288 mg (0.78 mmol, 85 %).---

 $M = 370.56 \ g/mol, \ C_{22}H_{30}N_2OS$

IR (ATR): $\tilde{v} = 2928$, 2854 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1601 (NH-Deform.), 1445, 1371 (CH-, CH₂-, CH₃- Deform.), 1314, 1288, 1211, 1178, 1135, 1076 (C-N-Valenz), 1026, 911, 867, 786, 737, 702, 632 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.14-1.23$ [m, 2H, CH_{2,Cy}], 1.32–1.49 [m, 5H, 3 CH_{2,Cy}, 2 NH₂], 1.50–1.61 [m, 2H, CH_{2,Cy}], 1.56 [tt, ³*J* = 7.0 Hz, ³*J* = 7.0 Hz, 2H, CH₂CH₂NH₂], 1.65–1.76, 1.79–1.86, 1.93–2.01 [3m, 3H, CH_{2,Cy}], 1.95, 1.97 [2s, 6H, C_q(CH₃)₂], 2.20 [td, ³*J* = 7.0 Hz, ⁵*J* = 2.0 Hz, 2H, CH₂C_q=C_q], 2.70 [t, ³*J* = 7.0 Hz, 2H, CH₂NH₂], 4.48 [t, ⁵*J* = 2.0 Hz, 1H, NCH], 7.29–7.38 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 16.13 [\underline{C}H_2C_q \equiv C_q]$, 23.05, 24.42, 25.30 [CH_{2,Cy}], 29.96 [C_q(CH₃)₂], 32.11 [<u>C</u>H₂CH₂NH₂], 32.52 [C_q(CH₃)₂], 34.75, 38.34 [CH_{2,Cy}], 41.04 [CH₂NH₂], 57.20 [S<u>C</u>_q(CH_{2,Cy})₂], 65.84 [NCH], 71.78 [S<u>C</u>_q(CH₃)₂], 76.86 [C_q=<u>C</u>_qCH], 87.31 [<u>C</u>_q=C_qCH], 125.62, 128.41, 129.20 [5 CH_{Ar}], 138.78 [C_{q,Ar}], 170.03 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 371.2 [MH]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{22}H_{31}N_2OS]^+$: 371.2157, gefunden: 371.2149.—

(*RS*)-3-Benzoyl-4-(5-phthalimido-pent-1-in-1-yl)-2,2-dimethyl-1-thia-3-azaspiro-[4.5]decan (**3t**)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (640 mg) N-(4-Pentinyl)-phthalimid. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton/Chloroform 8:1:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Phthalimid **3t** als farbloses Öl erhalten.

Ausbeute: 993 mg (1.98 mmol, 99 %).--

 $M = 500.66 \text{ g/mol}, C_{30}H_{32}N_2O_3S$

1. DC (*n*-Hexan/Aceton/Chloroform: 8:1:1): $R_f = 0.38$.—

2. DC (Laufmittel: Dichlormethan): $R_f = 0.05$.—

IR (ATR): $\tilde{v} = 2932$, 2855 (CH-, CH₂-, CH₃-Valenz), 2242 (C=C-Valenz), 1773, 1709, 1644 (C=O-Valenz), 1493 (Ringschwingung), 1467, 1444, 1394 (CH-, CH₂-, CH₃-Deform.), 1369, 1314, 1288, 1211, 1177, 1116 (C-N-Valenz), 1026, 910, 885, 785, 718, 699, 676, 647, 622 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.18-1.34$ [m, 2H, CH_{2,Cy}], 1.42–1.55 [m, 3H, CH_{2,Cy}], 1.56–1.65 [m, 2H, CH_{2,Cy}], 1.71–1.81, 1.87–1.94 [2m, 2H, CH_{2,Cy}], 1.88 [tt, ³*J* = 7.2 Hz, ³*J* = 7.2 Hz, 2H, CH₂CH₂N], 2.00–2.05 [m, 1H, CH_{2,Cy}], 2.01, 2.04 [2s, 6H, C_q(CH₃)₂], 2.29 [td, ³*J* = 7.3 Hz, ⁵*J* = 1.9 Hz, 2H, CH₂C_q=C_q], 3.74 [t, ³*J* = 7.2 Hz, 2H, CH₂N], 4.53 [t, ⁵*J* = 1.9 Hz, 2H, NCH], 7.38–7.46 [m, 5H, 2 *o*-CH_{Ar}(C_q=O), 2 *m*-CH_{Ar}(C_q=O), *p*-CH_{Ar}(C_q=O)], 7.68–7.73 [m, 2H, CH_{Ar,Phthalimid}], 7.80–7.86 [m, 2H, CH_{Ar,Phthalimid}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 16.82 [CH_2C_q = C_q], 23.24, 24.61, 25.50 [CH_{2,Cy}], 27.77 [CH₂CH₂N], 30.22, 32.73 [C_q(CH₃)₂], 34.92 [CH_{2,Cy}], 37.36 [CH₂N], 38.50 [CH_{2,Cy}], 57.42 [SC_q(CH_{2,Cy})₂], 65.96 [NCH], 72.01 [SC_q(CH₃)₂], 77.54 [C_q=C_qCH], 86.43 [C_q=C_qCH], 123.37 [2 CH_{Ar,Phthalimid}], 125.83, 128.64, 129.34 [2$ *o*-CH_{Ar}(C_q=O), 2*m*-CH_{Ar}(C_q=O),*p*-CH_{Ar}(C_q=O)], 132.18 [2 C_{q,Ar,Phthalimid}], 134.07 [2 CH_{Ar,Phthalimid}], 138.98 [C_{q,Ar}C_q=O], 168.33 [2 C_q=ONCH₂], 170.19 [C_{q,Ar}C_q=O] ppm.—MS (ESI, TOF): m/z (%) = 523.3 [MNa]⁺ (100).—HRMS (ESI, TOF): Berechnet für [C₃₀H₃₂N₂NaO₃S]⁺: 523.2031, gefunden: 523.2042.—

(RS)-3-Benzoyl-4-(prop-2-in-1-yloxy)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (4)

Die Darstellung erfolgt gemäß **AAV 1** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.60 mmol (365 mg) Benzoylchlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird der Ether **4** als farbloser Feststoff erhalten.

Ausbeute: 439 mg (1.28 mmol, 64 %).---

 $M = 343.49 \ g/mol, \ C_{20}H_{25}NO_2S$

Schmelzpunkt: 138–140 °C.—

DC (Laufmittel: Dichlormethan): $R_f = 0.57$.—

IR (ATR): $\tilde{v} = 3249$ (=C-H-Valenz), 2992, 2949, 2936, 2922, 2845 (CH-, CH₂-, CH₃-Valenz), 2324 (C=C-Valenz), 1646 (C=O-Valenz), 1601, 1578, 1494 (Ringschwingung), 1444 (CH-, CH₂-, CH₃-Deform.), 1366, 1305, 1280, 1257, 1244, 1214, 1169, 1099 (C-N-Valenz), 1055 (C-O-C-Valenz), 952, 901, 790, 763, 749, 741, 709, 694, 625 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.19-1.32$ [m, 2H, CH_{2,Cy}], 1.50–1.67 [m, 4H, CH_{2,Cy}], 1.80–1.92 [m, 3H, CH_{2,Cy}], 1.95, 1.98 [2s, 6H, C_q(CH₃)₂], 1.99–2.04 [m, 1H, CH_{2,Cy}], 2.02 [dd, ⁴*J* = 2.4 Hz, ⁴*J* = 2.4 Hz, 1H, HC≡C_q], 3.89 [dd, ²*J* = 16.0 Hz, ⁴*J* = 2.3 Hz, 1H, CH₂O], 4.05 [dd, ²*J* = 16.0 Hz, ⁴*J* = 2.4 Hz, 1H, CH₂O], 5.40 [s, 1H, NCH], 7.37–7.44 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.46–7.50 [m, 2H, *o*-CH_{Ar}] ppm.— ¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.83$, 24.28, 25.53 [CH_{2,Cy}], 31.54, 31.81 [C_q(CH₃)₂], 33.30, 39.09 [CH_{2,Cy}], 54.49 [CH₂O], 58.69 [SC_q(CH_{2,Cy})₂], 71.39 [SC_q(CH₃)₂], 74.55, 78.32 [HC≡C_q, HC≡C_q], 96.62 [NCH], 127.96 [2 *o*-CH_{Ar}], 128.71 [2 *m*-CH_{Ar}], 130.29 [*p*-CH_{Ar}], 137.53 [C_{q,Ar}], 170.87 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 366.2 [MNa]⁺ (100).— HRMS (ESI, TOF): m/z (%) = 366.2 [MNa]⁺ (100).—

(RS)-3-Benzoyl-4-benzoyloxy-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (5)

Die Darstellung erfolgt gemäß **AAV 1** aus 1.00 mmol (183 mg) 3-Thiazolin **1b**, 1.30 mmol (183 mg) Benzoylchlorid, 0.40 mmol (76 mg) Kupfer(I)-iodid, 2.50 mmol (323 mg) *N*,*N*-Diisopropylethylamin und 1.50 mmol (147 mg) Pent-4-insäure. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: n-Hexan/*tert*-Butylmethylether 9:1) wird der Benzoesäureester **4** als farbloses Öl erhalten.

Ausbeute: 55 mg (0.13 mmol, 13 %).— $M = 409.54 \text{ g/mol}, C_{24}H_{27}NO_3S$ DC (*n*-Hexan/*tert*-Butylmethylether 9:1): R = 0.44.— IR (ATR): $\tilde{v} = 3071$ (=CH-Valenz), 2934, 2857 (CH-, CH₂-, CH₃-Valenz), 1726, 1960 (C=O-Valenz), 1603, 1585, 1494 (Ringschwingung), 1451, 1419 (CH-, CH₂-, CH₃-Deform.), 1362, 1345, 1317, 1275, 1224, 1178, 1091 (C-N-Valenz), 1063 (C-O-C-Valenz), 1026, 965, 943, 896, 870, 853, 792, 739, 701, 668 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.09-1.24$ [m, 2H, CH_{2,Cy}], 1.53–1.64 [m, 3H, CH_{2,Cy}], 1.68–1.74 [m, 2H, CH_{2,Cy}], 1.78–1.91 [m, 2H, CH_{2,Cy}], 2.06–2.11 [m, 1H, CH_{2,Cy}], 2.08, 2.13 [2s, 6H, C_q(CH₃)₂], 6.64 [s, 1H, NCH], 7.28–7.31 [m, 2H, CH_{Ar}], 7.33–7.38 [m, 2H, CH_{Ar}], 7.41–7.47 [m, 3H, CH_{Ar}], 7.56–7.61 [m, 1H, CH_{Ar}], 7.95–7.99 [m, 2H, CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.30$, 24.33, 25.47 [CH_{2,Cy}], 31.57, 32.13 [C_q(<u>C</u>H₃)₂], 33.14, 38.16 [CH_{2,Cy}], 59.26 [S<u>C</u>_q(CH_{2,Cy})₂], 72.32 [S<u>C</u>_q(CH₃)₂], 94.07 [NCH], 126.17, 128.73, 128.80 [6 CH_{Ar}], 129.47 [C_{q,Ar}], 129.88, 130.09, 133.57 [4 CH_{Ar}], 137.71 [C_{q,Ar}], 164.72, 171.33 [2 C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 432.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{24}H_{27}NNaO_3S]^+$: 432.1609, gefunden: 432.1605.—

8.2.4 Darstellung der Chloracetyl-substituierten Propargylamide

(RS)-3-Chloracetyl-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-thiazolidin (6a)

Die Darstellung erfolgt gemäß AAV 2 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylace-tylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6a** als gelber Feststoff erhalten.

Ausbeute: 436 mg (1.35 mmol, 68 %).---

 $M = 321.86 \text{ g/mol}, C_{17}H_{20}ClNOS$

Schmelzpunkt: 89-91 °C.---

1. DC (*n*-Hexan/*tert*-Butylmethylether 19:1): $R_f = 0.30$.—

2. DC (Dichlormethan): $R_f = 0.79$.—

IR (ATR): $\tilde{v} = 2987$, 2969, 2940 (CH-, CH₂-, CH₃-Valenz), 1673 (C=O-Valenz), 1490 (Ringschwingung), 1470, 1443, 1414, 1386 (CH-, CH₂-, CH₃-Deform.), 1360, 1313, 1245, 1205, 1167, 1122, 1076 (C-N-Valenz), 990, 932, 880, 798, 762, 694, 620 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): δ = 1.59, 1.66 [2s, 6H, SC_q(CH₃)₂CH], 1.94, 1.99 [2s, 6H, SC_q(CH₃)₂N], 4.11 [d, ²*J* = 12.6 Hz, 1H, CH₂], 4.30 [d, ²*J* = 12.6 Hz, 1H, CH₂], 4.94 [s, 1H, NCH], 7.30–7.37 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.40–7.44 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.39$ [SC_q(<u>C</u>H₃)₂CH], 29.71 [SC_q(<u>C</u>H₃)₂N], 31.40 [SC_q(<u>C</u>H₃)₂CH], 31.91 [SC_q(<u>C</u>H₃)₂N], 44.25 [CH₂], 51.99 [SC_q(CH₃)₂CH], 65.67 [NCH], 74.22 [SC_q(CH₃)₂N], 85.15 [C_q=<u>C</u>_qCH], 87.40 [<u>C</u>_q=C_qCH], 121.97 [C_{q,Ar}], 128.54 [2 *m*-CH_{Ar}], 129.03 [*p*-CH_{Ar}], 131.74 [2 *o*-CH_{Ar}], 165.11 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 344.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₇H₂₀ClNNaOS]⁺: 344.0852, gefunden: 344.0858.—

(RS)-3-Chloracetyl-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (6b)

Die Darstellung erfolgt gemäß **AAV 2** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1) wird das Propargylamid **6b** als gelber Feststoff erhalten.

Ausbeute: 507 mg (1.40 mmol, 70 %).---

 $M = 361.93 \text{ g/mol}, C_{20}H_{24}CINOS$

Schmelzpunkt: 92–94 °C.—

DC (*n*-Hexan/tert-Butylmethylether 19:1): $R_f = 0.35$.—

IR (ATR): $\tilde{v} = 2960, 2930, 2856$ (CH-, CH₂-, CH₃-Valenz), 1672 (C=O-Valenz), 1491 (Ringschwingung), 1443, 1412, 1378 (CH-, CH₂-, CH₃-Deform.), 1364, 1310, 1290, 1256, 1210, 1193, 1163 (C-N-Valenz), 928, 796, 763, 695, 622 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.33-1.46$ [m, 2H, CH_{2,Cy}], 1.55-1.71 [m, 3H, CH_{2,Cy}], 1.72-1.90 [m, 3H, CH_{2,Cy}], 1.93, 1.94 [2s, 6H, C_q(CH₃)₂], 1.98-2.08 [m, 2H, CH_{2,Cy}], 4.10 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.32 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 5.07 [s, 1H, NCH], 7.29-7.36 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.39-7.43 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.26$, 24.71, 25.55 [CH_{2,Cy}], 29.81, 32.33 [C_q(<u>C</u>H₃)₂], 35.16, 38.55 [CH_{2,Cy}], 44.26 [CH₂Cl], 57.60 [S<u>C</u>_q(CH_{2,Cy})₂], 63.91 [NCH], 73.10 [S<u>C</u>_q(CH₃)₂], 84.73 [C_q=<u>C</u>_qCH], 87.60 [<u>C</u>_q=C_qCH], 122.08 [C_{q,Ar}], 128.54 [2 *m*-CH_{Ar}], 128.99 [*p*-CH_{Ar}], 131.78 [2 *o*-CH_{Ar}], 165.32 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 384.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{20}H_{24}CINNaOS]^+$: 384.1165, gefunden: 384.1169.—

(RS)-4-Chloracetyl-3-phenylethinyl-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (6c)

Die Darstellung erfolgt gemäß AAV 2 aus 2.00 mmol (367 mg) 3-Thiazolin 1c, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6c** als gelbes Öl erhalten.

Ausbeute: 125 mg (0.35 mmol, 18 %).---

 $M = 361.93 \text{ g/mol}, C_{20}H_{24}ClNOS$

1. DC (*n*-Hexan/*tert*-Butylmethylether 19:1): $R_f = 0.21$.—

2. DC (Dichlormethan): $R_f = 0.70$.—

IR (ATR): $\tilde{v} = 2933$, 2858 (CH-, CH₂-, CH₃-Valenz), 2358, 2341 (C=C-Valenz), 1667 (C=O-Valenz), 1489 (Ringschwingung), 1455, 1445, 1417, 1378 (CH-, CH₂-, CH₃-Deform.), 1314, 1255, 1166, 1129 (C-N-Valenz), 906, 803, 785, 758, 737, 691, 640 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.16-1.38$ [m, 2H, CH_{2,Cy}], 1.55–1.57, 1.58–1.61 [2m, 2H, CH_{2,Cy}], 1.60, 1.63 [2s, 6H, C_q(CH₃)₂], 1.73–1.85 [m, 3H, CH_{2,Cy}], 2.12–2.17, 2.78–2.85, 3.08–3.17 [3m, 3H, CH_{2,Cy}], 4.10 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.29 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.97 [s, 1H, NCH], 7.29–7.36 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.39–7.42 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 24.58$, 25.19 [CH_{2,Cy}], 25.61 [C_q(<u>C</u>H₃)₂], 25.95 [CH_{2,Cy}], 31.50 [C_q(<u>C</u>H₃)₂], 37.22, 37.35 [CH_{2,Cy}], 44.78 [CH₂Cl], 51.08 [S<u>C</u>_q(CH₃)₂], 65.65 [NCH], 81.97 [S<u>C</u>_q(CH_{2,Cy})₂], 85.58 [C_q=<u>C</u>_qCH], 87.31 [<u>C</u>_q=C_qCH], 121.13 [C_{q,Ar}], 128.55 [2 *m*-CH_{Ar}], 129.00 [*p*-CH_{Ar}], 131.80 [2 *o*-CH_{Ar}], 165.29 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 384.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₀H₂₄ClNNaOS]⁺: 384.1165, gefunden: 384.1172.—

(RS)-14-Chloracetyl-15-phenylethinyl-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (6d)

Die Darstellung erfolgt gemäß **AAV 2** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6d** als gelber Feststoff erhalten.

Ausbeute: 387 mg (0.96 mmol, 48 %).---

 $M = 401.99 \text{ g/mol}, C_{23}H_{28}ClNOS$

Schmelzpunkt: 138–140 °C.—

1. DC (*n*-Hexan/tert-Butylmethylether 19:1): $R_f = 0.19$.—

2. DC (Dichlormethan): $R_f = 0.51$.—

IR (ATR): $\tilde{v} = 2922$, 2853 (CH-, CH₂-Valenz), 2324 (C=C-Valenz), 1670 (C=O-Valenz), 1491 (Ringschwingung), 1456, 1445, 1408 (CH-, CH₂-Deform.), 1366, 1310, 1255, 1237, 1180, 1125, 1072 (C-N-Valenz), 951, 927, 903, 800, 764, 695, 613 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.15-1.27$ [m, 1H, CH_{2,Cy}], 1.31–1.41 [m, 2H, CH_{2,Cy}], 1.42–1.51 [m, 1H, CH_{2,Cy}], 1.56–1.70 [m, 6H, CH_{2,Cy}], 1.71–1.91 [m, 5H, CH_{2,Cy}], 1.88–1.91, 1.93–2.01, 2.03–2.11, 2.75–2.84, 3.04–3.13 [5m, 5H, CH_{2,Cy}], 4.10 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.32 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 5.09 [s, 1H, NCH], 7.28–7.35 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.39–7.43 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.28$, 24.59, 24.66, 25.10, 25.59, 25.84, 35.28, 37.19, 37.67, 38.51 [CH_{2,Cy}], 44.82 [CH₂Cl], 56.52 [SC_q(CH_{2,Cy})₂CH], 80.71 [SC_q(CH_{2,Cy})₂N], 85.08 [C_q=C_qCH], 87.34 [C_q=C_qCH], 122.16 [C_{q,Ar}], 128.53 [2 *m*-CH_{Ar}], 128.95 [*p*-CH_{Ar}], 131.80 [2 *o*-CH_{Ar}], 165.46 [C_q=O] ppm.—

Das Signal resultierend aus dem Kohlenstoffatom des [NCH]-Fragments ist in dem NMR-Spektrum nicht zu erkennen.

MS (ESI, TOF): m/z (%) = 424.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₃H₂₈ClNNaOS]⁺: 424.1478, gefunden: 424.1467.—

(RS)-3-Chloracetyl-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-oxazolidin (6e)

Die Darstellung erfolgt gemäß AAV 2 aus 2.00 mmol (254 mg) 3-Oxazolin 2, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6e** als farbloser Feststoff erhalten.

Ausbeute: 480 mg (1.57 mmol, 79 %).—

 $M = 305.80 \text{ g/mol}, C_{17}H_{20}ClNO_2$

Schmelzpunkt: 88–90 °C.—

1. DC (*n*-Hexan/*tert*-Butylmethylether 19:1): $R_f = 0.08$.—

2. DC (Dichlormethan): $R_f = 0.45$.—

IR (ATR): $\tilde{v} = 2931$, 2858 (CH-, CH₂-, CH₃-Valenz), 2176 (C=C-Valenz), 1664 (C=O-Valenz), 1489 (Ringschwingung), 1444, 1379 (CH-, CH₂-, CH₃-Deform.), 1302, 1262, 1247, 1208, 1196, 1166, 1121, 1100 (C-N-Valenz), 1018 (C-O-C-Valenz), 954, 929, 903, 840, 794, 760, 701, 684, 619 (=CH-Deform., C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.45$, 1.55 [2s, 6H, OC_q(CH₃)₂CH], 1.69, 1.72 [2s, 6H, OC_q(CH₃)₂N], 4.16 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.36 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.75 [s, 1H, NCH], 7.30–7.38 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.40–7.43 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.67$ [OC_q(<u>C</u>H₃)₂CH], 27.40, 27.42 [OC_q(<u>C</u>H₃)₂N],

28.25 [OC_q(<u>CH</u>₃)₂CH], 43.46 [CH₂Cl], 58.25 [NCH], 81.14 [O<u>C</u>_q(CH₃)₂CH], 84.53 [C_q=<u>C</u>_qCH], 87.65 [<u>C</u>_q=C_qCH], 96.58 [O<u>C</u>_q(CH₃)₂N], 121.82 [C_{q,Ar}], 128.61 [2 *m*-CH_{Ar}], 129.16 [*p*-CH_{Ar}], 131.76 [2 *o*-CH_{Ar}], 164.11 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 328.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für [C₁₇H₂₀ClNNaO₂]⁺: 328.1080, gefunden: 328.1091.—

(*RS*)-3-Chloracetyl-4-(4-nitrophenylethinyl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**6f**)

Die Darstellung erfolgt gemäß AAV 2 aus 1.00 mmol (183 mg) 3-Thiazolin 1b, 2.00 mmol (226 mg) Chloracetylchlorid, 1.00 mmol (190 mg) Kupfer(I)-iodid, 6.00 mmol (776 mg) N,N-Diisopropylethylamin und 1.50 mmol (221 mg) 4-Nitrophenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6f** als gelber Feststoff erhalten.

Ausbeute: 127 mg (0.31 mmol, 31 %).--

 $M = 406.93 \text{ g/mol}, C_{20}H_{23}ClN_2O_3S$

Schmelzpunkt: 170–172 °C.—

1. DC (*n*-Hexan/tert-Butylmethylether 19:1): $R_f = 0.09$.—

2. DC (Dichlormethan): $R_f = 0.62$.—

IR (ATR): $\tilde{v} = 3108$, 3068, 3048 (=CH-Valenz), 2978, 2925, 2854 (CH-, CH₂-, CH₃-Valenz), 2225 (C=C-Valenz), 1664 (C=O-Valenz), 1589 (Ringschwingung), 1515, 1505 (NO₂-Valenz), 1444, 1386, 1376 (CH-, CH₂-, CH₃-Deform.), 1343, 1304, 1290, 1259, 1208, 1196, 1162, 1147, 1129, 1105, 1068 (C-N-Valenz), 997, 952, 895, 867, 855, 841, 750, 711, 690, 646 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.33-1.46$ [m, 2H, CH_{2,Cy}], 1.61–1.72 [m, 3H, CH_{2,Cy}], 1.73–1.89 [m, 3H, CH_{2,Cy}], 1.92, 1.95 [2s, 6H, C_q(CH₃)₂], 2.00–2.09 [m, 2H, CH_{2,Cy}], 4.08 [d, ²J = 12.5 Hz, 1H, CH₂Cl], 4.27 [d, ²J = 12.5 Hz, 1H, CH₂Cl], 5.11 [s, 1H, NCH], 7.54–7.58 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.17–8.22 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.— ¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.18$, 24.69, 25.48 [CH_{2,Cy}], 29.94, 32.21 [C_q(<u>CH₃)₂], 35.15, 38.39 [CH_{2,Cy}], 44.11 [CH₂Cl], 57.58 [SC_q(CH_{2,Cy})₂], 63.83 [NCH], 73.22 [SC_q(CH₃)₂], 85.60 [C_q=C_qCH], 90.15 [C_q=C_qCH], 123.82 [2 *o*-CH_{Ar}(NO₂)], 128.78 [C_{q,Ar}C_q=C_q], 132.64 [2 *m*-CH_{Ar}(NO₂)], 147.62 [C_{q,Ar}NO₂], 165.16 [C_q=O] ppm.—</u>

MS (ESI, TOF): m/z (%) = 429.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{20}H_{23}ClN_2NaO_3S]^+$: 429.1016, gefunden: 429.1013.—

(*RS*)-3-Chloracetyl-4-(4-methoxyphenylethinyl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**6g**)

Die Darstellung erfolgt gemäß AAV 2 aus 1.00 mmol (183 mg) 3-Thiazolin 1b, 2.00 mmol (226 mg) Chloracetylchlorid, 1.00 mmol (190 mg) Kupfer(I)-iodid, 6.00 mmol (776 mg) N,N-Diisopropylethylamin und 1.50 mmol (198 mg) 4-Methoxyphenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6g** als gelbes Öl erhalten.

Ausbeute: 51 mg (0.13 mmol, 13 %).— M = 391.95 g/mol, $C_{21}H_{26}ClNO_2S$ 1. DC (*n*-Hexan/*tert*-Butylmethylether 19:1): $R_f = 0.29$.— 2. DC (Dichlormethan): $R_f = 0.49$.—

IR (ATR): $\tilde{v} = 3096$ (=CH-Valenz), 2959, 2922 (CH-, CH₂-, CH₃-Valenz), 2852 (O-CH₃-Valenz), 2223 (C=C-Valenz), 1658 (C=O-Valenz), 1603, 1510 (Ringschwingung), 1445, 1388, 1376 (CH-, CH₂-, CH₃-Deform.), 1359, 1290, 1251, 1206, 1196, 1179, 1162, 1113, 1068 (C-N-Valenz), 1031 (C-O-C-Valenz), 995, 953, 894, 848, 833, 805, 715, 689, 649 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.32-1.44$ [m, 2H, CH_{2,Cy}], 1.58–1.71 [m, 3H, CH_{2,Cy}], 1.72–1.89 [m, 3H, CH_{2,Cy}], 1.92, 1.94 [2s, 6H, C_q(CH₃)₂], 1.98–2.08 [m, 2H, CH_{2,Cy}], 3.81 [s, 3H, OCH₃], 4.10 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.32 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 5.04 [s, 1H, NCH], 6.81–6.86 [m, 2H, *o*-CH_{Ar}(OCH₃)], 7.32–7.36 [m, 2H, *m*-CH_{Ar}(OCH₃)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.28$, 24.73, 25.57 [CH_{2,Cy}], 29.82, 32.35 [C_q(<u>C</u>H₃)₂], 35.18, 38.59 [CH_{2,Cy}], 44.31 [CH₂Cl], 55.49 [OCH₃], 57.64 [S<u>C</u>_q(CH_{2,Cy})₂], 64.06 [NCH], 73.06 [S<u>C</u>_q(CH₃)₂], 83.33 [C_q=<u>C</u>_qCH], 87.59 [<u>C</u>_q=C_qCH], 114.16 [<u>C</u>_{q,Ar}C_q=C_q, 2 *o*-<u>C</u>H_{Ar}(OCH₃)], 133.25 [2 *m*-<u>C</u>H_{Ar}(OCH₃)], 160.13 [<u>C</u>_{q,Ar}OCH₃], 165.36 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 414.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{21}H_{26}CINNaO_2S]^+$: 414.1270, gefunden: 414.1276—

(RS)-3-Chloracetyl-4-(hex-1-in-1-yl)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (6h)

Die Darstellung erfolgt gemäß AAV 2 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) N,N-Diisopropylethylamin und 3.00 mmol (246 mg) 1-Hexin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6h** als gelbes Öl erhalten.

Ausbeute: 311 mg (0.91 mmol, 45 %).—

 $M = 341.94 \text{ g/mol}, C_{18}H_{28}ClNOS$

1. DC (*n*-Hexan/tert-Butylmethylether 19:1): $R_f = 0.28$.—

2. DC (Dichlormethan): $R_f = 0.56$.—

IR (ATR): $\tilde{v} = 2975$, 2932, 2858 (CH-, CH₂-, CH₃-Valenz), 2240 (C=C-Valenz), 1660 (C=O-Valenz), 1447, 1416, 1376 (CH-, CH₂-, CH₃-Deform.), 1360, 1316, 1266, 1243, 1209, 1194, 1168, 1132, 1116, 1090 (C-N-Valenz), 968, 933, 894, 791, 709, 678, 618 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.90$ [t, ³J = 7.3 Hz, 3H, CH₃CH₂], 1.30–1.44 [m, 4H, 2 CH_{2,Cy}, 2 CH₃CH₂], 1.45–1.52 [m, 2H, CH₂CH₂CH₃], 1.53–1.65 [m, 3H, CH_{2,Cy}], 1.66–1.81 [m, 3H, CH_{2,Cy}], 1.86, 1.90 [2s, 6H, C_q(CH₃)₂], 1.91–1.97 [m, 2H, CH_{2,Cy}], 2.22 [td, ³J = 7.0 Hz, ⁵J = 2.1 Hz, 2H, CH₂C_q=C_q], 4.06 [d, ²J = 12.5 Hz, 1H, CH₂Cl], 4.26 [d, ²J = 12.5 Hz, 1H, CH₂Cl], 4.81 [t, ⁵J = 2.0 Hz, 1H, NCH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 13.64$ [CH₃CH₂], 18.53 [CH₂C_q=C_q], 22.08 [CH₃CH₂], 23.31, 24.69, 25.57 [CH_{2,Cy}], 29.67 [C_q(CH₃)₂], 30.70 [CH₂CH₂CH₂], 32.37 [C_q(CH₃)₂], 35.15, 38.61 [CH_{2,Cy}], 44.22 [CH₂Cl], 57.32 [SC_q(CH_{2,Cy})₂], 63.56 [NCH], 72.93 [SC_q(CH₃)₂], 75.81 [C_q=C_qCH], 88.52 [C_q=C_qCH], 165.29 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 364.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₈ClNNaOS]⁺: 364.1478, gefunden: 364.1473.—

(RS)-3-Chloracetyl-4-trimethylsilylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (6j)

Die Darstellung erfolgt gemäß AAV 2 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 4.00 mmol (452 mg) Chloracetylchlorid, 2.00 mmol (382 mg) Kupfer(I)-iodid, 12.00 mmol (1551 mg) N,N-Diisopropylethylamin und 3.00 mmol (295 mg) Trimethylsilylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 19:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **6j** als gelber Feststoff erhalten.

Ausbeute: 210 mg (0.59 mmol, 30 %).--

 $M = 358.01 \text{ g/mol}, C_{17}H_{28}ClNOSSi$

Schmelzpunkt: 98–100 °C.—

1. DC (*n*-Hexan/tert-Butylmethylether 19:1): $R_f = 0.25$.—

2. DC (Dichlormethan): $R_f = 0.54$.—

IR (ATR): $\tilde{v} = 2931$, 2858 (CH-, CH₂-, CH₃-Valenz), 2169 (C=C-Valenz), 1664 (C=O-Valenz), 1444, 1379 (CH-, CH₂-, CH₃-Deform.), 1302, 1262, 1247, 1208, 1195, 1166, 1120, 1100 (C-N-Valenz), 1018, 953, 903, 841, 793, 760, 702, 653, 619 (C-S-Valenz, C-Si-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.17$ [s, 9H, Si(CH₃)₃], 1.30–1.43 [m, 2H, CH_{2,Cy}], 1.56–1.84 [m, 6H, CH_{2,Cy}], 1.86, 1.90 [2s, 6H, C_q(CH₃)₂], 1.92–2.00 [m, 2H, CH_{2,Cy}], 4.05 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.24 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 4.83 [s, 1H, NCH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = -0.16$ [3 Si(CH₃)₃], 23.28, 24.68, 25.54 [CH_{2,Cy}], 29.57, 32.38 [C_q(<u>C</u>H₃)₂], 35.09, 38.63 [CH_{2,Cy}], 44.17 [CH₂Cl], 57.04 [S<u>C</u>_q(CH_{2,Cy})₂], 63.86 [NCH], 73.18 [S<u>C</u>_q(CH₃)₂], 93.18 [<u>C</u>_q=C_qCH], 101.06 [C_q=<u>C</u>_qCH], 165.33 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 380.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{17}H_{28}CINNaOSSi]^+$: 380.1247, gefunden: 380.1247.—

8.2.5 Darstellung der tricyclischen 3,6-Dihydropyrazin-2(1H)-one

(*RS*)-10,10a-Dihydro-1-phenyl-8,8,10,10-tetramethyl-8*H*-thiazolo[3,4-a][1,2,3]triazolo-[5,1-c]pyrazin-6(5*H*)-on (**7**a)

Die Darstellung erfolgt gemäß **AAV 3** aus 2.00 mmol (644 mg) Propargylamid **6a** und 10.00 mmol (650 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7a** als farbloser Feststoff erhalten.

Ausbeute: 562 mg (1.71 mmol, 86 %).---

 $M = 328.43 \text{ g/mol}, C_{17}H_{20}N_4OS$

Schmelzpunkt: 150–152 °C.—

DC (Dichlormethan/tert-Butylmethylether 4:1): R_f = 0.33.—

IR (ATR): $\tilde{v} = 3057$ (=CH-Valenz), 2973, 2931 (CH-, CH₂-, CH₃-Valenz), 1656 (C=O-Valenz), 1513 (Ringschwingung), 1483, 1440, 1420, 1381 (CH-, CH₂-, CH₃-Deform.), 1365, 1348, 1319, 1299, 1276, 1246, 1212, 1189, 1164, 1130, 1109, 1072 (C-N-Valenz), 1011, 971, 918, 875, 855, 764, 726, 697 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.91$, 1.08 [2s, 6H, SC_q(CH₃)₂CH], 1.87, 2.10 [2s, 6H, SC_q(CH₃)₂N], 5.02 [dd, ²J = 17.9 Hz, ⁵J = n.a., 1H, CH₂N], 5.19 [dd, ²J = 17.9 Hz, ⁵J = n.a., 1H, CH₂N], 5.47–5.50 [m, 1H, NCH], 7.38–7.42 [m, 1H, *p*-CH_{Ar}], 7.43–7.48 [m, 2H, *m*-CH_{Ar}], 7.55–7.59 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 25.11$, 26.00 [SC_q(<u>C</u>H₃)₂CH], 30.55, 31.88 [SC_q(<u>C</u>H₃)₂N], 49.96 [CH₂], 55.19 [S<u>C</u>_q(CH₃)₂CH], 66.10 [NCH], 70.85 [S<u>C</u>_q(CH₃)₂N], 124.70 [C_{q,Ar}<u>C</u>_{q,Ar}CH], 128.74, 128.98 [2 *o*-CH_{Ar}, 2 *m*-CH_{Ar}], 129.11 [*p*-CH_{Ar}], 131.62 [<u>C</u>_{q,Ar}CH_{Ar}], 144.02 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 160.27 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 351.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₇H₂₀N₄NaOS]⁺: 351.1256, gefunden: 351.1260.—

(*RS*)-8',8'-*Dimethyl*-1'-*phenyl*-8'*H*,10*a*'*H*-*spiro*(*cyclohexan*-1,10'-*thiazolo*[3,4-*a*][1,2,3]*triazolo*[5,1-*c*]*pyrazin*)-6'(5'*H*)-*on* (**7b**)

Die Darstellung erfolgt gemäß **AAV 3** aus 0.41 mmol (150 mg) Propargylamid **6b** und 2.07 mmol (135 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7b** als farbloser Feststoff erhalten.

Ausbeute: 124 mg (0.34 mmol, 82 %).---

 $M = 368.50 \text{ g/mol}, C_{20}H_{24}N_4OS$

Schmelzpunkt: 197–199 °C.—

DC (Dichlormethan/tert-Butylmethylether 4:1): $R_f = 0.48$.—

IR (ATR): $\tilde{v} = 2975$, 2927, 2859 (CH-, CH₂-, CH₃-Valenz), 1663 (C=O-Valenz), 1518 (Ringschwingung), 1486, 1437, 1418, 1381 (CH-, CH₂-, CH₃-Deform.), 1366, 1351, 1289, 1249, 1212, 1159, 1110, 1072 (C-N-Valenz), 1013, 965, 920, 872, 775, 761, 695, 651 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.72-0.83$ [m, 1H, CH_{2,Cy}], 0.87-1.09 [m, 3H, CH_{2,Cy}], 1.35-1.44 [m, 2H, CH_{2,Cy}], 1.48-1.55 [m, 2H, CH_{2,Cy}], 1.56-1.69 [m, 2H, CH_{2,Cy}], 1.87, 2.10 [2s, 6H, C_q(CH₃)₂], 5.05 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.6 Hz, 1H, NCH₂], 5.14 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.5 Hz, 1H, NCH₂], 5.53 [dd, ⁵*J* = 1.5 Hz, ⁵*J* = 1.5 Hz, 1H, NCH₂], 7.38-7.42 [m, 1H, *p*-CH_{Ar}], 7.43-7.48 [m, 2H, *m*-CH_{Ar}], 7.60-7.63 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): δ = 21.91, 25.27, 25.33 [CH_{2,Cy}], 31.06 [C_q(<u>C</u>H₃)₂], 31.44 [CH_{2,Cy}], 32.17 [C_q(<u>C</u>H₃)₂], 36.66 [CH_{2,Cy}], 50.29 [NCH₂], 63.38 [S<u>C</u>_q(CH_{2,Cy})₂], 65.73 [NCH], 70.58 [S<u>C</u>_q(CH₃)₂], 124.31 [C_{q,Ar}C_{q,Ar}CH], 128.43 [2 *o*-CH_{Ar}], 128.98 [*p*-CH_{Ar}], 129.03 [2 *m*-CH_{Ar}], 131.56 [<u>C</u>_{q,Ar}CH_{Ar}], 144.03 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 160.25 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 391.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₀H₂₄N₄NaOS]⁺: 391.1569, gefunden: 391.1561.—

(*RS*)-10',10'-Dimethyl-1'-phenyl-10',10a'-dihydrospiro(cyclohexan-1,8'-thiazolo[3,4-a]-[1,2,3]triazolo[5,1-c]pyrazin)-6'(5'H)-on (**7c**)

Die Darstellung erfolgt gemäß **AAV 3** aus 0.11 mmol (40 mg) Propargylamid **6c** und 0.55 mmol (36 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7c** als farbloses Öl erhalten.

Ausbeute: 29 mg (0.08 mmol, 73 %).---

 $M = 368.50 \text{ g/mol}, C_{20}H_{24}N_4OS$

DC (Dichlormethan/tert-Butylmethylether 4:1): $R_f = 0.59$.

IR (ATR): $\tilde{v} = 3057$ (=CH-Valenz), 2964, 2930, 2857 (CH-, CH₂-, CH₃-Valenz), 1664 (C=O-Valenz), 1509 (Ringschwingung), 1458, 1448, 1433, 1414 (CH-, CH₂-, CH₃-Deform.), 1368, 1342, 1264, 1251, 1166, 1128, 1073 (C-N-Valenz), 1011, 905, 872, 763, 728, 698, 647 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.92$, 1.05 [2s, 6H, C_q(CH₃)₂], 1.38–1.53 [m, 2H, CH_{2,Cy}], 1.61–1.68 [m, 2H, CH_{2,Cy}], 1.74–1.93 [m, 3H, CH_{2,Cy}], 2.06–2.13, 2.34–2.42, 3.42–3.50 [3m, 3H, CH_{2,Cy}], 5.03 [dd, ²*J* = 17.8 Hz, ⁵*J* = 1.8 Hz, 1H, NCH₂], 5.19 [dd, ²*J* = 17.8 Hz, ⁵*J* = 1.6 Hz, 1H, NCH₂], 5.50 [dd, ⁵*J* = 1.6 Hz, ⁵*J* = 1.6 Hz, 1H, NCH], 7.38–7.42 [m, 1H, *p*-CH_{Ar}], 7.43–7.47 [m, 2H, *m*-CH_{Ar}], 7.56–7.59 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.88$, 24.58 [CH_{2,Cy}], 25.07 [C_q(<u>C</u>H₃)₂], 26.00 [CH_{2,Cy}], 26.11 [C_q(<u>C</u>H₃)₂], 37.81, 37.90 [CH_{2,Cy}], 50.26 [NCH₂], 53.91 [S<u>C</u>_q(CH₃)₂], 65.88 [NCH], 78.45 [S<u>C</u>_q(CH_{2,Cy})₂], 124.80 [C_{q,Ar}C_{q,Ar}CH], 128.64 [2 *o*-CH_{Ar}], 128.99 [2 *m*-CH_{Ar}], 129.07 [*p*-CH_{Ar}], 131.59 [<u>C</u>_{q,Ar}CH_{Ar}], 143.96 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 160.42 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 391.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₀H₂₄N₄NaOS]⁺: 391.1569, gefunden: 391.1575.—

(*RS*)-1'-Phenyl-10a'H-dispiro(cyclohexan-1,8'-thiazolo[3,4-a][1,2,3]triazolo[5,1-c]pyrazin-10',1''-cyclohexan)-6'(5'H)-on (**7d**)

Die Darstellung erfolgt gemäß **AAV 3** aus 0.25 mmol (100 mg) Propargylamid **6d** und 1.25 mmol (81 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7d** als farbloser Feststoff erhalten.

Ausbeute: 92 mg (0.23 mmol, 92 %).—

 $M = 408.56 \text{ g/mol}, C_{23}H_{28}N_4OS$

Schmelzpunkt: 223–225 °C.—

DC (Dichlormethan/tert-Butylmethylether 4:1): $R_f = 0.74$.—

IR (ATR): $\tilde{v} = 2933$, 2855 (CH-, CH₂-, CH₃-Valenz), 1667 (C=O-Valenz), 1510 (Ringschwingung), 1447, 1415 (CH-, CH₂-, CH₃-Deform.), 1368, 1337, 1289, 1264, 1246, 1197, 1146, 1116, 1071 (C-N-Valenz), 1010, 905, 864, 770, 759, 735, 692 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.71-0.83$, 0.84–0.91 [2m, 2H, CH_{2,Cy}], 0.99–1.14 [m, 2H, CH_{2,Cy}], 1.24–1.33 [m, 1H, CH_{2,Cy}], 1.35–1.43 [m, 2H, CH_{2,Cy}], 1.47–1.57 [m, 4H, CH_{2,Cy}], 1.58–1.71 [m, 3H, CH_{2,Cy}], 1.72–1.79 [m, 1H, CH_{2,Cy}], 1.81–1.95 [m, 2H, CH_{2,Cy}], 2.10–2.17, 2.23–2.30, 3.40–3.48 [3m, 3H, CH_{2,Cy}], 5.05 [dd, ²*J* = 17.6 Hz, ⁵*J* = 1.4 Hz, 1H, NCH₂], 5.13 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.4 Hz, 1H, NCH₂], 5.55 [dd, ⁵*J* = 1.4 Hz, ⁵*J* = 1.4 Hz, 1H, NCH], 7.37–7.41 [m, 1H, *p*-CH_{Ar}], 7.42–7.47 [m, 2H, *m*-CH_{Ar}], 7.60–7.63 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = 21.85, 23.78, 24.70, 25.14, 25.30, 25.97, 31.33, 36.58, 38.34, 38.36 [CH_{2,Cy}], 50.61 [NCH₂], 61.72 [SC_q(CH_{2,Cy})₂CH], 65.46 [NCH], 78.10 [SC_q(CH_{2,Cy})₂N], 124.40 [C_{q,Ar}C_{q,Ar}CH], 128.28 [2 *o*-CH_{Ar}], 128.90 [*p*-CH_{Ar}], 129.01 [2 *m*-CH_{Ar}], 131.49 [C_{q,Ar}CH_{Ar}], 143.94 [C_{q,Ar}C_{q,Ar}CH], 160.40 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 431.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₃H₂₈N₄NaOS]⁺: 431.1882, gefunden: 431.1868.—

(*RS*)-10,10a-Dihydro-1-phenyl-8,8,10,10-tetramethyl-8*H*-oxazolo[3,4-a][1,2,3]triazolo-[5,1-c]pyrazin-6(5*H*)-on (**7e**)

Die Darstellung erfolgt gemäß **AAV 3** aus 1.00 mmol (306 mg) Propargylamid **6e** und 5.00 mmol (325 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7e** als farbloser Feststoff erhalten.

Ausbeute: 262 mg (0.84 mmol, 84 %).---

 $M = 312.37 \text{ g/mol}, C_{17}H_{20}N_4O_2$

Schmelzpunkt: 198–200 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 4:1): $R_f = 0.49$.

IR (ATR): $\tilde{v} = 2977$, 2935 (CH-, CH₂-, CH₃-Valenz), 1666 (C=O-Valenz), 1511 (Ringschwingung), 1484, 1439, 1415, 1373 (CH-, CH₂-, CH₃-Deform.), 1352, 1291, 1261, 1236, 1207, 1153, 1124, 1073 (C-N-Valenz), 1016 (C-O-C-Valenz), 1000, 921, 907, 868, 843, 762, 700, 651 (=CH-Deform.) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.89$, 0.94 [2s, 6H, OC_q(CH₃)₂CH], 1.61, 1.76 [2s, 6H, OC_q(CH₃)₂N], 4.94 [dd, ²J = 17.9 Hz, ⁵J = 2.5 Hz, 1H, NCH₂], 4.97 [dd, ⁵J = 2.5 Hz, ⁵J = 0.9 Hz, 1H, NCH], 5.30 [dd, ²J = 17.8 Hz, ⁵J = 1.0 Hz, 1H, NCH₂], 7.42–7.48 [m, 5H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.02$ [OC_q(<u>C</u>H₃)₂CH], 27.02, 27.03, 27.12 [OC_q(<u>C</u>H₃)₂CH, OC_q(<u>C</u>H₃)₂N], 49.67 [CH₂], 61.34 [NCH], 89.67 [O<u>C_q</u>(CH₃)₂CH], 94.12 [O<u>C_q</u>(CH₃)₂N], 125.21 [C_{q,Ar}C_{q,Ar}CH], 128.88, 129.54, 129.87 [5 CH_{Ar}], 130.98 [<u>C_{q,Ar}CH_{Ar}], 143.88 [C_{q,Ar}C_{q,Ar}CH], 159.28 [C_q=O] ppm.—</u>

MS (ESI, TOF): m/z (%) = 335.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{17}H_{20}N_4NaO_2]^+$: 335.1484, gefunden: 335.1481.—

(*RS*)-8',8'-Dimethyl-1'-(4-methoxyphenyl)-8'H,10a'H-spiro(cyclohexan-1,10'-thiazolo-[3,4-a][1,2,3]triazolo[5,1-c]pyrazin)-6'(5'H)-on (**7g**)

Die Darstellung erfolgt gemäß AAV 3 aus 0.08 mmol (30 mg) Propargylamid 6g und 0.40 mmol (26 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam 7g als farbloser Feststoff erhalten.

Ausbeute: 29 mg (0.07 mmol, 88 %).—

 $M = 398.53 \text{ g/mol}, C_{21}H_{26}N_4O_2S$

Schmelzpunkt: 186–188 °C.—

DC (Dichlormethan/tert-Butylmethylether 4:1): $R_f = 0.52$.

IR (ATR): $\tilde{v} = 2931$, 2859 (CH-, CH₂-, CH₃-Valenz), 1665 (C=O-Valenz), 1514 (Ringschwingung), 1444, 1421, 1379 (CH-, CH₂-, CH₃-Deform.), 1302, 1247, 1209, 1195, 1166, 1121, 1101 (C-N-Valenz), 1036, 1017 (C-O-C-Valenz), 954, 903, 841, 794, 761, 703, 652 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.73-1.04$ [m, 3H, CH_{2,Cy}], 1.08–1.16 [m, 1H, CH_{2,Cy}], 1.39–1.47 [m, 2H, CH_{2,Cy}], 1.48–1.57 [m, 3H, CH_{2,Cy}], 1.59–1.69 [m, 1H, CH_{2,Cy}], 1.86, 2.10 [2s, 6H, C_q(CH₃)₂], 3.86 [s, 3H, OCH₃], 5.03 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.5 Hz, 1H, NCH₂], 5.13 [dd, ²*J* = 17.8 Hz, ⁵*J* = 1.4 Hz, 1H, NCH₂], 5.51 [dd, ⁵*J* = 1.5 Hz, ⁵*J* = 1.5 Hz, 1H, NCH], 6.96–7.00 [m, 2H, *o*-CH_{Ar}(OCH₃)], 7.52–7.56 [m, 2H, *m*-CH_{Ar}(OCH₃)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 21.90, 25.29, 25.35 [CH_{2,Cy}], 31.06 [C_q(<u>C</u>H₃)₂], 31.41 [CH_{2,Cy}], 32.19 [C_q(<u>C</u>H₃)₂], 36.62 [CH_{2,Cy}], 50.27 [NCH₂], 55.49 [OCH₃], 63.36 [S<u>C</u>_q(CH_{2,Cy})₂], 65.72 [NCH], 70.55 [S<u>C</u>_q(CH₃)₂], 114.45 [2$ *o*-<u>C</u>H_{Ar}OCH₃], 123.78, 123.85 [C_{q,Ar}C_{q,Ar}CH, C_{q,Ar}C_{q,Ar}CH_{Ar}], 129.62 [2*m*-<u>C</u>H_{Ar}(OCH₃)], 143.84 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 160.08 [<u>C</u>_{q,Ar}OCH₃], 160.30 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 399.2 [MH]⁺ (45).—

HRMS (ESI, TOF): Berechnet für [C₂₁H₂₇N₄O₂S]⁺: 399.1855, gefunden: 399.1870.—

(*RS*)-1'-*n*-*Butyl*-8',8'-*dimethyl*-8'*H*,10*a*'*H*-*spiro*(*cyclohexan*-1,10'-*thiazolo*[3,4-*a*][1,2,3]*triazolo*[5,1-*c*]*pyrazin*)-6'(5'*H*)-*on* (**7h**)

Die Darstellung erfolgt gemäß **AAV 3** aus 0.40 mmol (136 mg) Propargylamid **6h** und 2.00 mmol (130 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam **7h** als farbloser Feststoff erhalten.

Ausbeute: 114 mg (0.33 mmol, 83 %).--

 $M = 348.51 \text{ g/mol}, C_{18}H_{28}N_4OS$

Schmelzpunkt: 138–140 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 4:1): $R_f = 0.45$.—

IR (ATR): $\tilde{v} = 2931$, 2859 (CH-, CH₂-, CH₃-Valenz), 1670 (C=O-Valenz), 1508 (Ringschwingung), 1419, 1385 (CH-, CH₂-, CH₃-Deform.), 1345, 1285, 1262, 1213, 1191, 1163, 1134, 1107, 1059 (C-N-Valenz), 966, 874, 804, 647, 623 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.91-1.05$ [m, 2H, CH_{2,Cy}], 0.95 [t, ³*J* = 7.3 Hz, 3H, CH₃CH₂], 1.21–1.27 [m, 1H, CH_{2,Cy}], 1.36–1.45 [m, 2H, CH₃CH₂], 1.53–1.59 [m, 1H, CH_{2,Cy}], 1.61–1.76 [m, 4H, CH_{2,Cy}], 1.77–1.80 [m, 2H, CH₂CH₂CH₃], 1.79 [s, 3H, C_q(CH₃)₂], 1.81–1.85, 1.94–2.00 [2m, 2H, CH_{2,Cy}], 2.09 [s, 3H, C_q(CH₃)₂], 2.62–2.71, 2.75–2.83 [m, 2H, CH₂C_{q,Ar}], 4.99–5.01 [m, 2H, NCH₂], 5.02–5.03 [m, 1H, NCH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 13.94$ [CH₃CH₂], 21.92 [CH_{2,Cy}], 22.71 [CH₃CH₂], 25.40, 25.47 [CH₂CH₂CH₃, CH_{2,Cy}], 26.29 [CH₂C_{q,Ar}], 31.26 [C_q(CH₃)₂], 31.33, 31.71 [CH_{2,Cy}], 32.13 [C_q(CH₃)₂], 36.38 [CH_{2,Cy}], 50.47 [NCH₂], 62.83 [SC_q(CH_{2,Cy})₂], 65.57 [NCH], 70.78 [SC_q(CH₃)₂], 123.85 [C_{q,Ar}CH], 144.24 [C_{q,Ar}CH₂], 160.55 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 371.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₈N₄NaOS]⁺: 371.1882, gefunden: 371.1878.—
(*RS*)-8',8'-Dimethyl-1'-trimethylsilyl-8'H,10a'H-spiro(cyclohexan-1,10'-thiazolo[3,4-a]-[1,2,3]triazolo[5,1-c]pyrazin)-6'(5'H)-on (**7i**)

Die Darstellung erfolgt gemäß AAV 3 aus 0.30 mmol (107 mg) Propargylamid 6i und 1.50 mmol (98 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 4:1) wird das tricyclische Lactam 7i als farbloser Feststoff erhalten.

Ausbeute: 106 mg (0.29 mmol, 97 %).---

 $M = 364.58 \text{ g/mol}, C_{17}H_{28}N_4OSSi$

Schmelzpunkt: 144–146 °C.—

DC (Dichlormethan/tert-Butylmethylether 4:1): $R_f = 0.34$.—

IR (ATR): $\tilde{v} = 2930$, 2856 (CH-, CH₂-, CH₃-Valenz), 1673 (C=O-Valenz), 1410 (CH-, CH₂-, CH₃-Deform.), 1369, 1345, 1282, 1249, 1213, 1189, 1147, 1109 (C-N-Valenz), 965, 868, 839, 762, 696, 641 (C-S-Valenz, C-Si-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.41$ [s, 9H, Si(CH₃)₃], 0.79–0.86, 0.90–1.00, 1.21–1.31, 1.50–1.56, 1.59–1.63 [5m, 5H, CH_{2,Cy}], 1.64–1.71 [m, 2H, CH_{2,Cy}], 1.74–1.86 [m, 2H, CH_{2,Cy}], 1.78 [s, 3H, C_q(CH₃)₂], 1.99–2.05 [m, 1H, CH_{2,Cy}], 2.11 [s, 3H, SC_q(CH₃)₂], 5.01 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.4 Hz, 1H, NCH₂], 5.07 [dd, ²*J* = 17.7 Hz, ⁵*J* = 1.3 Hz, 1H, NCH₂], 5.08 [dd, ⁵*J* = 1.3 Hz, ⁵*J* = 1.3 Hz, 1H, NCH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 0.11$ [3 Si(CH₃)₃], 21.58, 25.11, 25.34 [CH_{2,Cy}], 31.74 [C_q(<u>CH₃</u>)₂], 31.78 [CH_{2,Cy}], 31.91 [C_q(<u>CH₃</u>)₂], 36.59 [CH_{2,Cy}], 50.58 [NCH₂], 62.36 [S<u>C_q</u>(CH_{2,Cy})₂], 65.88 [NCH], 70.85 [S<u>C_q</u>(CH₃)₂], 132.68 [<u>C_q,Ar</u>CH], 142.78 [<u>C_q,Ar</u>Si], 160.64 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 387.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₇H₂₈N₄NaOSSi]⁺: 387.1651, gefunden: 387.1656.—

8.2.6 Darstellung der 3-Chlorpropionyl-substituierten Propargylamide

(RS)-3-(3-Chlorpropionyl)-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-thiazolidin (8a)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 15:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **8a** als schwach gelber Feststoff erhalten.

Ausbeute: 512 mg (1.52 mmol, 76 %).—

 $M = 335.89 \text{ g/mol}, C_{18}H_{22}ClNOS$

Schmelzpunkt: 80-82 °C.---

1. DC (*n*-Hexan/Essigsäureethylester 15:1): $R_f = 0.19$.—

2. DC (Dichlormethan): $R_f = 0.66$.—

IR (ATR): $\tilde{v} = 2998$ (=CH-Valenz), 2939, 2861 (CH-, CH₂-, CH₃-Valenz), 2236 (C=C-Valenz), 1644 (C=O-Valenz), 1488 (Ringschwingung), 1434 (CH-, CH₂-, CH₃-Deform.), 1358, 1319, 1248, 1209, 1168, 1076 (C-N-Valenz), 969, 911, 792, 754, 738, 703, 694, 622 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.59$, 1.65 [2s, 6H, SC_q(CH₃)₂CH], 1.92, 2.00 [2s, 6H, SC_q(CH₃)₂N], 2.95 [ddd, ²J = 16.4 Hz, ³J = 7.4 Hz, ³J = n.a., 1H, CH₂C_q=O], 3.09 [ddd, ²J = 16.4 Hz, ³J = 7.4 Hz, ³J = 6.1 Hz, 1H, CH₂C_q=O], 3.80–3.89 [m, 2H, CH₂Cl], 4.76 [s, 1H, NCH], 7.29–7.36 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.41–7.45 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.43$ [SC_q(<u>C</u>H₃)₂CH], 29.72 [SC_q(<u>C</u>H₃)₂N], 31.58 [SC_q(<u>C</u>H₃)₂CH], 32.61 [SC_q(<u>C</u>H₃)₂N], 39.73, 39.79 [CH₂Cl, <u>C</u>H₂C_q=O], 51.50 [S<u>C</u>_q(CH₃)₂CH], 66.24 [NCH], 73.97 [S<u>C</u>_q(CH₃)₂N], 85.31 [C_q=<u>C</u>_qCH], 87.22 [<u>C</u>_q=C_qCH], 122.19 [C_{q,Ar}], 128.50 [2 *m*-CH_{Ar}], 128.90 [*p*-CH_{Ar}], 131.75 [2 *o*-CH_{Ar}], 168.64 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 358.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₂ClNNaOS]⁺: 358.1008, gefunden: 358.1006.—

(*RS*)-3-(3-Chlorpropionyl)-4-phenylethinyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**8b**)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 15:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **8b** als gelber Feststoff erhalten.

Ausbeute: 469 mg (1.25 mmol, 63 %).--

 $M = 375.96 \text{ g/mol}, C_{21}H_{26}ClNOS$

Schmelzpunkt: 85-87 °C.---

1. DC (*n*-Hexan/Essigsäureethylester 15:1): $R_f = 0.45$.—

2. DC (Dichlormethan): $R_f = 0.53$.—

IR (ATR): $\tilde{v} = 2983$, 2937, 2862 (CH-, CH₂-, CH₃-Valenz), 1646 (C=O-Valenz), 1499 (Ringschwingung), 1447, 1396, 1373 (CH-, CH₂, CH₃-Deform.), 1357, 1338, 1292, 1267, 1209, 1170, 1125, 1098 (C-N-Valenz), 996, 951, 764, 739, 694, 624 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.30-1.44$ [m, 2H, CH_{2,Cy}], 1.56–1.64 [m, 2H, CH_{2,Cy}], 1.65–1.75 [m, 2H, CH_{2,Cy}], 1.78–1.88 [m, 2H, CH_{2,Cy}], 1.92, 1.95 [2s, 6H, C_q(CH₃)₂], 1.99–2.11 [m, 2H, CH_{2,Cy}], 2.95 [ddd, ²*J* = 16.3 Hz, ³*J* = 7.4 Hz, ³*J* = n.a., 1H, CH₂C_q=O,], 3.11 [ddd, ²*J* = 16.4 Hz, ³*J* = 7.5 Hz, ³*J* = 6.1 Hz, 1H, CH₂C_q=O,], 3.80–3.89 [m, 2H, CH₂Cl], 4.87 [s, 1H, NCH], 7.29–7.36 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.41–7.45 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.27$, 24.68, 25.58 [CH_{2,Cy}], 29.82, 33.01 [C_q(<u>C</u>H₃)₂], 35.21, 38.72 [CH_{2,Cy}], 39.77, 39.83 [CH₂Cl, <u>C</u>H₂C_q=O], 57.17 [S<u>C</u>_q(CH_{2,Cy})₂], 64.53 [NCH], 72.86 [S<u>C</u>_q(CH₃)₂N], 84.84 [C_q=<u>C</u>_qCH], 87.44 [<u>C</u>_q=C_qCH], 122.28 [C_{q,Ar}], 128.50 [2 *m*-CH_{Ar}], 128.86 [*p*-CH_{Ar}], 131.78 [2 *o*-CH_{Ar}], 168.77 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 398.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{21}H_{26}CINNaOS]^+$: 398.1321, gefunden: 398.1332.—

(*RS*)-4-(3-Chlorpropionyl)-3-phenylethinyl-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (8c)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (367 mg) 3-Thiazolin 1c, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 15:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*Dichlormethan* 6:5) wird das Propargylamid **8**c als farbloser Feststoff erhalten.

Ausbeute: 52 mg (0.14 mmol, 7 %).—

 $M = 375.96 \text{ g/mol}, C_{21}H_{26}CINOS$

Schmelzpunkt: 120–122 °C.—

1. DC (*n*-Hexan/*tert*-Butylmethylether 15:1): $R_f = 0.29$.—

2. DC (*n*-Hexan/Dichlormethan 6:5): $R_f = 0.30$.—

IR (ATR): $\tilde{v} = 3053$ (=CH-Valenz), 2936, 2922, 2858 (CH-, CH₂-, CH₃-Valenz), 1644 (C=O-Valenz), 1491 (Ringschwingung), 1450, 1425, 1385 (CH-, CH₂-, CH₃-Deform.), 1316, 1298, 1268, 1227, 1204, 1166, 1123 (C-N-Valenz), 987, 931, 907, 869, 836, 763, 698, 687, 615 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.15-1.26$, 1.27–1.37 [2m, 2H, CH_{2,Cy}], 1.52–1.58 [m, 2H, CH_{2,Cy}], 1.59, 1.61 [2s, 6H, C_q(CH₃)₂], 1.71–1.83 [m, 3H, CH_{2,Cy}], 2.10–2.16, 2.78–2.86 [2m, 2H, CH_{2,Cy}], 2.93 [ddd, ²*J* = 16.4 Hz, ³*J* = 7.2 Hz, ³*J* = n.a., 1H, CH₂C_q=O], 3.12 [ddd, ²*J* = 16.5 Hz, ³*J* = 7.5 Hz, ³*J* = 6.2 Hz, 1H, CH₂C_q=O], 3.13–3.20 [m, 1H, CH_{2,Cy}], 3.80–3.89 [m, 2H, CH₂Cl], 4.78 [s, 1H, NCH], 7.29–7.35 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.40–7.45 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 24.63$, 25.19 [CH_{2,Cy}], 25.64 [C_q(<u>C</u>H₃)₂], 26.04 [CH_{2,Cy}], 31.66 [C_q(<u>C</u>H₃)₂], 37.18, 38.05 [CH_{2,Cy}], 39.76 [CH₂Cl], 40.46 [<u>C</u>H₂C_q=O], 50.62 [S<u>C</u>_q(CH₃)₂], 66.18 [NCH], 81.76 [S<u>C</u>_q(CH_{2,Cy})₂], 85.69 [C_q=<u>C</u>_qCH], 87.11 [<u>C</u>_q=C_qCH], 122.31 [C_{q,Ar}], 128.49 [2 *m*-CH_{Ar}], 128.86 [*p*-CH_{Ar}], 131.78 [2 *o*-CH_{Ar}], 168.79 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 398.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₁H₂₆ClNNaOS]⁺: 398.1321, gefunden: 398.1310.—

(*RS*)-14-(3-Chlorpropionyl)-15-phenylethinyl-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (**8d**)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (447 mg) 3-Thiazolin 1d, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 3.00 mmol (388 mg) N,N-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 15:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 15:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan 6:5) wird das Propargylamid 8d als schwach gelber Feststoff erhalten.

Ausbeute: 225 mg (0.54 mmol, 27 %).— M = 416.02 g/mol, $C_{24}H_{30}CINOS$ Schmelzpunkt: 117-119 °C.---

1. DC (*n*-Hexan/*tert*-Butylmethylether 15:1): $R_f = 0.48$.

2. DC (*n*-Hexan/Dichlormethan 6:5): $R_f = 0.25$.—

IR (ATR): $\tilde{v} = 2928$, 2855 (CH-, CH₂-Valenz), 1653 (C=O-Valenz), 1489 (Ringschwingung), 1444, 1430, 1385 (CH-, CH₂-Deform.), 1316, 1290, 1251, 1222, 1200, 1178, 1125, 1073 (C-N-Valenz), 992, 953, 925, 867, 835, 804, 755, 688, 610 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.15-1.26$ [m, 1H, CH_{2,Cy}], 1.31–1.51 [m, 3H, CH_{2,Cy}], 1.55–1.71 [m, 7H, CH_{2,Cy}], 1.72–1.88 [m, 4H, CH_{2,Cy}], 1.95–2.02, 2.03–2.09, 2.10–2.16, 2.75–2.83 [4m, 4H, CH_{2,Cy}], 2.94 [ddd, ²*J* = 16.4 Hz, ³*J* = 7.3 Hz, ³*J* = n.a., 1H, CH₂C_q=O], 3.11–3.18 [m, 1H, CH_{2,Cy}], 3.13 [ddd, ²*J* = 16.4 Hz, ³*J* = 7.5 Hz, ³*J* = 6.2 Hz, 1H, CH₂C_q=O], 3.80–3.89 [m, 2H, CH₂Cl], 4.90 [s, 1H, NCH], 7.29–7.35 [m, 3H, 2*m*-CH_{Ar}, *p*-CH_{Ar}], 7.40–7.44 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.34$, 24.66, 24.70, 25.14, 25.66, 25.99, 35.37, 37.22, 38.43, 38.74 [CH_{2,Cy}], 39.82 [CH₂Cl], 40.53 [<u>C</u>H₂C_q=O], 56.14 [S<u>C</u>_q(CH_{2,Cy})₂CH], 64.43 [NCH], 80.55 [S<u>C</u>_q(CH_{2,Cy})₂N], 85.24 [C_q=<u>C</u>_qCH], 87.29 [<u>C</u>_q=C_qCH], 122.43 [C_{q,Ar}], 128.50 [2 *m*-CH_{Ar}], 128.83 [*p*-CH_{Ar}], 131.83 [2 *o*-CH_{Ar}], 168.93 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 438.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{24}H_{30}CINNaOS]^+$: 438.1634, gefunden: 438.1622.—

(RS)-3-(3-Chlorpropionyl)-4-phenylethinyl-2,2,5,5-tetramethyl-1,3-oxazolidin (8e)

Die Darstellung erfolgt gemäß **AAV 4** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (306 mg) Phenylacetylen. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 15:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Propargylamid **8e** als farbloser Feststoff erhalten.

Ausbeute: 189 mg (0.59 mmol, 30 %).--

 $M = 319.83 \text{ g/mol}, C_{18}H_{22}ClNO_2$

Schmelzpunkt: 85-87 °C.---

1. DC (*n*-Hexan/Essigsäureethylester 15:1): $R_f = 0.16$.—

2. DC (Dichlormethan): $R_f = 0.37$.—

IR (ATR): $\tilde{v} = 3078$ (=CH-Valenz), 2988, 2938 (CH-, CH₂-, CH₃-Valenz), 2364 (C=C-Valenz), 1644 (C=O-Valenz), 1488 (Ringschwingung), 1410, 1384, 1371 (CH-, CH₂-, CH₃-Deform.), 1361, 1331, 1324, 1300, 1279, 1262, 1236, 1200, 1169, 1138, 1071 (C-N-Valenz), 1010 (C-O-C-Valenz), 965, 919, 885, 822, 757, 693 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.44$, 1.54 [2s, 6H, OC_q(CH₃)₂CH], 1.67, 1.72 [2s, 6H, OC_q(CH₃)₂N], 2.94 [ddd, ²J = 16.2 Hz, ³J = 7.3 Hz, ³J = n.a., 1H, CH₂C_q=O], 3.09 [ddd, ²J = 16.3 Hz, ³J = 6.9 Hz, ³J = 5.9 Hz, 1H, CH₂C_q=O], 3.81–3.92 [m, 2H, CH₂Cl], 4.57 [s, 1H, NCH], 7.29–7.36 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.39–7.43 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 25.71 [OC_q(\underline{CH}_3)_2CH]$, 27.38, 27.94 $[OC_q(\underline{CH}_3)_2N]$, 28.45 $[OC_q(\underline{CH}_3)_2CH]$, 38.80 $[\underline{CH}_2C_q=O]$, 39.73 $[CH_2Cl]$, 58.92 [NCH], 80.65 $[O\underline{C}_q(CH_3)_2CH]$, 84.81 $[C_q=\underline{C}_qCH]$, 87.36 $[\underline{C}_q=C_qCH]$, 96.25 $[O\underline{C}_q(CH_3)_2N]$, 122.02 $[C_{q,Ar}]$, 128.52 $[2 \ m-CH_{Ar}]$, 128.96 $[p-CH_{Ar}]$, 131.70 $[2 \ o-CH_{Ar}]$, 167.56 $[C_q=O]$ ppm.— MS (ESI, TOF): m/z (%) = 342.1 $[MNa]^+$ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{22}CINNaO_2]^+$: 342.1237, gefunden: 342.1229.—

(*RS*)-3-(3-Chlorpropionyl)-4-(4-nitrophenylethinyl)-2,2,5,5-tetramethyl-1,3-thiazolidin (**8f**)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid,

5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (441 mg) 4-Nitrophenylacetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 10:1) wird das Propargylamid **8f** als gelber Feststoff erhalten.

Ausbeute: 610 mg (1.60 mmol, 80 %).—

 $M = 380.89 \text{ g/mol}, C_{18}H_{21}ClN_2O_3S$

Schmelzpunkt: 98-100 °C.---

DC (*n*-Hexan/Essigsäureethylester 10:1): $R_f = 0.24$.—

IR (ATR): $\tilde{v} = 3103$, 3079 (=CH-Valenz), 2973, 2931 (CH-, CH₂-, CH₃-Valenz), 1663 (C=O-Valenz), 1593 (NO₂-Valenz), 1512 (Ringschwingung), 1462, 1429, 1408, 1389, 1374 (CH-, CH₂-, CH₃-Deform.), 1340, 1310, 1295, 1268, 1229, 1208, 1166, 1104, 1062 (C-N-Valenz), 987, 960, 857, 749 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.59$, 1.67 [2s, 6H, SC_q(CH₃)₂CH], 1.91, 2.00 [2s, 6H, SC_q(CH₃)₂N], 2.94 [dt, ²J = 16.3 Hz, ³J = 7.1 Hz, 1H, CH₂C_q=O], 3.04 [dt, ²J = 16.4 Hz, ³J = 6.8 Hz, 1H, CH₂C_q=O], 3.85 [t, ³J = 6.9 Hz, 2H, CH₂Cl], 4.79 [s, 1H, NCH], 7.55–7.60 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.17–8.21 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.41$ [SC_q(<u>C</u>H₃)₂CH], 29.84 [SC_q(<u>C</u>H₃)₂N], 31.46 [SC_q(<u>C</u>H₃)₂CH], 32.52 [SC_q(<u>C</u>H₃)₂N], 39.69, 39.79 [CH₂Cl, <u>C</u>H₂C_q=O], 51.43 [S<u>C</u>_q(CH₃)₂CH], 66.15 [NCH], 74.17 [S<u>C</u>_q(CH₃)₂N], 85.27 [<u>C</u>_q=C_qCH], 90.69 [C_q=<u>C</u>_qCH], 123.78 [2 *o*-CH_{Ar}(NO₂)], 128.91 [<u>C</u>_q,A_rC_q=C_q], 132.62 [2 *m*-CH_{Ar}(NO₂)], 147.57 [C_{q,Ar}NO₂], 168.41 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 403.0 [MNa]⁺(100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{21}CIN_2NaO_3S]^+$: 403.0859, gefunden: 403.0856.—

(*RS*)-3-(3-Chlorpropionyl)-4-(4-methoxyphenylethinyl)-2,2,5,5-tetramethyl-1,3-thiazolidin (**8g**)

Die Darstellung erfolgt gemäß AAV 4 aus 1.29 mmol (185 mg) 3-Thiazolin 1a, 1.67 mmol (212 mg) 3-Chlorpropionsäurechlorid, 0.52 mmol (99 mg) Kupfer(I)-iodid, 3.23 mmol (417 mg) N,N-Diisopropylethylamin und 1.93 mmol (255 mg) 4-Methoxyphenylacetylen. Durch zweifach säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 15:2; 2. Kieselgel 60, Laufmittel: Dichlormethan/*n*-Hexan 3:1) wird das Propargylamid **8g** als gelber Feststoff erhalten.

Ausbeute: 333 mg (0.91 mmol, 71 %).--

 $M = 365.92 \text{ g/mol}, C_{19}H_{24}CINO_2S$

Schmelzpunkt: 70–72 °C.—

1. DC (*n*-Hexan/tert-Butylmethylether 15:2): $R_f = 0.24$.—

2. DC (Dichlormethan/n-Hexan 3:1): $R_f = 0.37$.—

IR (ATR): $\tilde{v} = 2982$, 2966, 2932 (CH-, CH₂-, CH₃-Valenz), 2845 (O-CH₃-Valenz), 2227 (C=C-Valenz), 1653 (C=O-Valenz), 1606, 1571, 1508 (Ringschwingung), 1462, 1387, 1376 (CH-, CH₂-, CH₃-Deform.), 1358, 1321, 1303, 1287, 1247, 1227, 1169, 1129, 1107 (C-N-Valenz), 1035 (C-O-C-Valenz), 990, 936, 830, 807, 790, 741, 703, 682, 614 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.58$, 1.65 [2s, 6H, SC_q(CH₃)₂CH], 1.92, 2.00 [2s, 6H, SC_q(CH₃)₂N], 2.94 [ddd, ²*J* = 16.3 Hz, ³*J* = 7.4 Hz, ³*J* = n.a., 1H, CH₂C_q=O], 3.09 [ddd, ²*J* = 16.4 Hz, ³*J* = 7.6 Hz, ³*J* = 6.0 Hz, 1H, CH₂C_q=O], 3.81 [s, 3H, OCH₃], 3.82–3.89 [m, 2H, CH₂Cl], 4.75 [s, 1H, NCH], 6.82–6.86 [m, 2H, *m*-CH_{Ar}(OCH₃)], 7.34–7.38 [m, 2H, *o*-CH_{Ar}(OCH₃)] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 25.50 [SC_q(\underline{CH}_3)_2CH], 29.79 [SC_q(\underline{CH}_3)_2N], 31.66 [SC_q(\underline{CH}_3)_2CH], 32.69 [SC_q(\underline{CH}_3)_2N], 39.79, 39.86 [CH_2Cl, \underline{CH}_2C_q=O], 51.57$

HRMS (ESI, TOF): Berechnet für $[C_{19}H_{24}CINNaO_2S]^+$: 388.1114, gefunden: 388.1122.—

(RS)-3-(3-Chlorpropionyl)-4-(hex-1-in-1-yl)-2,2,5,5-tetramethyl-1,3-thiazolidin (8h)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (246 mg) 1-Hexin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: n-Hexan/Essigsäureethylester 10:1) wird das Propargylamid **8h** als farbloses Öl erhalten.

Ausbeute: 140 mg (0.44 mmol, 22 %).---

 $M = 315.90 \text{ g/mol}, C_{16}H_{26}CINOS$

1. DC (Dichlormethan): $R_f = 0.72$.—

2. DC (*n*-Hexan/Essigsäureethylester 10:1): $R_f = 0.56$.—

IR (ATR): $\tilde{v} = 2962$, 2932, 2865 (CH-, CH₂-, CH₃-Valenz), 2226 (C=C-Valenz), 1658 (C=O-Valenz), 1468, 1430, 1392, 1379 (CH-, CH₂-, CH₃-Deform.), 1323, 1302, 1229, 1210, 1132 (C-N-Valenz), 937, 792, 743, 697, 619 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.91$ [t, ³J = 7.3 Hz, 3H, CH₂CH₃], 1.37–1.45 [m, 2H, CH₂CH₃], 1.47–1.53 [m, 2H, CH₂CH₂CH₂], 1.49, 1.58 [2s, 6H, SC_q(CH₃)₂CH], 1.86, 1.95 [2s, 6H, SC_q(CH₃)₂N], 2.23 [td, ³J = 6.9 Hz, ⁵J = 2.0 Hz, 2H, CH₂C_q=C_q], 2.88 [ddd, ²J = 16.3 Hz, ³J = 7.6 Hz, ³J = 7.0 Hz, 1H, CH₂C_q=O], 3.03 [ddd, ²J = 16.4 Hz, ³J = 7.8 Hz, ³J = 6.0 Hz, 1H, CH₂C_q=O], 3.77–3.87 [m, 2H, CH₂Cl], 4.49–4.53 [m, 1H, NCH] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 13.67$ [CH₂CH₃], 18.52 [CH₂C_q=C_q], 22.06 [CH₂CH₃], 25.44 [SC_q(CH₃)₂CH], 29.60 [SC_q(CH₃)₂N], 30.68 [CH₂CH₂CH₂], 31.61 [SC_q(CH₃)₂CH], 32.65 [SC_q(CH₃)₂N], 39.72, 39.78 [CH₂Cl, CH₂C_q=O], 51.35 [SC_q(CH₃)₂CH], 66.04 [NCH], 73.80 [SC_q(CH₃)₂N], 76.39 [C_q=C_qCH], 88.16 [C_q=C_qCH], 168.70 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 338.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}CINNaOS]^+$: 338.1321, gefunden: 338.1323.—

(RS)-3-(3-Chlorpropionyl)-4-trimethylsilylethinyl-2,2,5,5-tetramethyl-1,3-thiazolidin (8j)

Die Darstellung erfolgt gemäß **AAV 4** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (295 mg) Trimethylsilyl-acetylen. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 4:1) wird das Propargylamid **8j** als braunes Öl erhalten.

Ausbeute: 95 mg (0.29 mmol, 15 %).—

 $M = 331.97 \text{ g/mol}, C_{15}H_{26}ClNOSSi$

DC (*n*-Hexan/Essigsäureethylester 4:1): $R_f = 0.88$.—

IR (ATR): $\tilde{v} = 2963$, 2933 (CH-, CH₂-, CH₃-Valenz), 2176 (C=C-Valenz), 1656 (C=O-Valenz), 1467, 1449, 1390 (CH-, CH₂-, CH₃-Deform.), 1319, 1295, 1250, 1207, 1167, 1122, 1045 (C-N-Valenz), 933, 841, 760, 701 (C-S-Valenz, C-Si-Valenz) cm⁻¹.— ¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.18$ [s, 9H, Si(CH₃)₃], 1.51, 1.59 [2s, 6H, SC_q(CH₃)₂CH], 1.86, 1.96 [2s, 6H, SC_q(CH₃)₂N], 2.87 [ddd, ²J = 16.3 Hz, ³J = 7.3 Hz, ³J = n.a., 1H, CH₂C_q=O], 3.02 [ddd, ²J = 16.4 Hz, ³J = 7.3 Hz, ³J = 6.2 Hz, 1H, CH₂C_q=O,], 3.79–3.87 [m, 2H, CH₂Cl], 4.52 [s, 1H, NCH] ppm.— ¹³C-NMR (125.7 MHz, CDCl₃): $\delta = -0.18$ [3 Si(CH₃)₃], 25.39 [SC_q(<u>C</u>H₃)₂CH], 29.52 [SC_q(<u>C</u>H₃)₂N], 31.62 [SC_q(<u>C</u>H₃)₂CH], 32.70 [SC_q(<u>C</u>H₃)₂N], 39.73, 39.77 [CH₂Cl, <u>C</u>H₂C_q=O], 50.98 [S<u>C</u>_q(CH₃)₂CH], 66.32 [NCH], 74.07 [S<u>C</u>_q(CH₃)₂N], 92.83 [<u>C</u>_q=C_qCH], 101.68 [C_q=<u>C</u>_qCH], 168.68 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 354.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{15}H_{26}CINNaOSSi]^+$: 354.1091, gefunden: 354.1082.—

(*RS*)-3-(3-Chlorpropionyl)-(3-methoxy-3-oxopropinyl)-2,2,5,5-tetramethyl-1,3-thiazolidin (**8k**)

Die Darstellung erfolgt gemäß AAV 4 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.60 mmol (330 mg) 3-Chlorpropionsäurechlorid, 0.80 mmol (152 mg) Kupfer(I)-iodid, 5.00 mmol (646 mg) N,N-Diisopropylethylamin und 3.00 mmol (252 mg) Propionsäuremethylester. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 4:1) wird das Propargylamid **8k** als schwach gelbes Öl erhalten.

Ausbeute: 483 mg (1.52 mmol, 76 %).—

 $M = 317.83 \text{ g/mol}, C_{14}H_{20}CINO_3S$

DC (*n*-Hexan/Essigsäureethylester 4:1): $R_f = 0.68$.

IR (ATR): $\tilde{v} = 2986$, 2935 (CH-, CH₂-, CH₃-Valenz), 2236 (C=C-Valenz), 1714, 1660 (C=O-Valenz), 1434, 1380 (CH-, CH₂-, CH₃-Deform.), 1320, 1248, 1167, 1132, 1075 (C-N-Valenz), 963, 932, 831, 799, 750, 699 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.55$, 1.63 [2s, 6H, SC_q(CH₃)₂CH], 1.87, 1.97 [2s, 6H, SC_q(CH₃)₂N], 2.86 [ddd, ²J = 16.4 Hz, ³J = 7.3 Hz, ³J = n.a., 1H, CH₂C_q=O], 2.94 [ddd, ²J = 16.4 Hz, ³J = 7.4 Hz, ³J = 5.7 Hz, 1H, CH₂C_q=O], 3.76–3.88 [m, 2H, CH₂Cl], 3.79 [s, 3H, OCH₃], 4.67 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.24$ [SC_q(<u>C</u>H₃)₂CH], 29.70 [SC_q(<u>C</u>H₃)₂N], 31.36 [SC_q(<u>C</u>H₃)₂CH], 32.49 [SC_q(<u>C</u>H₃)₂N], 39.55 [CH₂Cl], 39.81 [<u>C</u>H₂C_q=O], 51.07 [S<u>C</u>_q(CH₃)₂CH], 53.11 [OCH₃], 65.29 [NCH], 74.40 [S<u>C</u>_q(CH₃)₂N], 78.44 [C_q=<u>C</u>_qCH], 82.80 [<u>C</u>_q=C_qCH], 153.39 [OC_q=O], 168.37 [NC_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 340.0 [MNa]⁺(100).—

HRMS (ESI, TOF): Berechnet für [C₁₄H₂₀ClNNaO₃S]⁺: 340.0750, gefunden: 340.0746.—

8.2.7 Darstellung der tricyclischen 3,4,6,7-Tetrahydro-5*H*-1,4-diazepin-5-one

(*RS*)-1-Phenyl-5,6,11,11a-tetrahydro-9,9,11,11-tetramethyl-7H,9H-thiazolo[3,4-a]-[1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9**a)

Die Darstellung erfolgt gemäß **AAV 5** aus 1.00 mmol (336 mg) Propargylamid **8a** und 5.00 mmol (325 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9a** als gelber Feststoff erhalten.

Ausbeute: 167 mg (0.49 mmol, 49 %).---

 $M = 342.46 \text{ g/mol}, C_{18}H_{22}N_4OS$

Schmelzpunkt: 165–167 °C.—

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.42$.

IR (ATR): $\tilde{v} = 2981$, 2922 (CH-, CH₂-, CH₃-Valenz), 1648 (C=O-Valenz), 1498 (Ringschwingung), 1447, 1421, 1399, 1373 (CH-, CH₂-, CH₃-Deform.), 1357, 1338, 1316, 1294, 1267, 1244, 1208, 1169, 1125, 1097, 1072 (C-N-Valenz), 1009, 995, 951, 926, 814, 784, 764, 738, 696 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.75$, 1.21 [2s, 6H, SC_q(CH₃)₂CH], 1.87, 1.96 [2s, 6H, SC_q(CH₃)₂N], 2.61 [ddd, ²*J* = 18.2 Hz, ³*J* = 12.1 Hz, ³*J* = 2.4 Hz, 1H, CH₂C_q=O], 3.03 [ddd, ²*J* = 18.2 Hz, ³*J* = 5.0 Hz, ³*J* = 0.8 Hz, 1H, CH₂C_q=O], 4.60 [ddd, ²*J* = 13.9 Hz, ³*J* = 12.1 Hz, ³*J* = 1.0 Hz, 1H, NCH₂], 4.82 [ddd, ²*J* = 14.2 Hz, ³*J* = 4.9 Hz, ³*J* = 2.5 Hz, 1H, NCH₂], 5.47 [s, 1H, NCH], 7.35–7.39 [m, 1H, *p*-CH_{Ar}], 7.42–7.46 [m, 2H, *m*-CH_{Ar}], 7.55–7.58 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 25.79$, 26.24 [SC_q(<u>C</u>H₃)₂CH], 29.57, 31.50 [SC_q(<u>C</u>H₃)₂N], 39.71 [<u>C</u>H₂C_q=O], 45.66 [NCH₂], 54.93 [S<u>C</u>_q(CH₃)₂CH], 65.61 [NCH], 70.42 [S<u>C</u>_q(CH₃)₂N], 125.42 [C_{q,Ar}C_{q,Ar}CH], 128.28 [2 *o*-CH_{Ar}], 128.78 [*p*-CH_{Ar}], 129.21 [2 *m*-CH_{Ar}], 131.22 [<u>C</u>_{q,Ar}CH_{Ar}], 148.64 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 169.89 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 365.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₂N₄NaOS]⁺: 365.1412, gefunden: 365.1405.—

(*RS*)-9',9'-Dimethyl-5',6'-dihydro-1'-phenyl-7'H,9'H,11a'H-spiro(cyclohexan-1,11'-thiazolo[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin)-7'-on (**9b**)

Die Darstellung erfolgt gemäß **AAV 5** aus 1.00 mmol (376 mg) Propargylamid **8b** und 5.00 mmol (325 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9b** als schwach gelber Feststoff erhalten.

Ausbeute: 240 mg (0.63 mmol, 63 %).—

 $M = 382.53 \text{ g/mol}, C_{21}H_{26}N_4OS$

Schmelzpunkt: 206–208 °C.—

DC (Dichlormethan/Essigsäureethylester 4:1): R_f= 0.12.—

IR (ATR): $\tilde{v} = 2997$, 2929, 2858 (CH-, CH₂-, CH₃-Valenz), 1651 (C=O-Valenz), 1496 (Ringschwingung), 1446, 1415, 1394, 1379 (CH-, CH₂-, CH₃-Deform.), 1360, 1333, 1291, 1260, 1218, 1204, 1167, 1129, 1103, 1076 (C-N-Valenz), 1007, 996, 965, 950, 879, 802, 777, 760, 747, 702, 670 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.76-0.88$ [m, 1H, CH_{2,Cy}], 0.92-1.07 [m, 4H, CH_{2,Cy}], 1.38-1.45, 1.48-1.55 [2m, 2H, CH_{2,Cy}], 1.59-1.65 [m, 2H, CH_{2,Cy}], 1.85-1.90 [m, 1H, CH_{2,Cy}], 1.89, 1.96 [2s, 6H, C_q(CH₃)₂], 2.62 [ddd, ²*J* = 18.3 Hz, ³*J* = 12.2 Hz, ³*J* = 2.6 Hz, 1H, CH₂C_q=O], 3.03 [ddd, ²*J* = 18.4 Hz, ³*J* = 4.7 Hz, ³*J* = 1.0 Hz, 1H, CH₂C_q=O], 4.61 [ddd, ²*J* = 14.1 Hz, ³*J* = 12.3 Hz, ³*J* = 1.1 Hz, 1H, NCH₂], 4.83 [ddd, ²*J* = 14.2 Hz, ³*J* = 4.7 Hz, ³*J* = 2.6 Hz, 1H, NCH₂], 5.50 [s, 1H, NCH], 7.38-7.42 [m, 1H, *p*-CH_{Ar}], 7.44-7.48 [m, 2H, *m*-CH_{Ar}], 7.57-7.61 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.30$, 24.80, 25.21 [CH_{2,Cy}], 29.71, 31.82 [C_q(CH₃)₂], 32.86, 36.10 [CH_{2,Cy}], 39.82 [<u>C</u>H₂C_q=O], 45.69 [NCH₂], 62.42 [S<u>C</u>_q(CH_{2,Cy})₂], 65.44 [NCH], 70.21 [S<u>C</u>_q(CH₃)₂], 125.41 [C_{q,Ar}<u>C</u>_{q,Ar}CH], 128.43 [2 *o*-CH_{Ar}], 128.86 [*p*-CH_{Ar}], 129.25 [2 *m*-CH_{Ar}], 131.27 [<u>C</u>_{q,Ar}CH_{Ar}], 149.03 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 169.86 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 405.2 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für [C₂₁H₂₆N₄NaOS]⁺: 405.1725, gefunden: 405.1736.—

(*RS*)-11',11'-Dimethyl-1'-phenyl-5',6',11',11a'-tetrahydro-7'H-spiro(cyclohexan-1,9'-thiazolo[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin)-7'-on (**9c**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.13 mmol (49 mg) Propargylamid **8c** und 0.65 mmol (42 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 3:1) wird das tricyclische Lactam **9c** als gelber Feststoff erhalten.

Ausbeute: 22 mg (0.06 mmol, 46 %).—

 $M = 382.53 \text{ g/mol}, C_{21}H_{26}N_4OS$

Schmelzpunkt: 122–124 °C.—

DC (Dichlormethan/Essigsäureethylester 3:1): $R_f = 0.68$.

IR (ATR): $\tilde{v} = 2922$, 2855 (CH-, CH₂-, CH₃-Valenz), 1612 (C=O-Valenz), 1496 (Ringschwingung), 1449, 1424, 1403, 1370 (CH-, CH₂-, CH₃-Deform.), 1344, 1290, 1272, 1259, 1249, 1227, 1212, 1170, 1158, 1128, 1105, 1070 (C-N-Valenz), 1007, 994, 923, 904, 872, 827, 804, 784, 769, 740, 696, 680 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.76$ [s, 3H, C_q(CH₃)₂], 1.22–1.31 [m, 1H, CH_{2,Cy}], 1.23 [s, 3H, C_q(CH₃)₂], 1.37–1.54 [m, 2H, CH_{2,Cy}], 1.59–1.69 [m, 2H, CH_{2,Cy}], 1.78–1.87 [m, 2H, CH_{2,Cy}], 1.97–2.03 [m, 1H, CH_{2,Cy}], 2.64 [ddd, ²*J* = 18.3 Hz, ³*J* = 12.1 Hz, ³*J* = 2.5 Hz, 1H, CH₂C_q=O], 2.73–2.84 [m, 1H, CH_{2,Cy}], 3.05 [ddd, ²*J* = 18.3 Hz, ³*J* = 4.9 Hz, ³*J* = 0.9 Hz, 1H, CH₂C_q=O], 3.17–3.25 [m, 1H, CH_{2,Cy}], 4.65 [ddd, ²*J* = 14.2 Hz, ³*J* = 12.1 Hz, ³*J* = 0.9 Hz, 1H, NCH₂], 4.82 [ddd, ²*J* = 14.2 Hz, ³*J* = 4.8 Hz, ³*J* = 2.6 Hz, 1H, NCH₂], 5.53 [s, 1H, NCH], 7.37–7.42 [m, 1H, *p*-CH_{Ar}], 7.44–7.49 [m, 2H, *m*-CH_{Ar}], 7.55–7.60 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.81$, 24.64, 25.80 [CH_{2,Cy}], 25.96, 26.35 [C_q(CH₃)₂], 36.13, 37.17 [CH_{2,Cy}], 40.13 [<u>C</u>H₂C_q=O], 45.61 [NCH₂], 53.75 [S<u>C</u>_q(CH₃)₂], 65.81 [NCH], 78.05 [S<u>C</u>_q(CH_{2,Cy})₂], 125.46 [C_{q,Ar}C_{q,Ar}CH], 128.36 [2 *o*-CH_{Ar}], 128.82 [*p*-CH_{Ar}], 129.30 [2 *m*-CH_{Ar}], 131.29 [<u>C</u>_{q,Ar}CH_{Ar}], 148.76 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 170.27 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 405.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₁H₂₆N₄NaOS]⁺: 405.1725, gefunden: 405.1728.—

(*RS*)-5',6'-Dihydro-1'-phenyl-7'H,11a'H-dispiro(cyclohexan-1,9'-thiazolo[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin-11',1''-cyclohexan)-7'-on (**9d**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.48 mmol (200 mg) Propargylamid **8d** und 2.40 mmol (156 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9d** als schwach gelber Feststoff erhalten.

Ausbeute: 90 mg (0.21 mmol, 44 %).—

 $M = 422.59 \ g/mol, \ C_{24}H_{30}N_4OS$

Schmelzpunkt: 225–227 °C.—

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.54$.

IR (ATR): $\tilde{v} = 3043$ (=CH-Valenz), 2927, 2852 (CH-, CH₂-Valenz), 1629 (C=O-Valenz), 1496 (Ringschwingung), 1447, 1403, 1390 (CH-, CH₂-Deform.), 1366, 1357, 1333, 1289, 1272, 1256, 1216, 1165, 1131, 1106, 1075 (C-N-Valenz), 1004, 967, 925, 905, 774, 767, 727, 699 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.72-1.10$ [m, 5H, CH_{2,Cy}], 1.20–1.29, 1.34–1.42 [2m, 2H, CH_{2,Cy}], 1.44–1.69 [m, 7H, CH_{2,Cy}], 1.76–1.87 [m, 3H, CH_{2,Cy}], 1.95–2.01 [m, 1H, CH_{2,Cy}], 2.59 [ddd, ²*J* = 18.3 Hz, ³*J* = 12.1 Hz, ³*J* = 2.6 Hz, 1H, CH₂C_q=O], 2.68–2.75 [m, 1H, CH_{2,Cy}], 2.99 [ddd, ²*J* = 18.4 Hz, ³*J* = 4.7 Hz, ³*J* = 0.9 Hz, 1H, CH₂C_q=O], 3.13–3.21 [m, 1H, CH_{2,Cy}], 4.61 [ddd, ²*J* = 14.1 Hz, ³*J* = 12.1 Hz, ³*J* = 0.9 Hz, 1H, NCH₂], 4.77 [ddd, ²*J* = 14.2 Hz, ³*J* = 4.6 Hz, ³*J* = 2.7 Hz, 1H, NCH₂], 5.52 [s, 1H, NCH], 7.34–7.38 [m, 1H, *p*-CH_{Ar}], 7.40–7.45 [m, 2H, *m*-CH_{Ar}], 7.54–7.58 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.21$, 23.70, 24.56, 24.68, 25.17, 25.68, 32.65, 35.94, 36.09, 37.32 [CH_{2,Cy}], 40.02 [<u>C</u>H₂C_q=O], 45.44 [NCH₂], 60.76 [S<u>C_q(CH_{2,Cy})</u>₂CH], 65.50 [NCH], 77.50 [S<u>C_q(CH_{2,Cy})</u>₂N], 125.24 [C_{q,Ar}C_{q,Ar}CH], 128.33 [2 *o*-CH_{Ar}], 128.67

 $[p-CH_{Ar}]$, 129.13 [2 *m*-CH_{Ar}], 131.20 [$\underline{C}_{q,Ar}CH_{Ar}$], 148.88 [$\underline{C}_{q,Ar}C_{q,Ar}CH$], 170.12 [$C_{q}=O$] ppm.—

MS (ESI, TOF): m/z (%) = 445.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₄H₃₀N₄NaOS]⁺: 445.2038, gefunden: 445.2042.—

(*RS*)-1-Phenyl-5,6,11,11a-tetrahydro-9,9,11,11-tetramethyl-7H,9H-oxazolo[3,4-a]-[1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9e**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.36 mmol (116 mg) Propargylamid **8e** und 1.80 mmol (117 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9e** als farbloser Feststoff erhalten.

Ausbeute: 49 mg (0.15 mmol, 42 %).---

 $M = 326.40 \text{ g/mol}, C_{18}H_{22}N_4O_2$

Schmelzpunkt: 198-200 °C.---

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.35$.—

IR (ATR): $\tilde{v} = 3053$ (=CH-Valenz), 2985, 2934 (CH-, CH₂-, CH₃-Valenz), 1650 (C=O-Valenz), 1611, 1501 (Ringschwingung), 1471, 1448, 1416, 1385 (CH-, CH₂-, CH₃-Deform.), 1369, 1336, 1318, 1297, 1272, 1206, 1193, 1142, 1105, 1071 (C-N-Valenz), 1030 (C-O-C-Valenz), 1004, 970, 954, 915, 883, 857, 811, 763, 731, 712, 696 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.75$, 0.87 [2s, 6H, OC_q(CH₃)₂CH], 1.61, 1.72 [2s, 6H, SC_q(CH₃)₂N], 2.68 [ddd, ²J = 17.1 Hz, ³J = 11.6 Hz, ³J = 1.7 Hz, 1H, CH₂C_q=O], 3.00 [ddd, ²J = 17.0 Hz, ³J = 5.5 Hz, ³J = n.a., 1H, CH₂C_q=O], 4.56 [ddd, ²J = 14.0 Hz, ³J = 11.5 Hz, ³J = n.a., 1H, NCH₂], 4.93 [ddd, ²J = 14.1 Hz, ³J = 5.8 Hz, ³J = 1.8 Hz, 1H, NCH₂], 5.29 [s, 1H, NCH], 7.37–7.41 [m, 1H, *p*-CH_{Ar}], 7.42–7.47 [m, 2H, *m*-CH_{Ar}], 7.56–7.60 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.08 [OC_q(\underline{C}H_3)_2CH]$, 26.26, 26.30 $[OC_q(\underline{C}H_3)_2CH$, $OC_q(\underline{C}H_3)_2N]$, 27.46 $[OC_q(\underline{C}H_3)_2N]$, 39.03 $[\underline{C}H_2C_q=O]$, 46.85 $[NCH_2]$, 61.85 [NCH], 83.60 $[O\underline{C}_q(CH_3)_2CH]$, 94.96 $[O\underline{C}_q(CH_3)_2N]$, 125.74 $[C_{q,Ar}\underline{C}_{q,Ar}CH]$, 128.37 $[2 \ o-CH_{Ar}]$, 128.97 $[p-CH_{Ar}]$, 129.19 $[2 \ m-CH_{Ar}]$, 131.51 $[\underline{C}_{q,Ar}CH_{Ar}]$, 147.17 $[\underline{C}_{q,Ar}C_{q,Ar}CH]$, 169.64 $[C_q=O]$ ppm.—

MS (ESI, TOF): m/z (%) = 327.2 [MH]⁺(100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{22}N_4NaO_2]^+$: 349.1640, gefunden: 349.1646.—

(*RS*)-1-(4-Nitrophenyl)-5,6,11,11a-tetrahydro-9,9,11,11-tetramethyl-7H,9H-thiazolo-[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9f**)

Die Darstellung erfolgt gemäß **AAV 5** aus 1.00 mmol (381 mg) Propargylamid **8f** und 5.00 mmol (325 mg) Natriumazid. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 6:1; 2. Kieselgel 60, Laufmittel: Chloroform/Essigsäureethylester 1:1) wird das tricyclische Lactam **9f** als farbloser Feststoff erhalten.

Ausbeute: 17 mg (0.04 mmol, 4 %).—

 $M=387.46 \ g/mol, \ C_{18}H_{21}N_5O_3S$

Schmelzpunkt: 280–282 °C.—

1. DC (Dichlormethan/Essigsäureethylester 6:1): $R_f = 0.36$.—

2. DC (Chloroform/Essigsäureethylester 1:1): $R_f = 0.81$.—

IR (ATR): $\tilde{v} = 2970$, 2925, 2853 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1605 (Ringschwingung), 1522 (NO₂-Valenz), 1493 (Ringschwingung), 1457, 1396 (CH-, CH₂-, CH₃-Deform.), 1350, 1336, 1314, 1291, 1264, 1208, 1167, 1124, 1100 (C-N-Valenz), 998, 952, 928, 891, 854, 783, 760, 737, 698 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.80$, 1.24 [2s, 6H, SC_q(CH₃)₂CH], 1.91, 1.99 [2s, 6H, SC_q(CH₃)₂N], 2.66 [ddd, ²J = 18.3 Hz, ³J = 12.2 Hz, ³J = 2.5 Hz, 1H, CH₂C_q=O], 3.10

[ddd, ${}^{2}J = 18.3$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 0.9$ Hz, 1H, CH₂C_q=O], 4.66 [ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 12.1$ Hz, ${}^{3}J = 1.0$ Hz, 1H, NCH₂], 4.90 [ddd, ${}^{2}J = 14.2$ Hz, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 2.5$ Hz, 1H, NCH₂], 5.47 [s, 1H, NCH], 7.82–7.87 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.34–8.38 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 26.12$, 26.23 [SC_q(<u>C</u>H₃)₂CH], 29.70, 31.54 [SC_q(<u>C</u>H₃)₂N], 39.75 [<u>C</u>H₂C_q=O], 45.98 [NCH₂], 55.09 [S<u>C</u>_q(CH₃)₂CH], 65.66 [NCH], 70.74 [S<u>C</u>_q(CH₃)₂N], 124.60 [2 *o*-CH_{Ar}(NO₂)], 126.78 [C_{q,Ar}<u>C</u>_{q,Ar}CH], 129.09 [2 *m*-CH_{Ar}(NO₂)], 137.86 [<u>C</u>_{q,Ar}CH_{Ar}], 146.34 [<u>C</u>_{q,Ar}C_{q,Ar}CH], 147.86 [C_{q,Ar}NO₂], 169.76 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 388.1 [MH]⁺(100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{21}N_5NaO_3S]^+$: 410.1263, gefunden: 410.1255.—

(*RS*)-1-(4-Methoxyphenyl)-5,6,11,11a-tetrahydro-9,9,11,11-tetramethyl-7H,9H-thiazolo-[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9g**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.45 mmol (165 mg) Propargylamid **8g** und 2.25 mmol (142 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9g** als farbloser Feststoff erhalten.

Ausbeute: 71 mg (0.19 mmol, 42 %).—

 $M = 372.49 \text{ g/mol}, C_{19}H_{24}N_4O_2S$

Schmelzpunkt: 188–190 °C.—

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.41$.

IR (ATR): $\tilde{v} = 2992$, 2962, 2935 (CH-, CH₂-, CH₃-Valenz), 2836 (O-CH₃-Valenz), 1644 (C=O-Valenz), 1616, 1507 (Ringschwingung), 1461, 1443, 1426, 1402, 1371 (CH-, CH₂-, CH₃-Deform.), 1359, 1329, 1298, 1269, 1248, 1204, 1179, 1165, 1123, 1097

(C-N-Valenz), 1038 (C-O-C-Valenz), 999, 952, 925, 890, 844, 798, 779, 746, 699 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.82$, 1.24 [2s, 6H, SC_q(CH₃)₂CH], 1.89, 1.98 [2s, 6H, SC_q(CH₃)₂N], 2.62 [ddd, ²J = 18.2 Hz, ³J = 12.1 Hz, ³J = 2.5 Hz, 1H, CH₂C_q=O], 3.04 [ddd, ²J = 18.2 Hz, ³J = 4.8 Hz, ³J = 0.9 Hz, 1H, CH₂C_q=O], 3.85 [s, 3H, OCH₃], 4.62 [ddd, ²J = 14.2 Hz, ³J = 12.1 Hz, ³J = 1.0 Hz, 1H, NCH₂], 4.83 [ddd, ²J = 14.2 Hz, ³J = 4.8 Hz, ³J = 2.6 Hz, 1H, NCH₂], 5.47 [s, 1H, NCH], 6.97–7.01 [m, 2H, *o*-CH_{Ar}(OCH₃)], 7.49–7.53 [m, 2H, *m*-CH_{Ar}(OCH₃)] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 25.99$, 26.35 [SC_q(<u>C</u>H₃)₂CH], 29.69, 31.59 [SC_q(<u>C</u>H₃)₂N], 39.85 [<u>C</u>H₂C_q=O], 45.73 [NCH₂], 55.01 [S<u>C_q(CH₃)₂CH], 55.47 [OCH₃], 65.82 [NCH], 70.52 [S<u>C_q(CH₃)₂N], 114.75 [2 *o*-<u>C</u>H_{Ar}(OCH₃)], 123.70 [C_{q,Ar}<u>C_{q,Ar}CH_{Ar}], 125.03 [C_{q,Ar}<u>C_{q,Ar}CH], 129.66 [2 *m*-<u>C</u>H_{Ar}(OCH₃)], 148.66 [<u>C_{q,Ar}C_{q,Ar}CH], 160.07 [<u>C_{q,Ar}C_{q,Ar}CH], 169.99 [C_q=O] ppm.</u>—</u></u></u></u></u>

MS (ESI, TOF): m/z (%) = 395.2 [MNa]⁺(100).—

HRMS (ESI, TOF): Berechnet für $[C_{19}H_{24}N_4N_4O_2S]^+$: 395.1518, gefunden: 395.1519.—

(*RS*)-1-*n*-*Butyl*-5,6,11,11*a*-tetrahydro-9,9,11,11-tetramethyl-7H,9H-thiazolo[3,4-a]-[1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9h**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.42 mmol (134 mg) Propargylamid **8h** und 2.10 mmol (137 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9h** als farbloser Feststoff erhalten.

Ausbeute: 73 mg (0.23 mmol, 55 %).— M = 322.47 g/mol, $C_{16}H_{26}N_4OS$ Schmelzpunkt: 110–112 °C.— DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.48$.— IR (ATR): $\tilde{v} = 2961$, 2932, 2872 (CH-, CH₂-, CH₃-Valenz), 1649 (C=O-Valenz), 1463, 1400, 1382 (CH-, CH₂-, CH₃-Deform.), 1367, 1336, 1279, 1259, 1227, 1201, 1165, 1130, 1098, 1057 (C-N-Valenz), 954, 928, 818, 789, 643 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.94$ [t, ³J = 7.3 Hz, 3H, CH₂CH₃], 1.28, 1.29 [2s, 6H, SC_q(CH₃)₂CH], 1.33–1.46 [m, 2H, CH₃CH₂], 1.71–1.82 [m, 2H, CH₂CH₂CH₂], 1.85, 1.97 [2s, 6H, SC_q(CH₃)₂N], 2.39 [ddd, ²J = 18.2 Hz, ³J = 12.1 Hz, ³J = 2.4 Hz, 1H, CH₂C_q=O], 2.56 [ddd, ²J = 15.0 Hz, ³J = 9.4 Hz, ³J = 6.9 Hz, 1H, CH₂C_{q,Ar}], 2.72 [ddd, ²J = 14.8 Hz, ³J = 9.3 Hz, ³J = 5.7 Hz, 1H, CH₂C_{q,Ar}], 2.96 [ddd, ²J = 18.2 Hz, ³J = 4.8 Hz, ³J = 0.9 Hz, 1H, CH₂C_q=O], 4.53 [ddd, ²J = 14.2 Hz, ³J = 12.1 Hz, ³J = n.a., 1H, NCH₂], 4.75 [ddd, ²J = 14.2 Hz, ³J = 4.7 Hz, ³J = 2.6 Hz, 1H, NCH₂], 4.93 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 13.96 [\underline{C}H_3CH_2]$, 22.70 [CH₃CH₂], 25.73 [<u>C</u>H₂C_{q,Ar}], 26.02, 26.38 [SC_q(<u>C</u>H₃)₂CH], 29.53 [SC_q(<u>C</u>H₃)₂N], 31.08 [CH₂<u>C</u>H₂CH₂], 31.65 [SC_q(<u>C</u>H₃)₂N], 39.84 [<u>C</u>H₂C_q=O], 45.30 [NCH₂], 54.38 [S<u>C_q</u>(CH₃)₂CH], 65.64 [NCH], 70.48 [S<u>C_q</u>(CH₃)₂N], 125.23[<u>C_{q,Ar}CH</u>], 148.97 [<u>C_{q,Ar}CH₂]</u>, 170.01 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 345.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₆H₂₆N₄NaOS]⁺: 345.1725, gefunden: 345.1726.—

(*RS*)-5,6,11,11a-Tetrahydro-9,9,11,11-tetramethyl-1-trimethylsilyl-7H,9H-thiazolo-[3,4-a][1,2,3]triazolo[5,1-c][1,4]diazepin-7-on (**9j**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.21 mmol (69 mg) Propargylamid **8j** und 1.05 mmol (68 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **9j** als gelb-braunes Öl erhalten.

Ausbeute: 21 mg (0.06 mmol, 29 %).— M = 338.55 g/mol, $C_{15}H_{26}N_4OSSi$ DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.42$.— IR (ATR): $\tilde{v} = 2966$, 2929 (CH-, CH₂-, CH₃-Valenz), 1649 (C=O-Valenz), 1465, 1393 (CH-, CH₂-, CH₃-Deform.), 1365, 1333, 1311, 1284, 1251, 1200, 1163, 1126, 1094 (C-N-Valenz), 952, 893, 839, 808, 762, 707, 636 (C-S-Valenz, C-Si-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.39$ [s, 9H, Si(CH₃)₃], 1.29, 1.30 [2s, 6H, SC_q(CH₃)₂CH], 1.81, 1.98 [2s, 6H, SC_q(CH₃)₂N], 2.38 [ddd, ²J = 18.3 Hz, ³J = 12.2 Hz, ³J = 2.6 Hz, 1H, CH₂C_q=O], 2.94 [ddd, ²J = 18.3 Hz, ³J = 4.7 Hz, ³J = n.a., 1H, CH₂C_q=O], 4.58 [ddd, ²J = 14.3 Hz, ³J = 12.2 Hz, ³J = 1.0 Hz, 1H, NCH₂], 4.82 [ddd, ²J = 14.3 Hz, ³J = 2.7 Hz, 1H, NCH₂], 5.11 [s, 1H, NCH] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = -0.09$ [3 Si(CH₃)₃], 26.14, 26.72 [SC_q(CH₃)₂CH], 29.56, 31.50 [SC_q(CH₃)₂N], 39.67 [CH₂C_q=O], 44.86 [NCH₂], 53.68 [SC_q(CH₃)₂CH],

65.61 [NCH], 70.19 [S<u>C</u>_q(CH₃)₂N], 134.48 [<u>C</u>_{q,Ar}CH], 148.52 [C_{q,Ar}Si], 169.99 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 361.1 [MNa]⁺(100).—

HRMS (ESI, TOF): Berechnet für [C₁₅H₂₆N₄NaOSSi]⁺: 361.1494, gefunden: 361.1488.—

(*RS*)-3-(3-Azidopropanoyl)-4-(4-carbomethoxy-1H-1,2,3-triazol-5-yl)-2,2,5,5-tetramethyl-1,3-thiazolidin (**10**)

Die Darstellung erfolgt gemäß **AAV 5** aus 0.70 mmol (222 mg) Propargylamid **8k** und 3.50 mmol (228 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 6:1) wird das Azidoamid **10** als farbloser Feststoff erhalten.

Ausbeute: 24 mg (0.07 mmol, 9%).---

 $M = 367.43 \text{ g/mol}, C_{14}H_{21}N_7O_3S$

DC (Dichlormethan/Essigsäureethylester 6:1): $R_f = 0.38$.—

IR (ATR): $\tilde{v} = 3186$ (NH-Valenz), 2981, 2921 (CH-, CH₂-, CH₃-Valenz), 2096 (N₃-Valenz), 1713, 1620 (C=O-Valenz), 1505 (NH-Deform.), 1443, 1416 (CH-, CH₂-,

CH₃-Deform.), 1363, 1317, 1249, 1209, 1167, 1135 (C-N-Valenz), 1102 (C-O-C-Valenz), 989, 962, 926, 835, 786, 768, 740 (C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 0.96$, 1.86 [2s, 6H, SC_q(CH₃)₂CH], 1.98–2.05 [m, 1H, CH₂C_q=O], 2.06, 2.09 [2s, 6H, SC_q(CH₃)₂N], 2.63 [ddd, ²*J* = 16.3 Hz, ³*J* = 7.1 Hz, ³*J* = 6.2 Hz, 1H, CH₂C_q=O], 3.41–3.48, 3.49–3.55 [2m, 2H, CH₂N₃], 4.01 [s, 3H, OCH₃], 6.00 [s, 1H, NCH], 13.23 [bs, 1H, NH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 24.48$ [SC_q(<u>C</u>H₃)₂CH], 28.25, 32.27 [SC_q(<u>C</u>H₃)₂N], 33.27 [SC_q(<u>C</u>H₃)₂CH], 36.00 [<u>C</u>H₂C_q=O], 47.02 [CH₂N₃], 52.16 [S<u>C</u>_q(CH₃)₂CH], 52.89 [OCH₃], 68.11 [NCH], 74.11 [S<u>C</u>_q(CH₃)₂N], 136.39 [<u>C</u>_q,A_rC_q=O], 147.98 [<u>C</u>_q,A_rCH], 162.13 [OC_q=O], 168.95 [NC_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 390.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₄H₂₁N₇NaO₃S]⁺: 390.1324, gefunden: 390.1311.—

8.2.8 Darstellung der Alkoxyamide

(RS)-3-Chloracetyl-4-(2-propinyloxy)-2,2,5,5-tetramethyl-1,3-thiazolidin (11a)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11a** als farbloses Öl erhalten.

Ausbeute: 417 mg (1.51 mmol, 76 %).—

 $M = 275.79 \text{ g/mol}, C_{12}H_{18}ClNO_2S$

DC (Dichlormethan): $R_f = 0.51$.—

IR (ATR): $\tilde{v} = 3238$ (=CH-Valenz), 2994, 2971, 2933 (CH-, CH₂-, CH₃-Valenz), 2114 (C=C-Valenz), 1649 (C=O-Valenz), 1455, 1394, 1380 (CH-, CH₂-, CH₃-Deform.), 1343, 1255, 1204, 1160, 1145 (C-N-Valenz), 1062, 1030 (C-O-C-Valenz), 972, 930, 909, 895, 748, 705, 656, 640 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.41$, 1.55 [2s, 6H, SC_q(CH₃)₂CH], 1.78, 1.92 [2s, 6H, SC_q(CH₃)₂N], 2.58 [dd, ⁴J = 2.3 Hz, ⁴J = 2.3 Hz, 1H, C_q=CH], 4.13 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.22 [dd, ²J = 16.8 Hz, ⁴J = 2.2 Hz, 1H, CH₂O], 4.38 [dd, ²J = 16.9 Hz, ⁴J = 2.4 Hz, 1H, CH₂O], 4.48 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.28 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.51$ [SC_q(<u>C</u>H₃)₂CH], 30.77 [SC_q(<u>C</u>H₃)₂N], 31.23, 31.28 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 43.62 [CH₂Cl], 53.33 [S<u>C</u>_q(CH₃)₂CH], 54.56 [CH₂O], 73.10 [S<u>C</u>_q(CH₃)₂N], 76.49, 78.85 [C_q=<u>C</u>H, <u>C</u>_q=CH], 95.74 [NCH], 165.82 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 298.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₂H₁₈ClNNaO₂S]⁺: 298.0644, gefunden: 298.0643.—

(RS)-4-(2-Butinyloxy)-3-chloracetyl-2,2,5,5-tetramethyl-1,3-thiazolidin (11b)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (210 mg) But-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11b** als farbloser Feststoff erhalten.

Ausbeute: 400 mg (1.38 mmol, 69 %).---

 $M = 289.82 \text{ g/mol}, C_{13}H_{20}ClNO_2S$

Schmelzpunkt: 67–69 °C.—

DC (Dichlormethan): $R_f = 0.61$.—

IR (ATR): $\tilde{v} = 2995$, 2971, 2943 (CH-, CH₂-, CH₃-Valenz), 2296, 2224 (C=C-Valenz), 1681 (C=O-Valenz), 1464, 1450, 1374 (CH-, CH₂-, CH₃-Deform.), 1326, 1262, 1209, 1164, 1137 (C-N-Valenz), 1056, 1021 (C-O-C-Valenz), 934, 918, 896, 796, 708 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.40$, 1.54 [2s, 6H, SC_q(CH₃)₂CH], 1.79 [s, 3H, SC_q(CH₃)₂N], 1.88 [dd, ⁵J = 2.3 Hz, ⁵J = 2.3 Hz, 3H, C_q=C_qCH₃], 1.92 [s, 3H, SC_q(CH₃)₂N], 4.15 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.19 [dq, ²J = 16.4 Hz, ⁵J = 2.3 Hz, 1H, CH₂O], 4.33 [dq, ²J = 16.4 Hz, ⁵J = 2.3 Hz, 1H, CH₂O], 4.54 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.28 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.75$ [C_q=C_q<u>C</u>H₃], 23.53 [SC_q(<u>C</u>H₃)₂CH], 30.69 [SC_q(<u>C</u>H₃)₂N], 31.22, 31.32 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 43.78 [CH₂Cl], 53.45 [S<u>C</u>_q(CH₃)₂CH], 55.45 [CH₂O], 72.96 [S<u>C</u>_q(CH₃)₂N], 74.26, 84.94 [<u>C</u>_q=C_qCH₃, C_q=<u>C</u>_qCH₃], 95.57 [NCH], 165.85 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 312.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{20}CINNaO_2S]^+$: 312.0801, gefunden: 312.0794.—

(RS)-3-Chloracetyl-4-(3-phenyl-2-propinyloxy)-2,2,5,5-tetramethyl-1,3-thiazolidin (11c)

Die Darstellung erfolgt gemäß AAV 6 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) N,N-Diisopropylethylamin und 3.00 mmol (396 mg) 3-Phenylprop-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid 11c als farbloses Öl erhalten.

Ausbeute: 517 mg (1.47 mmol, 74 %).—

 $M = 351.89 \text{ g/mol}, C_{18}H_{22}ClNO_2S$

DC (Dichlormethan): $R_f = 0.54$.—

IR (ATR): $\tilde{v} = 2977$, 2933, 2863 (CH-, CH₂-, CH₃-Valenz), 1666 (C=O-Valenz), 1490 (Ringschwingung), 1467, 1443, 1390, 1378 (CH-, CH₂-, CH₃-Deform.), 1257, 1208, 1158, 1140 (C-N-Valenz), 1056, 1028 (C-O-C-Valenz), 971, 956, 916, 896, 797, 756, 707, 690, 652 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): δ = 1.46, 1.58 [2s, 6H, SC_q(CH₃)₂CH], 1.84, 1.95 [2s, 6H, SC_q(CH₃)₂N], 4.20 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 4.50 [d, ²*J* = 16.8 Hz, 1H, CH₂O], 4.60 [d, ²*J* = 16.8 Hz, 1H, CH₂O], 4.61 [d, ²*J* = 12.5 Hz, 1H, CH₂Cl], 5.40 [s, 1H, NCH], 7.32–7.39 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.45–7.48 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.65 [SC_q(\underline{CH}_3)_2CH]$, 30.82 $[SC_q(\underline{CH}_3)_2N]$, 31.33, 31.39 $[SC_q(\underline{CH}_3)_2CH, SC_q(\underline{CH}_3)_2N]$, 43.74 $[CH_2Cl]$, 53.47 $[S\underline{C}_q(CH_3)_2CH]$, 55.68 $[CH_2O]$, 73.13 $[S\underline{C}_q(CH_3)_2N]$, 83.85 $[C_{q,Ar}C_q \equiv \underline{C}_q]$, 88.31 $[C_{q,Ar}\underline{C}_q \equiv C_q]$, 95.97 [NCH], 121.79 $[C_{q,Ar}]$, 128.64 $[2 \ m-CH_{Ar}]$, 129.24 $[p-CH_{Ar}]$, 132.01 $[2 \ o-CH_{Ar}]$, 165.86 $[C_q=O]$ ppm.—

MS (ESI, TOF): m/z (%) = 374.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₂ClNNaO₂S]⁺: 374.0957, gefunden: 374.0951.—

(RS)-3-Chloracetyl-4-(2-propinyloxy)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (11d)

Die Darstellung erfolgt gemäß AAV 6 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) N,N-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid 11d als schwach gelbes Öl erhalten.

Ausbeute: 556 mg (1.76 mmol, 88 %).---

 $M = 315.86 \text{ g/mol}, C_{15}H_{22}CINO_2S$

DC (Dichlormethan): $R_f = 0.56$.—

IR (ATR): $\tilde{v} = 3289$ (=CH-Valenz), 2976, 2930, 2855 (CH-, CH₂-, CH₃-Valenz), 2359, 2115 (C=C-Valenz), 1661 (C=O-Valenz), 1446, 1379 (CH-, CH₂-, CH₃-Deform.), 1362, 1260, 1213, 1202, 1163, 1102 (C-N-Valenz), 1058 (C-O-C-Valenz), 927, 892, 852, 796, 746, 707, 678, 642 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.23-1.35$ [m, 2H, CH_{2,Cy}], 1.54–1.67 [m, 3H, CH_{2,Cy}], 1.68–1.83 [m, 4H, CH_{2,Cy}], 1.78 [s, 3H, C_q(CH₃)₂], 1.87–1.94 [m, 1H, CH_{2,Cy}], 1.88 [s, 3H, C_q(CH₃)₂], 2.58 [dd, ⁴J = 2.3 Hz, ⁴J = 2.3 Hz, 1H, C_q≡CH], 4.14 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.18 [dd, ²J = 16.9 Hz, ⁴J = 2.5 Hz, 1H, CH₂O], 4.37 [dd, ²J = 16.8 Hz, ⁴J = 2.3 Hz, 1H, CH₂O], 4.48 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.38 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.57$, 24.35, 25.57 [CH_{2,Cy}], 30.88, 31.68 [C_q(<u>C</u>H₃)₂], 33.26, 38.13 [CH_{2,Cy}], 43.54 [CH₂Cl], 54.28 [CH₂O], 59.27 [S<u>C</u>_q(CH_{2,Cy})₂], 72.05 [S<u>C</u>_q(CH₃)₂], 76.42, 78.92 [C_q=<u>C</u>H, <u>C</u>_q=CH], 94.45 [NCH], 165.99 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 338.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₅H₂₂ClNNaO₂S]⁺: 338.0957, gefunden: 338.0955.—

(RS)-4-(2-Butinyloxy)-3-chloracetyl-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (11e)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (210 mg) But-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11e** als schwach gelbes Öl erhalten.

Ausbeute: 314 mg (0.95 mmol, 48 %).---

 $M = 329.88 \text{ g/mol}, C_{16}H_{24}CINO_2S$

DC (Dichlormethan): $R_f = 0.52$.—

IR (ATR): $\tilde{v} = 2985$, 2930, 2857 (CH-, CH₂-, CH₃-Valenz), 2294, 2222 (C=C-Valenz), 1656 (C=O-Valenz), 1450, 1378 (CH-, CH₂-, CH₃-Deform.), 1359, 1339, 1321, 1274, 1257, 1210, 1201, 1163, 1137 (C-N-Valenz), 1055 (C-O-C-Valenz), 1013, 993, 922, 893, 854, 827, 781, 754, 703, 643 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.22-1.36$ [m, 2H, CH_{2,Cy}], 1.55–1.66 [m, 3H, CH_{2,Cy}], 1.67–1.74 [m, 2H, CH_{2,Cy}], 1.75–1.83 [m, 2H, CH_{2,Cy}], 1.78 [s, 3H, C_q(CH₃)₂], 1.87–1.94 [m, 4H, 3 C_q=C_qCH₃, CH_{2,Cy}], 1.88 [s, 3H, C_q(CH₃)₂], 4.15 [d, ²*J* = 12.6 Hz, 1H, CH₂Cl], 4.16 [dq, ²*J* = 16.4 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.32 [dq, ²*J* = 16.4 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.54 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 5.38 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.74$ [C_q=C_qCH₃], 22.59, 24.40, 25.63 [CH_{2,Cy}], 30.81, 31.72 [C_q(CH₃)₂], 33.33, 38.09 [CH_{2,Cy}], 43.71 [CH₂Cl], 55.19 [CH₂O], 59.42 [SC_q(CH_{2,Cy})₂], 71.95 [SC_q(CH₃)₂], 74.31, 84.88 [C_q=C_qCH₃, C_q=C_qCH₃], 94.37 [NCH], 166.01 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 352.1. [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{24}CINNaO_2S]^+$: 352.1114, gefunden: 352.1111.—

(*RS*)-3-Chloracetyl-4-(3-phenyl-2-propinyloxy)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**11f**)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (396 mg) 3-Phenylprop-2-in-1-ol. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: Dichlormethan/*n*-Hexan 2:1) wird das Alkinoxyamid **11f** als schwach gelbes Öl erhalten.

Ausbeute: 608 mg (1.55 mmol, 78 %).---

 $M = 391.95 \text{ g/mol}, C_{21}H_{26}ClNO_2S$

1. DC (Dichlormethan): $R_f = 0.66$.—

2. DC (Dichlormethan/n-Hexan 2:1): $R_f = 0.33$.—

IR (ATR): $\tilde{v} = 2932$, 2856 (CH-, CH₂-, CH₃-Valenz), 2239 (C=C-Valenz), 1666 (C=O-Valenz), 1492 (Ringschwingung), 1445, 1381 (CH-, CH₂-, CH₃-Deform.), 1363, 1261, 1214, 1164, 1103 (C-N-Valenz), 1055 (C-O-C-Valenz), 962, 921, 894, 854, 824, 798, 757, 710, 691 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.29-1.34$ [m, 2H, CH_{2,Cy}], 1.54–1.59 [m, 1H, CH_{2,Cy}], 1.62–1.69 [m, 2H, CH_{2,Cy}], 1.76–1.85 [m, 4H, CH_{2,Cy}], 1.83, 1.91 [2s, 6H, C_q(CH₃)₂], 1.92–1.97 [m, 1H, CH_{2,Cy}], 4.21 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 4.45 [d, ²*J* = 16.9 Hz, 1H, CH₂O], 4.60 [d, ²*J* = 16.9 Hz, 1H, CH₂O], 4.63 [d, ²*J* = 12.6 Hz, 1H, CH₂Cl], 5.52 [s, 1H, NCH], 7.32–7.40 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.45–7.48 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.67$, 24.39, 25.57 [CH_{2,Cy}], 30.92, 31.72 [C_q(<u>C</u>H₃)₂], 33.35, 38.19 [CH_{2,Cy}], 43.65 [CH₂Cl], 55.28 [CH₂O], 59.34 [S<u>C</u>_q(CH_{2,Cy})₂], 72.05 [S<u>C</u>_q(CH₃)₂], 83.81 [C_{q,Ar}C_q=<u>C</u>_q], 88.27 [C_{q,Ar}C_q=C_q], 94.39 [NCH], 121.73 [C_{q,Ar}], 128.65 [2 *m*-CH_{Ar}], 129.23 [*p*-CH_{Ar}], 131.96 [2 *o*-CH_{Ar}], 165.99 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 414.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für $[C_{21}H_{26}ClNNaO_2S]^+$: 414.1270, gefunden: 413.1269.—

(RS)-4-Chloracetyl-3-(2-propinyloxy)-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (11g)

Die Darstellung erfolgt gemäß AAV 6 aus 2.00 mmol (367 mg) 3-Thiazolin 1c, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) N,N-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid 11g als schwach gelbes Öl erhalten.

Ausbeute: 237 mg (0.75 mmol, 38 %).---

 $M = 315.86 \text{ g/mol}, C_{15}H_{22}CINO_2S$

DC (Dichlormethan): $R_f = 0.64$.—

IR (ATR): $\tilde{v} = 3295$, $3252 \ (\equiv CH-Valenz)$, 2961, 2933, 2858 (CH-, CH₂-, CH₃-Valenz), 2116 (C=C-Valenz), 1660 (C=O-Valenz), 1463, 1448, 1389, 1377 (CH-, CH₂-, CH₃-Deform.), 1355, 1313, 1254, 1181, 1159, 1140 (C-N-Valenz), 1067, 1025 (C-O-C-Valenz), 970, 928, 905, 869, 835, 786, 735 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.06-1.17$, 1.20–1.31 [2m, 2H, CH_{2,Cy}], 1.35, 1.46 [2s, 6H, C_q(CH₃)₂], 1.47–1.54 [m, 2H, CH_{2,Cy}], 1.57–1.69 [m, 2H, CH_{2,Cy}], 1.71–1.83 [m, 2H, CH_{2,Cy}], 2.52 [dd, ⁴J = 2.4 Hz, ⁴J = 2.4 Hz, 1H, C_q=CH], 2.55–2.64, 2.97–3.06 [2m, 2H, CH_{2,Cy}], 4.08 [d, ²J = 12.8 Hz, 1H, CH₂Cl], 4.14 [dd, ²J = 16.8 Hz, ⁴J = 2.3 Hz, 1H, CH₂O], 4.31 [dd, ²J = 16.8 Hz, ⁴J = 2.4 Hz, 1H, CH₂O], 4.42 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.23 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.65 [C_q(\underline{C}H_3)_2]$, 24.45, 24.99, 25.84 [CH_{2,Cy}], 31.19 [C_q($\underline{C}H_3$)₂], 36.40, 38.23 [CH_{2,Cy}], 44.18 [CH₂Cl], 52.33 [S \underline{C}_q (CH₃)₂], 54.52 [CH₂O], 76.46 [S \underline{C}_q (CH_{2,Cy})₂], 78.93, 80.69 [C_q $\equiv \underline{C}H$, $\underline{C}_q \equiv CH$], 95.54 [NCH], 166.07 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 338.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₅H₂₂ClNNaO₂S]⁺: 338.0957, gefunden: 338.0950.—

(RS)-3-(2-Butinyloxy)-4-chloracetyl-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (11h)

Die Darstellung erfolgt gemäß AAV 6 aus 2.00 mmol (367 mg) 3-Thiazolin 1c, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (210 mg) But-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11h** als schwach gelbes Öl erhalten.

Ausbeute: 327 mg (0.99 mmol, 50 %).---

 $M = 329.88 \text{ g/mol}, C_{16}H_{24}ClNO_2S$

DC (Dichlormethan): $R_f = 0.56$.—

IR (ATR): $\tilde{v} = 2933$, 2858 (CH-, CH₂-, CH₃-Valenz), 2221 (C=C-Valenz), 1658 (C=O-Valenz), 1450, 1437, 1388 (CH-, CH₂-, CH₃-Deform.), 1330, 1256, 1179, 1163, 1144, 1070 (C-N-Valenz), 1051, 1023 (C-O-C-Valenz), 923, 902, 871, 836, 782, 700, 639 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.10-1.21$, 1.25–1.36 [2m, 2H, CH_{2,Cy}], 1.40, 1.51 [2s, 6H, C_q(CH₃)₂], 1.52–1.59 [m, 2H, CH_{2,Cy}], 1.60–1.72 [m, 2H, CH_{2,Cy}], 1.75–1.85 [m, 2H, CH_{2,Cy}], 1.88 [dd, ⁵*J* = 2.3 Hz, ⁵*J* = 2.3 Hz, 3H, C_q=C_qCH₃], 2.59–2.68, 3.03–3.12 [2m, 2H, CH_{2,Cy}], 4.14 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 4.17 [dq, ²*J* = 16.4 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.31 [dq, ²*J* = 16.4 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.53 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 5.28 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.74 [C_q \equiv C_q \underline{C}H_3]$, 23.64 $[C_q(\underline{C}H_3)_2]$, 24.45, 24.98, 25.82 $[CH_{2,Cy}]$, 31.15 $[C_q(\underline{C}H_3)_2]$, 36.42, 38.08 $[CH_{2,Cy}]$, 44.30 $[CH_2Cl]$, 52.41 $[S\underline{C}_q(CH_3)_2]$, 55.38 $[CH_2O]$, 74.30 $[\underline{C}_q \equiv C_q]$, 80.54 $[S\underline{C}_q(CH_{2,Cy})_2]$, 84.87 $[\underline{C}_q \equiv C_q]$, 95.37 [NCH], 166.05 $[C_q = O]$ ppm.—

MS (ESI, TOF): m/z (%) = 352.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₆H₂₄ClNNaO₂S]⁺: 352.1114, gefunden: 352.1112.—

(*RS*)-4-Chloracetyl-3-(3-phenyl-2-propinyloxy)-2,2-dimethyl-1-thia-4-azaspiro-[4.5]decan (**11i**)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (367 mg) 3-Thiazolin **1c**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (396 mg) 3-Phenylprop-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan 7:3) wird das Alkinoxyamid **11i** als farbloses Öl erhalten.

Ausbeute: 193 mg (0.49 mmol, 25 %).—

 $M = 391.95 \text{ g/mol}, C_{21}H_{26}ClNO_2S$

DC (*n*-Hexan/Dichlormethan 7:3): $R_f = 0.25$.—

IR (ATR): $\tilde{v} = 2934$, 2860 (CH-, CH₂-, CH₃-Valenz), 2240 (C=C-Valenz), 1665 (C=O-Valenz), 1599, 1491 (Ringschwingung), 1444, 1388 (CH-, CH₂-, CH₃-Deform.), 1367, 1352, 1313, 1257, 1207, 1173, 1143 (C-N-Valenz), 1069, 1047 (C-O-C-Valenz), 951, 915, 866, 832, 791, 757, 732 (=CH-Deform., C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.13-1.25$, 1.28–1.41 [2m, 2H, CH_{2,Cy}], 1.45, 1.54 [2s, 6H, C_q(CH₃)₂], 1.55–1.63 [m, 2H, CH_{2,Cy}], 1.65–1.76 [m, 2H, CH_{2,Cy}], 1.78–1.85, 1.89–1.95, 2.65–2.75, 3.05–3.15 [4m, 4H, CH_{2,Cy}], 4.21 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 4.47 [d, ²*J* = 16.9 Hz, 1H, CH₂O], 4.59 [d, ²*J* = 16.8 Hz, 1H, CH₂O], 4.62 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 5.41 [s, 1H, NCH], 7.31–7.39 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.44–7.48 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.75 [C_q(\underline{C}H_3)_2]$, 24.47, 25.02, 25.85 [CH_{2,Cy}], 31.23 [C_q($\underline{C}H_3$)₂], 36.44, 38.20 [CH_{2,Cy}], 44.27 [CH₂Cl], 52.45 [S \underline{C}_q (CH₃)₂], 55.52 [CH₂O], 80.71 [S \underline{C}_q (CH_{2,Cy})₂], 83.85 [C_{q,Ar}C_q $\equiv \underline{C}_q$], 88.25 [C_{q,Ar}C_q $\equiv C_q$], 95.61 [NCH], 121.74 [C_{q,Ar}], 128.63 [2 *m*-CH_{Ar}], 129.22 [*p*-CH_{Ar}], 131.99 [2 *o*-CH_{Ar}], 166.06 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 414.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{21}H_{27}CINO_2S]^+$: 392.1451, gefunden: 392.1451.—

(RS)-14-Chloracetyl-15-(2-propinyloxy)-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (**11j**)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11j** als farbloses Öl erhalten.

Ausbeute: 553 mg (1.55 mmol, 78 %).---

 $M = 355.92 \text{ g/mol}, C_{18}H_{26}ClNO_2S$

DC (Dichlormethan): $R_f = 0.54$.—

IR (ATR): $\tilde{v} = 3277$ (=CH-Valenz), 2951, 2930, 2853 (CH-, CH₂-Valenz), 2116 (C=C-Valenz), 1658 (C=O-Valenz), 1436, 1382 (CH-, CH₂-Deform.), 1330, 1318, 1262, 1245, 1206, 1181, 1161, 1145, 1102 (C-N-Valenz), 1059, 1050, 1019 (C-O-C-Valenz), 972, 928, 888, 868, 834, 789, 685 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.10-1.21$ [m, 1H, CH_{2,Cy}], 1.25–1.41 [m, 3H, CH_{2,Cy}], 1.50–1.93 [m, 14H, CH_{2,Cy}], 2.57 [dd, ⁴*J* = 2.4 Hz, ⁴*J* = 2.4 Hz, 1H, C_q=CH], 2.58–2.66, 3.00–3.09 [2m, 2H, CH_{2,Cy}], 4.14 [d, ²*J* = 12.8 Hz, 1H, CH₂Cl], 4.16 [dd, ²*J* = 16.8 Hz, ⁴*J* = 2.3 Hz, 1H, CH₂O], 4.35 [dd, ²*J* = 16.9 Hz, ⁴*J* = 2.4 Hz, 1H, CH₂O], 4.48 [d, ²*J* = 12.8 Hz, 1H, CH₂Cl], 5.38 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.56$, 24.25, 24.47, 24.88, 25.60, 25.72, 33.29, 36.69, 37.96, 38.19 [CH_{2,Cy}], 44.08 [CH₂Cl], 54.23 [CH₂O], 58.07 [S<u>C</u>_q(CH_{2,Cy})₂CH], 76.37, 78.97 [C_q=<u>C</u>H, <u>C</u>_q=CH], 79.51 [S<u>C</u>_q(CH_{2,Cy})₂N], 94.28 [NCH], 166.22 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 378.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₆ClNNaO₂S]⁺: 378.1270, gefunden: 378.1273.—

(RS)-15-(2-Butinyloxy)-14-chloracetyl-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (11k)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (210 mg) But-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 8:2) wird das Alkinoxyamid **11k** als farbloser Feststoff erhalten.

Ausbeute: 191 mg (0.52 mmol, 26 %).---

 $M = 369.95 \text{ g/mol}, C_{19}H_{28}ClNO_2S$

Schmelzpunkt: 138–140 °C.—

DC (*n*-Hexan/tert-Butylmethylether 8:2): $R_f = 0.28$.—

IR (ATR): $\tilde{v} = 2929$, 2858 (CH-, CH₂-, CH₃-Valenz), 2216 (C=C-Valenz), 1660 (C=O-Valenz), 1448, 1435, 1384 (CH-, CH₂-, CH₃-Deform.), 1321, 1245, 1205, 1184, 1150, 1133, 1104, 1074 (C-N-Valenz), 1049, 1023 (C-O-C-Valenz), 973, 950, 892, 869, 787, 686, 641 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.11-1.22$ [m, 1H, CH_{2,Cy}], 1.25–1.43 [m, 3H, CH_{2,Cy}], 1.51–1.57 [m, 2H, CH_{2,Cy}], 1.58–1.66 [m, 4H, CH_{2,Cy}], 1.67–1.74 [m, 3H, CH_{2,Cy}], 1.75–1.82 [m, 3H, CH_{2,Cy}], 1.84–1.94 [m, 2H, CH_{2,Cy}], 1.89 [dd, ⁵*J* = 2.3 Hz, ⁵*J* = 2.3 Hz, 3H, C_q=C_qCH₃], 2.59–2.66, 3.03–3.12 [2m, 2H, CH_{2,Cy}], 4.15 [dq, ²*J* = 16.5 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.16 [d, ²*J* = 12.6 Hz, 1H, CH₂Cl], 4.31 [dq, ²*J* = 16.4 Hz, ⁵*J* = 2.3 Hz, 1H, CH₂O], 4.53 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 5.39 [s, 1H, NCH] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 3.72$ [CH₃], 22.63, 24.34, 24.55, 24.95, 25.71, 25.78, 33.42, 36.81, 38.01, 38.14 [CH_{2,Cy}], 44.27 [CH₂Cl], 55.19 [CH₂O], 58.25 [S<u>C</u>_q(CH_{2,Cy})₂CH], 74.44 [<u>C</u>_q=C_q], 79.48 [S<u>C</u>_q(CH_{2,Cy})₂N], 84.81 [<u>C</u>_q=C_q], 94.29 [NCH], 166.26 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 392.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₉H₂₈ClNNaO₂S]⁺: 392.1427, gefunden: 392.1432.—

(*RS*)-14-Chloracetyl-15-(3-phenyl-2-propinyloxy)-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (**11**)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (396 mg) 3-Phenylprop-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan 7:3) wird das Alkinoxyamid **11l** als farbloses Öl erhalten.

Ausbeute: 261 mg (0.60 mmol, 30 %).—

 $M = 432.02 \text{ g/mol}, C_{24}H_{30}ClNO_2S$

DC (*n*-Hexan/Dichlormethan 7:3): $R_f = 0.26$.

IR (ATR): $\tilde{v} = 2929$, 2855 (CH-, CH₂-Valenz), 1661 (C=O-Valenz), 1490 (Ringschwingung), 1447, 1380 (CH-, CH₂-Deform.), 1315, 1254, 1205, 1181, 1156, 1104 (C-N-Valenz), 1049 (C-O-C-Valenz), 962, 906, 868, 786, 756, 731, 689, 644 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.13-1.23$ [m, 1H, CH_{2,Cy}], 1.25–1.44 [m, 3H, CH_{2,Cy}], 1.53–1.84 [m, 12H, CH_{2,Cy}], 1.88–1.97 [m, 2H, CH_{2,Cy}], 2.62–2.72, 3.05–3.14 [2m, 2H, CH_{2,Cy}], 4.22 [d, ²*J* = 12.7 Hz, 1H, CH₂Cl], 4.43 [d, ²*J* = 16.9 Hz, 1H, CH₂O], 4.58 [d, ²*J* = 17.1 Hz, 1H, CH₂O], 4.62 [d, ²*J* = 12.9 Hz, 1H, CH₂Cl], 5.52 [s, 1H, NCH], 7.30–7.40 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.43–7.48 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.65$, 24.29, 24.48, 24.92, 25.59, 25.74, 33.37, 36.72, 38.01, 38.17 [CH_{2,Cy}], 44.17 [CH₂Cl], 55.19 [CH₂O], 58.13 [S<u>C</u>_q(CH_{2,Cy})₂CH], 79.52 [S<u>C</u>_q(CH_{2,Cy})₂N], 83.87 [C_{q,Ar}C_q=<u>C</u>_q], 88.20 [C_{q,Ar}C_q=C_q], 94.19 [NCH], 121.73 [C_{q,Ar}], 128.61 [2 *m*-CH_{Ar}], 129.17 [*p*-CH_{Ar}], 131.92 [2 *o*-CH_{Ar}], 166.20 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 432.2 [MH]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{24}H_{31}CINO_2S]^+$: 432.1764, gefunden: 432.1774.—
(RS)-3-Chloracetyl-4-(2-propinyloxy)-2,2,5,5-tetramethyl-1,3-oxazolidin (11m)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Durch säulenchroamtographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11m** als gelbes Öl erhalten.

Ausbeute: 242 mg (0.93 mmol, 47 %).—

 $M = 259.73 \text{ g/mol}, C_{12}H_{18}ClNO_3$

DC (Dichlormethan): $R_f = 0.22$.—

IR (ATR): $\tilde{v} = 3260$ (=CH-Valenz), 2985, 2942, 2870 (CH-, CH₂-, CH₃-Valenz), 2117 (C=C-Valenz), 1669 (C=O-Valenz), 1443, 1398, 1377 (CH-, CH₂-, CH₃-Deform.), 1315, 1398, 1377, 1263, 1204, 1166 (C-N-Valenz), 1058 (C-O-C-Valenz), 1007, 804, 702, 678 (C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.32$, 1.35 [2s, 6H, OC_q(CH₃)₂CH], 1.55, 1.62 [2s, 6H, OC_q(CH₃)₂N], 2.59 [dd, ⁴J = 2.1 Hz, ⁴J = 2.1 Hz, 1H, C_q=CH], 4.08 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 4.23 [dd, ²J = 16.6 Hz, ⁴J = 2.1 Hz, 1H, CH₂O], 4.31 [dd, ²J = 16.5 Hz, ⁴J = 1.9 Hz, 1H, CH₂O], 4.41 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.12 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.07 [OC_q(\underline{CH}_3)_2CH]$, 27.18 $[OC_q(\underline{CH}_3)_2N]$, 27.40 $[OC_q(\underline{CH}_3)_2CH]$, 27.92 $[OC_q(\underline{CH}_3)_2N]$, 43.00 $[CH_2Cl]$, 55.66 $[CH_2O]$, 76.59, 78.37 $[C_q \equiv \underline{CH}, \underline{C}_q \equiv CH]$, 82.39 $[O\underline{C}_q(CH_3)_2CH]$, 90.22 [NCH], 96.00 $[O\underline{C}_q(CH_3)_2N]$, 165.08 $[C_q \equiv O]$ ppm.—

MS (ESI, TOF): m/z (%) = 282.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{18}CINNaO_3]^+$: 282.0873, gefunden: 282.0868.—

(RS)-4-(2-Butinyloxy)-3-chloracetyl-2,2,5,5-tetramethyl-1,3-oxazolidin (11n)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (210 mg) But-2-in-1-ol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkinoxyamid **11n** als gelbes Öl erhalten.

Ausbeute: 276 mg (1.01 mmol, 51 %).—

 $M = 273.76 \text{ g/mol}, C_{13}H_{20}CINO_3$

DC (Dichlormethan): $R_f = 0.33$.—

IR (ATR): $\tilde{v} = 2983$, 2939, 2872 (CH-, CH₂-, CH₃-Valenz), 2298, 2227 (C=C-Valenz), 1617 (C=O-Valenz), 1443, 1398, 1376 (CH-, CH₂-, CH₃-Deform.), 1315, 1264, 1204, 1162, 1140 (C-N-Valenz), 1053 (C-O-C-Valenz), 1005, 929, 900, 804, 703, 680 (C-Cl-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.33$, 1.35 [2s, 6H, OC_q(CH₃)₂CH], 1.56, 1.63 [2s, 6H, OC_q(CH₃)₂N], 1.89 [dd, ⁵J = 2.3 Hz, ⁵J = 2.3 Hz, 3H, C_q=C_qCH₃], 4.11 [d, ²J = 12.6 Hz, 1H, CH₂Cl], 4.17 [dq, ²J = 16.2 Hz, ⁵J = 2.2 Hz, 1H, CH₂O], 4.28 [dq, ²J = 16.2 Hz, ⁵J = 2.3 Hz, 1H, CH₂Cl], 5.15 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.70$ [C_q=C_q<u>C</u>H₃] 23.05 [OC_q(<u>C</u>H₃)₂CH], 27.20 [OC_q(<u>C</u>H₃)₂N], 27.45 [OC_q(<u>C</u>H₃)₂CH], 27.91 [OC_q(<u>C</u>H₃)₂N], 43.10 [CH₂Cl], 56.35 [CH₂O], 73.86 [<u>C_q</u>=C_q], 82.42 [O<u>C_q</u>(CH₃)₂CH], 85.02 [<u>C_q</u>=C_q], 89.73 [NCH], 95.85 [O<u>C_q</u>(CH₃)₂N], 165.15 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 296.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{20}CINNaO_3]^+$: 296.1029, gefunden: 296.1029.—

(RS)-3-Chloracetyl-4-(3-phenyl-2-propinyloxy)-2,2,5,5-tetramethyl-1,3-oxazolidin (110)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (396 mg) 3-Phenylprop-2-in-1-ol. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 7:2) wird das Alkinoxyamid **110** als farbloser Feststoff erhalten.

Ausbeute: 325 mg (0.97 mmol, 49 %).---

 $M = 335.83 \text{ g/mol}, C_{18}H_{22}ClNO_3$

Schmelzpunkt: 87–89 °C

1. DC (Dichlormethan): $R_f = 0.31$.—

2. DC (*n*-Hexan/*tert*-Butylmethylether 7:2): $R_f = 0.36$.—

IR (ATR): $\tilde{v} = 3061$ (=CH-Valenz), 2984, 2941 (CH-, CH₂-, CH₃-Valenz), 2244 (C=C-Valenz), 1686, 1671 (C=O-Valenz), 1493 (Ringschwingung), 1473, 1445, 1412, 1397, 1373 (CH-, CH₂-, CH₃-Deform.), 1349, 1270, 1258, 1205, 1169, 1151 (C-N-Valenz), 1057 (C-O-C-Valenz), 1010, 971, 951, 933, 905, 868, 837, 803, 757, 705, 692 (=CH-Deform., C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.37$, 1.42 [2s, 6H, OC_q(CH₃)₂CH], 1.61, 1.67 [2s, 6H, OC_q(CH₃)₂N], 4.17 [d, ²J = 12.6 Hz, 1H, CH₂Cl], 4.47 [d, ²J = 16.6 Hz, 1H, CH₂O], 4.55 [d, ²J = 12.6 Hz, 1H, CH₂Cl], 4.58 [d, ²J = 16.6 Hz, 1H, CH₂O], 5.25 [s, 1H, NCH], 7.32–7.39 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.45–7.49 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.22$ [OC_q(<u>C</u>H₃)₂CH], 27.28 [OC_q(<u>C</u>H₃)₂N], 27.55 [OC_q(<u>C</u>H₃)₂CH], 28.02 [OC_q(<u>C</u>H₃)₂N], 43.13 [CH₂Cl], 56.55 [CH₂O], 82.52 [OC_q(CH₃)₂CH], 83.53 [C_{q,Ar}C_q=<u>C_q</u>], 88.35 [C_{q,Ar}C_q=<u>C_q</u>], 90.31 [NCH], 96.07 [O<u>C_q</u>(CH₃)₂N], 121.81 [C_{q,Ar}], 128.64 [2 *m*-CH_{Ar}], 129.22 [*p*-CH_{Ar}], 131.98 [2 *o*-CH_{Ar}], 165.15 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 358.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für $[C_{18}H_{22}CINNaO_3]^+$: 358.1186, gefunden: 358.1184.—

 $(2R^*, 4R^*)$ - und $(2S^*, 4R^*)$ -3-Chloracetyl-4-(2-propinyloxy)-2-tert-butyl-5,5-dimethyl-1,3-thiazolidin (**11p**)

Die Darstellung erfolgt gemäß **AAV 6** aus 2.00 mmol (343 mg) 3-Thiazolin **1f**, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) *N*,*N*-Diisopropylethylamin und 3.00 mmol (168 mg) Propargylalkohol. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt (dv = 86:14). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 10:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 10:1) wird das Diastereomerengemisch des Alkinoxyamids **11p** als farbloses Öl erhalten.

Ausbeute: 320 mg (1.05 mmol, 53 %).—

 $M = 303.85 \text{ g/mol}, C_{14}H_{22}CINO_2S$

1. DC (*n*-Hexan/Essigsäureethylester 10:1): $R_f = 0.24$.—

2. DC (*n*-Hexan/Aceton 10:1): $R_f = 0.21$.—

IR (ATR, Diastereomerengemisch): $\tilde{v} = 3296$ (=CH-Valenz), 2962, 2932, 2906, 2867 (CH-, CH₂-, CH₃-Valenz), 2118 (C=C-Valenz), 1670 (C=O-Valenz), 1462 (CH-, CH₂-, CH₃-Deform.), 1368, 1346, 1307, 1252, 1174, 1160, 1140, 1077 (C-N-Valenz), 1032 (C-O-C-Valenz), 975, 919, 897, 846, 791, 754, 682 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

Aus den NMR-Spektren des Diastereomerengemisches erfolgt eine eindeutige Zuordnung der Signale des jeweiligen Diastereomers. Mit "^A" werden die Signale des Überschussdiastereomers und mit "^B" die Signale des Unterschussdiastereomers gekennzeichnet.

¹H-NMR (499.9 MHz, CDCl₃, Diastereomerengemisch): $\delta = 0.93$ [s, 9H, ^AC_q(CH₃)₃],

0.98 [s, 9H, ${}^{B}C_{q}(CH_{3})_{3}$], 1.15 [s, 3H, ${}^{B}SC_{q}(CH_{3})_{2}$], 1.32 [s, 3H, ${}^{A}SC_{q}(CH_{3})_{2}$], 1.38 [s, 3H, ${}^{B}SC_{q}(CH_{3})_{2}$], 1.40 [s, 3H, ${}^{A}SC_{q}(CH_{3})_{2}$], 2.55–2.58 [m, 1H, ${}^{A}C_{q}\equiv CH$], 2.61 [dd, ${}^{4}J = 2.5$ Hz, ${}^{4}J = 2.5$ Hz, 1H, ${}^{B}C_{q}\equiv CH$], 4.22 [d, ${}^{2}J = 12.2$ Hz, 1H, ${}^{A}CH_{2}CI$], 4.24 [dd, ${}^{2}J = 16.5$ Hz, ${}^{4}J = 2.2$ Hz, 1H, ${}^{A}CH_{2}O$], 4.31 [d, ${}^{2}J = 12.3$ Hz, 1H, ${}^{A}CH_{2}CI$], 4.36 [dd, ${}^{2}J = 16.5$ Hz, ${}^{4}J = 1.5$ Hz, 1H, ${}^{A}CH_{2}O$], 4.39 [d, ${}^{2}J = 14.0$ Hz, 1H, ${}^{B}CH_{2}CI$], 4.48–4.49 [m, 2H, ${}^{B}CH_{2}O$], 4.52 [d, ${}^{2}J = 14.1$ Hz, 1H, ${}^{B}CH_{2}CI$], 4.93 [s, 1H, ${}^{B}NCHO$], 5.19 [s, 1H, ${}^{A}NCHO$], 5.55 [s, 1H, ${}^{B}SCHN$], 5.64 [s, 1H, ${}^{A}SCHN$] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃, Diastereomerengemisch): $\delta = 22.58 [{}^{A}SC_{q}(\underline{C}H_{3})_{2}], 23.87, 24.37 [{}^{B}SC_{q}(\underline{C}H_{3})_{2}], 26.56 [3 {}^{B}C_{q}(\underline{C}H_{3})_{3}], 27.64 [3 {}^{A}C_{q}(\underline{C}H_{3})_{3}], 30.75 [{}^{A}SC_{q}(\underline{C}H_{3})_{2}], 37.52 [{}^{A}\underline{C}_{q}(CH_{3})_{3}], 38.14 [{}^{B}\underline{C}_{q}(CH_{3})_{3}], 42.50 [{}^{A}CH_{2}Cl], 45.15 [{}^{B}CH_{2}Cl], 51.68 [{}^{B}S\underline{C}_{q}(CH_{3})_{2}], 54.23 [{}^{A}CH_{2}O], 54.33 [{}^{A}S\underline{C}_{q}(CH_{3})_{2}], 60.69 [{}^{B}CH_{2}O], 64.06 [{}^{B}SCHN], 72.35 [{}^{A}SCHN], 76.16 [{}^{A}C_{q}=\underline{C}H/{}^{A}\underline{C}_{q}=CH], 77.22, 77.73 [{}^{B}C_{q}=\underline{C}H, {}^{B}\underline{C}_{q}=CH], 78.70 [{}^{A}C_{q}=\underline{C}H/{}^{A}\underline{C}_{q}=CH], 93.94 [{}^{A}NCHO], 97.27 [{}^{B}NCHO], 168.39 [{}^{B}C_{q}=O], 168.65 [{}^{A}C_{q}=O] ppm.-$

MS (ESI, TOF): m/z (%) = 326.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₄H₂₂ClNNaO₂S]⁺: 326.0957, gefunden: 326.0952.—

(RS)-4-Allyloxy-3-chloracetyl-2,2,5,5-tetramethyl-1,3-thiazolidin (11q)

Die Darstellung erfolgt gemäß AAV 6 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 4.00 mmol (452 mg) Chloracetylchlorid, 8.00 mmol (1034 mg) N,N-Diisopropylethylamin und 3.00 mmol (174 mg) Allylalkohol. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Alkoxyamid 11q als gelbes Öl erhalten.

Ausbeute: 380 mg (1.37 mmol, 69 %).— M = 277.81 g/mol, $C_{12}H_{20}CINO_2S$ DC (Dichlormethan): $R_f = 0.46$.— IR (ATR): $\tilde{v} = 2983$, 2933, 2864 (CH-, CH₂-, CH₃-Valenz), 1665 (C=O-Valenz), 1466, 1444, 1389, 1377 (CH-, CH₂-, CH₃-Deform.), 1258, 1207, 1164, 1140 (C-N-Valenz), 1064 (C-O-C-Valenz), 1006, 928, 796, 710 (C-S-Valenz, C-Cl-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.42$, 1.52 [2s, 6H, SC_q(CH₃)₂CH], 1.80, 1.91 [2s, 6H, SC_q(CH₃)₂N], 4.04 [d, ²J = 12.6 Hz, 1H, CH₂Cl], 4.09 [dddd, ²J = 13.1 Hz, ³J = 5.2 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, CH₂O], 4.15 [dddd, ²J = 13.0 Hz, ³J = 4.8 Hz, ⁴J = 1.7 Hz, ⁴J = 1.7 Hz, 1H, CH₂O], 4.19 [d, ²J = 12.7 Hz, 1H, CH₂Cl], 5.05 [s, 1H, NCH], 5.23 [dddd, ²J = 1.5 Hz, ³J_{cis} = 10.5 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, CH=CH₂], 5.33 [dddd, ²J = 1.6 Hz, ³J_{trans} = 17.3 Hz, ⁴J = 1.6 Hz, ⁴J = 1.6 Hz, 1H, CH=CH₂], 5.89 [dddd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.2 Hz, ³J = 5.0 Hz, ³J = 5.0 Hz, 1H, CH=CH₂] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 23.48$ [SC_q(<u>C</u>H₃)₂CH], 30.67 [SC_q(<u>C</u>H₃)₂N], 31.33, 31.43 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 43.59 [CH₂Cl], 53.44 [S<u>C_q</u>(CH₃)₂CH], 68.97 [CH₂O], 72.90 [S<u>C_q</u>(CH₃)₂N], 97.56 [NCH], 117.40 [CH=<u>C</u>H₂], 133.70 [<u>C</u>H=CH₂], 165.59 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 300.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{20}CINNaO_2S]^+$: 300.0801, gefunden: 300.0803.—

8.2.9 Darstellung der tricyclischen 1,3,6-Oxadiazocin-4-one

(*RS*)-5*a*,6-*Dihydro*-6,6,8,8-*tetramethyl*-4*H*,8*H*-*thiazolo*[4,3-*b*][1,2,3]*triazolo*[1,5-*f*]-[1,3,6]*oxadiazocin*-10(11*H*)-on (**12a**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (138 mg) Alkinoxyamid **11a** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 1:1) wird das tricyclische Lactam **12a** als farbloser Feststoff erhalten.

Ausbeute: 121 mg (0.43 mmol, 86 %).—

 $M = 282.36 \text{ g/mol}, C_{12}H_{18}N_4O_2S$

Schmelzpunkt: 107–109 °C.—

DC (Dichlormethan/Essigsäureethylester 1:1): $R_f = 0.23$.—

IR (ATR): $\tilde{v} = 3137$ (=CH-Valenz), 2988, 2935 (CH-, CH₂-, CH₃-Valenz), 1661 (C=O-Valenz), 1460, 1442, 1396, 1387, 1376 (CH-, CH₂-, CH₃-Deform.), 1316, 1284, 1231, 1205, 1155, 1128, 1090 (C-N-Valenz), 1055 (C-O-C-Valenz), 1015, 993, 977, 915, 895, 851, 837, 829, 750, 738, 722, 648 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): δ = 1.40, 1.56 [2s, 6H, SC_q(CH₃)₂CH], 1.71, 1.94 [2s, 6H, SC_q(CH₃)₂N], 4.81 [d, ²J = 14.8 Hz, 1H, CH₂O], 4.95 [d, ²J = 14.8 Hz, 1H, CH₂O], 5.09 [s, 1H, NCH], 5.35 [d, ²J = 15.0 Hz, 1H, CH₂N], 5.38 [d, ²J = 14.9 Hz, 1H, CH₂N], 7.64 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.50 [SC_q(\underline{C}H_3)_2CH]$, 29.59 $[SC_q(\underline{C}H_3)_2N]$, 30.79 $[SC_q(\underline{C}H_3)_2CH]$, 31.77 $[SC_q(\underline{C}H_3)_2N]$, 52.11 $[S\underline{C}_q(CH_3)_2CH]$, 56.02 $[CH_2N]$, 58.90 $[CH_2O]$, 73.35 $[S\underline{C}_q(CH_3)_2N]$, 99.29 [NCH], 133.08 $[C_{q,Ar}]$, 134.42 $[CH_{Ar}]$, 163.24 $[C_q=O]$ ppm.—

MS (ESI, TOF): m/z (%) = 305.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₂H₁₈N₄NaO₂S]⁺: 305.1048, gefunden: 305.1047.—

(*RS*)-5*a*,6-*Dihydro-3*,6,6,8,8-*pentamethyl-4H*,8*H*-*thiazolo*[4,3-*b*][1,2,3]*triazolo*[1,5-*f*]-[1,3,6]*oxadiazocin-10*(11*H*)-*on* (**12b**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (145 mg) Alkinoxyamid **11b** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 1:1) wird das tricyclische Lactam **12b** als farbloser Feststoff erhalten.

Ausbeute: 44 mg (0.15 mmol, 30 %).---

 $M = 296.39 \text{ g/mol}, C_{13}H_{20}N_4O_2S$

Schmelzpunkt: 154–156 °C.—

DC (Dichlormethan/Essigsäureethylester 1:1): $R_f = 0.20$.

IR (ATR): $\tilde{v} = 2997$, 2924 (CH-, CH₂-, CH₃-Valenz), 1668 (C=O-Valenz), 1468, 1447, 1389, 1376 (CH-, CH₂-, CH₃-Deform.), 1334, 1313, 1283, 1241, 1211, 1154, 1129, 1108 (C-N-Valenz), 1047 (C-O-C-Valenz), 983, 934, 914, 894, 836, 746, 693, 649 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.39$, 1.55 [2s, 6H, SC_q(CH₃)₂CH], 1.68, 1.93 [2s, 6H, SC_q(CH₃)₂N], 2.31 [s, 3H, C_{q,Ar}CH₃], 4.74 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 4.90 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.11 [s, 1H, NCH], 5.26 [d, ²*J* = 14.7 Hz, 1H, CH₂N], 5.35 [d, ²*J* = 14.7 Hz, 1H, CH₂N] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 10.30 [C_{q,Ar}\underline{C}H_3]$, 23.49 [SC_q($\underline{C}H_3$)₂CH], 29.56 [SC_q($\underline{C}H_3$)₂N], 30.84 [SC_q($\underline{C}H_3$)₂CH], 31.79 [SC_q($\underline{C}H_3$)₂N], 52.11 [SC_q(CH₃)₂CH], 56.13 [CH₂N], 58.84 [CH₂O], 73.33 [SC_q(CH₃)₂N], 99.63 [NCH], 129.60 [C_{q,Ar}CH₂], 142.74 [C_{q,Ar}CH₃], 163.53 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 297.1 [MH]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₃H₂₀N₄NaO₂S]⁺: 319.1205, gefunden: 319.1197.—

(*RS*)-5*a*,6-*Dihydro-3-phenyl-6*,6,8,8-*tetramethyl-4H*,8*H*-*thiazolo*[4,3-*b*][1,2,3]*triazolo*-[1,5-*f*][1,3,6]*oxadiazocin-10*(11*H*)-*on* (**12c**)

Die Darstellung erfolgt gemäß **AAV 7** aus 1.00 mmol (352 mg) Alkinoxyamid **11c** und 5.00 mmol (325 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprokdukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das tricyclische Lactam **12c** als farbloses Öl erhalten.

Ausbeute: 127 mg (0.35 mmol, 35 %).--

 $M = 358.46 \ g/mol, \ C_{18}H_{22}N_4O_2S$

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.40$.

IR (ATR): $\tilde{v} = 2985$, 2932 (CH-, CH₂-, CH₃-Valenz), 1670 (C=O-Valenz), 1497 (Ringschwingung), 1470, 1449, 1380 (CH-, CH₂-, CH₃-Deform.), 1318, 1282, 1210, 1155, 1128, 1102 (C-N-Valenz), 1059 (C-O-C-Valenz), 1013, 1000, 918, 766, 700, 661 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.43$, 1.55 [2s, 6H, SC_q(CH₃)₂CH], 1.79, 1.96 [2s, 6H, SC_q(CH₃)₂N], 4.94 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.03 [d, ²*J* = 14.7 Hz, 1H, CH₂O], 5.04 [s, 1H, NCH], 5.40 [d, ²*J* = 15.1 Hz, 1H, CH₂N], 5.46 [d, ²*J* = 15.1 Hz, 1H, CH₂N], 7.40–7.44 [m, 1H, *p*-CH_{Ar}], 7.45–7.50 [m, 2H, *m*-CH_{Ar}], 7.60–7.64 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.52$ [SC_q(<u>C</u>H₃)₂CH], 29.78 [SC_q(<u>C</u>H₃)₂N], 30.63 [SC_q(<u>C</u>H₃)₂CH], 31.76 [SC_q(<u>C</u>H₃)₂N], 52.00 [S<u>C</u>_q(CH₃)₂CH], 56.39 [CH₂N], 58.59 [CH₂O], 73.38 [S<u>C</u>_q(CH₃)₂N], 98.27 [NCH], 128.09 [2 *o*-CH_{Ar}], 128.89 [*p*-CH_{Ar}], 129.06 [<u>C</u>_q,A_rCH₂], 129.13 [2 *m*-CH_{Ar}], 130.10 [<u>C</u>_q,A_rCH_{Ar}], 147.04 [<u>C</u>_q,A_rC_q,A_rCH₂], 163.32 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 381.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{22}N_4NaO_2S]^+$: 381.1361, gefunden: 381.1360.—

(*RS*)-8',8'-*Dimethyl*-4'H,5a'H,8'H-spiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]triazolo-[1,5-f][1,3,6]oxadiazocin)-10'(11'H)-on (**12d**)

Die Darstellung erfolgt gemäß AAV 7 aus 1.00 mmol (316 mg) Alkinoxyamid 12d und 5.00 mmol (325 mg) Natriumazid. Durch Umkristallisation des Rohprodukts aus n-Hexan/Essigsäureethylester wird das tricyclische Lactam 12d als farbloser Feststoff erhalten.

Ausbeute: 318 mg (0.99 mmol, 99 %).--

 $M = 322.43 \text{ g/mol}, C_{15}H_{22}N_4O_2S$

Schmelzpunkt: 222–224 °C.—

IR (ATR): $\tilde{v} = 2980$, 2928, 2850 (CH-, CH₂-, CH₃-Valenz), 1668 (C=O-Valenz), 1438, 1387 (CH-, CH₂-, CH₃-Deform.), 1362, 1313, 1282, 1262, 1231, 1212, 1157, 1106, 1089 (C-N-Valenz), 1050 (C-O-C-Valenz), 995, 978, 893, 850, 751, 690, 649 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.23-1.37$ [m, 2H, CH_{2,Cy}], 1.55–1.62 [m, 3H, CH_{2,Cy}], 1.63–1.68 [m, 2H, CH_{2,Cy}], 1.72 [s, 3H, C_q(CH₃)₂], 1.76–1.84, 1.85–1.90, 1.91–1.97 [3m, 3H, CH_{2,Cy}], 1.93 [s, 3H, C_q(CH₃)₂], 4.79 [d, ²*J* = 14.8 Hz, 1H, CH₂O,], 4.92 [d, ²*J* = 14.8 Hz, 1H, CH₂O,], 5.14 [s, 1H, NCH], 5.35 [d, ²*J* = 14.7 Hz, 1H, CH₂N], 5.38 [d, ²*J* = 14.7 Hz, 1H, CH₂N], 7.65 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.53$, 24.10, 25.51 [CH_{2,Cy}], 29.64, 32.25 [C_q(<u>C</u>H₃)₂], 33.98, 38.13 [CH_{2,Cy}], 56.10 [CH₂N], 58.30 [S<u>C</u>_q(CH_{2,Cy})₂], 58.46 [CH₂O], 72.60 [S<u>C</u>_q(CH₃)₂], 98.27 [NCH], 132.99 [C_{q,Ar}], 134.52 [CH_{Ar}], 163.33 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 345.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{15}H_{22}N_4NaO_2S]^+$: 345.1361, gefunden: 345.1368.—

(RS)-3',8',8'-Trimethyl-4'H,5a'H,8'H-spiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]triazolo[1,5-f][1,3,6]oxadiazocin)-10'(11'H)-on (**12e**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (165 mg) Alkinoxyamid **11e** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 1:1) wird das tricyclische Lactam **12e** als farbloser Feststoff erhalten.

Ausbeute: 50 mg (0.15 mmol, 30 %).--

 $M = 336.45 \text{ g/mol}, C_{16}H_{24}N_4O_2S$

Schmelzpunkt: 194–196 °C.—

DC (Dichlormethan/Essigsäureethylester 1:1): $R_{f^-} = 0.30$.

IR (ATR): $\tilde{v} = 2984$, 2921, 2853 (CH-, CH₂-, CH₃-Valenz), 1658 (C=O-Valenz), 1468, 1440, 1396 (CH-, CH₂-, CH₃-Deform.), 1362, 1337, 1323, 1289, 1274, 1251, 1203, 1159, 1130, 1113 (C-N-Valenz), 1040 (C-O-C-Valenz), 982, 941, 893, 840, 747, 652 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.26-1.34$ [m, 2H, CH_{2,Cy}], 1.53–1.68 [m, 5H, CH_{2,Cy}], 1.69 [s, 3H, SC_q(CH₃)₂], 1.75–1.83, 1.84–1.89, 1.90–1.96 [3m, 3H, CH_{2,Cy}], 1.91 [s, 3H, SC_q(CH₃)₂], 2.33 [s, 3H, C_{q,Ar}CH₃], 4.71 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 4.87 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.15 [s, 1H, NCH], 5.28 [d, ²*J* = 14.7 Hz, 1H, CH₂N], 5.33 [d, ²*J* = 14.7 Hz, 1H, CH₂N] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 10.32 [C_{q,Ar}\underline{C}H_3]$, 22.49, 24.10, 25.50 [CH_{2,Cy}], 29.62, 32.28 [SC_q($\underline{C}H_3$)₂], 33.02, 38.07 [CH_{2,Cy}], 56.18 [CH₂N], 58.27 [SC_q(CH_{2,Cy})₂], 58.40 [CH₂O], 72.56 [SC_q(CH₃)₂N], 98.55 [NCH], 129.49 [C_{q,Ar}CH₂], 142.82 [C_{q,Ar}CH₃], 163.31 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 359.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{24}N_4NaO_2S]^+$: 359.1518, gefunden: 359.1519.—

(*RS*)-8',8'-*Dimethyl*-3'-*phenyl*-4'H,5a'H,8'H-spiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]-triazolo[1,5-f][1,3,6]oxadiazocin)-10'(11'H)-on (**12f**)

Die Darstellung erfolgt gemäß **AAV 7** aus 1.00 mmol (392 mg) Alkinoxyamid **11f** und 5.00 mmol (325 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 25:1) wird das tricyclische Lactam **12f** als farbloser Feststoff erhalten.

Ausbeute: 176 mg (0.44 mmol, 44 %).---

 $M = 398.53 \text{ g/mol}, C_{21}H_{26}N_4O_2S$

Schmelzpunkt: 144–146 °C.—

DC (Dichlormethan/tert-Butylmethylether 25:1) $R_f = 0.12$.—

IR (ATR): $\tilde{v} = 2976$, 2930, 2855 (CH-, CH₂-, CH₃-Valenz), 1665 (C=O-Valenz), 1494 (Ringschwingung), 1466, 1447, 1383 (CH-, CH₂-, CH₃-Deform.), 1362, 1346, 1312, 1279, 1212, 1201, 1168, 1156, 1110 (C-N-Valenz), 1053, 1033 (C-O-C-Valenz), 1010, 980, 908, 893, 763, 730, 698, 648 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.22-1.34$ [m, 2H, CH_{2,Cy}], 1.53–1.71 [m, 5H, CH_{2,Cy}], 1.74 [s, 3H, C_q(CH₃)₂], 1.76–1.82, 1.83–1.89 [2m, 2H, CH_{2,Cy}], 1.93 [s, 3H, C_q(CH₃)₂], 1.94–2.00 [m, 1H, CH_{2,Cy}], 4.91 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.01 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.18 [s, 1H, NCH], 5.36 [d, ²*J* = 15.0 Hz, 1H, CH₂N], 5.47 [d, ²*J* = 15.0 Hz, 1H, CH₂N], 7.38–7.43 [m, 1H, *p*-CH_{Ar}], 7.44–7.48 [m, 2H, *m*-CH_{Ar}], 7.58–7.62 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.52$, 23.99, 25.47 [CH_{2,Cy}], 29.70, 32.23 [C_q(<u>C</u>H₃)₂], 32.85, 37.99 [CH_{2,Cy}], 56.32 [CH₂N], 58.29 [S<u>C</u>_q(CH_{2,Cy})₂], 58.46 [CH₂O], 72.64 [S<u>C</u>_q(CH₃)₂], 97.82 [NCH], 128.09 [2 *o*-CH_{Ar}], 128.83 [*p*-CH_{Ar}], 129.07 [2 *m*-CH_{Ar}], 129.19 [<u>C</u>_{q,Ar}CH₂], 130.09 [<u>C</u>_{q,Ar}CH_{Ar}], 147.07 [<u>C</u>_{q,Ar}C_{q,Ar}CH₂], 163.51 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 421.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{21}H_{26}N_4NaO_2S]^+$: 421.1674, gefunden: 421.1681.—

(*RS*)-5*a*',6'-*Dihydro*-6',6'-*dimethyl*-4'*H*-spiro(cyclohexan-1,8'-thiazolo[4,3-b][1,2,3]triazolo[1,5-f][1,3,6]oxadiazocin)-10'(11'*H*)-on (**12g**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.41 mmol (130 mg) Alkinoxyamid **11g** und 2.05 mmol (133 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 1:1) wird das tricyclische Lactam **12g** als farbloser Feststoff erhalten.

Ausbeute: 90 mg (0.28 mmol, 68 %).---

 $M = 322.43 \text{ g/mol}, C_{15}H_{22}N_4O_2S$

Schmelzpunkt: 248-250 °C.---

DC (Dichlormethan/Essigsäureethylester 1:1): $R_f = 0.21$.

IR (ATR): $\tilde{v} = 3133$ (=CH-Valenz), 2994, 2929, 2856 (CH-, CH₂-, CH₃-Valenz), 1674 (C=O-Valenz), 1437, 1387 (CH-, CH₂-, CH₃-Deform.), 1369, 1305, 1283, 1266, 1233, 1183, 1156, 1131, 1099 (C-N-Valenz), 1056, 1042 (C-O-C-Valenz), 1017, 994, 975, 966, 860, 825, 784, 757, 715, 642 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.12-1.23$, 1.24–1.36 [2m, 2H, CH_{2,Cy}], 1.40 [s, 3H, C_q(CH₃)₂], 1.49–1.59 [m, 2H, CH_{2,Cy}], 1.53 [s, 3H, C_q(CH₃)₂], 1.67–1.84 [m, 4H, CH_{2,Cy}], 2.63–2.71, 3.02–3.10 [2m, 2H, CH_{2,Cy}], 4.80 [d, ²*J* = 14.8 Hz, 1H, CH₂O], 4.91 [d, ²*J* = 14.8 Hz, 1H, CH₂O], 5.08 [s, 1H, NCH], 5.34 [d, ²*J* = 14.6 Hz, 1H, CH₂N], 5.39 [d, ²*J* = 14.6 Hz, 1H, CH₂N], 7.65 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.49 [C_q(\underline{C}H_3)_2]$, 24.32, 24.80, 25.65 [CH_{2,Cy}], 31.02 [C_q($\underline{C}H_3$)₂], 36.79, 37.29 [CH_{2,Cy}], 51.34 [S \underline{C}_q (CH₃)₂], 56.88 [CH₂N], 58.02 [CH₂O], 81.18 [S \underline{C}_q (CH_{2,Cy})₂], 98.63 [NCH], 132.92 [C_{q,Ar}], 134.53 [CH_{Ar}], 163.30 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 345.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für $[C_{15}H_{22}N_4NaO_2S]^+$: 345.1361, gefunden: 345.1365.—

(*RS*)-5*a*',6'-*Dihydro*-3',6',6'-*trimethyl*-4'*H*-*spiro*(*cyclohexan*-1,8'-*thiazolo*[4,3-*b*][1,2,3]*tri-azolo*[1,5-*f*][1,3,6]*oxadiazocin*)-10'(11'*H*)-*on* (**12h**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (165 mg) Alkinoxyamid **11h** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Essigsäureethylester) wird das tricyclische Lactam **12h** als farbloser Feststoff erhalten.

Ausbeute: 83 mg (0.25 mmol, 50 %).---

 $M = 336.45 \text{ g/mol}, C_{16}H_{24}N_4O_2S$

Schmelzpunkt: 226–228 °C.—

DC (Essigsäureethylester): $R_f = 0.38$.—

IR (ATR): $\tilde{v} = 2970$, 2945, 2930, 2854 (CH-, CH₂-, CH₃-Valenz), 1666 (C=O-Valenz), 1582 (Ringschwingung), 1466, 1440, 1387, 1371 (CH-, CH₂-, CH₃-Deform.), 1332, 1312, 1291, 1268, 1242, 1203, 1179, 1172, 1157, 1107 (C-N-Valenz), 1058, 1042 (C-O-C-Valenz), 982, 906, 867, 827, 781, 771, 742, 691, 652 (C-S-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.09-1.19$, 1.24–1.33 [2m, 2H, CH_{2,Cy}], 1.39 [s, 3H, SC_q(CH₃)₂], 1.50–1.57 [m, 2H, CH_{2,Cy}], 1.51 [s, 3H, SC_q(CH₃)₂], 1.61–1.71 [m, 2H, CH_{2,Cy}], 1.73–1.80 [m, 2H, CH_{2,Cy}], 2.31 [s, 3H, C_{q,Ar}CH₃], 2.57–2.65, 3.00–3.07 [2m, 2H, CH_{2,Cy}], 4.73 [d, ²J = 14.9 Hz, 1H, CH₂O], 4.87 [d, ²J = 14.9 Hz, 1H, CH₂O], 5.14 [s, 1H, NCH], 5.27 [d, ²J = 14.5 Hz, 1H, CH₂N], 5.33 [d, ²J = 14.5 Hz, 1H, CH₂N] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 10.30$ [C_{q,Ar}CH₃], 23.50 [SC_q(CH₃)₂], 24.28, 24.76, 25.61 [CH_{2,Cy}], 31.01 [SC_q(CH₃)₂], 36.72, 37.28 [CH_{2,Cy}], 51.31 [SC_q(CH₃)₂], 56.91 [CH₂N], 58.25 [CH₂O], 81.10 [SC_q(CH_{2,Cy})₂], 99.24 [NCH], 129.56 [C_{q,Ar}CH₂], 142.71

[$\underline{C}_{q,Ar}CH_3$], 163.66 [C_q =O] ppm.— MS (ESI, TOF): m/z (%) = 359.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für [$C_{16}H_{25}N_4O_2S$]⁺: 337.1698, gefunden: 337.1693.—

(*RS*)-5*a*',6'-*Dihydro*-6',6'-*dimethyl*-3'-*phenyl*-4'*H*-*spiro*(*cyclohexan*-1,8'-*thiazolo*[4,3-*b*]-[1,2,3]*triazolo*[1,5-*f*][1,3,6]*oxadiazocin*)-10'(11'*H*)-*on* (**12i**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.45 mmol (177 mg) Alkinoxyamid **11i** und 2.25 mmol (146 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 9:1) wird das tricyclische Lactam **12i** als farbloser Feststoff erhalten.

Ausbeute: 94 mg (0.24 mmol, 53 %).—

 $M = 398.53 \text{ g/mol}, C_{21}H_{26}N_4O_2S$

Schmelzpunkt: 218–220 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 9:1): $R_f = 0.36$.—

IR (ATR): $\tilde{v} = 2942$, 2865 (CH-, CH₂-, CH₃-Valenz), 1659 (C=O-Valenz), 1495 (Ringschwingung), 1467, 1446, 1379 (CH-, CH₂-, CH₃-Deform.), 1347, 1310, 1276, 1253, 1235, 1178, 1158, 1125, 1103 (C-N-Valenz), 1071 (C-O-C-Valenz), 998, 903, 870, 826, 751, 730, 698, 661, 651 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.12-1.23$, 1.25–1.38 [2m, 2H, CH_{2,Cy}], 1.42 [s, 3H, C_q(CH₃)₂], 1.49–1.59 [m, 2H, CH_{2,Cy}], 1.53 [s, 3H, C_q(CH₃)₂], 1.68–1.75 [m, 2H, CH_{2,Cy}], 1.76–1.84 [m, 2H, CH_{2,Cy}], 2.67–2.76, 3.03–3.11 [2m, 2H, CH_{2,Cy}], 4.92 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.01 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.11 [s, 1H, NCH], 5.39 [d, ²*J* = 14.9 Hz, 1H, CH₂N], 5.44 [d, ²*J* = 14.9 Hz, 1H, CH₂N], 7.39–7.43 [m, 1H, *p*-CH_{Ar}], 7.44–7.49 [m, 2H, *m*-CH_{Ar}], 7.58–7.63 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.48 [C_q(CH_3)_2], 24.32, 24.81, 25.60 [CH_{2,Cy}], 30.91$

 $[C_{q}(\underline{C}H_{3})_{2}], 36.79, 37.32 [CH_{2,Cy}], 51.25 [SC_{q}(CH_{3})_{2}], 57.10 [CH_{2}N], 58.13 [CH_{2}O], 81.19 [SC_{q}(CH_{2,Cy})_{2}], 98.22 [NCH], 128.15 [2$ *o* $-CH_{Ar}], 128.85 [$ *p* $-CH_{Ar}], 129.10 [2$ *m* $-CH_{Ar}], 129.12 [C_{q,Ar}CH_{2}], 130.11 [C_{q,Ar}CH_{Ar}], 147.08 [C_{q,Ar}C_{q,Ar}CH_{2}], 163.46 [C_{q}=O] ppm.—$

MS (ESI, TOF): m/z (%) = 421.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₂₁H₂₆N₄NaO₂S]⁺: 421.1674, gefunden: 421.1678.—

(*RS*)-4'H,5a'H-Dispiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]triazolo[1,5-f][1,3,6]oxadiazocin-8',1''-cyclohexan)-10'(11'H)-on (**12j**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (178 mg) Alkinoxyamid **11j** und 2.50 mmol (163 mg) Natriumazid. Durch Waschen des Rohprodukts mit wenig kaltem Aceton wird das tricyclische Lactam **12j** als farbloser Feststoff erhalten.

Ausbeute: 90 mg (0.25 mmol, 50 %).—

 $M = 362.49 \text{ g/mol}, C_{18}H_{26}N_4O_2S$

Schmelzpunkt: 258–260 °C.—

IR (ATR): $\tilde{v} = 2926$, 2857 (CH-, CH₂-Valenz), 1663 (C=O-Valenz), 1451, 1437, 1385 (CH-, CH₂-Deform.), 1310, 1283, 1258, 1230, 1206, 1181, 1132, 1107, 1090 (C-N-Valenz), 1041 (C-O-C-Valenz), 994, 976, 852, 756, 691, 644 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.12-1.43$ [m, 4H, CH_{2,Cy}], 1.50–1.76 [m, 10H, CH_{2,Cy}], 1.77–1.87 [m, 3H, CH_{2,Cy}], 1.89–1.98, 2.60–2.70, 3.02–3.10 [3m, 3H, CH_{2,Cy}], 4.78 [d, ²*J* = 14.8 Hz, 1H, CH₂O], 4.90 [d, ²*J* = 14.8 Hz, 1H, CH₂O], 5.16 [s, 1H, NCH], 5.32 [d, ²*J* = 14.6 Hz, 1H, CH₂N], 5.38 [d, ²*J* = 14.6 Hz, 1H, CH₂N], 7.64 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): δ = 22.55, 24.10, 24.39, 24.75, 25.56, 25.63, 33.04, 36.84, 37.73, 38.17 [CH_{2,Cy}], 56.95 [CH₂N], 57.30 [S<u>C</u>_q(CH_{2,Cy})₂CH], 57.81 [CH₂O], 80.22 [S<u>C</u>_q(CH_{2,Cy})₂N], 97.69 [NCH], 132.97 [C_{q,Ar}], 134.55 [CH_{Ar}], 163.44 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 385.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₆N₄NaO₂S]⁺: 385.1674, gefunden: 385.1665.—

(*RS*)-3'-Methyl-4'H,5a'H-dispiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]triazolo[1,5-f]-[1,3,6]oxadiazocin-8',1''-cyclohexan)-10'(11'H)-on (**12k**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.41 mmol (150 mg) Alkinoxyamid **11k** und 2.05 mmol (133 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 8:2) wird das tricyclische Lactam **12k** als schwach gelber Feststoff erhalten.

Ausbeute: 47 mg (0.12 mmol, 29 %).—

 $M = 376.52 \text{ g/mol}, C_{19}H_{28}N_4O_2S$

Schmelzpunkt: 214–216 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 8:2): $R_f = 0.26$.—

IR (ATR): $\tilde{v} = 2922$, 2855 (CH-, CH₂-, CH₃-Valenz), 1668 (C=O-Valenz), 1585 (Ringschwingung), 1461, 1450, 1437, 1384 (CH-, CH₂-, CH₃-Deform.), 1330, 1313, 1288, 1262, 1251, 1196, 1177, 1159, 1131, 1109 (C-N-Valenz), 1029 (C-O-C-Valenz), 977, 904, 869, 830, 788, 739, 680, 656 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.10-1.21$ [m, 1H, CH_{2,Cy}], 1.22–1.41 [m, 3H, CH_{2,Cy}], 1.50–1.73 [m, 10H, CH_{2,Cy}], 1.74–1.86 [m, 3H, CH_{2,Cy}], 1.88–1.97 [m, 1H, CH_{2,Cy}], 2.33 [s, 3H, CH₃], 2.58–2.65, 3.00–3.08 [2m, 2H, CH_{2,Cy}], 4.70 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 4.86 [d, ²*J* = 14.9 Hz, 1H, CH₂O], 5.17 [s, 1H, NCH],

5.30 [s, 2H, CH₂N] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 10.34$ [CH₃], 22.45, 24.08, 24.34, 24.72, 25.53, 25.60, 33.06, 36.77, 37.69, 38.03 [CH_{2,Cy}], 56.99 [CH₂N], 57.26 [S<u>C</u>_q(CH_{2,Cy})₂CH], 57.86 [CH₂O], 80.17 [S<u>C</u>_q(CH_{2,Cy})₂N], 98.10 [NCH], 129.46 [<u>C</u>_{q,Ar}CH₂], 142.82 [<u>C</u>_{q,Ar}CH₃], 163.73 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 399.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₉H₂₉N₄O₂S]⁺: 377.2011, gefunden: 377.2016.—

(*RS*)-3'-Phenyl-4'H,5a'H-dispiro(cyclohexan-1,6'-thiazolo[4,3-b][1,2,3]triazolo[1,5-f]-[1,3,6]oxadiazocin-8',1''-cyclohexan)-10'(11'H)-on (**12l**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (216 mg) Alkinoxyamid **111** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 9:1) wird das tricyclische Lactam **121** als farbloser Feststoff erhalten.

Ausbeute: 83 mg (0.19 mmol, 38 %).—

 $M = 438.59 \text{ g/mol}, C_{24}H_{30}N_4O_2S$

Schmelzpunkt: 236–238 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 9:1): $R_f = 0.40$.

IR (ATR): $\tilde{v} = 2928$, 2855 (CH-, CH₂-Valenz), 1663 (C=O-Valenz), 1495 (Ringschwingung), 1449, 1391 (CH-, CH₂-Deform.), 1347, 1317, 1267, 1182, 1132, 1114 (C-N-Valenz), 1057, 1035 (C-O-C-Valenz), 1004, 981, 937, 907, 893, 833, 764, 737, 696, 683, 660 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.12-1.31$ [m, 2H, CH_{2,Cy}], 1.32–1.43 [m, 2H, CH_{2,Cy}], 1.52–1.76 [m, 10H, CH_{2,Cy}], 1.77–1.87 [m, 3H, CH_{2,Cy}], 1.93–2.00, 2.65–2.73, 3.03–3.10 [3m, 3H, CH_{2,Cy}], 4.90 [d, ²*J* = 14.8 Hz, 1H, CH₂O], 4.99 [d, ²*J* = 14.8 Hz, 1H,

CH₂O], 5.19 [s, 1H, NCH], 5.39 [d, ${}^{2}J$ = 14.9 Hz, 1H, CH₂N], 5.44 [d, ${}^{2}J$ = 15.0 Hz, 1H, CH₂N], 7.39–7.43 [m, 1H, *p*-CH_{Ar}], 7.44–7.49 [m, 2H, *m*-CH_{Ar}], 7.59–7.63 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.51$, 24.00, 24.36, 24.74, 25.52, 25.59, 32.94, 36.80, 37.71, 38.04 [CH_{2,Cy}], 57.14 [CH₂N], 57.28 [SC_q(CH_{2,Cy})₂CH], 57.81 [CH₂O], 80.34 [SC_q(CH_{2,Cy})₂N], 97.33 [NCH], 128.18 [2 *o*-CH_{Ar}], 128.85 [*p*-CH_{Ar}], 129.10 [2 *m*-CH_{Ar}, C_{q,Ar}CH₂], 130.15 [C_{q,Ar}CH_{Ar}], 147.18 [C_{q,Ar}C_{q,Ar}CH₂], 163.57 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 461.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{24}H_{30}N_4NaO_2S]^+$: 461.1987, gefunden: 461.1980.—

(*RS*)-5*a*,6-*Dihydro*-6,6,8,8-*tetramethyl*-4*H*,8*H*-*oxazolo*[4,3-*b*][1,2,3]*triazolo*[1,5-*f*]-[1,3,6]*oxadiazocin*-10(11*H*)-*on* (**12m**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (130 mg) Alkinoxyamid **11m** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Essigsäureethylester) wird das tricyclische Lactam **12m** als farbloser Feststoff erhalten.

Ausbeute: 118 mg (0.44 mmol, 88 %).—

 $M = 266.30 \text{ g/mol}, C_{12}H_{18}N_4O_3$

Schmelzpunkt: 185–187 °C.—

DC (Essigsäureethylester): $R_f = 0.28$.—

IR (ATR): $\tilde{v} = 2985$, 2941, 2871 (CH-, CH₂-, CH₃-Valenz), 1665 (C=O-Valenz), 1467, 1407, 1376 (CH-, CH₂-, CH₃-Deform.), 1310, 1291, 1269, 1246, 1206, 1165, 1141, 1098 (C-N-Valenz), 1063 (C-O-C-Valenz), 997, 970, 925, 903, 754 (=CH-Deform.) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.34$, 1.36 [2s, 6H, OC_q(CH₃)₂CH], 1.44, 1.66 [2s, 6H, OC_q(CH₃)₂N], 4.72 [d, ²J = 14.9 Hz, 1H, CH₂O], 4.98 [s, 1H, NCH], 5.05 [d, ²J = 14.9 Hz, 1H, CH₂O], 5.31 [d, ²J = 14.7 Hz, 1H, CH₂N], 5.35 [d, ²J = 14.7 Hz, 1H,

CH₂N], 7.65 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.29$ [OC_q(<u>C</u>H₃)₂CH], 27.20 [OC_q(<u>C</u>H₃)₂N], 27.75, 27.84 [OC_q(<u>C</u>H₃)₂CH, OC_q(<u>C</u>H₃)₂N], 54.16 [CH₂N], 60.48 [CH₂O], 81.84 [O<u>C_q</u>(CH₃)₂CH], 94.59 [NCH], 96.51 [O<u>C_q</u>(CH₃)₂N], 133.39 [C_{q,Ar}], 134.38 [CH_{Ar}], 162.41 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 289.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₂H₁₈N₄NaO₃]⁺: 289.1277, gefunden: 289.1278.—

(RS)-5a,6-Dihydro-3,6,6,8,8-pentamethyl-4H,8H-oxazolo[4,3-b][1,2,3]triazolo[1,5-f]-[1,3,6]oxadiazocin-10(11H)-on (**12n**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.50 mmol (137 mg) Alkinoxyamid **11n** und 2.50 mmol (163 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Essigsäureethylester) wird das tricyclische Lactam **12n** als gelbes Öl erhalten, welches in der Kälte kristallisiert.

Ausbeute: 34 mg (0.12 mmol, 24 %).—

 $M=280.33 \ g/mol, \ C_{13}H_{20}N_4O_3$

Schmelzpunkt: 158–160 °C.—

DC (Essigsäureethylester): $R_f = 0.23$.—

IR (ATR): $\tilde{v} = 2983$, 2920, 2851 (CH-, CH₂-, CH₃-Valenz), 1667 (C=O-Valenz), 1580 (Ringschwingung), 1460, 1433, 1414 (CH-, CH₂-, CH₃-Deform.), 1367, 1333, 1315, 1290, 1266, 1247, 1202, 1164, 1140, 1112 (C-N-Valenz), 1050 (C-O-C-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.33$, 1.34 [2s, 6H, OC_q(CH₃)₂CH], 1.42, 1.65 [2s, 6H, OC_q(CH₃)₂N], 2.33 [s, 3H, C_{q,Ar}CH₃], 4.66 [d, ²J = 14.9 Hz, 1H, CH₂O], 4.95 [d, ²J = 14.9 Hz, 1H, CH₂O], 4.97 [s, 1H, NCH], 5.22 [d, ²J = 14.8 Hz, 1H, CH₂N], 5.32 [d, ²J = 14.8 Hz, 1H, CH₂N] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 10.31$ [C_{q,Ar}<u>C</u>H₃], 23.28 [OC_q(<u>C</u>H₃)₂CH], 27.20

 $[OC_q(\underline{C}H_3)_2N]$, 27.73, 27.82 $[OC_q(\underline{C}H_3)_2CH$, $OC_q(\underline{C}H_3)_2N]$, 54.34 $[CH_2N]$, 60.04 $[CH_2O]$, 81.84 $[O\underline{C}_q(CH_3)_2CH]$, 94.47 [NCH], 96.41 $[O\underline{C}_q(CH_3)_2N]$, 129.79 $[\underline{C}_{q,Ar}CH_2]$, 142.81 $[\underline{C}_{q,Ar}CH_3]$, 162.67 $[C_q=O]$ ppm.— MS (ESI, TOF): m/z (%) = 303.1 $[MNa]^+$ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{20}N_4NaO_3]^+$: 303.1433, gefunden: 303.1426.—

(*RS*)-5*a*,6-*Dihydro-3-phenyl-6*,6,8,8-*tetramethyl-4H*,8*H*-*oxazolo*[4,3-*b*][1,2,3]*triazolo*-[1,5-*f*][1,3,6]*oxadiazocin-10*(11*H*)-*on* (**12o**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.49 mmol (165 mg) Alkinoxyamid **110** und 2.45 mmol (159 mg) Natriumazid. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 1:1) wird das tricyclische Lactam **120** als farbloser Feststoff erhalten.

Ausbeute: 58 mg (0.17 mmol, 35 %).—

 $M = 342.17 \text{ g/mol}, C_{18}H_{22}N_4O_3$

Schmelzpunkt: 198-200 °C.---

DC (Dichlormethan/tert-Butylmethylether 1:1): $R_f = 0.30$.

IR (ATR): $\tilde{v} = 2985$, 2934, 2858 (CH-, CH₂-, CH₃-Valenz), 1676 (C=O-Valenz), 1494 (Ringschwingung), 1468, 1449, 1427, 1403, 1378 (CH-, CH₂-, CH₃-Deform.), 1344, 1307, 1267, 1246, 1164, 1141, 1103 (C-N-Valenz), 1061, 1035 (C-O-C-Valenz), 1009, 973, 923, 901, 827, 767, 703 (=CH-Deform.) cm⁻¹. —

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.35$, 1.36 [2s, 6H, OC_q(CH₃)₂CH], 1.49, 1.68 [2s, 6H, OC_q(CH₃)₂N], 4.86 [d, ²J = 14.8 Hz, 1H, CH₂O], 4.96 [s, 1H, NCH], 5.12 [d, ²J = 14.8 Hz, 1H, CH₂O], 5.32 [d, ²J = 15.2 Hz, 1H, CH₂N], 5.47 [d, ²J = 15.2 Hz, 1H, CH₂N], 7.39–7.44 [m, 1H, *p*-CH_{Ar}], 7.45–7.50 [m, 2H, *m*-CH_{Ar}], 7.60–7.64 [m, 2H, *o*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.24$ [OC_q(<u>C</u>H₃)₂CH], 27.30 [OC_q(<u>C</u>H₃)₂N], 27.78, 27.81 [OC_q(<u>C</u>H₃)₂CH, OC_q(<u>C</u>H₃)₂N], 54.49 [CH₂N], 60.04 [CH₂O], 81.85 [O<u>C</u>_q(CH₃)₂CH], 93.58 [NCH], 96.64 [O<u>C</u>_q(CH₃)₂N], 127.99 [2 *o*-CH_{Ar}], 128.85 [*p*-CH_{Ar}], 129.12 [2 *m*-CH_{Ar}], 129.35 [<u>C</u>_q,ArCH₂], 130.18 [<u>C</u>_q,ArCH_{Ar}], 147.05 [<u>C</u>_q,ArC_q,ArCH₂], 162.55 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 365.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{22}N_4NaO_3]^+$: 365.1590, gefunden: 365.1580.—

(5*aR*^{*}, 8*R*^{*}) und (5*aR*^{*}, 8*S*^{*})-8-(*tert-Butyl*)-5*a*,6-*dihydro*-6,6-*dimethyl*-4H,8H-thiazolo-[4,3-b][1,2,3]triazolo[1,5-f][1,3,6]oxadiazocin-10(11H)-on (**12p**)

Die Darstellung erfolgt gemäß **AAV 7** aus 0.75 mmol (228 mg) Alkinoxyamid **11p** und 3.75 mmol (244 mg) Natriumazid. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt (dv = 68:32). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 4:1) wird das racemische tricyclische ($5aR^*$, $8R^*$)-Lactam **12p** (Überschussdiastereomer) als farbloser Feststoff und das racemische tricylische ($5aR^*$, $8S^*$)-Lactam **12p** (Unterschussdiastereomer) als farbloses öl erhalten.

Gesamtausbeute: 78 mg (0.25 mmol, 33 %).— M = 310.42 g/mol, $C_{14}H_{22}N_4O_2S$ (5aR^{*}, 8R^{*})-12p (Überschussdiastereomer)

+ Enantiomer

Ausbeute: 50 mg (0.16 mmol, 21 %).---

Schmelzpunkt: 202–204 °C.—

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.22$.

IR (ATR): $\tilde{v} = 2963$, 2928, 2867 (CH-, CH₂-, CH₃-Valenz), 1697 (Ringschwingung), 1675 (C=O-Valenz), 1461, 1441, 1392 (CH-, CH₂-, CH₃-Deform.), 1365, 1305, 1282, 1258, 1235, 1176, 1139, 1098 (C-N-Valenz), 1062 (C-O-C-Valenz), 1008, 976, 923, 844, 758, 617 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.59$ [s, 9H, C_q(CH₃)₃], 1.39, 1.40 [2s, 6H, SC_q(CH₃)₂], 4.73 [d, ²*J* = 14.6 Hz, 1H, CH₂O], 5.20 [d, ²*J* = 14.6 Hz, 1H, CH₂O], 5.23 [s, 1H, NCHO], 5.40 [d, ²*J* = 15.7 Hz, 1H, CH₂N], 5.45 [s, 1H, SCHN], 5.48 [d, ²*J* = 15.7 Hz, 1H, CH₂N], 7.69 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.88$ [SC_q(<u>C</u>H₃)₂], 27.26 [3 C_q(<u>C</u>H₃)₃], 31.44 [SC_q(<u>C</u>H₃)₂], 37.84 [<u>C</u>_q(CH₃)₃], 53.31 [S<u>C</u>_q(CH₃)₂], 55.08 [CH₂N], 61.36 [CH₂O], 71.97 [SCHN], 101.07 [NCHO], 133.33 [C_{q,Ar}], 135.67 [CH_{Ar}], 168.73 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 333.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{14}H_{22}N_4NaO_2S]^+$: 333.1361, gefunden: 333.1341.—

 $(5aR^*, 8S^*)$ -**12p** (Unterschussdiastereomer)

+ Enantiomer

Ausbeute: 28 mg (0.09 mmol, 12 %).---

DC (Dichlormethan/Essigsäureethylester 4:1): $R_f = 0.44$.

IR (ATR): $\tilde{v} = 2967$, 2933, 2909, 2869 (CH-, CH₂-, CH₃-Valenz), 1655 (C=O-Valenz), 1478 (Ringschwingung), 1462, 1407, 1385 (CH-, CH₂-, CH₃-Deform.), 1365, 1346, 1301, 1284, 1262, 1238, 1174, 1132, 1104, 1082 (C-N-Valenz), 1031 (C-O-C-Valenz), 989, 940, 900, 820, 732, 641 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 0.62$ [s, 9H, C_q(CH₃)₃], 1.20, 1.35 [2s, 6H, SC_q(CH₃)₂], 4.50 [s, 1H, NCHO], 4.98 [d, ²J = 14.9 Hz, 1H, CH₂O], 5.24 [d, ²J = 14.9 Hz, 1H, CH₂O], 5.45 [d, ²J = 16.0 Hz, 1H, CH₂N], 5.46 [s, 1H, SCHN], 5.49 [d, ²J = 16.0 Hz, 1H, CH₂N], 7.67 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = 23.79, 23.80 [SC_q(<u>C</u>H₃)₂], 25.92 [3 C_q(<u>C</u>H₃)₃], 38.15 [<u>C</u>_q(CH₃)₃], 52.54 [S<u>C</u>_q(CH₃)₂], 54.92 [CH₂N], 64.59 [SCHN], 64.85 [CH₂O], 98.42 [NCHO], 132.12 [CH_{Ar}], 132.35 [C_{q,Ar}], 168.22 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 333.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{14}H_{22}N_4NaO_2S]^+$: 333.1361, gefunden: 333.1354.—

8.2.10 Darstellung der Alkinylaminoamide

(RS)-3-Azidoacetyl-4-(2-propinylamino)-2,2,5,5-tetramethyl-1,3-thiazolidin (13a)

Die Darstellung erfolgt gemäß **AAV 8** aus 4.00 mmol (573 mg) 3-Thiazolin **1a**, 8.00 mmol (956 mg) Azidoessigsäurechlorid, 15.00 mmol (826 mg) Propargylamin und 7.00 mmol (708 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 5:1) wird das Alkinylaminoamid **13a** als schwach gelbes Öl erhalten, welches in der Kälte auskristallisiert.

Ausbeute: 732 mg (2.60 mmol, 65 %).---

 $M = 281.38 \text{ g/mol}, C_{12}H_{19}N_5OS$

Schmelzpunkt: 69–71 °C.—

DC (*n*-Hexan/tert-Butylmethylether 5:1): $R_f = 0.19$.—

IR (ATR): $\tilde{v} = 3350$ (NH-Valenz), 3242 (=CH-Valenz), 2995, 2979, 2926 (CH-, CH₂-, CH₃-Valenz), 2100 (N₃-Valenz), 1643 (C=O-Valenz), 1459, 1438, 1400, 1377 (CH-, CH₂-, CH₃-Deform.), 1333, 1321, 1263, 1190, 1149, 1138, 1081 (C-N-Valenz), 866, 789, 738, 713, 692 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.38$, 1.56 [2s, 6H, SC_q(CH₃)₂CH], 1.78, 1.95 [2s, 6H, SC_q(CH₃)₂N], 2.29 [bs, 1H, NH], 2.31 [dd, ⁴J = 2.4 Hz, ⁴J = 2.4 Hz, 1H, C_q=CH], 3.53 [dd, ²J = 17.1 Hz, ⁴J = 2.4 Hz, 1H, CH₂NH], 3.57 [dd, ²J = 17.1 Hz, ⁴J = 2.4 Hz, 1H, CH₂NH], 3.94 [d, ²J = 15.5 Hz, 1H, CH₂N₃], 4.25 [d, ²J = 15.5 Hz, 1H, CH₂N₃], 4.53 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.17$, 31.17 [SC_q(<u>C</u>H₃)₂CH], 31.38, 31.78 [SC_q(<u>C</u>H₃)₂N], 34.92 [CH₂NH], 52.96 [CH₂N₃], 53.70 [SC_q(CH₃)₂CH], 71.89 [SC_q(CH₃)₂N], 72.98, 81.24 [C_q=<u>C</u>H, <u>C_q</u>=CH], 82.94 [NCH], 166.46 [C_q=O] ppm.— MS (ESI, TOF): m/z (%) = 304.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₂H₁₉N₅NaOS]⁺: 304.1208, gefunden: 304.1203.—

(RS)-3-Azidoacetyl-4-(2-butinylamino)-2,2,5,5-tetramethyl-1,3-thiazolidin (13b)

Die Darstellung erfolgt gemäß **AAV 8** aus 1.00 mmol (143 mg) 3-Thiazolin **1a**, 2.00 mmol (239 mg) Azidoessigsäurechlorid, 3.75 mmol (259 mg) 2-Butin-1-amin und 1.75 mmol (177 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:3:1) wird das Alkinylaminoamid **13b** als schwach gelbes Öl erhalten.

Ausbeute: 106 mg (0.36 mmol, 36 %).—

 $M = 295.41 \text{ g/mol}, C_{13}H_{21}N_5OS$

DC (*n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:3:1): $R_f = 0.11$.

IR (ATR): $\tilde{\nu} = 3343$ (NH-Valenz), 2993, 2932 (CH-, CH₂-, CH₃-Valenz), 2098 (N₃-Valenz), 1652 (C=O-Valenz), 1470, 1458, 1441, 1392, 1379 (CH-, CH₂-, CH₃-Deform.), 1325, 1274, 1248, 1193, 1173, 1144, 1086 (C-N-Valenz), 900, 870, 787, 750, 685, 669, 616 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.36$, 1.55 [2s, 6H, SC_q(CH₃)₂CH], 1.78 [s, 3H, SC_q(CH₃)₂N], 1.81 [dd, ⁵J = 2.4 Hz, ⁵J = 2.4 Hz, 3H, C_q=C_qCH₃], 1.94 [s, 3H, SC_q(CH₃)₂N], 2.20 [bs, 1H, NH], 3.47 [dq, ²J = 16.8 Hz, ⁵J = 2.4 Hz, 1H, CH₂NH], 3.51 [dq, ²J = 16.8 Hz, ⁵J = 2.4 Hz, 1H, CH₂NH], 3.92 [d, ²J = 15.6 Hz, 1H, CH₂N₃], 4.29 [d, ²J = 15.6 Hz, 1H, CH₂N₃], 4.48 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.69 [C_q \equiv C_q \underline{C}H_3]$, 24.16 [SC_q(<u>C</u>H₃)₂CH], 31.15, 31.19 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 31.79 [SC_q(<u>C</u>H₃)₂N], 35.38 [CH₂NH], 53.07 [CH₂N₃], 53.70 [S<u>C_q</u>(CH₃)₂CH], 71.73 [S<u>C_q</u>(CH₃)₂N], 76.38, 80.85 [<u>C_q</u> \equiv C_qCH₃, C_q \equiv C_qCH₃], 83.11 [NCH], 166.40 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 318.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₃H₂₂N₅OS]⁺: 296.1545, gefunden: 296.1544.—

(RS)-3-Azidoacetyl-4-(2-propinylamino)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (13c)

Die Darstellung erfolgt gemäß AAV 8 aus 2.00 mmol (367 mg) 3-Thiazolin 1b, 4.00 mmol (478 mg) Azidoessigsäurechlorid, 7.50 mmol (413 mg) Propargylamin und 3.50 mmol (354 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: n-Hexan/Essigsäureethylester 3:1) wird das Alkinylaminoamid 13c als schwach gelbes Öl erhalten.

Ausbeute: 479 mg (1.49 mmol, 75 %).---

 $M = 321.44 \ g/mol, \ C_{15}H_{23}N_5OS$

DC (*n*-Hexan/Essigsäureethylester 3:1): $R_f = 0.46$.

IR (ATR): $\tilde{\nu} = 3297$ (\equiv CH-Valenz, NH-Valenz), 2929, 2854 (CH-, CH₂-, CH₃-Valenz), 2102 (N₃-Valenz), 1655 (C=O-Valenz), 1448, 1387 (CH-, CH₂-, CH₃-Deform.), 1262, 1192, 1163, 1088 (C-N-Valenz), 911, 875, 789, 737, 638 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.19-1.34$ [m, 2H, CH_{2,Cy}], 1.51–1.60 [m, 3H, CH_{2,Cy}], 1.61–1.70 [m, 2H, CH_{2,Cy}], 1.74 [s, 3H, C_q(CH₃)₂], 1.75–1.86 [m, 3H, CH_{2,Cy}], 1.87 [s, 3H, C_q(CH₃)₂], 2.28 [bs, 1H, NH], 2.29 [dd, ⁴*J* = 2.3 Hz, ⁴*J* = 2.3 Hz, 1H, C_q=CH], 3.48 [dd, ²*J* = 17.0 Hz, ⁴*J* = 2.4 Hz, 1H, CH₂NH], 3.54 [dd, ²*J* = 17.0 Hz, ⁴*J* = 2.4 Hz, 1H, CH₂NH], 3.89 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.23 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.61 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.50$, 24.31, 25.57 [CH_{2,Cy}], 31.39, 32.08 [C_q(<u>C</u>H₃)₂], 33.89 [CH_{2,Cy}], 34.59 [CH₂NH], 37.90 [CH_{2,Cy}], 52.81 [CH₂N₃], 59.56 [S<u>C_q</u>(CH_{2,Cy})₂], 70.79 [S<u>C_q</u>(CH₃)₂], 72.83, 81.25 [C_q=<u>C</u>H, <u>C_q</u>=CH], 81.40 [NCH], 166.40 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 344.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für [C₁₅H₂₃N₅NaOS]⁺: 344.1521, gefunden: 344.1519.—

(RS)-3-Azidoacetyl-4-(2-butinylamino)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (13d)

Die Darstellung erfolgt gemäß **AAV 8** aus 1.00 mmol (183 mg) 3-Thiazolin **1b**, 2.00 mmol (239 mg) Azidoessigsäurechlorid, 3.75 mmol (259 mg) 2-Butin-1-amin und 1.75 mmol (177 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:2:2) wird das Alkinylaminoamid **13d** als gelbes Öl erhalten.

Ausbeute: 136 mg (0.41 mmol, 41 %).---

 $M = 335.47 \text{ g/mol}, C_{16}H_{25}N_5OS$

DC (*n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:2:2): $R_f = 0.31$.—

IR (ATR): $\tilde{\nu} = 3337$ (NH-Valenz), 2928, 2854 (CH-, CH₂-, CH₃-Valenz), 2102 (N₃-Valenz), 1656 (C=O-Valenz), 1447, 1387 (CH-, CH₂-, CH₃-Deform.), 1362, 1261, 1192, 1151, 1085 (C-N-Valenz), 911, 876, 789, 742 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.20-1.37$ [m, 2H, CH_{2,Cy}], 1.55–1.73 [m, 6H, CH_{2,Cy}], 1.78 [s, 3H, C_q(CH₃)₂], 1.79–1.81 [m, 1H, CH_{2,Cy}], 1.83 [t, 3H, ⁵*J* = 2.3 Hz, C_q=C_qCH₃], 1.85–1.90 [m, 1H, CH_{2,Cy}], 1.91 [s, 3H, C_q(CH₃)₂], 2.22 [bs, 1H, NH], 3.49 [q, ⁵*J* = 2.3 Hz, 2H, C*H*₂NH], 3.91 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.30 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.61 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.72$ [C_q=C_qCH₃], 22.61, 24.46, 25.74 [CH_{2,Cy}], 31.36, 32.22 [C_q(CH₃)₂], 34.08 [CH_{2,Cy}], 35.23 [CH₂NH], 37.99 [CH_{2,Cy}], 53.14 [CH₂N₃], 59.71 [SC_q(CH_{2,Cy})₂], 70.82 [SC_q(CH₃)₂], 76.46, 80.82 [C_q=C_qCH₃, C_q=C_qCH₃], 81.83 [NCH], 166.50 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 358.2 [MNa]⁺ (87).

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}N_5OS]^+$: 336.1858, gefunden: 336.1862.—

(*RS*)-14-Azidoacetyl-15-(2-propinylamino)-7-thia-14-azadispiro[5.1.5⁸.2⁶]penta-decan (**13e**)

Die Darstellung erfolgt gemäß **AAV 8** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 4.00 mmol (478 mg) Azidoessigsäurechlorid, 7.50 mmol (413 mg) Propargylamin und 3.50 mmol (354 mg) Triethylamin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 5:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 6:1) wird das Alkinylaminoamid **13e** als farbloses Öl erhalten.

Ausbeute: 446 mg (1.23 mmol, 62 %).—

 $M = 361.51 \text{ g/mol}, C_{18}H_{27}N_5OS$

1. DC (*n*-Hexan/Essigsäureethylester 5:1): $R_f = 0.71$.—

2. DC (*n*-Hexan/Aceton 6:1): $R_f = 0.33$.—

IR (ATR): $\tilde{\nu} = 3305$ (=CH-Valenz, NH-Valenz), 2928, 2855 (CH-, CH₂-Valenz), 2103 (N₃-Valenz), 1653 (C=O-Valenz), 1450, 1385 (CH-, CH₂-Deform.), 1261, 1201, 1161, 1132, 1095 (C-N-Valenz), 905, 859, 834, 795, 736, 650 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.14-1.25$ [m, 1H, CH_{2,Cy}], 1.26–1.39 [m, 3H, CH_{2,Cy}], 1.48–1.67 [m, 8H, CH_{2,Cy}], 1.68–1.88 [m, 6H, CH_{2,Cy}], 2.27 [bs, 1H, NH], 2.30 [dd, ⁴*J* = 2.4 Hz, ⁴*J* = 2.4 Hz, 1H, C_q=CH], 2.76–2.89, 3.08–3.22 [2m, 2H, CH_{2,Cy}], 3.49 [dd, ²*J* = 17.1 Hz, ⁴*J* = 2.4 Hz, 1H, CH₂NH], 3.55 [dd, ²*J* = 17.1 Hz, ⁴*J* = 2.5 Hz, 1H, CH₂NH], 3.89 [d, ²*J* = 15.6 Hz, 1H, CH₂N₃], 4.25 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.64 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.64$, 24.29, 24.43, 24.97, 25.65, 25.69, 34.08 [CH_{2,Cy}], 34.60 [CH₂NH], 36.98, 37.92, 39.37 [CH_{2,Cy}], 53.29 [CH₂N₃], 58.34 [S<u>C</u>_q(CH_{2,Cy})₂CH], 72.84 [C_q=<u>C</u>H/<u>C</u>_q=CH], 78.55 [S<u>C</u>_q(CH_{2,Cy})₂N], 81.10 [NCH], 81.37 [C_q=<u>C</u>H/<u>C</u>_q=CH], 166.77 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 384.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{27}N_5NaOS]^+$: 384.1834, gefunden: 384.1832.

(*RS*)-14-Azidoacetyl-15-(2-butinylamino)-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (**13f**)

Die Darstellung erfolgt gemäß **AAV 8** aus 1.00 mmol (223 mg) 3-Thiazolin **1d**, 2.00 mmol (239 mg) Azidoessigsäurechlorid, 3.75 mmol (259 mg) 2-Butin-1-amin und 1.75 mmol (177 mg) Triethylamin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:1:1; 2. Kieselgel 60, Laufmittel: Toluol/Dichlormethan/*tert*-Butyl-methylether 60:1:1) wird das Alkinylaminoamid **13f** wird als farbloses Öl erhalten.

Ausbeute: 107 mg (0.28 mmol, 28 %).—

 $M = 375.54 \text{ g/mol}, C_{19}H_{29}N_5OS$

1. DC (*n*-Hexan/Dichlormethan/*tert*-Butylmethylether 15:1:1): $R_f = 0.18$.—

2. DC (Toluol/Dichlormethan/tert-Butylmethylether 60:1:1): $R_f = 0.17$.—

IR (ATR): $\tilde{\nu} = 3330$ (NH-Valenz), 2928, 2855 (CH-, CH₂-, CH₃-Valenz), 2103 (N₃-Valenz), 1653 (C=O-Valenz), 1449, 1385 (CH-, CH₂-, CH₃-Deform.), 1253, 1202, 1160, 1094 (C-N-Valenz), 906, 859, 833, 795, 731, 681 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.15-1.25$ [m, 1H, CH_{2,Cy}], 1.26–1.38 [m, 3H, CH_{2,Cy}], 1.49–1.73 [m, 10H, CH_{2,Cy}], 1.74–1.81 [m, 3H, CH_{2,Cy}], 1.82–1.88 [m, 1H, CH_{2,Cy}], 1.82 [t, ⁵*J* = 2.3 Hz, 3H, CH₃], 2.20 [bs, 1H, NH], 2.77–2.87, 3.09–3.21 [2m, 2H, CH_{2,Cy}], 3.47 [q, ⁵*J* = 2.3 Hz, 2H, CH₂NH], 3.88 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.29 [d, ²*J* = 15.5 Hz, 1H, CH₂N₃], 4.61 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = 3.74 [CH₃], 22.64, 24.35, 24.46, 25.00, 25.68, 25.76, 34.15 [CH_{2,Cy}], 35.13 [CH₂NH], 37.01, 37.90, 39.23 [CH_{2,Cy}], 53.46 [CH₂N₃], 58.45 [SC_q(CH_{2,Cy})₂CH], 76.46 [C_q=C_q], 78.49 [SC_q(CH_{2,Cy})₂N], 80.74 [NCH], 81.51 [C_q=C_q], 166.73 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 398.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₉H₃₀N₅OS]⁺: 376.2171, gefunden: 376.2170.—

(RS)-3-Azidoacetyl-4-(2-propinylamino)-2,2,5,5-tetramethyl-1,3-oxazolidin (13g)

Die Darstellung erfolgt gemäß **AAV 8** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 4.00 mmol (478 mg) Azidoessigsäurechlorid, 7.50 mmol (413 mg) Propargylamin und 3.50 mmol (354 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 3:1) wird das Alkinylaminoamid **13g** als schwach gelbes Öl erhalten, welches in der Kälte auskristallisiert.

Ausbeute: 255 mg (0.96 mmol, 48 %).---

 $M = 265.32 \text{ g/mol}, C_{12}H_{19}N_5O_2$

Schmelzpunkt: 59-61 °C.---

DC (*n*-Hexan/Essigsäureethylester 3:1): $R_f = 0.26$.—

IR (ATR): $\tilde{\nu} = 3342$ (NH-Valenz), 3221 (=CH-Valenz), 2981, 2938 (CH-, CH₂-, CH₃-Valenz), 2108 (N₃-Valenz), 1662 (C=O-Valenz), 1472, 1437, 1401, 1371 (CH-, CH₂-, CH₃- Deform.), 1306, 1269, 1242, 1203, 1149, 1115 (C-N-Valenz), 1000 (C-O-C-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.35$, 1.37 [2s, 6H, OC_q(CH₃)₂CH], 1.57, 1.66 [2s, 6H, OC_q(CH₃)₂N], 1.76 [bs, 1H, NH], 2.30–2.34 [m, 1H, C_q=CH], 3.50 [dd, ²J = 17.1 Hz, ⁴J = 2.3 Hz, 1H, CH₂NH], 3.59 [dd, ²J = 17.1 Hz, ⁴J = 2.5 Hz, 1H, CH₂NH], 3.96 [d, ²J = 15.8 Hz, 1H, CH₂N₃], 4.27 [d, ²J = 15.8 Hz, 1H, CH₂N₃], 4.38 [s, 1H, NCH] ppm.— ¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.49$ [OC_q(CH₃)₂CH], 27.50 [OC_q(CH₃)₂N], 28.29 [OC_q(CH₃)₂CH], 28.87 [OC_q(CH₃)₂N], 35.51 [CH₂NH], 51.99 [CH₂N₃], 73.02 [C_q=CH/ C_q=CH], 76.54 [NCH], 80.60 [C_q=CH/C_q=CH], 81.82 [OC_q(CH₃)₂CH], 94.89 [OC_q(CH₃)₂N], 165.99 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 288.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{19}N_5NaO_2]^+$: 288.1436, gefunden: 288.1438.—

(RS)-3-Azidoacetyl-4-(2-butinylamino)-2,2,5,5-tetramethyl-1,3-oxazolidin (13h)

Die Darstellung erfolgt gemäß **AAV 8** aus 1.00 mmol (127 mg) 3-Oxazolin **2**, 2.00 mmol (239 mg) Azidoessigsäurechlorid, 3.75 mmol (259 mg) 2-Butin-1-amin und 1.75 mmol (177 mg) Triethylamin. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/*tert*-Butylmethylether 2:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 3:1) wird das Alkinylaminoamid **13h** als gelber Feststoff erhalten.

Ausbeute: 94 mg (0.34 mmol, 34 %).---

 $M = 279.34 \text{ g/mol}, C_{13}H_{21}N_5O_2$

Schmelzpunkt: 51–53 °C.—

1. DC (*n*-Hexan/tert-Butylmethylether 2:1): $R_f = 0.21$.—

2. DC (*n*-Hexan/Essigsäureethylester 3:1): $R_f = 0.29$.—

IR (ATR): $\tilde{\nu} = 3353$ (NH-Valenz), 2987, 2932, 2892, 2856 (CH-, CH₂-, CH₃-Valenz), 2102 (N₃-Valenz), 1661 (C=O-Valenz), 1432, 1408, 1373 (CH-, CH₂-, CH₃-Deform.), 1364, 1269, 1252, 1204, 1180, 1149, 1129, 1099, 1062 (C-N-Valenz), 1007 (C-O-C-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.33$, 1.35 [2s, 6H, OC_q(CH₃)₂CH], 1.56, 1.65 [2s, 6H, OC_q(CH₃)₂N], 1.70 [bs, 1H, NH], 1.82 [dd, ⁵J = 2.4 Hz, ⁵J = 2.4 Hz, 3H, C_q=C_qCH₃], 3.40 [dq, ²J = 16.7 Hz, ⁵J = 2.4 Hz, 1H, CH₂NH], 3.52 [dq, ²J = 16.7 Hz, ⁵J = 2.4 Hz, 1H, CH₂NH], 3.95 [d, ²J = 15.8 Hz, 1H, CH₂N₃], 4.30 [d, ²J = 15.8 Hz, 1H, CH₂N₃], 4.34 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 3.57$ [C_q=C_q<u>C</u>H₃], 23.42 [OC_q(<u>C</u>H₃)₂CH], 27.48 [OC_q(<u>C</u>H₃)₂N], 28.29 [OC_q(<u>C</u>H₃)₂CH], 28.79 [OC_q(<u>C</u>H₃)₂N], 35.92 [CH₂NH], 52.04 [CH₂N₃], 75.88 [<u>C_q</u>=C_q], 76.59 [NCH], 80.73 [<u>C_q</u>=C_q], 81.75 [O<u>C_q(CH₃)₂CH], 94.72 [O<u>C_q(CH₃)₂N], 165.92 [C_q=O] ppm.</u></u>

MS (ESI, TOF): m/z (%) = 302.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{22}N_5O_2]^+$: 280.1774, gefunden: 280.1774.

(RS)-2-Azido-N-{1-[(2,2-dimethylethanal)mercapto]-2,2-dimethylpropyl}-acetamid (14)

Die Darstellung erfolgt gemäß AAV 8 aus 1.00 mmol (171 mg) 3-Thiazolin 1f, 2.00 mmol (239 mg) Azidoessigsäurechlorid, 3.75 mmol (207 mg) Propargylamin und 1.75 mmol (177 mg) Triethylamin. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: n-Hexan/Essigsäureethylester 10:1) wird das Acetamid 14 als oranges Öl erhalten.

Ausbeute: 77 mg (0.28 mmol, 28 %).---

 $M = 272.37 \text{ g/mol}, C_{11}H_{20}N_4O_2S$

DC (*n*-Hexan/Essigsäureethylester 10:1): $R_f = 0.10$.—

IR (ATR): $\tilde{\nu} = 3296$ (NH-Valenz), 2965, 2871, 2811, 2711 (CH-, CH₂-, CH₃-Valenz), 2102 (N₃-Valenz), 1713, 1657 (C=O-Valenz), 1540, 1465, 1427, 1397 (CH-, CH₂-, CH₃-Deform.), 1368, 1294, 1263, 1244, 1128, 1078 (C-N-Valenz), 922, 818, 782, 695, 658 (C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): $\delta = 1.00$ [s, 9H, C_q(CH₃)₃], 1.31, 1.46 [2s, 6H, SC_q(CH₃)₂], 3.94 [d, ²*J* = 16.5 Hz, 1H, CH₂], 4.25 [d, ²*J* = 16.5 Hz, 1H, CH₂], 4.87 [d, ³*J* = 10.3 Hz, 1H, C*H*NH], 6.33 [d, ³*J* = 10.1 Hz, 1H, CHN*H*], 9.19 [s, 1H, HC=O] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): δ = 20.90, 22.23 [SC_q(<u>C</u>H₃)₂], 26.70 [3 C_q(<u>C</u>H₃)₃], 37.10 [<u>C_q</u>(CH₃)₃], 52.23 [S<u>C_q</u>(CH₃)₂], 52.33 [CH₂], 61.73 [CHNH], 165.32 [NHC_q=O], 196.23 [HC=O] ppm.—

MS (ESI, TOF): m/z (%) = 295.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für [C₁₁H₂₀N₄NaO₂S]⁺: 295.1205, gefunden: 295.1207.—

8.2.11 Darstellung der tricyclischen 1,3,6-Triazocin-4-one

(*RS*)-6,6,8,8-*Tetramethyl*-4,5,5*a*,6-*tetrahydro*-8*H*-*thiazolo*[3,4-*a*][1,2,3]*triazolo*[5,1-*e*]-[1,3,6]*triazocin*-10(11*H*)-on (**15a**)

Die Darstellung erfolgt gemäß **AAV 9** aus 0.50 mmol (141 mg) Alkinylaminoamid **13a**. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 5:1) wird das tricyclische Lactam **15a** als farbloser Feststoff erhalten.

Ausbeute: 62 mg (0.22 mmol, 44 %).—

 $M = 281.38 \text{ g/mol}, C_{12}H_{19}N_5OS$

Schmelzpunkt: 198–200 °C.---

DC (Dichlormethan/tert-Butylmethylether 5:1): $R_f = 0.18$.—

IR (ATR): $\tilde{v} = 3305$ (NH-Valenz), 3123, 3087 (=CH-Valenz), 2960, 2928, 2855 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1468, 1431, 1401, 1379 (CH-, CH₂-, CH₃-Deform.), 1361, 1328, 1315, 1306, 1238, 1191, 1161, 1129, 1108, 1088 (C-N-Valenz), 994, 982, 953, 922, 856, 820, 755, 707, 642, 622 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.33$, 1.61 [2s, 6H, SC_q(CH₃)₂CH], 1.76, 1.99 [2s, 6H, SC_q(CH₃)₂N], 2.26 [bs, 1H, NH], 4.05 [d, ²J = 15.0 Hz, 1H, CH₂NH], 4.13 [d, ²J = 15.0 Hz, 1H, CH₂NH], 4.54 [s, 1H, NCH], 5.29 [d, ²J = 14.7 Hz, 1H, CH₂C_q=O], 5.34 [d, ²J = 14.7 Hz, 1H, CH₂C_q=O], 7.57 [s, 1H, CH_A] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.11 [SC_q(\underline{CH}_3)_2CH]$, 30.10 $[SC_q(\underline{CH}_3)_2N]$, 31.56, 31.63 $[SC_q(\underline{CH}_3)_2CH, SC_q(\underline{CH}_3)_2N]$, 37.35 $[CH_2NH]$, 52.18 $[S\underline{C}_q(CH_3)_2CH]$, 56.47 $[\underline{CH}_2C_q=O]$, 72.16 $[S\underline{C}_q(CH_3)_2N]$, 84.88 [NCH], 133.69 $[CH_{Ar}]$, 134.32 $[C_{q,Ar}]$, 162.69 $[C_q=O]$ ppm.—

MS (ESI, TOF): m/z (%) = 304.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₂H₁₉N₅NaOS]⁺: 304.1208, gefunden: 304.1197.—

(*RS*)-8',8'-*Dimethyl*-5',5a'-*dihydro*-4'H,8'H-spiro(cyclohexan-1,6'-thiazolo[3,4-a]-[1,2,3]-triazolo[5,1-e][1,3,6]triazocin)-10'(11'H)-on (**15c**)

Die Darstellung erfolgt gemäß **AAV 9** aus 0.50 mmol (161 mg) Alkinylaminoamid **13c**. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 5:1) wird das tricyclische Lactam **15c** als farbloser Feststoff erhalten.

Ausbeute: 79 mg (0.25 mmol, 50 %).--

 $M = 321.44 \text{ g/mol}, C_{15}H_{23}N_5OS$

Schmelzpunkt: 177–179 °C.—

DC (Dichlormethan/tert-Butylmethylether 5:1): $R_f = 0.13$.—

IR (ATR): $\tilde{\nu} = 3380$, 3314 (NH-Valenz), 3085 (=CH-Valenz), 2928, 2853 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1464, 1399, 1378 (CH-, CH₂-, CH₃-Deform.), 1361, 1330, 1237, 1189, 1157, 1128, 1107 (C-N-Valenz), 985, 959, 892, 855, 828, 804, 750, 729, 640 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.22-1.34$ [m, 2H, CH_{2,Cy}], 1.51–1.71 [m, 5H, CH_{2,Cy}], 1.74–1.86 [m, 2H, CH_{2,Cy}], 1.76, 1.95 [2s, 6H, C_q(CH₃)₂], 1.96–2.01 [m, 1H, CH_{2,Cy}], 2.24–2.33 [m, 1H, NH], 4.03 [d, ²*J* = 14.8 Hz, 1H, CH₂NH], 4.13 [d, ²*J* = 14.8 Hz, 1H, CH₂NH], 4.63 [d, ³*J* = 9.8 Hz, 1H, NCH], 5.28 [d, ²*J* = 14.8 Hz, 1H, CH₂C_q=O], 5.32 [d, ²*J* = 14.7 Hz, 1H, CH₂C_q=O], 7.57 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.63$, 24.15, 25.52 [CH_{2,Cy}], 30.14, 32.04 [C_q(<u>C</u>H₃)₂], 33.72 [CH_{2,Cy}], 37.08 [CH₂NH], 38.43 [CH_{2,Cy}], 56.58 [<u>C</u>H₂C_q=O], 58.19 [S<u>C</u>_q(CH_{2,Cy})₂], 71.25 [S<u>C</u>_q(CH₃)₂], 83.38 [NCH], 133.73 [CH_{Ar}], 134.25 [C_{q,Ar}], 162.72 [C_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 344.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₅H₂₃N₅NaOS]⁺: 344.1521, gefunden: 344.1519.—

(*RS*)-5',5a'-Dihydro-4'H-dispiro(cyclohexan-1,6'-thiazolo[3,4-a][1,2,3]triazolo[5,1-e]-[1,3,6]triazocin-8',1''-cyclohexan)-10'(11'H)-on (**15e**)

Die Darstellung erfolgt gemäß **AAV 9** aus 0.50 mmol (181mg) Alkinylaminoamid **13e**. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 5:1) wird das tricyclische Lactam **15e** als farbloser Feststoff erhalten.

Ausbeute: 102 mg (0.28 mmol, 56 %).---

 $M = 361.51 \text{ g/mol}, C_{18}H_{27}N_5OS$

Schmelzpunkt: 209–211 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 5:1): $R_f = 0.10$.—

IR (ATR): $\tilde{\nu} = 3370$ (NH-Valenz), 2924, 2853 (CH-, CH₂-Valenz), 1646 (C=O-Valenz), 1455, 1381 (CH-, CH₂-Deform.), 1308, 1289, 1255, 1232, 1207, 1161, 1118, 1100, 1088 (C-N-Valenz), 994, 979, 933, 909, 865, 836, 781, 757, 685, 646 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.19-1.40$ [m, 4H, CH_{2,Cy}], 1.49–1.57 [m, 3H, CH_{2,Cy}], 1.58–1.71 [m, 6H, CH_{2,Cy}], 1.73–1.85 [m, 4H, CH_{2,Cy}] 1.90–1.97 [m, 1H, CH_{2,Cy}], 2.26–2.34 [m, 1H, NH], 2.88–2.96, 3.04–3.12 [2m, 2H, CH_{2,Cy}], 4.02 [dd, ²*J* = 14.7 Hz, ³*J* = n.a., 1H, CH₂NH], 4.12 [dd, ²*J* = 14.7 Hz, ³*J* = 3.1 Hz, 1H, CH₂NH], 4.63 [d, ³*J* = 11.5 Hz, 1H, NCH], 5.27 [d, ²*J* = 14.5 Hz, 1H, CH₂C_q=O], 5.31 [d, ²*J* = 14.5 Hz, 1H, CH₂C_q=O], 7.58 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 22.69$, 24.08, 24.38, 24.82, 25.50, 25.54, 33.73 [CH_{2,Cy}], 36.78 [CH₂NH], 37.14, 37.84, 38.47 [CH_{2,Cy}], 57.08 [SC_q(CH_{2,Cy})₂CH], 57.46 [CH₂C_q=O], 78.82 [SC_q(CH_{2,Cy})₂N], 82.89 [NCH], 133.82 [CH_{Ar}], 134.07 [C_{q,Ar}], 162.75 [C_q=O] ppm.—

MS (EI, 70 eV): m/z (%) = 361.2 [M]⁺ (16).

HRMS (EI, 70 eV): Berechnet für $[C_{18}H_{27}N_5OS]^+$: 361.1931, gefunden: 361.1933.
(*RS*)-6,6,8,8-*Tetramethyl*-4,5,5*a*,6-*tetrahydro*-8*H*-oxazolo[3,4-a][1,2,3]triazolo[5,1-e]-[1,3,6]triazocin-10(11H)-on (**15g**)

Die Darstellung erfolgt gemäß **AAV 9** aus 0.50 mmol (133 mg) Alkinylaminoamid **13g**. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Essigsäureethylester) wird das tricyclische Lactam **15g** als farbloser Feststoff erhalten.

Ausbeute: 18 mg (0.07 mmol, 14 %).---

 $M = 265.32 \text{ g/mol}, C_{12}H_{19}N_5O_2$

Schmelzpunkt: 157-159 °C.---

DC (Essigsäureethylester): $R_f = 0.18$.—

IR (ATR): $\tilde{\nu} = 3328$ (NH-Valenz), 2989, 2940 (CH-, CH₂-, CH₃-Valenz), 1657 (C=O-Valenz), 1475, 1461, 1407 (CH-, CH₂-, CH₃-Deform.), 1368, 1287, 1267, 1236, 1206, 1161, 1142, 1117 (C-N-Valenz), 1005 (C-O-C-Valenz), 915, 898, 873, 824, 760, 688, 662 (=CH-Deform.) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.29$, 1.38 [2s, 6H, OC_q(CH₃)₂CH], 1.44, 1.63 [2s, 6H, OC_q(CH₃)₂N], 1.78 [bs, 1H, NH], 4.02 [d, ²J = 16.1 Hz, 1H, CH₂NH], 4.34 [d, ²J = 16.1 Hz, 1H, CH₂NH], 4.53 [s, 1H, NCH], 5.26 [d, ²J = 14.6 Hz, 1H, CH₂C_q=O], 5.31 [d, ²J = 14.6 Hz, 1H, CH₂C_q=O], 7.51 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.30 [OC_q(\underline{CH}_3)_2CH]$, 27.59 $[OC_q(\underline{CH}_3)_2N]$, 28.38, 28.43 $[OC_q(\underline{CH}_3)_2CH, OC_q(\underline{CH}_3)_2N]$, 40.03 $[CH_2NH]$, 53.95 $[\underline{CH}_2C_q=O]$, 80.59 [NCH], 80.96 $[O\underline{C}_q(CH_3)_2CH]$, 94.73 $[O\underline{C}_q(CH_3)_2N]$, 133.13 $[CH_{Ar}]$, 135.78 $[C_{q,Ar}]$, 162.45 $[C_q=O]$ ppm.—

MS (ESI, TOF): m/z (%) = 288.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{20}N_5O_2]^+$: 266.1617, gefunden: 266.1614.—

8.2.12 Darstellung eines N-Methyl-substituierten Alkinylaminoamids

(RS)-3-Azidoacetyl-4-[N-methyl-(N-2-propinyl)amino]-2,2,5,5-tetramethyl-1,3-thi-azolidin (**16**)

Unter Schutzgasatmosphäre werden 2.00 mmol (287 mg) 3-Thiazolin **1a**, gelöst in *abs*. Dichlormethan (7.0 mL je mmol Imin), mittels Eisbad auf 0 °C gekühlt. Anschließend werden 2.00 mmol (239 mg) Azidoessigsäurechlorid, gelöst in *abs*. Dichlormethan (1.5 mL je mmol Imin), tropfenweise zu der Reaktionslösung gegeben und das Reaktionsgemisch im Anschluss für drei Stunden bei Raumtemperatur gerührt. Nachfolgend werden 4.00 mmol (276 mg) *N*-Methylpropargylamin und 3.50 mmol (354 mg) Triethylamin in *abs*. Dichlormethan gelöst (3.5 mL je mmol Imin) und unter erneuter Eisbadkühlung zu dem Reaktionsgemisch vorsichtig zugetropft. Die Reaktionslösung wird im Anschluss für fünf Stunden unter Rückfluss gerührt. Nach dem Rühren wird die Reaktionslösung mit 30 mL Wasser versetzt und die Phasen getrennt. Die wässrige Phase wird mit Dichlormethan (2 × 15 mL) extrahiert, die vereinigten organischen Phasen über Magnesiumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 5:1) wird das Alkinylaminoamid **16** als gelbes Öl erhalten.

Ausbeute: 248 mg (0.84 mmol, 42 %).---

 $M = 295.41 \text{ g/mol}, C_{13}H_{21}N_5OS$

DC (*n*-Hexan/Essigsäureethylester 5:1): $R_f = 0.44$.—

IR (ATR): $\tilde{v} = 3298$ (=CH-Valenz), 2989, 2936 (CH-, CH₂-, CH₃-Valenz), 2104 (N₃-Valenz), 1663 (C=O-Valenz), 1470, 1432, 1378 (CH-, CH₂-, CH₃-Deform.), 1262, 1200, 1162, 1135, 1046 (C-N-Valenz), 917, 873, 736, 648 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.34$, 1.53 [2s, 6H, SC_q(CH₃)₂CH], 1.92 [2s, 6H, SC_q(CH₃)₂N], 2.26 [dd, ⁴J = 2.3 Hz, ⁴J = 2.3 Hz, 1H, C_q=CH], 2.72 [s, 3H, NCH₃], 3.58 [dd, ²J = 17.4 Hz, ⁴J = 2.3 Hz, 1H, CH₂NCH₃], 3.81 [d, ²J = 16.1 Hz, 1H, CH₂N₃], 4.04 [dd, ²J = 17.4 Hz, ⁴J = n.a., 1H, CH₂NCH₃], 4.19 [d, ²J = 16.1 Hz, 1H, CH₂N₃], 4.55 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.50 [SC_q(\underline{CH}_3)_2CH]$, 28.89, 31.94 $[SC_q(\underline{CH}_3)_2N]$, 33.52 $[SC_q(\underline{CH}_3)_2CH]$, 37.88 $[NCH_3]$, 40.82 $[\underline{CH}_2NCH_3]$, 52.76 $[CH_2N_3]$, 53.76 $[S\underline{C}_q(CH_3)_2CH]$, 72.55 $[S\underline{C}_q(CH_3)_2N]$, 72.75, 80.10 $[C_q \equiv \underline{C}H, \underline{C}_q \equiv CH]$, 89.36 [NCH], 167.77 $[C_q = O]$ ppm.—

MS (ESI, TOF): m/z (%) = 318.2 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₃H₂₁N₅NaOS]⁺: 318.1365, gefunden: 318.1367.—

8.2.13 Darstellung eines *N***-Methyl-substituierten tricyclischen 1,3,6-Triazocin-4-ons** (*RS*)-5,6,6,8,8-*Pentamethyl-4,5,5a,6-tetrahydro-8H-thiazolo[3,4-a][1,2,3]triazolo-*[5,1-e][1,3,6]triazocin-10(11H)-on (**17**)

Die Darstellung erfolgt gemäß **AAV 9** aus 0.34 mmol (100 mg) Alkinylaminoamid **16**. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 1:1) wird das tricyclische Lactam **17** als farbloser Feststoff erhalten.

Ausbeute: 70 mg (0.24 mmol, 71 %).---

 $M = 295.41 \text{ g/mol}, C_{13}H_{21}N_5OS$

Schmelzpunkt: 199–201 °C.—

DC (Dichlormethan/Essigsäureethylester 1:1): $R_f = 0.24$.—

IR (ATR): $\tilde{v} = 3136$, 3001 (=CH-Valenz), 2981, 2940, 2794 (CH-, CH₂-, CH₃-Valenz), 1645 (C=O-Valenz), 1466, 1437, 1376 (CH-, CH₂-, CH₃-Deform.), 1336, 1288, 1234, 1206, 1155, 1137, 1095, 1043 (C-N-Valenz), 992, 871, 829, 752, 734, 645, 632 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.36$, 1.63 [2s, 6H, SC_q(CH₃)₂CH], 1.69, 1.95 [2s, 6H, SC_q(CH₃)₂N], 2.41 [s, 3H, NCH₃], 4.10 [d, ²*J* = 16.4 Hz, 1H, CH₂NCH₃], 4.19 [d, ²*J* = 16.4 Hz, 1H, CH₂NCH₃], 5.14 [s, 1H, NCH], 5.16 [d, ²*J* = 14.0 Hz, 1H, CH₂C_q=O], 5.28 [d, ²*J* = 14.0 Hz, 1H, CH₂C_q=O], 7.55 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = 25.08 [SC_q(<u>C</u>H₃)₂CH], 28.09, 32.08 [SC_q(<u>C</u>H₃)₂N], 34.21 [SC_q(<u>C</u>H₃)₂CH], 34.82 [NCH₃], 50.55 [<u>C</u>H₂NCH₃], 51.16 [S<u>C_q(CH₃)₂CH], 54.95 [<u>C</u>H₂C_q=O], 71.92 [S<u>C_q(CH₃)₂N], 93.74 [NCH], 134.06 [C_{q,Ar}], 134.81 [CH_{Ar}], 163.95 [C_q=O] ppm.—</u></u>

MS (ESI, TOF): m/z (%) = 318.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₃H₂₁N₅NaOS]⁺: 318.1365, gefunden: 318.1361.—

8.2.14 Darstellung eines tricyclischen 1,3,6-Triazocin-4,8-dions

(*RS*)-5*a*,6-*Dihydro*-6,6,8,8-*tetramethyl*-8*H*-*thiazolo*[3,4-*a*][1,2,3]*triazolo*[5,1-*e*][1,3,6]*triazocin*-4,10(5*H*,11*H*)-*dion* (**18**)

164 mg (0.58 mmol) des Triazocins **15a** werden in *abs*. Aceton (1.0 ml je mmol Imin) gelöst. Anschließend wird zu der Reaktionslösung 229 mg (1.45 mmol) Kaliumpermanganat gegeben. Die violette Suspension wird für zwei Stunden unter Rückfluss erhitzt. Hierbei ist der Ausfall eines braunen Feststoffs zu erkennen. Nach Beendigung der Reaktion wird das Reaktionsgemisch abgekühlt, der Feststoff abfiltriert und das Lösungsmittel am Rotationsverdampfer entfernt. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan/*tert*-Butylmethylether 1:1) wird das tricyclische Lactam **18** als farbloser Feststoff erhalten.

Ausbeute: 25 mg (0.08 mmol, 14 %).—

 $M = 295.41 \text{ g/mol}, C_{12}H_{17}N_5O_2S$

Schmelzpunkt: 235–237 °C.—

DC (Dichlormethan/*tert*-Butylmethylether 1:1): $R_f = 0.41$.—

IR (ATR): $\tilde{v} = 3304$, 3273 (NH-Valenz), 2983, 2932, 2865 (CH-, CH₂-, CH₃-Valenz), 1676, 1648 (C=O-Valenz), 1525 (NH-Deform.), 1468, 1446, 1425, 1406, 1392, 1380 (CH-, CH₂-, CH₃-Deform.), 1364, 1332, 1239, 1225, 1207, 1166, 1148, 1122, 1080 (C-N-Valenz), 974, 930, 863, 900, 820, 756, 747, 698, 657 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.42$, 1.63 [2s, 6H, SC_q(CH₃)₂CH], 1.85, 1.96 [2s, 6H, SC_q(CH₃)₂N], 5.29 [d, ³J = 10.1 Hz, 1H, NCH], 5.34 [d, ²J = 16.1 Hz, 1H, CH₂], 5.58 [d, ²J = 16.1 Hz, 1H, CH₂], 7.04 [d, ³J = 10.0 Hz, 1H, NH], 8.15 [s, 1H, CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.79$ [SC_q(<u>C</u>H₃)₂CH], 30.54 [SC_q(<u>C</u>H₃)₂N], 30.94 [SC_q(<u>C</u>H₃)₂CH], 31.25 [SC_q(<u>C</u>H₃)₂N], 51.17 [S<u>C</u>_q(CH₃)₂CH], 57.46 [CH₂], 73.67 [S<u>C</u>_q(CH₃)₂N], 77.97 [NCH], 132.18 [C_{q,Ar}], 139.88 [CH_{Ar}], 158.77 [HNC_q=O],

161.35 [CH₂<u>C</u>_q=O] ppm.—

MS (ESI, TOF): m/z (%) = 318.1 [MNa]⁺ (100).---

HRMS (ESI, TOF): Berechnet für $[C_{12}H_{18}N_5O_2S]^+$: 296.1181, gefunden: 296.1189.—

8.2.15 Darstellung diverser Dithiocarbamate via MCR

(RS)-3-Acetyl-4-allylthiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3-thiazolidin (19a)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7).⁵ Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 8.5:1.5) wird das Dithiocarbamat **19a** als farbloser Feststoff erhalten.

Ausbeute: 435 mg (1.37 mmol, 68 %).---

 $M = 318.51 \ g/mol, \ C_{13}H_{22}N_2OS_3$

Schmelzpunkt: 119–121 °C.—

DC (*n*-Hexan/Essigsäureethylester 8.5:1.5): $R_f = 0.26$.

IR (ATR): $\tilde{v} = 3201$ (NH-Valenz), 2986, 2970, 2930, 2867 (CH-, CH₂-, CH₃-Valenz), 1640 (C=O-Valenz), 1520 (NH-Deform.), 1463, 1444, 1424, 1376 (CH-, CH₂-, CH₃-Deform.), 1338, 1276, 1246, 1207 (C-N-Valenz), 1160 (C=S-Valenz), 1132, 1082, 1062 (C-N-Valenz), 1038, 994, 985, 956, 941, 923, 911, 902, 751, 685, 626, 610 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.41$ [s, 3H, SC_q(CH₃)₂CH], 1.65 [s, 3H, SC_q(CH₃)₂N], 1.67 [s, 3H, SC_q(CH₃)₂CH], 1.89 [s, 3H, SC_q(CH₃)₂N], 2.12 [s, 3H, CH₃C_q=O], 4.23–4.27 [m, 2H, CH₂NH], 5.14 [dddd, ²J = 1.5 Hz, ³J_{cis} = 10.4 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, HC=CH₂], 5.17 [dddd, ²J = 1.6 Hz, ³J_{trans} = 17.2 Hz, ⁴J = 1.6 Hz, ⁴J = 1.6 Hz, 1H, HC=CH₂], 5.85 [dddd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.6 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, HC=CH₂], 6.36 [s, 1H, NCH], 10.44 [dd, ³J = 4.8 Hz, ³J = 4.8 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO- d_6): $\delta = 23.86 [SC_q(\underline{C}H_3)_2CH]$, 25.50 [$\underline{C}H_3C_q=O$], 29.23 [$SC_q(\underline{C}H_3)_2N$], 31.01 [$SC_q(\underline{C}H_3)_2CH$], 31.38 [$SC_q(\underline{C}H_3)_2N$], 48.67 [CH_2NH], 53.55

⁵ Ausschließlich das Überschussrotamer wurde ausgewertet. Dieses Vorgehen wurde analog bei allen Dithiocarbamat-Derivaten **19** und **20** angewendet.

 $[SC_q(CH_3)_2CH]$, 71.66 $[SC_q(CH_3)_2N]$, 84.64 [NCH], 116.87 [HC=<u>CH</u>₂], 132.43 [HC=CH₂], 168.99 [C_q=O], 194.61 [C_q=S] ppm.— MS (ESI, TOF): m/z (%) = 341.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{22}N_2NaOS_3]^+$: 341.0792, gefunden: 341.0794.—

(*RS*)-3-Acetyl-4-allylthiocarbamoylmercapto-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (19b)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch Waschen des Rohprodukts mit wenig kaltem *n*-Hexan und Dichlormethan wird das Dithiocarbamat **19b** als farbloser Feststoff erhalten.

Ausbeute: 232 mg (0.65 mmol, 33 %).—

 $M = 358.58 \ g/mol, \ C_{16}H_{26}N_2OS_3$

Schmelzpunkt: 177–179 °C.—

IR (ATR): $\tilde{v} = 3205$ (NH-Valenz), 3000 (=CH-Valenz), 2970, 2950, 2927, 2854 (CH-, CH₂-, CH₃-Valenz), 1642 (C=O-Valenz), 1518 (NH-Deform.), 1447, 1374 (CH-, CH₂-, CH₃-Deform.), 1338, 1289, 1245, 1212 (C-N-Valenz), 1165 (C=S-Valenz), 1141, 1135, 1121, 1080, 1060 (C-N-Valenz), 1033, 984, 963, 942, 914, 901, 891, 852, 734, 688, 626, 611 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, DMSO- d_6): $\delta = 1.00-1.10, 1.11-1.21, 1.56-1.62$ [3m, 3H, CH_{2,Cy}], 1.64 [s, 3H, C_q(CH₃)₂], 1.66–1.72 [m, 4H, CH_{2,Cy}], 1.73–1.81 [m, 1H, CH_{2,Cy}], 1.84 [s, 3H, C_q(CH₃)₂], 1.89–1.95, 2.05–2.11 [2m, 2H, CH_{2,Cy}], 2.13 [s, 3H, CH₃C_q=O], 4.19–4.29 [m, 2H, CH₂NH], 5.14 [dddd, ²J = 1.6 Hz, ³J_{cis} = 10.7 Hz, ⁴J = 1.6 Hz, ⁴J = 1.6 Hz, 1H, HC=CH₂], 5.17 [dddd, ²J = 1.6 Hz, ³J_{trans} = 17.4 Hz, ⁴J = 1.6 Hz, ${}^{4}J = 1.6$ Hz, 1H, HC=CH₂], 5.85 [dddd, ${}^{3}J_{trans} = 17.3$ Hz, ${}^{3}J_{cis} = 10.6$ Hz, ${}^{3}J = 5.5$ Hz, ${}^{3}J = 5.5$ Hz, 1H, HC=CH₂], 6.45 [s, 1H, NCH], 10.40 [dd, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 5.0$ Hz, 1H, NH] ppm.—

¹³C-NMR (125.7 MHz, DMSO-*d*₆): δ = 22.27, 24.17, 24.94 [CH_{2,Cy}], 25.61 [<u>C</u>H₃C_q=O], 29.22, 31.71 [C_q(<u>C</u>H₃)₂], 33.37, 37.76 [CH_{2,Cy}], 48.68 [CH₂NH], 59.56 [S<u>C_q</u>(CH_{2,Cy})₂], 71.00 [S<u>C_q</u>(CH₃)₂], 84.65 [NCH], 116.87 [HC=<u>C</u>H₂], 132.40 [H<u>C</u>=CH₂], 169.10 [C_q=O], 194.59 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 381.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{27}N_2OS_3]^+$: 359.1286, gefunden: 359.1296.—

(*RS*)-4-Acetyl-3-allylthiocarbamoylmercapto-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (**19c**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (367 mg) 3-Thiazolin **1c**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 5:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **19c** als farbloser Feststoff erhalten.

Ausbeute: 158 mg (0.44 mmol, 22 %).---

 $M = 358.58 \ g/mol, \ C_{16}H_{26}N_2OS_3$

Schmelzpunkt: 160–162 °C.—

1. DC (*n*-Hexan/Essigsäureethylester 5:1): $R_f = 0.30$.—

2. DC (Dichlormethan): $R_f = 0.22$.—

IR (ATR): $\tilde{v} = 3194$ (NH-Valenz), 2993, 2962, 2932, 2855 (CH-, CH₂-, CH₃-Valenz), 1638 (C=O-Valenz), 1528 (NH-Deform.), 1463, 1446, 1379 (CH-, CH₂-, CH₃-Deform.),

1336, 1289, 1272, 1230, 1184 (C-N-Valenz), 1130 (C=S-Valenz), 1123, 1078, 1056 (C-N-Valenz), 1024, 988, 948, 918, 904, 831, 813, 755, 671, 627, 608 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.00-1.20$ [m, 2H, CH_{2,Cy}], 1.37–1.45 [m, 1H, CH_{2,Cy}], 1.41 [s, 3H, C_q(CH₃)₂], 1.48–1.55, 1.56–1.61 [2m, 2H, CH_{2,Cy}], 1.63 [s, 3H, C_q(CH₃)₂], 1.65–1.78 [m, 3H, CH_{2,Cy}], 2.13 [s, 3H, CH₃C_q=O], 2.59–2.66, 2.97–3.04 [2m, 2H, CH_{2,Cy}], 4.22–4.27 [m, 2H, CH₂NH], 5.13 [dddd, ²J = 1.5 Hz, ³J_{cis} = 10.2 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, HC=CH₂], 5.16 [dddd, ²J = 1.6 Hz, ³J_{trans} = 17.2 Hz, ⁴J = 1.6 Hz, ⁴J = 1.6 Hz, 1H, HC=CH₂], 5.85 [dddd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.3 Hz, ³J = 5.4 Hz, ³J = 5.4 Hz, 1H, HC=CH₂], 6.37 [s, 1H, NCH], 10.41 [dd, ³J = 5.2 Hz, ³J = 5.2 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 24.00 [C_q(\underline{C}H_3)_2]$, 24.10, 24.29, 25.40 [CH_{2,Cy}], 26.26 [<u>C</u>H₃C_q=O], 31.10 [C_q(<u>C</u>H₃)₂], 36.58, 36.66 [CH_{2,Cy}], 48.67 [CH₂NH], 52.79 [S<u>C</u>_q(CH₃)₂], 79.16 [S<u>C</u>_q(CH_{2,Cy})₂], 84.52 [NCH], 116.91 [HC=<u>C</u>H₂], 132.48 [H<u>C</u>=CH₂], 169.32 [C_q=O], 194.74 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 381.1 [MNa]⁺ (12).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}N_2NaOS_3]^+$: 381.1105, gefunden: 381.1108.—

(*RS*)-14-Acetyl-15-allylthiocarbamoylmercapto-7-thia-14-azadispiro[5.1.5⁸.2⁶]pentadecan (**19d**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (447 mg) 3-Thiazolin **1d**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch Waschen des Rohprodukts mit wenig kaltem *n*-Hexan und Dichlormethan wird das Dithiocarbamat **19d** als farbloser Feststoff erhalten.

Ausbeute: 196 mg (0.49 mmol, 25 %).---

 $M = 398.64 \text{ g/mol}, C_{19}H_{30}N_2OS_3$

Schmelzpunkt: 166–168 °C.—

IR (ATR): $\tilde{v} = 3218$ (NH-Valenz), 3011 (=CH-Valenz), 2932, 2856 (CH-, CH₂-, CH₃-Valenz), 1640 (C=O-Valenz), 1525 (NH-Deform.), 1447, 1378 (CH-, CH₂-, CH₃-Deform.), 1333, 1290, 1234, 1198, 1182 (C-N-Valenz), 1125 (C=S-Valenz), 1081, 1068 (C-N-Valenz), 1023, 987, 948, 904, 858, 744, 676, 659, 626, 610 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.00-1.27$ [m, 4H, CH_{2,Cy}], 1.49–1.80 [m, 12H, CH_{2,Cy}], 1.87–1.93, 2.00–2.07 [2m, 2H, CH_{2,Cy}], 2.13 [s, 3H, CH₃], 2.55–2.64, 2.94–3.04 [2m, 2H, CH_{2,Cy}], 4.18–4.30 [m, 2H, CH₂NH], 5.14 [dddd, ²*J* = 1.5 Hz, ³*J*_{cis} = 10.4 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 1.5 Hz, 1H, HC=CH₂], 5.16 [dddd, ²*J* = 1.6 Hz, ³*J*_{trans} = 17.1 Hz, ⁴*J* = 1.6 Hz, ⁴*J* = 1.6 Hz, 1H, HC=CH₂], 5.85 [dddd, ³*J*_{trans} = 17.1 Hz, ³*J*_{cis} = 10.6 Hz, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, 1H, *H*C=CH₂], 6.45 [s, 1H, NCH], 10.39 [dd, ³*J* = 5.2 Hz, ³*J* = 5.2 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO- d_6): $\delta = 22.31$, 24.07, 24.12, 24.14, 25.00, 25.28 [CH_{2,Cy}], 26.43 [CH₃], 33.35, 36.54, 36.83, 37.74 [CH_{2,Cy}], 48.70 [CH₂NH], 58.62 [SC_q(CH_{2,Cy})₂CH], 78.44 [SC_q(CH_{2,Cy})₂N], 84.59 [NCH], 116.90 [HC=<u>C</u>H₂], 132.46 [HC=CH₂], 169.38 [C_q=O], 194.70 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 421.1 [MNa]⁺ (11).--

HRMS (ESI, TOF): Berechnet für $[C_{19}H_{30}N_2NaOS_3]^+$: 421.1418, gefunden: 421.1405.—

(RS)-3-Acetyl-4-allylthiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3-oxazolidin (19e)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 92:8).

Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan/*n*-Hexan 10:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 5:1) wird das Dithiocarbamat **19e** als farbloser Feststoff erhalten.

Ausbeute: 174 mg (0.58 mmol, 29 %).—

 $M = 302.45 \text{ g/mol}, C_{13}H_{22}N_2O_2S_2$

Schmelzpunkt: 129-131 °C.--

1. DC (Dichlormethan/*n*-Hexan 10:1): $R_f = 0.05$.—

2. DC (*n*-Hexan/Essigsäureethylester 5:1): $R_f = 0.18$.—

IR (ATR): $\tilde{v} = 3195$ (NH-Valenz), 3001 (=CH-Valenz), 2975, 2927 (CH-, CH₂-, CH₃-Valenz), 1637 (C=O-Valenz), 1523 (NH-Deform.), 1469, 1379 (CH-, CH₂-, CH₃-Deform.), 1365, 1349, 1283, 1247, 1208, 1191 (C-N-Valenz), 1137 (C=S-Valenz), 1082 (C-N-Valenz), 1057 (C-O-C-Valenz), 1004, 986, 955, 939, 915, 906, 869, 832, 749, 724, 665, 623 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.31$ [s, 3H, OC_q(CH₃)₂CH], 1.35 [s, 3H, OC_q(CH₃)₂N], 1.44 [s, 3H, OC_q(CH₃)₂CH], 1.60 [s, 3H, OC_q(CH₃)₂N], 2.10 [s, 3H, CH₃C_q=O], 4.19–4.30 [m, 2H, CH₂NH], 5.14 [dddd, ²J = 1.5 Hz, ³J_{cis} = 10.1 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, HC=CH₂], 5.17 [dddd, ²J = 1.6 Hz, ³J_{trans} = 17.1 Hz, ⁴J = 1.6 Hz, ⁴J = 1.6 Hz, 1H, HC=CH₂], 5.85 [dddd, ³J_{trans} = 17.1 Hz, ³J_{cis} = 10.5 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, HC=CH₂], 6.15 [s, 1H, NCH], 10.46 [dd, ³J = 5.2 Hz, ³J = 5.2 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO- d_6): $\delta = 23.71 [\underline{C}H_3C_q=O]$, 25.00 [OC_q($\underline{C}H_3$)₂CH], 27.04, 27.07 [OC_q($\underline{C}H_3$)₂N], 28.12 [OC_q($\underline{C}H_3$)₂CH], 48.57 [CH₂NH], 76.82 [NCH], 81.52 [OC_q(CH₃)₂CH], 93.92 [OC_q(CH₃)₂N], 116.92 [HC= $\underline{C}H_2$], 132.42 [HC=CH₂], 167.73 [C_q=O], 194.26 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 325.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{23}N_2O_2S_2]^+$: 303.1201, gefunden: 303.1199.—

(2*R*^{*}, 4*S*^{*})-3-Acetyl-4-allylthiocarbamoylmercapto-2-(tert-butyl)-5,5-dimethyl-1,3-thiazolidin (**19f**)

+ Enantiomer

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (343 mg) 3-Thiazolin **1f**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch dreifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 8:1; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester/Dichlormethan 7:2:1.5; 3. Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **19f** als farbloser Feststoff erhalten.

Ausbeute: 128 mg (0.37 mmol, 19 %).—

 $M = 346.57 \text{ g/mol}, C_{15}H_{26}N_2OS_3$

Schmelzpunkt: 133–135 °C.—

1. DC (*n*-Hexan/Aceton 8:1): $R_f = 0.30$.—

2. DC (*n*-Hexan/Essigsäureethylester/Dichlormethan 7:2:1.5): $R_f = 0.64$.

3. DC (Dichlormethan): $R_f = 0.31$.—

IR (ATR): $\tilde{v} = 3203$ (NH-Valenz), 3008 (=CH-Valenz), 2972, 2958, 2927, 2868 (CH-, CH₂-, CH₃-Valenz), 1652 (C=O-Valenz), 1525 (NH-Deform.), 1475, 1455, 1426, 1376 (CH-, CH₂-, CH₃-Deform.), 1366, 1330, 1282, 1253, 1235, 1179 (C-N-Valenz), 1133 (C=S-Valenz), 1082, 1047 (C-N-Valenz), 1009, 993, 938, 916, 900, 879, 836, 804, 773, 752, 627 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 0.93$ [s, 9H, C_q(CH₃)₃], 1.39, 1.40 [2s, 6H, SC_q(CH₃)₂], 2.18 [s, 3H, CH₃C_q=O], 4.22–4.27 [m, 2H, CH₂NH], 5.14 [dddd, ²*J* = 1.5 Hz, ³*J*_{cis} = 10.4 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 1.5 Hz, 1H, HC=CH₂], 5.17 [dddd, ²*J* = 1.6 Hz, ³*J*_{trans} = 17.2 Hz, ⁴*J* = 1.6 Hz, ⁴*J* = 1.6 Hz, 1H, HC=CH₂], 5.38 [s, 1H, CHC_q(CH₃)₃] 5.86 [dddd, ³*J*_{trans} = 17.0 Hz, ³*J*_{cis} = 10.6 Hz, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, 1H, HC=CH₂], 6.61 [s,

1H, NCH], 10.48 [dd, ${}^{3}J = 4.9$ Hz, ${}^{3}J = 4.9$ Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO- d_6): $\delta = 23.02$ [SC_q(<u>C</u>H₃)₂], 24.78 [<u>C</u>H₃C_q=O], 27.79 [3 C_q(<u>C</u>H₃)₃], 30.13 [SC_q(<u>C</u>H₃)₂], 37.05 [<u>C</u>_q(CH₃)₃], 48.90 [CH₂NH], 54.93 [S<u>C</u>_q(CH₃)₂], 70.73 [S<u>C</u>HC_q(CH₃)₃], 82.55 [NCH], 117.01 [HC=<u>C</u>H₂], 132.39 [H<u>C</u>=CH₂], 171.86 [C_q=O], 194.71 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 369.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{15}H_{27}N_2OS_3]^+$: 347.1286, gefunden: 347.1273.—

(RS)-4-Allylthiocarbamoylmercapto-3-benzoyl-2,2,5,5-tetramethyl-1,3-thiazolidin (19g)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (281 mg) Benzoylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 95:5). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **19g** als farbloser Feststoff erhalten.

Ausbeute: 375 mg (0.99 mmol, 50 %).—

 $M = 380.58 \text{ g/mol}, C_{18}H_{24}N_2OS_3$

Schmelzpunkt: 118–120 °C.—

DC (Dichlormethan): $R_f = 0.33$.—

IR (ATR): $\tilde{v} = 3201$ (NH-Valenz), 3064 (=CH-Valenz), 2985, 2965, 2934, 2894, 2866 (CH-, CH₂-, CH₃-Valenz), 1629 (C=O-Valenz), 1604, 1582 (Ringschwingung), 1531 (NH-Deform.), 1496 (Ringschwingung), 1468, 1447, 1374 (CH-, CH₂-, CH₃-Deform.), 1315, 1291, 1234, 1208 (C-N-Valenz), 1165 (C=S-Valenz), 1119, 1091 (C-N-Valenz), 1028, 996, 931, 900, 860, 780, 756, 694, 624 (=CH-Deform., C-S-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, DMSO- d_6): $\delta = 1.35$, 1.78 [2s, 6H, SC₀(CH₃)₂CH], 1.83, 2.00 [2s, 200] 6H, SC_q(CH₃)₂N], 3.97 [ddddd, ${}^{2}J = 15.8$ Hz, ${}^{3}J = n.a.$, ${}^{3}J = n.a.$, ${}^{4}J = n.a.$, ${}^{4}J = n.a.$, 1H, CH₂NH], 4.05 [ddddd, ${}^{2}J = 15.8$ Hz, ${}^{3}J = n.a.$, ${}^{3}J = n.a.$, ${}^{4}J = n.a.$, 1H, CH₂NH], 5.04–5.09, 5.09–5.12 [2m, 2H, HC=CH₂], 5.73 [dddd, ${}^{3}J_{trans} = 17.0$ Hz, ${}^{3}J_{cis} = 10.6$ Hz, ${}^{3}J = 5.4$ Hz, ${}^{3}J = 5.4$ Hz, 1H, HC=CH₂], 6.32 [s, 1H, NCH], 7.29–7.33 [m, 2H, *o*-CH_{Ar}], 7.35–7.39 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 10.08 [dd, ${}^{3}J = 5.2$ Hz, ${}^{3}J = 5.2$ Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.92$ [SC_q(<u>C</u>H₃)₂CH], 29.65 [SC_q(<u>C</u>H₃)₂N], 30.97, 31.16 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 48.41 [CH₂NH], 53.85 [S<u>C</u>_q(CH₃)₂CH], 71.41 [S<u>C</u>_q(CH₃)₂N], 84.83 [NCH], 116.63 [HC=<u>C</u>H₂], 125.66 [2 *o*-CH_{Ar}], 128.56 [2 *m*-CH_{Ar}], 129.29 [*p*-CH_{Ar}], 132.50 [H<u>C</u>=CH₂], 137.78 [C_q,A_r], 169.87 [C_q=O], 193.73 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 403.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{24}N_2NaOS_3]^+$: 403.0948, gefunden: 403.0943.—

(*RS*)-4-Allylthiocarbamoylmercapto-3-(4-nitrobenzoyl)-2,2,5,5-tetramethyl-1,3-thiazolidin (**19h**)

Die Darstellung erfolgt gemäß AAV 10 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.00 mmol (371 mg) 4-Nitrobenzoylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 94:6). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das Dithiocarbamat 19h als farbloser Feststoff erhalten. Ausbeute: 640 mg (1.50 mmol, 75 %).---

 $M = 425.58 \text{ g/mol}, C_{18}H_{23}N_3O_3S_3$

Schmelzpunkt: 64–66 °C.—

1. DC (Dichlormethan): $R_f = 0.20$.—

2. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.58$.—

IR (ATR): $\tilde{v} = 3246$ (NH-Valenz), 2985, 2927, 2866 (CH-, CH₂-, CH₃-Valenz), 1638 (C=O-Valenz), 1602 (Ringschwingung), 1531 (NH-Deform., NO₂-Valenz), 1467, 1439, 1377 (CH-, CH₂-, CH₃-Deform.), 1366, 1341, 1314, 1292, 1256, 1207 (C-N-Valenz), 1161 (C=S-Valenz), 1116, 1108 (C-N-Valenz), 1015, 992, 929, 903, 859, 839, 751, 708, 697, 635 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, DMSO-d₆): $\delta = 1.31$, 1.78 [2s, 6H, SC_q(CH₃)₂CH], 1.83, 2.04 [2s, 6H, SC_q(CH₃)₂N], 3.94 [dddd, ²J = 15.7 Hz, ³J = n.a., ³J = n.a., ⁴J = n.a., ⁴J = n.a., 1H, CH₂NH], 4.06 [ddddd, ²J = 15.6 Hz, ³J = n.a., ³J = n.a., ⁴J = n.a., 1H, CH₂NH], 5.08 [dddd, ²J = n.a., ³J_{trans} = 17.2 Hz, ⁴J = n.a., ⁴J = n.a., 1H, HC=CH₂], 5.11 [dddd, ²J = n.a., ³J_{cis} = 10.3 Hz, ⁴J = n.a., ⁴J = n.a., 1H, HC=CH₂], 5.73 [dddd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.7 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, HC=CH₂], 6.11 [s, 1H, NCH], 7.59–7.63 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.21–8.25 [m, 2H, *o*-CH_{Ar}(NO₂)], 10.17 [dd, ³J = 5.1 Hz, ³J = 5.1 Hz, 1H, NH] ppm.—

¹³C-NMR (125.7 MHz, DMSO-d₆): $\delta = 23.82$ [SC_q(<u>C</u>H₃)₂CH], 29.24 [SC_q(<u>C</u>H₃)₂N], 30.89, 30.97 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 48.57 [CH₂NH], 53.80 [S<u>C</u>_q(CH₃)₂CH], 71.79 [S<u>C</u>_q(CH₃)₂N], 84.68 [NCH], 116.70 [HC=<u>C</u>H₂], 125.05 [2 *o*-CH_{Ar}(NO₂)], 127.25 [2 *m*-CH_{Ar}(NO₂)], 132.24 [H<u>C</u>=CH₂], 143.47 [<u>C</u>_q,A_rC_q=O], 147.46 [C_q,A_rNO₂], 167.85 [C_q=O], 193.56 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 448.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₈H₂₃N₃NaO₃S₃]⁺: 448.0799, gefunden: 448.0799.—

(*RS*)-4-Allylthiocarbamoylmercapto-3-(4-methoxyphenylacetyl)-2,2,5,5-tetramethyl-1,3thiazolidin (**19**j)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (369 mg) 4-Methoxyphenylacetylchlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 92:8). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **19j** als farbloser Feststoff erhalten.

Ausbeute: 550 mg (1.30 mmol, 65 %).---

 $M = 424.64 \text{ g/mol}, C_{20}H_{28}N_2O_2S_3$

Schmelzpunkt: 126-128 °C.--

DC (Dichlormethan): $R_f = 0.24$.—

IR (ATR): $\tilde{v} = 3227$ (NH-Valenz), 3022 (=CH-Valenz), 2986, 2973, 2961, 2936, 2861 (CH-, CH₂-, CH₃-Valenz), 2838 (O-CH₃-Valenz), 1644 (C=O-Valenz), 1614, 1584 (Ringschwingung), 1531, 1512 (NH-Deform.), 1466, 1438, 1423, 1371 (CH-, CH₂-, CH₃-Deform.), 1305, 1276, 1248, 1209, 1179 (C-N-Valenz), 1161 (C=S-Valenz), 1144, 1129, 1076 (C-N-Valenz), 1040 (C-O-C-Valenz), 992, 956, 920, 901, 823, 810, 783, 753, 717, 700, 627 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.34$, 1.38 [2s, 6H, SC_q(CH₃)₂CH], 1.69, 1.85 [2s, 6H, SC_q(CH₃)₂N], 3.52 [d, ²J = 15.1 Hz, 1H, CH₂C_q=O], 3.73 [s, 3H, OCH₃], 3.78 [d, ²J = 15.1 Hz, 1H, CH₂C_q=O], 4.25–4.30 [m, 2H, CH₂NH], 5.15 [dddd, ²J = 1.5 Hz, ³J_{cis} = 10.3 Hz, ⁴J = 1.5 Hz, ⁴J = 1.5 Hz, 1H, HC=CH₂], 5.19 [dddd, ²J = 1.7 Hz, ³J_{trans} = 17.3 Hz, ⁴J = 1.7 Hz, ⁴J = 1.7 Hz, 1H, HC=CH₂], 5.87 [dddd, ³J_{trans} = 17.2 Hz, ³J_{cis} = 10.3 Hz, ³J = 5.4 Hz, ³J = 5.4 Hz, 1H, HC=CH₂], 6.42 [s, 1H, NCH], 6.88–6.92 [m,

2H, o-CH_{Ar}(OCH₃)], 7.19–7.24 [m, 2H, *m*-CH_{Ar}(OCH₃)], 10.51 [t, ${}^{3}J$ = 5.3 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.80$ [SC_q(<u>C</u>H₃)₂CH], 29.40 [SC_q(<u>C</u>H₃)₂N], 30.54 [SC_q(<u>C</u>H₃)₂CH], 30.98 [SC_q(<u>C</u>H₃)₂N], 42.10 [<u>C</u>H₂C_q=O], 48.73 [CH₂NH], 53.61 [S<u>C</u>_q(CH₃)₂CH], 55.02 [OCH₃], 71.81 [S<u>C</u>_q(CH₃)₂N], 83.69 [NCH], 113.76 [2 *o*-<u>C</u>H_{Ar}(OCH₃)], 116.94 [HC=<u>C</u>H₂], 126.59 [<u>C</u>_q,ArCH₂], 129.84 [2 *m*-<u>C</u>H_{Ar}(OCH₃)], 132.41 [H<u>C</u>=CH₂], 158.13 [<u>C</u>_q,ArOCH₃], 170.10 [C_q=O], 194.51 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 447.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{20}H_{28}N_2NaO_2S_3]^+$: 447.1211, gefunden: 447.1196.—

(RS)-4-Allylthiocarbamoylmercapto-3-cinnamoyl-2,2,5,5-tetramethyl-1,3-thiazolidin (191)

Die Darstellung erfolgt gemäß AAV 10 aus 2.00 mmol (287 mg) 3-Thiazolin 1a, 2.00 mmol (333 mg) (*E*)-Zimtsäurechlorid, 3.00 mmol (171 mg) Allylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat 19I als farbloser Feststoff erhalten.

Ausbeute: 224 mg (0.55 mmol, 28 %).— $M = 406.62 \text{ g/mol}, C_{20}H_{26}N_2OS_3$ Schmelzpunkt: 114–116 °C.— 1. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.61$.— 2. DC (Dichlormethan): $R_f = 0.41$.— IR (ATR): $\tilde{v} = 3188$ (NH-Valenz), 3082, 3060 (=CH-Valenz), 2984, 2967, 2923, 2861 (CH-, CH₂-, CH₃-Valenz), 1642 (C=O-Valenz), 1597, 1578 (Ringschwingung), 1524 (NH-Deform.), 1495 (Ringschwingung), 1464, 1448, 1375 (CH-, CH₂-, CH₃-Deform.), 1309, 1255, 1205 (C-N-Valenz), 1155 (C=S-Valenz), 1132, 1115, 1077, 1054 (C-N-Valenz), 1030, 985, 973, 937, 926, 900, 852, 762, 751, 709, 682, 624 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.47$, 1.72 [2s, 6H, SC_q(CH₃)₂CH], 1.73, 1.99 [2s, 6H, SC_q(CH₃)₂N], 4.20 [dddd, ²*J* = 15.7 Hz, ³*J* = 5.4 Hz, ³*J* = 5.4 Hz, ⁴*J* = 1.6 Hz, ⁴*J* = 1.6 Hz, 1H, CH₂NH], 4.31 [ddddd, ²*J* = 15.6 Hz, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, ⁴*J* = 1.6 Hz, ⁴*J* = 1.6 Hz, 1H, CH₂NH], 5.02 [dddd, ²*J* = 1.5 Hz, ³*J*_{cis} = 10.3 Hz, ⁴*J* = 1.5 Hz, ⁴*J* = 1.5 Hz, 1H, HC=CH₂], 5.10 [dddd, ²*J* = 1.6 Hz, ³*J*_{cis} = 10.3 Hz, ⁴*J* = 1.6 Hz, ⁴*J* = 1.6 Hz, 1H, HC=CH₂], 5.79 [dddd, ³*J*_{trans} = 17.2 Hz, ³*J*_{cis} = 10.3 Hz, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, 1H, HC=CH₂], 5.79 [dddd, ³*J*_{trans} = 17.2 Hz, ³*J*_{cis} = 10.3 Hz, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, 1H, HC=CH₂], 6.69 [s, 1H, NCH], 7.04 [d, ³*J*_{trans} = 15.2 Hz, 1H, CHC_q=O], 7.37-7.40 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 7.55 [d, ³*J*_{trans} = 15.2 Hz, 1H, CHC_{q,Ar}], 7.59-7.61 [m, 2H, *o*-CH_{Ar}], 10.50 [dd, ³*J* = 5.4 Hz, ³*J* = 5.4 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 24.19$ [SC_q(<u>C</u>H₃)₂CH], 29.14 [SC_q(<u>C</u>H₃)₂N], 31.21 [SC_q(<u>C</u>H₃)₂CH], 31.66 [SC_q(<u>C</u>H₃)₂N], 48.78 [CH₂NH], 53.27 [S<u>C</u>_q(CH₃)₂CH], 72.43 [S<u>C</u>_q(CH₃)₂N], 83.91 [NCH], 116.87 [HC=<u>C</u>H₂], 120.33 [<u>C</u>HC_q=O], 128.27 [2 *o*-CH_{Ar}], 128.81 [2 *m*-CH_{Ar}], 130.04 [*p*-CH_{Ar}], 132.22 [H<u>C</u>=CH₂], 134.58 [C_{q,Ar}], 142.84 [<u>C</u>HC_{q,Ar}], 164.46 [C_q=O], 194.57 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 429.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{20}H_{26}N_2NaOS_3]^+$: 429.1105, gefunden: 429.1094.—

(RS)-3-Acetyl-4-benzylthiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3-thiazolidin (19m)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (321 mg) Benzylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raum-

temperatur bestimmt (Rotamerenverhältnis 82:18). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **19m** als farbloser Feststoff erhalten.

Ausbeute: 412 mg (1.12 mmol, 56 %).—

 $M = 368.57 \text{ g/mol}, C_{17}H_{24}N_2OS_3$

Schmelzpunkt: 161–163 °C

DC (Dichlormethan): $R_f = 0.21$.—

IR (ATR): $\tilde{v} = 3176$ (NH-Valenz), 3028 (=CH-Valenz), 2986, 2967, 2932, 2869 (CH-, CH₂-, CH₃-Valenz), 1634 (C=O-Valenz), 1520 (NH-Deform.), 1495 (Ringschwingung), 1462, 1451, 1391, 1374 (CH-, CH₂-, CH₃-Deform.), 1320, 1275, 1210, 1162 (C-N-Valenz), 1133 (C=S-Valenz), 1121, 1086 (C-N-Valenz), 1038, 926, 838, 752, 697, 613 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.44$ [s, 3H, SC_q(CH₃)₂CH], 1.65 [s, 3H, SC_q(CH₃)₂N], 1.68 [s, 3H, SC_q(CH₃)₂CH], 1.90 [s, 3H, SC_q(CH₃)₂N], 2.13 [s, 3H, CH₃C_q=O], 4.86 [dd, ²*J* = 15.3 Hz, ³*J* = 5.7 Hz, 1H, CH₂], 4.89 [dd, ²*J* = 15.4 Hz, ³*J* = 5.7 Hz, 1H, CH₂], 6.39 [s, 1H, NCH], 7.25–7.30 [m, 3H, 2 *o*-CH_{Ar}, *p*-CH_{Ar}], 7.32–7.37 [m, 2H, *m*-CH_{Ar}], 10.74 [dd, ³*J* = 5.3 Hz, ³*J* = 5.3 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.85$ [SC_q(<u>C</u>H₃)₂CH], 25.45 [<u>C</u>H₃C_q=O], 29.20 [SC_q(<u>C</u>H₃)₂N], 30.97 [SC_q(<u>C</u>H₃)₂CH], 31.34 [SC_q(<u>C</u>H₃)₂N], 49.46 [CH₂], 53.51 [S<u>C</u>_q(CH₃)₂CH], 71.63 [S<u>C</u>_q(CH₃)₂N], 84.72 [NCH], 127.20 [*p*-CH_{Ar}], 127.37 [2 *o*-CH_{Ar}], 128.34 [2 *m*-CH_{Ar}], 136.89 [C_{q,Ar}], 168.93 [C_q=O], 195.06 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 391.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₇H₂₄N₂NaOS₃]⁺: 391.0948, gefunden: 391.0939.—

(*RS*)-3-Acetyl-4-(*n*-butyl)-thiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3-thiazolidin (**19n**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (219 mg) *n*-Butylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das Dithiocarbamat **19n** als farbloser Feststoff erhalten.

Ausbeute: 323 mg (0.97 mmol, 49 %).—

 $M = 334.56 \text{ g/mol}, C_{14}H_{26}N_2OS_3$

Schmelzpunkt: 122–124 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.68$.—

IR (ATR): $\tilde{v} = 3208$ (NH-Valenz), 2987, 2955, 2928, 2871 (CH-, CH₂-, CH₃-Valenz), 1643 (C=O-Valenz), 1531 (NH-Deform.), 1467, 1455, 1437, 1387 (CH-, CH₂-, CH₃-Deform.), 1339, 1306, 1282, 1210, 1161, 1151 (C-N-Valenz), 1131 (C=S-Valenz), 1082, (C-N-Valenz), 957, 920, 843, 828, 758, 745, 681, 611 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 0.88$ [t, ³*J* = 7.4 Hz, 3H, C*H*₃CH₂], 1.25–1.33 [m, 2H, CH₃C*H*₂], 1.44 [s, 3H, SC_q(C*H*₃)₂CH], 1.51–1.58 [m, 2H, CH₂C*H*₂CH₂], 1.64 [s, 3H, SC_q(CH₃)₂N], 1.67 [s, 3H, SC_q(C*H*₃)₂CH], 1.88 [s, 3H, SC_q(CH₃)₂N], 2.12 [s, 3H, CH₃C_q=O], 3.58 [td, ³*J* = 7.1 Hz, ³*J* = 5.4 Hz, 2H, C*H*₂NH], 6.36 [s, 1H, NCH], 10.26 [t, ³*J* = 5.1 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 13.62$ [<u>C</u>H₃CH₂], 19.58 [CH₃<u>C</u>H₂], 23.86 [SC_q(<u>C</u>H₃)₂CH], 25.52 [<u>C</u>H₃C_q=O], 29.20 [SC_q(<u>C</u>H₃)₂N], 29.43 [CH₂<u>C</u>H₂CH₂], 31.02 [SC_q(<u>C</u>H₃)₂CH], 31.39 [SC_q(<u>C</u>H₃)₂N], 46.47 [CH₂NH], 53.58 [S<u>C_q</u>(CH₃)₂CH], 71.64 [S<u>C_q</u>(CH₃)₂N], 84.47 [NCH], 168.98 [C_q=O], 193.82 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 357.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{14}H_{26}N_2NaOS_3]^+$: 357.1105, gefunden: 357.1098.—

(*RS*)-3-Acetyl-4-cyclohexanylthiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3-thiazolidin (**190**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (298 mg) Cyclohexylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 8:1; 2. Kieselgel 60, Laufmittel: Dichlormethan) wird das Dithiocarbamat **190** als farbloser Feststoff erhalten.

Ausbeute: 390 mg (1.08 mmol, 54 %).---

 $M = 360.59 \text{ g/mol}, C_{16}H_{28}N_2OS_3$

Schmelzpunkt: 175–177 °C.—

1. DC (*n*-Hexan/Essigsäureethylester 8:1): $R_f = 0.30$.—

2. DC (Dichlormethan): $R_f = 0.17$.—

IR (ATR): $\tilde{v} = 3218$ (NH-Valenz), 2989, 2980, 2930, 2855 (CH-, CH₂-, CH₃-Valenz), 1639 (C=O-Valenz), 1538, 1517 (NH-Deform.), 1467, 1451, 1392, 1382 (CH-, CH₂-, CH₃-Deform.), 1342, 1283, 1248, 1211 (C-N-Valenz), 1161 (C=S-Valenz), 1101, 1042, 1034 (C-N-Valenz), 987, 925, 890, 762, 746, 690, 676, 613 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.06-1.17$ [m, 1H, CH_{2,Cy}], 1.21–1.28 [m, 4H, CH_{2,Cy}], 1.41 [s, 3H, SC_q(CH₃)₂CH], 1.55–1.61 [m, 1H, CH_{2,Cy}], 1.64 [s, 3H, SC_q(CH₃)₂N], 1.67 [s, 3H, SC_q(CH₃)₂CH], 1.69–1.74 [m, 2H, CH_{2,Cy}], 1.87–1.92 [m, 2H, CH_{2,Cy}], 1.88 [s, 3H, SC_q(CH₃)₂N], 2.12 [s, 3H, CH₃C_q=O], 4.19–4.29 [m, 1H, CH_{Cy}], 6.36 [s, 1H, NCH], 10.16 [d, ³*J* = 7.5 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.87$ [SC_q(<u>C</u>H₃)₂CH], 24.51, 24.98 [3 CH_{2,Cy}], 25.53 [<u>C</u>H₃C_q=O], 29.17 [SC_q(<u>C</u>H₃)₂N], 30.76, 30.86 [CH_{2,Cy}], 31.02 [SC_q(<u>C</u>H₃)₂CH], 31.40 [SC_q(<u>C</u>H₃)₂N], 53.62 [S<u>C</u>_q(CH₃)₂CH], 55.81 [CH_{Cy}], 71.64 [S<u>C</u>_q(CH₃)₂N], 84.38 [NCH], 169.00 [C_q=O], 192.49 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 383.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{29}N_2OS_3]^+$: 361.1442, gefunden: 361.1439.—

(*RS*)-3-Acetyl-4-[2-(1*H*-indol-2-yl)ethyl]thiocarbamoylmercapto-2,2,5,5-tetramethyl-1,3thiazolidin (**19r**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (481 mg) Tryptamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 91:9). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Essigsäureethylester; 2. Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 10:1) wird das Dithiocarbamat **19r** als farbloses Öl erhalten.

Ausbeute: 342 mg (0.81 mmol, 41 %).---

 $M = 421.64 \text{ g/mol}, C_{20}H_{27}N_3OS_3$

1. DC (Essigsäureethylester): $R_f = 0.83$.—

2. DC (Dichlormethan/Essigsäurethylester 10:1): $R_f = 0.61$.—

IR (ATR): $\tilde{v} = 3273$ (NH-Valenz), 2984, 2931, 2870 (CH-, CH₂-, CH₃-Valenz), 1650 (C=O-Valenz), 1503 (NH-Deform.), 1456, 1437, 1388, 1376 (CH-, CH₂-, CH₃-Deform.), 1338, 1275, 1248, 1209 (C-N-Valenz), 1162 (C=S-Valenz), 1129, 1091, 1042 (C-N-Valenz), 1010, 955, 922, 849, 740, 687, 610 (=CH-Deform., C-S-Valenz) cm⁻¹. ¹H-NMR (500.1 MHz, DMSO- d_6): $\delta = 1.43$ [s, 3H, SC_q(CH₃)₂CH], 1.64 [s, 3H, SC_a(CH₃)₂N], 1.69 [s, 3H, SC_a(CH₃)₂CH], 1.89 [s, 3H, SC_a(CH₃)₂N], 2.14 [s, 3H, CH₃C_a=O], 3.03 [t, ${}^{3}J$ = 7.4 Hz, 2H, C_{a,Ar}CH₂] 3.86 [td, ${}^{3}J$ = 7.4 Hz, ${}^{3}J$ = 5.3 Hz, 2H, CH₂NH], 6.38 [s, 1H, NCH], 6.97 [ddd, ${}^{3}J = 8.1$ Hz, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 0.8$ Hz, 1H, [ddd, $^{3}J = 8.1$ Hz, $^{3}J = 7.0$ Hz, $^{4}J = 1.0$ Hz, 7.07 p-C $H_{Ar}C_{q,Ar}NH$], 1H, $p-CH_{Ar}C_{q,Ar}C_{q,Ar}CH_2$, 7.15 [d, ³J = 2.2 Hz, 1H, CH_{Ar}NH], 7.32–7.35 [m, 1H, $CH_{Ar}C_{q,Ar}NH$], 7.56 [dd, ³J = 7.9 Hz, ⁴J = n.a., 1H, $CH_{Ar}C_{q,Ar}C_{q,Ar}CH_2$], 10.39 [t, ³J = 5.2 Hz, 1H, CH₂NH], 10.84–10.86 [m, 1H, NHC_{q,Ar}] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.20 [\underline{C}H_2C_{q,Ar}]$, 23.93 [SC_q($\underline{C}H_3$)₂CH], 25.53 [$\underline{C}H_3C_q=O$], 29.21 [SC_q($\underline{C}H_3$)₂N], 31.02 [SC_q($\underline{C}H_3$)₂CH], 31.39 [SC_q($\underline{C}H_3$)₂N], 47.53 [CH₂NH], 53.57 [SC_q(CH₃)₂CH], 71.64 [SC_q(CH₃)₂N], 84.51 [NCH], 111.05 [C_{q,Ar}CH₂], 111.37 [$\underline{C}H_{Ar}C_{q,Ar}NH$], 118.27 [*p*- $\underline{C}H_{Ar}C_{q,Ar}NH$, $\underline{C}H_{Ar}C_{q,Ar}C_{q,Ar}CH_2$], 120.96 [*p*- $\underline{C}H_{Ar}C_{q,Ar}C_{q,Ar}CH_2$], 122.85 [CH_{Ar}NH], 127.16 [$\underline{C}_{q,Ar}C_{q,Ar}CH_2$], 136.19 [C_{q,Ar}NH], 169.02 [C_q=O], 194.02 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 444.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{20}H_{27}N_3NaOS_3]^+$: 444.1214, gefunden: 444.1206.—

8.2.16 Darstellung von Dithiocarbamaten zur Synthese C-N-verknüpfter bicyclischer 1,3-Thiazolidin-2-thione

(*RS*)-3-Acetyl-4-(2,2-dimethoxyethyl-thiocarbamoylmercapto)-2,2,5,5-tetramethyl-1,3-thiazolidin (**20a**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das Dithiocarbamat **20a** als farbloses Öl erhalten, welches in der Kälte auskristallisiert.

Ausbeute: 404 mg (1.10 mmol, 55 %).—

 $M = 366.55 \text{ g/mol}, C_{14}H_{26}N_2O_3S_3$

Schmelzpunkt: 76–78 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.39$.

IR (ATR): $\tilde{v} = 3214$, 3025 (NH-Valenz), 2989, 2971, 2937, 2917 (CH-, CH₂-, CH₃-Valenz), 2838 (O-CH₃-Valenz), 1618 (C=O-Valenz), 1546 (NH-Deform.), 1439, 1381, 1364 (CH-, CH₂-, CH₃-Deform.), 1302, 1281, 1262, 1206, 1162 (C-N-Valenz), 1122 (C=S-Valenz), 1071 (C-O-C-Valenz), 972, 922, 819, 753 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.41$ [s, 3H, SC_q(CH₃)₂CH], 1.65 [s, 3H, SC_q(CH₃)₂N], 1.67 [s, 3H, SC_q(CH₃)₂CH], 1.89 [s, 3H, SC_q(CH₃)₂N], 2.11 [s, 3H, CH₃C_q=O], 3.28 [s, 6H, CH(OCH₃)₂], 3.69 [ddd, ²J = 13.6 Hz, ³J = 5.6 Hz, ³J = n.a., 1H, CH₂], 3.73 [ddd, ²J = 13.6 Hz, ³J = 5.5 Hz, ³J = n.a., 1H, CH₂], 4.62 [dd, ³J = 5.6 Hz, ³J = 5.6 Hz, 1H, CH(OCH₃)₂], 6.35 [s, 1H, NCH], 10.39 [dd, ³J = 5.3 Hz, ³J = 5.3 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.84$ [SC_q(<u>C</u>H₃)₂CH], 25.48 [<u>C</u>H₃C_q=O], 29.22 [SC_q(<u>C</u>H₃)₂N], 31.00 [SC_q(<u>C</u>H₃)₂CH], 31.37 [SC_q(<u>C</u>H₃)₂N], 48.04 [CH₂], 53.54, 53.57 [2 CH(O<u>C</u>H₃)₂, S<u>C</u>_q(CH₃)₂CH], 71.67 [S<u>C</u>_q(CH₃)₂N], 84.74 [NCH], 100.36 [<u>C</u>H(OCH₃)₂], 168.99 [C_q=O], 195.45 [C_q=S] ppm.— MS (ESI, TOF): m/z (%) = 389.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{14}H_{27}N_2O_3S_3]^+$: 367.1184, gefunden: 367.1177.—

(*RS*)-3-Acetyl-4-(2,2-dimethoxyethyl-thiocarbamoylmercapto)-2,2-dimethyl-1-thia-3-azaspiro[4.5]decan (**20b**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (367 mg) 3-Thiazolin **1b**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 93:7). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das Dithiocarbamat **20b** als farbloser Feststoff erhalten.

Ausbeute: 343 mg (0.84 mmol, 42 %).—

 $M = 406.62 \ g/mol, \ C_{17}H_{30}N_2O_3S_3$

Schmelzpunkt: 130–132 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.43$.—

IR (ATR): $\tilde{v} = 3209$, 3128 (NH-Valenz), 2990, 2970, 2949, 2926, 2854 (CH-, CH₂-, CH₃-Valenz), 2837 (O-CH₃-Valenz), 1638 (C=O-Valenz), 1538 (NH-Deform.), 1446, 1434, 1383, 1375, 1361 (CH-, CH₂-, CH₃-Deform.), 1339, 1289, 1260, 1204, 1166 (C-N-Valenz), 1133 (C=S-Valenz), 1076 (C-O-C-Valenz), 979, 933, 891, 732, 688 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 0.99-1.09$, 1.10–1.20, 1.56–1.62 [3m, 3H, CH_{2,Cy}], 1.64 [s, 3H, C_q(CH₃)₂], 1.65–1.71 [m, 4H, CH_{2,Cy}], 1.72–1.80 [m, 1H, CH_{2,Cy}], 1.83 [s, 3H, C_q(CH₃)₂], 1.87–1.93, 2.06–2.11 [2m, 2H, CH_{2,Cy}], 2.12 [s, 3H, CH₃C_q=O], 3.28 [s, 6H, CH(OCH₃)₂], 3.66 [ddd, ²J = 13.7 Hz, ³J = 5.6 Hz, ³J = n.a., 1H, CH₂NH], 3.73 [ddd, ${}^{2}J = 13.7 \text{ Hz}, {}^{3}J = 5.6 \text{ Hz}, {}^{3}J = \text{n.a.}, 1\text{H}, CH_2\text{NH}], 4.62 [dd, {}^{3}J = 5.6 \text{ Hz}, {}^{3}J = 5.6 \text{ Hz}, 1\text{H}, CH(OCH_3)_2], 6.43 [s, 1\text{H}, \text{NCH}], 10.83 [dd, {}^{3}J = 5.3 \text{ Hz}, {}^{3}J = 5.3 \text{ Hz}, 1\text{H}, \text{NH}] \text{ ppm.}$ — ${}^{13}\text{C-NMR}$ (125.8 MHz, DMSO- d_6): $\delta = 21.94$, 23.86, 24.62 [CH_{2,Cy}], 25.31 [CH₃Cq=O], 28.87, 31.37 [Cq(CH_3)_2], 33.03, 37.40 [CH_{2,Cy}], 47.71 [CH₂NH], 53.18 [2 CH(OCH_3)_2], 59.22 [SCq(CH_{2,Cy})_2], 70.69 [SCq(CH_3)_2], 84.43 [NCH], 99.98 [CH(OCH_3)_2], 168.79 [Cq=O], 195.07 [Cq=S] ppm.— MS (ESI, TOF): m/z (%) = 429.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{17}H_{31}N_2O_3S_3]^+$: 407.1497, gefunden: 407.1495.—

(*RS*)-4-Acetyl-3-(2,2-dimethoxyethyl-thiocarbamoylmercapto)-2,2-dimethyl-1-thia-4-azaspiro[4.5]decan (**20c**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (367 mg) 3-Thiazolin **1c**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 96:4). Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das Dithiocarbamat **20c** als farbloser Feststoff erhalten.

Ausbeute: 287 mg (0.71 mmol, 36 %).---

 $M = 406.62 \text{ g/mol}, C_{17}H_{30}N_2O_3S_3$

Schmelzpunkt: 133–135 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.38$.—

IR (ATR): $\tilde{v} = 3194$ (NH-Valenz), 2992, 2959, 2932, 2855 (CH-, CH₂-, CH₃-Valenz), 2837 (O-CH₃-Valenz), 1650 (C=O-Valenz), 1525 (NH-Deform.), 1464, 1446, 1379, 1346 (CH-, CH₂-, CH₃-Deform.), 1336, 1276, 1251, 1237, 1203, 1187 (C-N-Valenz), 1130 (C=S-Valenz), 1078 (C-O-C-Valenz), 979, 960, 930, 742 (C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, DMSO- d_6): $\delta = 1.01-1.21$ [m, 2H, CH_{2,Cy}], 1.42 [s, 3H, C_q(CH₃)₂],

1.44–1.48, 1.49–1.56, 1.57–1.62 [3m, 3H, CH_{2,Cy}], 1.63 [s, 3H, C_q(CH₃)₂], 1.65–1.79 [m, 3H, CH_{2,Cy}], 2.13 [s, 3H, CH₃C_q=O], 2.61–2.69, 2.97–3.06 [2m, 2H, CH_{2,Cy}], 3.29 [s, 6H, CH(OCH₃)₂], 3.69 [ddd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 5.5 Hz, ${}^{3}J$ = 5.5 Hz, 1H, CH₂NH], 3.73 [ddd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 5.5 Hz, 1H, CH₂NH], 4.62 [dd, ${}^{3}J$ = 5.6 Hz, ${}^{3}J$ = 5.6 Hz, 1H, CH(OCH₃)₂], 6.36 [s, 1H, NCH], 10.83 [dd, ${}^{3}J$ = 5.4 Hz, ${}^{3}J$ = 5.4 Hz, 1H, NH] ppm.—

¹³C-NMR (125.7 MHz, DMSO-*d*₆): $\delta = 23.89 [C_q(\underline{C}H_3)_2]$, 24.01, 24.20, 25.30 [CH_{2,Cy}], 26.11 [<u>C</u>H₃C_q=O], 31.01 [C_q(<u>C</u>H₃)₂], 36.50, 36.59 [CH_{2,Cy}], 48.02 [CH₂NH], 52.68 [S<u>C</u>_q(CH₃)₂], 53.53, 53.57 [CH(O<u>C</u>H₃)₂], 79.06 [S<u>C</u>_q(CH_{2,Cy})₂], 84.54 [NCH], 100.40 [<u>C</u>H(OCH₃)₂], 169.15 [C_q=O], 195.52 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 429.1 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{17}H_{30}N_2NaO_3S_3]^+$: 429.1316, gefunden: 429.1324.—

(*RS*)-3-Acetyl-4-(2,2-dimethoxyethyl-thiocarbamoylmercapto)-2,2,5,5-tetramethyl-1,3oxazolidin (**20d**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (254 mg) 3-Oxazolin **2**, 2.00 mmol (157 mg) Acetylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 94:6). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 1:1; 2. Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 8:1) wird das Dithiocarbamat **20d** als gelbes Öl erhalten.

Ausbeute: 355 mg (1.01 mmol, 51 %).— M = 350.49 g/mol, $C_{14}H_{26}N_2O_4S_2$ 1. DC (*n*-Hexan/Essigsäureethylester 1:1): $R_f = 0.53$.—

2. DC (Dichlormethan/Essigsäureethylester 8:1): $R_f = 0.26$.—

IR (ATR): $\tilde{v} = 3210$ (NH-Valenz), 2979, 2936 (CH-, CH₂-, CH₃-Valenz), 2834 (O-CH₃-Valenz), 1641 (C=O-Valenz), 1532 (NH-Deform.), 1468, 1436, 1389, 1375, 1365, 1349 (CH-, CH₂-, CH₃-Deform.), 1305, 1285, 1250, 1207, 1192, 1170, 1154 (C-N-Valenz), 1129 (C=S-Valenz), 1071 (C-O-C-Valenz), 976, 924, 869, 727 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.31$ [s, 3H, OC_q(CH₃)₂CH], 1.35 [s, 3H, OC_q(CH₃)₂N], 1.44 [s, 3H, OC_q(CH₃)₂CH], 1.59 [s, 3H, OC_q(CH₃)₂N], 2.09 [s, 3H, CH₃C_q=O], 3.28 [s, 6H, CH(OCH₃)₂], 3.69 [ddd, ²J = 13.7 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, CH₂], 3.72 [ddd, ²J = 13.7 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, CH₂], 4.62 [dd, ³J = 5.6 Hz, ³J = 5.6 Hz, 1H, CH(OCH₃)₂], 6.13 [s, 1H, NCH], 10.40 [dd, ³J = 5.5 Hz, ³J = 5.5 Hz, ³J = 5.5 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.70 [\underline{C}H_3C_q=O]$, 24.98 [OC_q($\underline{C}H_3$)₂CH], 27.04, 27.06 [OC_q($\underline{C}H_3$)₂N], 28.12 [OC_q($\underline{C}H_3$)₂CH], 47.96 [CH₂], 53.56, 53.63 [CH(O<u>C</u>H₃)₂], 76.92 [NCH], 81.53 [O<u>C</u>_q(CH₃)₂CH], 93.93 [O<u>C</u>_q(CH₃)₂N], 100.39 [<u>C</u>H(OCH₃)₂], 167.73 [C_q=O], 195.12 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 373.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{14}H_{27}N_2O_4S_2]^+$: 351.1412, gefunden: 351.1412.—

(*RS*)-3-Benzoyl-4-(2,2-dimethoxyethyl-thiocarbamoylmercapto)-2,2,5,5-tetramethyl-1,3thiazolidin (**20e**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (281 mg) Benzoylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMR-spektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 94:6). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 4:1) wird das Dithiocarbamat **20e** als farbloser Feststoff erhalten.

Ausbeute: 314 mg (0.73 mmol, 37 %).—

 $M = 428.62 \text{ g/mol}, C_{19}H_{28}N_2O_3S_3$

Schmelzpunkt: 127–129 °C.—

1. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.36$.—

2. DC (*n*-Hexan/Aceton 4:1): $R_f = 0.21$.—

IR (ATR): $\tilde{v} = 3245$ (NH-Valenz), 3024 (=CH-Valenz), 2985, 2970, 2933 (CH-, CH₂-, CH₃-Valenz), 2840 (O-CH₃-Valenz), 1652 (C=O-Valenz), 1601 (Ringschwingung), 1522 (NH-Deform.), 1492 (Ringschwingung), 1467, 1446, 1431, 1369, 1353 (CH-, CH₂-, CH₃-Deform.), 1302, 1267, 1208, 1164, 1135 (C-N-Valenz), 1115 (C=S-Valenz), 1070 (C-O-C-Valenz), 1039, 1023, 972, 941, 898, 781, 755, 700, 682, 621 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.34$, 1.78 [2s, 6H, SC_q(CH₃)₂CH], 1.83, 2.00 [2s, 6H, SC_q(CH₃)₂N], 3.24, 3.26 [2s, 6H, CH(OCH₃)₂], 3.41 [ddd, ²*J* = 13.6 Hz, ³*J* = 5.8 Hz, ³*J* = n.a., 1H, CH₂], 3.54 [ddd, ²*J* = 13.6 Hz, ³*J* = 5.3 Hz, ³*J* = 5.3 Hz, 1H, CH₂], 4.40 [dd, ³*J* = 5.8 Hz, ³*J* = 5.3 Hz, 1H, CH(OCH₃)₂], 6.32 [s, 1H, NCH], 7.28–7.32 [m, 2H, *o*-CH_{Ar}], 8.22–8.27 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}], 10.04 [dd, ³*J* = 5.4 Hz, ³*J* = 5.4 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.91$ [SC_q(<u>C</u>H₃)₂CH], 29.63, 30.97 [SC_q(<u>C</u>H₃)₂N], 31.16 [SC_q(<u>C</u>H₃)₂CH], 47.80 [CH₂], 53.36, 53.51 [CH(O<u>C</u>H₃)₂], 53.83 [S<u>C</u>_q(CH₃)₂CH], 71.44 [S<u>C</u>_q(CH₃)₂N], 85.00 [NCH], 100.30 [<u>C</u>H(OCH₃)₂], 125.70 [2 *o*-CH_{Ar}], 128.56 [2 *m*-CH_{Ar}], 129.32 [*p*-CH_{Ar}], 137.79 [C_{q,Ar}], 167.86 [C_q=O], 194.59 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 451.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{19}H_{29}N_2O_3S_3]^+$: 429.1340, gefunden: 429.1344.—

(*RS*)-4-(2,2-*Dimethoxyethyl-thiocarbamoylmercapto*)-3-(4-*nitrobenzoyl*)-2,2,5,5-*tetrame-thyl-1,3-thiazolidin* (**20f**)

Die Darstellung erfolgt gemäß **AAV 10** aus 2.00 mmol (287 mg) 3-Thiazolin **1a**, 2.00 mmol (371 mg) 4-Nitrobenzoylchlorid, 3.00 mmol (315 mg) 2,2-Dimethoxyethylamin, 6.00 mmol (457 mg) Kohlenstoffdisulfid und 2.00 mmol (202 mg) Triethylamin. Aus dem Rohprodukt wird das Rotamerenverhältnis ¹H-NMRspektroskopisch in DMSO- d_6 bei Raumtemperatur bestimmt (Rotamerenverhältnis 95:5). Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 4:1) wird das Dithiocarbamat **20f** als schwach gelbes Öl erhalten.

Ausbeute: 655 mg (1.38 mmol, 69 %).--

 $M = 473.62 \text{ g/mol}, C_{19}H_{27}N_3O_5S_3$

1. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.41$.—

2. DC (*n*-Hexan/Aceton 4:1): $R_f = 0.18$.—

IR (ATR): $\tilde{v} = 3252$ (NH-Valenz), 2989, 2971, 2936 (CH-, CH₂-, CH₃-Valenz), 2838 (O-CH₃-Valenz), 1641 (C=O-Valenz), 1604 (Ringschwingung), 1524 (NH-Deform.), 1468 (Ringschwingung), 1449, 1380 (CH-, CH₂-, CH₃-Deform.), 1343 (NO₂-Valenz), 1315, 1264, 1209, 1163 (C-N-Valenz), 1120 (C=S-Valenz), 1071 (C-O-C-Valenz), 976, 930, 861, 841, 753, 734, 709 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, DMSO-*d*₆): $\delta = 1.31$, 1.77 [2s, 6H, SC_q(CH₃)₂CH], 1.83, 2.04 [2s, 6H, SC_q(CH₃)₂N], 3.24, 3.28 [2s, 6H, CH(OCH₃)₂], 3.37 [ddd, ²*J* = 13.5 Hz, ³*J* = 5.7 Hz, ³*J* = n.a., 1H, CH₂], 3.56 [ddd, ²*J* = 13.5 Hz, ³*J* = 5.7 Hz, ³*J* = 4.9 Hz, 1H, CH₂], 4.40 [dd, ³*J* = 6.2 Hz, ³*J* = 4.9 Hz, 1H, CH(OCH₃)₂], 6.09 [s, 1H, NCH], 7.58–7.63 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.22–8.27 [m, 2H, *o*-CH_{Ar}(NO₂)], 10.17 [dd, ³*J* = 5.5 Hz, ³*J* = 5.5 Hz, 1H, NH] ppm.—

¹³C-NMR (125.8 MHz, DMSO-*d*₆): $\delta = 23.86$ [SC_q(<u>C</u>H₃)₂CH], 29.26 [SC_q(<u>C</u>H₃)₂N], 30.93, 30.99 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 47.79 [CH₂], 52.94, 53.55 [CH(O<u>C</u>H₃)₂], 53.80 [S<u>C</u>_q(CH₃)₂CH], 71.87 [S<u>C</u>_q(CH₃)₂N], 84.88 [NCH], 100.07 [<u>C</u>H(OCH₃)₂], 124.11 [2 *o*-CH_{Ar}(NO₂)], 127.29 [2 *m*-CH_{Ar}(NO₂)], 143.54 [<u>C</u>_q,ArC_q=O], 147.54 [C_q,ArNO₂], 167.90 [C_q=O], 194.59 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 496.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₉H₂₇N₃NaO₅S₃]⁺: 496.1011, gefunden: 496.0998.—

8.2.17 Darstellung der C-N-verknüpften bicyclischen 1,3-Thiazolidin-2-thione

(4'R^{*}, 5R^{*})-und (4'S^{*}, 5R^{*})-3-(3'-Acetyl-2',2',5',5'-tetramethyl-1',3'-thiazolidin-4'-yl)-5methoxy-1,3-thiazolidin-2-thion (**22a**)

Die Darstellung erfolgt gemäß **AAV 11** aus 0.70 mmol (256 mg) Dithiocarbamat **20a** und 0.77 mmol (109 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt [dv (4' R^* , 5 R^*)-**22a**:(4' S^* , 5 R^*)-**22a** = 53:47]. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) werden die diastereomeren Thiazolidin-2-thione **22a** jeweils als farblose Feststoffe erhalten.

Gesamtausbeute: 99 mg (0.30 mmol, 43 %).— M = 334.51 g/mol, $C_{13}H_{22}N_2O_2S_3$

 $(4^{\prime}R^{*}, 5R^{*})$ -**22a**

+ Enantiomer

Ausbeute: 52 mg (0.16 mmol, 23 %).—

Schmelzpunkt: 182–184 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.39$.

IR (ATR): $\tilde{v} = 2999$, 2983, 2961, 2937, 2924, 2899 (CH-, CH₂-, CH₃-Valenz), 2821 (O-CH₃-Valenz), 1657 (C=O-Valenz), 1464, 1416, 1390, 1375, 1368 (CH-, CH₂-, CH₃-Deform.), 1332, 1288, 1252, 1219, 1188, 1175, 1153 (C-N-Valenz), 1145 (C=S-Valenz), 1089, 1047 (C-O-C-Valenz), 1005, 950, 845, 766 (C-S-Valenz) cm⁻¹.— ¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.42$, 1.72 [2s, 6H, SC_q(CH₃)₂CH], 1.89, 1.97 [2s, 6H,

H-NMR (500.1 MHz, CDCl₃): $\delta = 1.42$, 1.72 [28, 6H, SC_q(CH₃)₂CH], 1.89, 1.97 [28, 6H, SC_q(CH₃)₂N], 2.06 [s, 3H, CH₃C_q=O], 3.37 [s, 3H, CHOCH₃], 4.07 [dd, ²J = 12.9 Hz,

 ${}^{3}J = 5.3$ Hz, 1H, CH₂], 4.98 [d, ${}^{2}J = 12.9$ Hz, 1H, CH₂], 5.16 [d, ${}^{3}J = 5.3$ Hz, 1H, CHOCH₃], 6.71 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.29$ [SC_q(<u>C</u>H₃)₂CH], 25.51 [<u>C</u>H₃C_q=O], 28.72, 32.01 [SC_q(<u>C</u>H₃)₂N], 32.70 [SC_q(<u>C</u>H₃)₂CH], 52.68 [S<u>C</u>_q(CH₃)₂CH], 56.57 [CHO<u>C</u>H₃], 61.19 [CH₂], 73.59 [S<u>C</u>_q(CH₃)₂N], 83.06 [NCH], 84.33 [<u>C</u>HOCH₃], 170.31 [C_q=O], 194.87 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 357.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{22}N_2NaO_2S_3]^+$: 357.0741, gefunden: 357.0742.—

 $(4'S^*, 5R^*)$ -**22a**

+ Enantiomer

Ausbeute: 47 mg (0.14 mmol, 20 %).—

Schmelzpunkt: 179–181 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.50$.—

IR (ATR): $\tilde{v} = 2998$, 2969, 2928, 2900 (CH-, CH₂-, CH₃-Valenz), 2828 (O-CH₃-Valenz), 1661 (C=O-Valenz), 1459, 1416, 1387, 1374 (CH-, CH₂-, CH₃-Deform.), 1328, 1291, 1250, 1218, 1192, 1161 (C-N-Valenz), 1143 (C=S-Valenz), 1088, 1042 (C-O-C-Valenz), 999, 951, 869, 763, 607 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.37$, 1.75 [2s, 6H, SC_q(CH₃)₂CH], 1.93, 1.98 [2s, 6H, SC_q(CH₃)₂N], 2.06 [s, 3H, CH₃C_q=O], 3.33 [s, 3H, CHOCH₃], 4.30 [dd, ²J = 13.9 Hz, ³J = n.a., 1H, CH₂], 4.35 [dd, ²J = 13.9 Hz, ³J = 4.6 Hz, 1H, CH₂], 5.15 [dd, ³J = 4.6 Hz, ³J = n.a., 1H, CHOCH₃], 6.64 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.34$ [SC_q(<u>C</u>H₃)₂CH], 24.97 [<u>C</u>H₃C_q=O], 29.07, 32.21 [SC_q(<u>C</u>H₃)₂N], 32.48 [SC_q(<u>C</u>H₃)₂CH], 52.52 [S<u>C</u>_q(CH₃)₂CH], 56.47 [CHO<u>C</u>H₃], 61.31 [CH₂], 73.48 [S<u>C</u>_q(CH₃)₂N], 84.06 [NCH], 84.86 [<u>C</u>HOCH₃], 170.94 [C_q=O], 195.10 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 357.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{13}H_{23}N_2O_2S_3]^+$: 335.0922, gefunden: 335.0926.—

(4'R^{*}, 5R^{*})- und (4'S^{*}, 5R^{*})-3-(3'-Acetyl-2',2'-dimethyl-1'-thia-3'-azaspiro[4.5]decan-4'yl)-5-methoxy-1,3-thiazolidin-2-thion (**22b**)

Die Darstellung erfolgt gemäß **AAV 11** aus 0.42 mmol (172 mg) Dithiocarabamat **20b** und 0.45 mmol (64 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt [dv (4' R^* , 5 R^*)-**22b**:(4' S^* , 5 R^*)-**22b** = 49:51]. Durch säulenchromatographische Auf-reinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) werden die diastereomeren Thiazolidin-2-thione **22b** jeweils als farblose Feststoffe erhalten.

Gesamtausbeute: 114 mg (0.30 mmol, 72 %).— M = 374.58 g/mol, $C_{16}H_{26}N_2O_2S_3$

 $(4^{\prime}R^{*}, 5R^{*})$ -**22b**

+ Enantiomer

Ausbeute: 56 mg (0.15 mmol, 36 %).—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.38$.—

Schmelzpunkt: 141–143 °C.—

IR (ATR): $\tilde{v} = 3001$, 2988, 2928, 2855 (CH-, CH₂-, CH₃-Valenz), 2832 (O-CH₃-Valenz), 1666 (C=O-Valenz), 1469, 1449, 1418, 1379, 1371 (CH-, CH₂-, CH₃-Deform.), 1329, 1293, 1245, 1223, 1194 (C-N-Valenz), 1158 (C=S-Valenz), 1090, 1047 (C-O-C-Valenz), 1006, 909, 885, 760, 650, 607 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.10-1.28$ [m, 2H, CH_{2,Cy}], 1.63-1.73 [m, 3H, CH_{2,Cy}], 1.77-1.87 [m, 4H, CH_{2,Cy}], 1.88, 1.91 [2s, 6H, C_q(CH₃)₂], 2.06 [s, 3H,

CH₃C_q=O], 2.09–2.14 [m, 1H, CH_{2,Cy}], 3.37 [s, 3H, CHOCH₃], 4.08 [dd, ${}^{2}J$ = 13.0 Hz, ${}^{3}J$ = 5.4 Hz, 1H, CH₂CH], 4.95 [d, ${}^{2}J$ = 13.0 Hz, 1H, CH₂CH], 5.15 [d, ${}^{3}J$ = 5.3 Hz, 1H, CHOCH₃], 6.73 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 21.99$, 24.46, 25.40 [CH_{2,Cy}], 25.64 [<u>C</u>H₃C_q=O], 28.84, 32.32 [C_q(<u>C</u>H₃)₂], 32.53, 38.74 [CH_{2,Cy}], 56.63 [CHO<u>C</u>H₃], 59.25 [S<u>C_q</u>(CH_{2,Cy})₂], 61.66 [<u>C</u>H₂CH], 72.83 [S<u>C_q</u>(CH₃)₂], 83.50 [NCH], 84.37 [<u>C</u>HOCH₃], 170.52 [C_q=O], 194.79 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 397.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}N_2NaO_2S_3]^+$: 397.1054, gefunden: 397.1057.—

 $(4^{\circ}S^{*}, 5R^{*})$ -**22b**

+ Enantiomer

Ausbeute: 58 mg (0.15 mmol, 36 %).—

Schmelzpunkt: 182–184 °C.—

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.46$.—

IR (ATR): $\tilde{v} = 3001$, 2982, 2959, 2938, 2923, 2852 (CH-, CH₂-, CH₃-Valenz), 2829 (O-CH₃-Valenz), 1662 (C=O-Valenz), 1449, 1413, 1376 (CH-, CH₂-, CH₃-Deform.), 1329, 1292, 1248, 1218, 1192, 1155 (C-N-Valenz), 1130 (C=S-Valenz), 1091, 1044 (C-O-C-Valenz), 999, 883, 757, 651, 607 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.10-1.28$ [m, 2H, CH_{2,Cy}], 1.41–1.47 [m, 1H, CH_{2,Cy}], 1.65–1.71 [m, 3H, CH_{2,Cy}], 1.78–1.89 [m, 2H, CH_{2,Cy}], 1.92, 1.93 [2s, 6H, SC_q(CH₃)₂], 2.03–2.12 [m, 1H, CH_{2,Cy}], 2.07 [s, 3H, CH₃C_q=O], 2.14–2.19 [m, 1H, CH_{2,Cy}], 3.33 [s, 3H, CHOCH₃], 4.32 [dd, ²*J* = 13.2 Hz, ³*J* = n.a., 1H, CH₂CH], 4.35 [dd, ²*J* = 13.2 Hz, ³*J* = 3.9 Hz, 1H, CH₂CH], 5.15 [dd, ³*J* = 3.9 Hz, ³*J* = 1.5 Hz, 1H, CHOCH₃], 6.66 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 21.98$, 24.45 [CH_{2,Cy}], 24.98 [<u>C</u>H₃C_q=O], 25.32 [CH_{2,Cy}], 29.13, 32.42 [C_q(<u>C</u>H₃)₂], 33.58, 38.16 [CH_{2,Cy}], 56.36 [CHO<u>C</u>H₃], 59.37 [S<u>C_q</u>(CH_{2,Cy})₂], 61.69 [<u>C</u>H₂CH], 72.72 [S<u>C_q</u>(CH₃)₂], 84.45 [NCH], 84.85 [<u>C</u>HOCH₃],
171.05 [C_q=O], 194.88 [C_q=S] ppm.— MS (ESI, TOF): m/z (%) = 397.1 [MNa]⁺ (100).— HRMS (ESI, TOF): Berechnet für [C₁₆H₂₆N₂NaO₂S₃]⁺: 397.1054, gefunden: 397.1035.—

(4'R^{*}, 5R^{*})- und (4'S^{*}, 5R^{*})-3-(4'-Acetyl-2',2'-dimethyl-1'-thia-4'-azaspiro[4.5]decan-3'yl)-5-methoxy-1,3-thiazolidin-2-thion (**22c**)

Die Darstellung erfolgt gemäß **AAV 11** aus 0.41 mmol (168 mg) Dithiocarbamat **20c** und 0.46 mmol (65 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt $[dv (4^cR^*, 5R^*)-22c:(4^cS^*, 5R^*)-22c = 54:46]$. Durch zweifache säulenchromatographische Aufreinigung des Rohprodukts (1. Kieselgel 60, Laufmittel: Dichlormethan; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) werden die diastereomeren Thiazolidin-2-thione **22c** jeweils als farblose Feststoffe erhalten.

Gesamtausbeute: 74 mg (0.20 mmol, 48 %). M = 374.58 g/mol, $C_{16}H_{26}N_2O_2S_3$

 $(4^{\prime}R^{*}, 5R^{*})$ -**22c**

+ Enantiomer

Ausbeute: 37 mg (0.10 mmol, 24 %).—

1. DC (Dichlormethan): $R_f = 0.38$.—

2. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.46$.—

Schmelzpunkt: 159–161 °C.—

IR (ATR): $\tilde{v} = 3002$, 2966, 2936, 2855 (CH-, CH₂-, CH₃-Valenz), 2826 (O-CH₃-Valenz), 1657 (C=O-Valenz), 1455, 1419, 1387, 1370 (CH-, CH₂-, CH₃-Deform.), 1347, 1326, 1286, 1243, 1190, 1168, 1144 (C-N-Valenz), 1129 (C=S-Valenz), 1087, 1045 (C-O-C-Valenz), 1004, 905, 867, 848, 768, 667, 610 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.19-1.27$ [m, 2H, CH_{2,Cy}], 1.42 [s, 3H, C_q(CH₃)₂], 1.53–1.61, 1.66–1.73 [2m, 2H, CH_{2,Cy}], 1.67 [s, 3H, C_q(CH₃)₂], 1.74–1.89 [m, 4H, CH_{2,Cy}], 2.07 [s, 3H, CH₃C_q=O], 2.95–3.03, 3.04–3.12 [2m, 2H, CH_{2,Cy}], 3.38 [s, 3H, CHOCH₃], 4.09 [dd, ²J = 13.0 Hz, ³J = 5.3 Hz, 1H, CH₂CH], 4.98 [d, ²J = 13.0 Hz, 1H, CH₂CH], 5.15 [d, ³J = 5.3 Hz, 1H, CHOCH₃], 6.72 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): δ = 23.50 [C_q(<u>C</u>H₃)₂], 24.51, 25.40, 26.22 [CH_{2,Cy}], 26.33 [<u>C</u>H₃C_q=O], 33.00 [C_q(<u>C</u>H₃)₂], 36.70 [2 CH_{2,Cy}], 51.86 [S<u>C</u>_q(CH₃)₂], 56.67 [CHO<u>C</u>H₃], 61.34 [<u>C</u>H₂CH], 81.52 [S<u>C</u>_q(CH_{2,Cy})₂], 83.17 [NCH], 84.35 [<u>C</u>HOCH₃], 170.58 [C_q=O], 194.73 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 397.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}N_2NaO_2S_3]^+$: 397.1054, gefunden: 397.1046.—

 $(4^{\circ}S^{*}, 5R^{*})$ -22c

+ Enantiomer

Ausbeute: 37 mg (0.10 mmol, 24 %).—

Schmelzpunkt: 179–181 °C.—

1. DC (Dichlormethan): $R_f = 0.46$.—

2. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.54$.—

IR (ATR): $\tilde{v} = 3004$, 2970, 2935, 2924, 2851 (CH-, CH₂-, CH₃-Valenz), 2830 (O-CH₃-Valenz), 1663 (C=O-Valenz), 1447, 1410, 1373 (CH-, CH₂-, CH₃-Deform.), 1341, 1324, 1283, 1246, 1190, 1161, 1143 (C-N-Valenz), 1126 (C=S-Valenz), 1085, 1046 (C-O-C-Valenz), 999, 934, 867, 768, 669, 606 (C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.17-1.30$ [m, 2H, CH_{2,Cy}], 1.37 [s, 3H, C_q(CH₃)₂], 1.56–1.62, 1.65–1.73 [2m, 2H, CH_{2,Cy}], 1.71 [s, 3H, C_q(CH₃)₂], 1.74–1.87 [m, 3H, CH_{2,Cy}], 1.89–1.95 [m, 1H, CH_{2,Cy}], 2.07 [s, 3H, CH₃C_q=O], 2.96–3.04, 3.12–3.20 [2m, 2H, CH_{2,Cy}], 3.33 [s, 3H, CHOCH₃], 4.35 [dd, ${}^{2}J$ = 13.2 Hz, ${}^{3}J$ = 4.3 Hz, 1H, CH₂CH], 4.39 [dd, ${}^{2}J$ = 13.2 Hz, ${}^{3}J$ = 1.0 Hz, 1H, CH₂CH], 5.15 [dd, ${}^{3}J$ = 4.3 Hz, ${}^{3}J$ = 0.9 Hz, 1H, CHOCH₃], 6.66 [s, 1H, NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 24.49 [C_q(\underline{C}H_3)_2]$, 24.57, 25.31 [CH_{2,Cy}], 25.65 [$\underline{C}H_3C_q=O$], 26.33 [CH_{2,Cy}], 32.74 [$C_q(\underline{C}H_3)_2$], 36.63, 37.12 [CH_{2,Cy}], 51.77 [S $\underline{C}_q(CH_3)_2$], 56.37 [CHO $\underline{C}H_3$], 61.31 [$\underline{C}H_2CH$], 81.32 [S $\underline{C}_q(CH_{2,Cy})_2$], 84.09 [NCH], 84.72 [$\underline{C}HOCH_3$], 171.09 [$C_q=O$], 194.89 [$C_q=S$] ppm.—

MS (ESI, TOF):
$$m/z$$
 (%) = 397.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{16}H_{26}N_2NaO_2S_3]^+$: 397.1054, gefunden: 397.1058.—

(4'R^{*}, 5R^{*})- und (4'S^{*}, 5R^{*})-3-(3'-Acetyl-2',2',5',5'-tetramethyl-1',3'-oxazolidin-4'-yl)-5methoxy-1,3-thiazolidin-2-thion (**22d**)

Die Darstellung erfolgt gemäß **AAV 11** aus 0.50 mmol (175 mg) Dithiocarbamat **20d** und 0.55 mmol (78 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt [dv (4' R^* , 5 R^*)-**22d**:(4' S^* , 5 R^*)-**22d** = 32:68]. Durch zweifache säulenchromatographische Aufreinigung (1. Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3; 2. Kieselgel 60, Laufmittel: *n*-Hexan/Aceton 2:1) wird das Diastereomerengemisch des Thiazolidin-2-thions **22d** als farbloser Feststoff erhalten.

Gesamtausbeute: 32 mg (0.10 mmol, 20 %).—

 $M = 318.45 \text{ g/mol}, C_{13}H_{22}N_2O_3S_2$

1. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.19$.—

2. DC (*n*-Hexan/Aceton 2:1): $R_f = 0.54$.—

Schmelzpunkt: 118-120 °C (Diastereomerengemisch).---

IR (ATR, Diastereomerengemisch): $\tilde{v} = 2991$, 2980, 2934 (CH-, CH₂-, CH₃-Valenz), 2829 (O-CH₃-Valenz), 1664 (C=O-Valenz), 1464, 1421, 1386, 1374 (CH-, CH₂-,

CH₃-Deform.), 1343, 1292, 1265, 1245, 1193 (C-N-Valenz), 1151 (C=S-Valenz), 1091, 1048 (C-O-C-Valenz), 1007, 955, 910, 843, 767, 679, 627, 606 (C-S-Valenz) cm⁻¹.—

Aus den NMR-Spektren des Diastereomerengemisches erfolgt eine eindeutige Zuordnung der Signale des jeweiligen Diastereomers. Mit "^A" werden die Signale des $(4^{\circ}R^{*}, 5R^{*})$ -Diastereomers **22d** und mit "^B" die Signale des $(4^{\circ}S^{*}, 5R^{*})$ -Diastereomers **22d** gekennzeichnet.

¹H-NMR (500.1 MHz, CDCl₃, Diastereomerengemisch): $\delta = 1.27$ [s, 3H, ^{*B*}OC_q(CH₃)₂CH], 1.30, 1.51 [2s, 6H, ^{*A*}OC_q(CH₃)₂CH], 1.54 [s, 3H, ^{*B*}OC_q(CH₃)₂CH], 1.69 [2s, 6H, ^{*A*}OC_q(CH₃)₂N, ^{*B*}OC_q(CH₃)₂N], 1.71 [2s, 6H, ^{*A*}OC_q(CH₃)₂N, ^{*B*}OC_q(CH₃)₂N], 2.01 [s, 3H, ^{*A*}CH₃C_q=O], 2.03 [s, 3H, ^{*B*}CH₃C_q=O], 3.34 [s, 3H, ^{*B*}CHOCH₃], 3.37 [s, 3H, ^{*A*}CHOCH₃], 4.06 [dd, ²J = 13.0 Hz, ³J = 5.4 Hz, 1H, ^{*A*}CH₂], 4.12 [dd, ²J = 12.8 Hz, ³J = 4.9 Hz, 1H, ^{*B*}CH₂], 4.20 [dd, ²J = 12.9 Hz, ³J = n.a., 1H, ^{*B*}CH₂], 4.23 [d, ²J = 13.1 Hz, 1H, ^{*A*}CH₂], 5.17 [d, ³J = 5.4 Hz, 1H, ^{*A*}CHOCH₃], 5.19 [dd, ³J = 4.8 Hz, ³J = n.a., 1H, ^{*B*}CHOCH₃], 6.38 [s, 1H, ^{*B*}NCH], 6.51 [s, 1H, ^{*A*}NCH] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃, Diastereomerengemisch): $\delta = 23.13 [^{A}OC_q(\underline{C}H_3)_2CH]$, 23.46 [$^{B}\underline{C}H_3C_q=O$], 23.96 [$^{A}\underline{C}H_3C_q=O$], 24.23 [$^{B}OC_q(\underline{C}H_3)_2CH$], 27.46 [$^{B}OC_q(\underline{C}H_3)_2N$], 27.65, 28.07 [$^{A}OC_q(\underline{C}H_3)_2N$], 28.19 [$^{B}OC_q(\underline{C}H_3)_2N$], 29.04 [$^{B}OC_q(\underline{C}H_3)_2CH$], 29.28 [$^{A}OC_q(\underline{C}H_3)_2CH$], 56.49 [$^{B}CHO\underline{C}H_3$], 56.61 [$^{A}CHO\underline{C}H_3$], 60.84 [$^{B}CH_2$], 61.10 [$^{A}CH_2$], 77.18 [^{A}NCH], 78.55 [^{B}NCH], 82.47 [$^{A}O\underline{C}_q(CH_3)_2CH$], 82.69 [$^{B}O\underline{C}_q(CH_3)_2CH$], 84.25 [$^{A}\underline{C}HOCH_3$], 84.78 [$^{B}\underline{C}HOCH_3$], 96.18 [$^{A}O\underline{C}_q(CH_3)_2N$, $^{B}O\underline{C}_q(CH_3)_2N$], 169.02 [$^{A}C_q=O$], 169.61 [$^{B}C_q=O$], 194.77 [$^{B}C_q=S$], 194.85 [$^{A}C_q=S$] ppm.—

MS (ESI, TOF): m/z (%) = 341.0 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für [C₁₃H₂₂N₂NaO₃S₂]⁺: 341.0970, gefunden: 341.0977.—

(4'R^{*}, 5R^{*})-und (4'S^{*}, 5R^{*})- 3-(3'-Benzoyl-2',2',5',5'-tetramethyl-1',3'-thiazolidin-4'-yl)-5-methoxy-1,3-thiazolidin-2-thion (**22e**)

Die Darstellung erfolgt gemäß **AAV 11** aus 0.50 mmol (214 mg) Dithiocarbamat **21e** und 0.55 mmol (78 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das

Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt [dv (4' R^* , 5 R^*)-**22e**:(4' S^* , 5 R^*)-**22e** = 60:40]. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das (4' R^* , 5 R^*)-Thiazolidin-2-thion **22e** als farbloser Feststoff erhalten. Nach erneuter zweifacher säulenchromatographischer Aufeinigung des Rohprodukts (2. Kieselgel 60, Laufmittel: Dichlormethan; 3. Kieselgel 60, Laufmittel: Dichlormethan/Essigsäureethylester 25:1) wird das (4' S^* , 5 R^*)-Thiazolidin-2-thion **22e** als farbloser Feststoff erhalten.

Gesamtausbeute: 88 mg (0.22 mmol, 44 %).— M = 396.58 g/mol, $C_{18}H_{24}N_2O_2S_3$

 $(4^{\prime}R^{*}, 5R^{*})$ -22e

+ Enantiomer

Ausbeute: 58 mg (0.15 mmol, 29 %).---

Schmelzpunkt: 178-180 °C.---

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.31$.—

IR (ATR): $\tilde{v} = 3005$ (=CH-Valenz), 2996, 2982, 2926, 2870 (CH-, CH₂-, CH₃-Valenz), 2829 (O-CH₃-Valenz), 1658 (C=O-Valenz), 1604 (Ringschwingung), 1459, 1445, 1415, 1370 (CH-, CH₂-, CH₃-Deform.), 1350, 1282, 1248, 1215 (C-N-Valenz), 1153 (C=S-Valenz), 1095, 1048 (C-O-C-Valenz), 1011, 1000, 926, 880, 845, 790, 766, 748, 695, 673, 627, 613 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.35$, 1.75 [2s, 6H, SC_q(CH₃)₂CH], 2.07, 2.13 [2s, 6H, SC_q(CH₃)₂N], 3.33 [s, 3H, CHOCH₃], 4.18 [dd, ²*J* = 12.7 Hz, ³*J* = 5.2 Hz, 1H, CH₂], 4.97 [d, ²*J* = 12.7 Hz, 1H, CH₂], 5.14 [d, ³*J* = 5.2 Hz, 1H, CHOCH₃], 6.61 [s, 1H, NCH], 7.13–7.18 [m, 2H, *o*-CH_{Ar}], 7.33–7.39 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.14$ [SC_q(<u>C</u>H₃)₂CH], 29.10 [SC_q(<u>C</u>H₃)₂N], 32.17, 32.27 [SC_q(<u>C</u>H₃)₂CH, SC_q(<u>C</u>H₃)₂N], 52.75 [S<u>C</u>_q(CH₃)₂CH], 56.42 [CHO<u>C</u>H₃], 61.55 [CH₂], 73.43 [S<u>C</u>_q(CH₃)₂N], 83.49 [NCH], 84.32 [<u>C</u>HOCH₃], 124.50 [2 *o*-CH_{Ar}], 129.28 $[2 \text{ }m\text{-}CH_{Ar}], 129.87 [p\text{-}CH_{Ar}], 137.47 [C_{q,Ar}], 171.77 [C_q=O], 193.92 [C_q=S] ppm.$ MS (ESI, TOF): m/z (%) = 419.0 [MNa]⁺ (100).

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{24}N_2NaO_2S_3]^+$: 419.0898, gefunden: 419.0884.—

 $(4^{\circ}S^{*}, 5R^{*})$ -22e

+ Enantiomer

Ausbeute: 30 mg (0.08 mmol, 15 %).—

Schmelzpunkt: 164–166 °C.—

1. DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.38$.—

2. DC (Dichlormethan): $R_f = 0.14$.—

3. DC (Dichlormethan/Essigsäureethylester 25:1): $R_f = 0.71$.—

IR (ATR): $\tilde{v} = 3058$, 3002 (=CH-Valenz), 2992, 2980, 2970, 2936 (CH-, CH₂-, CH₃-Valenz), 2831 (O-CH₃-Valenz), 1664 (C=O-Valenz), 1603, 1493 (Ringschwingung), 1459, 1443, 1417, 1379 (CH-, CH₂-, CH₃-Deform.), 1346, 1287, 1242, 1212 (C-N-Valenz), 1154 (C=S-Valenz), 1084, 1051 (C-O-C-Valenz), 1013, 1002, 880, 852, 839, 790, 766, 700, 676, 627, 610 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (500.1 MHz, CDCl₃): $\delta = 1.28$, 1.74 [2s, 6H, SC_q(CH₃)₂CH], 2.12, 2.14 [2s, 6H, SC_q(CH₃)₂N], 3.43 [s, 3H, CHOCH₃], 4.39 [dd, ²*J* = 13.0 Hz, ³*J* = 5.1 Hz, 1H, CH₂], 4.46 [dd, ²*J* = 13.0 Hz, ³*J* = n.a., 1H, CH₂], 5.16 [dd, ³*J* = 5.1 Hz, ³*J* = n.a., 1H, CHOCH₃], 6.47 [s, 1H, NCH], 7.27–7.30 [m, 2H, *o*-CH_{Ar}], 7.32–7.38 [m, 3H, 2 *m*-CH_{Ar}, *p*-CH_{Ar}] ppm.—

¹³C-NMR (125.8 MHz, CDCl₃): $\delta = 23.81$ [SC_q(<u>C</u>H₃)₂CH], 29.47 [SC_q(<u>C</u>H₃)₂N], 31.94 [SC_q(<u>C</u>H₃)₂CH], 32.31 [SC_q(<u>C</u>H₃)₂N], 52.66 [S<u>C</u>_q(CH₃)₂CH], 56.16 [CHO<u>C</u>H₃], 61.38 [CH₂], 73.23 [S<u>C</u>_q(CH₃)₂N], 84.15 [NCH, <u>C</u>HOCH₃], 125.12 [2 *o*-CH_{Ar}], 128.83 [2 *m*-CH_{Ar}], 129.31 [*p*-CH_{Ar}], 137.42 [C_{q,Ar}], 171.66 [C_q=O], 194.25 [C_q=S] ppm.— MS (ESI, TOF): m/z (%) = 419.1 [MNa]⁺ (100).—

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{24}N_2NaO_2S_3]^+$: 419.0898, gefunden: 419.0887.—

(4'R^{*}, 5R^{*})-3-[3'-(4-Nitrobenzoyl)-2',2',5',5'-tetramethyl-1',3'-thiazolidin-4'-yl]-5methoxy-1,3-thiazolidin-2-thion (**22f**)

+ Enantiomer

Die Darstellung erfolgt gemäß **AAV 11** aus 0.50 mmol (237 mg) Dithiocarbamat **20f** und 0.55 mmol (78 mg) Bortriflouriddiethyletherat. Aus dem Rohprodukt wird das Diastereomerenverhältnis ¹H-NMR-spektroskopisch in CDCl₃ bei Raumtemperatur bestimmt [dv (4' R^* , 5 R^*)-**22f**:(4' S^* , 5 R^*)-**22f** = 70:30). Das (4' S^* , 5 R^*)-Thiazolidin-2-thion **22f** wurde nach ¹H-NMR-Analyse nur in Spuren erhalten und konnte nicht isoliert werden. Durch säulenchromatographische Aufreinigung des Rohprodukts (Kieselgel 60, Laufmittel: *n*-Hexan/Essigsäureethylester 7:3) wird das (4' R^* , 5 R^*)-Thiazolidin-2-thion **22f** als farbloser Feststoff erhalten.

Ausbeute: 5 mg (0.01 mmol, 2 %).—

 $M = 441.58 \text{ g/mol}, C_{18}H_{23}N_3O_4S_3$

DC (*n*-Hexan/Essigsäureethylester 7:3): $R_f = 0.25$.—

Schmelzpunkt: 185–187 °C.—

IR (ATR): $\tilde{v} = 2988$, 2966, 2930, 2861 (CH-, CH₂-, CH₃-Valenz), 2825 (O-CH₃-Valenz), 1663 (C=O-Valenz), 1603 (Ringschwingung), 1519 (NO₂-Valenz), 1465, 1417, 1389 (CH-, CH₂-, CH₃-Deform.), 1342, 1285, 1250, 1216, 1193, 1167, 1157 (C-N-Valenz), 1129 (C=S-Valenz), 1086, 1049 (C-O-C-Valenz), 1014, 886, 859, 839, 765, 723, 700, 684, 644, 611 (=CH-Deform., C-S-Valenz) cm⁻¹.—

¹H-NMR (499.9 MHz, CDCl₃): δ = 1.34, 1.76 [2s, 6H, SC_q(CH₃)₂CH], 2.08, 2.14 [2s, 6H, SC_q(CH₃)₂N], 3.35 [s, 3H, CHOCH₃], 4.17 [dd, ²*J* = 12.7 Hz, ³*J* = 5.2 Hz, 1H, CH₂], 5.04 [d, ²*J* = 12.7 Hz, 1H, CH₂], 5.16 [d, ³*J* = 5.1 Hz, 1H, CHOCH₃], 6.54 [s, 1H, NCH], 7.31–7.34 [m, 2H, *m*-CH_{Ar}(NO₂)], 8.21–8.25 [m, 2H, *o*-CH_{Ar}(NO₂)] ppm.—

¹³C-NMR (125.7 MHz, CDCl₃): $\delta = 22.99$ [SC_q(<u>C</u>H₃)₂CH], 28.95, 32.13 [SC_q(<u>C</u>H₃)₂N], 32.41 [SC_q(<u>C</u>H₃)₂CH], 52.98 [S<u>C</u>_q(CH₃)₂CH], 56.55 [CHO<u>C</u>H₃], 61.35 [CH₂], 73.95 [S<u>C</u>_q(CH₃)₂N], 83.14 [NCH], 84.24 [<u>C</u>HOCH₃], 124.85 [2 *o*-CH_{Ar}(NO₂)], 126.00 [2 *m*-CH_{Ar}(NO₂)], 142.91 [<u>C</u>_q,ArC_q=O], 148.60 [C_q,ArNO₂], 168.96 [C_q=O], 194.56 [C_q=S] ppm.—

MS (ESI, TOF): m/z (%) = 464.0 [MNa]⁺ (100).--

HRMS (ESI, TOF): Berechnet für $[C_{18}H_{23}N_3NaO_4S_3]^+$: 464.0748, gefunden: 464.0751.—

9 Kristallographischer Anhang

Tab. 9.1: Kristalldaten, Angaben zur Messung und zur Strukturlösung desPropargylamids **3a**.

+ Enantiomer **3a**

Summenformel, Molare Masse	C ₂₂ H ₂₃ NOS, 349.47 g/mol	
Kristallsystem, Raumgruppe	Triklin, P-1	
Gitterkonstanten	a = 9.0899(3) Å	$\alpha = 103.9902(15)^{\circ}.$
	b = 9.1674(3) Å	$\beta = 96.9926(15)^{\circ}.$
	c = 11.8580(4) Å	$\gamma = 98.7934(15)^{\circ}.$
Zellvolumen	934.49(5) Å ³	
Zahl der Formeleinheiten pro Zelle	2	
Dichte, Absorptionskoeffizient	1.242 g/cm ³ , 0.182 i	mm ⁻¹
F(000)	372	
Kristallgröße	$0.25 \times 0.20 \times 0.20 \text{ mm}^3$	
Thetabereich	1.795 ° bis 32.030 °	
Indexbereich	$\text{-13} \le h \le 13, \text{-13} \le k \le 13, \text{-17} \le l \le 17$	
Zahl der gesamten Reflexe	86343	
Zahl der unabhängigen Reflexe	$6525 [R_{(int)} = 0.0306]$	5]
Zahl der beobachteten Reflexe	5703 $[I > 2\sigma(I)]$	
Absorptionskorrektur	Semi-empirisch aus Äquivalenten	
Max. und min. Transmission	1.0000 and 0.9732	
Verfeinerungsmethode	"Full-matrix least-squares" auf F ²	
Daten / Restraints / Parameter	6525 / 0 / 230	
Goodness-of-fit an F ²	1.077	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0331, \omega R_2 =$	0.0892
R indices (sämtliche Daten)	$R_1 = 0.0396, \omega R_2 = 0.0943$	
Max./Min. Restelektronendichte	$0.460 \text{ e} \times \text{\AA}^{-3} \text{ und } -0.181 \text{ e} \cdot \text{\AA}^{-3}$	

Tab. 9.2: Kristalldaten, Angaben zur Messung und zur Strukturlösung des polyanelliertenPyrazinons 7e.

Tab. 9.3: Kristalldaten, Angaben zur Messung und zur Strukturlösung des polyanelliertenDiazepinons 9a.

 Tab. 9.5: Kristalldaten, Angaben zur Messung und zur Strukturlösung des Lactams 12d.

Tab. 9.6: Kristalldaten, Angaben zur Messung und zur Strukturlösung des (R^*, R^*) -Oxadiazocinons **12p**.

Summenformel, Molare Masse	$C_{14}H_{22}N_4O_2S$, 310.41 g/mol	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /n	
Gitterkonstanten	a = 12.2276(7) Å	$\alpha = 90^{\circ}$.
	b = 16.5327(9) Å	$\beta = 109.2576(13)^{\circ}.$
	c = 16.7093(9) Å	$\gamma = 90^{\circ}.$
Zellvolumen	3188.9(3) Å ³	
Zahl der Formeleinheiten pro Zelle	8	
Dichte, Absorptionskoeffizient	1.293 g/cm ³ , 0.213 m	m ⁻¹
F(000)	1328	
Kristallgröße	$0.30\times0.18\times0.14~mm^3$	
Thetabereich (min/max)	1.784 ° bis 33.727 °	
Indexbereich	$-19 \le h \le 19, -25 \le k \le 25, -26 \le l \le 24$	
Zahl der gesamten Reflexe	117499	
Zahl der unabhängigen Reflexe	12733 [$R_{(int)} = 0.0377$]
Zahl der beobachteten Reflexe	10313 $[I > 2\sigma (I)]$	
Absorptionskorrektur	Semi-empirisch aus Äquivalenten	
Max. und min. Transmission	1.0000 and 0.9690	
Verfeinerungsmethode	"Full-matrix least-squares" auf F ²	
Daten / Restraints / Parameter	12733 / 0 / 389	
Goodness-of-fit an F ²	1.031	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0361, \omega R_2 = 0$.0907
R indices (sämtliche Daten)	$R_1 = 0.0492, \omega R_2 = 0.0990$	
Max./Min. Restelektronendichte	$0.700 \text{ e} \times \text{Å}^{-3} \text{ und } -0.49$	03 e×Å⁻³

Tab.9.7:Kristalldaten, Angaben zur Messung und zur Strukturlösung desAlkinylaminoamids 13a.

Summenformel, Molare Masse C12H19N5OS, 281.38 g/mol Kristallsystem, Raumgruppe Monoklin, $P2_1/c$ a = 7.8630(3) Å $\alpha = 90^{\circ}$. Gitterkonstanten b = 13.5304(5) Å $\beta = 92.5520(17)^{\circ}$. c = 13.5735(5) Å $\gamma = 90^{\circ}$. 1442.65(9) Å³ Zellvolumen Zahl der Formeleinheiten pro Zelle 4 Dichte, Absorptionskoeffizient 1.296 g/cm³, 0.225 mm⁻¹ F(000) 600 $0.30 \times 0.30 \times 0.20 \text{ mm}^3$ Kristallgröße 2.126 ° bis 36.315 ° Thetabereich (min/max) Indexbereich $-12 \le h \le 13, -22 \le k \le 22, -22 \le l \le 22$ Zahl der gesamten Reflexe 67844 Zahl der unabhängigen Reflexe 6985 $[R_{(int)} = 0.0219]$ Zahl der beobachteten Reflexe $6352 [I > 2\sigma (I)]$ Absorptionskorrektur Semi-empirisch aus Äquivalenten 1.0000 and 0.9740 Max. und min. Transmission "Full-matrix least-squares" auf F² Verfeinerungsmethode 6985 / 0 / 180 Daten / Restraints / Parameter Goodness-of-fit an F² 1.048 Endgültige R indices $[I > 2\sigma (I)]$ $R_1 = 0.0260, \ \omega R_2 = 0.0726$ R indices (sämtliche Daten) $R_1 = 0.0292, \ \omega R_2 = 0.0747$ $0.500 \text{ e} \times \text{\AA}^{-3} \text{ und } -0.219 \text{ e} \times \text{\AA}^{-3}$ Max./Min. Restelektronendichte

Tab. 9.8: Kristalldaten, Angaben zur Messung und zur Strukturlösung desTriazocinons 15a.

Summenformel, Molare Masse	C ₁₂ H ₁₉ N ₅ OS, 281.38 g/mol	
Kristallsystem, Raumgruppe	Monoklin, P2/c	
Gitterkonstanten	a = 13.9809(5) Å	$\alpha = 90^{\circ}$.
	b = 8.3004(3) Å	$\beta = 91.6772(17)^{\circ}.$
	c = 11.7849(4) Å	$\gamma = 90^{\circ}$.
Zellvolumen	1367.02(8) Å ³	
Zahl der Formeleinheiten pro Zelle	4	
Dichte, Absorptionskoeffizient	1.367 g/cm ³ , 0.238 mm	-1
F(000)	600	
Kristallgröße	$0.54 \times 0.12 \times 0.06 \text{ mm}^3$	3
Thetabereich (min/max)	1.457 $^{\circ}$ bis 36.316 $^{\circ}$	
Indexbereich	$-23 \le h \le 23, 0 \le k \le 13, 0 \le l \le 19$	
Zahl der gesamten Reflexe	8959	
Zahl der unabhängigen Reflexe	8959	
Zahl der beobachteten Reflexe	8327 $[I > 2\sigma(I)]$	
Absorptionskorrektur	Semi-empirisch aus Äq	uivalenten
Max. und min. Transmission	1.0000 and 0.9741	
Verfeinerungsmethode	"Full-matrix least-squa	res" auf F ²
Daten / Restraints / Parameter	8959 / 0 / 182	
Goodness-of-fit an F ²	1.047	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0269, \omega R_2 = 0.0$	735
R indices (sämtliche Daten)	$R_1 = 0.0304, \omega R_2 = 0.0$	758
Max./Min. Restelektronendichte	$0.553 \text{ e} \times \text{Å}^{-3} \text{ und } -0.259$	e×Å⁻³

Summenformel, Molare Masse	C ₁₂ H ₁₇ N ₅ O ₂ S, 295.36 g/mol	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c	
Gitterkonstanten	a = 12.9606(5) Å	$\alpha = 90^{\circ}$.
	b = 28.7359(11) Å	$\beta = 90.027(2)^{\circ}.$
	c = 7.8544(3) Å	$\gamma = 90^{\circ}$.
Zellvolumen	2925.25(19) Å ³	
Zahl der Formeleinheiten pro Zelle	8	
Dichte, Absorptionskoeffizient	1.341 g/cm ³ , 0.231 mm	1^{-1}
F(000)	1248	
Kristallgröße	$0.55 \times 0.20 \times 0.15 \text{ mm}$	3
Thetabereich (min/max)	1.417 $^{\circ}$ bis 36.317 $^{\circ}$	
Indexbereich	-21 \leq h \leq 21, -47 \leq k \leq	$47, -9 \le 1 \le 13$
Zahl der gesamten Reflexe	107957	
Zahl der unabhängigen Reflexe	14175 $[R_{(int)} = 0.0327]$	
Zahl der beobachteten Reflexe	12571 $[I > 2\sigma(I)]$	
Absorptionskorrektur	Semi-empirisch aus Äc	quivalenten
Max. und min. Transmission	1.0000 and 0.9374	
Verfeinerungsmethode	"Full-matrix least-squa	res" auf F ²
Daten / Restraints / Parameter	14175 / 0 / 378	
Goodness-of-fit an F ²	1.022	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0362, \omega R_2 = 0.0$	889
R indices (sämtliche Daten)	$R_1 = 0.0442, \omega R_2 = 0.0$	933
Max./Min. Restelektronendichte	$0.501 \text{ e} \times \text{\AA}^{-3} \text{ und } -0.374$	$e \times Å^{-3}$

Tab.9.10:Kristalldaten, Angaben zur Messung und zur Strukturlösung desDithiocarbamats19m.

Summenformel, Molare Masse	$C_{17}H_{24}N_2OS_3$, 368.56 g/mol	
Kristallsystem, Raumgruppe	Monoklin, P2 ₁ /c	
Gitterkonstanten	a = 17.6665(7) Å	$\alpha = 90^{\circ}$.
	b = 8.8044(3) Å	$\beta = 98.6470(19)^{\circ}$
	c = 12.3437(5) Å	$\gamma = 90^{\circ}$.
Zellvolumen	1898.15(13) Å ³	
Zahl der Formeleinheiten pro Zelle	4	
Dichte, Absorptionskoeffizient	1.290 g/cm ³ , 0.369 i	nm ⁻¹
F(000)	784	
Kristallgröße	$0.42\times0.36\times0.18\ mm^3$	
Thetabereich (min/max)	2.332 ° bis 36.316 °	
Indexbereich	$\text{-29} \le h \le \text{29}, \text{-14} \le k \le \text{14}, \text{-20} \le \text{I} \le \text{19}$	
Zahl der gesamten Reflexe	96731	
Zahl der unabhängigen Reflexe	9213 [$R_{(int)} = 0.0210$]	
Zahl der beobachten Reflexe	8362 [I > 2σ (I)]	
Absorptionskorrektur	Numerisch	
Max. und min. Transmission	0.9478 und 0.8634	
Verfeinerungsmethode	"Full-matrix least-squares" auf F ²	
Daten / Restraints / Parameter	9213 / 0 / 217	
Goodness-of-fit an F ²	1.005	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0282, \ \omega R_2 = 0.0760$	
R indices (sämtliche Daten)	$R_1 = 0.0321, \omega R_2 = 0.0787$	
Max./Min. Restelektronendichte	$0.575 \text{ e} \times \text{Å}^{-3} \text{ und } -0.33$	806 e×Å ⁻³

Tab. 9.11: Kristalldaten, Angaben zur Messung und zur Strukturlösung des (R^*, R^*) -1,3-Thiazolidin-2-thions **22a**.

22a

Summenformel, Molare Masse	$C_{13}H_{22}N_2O_2S_3$, 334.50 g/mol	
Kristallsystem, Raumgruppe	Monoklin, P21	
Gitterkonstanten	a = 7.9331(10) Å	$\alpha = 90^{\circ}$.
	b = 10.9988(15) Å	$\beta = 100.066(3)^{\circ}.$
	c = 9.5091(19) Å	$\gamma = 90^{\circ}$.
Zellvolumen	816.94(19) Å ³	
Zahl der Formeleinheiten pro Zelle	2	
Dichte, Absorptionskoeffizient	1.360 g/cm^3 , 0.456 mm	n ⁻¹
F(000)	356	
Kristallgröße	$0.22 \times 0.14 \times 0.08 \text{ mm}$	n^3
Thetabereich (min/max)	2.175 $^{\circ}$ bis 33.728 $^{\circ}$	
Indexbereich	$-12 \le h \le 12, -17 \le k \le$	$\leq 17, -14 \leq l \leq 14$
Zahl der gesamten Reflexe	33549	
Zahl der unabhängigen Reflexe	$6532 [R_{(int)} = 0.0413]$	
Zahl der beobachten Reflexe	6071 [I > 2σ (I)]	
Absorptionskorrektur	Semi-empirisch aus Ä	quivalenten
Max. und min. Transmission	1.0000 und 0.8925	
Verfeinerungsmethode	"Full-matrix least-squa	ares" auf F ²
Daten / Restraints / Parameter	6532 / 166 / 369	
Goodness-of-fit an F ²	1.023	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0299, \omega R_2 = 0.0000$	0663
R indices (sämtliche Daten)	$R_1 = 0.0342, \omega R_2 = 0.0$	0683
Max./Min. Restelektronendichte	$0.397 \text{ e} \times \text{Å}^{-3} \text{ und } -0.247$	$7 \text{ e} \times \text{Å}^{-3}$

Tab. 9.12: Kristalldaten, Angaben zur Messung und zur Strukturlösung des (S^*, R^*) -1,3-Thiazolidin-2-thions **22a**.

22a

Summenformel, Molare Masse	$C_{13}H_{22}N_2O_2S_3$, 334.50 g/mol	
Kristallsystem, Raumgruppe	Triklin, P-1	
Gitterkonstanten	a = 7.8565(4) Å	$\alpha = 67.2112(11)^{\circ}$
	b = 9.8908(5) Å	$\beta = 87.7186(11)^{\circ}$
	c = 11.5911(6) Å	$\gamma = 75.4651(11)^{\circ}$
Zellvolumen	802.16(7) Å ³	
Zahl der Formeleinheiten pro Zelle	2	
Dichte, Absorptionskoeffizient	1.385 g/cm ³ , 0.465 mm	n ⁻¹
F(000)	356	
Kristallgröße	$0.44 \times 0.15 \times 0.11 \text{ mm}$	1 ³
Thetabereich (min/max)	1.910 $^{\circ}$ bis 32.585 $^{\circ}$	
Indexbereich	$-11 \le h \le 11, -14 \le k \le 14, -17 \le l \le 17$	
Zahl der gesamten Reflexe	34216	
Zahl der unabhängigen Reflexe	5837 [$R_{(int)} = 0.0254$]	
Zahl der beobachten Reflexe	5106 $[I > 2\sigma(I)]$	
Absorptionskorrektur	Keine	
Max. und min. Transmission	1.0000 und 0.9701	
Verfeinerungsmethode	"Full-matrix least-squa	ares" auf F ²
Daten / Restraints / Parameter	5837 / 0 / 269	
Goodness-of-fit an F ²	1.030	
Endgültige R indices $[I > 2\sigma (I)]$	$R_1 = 0.0235, \omega R_2 = 0.0$)587
R indices (sämtliche Daten)	$R_1 = 0.0298, \omega R_2 = 0.0$	0618
Max./Min. Restelektronendichte	$0.470 \text{ e} \times \text{Å}^{-3} \text{ und } -0.200$) e×Å ⁻³

10 Literaturverzeichnis

- [1] A. Laurent, C. F. Gerhardt, Ann. Chim. Phys. 1838, 66, 181.
- [2] A. Strecker, Justus Liebigs Ann. Chem. 1850, 75, 27–45.
- [3] a) A. Dömling, I. Ugi, Angew. Chem. 2000, 112, 3300–3344; Angew. Chem., Int. Ed. 2000, 39, 3168–3210; b) E. Ruijter, R. Scheffelaar, R. V. A. Orru, Angew. Chem. 2011, 123, 6358–6371; Angew. Chem., Int. Ed. 2011, 50, 6234–6246; c) C. de Graaff, E. Ruijter, R. V. A. Orru, Chem. Soc. Rev. 2012, 41, 3969–4009; d) A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083–3135.
- [4] a) R. M. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown, T. A. Keating, Acc. Chem. Res. 1996, 29, 123–131; b) C. Hulme, V. Gore, Curr. Med. Chem. 2003, 10, 51–80.
- [5] L. Weber, S. Wallbaum, C. Broger, K. Gubernator, Angew. Chem. 1995, 107, 2452–2454; Angew. Chem., Int. Ed. Engl. 1995, 34, 2280–2282.
- [6] A. Dömling, Comb. Chem. High Throughput Screen. 1998, 1, 1–22.
- [7] a) B. Eftekhari-Sis, M. Zirak, A. Akbari, *Chem. Rev.* 2013, *113*, 2958–3043; b) J.
 Clayden, N. Greeves, S. Warren, *Organische Chemie*, 2. Aufl., Springer Spektrum, Heidelberg 2013, S. 866.
- [8] C. Lamberth, J. Dinges, *Bioactive Heterocyclic Compounds Classes: Pharmaceu*ticals, 1. Aufl., Wiley-VCH Verlag, Weinheim 2012.
- [9] a) C. Friedrich, *Pharm. Unserer Zeit* 2006, *35*, 392–398; b) R. Bentley, *J. Chem. Educ.* 2004, *81*, 1462–1470.
- [10] A. Fleming, Br. J. Exp. Pathol. 1929, 10, 226–236.
- [11] B. Holmes, D. M. Richards, R. N. Brodgen, R. C. Heel, *Drugs* 1984, 28, 375–425.
- [12] a) F. Richtling, D. Schneider, *Checkliste Arzneimittel A Z*, 6. Aufl., Georg Thieme Verlag, Stuttgart 2013, S. 531; b) W. L. Xu, Y. Z. Li, Q. S. Zhang, H. S. Zhu, *Synthesis* 2005, 442–446.
- [13] a) A. Srivastava, L. Aggarwal, N. Jain, ACS Combi. Sci. 2015, 17, 39–48; b) S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. Asian J. 2011, 6, 2696–2718.
- [14] a) M. Whiting, J.C. Tripp, Y. C. Lin, W. Lindstrom, A. J. Olson, J. H. Elder, K. B. Sharpless, V. V. Fokin, *J. Med. Chem.* 2006, 49, 7697–7710; b) R. Alvarez, S. Velázquez, S. A. Felix, S. Aquaro, E. D. Clercq, C. F. Perno, A. Karlsson,

J. Balzarini, M. J. Camarasa, J. Med. Chem. 1994, 37, 4185-4194.

- [15] a) H. Elamari, R. Slimi, G. G. Chabot, L. Quentin, D. Scherman, C. Girard, *Eur. J. Med. Chem.* 2013, 60, 360–364; b) W.-T. Li, W.-H. Wu, C.-H. Tang, R. Tai, S.-T. Chen, *ACS Combi. Sci.* 2011, *13*, 72–78.
- [16] a) Beena, N. Kumar, R. K. Rohilla, N. Roy, D. S. Rawat, *Bioorg. Med. Chem. Lett.* 2009, *19*, 1396–1398; b) F. Reck, F. Zhou, M. Girardot, G. Kern, C. J.
 Eyermann, N. J. Hales, R. R. Ramsay, M. B. Gravestock, *J. Med. Chem.* 2005, *48*, 499–506.
- [17] S. Shafi, M. M. Alam, N. Mulakayala, C. Mulakayala, G. Vanaja, A. M. Kalle, R. Pallud, M. S. Alam, *Eur. J. Med. Chem.* 2012, 49, 324–333.
- [18] V. Patil, W. Guerrant, P. C. Chen, B. Gryder, D. B. Benicewicz, S. I. Khan, B. L. Tekwani, A. K. Oyelere, *Bioorg. Med. Chem.* 2010, 18, 415–425.
- [19] a) Y. Pandey, P. Kumar Sharma, N. Kumar, A. Singh, *Int. J. PharmTech Res.* 2011, 2, 980–985; b) N. Pandit, R. K. Singla, B. Shrivastava, *Int. J. Med. Chem.* 2012,1–24; c) E. D. Deeks, S. J. Keam, *Drugs* 2007, 67, 2747–2779; d) J. Waugh, G. M. Keating, G. L. Plosker, E. Easthope, D. M. Robinson, *Drugs* 2006, 66, 85–109; e) J. Blinn, R. Chrusciel, J. Fisher, S. Tanis, E. Thomas, T. Lobl, B. Teegarden, US6685617 B1, 2004.
- [20] T. Germer, *Dissertation*, Universität Oldenburg 2007.
- [21] a) Chemiker-Treffen Salzburg, Angew. Chem. 1956, 68, 376–389; b) F. Asinger, Angew. Chem. 1956, 68, 413.
- [22] a) F. Asinger, M. Thiel, H. Usbeck, K.-H. Gröbe, H. Grundmann, S. Tränkner; Justus Liebigs Ann. Chem. 1960, 634, 144–163; b) F. Asinger, M. Thiel, K. Gewald, Justus Liebigs Ann. Chem. 1961, 639, 133–146.
- [23] a) F. Asinger, M. Thiel, Angew. Chem. 1958, 70, 667–683; b) F. Asinger, M. Thiel, H. G. Hauthal, Justus Liebigs Ann. Chem. 1960, 634, 131–144; c) F. Asinger, H. Offermanns, Angew. Chem. 1967, 79, 953–965; Angew. Chem., Int. Ed. Engl. 1967, 6, 907–919.
- [24] J. Martens, H. Offermans, P. Scherberich, Angew. Chem. 1981, 93, 680–683;
 Angew. Chem., Int. Ed. Engl. 1981, 20, 668.
- [25] M. Weber, J. Jakob, J. Martens, *Liebigs Ann. Chem.* 1992, 1–6.
- [26] F. Brockmeyer, D. Kröger, T. Stalling, P. Ullrich, J. Martens, *Helv. Chim. Acta* 2012, 95, 1857–1870.

- [27] M. Hatam, D. Tehranfar, J. Martens, Synth. Commun. 1995, 25, 1677–1688.
- [28] K. Drauz, H. G. Koban, J. Martens, W. Schwarze, *Liebigs Ann. Chem.* 1985, 448– 452.
- [29] F. Brockmeyer, T. Stalling, J. Martens, *Synthesis* **2012**, *44*, 2947–2958.
- [30] T. Stalling, F. Brockmeyer, D. Kröger, A. Schwäblein, J. Martens, Z. Naturforsch.
 2012, 67b, 1045–1055.
- [31] J. D. Sunderhaus, S. F. Martin, *Chem. Eur. J.* **2009**, *15*, 1300–1308.
- [32] D. Kröger, *Dissertation*, Universität Oldenburg **2015**.
- [33] a) Y. Hu, R. Yi, F. Wu, B. Wan, J. Org. Chem. 2013, 78, 7714–7726; b) Y. Hu,
 R. Yi, C. Wang, X. Xin, F. Wu, B. Wan, J. Org. Chem. 2014, 79, 3052–3059; c)
 A. Arcadi, S. Cacchi, L. Cascia, G. Fabrizi, F. Marinelli, Org. Lett. 2001, 3, 5201–2504.
- [34] a) C. Tang, A. F. Castoldi, L. G. Costa, *Biochem. Mol. Biol. Int.* 1993, 29, 1047–1054; b) C. R. Craig, R. E. Stitzel, *Modern Pharmacology*, Little, Brown Verlag, Boston 2004, S. 149; c) R. Mistry, M. R. Dowling, R. A. J. Challiss, *Br. J. Pharmacol.* 2005, 144, 566–575.
- [35] a) D. Byrne, Richtlinie 2003/39/EG der Kommision vom 15. Mai 2003 zur Änderung der Richtlinie 91/414/EWG des Rates zwecks Aufnahme der Wirkstoffe Propineb und Propyzamid, ABI. L 124 vom 20.05.2003, S.30–32;
 b) C. Swithenbank, P. J. McNulty, K. L. Viste, J. Agr. Food. Chem. 1971, 19, 417–421.
- [36] R. Ekkebus, S. I. van Kasteren, Y. Kulathu, A. Scholten, I. Berlin, P. P. Geurink,
 A. de Jong, S. Goerdayal, J. Neefjes, A. J. Heck, D. Komander, H. J. Ovaa,
 J. Am. Chem. Soc. 2013, 135, 2867–2870.
- [37] S. Sommer, N. D. Weikart, U. Linne, H. D. Mootz, *Bioorg. Med. Chem.* 2013, 21, 2511–2517.
- [38] C. Arkona, J. Rademann, Angew. Chem. 2013, 125, 8368–8370; Angew. Chem., Int. Ed. 2013, 52, 8210–8212.
- [39] a) A. Ouerghui, H. Elamari, M. Dardouri, S. Ncib, F. Meganem, C. Girard, *React. Funct. Polym.* 2016, 100, 191–197; b) L. N. Goswami, Q. Cai, L. Ma, S. S. Jalisatgi, M. F. Hawthorne, *Org. Biomol. Chem.* 2015, 13, 8912–8918; c) B. Rajagopal, Y.-Y. Chen, C.-C. Chen, X.-Y. Liu, H.-R. Wang, P.-C. Lin, *J. Org. Chem.* 2014, 79, 1254–1264.

- [40] a) S. Pagoti, D. Dutta, J. Dash, *Adv. Synth. Catal.* 2013, 355, 3532–3538; b) D. N.
 Tran, C. Blaszkiewicz, S. Menuel, A. Roucoux, K. Philippot, F. Hapiot, E.
 Monflier, *Carbohydr. Res.* 2011, 346, 210–218.
- [41] B. M. Nilsson, U. Hacksell, J. Heterocycl. Chem. 1989, 26, 269–275.
- [42] D. A. Black, B. A. Arndtsen, Org. Lett. 2004, 6, 1107–1110.
- [43] D. A. Black, R. E. Bevenridge, B. A. Arndtsen, J. Org. Chem. 2008, 73, 1906– 1910.
- [44] V. S. Sudhir, R. B. N. Baig, S. Chandrasekaran, Eur. J. Org. Chem. 2008, 2423– 2429.
- [45] K. Buysse, J. Farard, A. Nikolaou, P. Vanderheyden, G. Vauquelin, D. S. Pedersen, D. Tourwé, S. Ballet, *Org. Lett.* 2011, 13, 6468–6471.
- [46] Y. Hu, R. Yi, X. Yu, X. Xin, C. Wang, B. Wan, Chem. Commun. 2015, 51, 15398–15401.
- [47] T. C. James, C. W. Judd, J. Chem. Soc. 1914, 105, 1427–1431.
- [48] H. Leuchs, G. Wulkow, H. Gerland, *Chem. Ber.* **1932**, *65*, 1586–1593.
- [49] W. Schwarze, K. Drauz, J. Martens, *Chemiker-Ztg.* **1987**, *111*, 149–153.
- [50] a) W. Arnold, *Dissertation*, Universität Oldenburg 1992; b) J. Jakob, *Dissertation*, Universität Oldenburg 1993; c) U. Kramer, *Dissertation*, Universität Oldenburg 1993; d) K. Johannes, *Dissertation*, Universität Oldenburg 2009.
- [51] M. Watzke, K. Schulz, K. Johannes, P. Ullrich, J. Martens, *Eur. J. Org. Chem.* 2008, 3859–3867; *Synfacts* 2008, *10*, 1038.
- [52] T. Stalling, J. Martens, *Synthesis* **2013**, *45*, 355–364.
- [53] D. Kröger, T. Schlüter, M. Fischer, I. Geibel, J. Martens, ACS Comb. Sci. 2015, 17, 202–207.
- [54] M. S. Singh, S. Chowdhury, *RSC Adv.* **2012**, *2*, 4547–4592.
- [55] I. Akritopoulou-Zanze, V. Gracias, S. W. Djuric, *Tetrahedron Lett.* 2004, 45, 8439–8441.
- [56] J. K. Pokorski, L. M. Miller Jenkins, H. Feng, S. R. Durell, Y. Bai, D. H. Appella, Org. Lett. 2007, 9, 2381–2383.
- [57] R. Huisgen, Angew. Chem. 1963, 75, 604–637.
- [58] M. Würdemann, J. Christoffers, *Tetrahedron* **2014**, *70*, 4640–4644.
- [59] M. Würdemann, J. Christoffers, *Eur. J. Org. Chem.* **2013**, 7421–7431.

- [60] T. Laue, A. Plagens, Namen- und Schlagwort-Reaktionen der Organischen Chemie, 5. Aufl., Vieweg+Teubner Verlag, Wiesbaden 2006, S. 60.
- [61] M. R. Aronoff, B. Gold, R. T. Raines, Org. Lett. 2016, 18, 1538–1541.
- [62] a) K. Ajay Kumar, Int. J. ChemTech Res. 2013, 5, 3032–3050; b) R. Sustmann, Heterocycles 1995, 40, 1–18.
- [63] R. A. Firestone, J. Org. Chem. 1968, 33, 2285–2290.
- [64] A. Michael, J. prakt. Chem. 1893, 48, 94–95.
- [65] R. Das. N. Majumdar, A. Lahiri, Int. J. Res. Pharm. Chem. 2014, 4, 467–472.
- [66] a) M. Viviano, C. Milite, D. Rescigno, S. Castellano, G. Sbardella, *RSC Adv.*2015, 5, 1268–1273; b) F. Richtling, D. Schneider, *Checkliste Arzneimittel A Z*,
 6. Aufl., Georg Thieme Verlag, Stuttgart 2013, S. 281.
- [67] W. Chen, H. Li, X. Gu, Y. Zhu, *Synlett* **2015**, *26*, 785–790.
- [68] S.-L.Dong, X.-C. Cheng, Acta Crystallogr., Sect. E: Struct. Rep. Online 2011, E67, 0769.
- [69] D. O. Tymoshenko, Eight-membered Rings with Three Heteroatom, in A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford 2008, Vol. 14, Kapitel 14.08, S. 475–516.
- [70] V. Boehmer, D. Mesheheryakow, I. Thondorf, M. Bolte, *Acta. Crystallogr., Sec. C* 2004, 60, o136.
- [71] G. Gilles, L. Gersanda, E. Lallemand, L. Renia, WO2007/074171 A1, 2007.
- [72] C. C. Musonda, D. C. Edlin, A. G. Boyle, WO2103/072903 A1, 2013.
- [73] A. V. Ivashchenko, A. P. Ilyin, V. M. Trifilenkov, S. A. Tsirulnikov, A. M. Shkirando, M. V. Churakova, I. O. Lokmakina, V. V. Potapov, A. I. Zamaletdinova, S. Y. Tkachenko, D. V. Kravchenko, A. V. Khvat, I. M. Okun, A. S. Kyselev, WO2007/117180 A1, 2007.
- [74] a) J. A. Butera, W. Spinelli, V. Anantharaman, N. Marcopulos, R. W. Parsons, I. F. Moubarak, C. Cullinan, J. F. Bagli, *J. Med. Chem.* 1991, *34*, 3212–3228; b) J. W. Ellingboe, W. Spinelli, M. W. Winkley, T. T. Nguyen, R. W. Parsons, I. F. Moubarak, J. M. Kitzen, D. Von Engen, J. F. Bagli, *J. Med. Chem.* 1992, *35*, 705–716.
- [75] S. Turner, M. Myers, B. Gadie, S. A. Hale, A. Horsley, A. J. Nelson, R. Pape, J. F. Saville, J. C. Doxey, T. L. Berridge, *J. Med. Chem.* 1988, *31*, 906–913.

- [76] T. Řezanka, L. O. Hanuš, V. M. Dembitsky, K. Sigler, Eur. J. Org. Chem. 2008, 1265–1270.
- [77] M. Watzke, *Dissertation*, Universität Oldenburg 2008.
- [78] V. Haridas, Y. K. Sharma, S. Sahu, R. P. Verma, S. Sadanandan, B. G. Kacheshwar, *Tetrahedron* 2011, 67, 1873–1884.
- [79] T. Stalling, *Dissertation*, Universität Oldenburg **2013**.
- [80] M. T. Schümperli, C. Hammond, I. Hermans, ACS Catal. 2012, 2, 1108–1117.
- [81] X. Cai, M. Sha, C. Guo, R. M. Pan, Asian J. Chem. 2012, 24, 3781–3784.
- [82] a) A. Taketoshi, T. Koizumi, T. Kanbara, *Tetrahedron Lett.* 2010, *51*, 6457–6459;
 b) B. l. Zhu, R. J. Angelici, *Chem. Commun.* 2007, *21*, 2157–2159.
- [83] a) W. J. Kim, K. Yamaguchi, N. Mizuno, Angew. Chem. 2008, 120, 9389–9391;
 Angew. Chem., Int. Ed. 2008, 47, 9249–9251; b) Y. Wang, H. Kobayashi, K. Yamaguchi, N. Mizuno, Chem. Commun. 2012, 48, 2642–2644.
- [84] G. Jiang, J. Chen, J.-S. Huang, C.-M. Che, Org. Lett. 2009, 11, 4568–4571.
- [85] K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, Angew. Chem. 2003, 115, 4211–4216; Angew. Chem., Int. Ed. 2003, 42, 4077–4082.
- [86] a) E. Ruijter, R. V. A. Orru, Drug Discovery Today: Technol. 2013, 10, e15–e20;
 b) Z.-Q. Liu, Curr. Org. Synth. 2015, 11, 25–30; c) W. Zhao, F.-E. Chen, Curr. Org. Synth. 2012, 9, 873–897.
- [87] W. J. Humphlett, R. W. Lamon, J. Org. Chem. 1964, 29, 2146–2148.
- [88] S.-F. Gan, J.-P. Wan, C.-R. Sun, *Synlett* **2010**, 973–975.
- [89] T. Stalling, W. Saak, J. Martens, Eur. J. Org. Chem. 2013, 8022–8032.
- [90] D. Kröger, F. Brockmeyer, C. Kahrs, Org. Biomol. Chem. 2015, 13, 7223–7229.
- [91] T. Stalling, J. Pauly, D. Kröger, J. Martens, *Tetrahedron* **2015**, *71*, 8290–8301.
- [92] a) A. Ziyaei Halimehjani, J. Martens, T. Schlüter, *Tetrahedron* 2016, 72, 3958–3965; b) A. Ziyaei Halimehjani, K. Marjani, A. Ashouri, *Green Chem.* 2010, 12, 1306–1310; c) B. C. Ranu, A. Saha, S. Banerjee, *Eur. J. Org. Chem.* 2008, 519–523; d) F. Dehmel, S. Weinbrenner, H. Julius, T. Ciossek, T. Maier, T. Stengel, K. Fettis, C. Burkhardt, H. Wieland, T. Beckers, *J. Med. Chem.* 2008, 51, 3985–4001; e) P. Salice, M. Mauri, M. Castellino, M. De Marco, A. Bianchi, A. Virga, A. Tagliaferro, R. Simonutti, *Chem. Commun.* 2013, 49, 8048–8050; f) K. R. Prasad, B. Swain, *Tetrahedron: Asymmetry* 2011, 22, 1261–1265; g) A. Kruithof, M. L. Ploeger, E. Janssen, M. Heliwell, F. J. J. de Kanter, E. Ruijter, R. V. A. Orru,

Molecules **2012**, *17*, 1675–1685; h) P.A. Ottersbach, P. W. Elsinghorst, H.-G. Häcker, M. Gütschow, *Org. Lett.* **2010**, *12*, 3662–3665; i) Y.-D. Gong, T. Lee, *J. Comb. Sci.* **2010**, *12*, 393–409.

- [93] N. Azizi, F. Aryanasab, M. R. Saidi, Org. Lett. 2006, 8, 5275–5277.
- [94] a) A. Ziyaei Halimehjani, M. Hajilou, S. Shakori, V. Amani, B. Notash, M. M. Hashemi, *Tetrahedron Lett.* 2015, 56, 7124–7127; b) N. Azizi, B. Pourhasan, F. Aryanasab, M. R. Saidi, *Synlett* 2007, 2797–2800.
- [95] N. Azizi, F. Aryanasab. L. Torkiyan, A. Ziyaei, M. R. Saidi, J. Org. Chem. 2006, 71, 3634–3635.
- [96] a) A. Ziyaei Halimehjani, M. H. Shayegan, M. M. Hashemi, B. Notash, *Org. Lett.* **2012**, *14*, 3838–3841; b) A. Ziyaei Halimehjani, H. P. Zanussi, M. A. Ranjbari, *Synthesis* **2013**, *45*, 1483–1488.
- [97] K. C. Majumdar, D. Ghosh, S. Ponra, B. Roy, Synthesis 2012, 44, 87–92.
- [98] F.-B. Han, Z.-M. Cheng, R.-T. Li, Synlett 2009, 648–650.
- [99] N. Azizi, M. Khajeh, M. Hasani, S. Dezfooli, *Tetrahedron Lett.* 2013, 54, 5407–5410.
- [100] X.-J. Wang, H.-W. Xu, L.-L. Guo, J.-X. Zheng, B. Xu, X. Guo, C.-X. Zheng, H. M. Liu, *Bioorg. Med. Chem. Lett.* 2011, 21, 3074–3077.
- [101] D. Buac, S. Schmitt, G. Ventro, F. Rani Kona, Q. Ping Dou, *Mini-Rev. Med. Chem.* 2012, 12, 1193–1201.
- [102] J.-L. Ren, E. Zhang, X.-W. Ye, M.-M. Wang, B. Yu, W.-H. Wang, Y.-Z. Guo,
 H.-M. Liu, *Bioorg. Med. Chem. Lett.* 2013, 23, 4154–4156.
- [103] a) S. Kanchi, P. Singh, K. Bisetty, Arabian J. Chem. 2014, 7, 11–25; b) M. Marinovich, B. Viviani, V. Capra, E. Corsini, L. Anselmi, G. D'Agostino, A. Di Nucci, M. Binaglia, M. Tonini, L. C. Galli, Chem. Res. Toxicol. 2002, 15, 26–32; c) I. Rogachev, V. Kampel, V. Gusis, N. Cohen, J. Gressel, A. Warshawsky, Pestic. Biochem. Physiol. 1998, 60, 133–145.
- [104] J. D. Berry, R. T. M. de Rosales, P. Charoenphun, P. J. Blower, *Mini-Rev. Med. Chem.* 2012, 12, 1174–1183.
- [105] a) K. Oliver, A. J. P. White, G. Hogarth, J. D. E. T. Wilton-Ely, *Dalton Trans.* **2011**, 40, 5852–5864; b) A. Ziyaei Halimehjani, K. Marjani, A. Ashouri, V. Amani, *Inorg. Chim. Acta* **2011**, 373, 282–285.
- [106] a) A. Duréault, Y. Gnanou, D. Taton, M. Destarac, F. Leising, Angew. Chem.

2003, 115, 2975–2978; Angew. Chem., Int. Ed. 2003, 42, 2869–2872; b) M.
Bathfield, F. D'Agosto, R. Spitz, M.-T. Charreyre, T. Delair, J. Am. Chem. Soc.
2006, 128, 1546–2547.

- [107] a) A. Ziyaei Halimehjani, L. Hasani, M. A. Alaei, M. R. Saidi, *Tetrahedron Lett.* **2016**, 57, 833–886; b) E. A. Hassan, S. E. Zayed, *Phosphorus, Sulfur Silicon Relat. Elem.* **2014**, 189, 300–323.
- [108] T. Stalling, J. Pauly, M. Schmidtmann, J. Martens, *Eur. J. Org. Chem.* 2014, 833–843.
- [109] K. Johannes, J. Martens, *Tetrahedron* **2010**, *66*, 242–250.
- [110] a) P. Gaspari, T. Banjerjee, W. P. Malachowski, A. J. Muller, G. C. Prendergast, J. DuHadaway, S. Bennett, A. M. Donovan, J. Med. Chem. 2006, 49, 684–692; b)
 E. Delfourne, Mini-Rev. Med. Chem. 2012, 12, 988–996; c) M. S. C. Pedras, V. K. Sarma-Mamillapalle, J. Agric. Food. Chem. 2012, 60, 7792–7798; d) M. S. C. Pedras, Z. Minic, Bioorg. Med. Chem. 2014, 22, 459–467.
- [111] T. Schlüter, A. Ziyaei Halimehjani, D. Wachtendorf, M. Schmidtmann, J. Martens, ACS Comb. Sci., akzeptiert
- [112] K.-J. Lee, J. U. Jeong, D. O. Choi, S. H. Kim, H. Park, Synthesis 1991, 494–496.
- [113] L. Novák, G. Hornyánszky, J. Rohály, P. Kolonits, C. Szántay, *Pestic. Sci.* 1997, 49, 85–89.
- [114] C. N. Rao, F. A. Khan, Org. Biomol. Chem. 2015, 13, 2768–2775.
- [115] A. Ziyaei Halimehjani, K. Marjani, A. Ashouri, *Tetrahedron Lett.* 2012, 53, 3490–3492.
- [116] A. Garcia, R. C. Machado, R. M. Grazul, M. T. Paz Lopes, C. C. Corrêa, H. F. Dos Santos, M. V. de Almeida, H. Silva, J. Biol. Inorg. Chem. 2016, 21, 275–292.
- [117] R. S. Corrêa, M. M. da Silva, A. E. Graminha, C. S. Meira, J. A. F. dos Santos, D. R. M. Moreira, M. B. P. Soares, G. Von Poelhsitz, E. E. Castellano, C. Bloch Jr., M. R. Cominetti, A. A. Batista, *J. Inorg. Biochem.* 2016, *156*, 153–163.
- [118] a) Y. Nagao, Y. Hagiwara, T. Kumagai, M. Ochiai, T. Inoue, K. Hashimoto, E. Fujita, *J. Org. Chem.* 1986, *51*, 2391–2393.
- [119] I. Berlin, R. Zimmer, H. M. Thiede, C. Payan, T. Hergueta, L. Robin, A. J. Puech, *Br. J. Clin. Pharmac.* **1990**, *30*, 805–816.
- [120] N. Chen, H. Du, W. Liu, S. Wang, X. Li, J. Xu, Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 112–122.

- [121] G. R. Fulmer, A. J. M. Miller, N. H. Sherdan, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176–2179.
- [122] M. Boni, F. Ghelfi, U. M. Pagnoni, A. Pinetti, Synth. Commun. 1993, 23, 1915– 1921.
- [123] M. Keenan, M. J. Abbott, P. W. Alexander, T. Armstrong, W. M. Best, B. Berven, A. Botero, J. H. Chaplin, S. A. Charman, E. Chatelain, T. W. Von Geldern, M. Kerfoot, A. Khong, T. Nguyen, J. D. McManus, J. Morizzi, E. Ryan, I. Acandale, A. R. Thompson, S. Z. Wang, K. L. White, *J. Med. Chem.* 2012, 55, 4189–4204.
- [124] M. G. Hummersone, D. Cousin, WO2012085501 A1, 2012.
- [125] Y.-B. Chen, J.-L. Li, X.-S. Shao, X.-Y. Xu, Z. Li, Chin. Chem. Lett. 2013, 24, 673–676.

Lebenslauf

Persönliche Daten

Name:	Torben Schlüter
Geburtsdatum/ -ort:	10.08.1986 in Neumünster
Familienstand:	verheiratet
Nationalität:	deutsch
Berufstätigkeiten	
Seit 12/2013	Wissenschaftlicher Mitarbeiter am Institut für Chemie
	der Carl von Ossietzky Universität Oldenburg
02/2013 – 10/2013,	Wissenschaftliche Hilfskraft am Institut für Chemie
07/2012 - 08/2012,	der Carl von Ossietzky Universität Oldenburg
12/2011 - 02/2012	
09/2007 - 05/2008	Zivildienst in der Einrichtung Eiderheim Wohn- und
	Werkstätten für behinderte Menschen
Hochschulbildung	
seit 12/2013	Doktorand im Arbeitskreis von Prof. Dr. Jürgen
	Martens
04/2013 - 11/2013	Masterarbeit im Arbeitskreis von Prof. Dr. Jür-
	gen Martens, Universität Oldenburg
08/2012 - 12/2012	Auslandsaufenthalt, University of Wyoming, USA
2011 - 2013	Studiengang Chemie / Fach-Master an der Carl von
	Ossietzky Universität Oldenburg
04/2011 - 07/2011	Bachelorarbeit im Arbeitskreis von Prof. Dr. Frank
	Rößner, Universität Oldenburg
2008 - 2011	Studiengang Chemie / Fach-Bachelor an der Carl von
	Ossietzky Universität Oldenburg
Schulausbildung	
1997 – 2007	Gymnasium Alexander-von-Humboldt-Schule,
	Neumünster
1993 – 1997	Grundschule im Schulzentrum Einfeld, Neumünster

Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg festgestellt sind, befolgt habe.

Oldenburg, Juni 2016