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Abstract 

Positive signal-to-noise ratios (SNRs) characterize listening situations that are most relevant 
for hearing-impaired listeners in daily life and need to be considered when evaluating hearing 
aid algorithms. Since this is difficult to assess using perception measurements such as the 
Acceptable Noise Level test or an adjustment method, a speech-in-noise test was developed in 
which the background noise is presented at fixed positive SNRs and the speech rate is adjusted 
to alter speech recognition. In an initial study, both a uniform and a non-uniform algorithm 
were used to compress the sentences of the German Oldenburg Sentence Test (OLSA) at dif-
ferent speech rates. For normal-hearing participants, measurements of time-compressed sen-
tences in background noise at different SNRs confirmed decreasing recognition with increasing 
speech rate. For the application in speech-in-noise tests, subjective and objective measures 
indicated a clear advantage of the uniform algorithm in comparison to the non-uniform algo-
rithm. Therefore, the uniform algorithm was selected for further research. In a second study, 
learning effects were analyzed using original and time-compressed speech in noise. Normal-
hearing and hearing-impaired participants completed repeated measurements of the OLSA 
during successive sessions. The largest improvements in speech recognition thresholds were 
observed within the first measurements of the first session, indicating a rapid initial adaptation 
phase. Additional inter-session improvements indicated a longer phase of ongoing learning. 
Generally, observed effects were larger for time-compressed than for original speech, but the 
taking into account of learning effects is recommended for all OLSA versions. Based on these 
results, a procedure for adaptive adjustment of the speech rate (i.e. the time compression of 
the speech material) was developed in a third study. Two methods, which differed in adaptive 
procedure and step size, were compared for younger normal-hearing and older hearing-impaired 
participants. Analysis of the measurements with regard to list length and estimation strategy 
for thresholds resulted in a practical method for measuring the time compression for 50% 
recognition in background noise. In a fourth study, the procedure was used to shift the SNR 
for the evaluation of hearing aid algorithms towards fixed positive values. For hearing-impaired 
participants, recognition scores were measured with and without two different single-micro-
phone noise reduction algorithms and using speech individually compressed in time at positive 
SNRs. Results showed a high potential of the method for discriminating across algorithms at 
positive SNRs. Even though objective measurements showed an improvement for both algo-
rithms, a benefit for the participants was only obtained with the algorithm that used a priori 
knowledge of the noise. Taken together, the methods developed and validated here were shown 
to extend the available repertoire for testing speech in noise and for hearing aid benefit in 
humans to a range of ecologically relevant SNR values.  
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Zusammenfassung 

Positive Signal-Rausch-Verhältnisse (SNR) charakterisieren Hörsituationen, die im täglichen 
Leben von Schwerhörigen oft vorkommen. Deshalb ist es wichtig, bei der Evaluation von Hör-
geräte-Algorithmen diese Gegebenheiten besonders zu berücksichtigen. Perzeptive Messungen 
wie der Acceptable Noise Level Test oder eine Einregelungsmethode lösen dies Problem nicht. 
So wurde ein Sprachverständlichkeitstest entwickelt, bei dem das Hintergrundgeräusch bei fes-
ten positiven SNRs präsentiert und die Sprechrate eingestellt wird, um das Sprachverstehen 
zu variieren. In einer ersten Studie wurden ein uniformer und ein nicht-uniformer Algorithmus 
verwendet, um die Sätze des deutschen Oldenburger Satztests (OLSA) zu komprimieren und 
sie dann in verschiedenen Sprechraten darbieten zu können. Messungen zeitkomprimierter 
Sprache präsentiert mit Hintergrundgeräusch bestätigen, dass bei normalhörenden Probanden 
mit zunehmender Sprechrate die Verständlichkeit abnimmt. Subjektive und objektive Messun-
gen zeigen für die Anwendung in einem Sprachverständlichkeitstest einen deutlichen Vorteil 
des uniformen Algorithmus im Vergleich zum nicht-uniformen Algorithmus. Für die weiteren 
Untersuchungen wurde daher der uniforme Algorithmus ausgewählt. In einer zweiten Studie 
wurde untersucht, ob bei originaler und bei zeitkomprimierter Sprache im Störgeräusch Lern-
effekte festzustellen sind. Dazu führten normalhörende und schwerhörige Probanden Wieder-
holungsmessungen des OLSA in mehreren Sitzungen durch. Die größten Verbesserungen der 
Sprachverständlichkeitsschwellen wurden in den ersten Messungen der ersten Sitzung beobach-
tet. Sie weisen auf eine schnelle frühe Anpassungsphase hin. Zusätzliche zwischen den Sitzun-
gen auftretende Verbesserungen sind ein Zeichen für längeres anhaltendes Lernen. Generell 
sind die beobachteten Effekte für zeitkomprimierte Sprache größer als für originale Sprache. 
Die Berücksichtigung von Lerneffekten wird jedoch für alle OLSA-Versionen empfohlen. Ba-
sierend auf diesen Ergebnissen wurde in einer dritten Studie ein Verfahren für die adaptive 
Einregelung der Sprechrate (d.h. der Zeitkompression des Sprachmaterials) entwickelt. Zwei 
Methoden, die sich im adaptiven Verfahren und der Schrittgröße unterschieden, wurden mit 
jungen normalhörenden und älteren schwerhörigen Probanden durchgeführt und verglichen. 
Analysen der Messungen berücksichtigten die Listenlänge und die Schwellenschätzung und 
ergaben eine praktikable Methode für die Messung der Zeitkompression, die für das Verstehen 
von 50% der Sprache notwendig ist. In einer vierten Studie wurden diese Methoden verwendet, 
um für die Evaluation von Hörgeräte-Algorithmen den SNR zu festen positiven Werten zu 
verschieben. Mit schwerhörigen Probanden wurde die Verständlichkeit ohne und mit zwei un-
terschiedlichen einkanaligen Störgeräuschreduktionsalgorithmen gemessen unter Verwendung 
von individuell zeitkomprimierter Sprache bei festen positiven SNR. Die Ergebnisse zeigen ein 
hohes Potential dieser Methode, zwischen den Algorithmen bei positiven SNR zu unterschei-
den. Obwohl objektive Untersuchungen eine Verbesserung durch beide Algorithmen zeigten, 
wurde ein Nutzen für die Probanden nur bei dem Algorithmus erreicht, der a-priori-Wissen 
des Hintergrundgeräusches nutzte. Alle Ergebnisse zeigen, dass die hier entwickelte und vali-
dierte Methode das Repertoire der Prüfmethoden von Sprache im Hintergrundgeräusch und 
des Hörgerätenutzens für den Menschen auf einen ökologisch relevanten SNR-Bereich erweitert.  
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1  Introduction – Objective and outline 

1 
Introduction – Objective and outline 

Everyday verbal communication often occurs in noisy environments. Among other physical 
characteristics such as, e.g., the spectrum or overall sound level, listening situations can be 
described by the signal-to-noise ratio (SNR). The SNR is the difference between the level of 
the speech signal and that of the background noise. Analysis of listening situations containing 
speech frequently show positive SNRs (Olsen, 1998; Smeds et al., 2015). That is, in daily 
communication, the speech signal is often at a higher level than the background noise.  

Speech perception has an important role in daily communication and is frequently affected by 
background noise and by a variety of other factors, for instance the acoustics of the hearing 
situation and the hearing ability of the listener. For studies of speech perception in various 
hearing situations, different aspects are usually analyzed, such as quality, comprehension and 
recognition of speech. In this context, Kondo (2012) describes speech quality as being based 
on the subjective evaluation of speech samples. Listeners were, for example, asked to rate the 
overall quality on a one-dimensional scale or to use a multidimensional scale and rate aspects 
related to the quality such as roughness or dullness. In contrast, comprehension measurements 
test the ability to understand the message of utterances or words, and participants have to 
answer questions related to the content of the samples presented. For example, the participants 
could perform a lexical decision task in which they have to decide whether the signal presented 
was a real word or a semantically correct sentence (e.g. Banai and Lavner, 2012). Further 
examples ask for details in the samples presented such as “who was performing an action?” 
(e.g., Wingfield et al., 2006; Carroll and Ruigendijk, 2013). In comprehension tasks, reaction 
times or the number of correct answers are usually compared between different hearing situa-
tions. Moreover, speech recognition is often analyzed to better understand speech perception. 
To test speech recognition, especially in background noise, speech-in-noise tests are a common 
approach in many studies. Examples of those tests are digit triplet tests (Smits et al., 2004; 
Zokoll et al., 2012), sentence tests presenting short meaningful sentences (Kollmeier and Wes-
selkamp, 1997; Nilsson et al., 1994; Plomp and Mimpen, 1979), or the matrix test using limited 
speech material of the same structure (e.g., Wagener et al., 1999c; Ozimek et al., 2010; Hoch-
muth et al., 2012). During these tests, participants listen to the speech and have to repeat 
what they perceived. To compare hearing situations, the number of correct repetitions is 
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counted. However, depending on the correctly repeated words, the speech level (or the back-
ground noise level) is often adaptively adjusted towards a certain threshold, e.g., the SNR for 
which the participant can understand 50% (or, e.g., 80%) of the words. This threshold is called 
speech recognition threshold (SRT). For German speech-in-noise tests, e.g., the Oldenburg 
sentence test, the mean SRT is at about -7 dB SNR for normal-hearing participants (Wagener 
et al., 1999a). Even hearing-impaired participants with hearing thresholds ranging between 10 
and 100 dB HL reach a mean SRT of about –3 dB SNR (Wagener and Brand, 2005).  

When compared to the above-mentioned positive SNR of everyday verbal communication, SRT 
results of speech-in-noise tests do not present ecologically relevant hearing situations. However, 
these tests have advantages for the analysis of speech perception, since they usually show a 
steep discrimination function (e.g., Wagener et al., 1999a) and yield a high reliability (e.g., 
Wagener et al., 1999a; Wagener and Brand, 2005). Furthermore, Naylor (2010) described the 
tests’ results as convenient for statistical analysis and carrying out the test is relatively fast. 
As a result, speech-in-noise tests are applied in clinical studies for diagnostical purposes and 
also in scientific studies of speech recognition. In scientific studies, these tests are used, for 
example, to analyze effects of hearing situations (such as with different background noises, 
with different speech material or with spatial separation of sound sources). Speech-in-noise 
tests are also of interest for the application in hearing aid development regarding the analysis 
of speech recognition as depending on hearing aids and their algorithms. 

Hearing aid developers are aware of the importance of speech communication and the difficul-
ties occurring for communication in noise. These difficulties arise because hearing impairment 
is characterized by a variety of deficits such as decreased audibility, decreased dynamic range, 
decreased frequency resolution, decreased temporal resolution and their diverse interactions 
(Dillon, 2012). Apart from providing, e.g., frequency-dependent gain and dynamic range com-
pression, hearing aid developers implement different algorithms into the hearing aids to im-
prove recognition, ease of communication and listening comfort. They make use of algorithms 
such as beamforming to extract sounds (e.g., a single speaker in a noisy background) but also 
use knowledge about binaural processing to facilitate communication of hearing-impaired lis-
teners (for an overview of digital signal processing in hearing aids see Holube et al., 2014a). 
Optimally, hearing aids and their algorithms are able to adapt to the everyday life of the user, 
which is full of varying hearing situations. In addition, many algorithms show processing de-
pendent on the SNR of the current hearing situation. Prominent examples are single-micro-
phone noise reduction algorithms, which are also implemented to improve noisy communication 
situations. In the context of this thesis, they were used to illustrate the SNR’s role and the 
limitations of some “typical” hearing aid algorithms.  

Single-microphone noise reduction algorithms receive only the mixed speech and noise signal 
as their input and have to estimate the background noise out of the mixed signal. Using a gain 
rule based on certain statistical assumptions, they suppress those parts of the input signal that 
contain most of the noise. As a result, even though the time- and frequency-resolved SNR 
might not be changed by this pure manipulation in local intensity, an improvement in the 
overall SNR will result in the ideal case of a perfect SNR estimate. However, the separation of 
speech and background noise is difficult, especially if the background noise has a higher level 
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than the speech. Therefore, for some single-microphone noise reduction algorithms, overall 
SNR improvements will mainly result at positive SNRs and the algorithms introduce increasing 
distortions with decreasing SNR (as described by, e.g., Marzinzik, 2000; Fredelake et al., 2012; 
Marzinzik and Kollmeier, 2002; Neher et al., 2014a; Brons et al., 2014). Frequently, speech 
recognition tests do not show improvement after single-microphone noise reduction processing 
(e.g., Brons et al., 2013, 2014; Hu and Loizou, 2007; Neher et al., 2014b). In general, the 
application of speech-in-noise tests for the analysis of hearing aids and their algorithms creates 
problems. For the evaluation of hearing aids and their algorithms, Naylor (2010) warned of the 
difficulties that may be produced by variable SNR resulting from SRT measurements. In ad-
dition, low or even negative SRTs (meaning a low or even negative SNR at the input of an 
algorithm) are challenging for some single-microphone noise reduction algorithms (e.g., Luts 
et al., 2010; Fredelake et al., 2012; Brons et al., 2014). Finally, the comparison of normal-
hearing and hearing-impaired listeners’ results are difficult if they are obtained at individual 
SRT with hearing aid algorithms that are usually SNR-dependent in their processing. 

The combination of all three factors – the need for considering everyday communication situ-
ations, speech-in-noise tests, and SNR-dependent processing of some hearing aid algorithms – 
points out the importance of ecologically relevant positive SNRs in studies using speech in 
background noise. Generally, this makes sense not only for diagnostic purposes but also for 
clinical and scientific research with objectives such as analyzing speech recognition, evaluating 
hearing aids and hearing aid algorithms, as well as for documenting the rehabilitative success 
of hearing aids.  

The problems described above imply the following requirement for a speech test in background 
noise: Speech and background noise need to be presented at fixed positive SNRs. The fixed 
SNR can be used to consider the SNR dependent processing of the hearing aid algorithms and 
furthermore allows for the comparison of the hearing ability of normal-hearing and hearing-
impaired listeners. In addition, the positive SNR permits evaluating everyday communication 
situations and, e.g., maximal SNR improvement of single-microphone noise reductions.  

The acceptable noise level test is a procedure that partly meets these requirements (for an 
overview see Schlüter and Holube, 2010; Olsen and Brännström, 2014). This procedure answers 
the question as to how much background noise listeners tolerate while following speech (Na-
belek et al., 1991). In this test, participants have to adjust maximum (‘too loud’), minimum 
(‘too soft’) and comfortable levels (Most Comfortable Level, MCL) of a single speech signal. 
Thereafter, noise is presented, together with speech at MCL, and the subjects modify the noise 
in the same way as the speech to a maximum (‘loud, until you cannot understand the speech’), 
minimum (‘soft, until the speech is very clear and you can follow the story easily’) and ac-
ceptable level (‘to the most noise that you would be willing to “put-up-with” and still follow 
the sentences for a long period of time without becoming tense or tired’). The acceptable level 
is noted as Background Noise Level (BNL). The MCL and BNL are used to calculate a SNR, 
called Acceptable Noise Level (ANL). This procedure was characterized by Nabelek (2005) as 
a simple method that tends to achieve positive ANL values. Positive ANL values are reached 
if the listeners adjust the noise to a smaller level compared to the level of speech and implies 
little acceptance of background noise. Measurements of the ANL showed large differences for 
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individual listeners. Nabelek (2005) described ANL values ranging from -2 to 29 dB SNR for 
hearing-impaired listeners and from -2 to 38 dB SNR for normal-hearing listeners. The mean 
interval for both groups was at positive SNRs of 10 to 11 dB. The large interindividual variance 
of the results shows that the subjectively adjusted levels for the speech and noise signals are 
prone to subjective, individual criteria (Olsen and Brännström, 2014), which are presumably 
not transferable between listeners. Furthermore, the accuracy and precision of the test was 
controversially discussed (Olsen and Brännström, 2014). Differences of the ANL between par-
ticipants were also measured by Schlüter (2007), who investigated single-microphone noise 
reduction algorithms. For realistic algorithms, only normal-hearing participants obtained an 
improvement of the ANL compared to situations without processing. For the same situations, 
hearing-impaired participants showed no improvement. Schlüter (2007) explained this result 
with the high interindividual variability in the ANL and the related varying SNR improvement. 

Wittkop (2001) and Wittkop et al. (1997) developed a subjective comparison method to be 
performed at fixed positive SNRs. The listeners’ task is to adjust the speech recognition of a 
test signal (mixed speech and noise) comparable to a reference signal that is processed, e.g., 
with a noise reduction algorithm. Therefore, the listener modifies the SNR of the test signal, 
and the SNR improvement due to processing can be measured. In contrast to the ANL test, 
this procedure presents an anchor (reference signal) and thus reduces the variability of the 
participants’ responses. However, participants perform the comparison using individual criteria 
to account for the processing differences perceived between the reference and the test signal, 
resulting in interindividual differences. Schlüter et al. (2014a, see Appendix A) conducted this 
procedure at three different SNRs (individual SRT, 5 dB and mean of both values). Addition-
ally, they used the shadow-filtering method, which was proposed by Kallinger et al. (2009) in 
combination with a speech-in-noise test. For shadow filtering, speech and noise signals were 
mixed at 5 dB SNR and the resulting signal was processed by the noise reduction algorithm. 
Coefficients calculated by the algorithm for the mixed signal were also used to filter the two 
signal components of the mixed signal separately. Then, the filtered signal components were 
mixed at the SNR of the individual SRT and presented to the participant. As a result, partic-
ipants listened to reference signals at negative SNRs, although the noise reduction was applied 
at positive SNRs. Results showed that realistic noise reduction did not achieve any improve-
ment at different SNRs without shadow filtering. Only the shadow-filtering method obtained 
significant improvements of the SNR due to the noise reduction algorithm. However, this sub-
jective comparison method using shadow filtering cannot be applied to hearing aids, due to 
the essential a priori knowledge about the unmixed parts of the signal. Schlüter et al. (2014a) 
also analyzed differences of the variances to show the difficulty of the adjustment method at 
different SNRs. The variance increased with SNR presented in the reference signal. This means 
that participants performed the adjustment more easily for reference signals presented at an 
SNR of the individual SRT, as compared to presentations at a positive SNR of 5 dB. This 
indicates that in the adjustment method, participants were uncertain about the application of 
their criteria, especially for highly intelligible speech (at positive SNRs).  

The procedures described so far lack either the possibility of presenting fixed positive SNRs 
and/or participants show difficulties in building reliable, comparable, subjective criteria for 
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their assessment, due to the procedures’ tasks. An investigation of a speech test with fast 
speech in quiet (Versfeld and Dreschler, 2002) demonstrated a way to overcome the problems 
and led to the idea of this thesis: to modify a speech-in-noise test and adaptively adjust the 
rate of speech presented in background noise at fixed SNRs. It is expected that this approach 
offers participants a simple task (repetition of the speech they perceived) and will also permit 
variation of the recognition rate. Hence, a threshold measurement becomes feasible, just like 
the adjustment of the SNR in original speech-in-noise tests. To develop this procedure, different 
aspects were investigated.  

In order to increase the speech rate of existing recordings, the signals are compressed in time 
while the pitch of the speech is preserved. In that process, time-compression algorithms mim-
icking natural fast speech either vary the compression rate according to the phonetical content 
of the speech (non-uniform compression) or compress the signal uniformly. To select an algo-
rithm for a speech-in-noise test with time-compressed speech, these time-compression algo-
rithms have to be compared and the comparison should consider the alterations of perceptually 
relevant cues for understanding speech in noise. Selection criteria therefore include, e.g., devi-
ations from the targeted compression across time, changes of phoneme durations, long-term 
spectra, and modulation spectra. Additionally, recognition of speech compressed in time with 
different algorithms should be compared. Hence, the speech has to be presented in background 
noise and the relation of time compression and SNR to recognition has to be investigated. 
Also, studies of recognition scores are expected to show the time compression necessary to 
reach 50% recognition at positive SNRs. Furthermore, results can indicate factors influencing 
the reliability of a speech-in-noise test with time-compressed speech. All these aspects are 
considered in Chapter 2 and include the objective comparison, as well as the measurement 
of speech recognition scores of speech compressed in time with a uniform and a non-uniform 
algorithm at different SNRs. 

Besides the selection of a time-compression algorithm and the relation of time compression 
and recognition, learning effects for time-compressed speech have to be considered for studying 
a speech-in-noise test. Recognition for time-compressed speech improves, the longer the par-
ticipant listens to this kind of speech processing (e.g., Gordon-Salant and Friedman, 2011). 
This adaptation or learning effect comes in addition to the well-known learning effect of speech-
in-noise tests that use a matrix structure of the sentences (Wagener et al., 1999a). Hence, 
learning effects of time-compressed matrix sentences are studied and permit comparison to 
original sentences. Chapter 3 describes these studies, discusses recommendations for training 
procedures in speech audiometry and relates the results to a theoretical model for learning. 

For the investigation of a speech-in-noise test presenting fixed positive SNRs, two different 
procedures for the adaptive presentation of time compression in a speech-in-noise test are 
compared in Chapter 4. These procedures are based on adaptive procedures introduced by 
Versfeld and Dreschler (2002) as well as Brand and Kollmeier (2002). Results are discussed in 
relation to two factors: the stimulus placement procedure and the strategy for estimating the 
resulting threshold of the test. This leads to the selection of an adaptive procedure. The relia-
bility of this approach is studied for groups of participants that differ in age and in hearing 
loss. In consideration of learning effects, training protocols are recommended. 
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Then, the speech-in-noise test developed is applied to the study of hearing aid algorithms that 
show SNR-dependent processing. The procedure is used to individually adjust the time-com-
pressed speech and allows for the individual adaptation of the test difficulty for recognition 
measurements with and without noise reduction algorithms. Chapter 5 shows the results and 
clarifies whether ceiling effects of recognition scores are avoided with time-compressed speech 
even though speech is presented at positive fixed SNRs. Furthermore, the SNRs presented 
allow for beneficial processing, which is verified by objective SNR improvement. Recognition 
results for two different single-microphone noise reduction algorithms are measured and dis-
cussed.  

In Chapter 6, general results of studies are summarized with regard to their discussions and 
conclusions. Furthermore, findings of previous studies are related to perspectives for future 
work. 
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2  Intelligibility of time-compressed speech 

2 
Intelligibility of time-compressed speech: The 
effect of uniform versus non-uniform time-
compression algorithms 

For assessing hearing aid algorithms, a method is sought to shift the thresh-
old of a speech-in-noise test to (mostly positive) signal-to-noise ratios 
(SNRs) that allow discrimination across algorithmic settings and are most 
relevant for hearing-impaired listeners in daily life. Hence, time-compressed 
speech with higher speech rates was evaluated to parametrically increase the 
difficulty of the test while preserving most of the relevant acoustical speech 
cues. A uniform and a non-uniform algorithm were used to compress the 
sentences of the German Oldenburg Sentence Test at different speech rates. 
In comparison, the non-uniform algorithm exhibited greater deviations from 
the targeted time compression, as well as greater changes of the phoneme 
duration, spectra, and modulation spectra. Speech intelligibility for fast Ol-
denburg sentences in background noise at different SNRs was determined 
with 48 normal-hearing listeners. The results confirmed decreasing intelligi-
bility with increasing speech rate. Speech had to be compressed to more 
than 30% of its original length to reach 50% intelligibility at positive SNRs. 
Characteristics influencing the discrimination ability of the test for assessing 
effective SNR changes were investigated. Subjective and objective measures 
indicated a clear advantage of the uniform algorithm in comparison to the 
non-uniform algorithm for the application in speech-in-noise tests. 

 

Adapted from:  
Schlueter, A., Lemke, U., Kollmeier, B., Holube, I. (2014) “Intelligibility of time-compressed speech: 
The effect of uniform versus non-uniform time-compression algorithms”, J. Acoust. Soc. Am., 135, 1541-
1555.  
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2.1 Introduction 

Speech-in-noise tests like the Hearing in Noise Test (Nilsson et al., 1994) and the German 
Oldenburg or Göttingen Sentence Tests (Wagener et al., 1999a; Kollmeier and Wesselkamp, 
1997) present quite simple hearing situations with speech in a stationary background noise. 
They can be used to assess the influence of speech level or speech-to-noise ratio on intelligibility. 
The signal-to-noise ratio (SNR), where the listener understands 50% of the speech, is measured 
and documented as the speech recognition threshold (SRT). Those speech-in-noise tests typi-
cally yield negative SRTs even for hearing-impaired listeners and exhibit a steep slope of the 
discrimination function (between approximately 10%/dB and 20%/dB) such that the SNR 
range where the test is sensitive to small changes of the speech level is limited. Wagener and 
Brand (2005), for example, found a mean SRT of about -3 dB SNR for a group of listeners 
with pure-tone hearing thresholds ranging from 10 dB hearing level (HL) to more than 100 dB 
HL. In combination with the slope of 18%/dB for the discrimination function, this limits the 
operational test range (i.e., the SNR range where such a test discriminates best between two 
conditions with different effective SNRs) between about -9 dB (i.e., approximately 20% intel-
ligibility for normal-hearing listeners with a mean SRT of about -7 dB; Wagener et al., 1999a) 
and about -1 dB (i.e., approximately 80% intelligibility for hearing-impaired listeners). 

For the evaluation of hearing aid algorithms, however, speech-in-noise tests are required that 
are able to discriminate across settings of the respective algorithms when operating at positive 
SNRs for several reasons: First, several hearing aid algorithms are most effective at positive 
SNRs such as single-microphone noise reduction algorithms (Fredelake et al., 2012). Second, 
most conversations in everyday life take place in noisy environments at positive SNRs (Olsen, 
1998; Smeds et al., 2012), i.e., speech levels are generally higher than the noise level. In addi-
tion, hearing-impaired listeners require a higher SNR for the same intelligibility than normal-
hearing listeners so that testing hearing aid algorithms with normal-hearing listeners should 
be done at higher SNR values than represented by their individual SRTs. For these reasons, 
methods are sought to shift the operational range of speech-in-noise tests towards positive 
SNRs and to allow for the presentation of more realistic SNR situations during the evaluation 
of hearing aid algorithms. 

There are different approaches to shift the operational SNR range of a speech-in-noise test 
towards positive SNRs. One class of approaches modifies the acoustic characteristics of the 
speech signal (e.g., by introducing reverberation, time compression of speech, or more complex 
background noise situations). Another class modifies the overall cognitive demand of the com-
prehension task, e.g., by varying sentence predictability or syntactic complexity. The current 
study raises the difficulty of a speech-in-noise test by increasing the speech rate. This approach 
aims at preserving the acoustical characteristics and sensory cues of the speech as far as pos-
sible while challenging the cognitive processing of the listener with the effect that the overall 
SRT in noise is increased. 

In general, the ability to comprehend time-compressed speech decreases as speech rate increases 
(e.g., Dupoux and Green, 1997; Versfeld and Dreschler, 2002; Humes et al., 2007). This is also 
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true for time-compressed speech in background noise (e.g., Tun, 1998; Schneider et al., 2005; 
Liu and Zeng, 2006; Gordon-Salant and Friedman, 2011; Adams et al., 2012). 

For the development of a speech-in-noise test at positive SNRs utilizing time-compressed 
speech, the following specifications have to be met: First, the algorithms employed for time-
compression have to yield a high signal quality with as few artifacts as possible in order not 
to deteriorate intelligibility. Second, these algorithms should be applicable to a wide range of 
speech signals which may be processed by hearing aid algorithms and presented with and 
without interfering noise in order to be able to compare relevant results across, e.g., hearing 
aid processing or speech enhancement schemes. Third, algorithms for time compression should 
deteriorate intelligibility across all items of the speech material in a very similar way in order 
to preserve the homogeneity of the test items typically encountered in speech-in-noise tests. 
This homogeneity leads to a steep discrimination function of the test (Kollmeier, 1990; Koll-
meier and Wesselkamp, 1997) which in turn is required to discriminate in a sensitive way across 
different “effective” SNRs produced, e.g., by a speech enhancement algorithm. A specific con-
cern therefore is to keep any position effects in intelligibility across words in an utterance or 
sentence as small as possible. 

Different strategies can be used for increasing the speech rate of existing recordings, which 
maintain the pitch of the recorded voice. Within the time-compression techniques, uniform 
and non-uniform algorithms are differentiated. In simple terms, uniform time-compression al-
gorithms eliminate small segments of the speech at defined regular intervals with overlap-add 
techniques. Dorran (2005) gives an overview of the different uniform methods. One processing 
strategy that provides a very good signal quality is the pitch synchronous overlap-add tech-
nique (PSOLA). It deletes pitch periods to compress the speech signal. This strategy is the 
basis for the time-compression capabilities found in several signal processing software packages 
(e.g., Adobe AUDITION and Windows EDW (Speech Research Lab, A.I. DuPont Hospital for 
Children and the University of Delaware, 2012)). The PSOLA, according to Moulines and 
Charpentier (1990), is implemented in the free phonetics software Praat (Boersma and Ween-
ink, 2009). This method was previously used for the investigation of time-compressed speech 
(e.g., Janse, 2003; Adank and Janse, 2009; Shibuya et al., 2012). 

In contrast, non-uniform time-compression algorithms consider speech characteristics with the 
aim of preserving as much of the time-dependent speech cues as possible. Therefore, the non-
uniform time-compression algorithms require a further stage of analysis compared to the uni-
form processing. They determine special features to describe the structure of a speech signal 
and use this information to calculate a signal- and a time-dependent compression. Different 
strategies for the feature extraction are described in the literature and only a selection will be 
introduced here. Some algorithms make use of acoustic measures. Chu and Lashkari (2003), 
for example, calculate the short-term energy of a speech signal. They assume that high energy 
segments of the speech are more important than low energy segments and adjust the time-
compression accordingly by compressing high energy segments less than those with low energy. 
Lee et al. (1997) and Kapilow et al. (1999) detect transient information and non-stationarity, 
respectively. Both algorithms only change steady segments of the speech signal. The transient 
parts are left unprocessed because they are important for comprehension and a good signal 
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quality. Demol et al. (2005) adopt and complement the idea and classify the speech into plo-
sive-, vowel-, and consonant-like segments as well as phone transitions and pauses. Different 
time-compression factors are applied to these classes. As a result, pauses are compressed more 
than other segments and plosive-like segments remain unprocessed. Thomas et al. (2008) used 
a similar approach in order to distinguish voice, unvoiced, and silent intervals from unvoiced 
and transient segments of on-going speech with the goal to not process the unvoiced and 
transient components. Höpfner (2006, 2007, 2008) goes beyond this and subdivided detected 
phonemes themselves into stationary parts and non-stationary transitions to neighboring pho-
nemes. The algorithm compresses silence and stationary parts of voiced and unvoiced pho-
nemes differently. Again, plosives and transient parts of phonemes remain unprocessed. Despite 
the complexity of these algorithms, all have several disadvantages when applied to speech 
material of speech-in-noise tests. Either the algorithms consider only few aspects of natural 
fast speech or they show compression for only parts of the signals. Both may generate unnat-
ural speech timing at high speech rates, which are necessary to reach positive SNRs. In worst 
cases, high speech rates cannot be processed and speech signals with missing and unprocessed 
parts are generated. Additionally, at high speech rates the signal quality is often influenced by 
artifacts. A promising and available non-uniform approach to overcome these problems was 
described by Covell et al. (1998). Their Mach1 algorithm preserves the “natural timing of 
[natural] fast speech” (Covell et al., 1998, p. 349) without the use of a classification and with 
compression of the entire signal. It applies the most compression to pauses and silence; inter-
mediate compression is used for unstressed vowels; consonants are compressed based on their 
adjacent vowels and in total consonants are compressed to a higher amount than vowels. Pre-
viously, this algorithm was used by Covell et al. (1998), He and Gupta (2001), and Tucker and 
Whittacker (2006) for their investigations. 

Covell et al. (1998) compared the Mach1 algorithm with a uniform synchronous overlap-add 
algorithm at the same global compression. They compressed short and long dialogs as well as 
monologs with both algorithms to 24%-39% of their original length (calculated from the time-
compression rates given by the authors, unprocessed speech: 155-302 syllables per minute 
(syll/min); processed speech: 546-942 syll/min1 and stated no restrictions for the selection of 
the time-compression factor. Listeners then were asked to answer questions regarding the con-
tent of the presented speech and performed paired comparisons of signals processed with Mach1 
and the uniform algorithm. Covell et al. (1998) found that compared with uniform processing, 
comprehension improved by 17% and participants preferred listening to the Mach1 algorithm. 
Furthermore, the advantages of Mach1 increased as the speech rate increased. These results 
were confirmed by He and Gupta (2001) who investigated a synchronous overlap-add method 
and a modified version of Mach1 and compressed speech down to 40% of their original length 
(unprocessed speech: 249-286 syll/min, processed speech: up to 623-714 syll/min1). Adank and 
Janse (2009) measured the comprehension of normal, time-compressed and natural fast speech 
(presented at 46% of the original length and 612 syll/min, calculated from the speech rate 

                                         
1 Speech rate in syllables per minute was calculated based on the average number of syllables per word 
of about 1.4 for English (Lamel et al., 1989) and the speech rate in words per minute stated by the 
authors. 
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given by the authors). In contrast to the advantage of the mimicked natural fast speech by 
Mach1 observed by Covell et al. (1998) and He and Gupta (2001), Adank and Janse (2009) 
found that listeners exhibited greater difficulties when processing natural-fast speech than 
time-compressed speech. According to Adank and Janse (2009) these discrepant findings may 
stem from the greater spectrotemporal variations of the natural fast speech compared to the 
original speech. Such variations are not only caused by differences of uniform and natural 
speech production but are also expected for non-uniform processing strategies. They all result 
in alterations of perceptually relevant cues for speech intelligibility and signal quality. These 
results necessitate a comparison of the uniform PSOLA and the non-uniform Mach1 for the 
application in a speech-in-noise test at positive SNRs. The above cited results do not explain 
the change of intelligibility (as measured by a speech intelligibility test) according to the pro-
cessing strategy of a specific time-compression algorithm. Furthermore, the influence of an 
additional background noise is unknown and, therefore, no hint is offered for the time com-
pression needed to reach positive SNRs. For a speech-in-noise test with time-compressed 
speech, it is necessary to consider these factors when selecting a time-compression algorithm 
in order to present speech material with equal intelligibility and therefore to reach a high 
sensitivity of a speech-in-noise test. In addition to subjective comparisons of the different al-
gorithms it is necessary to compare objective performance. The alteration of perceptually rel-
evant cues for understanding speech in noise, such as, e.g., overall time-compression, long-term 
spectra, and the modulation spectra of the compressed speech should be comparable between 
the two algorithms. This ensures that only those differences across time-compression strategies 
which are related to the modification of temporal cues, such as, e.g., the phoneme durations 
result in intelligibility differences. 

As mentioned before, the material for a sensitive speech-in-noise test is normally designed to 
reach a homogeneous intelligibility across words and comparable lists of words or sentences. 
For example, Wagener et al. (1999b) achieved this by adapting the presentation level of single 
words. As a result, Wagener and Brand (2005) reported only a small serial word position effect 
for the Oldenburg sentence test. The serial position effect occurs in free recall and consists of 
higher recall accuracy for words presented at the beginning and the end of a series compared 
to words presented at intermediate positions (e.g., Murdock Jr., 1962; Glanzer and Cunitz, 
1966). Wagener and Brand (2005), for example, observed a more favorable SRT for names (at 
the beginning of their sentences) and subsequent words with a difference amounting to -0.6 
and -1 dB for normal-hearing and hearing-impaired participants, respectively. In comparison 
to a sequence of normal speech, Aaronson et al. (1971) found less order errors for the time-
compressed sequence of digits which were presented with enlarged pauses between the elements 
and at the same point in time as the elements of the normal speech. Therefore, Aaronson et 
al. (1971) suggested a positive effect of the enlarged pause time. The missing of pauses between 
words of a sentence will probably increase the difficulty and enlarge the serial position effect. 

For the development of a speech-in-noise test with time-compressed speech it has to be tested 
if the small serial position effect observed by Wagener and Brand (2005) is kept within reason-
able limits for time-compressed speech in order not to reduce the sensitivity of a speech-in-
noise test against effective SNR changes too much. 
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Summarizing, the goal of this study was to find the most appropriate method for constructing 
a speech intelligibility test that yields best discrimination across effective SNR changes pro-
duced e.g., by speech enhancement algorithms at positive SNRs. This goal was followed by 
comparing the uniform PSOLA time-compression algorithm available in Praat software (Bo-
ersma and Weenink, 2009) and the non-uniform Mach1 time-compression algorithm mimicking 
natural fast speech even at high speech rates. Comparison of the two algorithms should not 
only be performed in terms of speech intelligibility across the speech test items employed, but 
should also consider the alterations of perceptually relevant cues for understanding speech in 
noise such as deviations from the targeted compression across time, changes of the phoneme 
durations, long-term spectra, and modulation spectra. 

2.2 Methods 

2.2.1 Signals 

Evaluation of the two algorithms was conducted using sentences of the German matrix test 
(Oldenburg sentence test, OLSA, Wagener et al., 1999c). The sentences consist of a fixed 
syntactic structure (name, verb, numeral, adjective, and object). Each position of the sentence 
contains one of ten possible words, which were randomly selected to construct the sentences 
(examples: Peter bekommt vier grüne Messer. (Peter gets four green knifes.); Thomas kauft 
neun schwere Tassen. (Thomas buys nine heavy cups.)). Fixed syntactic structure and random 
selection induce unpredictable semantics of the sentences. As a result the sentences cannot be 
easily memorized and there is no benefit from sentence context (Wagener and Brand, 2005). 
In total, 100 sentences were available in 20 test lists of 30 sentences each with equal intelligi-
bility. Co-articulation between the words was taken into account by recoding single words with 
all ten possible subsequent word alternatives. For the construction of sentences recordings of 
single words were selected, where co-articulation matched to the subsequent word, and the 
ending of the co-articulation was faded into the beginning of the subsequent word. This syn-
thesis of sentences produced natural sound (Wagener and Brand, 2005). Sentences were spoken 
with a normal to moderate speech rate of on average 233 (+/-27) syll/min (Wagener et al., 
1999c). The sentences were presented together with the noise stimulus of the OLSA which has 
the same long-term spectrum as the speech and is composed by superposition of all sentences 
(Wagener et al., 1999c). 

2.2.2 Methods of time compression 

Current time-compression algorithms maintain the pitch of the recorded voice and are distin-
guished into uniform and non-uniform algorithms. There are different descriptions character-
izing the amount of time compression. This paper defines the time-compression factor ρ as the 
duration of the compressed signal compared to the original duration in percent. As an example, 
ρ = 25% corresponds to a speech rate which is four times faster than the original and increases 
from 233 to 932 syll/min for OLSA material. Hence, smaller time-compression factors result 
in higher time compression and faster synthesized speech. 
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2.2.2.1 Uniform time-compression algorithm 

The uniform time-compression algorithm PSOLA (Moulines and Charpentier, 1990) analyzes 
the pitch of a speech signal, sets pitch marks, and segments the original signal into windowed 
frames. At unvoiced parts of the speech the pitch period is set constant. For the synthesis of 
time-compressed speech, a new set of pitch marks depending on the time compression is cal-
culated, and the analyzed frames are rearranged to the synthesized compressed signal. In sim-
ple terms, for a given compression factor, some segments are deleted and the remaining seg-
ments are concatenated to the time-compressed signal. Position and number of deleted seg-
ments are dependent on the time-compression factor. This method was used as implemented 
in the Praat software (Boersma and Weenink, 2009). 

2.2.2.2 Non-uniform time-compression algorithm 

In contrast to uniform time-compression algorithms, non-uniform algorithms take the structure 
of the speech into account. The Mach1 algorithm (Covell et al., 1998) estimates two continuous 
parameters termed “local emphasis” and “relative speaking rate”. These values are combined 
for an estimate of the “audio tension” which is defined as “the degree to which the local speech 
segments resist against changes in rate” (Covell et al., 1998, p. 349). With more audio tension, 
Mach1 applies less compression for a given segment of the speech signal. Depending on the 
estimated audio tension, a local time-compression factor is derived and used to control a uni-
form time-compression technique like the synchronous overlap-add method. As a result, the 
Mach1 algorithm mimics natural fast speech. The experiments were run with a Mach1 imple-
mentation by Tucker and Whittacker (2006). 

The PSOLA and Mach1 algorithm were applied to all sentences of the OLSA and compressed 
the speech material to ρ = 25%, 30%, 45%, and 40% (representing speech rates of 932, 777, 
666, 583 syll/min). Covell et al. (1998) describe that the Mach1 algorithm uses time-compres-
sion factors close to the targeted factor. To achieve the targeted time-compression factor, they 
recommended a “slow response feedback loop” (Covell et al., 1998, p. 351) to correct for the 
time-compression factor. This is consistent with the observations of the current study whereby 
an increase of the time compression with time was observed. To consider this adaptation of 
the Mach1 algorithm in the current study, each sentence was presented five times in succession 
(separated by a break of 0.15 s duration). Subsequently, the third presentation of the sentence 
was selected and cut out for further usage. All of these processed sentences were arranged in 
the same way as the original list structure. 

2.2.3 Participants 

In total, 48 normal-hearing listeners (mean age: 23 yr, range: 20-33 yr; 38 female, 10 male) 
participated in the experiments. They were recruited through an online advertisement found 
on the webpages of the Universities of Oldenburg. Based on pure-tone audiometric testing, all 
participants exhibited auditory thresholds of 20 dB HL or better at all tested frequencies 
between 0.125 and 8 kHz. All listeners spoke German as their native language and had no or 
little experience with the OLSA. They were paid 10 Euro (about 14 US$) for each hour of 
their participation.  
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2.2.4 Experiments 

2.2.4.1 Objective analysis of time-compression algorithms 

For the objective description and comparison of the uniform and non-uniform algorithms, all 
100 sentences of the OLSA were processed with the uniform PSOLA method and the non-
uniform Mach1 algorithm. Two different time-compression factors of ρ = 25% (932 syll/min) 
and ρ  = 50% (466 syll/min) were applied. These compression factors were chosen as the 
boundaries of the range of interest, where the listeners need a high or even positive SNR for 
understanding 50% of the speech. Speech compressed to a time compression factor below 
ρ = 25% (932 syll/min) was observed to be too distorted for all algorithms under investiga-
tion. Four different measures were conducted to describe the processing of the algorithms. 

a) Deviations from the targeted time compression: Prior to the processing by the time-com-
pression algorithms, a targeted time-compression factor has to be specified. For the cal-
culation of deviance from this targeted time compression, the duration of the time-com-
pressed signal was compared with the duration of the original signal and both were used 
to calculate the time-compression factor after processing. The differences between the 
time-compression factor after the processing and the targeted time-compression factor 
describe the deviations. 

b) Alterations of the phoneme durations: To analyze the alteration of the phoneme duration, 
the first ten sentences of the OLSA were time compressed with a factor of ρ  = 50% 
(466 syll/min). These sentences include all words of the test. None of these words was 
presented twice. The time-compressed sentences were segmented into phonemes and la-
beled in Praat. Then, the duration of the phonemes in the original speech and after time 
compression was analyzed. The results were analyzed per phoneme classes consisting of 
plosives, nasals, fricatives, approximants, vowels, and affricates. 

c) Long-term spectra: The long-term spectra were calculated in 1/3-octave bands for all 
sentences. 

d) Modulation spectra: The temporal envelope fluctuations of the time-compressed speech 
were characterized by the modulation spectra in 1/3-octave modulation frequency bands. 
A fast Fourier transformation of the Hilbert envelope of all sentences was applied for the 
calculation of the modulation spectra in order to compare the original and time-com-
pressed speech material. 

2.2.4.2 Perceptual analysis of time-compression algorithms 

Testing occurred in a sound-treated booth and the presentation of stimuli was controlled by a 
PC using MATLAB (MathWorks, Natick, MA) based programming. Signals were routed 
through a sound card (AD/DA-Interface ADI 2, RME, Audio AG, Haimhausen, Germany) 
and a head phone amplifier (HB 7 Headphone Driver, Tucker Davis Technologies, Alachua, 
FL) to headphones (HDA 200, Sennheiser, Wedemark-Wennebostel, Germany). The head-
phones were free-field equalized according to international standard (IEC 60645-2, 2010; ISO 
389-8, 2004). The noise was presented at 65 dB sound pressure level. The presented SNRs were 
dependent on the time-compression factor and algorithm (see Table 2.1). They were selected 
based on a pre-study to reach intelligibility between 20% and 80%, which is necessary for a 
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reliable fit of the discrimination function (described below). Participation was limited to one 
session of two hours duration in order to avoid training effects from session to session. Partic-
ipants were divided randomly into two groups listening to signals processed with PSOLA or 
Mach1, respectively. Measurements of the original OLSA occurred at the end of the experi-
ments, and resulted in nearly equal median SRT values for both participating groups. Partici-
pants who listened to PSOLA or Mach1 showed median SRTs for original speech of -8.2 dB 
SNR and -8.3 dB SNR, respectively. 

In a pre-study, 14 normal hearing young adult participants listened to original and time-com-
pressed speech (ρ  = 25%, 30%, 45%, 40% representing speech rates of 932, 777, 666, 
583 syll/min) in background noise at different SNRs. They were asked to repeat each of the 
sentences that were presented and intelligibility was determined using a word scoring proce-
dure. The sentence started after a countdown, which counted from three backwards and was 
displayed on a monitor. Participants were familiarized with the OLSA procedure by listening 
to one training list of original (i.e., unprocessed) sentences. During training, after each response 
the correct sentence was displayed on the screen as feedback to the listener. The SNR was 
changed adaptively to reach a threshold of 50% intelligibility. The training of the original 
speech was followed by a training list of the time-compressed speech processed with the first 
factor presented in the subsequent test lists. After the training, all participants completed the 
intelligibility task at fixed SNRs for two out of four possible time-compression factors. There-
fore, after the initial training list, four to five test lists were presented at different SNRs at the 
time-compression factor for which training was received. A training list was then presented for 
a second time-compression factor, followed by another four to five test lists and different SNRs. 
In total, each participant listened to 11 or 12 lists. The presented time-compression factors and 
the order of the presented SNRs were randomized across all participants using a Latin square 
design. Based on the results from these pre-study measurements, different SNRs for the main 
investigation were adapted to reach intelligibilities between 20% and 80%. Subsequently, par-
ticipants of the main study conducted the same training and speech intelligibility tests at the 
determined fixed SNRs. The SNRs presented in the main investigation are summarized in 
Table 2.1. The group of participants was divided randomly into two subgroups of 24 partici-
pants each, who listened to sentences processed with PSOLA or Mach1, respectively. 

Table 2.1: Presented SNRs for different time-compression factors and algorithms. 

𝛒𝛒 [%] 
PSOLA 
SNR [dB] 

Mach1 
SNR [dB] 

25 -3 1 5 9 - -1 1 5 9 - 
30 -5 -3 -1 1 3 -5 -3 -1 1 3 
35 -5 -3 -1 1 - -5 -3 -1 1 - 
40 -7 -5 -3 -1 - -7 -5 -3 -1 - 

 

For the presentation of the results, performance on the intelligibility task for each time-com-
pression factor at different SNRs was used to model discrimination functions described by 
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Equation 2.1. This discrimination function was suggested by Wagener and Brand (2005). In-
telligibility is defined as the mean probability (pin) of correctly repeated words if the sentences 
are presented at a certain SNR,  

pin(SNR, SRT, slope) = 1
1+e4∗slope∗(SRT−SNR) .    (2.1) 

This function was applied to estimate the SRT and slope of the function at SRT for the 
measured intelligibility of each participant using a maximum likelihood fit. 

2.3 Results 

The presentation of the results is organized as follows. First, the results from the objective 
analysis focusing on the deviation from the targeted time compression, alterations of phoneme 
durations, long-term spectra, and modulation spectra are presented. Second, results of the 
intelligibility measurements are presented and analyzed as a function of the two time-compres-
sion algorithms explored in this study and the serial word position within the sentences. 

2.3.1 Objective analysis of time-compression algorithms 

2.3.1.1 Deviation from targeted time compression 

To analyze the effect of a time dependent time-compression factor, Figure 2.1 shows the devi-
ations from the targeted time-compression factor ρ  = 25% (932 syll/min) and ρ  = 50% 
(466 syll/min). Only the Mach1-processed materials differ from the targeted factor and the 
difference is higher for the lower time-compression factor. The median deviation amounts to 
0.9% for a time-compression factor of ρ = 25% (932 syll/min). In other words, a median time-
compression factor of about 26% (896 syll/min) was reached instead of 25% (932 syll/min). 
The deviation for a time-compression factor of ρ = 50% (466 syll/min) is smaller and shows a 
median of 0.2%. 

 

Figure 2.1: Deviations from the targeted time-compression factors 𝜌𝜌  = 25% (932 syll/min) and 
𝜌𝜌 = 50% (466 syll/min) of speech time compressed using the PSOLA or Mach1 algorithm. 
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2.3.1.2 Alterations of phoneme durations 

Given the differences between the two algorithms, it was expected that Mach1 would produce 
a non-linear reduction in phoneme duration. The scatter plots in Figure 2.2 show the phoneme 
durations after time compression in relation to their durations before compression for the 
different phoneme classes. A linear regression analysis is depicted by the solid line and shows 
the changes of the phoneme durations due to time compression. The dashed lines represent 
the linear reduction of the phonemes to half of their duration. The PSOLA algorithm com-
pressed the phonemes nearly equally to this linear reduction. In contrast, Mach1 reduced the 
durations of long phonemes to a higher amount than a linear compression. The compression 
of long consonants (e.g., nasals) was higher than the compression of vowels. Short consonants 
were compressed linearly to about half of their duration. Additionally, short and intermediate 
vowels showed a higher variability of compression. The analysis of their duration varies between 
nearly no and linear compression. Furthermore, some phonemes like plosives and vowels are 
missing (see the number of detected phonemes “n”). Also, as described in Section 2.2.2.2, the 
time-compression increased within a sentence for Mach1. Therefore the initial names were 
longer for the time-compressed sentences compared to the names processed with PSOLA. 

 

Figure 2.2: Scatter plot of the phoneme durations for the different phoneme classes after time compres-
sion as a function of their durations before compression. A linear regression analysis is depicted by the 
solid line and shows the change of the phoneme durations due to time compression. The dashed line 
represents the linear reduction of the phonemes to the half of their duration with a factor of 𝜌𝜌 = 50% 
(466 syll/min). 

2.3.1.3 Long-term spectra 

Figure 2.3 shows the 1/3-octave band long-term spectra of the original speech with the time-
compressed speech for all OLSA sentences (upper panel) and the differences between the spec-
tra of the original and time-compressed speech (lower panel). The signals were either processed 
with PSOLA or Mach1 algorithm at time-compression factors ρ = 25% (932 syll/min) and 
ρ = 50% (466 syll/min). Compared to the original speech, the main difference is how PSOLA 
processes low-frequency information and how Mach1 processes high-frequency information, 
with larger differences being observed with the low time-compression factor. The long-term 
RMS and peak level of PSOLA and Mach1, respectively, were comparable to the levels of the 
original speech. 
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Figure 2.3: 1/3-octave band long-term spectra of original and time-compressed speech (upper panel) 
and difference of the 1/3-octave band long-term spectra of original and time-compressed speech (lower 
panel). The spectrum of the original speech is shown as the gray area. The spectra of signals processed 
with the time-compression factors 𝜌𝜌 = 25% (932 syll/min, filled circles) and 𝜌𝜌 = 50% (466 syll/min, 
open squares) are displayed with black dashed and gray solid lines for PSOLA and Mach1, respectively. 

2.3.1.4 Modulation spectra 

Time compression of the speech was expected to produce changes in its temporal envelope 
fluctuations described by the modulation frequencies. Figure 2.4 depicts the power within 
1/3-octave bands in the modulation frequency domain against the modulation frequency. Com-
pared to the original speech with a peak of the modulation spectrum at about 2 Hz, time-
compressed speech shows a shift of the peak to higher modulation frequencies. This peak is 
dependent on the time-compression factor and is shifted to higher frequencies for lower factors 
(higher speech rates). For example, the modulation spectrum of speech compressed with 
PSOLA at a factor of ρ = 25% (932 syll/min) is shifted to four times higher modulation 
frequencies than the spectrum of the original speech. The processing of Mach1 also shifted the 
modulation spectra to higher modulation frequencies, but with slightly different shapes and 
slightly broader peaks compared to original speech. 

2.3.2 Perceptual analysis of time-compression algorithms 

Figure 2.5 depicts boxplots that document the performance on the intelligibility task deter-
mined with the two time-compression algorithms at different SNRs and time-compression fac-
tors. Each boxplot summarizes results of twelve participants. As expected, intelligibility in-
creases with increasing SNR and increasing time-compression factor. Discrimination functions 
were estimated for the results from each individual listener. The median SRT and median slope 
were determined across twelve listeners and the corresponding median discrimination function 
is depicted in Figure 2.5 as well. 
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Figure 2.4: Modulation spectra of the original speech and speech time compressed with PSOLA and 
Mach1 and factors of 𝜌𝜌 = 25% (932 syll/min) and 𝜌𝜌 = 50% (466 syll/min), respectively. The modulation 
spectrum of the original speech is depicted by the gray area. The signals processed with the time-
compression factors 𝜌𝜌 = 25% (filled circles) and 𝜌𝜌 = 50% (open squares) and the algorithms PSOLA 
and Mach1 are displayed with black dashed and gray solid lines, respectively. 
 

 
Figure 2.5: Speech intelligibility at different SNRs and corresponding discrimination functions for the 
two time-compression algorithms and for time-compression factors between 𝜌𝜌 = 25% (932 syll/min) and 
𝜌𝜌 = 40% (583 syll/min). The black and gray boxplots indicate the results measured with PSOLA and 
Mach1, respectively. The median discrimination functions across twelve listeners for PSOLA are rep-
resented with dashed black lines and the functions for Mach1 are displayed with solid gray lines. 
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In addition, median SRT and slope of speech that was time-compressed with PSOLA and 
Mach1 are documented in Table 2.2. The SRT increases and slope decreases as the time-com-
pression factor decreases. The speech compressed with PSOLA leads to lower SRTs and steeper 
slopes than the speech compressed with Mach1. The distribution of the SRT results was inves-
tigated. A Kolmogorow-Smirnow test with a Lillifors correction confirmed the normal distri-
bution of the data. Although the results of a Levene statistic showed significantly different 
variances of the results, significant differences of the calculated SRTs in dependence on the 
time-compression algorithm and time-compression factor were analyzed with a two-way anal-
ysis of variance (ANOVA), because the ANOVA is robust against the violation of the variance 
homogeneity. It showed a significant main effect in the SRT data of the factors algorithm 
(F(1,88) = 4.63, p = 0.034) and time-compression factor (F(3,88) = 73.92, p < 0.001). Their 
interaction was not significant. Post hoc testing with a paired t-test and Bonferroni correction 
showed for all combinations of time-compression factor significance except for ρ  = 35% 
(666 syll/min) and ρ = 40% (583 syll/min). 

Table 2.2: Median SRTs, slopes, and interquartile ranges (in brackets) for the median fitted discrimi-
nation functions. 

𝛒𝛒 [%]  PSOLA Mach1 

25 
SRT [dB SNR] 3.4 (4.3) 4.8 (5.6) 
Slope [%/dB] 4.3 (1.2) 2.9 (0.8) 

30 
SRT [dB SNR] -0.6 (2.3) 0.0 (2.3) 
Slope [%/dB] 7.2 (1.2) 5.9 (0.7) 

35 
SRT [dB SNR] -2.0 (1.5) -1.6 (3.0) 
Slope [%/dB] 10.6 (2.8) 6.7 (1.1) 

40 
SRT [dB SNR] -3.3 (1.0) -2.3 (1.9) 
Slope [%/dB] 12.0 (3.0) 8.0 (1.6) 

 

2.3.3 The effect of serial word position on speech intelligibility 

Further analysis of the results investigated the dependence of speech intelligibility on the word 
position within the sentences. Figure 2.6 depicts intelligibility as a function of SNR for different 
word positions. Results are shown for the two time-compression algorithms and time-compres-
sion factors. Discrimination functions were calculated for each of the twelve participants. Be 
aware that these fits may be less reliable than the fits to the speech material depicted in Figure 
2.5 because not the full range of performance on the intelligibility task was between 20% and 
80% in Figure 2.6. For example, intelligibility of Mach1 was found to be greater than 60% at 
the time-compression factor 𝜌𝜌 = 25% (932 syll/min) for names. Additionally, the respective 
median discrimination function is plotted in Figure 2.6. The figures within each row exhibit 
the same time-compression factor while figures within each column show the results of words 
with the same position within the sentences. Table 2.3 summarizes the median SRTs, slopes, 
and their interquartile ranges for the plotted discrimination functions as a function of the time-
compression algorithm, factor, and word position. The initial names show smaller median SRTs 
and a higher intelligibility than verbs or objects. Higher median 
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Figure 2.6: Intelligibility measured with different time-compression algorithms at different SNRs and 
time-compression factors ranging between 𝜌𝜌 = 25% (932 syll/min) and 𝜌𝜌 = 40% (583 syll/min) and the 
associated discrimination functions. Each column shows the results for each word position within the 
sentences. The black and gray boxplots depict performance for PSOLA and Mach1, respectively. The 
median discrimination functions across twelve listeners for PSOLA is represented with a dashed black 
line and the function for Mach1 is displayed with solid gray lines. 

SRTs (poorer intelligibility) were observed for adjectives (fourth position in each sentence). In 
general, the results measured with PSOLA describe lower SRTs and a higher intelligibility than 
the results measured with Mach1. One exception is that lower SRTs and higher intelligibility 
performance was observed for names with Mach1 than with PSOLA. Statistical analyses of 
the SRT data were conducted using a three-way ANOVA of the factors word position, time-
compression algorithm, and time-compression factor. For all factors and their interactions a 
significant effect was observed (word position: F(4,440) = 177.31, p < 0.001; algorithm: 
F(1,440) = 15.52, p < 0.001; time-compression factor: F(3,440) = 195.37, p < 0.001, word 
position * time-compression factor: F(12,440) = 14.25, p < 0.001, word position * algorithm: 
F(4,440) = 18.9, p < 0.001, word position * time-compression factor * algorithm: 
F(12,440) = 1.93, p = 0.029). For the interaction of time-compression factor and algorithm 
no significant effect was found (F(3,440) = 1.14, p = 0.333). A two-way ANOVA was used to 
analyze the significant differences of the factors word position, time-compression factor and 
their interactions for PSOLA and Mach1 separately. For all factors and their interactions a 
significant effect was observed (see Table 2.4). Post hoc testing of the factor word position 
using paired t-tests and a Bonferroni correction was conducted. Verbs showed no significant 
differences to numerals and adjectives if the signals were processed with PSOLA. All paired 
comparisons of the word positions were significant different for Mach1 with exception of  
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Table 2.3: Median SRTs, slopes, and interquartile ranges for the median fitted discrimination functions 
as a function of word position within the sentences. 

  PSOLA Mach1 

ρ 
[%] 

 
Name Verb 

Num-
eral 

Ad-
jec-
tive 

Ob-
ject 

Name Verb 
Num-
eral 

Ad-
jec-
tive 

Ob-
ject 

25 

SRT 
[dB] 

-1.6 
(4.6) 

7.8 
(4.8) 

4.6 
(5.3) 

9.4 
(6.1) 

0.8 
(4.3) 

-7.0 
(4.6) 

15.0 
(10.5) 

10.4 
(2.6) 

11.4 
(2.0) 

1.0 
(3.6) 

Slope 
[%/dB] 

7.0 
(3.0) 

3.6 
(1.6) 

5.7 
(3.2) 

4.3 
(1.2) 

5.1 
(2.3) 

6.0 
(7.8) 

2.5 
(1.3) 

4.8 
(2.7) 

4.0 
(3.3) 

4.9 
(1.6) 

30 

SRT 
[dB] 

-3.9 
(1.9) 

1.5 
(1.9) 

-0.1 
(2.5) 

2.1 
(2.4) 

-1.3 
(1.3) 

-4.8 
(1.3) 

2.9 
(3.3) 

2.8 
(3.1) 

1.8 
(2.9) 

-1.4 
(1.6) 

Slope 
[%/dB] 

11.1 
(5.7) 

6.9 
(2.9) 

9.6 
(3.2) 

8.2 
(2.4) 

7.5 
(2.4) 

11.2 
(4.0) 

6.4 
(2.3) 

7.4 
(2.9) 

7.6 
(5.3) 

7.7 
(2.7) 

35 

SRT 
[dB] 

-4.8 
(1.8) 

-0.8 
(2.1) 

-2.1 
(1.9) 

-0.4 
(2.3) 

-2.4 
(1.8) 

-5.5 
(4.5) 

1.1 
(6.8) 

0.8 
(2.9) 

0.5 
(3.0) 

-2.0 
(2.8) 

Slope 
[%/dB] 

13.0 
(6.1) 

9.6 
(4.7) 

13.8 
(3.6) 

10.3 
(4.1) 

11.3 
(3.4) 

9.0 
(3.4) 

5.8 
(4.0) 

8.6 
(3.7) 

6.4 
(3.5) 

10.4 
(3.1) 

40 

SRT 
[dB] 

-5.6 
(1.6) 

-2.4 
(2.1) 

-3.4 
(1.4) 

-2.0 
(1.3) 

-3.1 
(0.4) 

-7.4 
(1.1) 

-0.1 
(2.8) 

-0.9 
(2.1) 

-0.8 
(1.6) 

-2.9 
(1.8) 

Slope 
[%/dB] 

13.2 
(6.5) 

13.7 
(3.9) 

17.4 
(8.0) 

15.3 
(4.9) 

14.5 
(4.3) 

10.2 
(6.1) 

7.9 
(4.2) 

11.7 
(10.0) 

10.3 
(2.6) 

10.5 
(3.3) 

 

 

 

Table 2.4: Results of a two-way ANOVA for SRTs measured with PSOLA and Mach1. 

 PSOLA Mach1 
Word position F(4,220) = 64.89, p < 0.001 F(4, 220) = 116.69, p < 0.001 

Time-compression factor F(3, 220) = 121.42, p < 0.001 F(3, 220) = 85.29, p < 0.001 
Word position * time-

compression factor 
F(12, 220) = 6.04, p < 0.001 F(12, 220) = 9.26, p < 0.001 
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adjectives versus verbs and adjectives versus numerals. This supports the general trend already 
seen in Figure 2.6 that intelligibility performance was best when listening to names. The poor-
est performance was determined for verbs and adjectives. All paired comparisons for Mach1 of 
the time-compression factor were significantly different except for ρ = 30% (777 syll/min) 
and ρ = 35% (666 syll/min) where no significant differences were observed. The significant 
main effect of the time-compression factor with PSOLA was also observed to be significant in 
a paired post hoc t-test with Bonferroni correction for all time-compression factors. 

2.4 Discussion 

2.4.1 Objective analysis of time-compression algorithms 

The objective measures computed in this study verified the intended changes of the targeted 
time-compression factor, the phoneme duration, as well as the differences of the long-term 
spectra and modulation spectra produced by the uniform PSOLA and the non-uniform Mach1 
algorithms. Larger changes of all objective measures were observed for signals processed by 
Mach1 than by PSOLA. 

In detail, PSOLA showed no deviation from the targeted time-compression factor, while Mach1 
compressed the signals with very small variations of the time-compression factor. The varia-
tions increased slightly with decreasing time-compression factor. Time-dependent processing 
of Mach1 caused these deviations. For the investigation of comparable signals with Mach1, it 
was necessary to process a series of five sentences with only short pauses and to select the third 
sentence. For the first sentences of the series, processing of the stimuli by Mach1 resulted in 
an increase of the time-compression factor. The deviations from the targeted time-compression 
factor might have occurred because the processing of Mach1 was still not completely adapted. 
Furthermore, Covell et al. (1998) described that the Mach1 algorithm processes time-compres-
sion factors near the targeted factor with no claim of actually achieving this factor. As a result, 
they recommended a “slow-response feedback loop [...] to correct the long term errors” (Covell 
et al., 1998, p. 351) in the time compression. The small deviation from the targeted time-
compression factor measured with Mach1 generated negligible modification of the intelligibility. 
Analysis of the discrimination functions displaying intelligibility and time compression suggest 
an improvement of about 2% in intelligibility. However, although Mach1 showed less compres-
sion at low time-compression factors speech was less intelligible compared to PSOLA. Thus, 
the observed perceptive results are not fully explainable by deviations from the targeted time-
compression factor for Mach1 compared to PSOLA. 

Investigation of the phoneme duration of the PSOLA algorithms showed the expected linear 
reduction of all phoneme durations independent of their classification or original duration. In 
contrast, Mach1 used a higher time compression for long phonemes than for short phonemes. 
This result reflects the processing goals of the algorithm as previously described. For stressed 
and unstressed vowels, the algorithm attempts to use little and intermediate compression, 
respectively (Covell et al., 1998). In total, the Mach1 algorithms should compress consonants 
to a higher amount than vowels (Covell et al., 1998). The results of this study support this 
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expectation and showed partly higher compression for long consonants than for long vowels. 
In general, short consonants, rather than vowels were compressed to the expected linear com-
pression. Finally, vowels showed a higher variety of the duration after compression, although 
some were not compressed at all. 

The time-compression algorithms produced several changes to the frequency characteristics of 
the signals. Both algorithms showed a variation at low frequencies. These variations and the 
long-term RMS-level, which is equal to the original speech, induced a difference of the long-
term spectra of time-compressed and original speech, which was not equal to zero for PSOLA 
at medium and high frequencies. With Mach1, the long-term spectra produced a variation at 
high frequencies compared to the spectrum of the original speech. This implies that high-
frequency segments of the speech were primarily changed. These segments likely consisted of 
missing phonemes, which were mainly plosives and sibilant parts of consonants because conso-
nants were compressed to a greater extent than vowels and vowels consist of less high-frequency 
spectra compared to consonants (Kent and Read, 2002). The noise used for the OLSA has the 
same long-term spectrum as the speech signal (Wagener et al., 1999c) in order to mask the 
speech in an optimal way. Large differences of the spectra would affect the spectral masking 
and shift the SRT to lower values. Because the aim of this study was to provide a speech-in-
noise test with positive SRT results, only negligible deviations of the long-term spectrum of 
the time-compressed speech would be appropriate. Since the measured long-term spectra 
showed only small differences, no deterioration of spectral masking was expected. 

Both algorithms produced a time-compression dependent shift of the modulation spectra to 
higher frequencies, which is an expected result. The modulation spectra of PSOLA maintained 
the shape of the original speech, while the modulation spectra of Mach1 showed a slightly 
broader peak and other small variations. The shape of the modulation spectra can be viewed 
in terms of Houtgast and Steeneken (1985). They investigated speech intelligibility as a func-
tion of modulation depth which is represented by the height of the maximum in the modulation 
spectrum. They found that intelligibility decreases if the modulation depth is reduced due to 
background noise or reverberation. Because modulation depth was not reduced in the current 
study, there is evidence for the assumption that changes in intelligibility were mainly caused 
by the shift of the spectra according to the time compression and additional noise, and likely 
not by the change of the shape of the modulation spectra generated by Mach1. 

Generally, the objective analysis showed that differences in speech intelligibility for the two 
time-compression algorithms were not caused by deviation from the targeted time-compression 
factor, variations of the long-term spectra, changes of the modulation depth, or shape of the 
modulation spectra. Therefore, the difference in intelligibility observed for the two time-com-
pression algorithms may have aroused primarily due to variations of time-dependent speech 
cues, such as, e.g., the phoneme duration. 

The objective analysis of the signals highlights the change to the speech signal after time 
compression. These changes may limit the application of a speech-in-noise test with time-
compressed speech for the investigation of hearing aid processing. These processing strategies 
use assumptions and statistics of normal speech, which may no longer apply for the case of 
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time-compressed speech material. Consequently, the output signal of a hearing aid might reflect 
unexpected processing patterns. 

2.4.2 Perceptual analysis of time-compression algorithms 

For the perceptual analysis of the time-compression algorithms, the intelligibility of time-com-
pressed speech at different SNRs was assessed. Both background noise and time compression 
deteriorated speech intelligibility. The overall results showed that speech was less intelligible 
at higher speech rates. The calculated SRTs of the modeled discrimination functions increase 
with increasing speech rate. They rise from -7.1 dB for the original speech (Wagener et al., 
1999a) to 3.4 dB with PSOLA and to 4.8 dB with Mach1 for speech compressed to 25% 
(932 syll/min) of its original length. These findings are consistent with previous studies by 
Tun (1998) and Liu and Zeng (2006). In order to compare the results of this paper with their 
results, the slopes and intercepts of a linear regression analysis described by Tun (1998) were 
used to calculate the respective SRT values of younger normal-hearing listeners as follows. Tun 
(1998) measured a SRT with babble noise of -5.4 dB for original speech, -4.3 dB, and -2.5 dB 
for speech time compressed with a factor of ρ  = 80% (301 syll/min1) and ρ  = 60% 
(399 syll/min1), respectively. Liu and Zeng (2006) presented speech spectrum shaped noise 
together with speech at normal rate and time compressed to 75% of its original length (calcu-
lated from the time compression given by the authors; no information about the speech rate 
is given by the authors). For the original speech, the SRT was -8.8 dB and for time-compressed 
speech, the SRT was -4.1 dB. Because the aim of the study was to provide a speech-in-noise 
test with positive SRT results, lower time-compression factors (corresponding to an expected 
higher speech rate) were employed as compared to Tun (1998) and Liu and Zeng (2006). The 
measured SRTs for the PSOLA and Mach1 algorithm with a time-compression factor of 
ρ = 30% (777 syll/min) amounted to -0.63 and 0 dB, respectively. As a result, positive SRTs 
were only obtained when speech was presented at a time-compression factor below ρ = 30% 
(777 syll/min). 

In addition to the increasing SRT with decreasing time-compression factor, the current results 
also showed a decline of the slope of the discrimination function after reduction of the time-
compression factor. The slope decreases from 17.1%/dB (Wagener et al., 1999a) for the original 
speech material to 4.3%/dB and 2.9%/dB for speech compressed to 25% of its original length 
with PSOLA and Mach1, respectively. Tun (1998) and Liu and Zeng (2006) documented dif-
ferent alterations of the slope. Whereas Tun (1998) observed smaller reductions of the slope 
(i.e., 7.1, 6.7%/dB to 6.3%/dB for original speech and speech time-compressed with a factor 
of ρ = 80% and 60%, respectively), Liu and Zeng (2006) measured an increase of the slope 
(i.e., 10.2%/dB to 12.8%/dB for the original and the time compressed speech (ρ = 75%), 
respectively). The differences of the slopes between this study and those of Tun (1998) and 
Liu and Zeng (2006) likely resulted from use of smaller time-compression factors and speech 
material with low redundancy and low predictability in this study. 

The shallow slope of the discrimination function is at least partly due to a high variability in 
intelligibility across the time-compressed speech items. This clearly limits the accuracy of the 
speech-in-noise test and its ability to discriminate across different effective SNR conditions 
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(Wagener et al., 1999b). Since these variations across speech items may have aroused from a 
serial word position effect which depends on the choice of the time-compression algorithm, the 
effect of both factors on the accuracy of a speech-in-noise test with time-compressed speech 
are discussed in the following Sections 2.4.3 and 2.4.4. 

2.4.3 The effect of serial word position on speech intelligibility 

First, it should be mentioned that the presented SNRs were selected for the measurement of 
discrimination functions of the complete sentences and not for the investigation of word groups. 
To fit functions successfully, intelligibility accuracy should vary between 20% and 80%. Missing 
data for some word groups at low or high intelligibilities might have generated unreliable fits 
of the discrimination function, SRTs, and slopes. Nevertheless, analysis of the word position in 
the sentences employed here with the fixed structure (i.e., name-verb-numeral-adjective-object) 
led to different patterns of performance between the positions in the sentences with the excep-
tion of verbs and adjectives. Names showed the highest intelligibility and verbs and adjectives 
were less intelligible. This pattern of results could be described as a serial position effect. Serial 
position effects refer to the U-shaped recall accuracy pattern that arises as a result of an item's 
position within a sequence such that recall is better for items presented at the beginning 
(primacy effect) and end (recency effect) of a list than for intermediate items (e.g., Murdock 
Jr., 1962; Glanzer and Cunitz, 1966). However, Wagener and Brand (2005) detected only a 
small serial position effect depending on the free recall of the sentences for the original OLSA. 
Names showed only a minimally higher intelligibility than the other words. Hence, the much 
larger word position effect observed in the current data using the time-compressed OLSA can 
not only be explained by the classical word position effect due to, e.g., attention or serial 
masking which is supposedly similar for the original and the time-compressed OLSA and is 
largely independent of semantic structure. Instead, the large word position effect observed here 
might at least partly be a consequence of the fixed semantic structure of the test. 

Aaronson et al. (1971) observed serial position effects for unprocessed and time-compressed 
speech with a sequence of seven digits. Pauses were included between the time-compressed 
digits, thus, the signals of the unprocessed and time-compressed speech were presented at the 
same point in time. Aaronson et al. (1971) determined fewer errors in the time-compressed 
sequences compared to the unprocessed speech and suggested a positive effect of the enlarged 
pause duration. The advantage of the enlarged pauses between the words was intentionally 
eliminated for the current investigation. As a result, the test was more difficult so as to yield 
performance at positive SNRs. Notably, the observed serial position effect in this study was 
likely enhanced in light of the presentation method which guided the participant's attention 
to the names and objects. A countdown was presented before each sentence that indicated the 
beginning of the sentence. The countdown was added because the signals were very short at 
high speech rates. It may also be hypothesized that listeners could potentially miss the begin-
ning and therewith the whole sentences without a countdown. Sukowski et al. (2008) investi-
gated the effect of an introductory sentence on speech intelligibility, and did not rule out 
completely the benefit arising from the introductory sentence. Additionally, the participants' 
knowledge of the fixed structure of the sentences increased the possibility to understand the 
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initial name and the last object because they have a precise position within the presentation. 
The temporal position of verb, numeral and adjective is less determined, because the time-
compression smeared the perception of the word boundaries within the sentence, distorted the 
information about the position of a word within the sentence, and as a result, may have de-
creased their intelligibility. Taken together, the current study cannot provide an explicit reason 
for the comparatively large serial word position effect which might be due to a combination of 
several factors. The possible primacy and recency effect cannot be distinguished from the 
effects of the fixed semantic structure of the sentences or the effects of the measurement pro-
cedure. 

The serial word position effect was more prominent for the Mach1 algorithm compared to 
PSOLA. This was caused by non-uniform processing and the adaptation of the algorithm. The 
adaptation generated longer names compared to PSOLA and therefore a higher intelligibility 
was observed (see Section 2.3.3, Figure 2.6). Then, the non-uniform processing is expected to 
reduce subsequent sentence parts following names more than PSOLA to obtain the global 
compression. Based on the idea of Mach1, the beginning of a sentence consisted of parts with 
high audio tension while the parts within the sentences showed less audio tension. Such time-
dependent compression additionally affected the serial word position effect. 

Note that an alternative way of administering the test is to use sentence-based scoring rather 
than word-based scoring. This would mean a shift of the discrimination function towards higher 
SNR values or less severe time compression to achieve 50% intelligibility, respectively. Even 
though the disadvantages of time compression (including the high serial word position effect) 
would be alleviated and the discrimination function would be steeper, the measurement pro-
cedure would be considerably less efficient because sentence-based scoring would mean that 
the intelligibility would be determined by the least intelligible word. In contrast, word-based 
scoring sums up the intelligible words of a sentence and results rely on the intelligibility of a 
larger number of speech items. 

2.4.4 A comparison of uniform and non-uniform time-compression 

Even though the results cannot be generalized for all uniform and non-uniform algorithms, the 
objective and perceptual data favors the use of the uniform PSOLA algorithm for the applica-
tion of time-compressed speech in speech-in-noise tests at positive SNRs. The use of PSOLA 
led to fewer deviations of the objective measures from their respective expected values (see 
Section 2.4.1). The comparison of the perceptive measurements showed that PSOLA produces 
speech signals with a higher intelligibility than the non-uniform processing by Mach1. The 
SRTs obtained with PSOLA exhibited lower values than the SRTs obtained with Mach1 and 
as a result PSOLA approached positive SNRs only for more extreme time compression (very 
low time-compression factors). This would argue in favor of Mach1 as positive SNRs could be 
reached easier compared to PSOLA. However, sentences modified by the PSOLA algorithm 
yielded discrimination functions with steeper slopes indicating less variable intelligibility of the 
speech items. Interestingly, Mach1 showed a higher intelligibility of names than PSOLA alt-
hough the overall intelligibility of Mach1 was lower and therefore the intelligibility of certain 
word classes (e.g., verbs) was lower than the intelligibility using PSOLA. According to the 
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signal processing of Mach1, the names had a longer duration than with PSOLA leading to a 
higher intelligibility above 60% at ρ = 25% (932 syll/min). In contrast, PSOLA resulted in a 
steeper slope and a more similar intelligibility of the words. The results measured with PSOLA 
are more consistent compared to the results of Mach1. Therefore, PSOLA is expected to pro-
duce a higher accuracy in a speech-in-noise test with time-compressed speech. An informal 
subjective rating of three listeners confirmed a higher quality of signals processed with PSOLA 
than with Mach1. These results are in contrast to Covell et al. (1998) and He and Gupta 
(2001), who found an advantage for Mach1. Covell et al. (1998) presented signals processed 
with time-compression factors ranging between ρ = 24% and 39% (calculated from the time-
compression rates given by the authors, 546-942 syll/min1) and therefore used the same range 
of time-compression factors and comparable speech rates as in the current study (ρ = 25%-
40% and 583-932 syll/min1). He and Gupta (2001) used time-compression factors of either 
ρ = 40% or 67% (speech rate: 623-714 syll/min1 or 374-428 syll/min1), which are partly higher 
than the presented factors. Therefore, all studies presented speech faster than the natural fast 
speech recorded by Janse (2003, Chapter 5, Section 3), which reached a time-compression 
factor of 72% (510 syll/min, calculated from the stated speech rate). Listeners of investigations 
according to Covell et al. (1998) and He and Gupta (2001) showed better comprehension and 
preference for Mach1 compared to a uniform synchronous overlap-add algorithm. These differ-
ences might be caused by the performance of the synchronous overlap-add algorithm used by 
those authors which is possibly poorer than the PSOLA processing. Other reasons might be 
the speech material, which consisted of short German sentences instead of English dialogues 
and monologues with pauses used by Covell et al. (1998) and He and Gupta (2001). The 
advantage of pauses for the Mach1 algorithm was previously discussed by Janse (2003). These 
pauses were highly compressed and the remaining speech did not have to be shortened as much 
as the signals processed with the uniform algorithm in order to achieve the same time com-
pression. The current speech material consists of single sentences with no pauses. For the 
processing of the speech material five sentences were concatenated with very short pauses 
between (see Section 2.2.2.2). It is suggested that the algorithm was not able to use the ad-
vantage of these short pauses. Mach1 had to compress the speech to the desired time-compres-
sion factor like the uniform PSOLA algorithm. In addition, the listeners conducted different 
tasks. Covell et al. (1998) investigated comprehension by asking questions about the content 
of the presented speech. Participants in the current study listened to sentences with low re-
dundancy, some of which did not convey meaning. They repeated every understood word and 
intelligibility was assessed. In contrast to the results of Covell et al. (1998) and He and Gupta 
(2001), the documented advantage of PSOLA is supported by the findings of Adank and Janse 
(2009). They described that natural-fast speech is more difficult to perceive than artificially 
time-compressed speech obtained with PSOLA. Natural-fast speech shows greater spectrotem-
poral variation than artificially time-compressed speech, when compared to speech presented 
at a normal rate. Such variation arises from articulatory limitations imposed when speaking 
at fast rates. 

Summarizing, time compression deteriorates speech intelligibility. The non-uniform Mach1 al-
gorithm induces greater changes and spectrotemporal variations of the time-compressed speech 
signal than the uniform PSOLA algorithm, especially if the signals are compared to the original 
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speech at normal rate. These deviations from the original speech increase the difficulty for 
listeners to recognize and process time-compressed speech, and therefore result in poorer intel-
ligibility. 

The current investigation was motivated by the need to develop speech-in-noise tests that yield 
performance thresholds at positive SNRs relevant for hearing aid processing schemes. It was 
observed that positive SNRs are achievable with high time compression only. This means that 
more realistic SNRs can be reached at a cost of presenting speech at an artificially high and 
less realistic speech rate. It is expected that in future work, two factors will lead to higher (i.e., 
less obtrusive) time-compression factors. First and as mentioned before, the use of sentence 
scoring will increase the time-compression factor because the intelligibility of an entire sentence 
is dependent on the least intelligible word. Second, measurements with older participants will 
shift the time-compression factor to higher values. Apart from less realistic time-compression 
factors, a speech-in-noise test does not represent a realistic hearing situation, because sentences 
were created from a matrix with low context and the background noise has the same spectrum 
as the speech. But it is a very sensitive test procedure, well defined, and therefore easy to 
reproduce in scientific settings and in standard hearing evaluation procedures. Therefore, the 
possible disadvantage of low time-compression factors is counterbalanced with several ad-
vantages of such a test. 

In addition to previously mentioned factors, future investigations of time-compressed speech-
in-noise tests should consider the following. First, if time-compressed material is used for the 
evaluation of hearing instruments, it is necessary to also investigate the effects of hearing 
instrument processing of time-compressed speech. Furthermore, the intelligibility of time-com-
pressed speech differs for younger and older normal hearing listeners, as well as hearing-im-
paired participants (e.g., Schneider et al., 2005; Gordon-Salant and Friedman, 2011; Adams et 
al., 2012). Additionally, previous investigations have suggested that training can influence 
speech intelligibility performance when listening to time-compressed speech (e.g., Adank and 
Janse, 2009; Gordon-Salant and Friedman, 2011). 

2.5 Conclusions 

This study compared two time-compression algorithms, namely, the uniform PSOLA (as im-
plemented in Praat) and the non-uniform Mach1. The goal was to investigate their potential 
application in a speech-in-noise test in order to evaluate speech perception at positive SNRs. 
On both the objective and perceptual measures, an advantage was observed for PSOLA com-
pared to Mach1. The uniform PSOLA exhibited less variation of the objectively determined 
deviations of the targeted time compression, changes of the phoneme duration, spectra and 
modulation spectra. Thus, these signals are believed to be more similar to original speech at a 
normal rate and showed a higher intelligibility than Mach1. The more similar intelligibilities 
for words measured with PSOLA will likely result in more reliable performance when used in 
a speech-in-noise test. However, very high speech rates with a time-compression factor below 
30% were necessary to reach 50% intelligibility at positive SNRs. Additionally, discrimination 
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functions measured with time-compressed speech showed a shallower slope compared to origi-
nal speech material indicating limitations of the speech-in-noise test and its ability to discrim-
inate across different effective SNRs. 
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3  Learning effects in SRT measurements 

3 
Normal and time-compressed speech: How does 
learning affect speech recognition thresholds in 
noise? 

Objective: Learning effects were investigated for the German Oldenburg sen-
tence test (OLSA) with original and time-compressed fast speech in noise. 
Intra- and inter-session as well as transfer effects from time-compressed to 
original speech were analyzed. Design: Normal-hearing and hearing-im-
paired participants completed six lists of the OLSA during five sessions. 
Study Sample: Two groups of normal-hearing listeners (24 and 12 listeners) 
and two groups of hearing-impaired listeners (9 listeners each) performed 
the test with original or time-compressed speech. Results: In general, original 
speech resulted in better speech recognition thresholds than time-com-
pressed speech. Thresholds decreased with repetition for both material sets. 
The largest improvements were observed within the first measurements of 
the first session, indicating a rapid initial adaptation phase, and were larger 
for time-compressed than for original speech. Additional inter-session im-
provements were present, indicating a longer phase of ongoing learning, es-
pecially for time-compressed speech. However, no transfer of learning bene-
fits from time-compressed to original speech was observed for normal-hear-
ing participants. Conclusions: Results are consistent with the Reverse Hier-
archy Theory. It is recommended that learning effects are considered during 
the initial adaptation phase when administering the OLSA. Furthermore, 
prolonged inter-session learning effects should be taken into account, espe-
cially for time-compressed speech. 

Adapted from: 
Schlueter, A., Lemke, U., Kollmeier, B., Holube, I. (2014) “Normal and time-compressed speech: How 
does learning affect speech recognition thresholds in noise?”, International Journal of Audiology,  sub-
mitted.   
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3.1 Introduction 

Perceptual learning while performing speech audiometry is of considerable importance in au-
diology: When hearing abilities are assessed with a speech test, optimal performance requires 
learning of the speech recognition task prior to data collection. Ideally, the training required 
for a stable level of performance is achieved quickly, so that the test is completed in a time 
efficient fashion. With matrix sentence tests, for example, it is typically recommended that 
listeners complete at least one or two training lists prior to the actual measurement (e.g., 
Wagener et al., 1999a; Hochmuth et al., 2012, see Section 3.1.1).  

Learning effects have also been reported for speech recognition tests using time-compressed 
speech (e.g., Dupoux and Green, 1997, see Section 3.1.2). Time-compressed speech consists of 
original speech that has been processed with a time-compression algorithm in order to produce 
speech with a faster speaking rate. These algorithms retain the pitch of the speech and can 
achieve high compression of the signals. Furthermore, time-compressed speech used in a matrix 
test is currently studied to measure speech recognition thresholds (SRTs) at higher signal-to-
noise ratios (SNRs, Schlueter et al., 2014b). The SRT describes the SNR at which 50% recog-
nition is reached. With time-compressed speech, the SNRs presented are closer to conversations 
in everyday life that take place in noisy environments at positive SNRs (Olsen, 1998; Smeds 
et al., 2012). For speech tests with time-compressed speech, it is unclear whether the learning 
process is comparable to original speech. Hence, time-compressed speech appears to be a good 
tool to study the influence of different parameters on learning effects in speech audiology. This 
study therefore considered learning effects in time-compressed German matrix sentences. Fur-
thermore, results were discussed from the perspective of a theory concerning perceptual learn-
ing.  

3.1.1 Learning effects for original speech presented in a matrix test format 

Learning effects were observed in speech audiometry. The German Oldenburg sentence test 
(OLSA, Wagener et al., 1999c) as well as its counterparts in different languages, such as the 
Swedish Hagerman test (Hagerman and Kinnefors, 1995), the Danish Dantale II (Wagener et 
al., 2003), Spanish or Polish matrix tests (Hochmuth et al., 2012; Ozimek et al., 2010) use 
sentences that were created from a matrix of 50 words by random selection. For SRT meas-
urements, the sentences are usually presented at a normal speech rate in background noise at 
a fixed level and the level of the speech is adaptively adjusted to reach SRT.  

There are several advantages of speech tests with a matrix structure, including the high number 
of different sentences that can be created from the limited set of material. These sentences 
show relatively low redundancy for specific words and word combinations. Also, most sentences 
do not make sense and are therefore characterized by low predictability. Moreover, typically, 
sentences are not used twice. Consequently, the chance of learning entire sentences is mini-
mized. On the other hand, matrix tests are expected to be prone to learning effects due to the 
limited speech material. Also, learning effects are probably more pronounced at the beginning 
of the measurements due to the participants’ need for familiarization with the unaccustomed 
test situation and with the sentences of low-predictability. 
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For matrix tests with original speech, learning effects clearly follow a learning curve, with more 
pronounced performance improvements within the first repeated measurements and decreasing 
improvements for further repetitions. In the following, this learning effect due to repeated 
measurements within a session is called intra-session learning effect. Hagerman and Kinnefors 
(1995) documented a mean decrease of SRT by 0.13 dB for normal-hearing participants (NH) 
and 0.07 dB to 0.5 dB for hearing-impaired participants (HI) for each repetition within a single 
session. Wagener et al. (1999a, 2003), Hernvig and Olsen (2005), and Hochmuth et al. (2012) 
measured similar or even higher learning effects and recommended the routine use of training 
lists before measuring speech recognition. For the OLSA, and based on measurements with 
young NH Wagener et al. (1999a) suggested one or two lists of training (i.e. up to 60 sentences). 
After the presentation of two lists, the learning effect of about 2 dB (observed between the 
first and last measurement of six consecutive lists) was reduced and a test accuracy of about 
0.5 dB (SRT difference between following measurements after two training lists) was achieved. 
The size of the learning effect seems to be small and irrelevant when compared to speech 
recognition improvements with hearing aids for speech in quiet, but is relevant with regard to 
SRTs for speech in noise, which cannot always be improved by hearing aids. According to the 
German governmental guidelines for medical aids (Bundesministerium der Justiz, 2012), SRTs 
are expected to improve by at least 1.5 dB SNR for a beneficial hearing aid fitting. The required 
minimum improvement is below the reported accuracy of the OLSA when conducted without 
training (Wagener et al., 1999a). As a result, when conducting the OLSA without training 
lists, an improved SRT might falsely be interpreted as a benefit due to a hearing aid fitting, 
while in fact the improvement is the result of learning.  

In addition to intra-session effects, learning effects can also be observed when comparing data 
collected on different days (i.e. inter-session learning effect). This effect is of interest especially 
for scientific studies, where repeated measurements of different settings (e.g. hearing aid set-
tings in different listening situations) are conducted in different sessions and small differences 
between settings need to be resolved. After the initial training, Hagerman (1982) as well as 
Hernvig and Olsen (2005) documented an additional small decrease of SRT values in two 
consecutive sessions. Wagener and Brand (2005) measured an inter-session learning effect (me-
dian test-retest difference of SRT across all settings, two sessions) of 0.67 dB and 0.2 dB for 
NH and HI, respectively.  

The learning effects described seem to be dependent on the hearing ability of the participants. 
Hagerman (1984) and Hagerman and Kinnefors (1995) described a negligible learning effect 
for HI with SRT values less than 0 dB. However, they stated that a learning effect should be 
considered for participants with SRT values larger than 0 dB. In contrast, Wagener and Brand 
(2005) reported a learning effect for both NH and HI, although the effect was smaller for the 
HI. 

Based on previous research observing intra-session learning effects, it is generally recommended 
that training lists be administered before measuring speech recognition. This recommendation 
is especially important for clinical purposes, because daily practice generally provides one ses-
sion with a small number of repeated measurements e.g. for comparison of hearing aids. Until 
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now, intra-session learning was not investigated for repeated measures within different consec-
utive sessions on different days. Such a procedure is commonly used in scientific studies using 
complex test protocols, when e.g. different parameter settings of hearing aids are tested in 
acoustically different environments. Little is known as to how scientific investigations with 
several sessions of repeated SRT measures are affected by learning. One possibility is that a 
participant who completes training in an earlier session displays a different pattern of intra-
session learning effect at following sessions. Moreover, the recommendation of administering 
training lists is based on studies of young NH rather than older HI. However, the majority of 
hearing aid users is older. Also, older HI often take part in scientific research and they may 
exhibit a different pattern of performance compared to young HI and NH. Inter-session results 
suggest an ongoing learning of the speech material and the test procedure. Importantly, the 
studies cited conducted measurements in a limited number of sessions. Therefore, they provide 
no indication whether and when learning discontinues and whether SRT values remain stable 
over longer study periods. This is especially of interest for scientific investigations in which 
small differences between e.g. parameter settings of hearing aid algorithms need to be resolved 
and therefore a highly accurate test is necessary. Finally, available data on the comparison of 
learning effects in NH and HI showed no consistent tendency. It therefore remains unclear 
whether differential learning effects due to hearing impairment (and age) have to be taken into 
account or whether different training protocols dependent on previous learning and hearing 
loss have to be considered. Moreover, the cited studies did not discuss the results with regard 
to different mechanisms underlying the learning process, such as perceptual learning that relies 
on different stages of auditory information processing, as has been suggested by the Reverse 
Hierarchy Theory (RHT, Nahum et al., 2008, 2010; Adank and Janse, 2009; Banai and Lavner, 
2012; Ahissar et al., 2009).  

3.1.2 Learning effects for time-compressed speech 

Beside matrix tests using original speech, time-compressed speech becomes relevant for the 
investigation of speech at SNRs of everyday life (Schlueter et al., 2014b). Time-compressed 
speech material shows learning effects and the combination of speech rate and matrix material 
is expected to emphasize these effects. The literature concerning learning of time-compressed 
speech reports intra-session learning effects. Dupoux and Green (1997), Peelle and Wingfield 
(2005), Adank and Janse (2009) and Adank and Devin (2010) consistently documented in-
creasing comprehension of speech within the first sentences. Dupoux and Green (1997), for 
instance, described improved recognition after the presentation of only five or ten time-com-
pressed sentences, indicating e.g. “a short term adjustment to local speech rate parameters” 
(p. 926). In contrast, Golomb et al. (2007) observed inter-session learning effects and measured 
an increase of recall accuracy between the first and second session about one week later for 
both younger and older participants. Additionally, for time spent listening to time-compressed 
speech, Gordon-Salant and Friedman (2011) showed increasing speech recognition with in-
creasing hours per week. 

Different factors seem to affect the learning of time-compressed speech. Dupoux and Green 
(1997) described longer learning effects for speech that had higher compression. Although older 
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listeners achieved a smaller recall performance of time-compressed speech compared to younger 
participants, initial adaptation to time-compressed speech was independent of age (Peelle and 
Wingfield, 2005): rate and magnitude of initial learning effects were comparable for younger 
and older participants. Unlike young participants, older participants’ learning was dependent 
on compression factors; they were impaired in transferring learning effects from one speech 
rate to another. Golomb et al. (2007) did not confirm this result, but found for older partici-
pants, beyond an initial plateau, learning effects comparable to younger listeners. The absence 
of age-related effects indicated learning processes that were resistant to cognitive decline, or, 
alternatively, compensatory mechanisms that were applied by older participants. In order to 
explore the level of representations used for perceptual learning, transfer of learning was also 
studied for different settings. Adank and Janse (2009) documented a transfer of learning from 
time-compressed to natural fast speech, but not for the reverse presentation of signals. Refer-
ring to the RHT, they argued “that participants relied more on lower level acoustic cues for 
conditions that require more attention [natural fast speech], i.e. those that were more difficult” 
(p. 2656). Pallier et al. (1998) and Sebastián-Gallés et al. (2000) showed a transfer for different 
languages and time-compressed speech. They indicated a prelexical processing level for learning 
of time-compressed speech.  

Additionally, Banai and Lavner (2012) suggested that intra- and inter-session learning effects 
reflect two phases of the perceptual learning process. They based their findings on verification 
and lexical decision tasks that non-native listeners executed on time-compressed Hebrew sen-
tences and words. Participants’ performance for five different conditions was measured in pre 
and post training sessions. To analyze the generalization of learning, different conditions were 
presented using trained and untrained sentences or words of the same speaker as well as trained 
sentences of a different male or female speaker. Banai and Lavner (2012) documented that 
learning of time-compressed speech continued after adaptation to few sentences and through-
out training sessions. Since participants only showed generalization of the learned to the 
trained/untrained sentences and different male speakers, Banai and Lavner (2012) related their 
findings to the RHT and concluded that during an initial phase of brief adaptation, perception 
relied on abstract acoustic representations at higher levels of the auditory pathway. Also, they 
interpreted the subsequent learning process as using spetro-temporal representations at lower 
levels with increasing precision.  

With respect to speech recognition tasks in noise, the results of Banai and Lavner (2012) 
suggest a transfer of learning at higher levels during the initial phase of learning. However, it 
is further assumed that the transfer of learning does not take place during the second phase, 
during which specific lower-level representations are used. Based on this assumption, partici-
pants who have been trained with time-compressed speech should reach a better threshold for 
subsequently-presented original speech than naïve participants, because they have adapted 
their higher level-representations. Furthermore, participants are expected to exhibit worse 
thresholds than those participants who developed learning during prolonged practice of original 
speech, because they cannot rely on lower-level representations of original speech. Comparison 
of the thresholds should allow a distinction between the initial phase of brief adaptation and 
the subsequent learning with relevant spectro-temporal representations at lower levels. 
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3.1.3 Research questions of the current study 

To investigate potential learning effects, the OLSA was conducted in repeated measures within 
consecutive sessions. NH and HI listened to the original speech material and to time-com-
pressed sentences. It was expected that learning of the speech presented progresses throughout 
an initial general phase and a subsequent prolonged and more stimulus-specific phase. Conse-
quently, SRT values should improve with repetition within and between sessions. These prin-
ciple mechanisms of learning were expected to be the same for NH and HI as well as for original 
and time-compressed speech. Primarily, the consequences of learning mechanisms for speech 
audiometry and hearing instrument evaluation were analyzed. For the reliable usage of a matrix 
test with original and time-compressed speech, it is necessary to know for both NH and HI 
whether reliable results are achievable within and across sessions and, if so, how many training 
lists are necessary. Furthermore, observed results need to be related to a model of perceptual 
learning. This was facilitated by additional studies on the transfer of learning between original 
and time-compressed speech.  

3.2 Methods 

3.2.1 Participants 

Participants were assigned to the four groups outlined in Table 3.1, i.e. NH and HI that were 
presented either with original or with time-compressed (TC) speech material. Based on pure-
tone audiometry testing, NH showed hearing levels of 20 dB HL or better at all octave fre-
quencies between 0.25 kHz and 8 kHz for both ears. Thresholds of the HI are depicted in 
Figure 3.1. All listeners had German as their native language and no prior experience with the 
OLSA. They were paid a small amount for their participation, to compensate for their ex-
penses. 

Table 3.1: Characteristics of participating groups and test conditions. 

Group Age 
Number of 
participants 

Gender 
Hearing 
ability 

Test condition 

NH-Original 
Mean: 22 years, 

19-27 years 
24 

21 female, 
3 male 

Normal Original speech 

HI-Original 
Mean: 71 years, 

58-78 years 
9 

3 female, 
6 male 

Impaired Original speech 

NH-TC 
Mean: 22 years, 

19-27 years 
12 

6 female, 
6 male 

Normal 
Time-compressed speech, 

compression: 30% 

HI-TC 
Mean: 66 years, 

58-75 years 
9 

6 female, 
3 male 

Impaired 
Time-compressed speech, 

compression: 50% 
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Figure 3.1: Results of pure-tone audiometry testing for the right and left ear of the hearing-impaired 
participants (HI), who listened to original (black) or time-compressed (TC, gray) speech material. 

3.2.2 Signals 

Speech recognition performance was determined using the German matrix test (OLSA, 
Wagener et al, 1999a). Its sentences have the same structure (name, verb, numeral, adjective, 
object). Sentences were generated from a random selection of one out of ten words for each 
structural element of the sentence. The selection process produced 100 sentences with low 
redundancy, for instance “Peter kauft zehn nasse Messer.” (“Peter buys ten wet knifes.”). The 
test consists of 40 lists with 30 sentences each with equal speech recognition and included a 
background noise stimulus. The noise resulted from a superposition of all sentences and has 
the same long-term spectrum as the speech (Wagener et al., 1999a). 

For the presentation of time-compressed speech with original fundamental frequency, sentences 
of the OLSA were processed with a pitch synchronous overlap-add procedure implemented in 
the software Praat (Boersma and Weenink, 2009). This approach analyzes the pitch of a speech 
signal, sets pitch marks, and segments the original signal into windowed frames. Afterwards, 
segments at regular intervals are deleted and the remaining segments are concatenated to the 
time-compressed signal. Position and number of deleted segments are dependent only on the 
time-compression factor and are not influenced by speech characteristics. This compression is 
different to natural fast speech in which e.g. pauses and vowels are compressed the most as 
compared to other parts of the speech (e.g., Covell et al., 1998). Schlueter et al. (2014b) showed 
that only very small differences between long-term spectra of time-compressed speech pro-
cessed with Praat and original speech. Among other reasons, they recommended Praat for 
speech tests because it showed signal quality comparable to the original speech material. For 
the speech tests in this study, sentences were compressed to 30% (for NH) and 50% (for HI) 
of their original length. Compression was selected after pretests, in which younger NH reached 
50% speech recognition at a compression of about 30% and 1 dB SNR. HI showed equal 
recognition at a compression to 50% and SNRs of 1 dB or higher (Schlüter et al, 2013). 
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3.2.3 Measurements 

After brief anamnesis, otoscopic examination, and pure-tone audiometric testing, the OLSA 
measurements were performed in an acoustically-insulated audiometric booth. Signal presen-
tation was controlled by a laptop running the Oldenburg Measurement Application (Hörtech, 
Oldenburg, Germany). Signals were routed through a sound card (Fireface 400, RME, Audio 
AG, Haimhausen, Germany) and a headphone amplifier (HB 7 Headphone Driver, Tucker 
Davis Technologies, Alachua, FL) to headphones (HDA 200, Sennheiser, Wedemark-
Wennebostel, Germany). The noise was presented at a fixed level of 65 dB SPL for NH. HI 
listened to a noise level dependent on their hearing threshold at both 0.5 and 1 kHz and the 
level correction was based on by the half-gain rule but without frequency shaping. The cor-
rected overall presentation level l was calculated using Equation 3.1.  

 l = 65 + hearing threshold 0.5 kHz+ hearing threshold 1 kHz
4  [dB SPL]    (3.1) 

If HI complained about the loudness of the background noise, the presentation level was de-
creased in 5 dB steps until an acceptable level was achieved. The resulting median presentation 
level of the background noise was 77 dB SPL for HI (range: 70-85 dB SPL). The measurement 
of the SRT was conducted with an adaptive procedure, adjusting the level of sentences as a 
function of their recognition. Therefore, participants listened to one test list of OLSA sentences 
(30 sentences) in background noise and repeated orally what they understood without visual 
presentation of the speech matrix. The level of the speech was adaptively adjusted after each 
sentence and depended on the recognition of previous sentence, the target recognition of 50%, 
the slope of the assumed discrimination function and a rate of convergence (Brand and Koll-
meier, 2002). The first sentence of each list was presented at 0 dB SNR or 10 dB SNR for 
normal and time-compressed speech, respectively. After each test list, the SRT was estimated 
using a maximum likelihood method (Brand and Kollmeier, 2002) and based on all SNRs and 
sentence-specific recognition scores within that test list.  

All participants took part in five sessions, which were arranged at one-to-three day intervals. 
During each session, they performed six lists with randomly-selected list numbers of the OLSA. 
In the last session, participants of the two groups who listened in all previous measurements 
to the time-compressed speech condition conducted an additional seventh list of original speech 
material. The study was approved by the Ethical Committee of the Carl von Ossietzky Uni-
versity, Oldenburg. 

3.3 Results 

3.3.1 Normal-hearing participants 

3.3.1.1 General results 

Figure 3.2a provides an overview of the SRT results for six successively-measured lists at each 
of five sessions. These results are presented for groups of NH-Original and -TC. In general, a 
trend of decreasing SRTs within and between sessions was observed, clearly showing higher 
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SRTs for time-compressed than for original speech. Also, the overall improvement in SRT 
across measurements and sessions was larger for time-compressed than for original speech. 

 

Figure 3.2: Boxplot of SRT values measured in five sessions with six successively-measured lists. Results 
are from groups of a) normal hearing (NH) and b) hearing impaired (HI) as well as original (black) 
and time-compressed (TC, gray) speech material. 

3.3.1.2 Intra-session learning 

For the first session, intra-session learning effects were studied using differences between the 
first and third lists. This difference is shown in Figure 3.3 and reflects the improvement that 
can be achieved by the performance of two recommended training lists (up to 60 sentences, 
Wagener et al., 1999a). The results of NH-Original (see Figure 3.3a) can serve as a reference 
for the typical improvements to be expected when applying the OLSA in the normal clinical 
setting of one single session. In Figure 3.3a, NH achieved smaller improvement for original 
(median difference of SRTs: NH-Original 1.2 dB) than for time-compressed speech (median 
difference of SRTs: NH-TC 7.8 dB) and these differences were significant (U-Test; NH: 
p < 0.001).  

Since no statistically-significant differences were found between results from fifth and sixth list 
for all sessions and groups (Wilcoxon test for all sessions and groups: p > 0.078), the mean of 
the fifth and sixth list served as a representation of the SRT at the end of a session. For all 
five sessions, intra-session learning effects after the third list were calculated by individual 
differences between results of the third list and the end of each session (mean of fifth and sixth 
list). Median differences for this measure of intra-session learning effects are shown in Table 
3.2. In general, for NH this learning effect was observed to be largest for the first session and 
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Figure 3.3: Intra-session learning - SRT-differences between the first and third list in the first session 
for a) normal hearing (NH) and b) hearing impaired (HI) as well as original (black) and time-compressed 
(TC, gray) speech material. Significance was analyzed with a U-Test and significant p-values are dis-
played (p < 0.05: *; p < 0.01: **; p < 0.001: ***). 

 

Table 3.2: Intra and inter-session learning – Intra-session learning effects are described by the median 
SRT-difference between the third and the mean of fifth and sixth lists (and the interquartile range). For 
inter-session learning effects, mean SRTs of the fifth and sixth list were first computed for each partic-
ipant and session. Subsequently, the median difference (and the interquartile range) between the first 
and fifth session were calculated. Results are displayed for normal hearing (NH) and hearing impaired 
(HI) who listened to original or time-compressed speech (Original, TC) as well as results of all partici-
pants and speech signals (All). 

Learning Session NH-Original NH-TC HI-Original HI-TC All 

In
tr

a-
se

ss
io

n 

1st 
0.4 dB 

(0.6 dB) 
1.3 dB 

(1.3 dB) 
0.5 dB 

(1.0 dB) 
0.7 dB 

(0.5 dB) 
0.6 dB 

(1.0 dB) 

2nd 
0.3 dB 

(0.3 dB) 
0.2 dB 

(2.0 dB) 
0.6 dB 

(0.7 dB) 
0.3 dB 

(0.5 dB) 
0.3 dB 

(0.6 dB) 

3rd 
0.4 dB 

(0.7 dB) 
0.3 dB 

(0.6 dB) 
0.2 dB 

(0.6 dB) 
0.1 dB 

(0.6 dB) 
0.3 dB 

(0.7 dB) 

4th 
0.3 dB 

(0.7 dB) 
0.3 dB 

(1.4 dB) 
0.2 dB 

(0.5 dB) 
0.4 dB 

(0.6 dB) 
0.2 dB 

(0.8 dB) 

5th 
0.1 dB 

(0.9 dB) 
0.2 dB 

(1.6 dB) 
0.1 dB 

(0.5 dB) 
0.3 dB 

(0.9 dB) 
0.1 dB 

(0.9 dB) 

In
te

r-
 

se
ss

io
n 

 1.4 dB 
(0.7dB) 

3.0 dB 
(2.2 dB) 

0.9 dB 
(0.7 dB) 

1.2 dB 
(1.0 dB) 
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further decreased for nearly all subsequent sessions. Additionally, for the first session, a larger 
improvement was detected for time-compressed than for original speech. However, the intra-
session learning effects did not reach statistical significance between sessions when analyzed 
for each normal-hearing group separately (Friedman, NH-Original: p = 0.058, NH-TC: 
p = 0.167). 

To determine the number of training lists after which no significant difference of the SRT 
occurred, Friedman tests were calculated. First, a statistical analysis was performed for the 
entire data of each session. Then SRTs of successive lists, beginning with the first list, were 
eliminated and the Friedman test was again performed. In doing so, the number of lists was 
identified after which no significant difference occurred compared to the subsequent lists. This 
analysis showed significant differences for all sessions and groups. In general, for NH-Original, 
significant differences were found for the first three lists of a session, while NH-TC showed 
significant differences for the first four lists. It has already been noted that results of the fifth 
and sixth list were not significantly different from each other. 

3.3.1.3 Inter-session learning 

Inter-session learning effects were assessed by analyzing the mean SRTs of the fifth and sixth 
list within the first to fifth session for each participant. These results are depicted in Figure 
3.4a for NH and show decreasing SRTs for all sessions. In order to determine the session after 
which no significant difference occurred, Friedman tests were performed after eliminating suc-
cessive sessions from the data beginning with the first session. NH-Original and -TC showed 
significant differences of the SRT for the first three sessions (Friedman, for all evaluations, 
p < 0.019). No significant difference in performance was observed to initially appear after the 
fourth session (Friedman, comparison of fourth and fifth session, NH-Original p = 0.683, NH-
TC p = 0.248). In addition, Table 3.2 depicts the median difference between the first and fifth 
session for all groups. For time-compressed speech material, greater inter-session learning ef-
fects were found than for original speech. However, this effect was only significant for the 
comparison of NH-Original and NH-TC (U-test, NH: p < 0.001).  

3.3.1.4 Transfer effects 

Participants of the group NH-TC completed one additional, final list using the original speech 
material. Figure 3.5a shows the SRTs from this list, together with results of the NH-Original 
from their last measurement with original speech. NH-TC who trained on time-compressed 
speech during the experiment achieved higher SRTs for original speech than NH-Original, who 
trained on original speech during the experiment (Figure 3.5a). A U-test confirmed the results 
(p < 0.001). 

3.3.2 Hearing-impaired participants 

3.3.2.1 General results 

Figure 3.2b shows also an overview of SRT results for the repeated measurements of HI. The 
general trend of decreasing SRTs within and between sessions was confirmed by HI as well as 
higher SRTs for time-compressed than for original speech.  
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Figure 3.4: Inter-session learning - Mean SRTs of the fifth and sixth list for five sessions performed by 
a) normal hearing (NH) and b) hearing impaired (HI) using original (black) and time-compressed (gray) 
speech material. Statistical testing consisted of a Friedman test and significant p-values are displayed 
(p < 0.05: *; p < 0.01: **; p < 0.001: ***). Brackets enclose all lists compared using the Friedman 
test. 

 

 

Figure 3.5: SRTs for original speech. Shown are results of the sixth list within the fifth session of NH/HI-
Original and results of a seventh list within the fifth session of NH/HI-TC. Significance was analyzed 
with a U-Test and significant p-values are displayed (p < 0.05: *; p < 0.01: **; p < 0.001: ***). 
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3.3.2.2 Intra-session learning 

Again for HI, differences between the first and third lists are shown in Figure 3.3b and reflect 
the improvement after two recommended training lists. As NH, HI obtained smaller improve-
ment for original (median difference of SRTs: HI-Original 1.2 dB) than for time-compressed 
speech (median difference of SRTs: HI-TC 2.3 dB) and these differences were significant (U-
Test; HI: p = 0.012).  

As for NH, and because of no significant differences (Wilcoxon test for all sessions and groups: 
p > 0.067), the mean of the fifth and sixth list was used to represent the SRT at the end of a 
session. Again, intra-session learning effects (individual differences between results of the third 
list and mean of fifth and sixth list) were investigated and medians are listed in Table 3.2. As 
seen before for NH, learning effects for HI were largest for the first session and generally 
decrease for following sessions. When analyzed for each HI-groups separately, the intra-session 
learning effects did not reach statistical significance between sessions (Friedman, HI-Original: 
p = 0.422, HI-TC: p = 0.082). 

As explained for the NH, Friedman tests were calculated to determine the number of training 
lists. For HI-Original and HI-TC, significant differences were only found for the first two lists 
of a session, not for any of the following lists three through six.  

3.3.2.3 Inter-session learning 

Inter-session learning effects (mean SRTs of the fifth and sixth list) of HI are depicted in Figure 
3.4b and showed decreasing SRTs for all sessions. Again, Friedman tests were performed to 
determine the session after which no significant difference occurred. For HI-Original, results of 
all sessions were significantly different (Friedman, for all evaluations: p < 0.044). HI-TC results 
showed comparable significance to NH data. They also were significantly different (Friedman, 
for all evaluations: p < 0.001), with the exception of fourth and fifth session (Friedman, 
p = 0.257). In addition, Table 3.2 depicts the median difference between the first and fifth 
session for all HI-groups. The trend of greater inter-session learning effects for time-compressed 
than for original speech was not confirmed by the U-test (p = 0.222).  

3.3.2.4 Transfer effects 

As NH-TC, participants of the group HI-TC completed one additional, final list using the 
original speech material. Figure 3.5b shows these SRTs together with results from the last 
measurement with original speech of the group HI-Original. HI showed comparable SRTs, 
whether they listened to original or time-compressed speech during the experiment (U-test, 
p = 0.566).  

3.4  Discussion 

The presentation of time-compressed speech affected the recognition of the signals to a higher 
degree than original speech in NH and HI. Therefore, higher SRT values were measured with 
time-compressed speech than with original speech. Thus, SRT values of time-compressed 
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speech attained values that are closer to SNR values of conversations in everyday life (Olsen, 
1998; Smeds et al., 2012). 

Generally, intra- and inter-session learning effects were observed for repeated measures with 
original and with time-compressed speech presented in a German matrix test for both NH and 
HI. The SRTs improved over 30 different lists in five sessions indicating an initial phase of brief 
adaptation and a subsequent prolonged learning phase.  

Additionally, during the first three presented lists, NH and HI achieved larger improvements 
for time-compressed speech than for original speech. These results indicate a different initial 
learning pattern for time-compressed speech material compared to results for original speech. 
The learning was observed in addition to the general familiarization with the measurement 
procedure and the formal structure of the sentences. Furthermore, the inter-session learning 
effect was more pronounced, showing larger improvements for time-compressed than for origi-
nal speech, but this was only statistically significant for NH. NH-TC were able to transfer 
learning of the initial brief adaptation phase from time-compressed speech to their performance 
in original speech.  

Methodological considerations with respect to speech audiometry applied repeatedly in scien-
tific investigations are discussed here separately for speech tests with original and with time-
compressed speech. Finally, the discussion will compare the present results to previous work 
and to the RHT of perceptual learning in general. 

3.4.1 Consequences for speech audiometry 

The observed learning effects have an impact on speech audiometry that involves a matrix test 
presenting speech in noise. In clinical applications of speech-in-noise tests, the number of rep-
etitions and of sessions is commonly smaller than in scientific investigations and as a result, 
intra- and inter-session learning effects can affect these applications differently. In the following, 
results are compared to previous studies using speech tests for original and time-compressed 
speech separately. 

3.4.1.1 Original speech 

As expected, different SRT values for NH and HI were determined for original speech (Wagener 
et al., 1999a; Wagener and Brand, 2005). Nevertheless, the intra-session learning effect of NH 
and HI showed a similar median improvement of the SRT values of about 1 dB over the first 
three lists presented. Our results confirm Wagener et al. (1999a) and support their recommen-
dation for the use of one or two training lists with at least 20 sentences each before a reliable 
measurement can be conducted. Commonly, the OLSA with original speech is conducted with 
lists of 20 sentences each. To increase accuracy, it is also possible to apply lists with a length 
of 30 sentences, as in the current study. Wagener et al. (1999a) did not differentiate between 
the length of lists and recommended up to 60 sentences (two lists with 30 sentences each) for 
the purpose of training. In doing so, they posited that such training facilitates familiarization 
with the measurement procedure and adaptation to the structure of the OLSA sentences. In 
the current study, although NH showed significance for the last four lists in each session (after 
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two training lists), differences were smaller than 0.4 dB. This result is in agreement with 
Wagener et al. (1999a), who observed an accuracy of about 0.5 dB for SRT measurements 
after initial training. HI showed a difference of 0.6 dB or smaller, but often only achieved 
significance for the first two lists within the third to fifth session. Therefore, the question 
remains whether one training list is sufficient for measurements at consecutive sessions. Still, 
since the current results were investigated with a high number of measurements within one 
session, learning effects for the first list within the third to fifth session were partly due to the 
large number of lists presented in the previous sessions and could be more pronounced for a 
smaller number of measurements per session. Hence, two training lists are recommended for 
each session, which also serves the common request to use identical protocols for both NH and 
HI. 

Regarding inter-session learning effects, statistically significant improvements of SRT values 
were observed between nearly all sessions measured with NH, except for the fourth and fifth 
session. For HI, all sessions were significantly different, thus providing support for continuing 
perceptual learning. Statistical significance was probably due to uniform behavior and small 
inter-individual differences across participants. Hence, for practical purposes, this effect can 
likely be disregarded, because NH showed a larger median improvement of the SRT from the 
first to the fifth session of 1.4 dB (interquartile range: 0.7 dB) compared to HI of 0.9 dB 
(interquartile range: 0.7 dB). These results are in contrast to Hagerman (1984) and Hagerman 
and Kinnefors (1995). They observed a negligible learning effect for HI with SRT values smaller 
than 0 dB, while suggesting that learning effects have to be considered if participants have 
SRT values larger than 0 dB. According to Hagerman (1984) and Hagerman and Kinnefors 
(1995), the effect of learning was more important with poorer hearing ability. However, the 
results of the current study showed larger inter-session learning effects for NH than for HI. 
This inter-session learning effect confirms results by Wagener and Brand (2005), who found a 
larger difference of SRT values for NH than for HI. However, the improvement due to inter-
session learning observed over five sessions was larger in the current study compared to 
Wagener and Brand (2005), who compared results of only two subsequent sessions. These 
results confirm the recommendation of two training lists as given above. The same training 
protocol is recommended, although the groups studied differed in age and hearing ability. This 
makes it clear that both age and hearing ability can be neglected for recommendation of 
training lists for matrix tests with original speech in both clinical and scientific practice. Nev-
ertheless, for scientific practice it is important to account for training in each subsequent ses-
sion, particularly when small differences in speech recognition and therefore a high accuracy 
of the speech-in-noise test are of interest. Otherwise, the improvement of e.g. 1.5 dB in SRT 
for speech in noise, which is supposed to underlie a beneficial hearing aid fitting (see Section 
3.1, Bundesministerium der Justiz, 2012), will be generated due to learning. 

As described, two initial training lists in each session are recommended. Nevertheless, the 
comparison of results between different sessions, especially in scientific studies with a high 
number of measurement repetitions, can cause difficulties because significant differences can 
occur due to learning effects. Therefore, it may be advisable to conduct studies with experi-
enced listeners who have performed the test before and are well trained. Also, the number of 
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test conditions should be limited and/or the number of participants increased. These recom-
mendations are in line with Hernvig and Olsen (2005) for the performance of a Danish matrix 
test. In addition to these suggestions, the test conditions should be randomized across partic-
ipants and sessions.  

3.4.1.2 Time-compressed speech 

NH showed poorer SRT values than HI only for the first measurements with time-compressed 
speech and subsequent measurements were similar. This was achieved by the use of different 
rates of time compression for the two groups. NH listened to speech with higher compression 
(speech compressed to 30% of original length) than HI (speech compressed to 50% of original 
length). The different time compression was selected to reach comparable perception levels for 
both groups with regard to speech recognition and SRT values after the initial learning process. 

Differences in intra-session learning effects were observed for NH and HI. The main learning 
effect occurred within the first two measurements and improvement during the first three lists 
was larger for NH than for HI. The learning effects of NH are comparable to those observed 
by Dupoux and Green (1997), who described a longer-lasting initial learning effect for faster 
speech. This was confirmed by the statistical comparison of all measurements within the ses-
sions, where NH showed significant differences up to the fourth list and HI until the second 
list. Also, for time-compressed speech the number of training lists necessary to establish reliable 
results was investigated. As for original speech, when listening to time-compressed speech it is 
recommended that efficient test administration is best achieved for both NH and HI by com-
pleting two training lists. However, the accuracy of measurements with time-compressed speech 
is smaller than for original speech. The improvement after the first two training lists was about 
1 dB for the first session and smaller than 0.4 dB for following sessions. 

Also, the results on inter-session learning effects add to the observation of intra-session learn-
ing. These results were determined during five sessions, which were arranged at one-to-three 
day intervals. Significant differences of mean SRT for each session were calculated for NH and 
HI until the fourth session. The fourth and fifth session showed equal results. Effect of learning 
over all sessions was larger for NH than for HI. The results of intra- and inter-session learning 
showed an explicit adaptation to time-compressed speech and confirm the observations of e.g. 
Dupoux and Green (1997) and Golomb et al. (2007). 

The differences found for time-compressed speech presented to NH and HI cannot only be 
explained by the hearing ability of participants. Previous studies documented a deterioration 
of recognition for fast speech associated with age. Older NH performed poorer in speech recog-
nition tasks with time-compressed speech than younger NH (Golomb et al., 2007). However, 
the current study used an incomplete design; it was conducted with younger NH and older HI, 
whereas data of older NH are not available. Thus, no conclusion on the differential effects of 
hearing ability and age can be drawn. As for original speech, this does not affect the conse-
quences for speech audiometry with time-compressed speech because the same training proto-
col is recommended for young NH and old HI. Likewise, smaller learning effects were observed 
for older HI than for young NH. Therefore, it is expected that the recommended protocol also 
is suitable for older NH and younger HI.  
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A similar set of recommendations is given when completing a matrix test with either time-
compressed or original speech. Specifically, two training lists should be performed before the 
measurement of the SRT with time-compressed speech in each session. Since the results of 
different sessions were significantly different for time-compressed speech, SRT values measured 
in different sessions should not be compared. It is therefore advisable to design the study with 
measurements conducted within one single session, with a sufficient high number of partici-
pants and also to randomize test conditions across participants. Participants with previous 
experience listening to time-compressed speech do not necessarily have to be excluded, as long 
as differences between settings are investigated within one session. The degree of experience 
with time-compressed speech for the investigation of absolute SRT values becomes important, 
however, as recognition correlates positively with the time of exposure to time-compressed 
speech (Gordon-Salant and Friedman, 2011). 

3.4.2 Results of original and time-compressed speech in relation to percep-
tual learning theory 

In general, the results observed support the existence of perceptual learning, described as the 
improvement of perceptual task performance that occurs after practice (Adank and Janse, 
2009). The RHT (Nahum et al., 2008, 2010; Adank and Janse, 2009; Banai and Lavner, 2012; 
Ahissar et al., 2009) provides an excellent framework to explain auditory perception and can 
be applied to the perception of time-compressed speech as well. It suggests that in a perceptual 
learning process, the initial performance relies on immediate access to abstract acoustic repre-
sentations at high levels of the auditory pathway. These abstract representations allow for 
relatively good initial performance in everyday life. However, under privileged conditions (e.g., 
repeated listening), performance can be improved as learning progresses and specific lower-
level representations that are beneficial for the current task become accessible. Based on this 
idea, the RHT predicts that learning that is based on high–level representations can be gener-
alized and transferred to different tasks, whereas learning that applies lower–level representa-
tions is task-specific.  

In detail, Banai and Lavner (2012) reported initial adaptive learning effects during early ses-
sions and additional ongoing learning effects in later sessions. This pattern is comparable to 
the results of the current study, where larger learning effects were observed during early meas-
urements and ongoing learning effects were observed within and between sessions. Banai and 
Lavner (2012) considered perceptual learning of time-compressed speech using the RHT frame-
work. On the basis of this theoretical framework, the current findings on initial intra-session 
learning effects can be explained by brief adaptation processes. These include learning of the 
test procedure, instructions, but also basic characteristics of the speech material (e.g. speaker’s 
voice, sentence structure) making use of high-level abstract acoustical representations. Also, 
the present results on later intra- and inter-session learning effects can be related to the appli-
cation of increasing knowledge about detailed low-level spectro-temporal representations of the 
presented speech. These principle mechanisms of learning seem to remain the same for NH and 
HI as well as for original and time-compressed speech. Moreover, the results of the current 
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study showed a general trend of decreasing SRT-values after practice, although in detail par-
ticipants started within sessions at higher SRT-values than the SRT-values obtained at the 
end of previous sessions. This may indicate that part of the improvement due to learning was 
lost between sessions. Participants had to re-adapt to reach SRT-values as in previous sessions 
because they had forgotten learned parts.  

The RHT can also explain the larger improvement achieved by the time-compressed, compared 
to original speech: Normal speech rates used in the original speech are expected to be more 
often applied in ecologically-likely hearing situations than time-compressed speech rates. This 
results in higher-level representations of auditory processing, which rely primarily on normal 
speech rates. Since time-compressed speech material was rather unfamiliar to the participants, 
auditory processing showed larger and longer learning effects. 

In addition, transfer of learning from time-compressed to original speech was further explored 
and can be discussed using RHT. All participants who listened to the time-compressed speech 
condition (NH-TC, HI-TC) performed one final measurement with original speech. Their SRT 
results for original speech were compared to results of NH and HI who participated in the 
original speech condition (NH-Original, HI-Original). Since transfer effects were only tested 
from time-compressed speech to original speech, observations cannot be supported by transfer 
effects from original to time-compressed speech. Interestingly NH-TC showed lower SRT values 
than naïve NH within their first measurement of original speech. The median threshold of 
original speech for NH-TC is comparable to the median SRT values of -7.1 dB measured with 
the original OLSA for younger NH after two initial training lists (Wagener et al., 1999a). 
Therefore, participants were able to apply the learning of higher levels, which RHT and Banai 
and Lavner (2012) expected to be transferable. According to Wagener et al. (1999a) this first 
phase included customization to the measurement procedure and to the formal structure of 
the sentences, both information independent of the speech rate. The comparison to the thresh-
olds observed by Wagener et al. (1999a) indicates that the initial phase of brief adaptation was 
completed after about two initial training lists and the second phase of detailed low-level 
learning dominated the effects subsequently observed. This is supported by the observation 
that NH-TC failed to completely transfer learning. They showed nearly 1 dB poorer SRT 
values for original speech than NH-Original who trained using original speech. The absence of 
transfer indicates that no additive interaction of the learning processes for original and time-
compressed speech occurred. In agreement with Banai and Lavner (2012) and the RHT, par-
ticipants of the current study failed to apply the trained spectro-temporal representations of 
the time-compressed speech at lower levels of the auditory pathway to the original signals. 
Therefore, NH-TC learned a different content than NH-Original during the second phase and 
increased their knowledge about different detailed low-level spectro-temporal representations 
of the presented speech. The absence of transfer of subsequent detailed low-level learning might 
also be valid for further alterations of the speech signal or matrix tests with different languages. 
This is in line with observations made by Pallier et al. (1998) and Sebastián-Gallés et al. 
(2000). They showed that the adaptation to time-compressed native speech was supported by 
previous exposure to time-compressed non-native speech that was similar to native speech. For 
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this adaptation to take place, however, the listener did not necessarily need to know the foreign 
language. 

The non-significant difference of the SRT values for original speech between TC-trained and 
Original-trained HI was unexpected and different reasons might explain these results. First, 
the variation of measured SRT values was larger for HI than for NH. This might have concealed 
the differences in SRT due to different learning mechanisms. Second, the two hearing-impaired 
groups that were trained with original or time-compressed speech showed different hearing 
levels in pure-tone audiometric testing. At high frequencies between 4 and 8 kHz, HI-TC ex-
hibited a lower average hearing loss than HI-Original. Even though the effect of high-frequency 
hearing loss on SRT in noise is limited, this still might have contributed to a slightly better 
(i.e., lower) SRT of the HI-TC group than expected from the result of NH and the HI-Original. 

Conclusions and consequences for speech audiometry 

The results presented for original and time-compressed speech provide further evidence that 
learning of speech in a matrix test progresses through an initial general phase (1-2 lists) to a 
subsequent prolonged and more stimulus-specific phase (at least up to 6 lists and 5 sessions). 
The appearance of these two phases was discussed with regard to the RHT, which refers the 
initial phase of brief adaptation to perception that relies on nonspecific high level auditory 
representations, and the subsequent prolonged learning phase to perception of stimulus specific 
low level representations. These general mechanisms of perceptual learning are similar for NH 
and HI as well as for original and time-compressed speech. Only the extent of the learning 
effects differs for the two groups and speech materials. The application of time-compressed 
speech has been shown to be useful to differentiate between the two learning phases with 
(initial brief learning phase) and without transferable learning (subsequent prolonged learning 
phase). 

The observed results allow for specific recommendations for clinical as well as scientific appli-
cations of matrix tests in speech audiometry with repeated measurements. If matrix tests are 
used with original or time-compressed speech, two training lists should be administered in each 
session before measuring SRTs. In scientific applications that use original speech and aim to 
compare small differences or results of different sessions, the potential effect of intra- and inter-
session learning requires a careful randomization of test situations across sessions. Also, the 
recruiting of experienced listeners who are well trained on the test materials may be beneficial. 
If tests are conducted with time-compressed speech, comparison of results of different sessions 
is not recommended, but instead measurements should be performed within one session. By 
using this approach, the known effects of inter-session learning can be avoided. 
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4  Adaptive time compression in a speech-in-noise test 

4 
Speech perception at positive signal-to-noise 
ratios using adaptive adjustment of time 
compression 

Positive signal-to-noise ratios (SNRs) characterize listening situations most 
relevant for hearing-impaired listeners in daily life and should therefore be 
considered when evaluating hearing aid algorithms. For this, a speech-in-
noise test was developed and evaluated, in which the background noise is 
presented at fixed positive SNRs and the speech rate (i.e. the time compres-
sion of the speech material) is adaptively adjusted. In total, 29 younger and 
12 older normal-hearing, as well as 24 older hearing-impaired listeners took 
part in repeated measurements. Younger normal-hearing and older hearing-
impaired listeners conducted one of two adaptive methods which differed in 
adaptive procedure and step size. Analysis of the measurements with regard 
to list length and estimation strategy for thresholds resulted in a practical 
method measuring the time compression for 50% recognition. This method 
uses time-compression adjustment and step sizes according to Versfeld and 
Dreschler (2002), with sentence scoring, lists of 30 sentences, and a maxi-
mum likelihood method for threshold estimation. Evaluation of the proce-
dure showed that older participants obtained higher test-retest reliability 
compared to younger participants. Depending on the group of listeners, one 
or two lists are required for training prior to data collection. 

 

 

Adapted from: 
Schlueter, A., Brand, T., Lemke, U., Nitzschner, S., Kollmeier, B., Holube, I. (2014) “Speech perception 
at positive signal-to-noise ratios using adaptive adjustment of time compression”, J. Acoust. Soc. Am., 
submitted.  
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4.1 Introduction 

Speech-in-noise tests reflect the typical situation of speech embedded in background noise. 
Typical examples of these tests are digits triplet tests (e.g., Zokoll et al., 2012), sentence tests 
employing short meaningful sentences (e.g., Plomp and Mimpen, 1979; Kollmeier and Wes-
selkamp, 1997) or the matrix test structure that uses limited speech material always presented 
in the same arrangement (e.g., Wagener et al., 1999c; Hochmuth et al., 2012). All these tests 
are administered by adaptively adjusting the signal-to-noise ratio (SNR) to determine the 
speech recognition threshold (SRT), which commonly marks the SNR for 50% recognition. 
These usually show a steep discrimination function (e.g., Wagener et al., 1999a) and yield SRT 
values that are usually at negative SNRs even for hearing-impaired listeners (Wagener et al., 
1999a; Wagener and Brand, 2005).  

The negative SNR range has unfavorable effects when employing the tests for the assessment 
of a hearing loss or for the evaluation of hearing aids (see also Schlueter et al., 2014b). First, 
negative SNRs do not represent realistic hearing situations. Everyday conversations in noisy 
environments typically take place at positive SNRs (Olsen, 1998; Smeds et al., 2012). Second, 
several hearing aid algorithms showed SNR-dependent processing. For example, the gain in 
SNR from single-microphone noise reduction algorithms is highly dependent on the SNR in 
the input signal (e.g., Brons et al., 2013). Fredelake et al. (2012), for example, found the largest 
SNR improvement of single microphone noise reductions at positive SNRs. Conversely, low or 
even negative SNRs are challenging for these algorithms (Luts et al., 2010). Hence, employing 
positive and fixed SNRs for the assessment and parameter optimization of hearing aid algo-
rithms would make it possible to test the hearing aid at its normal point of operation (Naylor, 
2010). Third, normal-hearing and hearing-impaired listeners gain comparable recognition re-
sults at different SNRs. This complicates the comparison of results for normal-hearing and 
hearing-impaired listeners when evaluating hearing aid algorithms. Thus, there is a need for a 
speech-in-noise test that provides fixed and comparable positive SNRs for normal-hearing and 
hearing-impaired listeners.  

To reach positive SNRs, Schlueter et al. (2014b) changed the difficulty of a speech-in-noise test 
by increasing the speech rate of German matrix-type sentences using time-compression algo-
rithms. For time compression, they recommended a pitch synchronous overlap-add procedure. 
It preserves the pitch of the speech and deletes regularly-spaced parts of the signal to increase 
the speech rate (Moulines and Charpentier, 1990). Schlueter et al. (2014b) conducted recogni-
tion measurements with younger, normal-hearing listeners and determined positive SRTs for 
sentences compressed from 100% down to 30% or less of their original length.  

In order to use fixed SNRs, a modification of the adaptive procedure in a speech-in-noise test 
is necessary. Instead of the SNR, Versfeld and Dreschler (2002) adaptively adjusted the speech 
rate of everyday sentences in quiet and measured the time-compression threshold (TCT). This 
is the speech rate that leads to 50% recognition. The current study explored the idea of an 
adaptive procedure according to Versfeld and Dreschler (2002) and an alternative method for 
adjusting the time compression (i.e. speech rate) for speech in background noise, while keeping 
fixed positive SNRs. 



4 ADAPTIVE TIME COMPRESSION IN A SPEECH-IN-NOISE TEST 

53 

For adaptive methods, Levitt (1971) described two important principles: a) placing of obser-
vations and b) estimation of the resulting data. The placing of observations describes in a 
speech-in-noise test the presented SNR, which is adaptively adjusted. Step size, starting level 
and homogeneity of the presented material mainly determines placing (Leek, 2001; Smits and 
Houtgast, 2006). The estimation of the resulting data, e.g., denotes the SRT in a speech-in-
noise test and is mainly defined by the number of presentations and the calculation strategy 
(Leek, 2001; Smits and Houtgast, 2006). Speech-in-noise tests such as the Oldenburg sentence 
test (OLSA, Wagener et al., 1999c), as well as the Plomp and Mimpen sentence test (Plomp 
and Mimpen, 1979), have considered these principles differently. The OLSA uses matrix-type 
sentences of the same structure (name, verb, numeral, adjective, object), which show relatively 
low redundancy and low predictability. OLSA lists consist of 20 or 30 sentences. During the 
measurement, the first sentence is easily understood and a 1up-1down staircase procedure 
adjusts the level of the speech (or background noise). The step size and direction is chosen 
depending on the number of reversals and recognition scores of the previous sentence. Finally, 
SRTs are estimated with the maximum likelihood method, applying recognition and SNR of 
all presented sentences in one list (Brand and Kollmeier, 2002). In contrast, the Plomp and 
Mimpen test applies a limited number of everyday sentences with high redundancy and pre-
dictability. During the test, participants first listen to sentences at unintelligible SNRs. Then 
the procedure decreases the background noise level until the first sentence is intelligible. Af-
terwards, a 1up-1down staircase procedure with fixed step sizes adjusts the level in the twelve 
following sentences. The SRT is estimated by the mean SNR of the last nine sentences and the 
SNR for a 14th sentence. Versfeld and Dreschler (2002) modified this test procedure. They 
presented the signals in quiet, adaptively adjusted the speech rate and used the geometric 
mean of the last ten sentences for estimating TCT values. Based on these investigations, the 
current study combined the German matrix test OLSA with the idea explored by Versfeld and 
Dreschler (2002), to find a practical method for the adaptive adjustment of time-compression 
in a speech-in-noise test at positive SNRs. Differences of the underlying procedures required 
the analysis and comparison of parameters such as adaptive procedure and step size, list length, 
and estimation strategy of the threshold. 

As noted above, the OLSA presents speech in stationary background noise, whereas the 
method developed by Versfeld and Dreschler (2002) applies time-compressed speech in quiet. 
Background noise, as well as fast speech, are known to decrease speech recognition for older 
and for hearing-impaired listeners (e.g., Gordon-Salant and Friedman, 2011; Wagener and 
Brand, 2005). These effects were attributed mainly to a loss of spectral and temporal resolution 
caused by a hearing impairment, and to central processing changes related to age (e.g., Adams 
et al., 2012; Gordon-Salant and Fitzgibbons, 2001; Tun, 1998). The new procedure incorporates 
both background noise and time-compressed speech and is expected to resolve the differences 
that were described between older and hearing-impaired listeners. Therefore, it is necessary to 
explore the adaptive procedure developed using participants of different age and different hear-
ing ability, and to explain the results in connection with knowledge of previous studies about 
cognitive and perceptive declines in the discussion (e.g., Adams et al., 2012; Gordon-Salant 
and Fitzgibbons, 2001; Gordon-Salant and Friedman, 2011; Janse, 2009; Schneider et al., 2005; 
Tun, 1998; Wingfield et al., 2006). 
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Everyday sentences of the Plomp and Mimpen test mainly show learning for repetition of the 
same test list, while speech-in-noise tests with matrix type sentences show a different pattern 
of learning (e.g., Hochmuth et al., 2012; Wagener et al., 1999a). SRTs measured with the OLSA 
decrease with repetition because listeners become familiar with the test procedure, sentence 
structure and word material (Schlueter et al., 2014c; Wagener et al., 1999a). Wagener et al. 
(1999a) recommended using up to two training lists to overcome the learning effect. Learning 
effects are also dependent on the hearing ability, because hearing-impaired listeners showed 
less improvement of the SRTs with repetition (Wagener and Brand, 2005). For time-compressed 
matrix sentences presented in repeated measurements, the learning effect was even more pro-
nounced and also generated an SRT improvement between sessions on different days (Schlueter 
et al., 2014c). The observed learning effects require evaluating the reliability of the adaptive 
procedure to adjust time-compressed speech. It is hypothesized that learning can be observed 
within sessions of repeated measures and between sessions on different days. However, it is 
expected that this training effect saturates and that it is possible to identify the extent of 
training that is required for obtaining stable results.  

The current study consists of two parts. The first part examined different parameter settings 
to find a practical method for adaptive adjustment of time compression in a speech-in-noise 
test. The parameters tested were adaptive procedure, step size, list length, and estimation 
strategy of the threshold. The second part evaluated the selected method. TCTs in noise were 
explored for participants of different age and hearing status. Additionally, the expected training 
effect was investigated and the number of required training lists was determined. 

4.2 Method 

4.2.1 Signals 

Speech recognition was determined with the Oldenburg sentence test (OLSA, Wagener et al., 
1999a). The sentences always have the same structure (name, verb, numeral, adjective, object). 
They were composed from a random selection of one out of ten possible words for each element 
of the sentence structure. After a selection process, the test includes 100 possible syntactically 
fixed sentences with low predictability, for instance “Peter kauft zehn nasse Messer.” (“Peter 
buys ten wet knifes.”). From these sentences, equally intelligible lists with 30 sentences each 
were composed. Sentences were spoken by a male speaker with a normal to moderate speech 
rate of, on average, 233 (±27) syllables/minute (Wagener et al., 1999c). A repeated superpo-
sition of all sentences resulted in a stationary noise with the same long-term spectrum as the 
speech (Wagener et al., 1999c). 

For time compression, OLSA sentences were processed with the software Praat (Boersma and 
Weenink, 2009). This software uses a pitch synchronous overlap-add procedure, that preserves 
the original fundamental frequency and applies different time-compression factors ρ (see Sec-
tion 4.2.2.1). This paper defines the time-compression factor ρ as the duration of the com-
pressed signal compared to the original duration in percent. For example, ρ = 25% corre-
sponds to a speech rate which is four times faster than original speech. Therefore, smaller time-
compression factors result in higher time compression and faster synthesized speech. 
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4.2.2 Measurements 

4.2.2.1 Adaptive procedures 

Method A: Method A was implemented according to Versfeld and Dreschler (2002). Sentences 
of the OLSA were compressed in time to different factors ρ calculated using Equation 4.1 
where N is a natural number between 0 and 10. The calculated time-compression factors ρ 
were rounded to the next integer. 

𝜌𝜌 = 0.85𝑁𝑁 ∗ 100 [%]         (4.1) 

Speech was thus presented at the original speech rate (N = 0) but also compressed up to 20% 
of its original length (N = 10). A 1up-1down procedure decreased or increased the time-com-
pression factor adaptively whether a sentence was understood correctly or not (sentence scor-
ing). The presented time-compression factor was ρ = 100% (meaning original speech) for the 
first sentence within one list. 

Method B: This method was based on the adaptive procedure used in the OLSA (Brand and 
Kollmeier, 2002) and was applied with sentence scoring. The steps of the time-compression 
factor presented in the adaptive procedure were also calculated using Equation 4.1, with N 
varying in 0.5 steps between 0 and 12. The calculated time-compression factors ρ were rounded 
to one decimal place. Thus, method B realized more steps with a smaller step size compared 
to method A. The speech could be presented at its original length (N = 0) but also compressed 
down to 14.2% of its original length (N = 12). The step size varied during the adaptive pro-
cedure and included a change of N by +4 until the second reversal. After each second reversal, 
the step size was divided by two until N = 0.5. Again, the presented time-compression factor 
was ρ = 100% for the first sentence within one list. 

4.2.2.2 Estimation of TCT 

After presenting one OLSA list, recognition values (i.e. 0 for at least one mistake in the repe-
tition of the sentence or 1 for correct repetition of all words within a sentence) were available 
for each sentence, together with the respective time-compression factor used for this sentence. 
The estimation of the TCT for each list of sentences was performed in the linear domain 
marked by N in Equation 4.1, rather than by averaging or extrapolating across the time-
compression factors directly. For the presentation of results, N as well as ρ values are given. 
Respective TCT values are specified by TCTN or TCTρ. Three different estimation strategies 
were used to calculate the TCTN: a) mean of N, b) mean of reversals, and c) maximum likeli-
hood method (Brand and Kollmeier, 2002). Within the maximum likelihood method, the dis-
crimination function (see Equation 4.2) 

p(N) = 1 − 1
1+e4∗slope∗(TCTN−N)       (4.2) 

was fitted to the data. In Equation 4.2, p is defined as the mean probability that sentences are 
repeated correctly. This probability is dependent on the time compression described by N. 
TCTN denotes the time-compression threshold specified by N, which refers to 50% probability 
of correct responses. The parameter slope describes the slope of the discrimination function at 
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TCTN. The result is the parameter setting of TCTN and slope that produces the observed data 
with the maximum likelihood. The resulting TCTN estimate was used for further data analysis.  

Although lists of 30 sentences were presented, these three strategies (mean of N, mean of 
reversals, and maximum likelihood method) were calculated for different list lengths of 20 or 
30 sentences. For a list of 30 sentences, the strategy “mean of N” applied the N values for 
sentences 11 to 30. The strategy “mean of reversals” used N values obtained for reversals 
within the same range. The maximum likelihood method used recognition scores and values of 
N for sentences 1 to 30. For a list of 20 sentences, it was assumed that only the first 20 sentences 
were presented and the last ten sentences were omitted. Therefore, the strategy “mean of N” 
used the values of N for the sentences 11 to 20 and the maximum likelihood method applied 
the recognition scores and values of N for the sentences 1 to 20. Again, the strategy “mean of 
reversals” used the N values obtained for reversals within the sentences 11 to 20. In total, six 
different strategies for the estimation of the TCTN were compared.  

4.2.3 Participants 

Listeners took part in five different subgroups. Table 4.1 characterizes the participants belong-
ing to the groups and summarizes the executed adaptive method, age, number of participants, 
sex, and hearing loss. Based on pure-tone audiometry testing, younger normal-hearing listeners 
(YNH) exhibited hearing levels of 20 dB HL or better at all octave frequencies between 0.25 
and 8 kHz. Older normal-hearing listeners (ONH) showed hearing levels of 20 dB HL or better 
between 0.25 and 4 kHz, 30 dB HL or better at 6 kHz and 40 dB HL or better at 8 kHz. 
Older hearing-impaired listeners (OHI) exhibited a mean hearing threshold at the frequencies 
0.5, 1, 2 and 4 kHz of 25 to 60 dB HL. Their hearing impairment was symmetrical, because 
differences of the thresholds were 10 dB HL or less between the ears at frequencies between 
0.125 and 8 kHz. Figure 4.1 depicts the thresholds of all participating groups. All listeners had 
German as their native language and no prior experience with the Oldenburg sentence test. In 
addition, participants conducted the Trial Making Test and the verbal Digit Span forward and 
backward. These tests explored cognitive abilities of psychomotor information processing 
speed, as well as short-term and working memory. Those results in the cognitive tests that 
were 1.5 standard deviations poorer than the mean age related standard (Härting et al., 2000; 
Tombaugh, 2004), excluded participants from the investigation. Therefore, all participants 
showed cognitive abilities appropriate to their age or better. All participants were paid a small 
sum for their participation, to compensate their expenses. 

4.2.4 Setup and schedule of measurements 

The experiments were conducted in a sound-insulated booth. A PC with Matlab-based (Math-
Works, Natick, MA) programming controlled the presentation of the signals. Signals were 
routed through a sound card (Fireface 400, RME, Audio AG, Haimhausen, Germany) and a 
headphone amplifier (HB 7, Tucker Davis Technologies, Alachua, FL) to headphones (HDA 
200, Sennheiser, Wedemark-Wennebostel, Germany). The headphones were free-field equalized 
according to international standards (IEC 60645-2, 2010; ISO 389-8, 2004) and presented sig-
nals diotically. 
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Table 4.1: Characterization of the subgroups and their abbreviation used in the text. 

Participat-
ing group 

Age 
[years] 

Hearing Method 
Num-
ber 

Sex 
Speech level 
[dB SPL] 

YNH-A 
Mean: 23, 

range: 20-28 
normal A 15 

5 male, 
10 female 

Mean: 59.3, 
range: 55-69 

YNH-B 
Mean: 23, 

range: 20-26 
normal B 14 

2 male, 
11 female 

Mean: 60.2, 
range: 55-75 

OHI-A 
Mean: 70, 

range:65-74 
impaired A 12 

8 male, 
4 female 

Mean: 65.3, 
range: 60-76 

OHI-B 
Mean: 69, 

range: 62-74 
impaired B 12 

9 male, 
3 female 

Mean: 66.6, 
range: 60-78 

ONH-A 
Mean: 68, 

range:61-78 
normal A 12 

5 male, 
7 female 

Mean: 57.3, 
range: 55-64 

 

 

Figure 4.1: Pure tone audiograms for groups conducting measurements with methods A and B. Thresh-
olds of both participants’ ears were averaged. 

During the first session, participants conducted a questionnaire about their education, hearing 
ability, and anamnesis, as well as audiometric measurements. Afterwards, their cognitive abil-
ities were investigated with the Trial Making Test and Digit Span forward and backward. 
During the second session, participants listened to the original OLSA sentences and adjusted 
their level louder or softer than comfortable and finally to a comfortable level. Listeners re-
peated these adjustments three times. The median comfortable level (MCL) of the three ad-
justments was used as speech level in the following sessions. This speech level was limited to 
55-75 dB SPL for YNH-A/B and ONH-B as well as 60-80 dB SPL for OHI-A/B. Table 4.1 
gives the mean speech levels of the groups. For initial practice of the OLSA, participants 
performed two lists with the original speech material, while a screen visually displayed correct 
sentences after the response. Afterwards, a third list was presented without visual confirmation. 
Listeners conducted these three measurements with adaptive adjustment of the noise level. A 
speech recognition threshold of 80% recognition (SRT80) with sentence scoring was measured. 
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The noise was continuously presented and a visual countdown marked the beginning of the 
sentence presentation. For the following measurements, an SNR of at least 80% recognition 
was required. Therefore, the SRT80 for the third list was verified by using the SRT80 as fixed 
SNR and determining the recognition score. Listeners with an SRT80 smaller than or equal to 
1 dB SNR conducted the control measurement at 1 dB SNR. Participants with an SRT80 
larger than 1 dB SNR listened to the signals at their individual SRT80. If listeners reached 
recognition scores below 80%, they performed the control measurement again with an SNR 
increased by 2 dB. This step was repeated until a recognition score of 80% or above was 
reached. Afterwards, listeners executed six lists of the TCT measurement. The noise was pre-
sented at 1 dB SNR or a higher SNR at which participants understood at least 80% of original 
speech. YNH-A/B, ONH-A and most of OHI-A/B listened to signals presented at 1 dB SNR 
– except two participants of OHI-A that listened to 8 and 4 dB SNR, respectively and three 
participants of OHI-B that listened to 2 dB SNR. During the third session, participants re-
peated the six lists of the TCT measurement. The time interval between the second and third 
session was three to ten days. YNH performed measurements of the first two appointments 
within the first session.  

4.3 Results and discussion 

4.3.1 Effect of different adaptive methods and estimation strategies on the 
TCT 

4.3.1.1 Results 

Adaptive methods A and B were used for adjusting time compression during the test lists. 
Figure 4.2 shows the time compression as a function of sentence number within a presented 
list and therefore displays the average progress of all lists for methods A and B. All panels 
show rapidly increasing N values within the first sentences until N is close to threshold. In 
contrast to method A, which showed a continuous growth of N until an asymptotic value was 
reached, the average N values in method B showed an overshoot effect: The initial increase 
was faster than with method A, and a small oscillation was detected (i.e., a maximum followed 
by a minimum) until the asymptotic value was reached from below (see Figure 4.2c and d). 
Then N values decreased with method B and afterwards increased slowly until they remained 
static. The interquartile ranges of presented N values at the end of all lists were larger for 
method A than for method B.  

Figure 4.3 shows the TCT values for the threshold estimation strategies “mean of N” and 
“maximum likelihood method” in comparison to the time-compression values gained at the 
end of a list (20th or 30th sentence). The analysis did not include an estimation strategy for 
thresholds that average across reversals, because a sufficient number of reversals for calculation 
of the mean was not available for several lists of 20 sentences. Fewer than two reversals were 
found within a list measured with one listener of group YNH-A and with six listeners of group 
YNH-B.  
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Figure 4.2: Time compression as a function of sentence number within a presented list. Results are 
displayed for the groups of a) young normal-hearing participants listening to adaptive method A (YNH-
A), b) older hearing-impaired participants listening to adaptive method A (OHI-A), c) young normal-
hearing participants listening to adaptive method B (YNH-B), and d) older hearing-impaired partici-
pants listening to adaptive method B (OHI-B). Colors black and gray display means and boxplots, 
respectively. 

 

Figure 4.3: Time compression for list length of 20 and 30 sentences (20 sent. and 30 sent.) presented 
to a) young normal-hearing participants listening to adaptive method A (YNH-A), b) older hearing-
impaired participants listening to adaptive method A (OHI-A), c) young normal-hearing participants 
listening to adaptive method B (YNH-B), and d) older hearing-impaired participants listening to adap-
tive method B (OHI-B). Boxplots and mean values marked by a cross represent the time-compression 
values adjusted in sentences of number 20 and 30, respectively. Boxplots and mean values displayed with 
a triangle or a circle show the TCT values, which were estimated with the mean and maximum likelihood 
method, respectively. 



4 ADAPTIVE TIME COMPRESSION IN A SPEECH-IN-NOISE TEST 

60 

In general, the estimated results do not differ between adaptive method and estimation strat-
egy for thresholds within each group of listeners. For YNH-B in Figure 4.3c, the maximum 
likelihood method resulted in slightly higher TCTN values than the mean. A comparison of 
these results with the progress within the lists (see Figure 4.2) and the values for the last 
sentences (see Figure 4.3) suggests an underestimation of TCTN based on the mean, due to 
the increase of N after the eleventh sentence. In contrast, the result of the maximum likelihood 
method is consistent with the values for late sentences at the end of a list. Similar effects as in 
Figure 4.3c are shown in Figure 4.3d for OHI-B. In addition, Figure 4.3d shows explicit outliers 
for the TCT calculated with the maximum likelihood method and a list of 20 sentences, outliers 
that are not present for 30 sentences. This pattern of results can also be seen in Figure 4.3a. 

Statistical comparison of the four different strategies for TCTN estimation shown in Figure 4.3 
included pooled data of all twelve lists in both sessions for each adaptive method and each 
group and used a significance level of 𝛼𝛼 = 0.05. The data showed normal distribution and 
homogeneity of variances (Shapiro-Wilk and Levene test), except for three TCTN values esti-
mated for OHI-B where no normal distribution was obtained. Two mixed two-way analyses of 
variances (ANOVAs) were conducted for each group. This analysis obtained no significant 
differences of TCTN values for both groups resulting from the method (YNH: F(1,346) = 2.26, 
p = 0.133; OHI: F(1,286) = 0.17, p = 0.682). TCTN values of YNH showed significant effects 
of the estimation strategy (F(1.992,689.139) = 24.56, p < 0.001) and the interaction estimation 
strategy*method (F(1.992,689.139) = 11.23, p < 0.001). OHIs’ results yielded only the signif-
icant interaction estimation strategy*method (F(2.078,594.450) = 5.42, p = 0.004). Since for 
both groups interaction of estimation strategy and method occurred, post-hoc t-tests were run 
with Bonferroni correction of the calculated probability values. Analyses considered every com-
bination of possible estimation strategies for the method A and B and participating groups 
separately. Table 4.2 summarizes the results and mainly shows significant differences of the 
TCT estimation strategy mean for method B compared to other strategies. 

Table 4.2: Probability values calculated with paired t-tests and Bonferroni corrections. Analysis com-
pared TCTN values that were measured with younger normal-hearing (YNH) and older hearing-impaired 
(OHI) listeners and were calculated for lists of 20 or 30 sentences length (20, 30). Mean or maximum 
likelihood method (mean, likelihood) were used for estimating the TCTN values. Probability values in the 
upper right and lower left triangular part were determined for the adaptive methods A and B, respec-
tively. Asterisks mark significance (*: p < 0.05; **: p < 0.01; ***: p < 0.001). 
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likelihood, 20 0.000*** - 0.777 0.530 0.029* - 0.219 0.257 
mean, 30 0.000*** 0.038* - 1.000 0.001*** 1.000 - 1.000 

likelihood, 30 0.000*** 0.075 0.000*** - 0.002** 1.000 0.726 - 
 method B  method B   
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4.3.1.2 Discussion 

The applied combination of German, low-predictability, matrix-type sentences and time-com-
pressed speech showed small differences between the investigated adaptive methods A and B 
as well as the estimation strategies for TCT. In order to choose an adaptive method and 
estimation strategy, results have to be discussed with respect to the adaptive stimulus place-
ment procedure and the subsequent estimation strategy for thresholds. The methods investi-
gated in the current study are based on established speech tests developed by Plomp and 
Mimpen (1979), Versfeld and Dreschler (2002) as well as Wagener et al. (1999c) and Brand 
and Kollmeier (2002) applying staircase methods with adaptive levels or speech rates.  

Adaptive stimulus placement method 

In detail, the adaptive stimulus placement procedures controlled the step size differently: 
Method A provided a fixed, comparatively small step size whereas method B started with a 
larger step size with an adaptive decrease depending on the reversals until half of the value in 
method A was reached. This affected the average progress during the lists. After general ad-
aptation close to the threshold, method A used speech at a similar time compression on average 
over a large number of sentences. This observation implies that the step size was large enough 
to exceed the threshold within a single step once the time compression presented was in the 
targeted area. On the other hand, the step size could be too large. A too large step size would 
result in a pattern of constant “jumping” between two consecutive time compressions, begin-
ning at early sentences within a list and would allow for no convergence closer to threshold. 
This phenomenon could result in the missing variance of the steps presented for single sentences 
observed in Figure 4.2a (i.e. no interquartile range because more than 50% of the presented N 
values were the same for single sentences). Therefore, all single lists measured with method A 
were reviewed. Only few lists for YNH-A showed “jumping” between two consecutive time 
compressions at the end of the lists, indicating that the step size was efficient in method A.  

In contrast, method B showed decreasing N values after general adaptation. This observation 
might be caused by the learning effect for time-compressed speech (see Section 4.3.2.2). Par-
ticipants might have given incorrect responses for early sentences due to unfinished learning, 
which caused reversals. As a result, the step size reduced too fast and a gradual increase of 
time compression was observed for most of the sentences. As a consequence, the small step size 
of method B required more sentences to reach the threshold than the constant step size of 
method A. Also, the larger step size in method A simplified the perception of changes in time 
compression and possibly increased motivation for the participants as compared to method B. 
Incidentally, the missing of variance for single sentences noted in Figure 4.2a had no impact 
on the estimated TCTs, because methods A and B showed similar distributions of the TCTs 
(see Figure 4.3a and c). Although statistical analysis failed to show differences of the adaptive 
methods A and B, there is also a practical reason to support method A. Presenting different 
time compressions needs preprocessing of the speech material. Since method A applies fewer 
steps of time compression than method B, less preprocessing is necessary and fewer sentences 
have to be stored.  
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According to Smits and Houtgast (2006), an efficient up-down procedure provides the starting 
level close to threshold. Method A and B did not take this recommendation into consideration 
and provided original speech within the first sentence. This approach might have been less 
efficient and required a higher number of sentences. However, the methods followed the original 
procedure for OLSA, which starts with an SNR for speech recognition of 100% (Brand and 
Kollmeier, 2002). In addition, this approach took pronounced learning effects for time-com-
pressed speech (Schlueter et al., 2014c) into account. In contrast to the approach recommended 
by Smits and Houtgast (2006), the applied procedure allowed a gentle adaptation to time-
compressed speech. Starting with original speech at the beginning of a list and adapting to the 
threshold by increasing the time compression forced and limited learning effects mainly to the 
beginning of a list.  

Homogeneity of the speech material also affects placing observations (Leek, 2001; Smits and 
Houtgast, 2006). Wagener et al. (1999b) controlled for the homogeneity of the OLSA sentences, 
selecting words with similar recognition and adjusting word levels to increase homogeneity. 
Thus, the OLSA shows a steep discrimination function (Wagener et al., 1999a). Unfortunately, 
time compression influences the homogeneity of the material, depending on the word’s position 
within the sentences (Schlueter et al., 2014b). Names and objects at the beginning and end of 
sentences showed higher recognition than words in between. Therefore, assuming that time 
compression does not impact the homogeneity between sentences, Schlueter et al. (2014b) 
recommended the application of sentence scoring according to Versfeld and Dreschler (2002) 
instead of word scoring. Although estimation of the TCT values based on sentence scoring uses 
less information and items than word scoring (Brand and Kollmeier, 2002), recognition differ-
ences of words within sentences no longer influence the placing of observations, because the 
least intelligible word defines the recognition of an entire sentence. 

Estimation strategy 

In addition to placing of observations, the outcome of an adaptive procedure is specified by 
the estimation of the resulting data (Levitt, 1971). More precisely, the TCT is dependent on 
the estimation strategy and the number of presentations used for the estimation (Leek, 2001; 
Smits and Houtgast, 2006). In the current study, estimation of the TCT used the strategies of 
Versfeld and Dreschler (2002) as well as Brand and Kollmeier (2002). Versfeld and Dreschler 
(2002) calculated the TCT for a single measurement by the geometric mean of the speaking 
rate of the last ten sentences of one list (length:13 sentences) which is the same as the arith-
metic mean of N. However, they also used a maximum likelihood method to estimate the 
discrimination function for grouped data. The original OLSA estimates SRT over 20 or 30 
sentences with a maximum likelihood method by fitting the SRT and slope of a discrimination 
function (Brand and Kollmeier, 2002). Therefore, the current study estimated the TCT with 
the mean of N values or the mean of reversals, as well as with the maximum likelihood method 
and explored lists with a length of 20 or 30 sentences. These strategies were compared to find 
a TCT estimate for determining suitable results for single lists. Analysis disclosed different 
problems. 
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First, a sufficient number of reversals was not established for all listeners and lists to allow for 
a confident estimation of TCT. Therefore, further analysis excluded TCT estimation on basis 
of reversals.  

Second, the analysis of the estimation strategies showed small differences. Generally, the adap-
tive procedures started at original speed and therefore required several sentences to adapt close 
to threshold. Therefore, N values for early sentences within a list were not as close to the TCTN 
as N values for later sentences. Kollmeier et al. (1988) modeled the temporal evolution of an 
adaptive measurement track as a Markov chain and showed that the distribution of initial 
values steadily converges toward the limiting distribution, which is independent of the starting 
distribution. Hence, any bias of the estimated result decreases with increasing length of the 
adaptive track and with the number of initial trails discarded for estimating the results. Espe-
cially with method B (e.g. see Figure 4.3c), an increase beyond the eleventh sentence could 
still be observed because of the slow convergence towards the limiting distribution. Even 
though the TCTN estimation strategy based on the mean discarded the first ten sentences, it 
resulted in smaller TCTN values compared to the N values of the last sentence. Only the 
maximum likelihood method assessed all N values, considered the history of individual lists 
and reflected the variety of the individual progress within a list. As a result, TCT values were 
closer to the N values for late sentences.  

Unfortunately, the maximum likelihood method failed for single lists (see Figure 4.2d) if a list 
length of 20 sentences was used. This occurred in cases when the adaptation showed only one 
direction for a large number of sentences e.g. after early mistakes of the participant or after an 
incidental large number of right answers. Therefore, the lists should be long enough, i.e. 30 
sentences for following explorations. The recommendation of 30 sentences and maximum like-
lihood method as estimation strategy is limited to the investigated adaptive procedures and 
might be different for a deviating starting level. In principle, it is also possible to apply the 
maximum likelihood method with values determined after the second reversal. However, the 
second reversal would occur at late sentences in adaptation processes, which show only one 
direction for a large number of sentences. Consequently, the maximum likelihood method would 
be calculated on the results for a reduced number of sentences after the second reversal. Again 
this supports a sufficient list length of e.g. 30 sentences because a higher number of results 
after the second reversal will be available for a reliable estimation of the thresholds than for 
list lengths of 20 sentences.  

4.3.2 Evaluation of the selected method 

4.3.2.1 Results 

The selected adaptive method and estimation strategy (method A, maximum likelihood 
method, 30 sentences) was evaluated for group differences and learning effects. Figure 4.4a-c 
depicts TCTN and TCTρ values for all lists and groups. TCTN values are high for YNH-A, low 
for OHI-A and in-between for ONH-A. Statistical analysis explored differences between groups 
on the pooled data for all lists and sessions. Since the Shapiro-Wilk and the Levene test showed 
normal distribution but no variance homogeneity, nonparametric tests were used to analyze 



4 ADAPTIVE TIME COMPRESSION IN A SPEECH-IN-NOISE TEST 

64 

the comparisons between groups. The Kruskal-Wallis test yielded a significant result 
(𝜒𝜒²(2) = 319.15, p < 0.001) and post hoc Mann-Whitney U-tests resulted in significant dif-
ferences of all groups (YNH-OHI: U = 330.50, p < 0.001; YNH-ONH: U = 1508.00, p < 0.001; 
OHI-ONH: U = 4397.50, p < 0.001). 

Figure 4.4 shows learning effects because TCTN increases with increasing number of lists and 
sessions, at least for YNH-A. For the statistical analysis of these observations within the three 
groups, a Shapiro-Wilk test confirmed normal distribution for all groups, sessions and lists 
with only minor exception. A two-way repeated measures ANOVA explored significant differ-
ences of lists and sessions for each group. TCTN values increased with increasing number of 
lists (YNH-A: F(3.25,45.43) = 26.76, p < 0.001; ONH-A: F(5,55) = 2.36, p < 0.001, OHI-A: 
F(5,55) = 2.04, p < 0.001). In addition, results of the first session showed only for YNH-A 
smaller TCTN values than in the second session (F(1,14) = 46.82, p < 0.001). In contrast, for 
ONH-A and OHI-A the results of the two sessions did not differ significantly (ONH-A: 
F(1,11) = 0.87, p = 0.370; OHI-A: F(1,11) = 0.17, p = 0.686). 

 

Figure 4.4: TCT values measured with adaptive method A and estimated with the likelihood method for 
lists of 30 sentences. a) YNH-A, b) OHI-A, and c) ONH-A conducted six lists within two sessions each. 
Black and grey display TCT values of the first and second session, respectively. 

In order to determine the number of training lists after which no significant difference of the 
TCTN occurred, t-tests were used to calculate probability values with Bonferroni correction. 
Within the first session, results of each list were compared statistically with results of subse-
quent lists. YNH-A showed significantly lower TCTN values for the first two lists than for the 
following lists (p ≤ 0.028). ONH-A and OHI-A reached only for the first list significantly lower 
TCTN values compared to the subsequent lists (p ≤ 0.027). 

For analysis of test-retest reliability, scatterplots in Figure 4.5a-c show the results of the first 
and second session and respective correlation coefficients. A linear function with a slope of 1 
was fitted to the data for estimating the bias, which is represented by the distance between 
the bisecting line and the fitted function. The bisecting line represents ideal reliability, when 
participants reach equal results in the first and second session. The percentage of TCT values 
is given for which the TCT values in the first session are larger, equal or smaller than in the 
second session. Figure 4.5 omits the learning effects examined in the previous paragraph, be-
cause only results of the third to sixth lists are presented. Overall, a majority of TCTN values 
reached lower values in the first than in the second session. The correlation observed for OHI-
A was higher than for YNH-A and ONH-A. In addition, YNH-A and OHI-A showed the largest 
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and smallest bias of 0.52 and 0.07, respectively. This is also represented by the groups’ per-
centage of TCT values, which are larger in the second session than in the first session. There-
fore, the YNH-A and OHI-A reached also the largest and the smallest percentage value, re-
spectively. 
 

 

Figure 4.5: Scatterplots of TCT values reached for single lists in the first and second sessions for 
a) YNH-A, b) OHI-A and c) ONH-A. Number of TCT values in % is documented, where TCT values 
in the first session are larger, equal or smaller than in the second session. In addition, Spearman´s 
correlation coefficient rsp is quoted. The dashed bisecting line represents equal results in the first and 
second session. The solid line with a fixed slope of 1 was fitted to the data. The distance between dashed 
and solid line indicates the bias. 

4.3.2.2 Discussion 

Groups of different age and hearing ability showed different TCTN values for time-compressed 
speech in noise, i.e. YNH-A showed the highest thresholds, while thresholds of OHI-A and 
ONH-A were low and intermediate. These observations confirm studies by e.g. Adams et al. 
(2012), Gordon-Salant and Friedman (2011), and Tun (1998) who discussed several influencing 
factors. First, Adams et al. (2012) specified the effect of time compression. It was assumed to 
result in a “loss of subphonemic cues, such as place of articulation and vowel duration” (p. 29) 
and in the shortening of naturally occurring gaps, especially with added background noise 
(Adams et al., 2012). Second, hearing loss was a dominant factor for explaining results of older 
hearing-impaired listeners (Janse, 2009). Already for original OLSA, a difference in SRT was 
observed for hearing-impaired listeners compared to normal-hearing listeners (Wagener and 
Brand, 2005). According to Wingfield et al. (2006), the effect of hearing loss increased as speech 
rate increased. Limited temporal and spectral resolutions caused by hearing loss might impact 
the detection of time-compressed speech with shortened cues in background noise (Adams et 
al., 2012; Gordon-Salant and Fitzgibbons, 2001; Schneider et al., 2005; Wingfield et al., 2006). 
Third, larger effects of age were observed for time-compressed speech compared to original 
speech (Holube et al., 2009; Meister et al., 2011). For time-compressed speech, age-related 
cognitive factors or changes in central auditory processing were discussed to impact recognition 
in older listeners (e.g., Adams et al., 2012; Gordon-Salant and Fitzgibbons, 2004; Janse, 2009; 
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Wingfield et al., 2006). For example slowed information processing (Gordon-Salant and Fitz-
gibbons, 2004; Janse, 2009), reduced processing resources (Adams et al., 2012; Wingfield et 
al., 2006) and other age-related processing difficulties (e.g., Adams et al., 2012) served as 
explanations for these observations. Fourth, age-dependent cognitive factors and hearing im-
pairment interact with each other and might explain results of hearing-impaired older partici-
pants (e.g., Adams et al., 2012; Wingfield et al., 2006). Pichora-Fuller and Singh (2006) de-
scribed that a hearing loss may lead to inaccurate representations of hearing situations. These 
misrepresentations most probably continue along the auditory pathway and lead to inaccurate 
cognitive processing especially in challenging listening situations. Hearing-impaired listeners 
may also try to compensate reduced acoustic information with increased processing resources, 
which in turn might be missing at higher processing levels for e.g. comprehension (Gordon-
Salant and Fitzgibbons, 2001; Wingfield et al., 2006). However, there is evidence that age-
related decline of recognition for time-compressed speech is not simply dependent on an irre-
versible process of aging. Gordon-Salant and Friedman (2011) showed increasing recognition 
as a function of hours of listening to time-compressed speech for older blind participants. They 
concluded that blind adults’ “greater attention to auditory information … may reduce the 
expected age related decline in auditory temporal processing” (p. 629). These relations and 
effects show that age is just a representative for different kinds of age-related changes, and 
investigations are needed to search for clear explanations. The current study permits no further 
analysis, but offers a new test procedure for more detailed investigations of aging processes. 

In addition to age and hearing ability, learning affects the recognition in the introduced test 
procedure with time-compressed matrix sentences. Matrix tests like the OLSA with original 
speech also showed learning effects (Hochmuth et al., 2012; Wagener et al., 1999a; Wagener 
and Brand, 2005). Speech recognition improved during consecutive presented lists. Thus, dif-
ferent authors recommended one or two training lists before data collection (e.g., Schlueter et 
al., 2014b; Wagener et al., 1999a), to reduce the effect of learning within the test. These 
learning effects increased with time-compressed speech (Schlueter et al., 2014b). The current 
study supports these findings and showed learning effects within and between sessions on 
different days. Although listeners were trained using the original speech material before, the 
TCT improved significantly over the first one or two lists within the first session, depending 
on the group. Therefore, at least one list of training for ONH-A and OHI-A and two lists of 
training for YNH-A are recommended. Results of two different sessions determined with 
YNH-A should not be compared, because significant differences between sessions were observed 
and the bias was large compared to ONH-A and OHI-A. ONH-A and OHI-A can conduct 
measurements within different sessions because their bias was relatively small. 

In contrast to the learning effect shown in Figure 4.4, Versfeld and Dreschler (2002) did not 
measure any learning effect for Plomp-type sentences, which are typical for everyday conver-
sations. Schlüter et al. (2014b) confirmed this result and found no learning effect with the 
Goettingen sentence (Kollmeier and Wesselkamp, 1997) test, which also uses everyday lan-
guage. 

In addition, Wagener and Brand (2005) and Schlueter et al. (2014b) established a connection 
between training and hearing ability. They measured smaller learning effects with hearing 



4 ADAPTIVE TIME COMPRESSION IN A SPEECH-IN-NOISE TEST 

67 

impairment for the original OLSA. In contrast, Schlueter et al. (2014b) recommended two 
training lists for presenting time-compressed speech to normal-hearing and hearing-impaired 
participants. The recommendation of longer training for hearing impaired, as compared to the 
current study, might have resulted from the deviating experimental setup: Schlueter et al. 
(2014b) did not train the original OLSA first and used a different adaptive procedure control-
ling the SNR. 

Banai and Lavner (2012), Adank and Janse (2009) as well as Schlueter et al. (2014b) explained 
the learning effects with the Reverse Hierarchy Theory. During learning, specific lower-level 
representations in the auditory pathway become accessible if they are useful for performance. 
As a result, learning effects were observed for time-compressed speech in addition to earlier 
learning of the original OLSA material, because the extra adaptation to the fast speech cues 
was helpful for better recognition.  

4.4 General discussion 

The test procedure explored permitted the presentation of positive fixed SNR for normal-
hearing and hearing-impaired listeners in order to measure a TCT. The SNR was selected to 
reach high (more than 80%) recognition for the original speech material. Therefore, and inde-
pendent of their hearing ability, participants listened to hearing situations similar in SNR and 
recognition for original speech. Adjustment of the time compression (speech rate) modified the 
difficulty of the test and showed group-specific results.  

The positive SNRs provided represent realistic listening situations. Everyday conversations 
often take place in noisy environments, in which speech is louder than the background noise 
(Olsen, 1998; Smeds et al., 2012). Moreover, applying defined fixed positive SNRs is useful for 
evaluating hearing aid algorithms. For example, single-microphone noise reduction algorithms 
are mainly beneficial when the input of the algorithm is at positive SNRs (Fredelake et al., 
2012) while low and negative SNRs are challenging for these algorithms (Luts et al., 2010). 
However, time compression of the speech material leads to changes of speech statistics com-
pared to original speech. If hearing aid processing relies on statistical information about the 
speech signal, which is altered by time compression, the algorithm may produce unexpected 
output.  

Apart from positive SNRs, more complex hearing situations are more realistic. The current 
study applied background noise and time-compressed speech to challenge recognition, while in 
traditional speech-in-noise tests, including the original OLSA, only the background noise is 
used. Thus, the presented hearing situations of the current study were more complex. Unfor-
tunately, the speech rates applied in this study especially for younger normal-hearing listeners 
represented more or less non-realistic hearing situations. Fast speech produced during a con-
versation or reading of a text reaches about 510 syllables/minute (Janse, 2003, Chapter 5, 
Section 3) and is therefore slower than the speech presented to YNH-A in this study (about 
709 syllables/minute for median TCT). However, for older participants, the speech rate pre-
sented (484 syllables/minute and 560 syllables/minute for median TCT of OHI-A and ONH-
A, respectively) is in the range of Janse (2003).  
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Since the method introduced provided a more complex hearing situation with background 
noise and time-compressed speech, the results cannot be directly compared to the original 
OLSA. In the original OLSA, hearing loss is considered the main determinant of participants’ 
ability to separate speech from background noise. In contrast, the introduced test applied extra 
time compression, and therefore additional individual cognitive abilities might have been im-
portant and affected recognition in background noise (e.g., Wingfield et al., 2006, see also 
Section 4.3.2.2).  

Conclusions 

The current studies of a speech-in-noise test with time-compressed speech led to the following 
conclusions: 

• A practicable method for the adaptive adjustment of time compression in a speech-in-
noise test with OLSA sentences should use the following: time compression adjustment 
and step sizes according to Versfeld and Dreschler (2002) with sentence scoring, lists 
of 30 sentences, and a maximum likelihood method for threshold estimation.  

• The TCT values measured deteriorated with age and hearing loss because of cognitive 
and perceptive decline.  

• At least one or two lists should be used for training before data collection for older 
normal-hearing and hearing-impaired listeners and for younger normal-hearing listen-
ers, respectively.  

• Older normal-hearing and hearing-impaired participants showed higher test-retest re-
liability compared with younger normal-hearing participants. Therefore, older listeners 
can conduct measurements across different sessions, while data collection from younger 
listeners should be limited to one session. 
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5  Evaluation of noise reduction with time-compressed speech 

5 
Evaluation of single-microphone noise reduction 
algorithms at fixed positive signal-to-noise ratios 
using individually time-compressed speech 

To evaluate and compare hearing aid algorithms, it is often necessary to 
perform speech recognition tests at positive signal-to-noise ratios (SNRs) 
that correspond to a given level of performance (e.g. 50% recognition scores). 
For this purpose, this study examined the feasibility of a hybrid approach. 
This approach used results of a recently developed procedure that adaptively 
increases the speech rate to shift the SNR range towards fixed positive val-
ues for the evaluation of noise reduction algorithms. Eleven hearing-im-
paired listeners participated in the experiments. Their individual speech rate 
for reaching the speech recognition threshold was determined for SNRs of 1 
or 5 dB. Then, recognition scores for the individually time-compressed sen-
tences were measured with and without two different single-microphone 
noise reduction algorithms. As a result, no ceiling effects of recognition 
scores were observed, although measurements were conducted with partici-
pants having different hearing ability, with different set of speech signals, 
with different noise reduction algorithms and at different positive SNRs. 
Participants achieved a significant improvement of the recognition score only 
with one of the algorithms (an algorithm with a priori knowledge of the 
noise and Wiener filter). The second noise reduction algorithm (a realistic 
algorithm with minimum controlled recursive averaging and spectral sub-
traction) did not show a significant improvement of the recognition score 
even when positive SNRs were presented that, from objective measurements, 
may have been expected to bring such improvements.  
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5.1 Introduction 

The objective of single-microphone noise reduction algorithms is to reduce background noise 
under speech-in-noise conditions. Frequently, the processing of single-microphone noise reduc-
tions is dependent on the SNR (e.g., Brons et al., 2013; e.g., Fredelake et al., 2012; Hoetink et 
al., 2009) and the algorithms often introduce increasing distortions with decreasing SNR (as 
described by ,e.g., Marzinzik, 2000; Fredelake et al., 2012; Marzinzik and Kollmeier, 2002; 
Neher et al., 2014a; Brons et al., 2014). Therefore, the effect of those algorithms should be 
evaluated using speech-in-noise tests that can be conducted at fixed signal-to-noise ratios 
(SNRs). Furthermore, the SNR should be high, i.e. positive, for an analysis of the algorithms 
in ecologically relevant hearing situations (Olsen, 1998; Smeds et al., 2014) and, presumably, 
with less distortion.  

Up to now, these requirements are difficult to meet in the evaluation of speech following noise 
reduction processing. Although presentation of fixed positive SNRs is possible using adjust-
ment methods such as the procedure proposed by Wittkop et al. (1997), or in subjective eval-
uation methods of, e.g., overall signal quality (e.g., Brons et al., 2013, 2014; Peissig, 1993, 
Chapters 5 and 6), participants perform the tasks presented with an individual subjective 
criterion that is difficult to compare between participants and leads to large interindividual 
variation. Therefore, frequently, speech-in-noise tests are applied to determine the speech 
recognition with and without noise reduction processing. Within these procedures, the partic-
ipant’s task is to repeat the perceived signals and the number of correct answers is counted. 
Positive SNRs, however, commonly lead to high recognition scores near 100% and are thus 
insensitive to possible improvements due to the algorithms and possible differentiation between 
the algorithms. Therefore, for example, Brons et al. (2013) and Neher et al. (2014a) also pre-
sented negative SNRs for the evaluation of noise reduction algorithms, and reached recognition 
scores below 100% and thus avoided ceiling effects. In addition, e.g., Bentler et al. (2008) or 
Wittkop (2001) analyzed noise reduction processing using speech-in-noise tests with adaptive 
procedures to adjust the SNR to the speech recognition threshold (SRT), i.e. a speech recog-
nition score of 50%. This approach avoids ceiling effects but presents variable SNRs that are 
difficult to use for the evaluation of hearing aids and their algorithms (Naylor, 2010). Further-
more, SRTs are dependent on the individual hearing ability and vary between participants. As 
a result of the SNR variation, algorithm processing is frequently different between participants. 
Besides, this approach results in negative SNRs that occur especially in German speech-in-
noise tests, even for hearing-impaired participants (e.g., Luts et al., 2010; Wagener and Brand, 
2005). These negative SNRs in turn are not ecologically relevant and presumably lead to more 
distortions of the algorithms than at positive SNRs. 

The current study applied a new speech-in-noise test in a hybrid approach to fulfill the re-
quirement of presenting positive, fixed SNRs. Schlueter et al. (2014a) developed a speech-in-
noise test with the objective of adapting the speech rate to a recognition score of 50% (time-
compression threshold, TCT). The sentences presented were compressed in time, whereby the 
pitch of the signals was preserved. In order to allow for the adaptive measurement of the TCT, 
it is necessary to verify whether the recognition score at the intended fixed SNR is at least 
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75% when using the original speech rate. It is difficult to use this procedure directly for eval-
uation of the algorithms, because varying time compression during the measurement is ex-
pected to result in varying processing of the hearing aid algorithms, as stated above for varying 
SNR values. Individual TCTs can rather be used to individually adjust the difficulty of recog-
nition measurements at fixed SNRs. These SNR values can be positive, in order to be ecolog-
ically relevant, and presumably lead to a processing of the algorithm with higher benefit than 
at negative SNRs. When selecting the SNR for the evaluation, it has also to be remembered 
that the higher the selected SNR, the faster the presented speech rates. After the selection of 
the individual hearing situation defined by SNR and time compression, recognition scores can 
be measured with and without the activation of noise reduction algorithms. As a result of that 
process, the speech recognition scores for unprocessed hearing situations are at about 50% for 
speech compressed to TCT. Compared to this situation, maximum possible changes of recog-
nition due to the algorithms can be detected. If the noise reduction algorithms induce recog-
nition changes in a speech-in-noise test that are less than 50%, floor or ceiling effects are not 
to be expected.  

For reducing the background noise, realistic single-microphone noise reduction algorithms es-
timate the background noise on the basis of the mixed speech-in-noise signal. The estimate is 
often based on speech statistics and is applied in gain rules to filter this mixed signal. Since 
time-compressed speech has different speech statistics than original speech, and noise reduction 
is SNR-dependent (see above), it is necessary to study the processing and to objectively deter-
mine the amount of SNR improvement (as shown by, e.g., Neher et al., 2014a). Fredelake et 
al. (2012) used shadow filtering to investigate the objective overall SNR improvement as a 
function of the SNR at the input of three noise reduction algorithms. Based on the results of 
Fredelake et al. (2012), an objective analysis is expected to show an overall SNR improvement 
of the noise reduction algorithms for the listening situations of time-compressed speech pre-
sented at fixed positive SNRs. This observation leads to the assumption that no objective SNR 
improvement after noise reduction is not the reason for failure of recognition improvement. 

Nevertheless, various studies did not obtain recognition improvement with single-microphone 
noise reduction algorithms (e.g., Brons et al., 2013, 2014; Hu and Loizou, 2007; Neher et al., 
2014b). This observation is often attributed to a degradation of the speech signal, because 
reduction of noise also causes a partial reduction of speech and possibly introduces artifacts 
(e.g. Neher et al., 2014b). These findings resulted in consequences for the current study. Alt-
hough the presented SNR was at maximal improvement of the SNR for a realistic noise reduc-
tion algorithm, recognition measurements might not show improvements in speech recognition 
compared to settings without noise reduction. Therefore, to test the measurement procedure 
described, an a priori knowledge-driven noise reduction algorithm was applied as a reference 
in the current study. It used a priori knowledge of the background noise and generated fewer 
artifacts when compared to realistic noise reductions. This algorithm was expected to improve 
speech recognition scores.  

In addition to the evaluation of two noise reduction algorithms, two sets of speech signals were 
applied. Oldenburg and Göttingen sentences are available for the measure of the TCT. Previ-
ous studies showed that different sentence sets result in different TCTs (Schlueter et al., 2014a; 
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Schlüter et al., 2014b) and are therefore expected to yield different individual adjustments of 
time compression and SNR for recognition measurements with noise reduction algorithms. 
Besides the application of individually time-compressed speech for speech recognition scores of 
about 50% to evaluate noise reduction algorithms, an additional objective of the current study 
was to recommend one of the two sets of sentences for this approach.  

In summary, the objective of the current study was to examine the feasibility of the hybrid 
approach using the procedure of adaptive adjustment of time-compression to find a hearing 
situation defined individually by time-compression and fixed positive SNR, which was pre-
sented in recognition measurements for the evaluation of noise reduction algorithms. For these 
evaluation measurements, the following results were expected: First, without noise reduction, 
speech recognition scores are in the range of 50% when speech is compressed at about TCT. 
Second, speech recognition after noise reduction does not show any ceiling effects if the change 
after processing is not too large. Third, the objective evaluation of the noise reduction algo-
rithms shows an overall SNR improvement. Therefore, an improvement in recognition was 
expected, at least with the a priori knowledge-driven noise reduction algorithm. Furthermore, 
the current study applied different sets of sentences and may thus be in a position to recom-
mend one set for the assessment of hearing aid algorithms with time-compressed speech.  

5.2 Methods 

5.2.1 Participants 

Eleven hearing-impaired listeners (8 male, 3 female) participated in the measurements. Their 
mean age was 73 years (range: 68-76 years). All participants had German as their native 
language. Figure 5.1 depicts hearing thresholds of both of the listeners’ ears as measured using 
air conduction pure tone audiometry. In addition, participants conducted the Trial Making 
Test and the verbal Digit Span forwards and backwards. These tests explored the cognitive 
abilities of psychomotor information processing speed and both short-term and working 
memory. Participants whose results in the cognitive tests were more than 1.5 standard devia-
tions poorer than the mean age-related standard (Härting et al., 2000; Tombaugh, 2004) were 
excluded from the experiments. Therefore, all participants showed cognitive abilities appropri-
ate to their age or better. All listeners were paid a small amount for their participation to 
compensate for their expenses. 

5.2.2 Materials and measurements 

5.2.2.1 OLSA 

The Oldenburg sentence test (OLSA, Wagener et al., 1999) is a German matrix test. All sen-
tences have the same structure (name, verb, numeral, adjective, object). Sentences were gen-
erated from a random selection of one out of ten words for each structural element of the 
sentences. After a selection process, the test included 100 sentences with low redundancy, for 
instance “Peter kauft zehn nasse Messer.” (“Peter buys ten wet knifes.”). These sentences were 
 



5 EVALUATION OF NOISE REDUCTION WITH TIME-COMPRESSED SPEECH 

73 

 

Figure 5.1: Boxplot of the results of pure tone audiometry using air conduction for the left and the right 
ears of all participants. Plots show the median (bold line within the box), the lower and upper quartile 
(lower and upper boundary of the box), lowest and highest results within 1.5 times the quartile range 
relative to the lower and upper quartile (whiskers), and outliers (circles). 

sorted to lists with 30 sentences each that had equal recognition. The test included a back-
ground noise stimulus. The noise resulted from a superposition of all sentences and has the 
same long-term spectrum as the speech (Wagener et al., 1999). The OLSA was used to measure 
recognition scores for sentences. During all measurements, the presentation of the noise was 
continuous and a visual countdown marked the beginning of the sentence presentation. Partic-
ipants listened to the sentences and repeated orally as much as they recognized. 

5.2.2.2 GÖSA 

The Goettingen sentence test (GÖSA) includes sentences from everyday live (Kollmeier and 
Wesselkamp, 1997). It consists of 200 sentences with three to seven words each. These sentences 
are apportioned to lists with 20 sentences each. The additional background noise stimulus was 
developed in the same way as the OLSA noise, with superposition of the speech signals be-
longing to the Einsilber-Reimtest (Sotscheck, 1982). The speaker was the same for the Reimtest 
and the GÖSA. Therefore, the long-term spectrum of the noise is similar to the spectrum of 
the applied speech signals. The same instructions and procedures as in the OLSA were applied 
to measure recognition scores. 

5.2.2.3 Most Comfortable Level (MCL) 

The measurement of the MCL was based on the procedure for the acceptable noise level (ANL) 
test (Nabelek et al., 1991). Participants listened to OLSA sentences in quiet, which were re-
peated in random order. They adjusted the level of the speech according to the following 
instructions: At first, speech in quiet was presented at 45 dB SPL and was adjusted to a level 
louder than comfortable, then afterwards to a level softer than comfortable and finally to the 
individual MCL. For the first and second speech adjustment (“louder than comfortable”, 
“softer than comfortable”), a larger step size of 5 dB was used, while the last adjustment 
(individual MCL) used a step size of 2 dB. 
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For the level adjustments, a graphical user interface with the instruction and control elements 
was shown to the subjects on a touch screen. Using this interface, the subjects were able to 
adjust the level of the signals with an up and down button. When the subjects finished the 
adjustment, the level was approved with an “OK”-button and afterwards the instruction for 
the next measurement step was shown. The procedure was repeated three times. The median 
MCL of the three adjustments was calculated, if necessary limited to minimum of 60 or max-
imum of 80 dB SPL, and then presented as the speech level in the following session.  

5.2.2.4 FastOLSA/FastGÖSA 

The following description is taken from Section 4.2.2 and supplemented with the method of 
the FastGÖSA. FastOLSA and FastGÖSA were developed to measure the TCT. These tests 
were implemented according to Versfeld and Dreschler (2002) and evaluated by Schlueter et 
al. (2014a) and Schlüter et al. (2014b). Sentences of the OLSA and GÖSA were compressed in 
time with a pitch-synchronous overlap-add procedure implemented in Praat (Boersma and 
Weenink, 2009) to different time-compression factors, ρ , as calculated from Equation 5.1, 
where N is a natural number between 0 and 10. The calculated factors ρ were rounded to the 
next integer.  

 ρ = 0.85N ∗ 100 [%]        (5.1) 

By varying N, speech was presented at original speech rate (N = 0), but also compressed up 
to 20% of its original length (N = 10). A 1up-1down procedure decreased or increased the 
time-compression factor adaptively depending on sentence recognition. For the first sentence 
within each list, the time-compression factor presented was ρ = 100% (corresponding to orig-
inal speech). Again, the presentation of the noise was continuous and a visual countdown 
marked the beginning of sentence presentation. Participants listened to the sentences and re-
peated orally as much as they recognized. 

After presenting one OLSA or one GÖSA list, recognition values (i.e., 0 for at least one mistake 
in the repetition of the sentence or 1 for correct repetition of all words within a sentence) were 
available in relation to the respective time-compression factors with which the sentence was 
processed. To estimate the TCTN, a maximum likelihood method was applied to the linear 
steps marked by N, which were calculated from Equation 5.1. Within this method, the dis-
crimination function (see Equation 5.2) 

 p(N) = 1 − 1
1+e4∗slope∗(TCTN−N)       (5.2) 

was fit to the data. In Equation 5.2, p is defined as the mean probability that sentences are 
repeated correctly. This probability is dependent on the time compression described by N. 
TCTN denotes the time-compression threshold specified by N, which refers to 50% probability 
of correct responses. The parameter slope describes the slope of the discrimination function at 
TCTN. The result is the parameter setting of TCTN and slope that produces the observed data 
with the maximum likelihood. The resulting TCTN estimate was used for further data analysis. 
For the presentation of results, N as well as ρ values were given. Respective TCT values were 
specified by TCTN or TCTρ. 
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5.2.3 Single-microphone noise reduction algorithms 

Single-microphone noise reduction algorithms use speech signals that are distorted with back-
ground noise, estimate the noise and filter the distorted signal in order to improve the SNR. 
The a priori knowledge-driven algorithm (Apriori) achieved this with an application of a priori 
knowledge of the separate speech and background noise signals and the Wiener gain rule for 
filtering (Vary et al., 1998). This algorithm is not a real world application, because it relies on 
the separate availability of the two signal components, speech and background noise. The real 
world algorithm (Real8dB), which was also used, estimates the background noise from the 
distorted speech signal with minimum controlled recursive averaging (Cohen and Berdugo, 
2002) and applies spectral subtraction for filtering (Vary et al., 1998). Maximum reduction of 
both algorithms was set to 6 and 8 dB for Apriori and Real8dB, respectively. 

For the objective measurement of the SNR improvement, the implemented noise reduction 
algorithms simultaneously processed the distorted speech signal as well as the separated speech 
and noise signal with the parameters determined for the mixed signal. Mixtures of OLSA and 
GÖSA sentences with the respective noise were evaluated at different SNRs. Ten seconds of 
noise preceded the speech. The processed speech signals included sentences concatenated to a 
monologue of about 1 min length. Separate speech and noise signals at the input and output 
of the noise reduction were used to calculate the SNRs before and after processing (SNRIn and 
SNROut). Then, the SNR improvement SNROut-In was calculated according to Neher et al. 
(2014a). Thus the SNROut-In was estimated in one-third octave bands and the mean was taken 
of all bands. 

5.2.4 Setup and schedule 

The experiments were conducted in a sound-isolation booth. PCs with Matlab-based program-
ming (MathWorks, Natick, MA) controlled the presentation of the signals. Signals were routed 
through a sound card (Fireface 400, RME, Audio AG, Haimhausen, Germany) and a head-
phone amplifier (HB 7, Tucker Davis Technologies, Alachua, FL) to headphones (HDA 200, 
Sennheiser, Wedemark-Wennebostel, Germany). The headphones were free-field equalized ac-
cording to international standards (IEC 60645-2, 2010; ISO 389-8, 2004) and presented signals 
diotically. Speech signals were offered at the individual MCL. Taking the presentation levels of 
all participants together, the mean speech level was 64.5 dB SPL, ranging between 60 and 
70 dB SPL for all participants. The background noise was added at 1 and/or 5 dB SNR. The 
selection of the SNR was dependent on the recognition score obtained in the OLSA or GÖSA 
with original speech (see following explanations). 

In total, participants visited the lab for three sessions on three different days. During the first 
session, participants conducted a questionnaire about their education, hearing ability, and an-
amnesis, as well as undergoing audiometric measurements. Afterwards, their cognitive abilities 
were determined with the Trial Making Test and Digit Span forward and backward. Then 
participants listened to the original OLSA sentences and adjusted their MCL (see Section 
5.2.2.3).  
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Participants were separated randomly into two groups. During the second session, they started 
tests with either OLSA or GÖSA sentences and in the third session performed measurements 
with the remaining speech set. Both sessions consisted of three measurement units with objec-
tives that built on one another. First, the individual positive fixed SNR (1 and/or 5 dB) at 
which the participants obtained at least 75% recognition for original speech was measured. 
Second, time-compression for 50% recognition of the speech signals was measured at this se-
lected individual SNR. Third, individual SNR and time compression were applied, to measure 
speech recognition scores after noise reduction.  

For achieving the first objective using the OLSA sentences, participants started with practice 
runs. They performed recognition measurements with two lists of the original speech signals 
(one at 5 dB SNR and one at 1 dB SNR) as well as visual confirmation of their answers on a 
screen. Afterwards, a third list was presented at 1 dB SNR but without visual confirmation. If 
the participants obtained recognition scores above 75% within the third list, subsequent meas-
urements were conducted at 1 dB SNR. If the recognition scores were equal or below 75%, 
participants performed a further recognition measurement at 5 dB SNR. In case recognition 
scores were still below 75%, the participants were excluded from the study. If their scores were 
equal or above 75%, they performed subsequent measurements at 5 dB SNR. 

For achieving the second goal – measurement of the time compression – participants performed 
the FastOLSA at an SNR (1 or 5 dB) obtained in the first part of the study. Participants 
trained the FastOLSA with two lists and visual confirmation. Results for the TCT of a final 
third list without confirmation served as time compression for the final part of the measure-
ments. For this purpose, the measured TCTs were rounded to the next possible time-compres-
sion step available in the FastOLSA. 

In the third part of the measurements, SNR and time compression determined in the first two 
parts were used. Three recognition measurements were conducted with time-compressed OLSA 
sentences processed with Apriori and Real8dB or without noise reduction (NoAlgo).  

The measurements with the GÖSA sentences were generally performed similarly to the meas-
urements with the OLSA sentences. The following explanation covers only deviations to the 
procedure described above. The first part of the measurements with GÖSA sentences started 
with a recognition measurement at 1 dB SNR. If the resultant recognition score was above 
75%, the following measurements were conducted at 1 and 5 dB SNR. In case the recognition 
scores were equal or below 75%, recognition measurements were repeated at 5 dB SNR. Oth-
erwise, the procedure to determine the SNR (first part of the measurements) was the same as 
the procedure using OLSA sentences. 

In contrast to the procedure with OLSA sentences, the measurement of the TCT and speech 
recognition scores was conducted with GÖSA sentences without training. If the measurements 
could be conducted at 1 and 5 dB using the GÖSA sentences, the order of the SNR was chosen 
randomly. Then, measurements of TCT and recognition scores were performed as a block with 
the first SNR and repeated with the second SNR. In the entire study, list numbers, session for 
the presented speech sets (OLSA or GÖSA in first or second session), and order of the noise 
reduction settings (NoAlgo, Apriori, Real8dB) were randomly selected in the entire study.  
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5.3 Results 

Beside the graphical representation of the results, effects were statistically evaluated with 
𝛼𝛼 = 0.05. At first, all samples were tested for normal distribution with a Shapiro-Wilk test, 
which in all cases confirmed that the data were normally distributed. Thus subsequent analyses 
were conducted using t-tests. Some results are displayed with boxplots. These plots show the 
median using a central bold mark, the edges of the boxes are the lower and upper quartile and 
the whiskers end at the lowest and highest values that are within 1.5 times the interquartile 
range. Outliers are displayed by circles and are values outside the range defined by box and 
whiskers. 

5.3.1 TCT 

As described above, recognition measurements with the original speech signals determined 
SNRs for subsequent studies. At 1 dB SNR, eight and seven participants obtained recognitions 
scores above 75% with the OLSA and the GÖSA, respectively. At 5 dB SNR, three partici-
pants reached recognition scores of 75% or more with the OLSA and all eleven participants 
achieved these scores when performing the GÖSA. As a result, eight/seven participants listened 
to the OLSA/GÖSA sentences at 1 dB SNR, and three/all eleven participants conducted the 
OLSA/GÖSA measurements at 5 dB SNR, respectively. For the measurement of the required 
time compression, the FastOLSA and the FastGÖSA were conducted. Figure 5.2 displays the 
TCT for the FastOLSA and FastGÖSA at the different SNRs. The TCTN is between 2 and 6 
and therefore speech was presented compressed between 38% and 72% of its original length. 
An independent samples t-test confirmed that the TCTN is significantly larger for the OLSA 
sentences than for the GÖSA sentences at 1 dB SNR (t(13) = 4.01, p = 0.001), i.e. the speech 
was presented faster in the FastOLSA than in the FastGÖSA condition.  

 

Figure 5.2: Boxplots of TCTs measured with FastOLSA and FastGÖSA at 1 or 5 dB SNR.  

5.3.2 Objective improvement 

Figure 5.3 shows the SNR improvement SNROut-In as a function of SNR at the input of the 
applied noise reduction algorithms. SNROut-In was determined with the original OLSA and 
GÖSA sentences. Both panels show a maximum in the range of 3-6 dB SNRIn. Larger values 
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for SNROut-In were observed for Apriori than for Real8dB. Note that the SNR improvement 
(SNROut-In) does not exceed 3 or 4 dB SNR, which is less than the maximum reduction of 8 or 
6 dB for the Real8dB or Apriori algorithm, respectively. Additionally, values for SNROut-In ob-
tained with GÖSA and OLSA show only small differences for Real8dB and Apriori. 

 

Figure 5.3: Mean objectively-determined SNR improvement SNROUT-IN of the a priori knowledge-driven 
(Apriori) and the realistic (Real8dB) noise reduction algorithm and without processing (NoAlgo), as a 
function of the SNR at the input of the algorithms SNRIN and measured with original a) OLSA and b) 
GÖSA sentences without time compression. 

The fundamental approach in the experiments was the individually-selected time compression 
of the speech presented to the noise reduction algorithm. Figure 5.4 shows the SNR improve-
ment SNROut-In measured for the noise reduction algorithms Apriori and Real8dB when using 
time-compressed speech. Sentences of the OLSA and GÖSA were compressed in time to N 
values derived from the TCT measurement (see Sections 5.2.4 and 5.3.1) and presented at 1 
and 5 dB SNR before they were processed with noise reduction algorithms. Most values for 
SNROut-In are between 2 and 4 dB SNR and therefore showed remaining SNR improvements. 
Again, larger SNR improvements were measured with Apriori than with Real8dB, and larger 
with time-compressed GÖSA sentences than with time-compressed OLSA sentences for 
Real8dB. Furthermore, Real8dB depended on the amount of time compression, as can be seen 
from the fact that the SNROut-In decreases with increasing N. In addition, the SNROut-In showed 
small differences for the SNRIn-values of 1 and 5 dB (see Figure 5.4a and b).  

5.3.3 Recognition of time-compressed speech at fixed positive SNRs 

Figure 5.5 shows recognition scores, which were measured with sentences individually com-
pressed in time. Median recognition scores without any processing (NoAlgo) were between 40 
and 63%. Although recognition was observed for different speech sets, for different noise re-
duction algorithms and at different fixed positive SNRs with participants having different 
hearing ability, all recognition scores were below 100% and therefore showed no ceiling effects. 
This was in accordance with the expected results for the selected procedure presented here.  
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Figure 5.4: Mean objectively-determined SNR improvement SNROut-In obtained for OLSA and GÖSA 
sentences with different time compression at 1 and 5 dB SNR. These signals were processed by the noise 
reduction algorithms Apriori and Real8dB. 

 

 

 

Figure 5.5: Boxplot of the recognition in %-correct for time-compressed a) OLSA and b) GÖSA at 1 or 
5 dB SNR without noise reduction (NoAlgo) or processed with the noise reduction algorithms Apriori 
or Real8dB.  
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5.3.4 Improvement in recognition after noise reduction 

To investigate the benefit of the noise reduction algorithms, improvements in recognition were 
analyzed by calculating the difference in recognition scores with and without noise reduction 
%-correctAlgo - %-correctNoAlgo. This difference is displayed in Figure 5.6. Results showed that 
only the algorithm Apriori improved recognition of time-compressed speech. No improvement, 
or even deterioration, was observed for the algorithm Real8dB. A one-sample t-test confirmed 
these results and showed significant deviation from 0 for Apriori using OLSA (t(10) = 4.25, 
p = 0.002) and GÖSA (t(17) = 5.13, p < 0.001) as well as for the combination of Real8dB 
and GÖSA (t(17) = -2.12, p = 0.049).  

 

Figure 5.6: Boxplot of the recognition improvements for the algorithms Apriori and Real8dB. Recogni-
tion scores were obtained with time-compressed OLSA or GÖSA sentences. Results of a t-test, which 
compares the values to 0, are displayed with asterisks (n.s.: not significant; *: p<0.05; **: p < 0.01; 
***: p < 0.001). 

5.4 Discussion 

The current study tested the feasibility of a new hybrid procedure (adaptive speech-in-noise 
test with time-compressed speech to select the presentation conditions) characterized by a 
fixed positive SNR and a fixed time-compression factor, which is, e.g., intended to test hearing 
aid algorithms for noise reduction processing and SNR improvement. The adaptive speech-in-
noise test was used to measure individual TCTs, which are thresholds of time compression for 
50% sentence recognition. TCTs were investigated at 1 and/or 5 dB SNR for two different sets 
of speech signals (OLSA and GÖSA sentences). In subsequent recognition measurements, time-
compressed speech was presented at the fixed compression value, which was close to the indi-
vidual TCT (see Section 5.2.4). This individual adjustment of the time-compressed speech 
permitted the individual adaptation of the test difficulty for recognition measurements without 
and with two different noise reduction algorithms.  
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The objective evaluation of the SNR improvements detected input-SNR-dependent perfor-
mance in noise reduction as shown in previous studies (e.g., Brons et al., 2013; Fredelake et 
al., 2012; Hoetink et al., 2009). Both noise reduction algorithms showed the maximum SNR 
improvement for original speech at positive SNRs, and the maximum improvement was less 
than the maximum reduction of both algorithms. The calculation of overall SNR improvement 
was averaged for the entire signal and therefore presumably showed reduced improvement 
compared to the maximum reduction, which defines the maximum attenuation of local inten-
sity. In addition, the algorithm Real8dB had to distinguish between speech and background 
noise to estimate the noise. Estimation errors may have contributed to the limited maximum 
improvement of Real8dB observed for original speech. Besides, time compression changes 
speech statistics and, e.g., shifts modulations to higher frequencies (see Schlueter et al., 2014b). 
Noise reduction algorithms such as Real8dB frequently rely on speech statistics to separate 
speech and noise (for an overview see Chung, 2004). This may also have contributed to the 
limited improvement of Real8dB observed for time-compressed speech in comparison to Apri-
ori. Nevertheless, the decrease in SNR improvement was less than 1 dB from original speech 
as compared to speech with the highest time compression, and an improvement was still ob-
tained for Real8dB. In contrast, SNR improvement of Real8dB showed higher variability, due 
to changes of the SNR at the input of a noise reduction algorithm as compared to the differ-
ences generated by the changes of the time compression. SNR improvement as a function of 
SNR at the input varied between no improvement and up to about 3 dB SNR for Real8dB. 
Hence, the presentation of fixed positive SNRs and individually time-compressed speech is 
presumed to have led to a higher comparability between test situations than in measurements 
with original OLSA or GÖSA at individual SRTs and therefore varying SNRs.  

The objective assessment also revealed differences between OLSA and GÖSA. Those differ-
ences might be explained by differences between the stimuli: The OLSA applies sentences and 
noise that are exactly equal in long-term spectrum. The GÖSA sentences and noise only show 
similarity of the long-term spectrum. Real8dB used the differences of GÖSA’s signal compo-
nents for the estimate and the filtering. Therefore, this algorithm showed a greater SNR im-
provement for GÖSA than for OLSA. Since the Apriori algorithm applied a priori knowledge 
and has no need to estimate the signal components, it obtained similar SNR improvement for 
both speech sets. 

To adapt the objective assessment for a comparison to the subjective evaluation, it is possible 
to calculate the overall SNR improvement with the band-importance function from the speech 
intelligibility index (as described by Neher et al., 2014a). Application of the frequency-depend-
ent weighting, however, showed very similar SNR improvement in comparison to the calcula-
tion without weighting and therefore was not addressed further in this study. 

A result of using individual time compression settings was that recognition scores obtained 
without noise reduction algorithm showed median values ranging between 40 and 63%. They 
were not exactly at 50% recognition, because the TCT measured was rounded to the next 
possible time-compression step presented in the adaptive procedure. Nevertheless, the recog-
nition scores showed the expected accuracy of participants’ results due, e.g., to individual 
fatigue or learning effects. A further result of the individual adjustment of the hearing situation 
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was that none of the recognition scores obtained with and without noise reduction algorithms 
showed any ceiling effects, although measurements were conducted at positive SNRs with dif-
ferent speech sets and different noise reduction processing. All results were included in the 
analysis, made possible by the careful selection of testing conditions (with a fixed positive SNR 
and fixed time-compression factor) performed by the adaptive pre-test of the hybrid procedure 
employed here. This is in contrast to studies by, e.g., Neher et al. (2014b), who had to exclude 
results because of ceiling effects that occurred in recognition measurements with noise reduc-
tion algorithms at positive SNRs. 

In addition to preventing ceiling effects, application of time-compressed speech has further 
advantages. Brons et al. (2013) and Brons et al. (2014) studied the recognition of speech as 
processed with noise reduction algorithms using normal-hearing and hearing-impaired listeners 
and presented lower SNRs to normal-hearing than to hearing-impaired participants. Generally, 
in their studies, the individual presentation of time-compressed speech would allow for an 
equalization of the presented SNR for both groups of participants. In the current study, it also 
permitted the adjustment to the performance of the noise reduction algorithms, because both 
algorithms showed the largest SNR improvement at positive SNRIn. Further adjustments to 
other test situations are possible. In the study of Brons et al. (2013), participants also assessed, 
e.g., overall preference, noise annoyance and speech naturalness with complex results. In gen-
eral, overall preference was dependent on the factors noise annoyance and speech naturalness. 
Individual participants, however, showed inconsistencies in weighting the two factors, depend-
ing on the SNR. Therefore, Brons et al. (2013) suggested that the individualization of noise 
reduction settings in hearing aids might be of benefit to users. In view of these results, in 
future research the comparison of noise reduction algorithms could be supported by the presen-
tation of time-compressed speech. It also makes it possible to use listening situations with 
different SNRs but similar recognition. SNRs could be selected to present the highest or equal 
recognition of the signals processed with noise reductions. Thus, differences between noise 
reduction algorithms, i.e., their ability to improve SNRs and their generation of artifacts could 
be studied more precisely than with varying or inappropriate SNRs. 

The application of time-compressed speech at positive SNRs and the equalization of SNRs, 
however, also have limitations. On the one hand, an SNR has to be selected at which partici-
pants also achieve high recognition scores for original speech. If the recognition of original 
speech is too low (e.g., 50 %), FastOLSA and FastGÖSA will not be able to adapt to the TCT. 
On the other hand, if the SNR is too high, a large amount of time compression (i.e., very fast 
speech) is necessary to obtain a recognition score of 50%, especially for normal-hearing partic-
ipants. Due to these limitations of time-compressed speech, floor and ceiling effects can also 
occur, both in TCT measurements and in recognition measurements with time-compressed 
speech. Furthermore, the presentation of highly-compressed (i.e., very fast) speech can lead to 
unrealistic listening situations, because in real life, fast speech is limited by physiological factors 
(Adank and Janse, 2009). In addition, age effects have to be considered, because the recogni-
tion of time-compressed speech decreases with age (e.g. Schlueter et al., 2014a). Nevertheless, 
this effect is negligible if only relative changes in recognition scores, e.g., with and without 
noise reduction, are compared, as in the current study.  
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Analysis of improvements in recognition after noise reduction processing, as compared to un-
processed, only showed improvements for the Apriori algorithm. Real8dB did not show any 
improvement. These results are in line with previous research (e.g., Brons et al., 2013, 2014; 
Hu and Loizou, 2007; Neher et al., 2014b; Nordrum et al., 2006). Schlüter (2007) applied the 
same noise reduction algorithms for additional measurements, such as SRT measurements us-
ing the OLSA, Just Follow Conversation test, and ANL test. She observed a high variability 
between the results of different participants for the ANL test, and therefore a highly variable 
SNR improvement of the noise reduction algorithms. For normal-hearing participants, she 
found a significantly better ANL test results for Apriori and Real8dB relative to situations 
without noise reduction processing. For hearing-impaired participants, she found significantly 
better ANL test values only for Apriori as compared to without noise reduction. Furthermore, 
Schlüter (2007) measured negative SRTs without SNR improvement in the OLSA and the Just 
Follow Conversation test. For both test procedures and both groups of participants, she only 
observed significant recognition improvement for the Apriori algorithm as compared to situa-
tions without noise reduction. In contrast to previous research, positive fixed SNRs were pre-
sented in the current study with the objective of maximizing the effect of the noise reduction 
processing. Consequently, the lack of recognition improvement for Real8dB was possibly not 
due to disadvantageous SNRs for the algorithm. 

According to Loizou and Kim (2011), an accurate noise estimate contributes to a better per-
formance of noise reduction algorithms. Apriori used a priori knowledge of the background 
noise. In contrast, Real8dB applied an estimate of the background noise together with spectral 
subtraction. As it reduced the background noise from the distorted signal, it also degraded the 
speech more than Apriori. This was also confirmed by the objective measurements of the SNR 
improvement, in which Real8dB obtained less improvement compared to Apriori. Similar re-
sults were found by Hu and Loizou (2007), who measured improved recognition scores for a 
Wiener algorithm applied to car noise with an SNR of 5 dB. Other algorithms failed to show 
better recognition performance. According to Loizou and Kim (2011), distortions were intro-
duced by algorithms applying, e.g., Wiener filter and spectral subtraction, and resulted from 
over- and underestimates of spectra by the noise reduction algorithm. Higher recognition per-
formance resulted from better control of these estimates. Jørgensen and Dau (2011) explained 
decreased speech recognition of signals processed with spectral subtraction using an analysis 
of the envelope power-spectrum model. The model showed a decreased SNR at the output of 
a modulation-selective process for speech processed with noise reduction. More innovative and 
sophisticated noise reduction algorithms, as compared to the algorithms applied here might 
show improvements in recognition, especially at fixed positive SNRs. 

Beside the aspect of time-compressed speech, two sets of speech signals were applied in the 
current study, OLSA and GÖSA sentences. The results of the TCT measurements showed 
higher TCTN values for OLSA sentences than for GÖSA sentences. This means that, to reach 
equal recognition, the OLSA sentences had to be compressed by a greater amount than the 
GÖSA sentences. These results are in line with Schlüter et al. (2014b), who compared the 
FastOLSA to the Fast GÖSA. In addition, Schlüter et al. (2014b) found no training effects for 
the FastGÖSA, while FastOLSA had to be trained to obtain reliable results. Consequently, 
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GÖSA sentences and their modifications are more suitable for assessing noise reduction algo-
rithms than are OLSA sentences. Disadvantages of the GÖSA sentences are the limited number 
of lists, and that repetitions of lists have to be avoided because participants are able to re-
member complete sentences.  

Conclusions 

The application of individually time-compressed speech in speech-in-noise tests for the assess-
ment of single-microphone noise reduction algorithms led to the following conclusions: 

• The feasibility of the hybrid approach introduced here was demonstrated with two 
different noise reduction algorithms. In the first phase of the approach, time-com-
pressed speech was adaptively adjusted to the individual hearing ability, a predefined 
as well as fixed positive SNR and different sets of speech signals was used. In the second 
phase, the evaluation of the algorithms was performed with recognition measurements 
at these individually assigned hearing situations, using fixed positive SNR and time 
compression. 

• The advantage of the approach is the ability to present speech and to test the algo-
rithms under study at a predefined SNR, which may be selected to demonstrate the 
maximum effect of the noise reduction algorithm. Hence, the effective noise reduction 
processing and a correspondingly large SNR improvement was demonstrated for at 
least one of the two algorithms tested here.  

• No ceiling effects of recognition scores were observed, because the effect of the algo-
rithms considered here showed limited recognition changes close enough to the point 
of approx. 50% recognition that was achieved without the algorithm. This might not 
have been the case if algorithms with a larger effect on speech recognition were tested.  

• Presentation of positive SNR resulted in improved recognition scores only for the Apri-
ori algorithm. The Real8dB algorithm, however, did not show a convincing noise re-
duction effect in recognition measurements, although overall SNR improvement was 
objectively documented for the SNR values and time-compression factors presented.  

• GÖSA sentences, rather than OLSA sentences, are more suitable for research, because 
less time compression and no training are necessary. 

Acknowledgements 

I would like to thank Vera Löw for her support on data collection and G.A. Manley (www.stels-
ol.de) for advising on language issues. 

Parts of this work were presented on the International Hearing Aid Conference (2014) in Tahoe 
City, USA. 

http://www.stels-ol.de/
http://www.stels-ol.de/


 

85 

6  General Conclusions and future perspectives 

6 
General conclusions and future perspectives 

The main objective of this thesis was to develop and evaluate a speech-in-noise test that pre-
sents fixed positive SNRs. Positive SNRs represent realistic communication situations (Olsen, 
1998; Smeds et al., 2015) and are necessary for beneficial processing of some hearing aid algo-
rithms (Naylor, 2010). Fixed SNRs permit taking the SNR-dependent processing of some hear-
ing aid algorithms (e.g., single-microphone noise reduction algorithms) into account but also 
the comparison between normal-hearing and hearing-impaired participants. Therefore, a 
speech-in-noise test was developed and evaluated that adaptively adjusted the speech rate in 
order to measure a threshold of 50% recognition at fixed positive SNRs. 

Different algorithms exist for the time compression of speech samples to increase the speech 
rate. In Chapter 2 the uniform PSOLA (as implemented in Praat, Boersma and Weenink, 
2009) and the non-uniform Mach1 (Covell et al., 1998) were compared. Both algorithms were 
used to compress sentences of the OLSA at different speech rates. In this comparison, the non-
uniform algorithm exhibited greater deviations from the targeted time compression, as well as 
greater changes of the phoneme duration, spectra, and modulation spectra. Therefore, signals 
of the uniform algorithm are expected to be more similar to original speech. As a result, 
participants showed higher recognition scores for Praat than for Mach1. Subjective and objec-
tive measures indicated a clear advantage of the uniform algorithm in comparison to the non-
uniform algorithm for the application in speech-in-noise tests. However, very high speech rates 
with a time-compression factor below 30% of the original sample length were necessary to 
reach 50% recognition at positive SNRs. Additionally, discrimination functions measured with 
time-compressed speech showed a shallower slope compared to original speech material, indi-
cating limitations of the speech-in-noise test and of its ability to discriminate across different 
effective SNRs. This was caused by recognition that depends on the word’s position within the 
sentences. As a result, sentence scoring was recommended and was applied in a speech-in-noise 
test presenting time-compressed speech. In addition, sentence scoring was expected to increase 
the time-compression factor for 50% recognition, because the recognition of an entire sentence 
depends on the least intelligible word. 
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Besides the relation of recognition to the time-compression algorithm, a dependency of recog-
nition and learning of a certain type of speech material is known and was taken into account 
for the evaluation of a speech-in-noise test with time-compressed speech (see Chapter 3). 
Therefore, a series of measurements of speech recognition thresholds was performed for original 
and time-compressed speech, in five sessions each with six repeated lists. Generally, speech 
recognition thresholds improved with repeated measurements. The largest improvements were 
observed within the first measurements of the first session. These improvements were larger 
for time-compressed than for original speech. The observed perceptual learning process was 
explained on the basis of the Reverse Hierarchy Theory (e.g., Banai and Lavner, 2012). This 
suggests that learning of speech in a matrix test progresses through an initial general phase, 
with the access to abstract acoustic representations of high levels of the auditory pathway. 
This allows for relatively good initial performance in everyday life. However, this is followed 
by a prolonged learning phase of specific lower-level representations that are beneficial for the 
current task. Based on this idea, the RHT predicts that learning that is based on high–level 
representations can be generalized and transferred to different tasks (i.e., is accessible for per-
ception of original and time-compressed speech in the same way). On the other hand, learning 
that applies lower–level representations is task-specific (i.e., is accessible only for perception of 
original or time-compressed speech). The observed partial transfer of what was learned between 
conditions of time-compressed and original speech confirms this theory. In general, learning 
progresses as long as it is beneficial for the current task. Therefore, the results presented might 
not resolve small learning effects after long learning phases, due to the accuracy of the method 
of SRT-measurements applied. Nevertheless, the observed learning effects permit and require 
consequences for speech audiometry in clinical, and especially in scientific, applications of ma-
trix tests in speech audiometry that use repeated measurements. Studies using either original 
or time-compressed speech materials should include training lists in each session. In addition, 
a careful randomization of test situations across sessions, as well as recruiting experienced 
listeners, is appropriate for both speech materials, especially when small differences between 
hearing situations need to be analyzed. Improvements observed between sessions for time-
compressed speech indicate large learning effects and therefore measurements should be carried 
out within one session. This separated observation is not necessary for the original speech 
material.  

Results of Chapter 2 and 3 were applied to study and evaluate a speech-in-noise test using 
time-compressed speech (see Chapter 4). This test used an adaptive procedure to adjust the 
time compression of sentences presented at a fixed positive SNR. Two different adaptive meth-
ods were compared: the first one was based on Versfeld and Dreschler (2002) and the second 
on Brand and Kollmeier (2002). Analysis of the measurements regarding list lengths and esti-
mation strategies for thresholds showed that a practical method for measuring the time com-
pression for 50% recognition can be derived. This method applied time-compression adjustment 
and step sizes proposed by Versfeld and Dreschler (2002), with sentence scoring, lists of 30 
sentences, and a maximum likelihood method for threshold estimation. In the evaluation meas-
urements, older participants obtained higher test-retest reliability than younger participants. 
Additional analysis of learning effects led to requirements of including one or two lists in 
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training prior to data collection, depending on the group of listeners. Appendix B includes an 
estimate of the test accuracy and a comparison to the original OLSA.  

In Chapter 5, the speech-in-noise test introduced was applied to study hearing aid algorithms. 
The test was used to increase the difficulty of the speech material individually for each partic-
ipant, in order to present fixed positive SNRs and to decrease the possibility of ceiling effects 
in recognition measurements. Using this individual adaptation, recognition scores of time-com-
pressed speech were measured with two different single-microphone noise reduction algorithms 
and without processing. Results confirmed that speech with an individually adjusted time-
compression factor can avoid ceiling effects of recognition scores because of prior knowledge of 
hearing ability. Also, a given, fixed positive SNR makes it possible to select the appropriately 
compressed speech material for each individual participant. Hence, SNR values can be adjusted 
to yield large overall SNR improvements of noise reduction processing. The procedure makes 
it possible to exclude negative as well as variable SNR with missing or variable overall SNR 
improvement. Generally, everyday sentences of the Göttingen sentence test have to be com-
pressed less than matrix-type sentences of the Oldenburg sentence test, and for Göttingen 
sentences, no training effects are expected. Therefore, Göttingen sentences are better suited 
for studies with time-compressed speech at fixed positive SNRs. 

Overall, the development of a speech-in-noise test that offers fixed positive SNRs was success-
ful. Besides the presentation of fixed positive SNRs due to the adaptive adjustment of time 
compression, its advantages are the presentation of a simple task for the participants (repeating 
the understood words) and the simple adaptive method. This method is based on a small but 
efficient number of time-compression steps and therefore requires little effort in signal pro-
cessing in advance of the test. A freely available algorithm implemented in Praat is used for 
compressing the speech signals in time, which offers a good signal quality. In addition, the 
procedure allows for presentation of the signals online. This means that, for example, partici-
pants can conduct the measurements in a setup with loudspeakers, but also that differences 
with and without hearing aids can be analyzed. Hence, recording hearing aid processing for 
presentation to participants is not necessary. Besides these practical aspects, the procedure 
offers a more complex hearing situation using time-compressed speech in background noise and 
therefore a higher difficulty compared to speech in noise or in quiet. This probably makes it 
possible to study speech recognition that is not only affected by sensory, but also by cognitive 
abilities (Uslar, 2014; Wingfield et al., 2006). Furthermore, the results of the test can be used 
to adapt hearing situations. Thus hearing situations can be adjusted to measure recognition 
with a decreased possibility for ceiling effects. 

Nevertheless, the procedure also has limitations. Since the recognition of the words depends 
on the words’ positions within the sentences, sentence scoring, instead of word scoring, had to 
be applied for assessing sentence recognition. Sentence scoring denotes the technique of count-
ing a response as correct only if every word of a sentence was correctly recognized, whereas 
word scoring describes counting the number of correctly recognized words in a sentence. There-
fore, using word scoring offers a higher informational content for the strategy for estimating 
the resulting thresholds than sentence scoring.  
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Another constraint of the method is that the participants showed large learning effects during 
this procedure and this limits the reliability of the test. Therefore, combining training and 
measurements within one session is recommended.  

Even though the test procedure offers a realistic situation in terms of positive SNRs, the 
application of very fast speech, especially for young normal-hearing listeners, is necessary. For 
further development of the test procedure and presentation of even more realistic hearing 
situations, additional interfering factors could be inserted. It is expected that these additional 
factors influence speech recognition and lead to lower speech rates. Work published by Rønne 
et al. (2013) and Simonsen et al. (2014) could support this idea because they systematically 
investigated the influence of spectral separation of the target speaker and of different interfer-
ing speakers on the speech recognition threshold. Moreover, signals could be processed with 
reverberation. Warzybok et al. (2013) studied recognition due to interaction between early 
reflections in rooms and to binaural processing. They observed a decay in recognition for frontal 
reflections having a delay of more than 25 ms. Additional deterioration of recognition was 
found for frontal reflections with a delay of 200 ms, while spatial separation of reflections 
decreased the effect of recognition deterioration. This study indicates that frontal reflections 
with a delay of 25 ms or more could probably increase the difficulty of the speech-in-noise test. 
Further studies of George et al. (2010), Rennies et al. (2014) and Holube et al. (2014b) analyzed 
sentence recognition after systematic changes of the reverberation and background noise in the 
context of the speech transmission index (STI). For mixtures of reverberation and noise, they 
observed increasing intelligibility with increasing STI. These results provide insights into the 
interacting effects of noise and reverberation with regard to the additional application of re-
verberation in more complex listening situations. Additionally, the studies of Holube et al. 
(2014b), Rennies et al. (2014), and George et al. (2010) could be models for the analysis of 
speech recognition that depends on systematic variation of time compression of the speech 
signal and SNR of the background noise. However, the STI is not expected to be the appro-
priate model for the systematic study of relations between time-compressed speech and back-
ground noise. After time compression, the statistics of speech signals is changed and, for ex-
ample, the modulation spectrum is shifted to higher frequencies, which probably results in a 
miscalculation of the STI. 

The above-mentioned variation of signals statistics after time compression can also affect pro-
cessing of hearing aid algorithms, if they rely on parameters changed by the time compression. 
Therefore, the application of the procedure for the evaluation of hearing aid algorithms could 
be limited. Nevertheless, it is possible to account for this processing, depending on the time 
compression. As an example, Chapter 5 shows an application for single-microphone noise re-
duction algorithms. In contrast to the algorithms described and utilized in the current thesis, 
future work should focus on noise reduction algorithms that yield fewer artifacts and a larger 
improvement in recognition. However, future research need not focus exclusively on the evalu-
ation of noise reduction algorithms. In general, hearing aids, their algorithms, and the interac-
tion of these algorithms can be tested with time-compressed speech and with fixed ecologically-
relevant SNRs. For example, this can be illustrated by noise reduction algorithms and dynamic 
compressions, both of which are implemented in modern hearing aids. Dynamic compression 
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and noise reduction reduce the gain if a high level or low SNR is present. In hearing aids, noise 
reduction processes the signals first and dynamic compression follows. This may lead to reduc-
tion of gain after the noise reduction, while subsequently the dynamic compression applies a 
higher gain due to the attenuated level of the signal (Holube et al., 2014a). Chung (2007) as 
well as Anderson et al. (2009) found, to some extent, effects of interactions between both 
algorithms on speech recognition and sound quality. When time-compressed speech is used to 
present positive SNRs in future research, interactions could be analyzed in hearing situations 
relevant for hearing aid users and with a decreased possibility for ceiling effects.  

Generally, the test can be applied to adapt the test situation for each participant to equal SNR 
and similar recognition, even though the participants have different hearing ability. This ad-
vantage is not only applicable to recognition measurements as explained above. Brons et al. 
(2013) showed that subjective evaluation of naturalness and annoyance of signals processed 
with noise reduction algorithms depends on the SNR. Application of time-compressed speech 
could result in a compensation of the SNR effect. Furthermore, the presentation of time-com-
pressed speech could be applied in the method of subjective adjustment developed by Wittkop 
(Wittkop et al., 1997; Wittkop, 2001) to increase the difficulty of the listening situation. As 
explained above, if the time-compressed speech is used to adapt the difficulty of the speech 
material, participants should have fewer uncertainties in adjusting “equal recognition”, as they 
showed for original speech and background noise at SRT (Schlüter et al., 2014a). Furthermore, 
the signals could be presented at different SNRs in the reference signal. It is hypothesized that 
participants would obtain a reliable subjective criterion for the evaluation of the time-com-
pressed reference and test signal. If they perceive an improvement of the subjective speech 
recognition in the reference signal, they probably will be able to adjust this in the test signal 
as well. Nevertheless, participants perform the comparison using their individual criteria to 
account for the perceived processing differences between the reference and the test signal. 

Besides the application with hearing aids and their algorithms, the test procedure offers more 
extensive analysis of speech recognition compared to the test procedure with original speech. 
Speech recognition is dependent on sensory and cognitive abilities of listeners (e.g., Uslar, 2014; 
Wingfield et al., 2006) and effects of both aspects appear markedly when processing gets dif-
ficult (Wingfield et al., 2006). Again, time-compressed speech can be applied to vary the diffi-
culty of a hearing situation and to reach listening situations in which both sensory and cogni-
tive abilities are necessary for performance. Since sensory and cognitive abilities vary with age, 
the presentation of time-compressed speech permits a more detailed study of differences be-
tween younger and older participants than tests with speech delivered at normal rates. Ac-
cording to Wingfield et al. (2006), it is not clear whether this observation is caused by sensory 
deficits (e.g., in temporal and in spectral resolution) or cognitive abilities (loss of processing 
time at the linguistic level, see also Chapter 4). For the analysis of these effects, the studies by 
Uslar (2014) and Wingfield et al. (2006) could serve as a model. In both studies, the cognitive 
load was varied using sentences of different linguistic complexity and the relation to age and 
hearing ability was analyzed. Wingfield et al. (2006) showed that comprehension accuracy of 
time-compressed complex sentences in a ‘who-did-it’ paradigm was affected by age and time-
compression factor (speech rate) and hearing ability. Uslar (2014) complemented this study 
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and presented sentences of different linguistic complexity in different listening conditions that 
were specified by different background noises to younger and to older, normal-hearing listeners, 
as well as to older hearing-impaired participants. In total, Uslar (2014) found that participants 
show fewer interactions between sentence complexity and background noise if they are older 
and have a declining hearing ability. This means that older participants use top-down and 
expectation-driven processing for speech recognition in difficult hearing situations (of particu-
larly ambiguous sentences) and therefore show less variation of recognition in dependence on 
the background noise as compared to young participants. The approach of Uslar (2014) could 
be repeated with time-compressed speech, to vary the difficulty of the hearing situation. It is 
expected that increasing difficulty of the sentences would result in a higher application of top-
down and experienced-driven processing, perhaps even for young normal-hearing participants. 
As a result, interactions between sentence complexity and hearing situations should not occur. 
Furthermore, it would be interesting to investigate whether older normal-hearing and older 
hearing-impaired participants apply cognitive abilities to the same extent for the compensation 
of their sensory deficits in recognition of time-compressed speech, as they did for measurements 
with background noise (Uslar, 2014).  

All these future perspectives show that presentation of time-compressed speech and back-
ground noise can support the study and analysis of speech recognition and hearing aid devel-
opment. At present, the main application of the procedure is probably in scientific studies. 
When sufficient experience with the procedures described in the current thesis has been gained, 
they will possibly also be applied in clinical studies, e.g., evaluating the rehabilitative success 
of hearing aids, hearing aid algorithms or adjustments at ecologically relevant SNRs. Further-
more, the test could perhaps even be applied to the detailed diagnostics of speech recognition 
problems in complex hearing situations caused by certain combinations of sensory and cogni-
tive deficits. 
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A  Evaluation of an adjustment method 

Appendix A 
Evaluation eines Einregelungsverfahrens zur 
Bestimmung des Nutzens einkanaliger 
Algorithmen zur Störgeräuschreduktion 

Evaluation of an adjustment method to determine 
the benefit of single-microphone noise reduction 
algorithms 

Zusammenfassung: Algorithmen zur Störgeräuschreduktion in Hörgerä-
ten führen theoretisch vor allem bei positiven Signal-Rausch-Verhältnissen 
(SNR) zu einer Reduktion des Störgeräuschs. Diese Reduktion ist schwierig 
mit Satztestverfahren nachzuweisen, da diese Tests vor allem bei negativen 
SNR sensitiv sind. Deshalb wurde die Anwendbarkeit eines anderen subjek-
tiven Testverfahrens zu Evaluation der Wirkung von Störgeräuschredukti-
onsalgorithmen untersucht. Bei dem von Wittkop et al. (1997) vorgeschla-
genen Verfahren wird der SNR eines Testsignals, bestehend aus Sprache und 
Hintergrundgeräusch, so eingeregelt, dass die Sprachverständlichkeit derje-
nigen eines Referenzsignals entspricht. Das Referenzsignal wird dabei mit 
einem Störgeräuschreduktionsalgorithmus verarbeitet, so dass die Verbesse-
rung des SNR durch den Algorithmus ermittelt werden kann. Das Einrege-
lungsverfahren wurde für drei verschiedene SNRs durchgeführt - bei der in-
dividuellen Sprachverständlichkeitsschwelle (SRT), bei positivem SNR von 
5 dB und beim Mittelwert aus diesen beiden Werten. Als Spezialfall wurde 
in dieser Studie außerdem das Shadow-Filtering-Verfahren (Kallinger et al., 
2009) genutzt. Dafür arbeiten die Algorithmen bei einem SNR mit maxima-
ler Störgeräuschreduktion und die dabei berechneten Koeffizienten werden 
auf die separat vorliegenden Signale (Sprache und Rauschen) angewendet. 
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Dadurch ist es möglich, eine Einregelung bei einem negativen SNR durch-
zuführen, obwohl die Störgeräuschreduktion bei einem positiven SNR ange-
wandt wurde. Die Ergebnisse von zwölf normalhörenden und zwölf schwer-
hörigen Probanden (nach Ausschluss von vier Probanden mit Problemen bei 
der Testdurchführung) zeigen, dass die Einregelung beim SRT besser gelingt 
als bei einem positiven SNR von 5 dB. Signifikante Verbesserungen des 
SNR durch die Störgeräuschreduktion konnten nur mit dem Shadow-Fil-
tering-Verfahren nachgewiesen werden, das jedoch aufgrund des notwendi-
gen a-priori-Wissens über die Signalanteile bei realen Hörgeräten nicht an-
gewendet werden kann. 

Abstract: Noise reduction algorithms theoretically reduce noise mainly at 
positive signal-to-noise ratios (SNR). This improvement is difficult to verify 
with sentence-in-noise tests because these are most sensitive at negative 
SNRs. Therefore, the applicability of another subjective adjustment method 
for the evaluation of noise reduction algorithms was examined. This adjust-
ment method was proposed by Wittkop et al. (1997). For this method, the 
SNR of a test signal, mixed speech and noise, is adjusted to the same speech 
intelligibility as those of a reference signal. The reference signal is processed 
with a noise reduction algorithm. Therefore, the improvement of the SNR 
by the algorithm can be determined. The adjustment method was applied 
at three different SNRs - at the individual speech reception threshold (SRT), 
at a positive SNR of 5 dB and at the mean of both values. Additionally, the 
shadow-filtering method proposed by Kallinger et al. (2009) was used for 
comparison. For this method, the algorithms are applied at a SNR with 
maximum noise reduction and the speech and noise signals are filtered sep-
arately with the respective coefficients. This procedure allows for an adjust-
ment at negative SNRs even if the noise reduction is applied at positive 
SNRs. Results for twelve normal hearing and twelve hearing impaired lis-
teners (after exclusion of four listeners with problems during test execution) 
showed that the adjustment is easier to perform at SRT compared to a 
positive SNR of 5 dB. Significant improvements of the SNR due to the noise 
reduction algorithm were only observed for the shadow-filtering method. 
Unfortunately, this method requires a priori knowledge about the parts of 
the signal and can therefore not be applied to real world hearing instru-
ments.  

 

 

Adapted from: 
Schlüter, A., Aderhold, J., Koifman, S., Krüger, M., Nüsse, T., Lemke, U., and Holube, I. (2014) “Eva-
luation eines Einregelungsverfahrens zur Bestimmung des Nutzens einkanaliger Algorithmen zur Stör-
geräuschreduktion - Evaluation of an adjustment method to determine the benefit of single-microphone 
noise reduction algorithms”, Zeitschrift für Audiologie, 53(2), 50-58.   
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A.1 Einleitung 

Schwierigkeiten bei der Kommunikation in Anwesenheit von Hintergrundgeräuschen sind all-
gemein bekannt und eines der häufigsten Probleme, von denen Hörgeräte-Träger berichten. 
Ansätze zur Kompensation dieses Problems in Hörgeräten sind Richtmikrofonsysteme und 
Algorithmen zur Störgeräuschreduktion. In der vorliegenden Untersuchung wird die Wirkung 
des zweiten Ansatzes, sogenannter einkanaliger Störgeräuschreduktionen2 analysiert. Die Auf-
gabe der Störgeräuschreduktionsalgorithmen besteht darin, den Signal-Rausch-Abstand (engl. 
Signal-to-Noise Ratio, SNR) durch die Unterdrückung des Hintergrundgeräusches anzuheben 
und damit das Sprachverstehen zu verbessern. Dieses wird je nach eingesetzter Störgeräuschre-
duktion unterschiedlich realisiert. Einkanalige Störgeräuschreduktionen müssen in der Lage 
sein, aus dem gemischten Eingangssignal (bestehend aus Sprache und Hintergrundgeräusch) 
das Rauschen zu schätzen und herauszufiltern. Die Filterung kann anschließend z. B. über das 
spektrale Subtraktionsverfahren (Vary et al., 1998) realisiert werden und hat die größte Wir-
kung, wenn das Eingangssignal einen positiven SNR besitzt (d.h. die Sprache lauter ist als das 
Hintergrundgeräusch). Bei negativen SNR-Werten am Eingang zeigt sich nur eine geringe oder 
gar keine Verbesserung des SNR, da die Algorithmen in diesem Bereich Schwierigkeiten haben, 
Sprache und Rauschen voneinander zu trennen (Fredelake et al., 2012). 

Zur Hörgeräteevaluation werden häufig Sprachverständlichkeitstests im Störgeräusch wie der 
Oldenburger Satztest (OLSA, Wagener et al., 1999c) eingesetzt. Dabei wird die Sprachver-
ständlichkeitsschwelle (engl. Speech Reception Threshold, SRT) ermittelt, welche den SNR-
Wert angibt, bei dem 50% des Sprachmaterials verstanden wurde. Bei Normalhörenden ist den 
Referenzwerten des OLSAs zufolge ein Ergebnis von -7,1 dB SNR mit einer Standardabwei-
chung von 1,1 dB SNR zu erwarten (Wagener et al., 1999a). Erfahrungen zeigen, dass auch 
schwerhörige Probanden sehr häufig negative SNR-Werte erreichen (z. B. Wagener and Brand, 
2005). Dies führt dazu, dass bei der Evaluation von Störgeräuschreduktionsalgorithmen ein 
Signal mit negativem SNR präsentiert wird, bei dem, wie zuvor beschrieben, die Störge-
räuschreduktion nur einen geringen bzw. gar keinen Nutzen zeigt (Marzinzik and Kollmeier, 
2002). 

Für die Evaluation einer einkanaligen Störgeräuschreduktion muss nicht nur der Eingangs-SNR 
dem Algorithmus entsprechend gewählt werden. Als weitere Anforderung muss auch die Auf-
gabenstellung für die Probanden einfach genug sein, um zuverlässige und aussagekräftige Er-
gebnisse zu erhalten. Ein dafür in Frage kommendes Testverfahren ist der SNR-Vergleich nach 
Wittkop et al. (1997). Dabei werden ein Referenz- und Testsignal jeweils bestehend aus Sprache 
und Rauschen dargeboten. Das Referenzsignal wird mit einem Störgeräuschreduktionsalgorith-
mus verarbeitet und bei einem festen SNR präsentiert. Die Probanden haben die Aufgabe, den 

                                         
2 Störgeräuschreduktionen werden unterschieden nach der Anzahl der verwendeten Mikrofone in Ein-, 
Zwei- oder Mehrkanal-Ansätze. Das bedeutet, dass den Signalverarbeitungsalgorithmen zur Nutzsignal-
verbesserung bei einem einkanaligen Ansatz das vermischte Signal von Sprache und Rauschen zur Ver-
fügung steht, während beim zweikanaligen Ansatz als Eingangssignale zwei vermischte Signale und bei 
einem mehrkanaligen Ansatz mit n Kanälen n Signale anliegen. Die Anzahl der Kanäle ist nicht zu 
verwechseln mit der Anzahl der Frequenzkanäle innerhalb der Signalverarbeitung des Hörgerätes. 
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Rauschpegel des unverarbeiteten Testsignals zu verändern und damit die Verständlichkeit von 
Referenz- und Testsignal anzugleichen. Wittkop et al. (1997) ermittelten mit diesem Verfahren 
eine SNR-Verbesserung zwischen 1 und 4 dB durch eine Störgeräuschreduktion. Dabei ent-
sprach der SNR des Referenzsignals dem individuellen SRT-Wert der Probanden. 

Schlüter et al. (2010) verwendeten das von Wittkop et al. (1997) entwickelte Verfahren bei vier 
verschiedenen Referenz-SNR-Werten (-5, 0, 3, 5 dB SNR). Dabei konnte allerdings nur ein 
geringer Effekt der Störgeräuschreduktionsalgorithmen nachgewiesen werden. Im Median lag 
die maximale Verbesserung nach der Störgeräuschreduktion, d.h. die Differenz zwischen dem 
von den Probanden eingestellten Testsignal-SNR und dem Referenz-SNR (∆SNR), für nor-
malhörende Probanden bei 1 dB SNR (bei einem Referenz-SNR von 5 dB). Für schwerhörige 
Probanden zeigte sich eine maximale Verbesserung von 2 dB SNR (bei einem Referenz-SNR 
von 3 dB). Diese eher geringen Verbesserungen wurden auf die hohen Referenz-SNR-Werte, 
bei denen die individuellen Sprachverständlichkeitsschwellen der Probanden nicht berücksich-
tigt wurden, zurückgeführt. Außerdem führte die Einregelung zu einer großen Streuung bei 
positivem Referenz-SNR, die vermutlich auf die Unsicherheit der Probanden beim Vergleich 
der Verständlichkeit von zwei deutlichen Signalen hindeutete. 

Eine Möglichkeit, die im Vergleich zu positiven SNR bessere Differenzierbarkeit in der Sprach-
verständlichkeit nahe dem individuellen SRT und die bestmögliche Leistung der Algorithmen 
bei positivem SNR zu verbinden, zeigten Kallinger et al. (2009). Sie verarbeiteten das mit 
Rauschen unterlegte Sprachsignal mit Hilfe eines Störgeräuschreduktionsalgorithmus bei posi-
tivem und damit für den Algorithmus optimalem SNR und wendeten die dabei berechneten 
Koeffizienten auf die getrennt vorliegenden Signalanteile (Sprache und Rauschen) an. Danach 
wurden die getrennten verarbeiteten Signale bei einem neuen SNR kombiniert. Dieses Verfah-
ren, das als „Shadow-Filtering“ bezeichnet wird, bietet die Möglichkeit, den Probanden ein 
Referenz-Signal bei ihrem individuellen SRT anzubieten. Bei diesem sollte ihnen die Einrege-
lung gut gelingen, da auch kleine Veränderungen im SNR in schwierigen Hörsituationen gut 
wahrnehmbar sind. Gleichzeitig wird ein Signal dargeboten, das die Eigenschaften des jeweili-
gen Algorithmus adäquat abbildet, da dieser bei seinem optimalen Eingangs-SNR verwendet 
werden kann. Dabei ist allerdings zu beachten, dass sich diese Methode nur für Evaluations-
messungen eignet, die „offline“ (ohne Hörgerät) und mit Verarbeitung der Signale mittels PC-
Software durchgeführt werden, da a-priori-Wissen über das Sprach- und Störsignal genutzt 
wird, um die Signale separat zu verarbeiten. 

Das Ziel dieser Untersuchung war die Überprüfung der Eignung des Einregelungsverfahrens, 
um den Nutzen von Störgeräuschreduktionsalgorithmen subjektiv bestimmen zu können. Dazu 
wurden die Erfahrungen von Schlüter et al. (2010), Wittkop et al. (1997) und Kallinger et al. 
(2009) miteinander verknüpft. Im Folgenden wird zunächst das Konzept des Einregelungsver-
fahrens vorgestellt und dann dessen Eignung am Beispiel eines Algorithmus zur Störge-
räuschreduktion analysiert. Da die Wirkung des Algorithmus wie bei Fredelake et al. (2012) 
beschrieben vom SNR am Eingang abhängt, wurde einerseits ein SNR im Maximum der Wir-
kungsweise, d. h. 5 dB, gewählt. Bei diesem Eingangs-SNR wird eine Verbesserung des SNR 
um ca. 3 dB erwartet, jedoch ist die Einregelung durch die Probanden aufgrund der sehr hohen 
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Sprachverständlichkeit vermutlich unsicher. Deshalb wurde andererseits der SNR auf den in-
dividuellen SRT eingestellt, da an der Schwelle vermutlich eine höhere Messgenauigkeit erzielt 
werden kann. Beim SRT zeigt die Störgeräuschreduktion jedoch voraussichtlich keine oder nur 
eine geringe Wirkung. Ein weiterer Eingangs-SNR wurde in der Mitte zwischen SRT und 5 dB 
gewählt. Um die Vorteile der beiden Messbedingungen SRT (verlässliche Einregelung) und 
5 dB (maximale Wirkung der Störgeräuschreduktion) zu vereinen, wurde zusätzlich der An-
satz von Kallinger et al. (2009) mit Shadow-Filtering verfolgt. Bei diesem Verfahren wird so-
wohl eine Wirkung der Störgeräuschreduktion von ca. 3 dB als auch eine verlässliche Einrege-
lung erwartet. 

Die unterschiedlichen Testsituationen wurden sowohl von normalhörenden als auch von schwer-
hörigen Probanden durchlaufen. Im Vergleich der beiden Gruppen werden aufgrund der Hör-
schädigung und des höheren Alters der Schwerhörigen unterschiedliche Streubereiche bei den 
SNR-Verbesserungen durch den Störgeräuschreduktionsalgorithmus erwartet. Darüber hinaus 
wird vermutet, dass der gemessene Effekt in der Verbesserung der subjektiven Sprachverständ-
lichkeit für die schwerhörigen Probanden stärker ausgeprägt ist als für die normalhörenden 
Probanden, da bei den schwerhörigen Probanden vermutlich eine größere Toleranz gegenüber 
Artefakten durch die Signalverarbeitung besteht. Somit könnte für die schwerhörigen Proban-
den das verbesserte Sprachverstehen und nicht die möglicherweise veränderte Signalqualität 
im Vordergrund stehen, während diese die Bewertung durch die normalhörenden Probanden 
beeinflussen könnte.  

A.2 Methoden 

A.2.1 Stimuli 

Für alle Testverfahren wurde das Sprachmaterial des OLSA verwendet. Zusätzlich wurde das 
zugehörige stationäre Rauschen (OLnoise) verwendet, das das gleiche Langzeitspektrum wie 
die Sprache besitzt, da es aus mehrfachen Überlagerungen der OLSA-Sätze generiert wurde. 
Der verwendete Störgeräuschreduktionsalgorithmus nutzte zur Rauschschätzung das Verfahren 
des Minima Controlled Recursive Averaging (Cohen and Berdugo, 2002) und zur Filterung des 
Signals das Verfahren der Spektralen Subtraktion (Vary et al., 1998). Die maximale Reduktion 
des Hintergrundgeräusches wurde auf 8 dB beschränkt. 

A.2.2 Testverfahren 

A.2.2.1 Bestimmung des Most Comfortable Level  

Zunächst wurde der persönlich angenehmste empfundene Sprachpegel (engl. Most Comfortable 
Level, MCL) bestimmt. Als dargebotenes Sprachmaterial wurden dafür die Sätze des OLSA 
in einer kontinuierlichen Darbietung ohne Störgeräusch verwendet. Analog zum Verfahren des 
Acceptable Noise Level (ANL, Nabelek et al., 1991) stellten die Probanden zunächst einen zu 
lauten Pegel ein. Anschließend stellten die Probanden einen zu leisen Sprachpegel ein. Zum 
Abschluss wurde der Pegel angenehmer Sprachlautstärke eingestellt. Die Schrittweite betrug 
5 dB für die Einstellung „zu laut“ und „zu leise“. Für die Einstellung „angenehm“ betrug die 



A EVALUATION OF AN ADJUSTMENT METHOD 

98 

Schrittweite 2 dB. Der beschriebene Zyklus wurde drei Mal durchgeführt. Der MCL ergab sich 
als Median der drei eingestellten Messwerte jedes Zyklus. Die individuellen MCL-Werte wurden 
als Präsentationspegel für Sprache in den darauffolgenden Messungen verwendet. 

A.2.2.2 Oldenburger Satztest 

Der SRT wurde mit Listen von 30 Sätzen bestimmt. Im Unterschied zu dem üblichen Vorgehen 
beim OLSA wurde in dieser Untersuchung der Rauschpegel adaptiv gesteuert. Der Sprachpegel 
entsprach dem individuellen MCL. Das Rauschen wurde zwischen den einzelnen Satzdarbie-
tungen unterbrochen.  

A.2.2.3 Einregelungsverfahren 

Den Probanden wurden zwei Signale, das Referenz- und das Testsignal, aufeinander folgend 
präsentiert. Sowohl das Referenz- als auch das Testsignal bestanden jeweils aus Sätzen des 
OLSA und OLnoise. Für eine paarweise Darbietung von Referenz- und Testsignal wurde jeweils 
der gleiche Satz verwendet. Für die nächste Kombination wurde entsprechend ein anderer Satz 
zufällig ausgewählt. Jeweils zuerst dargeboten wurde das Referenzsignal, das während eines 
Messdurchlaufs konstant gehalten wurde. Das Referenzsignal wurde mit dem Störgeräuschre-
duktionsalgorithmus verarbeitet und bei einem festen SNR präsentiert. Zeitlich nach dem Re-
ferenzsignal wurde jeweils das unverarbeitete Testsignal angeboten. Die Aufgabe der Proban-
den bestand darin, den Rauschpegel des unverarbeiteten Testsignals zu verändern und damit 
die Verständlichkeit von Referenz- und Testsignal anzugleichen. Der SNR des Testsignals zu 
Beginn jeder Einregelung wurde randomisiert und lag immer 3-7 dB über oder unter dem SNR 
des Referenzsignals. Dadurch unterschied sich in jedem Fall der Höreindruck von Referenz- 
und Testsignal zu Beginn jeder Einregelung. Die Probanden konnten durch entsprechende Aus-
wahl auf einem Touchscreen den Rauschpegel um 1 oder um 3 dB erhöhen bzw. verringern. 
Nach jeder Pegelveränderung folgte automatisch eine Wiedergabe beider Signale mit der ver-
änderten Einstellung des Testsignals. Bei Wahl der Option „Wiederholen“ wurden beide Sig-
nale mit der letzten Pegeleinstellung wiederholt. Wenn der Proband den Eindruck hatte, dass 
er die Aufgabe erfüllt hatte, so konnte mit der „OK“-Taste die Einregelung beendet werden. 

Das Einregelungsverfahren wurde mit drei verschiedenen Verarbeitungsarten (NoAlgo, 
Real8dB, Shadow-Filtering) bei drei verschiedenen SNR-Bedingungen (SRT, mean, 5dB) 
durchgeführt (siehe Tabelle A.1). Die unterschiedlichen Testkonditionen werden im Folgenden 
erläutert. 

Tabelle A.1: Überblick über die verwendeten Testkonditionen 

Table A.1: Overview of the test conditions 

 SRT mean 5dB 
NoAlgo x x x 
Real8dB x x x 

Shadow-Filtering x   
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Die erste Kondition NoAlgo stellt die Kontrollsituation dar, in der sowohl das Testsignal als 
auch das Referenzsignal unverarbeitet, d.h. ohne Störgeräuschreduktion, dargeboten wurden. 
Die Aufgabe der Probanden bestand also in dieser Kondition darin, den vorgegebenen SNR im 
Referenzsignal mit dem Testsignal nachzubilden. Der vorgegebene SNR im Referenzsignal 
konnte dabei den mit dem OLSA bestimmten SRT (SRT), einen SNR von 5 dB (5dB) bzw. 
einen SNR, der dem Mittelwert aus beiden Werten entspricht (mean), betragen (siehe Abbil-
dung A.1). 

 

Abbildung A.1: Kondition NoAlgo. Kontrollsituation in der das Referenzsignal ohne Verarbeitung durch 
die Störgeräuschreduktion dargeboten wird. Der Rauschpegel des Testsignals wird verändert und damit 
die Verständlichkeit von Referenz- und Testsignal angeglichen. 

Figure A.1: Condition NoAlgo. Control situation without noise reduction applied to the reference signal. 
The noise of the test signal was adjusted for similar speech intelligibility of reference signal and test 
signal. 

 

Bei der zweiten Testkondition Real8dB wurde das von Wittkop et al. (1997) vorgeschlagene 
Verfahren verwendet (siehe Abbildung A.2). Dabei wurden Sprache und Störgeräusch im ge-
wünschten SNR, d.h. wiederum bei SRT, mean bzw. 5dB gemischt und der Störgeräuschre-
duktionsalgorithmus auf das resultierende Signal angewandt.  

In der dritten Kondition Shadow-Filtering wurde das von Kallinger et al. (2009) vorgeschlagene 
Verfahren genutzt (siehe Abbildung A.3). Dabei wurden Sprache und Störgeräusch zunächst 
bei einem SNR von 5 dB gemischt und dem Störgeräuschreduktionsalgorithmus zugeleitet. Die 
Koeffizienten des Algorithmus wurden gespeichert und auf Sprache und Störgeräusch getrennt 
angewandt. Beide verarbeiteten Signale wurden dann bei dem SNR, der dem individuellen 
SRT entspricht, gemischt und als Referenzsignal dargeboten. 

A.2.3 Messablauf 

Die Messungen fanden jeweils an einem ca. zweistündigen Termin statt. Zunächst wurden ein 
kurzes Anamnesegespräch und eine Otoskopie durchgeführt, um sicherzustellen, dass die  
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Abbildung A.2: Kondition Real8dB. Das Referenzsignal wird durch den Störgeräuschreduktionsalgorith-
mus verarbeitet. Der Rauschpegel des Testsignals wird verändert und damit die Verständlichkeit von 
Referenz- und Testsignal angeglichen. 

Figure A.2: Condition Real8dB. The noise reduction algorithm was applied to the reference signal. The 
noise of the test signal was adjusted for similar speech intelligibility of reference signal and test signal. 

 

 

Abbildung A.3: Kondition Shadow-Filtering. Die Koeffizienten des Störgeräuschreduktionsalgorithmus 
werden für das gestörte Sprachsignal bei 5 dB SNR berechnet und anschließend auf das Sprach- und 
Rauschsignal getrennt angewendet. Als Referenzsignal werden beide verarbeiteten Signale dargeboten, 
die beim SNR, der dem individuellen SRT entspricht, gemischt wurden. 

Figure A.3: Condition Shadow-Filtering. The coefficients of the noise reduction algorithm were calcu-
lated for a SNR of 5 dB and applied separately to speech and noise. The reference signal is derived by 
mixing of speech and noise with a SNR that corresponds to the individual SRT. 
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Probanden keine akuten Ohrerkrankungen hatten und der Gehörgang frei war. Nach dem 
Tonschwellen-Audiogramm wurde der MCL bestimmt, der als Grundlage für den Sprachpegel 
während der OLSA-Messung und dem Einregelungsverfahren verwendet wurde. Danach wur-
den zwei Trainingslisten und darauffolgend eine Testliste des OLSA durchgeführt.  

Der gemessene SRT wurde für die gleichnamige Testsituation im Einregelungsverfahren ver-
wendet. Im Anschluss wurde von jedem Probanden das Einregelungsverfahren durchlaufen. 
Dieses wurde zunächst dreimal geübt und dann mit je drei Messwiederholungen für die zuvor 
erläuterten Varianten durchgeführt. Die Abfolge der dargebotenen Referenz-SNR-Werte (SRT, 
mean oder 5dB) und der Konditionen (NoAlgo, Real8dB, Shadow-Filtering) war dabei rando-
misiert. Jedoch wurden zunächst alle Einregelungen (sechs bzw. neun) für einen SNR-Wert 
durchgeführt bevor der nächste SNR-Wert dargeboten wurde.  

A.2.4 Messaufbau 

Für die im Weiteren vorgestellten Messungen wurde ein PC mit den Software-Paketen „Olden-
burger Messprogramme“ (OMA, Hörtech gGmbH) und Matlab (Distribution R2010) verwen-
det. Die Darbietung der digital vorliegenden Sprach- und Rauschsignale erfolgte über eine 
externe Soundkarte mit zugehörigem Wandler (RME Fireface 400). Alle Signale wurden nach 
Verstärkung durch den externen Kopfhörerverstärker (Tucker Davis Technologies, TDT-HB7) 
diotisch über einen Kopfhörer des Typs HDA 200 (Sennheiser) dargeboten.  

A.2.5 Probanden 

An den Messungen nahmen insgesamt 28 Probanden teil, die in zwei Gruppen eingeteilt wur-
den. Die erste Gruppe bestand aus zwölf jungen Normalhörenden (7 weibl., 5 männl., Alter: 
23-28 Jahre, MW: 25 Jahre) mit einem maximalen Hörverlust von 20 dB HL im Bereich von 
125 Hz bis 8 kHz. Die zweite Gruppe bestand aus 16 älteren Probanden mit einem Hörverlust 
(11 weibl., 5 männl., Alter: 38-76 Jahre, MW: 66 Jahre), die aus der Datenbank des Hörzent-
rums Oldenburg rekrutiert wurden. Von dieser Gruppe wurden vier Probanden nachträglich 
aufgrund von Schwierigkeiten in der Umsetzung des Einregelungsverfahrens ausgeschlossen 
(vgl. Abschnitt A.3.2), so dass zwölf ältere Probanden mit einem Hörverlust (9 weibl., 3 
männl., Alter: 38-76 Jahre, MW: 64 Jahre) verblieben. In Abbildung A.4 ist die Verteilung der 
Tonaudiogramme der gesamten schwerhörigen Probandengruppe dargestellt. Der Aufwand der 
schwerhörigen Probanden wurde mit 12 Euro pro Stunde vergütet. 

A.3 Ergebnisse 

A.3.1 MCL und OLSA 

Abbildung A.5 zeigt die Ergebnisse der Bestimmung des MCL für die normalhörenden und die 
schwerhörigen Probanden. Im Median regelten die Normalhörenden den MCL für Sprache auf 
einen Pegel von 60 dB SPL (min: 43 dB SPL, max: 75 dB SPL) ein, während die schwerhö-
rigen Probanden einen MCL von 69 dB SPL (min: 57 dB SPL, max: 80 dB SPL) erreichten. 
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Abbildung A.4: Tonaudiogramme der schwerhörigen Probanden. Links sind die Ergebnisse der rechten 
Ohren und rechts die Ergebnisse der linken Ohren dargestellt. 

Figure A.4: Results of a pure tone audiometric testing. The left and right plots show results of the right 
and left ears, respectively. 

 

 

Abbildung A.5: MCL-Werte der normalhörenden (NH) und der schwerhörigen (SH) Probanden. 

Figure A.5: Most comfortable level (MCL) values of the normal-hearing (NH) and the hearing-impaired 
(SH) participants. 

 

Wie schon beschrieben (s. Abschnitt A.2.2), wurden die individuellen MCL-Werte als Präsen-
tationspegel für Sprache in den darauffolgenden Messungen verwendet.  

Der OLSA ergab für die Normalhörenden im Median einen SRT von -7,5 dB SNR 
(max: -5,7 dB SNR; min: -8,4 dB SNR) und für die Schwerhörigen von -4,8 dB SNR 
(max: -3,3 dB SNR; min: -6,1 dB SNR). Die Ergebnisse sind in Abbildung A.6 aufgetragen. 
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Abbildung A.6: SRT-Ergebnisse des OLSA für die normalhörenden (NH) und die schwerhörigen (SH) 
Probanden. 

Figure A.6: Speech Reception Threshold (SRT) values of the normal-hearing (NH) and the hearing-
impaired (SH) participants measured with OLSA. 

A.3.2 Einregelungsverfahren 

Zur Auswertung der Ergebnisse des Einregelungsverfahrens wurde der Median der eingeregel-
ten SNR-Werte aus den drei Messwiederholungen jeder Testsituationen berechnet. Anschlie-
ßend wurde die Differenz zwischen dem median eingestellten SNR des Testsignals und dem 
Eingangs-SNR des Referenzsignals ermittelt. Diese Größe wird im Folgenden als SNR-Verbes-
serung durch den Störgeräuschreduktionsalgorithmus bezeichnet (∆SNR = eingestellter SNR 
- Referenz-SNR). Da fast alle Daten Normalverteilung zeigen (geprüft mit dem Shapiro-Wilk-
Test), wurden die Ergebnisse mit parametrischen Tests und einem Signifikanzniveau von 5% 
statistisch geprüft. 

Abbildung A.7 zeigt die Ergebnisse für die Normalhörenden in den drei SNR-Bedingungen. 
Für alle drei SNR-Bedingungen wurde die Einregelung für die Kondition NoAlgo durchgeführt 
(jeweils linker Boxplot). Für diese Kondition weichen die Mediane nur wenig vom Soll-Wert 
von ∆SNR = 0 dB ab. Die statistische Überprüfung mit einem t-Test gegenüber Null ergibt 
für die SNR-Bedingungen 5dB und mean keinen signifikanten Unterschied (5dB: p = 0,339; 
mean: p = 1,0). Für den SRT findet sich zwar eine signifikante Abweichung von Null 
(p = 0,021), allerdings ist die Abweichung mit einem ∆SNR von im Median -1 dB (Mittel-
wert: -0,8 dB) gering. Die Probanden konnten also zum Großteil in der Kontrollsituation die 
Einstellung sicher durchführen. 

In der Kondition Real8dB (rechter bzw. mittlerer Boxplot in Abbildung A.7 steigt der ∆SNR 
wie erwartet mit Erhöhung des Eingangs-SNR an. Die größte Verbesserung mit einem Median 
von ∆SNR = 1,5 dB ergibt sich für einen Eingangs-SNR von 5 dB. Nur mit Shadow-Filtering 
(rechter Boxplot für die SNR-Bedingung SRT) kann diese Verbesserung mit einem Median von 
∆SNR = 2 dB noch übertroffen werden. Ein Vergleich zur Situation NoAlgo ergibt sogar im 
Median eine Verbesserung von ∆ SNR = 2,5 dB (5dB) bzw. ∆ SNR = 3 dB  
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Abbildung A.7: SNR-Verbesserung (∆SNR) der normalhörenden Probanden gemessen im Einregelungs-
verfahren. Der dargebotene SNR im Referenzsignal entsprach a) 5 dB, b) dem Mittelwert aus individu-
ellem SRT und 5 dB SNR oder c) dem individuellen SRT gemessen im OLSA. 

Figure A.7: SNR improvement (∆SNR) for the normal-hearing listeners in the adjustment method. The 
presented SNR in the reference signal was a) 5 dB, b) the mean of individual SRT and 5 dB SNR or 
c) the individual SRT measured with OLSA. As expected, condition NoAlgo did not differ from zero. 
For Condition Real8dB, the difference between reference signal and test signal (∆SNR) is increasing 
from SRT to 5dB. The largest ∆SNR is observed for Shadow-Filtering. 

(Shadow-Filtering). Die Unterschiede zwischen den Konditionen mit Störgeräuschreduktion 
und der Kondition NoAlgo wurden mit einem t-Test statistisch überprüft. Bei der SNR-Bedin-
gung SRT zeigt nur Shadow-Filtering (p < 0,001) einen signifikanten Unterschied zu NoAlgo. 
Bei allen anderen Paarvergleichen war keine signifikante Verbesserung durch die Störge-
räuschreduktion nachweisbar (5dB: p = 0,090; mean: p = 0,812; SRTReal8dB: p = 0,053). 

Neben den Unterschieden in den Verbesserungen durch die Störgeräuschreduktion sind zusätz-
lich noch Unterschiede in der Varianz der Messergebnisse beobachtbar. Diese können einen 
Hinweis auf die Schwierigkeit des Einregelungsverfahrens bei den verschiedenen SNR-Bedin-
gungen geben. In der Kondition Real8dB ist die Streubreite bei 5dB deutlich größer als beim 
SRT. Die Interquartilsspannweite für Real8dB liegt in der SRT-Kondition bei 1,0 dB, in der 
mean-Kondition bei 3,5 dB und in der 5dB-Kondition bei 6 dB. Um diese Beobachtungen 
statistisch zu überprüfen, wurden die absoluten Differenzen zwischen dem individuellen Me-
dian der ∆SNR-Werte der einzelnen Probanden und den Gruppen-Medianen berechnet sowie 
dann für die Testsituationen Real8dB die Ergebnisse verschiedener SNR-Präsentationen mit 
dem t-Test verglichen. Dabei zeigte sich eine signifikant abweichende Differenz, wenn Real8dB 
bei SRT mit den anderen SNR-Bedingungen verglichen wurde (5dB: p = 0,006; mean: 
p = 0,014). Dies bedeutet, dass sich die Streubreite der Ergebnisse gemessen in der Testsitu-
ation Real8dB signifikant unterscheidet und mit höherem SNR zunimmt. 
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Die Ergebnisse der schwerhörigen Probanden sind in Abbildung A.8 dargestellt. Für die Kon-
dition NoAlgo sind keine signifikanten Abweichungen des ∆SNR von Null nachweisbar (5dB: 
p = 0,741; mean: p = 0,059; SRT: p = 0,077). Die größte Verbesserung durch die Störge-
räuschreduktion ergibt mit ∆SNR = 4 dB die Kondition Shadow-Filtering. Die zweitgrößte 
Verbesserung mit ∆SNR = 2,5 dB wird für Real8dB in der 5dB-Situation erreicht. Der Ver-
gleich zur Situation NoAlgo ergibt im Median Verbesserungen von ∆SNR = 3,5 dB (Shadow-
Filtering) und ∆SNR = 3 dB (Real8dB, 5dB). Wird der t-Test auf die Fragestellung ange-
wendet, ob sich eine Veränderung der ∆SNR-Werte gegenüber der NoAlgo-Situation bei An-
wendung eines Algorithmus ergibt, so ist diese Veränderung für keine der getesteten SNR-
Situationen signifikant (5dB: p = 0,119; mean: p = 0,774; SRT: p = 0,252; Shadow-Filtering: 
p = 0,075). Die im Vergleich zu den Normalhörenden (Abbildung A.8) größere Varianz der 
Daten deutet allerdings auf vermehrte Schwierigkeiten bei der Einregelung hin. Deshalb wur-
den in einer weiterführenden Betrachtung nur die Ergebnisse derjenigen schwerhörigen Pro-
banden berücksichtigt, die in der Kondition NoAlgo bei SRT den ∆SNR relativ zuverlässig in 
einem Bereich zwischen -3 und 3 dB einregeln konnten. Diese Grenzen wurden aus pragmati-
schen Gründen so gewählt, dass einerseits Probanden mit extremen Unsicherheiten ausge-
schlossen wurden und andererseits die Anzahl der ausgewerteten Ergebnisse und damit die 
Probandengruppe nicht zu klein wurden. Dadurch reduzierte sich die Probandengruppe von 
16 auf zwölf Probanden. Die entsprechenden Ergebnisse sind in Abbildung A.9 dargestellt. 

 

Abbildung A.8: SNR-Verbesserung (∆SNR) der schwerhörigen Probanden gemessen im Einregelungs-
verfahren. Der dargebotene SNR im Referenzsignal entsprach a) 5 dB, b) dem Mittelwert aus individu-
ellem SRT und 5 dB SNR oder c) dem individuellen SRT gemessen im OLSA. 

Figure A.8: SNR improvement (∆SNR) for the hearing-impaired listeners in the adjustment method. 
The presented SNR in the reference signal was a) 5 dB, b) the mean of individual SRT and 5 dB SNR 
or c) the individual SRT measured with OLSA. As expected, condition NoAlgo did not differ from zero. 
Due to the large variances, no other condition is significantly different from NoAlgo. 
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Abbildung A.9: SNR-Verbesserung (∆SNR) der reduzierten Gruppe schwerhöriger Probanden gemessen 
im Einregelungsverfahren. Der dargebotene SNR im Referenzsignal entsprach a) 5 dB, b) dem Mittel-
wert aus individuellem SRT und 5 dB SNR oder c) dem individuellen SRT gemessen im OLSA. 

Figure A.9: SNR improvement (∆SNR) for the reduced hearing-impaired group in the adjustment 
method. The presented SNR in the reference signal was a) 5 dB, b) the mean of individual SRT and 
5 dB SNR or c) the individual SRT measured with OLSA. Only the condition Shadow-Filtering shows 
a significantly different ∆SNR from the condition NoAlgo. 

Die größte Verbesserung von ∆SNR = 3,5 dB ergab sich auch bei dieser reduzierten Proban-
dengruppe für die Kondition Shadow-Filtering. Die Verbesserung in der Kondition Real8dB 
beträgt im Median ∆SNR = 2,5 dB für 5dB und ∆SNR = 2 dB für mean. Der Vergleich zur 
Situation NoAlgo zeigt im Median Verbesserungen von ∆SNR = 3,5 dB (Shadow-Filtering), 
∆SNR = 3,5 dB (Real8dB, 5dB) und ∆SNR = 2 dB (Real8dB, mean). Auch für diese redu-
zierte Probandengruppe wurden die zuvor erläuterten statistischen Tests angewendet. Es zeigte 
sich, dass die Einregelung bei NoAlgo im Mittel gelang bzw. sich keine signifikante Abweichung 
der Ergebnisse von Null ergab (5dB: p = 0,692; mean: p = 0,351; SRT: p = 0,862). 

Bei der Überprüfung des Effektes der Störgeräuschreduktion konnte jedoch nur für die Kondi-
tion Shadow-Filtering ein signifikanter Unterschied im Vergleich zu NoAlgo nachgewiesen wer-
den (p = 0,012). Für Real8dB zeigte sich keine signifikante Verbesserung im Vergleich zu 
NoAlgo (5dB: p = 0,053; mean: p = 0,098; SRT: p = 0,526). Zusätzlich wurde auch für die 
reduzierte Probandengruppe auf Verteilungsunterschiede bei der Testsituation Real8dB mit 
einem t-Test geprüft, es wurde allerdings für keine der verglichenen Testkonfigurationen das 
Signifikanzniveau von 5% erreicht (5dB - mean: p = 0,199; 5dB - SRT: p = 0,074; mean - SRT: 
p = 0,484). 

Selbst bei der reduzierten Schwerhörigen-Probandengruppe sind die Streubreiten größer als bei 
der Normalhörenden-Probandengruppe (vgl. Abbildung A.9 und Abbildung A.7). Werden zum 
Beispiel die Interquartilsspannweiten für 5dB in der Kondition NoAlgo betrachtet, so liegt der 
Wert für die Normalhörenden bei 1,5 dB, für die Schwerhörigen hingegen bei 5,5 dB. Ein F-
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Test bestätigt die Beobachtungen der erhöhten Variabilität der Daten durch die Schwerhörig-
keit der Probanden und zeigt eine signifikant unterschiedliche Verteilung bei dem Vergleich der 
Normalhörenden mit den Schwerhörigen für NoAlgo bei 5dB (p = 0,025) sowie für Real8dB bei 
SRT (p = 0,002). Alle anderen Vergleiche zwischen den Probandengruppen waren nicht sig-
nifikant unterschiedlich (5dB, Real8dB: p = 0,866; mean, NoAlgo: p = 0,062; mean, Real8dB: 
p = 0,904; SRT, NoAlgo: p = 0,100; SRT, Shadow-Filtering: p = 0,464).  

Zuletzt wurde noch mittels t-Test berechnet, ob es einen signifikanten Unterschied zwischen 
den Probandengruppen in der Ausprägung des Effektes gab. Da sich nur für das Shadow-
Filtering ein messbarer Effekt bei beiden Probandengruppen herausgestellt hat, wurde dieser 
Test auch nur für das Shadow-Filtering durchgeführt. Dabei ergab sich kein signifikanter Un-
terschied zwischen den Probandengruppen (p = 0,237). 

A.4 Diskussion 

Die Ergebnisse des Einregelungsverfahrens zeigen sowohl durch ihre Werte als auch durch ihre 
Varianz, dass die normalhörenden Probanden in der Kondition NoAlgo zum Großteil in der 
Lage waren, das Testsignal dem Referenzsignal anzupassen und damit den ∆SNR reproduzier-
bar einzustellen. Lediglich beim SRT ergab sich eine statistisch signifikante Abweichung, die 
jedoch im Mittel kleiner als eine Schrittweite (1dB) ist und damit keine praktische Bedeutsam-
keit besitzt. Bei Verwendung eines Störgeräuschreduktionsalgorithmus ist nur in der Kondition 
Shadow-Filtering eine signifikante Verbesserung im Vergleich zur Kondition NoAlgo beobacht-
bar. Die Kondition Real8dB weist zwar den erwarteten Trend, d.h. eine Erhöhung des ∆SNR 
von SRT zu 5dB, auf, jedoch steigt ebenfalls die Streuung der Ergebnisse an. Damit verringert 
sich die statistische Aussagekraft. Die Vergrößerung der Streubreiten weist auf eine zuneh-
mende Unsicherheit der Probanden bei der Einregelung hin, da ein eindeutiges und reprodu-
zierbares Kriterium bei der Angleichung von zwei gut verständlichen Signalen bei einem SNR 
von 5dB zu fehlen scheint. Dieses Kriterium liegt beim SRT vor, bei dem jedoch die Wirkung 
der Störgeräuschreduktion minimal ist. 

Die sechzehn schwerhörigen Probanden weisen deutlich höhere Streubreiten auf als die Nor-
malhörenden. Selbst in der Kondition NoAlgo konnten nicht alle schwerhörigen Probanden das 
Testsignal dem Referenzsignal zuverlässig angleichen. Diese Schwierigkeiten sind vermutlich 
einerseits auf die Komplexität der Aufgabe als auch andererseits auf die ungewohnte Bedienung 
des Touchscreens zurück zu führen. Obwohl alle Probanden angaben, die Aufgabe verstanden 
zu haben, tendierten manche Probanden aufgrund ihrer Vorerfahrungen aus anderen Untersu-
chungen dazu, das Referenzsignal auf die Sprachverständlichkeitsschwelle oder eine gute 
Sprachverständlichkeit und nicht auf die dem Referenzsignal entsprechende Sprachverständ-
lichkeit einzuregeln. Deshalb wurden vier schwerhörige Probanden von der weiteren Analyse 
ausgeschlossen. 

Die verbleibenden zwölf Probanden in der Gruppe der Schwerhörigen zeigten immer noch eine 
größere Streubreite, jedoch im Trend die gleichen Ergebnisse wie die Gruppe der Normalhö-
renden: Die Störgeräuschreduktion führt in der Kondition Real8dB zu einer zunehmenden Ver-
besserung des ∆SNR von SRT zu 5dB. Jedoch konnte auch bei den schwerhörigen Probanden 
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nur ein signifikanter Unterschied zu NoAlgo in der Kondition Shadow-Filtering nachgewiesen 
werden. Der Effekt ist im Median größer als bei der Gruppe der Normalhörenden, jedoch nicht 
statistisch signifikant unterschiedlich. Dadurch lässt sich nur eine Tendenz erkennen, dass die 
schwerhörigen Probanden möglicherweise durch unerwünschte Effekte der Störgeräuschreduk-
tion (Artefakte, teilweise Unterdrückung des gewünschten Sprachsignals) weniger beeinträch-
tigt werden als die normalhörenden Probanden und mehr von der Störgeräuschreduktion pro-
fitieren. 

Mit diesen Ergebnissen wird die Untersuchung von Schlüter et al. (2010) bestätigt. Sie be-
schrieben bereits, dass nur eine geringe Verbesserung gemessen werden konnte und die Einre-
gelung zu einer großen Streuung bei positivem Referenz-SNR führte. Allerdings wurden die 
Messungen bei festen SNR-Werten durchgeführt, die in der vorgestellten Studie durch indivi-
duelle Sprachverständlichkeitsschwellen ersetzt wurden. Diese Erweiterung der Methode lässt 
deshalb gezieltere Rückschlüsse auf die Anwendung der Einregelung in Abhängigkeit von der 
dargebotenen Sprachverständlichkeit zu. Im Gegensatz zu den gezeigten Ergebnissen wiesen 
Wittkop et al. (1997) den Nutzen von Störgeräuschreduktionsalgorithmen auch ohne Shadow-
Filtering nach. Dies war ihnen möglich, da die untersuchten Algorithmen nicht einkanalig 
agierten und Modelle binauraler Interaktion nutzen. Diese Algorithmen erreichen im Gegensatz 
zu einkanaligen Störgeräuschreduktionen auch bei einem negativen SNR am Eingang eine Ver-
besserung. So war es auch möglich die Signale bei SNR-Werten anzubieten, die für die normal-
hörenden Probanden nahe ihrer Sprachverständlichkeitsschwelle lagen. Deshalb konnten die 
Probanden während der Einregelungen ein eindeutiges und reproduzierbares Kriterium ver-
wenden, um eine Verbesserung des SNR durch die Störgeräuschreduktion zu beurteilen.  

Insgesamt bleibt als Ergebnis der vorgestellten Studie festzuhalten, dass der Störgeräuschre-
duktionsalgorithmus zwar bei 5dB den größten Effekt zeigt, dass das Einregelungsverfahren 
jedoch bei guter Verständlichkeit der Sprachsignale eine zu große Varianz aufweist, um Effekte 
von wenigen dB mit einer Anzahl von zwölf Probanden auflösen zu können. Dies gelingt nur 
mit dem Verfahren des Shadow-Filtering, das jedoch bei realen Hörgeräten nicht angewendet 
werden kann, da Sprache und Störgeräusch nicht separat verarbeitet und bei beliebigem SNR 
gemischt werden können.  

A.5 Ausblick 

Die Evaluation des hier vorgestellten Testverfahrens zur Bewertung einkanaliger Störge-
räuschreduktion konnte in den Grundhypothesen für beide Probandengruppen bestätigt wer-
den. Die Kondition Shadow-Filtering scheint für die Laborsituation eine gute Möglichkeit zu 
bieten, mit einem Einregelungsverfahren die Verbesserung des SNR durch einen Algorithmus 
zur Störgeräuschreduktion nachzuweisen. Jedoch ist a-priori-Wissen über die einzelnen Sig-
nalanteile notwendig, so dass dieses Verfahren keine Lösung für die Bewertung von Störge-
räuschreduktionen in realen Hörgeräten darstellt. Deshalb besteht weiterhin die Notwendigkeit, 
ein adäquates Verfahren zur Evaluation einkanaliger Störgeräuschreduktionsalgorithmen realer 
Hörgeräte zu entwickeln, das kein a-priori-Wissen über die Signalanteile voraussetzt und bei 
positivem SNR mit hoher Validität und Reliabilität anwendbar ist. 
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B Comparison of accuracy  

 Appendix B 
Comparison of accuracy between the speech-in-
noise test using time-compressed speech and 
original speech material 

For normal-hearing participants, the original OLSA shows a mean SRT of -7.1 dB SNR and a 
corresponding slope of 17.1 %/dB (Wagener et al., 1999a). These results are based on recog-
nition scores measured with word scoring. Wagener et al. (1999a) state that the desired accu-
racy (standard deviation of the SRT) after training is about 0.5 dB SNR. This results in an 
8.6% variation of recognition scores at the threshold. 

The same model was applied to compare the accuracy of the speech-in-noise test with time-
compressed speech to a test using original speech. TCTN values obtained by young normal 
hearing participants measured at 1 dB SNR (see Chapter 4.3.2) were applied and the accuracy 
after training was estimated. Thereafter, the standard deviation of the TCTN of all results 
measured in lists 3 to 6 was calculated and yielded a value of 0.5. The mean standard deviation 
of the repeated measurements for each listener is 0.3. Then the slope was estimated. This 
estimate was based on the recognition scores of young normal-hearing participants determined 
for sentences presented at 1 dB SNR and compressed to 𝜌𝜌 = 25, 30 and 35% using Praat (see 
Chapter 2). The time compression presented was transformed using Equation 4.1. Then, a 
discrimination function was fitted, using a maximum likelihood method, to recognition scores 
and time-compression factors. This method was described in Chapter 4.2.2.2. The recognition 
scores, the fitted discrimination function and the estimated TCT and slope are shown in Figure 
B.1. The slope of the discrimination function was 15.9 %/N. Based on the standard deviation 
of all results, the test showed a variance in recognition scores of about 8% at the threshold. 
This variance is similar to that for original speech.  

Although the observed results for time-compressed speech were measured at 1 dB SNR with 
young normal-hearing participants and speech was processed with Praat, this analysis can only 
serve as an estimate. The calculated slope of time-compressed speech relies on data determined 
with word scoring, while the accuracy (standard deviation of the repeated measurements after 
training) was determined with sentence scoring. This resulted in differences of the estimated  
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Figure B.1: Boxplots of recognition scores of time-compressed speech processed with Praat as obtained 
with twelve young normal-hearing participants at 1 dB SNR (for more details see Chapter 2). In addi-
tion, the discrimination function estimated with a maximum likelihood fit is displayed together with the 
corresponding TCTN and slope. 

TCT. While in Chapter 4 the mean TCTN after training (i.e. using lists 3 to 6) was about 6.7, 
the TCTN for recognition scores determined with word scoring (see Chapter 2) was about 8.1. 
It was expected that sentence scoring results in thresholds that correspond to less time com-
pression (smaller speech rate) than word scoring (see Chapter 2). Furthermore, the application 
of sentence or word scoring in the different test procedures presenting time-compressed speech 
and original speech material makes the comparison difficult, since results are based on a dif-
ferent number of presented items (Brand and Wagener, 2005).  

In addition, it is possible that the slope of the discrimination function for older or hearing-
impaired participants is smaller as compared to young normal-hearing participants. This as-
sumption is based on the comparison of slopes measured with normal-hearing and hearing-
impaired participants using original speech. Wagener and Brand (2005) showed smaller slopes 
for hearing-impaired than for normal-hearing participants. The smaller slope could result in 
larger variations. 

For a more appropriate comparison between the accuracy of a speech-in-noise test using orig-
inal and time-compressed speech, it is necessary to measure discrimination functions described 
by threshold and slope using sentence scoring. Furthermore, normal-hearing as well as hearing-
impaired participants of different ages should be studied for these measurements. 
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