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Abstract

Due to the incomplete downside-risk protection possessed by portfolio insurance strate-
gies, we are particularly interested in one of the most classical ones: Constant Proportion
Portfolio Insurance (CPPI), and the consequential risk its issuers confront with based on
the unfulfilled guarantee.

In the thesis we propose a new model for the risky asset dynamic concerning the gap risk,
and further loosen the traditional restriction in the CPPI strategies with regard to the non-
risky asset, which is constantly assumed to evolve with riskfree rate. The cushion dynamic
is under the new framework driven by a bivariate Lévy process, the solution to the stochas-
tic differential equation is a generalized Ornstein-Uhlenbeck process. Hence we are able to
derive explicitly the risk measures through stochastic integration.

Empirical results are also provided in the end of the thesis. We compare the simulation
outcome from the new model with Kou and Merton models, along with their performances
inside the CPPI portfolio.
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Zusammenfassung

Verschiedene Portfolio Insurance Strategien weisen eine unvollständige Absicherung gegen-
über dem Downside-Risiko auf. Hier wird eine der klassischen Strategien untersucht, die
Constant Proportion Portfolio Insurance-(CPPI-)Strategie, vor allem im Hinblick auf das
resultierende Risiko für die Emittenten, das aus nicht erfüllten Garantien entsteht.

In dieser Dissertation stellen wir ein neues Modell für die riskante Dynamik von Assets
vor, welches auch Gap-Risiko berücksichtigt und außerdem lockern wir die klassische Ein-
schränkung der CPPI-Strategien für nicht-riskante Assets, grundsätzlich eine Asset-Entwick-
lung mit risikolosem Zinssatz anzunehmen. Nach diesem neuen Ansatz wird die Cushion-
Dynamik von einem bivariaten Lévy-Prozess gesteuert. Die Lösung der zugehörigen stochasti-
schen Differentialgleichung ist ein verallgemeinerter Ornstein-Uhlenbeck-Prozess. Daher
können wir die Risikomaße mit stochastischer Integration herleiten.

Am Ende dieser Dissertation werden empirische Ergebnisse dargestellt. In einer Simulation
vergleichen wir das neue Modell mit den Modellen von Kou und Merton und ihre Perfor-
mance im CPPI-Portfolio.
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1 | Introduction

European Central Bank reduced its benchmark interest rate on June 2014 to −0.1%, and
up to December 2015 the interest rate has been further cut to −0.3% ([ECB, 2015]). Partic-
ular interest is therefore drawn to investment strategies since the riskfree investments will
not contribute much to the capital for investors. For instance, capital protection strategies
provide the investors an occasion to participate in the long term return provided by risky
investments, and at the same time limit the risk of loss.

CPPI, as the most basic form of portfolio insurance strategy, is the approach on which we
lay our eyes in the thesis. The aim of the strategy is to protect the investors from market
risk through guaranteeing them a certain percentage of the initial capital investment. Port-
folio value is contributed from two sorts of investments, one in the risky asset equal to the
product of a constant multiplier and the cushion, which is the difference between the current
portfolio value and the guaranteed amount; the other in the non-risky asset. Leverage is
therefore created from this multiplier so as to increase the position in the risky asset (See
Chapter 3 for further detail). Thus, the setup results in a buy high sell low strategy. It can
be further customized to meet investors’ needs with respect to the individual risk preference,
e.g. the level of leverage and the guarantee level.

CPPI was introduced by [Black and Jones, 1987] as an alternative method to allocate in-
vestments dynamically between risky and non-risky assets over a time horizon. Since then,
several comparisons between CPPI and other portfolio insurance strategies have been inves-
tigated. For example, the comparison between CPPI and other dynamic strategies: Buy-
and-hold, constant mix and Option Based Portfolio Insurance (OBPI) was given in [Perold
and Sharpe, 1988] with respect to the payoff and exposure diagrams. Later, [Bertrand
and Prigent, 2005] analyzed OBPI and CPPI in accordance to their payoffs at maturity,
stochastic dominance of their returns. Dynamic hedging properties were also examined, in
particular classical delta hedging. [Lin and Shyu, 2008] and [Joossens and Schoutens, 2008]
provided overviews on the differences between time invariant portfolio protection, Constant
Proportion Debt Obligation (CPDO) and CPPI, respectively. More recently, the perfor-
mance of the CPPI and OBPI strategies was analyzed by [Bertrand and Prigent, 2011] using
Omega measure, which was first introduced by [Keating and Shadwick, 2002], under which
the CPPI method outperformed the OBPI.

The properties of continuous-time CPPI strategies have also been studied extensively in
the literature, cf. [Black and Perold, 1992] investigated the effect of transaction costs and
borrowing constraints on the strategy. An extension for CPPI was provided in [Prigent and
Tahar, 2005] with an additional insurance on the cushion. Furthermore, a discrete-time ver-
sion of the continuous-time CPPI strategy was proposed by [Balder et al., 2009], in which the
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trading was restricted to discrete time. The result was further extended by [Weng, 2014],
in which a double-sided Laplace inversion method was developed to compute the Omega
measure of a CPPI portfolio.

Despite its name, the insured portfolio in practice is not typically literally insured, which is
the reason encouraging us to assess the risk encountered. On one hand, risky asset in the
strategy has often been assumed under the scheme of [Black and Scholes, 1973], which had
been shown that CPPI strategies under such a model setup never result in violation of the
guarantee; on the other hand, heavy-tailed returns of the risky asset are widely recognized
and empirically observed in the financial market, e.g. [Borak et al., 2010]. These facts ren-
dered a spur to research on jump-diffusion models, which was firstly introduced by [Merton,
1976].

An amount of empirical and theoretical research proved the existence of jumps and their sub-
stantial impact on financial management. In the case of pricing and hedging, since [Merton,
1976] derived an option pricing formula when the underlying stock returns are generated by
a mixture of both continuous and jump processes, research on alternative models due to vari-
ous distributed jumps has boosted, cf. [Ramezani and Zeng, 1998] proposed the Pareto-Beta
jump-diffusion model, assuming that good and bad news are generated by two independent
Poisson processes and jump magnitudes are drawn from the Pareto and Beta distributions.
[Kou, 2002] proposed another model whose jump is characterized by an asymmetric double
exponential distribution, and later demonstrated the result of option pricing with regard to
American options in [Kou and Wang, 2004]. For European option pricing, see e.g. [Escobar
et al., 2011]. [Cai and Kou, 2011] extended the analytical tractability of the Black-Scholes
model to alternative models with arbitrary jump size distributions, such as Gamma, Pareto,
and Weibull.

In the case of portfolio and risk management, [Cont and Tankov, 2009] studied the behavior
of CPPI concerning the price jumps and derive various associated risk measures in the con-
text of a jump-diffusion price process, along with the problem of downside-risk hedging by
using options. Later for another structured credit derivative CPDO, [Cont and Jessen, 2012]
gave a thorough risk analysis of the strategy by using a top-down approach and obtained
the numerical results by Monte Carlo method. The capital requirement for a long-tern guar-
antee under the framework of Solvency II with respect to the different risk measurements
was discussed in [Devolder, 2011]. [Weng, 2013] investigated the CPPI portfolio under some
popular Lévy models from Merton, Kou, variance gamma and normal inverse Gaussian mod-
els. The OBPI strategy which minimizes the Value-at-Risk (VaR) of the hedged position in
a continuous time, regime-switching jump-diffusion market was investigated by [Ramponi,
2013]. [Pézier and Scheller, 2013] concluded CPPI strategies still outperformed OBPI ones
under the consideration of gap risk.

In order to implement the theoretical models into practice, parameter calibration for the
empirical data is the next aim. Maximum Likelihood Estimation method (MLE) is one of
the most widely implemented estimation methods, which produces the most efficient param-
eter estimates. This is, however, only possible when the likelihood function is in a tractable
form. Alternative techniques are proposed so as to cope with such difficulties arising from
the likelihood function.

Due to the one-to-one correspondence between the distribution functions and the characteris-
tic functions, Empirical Characteristic Function method (ECF) is one of the desirable meth-
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ods while estimating. The original idea of this estimation method was initialized by [Parzen,
1962], and later obtained major theoretical support in the works from [Feuerverger and
Mureika, 1977], [Feuerverger and McDunnough, 1981] and [Feuerverger, 1990] with asymp-
totic efficiency results and block approach for stationary time-series. The basic idea behind
the method is to minimize the weighted difference between the empirical and theoretical
characteristic functions. Various weighted functions have been investigated due to the re-
search from [Feuerverger and Mureika, 1977], cf. [Jiang and Knight, 2002], Chacko and
Viceira [2003].

Moreover, [Carrasco and Florens, 2000] concluded that continuous ECF estimator can be
seen as a special case of the generalized method of moments with a continuum of moment
conditions. An overview of the ECF method and its application on affine jump-diffusion
models was provided by [Yu, 2004]. More recently, [Levin and Khramtsov, 2015] considered
the method for estimating parameters of affine jump-diffusions with unobserved stochastic
volatility.

The aim of this thesis is to construct a stochastic model for the self-financing CPPI strategy
under the continuous-time framework. Furthermore, the gap risk and its resulting effect on
the strategy are taken into consideration. In the light of the above objectives, the thesis is
outlined as follows.

In Chapter 2 an overview on the prerequisite tools in the field of stochastic analysis which we
implement throughout the thesis is provided. Particularly in this chapter we refer to [Sato,
2005], [Protter, 2005], [Applebaum, 2009] and references therein for general theory on Lévy
processes and stochastic integration, and [Cont and Tankov, 2004] and [Pascucci, 2011] for
their applications in finance modeling.

The following chapter is dedicated to the CPPI strategy under the classical framework - the
Black-Scholes model. We first clarify the mechanism behind the strategy, in which the risky
asset is described as a geometric Brownian motion. From the closed-form expression of the
value process, it is foreseeable the model is not adequate for risk assessment.

In order to deal with the impractical problem we face in the former chapter, we include
the gap risk in the dynamic of the risky asset in Section 4.1. We start from reviewing the
features of well-known Merton and Kou models, respectively. According to the result of data
fitting we propose a new model with a different jump characteristic in order to capture more
accurately the sudden jumps of market prices and to get a better characterization under the
mathematical framework.

Apart from the modification of the price dynamic in risky asset, in Section 4.2 we further
relax the restriction of the CPPI strategy on the non-risky investment, which does not nec-
essarily evolve from the riskfree rate anymore, yet it can be chosen from a pool of financial
products with higher yields. Based on this new setup in the CPPI strategy, we derive a
closed-form solution to the cushion in the end of this chapter, as well as the solution to the
portfolio value.

Chapter 5 focuses on the effect of modified CPPI strategies on statistical evaluation and
various risk measures, which allows the portfolio insurance issuers to further assess the ex-
tent of risk they confront with. The results from Section 5.1 and 5.1 are derived based on
the the former chapter and the moments of Doléans-Dade exponential. In terms of VaR and
Conditional VaR (CVaR) we use the inverse Fourier transform to retrieve the distribution
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function.

Empirical data from various assets in major markets are implemented in Chapter 6. Sec-
tion 6.1 illustrates the estimation results from Chapter 4 with regard to the jump-diffusion
models. Parameters are estimated from daily log-returns with ECF and MLE methods,
which are reviewed in Section 6.1. Additionally, we combine the two estimation methods to
calibrate the parameter. Two sources of initial values are also provided. Overall, parameter
from each asset is estimated in 6 different ways for each model. With the help of Q-Q plots
and Akaike Information Criterion (AIC) we compare the performances among Kou, Merton
and our new models with respect to different estimation methods in Section 6.2.

After modifying the dynamic of the risky asset we are interested to see how it unfolds and
if it further possesses the forecasting ability. The analysis is done by out-of-sample testing
with respect to the performance of the CPPI strategy. The result and the comparison to
other models are demonstrated in Section 6.3.



2 | Preliminaries

In this chapter a few preliminaries in stochastic analysis will be introduced. A complete
probability space (Ω,F ,P) is assumed to be given throughout the thesis. Furthermore this
probability space will be provided with a filtration {Ft}t≥0, which is an increasing sequence
of σ-algebras with Ft ∈ F , ∀t ≥ 0, to obtain a filtered probability space (Ω,F , {Ft}t≥0,P).

In addition, the filtered probability space is said to fulfill the usual hypotheses if it is complete,
i.e. F0 contains all the P-null sets, and right continuous, i.e. Ft+ =

⋂
s>tFs is equal to Ft

for all t ≥ 0. Note that we assume the usual hypotheses are satisfied in this thesis.

Section 2.1 will give a brief overview to stochastic processes, and then the focus will be set
on a special class of stochastic processes called “semimartingales”, which is the key to the
topic stochastic integration in the next section. Attention will move on to Lévy processes
in Section 2.3. From Lévy-Itô decomposition we are able to see the relation between Lévy
processes and semimartingales.

2.1 Stochastic Processes and Semimartingales

A stochastic process X on (Ω,F ,P) is a collection of real-valued random variables {Xt}t≥0. X
is said to be an adapted process if Xt ∈ Ft, ∀t ≥ 0, which means {Xt}t≥0 is non-anticipating
with respect to the information structure {Ft}t≥0. The filtration which is generated by
the past values of the stochastic process X is called a natural filtration {F0

t }t≥0. That
is, {F0

t }t≥0 is the smallest filtration that makes X adapted. One can obtain the so-called
augmented natural filtration by extending the natural filtration such that it satisfies the usual
hypothesis.

Moreover, a stochastic process is said to be càdlàg if it almost surely (a.s.) has sample paths
which are right continuous (continue à droite), with left limits (limite à gauche). Similarly, a
stochastic process X is said to be càglàd if it a.s. has sample paths which are left continuous,
with right limits.

An adapted stochastic process {Mt}t≥0 is said to be a martingale with respect to the filtration
{Ft}t≥0, if E [|Xt|] <∞ for all t ≥ 0, and E [Xt|Fs] = Xs a.s. for 0 ≤ s ≤ t.

Next we introduce stopping time as a random variable τ : Ω → [0,∞) which fulfills the
following condition: Event {τ ≤ t} ∈ Ft, ∀t > 0, i.e., event {τ ≤ t} is Ft-measurable,
for each t. And then we define the “good integrators” on an appropriate class of adapted
process, that is, semimartingale, which later will be used in our model setup.
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Definition 2.1.1. (Local Martingale) An adapted stochastic process X is a local martin-
gale if there is a sequence of increasing stopping times {τn}n>0 with lim

n→∞
τn =∞ a.s. such

that {Xt∧τn}t≥0 is a martingale for each n.

Definition 2.1.2. (Semimartingale) An adapted stochastic process X is called a semi-
martingale, if it can be written as the following form

Xt = X0 +Mt +At,

where M is a local martingale and A is a process that has finite-variation.

2.2 Stochastic Integration

In the process of deriving the explicit solutions to risk measures in Chapter 5, some stochas-
tic integrals driven by semimartingales need to be overcome. Therefore we will give an
introduction regarding the stochastic integration, which was initially developed by Itô with
respect to the standard Brownian motion.

We introduced in the last section the “good integrators”, now we wish to know the processes
we can consider as integrands.

Definition 2.2.1. (Simple predictable process) A stochastic process H is called a simple
predictable process if it can be represented as

Ht = H01{0}(t) +
n∑
i=1

Hi1(τi,τi+1](t),

where τ0 = 0 < τ1 < τ2 < ... < τn < τn+1 < ∞ is a finite sequence of stopping times,
Hi ∈ Fτi with |Hi| <∞ a.s., 0 ≤ i ≤ n.

The stochastic integral of the simple predictable process H with respect to a stochastic
process X is defined as

IX(H) =

∫ t

0
HdX = H0X0 +

n∑
i=1

Hi(Xτi+1∧t −Xτi∧t),

where IX : S → L0 is a mapping. And S represents the space of simple predictable processes,
whereas the space of finite-valued random variables is denoted by L0 .

We should notice here the mapping IX has to hold for bounded convergence in probability.
That is, if {Hn}n≥0 is a sequence of predictable processes converging to a process H and
uniformly bounded, then the stochastic integral converges in probability.

sup
s≤t
|IXs (Hn)− IXs (H)| → 0

Otherwise, a very small difference in the integrand can cause a large change in the resulting
integral. It is therefore preferable to have this property, especially in the aspect of the imple-
mentation in finance. This class of stochastic process X is the mentioned “good integrators”
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- semimartingales. Moreover, we can analogously enlarge the space of possible integrands,
e.g. locally bounded predictable integrands (For details please refer to [Protter, 2005]). In
addition, the stochastic integral of an adapted process H with respect to a semimartingale
is, by Definition 2.1.2, the sum of two integrals, one with respect to the local martingale and
the other with respect to the finite variation process, which can be calculated path by path
as the Stieltjes integral.

In the rest of this section we give some important extensions of stochastic integrals which
will be used frequently throughout this thesis.

Definition 2.2.2. (Quadratic covariation) Given two semimartingales Xt and Zt, the
quadratic covariation process {[X,Z]t}t≥0 is the semimartingale defined by

[X,Z]t = XtZt −X0Z0 −
∫ t

0
Xs−dZs −

∫ t

0
Zs−dXs

The quadratic covariation is alo called the bracket process. Its definition leads us to the
stochastic integration by parts formula. Next we present the Itô-Döblin theorem for a special
case: semimartingales. It explains the structure of a process f(X) given a “nice” function
f .

Theorem 2.2.1. (Itô-Döblin theorem for semimartingales) Given a semimartingale
X and f be a C2 function of X. Then f(X) is also a martingale and written in the following
form

f(Xt) =f(X0) +

∫ t

0
f ′ (Xs−) dXs +

1

2

∫ t

0
f ′′ (Xs−) d[X,X]cs

+
∑

0<s≤t

{
f (Xs)− f (Xs−)− f ′ (Xs−) ∆Xs

}
Proof See [Protter, 2005], Theorem II.32.

One of the applications from Itô-Döblin Theorem is the derivation of the solution to

dZ = Z−dX

If X is a deterministic process, e.g. Xt = t, the solution is given as a exponential function.
However, if X and Z are two semimartingales, the solution to it is given in the following
theorem.

Theorem 2.2.2. (Doléans-Dade exponential) Let X be a semimartingale. There exists
an unique semimartingale {Zt}t≥0 such that

dZt

Z−t
= dXt, Z0 = 1

which is called stochastic or Doléans-Dade exponential of X, denoted by E(X)t and written
explicitly as

Zt = E(X)t = eXt−X0− 1
2

[X,X]ct
∏

0<s≤t
(1 + ∆Xs) e

−∆Xs

Proof See [Cont and Tankov, 2004], Proposition 8.21.
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2.3 Lévy process

Another popular class of stochastic processes will be presented in this section, the Lévy pro-
cess. Again, a filtered probability space (Ω,F , {Ft}t≥0,P) is given and the usual hypothesis
is fulfilled.

Definition 2.3.1. (Lévy process) A càdlàg stochastic process {Xt}t≥0 with X0 = 0 a.s.
is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, t1, ..., tn, the ran-
dom variables Xt1 −Xt0, Xt2 −Xt1, ... , Xtn −Xtn−1 are independent

2. Stationary increments: ∀h > 0, the distribution of Xt+h −Xt does not depend on t

3. Continuity in probability: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| > ε) = 0

Further information can be found in [Protter, 2005] and [Cont and Tankov, 2004].

The most elementary and well-known jump process is the homogeneous Poisson process.
Before any further detail is given, we should first have some basic concept of the counting
process, denoted by {Nt}t≥0. The value of the process is given by

Nt =

∞∑
k=1

1[Tk,∞)(t), t ∈ R+

∆NTk = NTk −NTk
− = 1,

where {Tk}k∈N represents the time when jumps occur. If the random times {Tk}k∈N are
partial sums of i.i.d. exponential random variables, then {Nt}t≥0 is a homogenous Poisson
process if it satisfies the following properties:

1. Independent increments: for all 0 < t0 < t1 < ... < tn, n ∈ N, the random variables
Nt1 −Nt0 , Nt2 −Nt1 , ... , Ntn −Ntn−1 are independent

2. Stationary increments: for all h > 0, 0 ≤ u < t, Nt+h−Nu+h has the same distribution
as Nt −Nu

Proposition 2.3.1. The homogeneous Poisson process is a Lévy process

The homogeneous Poisson process defined above counts events that occur at a constant rate.
Moreover, Nt−Nu follows the Poisson distribution with parameter λ(t− u). Therefore, the
expected value of Nt is

E[Nt] = λt

Obviously the homogeneous Poisson process has its own restrictions to describe the behavior
of the asset price jumps. Thereby we introduce another more general process: compound
Poisson Process so as to mimic the asset price jumps better.

Define {Jk}k∈N as a sequence of i.i.d. random variables with probability distribution π
and independent of the Poisson process {Nt}t≥0 whose intensity rate is λ. The following
definition is obtained.
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Definition 2.3.2. The process {Yt}t≥0 which is given as

Yt =

Nt∑
k=1

Jk

is called a compound Poisson process

Proposition 2.3.2. The compound Poisson process is a Lévy process

By construction, {Yt}t≥0 has paths that are constant apart from a finite number of
jumps in any finite time interval. In comparison to the counting process {Nt}t≥0, the jumps
of {Yt}t≥0 occur at the same time as the jumps of {Nt}t≥0. The only difference is the jumps
of {Nt}t≥0 are always of size 1, whereas the jumps of {Yt}t≥0 are of random size.

Proposition 2.3.3. The characteristic function of a compound Poisson process {Yt}t≥0 with
intensity λ is

E
[
eiuYt

]
= eλt

∫∞
−∞(eiuy−1)π(dh)

The first and second moments are therefore derived as follows:

E [Yt] = λtE [J1] and Var [Yt] = λtE
[
J1

2
]

Proof The moments can be attained by Proposition 2.4.1. Or we can prove it either by using
the characteristic function or by the law of total expectation. The characteristic function
can also be derived easily

E
[
eiuYt

]
=

∞∑
n=0

E

(
e
iu

n∑
k=1

Jk

)
P (Nt = n)

=
∞∑
n=0

e−λt (λt)n

n!
E

(
e
iu

n∑
k=1

Jk

)

=

∞∑
n=0

e−λt (λt)n

n!

[
E
(
eiuJ1

)]n
= e−λt

∞∑
n=0

[
λtE

(
eiuJ1

)]n
n!

= eλt[E(eiuJ1)−1]

= eλt
∫∞
−∞(eiuy−1)π(dy)

For the expectation, we have

E [Yt] =
1

i

(
d

du
E
[
eiuYt

]
|u=0

)
= λt

∫ ∞
−∞

yπ(dy)

= λtE [J1]

The variance can hereby be derived.
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Definition 2.3.3. The process {Mt}t≥0 with Mt := Nt−λt is called a compensated Poisson
process, where {Nt}t≥0 is a counting process and λ is its intensity.

Now that we have reviewed the commonly used processes which describe pure jumps, we
would like to focus on the Lévy processes which possess jumps, and how it can be charac-
terized. To each càdlàg stochastic process {Xt}t≥0 on R, one can associate jump measure
J̄X with {Xt}t≥0 as follows:

J̄X(B) = #{(∆Xt, t) ∈ B},∀B ∈ B(R× [0,∞))

where ∆Xt = Xt −Xt− .

In a period of time, e.g. [t1, t2], the jump measure J̄X(A × [t1, t2]) counts the number of
jumps of X whose jump sizes are in A ∈ B(R) between the time t1 and t2. If Xt is a
compound Poisson process with intensity λ and jump size distribution π, then the jump
measure of which is a Poisson random measure with intensity measure λπ(dx)dt = ν(dx)dt,
where ν is the Lévy measure which will be shown in the next definition.

From the interpretation of the intensity measure of a compound Poisson process, it is clear
to see that its Lévy measure can be seen as the average number of jumps per unit of time.
And this holds for all Lévy processes.

Definition 2.3.4. Let {Xt}t≥0 be a Lévy process on R. The measure ν on R defined by

ν (A) = E [#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}] , A ∈ B (R)

is called the Lévy measure of X: ν (A) is the expected number, per unit time, of jumps where
sizes belong to A.

If a Lévy process has only a finite number of jumps in any bounded time interval (e.g.
compound Poisson process) we say that it is a finite activity Lévy process. Otherwise we say
that it has infinite activity, which means that singularities, i.e. infinitely many jumps, can
occur around the origin. Moreover, the jump mass away from the origin of a finite activity
Lévy process is bounded, i.e. only a finite number of big jumps can occur. One of most well
known models that deals with finite activity Lévy processes is the Merton jump-diffusion
model [Merton, 1976], which is the independent sum of a Brownian motion with drift and a
compound Poisson process.

In order to cope with the convergence problem when it comes to infinite activity, every Lévy
process can be represented in the following form.

Theorem 2.3.1. (Lévy-Itô decomposition) Let {Xt}t≥0 be a Lévy process on R with
jump measure J and Lévy measure ν fulfilling∫

|x|>1
ν (dx) <∞ and

∫
|x|≤1

x2ν (dx) <∞

For any R > 0 we can write Xt into the sum of independent Lévy process X
(1)
t , X

(2)
t and

X
(3)
t where

1. X
(1)
t = µRt + σWt, which is a Brownian motion with drift, where µS = µR −∫
S<|x|≤R xν (dx)
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2. X
(2)
t =

∫ t
0

∫
|x|≥R xJ(dx, ds) =

∑
0<s≤t

∆Xs1{|∆Xs|≥R}, which is a compound Poisson

process that is responsible for the large jumps

3. X
(3)
t =

∫ t
0

∫
ε≤|x|<R x{J̃(dx, ds)} =

∑
0<s≤t
ε≤|x|<R

∆Xs − tE[∆X11{ε≤|∆Xs|<R}], which is a

L2-martingale that deals with the small jumps and ε→ 0+

Definition 2.3.5. (µR, σ
2, ν) is called the Lévy R-triplet of a Lévy process X.

In most of the literature it can be found that the choice of R = 1 is common. And if
the process has finite activity, we no longer need to truncate the small jumps, the jump part
can actually separated from the continuous part of the process by setting R go to zero. The
Lévy triplet for finite activity Lévy process is (µ0, σ

2, ν), where

µ0 = µ1 −
∫

0<|x|≤1
xν (dx) ,

which has an intrinsic interpretation as the continuous part of the process, whereas µ1

depends on the truncation function.

In the next section we can observe that, according to the Lévy-Itô decomposition it follows
that all Lévy processes are semimartingales with respect to the augmented natural filtration.

Theorem 2.3.2. (Lévy-Khintchine representation) Let {Xt}t≥0 be a Lévy process on
R with Lévy triplet (µ1, σ

2, ν) Then

E
[
eiθXt

]
= etψ(θ), θ ∈ R

where the Lévy exponent

ψ (θ) = iµ1θ −
1

2
σ2θ2 +

∫
R

(
eiθx − 1− iθx1{0<|x|≤1}

)
ν(dx) (2.1)

Note that the conditions on the Lévy measure are sufficient to ensure that the integral
in (2.1) converges since the integrand is O(1) for |x| > 1 and O(x2) for |x| ≤ 1.

In the case of finite activity the equation (2.1) can be simplified as

ψ (θ) = iµ0θ −
1

2
σ2θ2 +

∫
R

(
eiθx − 1

)
ν (dx)

2.4 Cumulants

The Lévy-Khintchine formula allows us to compute easily the cumulants of a Lévy process.
In the thesis, cumulants are also used in deriving the closed-form solutions to risk measures.
Furthermore, we also use them to locate a set of reasonable initial values for parameters
estimation.
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Definition 2.4.1. The characteristic function of the random variables X, with values in R,
is the function φX : R→ C defined by

φX(u) = E[eiux], u ∈ R

=

∫
R
eiuxPX(dx), u ∈ R

φX is simply the Fourier transform of the distribution PX of X. In particular, if PX has
a density f , then we write φX = F (f). In addition, if X ∈ Lp, then

m
′
p = E[Xp] =

1

ip
dp

dup
φX(u)|u=0

is called the p-th moment of X, whereas

mp = E[(X − E[X])p]

is called the p-th central moment of X.

Since φX(0) = 1 and φX is a continuous function, it can be proved in Lemma 7.6 in [Sato,

2005] that there exists a unique continuous function ψ̃X such that φX(u) = eψ̃X(u) and
ψ̃X(0) = 0. The function ψ̃X is called the cumulant generating function of X, and along
with it is the cumulants of X defined as follows:

cn(X) =
1

in
dn

dun
ψ̃X(u)|u=0

Differentiating the cumulant generating function, for instance, results in

c1(X) = E[X]

c2(X) = Var(X)

The relation between cumulants and central moments is the key to the Cumulant Matching
Method (CMM), which will be further discussed in Section 6.1.3.

Proposition 2.4.1. Let X be a Lévy process on R generated by Lévy triplet (µ1, σ
2, ν). The

n-absolute moment E[|Xt|n] is finite if and only if∫
|x|≥1

|x|nν(dx) <∞

In particular, we have

cn(Xt) = tcn(X1), n ≥ 1

Proof See [Pascucci, 2011], Proposition 13.45

Proposition 2.4.2. Let X be a Lévy process on R. If E[|X1|] <∞, then

Xt − E [Xt]

is a martingale.
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Proof Since E[Xt] = tE[X1] from Proposition 2.4.1, and if E[|X1|] <∞, then Xt −E[Xt] is
integrable. Moreover, by the independence of increments we have

E[(Xt − E[Xt])− (Xs − E[Xs]) | Fs] = E[Xt −Xs | Fs]− E[X1](t− s)
= E[Xt−s]− E[X1](t− s)
= 0

and therefore Xt − E[Xt] is a martingale.

Corollary 2.4.1. The compensated Poisson process followed by Definition 2.3.3 is a càdlàg
martingale with respect to the filtration {Ft}t≥0.





3 | Stochastic Model without Gap Risk
Assumption

The theoretical background introduced in the preceding chapter enables us to describe the
dynamic of the CPPI portfolio by using continuous-time stochastic processes. In this chapter
we introduce the classical setup of the portfolio, in which the gap risk is omitted.

CPPI is a dynamic portfolio insurance strategy which provides downside protection for the
portfolio by setting up a threshold to the portfolio value. The protection is obtained by
reallocating the exposure to the risky asset based on the surplus to the discounted guarantee.
Throughout the thesis we assume a self-financing CPPI portfolio in a frictionless market.

The portfolio constructed under the CPPI framework consists of two parts of investments.
One part in non-risky asset, say B, which evolves with a riskfree rate r ; and the other in
risky asset, S, a geometric Brownian motion with µ and σ as the expected rate of return and
the volatility of S, respectively. µ, σ ∈ R.

The classical dynamics of B and S are given as follows

dBt = rBtdt

dSt = µStdt+ σStdWt

The Guarantee of the CPPI portfolio is assumed to be G. It is the least payment the investor
should receive at maturity T. Set Pt to be the present value of G, discounted by the riskfree
rate r, which forms the Floor.

In other words, once the Floor is violated, the Guarantee will be unfulfilled at maturity.
Consequently, the insurance issuer is obligated to cover the difference between the Guarantee
and the final portfolio value. Mathematically we describe the Floor in the following way.

Pt = Ge−r(T−t)

dPt = rPtdt

Consider a CPPI portfolio whose Value is written as V, which contains B and S, we write

dVt = αt
dSt
St

+ (Vt − αt)
dBt
Bt

, αt ∈ R (3.1)

The amount of money which is invested in the risky asset is denoted by αt = mCt, where
Ct = Vt−Pt is the Cushion, and m is the Multiplier, which is a finite positive number. One
can rewrite (3.1).

dVt = [rVt +m(Vt − Pt)(µ− r)] dt+m(Vt − Pt)σdWt (3.2)
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Rearrange (3.2), the equation becomes

dVt = rPtdt+ (Vt − Pt) {[m (µ− r) + r] dt+mσdWt}

It is clear to see that the cushion process {Ct}t∈[0,T ] is driven by the process {Dt}t∈[0,T ]

dDt = [m (µ− r) + r] dt+mσdWt

Hence we get {
dVt = CtdDt + rPtdt

V0 = v

or {
dCt = CtdDt

C0 = v − P0 = v −Ge−rT

Since the risk premium is bounded, the above differential equation has an unique solution.

Theorem 3.0.1. The value of the cushion follows the following process

Ct = C0 · E(D)t = C0e

[
m(µ−r)+r−m

2σ2

2

]
t+mσWt (3.3)

Proof A direct result from Theorem 2.2.2.



4 | Stochastic Model Concerned with
Gap Risk

From the formula (3.3), the value of the continuously traded portfolio apparently will not
drop under the floor, since Ct is always positive for every t ∈ [0, T ], see for instance Figure 4.1,
where the asset price is simulated from the Black-Scholes model.

Figure 4.1: CPPI on stock price simulated from Black-Scholes model

However in the real world, jumps of the asset prices would occur and are widely recog-
nized. In order to characterize the gap risk, jump process, is therefore added to our model
setup. The different asset price dynamics can be seen in Figure 4.2.

Firstly in Section 4.1 the attention is placed on the risky investment in the CPPI strategy,
the theoretical backgrounds of well-known models, e.g. Merton and Kou models are being
investigated, and a different setup of asset dynamic is proposed by using different way to
interpret the jump. In the next Section 4.2, focus is set on relaxing the traditional restriction
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Figure 4.2: The effect of jumps on asset price

on the non-risky investment in the CPPI strategy. Consequently our new model is born.

4.1 Model Setup for the Risky Asset

In this section we focus on a special case of Lévy process, which is also the assumption
of risky asset dynamic in the thesis - jump-diffusion process. It is a combination of Lévy
Processes, including a geometric Brownian motion and a jump described by a compound
Poisson process with random jump sizes.

Xt = µt+ σWt + Yt = Xc
t + Yt, (4.1)

where Xc
t is the continuous part of the process X, and Y is the compound Poisson process.

The differential of a function of the above process can be seen as a special case of Theo-
rem 2.2.1. Due to the finite activity Y has, Theorem 2.2.1 for the jump-diffusion process
(4.1) can then be simplified as

f(Xt) =f(X0) +

∫ t

0
f ′(Xs−)dXc

s +
σ2

2

∫ t

0
f ′′(Xs−)ds+∑

0<s≤t
(f(Xs− + ∆Xs)− f(Xs−)),

where dXc
s = dXs −∆Xs.

Similarly we can derive Theorem 2.2.2 for the case of Lévy process with finite activity as
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a special case. With all conditions the same, only an extra condition:
∫
|x|≤1 |x|ν(dx) < ∞

added, then we have,

E(X)t = eX
c
t−

σ2t
2

∏
0<s≤t

(1 + ∆Xs) (4.2)

In view of the above, we continue to introduce dynamics of assets with practical adjustments
and look at its effect on the whole CPPI strategy. The setup of the risky asset dynamic S is
described as Equation (4.3) with the participation of jumps which follow a compound Poisson

process Yt =
Nt∑
k=1

(Jk− 1), whereas J is a sequence of i.i.d. random variables with probability

distribution π and independent of the Brownian motion W and the Poisson process N whose
intensity rate is λ.

dSt

S−t
= µdt+ σdWt + dYt (4.3)

The difference between Merton and Kou models is how they describe the jumps using differ-
ent distribution π. Under this setup (4.3) Merton introduced his model in 1976 with jumps
following log-normal distribution [Merton, 1976]; Later in 2002, Kou proposed another model
by introducing double exponentially distributed jumps [Kou, 2002].

• Merton: X = log S
S−

= log J ∼ N (µj , σ
2
j )

• Kou: X = log S
S−

= log J has an asymmetric double exponential distribution, and
the density for X is

fX(x) = p
1

η−
e
− |x|
η− 1{x<0} + (1− p) 1

η+
e
− x
η+ 1{x>0}

with η−, η+ > 0, where p ≥ 0 represent the probability downward jumps occur.

In comparison with Merton model, in which only one random variable reflects downward and
upward jumps, Kou model has better economical interpretation with asymmetric double
exponential distributed jumps, which could capture better the leptokurtic feature of the
empirical log return distribution, but when it comes to parameter estimation, an extra
parameter can also bring inevitably computing burden.

Moreover, we modify the jumps to follow log-Gumbel distribution due to the fact that the
returns of our underlyings are mostly right-skewed, and a phenomenon we observe after
simulating from Merton and Kou models. The number of parameters in our new model
remains the same as in Merton.

• new: X = log S
S−

= log J ∼ G(α, β)

The characteristics that different types of jump possess are offered in Figure 4.3. The left side
figure presents different distributions with the same mean and variance. Either exponential
or Gumbel distributed jump has fatter right tail than the normal distributed one. If we only
focus on the 5-parameter models, i.e. Merton and new model, the difference between each
other is evident based on the right side figure.
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Figure 4.3: Comparison between different jumps in different distributions with same
mean and variance

Note that for the sake of convergence when the process has infinite activity, it is useful to
compensate the jump process when one is applied into the dynamic of the asset. But in this
special case (finite activity) of the Lévy-Itô decomposition, we do not need to compensate the
compound Poisson process. In other words, we separate the continuous part of the process
from the jump part. Assume the jumps occur in {Ti}i∈N, by the construction we have the
jump in S at Ti represented as:

STi − STi− = STi− (YTi − YTi− ) = STi− (Ji − 1)

Hence STi = STi−Ji. This reveals that the Ji are the ratios of the asset price after and before
a jump, which indicates the jumps are multiplicative. This also explains why Ji−1 is used in
this thesis rather than simply Ji. The solution to the stochastic differential equation (SDE)
(4.3) according to the special case (4.2) of Doléans-Dade exponential is then

St = S0e
(µ− 1

2
σ2)t+σWt

Nt∏
k=1

Jk,

or rewrite it in the form of log-return

log
St
S0

= (µ− 1

2
σ2)t+ σWt +

Nt∑
k=1

log Jk

In the meanwhile, the dynamic of the non-risky asset B remains unchanged. Therefore for
the cushion process, we have

dCt

C−t
= [r +m (µ− r)] dt+mσdWt +mdYt (4.4)

Analogously, the solution to the Equation (4.4) can be written as

Ct = C0e
[r+m(µ−r)− 1

2
m2σ2]t+mσWt

Nt∏
k=1

(1 +m(Jk − 1))
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4.2 Model Setup for the CPPI Strategy

In the previous section we focus on the cushion whose dynamic is driven by a Lévy process.
In order to move onto the main focus of this thesis, we will first introduce how the idea of this
topic was born in the beginning of this section. And then a new model is built by loosing the
setup of our current assumption, which will lead to a bivariate-Lévy-process-driven cushion.

4.2.1 When Yield Does Not Coincide with Money Market Return

Most of the former models concerned with CPPI strategy consider only the riskfree rate
when it comes to the investment in the non-risky asset. Nevertheless, according to Solvency
II framework, sovereign bonds are free of capital charges under the standard formula. In
other words, the sovereign bonds are still seen as riskfree asset, regardless the credit risk.
Therefore we discard the assumption of the non-risky asset being savings in a bank, which
is to follow the riskfree rate r.

Hence when the insurance company invests in the non-risky asset while applying the CPPI
strategy, there are actually plenty of products to select from in the financial market besides
those at the riskfree rate r. Which of the above will lead to a question: what if the yield,
y, from the non-risky asset does not coincide with the riskfree rate, r? The answer to this
question is what we are seeking for in this section, and then further we study the effect of
the CPPI strategy in such setup on risk measures.

The relation between y and r can be rationally assumed to be y > r, for the surplus can
be seen as a risk premium. Along with the assumption the setup of CPPI strategy is
consequently modified.

dBt = yBt−dt

dSt = µSt−dt+ σSt−dWt + St−dYt

dPt = rPt−dt

It is trivial to see the processes of the money market account and the non-risky asset are
actually both continuous from the setup, the dynamic of the portfolio and the cushion are
hereby described as

dVt = yPtdt+ (Vt− − Pt) {[m (µ− y) + y] dt+mσdWt +mdYt}
dCt = (y − r)Ptdt+ Ct− {[m (µ− y) + y] dt+mσdWt +mdYt}

And the differential equation of the cushion becomes{
dCt − Ct−dD̃t = (y − r)Ptdt = dP̃t

C0 = v − P0 = v −Ge−rT

where

dD̃t = [m (µ− y) + y] dt+mσdWt +mdYt

The strategy of the CPPI indicates, once the violation occurs, all the money should be
withdrawn from the risky asset and immediately invested in the non-risky asset, i.e. the
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cushion process stops at the time when the floor is broken through. A loss occurs, if for
some t ∈ R+, Vt < Pt, which is equivalent to the event Ct < 0. Set τ := inf{t > 0 : Ct < 0}.
In this case we can adjust the above equation according to the characteristics of CPPI
strategy as follows.

dCt − Ct−dD̃t = (y − r)Ptdt = dP̃t, if t < τ

Ct = Cτ , if t ≥ τ
C0 = v − P0 = v −Ge−rT

Or equivalently in terms of stochastic integrals,
Ct − C0 =

∫ t

0
dP̃s +

∫ t

0
Cs−dD̃s, if t < τ

Ct = Cτ , if t ≥ τ
C0 = v − P0 = v −Ge−rT (4.5)

We can see from SDE (4.5) that the cushion is driven by a bivariate Lévy Process
{D̃t, P̃t}t≥0. In order to solve the SDE (4.5), we will come across quadratic covariation be-
tween different processes. Therefore, preliminary knowledge before the proof is hereby given
as follows. The solution to the SDE is derived in Theorem 4.2.1.

The result of the quadratic covariation of each process can be heuristically derived and
is shown in the table below [Etheridge, 2002].

× dt dWt dNt

dt 0 0 0
dWt 0 dt 0
dNt 0 0 dNt

Table 4.1: Quadratic covariation for time, Brownian motion, and counting process

Next we provide the solution to our SDE (4.5) with the assistance of the above prelim-
inaries.

Theorem 4.2.1. D̃ and P̃ followed from Equation (4.5) are both Lévy processes. Define the
stopping time as

τ := inf{t > 0 : Ct ≤ 0}

and

τ∗ := min{τ, T}

then the unique solution to equation (4.5) is given by

Ct = Cat 1(0,τ∗](t) + Cbt1(τ∗,T ](t), t > 0, (4.6)
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where

Cat = E(D̃)t

(
C0 +

∫ t

0

[
E(D̃)s−

]−1
dP̃s

)
= E(D̃)t

(
C0 +G(y − r)e−rT

∫ t

0

[
E(D̃)s−

]−1
ersds

)
Cbt = E(D̃)τ

(
C0 +

∫ τ

0

[
E(D̃)s−

]−1
dP̃s

)
= E(D̃)τ

(
C0 +G(y − r)e−rT

∫ τ

0

[
E(D̃)s−

]−1
ersds

)

Proof Under the structure of CPPI, once the value of the portfolio at time t drops under
the floor, the investment in the risky asset is then terminated. In this case of t > τ , the
value of the cushion shall remain to be Ct = Cτ . Therefore in this manner we need to focus
on the case when t ≤ τ solely. It is hence to prove the following equation satisfying the SDE
(4.5).

Ct = E(D̃)t

(
C0 +

∫ t

0

[
E(D̃)s−

]−1
dP̃s

)
(4.7)

Hereby we write Ct = C1
t C

2
t , where C1

t and C2
t are both semimartingales w.r.t. the filtration

{Ft}t≥0

C1
t = E(D̃)t and C2

t = C0 +

∫ t

0

[
E(D̃)s−

]−1
dP̃s

Using the definition of stochastic integration by parts, and the fact that dE(D̃)s = E(D̃)s−dD̃s,
we have following equations

Ct − C0 =

∫ t

0
C1
s−dC

2
s +

∫ t

0
C2
s−dC

1
s +

[
C1, C2

]
t

=

∫ t

0
E(D̃)s−

[
E(D̃)s−

]−1
dP̃s

+

∫ t

0

(
C0 +

∫ s

0

[
E(D̃)h−

]−1
dP̃h

)
E(D̃)s−dD̃s

+

∫ t

0

[
E(D̃)s−

]−1
d
([
E(D̃), P̃

]
s

)
=

∫ t

0
dP̃s +

∫ t

0
C1
s−C

2
s−dD̃s

=

∫ t

0
dP̃s +

∫ t

0
Cs−dD̃s

This proves that (4.7) is a solution to (4.5). And the uniqueness can be proven by Theorem
V.7 in [Protter, 2005].
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We can also prove it by using the result as pointed out in [Maller et al., 2009], a SDE in
term of the following form

dVt = VtdUt + dLt, t ≥ 0, (4.8)

where {U,L} is a bivariate Lévy process which is constructed from another pair of Lévy
processes {ξ, η} by

(
Ut
Lt

)
=

−ξt +
∑

0<s≤t
(e−∆ξs − 1 + ∆ξs) + tσ2

ξ/2

ηt +
∑

0<s≤t
(e−∆ξs − 1)∆ηs − tσξ,η

 , t ≥ 0,

and {∆ξt,∆ηt} = {ξt − ξt−, ηt − ηt−} represents the jump processes of {ξ, η} at time t. In
addition, there exists an unique solution to the SDE (4.8) which is given as

Vt = e−ξt
(
V0 +

∫ t

0
eξs−dηs

)
, t ≥ 0. (4.9)

Equation (4.9) is also called as a generalized Ornstein-Uhlenbeck process {Vt}t≥0 driven by
the bivariate Lévy process {ξt, ηt}t≥0. If {ηt}t≥0 is a Brownian motion, then we obtain the
classical Ornstein-Uhlenbeck process.

By definition of Doléans-Dade exponential, we know it is equivalent to write E(U)t = e−ξt .
Hence Equation (4.9) can be written in terms of Doléans-Dade exponential.

Vt = E(U)t

(
V0 +

∫ t

0
[E(U)s]

−1 dηs

)
, t ≥ 0. (4.10)

Here we need to be careful with the modification in (4.10). Doléans-Dade exponential by
definition can take non-positive values, but on the contrary e−ξt can only take positive values.
Therefore the Lévy measure ν oof U should have no mass on (−∞,−1], i.e. νU ((−∞,−1]) =
0.

The above condition is exactly fulfilled by the setup of the CPPI strategy, since cushion
dynamics stops evolving once the cushion value becomes non-positive.

Corollary 4.2.1. Stopping time τ can also be written as

τ = inf{t > 0 : 1 + ∆D̃t ≤ 0}

Moreover, by assumption, Ct = Cτ when t > τ , i.e. the value of cushion stops varying
after time τ . In other words, the single jump at time τ that is less or equal to 1 − 1

m is
crucial to the whole risk assessment. The value of the portfolio is additionally presented in
the next corollary.

Corollary 4.2.2. The value of the portfolio is

Vt = V a
t 1(0,τ∗](t) + V b

t 1(τ∗,T ](t), t > 0,

where

V a
t = Pt + E(D̃)t

(
C0 +

∫ t

0

[
E(D̃)s−

]−1
dP̃s

)
V b
t = ey(t−τ)

[
Pτ + E(D̃)τ

(
C0 +

∫ τ

0

[
E(D̃)s−

]−1
dP̃s

)]
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It is clear to see from either Theorem 4.2.1 or Corollary 4.2.2, unlike the model con-
structed in the end of Chapter 3, the solution to the cushion process in the Section 4 is likely
to be negative, i.e. the floor could be violated in the new set up, which is more realistic than
the model proposed in the Chapter 3.
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Under the new framework of the model proposed in Section 4.2, CPPI strategy still maintains
its capital protection, but not anymore in an absolute sense due to the gap risk. According
to the violation of the floor we have the following two scenarios. See for instance: Figure 5.1
and 5.2.

The following risk measure will be discussed respectively: probability, expectation and the
variance of loss in the aspect of cushion in Section 5.1, 5.2 and 5.3. In Section 5.4, VaR and
CVaR will be investigated by using the inverse Fourier transform to acquire the probability
density function.

Figure 5.1: Floor not violated: Different stock dynamics (left: up; right: fluctuate)
and the performance of CPPI strategy

5.1 Probability of Loss

Corollary 4.2.1 implies that Ct ≤ 0 if and only if JNt ≤ 1− 1
m . The jumps of the Lévy process

D̃ follows a compound Poisson process with the intensity described by the Lévy measure in
time period (0, T ]. Hence, the probability of loss for the cushion can be interpreted in the
proposition below, where the jump size of 1− 1

m is excluded for general case.

However, the exclusion of 1− 1
m with respect to the models mentioned in Section 4.1 is not

necessary, since the jump size follows continuous probability distribution.
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Figure 5.2: Floor violated: Dynamics of portfolio value (left) and cushion value when
the floor is broken

Proposition 5.1.1. The cushion-driven-dynamic D̃ is a Lévy process with Lévy measure ν,
where the jump process is independent of the continuous one. The probability of loss for the
cushion is

P (Ct < 0, t ∈ (0, T ]) = 1− e−TλP(JNt<1− 1
m

)

Proof The following proof will be given based on the two equivalent events:

Ct < 0 if and only if ∆D̃t < −1

Let ω be the first hitting time of Ct < 0, t ∈ (0, T ], and the cumulative density function of ω
is FW (ω). Moreover, V is a counting process which counts the number of times of the event
{∆D̃t < −1} occurring in time period (0, T ], and V ∼ Poisson(Tν ((−∞,−1))).

FW (ω) = F (W < ω)

= 1− P (W ≥ ω)

= 1− P (V = 0)

= 1− e−Tν((−∞,−1))

= 1− e−TλP(JNt<1− 1
m

)

Note that the probability of loss of the portfolio is the same with the probability of loss of
cushion only when y = r. Since y is set to be greater than r, it is possible that the following
event occurs: the portfolio value falls under the floor, nevertheless the loss is so little that
at maturity the yield from the non-risky investment “saves” the portfolio, see for instance
Figure 5.3. In this case, the probability of loss of the portfolio should be considered by
using another floor which is discounted by y as a threshold (brown line in Figure 5.3), i.e.
P (Ct < Bt − Pt, t ∈ (0, T ]).
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Figure 5.3: Floor violated: Dynamics of portfolio value (left) and cushion value when
the floor is broken

However, under the framework of y 6= r, {Bt−Pt} is negative, ∀t, which indicates that every
jump size could be the cause for a negative cushion depending on the previous cushion value.
Nevertheless, the probability in Proposition 5.1.1 is still an upper bound for the probability
of loss of the portfolio.

5.2 Expectation of Loss

For the computation of the expectation of loss, we make use of the important fact that
D̃t − tE[D̃1] is a martingale by Proposition 2.4.2 and the preliminaries from Chapter 2.
Before the explicit solution is derived, we present two required lemmas.

Lemma 5.2.1. Let {Xs}s≥0 be a Lévy process and {Ys}s≥0 an adapted, càdlàg process. If

E[|X1|] <∞ and E

[
sup

0<s≤1
|Ys|
]
<∞, then for t > 0 we have

E

[∫ t

0
Ys−dXs

]
= E[X1]

∫ t

0
E[Ys− ]ds

Proof Proposition 2.4.2 shows that Xs − sE[X1] is a martingale. Let Z represents the
stochastic integral

Zt :=

∫ t

0
Ys−(dXs − sE[X1])

Since E

[
sup

0<s≤1
|Ys|
]
< ∞, Z is also a martingale by dominated convergence theorem. Ac-

cording to the definition of martingale we know E[|Zt|] < ∞, ∀t ≥ 0, which indicates that
{Zt}t≥0 is uniformly integrable. Thus we have,

E

[∫ t

0
Ys−dXs

]
= E[X1]E

[∫ t

0
Ys−ds

]
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By applying Fubini’s theorem we finish the proof.

In the following proposition we explore the relation between the stochastic integral and the
ordinary one.

Proposition 5.2.1. Let {Xt}t≥0 be a Lévy process with Lévy triplet
(
µ, σ2, ν

)
and Zt =

E(X)t. If Z > 0 a.s. then there exists a Lévy process {X̃t}t≥0 such that Zt = E(X)t = eX̃t

where

X̃t = Xt −
σ2t

2
+
∑

0≤s≤t
[ln |1 + ∆Xs|)−∆Xs]

Its Lévy triplet
(
µ, σ2, ν

)
is given by

σ̃2 = σ2

ν̃(A) = ν ({x : ln |1 + x| ∈ A}) =

∫
1A (ln |1 + x|) ν (dx)

µ̃ = µ− σ2

2
+

∫
{ln |1 + x|1[−1,1] (ln |1 + x|)− x1[−1,1] (x)}ν (dx)

Proof See [Cont and Tankov, 2004], Proposition 8.22.

Next proposition and remark we move forward with respect to the last lemma into the
characteristics of Doléans-Dade exponential, in which we discuss its first two moments.

Proposition 5.2.2. Let {Xt}t≥0 be a Lévy process generated by Lévy triplet (µ, σ2, ν) with
ν({∆X ≤ −1}) = 0 and γ ∈ N. Then E[E(X)γt ] <∞ if and only if E[|X1|γ ] <∞.

Proof Based on Proposition 5.2.1, there exists a Lévy process such that E(X)γt = eγX̃t ,
where

(
µ̃, σ̃2, ν̃

)
is the Lévy triplet for X̃. By Proposition 1 [Eberlein, 2009],

E[eγX̃t ] <∞ if and only if
∫
|x|>1 e

γxν̃(dx) <∞

Thus we need to prove
∫
|x|>1 e

γxν̃(dx) < ∞ is a necessary and sufficient condition of

E[|X1|γ ] < ∞. From Proposition 5.2.1, we know
∫
|x|>1 e

γxν̃(dx) is equivalent to
∫
A |1 +

x|γν (dx), where A = {x : | ln |1 + x|| > 1}. According to Example 25.12 [Sato, 2005], the
later integral is finite if and only if Xγ

t has finite mean, ∀t > 0. And by Proposition 2.4.2,
the proof is complete.

Remark 5.2.1. Let {Xt}t≥0 be a Lévy process generated by Lévy triplet (µ, σ2, ν) with
ν({∆X ≤ −1}) = 0. The first and second moments of its Doléans-Dade exponential are
written as follows.

E[E(X)t] = etE[X1] (5.1)

E[E(X)t)
2] = et(var(X1)+2E[X1]) (5.2)
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Proof Applying Lemma 5.2.1 on the definition of Doléans-Dade exponential implies

E[E(X)t] = 1 + E[X1]

∫ t

0
E[E(X)s]ds (5.3)

After differentiating both sides with respect to t, we have

dE[E(X)t]

dt
= E[X1]E[E(X)t]

Since by definition, E(X)0 = 1, a.s., The first moment (5.1) is proved.
The second moment will be proved by using stochastic integration by parts and the associa-
tivity between stochastic integrals.

E(X)2
t = 1 + 2

∫ t

0
E(X)s−dXs +

[∫ ·
0
E(X)s−dXs,

∫ ·
0
E(X)s−dXs

]
t

+ 2

∫ t

0

(∫ s

0
E(X)u−dXu

)
d

(∫ s

0
E(X)u−dXu

)
= 1 + 2

∫ t

0
E(X)s−dXs +

∫ t

0
(E(X)s−)2 d[X,X]s

+ 2

∫ t

0
(E(X)s− − 1) E(X)s−dXs

= 1 +

∫ t

0
(E(X)s−)2 d[X,X]s + 2

∫ t

0
(E(X)s−)2 dXs

Again by applying Lemma 5.2.1, we have,

E[(E(X)t)
2] = 1 + (E [X,X]1 + 2E[X1])

∫ t

0
E
[
(E(X)s−)2

]
ds

Thus by differentiation on the both side of the above equation implies

dE[(E(X)t)
2]

dt
= (E [X,X]1 + 2E[X1]) E[(E(X)t)

2]

Analogous to the first moment, the second moment is written as

E[(E(X)t)
2] = et(E[X,X]1+2E[X1])

Since by integration by parts E [X,X]1 = E[X2
1 ] − 2E

[∫ 1
0 Xs−dXs

]
. And by Proposition

2.4.1, E [X,X]1 = E[X2
1 ]−2E [X1]

∫ 1
0 sE [X1] ds = var(X1). Hence Equation (5.2) is obtained.

Continue with the notation in Theorem 4.2.1, the expectation of loss is derived as follows.

Proposition 5.2.3. The expectation of loss of the cushion is

E
[
CT1{τ≤T}

]
= λ∗

(
1 + E[∆D̃τ ]

)(
C0
e(E[D̃1]−λ∗)T − 1

E[D̃1]− λ∗
+G(y − r)×

(E[D̃1]− λ∗)e(r−λ∗)T − (r − λ∗)e(E[D̃1]−λ∗)T + (r − E[D̃1])

erT (r − E[D̃1])(r − λ∗)(E[D̃1]− λ∗)

)
,
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where λ∗ is the intensity of jump size below −1, i.e. λ∗ := ν ((−∞,−1)) = λ
∫ 1− 1

m−
−∞ π(dh).

And the expected jump of cushion-driven-dynamic given in crucial timing τ is denoted by

E[∆D̃τ ] =
∫ 1− 1

m−
−∞ m(h− 1)π(dh)

Proof Recall CT in Equation (4.6). It can be further formulated as

CT1{τ≤T} = E(D̃)τ

(
C0 +

∫ τ

0

[
E(D̃)s−

]−1
dP̃s

)
1{τ≤T}

= E(D̃)τ−

(
C0 +

∫ τ

0

[
E(D̃)s−

]−1
dP̃s

)
(1 + ∆D̃τ )1{τ≤T}

Notice that the event {τ ≤ T} is equivalent to the event {Ct < 0, t ∈ (0, T ]}, and according
to Proposition 5.2.2 the expectation of loss is

E[CT1{τ≤T}] =E

[
E(D̃)τ−

(
C0 +

∫ τ

0

[
E(D̃)s−

]−1
dP̃s

)
1{τ≤T}

]
×

E[1 + ∆D̃τ ]

=
(

1 + E[∆D̃τ ]
)(

C0E[E(D̃)τ−1{τ≤T}]+

G(y − r)e−rTE

[
E(D̃)τ−

∫ τ

0

[
E(D̃)s−

]−1
ersds1{τ≤T}

])

=
(

1 + E[∆D̃τ ]
)(

C0

∫ T

0
E[E(D̃)t− ]λ∗e−λ

∗tdt+

G(y − r)e−rT
∫ T

0
E

[
E(D̃)t−

∫ t

0

[
E(D̃)s−

]−1
ersds

]
λ∗e−λ

∗tdt

)

The first integral above is easy to tackle, but for the calculation of the second integral, we
need to handle it with the help of Lemma 5.2.1, Theorem 2.2.2 and a few knowledge of
integration equations [Polyanin and Manzhirov, 1998]. First we rewrite the expected value
in the following integral:

Xt := E

[
E(D̃t−)

∫ t

0

[
E(D̃s−)

]−1
ersds

]
=
ert − 1

r
+ E[D̃1]

∫ t

0
Xsds

Solving the integral equation which has a form of Volterra integral equations of the second
kind, we have,

Xt =
ert − 1

r
+ E[D̃1]

∫ t

0
eE[D̃1](t−s)

(
ers − 1

r

)
ds
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Combining the results together, the expectation of loss of the cushion is attained as follows.

E[CT1{τ≤T}] = λ∗
(

1 + E[∆D̃τ ]
)(

C0

∫ T

0
e(E[D̃1]−λ∗)tdt+

G(y − r)e−rT
∫ T

0
Xte

−λ∗tdt

)

= λ∗
(

1 + E[∆D̃τ ]
)(

C0
e(E[D̃1]−λ∗)T − 1

E[D̃1]− λ∗
+G(y − r)×

(E[D̃1]− λ∗)e(r−λ∗)T − (r − λ∗)e(E[D̃1]−λ∗)T + (r − E[D̃1])

erT (r − E[D̃1])(r − λ∗)(E[D̃1]− λ∗)

)

Corollary 5.2.1. The conditional expectation for the value of the cushion given that the
floor is broken through is

E [CT | τ ≤ T ] =
λ∗
(

1 + E[∆D̃τ ]
)

1− e−Tλ
∫ 1− 1

m−
−∞ π(dh)

(
C0
e(E[D̃1]−λ∗)T − 1

E[D̃1]− λ∗
+G(y − r)×

(E[D̃1]− λ∗)e(r−λ∗)T − (r − λ∗)e(E[D̃1]−λ∗)T + (r − E[D̃1])

erT (r − E[D̃1])(r − λ∗)(E[D̃1]− λ∗)

)

Proof It is a direct consequence from Proposition 5.2.3 and 5.1.1.

5.3 Variance of Loss

Computing the variance involves dealing with the square term, which will be handled anal-
ogously as the procedure of deriving the expected value, but yet more complex. Hence, the
previous section can be seen as preliminaries for the derivation in this section. We continue
with the same notation as before, and start with a few required theorems before giving out
the variance of the loss.

Theorem 5.3.1. Let X and Y be two semimartingales with X0 = 0 and Y0 = 0. Then the
product of their own Doléans-Dade exponentials is

E(X)E(Y ) = E(X + Y + [X,Y ])

Proof See [Protter, 2005], Theorem II.38.

Secondly, we investigate the characteristics of the inverse of Doléans-Dade exponential as an
extension of Proposition 5.2.2 and Remark 5.2.1.

Proposition 5.3.1. Let {Xt}t≥0 be a Lévy process generated by Lévy triplet (µ, σ2, ν) with
ν({∆X ≤ −1}) = 0. Suppose that Ut = −Xt + [X,X]ct +

∑
0<s≤t

(1 + ∆Xs)
−1(∆Xs)

2, then
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(a) E(U)t = (E(X)t)
−1

(b) The first moment of E(U)t follows Remark 5.2.1, where

E[U1] = −µ+ σ2 +

∫
[−1,1]

x2

1 + x
ν(dx)−

∫
|x|>1

x

1 + x
ν(dx)

Proof

(a) Denote the jump of Ut as Jt =
∑

0<s≤t
(1 + ∆Xs)

−1(∆Xs)
2.

Let A = E(U), B = E(X), then A0 = B0 = 1. We will prove that AB = 1. According
to stochastic integration by parts,

d(AB) =A−dB +B−dA+ d[A,B]

=A−B−dX +B−A−dU +A−B−d[X,U ]

=A−B−dX +B−A−(−dX + d[X,X]c + dJ)

+A−B−(−d[X,X] + d[X, [X,X]c] + d[J,X])

=A−B−(d[X,X]c + dJ − d[X,X] + d[J,X])

By definition of quadratic covariation, we have

d[X,X] =[X,X]c +
∑

0<s≤t
(∆Xs)

2

d[J,X] =
∑

0<s≤t
∆Js∆Xs =

∑
0<s≤t

(1 + ∆Xs)
−1(∆Xs)

3

We proved that d(AB) = 0, ∀t ≥ 0. With the initial condition the result of (a) follows.

(b) Similarly as the proof in [Cont and Tankov, 2004], Proposition 8.22, we are able to write

∆U =
−∆X

1 + ∆X
, which fulfills the condition in Remark 5.2.1 since ν(∆X ≤ −1) = 0.

Therefore, Equation (5.1) and (5.2) also apply to U .

Next, X and U are separated into jump part and continuous part by the Lévy-Îto
decomposition, and then we insert them into the assumption, in which both parts
should coincide with each other. Since the Brownian motion parts for U and −X are
the same, for the drift part we obtain,

µut = −µt+ σ2t+ t

∫
|x|≤1

xν(dx) + t

∫
|x|≤1

xνu(dx)

= −µt+ σ2t+ t

∫
R

(
x1{|x|≤1} −

x

1 + x
1{x≥− 1

2
}

)
ν(dx)

Let t = 1. Since E[U1] = µu +
∫
|x|>1 xνu(dx) = µu −

∫
x<− 1

2

x
1+xν(dx), we have

E[U1] = −µ+ σ2 +

∫
{|x|≤1}

x2

1 + x
ν(dx)−

∫
|x|>1

x

1 + x
ν(dx)
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Now we are ready to derive the variance of the loss with help of the above preliminary.

Proposition 5.3.2. The variance of the loss of the cushion is

Var(CT1τ<T ) = E
[
(CT1τ<T )2

]
− E

[
CT1{τ<T}

]2
,

where

E
[
(CT1τ<T )2

]
=λ∗

(
1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]

){C2
0

(
e(E[X1]−λ∗)T − 1

)
(E[X1]− λ∗)

+

2C0Ge
−rT (y − r)

E[V1]− E[X1]

[
e(E[V1]−λ∗)T − 1

E[V1]− λ∗
− e(E[X1]−λ∗)T − 1

E[X1]− λ∗

]
+

G2e−2rT

[
(2a− E[X1])

(
e(a−λ∗)T − 1

)
a(a− E[V1])(a− E[X1])(a− λ∗)

−

(2E[V1]− E[X1])
(
e(E[V1]−λ∗)T − 1

)
E[V1](a− E[V1])(E[V1]− E[X1])(E[V1]− λ∗)

+

1− e−λ∗T

aλ∗E[V1]
+

e(E[X1]−λ∗)T − 1

(a− E[X1])(E[V1]− E[X1])(E[X1]− λ∗)

]}

E
[
CT1{τ<T}

]
is as given in Proposition 5.2.3, where the notation in the above formula is

presented as follows:

Xt = 2D̃t + [D̃, D̃]t

Ut = −D̃t + σ2t+
∑

0<s≤t

(∆D̃t)
2

1 + ∆D̃s

Vt = Xt + Ut + [X,U ]t + rt

a = E[V1] + E[U1] + E([V,U ]1) + r

Proof With the result of Proposition 5.2.3, the variance of the loss can be obtained by

computing E
[(
CT1{τ<T}

)2]
additionally.

(
CT1{τ<T}

)2
=

[
E(D̃)τ

(
C0 + (y − r)

∫ τ

0

(
E(D̃)s−

)−1
Psds

)
1{τ<T}

]2

=C2
0

(
E(D̃)τ

)2
1{τ<T}+

2C0(y − r)
(
E(D̃)τ

)2
∫ τ

0

(
E(D̃)s−

)−1
Psds1{τ<T}+(

E(D̃)τ

)2
(∫ τ

0

(
E(D̃)s−

)−1
Psds

)2

1{τ<T} (5.4)

For convenience, the expected value of
(
CT1{τ<T}

)2
will hereby be calculated step by step
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by separating itself into three parts as (5.4). First of all, we deal with

E

[
C2

0

(
E(D̃)τ

)2
1{τ<T}

]
=C2

0E

[(
E(D̃)τ−

)2 (
1 + ∆D̃τ

)2
1{τ<T}

]
=λ∗C2

0E
[
1 + 2∆D̃τ + (∆D̃τ )2

] ∫ T

0
et(E[X1]−λ∗)dt

=λ∗C2
0E
[
1 + 2∆D̃τ + (∆D̃τ )2

] e(E[X1]−λ∗)T − 1

E[X1]− λ∗
,

Secondly,

E

[
2C0(y − r)(E(D̃)τ )2

∫ τ

0

(
E(D̃)s−

)−1
Psds1{τ<T}

]
=2C0(y − r)

(
1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]

)
×

E

[
(E(D̃)τ−)2

∫ τ

0

(
E(D̃)s−

)−1
Psds1{τ<T}

]
=2C0Ge

−rT (y − r)
(

1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]
)
×∫ T

0
E

[
(E(D̃)t−)2

∫ t

0

(
E(D̃)s−

)−1
ersds

]
λ∗e−λ

∗tdt

From Theorem 5.3.1 we can rewrite the expected value of the above integral as

Yt := E

[
E(X)t−

∫ t

0

(
E(D̃)s−

)−1
ersds

]
,

Yt can be furthermore formulated into

Yt =

∫ t

0
esE[V1]ds+ E[X1]

∫ t

0
Ysds

=
etE[V1] − 1

E[V1]
+ E[X1]

∫ t

0
Ysds

The calculation of the integral equation will be handled analogously as the procedure when
deriving the expected value in Proposition 5.2.3. Hence,

Yt =
etE[V1] − 1

E[V1]
+ E[X1]

∫ t

0
eE[X1](t−s)

(
esE[V1] − 1

E[V1]

)
ds

Therefore we have,

E

[
2C0(y − r)

(
E(D̃)τ

)2
∫ τ

0

(
E(D̃)s−

)−1
Psds1{τ<T}

]

=
2λ∗C0Ge

−rT (y − r)
(

1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]
)

E[V1]− E[X1]
×(

e(E[V1]−λ∗)T − 1

E[V1]− λ∗
− e(E[X1]−λ∗)T − 1

E[X1]− λ∗

)
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And similarly,

E

[(
E(D̃)τ

)2
(∫ τ

0

(
E(D̃)s−

)−1
Psds

)2

1{τ<T}

]
=λ∗G2e−2rT

(
1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]

)
×∫ T

0
E

[
E(X)t−

(∫ t

0

(
E(D̃)s−

)−1
ersds

)2
]
e−λ

∗tdt

Let Zt := E

[
E(X)t−

(∫ t

0

(
E(D̃)s−

)−1
ersds

)2
]

, we have

Zt =E

[
2

∫ t

0
E(X)s−

∫ s

0

(
E(D̃)u−

)−1
erudu

(
E(D̃)s−

)−1
ersds+

∫ t

0

(∫ s

0

(
E(D̃)u−

)−1
erudu

)2

E(X)s−dXs

]

=2

∫ t

0
E

[
E(X)s−

(
E(D̃)s−

)−1
ers
∫ s

0

(
E(D̃)u−

)−1
erudu

]
ds+

E[X1]

∫ t

0
Zsds

=2

∫ t

0
E

[
E(V )s−

∫ s

0

(
E(D̃)u−

)−1
erudu

]
ds+ E[X1]

∫ t

0
Zsds (5.5)

The expectation in the first integral is exactly the same type as Yt, therefore the integral of
it is

f(t)

2
:=

eE[V1]t

E[V1] + E[U1] + E([V,U ]1) + r
×(

e(E[U1]+E([V,U ]1)+r)t − 1

E[U1] + E([V,U ]1) + r
+
e−E[V1]t − 1

E[V1]

)

Hence, Equation (5.5) is a integral equation as written below:

Zt = f(t) + E[X1]

∫ t

0
Zsds

Zt has again the form of Volterra integral equations of the second kind, with which we handle
similarly as above, the solution is presented as follows

Zt =f(t) + E[X1]

∫ t

0
eE[X1](t−s)f(s)ds

=
eat(2a− E[X1])− (a− E[X1])− aeE[X1]t

a(a− E[V1])(a− E[X1])
−

eE[V1]t(2E[V1]− E[X1])− (E[V1]− E[X1])− E[V1]eE[X1]t

E[V1](a− E[V1])(E[V1]− E[X1])
,
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With the result of above,

E

[(
E(D̃τ )

)2
(∫ τ

0

[
E(D̃s−)

]−1
Psds

)2

1{τ<T}

]
=λ∗G2e−2rT

(
1 + 2E[∆D̃τ ] + E[(∆D̃τ )2]

)
[

(2a− E[X1])
(
e(a−λ∗)T − 1

)
a(a− E[V1])(a− E[X1])(a− λ∗)

−

(2E[V1]− E[X1])
(
e(E[V1]−λ∗)T − 1

)
E[V1](a− E[V1])(E[V1]− E[X1])(E[V1]− λ∗)

+

1− e−λ∗T

aλ∗E[V1]
+

e(E[X1]−λ∗)T − 1

(a− E[X1])(E[V1]− E[X1])(E[X1]− λ∗)

]

Thus the formula is obtained.

5.4 Value at Risk and Conditional Value at Risk

Despite the fact that VaR is not a coherent risk measure as it does not possess the sub-
additivity property, it is still an important tool for risk management since it summarizes the
downside-risk by a quantile. By the definition, VaR of our CPPI portfolio can be written in
the following equation:

Given a confidence level α ∈ (0, 1)

V aRα = inf{x ∈ R | P(G− VT > x) ≤ 1− α}
= inf{x ∈ R | P(−CT > x) ≤ 1− α}
= inf{x ∈ R | P(LT > x) ≤ 1− α} (5.6)

From Equation (5.6), it is clear to see that in order to calculate the VaR, we need to first
find the distribution function of either {CT }T≥0, or {LT }T≥0 which represents {−CT }T≥0.
Although the random variable of {CT }T≥0 may not have an analytical expression for its
distribution function, its characteristic function always exists. The one to one relationship
with probability density functions is one of the basic properties of characteristic functions.
In the following section, we will discuss how we can use the connection between the two, and
then find the distribution function and probability density function which are linked to the
characteristic function.

CVaR is another concept which generates from VaR. It is an alternative to VaR which is
more sensitive to the shape of the loss distribution in the tail. Mathematically speaking,
CVaR is derived by taking a weighted average between the VaR and losses exceeding the
VaR. Moreover, unlike VaR, CVaR is actually a coherent risk measure, which means it sat-
isfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance.
For the CVaR of the portfolio which follows the strategy of CPPI, we have the following
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formulation:

CV aRα =
1

1− α

∫ 1

α
V aRxdx

=

∫
x>V aRα

xfL(x)dx

1− α

= V aRα +

∫
R

[x− V aRα]+ fL(x)dx

1− α
(5.7)

where fL(x) can be replaced by fC(−x) since L is written as the random variable −C.

Let g be a complex-valued integrable function on R. The Fourier transform of g is the
function φ from R to C given as follows.

Definition 5.4.1. (Fourier transform) If g ∈ L1, then

φ(u) =

∫ ∞
−∞

eiuxg(x)dx, (5.8)

and φ is called the Fourier transform of g.

If g is a probability density function, then φ is its characteristic function as already
defined in Definition 2.4.1.

The inversion formula was firstly demonstrated by [Lévy, 1925]:

F (x)− F (0) =
1

2π

∫ ∞
−∞

1− e−iux

iu
φ(u)du,

where F (x) is a distribution function. Later [Gurland, 1948] and [Gil-Pelaez, 1951] develop
another expressions of the inversion theorem. Hereby we review briefly the Fourier inversion
theorem, and then move on to the particular form of the Gil-Pelaez inversion integral, with
which we find the characteristic function for the loss.

Theorem 5.4.1. (Fourier inversion theorem) If g and φ ∈ L1, and φ is written as

φ(u) =

∫ ∞
−∞

eiuxg(x)dx,

then

g(x) =
1

2π

∫ ∞
−∞

e−iuxφ(u)du

Proof See [Gut, 2005], Theorem 1.4.

Theorem 5.4.2. If F (x) is a one-dimension distribution function, its characteristic func-
tion, φ, is written as (5.8), and φ ∈ L1, then,

F (x) =
1

2
− 1

2π

∫ ∞
−∞

e−iuxφ(u)

iu
du
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Proof Recall Dirichlet integral:

∫ ∞
0

sin t

t
dt = lim

ε→0

∫ ∞
ε

sin t

t
dt =

π

2
(5.9)

Observe that sin t/t is an even function, we can extend (5.9) further to

sgn(z) =
2

π

∫ ∞
0

sin tz

t
dt,

where

sgn(z) =


1, if z > 0

0, if z = 0

−1, if z < 0

Moreover, ∫ ∞
−∞

sgn(z − x)dF (z) = 1− 2F (x)

With knowledge of Fourier transform, Euler’s formula and Fubini’s theorem, we are able to
write ∫ ∞

−∞

e−iuxφ(u)

iu
du = lim

ε→0

∫ ∞
ε

e−iuxφ(u)− eiuxφ(−u)

iu
du

= 2 lim
ε→0

∫ ∞
ε

∫ ∞
−∞

sinu(z − x)

u
dF (z)du

= 2 lim
ε→0

∫ ∞
−∞

∫ ∞
ε

sinu(z − x)

u
dudF (z)

= π

∫ ∞
−∞

sgn(z − x)dF (z)

= π(1− 2F (x)),

which completes the proof.

With Theorem 5.4.2, we are able to calculate the VaR and CVaR for the CPPI portfolio via
its characteristic function.

Proposition 5.4.1. φC is the characteristic function for CT and φC ∈ L1, the distribution
function for LT is then represented as

P(LT ≤ x) = F (x) =
1

2
− 1

2π

∫ ∞
−∞

e−iuxφC(−u)

iu
du (5.10)

Therefore, the V aRα can be reformulated in

inf

{
x ∈ R

∣∣∣∣ ∫ ∞
−∞

e−iuxφC(−u)

iu
du ≤ π(1− 2α)

}
(5.11)
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Furthermore, CV aRα is written as

V aRα −
1
π

∫∞
0 R

(
e−iuV aRα

u2 φC(−u)
)
du

1− α
,

where R(z) represents the real part of a complex number z.

Proof Based on Theorem 5.4.2 and the fact that φL(u) = φC(−u) lead to Equation (5.10).
V aRα in (5.11) is a direct result followed by Equation (5.6) and (5.10). Here we focus on
formulating the CVaR of the CPPI portfolio.

With the VaR already being calculated, we only need to find the integral in Equation (5.7).∫ ∞
−∞

[x− V aRα]+ fL(x)dx =

∫ ∞
V aRα

(x− V aRα)
1

2π

∫ ∞
−∞

e−iuxφC(−u)dudx

=
1

2π

∫ ∞
−∞

(∫ ∞
V aRα

(x− V aRα)e−iuxdx

)
φC(−u)du

=
−1

2π

∫ ∞
−∞

e−iuV aRα

u2
φC(−u)du

=
−1

π

∫ ∞
0

R

(
e−iuV aRα

u2
φC(−u)

)
du

Hence the result follows.





6 | Parameter Calibration and Simu-
lation

ECF and MLE are the two methods applied in this thesis to calibrate parameters for the
three models concerning normal (Merton), asymmetric double exponential (Kou) and Gum-
bel (new) distributed jumps. The risky assets are selected from major market indices, global
ETFs and top 10 most-weighted components from German DAX and U.S. Dow Jones, re-
spectively, which possess time period of 10 years up to 31.December.2014. The simulation
and parameters estimation are performed in a computer with four computing cores running
at 3.00 GHz with 4GB RAM.

Parameters are estimated according to the methods given in Section 6.1. The numerical
results with the market data are presented in Section 6.2. Furthermore, in the end of the
chapter we also present the forecasting ability of these three models with parameters re-
trieved from the data.

6.1 Estimation Methods

In each model we mentioned in Section 4.1, there are two parameters for the continuous part
of the stock dynamic: drift µ and volatility σ for the geometric Brownian motion; As for
the jump part, apart from the intensity parameter λ of the Poisson process, both Merton
and new models we present require two parameters, respectively, for normal distributed and
Gumbel distributed jumps.

Kou model has instead three parameters in order to describe the asymmetric exponentially
distributed jumps: probability p for downside jumps with mean of η−, and probability 1− p
for upside jumps with mean of η+.

6.1.1 Maximum Likelihood Estimation

Assume we have a vector of observation (x1, x2,..., xn) from a unknown population, and the
density function of this observing data vector given the parameter θ is written as

l(θ) := fθ(x1, x2, ..., xn) = f(x1, x2, ..., xn|θ),

which is defined as likelihood function l(θ). If the observations are stochastically indepen-
dent, then the above representation can be written in a product of individual density.
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The purpose of MLE is to find the parameter θ∗ which maximizes the likelihood of observ-
ing the given data, in other words, θ∗ is the value that makes the observed data the most
probable to have been generated from the population. Traditionally the MLE approach is
widely favored in financial applications due to its generality and asymptotic efficiency.

Based on the assumption of mutual independence among Brownian motion, Poisson process
and the jump size, the characteristic function of observed log-returns X∆t between t and
t+ ∆t under new model is

φGθ (u) = E
[
eiu(µ− 1

2
σ2)∆t

]
× E

[
eiuσW∆t

]
× E

eiuN∆t∑
k=1

log Jk


= e

∆t
[
iu
(
µ−σ

2

2

)
−σ

2u2

2
+λ[Γ(1−iβu)eiαu−1]

]

The density function of log-returns X∆t can therefore be derived from Theorem 5.4.1, which
has the following representation.

fGX∆t
(x) =

1

2π

∫ ∞
−∞

e−iuxφGθ (u)du

=
1

π

∫ ∞
0

R

[
e−iuxe

∆t
[
iu
(
µ−σ

2

2

)
−σ

2u2

2
+λ[Γ(1−iβu)eiαu−1]

]]
du

The procedure applied in Merton and Kou models resemble the above one. Hence, the
characteristic functions of X∆t under Merton and Kou models are respectively as follows:

φMθ (u) = e
∆t

iu(µ−σ2

2

)
−σ

2u2

2
+λ

eiµju−σ2
j u

2

2 −1



φKθ (u) = e
∆t
[
iu
(
µ−σ

2

2

)
−σ

2u2

2
+ λp

1+iuη−
+
λ(1−p)
1−iuη+

−λ
]

Once again from Theorem 5.4.1 we derive each density function of log-returns, respectively.
It is worth mentioning that Merton model has one attractive characteristic, that is, the
density function has a closed-form formulation. Unfortunately both Kou and new models
do not acquire the same nice property.

fMX∆t
(x) =

e−λ∆t

√
2π


∞∑
k=0

(λ∆t)k

k!

e
− 1

2

[
x−

((
µ−σ

2

2

)
∆t+kµj

)]2

σ2∆t+kσ2
j√

σ2∆t+ kσ2
j


fKX∆t

(x) =
1

π

∫ ∞
0

R

[
e−iuxe

∆t
[
iu
(
µ−σ

2

2

)
−σ

2u2

2
+ λp

1+iuη−
+
λ(1−p)
1−iuη+

−λ
]]
du

6.1.2 Empirical Characteristic Function Method

The advantage of using ECF method is that one can avoid difficulties inherent in calculating
or maximizing the likelihood function, e.g. the likelihood function can be unbounded, but its
Fourier transform, characteristic function, is always bounded. Moreover, while the likelihood
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function is not tractable or has no closed form, the Fourier transform can have a closed-
form expression. Hence, we also exploit ECF method to estimate the parameters. For
example, to calibrate parameters from Kou model requires much computing power when
applying MLE due to lack of availability of closed-form density, but on account of the
attainability of explicit closed-form characteristic function of Kou model, the estimating
process is much more efficient. Furthermore, ECF estimator is shown to be consistent and
asymptotically normal under regularity conditions. Some theoretical background for the
estimation procedure has been introduced by [Paulson et al., 1975]. [Yu, 2004] presents the
applications of ECF method to fit time series models. The basic idea for this procedure,
which is mathematically interpreted as below, is to minimize the weighted distance between
the theoretical characteristic function φ(u) and empirical characteristic function φ̂n(u).

θ̂ = argmin
θ

∫ ∞
−∞

w(u)|φ̂n(u)− φθ(u)|2du

where θ is the set of parameters, and φ̂n(u) is defined as:

φ̂n(u) =

n∑
k=1

eiuXk

n
(6.1)

The weight function w(u) is optimal in the sense that the estimator attains maximum like-
lihood estimator efficiency. And there is optimal weight function w∗(u), if the likelihood
function has closed-form expression.

w∗(u) =
1

2π

∫
∂ log fθ(x)

∂x
e−iuxdx, (6.2)

Otherwise the optimal weight remains unknown [Feuerverger and McDunnough, 1981]. As a
consequence, in an actual implementation, an arbitrary weight function should be used. The
widely chosen weight functions are, for example, normal density function [Rockinger and
Semenova, 2005], exponential density function [Yu, 2004], and equally weighted function
[Levin and Khramtsov, 2015]. Exponential weight function has often been used due to
the computational convenience. It brings along the possibility to calculate the integral by
Hermitian quadrature, and also it gives more importance to the characteristic function in
a neighborhood of zero [Heathcote, 1977]. Normal density weight function has one more
attracting feature than the exponential one: the variance of the sample is being taken into
account.

On the basis of the advantage from normal weight function, our first intention is, inspired by
[Cont and Tankov, 2009], to take the inverse of variance of empirical characteristic function
φ̂n as our weight function.

w(u) =
1

E

[(
φ̂n(u)− E

[
φ̂n(u)

])2
]

≈ 1

E

[(
φ̂n(u)− φθ∗(u)

)2
]

=
n

1− e−σ2u2 , (6.3)
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where θ∗ is the true set of parameters. Without loss of generality, we can remove n in
Equation (6.3). In accordance with the divergence of this weight function when it reaches
to origin, instead of Equation (6.3) we use

w(u) = 1− (1− e−σ2u2
)

= e−σ
2u2

(6.4)

to secure convergence. As a result in the thesis we define Equation (6.4) as our weight
function. On one hand this weight function is a variation of exponential function; on the
other hand it takes the effect of variance into account. These are the advantages of both
exponential and normal density weight functions respectively.

6.1.3 Cumulant Matching Method

Another problem one needs to be aware of is the choice of initial values, since maximizing the
likelihood function could lead to numerical computational problem. In addition, the existence
of multiple extrema also stresses on the importance on “good” initial values. Therefore, the
initial values in this thesis are obtained not only from reasonable presumption, but also
from CMM. CMM is a variant of the method of moments, by which model parameters are
expressed by its cumulants, which are written as a combination of sample central moments
calculated from Matlab.

Based on the preliminaries discussed in Chapter 2. The cumulants for our new model are
derived from differentiation as follows:

c1 = ∆t

[
µ− σ2

2
+ λ

(
α− β

∫ ∞
0

e−t ln tdt

)]
c2 = ∆t

[
σ2 + λ

(
α2 − 2αβ

∫ ∞
0

e−t ln tdt+ β2

∫ ∞
0

e−t(ln t)2dt

)]

cn = λ∆t

n∑
k=0

(−1)k
(
n

k

)
αn−kβk

∫ ∞
0

e−t(ln t)kdt, n ≥ 3

Since the cumulant cn, n > 1 is a polynomial in the first n central moments mn. Here the
first four expressions are listed. See, e.g., Lemma A.86 [Pascucci, 2011].

c1 = m′1

c2 = m2

c3 = m3

c4 = −3m2
2 +m4 (6.5)

c1 is by definition the expected value. Note that we use the sample mean m′1 so as to
distinguish it from the first central moment m1. For convenience, we assume the mean of
log-jump size is 0, i.e. α+ βγ = 0, where γ is the Euler’s constant. Therefore initial values
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for our new model can be expressed in term of central moments as follows.

β =
3m2

2 −m4

m3
× γ3 + 3γ2Γ1 + 3γΓ2 + Γ3

γ4 + 4γ3Γ1 + 6γ2Γ2 + 4γΓ3 + Γ4

α = −βγ

λ =
m4 − 3m2

2

∆t
× 1

β4(γ4 + 4γ3Γ1 + 6γ2Γ2 + 4γΓ3 + Γ4)

σ =

√
m2

∆t
− β2λ(γ2 + 2γΓ1 + Γ2)

µ =
m′1
∆t

+
σ2

2
+ λβ(γ + Γ1)

where

Γ1 =

∫ ∞
0

e−t ln tdt, Γ2 =

∫ ∞
0

e−t(ln t)2dt

Γ3 =

∫ ∞
0

e−t(ln t)3dt, Γ4 =

∫ ∞
0

e−t(ln t)4dt

For Merton model we have the first six cumulants derived as follows:

c1 = ∆t

(
µ− σ2

2
+ λµj

)
c2 = ∆t

[
σ2 + λ

(
µ2
j + σ2

j

)]
c3 = λ∆t

(
µ3
j + 3µjσ

2
j

)
c4 = λ∆t

(
µ4
j + 6µ2

jσ
2
j + 3σ4

j

)
c5 = λ∆t

(
µ5
j + 10µ3

jσ
2
j + 15µjσ

4
j

)
c6 = λ∆t

(
µ6
j + 15µ4

jσ
2
j + 45µ2

jσ
4
j + 15σ6

j

)
Following the same assumption we have µj = 0. The initial values for Merton model can be
written in the following manner:

µj = 0

σj =

√
c6

5c4

λ =
25c3

4

3c2
6∆t

σ =

√
1

∆t

(
c2 −

5c2
4

3c6

)
µ =

1

∆t

[
c1 +

1

2

(
c2 −

5c2
4

3c6

)]
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with extra two cumulants expressed in central moments:

c5 = −10m2m3 +m5

c6 = 30m3
2 − 15m2m4 − 10m2

3 +m6

The above initial values for Merton model can therefore be obtained as functions of central
moments.

Next, cumulants for Kou model are calculated in the same manner, and shown as follows:

c1 = ∆t

[
µ− σ2

2
− λ (pη− − (1− p) η+)

]
c2 = ∆t

[
σ2 + 2λ

(
pη2
− + (1− p) η2

+

)]
cn = n!λ∆t

[
(1− p) ηn+ + (−1)npηn−

]
, n ≥ 3 (6.6)

Follow the assumption used in former models, we have the following equation

µj = −pη− + (1− p)η+ = 0

Eliminate η− in (6.6) using the relation shown above and rearrange the cumulants by central
moments, we can write η+ as a function of x = 1−p

p in two following ways

η+ =
c4

4c3
× 1− x

1− x+ x2
=

c5

5c4
× 1− x+ x2

(1− x)(1 + x2)
(6.7)

The above equation in (6.7) ends up in a polynomial of degree 4. Solve the equation and
use the appropriate real root to obtain six initial parameters as follows

p =
1

1 + x

η+ =
c4

4c3
× 1− x

1− x+ x2

η− = η+x

λ =
c3

6∆t(1− p)η3
+(1− x2)

σ =

√
c2

∆t
− c3

3∆tη+(1− x)

µ =
m′1
∆t

+
1

2

(
c2

∆t
− c3

3∆tη+(1− x)

)
(6.8)

From the result of the numerical implementation in the next section one can see that reason-
able presumed initial values not only are sufficient compared to those which are estimated
from CMM, but also outperform the other in the aspect of elapsed time and likelihood.
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6.2 Numerical Implementation

In the beginning of this section parameters from each model are being estimated, the pro-
cedure will be performed not only with each method mentioned in the last section, but also
the combination of them. See Table 6.1 for further details. Apart from the aspect of models,
the goodness of fit in underlying coming from different categories is also investigated. Next
we carry on reviewing the performance of these models by using AIC as a criterion.

The estimation is performed on 30 risky assets individually, as shown in Table A.1 in the

Model # of Param. Initial Values Method

Kou 6 presumed values∗/ ECF/MLE/
[µ, σ, λ, p, η+, η−] CMM values ECFMLE

Merton 5 presumed values/ ECF/MLE/
[µ, σ, λ, µj, σj] CMM values ECFMLE

new 5 presumed values/ ECF/MLE/
[µ, σ, λ, α, β] CMM values ECFMLE

presumed values= [0, 0.15, 50, 0, 0.05]
presumed values*= [0, 0.15, 50, 0, 0.02, 0.02]

Table 6.1: Parameters-estimating methods and initial values applied in different
models

Appendices. An overlook of the general results is as well provided in Table 6.2 (See Ta-
ble A.2 - A.19 in the Appendices for detailed results). From the results we observe that,
on one hand, the efficiency applying the ECF method comparing to any involved with MLE
method is much improved, especially in the cases of new and Kou models. This is one of
the drawbacks applying MLE method due to the lack of closed-form likelihood function:
each iteration involves going through the improper integral, which requires much comput-
ing power. Therefore, methods which involve with MLE take averagely 20-50 minutes for
estimating parameters from new and Kou models. On the contrary, it takes 1-2 minutes in
average for a model with a closed-form likelihood function like Merton one.

On the other hand, it is however undeniable that parameters estimated from any method
which includes MLE method is outperforming with respect to the AIC.

In particular from Table 6.2 we observe that initial values obtained from CMM method
not only do not bring out evident effects on better fit as expected, but also slow down the
procedure of estimation in most cases. Another interesting finding has been discovered after
applying the combination of ECF and MLE methods, that one can use ECF method as an
auxiliary aid to locate a better set of initial values for the MLE method, and consequently
improve distinctly the efficiency by saving 30 − 50% of elapsed time. In addition to such a
combination, the parameters found are no worse than the ones estimated directly from MLE
method.

Although Kou model dominates the other models in most cases with an extra parameter
describing jumps. It is worth mentioning that the new model has the best performance in
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Method Kou Merton new

ECF -13957.4 (14.7) -13951.6 (11.1) -13952.2 (7.8)
CMMECF -13929.1 (32.8) -13911.9 (10.9) -13950.7 (10.5)

MLE -13993.1 (3348.6) -13964.6 (103.3) -13965.8 (2925.2)
CMMMLE -13979.2 (2983.1) -13964.6 (74.2) -13965.6 (3265.4)
ECFMLE -13994.9 (2052.3) -13964.6 (69.9) -13965.8 (1416.6)

CMMECFMLE -13994.8 (2585.3) -13964.6 (76.9) -13965.8 (1450.0)

Table 6.2: Average AIC and elapsed time (in seconds) with respect to different models

the case of parameters estimated from ECF method with CMM calibrated initial values, and
also out perform Merton model in all other cases. Moreover, both models in the case of ECF
and CMMECF have approximately 7-10 seconds as duration of estimation.

The results can also be compared from another perspective according to different cate-

Method Kou Merton new

ECF -14787.9 (15.3) -14792.7 (11.9) -14794.4 (7.9)
CMMECF -14698 (53.6) -14716.2 (10.6) -14789.7 (12.9)

MLE -14840.2 (4024.4) -14804.5 (106.6) -14813.4 (3251)
CMMMLE -14797.7 (3659.5) -14804.5 (73.4) -14812.7 (3898.5)
ECFMLE -14844.3 (2324.5) -14804.5 (66.4) -14813.4 (1621.1)

CMMECFMLE -14844.2 (4384.1) -14804.5 (70.5) -14813.4 (1610.3)

Table 6.3: Average AIC and elapsed time (in seconds) for indices only with respect to
different models

gories, e.g. indices and stocks, whereas ETFs are classified here in the category of indices.
See Table 6.3 and Table 6.4. The new model compared to Merton one provides a better
fit with respect to all estimation methods when indices, rather than stocks, are taken as
underlying. Nevertheless, Merton model clearly shows the dominating applicability to the
others with its time-efficiency while applying MLE method.

Apart from the assistance of AIC for our model selection (in a ”relative” sense), we present
the Q-Q plots in Figure 6.1-6.4 as an auxiliary to see how good the models really fit with
3 different undelyings as examples: DAX (right-skewed), iShares MSCI Emerging Markets
(right-skewed) and IBM (left-skewed), whose parameters are estimated from CMMECF and
ECFMLE. For respective parameters please refer to Table 6.5 or the Appendices. Although
jump parts seem different from the first glance, however we can observe that the jump size
and intensity rate λ compensate each other. Moreover, the volatility of jump size and λ has
the same effect, too. Another finding on λ is, in Kou model it is at most time larger than
in the others. The cause of this phenomenon is due to the fact that exponential distributed
variable is more centered to the origin, which means that it produces more small jumps
than in the normal and Gumbel distribution, see Figure 4.3. Hence, a larger intensity is
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Method Kou Merton new

ECF -13542.1 (14.4) -13531.1 (10.7) -13531.1 (7.8)
CMMECF -13544.6 (22.3) -13509.8 (11.1) -13531.2 (9.3)

MLE -13569.6 (3010.6) -13544.6 (101.7) -13542 (2762.3)
CMMMLE -13570 (2644.9) -13544.6 (74.6) -13542 (2948.8)
ECFMLE -13570.2 (1916.2) -13544.6 (71.7) -13542 (1314.4)

CMMECFMLE -13570.2 (1685.9) -13544.6 (80.2) -13542 (1369.8)

Table 6.4: Average AIC and elapsed time (in seconds) for stocks only with respect to
different models

demanded in Kou model.

Obviously in Figure 6.1 we can see that empirical returns have fatter tails than the normal
distribution. Furthermore, the Q-Q plots reveal the insufficiency of Merton and Kou models
on capturing the right tail of returns, which is one of the reasons we introduce log-Gumbel
jumps into the new model.

After parameters estimating we present next the result of simulation from CMMECF and
ECFMLE with respect to the chosen three underlyings in Table 6.6. Each result consists
of 10000 times of simulation followed by the general settings: m = 5, r = 1%, y = 3%,
G = 0.9V0 and V0 = 1.1S0. Those which have greater jump intensity λ consume more time
while simulating. The results are evidently distinct due to parameters and characteristics of
each model, however there are still some consistencies, e.g. default occurs more in the Kou
model. That is because it has not only greater jump intensity but also more extreme jumps,
which can be seen as a nice quality for its conservative. Although log-Gumbel jumps might
capture better the characteristics of returns, however from the Q-Q plots it also shows in
the case of iShares MSCI Emerging Markets that the new model, in return of capturing the
right tail, produces a relatively more optimistic results for the left tail, which might be a
drawback from the point of view of risk assessment. A similar finding can also be seen from
the results of simulation.
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Figure 6.1: Q-Q plots of DAX, iShares MSCI Emerging Markets and IBM empirical
quantiles versus theoretical quantiles from a normal distribution
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Figure 6.2: Q-Q plots of DAX empirical quantiles versus theoretical quantiles
from each model whose parameters estimated from CMMECF(left) and
ECFMLE, respectively
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Figure 6.3: Q-Q plots of iShares MSCI Emerging Markets empirical quantiles versus
theoretical quantiles from each model whose parameters estimated from
CMMECF(left) and ECFMLE, respectively
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Figure 6.4: Q-Q plots of IBM empirical quantiles versus theoretical quantiles from each
model whose parameters estimated from CMMECF(left) and ECFMLE,
respectively
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6.3 Forecasting Ability

In the former sections the discussion has been restricted to in-sample parameter estimation,
and according to the result of goodness of the fit of each model with respect to the the esti-
mated parameters, we are interested in how well these models can predict the future stock
price dynamic, and furthermore affect the performance of the CPPI strategy. In current
section we investigate the out-of-sample forecast by using three years data between 2004
and 2014 as in-sample data, and the following year from 2007 to 2015 as the out-of sample
data. For example, daily data between 2004 and 2006 are considered as in-sample data and
its parameters are estimated by CMMECF, and then applied in the simulation of 1-year
data for 10000 times so that the performance of the investment using CPPI strategy can be
observed. Next we compare it with the empirical result of out-of-sample data in 2007. The
above estimation and simulation are performed under the same conditions and setup as in
the former sections

Once again we take the index: DAX, ECF: EEM and stock: IBM as the underlyings. Ta-
ble 6.7-6.9 shows the results of Kou, Merton and new models. The last column of each table
represents the empirical portfolio values. We mark the greater value between simulated and
empirical ratios in bold, so that it is convenient to compare.

From the empirical results, we can see that none of these risky investments result in floor
violation. Comparing these tables we find that, these three models are generally more opti-
mistic than the empirical world if we only look at the average ratio. However, Kou model
is still relatively conservative compared to the others, whereas the new model is the most
optimistic on the basis of default rate. If the times when simulated average ratio is greater
than the empirical one are compared, we can see from Table 6.8 and Table 6.9 that for
Merton model it occurs even more times than for the new model.

In Table 6.7 it is worth noticing that in 2008, simulated IBM data has a uncommon
average ratio, which is due to the in-sample parameters estimation (µ, σ, λ, p, η+, η−) =
(0.48, 0.24, 35.43, 0.94, 0.62, 0.01). Although the initial values CMM provides seem fit, we
obtain a large probability for downside jumps, and as a compensation, the average size of
upward jumps is unusually huge, which leads to the necessity on restricting the parameter
field.
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7 | Conclusion

The protection from the CPPI strategies is incomplete due to the well-recognized gap risk.
For those portfolios whose guarantees are failed to be fulfilled at maturity, the issuers need
to compensate the investors for the gap between the guarantee and the final portfolio value,
which might further result in violations of regulations, e.g. Solvency II.

In view of above, this work gives contribution to not only the evaluation of the risk measure
under the consideration of gap risk in CPPI portfolios, but also the generalization of the
CPPI strategies.

On the perspective of the risky asset dynamic, two well-known models, Merton and Kou,
are examined. We observed their insufficiency on capturing the right tail. Therefore, a
modification is launched by introducing a Gumbel variable to characterize the size of jumps.
From the result of AIC it is shown that this modification outperformed Merton model in
terms of 5-parameter models.

We generalized the setup of CPPI strategies by loosening the traditional restriction, in
which the non-risky asset follows the riskfree rate. In the thesis, this restriction is relaxed
by allowing the non-risky asset evolving with another yield, which is reasonably assumed
to be greater than the riskfree rate. Accordingly, we generalized the CPPI strategy by
providing a bigger pool of possible non-risky investments to select from. For the generalized
self-financing CPPI strategy, a continuous-time stochastic model is constructed. Therein we
derived a closed-form solution to the SDE for the cushion dynamic, which can be explicitly
written as a generalized Ornstein-Uhlenbeck process. The solution for the portfolio value
is obtained according to the mechanics of the insurance strategy after its cushion dynamic
being solved.

An interesting extension with regard to CPPI strategies is to set the riskfree rate or the yield
to follow another arbitrary Lévy process, instead of a constant. Moreover, now that we have
loosed the restriction on the yield of the non-risky asset, how to hedge under the new setup
is also another problem that is worth further investigation.

Another focus is set on the problem of the long-term guarantee in the CPPI strategies and
how to describe it mathematically. We provided the statistical evaluation of probability,
expectation and variance of loss with the help of the derived closed-form expression. Based
on the existence of the characteristic function we also used the Fourier inversion theorem to
retrieve the distribution function in order to derive the VaR and CVaR.

Particular interest is attracted to the numerical performance of the new model setup with
respect to the risky investment and the CPPI portfolio. In addition, the comparison among
three models are being investigated empirically. We selected various types of risky assets from
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global markets, including Asia, Europe and the United States. Parameters are estimated
from three methods, each of the three started with two different types of initial values.
According to the estimation results, we observed that initial values estimated from CMM
method not only did not bring out evident effect on behalf of AIC, but also did not improve
the time-efficiency.

In the aspect of estimation methods, we discovered that on one hand, parameters estimated
from MLE had the lowest values from AIC, but cost almost one hour in Kou and new models;
on the other hand, ECF had the best time-efficiency when estimating, yet the likelihood with
respect to the parameters was relatively small. Nevertheless, the combination of ECF and
MLE exhibited remarkable improvements by saving 30-50% of elapsed time, the performance
of the parameters is not a bit compromised by its time-efficiency.

Given that Kou has one more parameter than the other two models, Kou model performed
better in most of the cases, except for the case when parameters are estimated from the
CMMECF. In this very case, the modified new model outperformed the other two. Thus,
we provided Q-Q plots for our target underlyings with their parameters estimated from
CMMECF and ECFMLE with respect to each of the three models. From the plots we found
that right tails of each underlying are better captured in the new model. However, one
should be cautious while applying the new model, since the improvement on fitting the right
tail could have compromised the ability of capturing the left tail.

In this thesis we proposed another weight function for the application in the ECF method.
This weight function possesses both the advantages from exponential and normal weighted
functions, respectively. Since the focus is to assess the risk exposure, assigning more weight
on the left tail is worthwhile being further investigated.

We examined the forecasting ability of each model from 2004 to 2014 by taking three years
as the in-sample period, and the following year as the out-of-sample period. The result
showed that all three models were in general too optimistic. The Kendall’s τ of each asset
between simulated and empirical ratios (VT /V0) were very low ([−0.3, 0.2]) with p-Values
greater than 0.4. In this manner, we concluded all three models are lack of the ability to
forecast. Nevertheless, from the results we observed evidently the downside-risk protection
provided by the CPPI strategies.

In this thesis we have generalized the CPPI strategies and proposed another dynamic for the
risky asset, which can be seen as a start to reexamine and compare other portfolio insurance
strategies based on the similar manner. Especially for those strategies that consist of non-
risky investments, e.g. time-invariant portfolio protection strategies, which are variation of
the CPPI strategies, see [Mantilla-Garćıa, 2014]. Moreover, discrete-time trading as well as
trading costs can also be taken into account for further research.
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Type Symbol Name

Index ˆDJI Dow Jones Industrial Average 30
ˆFCHI CAC 40
ˆFTSE FTSE 100

ˆGDAXI DAX 30
ˆGSPC S&P 500
ˆHSI Hang Seng Index

ˆN225 Nikkei 225
ˆTWII TSEC Weighted Index

ETF EEM iShares MSCI Emerging Markets
EZU iShares MSCI Eurozone

Stock AAPL Apple Inc.
BA The Boeing Company
DIS The Walt Disney Company
GS The Goldman Sachs Group, Inc.
HD The Home Depot, Inc.
IBM International Business Machines Corporation

MMM 3M Company
NKE NIKE, Inc.
TRV The Travelers Companies, Inc.
UNH UnitedHealth Group Incorporated

ALV.DE Allianz SE
BAS.DE BASF SE

BAYN.DE Bayer AG
BMW.DE Bayerische Motoren Werke AG
DAI.DE Daimler AG
DBK.DE Deutsche Bank AG
DTE.DE Deutsche Telekom AG
LIN.DE Linde AG
SAP.DE SAP SE
SIE.DE Siemens AG

Table A.1: Analyzed undelyings from U.S. Dow Jones (July, 2015), German DAX
(June, 2015), indices and ETFs
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.1515 0.1148 49.9959 0.5466 0.0141 0.0157 -16057.1
ˆFTSE 0.2392 0.1288 49.9932 0.6908 0.0167 0.0133 -15717.5

ˆGDAXI 0.3877 0.157 50.0104 0.7546 0.0196 0.0145 -14878.4
ˆGSPC 0.2623 0.1251 49.9987 0.6429 0.017 0.0158 -15687
ˆHSI 0.4253 0.1729 49.9854 0.8053 0.0276 0.0153 -14369.2

ˆN225 0.1598 0.1783 50.0003 0.4635 0.0134 0.0204 -14280.2
ˆTWII 0.4482 0.1525 49.9867 0.8642 0.0175 0.0118 -15341.6
ˆFCHI 0.1944 0.1605 50.0035 0.6316 0.0179 0.0166 -14662.6
EEM 0.3599 0.2104 49.9943 0.6441 0.0278 0.0242 -13138.7
EZU 0.3212 0.1869 50.0195 0.6386 0.0244 0.023 -13747

ALV.DE 0.3207 0.2047 49.871 0.6535 0.0315 0.0247 -13163.5
BAS.DE 0.1836 0.2042 50.0033 0.5268 0.0214 0.0211 -13476.2

BAYN.DE 0.26 0.2038 50.0043 0.5413 0.0192 0.0198 -13565.3
BMW.DE 0.2402 0.2384 50.0021 0.5905 0.0253 0.0203 -12839.6
DAI.DE 0.2806 0.2473 49.9988 0.5818 0.0276 0.0256 -12500.8
DBK.DE 0.169 0.25 55.7234 0.6031 0.036 0.0294 -12035.3
DTE.DE 0.2492 0.1726 50.0066 0.7327 0.0228 0.0136 -14445.7
LIN.DE 0.3453 0.1769 50.0049 0.6629 0.0215 0.0173 -14206.6
SAP.DE 0.4452 0.1695 50.0027 0.8046 0.0266 0.0145 -14449.7
SIE.DE -0.0068 0.2167 35.3925 0.3506 0.021 0.032 -13392.9

AAPL 0.47 0.2662 49.9925 0.5572 0.025 0.0233 -12334.7
BA 0.2921 0.2098 50.0077 0.5896 0.0214 0.0213 -13435.9
DIS 0.2569 0.1857 49.9987 0.5918 0.0222 0.0191 -13904.8
GS 0.2115 0.2371 49.9977 0.5425 0.029 0.0304 -12429.9
HD 0.2029 0.2041 50.0032 0.6195 0.0228 0.0163 -13675.5
IBM 0.295 0.155 50.0037 0.6758 0.017 0.0147 -14972.5

MMM 0.3732 0.1539 49.9957 0.692 0.0185 0.016 -14903.6
NKE 0.2266 0.179 50.0048 0.5891 0.025 0.0189 -13954.1
TRV 0.309 0.1712 49.9782 0.6455 0.0269 0.0196 -14071.2
UNH 0.0539 0.2148 49.9909 0.4201 0.0218 0.0279 -13083.5

Table A.2: Parameters of Kou model estimated by ECF using presumed initial values
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.3238 0.1188 49.9888 0.7559 0.0183 0.013 -16039.7
ˆFTSE 0.1124 0.113 74.3454 0.52 0.0122 0.0135 -15741.4

ˆGDAXI 0.4478 0.159 50.0997 0.8219 0.023 0.0137 -14873.6
ˆGSPC 0.2742 0.1248 50.6269 0.6547 0.0172 0.0156 -15688
ˆHSI 0.3161 0.169 49.9795 0.6935 0.0217 0.0171 -14379.9

ˆN225 -0.0229 0.1877 50.0967 0.2342 0.01 0.03 -14261.5
ˆTWII 0.2843 0.1507 49.9994 0.6462 0.0117 0.0137 -15347.7
ˆFCHI 0.3417 0.1651 49.53 0.7947 0.0237 0.0144 -14660.4
EEM 0.3646 0.2106 49.9683 0.648 0.0279 0.0241 -13138.5
EZU 0.2857 0.1704 27.3319 0.5176 0.8957 0.6149 -12849.6

ALV.DE 0.3883 0.1875 72.2725 0.6547 0.0263 0.0209 -13182.8
BAS.DE 0.1837 0.2042 49.9891 0.5269 0.0214 0.0211 -13476.2

BAYN.DE 0.26 0.2039 49.9911 0.5414 0.0192 0.0198 -13565.3
BMW.DE 0.4671 0.2057 121.652 0.656 0.019 0.0139 -12866.7
DAI.DE 0.367 0.2467 57.0994 0.637 0.0264 0.0217 -12503.5
DBK.DE 0.169 0.25 55.7152 0.6031 0.036 0.0294 -12035.3
DTE.DE 0.2072 0.1749 43.8382 0.7041 0.0229 0.0146 -14444.6
LIN.DE 0.3453 0.1769 49.9928 0.6629 0.0215 0.0173 -14206.6
SAP.DE 0.3573 0.1774 34.8366 0.7824 0.0298 0.0169 -14448.4
SIE.DE -0.0851 0.2081 49.8768 0.3123 0.0177 0.0287 -13400.3

AAPL 0.5727 0.2275 133.8625 0.5697 0.0172 0.0156 -12362.3
BA 0.8393 0.174 151.244 0.7574 0.0169 0.0117 -13451.2
DIS 0.2611 0.1839 52.7572 0.5921 0.0217 0.0187 -13907.3
GS 0.2319 0.2515 33.5552 0.5812 0.0385 0.0362 -12410.8
HD 0.2225 0.2012 55.85 0.6297 0.022 0.0156 -13682.1
IBM 0.3468 0.126 111.8565 0.618 0.0122 0.0115 -15003.1

MMM 0.4185 0.1295 94.1993 0.6385 0.014 0.0132 -14938.5
NKE 0.2265 0.179 49.9948 0.5891 0.025 0.0189 -13954.1
TRV 0.1927 0.2004 17.3608 0.585 0.0442 0.0353 -13970.8
UNH 0.0665 0.2176 46.0218 0.4265 0.0227 0.0289 -13082.1

Table A.3: Parameters of Kou model estimated by ECF using CMM initial values
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.3334 0.0721 196.9474 0.5926 0.0085 0.0083 -16138.5
ˆFTSE 0.0012 0.0886 196.4289 0.4307 0.0074 0.0096 -15758.5

ˆGDAXI 0.0091 0.0644 425.5452 0.415 0.0061 0.0082 -14925.3
ˆGSPC -0.0029 0.0797 193.6681 0.4071 0.0077 0.011 -15744.9
ˆHSI -0.0057 0.047 472.2244 0.437 0.0069 0.0086 -14454.5

ˆN225 0.2693 0.1736 64.0486 0.5667 0.0138 0.0164 -14282.6
ˆTWII 0.2505 0.0842 276.7152 0.4721 0.0064 0.0087 -15449.3
ˆFCHI 0.3886 0.1291 152.0699 0.637 0.0114 0.0104 -14682.3
EEM 0.5878 0.1814 94.2968 0.7029 0.0245 0.0178 -13159.6
EZU 0.6291 0.1335 162.5869 0.6665 0.0153 0.0131 -13806.7

ALV.DE 0.3548 0.1586 127.2283 0.6042 0.02 0.0166 -13198.1
BAS.DE 0.3607 0.1675 129.8124 0.5847 0.0157 0.0141 -13496.5

BAYN.DE 0.1817 0.1662 137.8326 0.4968 0.0137 0.0138 -13579.2
BMW.DE -0.0095 0.1498 282.9089 0.471 0.0117 0.0121 -12881
DAI.DE 0.3286 0.1846 192.9819 0.5493 0.0155 0.0146 -12518.1
DBK.DE 0.135 0.2122 108.5138 0.5584 0.0254 0.0226 -12054
DTE.DE -0.1414 0.1321 163.0684 0.4204 0.0103 0.0116 -14477
LIN.DE 0.4087 0.1474 116.7132 0.6281 0.0151 0.0126 -14224.7
SAP.DE 0.1308 0.1604 66.5168 0.4733 0.0145 0.0171 -14467.5
SIE.DE -0.0008 0.1881 81.692 0.4191 0.0169 0.0203 -13408.5

AAPL 0.0076 0.1767 279.3681 0.4009 0.0116 0.0144 -12371.2
BA 0.3177 0.1714 144.0375 0.543 0.0134 0.0137 -13459.9
DIS 0.2356 0.1571 108.3727 0.5501 0.0158 0.0144 -13925.5
GS 0.2482 0.2053 89.7066 0.552 0.0252 0.0236 -12447.2
HD 0.0036 0.1232 260.2979 0.4919 0.0109 0.0104 -13747.4
IBM -0.0015 0.1221 135.2217 0.4031 0.0095 0.0127 -15014

MMM 0.0037 0.111 175.2258 0.3821 0.0086 0.0127 -14946
NKE 0.3516 0.1449 130.3912 0.6065 0.0162 0.0128 -13976.8
TRV 0.1665 0.1401 94.9343 0.5127 0.018 0.0177 -14108.1
UNH -0.0011 0.1915 84.0531 0.4573 0.0197 0.0219 -13091.3

Table A.4: Parameters of Kou model estimated by MLE using presumed initial values
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.3333 0.0721 196.8636 0.5926 0.0085 0.0083 -16138.5
ˆFTSE 0.1194 0.0906 181.2644 0.4947 0.008 0.0093 -15763

ˆGDAXI 0.323 0.0719 376.269 0.5146 0.007 0.0078 -14934
ˆGSPC 0.3813 0.0799 175.7985 0.6028 0.0098 0.0095 -15769.3
ˆHSI -0.2046 0.051 462.2152 0.3856 0.0066 0.0092 -14448.3

ˆN225 0.2692 0.1736 64.0384 0.5667 0.0138 0.0164 -14282.6
ˆTWII 0.3853 0.1878 70.551 0.9999 0.0001 0.0032 -14999.6
ˆFCHI -0.0113 0.1161 212.1964 0.4391 0.0084 0.0107 -14675.5
EEM 0.5878 0.1814 94.279 0.7028 0.0245 0.0179 -13159.6
EZU 0.6292 0.1335 162.581 0.6665 0.0153 0.0131 -13806.7

ALV.DE 0.3548 0.1586 127.2282 0.6042 0.02 0.0166 -13198.1
BAS.DE 0.3604 0.1675 129.9117 0.5846 0.0157 0.0141 -13496.5

BAYN.DE 0.1817 0.1662 137.8418 0.4968 0.0137 0.0138 -13579.2
BMW.DE 0.2569 0.149 285.598 0.5374 0.0123 0.0114 -12882.2
DAI.DE 0.3286 0.1846 193.0212 0.5493 0.0155 0.0146 -12518.1
DBK.DE 0.0013 0.2126 107.2625 0.519 0.0245 0.0235 -12053.3
DTE.DE -0.1414 0.1321 163.0685 0.4204 0.0103 0.0116 -14477
LIN.DE 0.1908 0.1494 109.0629 0.5227 0.0139 0.014 -14221.7
SAP.DE 0.1308 0.1604 66.5168 0.4733 0.0145 0.0171 -14467.5
SIE.DE -0.0997 0.1869 85.8004 0.3746 0.0161 0.0209 -13409

AAPL 0.2445 0.1817 255.932 0.4536 0.0125 0.0142 -12371.8
BA 0.2655 0.1706 146.506 0.5204 0.013 0.0139 -13459.8
DIS 0.2356 0.1571 108.3727 0.5501 0.0158 0.0144 -13925.5
GS 0.2482 0.2053 89.7065 0.552 0.0252 0.0236 -12447.2
HD 0.2169 0.1242 259.7438 0.5561 0.0116 0.0099 -13748.8
IBM -0.0054 0.122 135.5647 0.4011 0.0095 0.0127 -15014

MMM 0.203 0.1143 151.2892 0.4772 0.0098 0.0122 -14948.8
NKE 0.3516 0.1449 130.3723 0.6065 0.0162 0.0128 -13976.8
TRV 0.1665 0.1401 94.932 0.5127 0.018 0.0177 -14108.1
UNH 0.2962 0.1881 89.66 0.5787 0.0214 0.0192 -13095.9

Table A.5: Parameters of Kou model estimated by MLE using CMM initial values
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.3334 0.0721 196.9475 0.5926 0.0085 0.0083 -16138.5
ˆFTSE 0.2525 0.0919 172.5455 0.5676 0.0088 0.0089 -15764.9

ˆGDAXI 0.4203 0.0688 387.4424 0.5426 0.0071 0.0076 -14934.7
ˆGSPC 0.3813 0.0799 175.7961 0.6028 0.0098 0.0095 -15769.3
ˆHSI 0.0351 0.0479 462.51 0.4484 0.007 0.0085 -14454.7

ˆN225 0.2693 0.1736 64.0491 0.5667 0.0138 0.0164 -14282.6
ˆTWII 0.2506 0.0842 276.9188 0.4721 0.0064 0.0087 -15449.3
ˆFCHI 0.3889 0.129 152.2731 0.637 0.0114 0.0104 -14682.3
EEM 0.588 0.1814 94.3161 0.703 0.0245 0.0178 -13159.6
EZU 0.6293 0.1335 162.5646 0.6665 0.0153 0.0131 -13806.7

ALV.DE 0.3548 0.1586 127.2283 0.6042 0.02 0.0166 -13198.1
BAS.DE 0.3606 0.1675 129.8421 0.5847 0.0157 0.0141 -13496.5

BAYN.DE 0.1817 0.1662 137.8383 0.4968 0.0137 0.0138 -13579.2
BMW.DE 0.2569 0.149 285.5978 0.5374 0.0123 0.0114 -12882.2
DAI.DE 0.3286 0.1846 193.0213 0.5493 0.0155 0.0146 -12518.1
DBK.DE 0.135 0.2122 108.5136 0.5584 0.0254 0.0226 -12054
DTE.DE -0.1414 0.1321 163.0683 0.4204 0.0103 0.0116 -14477
LIN.DE 0.4088 0.1475 116.6847 0.6281 0.0151 0.0126 -14224.7
SAP.DE 0.1308 0.1604 66.5168 0.4733 0.0145 0.0171 -14467.5
SIE.DE -0.0997 0.1869 85.8005 0.3746 0.0161 0.0209 -13409

AAPL 0.2461 0.1819 255.3139 0.4539 0.0125 0.0142 -12371.8
BA 0.3177 0.1714 144.0375 0.543 0.0134 0.0137 -13459.9
DIS 0.2356 0.1571 108.3727 0.5501 0.0158 0.0144 -13925.5
GS 0.2482 0.2053 89.7066 0.552 0.0252 0.0236 -12447.2
HD 0.2169 0.1242 259.768 0.5561 0.0116 0.0099 -13748.8
IBM -0.0054 0.122 135.5647 0.4011 0.0095 0.0127 -15014

MMM 0.2045 0.1144 150.871 0.4775 0.0098 0.0122 -14948.8
NKE 0.3515 0.1449 130.342 0.6065 0.0162 0.0128 -13976.8
TRV 0.1665 0.1401 94.9341 0.5127 0.018 0.0177 -14108.1
UNH 0.294 0.1884 89.1463 0.5781 0.0215 0.0192 -13095.9

Table A.6: Parameters of Kou model estimated by ECF and MLE using presumed
initial values
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Symbol µ σ λ p η+ η− AIC

ˆDJI 0.3334 0.0722 196.8558 0.5926 0.0085 0.0083 -16138.5
ˆFTSE 0.2524 0.0919 172.437 0.5676 0.0088 0.0089 -15764.9

ˆGDAXI 0.4203 0.0688 387.2564 0.5427 0.0071 0.0076 -14934.7
ˆGSPC 0.3812 0.0799 175.8698 0.6027 0.0098 0.0095 -15769.3
ˆHSI 0.0438 0.0499 457.778 0.4489 0.007 0.0086 -14454.5

ˆN225 0.2693 0.1736 64.0409 0.5667 0.0138 0.0164 -14282.6
ˆTWII 0.2507 0.0842 276.8754 0.4721 0.0064 0.0087 -15449.3
ˆFCHI 0.3886 0.1291 152.07 0.637 0.0114 0.0104 -14682.3
EEM 0.5878 0.1814 94.2968 0.7029 0.0245 0.0178 -13159.6
EZU 0.6292 0.1335 162.5817 0.6665 0.0153 0.0131 -13806.7

ALV.DE 0.3548 0.1586 127.2284 0.6042 0.02 0.0166 -13198.1
BAS.DE 0.3606 0.1675 129.8421 0.5847 0.0157 0.0141 -13496.5

BAYN.DE 0.1817 0.1662 137.8422 0.4968 0.0137 0.0138 -13579.2
BMW.DE 0.2569 0.149 285.5979 0.5374 0.0123 0.0114 -12882.2
DAI.DE 0.3286 0.1846 192.982 0.5493 0.0155 0.0146 -12518.1
DBK.DE 0.135 0.2122 108.5136 0.5584 0.0254 0.0226 -12054
DTE.DE -0.1414 0.1321 163.0689 0.4204 0.0103 0.0116 -14477
LIN.DE 0.4087 0.1474 116.7129 0.6281 0.0151 0.0126 -14224.7
SAP.DE 0.1308 0.1604 66.5168 0.4733 0.0145 0.0171 -14467.5
SIE.DE -0.0998 0.1869 85.8207 0.3746 0.0161 0.0209 -13409

AAPL 0.2444 0.1817 255.9394 0.4536 0.0125 0.0142 -12371.8
BA 0.3177 0.1714 144.0374 0.543 0.0134 0.0137 -13459.9
DIS 0.2356 0.1571 108.3727 0.5501 0.0158 0.0144 -13925.5
GS 0.2482 0.2053 89.7066 0.552 0.0252 0.0236 -12447.2
HD 0.2169 0.1242 259.7675 0.5561 0.0116 0.0099 -13748.8
IBM -0.0054 0.122 135.5647 0.4011 0.0095 0.0127 -15014

MMM 0.2045 0.1144 150.8712 0.4775 0.0098 0.0122 -14948.8
NKE 0.3516 0.1449 130.3867 0.6065 0.0162 0.0128 -13976.8
TRV 0.1666 0.1401 94.9245 0.5128 0.018 0.0177 -14108.1
UNH 0.2939 0.1884 89.118 0.5781 0.0215 0.0193 -13095.9

Table A.7: Parameters of Kou model estimated by ECF and MLE using CMM initial
values
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Symbol µ σ λ µj σj AIC

ˆDJI 0.1628 0.0965 49.9778 -0.0024 0.022 -16061.9
ˆFTSE 0.1198 0.1091 49.9713 -0.0018 0.0221 -15711.9

ˆGDAXI 0.2325 0.1403 49.9823 -0.0033 0.0236 -14875.5
ˆGSPC 0.1861 0.1031 49.9766 -0.0026 0.0243 -15698.8
ˆHSI 0.1879 0.1528 49.984 -0.003 0.0267 -14383

ˆN225 0.2545 0.1605 49.9804 -0.0036 0.0253 -14248.6
ˆTWII 0.2714 0.1375 49.9711 -0.0044 0.0195 -15402.9
ˆFCHI 0.1317 0.1459 49.9842 -0.0028 0.0248 -14651.8
EEM 0.2481 0.1934 50.0021 -0.0038 0.0353 -13124.5
EZU 0.2594 0.1728 49.9951 -0.005 0.0314 -13767.8

ALV.DE 0.1805 0.1861 50.001 -0.0033 0.0371 -13160.3
BAS.DE 0.1637 0.1882 50.0016 -0.0007 0.0306 -13469.8

BAYN.DE 0.2443 0.1887 49.9959 -0.0016 0.0285 -13542.7
BMW.DE 0.1416 0.2234 50.0057 -0.0002 0.0323 -12849.4
DAI.DE 0.2258 0.2362 50.0102 -0.0026 0.035 -12491.6
DBK.DE 0.0379 0.2384 50.0062 -0.0023 0.0451 -12024.2
DTE.DE 0.0496 0.1541 49.9927 -0.0005 0.0248 -14445.3
LIN.DE 0.2224 0.1592 49.9874 -0.0021 0.0276 -14201.3
SAP.DE 0.2069 0.1495 49.9842 -0.0024 0.0257 -14425
SIE.DE 0.1022 0.1901 49.9994 0.0004 0.0308 -13371

AAPL 0.4184 0.2523 50.0117 -0.0011 0.0342 -12344.9
BA 0.2691 0.1998 50.0005 -0.0035 0.0287 -13448.6
DIS 0.177 0.1683 49.9929 -0.001 0.0296 -13905.8
GS 0.1751 0.2608 20.031 -0.0067 0.0627 -12386.5
HD 0.0746 0.1879 49.9993 0.0005 0.028 -13710.3
IBM 0.1919 0.138 49.9715 -0.0024 0.0234 -14997.6

MMM 0.2605 0.1355 49.9846 -0.0032 0.025 -14926.4
NKE 0.1207 0.1596 49.996 0.0005 0.0309 -13939.3
TRV 0.166 0.1505 49.9922 -0.0011 0.0317 -14060.6
UNH 0.1477 0.1976 49.9985 -0.0003 0.0344 -13049.2

Table A.8: Parameters of Merton model estimated by ECF using presumed initial
values
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Symbol µ σ λ µj σj AIC

ˆDJI 0.1266 0.136 15.5154 -0.0055 0.032 -15957.4
ˆFTSE 0.1 0.1371 22.2441 -0.0031 0.0284 -15683.3

ˆGDAXI 0.1914 0.1683 20.0096 -0.0063 0.0314 -14855.3
ˆGSPC 0.1564 0.139 20.684 -0.0051 0.0323 -15618.7
ˆHSI 0.1675 0.1716 30.9204 -0.0043 0.0312 -14363.5

ˆN225 0.1986 0.1967 12.955 -0.0112 0.04 -14265.5
ˆTWII 0.6403 0.0871 254.3634 -0.0023 0.0105 -14915.4
ˆFCHI 0.1085 0.1663 27.9882 -0.0042 0.0297 -14648.9
EEM 0.2246 0.2201 27.8195 -0.0064 0.0446 -13113.1
EZU 0.2339 0.1916 33.2504 -0.0069 0.0362 -13741.3

ALV.DE 0.1697 0.2031 36.7402 -0.0042 0.042 -13155.9
BAS.DE 0.1615 0.232 11.4894 -0.0026 0.0567 -13423.3

BAYN.DE 0.2393 0.1995 37.3982 -0.002 0.0315 -13547.6
BMW.DE 0.1428 0.241 30.8547 -0.0003 0.0385 -12837.2
DAI.DE 0.2115 0.2568 29.2921 -0.004 0.0431 -12490.2
DBK.DE 0.0288 0.2641 30.988 -0.0035 0.0565 -12016.5
DTE.DE 0.0453 0.1946 9.5679 -0.0013 0.0461 -14398.5
LIN.DE 0.1919 0.203 11.3028 -0.0073 0.0484 -14149.6
SAP.DE 0.1778 0.1798 19.5716 -0.0048 0.0354 -14447.2
SIE.DE 0.1198 0.2279 15.339 0.0005 0.0499 -13370.1

AAPL 0.4044 0.293 9.3209 -0.0044 0.1747 -12179
BA 0.3287 0.147 123.2947 -0.0019 0.0218 -13355.5
DIS 0.1707 0.2007 20.4466 -0.0019 0.0414 -13878.1
GS 0.1751 0.2608 20.0427 -0.0067 0.0626 -12386.6
HD 0.0825 0.2103 25.1404 0.001 0.0356 -13666.3
IBM 0.168 0.1613 24.334 -0.0041 0.0293 -14966.8

MMM 0.2604 0.1355 49.922 -0.0032 0.0251 -14926.4
NKE 0.1245 0.1737 37.4945 0.0007 0.0343 -13944.8
TRV 0.158 0.1929 18.2324 -0.0022 0.0479 -13998.8
UNH 0.1538 0.2313 21.3682 -0.001 0.0489 -13057.6

Table A.9: Parameters of Merton model estimated by ECF using CMM initial values
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Symbol µ σ λ µj σj AIC

ˆDJI 0.204 0.0971 66.6324 -0.0022 0.0189 -16081.5
ˆFTSE 0.1752 0.1134 59.3609 -0.0023 0.0197 -15727.4

ˆGDAXI 0.2572 0.1439 52.6966 -0.0031 0.0227 -14878.5
ˆGSPC 0.2418 0.1042 64.0499 -0.0029 0.0212 -15715.7
ˆHSI 0.2538 0.1479 60.5474 -0.0032 0.0253 -14386

ˆN225 0.2184 0.1865 23.9427 -0.0066 0.0325 -14273.3
ˆTWII 0.3411 0.1201 66.7075 -0.0043 0.0187 -15424
ˆFCHI 0.1864 0.1541 46.8014 -0.0036 0.0246 -14657.6
EEM 0.2674 0.2 42.6912 -0.004 0.0401 -13129.4
EZU 0.2884 0.1622 60.9128 -0.004 0.0298 -13772.2

ALV.DE 0.1369 0.1901 48.1391 -0.001 0.0395 -13163.6
BAS.DE 0.235 0.1944 44.9435 -0.0022 0.0327 -13472.3

BAYN.DE 0.2073 0.2027 34.5214 -0.0004 0.0347 -13550.5
BMW.DE 0.1415 0.2152 57.5933 0.0002 0.0315 -12850.9
DAI.DE 0.2002 0.2435 41.5244 -0.0013 0.0393 -12494.6
DBK.DE 0.0139 0.2422 46.5493 -0.0005 0.0493 -12027.4
DTE.DE 0.03 0.162 44.9109 0.0003 0.0262 -14448.9
LIN.DE 0.2098 0.1696 41.3354 -0.0015 0.0298 -14205.4
SAP.DE 0.1754 0.1728 27.8741 -0.0027 0.0327 -14451.4
SIE.DE 0.0987 0.2086 31.2722 -0.0001 0.0397 -13384.1

AAPL 0.4442 0.2423 56.1273 -0.0016 0.0342 -12347
BA 0.2772 0.1948 51.5347 -0.0028 0.0292 -13450
DIS 0.1601 0.1748 45.6433 -0.0002 0.0309 -13907.8
GS 0.1673 0.2291 41.1033 -0.0017 0.0492 -12412.2
HD 0.0664 0.1717 64.2284 0.001 0.0266 -13719.5
IBM 0.1553 0.1391 50.6664 -0.0016 0.0233 -14998.5

MMM 0.2622 0.1369 52.6817 -0.003 0.0242 -14927.5
NKE 0.1678 0.1723 44.6095 0.0001 0.032 -13947.2
TRV 0.1644 0.1569 45.9636 -0.0005 0.0355 -14066.7
UNH 0.1519 0.2164 31.8868 -0.0011 0.0454 -13066.4

Table A.10: Parameters of Merton model estimated by MLE using presumed initial
values
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Symbol µ σ λ µj σj AIC

ˆDJI 0.204 0.0971 66.6324 -0.0022 0.0189 -16081.5
ˆFTSE 0.1752 0.1134 59.3609 -0.0023 0.0197 -15727.4

ˆGDAXI 0.2572 0.1439 52.6966 -0.0031 0.0227 -14878.5
ˆGSPC 0.2418 0.1042 64.0499 -0.0029 0.0212 -15715.7
ˆHSI 0.2538 0.1479 60.5474 -0.0032 0.0253 -14386

ˆN225 0.2184 0.1865 23.9427 -0.0066 0.0325 -14273.3
ˆTWII 0.3411 0.1201 66.7075 -0.0043 0.0187 -15424
ˆFCHI 0.1864 0.1541 46.8015 -0.0036 0.0246 -14657.6
EEM 0.2674 0.2 42.6912 -0.004 0.0401 -13129.4
EZU 0.2884 0.1622 60.9129 -0.004 0.0298 -13772.2

ALV.DE 0.1369 0.1901 48.1391 -0.001 0.0395 -13163.6
BAS.DE 0.235 0.1944 44.9435 -0.0022 0.0327 -13472.3

BAYN.DE 0.2073 0.2027 34.5214 -0.0004 0.0347 -13550.5
BMW.DE 0.1415 0.2152 57.5933 0.0002 0.0315 -12850.9
DAI.DE 0.2002 0.2435 41.5244 -0.0013 0.0393 -12494.6
DBK.DE 0.0139 0.2422 46.5493 -0.0005 0.0493 -12027.4
DTE.DE 0.03 0.162 44.9109 0.0003 0.0262 -14448.9
LIN.DE 0.2098 0.1696 41.3354 -0.0015 0.0298 -14205.4
SAP.DE 0.1754 0.1728 27.8741 -0.0027 0.0327 -14451.4
SIE.DE 0.0987 0.2086 31.2722 -0.0001 0.0397 -13384.1

AAPL 0.4442 0.2423 56.1273 -0.0016 0.0342 -12347
BA 0.2772 0.1948 51.5346 -0.0028 0.0292 -13450
DIS 0.1601 0.1748 45.6433 -0.0002 0.0309 -13907.8
GS 0.1673 0.2291 41.1033 -0.0017 0.0492 -12412.2
HD 0.0664 0.1717 64.2284 0.001 0.0266 -13719.5
IBM 0.1553 0.1391 50.6664 -0.0016 0.0233 -14998.5

MMM 0.2622 0.1369 52.6817 -0.003 0.0242 -14927.5
NKE 0.1678 0.1723 44.6095 0.0001 0.032 -13947.2
TRV 0.1644 0.1569 45.9636 -0.0005 0.0355 -14066.7
UNH 0.1519 0.2164 31.8868 -0.0011 0.0454 -13066.4

Table A.11: Parameters of Merton model estimated by MLE using CMM initial values
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Symbol µ σ λ µj σj AIC

ˆDJI 0.204 0.0971 66.6323 -0.0022 0.0189 -16081.5
ˆFTSE 0.1752 0.1134 59.3609 -0.0023 0.0197 -15727.4

ˆGDAXI 0.2572 0.1439 52.6966 -0.0031 0.0227 -14878.5
ˆGSPC 0.2418 0.1042 64.0499 -0.0029 0.0212 -15715.7
ˆHSI 0.2538 0.1479 60.5474 -0.0032 0.0253 -14386

ˆN225 0.2184 0.1865 23.9427 -0.0066 0.0325 -14273.3
ˆTWII 0.3411 0.1201 66.7075 -0.0043 0.0187 -15424
ˆFCHI 0.1864 0.1541 46.8015 -0.0036 0.0246 -14657.6
EEM 0.2674 0.2 42.6912 -0.004 0.0401 -13129.4
EZU 0.2884 0.1622 60.9128 -0.004 0.0298 -13772.2

ALV.DE 0.1369 0.1901 48.1391 -0.001 0.0395 -13163.6
BAS.DE 0.235 0.1944 44.9435 -0.0022 0.0327 -13472.3

BAYN.DE 0.2073 0.2027 34.5214 -0.0004 0.0347 -13550.5
BMW.DE 0.1415 0.2152 57.5933 0.0002 0.0315 -12850.9
DAI.DE 0.2002 0.2435 41.5244 -0.0013 0.0393 -12494.6
DBK.DE 0.0139 0.2422 46.5493 -0.0005 0.0493 -12027.4
DTE.DE 0.03 0.162 44.9109 0.0003 0.0262 -14448.9
LIN.DE 0.2098 0.1696 41.3354 -0.0015 0.0298 -14205.4
SAP.DE 0.1754 0.1728 27.8741 -0.0027 0.0327 -14451.4
SIE.DE 0.0987 0.2086 31.2722 -0.0001 0.0397 -13384.1

AAPL 0.4442 0.2423 56.1273 -0.0016 0.0342 -12347
BA 0.2772 0.1948 51.5347 -0.0028 0.0292 -13450
DIS 0.1601 0.1748 45.6433 -0.0002 0.0309 -13907.8
GS 0.1673 0.2291 41.1033 -0.0017 0.0492 -12412.2
HD 0.0664 0.1717 64.2284 0.001 0.0266 -13719.5
IBM 0.1553 0.1391 50.6664 -0.0016 0.0233 -14998.5

MMM 0.2622 0.1369 52.6818 -0.003 0.0242 -14927.5
NKE 0.1678 0.1723 44.6095 0.0001 0.032 -13947.2
TRV 0.1644 0.1569 45.9636 -0.0005 0.0355 -14066.7
UNH 0.1519 0.2164 31.8868 -0.0011 0.0454 -13066.4

Table A.12: Parameters of Merton model estimated by ECF and MLE using presumed
initial values



78

Symbol µ σ λ µj σj AIC

ˆDJI 0.204 0.0971 66.6324 -0.0022 0.0189 -16081.5
ˆFTSE 0.1752 0.1134 59.3609 -0.0023 0.0197 -15727.4

ˆGDAXI 0.2572 0.1439 52.6966 -0.0031 0.0227 -14878.5
ˆGSPC 0.2418 0.1042 64.0499 -0.0029 0.0212 -15715.7
ˆHSI 0.2538 0.1479 60.5475 -0.0032 0.0253 -14386

ˆN225 0.2184 0.1865 23.9427 -0.0066 0.0325 -14273.3
ˆTWII 0.3411 0.1201 66.7075 -0.0043 0.0187 -15424
ˆFCHI 0.1864 0.1541 46.8015 -0.0036 0.0246 -14657.6
EEM 0.2674 0.2 42.6912 -0.004 0.0401 -13129.4
EZU 0.2884 0.1622 60.9128 -0.004 0.0298 -13772.2

ALV.DE 0.1369 0.1901 48.1391 -0.001 0.0395 -13163.6
BAS.DE 0.235 0.1944 44.9435 -0.0022 0.0327 -13472.3

BAYN.DE 0.2073 0.2027 34.5214 -0.0004 0.0347 -13550.5
BMW.DE 0.1415 0.2152 57.5933 0.0002 0.0315 -12850.9
DAI.DE 0.2002 0.2435 41.5244 -0.0013 0.0393 -12494.6
DBK.DE 0.0139 0.2422 46.5493 -0.0005 0.0493 -12027.4
DTE.DE 0.03 0.162 44.9109 0.0003 0.0262 -14448.9
LIN.DE 0.2098 0.1696 41.3355 -0.0015 0.0298 -14205.4
SAP.DE 0.1754 0.1728 27.8741 -0.0027 0.0327 -14451.4
SIE.DE 0.0987 0.2086 31.2722 -0.0001 0.0397 -13384.1

AAPL 0.4442 0.2423 56.1273 -0.0016 0.0342 -12347
BA 0.2772 0.1948 51.5347 -0.0028 0.0292 -13450
DIS 0.1601 0.1748 45.6433 -0.0002 0.0309 -13907.8
GS 0.1673 0.2291 41.1033 -0.0017 0.0492 -12412.2
HD 0.0664 0.1717 64.2284 0.001 0.0266 -13719.5
IBM 0.1553 0.1391 50.6664 -0.0016 0.0233 -14998.5

MMM 0.2622 0.1369 52.6817 -0.003 0.0242 -14927.5
NKE 0.1678 0.1723 44.6095 0.0001 0.032 -13947.2
TRV 0.1644 0.1569 45.9636 -0.0005 0.0355 -14066.7
UNH 0.1519 0.2164 31.8868 -0.0011 0.0454 -13066.4

Table A.13: Parameters of Merton model estimated by ECF and MLE using CMM
initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.3924 0.0961 49.9453 -0.0162 0.0168 -16046.4
ˆFTSE 0.3513 0.1102 49.9516 -0.0156 0.0167 -15714.7

ˆGDAXI 0.4662 0.1384 49.9574 -0.0178 0.0181 -14878.7
ˆGSPC 0.4202 0.103 49.9647 -0.0174 0.0186 -15687.9
ˆHSI 0.4234 0.1516 49.969 -0.0188 0.0208 -14399.3

ˆN225 0.4898 0.1593 49.9738 -0.0188 0.0194 -14236.3
ˆTWII 0.4923 0.1338 49.9489 -0.017 0.0146 -15412.9
ˆFCHI 0.3672 0.1449 49.9679 -0.0179 0.0191 -14666.1
EEM 0.4765 0.1923 49.9977 -0.0225 0.0284 -13136
EZU 0.49 0.1698 49.9888 -0.0224 0.0249 -13766

ALV.DE 0.4028 0.1853 49.9925 -0.0224 0.0302 -13158.9
BAS.DE 0.3996 0.1909 49.9884 -0.0179 0.0242 -13480

BAYN.DE 0.4849 0.1903 49.9862 -0.0181 0.0223 -13550.3
BMW.DE 0.3805 0.2258 49.998 -0.0182 0.0257 -12847
DAI.DE 0.4642 0.2363 50.0007 -0.0215 0.0281 -12498
DBK.DE 0.1174 0.2697 26.8069 -0.029 0.0524 -12003.3
DTE.DE 0.2845 0.1567 49.9733 -0.0155 0.0192 -14441.5
LIN.DE 0.4596 0.16 49.9777 -0.0182 0.0216 -14199.4
SAP.DE 0.4427 0.1491 49.9685 -0.0179 0.02 -14408.5
SIE.DE 0.3364 0.1946 49.9909 -0.0167 0.0242 -13351.5

AAPL 0.664 0.2541 50.0159 -0.0199 0.0272 -12333.8
BA 0.5091 0.1985 50.0005 -0.0202 0.0225 -13451.1
DIS 0.4117 0.1706 49.9871 -0.0178 0.0233 -13898.5
GS 0.2112 0.2669 15.9436 -0.0349 0.0627 -12368.5
HD 0.3109 0.1914 49.9902 -0.0158 0.022 -13703.4
IBM 0.4278 0.1382 49.9565 -0.0169 0.0178 -14965.2

MMM 0.496 0.1344 49.9612 -0.0183 0.0193 -14902.7
NKE 0.349 0.1637 49.9861 -0.0167 0.0246 -13952.4
TRV 0.3952 0.1525 49.9847 -0.0185 0.0254 -14058.8
UNH 0.3808 0.201 49.9958 -0.0187 0.0274 -13049.7

Table A.14: Parameters of new model estimated by ECF using presumed initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.382 0.0981 47.7773 -0.0164 0.017 -16047.8
ˆFTSE 0.3506 0.1103 49.8413 -0.0156 0.0168 -15714.8

ˆGDAXI 0.4594 0.1394 48.7904 -0.018 0.0182 -14878.8
ˆGSPC 0.4195 0.1032 49.8493 -0.0174 0.0186 -15688.1
ˆHSI 0.42 0.1521 49.3949 -0.0189 0.0209 -14399

ˆN225 0.4927 0.1596 49.9642 -0.0188 0.0193 -14237.1
ˆTWII 0.8298 0.095 116.0681 -0.0132 0.0114 -15363.5
ˆFCHI 0.3621 0.1456 49.0643 -0.0179 0.0193 -14666.6
EEM 0.4719 0.1931 49.2803 -0.0226 0.0286 -13136
EZU 0.482 0.1711 48.7862 -0.0225 0.0251 -13765.2

ALV.DE 0.4028 0.1853 49.9859 -0.0225 0.0302 -13158.9
BAS.DE 0.3993 0.1909 49.935 -0.0179 0.0242 -13479.9

BAYN.DE 0.4848 0.1903 49.978 -0.0181 0.0223 -13550.3
BMW.DE 0.3802 0.2258 49.9502 -0.0182 0.0257 -12847
DAI.DE 0.4639 0.2364 49.9467 -0.0215 0.0281 -12498
DBK.DE 0.1173 0.2697 26.7917 -0.029 0.0524 -12003.2
DTE.DE 0.2836 0.1569 49.7985 -0.0155 0.0192 -14441.6
LIN.DE 0.4585 0.1602 49.792 -0.0182 0.0216 -14199.4
SAP.DE 0.4415 0.1492 49.753 -0.0179 0.02 -14408.9
SIE.DE 0.332 0.1954 49.0939 -0.0168 0.0244 -13351.8

AAPL 0.6639 0.2541 50.0027 -0.0199 0.0272 -12333.8
BA 0.4989 0.1998 48.3685 -0.0203 0.0228 -13451.2
DIS 0.4078 0.1713 49.2536 -0.0178 0.0234 -13898.6
GS 0.2112 0.2669 15.9421 -0.0349 0.0627 -12368.5
HD 0.3109 0.1914 49.9932 -0.0158 0.022 -13703.4
IBM 0.4276 0.1382 49.9331 -0.0169 0.0178 -14965.2

MMM 0.4965 0.1345 49.927 -0.0184 0.0192 -14902.6
NKE 0.3458 0.1644 49.3104 -0.0167 0.0248 -13952.4
TRV 0.391 0.1534 49.2116 -0.0186 0.0255 -14059.1
UNH 0.3707 0.2028 48.074 -0.0189 0.0278 -13049.8

Table A.15: Parameters of new model estimated by ECF using CMM initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.3534 0.0874 96.5037 -0.0103 0.0128 -16093.3
ˆFTSE 0.3228 0.1068 78.5033 -0.0115 0.0138 -15736.2

ˆGDAXI 0.6067 0.1093 136.0062 -0.0109 0.0124 -14901.2
ˆGSPC 0.3814 0.0962 86.0285 -0.0121 0.0148 -15721.4
ˆHSI 0.4585 0.1379 80.553 -0.015 0.0178 -14407.8

ˆN225 0.2934 0.1868 22.983 -0.0247 0.026 -14262.3
ˆTWII 0.4505 0.1217 63.0695 -0.0149 0.0152 -15425.2
ˆFCHI 0.3442 0.1498 54.858 -0.0162 0.018 -14672.4
EEM 0.4373 0.1931 51.2686 -0.0233 0.0293 -13137.7
EZU 0.5066 0.1512 80.8166 -0.0177 0.021 -13776.2

ALV.DE 0.2808 0.1881 52.4162 -0.0211 0.0312 -13163.4
BAS.DE 0.4349 0.1864 58.0473 -0.0184 0.0231 -13481.9

BAYN.DE 0.3826 0.1944 47.695 -0.0177 0.0242 -13552.9
BMW.DE 0.5149 0.1881 111.4163 -0.0144 0.0195 -12859
DAI.DE 0.4869 0.2274 63.6776 -0.0204 0.0263 -12499.2
DBK.DE 0.2057 0.2361 54.2855 -0.0251 0.0376 -12023.3
DTE.DE 0.1842 0.1583 54.5025 -0.0136 0.0195 -14446.3
LIN.DE 0.4195 0.1562 65.7207 -0.0152 0.0194 -14204.1
SAP.DE 0.243 0.1769 22.8471 -0.0224 0.0291 -14443.3
SIE.DE 0.2057 0.2129 27.7015 -0.0231 0.0349 -13363

AAPL 0.7842 0.2274 82.6479 -0.0186 0.0235 -12341.9
BA 0.4308 0.1981 46.7593 -0.0202 0.0244 -13452.7
DIS 0.3205 0.1691 56.5238 -0.0159 0.023 -13901.8
GS 0.3399 0.2219 50.0576 -0.0251 0.036 -12408
HD 0.3666 0.1509 116.3077 -0.0117 0.0169 -13730.6
IBM 0.2539 0.1433 43.7311 -0.0155 0.0205 -14977.2

MMM 0.3591 0.1405 47.0574 -0.017 0.0208 -14911.9
NKE 0.3459 0.1613 63.0072 -0.0154 0.0222 -13956.2
TRV 0.2712 0.1545 51.1499 -0.0179 0.0275 -14065.7
UNH 0.2951 0.2104 38.6419 -0.0236 0.0339 -13057.4

Table A.16: Parameters of new model estimated by MLE using presumed initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.2347 0.0924 80.2538 -0.0107 0.0141 -16086.8
ˆFTSE 0.3228 0.1068 78.5032 -0.0115 0.0138 -15736.2

ˆGDAXI 0.5674 0.111 130.0557 -0.011 0.0126 -14900.9
ˆGSPC 0.3813 0.0961 86.1469 -0.0121 0.0148 -15721.4
ˆHSI 0.4585 0.1379 80.5526 -0.015 0.0178 -14407.8

ˆN225 0.2934 0.1868 22.983 -0.0247 0.026 -14262.3
ˆTWII 0.4505 0.1217 63.0695 -0.0149 0.0152 -15425.2
ˆFCHI 0.3442 0.1498 54.858 -0.0162 0.018 -14672.4
EEM 0.4373 0.1931 51.2686 -0.0233 0.0293 -13137.7
EZU 0.5066 0.1512 80.8166 -0.0177 0.021 -13776.2

ALV.DE 0.2807 0.1881 52.4003 -0.0211 0.0312 -13163.4
BAS.DE 0.4349 0.1864 58.0473 -0.0184 0.0231 -13481.9

BAYN.DE 0.3826 0.1944 47.6759 -0.0177 0.0242 -13552.9
BMW.DE 0.5149 0.1881 111.4069 -0.0144 0.0195 -12859
DAI.DE 0.4872 0.2274 63.7636 -0.0204 0.0263 -12499.2
DBK.DE 0.2057 0.2361 54.2855 -0.0251 0.0376 -12023.3
DTE.DE 0.1842 0.1583 54.5026 -0.0136 0.0195 -14446.3
LIN.DE 0.4195 0.1562 65.7203 -0.0152 0.0194 -14204.1
SAP.DE 0.243 0.1769 22.8471 -0.0224 0.0291 -14443.3
SIE.DE 0.2452 0.2126 28.1962 -0.0233 0.0345 -13362.7

AAPL 0.7842 0.2274 82.6513 -0.0186 0.0235 -12341.9
BA 0.4308 0.1981 46.7593 -0.0202 0.0244 -13452.7
DIS 0.3205 0.1691 56.5237 -0.0159 0.023 -13901.8
GS 0.3399 0.2219 50.0575 -0.0251 0.036 -12408
HD 0.3668 0.1509 116.3763 -0.0117 0.0169 -13730.6
IBM 0.2539 0.1433 43.7311 -0.0155 0.0205 -14977.2

MMM 0.3591 0.1405 47.0574 -0.017 0.0208 -14911.9
NKE 0.3459 0.1613 63.0072 -0.0154 0.0222 -13956.2
TRV 0.2712 0.1545 51.1501 -0.0179 0.0275 -14065.7
UNH 0.2951 0.2104 38.642 -0.0236 0.0339 -13057.4

Table A.17: Parameters of new model estimated by MLE using CMM initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.3535 0.0874 96.4994 -0.0103 0.0128 -16093.3
ˆFTSE 0.3228 0.1068 78.5032 -0.0115 0.0138 -15736.2

ˆGDAXI 0.6067 0.1093 136.0029 -0.0109 0.0124 -14901.2
ˆGSPC 0.3808 0.0962 85.8644 -0.0121 0.0148 -15721.4
ˆHSI 0.4585 0.1379 80.5629 -0.015 0.0178 -14407.8

ˆN225 0.2934 0.1868 22.9829 -0.0247 0.026 -14262.3
ˆTWII 0.4505 0.1217 63.0694 -0.0149 0.0152 -15425.2
ˆFCHI 0.3442 0.1498 54.858 -0.0162 0.018 -14672.4
EEM 0.4373 0.1931 51.2686 -0.0233 0.0293 -13137.7
EZU 0.5066 0.1512 80.8166 -0.0177 0.021 -13776.2

ALV.DE 0.2807 0.1881 52.4003 -0.0211 0.0312 -13163.4
BAS.DE 0.4349 0.1864 58.0473 -0.0184 0.0231 -13481.9

BAYN.DE 0.3828 0.1944 47.7187 -0.0177 0.0242 -13552.9
BMW.DE 0.5149 0.1881 111.407 -0.0144 0.0195 -12859
DAI.DE 0.487 0.2274 63.6722 -0.0204 0.0263 -12499.2
DBK.DE 0.2057 0.2361 54.2855 -0.0251 0.0376 -12023.3
DTE.DE 0.1842 0.1583 54.5025 -0.0136 0.0195 -14446.3
LIN.DE 0.4196 0.1562 65.741 -0.0152 0.0194 -14204.1
SAP.DE 0.243 0.1769 22.8471 -0.0224 0.0291 -14443.3
SIE.DE 0.2057 0.2129 27.7015 -0.0231 0.0349 -13363

AAPL 0.7842 0.2274 82.6512 -0.0186 0.0235 -12341.9
BA 0.4308 0.1981 46.7593 -0.0202 0.0244 -13452.7
DIS 0.3205 0.1691 56.5237 -0.0159 0.023 -13901.8
GS 0.3399 0.2219 50.0575 -0.0251 0.036 -12408
HD 0.3668 0.1509 116.3763 -0.0117 0.0169 -13730.6
IBM 0.2539 0.1433 43.7309 -0.0155 0.0205 -14977.2

MMM 0.3591 0.1405 47.0574 -0.017 0.0208 -14911.9
NKE 0.3459 0.1613 63.0071 -0.0154 0.0222 -13956.2
TRV 0.2712 0.1545 51.15 -0.0179 0.0275 -14065.7
UNH 0.2951 0.2104 38.6419 -0.0236 0.0339 -13057.4

Table A.18: Parameters of new model estimated by ECF and MLE using presumed
initial values
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Symbol µ σ λ α β AIC

ˆDJI 0.3535 0.0874 96.5662 -0.0103 0.0127 -16093.3
ˆFTSE 0.3228 0.1068 78.5032 -0.0115 0.0138 -15736.2

ˆGDAXI 0.6067 0.1093 136.0063 -0.0109 0.0124 -14901.2
ˆGSPC 0.3813 0.0961 86.1167 -0.0121 0.0148 -15721.4
ˆHSI 0.4585 0.1379 80.5522 -0.015 0.0178 -14407.8

ˆN225 0.2934 0.1868 22.983 -0.0247 0.026 -14262.3
ˆTWII 0.4505 0.1217 63.0695 -0.0149 0.0152 -15425.2
ˆFCHI 0.3442 0.1498 54.8579 -0.0162 0.018 -14672.4
EEM 0.4373 0.1931 51.2686 -0.0233 0.0293 -13137.7
EZU 0.5066 0.1512 80.8166 -0.0177 0.021 -13776.2

ALV.DE 0.2807 0.1881 52.4003 -0.0211 0.0312 -13163.4
BAS.DE 0.4349 0.1864 58.0597 -0.0184 0.0231 -13481.9

BAYN.DE 0.3828 0.1944 47.7182 -0.0177 0.0242 -13552.9
BMW.DE 0.5149 0.1881 111.4017 -0.0144 0.0195 -12859
DAI.DE 0.4872 0.2274 63.7636 -0.0204 0.0263 -12499.2
DBK.DE 0.2057 0.2361 54.2855 -0.0251 0.0376 -12023.3
DTE.DE 0.1842 0.1583 54.5025 -0.0136 0.0195 -14446.3
LIN.DE 0.4196 0.1562 65.741 -0.0152 0.0194 -14204.1
SAP.DE 0.243 0.1769 22.8471 -0.0224 0.0291 -14443.3
SIE.DE 0.2057 0.2129 27.7015 -0.0231 0.0349 -13363

AAPL 0.7842 0.2274 82.6484 -0.0186 0.0235 -12341.9
BA 0.4308 0.1981 46.7593 -0.0202 0.0244 -13452.7
DIS 0.3205 0.1691 56.5237 -0.0159 0.023 -13901.8
GS 0.3399 0.2219 50.0575 -0.0251 0.036 -12408
HD 0.3668 0.1509 116.3763 -0.0117 0.0169 -13730.6
IBM 0.2539 0.1433 43.7317 -0.0155 0.0205 -14977.2

MMM 0.3591 0.1405 47.0574 -0.017 0.0208 -14911.9
NKE 0.3459 0.1613 63.0071 -0.0154 0.0222 -13956.2
TRV 0.2712 0.1545 51.15 -0.0179 0.0275 -14065.7
UNH 0.2951 0.2104 38.6419 -0.0236 0.0339 -13057.4

Table A.19: Parameters of new model estimated by ECF and MLE using CMM initial
values
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List of Notation

Abbreviation

CPPI: constant proportion portfolio insurance.

OBPI: option based portfolio insurance.

CPDO: constant proportion debt obligation.

càdlàg: right continuous, with left limits.

VaR: value at risk.

CVaR: conditional value at risk.

CMM: cumulant matching method.

MLE: maximum likelihood method.

ECF: empirical characteristic function method.

AIC: Akaike information criterion.

Preliminaries

(Ω,F ,P): probability space.

{Ft}t≥0: filtration, which is an increasing sequence of σ-algebras with
Ft ∈ F , ∀t ≥ 0.

τ : stopping time.

∧: infix operator which outputs the minimum of two real scalar
arguments.

E(X): Doléans-Dade exponential of a semimartingale X.

[X1, X2]: quadratic covariation of two semimartingales X1 and X2.

{Jt}t≥0: sequence of i.i.d. random variable which generates the jump
size.

{Nt}t≥0: counting process.

{Yt}t≥0: compound Poisson process which is constructed by N and J .

(µR, σ
2, ν): Lévy R-triplet.

ψ̃Z : cumulant generating function of a random variable Z.
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ci(Z): i-th cumulant of a random variable Z.

CPPI strategy

G: guarantee.

m: multiplier, which offers leverage.

r: riskfree rate.

T : maturity.

y: yield from non-risky asset.

σ: volatility.

Bt: non-risky asset price at time t.

Ct: cushion value at time t.

Pt: discounted guarantee at time t, which forms the floor.

St: risky asset price at time t.

Vt: portfolio value at time t.

Wt: Brownian motion at time t.

αt: the amount of risky investment at time t.

Risk measure

E[X|A]: condtional expectation of X given A.

VaRα: value at risk of the portfolio at the confidence level α.

CVaRα: conditional value at risk of the portfolio at the confidence level
α.

sgn: sign function.

R: operator which acquires the real part from a complex number
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