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There is plenty of room at the bottom.

Richard P. Feynman (1960)
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Introduction

This thesis consists of three parts and is of cumulative type. It contains a presentation of
the results I have obtained in collaboration with my colleagues Peter Borrmann, Oliver
Mülken, Eberhard R. Hilf, and Heinrich Stamerjohanns. This introduction gives a short
overview of the structure of this thesis.

I Introduction to path integral Monte Carlo simulations
and recent advances in nanotechnology

Recently, the words ’nanotechnology’ and ’nanoscience’ have become very popular
and can be found in many articles in scientific and popular magazines that cover current
research.

From a physics point of view, these articles are usually focused on experimental semi-
conductor physics, material physics, or the engineering of tiny mechanical machines.
Biology and chemistry also offer challenging new possibilities which go beyond the
scope of this thesis.

Most of the techniques used to fabricate miniature systems and study them theoret-
ically have been developed in the last few decades [88, 136, 198]. The latest break-
throughs in nanophysics would not have been possible without basic applied research
in different fields including atomic, nuclear, solid state, and condensed matter physics.

Nevertheless, in recent years these breakthroughs have lead to a number of fascinating
possibilities. Scanning probe microscopes can now be used to monitor and manipulate
single atoms on surfaces [59, 155, 220]. Semiconductor physicists have managed to
fabricate well-defined structures of nanoscopic size. While most of these systems are
far from having a practical use, they give us opportunities to study quantum mechanical
effects in great detail.

A boost in this field of research has been provided by the United States Government
in establishing nanotechnology as a new national research topic. An interdisciplinary
description of the planned research and development in the next decade is presented in
a report published by the ’Interagency Working Group on Nanoscience, Engineering
and Technology’ (IWGN) [190, 220].

In Chapter I-1 of this thesis a short overview of quantum wells, wires, dots and rings is
presented. Following a description of the innovations in experimental research which
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2 Introduction

made the fabrication of these structures possible, the reader is given an introduction
into selected theoretical approaches used to study the physical properties of nanoscopic
semiconductor structures.

Chapter I-2 contains a description of the path integral Monte Carlo method (PIMC).
This technique starts by transforming differential equations to integral equations and
makes use of the exact numerical approach instead of analytical approximations. Thus,
instead of solving an approximative problem exactly, the true problem is approximately
solved to the extent and accuracy the allocated computer resources allow. An explana-
tion of the algorithm we use, as well as a discussion of the advantages and problems
of the method are then presented.

In the last chapter of Part I, convergence studies are presented to introduce the reader
to the algorithm used to find parameters which are best suited for limiting the compu-
tational effort and maximizing the accuracy of the simulations.

II Application of the path integral Monte Carlo tech-
nique on selected systems

Part II contains four chapters on the application of the path integral Monte Carlo
method to different systems and is the ’heart’ of this thesis.

Two of the chapters, namely ’Interplay between shell effects and electron correla-
tions in quantum dots’ [96] and ’Order-disorder transition in nanoscopic semi-
conductor quantum rings [30],’ are reprints of already published articles.

In Chapter II-1, single GaAs quantum dots corresponding to the experiments of Seigo
Tarucha et al. are modeled [206] and shell effects and electron correlations of dots
with up to 12 electrons are investigated. It is demonstrated that the path integral Monte
Carlo method is able to reproduce the experimental addition energies, i.e., the energies
necessary to allow additional electrons to enter the dot, and to study the validity of
Hund’s rule. Furthermore, detailed studies of Wigner crystallization depending on the
temperature and the dielectric constantκ are presented.

Axel Lorke et al. have recently fabricated nanoscopic quantum rings [147]. Next
to quantum wires, these systems are probably the best prototypes of quasi one-
dimensional quantum systems. By varying the ring diameter or the potential strength,
it is possible to tune them from quasi one-dimensional to two-dimensional systems. It
is shown in Chapter II-2 that nanoscopic quantum rings with up to eight electrons un-
dergo a smooth transition between spin ordered and disordered Wigner crystals. This
transition strongly depends on the chosen ring diameter, temperature and number of
electrons inside the ring. Due to the small number of particles, the transition extends
over a broad temperature range and is clearly identifiable from the electron-electron
pair correlation functions. It is also demonstrated that the addition energies reflect the
predicted shell effects and are in good agreement with the results of Warburton et al.
[215].

The focus of Chapter II-3, ’Multi-functional nano-sized electronic components,’ is



Introduction 3

on a new approach for utilizing quantum dot molecules as single photon detectors or
transistors. Coupled systems of two and three dots of different sizes are utilized to
study the effect of spin flipping or adding an additional electron to one of the implied
dots on the electron density in a different dot.

In order to develop high performance electronic devices for applications in comput-
ing and modern information technology, the number of transistors per chip has to
be increased and the power consumption reduced. Quantum dot molecules are very
promising candidates to accomplish this task because of their precisely tunable phys-
ical properties. The path integral Monte Carlo simulations show that three coupled
quantum dots can be utilized to perform logical ’AND’ and ’OR’ operations.

The last chapter that utilizes the path integral Monte Carlo method is Chapter II-4,
’The geometric structure of small sodium clusters.’

After a short introduction to the field of clusters and in particular sodium clusters,
the method used to study them is presented. The sodium cores including the nucleus
and all electrons in closed shells, are treated as classical particles obeying Boltzmann
statistics. The valence electrons are described as quantum mechanical particles and
the electron-core interaction is modeled by a pseudopotential taken from density func-
tional studies. It is shown in this chapter that the path integral Monte Carlo method is
able to reproduce the geometry of small sodium clusters. For Na+

3 and Na+4 , the bond
lengths are compared with results from other authors.

III Thermodynamic properties of selected finite systems

Part III is only loosely connected to the previous ones. The reprints of published arti-
cles presented here are concerned with the thermodynamics of selected finite systems.

In Chapter III-1, ’Calculation of thermodynamic properties of finite Bose-Einstein
systems[31],’ an exact recursion formula is presented for the canonical occupation
numberηi(N, β) of ideal Fermi- and Bose-gases based on the one-particle energy
eigenstatesεi. In addition, a recursion for the fluctuation of the occupation probabili-
ties is derived. The formulae are applicable for canonical systems where the particles
can be approximated as noninteracting, e.g., Bose-Einstein condensates in magnetic
traps.1

To demonstrate the usefulness of the recursion formulae, the specific heat and relative
ground-state fluctuations for an ideal Bose-system of4He atoms with up to 10000 par-
ticles are calculated. The atoms are confined by different three-dimensional potentials.

This article already appeared in my graduate thesis [95], but since the recursion for-
mula is used to calculate some of the results in the following chapters, it is included
here as well. Furthermore, the algorithm has been utilized for the generation of the
exact energy expectation values in Chapter I-3.

1E.A. Cornell, W. Ketterle, and C.E. Wieman were awarded the Nobel prize in 2001 for the achieve-
ment of Bose-Einstein condensation in dilute gases of alkali atoms.



4 Introduction

In Chapter III-2, ’Classification of phase transitions in small systems[34],’ the com-
plex zeroesBk = βk + iτk of the canonical partition function are used to classify phase
transitions in finite systems.

The classification scheme is an extension of the approach of Grossmann et al., who
analyzed the distributions of zeros of the canonical partition function in the complex
temperature plane in order to describe phase transitions in macroscopic systems [85,
86, 87].

All thermodynamic properties of the system can be expressed by the distribution of
zeros. It is pointed out in Chapter III-2 that the thermodynamic properties of a system
are determined by the zeros close to the real axis. Three parameters are introduced to
describe the distribution of zeros close to the real axis. The shape of the distribution
gives rise to different orders of phase transitions.

The new classification scheme is consistent with Ehrenfest’s definition in the thermo-
dynamic limit.

As an example of a higher order phase transition in a finite system, the classifica-
tion scheme is applied to Bose-Einstein condensates in a harmonic trap. Since it is
a difficult task to calculate the zeros of the partition function directly, the recursion
formula as given in Chapter III-1 is utilized to calculate the ground state occupation
number. Because most thermodynamic properties are derivatives of the logarithm of
the partition function, the poles of the occupation number correspond to the zeros of
the partition function. The finite size effects and order of the phase transition are well
reflected by the classification parameters.

By applying the scheme on Argon clusters, the density of zeros helps to understand the
complex melting and isomer hopping processes. In the case of this system, the zeros
are detected by calculating the specific heat using Monte Carlo methods. Obviously,
the poles of the specific heat correspond to the zeros of the partition function as well.

In the following chapter, ’Classification of phase transitions of finite Bose-Einstein
condensates in power-law traps by Fisher zeros[166],’ the new classification
scheme is applied to finite, non-interacting Bose-Einstein systems in power-law traps
with an effective one-particle density of statesΩ(E) = Ed−1. This is formally equiv-
alent to ad-dimensional harmonic oscillator or a 2d-dimensional ideal gas. Addition-
ally, the scheme is applied to a Bose-gas in a harmonic potential with discrete energy
levels. It is shown that the order of the phase transition sensitively depends on the
single-particle density of states, which is generated by the confining potential. Fur-
thermore, even if the thermodynamic properties usually used, for example the specific
heat, fail to describe the order of the phase transition properly, the distribution of zeros
allows us to clearly classify it.
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1 Semiconductor structures –
wells, wires, dots, and rings

1 Historical background

In 1974, the production of so-called quantum wells was reported by Chang and Dingle
[47, 54]. Quantum wells were the first devices to allow the study of two-dimensional
electronic structures. They are very thin, almost flat semiconductor layers sandwiched
between two layers of a different semiconductor material with a higher conduction
band. Quantum wells are usually fabricated using GaAs and AlxGa1−x for the barrier
layers. The electrons stay inside the enclosed layer because their de-Broglie wave-
length – resulting from their small effective mass in semiconductors – is long and
restricts the movement to two dimensions. As a consequence, the density of states be-
comes quantized and after determining the layer thickness belonging to a given energy
level, precise electronic characteristics of a device can be designed.

The previously unknown properties of the new two-dimensional systems inspired
many researchers. The most popular results are the discovery of the integer quantum
Hall effect by K. v. Klitzing [124] and the fractional quantum Hall effect by D.C. Tsui,
H.L. Störmer and R.B. Laughlin [144, 211]. Their work was honored with the No-
bel prize in 1985 and 1998. Today, the properties of quasi two-dimensional structures
are well understood and quantum wells are present in our daily life – for example, in
the laser diodes of CD-players and microwave receivers used for satellite television
[112, 198].

The next step in confining electrons to a limited number of dimensions was the de-
velopment of quantum wires by P.M. Petroff and colleagues [180]. These quasi one-
dimensional structures were produced by etching stripes in a sample with a quantum
well.

The first quantum dots, which made it possible to confine electrons in a quasi ’zero-
dimensional’ potential, were produced by industrial research centers using lithographic
techniques. Soon after the publication of the results from Texas Instruments [188],
AT&T [50, 207] and Bell [118] produced quantum dots with diameters from 30 to
250 nm. Since the first objects had the shape of a square and were comparably large,
they are also called ’quantum boxes’. Now researchers had devices in which the move-
ment of electrons is quantized in all directions. Due to the small number of unbound
electrons in these semiconductor devices, usually only 10 to 100 electrons are captured
inside a quantum dot. This is why they are often referred to as ’artificial atoms’ or
’quantum dot atoms’ [187]. It is possible to very precisely control the shape, structure
of electron levels, and the number of confined electrons using, for example, magnetic
fields or varying applied voltages. Nevertheless, it is important to keep in mind the
main difference between ’artificial’ and ’real’ atoms: While the attraction of the nu-
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8 I-1. Semiconductor structures – wells, wires, dots, and rings

cleus holds the electrons inside a real atom, in quantum dots, electrons are trapped
within barriers formed by semiconductor materials.

Very shortly after the development of quantum dots, physicists became interested in
coupled systems like quantum dot molecules consisting of two or more quantum dots.
These coupled systems can nowadays routinely be fabricated in the horizontal plane
[173] or as vertical systems with an arbitrary amount of stacked dots [174, 196]. Quan-
tum dot molecules can be used to study new physical phenomena or eventually for
quantum computation. As will be shown later in Chapter 3 of Part II, they are also
possible candidates for a nano-sized replacement of classical transistors.

Quantum rings of nanoscopic size have been experimentally realized recently by the
group of A. Lorke using self-assembly techniques [147]. Nevertheless, mesoscopic
circular shaped devices have already been investigated in depth experimentally and
theoretically [152, 217, 218]. Next to quantum wires, nanoscopic quantum rings are
probably the best prototypes for quasi one-dimensional electron systems. The new
experiments of Lorke’s group lead researchers to study these new devices and compare
the results to the already known properties of quantum dots.

What’s next? Due to the great advances in the field of nano-sized semiconductor
physics, applications in microelectronics are becoming more and more interesting and
promising. The properties of these devices can be controlled very precisely and it is
becoming possible to fabricate very tiny structures in order to minimize the amount of
space required for electronic circuits. Smaller circuits consume less power than con-
ventional ones and can also be operated at higher speed. Furthermore, more precisely
tunable laser diodes and microwave devices will profit from the huge amount of re-
search invested in the study of optical properties of quantum dots and rings.

A very interesting example of the application of quantum wells is the ’quantum cas-
cade laser’ built at Bell labs by F. Capasso’s group [67] after an original concept by
R.F. Kazarinov and R.A. Suris [121]. They grew about 75 layers a few atoms thick
on top of each other. A set of three wells is a so-called ’active region’. Depending
on the width of the wells, an electron can emit a photon with a specific wavelength
while descending from a higher to a lower energy level. The novel characteristic of
this kind of laser is that it generates photons from 25 regions, since they are arranged
in series. Each region has a lower energy than the one before and in between them
are injector/relaxation regions, where the electrons are collected after tunneling out of
one active region and before tunneling into the next. With this technique, it is possible
to fabricate lasers that cover the full mid-infrared spectrum from 3.4 to 17µm and
that can simultaneously emit several laser wavelengths. In pulsed mode, these devices
already work at room temperature and it will probably be possible to use them in con-
tinuous mode in the near future. Both modes have already been demonstrated at 80
K. Since the optical power and specific wavelength of quantum cascade lasers have
not been available with conventional semiconductor laser diodes before, many new
applications are conceivable.

The more precisely a device needs to be controlled, the smaller it has to be in order
to minimize phonon couplings. Another breakthrough will be necessary for industrial
production to fabricate devices small enough to work at room temperature and make



2 Production techniques 9

it possible to utilize nanoscopic quantum dots, rings, and wires for popular consumer
products. Quantum well lasers and other optoelectronic elements are possible applica-
tions for the new devices. Since silicon, which is usually used in the semiconductor in-
dustry, is not able to emit light, gallium-arsenide or more complex compounds, which
are more expensive, have to be used.

2 Production techniques

2.1 Quantum dots

All techniques described in this section for producing quantum dot structures were
made possible by the development ofmolecular beam epitaxy (MBE) in the early
1970s [48, 49]. With this technique, it is possible to routinely fabricate high purity
epitaxial layers which are only a few atoms thick.

In an MBE apparatus, the substrates are fixed on a heated rotating holder inside a
vacuum chamber (see Fig. 1.1). On the opposite side of the chamber, effusion cells
including the materials to be grown are placed and sealed by a shutter system. The
molecular beams are created by thermally evaporating the constituents. By opening
only one effusion cell at a time, high purity layers can be grown. It is essential that the
materials used are very clean and that the whole process takes place in an ultra high
vacuum environment. Nearly atomically, transitions of different materials are possible
because the growth rates are usually of the order of a few Angstrom per second and
hence the beams can easily be shuttered quickly enough.

Vacuum Vessel

Shutters

Sample

Sample
Holder

Effusion Cells

Figure 1.1:Schematic view of a typical MBE setup

The first quantum dots were produced by Reed et al. [188] usingetching techniques
common in the semiconductor industry. They covered a sample containing some quan-
tum wells with a polymer mask and exposed it to an electron or ion beam. Afterwards,
the mask was removed at the exposed areas and the whole structure covered with a
protective metal film. A special solution was used to remove the polymer and metal
films resulting in a clean sample surface. The metal layer only remained at the pre-
viously exposed areas and behaved as a protective shield when chemical etching was
applied. Using this method, quantum dots with diameters in the range of 10-100 nm
were cut out from quantum wells [112]. Etched dots can have almost any shape or size.
An example of the different possibilities is shown in Fig. 1.2 [133].
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Figure 1.2:Possible shapes of quantum dots as fabricated by L. Kouwenhoven’s group [133].
The dots have a width of about 0.5µm.

Edge effects are one of the limitations of quantum dots which are fabricated by etching
techniques. One can overcome this problem by using lithography to create tiny elec-
trodes on top of a semiconductor surface. Aspatially modulated electric fieldcan be
obtained in this way [10]. The electrons are localized in a small area between the elec-
trodes. This technique also makes it possible to fabricate additional structures around
the dot for further measurements or experiments. For example, small microwave an-
tennas are suitable for spectroscopy [22] or sources of magnetic fields can be produced
to study the field dependence of a dot. Another advantage of the use of spatially modu-
lated electric fields is that the parameters of the confining potential can be varied easily
by changing the applied voltages. A quantum dot used by Folk et al. [74] which was
produced with the aid of this technique is shown in Fig. 1.3.

Figure 1.3:On the left is a schematic drawing of Folk’s quantum dot. The right picture shows
a scanning electron micrograph of the same device. The lateral confinement is achieved by ap-
plying a negative voltage to the metal electrodes. Electrons can enter or leave the dot through
two leads (white arrows) [74].

A novel approach is the use of atomic force microscopes for patterning the surface by
local anodic oxidation. In a humid surrounding, the tip of the microscope is biased
on top of the surface. Under some conditions, the surface can be oxidized and hence
electronically modified [149].

Ekimov et al. [64] have shown that it is possible to fabricate quantum dots out of
semiconductorcrystals embedded in glass dielectric matrices. They doped silicate
glass with semiconducting copper compounds and heated it for a few hours at several
hundred degrees. Crystals of almost equal size formed and their diameters were defined
by the temperature and heating time.

A focused laser beam is an ideal candidate toheat two sandwiched quantum wells
of different materials locally. Moving the laser around a small area results in an
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interdiffusion of atoms from one well to the other. As demonstrated by Brunner et al.,
the band structure is modified at the borders and a quantum dot emerges between the
illuminated areas [39].

Selective Growthutilizes a material with a wider band gap (for example AlGaAs)
covered by a mask [78]. Miniature triangles are etched in the sample. Using chemical
vapor deposition, small pyramids are grown on the areas not covered by the mask. The
first layers of the pyramids usually consist of the substrate material and only the top
is made of a semiconductor material with a narrower band gap (for example GaAs).
The advantage of using the substrate compound for the bottom of the pyramids is the
ability to fabricate dots with diameters of some tens of nanometers.

Self-assembledor self-organizedquantum dots enabled experimenters to fabricate
very small dots of nanometer proportions. The sizes and shapes are very uniform and,
due to a perfect crystal structure, there are no impurity effects. Furthermore, no com-
plicated deposition of electrodes or etching are necessary, facilitating the production
process substantially. This technique was introduced in 1994 by P.M. Petroff et al.
[179] and is presently the most promising technique for smaller and more sophisticated
semiconductor structures. Self assembling techniques utilize different lattice constants
of the substrate and the crystallized material. A very common combination is GaAs
and InAs. Only the first deposited monolayers crystallize in a strained way with a lat-
tice constant equal to the substrate’s. The strain results in a breakdown of this order
as soon as a critical thickness is reached. Randomly arranged islands of regular shape
and size start to form. This phase transition is called Stranski-Krastanow transition and
was first published in 1939 [203]. Depending on the materials used, the temperature,
and the growth rate, the islands have the shape of pyramids, lenses, or droplets. Figure
1.4 shows an AFM image of PbSe quantum dots on PbTe of the group of G. Springholz
[199].

Figure 1.4:AFM image of self-assembled PbSe quantum dots on PbTe by Springholz et al.
[199].

2.2 From dots to rings

Semiconductor quantum rings were fabricated shortly after the creation of the first
quantum dots. They provide an opportunity to study quasi one-dimensional quantum
systems in detail. These rings have been produced using lithographic techniques and
were rather big, i.e. the diameters were a few hundred nanometers or even micrometers.
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To study the influence of strong quantum effects on ring-shaped systems, the diameter
has to be decreased to orders of magnitude which cannot be achieved using lithography.

As known from quantum dots already, self-assembling techniques are very promising
if one seeks to achieve miniature scale. A. Lorke’s and P.M. Petroff’s groups have
succeeded in applying a modified procedure and assembling the first nanoscopic semi-
conductor rings [147].

They grew self-assembled InAs quantum dots on a GaAs layer and covered them with
another thin GaAs layer. Annealing the sample at growth temperature for about one
minute resulted in a drastic change of the morphology: The lens-shaped dots became
’volcanos’ with an increased lateral size, a reduced height and a well defined center
hole. The thickness of the cover layer has a great influence on the results since it is
responsible for the size and the structure of the resulting rings. Figure 1.5 shows a
sample with rings of 50 nm diameter.

Figure 1.5:A sample with nanoscopic InAs quantum rings as described in [147].

3 Selected physical properties of few-electron quantum
dots

Experimenters have managed to fabricate different kinds of quantum dots with very
different physical properties. For example, it is important to distinguish between open
dots, i.e., devices with attached point contacts allowing classical movements of elec-
trons across the dot-lead junctions, and closed dots. In closed dots, conductance only
occurs by tunneling because the contacts are pinched off. This thesis focuses on closed
dots only. In these nearly isolated dots, the low-lying energy levels are discrete be-
cause the mean free path for electrons is larger than the typical diameter of a dot. Their
discrete excitation spectra motivated Kastner [120] and Ashoori [9] to introduce the
term ’artificial atom’. This term must be used with caution. It is correct in the sense
that a dot contains a fixed number of electrons. For example, ’quantum-dot helium’
is widely used to describe dots containing two electrons [103]. But in contrast to real
atoms, individual semiconductor structures never show identical physical properties.
Due to irregularities in fabrication, the confining potential is slightly different for each
device. Additionally, in atoms, the Coulomb interaction between nucleus and electrons
is much more dominant than the electron-electron interaction, which is, of course, the
only correlation in quantum dots. Due to the very shallow confining potential com-
pared to atoms, long range electron interactions and correlations are important effects
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in quantum dots.

As described in previous sections, quantum dots are created mainly through lateral
confinement restricting the motion of the electrons inside a very narrow quantum well.
Usually, they have the shape of flat disks, with diameters much larger than the thickness
of the quantum well. Since the energy of single-particle excitations across the dot is
significantly larger than other characteristic system energies, the confining potential
can be considered two-dimensional. The potential strongly depends on the production
technique of the dot. While large etched dots can be thought of as rectangular wells
with rounded edges, small ones might be modeled by simpler smooth potentials. For
nanoscopic self-assembled dots as studied later in this thesis, a parabolic well seems to
be a fairly good approximation. In this case, the Hamiltonian forN electrons is given
by

H =
N∑
i=1

(
p2
i

2m∗
+
m∗ω2

0r
2
i

2

)
+

N∑
i<j=1

e2

κ|ri − rj|
, (1.1)

wherem∗ is the effective mass,ω0 the strength of the potential, andκ the dielectric
constant of the material. S. Tarucha’s experimentally achieved parameters [206] are
commonly found in theoretical papers to describe GaAs dots (κ = 12.9,~ω0 = 3 meV,
m∗ = 0.067me).

The classical Coulomb repulsion of the electrons already inside the dot usually blocks
the tunneling of electrons into it. Thus, the conductance is small, but changing the
gate voltage can compensate the Coulomb blockade and, at an appropriate voltage,
the number of electrons inside the dot fluctuates betweenN andN + 1. This results
in a maximum of conductance. A plot of the current passing through the dot over
the gate voltage at sufficiently low temperatures shows sharp and uniformly spaced
conductance peaks. The difference of the gate voltage of these peaks is proportional to
the charging energyEC and allows the calculation of the so-called addition energies
[206]

∆EN = EN+1 − 2EN + EN−1. (1.2)

In summary, the addition energy is the energy needed to place an additional electron
in the dot.

Shell effects are one of the most interesting topics in quantum dot behavior. The three-
dimensional spherical symmetric potential around atoms results in completely filled
shells at atomic numbers 2,10,18,..., which are known as ’magic numbers’. Within a
shell, Hund’s rule explains the value of the spin of an additionally added electron.
The quantum dots studied here are described by a two dimensional potential with the
magic numbers 2,6,12,..., which are lower because of the lower degree of symmetry
[159]. In the style of the periodic table of the elements, some experimentalists from the
university of Delft / Netherlands and NTT in Kanagawa / Japan introduced a periodic
table for quantum dots [133].
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4 Theoretical concepts to describe quantum dots

Different techniques have been applied to describe theoretically the behavior of elec-
trons in quantum dots. These include among others exact diagonalization, Hartree-
Fock approximations, density functional theory, random-matrix theory and quantum-
chaotic approaches. Since a detailed description of these techniques would go beyond
the scope of this thesis, only some concepts of the most common techniques can be
covered. For further reading, the existing review articles and books are recommended
(for example [4, 5, 94, 104, 112, 114, 133, 134, 198]).

Exact numerical diagonalizationhas been performed by different groups [3, 99, 154,
160, 175, 181], but is usually limited to less than five electrons. Quantum dot helium,
i.e., a dot including two electrons, is probably the best studied system. It is already a
difficult task to solve the problem for the ground state. Nevertheless, exact diagonaliza-
tion approaches have been successful in describing the dependence of electron-electron
correlations on strong magnetic fields. Even before the first quantum dots were fabri-
cated, exact diagonalization has been applied to electrons in harmonic systems. For
example, Laughlin, Girvin and Jach assumed spin polarized electrons occupying a sin-
gle Landau level [81, 145].

Mean field approaches such as, for example, theHartree-Fock approximation (HF)
[73, 97, 98] are well known from nuclear, atomic, and molecular physics. Different
groups have shown that these techniques are also applicable to two dimensional quan-
tum dots [77, 167, 181, 189, 225].

In the Hartree-Fock framework, all electrons and interactions are taken into consid-
eration using the exact many particle Hamiltonian. A Hartree potential is introduced
describing the interaction between electrons as an effective external potential.

From the quantum mechanical variational principle it is known that the expectation
value of the Hamiltonian for an arbitrary wave function is at least as high as its low-
est eigenstate [208]. The simplest possible approach to approximate the many-particle
wave function is a single Slater determinant. The wave functions can usually be ex-
panded using Gaussian basis sets. One solves the corresponding eigenvalue problem
using the approximated wave function. The obtained energy eigenvalue is minimized
by adapting the coefficients of the Gaussian basis sets. In this way, the problem is
solved self-consistently. The lowest energy that can be found using the optimal tuned
basis set corresponds to the best approximation of the many-particle wave-function.

A distinction is normally made between restricted and unrestricted calculations, corre-
sponding to fixed angular momenta or included spin interactions.

It has been shown that the Hartree-Fock approach is able to handle quantum dots with
40 electrons and to reproduce shell effects, addition energies and the behavior in mag-
netic fields qualitatively well, but due to the approximations of the wave function,
Hartree-Fock results have to be handled with caution: For example, Hartree-Fock cal-
culations predict Wigner crystallization for higher densities than exact Monte Carlo
studies [58, 189, 225]. In addition, restricted Hartree-Fock simulations produce ener-
gies which strongly deviate from exact studies [181].
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Configuration interaction (CI) expansions include electron correlations beyond the
single Slater determinant approach. In a systematic way, the many-particle wave func-
tion is expanded to a sum of determinants representing different electronic configura-
tions. This approach has also been applied to quantum dots [154] and quantum rings
[131].

Density functional theory (DFT) was introduced in 1964 and 1965 by P. Hohenberg,
W. Kohn and L.J. Sham [110, 128]. For his pioneering work on density functional
theory, W. Kohn won the Nobel prize in 1998 [126, 127].

In DFT, the electron density distribution, and not the many particle wave function is
the variable of interest. This is displayed in particular in the basic lemma of Hohenberg
and Kohn, who pointed out that the ground state densityρ(r) of a system determines
its Hamiltonian uniquely [110]. The Hohenberg-Kohn variational principle states that
the energy functional

Ev[ρ
′(r)] =

∫
V (r)ρ′(r)dr + T [ρ′(r)] +

1

2

∫
ρ′(r)ρ′(r′)

|r− r′|
dr dr ′ + Exc[ρ

′(r)] (1.3)

is minimized byρ(r) at the true ground state energy.

Here,T [ρ′(r)] corresponds to the kinetic energy of the ground state of noninteracting
electrons in a potentialV (r) with density distributionρ′(r).Exc[ρ

′(r)] is the exchange
correlation energy functional.

This problem is self-consistently solved by the single particle Kohn-Sham equations(
− ~

2

2m
∇2 + Veff

)
ϕj(r) = εjϕj(r), (1.4)

with

ρ(r) =
Ne∑
j=1

|ϕj(r)|2, (1.5)

where the sum is calculated for theNe lowest eigenvalues, to take into account the
Pauli exclusion principle.

The effective potentialVeff is the sum of the confining external potential, the Hartree
potential of the electrons and the derivative of the exchange correlation energy func-
tional.

In principle, this theory is exact for the exactExc. SinceExc is not known, the use-
fulness of this algorithm strongly depends on its approximation. A popular approach
is the local density approximation (LDA), where the exchange-correlation energy is
obtained from precise simulations of the many-electron interactions in a uniform, in-
teracting electron gas [42, 45].

Several authors applied the density functional theory to quantum dots [106, 132, 151,
202]. They have studied the spin ordering behavior as well as the formation of Wigner
crystals for systems including more than 50 electrons [106]. The results have to be
handled with caution. For example, while Koskinen et al. predicted spin density waves
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[132], Hirose and Wingreen questioned their findings, suggesting they may be a com-
putational artefact [106].

The main weakness of density functional theory is in the approximation of the func-
tional for the exchange correlation energy. Slightly different forms of the functional
may yield different results. In chemistry, this led to the development of empirical
functionals with parameters adjusted to produce the best possible results for a given
problem [176].

In the next chapter, a technique is presented which overcomes the difficulties due to
the approximations used by other methods. The path integral Monte Carlo technique
(PIMC) allows us to study quantum systems without approximations. The complete
many-body wave function is sampled by Feynman’s approach and the method is lim-
ited only by the numerical effort and the exactness of the external potential and ma-
terial constants. It makes it possible to study temperature dependent effects, and the
potential and kinetic energies are naturally included.



2 Path integrals and Monte Carlo
simulations

In a visionary talk at the annual meeting of the American Physical Society in 1959,
Richard P. Feynman amazed the audience with his vision of extreme miniaturization
[70]. He argued that it is possible to write all 25000 pages of the Encyclopedia Bri-
tannica in an area of the size of a pin head, just using an ’atomic pen’. He dreamed of
small machines building even smaller and smaller ones on an atomic scale. Today’s re-
search is quite close to his predictions: Single atoms can be manipulated or motivated
to self-assemble in nearly any desired structure. In systems of atomic sizes, quantum
mechanical effects arise and the systems can no longer be described by classical the-
ories. In this thesis it will be demonstrated that Feynman’s path integral formalism,
which he developed more than ten years before his famous talk [69], is well suited
to study these tiny systems. The huge computational effort path integral calculations
require, favors the utilization of modern computers in studying the physical properties
of nanoscopic systems in great detail.

This chapter provides an introduction to the method, its advantages, possibilities, and
limitations.

1 The Feynman path integral

Richard P. Feynman developed the fundamental concepts of the path integral formal-
ism while teaching a graduate course at Princeton. A few years later, he looked for pre-
vious work on a connection between quantum mechanics and the classical Hamilton’s
principle functionS. One of his colleagues pointed out that P.A.M. Dirac [55, 56, 57]
had published that a connection exists between the exponent of the time integral of the
classical Lagrangian,

exp

(∫ t2

t1

dtL(x, ẋ, t)

)
= expS, (2.1)

and the transition amplitude of a quantum mechanical wave function at two points in
space and time〈x2, t2 | x1, t1〉. While Dirac did not know exactly what this connection
looks like, after a brief analysis Feynman found that it is given by an integral over all
possible paths between the space-time positions(x1, t1) and(xN , tN) [69, 71]

〈x2, t2 | x1, t1〉 =

∫ xN

x1

D[x(t)] exp

(
i

~

∫ t2

t1

dtL(x, ẋ, t)

)
. (2.2)

Feynman wrote down the first path integral in 1942 in his PhD thesis and published
the concepts in 1948 [69].

17
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The paths in Eq. (2.2) are discretized by introducing(∆t = (tN − t1)/N) and writing
the integral as

∫ xN

x1

D[x(t)] = lim
N→∞

( m

2πi~∆t

)(N−1)/2
∫

dxN−1

∫
dxN−2...

∫
dx 2. (2.3)

Schrödinger’s equation, Heisenberg’s matrix formalism and Feynman’s path integral
are equivalent formulations of quantum mechanics. While Schrödinger’s differential
equation determines the state of a system at a given time from the state at an infinites-
imal time before, the path integral formalism utilizes a different approach: The trajec-
tory of a quantum mechanical particle in space-time is not described by a single clas-
sical path, but by the sum of all possible paths between two points. It can be inferred
from Eq. (2.2) that the probability of each possible path is given by the exponential of
the classical action in units of~. If the action of a path increases, the weight becomes
smaller. For macroscopic systems, the action of paths far away from the classical tra-
jectory becomes huge and the corresponding probability vanishes. In this case, only
one path contributes, which is equivalent to Hamilton’s least action principle

δ

∫ t2

t1

dtL(x, ẋ, t) = 0. (2.4)

Figure 2.1 shows a comparison of the paths of a classical, quasi-classical and a quan-
tum mechanical system. For classical systems, Eq. (2.2) determines the classical path.
In a semi-classical system, mainly those paths close to the classical one are important.
Since the contributions of more distant paths are very small, they can usually be ig-
nored. In quantum mechanical systems, the entire range of paths has to be taken into
account.

2 The thermodynamic path integral

A physical system in a heat bath of temperatureT can be described by the quantum
statistical canonical ensemble. The expectation value of an arbitrary observableX(r)
is given by

〈X〉 = Z−1Tr (X(r)ρ(r, r′)) , (2.5)

where
ρ(r, r′) = 〈r| exp(−βH) |r′〉 , (2.6)

is the density matrix and

Z = Trρ(r, r′) = Tr (exp(−βH)) (2.7)

is the canonical partition function.H is the Hamiltonian and the inverse temperature
β is given by1/T .
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Figure 2.1:Possible paths of a system: The solid line represents the classical trajectory and
the dashed lines represent some semi-classically important paths. Paths that are far away
from the classical trajectory contribute in quantum mechanics (dotted).

The fact thatH usually contains two possibly non-commutating partsH0 andH1, rep-
resenting the kinetic and the potential energy operators, presents a serious problem for
the calculation of the density matrix. A very common approach to solve this problem
is to separate the two parts of the Hamiltonian. Using the exact operator identity one
gets

exp (−β(H0 +H1)) = exp (−βH0) exp (−βH1) exp

(
−β

2

2
[H0, H1]

)
. (2.8)

This equation can be rewritten

exp (−β(H0 +H1)) =

(
exp

(
− β

M
H0

)
exp

(
− β

M
H1

)
exp

(
− β2

2M2
[H0, H1]

))M
(2.9)

and it has been shown by E. Trotter [210] that the commutator term becomes much
smaller than the others forM →∞ and can thus be ignored

exp (−β(H0 +H1)) = lim
M→∞

(
exp

(
− β

M
H0

)
exp

(
− β

M
H1

))M
+O

(
β3

M2

)
.

(2.10)

This equation is correct to the order(β3M−2). A mathematical proof of Trotter’s
product formula is given in [191] and a more detailed description can be found in
[44, 53, 123]. In the style of the previous section, the parameterM is usually called
the number of ’timeslices’.
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Using Trotter’s approach, the partition function can be written as

Z = Tr

[
lim
M→∞

(
exp

(
− β

M
H0

)
exp

(
− β

M
H1

))M
+O

(
β3

M2

)]
, (2.11)

with

H0 = − ~
2

2m

∂2

∂r2
and H1 = V (r). (2.12)

For slowly varying potentials, Takahashi and Imada have shown that replacing the
potential energy term by an effective potential reduces the computing time significantly
[53, 130, 205]. They introduced

H ′1 = H1 +
1

24

(
β

M

)2

[H1, [H0, H1]], (2.13)

which in the case presented here is identical to

H ′1 = V (r) +
~

2

24m

(
β

M

)2(
∂V (r)

∂r

)2

. (2.14)

Utilizing this approach, the error is of the order(β5M−4).

Defining periodic boundary conditionsr(M + 1) = r(1), an equation equivalent to
Feynman’s approach [69] for the partition function of a one particle system in position
space can be found [27, 204]

Z =

∫ [ M∏
γ=1

dr (γ)

]
M∏
α=1

(
〈r(α + 1)| exp

(
− β

M
H0

)
|r(α)〉

× 〈r(α)| exp

(
− β

M
H1

)
|r(α)〉

)
+O

(
β3

M2

)
(2.15)

=

(
Mm

2πβ~2

)3M/2 ∫ [ M∏
γ=1

dr (γ)

](
exp

(
−

M∑
α=1

Mm

2β~2
(r(α + 1)− r(α))2

− β

M

M∑
α=1

V (r(α))

))
+O

(
β3

M2

)
. (2.16)

ForM → ∞ this equation becomes exact and coincides with the famous formula of
Kac and Feynman [115, 116]. The number of timeslicesM is the source of the relative
error of the simulation. While the kinetic energy term in Eq. (2.16) is proportional to
M/β, the potential energy term is proportional toβ/M . To achieve a uniform conver-
gence of both parts of Eq. (2.16), the quotientβ/M is kept constant. This results in a
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higher number of timeslices for low temperatures and in an increasing computational
effort.

The corresponding energy expectation values of the system can easily be calculated by
appropriate differentiation of the partition function:

E =− 1

Z

∂Z

∂β
(2.17)

Ekin =− m

βZ

∂Z

∂m
(2.18)

Epot =E − Ekin (2.19)

For a system ofN electrons in an external potential, the Feynman path integral can be
written as [204]

Z =

(
1

N !

)M ∫ [ M∏
γ=1

N∏
i=1

dr i(γ)

]
M∏
δ=1

det(A(δ, δ + 1))

× exp

(
− β

M

M∑
α=1

V (r1(α), . . . , rN(α))

)
+O

(
β3

M2

)
, (2.20)

with theN ×N -dimensional matrix

(A(α, α + 1))k,l =

{
〈rk(α) | exp

(
− β
M

p2

2m

)
| rl(α + 1)〉 : sk = sl

0 : sk 6= sl
.

sk/l = ±1/2 denotes the spin of the electron and is usually referred to as ’↑’ for
s = 1/2 and ’↓’ for s = −1/2.

2.1 The Metropolis Monte Carlo algorithm

In 1953, Metropolis et al. presented a new method for the numerical calculation of
integrals [161]. Today, the Metropolis Monte Carlo algorithm is commonly used to
solve multidimensional integrals [19, 20, 21, 117, 135].

A substantial amount of numerical effort is required to solve integrals with dimension
d greater than one, and most standard methods fail at this point. This is due to the
number of function evaluations needed to sample ad-dimensional space. The number
of function evaluations increases as thedth power of the number needed for a one-
dimensional integral [184].

The Metropolis Monte Carlo approach uses the evaluation of the integrand at a limited
number of representative points, and estimates its integral based on this sample.
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To calculate the integral in Eq. (2.20), a random start configurationΞ0 is assumed. The
ith step of a random walk is realized by generating a new random particle configuration
Ξ′. This configuration is accepted if the condition

∣∣∣∣W (Ξ′)

W (Ξi)

∣∣∣∣ > ζ (2.22)

is fulfilled. If it is accepted,Ξ′ becomes the newΞi for the next step. Here,ζ is a
random number between 0 and 1 andW is the weight function which corresponds to
the integrand in Eq. (2.20). It is important to use the absolute values of the weight
function because the determinant inW can be negative in the fermionic case.

To improve the convergence, three different kinds of random moves are introduced in
our path integral Monte Carlo implementation:

In microscopic moves, all timeslices of all particle coordinates are moved separately
by a random vector∆a

ri(α) −→ ri(α) + ∆a. (2.23)

In a macroscopic move, the whole path for one particle is moved at once by a constant
vector∆b

ri(α) −→ ri(α) + ∆b, α = 1...M. (2.24)

The macroscopic moves are used to provide a fast scan of the configuration space.

For the simulations presented in Chapters II-2 to II-4, we also introduced the move-
ment of the whole path of all particles at once to achieve even better convergence

ri(α) −→ ri(α) + ∆c, α = 1...M, i = 1...N. (2.25)

The step lengths for microscopic and macroscopic moves are adjusted in a way that
the quotient of accepted and rejected moves stays within an acceptable limit. In our
case the rate of acceptance is between 0.5 and 0.6.

The method of moving paths or parts of a path can be changed to nearly any desired
procedure. Many different types of moves make the algorithm more robust because
before starting a simulation, one does not necessarily know which kinds of moves will
lead to a rapid movement through configuration space.

Expectation values of any physical observableX(r) can be evaluated with

〈X〉 =

∑G
g=1 Xgsgn(Wg)∑G
g=1 sgn(Wg)

, (2.26)

whereXg is the value of the observableX in thegth Monte Carlo step [33].

Figure 2.2 displays a typical single path for one electron in a quantum ring as described
in Chapter II-2.
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Figure 2.2:A single path of one electron in a quantum ring as described in [30]. The first (1)
and the last (500) time step are marked and during this snapshot, the electron stays in the
upper left area of the ring which has its center at the origin (Note the tick labels).

2.2 Computational problems

The calculation of Eq. (2.26) is connected to a serious problem of the path integral
Monte Carlo formalism. For bosonic systems,sgn(Wg) is always positive and the ex-
pectation value is given by

〈X〉 =
1

G

G∑
g=1

WgXg. (2.27)

For fermionic systems, the sign can be negative and for lower temperatures, the ratio of
negative signs approaches fifty percent. In this case, Eq. (2.26) does not converge. This
so-called ’fermion-sign problem’ is the most serious problem not only in path integral
Monte Carlo simulations, but also in other different quantum Monte Carlo approaches
[43, 71, 75, 107, 150]. It is the reason for the enormous amount of Monte Carlo steps
needed for the systems presented in Part II.

It can be shown that the ratio of integrands in the path integral with positive sign (W+)
and negative sign (W−) is approximately given by [163, 172]

W+ −W−

W+ +W− ∼ exp[−β(EF − EB)]. (2.28)

EF andEB are the ground state energies of the Fermi system and the corresponding
Bose system where the bosonic ground state energy is below the fermionic ground
state. As explained by I. Morgenstern [163], at low temperatures the simulation spends
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most of the time belowEF and these obviously unphysical states have to be can-
celed out. Therefore, the number of positive and negative signs becomes almost equal
causing the statistical error in Eq. (2.28) to grow rapidly at low temperatures. This
error is amplified by the fact that by increasing the system size, the energy difference
(EF − EB) also grows. To reduce the influence of the fermion sign problem, Mor-
genstern suggests avoiding low-lying states by introducing a low lying energy barrier.
Indeed, this approach must be handled with care. Using a wrong barrier might allow
low-lying bosonic states to be included without being canceled out and thus might
falsify the results.

To achieve convergence of Eq. (2.26) even at low temperatures, a completely uncorre-
lated generation of the Monte Carlo steps is essential. The results of a simulation will
be inaccurate if the particle coordinates are moved using a repeating sequence. It has
been found that the 24 or 32 bit pseudo random number generators from standard sys-
tem libraries are not sufficient for the simulations presented in this thesis. Therefore, a
new 53 bit pseudo random number generator of Marsaglia-Zaman type developed by
P. Borrmann has been applied.

While the determinant in Eq. (2.20) is the most expensive computational task in path
integral Monte Carlo simulations, the permanent is also problematic. To our knowl-
edge, there is no effective way to calculate it analytically for larger systems without
approximations [44, 101]. Nevertheless, it has been demonstrated that it is possible to
circumvent the direct calculation of the permanent using Monte Carlo approaches (for
example by using the ’importance sampling of permutations’ [204]).

For fermionic systems, the determinant has to be calculatedN ×M times for every
complete microscopic motion. The linear algebra package LAPACK1 provides rou-
tines for computing the determinant of a matrix, after the matrix has been decomposed
into LU factors. These routines utilize pivoting as an attempt to improve accuracy by
choosing the most suitable column or row for use during a single step of the algorithm.
Due to the pivoting, it is more costly to calculate the determinant than by direct calcu-
lation. However, at low temperatures the ratio of signs is around 0.99 and convergence
can only be achieved if the determinants are calculated very accurately [96].

The effort of algorithms calculating the determinants of a complete microscopic mo-
tion usually grows with the cube of the particle number. In our case, each change of a
microscopic particle coordinate affects only one row of the matrixA(α+ 1, α) and the
corresponding column ofA(α, α − 1). The numerical effort to update the LU factor-
ization of a matrix after a row or column exchange is proportional to the square of the
particle number and thus the numerical effort can be reduced by a factor ofN [33]. In
the algorithm used in this thesis, this method of minimizing the numerical effort is not
implemented. This is justified by two reasons: (i) the routines provided by LAPACK
are very accurate and efficient and (ii) the difference in computational effort becomes
significant for large matrices only.

1http://www.netlib.org/lapack/

http://www.netlib.org/lapack/


2.3 Electron densities, pair correlation functions, and energy expectation values 25

2.3 Electron densities, pair correlation functions, and energy ex-
pectation values

Due to the fact that the Monte Carlo simulation is usually done in position space, the
calculation of momentum dependent expectation values is a critical task. This can be
explained in the picture of the discretized paths which allow different possibilities of
differentiation.

Different algorithms are used to estimate the energy. Two common ones are the Barker
estimator [13]

EB
M =

Md

2β
− Mm

2~2β2

M∑
i=1

(ri − ri+1)2 +
1

M

M∑
i=1

V (ri), (2.29)

whered is the dimensionality of the system, and the virial estimator proposed by Her-
man et al. [105]

EV
M =

1

M

M∑
i=1

(
1

2
ri
∂V (ri)

∂ri
+ V (ri)

)
. (2.30)

Both estimators depend on the number of timeslicesM . It has been found that the
accuracy of these estimators is strongly affected by the algorithm used [41, 80]. In
both cases, the error grows linearly with

√
M if only microscopic moves are allowed.

As M is increased to ensure the convergence of the path integral to the exact result,
the error of both estimators grows boundlessly [41].

Improving the kind of Monte Carlo steps that are allowed in order to assure a freer
movement of the paths reduces the error of the virial estimator significantly. It has
been shown by J. Cao and B. Berne that in this case it does not depend onM anymore
[41]. Nevertheless, the fluctuation of the energy which has to be calculated after each
Monte Carlo step is very dependent on the kind of move used.

In our simulations, a different approach is applied which overcomes the problems of
the other energy estimators. It has been shown by H. Heinze et al. [101, 102] that in
the canonical ensemble, it is possible to utilize the hypervirial theorem of Hirschfelder
[108] and rewrite the kinetic and potential energies as expectation values of functions
depending on two-particle distances only. For a system of identical particles with|k〉
denoting theN -particle eigenfunction andEk the corresponding energy eigenvalue,
they achieve

Ekin =
1

Z

∑
k

e−βEk 〈k| 1
2

∑
i<j

rij
∂V2(rij)

∂r
|k〉 (2.31)

and

Epot =
1

Z

∑
k

e−βEk 〈k|
∑
i<j

V2(rij) |k〉 , (2.32)
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whererij = |ri− rj| denotes the distance between particlesi andj. Only two-particle
interactionsV2(r) are taken into account here. The pair correlation function for two
particles is

Γi,j(r) = 〈δ(r − rij)〉 (2.33)

and for identical particles, one can take all particle combinations into account to get
the probability distribution of all possible two-particle distancesr

Γ(r) =
2

N(N − 1)

〈 ∑
1≤i<j≤N

δ(r − rij)

〉
. (2.34)

In this case, the energies can be rewritten as

Ekin =
N(N − 1)

4

∫ ∞
0

dr Γ(r)r
∂V2(r)

∂r
(2.35)

and

Epot =
N(N − 1)

2

∫ ∞
0

dr Γ(r)V2(r). (2.36)

The one-particle parts of the energy are calculated using the radial electron densities
per electron

ρi(r) =
1

2πr
〈δ(r − |ri|)〉 =

1

2πr
%(r). (2.37)

Here we have

Ekin =
N

2

∫ ∞
0

dr %(r)r
∂Vext(r)

∂r
(2.38)

and

Epot =
N

2

∫ ∞
0

dr %(r)Vext(r). (2.39)

for a system of identical particles in an external potentialVext(r).

In order to visualize the spatial structure of the electron configuration in the quantum
rings as described in Chapter II-2, we introduce angular pair correlation functions

Γi,j(ϕ) = 〈δ(ϕ− ϕij)〉 , (2.40)

whereϕij is |ϕi − ϕj|.
In the simulations described in this thesis, interacting electrons in an external potential
Vext are studied. Therefore, spin↑ (si = 1/2) and spin↓ (si = −1/2) electrons have
to be handled separately and the corresponding pair correlation functions and radial
densities areΓ↑↑, Γ↓↓, Γ↑↓, ρ↑, andρ↓. The numbers of electrons with positive and
negative spin are given byN↑ andN↓.
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The pair correlation functions and radial densities are stored in histograms and updated
after each Monte Carlo step.

It is now possible to calculate the kinetic and potential energies as functions of the
radial densities and pair correlation functions:

Ekin =E↑kin + E↓kin + E↑↑kin + E↓↓kin + E↑↓kin (2.41)

=
N↑

2

∫ ∞
0

dr %↑(r)r
∂Vext(r)

∂r
+
N↓

2

∫ ∞
0

dr %↓(r)r
∂Vext(r)

∂r

+
N↑(N↑ − 1)

4

∫ ∞
0

dr Γ↑↑(r) r
∂V2(r)

∂r

+
N↓(N↓ − 1)

4

∫ ∞
0

dr Γ↓↓(r) r
∂V2(r)

∂r

+
N↓N↑

2

∫ ∞
0

dr Γ↑↓(r) r
∂V2(r)

∂r

and

Epot =E↑pot + E↓pot + E↑↑pot + E↓↓pot + E↑↓pot (2.42)

=
N↑

2

∫ ∞
0

dr %↑(r)Vext(r) +
N↓

2

∫ ∞
0

dr %↓(r)Vext(r)

+
N↑(N↑ − 1)

2

∫ ∞
0

dr Γ↑↑(r)V2(r)

+
N↓(N↓ − 1)

2

∫ ∞
0

dr Γ↓↓(r)V2(r)

+N↑N↓
∫ ∞

0

dr Γ↑↓(r)V2(r).

This straightforward method of calculating the kinetic and exchange correlation ener-
gies is one of the advantages of the path integral Monte Carlo method as applied in this
thesis. In contrast to the energy estimators of Barker and Herman, the energies depend
only on the radial densities and pair correlation functions and not directly onM or the
kind of Monte Carlo move used. The number of timeslices only influences the error
due to the application of Trotter’s formula. IfM is chosen sufficiently large, the error
of the radial densities and pair correlation functions is determined by the statistical er-
ror of the Monte Carlo simulation only. In this way, the error of the calculated energies
can be pushed to small values if the number of Monte Carlo steps is large.

3 Convergence and computational effort

3.1 Optimizing simulation parameters

It is now detailed how the systematic and statistical errors of path integral Monte Carlo
simulations can be minimized with an acceptable computational effort.
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First of all, it is essential to exclude numerical problems such as correlations of the
random numbers, or incorrect computation of the determinant. The steplengths of the
different kinds of Monte Carlo moves must also be adjusted to sizes corresponding to a
satisfactory acceptance rate of the Monte Carlo steps. If these conditions are fulfilled,
the number of timeslicesM and the number of Monte Carlo steps must be tuned.

As described in Section 2 of the last chapter, the thermodynamic path integral
Eq. (2.16) is formally exact for an infinite number of timeslicesM , i.e., the systematic
error of a simulation is determined by the choice ofM . The statistical error of the
Monte Carlo simulation is proportional to the reciprocal value of the square root of the
number of Monte Carlo steps. For an exact solution of the integral, the number of steps
also must be infinite.

It can be demonstrated that comparably small numbers of timeslices limit the system-
atic error considerably. A few billion Monte Carlo moves are usually enough to push
the statistical error of the simulation into an acceptable range [30].

In principle, using more timeslices is expected to yield results closer to exact results,
but the necessary computer time increases since the motion of the paths slows as the
value ofM increases. This is because the number of microscopic Monte Carlo steps
needed to move a full path is≥M and the corresponding steplength has to be decreased
for largerM in order to achieve a satisfactory acceptance rate. If the number of times-
lices chosen is too large, the problem might be unsolvable with today’s computers
because the statistical error of the Monte Carlo simulation scales down too slowly. On
the other hand, decreasingM below a required minimum results in an unacceptable
systematic error.

There is no known reliable algorithm to automate the investigation of the best feasible
combination of timeslices and computer time to minimize the total error.

Therefore, convergence studies as presented in the following have to be carried out
before long simulation runs to guarantee reliable results and the most effective use
of computational power. Convergence studies are also important for verifying that the
code is correct [44].

To demonstrate the reliability of our algorithm, comparisons between path integral
Monte Carlo studies and exact recursive calculations ofnon-interactingelectrons in a
harmonic potential are presented. The confining potential is modeled by the quantum
dot parameters (see Chapter II-1 for details), i.e.~ω0 = 3 meV. The exact results were
obtained by utilizing the recursion formula for the occupation numberηi of a statei as
described in Chapter III-1,

ηi(N + 1, β) =
ZN(β)

ZN+1(β)
exp(−βεi)(1− ηi(N, β)) , (2.43)

with

ZN(β)

ZN+1(β)
=

N + 1∑∞
i=0 exp(−βεi)(1− ηi(N, β))

. (2.44)
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The energy expectation value is given by

EEXACT(N, β) =
∞∑
i=0

εiηi(N, β) . (2.45)

For the path integral Monte Carlo simulations, it can be obtained as described in Sec-
tion 2.3.

Convergence studies were carried out forN = 1, 2 andT = 10 K and the number of
timeslices was varied fromM = 10 toM = 100. Figure 2.3 shows the relative error
of the energies versus the number of Monte Carlo steps for different values ofM
calculated using the path integral Monte Carlo algorithm. The relative error is given
by

∆E =
EPIMC − EEXACT

EEXACT

. (2.46)

For comparison, the exact energies are 3.189 meV forN = 1 and 9.197 meV forN =
2.
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Figure 2.3:Relative errors of the energy for N = 1, 2, T = 10 K, M = 10, 20, 50, and 100 and
up to 4·108 Monte Carlo steps.

As expected, the simulations for one electron converge faster than the simulations for
two electrons. The relative errors of the simulations forM = 10 converge to about
-0.014 after only a very limited number of Monte Carlo steps (1·108 and 2·108). In-
creasing the number of timeslices results in a higher statistical error: The largerM
is, the larger the variation of the relative error dependent upon the number of Monte
Carlo steps becomes. ForN = 1, the relative error converges to constant values forM
= 20 andM = 50. In theM = 50 case,∆E even approaches zero. The error obtained
usingM = 100 is still much smaller than forM = 10. In theN = 2 case, convergence
is not achieved forM = 50 andM = 100. Increasing the particle number prohibits the
convergence without increasing the number of Monte Carlo steps.

In summary,M = 10 is not sufficient to achieve accurate results and for larger parti-
cle numbers, it is impossible to achieve convergence forM = 100 with an affordable
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amount of computational power. The results forM = 20 converge fast, but are still
limited by a significant systematic error.

Studies such as the ones presented in Fig. 2.3 give a rough estimate of the number
of Monte Carlo steps and timeslices necessary for a given problem using the path
integral Monte Carlo technique. Even if the exact value is not known, comparing single
simulations with different parameters makes it possible to approximate the appropriate
parameter range.

Next, more detailed simulations were performed to optimize the settings. ForN = 2
andT = 10 K, Fig. 2.4a displays the results of path integral Monte Carlo simulations
for a fixed number of 4·108 Monte Carlo steps. The number of timeslices was set to
M = 10, 20, 30, 50, 70, and 100 and for each value ofM , ten independent simulation
runs were used to calculate the average energyE ′PIMC. Its standard deviation,σ, is
visualized by the error bars, and the dotted line represents the exact value.
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Figure 2.4:Exact and PIMC energy expectation values for N = 2, T = 10 K, M = 10, 20,
30, 50, 70, and 100 and 4·108 Monte Carlo steps (a). Figure b) is for comparison of the data
presented in a) with values obtained from longer simulation runs (1.2·109 steps) forM = 20, 30,
and 50. Ten independent simulations were performed for each M to obtain the PIMC energies.
The error bars are given by the standard deviation σ.

For M = 10, the statistical error is very small, but the average energy deviates by
0.13 meV from the exact result. Doubling the number of timeslices quadruples the
size of the error bar, but the obtained energy only deviates by about 0.03 meV from the
exact value.M = 30 produces the first value with the exact energy inside its error bars.
The average energy forM = 50 deviates only by 0.005 meV or 0.05% from the exact
result. From this point on, the difference between the average energies and the exact
value increases with an increasing number of timeslices. The statistical error becomes
large, i.e.,σ =±1% forM = 70 andσ =±1.6% forM = 100.

Two empirical arguments support restricting the parameter range that has to be taken
into account for a given number of Monte Carlo steps: (i) If there is no overlap be-
tween two error bars belonging to two neighboring values ofM , the smallerM is not
sufficient. (ii) If σ is larger than a given percentage of the average value,M is too large
for the problem to be solved within the available computer time. Here, it is stipulated
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thatσ must be smaller than±1%. These arguments make it possible to restrictM to
values between 20 and 50.

In order to find the best suitable number of timeslices, the statistical error of the sim-
ulations is reduced by increasing the number of Monte Carlo steps to 1.2·109. The
resulting energiesE ′PIMC are visualized in Fig. 2.4b forM = 20, 30, and 50. For com-
parison, the data obtained for 4·108 Monte Carlo steps is also presented in Fig. 2.4b
(dashed line).

The standard deviation forM = 20 is very close to the one forM = 30 (±0.16%
and±0.14%, respectively). ForM = 50,σ is significantly larger, at±0.41%. Figure
2.4b illustrates that the overlap between the error bars forM = 20 andM = 30 is
significantly smaller than in Fig. 2.4a, indicating thatM = 20 might be not sufficient.
The largeσ of theM = 50 simulation is an argument forM = 30 being the best suitable
number of timeslices.

In the special case presented here, where the exact energy expectation value is known,
this result can be strengthened by introducing the value

∆Etot =
|E ′PIMC − EEXACT|+ σ

EEXACT

(2.47)

to describe the total relative error of the simulation. Here,∆Etot is minimized forM
= 30 (∆Etot = 2.7·10−3) and the corresponding values forM = 20 andM = 50 are
significantly larger (4.6·10−3 and 5.5·10−3).

If the best suitable parameter combination still results in an unacceptable error, the
number of Monte Carlo steps must be increased in order to minimize the statistical
error. If this exceeds the available computing resources, the only possibility is to in-
crease the simulation temperature in order to reduce the influence of the fermion-sign
problem.

3.2 Organization of large scale simulations

The overall error of the energy expectation values was pushed far below one percent
for simulations of quantum dots and quantum rings as presented in the next part of this
thesis. For example, in the quantum ring case, as much as 1011 steps per simulation
run were required. Without the complete parallelization of the code, these simulations
would not have been possible. Even on a Cray T3E with 62 processors, the most CPU-
intensive simulations needed up to two days of computation time.

The program was parallelized using the MPI library2, which allows parallel compu-
tation on multi-processor machines as well as on clustered single-processor systems
over the network.

Most of the simulations were performed on a Cray T3E at the ’Konrad Zuse In-
stitut Berlin’ using 62 processors and another Cray T3E with 16 processors at the
’Regionales Rechenzentrum Niedersachsen’. For the simulations of quantum dot

2http://www-unix.mcs.anl.gov/mpi/

http://www-unix.mcs.anl.gov/mpi/
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molecules, a Linux cluster with 32 processors was employed for most of the work.
Up to 20 machines with different Unix based operating systems have been used simul-
taneously. These were mostly single processor systems of our group and the university
computer center.

No algorithms were applied to improve the performance of the calculation of the path
integral or to avoid the fermion sign problem. The only optimizations are a good ran-
dom number generator and the consistent use of optimized subroutines. In this way,
the ’brute force’ algorithm is able to produce very precise results. Different algo-
rithms have been published to improve the performance of path integral calculations.
For example, the ’multilevel blocking’ method by Mak et al. [153] partially avoids
the fermion sign problem and is expected to converge better. However, it is shown
in Chapter II-1 that the results of Egger et al. [58] do not confirm this expectation.
The advantages of their new approach are probably more than compensated by other
numerical problems.

The usually limited time per job and the amount of data motivated the use of the
NetCDF library known from meteorological data analysis3. This library makes it pos-
sible to develop a platform-independent method of storing the data of a simulation in
just one file. Additionally, a restart function has been included, making it possible to
finish jobs that have been started on one machine on any other one, thus utilizing the
available processor time as efficiently as possible.

To optimize the use of the available computing power, a job queuing and status inquiry
system was developed. This system povides the possibility to generate initial data files,
to transfer these files to the computing machines, to submit the jobs, and have the
results returned to the local server automatically. It consists of a set of shell scripts
and Fortran programs and utilizes a locally installed NQS4 server to enable an efficient
queuing for machines in the network that do not have their own queuing mechanisms
installed.

3http://www.unidata.ucar.edu/packages/netcdf/
4http://www.gnqs.org/

http://www.unidata.ucar.edu/packages/netcdf/
http://www.gnqs.org/
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We use the path integral Monte Carlo method to investigate the interplay between shell effects and electron
correlations in single quantum dots with up to 12 electrons. By use of an energy estimator based on the
hypervirial theorem of Hirschfelder we study the energy contributions of different interaction terms in detail.
We discuss under which conditions the total spin of the electrons is given by Hund’s rule, and the temperature
dependence of the crystallization effects.

I. INTRODUCTION

The advances in nanofabrication of the last years opened
the goal to build two-dimensional�2D� quantum dots�QD’s�
and quantum dot molecules�QDM’s�— artificial mesoscopic
semiconductor structures of selectable shape and size—as
containers for a controllable fixed number of electrons.1,2

Recently, depending on the strength and shape of the effec-
tive confining potential, the formation of spin density waves
�SDW’s� �Refs. 3 and 4� and Wigner crystals3,5 in QD’s and
QDM’s has been predicted by different groups with different
theoretical approaches. Hirose and Wingreen6 argue that
SDW’s are reproducible artifacts of spin density functional
calculations. For a 2D parabolic confining potential the ac-
cordance of the spin configuration with Hund’s rule has been
predicted by Koskinen, Manninen, and Reimann4 and ques-
tioned by Yannouleas and Landman.3 All these effects are
governed by the intriguing interplay between shell effects,
the pure Coulomb repulsion, and the fermionic repulsion due
to the Pauli exclusion principle and depend strongly on the
values of the interaction parameters in the commonly as-
sumed Hamiltonian for single QD’s

H��
i�1

N � pi
2

2m*
�

m* �0
2

2
xi

2� � �
i� j�1

N
e2

��xi�xj�
, �1�

where� is the dielectric constant,m* is the effective mass,
and�0 defines the strength of the confining potential.

Apart from the interesting physical questions that arise for
quantum dots the reliable prediction of their properties is an
ultimate test of modern methods in quantum chemistry. Due
to the compared to atoms very shallow confining potential,
long range electron interactions and correlations play an im-
portant role in QD’s and QDM’s. Therefore it is misleading
to name them artificial atoms and molecules. Well estab-
lished and very elaborate methods of quantum chemistry
might fail in describing them properly. Hartree-Fock and
spin density functional methods use single Slater determi-
nants or sums of them to approximate the many-body wave
function. In spin-density functional methods the approxima-
tion of the functional for the exchange correlation energy4,7,8

adds another source of uncertainty and systematic errors to
this approach. The path integral Monte Carlo method
�PIMC� used in this paper samples the full many-body wave
function instead.

In contrast to density functional methods�DFT� with
PIMC it is possible to study the temperature dependent prop-

erties of QD’s. The reason why PIMC is not yet a standard
method of quantum chemistry is its numerical limitation due
to the fermion sign problem. The rapidly increasing power of
modern computers resizes this limitation. In Sec. II we
briefly summarize our implementation of PIMC and com-
ment on how to limit the numerical deficiencies due to the
fermion sign problem.

We apply PIMC to calculate the electron density and two-
particle correlation functions for quantum dots with up to 12
electrons. To compare with various experimental studies as
well as with other theoretical studies we use different dielec-
tric constants� and strengths of the confining parabolic po-
tentials. The calculated addition energies are in very good
agreement with the experimental findings of Taruchaet al.2

For N�6 we investigate the temperature dependence of
the Wigner crystallization�WC�.

II. NUMERICAL METHOD

For a system ofN electrons with position eigenket� x� i ,si�
(si�� 1

2 for spin-up and spin-down electrons� in an external
potential the Feynman path integral can be written as9–11

Z�� � �
��1

M

�
i�1

N

dx� i���� �
	�1

M

det
A�	,	�1��

�exp� �
�

M �
�1

M

V
x�1��, . . . ,x� N��� � �O � �3

M 2� ,

�2�

with


A�,�1�� i, j

�� � x� i�� 	 exp� �
�

M

p2

2m � 	 x� j��1�
 , si�s j

0, s j�s j

�3�

and the boundary conditionx� j(M�1)�x� j(1). M is the
number of so-calledtimeslices of the Feynman paths. In the
limit M→� Eq. �2� becomes exact. For quantum dots the
space dimension isd�2 and the (2NM )-dimensional inte-
gral given in Eq.�2� can be evaluated by standard Metropolis
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Monte Carlo techniques. Due to the determinant the inte-
grand is not always positive and the expectation value of an
observableX(x) depending only on position operators has to
be calculated using

�X��

�
g�1

G

Xg sgn�Wg�

�
g�1

G

sgn�Wg�

, �4�

where Xg is the value of the observableX and Wg is the
value of the integrand in Eq.�2� in thegth Monte Carlo step.
Equation �4� reveals a severe problem connected with the
path integral for fermions which is commonly denoted as the
fermion sign problem �see, e.g., Refs. 12–14�. It can be
shown that the ratio between integrands with positive sign
(W�) and negative sign (W�) is approximately given by14,15

W��W�

W��W�
� exp����EF�EB�	, �5�

whereEF andEB are the ground state energies of the Fermi
system and the corresponding Bose system. It is now obvi-
ous that the statistical error in Eq.�4� grows rapidly for small
temperaturesT. Moreover the energy difference (EF�EB)
will grow with increasing system size causing an increase of
the statistical error.

Within PIMC the calculation of the kinetic energy expec-
tation value is another critical task. This is merely due to the
fact that the Monte Carlo calculation is usually done in po-
sition space and that the discretization of the paths allows a
number of different approaches to calculate the expectation

value of a momentum dependent operator. A number of vari-
ous different energy estimators has been discussed in the
past.16–18

To avoid these difficulties we developed a procedure
which allows the calculation of all energy expectation values
from the knowledge of the pair correlation functions


 i, j�r �����r�� x� i�x� j ��� �6�

and the radial density functions per electron

� i�r ��
1

2r
���r�� x� i ����

1

2r
��r �, �7�

where� is the probability of finding electroni in distancer
from the center.

Due to the particle symmetry we have
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↑↑�r �, si�s j��

1

2
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2
.

�9�

Utilizing the hypervirial theorem of Hirschfelder19 the en-
ergy can be written as a sum of ten parts20

E�Ekin
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While in density functional approaches the calculation of the
kinetic energy and the exchange correlation energy is a ma-
jor topic and subject to permanent discussion, within the path
integral approach these energies are included in a natural
way.

However, the systematic error arising from the limited
number of timeslicesM and the statistical error of the Monte
Carlo calculation have to be controlled carefully. We
checked our algorithm extensively using eight noninteracting
fermions in a parabolic trap as a test system. We found that
at low temperatures where the ratio of signs is around 0.99,
convergence can only be achieved obeying the following

rules:�1� The determinants have to be calculated very accu-
rately using a more costly algorithm with pivoting.�2� The
completely uncorrelated generation of the Monte Carlo steps
is essential, i.e., the coordinate to be moved should be cho-
sen randomly. Moving the particle coordinates using always
the same sequence produces inaccurate results.�3� A good
random number generator with acompletely uncorrelated se-
quence in all significant bits of a 64 bit real number should
be applied. We therefore developed a 53 bit random number
of Marsaglia-Zaman type21 instead of using one of the stan-
dard 24 or 32 bit random number generators coming with
standard system libraries.�4� Further, to improve the conver-
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gence a number of different Monte Carlo steps can be ap-
plied, i.e., moving single time slices, moving complete par-
ticle paths and parts of a path. Our Fortran code is
completely parallelized using MPI and Lapack.

III. RESULTS

To compare our PIMC calculations to experimental data
we calculated the addition energies

�E�EN�1�2EN�EN�1 �11�

of a QD with up to 11 electrons using the material constants
m*�0.067m and ��12.9 for GaAs as given by Hirose and
Wingreen.6 It is assumed that these parameters mimic the
experimental setup of Tarucha et al.2 reasonably well. The
strength of the harmonic potential is fixed at ��0

�3.0 meV. The resulting effective atomic units are EH*
�10.955 meV for the Hartree energy and a0*
�10.1886 nm for the Bohr radius. The Boltzmann constant
is kB�7.8661�10�3 EH*/K.

We performed PIMC simulations for quantum dots with
different spin configurations at a fixed temperature of 10 K.
Due to the fermion sign problem the number of Monte Carlo
steps necessary to push the statistical error of the total en-
ergy, which has been calculated properly from 25 uncorre-
lated subsequences of MC steps, into the range of 0.1% is
extremely high. The number of Monte Carlo steps ranged
between 2.5 billion steps per particle coordinate for N�6
and about 10 billion steps for N�12. Figure 1 displays the
addition energies for quantum dots with up to 11 electrons.
The circles indicate the results from our path integral calcu-
lations at 10 K, the squares are results of spin density func-
tional calculations of Hirose and Wingreen,6 and the tri-
angles are the experimental results of Tarucha et al.2 Both
theoretical calculations reproduce the general N dependence
of the addition energies in great detail. Tarucha et al. give an
estimate of the electron temperature in their experiments of
T�0.2 K. For computational reasons our PIMC calculations
are performed at 10 K and it cannot be expected that the

absolute energy values agree as well as the 0 K DFT calcu-
lations with the experimental results. However, it should be
noted that PIMC correctly predicts the drop in the addition
energy from N�7 to N�8 while the DFT calculations fail at
this point.

The inset in Fig. 1 displays the total spins of the spin
configurations with lowest energy as found in DFT and
PIMC at 10 K. In DFT calculations �0 K� the spin configu-
ration of the ground state is determined by Hund’s rule for
up to 22 electrons. In contrast, in our PIMC calculation at 10
K the total spin is not always in accordance with Hund’s
rule. For N�4 we checked the temperature dependence of
the spin configuration. At 5 K the energy of the spin 0 con-
figuration is 0.01 EH* higher than the spin 1 energy indicating
a temperature dependence of the favored spin configuration.

As an important fact we note that the N dependence of the
addition energies is not affected by the actual spin configu-
ration. The situation is quite similar to that in transition metal
clusters with extreme small energy differences between
states with significantly different magnetic moments.22

As can be inferred from Fig. 2�a� the radial spin densities
are significantly different for both spin configurations. The
total potential energy for the spin 1 configuration is about
0.07 meV lower than that of the spin 0 configuration. At 10
K this is overcompensated by an 0.27 meV higher kinetic
energy �see Table I�. Although the kinetic and potential en-
ergies for different total spins significantly differ, the total
energies are almost equal. Similar situations are found for
larger N.

For convenience and easy comparison we determined the
value of the dimensionless density parameter rs , which is
sometimes used to characterize quantum dots �see, e.g., Ref.
5� to be rs�4.19 for N�4.

The energies given in Table I correspond to the integrals
in Eq. �10�. The total kinetic energy which is the sum of all
Ekin

x terms is always positive while some of the addends
might be negative. Table I reveals that larger total spins re-
sult in larger kinetic energies. The total potential energy is
almost unchanged, the larger contribution from the trap po-
tential is compensated by a smaller contribution from the
Coulomb repulsion. We note that the ratio EW between the
kinetic energy and the total energy is considerably larger for
N�4 than for N�9 reflecting the looser binding of the
smaller system.

FIG. 1. Addition energies for quantum dots with up to 11 elec-
trons. The circles indicate the results from our path integral calcu-
lations at 10 K, the squares are results of spin density functional
calculations of Hirose and Wingreen, and the triangles are the ex-
perimental results of Tarucha et al. The error bars for PIMC would
be of the size of the solid circles and are therefore omitted.

FIG. 2. �a� Radial density per electron and �b� pair correlation
functions for four electrons and total spins S�0 and S�1. The
material constants are ��12.9 and ���3.0 meV.
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Next we consider the dependence of the Wigner crystal-
lization on the temperature and the choice of the material
constants. The localization of the electrons in space is com-
monly referred to as Wigner crystallization. For quantum
dots the occurrence of well separated humps in the radial
electron density and the pair correlation functions has been
interpreted as WC. However, it is a nontrivial task to find a
general parameter identifying if an electron system is crys-
tallized or not. From a solid state physics point of view the
electrons should have a low mobility, i.e., a small kinetic
energy, and should not interchange their lattice positions. For
fermions the localization of single electrons does not make
any sense, and, as stated above, even the decomposition of
the many-body wave function in sums of determinants of
single particle wave functions is probably a too rough ap-
proximation for QD’s. These facts limit the analogies be-
tween crystallization in solids and electron systems and
make the term crystallization itself somehow misleading. We
therefore view Wigner crystals as states of the many-body
wave function with a relatively low kinetic energy.

First we consider the strength of the Wigner crystalliza-
tion depending on the choice of the interaction parameters.
Figure 3 displays the radial densities and pair correlation
functions for six electrons with S�0, ���5 meV, and �
�3.0, 6.0, and 12.9. Of course, for stronger electron repul-
sions �small �) the electron distributions are broadened. The
qualitative picture of the distributions is merely the same.
For all � shell effects indicated by off-center maximums of
the radial density occur. However, only for ��3 and 6 we
observe a maximum at r�0. From our point of view it can-
not definitely be decided from this figure if a system is
Wigner crystallized or not. As a parameter reflecting the
strength of the WC we employ the ratios between the kinetic
and the total energies EW�Ekin /E tot which are 0.07, 0.10,
and 0.14 for ��3.0, 6.0, and 12.9. Although the radial dis-
tribution function for ��12.9 is quite narrow, the relative
mobility for the electrons indicated by EW is twice as large
as for ��3. The underlying physical process can be under-

stood intuitively. Due to the stronger electron-electron repul-
sions the electrons are fixed in an energetical favorable geo-
metric configuration and as a consequence thereof the
relative kinetic energy is reduced and the difference between
the pair correlation functions of equal and opposite spin al-
most vanishes �see Fig. 3�. It is an interesting and to our
knowledge open question, if the crystallization of electrons
can be viewed as a phase transition. We therefore consider
next the temperature dependent properties of a quantum dot
with N�6, S�0, ��3, and ���5 meV. The results for
temperatures between 10 and 150 K are presented in Table
II. Most notably EW increases relatively smoothly from 0.07
at 10 K to 0.22 at 150 K. Within our numerical accuracy the
caloric curve does not show any evidence of a phase transi-
tion. The transition from a crystallized state to an electron
fluid seems to be squashy. Of course, from our calculations
we cannot exclude that a phase transition exists for larger N

TABLE I. Kinetic and potential energies as well as EW�Ekin /E tot in meV for different electron configu-
rations at 10 K �the numbers in parentheses are the single particle energies�.

N↑�2, N↓�2 N↑�3, N↓�1 N↑�5, N↓�4 N↑�6, N↓�3

E tot 40.83 41.03 169.25 169.82
Ekin 7.33 7.60 18.97 19.57
Epot 33.50 33.43 150.28 150.26
EW 0.18 0.19 0.11 0.12

Ekin
↑ 8.03 �8.03� 12.66 �8.44� 35.44 �14.18� 43.74 �14.58�

Ekin
↓ 8.03 �8.03� 3.55 �7.10� 27.30 �13.65� 19.39 �12.93�

Ekin
↑↑ �1.31 (�2.62) �3.97 (�2.65) �11.20 (�2.24) �16.87 (�2.25)

Ekin
↑↓ �6.11 (�3.05) �4.64 (�3.09) �25.84 (�2.58) �23.31 (�2.59)

Ekin
↓↓ �1.31 (�2.62) 0.00 �0.00� �6.72 (�2.24) �3.39 (�2.26)

Epot 33.50 33.43 150.28 150.26
Epot

↑ 8.03 �4.01� 12.66 �4.22� 35.44 �7.09� 43.74 �7.30�

Epot
↓ 8.03 �4.01� 3.55 �3.55� 27.30 �6.82� 19.39 �6.46�

Epot
↑↑ 2.62 �2.62� 7.94 �2.65� 22.40 �2.24� 33.73 �2.25�

Epot
↑↓ 12.21 �3.05� 9.28 �3.09� 51.69 �2.58� 46.62 �2.59�

Epot
↓↓ 2.62 �2.62� 0.00 �0.00� 13.44 �2.24� 6.78 �2.26�

FIG. 3. Radial density per electron �left� and pair correlation
functions �right� for N�6, S�0, ��0�5 meV and dielectric con-
stants ��3.0, 6.0, and 12.9 at 10 K. The radial density for �
�12.9 is scaled by a factor of 3 and the pair correlation functions
are scaled to have a maximum value of �1.
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or different interaction parameters. Figure 4 displays the ra-
dial electron densities and the total electron pair correlation
function for different temperatures. Up to 60 K the radial
density shows clear geometric structure effects with two
maximums while at 150 K only a smooth curve resembling a
simple Gaussian remains.

IV. CONCLUSION

In conclusion, we have found that despite of the notorious
fermion sign problem PIMC is capable of answering inter-
esting questions for strongly correlated electron systems like
QD’s and QDM’s. For QD’s PIMC reproduces correctly the
experimental addition energies. Our temperature dependent
calculations give new insights into the process of WC. For
the two-dimensional QD’s a ratioEW�Ekin /E tot below 0.1
seems to indicate WC both for� and temperature dependent
calculations. However, regarding this aspect a more firm
classification parameter, e.g., similar to the Lindemann crite-
rion is desirable.

A comparision to other QMC methods seems to be in
order here. Even our most complicated simulations took less
than 2 h on a Cray T3E with 62 processors. Taking the
advantages of modern computer power and optimized soft-

ware, thebrute force PIMC applied here is able to produce
very precise results. Different algorithms have been pub-
lished to improve the performance of path integral methods.
A recent one is themultilevel blocking method published by
Mak et al.23 Simulations using this algorithm are expected to
converge better than our direct treatment since the fermion
sign problem is avoided partially. The published results of
the treatment of quantum dots by Eggeret al.5 do not con-
firm this expectation. Obviously the advantages of the new
method are more than compensated by other numerical prob-
lems, maybe due to the energy estimator used.24 Neverthe-
less, a combination of the multilevel-blocking method and
our technique might result in a very powerful tool.
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FIG. 4. Radial density�left� and pair correlation functions
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TABLE II. Kinetic and potential energies for different tempera-
tures and spin configurationN↑�3, N↓�3. The Hartree energy is
EH* �202.558 meV,��3, and ��0�5.0 meV. EW is the ratio
between the kinetic and the total energy.

N↑�3, N↓�3 EW Ekin (meV) Epot (meV) E tot (meV)

T�10 K 0.07 17.70 246.53 264.32
T�30 K 0.08 22.93 249.53 272.46
T�60 K 0.12 35.39 257.67 293.06
T�90 K 0.16 49.44 267.01 316.46
T�120 K 0.19 64.10 276.84 340.93
T�150 K 0.22 78.49 286.88 365.35
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Order-Disorder Transition in Nanoscopic Semiconductor Quantum Rings

Peter Borrmann and Jens Harting
Department of Physics, Carl von Ossietzky University, D-26111 Oldenburg, Germany
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Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up
to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between
spin ordered and disordered Wigner crystals. Because of the small number of particles the transition
extends over a broad temperature range and is clearly identifiable from the electron pair correlation
functions.

DOI: 10.1103/PhysRevLett.86.3120 PACS numbers: 73.23.–b, 31.15.Kb, 71.45.Lr, 73.21.–b

Nanoscopic semiconductor quantum rings (QRs),
which recently have been experimentally realized by
Lorke et al. [1], are next to quantum wires probably the
best prototypes of quasi-one-dimensional quantum sys-
tems. QRs can be viewed as rotating Wigner crystals with
promising features for application in microelectronics.
They can be modeled using a simple Hamiltonian of the
form

H �
nX

i�1

µ
p2

i

2m�
1

1
2

m�v2
0�r0 2 ri�2

∂
1

X
i,j

e2

krij
, (1)

where k � 12.9 and m� � 0.067me are the material con-
stants of GaAs [2,3]. The parameter r0 is the radius of
the quantum ring and v0 defines the strength of the two-
dimensional potential [1,4]. Figure 1(a) displays the shape
of the ring potential. QRs can be tuned from quasi-one-
dimensional to two-dimensional systems by variation of
the ring diameter and the potential strength.
While mesoscopic QRs have been investigated theoreti-

cally and experimentally in depth [5], nanoscopic rings
with strong quantum effects are of increasing interest.
Koskinen et al. [6] reported configuration-interaction cal-
culations of rotational and vibrational excitations of
nanoscopic QRs with up to N � 7 electrons. They claim
that QRs behave like rather rigid molecules or Wigner
crystals with antiferromagnetic order in the ground state.
Ahn et al. [7] considered stacked nanoscopic rings and
found an N-dependent Stark effect. Experimentally it

has been found that the emission energies of QRs change
abruptly whenever adding an electron [8].
In this Letter we present the results of path integral

Monte Carlo (PIMC) simulations of single nanoscopic
QRs with up to eight electrons and different radii r0. We
show that they undergo a temperature, radius, and particle
number dependent spin order-disorder transition. Further-
more, the influence of quantum effects on the spatial elec-
tron distribution as well as the addition energies DE are
given. Our results for the addition energies, i.e., the en-
ergy that is needed to place an additional electron in a
ring, is compared to the experimental results of Warburton
et al. [8].
In contrast to Hartree-Fock and spin density functional

theory PIMC samples without any approximation the full
many body wave function instead of single or sums of
Slater determinants. Especially for highly correlated elec-
tron systems this is a major advantage of PIMC. Another
benefit of PIMC is the possibility to study temperature
dependent phenomena. For quantum dots the problems
of different density functional approaches have intensively
been discussed in the past [2,9–11]. The so-called fermion
sign problem is still a topic of actual research and restricts
the application of PIMC to a limited number of fermions
and for QRs to a temperature of at least 10 K.
The Feynman path integral for an N-electron system

with position eigenket j ri , si� (si � 6
1
2 for spin-up and

spin-down electrons) in an external potential can be rewrit-
ten as [12]

Z �
Z "

MY
g�1

NY
i�1

dri�g�

#
MY

d�1

det ���A�d, d 1 1���� exp

√
2

b

M

MX
a�1

V ���r1�a�, . . . , rN �a����

!
1 O

µ
b3

M2

∂
(2)

with

���A�a, a 1 1����i,j �

(
�ri�a� j exp�2 b

M
p2

2m � j rj�a 1 1�� : si � sj ,
0 : sj fi sj ,

(3)

and the boundary condition rj�M 1 1� � rj�1�. For M ! ` Eq. (2) becomes exact. Standard Metropolis Monte Carlo
(MC) techniques can be utilized to evaluate the integral in (2).
The basic quantities reflecting the spatial structure of the electron configuration are the electron-electron (distance) pair

correlation functions Gi,j�r� � �d�r 2 j rij j��, the angular pair correlation functions Gi,j�w� � �d�w 2 jwi 2 wj j��,
and the radial electron density ri�r� �

1
2pr �d�r 2 j ri j��, from which all energies can be calculated using the hypervirial
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FIG. 1. Potential energy surface of a semiconductor quantum
ring (a) and schematic illustration of the definition of w (b).

theorem (for details of our method see [10]). The defi-
nitions of w and rij are illustrated in Fig. 1(b). To take
the particle symmetry into account we introduce Gij � G"#

for si fi sj , Gij � G"" for si � sj �
1
2 , and Gij � G##

for si � sj � 2
1
2 , respectively. Obviously for S � 0 we

have G## � G"".
In our simulations we controlled the systematic error

arising from the limited number of time slices M and the
statistical MC error carefully. By choosing M 3 T � 600
and using up to 10 3 1010 MC steps per run we pushed the
overall error of all energy expectation values below 0.3%.
Our FORTRAN code is completely parallelized using MPI
and Lapack, and most calculations have been performed
on a Cray T3E with 64 processors.

We fixed the strength of the harmonic potential
h̄v0 � 12 meV, resulting in effective atomic units for
the Hartree energy E�

H � 10.995 meV and the Bohr
radius a�

0 � 10.1886 nm. A ring diameter r0 � 14 nm �
1.37a�

0 then corresponds to the experimental setup of Lorke
et al. [1]. To investigate the ring size dependence we per-
formed additional calculations for r0 � 50.94 nm � 5a�

0 .
Figures 2(b) and 2(c) display the pair correlation func-

tions of QRs with N � 6, S � 0, and ring diameters
r0 � 1.37a�

0 and 5.0a�
0 at T � 15 K. As expected for

both diameters peaks at w � p�3 and w � 2p�3 occur
in G�w�. For r0 � 5a�

0 the angular pair correlation func-
tions for electrons with equal and unequal spin are almost
identical; i.e., the Pauli principle does not play an impor-
tant role in this case. In contrast, for r0 � 1.37a�

0 the pair

correlation functions show a strong spin dependence. The
electrons arrange on the ring with antiferromagnetic order.
Such spin density waves have been predicted by Koski-
nen et al. [6,11]. The role of quantum effects is reflected
as well in Fig. 2(a). For the smaller ring size the radial
electron density is much broader and nonvanishing at the
ring center, implying that the system does not behave like
a quasi-1D system. In a perfect hexagonal Wigner crystal
the equilibrium distances of the electrons would be r � 1,
1.73, and 2.0r0. For r0 � 5.0a�

0 the distance pair corre-
lation function is approximately a properly weighted su-
perposition of Gaussians centered at these distances. For
r0 � 1.37a�

0 the pair correlation function depends on the
total spin of a pair and is broadened up to 4r0. From
Figs. 2(b) and 2(c) we infer that the most probable configu-
ration is one where the electrons are ordered on a zigzag
line around the circle; i.e., the electrons arrange alternately
in the inner and the outer parts of the ring.

Figure 3 displays the angular spin density pair cor-
relation functions for both ring diameters, temperatures
T � 15, 30, and 90 K, and particle numbers N � 4 and
6. In all cases the large angle correlations disappear with
increasing temperature and at T � 90 K only at small an-
gles a spin correlation is still visible. For r0 � 5.0a�

0 the
negative correlation at small angles increases with increas-
ing temperature. However, this is simply due to the fact
that the values of both correlation functions at small an-
gles become larger with increasing temperature. The spin
correlations for the small ring are about 1 order of magni-
tude larger than those in the ring with radius r0 � 5.0a�

0
(note the different scalings of the abscissas). A compari-
son between N � 4 and N � 6 shows that the spin corre-
lation is smaller for the larger system. A probable reason
for this is that for N � 6 the contribution of the Coulomb
repulsion is much larger (see Table I) freezing the elec-
tron in the Wigner crystal and — thinking in the picture of
one-particle wave functions —making the overlap between
one-particle wave functions smaller.

In summary, from Fig. 3 it can be inferred that a
spin order-disorder transition appears with increasing
temperature, increasing electron number, and increasing
ring size.

FIG. 2. Radial electron density (a), radial (b), and angular (c) pair correlation functions for N � 6, S � 0, and r0 � 1.37a�
0 and

5a�
0 at T � 15 K.
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FIG. 3. Angular spin density correlation function �G""�w� 2
G"#�w�� for T � 10, 30, and 90 K and (a) N � 4, S � 0, and
r0 � 1.37a�

0 , (b) N � 6, S � 0, and r0 � 1.37a�
0 , (c) N � 4,

S � 0, and r0 � 5a�
0 , and (d) N � 6, S � 0, and r0 � 5a�

0 .

Next we consider the temperature dependence of the
spin order-disorder transition in some more detail. Fig-
ure 4 displays the mean values of the angular separation of
the electrons with equal and unequal spin for N � 4 and
6, S � 0, and r0 � 1.37a�

0 as a function of temperature.
As expected from the results presented above, the over-
all differences between the expectation values for equal
and unequal spins approach zero with increasing tempera-
ture; i.e., the Pauli principle becomes less important. In
addition, the values for N � 6 are smaller than those for

TABLE I. Total, kinetic, potential, ring, and Coulomb energies
for N � 4 and 6, S � 0, r0 � 1.37a�

0 and 5a�
0 for different

temperatures. All energies are given in meV.

N r0�a�
0� T �K� Etot Ekin Epot Ering Ec

4 1.37 10 57.2 23.0 34.2 16.1 18.1
25 59.3 24.4 35.0 16.8 18.2
90 85.1 40.6 44.4 26.5 17.9

5 10 32.7 15.0 17.7 11.4 6.3
25 36.1 17.7 18.4 11.6 6.8
90 62.0 35.4 26.6 18.5 8.1

6 1.37 10 117.8 39.4 78.4 31.1 47.3
25 122.5 42.6 79.9 32.9 46.9
90 160.9 66.7 94.2 48.4 45.8

5 10 61.0 25.3 35.7 17.3 18.3
25 65.7 28.8 36.9 17.8 19.1
90 105.8 55.3 50.6 29.1 21.5

N � 4. Obviously, this is because the available portion
per particle of the ring volume is smaller for a larger num-
ber of electrons and the Coulomb repulsion is unable to
disperse the particles. At T � 10 K and N � 4 the con-
tribution of the Coulomb term to the total potential energy
is 53% for r0 � 1.37a�

0 and only 36% for r0 � 5a�
0 , while

for N � 6 the difference between the different diameters
is with 60% and 51% substantially smaller (see Table I).
The slope of �w"#� for N � 4 can be understood as fol-

lows. Up to 40 K �w"#� increases due to spin disordering.
At higher temperatures �w"#� decreases due to increasing
thermal fluctuations.
Finally, we calculated the second energy differences

DE � EN11 2 2EN 1 EN21, also called addition ener-
gies, which are an indicator of the stability of a quantum
ring with a given number of electrons. For quantum dots it
was claimed that the electron configurations are given by
Hunds rule [11] and consequently magic numbers occur at
N � 2, 6, 12, and 20. Here we calculated only the addi-
tion energy up to N � 7 for 25 K and N � 5 for 10 K. As
expected due to the Pauli principle and the Wigner crys-
tal structure, a strong odd even effect occurs. The general
behavior of this effect does not change for 25 K. How-
ever, for higher temperatures significant differences can be
expected (see above). Warburton et al. [8] argued that the
general features of shell effects occurring in QRs are the
same as in quantum dots. As can be inferred from Fig. 5,
our calculations confirm this for N � 6. Furthermore,
the addition energies are in the same range as those from
photoluminescence measurements at 4 K [8]. Because
of the strong Coulomb repulsion in QRs, which grows
with increasing electron number, it can be expected that
shell effects become less important with increasing particle
number.
The effects described above are reflected quantitatively

in Table I presenting the total energy (Etot), kinetic energy
(Ekin), total potential energy (Epot), the energy due to the
ring potential (Ering), and the Coulomb energy (Ec).

FIG. 4. Temperature dependence of the mean angles �f""� and
�f"#� for N � 4 and 6, S � 0, and r0 � 1.37a�

0.
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FIG. 5. Addition energies DE at temperatures T � 10 and
25 K for r0 � 1.37a�

0 .

In conclusion, we presented the results of full many
body wave function calculations for QRs with up to eight
electrons. We found that the properties of the rings depend
in an intriguing manner on the ring diameter, the particle
number, and the temperature, which in turn is due to spin
correlation, Coulomb ordering, and the general strength of
quantum effects. QRs exhibit a parameter dependent spin
order-disorder transition. By variation of the ring diameter
the system can be tuned from a quasi-1D Wigner crystal
to a 2D structure. The accessible parameter ranges can
be used to tune the properties of quantum rings to desired
values. Because of the ring diameter as an additional pa-
rameter, this qualifies them as even better candidates than
quantum dots for possible applications in microelectron-
ics. The addition energies calculated using PIMC are in
good agreement with the experimental results of Warbur-
ton et al. [8] and reflect the predicted shell effects.
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3 Multi-functional nano-sized electronic
components

1 Introduction

The advances in the fabrication of small semiconductor structures in recent years mak-
ing the fabrication of quantum dots and quantum dot molecules of nanoscopic size
possible have already been described in previous chapters. As a result, the application
of these very precisely tunable devices in microelectronics becomes most interesting.

In order to develop high-performance electronic devices for applications in comput-
ers and modern information technology, the number of transistors per chip has to be
increased and the power consumption reduced. The limits of conventional techniques
using silicon and lithographic processes are well known and the application of new
techniques and materials becomes essential. One possible approach is to reduce the
number of electrons needed in single transistors or complex integrated circuits. Tran-
sistors using only a single electron were already developed more than ten years ago
[109, 119]. Recently, different AFM-based methods including AFM lithography [149],
mechanical scratching [197], or current-controlled local oxidation [122] have become
popular for fabricating semiconductor single electron transistors.

Quantum dot molecules were studied in detail shortly after the fabrication of the first
quantum dots and have been a topic of interest ever since [14, 99, 129, 173, 174, 196,
212]. In this chapter, new methods of implementing nanoscopic electronic switching
devices or logical functions using coupled quantum dots are presented.

Many groups working on quantum computation are trying to implement ’qubits’ us-
ing quantum dots [111, 148]. The quantum computational ’qubits’ correspond to the
transistors in conventional computers [63, 200]. In contrast to the classical implemen-
tations, they cannot only be in the states ’ON’ and ’OFF’, or ’1’ and ’0’, but also in
a coherent superposition of the two states. The approach presented here is more clas-
sical: A distinction is made between two states only. A system is stated as ’ON’ if
the probability of finding an electron at a given position is higher than a minimum
probability pon and ’OFF’ if the probability of finding an electron is lower than the
corresponding probabilitypoff .

2 The double quantum dot

The first approach described in this chapter utilizes a quantum dot molecule consisting
of two GaAs quantum dots with different physical properties.

The effective potential is modeled as illustrated in Fig. 3.1 using two-dimensional har-
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48 II-3. Multi-functional nano-sized electronic components

monic oscillators of strengthωi, i = 1, 2. Their minima are equally shifted from the
origin by a distancex0 and one oscillator has a potential energy offset ofV0. Experi-
mentally, different oscillator strengths correspond to differently sized dots. A change
of V0 can be achieved with an additional electrode producing a well-localized electrical
field.
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Figure 3.1:Potential energy surface of a semiconductor quantum dot molecule consisting of
two quantum dots.

The effective potential is modeled by

V (r) =

{
m∗

2
ω2

1 ((x+ x0)2 + y2) + V0 : x ≤ xcut
m∗

2
ω2

2 ((x− x0)2 + y2) : x > xcut
,

wherer = (x, y) is the coordinate of the given electron. In order to minimize the
discontinuity at the intersection of both oscillators, both parts are not merged at the
origin but instead a valuexcut is introduced. This point represents thex value at which
both potential parts are equal andy = 0. Forω1 = ω2, it is given by

xcut = − V0

2m∗ω2
1x0

(3.1)

and for different potential strengths by

xcut =
x0

ω2
2 − ω2

1

(
ω2

1 + ω2
2 −

√
4ω2

1ω
2
2 − 2V0

ω2
1 − ω2

2

m∗x2
0

)
. (3.2)

With the material constantsκ = 12.9 andm∗ = 0.067me for GaAs [106], the resulting
Hamiltonian is

H =
n∑
i=1

(
p2
i

2m∗
+ V (ri)

)
+
∑
i<j

e2

κ|ri − rj|
. (3.3)

The strength of the harmonic potentials is fixed at~ωi = 12 meV, resulting in effec-
tive atomic units for the Hartree energyE∗H = 10.995 meV and the Bohr radiusa∗0 =
10.1886 nm.
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Figure 3.2:Schematic view of a double quantum dot including two electrons. If the electrons
have unequal spins, the Pauli principle does allow both of them to stay in the same dot. If one
parallelizes the spins, one electron has to move to the dot with the higher ground state. This
state is denoted as ’ON’.

Only two electrons are needed to achieve precisely distinguishable states of the sys-
tem. The ’switching’ is based on Pauli’s principle as shown in Fig. 3.2. The electrons
are permitted to stay in the same dot only if they do not have the same spin. The cor-
responding harmonic potential of this dot has a lower ground state than the potential
of the other dot. If the spins are parallelized, for example, by an external magnetic
field, one electron has to move into the second dot. The parameters of the potentials
of the dots, i.e.,ωi, x0 andV0, have to be chosen carefully in order to provide clearly
distinguishable ground states. It is important that the ground state of the dot to which
one electron is to be moved to is higher than the other dot’s ground state. Additionally,
it is necessary to ensure that it is lower than the first excited state of the first dot.

In this way, this device could be used as a transistor if the spins are flipped by external
fields. A single photon detector can be obtained if a single photon can flip one elec-
tron’s spin to push the electron into the dot with the higher ground state energy. Since
the relaxation time is short, the readout has to be done very quickly.

Using the path integral Monte Carlo technique, studies of the double dot system de-
pending on the temperature and potential parameters were performed. In the previous
chapters, it has been sufficient to use one-dimensional histograms in our simulations.
Due to the rotational symmetry of the single quantum dots and quantum rings, all rele-
vant properties have been obtained from the radial densityρ(r) and the pair correlation
functionsΓ(r), Γ(ϕ). The broken symmetry of quantum dot molecules suggests two-
dimensional histograms to mimic the electron density. In this way, the structure of the
electron distribution can be visualized easily. It is also possible to calculate the elec-
tron density in a given area by summing up the corresponding histogram entries. The
sum of all histogram cells, i.e., the total electron density, is normalized to the number
of electronsN .

Figure 3.3 illustrates the electron distribution in the device in two ways: The upper half
shows the electron density in thex-y-plane. Below, the density is plotted fory = 0, i.e.,
only the histogram cells aty = 0 are taken into account. The left side corresponds to
two electrons with different spins, i.e., total spinS = 0, and the right side corresponds
to two electrons with equal spins (S = ±1). Since in our case,S = 1 andS = -1
can be treated similarly, the simulations presented here are restricted toS = 1. The
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temperature of the system is 20 K,x0 is 2a∗0, and the left dot potential has an offset of
V0 = 1.1E∗H .

With this parameter set, the new device works well because the total electron density
in the left dot varies by a factor of about four between both spin scenarios. ForS = 0 it
is 0.22 and forS = 1 it is 0.84. The ’OFF’ and ’ON’ states are clearly distinguishable.
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1.0×10-3
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Figure 3.3:A double quantum dot with two electrons and total spin S = 0 (left) and S = 1
(right). S = 0 corresponds to the state ’OFF’ and S = 1 to the state ’ON’. The upper half shows
a density plot of the two-dimensional histograms and below them, the histograms for y = 0 are
plotted. The total electron density in the left dot is 0.22 for S = 0 and 0.84 for S = 1.

If the temperature is increased, the probability of finding one of the electrons in an
excited state increases as well. Therefore, the difference of the electron distributions
for the two spin states becomes smaller. This effect is presented in Fig. 3.4 and Fig. 3.5.
Figure 3.4 shows the electron density aty = 0 for both spin states andT = 20, 50,
100, and 150 K. ForT = 20 K, the peaks corresponding to both dots are sharp and
clearly distinguishable in both spin cases. Increasing the temperature results in broader
distributions in theS = 1 case. In theS = 0 case, the device behaves similarly in the
lower energetic dot. For the left dot, the height of the peak does not always increase
with increasing temperature. While it is small and sharp for 20 K, for 50 K it is even
higher than for all other temperatures and decreases forT = 100 K and 150 K again.
This demonstrates the mobility of the electrons: At 50 K, the energy is high enough to
occupy the left dot, but since only the ground state or low excited states are occupied,
the electron stays in the center of the dot. At higher temperatures, excited states of both
dots can be occupied, resulting in a broadened electron distribution.

To study the possibility of using a quantum dot molecule as an implementation of
a nanoscopic switching device, it is more useful to plot the total electron density of
a complete dot. Figure 3.5 shows the total electron density in the left dotpl for the
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Figure 3.4:Electron densities at y = 0 for two electrons in a double quantum dot at different
temperatures and different total spins.

same parameters as above. The difference between the two graphs becomes smaller
for higher temperatures and nearly vanishes atT = 150 K. This is in accordance with
the corresponding graphs in Fig. 3.4, where the electron distributions of both spin
states atT = 150 K are no longer distinguishable.
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Figure 3.5:Total electron density in the left dot for S = 0 and S = 1.

Simulations with different sets of parametersV0, x0 andωi were performed. It was
found that a double quantum dot can also be used as a switch if the harmonic oscillator
strengths or the inter-dot distances are varied instead ofV0. Nevertheless, the interplay
of the different parameters has a strong influence on the difference between the electron
distributions in theS = 0 and theS = 1 states. If, for example, the harmonic oscillator
strengths are increased, i.e., smaller dots are used, the displacement of the center of
the dots from the originx0 has to be decreased. Otherwise, the barrier between both
dots atxcut can be too high to allow an electron to move from one dot to another.

Although it has been demonstrated that the double quantum dot device works well,
it has two major disadvantages for applications in microelectronics: The temperature
of the system has to be very low, which rules out any implementation in consumer
products because the needed cooling mechanisms are usually only available in the
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laboratory. The second disadvantage is that the spins of the electrons have to be in a
well-defined state for measurable lengths of time.

3 Logical functions at high temperatures

In the following, a system is presented that overcomes the problems of the double
quantum dot. Furthermore, it is not only applicable as a nanoscopic transistor, but
can also be used to implement logical functions. ’AND’ and ’OR’ operations can be
performed using the same device.

The device consists of three aligned quantum dots, where the outer ones are equally
sized and the inner one is smaller. Additionally, the properties of the inner dot can be
adjusted by an energy offsetV0. Figure 3.6 presents the potential energy surface which
is modeled in the style of the double dot and given by

V (r) =


m∗

2
ω2

1 ((x+ x0)2 + y2) : x ≤ −xcut
m∗

2
ω2

2 (x2 + y2) + V0 : −xcut < x < +xcut
m∗

2
ω2

1 ((x− x0)2 + y2) : x ≥ +xcut

.

The device works as follows: The outer dots are filled with a given number of electrons
to define the state of the system. These electrons can enter the left or the right dot
through external gate electrodes. In this way, a system with two input channels or two
’bits’ is obtained. For the readout, only the inner dot is utilized. If the electron density
inside the inner dot exceeds a given value, the system is defined as being in state ’1’.
Otherwise, it is in state ’0’.
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Figure 3.6:Potential energy surface of a semiconductor quantum dot molecule consisting of
three quantum dots.

An ’AND’ function can be implemented by filling the outer dots with up to one elec-
tron each. For the readout, an additional electron is inserted. If initially only one outer
dot is filled, the readout-electron will be located in the other one as a result of the
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Coulomb repulsion. The resulting signal in the centered dot is small. If none of the
dots is initially filled, the signal is, of course, even smaller. Only if both dots are filled
will the readout electron cause the electron density in the centered dot to exceed the
minimum value, which means the system is now in state ’1’.

This device is easily transformed into an ’OR’ function by pre-filling an arbitrary outer
dot with one electron. In this case, one additional electron is sufficient to achieve an
electron density high enough to be stated as ’1’ in the inner dot.

In summary, it is sufficient for the system to be in the state ’1’ if at least three electrons
are inside. Figure 3.7 visualizes the principle of both implementations.
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Figure 3.7:Schematic demonstration of the implementation of the logical functions ’AND’
and ’OR’ using three coupled quantum dots. The outer dots are filled with up to one electron
each (input). An additional electron is utilized for the readout causing the electron density in
the centered dot to exceed a minimum value if the system is in state ’1’ (output). For the
implementation of the ’OR’ function, the system has to be pre-filled with one electron. This is
visualized by the dashed lines.

The parameters describing the confining potential have to be chosen carefully. If the
combination of the distance between the outer dotsx0, the energy offset of the inner
dot V0, and the harmonic oscillator strengthsωi results in an effective potential that
causes the electrons to be highly localized in one of the outer dots, the electron density
in the centered dot is small. An additional electron does not provoke a relevant change
of the electron density in the inner dot in this case. If the potential is very shallow
and the difference between the ground states of the inner and outer dots is small, the
electrons are evenly distributed in the device. Once again, the effect of an additionally
inserted electron is small.

Path integral Monte Carlo simulations were performed for temperaturesT = 100 K
and 300 K. Due to the high mobility of the electrons at these temperatures, the size of
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the dots had to be decreased, i.e., the harmonic oscillator strengths had to be increased.
~ω1 was set to 20 meV forT = 100 K and to 30 meV forT = 300 K.x0 was varied
from 2 to 10a∗0, V0 from 0 to 10E∗H , and~ω2 from 10 to 60 meV.

For the determination of the state of the system, the outer dots do not have to be taken
into account. It is sufficient to focus on the central one.

ForT = 100 K, the device works well over a broad range of parameter settings. As an
example, Fig. 3.8 shows the electron density in the centered dot aty = 0 for x0 = 2 a∗0,
V0 = 1.2E∗H and~ω1 = ~ω2 = 20 meV. To take spin flips into account, the average
values of all possible spin configurations are plotted. The total electron density in the
centered dot is 0.147 forN = 1, 0.308 forN = 2, and 0.550 forN = 3. The total electron
density can be clearly distinguished for the different particle numbers indicating that
the system depicted here can be used to implement logical functions.
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Figure 3.8:Electron density of the centered dot at y = 0 and for up to three electrons. The
system’s parameters are T = 100 K, x0 = 2 a∗0, V0 = 1.2 E∗H and ~ω1 = ~ω2 = 20 meV.

At T = 300 K, it is more problematic to find an optimal confining potential because
a new effect arises, which can be explained as follows: While one electron might be
highly localized in one of the dots with a non-vanishing wavefunction in the central
dot, the Coulomb interaction is responsible for a smaller electron density in the central
dot if the number of electrons is increased. The electrons are dispersed, resulting in
higher probabilities of finding the electrons in the outer dots. This effect is demon-
strated in Fig. 3.9a, where the potential is given byx0 = 6 a∗0, V0 = 2 E∗H and~ω1 =
~ω2 = 30 meV. The total electron density in the central dot is 0.205 forN = 1, 0.218
for N = 2 and 0.171 forN = 3.

Decreasing the distance between the single dots and the potential energy offset al-
lows us to obtain a device with desirable properties at room temperature. Figure 3.9b
demonstrates thatx0 = 4 a∗0, andV0 = 1 E∗H are optimal settings. Here, the densities
are 0.245 forN = 1, 0.530 forN = 2, and 0.752 forN = 3.

By tuning the device as illustrated in Fig. 3.9a, it can be used to perform logical
’NAND’ or ’NOR’ functions, i.e., the inverse counterparts of ’AND’ and ’OR’. While
the ’AND’ and ’OR’ systems are ’ON’ if at least three electrons are inside, their inverse
counterparts are ’ON’ if less than three electrons are in the system.
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Figure 3.9:Electron density of the centered dot at y = 0 and for up to three electrons. Both
plots are for T = 300 K, and ~ω1 = ~ω2 = 30 meV. The potential of a) is described by x0 = 6 a∗0,
and V0 = 2 E∗H , while in b) x0 = 4 a∗0, and V0 = 1 E∗H are used.

4 Conclusion

In conclusion, the studies presented in this chapter demonstrate that quantum dot
molecules consisting of two or three dots with different physical properties can be
used to implement functional nanoscopic structures for microelectronics. Whether the
structures introduced here can be used in more complex devices has to be determined
through further studies. If it is possible to couple a large number of quantum dots to
multi-dot structures, these devices are ideal candidates for fabricating highly integrated
semiconductor circuits and reducing their size significantly. More studies need to be
performed to investigate long-range correlations between electrons in different devices
or additional temperature dependent effects such as phonon couplings. These effects
have to be taken into account when designing complex circuits. These effects may,
of course, produce unwanted artefacts, but if the physical properties are well known,
it might be possible to utilize them in order to miniaturize the integrated circuit even
further.





4 The geometric structure of small
sodium clusters

1 Introduction

Clusters are compounds consisting of a countable number of atoms. They contain be-
tween two and several thousand atoms. For small systems, the field of cluster physics
overlaps with atomic and molecular physics. On the other end of the scale, cluster
physics connects to solid state physics.

In the beginning of cluster research, the experimentally available systems were quite
small, containing only a few dozen atoms. It was thought that these systems could be
treated as small molecules and that every cluster could be considered to be essentially
unique. It was not expected to find patterns relating the properties of clusters with their
size or the used material. Larger systems were thought of as bulk material [100].

In 1983, W. Knight’s pioneering experiments changed this way of thinking. His group
managed to produce and detect clusters of alkali metals with up to 100 atoms and
found the electronic structure to be determined by a spherical potential well [125].
This was deduced from the more frequent occurrence of clusters in which the num-
ber of valence electrons matched the spherical shell closing numbers. Independently,
Ekardt published theoretical results obtained using the self-consistent jellium model,
which predicted the same behavior [61, 62]. The jellium model is based on the experi-
mental finding that the detailed ionic core structure does not affect the properties of the
clusters. The electrons are treated as moving freely in a uniformly positively charged
background [37].

Due to the fact that the jellium model completely neglects the ionic structure, it only
works for a limited number of systems with highly delocalized electrons. For small
systems, quantum chemical methods or molecular dynamics calculations are superior
to explain the details of experimental data [37].Ab initio calculations have only been
applied to small clusters since the computational effort is enormous [24, 25, 89, 162].

This effort can be remarkably reduced by treating the nucleus and core electrons as
one unit and only studying the valence electrons separately. The ionic core is de-
scribed by an effective potential - the so-called ’pseudopotential’ or ’effective core
potential.’ Generally speaking, the pseudopotentials combine the attraction caused by
the nucleus, the repulsion provoked by the core electrons, and the Pauli principle [138].
With this simple approach, cluster sizes of about 20 particles have been studied in de-
tail [158, 164], and by compromising the accuracy and introducing approximations,
particle numbers of some tens or even hundreds can be achieved [183, 221].

Sodium clusters are probably the best studied metal clusters. They are not only exper-
imentally [65, 100, 142, 186, 194], but also theoretically [25, 37, 40, 90, 92, 157, 192]
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still a topic of great interest. This is due to the fact that only one valence electron per
atom must be considered using the techniques described above.

S. Kümmel et al. have developed a model potential, i.e., a pseudopotential which con-
sists of analytic functions. The parameters of these functions are adjusted to match
properties known from experiments. They have shown that their pseudopotential does
well at describing the ionic and electronic structure of sodium clusters for up toN =
59 using the ’cylindrically averaged pseudopotential scheme’ (CAPS) [138, 139]. The
main idea of CAPS is to reduce the dimensionality of the numerical problem by in-
cluding symmetry considerations and thus to minimize the numerical effort of density
functional calculations.

The potential of Kümmel et al. is defined by (see Fig. 4.1)

Vp(r) = −Ze
2

r

[
c1 erf

(
r√
2σ1

)
+ c2 erf

(
r√
2σ2

)]
, (4.1)

where the error function is

erf(x) =
2√
π

∫ x

0

dy exp(−y2). (4.2)

The parametersc1, c2, σ1, σ2 are chosen to reproduce the experimental data given in
[1, 7, 8]:

σ1 = 0.681 a0, c1 = −2.292, (4.3)

σ2 = 1.163 a0, c2 = 3.292. (4.4)
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Figure 4.1:The pseudopotential as defined by Kümmel et al. [139].

2 The path integral Monte Carlo technique

Path integral Monte Carlo calculations for sodium clusters with up to four ionic sodium
cores are presented here. Since solving the exact many body problem in three dimen-
sions would by far exceed the available computing resources, some simplifications are
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introduced. The ionic cores including the nucleus and the closed electron shells are
treated as classical particles underlying Boltzmann statistics. In contrast to the cores,
the valence electrons are handled quantum mechanically and the interaction between
the cores and the valence electrons is modeled by the pseudopotential of Kümmel et
al. (Eq. (4.1)). Particles of the same type interact through Coulomb repulsion.

The electronic temperaturet and the ionic temperatureT are varied separately. For
comparison with results of other authors, the electronic temperature should be set to
zero. Obviously, this is not possible using the path integral Monte Carlo approach
since convergence can not be achieved in this case. Therefore,t is kept as small as
possible, i.e., 500 K to 4000 K. Since atomic level spacings are generally on the order
of up to some eV, these temperatures can still be considered small (1 eV corresponds
to 11605 K).

To mimic the positions of the sodium atoms, the following types of pair correlation
functions and radial densities are introduced.ΓNa+−Na+(r) describes the probability
of finding two ionic sodium cores (Na+) with distancer. ρNa+(r) is the radial density
of sodium cores.ΓNa+−e↑(r) andΓNa+−e↓(r) are the Na+ - electron pair correlation
functions.

1

32

Figure 4.2:Geometry of Na+
3 [138].

Two small sodium clusters, namely Na+
3 and Na+4 , are studied here. In both cases, the

spins of the electrons are fixed. While the Na+
3 simulations were performed for a total

electron spinS = 0, the Na+4 cluster has a total electron spinS = 1/2.

Figure 4.2 shows the stable configuration of Na+
3 , where the three atoms are arranged

on a triangle with equal bond lengths. The bond lengths can easily be obtained from
the maxima of the ionic radial densities and pair correlation functions as illustrated in
Fig. 4.3. The origin of the coordinate system is in the center of the triangle.

PIMC (5 K) CAPS DFT/LSD HF CI

6.32 a0 6.62 a0 6.00 a0 6.96 a0 6.41 a0

Table 4.1:Comparison of bond lengths for Na+
3 obtained by the path integral Monte Carlo

technique (PIMC), the cylindrically averaged pseudopotential scheme (CAPS) [139], density
functional theory with the local spin density approximation (DFT/LSD) [157, 158, 164], Hartree-
Fock calculations (HF) [23, 24], and full configuration interaction calculations (CI) [25].

For comparison with the PIMC results, Tab. 4.1 shows bond lengths of other authors
using different techniques, i.e., the cylindrically averaged pseudopotential scheme
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(CAPS) [137, 139], density functional theory with the local spin density approxima-
tion (DFT/LSD) [157, 158, 164],ab initio Hartree-Fock calculations (HF) [23, 24], and
full configuration interaction calculations (CI) [25]. It is known thatab initio Hartree-
Fock calculations overestimate the bond lengths due to the missing correlation effects
and that the full CI calculations have been performed to achieve more accurate results.
The results obtained using the local spin density approximation are an underestima-
tion [24, 139]. The pseudopotential used for the CAPS calculations has been adjusted
to compensate this underestimation and to accurately reproduce experimental results.
Although our calculations utilize the same potential for the electron-ion interaction, the
results differ by about 0.3 a0. This is not surprising because the parameters describing
the pseudopotential are optimized for CAPS calculations only. The PIMC result is in
good agreement with the bond length obtained by the CI calculations and deviates by
0.09 a0.
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Figure 4.3:Radial ionic density (a) and pair correlation functions (b) for Na+
3 at different

temperatures.

Results of temperature dependent calculations forT = 5, 50, 100, 200, and 500 K are
presented in Fig. 4.3. The positions of the maxima of the radial density of Na+ ions (a),
as well as of the corresponding pair correlation functions (b) vary only slightly with
increasing temperature. This indicates a stable triangular cluster structure. Martins et
al. calculated the dissociation energies of small sodium clusters, which confirm a very
stable cluster geometry [158]. For Na+

3 , they obtained 1.55 eV, which is significantly
larger than the bulk value (1.11 eV). The broadening of the graphs for higher tempera-
tures is caused by the higher mobility of the ions. The small variation of the positions
of the maxima leads to the conclusion that the bond lengths of our path integral Monte
Carlo simulations at 5 K are comparable with the results of other authors obtained at
0 K.

Next, simulations of Na+4 are presented. The three stable isomers are shown in Fig. 4.4.

The Na+4 cluster requires the electronic temperaturet to be increased in order to
achieve convergence of the Monte Carlo simulation. Simulations were performed fort
= 2000 to 4000 K. At these temperatures, evaporation of the cluster occurs for a broad
range of simulation parameters. If the temperature is chosen too high and the number
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Figure 4.4:The three stable isomers of Na+
4 [162]: (I) has the shape of a flat rhombus, (II) is

usually referred to as the T-form and (III) has a tetraeder-like structure.

of timeslices too small, the system behaves as if it consisted of single uncorrelated
ions and electrons and no clusters are formed. On the other hand, if the number of
timeslices is too high or the system temperatures are too low, convergence cannot be
achieved.

Figure 4.5 shows pair correlation functions of evaporated and non-evaporated Na+
4

clusters. If a cluster evaporates, the internuclear binding is lost and the ionic cores no
longer need to be thoroughly localized. This causes the peaks of the pair correlation
function to flatten out.
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Figure 4.5:Pair correlation functions of evaporated and non-evaporated Na+
4 clusters at t =

4000 K, T = 100 K, M = 250 (straight line), and t = 2000 K, T = 30 K, M = 500 (dashed line).
The non-evaporated data is fitted by Eq. (4.5) with the parameters from Tab. 4.2 (straight-
dotted line).

In contrast to the Na+3 cluster, the dissociation energy of the Na+
4 cluster is significantly

smaller than the bulk value, i.e., 0.68 eV [158]. This indicates the lower stability of the
cluster.

In the following, an Na+4 cluster witht = 2000 K,T = 30 K, andM = 500 correspond-



62 II-4. The geometric structure of small sodium clusters

ing to the non-evaporated case in Fig. 4.5 is discussed exclusively.

In order to extract the bond lengths from the simulation data, the pair correlation func-
tion is fitted by a superposition of Gauss functions. Each Gauss function represents
the correlation between two ionic cores. In the case of Na+

4 , six Na+-Na+ correlations
have to be taken into account and since the integral of the total pair correlation func-
tion is normalized to one, each bond contributes 1/6. Thus, the height and width of
each Gauss function can be expressed by a single parameterai. The bond lengths are
represented by the most probable particle distances, i.e., the positionri of the maxima
of the single Gauss functions. The total function applied for a non-linear least-square
fit using the Marquardt-Levenberg algorithm is [156]

Γfit
Na+−Na+(r) =

6∑
i=1

1

6ai
√

2π
exp

(
−(r − ri)2

2a2
i

)
. (4.5)

This equation has 12 independent parametersai, ri. It was found that the best fit can be
obtained by reducing the number of independent parameters and assuming only four
different Gauss functions. This can be verified by the symmetry of the isomers shown
in Fig. 4.4, where two bond lengths occur twice in each geometry.

To fit the data presented in Fig. 4.5, the parameters shown in Tab. 4.2 are utilized. For
comparison to Fig. 4.4, in the last row of Tab. 4.2 the numbers of the particles with
distanceri are given.

i ai ri MRCI CI Binding

1 0.39 a0 6.24 a0 6.55 a0 6.16 a0 3-4
2 0.72 a0 6.87 a0 6.65 a0 6.59 a0 2-3, 2-4
3 1.07 a0 8.50 a0 7.11 a0 6.71 a0 1-2
4 1.74 a0 12.50 a0 13.30 a0 12.91 a0 1-3, 1-4

Table 4.2:Parameters applied to fit the data in Fig. 4.5 using Eq. (4.5) and the bond lengths
of Mishima et al. [162] (MRCI) and Bonacic-Koutecky et al. [25] (CI). The last column displays
the corresponding particles of isomer II in Fig. 4.4.

At T = 30 K, the ionic core distances calculated using the path integral Monte Carlo
simulation predict an Na+4 cluster with the shape of isomer II. It is impossible to con-
struct a rhombus- or tetraeder-like structure using the calculated length proportions.

The Gauss functions used to fit the proportion ofΓNa+−Na+(r) belonging to sodium
core number 1 (i = 3,4) are broader than the ones corresponding to the triangular
structure in the lower part of the cluster (i = 1,2). This shows that, due to its weaker
binding, the upper ionic core is not as thoroughly localized as the other ones.

The choice of isomer II is strengthened by the Na+-electron and electron-electron pair
correlation functions as shown in Fig. 4.6a and Fig. 4.6b.ΓNa+−e↑(r) andΓe↑−e↑(r)
indicate that one electron is responsible for the 1-2 binding, and that the remaining
spin↑ electron is localized in the area of the triangular structure consisting of the Na+

cores 2,3, and 4. It is responsible for the 3-4 binding and together with the single
spin↓ electron for the 2-3 and 2-4 bindings. It can be inferred fromΓe↓−e↑(r) that the
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Figure 4.6:Na+-electron (a) and electron-electron (b) pair correlation functions at t = 2000 K,
T = 30 K, M = 500.

distance between the spin↓ electron and both spin↑ electrons is similar. With this in
mind,ΓNa+−e↓(r) clearly shows that the spin↓ electron is localized in the area around
core number 2.

The influence of the Pauli principle is not insignificant atT = 30 K. This is visual-
ized by the difference ofΓe↑−e↑(r) andΓe↑−e↓(r). Without Pauli repulsion, the pair
correlation functions would be equal.

The bond lengths of Na+4 are compared to the multi-reference configuration interaction
(MRCI) data of Mishima et al. [162], and full configuration interaction (CI) data of
Bonacic-Koutecky et al. [25] (See Tab. 4.2).

While the MRCI bond lengths are known to be an overestimation [162], the path in-
tegral Monte Carlo approach predicts even larger values for 1-2, and 2-3/2-4. The 3-4
binding is 0.31 a0 smaller than the MRCI result, but only 0.08 a0 larger than the cor-
responding CI value. The 1-3/1-4 distance is 0.8 a0 smaller than the corresponding
MRCI value and 0.41 a0 smaller than the CI result.

Several different facts can explain this effect: As already stated, the parameters of the
pseudopotential have not been optimized for path integral Monte Carlo simulations.
The more complex a system is, the more significant are the consequences if the pseu-
dopotential is not well optimized. While the PIMC calculations are performed at 30 K,
the MRCI and CI calculations are performed at 0 K which is another possible expla-
nation for the deviation of the results. Additionally, the electron spins are fixed in the
PIMC calculations. Further simulations are necessary to study the influence of differ-
ent spin configurations onΓNa+−Na+(r).

3 Conclusion and outlook

The studies presented in this chapter were performed to demonstrate that combining
the path integral Monte Carlo technique with the classical movement of the ionic cores
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yields an approach well-suited to study small sodium clusters. This was accomplished
by successfully reproducing the results obtained by other techniques.

For future simulations, the parameters of the pseudopotential need to be optimized to
obtain more accurate results.

With our technique and the available computational power, it is not possible to study
clusters including more than four atoms. Even for these small systems, a single simu-
lation run at 30 K takes up to a few days on 62 Alpha processors. Further algorithmic
improvements are necessary to reduce the number of Monte Carlo steps needed.

If one succeeds in reducing the numerical problems and optimizing the pseudopoten-
tial, the path integral Monte Carlo technique with the classical movement of the ionic
cores could be a powerful tool for studying geometries and temperature dependent ef-
fects of small clusters. For example, the transition from solid- to liquidlike behavior of
small clusters is a topic of interest, but requires clusters with at least seven atoms to be
studied [91].



III
Thermodynamic properties of

selected finite systems





1 Calculation of thermodynamic
properties of finite Bose-Einstein
systems

P. Borrmann, J. Harting, O. Mülken, and E.R. Hilf
Physical Review A 60, 1519 (1999)

67

http://ojps.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000060000002001519000001&idtype=cvips


68 III-1. Calculation of thermodynamic properties of finite Bose-Einstein systems

[31] [6, 28, 38, 52, 79, 83, 84, 140, 170, 201, 214, 216]

Calculation of thermodynamic properties of finite Bose-Einstein systems

Peter Borrmann,* Jens Harting, Oliver Mu¨lken, and Eberhard R. Hilf
Department of Physics, Carl von Ossietzky University, Oldenburg, D-26111 Oldenburg, Germany

�Received 26 August 1998�

We derive an exact recursion formula for the calculation of thermodynamic functions of finite systems
obeying Bose-Einstein statistics. The formula is applicable for canonical systems where the particles can be
treated as noninteracting in some approximation, e.g., like Bose-Einstein condensates in magnetic traps. The
numerical effort of our computation scheme grows only linearly with the number of particles. As an example,
we calculate the relative ground-state fluctuations and specific heats for ideal Bose gases with a finite number
of particles enclosed in containers of different shapes.�S1050-2947�99�04203-1�

PACS number�s�: 03.75.Fi, 05.30.Jp, 32.80.Pj

With the observation of Bose-Einstein condensation
�BEC� of magnetically�1–3� and optically �4� trapped at-
oms, new insights into the nature of this state of matter have
been given. The experimental situation is in all cases quite
different from the ideal gas treated within the grand-
canonical ensemble, which is the standard textbook example.
First, the number of particles within the traps is fixed and
finite, which suggests a canonical or microcanonical treat-
ment of the systems. Second, the confining trap potentials
greatly influence the condensate properties. Third, although
the trapped gases are quite dilute, the validity of the treat-
ment as noninteracting particle gases has to be checked from
case to case.

Even within the approximation of noninteracting par-
ticles, the calculation of the thermodynamic properties of the
Bose-Einstein systems remains a difficult mathematical
problem. Recently, some approximate methods to calculate
the fluctuation of the ground-state occupation number in a
trapped Bose-Einstein condensate have been developed
�5–8�. Here we present an exact method to calculate all ther-
modynamic quantities of finite canonical Bose systems,
given the one-particle density of states.

As the starting point, we utilize the recursive formula of
the canonical partition function for a system ofN noninter-
acting bosons as given in�9�

ZN����
1

N �
k�1

N

Qk���ZN�k���, �1�

where Qk(�)�Z1(k�)�� iexp(�k��i) is the one-particle
partition function at the temperaturesk� andZ0(�)�1. The
microcanonical partition�N(E) can be calculated by an in-
verse Laplace-transform of Eq.�1� and is given by

�N�E ��
1

N �
k�1

N
1

2	i�c�i


c�i


d� exp��E �Qk���ZN�k���

�
1

N �
k�1

N �
0

E

dE��1
k�E���N�k�E�E��, �2�

where�1
k(E) is the inverse Laplace transform ofQk(�) and

�0(E)��(E). A similar, slightly less general, equation has
recently been derived by Weiss and Wilkens�10�.

Equation�1� can be used to calculate all thermodynamic
quantities by appropriate differentiation of lnZN . However,
in any caseZN occurs as a normalization factor and has to be
calculated explicitly. This turns out to be a major drawback.
First, the numerical effort to calculateZN grows with the
square of the particle numberN. Moreover, sinceZN(�)
grows exponentially withN, multiple precision arithmetic is
required for proper calculation. We will present a method
avoiding these difficulties.

To ease our derivations we rewriteZN(�) utilizing theZ
transform and define

Z�Z ��F�x �� �
k�0



Zk���

xk
, �3�

Z�Q ��G�x �� �
k�0



Qk���

xk
, �4�

where we defineQ0(�)�0. Taking advantage of the basic
properties of theZ transform, Eq.�1� can be written in the
form

�x
d

dx
F�x ��F�x �G�x �, �5�

yielding1

F�x ��exp� �
k�1



Qk���

k
x�k� . �6�

Applying the inverseZ transform, we may writeZN(�) as

ZN����
1

2	i�C
F�x �xN�1dx, �7�

*Author to whom correspondence should be addressed. Electronic
address: borrmann@uni-oldenburg.de

1Note thatF(x) is closely related to the grand-canonical partition
function.
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where Cª�z�C:�x��r� and r has to satisfy the condition
�ZN(�)��exp(rN). Alternatively we may write

ZN����
1

N!

dN

dxN
F�1/x ��x�0 . �8�

Using Eq. �8�, the number of particles with energy � i can be
calculated by

� i�N ,���
�1

�

	

	� i
ln ZN���

�
1

ZN���
k�1

N

exp���k� i�ZN�k���. �9�

Some reordering yields

� i�N�1,���
ZN���

ZN�1���
exp���� i��� i�N ,���1� .

�10�

Since the particle number is a conserved quantity in the ca-
nonical ensemble, the direct calculation of the normalization
factor can be omitted by using the relation

ZN���

ZN�1���
�

N�1



i�0



exp���� i��� i�N ,���1�

. �11�

For Fermi systems, the recursion formula

� i�N�1,���
ZN���

ZN�1���
exp���� i��1�� i�N ,���

�12�

with

ZN���

ZN�1���
�

N�1



i�0



exp���� i��1�� i�N ,���

�13�

can be derived in a similar manner. In practice, only a lim-
ited number of energy levels has to be taken into account,
since the occupation probability rapidly decreases with in-
creasing energy eigenvalues. Equations �10� and �11� are ex-
tremely useful in practical calculations. The numerical effort
to calculate the occupation numbers grows only linear with
the number of particles. Moreover, only a moderate arith-
metic precision is required. Having the occupation probabili-
ties at hand, the energy expectation value is given by

E�N ,���

i�0



� i� i�N ,��. �14�

The calculation of the fluctuation of the occupation prob-
abilities �� i(N ,�) is a little bit more complicated and con-
tains another recursion:

��� i�N�1,���2�
1

�2

	2

	� i
2

ln �ZN�1����

�
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�

	

	� i
� i�N�1,��
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FIG. 1. �a�–�c� Specific heats Cv /N and �d�–�f� ground-state fluctuations as a function of the canonical temperature for systems of N
�100, N�1000, and N�10 000 particles. The solid lines represent the results for a spherical trap, the dashed lines for a cube, the circles for
a cylinder with a diameter to height ratio of d/L�1, the long dashed lines for a box with side lengths Lz�4Ly�4Lx , and the squares for
a cylinder with d/L�1/4. In all cases the particle density is taken to be ��0.0216 Å�3.
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To illustrate the usefulness of our recursion formulas, we
consider the ideal gas with parameters of liquid helium in
containers of different shapes: �i� a cube with side length
Lx ,Ly ,Lz and energy levels

Enx ,ny ,nz
�

�2�2

2mHe
� nx

2

Lx
2

�
ny

2

Ly
2

�
nz

2

Lz
2� , �16�

�ii� a sphere with radius a and energy levels

En ,l�
�2

2mHea
2

un ,l �17�

and degeneracy �n ,l�2l�1, and �iii� a cylinder with diam-
eter d�2a , height L, and energy levels

En ,l ,m�
�2

2mHe
� vn ,l

2

a2
�

m2�2

L2 � �18�

with n�1,2, . . . , l�1,2,3, . . . , and m�•••�1,0,�1••• .
We denoted the zeros of the half-integer Bessel functions
Jn�1/2(r) by un ,l and the zeros of the integer Bessel function
Jn(r) by vn ,l .

Figure 1 displays the specific heats and the fluctuations of
the ground-state occupation number ��0 /N as a function of
the canonical temperature for different trap geometries and
N�100,1000, and 10 000 He atoms. In all cases, the particle
density is taken to be ��0.0216 Å�3. With growing system
size the differences between the specific heats for the differ-
ent trap geometries almost vanish and approach the typical
shape of the curve for the ideal Bose gas. That is, with re-
spect to the specific heat the boundary conditions become
more and more unimportant with increasing volume. In con-
trast, the ground-state fluctuations exhibit a completely dif-
ferent behavior. The cubic box, the compact cylinder with
equal diameter and height, and the sphere show almost equal
ground-state fluctuations for all system sizes, while the
ground-state fluctuations of the stretched box and the
stretched cylinder are remarkably larger for temperatures be-
low the critical temperature. This effect is not unexpected
because restricting the particle motion in one or two dimen-
sions makes the system act like a lower-dimensional system,
which are known to show larger fluctuations. Moreover, the
differences between the fluctuations of the stretched traps
and the compact traps do not decrease with increasing sys-
tem size. The reason for this behavior is found in the energy
difference between the ground state and the first excited
level, which is much larger for the stretched traps than for
the compact traps. Since ��0 /N decreases approximately
with N�1/3, the infinite particle number limit is the same for
all trap geometries. Under experimental considerations our
results imply that the stability of the condensate fraction in
anisotropic traps should be considerably smaller than in iso-
tropic traps. In Fig. 1 we plotted ��0 /N to allow good com-
parison with previous published results 	8,5
. Since this

quantity goes to zero as the system size increases, it is a bad
indicator for phase transitions. The relative ground-state
fluctuation ��0 /�0 shown in Fig. 2 is much more conclusive
in this respect.

True phase transition only occurs for infinite systems.
However, it is well known from other systems, e.g., finite
spin lattices and clusters 	11,12
, that finite systems already
display the onset of phase transitions. Instead of having a
well defined critical temperature, the transition occurs in a
broader crossover region. As can be extracted from Fig. 2,
the crossover region, which is indicated by the sharp increase
of ��0 /�0 , extends even for the cubic box with 10 000 at-
oms over a temperature range of 0.5 K. For the stretched trap
the crossover region is about twice as large.

All calculations have been performed on an IBM-43P
�233 MHz� workstation. For 1000 particles a run with 200
temperature points took about six minutes; for 10 000 par-
ticles it took one hour. A calculation of the same quantities
with the recursion formula given in Eq. �1� takes about six
hours for 1000 particles �and would take at least 600 hours
for 10 000 particles�. Moreover, due to the numerical insta-
bilities connected with Eq. �1�, N�1000 was the largest par-
ticle number we achieved with this formula, even though we
utilized a multiple precision package.

We expect the recursion formulas to be quite useful for
calculating the properties of dilute atomic Bose gases in
magnetic traps with different geometry. For this purpose we
provide an easy to use JAVA program,2 which requires as
input only the energy level distribution with appropriate de-
generacy and calculates the basic properties of finite Bose
systems with particle numbers up to 10 000. A slightly faster
FORTRAN code is available upon request.

2The code is available within the World-Wide-Web: http:
\\www.physik.uni-oldenburg.de\�borrmann\BEC

FIG. 2. Relative ground-state fluctuations ��0 /�0 as a function
of temperature for the cubic box and the stretched box and N
�1000 and 10 000 particles.
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Classification of Phase Transitions in Small Systems
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We present a classification scheme for phase transitions in finite systems like atomic and molecular
clusters based on the Lee-Yang zeros in the complex temperature plane. In the limit of infinite particle
numbers the scheme reduces to the Ehrenfest definition of phase transitions and gives the right critical
indices. We apply this classification scheme to Bose-Einstein condensates in a harmonic trap as an
example of a higher order phase transition in a finite system and to small Ar clusters.

PACS numbers: 05.70.Fh, 64.60.Cn, 64.70.–p

Small systems do not exhibit phase transitions. Follow-
ing Ehrenfest’s definition this statement is true for almost
all small systems. Instead of exhibiting a sharp peak or
a discontinuity in the specific heat at some well-defined
critical temperature the specific heat shows a more or
less smooth hump extending over some finite temperature
range. For example, for the melting of atomic clusters
this is commonly interpreted as a temperature region where
solid and liquid clusters coexist [1,2] and as a finite-system
analog of a first order phase transition. Proykova and Berry
[3] interpret a structural transition in TeF6 clusters as a sec-
ond order phase transition. A common way to investigate
if a transition in a finite system is a precursor of a phase
transition in the corresponding infinite system is to study
the particle number dependence of the appropriate ther-
modynamic potential [4]. However, this approach will fail
for all system types where the nature of the phase transi-
tion changes with increasing particle number which seems
to be the case, e.g., for sodium clusters [5] or ferrofluid
clusters [6]. For this reason a definition of phase transi-
tions for systems with a fixed and finite particle number
seems to be desirable. The only recommended feature is
that this definition should reduce to the Ehrenfest definition
when applied to infinite systems for systems where such
limits exist. An approach in this direction has been made
by studying the topological structure of the n-body phase
space and a hypothetical definition based on the inspection
of the shape of the caloric curve [7]. A mathematical more
rigid investigation giving the sufficient and necessary con-
ditions for the existence of van der Waals–type loops has
been given by Wales and Doye [8].

Our ansatz presented in this Letter is based on earlier
works of Lee and Yang [9] and Grossmann et al. [10] who
gave a description of phase transitions by analyzing the dis-
tributions of zeros (DOZ’s) of the grand canonical J�b�
and the canonical partition function Z�b� in the complex
temperature plane. For macroscopic systems this analy-
sis merely contributes a sophisticated view of the ther-
modynamic behavior of the investigated system. We will
show that for small systems the DOZ’s are able to reveal
the thermodynamic secrets of small systems in a distinct
manner. In the following we restrict our discussion to the

canonical ensemble and denote complex temperatures by
B � b 1 it where b is as usual 1�kBT [11].

In the case of finite systems one must not deal with
special considerations regarding the thermodynamic limit.
We write the canonical partition function Z�B� �

R
dE 3

V�E� exp�2BE�, with the density of states V�E�, as
a product Z�B� � Zl�B�Zi�B � where Zl�B� describes
the limiting behavior of Z�B � for T ! ` imposing
limB!0Zi�B� � 1. In general, Zl�B� will not depend on
the interaction between the particles or the particle statis-
tics but it will depend on the external potential imposed.
For example, for N particles in a d-dimensional harmonic
trap we have Zl�B� � B2dN and for a d-dimensional
gas Zl�B � � B2dN�2. In the following we will assume
that Zl�B � has no zeros except at B � `. Then the zeros
of Z�B� are the same as those of Zi�B �. Applying the
product theorem of Weierstrass [12] the canonical parti-
tion function can be written as a function of the zeros of
Zi�B� in the complex temperature plane. Because Z�B �
is an integral function its zeros Bk � B�

2k � bk 1 itk

�k [ �� are complex conjugated

Z�B� � Zl�b�Zi�0� exp�B≠B lnZi�0��

3
Y
k[�

µ
1 2

B
Bk

∂ µ
1 2

B
B�

k

∂
exp

µ B
Bk

1
B
B�

k

∂
.

(1)

The free energy F�B� � 2 1
B ln�Z�B �� is analytic, i.e., it

has a derivative at every point, everywhere in the com-
plex temperature plane except at the zeros of Z�B �. If the
zeros are dense on lines in the complex plane, different
phases are represented by different regions of holomorphy
of F�B � and are separated by these lines in the complex
temperature plane. The DOZ contains the complete ther-
modynamic information about the system and all desired
thermodynamic functions are derivable from it. The cal-
culation of the specific heat CV �B � by standard differen-
tiation yields

CV �B� � Cl�B� 2
X

k[�

∑
kBB2

�Bk 2 B�2 1
kBB2

�B�
k 2 B�2

∏
.

(2)
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Zeros of Z�B� are poles of F�B� and CV �B �. As can be
seen from Eq. (2) the major contributions to the specific
heat come from zeros close to the real axis, and a zero ap-
proaching the real axis infinitely close causes a divergence
in the specific heat.

In the following we will give a discretized version of the
classification scheme of Grossmann et al. [10]. To char-
acterize the DOZ close to the real axis let us assume that
the zeros lie approximately on a straight line. The cross-
ing angle of this line with the imaginary axis (see Fig. 1)
is then n � tang with g � �b2 2 b1���t2 2 t1�. The
crossing point of this line with the real axis is given by
bcut � b1 2 gt1. We define the discrete line density f
as a function of tk as the average of the inverse distances
between Bk and its neighboring zeros

f�tk� �
1
2

µ
1

jBk 2 Bk21j 1
1

jBk11 2 Bkj
∂

, (3)

with k � 2, 3, 4, . . . . Guidelined by the fact that the im-
portance of the contribution of a zero to the specific heat
decreases with increasing t we approximate f�t� in the
region of small t by a simple power law f�t� � ta . A
rough estimate of a considering only the first two zeros
yields

a �
lnf�t3� 2 lnf�t2�

lnt3 2 lnt2
. (4)

Together with t1, the imaginary part of the zero closest to
the real axis, the parameters g and a classify the DOZ.
As will be shown below, the parameter t1 is the essential
parameter to classify phase transitions in small systems.
For a true phase transition in the Ehrenfest sense we have
t1 ! 0. For this case it has been shown [10] that a phase
transition is completely classified by a and g. In the
case a � 0 and g � 0 the specific heat CV �b� exhibits
a d peak corresponding to a phase transition of first order.
For 0 , a , 1 and g � 0 (or g fi 0) the transition is of
second order. A higher order transition occurs for 1 , a
and arbitrary g. This implies that the classification of
phase transitions in finite systems by g, a, and t1, which
reflects the finite size effects, is a straightforward extension
of the Ehrenfest scheme.

The imaginary parts ti of the zeros have a simple
straightforward interpretation in the quantum mechanical
case. By going from real temperatures b � 1��kBT � to

β

τ
zeros

β 2
β 1

Phase A 

Phase B

ν

CUTβ

FIG. 1. Schematic plot of the DOZ illustrating the definition
of the classification parameters given in the text.

complex temperatures b 1 it�h̄ the quantum mechanical
partition function can be written as

Z�b 1 it�h̄� � Tr�exp�2itH�h̄� exp�2bH�� , (5)

� �Ccanj exp�2itH�h̄� jCcan� (6)

� �Ccan�t � 0� jCcan�t � t�� ,

introducing a canonical state, which is the sum of all
eigenstates of the system appropriately weighted by
the Boltzmann factor, jCcan� �

P
i exp�2bei�2� jfi�.

Within this picture a zero of the partition function occurs
at times ti where the overlap of a time evoluted canonical
state and the initial state vanishes. This resembles a
correlation time, but some care is in order here. The time
ti is not connected to a single system, but to an ensemble
of infinitely many identical systems in a heat bath, with a
Boltzmann distribution of initial states. Thus, the times
ti are those times after which the whole ensemble loses
its memory.

Equation (5) is nothing but the canonical ensemble av-
erage of the time evolution operator exp�2itH�h̄�. Fol-
lowing Boltzmann the ensemble average equals the long
time average which was proven quantum mechanically
by Tasaki [13]. Therefore ti indeed resembles times for
which the long time average of the time evolution operator
vanishes.

The observation of Bose-Einstein condensation in di-
lute gases of finite number (�103 107) of alkali atoms in
harmonic traps [14] has renewed the interest in this phe-
nomenon which has already been predicted by Einstein
[15] in 1925. The number of condensed atoms in these
traps is far away from the thermodynamic limit, raising the
interesting question how the order of the phase transition
changes with an increasing number of atoms in the con-
densate. For this reason we treat the Bose-Einstein con-
densation in a three-dimensional isotropic harmonic trap
(h̄ � v � kB � m � 1) as an example for the applica-
tion of the classification scheme given above.

For noninteracting bosons the occupation numbers of an
eigenstate ji� and N 1 1 particles can be evaluated by a
simple recursion [16]

hi�N 1 1,B� �
ZN �B�

ZN11�B�
exp�2Bei� �hi�N ,B� 1 1� .

(7)

Since the particle number is a conserved quantity in the
canonical ensemble the direct calculation of the normal-
ization factor can be omitted by using the relation

ZN �B �
ZN11�B�

�
N 1 1P`

i�0 exp�2Bei� �hi�N ,B� 1 1�
. (8)

Since ZN �B� is an exponentially decreasing function in b
it is a difficult numerical task to calculate its zeros directly.
Zeros of the partition function are reflected by poles of the
ground state occupation number

h0�N ,B� � 2
1
B

≠e0ZN �B�
ZN �B �

(9)
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FIG. 2. Contour plots of the ground state occupation number jh0j�N in the complex temperature plane for 40, 120, and 300 particles
in a three-dimensional isotropic trap. The black spots indicate the locations of zeros of the partition function.

evaluated at complex temperatures. Figure 2 displays con-
tour plots of jh0�N ,B�j�N for 40, 120, and 300 particles.
The locations of the zeros of Z�B� [poles of h0�N ,B�]
are indicated by the white spots. The separation of the
condensed (dark) and the normal (bright) phase is con-
spicuous. The zeros act like boundary posts between both
phases. The boundary line between both phases gets more
and more pronounced as the number of particles increases
and the distance between neighboring zeros decreases.
Figure 2 virtually displays how the phase transition ap-
proaches its thermodynamic limit. We have determined
the classification parameters for the phase transition by a
numerical analysis of the DOZ for up to 400 particles. The
results are given in Fig. 3. The parameter a is constant at
about 1.25. The small fluctuations are due to numerical
errors in the determination of the location of the zeros.
This value of a indicates a third order phase transition in
the three-dimensional harmonic trap. Results for the two-
dimensional systems and other trap geometries, which will
be published elsewhere in detail, indicate that the order of
the phase transition depends strongly on the trap geome-
try. The parameter g and the noninteger fraction of a are
related to the critical indices of the phase transition, e.g.,
g � 0 indicates equal critical indices for approaching the
critical temperature from the left and from the right. Re-
garding the finite size effects t1 is of major importance. As
can be seen in Fig. 3(b) t1 is approximately proportional
to 1�N so that the systems of bosons in a three-dimensional
harmonic trap approach a true higher order phase transition
linearly with increasing particle number N .

It appears that the DOZ for Bose-Einstein condensates
is rather smooth. As an example for a little more compli-
cated situation we calculated the DOZ for small Ar clus-
ters, which have been extensively studied in the past [17].
Their thermodynamic behavior is governed by a hopping
process between different isomers and melting [18]. Many
indicators of phase transitions in Ar clusters have been in-
vestigated, e.g., the specific heat [19], the rms bond length
fluctuation [20], and the onset of a 1�f-noise behavior
of the potential energy in time dependent molecular dy-
namics simulations [21]. However, for a good reason, all
these attempts lack a definite classification of the transi-
tions taking place in these clusters. Without going into
the details of our numerical method which is based on a

determination of the interaction density of states by exten-
sive Monte Carlo simulations along with an optimized data
analysis [22] we give here the results for Ar6 and Ar30.
Figure 4 displays contour plots of the absolute value of
the specific heat cV �B� in the complex temperature plane.
For Ar6 the poles lie on a straight line at T � 15 K and
are equally spaced with resulting classification parameters
a � 0, g � 0, and t1h̄ � 0.05 ps. From earlier works
[23] it is well known that at this temperature a hopping
transition between the octahedral and the bicapped tetra-
hedral isomer occurs. Our classification scheme now indi-
cates that this isomer hopping can be identified as a first
order phase transition. Ar30 already has a tremendous
number of different isomers, and a much more complicated
form of the DOZ arises [see Fig. 4(b)]. The DOZ cuts
the complex temperature plane into three regions with two
transition lines approaching the real axis. Comparing with
the literature the region below 31 K can be identified as the

FIG. 3. Plots of the classification parameters a, g, and t1
versus the number of particles for a three-dimensional har-
monic trap.
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FIG. 4. Contour plots of the specific heat jcV j for Ar6 and Ar30 clusters.

solid phase and the region above 45 K as a fluid phase. Be-
cause our Monte Carlo simulations are performed at zero
pressure at this temperature, also the evaporation of atoms
from the cluster starts which corresponds to the onset of the
gas phase. The phase between these two transition lines is
commonly interpreted as the melting, isomer hopping, or
coexistance region. The analysis of the order of the phase
transitions is quite difficult in this case and will be inves-
tigated in a more systematic study. Nevertheless the DOZ
displays in a distinct manner the phase separation for Ar30
and can be viewed as a unique fingerprint.

In conclusion we have found that the DOZ of the canoni-
cal partition function can be used to classify phase transi-
tions in finite systems. The DOZ of a specific system acts
like a unique fingerprint. The classification scheme given
above is equivalent to that given by Grossmann et al. but
extended to the region of finite particle numbers. We have
found that the zeros of the partition function act like bound-
ary posts between different phases in the complex tempera-
ture plane. The finite size effects for the Bose-Einstein
condensation are reflected by a 1�N dependence of the
parameter t1 and only a slight change of the parameter
a which indicates the order of the phase transition. For
Ar clusters the DOZ leads to enlightening pictures of the
complex process of melting or isomer hopping, identifying
in a distinct manner two critical temperatures supporting
an old assumption of Berry et al. [17]. This classifica-
tion scheme developed for the canonical ensemble should
also hold for other ensembles, i.e., different experimental
conditions should not influence the nature of the systems
although, e.g., the shape of the caloric curve may signifi-
cantly differ.
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We present a detailed description of a classification scheme for phase transitions in finite systems based on
the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply
this scheme to finite Bose systems in power-law traps within a semi-analytic approach with a continuous
one-particle density of states�(E)�Ed�1 for different values ofd and to a three-dimensional harmonically
confined ideal Bose gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein
condensation phase transition sensitively depends on the confining potential.
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I. INTRODUCTION

In 1924, Bose and Einstein predicted that in a system of
bosons at temperatures below a certain critical temperature
TC , the single-particle ground state is macroscopically occu-
pied �1�. This effect is commonly referred to as Bose-
Einstein condensation, and a large number of phenomena,
such as the condensation phenomena in alkali-metal atoms,
the superfluidity of4He, and the superconductivity, are iden-
tified as signatures of this effect. However, the physical situ-
ation is very intricate in most experiments.

Recent experiments with dilute gases of alkali-metal at-
oms in magnetic�2� and optical�3� traps are in some sense
the best experimental approximation up to now of the ideal
noninteracting Bose-Einstein system in an external power-
law potential. The achievement of ultralow temperatures by
laser cooling and evaporative cooling provides the opportu-
nity to study Bose-Einstein condensation under systematic
variation of adjustable external parameters, e.g., the trap ge-
ometry, the number of trapped atoms, the temperature, and
by the choice of the alkali-metal atoms the effective interpar-
ticle interactions. Even in the approximation of noninteract-
ing particles, an explanation of these experiments requires
some care, because the number of bosons in these novel traps
is finite and fixed and the standard grand-canonical treatment
is not appropriate. The effect of the finite particle numbers
on the second moments of the distribution function, e.g., the
specific heat and the fluctuation of the ground-state occupa-
tion number, has been addressed in a number of publications
�4,5�. In �4,6�, we have presented a recursion method to cal-
culate the canonical partition function for non-interacting
bosons, and we investigated the dependency of the thermo-
dynamic properties of the condensate on the trap geometry.

The order of the phase transition in small systems sensi-
tively depends on finite-size effects. Compared to the mac-
roscopic system, even for systems as simple as the three-
dimensional ideal gas, the order of the phase transition might
change for mesoscopic systems where the number of par-
ticles is finite or for trapped gases with different trap geom-
etries.

In this paper, we address the classification of the phase
transition of a finite number of noninteracting bosons in a

power-law trap with an effective one-particle density of
states �(E)�Ed�1 being formally equivalent to a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. We use a classification scheme based on the distribution
of zeros of the canonical partition function initially devel-
oped by Grossmanet al. �7� and Fisheret al. �8�, which has
been extended by us�9� as a classification scheme for finite
systems. On the basis of this classification scheme, we are
able to extract a qualitative difference between the order of
the phase transition occurring in Bose-Einstein condensates
in three-dimensional traps�10,11� and in two-dimensional
traps that was recently discovered by Safonovet al. in a gas
of hydrogen atoms absorbed on the surface of liquid helium
�12�. Since we do not consider particle interactions, this dif-
ference is only due to the difference in the confining poten-
tial.

We give a detailed review of the classification scheme in
Sec. II. In Sec. III, we present a method for the calculation of
the canonical partition function in the complex plane and
describe details of the numerical implementation. Our results
for d�1�6 and particle numbers varying from 10 to 300
are presented in Sec. III as well as calculations for a three-
dimensional parabolically confined Bose gas.

II. CLASSIFICATION SCHEME

In 1952, Yang and Lee showed that the grand-canonical
partition function can be written as a function of its zeros in
the complex fugacity plane, which, for systems with hard-
core interactions and for the Ising model, lie on a unit
circle �13�.

Grossmannet al. �7� and Fisher�8� extended this ap-
proach to the canonical ensemble by analytic continuation of
the inverse temperature to the complex plane�→B��
�i�. Within this treatment, all phenomenologically known
types of phase transitions in macroscopic systems can be
identified from the properties of the distribution of zeros of
the canonical partition function.

In �9�, we presented a classification scheme for finite sys-
tems that has its macroscopic equivalent in the scheme given
by Grossmann. As usual, the canonical partition function
reads
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Z�B��� dE��E �exp��BE �, �2.1�

which we write as a product Z(B)�Z lim(B)Z int(B), where
Z lim(B) describes the limiting behavior of Z(B) for T→� ,
imposing that limT→�Z int(B)�1. This limiting partition
function will only depend on the external potential applied to
the system, whereas Z int(B) will depend on the specific in-
teraction between the system particles. For example, for an
N-particle system in a d-dimensional harmonic trap,
Z lim(B)�B �dN and thus the zeros of Z(B) are the same as
the zeros of Z int(B). Since the partition function is an integral
function, the zeros Bk�B�k* ��k�i�k(k�N) are complex
conjugate and the partition function reads

Z�B��Z lim�B�Z int�0 �exp„B�BlnZ int�0 �…

� �
k�N

� 1�
B
Bk

� � 1�
B
Bk*

� exp� B
Bk

�
B
Bk*

� .

�2.2�

The zeros of Z(B) are the poles of the Helmholtz free
energy F(B)��(1/B)lnZ(B), i.e. The free energy is ana-
lytic everywhere in the complex temperature plane except at
the zeros of Z(B).

Different phases are represented by regions of holomor-
phy that are separated by zeros lying dense on lines in the
complex temperature plane. In finite systems, the zeros do
not squeeze on lines, which leads to a more blurred separa-
tion of different phases. We interpret the zeros as boundary
posts between two phases. The distribution of zeros contains
the complete thermodynamic information about the system,
and all thermodynamic properties are derivable from it.
Within this picture, the interaction part of the specific heat is
given by

CV , int�B���kBB 2 	
k�N

� 1

�Bk�B�2
�

1

�Bk*�B�2� .

�2.3�

The zeros of the partition function are poles of CV(B). As
can be seen from Eq. �2.3�, a zero approaching the real axis
infinitely close causes a divergence at real temperature. The
contribution of a zero Bk to the specific heat decreases with
increasing imaginary part �k . Thus, the thermodynamic
properties of a system are governed by the zeros of Z close to
the real axis.

The basic idea of the classification scheme for phase tran-
sitions in small systems presented in 
9� is that the distribu-
tion of zeros close to the real axis can be described approxi-
mately by three parameters, where two of them reflect the
order of the phase transition and the third merely the size of
the system.

We assume that the zeros lie on straight lines �see Fig. 1�
with a discrete density of zeros given by

���k��
1

2 � 1

�Bk�Bk�1�
�

1

�Bk�1�Bk�
� , �2.4�

with k�2,3,4, . . . , and we approximate for small � the den-
sity of zeros, by a simple power law �(�)��. Considering
only the first three zeros the exponent � can be estimated as

��
ln ���3��ln ���2�

ln �3�ln �2
. �2.5�

The second parameter to describe the distribution of zeros is
given by ��tan �(�2��1)/(�2��1), where � is the
crossing angle of the line of zeros with the real axis �see Fig.
1�. The discreteness of the system is reflected in the imagi-
nary part �1 of the zero closest to the real axis.

In the thermodynamic limit, we have always �1→0. In
this case, the parameters � and � coincide with those defined
by Grossmann et al 
7�, who have shown how different types
of phase transitions can be attributed to certain values of �
and � . They claimed that ��0 and ��0 correspond to a
first-order phase transition, second-order transitions corre-
spond to 0���1 with ��0 or ��0, third-order transitions
to 1���2 with arbitrary values of � , and that all higher
order phase transition correspond to ��1. For macroscopic
systems �with �1→0), � cannot be smaller than zero, be-
cause this would cause a divergence of the internal energy.
However, in small systems with a finite �1 this is possible.

In our classification scheme, we therefore define phase
transitions in small systems to be of first order for ��0,
while second- and higher-order transitions are defined in
complete analogy to the Grossmann scheme augmented by
the third parameter �1. The definition of a critical tempera-
ture �C in small systems is crucial and ambiguous since no
thermodynamic properties diverge. Thus, different defini-
tions are possible. We define the critical temperature as
�cut��1���1, i.e., the crossing point of the approximated
line of zeros with the real temperature axis. An alternative
definition is the real part of the first complex zero �1. In the
thermodynamic limit, both definitions coincide.

Comparing the specific heats calculated for different dis-
crete distributions of zeros shows the advantages of this clas-
sification scheme. Figure 2 shows �a� three distributions of
zeros lying on straight lines corresponding to a first-order
transition (��0 and ��0), a second-order transition (�

FIG. 1. Schematic illustration of the zeros in the complex tem-
perature plane.
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�0.5 and ���0.5), and a third-order phase transition (�
�1.5, and ���1) and �b� the pertinent specific heats. In all
cases the specific heat exhibits a hump extending over a
finite-temperature region and cannot be used to classify the
phase transition. In contrast, even for very small systems
�large �1), the order of the phase transition is extractable
from the distribution of zeros.

The zeros of the canonical partition function have a dis-
tinct geometrical interpretation, which explains the smoothed
curves of the specific heat and other thermodynamic proper-
ties in finite systems.

Figure 3 shows �a� the ground-state occupation number
��0(B)�/N in the complex temperature plane and �b� the
ground-state occupation number at real temperatures for a
finite ideal Bose gas of N�120 particles, where �0(B) is
given by the derivative of the logarithm of the canonical
partition function Z(B) with respect to the ground-state en-
ergy �0, i.e., �0(B)��(1/B)��0

Z(B)/Z(B).

Zeros of the partition function are poles of �0(B) and are
indicated by dark spots, which influence the value of the
ground-state occupation number at real temperatures impres-

sively. Every pole seems to radiate onto the real axis and
therefore determines the occupation number at real tempera-
tures. This radiation extends over a broad temperature range
so that the occupation number for real temperatures does not
show a discontinuity but rather a smoothed curve. A closer
look at Eq. �2.3� gives the mathematical explanation for this
effect. The discrete distribution of zeros, i.e., �1�0, inhibits
the specific heat and all other thermodynamic properties to
show a divergency at some critical temperature because the
denominators of the arguments of the sum remain finite.

Without going into a detailed analysis, we note that in the
thermodynamic limit the parameter � is connected to the
critical index for the specific heat by

CV	�
�
c���1. �2.6�

However, since critical indices are used to describe the shape
of a divergency at the critical point, an extension to small
systems seems to be more or less academic.

The introduction of complex temperatures might seem ar-
tificial at first sight, but, in fact, the imaginary parts �k of the
complex zeros Bk have an obvious quantum-mechanical in-
terpretation. We write the quantum-mechanical partition
function as

Z�
�i�/���Tr„exp��i�Ĥ/��exp��
Ĥ �… �2.7�

��can�exp��i�Ĥ/���can� �2.8�

��can� t�0 ��can� t���� , �2.9�

introducing a canonical state as a sum over Boltzmann-
weighted eigenstates �can���kexp(�
�k/2)��k� . We ex-
plicitly write the imaginary part as �/� since the dimension
is 1/�energy� and the imaginary part therefore can be inter-
preted as time. Then the imaginary parts �k of the zeros
resemble those times for which the overlap of the initial ca-
nonical state with the time-evoluted state vanishes. However,
they are not connected to a single system but to a whole
ensemble of identical systems in a heat bath with an initial
Boltzmann distribution.

III. BEC IN POWER-LAW TRAPS

In this section, we assume a continuous single-particle
density of states �(E)�Ed�1 as an approximation for a
d-dimensional harmonic oscillator or a 2d-dimensional ideal
gas. For example, for the harmonic oscillator this corre-
sponds to the limit of ��→0 and taking only the leading
term of the degeneracy of the single-particle energy levels.
The one-particle partition function is given by the Laplace
transformation

Z1�B��� dEEd�1exp��BE ���d�1 �!B �d. �3.1�

The canonical partition function for N noninteracting bosons
can be calculated by the following recursion �6�:

FIG. 2. Plot of �a� generated zeros lying on straight lines to
simulate first- (��0 and ��0), second-, (��0.5 and ���0.5),
and third- (��1.5 and ���1) order phase transitions and �b� the
appropriate specific heats per particle.

FIG. 3. Comparison of �a� ��0�/N with �b� the appropriate value
of �0 at real temperatures for a 120-particle harmonically trapped
ideal Bose gas �note that ��kB���1).
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ZN�B��
1

N �
k�1

N

Z1�kB�ZN�k�B�, �3.2�

where Z1(kB)�� iexp(�kB� i) is the one-particle partition
function at temperature kB and Z0(B)�1. For small particle
numbers, this recursion works fine, even though its numeri-
cal effort grows proportional to N2.

With Eq. �3.1� as Z1, Eq. �3.2� leads to a polynomial of
order N in (1/B)d for ZN , which can be easily generated
using MAPLE or MATHEMATICA. The zeros of this polynomial
can be found by standard numerical methods.

Figure 4 displays the zeros of the N-particle partition
function for d�1�6 in the complex temperature plane for
particle numbers N�25, 50, and 100. For d�2�6, the ze-
ros approach the positive real axis with increasing particle
number and are shifted to higher temperatures, which is al-
ready an indicator of phase transitions. For d�1, the zeros
approach the real axis only at negative temperature. This
behavior is consistent with the usual prediction that there is
no Bose-Einstein condensation for the one-dimensional har-
monic oscillator and the two-dimensional ideal Bose gas
�10�.

The symmetry of the distributions of zeros is due to the
fact that ZN is a polynomial in B �d. For this reason, it can be
inferred that for d→� the zeros lie on a perfect circle.

Figure 5 shows the corresponding specific heats calcu-
lated using Eq. �2.3�. As expected, for d�1 the specific heat
has no hump and approaches with increasing temperature the
classical value. We therefore expel the analysis of d�1 from
the discussions below. For d�2�6, the specific heats show
humps or peaks, which get sharper with increasing d and
increasing particle number. However, from these smooth
curves the orders of the phase transition cannot be deduced.

In Fig. 6, the classification parameters � ,	 ,
1 defined
above are plotted for two to six dimensions and particle
numbers up to N�100. For all values of d, the parameter �
is only a slightly varying function of N and approaches very
fast an almost constant value. Since � is the primary classi-
fication parameter, from Fig. 6�a� we can directly infer that
the d�2 system exhibits a third-order phase transition (�
�1) while the transition for all higher dimensions is of sec-
ond order (0���1). For N�50, the dependence of � on d
is plotted in Fig. 7�a�. Since � decreases rather rapidly with
increasing d, it can be speculated that systems corresponding
to a large d exhibit a phase transition that is almost of first
order. As mentioned above, for finite systems even values
��0 cannot be excluded for mathematical reasons. We note
that two-dimensional Bose gases are an interesting and
growing field of research. As is well known, the ideal free
Bose gas in two dimensions (d�1) does not show a phase

FIG. 4. Distribution of zeros for Bose-Einstein condensates with
continuous one-particle density of states �(E)�Ed�1 for d�1
�6.

FIG. 5. Specific heat scaled by dN of Bose-Einstein condensates
with continuous one-particle density of states for d�1�6.
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transition due to thermal fluctuations that destabilize the con-
densate �14�. Switching on a confining potential greatly in-
fluences the properties of the gas, the thermal fluctuations are
suppressed, and the gas will show Bose-Einstein condensa-
tion. Recent experiments �12� have shown that Bose-Einstein

condensation is possible even though it is called a quasicon-
densate. In our notion, the quasicondensate is just a third-
order phase transition. Thus, our results are in complete
agreement with recent experiments and earlier theoretical
work. An interesting question in this respect is whether the
order of the transition changes for d�2 in the limit N→� .
Additional calculations for larger N, which are not printed in
Fig. 6, indicate that � approaches 1 or might even get
smaller. Note that d�2 is equivalent to a hypothetical four-
dimensional ideal Bose gas or bosons confined in a two-
dimensional parabolic trap. Our results indicate that the order
of the phase transition depends sensitively on d for values
around 2. This might be the reason why phase transitions in
three space dimensions are sometimes classified as second-
and sometimes as third-order phase transitions.

The parameter �1 is a measure of the finite size of the
system, i.e., the scaling behavior of �1 as a function of N is a
measure of how fast a system approaches a true nth-order
phase transition in the Ehrenfest sense. The N dependence of
�1 is displayed in Fig. 6�c�. The scaling behavior can be
approximated by �1�N�	 with 	 ranging between 1.06 and
1.12 for d�2�6.

The d dependence of the classification parameter is visu-
alized in Fig. 7 for 50 particles. For this system size, we
found ��d�4/3 and �1�d�4/3.

The results presented above for continuous single-particle
densities of states 
(E)�Ed�1 are obtained within semiana-
lytical calculations. In order to compare these results to sys-
tems with a discrete level density, we adopt as a reference
system the three-dimensional harmonic oscillator with the
partition function given by

Z�B�� �
n�0

�n�2 ��n�1 �

2
exp„�B�n�3/2�…, �3.3�

with ���kB�1.
Figure 8�a� displays the zeros of the partition function

�3.1� for d�2 and d�3. Figure 8�b� displays a contour plot
of the absolute value of the ground-state occupation number
�0(B)��(1/B)��0

Z(B)/Z(B) with Z given by Eq. �3.3� cal-
culated using an alternative recursion formula �4�. The zeros
of Z are poles of �0 and are indicated by dark spots in this
figure.

FIG. 6. Classification parameters � , � , and �1 for d�2�6
versus particle numbers N.

FIG. 7. Classification parameters for N�50 for different densi-
ties of states 
(E)�Ed�1 and d�2�10.

FIG. 8. Comparison between calculated zeros of the canonical
partition function for three-dimensional trap geometries with �a� a
continuous single-particle density of states and �b� discrete energy
levels for N�40.
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Analyzing the distribution of zeros consolidates our
speculation that the order of the phase transition depends
sensitively on d. The distribution of zeros behaves like the
above calculated values for d�2 but quantitatively like d
�3. Since the degeneracy of the three-dimensional harmoni-
cally confined ideal Bose gas is a second-order polynomial,
the quadratic term is not the only term that must be taken
into account. The linear term becomes dominant for lower
temperatures, so for very low temperatures the best approxi-
mation of a continuous one-particle density of states is
�(E)�E . The parameter � supports this statement �9�, i.e.,
� resides in a region above 1, whereas the parameter � be-
haves like the d�3 case. Finally, the parameter �1, which is
a measure for the discreteness of the system, shows a �1
�N�0.96 dependence that is comparable to the one for d
�2. Thus, for small systems the phase transition is of third
order; it can be speculated whether it becomes a second-
order transition in the thermodynamic limit.

Our calculations are in very good agreement with recent
theoretical works, not only qualitatively but also quantita-
tively �15,16�. Comparing the critical temperature, which we
defined in Sec. II, with the usually utilized temperature of the
peak of the specific heat �(CV ,max) or the grand canonically
calculated TC�N1/3 confirms our approach. In Fig. 9, three
possible definitions of the critical temperature are given that
all coincide in the thermodynamic limit. All definitions show
a ��N�	 dependence with 	 ranging between 2

5 and 1
3 .

IV. CONCLUSION

Starting with the old ideas of Yang and Lee and Gross-
mann et al., we have developed a classification scheme for
phase transitions in finite systems. Based on the analytic con-
tinuation of the inverse temperature � into the complex

plane, we have shown the advantages of this approach. The
distribution of the so-called Fisher zeros Bk draws enlighten-
ing pictures even for small systems, whereas the usually re-
ferred to thermodynamic properties such as the specific heat
fail to classify the phase transitions properly. The classifica-
tion scheme presented in this paper enables us to name the
order of the transition in a nonambiguous way. The complex
parts �k of the zeros Bk resemble times for which a whole
ensemble of identical systems under consideration in a heat
bath with an initial Boltzmann distribution loses its memory.

We have applied this to ideal noninteracting Bose gases
confined in power-law traps. We have found that the order of
the phase transition sensitively depends on the single-particle
density of states generated by the confining potential. The
distribution of zeros exactly reveals the order of the phase
transition in finite systems.
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