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ZUSAMMENFASSUNG

Isogenien zwischen abelschen Varietdten iiber endlichen Koérpern spielen
sowohl bei theoretischen Betrachtungen in der modernen Zahlentheorie als
auch bei kryptographischen Anwendungen dieses Gebietes hdufig eine bedeut-
same Rolle. Daher ist es interessant, bei gegebenen isogenen Varietdten Ag
und A; der selben Dimension ¢ iiber einem Korper K effiziente Methoden
zum Berechnen einer Isogenie ¢ : Ay — A; zu finden. Die auftretenden Pro-
bleme werden mit zunehmender Dimension sehr komplex, daher konzentrieren
wir uns zunfchst auf den Fall von elliptischen Kurven iiber einem endlichen
Korper.

Die bisherigen Algorithmen zum Berechnen von Isogenien bevorzugen ge-
wohnliche Kurven wegen der Struktur ihrer Endomorphismenringe und haben
fiir supersingulire Kurven eine schlechtere Laufzeit. In dieser Arbeit entwi-
ckeln wir theoretische Resultate, die insbesondere zu einem neuen Algorith-
mus fiihren. Dieser verbessert fiir supersinguldre elliptische Kurven iiber I,
die bisherigen Herangehensweisen deutlich und ist ebenso schnell wie die Al-
gorithmen fiir Isogenien gewohnlicher elliptischer Kurven. Dafiir stellen wir
mittels eingeschrinkter Endomorphismenringe eine neuartige Verbindung von
solchen Kurven und [F)-rationalen Isogenien zu einer Idealklassengruppe her.
Wir verwenden &hnliche Mittel wie bei dem bekannten DEURING Redukti-
onstheorem mit Endomorphismenringen gewdhnlicher elliptischer Kurven um
dies zu erreichen. Aufserdem zeigen wir, dass Isogenien unter dieser Reduktion
immer tiber F, definiert sind.

Diese Resultate liefern eine einfache Beschreibung des Aufbaus der Fp-
rationalen Isogeniegraphen supersingulérer elliptischer Kurven in eine levelar-
tige Struktur, welche dhnlich der bereits bekannten gewdhnlichen Isogenievul-
kane die Grundlage der neuen Berechnungsmethode mit berechenbaren bidi-
rektionalen Suchen ist. Implementationen des entstehenden Algorithmus und
der klassischen Methode in MAGMA ergeben berechnete Ergebnisse, welche die
vorhergehenden Komplexitatsanalysen bestéatigen.

Zusitzlich zum elliptischen Fall untersuchen wir die moglichen Verallgemei-
nerungen auf héhere Dimension und vorallem die Situation von JACOBISCHEN
hyperelliptischer Kurven von Geschlecht zwei. Besonders supersinguldre abel-
sche Varietéten stellen sich dabei als schwierig heraus, da Ansétze aus dem
gewthnlichen Fall nicht greifen. Die verschiedenen theoretischen Hintergriinde
beeinflussen mogliche Losungen von Problemen der Isogenieberechnung und

liefern gréfsere Hindernisse als bei elliptischen Kurven.






ABSTRACT

Isogenies between abelian varieties defined over a finite field play an im-
portant role in theoretical considerations of modern number theory as well as
in cryptographic applications of this area. Therefore it is interesting to find
efficient methods for computing an isogeny ¢ : Ag — A; for given isogenous
varieties Ay and A of the same dimension g over a field K. The occurring
problems become very complex with higher dimension, so we concentrate first
on the case of elliptic curves defined over a finite field.

Existing algorithms for such elliptic curves so far favor ordinary curves
due to their endomorphism ring structure and have a worse running time for
supersingular curves. In this thesis we develop new structural results leading
in particular to an algorithm which for supersingular elliptic curves defined
over IF,, improves the previous approaches notably and which is as fast as
the algorithms for isogenies of ordinary elliptic curves. In order to achieve
this, we find out how to use restricted endomorphism rings to establish a
connection of such elliptic curves and F,-rational isogenies to an ideal class
group, using means analogous to the famous DEURING Reduction Theorem
for the endomorphism rings of ordinary elliptic curves. We also show that
isogenies under this reduction are defined over IF,,.

These results yield a simple description of F),-rational supersingular isogeny
graphs in an ordered level-structure, which provides the basis for the new com-
putational method of feasible bi-directional searches like in the well-known or-
dinary isogeny volcanoes. MAGMA implementations of the emerging algorithm
and the classical method reveal computational results which validate the pre-
ceding complexity analysis.

In addition to the elliptic case, we also investigate the possible general-
izations to higher dimension where we focus on JACOBIANS of hyperelliptic
curves of genus two. Kspecially supersingular abelian varieties prove to be
more difficult in this setting since successful approaches of the ordinary case
cannot be generalized directly. Diverging background theories affect the possi-
ble solution of problems concerning isogeny computation and present obstacles

which appear much harder to access than for elliptic curves.






CONTENTS

CONTENTS
Table of Contents I
1 INTRODUCTION ITI
2 THEORETICAL FOUNDATIONS 1
2.1 Basic Concepts . . . . . .. .. 1
2.1.1 Algebraic Varieties and Isogenies . . . .. ... ... .. 2
2.1.2  Supersingular Elliptic Curves . . . . ... ... ... .. 26
2.2 Endomorphism Rings of Abelian Varieties . . . .. ... .. .. 36
2.2.1  General Concepts . . . . . . ... ... 36
2.2.2  Ordinary Elliptic Curves . . . . . . . .. ... ... ... 42
2.2.3 Supersingular Elliptic Curves . . . . ... ... ... .. 44
2.3 Graph Theory . . . . . . . . . 46
2.3.1 Basic Concepts . . . .. .. . ... ... ... ... ... 46
2.3.2 Expander Graphs . . . . .. ... ... ... ... ..., 51
3 CONNECTION TO ELLIPTIC CURVES OVER NUMBER FIELDS 55
3.1 Complex Multiplication . . . . . . . ... ... ... ....... 55
3.2 The Characteristic Zero Picture . . . . . . ... ... ... ... 58
3.2.1  Vertical Connections Between Levels . . . . . ... ... 60
3.2.2 Horizontal Links and the Ideal Class Group . . ... .. 65
3.3 Lifting and Reduction . . . .. .. .. .. ... . oL 70
3.3.1 DEURING’s Theorems . . . . . ... ... ... ...... 70
3.3.2 Reduction to Supersingular Elliptic Curves . . . . . . .. 73
4 ARITHMETIC ISOGENY PROBLEMS 83
4.1 The Ordinary Elliptic Isogeny Problem . . . . . .. .. ... .. 84
4.1.1 Ordinary Isogeny Graphs . . . . . .. .. .. ... .. .. 85
4.1.2 Resulting Algorithms and Complexity Analysis . . . . . 87
4.2 The Supersingular Isogeny Problem . . . . . .. .. ... .. .. 106
4.2.1 Supersingular Isogeny Graphs . . . . .. .. ... .. .. 106
4.2.2 Restriction to [Fp-rational Elliptic Curves . . . . . . . .. 109
4.2.3 Resulting Algorithm and Complexity Analysis . . . . . . 116
4.2.4 Application on Arbitrary Supersingular Curves . . . . . 119
4.3 Isogenies between Abelian Varieties . . . . . .. .. ... .. .. 121
4.3.1 Computing Isogenies with Given Kernel . . . ... ... 121
Christina DELFS |



CONTENTS

4.3.2 Horizontal and Vertical Isogenies . . . . .. .. ... .. 126

4.3.3 The Supersingular Case . . . . ... ... ... .. ... 132

5 CRYPTOGRAPHY WITH ELLIPTIC CURVES AND ISOGENIES 141
5.1 Cryptography Based on the ECDLP . . . ... ... ... ... 141
5.1.1 MOV Attack via Pairings . . . . .. ... ... ... .. 143

5.1.2  Anomalous Elliptic Curves . . . . . .. ... ... .... 146

5.1.3 WEIL Decent Attack . . . .. ... ... ......... 148

5.2 Supersingular Isogenies in Cryptography . . . . .. .. ... .. 152
5.2.1 A Cryptographical Hash Function . . . . . . .. ... .. 152

5.2.2 A Proposed Quantum Resistant Cryptosystem . . . . . . 155

6 CONCLUSION AND OUTLOOK XI
List of Figures XV
List of Tables XV
List of Algorithms XV
References XVII
A MAGMA PROGRAM CODES XXVII
B COMPUTATIONAL RESULTS XXXVII
C EXAMPLE GRAPHS XXXIX

II Christina DELFS



1 INTRODUCTION

Abelian varieties are important objects from algebraic geometry and number theory.
They arise as algebraic varieties from a set of defining polynomials and at the same
time they build an abelian group. Thus they have much structure that can be
worked with and they turn out to be the basis of an interesting field of theory.

Elliptic curves are abelian varieties of genus one and have been of theoretical
interest for many years before they were discovered for cryptographic applications.
By now they are of great significance in many areas of recent research and play an
important role in modern number theory and cryptography. They contribute a fun-
damental part in the proof of FERMAT’S Last Theorem and can be used for integer
factorization and several public key cryptosystems. When regarded from different
sides of theory, elliptic curves can be described with either algebraic elements or
provide a connection to analytical objects, so they prove to be a many-faceted field
of research. There are many standard references concerning the theory of elliptic
curves (e.g. [38], [75], [91]) and their cryptographic applications (e.g. [13]) which
provide a good overview.

Isogenies are rational maps between abelian varieties over a field K which have
a finite kernel and are geometrically surjective. They appear in various applications
of elliptic curves both in subjects of theoretical background and in cryptographic
issues. Several properties of elliptic curves can be mapped to other elliptic curves via
isogenies and thus problems for all elliptic curves in an isogeny class can be solved
by showing them for a single representative.

It is easy to find out whether two given abelian varieties Ay and A; which are
defined over a finite field I, lie in the same isogeny class; that is, whether there exists
a non-constant isogeny between them. We will see from TATE’S Isogeny Theorem in
[86] that this is the case if and only if we have #A,(F,) = #A,(F,). But explicitly
and efficiently computing such an isogeny in terms of a rational map turns out to

be a more difficult matter, even for low dimension.

PROBLEM 1 (General Isogeny Problem). Given two isogenous abelian varieties Ao
and Ay of dimension g over a finite field K, compute an isogeny ¢ : Ay — Aj.

For ¢ = 1 and ordinary elliptic curves there are algorithms based on an idea of
GALBRAITH [27] which solve this task in O(¢"/4) field operations and storage!, but
for supersingular elliptic curves these ideas do not work due to different structures

of their endomorphism rings.

'We will explain about complexity notation at the end of the INTRODUCTION chapter.
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1 INTRODUCTION

Even though supersingular elliptic curves over a finite field of prime characteristic
p are always defined over I, or [F,2, the fastest method dealing with the problem
of computing isogenies there has a running time of O(p"/2) so far. There exist
several cryptographic schemes — presented in SECTION 5 — supposedly relying on
the hardness of computing such isogenies, so the question arises whether there are

better methods for solving this problem. We explicitly pose this problem as follows.

PROBLEM 2 (Supersingular Elliptic Isogeny Problem). Given two supersingular
elliptic curves Ey and Ey over a finite field K, compute an isogeny ¢ : By — E;

with an algorithm that has complexity similar to the ones in the ordinary case.

In this work we answer this question for the case where the supersingular elliptic
curves Iy and E; are defined over I, that is for X' = F, in the situation of the
problem. In order to accomplish this, we have to develop a modified version of the
DEURING Reduction Theorem to establish a relation between the endomorphism
rings of elliptic curves over certain number fields and the [F-rational endomorphism
rings of supersingular elliptic curves defined over F,,.

DEURING’S original theorem in [19] only preserves the endomorphism ring of
ordinary elliptic curves after such a lifting and reduction process. We have shown
with lifting theory, arithmetic of quadratic number fields and theory of ideal class
groups that an analogous correspondence holds for supersingular curves when we

restrict the endomorphism ring, see THEOREM 3.18 for the details and the proof.

RESULT. Let E be a supersingular elliptic curve defined over IF,. Then there exists
an elliptic curve E defined over a number field which reduces to E modulo p and

we have
EndE 2 Ends, E.

The correspondence via lifting and reduction between those curves is uniquely de-

fined up to isomorphism.

Furthermore we can also get a result as in PROPOSITION 3.19 about the isogenies

connecting such supersingular elliptic curves and their behavior under reduction.

REsuULT. Let Eo and El be elliptic curves over a number field such that their
reductions Fy and E; modulo p are supersingular elliptic curves defined over [F,.
Let further 5: EO — E; be an isogeny. Then there is an isogeny ¢ : Fy — E; which
is defined over I, such that 5 reduces to ¢.
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The resulting behavior can be used to introduce F,-rational isogeny graphs and
examine their properties in SECTION 4. For primes ¢ # p we define the [F-rational
supersingular ¢-isogeny graph Gy (F,, ¢) which has supersingular elliptic curves de-
fined over I, as nodes and F,-rational (-isogenies as edges and investigate its be-

havior of in- and outgoing edges.

REsuLT. Let p > 3 and ¢ be coprime primes and Gy(F,, () be the F,-rational
supersingular isogeny graph. Then the structure of this graph can be explicitly
determined as in THEOREMS 4.16 and 4.17 and resembles an ordinary ¢-volcano

with at most two levels.

The plotted graphs and the full supersingular isogeny graphs for several primes
are given in the APPENDIX. It can be seen that in contrast to the full graph, the IF,-
rational graph has a more regular volcano-like structure but is not always connected.
That reminds of the ordinary situation again and with the reduction results from
above we can establish a connection to an ideal class group where the well-known
result of BAcH [1] gives us an upper bound for the norms of generators. Those

norms comply with isogeny degrees and thus we have the analogous result.

REsuLT. The [F,-rational supersingular isogeny graph Go(F,, £) is fully connected
when we use isogenies with degree ¢ € L := {¢ < B} as edges where B is the BACH
bound.

Hence we are able to use results from graph theory on expander graphs, pose a bi-
directional search algorithm as in the ordinary case, and expect the same complexity
of (5(p1/ 1) field operations and storage of field elements. In fact, an complexity
analysis proves those desired results. Thus this algorithm provides a considerable
speedup of the previous methods which had a complexity of (5(]01/2). With that
we get a positive answer to the SUPERSINGULAR ELLIPTIC ISOGENY PROBLEM
above. The description of the algorithm and its complexity analysis can be found

in SECTION 4.2.3.

REsULT. There is an algorithm which solves the above stated SUPERSINGULAR
ELLIPTIC [SOGENY PROBLEM for K = F, in a complexity of O(p*/*(log p)® log log p)

running time and O(p'/*) storage.

We implemented this algorithm in MAGMA and the computational results encour-
age the theoretical reflections. Both the source code and the computations for primes

p up to a length of 32 bit can be found in the appendix.
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1 INTRODUCTION

When we return to the GENERAL ISOGENY PROBLEM, for arbitrary abelian
varieties over a finite field or even only for JACOBIANS of hyperelliptic curves of
genus g > 1, the situation is much more complicated. We will give an overview of
some existing approaches for genus two and discuss what the problems are.

For ordinary JACOBIANS over a finite field many results can be generalized from
the elliptic situation but there are still some open points. Horizontal isogenies
between abelian varieties with isomorphic endomorphism ring can be handled, but
the vertical structure is much more complicated than in the elliptic case. The
distance from the surface no longer determines the endomorphism ring completely
and there are also isogenies between varieties where the endomorphism rings are
not contained in each other. When the real multiplication order is fixed as subset
of the endomorphism rings though, some statements from the elliptic case can be
generalized as in SECTION 4.3.2.

The supersingular case is in many respects more complex and thus there is not
much theoretical knowledge yet. We will show the main obstacles for advanced
theoretical results and algorithms there. A point which is a very prominent feature
in that situation is that a supersingular abelian variety of dimension g > 2 does
not have to be defined over a finite field. Even when regarding only such varieties
defined over a fixed finite field, the endomorphism rings are orders in a sixteen-
dimensional non-commutative algebra and difficult to treat. Consult SECTION 4.3.3

for a discussion of the implications.

This thesis is organized as follows. In SECTION 2 we introduce the background
theory about the structure and the properties of the objects of peculiar interest we
are dealing with. This provides the basics needed for our later work. The results
which are used most frequently concern abelian varieties and especially supersingular
elliptic curves, isogenies and the behavior of endomorphism rings of isogenous elliptic
curves. A short excursus into graph theory gives us the terms to describe isogeny
graphs and concepts concerning expander graphs. Those are used in complexity
analyses of some presented algorithms.

SECTION 3 explains how endomorphism rings of certain elliptic curves defined
over a number field behave towards each other. These relations supply the necessary
tools for the definition and description of isogeny graphs. The structure and behavior
of such endomorphism rings can be transferred to the ones of elliptic curves defined
over a finite field.

In contrast to the case where the reduced elliptic curves are ordinary, the well-
known lifting and reduction theorems of DEURING give no relation between the

endomorphism rings of supersingular elliptic curves and their lifts. Therefore we
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develop a new version of those theorems which applies to the supersingular situation.
This proven coherence is the reason why our later algorithms can work in the way
they do.

Those algorithms are featured in SECTION 4 where also our main problem is
addressed. First we present the ideas of the situation with ordinary elliptic curves
where many results are known. We show how in the supersingular case those con-
cepts cannot be employed. This leads us to the study of supersingular elliptic curves
which are defined over the base field I, for a prime p.

We illustrate how due to our adapted reduction theorem the restricted endomor-
phism rings of such elliptic curves provide a similar volcano-like structure as the full
endomorphism rings in the ordinary case. Those structures show interesting regu-
larities and relations with the full isogeny graphs, so we printed a number of those
graphs in APPENDIX C. Based on that we can introduce a new algorithm which
follows the lines of the ordinary algorithm and improves the running time of finding
an isogeny between supersingular elliptic curves defined over [, distinctly.

We implemented several algorithms in MAGMA in order to get a good comparison of
the running time of the computations. All MAGMA codes can be found in APPENDIX A
and the computational results in APPENDIX B.

The conclusion of SECTION 4 describes a few methods for the computation of
isogenies between abelian varieties in general and their differences to the genus-one-
case.

Eventually, in SECTION 5 we address cryptographic applications of elliptic curves
and isogenies and briefly highlight their importance for the well-known ECDLP-
problem.

In the end we examine two applications from cryptography where isogenies be-
tween supersingular elliptic curves are occurring, namely a cryptographic hash func-
tion and a key exchange protocol and cryptosystem. We analyze how our improved
algorithm for computing isogenies in a subgraph of the full supersingular isogeny

graph can affect the security of those schemes.

Part of this work can already be found on the arXiv ePrint archive referred to as
DELFS-GALBRAITH [18], a publication which has been submitted and accepted to
DEsiGNs, CODES AND CRYPTOGRAPHY where it will appear shortly. This paper
originated from a working collaboration started during a visit of the first author at
the UNIVERSITY OF AUCKLAND which was partially funded by a DA AD scholarship
for PhD students.
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1 INTRODUCTION

USED NOTATION IN THIS THESIS. We will always denote the field of definition
of an elliptic curve with K whereas the algebra containing orders which are isomor-
phic to the endomorphism ring of a given elliptic curve is called . Usually K is a
number field or a finite field F, of prime characteristic p such that ¢ = p". K can be
either a quaternion algebra or an imaginary quadratic field.

For any real number z € R the notation log z always means the binary logarithm
log, x, any other logarithm to a basis b is written as log, z. The natural logarithm

of such an element z € R would be denoted with In z.

COMPLEXITY NOTATION. For comparing computational problems it is impor-
tant to know how the running time and storage requirements of an algorithm grow
with increasing data input. For that we regard weakly increasing functions which
map the length of the problem input to the needed steps, arithmetic or binary oper-
ation or storage. Let f : N — R, be such a function, 0 < r,s € Q and ng,n,m € N

in the following sets.

We define
O(f) = {9:N—=>Ryo|TIr,ng¥n>ne: g(n)<rf(n)},
o(f) = {g: N>Ry |Vr,IngVn>ng: gn)<rf(n)},
Qu(f) = {g9:N—=R.o| 3Ir, for infinitely many n: g(n) > rf(n)},
w(f) = {g9:N—=R.g|Vr, forinfinitely many n: g(n) >rf(n)},
O(f) = {9g:N=>Ryo|3Ir,s,ng¥n>ng: rf(n)<gn) <sf(n)}.

We also frequently use

O(f) == {g:N—=Rog|Im:geO(f(logf)™)}

when we want to ignore logarithmic terms.

The most important of those concepts for our work are O and O. We usually
describe the complexity of our algorithms depending on the length logn of its input
n and e.g. say the algorithm has a complezity of O(f(logn)) in terms of field
operations or storage requirements of O(f(logn)) field elements. A field operation
in F, has an expected complexity of O((logq)?) in bit operations and a F,-element
can be stored in O(logq) bits.

For a deterministic algorithm we get the same output on the same way every time
we apply it to a given input and thus always the same complexity. If an algorithm
is probabilistic, we compute the expected value of its running time on a given input.

When we consider the maximal value of this expected value on every possible input
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of the same length, we talk about worst case complerity. Analogously the average
complexity is the average of all expected values.

As usual, an algorithm of input n € N is polynomial in its length logn if it is in
O((logn)*) for some integer k > 1 and ezponential in logn if it lies in O(a°8™) for

some real constant ¢ > 1. When we define
La(u,v) = exp((v + o(1)) log(n)" log(log(n))' ™)

for u,v € R, an algorithm with input as above having complexity L, (u,v) is subez-

ponential.
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2 THEORETICAL FOUNDATIONS

In this thesis we will always work with a base field K which will be either a finite
field or a number field with characteristic 0. In either case it is a perfect field?,
which will be needed in some of the proofs. We will regard rational maps between
varieties in the projective space P"(K) where K denotes an algebraic closure of K,
so we will introduce the necessary background in SECTION 2.1 briefly.

Later in that section we will restrict to algebraic curves, that is, projective va-
rieties of dimension one and most of the time to elliptic curves which are algebraic
curves of genus one with rational points. We will be most interested in so-called su-
persingular elliptic curves, so we will describe their properties and several methods
for determining whether a given elliptic curve is supersingular or not.

For our purposes the endomorphism ring structure of elliptic curves is important,
thus we examine this concept in SECTION 2.2 for both ordinary and supersingular
elliptic curves. SECTION 2.3 will give a very short introduction in graph theory and

the concept of expander graphs which we will use for the analysis of our algorithms.

2.1 BAsic CONCEPTS

We will approach our objects of interest — supersingular elliptic curves and isogenies
of prime degree { — in this section via algebraic varieties and morphisms between
them. Most of the theory is basic knowledge and can be found in SILVERMAN [75],
MUMFORD [62], COHEN [13] or HARTSHORNE [37].

Though elliptic curves as special projective varieties can be introduced indepen-
dent of the general theory of varieties, in some points it is helpful to have a broader
background and see which results work in a more general setting and which have
to be explicitly restricted to elliptic curves. Hence it will be apparent that some
of the occurring problems can also be stated in a more general situation. We will
have a short look at such generalizations and why they cannot be handled with our
methods in the OUTLOOK.

Our regarded problems are mostly solved for ordinary elliptic curves, which we
refer to as the ordinary case. The properties which distinguish supersingular elliptic
curves from ordinary elliptic curves entail several complications of those well-known
methods. Thus we will investigate supersingular elliptic curves and their properties

thoroughly in the second part of this section.

2A field K is called perfect if every non-constant polynomial f € K|[t] is separable.

Christina DELFS 1



2 THEORETICAL FOUNDATIONS

2.1.1 ALGEBRAIC VARIETIES AND ISOGENIES

Let K be a perfect field, A" := K™ be the affine n-space over K and I be a subset of
the polynomial ring K[X1,---, X,]. Then we define an affine algebraic set through

V() = {x€A"| f(x)=0forall f eI}

Especially if I is an ideal generated by a single polynomial f, we write V(f) for the

algebraic set emerging through this construction.

DEFINITION. An affine algebraic set V' C A" is called reducible if there are alge-
braic sets Vy, V4 in A" with V =1V, U V; and Vj # V # V. If no such sets exist, V

is called irreducible or an affine variety.

The ideal of an algebraic set 'V is
(V) = {feK[X, -, X,]| f(z) =0forall z € V}

which is a finitely generated ideal in K[X,--- ,X,] due to HILBERT’S Basis Theo-
rem. It can be shown that an affine algebraic set V # () is an affine variety if and
only if Z(V') is a prime ideal.

We regard those structures restricted to K and get the K-rational points of A"

A"K) = {z= (21, ,2,) €A" |2, € K} = K".

When we define 27 := (o(z1),- -+ ,0(z,)) for all points x = (z9,- -+ ,z,) € A" and
o € Gal(K/K), we get the equality

A"K) = {z€A"|2° =xforall 0 € Gal(K/K)}.

Furthermore, an affine algebraic set V' is said to be defined over K if Z(V') has
generators from K[Xj, -+, X,]. In that case V(K) := V N A"(K) will denote the
set of K-rational points of V.

Let V' C A" be an affine variety. The set

K[V] = K[Xl’”"X"]/I(V).

is an integral domain and is called the affine coordinate ring K[V] of V. Elements
in it can also be represented as functions f : V — K. Further we call its quotient
field K (V) the function field of V and for an affine variety which is defined over K

2 Christina DELFS



2.1 Basic Concepts

we get K[V] and K(V) in an analogous way. Those are the subsets of K[V] resp.
K (V) which are fixed by Gal(K/K).

Let now x € V be a point on V. Then the localization
K[V], = {fe K(V)|f=g/hwith g,h € K[V] and h(x) # 0}

is called local ring of V' at x and its elements f are reqular or defined at x.

DEFINITION. Let V be an affine variety, then we can define its dimension dimV
to be the transcendence degree of K (V) over K.

Particularly, we have dim A™ = n and dim V(f) =n — 1 when f is a polynomial
of degree deg f > 1. HARTSHORNE [37] proposes an alternative description of the
dimension of an affine variety in his PROPOSITION 1.1.7 as following.

PROPOSITION 2.1. For an affine variety V we have dimV = dim K[V] where
dim K[V denotes the KRULL dimension of the affine coordinate ring.

Let V be an affine variety in A" and let fi,---, fm € K[X1,---, X,] generate
Z(V). Set

A, = (Hw) erm

5]

Then V is said to be smooth or non-singular at a point x € V when we have
rk A, = n — dim V. If this condition holds for all x € V, the affine variety V itself
is called smooth, else it is called singular.

Now we introduce the projective analogues to the described concepts. The projec-
tive n-space over K is the set of all one-dimensional subspaces of A"*! and denoted

with P". For z,y € A"\ {0} we have an equivalence relation defined through
T~y <= INCcK:y=M

and the equivalence classes [r] = {\x | A € K*} of all 0 # x € A" under this
relation are just the elements of P". Analogous to the affine n-space we define the

K -rational points of P™ as the set

PYK) = {[z] e P" |z = (2o, - ,z,) with z; € K}
= {[z] € P"|[2]° = [z] for all o € Gal(K/K)}.

Here [z]? denotes the element [x7] € P" with 27 = (o(xg), -+ ,0(x,)) as before and

this is well-defined. We write [z] = [xg : @1 -+ 2,
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2 THEORETICAL FOUNDATIONS

A polynomial f € K[Xy,---, X,] is homogeneous of degree d if it satisfies
f()‘X0> e 7)‘Xn) = )\df(Xm T 7XTL)

for all A € K. For such a homogenous polynomial f and equivalent z,y € A"*!
with y = Az as above, we get f(z) = 0 if and only if f(y) = 0. Hence solutions of
the equation f([z]) = 0 are well-defined.

Let I be an homogeneous ideal of K[X, - -- , X,,], that is an ideal which is finitely
generated by homogeneous polynomials. Then we can define a projective algebraic

set through
V(I) = {[z] €P"| f([z]) =0forall fel}
as well as the ideal of such a projective algebraic set V
(V) = {f € K[Xo,: - ,X,] homogeneous | f([z]) =0 for all [x] € V}.

V' is defined over K if Z(V') can be generated by homogeneous polynomials from
K[Xg, -+, X,]) and V(K) = VNP"(K) is the set of K-rational points of V. Also the
definition of projective variety is analogous to the affine case with the appropriate
objects.

Let f € K[X1,---,X,] be a polynomial of degree d. Then the homogenization
of f with respect to X; for i € {0,--- n} is given by

d X Xic1 Xi n I
o= Xif(?fv"‘; Xil’ X-:l,"',))((_i>€K[XO7"'7Xn]-

In the other direction the dehomogenization of f € K[Xo,--- , X, with respect to
X,L' is

f* = f(X()a 7Xi—171aXi+17"' 7Xn)

which can be interpreted as an polynomial in K[X1,---, X,].
There are n + 1 embeddings of A" into P™ of the form

8Z'IA” — P

(xlv"'xn> = [xla"' 7$i—1717xi7"'$n]‘

When we consider a projective variety V', we will always choose an embedding of A"
in P" such that we have A"NV # (). This intersection will be an affine variety in A™.
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2.1 Basic Concepts

With these concepts it is possible to define the dimension, coordinate ring, function
field and smoothness of a projective variety V' as the corresponding structures or

properties of V N A” as affine variety.

MAPS BETWEEN PROJECTIVE VARIETIES. Let now V be a projective variety,
[z] € V and f € K(V). Then we call the function f defined or regular at [z] if f can
be evaluated at [z], that is, it can be written as a fraction of functions from K[V
where the denominator g satisfies g([z]) # 0.

Let V, and V; be projective varieties in P* and let f; € K(Vp) be functions which
provide [fo([z]), -, fu([z])] € V1 for all [x] € Vj where all f; are defined. A map
¢ : Vo — Vq is called rational map if it is of the form ¢ = (fo, -, fn) with such
functions.

Such a rational map ¢ is defined over K or K-rational if there exists a scalar
A€ K* with Afo, -+, Af, € K(Vp), which due to EXERCISE 1.12 of SILVERMAN |[75]
happens if and only if we have ¢ = ¢7 = (f,---, f7) for all o € Gal(K/K). Here

/7 denotes the image of the function f; under the group action

Gal(K/K) x K(V) — K(V,)
(0. f) = [f°

which is induced by the usual action of Gal(K/K) on coefficients of polynomials;
see page 4 of SILVERMAN [75] for more details.
We also have that

{feKWVy) | fo=fforalloeGal(K/K)} = K(V)

(REMARK 5.4.14 of GALBRAITH [28]) and thus ¢ = ¢ as above is equivalent to
fie K(Vp) for all i € {0,--- ,n}.

Furthermore, ¢ is said to be defined at [x] € V; if there is some g € K (V) such
that all ¢gf; are defined at [x] but not all of them are 0 evaluated at [x].

DEFINITION. Let 1V and V; be projective varieties. A rational map ¢ : Vj — V;

which is defined at every point [z] of Vj is called a morphism of varieties.

We will work mostly with algebraic curves, that is, projective varieties of dimen-
sion one. Especially when we deal with a smooth algebraic curve C', we have the
advantage that any rational map from C' into a projective variety V is a morphism,
see PROPOSITION I1.2.1 of SILVERMAN |[75].
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2 THEORETICAL FOUNDATIONS

Now we will deal with morphisms between smooth algebraic curves Cy and C}.
HARTSHORNE [37]| shows in THEOREM I1.6.8 that such morphisms are either con-
stant or surjective. We want to introduce the degree of a morphism between smooth
algebraic curves.

Let Cy and C be smooth algebraic curves defined over the field K. We start
with defining the degree of a constant morphism ¢ : Cy — C} to be 0. Let otherwise

¢ : Cy — C} be a non-constant morphism. We get an injective map

¢*K<Cl) — K(Co)
[ = fo¢

which fixes elements of K and provides a finite extension K (Cy) of ¢*(K(Cy)) and
set the degree of ¢ to be

degg = [K(Co): ¢"(K(Ch))].

This extension can be separable or inseparable and we call ¢ a separable resp. in-
separable morphism accordingly. The separable and inseparable degrees of ¢ are the
corresponding degrees of the field extension and labeled with deg, ¢ resp. deg; ¢. For
details of this construction see THEOREM 11.2.4 and following of SILVERMAN [75].

Since a purely inseparable field extension can only occur in prime characteristic
p and its degree is a power of p then, this means that the inseparable part of a
morphism has to have a prime power degree. It can be shown that every morphism
can be split in a product of a separable one and a special inseparable morphism
which we describe below.

Let K be a field with characteristic p > 0 and let C' be a smooth algebraic
curve defined over K such that we have C' = V(I) with I := (f,---, f,n) being the
ideal generated by the polynomials f; € K[Xy,---,X,]. Let ¢ be a power of p and
define the polynomials fi(q) to arise from f; through taking the ¢-th power of each

coeflicient.

DEFINITION. Let in this situation C@ = V(I@) be the smooth algebraic curve
where 19 is the ideal generated by fl(q), e ,ﬁ(nq). Then the morphism

T, C — CW

[To: - @y — [xd: - al

is called the ¢-th FROBENIUS morphism.
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2.1 Basic Concepts

The FROBENIUS morphism can be defined for an arbitrary algebraic variety
defined over F, in an similar way as 7, : A — A@ with AW constructed analogue.

Further there exists a morphism
pg AD A

with p,m, = [g]a and 7p, = [¢] 4, the so-called Verschiebunyg.

SILVERMAN shows that the FROBENIUS morphism is purely inseparable and has
degree ¢. It turns out to be quite useful when investigating arbitrary morphisms,
because due to the following lemma (COROLLARY I1.2.12 of SILVERMAN [75]) we

can restrict to separable morphisms in many situations.

LEMMA 2.2. Let Cy, Cy be algebraic curves defined over a finite field of character-
wstic p and let ¢ : Cy — C1 be a morphism with deg; ¢ = q = p". Then there exists
a separable morphism ) : C’éq) — Cy with ¢ = om,.

COQE@/w’Cl
¢

For proving this lemma it is relevant that K is a perfect field as can be seen in
SILVERMAN’S proof. We will not expand on this.

Now we want to restrict ourselves further to algebraic curves which are defined
by a single homogeneous polynomial f € K[Xy,---,X,]. Since the dimension of
such a variety V(f) is n — 1 but an algebraic curve has dimension 1, this yields

n = 2.

DEFINITION. An algebraic curve in P? is called a plane projective curve. If C' is
a non-singular plane projective curve over a field K with C(K) = V(f) # 0 and
deg f = 3, C'is called an elliptic curve and often labeled FE.

For a plane curve C' which is defined by a polynomial f of degree d, we can define
the genus of C' as g = L%j Thus, an elliptic curve is a curve of genus one. This
term comes from the RIEMANN-ROCH-Theorem which can be found in SECTION 1.5
of STICHTENOTH [82].

We can define an addition law on an elliptic curve E which provides an abelian
group structure with identity element O on E. The K-rational points E(K) are
a subgroup of E for every field K where E can be defined. The precise addition
formula can be looked up in SILVERMAN [75] or WASHINGTON [91].
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2 THEORETICAL FOUNDATIONS

More general, a smooth projective variety V' where the structure of an abelian
group can be defined with morphisms and a base point O € V(K), is called abelian
variety. Such an abelian variety A is defined over K if it is defined over K as a
projective variety and the morphisms for addition and inversion are also defined
over K. A is simple if there is no non-trivial abelian varieties B C A.

For an arbitrary smooth algebraic curve C' we can construct the JACOBIAN
variety Jac(C') which is an abelian variety such that C' can be embedded in Jac(C).
The dimension of JacC' is equal to the genus of C. For elliptic curves we have
Jac(FE) = E. In particular, the JACOBIAN variety is isomorphic as a group to the
divisor class group Pic’ C which is the set of degree zero divisors of C' modulo the
principal divisors. Thus we can describe elements of JacC' as residue classes of
divisors with degree zero. We will not extend much on this theory though since we
will not need much of the concepts for our results. MILNE [60] addresses JACOBIAN

varieties in more detail.

DEFINITION. Let Ay and A; be abelian varieties with Oy and O; being their re-
spective identity elements. A morphism ¢ : Ay — A; with ¢(Og) = O; is called
isogeny. If there exists an isogeny between A and A; which is not constant, Ay and

Aj are isogenous.

PROPOSITION 7.1 of MILNE [59] gives us a few nice properties of this general

concept.

LEMMA 2.3. A non-constant isogeny ¢ between abelian varieties Ay and Ay is

surjective and has a finite kernel. Further, dim Aqg = dim Ay has to hold.

Let ¢ be a separable isogeny, then we know from the fundamental theorem of
finitely generated abelian groups that there exist integers /1, --- , ¢, € N satisfying
liyq | ¢ for i € {1,--- s — 1} such that we get

kergp = Z/HLS--- DL/

and #ker¢ = [[;_; - In that case we call ¢ a (¢, ,{;)-isogeny. If we have
s = 1, we see that the number ¢ := ¢, is the degree of the isogeny and ¢ is called
(-isogeny.

Note that for genus g > 1 the term (-isogenies is sometimes ambiguously used
for either isogenies of degree ¢ or isogenies with kernel isomorphic to (Z/¢Z)9. In
the elliptic curve case these two concepts coincide, but for higher genus g the latter

ones have degree ¢9. We will use the term for (¢,--- | ¢)-isogenies.
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2.1 Basic Concepts

A simple example of an isogeny from an abelian variety A over a field K to itself

is the so-called multiplication-by-m-map for any m > 0 defined through

m] .= [m|ja:A — A
P s mP=P+---+P.
—_—

m times

For m < 0 we set [m](P) := [-m](—=P) and [0](P) := O4 for all P € A(K), so we
actually can define multiplication by m for any integer m. MILNE [59] THEOREM 7.2
shows that this map has degree deg[m] = m?¥ where g is the dimension of A. For
positive m the kernel of the multiplication-by-m-map equals the m-torsion subgroup
of A,

ker[m] = Alm] = A(K)[m] = {P € A(K) | mP = Oy4}.

We will use this connection and especially the p-torsion in characteristic p for
elliptic curves later in SECTION 2.1.2.

We are able to determine the structure of such a torsion subgroup as shown in
REMARKS 7.3 and 7.4 of MILNE [59]. For that we use the notation

LZ/mZL X --- X L]/mZ = (Z/mZ)"
nt;;nes

for n € Ny where we set (Z/mZ)° = {0}.
LEMMA 2.4. Let A be an abelian variety of dimension g defined over a field K.
1. Let m € Z be an integer such that char K 1 m. Then we have
Alm] = (Z/mZ)*
as wsomorphism of groups.
2. Let char K = p > 0 be a prime and m be a power of p. Then
Alm] = (Z/mZ)",

where 0 < r,(A) < g is an integer called the p-rank of A. Again, we mean

group 1somorphism.

REMARK. The p-rank of an abelian variety A has a connection to the property of

A being ordinary or supersingular as we will see in SECTION 2.1.2.
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2 THEORETICAL FOUNDATIONS

DEFINITION. Let Ag and A; be abelian varieties of dimension g defined over a field
K. Then

Hom(Ag, A1) = {¢: Ay — A; isogeny}

denotes the set of isogenies between Ay and A;. End Ay := Hom(Ap, Ag) the so-

called endomorphism ring of Ag.

REMARK. We will see that Hom(Ag, A;) is a free abelian group under addition of

morphisms and End(Ay) is a ring with addition and composition of morphism.

When working with isogenies it is a natural question to ask how to determine
whether two given abelian varieties over a field K are isogenous apart from having
the same dimension. We will introduce the theory leading to a mighty theorem for

this issue on the following pages.

DEFINITION. Let g be a prime power and V' be a projective variety defined over [F,
and let a,, := #V (F,»). The zeta function of V' is the power series defined through

Zy = exp (i %X”) .
n=1

Especially the zeta function is defined for abelian varieties and for algebraic
curves where it is most often applied. SILVERMAN |[75] presents the so-called WEIL

Conjectures concerning the zeta function in THEOREM V.2.2. as follows.

THEOREM 2.5. Let q be a prime power and V as above be a projective variety
defined over F,. Let V be smooth and of dimension g. Then

1. The zeta function has rational coefficients, Zy € Q[[X]].

2. We have

P,-P3. Py,
Py- Py Py,

Zy =

with P; € Z|X] for i € {0,---,2g} such that we have
d;
Pi=]](1 = ayX)

J=1

with |ou;| = /q. This is also called the RIEMANN hypothesis.
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Let A be an abelian variety over a field K and for a prime ¢ with char K # /¢
consider the torsion subgroups A[("] := A(K)[¢"] with n € N. Then an inverse limit
with respect to the the multiplication-by-¢-map

] A" — A[ﬁ"il]
induces the TATE module

T, A = lim A[0").

For abelian varieties Ay and A; defined over K and prime ¢ # char K this concept

leads to a homomorphism

Ty : Hom(Ap, A1) — Homg, (T, Ao, To A1)
¢ — T€¢7

where Z, denotes the usual (-adic integers.
MUMFORD [61] uses this map in THEOREM 19.3 and the following COROLLARY 1
for the following results which can also be seen in MILNE [59], THEOREM 10.15.

PROPOSITION 2.6. Let Ay and Ay be abelian varieties defined over a field K with
dimension go resp. g1 and let ¢ be a prime with char K # (.

Then injective map
Hom(Ag, Al) X7z Ze — HOIHZZ (TEAO, TgAl)

18 induced by Ty.
Especially Hom(Ag, A1) is a finitely generated free abelian group and a Z-module

with rank at most 499g; -

For a finite field K the map in PROPOSITION 2.6 is even bijective due to the
MAIN THEOREM of TATE [86].

Let A be an abelian variety of dimension g defined over a field K and ¢ be a
prime with char K # ¢. Due to PROPOSITION 2.6 the endomorphisms ring End A is
a free abelian group which is finitely generated of rank less than or equal to 4¢2.

Let ¢ € End A be an isogeny from A to itself. Then we know from PROPO-
SITION 2.6 that the TATE module T;A is a Z,-module of rank 2g. Thus when
we regard the homomorphism T;¢p € EndT;A, we can use standard linear alge-

bra to construct the transformation matrix Mr,, and the characteristic polynomial
X1 = det(X Iog — Mrg).
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MUMFORD [61]| shows in THEOREM 19.4 that the polynomial x7,4 is a monic
polynomial of degree 2g with coefficients from Z and is surprisingly independent
of ¢. Furthermore, we have deg¢ = det Mr,4 and deg(aidy —¢) = x1,4(a) for all
a € Z. Most importantly, the polynomial x7,4 is zero evaluated at ¢.

With those results we can see that xr,4 is completely determined by ¢ and thus

the next definition is justified.

DEFINITION. Let A be an abelian variety of dimension ¢ defined over a field K,
let ¢ be any prime different from char K and let ¢ € End A be an isogeny. The

polynomial x4 := x1,4 is called characteristic polynomial of ¢.
2g )
When we write x, = > a; X", we call g the norm and —aq,_; the trace of ¢.
i=1
Most important for our purposes is the characteristic polynomial of the FROBE-
NIUS morphism which will play an prominent role in our investigations concerning
endomorphisms of elliptic curves later. We often also call this characteristic poly-
nomial x 4.
Both the concepts of zeta functions and characteristic polynomial of the FROBE-
NI1US are used in the fundamental result from TATE in THEOREM lc of [86] which

gives us a very useful tool to determine whether two abelian varieties are isogenous.

THEOREM 2.7 (TATE’S ISOGENY THEOREM). Let q be a prime power and Ay
and A; be abelian varieties defined over the finite field F,. Let xo and x:1 be the
characteristic polynomaials of the respective ¢-FROBENIUS morphisms. Then we get

Ap and Ay are isogenous over Fy, <= x4, = X4,
<~ ZAO = ZA1

for every finite extension K O F,.

Especially the last condition will turn out to be of great importance later.

EvLvipric CURVES. Now we will present some individual structures of elliptic
curves which are much sore simple than in the general situation. Particularly for
computations and applications it turns out that they can be handled much better

than arbitrary varieties of higher dimension due to those properties.

4 SILVERMAN [75]| shows how the generating polynomial for an elliptic curve
defined over K can be written in a projective WEIERSTRASS form

X%Xz + a1X0X1X2 + a3X1X22 - Xg - CI,QXUZXQ - G,4X0X22 - G,GXS
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with aq, a9, a3, a4,a6 € K. When we apply dehomogenization with respect to
X5 we get the affine WEIERSTRASS form

Y24+ a1 XY +a3Y — X3 — as X% — ay X — ag

in the variables X := X;/X, and Y := X;/X,. The point [0,1,0] € P? is a
solution of the first projective equation but cannot be displayed in the second
affine situation. Such a point is called point at infinity and usually denoted

by O. For an elliptic curve there is exactly one point at infinity.

+ Let F' € K[X,, X1, X32] be the homogeneous defining polynomial of an elliptic
curve in projective description as above and f € K[X,Y] be the dehomoge-

nized one. The elliptic curve E can be written as

{[xo:21:29] €EP? | F([wo: a1 : a2]) =0} or
{(z,y) € K* | f(z,y) =0} U{O}.

We will prefer the affine notation and use the phrasing E is represented by f,

always keeping the projective background in mind.

4+ For char K > 3 we can simplify this WEIERSTRASS polynomial to
V?P—X?—aX —b

with a,b € K. Since in our problems the cases p = 2 and p = 3 are of no
interest, we will usually restrict to such an equation if we need an explicit
description of the curve. For the forms in characteristic 3 and the conversion
of the equations into each other see SILVERMAN [75], CHAPTER III.1.

4+ An elliptic curve E is a smooth algebraic curve, so we have to check the
differentials g—)’; and g—{; not being both zero at a point of F.For char K > 3 a

cubic curve E is smooth if and only if the discriminant of £
A = A(E):=—16(4a® +27b%) € K

1S not zero.

4+ The j-tnvariant of an elliptic curve F is given through the equation

(4a)’

j o= j(F):= —1728T.
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For every element of K there is an elliptic curve defined over K with this
element as j-invariant and two elliptic curves Ey and E; are isomorphic over
K if and only if we have j(E;) = j(E;). These j-invariants will play an
important role in our investigation later. They further help to see where the

elliptic curve can be defined.

PROPOSITION 2.8. An elliptic curve I can be defined over F, if and only if its

J-tnvariant lies in Fy.

PrROOF. The implication '=>" is a trivial computation since j is defined via the
coefficients of the WEIERSTRASS polynomial.

The other direction <=’ follows from PROPOSITION 1.4.c of SILVERMAN |[75]
as for given j € F, the curves given by WEIERSTRASS polynomials

V24 XY = X4+ 55 X + g for j #0,1728
Y?4+Y - X3 for j =0
Y2 - X3-X for j = 1728
are smooth and have j-invariant j. O]

In characteristic p > 0 we have already seen for ¢ = p" the ¢-th FROBENIUS

which for an elliptic curve E defined over F, can be expressed as a map

.. B — EY
Pi=(z,y) — (2%y9)

Or — Ogw

which is also an isogeny and has degree degm, = ¢. If £ is defined over K = [,
we even get £ = FE and hence an endomorphism with Ty + B — E, the so-
called FROBENIUS endomorphism. Furthermore, for any s € N the FROBENIUS
7, generates the GALOIS group Gal(F,/F,) which is a cyclic group of order s
(GALBRAITH [28], THEOREM A.8.3).

This endomorphism 7, is very important in our work because it provides a simple
way to check whether an isogeny between elliptic curves is defined over [, as seen
in LEMMA 2.19. The resulting statement appears at several crucial points in our
discussion and provides the possibility to regard supersingular isogeny graphs in the
way we do in SECTION 4.2.2.
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REMARK. There are several nice properties of isogenies between elliptic curves over
a field K which we will state without proof here. They can be found in CHAPTER III
of SILVERMAN [75].

4+ Every isogeny between two elliptic curves Fy and E; over a field K is a homo-

morphism. Hom(Ey, E;) is a torsion-free Z-module with rank at most four.

4+ Every non-constant isogeny has a finite kernel and is geometrically surjective,

which means that ¢ : Eg(K) — E;(K) is surjective.

4+ We have already defined the degree of a morphism in a more general setting.
Especially we have that deg : Hom(Fy, F1) — Z is a positive definite quadratic
form. That means in particular that the degree is always non-negative, equal
zero only for the trivial isogeny [0], and we have deg ¢ = deg —¢. Further the
pairing defined through (¢, ) := deg(¢ + ©) — deg ¢ — deg 1 is bilinear.

Let E be an elliptic curve defined over a field K. We already defined the endo-
morphism ring End E as Hom(E, E) and have seen that it is actually a ring with
addition and composition of isogenies. We will investigate its structure in more detail
in SECTION 2.2.3. When we regard only endomorphisms which are defined over K,
we write Endg (E) for the respective set. Further the automorphism group Aut(FE)
of F is the set of isogenies from E to itself with degree 1, that is, isomorphisms.

Since we have at least +id € Aut(E), the number of automorphisms of an elliptic

curve E has to be larger than one. Furthermore, # Aut(F) divides 24 and we have

2 if j(E) & {0,1728),

4 if j(E) = 1728 and char K > 3,
#Aut(E) = (6 ifj(F)=0and char K > 3,

12 if j(F) =0 and char K = 3,

24 if j(E) =0 and char K =2

as seen in GALBRAITH [28], THEOREM 9.4.4. This will become important when we
regard equivalent isogenies later in this section.

We have seen in LEMMA 2.2 that any isogeny ¢ can be represented as the com-
position ¢ = 1 om, of a separable isogeny ¢ and a FROBENIUS morphism. Therefore
we often restrict to separable isogenies only which also have the advantage that the
degree can be determined by the number of points in its kernel. We will see that
our construction methods always yield separable isogenies, too.

A useful criterion for separability of some special isogenies can be found in
COROLLARY II1.5.5 of SILVERMAN |[75].
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COROLLARY 2.9. Let E be an elliptic curve over a finite field F, of characteristic
p. Let m,n be integers and define the isogeny ¢ : E — E through ¢ := [m] + [n]m,.

Then we have
¢ is separable <= p{m.

REMARK. In the situation of the corollary we can immediately see the following

properties:
4 [m]: E — FE is separable <= m # 0 (mod p),

4+ 7, B — E is never separable.

The next result is COROLLARY II1.4.11 of SILVERMAN [75] and will be needed

in a later part of this work.

LEMMA 2.10. Let K be a field, Ey, E1 and Ey be elliptic curves defined over K with
non-constant isogenies ¢; : By — E; for i € {1,2}. If ¢1 is separable and we have
ker ¢ C ker ¢o, then there exists an unique isogeny ¢ : Ey — Ey with ¢ = ¢ o ¢y.

1 B, ¢

\/

P2

E() E2

DEFINITION. Let Fy and E; be elliptic curves defined over a field K with identity
elements Oy resp. O;. Then E; is a twist of Ey if there exists a K-isomorphism
¢ : Ey — F4 which sends Oy to O;. If F; is also K-isomorphic to Ey, it is called a
trivial twist.

If E5 is another twist of Ey which is K-isomorphic to F,, the twists E; and
E5 are called equivalent. The set containing equivalence classes of twists of Ej is
denoted by Twist(E)).

Twists will play an important role in our considerations later. In our case we
only need them for elliptic curves defined over finite fields I, where ¢ is a power of
the prime p with p > 3. There we can refine the definition mostly to the notion of
quadratic twists.

Let E be an elliptic curve defined over K = F, with char K = p > 3 and let
E be given by a WEIERSTRASS equation Y? = X? 4+ aX + b with a,b € F,. For
any d € F; we define the elliptic curve E@ through the WEIERSTRASS equation

16 Christina DELFS



2.1 Basic Concepts

Y? = X3 + d?aX + d®b and regard the map

¢:F — E9@
(z,y) = (dz,d*y).

One can check that this is an isomorphism, so £ is a twist of F; but if d*/? is
not an element of F,, the map ¢ is not defined over [F, but over the field extension

F,(d*/?). The other direction is also true, so we have
E and EY are not isomorphic over F, < (—) = —1.

Such an elliptic curve E@ is called a non-trivial quadratic twist of E. We even have
that E@) and E@) are isomorphic over F, for two elements dy,d; € [y, which are
not squares in [y, so there is exactly one equivalence class of non-trivial quadratic
twists of F.

It can be shown that for j(E) ¢ {0, 1728} there are no other equivalence classes
than the one of E itself and the one of the quadratic twists. For j(E) = 1728
or j(E) = 0 we have to add quartic resp. cubic twists in a similar manner, see
PROPOSITION X.5.4 of SILVERMAN [75].

We obtain that if E is an elliptic curve defined over F, with characteristic p > 3,

we have

2 if j(E) ¢ {0, 1728},
#Twist(E) = {4 if j(E) = 1728,
6 if j(E)=0.

We need this later to determine the Fp-isomorphism classes of supersingular elliptic
curves which are defined over [F), see SECTION 4.2.2 of this thesis.

When we regard elliptic curves over a given field K, the question arises whether
we can determine if they are isogenous or not. We have seen in general from THE-
OREM 2.7 that for K = I, this property relies on the number of [F -rational points
of the elliptic curves. It can also be determined with the characteristic polynomial
of their FROBENTUS as well as their trace. We will briefly introduce the notation in

the elliptic curve situation now.
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2 THEORETICAL FOUNDATIONS

PROPOSITION 2.11. Let E be an elliptic curve defined over the field K and let
¢ € Endg E be a non-constant isogeny with deg¢ = d. Then there exists some
t¢ € 7. with

¢* —[ts]op+1d] = [0].

This can be seen in THEOREM 9.9.3 of GALBRAITH |28]. The integer t, is the
trace of ¢ and the polynomial X? — t,X + d € Z[X] the characteristic polynomial
of ¢ as in the general version before.

We are mostly interested in the case where F is an elliptic curve defined over a
finite field F, and regard the FROBENIUS 7, € Endp, £. From now on ¢ := tg will

always denote the integer from the equation
71'2 — [tE]ﬂ'q + [C]] =0

which is the trace of FROBENIUS and will appear often in our work. It can be shown
that

tg = ¢+ 1—#E(F))

and thus we can also talk about the trace of the elliptic curve E, which justifies
the notation. A theorem from HASSE (for example proven in THEOREM V.1.1 of
SILVERMAN [75]) says that we always have

lte| < 24/4.

Thus we have the following possibility for the cardinality of E(F,).

PROPOSITION 2.12. Let p be a prime and E be an elliptic curve defined over the
finite field ¥y of characteristic p. Then the number of F,-rational points of such an

elliptic curve E s restricted through

g+1-2/7 < #EF,) < q+1+2/4

In fact there are polynomial point-counting algorithms to explicitly determine
this number like SCHOOF’S algorithm or an improvement of it called SEA algorithm
by SCHOOF, ELKIES and ATKIN, both treated for example in SCHOOF [73].

Isogenies usually have non-trivial kernels, so they are not bijective. But it turns
out that there is a way to return to the original curve via another isogeny which is

related to the first. Namely for every non-constant isogeny ¢ : Ey — FE; there exists
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an unique isogeny gg: E, — Ey with deggg = degp = m as well as ggo ¢ = [m]g,
and ¢ o ¢ = [m]g,. Further we define [/(ﬁ := [0]. The isogeny ¢ is called the dual
isogeny of ¢ and has some further nice computational properties (THEOREM I11.6.2
of SILVERMAN [75]) like

+ @b/o\gb:ggoqz}\ for isogenies ¢ : Ey — FEq, 1 : By — Es,
+ m = 1;—1— gg for isogenies ¢, : Ey — Ejy,
+ o= for every isogeny ¢ : By — Ej.

Furthermore, ngﬁ has the same trace t4 as ¢ and a short computation shows that
we get [ty] = ¢ + ¢.

REMARK. For an abelian variety A of dimension g > 1 the concept of dual isogenies
cannot be applied completely analogous. It is true that for an isogeny ¢ : Ag — A
of abelian varieties there exists an isogeny ¢ : A; — Ay of the same degree d
such that we have 1) o ¢ = [d]4, and ¢ o ¢ = [d]4, (|34], PROPOSITION 5.12). An
example of this situation we have already seen with the FROBENIUS morphism and
the Verschiebung. However, this isogeny 1) is usually not called dual isogeny to ¢.

For the concept of what is generally understood as dual isogeny we need to
introduce the dual variety AY as in SECTION 8 and 9 of MILNE [59] which is also
defined over K and has the same dimension but is usually different from A. An
abelian variety A and its dual satisfy AVY = A. Further A and AV are isogenous as
seen in 16.2 of OORT [65] and an isogeny 1 : A — AV is called polarization. If such
an isogeny v is an isomorphism, we speak of a principal polarization and if such an
isogeny exists, A is principally polarized. For example JACOBIANS of dimension two
are always principally polarized.

The dual of an isogeny ¢ : Ay — A; between abelian varieties Ay and A; of
dimension g > 1 can be seen as the morphism ¢" : AY — Ay. Especially, for A as
above and an isogeny ¢ € End A we get ¢V € End AY. For the case of an elliptic
curve E we have the relation £ = EY and there exists a ¢ : E — EV as a principal
polarization. In this case both here described concepts coincide. That means that
for elliptic curves the dual of the FROBENTUS morphism 7, equals the Verschiebung

pq which is not the case for arbitrary abelian varieties.

The concept of the dual isogeny on elliptic curves yields the symmetry of an

equivalence relation given by

Ey~FE <— = isogeny gb :Ey — E;.
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2 THEORETICAL FOUNDATIONS

The equivalence classes under this relation are called isogeny classes. The following
theorem summarizes the fundamental result of TATE [86] for the elliptic curve sit-
uation as we will use it later and classifies the isogeny classes for the set of elliptic

curves defined over a finite field F,.

THEOREM 2.13 (TATE’S ISOGENY THEOREM FOR ELLIPTIC CURVES). Let Ej
and Ey be elliptic curves defined over the finite field F,. Then we have

Ey and Ey are isogenous <= #Ey(F,) = #E1(F,)

<~ tEO =1g,.

Due to the mentioned polynomial-time point counting algorithms it is now easy
to determine whether two given elliptic curves are isogenous or not. Even deter-
mining for a fixed isogeny degree ¢ which elliptic curves are ¢-isogenous to a given

elliptic curve E can be done in a simple way as we see next.

PROPOSITION 2.14. Let £ be an integer coprime to the characteristic of the field
K in the case where the latter is nonzero. There exists a polynomial ®, € Z[X,Y]

such that for elliptic curves Ey and E defined over K we have
Ey and Ey are l-isogenous <= D,(j(Fo),j(Er)) = 0.

REMARK. 4+ Although the statement is usually first formulated for K being a
number field, it is also true for elliptic curves defined over a finite field F, and

the reduction of the polynomial in F,[X,Y].

4 The polynomial ®, is called the ¢-modular polynomial or (-th classical modular

polynomial.

4+ We will investigate the background of this polynomial in SECTION 3.2.1 and

give a description of it.

Although we know how to determine whether two elliptic curves are isogenous
and how to find /-isogenous elliptic curves now, explicitly calculating such an isogeny
turns out to be much more complicated and entails interesting applications in cryp-
tography. Therefore we are going to deal with computational approaches to several

variants of the following problem in the course of this work.

PROBLEM 3 (General Elliptic Isogeny Problem). Given elliptic curves Ey, E1 over
F, with #Ey(F,) = #E1(F,), explicitly compute an isogeny between them in terms

of a rational map.
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Even when we look for separable isogenies only, it is not immediately clear how
to proceed. We have to provide an explicit form of an isogeny ¢ : Ey — E; in terms
of a rational map to solve this problem.

One method to construct isogenies relies heavily on subgroups of a given order of
the elliptic curve Ey which become kernels of isogenies. Its correctness comes from
the next statement as in PROPOSITION 4.12 of SILVERMAN |75].

PROPOSITION 2.15. Let E be an elliptic curve defined over a field K and let
G C E(K) be a finite subgroup. Then there erist a unique elliptic curve Eq and a
separable isogeny ¢+ E — Eg with ker ¢ =

In particular this means that the sequence
0O — G — FE — Eg — 0

is exact. According to this proposition isogenies are for the most part determined by
their kernels. If G is defined over K — that means, it is a GALOIS invariant subgroup
and thus we have the relation o(G) = G for all ¢ € Gal(K/K) — the elliptic curve
E¢ and the isogeny ¢¢ can be defined over K, too.

Recall that an isogeny is a rational map and we explained before what it means
for a rational map to be defined over a given field. There are the explicit formulae
of VELU [90] which show how to compute such an isogeny and image curve in the
following way.

Let E be an elliptic curve defined over a field K given by a WEIERSTRASS
polynomial Y2 — X3 — aX — b with a,b € K. For a point P # O from G we write
P = (zp,yp). The isogeny ¢g = (fi1, f2) starting at £ with

paw = o 3 (TR ).

O£PEG
374 +a 4qy2
folw,y) = y— yz< F—+ PS)
(x —zp)? (v —xp)
O#PEG

for all (x,y) € E(K) satisfies ker ¢ = G as can be explicitly checked.
The image curve E = E¢ of the isogeny will be defined by the WEIERSTRASS

polynomial Y2 — X3 — X — b where the values for @ and b can be computed as

a = a-—5 Z (32% + a),
O+£PeG

b = b—7 Y (52} + 3axp+2b).
O£PeG
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EXAMPLE 2.16. Let E be an elliptic curve defined over the finite field K := F, of
characteristic p > 3 which is given by a WEIERSTRASS polynomial Y? — f(X) with
f=X?+aX +be€ K[X]. We want to show how to explicitly compute all outgoing
2-1sogenies from E.

Let f € K[X] have the three distinct roots ag, oy, 0 € K, so we get the points
P, = (a;,0) € E(K) which we call WEIERSTRASS points. These are the only
possible points of order two of E and thus the subgroups with exactly two elements
are {P;, O}.

FEach of those subgroups defines the kernel of an 2-isogeny ¢; : E — E; with

32 +a 3af +a
di(z,y) = |z + Y~ Y
r—« (

where the image curve E; is given by the WEIERSTRASS polynomial Y?—X3—a; X —b;
with a; == —4a — 150@2 and b; == —13b — 350@2 — 2lacy;.
We get all possible isogenies of degree two with this approach and the occurring

equations are obviously easy to compute.

In VELU [90] the formulae are slightly more complicated as they are stated not
only for short WEIERSTRASS polynomials, but the principle is the same. Although
computing 2-isogenies like in the last example is fast, evaluating the equations gets
harder with increasing degree of the isogeny since there are proportionally more
terms in the sum. We get the following result, following SECTION 25.1.1 of GAL-
BRAITH [28].

PROPOSITION 2.17. Let E be an elliptic curve defined over a field K and let
G C E(K) be a finite subgroup of order £. Computing the elliptic curve Eg and the
1sogeny ¢a has expected 5(6) running time in field operations and needs expected

O(L) storage in terms of field elements.

This complexity does not include finding the appropriate subgroups which is
another task and has to be considered independently. Furthermore, if we consider
our general elliptic isogeny problem as stated above, we usually do not know the
kernel of an isogeny ¢ : Ey — Fj at all. ELKIES [22] presents a way to obtain it
from the knowledge of the j-invariants of Ey and E; using O(¢*) K-operations (see
SECTION 25.2.1 of GALBRAITH [28]). This approach as well as an idea of STARK [81]
are presented and analyzed in BOSTAN, MORAIN, SALVY, SCHOST [3| where also
some fast alternatives for the VELU formulae in certain situations are given.

Those methods do not apply well in small characteristic, where other algorithms
have been invented as in COUVEIGNES [15]| or especially for characteristic two in

LERCIER [50].

22 Christina DELFS



2.1 Basic Concepts

There are other, even subexponential approaches for computing isogenies of large
degree (JAO and SOUKHAREV [44]) or on a quantum computer (CHILDS, JAO,
SOUKHAREV [11]).

The complexity of all those approaches depends heavily on the degree of the
attained isogeny. However, since this number can be potentially large and, in par-
ticular, is not predictable when only the arbitrary isogenous elliptic curves Ey and
E; are given, this is seems to be a badly chosen measurement. Therefore in SEC-
TION 4 we want to concentrate on algorithms which do not rely on the size of the
kernel of the isogeny but only on the number of elements of the underlying field F,,.

Note that the isogeny ¢g from the previous propositions is only determined up

to equivalence in the following sense.

DEFINITION. Let Ey and F; be elliptic curves defined over a field K. Isogenies
¢,V : Ey — FEy are called equivalent if they fulfill ker ¢ = ker 1.

REMARK. Let Ey, E; be elliptic curves over a field K and ¢ : Ey — F, be a sepa-

rable isogeny.
4+ Obviously, ¢ and —¢ are always equivalent.

4+ The isogeny A o ¢ is equivalent to ¢ for every A\; € Aut(FE;) but the isogeny
¢ o Ag does not have to be equivalent to ¢ for all \y € Aut(Ep) (see EX-
ERCISE 25.1.1 of GALBRAITH [28]). This can only happen when we have
j(Ep) € {0,1728}, though.

We have seen before that for char K > 3 and j(Ey) ¢ {0, 1728} we always have
exactly two automorphisms of Ey, so Aut(Ep) = {£id}. If we have j(Ey) = 0
or j(Ey) = 1728, there are additional automorphisms which can provide isoge-
nies 1 : By — FE; which are not equivalent to ¢. Nevertheless, up to equivalence
they can have the same dual as ¢, since for an isogeny v := ¢ o \g : £y — E; with
Ao € Aut(Ep) we have QZ = XO o (E which — due to the second point of the previous
remark — is usually equivalent to ¢ (except possibly in the case j(E;) € {0,1728}).

Hence for j-invariants 0 and 1728 there can be several non-equivalent outgoing
isogenies which have the same dual. We will see that this is a small inconvenience for
isogeny graphs since we are not completely able to describe the graphs as undirected
and apply theory of undirected graphs on them.

Let Ey and E; be elliptic curves defined over K. We are interested in the question
when an isogeny ¢ between them is also defined over K. If an isogeny ¢ is defined
over K, this implies that the kernel of ¢ is GALOIS invariant (EXERCISE 9.6.5 of
GALBRAITH [28]). Due to the discussion after PROPOSITION 2.15 there is even
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the useful equivalence that K-rational f-isogenies correspond to (GALOIS invariant

subgroups of order ¢ of elliptic curves as fixated in the next lemma.

LEMMA 2.18. Let Ey and E; be elliptic curves defined over K and ¢ : Eg — E4 be
an isogeny of degree (. ¢ is defined over K if and only if ker ¢ is a GALOIS invariant
subgroup of E(K) with #ker ¢ = (.

For elliptic curves defined over the finite field I, of characteristic p there is a
simpler way to test whether an isogeny between them is also defined over F,. This
is closely linked to the ¢-th FROBENIUS endomorphism 7,; € End E; which for
i € {0,1} maps a point P = (z,y) € E;(F,) to the point (z7,y?).

Note that there is also the well-known FROBENIUS element in Gal(F,/F,) which
we also denote with 7, here. For z € F, we have 7,(2) = 27 and obviously m,
acts trivial on F,. This GALOIS automorphism induces the other version of the

FROBENIUS on elliptic curves and for P = (z,y) € E; we have
myi(P) = (a7, ") = P™ € E{").

This is used in the following result.

LEMMA 2.19. Let Ey and E; be elliptic curves defined over Fy, and ¢ : Ey — E; be

an 1sogeny. Then we have

¢ is defined over F, <= ¢"™ =¢

& ¢omy=Tg10Q.

PROOF. Let ¢ : Ey — E; be an isogeny between elliptic curves defined over F,. We
regard the description ¢ = (fy, f) with functions fi, fo € K(Ep) and let Fm be
an extension field of K = I, where all coefficients of the polynomials from K[Ey|
defining the f; live. Especially this field extension is finite.

Thus we deduce that ¢ is already defined over F, if and only if we have ¢ = ¢ for
all o € Gal(F,/F,) instead of Gal(F,/F,). Since this GALOIS group is generated by
g, it is enough to check the equality of ¢™ and ¢. This proves the first equivalence.

In general, the equality ¢7(P?) = (¢(P))? is true for an isogeny ¢ : Ey — F;
and all o € Gal(F,/F,) (SILVERMAN |75], CHAPTER 1.3 on page 11). Hence we get
for P € Ej

@™ (mgo(P)) = ¢™(P™) = (¢(P))™ = mea(d(P))

and thus ¢™ o m, o = 7,1 0 ¢. Thus we see immediately that the condition ¢ = ¢™

is equivalent to the wanted result ¢ o m, o = 7,1 0 . O
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Although the formulae of VELU give us a way to compute an isogeny between
two elliptic curves over a field K, it turns out that they are harder to compute
with more elements in the subgroup; thus the next observation which comes from

THEOREM 25.1.2 of GALBRAITH [28] is crucial for computational performance.

PROPOSITION 2.20. Let Ey and E; be elliptic curves defined over a field K and
¢ : Ey — Ey be a separable isogeny. Then there exist separable isogenies ¢y, , d,

of prime degree between suitable elliptic curves such that

¢ = ¢po---0¢polm
where m is the largest integer such that E[m] C ker ¢.

REMARK. 4+ If ¢ is defined over K, the ¢; can be defined over K, too.

4+ When ¢ is not guarantied to be separable, we have to add a FROBENIUS
morphism like in LEMMA 2.2.

The degree of the isogeny ¢ in PROPOSITION 2.20 is the product of the degrees
of the other isogenies. Hence, computing an isogeny with potentially large degree
between two elliptic curves boils down to constructing a chain of isogenies with
smaller and prime degree which are hopefully faster to compute. Still, the question
remains how to find such a chain. We will deal with algorithms for that problem in
SECTION 4.

Although we will see that for small degrees the formulae of VELU [90] give us a
reasonable construction of an isogeny, they need the kernel of the resulting isogeny
as input which usually is not known. When we have a starting elliptic curve Ej
defined over a field K and a prime ¢ different from char K, we can compute the
j-invariants of all image curves of /-isogenies with the modular polynomial from
PROPOSITION 2.14.

There are several ways to determine the subgroup which is the kernel of an
unknown isogeny ¢ : Ey — E; when only the j-invariants of Ey resp. F; are given,
see CHAPTER 25.2 of GALBRAITH 28| for a discussion. The algorithms are quite
technical, so we refrain from a detailed description and concentrate on the following

problem instead.

PROBLEM 4 (Isogeny Chain Problem). Given elliptic curves Ey, Ey over F, with
#Ey(F,) = #E1(F,), compute a chain of isogenies with small prime degrees between

them.
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Such a chain of isogenies corresponds to a path in a certain isogeny graph as we
will see later. In the case of ordinary elliptic curves defined over finite fields those
graphs have a nice structure like a ,yolcano“. There are good-enough algorithms
which are able to find a path between two arbitrary nodes in a component of one of
them.

However, these methods cannot be applied on supersingular elliptic curves due
to a different graph structure. In the course of this thesis we will investigate the
alternatives for computing a chain of isogenies in the supersingular case. For the
case where the elliptic curves in question are defined over the base field F, we will

provide an algorithm for this problem which is faster than the ones known before.

2.1.2 SUPERSINGULAR ELLIPTIC CURVES

As we have seen, the multiplication-by-m-isogenies on an abelian variety A are
strongly related to the m-torsion of A. For elliptic curves the structure of certain
torsion subgroups turns out to have a big influence on the behavior of the elliptic
curves themselves. The possible form of any m-torsion subgroup can be determined
as in LEMMA 2.4. Simplified to the case of elliptic curves it can be stated as in the
following result which can also be found in SILVERMAN |75, Theorem I11.6.4].

LEMMA 2.21. Let E be an elliptic curve over a field K and m € N.

1. If char K =0 or char K = p > 0 and p{ m, then

Elm| = Z/mZ x Z/mZ.

2. If char K = p > 0 and m be a power of p, then

Em|={0} or E[m|=Z/mZ.

Both times the isomorphism means group isomorphism.

The second part of this proposition leads to the important differentiation between
ordinary and supersingular elliptic curves. Note that this works only for elliptic

curves defined over fields of positive characteristic.

DEFINITION. Let E be an elliptic curve over a field K with char K =p > 0. If
has no non-trivial p-torsion, so E[p] = {O}, it is called supersingular and otherwise

ordinary.
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In particular this means that the multiplication-by-p-map has trivial kernel on
supersingular elliptic curves in characteristic p and we have already seen that it is
inseparable. There are several other ways of defining these terms through equivalent
properties, some of them are needed in this work and listed below. The equivalences
are shown in SILVERMAN |75, Theorem V.3.1].

THEOREM 2.22. Let E be an elliptic curve defined over a finite field K with
char K =p >0 and for 1 <r € Z let mpr : B — E®") denote the p"-FROBENIUS

morphism. The following concepts are equivalent.
1. Elp"| ={0O} forallr > 1,
2. Ty is purely inseparable for all v > 1,
3. [p] : E — E is purely inseparable and j(E) € F 2,
4. End F is an order in a quaternion algebra.

For curves of higher genus and arbitrary abelian varieties the definition of super-

singularity is based on the concept of elliptic curves being supersingular.

DEFINITION. Let A be an abelian variety of dimension g defined over F,. A is
called supersingular if there exists a supersingular elliptic curve E defined over qu

such that A is isogenous to E x --- x E over F,,.
—_—

g-times
Let C' be an algebraic curve defined over F,. Then C is called supersingular

when its JACOBIAN variety Jac C' is supersingular.

As mentioned before, there is a connection between the supersingularity of an
abelian variety A and its p-rank since from this definition we can immediately deduce
that a supersingular abelian variety of dimension g defined over the finite field F,
of characteristic p has p-rank zero. For g = 2 this is even an equivalence as seen in
EXERCISE 10.8.6 of GALBRAITH [28].

LEMMA 2.23. Let A be an abelian variety of dimension g = 2 defined over the
finite field F, of characteristic p. Then we have

A is supersingular <= r,(A) =0.

Matching to the elliptic case an abelian variety A of dimension g defined over
the finite field I, of characteristic p is called ordinary if it has p-rank r(A) = g.
In the remainder of this section we will deal with the genus one case. There

are several nice properties of supersingular elliptic curves E defined over a finite
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field IF, of characteristic p. For example the restriction to j-invariants to maximal
F,2 from THEOREM 2.22.3 is quite helpful for handling supersingular elliptic curves
in applications. Another one of them is an implication concerning the number of

[F,-rational points of E.

PROPOSITION 2.24. Let E be an elliptic curve defined over the finite field F, with
char K =p>0andlett:=tg=q+1—#E(F,) € Z be the trace of E as defined

before. Then we have

E is supersingular <= t=0 (mod p)
<~ #E[F,) =1 (mod p).

PROOF. First we observe that since the isogeny [1] — 7, € End E is separable due
to COROLLARY 2.9, we have

#E(F,) = #{P € E|n(P)=P}
= #ker([l] —m,)
= deg([l] — m,).

Therefore we can write ¢t = degm, + 1 — deg([1] — m,) and after a short computation

we obtain
] = m+ 7y

Because the FROBENIUS 7, is always purely inseparable and the set of insepara-
ble endomorphisms on an elliptic curve form an ideal in the endomorphism ring
(SILVERMAN |[75], Corollary II1.5.6), we obtain that [t] is inseparable if and only
if the so-called Verschiebung 7, is inseparable. Using COROLLARY 2.9 again, we
furthermore see that the inseparability of [t] is equivalent to p dividing ¢.

So we achieve

E is supersingular <= T, is purely inseparable
<= [t| = m,+ 7, is purely inseparable

<~ t=0 (mod p).
The second equivalence of the proposition is an obvious conclusion but often the
more useful phrasing for applications. O

For most primes p this proposition can immediately be simplified to the case

q = p where we even get an equality.
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COROLLARY 2.25. If in the situation above we have K =T, for p > 3, we get

E is supersingular <= t=0
<~ #E[F,) =p+1L

PrOOF. The HASSE bound and the condition on p tell us that |t| < 2,/p < p has
to hold, so t = 0 is the only possibility for £ =0 (mod p) to be true. ]

The cases p = 2 and p = 3 are excluded in COROLLARY 2.25 not only because
this kind of proof does not work here but because the statement does not hold for
them. For example there are supersingular elliptic curves over Fy or 3 with only
one Fy-rational resp. Fs-rational point as can be seen in tables in the proof of the

next LEMMA.
LEMMA 2.26. Let E be an elliptic curve over a field K with char K = p > 0.

1. Casep=2:

E is supersingular <= j(E) = 0
<~

2. Case p=3:

E is supersingular

11

PROOF. It is easy to compute a complete list of all elliptic curves over Fy resp. 3
as seen in TABLES 1 and 2. Then we can determine the supersingular ones in it
using PROPOSITION 2.24 and checking for which curves the number of F,-rational
points is 1 modulo p. We see that they all have the requested j-invariants O resp.
1728 (which is also 0 in F3). The second equivalence in each case of course means

isomorphism over [, where the j-invariant classifies the isomorphism class.

WEIERSTRASS Polynomial of E (with a,b € Fy) #E(Fq) | §(F)
Y24+Y — X?—-aX’—-(a+1)X -1 1 0
Y24Y — X3 —a(X2+X)-b 3 0
Y24Y — X3 —aX?—(a+1)X 5 0

Y24+ XY +Y — X3 —aX?—-bX —ab—1 2 1

V24 XY +aY — X?—aX?2—bX —(a+1)(b+1) 4 1

TABLE 1: Fa-Isomorphism Classes of Elliptic Curves over Fq
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WEIERSTRASS Polynomial of E (with a € F3) | #E(Fs3) | j(E)
Y? - X3-2X-2 1 0
Y2 - X3-X-a 4 0
Y? - X3-2X 4 0
Y2 — X3-2X -1 7 0
Y2~ XP— X2 aX —(a+1)2—1 3 1
Y2 - X3-2X?2—aX -2(a+1)?—2 5 1
Y2 — X3-2X?—aX —2(a+1)? 2 2
Y2 o~ X% X% aX - (a+1) 6 2

TABLE 2: Fs-Isomorphism Classes of Elliptic Curves over Fg

In these tables we can see again that the statement of COROLLARY 2.25 would

be wrong for p = 2 and p = 3 since there are supersingular elliptic curves E with
#E(F,) #p+1. [

Therefore the situation is particularly simple in these situations and thus we

restrict to p > 3 in most of the following parts.

APPLICATION OF THE MODULAR POLYNOMIAL. Let Ey and E; be super-
singular elliptic curves defined over a finite field IF, of characteristic p. Recall from
PROPOSITION 2.14 that the ™ modular polynomial ®, € F,[X,Y] has the property

Ey and E; are (-isogenous <= ®,(j(Ey),j(E1)) = 0.

Since we know from THEOREM 2.22 that in characteristic p all j-invariants of su-

persingular elliptic curves lie in F,2, we get the following result.

THEOREM 2.27. Let E be an elliptic curve defined over a finite field F, with char-
acteristic p and ®, € F,[X,Y] the (™ modular polynomial. Then we have

E is supersingular <= &, (j(E),Y) € IF,[Y] splits completely
over Fp2 for every { # p.

PROOF. The proof of this needs theory about isogeny volcanoes and can be found
in SUTHERLAND [84]. O

We have already seen that elliptic curves with j-invariants 0 and 1728 often have
slightly different properties from the other ones, so it is helpful to know whether
such curves are supersingular or not. The following theorem provides a tool which

can subsequently be used for that purpose as seen in COROLLARY 2.29.
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THEOREM 2.28. Let E be an elliptic curve over K := F, with char K = p > 2
and f € K[X] be a cubic polynomial such that E is defined through the polynomial
Y2 — f(X) in WEIERSTRASS form. Further set m = 251 and let c,_1 be the
coefficient of XP~1 in f(X)™. Then we get

E is supersingular <= c¢,—; = 0.

PROOF. We present a short sketch of proof as in THEOREM V.4.1.(a) of SILVER-
MAN [75] and neglect the technical details here.
+ Show #FE(F,) =1 —c,; in F, where ¢, ; is the coefficient of X9~! in f(X)™
with m’ = 41,
4+ Show ¢,y =t in F, where [t] = 7, + 7, so 7, = [t] + [—1]m,.

+ With COROLLARY 2.9 we get the equivalence (%) in

Ce-1=0 EL =0 (mod p)

T4 1s inseparable

<= F is supersingular.

k
4+ Show ¢, .1 =0 <= ¢,-1 = 0 from ¢y = ¢pp_yc,_; and induction on the

positive integer k. O

The complexity of calculating the coefficient c,_; from THEOREM 2.28 is expo-
nential in log p as for example explained in SECTION 2.1 of SUTHERLAND [84]. But

it is helpful to conclude the following statements.

COROLLARY 2.29. Let E be an elliptic curve over K with char K = p > 5. Then

we have

1. in the case j(E) =0, i.e. E =2 V(Y? - X3 —1):
E is supersingular <= p=2 (mod 3).
2. in the case j(E) = 1728, i.e. E = V(Y? - X3 — X):
E is supersingular <= p=3 (mod 4).
Note that it is easy to see that the appearing elliptic curves in this corollary have

the indicated j-invariants O resp. 1728, so they can act as a representative of the

respective isomorphism classes of elliptic curves which are given by their j-invariants.
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PROOF.

1. Set m := Z5=. For the first point we need to check with THEOREM 2.28 applied
on f:= X3 + 1 if the coefficient ¢,_; of XP~! i

FOO™ = (X = 3 ()X

is zero, so — since binomial coefficients are nonzero — whether the X?~!-term

appears in the sum or not. We have p > 3, so p is either 1 or 2 modulo 3.

4+ If p = 1 (mod 3), we see that we have 3k = p — 1 for k = ’%1 €
{0,--+,m}, s0 ¢,.1 = () #0 (mod p) and the curve is not supersingu-
lar.

+ If p=2 (mod 3), obviously 3k # p — 1 is true for all k € {0,--- ,m}, so

¢p—1 = 0 and the curve has to be supersingular.

2. Analogously we examine the coefficient ¢,_; of X?~1 in
f(X)m _ (X3 —|—X Z X2k’+m
k=0

4+ Ifp=1(mod4),itis2k+m =p—1for k := ’%1 € {0,---,m} so
cp_lz( )7—é0 (mod p) and the curve is ordinary.
+ Ifp=3 (mod 4), we get 2k+m # p—1forallk € {0,--- ,m}soc,_1 =0

and the curve is supersingular. O

For an elliptic curve in LEGENDRE form as described below, the result of THE-
OREM 2.28 can be stated in a more directly applicable way which will help us to
determine the number of supersingular elliptic curves in characteristic p. An elliptic
curve defined over a field K is in LEGENDRE form if its WEIERSTRASS equation is

written in the form
Y2 - X(X -1)(X -\

with A € K \ {0,1}. Such a curve is often denoted with E) and for characteristic
p > 2 every elliptic curve is isomorphic to an elliptic curve in LEGENDRE form. This
can be seen in PROPOSITION II1.1.7 of SILVERMAN [75] along with the next related

result.
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LEMMA 2.30. An elliptic curve Ey in LEGENDRE form has j-invariant

25(\% — A+ 1)

]O‘) = ](E)\> = /\2(/\ _ 1)2

and the map

K\{0,1} - K
A= =4\

s surjective and has six preimages for all 7 # 0,1728 where it has two resp. three

preimages.

COROLLARY 2.31. Let E be an elliptic curve defined over K with char K = p > 2,

m = %1 and 0,1 # X\ € K such that E = E) is in LEGENDRE form. Furthermore

consider the polynomaial

Then we get
E\ is supersingular <= H,(\) =0.

PROOF. This fact can be seen for instance in THEOREM V.4.1.(b) of SILVER-
MAN [75]. It is a direct conclusion from THEOREM 2.28 applied on the cubic poly-
nomial f(X) = X(X —1)(X — )\) which apparently has distinct roots in K.

Let ¢,—1 be the coefficient of X?~! in f(X)™ = X™(X — 1)™(X — A\)™. Since
p — 1 = 2m, this is the coefficient of X™ in

v = (S @) (o)
= S RN

S0 ¢, is the sum of all coefficients of terms in this expression with i = j,

N(—=1)™

Cp—1 = Z(

)’
1
1)"H,

m

' (
( (M),
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and thus we get

H,(AN)=0 < ¢.1=0

2.28 . .
&= [, is supersingular

as we wanted to. O

Thus the set of supersingular elliptic curves E) corresponds to the roots A of
the polynomial H, from the corollary. When we want to investigate the number of
supersingular elliptic curves, we need to know if there can be multiple roots, but
THEOREM V.4.1.c) of SILVERMAN |[75] shows the following fact.

PRrROPOSITION 2.32. The polynomial H, has m distinct roots in K.

With this result we are able to determine the number of supersingular elliptic
curves in characteristic p. We call the j-invariants of supersingular elliptic curves

supersingular j-invariants.

THEOREM 2.33. Let p be a prime and Sy2 be the set of all supersingular j-invariants
in Fp2. Then

0 if p=1 (mod 12

)
#Sp2=L£J+ 1 if p=5 (modlZ;

12 1 if p=7 (mod 12
2 if p=11 (mod 12).

\

PROOF. This proof is along the lines of the one from part ¢) of THEOREM V.4.1 of
SILVERMAN [75].

We know that every root A of H), yields the j-invariant of a supersingular elliptic
curve through A ~— j(A) as in LEMMA 2.30. Further there are m = 2+ distinct
roots of H, according to PROPOSITION 2.32. We have seen that if the j-invariant
J = 0 is supersingular, there are two roots of H, which lead to this j whereas for the
case where j = 1728 is supersingular, there are three roots of H, providing this j.
These cases are easy to identify since we can check from COROLLARY 2.29 whether
0 and 1728 are supersingular or not dependent on the value of p (mod 12).

Furthermore we have seen that under this map every j ¢ {0,1728} has six
preimages, so the elliptic curves rising from those roots of H, are isomorphic over
F,. When we denote the set of all roots of H, which yield a j-invariant different

from 0 or 1728 with R, there are # different images of values from R.
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Summed up there are the following results

| p (mod 12) [0 € Sy [ 1728 € 5,2 | #R | #Se |
1 no no . 1%1 _ _1;1;21
> yes no :E —2= 1?7 ﬁ +1
7 no yes p_lT —-3= Tp_n pl—%l—F 1
11 yes yes 5 —2-3=55- | o 42
which conclude the proof. m

We have already seen that for p € {2, 3} there is always exactly one supersingular
j-invariant in F,,, namely j = 0 (mod p). For p > 3 it can be shown that this number
of supersingular j-invariants is in relation to the so-called HURWITZ class number
(see CoOX [16], THEOREM 14.18) although the proof goes beyond the scope of this
work. Note that CoX talks about the actual number of supersingular elliptic curves,
not just their number up to isomorphism, so there is a factor pT_l in his formula
which vanishes when we regard [F,-isomorphism classes. We gain another factor of
1/2 when we regard [F,-isomorphism classes. Thus the number of j-invariants in
F, equals half the HURWITZ class number. This statement can be simplified to the

following result with equations (1.8) and (1.11) from GROSS [36].

THEOREM 2.34. Let p > 3 be a prime and let S, be the set of all supersingular

j-invariants in F,. Then

sh(—4p) if p=1 (mod 4)
#5,=dh(—p)  if p=7 (mods)
2h(—p) if p=3 (mod 8)

where for any integer d we write h(d) for the class number of the order with dis-

criminant d.

Due to PROPOSITION 2 of GALBRAITH [27] we can make the estimation

1
h(d) < ;\/|dIC“Og|dIC|

where di is the fundamental discriminant of I = @(\/E), and in our cases we have
dic € {—p,—4p}. This means that the number of supersingular j-invariants in I,
can be estimated with O(,/plogp). This is a lot smaller than the overall number of
supersingular j-invariants in [Fj2, which we have seen to be O(p). This consideration
will turn out to be a starting point of our problem, since we will regard the graphs

of those j-invariants as nodes and hope to find shorter paths in the smaller graph.

Christina DELFS 35



2 THEORETICAL FOUNDATIONS

2.2 ENDOMORPHISM RINGS OF ABELIAN VARIETIES

In this section we want to investigate the structure of endomorphism rings of abelian
varieties in general and then concentrate on the special properties of the endomor-
phism rings of ordinary and supersingular elliptic curves respectively. For that we
deal with the full endomorphism ring as well as with the ring of endomorphisms
restricted to the variety’s field of definition. The concepts turn out to have a strong

relation to the FROBENIUS morphism on the variety.

2.2.1 GENERAL CONCEPTS

Let A be an abelian variety of dimension g defined over a finite field K = I, with a
prime power q. In this section we want to investigate the endomorphism ring End A
which is a free Z-module of rank at most 4¢g* as stated in PROPOSITION 2.6. Since
for any m € Z the multiplication-by-m-map is an element of End A and defined
over K, we can embed Z into Endx A. Further, the FROBENIUS 7, and the Ver-
schiebung p, are also elements of Endyx A (see THEOREM 3.5 of WATERHOUSE [92]
or REMARK 18.6 of OORT [65]), so we have

Zlry, ps € Endg A.

Let £ be an elliptic curve defined over F, and ¢ € Z be the trace of the FROBENIUS
7. We have already seen that we get p, = 7, here and computed the identity
[t] = m,+7,. Thus we obtain 7, = [t| — 7, € Z[r,] and have Z[r,, p,| = Z[n,| in this

situation. Therefore we are able to work with the more simple subring
Zr,) € Endg A

here. For abelian varieties of dimension bigger than one, this is not true in general,

so there we have the more complicated setting
Zr,) € Zng p, < Endg A.

On the other hand when we take End A and tensor it with Q, we get the algebra
A = Endg A ®7 Q. As an order in A we know that Endg A is contained in
a maximal order of A. We will investigate this algebra A and some important
properties in this section. For that we first need to introduce some notation and
background theory about quaternion algebras. We will see that the endomorphism

rings play an important role for structures and even the sets of outgoing isogenies of
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abelian varieties. For more extensive discussions of this background theory we refer
to SILVERMAN [75], SECTION 5 of KOHEL [45] or REINIER [67].

Let F be a field, A be a simple ring with operations 4+ and % and ¢ : ' — A
be a homomorphism of rings such that F' is isomorphic to the center of A under
¢. Then A can be regarded as a vector space over F' with scalar multiplication

a-a:=p(a)*aforany a € F and a € A.

DEFINITION. When in the situation above the dimension [A : F] := dimg A of
this vector space is finite, A is a central simple algebra over F and a central simple

algebra of dimension four over F' is called quaternion algebra over F.

We will identify F' with its image under ¢ and F' will either be Q or one of its
completions @, for some prime p or infinity where we set Q := R and for p prime
Q, denotes the usual p-adic numbers. In this cases, R will be the notation for the
ring Z or Z,, respectively. Recall that a subring O of A which is a full R-lattice is
called R-order of A and satisfies O @ F' = A. For convenience we will often drop
the emphasis of the ring and only use the term order if no confusion seems possible.

A division algebra over F'is an associative algebra A over F' such that all elements
a € A are invertible. For n € N the matriz algebra M, (F) is the algebra of n x n
matrices with coefficients in F'. Actually those two concepts are the only ones that

occur for quaternion algebras.

PROPOSITION 2.35. Let F' be a field and A a quaternion algebra over F. Then

there are the two possibilities

+ A is a division algebra over F or
+ A= My(F).

PROOF. From WEDDERBURN’s Structure Theorem (REINIER [67], THEOREM 7.4)
we know that every central simple algebra A is isomorphic to M, (S) for some n € N
where S is a division ring with F C S, [S: F] < oo and that [A: F] = n?[S : F].

In our case A is a quaternion algebra over F, so we have [A : F| = 4 and the
integer n must be 1 or 2.

Case n = 1: This implies A = M;(S) = S and since S is a division ring with
F C S, we can regard S as a F-division algebra.

Case n = 2: Here we get [S : F] = 1 and thus we have S = F, which leads to
A = M,y(F). O

We want to introduce definite quaternion algebras and for their definition we
need the objects A, := A ®q Q, for primes p or infinity. Those are quaternion
algebras themselves as seen in REINIER [67] COROLLARY 7.8.
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PROPOSITION 2.36. Let A be a quaternion algebra over Q. Then we have that A,

s a quaternion algebra over Q.

This is needed for the following definition since we now know that A, is either a

division algebra or isomorphic to My(Q,) due to PROPOSITION 2.35.

DEFINITION. Let A be a quaternion algebra over Q and p be a prime or infinity.
A is called ramified at p when A, is a division algebra over QQ, and split at p when
we have A, = M,(Q,).

If A ramifies at infinity, it is called definite quaternion algebra over Q, else
indefinite.

The definite quaternion algebra over Q which is ramified exactly at a prime p

and at infinity is denoted with D,,.

REMARK. + A definite quaternion algebra over Q is of the form

A = Q+aQ+5Q+ aBQ
with a8 :=a* = —B* o and o2, % € Q.

4 The ring multiplication * in A is obviously different from the commutative

multiplication of o and 3 as elements in C.

+ (1,,5,ap) is a basis of A as Q-vector space and we can embed Q(«) and
Q(p) into \A.

After introducing the basic concepts of quaternion algebras, we return to the
endomorphism ring Endg A of an abelian variety A defined over a finite field K
which contains the isogenies from A to itself which are defined over K. THEOREM 2
of TATE [86] gives a strong statement about the algebra A = Endx A ®7 Q as
seen below. Especially the following adaption on the case of an elliptic curve gives
us useful facts about their structure and a connection between the characteristic

polynomial of the FROBENIUS and the algebra containing the endomorphism ring.

THEOREM 2.37. Let A be an abelian variety of dimension g defined over the finite
field K = F, of characteristic p > 0. Then the center of A is Q(m,) and we have

the relation

29 < [4:Q < (29)
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The extreme cases of this inequality yield the following situation

X, 18 squarefree,
A = Q(m,),

A is commutative,

117

JaeC: xr, = (X —a),
Q(ﬂ'q) :Q7
AgMg(Dp)7

reee

3 supersingular elliptic curve E with

Endg E = End E and an isogeny ¢ : A — EY

where D, denotes the quaternion algebra which is ramified at p and infinity as defined

before. Finally we have

3 simple abelian variety B and an isogeny ¢ : A — B" for some u € N
<= Jh € Z[X] irreducible over Q and v € N such thal X, = h"

= A is a central simple algebra over Q(m,).

When we apply this theorem on the situation of an elliptic curve, we get the

following results as consequences.

COROLLARY 2.38. Let E be an elliptic curve defined over the finite field K = FF,
of characteristic p and let t € 7Z be the trace of the FROBENIUS endomorphism
g1 £ — E. Then the algebra A := Endg E ®7 Q is a central simple algebra with
center Q(m,). We have

dimg A =2 <= X?—tX +q is squarefree
= A=Q(m)
<~ A is commutative,
dimgA=4 <= FacC: X?*—tX +q¢= (X —a)’
= Q(m) =0Q
— A=D,
<~

E is supersingular with Endg £ = End E.
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We can make a more refined statement for these restricted endomorphism rings
Endr, E as in RUCK [72] or CHAPTER 4 of WATERHOUSE [92)].

THEOREM 2.39. Let p be a prime, ¢ = p" and E be an elliptic curve defined over
F,. Lett=q+1—#E(F,) be the trace of q-th FROBENIUS m,. Then one of the
following properties holds:

a) ged(t, p) = 1,

b) n even and t = £2,/q,

c1) n even, p# 1 (mod 3) and t = +,/q,

c2) n even, pZ 1 (mod 4) and t =0,

cs) noodd, p € {2,3} and t = £p"+1)/2,

c4) n odd and t = 0.
Furthermore we have in the cases above

a) E is ordinary, A = Q(m,) = Q(\/t? — 4q) is an imaginary quadratic field over

Q and Endg, E is isomorphic to an order in A,

b) E is supersingular, A is a quaternion algebra over Q, Q(my) = Q and Endy, E

18 isomorphic to a mazimal order in A,

¢;) E is supersingular, A = Q(m,) is an imaginary quadratic field over Q and

Endg, I is isomorphic to an order in A with conductor prime to p.

This structure of the restricted endomorphism ring — especially the last case
where a supersingular elliptic curve E will have Endp, £/ as an order in an imag-
inary quadratic field — will be central for our considerations and the basis for our
algorithms.

On the other hand we are interested in quaternion algebras since for certain
elliptic curves the full endomorphism ring is contained in one of them. This is due
to the next theorem. Remember that an anti-involution on a Z-module M is a

Z-linear and self-inverse map ~: M — M satisfying c/uB = Ba for any «, f € M.

THEOREM 2.40. Let M be an integral domain with char M = 0, tk; M < 4 as
Z-module and an anti-involution ~: M — M with

ad €Zsy and aad=0 <= a=0

for all o € M. Then we either get M =7 or M 1is an order in either an imaginary

quadratic extension of Q or in a definite quaternion algebra over Q.
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For a detailed analysis of the proof of this theorem see THEOREM II1.9.3 of
SILVERMAN [75]. Since the endomorphism ring of an elliptic curve £ — with the
anti-involution = : End F — End F sending an endomorphism to its dual — fulfills
all of the conditions of such a module M, a direct conclusion of THEOREM 2.40

applied on endomorphism rings is the following statement.

COROLLARY 2.41. Let E be an elliptic curve defined over the field K. Then we
either have End E = 7Z or End E is an order in either an imaginary quadratic field

A or in a definite quaternion algebra A over Q.

EXERCISE I11.3.18 of SILVERMAN [75]| shows a way to see that if for an elliptic
curve F over a field K the endomorphism ring End F is an order in a definite
quaternion algebra A, then K is a field of characteristic p > 0 and A ramifies
exactly at p and oo. Since two definite quaternion algebras are isomorphic if and
only if they ramify at the same places, A is uniquely determined up to isomorphism.
Further the exercise provides that End F is a maximal order in A.

Therefore we can write A as Q + aQ + fQ + afQ with aff = —Ba, a? = —p
and 32 = —q with a prime ¢ such that (51) = —1 and thus we have 3 ¢ Q(a).

REMARK. Depending on the characteristic of the field K some cases can be ex-
cluded as in REMARK I11.9.4.1 of SILVERMAN |[75]:

4+ char K =0 = End F®7;Q is commutative, thus it is no quaternion algebra,
4+ char K=p>0 = Z C EndE.

Together with THEOREM 2.22 this implies that an elliptic curve £ over a finite
field F, is

ordinary <= End F is an order in an imaginary quadratic field,

supersingular <= End F is an order in a quaternion algebra.

Now we will regard endomorphism rings of ordinary resp. supersingular elliptic
curves consecutively and particularly examine how endomorphism rings of isogenous
elliptic curves are related to each other. In the ordinary case there are quite helpful
relations which are the foundation of the known algorithms for computing isogenies
between ordinary elliptic curves. For supersingular elliptic curves the structure is
different, which is the reason those approaches do not work there. We will see how

to fix that in a later section.
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2.2.2 ORDINARY ELLIPTIC CURVES

Let E be an ordinary elliptic curve defined over F, with trace t. Then due to
THEOREM 2.39 End F is isomorphic to an order O in the imaginary quadratic field
K = Q(v/d) where d = t* — 4q is a negative integer. It is standard number theory

that when d; is the square-free part of d, the fundamental discriminant of IC is

d;, ifds=1 (mod 4)
4d, if dg=2,3 (mod 4),

de =

the mazimal order of IC is

Ox =7 |:dK+2m:|

and every other order of IC is of the form O=7+ cOx where ¢ := [O : (5] is the
conductor of O and determines the order. We often denote such an order with 0.
and its discriminant dp = c?dx with d., or when the order is isomorphic to End E
with O resp. dg.

We usually fix an isomorphism [-] : O — End E and identify the rings O and
End £ with each other. Since for every m € Z the multiplication-by-m-map [m]
and also the g-th FROBENIUS 7, are elements of End £ when E is defined over [,
we can in this case embed Z[r,| into End E and interpret it also as a subring of O.

Thus we get the following statement.

PROPOSITION 2.42. Let E be an ordinary elliptic curve over Fy, and m, the q-th
FROBENIUS morphism. Let O be an order in K = Q(v/d) with O = End E. Then

we have
Z[ﬂ'q] g O Q OIC-

Since on the other hand Z[r,] contained in End F means that we have £ = E,
this provides that the WEIERSTRASS polynomial of £ is defined over F, and thus

per definition F is also F -rational and we can state the next result.

LEMMA 2.43. Let E be an ordinary elliptic curve defined over a finite field of
characteristic p. Then E is defined over F, if and only if we have Z[r,] C End E.

It is slightly surprising that we can also make a statement about the relation of
endomorphism rings of different ordinary elliptic curves which are isogenous to each
other. This is a fundamental result from PROPOSITION 21 of KOHEL [45], which

actually has a quite simple proof despite its importance for our further work.
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PROPOSITION 2.44. Let Ey and E; be ordinary elliptic curves defined over the
finite field F, of characteristic p and ¢ : Ey — Ey be an isogeny of prime degree
C# p. Let Oy and Oy be orders in the imaginary quadratic field IKC with O; = End E;
for i € {0,1}. Then we have

Oi g 0171‘ and [0171' . Ol] ‘ 14

fori=0 ori=1 where [O1_; : O;] denotes the ring indet.

PROOF. Let ¢ : Ey — E1, Oy and O be defined as in the proposition. First we can

show in a straightforward way that there are inclusions
Z+0P0y C Z+¢0:16 C O

and that the index [Oy : Z + (?O,) is (*. Since Z + $O, ¢ is isomorphic to Z + (O,

we get the following relation of rings

where x,y, z, ¢;, r; € N are the unknown ring indices. In the case when Oy = Z+¢,Ox
and O = Z + ¢;O are contained in each other, x is the index of interest. We see
in the diagram that we have cory = ¢;r; and because also y - z = 2 has to hold, we

obtain the following three possibilities:

y = 1: This means Oy = Z + ¢O; and since the conductor determines an order in K
uniquely, we have Oy = Z + (O; C O; and z = [O; : Oy] = ¢.

y = {: Here we get 1o = 7 from the equation [Oy : Z[r,]| = (*r¢ = yfr1 and thus also
co = ¢ which yields Oy = O; = Z + ¢pZ and x = [0 : Op] =[Oy : O4] = 1.

y = ¢2: This tells us ry = ¢ and thus ¢; = cof which finally provides the equality
01:Z+600g003nd$:[00101]:g. ]

We have concluded from PROPOSITION 2.20 that instead of computing an isogeny

of possibly large degree it is better to construct a chain of isogenies with small
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prime degree. Therefore we examine the relation of endomorphism rings of elliptic
curves which are /-isogenous with prime degree now. Let Oy and O; be orders in K
isomorphic to End Ejy resp. End E;. According to the last two propositions we are

in one of the following situations if we settle on prime degrees ¢ # p.

Ok Ox Ok
g g |
01 €0 OO O() = 01
| e g |
(To (9|1 % Z[ﬂ-q]
Z[r,] Z|r]

In the first case we call the isogeny ¢ : Fy — E; ascending or going up, in the
second one ¢ is descending or going down and in the last case it is horizontal. When
¢ is not horizontal, we see that ¢ has to divide ¢ = [Ox : Z[m,]].

Even more, if ¢ is ascending resp. descending, ¢ divides ¢y = [Ox : O] resp.
= =100 : Zlmg)]. Thus, if £{ co, it is no longer possible to go up and Ej is called
on the surface at ¢. Analogous, Ey is on the floor at ¢ when /¢ { é and it is not
possible to go further down. Note that this is no global position since it can happen
that an elliptic curve is on the surface or on the floor at some ¢ without having
endomorphism ring O or Z[m,|.

We will see in SECTION 3 how to determine the number of outgoing isogenies of
each type on each level. The resulting structure leads us to so-called #sogeny graphs
which provide a good approach of finding isogeny chains between given isogenous

ordinary elliptic curves.

2.2.3 SUPERSINGULAR ELLIPTIC CURVES

If we take a supersingular elliptic curve E over F, with p > 3, we know from THEO-
REM 2.22 that the full endomorphism ring of E is an order in a quaternion algebra.
But when we regard the endomorphism ring of E restricted to endomorphisms de-
fined over IFp,, we end up in case c;) of THEOREM 2.39. Thus we obtain that Endg, £
is an order in an imaginary quadratic field IC and its conductor is prime to p. As
this is analogous to the case of full endomorphism rings of ordinary elliptic curves,

we can apply the results we constructed there to this situation.
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Since we know that supersingular elliptic curves have trace t = 0, we get d = —4p
and K = Q(y/—p) = Q(m,) with fundamental discriminant

—p ifp=3 (mod4)
—4p ifp=1 (mod4).

dx =

In the first case the maximal order of K is O = Z[H\Q/Tp] and in the other one

we have Ok = Z[/—p]. Additionally, we get Z[m,] = Z[\/—Dp], too.
It is useful to see that the proof of PROPOSITION 2.42 needs nothing of the fact

that the given elliptic curves are ordinary except for the structure of the orders
in I which are isomorphic to the endomorphism rings. Therefore we can state an
analogous result for supersingular elliptic curves defined over I, and their restricted

endomorphism rings and get
7 [7Tp] g O g O;C

when we have Endyp, £ = O.

Asfor p=1 (mod 4) the orders including and included in O coincide, there is no
other choice for it but Z[/—p]. This means that in this case all supersingular elliptic
curves have the same F,-rational endomorphism ring with discriminant dx = —4p.

For p = 3 (mod 4) the conductor [Ox : Z[/—p]] is ¢ = 2, so O can be either
the maximal order Z[%jp] with discriminant dx = —p or the order Z[\/—p| with
discriminant dy = —4p.

Further the definitions of ascending, descending and horizontal isogenies can be
stated analogously to the ordinary situation, too. Thus in all appearing cases we
have only one or at most two possibilities for O and for the case p = 1 (mod 4)
there can be only horizontal isogenies. We will see in SECTION 4.2.2 that this makes

certain supersingular isogeny graphs even more assessable than most ordinary ones.
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2.3 GRAPH THEORY

We will consider so-called isogeny graphs later in this work, so we want to introduce
the basic concepts of graph theory and special properties of certain types of graphs
that we will need for our results. We mainly use the book of DIESTEL [20] and
chapter 1.1 of DAVIDOFF, SARNAK, VALETTE [17] for the introduction of concepts,
section 25.3.2 of GALBRAITH [28] and MURTY [63] for the definition of expander

graphs. Many additional information can be found there.

2.3.1 BAsic CONCEPTS

A graph G consists of a set Vi # 0 of vertices and a possibly empty set Eg C Vg2
of edges and is often written as G = (Vg, Eg). In a graphical interpretation we can
draw the nodes as labeled dots. A directed edge e € Eg is of the form e = (v, v2)
for vy, vy € Vg which graphically means a connection in form of an arrow from v; to
vy. The edge from vy to v; which is the arrow of e run through in the other direction
is sometimes labeled e~

Often graphs are undirected, that means the edges (vq,v2) and (vq,v;) are con-
sidered the same. It is possible to have more than one edge between two given
nodes, in that case G is often called a multigraph. We will not use this term and
understand every graph as a potential multigraph. Note that for an edge (vy,v9) in
a multigraph not every edge (v, v;) equals e~ 1.

When there is an edge from v; to vy, the vertex vy is called a neighbor of v, and
the edge (vq,v2) an outgoing edge from vy. If every vertex in Vg has exactly k£ € N
outgoing edges, G is called a k-regular graph.

If the graph G has the nodes vy, --- ,v,, we define the adjacency matriz of G as
A(G) = (ai;)

for a k-regular graph we have Z;;l a;j = k for every possible 7. For an undirected

i j=1.. » Where a;; denotes the number of edges from v; to v;. Obviously

graph this matrix is symmetric and we also have " | a;; = k for every j.

For m < n and pairwise distinct v; € Vi we define a path in G as an ordered set

[Vo, U1, "+ , Um_1, U] such that P = (Vp, Ep) with
Vp = {U(J,Ul’ T 7vmflavm} and
Ep = {(Ui,vi+1> ’ 0 S 1 S m — 1}

is a subgraph of G. We also say that P is a path from vy to v,, and has length
m € N. The graph G is connected when between any two vertices of it there exists

a path in G. For vy,v9 € Vg we define the distance between vy and vy in G as the
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length of the shortest possible path from v; to vo. The diameter of G is the maximal
distance of two vertices in G. A circle of length m is a path of length m in G which
has the same start and end vertex vy = v,,. A graph without circles is called a tree.

Let now G = (Vg, Eg) be an undirected, k-regular graph with vertex set Vg =
{v1,- -+ ,v,}. The adjacency matrix A := A(G) of G is real and symmetric, so due

to the spectral theorem it has n real eigenvalues
An—1 <o <A< Ao

We say that A\ is an eigenvalue of G if there is a function f : Vi — C such that \ is

an eigenvalue of A for some eigenvector

Tn f(vn)

The next result concerning the eigenvalues is essentially PROPOSITION 1.1.2 of
DAVIDOFF, SARNAK and VALETTE [17].

PROPOSITION 2.45. With the notation from above we deduce
1. [N <k forallie{l,--- n}
2. o=k
3. M < A <= G is connected

PROOF. 1. Let A € {\g, -+, \,} be an eigenvalue of A with corresponding eigen-
vector x. Let z; be the entry of z with |z;| = max{|xy|,---|z,|}. We can
assume without loss of generality that we have x; > 0; if not we replace z with

the negated vector —uz.

From the eigenequation Az = Az we get

n

E al-j:cj

Jj=1

AMzi = [Azi] =

n

< D aylel

=1

n
< E a;jr; = ku;
j=1

and the statement follows.
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2. Since G is k-regular, the sum of every row of A is k. Therefore

()-0)

and thus £ is an eigenvalue of A. Since all eigenvalues are less or equal to k,

Ao as the largest one has to attain this value.
3. We show both implications separately.

“=" Suppose that G is not connected. Show that there exists an eigenvector
x for the eigenvalue k = \q which is not a multiple of the vector (1 --- 1)T.
Since G is not connected, there must be a subset U C Vi such that no
edges exist between any vertices u € U and v € Vi \ U. Without loss
of generality we can set U := {vy, -+, v} with 0 < r < n. Then the

adjacency matrix is of the form

. <A(U) 0 )
0  A(Ve\U)

T
and the vector z := (1 e 10 - 0) with n—r > 0 zero entries is

an eigenvector for the eigenvalue k of A. and not a multiple of (1 --- 1)T.

“«<=" Let G be connected and x be an eigenvector of A to the eigenvalue £k,

so we have Ar = kx and thus for every i € {1,--- ,n}

n
E Ayl = k’l’l
j=1

We have to show that x; = --- = z,,. As above we choose z; such that
|z;| = max{|z1]|,---|z,|}. Then from the last equation we have a convex
combination

since the non-negative integers a;; summed up yield k. Therefore if we
have a;; # 0 — so when v; and v; are neighbors — we obtain z; = z;.

If now v; is a neighbor of v;, we have |z;| = |z;| = max{|xy|,- - |z,|} and
thus the same argument holds for all neighbors of x;, too. Since G is
connected, we can reach every vertex in this way and get z; = z; for all

possible values of j. O
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DEFINITION. Let G = (Vg, E¢) be a graph.

4+ A walk in G is a path in G where the condition is dropped that the v; must be
pairwise distinct. A path is a self-avoiding walk. The process of going to the
vertex v;,q from v; via the edge e; we call a step. A walk is non-backtracking if
it is forbidden to reverse the last step along the same edge, that is, sequences
like vi4o = v; and e;41 = €, L are not allowed. This condition is not as strong

as being a path, though.

+ A random walk in G is a walk in G where in each step the edge (v;,v;41)
and with it the vertex v;,; is chosen uniformly at random from the possible

outgoing edges of v;.

A bi-directional search in G starts with two one-elemental subgraphs Xo = {vo}
and X; = {v;} of G and increases the sets X; using some declared method (i.e. by
adding the edge and vertex reached by the next step of a random walk starting at
each of the v;; or by adding all outgoing edges of X; and their image vertices as in
a breadth-first search). The bi-directional search ends when we have Xy N X; # ()
and any vertex occurring in the intersection is called a collision.

Under the assumption that during such a bi-directional search the elements in
both X; are chosen uniformly at random, we can estimate the size of the subgraphs

until a collision occurs with an adapted version of the birthday attack.

PROPOSITION 2.46 (BI-DIRECTIONAL BIRTHDAY ATTACK). Let G = (Vg, Eg) be
a graph with |Vg| = n. Then the expected number of elements drawn from Vg during

a bi-directional search until a collision occurs is roughly «/mn.

REMARK. The proof we describe here follows the lines of the proof for THE-
OREM 14.1.1 of GALBRAITH |[28|, although there the author describes the usual
birthday attack where elements are sampled randomly from a n-element set. The

modification of differentiation between two subsets Xy and X; of Vs leads to the
expected number /7 instead of \/7n/2 as in the normal case.

PrROOF. We define a random variable X which describes the number of elements of
Vi which are selected until a collision occurs. Assume that m elements are already
drawn from Vg, so roughly m/2 of them lie in Xy and X; each. The probability

that the next element (which is added to the side X;) already appears on the other
m/2

n "

side in X;_; is thus
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Thus we can compute the expected value of X as

E(X) —

Zm-Pr(X:m)

= im-(Pr(X>m—1)—Pr(X>m))

m=1
0o

= Z((m+1)-Pr(X>m)—m-Pr(X>m))

m=0
= > Pr(X>m)
m=0
1) >
< 1+ ) exp(— )
m=1
2
<

o0

—~
=

2+/exp(—i—2)dx
0

2+ 2yn /)2

= 2+2\/ﬁ/exp(—u2)du

Here the steps denoted with (1), (2) and (3) on the equal resp. less-than-or-equal

signs arise due to the following considerations.

(1) With the estimate 1 — 2 < exp(—2x) for 0 < z € R we get

Pr(X > m)

IN

IN

m—1
[Ta-5)
i=0

m—1

exp(—3,)

=0

m—1
exp(— D 3)

=0
exp(—% (m;l)m>

m—1)2
exp(— {1l

50
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(2) The function exp(—i—i) is monotonically decreasing, so

- m—12 m2
> ep(-2) = 3 exp(-1)
m=1

IN
—
+
(e
\3
e
>
=8
ch
=
&

explains the inequality between the sum and the integral here.
(3) A change of variables with u := 3.7 vields this step. O

We will regard various bi-directional searches later, so this proposition helps

determining the complexity of such algorithms.

2.3.2 EXPANDER GRAPHS

Our isogeny graphs later will turn out to have the useful property of being expander

graphs which we describe in this part of the work.

DEFINITION. Let G = (Vi, E¢) be a k-regular connected graph with |V| =n € N

and nontrivial eigenvalues \; > --- > ), for m < n. We define
AG) = max|\|.

G is called a RAMANUJAN graph if we have A\(G) < 2vk — 1.
Let U C Vg be a subset of vertices. The vertex boundary 0,(U) of U in Vg is

the set of vertices which have distance one to U and is defined as
0,(U) = {veVg\U]|3ueUsuch that (u,v) € Eg}.

Similar the edge boundary 0.(U) of U in Vg is the set of edges which lead out of U,

namely

2.(U) = {(u,v) € Eg|lueUandveVg\U}.
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Let ¢ > 0 be a real number. If for all subsets U C Vi with |U| < |Vg|/2 we have

the relation
10,(U)| > ¢+ U],
G is called a c-expander graph and c an expander constant of G.

This estimation can later be used in a complexity analysis concerning an ex-
pander graph; further expander graphs have the nice “mixing property” that random
walks on them reach the uniform distribution quickly (page 533 of GALBRAITH [2§]
or SECTION 2.3 of CHARLES-GOREN-LAUTER [10]), that means that after a certain
number of steps the end vertex v, of a random walk in a graph with N vertices
behaves like a vertex that is chosen uniformly at random.

Simple counting considerations show the following coherence.

LEMMA 2.47. Let U be a subset of V. Then we obtain the relations

0,(U)] < 10.(U)] < k0,(U)]

between the cardinalities of the vertex- and edge-boundaries.

As we will show at the end of this section, this connection and the next propo-

sition can be used to determine an expander constant for certain types of graphs.

PROPOSITION 2.48. Let G = (Vg, Eg) be a k-regular graph and U C Vg be a
subset of vertices with |U| < |V|/2. Then we get

>k—)\1

0.0 = 5

Ul

where A\ is the mazimal eigenvalue as before.

PROOF. MURTY shows on page 13 of [63] that the RAYLEIGH-RITZ-Theorem yields

(AL
k—X = min ———=
S (f, )

where
4+ f is a real-valued function on V5 and f; is a constant function on Vg,
4 the inner product (-,-) on the space of real-valued functions of Vi is defined

as (f,g9) == > f(v)g(v),

veVg
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4+ for the adjacency matrix A we have (Af)(v) =

the sum over all outgoing edges (v,u) € Eg from Vg and

4+ A :=kId, —A has eigenvalues k — \;.

Now we choose the real-valued function f to be

Ve \U| itvel
—|U]| ifvogU

which satisfies the condition (f, fo) = 0, so the inequation

(Af, f)
(£, 1)

E—XN <

holds for this f. Counting arguments yield

(Af, f)

(f. 1)

and we conclude

EY f)?=3 > fw)f)

veVg veVa (vu)€Eg
D fwr= D fwf)
veVa (vu)EEG (v,u)EEg

5> SRS = Y fu)f(v)
: (

vu)EEG

(Ve \Ul+|U])*

(vyu)eEq

Val* - 10:(U)],

> fw)

veEVG

Ve \U|-|Val- U]

Va\U
a0 = (k- auerd
Vel
Val/2
> (k= M\)|U
- ( 1>| ’ |VG|
- 2

Z(U,U)EEG f (U) where we take
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since |V \ U| > |Vg|/2 follows from |U| < |Vl /2. O

COROLLARY 2.49. With PROPOSITION 2.48 and LEMMA 2.47 we get

0.(U
) = )
k— X\

>

k—X\1

so G is a c-expander graph with ¢ = if we have ¢ > 0.

2k

Since we know A; < k, the condition from COROLLARY 2.49 is always true.
Especially this means that every RAMANUJAN graph is an expander graph since
there \; < M(G) < 2k — 1 yields the constant ¢ as above. We will see that for
example supersingular isogeny graphs are RAMANUJAN graphs and thus we can use

these results in our work with them.
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NUMBER FIELDS

In this chapter we consider elliptic curves which are defined over a number field K
and have special properties. For those curves we can develop a helpful set of results
in SECTION 3.2 which describe their behavior and provide a nice picture of how the
curves and their endomorphism rings are related to each other. SECTION 3.3 shows
how the occurring structures can be transferred to elliptic curves defined over finite
fields I, at least when these reduced curves are ordinary. Further we show how to
adapt this theory for curves whose reduction is supersingular, a result which is of

fundamental value for our later work on supersingular isogeny graphs.

3.1 COMPLEX MULTIPLICATION

In this part we sketch some basic theory we will need throughout this section. Let
E be an elliptic curve defined over a number field K C C. If we have that

4+ End F is a free Z-module of rank two,
4 there is an embedding ¢ : End £ — K for an imaginary quadratic field /C and

4+ the image «(End E') =: O is an order in K,

E is said to have complex multiplication with O.

Thus we can define an isomorphism [-] : O — End E. Note that hereby we can
write any endomorphism of E as [a] with & € O. For a = m € Z this is the same
notation as for the usual multiplication-by-m-map [m].

Two lattices Ay and A; in C are called homothetic if there exists a complex
number a with aAg = A;. It is a well-known fact (SILVERMAN |75, CHAPTER VI]|)

that there is a bijection

{E elliptic curve defined over (C}/g «  {Alattice in C}/homothety

in the sense that every such elliptic curve E is given by the WEIERSTRASS poly-
nomial Y2 — 4X3 + g5(A)X + g3(A) associated to®> A in C and that the set E(C)
is isomorphic to the complex torus C/A as a group. The group law of the elliptic

curve corresponds to the usual addition modulo a lattice on the torus.

3The modular functions g» and g3 originate from the theory of elliptic functions and the existence
of an appropriate lattice A is due to the Uniformization Theorem a lattice, see SILVERMAN [75,
THEOREM VIL5.1].
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Two elliptic curves Ey and E; are isomorphic if and only if the associated lattices
Ay and A; are homothetic. Since we only regard lattices up to homothety, we can
always assume such a lattice A to be of the form A = (1, \) with some X from the

upper half plane H. Further another bijection occurs as
{¢: Ey — Eyisogeny} <+— {aeC|aAy C A}

for given elliptic curves Ey and E; where A; := (1, \;) C C with \; € H denotes the
lattice such that we have E;(C) = C/A;. It can be shown that the left hand side is
also a ring and actually the bijection holds in form of ring isomorphisms.

Let E be an elliptic curve defined over K and A be the associated lattice to
E. Again we write A = (1,\) with some A € C having positive imaginary part.
HUSEMOLLER |38, PROPOSITION 12.4.7] shows that £ has complex multiplication
if and only if \ fulfills a quadratic equation (which can also be seen in the consider-

ations below) and that in this case we have
K =QW\) and EndE = O C A.

From now on we consider an elliptic curve E over K with complex multiplication
by O and corresponding lattice A = (1, A). Due to the correspondence of isogenies

to certain complex numbers as seen above we get
EndE = {aeClaACA}
with isomorphism of rings.
So the representation of A and the condition in the endomorphism ring leads to

the existence of some a, b, ¢, d € Z which fulfill

a = a-+b)
al = c+d)

for any o € End E such that in the end we get the quadratic equation
W+ (a—d))—c = 0.
Canceling out possible common divisors, A satisfies a quadratic equation

AN+ BAX+C = 0
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with ged(A4, B,C) = 1 and discriminant D = B?* — 4AC. THEOREM 8.1 from

LANG [48] then tells us that under this circumstances we have
End EF = <17 %ﬁ> =: O.

Note that we have D = dp. Thus we can determine the endomorphism ring of an
elliptic curve E over a number field through calculating its discriminant when we
know the lattice (1, \) by finding coprime A, B,C' € Z with A\* + BA+ C = 0 and
computing D = B? —4AC. When we are able to determine the discriminant of the
order O isomorphic to End E in some other way, we also have already found the

order . This will be used in the next section.
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3.2 THE CHARACTERISTIC ZERO PICTURE

In this chapter we are interested in the relation of the endomorphism rings of isoge-
nous elliptic curves which are defined over a number field K C C. We will present
an arrangement of those curves in a level structure and investigate how these levels
are connected via isogenies of a given prime degree.

For this, the theory of complex multiplication as briefly described above can be
used to characterize the number and type of outgoing isogenies for each elliptic curve
defined over a number field depending on its endomorphism ring. We will analyze
this behavior now.

Before we begin with the main part, we state two propositions which hold for
elliptic curves over number fields with complex multiplication as well as for some
defined over a finite field. The only requirement is the form of the endomorphism

ring as an order in an imaginary quadratic field.

PROPOSITION 3.1. Let Ey and E; be elliptic curves defined over a field K such that
their endomorphism rings are isomorphic to orders Oy resp. Oy in an imaginary
quadratic field IC and let ¢ : Ey — FE1 be an isogeny of prime degree £. Then we

have
Oi Q Ol*i and [01,i . Oz] ’ 14

fori=0o0ri=1.

Note that we already stated this result for ordinary elliptic curves as PROPOSI-
TION 2.44 which is attributed to KOHEL [45]. The proof used only the structure of
the endomorphism ring, so it works for elliptic curves with complex multiplication
as well. The difference to the case of ordinary elliptic curves over finite fields is, that
PROPOSITION 2.42 cannot hold here since we do not have a distinct FROBENIUS
endomorphism 7, which gives us a bottom level, so we have potentially more levels
here than in the ordinary situation.

Analogue to isogenies between ordinary elliptic curves over finite fields like in
SECTION 2.1.1 we call the isogeny ¢ : Ey — FE; between elliptic curves Ey, F;
defined over a number field ascending, descending or horizontal depending on the
relation of the endomorphism rings of £y and Ej, and elliptic curves with the same
endomorphism ring are on the same level.

The top level which consists of elliptic curves with the maximal order of I as
endomorphism ring will usually be denoted with V;, and also called crater. The

distance of a level from the surface is the power of ¢ dividing the conductor of
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curves on the level. The level with distance k to the top is labeled V. When we
want to emphasize the order belonging to each level, we also talk about the level O,
so for instance the top level is labeled with Ox.

Let E be an elliptic curve defined over some field K. We denote the set of
isogenies starting at £ with Hom(F),-).

PROPOSITION 3.2. Let E be an elliptic curve defined over a field K so that End B
1s an order in an imaginary quadratic field and let ¢ be a prime that in the case of
char K = p > 0 is coprime to p.

Then there are { + 1 non-equivalent isogenies of degree £ in Hom(FE, ).

PROOF. Since these so-called outgoing isogenies correspond to cyclic subgroups of
the (-torsion group E[f], we can determine how many of them exist by looking at
the possible subgroups. We know from PROPOSITION 2.21 that in our situation we

have
Ell] =2 Z/Z X Z/lZ

and all subgroups of Z /{7 x Z/lZ are generated by (1,0) and (i,1) where i varies
over all ¢ elements of Z/¢Z. This yields exactly ¢ + 1 subgroups and thus ¢ + 1

outgoing isogenies from FE, one for each subgroup. O]

This result is very important for our work since the outgoing isogenies will be
edges in our isogeny graphs and thus these graphs are ¢ + 1-regular. We can also

determine the form of the elliptic curves which are reached by those isogenies.

REMARK. When write ¢; : E — E; with i € {0,--- ¢} for the (-isogenies arising
from PROPOSITION 3.2, the image curves F; of them are called /-neighbors of E.

When E is defined over a number field K C C with E(C) = C/A for a lattice
A = (1, \), the kernels of the outgoing isogenies have to be subgroups of order ¢ of

El)= {3 (x+y\)+A|z,yeZ} = MCC/A

If we use the isomorphism from Z/(Z x Z/{Z to E[l] before that, we get an

isomorphism

ZIT X L)L — M
(z.y) = F@+yd)+A
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and the generators of the possible subgroups of Z/{Z x Z/(Z from above yield the
generators of order-f-subgroups of E[(] as the preimages of % + A and % + A for
ie{l,--- (}.

By the fundamental homomorphism theorem the image curves of the isogenies
with those kernels are isomorphic to elliptic curves E; with E;(C) = C/A; where
Ao = (1,0)\) and A; = (¢;i+ \) for i € {1,--- ,(}.

We will need the explicit descriptions of those image curves later.

Now that we have defined the levels of elliptic curves defined over number fields,
we want to see how they are linked to each other with isogenies. Afterwards we will
examine the connectedness within a single level in dependence of the given isogeny

degree.

3.2.1 VERTICAL CONNECTIONS BETWEEN LEVELS

In this section we want to show how the previously described levels are connected to
each other. All elliptic curves are defined over a number field K C C if not stated
otherwise. We will use the result described in the beginning of SECTION 3 about
the order which is isomorphic to the endomorphism ring of an elliptic curve E being
determined by its discriminant D = dg. This can be computed by the coprime
integers A, B and C from the equation AN? + BA+ C' = 0 where ) is the generator
of the lattice corresponding to FE.

Especially, this is also true for all f-neighbors E; of E, so that for finding their
endomorphism rings it suffices to determine their discriminants in relation to the
discriminant dg. In particular, their discriminants are just the same as the discrim-
inants dp, of the orders O; in K which are isomorphic to End F;, so when one of
the O; has a discriminant D, D - (*> or D/(?  the (-isogeny from E to this curve
will be horizontal, descending resp. ascending due to our convention after PROPO-
SITION 3.1.

This can be used to investigate the outgoing f-isogenies from E like in the proof
of THEOREM 4 of GALBRAITH [27]. The kernel of such an isogeny has to be a
subgroup of E(C) with exactly ¢ elements and we have seen in the remark after
PROPOSITION 3.2 that the image curves from those isogenies are elliptic curves F;
with Ey(C) = C/A; and Ag = (1,6X) resp. A; = (¢, +14) forie {1,--- ¢}

For each of the F; we can use the generators of the lattice A; to get a quadratic
equation and based on the information on A deduce the form of the discriminant
from that. We will demonstrate the method for Ey and refer to GALBRAITH [27]

for the details of the lengthy calculations in the other cases.
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3.2 The Characteristic Zero Picture

We set \g := ¢\ and since we have AN2 + BX +C = 0, we get

2 207 __
A N4 B A+ (2C = 0.
=:Ap =:Bg =:Co

Note that we required the coefficients to be coprime to be able to use the theorem
of LANG about the structure of the endomorphism ring. So in the situation with
ged(Ap, By, Cp) =1, £4 A has to be true and we get the discriminant

Dy = B} —44,Cy
= (*B* - 4*AC
= D

so the isogeny ¢ from F to Ej is descending.
When the ged-condition does not hold, A = Ay has to be divisible by ¢ and we
have ged(Ag, By, Co) € {¢,¢*}. In the first case we divide ¢ out of the coefficients to

attain ged(42, B2, €0) =1, 403 4 Bo); + €0 = ( and

Dy = (B e

= B?—4AC
= D

which implies that ¢y : £ — Ej is a horizontal isogeny, whereas in the latter case
Ao Bo

we have to cancel /2 to get an analogous equation with coprime coefficients 7 P

and % which yields

Dy = (8- 1%%

B2-4AC
£2

= D/?

and provides an ascending isogeny ¢q.
Let ¢ | A. We want to emphasize that the ascending isogeny can only occur if ¢
also divides the conductor ¢ with dg = c?dx and that in the other case a horizontal

isogeny arises. If ¢ { B this is due to the fact that (%) (dT’C) = (dTE) = (BTZ) =1,

hence ¢ 1 ¢, £ splits in K and since we have ged(Ag, By, Cy) = £, we get a horizontal

isogeny as shown above. When on the other hand ¢ | B, we have the condition
62

(£)(%) = (2) =050 ¢ | cor ¢ | dx has to hold.

Let in this case ¢ 1 ¢ and ¢ > 2 divide dx. Since dx has no odd square factors,
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¢% can neither divide dx nor c®dx = dg = B? — 4AC and thus also ¢* 1 A. This
vields a horizontal isogeny with the described method. For £ = 2 we know ¢ | dx
and the fundamental discriminant is dx = 4d with d = 2,3 (mod 4). Canceling the
factor 4 out of the equation for dg yields ¢*d = BTQ — AC and assuming 4 | A gives
a contradiction to the form of d since then we had ¢*d = d = (%)2 = 0,1 (mod 4).
Therefore £ A and we have the same situation as for £ > 2. So if ¢ ramifies in K
and /1 ¢, the isogeny ¢o : E — Ej is horizontal.

Let now ¢ divide ¢, so it has also to divide dg = c?dx quadratically and thus
for ¢ # 2 we get (> | A which leads to ged(Ag, By, Cy) = ¢* and an ascending

isogeny in the way explained above. In the case ¢ = 2 let ¢ = 2¢ and consider

BQ
4

so suppose contradictorily that 4 { A. In that case AC = 2 (mod 4) and thus
Ay = (%)2 —2=2,3 (mod 4) which is not possible since both ¢ and dy are 0 or
1 modulo 4. This concludes the investigation of the isogeny to the image curve Ej.

For the other ¢ image curves F; we have to find quadratic equations for \; := %
and investigate them in a similar way to see in which direction the isogeny from E

to F; leads. See GALBRAITH [27] for the details and results. Summed up we can

the equation c?dx = — AC again. This time we want an ascending isogeny,

make a case differentiation and gain the following theorem.

THEOREM 3.3. Let K be an imaginary quadratic field with mazimal order Ox
and fundamental discriminant di, E be an elliptic curve defined over a number
field K C C whose endomorphism ring is isomorphic to an order with discriminant

dp = c*di for the conductor ¢ in K. Let { be a prime.

+ Ifltc, we have (dT’C) = (dTE) and

< two horizontal and ¢ — 1 descending isogenies of degree ¢ which start at
E of 0 splits in IC,

< 0 descending isogenies and one horizontal outgoing isogeny from E if £
ramifies in IC,

& 0+ 1 isogenies going down from E if € is inert in K.
+ If | ¢, we have { descending isogenies and one ascending isogeny from E.

If we arrange elliptic curves over K according to the levels of their endomorphism
rings and connect them via f-isogenies, the such arising graph is — apart from possible
loops on the crater — almost a tree and quite large. However, we will see later
that part of its structure can be transmitted to the corresponding graph in finite

characteristic and that this tree can be cut off to become a slightly smaller graph.
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MoDULAR FUNCTIONS AND THE MODULAR POLYNOMIAL. We mentioned
the modular polynomial ®, before and want to introduce its background briefly here.
In this part we regard the modular group T" := SL(2,Z) which acts transitively on
the upper halfplane H through

x:I'xH — H

((28).2) = &5

For fixed A € I' we use the notation 74 to denote the function on H sending z € H

to A x z. Let ¢ be an integer, then we define

To(f) = {(Z Z) €T

which is a subgroup of I'. Note that we have I' = T'g(1).

c=0 (mod f)}

DEFINITION. Let ¢ be an integer and G := I'y(¢) be a subgroup of I'. A modular
function for G is a function f : H — C which is invariant for G and meromorphic

on H and on the cusps*.

There exists a modular function j : H — C for I with

o g5(N)
) = T e )

where go(\) and g3(\) are constants corresponding to the lattice A := (1, \). Since
such lattices correspond to elliptic curves, j(A) can be interpreted as a constant for
the elliptic curve E with E(C) = C/A and in fact it is the j-invariant j(E) of E.
For more information on these objects consult Cox [16] or LANG [48].

This modular function j induces a bijection
j:-H/T — C
and thus we see

o) =j(\) <= 3Ael: M\=Ax)
< dAel: A =(1,Ax ).

4meromorphic on the cusps means that for all A € I' the negative part of the LAURENT expan-

sion of f om4 does not have infinitely many coefficients, see Cox [16], CHAPTER 11.B.
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Furthermore we have that every modular function for I" is an element of C(j).
If f is a modular function for I and /¢ is an integer, the function g := f o £ mapping
z to f(€z) is a modular function for I'g(¢). In fact, the set of all modular functions
for T'g(¢) is C(j,7 o £).

PROPOSITION 3.4. Let { be an integer and ®y; € C(j)[X] be the minimal polyno-
mial of jol. Then ®y; is a polynomial in C[X, j| with degree d := [I' : T'o(¢)]. It

can be writlen as

d
by = [[(X —jotoms)
i=1
where for A; € T, i € {1,--- ,d} the sets T'o(¢)A; are representatives for the right
cosets of T'o(l) in T".

Hence there is a two-variable polynomial ®, € C[X, Y] with

d
O, 5(N) = X =i (AixN)
i=1
for A € H. This polynomial is called the ¢-modular polynomial and is actually a
symmetric polynomial from Z[X,Y]. If £ is a prime, ®, has degree £ + 1 and fulfills

b= (X' -Y)X =YY (mod(Z[X,Y]).

Let Ey be an elliptic curve over a number field K C C such that we have
E(C) =2 C/Ay with Ay = (1, \g) C C, so Ey has j-invariant j(\g). Let z € C be a
root of ®y(-, j(Ag)), so we get due to the splitting of the polynomial in linear factors
that z = j(£- (A * Xg)) is true with A € A being a representative of the right cosets
of I'g(¢) in T

We regard an elliptic curve defined over a number field K C C with analogous

corresponding lattice A and j-invariant j(A;) = z. Then we get

Due to the remark after PROPOSITION 3.2 this is equivalent to E; being (-isogenous
to an elliptic curve E’ given by the lattice A’ = (1, BAx \g) =: (1, \'). Since further
N = BAx )\ is equivalent to j(\') = j(\g) this means that we get E’' = E; and have
an isogeny ¢ : Fy — E; with degree deg¢ = ¢. So in the end we get the following

fundamental property.
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PROPOSITION 3.5. Let Ey, Ey be elliptic curves defined over a number field K C C

with j-invariants jo resp. j1 and let £ be a prime. Then there exists an isogeny
¢ Ey — Ey of degree { if and only if ®¢(jo,j1) = 0.

This result is of great importance for our work with isogenies since it enables us
to compute (-neighbors of a given elliptic curve over a number field K C C. It can

also be found for example in LANG [48], THEOREM 5.3.5.

3.2.2 HORIZONTAL LINKS AND THE IDEAL CLASS GROUP

Now we want to investigate single levels of this isogeny graph, that is, the set
of elliptic curves defined over a number field K C C which have the same given
endomorphism ring. Per definition, any isogeny between such curves has to be
horizontal. We have seen in THEOREM 3.3 that such isogenies only exist when their
degree does not divide the conductor of the endomorphism ring and is not inert in
the overlying imaginary quadratic field K.

Even if there are horizontal isogenies of degree /, it is not yet guarantied that
the level is completely connected when we use them as edges in the graph. We will
now see how we can achieve full connectedness of a given level. The essential knack
is to regard isogenies of different degrees.

Let E, denote the elliptic curve defined over K associated to a lattice A having
complex multiplication by O which is an order in an imaginary quadratic field K.
Further let A = (1, \) where AN*+ BA+ C = 0 with coprime integers A, B, C is the
equation like in the last part. We have seen in the beginning of the chapter that in
this case we have K = Q(A) and O C A. Tt is easy to show that AA is an ideal in
O, so A can be regarded as a fractional ideal in . Since every fractional ideal in
imaginary quadratic fields is a Z-module of rank two, it is also a lattice and we will
denote both concepts with A simultaneously.

Let now © = 00 with 0 # 6 € O be a principal ideal of O. Then ©OA = A is — as
a lattice — homothetic to A and thus yields an elliptic curve in the same isomorphism
class as Fy. On the other hand every elliptic curve which is isomorphic to £, has
an associated lattice that is homothetic to A and thus — as an ideal — emerges from
multiplying A with a principal ideal.

Hence when regarding isomorphism classes of elliptic curves, principal ideals can
be neglected and the isomorphism class of the elliptic curve E, only depends on the
ideal class [A] in C¢(O). Due to COROLLARY C.11.1.1. of SILVERMAN |75], the set of
isomorphism classes of elliptic curves defined over number fields with endomorphism

ring isomorphic to O is finite. Thus K can be taken to be the maximal number field
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such that all elliptic curves with endomorphism ring O are defined over K and with
this K we set

EUR(O) = {elliptic curves over K with endomorphism ring (9}/2‘
PROPOSITION C.11.1 of SILVERMAN [75] and PROPOSITION I.1.2 of SILVER-
MAN [74] show the following result.

PROPOSITION 3.6. Let O be an order in the imaginary quadratic field IC. There

18 a one-to-one correspondence
ClO) +— Elk(O)

between ideal classes of O and isomorphism classes of elliptic curves over a number

field with endomorphism ring isomorphic to O. Moreover, the map

x1 CUO) x EUUK(O) — Ellk(0)
([a]aEA) — [Cl]‘kEA = Ea—lA

18 well-defined and makes the ideal class group of O act simply transitive on the

wsomorphism classes of elliptic curves with fized endomorphism ring O.

We will see that in this setting isogenies can be represented as ideal classes,
too, so [a] corresponds to an isogeny ¢pq : Ex — Eq-15,. When we take an integral
ideal a from [a], we always have A C a~!A since obviously aA C A is true. Thus
C/A can be embedded with a homomorphism into C/a~'A and we get the following

commutative diagram.

C/A—222 - C/a'A

L

EA Ea—lA = [Cl] * EA

So we have an isogeny ¢[q : By — Ey-15 and every isogeny ¢ : Ey, — Ej, can
be found this way since there exists an ideal a such that A; = a=!'A,. PROPOSI-
TION II.1.4 of SILVERMAN [74] shows now that the kernel of this isogeny is

ker ¢ = Epla] = {P € E, | [a]P = Og, for all a € a}.
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Remember that here [a] is the image of the element @ € a C O under the fixed
isomorphism [-] : O — End E, and thus an endomorphism of E, whereas [a] is the
ideal class of a in C/(O). Furthermore the same proposition tells us that this set is

a free O/a-module of rank 1. This implies Ej[a] = O/a and therefore we get

deg ¢ = #Ea[a] = #0O/a = N(a)

with the absolute ideal norm of a. So any isogeny of degree ¢ can be associated with

an integral ideal of norm ¢ and we get the next result.

PROPOSITION 3.7. Let E5 be an elliptic curve defined over a number field K with
endomorphism ring isomorphic to an order O in an imaginary quadratic field KC and

let € be a prime. There is a correspondence
{¢ € Hom(E\,) |degp =L} <+— {a C O integral ideal | N(a) = (}

where Hom(E}, ) denotes the set of outgoing isogenies from Ey with arbitrary image

curves.

When we take two arbitrary elliptic curves Fy and Ey from E00k(O), we know
that there exists an integral ideal a C O so that we have Ey, = [a]xF,. Let now B be
a fixed positive integer such that C£(O) is generated by the ideal classes of all integral
ideals with prime norm less or equal to B. Then we can write [a] = [a] - - - [a,,] where
the integral ideals a; have prime norm ¢; < B. With Ay := A we can now construct
a sequence of lattices A; for i € 1,--- ,n with A; = a;*A;_; and A, = A

Thereby we get elliptic curves Ey, € E00k(O) and isogenies ¢; : Ep, , — Ej,.
Due to the construction it is ¢; = ¢}, so we have deg¢; = ¢; < B. After all we
found a chain of isogenies

Ex=Ep, 2% Ep, 2 - 2 By, = Ey

n

which provides an isogeny
¢:¢n0"'0¢1: EA_>EA/

with degp =01 --- £,,.

Thus when we take £ to be the set of primes less or equal to B we can find
an isogeny with £-smooth degree between any two elliptic curves in E00x(O). This
means that the graph consisting of such curves as nodes is fully connected if we
allow all isogenies of prime degree less or equal to B as edges. This is an important

result which we will use quite a few times in the course of this work.
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Especially for complexity questions it is interesting how small the bound B can
be chosen so that the classes of ideals with norm less or equal to B still generate
the ideal class group C4(O). For O = Ok there are some theoretical estimations for
that.

A theorem of MINKOWSKI (for instance see LANG [49, THEOREM V.4]) says
that in every ideal class there is an integral ideal a with N(a) < Cx+v/dx where the
constant Cy is in our quadratic case either 1/2 or 2/7. There have been endeavors
to improve this constant like displayed in ZIMMERT [95] but nevertheless the implied
unconditional bound is exponential in terms of log dj.

A better bound which relies on a Generalized RIEMANN Hypothesis has been
developed by BACH in [1] and makes use of characters x which are functions on
Ofc-ideals. Such characters appear in Hecke L-functions along with the norm of

ideals a as

- x(a)
L, = XQ:N@.

A form or the Generalized RIEMANN Hypothesis states that L, has no zeros on the
halfplane with Re s > % Under this conjecture he can make explicit estimates and
obtain bounds for ideals of least norm of with character different from 0 or 1. The
analytical methods go beyond the topic of this thesis, but BACH concludes with
a directly applicable conclusion from THEOREM 4 on page 376 of his work, which

provides the following most useful statement.

THEOREM 3.8 (BAcCH’S Bound). Let K be a field with discriminant dic and Ok
be the mazimal order of IC. Under the assumption of the Generalized RIEMANN
Hypothesis the class group of CL(Ox) is generated by the prime ideals of norm less
or equal to B = 12(log |dx|)%.

If K is a quadratic field, this bound can be improved to B = 6(log |dx|)?.

We will refer to this number B as the BACH bound later. In BELABAS - DIAZ Y
DiAZ - FRIEDMANN [2| another bound is suggested which is asymptotically worse
than the BAcH bound but often better in practice. In our computations we usually
take a much smaller bound (in most of the cases B = 20 suffices) to favor faster
algorithms with the occasional chance of an error or endless loop over precise but

slow algorithms.

REMARK. We will use the BACH bound to assert the existence of an isogeny be-
tween two elliptic curves over a finite field F, with endomorphism ring isomorphic

to the maximal order Ok of an imaginary quadratic field . However, in some cases
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it would be useful to compute an isogeny between two such elliptic curves where
the endomorphism ring is isomorphic to an order O in K which is not maximal. In
practice and in some literature, this is done with the bound B := 6(log |do|)?. To
justify this bound, the ideals of norm less or equal to this B have to generate C{(QO),
which is not given by BACH’S paper [1] though and — to the authors knowledge —

nowhere else in literature, too.
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3.3 LIFTING AND REDUCTION

It looks desirable to have similar structure of outgoing isogenies for elliptic curves
defined over finite fields as the precise description of the ones defined over number
fields. Fortunately at least for ordinary elliptic curves there is a connection between
such curves through lifting and reduction theory which preserves the endomorphism
ring and also the number and type of outgoing isogenies. We will explain the strategy
here and point out why it does not work completely for supersingular elliptic curves.
Afterwards we make a modification on the famous DEURING theorems which allow

us to transfer their results to at least a subset of supersingular elliptic curves.

3.3.1 DEURING’S THEOREMS

Let E be an elliptic curve defined over a number field K C C with endomorphism
ring End £ isomorphic to an order O in an imaginary quadratic field IC. By a change
of variables and eliminating denominators we can assure that the coefficients of the
WEIERSTRASS equation are from the ring of integers Ry of K.

Let now p be a prime and P be a place over p, so P is one of the prime ideals
of the factorization of the ideal generated by p in Rg. Since Ry as the maximal
order in a number field is a DEDEKIND domain, every prime ideal is also maximal
and hence Ry /P is a field. Since we have

#Ri /B =N(F)

and the norm is multiplicative, this field is finite with characteristic p. So we get

Ry /B =T, where ¢ is a power of p. Thus we can introduce a reduction map
B DU RK — Fq

and by using it on the coefficients of E we get another cubic equation with coefficients
from F,. If the discriminant of this equation is nonzero, this reduction provides an
elliptic curve E defined over F, and we say that E has good reduction at 3. We
mostly denote this reduction map only with ~ when there can be no risk of confusion
about the used place ‘B.

DEURING [19] explains what happens to the endomorphism ring of the elliptic
curve F under such a reduction. The notation and setting of this paper is kind
of unusual and unfit for our situation, so we refer to proofs of both the following
theorems in LANG [48] where they are THEOREMS 13.12 and 13.14.
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THEOREM 3.9 (DEURING Reduction Theorem). Let E be an elliptic curve defined
over a number field K, End E isomorphic to an order O in an imaginary quadratic
field K and B be a place over some prime p such that E has good reduction E modulo
this place. Then we get

E is ordinary <= p splits in K.

Let in this case ¢ = p"cy be the conductor of End E in IC such that p 1 cy. Then we
get End E = Z + ¢yOx and cy = c implies that the map

~: EndE — EndE

¢ =
18 an 1somorphism.

Note that this theorem says nothing about the structure of the endomorphism
ring if the reduced elliptic curve is supersingular. But as this turns out to be
important for our approach of the restricted supersingular isogeny problem in SEC-
TION 4.2.2, we investigate it in the next section. Before that we present the behavior
when going in the other direction and lift an elliptic curve defined over a finite field

to an elliptic curve over a number field K.

THEOREM 3.10 (DEURING Lifting Theorem). Let K be an imaginary quadratic
field, F, be a finite field with charF, = p > 0 and Ey be an elliptic curve defined
over F, with endomorphism ring isomorphic to an order O in KC. Further, fix some
non-trivial ¢y € End Ej.

Then there exist an elliptic curve E over a number field K, an endomorphism
¢ € End E and a good reduction E of E at a place B over p such that we get By = E

and ¢g is mapped to ¢ under this isomorphism.

So — at least for ordinary elliptic curves — it is possible to navigate between
elliptic curves defined over a finite field and ones defined over a number field and
preserve the endomorphism ring of the occurring elliptic curves. Note that lifting
is no problem for supersingular elliptic curves defined over I, but the reduction
theorem yields no result for the behavior of the endomorphism rings of curves which
reduce to such a supersingular one.

As a last point we want to examine the behavior of isogenies between elliptic
curves under reduction. With the notation from above we can state PROPOSI-
TION I1.4.4 from SILVERMAN [74] in the following way.
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LEMMA 3.11. For two elliptic curves Ey and Ey defined over a number field K C C
with endomorphism rings isomorphic to orders in an imaginary quadratic field K the

map

R I{ODJ(Eb,lyl) — I{OTU(1?07Z?1)

¢ = ¢
18 injective and preserves degree.

Especially when we regard all isogenies in Hom(Ey,-) with degree ¢, they are
mapped injectively on (-isogenies in Hom(Ej, -). Since in both cases there are £+ 1
such isogenies as seen in PROPOSITION 3.2, this mapping is bijective. We may fix

this result in a lemma, too.

LEMMA 3.12. For an elliptic curve Ey defined over a number field K C C whose
endomorphism ring is an order in an imaginary quadratic field K and which reduces

to an ordinary elliptic curve Ey defined over F,, the map

© : Hom(Ep,-) — Hom(Ep,")

¢ = ¢
18 bijectlive.

Furthermore it turns out that all of those isogenies are defined over F, in this

case.

PROPOSITION 3.13. Let Ey be an ordinary elliptic curve defined over the finite
field ¥ of characteristic p. Let { # p be a prime.

Then we have End £, = Endp, Ey and all l-isogenies to ordinary elliptic curves
defined over F, which start at E are equivalent to ones which can be defined over
F,, too.

PROOF. We have End E, = ([1], ¢) = Endg, Ey where ¢ is 7, or H;q depending on
whether the endomorphism ring is isomorphic to Z[\/—p] or Z [%jp} ProOPOSI-

TION 23.3 of KOHEL [45] and his discussion after that yield the second statement. [

Thus when we take the f-level structure of elliptic curves defined over a number
field provided by THEOREM 3.3 and reduce the whole picture to characteristic p,
elliptic curves E are mapped bijectively to elliptic curves £ with the same endo-
morphism ring and (-isogenies from Hom(F,-) also bijectively to respective ones in

Hom(E,-). Hence the whole picture can be transferred from characteristic 0 to p.
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Note that due to PROPOSITION 2.42 the reduced curves are defined over I, if and
only if we have Z[r,] C End E, so if we regard reduced elliptic curves over F, the

graph has to be truncated and the lower levels are cut off.

3.3.2 REDUCTION TO SUPERSINGULAR ELLIPTIC CURVES

The reduction and resulting bijection between elliptic curves over number fields resp.
finite fields with same endomorphism ring and the one concerning their isogenies does
only work in this form for the case where the reduced elliptic curves are ordinary. In
this section we want to investigate the problems and describe a partly solution and
reparation of the supersingular case. We will regard the set of supersingular elliptic
curves which are defined over F, and call them F,-rational supersingular elliptic
CUTves.

Let p be a prime and E be an elliptic curve defined over a number field K C C
so that its good reduction E at a place 8 over p is supersingular. Because End F is

an order in a quaternion algebra, it has rank four as a Z-module and the reduction

T : EndE — EndE

¢ = ¢

as in the DEURING Reduction Theorem cannot be an isomorphism since End E' is
still an order in an imaginary quadratic field and thus a Z-module of rank 2. For
that reason we regard the restricted endomorphism ring Endy, E consisting of all
endomorphisms which are defined over I, also called IF,-rational endomorphisms.
Analogously Home(Eo, El) contains all F-rational isogenies between the supersin-
gular elliptic curves E, and E;.

We want to investigate the following situation. Let p > 3 be a prime and let
E denote a supersingular elliptic curve which is defined over F, and lifted via the
DEURING Lifting Theorem to an elliptic curve E over a number field K. Then
PROPOSITION 3.2 says that for a prime ¢ # p there are ¢ + 1 isogenies ¢; : £ — FE;
with degree ¢; = ¢ and image curves E; over K (or a finite extension of K) for
ie{0,--- 0}

The endomorphism rings of all E; have to be orders in K = Q(y/—p), too, since
they are isogenous to F. Thus p ramifies in C and from the DEURING Reduction
Theorem we know that all E; reduce to supersingular elliptic curves £; in character-
istic p, so the reduced curves have to be defined over [F,.. The situation is sketched

in the following diagram.
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E/K
E,/F

FIGURE 1: Lifting a Supersingular Elliptic Curve over F,

E/K

EJF,

Several problems arise while regarding this setting. We want to examine them
in the remainder of this section.
The primary questions we will investigate for supersingular elliptic curves in this

setting are listed below.
4 Which of the E; are defined over F,?
4+ What is the relation of the endomorphism rings of E; and E;?
4+ What happens to the isogenies ¢; under this reduction?

For ordinary curves these issues over I, can be answered easily as we have seen:
The E; are defined over F, if and only if we have Z[r,] C End E; (LEMMA 2.43),
End E; 2 End E; (THEOREM 3.9) and there exists an isogeny ¢; : E — E; defined
over F, which is the reduction of ¢; for every i € {0,--- ¢} (LEMMA 3.12). We
want to show similar results in our case.

We deal with the first question at the beginning and show the following.

PROPOSITION 3.14. Let E be an elliptic curve defined over a number field K and
let B be a place over a prime p > 3 such that E has good reduction E which is a

supersingular elliptic curve defined over 2. Then we get
E is defined over F, <= +/—p€EndE

in the sense that there exists an element ¢ € End E with ¢* = [—p).

PROOF. This follows PROPOSITION 2.4 of DELFS-GALBRAITH [18§].

If £ is defined over F,, we know that the FROBENIUS 7, lies in End £ and for
supersingular elliptic curves fulfills the characteristic equation Wg +[p] = 0 for p > 3,
so we get m, = y/—p € End E. To complete the equivalence, we have to show that if
the endomorphism ring of a supersingular elliptic curve in characteristic p contains

an element \/—p, then the curve is already defined over I,
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So let ¢ € End E be an endomorphism with ¢?> = [—p|]. Since the degree is
multiplicative and p is prime, we get deg¢ = p. E is supersingular, so it has no
points of order p and the kernel of ¢? is trivial. With this, it is also impossible for
the kernel of ¢ to contain more than just the identity element Og. The number of

points in the kernel is just the separable degree of ¢ and thus from

p=deg¢ =deg, ¢-deg; ¢ =1-deg; ¢

we see that ¢ is inseparable.

Due to LEMMA 2.2 we can find a separable isogeny 1 such that ¢ factors as

¢

and, again, the multiplicativity of the degree yields degt) = 1. So we have E® = E
and therefore j(F) = j(E®) = j(E)P. That implies that j(E) € F, is true and thus
E is defined over [F),. O]

For later use we define

SKKIFP,S = ggg]Fp (Z[V _p]) U SEK]FP(O/C)

as the set of all F-isomorphism classes of supersingular elliptic curves defined over

FF, and the corresponding set in characteristic 0 as

Ellg, = Ell(Z[V=p))UELK(Ox).

As in the beginning of SECTION 3.2.2, K is the maximal number field such that
all elliptic curves with endomorphism ring either Z[\/—p] or Ok are defined over K.
We want to establish a one-to-one correspondence between those two sets, so
first we show that they have the same number of elements. From THEOREM 2.34

we know the number of supersingular j-invariants in ), to be

th(=4p) if p=1 (mod 4)
#Sp, = h(—p) it p=7 (mod 8)
2h(=p) if p=3 (mod 8),

so we need to find out how many non-F,-isomorphic supersingular elliptic curves

with the same j-invariant exist to determine the cardinality of £4(r, ..
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PROPOSITION 3.15. Let p > 3 be a prime. For every supersingular j-invariant
in ¥, there are — up to Fp,-isomorphism — exactly two supersingular elliptic curves

defined over T, with j-invariant j.

PROOF. THEOREM 2.2 of BROKER [5] tells us that for p > 3 the number of elliptic

curves over [, with j-invariant j up to [F,-isomorphism is

6 ifj=0 and p=1 (mod 3)
4 ifj=1728 andp=1 (mod 4)

2  otherwise.

Further we know from COROLLARY 2.29 that an elliptic curve with j-invariant 0
resp. 1728 is supersingular if and only if we have p = 2 (mod 3) resp. p = 3
(mod 4). So the cases of six or four such curves never arise in the supersingular case

and thus we always have two different F -isomorphism classes with given j-invariant
there. ]

Therefore we see that the number of elements in £€4p  is just twice the number
of possible j-invariants and thus equal to 2#5,,.
On the other hand, the cardinality of £0{k s can be simply calculated as

HEUK(Z[/ D)) ifp=1 (mod 4)

#HEUWK s =

h(—4p) ifp=1 (mod 4)
h(—4p) + h(—p) ifp=3 (mod 4)

h(—=4p) ifp=1 (mod 4)
= (2h(—p) ifp=7 (mod 8)
Ah(—p) ifp=3 (mod )
which obviously also equals 2#5S5,. So both sets are finite and equipotent. Actually,

reduction of elliptic curves yields a bijection between them in the following sense.
This is similar to PROPOSITION 2.5 of DELFS-GALBRAITH |[18].

THEOREM 3.16. Let p > 3 be a prime and K be a number field as before. There

is a fized place P’ over p such that the following reduction map is an isomorphism,

Tvp/i gfé[(ys — gé&g‘%s
[E] — [E].
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PrROOF. If Ey and E; are isomorphic elliptic curves defined over a number field K,
they have the same j-invariant, and when they are reduced the j-invariants of the
reduced curves will equal, too. Thus, E, and E; are isomorphic and the map is
well-defined. Since both sets are finite and have the same number of elements, it
suffices to show surjectivity or injectivity of the map. We will show here that it is
surjective.

Let Ey be a supersingular elliptic curve defined over F,. We have shown previ-
ously that the restricted endomorphism ring Endg, £y is either the order Z[\/—p]
or the maximal order O in K = Q(y/—p). Choosing the isogeny ¢y € Endg, Ey
as m, or H;r”
Endg, Ey = (1, ¢o), we can perform a DEURING Lift on FEj together with ¢,. With
that we get an elliptic curve E over a number field K and ¢ € End E such that

depending on the form of the restricted endomorphism ring with

E has good reduction E at a place B, £ = E, and ¢ is mapped on ¢y under this
isomorphism.

In particular, this endomorphism ¢ has the same characteristic polynomial as ¢,
so End £ = (1, ¢) is isomorphic to an order O in K = Q(y/—p) with Z[\/—p] C O.

Hence, [E] € E0lk  is true. Most importantly this also means End £ = Endg, E.
Usually though when we regard this reduction, the used place ¥ does not have
to be the fixed place P’. But PROPOSITION 1.2 of TATE [87] tells us that for any
two places P and P’ over the same prime there exists some GALOIS automorphism
o with ' = B°. Thus the elliptic curve E° reduces to F modulo the fixed place 3’

and the map - is surjective. O]

In the proof we have even shown that the endomorphism ring of E is isomorphic
to the restricted endomorphism ring of E under this reduction, which is fixed in the
next PROPOSITION.

PROPOSITION 3.17. Let p > 3 be a prime and E be an elliptic curve defined over
a number field K such that there exists a good reduction E of E at a place B over
p which is supersingular and defined over the finite field F,. Then we have

End £ = Endg, F.

The structure of an endomorphism ring of a supersingular elliptic curve defined
over F,, has also the prominent attribute that it contains Z[/—p| as we have seen
in PROPOSITION 3.14. Thus we even have

E is defined over F, <= /—p € EndE
<~ /—p€EndE
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in the situation above and can already decide if the reduced curve is supersingular
and defined over [F, when we look at the not-reduced curve’s endomorphism ring.
With these considerations the DEURING Reduction Theorem can be posed as follows.

THEOREM 3.18 (Supersingular DEURING Reduction Theorem). Let E be an el-
liptic curve over a number field K, End E isomorphic to an order in an imaginary
quadratic field IC and B be a place over some prime p > 3 such that E has good

reduction E over F, modulo this place. Then we get

E is supersingular <= p does not split in K

—= K=QK—p).
Let in this case End E' contain Z[\/—p|. Then the map

. EndE — EndeE_’

¢ = 0
18 an isomorphism.

In our setting it is also interesting to see what happens to isogenies under re-
duction. The map Hom(Ey, ;) — Hom(FEy, F;) is an degree-preserving injection
due to LEMMA 3.11, so the reduction of an f-isogeny between Ey and F; yields an
l-isogeny between the reduced curves. We want to show that in contrast to the
ordinary case there is no immediate bijection but we have to restrict us — similarly

as with the endomorphisms — to isogenies which are defined over F,,.

PROPOSITION 3.19. Let £y and E, be supersingular elliptic curves in characteristic
p and Ey and Ey be elliptic curves defined over a number field such that E; is
reduced to E;. Let further ¢ € Hom(Ey, E,) be an isogeny and ¢ € Hom(Ey, E) its
reduction.

If Ey and E, are defined over F,, then ¢ : Ey — E is F,-rational.

PROOF. This is PROPOSITION 2.6 of DELFS-GALBRAITH [18]|. Let 7, denote the
FROBENIUS endomorphism in both of the Endy, E; and lift the curves E; together
with 7,. We have Endp, E; = End E; and take isogenies ¢; € End E; which reduce to
mp. Further End E; = O; is true where the O; are orders in an imaginary quadratic
field K. We can assume that we have fixed those isomorphisms [-]; : O; — End E;
with ¢; = [\/—p] for the complex \/—p € O; C C.

Let Ag and A; be the lattices corresponding to E; resp. FEj, then the isogeny
¢ : Ey — FE; can be represented by an a € C with aAy C A;. In C we have the
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equality a-/—p = \/—p- «, which leads to ¢ o ¢y = ¢ 0 ¢, which can also be seen in
COROLLARY I1.1.1.1 of STLVERMAN [74]. Thus after reduction we get ¢om, = ,00¢.
As shown in LEMMA 2.19, this already implies that ¢ is defined over F,. O

Note that there can be isogenies between F,-rational elliptic curves Ey and
Ey which are defined over an extension of F,, but those are not in the image of
Hom(Ey, E;) under reduction. Examples of that can be found in the graphs in AP-
PENDIX C. But it can be shown that every IF,-rational /-isogeny between elliptic
curves defined over I, can be reached through reduction of an isogeny between the

corresponding lifts.

PROPOSITION 3.20. Let p > 3 be a prime, E € Ellk s be an elliptic curve with
good supersingular reduction E € Elly, s and € be a prime different from p. Then

we gel a one-lto-one correspondence
{¢ € Hom(E,-) |degp =} +«+— {¢ € Homp,(E,-) | deg¢ = (}.

PROOF. We have already shown that all reduced isogenies are defined over IF,, so it
remains to check that every F,-rational isogeny actually arises from the reduction
of an isogeny in characteristic 0. The proof follows along the lines of page 7 of
DELFS-GALBRAITH [18].

For an elliptic curve F in characteristic 0 with endomorphism ring End £ we get
from THEOREM 3.3 that isogenies between elliptic curves in £ ¢ exist in the cases
that

4+ (> 2 and ¢ splits in I, then there are two outgoing horizontal isogenies from

E to elliptic curves in E00k s (the £ —1 descending isogenies have image curves
outside of E00k ),

4 (=2and End E = Z [\/—p], then there is one outgoing ascending or horizontal
isogeny from F to an elliptic curve in E0/f ¢ (the two descending isogenies lead

to elliptic curves with smaller endomorphism rings),

4+ /=2and EndF = 7Z [%—7}7 then there are three outgoing descending or

horizontal isogenies from E to elliptic curves in E00k ;.

We now want to show that the number of IF,-rational between elliptic curves in
Elly, , is the same in the respective cases.

Let E be a supersingular elliptic curve defined over F, and ¢ be a F,-rational
isogeny of prime degree ¢ starting at E. As we have seen in LEMMA 2.18, ¢ corre-
sponds to a GALOTIS-invariant subgroup G of E[{]. Since ¢ is prime, this subgroup
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will also be cyclic. So let P be a point of E[{] such that G = (P) with 7,(G) = G.
This yields the eigenequation 7,(P) = [a]P for some integer a and thus the charac-
teristic polynomial of 7, — which is 7> + p — has a root at a (mod ).

Since we have E[{] =2 Z/lZ x Z/{Z, E[f] can be interpreted as 2-dimensional
Z/Z-vector space with chosen basis (P, Q). Let A., denote the 2 x 2 matrix repre-
senting 7, with respect to this basis.

Let first £ > 2 split in IC. Since we have (%p) = 1, the equation 7, = —p (mod /)
is solvable, so the characteristic polynomial 7, 4+ p is not irreducible. It also does
not have a repeated root at a, since the equation

7T72, +p = (m— a)? = Wﬁ — 2am, + a®  (mod /)
is not solvable for ¢ # 2. Thus the characteristic polynomial splits in a product of

linear factors

™+p = (m,—a)(m,—b) (mod{l) witha#b (mod /).

p

This means that A, is diagonalizable and can be represented as

A = <a 0) .
g 0 b
Therefore we have m,(P) = [a]P and 7,(Q) = [b]Q, which yields two cyclic GA-
LOIs-inva