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Zusammenfassung

Isogenien zwischen abelschen Varietäten über endlichen Körpern spielen

sowohl bei theoretischen Betrachtungen in der modernen Zahlentheorie als

auch bei kryptographischen Anwendungen dieses Gebietes häu�g eine bedeut-

same Rolle. Daher ist es interessant, bei gegebenen isogenen Varietäten A0

und A1 der selben Dimension g über einem Körper K e�ziente Methoden

zum Berechnen einer Isogenie φ : A0 → A1 zu �nden. Die auftretenden Pro-

bleme werden mit zunehmender Dimension sehr komplex, daher konzentrieren

wir uns zunächst auf den Fall von elliptischen Kurven über einem endlichen

Körper.

Die bisherigen Algorithmen zum Berechnen von Isogenien bevorzugen ge-

wöhnliche Kurven wegen der Struktur ihrer Endomorphismenringe und haben

für supersinguläre Kurven eine schlechtere Laufzeit. In dieser Arbeit entwi-

ckeln wir theoretische Resultate, die insbesondere zu einem neuen Algorith-

mus führen. Dieser verbessert für supersinguläre elliptische Kurven über Fp
die bisherigen Herangehensweisen deutlich und ist ebenso schnell wie die Al-

gorithmen für Isogenien gewöhnlicher elliptischer Kurven. Dafür stellen wir

mittels eingeschränkter Endomorphismenringe eine neuartige Verbindung von

solchen Kurven und Fp-rationalen Isogenien zu einer Idealklassengruppe her.

Wir verwenden ähnliche Mittel wie bei dem bekannten Deuring Redukti-

onstheorem mit Endomorphismenringen gewöhnlicher elliptischer Kurven um

dies zu erreichen. Auÿerdem zeigen wir, dass Isogenien unter dieser Reduktion

immer über Fp de�niert sind.
Diese Resultate liefern eine einfache Beschreibung des Aufbaus der Fp-

rationalen Isogeniegraphen supersingulärer elliptischer Kurven in eine levelar-

tige Struktur, welche ähnlich der bereits bekannten gewöhnlichen Isogenievul-

kane die Grundlage der neuen Berechnungsmethode mit berechenbaren bidi-

rektionalen Suchen ist. Implementationen des entstehenden Algorithmus und

der klassischen Methode in MAGMA ergeben berechnete Ergebnisse, welche die

vorhergehenden Komplexitätsanalysen bestätigen.

Zusätzlich zum elliptischen Fall untersuchen wir die möglichen Verallgemei-

nerungen auf höhere Dimension und vorallem die Situation von Jacobischen

hyperelliptischer Kurven von Geschlecht zwei. Besonders supersinguläre abel-

sche Varietäten stellen sich dabei als schwierig heraus, da Ansätze aus dem

gewöhnlichen Fall nicht greifen. Die verschiedenen theoretischen Hintergründe

beein�ussen mögliche Lösungen von Problemen der Isogenieberechnung und

liefern gröÿere Hindernisse als bei elliptischen Kurven.





Abstract

Isogenies between abelian varieties de�ned over a �nite �eld play an im-

portant role in theoretical considerations of modern number theory as well as

in cryptographic applications of this area. Therefore it is interesting to �nd

e�cient methods for computing an isogeny φ : A0 → A1 for given isogenous

varieties A0 and A1 of the same dimension g over a �eld K. The occurring

problems become very complex with higher dimension, so we concentrate �rst

on the case of elliptic curves de�ned over a �nite �eld.

Existing algorithms for such elliptic curves so far favor ordinary curves

due to their endomorphism ring structure and have a worse running time for

supersingular curves. In this thesis we develop new structural results leading

in particular to an algorithm which for supersingular elliptic curves de�ned

over Fp improves the previous approaches notably and which is as fast as

the algorithms for isogenies of ordinary elliptic curves. In order to achieve

this, we �nd out how to use restricted endomorphism rings to establish a

connection of such elliptic curves and Fp-rational isogenies to an ideal class

group, using means analogous to the famous Deuring Reduction Theorem

for the endomorphism rings of ordinary elliptic curves. We also show that

isogenies under this reduction are de�ned over Fp.
These results yield a simple description of Fp-rational supersingular isogeny

graphs in an ordered level-structure, which provides the basis for the new com-

putational method of feasible bi-directional searches like in the well-known or-

dinary isogeny volcanoes. MAGMA implementations of the emerging algorithm

and the classical method reveal computational results which validate the pre-

ceding complexity analysis.

In addition to the elliptic case, we also investigate the possible general-

izations to higher dimension where we focus on Jacobians of hyperelliptic

curves of genus two. Especially supersingular abelian varieties prove to be

more di�cult in this setting since successful approaches of the ordinary case

cannot be generalized directly. Diverging background theories a�ect the possi-

ble solution of problems concerning isogeny computation and present obstacles

which appear much harder to access than for elliptic curves.
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1 Introduction

Abelian varieties are important objects from algebraic geometry and number theory.

They arise as algebraic varieties from a set of de�ning polynomials and at the same

time they build an abelian group. Thus they have much structure that can be

worked with and they turn out to be the basis of an interesting �eld of theory.

Elliptic curves are abelian varieties of genus one and have been of theoretical

interest for many years before they were discovered for cryptographic applications.

By now they are of great signi�cance in many areas of recent research and play an

important role in modern number theory and cryptography. They contribute a fun-

damental part in the proof of Fermat's Last Theorem and can be used for integer

factorization and several public key cryptosystems. When regarded from di�erent

sides of theory, elliptic curves can be described with either algebraic elements or

provide a connection to analytical objects, so they prove to be a many-faceted �eld

of research. There are many standard references concerning the theory of elliptic

curves (e.g. [38], [75], [91]) and their cryptographic applications (e.g. [13]) which

provide a good overview.

Isogenies are rational maps between abelian varieties over a �eld K which have

a �nite kernel and are geometrically surjective. They appear in various applications

of elliptic curves both in subjects of theoretical background and in cryptographic

issues. Several properties of elliptic curves can be mapped to other elliptic curves via

isogenies and thus problems for all elliptic curves in an isogeny class can be solved

by showing them for a single representative.

It is easy to �nd out whether two given abelian varieties A0 and A1 which are

de�ned over a �nite �eld Fq lie in the same isogeny class; that is, whether there exists

a non-constant isogeny between them. We will see from Tate's Isogeny Theorem in

[86] that this is the case if and only if we have #A0(Fq) = #A1(Fq). But explicitly
and e�ciently computing such an isogeny in terms of a rational map turns out to

be a more di�cult matter, even for low dimension.

Problem 1 (General Isogeny Problem). Given two isogenous abelian varieties A0

and A1 of dimension g over a �nite �eld K, compute an isogeny φ : A0 → A1.

For g = 1 and ordinary elliptic curves there are algorithms based on an idea of

Galbraith [27] which solve this task in Õ(q1/4) �eld operations and storage1, but

for supersingular elliptic curves these ideas do not work due to di�erent structures

of their endomorphism rings.

1We will explain about complexity notation at the end of the Introduction chapter.
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1 INTRODUCTION

Even though supersingular elliptic curves over a �nite �eld of prime characteristic

p are always de�ned over Fp or Fp2 , the fastest method dealing with the problem

of computing isogenies there has a running time of Õ(p1/2) so far. There exist

several cryptographic schemes � presented in Section 5 � supposedly relying on

the hardness of computing such isogenies, so the question arises whether there are

better methods for solving this problem. We explicitly pose this problem as follows.

Problem 2 (Supersingular Elliptic Isogeny Problem). Given two supersingular

elliptic curves E0 and E1 over a �nite �eld K, compute an isogeny φ : E0 → E1

with an algorithm that has complexity similar to the ones in the ordinary case.

In this work we answer this question for the case where the supersingular elliptic

curves E0 and E1 are de�ned over Fp, that is for K = Fp in the situation of the

problem. In order to accomplish this, we have to develop a modi�ed version of the

Deuring Reduction Theorem to establish a relation between the endomorphism

rings of elliptic curves over certain number �elds and the Fp-rational endomorphism

rings of supersingular elliptic curves de�ned over Fp.
Deuring's original theorem in [19] only preserves the endomorphism ring of

ordinary elliptic curves after such a lifting and reduction process. We have shown

with lifting theory, arithmetic of quadratic number �elds and theory of ideal class

groups that an analogous correspondence holds for supersingular curves when we

restrict the endomorphism ring, see Theorem 3.18 for the details and the proof.

Result. Let E be a supersingular elliptic curve de�ned over Fp. Then there exists

an elliptic curve Ẽ de�ned over a number �eld which reduces to E modulo p and

we have

End Ẽ ∼= EndFp E.

The correspondence via lifting and reduction between those curves is uniquely de-

�ned up to isomorphism.

Furthermore we can also get a result as in Proposition 3.19 about the isogenies

connecting such supersingular elliptic curves and their behavior under reduction.

Result. Let Ẽ0 and Ẽ1 be elliptic curves over a number �eld such that their

reductions E0 and E1 modulo p are supersingular elliptic curves de�ned over Fp.
Let further φ̃ : Ẽ0 → Ẽ1 be an isogeny. Then there is an isogeny φ : E0 → E1 which

is de�ned over Fp such that φ̃ reduces to φ.

IV Christina Delfs



The resulting behavior can be used to introduce Fp-rational isogeny graphs and

examine their properties in Section 4. For primes ` 6= p we de�ne the Fp-rational
supersingular `-isogeny graph G0(Fp, `) which has supersingular elliptic curves de-

�ned over Fp as nodes and Fp-rational `-isogenies as edges and investigate its be-

havior of in- and outgoing edges.

Result. Let p > 3 and ` be coprime primes and G0(Fp, `) be the Fp-rational
supersingular isogeny graph. Then the structure of this graph can be explicitly

determined as in Theorems 4.16 and 4.17 and resembles an ordinary `-volcano

with at most two levels.

The plotted graphs and the full supersingular isogeny graphs for several primes

are given in the Appendix. It can be seen that in contrast to the full graph, the Fp-
rational graph has a more regular volcano-like structure but is not always connected.

That reminds of the ordinary situation again and with the reduction results from

above we can establish a connection to an ideal class group where the well-known

result of Bach [1] gives us an upper bound for the norms of generators. Those

norms comply with isogeny degrees and thus we have the analogous result.

Result. The Fp-rational supersingular isogeny graph G0(Fp,L) is fully connected

when we use isogenies with degree ` ∈ L := {` ≤ B} as edges where B is the Bach

bound.

Hence we are able to use results from graph theory on expander graphs, pose a bi-

directional search algorithm as in the ordinary case, and expect the same complexity

of Õ(p1/4) �eld operations and storage of �eld elements. In fact, an complexity

analysis proves those desired results. Thus this algorithm provides a considerable

speedup of the previous methods which had a complexity of Õ(p1/2). With that

we get a positive answer to the Supersingular Elliptic Isogeny Problem

above. The description of the algorithm and its complexity analysis can be found

in Section 4.2.3.

Result. There is an algorithm which solves the above stated Supersingular

Elliptic Isogeny Problem forK = Fp in a complexity ofO(p1/4(log p)5 log log p)

running time and O(p1/4) storage.

We implemented this algorithm in MAGMA and the computational results encour-

age the theoretical re�ections. Both the source code and the computations for primes

p up to a length of 32 bit can be found in the appendix.
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1 INTRODUCTION

When we return to the General Isogeny Problem, for arbitrary abelian

varieties over a �nite �eld or even only for Jacobians of hyperelliptic curves of

genus g > 1, the situation is much more complicated. We will give an overview of

some existing approaches for genus two and discuss what the problems are.

For ordinary Jacobians over a �nite �eld many results can be generalized from

the elliptic situation but there are still some open points. Horizontal isogenies

between abelian varieties with isomorphic endomorphism ring can be handled, but

the vertical structure is much more complicated than in the elliptic case. The

distance from the surface no longer determines the endomorphism ring completely

and there are also isogenies between varieties where the endomorphism rings are

not contained in each other. When the real multiplication order is �xed as subset

of the endomorphism rings though, some statements from the elliptic case can be

generalized as in Section 4.3.2.

The supersingular case is in many respects more complex and thus there is not

much theoretical knowledge yet. We will show the main obstacles for advanced

theoretical results and algorithms there. A point which is a very prominent feature

in that situation is that a supersingular abelian variety of dimension g ≥ 2 does

not have to be de�ned over a �nite �eld. Even when regarding only such varieties

de�ned over a �xed �nite �eld, the endomorphism rings are orders in a sixteen-

dimensional non-commutative algebra and di�cult to treat. Consult Section 4.3.3

for a discussion of the implications.

This thesis is organized as follows. In Section 2 we introduce the background

theory about the structure and the properties of the objects of peculiar interest we

are dealing with. This provides the basics needed for our later work. The results

which are used most frequently concern abelian varieties and especially supersingular

elliptic curves, isogenies and the behavior of endomorphism rings of isogenous elliptic

curves. A short excursus into graph theory gives us the terms to describe isogeny

graphs and concepts concerning expander graphs. Those are used in complexity

analyses of some presented algorithms.

Section 3 explains how endomorphism rings of certain elliptic curves de�ned

over a number �eld behave towards each other. These relations supply the necessary

tools for the de�nition and description of isogeny graphs. The structure and behavior

of such endomorphism rings can be transferred to the ones of elliptic curves de�ned

over a �nite �eld.

In contrast to the case where the reduced elliptic curves are ordinary, the well-

known lifting and reduction theorems of Deuring give no relation between the

endomorphism rings of supersingular elliptic curves and their lifts. Therefore we
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develop a new version of those theorems which applies to the supersingular situation.

This proven coherence is the reason why our later algorithms can work in the way

they do.

Those algorithms are featured in Section 4 where also our main problem is

addressed. First we present the ideas of the situation with ordinary elliptic curves

where many results are known. We show how in the supersingular case those con-

cepts cannot be employed. This leads us to the study of supersingular elliptic curves

which are de�ned over the base �eld Fp for a prime p.

We illustrate how due to our adapted reduction theorem the restricted endomor-

phism rings of such elliptic curves provide a similar volcano-like structure as the full

endomorphism rings in the ordinary case. Those structures show interesting regu-

larities and relations with the full isogeny graphs, so we printed a number of those

graphs in Appendix C. Based on that we can introduce a new algorithm which

follows the lines of the ordinary algorithm and improves the running time of �nding

an isogeny between supersingular elliptic curves de�ned over Fp distinctly.
We implemented several algorithms in MAGMA in order to get a good comparison of

the running time of the computations. All MAGMA codes can be found in Appendix A

and the computational results in Appendix B.

The conclusion of Section 4 describes a few methods for the computation of

isogenies between abelian varieties in general and their di�erences to the genus-one-

case.

Eventually, in Section 5 we address cryptographic applications of elliptic curves

and isogenies and brie�y highlight their importance for the well-known ECDLP-

problem.

In the end we examine two applications from cryptography where isogenies be-

tween supersingular elliptic curves are occurring, namely a cryptographic hash func-

tion and a key exchange protocol and cryptosystem. We analyze how our improved

algorithm for computing isogenies in a subgraph of the full supersingular isogeny

graph can a�ect the security of those schemes.

Part of this work can already be found on the arXiv ePrint archive referred to as

Delfs-Galbraith [18], a publication which has been submitted and accepted to

Designs, Codes and Cryptography where it will appear shortly. This paper

originated from a working collaboration started during a visit of the �rst author at

theUniversity of Auckland which was partially funded by aDAAD scholarship

for PhD students.
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1 INTRODUCTION

Used Notation in this Thesis. We will always denote the �eld of de�nition

of an elliptic curve with K whereas the algebra containing orders which are isomor-

phic to the endomorphism ring of a given elliptic curve is called K. Usually K is a

number �eld or a �nite �eld Fq of prime characteristic p such that q = pr. K can be

either a quaternion algebra or an imaginary quadratic �eld.

For any real number x ∈ R the notation log x always means the binary logarithm

log2 x, any other logarithm to a basis b is written as logb x. The natural logarithm

of such an element x ∈ R would be denoted with lnx.

Complexity Notation. For comparing computational problems it is impor-

tant to know how the running time and storage requirements of an algorithm grow

with increasing data input. For that we regard weakly increasing functions which

map the length of the problem input to the needed steps, arithmetic or binary oper-

ation or storage. Let f : N→ R>0 be such a function, 0 < r, s ∈ Q and n0, n,m ∈ N
in the following sets.

We de�ne

O(f) := {g : N→ R>0 | ∃r, n0 ∀n > n0 : g(n) < rf(n)} ,

o(f) := {g : N→ R>0 | ∀r,∃n0 ∀n > n0 : g(n) < rf(n)} ,

Ω∞(f) := {g : N→ R>0 | ∃r, for in�nitely many n : g(n) > rf(n)} ,

ω(f) := {g : N→ R>0 | ∀r, for in�nitely many n : g(n) > rf(n)} ,

Θ(f) := {g : N→ R>0 | ∃r, s, n0 ∀n > n0 : rf(n) ≤ g(n) ≤ sf(n)} .

We also frequently use

Õ(f) := {g : N→ R>0 | ∃m : g ∈ O(f(log f)m)}

when we want to ignore logarithmic terms.

The most important of those concepts for our work are O and Õ. We usually

describe the complexity of our algorithms depending on the length log n of its input

n and e.g. say the algorithm has a complexity of O(f(log n)) in terms of �eld

operations or storage requirements of O(f(log n)) �eld elements. A �eld operation

in Fq has an expected complexity of O((log q)2) in bit operations and a Fq-element

can be stored in O(log q) bits.

For a deterministic algorithm we get the same output on the same way every time

we apply it to a given input and thus always the same complexity. If an algorithm

is probabilistic, we compute the expected value of its running time on a given input.

When we consider the maximal value of this expected value on every possible input
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of the same length, we talk about worst case complexity. Analogously the average

complexity is the average of all expected values.

As usual, an algorithm of input n ∈ N is polynomial in its length log n if it is in

O((log n)k) for some integer k ≥ 1 and exponential in log n if it lies in O(alogn) for

some real constant a > 1. When we de�ne

Ln(u, v) := exp((v + o(1)) log(n)u log(log(n))1−u)

for u, v ∈ R, an algorithm with input as above having complexity Ln(u, v) is subex-

ponential.
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2 Theoretical Foundations

In this thesis we will always work with a base �eld K which will be either a �nite

�eld or a number �eld with characteristic 0. In either case it is a perfect �eld2,

which will be needed in some of the proofs. We will regard rational maps between

varieties in the projective space Pn(K̄) where K̄ denotes an algebraic closure of K,

so we will introduce the necessary background in Section 2.1 brie�y.

Later in that section we will restrict to algebraic curves, that is, projective va-

rieties of dimension one and most of the time to elliptic curves which are algebraic

curves of genus one with rational points. We will be most interested in so-called su-

persingular elliptic curves, so we will describe their properties and several methods

for determining whether a given elliptic curve is supersingular or not.

For our purposes the endomorphism ring structure of elliptic curves is important,

thus we examine this concept in Section 2.2 for both ordinary and supersingular

elliptic curves. Section 2.3 will give a very short introduction in graph theory and

the concept of expander graphs which we will use for the analysis of our algorithms.

2.1 Basic Concepts

We will approach our objects of interest � supersingular elliptic curves and isogenies

of prime degree ` � in this section via algebraic varieties and morphisms between

them. Most of the theory is basic knowledge and can be found in Silverman [75],

Mumford [62], Cohen [13] or Hartshorne [37].

Though elliptic curves as special projective varieties can be introduced indepen-

dent of the general theory of varieties, in some points it is helpful to have a broader

background and see which results work in a more general setting and which have

to be explicitly restricted to elliptic curves. Hence it will be apparent that some

of the occurring problems can also be stated in a more general situation. We will

have a short look at such generalizations and why they cannot be handled with our

methods in the Outlook.

Our regarded problems are mostly solved for ordinary elliptic curves, which we

refer to as the ordinary case. The properties which distinguish supersingular elliptic

curves from ordinary elliptic curves entail several complications of those well-known

methods. Thus we will investigate supersingular elliptic curves and their properties

thoroughly in the second part of this section.

2A �eld K is called perfect if every non-constant polynomial f ∈ K[t] is separable.
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2 THEORETICAL FOUNDATIONS

2.1.1 Algebraic Varieties and Isogenies

Let K be a perfect �eld, An := K̄n be the a�ne n-space over K and I be a subset of

the polynomial ring K̄[X1, · · · , Xn]. Then we de�ne an a�ne algebraic set through

V(I) := {x ∈ An | f(x) = 0 for all f ∈ I}.

Especially if I is an ideal generated by a single polynomial f , we write V(f) for the

algebraic set emerging through this construction.

Definition. An a�ne algebraic set V ⊆ An is called reducible if there are alge-

braic sets V0, V1 in An with V = V0 ∪ V1 and V0 6= V 6= V1. If no such sets exist, V

is called irreducible or an a�ne variety.

The ideal of an algebraic set V is

I(V ) := {f ∈ K̄[X1, · · · , Xn] | f(x) = 0 for all x ∈ V }

which is a �nitely generated ideal in K̄[X1, · · · , Xn] due to Hilbert's Basis Theo-

rem. It can be shown that an a�ne algebraic set V 6= ∅ is an a�ne variety if and

only if I(V ) is a prime ideal.

We regard those structures restricted to K and get the K-rational points of An

An(K) := {x = (x1, · · · , xn) ∈ An | xi ∈ K} = Kn.

When we de�ne xσ := (σ(x1), · · · , σ(xn)) for all points x = (x0, · · · , xn) ∈ An and

σ ∈ Gal(K̄/K), we get the equality

An(K) = {x ∈ An | xσ = x for all σ ∈ Gal(K̄/K)}.

Furthermore, an a�ne algebraic set V is said to be de�ned over K if I(V ) has

generators from K[X1, · · · , Xn]. In that case V (K) := V ∩ An(K) will denote the

set of K-rational points of V .

Let V ⊆ An be an a�ne variety. The set

K̄[V ] ∼= K̄[X1, · · · , Xn]�I(V ).

is an integral domain and is called the a�ne coordinate ring K̄[V ] of V . Elements

in it can also be represented as functions f : V → K̄. Further we call its quotient

�eld K̄(V ) the function �eld of V and for an a�ne variety which is de�ned over K
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we get K[V ] and K(V ) in an analogous way. Those are the subsets of K̄[V ] resp.

K̄(V ) which are �xed by Gal(K̄/K).

Let now x ∈ V be a point on V . Then the localization

K̄[V ]x := {f ∈ K̄(V ) | f = g/h with g, h ∈ K̄[V ] and h(x) 6= 0}

is called local ring of V at x and its elements f are regular or de�ned at x.

Definition. Let V be an a�ne variety, then we can de�ne its dimension dimV

to be the transcendence degree of K̄(V ) over K̄.

Particularly, we have dimAn = n and dimV(f) = n− 1 when f is a polynomial

of degree deg f ≥ 1. Hartshorne [37] proposes an alternative description of the

dimension of an a�ne variety in his Proposition I.1.7 as following.

Proposition 2.1. For an a�ne variety V we have dimV = dim K̄[V ] where

dim K̄[V ] denotes the Krull dimension of the a�ne coordinate ring.

Let V be an a�ne variety in An and let f1, · · · , fm ∈ K̄[X1, · · · , Xn] generate

I(V ). Set

Ax :=
(
∂fi
∂Xj

(x)
)
i,j
∈ K̄m×n.

Then V is said to be smooth or non-singular at a point x ∈ V when we have

rkAx = n − dimV . If this condition holds for all x ∈ V , the a�ne variety V itself

is called smooth, else it is called singular.

Now we introduce the projective analogues to the described concepts. The projec-

tive n-space over K is the set of all one-dimensional subspaces of An+1 and denoted

with Pn. For x, y ∈ An+1 \ {0} we have an equivalence relation de�ned through

x ∼ y ⇐⇒ ∃λ ∈ K̄ : y = λx

and the equivalence classes [x] = {λx | λ ∈ K̄∗} of all 0 6= x ∈ An+1 under this

relation are just the elements of Pn. Analogous to the a�ne n-space we de�ne the

K-rational points of Pn as the set

Pn(K) := {[x] ∈ Pn | x = (x0, · · · , xn) with xi ∈ K}

= {[x] ∈ Pn | [x]σ = [x] for all σ ∈ Gal(K̄/K)}.

Here [x]σ denotes the element [xσ] ∈ Pn with xσ = (σ(x0), · · · , σ(xn)) as before and

this is well-de�ned. We write [x] = [x0 : x1 : · · · : xn].
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2 THEORETICAL FOUNDATIONS

A polynomial f ∈ K̄[X0, · · · , Xn] is homogeneous of degree d if it satis�es

f(λX0, · · · , λXn) = λdf(X0, · · · , Xn)

for all λ ∈ K̄. For such a homogenous polynomial f and equivalent x, y ∈ An+1

with y = λx as above, we get f(x) = 0 if and only if f(y) = 0. Hence solutions of

the equation f([x]) = 0 are well-de�ned.

Let I be an homogeneous ideal of K̄[X0, · · · , Xn], that is an ideal which is �nitely

generated by homogeneous polynomials. Then we can de�ne a projective algebraic

set through

V(I) := {[x] ∈ Pn | f([x]) = 0 for all f ∈ I}

as well as the ideal of such a projective algebraic set V

I(V ) := {f ∈ K̄[X0, · · · , Xn] homogeneous | f([x]) = 0 for all [x] ∈ V }.

V is de�ned over K if I(V ) can be generated by homogeneous polynomials from

K[X0, · · · , Xn] and V (K) = V ∩Pn(K) is the set of K-rational points of V . Also the

de�nition of projective variety is analogous to the a�ne case with the appropriate

objects.

Let f ∈ K̄[X1, · · · , Xn] be a polynomial of degree d. Then the homogenization

of f with respect to Xi for i ∈ {0, · · · , n} is given by

f ∗ = Xd
i f
(
X0

Xi
, · · · , Xi−1

Xi
, Xi+1

Xi
, · · · , Xn

Xi

)
∈ K̄[X0, · · · , Xn].

In the other direction the dehomogenization of f ∈ K̄[X0, · · · , Xn] with respect to

Xi is

f∗ = f (X0, · · · , Xi−1, 1, Xi+1, · · · , Xn)

which can be interpreted as an polynomial in K̄[X1, · · · , Xn].

There are n+ 1 embeddings of An into Pn of the form

εi : An → Pn

(x1, · · ·xn) 7→ [x1, · · · , xi−1, 1, xi, · · ·xn].

When we consider a projective variety V , we will always choose an embedding of An

in Pn such that we have An∩V 6= ∅. This intersection will be an a�ne variety in An.
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2.1 Basic Concepts

With these concepts it is possible to de�ne the dimension, coordinate ring, function

�eld and smoothness of a projective variety V as the corresponding structures or

properties of V ∩ An as a�ne variety.

Maps between Projective Varieties. Let now V be a projective variety,

[x] ∈ V and f ∈ K̄(V ). Then we call the function f de�ned or regular at [x] if f can

be evaluated at [x], that is, it can be written as a fraction of functions from K̄[V ]

where the denominator g satis�es g([x]) 6= 0.

Let V0 and V1 be projective varieties in Pn and let fi ∈ K̄(V0) be functions which

provide [f0([x]), · · · , fn([x])] ∈ V1 for all [x] ∈ V0 where all fi are de�ned. A map

φ : V0 → V1 is called rational map if it is of the form φ = (f0, · · · , fn) with such

functions.

Such a rational map φ is de�ned over K or K-rational if there exists a scalar

λ ∈ K∗ with λf0, · · · , λfn ∈ K(V0), which due to Exercise 1.12 of Silverman [75]

happens if and only if we have φ = φσ = (fσ0 , · · · , fσn ) for all σ ∈ Gal(K̄/K). Here

fσi denotes the image of the function fi under the group action

Gal(K̄/K)× K̄(V0) → K̄(V0)

(σ, f) 7→ fσ

which is induced by the usual action of Gal(K̄/K) on coe�cients of polynomials;

see page 4 of Silverman [75] for more details.

We also have that

{f ∈ K̄(V0) | fσ = f for all σ ∈ Gal(K̄/K)} = K(V0)

(Remark 5.4.14 of Galbraith [28]) and thus φσ = φ as above is equivalent to

fi ∈ K(V0) for all i ∈ {0, · · · , n}.
Furthermore, φ is said to be de�ned at [x] ∈ V0 if there is some g ∈ K̄(V0) such

that all gfi are de�ned at [x] but not all of them are 0 evaluated at [x].

Definition. Let V0 and V1 be projective varieties. A rational map φ : V0 → V1

which is de�ned at every point [x] of V0 is called a morphism of varieties.

We will work mostly with algebraic curves, that is, projective varieties of dimen-

sion one. Especially when we deal with a smooth algebraic curve C, we have the

advantage that any rational map from C into a projective variety V is a morphism,

see Proposition II.2.1 of Silverman [75].
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Now we will deal with morphisms between smooth algebraic curves C0 and C1.

Hartshorne [37] shows in Theorem II.6.8 that such morphisms are either con-

stant or surjective. We want to introduce the degree of a morphism between smooth

algebraic curves.

Let C0 and C1 be smooth algebraic curves de�ned over the �eld K. We start

with de�ning the degree of a constant morphism φ : C0 → C1 to be 0. Let otherwise

φ : C0 → C1 be a non-constant morphism. We get an injective map

φ∗ : K(C1) → K(C0)

f 7→ f ◦ φ

which �xes elements of K and provides a �nite extension K(C0) of φ∗(K(C1)) and

set the degree of φ to be

deg φ := [K(C0) : φ∗(K(C1))] .

This extension can be separable or inseparable and we call φ a separable resp. in-

separable morphism accordingly. The separable and inseparable degrees of φ are the

corresponding degrees of the �eld extension and labeled with degs φ resp. degi φ. For

details of this construction see Theorem II.2.4 and following of Silverman [75].

Since a purely inseparable �eld extension can only occur in prime characteristic

p and its degree is a power of p then, this means that the inseparable part of a

morphism has to have a prime power degree. It can be shown that every morphism

can be split in a product of a separable one and a special inseparable morphism

which we describe below.

Let K be a �eld with characteristic p > 0 and let C be a smooth algebraic

curve de�ned over K such that we have C = V(I) with I := 〈f1, · · · , fm〉 being the

ideal generated by the polynomials fi ∈ K[X0, · · · , Xn]. Let q be a power of p and

de�ne the polynomials f (q)
i to arise from fi through taking the q-th power of each

coe�cient.

Definition. Let in this situation C(q) = V(I(q)) be the smooth algebraic curve

where I(q) is the ideal generated by f (q)
1 , · · · , f (q)

m . Then the morphism

πq : C → C(q)

[x0 : · · · : xn] 7→ [xq0 : · · · : xqn]

is called the q-th Frobenius morphism.
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The Frobenius morphism can be de�ned for an arbitrary algebraic variety

de�ned over Fq in an similar way as πq : A → A(q) with A(q) constructed analogue.

Further there exists a morphism

ρq : A(q) → A

with ρqπq = [q]A and πqρq = [q]A(q) , the so-called Verschiebung.

Silverman shows that the Frobenius morphism is purely inseparable and has

degree q. It turns out to be quite useful when investigating arbitrary morphisms,

because due to the following lemma (Corollary II.2.12 of Silverman [75]) we

can restrict to separable morphisms in many situations.

Lemma 2.2. Let C0, C1 be algebraic curves de�ned over a �nite �eld of character-

istic p and let φ : C0 → C1 be a morphism with degi φ = q = pr. Then there exists

a separable morphism ψ : C
(q)
0 → C1 with φ = ψ ◦ πq.

C0
πq //

φ

88C
(q)
0

ψ // C1

For proving this lemma it is relevant that K is a perfect �eld as can be seen in

Silverman's proof. We will not expand on this.

Now we want to restrict ourselves further to algebraic curves which are de�ned

by a single homogeneous polynomial f ∈ K[X0, · · · , Xn]. Since the dimension of

such a variety V(f) is n − 1 but an algebraic curve has dimension 1, this yields

n = 2.

Definition. An algebraic curve in P2 is called a plane projective curve. If C is

a non-singular plane projective curve over a �eld K with C(K) = V(f) 6= ∅ and
deg f = 3, C is called an elliptic curve and often labeled E.

For a plane curve C which is de�ned by a polynomial f of degree d, we can de�ne

the genus of C as g = bd−1
2
c. Thus, an elliptic curve is a curve of genus one. This

term comes from the Riemann-Roch-Theorem which can be found in Section I.5

of Stichtenoth [82].

We can de�ne an addition law on an elliptic curve E which provides an abelian

group structure with identity element O on E. The K-rational points E(K) are

a subgroup of E for every �eld K where E can be de�ned. The precise addition

formula can be looked up in Silverman [75] or Washington [91].
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More general, a smooth projective variety V where the structure of an abelian

group can be de�ned with morphisms and a base point O ∈ V (K), is called abelian

variety. Such an abelian variety A is de�ned over K if it is de�ned over K as a

projective variety and the morphisms for addition and inversion are also de�ned

over K. A is simple if there is no non-trivial abelian varieties B ( A.

For an arbitrary smooth algebraic curve C we can construct the Jacobian

variety Jac(C) which is an abelian variety such that C can be embedded in Jac(C).

The dimension of JacC is equal to the genus of C. For elliptic curves we have

Jac(E) = E. In particular, the Jacobian variety is isomorphic as a group to the

divisor class group Pic0C which is the set of degree zero divisors of C modulo the

principal divisors. Thus we can describe elements of JacC as residue classes of

divisors with degree zero. We will not extend much on this theory though since we

will not need much of the concepts for our results. Milne [60] addresses Jacobian

varieties in more detail.

Definition. Let A0 and A1 be abelian varieties with O0 and O1 being their re-

spective identity elements. A morphism φ : A0 → A1 with φ(O0) = O1 is called

isogeny. If there exists an isogeny between A0 and A1 which is not constant, A0 and

A1 are isogenous.

Proposition 7.1 of Milne [59] gives us a few nice properties of this general

concept.

Lemma 2.3. A non-constant isogeny φ between abelian varieties A0 and A1 is

surjective and has a �nite kernel. Further, dimA0 = dimA1 has to hold.

Let φ be a separable isogeny, then we know from the fundamental theorem of

�nitely generated abelian groups that there exist integers `1, · · · , `s ∈ N satisfying

`i+1 | `i for i ∈ {1, · · · , s− 1} such that we get

kerφ ∼= Z/`1Z⊕ · · · ⊕ Z/`sZ

and # kerφ =
∏s

i=1 `i. In that case we call φ a (`1, · · · , `s)-isogeny. If we have

s = 1, we see that the number ` := `1 is the degree of the isogeny and φ is called

`-isogeny.

Note that for genus g > 1 the term `-isogenies is sometimes ambiguously used

for either isogenies of degree ` or isogenies with kernel isomorphic to (Z/`Z)g. In

the elliptic curve case these two concepts coincide, but for higher genus g the latter

ones have degree `g. We will use the term for (`, · · · , `)-isogenies.
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A simple example of an isogeny from an abelian variety A over a �eld K to itself

is the so-called multiplication-by-m-map for any m > 0 de�ned through

[m] := [m]A : A → A

P 7→ mP = P + · · ·+ P︸ ︷︷ ︸
m times

.

For m < 0 we set [m](P ) := [−m](−P ) and [0](P ) := OA for all P ∈ A(K̄), so we

actually can de�ne multiplication bym for any integerm. Milne [59] Theorem 7.2

shows that this map has degree deg[m] = m2g where g is the dimension of A. For

positive m the kernel of the multiplication-by-m-map equals the m-torsion subgroup

of A,

ker[m] = A[m] := A(K̄)[m] = {P ∈ A(K̄) | mP = OA}.

We will use this connection and especially the p-torsion in characteristic p for

elliptic curves later in Section 2.1.2.

We are able to determine the structure of such a torsion subgroup as shown in

Remarks 7.3 and 7.4 of Milne [59]. For that we use the notation

Z/mZ× · · · × Z/mZ︸ ︷︷ ︸
n times

= (Z/mZ)n

for n ∈ N0 where we set (Z/mZ)0 = {0}.

Lemma 2.4. Let A be an abelian variety of dimension g de�ned over a �eld K.

1. Let m ∈ Z be an integer such that charK - m. Then we have

A[m] ∼= (Z/mZ)2g

as isomorphism of groups.

2. Let charK = p > 0 be a prime and m be a power of p. Then

A[m] ∼= (Z/mZ)rp(A),

where 0 ≤ rp(A) ≤ g is an integer called the p-rank of A. Again, we mean

group isomorphism.

Remark. The p-rank of an abelian variety A has a connection to the property of

A being ordinary or supersingular as we will see in Section 2.1.2.

Christina Delfs 9



2 THEORETICAL FOUNDATIONS

Definition. Let A0 and A1 be abelian varieties of dimension g de�ned over a �eld

K. Then

Hom(A0, A1) := {φ : A0 → A1 isogeny}

denotes the set of isogenies between A0 and A1. EndA0 := Hom(A0, A0) the so-

called endomorphism ring of A0.

Remark. We will see that Hom(A0, A1) is a free abelian group under addition of

morphisms and End(A0) is a ring with addition and composition of morphism.

When working with isogenies it is a natural question to ask how to determine

whether two given abelian varieties over a �eld K are isogenous apart from having

the same dimension. We will introduce the theory leading to a mighty theorem for

this issue on the following pages.

Definition. Let q be a prime power and V be a projective variety de�ned over Fq
and let an := #V (Fqn). The zeta function of V is the power series de�ned through

ZV := exp

(
∞∑
n=1

an
n
Xn

)
.

Especially the zeta function is de�ned for abelian varieties and for algebraic

curves where it is most often applied. Silverman [75] presents the so-called Weil

Conjectures concerning the zeta function in Theorem V.2.2. as follows.

Theorem 2.5. Let q be a prime power and V as above be a projective variety

de�ned over Fq. Let V be smooth and of dimension g. Then

1. The zeta function has rational coe�cients, ZV ∈ Q[[X]].

2. We have

ZV =
P1 · P3 · · ·P2g−1

P0 · P2 · · ·P2g

with Pi ∈ Z[X] for i ∈ {0, · · · , 2g} such that we have

Pi =

di∏
j=1

(1− αijX)

with |αij| =
√
q. This is also called the Riemann hypothesis.
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Let A be an abelian variety over a �eld K and for a prime ` with charK 6= `

consider the torsion subgroups A[`n] := A(K̄)[`n] with n ∈ N. Then an inverse limit

with respect to the the multiplication-by-`-map

[`] : A[`n] → A[`n−1]

induces the Tate module

T`A := lim←−
n

A[`n].

For abelian varieties A0 and A1 de�ned overK and prime ` 6= charK this concept

leads to a homomorphism

T` : Hom(A0, A1) → HomZ`
(T`A0, T`A1)

φ 7→ T`φ,

where Z` denotes the usual `-adic integers.
Mumford [61] uses this map in Theorem 19.3 and the following Corollary 1

for the following results which can also be seen in Milne [59], Theorem 10.15.

Proposition 2.6. Let A0 and A1 be abelian varieties de�ned over a �eld K with

dimension g0 resp. g1 and let ` be a prime with charK 6= `.

Then injective map

Hom(A0, A1)⊗Z Z` ↪→ HomZ`
(T`A0, T`A1)

is induced by T`.

Especially Hom(A0, A1) is a �nitely generated free abelian group and a Z-module
with rank at most 4g0g1.

For a �nite �eld K the map in Proposition 2.6 is even bijective due to the

Main Theorem of Tate [86].

Let A be an abelian variety of dimension g de�ned over a �eld K and ` be a

prime with charK 6= `. Due to Proposition 2.6 the endomorphisms ring EndA is

a free abelian group which is �nitely generated of rank less than or equal to 4g2.

Let φ ∈ EndA be an isogeny from A to itself. Then we know from Propo-

sition 2.6 that the Tate module T`A is a Z`-module of rank 2g. Thus when

we regard the homomorphism T`φ ∈ EndT`A, we can use standard linear alge-

bra to construct the transformation matrix MT`φ and the characteristic polynomial

χT`φ := det(XI2g −MT`φ).
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Mumford [61] shows in Theorem 19.4 that the polynomial χT`φ is a monic

polynomial of degree 2g with coe�cients from Z and is surprisingly independent

of `. Furthermore, we have deg φ = detMT`φ and deg(a idA−φ) = χT`φ(a) for all

a ∈ Z. Most importantly, the polynomial χT`φ is zero evaluated at φ.

With those results we can see that χT`φ is completely determined by φ and thus

the next de�nition is justi�ed.

Definition. Let A be an abelian variety of dimension g de�ned over a �eld K,

let ` be any prime di�erent from charK and let φ ∈ EndA be an isogeny. The

polynomial χφ := χT`φ is called characteristic polynomial of φ.

When we write χφ =
2g∑
i=1

aiX
i, we call a0 the norm and −a2g−1 the trace of φ.

Most important for our purposes is the characteristic polynomial of the Frobe-

nius morphism which will play an prominent role in our investigations concerning

endomorphisms of elliptic curves later. We often also call this characteristic poly-

nomial χA.

Both the concepts of zeta functions and characteristic polynomial of the Frobe-

nius are used in the fundamental result from Tate in Theorem 1c of [86] which

gives us a very useful tool to determine whether two abelian varieties are isogenous.

Theorem 2.7 (Tate's Isogeny Theorem). Let q be a prime power and A0

and A1 be abelian varieties de�ned over the �nite �eld Fq. Let χ0 and χ1 be the

characteristic polynomials of the respective q-Frobenius morphisms. Then we get

A0 and A1 are isogenous over Fq ⇐⇒ χA0 = χA1

⇐⇒ ZA0 = ZA1

⇐⇒ #A0(K) = #A1(K)

for every �nite extension K ⊇ Fq.

Especially the last condition will turn out to be of great importance later.

Elliptic Curves. Now we will present some individual structures of elliptic

curves which are much sore simple than in the general situation. Particularly for

computations and applications it turns out that they can be handled much better

than arbitrary varieties of higher dimension due to those properties.

F Silverman [75] shows how the generating polynomial for an elliptic curve

de�ned over K can be written in a projective Weierstrass form

X2
1X2 + a1X0X1X2 + a3X1X

2
2 −X3

0 − a2X
2
0X2 − a4X0X

2
2 − a6X

3
2
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with a1, a2, a3, a4, a6 ∈ K. When we apply dehomogenization with respect to

X2 we get the a�ne Weierstrass form

Y 2 + a1XY + a3Y −X3 − a2X
2 − a4X − a6

in the variables X := X0/X2 and Y := X1/X2. The point [0, 1, 0] ∈ P2 is a

solution of the �rst projective equation but cannot be displayed in the second

a�ne situation. Such a point is called point at in�nity and usually denoted

by O. For an elliptic curve there is exactly one point at in�nity.

F Let F ∈ K[X0, X1, X2] be the homogeneous de�ning polynomial of an elliptic

curve in projective description as above and f ∈ K[X, Y ] be the dehomoge-

nized one. The elliptic curve E can be written as

{[x0 : x1 : x2] ∈ P2 | F ([x0 : x1 : x2]) = 0} or

{(x, y) ∈ K̄2 | f(x, y) = 0} ∪ {O}.

We will prefer the a�ne notation and use the phrasing E is represented by f ,

always keeping the projective background in mind.

F For charK > 3 we can simplify this Weierstrass polynomial to

Y 2 −X3 − aX − b

with a, b ∈ K. Since in our problems the cases p = 2 and p = 3 are of no

interest, we will usually restrict to such an equation if we need an explicit

description of the curve. For the forms in characteristic 3 and the conversion

of the equations into each other see Silverman [75], Chapter III.1.

F An elliptic curve E is a smooth algebraic curve, so we have to check the

di�erentials ∂f
∂X

and ∂f
∂Y

not being both zero at a point of E.For charK > 3 a

cubic curve E is smooth if and only if the discriminant of E

∆ := ∆(E) := −16(4a3 + 27b2) ∈ K

is not zero.

F The j-invariant of an elliptic curve E is given through the equation

j := j(E) := −1728
(4a)3

∆
.
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For every element of K there is an elliptic curve de�ned over K with this

element as j-invariant and two elliptic curves E0 and E1 are isomorphic over

K̄ if and only if we have j(E0) = j(E1). These j-invariants will play an

important role in our investigation later. They further help to see where the

elliptic curve can be de�ned.

Proposition 2.8. An elliptic curve E can be de�ned over Fq if and only if its

j-invariant lies in Fq.

Proof. The implication '=⇒' is a trivial computation since j is de�ned via the

coe�cients of the Weierstraÿ polynomial.

The other direction '⇐=' follows from Proposition 1.4.c of Silverman [75]

as for given j ∈ Fq the curves given by Weierstraÿ polynomials

Y 2 +XY −X3 + 36
j−1728

X + 1
j−1728

for j 6= 0, 1728

Y 2 + Y −X3 for j = 0

Y 2 −X3 −X for j = 1728

are smooth and have j-invariant j.

In characteristic p > 0 we have already seen for q = pr the q-th Frobenius

which for an elliptic curve E de�ned over Fq can be expressed as a map

πq : E → E(q)

P := (x, y) 7→ (xq, yq)

OE 7→ OE(q)

which is also an isogeny and has degree deg πq = q. If E is de�ned over K = Fq,
we even get E(q) = E and hence an endomorphism with πq : E → E, the so-

called Frobenius endomorphism. Furthermore, for any s ∈ N the Frobenius

πq generates the Galois group Gal(Fqs/Fq) which is a cyclic group of order s

(Galbraith [28], Theorem A.8.3).

This endomorphism πq is very important in our work because it provides a simple

way to check whether an isogeny between elliptic curves is de�ned over Fq as seen
in Lemma 2.19. The resulting statement appears at several crucial points in our

discussion and provides the possibility to regard supersingular isogeny graphs in the

way we do in Section 4.2.2.
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Remark. There are several nice properties of isogenies between elliptic curves over

a �eld K which we will state without proof here. They can be found in Chapter III

of Silverman [75].

F Every isogeny between two elliptic curves E0 and E1 over a �eld K is a homo-

morphism. Hom(E0, E1) is a torsion-free Z-module with rank at most four.

F Every non-constant isogeny has a �nite kernel and is geometrically surjective,

which means that φ : E0(K̄)→ E1(K̄) is surjective.

F We have already de�ned the degree of a morphism in a more general setting.

Especially we have that deg : Hom(E0, E1)→ Z is a positive de�nite quadratic

form. That means in particular that the degree is always non-negative, equal

zero only for the trivial isogeny [0], and we have deg φ = deg−φ. Further the
pairing de�ned through 〈φ, ψ〉 := deg(φ+ ψ)− deg φ− degψ is bilinear.

Let E be an elliptic curve de�ned over a �eld K. We already de�ned the endo-

morphism ring EndE as Hom(E,E) and have seen that it is actually a ring with

addition and composition of isogenies. We will investigate its structure in more detail

in Section 2.2.3. When we regard only endomorphisms which are de�ned over K,

we write EndK(E) for the respective set. Further the automorphism group Aut(E)

of E is the set of isogenies from E to itself with degree 1, that is, isomorphisms.

Since we have at least ± id ∈ Aut(E), the number of automorphisms of an elliptic

curve E has to be larger than one. Furthermore, # Aut(E) divides 24 and we have

# Aut(E) =



2 if j(E) 6∈ {0, 1728},

4 if j(E) = 1728 and charK > 3,

6 if j(E) = 0 and charK > 3,

12 if j(E) = 0 and charK = 3,

24 if j(E) = 0 and charK = 2

as seen in Galbraith [28], Theorem 9.4.4. This will become important when we

regard equivalent isogenies later in this section.

We have seen in Lemma 2.2 that any isogeny φ can be represented as the com-

position φ = ψ◦πq of a separable isogeny ψ and a Frobenius morphism. Therefore

we often restrict to separable isogenies only which also have the advantage that the

degree can be determined by the number of points in its kernel. We will see that

our construction methods always yield separable isogenies, too.

A useful criterion for separability of some special isogenies can be found in

Corollary III.5.5 of Silverman [75].
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Corollary 2.9. Let E be an elliptic curve over a �nite �eld Fq of characteristic
p. Let m,n be integers and de�ne the isogeny φ : E → E through φ := [m] + [n]πq.

Then we have

φ is separable ⇐⇒ p - m.

Remark. In the situation of the corollary we can immediately see the following

properties:

F [m] : E → E is separable ⇐⇒ m 6≡ 0 (mod p),

F πq : E → E is never separable.

The next result is Corollary III.4.11 of Silverman [75] and will be needed

in a later part of this work.

Lemma 2.10. Let K be a �eld, E0, E1 and E2 be elliptic curves de�ned over K with

non-constant isogenies φi : E0 → Ei for i ∈ {1, 2}. If φ1 is separable and we have

kerφ1 ⊆ kerφ2, then there exists an unique isogeny φ : E1 → E2 with φ2 = φ ◦ φ1.

E0
φ1 //

φ2

99E1
φ // E2

Definition. Let E0 and E1 be elliptic curves de�ned over a �eld K with identity

elements O0 resp. O1. Then E1 is a twist of E0 if there exists a K̄-isomorphism

φ : E0 → E1 which sends O0 to O1. If E1 is also K-isomorphic to E0, it is called a

trivial twist.

If E2 is another twist of E0 which is K-isomorphic to E1, the twists E1 and

E2 are called equivalent. The set containing equivalence classes of twists of E0 is

denoted by Twist(E0).

Twists will play an important role in our considerations later. In our case we

only need them for elliptic curves de�ned over �nite �elds Fq where q is a power of

the prime p with p > 3. There we can re�ne the de�nition mostly to the notion of

quadratic twists.

Let E be an elliptic curve de�ned over K = Fq with charK = p > 3 and let

E be given by a Weierstrass equation Y 2 = X3 + aX + b with a, b ∈ Fq. For

any d ∈ F∗q we de�ne the elliptic curve E(d) through the Weierstrass equation
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2.1 Basic Concepts

Y 2 = X3 + d2aX + d3b and regard the map

φ : E → E(d)

(x, y) 7→ (dx, d3/2y).

One can check that this is an isomorphism, so E(d) is a twist of E; but if d1/2 is

not an element of Fq, the map φ is not de�ned over Fq but over the �eld extension

Fq(d1/2). The other direction is also true, so we have

E and E(d) are not isomorphic over Fq ⇐⇒
(
d

q

)
= −1.

Such an elliptic curve E(d) is called a non-trivial quadratic twist of E. We even have

that E(d0) and E(d1) are isomorphic over Fq for two elements d0, d1 ∈ F∗q which are

not squares in Fq, so there is exactly one equivalence class of non-trivial quadratic

twists of E.

It can be shown that for j(E) 6∈ {0, 1728} there are no other equivalence classes

than the one of E itself and the one of the quadratic twists. For j(E) = 1728

or j(E) = 0 we have to add quartic resp. cubic twists in a similar manner, see

Proposition X.5.4 of Silverman [75].

We obtain that if E is an elliptic curve de�ned over Fq with characteristic p > 3,

we have

# Twist(E) =


2 if j(E) 6∈ {0, 1728},

4 if j(E) = 1728,

6 if j(E) = 0.

We need this later to determine the Fp-isomorphism classes of supersingular elliptic

curves which are de�ned over Fp, see Section 4.2.2 of this thesis.

When we regard elliptic curves over a given �eld K, the question arises whether

we can determine if they are isogenous or not. We have seen in general from The-

orem 2.7 that for K = Fq this property relies on the number of Fq-rational points
of the elliptic curves. It can also be determined with the characteristic polynomial

of their Frobenius as well as their trace. We will brie�y introduce the notation in

the elliptic curve situation now.
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Proposition 2.11. Let E be an elliptic curve de�ned over the �eld K and let

φ ∈ EndK E be a non-constant isogeny with deg φ = d. Then there exists some

tφ ∈ Z with

φ2 − [tφ] ◦ φ+ [d] = [0].

This can be seen in Theorem 9.9.3 of Galbraith [28]. The integer tφ is the

trace of φ and the polynomial X2 − tφX + d ∈ Z[X] the characteristic polynomial

of φ as in the general version before.

We are mostly interested in the case where E is an elliptic curve de�ned over a

�nite �eld Fq and regard the Frobenius πq ∈ EndFq E. From now on t := tE will

always denote the integer from the equation

π2
q − [tE]πq + [q] = 0

which is the trace of Frobenius and will appear often in our work. It can be shown

that

tE = q + 1−#E(Fq)

and thus we can also talk about the trace of the elliptic curve E, which justi�es

the notation. A theorem from Hasse (for example proven in Theorem V.1.1 of

Silverman [75]) says that we always have

|tE| ≤ 2
√
q.

Thus we have the following possibility for the cardinality of E(Fq).

Proposition 2.12. Let p be a prime and E be an elliptic curve de�ned over the

�nite �eld Fq of characteristic p. Then the number of Fq-rational points of such an

elliptic curve E is restricted through

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

In fact there are polynomial point-counting algorithms to explicitly determine

this number like Schoof's algorithm or an improvement of it called SEA algorithm

by Schoof, Elkies and Atkin, both treated for example in Schoof [73].

Isogenies usually have non-trivial kernels, so they are not bijective. But it turns

out that there is a way to return to the original curve via another isogeny which is

related to the �rst. Namely for every non-constant isogeny φ : E0 → E1 there exists
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an unique isogeny φ̂ : E1 → E0 with deg φ̂ = deg φ = m as well as φ̂ ◦ φ = [m]E0

and φ ◦ φ̂ = [m]E1 . Further we de�ne [̂0] := [0]. The isogeny φ̂ is called the dual

isogeny of φ and has some further nice computational properties (Theorem III.6.2

of Silverman [75]) like

F ψ̂ ◦ φ = φ̂ ◦ ψ̂ for isogenies φ : E0 → E1, ψ : E1 → E2,

F ψ̂ + φ = ψ̂ + φ̂ for isogenies φ, ψ : E0 → E1,

F
̂̂
φ = φ for every isogeny φ : E0 → E1.

Furthermore, φ̂ has the same trace tφ as φ and a short computation shows that

we get [tφ] = φ+ φ̂.

Remark. For an abelian variety A of dimension g > 1 the concept of dual isogenies

cannot be applied completely analogous. It is true that for an isogeny φ : A0 → A1

of abelian varieties there exists an isogeny ψ : A1 → A0 of the same degree d

such that we have ψ ◦ φ = [d]A0 and φ ◦ ψ = [d]A1 ([34], Proposition 5.12). An

example of this situation we have already seen with the Frobenius morphism and

the Verschiebung. However, this isogeny ψ is usually not called dual isogeny to φ.

For the concept of what is generally understood as dual isogeny we need to

introduce the dual variety A∨ as in Section 8 and 9 of Milne [59] which is also

de�ned over K and has the same dimension but is usually di�erent from A. An

abelian variety A and its dual satisfy A∨∨ ∼= A. Further A and A∨ are isogenous as

seen in 16.2 of Oort [65] and an isogeny ψ : A→ A∨ is called polarization. If such

an isogeny ψ is an isomorphism, we speak of a principal polarization and if such an

isogeny exists, A is principally polarized. For example Jacobians of dimension two

are always principally polarized.

The dual of an isogeny φ : A0 → A1 between abelian varieties A0 and A1 of

dimension g > 1 can be seen as the morphism φ∨ : A∨1 → A∨0 . Especially, for A as

above and an isogeny φ ∈ EndA we get φ∨ ∈ EndA∨. For the case of an elliptic

curve E we have the relation E = E∨ and there exists a ψ : E → E∨ as a principal

polarization. In this case both here described concepts coincide. That means that

for elliptic curves the dual of the Frobenius morphism πq equals the Verschiebung

ρq which is not the case for arbitrary abelian varieties.

The concept of the dual isogeny on elliptic curves yields the symmetry of an

equivalence relation given by

E0 ∼ E1 ⇐⇒ ∃ isogeny φ : E0 → E1.
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The equivalence classes under this relation are called isogeny classes. The following

theorem summarizes the fundamental result of Tate [86] for the elliptic curve sit-

uation as we will use it later and classi�es the isogeny classes for the set of elliptic

curves de�ned over a �nite �eld Fq.

Theorem 2.13 (Tate's Isogeny Theorem for Elliptic Curves). Let E0

and E1 be elliptic curves de�ned over the �nite �eld Fq. Then we have

E0 and E1 are isogenous ⇐⇒ #E0(Fq) = #E1(Fq)

⇐⇒ tE0 = tE1 .

Due to the mentioned polynomial-time point counting algorithms it is now easy

to determine whether two given elliptic curves are isogenous or not. Even deter-

mining for a �xed isogeny degree ` which elliptic curves are `-isogenous to a given

elliptic curve E can be done in a simple way as we see next.

Proposition 2.14. Let ` be an integer coprime to the characteristic of the �eld

K in the case where the latter is nonzero. There exists a polynomial Φ` ∈ Z[X, Y ]

such that for elliptic curves E0 and E1 de�ned over K we have

E0 and E1 are `-isogenous ⇐⇒ Φ`(j(E0), j(E1)) = 0.

Remark. F Although the statement is usually �rst formulated for K being a

number �eld, it is also true for elliptic curves de�ned over a �nite �eld Fq and
the reduction of the polynomial in Fq[X, Y ].

F The polynomial Φ` is called the `-modular polynomial or `-th classical modular

polynomial.

F We will investigate the background of this polynomial in Section 3.2.1 and

give a description of it.

Although we know how to determine whether two elliptic curves are isogenous

and how to �nd `-isogenous elliptic curves now, explicitly calculating such an isogeny

turns out to be much more complicated and entails interesting applications in cryp-

tography. Therefore we are going to deal with computational approaches to several

variants of the following problem in the course of this work.

Problem 3 (General Elliptic Isogeny Problem). Given elliptic curves E0, E1 over

Fq with #E0(Fq) = #E1(Fq), explicitly compute an isogeny between them in terms

of a rational map.
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Even when we look for separable isogenies only, it is not immediately clear how

to proceed. We have to provide an explicit form of an isogeny φ : E0 → E1 in terms

of a rational map to solve this problem.

One method to construct isogenies relies heavily on subgroups of a given order of

the elliptic curve E0 which become kernels of isogenies. Its correctness comes from

the next statement as in Proposition 4.12 of Silverman [75].

Proposition 2.15. Let E be an elliptic curve de�ned over a �eld K and let

G ⊆ E(K̄) be a �nite subgroup. Then there exist a unique elliptic curve EG and a

separable isogeny φG : E → EG with kerφG = G.

In particular this means that the sequence

0 −→ G −→ E −→ EG −→ 0

is exact. According to this proposition isogenies are for the most part determined by

their kernels. If G is de�ned over K � that means, it is a Galois invariant subgroup

and thus we have the relation σ(G) = G for all σ ∈ Gal(K̄/K) � the elliptic curve

EG and the isogeny φG can be de�ned over K, too.

Recall that an isogeny is a rational map and we explained before what it means

for a rational map to be de�ned over a given �eld. There are the explicit formulae

of Vélu [90] which show how to compute such an isogeny and image curve in the

following way.

Let E be an elliptic curve de�ned over a �eld K given by a Weierstraÿ

polynomial Y 2 −X3 − aX − b with a, b ∈ K. For a point P 6= O from G we write

P = (xP , yP ). The isogeny φG = (f1, f2) starting at E with

f1(x, y) = x+
∑
O6=P∈G

(
3x2

P + a

x− xP
+

2y2
P

(x− xP )2

)
,

f2(x, y) = y − y
∑
O6=P∈G

(
3x2

P + a

(x− xP )2
+

4y2
P

(x− xP )3

)

for all (x, y) ∈ E(K̄) satis�es kerφG = G as can be explicitly checked.

The image curve Ẽ := EG of the isogeny will be de�ned by the Weierstraÿ

polynomial Y 2 −X3 − ãX − b̃ where the values for ã and b̃ can be computed as

ã = a− 5
∑
O6=P∈G

(3x2
P + a),

b̃ = b− 7
∑
O6=P∈G

(5x2
P + 3axP + 2b).
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Example 2.16. Let E be an elliptic curve de�ned over the �nite �eld K := Fq of
characteristic p > 3 which is given by a Weierstraÿ polynomial Y 2 − f(X) with

f := X3 + aX + b ∈ K[X]. We want to show how to explicitly compute all outgoing

2-isogenies from E.

Let f ∈ K[X] have the three distinct roots α0, α1, α2 ∈ K̄, so we get the points

Pi := (αi, 0) ∈ E(K̄) which we call Weierstraÿ points. These are the only

possible points of order two of E and thus the subgroups with exactly two elements

are {Pi,O}.
Each of those subgroups de�nes the kernel of an 2-isogeny φi : E → Ei with

φi(x, y) =

(
x+

3α2
i + a

x− αi
, y − y 3α2

i + a

(x− αi)2

)
where the image curve Ei is given by the Weierstraÿ polynomial Y 2−X3−aiX−bi
with ai := −4a− 15α2

i and bi := −13b− 35α2
i − 21aαi.

We get all possible isogenies of degree two with this approach and the occurring

equations are obviously easy to compute.

In Vélu [90] the formulae are slightly more complicated as they are stated not

only for short Weierstraÿ polynomials, but the principle is the same. Although

computing 2-isogenies like in the last example is fast, evaluating the equations gets

harder with increasing degree of the isogeny since there are proportionally more

terms in the sum. We get the following result, following Section 25.1.1 of Gal-

braith [28].

Proposition 2.17. Let E be an elliptic curve de�ned over a �eld K and let

G ⊆ E(K̄) be a �nite subgroup of order `. Computing the elliptic curve EG and the

isogeny φG has expected Õ(`) running time in �eld operations and needs expected

O(`) storage in terms of �eld elements.

This complexity does not include �nding the appropriate subgroups which is

another task and has to be considered independently. Furthermore, if we consider

our general elliptic isogeny problem as stated above, we usually do not know the

kernel of an isogeny φ : E0 → E1 at all. Elkies [22] presents a way to obtain it

from the knowledge of the j-invariants of E0 and E1 using O(`2) K-operations (see

Section 25.2.1 of Galbraith [28]). This approach as well as an idea of Stark [81]

are presented and analyzed in Bostan, Morain, Salvy, Schost [3] where also

some fast alternatives for the Vélu formulae in certain situations are given.

Those methods do not apply well in small characteristic, where other algorithms

have been invented as in Couveignes [15] or especially for characteristic two in

Lercier [50].
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There are other, even subexponential approaches for computing isogenies of large

degree (Jao and Soukharev [44]) or on a quantum computer (Childs, Jao,

Soukharev [11]).

The complexity of all those approaches depends heavily on the degree of the

attained isogeny. However, since this number can be potentially large and, in par-

ticular, is not predictable when only the arbitrary isogenous elliptic curves E0 and

E1 are given, this is seems to be a badly chosen measurement. Therefore in Sec-

tion 4 we want to concentrate on algorithms which do not rely on the size of the

kernel of the isogeny but only on the number of elements of the underlying �eld Fq.
Note that the isogeny φG from the previous propositions is only determined up

to equivalence in the following sense.

Definition. Let E0 and E1 be elliptic curves de�ned over a �eld K. Isogenies

φ, ψ : E0 → E1 are called equivalent if they ful�ll kerφ = kerψ.

Remark. Let E0, E1 be elliptic curves over a �eld K and φ : E0 → E1 be a sepa-

rable isogeny.

F Obviously, φ and −φ are always equivalent.

F The isogeny λ1 ◦ φ is equivalent to φ for every λ1 ∈ Aut(E1) but the isogeny

φ ◦ λ0 does not have to be equivalent to φ for all λ0 ∈ Aut(E0) (see Ex-

ercise 25.1.1 of Galbraith [28]). This can only happen when we have

j(E0) ∈ {0, 1728}, though.

We have seen before that for charK > 3 and j(E0) 6∈ {0, 1728} we always have
exactly two automorphisms of E0, so Aut(E0) = {± id}. If we have j(E0) = 0

or j(E0) = 1728, there are additional automorphisms which can provide isoge-

nies ψ : E0 → E1 which are not equivalent to φ. Nevertheless, up to equivalence

they can have the same dual as φ, since for an isogeny ψ := φ ◦ λ0 : E0 → E1 with

λ0 ∈ Aut(E0) we have ψ̂ = λ̂0 ◦ φ̂ which � due to the second point of the previous

remark � is usually equivalent to φ̂ (except possibly in the case j(E1) ∈ {0, 1728}).
Hence for j-invariants 0 and 1728 there can be several non-equivalent outgoing

isogenies which have the same dual. We will see that this is a small inconvenience for

isogeny graphs since we are not completely able to describe the graphs as undirected

and apply theory of undirected graphs on them.

Let E0 and E1 be elliptic curves de�ned overK. We are interested in the question

when an isogeny φ between them is also de�ned over K. If an isogeny φ is de�ned

over K, this implies that the kernel of φ is Galois invariant (Exercise 9.6.5 of

Galbraith [28]). Due to the discussion after Proposition 2.15 there is even
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the useful equivalence that K-rational `-isogenies correspond to Galois invariant

subgroups of order ` of elliptic curves as �xated in the next lemma.

Lemma 2.18. Let E0 and E1 be elliptic curves de�ned over K and φ : E0 → E1 be

an isogeny of degree `. φ is de�ned over K if and only if kerφ is a Galois invariant

subgroup of E(K̄) with # kerφ = `.

For elliptic curves de�ned over the �nite �eld Fq of characteristic p there is a

simpler way to test whether an isogeny between them is also de�ned over Fq. This
is closely linked to the q-th Frobenius endomorphism πq,i ∈ EndEi which for

i ∈ {0, 1} maps a point P = (x, y) ∈ Ei(F̄q) to the point (xq, yq).

Note that there is also the well-known Frobenius element in Gal(F̄q/Fq) which
we also denote with πq here. For z ∈ F̄q we have πq(z) = zq and obviously πq

acts trivial on Fq. This Galois automorphism induces the other version of the

Frobenius on elliptic curves and for P = (x, y) ∈ Ei we have

πq,i(P ) = (xq, yq) = P πq ∈ E(q)
i .

This is used in the following result.

Lemma 2.19. Let E0 and E1 be elliptic curves de�ned over Fq and φ : E0 → E1 be

an isogeny. Then we have

φ is de�ned over Fq ⇐⇒ φπq = φ

⇐⇒ φ ◦ πq,0 = πq,1 ◦ φ.

Proof. Let φ : E0 → E1 be an isogeny between elliptic curves de�ned over Fq. We

regard the description φ = (f1, f2) with functions f1, f2 ∈ K̄(E0) and let Fqm be

an extension �eld of K = Fq where all coe�cients of the polynomials from K[E0]

de�ning the fi live. Especially this �eld extension is �nite.

Thus we deduce that φ is already de�ned over Fq if and only if we have φσ = φ for

all σ ∈ Gal(Fqs/Fq) instead of Gal(F̄q/Fq). Since this Galois group is generated by

πq, it is enough to check the equality of φπq and φ. This proves the �rst equivalence.

In general, the equality φσ(P σ) = (φ(P ))σ is true for an isogeny φ : E0 → E1

and all σ ∈ Gal(F̄q/Fq) (Silverman [75], Chapter I.3 on page 11). Hence we get

for P ∈ E0

φπq(πq,0(P )) = φπq(P πq) = (φ(P ))πq = πq,1(φ(P ))

and thus φπq ◦ πq,0 = πq,1 ◦ φ. Thus we see immediately that the condition φ = φπq

is equivalent to the wanted result φ ◦ πq,0 = πq,1 ◦ φ.
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Although the formulae of Vélu give us a way to compute an isogeny between

two elliptic curves over a �eld K, it turns out that they are harder to compute

with more elements in the subgroup; thus the next observation which comes from

Theorem 25.1.2 of Galbraith [28] is crucial for computational performance.

Proposition 2.20. Let E0 and E1 be elliptic curves de�ned over a �eld K and

φ : E0 → E1 be a separable isogeny. Then there exist separable isogenies φ1, · · · , φn
of prime degree between suitable elliptic curves such that

φ = φn ◦ · · · ◦ φ1 ◦ [m]

where m is the largest integer such that E[m] ⊆ kerφ.

Remark. F If φ is de�ned over K, the φi can be de�ned over K, too.

F When φ is not guarantied to be separable, we have to add a Frobenius

morphism like in Lemma 2.2.

The degree of the isogeny φ in Proposition 2.20 is the product of the degrees

of the other isogenies. Hence, computing an isogeny with potentially large degree

between two elliptic curves boils down to constructing a chain of isogenies with

smaller and prime degree which are hopefully faster to compute. Still, the question

remains how to �nd such a chain. We will deal with algorithms for that problem in

Section 4.

Although we will see that for small degrees the formulae of Vélu [90] give us a

reasonable construction of an isogeny, they need the kernel of the resulting isogeny

as input which usually is not known. When we have a starting elliptic curve E0

de�ned over a �eld K and a prime ` di�erent from charK, we can compute the

j-invariants of all image curves of `-isogenies with the modular polynomial from

Proposition 2.14.

There are several ways to determine the subgroup which is the kernel of an

unknown isogeny φ : E0 → E1 when only the j-invariants of E0 resp. E1 are given,

see Chapter 25.2 of Galbraith [28] for a discussion. The algorithms are quite

technical, so we refrain from a detailed description and concentrate on the following

problem instead.

Problem 4 (Isogeny Chain Problem). Given elliptic curves E0, E1 over Fq with
#E0(Fq) = #E1(Fq), compute a chain of isogenies with small prime degrees between

them.
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Such a chain of isogenies corresponds to a path in a certain isogeny graph as we

will see later. In the case of ordinary elliptic curves de�ned over �nite �elds those

graphs have a nice structure like a �volcano�. There are good-enough algorithms

which are able to �nd a path between two arbitrary nodes in a component of one of

them.

However, these methods cannot be applied on supersingular elliptic curves due

to a di�erent graph structure. In the course of this thesis we will investigate the

alternatives for computing a chain of isogenies in the supersingular case. For the

case where the elliptic curves in question are de�ned over the base �eld Fp we will
provide an algorithm for this problem which is faster than the ones known before.

2.1.2 Supersingular Elliptic Curves

As we have seen, the multiplication-by-m-isogenies on an abelian variety A are

strongly related to the m-torsion of A. For elliptic curves the structure of certain

torsion subgroups turns out to have a big in�uence on the behavior of the elliptic

curves themselves. The possible form of any m-torsion subgroup can be determined

as in Lemma 2.4. Simpli�ed to the case of elliptic curves it can be stated as in the

following result which can also be found in Silverman [75, Theorem III.6.4].

Lemma 2.21. Let E be an elliptic curve over a �eld K and m ∈ N.

1. If charK = 0 or charK = p > 0 and p - m, then

E[m] ∼= Z/mZ× Z/mZ.

2. If charK = p > 0 and m be a power of p, then

E[m] = {O} or E[m] ∼= Z/mZ.

Both times the isomorphism means group isomorphism.

The second part of this proposition leads to the important di�erentiation between

ordinary and supersingular elliptic curves. Note that this works only for elliptic

curves de�ned over �elds of positive characteristic.

Definition. Let E be an elliptic curve over a �eld K with charK = p > 0. If E

has no non-trivial p-torsion, so E[p] = {O}, it is called supersingular and otherwise

ordinary.
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In particular this means that the multiplication-by-p-map has trivial kernel on

supersingular elliptic curves in characteristic p and we have already seen that it is

inseparable. There are several other ways of de�ning these terms through equivalent

properties, some of them are needed in this work and listed below. The equivalences

are shown in Silverman [75, Theorem V.3.1].

Theorem 2.22. Let E be an elliptic curve de�ned over a �nite �eld K with

charK = p > 0 and for 1 ≤ r ∈ Z let πpr : E → E(pr) denote the pr-Frobenius

morphism. The following concepts are equivalent.

1. E[pr] = {O} for all r ≥ 1,

2. π̂pr is purely inseparable for all r ≥ 1,

3. [p] : E → E is purely inseparable and j(E) ∈ Fp2,

4. EndE is an order in a quaternion algebra.

For curves of higher genus and arbitrary abelian varieties the de�nition of super-

singularity is based on the concept of elliptic curves being supersingular.

Definition. Let A be an abelian variety of dimension g de�ned over Fq. A is

called supersingular if there exists a supersingular elliptic curve E de�ned over F̄q
such that A is isogenous to E × · · · × E︸ ︷︷ ︸

g-times

over F̄q.

Let C be an algebraic curve de�ned over Fq. Then C is called supersingular

when its Jacobian variety JacC is supersingular.

As mentioned before, there is a connection between the supersingularity of an

abelian variety A and its p-rank since from this de�nition we can immediately deduce

that a supersingular abelian variety of dimension g de�ned over the �nite �eld Fq
of characteristic p has p-rank zero. For g = 2 this is even an equivalence as seen in

Exercise 10.8.6 of Galbraith [28].

Lemma 2.23. Let A be an abelian variety of dimension g = 2 de�ned over the

�nite �eld Fq of characteristic p. Then we have

A is supersingular ⇐⇒ rp(A) = 0.

Matching to the elliptic case an abelian variety A of dimension g de�ned over

the �nite �eld Fq of characteristic p is called ordinary if it has p-rank r(A) = g.

In the remainder of this section we will deal with the genus one case. There

are several nice properties of supersingular elliptic curves E de�ned over a �nite
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�eld Fq of characteristic p. For example the restriction to j-invariants to maximal

Fp2 from Theorem 2.22.3 is quite helpful for handling supersingular elliptic curves

in applications. Another one of them is an implication concerning the number of

Fq-rational points of E.

Proposition 2.24. Let E be an elliptic curve de�ned over the �nite �eld Fq with
charK = p > 0 and let t := tE = q + 1 −#E(Fq) ∈ Z be the trace of E as de�ned

before. Then we have

E is supersingular ⇐⇒ t ≡ 0 (mod p)

⇐⇒ #E(Fq) ≡ 1 (mod p).

Proof. First we observe that since the isogeny [1] − πq ∈ EndE is separable due

to Corollary 2.9, we have

#E(Fq) = #{P ∈ E | πq(P ) = P}

= # ker([1]− πq)

= deg([1]− πq).

Therefore we can write t = deg πq + 1− deg([1]− πq) and after a short computation

we obtain

[t] = πq + π̂q.

Because the Frobenius πq is always purely inseparable and the set of insepara-

ble endomorphisms on an elliptic curve form an ideal in the endomorphism ring

(Silverman [75], Corollary III.5.6), we obtain that [t] is inseparable if and only

if the so-called Verschiebung π̂q is inseparable. Using Corollary 2.9 again, we

furthermore see that the inseparability of [t] is equivalent to p dividing t.

So we achieve

E is supersingular ⇐⇒ π̂q is purely inseparable

⇐⇒ [t] = πq + π̂q is purely inseparable

⇐⇒ t ≡ 0 (mod p).

The second equivalence of the proposition is an obvious conclusion but often the

more useful phrasing for applications.

For most primes p this proposition can immediately be simpli�ed to the case

q = p where we even get an equality.
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Corollary 2.25. If in the situation above we have K = Fp for p > 3, we get

E is supersingular ⇐⇒ t = 0

⇐⇒ #E(Fp) = p+ 1.

Proof. The Hasse bound and the condition on p tell us that |t| ≤ 2
√
p < p has

to hold, so t = 0 is the only possibility for t ≡ 0 (mod p) to be true.

The cases p = 2 and p = 3 are excluded in Corollary 2.25 not only because

this kind of proof does not work here but because the statement does not hold for

them. For example there are supersingular elliptic curves over F2 or F3 with only

one F2-rational resp. F3-rational point as can be seen in tables in the proof of the

next Lemma.

Lemma 2.26. Let E be an elliptic curve over a �eld K with charK = p > 0.

1. Case p = 2:

E is supersingular ⇐⇒ j(E) = 0

⇐⇒ E ∼= V(Y 2 + Y −X3).

2. Case p = 3:

E is supersingular ⇐⇒ j(E) = 1728

⇐⇒ E ∼= V(Y 2 −X3 −X).

Proof. It is easy to compute a complete list of all elliptic curves over F2 resp. F3

as seen in Tables 1 and 2. Then we can determine the supersingular ones in it

using Proposition 2.24 and checking for which curves the number of Fp-rational
points is 1 modulo p. We see that they all have the requested j-invariants 0 resp.

1728 (which is also 0 in F3). The second equivalence in each case of course means

isomorphism over F̄p where the j-invariant classi�es the isomorphism class.

Weierstrass Polynomial of E (with a, b ∈ F2) #E(F2) j(E)
Y 2 + Y − X3 − aX2 − (a+ 1)X − 1 1 0
Y 2 + Y − X3 − a(X2 +X)− b 3 0
Y 2 + Y − X3 − aX2 − (a+ 1)X 5 0

Y 2 +XY + Y − X3 − aX2 − bX − ab− 1 2 1
Y 2 +XY + aY − X3 − aX2 − bX − (a+ 1)(b+ 1) 4 1

Table 1: F2-Isomorphism Classes of Elliptic Curves over F2
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Weierstrass Polynomial of E (with a ∈ F3) #E(F3) j(E)
Y 2 − X3 − 2X − 2 1 0
Y 2 − X3 −X − a 4 0
Y 2 − X3 − 2X 4 0
Y 2 − X3 − 2X − 1 7 0
Y 2 − X3 −X2 − aX − (a+ 1)2 − 1 3 1
Y 2 − X3 − 2X2 − aX − 2(a+ 1)2 − 2 5 1
Y 2 − X3 − 2X2 − aX − 2(a+ 1)2 2 2
Y 2 − X3 −X2 − aX − (a+ 1)2 6 2

Table 2: F3-Isomorphism Classes of Elliptic Curves over F3

In these tables we can see again that the statement of Corollary 2.25 would

be wrong for p = 2 and p = 3 since there are supersingular elliptic curves E with

#E(Fp) 6= p+ 1.

Therefore the situation is particularly simple in these situations and thus we

restrict to p > 3 in most of the following parts.

Application of the Modular Polynomial. Let E0 and E1 be super-

singular elliptic curves de�ned over a �nite �eld Fq of characteristic p. Recall from
Proposition 2.14 that the `th modular polynomial Φ` ∈ Fq[X, Y ] has the property

E0 and E1 are `-isogenous ⇐⇒ Φ`

(
j(E0), j(E1)

)
= 0.

Since we know from Theorem 2.22 that in characteristic p all j-invariants of su-

persingular elliptic curves lie in Fp2 , we get the following result.

Theorem 2.27. Let E be an elliptic curve de�ned over a �nite �eld Fq with char-

acteristic p and Φ` ∈ Fq[X, Y ] the `th modular polynomial. Then we have

E is supersingular ⇐⇒ Φ`

(
j(E), Y

)
∈ F̄q[Y ] splits completely

over Fp2 for every ` 6= p.

Proof. The proof of this needs theory about isogeny volcanoes and can be found

in Sutherland [84].

We have already seen that elliptic curves with j-invariants 0 and 1728 often have

slightly di�erent properties from the other ones, so it is helpful to know whether

such curves are supersingular or not. The following theorem provides a tool which

can subsequently be used for that purpose as seen in Corollary 2.29.
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Theorem 2.28. Let E be an elliptic curve over K := Fq with charK = p > 2

and f ∈ K[X] be a cubic polynomial such that E is de�ned through the polynomial

Y 2 − f(X) in Weierstrass form. Further set m := p−1
2

and let cp−1 be the

coe�cient of Xp−1 in f(X)m. Then we get

E is supersingular ⇐⇒ cp−1 = 0.

Proof. We present a short sketch of proof as in Theorem V.4.1.(a) of Silver-

man [75] and neglect the technical details here.

F Show #E(Fq) = 1− cq−1 in Fq where cq−1 is the coe�cient of Xq−1 in f(X)m
′

with m′ = q−1
2
.

F Show cq−1 = t in Fq where [t] = πq + π̂q, so π̂q = [t] + [−1]πq.

F With Corollary 2.9 we get the equivalence (?) in

cq−1 = 0
t∈Z⇐⇒ t ≡ 0 (mod p)
(?)⇐⇒ π̂q is inseparable
Def⇐⇒ E is supersingular.

F Show cp−1 = 0 ⇐⇒ cq−1 = 0 from cpk+1−1 = cpk−1c
pk

p−1 and induction on the

positive integer k.

The complexity of calculating the coe�cient cp−1 from Theorem 2.28 is expo-

nential in log p as for example explained in Section 2.1 of Sutherland [84]. But

it is helpful to conclude the following statements.

Corollary 2.29. Let E be an elliptic curve over K with charK = p ≥ 5. Then

we have

1. in the case j(E) = 0, i.e. E ∼= V(Y 2 −X3 − 1):

E is supersingular ⇐⇒ p ≡ 2 (mod 3).

2. in the case j(E) = 1728, i.e. E ∼= V(Y 2 −X3 −X):

E is supersingular ⇐⇒ p ≡ 3 (mod 4).

Note that it is easy to see that the appearing elliptic curves in this corollary have

the indicated j-invariants 0 resp. 1728, so they can act as a representative of the

respective isomorphism classes of elliptic curves which are given by their j-invariants.
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Proof.

1. Setm := p−1
2
. For the �rst point we need to check with Theorem 2.28 applied

on f := X3 + 1 if the coe�cient cp−1 of Xp−1 in

f(X)m = (X3 + 1)m =
m∑
k=0

(
m
k

)
X3k

is zero, so � since binomial coe�cients are nonzero � whether the Xp−1-term

appears in the sum or not. We have p > 3, so p is either 1 or 2 modulo 3.

F If p ≡ 1 (mod 3), we see that we have 3k = p − 1 for k := p−1
3
∈

{0, · · · ,m}, so cp−1 =
(
m
k

)
6≡ 0 (mod p) and the curve is not supersingu-

lar.

F If p ≡ 2 (mod 3), obviously 3k 6= p− 1 is true for all k ∈ {0, · · · ,m}, so
cp−1 = 0 and the curve has to be supersingular.

2. Analogously we examine the coe�cient cp−1 of Xp−1 in

f(X)m = (X3 +X)m =
m∑
k=0

(
m
k

)
X2k+m.

F If p ≡ 1 (mod 4), it is 2k + m = p − 1 for k := p−1
4
∈ {0, · · · ,m} so

cp−1 =
(
m
k

)
6≡ 0 (mod p) and the curve is ordinary.

F If p ≡ 3 (mod 4), we get 2k+m 6= p−1 for all k ∈ {0, · · · ,m} so cp−1 = 0

and the curve is supersingular.

For an elliptic curve in Legendre form as described below, the result of The-

orem 2.28 can be stated in a more directly applicable way which will help us to

determine the number of supersingular elliptic curves in characteristic p. An elliptic

curve de�ned over a �eld K is in Legendre form if its Weierstrass equation is

written in the form

Y 2 − X(X − 1)(X − λ)

with λ ∈ K̄ \ {0, 1}. Such a curve is often denoted with Eλ and for characteristic

p > 2 every elliptic curve is isomorphic to an elliptic curve in Legendre form. This

can be seen in Proposition III.1.7 of Silverman [75] along with the next related

result.
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Lemma 2.30. An elliptic curve Eλ in Legendre form has j-invariant

j(λ) := j(Eλ) =
28(λ2 − λ+ 1)3

λ2(λ− 1)2

and the map

K̄ \ {0, 1} → K̄

λ 7→ j := j(λ)

is surjective and has six preimages for all j 6= 0, 1728 where it has two resp. three

preimages.

Corollary 2.31. Let E be an elliptic curve de�ned over K̄ with charK = p > 2,

m := p−1
2

and 0, 1 6= λ ∈ K̄ such that E = Eλ is in Legendre form. Furthermore

consider the polynomial

Hp :=
m∑
i=0

(
m
i

)2
ti ∈ Z[t].

Then we get

Eλ is supersingular ⇐⇒ Hp(λ) = 0.

Proof. This fact can be seen for instance in Theorem V.4.1.(b) of Silver-

man [75]. It is a direct conclusion from Theorem 2.28 applied on the cubic poly-

nomial f(X) = X(X − 1)(X − λ) which apparently has distinct roots in K̄.

Let cp−1 be the coe�cient of Xp−1 in f(X)m = Xm(X − 1)m(X − λ)m. Since

p− 1 = 2m, this is the coe�cient of Xm in

(X − 1)m(X − λ)m =

( m∑
i=1

(
m
i

)
X i(−1)m−i

)
·
( m∑

j=1

(
m
j

)
Xm−j(−λ)j

)

=
m∑
i=1

m∑
j=1

(
m
i

)(
m
j

)
Xm+i−jλj(−1)m−i+j.

So cp−1 is the sum of all coe�cients of terms in this expression with i = j,

cp−1 =
m∑
i=1

(
m
i

)2
λi(−1)m

= (−1)mHp(λ),
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and thus we get

Hp(λ) = 0 ⇐⇒ cp−1 = 0
2.28⇐⇒ Eλ is supersingular

as we wanted to.

Thus the set of supersingular elliptic curves Eλ corresponds to the roots λ of

the polynomial Hp from the corollary. When we want to investigate the number of

supersingular elliptic curves, we need to know if there can be multiple roots, but

Theorem V.4.1.c) of Silverman [75] shows the following fact.

Proposition 2.32. The polynomial Hp has m distinct roots in K̄.

With this result we are able to determine the number of supersingular elliptic

curves in characteristic p. We call the j-invariants of supersingular elliptic curves

supersingular j-invariants.

Theorem 2.33. Let p be a prime and Sp2 be the set of all supersingular j-invariants

in Fp2. Then

#Sp2 =
⌊ p

12

⌋
+



0 if p ≡ 1 (mod 12)

1 if p ≡ 5 (mod 12)

1 if p ≡ 7 (mod 12)

2 if p ≡ 11 (mod 12).

Proof. This proof is along the lines of the one from part c) of Theorem V.4.1 of

Silverman [75].

We know that every root λ of Hp yields the j-invariant of a supersingular elliptic

curve through λ 7→ j(λ) as in Lemma 2.30. Further there are m = p−1
2

distinct

roots of Hp according to Proposition 2.32. We have seen that if the j-invariant

j = 0 is supersingular, there are two roots of Hp which lead to this j whereas for the

case where j = 1728 is supersingular, there are three roots of Hp providing this j.

These cases are easy to identify since we can check from Corollary 2.29 whether

0 and 1728 are supersingular or not dependent on the value of p (mod 12).

Furthermore we have seen that under this map every j 6∈ {0, 1728} has six

preimages, so the elliptic curves rising from those roots of Hp are isomorphic over

F̄p. When we denote the set of all roots of Hp which yield a j-invariant di�erent

from 0 or 1728 with R, there are #R
6

di�erent images of values from R.
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Summed up there are the following results

p (mod 12) 0 ∈ Sp2 1728 ∈ Sp2 #R #Sp2

1 no no p−1
2

p−1
12

5 yes no p−1
2
− 2 = p−5

2
p−5
12

+ 1

7 no yes p−1
2
− 3 = p−7

2
p−7
12

+ 1

11 yes yes p−1
2
− 2− 3 = p−11

2
p−11

12
+ 2

which conclude the proof.

We have already seen that for p ∈ {2, 3} there is always exactly one supersingular
j-invariant in Fp, namely j ≡ 0 (mod p). For p > 3 it can be shown that this number

of supersingular j-invariants is in relation to the so-called Hurwitz class number

(see Cox [16], Theorem 14.18) although the proof goes beyond the scope of this

work. Note that Cox talks about the actual number of supersingular elliptic curves,

not just their number up to isomorphism, so there is a factor p−1
2

in his formula

which vanishes when we regard Fp-isomorphism classes. We gain another factor of

1/2 when we regard F̄p-isomorphism classes. Thus the number of j-invariants in

Fp equals half the Hurwitz class number. This statement can be simpli�ed to the

following result with equations (1.8) and (1.11) from Gross [36].

Theorem 2.34. Let p > 3 be a prime and let Sp be the set of all supersingular

j-invariants in Fp. Then

#Sp =


1
2
h(−4p) if p ≡ 1 (mod 4)

h(−p) if p ≡ 7 (mod 8)

2h(−p) if p ≡ 3 (mod 8)

where for any integer d we write h(d) for the class number of the order with dis-

criminant d.

Due to Proposition 2 of Galbraith [27] we can make the estimation

h(d) ≤ 1

π

√
|dK| log |dK|

where dK is the fundamental discriminant of K = Q(
√
d), and in our cases we have

dK ∈ {−p,−4p}. This means that the number of supersingular j-invariants in Fp
can be estimated with O(

√
p log p). This is a lot smaller than the overall number of

supersingular j-invariants in Fp2 , which we have seen to be O(p). This consideration

will turn out to be a starting point of our problem, since we will regard the graphs

of those j-invariants as nodes and hope to �nd shorter paths in the smaller graph.
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2.2 Endomorphism Rings of Abelian Varieties

In this section we want to investigate the structure of endomorphism rings of abelian

varieties in general and then concentrate on the special properties of the endomor-

phism rings of ordinary and supersingular elliptic curves respectively. For that we

deal with the full endomorphism ring as well as with the ring of endomorphisms

restricted to the variety's �eld of de�nition. The concepts turn out to have a strong

relation to the Frobenius morphism on the variety.

2.2.1 General Concepts

Let A be an abelian variety of dimension g de�ned over a �nite �eld K = Fq with a

prime power q. In this section we want to investigate the endomorphism ring EndA

which is a free Z-module of rank at most 4g2 as stated in Proposition 2.6. Since

for any m ∈ Z the multiplication-by-m-map is an element of EndA and de�ned

over K, we can embed Z into EndK A. Further, the Frobenius πq and the Ver-

schiebung ρq are also elements of EndK A (see Theorem 3.5 of Waterhouse [92]

or Remark 18.6 of Oort [65]), so we have

Z[πq, ρq] ⊆ EndK A.

Let E be an elliptic curve de�ned over Fq and t ∈ Z be the trace of the Frobenius

πq. We have already seen that we get ρq = π̂q here and computed the identity

[t] = πq + π̂q. Thus we obtain π̂q = [t]−πq ∈ Z[πq] and have Z[πq, ρq] = Z[πq] in this

situation. Therefore we are able to work with the more simple subring

Z[πq] ⊆ EndK A

here. For abelian varieties of dimension bigger than one, this is not true in general,

so there we have the more complicated setting

Z[πq] ⊆ Z[πq, ρq] ⊆ EndK A.

On the other hand when we take EndA and tensor it with Q, we get the algebra
A := EndK A ⊗Z Q. As an order in A we know that EndK A is contained in

a maximal order of A. We will investigate this algebra A and some important

properties in this section. For that we �rst need to introduce some notation and

background theory about quaternion algebras. We will see that the endomorphism

rings play an important role for structures and even the sets of outgoing isogenies of
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abelian varieties. For more extensive discussions of this background theory we refer

to Silverman [75], Section 5 of Kohel [45] or Reinier [67].

Let F be a �eld, A be a simple ring with operations + and ∗ and ϕ : F → A
be a homomorphism of rings such that F is isomorphic to the center of A under

ϕ. Then A can be regarded as a vector space over F with scalar multiplication

a · α := ϕ(a) ∗ α for any a ∈ F and α ∈ A.

Definition. When in the situation above the dimension [A : F ] := dimF A of

this vector space is �nite, A is a central simple algebra over F and a central simple

algebra of dimension four over F is called quaternion algebra over F .

We will identify F with its image under ϕ and F will either be Q or one of its

completions Qp for some prime p or in�nity where we set Q∞ := R and for p prime

Qp denotes the usual p-adic numbers. In this cases, R will be the notation for the

ring Z or Zp, respectively. Recall that a subring O of A which is a full R-lattice is

called R-order of A and satis�es O ⊗R F = A. For convenience we will often drop

the emphasis of the ring and only use the term order if no confusion seems possible.

A division algebra over F is an associative algebraA over F such that all elements

α ∈ A are invertible. For n ∈ N the matrix algebra Mn(F ) is the algebra of n × n
matrices with coe�cients in F . Actually those two concepts are the only ones that

occur for quaternion algebras.

Proposition 2.35. Let F be a �eld and A a quaternion algebra over F . Then

there are the two possibilities

F A is a division algebra over F or

F A ∼= M2(F ).

Proof. From Wedderburn's Structure Theorem (Reinier [67], Theorem 7.4)

we know that every central simple algebra A is isomorphic toMn(S) for some n ∈ N
where S is a division ring with F ⊆ S, [S : F ] <∞ and that [A : F ] = n2[S : F ].

In our case A is a quaternion algebra over F , so we have [A : F ] = 4 and the

integer n must be 1 or 2.

Case n = 1: This implies A ∼= M1(S) ∼= S and since S is a division ring with

F ⊆ S, we can regard S as a F -division algebra.

Case n = 2: Here we get [S : F ] = 1 and thus we have S ∼= F , which leads to

A ∼= M2(F ).

We want to introduce de�nite quaternion algebras and for their de�nition we

need the objects Ap := A ⊗Q Qp for primes p or in�nity. Those are quaternion

algebras themselves as seen in Reinier [67] Corollary 7.8.
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Proposition 2.36. Let A be a quaternion algebra over Q. Then we have that Ap
is a quaternion algebra over Qp.

This is needed for the following de�nition since we now know that Ap is either a
division algebra or isomorphic to M2(Qp) due to Proposition 2.35.

Definition. Let A be a quaternion algebra over Q and p be a prime or in�nity.

A is called rami�ed at p when Ap is a division algebra over Qp and split at p when

we have Ap ∼= M2(Qp).

If A rami�es at in�nity, it is called de�nite quaternion algebra over Q, else
inde�nite.

The de�nite quaternion algebra over Q which is rami�ed exactly at a prime p

and at in�nity is denoted with Dp.

Remark. F A de�nite quaternion algebra over Q is of the form

A = Q+ αQ+ βQ+ αβQ

with αβ := α ∗ β = −β ∗ α and α2, β2 ∈ Q<0.

F The ring multiplication ∗ in A is obviously di�erent from the commutative

multiplication of α and β as elements in C.

F (1, α, β, αβ) is a basis of A as Q-vector space and we can embed Q(α) and

Q(β) into A.

After introducing the basic concepts of quaternion algebras, we return to the

endomorphism ring EndK A of an abelian variety A de�ned over a �nite �eld K

which contains the isogenies from A to itself which are de�ned over K. Theorem 2

of Tate [86] gives a strong statement about the algebra A = EndK A ⊗Z Q as

seen below. Especially the following adaption on the case of an elliptic curve gives

us useful facts about their structure and a connection between the characteristic

polynomial of the Frobenius and the algebra containing the endomorphism ring.

Theorem 2.37. Let A be an abelian variety of dimension g de�ned over the �nite

�eld K = Fq of characteristic p > 0. Then the center of A is Q(πq) and we have

the relation

2g ≤ [A : Q] ≤ (2g)2.

38 Christina Delfs



2.2 Endomorphism Rings of Abelian Varieties

The extreme cases of this inequality yield the following situation

[A : Q] = 2g ⇐⇒ χπq is squarefree,

⇐⇒ A = Q(πq),

⇐⇒ A is commutative,

[A : Q] = (2g)2 ⇐⇒ ∃a ∈ C : χπq = (X − a)2g,

⇐⇒ Q(πq) = Q,

⇐⇒ A ∼= Mg(Dp),

⇐⇒ ∃ supersingular elliptic curve E with

EndK E = EndE and an isogeny φ : A→ Eg

where Dp denotes the quaternion algebra which is rami�ed at p and in�nity as de�ned

before. Finally we have

∃ simple abelian variety B and an isogeny φ : A→ Bu for some u ∈ N

⇐⇒ ∃h ∈ Z[X] irreducible over Q and u ∈ N such that χπq = hu

=⇒ A is a central simple algebra over Q(πq).

When we apply this theorem on the situation of an elliptic curve, we get the

following results as consequences.

Corollary 2.38. Let E be an elliptic curve de�ned over the �nite �eld K := Fq
of characteristic p and let t ∈ Z be the trace of the Frobenius endomorphism

πq : E → E. Then the algebra A := EndK E ⊗Z Q is a central simple algebra with

center Q(πq). We have

dimQA = 2 ⇐⇒ X2 − tX + q is squarefree

⇐⇒ A = Q(πq)

⇐⇒ A is commutative,

dimQA = 4 ⇐⇒ ∃a ∈ C : X2 − tX + q = (X − a)2

⇐⇒ Q(πq) = Q

⇐⇒ A ∼= Dp

⇐⇒ E is supersingular with EndK E = EndE.
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We can make a more re�ned statement for these restricted endomorphism rings

EndFq E as in Rück [72] or Chapter 4 of Waterhouse [92].

Theorem 2.39. Let p be a prime, q = pn and E be an elliptic curve de�ned over

Fq. Let t = q + 1 − #E(Fq) be the trace of q-th Frobenius πq. Then one of the

following properties holds:

a) gcd(t, p) = 1,

b) n even and t = ±2
√
q,

c1) n even, p 6≡ 1 (mod 3) and t = ±√q,

c2) n even, p 6≡ 1 (mod 4) and t = 0,

c3) n odd, p ∈ {2, 3} and t = ±p(n+1)/2,

c4) n odd and t = 0.

Furthermore we have in the cases above

a) E is ordinary, A = Q(πq) ∼= Q(
√
t2 − 4q) is an imaginary quadratic �eld over

Q and EndFq E is isomorphic to an order in A,

b) E is supersingular, A is a quaternion algebra over Q, Q(πq) = Q and EndFq E

is isomorphic to a maximal order in A,

ci) E is supersingular, A = Q(πq) is an imaginary quadratic �eld over Q and

EndFq E is isomorphic to an order in A with conductor prime to p.

This structure of the restricted endomorphism ring � especially the last case

where a supersingular elliptic curve E will have EndFq E as an order in an imag-

inary quadratic �eld � will be central for our considerations and the basis for our

algorithms.

On the other hand we are interested in quaternion algebras since for certain

elliptic curves the full endomorphism ring is contained in one of them. This is due

to the next theorem. Remember that an anti-involution on a Z-module M is a

Z-linear and self-inverse map ·̂ :M→M satisfying α̂β = β̂α̂ for any α, β ∈M.

Theorem 2.40. Let M be an integral domain with charM = 0, rkZM ≤ 4 as

Z-module and an anti-involution ·̂ :M→M with

αα̂ ∈ Z≥0 and αα̂ = 0 ⇐⇒ α = 0

for all α ∈M. Then we either getM = Z orM is an order in either an imaginary

quadratic extension of Q or in a de�nite quaternion algebra over Q.
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For a detailed analysis of the proof of this theorem see Theorem III.9.3 of

Silverman [75]. Since the endomorphism ring of an elliptic curve E � with the

anti-involution ·̂ : EndE → EndE sending an endomorphism to its dual � ful�lls

all of the conditions of such a module M, a direct conclusion of Theorem 2.40

applied on endomorphism rings is the following statement.

Corollary 2.41. Let E be an elliptic curve de�ned over the �eld K. Then we

either have EndE ∼= Z or EndE is an order in either an imaginary quadratic �eld

A or in a de�nite quaternion algebra A over Q.

Exercise III.3.18 of Silverman [75] shows a way to see that if for an elliptic

curve E over a �eld K the endomorphism ring EndE is an order in a de�nite

quaternion algebra A, then K is a �eld of characteristic p > 0 and A rami�es

exactly at p and ∞. Since two de�nite quaternion algebras are isomorphic if and

only if they ramify at the same places, A is uniquely determined up to isomorphism.

Further the exercise provides that EndE is a maximal order in A.
Therefore we can write A as Q + αQ + βQ + αβQ with αβ = −βα, α2 = −p

and β2 = −q with a prime q such that (−q
p

) = −1 and thus we have β 6∈ Q(α).

Remark. Depending on the characteristic of the �eld K some cases can be ex-

cluded as in Remark III.9.4.1 of Silverman [75]:

F charK = 0 =⇒ EndE⊗ZQ is commutative, thus it is no quaternion algebra,

F charK = p > 0 =⇒ Z ( EndE.

Together with Theorem 2.22 this implies that an elliptic curve E over a �nite

�eld Fq is

ordinary ⇐⇒ EndE is an order in an imaginary quadratic �eld,

supersingular ⇐⇒ EndE is an order in a quaternion algebra.

Now we will regard endomorphism rings of ordinary resp. supersingular elliptic

curves consecutively and particularly examine how endomorphism rings of isogenous

elliptic curves are related to each other. In the ordinary case there are quite helpful

relations which are the foundation of the known algorithms for computing isogenies

between ordinary elliptic curves. For supersingular elliptic curves the structure is

di�erent, which is the reason those approaches do not work there. We will see how

to �x that in a later section.
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2.2.2 Ordinary Elliptic Curves

Let E be an ordinary elliptic curve de�ned over Fq with trace t. Then due to

Theorem 2.39 EndE is isomorphic to an order O in the imaginary quadratic �eld

K = Q(
√
d) where d = t2 − 4q is a negative integer. It is standard number theory

that when ds is the square-free part of d, the fundamental discriminant of K is

dK =

ds if ds ≡ 1 (mod 4)

4ds if ds ≡ 2, 3 (mod 4),

the maximal order of K is

OK = Z
[
dK+

√
dK

2

]
and every other order of K is of the form Õ = Z + cOK where c := [OK : Õ] is the

conductor of Õ and determines the order. We often denote such an order with Oc
and its discriminant dO = c2dK with dc, or when the order is isomorphic to EndE

with OE resp. dE.

We usually �x an isomorphism [·] : O → EndE and identify the rings O and

EndE with each other. Since for every m ∈ Z the multiplication-by-m-map [m]

and also the q-th Frobenius πq are elements of EndE when E is de�ned over Fq,
we can in this case embed Z[πq] into EndE and interpret it also as a subring of O.
Thus we get the following statement.

Proposition 2.42. Let E be an ordinary elliptic curve over Fq and πq the q-th
Frobenius morphism. Let O be an order in K = Q(

√
d) with O ∼= EndE. Then

we have

Z [πq] ⊆ O ⊆ OK.

Since on the other hand Z[πq] contained in EndE means that we have E(q) = E,

this provides that the Weierstrass polynomial of E is de�ned over Fq and thus

per de�nition E is also Fq-rational and we can state the next result.

Lemma 2.43. Let E be an ordinary elliptic curve de�ned over a �nite �eld of

characteristic p. Then E is de�ned over Fq if and only if we have Z[πq] ⊆ EndE.

It is slightly surprising that we can also make a statement about the relation of

endomorphism rings of di�erent ordinary elliptic curves which are isogenous to each

other. This is a fundamental result from Proposition 21 of Kohel [45], which

actually has a quite simple proof despite its importance for our further work.
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Proposition 2.44. Let E0 and E1 be ordinary elliptic curves de�ned over the

�nite �eld Fq of characteristic p and φ : E0 → E1 be an isogeny of prime degree

` 6= p. Let O0 and O1 be orders in the imaginary quadratic �eld K with Oi ∼= EndEi

for i ∈ {0, 1}. Then we have

Oi ⊆ O1−i and [O1−i : Oi] | `

for i = 0 or i = 1 where [O1−i : Oi] denotes the ring index.

Proof. Let φ : E0 → E1, O0 and O1 be de�ned as in the proposition. First we can

show in a straightforward way that there are inclusions

Z+ `2O0 ⊆ Z+ φ̂O1φ ⊆ O0

and that the index [O0 : Z+ `2O0] is `2. Since Z+ φ̂O1φ is isomorphic to Z+ `O1,

we get the following relation of rings

OK
c1c0

O0

`

x

y

O1

`

Z+ `O0

`

Z+ `O1

`z

Z+ `2O0

r0

Z+ `2O0

r1

Z[πq]

where x, y, z, ci, ri ∈ N are the unknown ring indices. In the case whenO0 = Z+coOK
and O1 = Z + c1OK are contained in each other, x is the index of interest. We see

in the diagram that we have c0r0 = c1r1 and because also y · z = `2 has to hold, we

obtain the following three possibilities:

y = 1: This means O0
∼= Z+ `O1 and since the conductor determines an order in K

uniquely, we have O0 = Z+ `O1 ⊆ O1 and x = [O1 : O0] = `.

y = `: Here we get r0 = r1 from the equation [O0 : Z[πq]] = `2r0 = y`r1 and thus also

c0 = c1 which yields O0 = O1 = Z+ c0Z and x = [O1 : O0] = [O0 : O1] = 1.

y = `2: This tells us r0 = r1` and thus c1 = c0` which �nally provides the equality

O1 = Z+ `O0 ⊆ O0 and x = [O0 : O1] = `.

We have concluded from Proposition 2.20 that instead of computing an isogeny

of possibly large degree it is better to construct a chain of isogenies with small
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prime degree. Therefore we examine the relation of endomorphism rings of elliptic

curves which are `-isogenous with prime degree now. Let O0 and O1 be orders in K
isomorphic to EndE0 resp. EndE1. According to the last two propositions we are

in one of the following situations if we settle on prime degrees ` 6= p.

OK
c1

c0

c

OK
c0

OK

O1

`

O0

`

c
c0

O0
∼= O1

O0 O1 Z[πq]

Z[πq] Z[πq]

In the �rst case we call the isogeny φ : E0 → E1 ascending or going up, in the

second one φ is descending or going down and in the last case it is horizontal. When

φ is not horizontal, we see that ` has to divide c = [OK : Z[πq]].

Even more, if φ is ascending resp. descending, ` divides c0 = [OK : O0] resp.
c
c0

= [O0 : Z[πq]]. Thus, if ` - c0, it is no longer possible to go up and E0 is called

on the surface at `. Analogous, E0 is on the �oor at ` when ` - c
c0

and it is not

possible to go further down. Note that this is no global position since it can happen

that an elliptic curve is on the surface or on the �oor at some ` without having

endomorphism ring OK or Z[πq].

We will see in Section 3 how to determine the number of outgoing isogenies of

each type on each level. The resulting structure leads us to so-called isogeny graphs

which provide a good approach of �nding isogeny chains between given isogenous

ordinary elliptic curves.

2.2.3 Supersingular Elliptic Curves

If we take a supersingular elliptic curve E over Fp with p > 3, we know from Theo-

rem 2.22 that the full endomorphism ring of E is an order in a quaternion algebra.

But when we regard the endomorphism ring of E restricted to endomorphisms de-

�ned over Fp, we end up in case c4) of Theorem 2.39. Thus we obtain that EndFp E

is an order in an imaginary quadratic �eld K and its conductor is prime to p. As

this is analogous to the case of full endomorphism rings of ordinary elliptic curves,

we can apply the results we constructed there to this situation.
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Since we know that supersingular elliptic curves have trace t = 0, we get d = −4p

and K = Q(
√
−p) ∼= Q(πp) with fundamental discriminant

dK =

−p if p ≡ 3 (mod 4)

−4p if p ≡ 1 (mod 4).

In the �rst case the maximal order of K is OK = Z[1+
√
−p

2
] and in the other one

we have OK = Z[
√
−p]. Additionally, we get Z[πp] ∼= Z[

√
−p], too.

It is useful to see that the proof of Proposition 2.42 needs nothing of the fact

that the given elliptic curves are ordinary except for the structure of the orders

in K which are isomorphic to the endomorphism rings. Therefore we can state an

analogous result for supersingular elliptic curves de�ned over Fp and their restricted

endomorphism rings and get

Z [πp] ⊆ O ⊆ OK

when we have EndFp E
∼= O.

As for p ≡ 1 (mod 4) the orders including and included in O coincide, there is no

other choice for it but Z[
√
−p]. This means that in this case all supersingular elliptic

curves have the same Fp-rational endomorphism ring with discriminant dK = −4p.

For p ≡ 3 (mod 4) the conductor [OK : Z[
√
−p]] is c = 2, so O can be either

the maximal order Z[1+
√
−p

2
] with discriminant dK = −p or the order Z[

√
−p] with

discriminant d2 = −4p.

Further the de�nitions of ascending, descending and horizontal isogenies can be

stated analogously to the ordinary situation, too. Thus in all appearing cases we

have only one or at most two possibilities for O and for the case p ≡ 1 (mod 4)

there can be only horizontal isogenies. We will see in Section 4.2.2 that this makes

certain supersingular isogeny graphs even more assessable than most ordinary ones.
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2.3 Graph Theory

We will consider so-called isogeny graphs later in this work, so we want to introduce

the basic concepts of graph theory and special properties of certain types of graphs

that we will need for our results. We mainly use the book of Diestel [20] and

chapter 1.1 of Davidoff, Sarnak, Valette [17] for the introduction of concepts,

section 25.3.2 of Galbraith [28] and Murty [63] for the de�nition of expander

graphs. Many additional information can be found there.

2.3.1 Basic Concepts

A graph G consists of a set VG 6= ∅ of vertices and a possibly empty set EG ⊆ VG
2

of edges and is often written as G = (VG, EG). In a graphical interpretation we can

draw the nodes as labeled dots. A directed edge e ∈ EG is of the form e = (v1, v2)

for v1, v2 ∈ VG which graphically means a connection in form of an arrow from v1 to

v2. The edge from v2 to v1 which is the arrow of e run through in the other direction

is sometimes labeled e−1.

Often graphs are undirected, that means the edges (v1, v2) and (v2, v1) are con-

sidered the same. It is possible to have more than one edge between two given

nodes, in that case G is often called a multigraph. We will not use this term and

understand every graph as a potential multigraph. Note that for an edge (v1, v2) in

a multigraph not every edge (v2, v1) equals e−1.

When there is an edge from v1 to v2, the vertex v2 is called a neighbor of v1 and

the edge (v1, v2) an outgoing edge from v1. If every vertex in VG has exactly k ∈ N
outgoing edges, G is called a k-regular graph.

If the graph G has the nodes v1, · · · , vn, we de�ne the adjacency matrix of G as

A(G) = (aij)i,j=1,··· ,n where aij denotes the number of edges from vi to vj. Obviously

for a k-regular graph we have
∑n

j=1 aij = k for every possible i. For an undirected

graph this matrix is symmetric and we also have
∑n

i=1 aij = k for every j.

For m ≤ n and pairwise distinct vi ∈ VG we de�ne a path in G as an ordered set

[v0, v1, · · · , vm−1, vm] such that P = (VP , EP ) with

VP := {v0, v1, · · · , vm−1, vm} and

EP := {(vi, vi+1) | 0 ≤ i ≤ m− 1}

is a subgraph of G. We also say that P is a path from v0 to vm and has length

m ∈ N. The graph G is connected when between any two vertices of it there exists

a path in G. For v1, v2 ∈ VG we de�ne the distance between v1 and v2 in G as the
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length of the shortest possible path from v1 to v2. The diameter of G is the maximal

distance of two vertices in G. A circle of length m is a path of length m in G which

has the same start and end vertex v0 = vm. A graph without circles is called a tree.

Let now G = (VG, EG) be an undirected, k-regular graph with vertex set VG =

{v1, · · · , vn}. The adjacency matrix A := A(G) of G is real and symmetric, so due

to the spectral theorem it has n real eigenvalues

λn−1 ≤ · · · ≤ λ1 ≤ λ0.

We say that λ is an eigenvalue of G if there is a function f : VG → C such that λ is

an eigenvalue of A for some eigenvector

x :=


x1

...

xn

 =


f(v1)
...

f(vn)

 .

The next result concerning the eigenvalues is essentially Proposition 1.1.2 of

Davidoff, Sarnak and Valette [17].

Proposition 2.45. With the notation from above we deduce

1. |λi| ≤ k for all i ∈ {1, · · · , n}

2. λ0 = k

3. λ1 < λ0 ⇐⇒ G is connected

Proof. 1. Let λ ∈ {λ0, · · · , λn} be an eigenvalue of A with corresponding eigen-

vector x. Let xi be the entry of x with |xi| = max{|x1|, · · · |xn|}. We can

assume without loss of generality that we have xi > 0; if not we replace x with

the negated vector −x.

From the eigenequation Ax = λx we get

|λ|xi = |λxi| =

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣
≤

n∑
j=1

aij |xj|

≤
n∑
j=1

aijxi = kxi

and the statement follows.
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2. Since G is k-regular, the sum of every row of A is k. Therefore

A

(
1
...
1

)
=

(
k
...
k

)
and thus k is an eigenvalue of A. Since all eigenvalues are less or equal to k,

λ0 as the largest one has to attain this value.

3. We show both implications separately.

�=⇒� Suppose that G is not connected. Show that there exists an eigenvector

x for the eigenvalue k = λ0 which is not a multiple of the vector (1 · · · 1)T .

Since G is not connected, there must be a subset U ( VG such that no

edges exist between any vertices u ∈ U and v ∈ VG \ U . Without loss

of generality we can set U := {v1, · · · , vr} with 0 < r < n. Then the

adjacency matrix is of the form

A =

(
A(U) 0

0 A(VG \ U)

)

and the vector x :=
(

1 · · · 1 0 · · · 0
)T

with n−r > 0 zero entries is

an eigenvector for the eigenvalue k of A. and not a multiple of (1 · · · 1)T .

�⇐=� Let G be connected and x be an eigenvector of A to the eigenvalue k,

so we have Ax = kx and thus for every i ∈ {1, · · · , n}

n∑
j=1

aijxj = kxi.

We have to show that x1 = · · · = xn. As above we choose xi such that

|xi| = max{|x1|, · · · |xn|}. Then from the last equation we have a convex

combination

xi =
n∑
j=1

aij
k
xj ≤

n∑
j=1

aij
k
xi = xi

since the non-negative integers aij summed up yield k. Therefore if we

have aij 6= 0 � so when vi and vj are neighbors � we obtain xi = xj.

If now vl is a neighbor of vi, we have |xl| = |xi| = max{|x1|, · · · |xn|} and
thus the same argument holds for all neighbors of xl, too. Since G is

connected, we can reach every vertex in this way and get xj = xi for all

possible values of j.
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Definition. Let G = (VG, EG) be a graph.

F A walk in G is a path in G where the condition is dropped that the vi must be

pairwise distinct. A path is a self-avoiding walk. The process of going to the

vertex vi+1 from vi via the edge ei we call a step. A walk is non-backtracking if

it is forbidden to reverse the last step along the same edge, that is, sequences

like vi+2 = vi and ei+1 = e−1
i are not allowed. This condition is not as strong

as being a path, though.

F A random walk in G is a walk in G where in each step the edge (vi, vi+1)

and with it the vertex vi+1 is chosen uniformly at random from the possible

outgoing edges of vi.

A bi-directional search in G starts with two one-elemental subgraphs X0 = {v0}
and X1 = {v1} of G and increases the sets Xi using some declared method (i.e. by

adding the edge and vertex reached by the next step of a random walk starting at

each of the vi; or by adding all outgoing edges of Xi and their image vertices as in

a breadth-�rst search). The bi-directional search ends when we have X0 ∩ X1 6= ∅
and any vertex occurring in the intersection is called a collision.

Under the assumption that during such a bi-directional search the elements in

both Xi are chosen uniformly at random, we can estimate the size of the subgraphs

until a collision occurs with an adapted version of the birthday attack.

Proposition 2.46 (Bi-directional Birthday Attack). Let G = (VG, EG) be

a graph with |VG| = n. Then the expected number of elements drawn from VG during

a bi-directional search until a collision occurs is roughly
√
πn.

Remark. The proof we describe here follows the lines of the proof for The-

orem 14.1.1 of Galbraith [28], although there the author describes the usual

birthday attack where elements are sampled randomly from a n-element set. The

modi�cation of di�erentiation between two subsets X0 and X1 of VG leads to the

expected number
√
πn instead of

√
πn/2 as in the normal case.

Proof. We de�ne a random variable X which describes the number of elements of

VG which are selected until a collision occurs. Assume that m elements are already

drawn from VG, so roughly m/2 of them lie in X0 and X1 each. The probability

that the next element (which is added to the side Xi) already appears on the other

side in X1−i is thus
m/2
n
.
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Thus we can compute the expected value of X as

E(X) =
∞∑
m=1

m · Pr(X = m)

=
∞∑
m=1

m ·
(

Pr(X > m− 1)− Pr(X > m)
)

=
∞∑
m=0

(
(m+ 1) · Pr(X > m)−m · Pr(X > m)

)
=

∞∑
m=0

Pr(X > m)

(1)

≤ 1 +
∞∑
m=1

exp(− (m−1)2

4n
)

(2)

≤ 2 +

∞∫
0

exp(−x2

4n
)dx

(3)
= 2 + 2

√
n

∞∫
0

exp(−u2)du

= 2 + 2
√
n ·
√
π/2.

Here the steps denoted with (1), (2) and (3) on the equal resp. less-than-or-equal

signs arise due to the following considerations.

(1) With the estimate 1− x ≤ exp(−x) for 0 ≤ x ∈ R we get

Pr(X > m) =
m−1∏
i=0

(1− i
2n

)

≤
m−1∏
i=0

exp(− i
2n

)

= exp(−
m−1∑
i=0

i
2n

)

= exp(− 1
2n
· (m−1)m

2
)

≤ exp(− (m−1)2

4n
).
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(2) The function exp(−x2

4n
) is monotonically decreasing, so

∞∑
m=1

exp(− (m−1)2

4n
) =

∞∑
m=0

exp(−m2

4n
)

= 1 +
∞∑
m=1

m∫
m−1

exp(−m2

4n
)dx

≤ 1 +
∞∑
m=1

m∫
m−1

exp(−x2

4n
)dx

= 1 +

∞∫
0

exp(−x2

4n
)dx

explains the inequality between the sum and the integral here.

(3) A change of variables with u := x
2
√
n
yields this step.

We will regard various bi-directional searches later, so this proposition helps

determining the complexity of such algorithms.

2.3.2 Expander Graphs

Our isogeny graphs later will turn out to have the useful property of being expander

graphs which we describe in this part of the work.

Definition. Let G = (VG, EG) be a k-regular connected graph with |VG| = n ∈ N
and nontrivial eigenvalues λ1 ≥ · · · ≥ λm for m ≤ n. We de�ne

λ(G) := max |λi|.

G is called a Ramanujan graph if we have λ(G) ≤ 2
√
k − 1.

Let U ⊆ VG be a subset of vertices. The vertex boundary ∂v(U) of U in VG is

the set of vertices which have distance one to U and is de�ned as

∂v(U) := {v ∈ VG \ U | ∃u ∈ U such that (u, v) ∈ EG}.

Similar the edge boundary ∂e(U) of U in VG is the set of edges which lead out of U ,

namely

∂e(U) := {(u, v) ∈ EG | u ∈ U and v ∈ VG \ U}.
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Let c > 0 be a real number. If for all subsets U ⊆ VG with |U | ≤ |VG|/2 we have

the relation

|∂v(U)| ≥ c · |U |,

G is called a c-expander graph and c an expander constant of G.

This estimation can later be used in a complexity analysis concerning an ex-

pander graph; further expander graphs have the nice �mixing property� that random

walks on them reach the uniform distribution quickly (page 533 of Galbraith [28]

or section 2.3 of Charles-Goren-Lauter [10]), that means that after a certain

number of steps the end vertex vm of a random walk in a graph with N vertices

behaves like a vertex that is chosen uniformly at random.

Simple counting considerations show the following coherence.

Lemma 2.47. Let U be a subset of VG. Then we obtain the relations

|∂v(U)| ≤ |∂e(U)| ≤ k |∂v(U)|

between the cardinalities of the vertex- and edge-boundaries.

As we will show at the end of this section, this connection and the next propo-

sition can be used to determine an expander constant for certain types of graphs.

Proposition 2.48. Let G = (VG, EG) be a k-regular graph and U ⊆ VG be a

subset of vertices with |U | ≤ |V |/2. Then we get

|∂e(U)| ≥ k − λ1

2
|U |

where λ1 is the maximal eigenvalue as before.

Proof. Murty shows on page 13 of [63] that the Rayleigh-Ritz-Theorem yields

k − λ1 = min
f 6= 0

〈f, f0〉 = 0

〈∆f, f〉
〈f, f〉

where

F f is a real-valued function on VG and f0 is a constant function on VG,

F the inner product 〈·, ·〉 on the space of real-valued functions of VG is de�ned

as 〈f, g〉 :=
∑
v∈VG

f(v)g(v),
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F for the adjacency matrix A we have (Af)(v) =
∑

(v,u)∈EG
f(u) where we take

the sum over all outgoing edges (v, u) ∈ EG from VG and

F ∆ := k Idn−A has eigenvalues k − λi.

Now we choose the real-valued function f to be

f(v) =

|VG \ U | if v ∈ U

−|U | if v /∈ U

which satis�es the condition 〈f, f0〉 = 0, so the inequation

k − λ1 ≤
〈∆f, f〉
〈f, f〉

holds for this f . Counting arguments yield

〈∆f, f〉 = k〈f, f〉 − 〈Af, f〉

= k
∑
v∈VG

f(v)2 −
∑
v∈VG

∑
(v,u)∈EG

f(u)f(v)

=
∑
v∈VG

∑
(v,u)∈EG

f(v)2 −
∑

(v,u)∈EG

f(u)f(v)

= 1
2

∑
(v,u)∈EG

f(v)2 + f(u)2 −
∑

(v,u)∈EG

f(u)f(v)

= 1
2

∑
(v,u)∈EG

(f(v)− f(u))2

=
∑

(v,u)∈EG

(|VG \ U |+ |U |)2

= |VG|2 · |∂e(U)|,

〈f, f〉 =
∑
v∈VG

f(v)2

= |VG \ U | · |VG| · |U |

and we conclude

|∂e(U)| ≥ (k − λ1)|U | |VG \ U |
|VG|

≥ (k − λ1)|U | |VG|/2
|VG|

=
k − λ1

2
|U |

Christina Delfs 53



2 THEORETICAL FOUNDATIONS

since |VG \ U | ≥ |VG|/2 follows from |U | ≤ |VG|/2.

Corollary 2.49. With Proposition 2.48 and Lemma 2.47 we get

|∂v(U)| ≥ |∂e(U)|
k

≥ k − λ1

2k
|U |,

so G is a c-expander graph with c = k−λ1

2k
if we have c > 0.

Since we know λ1 < k, the condition from Corollary 2.49 is always true.

Especially this means that every Ramanujan graph is an expander graph since

there λ1 < λ(G) ≤ 2
√
k − 1 yields the constant c as above. We will see that for

example supersingular isogeny graphs are Ramanujan graphs and thus we can use

these results in our work with them.
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3 Connection to Elliptic Curves over

Number Fields

In this chapter we consider elliptic curves which are de�ned over a number �eld K

and have special properties. For those curves we can develop a helpful set of results

in Section 3.2 which describe their behavior and provide a nice picture of how the

curves and their endomorphism rings are related to each other. Section 3.3 shows

how the occurring structures can be transferred to elliptic curves de�ned over �nite

�elds Fq at least when these reduced curves are ordinary. Further we show how to

adapt this theory for curves whose reduction is supersingular, a result which is of

fundamental value for our later work on supersingular isogeny graphs.

3.1 Complex Multiplication

In this part we sketch some basic theory we will need throughout this section. Let

E be an elliptic curve de�ned over a number �eld K ⊆ C. If we have that

F EndE is a free Z-module of rank two,

F there is an embedding ι : EndE ↪→ K for an imaginary quadratic �eld K and

F the image ι(EndE) =: O is an order in K,

E is said to have complex multiplication with O.
Thus we can de�ne an isomorphism [·] : O → EndE. Note that hereby we can

write any endomorphism of E as [α] with α ∈ O. For α = m ∈ Z this is the same

notation as for the usual multiplication-by-m-map [m].

Two lattices Λ0 and Λ1 in C are called homothetic if there exists a complex

number α with αΛ0 = Λ1. It is a well-known fact (Silverman [75, Chapter VI])

that there is a bijection

{E elliptic curve de�ned over C}�∼= ←→ {Λ lattice in C}�homothety

in the sense that every such elliptic curve E is given by the Weierstrass poly-

nomial Y 2 − 4X3 + g2(Λ)X + g3(Λ) associated to3 Λ in C and that the set E(C)

is isomorphic to the complex torus C/Λ as a group. The group law of the elliptic

curve corresponds to the usual addition modulo a lattice on the torus.
3The modular functions g2 and g3 originate from the theory of elliptic functions and the existence

of an appropriate lattice Λ is due to the Uniformization Theorem a lattice, see Silverman [75,
Theorem VI.5.1].
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Two elliptic curves E0 and E1 are isomorphic if and only if the associated lattices

Λ0 and Λ1 are homothetic. Since we only regard lattices up to homothety, we can

always assume such a lattice Λ to be of the form Λ = 〈1, λ〉 with some λ from the

upper half plane H. Further another bijection occurs as

{φ : E0 → E1 isogeny} ←→ {α ∈ C | αΛ0 ⊆ Λ1}

for given elliptic curves E0 and E1 where Λi := 〈1, λi〉 ⊆ C with λi ∈ H denotes the

lattice such that we have Ei(C) ∼= C
/

Λi. It can be shown that the left hand side is

also a ring and actually the bijection holds in form of ring isomorphisms.

Let E be an elliptic curve de�ned over K and Λ be the associated lattice to

E. Again we write Λ = 〈1, λ〉 with some λ ∈ C having positive imaginary part.

Husemöller [38, Proposition 12.4.7] shows that E has complex multiplication

if and only if λ ful�lls a quadratic equation (which can also be seen in the consider-

ations below) and that in this case we have

K = Q(λ) and EndE ∼= O ⊆ Λ.

From now on we consider an elliptic curve E over K with complex multiplication

by O and corresponding lattice Λ = 〈1, λ〉. Due to the correspondence of isogenies

to certain complex numbers as seen above we get

EndE ∼= {α ∈ C | αΛ ⊆ Λ}

with isomorphism of rings.

So the representation of Λ and the condition in the endomorphism ring leads to

the existence of some a, b, c, d ∈ Z which ful�ll

α = a+ bλ

αλ = c+ dλ

for any α ∈ EndE such that in the end we get the quadratic equation

bλ2 + (a− d)λ− c = 0.

Canceling out possible common divisors, λ satis�es a quadratic equation

Aλ2 +Bλ+ C = 0
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with gcd(A,B,C) = 1 and discriminant D = B2 − 4AC. Theorem 8.1 from

Lang [48] then tells us that under this circumstances we have

EndE ∼=
〈

1, D+
√
D

2

〉
=: O.

Note that we have D = dO. Thus we can determine the endomorphism ring of an

elliptic curve E over a number �eld through calculating its discriminant when we

know the lattice 〈1, λ〉 by �nding coprime A,B,C ∈ Z with Aλ2 +Bλ+C = 0 and

computing D = B2 − 4AC. When we are able to determine the discriminant of the

order O isomorphic to EndE in some other way, we also have already found the

order O. This will be used in the next section.
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3.2 The Characteristic Zero Picture

In this chapter we are interested in the relation of the endomorphism rings of isoge-

nous elliptic curves which are de�ned over a number �eld K ⊂ C. We will present

an arrangement of those curves in a level structure and investigate how these levels

are connected via isogenies of a given prime degree.

For this, the theory of complex multiplication as brie�y described above can be

used to characterize the number and type of outgoing isogenies for each elliptic curve

de�ned over a number �eld depending on its endomorphism ring. We will analyze

this behavior now.

Before we begin with the main part, we state two propositions which hold for

elliptic curves over number �elds with complex multiplication as well as for some

de�ned over a �nite �eld. The only requirement is the form of the endomorphism

ring as an order in an imaginary quadratic �eld.

Proposition 3.1. Let E0 and E1 be elliptic curves de�ned over a �eld K such that

their endomorphism rings are isomorphic to orders O0 resp. O1 in an imaginary

quadratic �eld K and let φ : E0 → E1 be an isogeny of prime degree `. Then we

have

Oi ⊆ O1−i and [O1−i : Oi] | `

for i = 0 or i = 1.

Note that we already stated this result for ordinary elliptic curves as Proposi-

tion 2.44 which is attributed to Kohel [45]. The proof used only the structure of

the endomorphism ring, so it works for elliptic curves with complex multiplication

as well. The di�erence to the case of ordinary elliptic curves over �nite �elds is, that

Proposition 2.42 cannot hold here since we do not have a distinct Frobenius

endomorphism πq which gives us a bottom level, so we have potentially more levels

here than in the ordinary situation.

Analogue to isogenies between ordinary elliptic curves over �nite �elds like in

Section 2.1.1 we call the isogeny φ : E0 → E1 between elliptic curves E0, E1

de�ned over a number �eld ascending, descending or horizontal depending on the

relation of the endomorphism rings of E0 and E1, and elliptic curves with the same

endomorphism ring are on the same level.

The top level which consists of elliptic curves with the maximal order of K as

endomorphism ring will usually be denoted with V0 and also called crater. The

distance of a level from the surface is the power of ` dividing the conductor of
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3.2 The Characteristic Zero Picture

curves on the level. The level with distance k to the top is labeled Vk. When we

want to emphasize the order belonging to each level, we also talk about the level O,
so for instance the top level is labeled with OK.

Let E be an elliptic curve de�ned over some �eld K. We denote the set of

isogenies starting at E with Hom(E, ·).

Proposition 3.2. Let E be an elliptic curve de�ned over a �eld K so that EndE

is an order in an imaginary quadratic �eld and let ` be a prime that in the case of

charK = p > 0 is coprime to p.

Then there are `+ 1 non-equivalent isogenies of degree ` in Hom(E, ·).

Proof. Since these so-called outgoing isogenies correspond to cyclic subgroups of

the `-torsion group E[`], we can determine how many of them exist by looking at

the possible subgroups. We know from Proposition 2.21 that in our situation we

have

E[`] ∼= Z/`Z× Z/`Z

and all subgroups of Z/`Z × Z/`Z are generated by (1, 0) and (i, 1) where i varies

over all ` elements of Z/`Z. This yields exactly ` + 1 subgroups and thus ` + 1

outgoing isogenies from E, one for each subgroup.

This result is very important for our work since the outgoing isogenies will be

edges in our isogeny graphs and thus these graphs are ` + 1-regular. We can also

determine the form of the elliptic curves which are reached by those isogenies.

Remark. When write φi : E → Ei with i ∈ {0, · · · , `} for the `-isogenies arising
from Proposition 3.2, the image curves Ei of them are called `-neighbors of E.

When E is de�ned over a number �eld K ⊆ C with E(C) ∼= C/Λ for a lattice

Λ = 〈1, λ〉, the kernels of the outgoing isogenies have to be subgroups of order ` of

E[`] ∼=
{

1
`

(x+ yλ) + Λ | x, y ∈ Z
}

=: M ⊆ C/Λ.

If we use the isomorphism from Z/`Z × Z/`Z to E[`] before that, we get an

isomorphism

Z/`Z× Z/`Z → M

(x, y) 7→ 1
`

(x+ yλ) + Λ
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and the generators of the possible subgroups of Z/`Z× Z/`Z from above yield the

generators of order-`-subgroups of E[`] as the preimages of 1
`

+ Λ and i+λ
`

+ Λ for

i ∈ {1, · · · , `}.
By the fundamental homomorphism theorem the image curves of the isogenies

with those kernels are isomorphic to elliptic curves Ei with Ei(C) ∼= C/Λi where

Λ0 = 〈1, `λ〉 and Λi = 〈`, i+ λ〉 for i ∈ {1, · · · , `}.
We will need the explicit descriptions of those image curves later.

Now that we have de�ned the levels of elliptic curves de�ned over number �elds,

we want to see how they are linked to each other with isogenies. Afterwards we will

examine the connectedness within a single level in dependence of the given isogeny

degree.

3.2.1 Vertical Connections Between Levels

In this section we want to show how the previously described levels are connected to

each other. All elliptic curves are de�ned over a number �eld K ⊆ C if not stated

otherwise. We will use the result described in the beginning of Section 3 about

the order which is isomorphic to the endomorphism ring of an elliptic curve E being

determined by its discriminant D = dE. This can be computed by the coprime

integers A, B and C from the equation Aλ2 +Bλ+C = 0 where λ is the generator

of the lattice corresponding to E.

Especially, this is also true for all `-neighbors Ei of E, so that for �nding their

endomorphism rings it su�ces to determine their discriminants in relation to the

discriminant dE. In particular, their discriminants are just the same as the discrim-

inants dEi
of the orders Oi in K which are isomorphic to EndEi, so when one of

the Oi has a discriminant D, D · `2 or D/`2, the `-isogeny from E to this curve

will be horizontal, descending resp. ascending due to our convention after Propo-

sition 3.1.

This can be used to investigate the outgoing `-isogenies from E like in the proof

of Theorem 4 of Galbraith [27]. The kernel of such an isogeny has to be a

subgroup of E(C) with exactly ` elements and we have seen in the remark after

Proposition 3.2 that the image curves from those isogenies are elliptic curves Ei
with E0(C) ∼= C/Λi and Λ0 = 〈1, `λ〉 resp. Λi = 〈`, λ+ i〉 for i ∈ {1, · · · , `}.

For each of the Ei we can use the generators of the lattice Λi to get a quadratic

equation and based on the information on λ deduce the form of the discriminant

from that. We will demonstrate the method for E0 and refer to Galbraith [27]

for the details of the lengthy calculations in the other cases.
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We set λ0 := `λ and since we have Aλ2 +Bλ+ C = 0, we get

A︸︷︷︸
=:A0

λ2
0 + `B︸︷︷︸

=:B0

λ0 + `2C︸︷︷︸
=:C0

= 0.

Note that we required the coe�cients to be coprime to be able to use the theorem

of Lang about the structure of the endomorphism ring. So in the situation with

gcd(A0, B0, C0) = 1, ` - A has to be true and we get the discriminant

D0 = B2
0 − 4A0C0

= `2B2 − 4`2AC

= D · `2,

so the isogeny φ0 from E to E0 is descending.

When the gcd-condition does not hold, A = A0 has to be divisible by ` and we

have gcd(A0, B0, C0) ∈ {`, `2}. In the �rst case we divide ` out of the coe�cients to

attain gcd(A0

`
, B0

`
, C0

`
) = 1, A0

`
λ2

0 + B0

`
λ0 + C0

`
= 0 and

D0 =
(
B0

`

)2 − 4A0

`
C0

`

= B2 − 4AC

= D

which implies that φ0 : E → E0 is a horizontal isogeny, whereas in the latter case

we have to cancel `2 to get an analogous equation with coprime coe�cients A0

`2
, B0

`2

and C0

`2
which yields

D0 =
(
B0

`2

)2 − 4A0

`2
C0

`2

= B2−4AC
`2

= D/`2

and provides an ascending isogeny φ0.

Let ` | A. We want to emphasize that the ascending isogeny can only occur if `

also divides the conductor c with dE = c2dK and that in the other case a horizontal

isogeny arises. If ` - B this is due to the fact that
(
c2

`

)(
dK
`

)
=
(
dE
`

)
=
(
B2

`

)
= 1,

hence ` - c, ` splits in K and since we have gcd(A0, B0, C0) = `, we get a horizontal

isogeny as shown above. When on the other hand ` | B, we have the condition(
c2

`

)(
dK
`

)
=
(
dE
`

)
= 0 so ` | c or ` | dK has to hold.

Let in this case ` - c and ` > 2 divide dK. Since dK has no odd square factors,
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`2 can neither divide dK nor c2dK = dE = B2 − 4AC and thus also `2 - A. This

yields a horizontal isogeny with the described method. For ` = 2 we know `2 | dK
and the fundamental discriminant is dK = 4d with d ≡ 2, 3 (mod 4). Canceling the

factor 4 out of the equation for dE yields c2d = B2

4
− AC and assuming 4 | A gives

a contradiction to the form of d since then we had c2d ≡ d ≡
(
B
2

)2 ≡ 0, 1 (mod 4).

Therefore `2 - A and we have the same situation as for ` > 2. So if ` rami�es in K
and ` - c, the isogeny φ0 : E → E0 is horizontal.

Let now ` divide c, so it has also to divide dE = c2dK quadratically and thus

for ` 6= 2 we get `2 | A which leads to gcd(A0, B0, C0) = `2 and an ascending

isogeny in the way explained above. In the case ` = 2 let c = 2c′ and consider

the equation c′2dK = B2

4
− AC again. This time we want an ascending isogeny,

so suppose contradictorily that 4 - A. In that case AC ≡ 2 (mod 4) and thus

c′2dK ≡
(
B
2

)2− 2 ≡ 2, 3 (mod 4) which is not possible since both c′2 and dK are 0 or

1 modulo 4. This concludes the investigation of the isogeny to the image curve E0.

For the other ` image curves Ei we have to �nd quadratic equations for λi := λ+i
`

and investigate them in a similar way to see in which direction the isogeny from E

to Ei leads. See Galbraith [27] for the details and results. Summed up we can

make a case di�erentiation and gain the following theorem.

Theorem 3.3. Let K be an imaginary quadratic �eld with maximal order OK
and fundamental discriminant dK, E be an elliptic curve de�ned over a number

�eld K ⊆ C whose endomorphism ring is isomorphic to an order with discriminant

dE = c2dK for the conductor c in K. Let ` be a prime.

F If ` - c, we have
(
dK
`

)
=
(
dE
`

)
and

G two horizontal and ` − 1 descending isogenies of degree ` which start at

E if ` splits in K,

G ` descending isogenies and one horizontal outgoing isogeny from E if `

rami�es in K,

G `+ 1 isogenies going down from E if ` is inert in K.

F If ` | c, we have ` descending isogenies and one ascending isogeny from E.

If we arrange elliptic curves overK according to the levels of their endomorphism

rings and connect them via `-isogenies, the such arising graph is � apart from possible

loops on the crater � almost a tree and quite large. However, we will see later

that part of its structure can be transmitted to the corresponding graph in �nite

characteristic and that this tree can be cut o� to become a slightly smaller graph.
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Modular Functions And The Modular Polynomial. We mentioned

the modular polynomial Φ` before and want to introduce its background brie�y here.

In this part we regard the modular group Γ := SL(2,Z) which acts transitively on

the upper halfplane H through

∗ : Γ×H → H

(( a bc d ) , z) 7→ az+b
cz+d

.

For �xed A ∈ Γ we use the notation πA to denote the function on H sending z ∈ H
to A ∗ z. Let ` be an integer, then we de�ne

Γ0(`) :=

{(
a b

c d

)
∈ Γ

∣∣∣∣∣ c ≡ 0 (mod `)

}

which is a subgroup of Γ. Note that we have Γ = Γ0(1).

Definition. Let ` be an integer and G := Γ0(`) be a subgroup of Γ. A modular

function for G is a function f : H → C which is invariant for G and meromorphic

on H and on the cusps4.

There exists a modular function j : H→ C for Γ with

j(λ) = 1728
g3

2(λ)

g3
2(λ)− 27g2

3(λ)

where g2(λ) and g3(λ) are constants corresponding to the lattice Λ := 〈1, λ〉. Since
such lattices correspond to elliptic curves, j(λ) can be interpreted as a constant for

the elliptic curve E with E(C) ∼= C/Λ and in fact it is the j-invariant j(E) of E.

For more information on these objects consult Cox [16] or Lang [48].

This modular function j induces a bijection

j : H/Γ → C

and thus we see

j(λ0) = j(λ1) ⇐⇒ ∃A ∈ Γ : λ1 = A ∗ λ0

⇐⇒ ∃A ∈ Γ : Λ1 = 〈1, A ∗ λ0〉.
4meromorphic on the cusps means that for all A ∈ Γ the negative part of the Laurent expan-

sion of f ◦ πA does not have in�nitely many coe�cients, see Cox [16], Chapter 11.B.
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Furthermore we have that every modular function for Γ is an element of C(j).

If f is a modular function for Γ and ` is an integer, the function g := f ◦ ` mapping

z to f(`z) is a modular function for Γ0(`). In fact, the set of all modular functions

for Γ0(`) is C(j, j ◦ `).

Proposition 3.4. Let ` be an integer and Φ`,j ∈ C(j)[X] be the minimal polyno-

mial of j ◦ `. Then Φ`,j is a polynomial in C[X, j] with degree d := [Γ : Γ0(`)]. It

can be written as

Φ`,j =
d∏
i=1

(X − j ◦ ` ◦ πAi
)

where for Ai ∈ Γ, i ∈ {1, · · · , d} the sets Γ0(`)Ai are representatives for the right

cosets of Γ0(`) in Γ.

Hence there is a two-variable polynomial Φ` ∈ C[X, Y ] with

Φ`(·, j(λ)) =
d∏
i=1

(X − j(` · (Ai ∗ λ))

for λ ∈ H. This polynomial is called the `-modular polynomial and is actually a

symmetric polynomial from Z[X, Y ]. If ` is a prime, Φ` has degree `+ 1 and ful�lls

Φ` ≡ (X` − Y )(X − Y `) (mod ` Z[X, Y ]).

Let E0 be an elliptic curve over a number �eld K ⊆ C such that we have

E(C) ∼= C/Λ0 with Λ0 = 〈1, λ0〉 ⊆ C, so E0 has j-invariant j(λ0). Let z ∈ C be a

root of Φ`(·, j(λ0)), so we get due to the splitting of the polynomial in linear factors

that z = j(` · (A ∗ λ0)) is true with A ∈ Λ being a representative of the right cosets

of Γ0(`) in Γ.

We regard an elliptic curve de�ned over a number �eld K ⊆ C with analogous

corresponding lattice Λ1 and j-invariant j(λ1) = z. Then we get

j(λ1) = j(` · (A ∗ λ0)) ⇐⇒ ∃B ∈ Γ : Λ1 = 〈1, ` ·BA ∗ λ0〉.

Due to the remark after Proposition 3.2 this is equivalent to E1 being `-isogenous

to an elliptic curve E ′ given by the lattice Λ′ = 〈1, BA ∗λ0〉 =: 〈1, λ′〉. Since further
λ′ = BA∗λ0 is equivalent to j(λ′) = j(λ0) this means that we get E ′ ∼= E0 and have

an isogeny φ : E0 → E1 with degree deg φ = `. So in the end we get the following

fundamental property.

64 Christina Delfs



3.2 The Characteristic Zero Picture

Proposition 3.5. Let E0, E1 be elliptic curves de�ned over a number �eld K ⊆ C
with j-invariants j0 resp. j1 and let ` be a prime. Then there exists an isogeny

φ : E0 → E1 of degree ` if and only if Φ`(j0, j1) = 0.

This result is of great importance for our work with isogenies since it enables us

to compute `-neighbors of a given elliptic curve over a number �eld K ⊆ C. It can
also be found for example in Lang [48], Theorem 5.3.5.

3.2.2 Horizontal Links and the Ideal Class Group

Now we want to investigate single levels of this isogeny graph, that is, the set

of elliptic curves de�ned over a number �eld K ⊆ C which have the same given

endomorphism ring. Per de�nition, any isogeny between such curves has to be

horizontal. We have seen in Theorem 3.3 that such isogenies only exist when their

degree does not divide the conductor of the endomorphism ring and is not inert in

the overlying imaginary quadratic �eld K.
Even if there are horizontal isogenies of degree `, it is not yet guarantied that

the level is completely connected when we use them as edges in the graph. We will

now see how we can achieve full connectedness of a given level. The essential knack

is to regard isogenies of di�erent degrees.

Let EΛ denote the elliptic curve de�ned over K associated to a lattice Λ having

complex multiplication by O which is an order in an imaginary quadratic �eld K.
Further let Λ = 〈1, λ〉 where Aλ2 +Bλ+C = 0 with coprime integers A,B,C is the

equation like in the last part. We have seen in the beginning of the chapter that in

this case we have K = Q(λ) and O ⊆ Λ. It is easy to show that AΛ is an ideal in

O, so Λ can be regarded as a fractional ideal in O. Since every fractional ideal in

imaginary quadratic �elds is a Z-module of rank two, it is also a lattice and we will

denote both concepts with Λ simultaneously.

Let now Θ = θO with 0 6= θ ∈ O be a principal ideal of O. Then ΘΛ = θΛ is � as

a lattice � homothetic to Λ and thus yields an elliptic curve in the same isomorphism

class as EΛ. On the other hand every elliptic curve which is isomorphic to EΛ has

an associated lattice that is homothetic to Λ and thus � as an ideal � emerges from

multiplying Λ with a principal ideal.

Hence when regarding isomorphism classes of elliptic curves, principal ideals can

be neglected and the isomorphism class of the elliptic curve EΛ only depends on the

ideal class [Λ] in C`(O). Due to Corollary C.11.1.1. of Silverman [75], the set of

isomorphism classes of elliptic curves de�ned over number �elds with endomorphism

ring isomorphic to O is �nite. Thus K can be taken to be the maximal number �eld
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such that all elliptic curves with endomorphism ring O are de�ned over K and with

this K we set

E``K(O) := {elliptic curves over K with endomorphism ring O}�∼=.

Proposition C.11.1 of Silverman [75] and Proposition II.1.2 of Silver-

man [74] show the following result.

Proposition 3.6. Let O be an order in the imaginary quadratic �eld K. There

is a one-to-one correspondence

C`(O) ←→ E``K(O)

between ideal classes of O and isomorphism classes of elliptic curves over a number

�eld with endomorphism ring isomorphic to O. Moreover, the map

? : C`(O)× E``K(O) → E``K(O)

([a], EΛ) 7→ [a] ? EΛ := Ea−1Λ

is well-de�ned and makes the ideal class group of O act simply transitive on the

isomorphism classes of elliptic curves with �xed endomorphism ring O.

We will see that in this setting isogenies can be represented as ideal classes,

too, so [a] corresponds to an isogeny φ[a] : EΛ → Ea−1Λ. When we take an integral

ideal a from [a], we always have Λ ⊆ a−1Λ since obviously aΛ ⊆ Λ is true. Thus

C/Λ can be embedded with a homomorphism into C/a−1Λ and we get the following

commutative diagram.

C/Λ z 7→z //
OO

��

C/a−1Λ
OO

��
EΛ

φ[a] // Ea−1Λ = [a] ? EΛ

So we have an isogeny φ[a] : EΛ → Ea−1Λ and every isogeny φ : EΛ0 → EΛ1 can

be found this way since there exists an ideal a such that Λ1 = a−1Λ0. Proposi-

tion II.1.4 of Silverman [74] shows now that the kernel of this isogeny is

kerφ[a] = EΛ[a] := {P ∈ EΛ | [α]P = OEΛ
for all α ∈ a}.
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Remember that here [α] is the image of the element α ∈ a ⊆ O under the �xed

isomorphism [·] : O → EndEΛ and thus an endomorphism of EΛ whereas [a] is the

ideal class of a in C`(O). Furthermore the same proposition tells us that this set is

a free O/a-module of rank 1. This implies EΛ[a] ∼= O/a and therefore we get

deg φ[a] = #EΛ[a] = #O/a = N(a)

with the absolute ideal norm of a. So any isogeny of degree ` can be associated with

an integral ideal of norm ` and we get the next result.

Proposition 3.7. Let EΛ be an elliptic curve de�ned over a number �eld K with

endomorphism ring isomorphic to an order O in an imaginary quadratic �eld K and

let ` be a prime. There is a correspondence

{φ ∈ Hom(EΛ, ·) | deg φ = `} ←→ {a ⊆ O integral ideal | N(a) = `}

where Hom(EΛ, ·) denotes the set of outgoing isogenies from EΛ with arbitrary image

curves.

When we take two arbitrary elliptic curves EΛ and EΛ′ from E``K(O), we know

that there exists an integral ideal a ⊆ O so that we have EΛ′ = [a]?EΛ. Let now B be

a �xed positive integer such that C`(O) is generated by the ideal classes of all integral

ideals with prime norm less or equal to B. Then we can write [a] = [a1] · · · [an] where

the integral ideals ai have prime norm `i ≤ B. With Λ0 := Λ we can now construct

a sequence of lattices Λi for i ∈ 1, · · · , n with Λi = a−1
i Λi−1 and Λn = Λ′.

Thereby we get elliptic curves EΛi
∈ E``K(O) and isogenies φi : EΛi−1

→ EΛi
.

Due to the construction it is φi = φ[ai], so we have deg φi = `i ≤ B. After all we

found a chain of isogenies

EΛ = EΛ0

φ1−→ EΛ1

φ2−→ · · · φn−→ EΛn = EΛ′

which provides an isogeny

φ = φn ◦ · · · ◦ φ1 : EΛ → EΛ′

with deg φ = `1 · · · `n.
Thus when we take L to be the set of primes less or equal to B we can �nd

an isogeny with L-smooth degree between any two elliptic curves in E``K(O). This

means that the graph consisting of such curves as nodes is fully connected if we

allow all isogenies of prime degree less or equal to B as edges. This is an important

result which we will use quite a few times in the course of this work.
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Especially for complexity questions it is interesting how small the bound B can

be chosen so that the classes of ideals with norm less or equal to B still generate

the ideal class group C`(O). For O = OK there are some theoretical estimations for

that.

A theorem of Minkowski (for instance see Lang [49, Theorem V.4]) says

that in every ideal class there is an integral ideal a with N(a) ≤ CK
√
dK where the

constant CK is in our quadratic case either 1/2 or 2/π. There have been endeavors

to improve this constant like displayed in Zimmert [95] but nevertheless the implied

unconditional bound is exponential in terms of log dK.

A better bound which relies on a Generalized Riemann Hypothesis has been

developed by Bach in [1] and makes use of characters χ which are functions on

OK-ideals. Such characters appear in Hecke L-functions along with the norm of

ideals a as

Lχ :=
∑
a

χ(a)

N(a)
.

A form or the Generalized Riemann Hypothesis states that Lχ has no zeros on the

halfplane with Re s > 1
2
. Under this conjecture he can make explicit estimates and

obtain bounds for ideals of least norm of with character di�erent from 0 or 1. The

analytical methods go beyond the topic of this thesis, but Bach concludes with

a directly applicable conclusion from Theorem 4 on page 376 of his work, which

provides the following most useful statement.

Theorem 3.8 (Bach's Bound). Let K be a �eld with discriminant dK and OK
be the maximal order of K. Under the assumption of the Generalized Riemann

Hypothesis the class group of C`(OK) is generated by the prime ideals of norm less

or equal to B = 12(log |dK|)2.

If K is a quadratic �eld, this bound can be improved to B = 6(log |dK|)2.

We will refer to this number B as the Bach bound later. In Belabas - Diaz y

Diaz - Friedmann [2] another bound is suggested which is asymptotically worse

than the Bach bound but often better in practice. In our computations we usually

take a much smaller bound (in most of the cases B = 20 su�ces) to favor faster

algorithms with the occasional chance of an error or endless loop over precise but

slow algorithms.

Remark. We will use the Bach bound to assert the existence of an isogeny be-

tween two elliptic curves over a �nite �eld Fq with endomorphism ring isomorphic

to the maximal order OK of an imaginary quadratic �eld K. However, in some cases
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it would be useful to compute an isogeny between two such elliptic curves where

the endomorphism ring is isomorphic to an order O in K which is not maximal. In

practice and in some literature, this is done with the bound B := 6(log |dO|)2. To

justify this bound, the ideals of norm less or equal to this B have to generate C`(O),

which is not given by Bach's paper [1] though and � to the authors knowledge �

nowhere else in literature, too.
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3.3 Lifting and Reduction

It looks desirable to have similar structure of outgoing isogenies for elliptic curves

de�ned over �nite �elds as the precise description of the ones de�ned over number

�elds. Fortunately at least for ordinary elliptic curves there is a connection between

such curves through lifting and reduction theory which preserves the endomorphism

ring and also the number and type of outgoing isogenies. We will explain the strategy

here and point out why it does not work completely for supersingular elliptic curves.

Afterwards we make a modi�cation on the famous Deuring theorems which allow

us to transfer their results to at least a subset of supersingular elliptic curves.

3.3.1 Deuring's Theorems

Let E be an elliptic curve de�ned over a number �eld K ⊆ C with endomorphism

ring EndE isomorphic to an order O in an imaginary quadratic �eld K. By a change
of variables and eliminating denominators we can assure that the coe�cients of the

Weierstraÿ equation are from the ring of integers RK of K.

Let now p be a prime and P be a place over p, so P is one of the prime ideals

of the factorization of the ideal generated by p in RK . Since RK as the maximal

order in a number �eld is a Dedekind domain, every prime ideal is also maximal

and hence RK/P is a �eld. Since we have

#RK/P = N(P)

and the norm is multiplicative, this �eld is �nite with characteristic p. So we get

RK/P = Fq where q is a power of p. Thus we can introduce a reduction map

·̄ P : RK → Fq

and by using it on the coe�cients of E we get another cubic equation with coe�cients

from Fq. If the discriminant of this equation is nonzero, this reduction provides an

elliptic curve Ē de�ned over Fq and we say that E has good reduction at P. We

mostly denote this reduction map only with ·̄ when there can be no risk of confusion
about the used place P.

Deuring [19] explains what happens to the endomorphism ring of the elliptic

curve E under such a reduction. The notation and setting of this paper is kind

of unusual and un�t for our situation, so we refer to proofs of both the following

theorems in Lang [48] where they are Theorems 13.12 and 13.14.
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Theorem 3.9 (Deuring Reduction Theorem). Let E be an elliptic curve de�ned

over a number �eld K, EndE isomorphic to an order O in an imaginary quadratic

�eld K and P be a place over some prime p such that E has good reduction Ē modulo

this place. Then we get

Ē is ordinary ⇐⇒ p splits in K.

Let in this case c = prc0 be the conductor of EndE in K such that p - c0. Then we

get End Ē ∼= Z+ c0OK and c0 = c implies that the map

·̄ : EndE → End Ē

φ 7→ φ̄

is an isomorphism.

Note that this theorem says nothing about the structure of the endomorphism

ring if the reduced elliptic curve is supersingular. But as this turns out to be

important for our approach of the restricted supersingular isogeny problem in Sec-

tion 4.2.2, we investigate it in the next section. Before that we present the behavior

when going in the other direction and lift an elliptic curve de�ned over a �nite �eld

to an elliptic curve over a number �eld K.

Theorem 3.10 (Deuring Lifting Theorem). Let K be an imaginary quadratic

�eld, Fq be a �nite �eld with charFq = p > 0 and E0 be an elliptic curve de�ned

over Fq with endomorphism ring isomorphic to an order O in K. Further, �x some
non-trivial φ0 ∈ EndE0.

Then there exist an elliptic curve E over a number �eld K, an endomorphism

φ ∈ EndE and a good reduction Ē of E at a place P over p such that we get E0
∼= Ē

and φ0 is mapped to φ̄ under this isomorphism.

So � at least for ordinary elliptic curves � it is possible to navigate between

elliptic curves de�ned over a �nite �eld and ones de�ned over a number �eld and

preserve the endomorphism ring of the occurring elliptic curves. Note that lifting

is no problem for supersingular elliptic curves de�ned over Fq but the reduction

theorem yields no result for the behavior of the endomorphism rings of curves which

reduce to such a supersingular one.

As a last point we want to examine the behavior of isogenies between elliptic

curves under reduction. With the notation from above we can state Proposi-

tion II.4.4 from Silverman [74] in the following way.
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Lemma 3.11. For two elliptic curves E0 and E1 de�ned over a number �eld K ⊆ C
with endomorphism rings isomorphic to orders in an imaginary quadratic �eld K the

map

·̄ : Hom(E0, E1) → Hom(Ē0, Ē1)

φ 7→ φ̄

is injective and preserves degree.

Especially when we regard all isogenies in Hom(E0, ·) with degree `, they are

mapped injectively on `-isogenies in Hom(Ē0, ·). Since in both cases there are `+ 1

such isogenies as seen in Proposition 3.2, this mapping is bijective. We may �x

this result in a lemma, too.

Lemma 3.12. For an elliptic curve E0 de�ned over a number �eld K ⊆ C whose

endomorphism ring is an order in an imaginary quadratic �eld K and which reduces

to an ordinary elliptic curve Ē0 de�ned over Fq, the map

·̄ : Hom(E0, ·) → Hom(Ē0, ·)

φ 7→ φ̄

is bijective.

Furthermore it turns out that all of those isogenies are de�ned over Fq in this

case.

Proposition 3.13. Let Ē0 be an ordinary elliptic curve de�ned over the �nite

�eld Fq of characteristic p. Let ` 6= p be a prime.

Then we have End Ē0 = EndFq Ē0 and all `-isogenies to ordinary elliptic curves

de�ned over Fq which start at Ē are equivalent to ones which can be de�ned over

Fq, too.

Proof. We have End Ē0 = 〈[1], φ〉 = EndFq Ē0 where φ is πq or
1+πq

2
depending on

whether the endomorphism ring is isomorphic to Z[
√
−p] or Z

[
1+
√
−p

2

]
. Proposi-

tion 23.3 of Kohel [45] and his discussion after that yield the second statement.

Thus when we take the `-level structure of elliptic curves de�ned over a number

�eld provided by Theorem 3.3 and reduce the whole picture to characteristic p,

elliptic curves E are mapped bijectively to elliptic curves Ē with the same endo-

morphism ring and `-isogenies from Hom(E, ·) also bijectively to respective ones in

Hom(Ē, ·). Hence the whole picture can be transferred from characteristic 0 to p.
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Note that due to Proposition 2.42 the reduced curves are de�ned over Fq if and
only if we have Z[πq] ⊆ End Ē, so if we regard reduced elliptic curves over Fq the
graph has to be truncated and the lower levels are cut o�.

3.3.2 Reduction to Supersingular Elliptic Curves

The reduction and resulting bijection between elliptic curves over number �elds resp.

�nite �elds with same endomorphism ring and the one concerning their isogenies does

only work in this form for the case where the reduced elliptic curves are ordinary. In

this section we want to investigate the problems and describe a partly solution and

reparation of the supersingular case. We will regard the set of supersingular elliptic

curves which are de�ned over Fp and call them Fp-rational supersingular elliptic

curves.

Let p be a prime and E be an elliptic curve de�ned over a number �eld K ⊆ C
so that its good reduction Ē at a place P over p is supersingular. Because End Ē is

an order in a quaternion algebra, it has rank four as a Z-module and the reduction

·̄ : EndE → End Ē

φ 7→ φ̄

as in the Deuring Reduction Theorem cannot be an isomorphism since EndE is

still an order in an imaginary quadratic �eld and thus a Z-module of rank 2. For

that reason we regard the restricted endomorphism ring EndFp Ē consisting of all

endomorphisms which are de�ned over Fp, also called Fp-rational endomorphisms.

Analogously HomFp(Ē0, Ē1) contains all Fp-rational isogenies between the supersin-

gular elliptic curves Ē0 and Ē1.

We want to investigate the following situation. Let p > 3 be a prime and let

Ē denote a supersingular elliptic curve which is de�ned over Fp and lifted via the

Deuring Lifting Theorem to an elliptic curve E over a number �eld K. Then

Proposition 3.2 says that for a prime ` 6= p there are `+ 1 isogenies φi : E → Ei

with degree φi = ` and image curves Ei over K (or a �nite extension of K) for

i ∈ {0, · · · , `}.
The endomorphism rings of all Ei have to be orders in K = Q(

√
−p), too, since

they are isogenous to E. Thus p rami�es in K and from the Deuring Reduction

Theorem we know that all Ei reduce to supersingular elliptic curves Ēi in character-

istic p, so the reduced curves have to be de�ned over Fp2 . The situation is sketched

in the following diagram.
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E/K
φi // Ei/K

��
Ē/Fp

OO

Ēi/Fp2

Figure 1: Lifting a Supersingular Elliptic Curve over Fp

Several problems arise while regarding this setting. We want to examine them

in the remainder of this section.

The primary questions we will investigate for supersingular elliptic curves in this

setting are listed below.

F Which of the Ēi are de�ned over Fp?

F What is the relation of the endomorphism rings of Ei and Ēi?

F What happens to the isogenies φi under this reduction?

For ordinary curves these issues over Fq can be answered easily as we have seen:

The Ēi are de�ned over Fq if and only if we have Z[πq] ⊆ End Ēi (Lemma 2.43),

EndEi ∼= End Ēi (Theorem 3.9) and there exists an isogeny φ̄i : Ē → Ēi de�ned

over Fq which is the reduction of φi for every i ∈ {0, · · · , `} (Lemma 3.12). We

want to show similar results in our case.

We deal with the �rst question at the beginning and show the following.

Proposition 3.14. Let E be an elliptic curve de�ned over a number �eld K and

let P be a place over a prime p > 3 such that E has good reduction Ē which is a

supersingular elliptic curve de�ned over Fp2. Then we get

Ē is de�ned over Fp ⇐⇒
√
−p ∈ End Ē

in the sense that there exists an element φ ∈ End Ē with φ2 = [−p].

Proof. This follows Proposition 2.4 of Delfs-Galbraith [18].

If Ē is de�ned over Fp, we know that the Frobenius πp lies in End Ē and for

supersingular elliptic curves ful�lls the characteristic equation π2
p +[p] = 0 for p > 3,

so we get πp =
√
−p ∈ End Ē. To complete the equivalence, we have to show that if

the endomorphism ring of a supersingular elliptic curve in characteristic p contains

an element
√
−p, then the curve is already de�ned over Fp.
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So let φ ∈ End Ē be an endomorphism with φ2 = [−p]. Since the degree is

multiplicative and p is prime, we get deg φ = p. Ē is supersingular, so it has no

points of order p and the kernel of φ2 is trivial. With this, it is also impossible for

the kernel of φ to contain more than just the identity element OE. The number of

points in the kernel is just the separable degree of φ and thus from

p = deg φ = degs φ · degi φ = 1 · degi φ

we see that φ is inseparable.

Due to Lemma 2.2 we can �nd a separable isogeny ψ such that φ factors as

E
πp //

φ

88E(p) ψ // E1

and, again, the multiplicativity of the degree yields degψ = 1. So we have E(p) ∼= E

and therefore j(E) = j(E(p)) = j(E)p. That implies that j(E) ∈ Fp is true and thus

E is de�ned over Fp.

For later use we de�ne

E``Fp,s := E``Fp(Z[
√
−p]) ∪ E``Fp(OK)

as the set of all Fp-isomorphism classes of supersingular elliptic curves de�ned over

Fp and the corresponding set in characteristic 0 as

E``K,s := E``K(Z[
√
−p]) ∪ E``K(OK).

As in the beginning of Section 3.2.2, K is the maximal number �eld such that

all elliptic curves with endomorphism ring either Z[
√
−p] or OK are de�ned over K.

We want to establish a one-to-one correspondence between those two sets, so

�rst we show that they have the same number of elements. From Theorem 2.34

we know the number of supersingular j-invariants in Fp to be

#Sp =


1
2
h(−4p) if p ≡ 1 (mod 4)

h(−p) if p ≡ 7 (mod 8)

2h(−p) if p ≡ 3 (mod 8),

so we need to �nd out how many non-Fp-isomorphic supersingular elliptic curves

with the same j-invariant exist to determine the cardinality of E``Fp,s.
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Proposition 3.15. Let p > 3 be a prime. For every supersingular j-invariant

in Fp there are � up to Fp-isomorphism � exactly two supersingular elliptic curves

de�ned over Fp with j-invariant j.

Proof. Theorem 2.2 of Bröker [5] tells us that for p > 3 the number of elliptic

curves over Fp with j-invariant j up to Fp-isomorphism is
6 if j = 0 and p ≡ 1 (mod 3)

4 if j = 1728 and p ≡ 1 (mod 4)

2 otherwise.

Further we know from Corollary 2.29 that an elliptic curve with j-invariant 0

resp. 1728 is supersingular if and only if we have p ≡ 2 (mod 3) resp. p ≡ 3

(mod 4). So the cases of six or four such curves never arise in the supersingular case

and thus we always have two di�erent Fp-isomorphism classes with given j-invariant

there.

Therefore we see that the number of elements in E``Fp,s is just twice the number
of possible j-invariants and thus equal to 2#Sp.

On the other hand, the cardinality of E``K,s can be simply calculated as

#E``K,s =

#E``K(Z[
√
−p]) if p ≡ 1 (mod 4)

#E``K(Z[
√
−p]) + #E``K(OK) if p ≡ 3 (mod 4)

=

h(−4p) if p ≡ 1 (mod 4)

h(−4p) + h(−p) if p ≡ 3 (mod 4)

=


h(−4p) if p ≡ 1 (mod 4)

2h(−p) if p ≡ 7 (mod 8)

4h(−p) if p ≡ 3 (mod 8)

which obviously also equals 2#Sp. So both sets are �nite and equipotent. Actually,

reduction of elliptic curves yields a bijection between them in the following sense.

This is similar to Proposition 2.5 of Delfs-Galbraith [18].

Theorem 3.16. Let p > 3 be a prime and K be a number �eld as before. There

is a �xed place P′ over p such that the following reduction map is an isomorphism,

·̄ P′ : E``K,s → E``Fp,s
[E] 7→ [Ē].
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Proof. If E0 and E1 are isomorphic elliptic curves de�ned over a number �eld K,

they have the same j-invariant, and when they are reduced the j-invariants of the

reduced curves will equal, too. Thus, Ē0 and Ē1 are isomorphic and the map is

well-de�ned. Since both sets are �nite and have the same number of elements, it

su�ces to show surjectivity or injectivity of the map. We will show here that it is

surjective.

Let E0 be a supersingular elliptic curve de�ned over Fp. We have shown previ-

ously that the restricted endomorphism ring EndFp E0 is either the order Z[
√
−p]

or the maximal order OK in K = Q(
√
−p). Choosing the isogeny φ0 ∈ EndFp E0

as πp or 1+πp
2

depending on the form of the restricted endomorphism ring with

EndFp E0 = 〈1, φ0〉, we can perform a Deuring Lift on E0 together with φ0. With

that we get an elliptic curve E over a number �eld K and φ ∈ EndE such that

E has good reduction Ē at a place P, Ē ∼= E0 and φ is mapped on φ0 under this

isomorphism.

In particular, this endomorphism φ has the same characteristic polynomial as φ0,

so EndE = 〈1, φ〉 is isomorphic to an order O in K = Q(
√
−p) with Z[

√
−p] ⊆ O.

Hence, [E] ∈ E``K,s is true. Most importantly this also means EndE ∼= EndFp Ē.

Usually though when we regard this reduction, the used place P does not have

to be the �xed place P′. But Proposition 1.2 of Tate [87] tells us that for any

two places P and P′ over the same prime there exists some Galois automorphism

σ with P′ = Pσ. Thus the elliptic curve Eσ reduces to Ē modulo the �xed place P′

and the map ·̄ is surjective.

In the proof we have even shown that the endomorphism ring of E is isomorphic

to the restricted endomorphism ring of Ē under this reduction, which is �xed in the

next Proposition.

Proposition 3.17. Let p > 3 be a prime and E be an elliptic curve de�ned over

a number �eld K such that there exists a good reduction Ē of E at a place P over

p which is supersingular and de�ned over the �nite �eld Fp. Then we have

EndE ∼= EndFp Ē.

The structure of an endomorphism ring of a supersingular elliptic curve de�ned

over Fp has also the prominent attribute that it contains Z[
√
−p] as we have seen

in Proposition 3.14. Thus we even have

Ē is de�ned over Fp ⇐⇒
√
−p ∈ End Ē

⇐⇒
√
−p ∈ EndE
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in the situation above and can already decide if the reduced curve is supersingular

and de�ned over Fp when we look at the not-reduced curve's endomorphism ring.

With these considerations theDeuring Reduction Theorem can be posed as follows.

Theorem 3.18 (Supersingular Deuring Reduction Theorem). Let E be an el-

liptic curve over a number �eld K, EndE isomorphic to an order in an imaginary

quadratic �eld K and P be a place over some prime p > 3 such that E has good

reduction Ē over Fp modulo this place. Then we get

Ē is supersingular ⇐⇒ p does not split in K

⇐⇒ K = Q(
√
−p).

Let in this case EndE contain Z[
√
−p]. Then the map

·̄ : EndE → EndFp Ē

φ 7→ φ̄

is an isomorphism.

In our setting it is also interesting to see what happens to isogenies under re-

duction. The map Hom(E0, E1) → Hom(Ē0, Ē1) is an degree-preserving injection

due to Lemma 3.11, so the reduction of an `-isogeny between E0 and E1 yields an

`-isogeny between the reduced curves. We want to show that in contrast to the

ordinary case there is no immediate bijection but we have to restrict us � similarly

as with the endomorphisms � to isogenies which are de�ned over Fp.

Proposition 3.19. Let Ē0 and Ē1 be supersingular elliptic curves in characteristic

p and E0 and E1 be elliptic curves de�ned over a number �eld such that Ei is

reduced to Ēi. Let further φ ∈ Hom(E0, E1) be an isogeny and φ̄ ∈ Hom(E0, E1) its

reduction.

If Ē0 and Ē1 are de�ned over Fp, then φ̄ : Ē0 → Ē1 is Fp-rational.

Proof. This is Proposition 2.6 of Delfs-Galbraith [18]. Let πp denote the

Frobenius endomorphism in both of the EndFp Ēi and lift the curves Ei together

with πp. We have EndFp Ēi
∼= EndEi and take isogenies φi ∈ EndEi which reduce to

πp. Further EndEi ∼= Oi is true where the Oi are orders in an imaginary quadratic

�eld K. We can assume that we have �xed those isomorphisms [·]i : Oi → EndEi

with φi = [
√
−p] for the complex

√
−p ∈ Oi ⊆ C.

Let Λ0 and Λ1 be the lattices corresponding to E1 resp. E1, then the isogeny

φ : E0 → E1 can be represented by an α ∈ C with αΛ0 ⊆ Λ1. In C we have the
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equality α ·
√
−p =

√
−p ·α, which leads to φ◦φ0 = φ1 ◦φ, which can also be seen in

Corollary II.1.1.1 of Silverman [74]. Thus after reduction we get φ̄◦πp = πp◦ φ̄.
As shown in Lemma 2.19, this already implies that φ̄ is de�ned over Fp.

Note that there can be isogenies between Fp-rational elliptic curves Ē0 and

Ē1 which are de�ned over an extension of Fp, but those are not in the image of

Hom(E0, E1) under reduction. Examples of that can be found in the graphs in Ap-

pendix C. But it can be shown that every Fp-rational `-isogeny between elliptic

curves de�ned over Fp can be reached through reduction of an isogeny between the

corresponding lifts.

Proposition 3.20. Let p > 3 be a prime, E ∈ E``K,s be an elliptic curve with

good supersingular reduction Ē ∈ E``Fp,s and ` be a prime di�erent from p. Then

we get a one-to-one correspondence

{
φ ∈ Hom(E, ·) | deg φ = `

}
←→

{
φ̄ ∈ HomFp(Ē, ·) | deg φ̄ = `

}
.

Proof. We have already shown that all reduced isogenies are de�ned over Fp, so it
remains to check that every Fp-rational isogeny actually arises from the reduction

of an isogeny in characteristic 0. The proof follows along the lines of page 7 of

Delfs-Galbraith [18].

For an elliptic curve E in characteristic 0 with endomorphism ring EndE we get

from Theorem 3.3 that isogenies between elliptic curves in E``K,s exist in the cases

that

F ` > 2 and ` splits in K, then there are two outgoing horizontal isogenies from

E to elliptic curves in E``K,s (the `−1 descending isogenies have image curves

outside of E``K,s),

F ` = 2 and EndE = Z [
√
−p], then there is one outgoing ascending or horizontal

isogeny from E to an elliptic curve in E``K,s (the two descending isogenies lead
to elliptic curves with smaller endomorphism rings),

F ` = 2 and EndE = Z
[

1+
√
−p

2

]
, then there are three outgoing descending or

horizontal isogenies from E to elliptic curves in E``K,s.

We now want to show that the number of Fp-rational between elliptic curves in

E``Fp,s is the same in the respective cases.

Let Ē be a supersingular elliptic curve de�ned over Fp and φ̄ be a Fp-rational
isogeny of prime degree ` starting at Ē. As we have seen in Lemma 2.18, φ̄ corre-

sponds to a Galois-invariant subgroup G of Ē[`]. Since ` is prime, this subgroup
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will also be cyclic. So let P be a point of Ē[`] such that G = 〈P 〉 with πp(G) = G.

This yields the eigenequation πp(P ) = [a]P for some integer a and thus the charac-

teristic polynomial of πp � which is π2
p + p � has a root at a (mod `).

Since we have Ē[`] ∼= Z/`Z × Z/`Z, Ē[`] can be interpreted as 2-dimensional

Z/`Z-vector space with chosen basis (P,Q). Let Aπp denote the 2× 2 matrix repre-

senting πp with respect to this basis.

Let �rst ` > 2 split in K. Since we have
(−p
`

)
= 1, the equation πp ≡ −p (mod `)

is solvable, so the characteristic polynomial πp + p is not irreducible. It also does

not have a repeated root at a, since the equation

π2
p + p ≡ (πp − a)2 ≡ π2

p − 2aπp + a2 (mod `)

is not solvable for ` 6= 2. Thus the characteristic polynomial splits in a product of

linear factors

π2
p + p ≡ (πp − a)(πp − b) (mod `) with a 6≡ b (mod `).

This means that Aπp is diagonalizable and can be represented as

Aπp =

(
a 0

0 b

)
.

Therefore we have πp(P ) = [a]P and πp(Q) = [b]Q, which yields two cyclic Ga-

lois-invariant subgroups of Ē[`]. The subgroup generated by any other non-trivial

element R := uP + vQ of Ē[`] is obviously not Galois-invariant.

Now take ` = 2. Again, the equation π2
p = −p (mod 2) is solvable, so the

characteristic polynomial is not irreducible. This time the assumption of two non-

equal roots gives us a contradiction since

π2
p + p ≡ πp(πp + 1) ≡ π2

p + πp (mod 2)

cannot be true. Thus in this case the characteristic polynomial satis�es

π2
p + p ≡ (πp − a)2 (mod 2)

and the representation matrix is

Aπp =

(
a 0

b a

)
.
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If the geometric multiplicity of a is two, the matrix will be diagonalizable and thus

b ≡ 0 (mod 2). In this case all the cyclic subgroups of Ē[2] generated by P , Q or

P + Q will be the Galois-invariant ones. Else we get b ≡ 1 (mod 2) and only P

generates a cyclic Galois-invariant subgroup of Ē[2].

It remains to be shown that the case b ≡ 0 (mod 2) with the three subgroups

occurs if and only if the restricted endomorphism ring of Ē is isomorphic to Z[1+πp
2

].

We have seen that b ≡ 0 (mod 2) is true if and only if πp(P ) = P and πp(Q) = Q,

so if P and Q are in the kernel of id +πp. Since P and Q generate Ē[2] and this is

the same as ker([2]), we get

ker([2]) ⊆ ker(id +πp).

The multiplication-by-2-map is separable, so we can use Lemma 2.10 and �nd an

φ ∈ End Ē with id +πp = φ ◦ [2]. The map

φ =
id +πp

[2]
∈ End Ē

is a Fp-rational map and thus an element of EndFp Ē, but its interpretation
1+πp

2

in the isomorphic order of K is obviously not in Z[
√
−p]. So EndFp Ē has to be

isomorphic to Z[1+
√
−p

2
] and since all of the steps in this argumentation are invertible,

this brings the proposed equivalence.

Summed up, the level structure of elliptic curves and isogenies in characteristic

0 can be transferred to Fp-rational isogenies between supersingular elliptic curves

de�ned over Fp. Since
√
−p ∈ EndE is presumed for a supersingular elliptic curve

E to be de�ned over Fp, at most two levels occur in this reduced graph. The other

descending isogenies lead to image curves which have endomorphism ring isomorphic

to Z[`r
√
−p] with some r ≥ 1 and thus are not de�ned over Fp.

We will investigate those graphs in more detail in the next section.
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4 Arithmetic Isogeny Problems

In this section we will always regard elliptic curves E which are de�ned over a

�nite �eld Fq of characteristic p, their trace t = q + 1−#E(Fq) and the imaginary

quadratic �eld K = Q(
√
d) with d := t2 − 4q. After introducing the notation, basic

de�nitions and problems to study, we will �rst cover the well-known ordinary case

before explaining the di�culties of the supersingular situation. Then we will show

how to adapt the approaches of the ordinary case to isogenies between supersingular

elliptic curves which are de�ned over Fp. The results from the last section will be

of great importance there.

Definition. Let K be a �eld of characteristic p > 0 and L be a set of small

primes with p 6∈ L. The directed graph where

F the vertices are K-isomorphism classes of elliptic curves de�ned over K

F the edges are isogenies de�ned over K and of degree ` ∈ L between the corre-

sponding elliptic curves

is called isogeny graph and denoted with G(K,L).

We will label the vertices with E or � especially in the explicit examples �

with j when j = j(E). Since for any isogeny φ : E0 → E1 there exists the dual

isogeny φ̂ : E1 → E0, we usually treat the isogeny graph as an undirected graph.

Exceptions only happen for j = 0 or j = 1728 as we have seen in the remark after

Proposition 2.15 where we discussed equivalent isogenies.

Remark (and more re�ned Notation).

F For L = {`} we write G(K, `).

F The isogeny graph G(Fq,L) is never fully connected since due to Theo-

rem 2.13 isogenies can only exist between elliptic curves of same trace t (and

for instance never between an ordinary and a supersingular one).

Therefore we usually look only at possible components Gt(Fq,L).

F For t 6= 0 the graphs Gt(Fq,L) and G−t(Fq,L) have the same structure since

the curves in the one graph are twists of the curves in the other (see Exer-

cise 25.3.8 of Galbraith [28]).

Thus for ordinary graphs we usually regard only the case t > 0.

F Isogenies between ordinary elliptic curves over Fq are also de�ned over Fq
(Proposition 3.13), so Gt(Fq,L) is always the whole picture.
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F In the supersingular case we know from Theorem 2.22 that we always have

q ∈ {p, p2} but isogenies are de�ned over F̄q in general. So here we usually

regard the two situations G0(Fp,L) and G0(F̄p,L).

Finding paths between given vertices in an isogeny graph Gt(Fq,L) is a way to

solve the general elliptic isogeny problem as introduced in Section 2.1.1, although

an thus obtained isogeny has degree of a product of the primes in L and thus cannot

be guarantied to exist. If need be, the set L has to be increased until a connection

can be found. Therefore the following isogeny graph problem is phrased with a

constraint.

Problem 5 (Elliptic Isogeny Graph Problem). Let K be a �nite �eld of charac-

teristic p and L a set of small primes with p 6∈ L. Given j0, j1 ∈ Gt(K,L), compute

a path between them (if possible).

In this chapter we are going to describe the setting of this problem in di�erent

situations and some approaches to solve it.

4.1 The Ordinary Elliptic Isogeny Problem

Computing isogenies between ordinary elliptic curves is a problem that has been

provided with a satisfying solution which we will investigate brie�y in this chapter.

To be explicit, we want to deal with the following problem.

Problem 6 (Ordinary Elliptic Isogeny Problem). Let q be a prime power and E0,

E1 ordinary elliptic curves over Fq with #E0(Fq) = #E1(Fq). Compute an isogeny

φ : E0 → E1.

The �rst approach of Galbraith [27] is based on a bi-directional breadth-

�rst search on ordinary isogeny graphs. This algorithm also guaranties to �nd the

shortest path in the graph, but not necessarily an isogeny with smallest possible

degree. Dropping the condition of �nding the shortest path and using a random walk

instead of the breadth-�rst search and smoothing ideals, Galbraith, Heÿ and

Smart [29] developed a low-storage algorithm which can also be parallelized. This

has further be improved by Galbraith and Stolbunov [31] through preferring

isogenies with smaller degree in the computed chain of isogenies. The resulting

isogeny's degree will probably be reasonably small after that, too.

We will see later that ideas from those approaches can also be used for an algo-

rithm to compute isogenies between Fp-rational supersingular elliptic curves. There-
fore we will look into some of their details here.
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4.1.1 Ordinary Isogeny Graphs

We have seen in Section 2.2 how the endomorphism rings of isogenous ordinary

elliptic curves can be arranged in some kind of levels. This structure can be trans-

ferred to the ordinary isogeny graphs Gt(Fq, `). Even more, we can determine how

many horizontal, ascending or descending isogenies a given elliptic curve in the graph

has.

For this task we use the traits of elliptic curves de�ned over a number �eld

developed in Section 3. There we deduced the number of outgoing isogenies in

each direction and showed that this behavior is preserved under reduction. Thus

we can transfer this structure to ordinary elliptic curves E de�ned over a �nite �eld

which have endomorphism ring isomorphic to an order O in an imaginary quadratic

�eld K. Since we have Z[πq] ⊆ O ⊆ OK, the ordinary isogeny graph is �nite and we

use the terms of an elliptic curve being on the surface or �oor at ` as established

before. The properties of outgoing isogenies for an ordinary elliptic curve over a

�nite �eld Fq are summarized in the next proposition, which can be deduced from

Proposition 23 of Kohel [45].

Proposition 4.1. Let E be an ordinary elliptic curve de�ned over Fq and ` be a
prime not dividing charFq. Let K be an imaginary quadratic �eld as before and O
be an order in K with discriminant dO which is isomorphic to the endomorphism

ring of E. Further, let (dO
`

) denote the Kronecker symbol.

In the case where ` | [OK : Z[πq]], we have more than just one level in the graph

containing E and get the following behavior.

F If E is on the surface at `, there are 1+
(
dO
`

)
horizontal `-isogenies and `−

(
dO
`

)
descending `-isogenies starting at E.

F If E is on the �oor at `, there is only one ascending `-isogeny starting at E.

F If E is neither on the �oor nor on the surface at `, there is one ascending

`-isogeny and ` descending ones starting at E.

In the case where �oor and surface coincide we have

F 1 +
(
dO
`

)
horizontal `-isogenies starting E.

The components of the resulting structure for Gt(Fq, `) are called volcanoes � a

name introduced by Fouquet and Morain in [24] � and are easy to explore as

we will see in the next section. Remember that we already de�ned distance in an

isogeny graph in Section 3.2, a concept which can be used in the formal de�nition

of levels in a volcano.
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Definition. Let Fq be a �nite �eld of characteristic p, ` 6= p be a prime and

0 < t ≤ 2
√
q be a possible trace of ordinary elliptic curves de�ned over Fq. A

connected component of Gt(Fq, `) is called `-isogeny volcano or `-volcano. A level

Vi of a volcano consists of all elliptic curves with distance i from the surface at `.

As mentioned before, the ordinary isogeny graphs have �nitely many nodes and

thus we have a �nite number of levels, too.

Those volcanoes provide useful arithmetic means in several areas, for example

Bröker, Lauter and Sutherland [7] use them to compute modular polynomials

and Sutherland [84] exploits their di�erence from the supersingular case to de-

velop a fast algorithm to identify whether a given curve is ordinary or supersingular.

In Figure 2 is an example of an isogeny graph with two volcanoes of 2-isogenies.

We used p = 149 and trace t = 6 where we get to work in K = Q(
√
−35) with

fundamental discriminant dK = −35. Note that the conductor is c = 4, so the

only vertical isogenies must have degree ` = 2. We have
(
dK
2

)
= −1, so there

are no horizontal 2-isogenies on the top level corresponding to elliptic curves with

endomorphism ring isomorphic to OK but three descending ones. The reached image

curves are not on the surface at 2, so the only possibilities for further outgoing

isogenies are two more descending ones per node.

Remember that we regard the isogeny graph as an undirected graph, so each

edge in this graph represents two isogenies which are dual to each other.

OK 56 83

O2 7 35 114 36 84 118

O4 81 112 110 123 101 141 39 91 29 146 11 97

Figure 2: The Ordinary Isogeny Graph G6(F149, 2)

With these concepts concerning isogeny graphs, solving the ordinary isogeny

problem transmutes into �nding a solution of the following question.

Problem 7 (Ordinary Isogeny Graph Problem). Let q = pr be a prime power, L
a set of small primes with p 6∈ L and t 6= 0. Given j0, j1 ∈ Gt(Fq,L), compute a

path between them (if possible).
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Note that this problem is only equivalent to the original one if the set L is chosen

big enough in the meaning that Gt(Fq,L) is fully connected with this L. Otherwise
we can only succeed for elliptic curves between which an isogenies with L-smooth

degree exists. In the example graph of Figure 2 for instance it is impossible to

�nd a path from a node in the left volcano to a node in the right one. Only when

we add 3-isogenies in the picture we get a fully connected graph, since there exist

horizontal 3-isogenies connecting those components as can be seen in Figure 3.

OK 56 83

O2 118 35 84 7 36 114

O4 11 110 29 81 91 101 97 123 146 112 39 141

Figure 3: The Ordinary Isogeny Graph G6(F149, 3)

Thus the main question is how many primes we have to add into the set L until

the isogeny graph is fully connected. Here we can use the results from section 3

and especially Bach's bound again and apply them to the top level of the isogeny

graph. We have seen that isogenies of degree ` correspond to ideals of norm ` and

that ideals of norm ≤ B generate the full ideal class group C`(OK) which corresponds

to the set of elliptic curves with endomorphism ring isomorphic to OK. Thus the

graph whose nodes are the elements of this set is fully connected when we take

isogenies of degree ≤ B as edges. Especially the graph Gt(Fq,L) is connected when

we use L = {primes ` < B}. To be even more precise, when we only regard elliptic

curves on the crater we can restrict to L =
{
primes ` < B |

(
dK
`

)
6= −1

}
since those

primes are the only ones where we can have horizontal isogenies at all. This result is

useful for exploring the graph and developing algorithms for constructing isogenies

as seen in the next section.

4.1.2 Resulting Algorithms and Complexity Analysis

In the following part we introduce several algorithms and present pseudocodes for

them which can be used to investigate their running time and storage requirements.

In Appendix A detailed MAGMA codes for those algorithms are shown which are the

source of the computational results listed in Appendix B.
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Computing Neighbors. Let E0 be an ordinary elliptic curve de�ned over the

�nite �eld Fq of characteristic p, ` 6= p be a prime and j0 the j-invariant of E0. We

have seen in Section 2.1.1 that all j-invariants of `-neighbors of E0 occur as roots

of Φ`(j0, ·). In the case where this modular polynomial has at least one root, let

j1 be one of them. When there are only two elliptic curves with this j-invariant,

they are quadratic twists of each other and one of them has trace t and the other

trace −t. As mentioned before, the graphs Gt(Fq, `) and G−t(Fq, `) look identical

and there is an easy to compute isomorphism between those elliptic curves, so we

regard them as being equivalent.

When there are more than two elliptic curves with this j-invariant though, they

can have di�erent positive trace, too, and this can lead to misunderstandings. Let

for example be q = p = 13, then there are three di�erent isomorphism classes of

elliptic curves with positive trace and j-invariant 0. When we regard the modular

polynomials for ` = 2 and ` = 3 we get

Φ2(0, Y ) = (Y + 2)3 (mod 13)

Φ3(0, Y ) = Y (Y + 10)3 (mod 13)

so we would expect an elliptic curve E0 with j-invariant 0 to have isogenous neighbors

with j-invariant 11, 3 and 0. But we check that an elliptic curve E1 with j-invariant

11 has trace t = ±2 and E2 with j-invariant 3 has trace t = ±5, thus there cannot

be an isogeny between them. The solution is, that there are elliptic curves with

j-invariant 0 as well with trace 2 as with trace 5 and trace 7. The �rst one has

three outgoing descending 2-isogenies to E1 and one 3-isogeny to itself, the second

one three descending 3-isogenies to E2 and one horizontal one to itself, and the last

one only one outgoing horizontal 3-isogeny to itself.

t = 2 t = 5 t = 7

OK 0

3:1

��
0

3:1

��
0
��

O2 11
vv

O3 3

O4 4 6

Figure 4: Ordinary Isogeny Graphs Gt(F13, {2, 3}) for t ∈ {2, 5, 7}
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The behavior can be seen in Figure 4. There the 2-isogenies are drawn with

solid lines and 3-isogenies with dashed ones. The undirected edges are understood

to be a pair of dual isogenies each and the directed loops are single loops, that is,

isogenies which are their own duals.

The label �3 : 1� on the arrows indicates that there are three outgoing isogenies

from the node 0 which all have the same dual, so there is only one isogeny in the

other direction. We verify that
(
dE
`

)
is −1 resp. 0 for ` = 2 and ` = 3, so there have

to be none resp. one horizontal `-isogenies.

Bröker, Lauter and Sutherland [7] have shown in their Theorem 1 under

assumption of the Generalized Riemann Hypothesis how for an odd prime ` and a

positive integer q the classical modular polynomial Φ` ∈ Fq[X, Y ] can be computed.

We �x their complexity result below.

Proposition 4.2. Let ` be an odd prime. Assuming GRH, the ` modular polyno-

mial Φ` ∈ Fq[X, Y ] can be computed in expected O(`3(log `)3 log log `) bit operations

and needs O(`2 log(`q)) bits storage.

However, because we can precompute all modular polynomials needed in our

algorithms and MAGMA provides a su�cient database for them with ` ≤ 60, we will

neglect the costs of computing Φ` and assume that the polynomial is given. Hence

we will not count this step in the following complexity analyses but treat it as a

independent precomputation.

As seen in Table 2.1 of Galbraith [28], �nding the roots in Fq of a polynomial

with degree d can be done in expected O(d2 log d log q) �eld operations. It needs

a storage of O(d) �eld elements. If ` is a prime, the `-th modular polynomial has

degree `+1 in each variable and thus �nding the roots of Φ`(j, Y ) can be achieved in

O(`2 log ` log q) operations in Fq and the needed storage is O(`) �eld elements. This

is dominated by the memory needed for storing the polynomial itself but probably

has to be done for several values of j in course of the algorithms, thus it is no

precomputation.

Summed up, the computation of all neighbors of a given vertex in Gt(Fq, `) can
be achieved in the following expected complexity.

Proposition 4.3. Let Fq be a �nite �eld and ` 6= charFq be a prime. Let E be

an elliptic curve de�ned over Fq. Computing all `-neighbors of E needs expected

O(`2 log ` log q) running time and O(`) storage, both measured in operations resp.

elements in Fq.

Navigating the Graph. The structure of the ordinary isogeny volcano and

the connection to the ideal class group are of essential importance for computing
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isogenies between ordinary elliptic curves. At �rst we want to investigate some

approaches about how to move in a single component volcano and how to detect the

position of a given elliptic curve in this graph. This strategies have been developed

by Kohel in his thesis [45].

For instance, it can immediately be determined if an elliptic curve is on the �oor

for a �xed isogeny degree `. The usual situation can be seen in Figure 2 where we

have more than one level in a volcano component. As there is only one outgoing

isogeny for the elliptic curves E which are on the �oor at ` = 2, the `-th modular

polynomial Φ2(j(E), Y ) will only have a single root modulo q. Every other node E

has three outgoing isogenies and thus the degree-3-polynomial Φ2(j(E), Y ) will split

completely in linear factors.

However, this only works when �oor and surface do not coincide. In the other

cases like in Figure 3 all isogenies are horizontal and we have seen in Proposi-

tion 4.1 that the number of such isogenies of degree ` on the surface is 1 +
(
dK
`

)
.

Thus it is also possible to have two or none outgoing isogenies for an elliptic curve

on the �oor depending on how ` behaves in K.

• • • •

(a) ` splits in K

• • • •

(b) ` rami�es in K

• • • •

(c) ` is inert in K

Figure 5: Possible Structures of One-Level Volcanoes

Every other ordinary elliptic curve which is not on the �oor at some prime ` has

`+1 > 2 outgoing isogenies. Summed up, being on the �oor can be tested like in the

following pseudocode. A working MAGMA-algorithm can be found in Appendix A as

Algorithm A.1.

Algorithm 4.1 IsOnFloor(E, q, `)

Input: ordinary elliptic curve E defined over Fq, prime

number ` with ` - q
Output: true if E is on the floor at `, false otherwise

1: return is (# {roots of Φ`(j(E), Y ) (mod q)} ≤ 2)

Since the main part of this algorithm is factorizing the precomputed `-th modular

polynomial and storing its roots, we have the complexity below.
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Proposition 4.4. Let E be an ordinary elliptic curve de�ned over the �nite �eld

Fq and let ` 6= charFq be a prime. Testing whether E is on the �oor at ` can be

done in an expected running time of O(`2 log ` log q) Fq-operations and O(`) storage

of Fq elements.

Another observation is that once we choose a descending isogeny in a non-

backtracking path in a volcano, we keep going down until we reach the �oor. This

can be used to determine whether a given isogeny is descending or not. We start

with two elliptic curves E0 and E1 and an isogeny φ : E0 → E1 with degree ` be-

tween them. When E0 is on the �oor, the isogeny is obviously either ascending, or

horizontal if the volcano only consists of one level. When E is not on the �oor, there

are at least three outgoing isogenies including φ. Thus we can start three di�erent

paths of isogenies starting at E0 where at least one of them has to begin with an

descending isogeny and go straight down after that. The paths end when they reach

an elliptic curve on the �oor at ` and the length of the shortest one measures the

distance of E0 from the �oor. If the path starting with φ is one of the shortest, φ is

descending.

There are several small algorithms which can be deduced from those considera-

tions. The �rst computes the length of a random path in an `-volcano starting from

an elliptic curve with j-invariant j0 in direction of another one with j-invariant j1

until a curve on the �oor is reached. It is needed for the following procedures.

Algorithm 4.2 LengthOfPathToFloor(E0, E1, q, `, C)

Input: ordinary elliptic curves E0, E1 defined over Fq, prime

number ` with ` - q, constant C ≤ log c where c = [OK : Z[πq]]
Output: 0 if E0 is on the floor at `; else length of a

random path to a curve on the floor at `, starting from

E0 to E1

1: if E0 is on the floor at ` then
2: return 0
3: end if
4: n← 1
5: while E1 is not on the floor at ` and n ≤ C do
6: Etmp ← E1

7: E1 ← random `-neighbor of Etmp, different from E0

8: E0 ← Etmp
9: n← n+ 1
10: end while
11: return n
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The steps in this algorithm are randomly chosen and if it were not for the break

condition n ≤ C we could take in�nite paths by moving around the crater in circles.

The maximal length of a resulting descending path is clearly dependent on the

depth of the volcano which is the number of prime divisors of c = [OK : Z[πq]]. If

this conductor factors as c =
r∏
i=1

`eii , this number will be

r∑
i=1

ei =
r∑
i=1

ei log 2 ≤
r∑
i=1

ei log `i = log c

as used in the input condition. Note that still log denotes the binary logarithm, so

we have log 2 = 1.

If C ≤ log c is the constant given in the algorithm, we get C steps where we

have to compute all neighbors of a vertex. As we have seen, this is done in expected

O(`2 log c log q) each, thus the running time of this algorithm is expected O(C ·
`2 log c log q). In our applications we usually know the factorization of the conductor

c and thus if the exact power of ` dividing c is `e, we can use C = e which is the

depth of the `-volcano. Apart from the roots of the modular polynomial we only

need to store two j-invariants from Fq at a time. The integer n which is at most

log q and thus needs an expected storage of O(log log q) bits which is less than one

Fq-element.

Thus we can simplify this complexity for computing such a descending path to

the following result.

Proposition 4.5. Let E0 and E1 be elliptic curves de�ned over the �nite �eld

Fq and let ` 6= charFq be a prime such that E0 and E1 are `-isogenous and their

endomorphism rings are orders in the imaginary quadratic �eld K. For e ∈ N let

`e be the exact power of ` dividing the conductor c = [OK : Z[πq]]. Checking if the

`-isogeny φ : E0 → E1 is descending needs expected O(e · `2 log ` log q) running time

and O(`) storage in Fq-operations resp. Fq-elements.

Another algorithm based strongly on this procedure � and with the same com-

plexity � determines the distance of a given elliptic curve from the �oor by comparing

the length of three di�erent paths. The shortest one has to be a straight descending

path and thus its number of steps is the distance from the �oor. Only choosing two

di�erent paths is not enough, for example if the curve is on the surface and there

are two horizontal isogenies as in the following example.
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OK 63 64 122

O2 72 53 138

O4 38 49 23 34 76 87

Figure 6: The Ordinary Isogeny Graph G10(F149, 2)

If we want to determine the level of the node 64 and the two starting isogenies

we take go to 63 and 122, we need at least three steps to reach the �oor in each

direction although the real distance is two. A path of length two will appear if we

take a further starting isogeny to the third possible neighbor of 64. Note that the

neighbors do not have to be pairwise distinct as long as the isogenies leading to them

are di�erent ones. As seen in Figure 3 between the nodes 56 and 83 it is possible

that two non-equivalent isogenies have the same image curve.

A short pseudocode of this procedure can be written down as follows. As men-

tioned before, a working MAGMA code can be found in Appendix A.

Algorithm 4.3 DistanceToFloor(E, q, `)

Input: ordinary elliptic curve E defined over Fq, prime

number ` with ` - q
Output: distance from E to the floor at `

1: E1, E2, E3 ← random pairwise different neighbors of E
2: n1, n2, n3 ← length of random path to floor from E to Ei
3: return minimum of n1, n2 and n3

This procedure only uses the one to compute the length of a random path to the

�oor as before, so it has the same time complexity but we have to store all the e+ 1

elements of the path to be able to reconstruct it. Thus the storage complexity here

will be O(e).

Proposition 4.6. Let E be an ordinary elliptic curve de�ned over Fq and let

` 6= charFq be a prime. Computing the distance of E to the �oor in an `-volcano

needs expected O(e · `2 log ` log q) running time and O(e) storage measured in Fq-
operations resp. Fq-elements.
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This procedure is quite helpful for deciding if a given isogeny is descending. In

that case a path in the `-volcano starting with this isogeny goes straight down, thus

its length is exactly the distance to the �oor of the preimage curve.

Algorithm 4.4 IsDescending(E0, E1, q, `)

Input: `-isogeny φ between ordinary elliptic curves E0, E1

defined over Fq for a prime number ` with ` - q
Output: true if φ is descending, false otherwise

1: n ← length of random non-backtracking path to the floor

2: n ← starting from E0 to E1

3: d← distance of E to the floor

4: return is (n = d)

Considered in complexity notation, this obviously has the same running time as

the last algorithms, so we get an analogous result here.

Proposition 4.7. Let E0 and E1 be ordinary elliptic curves de�ned over Fq and
let ` 6= charFq be a prime such that E0 and E1 are `-isogenous. Checking if an

`-isogeny φ : E0 → E1 is descending can be done in expected O(e · `2 log ` log q)

running time and O(e) storage measured in Fq-operations resp. Fq-elements.

Analogously to that last procedure it is easy to construct an algorithm to see if

a given isogeny from E0 to E1 is ascending by returning whether the dual isogeny

from E1 to E0 is descending. An isogeny is horizontal if it is neither ascending

nor descending. We have seen that when an ordinary elliptic curve E is on the

surface at ` with endomorphism ring isomorphic to an order O of K, the conductor
cE := [OK : O] is not divisible by `. Moreover, Proposition 4.1 tells us that there

are 1 +
(
dE
`

)
horizontal isogenies and we know that the number of elliptic curves in

this level equals the class number h := h(dE).

The nodes on the surface correspond to the ideal class group C`(O) which is a

group of order h. Thus every subgroup of C`(O) has an order dividing h. Let a be a

prime ideal of O which lies above ` and has order d in C`(O). Then Exercise 25.3.7

of Galbraith [28] shows that there are d elliptic curves which are connected via

`-isogenies in a big cycle. Thus we can deduce the possibilities of `-volcanoes from

the number of vertices on the surface.

We can proceed in the following way to �nd a path between two ordinary elliptic

curves E0 and E1 in the same `-volcano. We begin with constructing ascending

paths of isogenies starting at each Ei until it is no longer possible to go up. After

that we connect those paths with horizontal isogenies.
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For a short example we use the graph from Figure 6 and show how to construct

a path between the nodes 38 and 138. First we compute ascending isogenies 38 72,

72  63 and 138  122 until we reach the surface at ` = 2 on both sides of the

path. Afterwards we take horizontal 2-isogenies from both sides until we create a

connection between these two nodes on the crater. As there are no more than two of

such isogenies and we assumed the volcano to be connected, the crater is arranged in

a circle and it is not possible to get in a loop before reaching the other node. In our

example the connection is made after only one step through the isogeny 63  122

or its dual. Finally we have to append the descending duals of the ascending path

from the image curve to get an end-to-end path between our nodes.

OK 63 // 122

��
O2 72

OO

138

O4 38

EE

Figure 7: A Path in G10(F149, 2) between 38 and 138

Since this algorithm only works if E0 and E1 lie in the same volcano component

and we construct a more general algorithm later, we will not implement it. But even

there we need a procedure which computes a path to the surface of a `-volcano, so

we list a short pseudocode below.

Algorithm 4.5 PathToCurveOnSurface(E0, q, `)

Input: ordinary elliptic curve E0 defined over Fq, prime

number ` with ` - q
Output: ordinary elliptic curve E1 on the surface at ` and

ascending path from E0 to E1

1: X ← [E0]
2: repeat
3: if exists an ascending isogeny starting from E0 then
4: append image curve E1 to the list X
5: E0 ← E1

6: end if
7: until E0 is on the surface at `
8: return E0, X;
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Knowing the elliptic curves along the path from E0 to E1 we are able to construct

an isogeny between them as a chain of `-isogenies representing each step.

In contrast to the algorithm for constructing a path to the �oor, this resulting

path is deterministic, since in the case where an ascending isogeny exists, this isogeny

is unique. If `e is the exact power of ` dividing c, in the worst case we have to compute

roots of modular polynomials for every node in the tree beneath the node on the

surface we want to reach. This tree has one node in its highest level which has `

children on the level below with ` children each in turn until the lowest level with

`e−1 nodes. Therefore the expected O(`2 log ` log q) operation of determining roots

has to be performed

e−1∑
i=0

`i =
`e − 1

`− 1
∈ O(`e−1)

times. In each step we have to compute the roots in Fq of the `-modular polynomial

but we only have to store the e + 1 ones on the right path. Hence the overall

complexity turns out to be as follows.

Proposition 4.8. Let E be an elliptic curve de�ned over the �nite �eld Fq and
let ` 6= charFq be a prime. Constructing and storing a path in a `-volcano from

E to the surface needs expected O(`e+1 log ` log q) running time and O(e) storage in

Fq-operations resp. Fq-elements.

This path to the surface can be used for computing a path in a volcano component

as we will describe now. When we have reached the surface on both sides, we have

to add horizontal isogenies until we �nd a connection on the crater between those

curves. But usually they do not live in the same volcano component of the graph

Gt(Fq, `) and in that case it is impossible to �nd a path of `-isogenies between them.

Then we have to add more edges � that is, isogenies of di�erent degree � and use

the graph Gt(Fq,L) for a set of primes L to get a connection from E0 to E1.

Since it would destroy the nice volcano structure if we started with isogenies

of all possible degrees as set of edges in the graph, in practice we successively use

ascending isogenies in volcanoes of �xed degree until we reach a situation where we

need to compute an isogeny between two elliptic curves with the same endomorphism

ring O. We emphasize that the important point is that the degree of the horizontal

isogenies is not restricted to a single prime.

We have seen that the degree of any ascending isogeny has to divide the conductor

c = [OK : Z[πq]]. Thus we take each of the prime divisors `1, · · · , `r of c in turn and

calculate ascending paths as in Algorithm A.6 of Appendix A. We start with

the initial elliptic curves Ei and the �rst prime `1 and compute elliptic curves E ′i
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which are on the surface at `1 and a path from Ei to Ei1 in Gt(Fq, `1). We repeat

this with starting curves Eij and the next degree `j+1 for j from 1 to r − 1.

Algorithm 4.6 PathToGlobalSurface(E, q)

Input: ordinary elliptic curve E defined over Fq
Output: path to global surface

1: c← [OK : Z[πq]]
2: X ← [E]
3: for any prime divisor ` of c do
4: E ← elliptic curve on surface of ` reached by an

5: E ← ascending path starting at E
6: append steps of that path to X
7: end for
8: return X

At the end we have two elliptic curves Eir which are on the surface for all

primes dividing c. Therefore it is no longer possible to go up in any way and the

endomorphism ring of both Eir has to be the maximal order OK.
We have seen that for every path of `-isogenies to the surface at ` we have an

expected running time of O(`e+1 log ` log q) where `e is the exact power of ` dividing

c. Thus here we have the sum of this complexity for all divisors ` of c,

O(
r∑
i=1

`ei+1
i log `i log q) ⊆ O(

r∑
i=1

c2 log `i log q)

⊆ O(c2 log q
r∑
i=1

log `i)

⊆ O(c2 log c log q)

because c =
∏
`eii with ei ≥ 1 yields `ei+1

i ∈ O(c2) and log c =
∑
ei log `i and thus∑

log `i ∈ O(log c). We have to store every elliptic curve on the path which will

have a length of
∑
ei since for every `i we have a chain of ei isogenies to the surface

at `i. Thus we get for the algorithm of reaching the global surface the following

complexity.

Proposition 4.9. Let E be an ordinary elliptic curve de�ned over Fq such that

EndE is isomorphic to an order O in the imaginary quadratic �eld K with con-

ductor c := [OK : O]. Finding a path of isogenies from E to an elliptic curve with

endomorphism ring OK needs expected O(c2 log c log q) running time and O(log c)

storage.
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This step includes factorizing the conductor which is another precomputation we

make in addition to precomputing the modular polynomials. After those vertical

steps both elliptic curves we deal with have endomorphism ring OK and we have to

�nd a path between them. Hence we regard the subgraph of the used isogeny graph

named Gt,OK(Fq,L) which only consists of vertices of elliptic curves with endomor-

phism ring OK. This graph corresponds to C`(OK) with the above-mentioned results

from Section 3, so � assuming a form of the generalized Riemann hypothesis � it

is fully connected due to Theorem 3.8.

There are several general methods to �nd a path between two given vertices of

a fully connected graph which can be used here. The �rst one is a bi-directional

breadth �rst search and discussed in Galbraith [27]. That means we start with

two single-node graphs with nodes E0 resp. E1 which are on the same level in the

isogeny graph, usually the top level. We proceed to take random primes from the

set L, calculate all neighbors of all nodes in both graphs and add them and their

edges to the corresponding graph until the two graphs connect.

Algorithm 4.7 Path(E0, E1, q, B)

Input: ordinary elliptic curves E0, E1 defined over Fq with

EndE0
∼= EndE1

∼= OK, bound B for isogeny degrees

Output: path in isogeny graph Gt,OK(Fq,L) between E0 and E1

if possible, [ ] otherwise

1: X0 ← [E0]
2: X1 ← [E1]
3: B ← min{6 · (log |dK|)2, B}
4: L ← {primes ` ≤ B |

(
dK
`

)
6= −1}

5: choose random ` ∈ L
6: i← 0
7: while X0 and X1 are disjoint do
8: compute all `-neighbors of all nodes of Xi

9: append them to Xi

10: if Xi ∩X1−i 6= ∅ then
11: reconstruct path in the graphs to the collision

12: disjoint ← false
13: end if ;
14: i← 1− i
15: choose a new isogeny degree ` different from the last

16: end while
17: return path from j(E0) to j(E1)
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Thus after the computation of the paths to the surface of which we already know

the complexity, we take a random ` ∈ L and have to determine the `+ 1 neighbors

of the latest E0 in expected O(`2 log ` log q). In the worst case we have to check for `

of them if they are reached by a descending isogeny until we �nd an horizontal one.

This check can by done in expected O(e · `2 log ` log q) for each of the ` neighbors.

Assuming GRH, the graph is connected when we use B = 6(log |dK|)2, thus the

while loop teminates. To see how many repetitions of this loop we have to expect,

we use the fact that the crater of such an ordinary isogeny volcano is known to be

an expander graph G = (VG, EG) with h vertices, so there exists a constant u ∈ R>0

with u · |U | ≤ ∂v(U) for every subset U of VG with |U | ≤ h/2. We start with

X0 = {j(E0)} and Y0 = {j(E1)} and add the next `-neighbors in each step to get

Xi+1 from Xi and Yi+1 from Yi.

We repeat that until there is a node which is as well in Xi+1 as in Yi+1. Each

of the graphs Xi and Yi ful�ll that their number of nodes is less than h/2 if no

connection is found yet. Thus we can iteratively get

|Xi| = |Xi−1|+ |∂v(Xi−1)|

≥ |Xi−1|+ u · |(Xi−1)|

≥ (1 + u)i

and the same for every Yi. Under the assumption that the new nodes behave like

uniformly drawn vertices, the birthday paradox tells us that we expect the graph to

be connected when we get

|Xi|+ |Yi| ≥
√
πh.

This is true for i ≥ log1+u(
√
πh), thus we need expected

O(log1+u(
√
πh)) = O(1

2
(log1+u π + log1+u h))

= O(log1+u h)

= O(log h)

iterations in the while loop. The last step holds since logarithms for di�erent bases

only di�er by a factor.

The pseudocode is quite vague since it is somewhat tedious to store all needed

information like distance from the origin Ei and the predecessor node in an ordered

manner, but in return this method guaranties to �nd the shortest path between two

given isogenous ordinary elliptic curves in Gt(Fq,L). The degree of the resulting
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isogeny is L-smooth, but there can be an isogeny with smaller degree between E0

and E1 which is not found by this algorithm.

For example the isogeny we found in Figure 7 is a chain of four 2-isogenies

from an elliptic curve with j-invariant 38 to one with j-invariant 138 and thus has

degree 24. But we can compute that there is a 5-isogeny from the elliptic curve with

j-invariant 38 to an elliptic curve with j-invariant 87 and from there we can append

a 2-isogeny to the image curve with j-invariant 138. This isogeny has degree 10 < 24

but is not found if we only regard isogeny degrees less than �ve.

As in the case with only one volcano component we need expected O(log h) it-

erations of the while loop to get a connection. In each step of the loop we have

to compute all neighbors of all #Xi nodes in the graph. Since we know that the

algorithm stops when #X0 + #X1 ≥
√
πh, we get #Xi ∈ O(

√
h). We have used

several times before that computing the `-neighbors of a node can be done in ex-

pected O(`2 log ` log q) and all isogeny degrees ` are bounded by 6(log |t2 − 4q|)2,

so we can write ` ∈ O((log q)2). For every new node in Xi we have to check if it

already appeared in the other set of nodes X1−i. Basic look-up algorithms achieve

this in expected O(log #X1−i) when the elements are stored in a appropriate way,

so this adds another O(log h) in every step of the loop.

To construct a path from j(E0) to j(E1) out of the connected graphs X0 and

X1 we have di�erent possibilities. If we store some extra-information like the array

index of the predecessor, this can be done with running back through the graph

from the connection point to both starting points and write down the nodes along

the path.

When we want no additional storage, in the worst case we have to visit every

element of the graph. Both versions are not relevant for the overall complexity since

they are bounded by O(
√
h). We have to store all nodes in the sets X0 and X1 which

will be up to O(
√
h) �eld elements, although the returned chain of elliptic curves

will only have a length of O(log h). Summed up in this part we get the complexity

below.

Proposition 4.10. Let E0 and E1 be isogenous elliptic curves de�ned over the

�nite �eld Fq having endomorphism rings isomorphic to the maximal order OK of

the imaginary quadratic �eld K. Further let B ≤ 6(log |dK|)2 be a bound such that

the ideal class C`(OK) is generated by ideals of norm less or equal to B.

Assuming GRH, computing an isogeny φ : E0 → E1 with the above described

breadth-�rst search algorithm can be done in expected O(
√
h log h((log q)5 log log q+

log h)) running time and O(
√
h) storage.
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It is also possible to only look for all `-neighbors of the border ∂v(Xi) which are

not elements of Xi themselves, that is, add only new nodes to the sets. This helps to

avoid backtracking and counting di�erent nodes more than once. In both variants

we get the same complexity since still the number of nodes in the sets Xi has to

become bigger than
√
πh for them to connect and in terms of the O-notation it also

takes the same expected number of iterations.

Another possibility is to take two random walks in Gt,O(Fq,L) starting at E0 and

E1 and storing their steps in two separate lists instead of performing a breadth-�rst

search. If one walk reaches an element which already appeared in the other list, we

have a connection.

Algorithm 4.8 RandomPath(E0, E1, q, B)

Input: ordinary elliptic curves E0, E1 defined over Fq with

EndE0
∼= EndE1

∼= OK, bound B for isogeny degrees

Output: path in isogeny graph Gt,O(Fq,L) between E0 and E1

if possible, [ ] otherwise

1: X0 ← [j(E0)]
2: X1 ← [j(E1)]
3: B ← min{6 · (log |dK|)2, B}
4: L ← {primes ` ≤ B |

(
dO
`

)
6= −1}

5: choose random ` ∈ L
6: i← 0
7: while X0 and X1 are disjoint do
8: jEi ← random `-neighbor of Ei
9: append j(Ei) to Xi

10: if j(Ei) ∈ X1−i then
11: truncate X1−i
12: disjoint ← false
13: end if ;
14: i← 1− i
15: choose a new isogeny degree ` different from the last

16: end while
17: return X0 cat Reverse(X1)

Again, the same considerations regarding complexity arising from the size of X0

and X1 hold, so the algorithm terminates when we have #X0 + #X1 ≥
√
πh. In

every iteration we only get one new node on every side of the walk, have to check if

it already appears in the other set of nodes which takes O(log h) running time and

have to compute its neighbors in expected O((log q)5 log log q). The resulting chain

has length O(
√
h) and the elements of it are exactly the ones we have to store. Thus

we get a complexity as in the next result.
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Proposition 4.11. Let E0 and E1 be isogenous elliptic curves de�ned over the

�nite �eld Fq having endomorphism rings isomorphic to the maximal order OK in

the imaginary quadratic �eld K. Further let B ≤ 6(log |dK|)2 be a bound such that

the ideal class C`(OK) is generated by ideals of norm less or equal to B.

Assuming GRH, computing an isogeny φ : E0 → E1 with the above described

random walk algorithm can be done in expected O(
√
h((log q)5 log log q+log h)) run-

ning time and O(
√
h) storage.

This time we also get the path immediately out of the returned graph since

in every step we have a designated successor and predecessor and can return the

combined chains obtained through the random walk. Another advantage of this

variant of the algorithm is, that it can be parallelized. We will give a brief description

of that concept along with some other improvements of the basic algorithm below.

Before that we still have to mention that although this algorithm gives us the

way in the isogeny graph which provides a chain of isogenies between the given

elliptic curves E0 and E1, it does not yet compute the isogenies. This can be done

in expected O(`3) at every step along the provided way.

The computed isogenies and image curves have to be combined to an isogeny

φ′ : E0 → E ′ where we have j(E ′) = j(E1). Note that this last image curve E ′

can be a quadratic twist of E1 and in this case we have to append an isomorphism

λ : E ′ → E1 to get our desired isogeny φ = λ ◦ φ′ : E0 → E1.

Let us give a short summary of the steps necessary for computing a chain of

isogenies between arbitrary isogenous ordinary elliptic curves de�ned over Fq and
the expected complexity of each part.

1. Compute the modular polynomials Φ`i for every `i dividing the conductor c.

F Running time: O(c3 log c log log c)

F Storage: O(c2)

2. Find a chain of isogenies of degree dividing c from E0 resp. E1 to the global

surface at E ′0 resp. E ′1.

F Running time: O(c2 log c log q)

F Storage: O(log c)

3. Compute the modular polynomials Φ` for every ` ∈ L.

F Running time: O((log q)8 log log log q)

F Storage: O((log q)6/ log log q)
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4. Compute random walks starting at the nodes E ′0 resp. E ′1 until they connect

and store a path between E ′0 and E ′1.

F Running time: O(
√
h((log q)5 log log q + log h))

F Storage: O(
√
h)

5. Compute isogenies along the chains E0  E ′0  E ′1  E1.

F Running time: O(c3 log c+ (log q)6 log h)

F Storage: O(c2 log c+ (log q)4 log h)

All together for computing an isogeny between given isogenous ordinary elliptic

curves we have to execute all the above steps consecutively and get a running time

of expected

O(c3 log c log log c + c2 log c log q

+ (log q)8 log log log q

+
√
h((log q)5 log log q + log h)

+ c3 log c+ (log q)6 log h).

These complexities are expressed in terms of q, c and h. We have seen at the

end of Section 2.1.2 that in the worst cases we get h ∈ O(
√
q log q). Thus the

terms (log q)8 log log log q and log h · (log q)6) under this condition are dominated by√
h log h((log q)5 log log q + log h) and since also c3 log c can be dropped in favor of

c3 log c log log c we get

O(c2 log c(log log c+ log q) + q1/4(log q)1/2(log q)5 log log q)

Galbraith [27] says that usually the conductor c is log q-smooth. Thus we

assume c ∈ O((log q)v) for a positive integer v and all the terms containing c can be

neglected against the q1/4-term and we can simplify the overall running time further

to the following result.

Theorem 4.12 (Computing Ordinary Isogeny � Running Time). Let E0 and E1

be isogenous elliptic curves de�ned over the �nite �eld Fq with endomorphism rings

isomorphic to the maximal order OK in the imaginary quadratic �eld K. Further let
B ≤ 6(log |dK|)2 be a bound such that the ideal class C`(OK) is generated by ideals

of norm less or equal to B.

Assuming GRH, h ∈ O(
√
q log q) and c ∈ O((log q)v) for some v ∈ N, computing

an isogeny φ : E0 → E1 can be done in expected O(q1/4(log q)1/2(log q)5 log log q)

running time.
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With the same arguments concerning h and c the storage as collected in the steps

above can be shrunk similarly.

Theorem 4.13 (Computing Ordinary Isogeny � Storage). Let E0 and E1 be isoge-

nous elliptic curves de�ned over the �nite �eld Fq with endomorphism rings iso-

morphic to the maximal order OK in the imaginary quadratic �eld K. Further let

B ≤ 6(log |dK|)2 be a bound such that the ideal class C`(OK) is generated by ideals

of norm less or equal to B.

Assuming GRH, h ∈ O(
√
q log q) and c ∈ O((log q)v) for some v ∈ N, computing

an isogeny φ : E0 → E1 needs expected O(q1/4(log q)1/2) storage.

Thus we have a Õ(q1/4) algorithm both in running time and storage. There have

been some endeavors to improve the constants or logarithmic terms, or to parallelize

the algorithm, but this is the main complexity class for computing isogenies at the

moment.

Improvements Of the Basic Algorithm. During the time several mod-

i�cations of this algorithm have been proposed to attain slightly better complexities

although the complexity class does not change.

In 2002 Galbraith, Hess and Smart [29] developed a low-storage version of

this algorithm which can be distributed to several processors. It uses pseudorandom

walks in a Pollard-rho style algorithm with distinguished points. That means

that the next step of the random walk is determined by the current node and thus

when any walks meet at a point, they carry on identically afterwards. This can be

used to distribute such pseudorandom walks on clients and let a server manage the

walks and their output.

The GHS algorithm works on the ideal class side of the picture and computes

ideals classes by multiplying the current with the ideal representing the isogeny in

each step where the walk starts with the trivial ideal. When two walks collide with

the ideals a and b, the complete isogeny is represented by the ideal ab−1 which

usually has a large norm. The authors show how to reduce and smooth this ideal

with index calculus methods to get an ideal corresponding to a shorted isogeny path

in the graph.

For our work we restricted to the easier to implement basic version of the algo-

rithm. Our later improvements in the Fp-rational supersingular case are already a

quite evident improvement there.

A further very plausible idea of Galbraith and Stolbunov [31] from 2011

makes use of the often mentioned fact that isogenies of smaller degree are faster

to compute. They suggest to prefer small primes in the steps and thus draw the
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random primes from an uneven partitioning and not the uniform distribution on the

set of possible primes. With this approach the length of the path obtained by the

random walk increases, but eventually the running time is better when the isogenies

are computed in that way.

Even though in our complexity analysis the step with computing isogenies is not

dominant, the random prime ` also plays an important role in the most expensive

part of constructing the path since there we have to factor the `-th modular poly-

nomial in every step. We estimated ` with the upper bound (log q)2 and used this

number in the analysis. When smaller primes appear more often, the factorization is

cheaper in more steps and thus the overall running time will be shorter in practice.
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4.2 The Supersingular Isogeny Problem

Due to Theorem 2.33, for charFq = p < 11 there is only a single j-invariant in

Fq such that elliptic curves with this j-invariant are supersingular, so the question

of �nding a path is irrelevant. Especially we can exclude the cases of characteristic

2 and 3 from our considerations, which turns out to be comfortable in the next

subsection. For now we deal with the general supersingular isogeny problem.

Problem 8 (Supersingular Isogeny Problem). Let q be a prime power and E0, E1

supersingular elliptic curves over Fq. Compute an isogeny φ : E0 → E1.

As mentioned before, supersingular elliptic curves are always de�ned over Fp or
over Fp2 but an isogeny between them can be de�ned over a higher �eld extension.

Thus we often use the full supersingular isogeny graph G0(F̄p,L) for general isogeny

computations in the supersingular case, where L is a set of small primes with p 6∈ L.
Such a graph G0(F̄p,L) has the great advantage that it is always fully connected

with L = {`} for every prime ` 6= p as can be seen in Mestre's work [57] or

Corollary 78 of Kohel [45]. Therefore it is always possible to �nd a path between

two arbitrary vertices in it, no matter what set L we use. Usually we choose L = {2}
for computations since those isogenies of degree 2 are the fastest to compute. The

simplest formulation of the problem in the setting of graphs is like follows.

Problem 9 (Supersingular Isogeny Graph Problem). Let p > 3 be a prime. Given

j0, j1 ∈ G0(F̄p, 2), compute a path between them.

In contrast to the ordinary case we have no immediate connection to a graph

of elliptic curves over number �elds and the ideal class group since Theorem 3.9

provides no isomorphism between endomorphism rings of arbitrary supersingular

elliptic curves and their lifts since their endomorphism ring is too big. Thus we do

not have the comfortable volcano structure of the graph and it is not as easy to

explore. Especially, the ordinary algorithms we developed before are not applicable.

We will investigate the supersingular graphs and possible algorithms for computing

paths in them in the following part.

4.2.1 Supersingular Isogeny Graphs

We want to deal brie�y with the full supersingular isogeny graphs in this section and

demonstrate their irregular structure as well as the best currently known algorithm
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for �nding a path in one of them. This is the foundation for being able to compare

the properties we develop afterwards for supersingular elliptic curves de�ned over

Fp with the general case.

Graph Structure and Algorithms. Let p be a prime and E be a super-

singular elliptic curve with j-invariant j ∈ Fp2 and let ` 6= p be a prime. We have

seen in Theorem 2.27 that the modular polynomial Φ`(j, Y ) splits completely over

Fp2 and since every root of this polynomial yields a neighbor of E, there are ` + 1

outgoing non-equivalent isogenies from every such supersingular elliptic curve E.

Hence for every ` 6= p the graph G0(F̄p, `) is `+ 1-regular and we have already seen

that it is a fully connected graph. Especially this is true for ` = 2 and 2-isogenies

are the fastest ones to compute. Therefore we usually attempt to �nd paths in

G0(F̄p, 2).

As we discussed in Section 2.2, endomorphism rings of supersingular elliptic

curves in characteristic p are isomorphic to maximal orders in a quaternion algebra

A. In fact, A is the quaternion algebra over Q which is rami�ed at p and in�nity.

The full supersingular isogeny graph G0(F̄p, `) can be shown to be a Ramanujan

graph (e.g. page 535 of Galbraith [28]), so it is an expander graph.

Thus for �nding a chain of 2-isogenies between two given nodes in G := G0(F̄p, 2)

we can use a simple bi-directional search with a random walk as in the next code.

Algorithm 4.9 SupersingularPath(E0, E1, p)

Input: supersingular elliptic curves E0, E1 defined over Fp2

Output: path in full 2-isogeny graph between E0 and E1

1: X0 ← [j(E0)]
2: X1 ← [j(E1)]
3: i← 0
4: while X0 and X1 are disjoint do
5: Ei ← random neighbor of Ei in G0(F̄p, 2)
6: Ei ← which is different from the one before

7: append j(Ei) to Xi

8: if Ei ∈ X1−i then
9: truncate X1−i
10: disjoint ← false

11: end if
12: i← 1− i
13: end while
14: return X0 joined with reversed X1
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This works analogously to the approach on craters of ordinary isogeny volcanoes

and the complexity analysis follows along the same lines. Since the size of the graph

is bigger though, the algorithm is slower than the ordinary one, even though we

are able to use only 2-isogenies. As in the ordinary case we have to compute the

isogenies along the path afterwards and possibly combine them with another isogeny

to the twist of the last elliptic curve in the chain to reach the right isomorphism

class of the elliptic curve with j-invariant j1.

Due to the analysis of the bi-directional birthday attack in Proposition 2.46

we expect a collision in G when

#X0 + #X1 ≥
√
πN

where N is the number of vertices in the graph and X0 resp. X1 are the growing

sets of nodes in the chain after the k-th iteration. Since for our graphs we have

N ≈ p/12 this means we expect to perform the operations in the while loop O(
√
p)

times. In each step of the loop we compute a random `-neighbor of the last elliptic

curve in the chain Xi like before in expected O(`2 log ` log q) and check if it already

appears in the other chain X1−i, what can be done in O(log #X1−i). Because we

take ` = 2 and have #X1−i ∈ O(
√
p), this becomes the complexity below.

Proposition 4.14. Let E0 and E1 be supersingular elliptic curves de�ned over

Fp2 where p is a prime. Computing an isogeny φ : E0 → E1 of 2-power degree can

be done in expected O(p1/2 log p) running time and O(p1/2) storage.

To get a non-backtracking random walk we have to ensure that once we make a

step from a node j0 to a node j1 the next step is not back to j0. Since we determine

neighbors of j1 by roots of the modular polynomial Φ2(j1, Y ), we can avoid j0 by

only regarding roots of Φ2(j1, Y )/(Y − j0). If the modular polynomial evaluated at

j1 has a double root at j0 though, it cannot be guarantied that j0 is avoided. But if

we exclude the node j0 completely as next neighbor, we can happen to get stuck in

a dead end if all outgoing isogenies from the node j1 lead to j0. For example, this

always occurs for j1 = 0 since we have

Φ2(0, Y ) = Y 3 − 162000Y 2 + 8748000000Y − 157464000000000

= (Y − 54000)3

as a polynomial from Z[Y ]. Of course the same factorization holds when the coe�-

cients are interpreted as elements from Fp2 and thus the three image curves reached

by an outgoing 2-isogeny from a supersingular elliptic curve with j-invariant j1 = 0

all have the same j-invariant j0 ≡ 54000 (mod p2).
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There are more subtle ways of regarding the concept of non-backtracking like

trying to avoid short cycles as well, see Galbraith-Zhao [32] for a discussion.

Another approach is to completely forbid that a path intersects with itself but again

we can get the problem that all three outgoing edges lead to nodes which have

already been visited. Then we have to delete the vertex from the path and choose

another neighbor from the vertex before. If the same situation arises there again,

we have to repeat this procedure recursively.

4.2.2 Restriction to Fp-rational Elliptic Curves

We know from Theorem 2.33 that there are

#Sp2 =
⌊ p

12

⌋
+



0 if p ≡ 1 (mod 12)

1 if p ≡ 5 (mod 12)

1 if p ≡ 7 (mod 12)

2 if p ≡ 11 (mod 12).

supersingular j-invariants in Fp2 , so the graph G0(F̄p, 2) will have about p/12 nodes.

When we want to compute the edges in this graph and draw the complete picture of

it, we must know how these vertices are labeled, that is, which j-invariants are su-

persingular in this situation. The MAGMA command SupersingularPolynomial(p)

yields a polynomial over Fp whose roots are just the supersingular j-invariants from
Fp2 . For big primes p though it is impractical to factor a polynomial of degree

bp/12c, so we need another method to �nd supersingular elliptic curves.

First we note that it is su�cient to determine one supersingular elliptic curve

since from that one we can construct other ones through random walks on a su-

persingular isogeny graph. Sutherland [84] gives a nice overview over classical

strategies for solving that problem and introduces a new method for this issue as

we will brie�y describe. He states that given a random elliptic curve de�ned over

Fp2 , Magma uses a point counting method to verify if it is supersingular or not, using

that supersingular elliptic curves E ful�ll E(Fq) ≡ 1 (mod p). This approach has a

complexity of Õ((log p)4) whereas his new algorithm runs in Õ((log p)3).

For it we use the structure of the ordinary resp. supersingular isogeny graph.

We have seen that the supersingular graph G0(F̄p, `) is a ` + 1-regular graph, so

every node has exactly ` + 1 outgoing edges. This is not true for ordinary graphs,

since the nodes on the �oor of the volcano have only one outgoing edge which is

ascending. Further we know that the depth d of the volcano is at most log`
√

4q.
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Thus when we take descending paths in a volcano, we reach the �oor after k steps

for some integer 1 ≤ k ≤ log`
√

4q.

Let us have an elliptic curve E0 with `+ 1 outgoing edges where we do not know

if it is ordinary or supersingular and start a non-backtracking random walk on the

isogeny graph containing E0. Let e = (j0, j1) be the �rst edge in the path. When

E0 is ordinary and the edge is descending, it is not possible to construct a path

with length k > log`
√

4q without reaching the �oor �rst. On the contrary, if E0 is

supersingular, we will reach no dead end for any length of path.

In practice we use 2-isogenies again since they are the fastest to compute. We

factor the modular polynomial Φ2(j(E0), Y ) and start paths in three directions. As

soon as we �nd a node where the modular polynomial has only a single root, we

know that E0 is ordinary. If this does not happen after log
√

4q iterations, E0 is

supersingular. This is a nice application of the isogeny graph's structure.

Sutherland [84] also mentions a CM-method which he used to construct su-

persingular elliptic curves for testing his algorithm for known supersingular input.

It is based on Bröker [5] where an algorithm is proposed to return a supersingular

elliptic curve in characteristic p which has a complexity of Õ((log p)3). We use this

algorithm to construct random start and end points of our algorithms to test how

fast the computation of an isogeny can be. It can be found in Algorithm A.8.

The subgraph of G(F̄p, `) which consists of nodes representing elliptic curves with
j-invariants in Fp is much smaller than the whole graph � it has roughly

√
p vertices

instead of roughly p/12 as seen in Theorem 2.34.

Since we have seen that the complexity of �nding a path in a fully connected

graph like in Algorithm A.9 depends on the number of vertices, the idea is to use

this smaller graph for an improved algorithm to solve at least the following restricted

problem in a better running time than Õ(
√
p) with the algorithm in the full graph.

Problem 10 (Supersingular Isogeny Problem over Fp). Let p be a prime and E0,

E1 supersingular elliptic curves over Fp. Compute an isogeny φ : E0 → E1.

In contrast to the full supersingular isogeny graph though, such subgraphs do

not have to be connected, so we cannot guaranty that a path of `-isogenies exists

between arbitrary supersingular elliptic curves over Fp. The �rst example where

this problem occurs is G0(F̄53, 2) and is plotted below. In the picture α and ᾱ are

supposed to denote j-invariants in F532 \ F53. There are three isogenies starting at

the node 0 which have the same dual, a behavior we explained in Section 2.1. The

isogeny displayed as single loop from 50 to itself can be checked to be its own dual.
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α

0 3:1 46 50 gg

ᾱ

Figure 8: The Full Supersingular Isogeny Graph G0(F53, 2)

This graph is 3-regular and obviously the subgraph with nodes in F53 is not

connected. Thus it is impossible to construct a path of 2-isogenies from 0 to 50

without going via j-invariants of F532 \ F53. But as soon as we add the isogenies

of degree 3 in this subgraph, it gets fully connected as displayed in the following

picture. There the 2-isogenies are drawn as dashed lines and the 3-isogenies as solid

lines.

0 3:1
%%

3:1

46EE 50 gg

Figure 9: Fp-rational Subgraph of G0(F̄53, {2, 3})

So the problem becomes a similar one as in the ordinary case � we have to

�nd a set of small primes L such that the Fp-rational subgraph of G0(F̄p,L) is

connected. We denote this Fp-rational subgraph with G0(F̄p,L) ∩ Fp and stress

that this is di�erent from the Fp-rational isogeny graph G0(Fp,L) since the nodes

represent F̄p-isomorphism classes of supersingular elliptic curves de�ned over Fp and
not Fp-isomorphism classes.

In contrast to the ordinary isogeny volcano we do not have a nice and regular

structure of the graph G0(F̄p,L)∩Fp though. So, even provided that we have such a

set, it remains to be seen how the graph structure looks like and how it can be used

to construct an algorithm to compute isogenies. To be explicit, we are interested in

the next problem.

Problem 11 (Supersingular Isogeny Graph Problem over Fp). Let p be a prime

and L a set of small primes with p 6∈ L. Given j0, j1 ∈ G0(F̄p,L) ∩ Fp, compute a

path between them (if possible).

The �rst noticeable di�erence between this graph problem and the arithmetic

Supersingular Isogeny Problem over Fp stated at the beginning of this sec-

tion is that the vertices of the graph G0(F̄p,L)∩Fp represent F̄p-isomorphism classes

of supersingular elliptic curves over Fp and not Fp-isomorphism classes.
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In the ordinary case this makes no di�erence, since there an elliptic curve and its

twists have a di�erent number of points and hence are not isogenous to each other.

Thus for t 6= 0 we are able to interpret Gt(Fp,L) as a proper subgraph of Gt(F̄p,L).

For t = 0 this is not possible as there are isogenous supersingular elliptic curves

which are isomorphic over F̄p but not over Fp. Therefore j-invariants � as in the

graph G0(F̄p,L)∩Fp � are not a good representation of supersingular elliptic curves

de�ned over Fp since they ignore any twists. It turns out to be useful to have a look

at the rational supersingular isogeny graph G0(Fp,L).

Relation of the Graphs. Firstly, we remark that the rational supersingular

isogeny graph has exactly twice as many nodes as G0(F̄p,L)∩Fp and thus can under

no circumstances be seen as a subgraph of the latter. This relation comes from the

fact that the number of Fp-isomorphism classes of elliptic curves de�ned over Fp
with given j-invariant j can be deduced due to Proposition 3.15 as

6 if j = 0 and p ≡ 1 (mod 3)

4 if j = 1728 and p ≡ 1 (mod 4)

2 else.

Comparing those conditions with Corollary 2.29 we see that the cases with

more than two isomorphism classes appear only for ordinary elliptic curves. Hence

every j-invariant appears exactly twice for an Fp-isomorphism class of supersingular

elliptic curves. As a consequence, the nodes of G0(Fp,L) cannot be stored as j-

invariants but we have to consider some additional information to uniquely describe

the isomorphism class.

Another observation is, that the edges of G0(Fp,L) are Fp-rational isogenies, so
any isogeny from G0(F̄p,L) ∩ Fp which is de�ned over an extension of Fp will not
appear in any form here. In the example above this applies to the double loop of 3-

isogenies from 50 to itself. Corresponding edges to the other isogenies can be found

in G0(F53, {2, 3}) when we regard the following �gure closely.

50

0 46

0 46

50

Figure 10: The Fp-rational Isogeny Graph G0(F53, {2, 3})
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Again, 2-isogenies are drawn dashed and 3-isogenies with solid lines. We can

see that single loops from Figure 9 evolve to isogenies from an elliptic curve to

its quadratic twist in Figure 10 whereas double loops vanish. Single connections

from a node j0 to a node j1 become isogenies between elliptic curves with just these

j-invariants, although we have to explicitly compute which isomorphism class these

curves lie in. There are several examples in Appendix C which show a similar

behavior, so we conjecture a regularity in this behavior.

Observation 4.15. We see that the edges in the graphs behave like follows when

we have j0, j1 ∈ Fp.

1. Single connections. Let j0 and j1 be di�erent nodes in G0(F̄p, `) such that

there is a single edge from j0 to j1, so we have two nodes with j-invariant j0

and j1 each in the graph G0(Fp, `). Then both of the nodes labeled with j0 have

a single edge to one of the nodes with j1 and not to the same one. This means

that the single isogeny in the full graph is a Fp-rational isogeny.

2. Single loops. Let j0 be a node in G0(F̄p, `) such that there is a single loop

from j0 to itself. Then there is a single connection between the two di�erent

nodes labeled with j0 in G0(Fp, `). This means that the image curve of this

isogeny is a twist of the original curve and the isogeny is de�ned over Fp.

3. Double connections. Let j0 and j1 be nodes in G0(F̄p, `) (possibly j0 = j1)

such that there are two edges between them. Then those connections vanish in

the Fp-rational isogeny graph since they are de�ned over F̄p and duals of each

other.

Structure of the Rational Supersingular Isogeny Graph. We

can also construct the rational supersingular isogeny graph without going via the full

isogeny graph. We have seen in Section 2.2.3 that the restricted endomorphism

rings of Fp-rational supersingular elliptic curves are of the same form as the full

endomorphism rings in the ordinary case and that any such elliptic curve E ful�lls

Z[
√
−p] ⊆ EndFp E ⊆ OK.

Further we have observed that for p ≡ 1 (mod 4) the only possible restricted

endomorphism ring in this situation is EndFp E = Z[
√
−p] = OK and for p ≡ 3

(mod 4) there are the alternatives EndFp E = Z[1+
√
−p

2
] = OK as well as EndFp E =

Z[
√
−p] = O2.

Analogous to the ordinary case we call a Fp-rational supersingular elliptic curve
E on the surface if its endomorphism ring is the maximal order and on the �oor
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if it is Z[
√
−p]. Note that for p ≡ 1 (mod 4) �oor and surface always coincide.

Furthermore, in this situation the terms are used global and not with respect to

di�erent isogeny degrees ` since we only have two levels at most.

Since the proof of Proposition 2.44 only uses the structure of the endomor-

phism ring, its result can also be applied to supersingular elliptic curves over Fp
and their restricted endomorphism rings. Therefore we can observe that in the case

where we have two levels, the degree of an isogeny connecting those levels has to

divide [OK : Z[
√
−p]] = 2 and hence such non-horizontal isogenies can only occur

for prime degree ` = 2.

We want to establish a volcano-like structure of the graph G0(Fp, `) with as-

cending, descending and horizontal isogenies like in the ordinary case. With our

modi�ed Deuring Theorems we have seen that the link between supersingular

elliptic curves over Fp and elliptic curves over a number �eld is a similar one as for

ordinary elliptic curves. Therefore we can transfer the well-known structure of the

characteristic 0 picture as in Section 3 also to G0(Fp, `).
Firstly, we can deduce the number of nodes in each level since due to this connec-

tion it equals the class number of O where O ∈ {OK,O2} denotes the endomorphism

ring on the respective level. Thus, for p ≡ 1 (mod 4) we get h(−4p) nodes in the

graph which � as mentioned above � all represent supersingular elliptic curves over

Fp with restricted endomorphism ring Z[
√
−p]. For p ≡ 3 (mod 4) and p > 3 there

are two levels where the surface has h(−p) nodes and the �oor h(−4p). Due to the

formula

h(D)

w(D)
=

h(D0)

w(D0)
· c ·

∏
prime r|c

(
1− (D0

r
)r−1

)
from page 233 of Cohen [12] in Section 5.3 with D = c2D0 and w(x) = 2 for

x < −4 we get for p > 3

h(−4p)

2
=

h(−p)
2
· 2 ·

∏
prime r|2

(
1− (−4p

r
)r−1

)
=

h(−p)
2

(
2− (−p

2
)
)
.

Since the standard rule for computing Kronecker symbols tells us that we have

(
−p
2

)
=

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8)
,
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this yields for our situation

h(−4p) =

h(−p) if p ≡ 7 (mod 8)

3h(−p) if p ≡ 3 (mod 8)

Hence we can make a re�ned statement and see, that for p ≡ 7 (mod 8) �oor and

surface have the same number of nodes and for p ≡ 3 (mod 8) there are trice as

many nodes on the �oor as on the surface. Summed up we obtain the following

structure of the rational supersingular isogeny graph.

Theorem 4.16 (Node Structure of G0(Fp, `)).

F For p ≡ 1 (mod 4) there is only one level in G0(Fp, `) with exactly h(−4p)

nodes.

F For p ≡ 3 (mod 8) there are two levels in G0(Fp, `), the upper one with h(−p)
and the lower one with 3h(−p) nodes.

F For p ≡ 7 (mod 8) there are two levels with h(−p) nodes each in G0(Fp, `).

Afterwards, we can determine how many isogenies of prime degree ` start at each

of these nodes depending on their position in the graph. Again we use the connection

to elliptic curves in characteristic 0 and the there obtained results to identify the

number of outgoing isogenies in that situation. With help of Theorem 3.18 this

structure can be preserved under reduction to supersingular elliptic curves over Fp
and thus we get the following result.

Theorem 4.17 (Edge Structure of G0(Fp, `)).

F For every node in G0(Fp, `) with ` > 2 and Kronecker-symbol
(−p
`

)
= 1

there are exactly two horizontal `-isogenies.

F The structure of G0(Fp, 2) depends on the form of p.

G For p ≡ 1 (mod 4) there is exactly one outgoing horizontal 2-isogeny

starting at each vertex.

G For p ≡ 3 (mod 8) there are three descending 2-isogenies for every vertex

on the surface and one ascending 2-isogeny from every one on the �oor.

G For p ≡ 7 (mod 8) there are two horizontal and one descending 2-isogeny

for every vertex on the surface and one ascending 2-isogeny from every

one on the �oor.
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Note that for every isogeny in this picture there has to be a dual isogeny in the

other direction, so for instance in the case p ≡ 1 (mod 4) the nodes of the graph

are grouped in pairs or single nodes and G0(Fp, 2) cannot be connected when there

are more than two nodes in it. This can be seen at the dashed lines representing

2-isogenies in the graph of Figure 10.

Similarly, for p ≡ 3 (mod 8) we always have components of four vertices where

one on the surface is connected with three ones on the �oor via 2-isogenies. Only

for p ≡ 7 (mod 8) where we also have horizontal 2-isogenies, bigger components in

G0(Fp, 2) are possible. There are a number of examples in Appendix C where these

structures can be seen nicely.

A nice result from Brillhart-Morton [4, Proposition 8] helps us drawing

the volcano in the two-level case since we can determine almost all elliptic curves

which lie on the surface.

Proposition 4.18. Let p > 3 be a prime and E be a supersingular elliptic curve

over Fp with j(E) 6= 0, 1728. Then we get

EndFp E = Z
[

1+
√
−p

2

]
⇐⇒

(
j(E)−1728

p

)
= 1

where
(
a
p

)
denotes the Jacobi-Symbol.

Thus we know for all nodes except for the ones labeled with 0 or 1728 on which

level in the graph they are. From the examples we get an impression about a

probable behavior of those nodes.

Observation 4.19. In a graph G0(Fp,L) both nodes labeled with 0 are always on

the same level � in our examples always on the �oor � and the situation where one

node is on the �oor and the other on the surface can happen only for nodes with

label 1728 (mod p).

The structures which can be conjectured from both Observation 4.15 and 4.19

are unproven yet, but they are also never used in any theoretical proof in this work.

4.2.3 Resulting Algorithm and Complexity Analysis

The bottleneck in the ordinary case algorithm was reaching the same level in the

volcano when the conductor was not smooth. This problem cannot occur in the

situation of Fp-rational supersingular volcanoes since here the conductor is c = 2

and there are only less or equal to two levels in the graph at all. Considering

this structure there are several strategies how to proceed with computing isogenies

between supersingular elliptic curves E0 and E1 over Fp.
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F We can operate on single levels analogous as in the ordinary case. For that we

have to determine the levels of E0 and E1 and calculate isogenies to elliptic

curves E ′0 and E ′1 on the same level where necessary. For p ≡ 1 (mod 4) this

step can be omitted completely. For p ≡ 7 (mod 8) both levels have the same

cardinality and structure, so it does not matter on which level we work. In

the case where p ≡ 3 (mod 8) the upper level is smaller and as the length of

the random walk depends on the graph size it probably is better to run the

algorithm with starting curves E ′0 and E ′1 there.

F As for p ≡ 3 (mod 8) and on the lower level of the graph for p ≡ 7 (mod 8)

no horizontal 2-isogenies exist but those are the fastest ones to compute, there

is the possibility to allow vertical isogenies and not to restrict the nodes of

the path to a single level. Then the steps of the path are averagely faster

computable but on the other hand we expect longer paths since bigger graphs

are used. This consideration does not apply for p ≡ 1 (mod 4) where all

isogenies are horizontal.

F Another approach is to completely ignore the level structure for an algorithm

to compute isogenies between supersingular elliptic curves over Fp and just

use the theoretically obtained result about the connectedness of the graph

G0(Fp,L). If this graph is fully connected with a suitable set L, the smaller Fp-
rational subgraph of G0(F̄p,L) will also be since the isogenies can be converted

from one picture into the other.

Apart from the fact that there are less nodes in this graph, there is another

computational advantage in that last approach, since inG0(F̄p,L) a random neighbor

of a node can be calculated through a root of a modular polynomial. When we use

the rational isogeny graph G0(Fp,L), we cannot use modular polynomial to compute

neighbors since they only yield the j-invariant of the neighbor but we need more

information to correctly identify it. Instead we have to take division polynomials ψ`
as described at the beginning of Section 25.2 of Galbraith [28].

These polynomials depend on the starting curve E0 thus they cannot be precom-

puted but have to be determined in each step. Their roots yield x-coordinates of

the `-torsion points of E0 and such a point generates a subgroup of E0 with order

`, thus it leads to an isogeny of degree `. Since we are only interested in isogenies

which are de�ned over Fp, we need Fp-rational subgroups of E0. Such subgroups

can only arise from roots of irreducible factors of degree less or equal to (`− 1)/2.

When we avoid these complications and only use the theoretical result about the

connectedness of the graph G0(Fp,L), we can adapt an algorithm which is similar to
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the one in the ordinary case we discussed in Section 4.1.2. In fact, the pseudocode

is almost identical.

Algorithm 4.10 RationalSupersingularPath(E0, E1, p, B)

Input: supersingular elliptic curves E0, E1 defined over Fp,
bound B for isogeny degrees

Output: path in rational isogeny graph between E0 and E1

1: X0 ← [j(E0)]
2: X1 ← [j(E1)]
3: B ← min{6 · (log |dK|)2, B}
4: L ← {2} ∪ {primes ` ≤ B |

(−p
`

)
= 1}

5: choose random ` ∈ L
6: i← 0
7: while X0 and X1 are disjoint do
8: Ei ← random `-neighbor of Ei
9: append j(Ei) to Xi

10: if j(Ei) ∈ X1−i then
11: truncate X1−i
12: disjoint ← false
13: end if ;
14: i← 1− i
15: choose a new isogeny degree ` different from the last

16: end while
17: return X0 joined with reversed X1

In the complexity analysis we only have to bear in mind that the number of nodes

in this graph is O(
√
p) instead of O(h) as in the ordinary isogeny graph. Thus the

resulting complexity is as following.

Proposition 4.20. Let E0 and E1 be supersingular elliptic curves de�ned over

the �nite �eld Fp where p is a prime and de�ne K := Q(
√
−p). Further let B ≤

6(log |dK|)2 be a bound such that the ideal class C`(OK) is generated by ideals of

norm less or equal to B.

Computing an Fp-isogeny φ : E0 → E1 can be done in expected running time of

O(p1/4(log p)5 log log p) and O(p1/4) storage.

So we have an algorithm with expected complexity Õ(p1/4) which is a huge

improvement to the previous Õ(p1/2) algorithm for computing isogenies between

supersingular elliptic curves. We implemented both algorithms and tested them

on supersingular elliptic curves of various bit length. The computational results

show an enormous speedup with the new algorithm and can be seen in Table 3 in

Appendix B.
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4.2.4 Application on Arbitrary Supersingular Curves

By now we have improved the algorithm to compute an isogeny between supersin-

gular elliptic curves for the subset of those curves which are de�ned over Fp. A

natural question is whether this method can be used to �nd a better algorithm than

the standard bi-directional search in G0(F̄p, 2) for �nding an isogeny between two

arbitrary supersingular elliptic curves E0 and E1.

The �rst naive approach is to start with the usual random walks in the full su-

persingular isogeny graph at E0 resp. E1 using only 2-isogenies until we reach nodes

which represent Fp-rational supersingular elliptic curves. After that we connect

those elliptic curves which can be represented as nodes in a Fp-rational supersin-
gular isogeny graph with the new algorithm. A pseudocode for this algorithm can

have the following form.

Algorithm 4.11 ArbitrarySupersingularPath(E0, E1, p, B)

Input: supersingular elliptic curves E0, E1 defined over Fp2,

bound B for isogeny degrees

Output: path in full isogeny graph between E0 and E1, using

a random walk of 2-isogenies and the Fp-rational algorithm

1: X0 ← [j(E0)]
2: X1 ← [j(E1)]
3: for i = 0, 1 do
4: while j(Ei) 6∈ Fp do
5: Ei ← random 2-neighbor of Ei different to the last

6: Append j(Ei) to Xi

7: end while
8: end for
9: B ← min{6 · (log |d|)2, B}
10: L ← {2} ∪ {primes ` ≤ B |

(−p
`

)
= 1}

11: choose random ` ∈ L
12: i← 0
13: while X0 and X1 are disjoint do
14: Ei ← random `-neighbor of Ei
15: append Ei to Xi

16: if Ei ∈ X1−i then
17: truncate X1−i
18: disjoint ← false
19: end if ;
20: i← 1− i
21: choose a new isogeny degree ` different from the last

22: end while
23: return X0 joined with reversed X1
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The �rst part uses the normal algorithm in the full isogeny graph G0(F̄p, 2) where

usually a path is found in expected Õ(p1/2). Thus the complexity of this algorithm

is dominated by �nding a random walk to an elliptic curve with j-invariant from

Fp2 \ Fp whereas the part of connecting the two Fp-rational nodes with each other

using our new algorithm is done in expected Õ(p1/4) and thus neglectable in the

overall complexity.

In this situation though we have to bear in mind that we do not �x both starting

and ending point of the path but are satis�ed when the path ends at any of the

Fp-rational nodes. If we can get an assertion about the distance of an arbitrary

elliptic curve to the set of Fp-rational elliptic curves it could improve the complexity

analysis notably, but so far we know of no starting point for an approximation in

such a way. Thus the following problem is still unsolved.

Problem 12 (Supersingular Isogeny Shortcut). Let E0 be a supersingular elliptic

curve de�ned over Fp2 \ Fp. Find an algorithm that computes a path from E0 to

an arbitrary supersingular elliptic curve E1 de�ned over Fp which has an expected

running time better than Õ(p1/2).

We implementedAlgorithm 4.11 in MAGMA, too, and the results seem to support

the theory of at least a small speedup of �nding an isogeny path between two random

supersingular elliptic curves with this method. They can be found in Table 4.
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4.3 Isogenies between Abelian Varieties

In higher dimension it seems to be incomparably more di�cult to compute an isogeny

between arbitrary isogenous abelian varieties A0 and A1. Even when we restrict to

Jacobians of hyperelliptic curves of genus g = 2, there are several problems. We

will give a brief overview about some approaches for certain speci�c situations here.

First we will investigate attempts to generalize the formulae of Vélu, so we

describe methods to obtain an isogeny having a speci�c subgroup of the Jacobian as

kernel and discuss them and their image curves. Afterwards we deal with isogenous

Jacobians with the same endomorphism ring and how to �nd isogenies between

them if possible. Such isogenies are called horizontal as in the case of elliptic curves.

The analogy of vertical isogenies is not as easy since there does not have to

be an inclusion relation between the endomorphism rings of isogenous Jacobians

as in the elliptic case. However, some special cases can be examined. Finally we

concentrate on the supersingular case where not much is known so far and state the

relevant questions, problems and di�culties when dealing with that situation.

4.3.1 Computing Isogenies with Given Kernel

Recall Example 2.16 where we described how to compute all 2-isogenies starting

at a given elliptic curve E de�ned over a �eld K. For that we needed a subgroup of

order two of E(K̄) to become the kernel of the isogeny. Such a group is generated

by a point of order two which can be deduced from the zeros of the Weierstraÿ

polynomial of the elliptic curve.

We introduce a generalization of this approach to g = 2 with similar tools.

Smith [80] describes a way to determine (2, 2)-isogenies on the Jacobian of a

hyperelliptic curve of genus two de�ned over a �eld K with charK 6= 2. The

presented Richelot formulae can be seen as an extension of the formulae of Vélu

for 2-isogenies on elliptic curves. In order to accomplish that, let C be a hyperelliptic

curve of genus two de�ned over a �eld K with charK 6= 2 and denote its Jacobian

with A. Remember that the points on A are represented by classes [D] of divisors

D with degree zero. The curve C is given by a Weierstraÿ polynomial

Y 2 − f(X)

where f is a polynomial of degree d = 5 or d = 6 with no multiple zeros. We call

such polynomials f hyperelliptic polynomials and introduce the set of hyperelliptic
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polynomials

H := {f ∈ K[X] | f squarefree with deg f ∈ {5, 6}}.

We denote the roots of f in K̄ with α1, · · ·αd and the points Pi := (αi, 0) ∈ C(K̄)

for i ∈ {1, · · · , d} are calledWeierstraÿ points of C. In the case d = 5, the point

at in�nity OC is also a Weierstraÿ point and can be labeled P6, so we always

have six of those points.

Lemma 8.1.1 of Smith [80] implies that the kernels of (2, 2)-isogenies corre-

spond to proper non-trivial subgroups of A[2] which are isomorphic to (Z/2Z)2 and

which he calls (2, 2)-subgroups. Thus we will need some 2-torsion points of A for

the (2, 2)-isogenies we want to construct and for that we examine how A[2] behaves.

Smith [80] shows in Lemma 8.1.3 that they are strongly related to the Weier-

straÿ points of C.

Lemma 4.21. Let C be a hyperelliptic curve of genus two, A be its Jacobian and

P ∈ A[2] be a non-zero point of order two. Then there are two uniquely determined

Weierstraÿ points Pi and Pj of C with P =: Pij = [Pi − Pj].

Therefore all points P in (2, 2)-subgroups can be represented by two Weier-

straÿ points Pi and Pj and thus comply with factors of degree two of the poly-

nomial f having αi and αj as roots. We write gP for a polynomial leading to the

point P . For a whole (2, 2)-subgroup we need three such polynomials which have to

be coprime.

There are several ways to split f in quadratic factors (resp. in the case d = 5

in two quadratic and one linear factor). When we take the product of three such

factors, we get a polynomial of degree 5 or 6. So we can interpret the possibilities

of splitting f ∈ H as the set of preimages of the map

F : (K[X]2)3 → K[X]

(g0, g1, g2) 7→ g0g1g2

where we de�ne

K[X]2 := {g ∈ K[X] | deg g ≤ 2}

as usual. An element (g0, g1, g2) ∈ (K[X]2)3 which is a preimage of some f ∈ H
is called quadratic splitting of f . For a polynomial f ∈ H some of these splittings

F−1(f) arise only by permuting the polynomials gi or by allowing constant factors

ci ∈ K∗ in front of the respective gi with c0c1c2 = 1.
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When we factor out relations given by the equivalence ∼ with

(c0g1, c1g1, c2g2) ∼ (g0, g1, g2) ∼ (g1, g2, g0) ∼ (g2, g0, g1)

for gi and ci as before, we can de�ne the set of quadratic splittings

S := F−1(H)/ ∼

which leads to a well-de�ned map

F : S → H.

Further when we write the polynomials in the splitting as gi := ai0 + ai1X + ai2X
2

and de�ne the matrix G := (aij) containing their coe�cients, we can get a map

det : S → K

[(g0, g1, g2)] 7→ detG

which can also be checked to be well-de�ned.

We notice that the two splittings (g0, g1, g2) and (g0, g2, g1) are not considered

equivalent under ∼. Since we can compute det[(g0, g2, g1)] = − det[(g0, g1, g2)], the

map det would not be well-de�ned with this permutation included in the equivalence

relation. But we can consider those two elements as negative of each other and

introduce a negation

ν : S → S

[(g0, g1, g2)] 7→ [(g0, g2, g1)]

and regard S/〈ν〉 =: |S|. The image of a splitting g in |S| is called unsigned quadratic
splitting and denoted with |g|. This concept is closely related to (2, 2)-subgroups of

JacC as seen in Proposition 8.2.3 of Smith [78].

Proposition 4.22. Let C be a hyperelliptic curve of genus two represented by the

polynomial Y 2 − f(X) with f ∈ H and A be its Jacobian. There is a bijection

{kernels of (2, 2)-isogenies from A} ←→ {unsigned quadratic splittings of f}.

The above introduced determinant of a splitting helps to classify the splittings

and eventually the images of the corresponding isogenies with kernels as in the last

proposition.
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Definition. Let g := [(g0, g1, g2)] ∈ S be a quadratic splitting. Then g is called

singular if we have detG = 0. The set of singular splittings we denote with S0 and

the set of nonsingular splittings with S+.

Smith [78] explains how singular splittings produce (2, 2)-isogenies to products

of elliptic curves and nonsingular splittings (2, 2)-isogenies to Jacobians of hyper-

elliptic curves of genus two. We will regard the latter case here.

Definition. For g := [(g0, g1, g2)] ∈ S+ we de�ne δ := detG−1 and for any pair

of i and j possible [gi, gj] := g′igj − g′jgi where
′ is the �rst derivation. Then the

Richelot operator is a map

R : S+ → (K[X]2)3

g 7→ (δ[g1, g2], δ[g2, g0], δ[g0, g1]).

The important fact about this map is that images from elements in S+ give rise to

hyperelliptic polynomials again, that is, for all g ∈ S+ we have F (R(g)) ∈ H. This
can be seen in Lemma 8.4.2 of Smith [78]. He further shows a few easy-to-check

rules of calculations which are satis�ed by R and induce a well-de�ned involution

R : S+ → S+. Thus every image of this map de�nes a hyperelliptic curve of genus

two and we can make the following de�nition.

Definition. Let C be a hyperelliptic curve of genus two represented by the poly-

nomial Y 2 − f(X) with f ∈ H and let g := [(g0, g1, g2)] ∈ S+ be a nonsingular

quadratic splitting of f . Then we set Cg as the hyperelliptic curve of genus two

de�ned through Y 2 − F (R(g)).

It can immediately be seen that R(g) := [(h0, h1, h2)] is a nonsingular quadratic

splitting of F (R(g)) and we have (Cg)R(g) = C. Smith [78] develops a correspon-

dence on C × Cg which can be used to prove the next statement from his Theo-

rem 8.4.11 about the existence of an isogeny between the Jacobians of C and Cg

which is called Richelot isogeny of g.

Proposition 4.23. Let C be a hyperelliptic curve of genus two represented by

the polynomial Y 2 − f(X) with f ∈ H, A be its Jacobian and let g ∈ S+ be

a nonsingular splitting of f . Let Cg be the hyperelliptic curve constructed via the

Richelot operator above and Ag its Jacobian.

Then there exists a well-de�ned (2, 2)-isogeny φg : A → Ag whose kernel is

given by |g| and the image of A[2] is a (2, 2)-subgroup of Ag given by |R(g)| both in

accordance to Proposition 4.22.
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The isogenies φg : A→ Ag and φR(g) : Ag → A behave as duals of each other as

seen in Corollary 8.4.14 of Smith [78].

Proposition 4.24. Let C and g be as in the situation above. Then we have

φR(g) ◦ φg = [2]A and φg ◦ φR(g) = [2]Ag .

An explicit computation of this Richelot isogeny is presented in Section 3.2

of Takashima, Yoshida [85].

Proposition 4.25. Let C be a hyperelliptic curve of genus two represented by

the polynomial Y 2 − f(X) ∈ K[X, Y ] with f ∈ H, g := [(g0, g1, g2)] ∈ S+ be a

nonsingular quadratic splitting of f and R(g) =: h = [(h0, h1, h2)] ∈ S+ be its image

under the Richelot operator.

De�ne the monic polynomials g̃i and h̃i as the normalized polynomials of gi resp.

hi such that we have g0g1g2 = ag̃0g̃1g̃2 and h0h1h2 = bh̃0h̃1h̃2 with a, b ∈ K∗. Then
we get

φg : A → Ag

[(x, y)− P0] 7→ [(z1, t1)− (z2, t2)]

where z1, z2 are the zeros of g̃1(x)h̃1(Z) + g̃2(x)h̃2(Z) with respect to Z and t1, t2

satisfy yti = ag̃1(x)h̃1(zi)(x− zi).

An analogous method for (2, 2, 2)-isogenies on the Jacobian of a hyperelliptic

curve C of genus three can be found in Smith [79]. It also uses Weierstraÿ

points and the fact that the subgroups of A[2] which are isomorphic to (Z/2Z)3

can be represented by four disjoint pairs of them. He uses trigonal construction to

compute a curve C̃ and an isogeny φ : A→ Ã with given kernel although the image

curve is usually not hyperelliptic.

A general computation of isogenies between higher genus curves � like the for-

mulae of Vélu in the elliptic case � is more complicated and needs profound and

extensive theory of theta functions and theta null points which goes beyond the

scope of this work. Lubicz and Robert [52] present an algorithm for computing

(`, · · · , `)-isogenies of given kernel on abelian varieties de�ned over �elds with odd

characteristic. They use theta functions of di�erent levels n and `n on the input and

the image curve. Cosset and Robert [14] combine this method with an algorithm

to convert between those theta coordinates and thus manage to get an algorithm

for computing isogenies when the used theta coordinates are of the same level.

In the case of Jacobians of hyperelliptic genus two curves this approach yields

separable `-isogenies which have kernel isomorphic to Z/`Z2 and therefore degree `2.
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This is one way to interpret a generalization of the `-isogenies from the elliptic case;

another one is considering isogenies of degree ` instead. This is work in progress

from Dudeanu, Jetchev and Robert and to appear soon, some notes can be

found in Section 4 of Robert [69] or Section 2.3 of Robert [70].

4.3.2 Horizontal and Vertical Isogenies

Let C be a hyperelliptic curve of genus two de�ned over the �nite �eld K := Fq
of prime characteristic p and let A := JacC its Jacobian which is a principally

polarized abelian variety of dimension two.

We know from Section 2.2 that EndK A is isomorphic to an order in the usual

algebra A := EndK A⊗Z Q with

Z[πq, ρq] ⊆ EndK A.

Furthermore, we get from Theorem 2.37 that the algebra A has center Q(πq) and

that we have

4 ≤ [A : Q] ≤ 16.

If A is simple, the theorem also tells us that A is ordinary and that we have

[A : Q] = 4. We brie�y examine the case where A is not a simple variety. Arbitrary

abelian varieties can be written in the following way as seen in Proposition 10.1

and the following discussion on pages 42 and 43 of Milne [59].

Proposition 4.26. Let A be an abelian variety of dimension g. Then there exist

simple non-isogenous varieties A1, · · · , As ⊆ A of dimension gi and integers ni with
s∏
i=1

gni
i = g such that

A is isogenous to An1
1 × · · · × Ans

s .

Let further A := EndA ⊗Z Q resp. Ai := EndAi ⊗Z Q be the algebras containing

the respective endomorphism rings. Then we have

A ∼=
∏
Mni

(Ai).

Corollary 4.27. Let A be an abelian variety of dimension g = 2. Then A is

either simple or isogenous to the product of two not necessarily di�erent elliptic

curves E1 and E2.
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Several concepts are transmitted from the elliptic curves to the original abelian

variety as we can check straightforwardly.

Lemma 4.28. With the notation from above and A de�ned over the �nite �eld Fq
of characteristic p let E1 and E2 have p-rank r1 resp. r2. Then the p-rank of A is

r(A) = r1 + r2.

Further let A, A1 and A2 be as above. Then we have

[A : Q] = [A1 : Q] · [A2 : Q].

With these considerations we get the following classi�cation of abelian varieties

of dimension two in characteristic p according to their p-rank.

Proposition 4.29. Let A be an abelian variety of dimension g = 2 de�ned over

the �nite �eld Fq of characteristic p. Let E1 and E2 be elliptic curves such that A

is isogenous to E1 × E2. Then we have

r(A) = 2 ⇐⇒ E1, E2 ordinary

⇐⇒ [A : Q] = 4,

r(A) = 1 ⇐⇒ Ei ordinary, E1−i supersingular for i = 0 or i = 1

⇐⇒ [A : Q] = 8,

r(A) = 0 ⇐⇒ E1 = E2 supersingular

⇐⇒ [A : Q] = 16.

Recall that an ordinary abelian variety has p-rank g whereas a supersingular

one has p-rank 0 and that for g = 2 these conditions are even equivalences. Then

from the previous discussion and Theorem 2.37 again, we get the ordinary and the

supersingular case as following.

A is ordinary ⇐⇒ dimQA = 4

⇐⇒ χπq is squarefree

⇐⇒ A = Q(πq)

⇐⇒ A is commutative,
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and on the other hand

A is supersingular ⇐⇒ dimQA = 16

⇐⇒ ∃a ∈ C : χπq = (X − a)4

⇐⇒ Q(πq) = Q

⇐⇒ A ∼= M2(Dp)

⇐⇒ ∃ supersingular elliptic curve E

with EndK E = EndE

and an isogeny φ : A→ E × E.

Those are quite important properties which can be used when handling ordinary

resp. supersingular Jacobians of genus two hyperelliptic curves.

Let now A0 and A1 be principally polarized abelian varieties of dimension two

so we know that they are isogenous if and only if the characteristic polynomials of

their respective Frobenius endomorphisms are equal.

Wesolowski [93] deals with computing horizontal isogenies in the ordinary

situation, so where A is a totally imaginary extension of a real quadratic extension

A0 of Q, also called a CM �eld. He considers the situation where the abelian varieties

already have maximal endomorphism ring isomorphic to the maximal order OA of A
and uses them as vertices in an isogeny graph. An important point is that he takes

isogenies of degree ` instead of (`, `)-isogenies as edges. In that case he can show

that the graph is connected when using a set of primes ` ≤ B as possible degrees

where � similar to the elliptic case � B is a bound resulting from a connection to an

ideal class group.

To build this connection, the varieties have to be lifted to abelian varieties over

the ring W := W (Fq) of Witt vectors of Fq. We do not want to enlarge upon the

technical details of the construction here, but in this special situation the ring W

has characteristic zero and is an extension of the p-adic integers Zp with

[W : Zp] = [Fq : Fp]

and a surjective homomorphism W → Fq. For an abelian variety A de�ned over Fq
we can now introduce the canonical lift Ã which is an abelian variety de�ned over

W with same dimension as A and � most importantly � with

End Ã ∼= EndA,

see Section 4 of Oort [64] or Section 3 of Kohel [46].
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They also state a theorem of Serre and Tate which provides that for every

ordinary abelian variety over a �nite �eld such a canonical lift exists. The original

notes about this topic can be found in Lubin-Serre-Tate [53]. We write the

statement for our situation like follows.

Proposition 4.30. Let A be an ordinary abelian variety of dimension g de�ned

over a �nite �eld K := Fq of characteristic p > 0. Then there exists an abelian

variety Ã of dimension g de�ned over the ring of Witt vectors W := W (Fq) and

we have End Ã ∼= EndA.

After that the lifted abelian varieties over the Witt vectors can be embedded

into other abelian varieties de�ned over a number �eld. Those varieties still have

the same endomorphism rings as the original abelian varieties de�ned over Fq and
are principally polarized if and only if the original ones are. Each of them is again

isomorphic to C2/Λ where Λ is a lattice in C2. This lattice only depends on an

ideal a and thus we can map the situation to an ideal class group again. To be

precise, this connection can be described as on page 15 of Wesolowski [93] and

seen below.

Proposition 4.31. Let A be a CM �eld as above and let

ν : C`(A) → C`+(A0)

[a] 7→ [NA/A0(a)]

where C`+(A0) is the narrow class group of A0. Then there is a one-to-one connec-

tion 
isomorphism classes of

principally polarized abelian

varieties de�ned over C

 ←→ ker ν.

Further there is a free and transitive action of ker ν on the set of isomorphism

classes of principally polarized abelian varieties. As in the elliptic case the map

between the varieties corresponding to the ideal classes [a] and [b] is given by the

ideal class [a−1b]. This means that those ideals of norm ` still correspond to sep-

arable isogenies with degree ` and thus Bach's theorem gives us a bound B for

the degrees su�cient such that the isogeny graph is connected. We emphasize that

these isogenies are di�erent from `-isogenies in genus two which have degree `2.
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Proposition 4.32. In the same situation as above, we have a one-to-one connec-

tion {
isogenies between principally polarized

abelian varieties de�ned over C

}
←→ ker ν.

The similarities of the resulting structure to the elliptic situation are distinctive

although the technical steps are more di�cult. Details of this construction can be

found in Section 2.1.2 of Wesolowski [93]. This approach provides a possibility

to apply bi-directional searches and �nd a path between given vertices via a collision

analogously to the discussed methods for the same problem with elliptic curves.

It is crucial for the occurring correspondences between ideal classes and abelian

varieties de�ned over a number �eld that these varieties have to be principally

polarized. Thus for dimension two where the Jacobians of hyperelliptic genus-

two-curves are exactly the principally polarized abelian varieties, this construction

provides us with a method to compute isogenies between abelian varieties with same

endomorphism ring. For higher dimension g > 2 though, not all principally polar-

ized varieties are Jacobians of hyperelliptic curves of genus g. Thus the method

does not generalize immediately to that cases.

In contrast to those horizontal isogenies, vertical isogenies between Jacobians

of genus two hyperelliptic curves de�ned over K := Fq prove to be a more di�cult

matter and cannot be generalized from the elliptic curve case without limitations.

Ionica and Thomé [41] examine the situation when the real multiplication is max-

imal. This means that the endomorphism ring of the occurring abelian varieties has

to be isomorphic to an order in A which has to contain the maximal order OA0 of

the real quadratic sub�eld A0 of A. Further it is assumed that A0 has class number

one, such that it is a principal ring and OA is a module over OA0 .

These restrictions are necessary since the isogeny graph for Jacobians of hyper-

elliptic genus two curves does not have the useful volcano structure as the ordinary

elliptic curve isogeny graph. In the elliptic case we had the property that the index

of the endomorphism ring in the maximal order already determined the endomor-

phism ring uniquely, so we had only one single level of a given distance from the

surface. For the genus two situation this does not need to be true as there can be

di�erent orders in A with the same index since the Z-rank of the orders is four.

Furthermore, Ionica and Thomé [41] say that the result from Kohel about

the endomorphism rings of `-isogenous ordinary elliptic curves being contained in

each other does not entirely hold, see Section 8 of Bröker, Gruenewald and

Lauter [68]. It generalizes only in the following way.
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Proposition 4.33. Let A0 and A1 be ordinary Jacobians of genus two hyper-

elliptic curves and φ : A0 → A1 be an isogeny such that their endomorphism rings

are isomorphic to the orders O0 resp. O1 in the CM �eld A. Then we have

`Oi ⊆ O1−i for i = 0 or i = 1.

The proof is similar as Kohel's proof for genus one but taking in account that

the Z-rank of the orders is four. Thus endomorphism rings of isogenous Jacobians

do not have to be contained in each other and there cannot be a simple volcano like

structure as in the ordinary elliptic case.

But Proposition 4 and 5 from Ionica and Thomé [41] show that under the

given constraints on A and A0 and a prime ` 6= charK there are `+ 1 cyclic kernels

of isogenies starting at a given Jacobian A and that the endomorphism rings of

the respective images contain OA0 , too. We say that such isogenies preserve the real

multiplication. In their Proposition 12 is shown how many of those isogenies are

ascending, descending or horizontal when A 6= Q(ξ5). In fact, the result is quite

similar to the ordinary elliptic volcano structure. Again there is a connection to an

ideal class group and the isogenies are given by ideals a ⊆ OA0 of norm `. Those

are called a-isogenies.

Subsequently in the case where we have `OA0 = a1a2 with coprime ideals a1 and

a2, they describe {a1, a2}-isogeny graph. This graph has edges which are either a1

or a2-isogenies and it turns out to be the graph of all rational isogenies of degree `

as edges which preserve the real multiplication.

Further it has the interesting form of a direct product of two graphs of the

structure like an ordinary isogeny volcano. Remember that we have a circle as

surface of a volcano when the prime splits and a single point when it is inert as can

be deduced from Proposition 4.1. Therefore the {a1, a2}-isogeny graph's surface

is a torus, a circle or a single point depending on whether both, one or none of the

respective primes split.

These are nice structural results but rely on some assumptions and restrictions as

we have seen. Especially the containment of the real multiplication in the occurring

orders is a prominent feature in this work. Avoiding this and describing the structure

of the isogeny graph for Jacobians of genus two hyperelliptic curves without �xed

real multiplication is work in progress by Damien, Ionica andMartindale and �

to the authors knowledge [54] � will be treated by Martindale in her PhD thesis.
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4.3.3 The Supersingular Case

When we look back to the case of supersingular elliptic curves, we see that there are

several central points which distinguish it from the ordinary situation and makes it

easier to deal with. For example we have in characteristic p > 0 that

I. a supersingular elliptic curve E can always be de�ned over Fp2 ,

II. two supersingular elliptic curves are always isogenous,

III. for any prime ` 6= p the isogeny graph G0(F̄p, `) is always fully connected,

IV. the restricted endomorphism ring EndFp E of a supersingular elliptic curve E

which is de�ned over Fp is isomorphic to an order in an imaginary quadratic

�eld.

In this part we want to take a look at supersingular Jacobians of genus two

hyperelliptic curves de�ned over the �nite �eld K := Fq of characteristic p and

examine the questions above for them. We know that for such a Jacobian A the

algebra A = EndK A⊗Z Q is isomorphic to the 2× 2-matrices over the quaternion

algebra rami�ed at p and in�nity and as Q-vector space has dimension 16. Further

there is a supersingular elliptic curve E such that A is isogenous to E × E.

I. Already the �rst property of elliptic curves in the list above proves to be

di�cult to investigate or generalize.

Problem 13. Let A be a supersingular abelian variety of genus two de�ned

over a �eld of characteristic p > 0. Is there an integer r > 1 such that A can

be de�ned over Fpr?

For a hyperelliptic genus-two-curve C and its Jacobian A := JacC we have

A can be de�ned over Fq ⇐⇒ C can be de�ned over Fq

(see the discussion in Section 14 of Milne [60]) and thus for a given entity

we can use the coe�cients of the Weierstraÿ equation of C to �nd out

where A is de�ned. This does not provide a general statement though.

In the elliptic curve case the above stated result is shown by asserting that

the j-invariant lies in Fp2 , but since the moduli space of genus-two-curves has

dimension three, we need at least three invariants to determine such a curve

up to isomorphism. For that purpose usually the Igusa invariants i1, i2, i3
(for example described by Goren and Lauter in [35], based on Igusa [40])
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are used. It is possible to construct a hyperelliptic curve of genus two in

characteristic p from given Igusa invariants with Mestre's algorithm ([58]),

but a statement analogous to Proposition 2.8 cannot be made.

To be explicit, in general we have for a hyperelliptic curve C of genus two

i1, i2, i3 ∈ Fq 6=⇒ C de�ned over Fq,

see Remark 14.3 of Oort [65]. Further, even if there were such a connec-

tion, to the authors knowledge no restriction of the �eld of de�nition of such

invariants is known for supersingular curves.

Most importantly, it can be shown that a generalization of the property of

supersingular elliptic curves is not possible as presented by Oort in [66]. First

there is a general result about abelian varieties attributed to Grothendieck

as in the next proposition.

Proposition 4.34. Let A be an abelian variety de�ned over a �eld K of

characteristic p > 0. Then there exist a �nite �eld extension Fq ⊇ Fp and an

abelian variety Ã de�ned over K such that A and Ã are K-isogenous and Ã

can be de�ned over Fq.

This means that any abelian variety A in characteristic p > 0 is isogenous to

an abelian variety which can be de�ned over a �nite �eld extension of Fp but it
is not necessarily true that A can be de�ned over a �nite �eld itself. Oort [66]

explains on page 10 that this can be done for p-rank at least dimA − 1, but

not always for lower p-rank.

Proposition 4.35. Let A be an abelian variety of dimension g with p-rank

r ≥ g − 1. Then A can be de�ned over a �nite �eld.

Note that this also implies that all elliptic curves in positive characteristic can

be de�ned over �nite �elds and � most relevant for our discussion here � this

does not cover supersingular abelian varieties of dimension two. In particular

Example 3.4 of Oort [66] explicitly constructs supersingular abelian varieties

of dimension g = 2 which cannot be de�ned over a �nite �eld but are de�ned

over a �eld of positive characteristic.

Proposition 4.36. In characteristic p > 0 there exist supersingular abelian

varieties A of dimension g = 2 which cannot be de�ned over a �nite �eld.
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Thus there is no way to construct an analogue of the fact that supersingular

elliptic curves in characteristic p > 0 can always be de�ned over Fp2 for super-

singular abelian varieties of dimension 2. This also holds for dimension g ≥ 3

and varieties with p-rank less than g − 1.

II. The second point though proves easier to deal with and we are able to get a

similar result as in the case of elliptic curves.

Problem 14. Let A0 and A1 be supersingular abelian varieties of genus two

de�ned over a �eld of characteristic p > 0. Is there an isogeny φ : A0 → A1?

By Tate's Isogeny Theorem 2.7 we know for two such Jacobians A0 and A1

de�ned over a �nite �eld Fq of characteristic p that they are Fq-isogenous if
and only if we have

#A0(K) = #A1(K)

for all �nite extensions K ⊇ Fq. Let E0 resp. E1 denote the supersingular

elliptic curves such that there are isogenies

φi : Ai → Ei × Ei,

then we obtain #Ei(K)2 = #Ai(K) from the same argument. Since as seen

before all supersingular elliptic curves E0 and E1 have the same number of

K-rational points and thus are isogenous, this means that also all supersingu-

lar Jacobians of genus-two-curves are isogenous and the following diagram

commutes using isogenies and their duals.

A0

φ0

��

// A1

φ1

��
E0 × E0

// E1 × E1

So we get the following result.

Proposition 4.37. Let A0 and A1 be supersingular abelian varieties of di-

mension g de�ned over a �nite �eld Fq of characteristic p > 0. Then there

exists an Fq-isogeny φ : A0 → A1.

But as we have seen in the last point, a supersingular abelian variety A does not

have to be de�ned over a �nite �eld, so this argument is not always applicable.

134 Christina Delfs



4.3 Isogenies between Abelian Varieties

Luckily, even if A is de�ned over a �eld K of characteristic p which is not a

�nite �eld, Proposition 4.34 provides us with an abelian variety Ã de�ned

over a �nite �eld Fq and a Fq-isogeny A → Ã. Thus also such varieties are

isogenous to the ones de�ned over �nite �elds and the isogenies between them

can be de�ned over a �nite �eld, too.

Proposition 4.38. Let A0 and A1 be supersingular abelian varieties of di-

mension g de�ned over a �eld K of characteristic p > 0. Then there exists an

isogeny φ : A0 → A1 which is de�ned over a �nite �eld.

Note that neither the degree nor the �eld of de�nition of the isogeny is speci�ed

and especially that this does not mean that every isogeny of any given degree

has to be de�ned over a �nite �eld, only that there exist some of them between

any supersingular abelian varieties.

III. The next problem which arises in contrast to the elliptic situation is the ques-

tion whether the graph of supersingular Jacobians is also fully connected for

a single isogeny degree ` or not.

Problem 15. Regard the graph with supersingular abelian varieties of genus

two de�ned over a �eld of characteristic p > 0 as nodes and with `-isogenies

as edges for a �xed prime ` 6= p. Is this supersingular isogeny graph fully

connected?

Mestre's result which could be applied on supersingular elliptic curves is

working with a connection between supersingular points and a model for the

moduli space of supersingular elliptic curves and cannot be generalized im-

mediately since again the moduli space of supersingular abelian varieties is

not as simple5. So it is not even clear if a random walk algorithm with iso-

genies of given degree can always provide an isogeny between two arbitrary

supersingular Jacobians.

We further investigate the question whether we can determine if we can stay in

a certain subgraph by starting at a Jacobian of a genus-two-curve C de�ned

over Fp for an odd prime p and simple isogenies of a given degree.

5The subset of the moduli space of principally polarized abelian varieties of dimension g which
contains the supersingular ones � the so called supersingular locus � has dimension bg2/4e (Li-
Oort [51]), so in this case we have a one-dimensional space.
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Recall from Section 4.3.1 the de�nition of theRichelot isogeny from before:

We split the de�ning degree-d-polynomial f ∈ Fp of C (where d ∈ {5, 6}) into
three polynomials g0, g1 and g2 which have degree one or two and correspond

to a two-torsion point of A := JacC each.

Then we construct polynomials g̃0, g̃1 and g̃2 which can be computed directly

from the coe�cients of the gi. The product of the g̃i provides a de�ning

polynomial f̃ of a genus-two-curve Cg and the Richelot isogeny a (2, 2)-

isogeny

φg : A→ Ag

where Ag is the Jacobian of the hyperelliptic curve Cg.

We can immediately see that

gi ∈ Fq[X] =⇒ g̃i ∈ Fq[X]

=⇒ f̃ ∈ Fq[X]

=⇒ Cg de�ned over Fq.

The same is true for the �eld of de�nition of the Richelot isogeny φg since

the coe�cients of the polynomials in its representation as rational function

can also be computed from the gi, so

gi ∈ Fq[X] =⇒ φg de�ned over Fq.

Still, the �eld of de�nition of the gi depends on the roots α1, · · · , αd of f and

thus on theWeierstraÿ points of C as we have for gi := ci(X−αj)(X−αk)
resp. gi := ci(X − αj) with ci ∈ F∗p

αj, αk ∈ Fq =⇒ gi ∈ Fq.

As we know the Weierstraÿ points of C correspond with the 2-torsion

of A and thus when the complete two-torsion group is de�ned over Fq all

Weierstraÿ points have already to be de�ned over this extension �eld,

A(Fq)[2] ∼= (Z/2Z)4 ⇐⇒ α1, · · · , αd ∈ Fq.

Taken as a whole we therefore get the following result.
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Proposition 4.39. Let C be a hyperelliptic curve of genus two de�ned over

the �nite �eld Fp and let A be its Jacobian. Let further Cg be the image curve

of the Richelot isogeny φg dependent on an unsigned quadratic splitting of

the form g := (g0, g1, g2). Then we have

A(Fq)[2] ∼= (Z/2Z)4 =⇒ Cg, φg de�ned over Fq

where Fq is a �nite extension �eld of Fp.

Unfortunately, the �eld of de�nition of the roots of f can be a large extension

�eld of Fp so in general we cannot restrict to a given small q here. For a certain

class of supersingular hyperelliptic curves of genus two though, Takashima

and Yoshida [85] have found a restriction to q = p2 resp. q = p4 dependent

on p (mod 5).

For p > 5 they regard curves C de�ned over Fp given by the polynomial

Y 2 − X5 + u

where u ∈ Fp. Those curves are supersingular if and only if p 6≡ 1 (mod 5)

due to Proposition 1.13 of Ibukiyama-Katsura-Oort [39].

If the Jacobian of a genus two curve C ful�lls

A(Fq) ∼= (Z/(q1/2 + 1)Z)4,

then we have A(Fq)[2] ∼= (Z/2Z)4 since p is odd. In Lemma 4.3 Takashima

and Yoshida [85] show that for a curve of the above described form this

condition is valid with q = p2 resp. q = p4 for the cases p ≡ 4 (mod 5) resp.

p ≡ 2, 3 (mod 5). Thus we get the next result from the observations before.

Proposition 4.40. Let p > 5 be a prime and C := V(Y 2 − X5 + u) for

u ∈ Fp be a hyperelliptic curve of genus two de�ned over Fp with Jacobian

A. Then we have

A(Fp2) ∼= (Z/2Z)4 if p ≡ 4 (mod 5),

A(Fp4) ∼= (Z/2Z)4 if p ≡ 2, 3 (mod 5)

and thus Cg and φg are de�ned over Fp2 resp. Fp4.

Moreover, we can show that the property Ã(Fq) ∼= (Z/(q1/2 + 1)Z)4 is also

true for every Jacobian Ã of a hyperelliptic curve C̃ which can be reached
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by a chain of Richelot isogenies starting at the Jacobian of such a C.

Since all those Richelot isogenies are de�ned over Fq with appropriate q

due to the re�ections above, A and Ã are Fq-isogenous and due to Tate's

Isogeny Theorem 2.7 their characteristic polynomials χA and χÃ of the q-th

Frobenius are the same.

For an abelian variety A de�ned over Fq the structure A(Fq) depends on the

irreducible components of χA (see Theorem 2 of Xing [94]), hence we get

A(Fq) ∼= Ã(Fq) and thus C̃ is also de�ned over Fp2 resp. Fp4 .

If we start this procedure at a general supersingular curve C, this does not have

to be true, even when we remain in the case where we only regard Richelot

isogenies. As we have seen the �eld of de�nition of an image curve of such an

isogeny depends on the �eld of de�nition of the roots of the starting curve's

de�ning polynomial. Hence we are not able to determine a useful restriction

of which sort of Jacobians can be attained from an arbitrary starting point

via a given type of isogenies.

Thus we cannot make a re�ned statement about the structure of isogeny graphs

of supersingular genus-two Jacobians. Even when we only regard the com-

ponent of the full 2-Richelot isogeny graph which contains the Jacobian

of the above investigated curve

C = V(Y 2 −X5 + u)

does not provide a well-explorable and predictable structure. Since we have

seen that there are 15 Richelot isogenies starting at each hyperelliptic Jaco-

bian, most often6 those graphs are 15-regular. Even for the smallest possible

primes we can investigate, the cardinality of the according component gets

large and they cannot reasonably be drawn in a comprehensible way.

IV. Finally the result fromWaterhouse or Rück as in Theorem 2.39 provided

the essential tools for our improved algorithm in the Fp-rational supersingular
elliptic situation.

Problem 16. Let A be a supersingular abelian variety of genus two de�ned

over Fpr for an integer r > 0 and let A be the algebra such that EndA is

isomorphic to a maximal order in A. Is the a restriction on r such that A is

a number �eld?

6Only when there are nodes representing the cartesian product of two elliptic curves this does
not have to apply. Such nodes appear if and only if p ≡ 4 (mod 5) as seen in Proposition 1.13
of Ibukiyama-Katsura-Oort [39].
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Theorem 2.39 is only stated for elliptic curves and relies on their special

structure. We do not know if there is a restriction of endomorphism rings such

that they are orders in a number �eld analogous to the elliptic case.

If that were possible, we could try to generate a connection to an ideal class

group again and adapt the appropriate algorithms. However, from a present-

day perspective such a lifting-and-reduction correspondence preserving an en-

domorphism ring has not yet been established.

Thus we see that for the supersingular situation there are still a number of

open problems even when we only regard genus two and several obstacles occur in

contrast to the situation of supersingular elliptic curves. Di�culties to conclude

parallel results arise among others since

F a supersingular variety of dimension g > 1 in characteristic p > 0 does not

have to be de�ned over a �nite �eld,

F when we start with simple Richelot isogenies at such a variety which is

de�ned over Fp, we cannot make a good restriction about where the image

curve can be de�ned,

F even when we just regard the components of graphs with such isogenies as

edges which contain the Jacobian of the special curve C as above � and thus

all varieties in the graph are de�ned over Fp4 � the components become quite

large and not easy to deal with,

F the endomorphism ring of such a variety is an order in a non-commutative

algebra of dimension g2 over Q and there is no known restriction to the endo-

morphism ring of the variety such that there exists a lift to an abelian variety

in characteristic zero with the same endomorphism ring,

F thus no connection to an ideal class group can be formed yet and we know

about no upper bound for the isogeny degree such that the supersingular

isogeny graph in dimension g > 1 is fully connected.

These problems give rise to many signi�cant questions and impulses for further

proceeding in what seems to be a most interesting �eld of theory for future research.
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5 Cryptography with Elliptic Curves

and Isogenies

Elliptic curves have been discovered for cryptographic methods in the mid 1980s

and are common use today. Basically every cryptosystem which relies on a group

structure can be applied on the point group E(K) of an elliptic curve E over a �nite

�eld K since this group is �nite and the addition law is easy to compute. Especially

this means that there is a Discrete Logarithm Problem (DLP) on elliptic curves

as described later which is the foundation for many currently used systems. For

group size n ∈ N generic attacks like Pollard Rho, Shanks BSGS and Pohlig-

Hellman can solve the DLP in O(
√
n) operations, which is exponential in the

input size log n. Such methods are therefore infeasible for solving DLPs.

Theoretically these cryptosystems also work for arbitrary abelian varieties where

we also have a group structure, but usually the arithmetic is not as e�cient as in

the simple case of elliptic curves. Furthermore there are certain attacks working

on them. Even when we only regard Jacobians of hyperelliptic curves de�ned

over K there are methods to solve the DLP for certain higher genus curves in

subexponential time as described by Enge in [23] or index calculus methods as

presented in Thériault [89]. Thus we usually restrict to elliptic curve cryptography

(ECC) where also isogenies tend to appear often.

In this section we will �rst regard the discrete logarithm problem on elliptic

curves, ECDLP. For certain classes of elliptic curves there are better-than-general

methods for solving this problem and we will brie�y describe three of them. Other

elliptic curves are actually used in important present cryptographic applications.

Afterwards we will discuss two cryptographic methods which rely on isogenies

between supersingular elliptic curves instead of an ECDLP based scheme, so they

are set in the area of the main result of this thesis. We will investigate how our

improved algorithm for the computation of such isogenies will a�ect the security of

these systems.

5.1 Cryptography Based on the ECDLP

Many public key cryptosystems build their security on the hardness of the well-

known Discrete Logarithm Problem (DLP). Since this is a problem which

can be investigated on any �nite group, it can particularly be adapted on the setting

of the group E(K) where E is an elliptic curve de�ned over a �nite �eld K. In this

situation the DLP can be stated as following.
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Problem 17 (Elliptic Curve Discrete Logarithm Problem). Let E be an elliptic

curve de�ned over a �nite �eld K = Fq of characteristic p > 0. Let P,Q ∈ E(K)

be points such that Q ∈ 〈P 〉 with #〈P 〉 := n ∈ N. Find m ∈ {0, · · · , n − 1} with
Q = [m]P .

This problem is abbreviated ECDLP. Its security is dependent on the size of

the group 〈P 〉, so it is usually tried to �nd elliptic curves with nearly prime order of

E(K) so the ECDLP has to be solved in the subgroup of big prime order n | #E(K).

We can use isogenies to transfer the ECDLP from an elliptic curve E0 de�ned

over K = Fq to another elliptic curve E1 if they are isogenous. For that we consider

P,Q ∈ E0(K) with Q ∈ 〈P 〉 and want to know for which m ∈ N the relation

Q = [m]P is true. Let φ : E0 → E1 be an isogeny and denote the images of P and

Q under φ with P̃ and Q̃, respectively. Applying φ on the problem equation yields

an ECDLP on E1 as

Q̃ = φ(Q) = φ([m]P )

= (φ ◦ [m])(P )

= ([m] ◦ φ)(P )

= [m]P̃

since the multiplication-by-m-maps commute with every other isogeny. Thus if we

can solve ECDLPs on E1 and if isogenies are fast enough to compute, we can solve

ECDLPs also on every elliptic curve which is isogenous to E1, that is, on the whole

isogeny class.

There are several systems based on the ECDLP which appear in actual practice

like in projects of the German government concerning for instance electronic health

cards and passports. The security for these projects is provided by the Bundesamt

für Sicherheit in der Informationstechnik (BSI) as in [9] based on their

technical guideline [8]. Among other methods they use elliptic curve cryptography

algorithms for signatures (ECDSA, ECGDSA and EC-Schnorr) and key agree-

ments (Diffie-Hellman and ElGamal). We will not repeat the principles of

these standard methods here.

However, there are several types of elliptic curves where good attacks on the

ECDLP have been developed and thus they are not secure for cryptographic use of

the above methods and should be avoided in this environment. We will describe the

reasons for that in the following parts.
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5.1.1 MOV Attack via Pairings

Menezes, Okamoto and Vanstone [55] developed a method for reducing an

ECDLP from an elliptic curve E de�ned over a �nite �eld Fq to a DLP on the

multiplicative group of a �nite �eld Fqk where k is an integer. We know that for

such groups there are subexponential algorithms like the number �eld sieve or the

function �eld sieve for solving DLPs. Thus � if k is not too big � it is possible to

solve this new DLP much faster than the original one on the elliptic curve.

ThisMOV attack on ECDLPs uses theWeil pairing to map the subgroup 〈P 〉
into F̄q, so we sketch it �rst. Frey and Rück [26] use a variant of the Tate pairing

(also called Tate-Lichtenbaum pairing) for a similar approach.

Let E be an elliptic curve de�ned over the �nite �eld Fq of characteristic p > 0

and n ∈ N with gcd(n, p) = 1. Let µn be the group of n-th roots of unity in F̄q.
There exists a non-degenerate bilinear map

en : E[n]× E[n] → µn

called the Weil pairing which can be de�ned with divisors as in Section 13 of

Milne [59] or Section III.8 of Silverman [75]. We will not need the technical

details of how to compute the actual value of the pairing, therefore we abstain from

introducing the explicit formulas.

The Weil pairing has a number of practical properties as seen in Menezes,

Okamoto and Vanstone [55] or Galbraith [28]. For P,Q,R ∈ E[n] we have

1. identity: en(P, P ) = 1,

2. non-degeneration: en(P,O) = 1 and en(P,Q) = 1 for all Q ∈ E[n] implies

P = O,

3. alternation: en(P,Q) = en(Q,P )−1,

4. bilinearity: en(P +Q,R) = en(P,R)en(Q,R) and

bilinearity: en(P,Q+R) = en(P,Q)en(P,R),

5. Galois invariance: en(σ(P ), σ(Q)) = σ(en(P,Q)) for all σ ∈ Gal(F̄q,Fq),

6. E[n] ⊆ E(Fqk) =⇒ en(P,Q) ∈ Fqk .

Remark. For abelian varieties the Weil pairing can be introduced with the dual

variety as a non-degenerate bilinear pairing

en : A[n]× A∨[n] → µn,
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also de�ned through divisors on A. When we take a polarization φ : A → A∨, we

can adapt another pairing

eφn : A[n]× A[n] → µn

(P,Q) 7→ en(P, φ(Q))

although this may be degenerated.

An important fact concerning the question whether E[n] ⊆ E(Fqk) is true can

be found in Lemma 3 of Menezes, Okamoto and Vanstone [55].

Lemma 5.1. Let E be an elliptic curve de�ned over the �nite �eld Fq of character-
istic p > 0. For n ∈ N with gcd(n, q) = 1 we have

E[n] ⊆ E(Fqk) ⇐⇒ n2 | #E(Fqk)

⇐⇒ n | qk − 1.

Corollary III.8.1.1 of Silverman [75] or Theorems 9 and 10 of Menezes,

Okamoto and Vanstone [55] further show the following result.

Lemma 5.2. Let E be an elliptic curve as above and P ∈ E(Fq) with #〈P 〉 = n ∈ N
and gcd(n, q) = 1. Then there exists some R ∈ E[n] such that en(P,R) ∈ µn is a

primitive root of unity and for this �xed R the map

〈P 〉 → µn

Q 7→ en(Q,R)

is an isomorphism of groups.

We still want to solve the ECDLP Q = [m]P with P,Q ∈ E(Fq) such that

#〈P 〉 = n and Q ∈ 〈P 〉. We now have to perform the following steps.

F Find minimal k ∈ N with E[n] ⊂ E(Fqk),

F �nd R ∈ E[n] as in Lemma 5.2 and compute α := en(P,R) ∈ Fqk ,

F further compute β := en(Q,R) ∈ Fqk ,

then we have with the rules for computing of the Weil pairing as above

β = en(Q,R) = en([m]P,R) = en(P,R)m = αm

which is a DLP in Fqk . This integer k is also called embedding degree.
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There are a few points in this procedure which have to be examined for �nding

out how fast the method is. First, computing the embedding degree k is equivalent

to �nding the minimal solution k of the equation

qk ≡ 1 (mod n)

due to Lemma 5.1. Second, we have to �nd an appropriate R ∈ E[n] with en(P,R)

of order n. Silverman [75] shows in Proposition XI.6.1 how that can be done

in polynomial time and explains in Theorem XI.8.1 how the Miller algorithm

computesWeil pairings also in polynomial time. Thus we have the following result.

Proposition 5.3. Let E be an elliptic curve de�ned over the �nite �eld Fq of

characteristic p > 0 and regard P ∈ E(Fq) with #〈P 〉 = n, gcd(n, p) = 1 and

Q ∈ 〈P 〉. The ECDLP Q = [m]P can be transferred to a DLP in Fqk where k ∈ N
is the embedding degree with a polynomial algorithm.

Usually though the embedding degree is too large to improve the complexity of

this new DLP in contrast to the original ECDLP. However, for supersingular elliptic

curves we can show that always k ≤ 6 has to be true and this is small enough for

a signi�cant di�erence in the running time as seen in Corollary 12 of Menezes,

Okamoto and Vanstone [55].

Proposition 5.4. Let the elliptic curve E from Proposition 5.3 be supersin-

gular. Then we have k ≤ 6 and the obtained DLP can be solved in subexponential

time.

Proof. First we know from Theorem 2.39 that the trace of a supersingular elliptic

curve E is t = 0, t = ±√q, t = ±2
√
q or t = ±q(r+1)/2 for q = pr with p ∈ {2, 3}

and r ∈ N odd.

When we have P ∈ E(Fq) with #〈P 〉 = n ∈ N this especially means

n | #E(Fq) = q + 1− t

and since p | t we get gcd(n, q) = 1 and Lemma 5.1 can be applied. It tells us that

E[n] ⊆ E(Fqk) ⇐⇒ n | qk − 1.

Thus we investigate the situation for all possible traces t.

F t = 0:

This yields n | q + 1, so we get n | q2 − 1 = (q + 1)(q − 1) and thus obtain

k = 2 or k = 1 when already n | q − 1.
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F t = ±√q:
We have n | q+ 1±√q and thus n | q3− 1 = (q− 1)(q+ 1 +

√
q)(q+ 1−√q),

so k ≤ 3.

F t = ±2
√
q:

Here we have n | q+1±2
√
q = (

√
q±1)2 and thus n | q−1 = (

√
q+1)(

√
q−1)

which yields k = 1.

F t = ±p(r+1)/2 and q = pr with p = 2 and r odd:

When we rearrange this form of the trace to t = ±
√

2q, we get n | q+ 1±
√

2q

and thus n | q4 − 1 = (q + 1)(q − 1)(q + 1 +
√

2q)(q + 1−
√

2q), hence k ≤ 4.

F t = ±p(r+1)/2 and q = pr with p = 3 and r odd:

Similarly we can write t = ±
√

3q for the trace here, get n | q+ 1±
√

3q, attain

n | q6 − 1 = (q + 1)(q − 1)(q2 + q + 1)(q + 1 +
√

3q)(q + 1−
√

3q) and k ≤ 6.

In all cases we clearly have k ≤ 6 and thus the result follows.

Due to these considerations it is not advisable to use supersingular elliptic curves

for cryptographic schemes based on the ECDLP. The small embedding degree gives

a good possibility for an attack which is not usually true for an ordinary elliptic

curve.

5.1.2 Anomalous Elliptic Curves

In the MOV attack the situation with gcd(n, q) 6= 1 were omitted. But there is

another approach presented by SMART in [76] which shows that elliptic curves E

de�ned over the �nite �eld Fp with #E(Fp) = p are not suited for cryptography

based on the ECDLP either. There the problem can even be transferred on a DLP

on an additive group which can be solved in linear time. We will brie�y describe

the idea here.

Let E be an elliptic curve de�ned over Fp with #E(Fp) = p and take two points

P,Q ∈ E(Fp)\{O} which obviously both have order p. Thus there exists an integer

0 ≤ m ≤ p− 1 with Q = [m]P which we want to determine.

Since the problem is only interesting for large p, we can assume that E is given

by a short Weierstraÿ polynomial Y 2 − X3 − aX − b. Now we consider the

elliptic curve Ẽ de�ned over the p-adic numbers Qp which has a shortWeierstraÿ

equation Y 2−X3−ãX−b̃ with the coe�cients a and b from E interpreted as elements

ã, b̃ of Qp.
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Further we construct points P̃ , Q̃ ∈ Ẽ(Qp). For that let P = (x, y) ∈ E(Fp),
then y is a root of the polynomial t2 − x3 − ax− b ∈ Fp[t] and f ′(y) 6= 0 since P is

not of order two. Therefore by Hensels Lemma there exists a ỹ ∈ Qp such that ỹ

is a root of the polynomial t2 − x̃3 − ãx̃− b̃ ∈ Qp[t] where x̃ ∈ Qp is a lift of x.

Denote the reduction map from Ẽ to E with π. Then there exists an easily

computable map

logE : kerπ → pZp

where Zp are the p-adic integers and the operation on pZp is additive (see Chap-

ter IV.5 of Silverman [75]). This map satis�es the usual calculation rules of a

logarithm with respect to the additive group law of kerπ. Since P̃ and Q̃ both have

order p, we get [p]P̃ , [p]Q̃ ∈ kerπ and also R̃ ∈ kerπ for R̃ := Q̃ − [m]P̃ . We label

the images of [p]P̃ , [p]Q̃ and R̃ under logE with pα, pβ and pγ respectively. Then

we get

pβ = logE([p]Q̃)

= logE([p]([m]P̃ + R̃))

= m logE([p]P̃ ) + p logE(R̃)

= mpα + p2γ

≡ mpα (mod p2Zp)

and �nally are able to compute

m ≡ βα−1 (mod pZp).

Remark. The group kerπ is a formal group often denoted with E1(Qp). For more

information on that matter consult Silverman [75] Chapter IV, Section VII.2,

Exercise VII.7.13 and Proposition XI.6.5.

There is also mentioned in Remark XI.6.6 and shown in Example XI.6.7 how

it is only necessary to compute lifts modulo p2, so the e�ort for the described method

is low. Computing m transmutes to a DLP in an additive group and can thus be

solved with one inversion and one multiplication.
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5.1.3 Weil Decent Attack

The Weil descent was �rst introduced by Frey [25] in 1998 and Galbraith

and SMART [30] used this approach to transfer the ECDLP on an elliptic curve

de�ned over a �nite �eld Fqr with r > 1 to a DLP on a Jacobian of a hyperelliptic

curve de�ned over Fq with genus g ≥ r. We already mentioned that there are

subexponential index calculus methods to solve such problems if the genus is high

enough. Gaudry, Heÿ, Smart [33] examine this approach and the occurring

curves more detailed, especially with regard to actual cryptographic applications.

Thus the method is also often called GHS Weil descent attack.

Let E be an elliptic curve de�ned over K := Fqr where r > 1 is an integer. In

applications often charFq = 2 is suggested as well as r rather small such that qr is

large. We regard the usual ECDLP Q = [m]P for P,Q ∈ E(K) and Q ∈ 〈P 〉 with
#〈P 〉 =: n. We want to transform this problem such that it su�ces to solve a DLP

on a hyperelliptic Jacobian JacC. For that we �rst construct an abelian variety

A of dimension n or n− 1 in the following way.

Since K is a �eld extension of Fq of dimension r, there are elements ψ1, · · · , ψr
providing a Fq-basis of K. Thus we can display the coe�cients ai of the de�ning

Weierstraÿ equation of E as sums
r∑
j=1

aijψi with known coe�cients aij ∈ Fq and

introduce new variables xj and yj for j ∈ {1, · · · , r} to write

X =
r∑
j=1

xjψj and Y =
r∑
j=1

yiψi.

When we substitute these sums into the original Weierstraÿ equation of E,

expand the products and sort the terms with respect to the ψi, we get r equations

in the 2r variables x1, · · · , xr, y1, · · · , yr. We call the vanishing polynomials of these

equations f1, · · · , fr and de�ne the variety W (E) := V(f1, · · · , fr) which is de�ned

over Fq and has dimension r. It is also called Weil restriction of scalars.

Due to a Theorem of Frey [25] on page 9 we have W (E)(Fq) ∼= E(K) as

algebraic groups. Thus W (E) is actually an abelian variety de�ned over Fq and the

group law of E can be transferred to it via the relation

E(K) → W (E)(Fq)(
r∑
j=1

ujψj,

r∑
j=1

vjψj

)
7→ (u1, · · · , ur, v1, · · · , vr).
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Moreover, if E itself is de�ned over Fq, then E(Fq) is isomorphic to a subvariety of

W (E) and we get the following relation from Lemma 4 of Galbraith, Smart [30].

Lemma 5.5. Let E be an elliptic curve de�ned over K = Fqr as before and W (E)

be the Weil restriction de�ned over Fq. Then there exists an abelian variety V

de�ned over Fq of dimension r − 1 such that we have

W (E) ∼= E(Fq)× V

as isomorphism of varieties.

Definition. Let W (E) and V be as in the previous lemma. The abelian variety

A de�ned over Fq is set as

F A := W (E) if E is not de�ned over Fq,

F A := V if E is de�ned over Fq.

In the �rst case A has dimension r, in the second one r − 1. In particular,

when we map the points P,Q ∈ E(K) from our ECDLP to points in W (E) we get

images in A which are de�ned over Fq. Thus A is the abelian variety where the

corresponding DLP from E is transferred to and we have a map

E(K) → A(Fq).

Next we construct a curve C de�ned over Fq by intersecting A with r − 1 resp.

r−2 hyperplanes which provides a variety of dimension one with a Fq-rational point
at OA. This yields a map

φ : C(Fq) → A(Fq)

which will be used with the next proposition. Gaudry, Heÿ, Smart [33] study

the curve C in more detail. Working with function �elds and Artin-Schreier

theory they determine the genus of C and thus the dimension of JacC to be

g = 2b−1 or g = 2b−1 − 1

with 1 ≤ b ≤ r. This is important to know for the DLP on JacC we will maintain.

Milne [60] Proposition 6.1 gives the universal property of Jacobians as

below which helps us getting a connection to the Jacobian of C.
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Proposition 5.6. Let C be a smooth curve of genus g de�ned over a �eld F with

a F -rational point P . Further let A be an abelian variety of dimension r de�ned

over F and φ : C → A be a map sending P to OA. Then there exists a unique

homomorphism

ψ : JacC → A with φ = ψ ◦ fP

where fP is the canonical embedding of C into JacC with fP (P ) = OJacC.

Thus we have a homomorphism ψ : JacC → A in our situation7 which is also

surjective when A is simple since its image is a subvariety of A. Due toCorollary 3

of Galbraith, Smart [30] we also know in that case that g ≥ r has to hold and

g = r if and only if A and JacC are isogenous.

Now we regard the images of P and Q in A(Fq) and want to be able to pull them

back to JacC via ψ. Note that preimages of those points have to exist according to

the surjectivity of ψ. Galbraith, Smart [30] treat this issue in Section 4 where

they use the connection of JacC to the divisor class group Pic0C. This group

consists of the set of degree zero divisors on C de�ned over Fq modulo principal

divisors and is isomorphic to JacC as an abelian variety as seen in Milne [60]8.

We will refrain from the technical details concerning divisors and the above

mentioned pullback from that section which show how exactly the original problem

is transformed to the problem of solving the DLP DQ = mDP in Pic0C. When

this is possible, the resulting integer m is the required solution. Section 6 of

Galbraith, Smart [30] discusses an approach to the DLP in Pic0C yielding a

heuristic subexponential algorithm with growing genus.

As apparent from the description of the GHS attack as presented above, it is

crucial that the elliptic curve is not de�ned over a prime �eld. Further, Menezes

and Qu [56] show that it infeasible for elliptic curves de�ned over F2s with s ∈
{160, · · · , 600} prime, thus systems using such elliptic curves are not endangered by

the GHS attack. However, there are proposals for using elliptic curves de�ned over

F2155 or F2185 in an IETF standard (see for example Section 4 of ECC Brain-

pool [21]). Several exploits were made to see how the GHS attack can be applied

to those elliptic curves.

7If C is not smooth, we replace it with its normalization, a smooth curve de�ned over the same
�eld as C and related to C via a rational map of degree one, see Hartshorne [37], Exercise II.3.8
or the beginning of Section 2 of Galbraith, Smart [30].

8The divisor class group of a singular curve is isomorphic to the one of its normalization, thus
this is also working when C is not smooth
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Since we have 155 = 5 · 31, the method from above can be applied with q = 231

and r = 5 or with q = 25 and r = 31. Smart [77] examined the �rst of these

explicitly proposed cases and came to the conclusion that such curves are secure

against that attack since he obtained a curve C de�ned over F231 of genus 16 where

the index calculus method currently would take years.

Jacobson,Menezes, Stein [42] regarded the latter case with q = 25 and found

the GHS method applicable for 232 of the 2156 isomorphism classes of elliptic curves

de�ned over F2155 which � although this is only a small portion of all possible curves

� already suggests that this case is not quali�ed for cryptographic uses.

Later Galbraith, Heÿ, Smart [29] extended this number of vulnerable iso-

morphism classes to 2104 out of 2156 by using isogenies due to the following fact.

Let E0 and E1 be isogenous elliptic curves de�ned over Fq, then the GHS approach

on each of those curves does not yield DLPs on Jacobians of curves of the same

genus. This is quite important since it means that when we can solve the ECDLP

on an elliptic curve E0 via the GHS attack, then we can also solve a corresponding

ECDLP on every isogenous elliptic curve E1 even if the GHS method does not

work for E1 itself. At this point it is crucial that we have a e�cient construction

method for computing isogenies between E0 and E1 like the algorithm from Gal-

braith or any of its adaptions. This is a very interesting application of isogenies

in a cryptographic area.

Summed up it is not advisable to build cryptosystems based on the ECDLP of

elliptic curves de�ned over a composite extension �eld F2s with characteristic two

and non-prime integer s since the problem could be transferred to an easier problem

on the Jacobian of a hyperelliptic curve.
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5.2 Supersingular Isogenies in Cryptography

Isogenies have a number of applications in cryptography. In this section we will focus

our attention mostly on isogenies between supersingular elliptic curves in crypto-

graphic settings and describe on the one hand a hash function and on the other

hand a encryption system which is supposed to be quantum resistant, both of which

are based on isogenies between supersingular elliptic curves. Further we analyze if

our improvements for calculating Fp-rational isogenies yield any new approaches of

attacking those structures.

5.2.1 A Cryptographical Hash Function

Charles, Goren and Lauter [10] propose cryptographic hash functions based

on expander graphs which work especially on supersingular isogeny graphs and are

supposed to be collision resistant since the computation of isogenies between super-

singular elliptic curves is hard. We will brie�y describe the method in the situation

of supersingular isogenies and analyze if our improvement for computing isogenies

between Fp-rational supersingular elliptic curves can be used to attack this system.

Definition. A cryptographic hash function is a function

h : {0, 1}∗ → {0, 1}m

mapping arbitrary bitstrings deterministically to bitstrings of length m ∈ N . A

family of hash functions is a �nite set of hash functions hk for k from some index

set I. The value k is called key of the hash function.

A hash function h is preimage resistant or one way if given some y ∈ {0, 1}n it

is impracticable to compute an x ∈ {0, 1}∗ with h(x) = y.

It is collision resistant if it is infeasible to �nd di�erent bitstrings x, y ∈ {0, 1}∗

with h(x) = h(y).

Note that a hash function is never injective since the image set is smaller than the

input set. This is reasonable because hash functions are normally used to compress

information. Nevertheless, this means that there will always be collisions, that is,

di�erent bitstrings that are mapped on the same output. A hash function should

be easy to compute but hard to invert.

For the isogeny hash functions we take 2-isogenies which are fastest to compute

and regard the full supersingular isogeny graph G0(F̄p, 2) for some prime p of de-

sired bit length. In Charles-Goren-Lauter [10] the authors restrict to primes
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p which satisfy p ≡ 1 (mod 12) since then the j-invariants 0 and 1728 are not su-

persingular and we do not have to deal with multiple edges arising from non-trivial

automorphisms as discussed before.

When we de�ne the index set I as the set of supersingular j-invariants in Fp2 ,

we can construct a hash function hk for every k ∈ I in the following way. Let E0 be

a supersingular elliptic curve de�ned over Fp2 with j-invariant k and let x ∈ {0, 1}∗

be a bitstring of length n ∈ N. From this bitstring x we create a non-backtracking

path E0 → E1 → · · · → En with length n in G0(F̄p, 2) as described below.

The path has to be deterministic or h would not always yield the same output for

a given input x = b1b2 · · · bn with bi ∈ {0, 1}. So when we are at the node in G0(F̄p, 2)

representing Ei−1, we have to use the bit bi to deterministically choose one of the

three neighbors of Ei−1 to become the next curve Ei in the chain. Each of those

neighbors correspond to a subgroup of Ei−1 of order 2 which arise from 2-torsion

points. When the de�ning polynomial of Ei−1 is Y 2 − f(X) with a polynomial f of

degree 3, the three distinct roots x1, x2, x3 of f give us the �rst coordinate of the

2-torsion points (xi, 0). We �x some order relation '<' such that we can compare

x1, x2 and x3 as elements in F̄p. Then we choose the smallest possibility under this

relation when bi = 0 and the next biggest if we have bi = 1. Usually we only have two

possibilities since we want a non-backtracking path and cannot take the dual of the

last isogeny as new outgoing isogeny, so this is no restriction. The only case where

there are three reachable neighbors is for E0, so there we disregard the neighbor

corresponding to the largest value under '<' with this method. But eventually this

procedure yields a deterministically constructed chain of 2-isogenies in G0(F̄p, 2).

We have seen that there are roughly p/12 < p nodes in G0(F̄p, `), so we can

injectively map them to Fp with some embedding ε. Let En be the elliptic curve

reached at the end of the path and jn be its j-invariant. Then hk returns the image

of jn under this embedding ε as bitstring which has length m := log p.

For an attack on such a hash function hk we have given E0 and En where y is the

representation of ε(j(En)) as bitstring and want to �nd a bitstring x with h(x) = y.

Note that to enforce a collision of hk it is not necessary for the isogeny coming from

x to have degree 2n but any path length will be su�cient, although it depends on

the application whether the length of the chain is preset or not. Due to our previous

considerations it takes Õ(p1/2) �eld operations to construct such an isogeny via a

path in G0(F̄p, 2). If we need an isogeny of given degree 2n, we have to modify the

algorithm slightly, but the overall complexity class does not change.

When we now include our new considerations about isogenies between supersin-

gular elliptic curves de�ned over Fp we can �nd an isogeny from E0 to En in Õ(p1/4)

when they are de�ned over Fp. Although this isogeny is constructed in a di�erent
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graph � namely in the rational supersingular isogeny graph G0(Fp,L) for a set of

primes L instead of in the full supersingular isogeny graph G0(F̄p, 2) � every edge in

that graph can be lifted to an edge in a full supersingular isogeny graph G0(F̄p,L).

The problem is, that in the resulting chain of elliptic curves we take isogenies of

degree ` > 2 and thus have more than two possibilities for the next neighbor curve.

Therefore we cannot convert the choice of the neighbor into a bit bi to obtain the

bitstring x = b1b2 · · · bn.
If there is a way to convert a given L-smooth isogeny into an isogeny of `-power

degree, this can be applied to our obtained L-smooth isogeny to get a chain of 2-

isogenies between E0 and En. The consecutive application of those two algorithms

yields an isogeny which has degree of a power of 2 and thus provides a collision of

the hash function hk.

In the recent paperKohel-Lauter-Petit-Tignol [47] there is a new approach

about which introduces a probabilistic algorithm with expected polynomial running

time to convert a left ideal in a maximal order of a quaternion algebra rami�ed

at p and ∞ to such an ideal of `-power norm. We have seen that those ideals

correspond to isogenies between supersingular elliptic curves de�ned over Fp2 and

that the degree of the isogeny equals the norm of the ideal. Unfortunately, it seems

to be complicated to calculate this correspondence between ideals and isogenies

explicitly so that the structure cannot be immediately transmitted. This problem

is marked as future work in the paper. Likewise, in the ordinary case no such

transmission from the ideals to isogenies is known.

When E0 and En are not de�ned over Fp, we do not get a better complexity for

constructing an isogeny between them with our new algorithm, but the computa-

tional results seem to imply that it is slightly faster anyway when we use L-smooth

Fp-rational isogenies in between. In this situation we have the same problem that

we have to convert the resulting isogeny to a chain of 2-isogenies.

Hence once there is a way to split an isogeny into 2-isogenies, our algorithm pro-

vides an improvement for a possible attack on an isogeny hash function. To achieve

the same security of the hash function, the size of the prime p has to be increased

considerately or elliptic curves which are de�ned over Fp have to be excluded.
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5.2.2 A Proposed Quantum Resistant Cryptosystem

There have been several approaches to construct cryptosystems which are based on

isogenies, but mostly they take isogenies between ordinary elliptic curves. We will

not go into details of those concepts here but concentrate on a supersingular variant

later. It started with Rostovtsev-Stolbunov [71] in 2006 where the authors

used so called isogeny stars on ordinary elliptic curves.

Later in 2010 Stolbunov [83] stated a Diffie-Hellman type of key ex-

change with computing isogenies between ordinary elliptic curves. The security

is based on the fastest classical algorithms so far for computing isogenies, which

as we have seen are exponential in log p (Galbraith-Stolbunov [31], which is

based on Galbraith-Heÿ-Smart [29]). However, a paper of Childs, Jao and

Soukharev [11] from 2011 shows that on a quantum computer this can be defeated

in subexponential time.

The goal of Jao-De Feo [43] is to �nd a system that is more secure and much

faster than Stolbunov's. They use supersingular elliptic curves of smooth order

so that there are many small subgroups and thus a large number of isogenies that

are fast to compute. The cryptosystem lets Alice and Bob make a random walk on

a di�erent isogeny graph. Since those isogenies correspond to ideal classes in a max-

imal order of a quaternion algebra which do not commute, some extra information

is needed to reach the same elliptic curve in the end as we will sketch brie�y below.

The authors claim that the provided system is quantum resistant since at least the

attack of Childs-Jao-Soukharev is not applicable here.

Key Exchange. Suppose that Alice and Bob want to securely exchange data

through establishing a cryptosystem which uses a secret shared key k. First they

have to agree on this key in a way that no attacker can access it. In this case the key

will arise from a shared elliptic curve, for example computed from its j-invariant.

For that we have to make some precomputations as follows.

F choose a prime p = `eAA `
eB
B · u− 1 of desired size where `A, `B are small primes,

eA, eB, u ∈ N

F �nd a supersingular elliptic curve E0 over Fp2

F �nd generators {PA, QA} resp. {PB, QB} of E0[`eAA ] resp. E0[`eBB ]

We will discuss later the di�culties of getting those objects.

Afterwards Alice and Bob have to perform a few calculations concerning isogenies

starting at the known elliptic curve E0.
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Alice

F choose mA, nA ∈ Z/`eAA Z
with mA 6≡ 0 (mod `A)

or nA 6≡ 0 (mod `A)

F compute subgroup

KA := 〈mAPA + nAQA〉 of E0

and isogeny

φA : E0 → E0/KA =: EA

F compute P ′B := φA(PB)

and Q′B := φA(QB) ∈ EA

Bob

F choose mB, nB ∈ Z/`eBB Z
with mB 6≡ 0 (mod `B)

or nB 6≡ 0 (mod `B)

F compute subgroup

KB := 〈mBPB + nBQB〉 of E0

and isogeny

φB : E0 → E0/KB =: EB

F compute P ′A := φB(PA)

and Q′A := φB(QA) ∈ EB

F EA, φA(PB), φA(QB)
exchange←→ EB, φB(PA), φB(QA)

F compute subgroup

K ′A := 〈mAP
′
A + nAQ

′
A〉 of EB

and isogeny

φ′A : EB → EB/K
′
A =: EBA

F compute subgroup

K ′B := 〈mBP
′
B + nBQ

′
B〉 of EA

and isogeny

φ′B : EA → EA/K
′
B =: EAB

The isogenies are computed via the formulae of Vélu which we examined before.

We will analyze the e�ciency later. Figure 11 visualizes the line of action of those

proceedings.

EA
φ′B

((

��

E0

φA

77

φB
''

EAB

EB

φ′A

66

OO

Figure 11: A Key Exchange Protocol using Supersingular Isogenies

It can be shown that after these steps the constructed isogenies reach the same

image curve since the kernels of φ′A ◦ φB and φ′B ◦ φA are equal because

kerφ′A ◦ φB = {P ∈ E0 | φB(P ) ∈ kerφ′A}

= {P ∈ E0 | φB(P ) ∈ 〈mAφB(PA) + nAφB(QA)〉}
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and we have

〈mAφB(PA) + nAφB(QA)〉 = φB(〈mAPA + nAQA〉)

= φB(kerφA)}

which yields that

kerφ′A ◦ φB = {P ∈ E0 | ∃Q ∈ kerφA : φB(P ) = φB(Q)}

= {P ∈ E0 | ∃Q ∈ kerφA : φB(P −Q︸ ︷︷ ︸
=:R

) = OEB
}

= {P ∈ E0 | ∃Q ∈ kerφA, R ∈ kerφB : P = Q+R}

and since these observations can also be taken for A and B interchanged, this leads

to the desired equality

kerφ′A ◦ φB = kerφ′B ◦ φA.

The common j-invariant of EBA resp. EAB can be used to form a secret shared

key in a pre-agreed manner.

Public-Key Cryptosystem. In addition to the key exchange this setting

can be used to establish a cryptosystem as shown below. First we have to choose a

prime p = `eAA `
eB
B · u − 1, E0, {PA, QA}, {PB, QB} as in the key-exchange protocol

above and a �nite set I and family H of hash-functions hk : {E} → {0, 1}w for any

k ∈ I. Then we can make the following arrangements.

F Key Agreement:

G choose mA, nA ∈ Z/`eaA Z like above

G compute EA, P ′B, Q
′
B

G choose k ∈ I

G Public Key: (EA, P
′
B, Q

′
B, k)

G Private Key: (mA, nA)

F Encryption:

G take message m ∈ {0, 1}w

G choose mB, nB ∈ Z/`eBB Z like above

G compute EB, P ′A, Q
′
A
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G compute h := hk(EAB)

G compute c := h⊕m

G send (EB, P
′
A, Q

′
A, c)

F Decryption:

G compute h := hk(EBA) = hk(EAB) = c⊕m

G compute h⊕ c = c⊕m⊕ c = m

Concerning this key exchange and encryption protocol there are several questions

of e�ciency we can state.

1. If `eAA , `
eB
B are �xed, how do we �nd some u ∈ N of desired size such that

p := `eAA `
eB
B · u− 1 is prime?

2. If p is �xed, how is a supersingular elliptic curve E0 over Fp2 found?

3. How can we �nd a basis of E0[`eAA ]?

4. How do we compute φA : E0 → EA with kerφA = KA?

We brie�y summarize the answers on those questions given by Jao-De Feo [43]

in Section 3.3.

1. Let `eAA , `
eB
B be �xed, then we test random u of the right size until `eAA `

eB
B u− 1

is prime. We do not have to care about u being coprime to `A or `B when

we increase eA resp. eB in that cases. According to the authors of Jao-De

Feo [43] this is probable enough due to the prime number theorem.

2. We already discussed the algorithm of Bröker [6] which e�ciently constructs

supersingular elliptic curves in given prime characteristic p.

3. When we randomly take a point P ∈ E0(Fp2) and calculate P ′ := [m]P for

m := (`eBB u)2, we eliminated all terms containing `B and u from the order of

the point so that P ′ has order of a power of `A and at most `eAA . If this order

equals `eAA , we set PA := P ′, else we choose another random point P .

Analogously we construct QA with order `eAA and in order to get a basis of

E0[`eAA ] we have to check if PA and QA are independent. This can be done

with the Weil-pairing. Jao-De Feo [43] claim that PA and QA having the

right order and not being dependent happens with high probability.
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4. As we know, computing an isogeny with big kernel is slow, so Jao-De Feo [43]

show how to successively �nd a chain of eA isogenies of degree `A which combine

to an isogeny φ : E0 → EA with kernel KA. Since `A is chosen to be a small

prime, those isogenies are fast to compute. We do not go into the technical

details here.

The security of the above described systems is based on the conjectured hardness

of the following problems.

Problem 18 (Supersingular Isogeny (SSI)). Given EA, P ′B, Q
′
B, �nd generator of

KA.

Problem 19 (Supersingular Computational Diffie-Hellman (SSCDH)). Given

EA, EB, P
′
A, Q

′
A, P

′
B, Q

′
B, �nd j-invariant of E0/KAB.

Problem 20 (Supersingular Decisional Diffie-Hellman (SSDDH)). Given a

tuple sampled with probability 0.5 either from

(EA, EB, P
′
A, Q

′
A, P

′
B, Q

′
B, EAB)

or from

(EA, EB, P
′
A, Q

′
A, P

′
B, Q

′
B, EC),

decide from which distribution it is.

These problems can be used as a basis to examine the key-exchange and encryp-

tion scheme as in Theorems 4.4 and 4.5 of Jao-De Feo [43].

Theorem 5.7. 1. The key-exchange protocol based on isogenies between super-

singular elliptic curves as described above is session-key secure in the authen-

ticated links adversarial model of Canetti-Krawczyk when we assume SS-

DDH.

2. The ensuing public-key cryptosystem is secure in terms of indistinguishability

against chosen plaintext attack (IND CPA) under some assumptions on H.

Here a key-exchange protocol is called session-key secure in the authenticated

links adversarial model of Canetti-Krawczyk if the same key is produced on

both sides of the agreement and the advantage of a polynomial-time attacker is

negligible. If the protocols were not secure in that way, there would be a polynomial-

time distinguisher for SSDDH with non-negligible advantage.

It is obvious that a SSI solver entails a SSCDH solver which in turn leads to a

SSDDH solver, but the other direction is not known and assumed to be hard. For

their work Jao-De Feo [43] make the additional assumption that also a SSDDH
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solver implies a SSI solver, that is, they suppose that the three problems are equally

hard to solve. Then they analyze possible ways of attack as provided sketchily below.

To break the cryptosystem we have to compute EAB and thus the kernel of the

isogeny φ′A. This arises from the same integers mA and nA as the kernel of φA and

these integers can be found easily once a generator of the kernel is known (Jao-De

Feo [43] refer to Teske [88] for this fact). Thus we have to compute an isogeny

from E0 to EA in order to solve this problem.

As we have seen �nding isogenies between supersingular elliptic curves over Fp2

has a complexity of O(
√
p(log p)2). In this scheme elliptic curves with smooth order

are used, but it is unknown if this helps in some way for computing isogenies between

them. Also the distribution of isogenous elliptic curves with kernels 〈mAPA+nAQA〉
is not uniform, but so far no use of this fact has been found.

A main question is whether the additional information φA(PB) and φA(QB) help

to determine φA. Although we can compute φA on E0[`eBB ] completely since any

element therein is a known linear combination of PB and QB (again due to extended

DLP of Teske [88]), �nding φA seems to be as di�cult as before.

Further the authors discuss the possibilities of quantum computers for attacking

this scheme and especially if the quantum algorithm of Childs-Jao-Soukharev

can be established for supersingular instead of ordinary elliptic curves. This algo-

rithm in build on the fact that ideal classes form an abelian group though; and in a

quaternion algebra this is not the case. So far no adaption of this concept is found

and thus the algorithm is supposed to be quantum resistant.

Our improvement for computing isogenies between supersingular elliptic curves

de�ned over Fp implies that to obtain the same security of this system, the el-

liptic curve E0 as well as the integers mA and nA should be chosen such that all

elliptic curves in this scheme are de�ned over Fp2 \ Fp. Also in the case when

the elliptic curves were de�ned over Fp we have a correspondence to ideal classes

in a commutative ideal class group again, so probably the quantum algorithm of

Childs-Jao-Soukharev works in this situation and provides an attack on the

protocol.
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In this thesis we gave an overview about algorithms to compute isogenies between

given elliptic curves de�ned over �nite �elds. For that we described the necessary

theoretical background of abelian varieties, their endomorphism rings and the con-

cept of isogenies. A survey of complex multiplication theory as well as famous lifting

and reduction theorems were presented.

Then we concentrated on supersingular elliptic curves de�ned over the �nite

�eld Fp for a prime p > 3 and established a connection between their Fp-rational
endomorphism rings and the full endomorphism rings of certain elliptic curves with

complex multiplication. This relation arose from a modi�cation of the Deuring

Reduction Theorem which we extended to this Fp-rational supersingular case. It

was important to see that Fp-rational isogenies behave well in this situation so we

could get the one-to-one connections
elliptic curves E de�ned over C
with EndE ⊗Z Q = Q(

√
−p)

and Z[
√
−p] ⊆ EndE

 ←→

{
supersingular elliptic curves

de�ned over Fp

}

for elliptic curves on the one hand and
`-isogenies between

elliptic curves E de�ned over C
with EndE ⊗Z Q = Q(

√
−p)

and Z[
√
−p] ⊆ EndE

 ←→


Fp-rational `-isogenies between
supersingular elliptic curves

de�ned over Fp


for isogenies of prime degree ` 6= p on the other hand.

With those discoveries we were able to build Fp-rational supersingular isogeny
graphs which turned out to have a structure that is quite similar to the volcano-like

one of an ordinary isogeny graph. It became apparent that they are even more

assessable than an ordinary isogeny volcanoes since they have at most two levels

and the only vertical isogenies can have degree two.

Due to the correspondences above we were able to establish a connection from

supersingular elliptic curves de�ned over Fp to an ideal class group of an order of

the imaginary quadratic �eld Q(
√
−p). There an important result from Bach gave

us the possibility to determine a bound on the norms of generators which leads to

maximal required isogeny degrees such that the rational supersingular isogeny graph

can be proven to be fully connected.

Christina Delfs XI



6 CONCLUSION AND OUTLOOK

We made use of this coherence to develop a proven faster than usual algorithm for

computing isogenies between supersingular elliptic curves over Fp. We implemented

our new algorithm in MAGMA and observed a notable improvement in the running time

of our version in contrast to the previous algorithms for computing supersingular

isogenies, con�rming the complexity analysis which revealed a speedup from former

Õ(p1/2) algorithms to one of complexity Õ(p1/4).

After these main results we dealt with the investigation of possible generalizations

of the insights gained from the work with elliptic curves to Jacobians of curves with

higher genus. We discerned that the structural di�erences provide many di�culties

which did not arise in the case concerning genus one. The computation of isogenies

with given kernel works to an extend but is expectably more complex. Whereas for

ordinary Jacobians of genus-two-curves horizontal isogenies can be a handled with

a connection to an ideal class group and isogenies between two Jacobians with

di�erent endomorphism ring can at least partly be described, the supersingular case

is more or less uncharted. We identi�ed and illustrated the problems in this area

where several points for most interesting further research can be detected.

Finally we regarded cryptographic applications of elliptic curves ans isogenies

in general and of our new algorithm for computing isogenies between supersingular

Fp-rational elliptic curves in special. The general concepts appear in many �elds of

interest and especially in studies of the ECDLP. We presented two occurrences of

isogenies between supersingular elliptic curves in cryptographic schemes � a cryp-

tographic hash function and a probably quantum resistant cryptosystem. Although

our new algorithm provides no immediate attack on an arbitrary instance of neither

of those systems, in certain cases it can bring an improvement and thus at least a

new perspective to consider.

Further Work. A thesis can not even begin to cover the immense number of

theoretical problems which appear along the way during writing and researching.

There are a few quite interesting open points in this work for further research which

we brie�y want to mention here.

Although the structure of the Fp-rational supersingular isogeny graph is mostly

described, some details remain to be examined like Conjecture 4.15 where we

tried to induce a pattern by which the full supersingular isogeny graphs G0(F̄p, `)
transmute into the Fp-rational graphs G0(Fp, `) but succeeded only partially. An-

other unproven statement is presented in Conjecture 4.19 saying that in the

graph G0(Fp, `) the two nodes with the label 0 are always on the same level. Both

conjectures are heavily supported by our example graphs but not proven yet.
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Our new algorithm does not cover the computation of an isogeny between elliptic

curves when at least one of them is not de�ned over Fp. Hence a natural question

is whether this cases can be improved with another algorithm. Already the naive

approach � taking random walks until a j-invariant in Fp is reached on both sides

and applying the new algorithm on them � shows a small improvement in the com-

putations, but it would be interesting to see if there is a way to �nd a �shortcut� in

the full graph to go to the �nearest� Fp-rational node.
Further the isogeny resulting from our algorithm has probably quite large degree,

even if it is relatively smooth. Nevertheless it would be good to �nd a way of

�smoothing� the isogeny to a chain of 2-isogenies. Firstly they are the fastest ones

to compute and furthermore we have seen the for example in the Charles-Goren-

Lauter hash function only 2-isogenies are used, so there we are also only allowed

to take isogenies which are of degree two for an attack.

An important result would be a computational feasible way to transmit the above

structure from the ideal class side to the sets of elliptic curves. Since the ideal class

group is well-known and for example factoring an ideal in a chain of prime ideals

with small norm is manageable, many problems would get much simpler with such

a connection. But so far no method in that manner is known to the author.

Finally we have seen that for Jacobians of higher genus curves or general

abelian varieties there are still a lot of open di�cult problems. Even the situation

of ordinary Jacobians with dimension two is not as well exploited as the elliptic

case. Although computing horizontal isogenies between varieties with isomorphic

endomorphism rings is mostly possible due to a connection to an ideal class group, a

generalization of vertical isogenies is only partly applicable. The graph structure be-

comes much more complicated as the endomorphism rings of isogenous Jacobians

do not have to be contained in each other. Fixing the real multiplication helps for

building parts of the graphs, but the understanding of the whole structure without

�xed subring in the endomorphism rings is still incomplete.

The supersingular case causes even more intricacies, starting with the fact that

not all supersingular abelian varieties of dimension g > 1 do have to be de�ned

over a �nite �eld. That is already a major drawback in contrast to the elliptic case

where the minimal �eld of de�nition was always either Fp or Fp2 . At least a result of

Grothendieck tells us that every supersingular abelian variety is isogenous to a

supersingular abelian variety de�ned over a �nite �eld, thus they are all connected

via isogenies. Although thus all supersingular Jacobians of genus-two-curves are

isogenous, we know nothing about the degrees or �eld of de�nitions of the connecting

isogenies. Hence even basic random walk approaches turn out to be complicated as

we do not know an upper bound for the used degrees.
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6 CONCLUSION AND OUTLOOK

Further a simpli�cation to Jacobians de�ned over Fp as in the elliptic case does

not immediately provide a starting point for a better algorithm since the algebra con-

taining orders isomorphic to the endomorphism rings is not required to be a number

�eld and thus no connection to an ideal class is known. Establishing a lifting-and-

reduction theory of such varieties which preserves some restricted endomorphism

ring could provide a leverage point for this problem. There are many interesting

issues for further work and projects in this area and we will watch expectantly for

future development and progress in this �eld of research.
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A MAGMA Program Codes

We implemented the described methods in MAGMA so that we were able to compute

examples and make comparisons of the actual running time of the algorithms. Note

that these implementations are not optimized but work su�ciently fast for our input

sizes. Also, to keep it simple, we provide no error catching lines to avoid wrong input

or similar issues.

The �rst codes here (Algorithms A.1-A.7) concern the methods we presented

already as pseudocodes in Section 4.1.2 for navigating in an ordinary isogeny

volcano.

Algorithm A.1 IsOnFloor(j, q, l)

1: F := GF(q);

2: R<t> := PolynomialRing(F);

3: S<x, y> := PolynomialRing(F, 2);

4: Phi := S!ClassicalModularPolynomial(l);

5: m := 0;

6: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j)));

7: // if there are any roots, count their multiplicities

8: if not #M eq 0 then
9: for i in {1..#M} do
10: m +:= M[i, 2];

11: end for
12: end if
13: return m le 2;

Algorithm A.2 LengthOfRandomPathToFloor(j0, j1, q, l)

1: if IsOnFloor(j0, q, l) then
2: return 0;

3: end if
4: F := GF(q);

5: R<t> := PolynomialRing(F);

6: S<x, y> := PolynomialRing(F, 2);

7: Phi := S!ClassicalModularPolynomial(l);

8: n := 1;

9: while not IsOnFloor(j1, q, l) do
10: jtmp := j1;

11: // factor out root to ensure that path does not go back

12: j1 := Random(Roots(R!(R!UnivariatePolynomial(

13: j1 := Random(Roots(Evaluate(Phi, x, j1))/(t-F!j0));

14: j0 := jtmp;

15: n +:= 1;

16: end while
17: return n;
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Algorithm A.3 DistanceToFloor(j, q, l)

1: F := GF(q);

2: R<t> := PolynomialRing(F);

3: S<x, y> := PolynomialRing(F, 2);

4: Phi := S!ClassicalModularPolynomial(l);

5: // choose three different isogenies starting at j

6: j1 := Random(Roots(R!UnivariatePolynomial(

7: j1 := Random(Evaluate(Phi, x, j))))[1];

8: j2 := Random(Roots(R!(R!UnivariatePolynomial(

9: j2 := Random(Evaluate(Phi, x, j))/(t-F!j1))))[1];

10: j3 := Random(Roots(R!(R!UnivariatePolynomial(

11: j3 := Random(Evaluate(Phi, x, j))/((t-F!j1)*(t-F!j2)))))[1];

12: n1 := LengthOfPath(j, j1, q, l);

13: n2 := LengthOfPath(j, j2, q, l);

14: n3 := LengthOfPath(j, j3, q, l);

15: return Minimum([n1, n2, n3]);

Algorithm A.4 IsDown(j0, j1, q, l)

1: return LengthOfPath(j0, j1, q, l)

2: return eq DistanceToFloor(j0, q, l);

Algorithm A.5 IsUp(j0, j1, q, l)

1: return IsDown(j1, j0, q, l);

Algorithm A.6 PathToSurface(j, q, l, X)

1: Phi := S!ClassicalModularPolynomial(l);

2: repeat
3: isonsurface := true;

4: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j)));

5: for m in M do
6: if IsUp(j, m, q, l) then
7: Append(�X, m);

8: j := m;

9: isonsurface := false;

10: end if
11: end for
12: until isonsurface;
13: return j, X;
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Algorithm A.7 OrdinaryIsogeny(j0, j1, q)

1: F := GF(q);

2: R<t> := PolynomialRing(F);

3: S<x,y> := PolynomialRing(F, 2);

4: E0 := EllipticCurveFromjInvariant(j0);

5: r0 := #RationalPoints(E0);

6: E1 := EllipticCurveFromjInvariant(j1);

7: if r0 ne #RationalPoints(E1) then
8: return -1;
9: end if
10: t1 := q+1-r0;

11: d := t1�2-4*q;

12: dk := Discriminant(QuadraticField(d));

13: O := sub<OK| 1/2*(-t+Integers()!Sqrt(d/dk)*x)>;

14: c := Conductor(O);

15: C := Factorization(c);

16: // FIRST STEP: reaching the same level

17: X := [F!j0];

18: Y := [F!j1];

19: for g in C do
20: l := g[1];

21: j0, X := PathToSurface(j0, q, l, X);

22: j1, Y := PathToSurface(j1, q, l, Y);

23: end for
24: // SECOND STEP: random walk on top level

25: B := Minimum([B, 60, Floor(6*Log(d)�2)])[1];

26: // list of possible isogeny degrees up to the bound B

27: L := Sort(SetToSequence({2} join

28: L := Sort(SetToSequence {l: l in PrimesInInterval(3, B)

29: L := Sort(SetToSequence | LegendreSymbol(d, l) ne -1}));

30: l := Random(L);

31: Phi := S!ClassicalModularPolynomial(l);

32: // compute a first random neighbour of j0, store it in X

33: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j0)));

34: j0tmp := j0;

35: j0 := F!M[Random([1..#M])][1];

36: Append(�X, j0);

37: // compute a first random neighbour of j1, store it in Y

38: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j1)));

39: j1tmp := j1;

40: j1 := F!M[Random([1..#M])][1];

41: Append(�Y, j1);
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42: disjoint := not (j0 in Y or j1 in X);

43: while disjoint do
44: // choose a new isogeny degree different from the last

45: l := Random(Exclude(L, l));

46: Phi := S!ClassicalModularPolynomial(l);

47: // compute a chain of l-isogenies which is stored in X

48: if disjoint then
49: M := Roots(R!UnivariatePolynomial(

50: M := Roots(Evaluate(Phi, x, j0)));

51: j0 := F!M[Random([1..#M])][1];

52: Append(�X, j0);

53: // stop if the other chain Y is reached

54: // cut Y to the right length

55: if j0 in Y then
56: Y := Y[1..Index(Y, j0)];

57: disjoint := false;

58: end if ;
59: end if ;
60: // compute a chain of l-isogenies which is stored in Y

61: if disjoint then
62: M := Roots(R!UnivariatePolynomial(

63: M := Roots(Evaluate(Phi, x, j1)));

64: j1 := F!M[Random([1..#M])][1];

65: Append(�Y, j1);

66: // stop if the other chain X is reached

67: // cut X to the right length

68: if j1 in X then
69: X := X[1..Index(X, j1)];

70: disjoint := false;

71: end if ;
72: end if ;
73: end while;
74: return X cat Reverse(Y);
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For our computational results we compute paths between random j-invariants to

test how fast the respective algorithms are. For that we need a method to construct a

set of supersingular j-invariants of Fp or Fp2 from that we can draw the start and end

points of our random walks. We use the mentioned CM-method from Bröker [5]

in the following way to construct a set of cardinality m which contains supersingular

j-invariants lying in Fpr .

Algorithm A.8 GetjInvariants(p, m, r)

1: F := GF(p�r);

2: R<t> := PolynomialRing(F);

3: if r eq 1 then
4: s := NumberOfRationaljInvariants(p);

5: else
6: s := NumberOfSupersingularCurves(p);

7: end if ;
8: if m eq 0 then
9: m := s;

10: else
11: m := Minimum(m, s);

12: end if ;
13: q := 2;

14: A := { };

15: repeat
16: repeat
17: q := NextPrime(q);

18: until (q mod 4 eq 3 and LegendreSymbol(-q, p) eq -1);
19: f := R!HilbertClassPolynomial(-q);

20: S := Roots(f);

21: for j in 1..#S do
22: A := A join S[j,1];

23: end for;
24: until #A ge m;
25: return Sort(SetToSequence(A)[1..m]);

The classical bi-directional search via random walks on the full supersingular

isogeny graph is described in the next code and used for the comparisons against our

new algorithm. The computational results arising from that are displayed afterwards

in Appendix B.
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Algorithm A.9 SupersingularIsogeny(j0, j1, p)

1: F := GF(p�2);

2: R<t> := PolynomialRing(F);

3: S<x,y> := PolynomialRing(F, 2);

4: Phi := S!ClassicalModularPolynomial(2);

5: X := [F!j0];

6: Y := [F!j1];

7: // compute a first random neighbor of j0, store it in X

8: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j0)));

9: j0tmp := j0;

10: j0 := F!M[Random([1..#M])][1];

11: Append(�X, j0);

12: // compute a first random neighbor of j1, store it in Y

13: M := Roots(R!UnivariatePolynomial(Evaluate(Phi, x, j1)));

14: j1tmp := j1;

15: j1 := F!M[Random([1..#M])][1];

16: Append(�Y, j1);

17: disjoint := not (j0 in Y or j1 in X)

18: while disjoint do
19: if disjoint then
20: M := Roots(R!(R!UnivariatePolynomial(

21: M := Roots(R!(Evaluate(Phi, x, j0)) / (t-j0tmp)));

22: j0tmp := j0;

23: j0 := F!M[Random([1..#M])][1];

24: Append(�X, j0);

25: if j0 in Y then
26: Y := Y[1..Index(Y, j0)];

27: disjoint := false;

28: end if
29: end if
30: if disjoint then
31: M := Roots(R!(R!UnivariatePolynomial(

32: M := Roots(R!(Evaluate(Phi, x, j1)) / (t-j1tmp)));

33: j1tmp := j1;

34: j1 := F!M[Random([1..#M])][1];

35: Append(�Y, j1);

36: if j1 in X then
37: X := X[1..Index(X, j1)];

38: disjoint := false;

39: end if
40: end if
41: end while
42: return #X-1 + #Y-1;
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The code for our new algorithm working in the Fp-rational isogeny graphG0(Fp,L)

for the set L = {primes ` ≤ B |
(−p
`

)
= 1} where B is a chosen upper bound for

the isogeny degrees is presented on the next pages. The input C is used to avoid

endless loops when the graph is not connected for the appropriate set L.

Algorithm A.10 SupersingularRationalIsogeny(j0, j1, p, B, C)

1: F := GF(p);

2: R<t> := PolynomialRing(F);

3: S<x,y> := PolynomialRing(F, 2);

4: B := Minimum(B, 60);

5: L := Sort(SetToSequence({2} join {l: l in

6: L := Sort(PrimesInInterval(3, Minimum(B,

7: L := Sort(Floor(6*Log(4*p)�2)))

8: L := Sort(| LegendreSymbol(-p, l) eq 1}));

9: // store the starting j-invariants

10: X0 := [F!j0];

11: X1 := [F!j1];

12: // store the degrees of used isogenies

13: D := [];

14: l := Random(L);

15: disjoint := j0 ne j1;

16: i := 0;

17: while disjoint do
18: Phi := S!ClassicalModularPolynomial(l);

19: Append(�D, l);

20: // compute a chain of l-isogenous elliptic curves

21: // starting at j0 which is stored in X0

22: M := Roots(R!UnivariatePolynomial(

23: M := Roots(Evaluate(Phi, x, j0)));

24: j0 := F!M[Random([1..#M])][1];

25: Append(�X0, j0);

26: // stop if the other chain X1 is reached

27: // cut X1 to the right length

28: if j0 in X1 then
29: c := Index(X1, j0) - 1;

30: X1 := X1[1..c];

31: D := D cat Reverse(D[1..c]);

32: disjoint := false;

33: break;
34: end if ;
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35: // compute a chain of l-isogenous elliptic curves

36: // starting at j1 which is stored in X1

37: M := Roots(R!UnivariatePolynomial(

38: M := Roots(Evaluate(Phi, x, j1)));

39: j1 := F!M[Random([1..#M])][1];

40: Append(�X1, j1);

41: // stop if the other chain X1 is reached

42: // cut X1 to the right length

43: if j1 in X0 then
44: c := Index(X0, j1) - 1;

45: X0 := X0[1..c];

46: D := D[1..c] cat Reverse(D);

47: disjoint := false;

48: break;
49: end if ;
50: // choose a new isogeny degree

51: // different from the last to avoid back-tracking

52: // (mostly)

53: if #L gt 1 then
54: l := Random(Exclude(L, l));

55: end if ;
56: // avoid going into an endless loop

57: i +:=1;

58: if i gt C then
59: break;
60: end if ;
61: end while;
62: if not disjoint then
63: X := X0 cat Reverse(X1);

64: else
65: X := [];

66: D := [];

67: end if ;
68: return X, D, not disjoint;
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Finally we examined the situation when we want to compute paths between j-

invariants from Fp2 . For that we need a procedure to reach a Fp-rational node �rst
and after that we combine the algorithms to attain a complete path between the

original nodes.

Algorithm A.11 PathToRational(j, p)

1: F := GF(p�2);

2: R<t> := PolynomialRing(F);

3: S<x,y> := PolynomialRing(F, 2);

4: Phi := S!ClassicalModularPolynomial(2);

5: // store the starting j-invariant

6: X := [F!j];

7: if j notin GF(p) then
8: compute a first random neighbor of j

9: M := Roots(R!UnivariatePolynomial(

10: M := Roots(Evaluate(Phi, x, j)));

11: jtmp := j;

12: Append �X, j;

13: while j notin GF(p) do
14: // compute neighbor of the current j-invariant

15: // which is not the previousone

16: until a j-invariant in Fp is reached

17: M := Roots(R!(R!UnivariatePolynomial(

18: M := Roots(Evaluate(Phi, x, j)) /

19: M := Roots(R!UnivariatePolynomial(x-jtmp)));

20: jtmp := j;

21: j := F!M[Random([1..#M])][1];

22: Append(�X, j);

23: end while
24: end if
25: return X

Algorithm A.12 SupersingularIsogeny(j0, j1, p, B)

1: X0 := PathToRational(j0, p);

2: X1 := PathToRational(j1, p);

3: X, D, success := SupersinuglarRationalIsogeny(

4: X, D, success := X0[#X0], X1[#X1], p, B);

5: return X0[1..#X0-1] cat X cat X1[1..#X1-1],

6: return[[#X0-1], D, [#X1-1]], success;
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B Computational Results

We made some calculations using the above described MAGMA functions. For each

bitlength we chose 20 random primes p, computed a set of supersingular j-invariants

in Fp and draw 100 pairs out of this set. For each of those pairs we computed a chain

of isogenies in the full supersingular graph G0(F̄p, 2) with a classical random walk

of 2-isogenies as well as with our new method in the Fp-rational graph G0(Fp,L)

where we took L to be the set of non-inert primes ` less than 20. We counted the

number of steps in those paths and measured the CPU time needed for computing

them. The averages over all paths between j-invariants belonging to a b-bit prime

are displayed in Table 3.

path length (steps) CPU time (seconds)
p new old new old

16-bit 20 145 0.015 0.081
20-bit 39 587 0.028 0.391
24-bit 81 2284 0.065 1.812
28-bit 222 9506 0.242 21.275
32-bit 385 35878 0.677 270.056
spalten spaltenlänge spaltenlänge spaltenlänge spaltenlänge

Table 3: Comparing the Algorithms for j-Invariants from Fp

Our algorithm improves the complexity of the computation of a path notably

when the start and ending nodes represent j-invariants from Fp. When we choose

arbitrary elliptic curves and thus j-invariants from Fp2 , we have to perform random

walks on both sides until nodes in Fp are reached and add a chain computed with

our new algorithm to connect them. We want to compare this procedure with the

complete classical random walks. For that we repeated the above computations

with the same parameters but with j-invariants from Fp2 . The results can be seen

in Table 4.

path length (steps) CPU time (seconds)
p new old new old

16-bit 99 135 0.045 0.076
20-bit 331 561 0.177 0.382
24-bit 1313 2106 0.791 1.718
28-bit 4913 8638 7.108 19.193
32-bit 19772 36760 59.183 320.232
spalten spaltenlänge spaltenlänge spaltenlänge spaltenlänge

Table 4: Comparing the Algorithms for j-Invariants from Fp2
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B COMPUTATIONAL RESULTS

Note that this is only the algorithm of �nding a path in the isogeny graphs and

the resulting isogeny has not been computed yet. Since in the classical algorithm

only 2-isogenies are used and we need `-isogenies of degree less or equal to B, this

step will probably take longer even though the chain is shorter and thus less isogenies

have to be computed.

The choice of primes less than 20 in the set L for above calculations was indis-

criminate and made since for that bound most of the graphs were connected. For

higher bitlength we sometimes expect errors and have to repeat a computation or

increase the set L. The choice of the upper bound B for this set has an in�uence on

the algorithm as seen in Table 5 for the case of 20-bit primes where the behavior

can be seen nicely. We used the same number of paths as in the previous algorithms.

B successrate path length (steps) CPU time (seconds)

20
-b
it

3 37.2 % 374 0.075
5 68.2 % 249 0.053
7 81.2 % 185 0.045
11 90.9 % 102 0.034
13 96.8 % 78 0.033
17 100.0 % 52 0.028

Table 5: The New Algorithm for Di�erent Bounds on the Isogeny Degrees

We can see that with increasing isogeny degrees the paths get shorter and faster

to compute and the probability that the graph is connected gets higher, too. But we

keep in mind that for computing an isogeny along the path we prefer small degrees

in every step, thus we should not choose the bound B too big.
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C Example Graphs

We have seen that the structure of the Fp-rational supersingular isogeny graph de-

pends on the form of p (mod 8). The only vertical isogenies have degree two, for

other isogeny degrees we always have big horizontal circles on the levels. In this

part we will print the graphs G0(Fp, 2) for primes p between 5 and 101 to get a good

overview about the occurring structures.

In the case p ≡ 1 (mod 4), there is only one level and all isogenies are horizontal.

There are always pairs of nodes connected with dual 2-isogenies. When we have

p ≡ 7 (mod 8), both levels have the same number of nodes and are connected one-

to-one via 2-isogenies. Additionally there are two horizontal 2-isogenies at every

node on the surface. For p ≡ 3 (mod 8) the �oor is thrice as big as the top level

and every surface node has three neighbors on the �oor. This behavior can be

seen distinctly in the next table for the examples of the �rst three primes p we are

regarding.

G0(F̄p, 2) G0(Fp, 2)

p = 5 0

3

��
0 0

6

2

��

p = 7 6

3

��

6

1

p = 11 0 3:2 1 ee

0 1 0

Table 6: Supersingular 2-isogeny graphs for p ∈ {5, 7, 11}

On the next pages are further examples. α, β and γ always denote j-invariants

from Fp2 \ Fp. Note that there are examples where neither the set of Fp-rational
j-invariants nor its complement in G0(F̄p, 2) are connected.
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G0(F̄p, 2) G0(Fp, 2)

p = 13 5

3

��
5 5

p = 17 0 3:1 8 2ee 0 8 0 8

18

p = 19 7 1:22
%%

18 gg

7 18 7

19 19

p = 23 0 3:1 19EE 1:2 3 ee 3

0 3 0

p = 29 0 3:1 2 25 gg 0 2 0 2 25 25

2 2

p = 31 42
%%

2EE 1:2 23 gg 23

4 23 4



G0(F̄p, 2) G0(Fp, 2)

α

p = 37 8
%%

8 8

ᾱ

0 3 0 3

p = 41 0 3:1 3 32 28 2gg

32 28 32 28

α 8

p = 43 8
%%

2:1 41

ᾱ 41 8 41

0
3:1

10 10

p = 47 44 10 9 2ee 44 36 44

362
((

9 9

0 36 0



G0(F̄p, 2) G0(Fp, 2)

0

3:1

α

p = 53 50 gg 0 46 0 46 50 50

46 ᾱ

0 3:1 15 17 15 15

p = 59

47 28 48 0 28 47 0 28 47

17

48 17 48

412
((

α

p = 61 9 ee 50 41 50 41 9 9

50 ᾱ



G0(F̄p, 2) G0(Fp, 2)

α β 53

p = 67 53
((

2:1 66

ᾱ β̄ 66 53 66

40

1:3

24 17 40 48

p = 71 24 2:1 17 48 gg

0 24 41 0 66

41 66

17 40 48

41 0 66

α β

p = 73 562
((

9 56 9 56 9

ᾱ β̄



G0(F̄p, 2) G0(Fp, 2)

α 64 15
1:2

21 21

p = 79 69 gg 15 69 15

ᾱ 17 21 17 17

64 69 64

0 3:1 50 α 68 gg

2:1

50

p = 83

282
((

17 ᾱ 67 0 28 17 68

50 67 68 67

0 28 17

0

3:1

α 6 52 0 66 0 66

p = 89 13 6 13 6

66 ᾱ 13 7 2ee 52 7 52 7



G0(F̄p, 2) G0(Fp, 2)

α β γ

p = 97 202
((

1 20 1 20 1

ᾱ β̄ γ̄

α 0 66 0 66

p = 101 0 3:1 66 21 gg 57 64 21 21

ᾱ 57 64 57 64

592
((

3 59 3 59 3



C EXAMPLE GRAPHS

Those graphs were constructed with short straightforward MAGMA routines which

provide adjacency matrices of the appropriate graphs and whose source codes can

be found below. The methods work quite fast for moderately sized primes p but

later the factorization of the supersingular polynomial � a monic polynomial over

Fp implemented in Magma whose roots are the supersingular j-invariants � makes it

slower. However, since the graphs for large primes p are much too big to draw in a

comprehensible way, this is more than su�cient for our purposes.

To extract a comprehensive, neatly arranged picture of a graph from its adjacency

matrix proves tedious. We drew three medium sized examples for full supersingular

2-isogeny graphs as well as for their rational correspondences which can be found

after the source codes. The j-invariants which are not in Fp are denoted with greek

letters for a better overall view. It is clear to see how the rational graphs arise from

the full ones, supporting Conjecture 4.15.

Input: coprime primes p and l

Output: Adjacency matrix of full supersingular l-isogeny

graph in characteristic p

1: F := GF(p);

2: R<x> := PolynomialRing(GF(p�2));

3: S<x,y> := PolynomialRing(GF(p�2), 2);

4: Psi := S!ClassicalModularPolynomial(2);

5: T := Roots(SupersingularPolynomial(p), GF(p�2));

6: A := [];

7: for a in {1..#T} do
8: j := GF(p�2)![T[a,1]];

9: if j in GF(p) then
10: A := [j] cat A;

11: else
12: A := A cat [j];

13: end if
14: end for
15: N := ZeroMatrix(Integers(), #A, #A);

16: for i in {1..#A} do
17: M := Roots(R!UnivariatePolynomial(

18: M := Roots(Evaluate(Psi, x, A[i])));

19: for m in {1..#M} do
20: k := Index(A, M[m,1]);

21: N[i,k] := N[i,k] + M[m,2];

22: end for
23: end for
24: return A, N;
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Input: coprime primes p and l

Output: Adjacency matrix of rational supersingular l-isogeny

graph in characteristic p

1: F := GF(p);

2: T := Roots(SupersingularPolynomial(p), F);

3: Curves := [];

4: A := [];

5: for a in {1..#T} do
6: E := EllipticCurveFromjInvariant(F!T[a,1]);

7: Curves := Curves cat [E, QuadraticTwist(E)];

8: A := A cat [jInvariant(E), jInvariant(E)];

9: end for
10: N := ZeroMatrix(Integers(), #A, #A);

11: for i in {1..#A} do
12: E := Curves[i];

13: M := Factorization(DivisionPolynomial(E, l));

14: for m in {1..#M} do
15: try
16: EE := IsogenyFromKernel(E, Factorization

17: EE := (DivisionPolynomial(E, l))[m,1]);

18: for k in {1..#A} do
19: if IsIsomorphic(EE, A[k]) then
20: N[i,k] := N[i,k] + 1;

21: end if
22: end for
23: catch e

24: e`Object;

25: end try
26: end for
27: end for
28: return A, N;
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p = 499 G0(F̄p, 2)

δ

ε µ σ

α ζ ν ξ χ

111 β η τ ψ ω

γ θ κ ρ

421 481 72 1:2 231gg

γ̄ θ̄ κ̄ ρ̄

124 β̄ η̄ τ̄ ψ̄ ω̄

ᾱ ζ̄ ν̄ ξ̄ χ̄

ε̄ µ̄ σ̄

δ̄



p = 503 G0(F̄p, 2)

α β γ δ ε 192

146
��

EE 483 258 257

ᾱ β̄ γ̄ δ̄ ε̄ 467

113

ζ η θ κ µ

353 447 430

ζ̄ η̄ θ̄ κ̄ µ̄

68

219
��

2:1

290

ν

0 3:1 179 8 19 432 283 408 455
��

ν̄



p = 509 G0(F̄p, 2)

0

3:1

α β γ δ ε ζ

508 138 415 83 46 365
--

ᾱ β̄ γ̄ δ̄ ε̄ ζ̄

329 30

κ τ

η θ µ ν ρ σ

151 183 191 278 23

η̄ θ̄ µ̄ ν̄ ρ̄ σ̄

188
--
gg

κ̄ τ̄



G0(F̄p, 2)

p = 499 421 421 231

111 124 481 111 124 481 72 72 231

p = 503 179 113 483 258 353 68 8

0 430 146 257 447 192 19

179 113 483 258 353 68 8

0 430 146 257 447 192 19

455 408 283 219 283 408 455

467 290 432 219 432 290 467

p = 509 415 278 508 151 138 183 23 30

415 278 508 151 138 183 23 30

329 8 191 188 0 46 365 365

329 8 191 188 0 46
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