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Abstract. The Human or Cognitive Centered Design (HCD) of intelligent 

transport systems requires digital Models of Human Behavior and Cognition 

(MHBC) enabling Ambient Intelligence e.g. in a smart car. Currently MBHC are 

developed and used as driver models in traffic scenario simulations, in proving 

safety assertions and in supporting risk-based design. Furthermore, it is 

tempting to prototype assistance systems (AS) on the basis of a human driver 

model cloning an expert driver. To that end we propose the Bayesian estimation 

of MHBCs from human behavior traces generated in new kind of learning 

experiments: Bayesian model learning under driver control. The models learnt 

are called Bayesian Autonomous Driver (BAD) models. For the purpose of 

smart assistance in simulated or real world scenarios the obtained BAD models 

can be used as Bayesian Assistance Systems (BAS). The critical question is, 

whether the driving competence of the BAD model is the same as the driving 

competence of the human driver when generating the training data for the BAD 

model. We believe that our approach is superior to the proposal to model the 

strategic and tactical skills of an AS with a Markov Decision Process (MDP). 

The usage of the BAD model or BAS as a prototype for a smart Partial 

Autonomous Driving Assistant System (PADAS) is demonstrated within a 

racing game simulation. 
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1 Introduction 

The Human or Cognitive Centered Design (HCD) [1-3] of intelligent transport 

systems requires digital Models of Human Behavior and Cognition (MHBC) enabling 

Ambient Intelligence (AMI) e.g. in a smart car. The AMI paradigm is characterized 

by systems and technologies that are embedded, context aware, personalized, 

adaptive, anticipatory [4]. Models and prototypes we propose here are of that type. 

Currently MBHC are developed and used as driver models in traffic scenario 

simulations [5], in proving safety assertions and in supporting risk-based design [6]. 

In all cases it is assumed that the conceptualization and development of MHBCs and 

ambient intelligent assistance systems are parallel and independent activities [7 - 9]. 

In the near future with the need for smarter and more intelligent assistance the 

problem of transferring human skills [10] into the envisioned technical systems 

becomes more and more apparent especially when there is no sound skill theory at 

hand. 

The conventional approach to develop smart assistance is to develop control-

theoretic or artificial-intelligence-based prototypes [5-9] first and then to evaluate 

their learnability, usability, and human likeness ex post. This makes revision-

evaluation cycles necessary which further delay time-to-market and introduce extra 

costs. An alternative approach would be the handcrafting of MHBC [11-17] on the 

basis of human behavior traces and their modification to prototypes for smart 

assistance. An ex post evaluation of their human likeness or empirical validity and 

revision-evaluation cycles remains obligatory, too.  

We propose a third machine-learning alternative. It is tempting to prototype 

assistance systems on the basis of a human driver model cloning an expert driver. To 

that end we propose the Bayesian estimation of  MHBCs from human behavior traces 

generated in new kind of learning experiments: Bayesian model learning under driver 

control. The models learnt are called Bayesian Autonomous Driver (BAD) models. 

Dynamic probabilistic models are appropriate for this challenge, especially when 

they are learnt online in Bayesian model learning under driver control. For the 

purpose of smart assistance in simulated or real world scenarios the obtained BAD 

models can be used as prototypical Bayesian Assistance Systems (BAS). The critical 

question is, whether the driving competence of the BAD model is the same as the 

driving competence of the human driver when generating the training data for the 

BAD model.  

We believe that our approach is superior to a proposal to model the strategic skills 

of a PADAS with a Markov Decision Process (MDP) [18]. A MDP needs a reward 

function. This function has to be derived deductively from theoretical concepts or 

learnt inductively from car trajectories by solving the inverse reinforcement learning 

problem [19]. The deductive derivation of reward function often results in strange 

nonhuman overall behaviors. The inductive mining of the reward function from car 

trajectories or behavior traces seems to be a detour and more challenging than our 

approach. 

The two new concepts Bayesian learning of agent models under human control 

and the usage of a BAD model as a BAS or PADAS are demonstrated when 

constructing a prototypical smart assistance system for driving stabilization within the 

racing game simulation TORCS [20]. 
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BAD models [21-26] are developed in the tradition of Bayesian expert systems 

[27, 28], probabilistic robotics [29], and Bayesian (robot) programming (BP) [30-33]. 

For Bayesian model learning under driver control we need concepts from parameter 

learning in Bayesian networks [27]. We distinguish descriptive and normative BAD 

models. Descriptive models can be learnt from the behavior of individuals or groups 

of drivers. They can be used for simulating human agents in all kinds of traffic 

scenarios. Normative models are learnt from the behavior of ideal or special 

instructed human drivers (e.g. driving instructors, racing car drivers). They may be 

used for the conceptual new BAS. Due to their probabilistic nature BAD models or 

BAS can not only be used for real-time control but also for real-time detection of 

anomalies in driver behavior and real-time generation of supportive interventions 

(countermeasures). 

2 Distributed Cognition, (Partial) Cooperation, Smart Assistance, 

and Ambient Intelligence in Driving Scenarios 

The concept of distributed cognition was originated by Edwin Hutchins in the mid 

1980s [34]. He proposed that human knowledge and cognition is not confined to 

individuals but is also embedded in the objects and tools of the environment. 

Cognitive processes may be distributed across the members of a social group or the 

material or environmental structure. With anthropological and non-experimental 

methods Hutchins studied how crews of ships can function as a distributed machine. 

He preferred studying cognitive systems not as individual agents but which are 

composed of multiple agents and the material world. In later studies he generalized 

the domains and put an emphasis on airline cockpits crews and human-computer 

interaction scenarios. In a sense Hutchins anticipated the concepts of ambient 

intelligence with its embedded, context aware, personalized, adaptive, anticipatory 

systems.  

Crews on navigation bridges or in aircraft cockpits work in agreement with a single 

principal. Such a scenario is called cooperative [35]. A crew forms a cohesive group 

whose members normally cooperate for longer periods in solving the problems arising 

from ship or aircraft control. This cooperation includes exchange of complex verbal 

messages which require a high dimensional state space for the agent models.  

Public traffic scenarios are of a fundamentally different kind. Communication, 

cooperation and the action repertoire of agents is limited in amount and complexity. 

Agents are their own principals and do not belong to a formal cohesive group. Thus, a 

scenario is partial or non-cooperative, when goals are issued by several different 

principals [35]. Traffic agents form ad hoc groups by chance and try to maximize 

their personal utilities. Internal group norms are substituted by external traffic rules. 

The solution to a traffic coordination problem is a distributed but synchronized 

sequence of sets of actions (e.g. collision-free crossing an intersection) emitted by 

different autonomous agents. Successful problem solutions require (nonverbal) 

communication and distributed cognition across agents and artifacts. 



Möbus, C., Eilers, M., Prototyping Smart Assistance with BAD Models, in: Mastrogiovanni, Chong (eds), 

Handbook of Research on Ambient Intelligence and Smart Environments, IGI Global, USA, 09/05/2010 

4 

 

2.1 Cooperative Scenarios: Crews and In-Vehicle-Dyads 

Members of a public traffic scenario with Between-Vehicle Cooperation (BVC) do 

not form a stable social group but rather an ad hoc group with a limited life time and 

communication vocabulary. In contrast to that members in a nonpublic traffic 

scenario (Fig. 1) with In-Vehicle Cooperation (IVC) form for a short time period a 

stable social group similar to a crew. 

 

 

Fig. 1: Driving-school-scenario with in-vehicle-cooperation (graphics from [23] with kind 

permission of publisher of [7] and Springer Science and Business Media) 

2.2 Partial Cooperative Scenarios: Ad-hoc groups and Shared Space 

Shared space describes an approach to the design, management and maintenance of 

public spaces which reduces the adverse effects of conventional traffic engineering by 

stimulating the situation awareness of all traffic agents (Fig. 2).  

 

 

Fig. 2: Shared-space with between-agent-, between-vehicle-, and in-vehicle-cooperation [36] 

(graphics with kind permission of Ben Hamilton-Baillie) 

The shared space approach is based on the observation that individuals' behavior in 

traffic is more positively affected by the built environment of the public space than by 
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conventional traffic control devices (signals, signs, road markings, etc.) or 

regulations. An explanation for the apparent paradox that a reduction in regulation 

leads to safer roads may be found by studying the risk compensation effect: “Shared 

Space is successful because the perception of risk may be a means or even a 

prerequisite for increasing public traffic safety. Because when a situation feels unsafe, 

people are more alert and there are fewer accidents.” [37] 

2.3 Smart Assistance in Traffic Scenarios 

Traffic maneuvers can generate risk anytime. We call risky maneuvers anomalies 

when they have a low probability of occurrence in the behavior stream of experienced 

drivers and which only experienced drivers are able to prevent or to anticipate 

automatically. Other drivers probably cannot and therefore might need support 

generated by a BAS or PADAS. It is expected from assistance systems that they will 

enhance situation awareness, cooperation, and driving competence of unskilled or 

non-cooperative drivers. Thus the design challenge of smart assistance should aim at 

modeling human traffic agents with their (erroneous) beliefs, expectations, behavior, 

situation awareness, and their skills to recognize situations, to diagnose and prevent 

anomalies. These BAD models should then be adapted to BAS or PADAS to solve the 

problem of transferring human skills.  

2.4 The Need for Bayesian Assistance in Vehicles with In-Vehicle-Cooperation 

As an example for the concept of a BAS we present a scenario based on result of a 

study of Rizzo et al. [38]. The authors studied the behavior of drivers suffering from 

Alzheimer disease. At a lane crossing a car incurred from the right (Fig. 3). Many 

maneuvers of the Alzheimer patients ended in a collision, as they suffered from the 

looking without seeing syndrome. The modeling task should lead to a probabilistic 

BAS model, which is diagnosing and correcting the anomalous behavior of 

inexperienced or handicapped drivers. Fig. 3 demonstrates the probabilistic prediction 

of hazardous events, anomaly detection (1.) and the anticipatory control of the 

driver’s behavior by the BAS (2.).  

Pink ellipses denote contours of constant density. A driver’s behavior is risky or 

anomalous if its behavior is unlikely under the assumption that the driver belongs to a 

group of normal error-free routine drivers. For anticipatory planning the conditional 

probability of the NextFutureDrive under the assumption of the pastDrive, the 

currentDrive, and the anticipated expectedFutureDrive has to be computed. The BAS 

gives an advice sampled from this conditional distribution (e.g. the expected 

value 𝐸(𝑁𝑒𝑥𝑡𝐹𝑢𝑡𝑢𝑟𝑒𝐷𝑟𝑖𝑣𝑒 | 𝑝𝑎𝑠𝑡𝐷𝑟𝑖𝑣𝑒, … , 𝑒𝑥𝑝𝑡𝑒𝑐𝑡𝑒𝑑𝐹𝑢𝑡𝑢𝑟𝑒𝐷𝑟𝑖𝑣𝑒)).  

Fig. 4 shows the replacement of the real driving inspector by the corresponding 

BAS model. Different BAS-types like an experienced Schumacher-racing-style BAS 

are possible (Fig. 5).   

How can the BAS be derived by methods of Bayesian driver modeling? We 

explain this within an obstacle scenario which is known to generate driver intention 

conflicts (Fig. 6). 
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Fig. 3: Driving behavior of an Alzheimer patient in a simulated intersection incursion [38], (1.) 

risk assessment of a the current behavior or trajectory, and (2.) anticipatory planning of a BAS 

(graphics from [23] with kind permission of Springer Science and Business Media) 

 

Fig. 4: Cooperative driving scenario with in-vehicle-cooperation between a non-expert driver 

and a BAS-prototype Driving Instructor (graphics from [23] with kind permission of publisher 

of [7] and Springer Science and Business Media) 

When an obstacle (animal, car) is appearing unexpectedly people autonomously 

react with a maneuver M
-
 which is not recommended by experts. M

- 
drivers try to 

avoid collisions even at high velocities by steering to the left or right risking a fatal 

turnover. The recommended maneuver M
+
 includes the hold and brake sub-

maneuvers though most times ending up in a collision. 
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Fig. 5: Cooperative driving scenario with in-vehicle-cooperation between a non-expert driver 

and a BAS-prototype Racing Driver3 (background graphics from [23] with kind permission of 

publisher of [7] and Springer Science and Business Media) 

When drivers are instructed to drive M+ they generate data which are the training 

data for the BAS version of the PADAS according to the methods of chapters 4 and 5: 

Bayesian learning of agent models under human control. 

With an existing BAS a worst-case scenario can be planned to test the services of 

the BAS. Drivers are instructed not to drive the recommended maneuver M+. Because 

of the probabilistic nature of the BAS it is possible to compute the conditional 

probability 𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑟𝑖𝑣𝑒𝑡  | 𝐌+). This conditional probability is a measure of the 

anomaly of the driver behavior under the hypothesis that the observed actions are 

generated by a stochastic process which generated the trajectories or behaviors of the 

correct maneuver M+. 

 

 

Fig. 6: Intention conflict scenario with conflicting behaviors M
-
 (incorrect or not recommended 

maneuver) and M
+ (correct or  recommended maneuver) (graphics from [23] with kind 

permission of Springer Science and Business Media) 

 

                                                           
3 http://board.gulli.com/thread/573253-haderer-karikatur-von-michael-schumacher/ (25th,March 2010) 
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3 Probabilistic Models of Human Behavior and Cognition in 

Traffic Scenarios 

Computational agent models have to represent perceptions, beliefs, goals, and actions 

of ego and alter agents. Agent models should 

 

 predict and generate agent behavior sometimes in interaction with assistance 

systems 

 identify situations or maneuvers and classify behavior (e.g. anomalous vs. 

normal) of ego and alter agents 

 provide a robust and valid mapping from human sensory data to human control 

actions 

 be learnt from time series of raw data or empirical frequency distributions with 

statistical sound (machine-learning) procedures making only a few non-

testable ad hoc or axiomatic assumptions 

 be able to learn new patterns of behavior without forgetting already learnt skills 

(stability-plasticity dilemma [39]). 

 

A driver is a human agent whose skills and skill acquisition processes can be 

described by a well-known three-stage model with the cognitive, associative, and 

autonomous stages or layers [40, 41]. Accordingly various modeling approaches are 

adequate: (1) production-system models for the cognitive and associative stage (e.g. 

models in a cognitive architecture [13, 16, 17, 42-46]), control-theoretic [11, 12, 15, 

16, 47, 48], or probabilistic models [21-26, 49-52] for the autonomous stage.  

The great advantage of probabilistic models is that they avoid brittleness and provide 

robustness. This is a great advantage due to the irreducible incompleteness of 

knowledge about the environment and the underlying psychological mechanisms [33]. 

Furthermore probabilistic models of the Bayesian type are suited to implement 

MHBCs which are embedded, context aware, personalized, adaptive, anticipatory 

systems (Fig. 3, 6). 

3.1 Bayesian Autonomous Driver Models  

Due to the variability of human cognition and behavior and the irreducible lack of 

knowledge about latent cognitive mechanisms it seems rational to conceptualizes, 

estimate and implement probabilistic models when modeling human traffic agents. In 

contrast to other models probabilistic models are not idiosyncratically handcrafted 

but could be learnt objectively from human behavior traces. Model validity is either 

included in the modeling process by model-driven data-analysis without any ex-post 

validation or by our new machine-learning experiments: Bayesian learning of agent 

models under human control.  

BAD models describe phenomena on the basis of variables and conditional 

probability distributions (CPDs).  This is in contrast to models in cognitive 

architectures (e.g. ACT-R) which try to simulate cognitive algorithms and processes 

on a granular and latent basis which are difficult to identify even with technical 
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sophisticated methods such as functional magnetic resonance imaging (FMRI) 

methods [43, 44].  

According to the BP approach [30-33] BAD models [21-26] are instances of 

Bayesian Networks (BN) [53-57] using concepts from probabilistic robotics [29]. BP 

is a simple and generic framework suitable for the description of human sensory-

motor models in the presence of incompleteness and uncertainty. It provides 

integrated model-driven data analysis and model construction. In contrast to 

conventional Bayesian network models BP-models put emphasis on a recursive 

structure and infer concrete motor actions for real-time control on the basis of 

sensory evidence. Actions are sampled from CPDs according various strategies after 

propagating sensor or task goal evidence. BAD models describe phenomena on the 

basis of the variables of interest and the decomposition of their joint probability 

distribution (JPD) into CPD-factors according to the special chain rule for Bayesian 

networks [56, p.36]. The underlying CIHs between sets of variables can be tested by 

standard statistical methods (e.g. the conditional mutual information index [56, 

p.237]). The parameters of BAD models can be learnt objectively with statistical 

sound methods by batch learning from multivariate behavior traces or by learning 

from single cases [27]. The latter approach is known as Bayesian estimation [56]. We 

use it for Bayesian (online) learning of MHBCs. The learning process runs in a new 

kind of learning experiments: Bayesian learning of agent models under human 

control.  BAD models could be learnt solely by Bayesian adaption of the model to the 

real-time behavior of the human driver correcting the BAD model when necessary.  

In [21] we described first steps to model lateral and longitudinal control behavior 

of single and groups of drivers with reactive Bayesian sensory-motor models. Then 

we included the time domain and reported work with dynamic Bayesian sensory-

motor models [22, 23]. Now we work on the idea of behavior hierarchies and mixing 

behaviors [24-26, 58, 59]. The goal is a dynamic BAD model which is able to 

decompose complex situations into basic situations and to compose complex behavior 

from basic motor schemas (behaviors, experts). This Mixture-of-Behaviors (MoB) 

model facilitates the management of sensory-motor schemas in a library [24-26]. 

Context dependent driver behavior could be generated by mixing pure behavior from 

different schemas.  

3.2 Basic Concepts of Bayesian Programs 

A BP [30-33] is defined as a mean of specifying a family of probability distributions. 

By using such a specification it is possible to construct a BAD model, which can 

effectively control a (virtual) vehicle. The components of a BP are presented in Fig. 7 

where the analogy to a logic program is helpful. 

An application consists of a (competence or task model) description and a 

question. A description is constructed from preliminary knowledge and a data set. 

Preliminary knowledge is constructed from a set of pertinent variables, a 

decomposition of the JPD and a set of forms. Forms are either parametric forms or 

questions to other BPs. 
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Fig. 7: Structure of a Bayesian Program (adapted from [30-33]) 

The purpose of a description is to specify an effective method to compute a JPD on 

a set of variables given a set of (experimental) data and preliminary knowledge. To 

specify preliminary knowledge the modeler must define the set of relevant variables 

on which the JPD is defined, decompose the JPD into factors of CPDs according to 

CIHs, and define the forms. Each CPD in the decomposition is a form. Either this is a 

parametric form which parameter are estimated from batch data (behavior traces) or 

another question. Parameter estimation from batch data is the conventional way of 

estimating the parameters in a BAD model. The Bayesian estimation procedure uses 

only a small fraction of the data (cases) for updating the model parameters. This 

procedure is described below.  

Given a description a question is obtained by partitioning the variables into 

searched, known, and unknown variables. We define a question as the CPD 

𝑃(𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑑 | 𝐾𝑛𝑜𝑤𝑛, 𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒, 𝑑𝑎𝑡𝑎). The selection of an 

appropriate action can be treated as the inference problem: 

𝑃(𝐴𝑐𝑡𝑖𝑜𝑛 | 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠, 𝐺𝑜𝑎𝑙𝑠, 𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒, 𝑑𝑎𝑡𝑎). Various policies 

(Draw, Best, and Expectation) are possible whether the concrete action is drawn at 

random, chosen as the best action with highest probability, or as the expected action. 

The last two strategies are necessary if the BAS should behave deterministically as 

demanded by industry. 

3.3 Classes of Probabilistic Models for Human Behavior and Cognition 

Currently we are evaluating the suitability of static and dynamic Probabilistic 

Graphical Models [57].  

With the static type it is possible to generate reactive [21] and inverse (naïve) [22] 

models (Fig. A1.1 - A1.3). In practice, naïve Bayesian models can work surprisingly 

well, even when the independence assumption is not true [60, p.499].  Our research 

[21-26] has shown that static models generate behavior which is too erratic to be 
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similar to human behavior. As a consequence we focus ourselves on the dynamic type 

of real-time control for simulated cars.  

Dynamic models evolve over time. If the model contains discrete time-stamps one 

can have a model for each unit of time. These local models are called time-slices [56]. 

The time slices are connected through temporal links to give a full model.  

A special category of time-stamped model is that of a Hidden Markov Model 

(HMM). They are repetitive temporal models in which the state of the process is 

described by a single discrete random variable. Because of the Markov assumption 

only temporarily adjacent time slices are linked by a single link between the state 

nodes. 

In the case of identical time-slices and several identical temporal links we have a 

repetitive temporal model which is called Dynamic Bayesian Network model (DBN). 

The description of the DBN in the BF framework is shown in Fig. 8. 

 

 

Fig. 8: Structure of a Dynamic Bayesian Network (DBN) as a Bayesian Program (adapted from 

[30]; graphics from [22] with kind permission of Springer Science and Business Media) 

In 3.3.1 we present Markov, Hidden Markov Models (HMMs), and their 

generalization Dynamic Bayesian Networks (DBNs) and then in 3.3.2 we develop and 

evaluate in a proof of concept a sequence of models culminating in a psychological 

motivated sensor-motor model with attention allocation which could be the basis for a 

BAS. 

3.3.1 Markov, Hidden Markov Models, and Dynamic Bayesian Networks 

The dynamic type of graphical models [56, 57] enables the creation of Markov 

Models (MMs) [21 - 26], Hidden Markov Models (HMMs) (Fig. A1.4 – A1.6) [61 - 

63], Input-Output-HMMs (IOHMMs) [64], Reactive IOHMMs (RIOHMMs, Fig. 9, 

Fig. A1.7), Discrete Bayesian Filters (Fig. A1.8 [29, 65]), Coupled HMMs (CHMMs; 

Fig. A1.9) [66], and Coupled Reactive HMMS (CRHMMS, Fig. A1.10). HMMs are 

sequence classifiers [67, 68] and allow the efficient recognition of situations, goals 

and intentions; e.g. diagnosing driver’s intention to stop at a crossroad [63, 69]. Their 
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suitability for the generation of behavior of Belief-Desire-Intention (BDI-) Agents 

will be evaluated in 3.3.2.  

 

 

Fig. 9: (Reactive) Input-Output HMM (RIOHMM) as Probabilistic Abstraction of Anderson’s 

cognitive ACT-R architecture: 2-time-slices template model (right), 3-time-slices rolled-out 

model (left) (graphics from [23] with kind permission of Springer Science and Business Media) 

For instance, RIOHMMs (Fig. 9, A1.7) could in principle implement reactive 

driver models (e.g. with ACT-R module activations [42-46]).  The two arrows into the 

random variable nodes Mj denote the combined dependence of actions on sensory 

inputs and activations of hidden ACT-R modules or brain regions. Even if module 

activations were known sensory inputs are still necessary to propose specific actions.  

CHMMS and CRHMMS permit the modeling of several agents within the HMM 

formalism. The belief state of each agent depends only on his own history and on the 

belief state of his partner. Whether this is plausible has to be tested by conditional 

independence hypotheses [56]. Within each agent the model is of the HMM-type.  

Whereas [58] rely on Hidden Markov Models (HMMs) for learning fine manipulation 

tasks like grasping and assembly by Markov mixtures of experts we strive for more 

general dynamic Bayesian Network (DBN) model in learning multi-maneuver driving 

behavior [23]. 

HMMs and DBN are mathematically equivalent. Though, there is a trade-off 

between estimation efficiency and descriptive expressiveness in HMMs and DBNs. 

Estimation in HMMs is more efficient than in DBNs due to algorithms (Viterbi, 

Baum-Welch [60, 68]) whereas descriptive flexibility is greater in DBNs. At the same 

time the state-space grows more rapidly in HMMs than in corresponding DBNs. 

Therefore we focus ourselves on DBNs and try to avoid the latent state assumption of 

HMMs, though it seems to be important to model the state of a driver/vehicle with the 

variables of position, velocity, lateral and longitudinal (de|ac)-celeration. This is 

implemented in the commercial product IPG-Driver [70]. The state of the 

driver/vehicle is important for the definition and description of undesired events, the 

planning of countermeasures and intelligent anticipatory assistance [25].  

Especially two DBN models influenced our work. The first is the Switching Linear 

Dynamic System (Fig. A1.11) [63] and the second is the Bayesian Filter and Action 
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Model (Fig.10, Fig. A1.12)  [65, p.180]. In both models actions are not only 

dependent on the current process state but also on direct antecedent actions. Thus the 

generation of erratic behavior is suppressed. Furthermore, the Bayesian Filter and 

Action Model includes direct action effects on the next future process state. This is 

important when the influence of action effects should be modeled directly into the 

state not making a detour via the environment and the perception of the agent. If the 

model should make predictions without an embedding (simulation) environment, we 

have to include a state and an action model. Only when the model can be treated as a 

self-contained mathematical object the properties of the model need not be evaluated 

in a simulation within the embedding simulation environment. 

Also, including an action effect model is meaningful when some action effects are 

not perceivable by the agent. E.g. when a night-watchman closes and locks a door, the 

locking action has a direct effect on the state of the door: the door is closed and 

locked. But this lockedness is not visible. This could only checked only by further 

actions. 

 

 

Fig. 10: Bayesian Filter and Action Model (adapted from [65, p.180]): 2-time-slices template 

model (right), 3-time-slices rolled-out model (left) 

In our research [21-26] we strive for the realization of a dynamic Bayesian 

Autonomous Driver with Mixture-of-Behaviors (BAD-MoB) model. The model is 

suited to represent the sensor-motor system of individuals or groups of human or 

artificial agents in the functional autonomous layer or stage of Anderson [41]. It is a 

psychological motivated mixture-of-experts (= mixture-of-schema) model with 

autonomous and goal-based attention allocation processes. The template or class 

model is distributed across two time slices, and tries to avoid the latent state 

assumptions of HMMs. Learning data are time series or case data of relevant 

variables: percepts, goals, and actions. Goals are the only latent variables which could 

be set by commands issued by the higher associative layer.  

The model propagates information in various directions. When working top-down, 

goals emitted by the associative layer select a corresponding expert (schema), which 

propagates actions, relevance of areas of interest (AoIs) and perceptions. When 
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working bottom-up, percepts trigger AoIs, actions, experts and goals. When the task 

or goal is defined and the model receives percepts evidence can be propagated 

simultaneously top-down and bottom-up. As a consequence the appropriate expert 

(schema) and its behavior can be activated.  

Thus, the model can be extended (Fig. 11) to implement psychological models, e.g. 

a modified version of the SEEV visual scanning or attention allocation model of 

Horrey, Wickens, and Consalus (2006). In contrast to Horrey et al. [71] the model is 

able to predict the probability of attending a certain AoI on the basis of single, mixed, 

and even incomplete evidence (goal priorities, percepts, effort to switch between 

AoIs). In 3.3.2 we show that this architecture is feasible. 

 

 

Fig. 11: Mixture-of-Behaviors (= Mixture-of-Experts) Model with Visual Attention Allocation 

Extension mapping ideas of Horrey et al. [71] into the Dynamic Bayesian Network modeling 

framework  (graphics from [23] with kind permission of Springer Science and Business Media) 

There are various scientific challenges designing and implementing BAD-MoB 

Models. The first main challenge is to describe driver-generated behavior by a 

mixture-of-behaviors architecture. While mixture-of-experts approaches are known 

from pattern classification [30, 59, 72] it is the first time that this approach is used in 

modeling human driver behavior [24-26]. In a MoB model it is assumed that the 

behavior can be context-dependent generated as a mixture of ideal schematic 

behaviors (= experts). Thus the stability/plasticity dilemma [39] of neural network 

models is avoided. A new behavior will only be learnt in special phases and by adding 

this new behavior to the library of behaviors. Behaviors do not influence each other 

directly. Pure behavior without any additional mixture component is shown only in 

typical pure situations (e.g. the perception of a hair pin triggers the hair-pin-model 

behavior). 

The second main challenge is that we want to integrate various perceptional 

invariants known as tau-measures [73, 74] from psychological action control theory 
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into a computational human model. In conventional models [5, 13, 16, 17] variables 

with different dimensions (distances, angles, times, changes, etc.) are input to the 

models. Tau measures transform all non-time measures into the time domain. Some 

measures are already used in standard engineering: time-to-collision (TTC) or time-

to-line-crossing (TTLC). 

3.3.2 From Discrete Bayesian Filters to Sensor-Motor Models with Attention 

Allocation 

Now we give a proof of concept. We choose certain model classes and a set of 

constructed but plausible data and demonstrate that the models show the intended 

behavior. 

In our research [21-26] we used partial inverted Markov models for modeling the 

sensory-motor system of the human driver (ch. 4; Fig. 24, 25, 31). We discuss what 

types of DBNs have to be considered when driver state variables (e.g. lateral and 

longitudinal (de|ac)-celeration) are included and when a psychological motivated 

mixture-of-behaviors model with autonomous and goal-based attention allocation 

processes is the ultimate goal (Fig. 11). 

3.3.2.1 Discrete Bayesian Filter (DBF) and HMMs 

We start with the Discrete Bayesian Filter (DBF) (Fig. A1.8). This is the most 

fundamental algorithm in probabilistic robotics for estimating state from sensor data 

[29]. The DBF is a HMM with state, percept and motor variables. The general 

algorithm consists of two steps in each iteration or recursive call [29, p.27]:  

 

1. Prediction step: from the most recent apriori belief(state) and the current control 

(= action) compute a provisional belief(state) 

2. Correction step: from the current provisional belief(state) and the current 

measurements (= percepts) compute the posteriori belief(state). 

 

We extended a tutorial example from Thrun [29, ch.2.4.2] and implemented this 

DBF in NETICA [75], to show that state identification in a DBF works satisfactorily 

(Fig. A2.01, A2.02). Our model represents a night watchman approaching a door in 

the dark. Before he sees the door his belief(state) is uninformed. So the apriori belief 

distribution about the state is flat (Fig. A2.01). His beliefs are revised when he pushes 

the door (prediction step) (Fig A2.01). Now he believes with p_open = 0.633 that the 

door is open and with p_closed = (1-p_open) = 0.333 that the door is closed and 

locked. When turning on his flashlight he perceives that the door is closed (Fig 

A2.02).  This leads in the correction step to the posterior belief(state) (Fig. A2.02): 

𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑜𝑝𝑒𝑛 | 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑢𝑠ℎ, … ) = 0.161, 

𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑_𝑎𝑛𝑑_𝑙𝑜𝑐𝑘𝑒𝑑 | 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑢𝑠ℎ, … ) = 0.763, and 𝑃(𝑆𝑡𝑎𝑡𝑒 =
𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑_𝑎𝑛𝑑_𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 | 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑢𝑠ℎ, … ) = 0.0763. 

Now we want to show that the DBF is not the right model class for the 

implementation of a reactive agent, because the steps in the iteration cycles for the 

reactive agent are different from those of the DBF: 
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1. Perception step: from the most recent apriori belief(state) and the current percept  

compute a provisional belief(state) 

2. Action step: from the current provisional belief(state) and the current action 

compute the posteriori belief(state). 

 

In the perception step the night watchman sees that the door is closed (Fig. A2.03). 

He revises his uninformed apriori beliefs. He is rather certain that the door is closed, 

but rather uncertain whether the door is locked: 𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑜𝑝𝑒𝑛 | 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 =
𝑠𝑒𝑛𝑠𝑒_𝑐𝑙𝑜𝑠𝑒𝑑, … ) = 0.0526, 𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑_𝑎𝑛𝑑_𝑙𝑜𝑐𝑘𝑒𝑑 | 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 =
𝑠𝑒𝑛𝑠𝑒_𝑐𝑙𝑜𝑠𝑒𝑑, … ) = 0.474, and 𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑_𝑎𝑛𝑑_𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑 | 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 =
𝑠𝑒𝑛𝑠𝑒_𝑐𝑙𝑜𝑠𝑒𝑑, … ) = 0.474. Now the agent pushes the door (Fig. A2.04). The result 

is a bit surprising. The door is not opened in the current or next state 𝑃(𝑆𝑡𝑎𝑡𝑒 =
𝑖𝑠_𝑜𝑝𝑒𝑛 | 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑢𝑠ℎ, … ) = 0.161 but the belief is that is the door is closed and 

locked 𝑃(𝑆𝑡𝑎𝑡𝑒 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑_𝑎𝑛𝑑_𝑙𝑜𝑐𝑘𝑒𝑑 | 𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑢𝑠ℎ, … ) = 0.763 !  
The reason for this puzzling result is, that the belief is consistent with the 

perception within the same time slice, but that the effect of the action on the next state 

is not modeled by a direct link from the action node to the next future state node. 

Instead time slices are linked only between state nodes. So the action effect on future 

states is not directly included in the model. Action effects enter the model only via the 

(simulation) environment and the perception of the model. So the effect of actions 

could not be seen in the model even when the model contains a state variable. This 

criticism is true for all variants of HMM (Fig. A1.4-A1.10). It is irrelevant for DBNs 

with action effect models (Fig. 10, Fig. A1.12). 

3.3.2.2 DBN-Models with Action Model and Action Effect Prediction 

As we discussed in 3.3.1 an action effect model is necessary when the properties of 

the model have to be decoupled from the embedding environment. This is the reason 

why we discuss these kinds of models here. As an example we implemented the task 

of the night watchman with a DBN including an action effect model (Fig. A2.05-

A2.08). The apriori beliefs are modeled in Fig. A2.05. The door is perceived as is 

closed (Fig. A2.06). Then the agent selects the action push (Fig. A2.07). The belief 

for the next future state is predominantly that the door is open then. Despite that belief 

the night watchman tries a second glance and sees that the door is still closed (Fig. 

A2.08). Now he revises his belief about the state again. He believes that the door is 

closed and locked. He should check then that belief by a push action. 

3.3.2.3 Expert-Role, Mixture-of-Behavior, or Schema DBN Model 

To the model in 3.3.2.2 we added the possibility that the agent is able to show role-

specific or schematic behavior. We call these models Expert-Role, Mixture-of-

Behaviors, or Schema Models (Fig. A2.09). Top-down generation of goal-based 

behavior is possible, when the role node gets evidence by selecting the role or the 

goal to generate role or schema-specific behavior. Furthermore, the model can be 

used bottom-up to infer the role, the behavior, or the goal from the percepts and/or the 

actions. For instance, when the agent pushes and unlocks the door despite his 

perception that the door is closed, we infer that he is either a technician or a detective 

but not a night watchman (Fig. A2.10). 
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3.3.2.4 AoI and Ambient Vision-Role-Model 

Next according to Horrey et al. [71] we separated the visual perception into two 

components: (1) foveal areas of interest (AoIs) and (2) ambient vision (Fig. A2.11). If 

the agent is only interested in the keyhole of the door, we infer that he is active in the 

detective role (Fig. A2.12). The plausible actions in the actual time slice are push, 

explore, and unlock, the expected actions in the next future time slice are only  push 

and explore. If we know that the model by its ambient vision component perceives 

that the door is open (Fig. A2.13), we expect that the agent is still in the detective role 

but with the different action explore. If we know for sure that the agent has the same 

perception as before but is in the role night watchman we expect his role-specific 

behavior is shut for the actual time slice and lock and go on in the next two future 

time slices (Fig. A2.14). When he shuts the door but is in the next time slice interested 

in the door hinges, we infer a role, behavior, or intention conflict because he might be 

also in the role of a technician (Fig. A2.15). 

3.3.2.5 Reactive State-Based BAD-MoB-Model with Attention Allocation 

Now we return to the driving domain. We developed a NETICA [75] model for a 

simple scenario with 3 maneuvers and 3 areas of interest (AoIs) (Fig. 12-13).  

 

 

Fig. 12: Left and Right Lane Change Maneuvers  

 

Fig. 13: Pass Vehicle or Overtake Maneuver (left)  and AoIs viewed from ego vehicle (right)  
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A table describing the model representing levels of competence can be found in 

Fig. 14. The driver and the BAD model are sitting in the ego vehicle (ev).  Sometimes 

the driver’s perception signals evidence that the AoIs is_occupied depending on the 

position of an alter vehicle (av) or the roadside. 

 

 

Fig. 14: Hierarchy of Driving Skills, Levels of Expertise, and Model Components 

The 2-time-slices template of the Dynamic Reactive BAD-MoB-Model is shown in 

Fig. 15 and a 3-time-slices rolled-out instance of that template model in Fig. 16. We 

call the model reactive because the AoIs directly influence actions. The model 

embeds two naïve Bayesian classifiers: One for the Behaviors and one for the States. 

This simplifies the structure of the architecture. Time slices are selected so that in 

each new time slice a new behavior is active. A sequence of behaviors implements a 

single maneuver. When we replace the reactive submodel for the Action variable in 

Fig. 15 by a third classifier we can simplify the model and reduce the number of 

parameters by 78%. 

Behaviors are placed in the top layer of nodes (Fig. 15, 16). We have behaviors for 

each main part of a maneuver (Fig. 12-13): left_lane_in, left_lane_out, pass_in, 

pass_mid_in, pass_mid_out, pass_out, right_lane_in, right_lane_out. The next layer 

of nodes describes the actions the model is able to generate: left_check_lane, 

left_signal, left_turn, middle_straight_accelerate, middle_straight_decelerate, 

middle_straight_look, right_check_lane, right_signal, right_turn.   
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Fig. 15.1: Dynamic Reactive BAD-MoB-Model with Behavior and State Classifiers 

 

 

Fig. 15.2, 15.3: Dynamic Submodel (left) and Behavior Classifier (right) 

 

 

Fig. 15.4, 15.5: Reactive Action Submodel (left) and State Classifier (right) 

Below that layer a layer of nodes is describing the state (is_in_left_lane, 

is_in_middle_lane, is_in_right_lane) of the vehicle. In the future these state nodes 
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should be augmented by tau-, and tau-dot-variables describing the driver’s state [73, 

74]. The three bottom layers contain nodes describing the activation of the three AoIs 

AoI_Left, AoI_Middle, and AoI_Right. 

 

 
 

Fig. 16.1: Reactive State-Based BAD-MoB-Model with 2 Classifiers and 2 Levels-of-Expertise 

 

 

 
 

Fig. 16.2: Blown-up nodes of time-slice t-1 in NETICA-Model of Fig. 16.1 
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Fig. 17: Expectations when BAD-MoB model is in left_lane_in behavior 

 

When the model is urged to be in the left_lane_in behavior by e.g. goal setting from 

the associative layer (Fig. 17, red arrow), we expect in the same time-slice that the 

driver though sometimes looking forward  his behavior is focused towards the left 

lane. For the AoIs we expect that the middle and right AoI are occupied and the left 

AoI is empty. For the next time slice we expect the vehicle is in the left or middle lane 

and the driver will act according left_lane_out  behavior. Left_lane_out activated 

actions in time slice t are a bit different than those before. We expect more forward 

orientated activities like (de-/ac-)celebration and forward directed attention. 

When the state is known (e.g. S = is_in_middle_lane) we infer the appropriate 

expectations (e.g. left and right lane check, looking forward, and both 

(ac|de)celerations) (Fig. 18).  

When the model perceives a combination of AoI evidence, we can infer the 

behaviors. For instance, in Fig. 19 the left AoI is empty and the middle AoI is 

occupied. We expect that the vehicle is in the middle or right lane and that the 

behaviors are ambiguous left_lane_in or pass_in. Their appropriate actions are 

activated as a mixture of behaviors. The most probable actions are mid look forward, 

left check lane and middle deceleration. 
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Fig. 18: Expectations when BAD-MoB model is_in_middle_lane State 

 

 

Fig. 19: Expectations when BAD-MoB model perceives a combination of AoI evidence 

In the case, when all AoIs are occupied (Fig. 20) the model is decelerating with 

main attention to the middle AoI (middle_look_forward). We call this focusing of 

attention and narrowing of the attended vision field (sometimes under stress) 

Tunnelblick (tunnel view or tunnel vision4). 

What will happen, if a goal is blocked?  In Fig. 21 this situation is modeled by the 

appropriate evidence.  

                                                           
4 In medical terms, tunnel vision is the loss of peripheral vision with retention of central vision, 

resulting in a constricted circular tunnel-like field of vision (http:// 

en.wikipedia.org/wiki/Tunnel vision, visited 1st March, 2010) 
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Fig. 20: Expectations when BAD-MoB model perceives that all AoIs are occupied: Tunnelview 

The left_lane_in behavior is provided with evidence because we assume that a 

corresponding goal in a higher cognitive layer is activated. At the same time the 

perception all AoIs is set to is_occupied. The expected behavior is looking forward, 

deceleration, and left_check_lane, which are indicators for the Tunnelview and 

(helplessly?) looking to the left. 

 

 

Fig. 21: Expectations when BAD-MoB model realizes a blocking of goals or behaviors by a 

combination of occupied AoIs: Tunnelview 

With the rolled-out version of the BAD-MoB-Model it is possible to anticipate 

hazards (Fig. 22). The anticipated hazard is included as percept evidence in time-slice 

(t+1). Conditional to the current state (t-1), the anticipated percept evidence (t+1) of 

the hazard, the proactively selected goal-behavior left_lane_in (t-1, t), and the 
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proactively selected action left_turn (t-1, t), we predict that we are able to avoid the 

hazard in time-slice (t+1) (Fig. 23). 

 

 

Fig. 22: Anticipation of hazards: the BAD-MoB model anticipates in time-slice (t-1) a hazard 

(relative to the current state) for time-slice (t+1) 

 

Fig. 23: Anticipatory Plan: the BAD-MoB model sets as goals the behavior left_lane_in and 

selects the left_turn action for time-slices (t-1) and t to avoid the hazard in time-slice (t+1) 

We believe that the proof of concept is convincing: state-based BAD-MoB Models 

are expressive enough to describe and predict a wide range of phenomena including 

prediction of hazards, anticipatory planning, and planning of minimal invasive 

countermeasures. 
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4 Experimental Results 

4.1 Use Case for Autonomous Driving: A Simple BAD Model 

Static reactive or static inverse models (Fig. A1.01-A1.03) have not been satisfactory 

because they generate behavior which is more erratic and nervous than human 

behavior is [21]. Better results can be obtained by introducing a memory component 

and using DBNs. In a first step we estimated two DBNs separately for the lateral and 

longitudinal control. Our experience is that partially inverse models are technically 

well suited for modelling in the driving domain. (Fig. 24, 25). 

 

Fig. 24: Partially inverse classifier-based DBN of Lateral Control (graphics from [22] with 

kind permission of Springer Science and Business Media) 

 

Fig. 25: Partially inverse classifier-based DBN of Longitudinal Control (graphics from [22] 

with kind permission of Springer Science and Business Media) 

In an inverse model arcs in the directed acyclic graph (DAG) of the graphical 

model are directed from the consequence to the prerequisites. The semantics of these 

arcs are denoted by the conditional probabilities 𝑃(𝑃𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠 | 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒). 
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The reasons to use inverted 𝑃(𝑃𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠 | 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) instead of reactive 

conditional probabilities 𝑃(𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝑃𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠) are the possible large 

number of prerequisites in a reactive model.  

By using inverted conditional probability distributions, we significantly reduce the 

amount of parent nodes for Consequence. Furthermore, a conditional probability 

𝑃(𝑃𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠 | 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) is more robust to possible unknown evidence of 

Prerequisites. This occurs almost inevitably as missing sample data because it is 

rather unlikely to obtain all possible values of the joint probability distribution 

𝑃(𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑃𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒𝑠). Our models are partially inverse because most 

arcs are inverted but the arcs between time slice t-1 and t are in causal order from 

prerequisites to consequences.  

The variables of interest are partitioned into sensor-variables and action-variables. 

The variables for the partially inverse DBN of lateral control are defined as follows: 

𝑆𝑡𝑒𝑒𝑟𝑡  and 𝑆𝑡𝑒𝑒𝑟𝑡−1 can take 21 different values between -10 (hard right) and +10 

(hard left). Variable 𝐴𝑛𝑔𝑙𝑒𝑡 represents the angle between heading vector of the car 

and the course of the racing track to be reached in 1 second by current speed and can 

take 21 values between -10 (large positive angle) and +10 (large negative angle). 

According to Fig. 24, the decomposition of their JPD is specified as: 

 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡−1, 𝑆𝑡𝑒𝑒𝑟𝑡 , 𝐴𝑛𝑔𝑙𝑒𝑡) =
𝑃(𝑆𝑡𝑒𝑒𝑟𝑡−1) ∙  𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑆𝑡𝑒𝑒𝑟𝑡−1) ∙  𝑃(𝐴𝑛𝑔𝑙𝑒𝑡|𝑆𝑡𝑒𝑒𝑟𝑡). 

 

According to the visual attention allocation theory of Horrey et al. [51] the 

perception of the heading angle is influenced by areas in the visual field (ambient 

channel), the head angle and the gaze angle relative to the head. At the present 

moment light colored nodes in Fig. 24 are not included into the driver model. Instead 

we assumed that drivers are able to compute the aggregate sensory variables heading 

angle and vehicle speed. Compared to the lateral control in Salvucci & Gray’s model 

[15, 52] our BAD model is more robust, makes less assumptions about the vision 

field, and no assumptions about gaze-control. 

Variables 𝐴𝑐𝑐𝑡 and 𝐴𝑐𝑐𝑡−1 of DBN of longitudinal control take 21 different values 

between -10 (fully depress braking pedal) and +10 (fully depress acceleration pedal). 

Variable 𝐴𝑛𝑔𝑙𝑒𝑡 represents the angle between heading vector of the car and the 

course of the racing track to be reached in 2 second by current speed and can take 21 

values between -10 (large positive angle) and +10 (large negative angle). 

Variable 𝑆𝑝𝑒𝑒𝑑𝑡 represents the perceived longitudinal velocity and takes 10 values 

between 0 (low speed) and 10 (high speed). The decomposition of their JPD is 

specified as: 

 

𝑃(𝐴𝑐𝑐𝑡−1, 𝐴𝑐𝑐𝑡 , 𝐴𝑛𝑔𝑙𝑒𝑡 , 𝑆𝑝𝑒𝑒𝑑𝑡) =
𝑃(𝐴𝑐𝑐𝑡−1) ∙  𝑃(𝐴𝑐𝑐𝑡|𝐴𝑐𝑐𝑡−1) ∙  𝑃(𝐴𝑛𝑔𝑙𝑒𝑡|𝐴𝑐𝑐𝑡) ∙  𝑃(𝑆𝑝𝑒𝑒𝑑𝑡|𝐴𝑐𝑐𝑡). 

 

All terms of the two decompositions are assumed to have a Gaussian form, whose 

parameters mean 𝜇 and standard deviation 𝜎 need to be obtained from experimental 

data. 
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4.1.1 Experimental Settings   

To demonstrate the functionality of our BAD models for autonomous lateral and 

longitudinal control we use the open source racing simulation TORCS [20]. Though 

considered as a racing game, TORCS accurately simulates car physics and allows the 

user to implement personal driver models. A driver model controls a vehicle within 

the TORCS world by action parameters (steering, accelerating, braking etc.) and has 

access to the current world state of the TORCS simulation. We developed a driver 

model, referred as TORCS driver model, which is capable to derive action parameters 

by values read from external controllers, read/write experimental data from/into files 

and perceive its environment according to the perception component of the BAD 

model. The BAD model itself is embedded in the TORCS driver model (Fig. 26). For 

implementation and inference of the BAD model we use ProBT©, a Bayesian 

inference engine and an API for building Bayesian models. ProBT© is published by 

the ProBAYES company and free available for academic purposes.  

 

Fig. 26: Overview embedding the BAD model in the TORCS driver model 

As external controller we use the Logitech G25, a controlling device consisting of 

a force-feedback steering wheel, pedals and a gear box. A human driver can manually 

control the TORCS vehicle via the steering wheel angle 𝜃𝑡 and the positions of 
acceleration- and braking-pedal. To achieve a usable drivability, operative steering 

wheel angles are limited to thirty percent of the possible steering wheel angles, 

leading to effective vehicle steering angles between −13.5° and +13.5°. Greater 

steering wheel movements were possible but would not affect the actual vehicle 

steering angle. 
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4.1.2 Recording of Experimental Data 

 

Data were obtained in experimental drives of a single driver on the TORCS racing 

track “Aalborg”. The map of the drive and curve specific measurements are presented 

in Fig. 27. For that purpose, time series of values of sensory- and action-variables 

were recorded at an interval of 50ms. The experimental data were used to obtain 

parameters (means, standard deviations) for the Gaussian parametric forms for each 

of probability distribution of the BAD model. A single driven lap was sufficient to 

obtain the data for estimating parameters stable enough for autonomous control. 

 

 

Fig. 27: Bird’s eye view of race track with curve radii and rotation angles (graphics from [22] 

with kind permission of Springer Science and Business Media) 

 

4.1.3 Autonomous Driving of BAD model 

 

Under BAD-Model-control of the vehicle current values for sensory-variables of 

lateral and longitudinal control are sampled every time step  𝑡. After inferring the 

conditional probability distributions 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑎𝑛𝑔𝑙𝑒𝑡) of the lateral control 

DBN and 𝑃(𝐴𝑐𝑐𝑡|𝑎𝑐𝑐𝑡−1, 𝑎𝑛𝑔𝑙𝑒𝑡 , 𝑠𝑝𝑒𝑒𝑑𝑡) of the longitudinal control DBN, concrete 

values for 𝑆𝑡𝑒𝑒𝑟𝑡  and 𝐴𝑐𝑐𝑡 were randomly drawn from these distributions and used to 

control the TORCS vehicle. In principle we could choose the conditional expected 

actions to make the model react deterministically 𝐸(𝐴𝑐𝑡𝑖𝑜𝑛𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑎𝑛𝑔𝑙𝑒𝑡). 
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4.1.4 Results 

A snapshot of a BAD model drive is shown in Fig. 28 and a comparison of the 

driver’s speed data with model generated speed data in Fig. 29. The comparison 

demonstrates the quality of the simple BAD model but due to collisions with the 

roadside it is apparent that the capabilities of the BAD model have to be improved. 

 Improvements are expected by combining the two controllers, by including 

cognitive constructs like goals and latent states of the driver, and above all 

segmenting maneuvers into context dependent schemas (= behaviors).  

Using goals (e.g. driving a hairpin or an S-curve) makes it possible to adapt the 

model to different road segments and situations. We try to use the same model for 

situation recognition or to situation-adapted control. The modeling idea of a HMM 

was abandoned because the state variable has to be too fine grained to obtain a high 

quality vehicle control [23]. Instead we are guided by the idea of state-based mixture-

of-behaviors models in 3.3.2.5. 

 

 

Fig. 28: Snapshot of BAD model drive on TORCS race track (graphics from [22] with kind 

permission of Springer Science and Business Media) 
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Fig. 29: Comparison of Human and BAD-Model Drives (graphics from [22] with kind 

permission of Springer Science and Business Media) 

4.2 Use Case for In-Vehicle Cooperation: Driving Under the Lateral Assistance 

of a BAD Model 

As an example for smart assistance, we present the use of a BAD model to assist a 

human driver’s lateral control. We decided to change the former perception 

component of the BAD model from heading angle, represented by variable 𝐴𝑛𝑔𝑙𝑒𝑡  in 

Fig. 24 and 25, into twenty distance sensors, represented by variables 𝑆𝑡
0 to 𝑆𝑡

19. 

Positioned at the headlights of a car the distance sensors simulate according to the 

vision theory of Horrey’s et al. [60] an ambient vision field with radius 105° (Fig. 30). 

 

 

Fig. 30: Ambient Vision Field - Position and direction of distance sensors. 
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The variables of this BAD model are defined as follows: 𝑆𝑡𝑒𝑒𝑟𝑡 and 𝑆𝑡𝑒𝑒𝑟𝑡−1 can 

take 21 different values between -10 (hard left) and +10 (hard right). Each of the 

variables  𝑆𝑡
0 to 𝑆𝑡

19 can take 20 different values between 0 (short distance) and 19 

(long distance). The JPD is decomposed to 

 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡−1, 𝑆𝑡𝑒𝑒𝑟𝑡 , 𝑆𝑡
0, … , 𝑆𝑡

19) = 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡−1) ∙  𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑆𝑡𝑒𝑒𝑟𝑡−1) ∙
 ∏ 𝑃(𝑆𝑡

𝑖|𝑆𝑡𝑒𝑒𝑟𝑡)19
𝑖=0 . 

 

The graphical representation of this decomposition is shown in Fig. 31. 

 

Fig. 31: Partially inverse DBN of Lateral Control for assisted driving 

4.2.1 Experimental Setting 

To demonstrate the functionality of the BAD model for assisted driving the open 

source racing simulation TORCS [20] and the Logitech G25 as external controller are 

used once again. 

 For lateral assistance an extension of the TORCS driver model was necessary (see 

Fig. 32). To assist the human driver, the BAD model not only must be able to control 

the simulated TORCS vehicle but also to influence the steering wheel angle 𝜃𝑡. While 

the human driver can influence 𝜃𝑡 simply by turning the steering wheel in the 

ordinary manner, the BAD model has to control the steering wheel in a different way 

by applying force-feedback commands. These commands are realized by a force-

feedback spring effect that pushes the steering wheel back toward a certain position 𝜑 

after it has been moved from that position. The strength of the reset force is 

determined by a function 𝑓(𝜑𝑡 − 𝜃𝑡). The variables influencing the effect can be 

adjusted and therefore can be used to parameterize the strictness and amount of BAD 

assistance. An overview of the resulting structure is given in Fig. 32.  
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Fig. 32: TORCS driver model with BAD model for lateral assistance 

4.2.2 Recording of Experimental Data 

To collect the experimental data needed to determine the parameters to define the 

BAD model, three laps were driven by the second author once again on the racing 

track “Aalborg” (Fig. 27). The experimental data was then used to construct 

(conditional) probability tables for each of probability distribution of the BAD model. 

If the probability tables matched the shape of a Gaussian they were discretized with 

mean 𝜇 and standard deviation 𝜎.  

4.2.3 Driving under Smart Assistance of the BAD Model 

While running, at an interval of 50 ms, the TORCS driver model calculates the values 

for each of the distance sensors to derive current values in the BAD model for 𝑆0,𝑡 to 

𝑆19,𝑡. Knowing 𝑆𝑡𝑒𝑒𝑟𝑡−1 = 𝑠𝑡𝑒𝑒𝑟𝑡−1and 𝑆𝑡
0 = 𝑠𝑡

0, … , 𝑆𝑡
19 = 𝑠𝑡

19, the conditional 

probability distribution 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19) will be inferred by the BAD 

model. By now, the inferred conditional distribution is used for continuous (1.) and 

temporarily (2.) driving assistance: 

 

1. We created a highly-automated approach to assisted driving, letting the BAD 

model automatically control the steering wheel while a human driver can choose 

to intervene. To achieve this, a value 𝑠𝑡𝑒𝑒𝑟𝑡 was, according to the BP draw 

strategy, randomly drawn from the distribution 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19) 

and used to calculate a new center angle 𝜑  for the force-feedback spring effect 

(steering wheel reset force).  

2. As a first approach to semi-automated assisted driving we let a human driver 

control the vehicle while the BAD model only intervened when the steering 

movements had a significant low probability in the current situation. This was 

achieved by inferring 𝑃(𝑠𝑡𝑒𝑒𝑟𝑡 = 𝜃 |𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19). Once this probability 
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falls below a certain threshold an anomaly is detected, therefore a new value 

𝑠𝑡𝑒𝑒𝑟𝑡 was randomly drawn from the distribution 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡  | 𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19) and used to calculate a new center angle 𝜑  for 

the force-feedback spring effect (steering wheel reset force). 

4.2.4. Results 

The parameters derived from three driven laps turned out to be sufficient to create a 

BAD model that was able to assist a human driver. Furthermore, the level of 

assistance intensity can easily be shifted from rather light to very strict by simply 

adjusting the parameters of the spring effect and/or the threshold. 

5 Bayesian Learning of Bayesian Agent Models  

In order to learn the parameters of the CPDs of the BAD model in an objective 

manner a set of experimental data is needed. Learning can be done offline or online.  

In offline learning as described in chapter 4 the collection of the training data and 

the testing of the BAD model are temporarily separated activities. Collecting 

experimental data without real-time reviewing the behavior of the BAD model allows 

only delayed information about its performance. Furthermore, due to the fact that 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19) has to be inferred inversely (Fig. 24, 25), an inspection 

of the probability distributions of the BAD model is not very informative how to 

obtain the intended behavior and how to improve the completeness and quality of the 

model. Offline adapting the BAD model remains a clumsy and subjective procedure 

similar to the handcrafting of production system models. 

A more natural approach would be the online learning of the BAD models by 

Bayesian parameter learning. We propose a new methodology: Bayesian learning of 

agent models under human control. The performance of the BAD model is observed 

by the human driver while the BAD model is driving. New data are learned only 

when the model behavior is unsatisfying. By observing and correcting the actions of 

the BAD model only when needed, problems can be solved, which are nearly 

impossible to discover by just analyzing its probability distributions. According to 

Bayesian methodology the old unsatisfactory BAD model is contained in the apriori-

hypothesis, which will be revised by new training data to the aposteriori-hypothesis 

which contains the improved model.  

We extended the TORCS driver model to provide the human driver with a learning 

control in the case of unsatisfactory BAD model behavior. New human experimental 

data are recorded by pressing a learning button attached to the steering wheel. When 

learning at every time step 𝑡 current percepts provided by TORCS and actions read 

from the Logitech G25 controller are written into the database, updating the 

behavioral data and the CPDs. Once the button is pressed again, the data acquisition 

process is stopped and the conditional probability distributions are modified 

according to the Bayesian learning methodology. 

  



Möbus, C., Eilers, M., Prototyping Smart Assistance with BAD Models, in: Mastrogiovanni, Chong (eds), 

Handbook of Research on Ambient Intelligence and Smart Environments, IGI Global, USA, 09/05/2010 

34 

 

 

Fig. 33: Left: Runtime-visualization showing the driver model and its sensors while 

approaching a right curve from a bird’s eye view. Right: Runtime-visualization of the 

corresponding apriori uniform conditional probability distribution (red squares) 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19). Light gray bar shows the human chosen steering wheel angle  

𝑆𝑡𝑒𝑒𝑟𝑡 = 𝜃𝑡. 

To test the functionality of this approach, we used an empty database to learn 

parameters for the BAD model. We started with uniform apriori distributions for each 

of the conditional probability distributions of the BAD model. At the beginning, the 

apriori CPD 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19) was uniform and the driving behavior of 

the BAD model therefore completely random. Fig. 33 shows a screenshot of the 

TORCS driver model approaching a right curve and the corresponding apriori 

uniform CPD when starting with an empty database. 

We then started collecting driving data while correcting the BAD model whenever 

its actions were not suitable to solve the current situation. The performance of the 

BAD model improved rapidly and it took only a few standard maneuvers to be able to 

let the BAD model drive the whole racing track successfully. As an example, Fig. 34 

shows the driver model approaching the same right curve as showed in Fig. 33 after 

collecting experimental data of one driven right curve, resulting in a very peaked 

conditional probability distribution 𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19). 
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Fig. 34: Left: Runtime-visualization showing the driver model and its sensors while 

approaching a right curve from a bird’s eye view. Right: Runtime-visualization of the 

corresponding Bayesian learned aposteriori conditional probability distribution (red squares) 

𝑃(𝑆𝑡𝑒𝑒𝑟𝑡|𝑠𝑡𝑒𝑒𝑟𝑡−1, 𝑠𝑡
0, … , 𝑠𝑡

19). 

6 The Conversion of BAD Models to Bayesian Assistance Systems  

For the purpose of smart assistance in simulated or real world scenarios the obtained 

BAD models can be used as BAS in principle as they are. The only question is, 

whether the driving competence of the BAD model is the same as the driving 

competence of the human driver controlling the vehicle in the training session. 

Our simulation world is so abstract that the sophisticated ambient human 

perception system can be simulated by a beam of sensors and sensor fusion. In more 

complicated scenarios we have to refine the model of the vision system [31]. 

We believe that our approach is superior to a proposal to model the strategic skills 

of a PADAS with a Markov Decision Process (MDP) [18]. A MDP needs a reward 

function. This function has to be derived deductively from theoretical concepts or 

learnt inductively from car trajectories by solving the inverse reinforcement learning 

problem [19]. The deductive derivation of reward function often results in strange 

nonhuman overall behaviors. The inductive mining of the reward function from car 

trajectories or behavior traces seems to be a detour and seem more challenging than 

our approach. 

The two new concepts Bayesian learning of agent models under human control 

and the usage of a BAD model as a BAS or PADAS are demonstrated here and in [25, 

26]. 

7 Conclusion and Outlook 

We think that dynamic probabilistic models are sufficient expressive to describe and 

predict a wide range of phenomena. Their subtypes BAD and BAD-MoB models are 

appropriate for the challenges described in this paper, especially when they are learnt 

in experiments with Bayesian learning of agent models under human control. Next 

we have to implement further models creating a library of behaviors of various levels 
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of expertise. To that end a careful selected taxonomy of scenarios, maneuvers, 

behaviors, and control actions without and with alter agents has to be defined and 

studied. We believe that our approach to use a BAD model as a BAS or PADAS is 

superior to a proposal to model the strategical and tactical skills of a PADAS with a 

Markov Decision Process (MDP).  
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9 Appendix A1:  DAGs of Static and Dynamic Bayesian Models 

 

 

 

 

Fig. A1.01: Reactive Bayesian Network (BN) [21, 31]; 

ellipses in plates denote sets of random variables (plate 

notation [72]) 

Fig. A1.02: Inverse (naïve) 

Classifier BN [32, 60] 

 

 

Fig. A1.03: Inverse BN-Model with State Variable [65] 
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Fig. A1.04: Hidden Markov Model (HMM) [62, 63, 67] 

 

Fig. A1.05: Hidden Markov Model (HMM) with (Inverted) Sensor Model [32] 

 

Fig. A1.06: Hidden Markov Model (HMM) with Motor and (Inverted) Sensor Model [61, 62, 

65] 
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Fig. A1.07: (Reactive) Input-Output HMM (RIOHMM) – slight modification of [64] 

 

 

Fig. A1.08: Discrete Bayesian Filter (= HMM with Sensor and Inverted Motor Model) [29, 65] 
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Fig. A1.09: Coupled HMM (CHMM) [66] 

 

Fig. A1.10: Coupled Reactive HMM (CRHMM) 
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Fig. A1.11: Switching Linear Dynamic System (SLDS) [63] 

 

 

Fig. A1.12: Bayesian Filter and Action Model [65, p.180] 
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10 Appendix A2:  Netica Implementations of Paradigmatic 

Dynamic Bayesian Agent Models 

 

Fig. A2.01: Prediction Step in Night Watchman DBF 

 

Fig. A2.02: Correction Step in Night Watchman DBF 

 

Fig. A2.03: Perception Step in Night Watchman DBF 
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Fig. A2.04: Action Step in Night Watchman DBF 

 

 

Fig. A2.05: Apriori Beliefs in Expert-Role, Mixed Experts, or Schema DBN Model with Action 

Effects  

 

Fig. A2.06: First Perception Step in Night Watchman DBN with Action Effect Model 
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Fig. A2.07: First Action Step in Night Watchman DBN with Action Effect Model 

 

Fig. A2.08: Second Perception Step in Night Watchman DBN with Action Effect Model 

 

Fig. A2.09: Apriori Beliefs in Expert-Role, Mixed Experts, or Schema DBN Model with Action 

Effect Model 
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Fig. A2.10: Role, Schema, or Intention Diagnostic in Expert-Role, Mixed Experts, or Schema 

DBN Model with Action Effect Model 

 

Fig. A2.11: Apriori Beliefs in AoI and Ambient Vision-Role-Model 
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Fig. A2.12: Inference of Intention, Role, and Action in AoI and Ambient Vision-Role-Model 

 

 

Fig. A2.13: Inference of Intention, Role, and Action in AoI and Ambient Vision-Role-Model 

 



Möbus, C., Eilers, M., Prototyping Smart Assistance with BAD Models, in: Mastrogiovanni, Chong (eds), 

Handbook of Research on Ambient Intelligence and Smart Environments, IGI Global, USA, 09/05/2010 

50 

 

 

Fig. A2.14: Inference of Role-specific Actions in AoI and Ambient Vision-Role-Model 

 

 

Fig. A2.15: Role or Intention Conflict  in AoI and Ambient Vision-Role-Model 
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11 Glossary, key terms, definitions 

anomalies  

risky maneuvers are called anomalies when they have a low probability of 

occurrence in the behavior stream of experienced drivers and which only experienced 

drivers are able to prevent or to anticipate automatically. A measure of the anomaly of 

the driver’s behavior is the conditional probability of his behavior under the 

hypothesis that the observed actions are generated by a stochastic process which 

generated the trajectories or behaviors of the correct maneuver M+. 

anticipatory planning 

For anticipatory planning the conditional probability of the NextFutureDrive under 

the assumption of the pastDrive, the currentDrive, and the anticipated 

expectedFutureDrive has to be computed. 

Bayesian Assistance Systems (BAS) 

For the purpose of smart assistance in simulated or real world scenarios the 

obtained Bayesian Autonomous Driver (BAD) models can be used as prototypical 

Bayesian Assistance Systems (BAS). Due to their probabilistic nature BAD models or 

BAS can not only be used for real-time control but also for real-time detection of 

anomalies in driver behavior and real-time generation of supportive interventions 

(countermeasures). 

Bayesian Autonomous Driver (BAD) model 

BAD models describe phenomena on the basis of the variables of interest and the 

decomposition of their joint probability distribution (JPD) into conditional probability 

distributions (CPD-factors) according to the special chain rule for Bayesian networks. 

The underlying conditional independence hypotheses (CIHs) between sets of 

variables can be tested by standard statistical methods (e.g. the conditional mutual 

information index. The parameters of BAD models can be learnt objectively with 

statistical sound methods by batch from multivariate behavior traces or by learning 

from single cases. 

Due to their probabilistic nature BAD models or BAS can not only be used for 

real-time control of vehicles but also for real-time detection of anomalies in driver 

behavior and real-time generation of supportive interventions (countermeasures). 

Bayesian Autonomous Driver with Mixture-of-Behaviors (BAD-MoB) model 

The model is suited to represent the sensor-motor system of individuals or groups 

of human or artificial agents in the functional autonomous layer or stage of Anderson. 

In a MoB model it is assumed that the behavior can be context-dependent generated 

as a mixture of ideal schematic behaviors (= experts). The template or class model is 
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distributed across two time slices, and tries to avoid the latent state assumptions of 

Hidden Markow Models. Learning data are time series or case data of relevant 

variables: percepts, goals, and actions. Goals are the only latent variables which could 

be set by commands issued by the higher associative layer.  

Bayesian Filter and Action Model (BFAM) 

In the Bayesian Filter and Action Model actions are not only dependent on the 

current process state but also on direct antecedent actions. Thus the generation of 

erratic behavior is suppressed. Furthermore the BFAM includes direct action effects 

on the next future process state. This is important when the influence of action effects 

should be modeled directly into the state not making a detour via the environment and 

the perception of the agent. 

Bayesian learning of agent models under human control 

The performance of the BAD model is observed by the human driver while the 

BAD model is driving. New data are learned only when the model behavior is 

unsatisfying. By observing and correcting the actions of the BAD model only when 

needed, problems can be solved, which are nearly impossible to discover by just 

analyzing its probability distributions. 

Bayesian (Robot) Programs (BPs) 

BP is a simple and generic framework suitable for the description of human 

sensory-motor models in the presence of incompleteness and uncertainty. It provides 

integrated model-driven data analysis and model construction. In contrast to 

conventional Bayesian network models BP-models put emphasis on a recursive 

structure and infer concrete motor actions for real-time control on the basis of 

sensory evidence. Actions are sampled from CPDs according various strategies after 

propagating sensor or task goal evidence. 

Computational agent model 

Computational agent models have to represent perceptions, beliefs, goals, and 

actions of ego and alter agents. 

cooperative scenario  
when goals are issued by one single principal. 

cooperative driving scenario  

is driving scenario with in-vehicle-cooperation between a human driver and a BAS  

distributed cognition  
was originated by Edwin Hutchins in the mid 1980s. He proposed that human 

knowledge and cognition is not confined to individuals but is also embedded in the 

objects and tools of the environment. Cognitive processes may be distributed across 

the members of a social group or the material or environmental structure. 
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Dynamic Bayesian Filter (DBF) 

The DBF is a HMM with state, percept and motor variables. The general algorithm 

consists of two steps in each iteration or recursive call:  

3. Prediction step: from the most recent apriori belief(state) and the current control 

(= action) compute a provisional belief(state) 

4. Correction step: from the current provisional belief(state) and the current 

measurements (= percepts) compute the posteriori belief(state). 

Dynamic Bayesian network (DBNs) 

In the case of identical time-slices and several identical temporal links we have a 

repetitive temporal model which is called Dynamic Bayesian Network model (DBN). 

DBNs are dynamic probabilistic models. HMMs and DBN are mathematically 

equivalent. Though, there is a trade-off between estimation efficiency and descriptive 

expressiveness in HMMs and DBNs. Estimation in HMMs is more efficient than in 

DBNs due to algorithms (Viterbi, Baum-Welch) whereas descriptive flexibility is 

greater in DBNs. At the same time the state-space grows more rapidly in HMMs than 

in corresponding DBNs. 

Dynamic probabilistic model 

Dynamic probabilistic models evolve over time. If the model contains discrete 

time-stamps one can have a model for each unit of time. These local models are called 

time-slices. The time slices are connected through temporal links to give a full model.  

Hidden Markow Models (HMMs) 

A special category of time-stamped dynamic probabilistic models is that of a 

Hidden Markov Model (HMM). They are repetitive temporal models in which the 

state of the process is described by a single discrete random variable. Because of the 

Markov assumption only temporarily adjacent time slices are linked by a single link 

between the state nodes. 

HMMs are sequence classifiers and allow the efficient recognition of situations, 

goals and intentions; e.g. diagnosing driver’s intention to stop at a crossroad. HMMs 

and DBN are mathematically equivalent. Though, there is a trade-off between 

estimation efficiency and descriptive expressiveness in HMMs and DBNs. Estimation 

in HMMs is more efficient than in DBNs due to algorithms (Viterbi, Baum-Welch) 

whereas descriptive flexibility is greater in DBNs. At the same time the state-space 

grows more rapidly in HMMs than in corresponding DBNs. 

partial or non-cooperative scenario  
when goals are issued by several different principals. 

shared space  
approach is based on the observation that individuals' behavior in traffic is more 

positively affected by the built environment of the public space than by conventional 

traffic control devices (signals, signs, road markings, etc.) or regulations. 

 


